aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rwxr-xr-xconfigure18
-rw-r--r--configure.ac2
-rw-r--r--configure.ac.pamphlet2
-rw-r--r--src/ChangeLog32
-rw-r--r--src/algebra/Makefile.in21
-rw-r--r--src/algebra/Makefile.pamphlet21
-rw-r--r--src/algebra/catdef.spad.pamphlet2
-rw-r--r--src/algebra/domain.spad.pamphlet256
-rw-r--r--src/algebra/exposed.lsp.pamphlet2
-rw-r--r--src/algebra/outform.spad.pamphlet95
-rw-r--r--src/algebra/syntax.spad.pamphlet93
-rw-r--r--src/algebra/term.spad.pamphlet8
-rw-r--r--src/interp/database.boot35
-rw-r--r--src/interp/i-analy.boot29
-rw-r--r--src/interp/i-eval.boot4
-rw-r--r--src/interp/i-output.boot5
-rw-r--r--src/interp/property.lisp4
-rw-r--r--src/interp/sys-constants.boot14
-rw-r--r--src/share/algebra/browse.daase3536
-rw-r--r--src/share/algebra/category.daase6171
-rw-r--r--src/share/algebra/compress.daase1337
-rw-r--r--src/share/algebra/interp.daase10427
-rw-r--r--src/share/algebra/operation.daase33466
23 files changed, 27936 insertions, 27644 deletions
diff --git a/configure b/configure
index 6420d729..93ea4276 100755
--- a/configure
+++ b/configure
@@ -1,6 +1,6 @@
#! /bin/sh
# Guess values for system-dependent variables and create Makefiles.
-# Generated by GNU Autoconf 2.60 for OpenAxiom 1.3.0-2008-12-20.
+# Generated by GNU Autoconf 2.60 for OpenAxiom 1.3.0-2008-12-25.
#
# Report bugs to <open-axiom-bugs@lists.sf.net>.
#
@@ -713,8 +713,8 @@ SHELL=${CONFIG_SHELL-/bin/sh}
# Identity of this package.
PACKAGE_NAME='OpenAxiom'
PACKAGE_TARNAME='openaxiom'
-PACKAGE_VERSION='1.3.0-2008-12-20'
-PACKAGE_STRING='OpenAxiom 1.3.0-2008-12-20'
+PACKAGE_VERSION='1.3.0-2008-12-25'
+PACKAGE_STRING='OpenAxiom 1.3.0-2008-12-25'
PACKAGE_BUGREPORT='open-axiom-bugs@lists.sf.net'
ac_unique_file="src/Makefile.pamphlet"
@@ -1405,7 +1405,7 @@ if test "$ac_init_help" = "long"; then
# Omit some internal or obsolete options to make the list less imposing.
# This message is too long to be a string in the A/UX 3.1 sh.
cat <<_ACEOF
-\`configure' configures OpenAxiom 1.3.0-2008-12-20 to adapt to many kinds of systems.
+\`configure' configures OpenAxiom 1.3.0-2008-12-25 to adapt to many kinds of systems.
Usage: $0 [OPTION]... [VAR=VALUE]...
@@ -1475,7 +1475,7 @@ fi
if test -n "$ac_init_help"; then
case $ac_init_help in
- short | recursive ) echo "Configuration of OpenAxiom 1.3.0-2008-12-20:";;
+ short | recursive ) echo "Configuration of OpenAxiom 1.3.0-2008-12-25:";;
esac
cat <<\_ACEOF
@@ -1579,7 +1579,7 @@ fi
test -n "$ac_init_help" && exit $ac_status
if $ac_init_version; then
cat <<\_ACEOF
-OpenAxiom configure 1.3.0-2008-12-20
+OpenAxiom configure 1.3.0-2008-12-25
generated by GNU Autoconf 2.60
Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001,
@@ -1593,7 +1593,7 @@ cat >config.log <<_ACEOF
This file contains any messages produced by compilers while
running configure, to aid debugging if configure makes a mistake.
-It was created by OpenAxiom $as_me 1.3.0-2008-12-20, which was
+It was created by OpenAxiom $as_me 1.3.0-2008-12-25, which was
generated by GNU Autoconf 2.60. Invocation command line was
$ $0 $@
@@ -26424,7 +26424,7 @@ exec 6>&1
# report actual input values of CONFIG_FILES etc. instead of their
# values after options handling.
ac_log="
-This file was extended by OpenAxiom $as_me 1.3.0-2008-12-20, which was
+This file was extended by OpenAxiom $as_me 1.3.0-2008-12-25, which was
generated by GNU Autoconf 2.60. Invocation command line was
CONFIG_FILES = $CONFIG_FILES
@@ -26473,7 +26473,7 @@ Report bugs to <bug-autoconf@gnu.org>."
_ACEOF
cat >>$CONFIG_STATUS <<_ACEOF
ac_cs_version="\\
-OpenAxiom config.status 1.3.0-2008-12-20
+OpenAxiom config.status 1.3.0-2008-12-25
configured by $0, generated by GNU Autoconf 2.60,
with options \\"`echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`\\"
diff --git a/configure.ac b/configure.ac
index bd73096c..9e214cc4 100644
--- a/configure.ac
+++ b/configure.ac
@@ -1,6 +1,6 @@
sinclude(config/open-axiom.m4)
sinclude(config/aclocal.m4)
-AC_INIT([OpenAxiom], [1.3.0-2008-12-20],
+AC_INIT([OpenAxiom], [1.3.0-2008-12-25],
[open-axiom-bugs@lists.sf.net])
AC_CONFIG_AUX_DIR(config)
diff --git a/configure.ac.pamphlet b/configure.ac.pamphlet
index f489766b..517b9bd8 100644
--- a/configure.ac.pamphlet
+++ b/configure.ac.pamphlet
@@ -1126,7 +1126,7 @@ information:
<<Autoconf init>>=
sinclude(config/open-axiom.m4)
sinclude(config/aclocal.m4)
-AC_INIT([OpenAxiom], [1.3.0-2008-12-20],
+AC_INIT([OpenAxiom], [1.3.0-2008-12-25],
[open-axiom-bugs@lists.sf.net])
@
diff --git a/src/ChangeLog b/src/ChangeLog
index 3b7e5862..1b4d8dd1 100644
--- a/src/ChangeLog
+++ b/src/ChangeLog
@@ -1,3 +1,35 @@
+2008-12-25 Gabriel Dos Reis <gdr@cs.tamu.edu>
+
+ * interp/database.boot (getConstructorArity): New.
+ (getCategoryExports): Likewise.
+ (getCategoryAttributes): Likewise.
+ * interp/i-analy.boot (isUnambiguouslyConstructor): New.
+ (bottomUpIdentifier): Use it.
+ * algebra/syntax.spad.pamphlet (Identifier): No longer satisfies
+ SpadSyntaxCategory).
+ * algebra/exposed.lsp.pamphlet: Expose Signature and
+ ConstructorCategory.
+ * algebra/term.spad.pamphlet (operator$OperatorCategory): Remove.
+ * algebra/domain.spad.pamphlet (ConstructorKind): Improve
+ documentation.
+ (ConstructorCategory): New.
+ (Constructor): Now satisfies ConstructorCategory.
+ (CategoryConstructor): New.
+ (DomainConstructor): New.
+ (Signature): Move from syntax.spad.pamphlet.
+ (OperatorSignature): New.
+ (exportedOperators$Category): New.
+ (principalAncestors$Category): New.
+ (parents$Category): Likewise.
+ (constructor$Domain): New.
+ * algebra/catdef.spad.pamphlet (hash$SetCategory): Tidy default
+ implementation.
+ * algebra/outform.spad.pamphlet (vspace$OutputForm): Prevent
+ infinite recursion for negative input.
+ (hspace$OutputForm): Likewise.
+ (rspace$OutputForm): Likewise.
+ Explicitly quote bytecode symbols.
+
2008-12-21 Gabriel Dos Reis <gdr@cs.tamu.edu>
* interp/i-eval.boot (evaluateType0): Check for builtin
diff --git a/src/algebra/Makefile.in b/src/algebra/Makefile.in
index 1fe56152..0e301731 100644
--- a/src/algebra/Makefile.in
+++ b/src/algebra/Makefile.in
@@ -359,7 +359,7 @@ axiom_algebra_layer_0 = \
KRCFROM KVTFROM \
MSYSCMD OM OMCONN OMDEV OUT \
PRIMCAT PRINT PTRANFN SPFCAT TYPE UTYPE \
- PROPERTY BASTYPE BASTYPE- CATEGORY LMODULE \
+ PROPERTY BASTYPE BASTYPE- LMODULE \
RMODULE FINITE STEP SGROUP SGROUP- ABELSG \
ABELSG- ORDSET ORDSET- FILECAT SEXCAT \
MKBCFUNC MKRECORD MKUCFUNC DROPT1 PLOT1 ITFUN2 \
@@ -389,7 +389,7 @@ axiom_algebra_layer_2 = \
ELTAGG ELTAGG- FMC FMFUN FORTFN FVC \
SYNTAX FVFUN INTRET IXAGG IXAGG- SEGXCAT \
CONTOUR LIST3 MKFUNC OASGP KTVLOGIC FNCAT \
- BYTE
+ BYTE IDENT
axiom_algebra_layer_2_nrlibs = \
$(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_2))
@@ -399,7 +399,7 @@ axiom_algebra_layer_2_objects = \
$(addsuffix .$(FASLEXT),$(axiom_algebra_layer_2)))
axiom_algebra_layer_3 = \
GRDEF SCOPE MAPHACK1 MAPHACK2 MAPHACK3 MAPPKG1 \
- MAPPKG2 MAPPKG3 INTBIT MONAD MONAD- CTORCALL
+ MAPPKG2 MAPPKG3 INTBIT MONAD MONAD-
@@ -663,7 +663,7 @@ axiom_algebra_layer_15_objects = \
$(addprefix $(OUT)/, \
$(addsuffix .$(FASLEXT),$(axiom_algebra_layer_15)))
axiom_algebra_layer_16 = \
- DPMM EFUPXS FFINTBAS FRIDEAL OPERCAT \
+ DPMM EFUPXS FFINTBAS FRIDEAL OPERCAT OPERCAT- \
FRIDEAL2 FRMOD \
IBATOOL INTFACT \
MSETAGG MONOGEN MONOGEN- NFINTBAS \
@@ -676,8 +676,8 @@ axiom_algebra_layer_16_objects = \
$(addprefix $(OUT)/, \
$(addsuffix .$(FASLEXT),$(axiom_algebra_layer_16)))
axiom_algebra_layer_17 = \
- CCLASS FSAGG2 GALFACT IALGFACT \
- IBACHIN MMLFORM NORMMA ODERED OMSAGG \
+ CCLASS FSAGG2 GALFACT IALGFACT CTORCAT CTORCAT- \
+ IBACHIN MMLFORM NORMMA ODERED OMSAGG OPSIG \
PERM PERMGRP PRIMES PWFFINTB \
RDIST SAE SAEFACT SAERFFC \
SGCF VIEW3D
@@ -689,7 +689,7 @@ axiom_algebra_layer_17_objects = \
$(addprefix $(OUT)/, \
$(addsuffix .$(FASLEXT),$(axiom_algebra_layer_17)))
axiom_algebra_layer_18 = \
-INTPACK IPF \
+ INTPACK IPF CATCTOR DOMCTOR CTORCALL \
KAFILE PATRES TBCMPPK
axiom_algebra_layer_18_nrlibs = \
@@ -812,7 +812,7 @@ axiom_algebra_layer_22_objects = \
axiom_algebra_layer_23 = \
CPIMA IRURPK LAZM3PK LEXTRIPK \
NORMPK QCMPACK RURPK SFRGCD \
- SFQCMPK INTRVL ODEEF DOMAIN
+ SFQCMPK INTRVL ODEEF DOMAIN CATEGORY
axiom_algebra_layer_23_nrlibs = \
$(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_23))
@@ -822,13 +822,13 @@ axiom_algebra_layer_23_objects = \
$(addsuffix .$(FASLEXT),$(axiom_algebra_layer_23)))
axiom_algebra_layer_user = \
RINTERP ASTCAT ASTCAT- SASTCAT SASTCAT- HEADAST \
- LITERAL IDENT TYPEAST IMPTAST MAPPAST ATTRAST \
+ LITERAL TYPEAST IMPTAST MAPPAST ATTRAST \
JOINAST IFAST RPTAST WHILEAST INAST CLLCAST \
LSTAST EXITAST RETAST SEGAST PRTDAST CRCAST \
LETAST SUCHAST RDUCEAST COLONAST ADDAST CAPSLAST \
CASEAST HASAST ISAST CATAST WHEREAST COMMAAST \
QQUTAST DEFAST MACROAST SPADXPT SPADAST \
- INBFILE OUTBFILE IOBFILE RGBCMDL RGBCSPC CTORKIND \
+ INBFILE OUTBFILE IOBFILE RGBCMDL RGBCSPC \
CTOR IP4ADDR NETCLT INETCLTS
axiom_algebra_layer_user_nrlibs = \
@@ -840,7 +840,6 @@ axiom_algebra_layer_user_objects = \
SASTCAT.NRLIB/code.$(FASLEXT): $(OUT)/ASTCAT.$(FASLEXT)
LITERAL.NRLIB/code.$(FASLEXT): $(OUT)/SASTCAT.$(FASLEXT)
-IDENT.NRLIB/code.$(FASLEXT): $(OUT)/SASTCAT.$(FASLEXT)
HEADAST.NRLIB/code.$(FASLEXT): $(OUT)/IDENT.$(FASLEXT)
SPADXPT.NRLIB/code.$(FASLEXT): $(OUT)/ASTCAT.$(FASLEXT)
ATTRAST.NRLIB/code.$(FASLEXT): $(OUT)/SPADXPT.$(FASLEXT)
diff --git a/src/algebra/Makefile.pamphlet b/src/algebra/Makefile.pamphlet
index 2dccf863..8e96e46b 100644
--- a/src/algebra/Makefile.pamphlet
+++ b/src/algebra/Makefile.pamphlet
@@ -188,7 +188,7 @@ axiom_algebra_layer_0 = \
KRCFROM KVTFROM \
MSYSCMD OM OMCONN OMDEV OUT \
PRIMCAT PRINT PTRANFN SPFCAT TYPE UTYPE \
- PROPERTY BASTYPE BASTYPE- CATEGORY LMODULE \
+ PROPERTY BASTYPE BASTYPE- LMODULE \
RMODULE FINITE STEP SGROUP SGROUP- ABELSG \
ABELSG- ORDSET ORDSET- FILECAT SEXCAT \
MKBCFUNC MKRECORD MKUCFUNC DROPT1 PLOT1 ITFUN2 \
@@ -239,7 +239,7 @@ axiom_algebra_layer_2 = \
ELTAGG ELTAGG- FMC FMFUN FORTFN FVC \
SYNTAX FVFUN INTRET IXAGG IXAGG- SEGXCAT \
CONTOUR LIST3 MKFUNC OASGP KTVLOGIC FNCAT \
- BYTE
+ BYTE IDENT
axiom_algebra_layer_2_nrlibs = \
$(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_2))
@@ -260,7 +260,7 @@ grdef.spad.pamphlet (GRDEF)
<<layer3>>=
axiom_algebra_layer_3 = \
GRDEF SCOPE MAPHACK1 MAPHACK2 MAPHACK3 MAPPKG1 \
- MAPPKG2 MAPPKG3 INTBIT MONAD MONAD- CTORCALL
+ MAPPKG2 MAPPKG3 INTBIT MONAD MONAD-
@@ -812,7 +812,7 @@ space.spad.pamphlet (SPACEC SPACE3 TOPSP)
<<layer16>>=
axiom_algebra_layer_16 = \
- DPMM EFUPXS FFINTBAS FRIDEAL OPERCAT \
+ DPMM EFUPXS FFINTBAS FRIDEAL OPERCAT OPERCAT- \
FRIDEAL2 FRMOD \
IBATOOL INTFACT \
MSETAGG MONOGEN MONOGEN- NFINTBAS \
@@ -851,8 +851,8 @@ view3D.spad.pamphlet (VIEW3D)
<<layer17>>=
axiom_algebra_layer_17 = \
- CCLASS FSAGG2 GALFACT IALGFACT \
- IBACHIN MMLFORM NORMMA ODERED OMSAGG \
+ CCLASS FSAGG2 GALFACT IALGFACT CTORCAT CTORCAT- \
+ IBACHIN MMLFORM NORMMA ODERED OMSAGG OPSIG \
PERM PERMGRP PRIMES PWFFINTB \
RDIST SAE SAEFACT SAERFFC \
SGCF VIEW3D
@@ -878,7 +878,7 @@ table.spad.pamphlet (HASHTBL INTABL TABLE EQTBL STRTBL GSTBL STBL)
<<layer18>>=
axiom_algebra_layer_18 = \
-INTPACK IPF \
+ INTPACK IPF CATCTOR DOMCTOR CTORCALL \
KAFILE PATRES TBCMPPK
axiom_algebra_layer_18_nrlibs = \
@@ -1232,7 +1232,7 @@ zerodim.spad.pamphlet (LEXTRIPK IRURPK RURPK)
axiom_algebra_layer_23 = \
CPIMA IRURPK LAZM3PK LEXTRIPK \
NORMPK QCMPACK RURPK SFRGCD \
- SFQCMPK INTRVL ODEEF DOMAIN
+ SFQCMPK INTRVL ODEEF DOMAIN CATEGORY
axiom_algebra_layer_23_nrlibs = \
$(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_23))
@@ -1249,13 +1249,13 @@ we add it here.
<<USERLAYER>>=
axiom_algebra_layer_user = \
RINTERP ASTCAT ASTCAT- SASTCAT SASTCAT- HEADAST \
- LITERAL IDENT TYPEAST IMPTAST MAPPAST ATTRAST \
+ LITERAL TYPEAST IMPTAST MAPPAST ATTRAST \
JOINAST IFAST RPTAST WHILEAST INAST CLLCAST \
LSTAST EXITAST RETAST SEGAST PRTDAST CRCAST \
LETAST SUCHAST RDUCEAST COLONAST ADDAST CAPSLAST \
CASEAST HASAST ISAST CATAST WHEREAST COMMAAST \
QQUTAST DEFAST MACROAST SPADXPT SPADAST \
- INBFILE OUTBFILE IOBFILE RGBCMDL RGBCSPC CTORKIND \
+ INBFILE OUTBFILE IOBFILE RGBCMDL RGBCSPC \
CTOR IP4ADDR NETCLT INETCLTS
axiom_algebra_layer_user_nrlibs = \
@@ -1267,7 +1267,6 @@ axiom_algebra_layer_user_objects = \
SASTCAT.NRLIB/code.$(FASLEXT): $(OUT)/ASTCAT.$(FASLEXT)
LITERAL.NRLIB/code.$(FASLEXT): $(OUT)/SASTCAT.$(FASLEXT)
-IDENT.NRLIB/code.$(FASLEXT): $(OUT)/SASTCAT.$(FASLEXT)
HEADAST.NRLIB/code.$(FASLEXT): $(OUT)/IDENT.$(FASLEXT)
SPADXPT.NRLIB/code.$(FASLEXT): $(OUT)/ASTCAT.$(FASLEXT)
ATTRAST.NRLIB/code.$(FASLEXT): $(OUT)/SPADXPT.$(FASLEXT)
diff --git a/src/algebra/catdef.spad.pamphlet b/src/algebra/catdef.spad.pamphlet
index 45d087d0..42aeedb3 100644
--- a/src/algebra/catdef.spad.pamphlet
+++ b/src/algebra/catdef.spad.pamphlet
@@ -1630,7 +1630,7 @@ SetCategory(): Category == Join(BasicType,CoercibleTo OutputForm) with
latex: % -> String ++ latex(s) returns a LaTeX-printable output
++ representation of s.
add
- hash(s : %): SingleInteger == 0$SingleInteger
+ hash(s : %): SingleInteger == SXHASH(s)$Lisp
latex(s : %): String == "\mbox{\bf Unimplemented}"
@
diff --git a/src/algebra/domain.spad.pamphlet b/src/algebra/domain.spad.pamphlet
index 6619feb0..64415657 100644
--- a/src/algebra/domain.spad.pamphlet
+++ b/src/algebra/domain.spad.pamphlet
@@ -25,78 +25,267 @@
++ constructors, and package constructors.
ConstructorKind(): Public == Private where
Public == SetCategory with
- category: % ++ `category' designates category constructors
- domain: % ++ `domain' designates domain constructors
- package: % ++ `package' designates package constructors.
+ category: % ++ `category' is the kind of category constructors
+ domain: % ++ `domain' is the kind of domain constructors
+ package: % ++ `package' is the kind of package constructors.
Private == add
- category == INTERN("category","KEYWORD")$Lisp
- domain == INTERN("domain","KEYWORD")$Lisp
- package == INTERN("package","KEYWORD")$Lisp
+ category == 'category : %
+ domain == 'domain : %
+ package == 'package : %
k1 = k2 == EQ(k1,k2)$Lisp
- coerce(k: %): OutputForm ==
- k = category => outputForm 'category
- k = domain => outputForm 'domain
- outputForm 'package
+ coerce(k: %): OutputForm == k : OutputForm
@
+<<category CTORCAT ConstructorCategory>>=
+import ConstructorKind
+)abbrev category CTORCAT ConstructorCategory
+++ Author: Gabriel Dos Reis
+++ Date Create: December 17, 2008.
+++ Date Last Updated: December 21, 2008.
+++ Basic Operations: name, kind, arity.
+++ Description:
+++ This category declares basic operations on all constructors.
+ConstructorCategory(): Category == OperatorCategory Identifier with
+ kind: % -> ConstructorKind
+ ++ kind(ctor) returns the kind of the constructor `ctor'.
+ dualSignature: % -> List Boolean
+ ++ dualSignature(c) returns a list l of Boolean values with
+ ++ the following meaning:
+ ++ l.(i+1) holds when the constructor takes a domain object
+ ++ as the `i'th argument. Otherwise the argument
+ ++ must be a non-domain object.
+ add
+ kind x == getConstructorKind(x)$Lisp
+ arity x == getConstructorArity(x)$Lisp
+ dualSignature x == getDualSignatureFromDB(x)$Lisp
+@
+
+
<<domain CTOR Constructor>>=
)abbrev domain CTOR Constructor
++ Author: Gabriel Dos Reis
++ Date Create: October 07, 2008.
-++ Date Last Updated: October 07, 2008.
+++ Date Last Updated: December 17, 2008.
++ Related Constructors: Domain, Category
++ Basic Operations: name, kind, arity.
++ Description:
++ This domain provides implementations for constructors.
-Constructor(): Public == Private where
- Public == SetCategory with
- name: % -> Identifier
- ++ name(ctor) returns the name of the constructor `ctor'.
- kind: % -> ConstructorKind
- ++ kind(ctor) returns the kind of the constructor `ctor'.
- arity: % -> SingleInteger
- ++ arity(ctor) returns the arity of the constructor `ctor'.
- ++ A negative value means that the ctor takes a variable
- ++ length argument list, e.g. Mapping, Record, etc.
- Private == add
+Constructor(): ConstructorCategory == add
Rep == Identifier
name x == rep x
+ kind x == getConstructorKind(x)$Lisp
+ arity x == getConstructorArity(x)$Lisp
+@
+
+
+\section{domain ConstructorCall}
+
+<<domain CTORCALL ConstructorCall>>=
+import SetCategory
+import Symbol
+import List Syntax
+)abbrev domain CTORCALL ConstructorCall
+++ Author: Gabriel Dos Reis
+++ Date Created: January 19, 2008
+++ Date Last Updated: July 03, 2008
+++ Description: This domains represents a syntax object that
+++ designates a category, domain, or a package.
+++ See Also: Syntax, Domain
+ConstructorCall(): Public == Private where
+ Public == SetCategory with
+ constructor: % -> Constructor
+ ++ constructor(t) returns the name of the constructor used
+ ++ to make the call.
+ arguments: % -> List Syntax
+ ++ arguments(t) returns the list of syntax objects for the
+ ++ arguments used to invoke the constructor.
+
+ Private == add
+ constructor x ==
+ CAR(x)$Lisp
+
+ arguments x ==
+ CDR(x)$Lisp
+
+ x = y ==
+ EQUAL(x,y)$Lisp
+
+ coerce(x: %): OutputForm ==
+ outputDomainConstructor(x)$Lisp
+@
+
+
+<<domain CATCTOR CategoryConstructor>>=
+)abbrev domain CATCTOR CategoryConstructor
+++ Author: Gabriel Dos Reis
+++ Date Create: December 17, 2008.
+++ Date Last Updated: December 20, 2008.
+++ Related Constructors: Domain, Category
+++ Description:
+++ This domain provides representations for category constructors.
+CategoryConstructor(): Public == Private where
+ Public == Join(ConstructorCategory, CoercibleTo Constructor)
+ Private == Constructor add
+ coerce(x: %): Constructor == rep x
+
+@
+
+<<domain DOMCTOR DomainConstructor>>=
+)abbrev domain DOMCTOR DomainConstructor
+++ Author: Gabriel Dos Reis
+++ Date Create: December 17, 2008.
+++ Date Last Updated: December 20, 2008.
+++ Related Constructors: Domain, Category
+++ Description:
+++ This domain provides representations for domains constructors.
+DomainConstructor(): Public == Private where
+ Public == Join(ConstructorCategory, CoercibleTo Constructor)
+ Private == Constructor add
+ coerce(x: %): Constructor == rep x
+
+@
+
+\section{The Signature domain}
+
+<<domain SIG Signature>>=
+import List
+import Syntax
+)abbrev domain SIG Signature
+++ Author: Gabriel Dos Reis
+++ Date Created: January 10, 2008
+++ Date Last Updated: December 20, 2008
+++ Description: This is the datatype for operation signatures as
+++ used by the compiler and the interpreter. Note that this domain
+++ differs from SignatureAst.
+++ See also: ConstructorCall, Domain.
+Signature(): Public == Private where
+ Public == SetCategory with
+ signature: (List Syntax,Syntax) -> %
+ ++ signature(s,t) constructs a Signature object with parameter
+ ++ types indicaded by `s', and return type indicated by `t'.
+ target: % -> Syntax
+ ++ target(s) returns the target type of the signature `s'.
+ source: % -> List Syntax
+ ++ source(s) returns the list of parameter types of `s'.
+ Private == add
+ Rep == List Syntax
+ signature(s,t) == per cons(t,s)
+ target x == first rep x
+ source x == rest rep x
x = y == rep x = rep y
- coerce(x: %): OutputForm == rep(x)::OutputForm
+ printType(x: Syntax): OutputForm ==
+ x::InputForm::OutputForm
+ coerce(x: %): OutputForm ==
+ #source x = 1 =>
+ rarrow(printType first source x, printType target x)
+ rarrow(paren [printType s for s in source x],
+ printType target x)$OutputForm
+@
+
+\section{A domain for operator signatures}
+
+<<domain OPSIG OperatorSignature>>=
+)abbrev domain OPSIG OperatorSignature
+++ Author: Gabriel Dos Reis
+++ Date Created: December 20, 2008
+++ Date Last Modified: December 20, 2008
+++ Description:
+++ This the datatype for an operator-signature pair.
+OperatorSignature(): Public == Private where
+ Public == OperatorCategory Identifier with
+ signature: % -> Signature
+ ++ signature(x) returns the signature of `x'.
+ construct: (Identifier,Signature) -> %
+ ++ construct(op,sig) construct a signature-operator with
+ ++ operator name `op', and signature `sig'.
+ Private == add
+ construct(o,s) == LIST(o,s)$Lisp
+ name x == CAR(x)$Lisp
+ signature x == CADR(x)$Lisp
+ x = y == EQUAL(x,y)$Lisp
+ arity x == (#source signature x)::Arity
+ coerce(x: %): OutputForm ==
+ infix('_:::OutputForm, name(x)::OutputForm,
+ signature(x)::OutputForm)
+
+@
+
+\section{The SystemPredicate domain}
+
+<<domain SYSPRED SystemPredicate>>=
+)abbrev domain SYSPRED SystemPredicate
+SystemPredicate(): Public == Private where
+ Public == SetCategory
+ Private == add
+ x = y == EQUAL(x,y)$Lisp
+ coerce(x: %): OutputForm ==
+ NOT(x)$Lisp => '_false::OutputForm
+ EQ(x,'T)$Lisp => '_true::OutputForm
+ EQCAR(x,'NOT)$Lisp => not(CADR(x)$Lisp : % :: OutputForm)
@
\section{domain Category}
<<domain CATEGORY Category>>=
import CoercibleTo OutputForm
+import CategoryConstructor
)abbrev domain CATEGORY Category
++ Author: Gabriel Dos Reis
-++ Date Create: February 16, 2008.
+++ Date Create: December 20, 2008.
++ Date Last Updated: February 16, 2008.
++ Basic Operations: coerce
++ Related Constructors:
++ Also See: Type
Category(): Public == Private where
- Public ==> CoercibleTo OutputForm
- Private ==> add
+ Public == CoercibleTo OutputForm with
+ constructor: % -> CategoryConstructor
+ ++ constructor(c) returns the category constructor used to
+ ++ instantiate the category object `c'.
+ exportedOperators: % -> List OperatorSignature
+ ++ exportedOperators(c) returns the list of all operator signatures
+ ++ exported by the category `c', along with their predicates.
+ principalAncestors: % -> List ConstructorCall
+ ++ principalAncestors(c) returns the list of all category
+ ++ forms that are principal ancestors of the the category `c'.
+ parents: % -> List ConstructorCall
+ ++ parents(c) returns the list of all category forms directly
+ ++ extended by the category `c'.
+ Private == add
+ constructor x ==
+ CAR(devaluate(x)$Lisp)$Lisp
+
+ exportedOperators c ==
+ [CAR(x)$Lisp@OperatorSignature
+ for x in getCategoryExports(c)$Lisp@List(Syntax)]
+
+ principalAncestors c ==
+ getCategoryPrincipalAncestors(c)$Lisp
+
+ parents c ==
+ [CAR(x)$Lisp@ConstructorCall
+ for x in getCategoryParents(c)$Lisp@List(Syntax)]
+
coerce x ==
outputDomainConstructor(x)$Lisp
@
\section{domain Domain}
<<domain DOMAIN Domain>>=
-import SetCategory
import Void
import ConstructorCall
+import DomainConstructor
)abbrev domain DOMAIN Domain
++ Author: Gabriel Dos Reis
++ Date Create: October 18, 2007.
-++ Date Last Updated: January 19, 2008.
+++ Date Last Updated: December 20, 2008.
++ Basic Operations: coerce, reify
++ Related Constructors: Type, Syntax, OutputForm
++ Also See: Type, ConstructorCall
Domain(): Public == Private where
Public == SetCategory with
+ constructor: % -> DomainConstructor
+ ++ constructor(d) returns the domain constructor that is
+ ++ instantiated to the domain object `d'.
reify: % -> ConstructorCall
++ reify(d) returns the abstract syntax for the domain `x'.
@@ -110,6 +299,9 @@ Domain(): Public == Private where
++ of domain `d'.
Private == add
+ constructor x ==
+ CAR(devaluate(x)$Lisp)$Lisp
+
coerce x ==
outputDomainConstructor(x)$Lisp
@@ -167,6 +359,14 @@ Domain(): Public == Private where
<<license>>
<<domain CTORKIND ConstructorKinid>>
+<<category CTORCAT ConstructorCategory>>
+<<domain CTOR Constructor>>
+<<domain CTORCALL ConstructorCall>>
+<<domain CATCTOR CategoryConstructor>>
+<<domain DOMCTOR DomainConstructor>>
+
+<<domain SIG Signature>>
+<<domain OPSIG OperatorSignature>>
<<domain CATEGORY Category>>
<<domain DOMAIN Domain>>
diff --git a/src/algebra/exposed.lsp.pamphlet b/src/algebra/exposed.lsp.pamphlet
index 4193cb77..6240abfa 100644
--- a/src/algebra/exposed.lsp.pamphlet
+++ b/src/algebra/exposed.lsp.pamphlet
@@ -387,6 +387,7 @@
(|SegmentFunctions2| . SEG2)
(|SequenceAst| . SEQAST)
(|Set| . SET)
+ (|Signature| . SIG)
(|SignatureAst| . SIGAST)
(|SimpleAlgebraicExtensionAlgFactor| . SAEFACT)
(|SimplifyAlgebraicNumberConvertPackage| . SIMPAN)
@@ -612,6 +613,7 @@
(|CommutativeRing| . COMRING)
(|ComplexCategory| . COMPCAT)
(|Conduit| . CONDUIT)
+ (|ConstructorCategory| . CTORCAT)
(|ConvertibleFrom| . KVTFROM)
(|ConvertibleTo| . KONVERT)
(|DequeueAggregate| . DQAGG)
diff --git a/src/algebra/outform.spad.pamphlet b/src/algebra/outform.spad.pamphlet
index 47486571..fff28e68 100644
--- a/src/algebra/outform.spad.pamphlet
+++ b/src/algebra/outform.spad.pamphlet
@@ -539,26 +539,26 @@ OutputForm(): SetCategory with
right(a) == right(a,width())
vspace(n) ==
- n = 0 => empty()
+ n <= 0 => empty()
vconcat(sform " ",vspace(n - 1))
hspace(n) ==
- n = 0 => empty()
+ n <= 0 => empty()
sform(fillerSpaces(n)$Lisp)
rspace(n, m) ==
- n = 0 or m = 0 => empty()
+ n <= 0 or m <= 0 => empty()
vconcat(hspace n, rspace(n, m - 1))
matrix ll ==
lv := bless [LIST2VEC$Lisp l for l in ll]
CONS(eform MATRIX, LIST2VEC$Lisp lv)$Lisp
- pile l == cons(eform SC, l)
- commaSeparate l == cons(eform AGGLST, l)
- semicolonSeparate l == cons(eform AGGSET, l)
+ pile l == cons(eform 'SC, l)
+ commaSeparate l == cons(eform 'AGGLST, l)
+ semicolonSeparate l == cons(eform 'AGGSET, l)
blankSeparate l ==
- c:=eform CONCATB
+ c:=eform 'CONCATB
l1: List % :=[]
for u in reverse l repeat
if EQCAR(u,c)$Lisp
@@ -566,29 +566,30 @@ OutputForm(): SetCategory with
else l1:=[u,:l1]
cons(c, l1)
- brace a == bless [eform BRACE, a]
+ brace a == bless [eform 'BRACE, a]
brace l == brace commaSeparate l
- bracket a == bless [eform BRACKET, a]
+ bracket a == bless [eform 'BRACKET, a]
bracket l == bracket commaSeparate l
- paren a == bless [eform PAREN, a]
+ paren a == bless [eform 'PAREN, a]
paren l == paren commaSeparate l
- sub (a,b) == bless [eform SUB, a, b]
- super (a, b) == bless [eform SUPERSUB,a,sform " ",b]
- presub(a,b) == bless [eform SUPERSUB,a,sform " ",sform " ",sform " ",b]
- presuper(a, b) == bless [eform SUPERSUB,a,sform " ",sform " ",b]
+ sub (a,b) == bless [eform 'SUB, a, b]
+ super (a, b) == bless [eform 'SUPERSUB,a,sform " ",b]
+ presub(a,b) ==
+ bless [eform 'SUPERSUB,a,sform " ",sform " ",sform " ",b]
+ presuper(a, b) == bless [eform 'SUPERSUB,a,sform " ",sform " ",b]
scripts (a, l) ==
null l => a
null rest l => sub(a, first l)
- cons(eform SUPERSUB, cons(a, l))
+ cons(eform 'SUPERSUB, cons(a, l))
supersub(a, l) ==
if odd?(#l) then l := append(l, [empty()])
- cons(eform ALTSUPERSUB, cons(a, l))
+ cons(eform 'ALTSUPERSUB, cons(a, l))
- hconcat(a,b) == bless [eform CONCAT, a, b]
- hconcat l == cons(eform CONCAT, l)
- vconcat(a,b) == bless [eform VCONCAT, a, b]
- vconcat l == cons(eform VCONCAT, l)
+ hconcat(a,b) == bless [eform 'CONCAT, a, b]
+ hconcat l == cons(eform 'CONCAT, l)
+ vconcat(a,b) == bless [eform 'VCONCAT, a, b]
+ vconcat l == cons(eform 'VCONCAT, l)
(a:% ~= b:%): % == bless [sform "~=", a, b]
a < b == bless [sform "<", a, b]
@@ -609,11 +610,11 @@ OutputForm(): SetCategory with
a and b == bless [sform "and", a, b]
a or b == bless [sform "or", a, b]
not a == bless [sform "not", a]
- SEGMENT(a,b)== bless [eform SEGMENT, a, b]
- SEGMENT(a) == bless [eform SEGMENT, a]
- binomial(a,b)== bless [eform BINOMIAL, a, b]
+ SEGMENT(a,b)== bless [eform 'SEGMENT, a, b]
+ SEGMENT(a) == bless [eform 'SEGMENT, a]
+ binomial(a,b)== bless [eform 'BINOMIAL, a, b]
- empty() == bless [eform NOTHING]
+ empty() == bless [eform 'NOTHING]
infix? a ==
e:$ :=
@@ -638,25 +639,25 @@ OutputForm(): SetCategory with
postfix(a, b) ==
hconcat(b, a)
- string a == bless [eform STRING, a]
- quote a == bless [eform QUOTE, a]
- overbar a == bless [eform OVERBAR, a]
+ string a == bless [eform 'STRING, a]
+ quote a == bless [eform 'QUOTE, a]
+ overbar a == bless [eform 'OVERBAR, a]
dot a == super(a, sform ".")
prime a == super(a, sform ",")
dot(a,nn) == (s := new(nn, char "."); super(a, sform s))
prime(a,nn) == (s := new(nn, char ","); super(a, sform s))
- overlabel(a,b) == bless [eform OVERLABEL, a, b]
- box a == bless [eform BOX, a]
- zag(a,b) == bless [eform ZAG, a, b]
- root a == bless [eform ROOT, a]
- root(a,b) == bless [eform ROOT, a, b]
- over(a,b) == bless [eform OVER, a, b]
- slash(a,b) == bless [eform SLASH, a, b]
- assign(a,b)== bless [eform LET, a, b]
-
- label(a,b) == bless [eform EQUATNUM, a, b]
- rarrow(a,b)== bless [eform TAG, a, b]
+ overlabel(a,b) == bless [eform 'OVERLABEL, a, b]
+ box a == bless [eform 'BOX, a]
+ zag(a,b) == bless [eform 'ZAG, a, b]
+ root a == bless [eform 'ROOT, a]
+ root(a,b) == bless [eform 'ROOT, a, b]
+ over(a,b) == bless [eform 'OVER, a, b]
+ slash(a,b) == bless [eform 'SLASH, a, b]
+ assign(a,b)== bless [eform '%LET, a, b]
+
+ label(a,b) == bless [eform 'EQUATNUM, a, b]
+ rarrow(a,b)== bless [eform 'RARROW, a, b]
differentiate(a, nn)==
zero? nn => a
nn < 4 => prime(a, nn)
@@ -664,15 +665,15 @@ OutputForm(): SetCategory with
s := lowerCase(r::String)
super(a, paren sform s)
- sum(a) == bless [eform SIGMA, empty(), a]
- sum(a,b) == bless [eform SIGMA, b, a]
- sum(a,b,c) == bless [eform SIGMA2, b, c, a]
- prod(a) == bless [eform PI, empty(), a]
- prod(a,b) == bless [eform PI, b, a]
- prod(a,b,c)== bless [eform PI2, b, c, a]
- int(a) == bless [eform INTSIGN,empty(), empty(), a]
- int(a,b) == bless [eform INTSIGN,b, empty(), a]
- int(a,b,c) == bless [eform INTSIGN,b, c, a]
+ sum(a) == bless [eform 'SIGMA, empty(), a]
+ sum(a,b) == bless [eform 'SIGMA, b, a]
+ sum(a,b,c) == bless [eform 'SIGMA2, b, c, a]
+ prod(a) == bless [eform 'PI, empty(), a]
+ prod(a,b) == bless [eform 'PI, b, a]
+ prod(a,b,c)== bless [eform 'PI2, b, c, a]
+ int(a) == bless [eform 'INTSIGN,empty(), empty(), a]
+ int(a,b) == bless [eform 'INTSIGN,b, empty(), a]
+ int(a,b,c) == bless [eform 'INTSIGN,b, c, a]
@
diff --git a/src/algebra/syntax.spad.pamphlet b/src/algebra/syntax.spad.pamphlet
index ca967397..382a9227 100644
--- a/src/algebra/syntax.spad.pamphlet
+++ b/src/algebra/syntax.spad.pamphlet
@@ -40,7 +40,7 @@ import SExpression
Syntax(): Public == Private where
Public == Join(UnionType, SetCategory, RetractableTo Integer,
RetractableTo DoubleFloat, RetractableTo Symbol,
- RetractableTo String) with
+ RetractableTo String, CoercibleTo InputForm) with
convert: % -> SExpression
++ convert(s) returns the s-expression representation of a syntax.
@@ -218,80 +218,12 @@ Syntax(): Public == Private where
getOperands x ==
atom? x => []
CDR(x)$Lisp
-@
-
-
-\section{domain ConstructorCall}
-
-<<domain CTORCALL ConstructorCall>>=
-import SetCategory
-import Symbol
-import List Syntax
-)abbrev domain CTORCALL ConstructorCall
-++ Author: Gabriel Dos Reis
-++ Date Created: January 19, 2008
-++ Date Last Updated: July 03, 2008
-++ Description: This domains represents a syntax object that
-++ designates a category, domain, or a package.
-++ See Also: Syntax, Domain
-ConstructorCall(): Public == Private where
- Public == SetCategory with
- constructorName: % -> Symbol
- ++ constructorName c returns the name of the constructor
- arguments: % -> List Syntax
- ++ arguments returns the list of syntax objects for the
- ++ arguments used to invoke the constructor.
-
- Private == add
- Rep == List Syntax
-
- constructorName x ==
- (first rep x)::Symbol
- arguments x ==
- rest rep x
-
- x = y ==
- rep x = rep y
-
- coerce x ==
- outputDomainConstructor(x)$Lisp
+ coerce(x: %): InputForm ==
+ x : InputForm
@
-\section{The Signature domain}
-<<domain SIG Signature>>=
-import SetCategory
-import CoercibleTo
-import List
-import Syntax
-)abbrev domain SIG Signature
-++ Author: Gabriel Dos Reis
-++ Date Created: January 10, 2008
-++ Date Last Updated: August 30, 2008
-++ Description: This is the datatype for operation signatures as
-++ used by the compiler and the interpreter. Note that this domain
-++ differs from SignatureAst.
-++ See also: ConstructorCall, Domain.
-Signature(): Public == Private where
- Public == SetCategory with
- signature: (List Syntax,Syntax) -> %
- ++ signature(s,t) constructs a Signature object with parameter
- ++ types indicaded by `s', and return type indicated by `t'.
- target: % -> Syntax
- ++ target(s) returns the target type of the signature `s'.
- source: % -> List Syntax
- ++ source(s) returns the list of parameter types of `s'.
- Private == add
- Rep == List Syntax
- signature(s,t) == per cons(t,s)
- target x == first rep x
- source x == rest rep x
- x = y == rep x = rep y
- coerce(x: %): OutputForm ==
- rarrow([s::OutputForm for s in source x]::OutputForm,
- target(x)::OutputForm)$OutputForm
-@
\section{domain ElaboratedExpression}
@@ -615,15 +547,20 @@ Literal(T: SetCategory): Public == Private where
<<domain IDENT Identifier>>=
++ Author: Gabriel Dos Reis
++ Date Created: July 5, 2008
-++ Date Last Modified: September 1, 2008
-++ Description: This domain represents identifer AST.
+++ Date Last Modified: December 17, 2008
+++ Description:
+++ This domain represents identifer AST.
+++ This domain differs from Symbol in that it does not support
+++ any form of scripting.
+++ A value of this domain is a plain old identifier.
+++
)abbrev domain IDENT Identifier
Identifier(): Public == Private where
- Public == Join(SpadSyntaxCategory, CoercibleTo Symbol)
+ Public == Join(SetCategory, CoercibleTo Symbol)
Private == add
- Rep == Symbol
- coerce(x: %): Symbol == rep x
- coerce(x: %): OutputForm == x::Symbol::OutputForm
+ x = y == EQ(x,y)$Lisp
+ coerce(x: %): Symbol == x : Symbol
+ coerce(x: %): OutputForm == x : OutputForm
@
@@ -1788,8 +1725,6 @@ SpadAst(): SpadAstExports() == add
<<*>>=
<<license>>
<<domain SYNTAX Syntax>>
-<<domain SIG Signature>>
-<<domain CTORCALL ConstructorCall>>
<<domain ELABEXPR ElaboratedExpression>>
<<category ASTCAT AbstractSyntaxCategory>>
diff --git a/src/algebra/term.spad.pamphlet b/src/algebra/term.spad.pamphlet
index 532bd720..ff88acfe 100644
--- a/src/algebra/term.spad.pamphlet
+++ b/src/algebra/term.spad.pamphlet
@@ -58,7 +58,7 @@ Arity(): Public == Private where
)abbrev category OPERCAT OperatorCategory
++ Author: Gabriel Dos Reis
++ Date Created: December 04, 2008
-++ Date Last Updated: December 04, 2008
+++ Date Last Updated: December 17, 2008
++ Description:
++ This category specifies the interface for operators used to build
++ terms, in the sense of Universal Algebra. The domain parameter S
@@ -69,12 +69,6 @@ OperatorCategory(S: SetCategory): Category ==
++ name(op) returns the externam name of `op'.
arity: % -> Arity
++ arity(op) returns the arity of the operator `op'.
- operator: S -> %
- ++ operator(s) returns an operator object with external name `s',
- ++ and of arbitrary arity.
- operator: (S,NonNegativeInteger) -> %
- ++ operator(s,n) returns an operator object with external
- ++ name `s', and of arity `n'.
add
coerce(op: %): OutputForm == name(op)::OutputForm
diff --git a/src/interp/database.boot b/src/interp/database.boot
index 1b957c45..31daea4b 100644
--- a/src/interp/database.boot
+++ b/src/interp/database.boot
@@ -153,6 +153,21 @@ getOperationModemapsFromDB: %Symbol -> %List
getOperationModemapsFromDB op ==
GETDATABASE(op,"MODEMAPS")
+
+getConstructorArity: %Symbol -> %Short
+getConstructorArity ctor ==
+ sig := getConstructorSignature ctor => #rest sig
+ -1
+
+getConstructorKind: %Symbol -> %Maybe %ConstructorKind
+getConstructorKind ctor ==
+ kind := getConstructorKindFromDB ctor =>
+ kind = "domain" and isDefaultPackageName ctor => "package"
+ kind
+ ctor in $DomainNames => "domain"
+ ctor in $CategoryNames => "category"
+ nil
+
--% Functions for manipulating MODEMAP DATABASE
augLisplibModemapsFromCategory(form is [op,:argl],body,signature) ==
@@ -788,6 +803,26 @@ displayHiddenConstructors() ==
centerAndHighlight c
+
+--%
+
+
+++ Return the list of modemaps exported by the category object `c'.
+++ The format of modemap is as found in category objects.
+getCategoryExports: %Shell -> %List
+getCategoryExports c == c.1
+
+++ Return the list of category attribute info for the category object `c'.
+++ A category attribute info is pair of attribute-predicate.
+getCategoryAttributes: %Shell -> %List
+getCategoryAttributes c == c.2
+
+
+getCategoryPrincipalAncestors c == c.4.0
+
+getCategoryParents c == c.4.1
+
+
--%
squeezeAll: %List -> %List
squeezeAll x ==
diff --git a/src/interp/i-analy.boot b/src/interp/i-analy.boot
index 1541fbc7..91ff077e 100644
--- a/src/interp/i-analy.boot
+++ b/src/interp/i-analy.boot
@@ -320,10 +320,35 @@ bottomUpCompilePredicate(pred, name) ==
$genValue:local := false
bottomUpPredicate(pred,name)
+
+++ We are in the process of elaborating the identifier `id' into
+++ the VAT `t'. Return the modeset of the elaboration if `id'
+++ unambiguously denote a constructor. Ambiguous constructor
+++ identifiers are precisely those that denote niladic constructors.
+++ By default, the ambiguity is resolved to types.
+++ See bottomUpIdentifier and isType.
+isUnambiguouslyConstructor(id,t) ==
+ niladicConstructorFromDB id => nil
+ k := getConstructorKindFromDB id or
+ id in $DomainNames => "domain"
+ id in $CategoryNames => "category"
+ k = nil => nil
+ ms :=
+ k = "category" => [$CategoryConstructor]
+ [$DomainConstructor]
+ if not(id in $BuiltinConstructorNames) then
+ loadIfNecessary id
+ putValue(t,objNewWrap(id,first ms))
+ putModeSet(t,ms)
+ ms
+
+
+
bottomUpIdentifier(t,id) ==
+ ms := isUnambiguouslyConstructor(id,t) => ms
m := isType t => bottomUpType(t, m)
- EQ(id,'%noMapVal) => throwKeyedMsg('"S2IB0002",NIL)
- EQ(id,'%noBranch) =>
+ id = "%noMapVal" => throwKeyedMsg('"S2IB0002",NIL)
+ id = "%noBranch" =>
keyedSystemError("S2GE0016",
['"bottomUpIdentifier",'"trying to evaluate %noBranch"])
transferPropsToNode(id,t)
diff --git a/src/interp/i-eval.boot b/src/interp/i-eval.boot
index 7850f956..91499994 100644
--- a/src/interp/i-eval.boot
+++ b/src/interp/i-eval.boot
@@ -133,9 +133,7 @@ evaluateType form ==
form = "$" => form
$expandSegments : local := nil
form is ['typeOf,.] =>
- form' := mkAtree form
- bottomUp form'
- objVal getValue(form')
+ objVal getValue elaborateForm form
form is [op,:argl] =>
op='CATEGORY =>
argl is [x,:sigs] => [op,x,:[evaluateSignature(s) for s in sigs]]
diff --git a/src/interp/i-output.boot b/src/interp/i-output.boot
index 806aa8a7..15dd641d 100644
--- a/src/interp/i-output.boot
+++ b/src/interp/i-output.boot
@@ -2601,7 +2601,10 @@ primaryForm2String x ==
x = nil => '""
STRINGP x => x
x = $EmptyMode => specialChar 'quad
- IDENTP x => SYMBOL_-NAME x
+ IDENTP x =>
+ x = "$" => '"%"
+ x = "$$" => '"%%"
+ SYMBOL_-NAME x
atom x => WRITE_-TO_-STRING x
strconc('"(",inputForm2String x, '")")
diff --git a/src/interp/property.lisp b/src/interp/property.lisp
index 5046fa48..ebf97157 100644
--- a/src/interp/property.lisp
+++ b/src/interp/property.lisp
@@ -83,9 +83,9 @@
(|case| " case ")
(|and| " and ")
(|or| " or ")
- (TAG " -> ")
+ (TAG ": ")
(|+->| " +-> ")
- (RARROW ": ")
+ (RARROW " -> ")
(SEGMENT "..")
(in " in ")
(|^=| "^=")
diff --git a/src/interp/sys-constants.boot b/src/interp/sys-constants.boot
index 74d7f3bf..fc1543e8 100644
--- a/src/interp/sys-constants.boot
+++ b/src/interp/sys-constants.boot
@@ -495,14 +495,20 @@ $Domain ==
$Mode ==
'(Mode)
+$CategoryConstructor ==
+ '(CategoryConstructor)
+
+$DomainConstructor ==
+ '(DomainConstructor)
+
++ StringCategory Constructor form
$StringCategory ==
'(StringCategory)
-++ List of categories that do not have entries in the constructor
-++ database. So, they are mostly recognized by their names.
+++ List of category constructors that do not have entries in the
+++ constructor database. So, they are mostly recognized by their names.
$CategoryNames ==
'(Category _
CATEGORY _
@@ -512,7 +518,7 @@ $CategoryNames ==
SubsetCategory _
UnionCategory)
-++ List of domains that do not have entries in the constructor
+++ List of domain constructors that do not have entries in the constructor
++ database. So, they are mostly recognized by their names.
++ See also $CategoryNames.
$DomainNames ==
@@ -526,7 +532,7 @@ $DomainNames ==
$BuiltinConstructorNames ==
[:$CategoryNames,:$DomainNames]
-++ List of language support constructor forms.
+++ List of language support type forms.
$LangSupportTypes ==
'((Mode) (Domain) (Type) (Category))
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index 68a95f5e..a7c64f02 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,12 +1,12 @@
-(2275210 . 3437790954)
+(2276857 . 3439227043)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
NIL
(-19 S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
-((-4374 . T) (-4373 . T))
+((-4383 . T) (-4382 . T))
NIL
(-20 S)
((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}.")))
@@ -38,7 +38,7 @@ NIL
NIL
(-27)
((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
+((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
(-28 S R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
@@ -46,7 +46,7 @@ NIL
NIL
(-29 R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4370 . T) (-4368 . T) (-4367 . T) ((-4375 "*") . T) (-4366 . T) (-4371 . T) (-4365 . T))
+((-4379 . T) (-4377 . T) (-4376 . T) ((-4384 "*") . T) (-4375 . T) (-4380 . T) (-4374 . T))
NIL
(-30)
((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,{}x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,{}x,{}y,{}a..b,{}c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b,{} c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,{}x,{}y,{}xMin..xMax,{}yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted.")))
@@ -56,14 +56,14 @@ NIL
((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression.")))
NIL
NIL
-(-32 R -3085)
+(-32 R -3215)
((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))))
+((|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))))
(-33 S)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4373)))
+((|HasAttribute| |#1| (QUOTE -4382)))
(-34)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
@@ -74,7 +74,7 @@ NIL
NIL
(-36 |Key| |Entry|)
((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}.")))
-((-4373 . T) (-4374 . T))
+((-4382 . T) (-4383 . T))
NIL
(-37 S R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
@@ -82,20 +82,20 @@ NIL
NIL
(-38 R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
-((-4367 . T) (-4368 . T) (-4370 . T))
+((-4376 . T) (-4377 . T) (-4379 . T))
NIL
(-39 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an.")))
NIL
NIL
-(-40 -3085 UP UPUP -2340)
+(-40 -3215 UP UPUP -2985)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
-((-4366 |has| (-402 |#2|) (-358)) (-4371 |has| (-402 |#2|) (-358)) (-4365 |has| (-402 |#2|) (-358)) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
-((|HasCategory| (-402 |#2|) (QUOTE (-143))) (|HasCategory| (-402 |#2|) (QUOTE (-145))) (|HasCategory| (-402 |#2|) (QUOTE (-344))) (-3994 (|HasCategory| (-402 |#2|) (QUOTE (-358))) (|HasCategory| (-402 |#2|) (QUOTE (-344)))) (|HasCategory| (-402 |#2|) (QUOTE (-358))) (|HasCategory| (-402 |#2|) (QUOTE (-363))) (-3994 (-12 (|HasCategory| (-402 |#2|) (QUOTE (-229))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))) (|HasCategory| (-402 |#2|) (QUOTE (-344)))) (-3994 (-12 (|HasCategory| (-402 |#2|) (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))) (-12 (|HasCategory| (-402 |#2|) (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| (-402 |#2|) (QUOTE (-344))))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -627) (QUOTE (-554)))) (-3994 (|HasCategory| (-402 |#2|) (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| (-402 |#2|) (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))) (-12 (|HasCategory| (-402 |#2|) (QUOTE (-229))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))))
-(-41 R -3085)
+((-4375 |has| (-406 |#2|) (-362)) (-4380 |has| (-406 |#2|) (-362)) (-4374 |has| (-406 |#2|) (-362)) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((|HasCategory| (-406 |#2|) (QUOTE (-144))) (|HasCategory| (-406 |#2|) (QUOTE (-146))) (|HasCategory| (-406 |#2|) (QUOTE (-348))) (-3998 (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (QUOTE (-348)))) (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (QUOTE (-367))) (-3998 (-12 (|HasCategory| (-406 |#2|) (QUOTE (-232))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (|HasCategory| (-406 |#2|) (QUOTE (-348)))) (-3998 (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-406 |#2|) (QUOTE (-348))))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -631) (QUOTE (-558)))) (-3998 (|HasCategory| (-406 |#2|) (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (-12 (|HasCategory| (-406 |#2|) (QUOTE (-232))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))))
+(-41 R -3215)
((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -425) (|devaluate| |#1|)))))
+((-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))))
(-42 OV E P)
((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}.")))
NIL
@@ -103,34 +103,34 @@ NIL
(-43 R A)
((|constructor| (NIL "AlgebraPackage assembles a variety of useful functions for general algebras.")) (|basis| (((|Vector| |#2|) (|Vector| |#2|)) "\\spad{basis(va)} selects a basis from the elements of \\spad{va}.")) (|radicalOfLeftTraceForm| (((|List| |#2|)) "\\spad{radicalOfLeftTraceForm()} returns basis for null space of \\spad{leftTraceMatrix()},{} if the algebra is associative,{} alternative or a Jordan algebra,{} then this space equals the radical (maximal nil ideal) of the algebra.")) (|basisOfCentroid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfCentroid()} returns a basis of the centroid,{} \\spadignore{i.e.} the endomorphism ring of \\spad{A} considered as \\spad{(A,{}A)}-bimodule.")) (|basisOfRightNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfRightNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as left module. Note: right nucloid coincides with right nucleus if \\spad{A} has a unit.")) (|basisOfLeftNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfLeftNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as right module. Note: left nucloid coincides with left nucleus if \\spad{A} has a unit.")) (|basisOfCenter| (((|List| |#2|)) "\\spad{basisOfCenter()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{commutator(x,{}a) = 0} and \\spad{associator(x,{}a,{}b) = associator(a,{}x,{}b) = associator(a,{}b,{}x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfNucleus| (((|List| |#2|)) "\\spad{basisOfNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{associator(x,{}a,{}b) = associator(a,{}x,{}b) = associator(a,{}b,{}x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfMiddleNucleus| (((|List| |#2|)) "\\spad{basisOfMiddleNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,{}x,{}b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightNucleus| (((|List| |#2|)) "\\spad{basisOfRightNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,{}b,{}x)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfLeftNucleus| (((|List| |#2|)) "\\spad{basisOfLeftNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(x,{}a,{}b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfRightAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = a*x}.")) (|basisOfLeftAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfLeftAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = x*a}.")) (|basisOfCommutingElements| (((|List| |#2|)) "\\spad{basisOfCommutingElements()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = commutator(x,{}a)} for all \\spad{a} in \\spad{A}.")) (|biRank| (((|NonNegativeInteger|) |#2|) "\\spad{biRank(x)} determines the number of linearly independent elements in \\spad{x},{} \\spad{x*bi},{} \\spad{bi*x},{} \\spad{bi*x*bj},{} \\spad{i,{}j=1,{}...,{}n},{} where \\spad{b=[b1,{}...,{}bn]} is a basis. Note: if \\spad{A} has a unit,{} then \\spadfunFrom{doubleRank}{AlgebraPackage},{} \\spadfunFrom{weakBiRank}{AlgebraPackage} and \\spadfunFrom{biRank}{AlgebraPackage} coincide.")) (|weakBiRank| (((|NonNegativeInteger|) |#2|) "\\spad{weakBiRank(x)} determines the number of linearly independent elements in the \\spad{bi*x*bj},{} \\spad{i,{}j=1,{}...,{}n},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|doubleRank| (((|NonNegativeInteger|) |#2|) "\\spad{doubleRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|rightRank| (((|NonNegativeInteger|) |#2|) "\\spad{rightRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{bn*x},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|leftRank| (((|NonNegativeInteger|) |#2|) "\\spad{leftRank(x)} determines the number of linearly independent elements in \\spad{x*b1},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")))
NIL
-((|HasCategory| |#1| (QUOTE (-302))))
+((|HasCategory| |#1| (QUOTE (-306))))
(-44 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,{}..,{}an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{ai} * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra.")))
-((-4370 |has| |#1| (-546)) (-4368 . T) (-4367 . T))
-((|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-546))))
+((-4379 |has| |#1| (-550)) (-4377 . T) (-4376 . T))
+((|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550))))
(-45 |Key| |Entry|)
((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data.")))
-((-4373 . T) (-4374 . T))
-((-3994 (-12 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-836))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2564) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2701) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2564) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2701) (|devaluate| |#2|))))))) (-3994 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-836))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -602) (QUOTE (-530)))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-3994 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-836))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| |#2| (QUOTE (-1082)))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| (-554) (QUOTE (-836))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (-3994 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848))))) (-3994 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| |#2| (QUOTE (-1082)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2564) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2701) (|devaluate| |#2|)))))))
+((-4382 . T) (-4383 . T))
+((-3998 (-12 (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (QUOTE (-841))) (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2700) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2981) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2700) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2981) (|devaluate| |#2|))))))) (-3998 (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (QUOTE (-841))) (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-3998 (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (QUOTE (-841))) (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-1087)))) (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (QUOTE (-1087))) (-3998 (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (-3998 (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-1087)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2700) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2981) (|devaluate| |#2|)))))))
(-46 S R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358))))
+((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))))
(-47 R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
-(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4367 . T) (-4368 . T) (-4370 . T))
+(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
(-48)
((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
-((|HasCategory| $ (QUOTE (-1034))) (|HasCategory| $ (LIST (QUOTE -1023) (QUOTE (-554)))))
+((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((|HasCategory| $ (QUOTE (-1039))) (|HasCategory| $ (LIST (QUOTE -1028) (QUOTE (-558)))))
(-49)
((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Symbol|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}.")))
NIL
NIL
(-50 R |lVar|)
((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,{}...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,{}u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}.")))
-((-4370 . T))
+((-4379 . T))
NIL
(-51 S)
((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}.")))
@@ -144,7 +144,7 @@ NIL
((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}.")))
NIL
NIL
-(-54 |Base| R -3085)
+(-54 |Base| R -3215)
((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression.")))
NIL
NIL
@@ -158,7 +158,7 @@ NIL
NIL
(-57 R |Row| |Col|)
((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays")))
-((-4373 . T) (-4374 . T))
+((-4382 . T) (-4383 . T))
NIL
(-58 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")))
@@ -166,65 +166,65 @@ NIL
NIL
(-59 S)
((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
-((-4374 . T) (-4373 . T))
-((-3994 (-12 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (-3994 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| (-554) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))))
+((-4383 . T) (-4382 . T))
+((-3998 (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3998 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
(-60 R)
((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}.")))
-((-4373 . T) (-4374 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))))
-(-61 -4309)
+((-4382 . T) (-4383 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
+(-61 -1323)
((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-62 -4309)
+(-62 -1323)
((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}.")))
NIL
NIL
-(-63 -4309)
+(-63 -1323)
((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-64 -4309)
+(-64 -1323)
((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-65 -4309)
+(-65 -1323)
((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")))
NIL
NIL
-(-66 -4309)
+(-66 -1323)
((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-67 -4309)
+(-67 -1323)
((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-68 -4309)
+(-68 -1323)
((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-69 -4309)
+(-69 -1323)
((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}.")))
NIL
NIL
-(-70 -4309)
+(-70 -1323)
((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}")))
NIL
NIL
-(-71 -4309)
+(-71 -1323)
((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-72 -4309)
+(-72 -1323)
((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}.")))
NIL
NIL
-(-73 -4309)
+(-73 -1323)
((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}")))
NIL
NIL
-(-74 -4309)
+(-74 -1323)
((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
@@ -236,66 +236,66 @@ NIL
((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-77 -4309)
+(-77 -1323)
((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-78 -4309)
+(-78 -1323)
((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-79 -4309)
+(-79 -1323)
((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-80 -4309)
+(-80 -1323)
((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-81 -4309)
+(-81 -1323)
((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")))
NIL
NIL
-(-82 -4309)
+(-82 -1323)
((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-83 -4309)
+(-83 -1323)
((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-84 -4309)
+(-84 -1323)
((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-85 -4309)
+(-85 -1323)
((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-86 -4309)
+(-86 -1323)
((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-87 -4309)
+(-87 -1323)
((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-88 -4309)
+(-88 -1323)
((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
NIL
NIL
-(-89 -4309)
+(-89 -1323)
((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
(-90 R L)
((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op,{} m)} returns \\spad{[w,{} eq,{} lw,{} lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,{}...,{}A_n]} such that if \\spad{y = [y_1,{}...,{}y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',{}y_j'',{}...,{}y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}\\spad{'s}.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op,{} m)} returns \\spad{[M,{}w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-358))))
+((|HasCategory| |#1| (QUOTE (-362))))
(-91 S)
((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4373 . T) (-4374 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))))
+((-4382 . T) (-4383 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
(-92 S)
((|constructor| (NIL "This is the category of Spad abstract syntax trees.")))
NIL
@@ -318,15 +318,15 @@ NIL
NIL
(-97)
((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")))
-((-4373 . T))
+((-4382 . T))
NIL
(-98)
((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,{}b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements.")))
-((-4373 . T) ((-4375 "*") . T) (-4374 . T) (-4370 . T) (-4368 . T) (-4367 . T) (-4366 . T) (-4371 . T) (-4365 . T) (-4364 . T) (-4363 . T) (-4362 . T) (-4361 . T) (-4369 . T) (-4372 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4360 . T))
+((-4382 . T) ((-4384 "*") . T) (-4383 . T) (-4379 . T) (-4377 . T) (-4376 . T) (-4375 . T) (-4380 . T) (-4374 . T) (-4373 . T) (-4372 . T) (-4371 . T) (-4370 . T) (-4378 . T) (-4381 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4369 . T))
NIL
(-99 R)
((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,{}n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f,{} g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}.")))
-((-4370 . T))
+((-4379 . T))
NIL
(-100 R UP)
((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a,{} [b1,{}...,{}bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,{}...,{}bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a,{} b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{\\spad{pi}} is balanced with respect to \\spad{b}.")))
@@ -342,15 +342,15 @@ NIL
NIL
(-103 S)
((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}.")))
-((-4373 . T) (-4374 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))))
+((-4382 . T) (-4383 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
(-104 R UP M |Row| |Col|)
((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4375 "*"))))
+((|HasAttribute| |#1| (QUOTE (-4384 "*"))))
(-105)
((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table")))
-((-4373 . T))
+((-4382 . T))
NIL
(-106 A S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
@@ -358,23 +358,23 @@ NIL
NIL
(-107 S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
-((-4374 . T))
+((-4383 . T))
NIL
(-108)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")))
-((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
-((|HasCategory| (-554) (QUOTE (-894))) (|HasCategory| (-554) (LIST (QUOTE -1023) (QUOTE (-1158)))) (|HasCategory| (-554) (QUOTE (-143))) (|HasCategory| (-554) (QUOTE (-145))) (|HasCategory| (-554) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| (-554) (QUOTE (-1007))) (|HasCategory| (-554) (QUOTE (-807))) (-3994 (|HasCategory| (-554) (QUOTE (-807))) (|HasCategory| (-554) (QUOTE (-836)))) (|HasCategory| (-554) (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| (-554) (QUOTE (-1133))) (|HasCategory| (-554) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| (-554) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| (-554) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| (-554) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| (-554) (QUOTE (-229))) (|HasCategory| (-554) (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| (-554) (LIST (QUOTE -508) (QUOTE (-1158)) (QUOTE (-554)))) (|HasCategory| (-554) (LIST (QUOTE -304) (QUOTE (-554)))) (|HasCategory| (-554) (LIST (QUOTE -281) (QUOTE (-554)) (QUOTE (-554)))) (|HasCategory| (-554) (QUOTE (-302))) (|HasCategory| (-554) (QUOTE (-539))) (|HasCategory| (-554) (QUOTE (-836))) (|HasCategory| (-554) (LIST (QUOTE -627) (QUOTE (-554)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-554) (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-554) (QUOTE (-894)))) (|HasCategory| (-554) (QUOTE (-143)))))
+((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((|HasCategory| (-558) (QUOTE (-899))) (|HasCategory| (-558) (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| (-558) (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-146))) (|HasCategory| (-558) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-558) (QUOTE (-1012))) (|HasCategory| (-558) (QUOTE (-811))) (-3998 (|HasCategory| (-558) (QUOTE (-811))) (|HasCategory| (-558) (QUOTE (-841)))) (|HasCategory| (-558) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-1138))) (|HasCategory| (-558) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| (-558) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| (-558) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| (-558) (QUOTE (-232))) (|HasCategory| (-558) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-558) (LIST (QUOTE -512) (QUOTE (-1163)) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -308) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -285) (QUOTE (-558)) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-306))) (|HasCategory| (-558) (QUOTE (-543))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-558) (LIST (QUOTE -631) (QUOTE (-558)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-899)))) (-3998 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-899)))) (|HasCategory| (-558) (QUOTE (-144)))))
(-109)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Symbol|) (|List| (|Property|))) "\\spad{binding(n,{}props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Symbol|) $) "\\spad{name(b)} returns the name of binding \\spad{b}")))
NIL
NIL
(-110)
((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}")))
-((-4374 . T) (-4373 . T))
-((-12 (|HasCategory| (-112) (QUOTE (-1082))) (|HasCategory| (-112) (LIST (QUOTE -304) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| (-112) (QUOTE (-836))) (|HasCategory| (-554) (QUOTE (-836))) (|HasCategory| (-112) (QUOTE (-1082))) (|HasCategory| (-112) (LIST (QUOTE -601) (QUOTE (-848)))))
+((-4383 . T) (-4382 . T))
+((-12 (|HasCategory| (-112) (QUOTE (-1087))) (|HasCategory| (-112) (LIST (QUOTE -308) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-112) (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-112) (QUOTE (-1087))) (|HasCategory| (-112) (LIST (QUOTE -605) (QUOTE (-853)))))
(-111 R S)
((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}")))
-((-4368 . T) (-4367 . T))
+((-4377 . T) (-4376 . T))
NIL
(-112)
((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant.")))
@@ -383,27 +383,27 @@ NIL
(-113 A)
((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op,{} foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op,{} [foo1,{}...,{}foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,{}...,{}fn]} then applying a derivation \\spad{D} to \\spad{op(a1,{}...,{}an)} returns \\spad{f1(a1,{}...,{}an) * D(a1) + ... + fn(a1,{}...,{}an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,{}...,{}an)} returns the result of \\spad{f(a1,{}...,{}an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op,{} [a1,{}...,{}an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,{}...,{}an)} is returned,{} and \"failed\" otherwise.")))
NIL
-((|HasCategory| |#1| (QUOTE (-836))))
+((|HasCategory| |#1| (QUOTE (-841))))
(-114)
((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}.")))
NIL
NIL
-(-115 -3085 UP)
+(-115 -3215 UP)
((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots.")))
NIL
NIL
(-116 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
+((-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
(-117 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
-((|HasCategory| (-116 |#1|) (QUOTE (-894))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1023) (QUOTE (-1158)))) (|HasCategory| (-116 |#1|) (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| (-116 |#1|) (QUOTE (-1007))) (|HasCategory| (-116 |#1|) (QUOTE (-807))) (-3994 (|HasCategory| (-116 |#1|) (QUOTE (-807))) (|HasCategory| (-116 |#1|) (QUOTE (-836)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| (-116 |#1|) (QUOTE (-1133))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| (-116 |#1|) (QUOTE (-229))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -508) (QUOTE (-1158)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -304) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -281) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-302))) (|HasCategory| (-116 |#1|) (QUOTE (-539))) (|HasCategory| (-116 |#1|) (QUOTE (-836))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-894)))) (|HasCategory| (-116 |#1|) (QUOTE (-143)))))
+((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((|HasCategory| (-116 |#1|) (QUOTE (-899))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| (-116 |#1|) (QUOTE (-144))) (|HasCategory| (-116 |#1|) (QUOTE (-146))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-116 |#1|) (QUOTE (-1012))) (|HasCategory| (-116 |#1|) (QUOTE (-811))) (-3998 (|HasCategory| (-116 |#1|) (QUOTE (-811))) (|HasCategory| (-116 |#1|) (QUOTE (-841)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| (-116 |#1|) (QUOTE (-1138))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| (-116 |#1|) (QUOTE (-232))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -512) (QUOTE (-1163)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -308) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -285) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-306))) (|HasCategory| (-116 |#1|) (QUOTE (-543))) (|HasCategory| (-116 |#1|) (QUOTE (-841))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-116 |#1|) (QUOTE (-899)))) (-3998 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-116 |#1|) (QUOTE (-899)))) (|HasCategory| (-116 |#1|) (QUOTE (-144)))))
(-118 A S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4374)))
+((|HasAttribute| |#1| (QUOTE -4383)))
(-119 S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
@@ -414,15 +414,15 @@ NIL
NIL
(-121 S)
((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented")))
-((-4373 . T) (-4374 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))))
+((-4382 . T) (-4383 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
(-122 S)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
NIL
NIL
(-123)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
-((-4374 . T) (-4373 . T))
+((-4383 . T) (-4382 . T))
NIL
(-124 A S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
@@ -430,20 +430,20 @@ NIL
NIL
(-125 S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
-((-4373 . T) (-4374 . T))
+((-4382 . T) (-4383 . T))
NIL
(-126 S)
((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")))
-((-4373 . T) (-4374 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))))
+((-4382 . T) (-4383 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
(-127 S)
((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty.")))
-((-4373 . T) (-4374 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))))
+((-4382 . T) (-4383 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
(-128)
((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it has it is not as rigid as PrimitiveArray Byte is. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`c'}. The array can then store up to \\spad{`c'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,{}n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#buf} returns the number of active elements in the buffer.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0.")))
-((-4374 . T) (-4373 . T))
-((-3994 (-12 (|HasCategory| (-129) (QUOTE (-836))) (|HasCategory| (-129) (LIST (QUOTE -304) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1082))) (|HasCategory| (-129) (LIST (QUOTE -304) (QUOTE (-129)))))) (-3994 (-12 (|HasCategory| (-129) (QUOTE (-1082))) (|HasCategory| (-129) (LIST (QUOTE -304) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| (-129) (LIST (QUOTE -602) (QUOTE (-530)))) (-3994 (|HasCategory| (-129) (QUOTE (-836))) (|HasCategory| (-129) (QUOTE (-1082)))) (|HasCategory| (-129) (QUOTE (-836))) (|HasCategory| (-554) (QUOTE (-836))) (|HasCategory| (-129) (QUOTE (-1082))) (|HasCategory| (-129) (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| (-129) (QUOTE (-1082))) (|HasCategory| (-129) (LIST (QUOTE -304) (QUOTE (-129))))))
+((-4383 . T) (-4382 . T))
+((-3998 (-12 (|HasCategory| (-129) (QUOTE (-841))) (|HasCategory| (-129) (LIST (QUOTE -308) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1087))) (|HasCategory| (-129) (LIST (QUOTE -308) (QUOTE (-129)))))) (-3998 (-12 (|HasCategory| (-129) (QUOTE (-1087))) (|HasCategory| (-129) (LIST (QUOTE -308) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-129) (LIST (QUOTE -606) (QUOTE (-534)))) (-3998 (|HasCategory| (-129) (QUOTE (-841))) (|HasCategory| (-129) (QUOTE (-1087)))) (|HasCategory| (-129) (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-129) (QUOTE (-1087))) (|HasCategory| (-129) (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| (-129) (QUOTE (-1087))) (|HasCategory| (-129) (LIST (QUOTE -308) (QUOTE (-129))))))
(-129)
((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample()} returns a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|coerce| (($ (|NonNegativeInteger|)) "\\spad{coerce(x)} has the same effect as byte(\\spad{x}).")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256.")))
NIL
@@ -462,13 +462,13 @@ NIL
NIL
(-133)
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")))
-(((-4375 "*") . T))
+(((-4384 "*") . T))
NIL
-(-134 |minix| -4082 S T$)
+(-134 |minix| -3084 S T$)
((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
NIL
NIL
-(-135 |minix| -4082 R)
+(-135 |minix| -3084 R)
((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
NIL
NIL
@@ -481,4532 +481,4552 @@ NIL
NIL
NIL
(-138)
-((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: February 16,{} 2008. Date Last Updated: February 16,{} 2008. Basic Operations: coerce Related Constructors: Also See: Type")))
+((|constructor| (NIL "This domain provides representations for category constructors.")))
NIL
NIL
(-139)
+((|parents| (((|List| (|ConstructorCall|)) $) "\\spad{parents(c)} returns the list of all category forms directly extended by the category \\spad{`c'}.")) (|principalAncestors| (((|List| (|ConstructorCall|)) $) "\\spad{principalAncestors(c)} returns the list of all category forms that are principal ancestors of the the category \\spad{`c'}.")) (|exportedOperators| (((|List| (|OperatorSignature|)) $) "\\spad{exportedOperators(c)} returns the list of all operator signatures exported by the category \\spad{`c'},{} along with their predicates.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: December 20,{} 2008. Date Last Updated: February 16,{} 2008. Basic Operations: coerce Related Constructors: Also See: Type") (((|CategoryConstructor|) $) "\\spad{constructor(c)} returns the category constructor used to instantiate the category object \\spad{`c'}.")))
+NIL
+NIL
+(-140)
((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}.")))
-((-4373 . T) (-4363 . T) (-4374 . T))
-((-3994 (-12 (|HasCategory| (-142) (QUOTE (-363))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1082))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| (-142) (QUOTE (-363))) (|HasCategory| (-142) (QUOTE (-836))) (|HasCategory| (-142) (QUOTE (-1082))) (|HasCategory| (-142) (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| (-142) (QUOTE (-1082))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142))))))
-(-140 R Q A)
+((-4382 . T) (-4372 . T) (-4383 . T))
+((-3998 (-12 (|HasCategory| (-143) (QUOTE (-367))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))) (-12 (|HasCategory| (-143) (QUOTE (-1087))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (|HasCategory| (-143) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-143) (QUOTE (-367))) (|HasCategory| (-143) (QUOTE (-841))) (|HasCategory| (-143) (QUOTE (-1087))) (|HasCategory| (-143) (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| (-143) (QUOTE (-1087))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))))
+(-141 R Q A)
((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
NIL
-(-141)
+(-142)
((|constructor| (NIL "Category for the usual combinatorial functions.")) (|permutation| (($ $ $) "\\spad{permutation(n,{} m)} returns the number of permutations of \\spad{n} objects taken \\spad{m} at a time. Note: \\spad{permutation(n,{}m) = n!/(n-m)!}.")) (|factorial| (($ $) "\\spad{factorial(n)} computes the factorial of \\spad{n} (denoted in the literature by \\spad{n!}) Note: \\spad{n! = n (n-1)! when n > 0}; also,{} \\spad{0! = 1}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}r)} returns the \\spad{(n,{}r)} binomial coefficient (often denoted in the literature by \\spad{C(n,{}r)}). Note: \\spad{C(n,{}r) = n!/(r!(n-r)!)} where \\spad{n >= r >= 0}.")))
NIL
NIL
-(-142)
+(-143)
((|constructor| (NIL "This domain provides the basic character data type.")) (|alphanumeric?| (((|Boolean|) $) "\\spad{alphanumeric?(c)} tests if \\spad{c} is either a letter or number,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{z} or A..\\spad{Z}.")) (|lowerCase?| (((|Boolean|) $) "\\spad{lowerCase?(c)} tests if \\spad{c} is an lower case letter,{} \\spadignore{i.e.} one of a..\\spad{z}.")) (|upperCase?| (((|Boolean|) $) "\\spad{upperCase?(c)} tests if \\spad{c} is an upper case letter,{} \\spadignore{i.e.} one of A..\\spad{Z}.")) (|alphabetic?| (((|Boolean|) $) "\\spad{alphabetic?(c)} tests if \\spad{c} is a letter,{} \\spadignore{i.e.} one of a..\\spad{z} or A..\\spad{Z}.")) (|hexDigit?| (((|Boolean|) $) "\\spad{hexDigit?(c)} tests if \\spad{c} is a hexadecimal numeral,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{f} or A..\\spad{F}.")) (|digit?| (((|Boolean|) $) "\\spad{digit?(c)} tests if \\spad{c} is a digit character,{} \\spadignore{i.e.} one of 0..9.")) (|lowerCase| (($ $) "\\spad{lowerCase(c)} converts an upper case letter to the corresponding lower case letter. If \\spad{c} is not an upper case letter,{} then it is returned unchanged.")) (|upperCase| (($ $) "\\spad{upperCase(c)} converts a lower case letter to the corresponding upper case letter. If \\spad{c} is not a lower case letter,{} then it is returned unchanged.")) (|escape| (($) "\\spad{escape()} provides the escape character,{} \\spad{_},{} which is used to allow quotes and other characters {\\em within} strings.")) (|quote| (($) "\\spad{quote()} provides the string quote character,{} \\spad{\"}.")) (|space| (($) "\\spad{space()} provides the blank character.")) (|char| (($ (|String|)) "\\spad{char(s)} provides a character from a string \\spad{s} of length one.") (($ (|NonNegativeInteger|)) "\\spad{char(i)} provides a character corresponding to the integer code \\spad{i}. It is always \\spad{true} that \\spad{ord char i = i}.")) (|ord| (((|NonNegativeInteger|) $) "\\spad{ord(c)} provides an integral code corresponding to the character \\spad{c}. It is always \\spad{true} that \\spad{char ord c = c}.")))
NIL
NIL
-(-143)
+(-144)
((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring.")))
-((-4370 . T))
+((-4379 . T))
NIL
-(-144 R)
+(-145 R)
((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,{}r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}.")))
NIL
NIL
-(-145)
+(-146)
((|constructor| (NIL "Rings of Characteristic Zero.")))
-((-4370 . T))
+((-4379 . T))
NIL
-(-146 -3085 UP UPUP)
+(-147 -3215 UP UPUP)
((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}.")))
NIL
NIL
-(-147 R CR)
+(-148 R CR)
((|constructor| (NIL "This package provides the generalized euclidean algorithm which is needed as the basic step for factoring polynomials.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} where (\\spad{fi} relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g} = sum \\spad{ai} prod \\spad{fj} (\\spad{j} \\spad{\\=} \\spad{i}) or equivalently g/prod \\spad{fj} = sum (ai/fi) or returns \"failed\" if no such list exists")))
NIL
NIL
-(-148 A S)
+(-149 A S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-1082))) (|HasAttribute| |#1| (QUOTE -4373)))
-(-149 S)
+((|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasAttribute| |#1| (QUOTE -4382)))
+(-150 S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
NIL
-(-150 |n| K Q)
+(-151 |n| K Q)
((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,{}[i1,{}i2,{}...,{}iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,{}[i1,{}i2,{}...,{}iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element.")))
-((-4368 . T) (-4367 . T) (-4370 . T))
+((-4377 . T) (-4376 . T) (-4379 . T))
NIL
-(-151)
+(-152)
((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,{}xMin,{}xMax,{}yMin,{}yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function.")))
NIL
NIL
-(-152)
+(-153)
((|constructor| (NIL "This domain represents list comprehension syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the expression being collected by the list comprehension `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of the iterators of the list comprehension `e'.")))
NIL
NIL
-(-153 UP |Par|)
+(-154 UP |Par|)
((|complexZeros| (((|List| (|Complex| |#2|)) |#1| |#2|) "\\spad{complexZeros(poly,{} eps)} finds the complex zeros of the univariate polynomial \\spad{poly} to precision eps with solutions returned as complex floats or rationals depending on the type of eps.")))
NIL
NIL
-(-154)
+(-155)
((|constructor| (NIL "This domain represents type specification \\indented{2}{for an identifier or expression.}")) (|rhs| (((|TypeAst|) $) "\\spad{rhs(e)} returns the right hand side of the colon expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the colon expression `e'.")))
NIL
NIL
-(-155)
+(-156)
((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.")))
NIL
NIL
-(-156 R -3085)
+(-157 R -3215)
((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator.")))
NIL
NIL
-(-157 I)
+(-158 I)
((|stirling2| ((|#1| |#1| |#1|) "\\spad{stirling2(n,{}m)} returns the Stirling number of the second kind denoted \\spad{SS[n,{}m]}.")) (|stirling1| ((|#1| |#1| |#1|) "\\spad{stirling1(n,{}m)} returns the Stirling number of the first kind denoted \\spad{S[n,{}m]}.")) (|permutation| ((|#1| |#1| |#1|) "\\spad{permutation(n)} returns \\spad{!P(n,{}r) = n!/(n-r)!}. This is the number of permutations of \\spad{n} objects taken \\spad{r} at a time.")) (|partition| ((|#1| |#1|) "\\spad{partition(n)} returns the number of partitions of the integer \\spad{n}. This is the number of distinct ways that \\spad{n} can be written as a sum of positive integers.")) (|multinomial| ((|#1| |#1| (|List| |#1|)) "\\spad{multinomial(n,{}[m1,{}m2,{}...,{}mk])} returns the multinomial coefficient \\spad{n!/(m1! m2! ... mk!)}.")) (|factorial| ((|#1| |#1|) "\\spad{factorial(n)} returns \\spad{n!}. this is the product of all integers between 1 and \\spad{n} (inclusive). Note: \\spad{0!} is defined to be 1.")) (|binomial| ((|#1| |#1| |#1|) "\\spad{binomial(n,{}r)} returns the binomial coefficient \\spad{C(n,{}r) = n!/(r! (n-r)!)},{} where \\spad{n >= r >= 0}. This is the number of combinations of \\spad{n} objects taken \\spad{r} at a time.")))
NIL
NIL
-(-158)
+(-159)
((|constructor| (NIL "CombinatorialOpsCategory is the category obtaining by adjoining summations and products to the usual combinatorial operations.")) (|product| (($ $ (|SegmentBinding| $)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") (($ $ (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| (($ $ (|SegmentBinding| $)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") (($ $ (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| (($ $ (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") (($ $) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")))
NIL
NIL
-(-159)
+(-160)
((|constructor| (NIL "This domain represents the syntax of a comma-separated \\indented{2}{list of expressions.}")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions making up `e'.")))
NIL
NIL
-(-160)
+(-161)
((|constructor| (NIL "A type for basic commutators")) (|mkcomm| (($ $ $) "\\spad{mkcomm(i,{}j)} \\undocumented{}") (($ (|Integer|)) "\\spad{mkcomm(i)} \\undocumented{}")))
NIL
NIL
-(-161)
+(-162)
((|constructor| (NIL "This package exports the elementary operators,{} with some semantics already attached to them. The semantics that is attached here is not dependent on the set in which the operators will be applied.")) (|operator| (((|BasicOperator|) (|Symbol|)) "\\spad{operator(s)} returns an operator with name \\spad{s},{} with the appropriate semantics if \\spad{s} is known. If \\spad{s} is not known,{} the result has no semantics.")))
NIL
NIL
-(-162 R UP UPUP)
+(-163 R UP UPUP)
((|constructor| (NIL "A package for swapping the order of two variables in a tower of two UnivariatePolynomialCategory extensions.")) (|swap| ((|#3| |#3|) "\\spad{swap(p(x,{}y))} returns \\spad{p}(\\spad{y},{}\\spad{x}).")))
NIL
NIL
-(-163 S R)
+(-164 S R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-894))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-987))) (|HasCategory| |#2| (QUOTE (-1180))) (|HasCategory| |#2| (QUOTE (-1043))) (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-358))) (|HasAttribute| |#2| (QUOTE -4369)) (|HasAttribute| |#2| (QUOTE -4372)) (|HasCategory| |#2| (QUOTE (-302))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-836))))
-(-164 R)
+((|HasCategory| |#2| (QUOTE (-899))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-992))) (|HasCategory| |#2| (QUOTE (-1185))) (|HasCategory| |#2| (QUOTE (-1048))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4378)) (|HasAttribute| |#2| (QUOTE -4381)) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-841))))
+(-165 R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")))
-((-4366 -3994 (|has| |#1| (-546)) (-12 (|has| |#1| (-302)) (|has| |#1| (-894)))) (-4371 |has| |#1| (-358)) (-4365 |has| |#1| (-358)) (-4369 |has| |#1| (-6 -4369)) (-4372 |has| |#1| (-6 -4372)) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
+((-4375 -3998 (|has| |#1| (-550)) (-12 (|has| |#1| (-306)) (|has| |#1| (-899)))) (-4380 |has| |#1| (-362)) (-4374 |has| |#1| (-362)) (-4378 |has| |#1| (-6 -4378)) (-4381 |has| |#1| (-6 -4381)) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-165 RR PR)
+(-166 RR PR)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients.")))
NIL
NIL
-(-166 R S)
+(-167 R S)
((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,{}u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}.")))
NIL
NIL
-(-167 R)
+(-168 R)
((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
-((-4366 -3994 (|has| |#1| (-546)) (-12 (|has| |#1| (-302)) (|has| |#1| (-894)))) (-4371 |has| |#1| (-358)) (-4365 |has| |#1| (-358)) (-4369 |has| |#1| (-6 -4369)) (-4372 |has| |#1| (-6 -4372)) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
-((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-344))) (-3994 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-363))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -508) (QUOTE (-1158)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-229))) (-12 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -281) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-546)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-836)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-1007)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-1180)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-374))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-554))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))))) (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-358))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-894))))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-894)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-894)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-894))))) (-3994 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-546)))) (-12 (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1180)))) (|HasCategory| |#1| (QUOTE (-1180))) (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (-3994 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-546)))) (-3994 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#1| (LIST (QUOTE -508) (QUOTE (-1158)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -281) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-1043))) (-12 (|HasCategory| |#1| (QUOTE (-1043))) (|HasCategory| |#1| (QUOTE (-1180)))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-894))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-358)))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-229))) (-12 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasAttribute| |#1| (QUOTE -4369)) (|HasAttribute| |#1| (QUOTE -4372)) (-12 (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158))))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-143)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-344)))))
-(-168 R S CS)
+((-4375 -3998 (|has| |#1| (-550)) (-12 (|has| |#1| (-306)) (|has| |#1| (-899)))) (-4380 |has| |#1| (-362)) (-4374 |has| |#1| (-362)) (-4378 |has| |#1| (-6 -4378)) (-4381 |has| |#1| (-6 -4381)) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-348))) (-3998 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-3998 (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-232))) (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-819)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-841)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-1012)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-1185)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (-3998 (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-899))))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-899)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-899)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-899))))) (-3998 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-992))) (|HasCategory| |#1| (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-1185))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3998 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-550)))) (-3998 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-819))) (|HasCategory| |#1| (QUOTE (-1048))) (-12 (|HasCategory| |#1| (QUOTE (-1048))) (|HasCategory| |#1| (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-899))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-362)))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-232))) (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasAttribute| |#1| (QUOTE -4378)) (|HasAttribute| |#1| (QUOTE -4381)) (-12 (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163))))) (-3998 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144)))) (-3998 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-348)))))
+(-169 R S CS)
((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern")))
NIL
NIL
-(-169)
+(-170)
((|constructor| (NIL "This domain implements some global properties of subspaces.")) (|copy| (($ $) "\\spad{copy(x)} \\undocumented")) (|solid| (((|Boolean|) $ (|Boolean|)) "\\spad{solid(x,{}b)} \\undocumented")) (|close| (((|Boolean|) $ (|Boolean|)) "\\spad{close(x,{}b)} \\undocumented")) (|solid?| (((|Boolean|) $) "\\spad{solid?(x)} \\undocumented")) (|closed?| (((|Boolean|) $) "\\spad{closed?(x)} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")))
NIL
NIL
-(-170)
+(-171)
((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative.")))
-(((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
+(((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-171)
+(-172)
((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations.")))
NIL
NIL
-(-172 R)
+(-173 R)
((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0,{} x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialQuotients(x) = [b0,{}b1,{}b2,{}b3,{}...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialDenominators(x) = [b1,{}b2,{}b3,{}...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialNumerators(x) = [a1,{}a2,{}a3,{}...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,{}b)} constructs a continued fraction in the following way: if \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,{}a,{}b)} constructs a continued fraction in the following way: if \\spad{a = [a1,{}a2,{}...]} and \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}.")))
-(((-4375 "*") . T) (-4366 . T) (-4371 . T) (-4365 . T) (-4367 . T) (-4368 . T) (-4370 . T))
+(((-4384 "*") . T) (-4375 . T) (-4380 . T) (-4374 . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-173)
+(-174)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(c,{}n)} returns the first binding associated with \\spad{`n'}. Otherwise `failed'.")) (|push| (($ (|Binding|) $) "\\spad{push(c,{}b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}.")))
NIL
NIL
-(-174 R)
+(-175 R)
((|constructor| (NIL "CoordinateSystems provides coordinate transformation functions for plotting. Functions in this package return conversion functions which take points expressed in other coordinate systems and return points with the corresponding Cartesian coordinates.")) (|conical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1| |#1|) "\\spad{conical(a,{}b)} transforms from conical coordinates to Cartesian coordinates: \\spad{conical(a,{}b)} is a function which will map the point \\spad{(lambda,{}mu,{}nu)} to \\spad{x = lambda*mu*nu/(a*b)},{} \\spad{y = lambda/a*sqrt((mu**2-a**2)*(nu**2-a**2)/(a**2-b**2))},{} \\spad{z = lambda/b*sqrt((mu**2-b**2)*(nu**2-b**2)/(b**2-a**2))}.")) (|toroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{toroidal(a)} transforms from toroidal coordinates to Cartesian coordinates: \\spad{toroidal(a)} is a function which will map the point \\spad{(u,{}v,{}phi)} to \\spad{x = a*sinh(v)*cos(phi)/(cosh(v)-cos(u))},{} \\spad{y = a*sinh(v)*sin(phi)/(cosh(v)-cos(u))},{} \\spad{z = a*sin(u)/(cosh(v)-cos(u))}.")) (|bipolarCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolarCylindrical(a)} transforms from bipolar cylindrical coordinates to Cartesian coordinates: \\spad{bipolarCylindrical(a)} is a function which will map the point \\spad{(u,{}v,{}z)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))},{} \\spad{z}.")) (|bipolar| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolar(a)} transforms from bipolar coordinates to Cartesian coordinates: \\spad{bipolar(a)} is a function which will map the point \\spad{(u,{}v)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))}.")) (|oblateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{oblateSpheroidal(a)} transforms from oblate spheroidal coordinates to Cartesian coordinates: \\spad{oblateSpheroidal(a)} is a function which will map the point \\spad{(\\spad{xi},{}eta,{}phi)} to \\spad{x = a*sinh(\\spad{xi})*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(\\spad{xi})*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(\\spad{xi})*cos(eta)}.")) (|prolateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{prolateSpheroidal(a)} transforms from prolate spheroidal coordinates to Cartesian coordinates: \\spad{prolateSpheroidal(a)} is a function which will map the point \\spad{(\\spad{xi},{}eta,{}phi)} to \\spad{x = a*sinh(\\spad{xi})*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(\\spad{xi})*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(\\spad{xi})*cos(eta)}.")) (|ellipticCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{ellipticCylindrical(a)} transforms from elliptic cylindrical coordinates to Cartesian coordinates: \\spad{ellipticCylindrical(a)} is a function which will map the point \\spad{(u,{}v,{}z)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)},{} \\spad{z}.")) (|elliptic| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{elliptic(a)} transforms from elliptic coordinates to Cartesian coordinates: \\spad{elliptic(a)} is a function which will map the point \\spad{(u,{}v)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)}.")) (|paraboloidal| (((|Point| |#1|) (|Point| |#1|)) "\\spad{paraboloidal(pt)} transforms \\spad{pt} from paraboloidal coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v,{}phi)} to \\spad{x = u*v*cos(phi)},{} \\spad{y = u*v*sin(phi)},{} \\spad{z = 1/2 * (u**2 - v**2)}.")) (|parabolicCylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolicCylindrical(pt)} transforms \\spad{pt} from parabolic cylindrical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v,{}z)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v},{} \\spad{z}.")) (|parabolic| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolic(pt)} transforms \\spad{pt} from parabolic coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v}.")) (|spherical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{spherical(pt)} transforms \\spad{pt} from spherical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta,{}phi)} to \\spad{x = r*sin(phi)*cos(theta)},{} \\spad{y = r*sin(phi)*sin(theta)},{} \\spad{z = r*cos(phi)}.")) (|cylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cylindrical(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta,{}z)} to \\spad{x = r * cos(theta)},{} \\spad{y = r * sin(theta)},{} \\spad{z}.")) (|polar| (((|Point| |#1|) (|Point| |#1|)) "\\spad{polar(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta)} to \\spad{x = r * cos(theta)} ,{} \\spad{y = r * sin(theta)}.")) (|cartesian| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cartesian(pt)} returns the Cartesian coordinates of point \\spad{pt}.")))
NIL
NIL
-(-175 R |PolR| E)
+(-176 R |PolR| E)
((|constructor| (NIL "This package implements characteristicPolynomials for monogenic algebras using resultants")) (|characteristicPolynomial| ((|#2| |#3|) "\\spad{characteristicPolynomial(e)} returns the characteristic polynomial of \\spad{e} using resultants")))
NIL
NIL
-(-176 R S CS)
+(-177 R S CS)
((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr,{} pat,{} res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
-((|HasCategory| (-937 |#2|) (LIST (QUOTE -871) (|devaluate| |#1|))))
-(-177 R)
+((|HasCategory| (-942 |#2|) (LIST (QUOTE -876) (|devaluate| |#1|))))
+(-178 R)
((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,{}r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,{}lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,{}lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,{}l)} \\undocumented{}")))
NIL
NIL
-(-178)
+(-179)
((|constructor| (NIL "This domain represents `coerce' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted.")))
NIL
NIL
-(-179 R UP)
+(-180 R UP)
((|constructor| (NIL "\\spadtype{ComplexRootFindingPackage} provides functions to find all roots of a polynomial \\spad{p} over the complex number by using Plesken\\spad{'s} idea to calculate in the polynomial ring modulo \\spad{f} and employing the Chinese Remainder Theorem. In this first version,{} the precision (see \\spadfunFrom{digits}{Float}) is not increased when this is necessary to avoid rounding errors. Hence it is the user\\spad{'s} responsibility to increase the precision if necessary. Note also,{} if this package is called with \\spadignore{e.g.} \\spadtype{Fraction Integer},{} the precise calculations could require a lot of time. Also note that evaluating the zeros is not necessarily a good check whether the result is correct: already evaluation can cause rounding errors.")) (|startPolynomial| (((|Record| (|:| |start| |#2|) (|:| |factors| (|Factored| |#2|))) |#2|) "\\spad{startPolynomial(p)} uses the ideas of Schoenhage\\spad{'s} variant of Graeffe\\spad{'s} method to construct circles which separate roots to get a good start polynomial,{} \\spadignore{i.e.} one whose image under the Chinese Remainder Isomorphism has both entries of norm smaller and greater or equal to 1. In case the roots are found during internal calculations. The corresponding factors are in {\\em factors} which are otherwise 1.")) (|setErrorBound| ((|#1| |#1|) "\\spad{setErrorBound(eps)} changes the internal error bound,{} by default being {\\em 10 ** (-3)} to \\spad{eps},{} if \\spad{R} is a member in the category \\spadtype{QuotientFieldCategory Integer}. The internal {\\em globalDigits} is set to {\\em ceiling(1/r)**2*10} being {\\em 10**7} by default.")) (|schwerpunkt| (((|Complex| |#1|) |#2|) "\\spad{schwerpunkt(p)} determines the 'Schwerpunkt' of the roots of the polynomial \\spad{p} of degree \\spad{n},{} \\spadignore{i.e.} the center of gravity,{} which is {\\em coeffient of \\spad{x**(n-1)}} divided by {\\em n times coefficient of \\spad{x**n}}.")) (|rootRadius| ((|#1| |#2|) "\\spad{rootRadius(p)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em 1+globalEps},{} where {\\em globalEps} is the internal error bound,{} which can be set by {\\em setErrorBound}.") ((|#1| |#2| |#1|) "\\spad{rootRadius(p,{}errQuot)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em errQuot}.")) (|reciprocalPolynomial| ((|#2| |#2|) "\\spad{reciprocalPolynomial(p)} calulates a polynomial which has exactly the inverses of the non-zero roots of \\spad{p} as roots,{} and the same number of 0-roots.")) (|pleskenSplit| (((|Factored| |#2|) |#2| |#1|) "\\spad{pleskenSplit(poly,{} eps)} determines a start polynomial {\\em start}\\\\ by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} \\spad{-1\"}. Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{pleskenSplit(poly,{}eps,{}info)} determines a start polynomial {\\em start} by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} \\spad{-1\"}. Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough. If {\\em info} is {\\em true},{} then information messages are issued.")) (|norm| ((|#1| |#2|) "\\spad{norm(p)} determines sum of absolute values of coefficients Note: this function depends on \\spadfunFrom{abs}{Complex}.")) (|graeffe| ((|#2| |#2|) "\\spad{graeffe p} determines \\spad{q} such that \\spad{q(-z**2) = p(z)*p(-z)}. Note that the roots of \\spad{q} are the squares of the roots of \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} tries to factor \\spad{p} into linear factors with error atmost {\\em globalEps},{} the internal error bound,{} which can be set by {\\em setErrorBound}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1|) "\\spad{factor(p,{} eps)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{factor(p,{} eps,{} info)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization. If {\\em info} is {\\em true},{} then information messages are given.")) (|divisorCascade| (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2|) "\\spad{divisorCascade(p,{}tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions is calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial.") (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2| (|Boolean|)) "\\spad{divisorCascade(p,{}tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions are calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial. If {\\em info} is {\\em true},{} then information messages are issued.")) (|complexZeros| (((|List| (|Complex| |#1|)) |#2| |#1|) "\\spad{complexZeros(p,{} eps)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by {\\em eps}.") (((|List| (|Complex| |#1|)) |#2|) "\\spad{complexZeros(p)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by the package constant {\\em globalEps} which you may change by {\\em setErrorBound}.")))
NIL
NIL
-(-180 S ST)
+(-181 S ST)
((|constructor| (NIL "This package provides tools for working with cyclic streams.")) (|computeCycleEntry| ((|#2| |#2| |#2|) "\\spad{computeCycleEntry(x,{}cycElt)},{} where \\spad{cycElt} is a pointer to a node in the cyclic part of the cyclic stream \\spad{x},{} returns a pointer to the first node in the cycle")) (|computeCycleLength| (((|NonNegativeInteger|) |#2|) "\\spad{computeCycleLength(s)} returns the length of the cycle of a cyclic stream \\spad{t},{} where \\spad{s} is a pointer to a node in the cyclic part of \\spad{t}.")) (|cycleElt| (((|Union| |#2| "failed") |#2|) "\\spad{cycleElt(s)} returns a pointer to a node in the cycle if the stream \\spad{s} is cyclic and returns \"failed\" if \\spad{s} is not cyclic")))
NIL
NIL
-(-181)
-((|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain")) (|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments returns} the list of syntax objects for the arguments used to invoke the constructor.")) (|constructorName| (((|Symbol|) $) "\\spad{constructorName c} returns the name of the constructor")))
+(-182)
+((|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments(t)} returns the list of syntax objects for the arguments used to invoke the constructor.")) (|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain") (((|Constructor|) $) "\\spad{constructor(t)} returns the name of the constructor used to make the call.")))
NIL
NIL
-(-182)
-((|constructor| (NIL "This domain enumerates the three kinds of constructors available in OpenAxiom: category constructors,{} domain constructors,{} and package constructors.")) (|package| (($) "`package' designates package constructors.")) (|domain| (($) "`domain' designates domain constructors")) (|category| (($) "`category' designates category constructors")))
+(-183 S)
+((|constructor| (NIL "This category declares basic operations on all constructors.")) (|dualSignature| (((|List| (|Boolean|)) $) "\\spad{dualSignature(c)} returns a list \\spad{l} of Boolean values with the following meaning: \\indented{2}{\\spad{l}.(i+1) holds when the constructor takes a domain object} \\indented{10}{as the `i'th argument.\\space{2}Otherwise the argument} \\indented{10}{must be a non-domain object.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'.")))
+NIL
+NIL
+(-184)
+((|constructor| (NIL "This category declares basic operations on all constructors.")) (|dualSignature| (((|List| (|Boolean|)) $) "\\spad{dualSignature(c)} returns a list \\spad{l} of Boolean values with the following meaning: \\indented{2}{\\spad{l}.(i+1) holds when the constructor takes a domain object} \\indented{10}{as the `i'th argument.\\space{2}Otherwise the argument} \\indented{10}{must be a non-domain object.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'.")))
NIL
NIL
-(-183)
-((|constructor| (NIL "This domain provides implementations for constructors.")) (|arity| (((|SingleInteger|) $) "\\spad{arity(ctor)} returns the arity of the constructor `ctor'. \\indented{2}{A negative value means that the \\spad{ctor} takes a variable} \\indented{2}{length argument list,{} \\spadignore{e.g.} Mapping,{} Record,{} etc.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'.")) (|name| (((|Identifier|) $) "\\spad{name(ctor)} returns the name of the constructor `ctor'.")))
+(-185)
+((|constructor| (NIL "This domain enumerates the three kinds of constructors available in OpenAxiom: category constructors,{} domain constructors,{} and package constructors.")) (|package| (($) "`package' is the kind of package constructors.")) (|domain| (($) "`domain' is the kind of domain constructors")) (|category| (($) "`category' is the kind of category constructors")))
NIL
NIL
-(-184 R -3085)
+(-186)
+((|constructor| (NIL "This domain provides implementations for constructors.")))
+NIL
+NIL
+(-187 R -3215)
((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
-(-185 R)
+(-188 R)
((|constructor| (NIL "CoerceVectorMatrixPackage: an unexposed,{} technical package for data conversions")) (|coerce| (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Vector| (|Matrix| |#1|))) "\\spad{coerce(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix R} as vector over \\spadtype{Matrix Fraction Polynomial R}")) (|coerceP| (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|Vector| (|Matrix| |#1|))) "\\spad{coerceP(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix R} as vector over \\spadtype{Matrix Polynomial R}")))
NIL
NIL
-(-186)
+(-189)
((|constructor| (NIL "Enumeration by cycle indices.")) (|skewSFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{skewSFunction(li1,{}li2)} is the \\spad{S}-function \\indented{1}{of the partition difference \\spad{li1 - li2}} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|SFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|Integer|))) "\\spad{SFunction(\\spad{li})} is the \\spad{S}-function of the partition \\spad{\\spad{li}} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|wreath| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{wreath(s1,{}s2)} is the cycle index of the wreath product \\indented{1}{of the two groups whose cycle indices are \\spad{s1} and} \\indented{1}{\\spad{s2}.}")) (|eval| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval s} is the sum of the coefficients of a cycle index.")) (|cup| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cup(s1,{}s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices,{} in which the} \\indented{1}{power sums are retained to produce a cycle index.}")) (|cap| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cap(s1,{}s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices.}")) (|graphs| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{graphs n} is the cycle index of the group induced on \\indented{1}{the edges of a graph by applying the symmetric function to the} \\indented{1}{\\spad{n} nodes.}")) (|dihedral| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{dihedral n} is the cycle index of the \\indented{1}{dihedral group of degree \\spad{n}.}")) (|cyclic| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{cyclic n} is the cycle index of the \\indented{1}{cyclic group of degree \\spad{n}.}")) (|alternating| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{alternating n} is the cycle index of the \\indented{1}{alternating group of degree \\spad{n}.}")) (|elementary| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{elementary n} is the \\spad{n} th elementary symmetric \\indented{1}{function expressed in terms of power sums.}")) (|powerSum| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{powerSum n} is the \\spad{n} th power sum symmetric \\indented{1}{function.}")) (|complete| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{complete n} is the \\spad{n} th complete homogeneous \\indented{1}{symmetric function expressed in terms of power sums.} \\indented{1}{Alternatively it is the cycle index of the symmetric} \\indented{1}{group of degree \\spad{n}.}")))
NIL
NIL
-(-187)
+(-190)
((|constructor| (NIL "This package \\undocumented{}")) (|cyclotomicFactorization| (((|Factored| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicFactorization(n)} \\undocumented{}")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} \\undocumented{}")) (|cyclotomicDecomposition| (((|List| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicDecomposition(n)} \\undocumented{}")))
NIL
NIL
-(-188)
+(-191)
((|constructor| (NIL "\\axiomType{d01AgentsPackage} is a package of numerical agents to be used to investigate attributes of an input function so as to decide the \\axiomFun{measure} of an appropriate numerical integration routine. It contains functions \\axiomFun{rangeIsFinite} to test the input range and \\axiomFun{functionIsContinuousAtEndPoints} to check for continuity at the end points of the range.")) (|changeName| (((|Result|) (|Symbol|) (|Symbol|) (|Result|)) "\\spad{changeName(s,{}t,{}r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to \\axiom{\\spad{t}}.")) (|commaSeparate| (((|String|) (|List| (|String|))) "\\spad{commaSeparate(l)} produces a comma separated string from a list of strings.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{singularitiesOf(args)} returns a list of potential singularities of the function within the given range")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function if it can be retracted to \\axiomType{Polynomial DoubleFloat}.")) (|functionIsOscillatory| (((|Float|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsOscillatory(a)} tests whether the function \\spad{a.fn} has many zeros of its derivative.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(x)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{x}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(x)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{x}}")) (|functionIsContinuousAtEndPoints| (((|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsContinuousAtEndPoints(args)} uses power series limits to check for problems at the end points of the range of \\spad{args}.")) (|rangeIsFinite| (((|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{rangeIsFinite(args)} tests the endpoints of \\spad{args.range} for infinite end points.")))
NIL
NIL
-(-189)
+(-192)
((|constructor| (NIL "\\axiomType{d01ajfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AJF,{} a general numerical integration routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine D01AJF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}.")))
NIL
NIL
-(-190)
+(-193)
((|constructor| (NIL "\\axiomType{d01akfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AKF,{} a numerical integration routine which is is suitable for oscillating,{} non-singular functions. The function \\axiomFun{measure} measures the usefulness of the routine D01AKF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}.")))
NIL
NIL
-(-191)
+(-194)
((|constructor| (NIL "\\axiomType{d01alfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ALF,{} a general numerical integration routine which can handle a list of singularities. The function \\axiomFun{measure} measures the usefulness of the routine D01ALF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}.")))
NIL
NIL
-(-192)
+(-195)
((|constructor| (NIL "\\axiomType{d01amfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AMF,{} a general numerical integration routine which can handle infinite or semi-infinite range of the input function. The function \\axiomFun{measure} measures the usefulness of the routine D01AMF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}.")))
NIL
NIL
-(-193)
+(-196)
((|constructor| (NIL "\\axiomType{d01anfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ANF,{} a numerical integration routine which can handle weight functions of the form cos(\\omega \\spad{x}) or sin(\\omega \\spad{x}). The function \\axiomFun{measure} measures the usefulness of the routine D01ANF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}.")))
NIL
NIL
-(-194)
+(-197)
((|constructor| (NIL "\\axiomType{d01apfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01APF,{} a general numerical integration routine which can handle end point singularities of the algebraico-logarithmic form \\spad{w}(\\spad{x}) = (\\spad{x}-a)\\spad{^c} * (\\spad{b}-\\spad{x})\\spad{^d}. The function \\axiomFun{measure} measures the usefulness of the routine D01APF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}.")))
NIL
NIL
-(-195)
+(-198)
((|constructor| (NIL "\\axiomType{d01aqfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AQF,{} a general numerical integration routine which can solve an integral of the form \\newline \\centerline{\\inputbitmap{/home/bjd/Axiom/anna/hypertex/bitmaps/d01aqf.\\spad{xbm}}} The function \\axiomFun{measure} measures the usefulness of the routine D01AQF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}.")))
NIL
NIL
-(-196)
+(-199)
((|constructor| (NIL "\\axiomType{d01asfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ASF,{} a numerical integration routine which can handle weight functions of the form cos(\\omega \\spad{x}) or sin(\\omega \\spad{x}) on an semi-infinite range. The function \\axiomFun{measure} measures the usefulness of the routine D01ASF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}.")))
NIL
NIL
-(-197)
+(-200)
((|constructor| (NIL "\\axiomType{d01fcfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01FCF,{} a numerical integration routine which can handle multi-dimensional quadrature over a finite region. The function \\axiomFun{measure} measures the usefulness of the routine D01GBF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}.")))
NIL
NIL
-(-198)
+(-201)
((|constructor| (NIL "\\axiomType{d01gbfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01GBF,{} a numerical integration routine which can handle multi-dimensional quadrature over a finite region. The function \\axiomFun{measure} measures the usefulness of the routine D01GBF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}.")))
NIL
NIL
-(-199)
+(-202)
NIL
NIL
NIL
-(-200)
+(-203)
((|constructor| (NIL "\\axiom{d01WeightsPackage} is a package for functions used to investigate whether a function can be divided into a simpler function and a weight function. The types of weights investigated are those giving rise to end-point singularities of the algebraico-logarithmic type,{} and trigonometric weights.")) (|exprHasLogarithmicWeights| (((|Integer|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasLogarithmicWeights} looks for logarithmic weights giving rise to singularities of the function at the end-points.")) (|exprHasAlgebraicWeight| (((|Union| (|List| (|DoubleFloat|)) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasAlgebraicWeight} looks for algebraic weights giving rise to singularities of the function at the end-points.")) (|exprHasWeightCosWXorSinWX| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |w| (|DoubleFloat|))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasWeightCosWXorSinWX} looks for trigonometric weights in an expression of the form \\axiom{cos \\omega \\spad{x}} or \\axiom{sin \\omega \\spad{x}},{} returning the value of \\omega (\\notequal 1) and the operator.")))
NIL
NIL
-(-201)
+(-204)
((|constructor| (NIL "\\axiom{d02AgentsPackage} contains a set of computational agents for use with Ordinary Differential Equation solvers.")) (|intermediateResultsIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{intermediateResultsIF(o)} returns a value corresponding to the required number of intermediate results required and,{} therefore,{} an indication of how much this would affect the step-length of the calculation. It returns a value in the range [0,{}1].")) (|accuracyIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{accuracyIF(o)} returns the intensity value of the accuracy requirements of the input ODE. A request of accuracy of 10^-6 corresponds to the neutral intensity. It returns a value in the range [0,{}1].")) (|expenseOfEvaluationIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{expenseOfEvaluationIF(o)} returns the intensity value of the cost of evaluating the input ODE. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].\\newline\\indent{20} 400 ``operation units\\spad{''} \\spad{->} 0.75 \\newline 200 ``operation units\\spad{''} \\spad{->} 0.5 \\newline 83 ``operation units\\spad{''} \\spad{->} 0.25 \\newline\\indent{15} exponentiation = 4 units ,{} function calls = 10 units.")) (|systemSizeIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{systemSizeIF(ode)} returns the intensity value of the size of the system of ODEs. 20 equations corresponds to the neutral value. It returns a value in the range [0,{}1].")) (|stiffnessAndStabilityOfODEIF| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityOfODEIF(ode)} calculates the intensity values of stiffness of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian). \\blankline It returns two values in the range [0,{}1].")) (|stiffnessAndStabilityFactor| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityFactor(me)} calculates the stability and stiffness factor of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian).")) (|eval| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Matrix| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{eval(mat,{}symbols,{}values)} evaluates a multivariable matrix at given \\spad{values} for each of a list of variables")) (|jacobian| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|))) "\\spad{jacobian(v,{}w)} is a local function to make a jacobian matrix")) (|sparsityIF| (((|Float|) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{sparsityIF(m)} calculates the sparsity of a jacobian matrix")) (|combineFeatureCompatibility| (((|Float|) (|Float|) (|List| (|Float|))) "\\spad{combineFeatureCompatibility(C1,{}L)} is for interacting attributes") (((|Float|) (|Float|) (|Float|)) "\\spad{combineFeatureCompatibility(C1,{}C2)} is for interacting attributes")))
NIL
NIL
-(-202)
+(-205)
((|constructor| (NIL "\\axiomType{d02bbfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02BBF,{} a ODE routine which uses an Runge-Kutta method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02BBF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}.")))
NIL
NIL
-(-203)
+(-206)
((|constructor| (NIL "\\axiomType{d02bhfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02BHF,{} a ODE routine which uses an Runge-Kutta method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02BHF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}.")))
NIL
NIL
-(-204)
+(-207)
((|constructor| (NIL "\\axiomType{d02cjfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02CJF,{} a ODE routine which uses an Adams-Moulton-Bashworth method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02CJF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}.")))
NIL
NIL
-(-205)
+(-208)
((|constructor| (NIL "\\axiomType{d02ejfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02EJF,{} a ODE routine which uses a backward differentiation formulae method to handle a stiff system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02EJF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}.")))
NIL
NIL
-(-206)
+(-209)
((|elliptic?| (((|Boolean|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{elliptic?(r)} \\undocumented{}")) (|central?| (((|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{central?(f,{}g,{}l)} \\undocumented{}")) (|subscriptedVariables| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{subscriptedVariables(e)} \\undocumented{}")) (|varList| (((|List| (|Symbol|)) (|Symbol|) (|NonNegativeInteger|)) "\\spad{varList(s,{}n)} \\undocumented{}")))
NIL
NIL
-(-207)
+(-210)
((|constructor| (NIL "\\axiomType{d03eefAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routines D03EEF/D03EDF.")))
NIL
NIL
-(-208)
+(-211)
((|constructor| (NIL "\\axiomType{d03fafAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routine D03FAF.")))
NIL
NIL
-(-209 N T$)
+(-212 N T$)
((|constructor| (NIL "This domain provides for a fixed-sized homogeneous data buffer.")) (|qsetelt| ((|#2| $ (|NonNegativeInteger|) |#2|) "setelt(\\spad{b},{}\\spad{i},{}\\spad{x}) sets the \\spad{i}th entry of data buffer \\spad{`b'} to \\spad{`x'}. Indexing is 0-based.")) (|qelt| ((|#2| $ (|NonNegativeInteger|)) "elt(\\spad{b},{}\\spad{i}) returns the \\spad{i}th element in buffer \\spad{`b'}. Indexing is 0-based.")) (|new| (($) "\\spad{new()} returns a fresly allocated data buffer or length \\spad{N}.")))
NIL
NIL
-(-210 S)
+(-213 S)
((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}")))
NIL
NIL
-(-211 -3085 UP UPUP R)
+(-214 -3215 UP UPUP R)
((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use.")))
NIL
NIL
-(-212 -3085 FP)
+(-215 -3215 FP)
((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}.")))
NIL
NIL
-(-213)
+(-216)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")))
-((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
-((|HasCategory| (-554) (QUOTE (-894))) (|HasCategory| (-554) (LIST (QUOTE -1023) (QUOTE (-1158)))) (|HasCategory| (-554) (QUOTE (-143))) (|HasCategory| (-554) (QUOTE (-145))) (|HasCategory| (-554) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| (-554) (QUOTE (-1007))) (|HasCategory| (-554) (QUOTE (-807))) (-3994 (|HasCategory| (-554) (QUOTE (-807))) (|HasCategory| (-554) (QUOTE (-836)))) (|HasCategory| (-554) (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| (-554) (QUOTE (-1133))) (|HasCategory| (-554) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| (-554) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| (-554) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| (-554) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| (-554) (QUOTE (-229))) (|HasCategory| (-554) (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| (-554) (LIST (QUOTE -508) (QUOTE (-1158)) (QUOTE (-554)))) (|HasCategory| (-554) (LIST (QUOTE -304) (QUOTE (-554)))) (|HasCategory| (-554) (LIST (QUOTE -281) (QUOTE (-554)) (QUOTE (-554)))) (|HasCategory| (-554) (QUOTE (-302))) (|HasCategory| (-554) (QUOTE (-539))) (|HasCategory| (-554) (QUOTE (-836))) (|HasCategory| (-554) (LIST (QUOTE -627) (QUOTE (-554)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-554) (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-554) (QUOTE (-894)))) (|HasCategory| (-554) (QUOTE (-143)))))
-(-214)
+((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((|HasCategory| (-558) (QUOTE (-899))) (|HasCategory| (-558) (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| (-558) (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-146))) (|HasCategory| (-558) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-558) (QUOTE (-1012))) (|HasCategory| (-558) (QUOTE (-811))) (-3998 (|HasCategory| (-558) (QUOTE (-811))) (|HasCategory| (-558) (QUOTE (-841)))) (|HasCategory| (-558) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-1138))) (|HasCategory| (-558) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| (-558) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| (-558) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| (-558) (QUOTE (-232))) (|HasCategory| (-558) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-558) (LIST (QUOTE -512) (QUOTE (-1163)) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -308) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -285) (QUOTE (-558)) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-306))) (|HasCategory| (-558) (QUOTE (-543))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-558) (LIST (QUOTE -631) (QUOTE (-558)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-899)))) (-3998 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-899)))) (|HasCategory| (-558) (QUOTE (-144)))))
+(-217)
((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any.")))
NIL
NIL
-(-215 R -3085)
+(-218 R -3215)
((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
-(-216 R)
+(-219 R)
((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
-(-217 R1 R2)
+(-220 R1 R2)
((|constructor| (NIL "This package \\undocumented{}")) (|expand| (((|List| (|Expression| |#2|)) (|Expression| |#2|) (|PositiveInteger|)) "\\spad{expand(f,{}n)} \\undocumented{}")) (|reduce| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#1|)) (|:| |deg| (|PositiveInteger|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reduce(p)} \\undocumented{}")))
NIL
NIL
-(-218 S)
+(-221 S)
((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.")))
-((-4373 . T) (-4374 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))))
-(-219 |CoefRing| |listIndVar|)
+((-4382 . T) (-4383 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
+(-222 |CoefRing| |listIndVar|)
((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}.")))
-((-4370 . T))
+((-4379 . T))
NIL
-(-220 R -3085)
+(-223 R -3215)
((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval.")))
NIL
NIL
-(-221)
+(-224)
((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-4333 . T) (-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
+((-1352 . T) (-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-222)
+(-225)
((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}")))
NIL
NIL
-(-223 R)
+(-226 R)
((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}")))
-((-4373 . T) (-4374 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-546))) (|HasAttribute| |#1| (QUOTE (-4375 "*"))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))))
-(-224 A S)
+((-4382 . T) (-4383 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-550))) (|HasAttribute| |#1| (QUOTE (-4384 "*"))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
+(-227 A S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
NIL
NIL
-(-225 S)
+(-228 S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
-((-4374 . T))
+((-4383 . T))
NIL
-(-226 S R)
+(-229 S R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-229))))
-(-227 R)
+((|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-232))))
+(-230 R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
-((-4370 . T))
+((-4379 . T))
NIL
-(-228 S)
+(-231 S)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
NIL
NIL
-(-229)
+(-232)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
-((-4370 . T))
+((-4379 . T))
NIL
-(-230 A S)
+(-233 A S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4373)))
-(-231 S)
+((|HasAttribute| |#1| (QUOTE -4382)))
+(-234 S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
-((-4374 . T))
+((-4383 . T))
NIL
-(-232)
+(-235)
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
NIL
NIL
-(-233 S -4082 R)
+(-236 S -3084 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
NIL
-((|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-780))) (|HasCategory| |#3| (QUOTE (-834))) (|HasAttribute| |#3| (QUOTE -4370)) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-713))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1034))) (|HasCategory| |#3| (QUOTE (-1082))))
-(-234 -4082 R)
+((|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (QUOTE (-839))) (|HasAttribute| |#3| (QUOTE -4379)) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (QUOTE (-1087))))
+(-237 -3084 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
-((-4367 |has| |#2| (-1034)) (-4368 |has| |#2| (-1034)) (-4370 |has| |#2| (-6 -4370)) ((-4375 "*") |has| |#2| (-170)) (-4373 . T))
+((-4376 |has| |#2| (-1039)) (-4377 |has| |#2| (-1039)) (-4379 |has| |#2| (-6 -4379)) ((-4384 "*") |has| |#2| (-171)) (-4382 . T))
NIL
-(-235 -4082 A B)
+(-238 -3084 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-236 -4082 R)
+(-239 -3084 R)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
-((-4367 |has| |#2| (-1034)) (-4368 |has| |#2| (-1034)) (-4370 |has| |#2| (-6 -4370)) ((-4375 "*") |has| |#2| (-170)) (-4373 . T))
-((-3994 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-713))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-834))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))))) (-3994 (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-1082)))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1034)))) (-12 (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158))))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#2| (QUOTE (-358))) (-3994 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1034)))) (-3994 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358)))) (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (QUOTE (-780))) (-3994 (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (QUOTE (-834)))) (|HasCategory| |#2| (QUOTE (-834))) (|HasCategory| |#2| (QUOTE (-713))) (|HasCategory| |#2| (QUOTE (-170))) (-3994 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1034)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-713))) (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (QUOTE (-834))) (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (QUOTE (-1082)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1034)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1034)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1034)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1034)))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-170)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-229)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-358)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-713)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-780)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-834)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-1034)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-1082))))) (-3994 (-12 (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-713))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-834))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-1034))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554)))))) (-3994 (-12 (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-713))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-834))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554)))))) (|HasCategory| (-554) (QUOTE (-836))) (-12 (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1034)))) (-12 (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158))))) (-3994 (|HasCategory| |#2| (QUOTE (-1034))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554)))))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-1082)))) (|HasAttribute| |#2| (QUOTE -4370)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))))
-(-237)
+((-4376 |has| |#2| (-1039)) (-4377 |has| |#2| (-1039)) (-4379 |has| |#2| (-6 -4379)) ((-4384 "*") |has| |#2| (-171)) (-4382 . T))
+((-3998 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))))) (-3998 (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1087)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#2| (QUOTE (-362))) (-3998 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3998 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362)))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-784))) (-3998 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-839)))) (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-171))) (-3998 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1039)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (-3998 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-1087)))) (-3998 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3998 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3998 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3998 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1039)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1087))) (-3998 (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-171)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-232)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-362)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-367)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-717)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-784)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-839)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1087))))) (-3998 (-12 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1039))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-3998 (-12 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-841))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163))))) (-3998 (|HasCategory| |#2| (QUOTE (-1039))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1087)))) (|HasAttribute| |#2| (QUOTE -4379)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))))
+(-240)
((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type.")))
NIL
NIL
-(-238 S)
+(-241 S)
((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
NIL
NIL
-(-239)
+(-242)
((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
-((-4366 . T) (-4367 . T) (-4368 . T) (-4370 . T))
+((-4375 . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-240 S)
+(-243 S)
((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")))
NIL
NIL
-(-241 S)
+(-244 S)
((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")))
-((-4374 . T) (-4373 . T))
-((-3994 (-12 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (-3994 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| (-554) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))))
-(-242 M)
+((-4383 . T) (-4382 . T))
+((-3998 (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3998 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+(-245 M)
((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}")))
NIL
NIL
-(-243 |vl| R)
+(-246 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4375 "*") |has| |#2| (-170)) (-4366 |has| |#2| (-546)) (-4371 |has| |#2| (-6 -4371)) (-4368 . T) (-4367 . T) (-4370 . T))
-((|HasCategory| |#2| (QUOTE (-894))) (-3994 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-894)))) (-3994 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-894)))) (-3994 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-894)))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-170))) (-3994 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-546)))) (-12 (|HasCategory| (-850 |#1|) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-374))))) (-12 (|HasCategory| (-850 |#1|) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-554))))) (-12 (|HasCategory| (-850 |#1|) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374)))))) (-12 (|HasCategory| (-850 |#1|) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554)))))) (-12 (|HasCategory| (-850 |#1|) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-836))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-358))) (|HasAttribute| |#2| (QUOTE -4371)) (|HasCategory| |#2| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-894)))) (|HasCategory| |#2| (QUOTE (-143)))))
-(-244)
-((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: January 19,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall")) (|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall|)) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")))
+(((-4384 "*") |has| |#2| (-171)) (-4375 |has| |#2| (-550)) (-4380 |has| |#2| (-6 -4380)) (-4377 . T) (-4376 . T) (-4379 . T))
+((|HasCategory| |#2| (QUOTE (-899))) (-3998 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-899)))) (-3998 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-899)))) (-3998 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-171))) (-3998 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-550)))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3998 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4380)) (|HasCategory| |#2| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (-3998 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#2| (QUOTE (-144)))))
+(-247)
+((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall|)) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}.")))
+NIL
+NIL
+(-248)
+((|constructor| (NIL "This domain provides representations for domains constructors.")))
NIL
NIL
-(-245 |n| R M S)
+(-249 |n| R M S)
((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
-((-4370 -3994 (-3726 (|has| |#4| (-1034)) (|has| |#4| (-229))) (-3726 (|has| |#4| (-1034)) (|has| |#4| (-885 (-1158)))) (|has| |#4| (-6 -4370)) (-3726 (|has| |#4| (-1034)) (|has| |#4| (-627 (-554))))) (-4367 |has| |#4| (-1034)) (-4368 |has| |#4| (-1034)) ((-4375 "*") |has| |#4| (-170)) (-4373 . T))
-((-3994 (-12 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-358))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-713))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-780))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-834))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1034))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1082))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -885) (QUOTE (-1158)))))) (|HasCategory| |#4| (QUOTE (-358))) (-3994 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-358))) (|HasCategory| |#4| (QUOTE (-1034)))) (-3994 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-358)))) (|HasCategory| |#4| (QUOTE (-1034))) (|HasCategory| |#4| (QUOTE (-780))) (-3994 (|HasCategory| |#4| (QUOTE (-780))) (|HasCategory| |#4| (QUOTE (-834)))) (|HasCategory| |#4| (QUOTE (-834))) (|HasCategory| |#4| (QUOTE (-713))) (|HasCategory| |#4| (QUOTE (-170))) (-3994 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-1034)))) (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#4| (LIST (QUOTE -885) (QUOTE (-1158)))) (-3994 (|HasCategory| |#4| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#4| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (QUOTE (-1034)))) (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#4| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#4| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#4| (LIST (QUOTE -885) (QUOTE (-1158))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#4| (QUOTE (-170)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#4| (QUOTE (-229)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#4| (QUOTE (-358)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#4| (QUOTE (-363)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#4| (QUOTE (-713)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#4| (QUOTE (-780)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#4| (QUOTE (-834)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#4| (QUOTE (-1034)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#4| (QUOTE (-1082))))) (-3994 (-12 (|HasCategory| |#4| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (QUOTE (-358))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (QUOTE (-713))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (QUOTE (-780))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (QUOTE (-834))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554))))) (|HasCategory| |#4| (QUOTE (-1034))) (-12 (|HasCategory| |#4| (QUOTE (-1082))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554)))))) (-3994 (-12 (|HasCategory| |#4| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (QUOTE (-358))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (QUOTE (-713))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (QUOTE (-780))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (QUOTE (-834))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (QUOTE (-1034))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (QUOTE (-1082))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554)))))) (|HasCategory| (-554) (QUOTE (-836))) (-12 (|HasCategory| |#4| (QUOTE (-1034))) (|HasCategory| |#4| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (QUOTE (-1034))) (|HasCategory| |#4| (LIST (QUOTE -885) (QUOTE (-1158))))) (-12 (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (QUOTE (-1034)))) (-3994 (-12 (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (QUOTE (-1034)))) (|HasCategory| |#4| (QUOTE (-713))) (-12 (|HasCategory| |#4| (QUOTE (-1034))) (|HasCategory| |#4| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (QUOTE (-1034))) (|HasCategory| |#4| (LIST (QUOTE -885) (QUOTE (-1158)))))) (-12 (|HasCategory| |#4| (QUOTE (-1082))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554))))) (-3994 (|HasCategory| |#4| (QUOTE (-1034))) (-12 (|HasCategory| |#4| (QUOTE (-1082))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#4| (QUOTE (-1082)))) (-3994 (|HasAttribute| |#4| (QUOTE -4370)) (-12 (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (QUOTE (-1034)))) (-12 (|HasCategory| |#4| (QUOTE (-1034))) (|HasCategory| |#4| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (QUOTE (-1034))) (|HasCategory| |#4| (LIST (QUOTE -885) (QUOTE (-1158)))))) (|HasCategory| |#4| (QUOTE (-130))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| |#4| (QUOTE (-1082))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))))
-(-246 |n| R S)
+((-4379 -3998 (-2084 (|has| |#4| (-1039)) (|has| |#4| (-232))) (-2084 (|has| |#4| (-1039)) (|has| |#4| (-890 (-1163)))) (|has| |#4| (-6 -4379)) (-2084 (|has| |#4| (-1039)) (|has| |#4| (-631 (-558))))) (-4376 |has| |#4| (-1039)) (-4377 |has| |#4| (-1039)) ((-4384 "*") |has| |#4| (-171)) (-4382 . T))
+((-3998 (-12 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-784))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-839))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1039))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -890) (QUOTE (-1163)))))) (|HasCategory| |#4| (QUOTE (-362))) (-3998 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (QUOTE (-1039)))) (-3998 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-362)))) (|HasCategory| |#4| (QUOTE (-1039))) (|HasCategory| |#4| (QUOTE (-784))) (-3998 (|HasCategory| |#4| (QUOTE (-784))) (|HasCategory| |#4| (QUOTE (-839)))) (|HasCategory| |#4| (QUOTE (-839))) (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (QUOTE (-171))) (-3998 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-1039)))) (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#4| (LIST (QUOTE -890) (QUOTE (-1163)))) (-3998 (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#4| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1039)))) (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1087))) (-3998 (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-171)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-232)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-362)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-367)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-717)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-784)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-839)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-1039)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-1087))))) (-3998 (-12 (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-784))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-839))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-1039))) (-12 (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-3998 (-12 (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-784))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-839))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-1039))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-841))) (-12 (|HasCategory| |#4| (QUOTE (-1039))) (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-1039))) (|HasCategory| |#4| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1039)))) (-3998 (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1039)))) (|HasCategory| |#4| (QUOTE (-717))) (-12 (|HasCategory| |#4| (QUOTE (-1039))) (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-1039))) (|HasCategory| |#4| (LIST (QUOTE -890) (QUOTE (-1163)))))) (-12 (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-3998 (|HasCategory| |#4| (QUOTE (-1039))) (-12 (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-1087)))) (-3998 (|HasAttribute| |#4| (QUOTE -4379)) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1039)))) (-12 (|HasCategory| |#4| (QUOTE (-1039))) (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-1039))) (|HasCategory| |#4| (LIST (QUOTE -890) (QUOTE (-1163)))))) (|HasCategory| |#4| (QUOTE (-130))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))))
+(-250 |n| R S)
((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
-((-4370 -3994 (-3726 (|has| |#3| (-1034)) (|has| |#3| (-229))) (-3726 (|has| |#3| (-1034)) (|has| |#3| (-885 (-1158)))) (|has| |#3| (-6 -4370)) (-3726 (|has| |#3| (-1034)) (|has| |#3| (-627 (-554))))) (-4367 |has| |#3| (-1034)) (-4368 |has| |#3| (-1034)) ((-4375 "*") |has| |#3| (-170)) (-4373 . T))
-((-3994 (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-713))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-780))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-834))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1034))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1082))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -885) (QUOTE (-1158)))))) (|HasCategory| |#3| (QUOTE (-358))) (-3994 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-1034)))) (-3994 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-358)))) (|HasCategory| |#3| (QUOTE (-1034))) (|HasCategory| |#3| (QUOTE (-780))) (-3994 (|HasCategory| |#3| (QUOTE (-780))) (|HasCategory| |#3| (QUOTE (-834)))) (|HasCategory| |#3| (QUOTE (-834))) (|HasCategory| |#3| (QUOTE (-713))) (|HasCategory| |#3| (QUOTE (-170))) (-3994 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-1034)))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#3| (LIST (QUOTE -885) (QUOTE (-1158)))) (-3994 (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#3| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1034)))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (LIST (QUOTE -885) (QUOTE (-1158))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-170)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-229)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-358)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-363)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-713)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-780)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-834)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-1034)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-1082))))) (-3994 (-12 (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-713))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-780))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-834))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-1034))) (-12 (|HasCategory| |#3| (QUOTE (-1082))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554)))))) (-3994 (-12 (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-713))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-780))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-834))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-1034))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-1082))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554)))))) (|HasCategory| (-554) (QUOTE (-836))) (-12 (|HasCategory| |#3| (QUOTE (-1034))) (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-1034))) (|HasCategory| |#3| (LIST (QUOTE -885) (QUOTE (-1158))))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1034)))) (-3994 (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1034)))) (|HasCategory| |#3| (QUOTE (-713))) (-12 (|HasCategory| |#3| (QUOTE (-1034))) (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-1034))) (|HasCategory| |#3| (LIST (QUOTE -885) (QUOTE (-1158)))))) (-12 (|HasCategory| |#3| (QUOTE (-1082))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-3994 (|HasCategory| |#3| (QUOTE (-1034))) (-12 (|HasCategory| |#3| (QUOTE (-1082))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-1082)))) (-3994 (|HasAttribute| |#3| (QUOTE -4370)) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1034)))) (-12 (|HasCategory| |#3| (QUOTE (-1034))) (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-1034))) (|HasCategory| |#3| (LIST (QUOTE -885) (QUOTE (-1158)))))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| |#3| (QUOTE (-1082))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))))
-(-247 A R S V E)
+((-4379 -3998 (-2084 (|has| |#3| (-1039)) (|has| |#3| (-232))) (-2084 (|has| |#3| (-1039)) (|has| |#3| (-890 (-1163)))) (|has| |#3| (-6 -4379)) (-2084 (|has| |#3| (-1039)) (|has| |#3| (-631 (-558))))) (-4376 |has| |#3| (-1039)) (-4377 |has| |#3| (-1039)) ((-4384 "*") |has| |#3| (-171)) (-4382 . T))
+((-3998 (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-839))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))))) (|HasCategory| |#3| (QUOTE (-362))) (-3998 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1039)))) (-3998 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362)))) (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (QUOTE (-784))) (-3998 (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (QUOTE (-839)))) (|HasCategory| |#3| (QUOTE (-839))) (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-171))) (-3998 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-1039)))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (-3998 (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1039)))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1087))) (-3998 (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-171)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-232)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-362)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-367)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-717)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-784)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-839)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1039)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1087))))) (-3998 (-12 (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-839))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1039))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-3998 (-12 (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-839))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-841))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1039)))) (-3998 (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1039)))) (|HasCategory| |#3| (QUOTE (-717))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-3998 (|HasCategory| |#3| (QUOTE (-1039))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1087)))) (-3998 (|HasAttribute| |#3| (QUOTE -4379)) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1039)))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))))
+(-251 A R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
NIL
-((|HasCategory| |#2| (QUOTE (-229))))
-(-248 R S V E)
+((|HasCategory| |#2| (QUOTE (-232))))
+(-252 R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
-(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-6 -4371)) (-4368 . T) (-4367 . T) (-4370 . T))
+(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-6 -4380)) (-4377 . T) (-4376 . T) (-4379 . T))
NIL
-(-249 S)
+(-253 S)
((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}.")))
-((-4373 . T) (-4374 . T))
+((-4382 . T) (-4383 . T))
NIL
-(-250)
+(-254)
((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
NIL
NIL
-(-251 R |Ex|)
+(-255 R |Ex|)
((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y) = g(x,{}y),{}x,{}y,{}l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched.")))
NIL
NIL
-(-252)
+(-256)
((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,{}rRange,{}iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f,{} -2..2,{} -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,{}rRange,{}iRange,{}arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f,{} 0.3..3,{} 0..2*\\%\\spad{pi},{} false)}} Parameter descriptions: \\indented{2}{\\spad{f:}\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")))
NIL
NIL
-(-253 R)
+(-257 R)
((|constructor| (NIL "Hack for the draw interface. DrawNumericHack provides a \"coercion\" from something of the form \\spad{x = a..b} where \\spad{a} and \\spad{b} are formal expressions to a binding of the form \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}. This \"coercion\" fails if \\spad{a} and \\spad{b} contains symbolic variables,{} but is meant for expressions involving \\%\\spad{pi}.")) (|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) "\\spad{coerce(x = a..b)} returns \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}.")))
NIL
NIL
-(-254 |Ex|)
+(-258 |Ex|)
((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),{}x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),{}x = a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
NIL
NIL
-(-255)
+(-259)
((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}lz,{}l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly,{}lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,{}l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}.")))
NIL
NIL
-(-256)
+(-260)
((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,{}u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,{}r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,{}ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned.")))
NIL
NIL
-(-257 S)
+(-261 S)
((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,{}s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command.")))
NIL
NIL
-(-258)
+(-262)
((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,{}f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,{}y,{}z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,{}y,{}z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,{}v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,{}v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}.")))
NIL
NIL
-(-259 R S V)
+(-263 R S V)
((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline")))
-(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-6 -4371)) (-4368 . T) (-4367 . T) (-4370 . T))
-((|HasCategory| |#1| (QUOTE (-894))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-170))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-374))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-554))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#3| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#3| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#3| (LIST (QUOTE -602) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasAttribute| |#1| (QUOTE -4371)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-143)))))
-(-260 A S)
+(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-6 -4380)) (-4377 . T) (-4376 . T) (-4379 . T))
+((|HasCategory| |#1| (QUOTE (-899))) (-3998 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3998 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3998 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3998 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#3| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#3| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3998 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4380)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (-3998 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(-264 A S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
NIL
-(-261 S)
+(-265 S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#1| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
NIL
-(-262)
+(-266)
((|optAttributes| (((|List| (|String|)) (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{optAttributes(o)} is a function for supplying a list of attributes of an optimization problem.")) (|expenseOfEvaluation| (((|Float|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{expenseOfEvaluation(o)} returns the intensity value of the cost of evaluating the input set of functions. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].")) (|changeNameToObjf| (((|Result|) (|Symbol|) (|Result|)) "\\spad{changeNameToObjf(s,{}r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to objf.")) (|varList| (((|List| (|Symbol|)) (|Expression| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{varList(e,{}n)} returns a list of \\axiom{\\spad{n}} indexed variables with name as in \\axiom{\\spad{e}}.")) (|variables| (((|List| (|Symbol|)) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{variables(args)} returns the list of variables in \\axiom{\\spad{args}.\\spad{lfn}}")) (|quadratic?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{quadratic?(e)} tests if \\axiom{\\spad{e}} is a quadratic function.")) (|nonLinearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{nonLinearPart(l)} returns the list of non-linear functions of \\axiom{\\spad{l}}.")) (|linearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linearPart(l)} returns the list of linear functions of \\axiom{\\spad{l}}.")) (|linearMatrix| (((|Matrix| (|DoubleFloat|)) (|List| (|Expression| (|DoubleFloat|))) (|NonNegativeInteger|)) "\\spad{linearMatrix(l,{}n)} returns a matrix of coefficients of the linear functions in \\axiom{\\spad{l}}. If \\spad{l} is empty,{} the matrix has at least one row.")) (|linear?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{linear?(e)} tests if \\axiom{\\spad{e}} is a linear function.") (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linear?(l)} returns \\spad{true} if all the bounds \\spad{l} are either linear or simple.")) (|simpleBounds?| (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{simpleBounds?(l)} returns \\spad{true} if the list of expressions \\spad{l} are simple.")) (|splitLinear| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{splitLinear(f)} splits the linear part from an expression which it returns.")) (|sumOfSquares| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{sumOfSquares(f)} returns either an expression for which the square is the original function of \"failed\".")) (|sortConstraints| (((|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|))))) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{sortConstraints(args)} uses a simple bubblesort on the list of constraints using the degree of the expression on which to sort. Of course,{} it must match the bounds to the constraints.")) (|finiteBound| (((|List| (|DoubleFloat|)) (|List| (|OrderedCompletion| (|DoubleFloat|))) (|DoubleFloat|)) "\\spad{finiteBound(l,{}b)} repaces all instances of an infinite entry in \\axiom{\\spad{l}} by a finite entry \\axiom{\\spad{b}} or \\axiom{\\spad{-b}}.")))
NIL
NIL
-(-263)
+(-267)
((|constructor| (NIL "\\axiomType{e04dgfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04DGF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04DGF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-264)
+(-268)
((|constructor| (NIL "\\axiomType{e04fdfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04FDF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04FDF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-265)
+(-269)
((|constructor| (NIL "\\axiomType{e04gcfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04GCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04GCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-266)
+(-270)
((|constructor| (NIL "\\axiomType{e04jafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04JAF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04JAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-267)
+(-271)
((|constructor| (NIL "\\axiomType{e04mbfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04MBF,{} an optimization routine for Linear functions. The function \\axiomFun{measure} measures the usefulness of the routine E04MBF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-268)
+(-272)
((|constructor| (NIL "\\axiomType{e04nafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04NAF,{} an optimization routine for Quadratic functions. The function \\axiomFun{measure} measures the usefulness of the routine E04NAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-269)
+(-273)
((|constructor| (NIL "\\axiomType{e04ucfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04UCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04UCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-270)
+(-274)
((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1.")))
NIL
NIL
-(-271 R -3085)
+(-275 R -3215)
((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}")))
NIL
NIL
-(-272 R -3085)
+(-276 R -3215)
((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels.")))
NIL
NIL
-(-273 |Coef| UTS ULS)
+(-277 |Coef| UTS ULS)
((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of Laurent series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of Laurent series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of Laurent series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of Laurent series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of Laurent series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of Laurent series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of Laurent series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of Laurent series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of Laurent series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of Laurent series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of Laurent series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of Laurent series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of Laurent series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of Laurent series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of Laurent series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of Laurent series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of Laurent series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of Laurent series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of Laurent series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of Laurent series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of Laurent series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of Laurent series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of Laurent series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of Laurent series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of Laurent series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of Laurent series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{s ** r} raises a Laurent series \\spad{s} to a rational power \\spad{r}")))
NIL
-((|HasCategory| |#1| (QUOTE (-358))))
-(-274 |Coef| ULS UPXS EFULS)
+((|HasCategory| |#1| (QUOTE (-362))))
+(-278 |Coef| ULS UPXS EFULS)
((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of a Puiseux series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of a Puiseux series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of a Puiseux series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of a Puiseux series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of a Puiseux series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of a Puiseux series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of a Puiseux series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of a Puiseux series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of a Puiseux series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of a Puiseux series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of a Puiseux series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of a Puiseux series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of a Puiseux series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of a Puiseux series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of a Puiseux series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of a Puiseux series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of a Puiseux series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of a Puiseux series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of a Puiseux series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of a Puiseux series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of a Puiseux series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of a Puiseux series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{z ** r} raises a Puiseaux series \\spad{z} to a rational power \\spad{r}")))
NIL
-((|HasCategory| |#1| (QUOTE (-358))))
-(-275)
+((|HasCategory| |#1| (QUOTE (-362))))
+(-279)
((|constructor| (NIL "This domains an expresion as elaborated by the interpreter. See Also:")) (|getOperands| (((|Union| (|List| $) "failed") $) "\\spad{getOperands(e)} returns the list of operands in `e',{} assuming it is a call form.")) (|getOperator| (((|Union| (|Symbol|) "failed") $) "\\spad{getOperator(e)} retrieves the operator being invoked in `e',{} when `e' is an expression.")) (|callForm?| (((|Boolean|) $) "\\spad{callForm?(e)} is \\spad{true} when `e' is a call expression.")) (|getIdentifier| (((|Union| (|Symbol|) "failed") $) "\\spad{getIdentifier(e)} retrieves the name of the variable `e'.")) (|variable?| (((|Boolean|) $) "\\spad{variable?(e)} returns \\spad{true} if `e' is a variable.")) (|getConstant| (((|Union| (|SExpression|) "failed") $) "\\spad{getConstant(e)} retrieves the constant value of `e'e.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(e)} returns \\spad{true} if `e' is a constant.")) (|type| (((|ConstructorCall|) $) "\\spad{type(e)} returns the type of the expression as computed by the interpreter.")))
NIL
NIL
-(-276 A S)
+(-280 A S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-836))) (|HasCategory| |#2| (QUOTE (-1082))))
-(-277 S)
+((|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-1087))))
+(-281 S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
-((-4374 . T))
+((-4383 . T))
NIL
-(-278 S)
+(-282 S)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
NIL
NIL
-(-279)
+(-283)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
NIL
NIL
-(-280 |Coef| UTS)
+(-284 |Coef| UTS)
((|constructor| (NIL "The elliptic functions \\spad{sn},{} \\spad{sc} and \\spad{dn} are expanded as Taylor series.")) (|sncndn| (((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|) "\\spad{sncndn(s,{}c)} is used internally.")) (|dn| ((|#2| |#2| |#1|) "\\spad{dn(x,{}k)} expands the elliptic function \\spad{dn} as a Taylor \\indented{1}{series.}")) (|cn| ((|#2| |#2| |#1|) "\\spad{cn(x,{}k)} expands the elliptic function \\spad{cn} as a Taylor \\indented{1}{series.}")) (|sn| ((|#2| |#2| |#1|) "\\spad{sn(x,{}k)} expands the elliptic function \\spad{sn} as a Taylor \\indented{1}{series.}")))
NIL
NIL
-(-281 S |Index|)
+(-285 S |Index|)
((|constructor| (NIL "An eltable over domains \\spad{D} and \\spad{I} is a structure which can be viewed as a function from \\spad{D} to \\spad{I}. Examples of eltable structures range from data structures,{} \\spadignore{e.g.} those of type \\spadtype{List},{} to algebraic structures,{} \\spadignore{e.g.} \\spadtype{Polynomial}.")) (|elt| ((|#2| $ |#1|) "\\spad{elt(u,{}i)} (also written: \\spad{u} . \\spad{i}) returns the element of \\spad{u} indexed by \\spad{i}. Error: if \\spad{i} is not an index of \\spad{u}.")))
NIL
NIL
-(-282 S |Dom| |Im|)
+(-286 S |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4374)))
-(-283 |Dom| |Im|)
+((|HasAttribute| |#1| (QUOTE -4383)))
+(-287 |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-284 S R |Mod| -1877 -3717 |exactQuo|)
+(-288 S R |Mod| -1616 -1677 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
-((-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
+((-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-285)
+(-289)
((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero.")))
-((-4366 . T) (-4367 . T) (-4368 . T) (-4370 . T))
+((-4375 . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-286)
+(-290)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 19,{} 2008. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|currentEnv| (($) "the current normal environment in effect.")) (|setProperties!| (($ (|Symbol|) (|List| (|Property|)) $) "setBinding!(\\spad{n},{}props,{}\\spad{e}) set the list of properties of \\spad{`n'} to `props' in `e'.")) (|getProperties| (((|Union| (|List| (|Property|)) "failed") (|Symbol|) $) "getBinding(\\spad{n},{}\\spad{e}) returns the list of properties of \\spad{`n'} in \\spad{e}; otherwise `failed'.")) (|setProperty!| (($ (|Symbol|) (|Symbol|) (|SExpression|) $) "\\spad{setProperty!(n,{}p,{}v,{}e)} binds the property `(\\spad{p},{}\\spad{v})' to \\spad{`n'} in the topmost scope of `e'.")) (|getProperty| (((|Union| (|SExpression|) "failed") (|Symbol|) (|Symbol|) $) "\\spad{getProperty(n,{}p,{}e)} returns the value of property with name \\spad{`p'} for the symbol \\spad{`n'} in environment `e'. Otherwise,{} `failed'.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment")))
NIL
NIL
-(-287 R)
+(-291 R)
((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,{}m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,{}m,{}k,{}g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,{}m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable.")))
NIL
NIL
-(-288 S R)
+(-292 S R)
((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,{}eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}")))
NIL
NIL
-(-289 S)
+(-293 S)
((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
-((-4370 -3994 (|has| |#1| (-1034)) (|has| |#1| (-467))) (-4367 |has| |#1| (-1034)) (-4368 |has| |#1| (-1034)))
-((|HasCategory| |#1| (QUOTE (-358))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1034)))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#1| (QUOTE (-1034)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1034)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1034)))) (-3994 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (QUOTE (-713)))) (|HasCategory| |#1| (QUOTE (-467))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (QUOTE (-713))) (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-1082)))) (-3994 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (QUOTE (-713))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (LIST (QUOTE -508) (QUOTE (-1158)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-297))) (-3994 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-467)))) (-3994 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-713)))) (-3994 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (QUOTE (-1034)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-713))) (|HasCategory| |#1| (QUOTE (-170))))
-(-290 |Key| |Entry|)
+((-4379 -3998 (|has| |#1| (-1039)) (|has| |#1| (-471))) (-4376 |has| |#1| (-1039)) (-4377 |has| |#1| (-1039)))
+((|HasCategory| |#1| (QUOTE (-362))) (-3998 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1039)))) (-3998 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (-3998 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-1039)))) (-3998 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1039)))) (-3998 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1039)))) (-3998 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-717)))) (|HasCategory| |#1| (QUOTE (-471))) (-3998 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-1087)))) (-3998 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-301))) (-3998 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-471)))) (-3998 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-717)))) (-3998 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-1039)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#1| (QUOTE (-171))))
+(-294 |Key| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure.")))
-((-4373 . T) (-4374 . T))
-((-12 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2564) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2701) (|devaluate| |#2|)))))) (-3994 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| |#2| (QUOTE (-1082)))) (-3994 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -602) (QUOTE (-530)))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#2| (QUOTE (-1082))) (-3994 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -601) (QUOTE (-848)))))
-(-291)
+((-4382 . T) (-4383 . T))
+((-12 (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2700) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2981) (|devaluate| |#2|)))))) (-3998 (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-1087)))) (-3998 (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-1087))) (-3998 (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))))
+(-295)
((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates.")))
NIL
NIL
-(-292 -3085 S)
+(-296 -3215 S)
((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
NIL
NIL
-(-293 E -3085)
+(-297 E -3215)
((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}.")))
NIL
NIL
-(-294 A B)
+(-298 A B)
((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]")))
NIL
NIL
-(-295)
+(-299)
((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,{}var,{}range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}")))
NIL
NIL
-(-296 S)
+(-300 S)
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-1034))))
-(-297)
+((|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-1039))))
+(-301)
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
NIL
-(-298 R1)
+(-302 R1)
((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage1} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}")))
NIL
NIL
-(-299 R1 R2)
+(-303 R1 R2)
((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage2} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,{}m)} applies a mapping f:R1 \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}")))
NIL
NIL
-(-300)
+(-304)
((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,{}n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,{}b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,{}range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}")))
NIL
NIL
-(-301 S)
+(-305 S)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
NIL
NIL
-(-302)
+(-306)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
-((-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
+((-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-303 S R)
+(-307 S R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-304 R)
+(-308 R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-305 -3085)
+(-309 -3215)
((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}")))
NIL
NIL
-(-306)
+(-310)
((|constructor| (NIL "This domain represents exit expressions.")) (|level| (((|Integer|) $) "\\spad{level(e)} returns the nesting exit level of `e'")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the exit expression of `e'.")))
NIL
NIL
-(-307)
+(-311)
((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}.")))
NIL
NIL
-(-308 R FE |var| |cen|)
+(-312 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}.")))
-((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
-((|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (QUOTE (-894))) (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1023) (QUOTE (-1158)))) (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (QUOTE (-143))) (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (QUOTE (-1007))) (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (QUOTE (-807))) (-3994 (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (QUOTE (-807))) (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (QUOTE (-836)))) (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (QUOTE (-1133))) (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (QUOTE (-229))) (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (LIST (QUOTE -508) (QUOTE (-1158)) (LIST (QUOTE -1227) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (LIST (QUOTE -304) (LIST (QUOTE -1227) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (LIST (QUOTE -281) (LIST (QUOTE -1227) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1227) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (QUOTE (-302))) (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (QUOTE (-539))) (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (QUOTE (-836))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (QUOTE (-894))) (|HasCategory| $ (QUOTE (-143)))) (-3994 (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (QUOTE (-143))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (QUOTE (-894))) (|HasCategory| $ (QUOTE (-143))))))
-(-309 R S)
+((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-899))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-144))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-1012))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-811))) (-3998 (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-811))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-841)))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-1138))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-232))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -512) (QUOTE (-1163)) (LIST (QUOTE -1232) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -308) (LIST (QUOTE -1232) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -285) (LIST (QUOTE -1232) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1232) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-306))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-543))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-841))) (-12 (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-899))) (|HasCategory| $ (QUOTE (-144)))) (-3998 (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-144))) (-12 (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-899))) (|HasCategory| $ (QUOTE (-144))))))
+(-313 R S)
((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}.")))
NIL
NIL
-(-310 R FE)
+(-314 R FE)
((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,{}x = a,{}n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,{}x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,{}n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}x = a,{}n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,{}x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,{}x = a,{}n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,{}x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,{}n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,{}n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series.")))
NIL
NIL
-(-311 R)
+(-315 R)
((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
-((-4370 -3994 (-3726 (|has| |#1| (-1034)) (|has| |#1| (-627 (-554)))) (-12 (|has| |#1| (-546)) (-3994 (-3726 (|has| |#1| (-1034)) (|has| |#1| (-627 (-554)))) (|has| |#1| (-1034)) (|has| |#1| (-467)))) (|has| |#1| (-1034)) (|has| |#1| (-467))) (-4368 |has| |#1| (-170)) (-4367 |has| |#1| (-170)) ((-4375 "*") |has| |#1| (-546)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-546)) (-4365 |has| |#1| (-546)))
-((-3994 (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (-12 (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))))) (|HasCategory| |#1| (QUOTE (-546))) (-3994 (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-1034)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554)))) (-3994 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (-3994 (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (-12 (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554))))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-1034)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-1034)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-1034)))) (-12 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-546)))) (-3994 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (QUOTE (-546)))) (-12 (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554))))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-1094)))) (-3994 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554)))))) (-3994 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-1094)))) (-3994 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554)))))) (-3994 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (QUOTE (-1034)))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-546)))) (-12 (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| $ (QUOTE (-1034))) (|HasCategory| $ (LIST (QUOTE -1023) (QUOTE (-554)))))
-(-312 R -3085)
+((-4379 -3998 (-2084 (|has| |#1| (-1039)) (|has| |#1| (-631 (-558)))) (-12 (|has| |#1| (-550)) (-3998 (-2084 (|has| |#1| (-1039)) (|has| |#1| (-631 (-558)))) (|has| |#1| (-1039)) (|has| |#1| (-471)))) (|has| |#1| (-1039)) (|has| |#1| (-471))) (-4377 |has| |#1| (-171)) (-4376 |has| |#1| (-171)) ((-4384 "*") |has| |#1| (-550)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-550)) (-4374 |has| |#1| (-550)))
+((-3998 (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))))) (|HasCategory| |#1| (QUOTE (-550))) (-3998 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-1039)))) (-3998 (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (-3998 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3998 (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558))))) (-3998 (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-1039)))) (-3998 (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-1039)))) (-3998 (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-1039)))) (-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550)))) (-3998 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558))))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-1099)))) (-3998 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))))) (-3998 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-1099)))) (-3998 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))))) (-3998 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-1039)))) (-3998 (-12 (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| $ (QUOTE (-1039))) (|HasCategory| $ (LIST (QUOTE -1028) (QUOTE (-558)))))
+(-316 R -3215)
((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}.")))
NIL
NIL
-(-313)
+(-317)
((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tubePlot| (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|String|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n,{}s)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. The tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|) (|String|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n,{}s)} puts a tube of radius \\spad{r(t)} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n)} puts a tube of radius \\spad{r}(\\spad{t}) with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. The tube is considered to be open.")) (|constantToUnaryFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|DoubleFloat|)) "\\spad{constantToUnaryFunction(s)} is a local function which takes the value of \\spad{s},{} which may be a function of a constant,{} and returns a function which always returns the value \\spadtype{DoubleFloat} \\spad{s}.")))
NIL
NIL
-(-314 FE |var| |cen|)
+(-318 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
-(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-358)) (-4365 |has| |#1| (-358)) (-4367 . T) (-4368 . T) (-4370 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-170))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-554))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-554))) (|devaluate| |#1|)))) (|HasCategory| (-402 (-554)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-358))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-546)))) (-3994 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-546)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasSignature| |#1| (LIST (QUOTE -3075) (LIST (|devaluate| |#1|) (QUOTE (-1158)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-554)))))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-944))) (|HasCategory| |#1| (QUOTE (-1180))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasSignature| |#1| (LIST (QUOTE -2279) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1158))))) (|HasSignature| |#1| (LIST (QUOTE -2405) (LIST (LIST (QUOTE -631) (QUOTE (-1158))) (|devaluate| |#1|)))))))
-(-315 M)
+(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-362)) (-4374 |has| |#1| (-362)) (-4376 . T) (-4377 . T) (-4379 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3998 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-558)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-362))) (-3998 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-3998 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasSignature| |#1| (LIST (QUOTE -3220) (LIST (|devaluate| |#1|) (QUOTE (-1163)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558)))))) (-3998 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-1185))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -2543) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1163))))) (|HasSignature| |#1| (LIST (QUOTE -2671) (LIST (LIST (QUOTE -635) (QUOTE (-1163))) (|devaluate| |#1|)))))))
+(-319 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
NIL
-(-316 E OV R P)
+(-320 E OV R P)
((|constructor| (NIL "This package provides utilities used by the factorizers which operate on polynomials represented as univariate polynomials with multivariate coefficients.")) (|ran| ((|#3| (|Integer|)) "\\spad{ran(k)} computes a random integer between \\spad{-k} and \\spad{k} as a member of \\spad{R}.")) (|normalDeriv| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|Integer|)) "\\spad{normalDeriv(poly,{}i)} computes the \\spad{i}th derivative of \\spad{poly} divided by i!.")) (|raisePolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|)) "\\spad{raisePolynomial(rpoly)} converts \\spad{rpoly} from a univariate polynomial over \\spad{r} to be a univariate polynomial with polynomial coefficients.")) (|lowerPolynomial| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{lowerPolynomial(upoly)} converts \\spad{upoly} to be a univariate polynomial over \\spad{R}. An error if the coefficients contain variables.")) (|variables| (((|List| |#2|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{variables(upoly)} returns the list of variables for the coefficients of \\spad{upoly}.")) (|degree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|)) "\\spad{degree(upoly,{} lvar)} returns a list containing the maximum degree for each variable in lvar.")) (|completeEval| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|)) "\\spad{completeEval(upoly,{} lvar,{} lval)} evaluates the polynomial \\spad{upoly} with each variable in \\spad{lvar} replaced by the corresponding value in lval. Substitutions are done for all variables in \\spad{upoly} producing a univariate polynomial over \\spad{R}.")))
NIL
NIL
-(-317 S)
+(-321 S)
((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative.")))
-((-4368 . T) (-4367 . T))
-((|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| (-554) (QUOTE (-779))))
-(-318 S E)
+((-4377 . T) (-4376 . T))
+((|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-783))))
+(-322 S E)
((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}.")))
NIL
NIL
-(-319 S)
+(-323 S)
((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative.")))
NIL
-((|HasCategory| (-758) (QUOTE (-779))))
-(-320 S R E)
+((|HasCategory| (-762) (QUOTE (-783))))
+(-324 S R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
NIL
-((|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-170))))
-(-321 R E)
+((|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-171))))
+(-325 R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
-(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4367 . T) (-4368 . T) (-4370 . T))
+(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-322 S)
+(-326 S)
((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")))
-((-4374 . T) (-4373 . T))
-((-3994 (-12 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (-3994 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| (-554) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))))
-(-323 S -3085)
+((-4383 . T) (-4382 . T))
+((-3998 (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3998 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+(-327 S -3215)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
NIL
-((|HasCategory| |#2| (QUOTE (-363))))
-(-324 -3085)
+((|HasCategory| |#2| (QUOTE (-367))))
+(-328 -3215)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
-((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
+((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-325)
+(-329)
((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,{}contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,{}e,{}f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,{}e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,{}c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,{}c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,{}n,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")))
NIL
NIL
-(-326 E)
+(-330 E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: 12 June 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin,{} otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series")))
NIL
NIL
-(-327)
+(-331)
((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables I1,{} I2,{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,{}p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,{}p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,{}b,{}d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,{}p,{}q)} uses loop variables in the Fortran,{} I1 and I2")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,{}p)} \\undocumented{}")))
NIL
NIL
-(-328 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
+(-332 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}")))
NIL
NIL
-(-329 S -3085 UP UPUP R)
+(-333 S -3215 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-330 -3085 UP UPUP R)
+(-334 -3215 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-331 -3085 UP UPUP R)
+(-335 -3215 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
NIL
NIL
-(-332 S R)
+(-336 S R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -508) (QUOTE (-1158)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -281) (|devaluate| |#2|) (|devaluate| |#2|))))
-(-333 R)
+((|HasCategory| |#2| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|))))
+(-337 R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
NIL
-(-334 |basicSymbols| |subscriptedSymbols| R)
+(-338 |basicSymbols| |subscriptedSymbols| R)
((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")))
-((-4367 . T) (-4368 . T) (-4370 . T))
-((|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-374)))) (|HasCategory| $ (QUOTE (-1034))) (|HasCategory| $ (LIST (QUOTE -1023) (QUOTE (-554)))))
-(-335 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
+((-4376 . T) (-4377 . T) (-4379 . T))
+((|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-378)))) (|HasCategory| $ (QUOTE (-1039))) (|HasCategory| $ (LIST (QUOTE -1028) (QUOTE (-558)))))
+(-339 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
NIL
NIL
-(-336 S -3085 UP UPUP)
+(-340 S -3215 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
NIL
-((|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-358))))
-(-337 -3085 UP UPUP)
+((|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-362))))
+(-341 -3215 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
-((-4366 |has| (-402 |#2|) (-358)) (-4371 |has| (-402 |#2|) (-358)) (-4365 |has| (-402 |#2|) (-358)) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
+((-4375 |has| (-406 |#2|) (-362)) (-4380 |has| (-406 |#2|) (-362)) (-4374 |has| (-406 |#2|) (-362)) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-338 |p| |extdeg|)
+(-342 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
-((-3994 (|HasCategory| (-895 |#1|) (QUOTE (-143))) (|HasCategory| (-895 |#1|) (QUOTE (-363)))) (|HasCategory| (-895 |#1|) (QUOTE (-145))) (|HasCategory| (-895 |#1|) (QUOTE (-363))) (|HasCategory| (-895 |#1|) (QUOTE (-143))))
-(-339 GF |defpol|)
+((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-3998 (|HasCategory| (-900 |#1|) (QUOTE (-144))) (|HasCategory| (-900 |#1|) (QUOTE (-367)))) (|HasCategory| (-900 |#1|) (QUOTE (-146))) (|HasCategory| (-900 |#1|) (QUOTE (-367))) (|HasCategory| (-900 |#1|) (QUOTE (-144))))
+(-343 GF |defpol|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly.")))
-((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
-((-3994 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-143))))
-(-340 GF |extdeg|)
+((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-3998 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144))))
+(-344 GF |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
-((-3994 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-143))))
-(-341 GF)
+((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-3998 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144))))
+(-345 GF)
((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}.")))
NIL
NIL
-(-342 F1 GF F2)
+(-346 F1 GF F2)
((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}\\spad{GF},{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn\\spad{'t} divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn\\spad{'t} divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.")))
NIL
NIL
-(-343 S)
+(-347 S)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
NIL
NIL
-(-344)
+(-348)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
-((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
+((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-345 R UP -3085)
+(-349 R UP -3215)
((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
-(-346 |p| |extdeg|)
+(-350 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
-((-3994 (|HasCategory| (-895 |#1|) (QUOTE (-143))) (|HasCategory| (-895 |#1|) (QUOTE (-363)))) (|HasCategory| (-895 |#1|) (QUOTE (-145))) (|HasCategory| (-895 |#1|) (QUOTE (-363))) (|HasCategory| (-895 |#1|) (QUOTE (-143))))
-(-347 GF |uni|)
+((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-3998 (|HasCategory| (-900 |#1|) (QUOTE (-144))) (|HasCategory| (-900 |#1|) (QUOTE (-367)))) (|HasCategory| (-900 |#1|) (QUOTE (-146))) (|HasCategory| (-900 |#1|) (QUOTE (-367))) (|HasCategory| (-900 |#1|) (QUOTE (-144))))
+(-351 GF |uni|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
-((-3994 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-143))))
-(-348 GF |extdeg|)
+((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-3998 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144))))
+(-352 GF |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
-((-3994 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-143))))
-(-349 |p| |n|)
+((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-3998 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144))))
+(-353 |p| |n|)
((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
-((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
-((-3994 (|HasCategory| (-895 |#1|) (QUOTE (-143))) (|HasCategory| (-895 |#1|) (QUOTE (-363)))) (|HasCategory| (-895 |#1|) (QUOTE (-145))) (|HasCategory| (-895 |#1|) (QUOTE (-363))) (|HasCategory| (-895 |#1|) (QUOTE (-143))))
-(-350 GF |defpol|)
+((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-3998 (|HasCategory| (-900 |#1|) (QUOTE (-144))) (|HasCategory| (-900 |#1|) (QUOTE (-367)))) (|HasCategory| (-900 |#1|) (QUOTE (-146))) (|HasCategory| (-900 |#1|) (QUOTE (-367))) (|HasCategory| (-900 |#1|) (QUOTE (-144))))
+(-354 GF |defpol|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible.")))
-((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
-((-3994 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-143))))
-(-351 -3085 GF)
+((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-3998 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144))))
+(-355 -3215 GF)
((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-352 GF)
+(-356 GF)
((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
NIL
NIL
-(-353 -3085 FP FPP)
+(-357 -3215 FP FPP)
((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-354 GF |n|)
+(-358 GF |n|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}.")))
-((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
-((-3994 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-143))))
-(-355 R |ls|)
+((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-3998 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144))))
+(-359 R |ls|)
((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}.")))
NIL
NIL
-(-356 S)
+(-360 S)
((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
-((-4370 . T))
+((-4379 . T))
NIL
-(-357 S)
+(-361 S)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
NIL
NIL
-(-358)
+(-362)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
-((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
+((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-359 |Name| S)
+(-363 |Name| S)
((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input.")))
NIL
NIL
-(-360 S)
+(-364 S)
((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result.")))
NIL
NIL
-(-361 S R)
+(-365 S R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
NIL
-((|HasCategory| |#2| (QUOTE (-546))))
-(-362 R)
+((|HasCategory| |#2| (QUOTE (-550))))
+(-366 R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
-((-4370 |has| |#1| (-546)) (-4368 . T) (-4367 . T))
+((-4379 |has| |#1| (-550)) (-4377 . T) (-4376 . T))
NIL
-(-363)
+(-367)
((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set.")))
NIL
NIL
-(-364 S R UP)
+(-368 S R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
NIL
-((|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-358))))
-(-365 R UP)
+((|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-362))))
+(-369 R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
-((-4367 . T) (-4368 . T) (-4370 . T))
+((-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-366 S A R B)
+(-370 S A R B)
((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
NIL
NIL
-(-367 A S)
+(-371 A S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4374)) (|HasCategory| |#2| (QUOTE (-836))) (|HasCategory| |#2| (QUOTE (-1082))))
-(-368 S)
+((|HasAttribute| |#1| (QUOTE -4383)) (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-1087))))
+(-372 S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
-((-4373 . T))
+((-4382 . T))
NIL
-(-369 |VarSet| R)
+(-373 |VarSet| R)
((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4368 . T) (-4367 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4377 . T) (-4376 . T))
NIL
-(-370 S V)
+(-374 S V)
((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm.")))
NIL
NIL
-(-371 S R)
+(-375 S R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))))
-(-372 R)
+((|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))))
+(-376 R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
-((-4370 . T))
+((-4379 . T))
NIL
-(-373 |Par|)
+(-377 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}.")))
NIL
NIL
-(-374)
+(-378)
((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-4356 . T) (-4364 . T) (-4333 . T) (-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
+((-4365 . T) (-4373 . T) (-1352 . T) (-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-375 |Par|)
+(-379 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.")))
NIL
NIL
-(-376 R S)
+(-380 R S)
((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}")))
-((-4368 . T) (-4367 . T))
-((|HasCategory| |#1| (QUOTE (-170))))
-(-377 R |Basis|)
+((-4377 . T) (-4376 . T))
+((|HasCategory| |#1| (QUOTE (-171))))
+(-381 R |Basis|)
((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
-((-4368 . T) (-4367 . T))
+((-4377 . T) (-4376 . T))
NIL
-(-378)
+(-382)
((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
NIL
NIL
-(-379)
+(-383)
((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
NIL
NIL
-(-380 R S)
+(-384 R S)
((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
-((-4368 . T) (-4367 . T))
-((|HasCategory| |#1| (QUOTE (-170))))
-(-381 S)
+((-4377 . T) (-4376 . T))
+((|HasCategory| |#1| (QUOTE (-171))))
+(-385 S)
((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
NIL
-((|HasCategory| |#1| (QUOTE (-836))))
-(-382)
+((|HasCategory| |#1| (QUOTE (-841))))
+(-386)
((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link.")))
-((-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
+((-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-383)
+(-387)
((|constructor| (NIL "This domain provides an interface to names in the file system.")))
NIL
NIL
-(-384)
+(-388)
((|constructor| (NIL "This category provides an interface to names in the file system.")) (|new| (($ (|String|) (|String|) (|String|)) "\\spad{new(d,{}pref,{}e)} constructs the name of a new writable file with \\spad{d} as its directory,{} \\spad{pref} as a prefix of its name and \\spad{e} as its extension. When \\spad{d} or \\spad{t} is the empty string,{} a default is used. An error occurs if a new file cannot be written in the given directory.")) (|writable?| (((|Boolean|) $) "\\spad{writable?(f)} tests if the named file be opened for writing. The named file need not already exist.")) (|readable?| (((|Boolean|) $) "\\spad{readable?(f)} tests if the named file exist and can it be opened for reading.")) (|exists?| (((|Boolean|) $) "\\spad{exists?(f)} tests if the file exists in the file system.")) (|extension| (((|String|) $) "\\spad{extension(f)} returns the type part of the file name.")) (|name| (((|String|) $) "\\spad{name(f)} returns the name part of the file name.")) (|directory| (((|String|) $) "\\spad{directory(f)} returns the directory part of the file name.")) (|filename| (($ (|String|) (|String|) (|String|)) "\\spad{filename(d,{}n,{}e)} creates a file name with \\spad{d} as its directory,{} \\spad{n} as its name and \\spad{e} as its extension. This is a portable way to create file names. When \\spad{d} or \\spad{t} is the empty string,{} a default is used.")))
NIL
NIL
-(-385 |n| |class| R)
+(-389 |n| |class| R)
((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra")))
-((-4368 . T) (-4367 . T))
+((-4377 . T) (-4376 . T))
NIL
-(-386)
+(-390)
((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack")))
NIL
NIL
-(-387 -3085 UP UPUP R)
+(-391 -3215 UP UPUP R)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented")))
NIL
NIL
-(-388 S)
+(-392 S)
((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format.")))
NIL
NIL
-(-389)
+(-393)
((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,{}strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")))
NIL
NIL
-(-390)
+(-394)
((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram.")))
NIL
NIL
-(-391)
+(-395)
((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
NIL
NIL
-(-392)
+(-396)
((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}")))
NIL
NIL
-(-393 -4309 |returnType| -2793 |symbols|)
+(-397 -1323 |returnType| -1433 |symbols|)
((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}")))
NIL
NIL
-(-394 -3085 UP)
+(-398 -3215 UP)
((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}")))
NIL
NIL
-(-395 R)
+(-399 R)
((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers).")))
NIL
NIL
-(-396 S)
+(-400 S)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
NIL
NIL
-(-397)
+(-401)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
-((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
+((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-398 S)
+(-402 S)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
NIL
-((|HasAttribute| |#1| (QUOTE -4356)) (|HasAttribute| |#1| (QUOTE -4364)))
-(-399)
+((|HasAttribute| |#1| (QUOTE -4365)) (|HasAttribute| |#1| (QUOTE -4373)))
+(-403)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
-((-4333 . T) (-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
+((-1352 . T) (-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-400 R S)
+(-404 R S)
((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type.")))
NIL
NIL
-(-401 A B)
+(-405 A B)
((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}.")))
NIL
NIL
-(-402 S)
+(-406 S)
((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
-((-4360 -12 (|has| |#1| (-6 -4371)) (|has| |#1| (-446)) (|has| |#1| (-6 -4360))) (-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
-((|HasCategory| |#1| (QUOTE (-894))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-1158)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-815)))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (QUOTE (-807))) (-3994 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-836)))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-815)))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-374)))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-815)))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (-12 (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-815))))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554)))) (-12 (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-815))))) (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#1| (LIST (QUOTE -508) (QUOTE (-1158)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -281) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-815)))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-539))) (-12 (|HasAttribute| |#1| (QUOTE -4371)) (|HasAttribute| |#1| (QUOTE -4360)) (|HasCategory| |#1| (QUOTE (-446)))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-143)))))
-(-403 S R UP)
+((-4369 -12 (|has| |#1| (-6 -4380)) (|has| |#1| (-450)) (|has| |#1| (-6 -4369))) (-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((|HasCategory| |#1| (QUOTE (-899))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-819)))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-811))) (-3998 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-841)))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-819)))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-1138))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378)))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-819)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (-3998 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-819))))) (-3998 (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-819))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-819)))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-543))) (-12 (|HasAttribute| |#1| (QUOTE -4380)) (|HasAttribute| |#1| (QUOTE -4369)) (|HasCategory| |#1| (QUOTE (-450)))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (-3998 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(-407 S R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
NIL
-(-404 R UP)
+(-408 R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4367 . T) (-4368 . T) (-4370 . T))
+((-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-405 A S)
+(-409 A S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554)))))
-(-406 S)
+((|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))))
+(-410 S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
NIL
-(-407 R1 F1 U1 A1 R2 F2 U2 A2)
+(-411 R1 F1 U1 A1 R2 F2 U2 A2)
((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}")))
NIL
NIL
-(-408 R -3085 UP A)
+(-412 R -3215 UP A)
((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}.")))
-((-4370 . T))
+((-4379 . T))
NIL
-(-409 R -3085 UP A |ibasis|)
+(-413 R -3215 UP A |ibasis|)
((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")))
NIL
-((|HasCategory| |#4| (LIST (QUOTE -1023) (|devaluate| |#2|))))
-(-410 AR R AS S)
+((|HasCategory| |#4| (LIST (QUOTE -1028) (|devaluate| |#2|))))
+(-414 AR R AS S)
((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}.")))
NIL
NIL
-(-411 S R)
+(-415 S R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#2| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
-((|HasCategory| |#2| (QUOTE (-358))))
-(-412 R)
+((|HasCategory| |#2| (QUOTE (-362))))
+(-416 R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4370 |has| |#1| (-546)) (-4368 . T) (-4367 . T))
+((-4379 |has| |#1| (-550)) (-4377 . T) (-4376 . T))
NIL
-(-413 R)
+(-417 R)
((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
-((-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
-((|HasCategory| |#1| (LIST (QUOTE -508) (QUOTE (-1158)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -304) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -281) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-1199))) (-3994 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-1199)))) (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (LIST (QUOTE -508) (QUOTE (-1158)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -281) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-446))))
-(-414 R)
+((-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1163)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -308) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -285) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-1204))) (-3998 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-1204)))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-450))))
+(-418 R)
((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}.")))
NIL
NIL
-(-415 R FE |x| |cen|)
+(-419 R FE |x| |cen|)
((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,{}posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed.")))
NIL
NIL
-(-416 R A S B)
+(-420 R A S B)
((|constructor| (NIL "This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}.")))
NIL
NIL
-(-417 R FE |Expon| UPS TRAN |x|)
+(-421 R FE |Expon| UPS TRAN |x|)
((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series")))
NIL
NIL
-(-418 S A R B)
+(-422 S A R B)
((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad {[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain.")))
NIL
NIL
-(-419 A S)
+(-423 A S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-836))) (|HasCategory| |#2| (QUOTE (-363))))
-(-420 S)
+((|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-367))))
+(-424 S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
-((-4373 . T) (-4363 . T) (-4374 . T))
+((-4382 . T) (-4372 . T) (-4383 . T))
NIL
-(-421 R -3085)
+(-425 R -3215)
((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")))
NIL
NIL
-(-422 R E)
+(-426 R E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series")))
-((-4360 -12 (|has| |#1| (-6 -4360)) (|has| |#2| (-6 -4360))) (-4367 . T) (-4368 . T) (-4370 . T))
-((-12 (|HasAttribute| |#1| (QUOTE -4360)) (|HasAttribute| |#2| (QUOTE -4360))))
-(-423 R -3085)
+((-4369 -12 (|has| |#1| (-6 -4369)) (|has| |#2| (-6 -4369))) (-4376 . T) (-4377 . T) (-4379 . T))
+((-12 (|HasAttribute| |#1| (QUOTE -4369)) (|HasAttribute| |#2| (QUOTE -4369))))
+(-427 R -3215)
((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable.")))
NIL
NIL
-(-424 S R)
+(-428 S R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-467))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-530)))))
-(-425 R)
+((|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-471))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534)))))
+(-429 R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-((-4370 -3994 (|has| |#1| (-1034)) (|has| |#1| (-467))) (-4368 |has| |#1| (-170)) (-4367 |has| |#1| (-170)) ((-4375 "*") |has| |#1| (-546)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-546)) (-4365 |has| |#1| (-546)))
+((-4379 -3998 (|has| |#1| (-1039)) (|has| |#1| (-471))) (-4377 |has| |#1| (-171)) (-4376 |has| |#1| (-171)) ((-4384 "*") |has| |#1| (-550)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-550)) (-4374 |has| |#1| (-550)))
NIL
-(-426 R -3085)
+(-430 R -3215)
((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator.")))
NIL
NIL
-(-427 R -3085)
+(-431 R -3215)
((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.")))
NIL
((|HasCategory| |#2| (QUOTE (-27))))
-(-428 R -3085)
+(-432 R -3215)
((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented")))
NIL
NIL
-(-429)
+(-433)
((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\"")))
NIL
NIL
-(-430 R -3085 UP)
+(-434 R -3215 UP)
((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-48)))))
-(-431)
+((|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-48)))))
+(-435)
((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}.")))
NIL
NIL
-(-432)
+(-436)
((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type")))
NIL
NIL
-(-433 |f|)
+(-437 |f|)
((|constructor| (NIL "This domain implements named functions")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-434)
+(-438)
((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
NIL
NIL
-(-435)
+(-439)
((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
NIL
NIL
-(-436 UP)
+(-440 UP)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object.")))
NIL
NIL
-(-437 R UP -3085)
+(-441 R UP -3215)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}.")))
NIL
NIL
-(-438 R UP)
+(-442 R UP)
((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored} (July 1994).")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,{}f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,{}f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,{}c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,{}c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1).")))
NIL
NIL
-(-439 R)
+(-443 R)
((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,{}r)} returns the binomial coefficient \\spad{C(n,{}r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation.")))
NIL
-((|HasCategory| |#1| (QUOTE (-399))))
-(-440)
+((|HasCategory| |#1| (QUOTE (-403))))
+(-444)
((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(\\spad{zi})} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(\\spad{zi})} produces the complete factorization of the complex integer \\spad{zi}.")))
NIL
NIL
-(-441 |Dom| |Expon| |VarSet| |Dpol|)
+(-445 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")))
NIL
NIL
-(-442 |Dom| |Expon| |VarSet| |Dpol|)
+(-446 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions,{} info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,{}info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}.")))
NIL
NIL
-(-443 |Dom| |Expon| |VarSet| |Dpol|)
+(-447 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented")))
NIL
NIL
-(-444 |Dom| |Expon| |VarSet| |Dpol|)
+(-448 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-358))))
-(-445 S)
+((|HasCategory| |#1| (QUOTE (-362))))
+(-449 S)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-446)
+(-450)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
-((-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
+((-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-447 R |n| |ls| |gamma|)
+(-451 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed")))
-((-4370 |has| (-402 (-937 |#1|)) (-546)) (-4368 . T) (-4367 . T))
-((|HasCategory| (-402 (-937 |#1|)) (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| (-402 (-937 |#1|)) (QUOTE (-546))))
-(-448 |vl| R E)
+((-4379 |has| (-406 (-942 |#1|)) (-550)) (-4377 . T) (-4376 . T))
+((|HasCategory| (-406 (-942 |#1|)) (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| (-406 (-942 |#1|)) (QUOTE (-550))))
+(-452 |vl| R E)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4375 "*") |has| |#2| (-170)) (-4366 |has| |#2| (-546)) (-4371 |has| |#2| (-6 -4371)) (-4368 . T) (-4367 . T) (-4370 . T))
-((|HasCategory| |#2| (QUOTE (-894))) (-3994 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-894)))) (-3994 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-894)))) (-3994 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-894)))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-170))) (-3994 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-546)))) (-12 (|HasCategory| (-850 |#1|) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-374))))) (-12 (|HasCategory| (-850 |#1|) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-554))))) (-12 (|HasCategory| (-850 |#1|) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374)))))) (-12 (|HasCategory| (-850 |#1|) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554)))))) (-12 (|HasCategory| (-850 |#1|) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-836))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-358))) (|HasAttribute| |#2| (QUOTE -4371)) (|HasCategory| |#2| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-894)))) (|HasCategory| |#2| (QUOTE (-143)))))
-(-449 R BP)
+(((-4384 "*") |has| |#2| (-171)) (-4375 |has| |#2| (-550)) (-4380 |has| |#2| (-6 -4380)) (-4377 . T) (-4376 . T) (-4379 . T))
+((|HasCategory| |#2| (QUOTE (-899))) (-3998 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-899)))) (-3998 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-899)))) (-3998 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-171))) (-3998 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-550)))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3998 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4380)) (|HasCategory| |#2| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (-3998 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#2| (QUOTE (-144)))))
+(-453 R BP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional.")))
NIL
NIL
-(-450 OV E S R P)
+(-454 OV E S R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-451 E OV R P)
+(-455 E OV R P)
((|constructor| (NIL "This package provides operations for \\spad{GCD} computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{GCD} of \\spad{p} and \\spad{q}")))
NIL
NIL
-(-452 R)
+(-456 R)
((|constructor| (NIL "\\indented{1}{Description} This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}")))
NIL
NIL
-(-453 R FE)
+(-457 R FE)
((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),{}n,{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{series(a(n),{}n,{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),{}n,{}x=a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{series(a(n),{}n,{}x=a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),{}n,{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),{}n,{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{puiseux(a(n),{}n,{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),{}n,{}x=a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{laurent(a(n),{}n,{}x=a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),{}n,{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}; \\spad{taylor(a(n),{}n,{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n=n0..,{}a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),{}n,{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.")))
NIL
NIL
-(-454 RP TP)
+(-458 RP TP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni} General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,{}pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,{}lfact,{}prime,{}bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,{}lfacts,{}prime,{}bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done .")))
NIL
NIL
-(-455 |vl| R IS E |ff| P)
+(-459 |vl| R IS E |ff| P)
((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,{}e,{}x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,{}i,{}e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,{}x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented")))
-((-4368 . T) (-4367 . T))
+((-4377 . T) (-4376 . T))
NIL
-(-456 E V R P Q)
+(-460 E V R P Q)
((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b,{} n,{} new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}.")))
NIL
NIL
-(-457 R E |VarSet| P)
+(-461 R E |VarSet| P)
((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}.")))
-((-4374 . T) (-4373 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1082))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#4| (QUOTE (-1082))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#4| (LIST (QUOTE -601) (QUOTE (-848)))))
-(-458 S R E)
+((-4383 . T) (-4382 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#4| (LIST (QUOTE -605) (QUOTE (-853)))))
+(-462 S R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
NIL
NIL
-(-459 R E)
+(-463 R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
NIL
NIL
-(-460)
+(-464)
((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,{}n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,{}n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(\\spad{vv}) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect.")))
NIL
NIL
-(-461)
+(-465)
((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n}.") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n}.")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is \\spad{false}.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is \\spad{true}.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done.")))
NIL
NIL
-(-462)
+(-466)
((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,{}lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(\\spad{gi})} returns the indicated graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}\\spad{pt}) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(\\spad{gi},{}pt,{}pal)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(\\spad{gi},{}pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{\\spad{gi}},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}pt,{}pal1,{}pal2,{}ps)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(\\spad{gi},{}pt)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}lp,{}pal1,{}pal2,{}p)} sets the components of the graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{\\spad{gi}} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(\\spad{gi},{}lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{\\spad{gi}}.") (((|List| (|Float|)) $) "\\spad{units(\\spad{gi})} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(\\spad{gi},{}lr)} modifies the list of ranges for the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{\\spad{gi}}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(\\spad{gi})} returns the list of ranges of the point components from the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(\\spad{gi})} returns the process ID of the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(\\spad{gi})} returns the list of lists of points which compose the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp,{}lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(\\spad{gi})} takes the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} and sends it\\spad{'s} data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{\\spad{gi}} cannot be an empty graph,{} and it\\spad{'s} elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport.")))
NIL
NIL
-(-463 S R E)
+(-467 S R E)
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-464 R E)
+(-468 R E)
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-465 |lv| -3085 R)
+(-469 |lv| -3215 R)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}.")))
NIL
NIL
-(-466 S)
+(-470 S)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
NIL
NIL
-(-467)
+(-471)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
-((-4370 . T))
+((-4379 . T))
NIL
-(-468 |Coef| |var| |cen|)
+(-472 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-358)) (-4365 |has| |#1| (-358)) (-4367 . T) (-4368 . T) (-4370 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-170))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-554))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-554))) (|devaluate| |#1|)))) (|HasCategory| (-402 (-554)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-358))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-546)))) (-3994 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-546)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasSignature| |#1| (LIST (QUOTE -3075) (LIST (|devaluate| |#1|) (QUOTE (-1158)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-554)))))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-944))) (|HasCategory| |#1| (QUOTE (-1180))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasSignature| |#1| (LIST (QUOTE -2279) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1158))))) (|HasSignature| |#1| (LIST (QUOTE -2405) (LIST (LIST (QUOTE -631) (QUOTE (-1158))) (|devaluate| |#1|)))))))
-(-469 |Key| |Entry| |Tbl| |dent|)
+(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-362)) (-4374 |has| |#1| (-362)) (-4376 . T) (-4377 . T) (-4379 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3998 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-558)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-362))) (-3998 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-3998 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasSignature| |#1| (LIST (QUOTE -3220) (LIST (|devaluate| |#1|) (QUOTE (-1163)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558)))))) (-3998 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-1185))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -2543) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1163))))) (|HasSignature| |#1| (LIST (QUOTE -2671) (LIST (LIST (QUOTE -635) (QUOTE (-1163))) (|devaluate| |#1|)))))))
+(-473 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4374 . T))
-((-12 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2564) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2701) (|devaluate| |#2|)))))) (-3994 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| |#2| (QUOTE (-1082)))) (-3994 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -602) (QUOTE (-530)))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-836))) (-3994 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))))
-(-470 R E V P)
+((-4383 . T))
+((-12 (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2700) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2981) (|devaluate| |#2|)))))) (-3998 (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-1087)))) (-3998 (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-841))) (-3998 (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (QUOTE (-1087))))
+(-474 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")))
-((-4374 . T) (-4373 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1082))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#4| (QUOTE (-1082))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -601) (QUOTE (-848)))))
-(-471)
+((-4383 . T) (-4382 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -605) (QUOTE (-853)))))
+(-475)
((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}.")))
-((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
+((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-472)
+(-476)
((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'.")))
NIL
NIL
-(-473 |Key| |Entry| |hashfn|)
+(-477 |Key| |Entry| |hashfn|)
((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained.")))
-((-4373 . T) (-4374 . T))
-((-12 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2564) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2701) (|devaluate| |#2|)))))) (-3994 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| |#2| (QUOTE (-1082)))) (-3994 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -602) (QUOTE (-530)))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#2| (QUOTE (-1082))) (-3994 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -601) (QUOTE (-848)))))
-(-474)
+((-4382 . T) (-4383 . T))
+((-12 (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2700) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2981) (|devaluate| |#2|)))))) (-3998 (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-1087)))) (-3998 (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-1087))) (-3998 (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))))
+(-478)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
NIL
NIL
-(-475 |vl| R)
+(-479 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4375 "*") |has| |#2| (-170)) (-4366 |has| |#2| (-546)) (-4371 |has| |#2| (-6 -4371)) (-4368 . T) (-4367 . T) (-4370 . T))
-((|HasCategory| |#2| (QUOTE (-894))) (-3994 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-894)))) (-3994 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-894)))) (-3994 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-894)))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-170))) (-3994 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-546)))) (-12 (|HasCategory| (-850 |#1|) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-374))))) (-12 (|HasCategory| (-850 |#1|) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-554))))) (-12 (|HasCategory| (-850 |#1|) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374)))))) (-12 (|HasCategory| (-850 |#1|) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554)))))) (-12 (|HasCategory| (-850 |#1|) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-836))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-358))) (|HasAttribute| |#2| (QUOTE -4371)) (|HasCategory| |#2| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-894)))) (|HasCategory| |#2| (QUOTE (-143)))))
-(-476 -4082 S)
+(((-4384 "*") |has| |#2| (-171)) (-4375 |has| |#2| (-550)) (-4380 |has| |#2| (-6 -4380)) (-4377 . T) (-4376 . T) (-4379 . T))
+((|HasCategory| |#2| (QUOTE (-899))) (-3998 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-899)))) (-3998 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-899)))) (-3998 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-171))) (-3998 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-550)))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3998 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4380)) (|HasCategory| |#2| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (-3998 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#2| (QUOTE (-144)))))
+(-480 -3084 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4367 |has| |#2| (-1034)) (-4368 |has| |#2| (-1034)) (-4370 |has| |#2| (-6 -4370)) ((-4375 "*") |has| |#2| (-170)) (-4373 . T))
-((-3994 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-713))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-834))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))))) (-3994 (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-1082)))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1034)))) (-12 (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158))))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#2| (QUOTE (-358))) (-3994 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1034)))) (-3994 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358)))) (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (QUOTE (-780))) (-3994 (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (QUOTE (-834)))) (|HasCategory| |#2| (QUOTE (-834))) (|HasCategory| |#2| (QUOTE (-713))) (|HasCategory| |#2| (QUOTE (-170))) (-3994 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1034)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-713))) (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (QUOTE (-834))) (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (QUOTE (-1082)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1034)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1034)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1034)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1034)))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-170)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-229)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-358)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-713)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-780)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-834)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-1034)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-1082))))) (-3994 (-12 (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-713))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-834))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-1034))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554)))))) (-3994 (-12 (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-713))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-834))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554)))))) (|HasCategory| (-554) (QUOTE (-836))) (-12 (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1034)))) (-12 (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158))))) (-3994 (|HasCategory| |#2| (QUOTE (-1034))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554)))))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-1082)))) (|HasAttribute| |#2| (QUOTE -4370)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))))
-(-477)
+((-4376 |has| |#2| (-1039)) (-4377 |has| |#2| (-1039)) (-4379 |has| |#2| (-6 -4379)) ((-4384 "*") |has| |#2| (-171)) (-4382 . T))
+((-3998 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))))) (-3998 (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1087)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#2| (QUOTE (-362))) (-3998 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3998 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362)))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-784))) (-3998 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-839)))) (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-171))) (-3998 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1039)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (-3998 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-1087)))) (-3998 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3998 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3998 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3998 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1039)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1087))) (-3998 (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-171)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-232)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-362)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-367)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-717)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-784)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-839)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1087))))) (-3998 (-12 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1039))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-3998 (-12 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-841))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163))))) (-3998 (|HasCategory| |#2| (QUOTE (-1039))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1087)))) (|HasAttribute| |#2| (QUOTE -4379)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))))
+(-481)
((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|Identifier|))) "\\spad{headAst(f,{}[x1,{}..,{}xn])} constructs a function definition header.")))
NIL
NIL
-(-478 S)
+(-482 S)
((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}.")))
-((-4373 . T) (-4374 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))))
-(-479 -3085 UP UPUP R)
+((-4382 . T) (-4383 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
+(-483 -3215 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree.")))
NIL
NIL
-(-480 BP)
+(-484 BP)
((|constructor| (NIL "This package provides the functions for the heuristic integer \\spad{gcd}. Geddes\\spad{'s} algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,{}..,{}ak])} = \\spad{gcd} of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,{}..,{}fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,{}..fk])} = \\spad{gcd} and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,{}..fk])} = \\spad{gcd} and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,{}..,{}fk])} = \\spad{gcd} of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,{}..,{}fk])} = \\spad{gcd} of the polynomials \\spad{fi}.")))
NIL
NIL
-(-481)
+(-485)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")))
-((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
-((|HasCategory| (-554) (QUOTE (-894))) (|HasCategory| (-554) (LIST (QUOTE -1023) (QUOTE (-1158)))) (|HasCategory| (-554) (QUOTE (-143))) (|HasCategory| (-554) (QUOTE (-145))) (|HasCategory| (-554) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| (-554) (QUOTE (-1007))) (|HasCategory| (-554) (QUOTE (-807))) (-3994 (|HasCategory| (-554) (QUOTE (-807))) (|HasCategory| (-554) (QUOTE (-836)))) (|HasCategory| (-554) (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| (-554) (QUOTE (-1133))) (|HasCategory| (-554) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| (-554) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| (-554) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| (-554) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| (-554) (QUOTE (-229))) (|HasCategory| (-554) (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| (-554) (LIST (QUOTE -508) (QUOTE (-1158)) (QUOTE (-554)))) (|HasCategory| (-554) (LIST (QUOTE -304) (QUOTE (-554)))) (|HasCategory| (-554) (LIST (QUOTE -281) (QUOTE (-554)) (QUOTE (-554)))) (|HasCategory| (-554) (QUOTE (-302))) (|HasCategory| (-554) (QUOTE (-539))) (|HasCategory| (-554) (QUOTE (-836))) (|HasCategory| (-554) (LIST (QUOTE -627) (QUOTE (-554)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-554) (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-554) (QUOTE (-894)))) (|HasCategory| (-554) (QUOTE (-143)))))
-(-482 A S)
+((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((|HasCategory| (-558) (QUOTE (-899))) (|HasCategory| (-558) (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| (-558) (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-146))) (|HasCategory| (-558) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-558) (QUOTE (-1012))) (|HasCategory| (-558) (QUOTE (-811))) (-3998 (|HasCategory| (-558) (QUOTE (-811))) (|HasCategory| (-558) (QUOTE (-841)))) (|HasCategory| (-558) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-1138))) (|HasCategory| (-558) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| (-558) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| (-558) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| (-558) (QUOTE (-232))) (|HasCategory| (-558) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-558) (LIST (QUOTE -512) (QUOTE (-1163)) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -308) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -285) (QUOTE (-558)) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-306))) (|HasCategory| (-558) (QUOTE (-543))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-558) (LIST (QUOTE -631) (QUOTE (-558)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-899)))) (-3998 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-899)))) (|HasCategory| (-558) (QUOTE (-144)))))
+(-486 A S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4373)) (|HasAttribute| |#1| (QUOTE -4374)) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848)))))
-(-483 S)
+((|HasAttribute| |#1| (QUOTE -4382)) (|HasAttribute| |#1| (QUOTE -4383)) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))))
+(-487 S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
NIL
-(-484 S)
+(-488 S)
((|constructor| (NIL "A is homotopic to \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain \\spad{B},{} and nay element of domain \\spad{B} can be automatically converted into an A.")))
NIL
NIL
-(-485)
+(-489)
((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name \\spad{`n'}.")))
NIL
NIL
-(-486 S)
+(-490 S)
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-487)
+(-491)
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-488 -3085 UP |AlExt| |AlPol|)
+(-492 -3215 UP |AlExt| |AlPol|)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP.")))
NIL
NIL
-(-489)
+(-493)
((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
-((|HasCategory| $ (QUOTE (-1034))) (|HasCategory| $ (LIST (QUOTE -1023) (QUOTE (-554)))))
-(-490 S |mn|)
+((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((|HasCategory| $ (QUOTE (-1039))) (|HasCategory| $ (LIST (QUOTE -1028) (QUOTE (-558)))))
+(-494 S |mn|)
((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type.")))
-((-4374 . T) (-4373 . T))
-((-3994 (-12 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (-3994 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| (-554) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))))
-(-491 R |mnRow| |mnCol|)
+((-4383 . T) (-4382 . T))
+((-3998 (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3998 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+(-495 R |mnRow| |mnCol|)
((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")))
-((-4373 . T) (-4374 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))))
-(-492 K R UP)
+((-4382 . T) (-4383 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
+(-496 K R UP)
((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented")))
NIL
NIL
-(-493 R UP -3085)
+(-497 R UP -3215)
((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
-(-494 |mn|)
+(-498 |mn|)
((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}.")))
-((-4374 . T) (-4373 . T))
-((-12 (|HasCategory| (-112) (QUOTE (-1082))) (|HasCategory| (-112) (LIST (QUOTE -304) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| (-112) (QUOTE (-836))) (|HasCategory| (-554) (QUOTE (-836))) (|HasCategory| (-112) (QUOTE (-1082))) (|HasCategory| (-112) (LIST (QUOTE -601) (QUOTE (-848)))))
-(-495 K R UP L)
+((-4383 . T) (-4382 . T))
+((-12 (|HasCategory| (-112) (QUOTE (-1087))) (|HasCategory| (-112) (LIST (QUOTE -308) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-112) (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-112) (QUOTE (-1087))) (|HasCategory| (-112) (LIST (QUOTE -605) (QUOTE (-853)))))
+(-499 K R UP L)
((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.")))
NIL
NIL
-(-496)
+(-500)
((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts \\axiom{\\spad{s}} into an \\axiom{IndexCard}. Warning: if \\axiom{\\spad{s}} is not of the right format then an error will occur when using it.")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,{}s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}.")))
NIL
NIL
-(-497 R Q A B)
+(-501 R Q A B)
((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
NIL
-(-498 -3085 |Expon| |VarSet| |DPoly|)
+(-502 -3215 |Expon| |VarSet| |DPoly|)
((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -602) (QUOTE (-1158)))))
-(-499 |vl| |nv|)
+((|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-1163)))))
+(-503 |vl| |nv|)
((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,{}lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime.")))
NIL
NIL
-(-500)
-((|constructor| (NIL "This domain represents identifer AST.")))
+(-504)
+((|constructor| (NIL "This domain represents identifer AST. This domain differs from Symbol in that it does not support any form of scripting. A value of this domain is a plain old identifier. \\blankline")))
NIL
NIL
-(-501 A S)
+(-505 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
-(-502 A S)
+(-506 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored.")))
NIL
NIL
-(-503 A S)
+(-507 A S)
((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,{}s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}.")))
NIL
NIL
-(-504 A S)
+(-508 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
-(-505 A S)
+(-509 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
-(-506 A S)
+(-510 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support.")))
NIL
NIL
-(-507 S A B)
+(-511 S A B)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f,{} [x1,{}...,{}xn],{} [v1,{}...,{}vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f,{} x,{} v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-508 A B)
+(-512 A B)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f,{} [x1,{}...,{}xn],{} [v1,{}...,{}vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f,{} x,{} v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-509 S E |un|)
+(-513 S E |un|)
((|constructor| (NIL "Internal implementation of a free abelian monoid.")))
NIL
-((|HasCategory| |#2| (QUOTE (-779))))
-(-510 S |mn|)
+((|HasCategory| |#2| (QUOTE (-783))))
+(-514 S |mn|)
((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}")))
-((-4374 . T) (-4373 . T))
-((-3994 (-12 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (-3994 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| (-554) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))))
-(-511)
+((-4383 . T) (-4382 . T))
+((-3998 (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3998 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+(-515)
((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'.")))
NIL
NIL
-(-512 |p| |n|)
+(-516 |p| |n|)
((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}.")))
-((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
-((-3994 (|HasCategory| (-571 |#1|) (QUOTE (-143))) (|HasCategory| (-571 |#1|) (QUOTE (-363)))) (|HasCategory| (-571 |#1|) (QUOTE (-145))) (|HasCategory| (-571 |#1|) (QUOTE (-363))) (|HasCategory| (-571 |#1|) (QUOTE (-143))))
-(-513 R |mnRow| |mnCol| |Row| |Col|)
+((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-3998 (|HasCategory| (-575 |#1|) (QUOTE (-144))) (|HasCategory| (-575 |#1|) (QUOTE (-367)))) (|HasCategory| (-575 |#1|) (QUOTE (-146))) (|HasCategory| (-575 |#1|) (QUOTE (-367))) (|HasCategory| (-575 |#1|) (QUOTE (-144))))
+(-517 R |mnRow| |mnCol| |Row| |Col|)
((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}.")))
-((-4373 . T) (-4374 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))))
-(-514 S |mn|)
+((-4382 . T) (-4383 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
+(-518 S |mn|)
((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists.")))
-((-4374 . T) (-4373 . T))
-((-3994 (-12 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (-3994 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| (-554) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))))
-(-515 R |Row| |Col| M)
+((-4383 . T) (-4382 . T))
+((-3998 (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3998 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+(-519 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")))
NIL
-((|HasAttribute| |#3| (QUOTE -4374)))
-(-516 R |Row| |Col| M QF |Row2| |Col2| M2)
+((|HasAttribute| |#3| (QUOTE -4383)))
+(-520 R |Row| |Col| M QF |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field.")))
NIL
-((|HasAttribute| |#7| (QUOTE -4374)))
-(-517 R |mnRow| |mnCol|)
+((|HasAttribute| |#7| (QUOTE -4383)))
+(-521 R |mnRow| |mnCol|)
((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa.")))
-((-4373 . T) (-4374 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-546))) (|HasAttribute| |#1| (QUOTE (-4375 "*"))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))))
-(-518)
+((-4382 . T) (-4383 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-550))) (|HasAttribute| |#1| (QUOTE (-4384 "*"))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
+(-522)
((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'.")))
NIL
NIL
-(-519)
+(-523)
((|constructor| (NIL "This domain represents the `in' iterator syntax.")) (|sequence| (((|SpadAst|) $) "\\spad{sequence(i)} returns the sequence expression being iterated over by `i'.")) (|iterationVar| (((|Symbol|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the `in' iterator 'i'")))
NIL
NIL
-(-520 S)
+(-524 S)
((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|SingleInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,{}b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned.")) (|readByteIfCan!| (((|SingleInteger|) $) "\\spad{readByteIfCan!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise return \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every read attempt,{} which is overkill.}")))
NIL
NIL
-(-521)
+(-525)
((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|SingleInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,{}b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned.")) (|readByteIfCan!| (((|SingleInteger|) $) "\\spad{readByteIfCan!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise return \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every read attempt,{} which is overkill.}")))
NIL
NIL
-(-522 GF)
+(-526 GF)
((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,{}n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,{}n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,{}e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,{}e,{}d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,{}e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,{}n,{}k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,{}...,{}vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,{}m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,{}p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}.")))
NIL
NIL
-(-523)
+(-527)
((|constructor| (NIL "This domain provides representation for binary files open for input operations. `Binary' here means that the conduits do not interpret their contents.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "position(\\spad{f},{}\\spad{p}) sets the current byte-position to `i'.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file \\spad{`f'}.")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(ifile)} holds if `ifile' is in open state.")) (|eof?| (((|Boolean|) $) "\\spad{eof?(ifile)} holds when the last read reached end of file.")) (|inputBinaryFile| (($ (|String|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file.")))
NIL
NIL
-(-524 R)
+(-528 R)
((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment()} then \\spad{f x} is \\spad{x+1}.")))
NIL
NIL
-(-525 |Varset|)
+(-529 |Varset|)
((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables")))
NIL
NIL
-(-526 K -3085 |Par|)
+(-530 K -3215 |Par|)
((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}")))
NIL
NIL
-(-527)
+(-531)
NIL
NIL
NIL
-(-528)
+(-532)
((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity.")))
NIL
NIL
-(-529 R)
+(-533 R)
((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}.")))
NIL
NIL
-(-530)
+(-534)
((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f,{} [t1,{}...,{}tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,{}...,{}tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code,{} [x1,{}...,{}xn])} returns the input form corresponding to \\spad{(x1,{}...,{}xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code,{} [x1,{}...,{}xn],{} f)} returns the input form corresponding to \\spad{f(x1,{}...,{}xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op,{} [a1,{}...,{}an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter.")))
NIL
NIL
-(-531 |Coef| UTS)
+(-535 |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-532 K -3085 |Par|)
+(-536 K -3215 |Par|)
((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}.")))
NIL
NIL
-(-533 R BP |pMod| |nextMod|)
+(-537 R BP |pMod| |nextMod|)
((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,{}p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the \\spad{gcd} of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,{}f2)} computes the \\spad{gcd} of the two polynomials \\spad{f1} and \\spad{f2} by modular methods.")))
NIL
NIL
-(-534 OV E R P)
+(-538 OV E R P)
((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}.")))
NIL
NIL
-(-535 K UP |Coef| UTS)
+(-539 K UP |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-536 |Coef| UTS)
+(-540 |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-537 R UP)
+(-541 R UP)
((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}i,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}i,{}f)} \\undocumented")))
NIL
NIL
-(-538 S)
+(-542 S)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
NIL
NIL
-(-539)
+(-543)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
-((-4371 . T) (-4372 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
+((-4380 . T) (-4381 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-540 |Key| |Entry| |addDom|)
+(-544 |Key| |Entry| |addDom|)
((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}.")))
-((-4373 . T) (-4374 . T))
-((-12 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2564) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2701) (|devaluate| |#2|)))))) (-3994 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| |#2| (QUOTE (-1082)))) (-3994 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -602) (QUOTE (-530)))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#2| (QUOTE (-1082))) (-3994 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -601) (QUOTE (-848)))))
-(-541 R -3085)
+((-4382 . T) (-4383 . T))
+((-12 (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2700) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2981) (|devaluate| |#2|)))))) (-3998 (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-1087)))) (-3998 (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-1087))) (-3998 (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))))
+(-545 R -3215)
((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}.")))
NIL
NIL
-(-542 R0 -3085 UP UPUP R)
+(-546 R0 -3215 UP UPUP R)
((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}.")))
NIL
NIL
-(-543)
+(-547)
((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,{}m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,{}m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})")))
NIL
NIL
-(-544 R)
+(-548 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise.")))
-((-4333 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
+((-1352 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-545 S)
+(-549 S)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
NIL
NIL
-(-546)
+(-550)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
-((-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
+((-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-547 R -3085)
+(-551 R -3215)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
NIL
NIL
-(-548 I)
+(-552 I)
((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra\\spad{'s} eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}")))
NIL
NIL
-(-549)
+(-553)
((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
NIL
NIL
-(-550 R -3085 L)
+(-554 R -3215 L)
((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -642) (|devaluate| |#2|))))
-(-551)
+((|HasCategory| |#3| (LIST (QUOTE -646) (|devaluate| |#2|))))
+(-555)
((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial.")))
NIL
NIL
-(-552 -3085 UP UPUP R)
+(-556 -3215 UP UPUP R)
((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles.")))
NIL
NIL
-(-553 -3085 UP)
+(-557 -3215 UP)
((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}.")))
NIL
NIL
-(-554)
+(-558)
((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")))
-((-4355 . T) (-4361 . T) (-4365 . T) (-4360 . T) (-4371 . T) (-4372 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
+((-4364 . T) (-4370 . T) (-4374 . T) (-4369 . T) (-4380 . T) (-4381 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-555)
+(-559)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.")))
NIL
NIL
-(-556 R -3085 L)
+(-560 R -3215 L)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -642) (|devaluate| |#2|))))
-(-557 R -3085)
+((|HasCategory| |#3| (LIST (QUOTE -646) (|devaluate| |#2|))))
+(-561 R -3215)
((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#2| (QUOTE (-1121)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#2| (QUOTE (-617)))))
-(-558 -3085 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-1126)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-621)))))
+(-562 -3215 UP)
((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}.")))
NIL
NIL
-(-559 S)
+(-563 S)
((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer.")))
NIL
NIL
-(-560 -3085)
+(-564 -3215)
((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}.")))
NIL
NIL
-(-561 R)
+(-565 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals.")))
-((-4333 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
+((-1352 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-562)
+(-566)
((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-563 R -3085)
+(-567 R -3215)
((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#2| (QUOTE (-279))) (|HasCategory| |#2| (QUOTE (-617))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-1158))))) (-12 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-279)))) (|HasCategory| |#1| (QUOTE (-546))))
-(-564 -3085 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-283))) (|HasCategory| |#2| (QUOTE (-621))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-1163))))) (-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-283)))) (|HasCategory| |#1| (QUOTE (-550))))
+(-568 -3215 UP)
((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
NIL
NIL
-(-565 R -3085)
+(-569 R -3215)
((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form.")))
NIL
NIL
-(-566)
+(-570)
((|constructor| (NIL "This category describes byte stream conduits supporting both input and output operations.")))
NIL
NIL
-(-567)
+(-571)
((|constructor| (NIL "\\indented{2}{This domain provides representation for binary files open} \\indented{2}{for input and output operations.} See Also: InputBinaryFile,{} OutputBinaryFile")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(f)} holds if \\spad{`f'} is in open state.")) (|inputOutputBinaryFile| (($ (|String|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file designated by \\spad{`f'} as a binary file.")))
NIL
NIL
-(-568)
+(-572)
((|constructor| (NIL "This domain provides constants to describe directions of IO conduits (file,{} etc) mode of operations.")) (|bothWays| (($) "`bothWays' indicates that an IO conduit is for both input and output.")) (|output| (($) "`output' indicates that an IO conduit is for output")) (|input| (($) "`input' indicates that an IO conduit is for input.")))
NIL
NIL
-(-569)
+(-573)
((|constructor| (NIL "This domain provides representation for ARPA Internet IP4 addresses.")) (|resolve| (((|Union| $ "failed") (|Hostname|)) "\\spad{resolve(h)} returns the IP4 address of host \\spad{`h'}.")) (|bytes| (((|DataArray| 4 (|Byte|)) $) "\\spad{bytes(x)} returns the bytes of the numeric address \\spad{`x'}.")) (|ip4Address| (($ (|String|)) "\\spad{ip4Address(a)} builds a numeric address out of the ASCII form `a'.")))
NIL
NIL
-(-570 |p| |unBalanced?|)
+(-574 |p| |unBalanced?|)
((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain.")))
-((-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
+((-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-571 |p|)
+(-575 |p|)
((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check.")))
-((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
-((|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| $ (QUOTE (-363))))
-(-572)
+((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-144))) (|HasCategory| $ (QUOTE (-367))))
+(-576)
((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor.")))
NIL
NIL
-(-573 R -3085)
+(-577 R -3215)
((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
NIL
-(-574 E -3085)
+(-578 E -3215)
((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented")))
NIL
NIL
-(-575 -3085)
+(-579 -3215)
((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
-((-4368 . T) (-4367 . T))
-((|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-1158)))))
-(-576 I)
+((-4377 . T) (-4376 . T))
+((|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-1163)))))
+(-580 I)
((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise")))
NIL
NIL
-(-577 GF)
+(-581 GF)
((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field.")))
NIL
NIL
-(-578 R)
+(-582 R)
((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-145))))
-(-579)
+((|HasCategory| |#1| (QUOTE (-146))))
+(-583)
((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,{}2,{}...,{}n}} in Young\\spad{'s} natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,{}3,{}3,{}1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,{}listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young\\spad{'s} natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young\\spad{'s} natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,{}\\spad{pi})} is the irreducible representation corresponding to partition {\\em lambda} in Young\\spad{'s} natural form of the permutation {\\em \\spad{pi}} in the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|Integer|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented.")))
NIL
NIL
-(-580 R E V P TS)
+(-584 R E V P TS)
((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,{}lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,{}univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial.")))
NIL
NIL
-(-581)
+(-585)
((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the is expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the is expression `e'.")))
NIL
NIL
-(-582 |mn|)
+(-586 |mn|)
((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings")))
-((-4374 . T) (-4373 . T))
-((-3994 (-12 (|HasCategory| (-142) (QUOTE (-836))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1082))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142)))))) (-3994 (|HasCategory| (-142) (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| (-142) (QUOTE (-1082))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -602) (QUOTE (-530)))) (-3994 (|HasCategory| (-142) (QUOTE (-836))) (|HasCategory| (-142) (QUOTE (-1082)))) (|HasCategory| (-142) (QUOTE (-836))) (|HasCategory| (-554) (QUOTE (-836))) (|HasCategory| (-142) (QUOTE (-1082))) (|HasCategory| (-142) (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| (-142) (QUOTE (-1082))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142))))))
-(-583 E V R P)
+((-4383 . T) (-4382 . T))
+((-3998 (-12 (|HasCategory| (-143) (QUOTE (-841))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))) (-12 (|HasCategory| (-143) (QUOTE (-1087))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (-3998 (|HasCategory| (-143) (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| (-143) (QUOTE (-1087))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (|HasCategory| (-143) (LIST (QUOTE -606) (QUOTE (-534)))) (-3998 (|HasCategory| (-143) (QUOTE (-841))) (|HasCategory| (-143) (QUOTE (-1087)))) (|HasCategory| (-143) (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-143) (QUOTE (-1087))) (|HasCategory| (-143) (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| (-143) (QUOTE (-1087))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))))
+(-587 E V R P)
((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}.")))
NIL
NIL
-(-584 |Coef|)
+(-588 |Coef|)
((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
-(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4367 . T) (-4368 . T) (-4370 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-546))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-554)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-554)) (|devaluate| |#1|)))) (|HasCategory| (-554) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-358))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-554))))) (|HasSignature| |#1| (LIST (QUOTE -3075) (LIST (|devaluate| |#1|) (QUOTE (-1158)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-554))))))
-(-585 |Coef|)
+(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4376 . T) (-4377 . T) (-4379 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-550))) (-3998 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))) (|HasCategory| (-558) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -3220) (LIST (|devaluate| |#1|) (QUOTE (-1163)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))))
+(-589 |Coef|)
((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}")))
-((-4368 |has| |#1| (-546)) (-4367 |has| |#1| (-546)) ((-4375 "*") |has| |#1| (-546)) (-4366 |has| |#1| (-546)) (-4370 . T))
-((|HasCategory| |#1| (QUOTE (-546))))
-(-586 A B)
+((-4377 |has| |#1| (-550)) (-4376 |has| |#1| (-550)) ((-4384 "*") |has| |#1| (-550)) (-4375 |has| |#1| (-550)) (-4379 . T))
+((|HasCategory| |#1| (QUOTE (-550))))
+(-590 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[f(x0),{}f(x1),{}f(x2),{}..]}.")))
NIL
NIL
-(-587 A B C)
+(-591 A B C)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented")))
NIL
NIL
-(-588 R -3085 FG)
+(-592 R -3215 FG)
((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain.")))
NIL
NIL
-(-589 S)
+(-593 S)
((|constructor| (NIL "\\indented{1}{This package implements 'infinite tuples' for the interpreter.} The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}s)} returns \\spad{[s,{}f(s),{}f(f(s)),{}...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}.")))
NIL
NIL
-(-590 R |mn|)
+(-594 R |mn|)
((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index.")))
-((-4374 . T) (-4373 . T))
-((-3994 (-12 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (-3994 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| (-554) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-713))) (|HasCategory| |#1| (QUOTE (-1034))) (-12 (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1034)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))))
-(-591 S |Index| |Entry|)
+((-4383 . T) (-4382 . T))
+((-3998 (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3998 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#1| (QUOTE (-1039))) (-12 (|HasCategory| |#1| (QUOTE (-992))) (|HasCategory| |#1| (QUOTE (-1039)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+(-595 S |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4374)) (|HasCategory| |#2| (QUOTE (-836))) (|HasAttribute| |#1| (QUOTE -4373)) (|HasCategory| |#3| (QUOTE (-1082))))
-(-592 |Index| |Entry|)
+((|HasAttribute| |#1| (QUOTE -4383)) (|HasCategory| |#2| (QUOTE (-841))) (|HasAttribute| |#1| (QUOTE -4382)) (|HasCategory| |#3| (QUOTE (-1087))))
+(-596 |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
NIL
-(-593)
+(-597)
((|constructor| (NIL "\\indented{1}{This domain defines the datatype for the Java} Virtual Machine byte codes.")))
NIL
NIL
-(-594)
+(-598)
((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join \\spad{`x'}.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'.")))
NIL
NIL
-(-595 R A)
+(-599 R A)
((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A).")))
-((-4370 -3994 (-3726 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))) (-4368 . T) (-4367 . T))
-((-3994 (|HasCategory| |#2| (LIST (QUOTE -362) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -412) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -412) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -412) (|devaluate| |#1|)))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#2| (LIST (QUOTE -362) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#2| (LIST (QUOTE -412) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -362) (|devaluate| |#1|))))
-(-596 |Entry|)
+((-4379 -3998 (-2084 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))) (-4377 . T) (-4376 . T))
+((-3998 (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|)))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|))))
+(-600 |Entry|)
((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")))
-((-4373 . T) (-4374 . T))
-((-12 (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2564) (QUOTE (-1140))) (LIST (QUOTE |:|) (QUOTE -2701) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (LIST (QUOTE -602) (QUOTE (-530)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| (-1140) (QUOTE (-836))) (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (LIST (QUOTE -601) (QUOTE (-848)))))
-(-597 S |Key| |Entry|)
+((-4382 . T) (-4383 . T))
+((-12 (|HasCategory| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2700) (QUOTE (-1145))) (LIST (QUOTE |:|) (QUOTE -2981) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| (-1145) (QUOTE (-841))) (|HasCategory| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (LIST (QUOTE -605) (QUOTE (-853)))))
+(-601 S |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
NIL
-(-598 |Key| |Entry|)
+(-602 |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
-((-4374 . T))
+((-4383 . T))
NIL
-(-599 R S)
+(-603 R S)
((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented")))
NIL
NIL
-(-600 S)
+(-604 S)
((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))))
-(-601 S)
+((|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))))
+(-605 S)
((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-602 S)
+(-606 S)
((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-603 -3085 UP)
+(-607 -3215 UP)
((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions.")))
NIL
NIL
-(-604 S)
+(-608 S)
((|constructor| (NIL "A is coercible from \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain A.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} transforms \\spad{`s'} into an element of `\\%'.")))
NIL
NIL
-(-605)
+(-609)
((|constructor| (NIL "This domain implements Kleene\\spad{'s} 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of \\spad{`x'} is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of \\spad{`x'} is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of \\spad{`x'} is `false'")) (|true| (($) "the definite truth value")) (|unknown| (($) "the indefinite `unknown'")) (|false| (($) "the definite falsehood value")))
NIL
NIL
-(-606 S)
+(-610 S)
((|constructor| (NIL "A is convertible from \\spad{B} iff any element of domain \\spad{B} can be explicitly converted into an element of domain A.")) (|convert| (($ |#1|) "\\spad{convert(s)} transforms \\spad{`s'} into an element of `\\%'.")))
NIL
NIL
-(-607 S R)
+(-611 S R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
NIL
NIL
-(-608 R)
+(-612 R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
-((-4370 . T))
+((-4379 . T))
NIL
-(-609 A R S)
+(-613 A R S)
((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4367 . T) (-4368 . T) (-4370 . T))
-((|HasCategory| |#1| (QUOTE (-834))))
-(-610 R -3085)
+((-4376 . T) (-4377 . T) (-4379 . T))
+((|HasCategory| |#1| (QUOTE (-839))))
+(-614 R -3215)
((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform.")))
NIL
NIL
-(-611 R UP)
+(-615 R UP)
((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented")))
-((-4368 . T) (-4367 . T) ((-4375 "*") . T) (-4366 . T) (-4370 . T))
-((|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))))
-(-612 R E V P TS ST)
+((-4377 . T) (-4376 . T) ((-4384 "*") . T) (-4375 . T) (-4379 . T))
+((|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))))
+(-616 R E V P TS ST)
((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional.")))
NIL
NIL
-(-613 OV E Z P)
+(-617 OV E Z P)
((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \\spad{\"F\"}.")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,{}unilist,{}plead,{}vl,{}lvar,{}lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod,{} numFacts,{} evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation.")))
NIL
NIL
-(-614)
+(-618)
((|constructor| (NIL "This domain represents assignment expressions.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the assignment expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the assignment expression `e'.")))
NIL
NIL
-(-615 |VarSet| R |Order|)
+(-619 |VarSet| R |Order|)
((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}.")))
-((-4370 . T))
+((-4379 . T))
NIL
-(-616 R |ls|)
+(-620 R |ls|)
((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}.")))
NIL
NIL
-(-617)
+(-621)
((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
NIL
NIL
-(-618 R -3085)
+(-622 R -3215)
((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
NIL
NIL
-(-619 |lv| -3085)
+(-623 |lv| -3215)
((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented")))
NIL
NIL
-(-620)
+(-624)
((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file.")))
-((-4374 . T))
-((-12 (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2564) (QUOTE (-1140))) (LIST (QUOTE |:|) (QUOTE -2701) (QUOTE (-52))))))) (-3994 (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (QUOTE (-1082))) (|HasCategory| (-52) (QUOTE (-1082)))) (-3994 (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| (-52) (QUOTE (-1082))) (|HasCategory| (-52) (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (LIST (QUOTE -602) (QUOTE (-530)))) (-12 (|HasCategory| (-52) (QUOTE (-1082))) (|HasCategory| (-52) (LIST (QUOTE -304) (QUOTE (-52))))) (|HasCategory| (-1140) (QUOTE (-836))) (-3994 (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| (-52) (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| (-52) (QUOTE (-1082))) (|HasCategory| (-52) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (QUOTE (-1082))))
-(-621 S R)
+((-4383 . T))
+((-12 (|HasCategory| (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2700) (QUOTE (-1145))) (LIST (QUOTE |:|) (QUOTE -2981) (QUOTE (-52))))))) (-3998 (|HasCategory| (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) (QUOTE (-1087))) (|HasCategory| (-52) (QUOTE (-1087)))) (-3998 (|HasCategory| (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-52) (QUOTE (-1087))) (|HasCategory| (-52) (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| (-52) (QUOTE (-1087))) (|HasCategory| (-52) (LIST (QUOTE -308) (QUOTE (-52))))) (|HasCategory| (-1145) (QUOTE (-841))) (-3998 (|HasCategory| (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-52) (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-52) (QUOTE (-1087))) (|HasCategory| (-52) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) (QUOTE (-1087))))
+(-625 S R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-358))))
-(-622 R)
+((|HasCategory| |#2| (QUOTE (-362))))
+(-626 R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4368 . T) (-4367 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4377 . T) (-4376 . T))
NIL
-(-623 R A)
+(-627 R A)
((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
-((-4370 -3994 (-3726 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))) (-4368 . T) (-4367 . T))
-((-3994 (|HasCategory| |#2| (LIST (QUOTE -362) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -412) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -412) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -412) (|devaluate| |#1|)))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#2| (LIST (QUOTE -362) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#2| (LIST (QUOTE -412) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -362) (|devaluate| |#1|))))
-(-624 R FE)
+((-4379 -3998 (-2084 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))) (-4377 . T) (-4376 . T))
+((-3998 (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|)))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|))))
+(-628 R FE)
((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}.")))
NIL
NIL
-(-625 R)
+(-629 R)
((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),{}x,{}a,{}\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")))
NIL
NIL
-(-626 S R)
+(-630 S R)
((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise.")))
NIL
-((-4081 (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-358))))
-(-627 R)
+((-3304 (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-362))))
+(-631 R)
((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")))
-((-4370 . T))
+((-4379 . T))
NIL
-(-628 A B)
+(-632 A B)
((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}.")))
NIL
NIL
-(-629 A B)
+(-633 A B)
((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,{}u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,{}[1,{}2,{}3]) = [1,{}4,{}9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,{}[1,{}2,{}3],{}0) = fn(3,{}fn(2,{}fn(1,{}0)))} and \\spad{reduce(*,{}[2,{}3],{}1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,{}[1,{}2],{}0) = [fn(2,{}fn(1,{}0)),{}fn(1,{}0)]} and \\spad{scan(*,{}[2,{}3],{}1) = [2 * 1,{} 3 * (2 * 1)]}.")))
NIL
NIL
-(-630 A B C)
+(-634 A B C)
((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,{}list1,{} u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,{}[1,{}2,{}3],{}[4,{}5,{}6]) = [1/4,{}2/4,{}1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}.")))
NIL
NIL
-(-631 S)
+(-635 S)
((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list.")))
-((-4374 . T) (-4373 . T))
-((-3994 (-12 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (-3994 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| (-554) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))))
-(-632 T$)
+((-4383 . T) (-4382 . T))
+((-3998 (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3998 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-819))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+(-636 T$)
((|constructor| (NIL "This domain represents AST for Spad literals.")))
NIL
NIL
-(-633 S)
+(-637 S)
((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries.")))
-((-4373 . T) (-4374 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))))
-(-634 R)
+((-4382 . T) (-4383 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
+(-638 R)
((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}.")))
NIL
NIL
-(-635 S E |un|)
+(-639 S E |un|)
((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,{}y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x,{} y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s,{} e,{} x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s,{} a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a,{} s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l,{} n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l,{} n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s,{} e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l,{} fop,{} fexp,{} unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a,{} b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a,{} n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n}).")))
NIL
NIL
-(-636 A S)
+(-640 A S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4374)))
-(-637 S)
+((|HasAttribute| |#1| (QUOTE -4383)))
+(-641 S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
NIL
-(-638 R -3085 L)
+(-642 R -3215 L)
((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable.")))
NIL
NIL
-(-639 A)
+(-643 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4367 . T) (-4368 . T) (-4370 . T))
-((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-358))))
-(-640 A M)
+((-4376 . T) (-4377 . T) (-4379 . T))
+((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-362))))
+(-644 A M)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}")))
-((-4367 . T) (-4368 . T) (-4370 . T))
-((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-358))))
-(-641 S A)
+((-4376 . T) (-4377 . T) (-4379 . T))
+((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-362))))
+(-645 S A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-358))))
-(-642 A)
+((|HasCategory| |#2| (QUOTE (-362))))
+(-646 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
-((-4367 . T) (-4368 . T) (-4370 . T))
+((-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-643 -3085 UP)
+(-647 -3215 UP)
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-644 A -1523)
+(-648 A -2866)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4367 . T) (-4368 . T) (-4370 . T))
-((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-358))))
-(-645 A L)
+((-4376 . T) (-4377 . T) (-4379 . T))
+((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-362))))
+(-649 A L)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-646 S)
+(-650 S)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}.")))
NIL
NIL
-(-647)
+(-651)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}.")))
NIL
NIL
-(-648 M R S)
+(-652 M R S)
((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4368 . T) (-4367 . T))
-((|HasCategory| |#1| (QUOTE (-778))))
-(-649 R)
+((-4377 . T) (-4376 . T))
+((|HasCategory| |#1| (QUOTE (-782))))
+(-653 R)
((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists.")))
NIL
NIL
-(-650 |VarSet| R)
+(-654 |VarSet| R)
((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4368 . T) (-4367 . T))
-((|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-170))))
-(-651 A S)
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4377 . T) (-4376 . T))
+((|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-171))))
+(-655 A S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
NIL
NIL
-(-652 S)
+(-656 S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
-((-4374 . T) (-4373 . T))
+((-4383 . T) (-4382 . T))
NIL
-(-653 -3085)
+(-657 -3215)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-654 -3085 |Row| |Col| M)
+(-658 -3215 |Row| |Col| M)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-655 R E OV P)
+(-659 R E OV P)
((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,{}lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}.")))
NIL
NIL
-(-656 |n| R)
+(-660 |n| R)
((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication.")))
-((-4370 . T) (-4373 . T) (-4367 . T) (-4368 . T))
-((|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-229))) (|HasAttribute| |#2| (QUOTE (-4375 "*"))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554)))) (-3994 (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))))) (|HasCategory| |#2| (QUOTE (-302))) (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-546))) (-3994 (|HasAttribute| |#2| (QUOTE (-4375 "*"))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-229)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-170))))
-(-657)
+((-4379 . T) (-4382 . T) (-4376 . T) (-4377 . T))
+((|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasAttribute| |#2| (QUOTE (-4384 "*"))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3998 (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-550))) (-3998 (|HasAttribute| |#2| (QUOTE (-4384 "*"))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-232)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-171))))
+(-661)
((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'.")))
NIL
NIL
-(-658 |VarSet|)
+(-662 |VarSet|)
((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")))
NIL
NIL
-(-659 A S)
+(-663 A S)
((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}.")))
NIL
NIL
-(-660 S)
+(-664 S)
((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}.")))
NIL
NIL
-(-661 R)
+(-665 R)
((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms")))
NIL
-((-3994 (-12 (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))))
-(-662)
+((-3998 (-12 (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1087))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+(-666)
((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any.")))
NIL
NIL
-(-663 |VarSet|)
+(-667 |VarSet|)
((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}.")))
NIL
NIL
-(-664 A)
+(-668 A)
((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,{}g,{}x)} is \\spad{g(n,{}g(n-1,{}..g(1,{}x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,{}n,{}x)} applies \\spad{f n} times to \\spad{x}.")))
NIL
NIL
-(-665 A C)
+(-669 A C)
((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,{}c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,{}c)} selects its first argument.")))
NIL
NIL
-(-666 A B C)
+(-670 A B C)
((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,{}g,{}x)} is \\spad{f(g x)}.")))
NIL
NIL
-(-667)
+(-671)
((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for \\spad{`s'}.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of \\spad{`s'}.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,{}t)} builds the mapping AST \\spad{s} \\spad{->} \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'.")))
NIL
NIL
-(-668 A)
+(-672 A)
((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,{}x)= g(n,{}g(n-1,{}..g(1,{}x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,{}n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}")))
NIL
NIL
-(-669 A C)
+(-673 A C)
((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,{}a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}")))
NIL
NIL
-(-670 A B C)
+(-674 A B C)
((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f(b,{}a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,{}b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,{}b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,{}b)}.}")))
NIL
NIL
-(-671 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+(-675 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
NIL
-(-672 S R |Row| |Col|)
+(-676 S R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
NIL
-((|HasAttribute| |#2| (QUOTE (-4375 "*"))) (|HasCategory| |#2| (QUOTE (-302))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-546))))
-(-673 R |Row| |Col|)
+((|HasAttribute| |#2| (QUOTE (-4384 "*"))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-550))))
+(-677 R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
-((-4373 . T) (-4374 . T))
+((-4382 . T) (-4383 . T))
NIL
-(-674 R |Row| |Col| M)
+(-678 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")))
NIL
-((|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-546))))
-(-675 R)
+((|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-550))))
+(-679 R)
((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
-((-4373 . T) (-4374 . T))
-((-3994 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-546))) (|HasAttribute| |#1| (QUOTE (-4375 "*"))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))))
-(-676 R)
+((-4382 . T) (-4383 . T))
+((-3998 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1087))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-550))) (|HasAttribute| |#1| (QUOTE (-4384 "*"))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+(-680 R)
((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")))
NIL
NIL
-(-677 T$)
+(-681 T$)
((|constructor| (NIL "This domain implements the notion of optional vallue,{} where a computation may fail to produce expected value.")) (|nothing| (($) "represents failure.")) (|autoCoerce| ((|#1| $) "same as above but implicitly called by the compiler.")) (|coerce| ((|#1| $) "x::T tries to extract the value of \\spad{T} from the computation \\spad{x}. Produces a runtime error when the computation fails.") (($ |#1|) "x::T injects the value \\spad{x} into \\%.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} evaluates \\spad{true} if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")))
NIL
NIL
-(-678 S -3085 FLAF FLAS)
+(-682 S -3215 FLAF FLAS)
((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")))
NIL
NIL
-(-679 R Q)
+(-683 R Q)
((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}.")))
NIL
NIL
-(-680)
+(-684)
((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex")))
-((-4366 . T) (-4371 |has| (-685) (-358)) (-4365 |has| (-685) (-358)) (-4372 |has| (-685) (-6 -4372)) (-4369 |has| (-685) (-6 -4369)) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
-((|HasCategory| (-685) (QUOTE (-145))) (|HasCategory| (-685) (QUOTE (-143))) (|HasCategory| (-685) (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| (-685) (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| (-685) (QUOTE (-363))) (|HasCategory| (-685) (QUOTE (-358))) (-3994 (|HasCategory| (-685) (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| (-685) (QUOTE (-358)))) (|HasCategory| (-685) (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| (-685) (QUOTE (-229))) (-3994 (|HasCategory| (-685) (QUOTE (-358))) (|HasCategory| (-685) (QUOTE (-344)))) (|HasCategory| (-685) (QUOTE (-344))) (|HasCategory| (-685) (LIST (QUOTE -281) (QUOTE (-685)) (QUOTE (-685)))) (|HasCategory| (-685) (LIST (QUOTE -304) (QUOTE (-685)))) (|HasCategory| (-685) (LIST (QUOTE -508) (QUOTE (-1158)) (QUOTE (-685)))) (|HasCategory| (-685) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| (-685) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| (-685) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| (-685) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (-3994 (|HasCategory| (-685) (QUOTE (-302))) (|HasCategory| (-685) (QUOTE (-358))) (|HasCategory| (-685) (QUOTE (-344)))) (|HasCategory| (-685) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| (-685) (QUOTE (-1007))) (|HasCategory| (-685) (QUOTE (-1180))) (-12 (|HasCategory| (-685) (QUOTE (-987))) (|HasCategory| (-685) (QUOTE (-1180)))) (-3994 (-12 (|HasCategory| (-685) (QUOTE (-302))) (|HasCategory| (-685) (QUOTE (-894)))) (|HasCategory| (-685) (QUOTE (-358))) (-12 (|HasCategory| (-685) (QUOTE (-344))) (|HasCategory| (-685) (QUOTE (-894))))) (-3994 (-12 (|HasCategory| (-685) (QUOTE (-302))) (|HasCategory| (-685) (QUOTE (-894)))) (-12 (|HasCategory| (-685) (QUOTE (-358))) (|HasCategory| (-685) (QUOTE (-894)))) (-12 (|HasCategory| (-685) (QUOTE (-344))) (|HasCategory| (-685) (QUOTE (-894))))) (|HasCategory| (-685) (QUOTE (-539))) (-12 (|HasCategory| (-685) (QUOTE (-1043))) (|HasCategory| (-685) (QUOTE (-1180)))) (|HasCategory| (-685) (QUOTE (-1043))) (|HasCategory| (-685) (QUOTE (-302))) (|HasCategory| (-685) (QUOTE (-894))) (-3994 (-12 (|HasCategory| (-685) (QUOTE (-302))) (|HasCategory| (-685) (QUOTE (-894)))) (|HasCategory| (-685) (QUOTE (-358)))) (-3994 (-12 (|HasCategory| (-685) (QUOTE (-302))) (|HasCategory| (-685) (QUOTE (-894)))) (|HasCategory| (-685) (QUOTE (-546)))) (-12 (|HasCategory| (-685) (QUOTE (-229))) (|HasCategory| (-685) (QUOTE (-358)))) (-12 (|HasCategory| (-685) (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| (-685) (QUOTE (-358)))) (|HasCategory| (-685) (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| (-685) (QUOTE (-836))) (|HasCategory| (-685) (QUOTE (-546))) (|HasAttribute| (-685) (QUOTE -4372)) (|HasAttribute| (-685) (QUOTE -4369)) (-12 (|HasCategory| (-685) (QUOTE (-302))) (|HasCategory| (-685) (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-685) (QUOTE (-302))) (|HasCategory| (-685) (QUOTE (-894)))) (|HasCategory| (-685) (QUOTE (-143)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-685) (QUOTE (-302))) (|HasCategory| (-685) (QUOTE (-894)))) (|HasCategory| (-685) (QUOTE (-344)))))
-(-681 S)
+((-4375 . T) (-4380 |has| (-689) (-362)) (-4374 |has| (-689) (-362)) (-4381 |has| (-689) (-6 -4381)) (-4378 |has| (-689) (-6 -4378)) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((|HasCategory| (-689) (QUOTE (-146))) (|HasCategory| (-689) (QUOTE (-144))) (|HasCategory| (-689) (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| (-689) (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| (-689) (QUOTE (-367))) (|HasCategory| (-689) (QUOTE (-362))) (-3998 (|HasCategory| (-689) (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| (-689) (QUOTE (-362)))) (|HasCategory| (-689) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-689) (QUOTE (-232))) (-3998 (|HasCategory| (-689) (QUOTE (-362))) (|HasCategory| (-689) (QUOTE (-348)))) (|HasCategory| (-689) (QUOTE (-348))) (|HasCategory| (-689) (LIST (QUOTE -285) (QUOTE (-689)) (QUOTE (-689)))) (|HasCategory| (-689) (LIST (QUOTE -308) (QUOTE (-689)))) (|HasCategory| (-689) (LIST (QUOTE -512) (QUOTE (-1163)) (QUOTE (-689)))) (|HasCategory| (-689) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| (-689) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| (-689) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| (-689) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (-3998 (|HasCategory| (-689) (QUOTE (-306))) (|HasCategory| (-689) (QUOTE (-362))) (|HasCategory| (-689) (QUOTE (-348)))) (|HasCategory| (-689) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-689) (QUOTE (-1012))) (|HasCategory| (-689) (QUOTE (-1185))) (-12 (|HasCategory| (-689) (QUOTE (-992))) (|HasCategory| (-689) (QUOTE (-1185)))) (-3998 (-12 (|HasCategory| (-689) (QUOTE (-306))) (|HasCategory| (-689) (QUOTE (-899)))) (|HasCategory| (-689) (QUOTE (-362))) (-12 (|HasCategory| (-689) (QUOTE (-348))) (|HasCategory| (-689) (QUOTE (-899))))) (-3998 (-12 (|HasCategory| (-689) (QUOTE (-306))) (|HasCategory| (-689) (QUOTE (-899)))) (-12 (|HasCategory| (-689) (QUOTE (-362))) (|HasCategory| (-689) (QUOTE (-899)))) (-12 (|HasCategory| (-689) (QUOTE (-348))) (|HasCategory| (-689) (QUOTE (-899))))) (|HasCategory| (-689) (QUOTE (-543))) (-12 (|HasCategory| (-689) (QUOTE (-1048))) (|HasCategory| (-689) (QUOTE (-1185)))) (|HasCategory| (-689) (QUOTE (-1048))) (|HasCategory| (-689) (QUOTE (-306))) (|HasCategory| (-689) (QUOTE (-899))) (-3998 (-12 (|HasCategory| (-689) (QUOTE (-306))) (|HasCategory| (-689) (QUOTE (-899)))) (|HasCategory| (-689) (QUOTE (-362)))) (-3998 (-12 (|HasCategory| (-689) (QUOTE (-306))) (|HasCategory| (-689) (QUOTE (-899)))) (|HasCategory| (-689) (QUOTE (-550)))) (-12 (|HasCategory| (-689) (QUOTE (-232))) (|HasCategory| (-689) (QUOTE (-362)))) (-12 (|HasCategory| (-689) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-689) (QUOTE (-362)))) (|HasCategory| (-689) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| (-689) (QUOTE (-841))) (|HasCategory| (-689) (QUOTE (-550))) (|HasAttribute| (-689) (QUOTE -4381)) (|HasAttribute| (-689) (QUOTE -4378)) (-12 (|HasCategory| (-689) (QUOTE (-306))) (|HasCategory| (-689) (QUOTE (-899)))) (-3998 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-689) (QUOTE (-306))) (|HasCategory| (-689) (QUOTE (-899)))) (|HasCategory| (-689) (QUOTE (-144)))) (-3998 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-689) (QUOTE (-306))) (|HasCategory| (-689) (QUOTE (-899)))) (|HasCategory| (-689) (QUOTE (-348)))))
+(-685 S)
((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}.")))
-((-4374 . T))
+((-4383 . T))
NIL
-(-682 U)
+(-686 U)
((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,{}n,{}g,{}p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl,{} p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,{}p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,{}p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,{}p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,{}f2,{}p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}.")))
NIL
NIL
-(-683)
+(-687)
((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented")))
NIL
NIL
-(-684 OV E -3085 PG)
+(-688 OV E -3215 PG)
((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field.")))
NIL
NIL
-(-685)
+(-689)
((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}")))
-((-4333 . T) (-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
+((-1352 . T) (-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-686 R)
+(-690 R)
((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus.")))
NIL
NIL
-(-687)
+(-691)
((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}")))
-((-4372 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
+((-4381 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-688 S D1 D2 I)
+(-692 S D1 D2 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,{}x,{}y)} returns a function \\spad{f: (D1,{} D2) -> I} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1,{} D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function")))
NIL
NIL
-(-689 S)
+(-693 S)
((|constructor| (NIL "MakeCachableSet(\\spad{S}) returns a cachable set which is equal to \\spad{S} as a set.")))
NIL
NIL
-(-690 S)
+(-694 S)
((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x,{} y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}.")))
NIL
NIL
-(-691 S)
+(-695 S)
((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e,{} foo,{} [x1,{}...,{}xn])} creates a function \\spad{foo(x1,{}...,{}xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x,{} y)} creates a function \\spad{foo(x,{} y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e,{} foo)} creates a function \\spad{foo() == e}.")))
NIL
NIL
-(-692 S T$)
+(-696 S T$)
((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}.")))
NIL
NIL
-(-693 S -1787 I)
+(-697 S -1866 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function")))
NIL
NIL
-(-694 E OV R P)
+(-698 E OV R P)
((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,{}lv,{}lu,{}lr,{}lp,{}lt,{}ln,{}t,{}r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,{}lv,{}lu,{}lr,{}lp,{}ln,{}r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,{}lv,{}lr,{}ln,{}lu,{}t,{}r)} \\undocumented")))
NIL
NIL
-(-695 R)
+(-699 R)
((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,{}1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i,{} i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
-((-4367 . T) (-4368 . T) (-4370 . T))
+((-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-696 R1 UP1 UPUP1 R2 UP2 UPUP2)
+(-700 R1 UP1 UPUP1 R2 UP2 UPUP2)
((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f,{} p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}.")))
NIL
NIL
-(-697)
+(-701)
((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format.")))
NIL
NIL
-(-698 R |Mod| -1877 -3717 |exactQuo|)
+(-702 R |Mod| -1616 -1677 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
+((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-699 R |Rep|)
+(-703 R |Rep|)
((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented")))
-(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4369 |has| |#1| (-358)) (-4371 |has| |#1| (-6 -4371)) (-4368 . T) (-4367 . T) (-4370 . T))
-((|HasCategory| |#1| (QUOTE (-894))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-170))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (-12 (|HasCategory| (-1064) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-374))))) (-12 (|HasCategory| (-1064) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-554))))) (-12 (|HasCategory| (-1064) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374)))))) (-12 (|HasCategory| (-1064) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554)))))) (-12 (|HasCategory| (-1064) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-229))) (|HasAttribute| |#1| (QUOTE -4371)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-143)))))
-(-700 IS E |ff|)
+(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4378 |has| |#1| (-362)) (-4380 |has| |#1| (-6 -4380)) (-4377 . T) (-4376 . T) (-4379 . T))
+((|HasCategory| |#1| (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3998 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3998 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (-3998 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3998 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3998 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1138))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-232))) (|HasAttribute| |#1| (QUOTE -4380)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (-3998 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(-704 IS E |ff|)
((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented")))
NIL
NIL
-(-701 R M)
+(-705 R M)
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
-((-4368 |has| |#1| (-170)) (-4367 |has| |#1| (-170)) (-4370 . T))
-((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))))
-(-702 R |Mod| -1877 -3717 |exactQuo|)
+((-4377 |has| |#1| (-171)) (-4376 |has| |#1| (-171)) (-4379 . T))
+((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))))
+(-706 R |Mod| -1616 -1677 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4370 . T))
+((-4379 . T))
NIL
-(-703 S R)
+(-707 S R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
NIL
NIL
-(-704 R)
+(-708 R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
-((-4368 . T) (-4367 . T))
+((-4377 . T) (-4376 . T))
NIL
-(-705 -3085)
+(-709 -3215)
((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}.")))
-((-4370 . T))
+((-4379 . T))
NIL
-(-706 S)
+(-710 S)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
NIL
NIL
-(-707)
+(-711)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
NIL
NIL
-(-708 S)
+(-712 S)
((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1.")))
NIL
NIL
-(-709)
+(-713)
((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1.")))
NIL
NIL
-(-710 S R UP)
+(-714 S R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
NIL
-((|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-363))))
-(-711 R UP)
+((|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367))))
+(-715 R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
-((-4366 |has| |#1| (-358)) (-4371 |has| |#1| (-358)) (-4365 |has| |#1| (-358)) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
+((-4375 |has| |#1| (-362)) (-4380 |has| |#1| (-362)) (-4374 |has| |#1| (-362)) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-712 S)
+(-716 S)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-713)
+(-717)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-714 -3085 UP)
+(-718 -3215 UP)
((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-715 |VarSet| E1 E2 R S PR PS)
+(-719 |VarSet| E1 E2 R S PR PS)
((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (\\spad{PG})")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,{}p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,{}p)} \\undocumented")))
NIL
NIL
-(-716 |Vars1| |Vars2| E1 E2 R PR1 PR2)
+(-720 |Vars1| |Vars2| E1 E2 R PR1 PR2)
((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,{}x)} \\undocumented")))
NIL
NIL
-(-717 E OV R PPR)
+(-721 E OV R PPR)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-718 |vl| R)
+(-722 |vl| R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")))
-(((-4375 "*") |has| |#2| (-170)) (-4366 |has| |#2| (-546)) (-4371 |has| |#2| (-6 -4371)) (-4368 . T) (-4367 . T) (-4370 . T))
-((|HasCategory| |#2| (QUOTE (-894))) (-3994 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-894)))) (-3994 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-894)))) (-3994 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-894)))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-170))) (-3994 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-546)))) (-12 (|HasCategory| (-850 |#1|) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-374))))) (-12 (|HasCategory| (-850 |#1|) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-554))))) (-12 (|HasCategory| (-850 |#1|) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374)))))) (-12 (|HasCategory| (-850 |#1|) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554)))))) (-12 (|HasCategory| (-850 |#1|) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-836))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-358))) (|HasAttribute| |#2| (QUOTE -4371)) (|HasCategory| |#2| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-894)))) (|HasCategory| |#2| (QUOTE (-143)))))
-(-719 E OV R PRF)
+(((-4384 "*") |has| |#2| (-171)) (-4375 |has| |#2| (-550)) (-4380 |has| |#2| (-6 -4380)) (-4377 . T) (-4376 . T) (-4379 . T))
+((|HasCategory| |#2| (QUOTE (-899))) (-3998 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-899)))) (-3998 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-899)))) (-3998 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-171))) (-3998 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-550)))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3998 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4380)) (|HasCategory| |#2| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (-3998 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#2| (QUOTE (-144)))))
+(-723 E OV R PRF)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-720 E OV R P)
+(-724 E OV R P)
((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}.")))
NIL
NIL
-(-721 R S M)
+(-725 R S M)
((|constructor| (NIL "MonoidRingFunctions2 implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,{}u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}.")))
NIL
NIL
-(-722 R M)
+(-726 R M)
((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,{}m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}m)} creates a scalar multiple of the basis element \\spad{m}.")))
-((-4368 |has| |#1| (-170)) (-4367 |has| |#1| (-170)) (-4370 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-836))))
-(-723 S)
+((-4377 |has| |#1| (-171)) (-4376 |has| |#1| (-171)) (-4379 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-841))))
+(-727 S)
((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements.")))
-((-4363 . T) (-4374 . T))
+((-4372 . T) (-4383 . T))
NIL
-(-724 S)
+(-728 S)
((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
-((-4373 . T) (-4363 . T) (-4374 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))))
-(-725)
+((-4382 . T) (-4372 . T) (-4383 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
+(-729)
((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned.")))
NIL
NIL
-(-726 S)
+(-730 S)
((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,{}l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}.")))
NIL
NIL
-(-727 |Coef| |Var|)
+(-731 |Coef| |Var|)
((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}.")))
-(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4368 . T) (-4367 . T) (-4370 . T))
+(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4377 . T) (-4376 . T) (-4379 . T))
NIL
-(-728 OV E R P)
+(-732 OV E R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")))
NIL
NIL
-(-729 E OV R P)
+(-733 E OV R P)
((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}.")))
NIL
NIL
-(-730 S R)
+(-734 S R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
NIL
NIL
-(-731 R)
+(-735 R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
-((-4368 . T) (-4367 . T))
+((-4377 . T) (-4376 . T))
NIL
-(-732)
+(-736)
((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,{}n,{}scale,{}ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,{}n,{}scale,{}ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}.")))
NIL
NIL
-(-733)
+(-737)
((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{manpageXXc05}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,{}ldfjac,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,{}b,{}eps,{}eta,{}ifail,{}f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}.")))
NIL
NIL
-(-734)
+(-738)
((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{manpageXXc06}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,{}n,{}x,{}ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,{}n,{}x,{}ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,{}y,{}ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,{}x,{}ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,{}n,{}init,{}x,{}y,{}trigm,{}trign,{}ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,{}n,{}init,{}x,{}y,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,{}n,{}x,{}y,{}ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,{}x,{}y,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}.")))
NIL
NIL
-(-735)
+(-739)
((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{manpageXXd01}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,{}a,{}b,{}maxcls,{}eps,{}lenwrk,{}mincls,{}wrkstr,{}ifail,{}functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,{}y,{}n,{}ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,{}a,{}b,{}maxpts,{}eps,{}lenwrk,{}minpts,{}ifail,{}functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,{}b,{}itype,{}n,{}gtype,{}ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,{}omega,{}key,{}epsabs,{}limlst,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,{}b,{}c,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,{}b,{}alfa,{}beta,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,{}b,{}omega,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,{}inf,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,{}b,{}npts,{}points,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}.")))
NIL
NIL
-(-736)
+(-740)
((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{manpageXXd02}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,{}mnp,{}numbeg,{}nummix,{}tol,{}init,{}iy,{}ijac,{}lwork,{}liwork,{}np,{}x,{}y,{}deleps,{}ifail,{}fcn,{}g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval,{}monit,{}report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains Asp12 and Asp33 are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,{}b,{}n,{}tol,{}mnp,{}lw,{}liw,{}c,{}d,{}gam,{}x,{}np,{}ifail,{}fcnf,{}fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,{}v,{}n,{}a,{}b,{}tol,{}mnp,{}lw,{}liw,{}x,{}np,{}ifail,{}fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,{}m,{}n,{}relabs,{}iw,{}x,{}y,{}tol,{}ifail,{}g,{}fcn,{}pederv,{}output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,{}m,{}n,{}tol,{}relabs,{}x,{}y,{}ifail,{}g,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,{}n,{}irelab,{}hmax,{}x,{}y,{}tol,{}ifail,{}g,{}fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,{}m,{}n,{}irelab,{}x,{}y,{}tol,{}ifail,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}.")))
NIL
NIL
-(-737)
+(-741)
((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{manpageXXd03}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,{}xf,{}l,{}lbdcnd,{}bdxs,{}bdxf,{}ys,{}yf,{}m,{}mbdcnd,{}bdys,{}bdyf,{}zs,{}zf,{}n,{}nbdcnd,{}bdzs,{}bdzf,{}lambda,{}ldimf,{}mdimf,{}lwrk,{}f,{}ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,{}xmax,{}ymin,{}ymax,{}ngx,{}ngy,{}lda,{}scheme,{}ifail,{}pdef,{}bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,{}ngy,{}lda,{}maxit,{}acc,{}iout,{}a,{}rhs,{}ub,{}ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}.")))
NIL
NIL
-(-738)
+(-742)
((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{manpageXXe01}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,{}x,{}y,{}f,{}rnw,{}fnodes,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,{}x,{}y,{}f,{}nw,{}nq,{}rnw,{}rnq,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,{}x,{}y,{}f,{}triang,{}grads,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,{}x,{}y,{}f,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,{}my,{}x,{}y,{}f,{}ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,{}x,{}f,{}d,{}a,{}b,{}ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,{}x,{}f,{}ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,{}x,{}y,{}lck,{}lwrk,{}ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}.")))
NIL
NIL
-(-739)
+(-743)
((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{manpageXXe02}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,{}py,{}lamda,{}mu,{}m,{}x,{}y,{}npoint,{}nadres,{}ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,{}la,{}nplus2,{}toler,{}a,{}b,{}ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,{}my,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}lwrk,{}liwrk,{}ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,{}m,{}x,{}y,{}f,{}w,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,{}mx,{}x,{}my,{}y,{}f,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}iwrk,{}ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,{}px,{}py,{}x,{}y,{}f,{}w,{}mu,{}point,{}npoint,{}nc,{}nws,{}eps,{}lamda,{}ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,{}m,{}x,{}y,{}w,{}s,{}nest,{}lwrk,{}n,{}lamda,{}ifail,{}wrk,{}iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,{}lamda,{}c,{}ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,{}lamda,{}c,{}x,{}left,{}ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,{}lamda,{}c,{}x,{}ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,{}ncap7,{}x,{}y,{}w,{}lamda,{}ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}x,{}ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}qatm1,{}iaint1,{}laint,{}ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}iadif1,{}ladif,{}ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,{}kplus1,{}nrows,{}xmin,{}xmax,{}x,{}y,{}w,{}mf,{}xf,{}yf,{}lyf,{}ip,{}lwrk,{}liwrk,{}ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,{}a,{}xcap,{}ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,{}kplus1,{}nrows,{}x,{}y,{}w,{}ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}.")))
NIL
NIL
-(-740)
+(-744)
((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{manpageXXe04}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,{}m,{}n,{}fsumsq,{}s,{}lv,{}v,{}ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,{}nclin,{}ncnln,{}nrowa,{}nrowj,{}nrowr,{}a,{}bl,{}bu,{}liwork,{}lwork,{}sta,{}cra,{}der,{}fea,{}fun,{}hes,{}infb,{}infs,{}linf,{}lint,{}list,{}maji,{}majp,{}mini,{}minp,{}mon,{}nonf,{}opt,{}ste,{}stao,{}stac,{}stoo,{}stoc,{}ve,{}istate,{}cjac,{}clamda,{}r,{}x,{}ifail,{}confun,{}objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}nrowh,{}ncolh,{}bigbnd,{}a,{}bl,{}bu,{}cvec,{}featol,{}hess,{}cold,{}lpp,{}orthog,{}liwork,{}lwork,{}x,{}istate,{}ifail,{}qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}a,{}bl,{}bu,{}cvec,{}linobj,{}liwork,{}lwork,{}x,{}ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,{}ibound,{}liw,{}lw,{}bl,{}bu,{}x,{}ifail,{}funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,{}es,{}fu,{}it,{}lin,{}list,{}ma,{}op,{}pr,{}sta,{}sto,{}ve,{}x,{}ifail,{}objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}.")))
NIL
NIL
-(-741)
+(-745)
((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{manpageXXf01}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,{}m,{}n,{}ncolq,{}lda,{}theta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}theta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,{}m,{}n,{}ncolq,{}lda,{}zeta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}zeta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,{}avals,{}lal,{}nrow,{}ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,{}nz,{}licn,{}lirn,{}abort,{}avals,{}irn,{}icn,{}droptl,{}densw,{}ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,{}nz,{}licn,{}ivect,{}jvect,{}icn,{}ikeep,{}grow,{}eta,{}abort,{}idisp,{}avals,{}ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,{}nz,{}licn,{}lirn,{}pivot,{}lblock,{}grow,{}abort,{}a,{}irn,{}icn,{}ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}.")))
NIL
NIL
-(-742)
+(-746)
((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{manpageXXf02}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldph,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldpt,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image,{}monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,{}ia,{}ib,{}eps1,{}matv,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,{}n,{}alb,{}ub,{}m,{}iv,{}a,{}ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,{}iar,{}\\spad{ai},{}iai,{}n,{}ivr,{}ivi,{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,{}iai,{}n,{}ivr,{}ivi,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,{}n,{}ivr,{}ivi,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,{}n,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,{}ib,{}n,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,{}ib,{}n,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,{}ia,{}n,{}iv,{}ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,{}n,{}a,{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}.")))
NIL
NIL
-(-743)
+(-747)
((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{manpageXXf04}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,{}n,{}damp,{}atol,{}btol,{}conlim,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}b,{}ifail,{}aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,{}al,{}lal,{}d,{}nrow,{}ir,{}b,{}nrb,{}iselct,{}nrx,{}ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,{}b,{}precon,{}shift,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}rtol,{}ifail,{}aprod,{}msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,{}nz,{}avals,{}licn,{}irn,{}lirn,{}icn,{}wkeep,{}ikeep,{}inform,{}b,{}acc,{}noits,{}ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,{}n,{}nra,{}tol,{}lwork,{}a,{}b,{}ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,{}n,{}d,{}e,{}b,{}ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,{}a,{}licn,{}icn,{}ikeep,{}mtype,{}idisp,{}rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,{}ia,{}b,{}n,{}iaa,{}ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,{}b,{}n,{}a,{}ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,{}b,{}n,{}a,{}ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,{}b,{}ib,{}n,{}m,{}ic,{}a,{}ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}.")))
NIL
NIL
-(-744)
+(-748)
((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{manpageXXf07}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,{}n,{}nrhs,{}a,{}lda,{}ldb,{}b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,{}n,{}lda,{}a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,{}n,{}nrhs,{}a,{}lda,{}ipiv,{}ldb,{}b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,{}n,{}lda,{}a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}.")))
NIL
NIL
-(-745)
+(-749)
((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,{}y,{}z,{}r,{}ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,{}y,{}ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,{}ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,{}ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,{}ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,{}ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,{}ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,{}fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,{}ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,{}ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,{}ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,{}ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,{}ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,{}ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,{}x,{}tol,{}ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,{}ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,{}ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,{}ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,{}ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,{}ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,{}ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}.")))
NIL
NIL
-(-746)
+(-750)
((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}")))
NIL
NIL
-(-747 S)
+(-751 S)
((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}.")))
NIL
NIL
-(-748)
+(-752)
((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}.")))
NIL
NIL
-(-749 S)
+(-753 S)
((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring.")))
NIL
NIL
-(-750)
+(-754)
((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring.")))
NIL
NIL
-(-751 |Par|)
+(-755 |Par|)
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable.")))
NIL
NIL
-(-752 -3085)
+(-756 -3215)
((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction.")))
NIL
NIL
-(-753 P -3085)
+(-757 P -3215)
((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")))
NIL
NIL
-(-754 T$)
+(-758 T$)
NIL
NIL
NIL
-(-755 UP -3085)
+(-759 UP -3215)
((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}.")))
NIL
NIL
-(-756)
+(-760)
((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-757 R)
+(-761 R)
((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-758)
+(-762)
((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder.")))
-(((-4375 "*") . T))
+(((-4384 "*") . T))
NIL
-(-759 R -3085)
+(-763 R -3215)
((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found.")))
NIL
NIL
-(-760 S)
+(-764 S)
((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}.")))
NIL
NIL
-(-761)
+(-765)
((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code).")))
NIL
NIL
-(-762 R |PolR| E |PolE|)
+(-766 R |PolR| E |PolE|)
((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}.")))
NIL
NIL
-(-763 R E V P TS)
+(-767 R E V P TS)
((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")))
NIL
NIL
-(-764 -3085 |ExtF| |SUEx| |ExtP| |n|)
+(-768 -3215 |ExtF| |SUEx| |ExtP| |n|)
((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented")))
NIL
NIL
-(-765 BP E OV R P)
+(-769 BP E OV R P)
((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented")))
NIL
NIL
-(-766 |Par|)
+(-770 |Par|)
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,{}eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable.")))
NIL
NIL
-(-767 R |VarSet|)
+(-771 R |VarSet|)
((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor.")))
-(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-6 -4371)) (-4368 . T) (-4367 . T) (-4370 . T))
-((|HasCategory| |#1| (QUOTE (-894))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-170))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-374))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-554))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-1158))))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-1158)))) (|HasCategory| |#1| (QUOTE (-358))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-1158))))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-1158)))) (-4081 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-1158)))))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-1158)))) (-4081 (|HasCategory| |#1| (QUOTE (-539)))) (-4081 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-1158)))) (-4081 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-554))))) (-4081 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-1158)))) (-4081 (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-554))))))) (|HasAttribute| |#1| (QUOTE -4371)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-143)))))
-(-768 R S)
+(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-6 -4380)) (-4377 . T) (-4376 . T) (-4379 . T))
+((|HasCategory| |#1| (QUOTE (-899))) (-3998 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3998 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3998 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3998 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3998 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-1163))))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-1163))))) (-3998 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-1163)))) (-3304 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-1163)))))) (-3998 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-1163)))) (-3304 (|HasCategory| |#1| (QUOTE (-543)))) (-3304 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-1163)))) (-3304 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-558))))) (-3304 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-1163)))) (-3304 (|HasCategory| |#1| (LIST (QUOTE -982) (QUOTE (-558))))))) (|HasAttribute| |#1| (QUOTE -4380)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (-3998 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(-772 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-769 R)
+(-773 R)
((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
-(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4369 |has| |#1| (-358)) (-4371 |has| |#1| (-6 -4371)) (-4368 . T) (-4367 . T) (-4370 . T))
-((|HasCategory| |#1| (QUOTE (-894))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-170))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (-12 (|HasCategory| (-1064) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-374))))) (-12 (|HasCategory| (-1064) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-554))))) (-12 (|HasCategory| (-1064) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374)))))) (-12 (|HasCategory| (-1064) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554)))))) (-12 (|HasCategory| (-1064) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#1| (QUOTE (-229))) (|HasAttribute| |#1| (QUOTE -4371)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-143)))))
-(-770 R)
+(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4378 |has| |#1| (-362)) (-4380 |has| |#1| (-6 -4380)) (-4377 . T) (-4376 . T) (-4379 . T))
+((|HasCategory| |#1| (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3998 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3998 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (-3998 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3998 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3998 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1138))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-232))) (|HasAttribute| |#1| (QUOTE -4380)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (-3998 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(-774 R)
((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))))
-(-771 R E V P)
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))))
+(-775 R E V P)
((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")))
-((-4374 . T) (-4373 . T))
+((-4383 . T) (-4382 . T))
NIL
-(-772 S)
+(-776 S)
((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-836)))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (QUOTE (-170))))
-(-773)
+((-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-841)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-171))))
+(-777)
((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}.")))
NIL
NIL
-(-774)
+(-778)
((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-775)
+(-779)
((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,{}y,{}x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(-1/5)}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try ,{} did ,{} next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is the same as \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}.")))
NIL
NIL
-(-776)
+(-780)
((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")))
NIL
NIL
-(-777 |Curve|)
+(-781 |Curve|)
((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,{}r,{}n)} creates a tube of radius \\spad{r} around the curve \\spad{c}.")))
NIL
NIL
-(-778)
+(-782)
((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-779)
+(-783)
((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-780)
+(-784)
((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,{}y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted.")))
NIL
NIL
-(-781)
+(-785)
((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}")))
NIL
NIL
-(-782)
+(-786)
((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-783 S R)
+(-787 S R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-1043))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-836))) (|HasCategory| |#2| (QUOTE (-363))))
-(-784 R)
+((|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-1048))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-367))))
+(-788 R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
-((-4367 . T) (-4368 . T) (-4370 . T))
+((-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-785 -3994 R OS S)
+(-789 -3998 R OS S)
((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
NIL
NIL
-(-786 R)
+(-790 R)
((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}.")))
-((-4367 . T) (-4368 . T) (-4370 . T))
-((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -508) (QUOTE (-1158)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -281) (|devaluate| |#1|) (|devaluate| |#1|))) (-3994 (|HasCategory| (-984 |#1|) (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554)))))) (-3994 (|HasCategory| (-984 |#1|) (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-1043))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-984 |#1|) (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| (-984 |#1|) (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))))
-(-787)
+((-4376 . T) (-4377 . T) (-4379 . T))
+((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (-3998 (|HasCategory| (-989 |#1|) (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (-3998 (|HasCategory| (-989 |#1|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-1048))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-989 |#1|) (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| (-989 |#1|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))))
+(-791)
((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-788 R -3085 L)
+(-792 R -3215 L)
((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}.")))
NIL
NIL
-(-789 R -3085)
+(-793 R -3215)
((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
NIL
NIL
-(-790)
+(-794)
((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions.")))
NIL
NIL
-(-791 R -3085)
+(-795 R -3215)
((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}.")))
NIL
NIL
-(-792)
+(-796)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.")))
NIL
NIL
-(-793 -3085 UP UPUP R)
+(-797 -3215 UP UPUP R)
((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation.")))
NIL
NIL
-(-794 -3085 UP L LQ)
+(-798 -3215 UP L LQ)
((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution.")))
NIL
NIL
-(-795)
+(-799)
((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-796 -3085 UP L LQ)
+(-800 -3215 UP L LQ)
((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}.")))
NIL
NIL
-(-797 -3085 UP)
+(-801 -3215 UP)
((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.")))
NIL
NIL
-(-798 -3085 L UP A LO)
+(-802 -3215 L UP A LO)
((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}.")))
NIL
NIL
-(-799 -3085 UP)
+(-803 -3215 UP)
((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-800 -3085 LO)
+(-804 -3215 LO)
((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}.")))
NIL
NIL
-(-801 -3085 LODO)
+(-805 -3215 LODO)
((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.")))
NIL
NIL
-(-802 -4082 S |f|)
+(-806 -3084 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4367 |has| |#2| (-1034)) (-4368 |has| |#2| (-1034)) (-4370 |has| |#2| (-6 -4370)) ((-4375 "*") |has| |#2| (-170)) (-4373 . T))
-((-3994 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-713))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-834))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))))) (-3994 (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-1082)))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1034)))) (-12 (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158))))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#2| (QUOTE (-358))) (-3994 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1034)))) (-3994 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358)))) (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (QUOTE (-780))) (-3994 (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (QUOTE (-834)))) (|HasCategory| |#2| (QUOTE (-834))) (|HasCategory| |#2| (QUOTE (-713))) (|HasCategory| |#2| (QUOTE (-170))) (-3994 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1034)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-713))) (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (QUOTE (-834))) (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (QUOTE (-1082)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1034)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1034)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1034)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1034)))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-170)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-229)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-358)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-713)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-780)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-834)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-1034)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-1082))))) (-3994 (-12 (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-713))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-834))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-1034))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554)))))) (-3994 (-12 (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-713))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-834))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554)))))) (|HasCategory| (-554) (QUOTE (-836))) (-12 (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1034)))) (-12 (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158))))) (-3994 (|HasCategory| |#2| (QUOTE (-1034))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554)))))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-1082)))) (|HasAttribute| |#2| (QUOTE -4370)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))))
-(-803 R)
+((-4376 |has| |#2| (-1039)) (-4377 |has| |#2| (-1039)) (-4379 |has| |#2| (-6 -4379)) ((-4384 "*") |has| |#2| (-171)) (-4382 . T))
+((-3998 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))))) (-3998 (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1087)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#2| (QUOTE (-362))) (-3998 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3998 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362)))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-784))) (-3998 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-839)))) (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-171))) (-3998 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1039)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (-3998 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-1087)))) (-3998 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3998 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3998 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3998 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1039)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1087))) (-3998 (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-171)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-232)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-362)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-367)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-717)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-784)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-839)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1087))))) (-3998 (-12 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1039))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-3998 (-12 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-841))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163))))) (-3998 (|HasCategory| |#2| (QUOTE (-1039))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1087)))) (|HasAttribute| |#2| (QUOTE -4379)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))))
+(-807 R)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline")))
-(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-6 -4371)) (-4368 . T) (-4367 . T) (-4370 . T))
-((|HasCategory| |#1| (QUOTE (-894))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-170))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (-12 (|HasCategory| (-805 (-1158)) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-374))))) (-12 (|HasCategory| (-805 (-1158)) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-554))))) (-12 (|HasCategory| (-805 (-1158)) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374)))))) (-12 (|HasCategory| (-805 (-1158)) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554)))))) (-12 (|HasCategory| (-805 (-1158)) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasAttribute| |#1| (QUOTE -4371)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-143)))))
-(-804 |Kernels| R |var|)
+(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-6 -4380)) (-4377 . T) (-4376 . T) (-4379 . T))
+((|HasCategory| |#1| (QUOTE (-899))) (-3998 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3998 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3998 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3998 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| (-809 (-1163)) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| (-809 (-1163)) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| (-809 (-1163)) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| (-809 (-1163)) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| (-809 (-1163)) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3998 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4380)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (-3998 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(-808 |Kernels| R |var|)
((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")))
-(((-4375 "*") |has| |#2| (-358)) (-4366 |has| |#2| (-358)) (-4371 |has| |#2| (-358)) (-4365 |has| |#2| (-358)) (-4370 . T) (-4368 . T) (-4367 . T))
-((|HasCategory| |#2| (QUOTE (-358))))
-(-805 S)
+(((-4384 "*") |has| |#2| (-362)) (-4375 |has| |#2| (-362)) (-4380 |has| |#2| (-362)) (-4374 |has| |#2| (-362)) (-4379 . T) (-4377 . T) (-4376 . T))
+((|HasCategory| |#2| (QUOTE (-362))))
+(-809 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u})).")))
NIL
NIL
-(-806 S)
+(-810 S)
((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the \\spad{n-th} monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the \\spad{n-th} monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m} and \\spad{y = m * r} hold and such that \\spad{l} and \\spad{r} have no overlap,{} that is \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l,{} r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x,{} s)} returns the exact right quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} that is \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x,{} s)} returns the exact left quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} \\indented{1}{by \\spad{y} that is \\spad{q} such that \\spad{x = y * q},{}} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,{}y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
NIL
NIL
-(-807)
+(-811)
((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline")))
-((-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
+((-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-808)
+(-812)
((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}")))
NIL
NIL
-(-809)
+(-813)
((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,{}cd,{}s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,{}i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,{}i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,{}i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,{}i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,{}enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,{}mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,{}mode,{}enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}.")))
NIL
NIL
-(-810)
+(-814)
((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device.")))
NIL
NIL
-(-811)
+(-815)
((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error.")))
NIL
NIL
-(-812)
+(-816)
((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,{}l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents.")))
NIL
NIL
-(-813 R)
+(-817 R)
((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath.")))
NIL
NIL
-(-814 P R)
+(-818 P R)
((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}.")))
-((-4367 . T) (-4368 . T) (-4370 . T))
-((|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-229))))
-(-815)
+((-4376 . T) (-4377 . T) (-4379 . T))
+((|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-232))))
+(-819)
((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object.")))
NIL
NIL
-(-816)
+(-820)
((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,{}cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,{}cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM.")))
NIL
NIL
-(-817 S)
+(-821 S)
((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}.")))
-((-4373 . T) (-4363 . T) (-4374 . T))
+((-4382 . T) (-4372 . T) (-4383 . T))
NIL
-(-818)
+(-822)
((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object.")))
NIL
NIL
-(-819 R S)
+(-823 R S)
((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f,{} r,{} i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity.")))
NIL
NIL
-(-820 R)
+(-824 R)
((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
-((-4370 |has| |#1| (-834)))
-((|HasCategory| |#1| (QUOTE (-834))) (-3994 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-834)))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (-3994 (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-21))))
-(-821 A S)
-((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|operator| (($ |#2| (|NonNegativeInteger|)) "\\spad{operator(s,{}n)} returns an operator object with external name \\spad{`s'},{} and of arity \\spad{`n'}.") (($ |#2|) "\\spad{operator(s)} returns an operator object with external name \\spad{`s'},{} and of arbitrary arity.")) (|arity| ((|Arity| $) "\\spad{arity(op)} returns the arity of the operator `op'.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of `op'.")))
+((-4379 |has| |#1| (-839)))
+((|HasCategory| |#1| (QUOTE (-839))) (-3998 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-839)))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (-3998 (|HasCategory| |#1| (QUOTE (-839))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-21))))
+(-825 A S)
+((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator `op'.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of `op'.")))
NIL
NIL
-(-822 S)
-((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|operator| (($ |#1| (|NonNegativeInteger|)) "\\spad{operator(s,{}n)} returns an operator object with external name \\spad{`s'},{} and of arity \\spad{`n'}.") (($ |#1|) "\\spad{operator(s)} returns an operator object with external name \\spad{`s'},{} and of arbitrary arity.")) (|arity| ((|Arity| $) "\\spad{arity(op)} returns the arity of the operator `op'.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of `op'.")))
+(-826 S)
+((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator `op'.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of `op'.")))
NIL
NIL
-(-823 R)
+(-827 R)
((|constructor| (NIL "Algebra of ADDITIVE operators over a ring.")))
-((-4368 |has| |#1| (-170)) (-4367 |has| |#1| (-170)) (-4370 . T))
-((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))))
-(-824)
+((-4377 |has| |#1| (-171)) (-4376 |has| |#1| (-171)) (-4379 . T))
+((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))))
+(-828)
((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages).")))
NIL
NIL
-(-825)
+(-829)
+((|constructor| (NIL "This the datatype for an operator-signature pair.")) (|construct| (($ (|Identifier|) (|Signature|)) "\\spad{construct(op,{}sig)} construct a signature-operator with operator name `op',{} and signature `sig'.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of \\spad{`x'}.")))
+NIL
+NIL
+(-830)
((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-826)
+(-831)
((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,{}start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,{}start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,{}start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}cons,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,{}routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")))
NIL
NIL
-(-827)
+(-832)
((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-828 R S)
+(-833 R S)
((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f,{} r,{} p,{} m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity.")))
NIL
NIL
-(-829 R)
+(-834 R)
((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
-((-4370 |has| |#1| (-834)))
-((|HasCategory| |#1| (QUOTE (-834))) (-3994 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-834)))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (-3994 (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-21))))
-(-830)
+((-4379 |has| |#1| (-839)))
+((|HasCategory| |#1| (QUOTE (-839))) (-3998 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-839)))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (-3998 (|HasCategory| |#1| (QUOTE (-839))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-21))))
+(-835)
((|constructor| (NIL "Ordered finite sets.")))
NIL
NIL
-(-831 -4082 S)
+(-836 -3084 S)
((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering.")))
NIL
NIL
-(-832)
+(-837)
((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline")))
NIL
NIL
-(-833 S)
+(-838 S)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0.")))
NIL
NIL
-(-834)
+(-839)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0.")))
-((-4370 . T))
+((-4379 . T))
NIL
-(-835 S)
+(-840 S)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set.")))
NIL
NIL
-(-836)
+(-841)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set.")))
NIL
NIL
-(-837 S R)
+(-842 S R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
NIL
-((|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-170))))
-(-838 R)
+((|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-171))))
+(-843 R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
-((-4367 . T) (-4368 . T) (-4370 . T))
+((-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-839 R C)
+(-844 R C)
((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use.")))
NIL
-((|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-546))))
-(-840 R |sigma| -1538)
+((|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550))))
+(-845 R |sigma| -2465)
((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable.")))
-((-4367 . T) (-4368 . T) (-4370 . T))
-((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-358))))
-(-841 |x| R |sigma| -1538)
+((-4376 . T) (-4377 . T) (-4379 . T))
+((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-362))))
+(-846 |x| R |sigma| -2465)
((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")))
-((-4367 . T) (-4368 . T) (-4370 . T))
-((|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-358))))
-(-842 R)
+((-4376 . T) (-4377 . T) (-4379 . T))
+((|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-362))))
+(-847 R)
((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))))
-(-843)
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))))
+(-848)
((|constructor| (NIL "Semigroups with compatible ordering.")))
NIL
NIL
-(-844)
+(-849)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}")))
NIL
NIL
-(-845 S)
+(-850 S)
((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|SingleInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeByteIfCan!| (((|SingleInteger|) $ (|Byte|)) "\\spad{writeByteIfCan!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every write attempt,{} which is overkill.}")))
NIL
NIL
-(-846)
+(-851)
((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|SingleInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeByteIfCan!| (((|SingleInteger|) $ (|Byte|)) "\\spad{writeByteIfCan!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every write attempt,{} which is overkill.}")))
NIL
NIL
-(-847)
+(-852)
((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.")))
NIL
NIL
-(-848)
+(-853)
((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}.")))
NIL
NIL
-(-849)
+(-854)
((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.")))
NIL
NIL
-(-850 |VariableList|)
+(-855 |VariableList|)
((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed")))
NIL
NIL
-(-851 R |vl| |wl| |wtlevel|)
+(-856 R |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-4368 |has| |#1| (-170)) (-4367 |has| |#1| (-170)) (-4370 . T))
-((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))))
-(-852 R PS UP)
+((-4377 |has| |#1| (-171)) (-4376 |has| |#1| (-171)) (-4379 . T))
+((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))))
+(-857 R PS UP)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,{}dd,{}ns,{}ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
NIL
NIL
-(-853 R |x| |pt|)
+(-858 R |x| |pt|)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
NIL
NIL
-(-854 |p|)
+(-859 |p|)
((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
-((-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
+((-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-855 |p|)
+(-860 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
+((-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-856 |p|)
+(-861 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
-((|HasCategory| (-855 |#1|) (QUOTE (-894))) (|HasCategory| (-855 |#1|) (LIST (QUOTE -1023) (QUOTE (-1158)))) (|HasCategory| (-855 |#1|) (QUOTE (-143))) (|HasCategory| (-855 |#1|) (QUOTE (-145))) (|HasCategory| (-855 |#1|) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| (-855 |#1|) (QUOTE (-1007))) (|HasCategory| (-855 |#1|) (QUOTE (-807))) (-3994 (|HasCategory| (-855 |#1|) (QUOTE (-807))) (|HasCategory| (-855 |#1|) (QUOTE (-836)))) (|HasCategory| (-855 |#1|) (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| (-855 |#1|) (QUOTE (-1133))) (|HasCategory| (-855 |#1|) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| (-855 |#1|) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| (-855 |#1|) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| (-855 |#1|) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| (-855 |#1|) (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| (-855 |#1|) (QUOTE (-229))) (|HasCategory| (-855 |#1|) (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| (-855 |#1|) (LIST (QUOTE -508) (QUOTE (-1158)) (LIST (QUOTE -855) (|devaluate| |#1|)))) (|HasCategory| (-855 |#1|) (LIST (QUOTE -304) (LIST (QUOTE -855) (|devaluate| |#1|)))) (|HasCategory| (-855 |#1|) (LIST (QUOTE -281) (LIST (QUOTE -855) (|devaluate| |#1|)) (LIST (QUOTE -855) (|devaluate| |#1|)))) (|HasCategory| (-855 |#1|) (QUOTE (-302))) (|HasCategory| (-855 |#1|) (QUOTE (-539))) (|HasCategory| (-855 |#1|) (QUOTE (-836))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-855 |#1|) (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-855 |#1|) (QUOTE (-894)))) (|HasCategory| (-855 |#1|) (QUOTE (-143)))))
-(-857 |p| PADIC)
+((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((|HasCategory| (-860 |#1|) (QUOTE (-899))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| (-860 |#1|) (QUOTE (-144))) (|HasCategory| (-860 |#1|) (QUOTE (-146))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-860 |#1|) (QUOTE (-1012))) (|HasCategory| (-860 |#1|) (QUOTE (-811))) (-3998 (|HasCategory| (-860 |#1|) (QUOTE (-811))) (|HasCategory| (-860 |#1|) (QUOTE (-841)))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| (-860 |#1|) (QUOTE (-1138))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| (-860 |#1|) (QUOTE (-232))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -512) (QUOTE (-1163)) (LIST (QUOTE -860) (|devaluate| |#1|)))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -308) (LIST (QUOTE -860) (|devaluate| |#1|)))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -285) (LIST (QUOTE -860) (|devaluate| |#1|)) (LIST (QUOTE -860) (|devaluate| |#1|)))) (|HasCategory| (-860 |#1|) (QUOTE (-306))) (|HasCategory| (-860 |#1|) (QUOTE (-543))) (|HasCategory| (-860 |#1|) (QUOTE (-841))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-860 |#1|) (QUOTE (-899)))) (-3998 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-860 |#1|) (QUOTE (-899)))) (|HasCategory| (-860 |#1|) (QUOTE (-144)))))
+(-862 |p| PADIC)
((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}.")))
-((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
-((|HasCategory| |#2| (QUOTE (-894))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| |#2| (QUOTE (-807))) (-3994 (|HasCategory| |#2| (QUOTE (-807))) (|HasCategory| |#2| (QUOTE (-836)))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (LIST (QUOTE -508) (QUOTE (-1158)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -281) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-302))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-836))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-894)))) (|HasCategory| |#2| (QUOTE (-143)))))
-(-858 S T$)
+((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((|HasCategory| |#2| (QUOTE (-899))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-811))) (-3998 (|HasCategory| |#2| (QUOTE (-811))) (|HasCategory| |#2| (QUOTE (-841)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-1138))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-841))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (-3998 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#2| (QUOTE (-144)))))
+(-863 S T$)
((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,{}t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#2| (QUOTE (-1082)))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#2| (QUOTE (-1082)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848))))))
-(-859)
+((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-1087)))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-1087)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))))
+(-864)
((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value.")))
NIL
NIL
-(-860)
+(-865)
((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.")))
NIL
NIL
-(-861 CF1 CF2)
+(-866 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented")))
NIL
NIL
-(-862 |ComponentFunction|)
+(-867 |ComponentFunction|)
((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,{}c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}.")))
NIL
NIL
-(-863 CF1 CF2)
+(-868 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented")))
NIL
NIL
-(-864 |ComponentFunction|)
+(-869 |ComponentFunction|)
((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,{}c2,{}c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}.")))
NIL
NIL
-(-865)
+(-870)
((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result.")))
NIL
NIL
-(-866 CF1 CF2)
+(-871 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,{}x)} \\undocumented")))
NIL
NIL
-(-867 |ComponentFunction|)
+(-872 |ComponentFunction|)
((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,{}i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,{}c2,{}c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}.")))
NIL
NIL
-(-868)
+(-873)
((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,{}2,{}3,{}...,{}n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,{}l1,{}l2,{}..,{}ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,{}l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,{}2,{}4],{}[2,{}3,{}5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,{}st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,{}l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|Integer|)) (|List| (|Integer|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")) (|partitions| (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l)} is the stream of all \\indented{1}{partitions whose number of} \\indented{1}{parts and largest part are no greater than \\spad{p} and \\spad{l}.}") (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{partitions(n)} is the stream of all partitions of \\spad{n}.") (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l,{}n)} is the stream of partitions \\indented{1}{of \\spad{n} whose number of parts is no greater than \\spad{p}} \\indented{1}{and whose largest part is no greater than \\spad{l}.}")))
NIL
NIL
-(-869 R)
+(-874 R)
((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself.")))
NIL
NIL
-(-870 R S L)
+(-875 R S L)
((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,{}r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-871 S)
+(-876 S)
((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches.")))
NIL
NIL
-(-872 |Base| |Subject| |Pat|)
+(-877 |Base| |Subject| |Pat|)
((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat.")))
NIL
-((-12 (-4081 (|HasCategory| |#2| (QUOTE (-1034)))) (-4081 (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-1158)))))) (-12 (|HasCategory| |#2| (QUOTE (-1034))) (-4081 (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-1158)))))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-1158)))))
-(-873 R A B)
+((-12 (-3304 (|HasCategory| |#2| (QUOTE (-1039)))) (-3304 (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-1163)))))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (-3304 (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-1163)))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-1163)))))
+(-878 R A B)
((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))].")))
NIL
NIL
-(-874 R S)
+(-879 R S)
((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-875 R -1787)
+(-880 R -1866)
((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
NIL
NIL
-(-876 R S)
+(-881 R S)
((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f,{} p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}.")))
NIL
NIL
-(-877 R)
+(-882 R)
((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0")))
NIL
NIL
-(-878 |VarSet|)
+(-883 |VarSet|)
((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2,{} .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1,{} l2,{} .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list.")))
NIL
NIL
-(-879 UP R)
+(-884 UP R)
((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,{}q)} \\undocumented")))
NIL
NIL
-(-880)
+(-885)
((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-881 UP -3085)
+(-886 UP -3215)
((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented")))
NIL
NIL
-(-882)
+(-887)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st,{}tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,{}routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}")))
NIL
NIL
-(-883)
+(-888)
((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-884 A S)
+(-889 A S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
NIL
NIL
-(-885 S)
+(-890 S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
-((-4370 . T))
+((-4379 . T))
NIL
-(-886 S)
+(-891 S)
((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))))
-(-887 |n| R)
+((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
+(-892 |n| R)
((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}")))
NIL
NIL
-(-888 S)
+(-893 S)
((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.")))
-((-4370 . T))
+((-4379 . T))
NIL
-(-889 S)
+(-894 S)
((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,{}0,{}1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,{}20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}.")))
NIL
NIL
-(-890 S)
+(-895 S)
((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
-((-4370 . T))
-((-3994 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-836)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-836))))
-(-891 R E |VarSet| S)
+((-4379 . T))
+((-3998 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-841)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-841))))
+(-896 R E |VarSet| S)
((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-892 R S)
+(-897 R S)
((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-893 S)
+(-898 S)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-143))))
-(-894)
+((|HasCategory| |#1| (QUOTE (-144))))
+(-899)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
-((-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
+((-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-895 |p|)
+(-900 |p|)
((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
-((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
-((|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| $ (QUOTE (-363))))
-(-896 R0 -3085 UP UPUP R)
+((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-144))) (|HasCategory| $ (QUOTE (-367))))
+(-901 R0 -3215 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-897 UP UPUP R)
+(-902 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-898 UP UPUP)
+(-903 UP UPUP)
((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}")))
NIL
NIL
-(-899 R)
+(-904 R)
((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,{}denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,{}x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,{}n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction.")))
-((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
+((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-900 R)
+(-905 R)
((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num,{} facdenom,{} var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf,{} var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var.")))
NIL
NIL
-(-901 E OV R P)
+(-906 E OV R P)
((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-902)
+(-907)
((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}.")))
NIL
NIL
-(-903 -3085)
+(-908 -3215)
((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}.")))
NIL
NIL
-(-904 R)
+(-909 R)
((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R}).")))
NIL
NIL
-(-905)
+(-910)
((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}")))
-((-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
+((-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-906)
+(-911)
((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
-(((-4375 "*") . T))
+(((-4384 "*") . T))
NIL
-(-907 -3085 P)
+(-912 -3215 P)
((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented")))
NIL
NIL
-(-908 |xx| -3085)
+(-913 |xx| -3215)
((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented")))
NIL
NIL
-(-909 R |Var| |Expon| GR)
+(-914 R |Var| |Expon| GR)
((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}")))
NIL
NIL
-(-910 S)
+(-915 S)
((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,{}theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}theta,{}seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}t,{}seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,{}x,{}seg)} plots the graph of \\spad{y = f(x)} on a interval")))
NIL
NIL
-(-911)
+(-916)
((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s,{}t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,{}f2,{}f3,{}f4,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")))
NIL
NIL
-(-912)
+(-917)
((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}.")))
NIL
NIL
-(-913)
+(-918)
((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented")))
NIL
NIL
-(-914 R -3085)
+(-919 R -3215)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
NIL
NIL
-(-915)
+(-920)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}.")))
NIL
NIL
-(-916 S A B)
+(-921 S A B)
((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B).")))
NIL
NIL
-(-917 S R -3085)
+(-922 S R -3215)
((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-918 I)
+(-923 I)
((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n,{} pat,{} res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-919 S E)
+(-924 S E)
((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,{}...,{}en),{} pat,{} res)} matches the pattern \\spad{pat} to \\spad{f(e1,{}...,{}en)}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-920 S R L)
+(-925 S R L)
((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l,{} pat,{} res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-921 S E V R P)
+(-926 S E V R P)
((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -871) (|devaluate| |#1|))))
-(-922 R -3085 -1787)
+((|HasCategory| |#3| (LIST (QUOTE -876) (|devaluate| |#1|))))
+(-927 R -3215 -1866)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
NIL
NIL
-(-923 -1787)
+(-928 -1866)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}.")))
NIL
NIL
-(-924 S R Q)
+(-929 S R Q)
((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b,{} pat,{} res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-925 S)
+(-930 S)
((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion).")))
NIL
NIL
-(-926 S R P)
+(-931 S R P)
((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj,{} lpat,{} res,{} match)} matches the product of patterns \\spad{reduce(*,{}lpat)} to the product of subjects \\spad{reduce(*,{}lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj,{} lpat,{} op,{} res,{} match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}.")))
NIL
NIL
-(-927)
+(-932)
((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n,{} n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!,{} n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,{}[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,{}x)} computed by solving the differential equation \\spad{differentiate(E(n,{}x),{}x) = n E(n-1,{}x)} where \\spad{E(0,{}x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,{}1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,{}x)} computed by solving the differential equation \\spad{differentiate(B(n,{}x),{}x) = n B(n-1,{}x)} where \\spad{B(0,{}x) = 1} and initial condition comes from \\spad{B(n) = B(n,{}0)}.")))
NIL
NIL
-(-928 R)
+(-933 R)
((|constructor| (NIL "This domain implements points in coordinate space")))
-((-4374 . T) (-4373 . T))
-((-3994 (-12 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (-3994 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| (-554) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-713))) (|HasCategory| |#1| (QUOTE (-1034))) (-12 (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1034)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))))
-(-929 |lv| R)
+((-4383 . T) (-4382 . T))
+((-3998 (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3998 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#1| (QUOTE (-1039))) (-12 (|HasCategory| |#1| (QUOTE (-992))) (|HasCategory| |#1| (QUOTE (-1039)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+(-934 |lv| R)
((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}.")))
NIL
NIL
-(-930 |TheField| |ThePols|)
+(-935 |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term")))
NIL
-((|HasCategory| |#1| (QUOTE (-834))))
-(-931 R S)
+((|HasCategory| |#1| (QUOTE (-839))))
+(-936 R S)
((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f,{} p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}.")))
NIL
NIL
-(-932 |x| R)
+(-937 |x| R)
((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p,{} x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,{}Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}.")))
NIL
NIL
-(-933 S R E |VarSet|)
+(-938 S R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-894))) (|HasAttribute| |#2| (QUOTE -4371)) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#4| (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#4| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#4| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#4| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-836))))
-(-934 R E |VarSet|)
+((|HasCategory| |#2| (QUOTE (-899))) (|HasAttribute| |#2| (QUOTE -4380)) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#4| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#4| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#4| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#4| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-841))))
+(-939 R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
-(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-6 -4371)) (-4368 . T) (-4367 . T) (-4370 . T))
+(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-6 -4380)) (-4377 . T) (-4376 . T) (-4379 . T))
NIL
-(-935 E V R P -3085)
+(-940 E V R P -3215)
((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-936 E |Vars| R P S)
+(-941 E |Vars| R P S)
((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap,{} coefmap,{} p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}")))
NIL
NIL
-(-937 R)
+(-942 R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
-(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-6 -4371)) (-4368 . T) (-4367 . T) (-4370 . T))
-((|HasCategory| |#1| (QUOTE (-894))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-170))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (-12 (|HasCategory| (-1158) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-374))))) (-12 (|HasCategory| (-1158) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-554))))) (-12 (|HasCategory| (-1158) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374)))))) (-12 (|HasCategory| (-1158) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554)))))) (-12 (|HasCategory| (-1158) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-358))) (|HasAttribute| |#1| (QUOTE -4371)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-143)))))
-(-938 E V R P -3085)
+(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-6 -4380)) (-4377 . T) (-4376 . T) (-4379 . T))
+((|HasCategory| |#1| (QUOTE (-899))) (-3998 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3998 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3998 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3998 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| (-1163) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| (-1163) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| (-1163) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| (-1163) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| (-1163) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3998 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4380)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (-3998 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(-943 E V R P -3215)
((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented")))
NIL
-((|HasCategory| |#3| (QUOTE (-446))))
-(-939)
+((|HasCategory| |#3| (QUOTE (-450))))
+(-944)
((|constructor| (NIL "This domain represents network port numbers (notable \\spad{TCP} and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer \\spad{`n'}.")))
NIL
NIL
-(-940)
+(-945)
((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-941 R L)
+(-946 R L)
((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op,{} m)} returns the matrix A such that \\spad{A w = (W',{}W'',{}...,{}W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L),{} m}.")))
NIL
NIL
-(-942 A B)
+(-947 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")))
NIL
NIL
-(-943 S)
+(-948 S)
((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed")))
-((-4374 . T) (-4373 . T))
-((-3994 (-12 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (-3994 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| (-554) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))))
-(-944)
+((-4383 . T) (-4382 . T))
+((-3998 (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3998 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+(-949)
((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}.")))
NIL
NIL
-(-945 -3085)
+(-950 -3215)
((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}.")))
NIL
NIL
-(-946 I)
+(-951 I)
((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,{}b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime")))
NIL
NIL
-(-947)
+(-952)
((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter.")))
NIL
NIL
-(-948 R E)
+(-953 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-6 -4371)) (-4367 . T) (-4368 . T) (-4370 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-546))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-130)))) (|HasAttribute| |#1| (QUOTE -4371)))
-(-949 A B)
+(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-6 -4380)) (-4376 . T) (-4377 . T) (-4379 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-550))) (-3998 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-3998 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-130)))) (|HasAttribute| |#1| (QUOTE -4380)))
+(-954 A B)
((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented")))
-((-4370 -12 (|has| |#2| (-467)) (|has| |#1| (-467))))
-((-3994 (-12 (|HasCategory| |#1| (QUOTE (-780))) (|HasCategory| |#2| (QUOTE (-780)))) (-12 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#2| (QUOTE (-836))))) (-12 (|HasCategory| |#1| (QUOTE (-780))) (|HasCategory| |#2| (QUOTE (-780)))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-780))) (|HasCategory| |#2| (QUOTE (-780))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-780))) (|HasCategory| |#2| (QUOTE (-780))))) (-12 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#2| (QUOTE (-467)))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#2| (QUOTE (-467)))) (-12 (|HasCategory| |#1| (QUOTE (-713))) (|HasCategory| |#2| (QUOTE (-713))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-363)))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#2| (QUOTE (-467)))) (-12 (|HasCategory| |#1| (QUOTE (-713))) (|HasCategory| |#2| (QUOTE (-713)))) (-12 (|HasCategory| |#1| (QUOTE (-780))) (|HasCategory| |#2| (QUOTE (-780))))) (-12 (|HasCategory| |#1| (QUOTE (-713))) (|HasCategory| |#2| (QUOTE (-713)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#2| (QUOTE (-836)))))
-(-950)
+((-4379 -12 (|has| |#2| (-471)) (|has| |#1| (-471))))
+((-3998 (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-784)))) (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-841))))) (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-784)))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-784))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-784))))) (-12 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#2| (QUOTE (-471)))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#2| (QUOTE (-471)))) (-12 (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-717))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-367)))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#2| (QUOTE (-471)))) (-12 (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-717)))) (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-784))))) (-12 (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-717)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-841)))))
+(-955)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Symbol|) (|SExpression|)) "\\spad{property(n,{}val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Symbol|) $) "\\spad{name(p)} returns the name of property \\spad{p}")))
NIL
NIL
-(-951 T$)
+(-956 T$)
((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|equivOperands| (((|Pair| $ $) $) "\\spad{equivOperands p} extracts the operands to the logical equivalence; otherwise errors.")) (|equiv?| (((|Boolean|) $) "\\spad{equiv? p} is \\spad{true} when \\spad{`p'} is a logical equivalence.")) (|impliesOperands| (((|Pair| $ $) $) "\\spad{impliesOperands p} extracts the operands to the logical implication; otherwise errors.")) (|implies?| (((|Boolean|) $) "\\spad{implies? p} is \\spad{true} when \\spad{`p'} is a logical implication.")) (|orOperands| (((|Pair| $ $) $) "\\spad{orOperands p} extracts the operands to the logical disjunction; otherwise errors.")) (|or?| (((|Boolean|) $) "\\spad{or? p} is \\spad{true} when \\spad{`p'} is a logical disjunction.")) (|andOperands| (((|Pair| $ $) $) "\\spad{andOperands p} extracts the operands of the logical conjunction; otherwise errors.")) (|and?| (((|Boolean|) $) "\\spad{and? p} is \\spad{true} when \\spad{`p'} is a logical conjunction.")) (|notOperand| (($ $) "\\spad{notOperand returns} the operand to the logical `not' operator; otherwise errors.")) (|not?| (((|Boolean|) $) "\\spad{not? p} is \\spad{true} when \\spad{`p'} is a logical negation")) (|variable| (((|Symbol|) $) "\\spad{variable p} extracts the variable name from \\spad{`p'}; otherwise errors.")) (|variable?| (((|Boolean|) $) "variables? \\spad{p} returns \\spad{true} when \\spad{`p'} really is a variable.")) (|term| ((|#1| $) "\\spad{term p} extracts the term value from \\spad{`p'}; otherwise errors.")) (|term?| (((|Boolean|) $) "\\spad{term? p} returns \\spad{true} when \\spad{`p'} really is a term")) (|variables| (((|Set| (|Symbol|)) $) "\\spad{variables(p)} returns the set of propositional variables appearing in the proposition \\spad{`p'}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional variable.") (($ |#1|) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional formula")))
NIL
NIL
-(-952)
+(-957)
((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,{}q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,{}q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|or| (($ $ $) "\\spad{p or q} returns the logical disjunction of \\spad{`p'},{} \\spad{`q'}.")) (|and| (($ $ $) "\\spad{p and q} returns the logical conjunction of \\spad{`p'},{} \\spad{`q'}.")) (|not| (($ $) "\\spad{not p} returns the logical negation of \\spad{`p'}.")))
NIL
NIL
-(-953 S)
+(-958 S)
((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}.")))
-((-4373 . T) (-4374 . T))
+((-4382 . T) (-4383 . T))
NIL
-(-954 R |polR|)
+(-959 R |polR|)
((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")))
NIL
-((|HasCategory| |#1| (QUOTE (-446))))
-(-955)
+((|HasCategory| |#1| (QUOTE (-450))))
+(-960)
((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted.")))
NIL
NIL
-(-956)
+(-961)
((|constructor| (NIL "\\indented{1}{Partition is an OrderedCancellationAbelianMonoid which is used} as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|Integer|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{powers(\\spad{li})} returns a list of 2-element lists. For each 2-element list,{} the first element is an entry of \\spad{li} and the second element is the multiplicity with which the first element occurs in \\spad{li}. There is a 2-element list for each value occurring in \\spad{l}.")) (|partition| (($ (|List| (|Integer|))) "\\spad{partition(\\spad{li})} converts a list of integers \\spad{li} to a partition")))
NIL
NIL
-(-957 S |Coef| |Expon| |Var|)
+(-962 S |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}.")))
NIL
NIL
-(-958 |Coef| |Expon| |Var|)
+(-963 |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}.")))
-(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4367 . T) (-4368 . T) (-4370 . T))
+(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-959)
+(-964)
((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-960 S R E |VarSet| P)
+(-965 S R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
NIL
-((|HasCategory| |#2| (QUOTE (-546))))
-(-961 R E |VarSet| P)
+((|HasCategory| |#2| (QUOTE (-550))))
+(-966 R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
-((-4373 . T))
+((-4382 . T))
NIL
-(-962 R E V P)
+(-967 R E V P)
((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-302)))) (|HasCategory| |#1| (QUOTE (-446))))
-(-963 K)
+((-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-306)))) (|HasCategory| |#1| (QUOTE (-450))))
+(-968 K)
((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m,{} v)} returns \\spad{[[C_1,{} g_1],{}...,{}[C_k,{} g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,{}...,{}C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M,{} A,{} sig,{} der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M,{} sig,{} der)} returns \\spad{[R,{} A,{} A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation.")))
NIL
NIL
-(-964 |VarSet| E RC P)
+(-969 |VarSet| E RC P)
((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")))
NIL
NIL
-(-965 R)
+(-970 R)
((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}.")))
-((-4374 . T) (-4373 . T))
+((-4383 . T) (-4382 . T))
NIL
-(-966 R1 R2)
+(-971 R1 R2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented")))
NIL
NIL
-(-967 R)
+(-972 R)
((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")))
NIL
NIL
-(-968 K)
+(-973 K)
((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,{}n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise.")))
NIL
NIL
-(-969 R E OV PPR)
+(-974 R E OV PPR)
((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-970 K R UP -3085)
+(-975 K R UP -3215)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
-(-971 |vl| |nv|)
+(-976 |vl| |nv|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals")))
NIL
NIL
-(-972 R |Var| |Expon| |Dpoly|)
+(-977 R |Var| |Expon| |Dpoly|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-302)))))
-(-973 R E V P TS)
+((-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-306)))))
+(-978 R E V P TS)
((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-974)
+(-979)
((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,{}\"a\")} creates a new equation.")))
NIL
NIL
-(-975 A B R S)
+(-980 A B R S)
((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}.")))
NIL
NIL
-(-976 A S)
+(-981 A S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-894))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-302))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| |#2| (QUOTE (-807))) (|HasCategory| |#2| (QUOTE (-836))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#2| (QUOTE (-1133))))
-(-977 S)
+((|HasCategory| |#2| (QUOTE (-899))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-811))) (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-1138))))
+(-982 S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
-((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
+((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-978 |n| K)
+(-983 |n| K)
((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}.")))
NIL
NIL
-(-979)
+(-984)
((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted.")))
NIL
NIL
-(-980 S)
+(-985 S)
((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end.")))
-((-4373 . T) (-4374 . T))
+((-4382 . T) (-4383 . T))
NIL
-(-981 S R)
+(-986 S R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-1043))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-836))) (|HasCategory| |#2| (QUOTE (-285))))
-(-982 R)
+((|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-1048))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-289))))
+(-987 R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
-((-4366 |has| |#1| (-285)) (-4367 . T) (-4368 . T) (-4370 . T))
+((-4375 |has| |#1| (-289)) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-983 QR R QS S)
+(-988 QR R QS S)
((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}.")))
NIL
NIL
-(-984 R)
+(-989 R)
((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
-((-4366 |has| |#1| (-285)) (-4367 . T) (-4368 . T) (-4370 . T))
-((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-358))) (-3994 (|HasCategory| |#1| (QUOTE (-285))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-285))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#1| (LIST (QUOTE -508) (QUOTE (-1158)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -281) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-1043))) (|HasCategory| |#1| (QUOTE (-539))))
-(-985 S)
+((-4375 |has| |#1| (-289)) (-4376 . T) (-4377 . T) (-4379 . T))
+((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-362))) (-3998 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (-3998 (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-1048))) (|HasCategory| |#1| (QUOTE (-543))))
+(-990 S)
((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
-((-4373 . T) (-4374 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))))
-(-986 S)
+((-4382 . T) (-4383 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
+(-991 S)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-987)
+(-992)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-988 -3085 UP UPUP |radicnd| |n|)
+(-993 -3215 UP UPUP |radicnd| |n|)
((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x}).")))
-((-4366 |has| (-402 |#2|) (-358)) (-4371 |has| (-402 |#2|) (-358)) (-4365 |has| (-402 |#2|) (-358)) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
-((|HasCategory| (-402 |#2|) (QUOTE (-143))) (|HasCategory| (-402 |#2|) (QUOTE (-145))) (|HasCategory| (-402 |#2|) (QUOTE (-344))) (-3994 (|HasCategory| (-402 |#2|) (QUOTE (-358))) (|HasCategory| (-402 |#2|) (QUOTE (-344)))) (|HasCategory| (-402 |#2|) (QUOTE (-358))) (|HasCategory| (-402 |#2|) (QUOTE (-363))) (-3994 (-12 (|HasCategory| (-402 |#2|) (QUOTE (-229))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))) (|HasCategory| (-402 |#2|) (QUOTE (-344)))) (-3994 (-12 (|HasCategory| (-402 |#2|) (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))) (-12 (|HasCategory| (-402 |#2|) (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| (-402 |#2|) (QUOTE (-344))))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -627) (QUOTE (-554)))) (-3994 (|HasCategory| (-402 |#2|) (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| (-402 |#2|) (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))) (-12 (|HasCategory| (-402 |#2|) (QUOTE (-229))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))))
-(-989 |bb|)
+((-4375 |has| (-406 |#2|) (-362)) (-4380 |has| (-406 |#2|) (-362)) (-4374 |has| (-406 |#2|) (-362)) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((|HasCategory| (-406 |#2|) (QUOTE (-144))) (|HasCategory| (-406 |#2|) (QUOTE (-146))) (|HasCategory| (-406 |#2|) (QUOTE (-348))) (-3998 (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (QUOTE (-348)))) (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (QUOTE (-367))) (-3998 (-12 (|HasCategory| (-406 |#2|) (QUOTE (-232))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (|HasCategory| (-406 |#2|) (QUOTE (-348)))) (-3998 (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-406 |#2|) (QUOTE (-348))))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -631) (QUOTE (-558)))) (-3998 (|HasCategory| (-406 |#2|) (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (-12 (|HasCategory| (-406 |#2|) (QUOTE (-232))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))))
+(-994 |bb|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")))
-((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
-((|HasCategory| (-554) (QUOTE (-894))) (|HasCategory| (-554) (LIST (QUOTE -1023) (QUOTE (-1158)))) (|HasCategory| (-554) (QUOTE (-143))) (|HasCategory| (-554) (QUOTE (-145))) (|HasCategory| (-554) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| (-554) (QUOTE (-1007))) (|HasCategory| (-554) (QUOTE (-807))) (-3994 (|HasCategory| (-554) (QUOTE (-807))) (|HasCategory| (-554) (QUOTE (-836)))) (|HasCategory| (-554) (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| (-554) (QUOTE (-1133))) (|HasCategory| (-554) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| (-554) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| (-554) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| (-554) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| (-554) (QUOTE (-229))) (|HasCategory| (-554) (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| (-554) (LIST (QUOTE -508) (QUOTE (-1158)) (QUOTE (-554)))) (|HasCategory| (-554) (LIST (QUOTE -304) (QUOTE (-554)))) (|HasCategory| (-554) (LIST (QUOTE -281) (QUOTE (-554)) (QUOTE (-554)))) (|HasCategory| (-554) (QUOTE (-302))) (|HasCategory| (-554) (QUOTE (-539))) (|HasCategory| (-554) (QUOTE (-836))) (|HasCategory| (-554) (LIST (QUOTE -627) (QUOTE (-554)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-554) (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-554) (QUOTE (-894)))) (|HasCategory| (-554) (QUOTE (-143)))))
-(-990)
+((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((|HasCategory| (-558) (QUOTE (-899))) (|HasCategory| (-558) (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| (-558) (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-146))) (|HasCategory| (-558) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-558) (QUOTE (-1012))) (|HasCategory| (-558) (QUOTE (-811))) (-3998 (|HasCategory| (-558) (QUOTE (-811))) (|HasCategory| (-558) (QUOTE (-841)))) (|HasCategory| (-558) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-1138))) (|HasCategory| (-558) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| (-558) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| (-558) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| (-558) (QUOTE (-232))) (|HasCategory| (-558) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-558) (LIST (QUOTE -512) (QUOTE (-1163)) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -308) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -285) (QUOTE (-558)) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-306))) (|HasCategory| (-558) (QUOTE (-543))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-558) (LIST (QUOTE -631) (QUOTE (-558)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-899)))) (-3998 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-899)))) (|HasCategory| (-558) (QUOTE (-144)))))
+(-995)
((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}.")))
NIL
NIL
-(-991)
+(-996)
((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size().")))
NIL
NIL
-(-992 RP)
+(-997 RP)
((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers.")))
NIL
NIL
-(-993 S)
+(-998 S)
((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number.")))
NIL
NIL
-(-994 A S)
+(-999 A S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4374)) (|HasCategory| |#2| (QUOTE (-1082))))
-(-995 S)
+((|HasAttribute| |#1| (QUOTE -4383)) (|HasCategory| |#2| (QUOTE (-1087))))
+(-1000 S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
NIL
-(-996 S)
+(-1001 S)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
NIL
NIL
-(-997)
+(-1002)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
-((-4366 . T) (-4371 . T) (-4365 . T) (-4368 . T) (-4367 . T) ((-4375 "*") . T) (-4370 . T))
+((-4375 . T) (-4380 . T) (-4374 . T) (-4377 . T) (-4376 . T) ((-4384 "*") . T) (-4379 . T))
NIL
-(-998 R -3085)
+(-1003 R -3215)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function.")))
NIL
NIL
-(-999 R -3085)
+(-1004 R -3215)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function.")))
NIL
NIL
-(-1000 -3085 UP)
+(-1005 -3215 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-1001 -3085 UP)
+(-1006 -3215 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use.")))
NIL
NIL
-(-1002 S)
+(-1007 S)
((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,{}u,{}n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-1003 F1 UP UPUP R F2)
+(-1008 F1 UP UPUP R F2)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,{}u,{}g)} \\undocumented")))
NIL
NIL
-(-1004)
+(-1009)
((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied.")))
NIL
NIL
-(-1005 |Pol|)
+(-1010 |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-1006 |Pol|)
+(-1011 |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-1007)
+(-1012)
((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats.")))
NIL
NIL
-(-1008)
+(-1013)
((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,{}lv,{}eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}.")))
NIL
NIL
-(-1009 |TheField|)
+(-1014 |TheField|)
((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number")))
-((-4366 . T) (-4371 . T) (-4365 . T) (-4368 . T) (-4367 . T) ((-4375 "*") . T) (-4370 . T))
-((-3994 (|HasCategory| (-402 (-554)) (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| (-402 (-554)) (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| (-402 (-554)) (LIST (QUOTE -1023) (QUOTE (-554)))))
-(-1010 -3085 L)
+((-4375 . T) (-4380 . T) (-4374 . T) (-4377 . T) (-4376 . T) ((-4384 "*") . T) (-4379 . T))
+((-3998 (|HasCategory| (-406 (-558)) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| (-406 (-558)) (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| (-406 (-558)) (LIST (QUOTE -1028) (QUOTE (-558)))))
+(-1015 -3215 L)
((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}.")))
NIL
NIL
-(-1011 S)
+(-1016 S)
((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,{}m)} same as \\spad{setelt(n,{}m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,{}m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1082))))
-(-1012 R E V P)
+((|HasCategory| |#1| (QUOTE (-1087))))
+(-1017 R E V P)
((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4374 . T) (-4373 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1082))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#4| (QUOTE (-1082))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -601) (QUOTE (-848)))))
-(-1013 R)
+((-4383 . T) (-4382 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -605) (QUOTE (-853)))))
+(-1018 R)
((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4375 "*"))))
-(-1014 R)
+((|HasAttribute| |#1| (QUOTE (-4384 "*"))))
+(-1019 R)
((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-302))))
-(-1015 S)
+((-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-306))))
+(-1020 S)
((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i,{} r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-1016)
+(-1021)
((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals.")))
NIL
NIL
-(-1017 S)
+(-1022 S)
((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r,{} i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-1018 S)
+(-1023 S)
((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used.")))
NIL
NIL
-(-1019 -3085 |Expon| |VarSet| |FPol| |LFPol|)
+(-1024 -3215 |Expon| |VarSet| |FPol| |LFPol|)
((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring")))
-(((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
+(((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-1020)
+(-1025)
((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}")))
-((-4373 . T) (-4374 . T))
-((-12 (|HasCategory| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2564) (QUOTE (-1158))) (LIST (QUOTE |:|) (QUOTE -2701) (QUOTE (-52))))))) (-3994 (|HasCategory| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (QUOTE (-1082))) (|HasCategory| (-52) (QUOTE (-1082)))) (-3994 (|HasCategory| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| (-52) (QUOTE (-1082))) (|HasCategory| (-52) (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (LIST (QUOTE -602) (QUOTE (-530)))) (-12 (|HasCategory| (-52) (QUOTE (-1082))) (|HasCategory| (-52) (LIST (QUOTE -304) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (QUOTE (-1082))) (|HasCategory| (-1158) (QUOTE (-836))) (|HasCategory| (-52) (QUOTE (-1082))) (-3994 (|HasCategory| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| (-52) (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| (-52) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (LIST (QUOTE -601) (QUOTE (-848)))))
-(-1021)
+((-4382 . T) (-4383 . T))
+((-12 (|HasCategory| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2700) (QUOTE (-1163))) (LIST (QUOTE |:|) (QUOTE -2981) (QUOTE (-52))))))) (-3998 (|HasCategory| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (QUOTE (-1087))) (|HasCategory| (-52) (QUOTE (-1087)))) (-3998 (|HasCategory| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-52) (QUOTE (-1087))) (|HasCategory| (-52) (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| (-52) (QUOTE (-1087))) (|HasCategory| (-52) (LIST (QUOTE -308) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (QUOTE (-1087))) (|HasCategory| (-1163) (QUOTE (-841))) (|HasCategory| (-52) (QUOTE (-1087))) (-3998 (|HasCategory| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-52) (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-52) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (LIST (QUOTE -605) (QUOTE (-853)))))
+(-1026)
((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'.")))
NIL
NIL
-(-1022 A S)
+(-1027 A S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")))
NIL
NIL
-(-1023 S)
+(-1028 S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")))
NIL
NIL
-(-1024 Q R)
+(-1029 Q R)
((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible.")))
NIL
NIL
-(-1025)
+(-1030)
((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,{}m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,{}m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,{}g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,{}g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented")))
NIL
NIL
-(-1026 UP)
+(-1031 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1027 R)
+(-1032 R)
((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}.")))
NIL
NIL
-(-1028 R)
+(-1033 R)
((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-1029 T$)
+(-1034 T$)
((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of \\spad{`c'}.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of \\spad{`c'}.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of \\spad{`c'}.")))
NIL
NIL
-(-1030 T$)
+(-1035 T$)
((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space.")))
NIL
NIL
-(-1031 R |ls|)
+(-1036 R |ls|)
((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}.")))
-((-4374 . T) (-4373 . T))
-((-12 (|HasCategory| (-767 |#1| (-850 |#2|)) (QUOTE (-1082))) (|HasCategory| (-767 |#1| (-850 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -767) (|devaluate| |#1|) (LIST (QUOTE -850) (|devaluate| |#2|)))))) (|HasCategory| (-767 |#1| (-850 |#2|)) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| (-767 |#1| (-850 |#2|)) (QUOTE (-1082))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| (-850 |#2|) (QUOTE (-363))) (|HasCategory| (-767 |#1| (-850 |#2|)) (LIST (QUOTE -601) (QUOTE (-848)))))
-(-1032)
+((-4383 . T) (-4382 . T))
+((-12 (|HasCategory| (-771 |#1| (-855 |#2|)) (QUOTE (-1087))) (|HasCategory| (-771 |#1| (-855 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -771) (|devaluate| |#1|) (LIST (QUOTE -855) (|devaluate| |#2|)))))) (|HasCategory| (-771 |#1| (-855 |#2|)) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-771 |#1| (-855 |#2|)) (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| (-855 |#2|) (QUOTE (-367))) (|HasCategory| (-771 |#1| (-855 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))))
+(-1037)
((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-1033 S)
+(-1038 S)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
NIL
NIL
-(-1034)
+(-1039)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
-((-4370 . T))
+((-4379 . T))
NIL
-(-1035 |xx| -3085)
+(-1040 |xx| -3215)
((|constructor| (NIL "This package exports rational interpolation algorithms")))
NIL
NIL
-(-1036 S |m| |n| R |Row| |Col|)
+(-1041 S |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
NIL
-((|HasCategory| |#4| (QUOTE (-302))) (|HasCategory| |#4| (QUOTE (-358))) (|HasCategory| |#4| (QUOTE (-546))) (|HasCategory| |#4| (QUOTE (-170))))
-(-1037 |m| |n| R |Row| |Col|)
+((|HasCategory| |#4| (QUOTE (-306))) (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (QUOTE (-550))) (|HasCategory| |#4| (QUOTE (-171))))
+(-1042 |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
-((-4373 . T) (-4368 . T) (-4367 . T))
+((-4382 . T) (-4377 . T) (-4376 . T))
NIL
-(-1038 |m| |n| R)
+(-1043 |m| |n| R)
((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}.")))
-((-4373 . T) (-4368 . T) (-4367 . T))
-((-3994 (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1082))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -602) (QUOTE (-530)))) (-3994 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-358)))) (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-1082))) (|HasCategory| |#3| (QUOTE (-302))) (|HasCategory| |#3| (QUOTE (-546))) (|HasCategory| |#3| (QUOTE (-170))) (-12 (|HasCategory| |#3| (QUOTE (-1082))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -601) (QUOTE (-848)))))
-(-1039 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+((-4382 . T) (-4377 . T) (-4376 . T))
+((-3998 (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-534)))) (-3998 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362)))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (QUOTE (-306))) (|HasCategory| |#3| (QUOTE (-550))) (|HasCategory| |#3| (QUOTE (-171))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -605) (QUOTE (-853)))))
+(-1044 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
NIL
-(-1040 R)
+(-1045 R)
((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ $ |#1|) "\\spad{x*r} returns the right multiplication of the module element \\spad{x} by the ring element \\spad{r}.")))
NIL
NIL
-(-1041)
+(-1046)
((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline")))
NIL
NIL
-(-1042 S)
+(-1047 S)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
NIL
NIL
-(-1043)
+(-1048)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
-((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
+((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-1044 |TheField| |ThePolDom|)
+(-1049 |TheField| |ThePolDom|)
((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval")))
NIL
NIL
-(-1045)
+(-1050)
((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-4361 . T) (-4365 . T) (-4360 . T) (-4371 . T) (-4372 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
+((-4370 . T) (-4374 . T) (-4369 . T) (-4380 . T) (-4381 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-1046)
+(-1051)
((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}")))
-((-4373 . T) (-4374 . T))
-((-12 (|HasCategory| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2564) (QUOTE (-1158))) (LIST (QUOTE |:|) (QUOTE -2701) (QUOTE (-52))))))) (-3994 (|HasCategory| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (QUOTE (-1082))) (|HasCategory| (-52) (QUOTE (-1082)))) (-3994 (|HasCategory| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| (-52) (QUOTE (-1082))) (|HasCategory| (-52) (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (LIST (QUOTE -602) (QUOTE (-530)))) (-12 (|HasCategory| (-52) (QUOTE (-1082))) (|HasCategory| (-52) (LIST (QUOTE -304) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (QUOTE (-1082))) (|HasCategory| (-1158) (QUOTE (-836))) (|HasCategory| (-52) (QUOTE (-1082))) (-3994 (|HasCategory| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| (-52) (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| (-52) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (LIST (QUOTE -601) (QUOTE (-848)))))
-(-1047 S R E V)
+((-4382 . T) (-4383 . T))
+((-12 (|HasCategory| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2700) (QUOTE (-1163))) (LIST (QUOTE |:|) (QUOTE -2981) (QUOTE (-52))))))) (-3998 (|HasCategory| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (QUOTE (-1087))) (|HasCategory| (-52) (QUOTE (-1087)))) (-3998 (|HasCategory| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-52) (QUOTE (-1087))) (|HasCategory| (-52) (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| (-52) (QUOTE (-1087))) (|HasCategory| (-52) (LIST (QUOTE -308) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (QUOTE (-1087))) (|HasCategory| (-1163) (QUOTE (-841))) (|HasCategory| (-52) (QUOTE (-1087))) (-3998 (|HasCategory| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-52) (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-52) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (LIST (QUOTE -605) (QUOTE (-853)))))
+(-1052 S R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#4| (LIST (QUOTE -602) (QUOTE (-1158)))))
-(-1048 R E V)
+((|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -982) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (LIST (QUOTE -606) (QUOTE (-1163)))))
+(-1053 R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
-(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-6 -4371)) (-4368 . T) (-4367 . T) (-4370 . T))
+(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-6 -4380)) (-4377 . T) (-4376 . T) (-4379 . T))
NIL
-(-1049)
+(-1054)
((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'.")))
NIL
NIL
-(-1050 S |TheField| |ThePols|)
+(-1055 S |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-1051 |TheField| |ThePols|)
+(-1056 |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-1052 R E V P TS)
+(-1057 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1053 S R E V P)
+(-1058 S R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#5| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
NIL
NIL
-(-1054 R E V P)
+(-1059 R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
-((-4374 . T) (-4373 . T))
+((-4383 . T) (-4382 . T))
NIL
-(-1055 R E V P TS)
+(-1060 R E V P TS)
((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-1056)
+(-1061)
((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted.")))
NIL
NIL
-(-1057 |f|)
+(-1062 |f|)
((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-1058 |Base| R -3085)
+(-1063 |Base| R -3215)
((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
NIL
NIL
-(-1059 |Base| R -3085)
+(-1064 |Base| R -3215)
((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}.")))
NIL
NIL
-(-1060 R |ls|)
+(-1065 R |ls|)
((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,{}univ?,{}check?)} returns the same as \\spad{rur(lp,{}true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,{}true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,{}univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,{}univ?)} returns a list of items \\spad{[u,{}lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,{}lc]} in \\spad{rur(lp,{}univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor.")))
NIL
NIL
-(-1061 UP SAE UPA)
+(-1066 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1062 R UP M)
+(-1067 R UP M)
((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
-((-4366 |has| |#1| (-358)) (-4371 |has| |#1| (-358)) (-4365 |has| |#1| (-358)) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
-((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-344))) (-3994 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-363))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-344)))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158))))) (-12 (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (QUOTE (-358)))))
-(-1063 UP SAE UPA)
+((-4375 |has| |#1| (-362)) (-4380 |has| |#1| (-362)) (-4374 |has| |#1| (-362)) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-348))) (-3998 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-348)))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (-3998 (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))))
+(-1068 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1064)
+(-1069)
((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable")))
NIL
NIL
-(-1065)
+(-1070)
((|constructor| (NIL "This is the category of Spad syntax objects.")))
NIL
NIL
-(-1066 S)
+(-1071 S)
((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(x,{} y)} to determine whether \\spad{x < y (f(x,{}y) < 0),{} x = y (f(x,{}y) = 0)},{} or \\spad{x > y (f(x,{}y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache.")))
NIL
NIL
-(-1067)
+(-1072)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,{}s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(n,{}s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `failed'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope.")))
NIL
NIL
-(-1068 R)
+(-1073 R)
((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}")))
NIL
NIL
-(-1069 R)
+(-1074 R)
((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline")))
-(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-6 -4371)) (-4368 . T) (-4367 . T) (-4370 . T))
-((|HasCategory| |#1| (QUOTE (-894))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-170))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (-12 (|HasCategory| (-1070 (-1158)) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-374))))) (-12 (|HasCategory| (-1070 (-1158)) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-554))))) (-12 (|HasCategory| (-1070 (-1158)) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374)))))) (-12 (|HasCategory| (-1070 (-1158)) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554)))))) (-12 (|HasCategory| (-1070 (-1158)) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasAttribute| |#1| (QUOTE -4371)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-143)))))
-(-1070 S)
+(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-6 -4380)) (-4377 . T) (-4376 . T) (-4379 . T))
+((|HasCategory| |#1| (QUOTE (-899))) (-3998 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3998 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3998 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3998 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| (-1075 (-1163)) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| (-1075 (-1163)) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| (-1075 (-1163)) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| (-1075 (-1163)) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| (-1075 (-1163)) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3998 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4380)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (-3998 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(-1075 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u})).")))
NIL
NIL
-(-1071 R S)
+(-1076 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l),{} f(l+k),{}...,{} f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}l..h)} returns a new segment \\spad{f(l)..f(h)}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-834))))
-(-1072)
+((|HasCategory| |#1| (QUOTE (-839))))
+(-1077)
((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment \\spad{`s'}. If \\spad{`s'} designates an infinite interval,{} then the returns list a singleton list.")))
NIL
NIL
-(-1073 R S)
+(-1078 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,{}v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}.")))
NIL
NIL
-(-1074 S)
+(-1079 S)
((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,{}a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1082))))
-(-1075 S)
+((|HasCategory| |#1| (QUOTE (-1087))))
+(-1080 S)
((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note: \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints.")))
NIL
NIL
-(-1076 S)
+(-1081 S)
((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#1| (QUOTE (-1082))))
-(-1077 S L)
+((|HasCategory| |#1| (QUOTE (-839))) (|HasCategory| |#1| (QUOTE (-1087))))
+(-1082 S L)
((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l),{} f(l+k),{} ...,{} f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l,{} l+k,{} ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,{}3,{}5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l,{} l+k,{} ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4,{} 7..9] = [1,{}2,{}3,{}4,{}7,{}8,{}9]}.")))
NIL
NIL
-(-1078)
+(-1083)
((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'.")))
NIL
NIL
-(-1079 A S)
+(-1084 A S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
NIL
NIL
-(-1080 S)
+(-1085 S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
-((-4363 . T))
+((-4372 . T))
NIL
-(-1081 S)
+(-1086 S)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1082)
+(-1087)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1083 |m| |n|)
+(-1088 |m| |n|)
((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")))
NIL
NIL
-(-1084 S)
+(-1089 S)
((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}")))
-((-4373 . T) (-4363 . T) (-4374 . T))
-((-3994 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))))
-(-1085 |Str| |Sym| |Int| |Flt| |Expr|)
+((-4382 . T) (-4372 . T) (-4383 . T))
+((-3998 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+(-1090 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp.")))
NIL
NIL
-(-1086)
+(-1091)
((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values.")))
NIL
NIL
-(-1087 |Str| |Sym| |Int| |Flt| |Expr|)
+(-1092 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types.")))
NIL
NIL
-(-1088 R FS)
+(-1093 R FS)
((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,{}ftype,{}body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program.")))
NIL
NIL
-(-1089 R E V P TS)
+(-1094 R E V P TS)
((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-1090 R E V P TS)
+(-1095 R E V P TS)
((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1091 R E V P)
+(-1096 R E V P)
((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,{}mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
-((-4374 . T) (-4373 . T))
+((-4383 . T) (-4382 . T))
NIL
-(-1092)
+(-1097)
((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,{}0,{}0] < [0,{}3,{}0] < [0,{}0,{}3] < [2,{}1,{}0] < [2,{}0,{}1] < [0,{}2,{}1] < [1,{}2,{}0] < [1,{}0,{}2] < [0,{}1,{}2] < [1,{}1,{}1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,{}0,{}3] < [0,{}1,{}2] < [0,{}2,{}1] < [0,{}3,{}0] < [1,{}0,{}2] < [1,{}1,{}1] < [1,{}2,{}0] < [2,{}0,{}1] < [2,{}1,{}0] < [3,{}0,{}0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,{}m,{}k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,{}1,{}...,{}(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,{}...,{}(m-1)} into {\\em 0,{}...,{}(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,{}m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,{}3)} is 10,{} since {\\em [0,{}0,{}3],{} [0,{}1,{}2],{} [0,{}2,{}1],{} [0,{}3,{}0],{} [1,{}0,{}2],{} [1,{}1,{}1],{} [1,{}2,{}0],{} [2,{}0,{}1],{} [2,{}1,{}0],{} [3,{}0,{}0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,{}lattP,{}constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,{}beta,{}C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,{}1,{}0)}. Also,{} {\\em new(1,{}1,{}0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,{}gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,{}...,{}n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,{}...,{}n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,{}beta,{}C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em \\spad{pi}} in the corresponding double coset. Note: the resulting permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,{}beta,{}\\spad{pi})}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em \\spad{pi}} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha,{} beta,{} \\spad{pi}}. Note: The permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em \\spad{pi}} is the lexicographical smallest permutation in the coset). For details see James/Kerber.")))
NIL
NIL
-(-1093 S)
+(-1098 S)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1094)
+(-1099)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1095 |dimtot| |dim1| S)
+(-1100 |dimtot| |dim1| S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4367 |has| |#3| (-1034)) (-4368 |has| |#3| (-1034)) (-4370 |has| |#3| (-6 -4370)) ((-4375 "*") |has| |#3| (-170)) (-4373 . T))
-((-3994 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-713))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-780))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-834))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1034))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1082))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -885) (QUOTE (-1158)))))) (-3994 (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-1082)))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1034)))) (-12 (|HasCategory| |#3| (QUOTE (-1034))) (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-1034))) (|HasCategory| |#3| (LIST (QUOTE -885) (QUOTE (-1158))))) (-12 (|HasCategory| |#3| (QUOTE (-1082))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1082))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (|HasCategory| |#3| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#3| (QUOTE (-358))) (-3994 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-1034)))) (-3994 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-358)))) (|HasCategory| |#3| (QUOTE (-1034))) (|HasCategory| |#3| (QUOTE (-780))) (-3994 (|HasCategory| |#3| (QUOTE (-780))) (|HasCategory| |#3| (QUOTE (-834)))) (|HasCategory| |#3| (QUOTE (-834))) (|HasCategory| |#3| (QUOTE (-713))) (|HasCategory| |#3| (QUOTE (-170))) (-3994 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-1034)))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#3| (LIST (QUOTE -885) (QUOTE (-1158)))) (-3994 (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#3| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-713))) (|HasCategory| |#3| (QUOTE (-780))) (|HasCategory| |#3| (QUOTE (-834))) (|HasCategory| |#3| (QUOTE (-1034))) (|HasCategory| |#3| (QUOTE (-1082)))) (-3994 (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#3| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-1034)))) (-3994 (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#3| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-1034)))) (-3994 (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#3| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-1034)))) (-3994 (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#3| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1034)))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (LIST (QUOTE -885) (QUOTE (-1158))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-130)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-170)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-229)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-358)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-363)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-713)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-780)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-834)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-1034)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-1082))))) (-3994 (-12 (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-713))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-780))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-834))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-1034))) (-12 (|HasCategory| |#3| (QUOTE (-1082))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554)))))) (-3994 (-12 (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-713))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-780))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-834))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-1034))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-1082))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554)))))) (|HasCategory| (-554) (QUOTE (-836))) (-12 (|HasCategory| |#3| (QUOTE (-1034))) (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1034)))) (-12 (|HasCategory| |#3| (QUOTE (-1034))) (|HasCategory| |#3| (LIST (QUOTE -885) (QUOTE (-1158))))) (-3994 (|HasCategory| |#3| (QUOTE (-1034))) (-12 (|HasCategory| |#3| (QUOTE (-1082))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554)))))) (-12 (|HasCategory| |#3| (QUOTE (-1082))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-1082)))) (|HasAttribute| |#3| (QUOTE -4370)) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| |#3| (QUOTE (-1082))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))))
-(-1096 R |x|)
+((-4376 |has| |#3| (-1039)) (-4377 |has| |#3| (-1039)) (-4379 |has| |#3| (-6 -4379)) ((-4384 "*") |has| |#3| (-171)) (-4382 . T))
+((-3998 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-839))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))))) (-3998 (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1087)))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1039)))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#3| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#3| (QUOTE (-362))) (-3998 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1039)))) (-3998 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362)))) (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (QUOTE (-784))) (-3998 (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (QUOTE (-839)))) (|HasCategory| |#3| (QUOTE (-839))) (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-171))) (-3998 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-1039)))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (-3998 (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (QUOTE (-839))) (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (QUOTE (-1087)))) (-3998 (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1039)))) (-3998 (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1039)))) (-3998 (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1039)))) (-3998 (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1039)))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1087))) (-3998 (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-130)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-171)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-232)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-362)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-367)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-717)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-784)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-839)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1039)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1087))))) (-3998 (-12 (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-839))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1039))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-3998 (-12 (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-839))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-841))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1039)))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163))))) (-3998 (|HasCategory| |#3| (QUOTE (-1039))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1087)))) (|HasAttribute| |#3| (QUOTE -4379)) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))))
+(-1101 R |x|)
((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
NIL
-((|HasCategory| |#1| (QUOTE (-446))))
-(-1097)
+((|HasCategory| |#1| (QUOTE (-450))))
+(-1102)
((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,{}s,{}t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}")))
NIL
NIL
-(-1098 R -3085)
+(-1103 R -3215)
((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1099 R)
+(-1104 R)
((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1100)
+(-1105)
((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,{}t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}.")))
NIL
NIL
-(-1101)
+(-1106)
((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}")))
NIL
NIL
-(-1102)
+(-1107)
((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,{}m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|\\/| (($ $ $) "\\spad{n} \\spad{\\/} \\spad{m} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|/\\| (($ $ $) "\\spad{n} \\spad{/\\} \\spad{m} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (~ (($ $) "\\spad{~ n} returns the bit-by-bit logical {\\em not } of the single integer \\spad{n}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|min| (($) "\\spad{min()} returns the smallest single integer.")) (|max| (($) "\\spad{max()} returns the largest single integer.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality.")))
-((-4361 . T) (-4365 . T) (-4360 . T) (-4371 . T) (-4372 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
+((-4370 . T) (-4374 . T) (-4369 . T) (-4380 . T) (-4381 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-1103 S)
+(-1108 S)
((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}.")))
-((-4373 . T) (-4374 . T))
+((-4382 . T) (-4383 . T))
NIL
-(-1104 S |ndim| R |Row| |Col|)
+(-1109 S |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
NIL
-((|HasCategory| |#3| (QUOTE (-358))) (|HasAttribute| |#3| (QUOTE (-4375 "*"))) (|HasCategory| |#3| (QUOTE (-170))))
-(-1105 |ndim| R |Row| |Col|)
+((|HasCategory| |#3| (QUOTE (-362))) (|HasAttribute| |#3| (QUOTE (-4384 "*"))) (|HasCategory| |#3| (QUOTE (-171))))
+(-1110 |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
-((-4373 . T) (-4367 . T) (-4368 . T) (-4370 . T))
+((-4382 . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-1106 R |Row| |Col| M)
+(-1111 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,{}B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}.")))
NIL
NIL
-(-1107 R |VarSet|)
+(-1112 R |VarSet|)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute.")))
-(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-6 -4371)) (-4368 . T) (-4367 . T) (-4370 . T))
-((|HasCategory| |#1| (QUOTE (-894))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-170))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-374))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-554))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-358))) (|HasAttribute| |#1| (QUOTE -4371)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-143)))))
-(-1108 |Coef| |Var| SMP)
+(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-6 -4380)) (-4377 . T) (-4376 . T) (-4379 . T))
+((|HasCategory| |#1| (QUOTE (-899))) (-3998 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3998 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3998 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3998 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3998 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4380)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (-3998 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(-1113 |Coef| |Var| SMP)
((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
-(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4368 . T) (-4367 . T) (-4370 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-358))))
-(-1109 R E V P)
+(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4377 . T) (-4376 . T) (-4379 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (-3998 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-362))))
+(-1114 R E V P)
((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}")))
-((-4374 . T) (-4373 . T))
+((-4383 . T) (-4382 . T))
NIL
-(-1110 UP -3085)
+(-1115 UP -3215)
((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented")))
NIL
NIL
-(-1111 R)
+(-1116 R)
((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,{}lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,{}x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function.")))
NIL
NIL
-(-1112 R)
+(-1117 R)
((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect,{} var,{} n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1,{} func2,{} newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned.")))
NIL
NIL
-(-1113 R)
+(-1118 R)
((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs,{} lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,{}x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,{}x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq.")))
NIL
NIL
-(-1114 S A)
+(-1119 S A)
((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,{}f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,{}f)} \\undocumented")))
NIL
-((|HasCategory| |#1| (QUOTE (-836))))
-(-1115 R)
+((|HasCategory| |#1| (QUOTE (-841))))
+(-1120 R)
((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")))
NIL
NIL
-(-1116 R)
+(-1121 R)
((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} [props],{} prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{}[props],{}prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,{}p1,{}...,{}pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,{}[[r0],{}[r1],{}...,{}[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,{}[p0,{}p1,{}...,{}pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,{}R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,{}[[lr0],{}[lr1],{}...,{}[lrn],{}[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,{}[p0,{}p1,{}...,{}pn,{}p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,{}p1,{}p2,{}...,{}pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,{}[[p0],{}[p1],{}...,{}[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,{}[p0,{}p1,{}...,{}pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,{}i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,{}[x,{}y,{}z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,{}p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,{}i,{}p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,{}[p0,{}p1,{}...,{}pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,{}s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1117)
+(-1122)
((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}")))
NIL
NIL
-(-1118)
+(-1123)
((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful.")))
NIL
NIL
-(-1119)
+(-1124)
((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of \\spad{`s'}. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of \\spad{`s'}. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of \\spad{`s'}. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if \\spad{`s'} represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if \\spad{`s'} represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if \\spad{`s'} represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if \\spad{`s'} represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if \\spad{`s'} represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if \\spad{`s'} represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if \\spad{`s'} represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if \\spad{`s'} represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if \\spad{`s'} represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if \\spad{`s'} represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if \\spad{`s'} represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if \\spad{`s'} represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if \\spad{`s'} represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if \\spad{`s'} represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if \\spad{`s'} represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if \\spad{`s'} represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if \\spad{`s'} represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if \\spad{`s'} represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if \\spad{`s'} represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if \\spad{`s'} represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if \\spad{`s'} represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if \\spad{`s'} represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if \\spad{`s'} represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if \\spad{`s'} represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if \\spad{`s'} represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if \\spad{`s'} represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if \\spad{`s'} represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if \\spad{`s'} represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if \\spad{`s'} represents an `import' statement.")))
NIL
NIL
-(-1120)
+(-1125)
((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,{}o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.")))
NIL
NIL
-(-1121)
+(-1126)
((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,{}z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,{}z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,{}z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,{}z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,{}x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,{}x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,{}x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")))
NIL
NIL
-(-1122 V C)
+(-1127 V C)
((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}")))
NIL
NIL
-(-1123 V C)
+(-1128 V C)
((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned.")))
-((-4373 . T) (-4374 . T))
-((-12 (|HasCategory| (-1122 |#1| |#2|) (LIST (QUOTE -304) (LIST (QUOTE -1122) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1122 |#1| |#2|) (QUOTE (-1082)))) (|HasCategory| (-1122 |#1| |#2|) (QUOTE (-1082))) (-3994 (|HasCategory| (-1122 |#1| |#2|) (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| (-1122 |#1| |#2|) (LIST (QUOTE -304) (LIST (QUOTE -1122) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1122 |#1| |#2|) (QUOTE (-1082))))) (|HasCategory| (-1122 |#1| |#2|) (LIST (QUOTE -601) (QUOTE (-848)))))
-(-1124 |ndim| R)
+((-4382 . T) (-4383 . T))
+((-12 (|HasCategory| (-1127 |#1| |#2|) (LIST (QUOTE -308) (LIST (QUOTE -1127) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1127 |#1| |#2|) (QUOTE (-1087)))) (|HasCategory| (-1127 |#1| |#2|) (QUOTE (-1087))) (-3998 (|HasCategory| (-1127 |#1| |#2|) (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| (-1127 |#1| |#2|) (LIST (QUOTE -308) (LIST (QUOTE -1127) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1127 |#1| |#2|) (QUOTE (-1087))))) (|HasCategory| (-1127 |#1| |#2|) (LIST (QUOTE -605) (QUOTE (-853)))))
+(-1129 |ndim| R)
((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}.")))
-((-4370 . T) (-4362 |has| |#2| (-6 (-4375 "*"))) (-4373 . T) (-4367 . T) (-4368 . T))
-((|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-229))) (|HasAttribute| |#2| (QUOTE (-4375 "*"))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554)))) (-3994 (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-302))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (QUOTE (-358))) (-3994 (|HasAttribute| |#2| (QUOTE (-4375 "*"))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-229)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-170))))
-(-1125 S)
+((-4379 . T) (-4371 |has| |#2| (-6 (-4384 "*"))) (-4382 . T) (-4376 . T) (-4377 . T))
+((|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasAttribute| |#2| (QUOTE (-4384 "*"))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3998 (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-362))) (-3998 (|HasAttribute| |#2| (QUOTE (-4384 "*"))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-232)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-171))))
+(-1130 S)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
NIL
NIL
-(-1126)
+(-1131)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
-((-4374 . T) (-4373 . T))
+((-4383 . T) (-4382 . T))
NIL
-(-1127 R E V P TS)
+(-1132 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,{}E,{}V,{}P,{}TS)} and \\spad{RSETGCD(R,{}E,{}V,{}P,{}TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1128 R E V P)
+(-1133 R E V P)
((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4374 . T) (-4373 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1082))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#4| (QUOTE (-1082))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -601) (QUOTE (-848)))))
-(-1129 S)
+((-4383 . T) (-4382 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -605) (QUOTE (-853)))))
+(-1134 S)
((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4373 . T) (-4374 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))))
-(-1130 A S)
+((-4382 . T) (-4383 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
+(-1135 A S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
-(-1131 S)
+(-1136 S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
-(-1132 |Key| |Ent| |dent|)
+(-1137 |Key| |Ent| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4374 . T))
-((-12 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2564) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2701) (|devaluate| |#2|)))))) (-3994 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| |#2| (QUOTE (-1082)))) (-3994 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -602) (QUOTE (-530)))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-836))) (-3994 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))))
-(-1133)
+((-4383 . T))
+((-12 (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2700) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2981) (|devaluate| |#2|)))))) (-3998 (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-1087)))) (-3998 (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-841))) (-3998 (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (QUOTE (-1087))))
+(-1138)
((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping.")))
NIL
NIL
-(-1134 |Coef|)
+(-1139 |Coef|)
((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-1135 S)
+(-1140 S)
((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,{}u)}.")))
NIL
NIL
-(-1136 A B)
+(-1141 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,{}f,{}u)},{} where \\spad{u} is a finite stream \\spad{[x0,{}x1,{}...,{}xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,{}b),{} r1 = f(x1,{}r0),{}...,{} r(n) = f(xn,{}r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,{}h,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[y0,{}y1,{}y2,{}...]},{} where \\spad{y0 = h(x0,{}b)},{} \\spad{y1 = h(x1,{}y0)},{}\\spad{...} \\spad{yn = h(xn,{}y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,{}s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}...]) = [f(x0),{}f(x1),{}f(x2),{}..]}.")))
NIL
NIL
-(-1137 A B C)
+(-1142 A B C)
((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}st1,{}st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}..],{}[y0,{}y1,{}y2,{}..]) = [f(x0,{}y0),{}f(x1,{}y1),{}..]}.")))
NIL
NIL
-(-1138 S)
+(-1143 S)
((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
-((-4374 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| (-554) (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))))
-(-1139)
+((-4383 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
+(-1144)
((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string")))
-((-4374 . T) (-4373 . T))
+((-4383 . T) (-4382 . T))
NIL
-(-1140)
+(-1145)
NIL
-((-4374 . T) (-4373 . T))
-((-3994 (-12 (|HasCategory| (-142) (QUOTE (-836))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1082))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| (-142) (QUOTE (-836))) (|HasCategory| (-554) (QUOTE (-836))) (|HasCategory| (-142) (QUOTE (-1082))) (|HasCategory| (-142) (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| (-142) (QUOTE (-1082))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142))))))
-(-1141 |Entry|)
+((-4383 . T) (-4382 . T))
+((-3998 (-12 (|HasCategory| (-143) (QUOTE (-841))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))) (-12 (|HasCategory| (-143) (QUOTE (-1087))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (|HasCategory| (-143) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-143) (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-143) (QUOTE (-1087))) (|HasCategory| (-143) (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| (-143) (QUOTE (-1087))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))))
+(-1146 |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used.")))
-((-4373 . T) (-4374 . T))
-((-12 (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2564) (QUOTE (-1140))) (LIST (QUOTE |:|) (QUOTE -2701) (|devaluate| |#1|)))))) (-3994 (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (QUOTE (-1082))) (|HasCategory| |#1| (QUOTE (-1082)))) (-3994 (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (LIST (QUOTE -602) (QUOTE (-530)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (QUOTE (-1082))) (|HasCategory| (-1140) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082))) (-3994 (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (LIST (QUOTE -601) (QUOTE (-848)))))
-(-1142 A)
+((-4382 . T) (-4383 . T))
+((-12 (|HasCategory| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2700) (QUOTE (-1145))) (LIST (QUOTE |:|) (QUOTE -2981) (|devaluate| |#1|)))))) (-3998 (|HasCategory| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-1087)))) (-3998 (|HasCategory| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (QUOTE (-1087))) (|HasCategory| (-1145) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (-3998 (|HasCategory| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (LIST (QUOTE -605) (QUOTE (-853)))))
+(-1147 A)
((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}")))
NIL
-((|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))))
-(-1143 |Coef|)
+((|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))))
+(-1148 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1144 |Coef|)
+(-1149 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1145 R UP)
+(-1150 R UP)
((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p,{} q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p,{} q)} returns \\spad{[p0,{}...,{}pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p,{} q)}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-302))))
-(-1146 |n| R)
+((|HasCategory| |#1| (QUOTE (-306))))
+(-1151 |n| R)
((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,{}\\spad{li})} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,{}\\spad{li},{}p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,{}\\spad{li},{}b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,{}ind,{}p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,{}\\spad{li},{}i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,{}\\spad{li},{}p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,{}s2,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,{}p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,{}\\spad{li},{}i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,{}s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,{}n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented")))
NIL
NIL
-(-1147 S1 S2)
+(-1152 S1 S2)
((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} makes a form \\spad{s:t}")))
NIL
NIL
-(-1148)
+(-1153)
((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'.")))
NIL
NIL
-(-1149 |Coef| |var| |cen|)
+(-1154 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4375 "*") -3994 (-3726 (|has| |#1| (-358)) (|has| (-1156 |#1| |#2| |#3|) (-807))) (|has| |#1| (-170)) (-3726 (|has| |#1| (-358)) (|has| (-1156 |#1| |#2| |#3|) (-894)))) (-4366 -3994 (-3726 (|has| |#1| (-358)) (|has| (-1156 |#1| |#2| |#3|) (-807))) (|has| |#1| (-546)) (-3726 (|has| |#1| (-358)) (|has| (-1156 |#1| |#2| |#3|) (-894)))) (-4371 |has| |#1| (-358)) (-4365 |has| |#1| (-358)) (-4367 . T) (-4368 . T) (-4370 . T))
-((-3994 (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-894))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-1007))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -281) (LIST (QUOTE -1156) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1156) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -304) (LIST (QUOTE -1156) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -508) (QUOTE (-1158)) (LIST (QUOTE -1156) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -1023) (QUOTE (-1158)))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-170))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (-3994 (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-143)))) (-3994 (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-145)))) (-3994 (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-554)) (|devaluate| |#1|)))))) (-3994 (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-229))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-554)) (|devaluate| |#1|))))) (|HasCategory| (-554) (QUOTE (-1094))) (-3994 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-358))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-894))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -1023) (QUOTE (-1158)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-1007))) (|HasCategory| |#1| (QUOTE (-358)))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-546)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-358)))) (-3994 (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-358))))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -281) (LIST (QUOTE -1156) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1156) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -304) (LIST (QUOTE -1156) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -508) (QUOTE (-1158)) (LIST (QUOTE -1156) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-554))))) (|HasSignature| |#1| (LIST (QUOTE -3075) (LIST (|devaluate| |#1|) (QUOTE (-1158)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-554))))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-944))) (|HasCategory| |#1| (QUOTE (-1180))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasSignature| |#1| (LIST (QUOTE -2279) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1158))))) (|HasSignature| |#1| (LIST (QUOTE -2405) (LIST (LIST (QUOTE -631) (QUOTE (-1158))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-894))) (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-143))) (-3994 (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-894))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-546)))) (-3994 (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554)))))) (-3994 (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-894))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-170)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-894))) (|HasCategory| |#1| (QUOTE (-358)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-894))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-143)))))
-(-1150 R -3085)
+(((-4384 "*") -3998 (-2084 (|has| |#1| (-362)) (|has| (-1161 |#1| |#2| |#3|) (-811))) (|has| |#1| (-171)) (-2084 (|has| |#1| (-362)) (|has| (-1161 |#1| |#2| |#3|) (-899)))) (-4375 -3998 (-2084 (|has| |#1| (-362)) (|has| (-1161 |#1| |#2| |#3|) (-811))) (|has| |#1| (-550)) (-2084 (|has| |#1| (-362)) (|has| (-1161 |#1| |#2| |#3|) (-899)))) (-4380 |has| |#1| (-362)) (-4374 |has| |#1| (-362)) (-4376 . T) (-4377 . T) (-4379 . T))
+((-3998 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-1138))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -512) (QUOTE (-1163)) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3998 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-3998 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144)))) (-3998 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-146)))) (-3998 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))))) (-3998 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (|HasCategory| (-558) (QUOTE (-1099))) (-3998 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-362)))) (-3998 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-362)))) (-3998 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-362))))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-1138))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -512) (QUOTE (-1163)) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -3220) (LIST (|devaluate| |#1|) (QUOTE (-1163)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (-3998 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-1185))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -2543) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1163))))) (|HasSignature| |#1| (LIST (QUOTE -2671) (LIST (LIST (QUOTE -635) (QUOTE (-1163))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-144))) (-3998 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-550)))) (-3998 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-3998 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-171)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (-3998 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(-1155 R -3215)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
NIL
-(-1151 R)
+(-1156 R)
((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.")))
NIL
NIL
-(-1152 R S)
+(-1157 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1153 E OV R P)
+(-1158 E OV R P)
((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}.")))
NIL
NIL
-(-1154 R)
+(-1159 R)
((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
-(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4369 |has| |#1| (-358)) (-4371 |has| |#1| (-6 -4371)) (-4368 . T) (-4367 . T) (-4370 . T))
-((|HasCategory| |#1| (QUOTE (-894))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-170))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (-12 (|HasCategory| (-1064) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-374))))) (-12 (|HasCategory| (-1064) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-554))))) (-12 (|HasCategory| (-1064) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374)))))) (-12 (|HasCategory| (-1064) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554)))))) (-12 (|HasCategory| (-1064) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#1| (QUOTE (-229))) (|HasAttribute| |#1| (QUOTE -4371)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-143)))))
-(-1155 |Coef| |var| |cen|)
+(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4378 |has| |#1| (-362)) (-4380 |has| |#1| (-6 -4380)) (-4377 . T) (-4376 . T) (-4379 . T))
+((|HasCategory| |#1| (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3998 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3998 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (-3998 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3998 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3998 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1138))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-232))) (|HasAttribute| |#1| (QUOTE -4380)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (-3998 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(-1160 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
-(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-358)) (-4365 |has| |#1| (-358)) (-4367 . T) (-4368 . T) (-4370 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-170))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-554))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-554))) (|devaluate| |#1|)))) (|HasCategory| (-402 (-554)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-358))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-546)))) (-3994 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-546)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasSignature| |#1| (LIST (QUOTE -3075) (LIST (|devaluate| |#1|) (QUOTE (-1158)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-554)))))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-944))) (|HasCategory| |#1| (QUOTE (-1180))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasSignature| |#1| (LIST (QUOTE -2279) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1158))))) (|HasSignature| |#1| (LIST (QUOTE -2405) (LIST (LIST (QUOTE -631) (QUOTE (-1158))) (|devaluate| |#1|)))))))
-(-1156 |Coef| |var| |cen|)
+(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-362)) (-4374 |has| |#1| (-362)) (-4376 . T) (-4377 . T) (-4379 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3998 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-558)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-362))) (-3998 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-3998 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasSignature| |#1| (LIST (QUOTE -3220) (LIST (|devaluate| |#1|) (QUOTE (-1163)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558)))))) (-3998 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-1185))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -2543) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1163))))) (|HasSignature| |#1| (LIST (QUOTE -2671) (LIST (LIST (QUOTE -635) (QUOTE (-1163))) (|devaluate| |#1|)))))))
+(-1161 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4367 . T) (-4368 . T) (-4370 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-546))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-758)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-758)) (|devaluate| |#1|)))) (|HasCategory| (-758) (QUOTE (-1094))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-758))))) (|HasSignature| |#1| (LIST (QUOTE -3075) (LIST (|devaluate| |#1|) (QUOTE (-1158)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-758))))) (|HasCategory| |#1| (QUOTE (-358))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-944))) (|HasCategory| |#1| (QUOTE (-1180))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasSignature| |#1| (LIST (QUOTE -2279) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1158))))) (|HasSignature| |#1| (LIST (QUOTE -2405) (LIST (LIST (QUOTE -631) (QUOTE (-1158))) (|devaluate| |#1|)))))))
-(-1157)
+(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4376 . T) (-4377 . T) (-4379 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-550))) (-3998 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-762)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-762)) (|devaluate| |#1|)))) (|HasCategory| (-762) (QUOTE (-1099))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-762))))) (|HasSignature| |#1| (LIST (QUOTE -3220) (LIST (|devaluate| |#1|) (QUOTE (-1163)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-762))))) (|HasCategory| |#1| (QUOTE (-362))) (-3998 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-1185))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -2543) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1163))))) (|HasSignature| |#1| (LIST (QUOTE -2671) (LIST (LIST (QUOTE -635) (QUOTE (-1163))) (|devaluate| |#1|)))))))
+(-1162)
((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}")))
NIL
NIL
-(-1158)
+(-1163)
((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,{}[a1,{}...,{}an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s,{} [a1,{}...,{}an])} returns \\spad{s} arg-scripted by \\spad{[a1,{}...,{}an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s,{} [a1,{}...,{}an])} returns \\spad{s} superscripted by \\spad{[a1,{}...,{}an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s,{} [a1,{}...,{}an])} returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s,{} [a,{}b,{}c])} is equivalent to \\spad{script(s,{}[a,{}b,{}c,{}[],{}[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%.")))
NIL
NIL
-(-1159 R)
+(-1164 R)
((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r,{} n)} returns the vector of the elementary symmetric functions in \\spad{[r,{}r,{}...,{}r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,{}...,{}rn])} returns the vector of the elementary symmetric functions in the \\spad{\\spad{ri}'s}: \\spad{[r1 + ... + rn,{} r1 r2 + ... + r(n-1) rn,{} ...,{} r1 r2 ... rn]}.")))
NIL
NIL
-(-1160 R)
+(-1165 R)
((|constructor| (NIL "This domain implements symmetric polynomial")))
-(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-6 -4371)) (-4367 . T) (-4368 . T) (-4370 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-546))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| (-956) (QUOTE (-130))) (|HasCategory| |#1| (QUOTE (-546)))) (|HasAttribute| |#1| (QUOTE -4371)))
-(-1161)
+(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-6 -4380)) (-4376 . T) (-4377 . T) (-4379 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-550))) (-3998 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-3998 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| (-961) (QUOTE (-130))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasAttribute| |#1| (QUOTE -4380)))
+(-1166)
((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
NIL
NIL
-(-1162)
+(-1167)
((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,{}tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,{}tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,{}t,{}tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,{}t,{}tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}")))
NIL
NIL
-(-1163)
+(-1168)
((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{symbols,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: Integer,{} DoubleFloat,{} Symbol,{} String,{} SExpression. See Also: SExpression. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Symbol|))) "\\spad{x case Symbol} is \\spad{true} if \\spad{`x'} really is a Symbol") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Symbol|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Symbol|) (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Symbol|) $) "\\spad{autoCoerce(s)} forcibly extracts a symbo from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (((|Symbol|) $) "\\spad{coerce(s)} extracts a symbol from the syntax \\spad{`s'}.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax.")))
NIL
NIL
-(-1164 R)
+(-1169 R)
((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,{}lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,{}v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,{}v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,{}lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-1165)
+(-1170)
((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension()} returns a string representation of a filename extension for native modules.")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform()} returns a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system.")))
NIL
NIL
-(-1166 S)
+(-1171 S)
((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,{}b,{}c,{}d,{}e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,{}llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,{}pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,{}pr,{}r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record")))
NIL
NIL
-(-1167 S)
+(-1172 S)
((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau.")))
NIL
NIL
-(-1168 |Key| |Entry|)
+(-1173 |Key| |Entry|)
((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
-((-4373 . T) (-4374 . T))
-((-12 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2564) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2701) (|devaluate| |#2|)))))) (-3994 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| |#2| (QUOTE (-1082)))) (-3994 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -602) (QUOTE (-530)))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#2| (QUOTE (-1082))) (-3994 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -601) (QUOTE (-848)))))
-(-1169 R)
+((-4382 . T) (-4383 . T))
+((-12 (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2700) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2981) (|devaluate| |#2|)))))) (-3998 (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-1087)))) (-3998 (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-1087))) (-3998 (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))))
+(-1174 R)
((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}.")))
NIL
NIL
-(-1170 S |Key| |Entry|)
+(-1175 S |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
NIL
NIL
-(-1171 |Key| |Entry|)
+(-1176 |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
-((-4374 . T))
+((-4383 . T))
NIL
-(-1172 |Key| |Entry|)
+(-1177 |Key| |Entry|)
((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table.")))
NIL
NIL
-(-1173)
+(-1178)
((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it.")))
NIL
NIL
-(-1174 S)
+(-1179 S)
((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format.")))
NIL
NIL
-(-1175)
+(-1180)
((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")))
NIL
NIL
-(-1176)
+(-1181)
((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,{}\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,{}s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned.")))
NIL
NIL
-(-1177 R)
+(-1182 R)
((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented")))
NIL
NIL
-(-1178)
+(-1183)
((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1179 S)
+(-1184 S)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1180)
+(-1185)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1181 S)
+(-1186 S)
((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
-((-4374 . T) (-4373 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))))
-(-1182 S)
+((-4383 . T) (-4382 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
+(-1187 S)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1183)
+(-1188)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1184 R -3085)
+(-1189 R -3215)
((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
-(-1185 R |Row| |Col| M)
+(-1190 R |Row| |Col| M)
((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")))
NIL
NIL
-(-1186 R -3085)
+(-1191 R -3215)
((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -871) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -871) (|devaluate| |#1|)))))
-(-1187 S R E V P)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -876) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -876) (|devaluate| |#1|)))))
+(-1192 S R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
NIL
-((|HasCategory| |#4| (QUOTE (-363))))
-(-1188 R E V P)
+((|HasCategory| |#4| (QUOTE (-367))))
+(-1193 R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
-((-4374 . T) (-4373 . T))
+((-4383 . T) (-4382 . T))
NIL
-(-1189 |Coef|)
+(-1194 |Coef|)
((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
-(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4368 . T) (-4367 . T) (-4370 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-358))))
-(-1190 |Curve|)
+(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4377 . T) (-4376 . T) (-4379 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (-3998 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-362))))
+(-1195 |Curve|)
((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}.")))
NIL
NIL
-(-1191)
+(-1196)
((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,{}n,{}b,{}r,{}lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,{}sin(n - 1) a],{}...,{}[cos 2 a,{}sin 2 a],{}[cos a,{}sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,{}q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,{}x2,{}x3,{}c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point.")))
NIL
NIL
-(-1192 S)
+(-1197 S)
((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")))
NIL
-((|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))))
-(-1193 -3085)
+((|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
+(-1198 -3215)
((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")))
NIL
NIL
-(-1194)
+(-1199)
((|constructor| (NIL "This domain represents a type AST.")))
NIL
NIL
-(-1195)
+(-1200)
((|constructor| (NIL "The fundamental Type.")))
NIL
NIL
-(-1196 S)
+(-1201 S)
((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l,{} fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a,{} b,{} fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a,{} b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,{}...,{}bm],{}[a1,{}...,{}an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < \\spad{ai}}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,{}d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < \\spad{ai}\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b,{} c)} if neither is among the \\spad{ai}\\spad{'s}.}")))
NIL
-((|HasCategory| |#1| (QUOTE (-836))))
-(-1197)
+((|HasCategory| |#1| (QUOTE (-841))))
+(-1202)
((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,{}...,{}an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}.")))
NIL
NIL
-(-1198 S)
+(-1203 S)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
NIL
NIL
-(-1199)
+(-1204)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
-((-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
+((-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-1200 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1205 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}.")))
NIL
NIL
-(-1201 |Coef|)
+(-1206 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,{}k1,{}k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,{}k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = n0..infinity,{}a[n] * x**n)) = sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-358)) (-4365 |has| |#1| (-358)) (-4367 . T) (-4368 . T) (-4370 . T))
+(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-362)) (-4374 |has| |#1| (-362)) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-1202 S |Coef| UTS)
+(-1207 S |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-358))))
-(-1203 |Coef| UTS)
+((|HasCategory| |#2| (QUOTE (-362))))
+(-1208 |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}.")))
-(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-358)) (-4365 |has| |#1| (-358)) (-4367 . T) (-4368 . T) (-4370 . T))
+(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-362)) (-4374 |has| |#1| (-362)) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-1204 |Coef| UTS)
+(-1209 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
-(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-358)) (-4365 |has| |#1| (-358)) (-4367 . T) (-4368 . T) (-4370 . T))
-((-3994 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -281) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -508) (QUOTE (-1158)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-807)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-836)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-894)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1007)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1133)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-1158)))))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-170))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (-3994 (|HasCategory| |#1| (QUOTE (-143))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-143))))) (-3994 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-145))))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-554)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-229)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-554)) (|devaluate| |#1|))))) (|HasCategory| (-554) (QUOTE (-1094))) (-3994 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-358))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-894)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-1158))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1007)))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-546)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-807)))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-807)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-836))))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374)))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554)))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -281) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -508) (QUOTE (-1158)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-807)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-836)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-894)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1007)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1133)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-374))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-554))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-1158)))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1133)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -281) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -508) (QUOTE (-1158)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554)))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374)))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-554))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-374))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-554))))) (|HasSignature| |#1| (LIST (QUOTE -3075) (LIST (|devaluate| |#1|) (QUOTE (-1158)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-554))))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-944))) (|HasCategory| |#1| (QUOTE (-1180))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasSignature| |#1| (LIST (QUOTE -2279) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1158))))) (|HasSignature| |#1| (LIST (QUOTE -2405) (LIST (LIST (QUOTE -631) (QUOTE (-1158))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-836)))) (|HasCategory| |#2| (QUOTE (-894))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-539)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-302)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-143))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-143))))))
-(-1205 |Coef| |var| |cen|)
+(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-362)) (-4374 |has| |#1| (-362)) (-4376 . T) (-4377 . T) (-4379 . T))
+((-3998 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-811)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-841)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-899)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1012)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1138)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-1163)))))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3998 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-3998 (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-144))))) (-3998 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-146))))) (-3998 (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-232)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (|HasCategory| (-558) (QUOTE (-1099))) (-3998 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-899)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-1163))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1012)))) (-3998 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-811)))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-811)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-841))))) (-3998 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-811)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-841)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-899)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1012)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1138)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-1163)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1138)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -3220) (LIST (|devaluate| |#1|) (QUOTE (-1163)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (-3998 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-1185))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -2543) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1163))))) (|HasSignature| |#1| (LIST (QUOTE -2671) (LIST (LIST (QUOTE -635) (QUOTE (-1163))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-841)))) (|HasCategory| |#2| (QUOTE (-899))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-543)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-306)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-899)))) (-3998 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-144))))))
+(-1210 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4375 "*") -3994 (-3726 (|has| |#1| (-358)) (|has| (-1233 |#1| |#2| |#3|) (-807))) (|has| |#1| (-170)) (-3726 (|has| |#1| (-358)) (|has| (-1233 |#1| |#2| |#3|) (-894)))) (-4366 -3994 (-3726 (|has| |#1| (-358)) (|has| (-1233 |#1| |#2| |#3|) (-807))) (|has| |#1| (-546)) (-3726 (|has| |#1| (-358)) (|has| (-1233 |#1| |#2| |#3|) (-894)))) (-4371 |has| |#1| (-358)) (-4365 |has| |#1| (-358)) (-4367 . T) (-4368 . T) (-4370 . T))
-((-3994 (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-894))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-1007))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -281) (LIST (QUOTE -1233) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1233) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -304) (LIST (QUOTE -1233) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -508) (QUOTE (-1158)) (LIST (QUOTE -1233) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -1023) (QUOTE (-1158)))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-170))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (-3994 (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-143)))) (-3994 (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-145)))) (-3994 (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-554)) (|devaluate| |#1|)))))) (-3994 (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-229))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-554)) (|devaluate| |#1|))))) (|HasCategory| (-554) (QUOTE (-1094))) (-3994 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-358))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-894))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -1023) (QUOTE (-1158)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-1007))) (|HasCategory| |#1| (QUOTE (-358)))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-546)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-358)))) (-3994 (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-358))))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -281) (LIST (QUOTE -1233) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1233) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -304) (LIST (QUOTE -1233) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -508) (QUOTE (-1158)) (LIST (QUOTE -1233) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-554))))) (|HasSignature| |#1| (LIST (QUOTE -3075) (LIST (|devaluate| |#1|) (QUOTE (-1158)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-554))))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-944))) (|HasCategory| |#1| (QUOTE (-1180))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasSignature| |#1| (LIST (QUOTE -2279) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1158))))) (|HasSignature| |#1| (LIST (QUOTE -2405) (LIST (LIST (QUOTE -631) (QUOTE (-1158))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-894))) (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-143))) (-3994 (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-894))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-546)))) (-3994 (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554)))))) (-3994 (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-894))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-170)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-894))) (|HasCategory| |#1| (QUOTE (-358)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-894))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-143)))))
-(-1206 ZP)
+(((-4384 "*") -3998 (-2084 (|has| |#1| (-362)) (|has| (-1238 |#1| |#2| |#3|) (-811))) (|has| |#1| (-171)) (-2084 (|has| |#1| (-362)) (|has| (-1238 |#1| |#2| |#3|) (-899)))) (-4375 -3998 (-2084 (|has| |#1| (-362)) (|has| (-1238 |#1| |#2| |#3|) (-811))) (|has| |#1| (-550)) (-2084 (|has| |#1| (-362)) (|has| (-1238 |#1| |#2| |#3|) (-899)))) (-4380 |has| |#1| (-362)) (-4374 |has| |#1| (-362)) (-4376 . T) (-4377 . T) (-4379 . T))
+((-3998 (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-1138))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1238) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1238) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1238) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -512) (QUOTE (-1163)) (LIST (QUOTE -1238) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3998 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-3998 (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144)))) (-3998 (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-146)))) (-3998 (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))))) (-3998 (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (|HasCategory| (-558) (QUOTE (-1099))) (-3998 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-362)))) (-3998 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-362)))) (-3998 (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-362))))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-1138))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1238) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1238) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1238) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -512) (QUOTE (-1163)) (LIST (QUOTE -1238) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -3220) (LIST (|devaluate| |#1|) (QUOTE (-1163)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (-3998 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-1185))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -2543) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1163))))) (|HasSignature| |#1| (LIST (QUOTE -2671) (LIST (LIST (QUOTE -635) (QUOTE (-1163))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-144))) (-3998 (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-550)))) (-3998 (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-3998 (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-171)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (-3998 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(-1211 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
NIL
-(-1207 R S)
+(-1212 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-834))))
-(-1208 S)
+((|HasCategory| |#1| (QUOTE (-839))))
+(-1213 S)
((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound.")))
NIL
-((|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#1| (QUOTE (-1082))))
-(-1209 |x| R |y| S)
+((|HasCategory| |#1| (QUOTE (-839))) (|HasCategory| |#1| (QUOTE (-1087))))
+(-1214 |x| R |y| S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1210 R Q UP)
+(-1215 R Q UP)
((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}.")))
NIL
NIL
-(-1211 R UP)
+(-1216 R UP)
((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,{}h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,{}d,{}c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,{}d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")))
NIL
NIL
-(-1212 R UP)
+(-1217 R UP)
((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,{}g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded.")))
NIL
NIL
-(-1213 R U)
+(-1218 R U)
((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,{}b,{}l,{}k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,{}b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,{}b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all.")))
NIL
NIL
-(-1214 |x| R)
+(-1219 |x| R)
((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4375 "*") |has| |#2| (-170)) (-4366 |has| |#2| (-546)) (-4369 |has| |#2| (-358)) (-4371 |has| |#2| (-6 -4371)) (-4368 . T) (-4367 . T) (-4370 . T))
-((|HasCategory| |#2| (QUOTE (-894))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-170))) (-3994 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-546)))) (-12 (|HasCategory| (-1064) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-374))))) (-12 (|HasCategory| (-1064) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-554))))) (-12 (|HasCategory| (-1064) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374)))))) (-12 (|HasCategory| (-1064) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554)))))) (-12 (|HasCategory| (-1064) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-836))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (-3994 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-894)))) (-3994 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-894)))) (-3994 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-894)))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-229))) (|HasAttribute| |#2| (QUOTE -4371)) (|HasCategory| |#2| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-894)))) (|HasCategory| |#2| (QUOTE (-143)))))
-(-1215 R PR S PS)
+(((-4384 "*") |has| |#2| (-171)) (-4375 |has| |#2| (-550)) (-4378 |has| |#2| (-362)) (-4380 |has| |#2| (-6 -4380)) (-4377 . T) (-4376 . T) (-4379 . T))
+((|HasCategory| |#2| (QUOTE (-899))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-171))) (-3998 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-550)))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3998 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (-3998 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-899)))) (-3998 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-899)))) (-3998 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1138))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasAttribute| |#2| (QUOTE -4380)) (|HasCategory| |#2| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (-3998 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#2| (QUOTE (-144)))))
+(-1220 R PR S PS)
((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
NIL
NIL
-(-1216 S R)
+(-1221 S R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1133))))
-(-1217 R)
+((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1138))))
+(-1222 R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
-(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4369 |has| |#1| (-358)) (-4371 |has| |#1| (-6 -4371)) (-4368 . T) (-4367 . T) (-4370 . T))
+(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4378 |has| |#1| (-362)) (-4380 |has| |#1| (-6 -4380)) (-4377 . T) (-4376 . T) (-4379 . T))
NIL
-(-1218 S |Coef| |Expon|)
+(-1223 S |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1094))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -3075) (LIST (|devaluate| |#2|) (QUOTE (-1158))))))
-(-1219 |Coef| |Expon|)
+((|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1099))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -3220) (LIST (|devaluate| |#2|) (QUOTE (-1163))))))
+(-1224 |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
-(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4367 . T) (-4368 . T) (-4370 . T))
+(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-1220 RC P)
+(-1225 RC P)
((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-1221 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1226 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}.")))
NIL
NIL
-(-1222 |Coef|)
+(-1227 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,{}r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,{}st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms.")))
-(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-358)) (-4365 |has| |#1| (-358)) (-4367 . T) (-4368 . T) (-4370 . T))
+(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-362)) (-4374 |has| |#1| (-362)) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-1223 S |Coef| ULS)
+(-1228 S |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}.")))
NIL
NIL
-(-1224 |Coef| ULS)
+(-1229 |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}.")))
-(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-358)) (-4365 |has| |#1| (-358)) (-4367 . T) (-4368 . T) (-4370 . T))
+(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-362)) (-4374 |has| |#1| (-362)) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-1225 |Coef| ULS)
+(-1230 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
-(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-358)) (-4365 |has| |#1| (-358)) (-4367 . T) (-4368 . T) (-4370 . T))
-((|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-170))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-554))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-554))) (|devaluate| |#1|)))) (|HasCategory| (-402 (-554)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-358))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-546)))) (-3994 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-546)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasSignature| |#1| (LIST (QUOTE -3075) (LIST (|devaluate| |#1|) (QUOTE (-1158)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-554)))))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-944))) (|HasCategory| |#1| (QUOTE (-1180))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasSignature| |#1| (LIST (QUOTE -2279) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1158))))) (|HasSignature| |#1| (LIST (QUOTE -2405) (LIST (LIST (QUOTE -631) (QUOTE (-1158))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))))
-(-1226 |Coef| |var| |cen|)
+(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-362)) (-4374 |has| |#1| (-362)) (-4376 . T) (-4377 . T) (-4379 . T))
+((|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3998 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-558)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-362))) (-3998 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-3998 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasSignature| |#1| (LIST (QUOTE -3220) (LIST (|devaluate| |#1|) (QUOTE (-1163)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558)))))) (-3998 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-1185))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -2543) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1163))))) (|HasSignature| |#1| (LIST (QUOTE -2671) (LIST (LIST (QUOTE -635) (QUOTE (-1163))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))))
+(-1231 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
-(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-358)) (-4365 |has| |#1| (-358)) (-4367 . T) (-4368 . T) (-4370 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-170))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-554))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-554))) (|devaluate| |#1|)))) (|HasCategory| (-402 (-554)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-358))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-546)))) (-3994 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-546)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasSignature| |#1| (LIST (QUOTE -3075) (LIST (|devaluate| |#1|) (QUOTE (-1158)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-554)))))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-944))) (|HasCategory| |#1| (QUOTE (-1180))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasSignature| |#1| (LIST (QUOTE -2279) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1158))))) (|HasSignature| |#1| (LIST (QUOTE -2405) (LIST (LIST (QUOTE -631) (QUOTE (-1158))) (|devaluate| |#1|)))))))
-(-1227 R FE |var| |cen|)
+(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-362)) (-4374 |has| |#1| (-362)) (-4376 . T) (-4377 . T) (-4379 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3998 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-558)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-362))) (-3998 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-3998 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasSignature| |#1| (LIST (QUOTE -3220) (LIST (|devaluate| |#1|) (QUOTE (-1163)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558)))))) (-3998 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-1185))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -2543) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1163))))) (|HasSignature| |#1| (LIST (QUOTE -2671) (LIST (LIST (QUOTE -635) (QUOTE (-1163))) (|devaluate| |#1|)))))))
+(-1232 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}.")))
-(((-4375 "*") |has| (-1226 |#2| |#3| |#4|) (-170)) (-4366 |has| (-1226 |#2| |#3| |#4|) (-546)) (-4367 . T) (-4368 . T) (-4370 . T))
-((|HasCategory| (-1226 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| (-1226 |#2| |#3| |#4|) (QUOTE (-143))) (|HasCategory| (-1226 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1226 |#2| |#3| |#4|) (QUOTE (-170))) (-3994 (|HasCategory| (-1226 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| (-1226 |#2| |#3| |#4|) (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasCategory| (-1226 |#2| |#3| |#4|) (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| (-1226 |#2| |#3| |#4|) (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| (-1226 |#2| |#3| |#4|) (QUOTE (-358))) (|HasCategory| (-1226 |#2| |#3| |#4|) (QUOTE (-446))) (|HasCategory| (-1226 |#2| |#3| |#4|) (QUOTE (-546))))
-(-1228 A S)
+(((-4384 "*") |has| (-1231 |#2| |#3| |#4|) (-171)) (-4375 |has| (-1231 |#2| |#3| |#4|) (-550)) (-4376 . T) (-4377 . T) (-4379 . T))
+((|HasCategory| (-1231 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| (-1231 |#2| |#3| |#4|) (QUOTE (-144))) (|HasCategory| (-1231 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1231 |#2| |#3| |#4|) (QUOTE (-171))) (-3998 (|HasCategory| (-1231 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| (-1231 |#2| |#3| |#4|) (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| (-1231 |#2| |#3| |#4|) (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| (-1231 |#2| |#3| |#4|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| (-1231 |#2| |#3| |#4|) (QUOTE (-362))) (|HasCategory| (-1231 |#2| |#3| |#4|) (QUOTE (-450))) (|HasCategory| (-1231 |#2| |#3| |#4|) (QUOTE (-550))))
+(-1233 A S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4374)))
-(-1229 S)
+((|HasAttribute| |#1| (QUOTE -4383)))
+(-1234 S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
NIL
-(-1230 |Coef1| |Coef2| UTS1 UTS2)
+(-1235 |Coef1| |Coef2| UTS1 UTS2)
((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}")))
NIL
NIL
-(-1231 S |Coef|)
+(-1236 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-554)))) (|HasCategory| |#2| (QUOTE (-944))) (|HasCategory| |#2| (QUOTE (-1180))) (|HasSignature| |#2| (LIST (QUOTE -2405) (LIST (LIST (QUOTE -631) (QUOTE (-1158))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2279) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1158))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-358))))
-(-1232 |Coef|)
+((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-949))) (|HasCategory| |#2| (QUOTE (-1185))) (|HasSignature| |#2| (LIST (QUOTE -2671) (LIST (LIST (QUOTE -635) (QUOTE (-1163))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2543) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1163))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-362))))
+(-1237 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4367 . T) (-4368 . T) (-4370 . T))
+(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-1233 |Coef| |var| |cen|)
+(-1238 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4367 . T) (-4368 . T) (-4370 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-546))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-758)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-758)) (|devaluate| |#1|)))) (|HasCategory| (-758) (QUOTE (-1094))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-758))))) (|HasSignature| |#1| (LIST (QUOTE -3075) (LIST (|devaluate| |#1|) (QUOTE (-1158)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-758))))) (|HasCategory| |#1| (QUOTE (-358))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-944))) (|HasCategory| |#1| (QUOTE (-1180))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasSignature| |#1| (LIST (QUOTE -2279) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1158))))) (|HasSignature| |#1| (LIST (QUOTE -2405) (LIST (LIST (QUOTE -631) (QUOTE (-1158))) (|devaluate| |#1|)))))))
-(-1234 |Coef| UTS)
+(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4376 . T) (-4377 . T) (-4379 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-550))) (-3998 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-762)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-762)) (|devaluate| |#1|)))) (|HasCategory| (-762) (QUOTE (-1099))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-762))))) (|HasSignature| |#1| (LIST (QUOTE -3220) (LIST (|devaluate| |#1|) (QUOTE (-1163)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-762))))) (|HasCategory| |#1| (QUOTE (-362))) (-3998 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-1185))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -2543) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1163))))) (|HasSignature| |#1| (LIST (QUOTE -2671) (LIST (LIST (QUOTE -635) (QUOTE (-1163))) (|devaluate| |#1|)))))))
+(-1239 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
NIL
-(-1235 -3085 UP L UTS)
+(-1240 -3215 UP L UTS)
((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series.")))
NIL
-((|HasCategory| |#1| (QUOTE (-546))))
-(-1236)
+((|HasCategory| |#1| (QUOTE (-550))))
+(-1241)
((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators.")))
NIL
NIL
-(-1237 |sym|)
+(-1242 |sym|)
((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol")))
NIL
NIL
-(-1238 S R)
+(-1243 S R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
NIL
-((|HasCategory| |#2| (QUOTE (-987))) (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (QUOTE (-713))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
-(-1239 R)
+((|HasCategory| |#2| (QUOTE (-992))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
+(-1244 R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
-((-4374 . T) (-4373 . T))
+((-4383 . T) (-4382 . T))
NIL
-(-1240 A B)
+(-1245 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-1241 R)
+(-1246 R)
((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
-((-4374 . T) (-4373 . T))
-((-3994 (-12 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (-3994 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| (-554) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-713))) (|HasCategory| |#1| (QUOTE (-1034))) (-12 (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1034)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))))
-(-1242)
+((-4383 . T) (-4382 . T))
+((-3998 (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3998 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3998 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#1| (QUOTE (-1039))) (-12 (|HasCategory| |#1| (QUOTE (-992))) (|HasCategory| |#1| (QUOTE (-1039)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+(-1247)
((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
NIL
NIL
-(-1243)
+(-1248)
((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,{}c1,{}c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,{}i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,{}x,{}y,{}z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,{}s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,{}s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,{}s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,{}h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,{}d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,{}s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,{}dx,{}dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,{}sx,{}sy,{}sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,{}s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,{}s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,{}s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,{}s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,{}s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}rotx,{}roty,{}rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,{}viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,{}ind,{}pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,{}sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,{}lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,{}s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians.")))
NIL
NIL
-(-1244)
+(-1249)
((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,{}h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,{}y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport.")))
NIL
NIL
-(-1245)
+(-1250)
((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}.")))
NIL
NIL
-(-1246)
+(-1251)
((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object.")))
NIL
NIL
-(-1247 A S)
+(-1252 A S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
NIL
NIL
-(-1248 S)
+(-1253 S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
-((-4368 . T) (-4367 . T))
+((-4377 . T) (-4376 . T))
NIL
-(-1249 R)
+(-1254 R)
((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally.")))
NIL
NIL
-(-1250 K R UP -3085)
+(-1255 K R UP -3215)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
-(-1251)
+(-1256)
((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'.")))
NIL
NIL
-(-1252)
+(-1257)
((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'.")))
NIL
NIL
-(-1253 R |VarSet| E P |vl| |wl| |wtlevel|)
+(-1258 R |VarSet| E P |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-4368 |has| |#1| (-170)) (-4367 |has| |#1| (-170)) (-4370 . T))
-((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))))
-(-1254 R E V P)
+((-4377 |has| |#1| (-171)) (-4376 |has| |#1| (-171)) (-4379 . T))
+((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))))
+(-1259 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}.")))
-((-4374 . T) (-4373 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1082))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#4| (QUOTE (-1082))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -601) (QUOTE (-848)))))
-(-1255 R)
+((-4383 . T) (-4382 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -605) (QUOTE (-853)))))
+(-1260 R)
((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")))
-((-4367 . T) (-4368 . T) (-4370 . T))
+((-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-1256 |vl| R)
+(-1261 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute.")))
-((-4370 . T) (-4366 |has| |#2| (-6 -4366)) (-4368 . T) (-4367 . T))
-((|HasCategory| |#2| (QUOTE (-170))) (|HasAttribute| |#2| (QUOTE -4366)))
-(-1257 R |VarSet| XPOLY)
+((-4379 . T) (-4375 |has| |#2| (-6 -4375)) (-4377 . T) (-4376 . T))
+((|HasCategory| |#2| (QUOTE (-171))) (|HasAttribute| |#2| (QUOTE -4375)))
+(-1262 R |VarSet| XPOLY)
((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")))
NIL
NIL
-(-1258 |vl| R)
+(-1263 |vl| R)
((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
-((-4366 |has| |#2| (-6 -4366)) (-4368 . T) (-4367 . T) (-4370 . T))
+((-4375 |has| |#2| (-6 -4375)) (-4377 . T) (-4376 . T) (-4379 . T))
NIL
-(-1259 S -3085)
+(-1264 S -3215)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))))
-(-1260 -3085)
+((|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))))
+(-1265 -3215)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
-((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
+((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
-(-1261 |VarSet| R)
+(-1266 |VarSet| R)
((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}.")))
-((-4366 |has| |#2| (-6 -4366)) (-4368 . T) (-4367 . T) (-4370 . T))
-((|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -704) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasAttribute| |#2| (QUOTE -4366)))
-(-1262 |vl| R)
+((-4375 |has| |#2| (-6 -4375)) (-4377 . T) (-4376 . T) (-4379 . T))
+((|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -708) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasAttribute| |#2| (QUOTE -4375)))
+(-1267 |vl| R)
((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}.")))
-((-4366 |has| |#2| (-6 -4366)) (-4368 . T) (-4367 . T) (-4370 . T))
+((-4375 |has| |#2| (-6 -4375)) (-4377 . T) (-4376 . T) (-4379 . T))
NIL
-(-1263 R)
+(-1268 R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute.")))
-((-4366 |has| |#1| (-6 -4366)) (-4368 . T) (-4367 . T) (-4370 . T))
-((|HasCategory| |#1| (QUOTE (-170))) (|HasAttribute| |#1| (QUOTE -4366)))
-(-1264 R E)
+((-4375 |has| |#1| (-6 -4375)) (-4377 . T) (-4376 . T) (-4379 . T))
+((|HasCategory| |#1| (QUOTE (-171))) (|HasAttribute| |#1| (QUOTE -4375)))
+(-1269 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,{}e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}.")))
-((-4370 . T) (-4371 |has| |#1| (-6 -4371)) (-4366 |has| |#1| (-6 -4366)) (-4368 . T) (-4367 . T))
-((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasAttribute| |#1| (QUOTE -4370)) (|HasAttribute| |#1| (QUOTE -4371)) (|HasAttribute| |#1| (QUOTE -4366)))
-(-1265 |VarSet| R)
+((-4379 . T) (-4380 |has| |#1| (-6 -4380)) (-4375 |has| |#1| (-6 -4375)) (-4377 . T) (-4376 . T))
+((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4379)) (|HasAttribute| |#1| (QUOTE -4380)) (|HasAttribute| |#1| (QUOTE -4375)))
+(-1270 |VarSet| R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form.")))
-((-4366 |has| |#2| (-6 -4366)) (-4368 . T) (-4367 . T) (-4370 . T))
-((|HasCategory| |#2| (QUOTE (-170))) (|HasAttribute| |#2| (QUOTE -4366)))
-(-1266 A)
+((-4375 |has| |#2| (-6 -4375)) (-4377 . T) (-4376 . T) (-4379 . T))
+((|HasCategory| |#2| (QUOTE (-171))) (|HasAttribute| |#2| (QUOTE -4375)))
+(-1271 A)
((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,{}n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}.")))
NIL
NIL
-(-1267 R |ls| |ls2|)
+(-1272 R |ls| |ls2|)
((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,{}s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}info?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,{}info?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,{}info?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,{}false,{}false,{}false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,{}info?)} returns the same as \\spad{realSolve(ts,{}info?,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?)} returns the same as \\spad{realSolve(ts,{}info?,{}check?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,{}false,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}check?,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?,{}lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,{}false,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,{}info?)} returns the same as \\spad{triangSolve(lp,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,{}info?,{}lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.")))
NIL
NIL
-(-1268 R)
+(-1273 R)
((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise.")))
NIL
NIL
-(-1269 |p|)
+(-1274 |p|)
((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}.")))
-(((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T))
+(((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
NIL
NIL
NIL
@@ -5024,4 +5044,4 @@ NIL
NIL
NIL
NIL
-((-3 NIL 2275190 2275195 2275200 2275205) (-2 NIL 2275170 2275175 2275180 2275185) (-1 NIL 2275150 2275155 2275160 2275165) (0 NIL 2275130 2275135 2275140 2275145) (-1269 "ZMOD.spad" 2274939 2274952 2275068 2275125) (-1268 "ZLINDEP.spad" 2273983 2273994 2274929 2274934) (-1267 "ZDSOLVE.spad" 2263832 2263854 2273973 2273978) (-1266 "YSTREAM.spad" 2263325 2263336 2263822 2263827) (-1265 "XRPOLY.spad" 2262545 2262565 2263181 2263250) (-1264 "XPR.spad" 2260336 2260349 2262263 2262362) (-1263 "XPOLY.spad" 2259891 2259902 2260192 2260261) (-1262 "XPOLYC.spad" 2259208 2259224 2259817 2259886) (-1261 "XPBWPOLY.spad" 2257645 2257665 2258988 2259057) (-1260 "XF.spad" 2256106 2256121 2257547 2257640) (-1259 "XF.spad" 2254547 2254564 2255990 2255995) (-1258 "XFALG.spad" 2251571 2251587 2254473 2254542) (-1257 "XEXPPKG.spad" 2250822 2250848 2251561 2251566) (-1256 "XDPOLY.spad" 2250436 2250452 2250678 2250747) (-1255 "XALG.spad" 2250096 2250107 2250392 2250431) (-1254 "WUTSET.spad" 2245935 2245952 2249742 2249769) (-1253 "WP.spad" 2245134 2245178 2245793 2245860) (-1252 "WHILEAST.spad" 2244932 2244941 2245124 2245129) (-1251 "WHEREAST.spad" 2244603 2244612 2244922 2244927) (-1250 "WFFINTBS.spad" 2242166 2242188 2244593 2244598) (-1249 "WEIER.spad" 2240380 2240391 2242156 2242161) (-1248 "VSPACE.spad" 2240053 2240064 2240348 2240375) (-1247 "VSPACE.spad" 2239746 2239759 2240043 2240048) (-1246 "VOID.spad" 2239423 2239432 2239736 2239741) (-1245 "VIEW.spad" 2237045 2237054 2239413 2239418) (-1244 "VIEWDEF.spad" 2232242 2232251 2237035 2237040) (-1243 "VIEW3D.spad" 2216077 2216086 2232232 2232237) (-1242 "VIEW2D.spad" 2203814 2203823 2216067 2216072) (-1241 "VECTOR.spad" 2202489 2202500 2202740 2202767) (-1240 "VECTOR2.spad" 2201116 2201129 2202479 2202484) (-1239 "VECTCAT.spad" 2199016 2199027 2201084 2201111) (-1238 "VECTCAT.spad" 2196724 2196737 2198794 2198799) (-1237 "VARIABLE.spad" 2196504 2196519 2196714 2196719) (-1236 "UTYPE.spad" 2196148 2196157 2196494 2196499) (-1235 "UTSODETL.spad" 2195441 2195465 2196104 2196109) (-1234 "UTSODE.spad" 2193629 2193649 2195431 2195436) (-1233 "UTS.spad" 2188418 2188446 2192096 2192193) (-1232 "UTSCAT.spad" 2185869 2185885 2188316 2188413) (-1231 "UTSCAT.spad" 2182964 2182982 2185413 2185418) (-1230 "UTS2.spad" 2182557 2182592 2182954 2182959) (-1229 "URAGG.spad" 2177189 2177200 2182547 2182552) (-1228 "URAGG.spad" 2171785 2171798 2177145 2177150) (-1227 "UPXSSING.spad" 2169428 2169454 2170866 2170999) (-1226 "UPXS.spad" 2166576 2166604 2167560 2167709) (-1225 "UPXSCONS.spad" 2164333 2164353 2164708 2164857) (-1224 "UPXSCCA.spad" 2162898 2162918 2164179 2164328) (-1223 "UPXSCCA.spad" 2161605 2161627 2162888 2162893) (-1222 "UPXSCAT.spad" 2160186 2160202 2161451 2161600) (-1221 "UPXS2.spad" 2159727 2159780 2160176 2160181) (-1220 "UPSQFREE.spad" 2158139 2158153 2159717 2159722) (-1219 "UPSCAT.spad" 2155732 2155756 2158037 2158134) (-1218 "UPSCAT.spad" 2153031 2153057 2155338 2155343) (-1217 "UPOLYC.spad" 2148009 2148020 2152873 2153026) (-1216 "UPOLYC.spad" 2142879 2142892 2147745 2147750) (-1215 "UPOLYC2.spad" 2142348 2142367 2142869 2142874) (-1214 "UP.spad" 2139505 2139520 2139898 2140051) (-1213 "UPMP.spad" 2138395 2138408 2139495 2139500) (-1212 "UPDIVP.spad" 2137958 2137972 2138385 2138390) (-1211 "UPDECOMP.spad" 2136195 2136209 2137948 2137953) (-1210 "UPCDEN.spad" 2135402 2135418 2136185 2136190) (-1209 "UP2.spad" 2134764 2134785 2135392 2135397) (-1208 "UNISEG.spad" 2134117 2134128 2134683 2134688) (-1207 "UNISEG2.spad" 2133610 2133623 2134073 2134078) (-1206 "UNIFACT.spad" 2132711 2132723 2133600 2133605) (-1205 "ULS.spad" 2123263 2123291 2124356 2124785) (-1204 "ULSCONS.spad" 2115657 2115677 2116029 2116178) (-1203 "ULSCCAT.spad" 2113386 2113406 2115503 2115652) (-1202 "ULSCCAT.spad" 2111223 2111245 2113342 2113347) (-1201 "ULSCAT.spad" 2109439 2109455 2111069 2111218) (-1200 "ULS2.spad" 2108951 2109004 2109429 2109434) (-1199 "UFD.spad" 2108016 2108025 2108877 2108946) (-1198 "UFD.spad" 2107143 2107154 2108006 2108011) (-1197 "UDVO.spad" 2105990 2105999 2107133 2107138) (-1196 "UDPO.spad" 2103417 2103428 2105946 2105951) (-1195 "TYPE.spad" 2103349 2103358 2103407 2103412) (-1194 "TYPEAST.spad" 2103268 2103277 2103339 2103344) (-1193 "TWOFACT.spad" 2101918 2101933 2103258 2103263) (-1192 "TUPLE.spad" 2101402 2101413 2101817 2101822) (-1191 "TUBETOOL.spad" 2098239 2098248 2101392 2101397) (-1190 "TUBE.spad" 2096880 2096897 2098229 2098234) (-1189 "TS.spad" 2095469 2095485 2096445 2096542) (-1188 "TSETCAT.spad" 2082596 2082613 2095437 2095464) (-1187 "TSETCAT.spad" 2069709 2069728 2082552 2082557) (-1186 "TRMANIP.spad" 2064075 2064092 2069415 2069420) (-1185 "TRIMAT.spad" 2063034 2063059 2064065 2064070) (-1184 "TRIGMNIP.spad" 2061551 2061568 2063024 2063029) (-1183 "TRIGCAT.spad" 2061063 2061072 2061541 2061546) (-1182 "TRIGCAT.spad" 2060573 2060584 2061053 2061058) (-1181 "TREE.spad" 2059144 2059155 2060180 2060207) (-1180 "TRANFUN.spad" 2058975 2058984 2059134 2059139) (-1179 "TRANFUN.spad" 2058804 2058815 2058965 2058970) (-1178 "TOPSP.spad" 2058478 2058487 2058794 2058799) (-1177 "TOOLSIGN.spad" 2058141 2058152 2058468 2058473) (-1176 "TEXTFILE.spad" 2056698 2056707 2058131 2058136) (-1175 "TEX.spad" 2053830 2053839 2056688 2056693) (-1174 "TEX1.spad" 2053386 2053397 2053820 2053825) (-1173 "TEMUTL.spad" 2052941 2052950 2053376 2053381) (-1172 "TBCMPPK.spad" 2051034 2051057 2052931 2052936) (-1171 "TBAGG.spad" 2050070 2050093 2051014 2051029) (-1170 "TBAGG.spad" 2049114 2049139 2050060 2050065) (-1169 "TANEXP.spad" 2048490 2048501 2049104 2049109) (-1168 "TABLE.spad" 2046901 2046924 2047171 2047198) (-1167 "TABLEAU.spad" 2046382 2046393 2046891 2046896) (-1166 "TABLBUMP.spad" 2043165 2043176 2046372 2046377) (-1165 "SYSTEM.spad" 2042439 2042448 2043155 2043160) (-1164 "SYSSOLP.spad" 2039912 2039923 2042429 2042434) (-1163 "SYNTAX.spad" 2036182 2036191 2039902 2039907) (-1162 "SYMTAB.spad" 2034238 2034247 2036172 2036177) (-1161 "SYMS.spad" 2030223 2030232 2034228 2034233) (-1160 "SYMPOLY.spad" 2029230 2029241 2029312 2029439) (-1159 "SYMFUNC.spad" 2028705 2028716 2029220 2029225) (-1158 "SYMBOL.spad" 2026132 2026141 2028695 2028700) (-1157 "SWITCH.spad" 2022889 2022898 2026122 2026127) (-1156 "SUTS.spad" 2019788 2019816 2021356 2021453) (-1155 "SUPXS.spad" 2016923 2016951 2017920 2018069) (-1154 "SUP.spad" 2013692 2013703 2014473 2014626) (-1153 "SUPFRACF.spad" 2012797 2012815 2013682 2013687) (-1152 "SUP2.spad" 2012187 2012200 2012787 2012792) (-1151 "SUMRF.spad" 2011153 2011164 2012177 2012182) (-1150 "SUMFS.spad" 2010786 2010803 2011143 2011148) (-1149 "SULS.spad" 2001325 2001353 2002431 2002860) (-1148 "SUCHTAST.spad" 2001094 2001103 2001315 2001320) (-1147 "SUCH.spad" 2000774 2000789 2001084 2001089) (-1146 "SUBSPACE.spad" 1992781 1992796 2000764 2000769) (-1145 "SUBRESP.spad" 1991941 1991955 1992737 1992742) (-1144 "STTF.spad" 1988040 1988056 1991931 1991936) (-1143 "STTFNC.spad" 1984508 1984524 1988030 1988035) (-1142 "STTAYLOR.spad" 1976906 1976917 1984389 1984394) (-1141 "STRTBL.spad" 1975411 1975428 1975560 1975587) (-1140 "STRING.spad" 1974820 1974829 1974834 1974861) (-1139 "STRICAT.spad" 1974608 1974617 1974788 1974815) (-1138 "STREAM.spad" 1971466 1971477 1974133 1974148) (-1137 "STREAM3.spad" 1971011 1971026 1971456 1971461) (-1136 "STREAM2.spad" 1970079 1970092 1971001 1971006) (-1135 "STREAM1.spad" 1969783 1969794 1970069 1970074) (-1134 "STINPROD.spad" 1968689 1968705 1969773 1969778) (-1133 "STEP.spad" 1967890 1967899 1968679 1968684) (-1132 "STBL.spad" 1966416 1966444 1966583 1966598) (-1131 "STAGG.spad" 1965491 1965502 1966406 1966411) (-1130 "STAGG.spad" 1964564 1964577 1965481 1965486) (-1129 "STACK.spad" 1963915 1963926 1964171 1964198) (-1128 "SREGSET.spad" 1961619 1961636 1963561 1963588) (-1127 "SRDCMPK.spad" 1960164 1960184 1961609 1961614) (-1126 "SRAGG.spad" 1955261 1955270 1960132 1960159) (-1125 "SRAGG.spad" 1950378 1950389 1955251 1955256) (-1124 "SQMATRIX.spad" 1947994 1948012 1948910 1948997) (-1123 "SPLTREE.spad" 1942546 1942559 1947430 1947457) (-1122 "SPLNODE.spad" 1939134 1939147 1942536 1942541) (-1121 "SPFCAT.spad" 1937911 1937920 1939124 1939129) (-1120 "SPECOUT.spad" 1936461 1936470 1937901 1937906) (-1119 "SPADXPT.spad" 1928600 1928609 1936451 1936456) (-1118 "spad-parser.spad" 1928065 1928074 1928590 1928595) (-1117 "SPADAST.spad" 1927766 1927775 1928055 1928060) (-1116 "SPACEC.spad" 1911779 1911790 1927756 1927761) (-1115 "SPACE3.spad" 1911555 1911566 1911769 1911774) (-1114 "SORTPAK.spad" 1911100 1911113 1911511 1911516) (-1113 "SOLVETRA.spad" 1908857 1908868 1911090 1911095) (-1112 "SOLVESER.spad" 1907377 1907388 1908847 1908852) (-1111 "SOLVERAD.spad" 1903387 1903398 1907367 1907372) (-1110 "SOLVEFOR.spad" 1901807 1901825 1903377 1903382) (-1109 "SNTSCAT.spad" 1901407 1901424 1901775 1901802) (-1108 "SMTS.spad" 1899667 1899693 1900972 1901069) (-1107 "SMP.spad" 1897106 1897126 1897496 1897623) (-1106 "SMITH.spad" 1895949 1895974 1897096 1897101) (-1105 "SMATCAT.spad" 1894059 1894089 1895893 1895944) (-1104 "SMATCAT.spad" 1892101 1892133 1893937 1893942) (-1103 "SKAGG.spad" 1891062 1891073 1892069 1892096) (-1102 "SINT.spad" 1889370 1889379 1890928 1891057) (-1101 "SIMPAN.spad" 1889098 1889107 1889360 1889365) (-1100 "SIG.spad" 1888426 1888435 1889088 1889093) (-1099 "SIGNRF.spad" 1887534 1887545 1888416 1888421) (-1098 "SIGNEF.spad" 1886803 1886820 1887524 1887529) (-1097 "SIGAST.spad" 1886184 1886193 1886793 1886798) (-1096 "SHP.spad" 1884102 1884117 1886140 1886145) (-1095 "SHDP.spad" 1873813 1873840 1874322 1874453) (-1094 "SGROUP.spad" 1873421 1873430 1873803 1873808) (-1093 "SGROUP.spad" 1873027 1873038 1873411 1873416) (-1092 "SGCF.spad" 1865908 1865917 1873017 1873022) (-1091 "SFRTCAT.spad" 1864836 1864853 1865876 1865903) (-1090 "SFRGCD.spad" 1863899 1863919 1864826 1864831) (-1089 "SFQCMPK.spad" 1858536 1858556 1863889 1863894) (-1088 "SFORT.spad" 1857971 1857985 1858526 1858531) (-1087 "SEXOF.spad" 1857814 1857854 1857961 1857966) (-1086 "SEX.spad" 1857706 1857715 1857804 1857809) (-1085 "SEXCAT.spad" 1855257 1855297 1857696 1857701) (-1084 "SET.spad" 1853557 1853568 1854678 1854717) (-1083 "SETMN.spad" 1851991 1852008 1853547 1853552) (-1082 "SETCAT.spad" 1851476 1851485 1851981 1851986) (-1081 "SETCAT.spad" 1850959 1850970 1851466 1851471) (-1080 "SETAGG.spad" 1847480 1847491 1850939 1850954) (-1079 "SETAGG.spad" 1844009 1844022 1847470 1847475) (-1078 "SEQAST.spad" 1843712 1843721 1843999 1844004) (-1077 "SEGXCAT.spad" 1842834 1842847 1843702 1843707) (-1076 "SEG.spad" 1842647 1842658 1842753 1842758) (-1075 "SEGCAT.spad" 1841554 1841565 1842637 1842642) (-1074 "SEGBIND.spad" 1840626 1840637 1841509 1841514) (-1073 "SEGBIND2.spad" 1840322 1840335 1840616 1840621) (-1072 "SEGAST.spad" 1840036 1840045 1840312 1840317) (-1071 "SEG2.spad" 1839461 1839474 1839992 1839997) (-1070 "SDVAR.spad" 1838737 1838748 1839451 1839456) (-1069 "SDPOL.spad" 1836127 1836138 1836418 1836545) (-1068 "SCPKG.spad" 1834206 1834217 1836117 1836122) (-1067 "SCOPE.spad" 1833351 1833360 1834196 1834201) (-1066 "SCACHE.spad" 1832033 1832044 1833341 1833346) (-1065 "SASTCAT.spad" 1831942 1831951 1832023 1832028) (-1064 "SAOS.spad" 1831814 1831823 1831932 1831937) (-1063 "SAERFFC.spad" 1831527 1831547 1831804 1831809) (-1062 "SAE.spad" 1829702 1829718 1830313 1830448) (-1061 "SAEFACT.spad" 1829403 1829423 1829692 1829697) (-1060 "RURPK.spad" 1827044 1827060 1829393 1829398) (-1059 "RULESET.spad" 1826485 1826509 1827034 1827039) (-1058 "RULE.spad" 1824689 1824713 1826475 1826480) (-1057 "RULECOLD.spad" 1824541 1824554 1824679 1824684) (-1056 "RSTRCAST.spad" 1824258 1824267 1824531 1824536) (-1055 "RSETGCD.spad" 1820636 1820656 1824248 1824253) (-1054 "RSETCAT.spad" 1810420 1810437 1820604 1820631) (-1053 "RSETCAT.spad" 1800224 1800243 1810410 1810415) (-1052 "RSDCMPK.spad" 1798676 1798696 1800214 1800219) (-1051 "RRCC.spad" 1797060 1797090 1798666 1798671) (-1050 "RRCC.spad" 1795442 1795474 1797050 1797055) (-1049 "RPTAST.spad" 1795144 1795153 1795432 1795437) (-1048 "RPOLCAT.spad" 1774504 1774519 1795012 1795139) (-1047 "RPOLCAT.spad" 1753578 1753595 1774088 1774093) (-1046 "ROUTINE.spad" 1749441 1749450 1752225 1752252) (-1045 "ROMAN.spad" 1748769 1748778 1749307 1749436) (-1044 "ROIRC.spad" 1747849 1747881 1748759 1748764) (-1043 "RNS.spad" 1746752 1746761 1747751 1747844) (-1042 "RNS.spad" 1745741 1745752 1746742 1746747) (-1041 "RNG.spad" 1745476 1745485 1745731 1745736) (-1040 "RMODULE.spad" 1745114 1745125 1745466 1745471) (-1039 "RMCAT2.spad" 1744522 1744579 1745104 1745109) (-1038 "RMATRIX.spad" 1743346 1743365 1743689 1743728) (-1037 "RMATCAT.spad" 1738879 1738910 1743302 1743341) (-1036 "RMATCAT.spad" 1734302 1734335 1738727 1738732) (-1035 "RINTERP.spad" 1734190 1734210 1734292 1734297) (-1034 "RING.spad" 1733660 1733669 1734170 1734185) (-1033 "RING.spad" 1733138 1733149 1733650 1733655) (-1032 "RIDIST.spad" 1732522 1732531 1733128 1733133) (-1031 "RGCHAIN.spad" 1731101 1731117 1732007 1732034) (-1030 "RGBCSPC.spad" 1730882 1730894 1731091 1731096) (-1029 "RGBCMDL.spad" 1730412 1730424 1730872 1730877) (-1028 "RF.spad" 1728026 1728037 1730402 1730407) (-1027 "RFFACTOR.spad" 1727488 1727499 1728016 1728021) (-1026 "RFFACT.spad" 1727223 1727235 1727478 1727483) (-1025 "RFDIST.spad" 1726211 1726220 1727213 1727218) (-1024 "RETSOL.spad" 1725628 1725641 1726201 1726206) (-1023 "RETRACT.spad" 1725056 1725067 1725618 1725623) (-1022 "RETRACT.spad" 1724482 1724495 1725046 1725051) (-1021 "RETAST.spad" 1724294 1724303 1724472 1724477) (-1020 "RESULT.spad" 1722354 1722363 1722941 1722968) (-1019 "RESRING.spad" 1721701 1721748 1722292 1722349) (-1018 "RESLATC.spad" 1721025 1721036 1721691 1721696) (-1017 "REPSQ.spad" 1720754 1720765 1721015 1721020) (-1016 "REP.spad" 1718306 1718315 1720744 1720749) (-1015 "REPDB.spad" 1718011 1718022 1718296 1718301) (-1014 "REP2.spad" 1707583 1707594 1717853 1717858) (-1013 "REP1.spad" 1701573 1701584 1707533 1707538) (-1012 "REGSET.spad" 1699370 1699387 1701219 1701246) (-1011 "REF.spad" 1698699 1698710 1699325 1699330) (-1010 "REDORDER.spad" 1697875 1697892 1698689 1698694) (-1009 "RECLOS.spad" 1696658 1696678 1697362 1697455) (-1008 "REALSOLV.spad" 1695790 1695799 1696648 1696653) (-1007 "REAL.spad" 1695662 1695671 1695780 1695785) (-1006 "REAL0Q.spad" 1692944 1692959 1695652 1695657) (-1005 "REAL0.spad" 1689772 1689787 1692934 1692939) (-1004 "RDUCEAST.spad" 1689493 1689502 1689762 1689767) (-1003 "RDIV.spad" 1689144 1689169 1689483 1689488) (-1002 "RDIST.spad" 1688707 1688718 1689134 1689139) (-1001 "RDETRS.spad" 1687503 1687521 1688697 1688702) (-1000 "RDETR.spad" 1685610 1685628 1687493 1687498) (-999 "RDEEFS.spad" 1684684 1684700 1685600 1685605) (-998 "RDEEF.spad" 1683681 1683697 1684674 1684679) (-997 "RCFIELD.spad" 1680868 1680876 1683583 1683676) (-996 "RCFIELD.spad" 1678141 1678151 1680858 1680863) (-995 "RCAGG.spad" 1676054 1676064 1678131 1678136) (-994 "RCAGG.spad" 1673894 1673906 1675973 1675978) (-993 "RATRET.spad" 1673255 1673265 1673884 1673889) (-992 "RATFACT.spad" 1672948 1672959 1673245 1673250) (-991 "RANDSRC.spad" 1672268 1672276 1672938 1672943) (-990 "RADUTIL.spad" 1672023 1672031 1672258 1672263) (-989 "RADIX.spad" 1668925 1668938 1670490 1670583) (-988 "RADFF.spad" 1667339 1667375 1667457 1667613) (-987 "RADCAT.spad" 1666933 1666941 1667329 1667334) (-986 "RADCAT.spad" 1666525 1666535 1666923 1666928) (-985 "QUEUE.spad" 1665868 1665878 1666132 1666159) (-984 "QUAT.spad" 1664450 1664460 1664792 1664857) (-983 "QUATCT2.spad" 1664069 1664087 1664440 1664445) (-982 "QUATCAT.spad" 1662234 1662244 1663999 1664064) (-981 "QUATCAT.spad" 1660150 1660162 1661917 1661922) (-980 "QUAGG.spad" 1658976 1658986 1660118 1660145) (-979 "QQUTAST.spad" 1658745 1658753 1658966 1658971) (-978 "QFORM.spad" 1658208 1658222 1658735 1658740) (-977 "QFCAT.spad" 1656911 1656921 1658110 1658203) (-976 "QFCAT.spad" 1655205 1655217 1656406 1656411) (-975 "QFCAT2.spad" 1654896 1654912 1655195 1655200) (-974 "QEQUAT.spad" 1654453 1654461 1654886 1654891) (-973 "QCMPACK.spad" 1649200 1649219 1654443 1654448) (-972 "QALGSET.spad" 1645275 1645307 1649114 1649119) (-971 "QALGSET2.spad" 1643271 1643289 1645265 1645270) (-970 "PWFFINTB.spad" 1640581 1640602 1643261 1643266) (-969 "PUSHVAR.spad" 1639910 1639929 1640571 1640576) (-968 "PTRANFN.spad" 1636036 1636046 1639900 1639905) (-967 "PTPACK.spad" 1633124 1633134 1636026 1636031) (-966 "PTFUNC2.spad" 1632945 1632959 1633114 1633119) (-965 "PTCAT.spad" 1632194 1632204 1632913 1632940) (-964 "PSQFR.spad" 1631501 1631525 1632184 1632189) (-963 "PSEUDLIN.spad" 1630359 1630369 1631491 1631496) (-962 "PSETPK.spad" 1615792 1615808 1630237 1630242) (-961 "PSETCAT.spad" 1609712 1609735 1615772 1615787) (-960 "PSETCAT.spad" 1603606 1603631 1609668 1609673) (-959 "PSCURVE.spad" 1602589 1602597 1603596 1603601) (-958 "PSCAT.spad" 1601356 1601385 1602487 1602584) (-957 "PSCAT.spad" 1600213 1600244 1601346 1601351) (-956 "PRTITION.spad" 1599158 1599166 1600203 1600208) (-955 "PRTDAST.spad" 1598877 1598885 1599148 1599153) (-954 "PRS.spad" 1588439 1588456 1598833 1598838) (-953 "PRQAGG.spad" 1587870 1587880 1588407 1588434) (-952 "PROPLOG.spad" 1587273 1587281 1587860 1587865) (-951 "PROPFRML.spad" 1585191 1585202 1587263 1587268) (-950 "PROPERTY.spad" 1584685 1584693 1585181 1585186) (-949 "PRODUCT.spad" 1582365 1582377 1582651 1582706) (-948 "PR.spad" 1580751 1580763 1581456 1581583) (-947 "PRINT.spad" 1580503 1580511 1580741 1580746) (-946 "PRIMES.spad" 1578754 1578764 1580493 1580498) (-945 "PRIMELT.spad" 1576735 1576749 1578744 1578749) (-944 "PRIMCAT.spad" 1576358 1576366 1576725 1576730) (-943 "PRIMARR.spad" 1575363 1575373 1575541 1575568) (-942 "PRIMARR2.spad" 1574086 1574098 1575353 1575358) (-941 "PREASSOC.spad" 1573458 1573470 1574076 1574081) (-940 "PPCURVE.spad" 1572595 1572603 1573448 1573453) (-939 "PORTNUM.spad" 1572370 1572378 1572585 1572590) (-938 "POLYROOT.spad" 1571199 1571221 1572326 1572331) (-937 "POLY.spad" 1568496 1568506 1569013 1569140) (-936 "POLYLIFT.spad" 1567757 1567780 1568486 1568491) (-935 "POLYCATQ.spad" 1565859 1565881 1567747 1567752) (-934 "POLYCAT.spad" 1559265 1559286 1565727 1565854) (-933 "POLYCAT.spad" 1551973 1551996 1558437 1558442) (-932 "POLY2UP.spad" 1551421 1551435 1551963 1551968) (-931 "POLY2.spad" 1551016 1551028 1551411 1551416) (-930 "POLUTIL.spad" 1549957 1549986 1550972 1550977) (-929 "POLTOPOL.spad" 1548705 1548720 1549947 1549952) (-928 "POINT.spad" 1547544 1547554 1547631 1547658) (-927 "PNTHEORY.spad" 1544210 1544218 1547534 1547539) (-926 "PMTOOLS.spad" 1542967 1542981 1544200 1544205) (-925 "PMSYM.spad" 1542512 1542522 1542957 1542962) (-924 "PMQFCAT.spad" 1542099 1542113 1542502 1542507) (-923 "PMPRED.spad" 1541568 1541582 1542089 1542094) (-922 "PMPREDFS.spad" 1541012 1541034 1541558 1541563) (-921 "PMPLCAT.spad" 1540082 1540100 1540944 1540949) (-920 "PMLSAGG.spad" 1539663 1539677 1540072 1540077) (-919 "PMKERNEL.spad" 1539230 1539242 1539653 1539658) (-918 "PMINS.spad" 1538806 1538816 1539220 1539225) (-917 "PMFS.spad" 1538379 1538397 1538796 1538801) (-916 "PMDOWN.spad" 1537665 1537679 1538369 1538374) (-915 "PMASS.spad" 1536677 1536685 1537655 1537660) (-914 "PMASSFS.spad" 1535646 1535662 1536667 1536672) (-913 "PLOTTOOL.spad" 1535426 1535434 1535636 1535641) (-912 "PLOT.spad" 1530257 1530265 1535416 1535421) (-911 "PLOT3D.spad" 1526677 1526685 1530247 1530252) (-910 "PLOT1.spad" 1525818 1525828 1526667 1526672) (-909 "PLEQN.spad" 1513034 1513061 1525808 1525813) (-908 "PINTERP.spad" 1512650 1512669 1513024 1513029) (-907 "PINTERPA.spad" 1512432 1512448 1512640 1512645) (-906 "PI.spad" 1512039 1512047 1512406 1512427) (-905 "PID.spad" 1510995 1511003 1511965 1512034) (-904 "PICOERCE.spad" 1510652 1510662 1510985 1510990) (-903 "PGROEB.spad" 1509249 1509263 1510642 1510647) (-902 "PGE.spad" 1500502 1500510 1509239 1509244) (-901 "PGCD.spad" 1499384 1499401 1500492 1500497) (-900 "PFRPAC.spad" 1498527 1498537 1499374 1499379) (-899 "PFR.spad" 1495184 1495194 1498429 1498522) (-898 "PFOTOOLS.spad" 1494442 1494458 1495174 1495179) (-897 "PFOQ.spad" 1493812 1493830 1494432 1494437) (-896 "PFO.spad" 1493231 1493258 1493802 1493807) (-895 "PF.spad" 1492805 1492817 1493036 1493129) (-894 "PFECAT.spad" 1490471 1490479 1492731 1492800) (-893 "PFECAT.spad" 1488165 1488175 1490427 1490432) (-892 "PFBRU.spad" 1486035 1486047 1488155 1488160) (-891 "PFBR.spad" 1483573 1483596 1486025 1486030) (-890 "PERM.spad" 1479254 1479264 1483403 1483418) (-889 "PERMGRP.spad" 1473990 1474000 1479244 1479249) (-888 "PERMCAT.spad" 1472542 1472552 1473970 1473985) (-887 "PERMAN.spad" 1471074 1471088 1472532 1472537) (-886 "PENDTREE.spad" 1470413 1470423 1470703 1470708) (-885 "PDRING.spad" 1468904 1468914 1470393 1470408) (-884 "PDRING.spad" 1467403 1467415 1468894 1468899) (-883 "PDEPROB.spad" 1466418 1466426 1467393 1467398) (-882 "PDEPACK.spad" 1460420 1460428 1466408 1466413) (-881 "PDECOMP.spad" 1459882 1459899 1460410 1460415) (-880 "PDECAT.spad" 1458236 1458244 1459872 1459877) (-879 "PCOMP.spad" 1458087 1458100 1458226 1458231) (-878 "PBWLB.spad" 1456669 1456686 1458077 1458082) (-877 "PATTERN.spad" 1451100 1451110 1456659 1456664) (-876 "PATTERN2.spad" 1450836 1450848 1451090 1451095) (-875 "PATTERN1.spad" 1449138 1449154 1450826 1450831) (-874 "PATRES.spad" 1446685 1446697 1449128 1449133) (-873 "PATRES2.spad" 1446347 1446361 1446675 1446680) (-872 "PATMATCH.spad" 1444504 1444535 1446055 1446060) (-871 "PATMAB.spad" 1443929 1443939 1444494 1444499) (-870 "PATLRES.spad" 1443013 1443027 1443919 1443924) (-869 "PATAB.spad" 1442777 1442787 1443003 1443008) (-868 "PARTPERM.spad" 1440139 1440147 1442767 1442772) (-867 "PARSURF.spad" 1439567 1439595 1440129 1440134) (-866 "PARSU2.spad" 1439362 1439378 1439557 1439562) (-865 "script-parser.spad" 1438882 1438890 1439352 1439357) (-864 "PARSCURV.spad" 1438310 1438338 1438872 1438877) (-863 "PARSC2.spad" 1438099 1438115 1438300 1438305) (-862 "PARPCURV.spad" 1437557 1437585 1438089 1438094) (-861 "PARPC2.spad" 1437346 1437362 1437547 1437552) (-860 "PAN2EXPR.spad" 1436758 1436766 1437336 1437341) (-859 "PALETTE.spad" 1435728 1435736 1436748 1436753) (-858 "PAIR.spad" 1434711 1434724 1435316 1435321) (-857 "PADICRC.spad" 1432041 1432059 1433216 1433309) (-856 "PADICRAT.spad" 1430056 1430068 1430277 1430370) (-855 "PADIC.spad" 1429751 1429763 1429982 1430051) (-854 "PADICCT.spad" 1428292 1428304 1429677 1429746) (-853 "PADEPAC.spad" 1426971 1426990 1428282 1428287) (-852 "PADE.spad" 1425711 1425727 1426961 1426966) (-851 "OWP.spad" 1424951 1424981 1425569 1425636) (-850 "OVAR.spad" 1424732 1424755 1424941 1424946) (-849 "OUT.spad" 1423816 1423824 1424722 1424727) (-848 "OUTFORM.spad" 1413112 1413120 1423806 1423811) (-847 "OUTBFILE.spad" 1412530 1412538 1413102 1413107) (-846 "OUTBCON.spad" 1411808 1411816 1412520 1412525) (-845 "OUTBCON.spad" 1411084 1411094 1411798 1411803) (-844 "OSI.spad" 1410559 1410567 1411074 1411079) (-843 "OSGROUP.spad" 1410477 1410485 1410549 1410554) (-842 "ORTHPOL.spad" 1408938 1408948 1410394 1410399) (-841 "OREUP.spad" 1408391 1408419 1408618 1408657) (-840 "ORESUP.spad" 1407690 1407714 1408071 1408110) (-839 "OREPCTO.spad" 1405509 1405521 1407610 1407615) (-838 "OREPCAT.spad" 1399566 1399576 1405465 1405504) (-837 "OREPCAT.spad" 1393513 1393525 1399414 1399419) (-836 "ORDSET.spad" 1392679 1392687 1393503 1393508) (-835 "ORDSET.spad" 1391843 1391853 1392669 1392674) (-834 "ORDRING.spad" 1391233 1391241 1391823 1391838) (-833 "ORDRING.spad" 1390631 1390641 1391223 1391228) (-832 "ORDMON.spad" 1390486 1390494 1390621 1390626) (-831 "ORDFUNS.spad" 1389612 1389628 1390476 1390481) (-830 "ORDFIN.spad" 1389546 1389554 1389602 1389607) (-829 "ORDCOMP.spad" 1388011 1388021 1389093 1389122) (-828 "ORDCOMP2.spad" 1387296 1387308 1388001 1388006) (-827 "OPTPROB.spad" 1385934 1385942 1387286 1387291) (-826 "OPTPACK.spad" 1378319 1378327 1385924 1385929) (-825 "OPTCAT.spad" 1375994 1376002 1378309 1378314) (-824 "OPQUERY.spad" 1375543 1375551 1375984 1375989) (-823 "OP.spad" 1375285 1375295 1375365 1375432) (-822 "OPERCAT.spad" 1374597 1374607 1375275 1375280) (-821 "OPERCAT.spad" 1373907 1373919 1374587 1374592) (-820 "ONECOMP.spad" 1372652 1372662 1373454 1373483) (-819 "ONECOMP2.spad" 1372070 1372082 1372642 1372647) (-818 "OMSERVER.spad" 1371072 1371080 1372060 1372065) (-817 "OMSAGG.spad" 1370860 1370870 1371028 1371067) (-816 "OMPKG.spad" 1369472 1369480 1370850 1370855) (-815 "OM.spad" 1368437 1368445 1369462 1369467) (-814 "OMLO.spad" 1367862 1367874 1368323 1368362) (-813 "OMEXPR.spad" 1367696 1367706 1367852 1367857) (-812 "OMERR.spad" 1367239 1367247 1367686 1367691) (-811 "OMERRK.spad" 1366273 1366281 1367229 1367234) (-810 "OMENC.spad" 1365617 1365625 1366263 1366268) (-809 "OMDEV.spad" 1359906 1359914 1365607 1365612) (-808 "OMCONN.spad" 1359315 1359323 1359896 1359901) (-807 "OINTDOM.spad" 1359078 1359086 1359241 1359310) (-806 "OFMONOID.spad" 1355265 1355275 1359068 1359073) (-805 "ODVAR.spad" 1354526 1354536 1355255 1355260) (-804 "ODR.spad" 1354170 1354196 1354338 1354487) (-803 "ODPOL.spad" 1351516 1351526 1351856 1351983) (-802 "ODP.spad" 1341363 1341383 1341736 1341867) (-801 "ODETOOLS.spad" 1339946 1339965 1341353 1341358) (-800 "ODESYS.spad" 1337596 1337613 1339936 1339941) (-799 "ODERTRIC.spad" 1333537 1333554 1337553 1337558) (-798 "ODERED.spad" 1332924 1332948 1333527 1333532) (-797 "ODERAT.spad" 1330475 1330492 1332914 1332919) (-796 "ODEPRRIC.spad" 1327366 1327388 1330465 1330470) (-795 "ODEPROB.spad" 1326623 1326631 1327356 1327361) (-794 "ODEPRIM.spad" 1323897 1323919 1326613 1326618) (-793 "ODEPAL.spad" 1323273 1323297 1323887 1323892) (-792 "ODEPACK.spad" 1309875 1309883 1323263 1323268) (-791 "ODEINT.spad" 1309306 1309322 1309865 1309870) (-790 "ODEIFTBL.spad" 1306701 1306709 1309296 1309301) (-789 "ODEEF.spad" 1302068 1302084 1306691 1306696) (-788 "ODECONST.spad" 1301587 1301605 1302058 1302063) (-787 "ODECAT.spad" 1300183 1300191 1301577 1301582) (-786 "OCT.spad" 1298321 1298331 1299037 1299076) (-785 "OCTCT2.spad" 1297965 1297986 1298311 1298316) (-784 "OC.spad" 1295739 1295749 1297921 1297960) (-783 "OC.spad" 1293238 1293250 1295422 1295427) (-782 "OCAMON.spad" 1293086 1293094 1293228 1293233) (-781 "OASGP.spad" 1292901 1292909 1293076 1293081) (-780 "OAMONS.spad" 1292421 1292429 1292891 1292896) (-779 "OAMON.spad" 1292282 1292290 1292411 1292416) (-778 "OAGROUP.spad" 1292144 1292152 1292272 1292277) (-777 "NUMTUBE.spad" 1291731 1291747 1292134 1292139) (-776 "NUMQUAD.spad" 1279593 1279601 1291721 1291726) (-775 "NUMODE.spad" 1270729 1270737 1279583 1279588) (-774 "NUMINT.spad" 1268287 1268295 1270719 1270724) (-773 "NUMFMT.spad" 1267127 1267135 1268277 1268282) (-772 "NUMERIC.spad" 1259199 1259209 1266932 1266937) (-771 "NTSCAT.spad" 1257701 1257717 1259167 1259194) (-770 "NTPOLFN.spad" 1257246 1257256 1257618 1257623) (-769 "NSUP.spad" 1250256 1250266 1254796 1254949) (-768 "NSUP2.spad" 1249648 1249660 1250246 1250251) (-767 "NSMP.spad" 1245843 1245862 1246151 1246278) (-766 "NREP.spad" 1244215 1244229 1245833 1245838) (-765 "NPCOEF.spad" 1243461 1243481 1244205 1244210) (-764 "NORMRETR.spad" 1243059 1243098 1243451 1243456) (-763 "NORMPK.spad" 1240961 1240980 1243049 1243054) (-762 "NORMMA.spad" 1240649 1240675 1240951 1240956) (-761 "NONE.spad" 1240390 1240398 1240639 1240644) (-760 "NONE1.spad" 1240066 1240076 1240380 1240385) (-759 "NODE1.spad" 1239535 1239551 1240056 1240061) (-758 "NNI.spad" 1238422 1238430 1239509 1239530) (-757 "NLINSOL.spad" 1237044 1237054 1238412 1238417) (-756 "NIPROB.spad" 1235585 1235593 1237034 1237039) (-755 "NFINTBAS.spad" 1233045 1233062 1235575 1235580) (-754 "NETCLT.spad" 1233019 1233030 1233035 1233040) (-753 "NCODIV.spad" 1231217 1231233 1233009 1233014) (-752 "NCNTFRAC.spad" 1230859 1230873 1231207 1231212) (-751 "NCEP.spad" 1229019 1229033 1230849 1230854) (-750 "NASRING.spad" 1228615 1228623 1229009 1229014) (-749 "NASRING.spad" 1228209 1228219 1228605 1228610) (-748 "NARNG.spad" 1227553 1227561 1228199 1228204) (-747 "NARNG.spad" 1226895 1226905 1227543 1227548) (-746 "NAGSP.spad" 1225968 1225976 1226885 1226890) (-745 "NAGS.spad" 1215493 1215501 1225958 1225963) (-744 "NAGF07.spad" 1213886 1213894 1215483 1215488) (-743 "NAGF04.spad" 1208118 1208126 1213876 1213881) (-742 "NAGF02.spad" 1201927 1201935 1208108 1208113) (-741 "NAGF01.spad" 1197530 1197538 1201917 1201922) (-740 "NAGE04.spad" 1190990 1190998 1197520 1197525) (-739 "NAGE02.spad" 1181332 1181340 1190980 1190985) (-738 "NAGE01.spad" 1177216 1177224 1181322 1181327) (-737 "NAGD03.spad" 1175136 1175144 1177206 1177211) (-736 "NAGD02.spad" 1167667 1167675 1175126 1175131) (-735 "NAGD01.spad" 1161780 1161788 1167657 1167662) (-734 "NAGC06.spad" 1157567 1157575 1161770 1161775) (-733 "NAGC05.spad" 1156036 1156044 1157557 1157562) (-732 "NAGC02.spad" 1155291 1155299 1156026 1156031) (-731 "NAALG.spad" 1154826 1154836 1155259 1155286) (-730 "NAALG.spad" 1154381 1154393 1154816 1154821) (-729 "MULTSQFR.spad" 1151339 1151356 1154371 1154376) (-728 "MULTFACT.spad" 1150722 1150739 1151329 1151334) (-727 "MTSCAT.spad" 1148756 1148777 1150620 1150717) (-726 "MTHING.spad" 1148413 1148423 1148746 1148751) (-725 "MSYSCMD.spad" 1147847 1147855 1148403 1148408) (-724 "MSET.spad" 1145789 1145799 1147553 1147592) (-723 "MSETAGG.spad" 1145634 1145644 1145757 1145784) (-722 "MRING.spad" 1142605 1142617 1145342 1145409) (-721 "MRF2.spad" 1142173 1142187 1142595 1142600) (-720 "MRATFAC.spad" 1141719 1141736 1142163 1142168) (-719 "MPRFF.spad" 1139749 1139768 1141709 1141714) (-718 "MPOLY.spad" 1137184 1137199 1137543 1137670) (-717 "MPCPF.spad" 1136448 1136467 1137174 1137179) (-716 "MPC3.spad" 1136263 1136303 1136438 1136443) (-715 "MPC2.spad" 1135905 1135938 1136253 1136258) (-714 "MONOTOOL.spad" 1134240 1134257 1135895 1135900) (-713 "MONOID.spad" 1133559 1133567 1134230 1134235) (-712 "MONOID.spad" 1132876 1132886 1133549 1133554) (-711 "MONOGEN.spad" 1131622 1131635 1132736 1132871) (-710 "MONOGEN.spad" 1130390 1130405 1131506 1131511) (-709 "MONADWU.spad" 1128404 1128412 1130380 1130385) (-708 "MONADWU.spad" 1126416 1126426 1128394 1128399) (-707 "MONAD.spad" 1125560 1125568 1126406 1126411) (-706 "MONAD.spad" 1124702 1124712 1125550 1125555) (-705 "MOEBIUS.spad" 1123388 1123402 1124682 1124697) (-704 "MODULE.spad" 1123258 1123268 1123356 1123383) (-703 "MODULE.spad" 1123148 1123160 1123248 1123253) (-702 "MODRING.spad" 1122479 1122518 1123128 1123143) (-701 "MODOP.spad" 1121138 1121150 1122301 1122368) (-700 "MODMONOM.spad" 1120867 1120885 1121128 1121133) (-699 "MODMON.spad" 1117626 1117642 1118345 1118498) (-698 "MODFIELD.spad" 1116984 1117023 1117528 1117621) (-697 "MMLFORM.spad" 1115844 1115852 1116974 1116979) (-696 "MMAP.spad" 1115584 1115618 1115834 1115839) (-695 "MLO.spad" 1114011 1114021 1115540 1115579) (-694 "MLIFT.spad" 1112583 1112600 1114001 1114006) (-693 "MKUCFUNC.spad" 1112116 1112134 1112573 1112578) (-692 "MKRECORD.spad" 1111718 1111731 1112106 1112111) (-691 "MKFUNC.spad" 1111099 1111109 1111708 1111713) (-690 "MKFLCFN.spad" 1110055 1110065 1111089 1111094) (-689 "MKCHSET.spad" 1109920 1109930 1110045 1110050) (-688 "MKBCFUNC.spad" 1109405 1109423 1109910 1109915) (-687 "MINT.spad" 1108844 1108852 1109307 1109400) (-686 "MHROWRED.spad" 1107345 1107355 1108834 1108839) (-685 "MFLOAT.spad" 1105861 1105869 1107235 1107340) (-684 "MFINFACT.spad" 1105261 1105283 1105851 1105856) (-683 "MESH.spad" 1102993 1103001 1105251 1105256) (-682 "MDDFACT.spad" 1101186 1101196 1102983 1102988) (-681 "MDAGG.spad" 1100473 1100483 1101166 1101181) (-680 "MCMPLX.spad" 1096459 1096467 1097073 1097262) (-679 "MCDEN.spad" 1095667 1095679 1096449 1096454) (-678 "MCALCFN.spad" 1092769 1092795 1095657 1095662) (-677 "MAYBE.spad" 1092018 1092029 1092759 1092764) (-676 "MATSTOR.spad" 1089294 1089304 1092008 1092013) (-675 "MATRIX.spad" 1087998 1088008 1088482 1088509) (-674 "MATLIN.spad" 1085324 1085348 1087882 1087887) (-673 "MATCAT.spad" 1076909 1076931 1085292 1085319) (-672 "MATCAT.spad" 1068366 1068390 1076751 1076756) (-671 "MATCAT2.spad" 1067634 1067682 1068356 1068361) (-670 "MAPPKG3.spad" 1066533 1066547 1067624 1067629) (-669 "MAPPKG2.spad" 1065867 1065879 1066523 1066528) (-668 "MAPPKG1.spad" 1064685 1064695 1065857 1065862) (-667 "MAPPAST.spad" 1063998 1064006 1064675 1064680) (-666 "MAPHACK3.spad" 1063806 1063820 1063988 1063993) (-665 "MAPHACK2.spad" 1063571 1063583 1063796 1063801) (-664 "MAPHACK1.spad" 1063201 1063211 1063561 1063566) (-663 "MAGMA.spad" 1060991 1061008 1063191 1063196) (-662 "MACROAST.spad" 1060570 1060578 1060981 1060986) (-661 "M3D.spad" 1058266 1058276 1059948 1059953) (-660 "LZSTAGG.spad" 1055494 1055504 1058256 1058261) (-659 "LZSTAGG.spad" 1052720 1052732 1055484 1055489) (-658 "LWORD.spad" 1049425 1049442 1052710 1052715) (-657 "LSTAST.spad" 1049209 1049217 1049415 1049420) (-656 "LSQM.spad" 1047435 1047449 1047833 1047884) (-655 "LSPP.spad" 1046968 1046985 1047425 1047430) (-654 "LSMP.spad" 1045808 1045836 1046958 1046963) (-653 "LSMP1.spad" 1043612 1043626 1045798 1045803) (-652 "LSAGG.spad" 1043281 1043291 1043580 1043607) (-651 "LSAGG.spad" 1042970 1042982 1043271 1043276) (-650 "LPOLY.spad" 1041924 1041943 1042826 1042895) (-649 "LPEFRAC.spad" 1041181 1041191 1041914 1041919) (-648 "LO.spad" 1040582 1040596 1041115 1041142) (-647 "LOGIC.spad" 1040184 1040192 1040572 1040577) (-646 "LOGIC.spad" 1039784 1039794 1040174 1040179) (-645 "LODOOPS.spad" 1038702 1038714 1039774 1039779) (-644 "LODO.spad" 1038086 1038102 1038382 1038421) (-643 "LODOF.spad" 1037130 1037147 1038043 1038048) (-642 "LODOCAT.spad" 1035788 1035798 1037086 1037125) (-641 "LODOCAT.spad" 1034444 1034456 1035744 1035749) (-640 "LODO2.spad" 1033717 1033729 1034124 1034163) (-639 "LODO1.spad" 1033117 1033127 1033397 1033436) (-638 "LODEEF.spad" 1031889 1031907 1033107 1033112) (-637 "LNAGG.spad" 1027691 1027701 1031879 1031884) (-636 "LNAGG.spad" 1023457 1023469 1027647 1027652) (-635 "LMOPS.spad" 1020193 1020210 1023447 1023452) (-634 "LMODULE.spad" 1019835 1019845 1020183 1020188) (-633 "LMDICT.spad" 1019118 1019128 1019386 1019413) (-632 "LITERAL.spad" 1019024 1019035 1019108 1019113) (-631 "LIST.spad" 1016742 1016752 1018171 1018198) (-630 "LIST3.spad" 1016033 1016047 1016732 1016737) (-629 "LIST2.spad" 1014673 1014685 1016023 1016028) (-628 "LIST2MAP.spad" 1011550 1011562 1014663 1014668) (-627 "LINEXP.spad" 1010982 1010992 1011530 1011545) (-626 "LINDEP.spad" 1009759 1009771 1010894 1010899) (-625 "LIMITRF.spad" 1007673 1007683 1009749 1009754) (-624 "LIMITPS.spad" 1006556 1006569 1007663 1007668) (-623 "LIE.spad" 1004570 1004582 1005846 1005991) (-622 "LIECAT.spad" 1004046 1004056 1004496 1004565) (-621 "LIECAT.spad" 1003550 1003562 1004002 1004007) (-620 "LIB.spad" 1001598 1001606 1002209 1002224) (-619 "LGROBP.spad" 998951 998970 1001588 1001593) (-618 "LF.spad" 997870 997886 998941 998946) (-617 "LFCAT.spad" 996889 996897 997860 997865) (-616 "LEXTRIPK.spad" 992392 992407 996879 996884) (-615 "LEXP.spad" 990395 990422 992372 992387) (-614 "LETAST.spad" 990094 990102 990385 990390) (-613 "LEADCDET.spad" 988478 988495 990084 990089) (-612 "LAZM3PK.spad" 987182 987204 988468 988473) (-611 "LAUPOL.spad" 985871 985884 986775 986844) (-610 "LAPLACE.spad" 985444 985460 985861 985866) (-609 "LA.spad" 984884 984898 985366 985405) (-608 "LALG.spad" 984660 984670 984864 984879) (-607 "LALG.spad" 984444 984456 984650 984655) (-606 "KVTFROM.spad" 984179 984189 984434 984439) (-605 "KTVLOGIC.spad" 983602 983610 984169 984174) (-604 "KRCFROM.spad" 983340 983350 983592 983597) (-603 "KOVACIC.spad" 982053 982070 983330 983335) (-602 "KONVERT.spad" 981775 981785 982043 982048) (-601 "KOERCE.spad" 981512 981522 981765 981770) (-600 "KERNEL.spad" 980047 980057 981296 981301) (-599 "KERNEL2.spad" 979750 979762 980037 980042) (-598 "KDAGG.spad" 978853 978875 979730 979745) (-597 "KDAGG.spad" 977964 977988 978843 978848) (-596 "KAFILE.spad" 976927 976943 977162 977189) (-595 "JORDAN.spad" 974754 974766 976217 976362) (-594 "JOINAST.spad" 974448 974456 974744 974749) (-593 "JAVACODE.spad" 974314 974322 974438 974443) (-592 "IXAGG.spad" 972437 972461 974304 974309) (-591 "IXAGG.spad" 970415 970441 972284 972289) (-590 "IVECTOR.spad" 969186 969201 969341 969368) (-589 "ITUPLE.spad" 968331 968341 969176 969181) (-588 "ITRIGMNP.spad" 967142 967161 968321 968326) (-587 "ITFUN3.spad" 966636 966650 967132 967137) (-586 "ITFUN2.spad" 966366 966378 966626 966631) (-585 "ITAYLOR.spad" 964158 964173 966202 966327) (-584 "ISUPS.spad" 956569 956584 963132 963229) (-583 "ISUMP.spad" 956066 956082 956559 956564) (-582 "ISTRING.spad" 955069 955082 955235 955262) (-581 "ISAST.spad" 954788 954796 955059 955064) (-580 "IRURPK.spad" 953501 953520 954778 954783) (-579 "IRSN.spad" 951461 951469 953491 953496) (-578 "IRRF2F.spad" 949936 949946 951417 951422) (-577 "IRREDFFX.spad" 949537 949548 949926 949931) (-576 "IROOT.spad" 947868 947878 949527 949532) (-575 "IR.spad" 945657 945671 947723 947750) (-574 "IR2.spad" 944677 944693 945647 945652) (-573 "IR2F.spad" 943877 943893 944667 944672) (-572 "IPRNTPK.spad" 943637 943645 943867 943872) (-571 "IPF.spad" 943202 943214 943442 943535) (-570 "IPADIC.spad" 942963 942989 943128 943197) (-569 "IP4ADDR.spad" 942511 942519 942953 942958) (-568 "IOMODE.spad" 942132 942140 942501 942506) (-567 "IOBFILE.spad" 941493 941501 942122 942127) (-566 "IOBCON.spad" 941358 941366 941483 941488) (-565 "INVLAPLA.spad" 941003 941019 941348 941353) (-564 "INTTR.spad" 934249 934266 940993 940998) (-563 "INTTOOLS.spad" 931960 931976 933823 933828) (-562 "INTSLPE.spad" 931266 931274 931950 931955) (-561 "INTRVL.spad" 930832 930842 931180 931261) (-560 "INTRF.spad" 929196 929210 930822 930827) (-559 "INTRET.spad" 928628 928638 929186 929191) (-558 "INTRAT.spad" 927303 927320 928618 928623) (-557 "INTPM.spad" 925666 925682 926946 926951) (-556 "INTPAF.spad" 923434 923452 925598 925603) (-555 "INTPACK.spad" 913744 913752 923424 923429) (-554 "INT.spad" 913105 913113 913598 913739) (-553 "INTHERTR.spad" 912371 912388 913095 913100) (-552 "INTHERAL.spad" 912037 912061 912361 912366) (-551 "INTHEORY.spad" 908450 908458 912027 912032) (-550 "INTG0.spad" 901913 901931 908382 908387) (-549 "INTFTBL.spad" 895942 895950 901903 901908) (-548 "INTFACT.spad" 895001 895011 895932 895937) (-547 "INTEF.spad" 893316 893332 894991 894996) (-546 "INTDOM.spad" 891931 891939 893242 893311) (-545 "INTDOM.spad" 890608 890618 891921 891926) (-544 "INTCAT.spad" 888861 888871 890522 890603) (-543 "INTBIT.spad" 888364 888372 888851 888856) (-542 "INTALG.spad" 887546 887573 888354 888359) (-541 "INTAF.spad" 887038 887054 887536 887541) (-540 "INTABL.spad" 885556 885587 885719 885746) (-539 "INS.spad" 883023 883031 885458 885551) (-538 "INS.spad" 880576 880586 883013 883018) (-537 "INPSIGN.spad" 880010 880023 880566 880571) (-536 "INPRODPF.spad" 879076 879095 880000 880005) (-535 "INPRODFF.spad" 878134 878158 879066 879071) (-534 "INNMFACT.spad" 877105 877122 878124 878129) (-533 "INMODGCD.spad" 876589 876619 877095 877100) (-532 "INFSP.spad" 874874 874896 876579 876584) (-531 "INFPROD0.spad" 873924 873943 874864 874869) (-530 "INFORM.spad" 871085 871093 873914 873919) (-529 "INFORM1.spad" 870710 870720 871075 871080) (-528 "INFINITY.spad" 870262 870270 870700 870705) (-527 "INETCLTS.spad" 870239 870247 870252 870257) (-526 "INEP.spad" 868771 868793 870229 870234) (-525 "INDE.spad" 868500 868517 868761 868766) (-524 "INCRMAPS.spad" 867921 867931 868490 868495) (-523 "INBFILE.spad" 866993 867001 867911 867916) (-522 "INBFF.spad" 862763 862774 866983 866988) (-521 "INBCON.spad" 862062 862070 862753 862758) (-520 "INBCON.spad" 861359 861369 862052 862057) (-519 "INAST.spad" 861024 861032 861349 861354) (-518 "IMPTAST.spad" 860732 860740 861014 861019) (-517 "IMATRIX.spad" 859677 859703 860189 860216) (-516 "IMATQF.spad" 858771 858815 859633 859638) (-515 "IMATLIN.spad" 857376 857400 858727 858732) (-514 "ILIST.spad" 856032 856047 856559 856586) (-513 "IIARRAY2.spad" 855420 855458 855639 855666) (-512 "IFF.spad" 854830 854846 855101 855194) (-511 "IFAST.spad" 854444 854452 854820 854825) (-510 "IFARRAY.spad" 851931 851946 853627 853654) (-509 "IFAMON.spad" 851793 851810 851887 851892) (-508 "IEVALAB.spad" 851182 851194 851783 851788) (-507 "IEVALAB.spad" 850569 850583 851172 851177) (-506 "IDPO.spad" 850367 850379 850559 850564) (-505 "IDPOAMS.spad" 850123 850135 850357 850362) (-504 "IDPOAM.spad" 849843 849855 850113 850118) (-503 "IDPC.spad" 848777 848789 849833 849838) (-502 "IDPAM.spad" 848522 848534 848767 848772) (-501 "IDPAG.spad" 848269 848281 848512 848517) (-500 "IDENT.spad" 848186 848194 848259 848264) (-499 "IDECOMP.spad" 845423 845441 848176 848181) (-498 "IDEAL.spad" 840346 840385 845358 845363) (-497 "ICDEN.spad" 839497 839513 840336 840341) (-496 "ICARD.spad" 838686 838694 839487 839492) (-495 "IBPTOOLS.spad" 837279 837296 838676 838681) (-494 "IBITS.spad" 836478 836491 836915 836942) (-493 "IBATOOL.spad" 833353 833372 836468 836473) (-492 "IBACHIN.spad" 831840 831855 833343 833348) (-491 "IARRAY2.spad" 830828 830854 831447 831474) (-490 "IARRAY1.spad" 829873 829888 830011 830038) (-489 "IAN.spad" 828086 828094 829689 829782) (-488 "IALGFACT.spad" 827687 827720 828076 828081) (-487 "HYPCAT.spad" 827111 827119 827677 827682) (-486 "HYPCAT.spad" 826533 826543 827101 827106) (-485 "HOSTNAME.spad" 826341 826349 826523 826528) (-484 "HOMOTOP.spad" 826084 826094 826331 826336) (-483 "HOAGG.spad" 823352 823362 826074 826079) (-482 "HOAGG.spad" 820395 820407 823119 823124) (-481 "HEXADEC.spad" 818497 818505 818862 818955) (-480 "HEUGCD.spad" 817512 817523 818487 818492) (-479 "HELLFDIV.spad" 817102 817126 817502 817507) (-478 "HEAP.spad" 816494 816504 816709 816736) (-477 "HEADAST.spad" 816025 816033 816484 816489) (-476 "HDP.spad" 805868 805884 806245 806376) (-475 "HDMP.spad" 803044 803059 803662 803789) (-474 "HB.spad" 801281 801289 803034 803039) (-473 "HASHTBL.spad" 799751 799782 799962 799989) (-472 "HASAST.spad" 799467 799475 799741 799746) (-471 "HACKPI.spad" 798950 798958 799369 799462) (-470 "GTSET.spad" 797889 797905 798596 798623) (-469 "GSTBL.spad" 796408 796443 796582 796597) (-468 "GSERIES.spad" 793575 793602 794540 794689) (-467 "GROUP.spad" 792844 792852 793555 793570) (-466 "GROUP.spad" 792121 792131 792834 792839) (-465 "GROEBSOL.spad" 790609 790630 792111 792116) (-464 "GRMOD.spad" 789180 789192 790599 790604) (-463 "GRMOD.spad" 787749 787763 789170 789175) (-462 "GRIMAGE.spad" 780354 780362 787739 787744) (-461 "GRDEF.spad" 778733 778741 780344 780349) (-460 "GRAY.spad" 777192 777200 778723 778728) (-459 "GRALG.spad" 776239 776251 777182 777187) (-458 "GRALG.spad" 775284 775298 776229 776234) (-457 "GPOLSET.spad" 774738 774761 774966 774993) (-456 "GOSPER.spad" 774003 774021 774728 774733) (-455 "GMODPOL.spad" 773141 773168 773971 773998) (-454 "GHENSEL.spad" 772210 772224 773131 773136) (-453 "GENUPS.spad" 768311 768324 772200 772205) (-452 "GENUFACT.spad" 767888 767898 768301 768306) (-451 "GENPGCD.spad" 767472 767489 767878 767883) (-450 "GENMFACT.spad" 766924 766943 767462 767467) (-449 "GENEEZ.spad" 764863 764876 766914 766919) (-448 "GDMP.spad" 761881 761898 762657 762784) (-447 "GCNAALG.spad" 755776 755803 761675 761742) (-446 "GCDDOM.spad" 754948 754956 755702 755771) (-445 "GCDDOM.spad" 754182 754192 754938 754943) (-444 "GB.spad" 751700 751738 754138 754143) (-443 "GBINTERN.spad" 747720 747758 751690 751695) (-442 "GBF.spad" 743477 743515 747710 747715) (-441 "GBEUCLID.spad" 741351 741389 743467 743472) (-440 "GAUSSFAC.spad" 740648 740656 741341 741346) (-439 "GALUTIL.spad" 738970 738980 740604 740609) (-438 "GALPOLYU.spad" 737416 737429 738960 738965) (-437 "GALFACTU.spad" 735581 735600 737406 737411) (-436 "GALFACT.spad" 725714 725725 735571 735576) (-435 "FVFUN.spad" 722737 722745 725704 725709) (-434 "FVC.spad" 721789 721797 722727 722732) (-433 "FUNCTION.spad" 721638 721650 721779 721784) (-432 "FT.spad" 719931 719939 721628 721633) (-431 "FTEM.spad" 719094 719102 719921 719926) (-430 "FSUPFACT.spad" 717994 718013 719030 719035) (-429 "FST.spad" 716080 716088 717984 717989) (-428 "FSRED.spad" 715558 715574 716070 716075) (-427 "FSPRMELT.spad" 714382 714398 715515 715520) (-426 "FSPECF.spad" 712459 712475 714372 714377) (-425 "FS.spad" 706521 706531 712234 712454) (-424 "FS.spad" 700361 700373 706076 706081) (-423 "FSINT.spad" 700019 700035 700351 700356) (-422 "FSERIES.spad" 699206 699218 699839 699938) (-421 "FSCINT.spad" 698519 698535 699196 699201) (-420 "FSAGG.spad" 697636 697646 698475 698514) (-419 "FSAGG.spad" 696715 696727 697556 697561) (-418 "FSAGG2.spad" 695414 695430 696705 696710) (-417 "FS2UPS.spad" 689897 689931 695404 695409) (-416 "FS2.spad" 689542 689558 689887 689892) (-415 "FS2EXPXP.spad" 688665 688688 689532 689537) (-414 "FRUTIL.spad" 687607 687617 688655 688660) (-413 "FR.spad" 681301 681311 686631 686700) (-412 "FRNAALG.spad" 676388 676398 681243 681296) (-411 "FRNAALG.spad" 671487 671499 676344 676349) (-410 "FRNAAF2.spad" 670941 670959 671477 671482) (-409 "FRMOD.spad" 670335 670365 670872 670877) (-408 "FRIDEAL.spad" 669530 669551 670315 670330) (-407 "FRIDEAL2.spad" 669132 669164 669520 669525) (-406 "FRETRCT.spad" 668643 668653 669122 669127) (-405 "FRETRCT.spad" 668020 668032 668501 668506) (-404 "FRAMALG.spad" 666348 666361 667976 668015) (-403 "FRAMALG.spad" 664708 664723 666338 666343) (-402 "FRAC.spad" 661807 661817 662210 662383) (-401 "FRAC2.spad" 661410 661422 661797 661802) (-400 "FR2.spad" 660744 660756 661400 661405) (-399 "FPS.spad" 657553 657561 660634 660739) (-398 "FPS.spad" 654390 654400 657473 657478) (-397 "FPC.spad" 653432 653440 654292 654385) (-396 "FPC.spad" 652560 652570 653422 653427) (-395 "FPATMAB.spad" 652322 652332 652550 652555) (-394 "FPARFRAC.spad" 650795 650812 652312 652317) (-393 "FORTRAN.spad" 649301 649344 650785 650790) (-392 "FORT.spad" 648230 648238 649291 649296) (-391 "FORTFN.spad" 645400 645408 648220 648225) (-390 "FORTCAT.spad" 645084 645092 645390 645395) (-389 "FORMULA.spad" 642548 642556 645074 645079) (-388 "FORMULA1.spad" 642027 642037 642538 642543) (-387 "FORDER.spad" 641718 641742 642017 642022) (-386 "FOP.spad" 640919 640927 641708 641713) (-385 "FNLA.spad" 640343 640365 640887 640914) (-384 "FNCAT.spad" 638930 638938 640333 640338) (-383 "FNAME.spad" 638822 638830 638920 638925) (-382 "FMTC.spad" 638620 638628 638748 638817) (-381 "FMONOID.spad" 635675 635685 638576 638581) (-380 "FM.spad" 635370 635382 635609 635636) (-379 "FMFUN.spad" 632400 632408 635360 635365) (-378 "FMC.spad" 631452 631460 632390 632395) (-377 "FMCAT.spad" 629106 629124 631420 631447) (-376 "FM1.spad" 628463 628475 629040 629067) (-375 "FLOATRP.spad" 626184 626198 628453 628458) (-374 "FLOAT.spad" 619472 619480 626050 626179) (-373 "FLOATCP.spad" 616889 616903 619462 619467) (-372 "FLINEXP.spad" 616601 616611 616869 616884) (-371 "FLINEXP.spad" 616267 616279 616537 616542) (-370 "FLASORT.spad" 615587 615599 616257 616262) (-369 "FLALG.spad" 613233 613252 615513 615582) (-368 "FLAGG.spad" 610251 610261 613213 613228) (-367 "FLAGG.spad" 607170 607182 610134 610139) (-366 "FLAGG2.spad" 605851 605867 607160 607165) (-365 "FINRALG.spad" 603880 603893 605807 605846) (-364 "FINRALG.spad" 601835 601850 603764 603769) (-363 "FINITE.spad" 600987 600995 601825 601830) (-362 "FINAALG.spad" 589968 589978 600929 600982) (-361 "FINAALG.spad" 578961 578973 589924 589929) (-360 "FILE.spad" 578544 578554 578951 578956) (-359 "FILECAT.spad" 577062 577079 578534 578539) (-358 "FIELD.spad" 576468 576476 576964 577057) (-357 "FIELD.spad" 575960 575970 576458 576463) (-356 "FGROUP.spad" 574569 574579 575940 575955) (-355 "FGLMICPK.spad" 573356 573371 574559 574564) (-354 "FFX.spad" 572731 572746 573072 573165) (-353 "FFSLPE.spad" 572220 572241 572721 572726) (-352 "FFPOLY.spad" 563472 563483 572210 572215) (-351 "FFPOLY2.spad" 562532 562549 563462 563467) (-350 "FFP.spad" 561929 561949 562248 562341) (-349 "FF.spad" 561377 561393 561610 561703) (-348 "FFNBX.spad" 559889 559909 561093 561186) (-347 "FFNBP.spad" 558402 558419 559605 559698) (-346 "FFNB.spad" 556867 556888 558083 558176) (-345 "FFINTBAS.spad" 554281 554300 556857 556862) (-344 "FFIELDC.spad" 551856 551864 554183 554276) (-343 "FFIELDC.spad" 549517 549527 551846 551851) (-342 "FFHOM.spad" 548265 548282 549507 549512) (-341 "FFF.spad" 545700 545711 548255 548260) (-340 "FFCGX.spad" 544547 544567 545416 545509) (-339 "FFCGP.spad" 543436 543456 544263 544356) (-338 "FFCG.spad" 542228 542249 543117 543210) (-337 "FFCAT.spad" 535255 535277 542067 542223) (-336 "FFCAT.spad" 528361 528385 535175 535180) (-335 "FFCAT2.spad" 528106 528146 528351 528356) (-334 "FEXPR.spad" 519815 519861 527862 527901) (-333 "FEVALAB.spad" 519521 519531 519805 519810) (-332 "FEVALAB.spad" 519012 519024 519298 519303) (-331 "FDIV.spad" 518454 518478 519002 519007) (-330 "FDIVCAT.spad" 516496 516520 518444 518449) (-329 "FDIVCAT.spad" 514536 514562 516486 516491) (-328 "FDIV2.spad" 514190 514230 514526 514531) (-327 "FCPAK1.spad" 512743 512751 514180 514185) (-326 "FCOMP.spad" 512122 512132 512733 512738) (-325 "FC.spad" 502037 502045 512112 512117) (-324 "FAXF.spad" 494972 494986 501939 502032) (-323 "FAXF.spad" 487959 487975 494928 494933) (-322 "FARRAY.spad" 486105 486115 487142 487169) (-321 "FAMR.spad" 484225 484237 486003 486100) (-320 "FAMR.spad" 482329 482343 484109 484114) (-319 "FAMONOID.spad" 481979 481989 482283 482288) (-318 "FAMONC.spad" 480201 480213 481969 481974) (-317 "FAGROUP.spad" 479807 479817 480097 480124) (-316 "FACUTIL.spad" 478003 478020 479797 479802) (-315 "FACTFUNC.spad" 477179 477189 477993 477998) (-314 "EXPUPXS.spad" 474012 474035 475311 475460) (-313 "EXPRTUBE.spad" 471240 471248 474002 474007) (-312 "EXPRODE.spad" 468112 468128 471230 471235) (-311 "EXPR.spad" 463387 463397 464101 464508) (-310 "EXPR2UPS.spad" 459479 459492 463377 463382) (-309 "EXPR2.spad" 459182 459194 459469 459474) (-308 "EXPEXPAN.spad" 456120 456145 456754 456847) (-307 "EXIT.spad" 455791 455799 456110 456115) (-306 "EXITAST.spad" 455527 455535 455781 455786) (-305 "EVALCYC.spad" 454985 454999 455517 455522) (-304 "EVALAB.spad" 454549 454559 454975 454980) (-303 "EVALAB.spad" 454111 454123 454539 454544) (-302 "EUCDOM.spad" 451653 451661 454037 454106) (-301 "EUCDOM.spad" 449257 449267 451643 451648) (-300 "ESTOOLS.spad" 441097 441105 449247 449252) (-299 "ESTOOLS2.spad" 440698 440712 441087 441092) (-298 "ESTOOLS1.spad" 440383 440394 440688 440693) (-297 "ES.spad" 432930 432938 440373 440378) (-296 "ES.spad" 425383 425393 432828 432833) (-295 "ESCONT.spad" 422156 422164 425373 425378) (-294 "ESCONT1.spad" 421905 421917 422146 422151) (-293 "ES2.spad" 421400 421416 421895 421900) (-292 "ES1.spad" 420966 420982 421390 421395) (-291 "ERROR.spad" 418287 418295 420956 420961) (-290 "EQTBL.spad" 416759 416781 416968 416995) (-289 "EQ.spad" 411633 411643 414432 414544) (-288 "EQ2.spad" 411349 411361 411623 411628) (-287 "EP.spad" 407663 407673 411339 411344) (-286 "ENV.spad" 406365 406373 407653 407658) (-285 "ENTIRER.spad" 406033 406041 406309 406360) (-284 "EMR.spad" 405234 405275 405959 406028) (-283 "ELTAGG.spad" 403474 403493 405224 405229) (-282 "ELTAGG.spad" 401678 401699 403430 403435) (-281 "ELTAB.spad" 401125 401143 401668 401673) (-280 "ELFUTS.spad" 400504 400523 401115 401120) (-279 "ELEMFUN.spad" 400193 400201 400494 400499) (-278 "ELEMFUN.spad" 399880 399890 400183 400188) (-277 "ELAGG.spad" 397823 397833 399860 399875) (-276 "ELAGG.spad" 395703 395715 397742 397747) (-275 "ELABEXPR.spad" 394634 394642 395693 395698) (-274 "EFUPXS.spad" 391410 391440 394590 394595) (-273 "EFULS.spad" 388246 388269 391366 391371) (-272 "EFSTRUC.spad" 386201 386217 388236 388241) (-271 "EF.spad" 380967 380983 386191 386196) (-270 "EAB.spad" 379243 379251 380957 380962) (-269 "E04UCFA.spad" 378779 378787 379233 379238) (-268 "E04NAFA.spad" 378356 378364 378769 378774) (-267 "E04MBFA.spad" 377936 377944 378346 378351) (-266 "E04JAFA.spad" 377472 377480 377926 377931) (-265 "E04GCFA.spad" 377008 377016 377462 377467) (-264 "E04FDFA.spad" 376544 376552 376998 377003) (-263 "E04DGFA.spad" 376080 376088 376534 376539) (-262 "E04AGNT.spad" 371922 371930 376070 376075) (-261 "DVARCAT.spad" 368607 368617 371912 371917) (-260 "DVARCAT.spad" 365290 365302 368597 368602) (-259 "DSMP.spad" 362721 362735 363026 363153) (-258 "DROPT.spad" 356666 356674 362711 362716) (-257 "DROPT1.spad" 356329 356339 356656 356661) (-256 "DROPT0.spad" 351156 351164 356319 356324) (-255 "DRAWPT.spad" 349311 349319 351146 351151) (-254 "DRAW.spad" 341911 341924 349301 349306) (-253 "DRAWHACK.spad" 341219 341229 341901 341906) (-252 "DRAWCX.spad" 338661 338669 341209 341214) (-251 "DRAWCURV.spad" 338198 338213 338651 338656) (-250 "DRAWCFUN.spad" 327370 327378 338188 338193) (-249 "DQAGG.spad" 325538 325548 327338 327365) (-248 "DPOLCAT.spad" 320879 320895 325406 325533) (-247 "DPOLCAT.spad" 316306 316324 320835 320840) (-246 "DPMO.spad" 308532 308548 308670 308971) (-245 "DPMM.spad" 300771 300789 300896 301197) (-244 "DOMAIN.spad" 300042 300050 300761 300766) (-243 "DMP.spad" 297264 297279 297836 297963) (-242 "DLP.spad" 296612 296622 297254 297259) (-241 "DLIST.spad" 295191 295201 295795 295822) (-240 "DLAGG.spad" 293602 293612 295181 295186) (-239 "DIVRING.spad" 293144 293152 293546 293597) (-238 "DIVRING.spad" 292730 292740 293134 293139) (-237 "DISPLAY.spad" 290910 290918 292720 292725) (-236 "DIRPROD.spad" 280490 280506 281130 281261) (-235 "DIRPROD2.spad" 279298 279316 280480 280485) (-234 "DIRPCAT.spad" 278240 278256 279162 279293) (-233 "DIRPCAT.spad" 276911 276929 277835 277840) (-232 "DIOSP.spad" 275736 275744 276901 276906) (-231 "DIOPS.spad" 274720 274730 275716 275731) (-230 "DIOPS.spad" 273678 273690 274676 274681) (-229 "DIFRING.spad" 272970 272978 273658 273673) (-228 "DIFRING.spad" 272270 272280 272960 272965) (-227 "DIFEXT.spad" 271429 271439 272250 272265) (-226 "DIFEXT.spad" 270505 270517 271328 271333) (-225 "DIAGG.spad" 270135 270145 270485 270500) (-224 "DIAGG.spad" 269773 269785 270125 270130) (-223 "DHMATRIX.spad" 268077 268087 269230 269257) (-222 "DFSFUN.spad" 261485 261493 268067 268072) (-221 "DFLOAT.spad" 258206 258214 261375 261480) (-220 "DFINTTLS.spad" 256415 256431 258196 258201) (-219 "DERHAM.spad" 254325 254357 256395 256410) (-218 "DEQUEUE.spad" 253643 253653 253932 253959) (-217 "DEGRED.spad" 253258 253272 253633 253638) (-216 "DEFINTRF.spad" 250783 250793 253248 253253) (-215 "DEFINTEF.spad" 249279 249295 250773 250778) (-214 "DEFAST.spad" 248647 248655 249269 249274) (-213 "DECIMAL.spad" 246753 246761 247114 247207) (-212 "DDFACT.spad" 244552 244569 246743 246748) (-211 "DBLRESP.spad" 244150 244174 244542 244547) (-210 "DBASE.spad" 242804 242814 244140 244145) (-209 "DATAARY.spad" 242266 242279 242794 242799) (-208 "D03FAFA.spad" 242094 242102 242256 242261) (-207 "D03EEFA.spad" 241914 241922 242084 242089) (-206 "D03AGNT.spad" 240994 241002 241904 241909) (-205 "D02EJFA.spad" 240456 240464 240984 240989) (-204 "D02CJFA.spad" 239934 239942 240446 240451) (-203 "D02BHFA.spad" 239424 239432 239924 239929) (-202 "D02BBFA.spad" 238914 238922 239414 239419) (-201 "D02AGNT.spad" 233718 233726 238904 238909) (-200 "D01WGTS.spad" 232037 232045 233708 233713) (-199 "D01TRNS.spad" 232014 232022 232027 232032) (-198 "D01GBFA.spad" 231536 231544 232004 232009) (-197 "D01FCFA.spad" 231058 231066 231526 231531) (-196 "D01ASFA.spad" 230526 230534 231048 231053) (-195 "D01AQFA.spad" 229972 229980 230516 230521) (-194 "D01APFA.spad" 229396 229404 229962 229967) (-193 "D01ANFA.spad" 228890 228898 229386 229391) (-192 "D01AMFA.spad" 228400 228408 228880 228885) (-191 "D01ALFA.spad" 227940 227948 228390 228395) (-190 "D01AKFA.spad" 227466 227474 227930 227935) (-189 "D01AJFA.spad" 226989 226997 227456 227461) (-188 "D01AGNT.spad" 223048 223056 226979 226984) (-187 "CYCLOTOM.spad" 222554 222562 223038 223043) (-186 "CYCLES.spad" 219386 219394 222544 222549) (-185 "CVMP.spad" 218803 218813 219376 219381) (-184 "CTRIGMNP.spad" 217293 217309 218793 218798) (-183 "CTOR.spad" 216736 216744 217283 217288) (-182 "CTORKIND.spad" 216351 216359 216726 216731) (-181 "CTORCALL.spad" 215939 215947 216341 216346) (-180 "CSTTOOLS.spad" 215182 215195 215929 215934) (-179 "CRFP.spad" 208886 208899 215172 215177) (-178 "CRCEAST.spad" 208606 208614 208876 208881) (-177 "CRAPACK.spad" 207649 207659 208596 208601) (-176 "CPMATCH.spad" 207149 207164 207574 207579) (-175 "CPIMA.spad" 206854 206873 207139 207144) (-174 "COORDSYS.spad" 201747 201757 206844 206849) (-173 "CONTOUR.spad" 201149 201157 201737 201742) (-172 "CONTFRAC.spad" 196761 196771 201051 201144) (-171 "CONDUIT.spad" 196519 196527 196751 196756) (-170 "COMRING.spad" 196193 196201 196457 196514) (-169 "COMPPROP.spad" 195707 195715 196183 196188) (-168 "COMPLPAT.spad" 195474 195489 195697 195702) (-167 "COMPLEX.spad" 189510 189520 189754 190003) (-166 "COMPLEX2.spad" 189223 189235 189500 189505) (-165 "COMPFACT.spad" 188825 188839 189213 189218) (-164 "COMPCAT.spad" 186963 186973 188571 188820) (-163 "COMPCAT.spad" 184782 184794 186392 186397) (-162 "COMMUPC.spad" 184528 184546 184772 184777) (-161 "COMMONOP.spad" 184061 184069 184518 184523) (-160 "COMM.spad" 183870 183878 184051 184056) (-159 "COMMAAST.spad" 183633 183641 183860 183865) (-158 "COMBOPC.spad" 182538 182546 183623 183628) (-157 "COMBINAT.spad" 181283 181293 182528 182533) (-156 "COMBF.spad" 178651 178667 181273 181278) (-155 "COLOR.spad" 177488 177496 178641 178646) (-154 "COLONAST.spad" 177154 177162 177478 177483) (-153 "CMPLXRT.spad" 176863 176880 177144 177149) (-152 "CLLCTAST.spad" 176525 176533 176853 176858) (-151 "CLIP.spad" 172617 172625 176515 176520) (-150 "CLIF.spad" 171256 171272 172573 172612) (-149 "CLAGG.spad" 167741 167751 171246 171251) (-148 "CLAGG.spad" 164097 164109 167604 167609) (-147 "CINTSLPE.spad" 163422 163435 164087 164092) (-146 "CHVAR.spad" 161500 161522 163412 163417) (-145 "CHARZ.spad" 161415 161423 161480 161495) (-144 "CHARPOL.spad" 160923 160933 161405 161410) (-143 "CHARNZ.spad" 160676 160684 160903 160918) (-142 "CHAR.spad" 158544 158552 160666 160671) (-141 "CFCAT.spad" 157860 157868 158534 158539) (-140 "CDEN.spad" 157018 157032 157850 157855) (-139 "CCLASS.spad" 155167 155175 156429 156468) (-138 "CATEGORY.spad" 154946 154954 155157 155162) (-137 "CATAST.spad" 154573 154581 154936 154941) (-136 "CASEAST.spad" 154287 154295 154563 154568) (-135 "CARTEN.spad" 149390 149414 154277 154282) (-134 "CARTEN2.spad" 148776 148803 149380 149385) (-133 "CARD.spad" 146065 146073 148750 148771) (-132 "CAPSLAST.spad" 145839 145847 146055 146060) (-131 "CACHSET.spad" 145461 145469 145829 145834) (-130 "CABMON.spad" 145014 145022 145451 145456) (-129 "BYTE.spad" 144335 144343 145004 145009) (-128 "BYTEBUF.spad" 142157 142165 143504 143531) (-127 "BTREE.spad" 141226 141236 141764 141791) (-126 "BTOURN.spad" 140229 140239 140833 140860) (-125 "BTCAT.spad" 139617 139627 140197 140224) (-124 "BTCAT.spad" 139025 139037 139607 139612) (-123 "BTAGG.spad" 138147 138155 138993 139020) (-122 "BTAGG.spad" 137289 137299 138137 138142) (-121 "BSTREE.spad" 136024 136034 136896 136923) (-120 "BRILL.spad" 134219 134230 136014 136019) (-119 "BRAGG.spad" 133143 133153 134209 134214) (-118 "BRAGG.spad" 132031 132043 133099 133104) (-117 "BPADICRT.spad" 130012 130024 130267 130360) (-116 "BPADIC.spad" 129676 129688 129938 130007) (-115 "BOUNDZRO.spad" 129332 129349 129666 129671) (-114 "BOP.spad" 124796 124804 129322 129327) (-113 "BOP1.spad" 122182 122192 124752 124757) (-112 "BOOLEAN.spad" 121506 121514 122172 122177) (-111 "BMODULE.spad" 121218 121230 121474 121501) (-110 "BITS.spad" 120637 120645 120854 120881) (-109 "BINDING.spad" 120056 120064 120627 120632) (-108 "BINARY.spad" 118167 118175 118523 118616) (-107 "BGAGG.spad" 117364 117374 118147 118162) (-106 "BGAGG.spad" 116569 116581 117354 117359) (-105 "BFUNCT.spad" 116133 116141 116549 116564) (-104 "BEZOUT.spad" 115267 115294 116083 116088) (-103 "BBTREE.spad" 112086 112096 114874 114901) (-102 "BASTYPE.spad" 111758 111766 112076 112081) (-101 "BASTYPE.spad" 111428 111438 111748 111753) (-100 "BALFACT.spad" 110867 110880 111418 111423) (-99 "AUTOMOR.spad" 110314 110323 110847 110862) (-98 "ATTREG.spad" 107033 107040 110066 110309) (-97 "ATTRBUT.spad" 103056 103063 107013 107028) (-96 "ATTRAST.spad" 102773 102780 103046 103051) (-95 "ATRIG.spad" 102243 102250 102763 102768) (-94 "ATRIG.spad" 101711 101720 102233 102238) (-93 "ASTCAT.spad" 101615 101622 101701 101706) (-92 "ASTCAT.spad" 101517 101526 101605 101610) (-91 "ASTACK.spad" 100850 100859 101124 101151) (-90 "ASSOCEQ.spad" 99650 99661 100806 100811) (-89 "ASP9.spad" 98731 98744 99640 99645) (-88 "ASP8.spad" 97774 97787 98721 98726) (-87 "ASP80.spad" 97096 97109 97764 97769) (-86 "ASP7.spad" 96256 96269 97086 97091) (-85 "ASP78.spad" 95707 95720 96246 96251) (-84 "ASP77.spad" 95076 95089 95697 95702) (-83 "ASP74.spad" 94168 94181 95066 95071) (-82 "ASP73.spad" 93439 93452 94158 94163) (-81 "ASP6.spad" 92306 92319 93429 93434) (-80 "ASP55.spad" 90815 90828 92296 92301) (-79 "ASP50.spad" 88632 88645 90805 90810) (-78 "ASP4.spad" 87927 87940 88622 88627) (-77 "ASP49.spad" 86926 86939 87917 87922) (-76 "ASP42.spad" 85333 85372 86916 86921) (-75 "ASP41.spad" 83912 83951 85323 85328) (-74 "ASP35.spad" 82900 82913 83902 83907) (-73 "ASP34.spad" 82201 82214 82890 82895) (-72 "ASP33.spad" 81761 81774 82191 82196) (-71 "ASP31.spad" 80901 80914 81751 81756) (-70 "ASP30.spad" 79793 79806 80891 80896) (-69 "ASP29.spad" 79259 79272 79783 79788) (-68 "ASP28.spad" 70532 70545 79249 79254) (-67 "ASP27.spad" 69429 69442 70522 70527) (-66 "ASP24.spad" 68516 68529 69419 69424) (-65 "ASP20.spad" 67980 67993 68506 68511) (-64 "ASP1.spad" 67361 67374 67970 67975) (-63 "ASP19.spad" 62047 62060 67351 67356) (-62 "ASP12.spad" 61461 61474 62037 62042) (-61 "ASP10.spad" 60732 60745 61451 61456) (-60 "ARRAY2.spad" 60092 60101 60339 60366) (-59 "ARRAY1.spad" 58927 58936 59275 59302) (-58 "ARRAY12.spad" 57596 57607 58917 58922) (-57 "ARR2CAT.spad" 53258 53279 57564 57591) (-56 "ARR2CAT.spad" 48940 48963 53248 53253) (-55 "ARITY.spad" 48508 48515 48930 48935) (-54 "APPRULE.spad" 47752 47774 48498 48503) (-53 "APPLYORE.spad" 47367 47380 47742 47747) (-52 "ANY.spad" 45709 45716 47357 47362) (-51 "ANY1.spad" 44780 44789 45699 45704) (-50 "ANTISYM.spad" 43219 43235 44760 44775) (-49 "ANON.spad" 42916 42923 43209 43214) (-48 "AN.spad" 41217 41224 42732 42825) (-47 "AMR.spad" 39396 39407 41115 41212) (-46 "AMR.spad" 37412 37425 39133 39138) (-45 "ALIST.spad" 34824 34845 35174 35201) (-44 "ALGSC.spad" 33947 33973 34696 34749) (-43 "ALGPKG.spad" 29656 29667 33903 33908) (-42 "ALGMFACT.spad" 28845 28859 29646 29651) (-41 "ALGMANIP.spad" 26265 26280 28642 28647) (-40 "ALGFF.spad" 24580 24607 24797 24953) (-39 "ALGFACT.spad" 23701 23711 24570 24575) (-38 "ALGEBRA.spad" 23534 23543 23657 23696) (-37 "ALGEBRA.spad" 23399 23410 23524 23529) (-36 "ALAGG.spad" 22909 22930 23367 23394) (-35 "AHYP.spad" 22290 22297 22899 22904) (-34 "AGG.spad" 20599 20606 22280 22285) (-33 "AGG.spad" 18872 18881 20555 20560) (-32 "AF.spad" 17297 17312 18807 18812) (-31 "ADDAST.spad" 16975 16982 17287 17292) (-30 "ACPLOT.spad" 15546 15553 16965 16970) (-29 "ACFS.spad" 13297 13306 15448 15541) (-28 "ACFS.spad" 11134 11145 13287 13292) (-27 "ACF.spad" 7736 7743 11036 11129) (-26 "ACF.spad" 4424 4433 7726 7731) (-25 "ABELSG.spad" 3965 3972 4414 4419) (-24 "ABELSG.spad" 3504 3513 3955 3960) (-23 "ABELMON.spad" 3047 3054 3494 3499) (-22 "ABELMON.spad" 2588 2597 3037 3042) (-21 "ABELGRP.spad" 2160 2167 2578 2583) (-20 "ABELGRP.spad" 1730 1739 2150 2155) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
+((-3 NIL 2276837 2276842 2276847 2276852) (-2 NIL 2276817 2276822 2276827 2276832) (-1 NIL 2276797 2276802 2276807 2276812) (0 NIL 2276777 2276782 2276787 2276792) (-1274 "ZMOD.spad" 2276586 2276599 2276715 2276772) (-1273 "ZLINDEP.spad" 2275630 2275641 2276576 2276581) (-1272 "ZDSOLVE.spad" 2265479 2265501 2275620 2275625) (-1271 "YSTREAM.spad" 2264972 2264983 2265469 2265474) (-1270 "XRPOLY.spad" 2264192 2264212 2264828 2264897) (-1269 "XPR.spad" 2261983 2261996 2263910 2264009) (-1268 "XPOLY.spad" 2261538 2261549 2261839 2261908) (-1267 "XPOLYC.spad" 2260855 2260871 2261464 2261533) (-1266 "XPBWPOLY.spad" 2259292 2259312 2260635 2260704) (-1265 "XF.spad" 2257753 2257768 2259194 2259287) (-1264 "XF.spad" 2256194 2256211 2257637 2257642) (-1263 "XFALG.spad" 2253218 2253234 2256120 2256189) (-1262 "XEXPPKG.spad" 2252469 2252495 2253208 2253213) (-1261 "XDPOLY.spad" 2252083 2252099 2252325 2252394) (-1260 "XALG.spad" 2251743 2251754 2252039 2252078) (-1259 "WUTSET.spad" 2247582 2247599 2251389 2251416) (-1258 "WP.spad" 2246781 2246825 2247440 2247507) (-1257 "WHILEAST.spad" 2246579 2246588 2246771 2246776) (-1256 "WHEREAST.spad" 2246250 2246259 2246569 2246574) (-1255 "WFFINTBS.spad" 2243813 2243835 2246240 2246245) (-1254 "WEIER.spad" 2242027 2242038 2243803 2243808) (-1253 "VSPACE.spad" 2241700 2241711 2241995 2242022) (-1252 "VSPACE.spad" 2241393 2241406 2241690 2241695) (-1251 "VOID.spad" 2241070 2241079 2241383 2241388) (-1250 "VIEW.spad" 2238692 2238701 2241060 2241065) (-1249 "VIEWDEF.spad" 2233889 2233898 2238682 2238687) (-1248 "VIEW3D.spad" 2217724 2217733 2233879 2233884) (-1247 "VIEW2D.spad" 2205461 2205470 2217714 2217719) (-1246 "VECTOR.spad" 2204136 2204147 2204387 2204414) (-1245 "VECTOR2.spad" 2202763 2202776 2204126 2204131) (-1244 "VECTCAT.spad" 2200663 2200674 2202731 2202758) (-1243 "VECTCAT.spad" 2198371 2198384 2200441 2200446) (-1242 "VARIABLE.spad" 2198151 2198166 2198361 2198366) (-1241 "UTYPE.spad" 2197795 2197804 2198141 2198146) (-1240 "UTSODETL.spad" 2197088 2197112 2197751 2197756) (-1239 "UTSODE.spad" 2195276 2195296 2197078 2197083) (-1238 "UTS.spad" 2190065 2190093 2193743 2193840) (-1237 "UTSCAT.spad" 2187516 2187532 2189963 2190060) (-1236 "UTSCAT.spad" 2184611 2184629 2187060 2187065) (-1235 "UTS2.spad" 2184204 2184239 2184601 2184606) (-1234 "URAGG.spad" 2178836 2178847 2184194 2184199) (-1233 "URAGG.spad" 2173432 2173445 2178792 2178797) (-1232 "UPXSSING.spad" 2171075 2171101 2172513 2172646) (-1231 "UPXS.spad" 2168223 2168251 2169207 2169356) (-1230 "UPXSCONS.spad" 2165980 2166000 2166355 2166504) (-1229 "UPXSCCA.spad" 2164545 2164565 2165826 2165975) (-1228 "UPXSCCA.spad" 2163252 2163274 2164535 2164540) (-1227 "UPXSCAT.spad" 2161833 2161849 2163098 2163247) (-1226 "UPXS2.spad" 2161374 2161427 2161823 2161828) (-1225 "UPSQFREE.spad" 2159786 2159800 2161364 2161369) (-1224 "UPSCAT.spad" 2157379 2157403 2159684 2159781) (-1223 "UPSCAT.spad" 2154678 2154704 2156985 2156990) (-1222 "UPOLYC.spad" 2149656 2149667 2154520 2154673) (-1221 "UPOLYC.spad" 2144526 2144539 2149392 2149397) (-1220 "UPOLYC2.spad" 2143995 2144014 2144516 2144521) (-1219 "UP.spad" 2141152 2141167 2141545 2141698) (-1218 "UPMP.spad" 2140042 2140055 2141142 2141147) (-1217 "UPDIVP.spad" 2139605 2139619 2140032 2140037) (-1216 "UPDECOMP.spad" 2137842 2137856 2139595 2139600) (-1215 "UPCDEN.spad" 2137049 2137065 2137832 2137837) (-1214 "UP2.spad" 2136411 2136432 2137039 2137044) (-1213 "UNISEG.spad" 2135764 2135775 2136330 2136335) (-1212 "UNISEG2.spad" 2135257 2135270 2135720 2135725) (-1211 "UNIFACT.spad" 2134358 2134370 2135247 2135252) (-1210 "ULS.spad" 2124910 2124938 2126003 2126432) (-1209 "ULSCONS.spad" 2117304 2117324 2117676 2117825) (-1208 "ULSCCAT.spad" 2115033 2115053 2117150 2117299) (-1207 "ULSCCAT.spad" 2112870 2112892 2114989 2114994) (-1206 "ULSCAT.spad" 2111086 2111102 2112716 2112865) (-1205 "ULS2.spad" 2110598 2110651 2111076 2111081) (-1204 "UFD.spad" 2109663 2109672 2110524 2110593) (-1203 "UFD.spad" 2108790 2108801 2109653 2109658) (-1202 "UDVO.spad" 2107637 2107646 2108780 2108785) (-1201 "UDPO.spad" 2105064 2105075 2107593 2107598) (-1200 "TYPE.spad" 2104996 2105005 2105054 2105059) (-1199 "TYPEAST.spad" 2104915 2104924 2104986 2104991) (-1198 "TWOFACT.spad" 2103565 2103580 2104905 2104910) (-1197 "TUPLE.spad" 2103049 2103060 2103464 2103469) (-1196 "TUBETOOL.spad" 2099886 2099895 2103039 2103044) (-1195 "TUBE.spad" 2098527 2098544 2099876 2099881) (-1194 "TS.spad" 2097116 2097132 2098092 2098189) (-1193 "TSETCAT.spad" 2084243 2084260 2097084 2097111) (-1192 "TSETCAT.spad" 2071356 2071375 2084199 2084204) (-1191 "TRMANIP.spad" 2065722 2065739 2071062 2071067) (-1190 "TRIMAT.spad" 2064681 2064706 2065712 2065717) (-1189 "TRIGMNIP.spad" 2063198 2063215 2064671 2064676) (-1188 "TRIGCAT.spad" 2062710 2062719 2063188 2063193) (-1187 "TRIGCAT.spad" 2062220 2062231 2062700 2062705) (-1186 "TREE.spad" 2060791 2060802 2061827 2061854) (-1185 "TRANFUN.spad" 2060622 2060631 2060781 2060786) (-1184 "TRANFUN.spad" 2060451 2060462 2060612 2060617) (-1183 "TOPSP.spad" 2060125 2060134 2060441 2060446) (-1182 "TOOLSIGN.spad" 2059788 2059799 2060115 2060120) (-1181 "TEXTFILE.spad" 2058345 2058354 2059778 2059783) (-1180 "TEX.spad" 2055477 2055486 2058335 2058340) (-1179 "TEX1.spad" 2055033 2055044 2055467 2055472) (-1178 "TEMUTL.spad" 2054588 2054597 2055023 2055028) (-1177 "TBCMPPK.spad" 2052681 2052704 2054578 2054583) (-1176 "TBAGG.spad" 2051717 2051740 2052661 2052676) (-1175 "TBAGG.spad" 2050761 2050786 2051707 2051712) (-1174 "TANEXP.spad" 2050137 2050148 2050751 2050756) (-1173 "TABLE.spad" 2048548 2048571 2048818 2048845) (-1172 "TABLEAU.spad" 2048029 2048040 2048538 2048543) (-1171 "TABLBUMP.spad" 2044812 2044823 2048019 2048024) (-1170 "SYSTEM.spad" 2044086 2044095 2044802 2044807) (-1169 "SYSSOLP.spad" 2041559 2041570 2044076 2044081) (-1168 "SYNTAX.spad" 2037829 2037838 2041549 2041554) (-1167 "SYMTAB.spad" 2035885 2035894 2037819 2037824) (-1166 "SYMS.spad" 2031870 2031879 2035875 2035880) (-1165 "SYMPOLY.spad" 2030877 2030888 2030959 2031086) (-1164 "SYMFUNC.spad" 2030352 2030363 2030867 2030872) (-1163 "SYMBOL.spad" 2027779 2027788 2030342 2030347) (-1162 "SWITCH.spad" 2024536 2024545 2027769 2027774) (-1161 "SUTS.spad" 2021435 2021463 2023003 2023100) (-1160 "SUPXS.spad" 2018570 2018598 2019567 2019716) (-1159 "SUP.spad" 2015339 2015350 2016120 2016273) (-1158 "SUPFRACF.spad" 2014444 2014462 2015329 2015334) (-1157 "SUP2.spad" 2013834 2013847 2014434 2014439) (-1156 "SUMRF.spad" 2012800 2012811 2013824 2013829) (-1155 "SUMFS.spad" 2012433 2012450 2012790 2012795) (-1154 "SULS.spad" 2002972 2003000 2004078 2004507) (-1153 "SUCHTAST.spad" 2002741 2002750 2002962 2002967) (-1152 "SUCH.spad" 2002421 2002436 2002731 2002736) (-1151 "SUBSPACE.spad" 1994428 1994443 2002411 2002416) (-1150 "SUBRESP.spad" 1993588 1993602 1994384 1994389) (-1149 "STTF.spad" 1989687 1989703 1993578 1993583) (-1148 "STTFNC.spad" 1986155 1986171 1989677 1989682) (-1147 "STTAYLOR.spad" 1978553 1978564 1986036 1986041) (-1146 "STRTBL.spad" 1977058 1977075 1977207 1977234) (-1145 "STRING.spad" 1976467 1976476 1976481 1976508) (-1144 "STRICAT.spad" 1976255 1976264 1976435 1976462) (-1143 "STREAM.spad" 1973113 1973124 1975780 1975795) (-1142 "STREAM3.spad" 1972658 1972673 1973103 1973108) (-1141 "STREAM2.spad" 1971726 1971739 1972648 1972653) (-1140 "STREAM1.spad" 1971430 1971441 1971716 1971721) (-1139 "STINPROD.spad" 1970336 1970352 1971420 1971425) (-1138 "STEP.spad" 1969537 1969546 1970326 1970331) (-1137 "STBL.spad" 1968063 1968091 1968230 1968245) (-1136 "STAGG.spad" 1967138 1967149 1968053 1968058) (-1135 "STAGG.spad" 1966211 1966224 1967128 1967133) (-1134 "STACK.spad" 1965562 1965573 1965818 1965845) (-1133 "SREGSET.spad" 1963266 1963283 1965208 1965235) (-1132 "SRDCMPK.spad" 1961811 1961831 1963256 1963261) (-1131 "SRAGG.spad" 1956908 1956917 1961779 1961806) (-1130 "SRAGG.spad" 1952025 1952036 1956898 1956903) (-1129 "SQMATRIX.spad" 1949641 1949659 1950557 1950644) (-1128 "SPLTREE.spad" 1944193 1944206 1949077 1949104) (-1127 "SPLNODE.spad" 1940781 1940794 1944183 1944188) (-1126 "SPFCAT.spad" 1939558 1939567 1940771 1940776) (-1125 "SPECOUT.spad" 1938108 1938117 1939548 1939553) (-1124 "SPADXPT.spad" 1930247 1930256 1938098 1938103) (-1123 "spad-parser.spad" 1929712 1929721 1930237 1930242) (-1122 "SPADAST.spad" 1929413 1929422 1929702 1929707) (-1121 "SPACEC.spad" 1913426 1913437 1929403 1929408) (-1120 "SPACE3.spad" 1913202 1913213 1913416 1913421) (-1119 "SORTPAK.spad" 1912747 1912760 1913158 1913163) (-1118 "SOLVETRA.spad" 1910504 1910515 1912737 1912742) (-1117 "SOLVESER.spad" 1909024 1909035 1910494 1910499) (-1116 "SOLVERAD.spad" 1905034 1905045 1909014 1909019) (-1115 "SOLVEFOR.spad" 1903454 1903472 1905024 1905029) (-1114 "SNTSCAT.spad" 1903054 1903071 1903422 1903449) (-1113 "SMTS.spad" 1901314 1901340 1902619 1902716) (-1112 "SMP.spad" 1898753 1898773 1899143 1899270) (-1111 "SMITH.spad" 1897596 1897621 1898743 1898748) (-1110 "SMATCAT.spad" 1895706 1895736 1897540 1897591) (-1109 "SMATCAT.spad" 1893748 1893780 1895584 1895589) (-1108 "SKAGG.spad" 1892709 1892720 1893716 1893743) (-1107 "SINT.spad" 1891017 1891026 1892575 1892704) (-1106 "SIMPAN.spad" 1890745 1890754 1891007 1891012) (-1105 "SIG.spad" 1890073 1890082 1890735 1890740) (-1104 "SIGNRF.spad" 1889181 1889192 1890063 1890068) (-1103 "SIGNEF.spad" 1888450 1888467 1889171 1889176) (-1102 "SIGAST.spad" 1887831 1887840 1888440 1888445) (-1101 "SHP.spad" 1885749 1885764 1887787 1887792) (-1100 "SHDP.spad" 1875460 1875487 1875969 1876100) (-1099 "SGROUP.spad" 1875068 1875077 1875450 1875455) (-1098 "SGROUP.spad" 1874674 1874685 1875058 1875063) (-1097 "SGCF.spad" 1867555 1867564 1874664 1874669) (-1096 "SFRTCAT.spad" 1866483 1866500 1867523 1867550) (-1095 "SFRGCD.spad" 1865546 1865566 1866473 1866478) (-1094 "SFQCMPK.spad" 1860183 1860203 1865536 1865541) (-1093 "SFORT.spad" 1859618 1859632 1860173 1860178) (-1092 "SEXOF.spad" 1859461 1859501 1859608 1859613) (-1091 "SEX.spad" 1859353 1859362 1859451 1859456) (-1090 "SEXCAT.spad" 1856904 1856944 1859343 1859348) (-1089 "SET.spad" 1855204 1855215 1856325 1856364) (-1088 "SETMN.spad" 1853638 1853655 1855194 1855199) (-1087 "SETCAT.spad" 1853123 1853132 1853628 1853633) (-1086 "SETCAT.spad" 1852606 1852617 1853113 1853118) (-1085 "SETAGG.spad" 1849127 1849138 1852586 1852601) (-1084 "SETAGG.spad" 1845656 1845669 1849117 1849122) (-1083 "SEQAST.spad" 1845359 1845368 1845646 1845651) (-1082 "SEGXCAT.spad" 1844481 1844494 1845349 1845354) (-1081 "SEG.spad" 1844294 1844305 1844400 1844405) (-1080 "SEGCAT.spad" 1843201 1843212 1844284 1844289) (-1079 "SEGBIND.spad" 1842273 1842284 1843156 1843161) (-1078 "SEGBIND2.spad" 1841969 1841982 1842263 1842268) (-1077 "SEGAST.spad" 1841683 1841692 1841959 1841964) (-1076 "SEG2.spad" 1841108 1841121 1841639 1841644) (-1075 "SDVAR.spad" 1840384 1840395 1841098 1841103) (-1074 "SDPOL.spad" 1837774 1837785 1838065 1838192) (-1073 "SCPKG.spad" 1835853 1835864 1837764 1837769) (-1072 "SCOPE.spad" 1834998 1835007 1835843 1835848) (-1071 "SCACHE.spad" 1833680 1833691 1834988 1834993) (-1070 "SASTCAT.spad" 1833589 1833598 1833670 1833675) (-1069 "SAOS.spad" 1833461 1833470 1833579 1833584) (-1068 "SAERFFC.spad" 1833174 1833194 1833451 1833456) (-1067 "SAE.spad" 1831349 1831365 1831960 1832095) (-1066 "SAEFACT.spad" 1831050 1831070 1831339 1831344) (-1065 "RURPK.spad" 1828691 1828707 1831040 1831045) (-1064 "RULESET.spad" 1828132 1828156 1828681 1828686) (-1063 "RULE.spad" 1826336 1826360 1828122 1828127) (-1062 "RULECOLD.spad" 1826188 1826201 1826326 1826331) (-1061 "RSTRCAST.spad" 1825905 1825914 1826178 1826183) (-1060 "RSETGCD.spad" 1822283 1822303 1825895 1825900) (-1059 "RSETCAT.spad" 1812067 1812084 1822251 1822278) (-1058 "RSETCAT.spad" 1801871 1801890 1812057 1812062) (-1057 "RSDCMPK.spad" 1800323 1800343 1801861 1801866) (-1056 "RRCC.spad" 1798707 1798737 1800313 1800318) (-1055 "RRCC.spad" 1797089 1797121 1798697 1798702) (-1054 "RPTAST.spad" 1796791 1796800 1797079 1797084) (-1053 "RPOLCAT.spad" 1776151 1776166 1796659 1796786) (-1052 "RPOLCAT.spad" 1755225 1755242 1775735 1775740) (-1051 "ROUTINE.spad" 1751088 1751097 1753872 1753899) (-1050 "ROMAN.spad" 1750416 1750425 1750954 1751083) (-1049 "ROIRC.spad" 1749496 1749528 1750406 1750411) (-1048 "RNS.spad" 1748399 1748408 1749398 1749491) (-1047 "RNS.spad" 1747388 1747399 1748389 1748394) (-1046 "RNG.spad" 1747123 1747132 1747378 1747383) (-1045 "RMODULE.spad" 1746761 1746772 1747113 1747118) (-1044 "RMCAT2.spad" 1746169 1746226 1746751 1746756) (-1043 "RMATRIX.spad" 1744993 1745012 1745336 1745375) (-1042 "RMATCAT.spad" 1740526 1740557 1744949 1744988) (-1041 "RMATCAT.spad" 1735949 1735982 1740374 1740379) (-1040 "RINTERP.spad" 1735837 1735857 1735939 1735944) (-1039 "RING.spad" 1735307 1735316 1735817 1735832) (-1038 "RING.spad" 1734785 1734796 1735297 1735302) (-1037 "RIDIST.spad" 1734169 1734178 1734775 1734780) (-1036 "RGCHAIN.spad" 1732748 1732764 1733654 1733681) (-1035 "RGBCSPC.spad" 1732529 1732541 1732738 1732743) (-1034 "RGBCMDL.spad" 1732059 1732071 1732519 1732524) (-1033 "RF.spad" 1729673 1729684 1732049 1732054) (-1032 "RFFACTOR.spad" 1729135 1729146 1729663 1729668) (-1031 "RFFACT.spad" 1728870 1728882 1729125 1729130) (-1030 "RFDIST.spad" 1727858 1727867 1728860 1728865) (-1029 "RETSOL.spad" 1727275 1727288 1727848 1727853) (-1028 "RETRACT.spad" 1726703 1726714 1727265 1727270) (-1027 "RETRACT.spad" 1726129 1726142 1726693 1726698) (-1026 "RETAST.spad" 1725941 1725950 1726119 1726124) (-1025 "RESULT.spad" 1724001 1724010 1724588 1724615) (-1024 "RESRING.spad" 1723348 1723395 1723939 1723996) (-1023 "RESLATC.spad" 1722672 1722683 1723338 1723343) (-1022 "REPSQ.spad" 1722401 1722412 1722662 1722667) (-1021 "REP.spad" 1719953 1719962 1722391 1722396) (-1020 "REPDB.spad" 1719658 1719669 1719943 1719948) (-1019 "REP2.spad" 1709230 1709241 1719500 1719505) (-1018 "REP1.spad" 1703220 1703231 1709180 1709185) (-1017 "REGSET.spad" 1701017 1701034 1702866 1702893) (-1016 "REF.spad" 1700346 1700357 1700972 1700977) (-1015 "REDORDER.spad" 1699522 1699539 1700336 1700341) (-1014 "RECLOS.spad" 1698305 1698325 1699009 1699102) (-1013 "REALSOLV.spad" 1697437 1697446 1698295 1698300) (-1012 "REAL.spad" 1697309 1697318 1697427 1697432) (-1011 "REAL0Q.spad" 1694591 1694606 1697299 1697304) (-1010 "REAL0.spad" 1691419 1691434 1694581 1694586) (-1009 "RDUCEAST.spad" 1691140 1691149 1691409 1691414) (-1008 "RDIV.spad" 1690791 1690816 1691130 1691135) (-1007 "RDIST.spad" 1690354 1690365 1690781 1690786) (-1006 "RDETRS.spad" 1689150 1689168 1690344 1690349) (-1005 "RDETR.spad" 1687257 1687275 1689140 1689145) (-1004 "RDEEFS.spad" 1686330 1686347 1687247 1687252) (-1003 "RDEEF.spad" 1685326 1685343 1686320 1686325) (-1002 "RCFIELD.spad" 1682512 1682521 1685228 1685321) (-1001 "RCFIELD.spad" 1679784 1679795 1682502 1682507) (-1000 "RCAGG.spad" 1677696 1677707 1679774 1679779) (-999 "RCAGG.spad" 1675536 1675548 1677615 1677620) (-998 "RATRET.spad" 1674897 1674907 1675526 1675531) (-997 "RATFACT.spad" 1674590 1674601 1674887 1674892) (-996 "RANDSRC.spad" 1673910 1673918 1674580 1674585) (-995 "RADUTIL.spad" 1673665 1673673 1673900 1673905) (-994 "RADIX.spad" 1670567 1670580 1672132 1672225) (-993 "RADFF.spad" 1668981 1669017 1669099 1669255) (-992 "RADCAT.spad" 1668575 1668583 1668971 1668976) (-991 "RADCAT.spad" 1668167 1668177 1668565 1668570) (-990 "QUEUE.spad" 1667510 1667520 1667774 1667801) (-989 "QUAT.spad" 1666092 1666102 1666434 1666499) (-988 "QUATCT2.spad" 1665711 1665729 1666082 1666087) (-987 "QUATCAT.spad" 1663876 1663886 1665641 1665706) (-986 "QUATCAT.spad" 1661792 1661804 1663559 1663564) (-985 "QUAGG.spad" 1660618 1660628 1661760 1661787) (-984 "QQUTAST.spad" 1660387 1660395 1660608 1660613) (-983 "QFORM.spad" 1659850 1659864 1660377 1660382) (-982 "QFCAT.spad" 1658553 1658563 1659752 1659845) (-981 "QFCAT.spad" 1656847 1656859 1658048 1658053) (-980 "QFCAT2.spad" 1656538 1656554 1656837 1656842) (-979 "QEQUAT.spad" 1656095 1656103 1656528 1656533) (-978 "QCMPACK.spad" 1650842 1650861 1656085 1656090) (-977 "QALGSET.spad" 1646917 1646949 1650756 1650761) (-976 "QALGSET2.spad" 1644913 1644931 1646907 1646912) (-975 "PWFFINTB.spad" 1642223 1642244 1644903 1644908) (-974 "PUSHVAR.spad" 1641552 1641571 1642213 1642218) (-973 "PTRANFN.spad" 1637678 1637688 1641542 1641547) (-972 "PTPACK.spad" 1634766 1634776 1637668 1637673) (-971 "PTFUNC2.spad" 1634587 1634601 1634756 1634761) (-970 "PTCAT.spad" 1633836 1633846 1634555 1634582) (-969 "PSQFR.spad" 1633143 1633167 1633826 1633831) (-968 "PSEUDLIN.spad" 1632001 1632011 1633133 1633138) (-967 "PSETPK.spad" 1617434 1617450 1631879 1631884) (-966 "PSETCAT.spad" 1611354 1611377 1617414 1617429) (-965 "PSETCAT.spad" 1605248 1605273 1611310 1611315) (-964 "PSCURVE.spad" 1604231 1604239 1605238 1605243) (-963 "PSCAT.spad" 1602998 1603027 1604129 1604226) (-962 "PSCAT.spad" 1601855 1601886 1602988 1602993) (-961 "PRTITION.spad" 1600800 1600808 1601845 1601850) (-960 "PRTDAST.spad" 1600519 1600527 1600790 1600795) (-959 "PRS.spad" 1590081 1590098 1600475 1600480) (-958 "PRQAGG.spad" 1589512 1589522 1590049 1590076) (-957 "PROPLOG.spad" 1588915 1588923 1589502 1589507) (-956 "PROPFRML.spad" 1586833 1586844 1588905 1588910) (-955 "PROPERTY.spad" 1586327 1586335 1586823 1586828) (-954 "PRODUCT.spad" 1584007 1584019 1584293 1584348) (-953 "PR.spad" 1582393 1582405 1583098 1583225) (-952 "PRINT.spad" 1582145 1582153 1582383 1582388) (-951 "PRIMES.spad" 1580396 1580406 1582135 1582140) (-950 "PRIMELT.spad" 1578377 1578391 1580386 1580391) (-949 "PRIMCAT.spad" 1578000 1578008 1578367 1578372) (-948 "PRIMARR.spad" 1577005 1577015 1577183 1577210) (-947 "PRIMARR2.spad" 1575728 1575740 1576995 1577000) (-946 "PREASSOC.spad" 1575100 1575112 1575718 1575723) (-945 "PPCURVE.spad" 1574237 1574245 1575090 1575095) (-944 "PORTNUM.spad" 1574012 1574020 1574227 1574232) (-943 "POLYROOT.spad" 1572841 1572863 1573968 1573973) (-942 "POLY.spad" 1570138 1570148 1570655 1570782) (-941 "POLYLIFT.spad" 1569399 1569422 1570128 1570133) (-940 "POLYCATQ.spad" 1567501 1567523 1569389 1569394) (-939 "POLYCAT.spad" 1560907 1560928 1567369 1567496) (-938 "POLYCAT.spad" 1553615 1553638 1560079 1560084) (-937 "POLY2UP.spad" 1553063 1553077 1553605 1553610) (-936 "POLY2.spad" 1552658 1552670 1553053 1553058) (-935 "POLUTIL.spad" 1551599 1551628 1552614 1552619) (-934 "POLTOPOL.spad" 1550347 1550362 1551589 1551594) (-933 "POINT.spad" 1549186 1549196 1549273 1549300) (-932 "PNTHEORY.spad" 1545852 1545860 1549176 1549181) (-931 "PMTOOLS.spad" 1544609 1544623 1545842 1545847) (-930 "PMSYM.spad" 1544154 1544164 1544599 1544604) (-929 "PMQFCAT.spad" 1543741 1543755 1544144 1544149) (-928 "PMPRED.spad" 1543210 1543224 1543731 1543736) (-927 "PMPREDFS.spad" 1542654 1542676 1543200 1543205) (-926 "PMPLCAT.spad" 1541724 1541742 1542586 1542591) (-925 "PMLSAGG.spad" 1541305 1541319 1541714 1541719) (-924 "PMKERNEL.spad" 1540872 1540884 1541295 1541300) (-923 "PMINS.spad" 1540448 1540458 1540862 1540867) (-922 "PMFS.spad" 1540021 1540039 1540438 1540443) (-921 "PMDOWN.spad" 1539307 1539321 1540011 1540016) (-920 "PMASS.spad" 1538319 1538327 1539297 1539302) (-919 "PMASSFS.spad" 1537288 1537304 1538309 1538314) (-918 "PLOTTOOL.spad" 1537068 1537076 1537278 1537283) (-917 "PLOT.spad" 1531899 1531907 1537058 1537063) (-916 "PLOT3D.spad" 1528319 1528327 1531889 1531894) (-915 "PLOT1.spad" 1527460 1527470 1528309 1528314) (-914 "PLEQN.spad" 1514676 1514703 1527450 1527455) (-913 "PINTERP.spad" 1514292 1514311 1514666 1514671) (-912 "PINTERPA.spad" 1514074 1514090 1514282 1514287) (-911 "PI.spad" 1513681 1513689 1514048 1514069) (-910 "PID.spad" 1512637 1512645 1513607 1513676) (-909 "PICOERCE.spad" 1512294 1512304 1512627 1512632) (-908 "PGROEB.spad" 1510891 1510905 1512284 1512289) (-907 "PGE.spad" 1502144 1502152 1510881 1510886) (-906 "PGCD.spad" 1501026 1501043 1502134 1502139) (-905 "PFRPAC.spad" 1500169 1500179 1501016 1501021) (-904 "PFR.spad" 1496826 1496836 1500071 1500164) (-903 "PFOTOOLS.spad" 1496084 1496100 1496816 1496821) (-902 "PFOQ.spad" 1495454 1495472 1496074 1496079) (-901 "PFO.spad" 1494873 1494900 1495444 1495449) (-900 "PF.spad" 1494447 1494459 1494678 1494771) (-899 "PFECAT.spad" 1492113 1492121 1494373 1494442) (-898 "PFECAT.spad" 1489807 1489817 1492069 1492074) (-897 "PFBRU.spad" 1487677 1487689 1489797 1489802) (-896 "PFBR.spad" 1485215 1485238 1487667 1487672) (-895 "PERM.spad" 1480896 1480906 1485045 1485060) (-894 "PERMGRP.spad" 1475632 1475642 1480886 1480891) (-893 "PERMCAT.spad" 1474184 1474194 1475612 1475627) (-892 "PERMAN.spad" 1472716 1472730 1474174 1474179) (-891 "PENDTREE.spad" 1472055 1472065 1472345 1472350) (-890 "PDRING.spad" 1470546 1470556 1472035 1472050) (-889 "PDRING.spad" 1469045 1469057 1470536 1470541) (-888 "PDEPROB.spad" 1468060 1468068 1469035 1469040) (-887 "PDEPACK.spad" 1462062 1462070 1468050 1468055) (-886 "PDECOMP.spad" 1461524 1461541 1462052 1462057) (-885 "PDECAT.spad" 1459878 1459886 1461514 1461519) (-884 "PCOMP.spad" 1459729 1459742 1459868 1459873) (-883 "PBWLB.spad" 1458311 1458328 1459719 1459724) (-882 "PATTERN.spad" 1452742 1452752 1458301 1458306) (-881 "PATTERN2.spad" 1452478 1452490 1452732 1452737) (-880 "PATTERN1.spad" 1450780 1450796 1452468 1452473) (-879 "PATRES.spad" 1448327 1448339 1450770 1450775) (-878 "PATRES2.spad" 1447989 1448003 1448317 1448322) (-877 "PATMATCH.spad" 1446146 1446177 1447697 1447702) (-876 "PATMAB.spad" 1445571 1445581 1446136 1446141) (-875 "PATLRES.spad" 1444655 1444669 1445561 1445566) (-874 "PATAB.spad" 1444419 1444429 1444645 1444650) (-873 "PARTPERM.spad" 1441781 1441789 1444409 1444414) (-872 "PARSURF.spad" 1441209 1441237 1441771 1441776) (-871 "PARSU2.spad" 1441004 1441020 1441199 1441204) (-870 "script-parser.spad" 1440524 1440532 1440994 1440999) (-869 "PARSCURV.spad" 1439952 1439980 1440514 1440519) (-868 "PARSC2.spad" 1439741 1439757 1439942 1439947) (-867 "PARPCURV.spad" 1439199 1439227 1439731 1439736) (-866 "PARPC2.spad" 1438988 1439004 1439189 1439194) (-865 "PAN2EXPR.spad" 1438400 1438408 1438978 1438983) (-864 "PALETTE.spad" 1437370 1437378 1438390 1438395) (-863 "PAIR.spad" 1436353 1436366 1436958 1436963) (-862 "PADICRC.spad" 1433683 1433701 1434858 1434951) (-861 "PADICRAT.spad" 1431698 1431710 1431919 1432012) (-860 "PADIC.spad" 1431393 1431405 1431624 1431693) (-859 "PADICCT.spad" 1429934 1429946 1431319 1431388) (-858 "PADEPAC.spad" 1428613 1428632 1429924 1429929) (-857 "PADE.spad" 1427353 1427369 1428603 1428608) (-856 "OWP.spad" 1426593 1426623 1427211 1427278) (-855 "OVAR.spad" 1426374 1426397 1426583 1426588) (-854 "OUT.spad" 1425458 1425466 1426364 1426369) (-853 "OUTFORM.spad" 1414754 1414762 1425448 1425453) (-852 "OUTBFILE.spad" 1414172 1414180 1414744 1414749) (-851 "OUTBCON.spad" 1413450 1413458 1414162 1414167) (-850 "OUTBCON.spad" 1412726 1412736 1413440 1413445) (-849 "OSI.spad" 1412201 1412209 1412716 1412721) (-848 "OSGROUP.spad" 1412119 1412127 1412191 1412196) (-847 "ORTHPOL.spad" 1410580 1410590 1412036 1412041) (-846 "OREUP.spad" 1410033 1410061 1410260 1410299) (-845 "ORESUP.spad" 1409332 1409356 1409713 1409752) (-844 "OREPCTO.spad" 1407151 1407163 1409252 1409257) (-843 "OREPCAT.spad" 1401208 1401218 1407107 1407146) (-842 "OREPCAT.spad" 1395155 1395167 1401056 1401061) (-841 "ORDSET.spad" 1394321 1394329 1395145 1395150) (-840 "ORDSET.spad" 1393485 1393495 1394311 1394316) (-839 "ORDRING.spad" 1392875 1392883 1393465 1393480) (-838 "ORDRING.spad" 1392273 1392283 1392865 1392870) (-837 "ORDMON.spad" 1392128 1392136 1392263 1392268) (-836 "ORDFUNS.spad" 1391254 1391270 1392118 1392123) (-835 "ORDFIN.spad" 1391188 1391196 1391244 1391249) (-834 "ORDCOMP.spad" 1389653 1389663 1390735 1390764) (-833 "ORDCOMP2.spad" 1388938 1388950 1389643 1389648) (-832 "OPTPROB.spad" 1387576 1387584 1388928 1388933) (-831 "OPTPACK.spad" 1379961 1379969 1387566 1387571) (-830 "OPTCAT.spad" 1377636 1377644 1379951 1379956) (-829 "OPSIG.spad" 1377288 1377296 1377626 1377631) (-828 "OPQUERY.spad" 1376837 1376845 1377278 1377283) (-827 "OP.spad" 1376579 1376589 1376659 1376726) (-826 "OPERCAT.spad" 1376167 1376177 1376569 1376574) (-825 "OPERCAT.spad" 1375753 1375765 1376157 1376162) (-824 "ONECOMP.spad" 1374498 1374508 1375300 1375329) (-823 "ONECOMP2.spad" 1373916 1373928 1374488 1374493) (-822 "OMSERVER.spad" 1372918 1372926 1373906 1373911) (-821 "OMSAGG.spad" 1372706 1372716 1372874 1372913) (-820 "OMPKG.spad" 1371318 1371326 1372696 1372701) (-819 "OM.spad" 1370283 1370291 1371308 1371313) (-818 "OMLO.spad" 1369708 1369720 1370169 1370208) (-817 "OMEXPR.spad" 1369542 1369552 1369698 1369703) (-816 "OMERR.spad" 1369085 1369093 1369532 1369537) (-815 "OMERRK.spad" 1368119 1368127 1369075 1369080) (-814 "OMENC.spad" 1367463 1367471 1368109 1368114) (-813 "OMDEV.spad" 1361752 1361760 1367453 1367458) (-812 "OMCONN.spad" 1361161 1361169 1361742 1361747) (-811 "OINTDOM.spad" 1360924 1360932 1361087 1361156) (-810 "OFMONOID.spad" 1357111 1357121 1360914 1360919) (-809 "ODVAR.spad" 1356372 1356382 1357101 1357106) (-808 "ODR.spad" 1356016 1356042 1356184 1356333) (-807 "ODPOL.spad" 1353362 1353372 1353702 1353829) (-806 "ODP.spad" 1343209 1343229 1343582 1343713) (-805 "ODETOOLS.spad" 1341792 1341811 1343199 1343204) (-804 "ODESYS.spad" 1339442 1339459 1341782 1341787) (-803 "ODERTRIC.spad" 1335383 1335400 1339399 1339404) (-802 "ODERED.spad" 1334770 1334794 1335373 1335378) (-801 "ODERAT.spad" 1332321 1332338 1334760 1334765) (-800 "ODEPRRIC.spad" 1329212 1329234 1332311 1332316) (-799 "ODEPROB.spad" 1328469 1328477 1329202 1329207) (-798 "ODEPRIM.spad" 1325743 1325765 1328459 1328464) (-797 "ODEPAL.spad" 1325119 1325143 1325733 1325738) (-796 "ODEPACK.spad" 1311721 1311729 1325109 1325114) (-795 "ODEINT.spad" 1311152 1311168 1311711 1311716) (-794 "ODEIFTBL.spad" 1308547 1308555 1311142 1311147) (-793 "ODEEF.spad" 1303914 1303930 1308537 1308542) (-792 "ODECONST.spad" 1303433 1303451 1303904 1303909) (-791 "ODECAT.spad" 1302029 1302037 1303423 1303428) (-790 "OCT.spad" 1300167 1300177 1300883 1300922) (-789 "OCTCT2.spad" 1299811 1299832 1300157 1300162) (-788 "OC.spad" 1297585 1297595 1299767 1299806) (-787 "OC.spad" 1295084 1295096 1297268 1297273) (-786 "OCAMON.spad" 1294932 1294940 1295074 1295079) (-785 "OASGP.spad" 1294747 1294755 1294922 1294927) (-784 "OAMONS.spad" 1294267 1294275 1294737 1294742) (-783 "OAMON.spad" 1294128 1294136 1294257 1294262) (-782 "OAGROUP.spad" 1293990 1293998 1294118 1294123) (-781 "NUMTUBE.spad" 1293577 1293593 1293980 1293985) (-780 "NUMQUAD.spad" 1281439 1281447 1293567 1293572) (-779 "NUMODE.spad" 1272575 1272583 1281429 1281434) (-778 "NUMINT.spad" 1270133 1270141 1272565 1272570) (-777 "NUMFMT.spad" 1268973 1268981 1270123 1270128) (-776 "NUMERIC.spad" 1261045 1261055 1268778 1268783) (-775 "NTSCAT.spad" 1259547 1259563 1261013 1261040) (-774 "NTPOLFN.spad" 1259092 1259102 1259464 1259469) (-773 "NSUP.spad" 1252102 1252112 1256642 1256795) (-772 "NSUP2.spad" 1251494 1251506 1252092 1252097) (-771 "NSMP.spad" 1247689 1247708 1247997 1248124) (-770 "NREP.spad" 1246061 1246075 1247679 1247684) (-769 "NPCOEF.spad" 1245307 1245327 1246051 1246056) (-768 "NORMRETR.spad" 1244905 1244944 1245297 1245302) (-767 "NORMPK.spad" 1242807 1242826 1244895 1244900) (-766 "NORMMA.spad" 1242495 1242521 1242797 1242802) (-765 "NONE.spad" 1242236 1242244 1242485 1242490) (-764 "NONE1.spad" 1241912 1241922 1242226 1242231) (-763 "NODE1.spad" 1241381 1241397 1241902 1241907) (-762 "NNI.spad" 1240268 1240276 1241355 1241376) (-761 "NLINSOL.spad" 1238890 1238900 1240258 1240263) (-760 "NIPROB.spad" 1237431 1237439 1238880 1238885) (-759 "NFINTBAS.spad" 1234891 1234908 1237421 1237426) (-758 "NETCLT.spad" 1234865 1234876 1234881 1234886) (-757 "NCODIV.spad" 1233063 1233079 1234855 1234860) (-756 "NCNTFRAC.spad" 1232705 1232719 1233053 1233058) (-755 "NCEP.spad" 1230865 1230879 1232695 1232700) (-754 "NASRING.spad" 1230461 1230469 1230855 1230860) (-753 "NASRING.spad" 1230055 1230065 1230451 1230456) (-752 "NARNG.spad" 1229399 1229407 1230045 1230050) (-751 "NARNG.spad" 1228741 1228751 1229389 1229394) (-750 "NAGSP.spad" 1227814 1227822 1228731 1228736) (-749 "NAGS.spad" 1217339 1217347 1227804 1227809) (-748 "NAGF07.spad" 1215732 1215740 1217329 1217334) (-747 "NAGF04.spad" 1209964 1209972 1215722 1215727) (-746 "NAGF02.spad" 1203773 1203781 1209954 1209959) (-745 "NAGF01.spad" 1199376 1199384 1203763 1203768) (-744 "NAGE04.spad" 1192836 1192844 1199366 1199371) (-743 "NAGE02.spad" 1183178 1183186 1192826 1192831) (-742 "NAGE01.spad" 1179062 1179070 1183168 1183173) (-741 "NAGD03.spad" 1176982 1176990 1179052 1179057) (-740 "NAGD02.spad" 1169513 1169521 1176972 1176977) (-739 "NAGD01.spad" 1163626 1163634 1169503 1169508) (-738 "NAGC06.spad" 1159413 1159421 1163616 1163621) (-737 "NAGC05.spad" 1157882 1157890 1159403 1159408) (-736 "NAGC02.spad" 1157137 1157145 1157872 1157877) (-735 "NAALG.spad" 1156672 1156682 1157105 1157132) (-734 "NAALG.spad" 1156227 1156239 1156662 1156667) (-733 "MULTSQFR.spad" 1153185 1153202 1156217 1156222) (-732 "MULTFACT.spad" 1152568 1152585 1153175 1153180) (-731 "MTSCAT.spad" 1150602 1150623 1152466 1152563) (-730 "MTHING.spad" 1150259 1150269 1150592 1150597) (-729 "MSYSCMD.spad" 1149693 1149701 1150249 1150254) (-728 "MSET.spad" 1147635 1147645 1149399 1149438) (-727 "MSETAGG.spad" 1147480 1147490 1147603 1147630) (-726 "MRING.spad" 1144451 1144463 1147188 1147255) (-725 "MRF2.spad" 1144019 1144033 1144441 1144446) (-724 "MRATFAC.spad" 1143565 1143582 1144009 1144014) (-723 "MPRFF.spad" 1141595 1141614 1143555 1143560) (-722 "MPOLY.spad" 1139030 1139045 1139389 1139516) (-721 "MPCPF.spad" 1138294 1138313 1139020 1139025) (-720 "MPC3.spad" 1138109 1138149 1138284 1138289) (-719 "MPC2.spad" 1137751 1137784 1138099 1138104) (-718 "MONOTOOL.spad" 1136086 1136103 1137741 1137746) (-717 "MONOID.spad" 1135405 1135413 1136076 1136081) (-716 "MONOID.spad" 1134722 1134732 1135395 1135400) (-715 "MONOGEN.spad" 1133468 1133481 1134582 1134717) (-714 "MONOGEN.spad" 1132236 1132251 1133352 1133357) (-713 "MONADWU.spad" 1130250 1130258 1132226 1132231) (-712 "MONADWU.spad" 1128262 1128272 1130240 1130245) (-711 "MONAD.spad" 1127406 1127414 1128252 1128257) (-710 "MONAD.spad" 1126548 1126558 1127396 1127401) (-709 "MOEBIUS.spad" 1125234 1125248 1126528 1126543) (-708 "MODULE.spad" 1125104 1125114 1125202 1125229) (-707 "MODULE.spad" 1124994 1125006 1125094 1125099) (-706 "MODRING.spad" 1124325 1124364 1124974 1124989) (-705 "MODOP.spad" 1122984 1122996 1124147 1124214) (-704 "MODMONOM.spad" 1122713 1122731 1122974 1122979) (-703 "MODMON.spad" 1119472 1119488 1120191 1120344) (-702 "MODFIELD.spad" 1118830 1118869 1119374 1119467) (-701 "MMLFORM.spad" 1117690 1117698 1118820 1118825) (-700 "MMAP.spad" 1117430 1117464 1117680 1117685) (-699 "MLO.spad" 1115857 1115867 1117386 1117425) (-698 "MLIFT.spad" 1114429 1114446 1115847 1115852) (-697 "MKUCFUNC.spad" 1113962 1113980 1114419 1114424) (-696 "MKRECORD.spad" 1113564 1113577 1113952 1113957) (-695 "MKFUNC.spad" 1112945 1112955 1113554 1113559) (-694 "MKFLCFN.spad" 1111901 1111911 1112935 1112940) (-693 "MKCHSET.spad" 1111766 1111776 1111891 1111896) (-692 "MKBCFUNC.spad" 1111251 1111269 1111756 1111761) (-691 "MINT.spad" 1110690 1110698 1111153 1111246) (-690 "MHROWRED.spad" 1109191 1109201 1110680 1110685) (-689 "MFLOAT.spad" 1107707 1107715 1109081 1109186) (-688 "MFINFACT.spad" 1107107 1107129 1107697 1107702) (-687 "MESH.spad" 1104839 1104847 1107097 1107102) (-686 "MDDFACT.spad" 1103032 1103042 1104829 1104834) (-685 "MDAGG.spad" 1102319 1102329 1103012 1103027) (-684 "MCMPLX.spad" 1098305 1098313 1098919 1099108) (-683 "MCDEN.spad" 1097513 1097525 1098295 1098300) (-682 "MCALCFN.spad" 1094615 1094641 1097503 1097508) (-681 "MAYBE.spad" 1093864 1093875 1094605 1094610) (-680 "MATSTOR.spad" 1091140 1091150 1093854 1093859) (-679 "MATRIX.spad" 1089844 1089854 1090328 1090355) (-678 "MATLIN.spad" 1087170 1087194 1089728 1089733) (-677 "MATCAT.spad" 1078755 1078777 1087138 1087165) (-676 "MATCAT.spad" 1070212 1070236 1078597 1078602) (-675 "MATCAT2.spad" 1069480 1069528 1070202 1070207) (-674 "MAPPKG3.spad" 1068379 1068393 1069470 1069475) (-673 "MAPPKG2.spad" 1067713 1067725 1068369 1068374) (-672 "MAPPKG1.spad" 1066531 1066541 1067703 1067708) (-671 "MAPPAST.spad" 1065844 1065852 1066521 1066526) (-670 "MAPHACK3.spad" 1065652 1065666 1065834 1065839) (-669 "MAPHACK2.spad" 1065417 1065429 1065642 1065647) (-668 "MAPHACK1.spad" 1065047 1065057 1065407 1065412) (-667 "MAGMA.spad" 1062837 1062854 1065037 1065042) (-666 "MACROAST.spad" 1062416 1062424 1062827 1062832) (-665 "M3D.spad" 1060112 1060122 1061794 1061799) (-664 "LZSTAGG.spad" 1057340 1057350 1060102 1060107) (-663 "LZSTAGG.spad" 1054566 1054578 1057330 1057335) (-662 "LWORD.spad" 1051271 1051288 1054556 1054561) (-661 "LSTAST.spad" 1051055 1051063 1051261 1051266) (-660 "LSQM.spad" 1049281 1049295 1049679 1049730) (-659 "LSPP.spad" 1048814 1048831 1049271 1049276) (-658 "LSMP.spad" 1047654 1047682 1048804 1048809) (-657 "LSMP1.spad" 1045458 1045472 1047644 1047649) (-656 "LSAGG.spad" 1045127 1045137 1045426 1045453) (-655 "LSAGG.spad" 1044816 1044828 1045117 1045122) (-654 "LPOLY.spad" 1043770 1043789 1044672 1044741) (-653 "LPEFRAC.spad" 1043027 1043037 1043760 1043765) (-652 "LO.spad" 1042428 1042442 1042961 1042988) (-651 "LOGIC.spad" 1042030 1042038 1042418 1042423) (-650 "LOGIC.spad" 1041630 1041640 1042020 1042025) (-649 "LODOOPS.spad" 1040548 1040560 1041620 1041625) (-648 "LODO.spad" 1039932 1039948 1040228 1040267) (-647 "LODOF.spad" 1038976 1038993 1039889 1039894) (-646 "LODOCAT.spad" 1037634 1037644 1038932 1038971) (-645 "LODOCAT.spad" 1036290 1036302 1037590 1037595) (-644 "LODO2.spad" 1035563 1035575 1035970 1036009) (-643 "LODO1.spad" 1034963 1034973 1035243 1035282) (-642 "LODEEF.spad" 1033735 1033753 1034953 1034958) (-641 "LNAGG.spad" 1029537 1029547 1033725 1033730) (-640 "LNAGG.spad" 1025303 1025315 1029493 1029498) (-639 "LMOPS.spad" 1022039 1022056 1025293 1025298) (-638 "LMODULE.spad" 1021681 1021691 1022029 1022034) (-637 "LMDICT.spad" 1020964 1020974 1021232 1021259) (-636 "LITERAL.spad" 1020870 1020881 1020954 1020959) (-635 "LIST.spad" 1018588 1018598 1020017 1020044) (-634 "LIST3.spad" 1017879 1017893 1018578 1018583) (-633 "LIST2.spad" 1016519 1016531 1017869 1017874) (-632 "LIST2MAP.spad" 1013396 1013408 1016509 1016514) (-631 "LINEXP.spad" 1012828 1012838 1013376 1013391) (-630 "LINDEP.spad" 1011605 1011617 1012740 1012745) (-629 "LIMITRF.spad" 1009519 1009529 1011595 1011600) (-628 "LIMITPS.spad" 1008402 1008415 1009509 1009514) (-627 "LIE.spad" 1006416 1006428 1007692 1007837) (-626 "LIECAT.spad" 1005892 1005902 1006342 1006411) (-625 "LIECAT.spad" 1005396 1005408 1005848 1005853) (-624 "LIB.spad" 1003444 1003452 1004055 1004070) (-623 "LGROBP.spad" 1000797 1000816 1003434 1003439) (-622 "LF.spad" 999716 999732 1000787 1000792) (-621 "LFCAT.spad" 998735 998743 999706 999711) (-620 "LEXTRIPK.spad" 994238 994253 998725 998730) (-619 "LEXP.spad" 992241 992268 994218 994233) (-618 "LETAST.spad" 991940 991948 992231 992236) (-617 "LEADCDET.spad" 990324 990341 991930 991935) (-616 "LAZM3PK.spad" 989028 989050 990314 990319) (-615 "LAUPOL.spad" 987717 987730 988621 988690) (-614 "LAPLACE.spad" 987290 987306 987707 987712) (-613 "LA.spad" 986730 986744 987212 987251) (-612 "LALG.spad" 986506 986516 986710 986725) (-611 "LALG.spad" 986290 986302 986496 986501) (-610 "KVTFROM.spad" 986025 986035 986280 986285) (-609 "KTVLOGIC.spad" 985448 985456 986015 986020) (-608 "KRCFROM.spad" 985186 985196 985438 985443) (-607 "KOVACIC.spad" 983899 983916 985176 985181) (-606 "KONVERT.spad" 983621 983631 983889 983894) (-605 "KOERCE.spad" 983358 983368 983611 983616) (-604 "KERNEL.spad" 981893 981903 983142 983147) (-603 "KERNEL2.spad" 981596 981608 981883 981888) (-602 "KDAGG.spad" 980699 980721 981576 981591) (-601 "KDAGG.spad" 979810 979834 980689 980694) (-600 "KAFILE.spad" 978773 978789 979008 979035) (-599 "JORDAN.spad" 976600 976612 978063 978208) (-598 "JOINAST.spad" 976294 976302 976590 976595) (-597 "JAVACODE.spad" 976160 976168 976284 976289) (-596 "IXAGG.spad" 974283 974307 976150 976155) (-595 "IXAGG.spad" 972261 972287 974130 974135) (-594 "IVECTOR.spad" 971032 971047 971187 971214) (-593 "ITUPLE.spad" 970177 970187 971022 971027) (-592 "ITRIGMNP.spad" 968988 969007 970167 970172) (-591 "ITFUN3.spad" 968482 968496 968978 968983) (-590 "ITFUN2.spad" 968212 968224 968472 968477) (-589 "ITAYLOR.spad" 966004 966019 968048 968173) (-588 "ISUPS.spad" 958415 958430 964978 965075) (-587 "ISUMP.spad" 957912 957928 958405 958410) (-586 "ISTRING.spad" 956915 956928 957081 957108) (-585 "ISAST.spad" 956634 956642 956905 956910) (-584 "IRURPK.spad" 955347 955366 956624 956629) (-583 "IRSN.spad" 953307 953315 955337 955342) (-582 "IRRF2F.spad" 951782 951792 953263 953268) (-581 "IRREDFFX.spad" 951383 951394 951772 951777) (-580 "IROOT.spad" 949714 949724 951373 951378) (-579 "IR.spad" 947503 947517 949569 949596) (-578 "IR2.spad" 946523 946539 947493 947498) (-577 "IR2F.spad" 945723 945739 946513 946518) (-576 "IPRNTPK.spad" 945483 945491 945713 945718) (-575 "IPF.spad" 945048 945060 945288 945381) (-574 "IPADIC.spad" 944809 944835 944974 945043) (-573 "IP4ADDR.spad" 944357 944365 944799 944804) (-572 "IOMODE.spad" 943978 943986 944347 944352) (-571 "IOBFILE.spad" 943339 943347 943968 943973) (-570 "IOBCON.spad" 943204 943212 943329 943334) (-569 "INVLAPLA.spad" 942849 942865 943194 943199) (-568 "INTTR.spad" 936095 936112 942839 942844) (-567 "INTTOOLS.spad" 933806 933822 935669 935674) (-566 "INTSLPE.spad" 933112 933120 933796 933801) (-565 "INTRVL.spad" 932678 932688 933026 933107) (-564 "INTRF.spad" 931042 931056 932668 932673) (-563 "INTRET.spad" 930474 930484 931032 931037) (-562 "INTRAT.spad" 929149 929166 930464 930469) (-561 "INTPM.spad" 927512 927528 928792 928797) (-560 "INTPAF.spad" 925280 925298 927444 927449) (-559 "INTPACK.spad" 915590 915598 925270 925275) (-558 "INT.spad" 914951 914959 915444 915585) (-557 "INTHERTR.spad" 914217 914234 914941 914946) (-556 "INTHERAL.spad" 913883 913907 914207 914212) (-555 "INTHEORY.spad" 910296 910304 913873 913878) (-554 "INTG0.spad" 903759 903777 910228 910233) (-553 "INTFTBL.spad" 897788 897796 903749 903754) (-552 "INTFACT.spad" 896847 896857 897778 897783) (-551 "INTEF.spad" 895162 895178 896837 896842) (-550 "INTDOM.spad" 893777 893785 895088 895157) (-549 "INTDOM.spad" 892454 892464 893767 893772) (-548 "INTCAT.spad" 890707 890717 892368 892449) (-547 "INTBIT.spad" 890210 890218 890697 890702) (-546 "INTALG.spad" 889392 889419 890200 890205) (-545 "INTAF.spad" 888884 888900 889382 889387) (-544 "INTABL.spad" 887402 887433 887565 887592) (-543 "INS.spad" 884869 884877 887304 887397) (-542 "INS.spad" 882422 882432 884859 884864) (-541 "INPSIGN.spad" 881856 881869 882412 882417) (-540 "INPRODPF.spad" 880922 880941 881846 881851) (-539 "INPRODFF.spad" 879980 880004 880912 880917) (-538 "INNMFACT.spad" 878951 878968 879970 879975) (-537 "INMODGCD.spad" 878435 878465 878941 878946) (-536 "INFSP.spad" 876720 876742 878425 878430) (-535 "INFPROD0.spad" 875770 875789 876710 876715) (-534 "INFORM.spad" 872931 872939 875760 875765) (-533 "INFORM1.spad" 872556 872566 872921 872926) (-532 "INFINITY.spad" 872108 872116 872546 872551) (-531 "INETCLTS.spad" 872085 872093 872098 872103) (-530 "INEP.spad" 870617 870639 872075 872080) (-529 "INDE.spad" 870346 870363 870607 870612) (-528 "INCRMAPS.spad" 869767 869777 870336 870341) (-527 "INBFILE.spad" 868839 868847 869757 869762) (-526 "INBFF.spad" 864609 864620 868829 868834) (-525 "INBCON.spad" 863908 863916 864599 864604) (-524 "INBCON.spad" 863205 863215 863898 863903) (-523 "INAST.spad" 862870 862878 863195 863200) (-522 "IMPTAST.spad" 862578 862586 862860 862865) (-521 "IMATRIX.spad" 861523 861549 862035 862062) (-520 "IMATQF.spad" 860617 860661 861479 861484) (-519 "IMATLIN.spad" 859222 859246 860573 860578) (-518 "ILIST.spad" 857878 857893 858405 858432) (-517 "IIARRAY2.spad" 857266 857304 857485 857512) (-516 "IFF.spad" 856676 856692 856947 857040) (-515 "IFAST.spad" 856290 856298 856666 856671) (-514 "IFARRAY.spad" 853777 853792 855473 855500) (-513 "IFAMON.spad" 853639 853656 853733 853738) (-512 "IEVALAB.spad" 853028 853040 853629 853634) (-511 "IEVALAB.spad" 852415 852429 853018 853023) (-510 "IDPO.spad" 852213 852225 852405 852410) (-509 "IDPOAMS.spad" 851969 851981 852203 852208) (-508 "IDPOAM.spad" 851689 851701 851959 851964) (-507 "IDPC.spad" 850623 850635 851679 851684) (-506 "IDPAM.spad" 850368 850380 850613 850618) (-505 "IDPAG.spad" 850115 850127 850358 850363) (-504 "IDENT.spad" 849887 849895 850105 850110) (-503 "IDECOMP.spad" 847124 847142 849877 849882) (-502 "IDEAL.spad" 842047 842086 847059 847064) (-501 "ICDEN.spad" 841198 841214 842037 842042) (-500 "ICARD.spad" 840387 840395 841188 841193) (-499 "IBPTOOLS.spad" 838980 838997 840377 840382) (-498 "IBITS.spad" 838179 838192 838616 838643) (-497 "IBATOOL.spad" 835054 835073 838169 838174) (-496 "IBACHIN.spad" 833541 833556 835044 835049) (-495 "IARRAY2.spad" 832529 832555 833148 833175) (-494 "IARRAY1.spad" 831574 831589 831712 831739) (-493 "IAN.spad" 829787 829795 831390 831483) (-492 "IALGFACT.spad" 829388 829421 829777 829782) (-491 "HYPCAT.spad" 828812 828820 829378 829383) (-490 "HYPCAT.spad" 828234 828244 828802 828807) (-489 "HOSTNAME.spad" 828042 828050 828224 828229) (-488 "HOMOTOP.spad" 827785 827795 828032 828037) (-487 "HOAGG.spad" 825053 825063 827775 827780) (-486 "HOAGG.spad" 822096 822108 824820 824825) (-485 "HEXADEC.spad" 820198 820206 820563 820656) (-484 "HEUGCD.spad" 819213 819224 820188 820193) (-483 "HELLFDIV.spad" 818803 818827 819203 819208) (-482 "HEAP.spad" 818195 818205 818410 818437) (-481 "HEADAST.spad" 817726 817734 818185 818190) (-480 "HDP.spad" 807569 807585 807946 808077) (-479 "HDMP.spad" 804745 804760 805363 805490) (-478 "HB.spad" 802982 802990 804735 804740) (-477 "HASHTBL.spad" 801452 801483 801663 801690) (-476 "HASAST.spad" 801168 801176 801442 801447) (-475 "HACKPI.spad" 800651 800659 801070 801163) (-474 "GTSET.spad" 799590 799606 800297 800324) (-473 "GSTBL.spad" 798109 798144 798283 798298) (-472 "GSERIES.spad" 795276 795303 796241 796390) (-471 "GROUP.spad" 794545 794553 795256 795271) (-470 "GROUP.spad" 793822 793832 794535 794540) (-469 "GROEBSOL.spad" 792310 792331 793812 793817) (-468 "GRMOD.spad" 790881 790893 792300 792305) (-467 "GRMOD.spad" 789450 789464 790871 790876) (-466 "GRIMAGE.spad" 782055 782063 789440 789445) (-465 "GRDEF.spad" 780434 780442 782045 782050) (-464 "GRAY.spad" 778893 778901 780424 780429) (-463 "GRALG.spad" 777940 777952 778883 778888) (-462 "GRALG.spad" 776985 776999 777930 777935) (-461 "GPOLSET.spad" 776439 776462 776667 776694) (-460 "GOSPER.spad" 775704 775722 776429 776434) (-459 "GMODPOL.spad" 774842 774869 775672 775699) (-458 "GHENSEL.spad" 773911 773925 774832 774837) (-457 "GENUPS.spad" 770012 770025 773901 773906) (-456 "GENUFACT.spad" 769589 769599 770002 770007) (-455 "GENPGCD.spad" 769173 769190 769579 769584) (-454 "GENMFACT.spad" 768625 768644 769163 769168) (-453 "GENEEZ.spad" 766564 766577 768615 768620) (-452 "GDMP.spad" 763582 763599 764358 764485) (-451 "GCNAALG.spad" 757477 757504 763376 763443) (-450 "GCDDOM.spad" 756649 756657 757403 757472) (-449 "GCDDOM.spad" 755883 755893 756639 756644) (-448 "GB.spad" 753401 753439 755839 755844) (-447 "GBINTERN.spad" 749421 749459 753391 753396) (-446 "GBF.spad" 745178 745216 749411 749416) (-445 "GBEUCLID.spad" 743052 743090 745168 745173) (-444 "GAUSSFAC.spad" 742349 742357 743042 743047) (-443 "GALUTIL.spad" 740671 740681 742305 742310) (-442 "GALPOLYU.spad" 739117 739130 740661 740666) (-441 "GALFACTU.spad" 737282 737301 739107 739112) (-440 "GALFACT.spad" 727415 727426 737272 737277) (-439 "FVFUN.spad" 724438 724446 727405 727410) (-438 "FVC.spad" 723490 723498 724428 724433) (-437 "FUNCTION.spad" 723339 723351 723480 723485) (-436 "FT.spad" 721632 721640 723329 723334) (-435 "FTEM.spad" 720795 720803 721622 721627) (-434 "FSUPFACT.spad" 719695 719714 720731 720736) (-433 "FST.spad" 717781 717789 719685 719690) (-432 "FSRED.spad" 717259 717275 717771 717776) (-431 "FSPRMELT.spad" 716083 716099 717216 717221) (-430 "FSPECF.spad" 714160 714176 716073 716078) (-429 "FS.spad" 708222 708232 713935 714155) (-428 "FS.spad" 702062 702074 707777 707782) (-427 "FSINT.spad" 701720 701736 702052 702057) (-426 "FSERIES.spad" 700907 700919 701540 701639) (-425 "FSCINT.spad" 700220 700236 700897 700902) (-424 "FSAGG.spad" 699337 699347 700176 700215) (-423 "FSAGG.spad" 698416 698428 699257 699262) (-422 "FSAGG2.spad" 697115 697131 698406 698411) (-421 "FS2UPS.spad" 691598 691632 697105 697110) (-420 "FS2.spad" 691243 691259 691588 691593) (-419 "FS2EXPXP.spad" 690366 690389 691233 691238) (-418 "FRUTIL.spad" 689308 689318 690356 690361) (-417 "FR.spad" 683002 683012 688332 688401) (-416 "FRNAALG.spad" 678089 678099 682944 682997) (-415 "FRNAALG.spad" 673188 673200 678045 678050) (-414 "FRNAAF2.spad" 672642 672660 673178 673183) (-413 "FRMOD.spad" 672036 672066 672573 672578) (-412 "FRIDEAL.spad" 671231 671252 672016 672031) (-411 "FRIDEAL2.spad" 670833 670865 671221 671226) (-410 "FRETRCT.spad" 670344 670354 670823 670828) (-409 "FRETRCT.spad" 669721 669733 670202 670207) (-408 "FRAMALG.spad" 668049 668062 669677 669716) (-407 "FRAMALG.spad" 666409 666424 668039 668044) (-406 "FRAC.spad" 663508 663518 663911 664084) (-405 "FRAC2.spad" 663111 663123 663498 663503) (-404 "FR2.spad" 662445 662457 663101 663106) (-403 "FPS.spad" 659254 659262 662335 662440) (-402 "FPS.spad" 656091 656101 659174 659179) (-401 "FPC.spad" 655133 655141 655993 656086) (-400 "FPC.spad" 654261 654271 655123 655128) (-399 "FPATMAB.spad" 654023 654033 654251 654256) (-398 "FPARFRAC.spad" 652496 652513 654013 654018) (-397 "FORTRAN.spad" 651002 651045 652486 652491) (-396 "FORT.spad" 649931 649939 650992 650997) (-395 "FORTFN.spad" 647101 647109 649921 649926) (-394 "FORTCAT.spad" 646785 646793 647091 647096) (-393 "FORMULA.spad" 644249 644257 646775 646780) (-392 "FORMULA1.spad" 643728 643738 644239 644244) (-391 "FORDER.spad" 643419 643443 643718 643723) (-390 "FOP.spad" 642620 642628 643409 643414) (-389 "FNLA.spad" 642044 642066 642588 642615) (-388 "FNCAT.spad" 640631 640639 642034 642039) (-387 "FNAME.spad" 640523 640531 640621 640626) (-386 "FMTC.spad" 640321 640329 640449 640518) (-385 "FMONOID.spad" 637376 637386 640277 640282) (-384 "FM.spad" 637071 637083 637310 637337) (-383 "FMFUN.spad" 634101 634109 637061 637066) (-382 "FMC.spad" 633153 633161 634091 634096) (-381 "FMCAT.spad" 630807 630825 633121 633148) (-380 "FM1.spad" 630164 630176 630741 630768) (-379 "FLOATRP.spad" 627885 627899 630154 630159) (-378 "FLOAT.spad" 621173 621181 627751 627880) (-377 "FLOATCP.spad" 618590 618604 621163 621168) (-376 "FLINEXP.spad" 618302 618312 618570 618585) (-375 "FLINEXP.spad" 617968 617980 618238 618243) (-374 "FLASORT.spad" 617288 617300 617958 617963) (-373 "FLALG.spad" 614934 614953 617214 617283) (-372 "FLAGG.spad" 611952 611962 614914 614929) (-371 "FLAGG.spad" 608871 608883 611835 611840) (-370 "FLAGG2.spad" 607552 607568 608861 608866) (-369 "FINRALG.spad" 605581 605594 607508 607547) (-368 "FINRALG.spad" 603536 603551 605465 605470) (-367 "FINITE.spad" 602688 602696 603526 603531) (-366 "FINAALG.spad" 591669 591679 602630 602683) (-365 "FINAALG.spad" 580662 580674 591625 591630) (-364 "FILE.spad" 580245 580255 580652 580657) (-363 "FILECAT.spad" 578763 578780 580235 580240) (-362 "FIELD.spad" 578169 578177 578665 578758) (-361 "FIELD.spad" 577661 577671 578159 578164) (-360 "FGROUP.spad" 576270 576280 577641 577656) (-359 "FGLMICPK.spad" 575057 575072 576260 576265) (-358 "FFX.spad" 574432 574447 574773 574866) (-357 "FFSLPE.spad" 573921 573942 574422 574427) (-356 "FFPOLY.spad" 565173 565184 573911 573916) (-355 "FFPOLY2.spad" 564233 564250 565163 565168) (-354 "FFP.spad" 563630 563650 563949 564042) (-353 "FF.spad" 563078 563094 563311 563404) (-352 "FFNBX.spad" 561590 561610 562794 562887) (-351 "FFNBP.spad" 560103 560120 561306 561399) (-350 "FFNB.spad" 558568 558589 559784 559877) (-349 "FFINTBAS.spad" 555982 556001 558558 558563) (-348 "FFIELDC.spad" 553557 553565 555884 555977) (-347 "FFIELDC.spad" 551218 551228 553547 553552) (-346 "FFHOM.spad" 549966 549983 551208 551213) (-345 "FFF.spad" 547401 547412 549956 549961) (-344 "FFCGX.spad" 546248 546268 547117 547210) (-343 "FFCGP.spad" 545137 545157 545964 546057) (-342 "FFCG.spad" 543929 543950 544818 544911) (-341 "FFCAT.spad" 536956 536978 543768 543924) (-340 "FFCAT.spad" 530062 530086 536876 536881) (-339 "FFCAT2.spad" 529807 529847 530052 530057) (-338 "FEXPR.spad" 521516 521562 529563 529602) (-337 "FEVALAB.spad" 521222 521232 521506 521511) (-336 "FEVALAB.spad" 520713 520725 520999 521004) (-335 "FDIV.spad" 520155 520179 520703 520708) (-334 "FDIVCAT.spad" 518197 518221 520145 520150) (-333 "FDIVCAT.spad" 516237 516263 518187 518192) (-332 "FDIV2.spad" 515891 515931 516227 516232) (-331 "FCPAK1.spad" 514444 514452 515881 515886) (-330 "FCOMP.spad" 513823 513833 514434 514439) (-329 "FC.spad" 503738 503746 513813 513818) (-328 "FAXF.spad" 496673 496687 503640 503733) (-327 "FAXF.spad" 489660 489676 496629 496634) (-326 "FARRAY.spad" 487806 487816 488843 488870) (-325 "FAMR.spad" 485926 485938 487704 487801) (-324 "FAMR.spad" 484030 484044 485810 485815) (-323 "FAMONOID.spad" 483680 483690 483984 483989) (-322 "FAMONC.spad" 481902 481914 483670 483675) (-321 "FAGROUP.spad" 481508 481518 481798 481825) (-320 "FACUTIL.spad" 479704 479721 481498 481503) (-319 "FACTFUNC.spad" 478880 478890 479694 479699) (-318 "EXPUPXS.spad" 475713 475736 477012 477161) (-317 "EXPRTUBE.spad" 472941 472949 475703 475708) (-316 "EXPRODE.spad" 469813 469829 472931 472936) (-315 "EXPR.spad" 465088 465098 465802 466209) (-314 "EXPR2UPS.spad" 461180 461193 465078 465083) (-313 "EXPR2.spad" 460883 460895 461170 461175) (-312 "EXPEXPAN.spad" 457821 457846 458455 458548) (-311 "EXIT.spad" 457492 457500 457811 457816) (-310 "EXITAST.spad" 457228 457236 457482 457487) (-309 "EVALCYC.spad" 456686 456700 457218 457223) (-308 "EVALAB.spad" 456250 456260 456676 456681) (-307 "EVALAB.spad" 455812 455824 456240 456245) (-306 "EUCDOM.spad" 453354 453362 455738 455807) (-305 "EUCDOM.spad" 450958 450968 453344 453349) (-304 "ESTOOLS.spad" 442798 442806 450948 450953) (-303 "ESTOOLS2.spad" 442399 442413 442788 442793) (-302 "ESTOOLS1.spad" 442084 442095 442389 442394) (-301 "ES.spad" 434631 434639 442074 442079) (-300 "ES.spad" 427084 427094 434529 434534) (-299 "ESCONT.spad" 423857 423865 427074 427079) (-298 "ESCONT1.spad" 423606 423618 423847 423852) (-297 "ES2.spad" 423101 423117 423596 423601) (-296 "ES1.spad" 422667 422683 423091 423096) (-295 "ERROR.spad" 419988 419996 422657 422662) (-294 "EQTBL.spad" 418460 418482 418669 418696) (-293 "EQ.spad" 413334 413344 416133 416245) (-292 "EQ2.spad" 413050 413062 413324 413329) (-291 "EP.spad" 409364 409374 413040 413045) (-290 "ENV.spad" 408066 408074 409354 409359) (-289 "ENTIRER.spad" 407734 407742 408010 408061) (-288 "EMR.spad" 406935 406976 407660 407729) (-287 "ELTAGG.spad" 405175 405194 406925 406930) (-286 "ELTAGG.spad" 403379 403400 405131 405136) (-285 "ELTAB.spad" 402826 402844 403369 403374) (-284 "ELFUTS.spad" 402205 402224 402816 402821) (-283 "ELEMFUN.spad" 401894 401902 402195 402200) (-282 "ELEMFUN.spad" 401581 401591 401884 401889) (-281 "ELAGG.spad" 399524 399534 401561 401576) (-280 "ELAGG.spad" 397404 397416 399443 399448) (-279 "ELABEXPR.spad" 396335 396343 397394 397399) (-278 "EFUPXS.spad" 393111 393141 396291 396296) (-277 "EFULS.spad" 389947 389970 393067 393072) (-276 "EFSTRUC.spad" 387902 387918 389937 389942) (-275 "EF.spad" 382668 382684 387892 387897) (-274 "EAB.spad" 380944 380952 382658 382663) (-273 "E04UCFA.spad" 380480 380488 380934 380939) (-272 "E04NAFA.spad" 380057 380065 380470 380475) (-271 "E04MBFA.spad" 379637 379645 380047 380052) (-270 "E04JAFA.spad" 379173 379181 379627 379632) (-269 "E04GCFA.spad" 378709 378717 379163 379168) (-268 "E04FDFA.spad" 378245 378253 378699 378704) (-267 "E04DGFA.spad" 377781 377789 378235 378240) (-266 "E04AGNT.spad" 373623 373631 377771 377776) (-265 "DVARCAT.spad" 370308 370318 373613 373618) (-264 "DVARCAT.spad" 366991 367003 370298 370303) (-263 "DSMP.spad" 364422 364436 364727 364854) (-262 "DROPT.spad" 358367 358375 364412 364417) (-261 "DROPT1.spad" 358030 358040 358357 358362) (-260 "DROPT0.spad" 352857 352865 358020 358025) (-259 "DRAWPT.spad" 351012 351020 352847 352852) (-258 "DRAW.spad" 343612 343625 351002 351007) (-257 "DRAWHACK.spad" 342920 342930 343602 343607) (-256 "DRAWCX.spad" 340362 340370 342910 342915) (-255 "DRAWCURV.spad" 339899 339914 340352 340357) (-254 "DRAWCFUN.spad" 329071 329079 339889 339894) (-253 "DQAGG.spad" 327239 327249 329039 329066) (-252 "DPOLCAT.spad" 322580 322596 327107 327234) (-251 "DPOLCAT.spad" 318007 318025 322536 322541) (-250 "DPMO.spad" 310233 310249 310371 310672) (-249 "DPMM.spad" 302472 302490 302597 302898) (-248 "DOMCTOR.spad" 302364 302372 302462 302467) (-247 "DOMAIN.spad" 301495 301503 302354 302359) (-246 "DMP.spad" 298717 298732 299289 299416) (-245 "DLP.spad" 298065 298075 298707 298712) (-244 "DLIST.spad" 296644 296654 297248 297275) (-243 "DLAGG.spad" 295055 295065 296634 296639) (-242 "DIVRING.spad" 294597 294605 294999 295050) (-241 "DIVRING.spad" 294183 294193 294587 294592) (-240 "DISPLAY.spad" 292363 292371 294173 294178) (-239 "DIRPROD.spad" 281943 281959 282583 282714) (-238 "DIRPROD2.spad" 280751 280769 281933 281938) (-237 "DIRPCAT.spad" 279693 279709 280615 280746) (-236 "DIRPCAT.spad" 278364 278382 279288 279293) (-235 "DIOSP.spad" 277189 277197 278354 278359) (-234 "DIOPS.spad" 276173 276183 277169 277184) (-233 "DIOPS.spad" 275131 275143 276129 276134) (-232 "DIFRING.spad" 274423 274431 275111 275126) (-231 "DIFRING.spad" 273723 273733 274413 274418) (-230 "DIFEXT.spad" 272882 272892 273703 273718) (-229 "DIFEXT.spad" 271958 271970 272781 272786) (-228 "DIAGG.spad" 271588 271598 271938 271953) (-227 "DIAGG.spad" 271226 271238 271578 271583) (-226 "DHMATRIX.spad" 269530 269540 270683 270710) (-225 "DFSFUN.spad" 262938 262946 269520 269525) (-224 "DFLOAT.spad" 259659 259667 262828 262933) (-223 "DFINTTLS.spad" 257868 257884 259649 259654) (-222 "DERHAM.spad" 255778 255810 257848 257863) (-221 "DEQUEUE.spad" 255096 255106 255385 255412) (-220 "DEGRED.spad" 254711 254725 255086 255091) (-219 "DEFINTRF.spad" 252236 252246 254701 254706) (-218 "DEFINTEF.spad" 250732 250748 252226 252231) (-217 "DEFAST.spad" 250100 250108 250722 250727) (-216 "DECIMAL.spad" 248206 248214 248567 248660) (-215 "DDFACT.spad" 246005 246022 248196 248201) (-214 "DBLRESP.spad" 245603 245627 245995 246000) (-213 "DBASE.spad" 244257 244267 245593 245598) (-212 "DATAARY.spad" 243719 243732 244247 244252) (-211 "D03FAFA.spad" 243547 243555 243709 243714) (-210 "D03EEFA.spad" 243367 243375 243537 243542) (-209 "D03AGNT.spad" 242447 242455 243357 243362) (-208 "D02EJFA.spad" 241909 241917 242437 242442) (-207 "D02CJFA.spad" 241387 241395 241899 241904) (-206 "D02BHFA.spad" 240877 240885 241377 241382) (-205 "D02BBFA.spad" 240367 240375 240867 240872) (-204 "D02AGNT.spad" 235171 235179 240357 240362) (-203 "D01WGTS.spad" 233490 233498 235161 235166) (-202 "D01TRNS.spad" 233467 233475 233480 233485) (-201 "D01GBFA.spad" 232989 232997 233457 233462) (-200 "D01FCFA.spad" 232511 232519 232979 232984) (-199 "D01ASFA.spad" 231979 231987 232501 232506) (-198 "D01AQFA.spad" 231425 231433 231969 231974) (-197 "D01APFA.spad" 230849 230857 231415 231420) (-196 "D01ANFA.spad" 230343 230351 230839 230844) (-195 "D01AMFA.spad" 229853 229861 230333 230338) (-194 "D01ALFA.spad" 229393 229401 229843 229848) (-193 "D01AKFA.spad" 228919 228927 229383 229388) (-192 "D01AJFA.spad" 228442 228450 228909 228914) (-191 "D01AGNT.spad" 224501 224509 228432 228437) (-190 "CYCLOTOM.spad" 224007 224015 224491 224496) (-189 "CYCLES.spad" 220839 220847 223997 224002) (-188 "CVMP.spad" 220256 220266 220829 220834) (-187 "CTRIGMNP.spad" 218746 218762 220246 220251) (-186 "CTOR.spad" 218646 218654 218736 218741) (-185 "CTORKIND.spad" 218249 218257 218636 218641) (-184 "CTORCAT.spad" 217704 217712 218239 218244) (-183 "CTORCAT.spad" 217157 217167 217694 217699) (-182 "CTORCALL.spad" 216737 216745 217147 217152) (-181 "CSTTOOLS.spad" 215980 215993 216727 216732) (-180 "CRFP.spad" 209684 209697 215970 215975) (-179 "CRCEAST.spad" 209404 209412 209674 209679) (-178 "CRAPACK.spad" 208447 208457 209394 209399) (-177 "CPMATCH.spad" 207947 207962 208372 208377) (-176 "CPIMA.spad" 207652 207671 207937 207942) (-175 "COORDSYS.spad" 202545 202555 207642 207647) (-174 "CONTOUR.spad" 201947 201955 202535 202540) (-173 "CONTFRAC.spad" 197559 197569 201849 201942) (-172 "CONDUIT.spad" 197317 197325 197549 197554) (-171 "COMRING.spad" 196991 196999 197255 197312) (-170 "COMPPROP.spad" 196505 196513 196981 196986) (-169 "COMPLPAT.spad" 196272 196287 196495 196500) (-168 "COMPLEX.spad" 190308 190318 190552 190801) (-167 "COMPLEX2.spad" 190021 190033 190298 190303) (-166 "COMPFACT.spad" 189623 189637 190011 190016) (-165 "COMPCAT.spad" 187761 187771 189369 189618) (-164 "COMPCAT.spad" 185580 185592 187190 187195) (-163 "COMMUPC.spad" 185326 185344 185570 185575) (-162 "COMMONOP.spad" 184859 184867 185316 185321) (-161 "COMM.spad" 184668 184676 184849 184854) (-160 "COMMAAST.spad" 184431 184439 184658 184663) (-159 "COMBOPC.spad" 183336 183344 184421 184426) (-158 "COMBINAT.spad" 182081 182091 183326 183331) (-157 "COMBF.spad" 179449 179465 182071 182076) (-156 "COLOR.spad" 178286 178294 179439 179444) (-155 "COLONAST.spad" 177952 177960 178276 178281) (-154 "CMPLXRT.spad" 177661 177678 177942 177947) (-153 "CLLCTAST.spad" 177323 177331 177651 177656) (-152 "CLIP.spad" 173415 173423 177313 177318) (-151 "CLIF.spad" 172054 172070 173371 173410) (-150 "CLAGG.spad" 168539 168549 172044 172049) (-149 "CLAGG.spad" 164895 164907 168402 168407) (-148 "CINTSLPE.spad" 164220 164233 164885 164890) (-147 "CHVAR.spad" 162298 162320 164210 164215) (-146 "CHARZ.spad" 162213 162221 162278 162293) (-145 "CHARPOL.spad" 161721 161731 162203 162208) (-144 "CHARNZ.spad" 161474 161482 161701 161716) (-143 "CHAR.spad" 159342 159350 161464 161469) (-142 "CFCAT.spad" 158658 158666 159332 159337) (-141 "CDEN.spad" 157816 157830 158648 158653) (-140 "CCLASS.spad" 155965 155973 157227 157266) (-139 "CATEGORY.spad" 155055 155063 155955 155960) (-138 "CATCTOR.spad" 154946 154954 155045 155050) (-137 "CATAST.spad" 154573 154581 154936 154941) (-136 "CASEAST.spad" 154287 154295 154563 154568) (-135 "CARTEN.spad" 149390 149414 154277 154282) (-134 "CARTEN2.spad" 148776 148803 149380 149385) (-133 "CARD.spad" 146065 146073 148750 148771) (-132 "CAPSLAST.spad" 145839 145847 146055 146060) (-131 "CACHSET.spad" 145461 145469 145829 145834) (-130 "CABMON.spad" 145014 145022 145451 145456) (-129 "BYTE.spad" 144335 144343 145004 145009) (-128 "BYTEBUF.spad" 142157 142165 143504 143531) (-127 "BTREE.spad" 141226 141236 141764 141791) (-126 "BTOURN.spad" 140229 140239 140833 140860) (-125 "BTCAT.spad" 139617 139627 140197 140224) (-124 "BTCAT.spad" 139025 139037 139607 139612) (-123 "BTAGG.spad" 138147 138155 138993 139020) (-122 "BTAGG.spad" 137289 137299 138137 138142) (-121 "BSTREE.spad" 136024 136034 136896 136923) (-120 "BRILL.spad" 134219 134230 136014 136019) (-119 "BRAGG.spad" 133143 133153 134209 134214) (-118 "BRAGG.spad" 132031 132043 133099 133104) (-117 "BPADICRT.spad" 130012 130024 130267 130360) (-116 "BPADIC.spad" 129676 129688 129938 130007) (-115 "BOUNDZRO.spad" 129332 129349 129666 129671) (-114 "BOP.spad" 124796 124804 129322 129327) (-113 "BOP1.spad" 122182 122192 124752 124757) (-112 "BOOLEAN.spad" 121506 121514 122172 122177) (-111 "BMODULE.spad" 121218 121230 121474 121501) (-110 "BITS.spad" 120637 120645 120854 120881) (-109 "BINDING.spad" 120056 120064 120627 120632) (-108 "BINARY.spad" 118167 118175 118523 118616) (-107 "BGAGG.spad" 117364 117374 118147 118162) (-106 "BGAGG.spad" 116569 116581 117354 117359) (-105 "BFUNCT.spad" 116133 116141 116549 116564) (-104 "BEZOUT.spad" 115267 115294 116083 116088) (-103 "BBTREE.spad" 112086 112096 114874 114901) (-102 "BASTYPE.spad" 111758 111766 112076 112081) (-101 "BASTYPE.spad" 111428 111438 111748 111753) (-100 "BALFACT.spad" 110867 110880 111418 111423) (-99 "AUTOMOR.spad" 110314 110323 110847 110862) (-98 "ATTREG.spad" 107033 107040 110066 110309) (-97 "ATTRBUT.spad" 103056 103063 107013 107028) (-96 "ATTRAST.spad" 102773 102780 103046 103051) (-95 "ATRIG.spad" 102243 102250 102763 102768) (-94 "ATRIG.spad" 101711 101720 102233 102238) (-93 "ASTCAT.spad" 101615 101622 101701 101706) (-92 "ASTCAT.spad" 101517 101526 101605 101610) (-91 "ASTACK.spad" 100850 100859 101124 101151) (-90 "ASSOCEQ.spad" 99650 99661 100806 100811) (-89 "ASP9.spad" 98731 98744 99640 99645) (-88 "ASP8.spad" 97774 97787 98721 98726) (-87 "ASP80.spad" 97096 97109 97764 97769) (-86 "ASP7.spad" 96256 96269 97086 97091) (-85 "ASP78.spad" 95707 95720 96246 96251) (-84 "ASP77.spad" 95076 95089 95697 95702) (-83 "ASP74.spad" 94168 94181 95066 95071) (-82 "ASP73.spad" 93439 93452 94158 94163) (-81 "ASP6.spad" 92306 92319 93429 93434) (-80 "ASP55.spad" 90815 90828 92296 92301) (-79 "ASP50.spad" 88632 88645 90805 90810) (-78 "ASP4.spad" 87927 87940 88622 88627) (-77 "ASP49.spad" 86926 86939 87917 87922) (-76 "ASP42.spad" 85333 85372 86916 86921) (-75 "ASP41.spad" 83912 83951 85323 85328) (-74 "ASP35.spad" 82900 82913 83902 83907) (-73 "ASP34.spad" 82201 82214 82890 82895) (-72 "ASP33.spad" 81761 81774 82191 82196) (-71 "ASP31.spad" 80901 80914 81751 81756) (-70 "ASP30.spad" 79793 79806 80891 80896) (-69 "ASP29.spad" 79259 79272 79783 79788) (-68 "ASP28.spad" 70532 70545 79249 79254) (-67 "ASP27.spad" 69429 69442 70522 70527) (-66 "ASP24.spad" 68516 68529 69419 69424) (-65 "ASP20.spad" 67980 67993 68506 68511) (-64 "ASP1.spad" 67361 67374 67970 67975) (-63 "ASP19.spad" 62047 62060 67351 67356) (-62 "ASP12.spad" 61461 61474 62037 62042) (-61 "ASP10.spad" 60732 60745 61451 61456) (-60 "ARRAY2.spad" 60092 60101 60339 60366) (-59 "ARRAY1.spad" 58927 58936 59275 59302) (-58 "ARRAY12.spad" 57596 57607 58917 58922) (-57 "ARR2CAT.spad" 53258 53279 57564 57591) (-56 "ARR2CAT.spad" 48940 48963 53248 53253) (-55 "ARITY.spad" 48508 48515 48930 48935) (-54 "APPRULE.spad" 47752 47774 48498 48503) (-53 "APPLYORE.spad" 47367 47380 47742 47747) (-52 "ANY.spad" 45709 45716 47357 47362) (-51 "ANY1.spad" 44780 44789 45699 45704) (-50 "ANTISYM.spad" 43219 43235 44760 44775) (-49 "ANON.spad" 42916 42923 43209 43214) (-48 "AN.spad" 41217 41224 42732 42825) (-47 "AMR.spad" 39396 39407 41115 41212) (-46 "AMR.spad" 37412 37425 39133 39138) (-45 "ALIST.spad" 34824 34845 35174 35201) (-44 "ALGSC.spad" 33947 33973 34696 34749) (-43 "ALGPKG.spad" 29656 29667 33903 33908) (-42 "ALGMFACT.spad" 28845 28859 29646 29651) (-41 "ALGMANIP.spad" 26265 26280 28642 28647) (-40 "ALGFF.spad" 24580 24607 24797 24953) (-39 "ALGFACT.spad" 23701 23711 24570 24575) (-38 "ALGEBRA.spad" 23534 23543 23657 23696) (-37 "ALGEBRA.spad" 23399 23410 23524 23529) (-36 "ALAGG.spad" 22909 22930 23367 23394) (-35 "AHYP.spad" 22290 22297 22899 22904) (-34 "AGG.spad" 20599 20606 22280 22285) (-33 "AGG.spad" 18872 18881 20555 20560) (-32 "AF.spad" 17297 17312 18807 18812) (-31 "ADDAST.spad" 16975 16982 17287 17292) (-30 "ACPLOT.spad" 15546 15553 16965 16970) (-29 "ACFS.spad" 13297 13306 15448 15541) (-28 "ACFS.spad" 11134 11145 13287 13292) (-27 "ACF.spad" 7736 7743 11036 11129) (-26 "ACF.spad" 4424 4433 7726 7731) (-25 "ABELSG.spad" 3965 3972 4414 4419) (-24 "ABELSG.spad" 3504 3513 3955 3960) (-23 "ABELMON.spad" 3047 3054 3494 3499) (-22 "ABELMON.spad" 2588 2597 3037 3042) (-21 "ABELGRP.spad" 2160 2167 2578 2583) (-20 "ABELGRP.spad" 1730 1739 2150 2155) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase
index 8ec5be3b..30990a2e 100644
--- a/src/share/algebra/category.daase
+++ b/src/share/algebra/category.daase
@@ -1,989 +1,990 @@
-(161756 . 3437790960)
-(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))) ((#0=(-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) #0#) |has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))))
-((((-554)) . T) (($) -3994 (|has| |#1| (-302)) (|has| |#1| (-358)) (|has| |#1| (-344)) (|has| |#1| (-546))) (((-402 (-554))) -3994 (|has| |#1| (-358)) (|has| |#1| (-344)) (|has| |#1| (-1023 (-402 (-554))))) ((|#1|) . T))
+(161873 . 3439227048)
+(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))) ((#0=(-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) #0#) |has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))))
+((((-558)) . T) (($) -3998 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348)) (|has| |#1| (-550))) (((-406 (-558))) -3998 (|has| |#1| (-362)) (|has| |#1| (-348)) (|has| |#1| (-1028 (-406 (-558))))) ((|#1|) . T))
(((|#2| |#2|) . T))
-((((-554)) . T))
-((($ $) -3994 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))) ((|#2| |#2|) . T) ((#0=(-402 (-554)) #0#) |has| |#2| (-38 (-402 (-554)))))
+((((-558)) . T))
+((($ $) -3998 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))) ((|#2| |#2|) . T) ((#0=(-406 (-558)) #0#) |has| |#2| (-38 (-406 (-558)))))
((($) . T))
(((|#1|) . T))
-((($) . T) ((|#1|) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))))
+((($) . T) ((|#1|) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
(((|#2|) . T))
-((($) -3994 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))) ((|#2|) . T) (((-402 (-554))) |has| |#2| (-38 (-402 (-554)))))
-(|has| |#1| (-894))
-((((-848)) . T))
-((((-848)) . T))
-((((-848)) . T))
-((($) . T) (((-402 (-554))) . T))
+((($) -3998 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))) ((|#2|) . T) (((-406 (-558))) |has| |#2| (-38 (-406 (-558)))))
+(|has| |#1| (-899))
+((((-853)) . T))
+((((-853)) . T))
+((((-853)) . T))
+((($) . T) (((-406 (-558))) . T))
((($) . T))
((($) . T))
(((|#2| |#2|) . T))
-((((-142)) . T))
-((((-530)) . T) (((-1140)) . T) (((-221)) . T) (((-374)) . T) (((-877 (-374))) . T))
-(((|#1|) . T))
-((((-221)) . T) (((-848)) . T))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-(((|#1|) . T))
-(-3994 (|has| |#1| (-21)) (|has| |#1| (-834)))
-((($ $) . T) ((#0=(-402 (-554)) #0#) -3994 (|has| |#1| (-358)) (|has| |#1| (-344))) ((|#1| |#1|) . T))
-(-3994 (|has| |#1| (-807)) (|has| |#1| (-836)))
-((((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) (((-554)) |has| |#1| (-1023 (-554))) ((|#1|) . T))
-((((-848)) . T))
-((((-848)) . T))
-(-3994 (|has| |#1| (-358)) (|has| |#1| (-546)))
-(|has| |#1| (-834))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
+((((-143)) . T))
+((((-534)) . T) (((-1145)) . T) (((-224)) . T) (((-378)) . T) (((-882 (-378))) . T))
+(((|#1|) . T))
+((((-224)) . T) (((-853)) . T))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+(((|#1|) . T))
+(-3998 (|has| |#1| (-21)) (|has| |#1| (-839)))
+((($ $) . T) ((#0=(-406 (-558)) #0#) -3998 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1| |#1|) . T))
+(-3998 (|has| |#1| (-811)) (|has| |#1| (-841)))
+((((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) (((-558)) |has| |#1| (-1028 (-558))) ((|#1|) . T))
+((((-853)) . T))
+((((-853)) . T))
+(-3998 (|has| |#1| (-362)) (|has| |#1| (-550)))
+(|has| |#1| (-839))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
(((|#1| |#2| |#3|) . T))
-((((-1163)) . T))
-((((-554)) . T) (((-855 |#1|)) . T) (($) . T) (((-402 (-554))) . T))
-((($) . T) (((-402 (-554))) -3994 (|has| |#1| (-358)) (|has| |#1| (-344))) ((|#1|) . T))
-((((-848)) . T))
-((((-1163)) . T))
+((((-1168)) . T))
+((((-558)) . T) (((-860 |#1|)) . T) (($) . T) (((-406 (-558))) . T))
+((($) . T) (((-406 (-558))) -3998 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T))
+((((-853)) . T))
+((((-1168)) . T))
(((|#4|) . T))
-((((-848)) . T))
-((((-848)) |has| |#1| (-1082)))
-((((-848)) . T) (((-1163)) . T))
+((((-853)) . T))
+((((-853)) |has| |#1| (-1087)))
+((((-853)) . T) (((-1168)) . T))
(((|#1|) . T) ((|#2|) . T))
-((((-1163)) . T))
-(((|#1|) . T) (((-554)) |has| |#1| (-1023 (-554))) (((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))))
-(-3994 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894)))
-(-3994 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894)))
-(((|#2| (-476 (-2563 |#1|) (-758))) . T))
-(((|#1| (-525 (-1158))) . T))
-(((#0=(-855 |#1|) #0#) . T) ((#1=(-402 (-554)) #1#) . T) (($ $) . T))
-((((-1140)) . T) (((-848)) . T))
-((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T))
-(|has| |#4| (-363))
-(|has| |#3| (-363))
-(((|#1|) . T))
-((((-855 |#1|)) . T) (((-402 (-554))) . T) (($) . T))
+((((-1168)) . T))
+(((|#1|) . T) (((-558)) |has| |#1| (-1028 (-558))) (((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))))
+(-3998 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899)))
+(-3998 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
+(((|#2| (-480 (-2755 |#1|) (-762))) . T))
+(((|#1| (-529 (-1163))) . T))
+(((#0=(-860 |#1|) #0#) . T) ((#1=(-406 (-558)) #1#) . T) (($ $) . T))
+((((-1145)) . T) (((-853)) . T))
+((((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T))
+(|has| |#4| (-367))
+(|has| |#3| (-367))
+(((|#1|) . T))
+((((-504)) . T))
+((((-860 |#1|)) . T) (((-406 (-558))) . T) (($) . T))
(((|#1| |#2|) . T))
((($) . T))
-(|has| |#1| (-143))
-(|has| |#1| (-145))
-(|has| |#1| (-546))
-((((-554)) . T) (((-402 (-554))) -3994 (|has| |#2| (-38 (-402 (-554)))) (|has| |#2| (-1023 (-402 (-554))))) ((|#2|) . T) (($) -3994 (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))) (((-850 |#1|)) . T))
-(-3994 (|has| |#1| (-358)) (|has| |#1| (-546)))
-(-3994 (|has| |#1| (-358)) (|has| |#1| (-546)))
-((((-2 (|:| -2717 |#1|) (|:| -1407 |#2|))) . T))
-((($) . T))
-((((-554)) . T) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554))))) ((|#1|) . T) (($) -3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) (((-1158)) . T))
-((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-836)) (|has| |#1| (-1082))))
-((((-530)) |has| |#1| (-602 (-530))))
-((((-1158)) . T))
-((((-554)) . T) (($) . T))
-((($) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) . T))
-((($) . T))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-((((-848)) . T))
-((((-848)) . T))
-((((-402 (-554))) . T) (($) . T))
-((((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (((-1233 |#1| |#2| |#3|)) |has| |#1| (-358)) (($) . T) ((|#1|) . T))
-((((-848)) . T))
-(((|#1|) . T))
-((((-848)) . T))
-((((-848)) . T))
-(((|#1|) . T) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (($) . T))
+(|has| |#1| (-144))
+(|has| |#1| (-146))
+(|has| |#1| (-550))
+((((-558)) . T) (((-406 (-558))) -3998 (|has| |#2| (-38 (-406 (-558)))) (|has| |#2| (-1028 (-406 (-558))))) ((|#2|) . T) (($) -3998 (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))) (((-855 |#1|)) . T))
+(-3998 (|has| |#1| (-362)) (|has| |#1| (-550)))
+(-3998 (|has| |#1| (-362)) (|has| |#1| (-550)))
+((((-2 (|:| -2851 |#1|) (|:| -1951 |#2|))) . T))
+((($) . T))
+((((-558)) . T) (((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558))))) ((|#1|) . T) (($) -3998 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) (((-1163)) . T))
+((((-853)) -3998 (|has| |#1| (-605 (-853))) (|has| |#1| (-841)) (|has| |#1| (-1087))))
+((((-534)) |has| |#1| (-606 (-534))))
+((((-1163)) . T))
+((((-558)) . T) (($) . T))
+((($) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) . T))
+((($) . T))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+((((-853)) . T))
+((((-853)) . T))
+((((-406 (-558))) . T) (($) . T))
+((((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (((-1238 |#1| |#2| |#3|)) |has| |#1| (-362)) (($) . T) ((|#1|) . T))
+((((-853)) . T))
+(((|#1|) . T))
+((((-853)) . T))
+((((-853)) . T))
+(((|#1|) . T) (((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (($) . T))
(((|#1| |#2|) . T))
-((((-848)) . T))
+((((-853)) . T))
(((|#1|) . T))
-(((#0=(-402 (-554)) #0#) |has| |#2| (-38 (-402 (-554)))) ((|#2| |#2|) . T) (($ $) -3994 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))))
+(((#0=(-406 (-558)) #0#) |has| |#2| (-38 (-406 (-558)))) ((|#2| |#2|) . T) (($ $) -3998 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))))
(((|#1|) . T))
-(((|#1|) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) (($) . T))
-((((-402 (-554))) |has| |#2| (-38 (-402 (-554)))) ((|#2|) |has| |#2| (-170)) (($) -3994 (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))))
-((($) -3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))))
-(((|#1|) . T) (((-402 (-554))) . T) (($) . T))
-(((|#1|) . T) (((-402 (-554))) . T) (($) . T))
-(((|#1|) . T) (((-402 (-554))) . T) (($) . T))
-((((-402 (-554))) . T) (($) . T) (((-554)) . T))
-(((#0=(-402 (-554)) #0#) |has| |#1| (-38 (-402 (-554)))) ((|#1| |#1|) . T) (($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))))
+(((|#1|) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) (($) . T))
+((((-406 (-558))) |has| |#2| (-38 (-406 (-558)))) ((|#2|) |has| |#2| (-171)) (($) -3998 (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))))
+((($) -3998 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
+(((|#1|) . T) (((-406 (-558))) . T) (($) . T))
+(((|#1|) . T) (((-406 (-558))) . T) (($) . T))
+(((|#1|) . T) (((-406 (-558))) . T) (($) . T))
+((((-406 (-558))) . T) (($) . T) (((-558)) . T))
+(((#0=(-406 (-558)) #0#) |has| |#1| (-38 (-406 (-558)))) ((|#1| |#1|) . T) (($ $) -3998 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))))
(((|#2|) . T))
-((((-402 (-554))) |has| |#2| (-38 (-402 (-554)))) ((|#2|) . T) (($) -3994 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))))
+((((-406 (-558))) |has| |#2| (-38 (-406 (-558)))) ((|#2|) . T) (($) -3998 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))))
((($ $) . T))
-(-3994 (|has| |#1| (-836)) (|has| |#1| (-1082)))
-((((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) . T) (($) -3994 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))))
+(-3998 (|has| |#1| (-841)) (|has| |#1| (-1087)))
+((((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) . T) (($) -3998 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))))
((($) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-363))
+(|has| |#1| (-367))
(((|#1|) . T))
(((|#1|) . T))
-((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-((((-848)) . T))
+((((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+((((-853)) . T))
(((|#1| |#2|) . T))
-(-3994 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-885 (-1158))) (|has| |#1| (-1034)))
-(-3994 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-885 (-1158))) (|has| |#1| (-1034)))
+(-3998 (|has| |#1| (-21)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-890 (-1163))) (|has| |#1| (-1039)))
+(-3998 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-890 (-1163))) (|has| |#1| (-1039)))
(((|#1| |#1|) . T))
-((((-848)) . T))
-(|has| |#1| (-546))
-(((|#2| |#2|) -12 (|has| |#1| (-358)) (|has| |#2| (-304 |#2|))) (((-1158) |#2|) -12 (|has| |#1| (-358)) (|has| |#2| (-508 (-1158) |#2|))))
-((((-402 |#2|)) . T) (((-402 (-554))) . T) (($) . T))
-(-3994 (|has| |#1| (-21)) (|has| |#1| (-834)))
-((($ $) . T) ((#0=(-402 (-554)) #0#) . T))
-(-3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546)))
-(-3994 (|has| |#1| (-836)) (|has| |#1| (-1082)))
-(|has| |#1| (-1082))
-(-3994 (|has| |#1| (-836)) (|has| |#1| (-1082)))
-(|has| |#1| (-1082))
-(-3994 (|has| |#1| (-836)) (|has| |#1| (-1082)))
-(|has| |#1| (-834))
-((($) . T) (((-402 (-554))) . T))
-(((|#1|) . T))
-((((-554) (-129)) . T))
-(-3994 (|has| |#1| (-358)) (|has| |#1| (-344)))
+((((-853)) . T))
+(|has| |#1| (-550))
+(((|#2| |#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-308 |#2|))) (((-1163) |#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-512 (-1163) |#2|))))
+((((-406 |#2|)) . T) (((-406 (-558))) . T) (($) . T))
+(-3998 (|has| |#1| (-21)) (|has| |#1| (-839)))
+((($ $) . T) ((#0=(-406 (-558)) #0#) . T))
+(-3998 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550)))
+(-3998 (|has| |#1| (-841)) (|has| |#1| (-1087)))
+(|has| |#1| (-1087))
+(-3998 (|has| |#1| (-841)) (|has| |#1| (-1087)))
+(|has| |#1| (-1087))
+(-3998 (|has| |#1| (-841)) (|has| |#1| (-1087)))
+(|has| |#1| (-839))
+((($) . T) (((-406 (-558))) . T))
+(((|#1|) . T))
+((((-558) (-129)) . T))
+(-3998 (|has| |#1| (-362)) (|has| |#1| (-348)))
((((-129)) . T))
-((((-1163)) . T))
-(-3994 (|has| |#4| (-780)) (|has| |#4| (-834)))
-(-3994 (|has| |#4| (-780)) (|has| |#4| (-834)))
-(-3994 (|has| |#3| (-780)) (|has| |#3| (-834)))
-(-3994 (|has| |#3| (-780)) (|has| |#3| (-834)))
+((((-1168)) . T))
+(-3998 (|has| |#4| (-784)) (|has| |#4| (-839)))
+(-3998 (|has| |#4| (-784)) (|has| |#4| (-839)))
+(-3998 (|has| |#3| (-784)) (|has| |#3| (-839)))
+(-3998 (|has| |#3| (-784)) (|has| |#3| (-839)))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-(|has| |#1| (-1082))
-(|has| |#1| (-1082))
-(((|#1| (-1158) (-1070 (-1158)) (-525 (-1070 (-1158)))) . T))
-((((-554) |#1|) . T))
-((((-554)) . T))
-((((-554)) . T))
-((((-895 |#1|)) . T))
-(((|#1| (-525 |#2|)) . T))
-((((-554)) . T))
-((((-554)) . T))
-(((|#1|) . T))
-(-3994 (|has| |#2| (-170)) (|has| |#2| (-713)) (|has| |#2| (-834)) (|has| |#2| (-1034)))
-(((|#1| (-758)) . T))
-(|has| |#2| (-780))
-(-3994 (|has| |#2| (-780)) (|has| |#2| (-834)))
-(|has| |#2| (-834))
+(|has| |#1| (-1087))
+(|has| |#1| (-1087))
+(((|#1| (-1163) (-1075 (-1163)) (-529 (-1075 (-1163)))) . T))
+((((-558) |#1|) . T))
+((((-558)) . T))
+((((-558)) . T))
+((((-900 |#1|)) . T))
+(((|#1| (-529 |#2|)) . T))
+((((-558)) . T))
+((((-558)) . T))
+(((|#1|) . T))
+(-3998 (|has| |#2| (-171)) (|has| |#2| (-717)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
+(((|#1| (-762)) . T))
+(|has| |#2| (-784))
+(-3998 (|has| |#2| (-784)) (|has| |#2| (-839)))
+(|has| |#2| (-839))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-((((-1140) |#1|) . T))
-((((-554) (-129)) . T))
-(((|#1|) . T))
-((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-1082))))
-(((|#3| (-758)) . T))
-(|has| |#1| (-145))
-(|has| |#1| (-143))
-(-3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546)))
-(-3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546)))
-(|has| |#1| (-1082))
-((((-402 (-554))) . T) (((-554)) . T))
-((((-554)) . T) ((|#1|) . T) (((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))))
-((((-554)) . T) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554))))) ((|#1|) . T) (($) -3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#2|) . T))
-((((-1158) |#2|) |has| |#2| (-508 (-1158) |#2|)) ((|#2| |#2|) |has| |#2| (-304 |#2|)))
-((((-402 (-554))) . T) (((-554)) . T))
-((((-554)) . T) (($) -3994 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) (((-1064)) . T) ((|#1|) . T) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554))))))
+((((-1145) |#1|) . T))
+((((-558) (-129)) . T))
+(((|#1|) . T))
+((((-853)) -3998 (|has| |#1| (-605 (-853))) (|has| |#1| (-1087))))
+(((|#3| (-762)) . T))
+(|has| |#1| (-146))
+(|has| |#1| (-144))
+(-3998 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550)))
+(-3998 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550)))
+(|has| |#1| (-1087))
+((((-406 (-558))) . T) (((-558)) . T))
+((((-558)) . T) ((|#1|) . T) (((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))))
+((((-558)) . T) (((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558))))) ((|#1|) . T) (($) -3998 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#2|) . T))
+((((-1163) |#2|) |has| |#2| (-512 (-1163) |#2|)) ((|#2| |#2|) |has| |#2| (-308 |#2|)))
+((((-406 (-558))) . T) (((-558)) . T))
+((((-558)) . T) (($) -3998 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) (((-1069)) . T) ((|#1|) . T) (((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558))))))
(((|#1|) . T) (($) . T))
-((((-554)) . T))
-((((-554)) . T))
-((($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546))) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) ((|#1|) |has| |#1| (-170)))
-((((-554)) . T))
-((((-554)) . T))
-(((#0=(-685) (-1154 #0#)) . T))
-((((-402 (-554))) . T) (($) . T))
-(((|#1|) . T) (((-402 (-554))) . T) (($) . T))
-((((-554) |#1|) . T))
-((($) . T) (((-554)) . T) (((-402 (-554))) . T))
-(((|#1|) . T))
-(|has| |#2| (-358))
+((((-558)) . T))
+((((-558)) . T))
+((($) -3998 (|has| |#1| (-362)) (|has| |#1| (-550))) (((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171)))
+((((-558)) . T))
+((((-558)) . T))
+(((#0=(-689) (-1159 #0#)) . T))
+((((-406 (-558))) . T) (($) . T))
+(((|#1|) . T) (((-406 (-558))) . T) (($) . T))
+((((-558) |#1|) . T))
+((($) . T) (((-558)) . T) (((-406 (-558))) . T))
+(((|#1|) . T))
+(|has| |#2| (-362))
(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-848)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-((((-1140) |#1|) . T))
+((((-853)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+((((-1145) |#1|) . T))
(((|#3| |#3|) . T))
-((((-848)) . T))
-((((-848)) . T))
+((((-853)) . T))
+((((-853)) . T))
(((|#1| |#1|) . T))
-(((#0=(-402 (-554)) #0#) |has| |#1| (-38 (-402 (-554)))) ((|#1| |#1|) . T) (($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))))
-((($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1| |#1|) . T) ((#0=(-402 (-554)) #0#) |has| |#1| (-38 (-402 (-554)))))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) . T) (($) -3994 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))))
-((($) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))))
-((($) -3994 (|has| |#2| (-170)) (|has| |#2| (-834)) (|has| |#2| (-1034))) ((|#2|) -3994 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1034))))
-((((-848)) . T))
-((((-848)) . T))
-((((-848)) . T))
-((((-848)) . T))
-((((-848)) . T))
-((((-554) |#1|) . T))
-((((-848)) . T))
-((((-167 (-221))) |has| |#1| (-1007)) (((-167 (-374))) |has| |#1| (-1007)) (((-530)) |has| |#1| (-602 (-530))) (((-1154 |#1|)) . T) (((-877 (-554))) |has| |#1| (-602 (-877 (-554)))) (((-877 (-374))) |has| |#1| (-602 (-877 (-374)))))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-(((|#1|) . T))
-(-3994 (|has| |#1| (-21)) (|has| |#1| (-834)))
-(-3994 (|has| |#1| (-21)) (|has| |#1| (-834)))
-((((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546))) ((|#2|) |has| |#1| (-358)) ((|#1|) |has| |#1| (-170)))
-(((|#1|) |has| |#1| (-170)) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546))))
-(|has| |#1| (-358))
+(((#0=(-406 (-558)) #0#) |has| |#1| (-38 (-406 (-558)))) ((|#1| |#1|) . T) (($ $) -3998 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))))
+((($ $) -3998 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1| |#1|) . T) ((#0=(-406 (-558)) #0#) |has| |#1| (-38 (-406 (-558)))))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) . T) (($) -3998 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))))
+((($) -3998 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
+((($) -3998 (|has| |#2| (-171)) (|has| |#2| (-839)) (|has| |#2| (-1039))) ((|#2|) -3998 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1039))))
+((((-853)) . T))
+((((-853)) . T))
+((((-853)) . T))
+((((-853)) . T))
+((((-853)) . T))
+((((-558) |#1|) . T))
+((((-853)) . T))
+((((-168 (-224))) |has| |#1| (-1012)) (((-168 (-378))) |has| |#1| (-1012)) (((-534)) |has| |#1| (-606 (-534))) (((-1159 |#1|)) . T) (((-882 (-558))) |has| |#1| (-606 (-882 (-558)))) (((-882 (-378))) |has| |#1| (-606 (-882 (-378)))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+(((|#1|) . T))
+(-3998 (|has| |#1| (-21)) (|has| |#1| (-839)))
+(-3998 (|has| |#1| (-21)) (|has| |#1| (-839)))
+((((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (($) -3998 (|has| |#1| (-362)) (|has| |#1| (-550))) ((|#2|) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171)))
+(((|#1|) |has| |#1| (-171)) (((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (($) -3998 (|has| |#1| (-362)) (|has| |#1| (-550))))
+(|has| |#1| (-362))
((((-129)) . T))
-(-12 (|has| |#4| (-229)) (|has| |#4| (-1034)))
-(-12 (|has| |#3| (-229)) (|has| |#3| (-1034)))
-(-3994 (|has| |#4| (-170)) (|has| |#4| (-834)) (|has| |#4| (-1034)))
-(-3994 (|has| |#3| (-170)) (|has| |#3| (-834)) (|has| |#3| (-1034)))
-((((-848)) . T) (((-1163)) . T))
-((((-848)) . T) (((-1163)) . T))
-((((-1163)) . T))
-((((-1163)) . T))
-((((-848)) . T))
-(((|#1|) . T))
-((((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) (((-554)) |has| |#1| (-1023 (-554))) ((|#1|) . T))
-(((|#1|) . T) (((-554)) |has| |#1| (-627 (-554))))
-(((|#2|) . T) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T))
-(((|#1|) . T) (((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) . T))
-(|has| |#1| (-546))
-((((-554)) -3994 (|has| |#4| (-170)) (|has| |#4| (-834)) (-12 (|has| |#4| (-1023 (-554))) (|has| |#4| (-1082))) (|has| |#4| (-1034))) ((|#4|) -3994 (|has| |#4| (-170)) (|has| |#4| (-1082))) (((-402 (-554))) -12 (|has| |#4| (-1023 (-402 (-554)))) (|has| |#4| (-1082))))
-((((-554)) -3994 (|has| |#3| (-170)) (|has| |#3| (-834)) (-12 (|has| |#3| (-1023 (-554))) (|has| |#3| (-1082))) (|has| |#3| (-1034))) ((|#3|) -3994 (|has| |#3| (-170)) (|has| |#3| (-1082))) (((-402 (-554))) -12 (|has| |#3| (-1023 (-402 (-554)))) (|has| |#3| (-1082))))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-(|has| |#1| (-546))
-(-3994 (|has| |#1| (-836)) (|has| |#1| (-1082)))
-(((|#1|) . T))
-(|has| |#1| (-546))
-(|has| |#1| (-546))
-(|has| |#1| (-546))
-((((-685)) . T))
-(((|#1|) . T))
-(-12 (|has| |#1| (-987)) (|has| |#1| (-1180)))
-(((|#2|) . T) (($) . T) (((-402 (-554))) . T))
-(-12 (|has| |#1| (-1082)) (|has| |#2| (-1082)))
-((($) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) . T))
-((((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (((-1156 |#1| |#2| |#3|)) |has| |#1| (-358)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (($) . T))
-(((|#1|) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) (($) . T))
-(((|#4| |#4|) -3994 (|has| |#4| (-170)) (|has| |#4| (-358)) (|has| |#4| (-1034))) (($ $) |has| |#4| (-170)))
-(((|#3| |#3|) -3994 (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-1034))) (($ $) |has| |#3| (-170)))
-(((|#1|) . T))
-(((|#2|) . T))
-((((-530)) |has| |#2| (-602 (-530))) (((-877 (-374))) |has| |#2| (-602 (-877 (-374)))) (((-877 (-554))) |has| |#2| (-602 (-877 (-554)))))
-((((-848)) . T))
+(-12 (|has| |#4| (-232)) (|has| |#4| (-1039)))
+(-12 (|has| |#3| (-232)) (|has| |#3| (-1039)))
+(-3998 (|has| |#4| (-171)) (|has| |#4| (-839)) (|has| |#4| (-1039)))
+(-3998 (|has| |#3| (-171)) (|has| |#3| (-839)) (|has| |#3| (-1039)))
+((((-853)) . T) (((-1168)) . T))
+((((-853)) . T) (((-1168)) . T))
+((((-1168)) . T))
+((((-1168)) . T))
+((((-853)) . T))
+(((|#1|) . T))
+((((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) (((-558)) |has| |#1| (-1028 (-558))) ((|#1|) . T))
+(((|#1|) . T) (((-558)) |has| |#1| (-631 (-558))))
+(((|#2|) . T) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T))
+(((|#1|) . T) (((-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) . T))
+(|has| |#1| (-550))
+((((-558)) -3998 (|has| |#4| (-171)) (|has| |#4| (-839)) (-12 (|has| |#4| (-1028 (-558))) (|has| |#4| (-1087))) (|has| |#4| (-1039))) ((|#4|) -3998 (|has| |#4| (-171)) (|has| |#4| (-1087))) (((-406 (-558))) -12 (|has| |#4| (-1028 (-406 (-558)))) (|has| |#4| (-1087))))
+((((-558)) -3998 (|has| |#3| (-171)) (|has| |#3| (-839)) (-12 (|has| |#3| (-1028 (-558))) (|has| |#3| (-1087))) (|has| |#3| (-1039))) ((|#3|) -3998 (|has| |#3| (-171)) (|has| |#3| (-1087))) (((-406 (-558))) -12 (|has| |#3| (-1028 (-406 (-558)))) (|has| |#3| (-1087))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+(|has| |#1| (-550))
+(-3998 (|has| |#1| (-841)) (|has| |#1| (-1087)))
+(((|#1|) . T))
+(|has| |#1| (-550))
+(|has| |#1| (-550))
+(|has| |#1| (-550))
+((((-689)) . T))
+(((|#1|) . T))
+(-12 (|has| |#1| (-992)) (|has| |#1| (-1185)))
+(((|#2|) . T) (($) . T) (((-406 (-558))) . T))
+(-12 (|has| |#1| (-1087)) (|has| |#2| (-1087)))
+((($) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) . T))
+((((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (((-1161 |#1| |#2| |#3|)) |has| |#1| (-362)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (($) . T))
+(((|#1|) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) (($) . T))
+(((|#4| |#4|) -3998 (|has| |#4| (-171)) (|has| |#4| (-362)) (|has| |#4| (-1039))) (($ $) |has| |#4| (-171)))
+(((|#3| |#3|) -3998 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1039))) (($ $) |has| |#3| (-171)))
+(((|#1|) . T))
+(((|#2|) . T))
+((((-534)) |has| |#2| (-606 (-534))) (((-882 (-378))) |has| |#2| (-606 (-882 (-378)))) (((-882 (-558))) |has| |#2| (-606 (-882 (-558)))))
+((((-853)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-2 (|:| -2717 |#1|) (|:| -1407 |#2|))) . T) (((-848)) . T))
-((((-530)) |has| |#1| (-602 (-530))) (((-877 (-374))) |has| |#1| (-602 (-877 (-374)))) (((-877 (-554))) |has| |#1| (-602 (-877 (-554)))))
-(((|#4|) -3994 (|has| |#4| (-170)) (|has| |#4| (-358)) (|has| |#4| (-1034))) (($) |has| |#4| (-170)))
-(((|#3|) -3994 (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-1034))) (($) |has| |#3| (-170)))
-((((-2 (|:| -2717 |#1|) (|:| -1407 |#2|))) . T))
-((((-848)) . T))
-((((-848)) . T))
-((((-530)) . T) (((-554)) . T) (((-877 (-554))) . T) (((-374)) . T) (((-221)) . T))
-((((-631 |#1|)) . T))
-(((|#1|) . T) (((-554)) |has| |#1| (-1023 (-554))) (((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))))
-((($) . T) (((-402 (-554))) |has| |#2| (-38 (-402 (-554)))) ((|#2|) . T))
-((((-402 $) (-402 $)) |has| |#2| (-546)) (($ $) . T) ((|#2| |#2|) . T))
-((((-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) . T))
-(((|#1|) . T))
-(|has| |#2| (-894))
-((((-1140) (-52)) . T))
-((((-554)) |has| #0=(-402 |#2|) (-627 (-554))) ((#0#) . T))
-((((-530)) . T) (((-221)) . T) (((-374)) . T) (((-877 (-374))) . T))
-((((-848)) . T))
-(-3994 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-885 (-1158))) (|has| |#1| (-1034)))
-(((|#1|) |has| |#1| (-170)))
-(((|#1| $) |has| |#1| (-281 |#1| |#1|)))
-((((-848)) . T))
-((((-848)) . T))
-((((-402 (-554))) . T) (($) . T))
-((((-402 (-554))) . T) (($) . T))
-((((-848)) . T))
-(|has| |#1| (-836))
-(((|#2|) . T) (((-554)) . T) (((-806 |#1|)) . T))
-(|has| |#1| (-1082))
-(((|#1|) . T))
-((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-836)) (|has| |#1| (-1082))))
-((((-530)) |has| |#1| (-602 (-530))))
-((((-848)) . T) (((-1163)) . T))
-((((-402 (-554))) |has| |#2| (-38 (-402 (-554)))) ((|#2|) |has| |#2| (-170)) (($) -3994 (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))))
-((((-1163)) . T))
-((($) -3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))))
-((($) -3994 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))))
-(|has| |#1| (-229))
-((($) -3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))))
-(((|#1| (-525 (-805 (-1158)))) . T))
-(((|#1| (-956)) . T))
-(((#0=(-855 |#1|) $) |has| #0# (-281 #0# #0#)))
-((((-554) |#4|) . T))
-((((-554) |#3|) . T))
+((((-2 (|:| -2851 |#1|) (|:| -1951 |#2|))) . T) (((-853)) . T))
+((((-534)) |has| |#1| (-606 (-534))) (((-882 (-378))) |has| |#1| (-606 (-882 (-378)))) (((-882 (-558))) |has| |#1| (-606 (-882 (-558)))))
+(((|#4|) -3998 (|has| |#4| (-171)) (|has| |#4| (-362)) (|has| |#4| (-1039))) (($) |has| |#4| (-171)))
+(((|#3|) -3998 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1039))) (($) |has| |#3| (-171)))
+((((-2 (|:| -2851 |#1|) (|:| -1951 |#2|))) . T))
+((((-853)) . T))
+((((-853)) . T))
+((((-534)) . T) (((-558)) . T) (((-882 (-558))) . T) (((-378)) . T) (((-224)) . T))
+((((-635 |#1|)) . T))
+(((|#1|) . T) (((-558)) |has| |#1| (-1028 (-558))) (((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))))
+((($) . T) (((-406 (-558))) |has| |#2| (-38 (-406 (-558)))) ((|#2|) . T))
+((((-406 $) (-406 $)) |has| |#2| (-550)) (($ $) . T) ((|#2| |#2|) . T))
+((((-2 (|:| -2700 (-1145)) (|:| -2981 (-52)))) . T))
+(((|#1|) . T))
+(|has| |#2| (-899))
+((((-1145) (-52)) . T))
+((((-558)) |has| #0=(-406 |#2|) (-631 (-558))) ((#0#) . T))
+((((-534)) . T) (((-224)) . T) (((-378)) . T) (((-882 (-378))) . T))
+((((-853)) . T))
+(-3998 (|has| |#1| (-21)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-890 (-1163))) (|has| |#1| (-1039)))
+(((|#1|) |has| |#1| (-171)))
+(((|#1| $) |has| |#1| (-285 |#1| |#1|)))
+((((-853)) . T))
+((((-853)) . T))
+((((-406 (-558))) . T) (($) . T))
+((((-406 (-558))) . T) (($) . T))
+((((-853)) . T))
+(|has| |#1| (-841))
+(((|#2|) . T) (((-558)) . T) (((-810 |#1|)) . T))
+(|has| |#1| (-1087))
+(((|#1|) . T))
+((((-853)) -3998 (|has| |#1| (-605 (-853))) (|has| |#1| (-841)) (|has| |#1| (-1087))))
+((((-534)) |has| |#1| (-606 (-534))))
+((((-853)) . T) (((-1168)) . T))
+((((-406 (-558))) |has| |#2| (-38 (-406 (-558)))) ((|#2|) |has| |#2| (-171)) (($) -3998 (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))))
+((((-1168)) . T))
+((($) -3998 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
+((($) -3998 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
+(|has| |#1| (-232))
+((($) -3998 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
+(((|#1| (-529 (-809 (-1163)))) . T))
+(((|#1| (-961)) . T))
+(((#0=(-860 |#1|) $) |has| #0# (-285 #0# #0#)))
+((((-558) |#4|) . T))
+((((-558) |#3|) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
-(|has| |#1| (-1133))
-((((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) . T))
-(|has| (-1227 |#1| |#2| |#3| |#4|) (-143))
-(|has| (-1227 |#1| |#2| |#3| |#4|) (-145))
-(|has| |#1| (-143))
-(|has| |#1| (-145))
-(((|#1|) |has| |#1| (-170)))
-((((-1158)) -12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034))))
-(((|#2|) . T))
-(|has| |#1| (-1082))
-((((-1140) |#1|) . T))
-(((|#1|) . T))
-(((|#2|) . T) (((-554)) |has| |#2| (-627 (-554))))
-((((-1107 |#1| (-1158))) . T) (((-554)) . T) (((-805 (-1158))) . T) (($) -3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) . T) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554))))) (((-1158)) . T))
-(|has| |#2| (-363))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
+(|has| |#1| (-1138))
+((((-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) . T))
+(|has| (-1232 |#1| |#2| |#3| |#4|) (-144))
+(|has| (-1232 |#1| |#2| |#3| |#4|) (-146))
+(|has| |#1| (-144))
+(|has| |#1| (-146))
+(((|#1|) |has| |#1| (-171)))
+((((-1163)) -12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039))))
+(|has| |#1| (-1087))
+((((-1145) |#1|) . T))
+(((|#2|) . T))
+(((|#1|) . T))
+(((|#2|) . T) (((-558)) |has| |#2| (-631 (-558))))
+((((-1112 |#1| (-1163))) . T) (((-558)) . T) (((-809 (-1163))) . T) (($) -3998 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) . T) (((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558))))) (((-1163)) . T))
+(|has| |#2| (-367))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
((($) . T) ((|#1|) . T))
-(((|#2|) |has| |#2| (-1034)))
-((((-848)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))) ((#0=(-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) #0#) |has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))))
+(((|#2|) |has| |#2| (-1039)))
+((((-853)) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))) ((#0=(-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) #0#) |has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))))
(((|#1|) . T))
-((((-1241 (-334 (-3089) (-3089 (QUOTE X)) (-685)))) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((#0=(-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) #0#) |has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-304 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)))))
-((((-848)) . T))
-((((-554) |#1|) . T))
-((((-530)) -12 (|has| |#1| (-602 (-530))) (|has| |#2| (-602 (-530)))) (((-877 (-374))) -12 (|has| |#1| (-602 (-877 (-374)))) (|has| |#2| (-602 (-877 (-374))))) (((-877 (-554))) -12 (|has| |#1| (-602 (-877 (-554)))) (|has| |#2| (-602 (-877 (-554))))))
+((((-1246 (-338 (-3233) (-3233 (QUOTE X)) (-689)))) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((#0=(-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) #0#) |has| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-308 (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)))))
+((((-853)) . T))
+((((-558) |#1|) . T))
+((((-534)) -12 (|has| |#1| (-606 (-534))) (|has| |#2| (-606 (-534)))) (((-882 (-378))) -12 (|has| |#1| (-606 (-882 (-378)))) (|has| |#2| (-606 (-882 (-378))))) (((-882 (-558))) -12 (|has| |#1| (-606 (-882 (-558)))) (|has| |#2| (-606 (-882 (-558))))))
((($) . T))
-((((-848)) . T))
-((($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1| |#1|) . T) ((#0=(-402 (-554)) #0#) |has| |#1| (-38 (-402 (-554)))))
-((((-848)) . T))
+((((-853)) . T))
+((($ $) -3998 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1| |#1|) . T) ((#0=(-406 (-558)) #0#) |has| |#1| (-38 (-406 (-558)))))
+((((-853)) . T))
((($) . T))
((($) . T))
((($) . T))
-((($) -3994 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))))
-((((-848)) . T))
-((((-848)) . T))
-(|has| (-1226 |#2| |#3| |#4|) (-145))
-(|has| (-1226 |#2| |#3| |#4|) (-143))
-(((|#2|) |has| |#2| (-1082)) (((-554)) -12 (|has| |#2| (-1023 (-554))) (|has| |#2| (-1082))) (((-402 (-554))) -12 (|has| |#2| (-1023 (-402 (-554)))) (|has| |#2| (-1082))))
+((($) -3998 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
+((((-853)) . T))
+((((-853)) . T))
+(|has| (-1231 |#2| |#3| |#4|) (-146))
+(|has| (-1231 |#2| |#3| |#4|) (-144))
+(((|#2|) |has| |#2| (-1087)) (((-558)) -12 (|has| |#2| (-1028 (-558))) (|has| |#2| (-1087))) (((-406 (-558))) -12 (|has| |#2| (-1028 (-406 (-558)))) (|has| |#2| (-1087))))
(((|#1|) . T))
-(|has| |#1| (-1082))
-((((-848)) . T))
+(|has| |#1| (-1087))
+((((-853)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-3994 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-885 (-1158))) (|has| |#1| (-1034)))
+(-3998 (|has| |#1| (-21)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-890 (-1163))) (|has| |#1| (-1039)))
(((|#1|) . T))
-((((-554) |#1|) . T))
-(((|#2|) |has| |#2| (-170)))
-(((|#1|) |has| |#1| (-170)))
+((((-558) |#1|) . T))
+(((|#2|) |has| |#2| (-171)))
+(((|#1|) |has| |#1| (-171)))
(((|#1|) . T))
-(-3994 (|has| |#1| (-21)) (|has| |#1| (-834)))
-((((-848)) |has| |#1| (-1082)))
-(-3994 (|has| |#1| (-467)) (|has| |#1| (-713)) (|has| |#1| (-885 (-1158))) (|has| |#1| (-1034)) (|has| |#1| (-1094)))
-(-3994 (|has| |#1| (-358)) (|has| |#1| (-344)))
-((((-895 |#1|)) . T))
-((((-402 |#2|) |#3|) . T))
-(|has| |#1| (-15 * (|#1| (-554) |#1|)))
-((((-402 (-554))) . T) (($) . T))
-(|has| |#1| (-836))
+(-3998 (|has| |#1| (-21)) (|has| |#1| (-839)))
+((((-853)) |has| |#1| (-1087)))
+(-3998 (|has| |#1| (-471)) (|has| |#1| (-717)) (|has| |#1| (-890 (-1163))) (|has| |#1| (-1039)) (|has| |#1| (-1099)))
+(-3998 (|has| |#1| (-362)) (|has| |#1| (-348)))
+((((-900 |#1|)) . T))
+((((-406 |#2|) |#3|) . T))
+(|has| |#1| (-15 * (|#1| (-558) |#1|)))
+((((-406 (-558))) . T) (($) . T))
+(|has| |#1| (-841))
(((|#1|) . T) (($) . T))
-((((-402 (-554))) . T) (($) . T))
-((((-848)) . T))
-(((|#1|) . T))
-((((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-546)))
-(|has| |#1| (-358))
-(-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))
-(|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|)))
-(|has| |#1| (-358))
-((((-554)) . T))
-(|has| |#1| (-15 * (|#1| (-758) |#1|)))
-((((-1124 |#2| (-402 (-937 |#1|)))) . T) (((-402 (-937 |#1|))) . T))
-((($) . T))
-(((|#1|) |has| |#1| (-170)) (($) . T))
-(((|#1|) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) (($) . T))
-(((|#1|) . T))
-((((-554) |#1|) . T))
-((((-848)) . T))
-(((|#2|) . T))
-(-3994 (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894)))
-((((-554)) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-546)))
-((($) |has| |#1| (-546)) (((-554)) . T))
-(-3994 (|has| |#2| (-780)) (|has| |#2| (-834)))
-(-3994 (|has| |#2| (-780)) (|has| |#2| (-834)))
-((((-1233 |#1| |#2| |#3|)) . T) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546))) (((-554)) . T) ((|#1|) |has| |#1| (-170)))
-((((-1237 |#2|)) . T) (((-1233 |#1| |#2| |#3|)) . T) (((-1205 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (((-554)) . T) (($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546))))
-((($) |has| |#1| (-546)) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) (((-554)) . T))
-(((|#1|) . T))
-((((-1158)) -12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034))))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-(-12 (|has| |#1| (-358)) (|has| |#2| (-807)))
-(-3994 (|has| |#1| (-302)) (|has| |#1| (-358)) (|has| |#1| (-344)) (|has| |#1| (-546)))
-(((#0=(-402 (-554)) #0#) |has| |#1| (-38 (-402 (-554)))) ((|#1| |#1|) . T) (($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-546))))
-((($ $) |has| |#1| (-546)))
-(((#0=(-685) (-1154 #0#)) . T))
-((((-848)) . T) (((-1241 |#4|)) . T))
-((((-848)) . T) (((-1241 |#3|)) . T))
-((((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) . T) (($) -3994 (|has| |#1| (-170)) (|has| |#1| (-546))))
-((($) |has| |#1| (-546)))
-((((-848)) . T))
-((($) . T))
-((($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546))) ((#0=(-402 (-554)) #0#) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) ((#1=(-1233 |#1| |#2| |#3|) #1#) |has| |#1| (-358)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546))) ((#0=(-402 (-554)) #0#) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))))
-((($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-546))) ((|#1| |#1|) . T) ((#0=(-402 (-554)) #0#) |has| |#1| (-38 (-402 (-554)))))
-((($) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546))) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (((-1233 |#1| |#2| |#3|)) |has| |#1| (-358)) ((|#1|) . T))
-(((|#1|) . T) (($) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546))) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))))
-(((|#3|) |has| |#3| (-1034)))
-((($) -3994 (|has| |#1| (-170)) (|has| |#1| (-546))) ((|#1|) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))))
-(|has| |#1| (-1082))
-(((|#2| (-806 |#1|)) . T))
-(((|#1|) . T))
-(|has| |#1| (-358))
-((((-402 $) (-402 $)) |has| |#1| (-546)) (($ $) . T) ((|#1| |#1|) . T))
-(((#0=(-1064) |#2|) . T) ((#0# $) . T) (($ $) . T))
-((((-895 |#1|)) . T))
-((((-142)) . T))
-((((-142)) . T))
-(((|#3|) |has| |#3| (-1082)) (((-554)) -12 (|has| |#3| (-1023 (-554))) (|has| |#3| (-1082))) (((-402 (-554))) -12 (|has| |#3| (-1023 (-402 (-554)))) (|has| |#3| (-1082))))
-((((-848)) . T))
-((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T))
-(((|#1|) . T))
-((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-836)) (|has| |#1| (-1082))))
-((((-530)) |has| |#1| (-602 (-530))))
-((((-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) . T))
-(|has| |#1| (-358))
-((((-1163)) . T))
-(-3994 (|has| |#1| (-21)) (|has| |#1| (-834)))
-((((-1158) |#1|) |has| |#1| (-508 (-1158) |#1|)) ((|#1| |#1|) |has| |#1| (-304 |#1|)))
-(|has| |#2| (-807))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-834))
-(-3994 (|has| |#1| (-836)) (|has| |#1| (-1082)))
-((((-848)) . T))
-((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T))
-((((-530)) |has| |#1| (-602 (-530))))
+((((-406 (-558))) . T) (($) . T))
+((((-853)) . T))
+(((|#1|) . T))
+((((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-550)))
+(|has| |#1| (-362))
+(-3998 (-12 (|has| (-1238 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))
+(|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|)))
+(|has| |#1| (-362))
+((((-558)) . T))
+(|has| |#1| (-15 * (|#1| (-762) |#1|)))
+((((-1129 |#2| (-406 (-942 |#1|)))) . T) (((-406 (-942 |#1|))) . T))
+((($) . T))
+(((|#1|) |has| |#1| (-171)) (($) . T))
+(((|#1|) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) (($) . T))
+(((|#1|) . T))
+((((-558) |#1|) . T))
+((((-853)) . T))
+(((|#2|) . T))
+(-3998 (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899)))
+((((-558)) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-550)))
+((($) |has| |#1| (-550)) (((-558)) . T))
+(-3998 (|has| |#2| (-784)) (|has| |#2| (-839)))
+(-3998 (|has| |#2| (-784)) (|has| |#2| (-839)))
+((((-1238 |#1| |#2| |#3|)) . T) (((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (($) -3998 (|has| |#1| (-362)) (|has| |#1| (-550))) (((-558)) . T) ((|#1|) |has| |#1| (-171)))
+((((-1242 |#2|)) . T) (((-1238 |#1| |#2| |#3|)) . T) (((-1210 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (((-558)) . T) (($) -3998 (|has| |#1| (-362)) (|has| |#1| (-550))))
+((($) |has| |#1| (-550)) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) (((-558)) . T))
+(((|#1|) . T))
+((((-1163)) -12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+(-12 (|has| |#1| (-362)) (|has| |#2| (-811)))
+(-3998 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348)) (|has| |#1| (-550)))
+(((#0=(-406 (-558)) #0#) |has| |#1| (-38 (-406 (-558)))) ((|#1| |#1|) . T) (($ $) -3998 (|has| |#1| (-171)) (|has| |#1| (-550))))
+((($ $) |has| |#1| (-550)))
+(((#0=(-689) (-1159 #0#)) . T))
+((((-853)) . T) (((-1246 |#4|)) . T))
+((((-853)) . T) (((-1246 |#3|)) . T))
+((((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) . T) (($) -3998 (|has| |#1| (-171)) (|has| |#1| (-550))))
+((($) |has| |#1| (-550)))
+((((-853)) . T))
+((($) . T))
+((($ $) -3998 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550))) ((#0=(-406 (-558)) #0#) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) ((#1=(-1238 |#1| |#2| |#3|) #1#) |has| |#1| (-362)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -3998 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550))) ((#0=(-406 (-558)) #0#) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))))
+((($ $) -3998 (|has| |#1| (-171)) (|has| |#1| (-550))) ((|#1| |#1|) . T) ((#0=(-406 (-558)) #0#) |has| |#1| (-38 (-406 (-558)))))
+((($) -3998 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550))) (((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (((-1238 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) . T))
+(((|#1|) . T) (($) -3998 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550))) (((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))))
+(((|#3|) |has| |#3| (-1039)))
+((($) -3998 (|has| |#1| (-171)) (|has| |#1| (-550))) ((|#1|) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
+(|has| |#1| (-1087))
+(((|#2| (-810 |#1|)) . T))
+(((|#1|) . T))
+(|has| |#1| (-362))
+((((-406 $) (-406 $)) |has| |#1| (-550)) (($ $) . T) ((|#1| |#1|) . T))
+(((#0=(-1069) |#2|) . T) ((#0# $) . T) (($ $) . T))
+((((-900 |#1|)) . T))
+((((-143)) . T))
+((((-143)) . T))
+(((|#3|) |has| |#3| (-1087)) (((-558)) -12 (|has| |#3| (-1028 (-558))) (|has| |#3| (-1087))) (((-406 (-558))) -12 (|has| |#3| (-1028 (-406 (-558)))) (|has| |#3| (-1087))))
+((((-853)) . T))
+((((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T))
+(((|#1|) . T))
+((((-853)) -3998 (|has| |#1| (-605 (-853))) (|has| |#1| (-841)) (|has| |#1| (-1087))))
+((((-534)) |has| |#1| (-606 (-534))))
+((((-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) . T))
+(|has| |#1| (-362))
+((((-1168)) . T))
+(-3998 (|has| |#1| (-21)) (|has| |#1| (-839)))
+((((-1163) |#1|) |has| |#1| (-512 (-1163) |#1|)) ((|#1| |#1|) |has| |#1| (-308 |#1|)))
+(|has| |#2| (-811))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-839))
+(-3998 (|has| |#1| (-841)) (|has| |#1| (-1087)))
+((((-853)) . T))
+((((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T))
+((((-534)) |has| |#1| (-606 (-534))))
(((|#1| |#2|) . T))
-((((-1158)) -12 (|has| |#1| (-358)) (|has| |#1| (-885 (-1158)))))
-((((-1140) |#1|) . T))
-(((|#1| |#2| |#3| (-525 |#3|)) . T))
-((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T))
-(|has| |#1| (-363))
-(|has| |#1| (-363))
-(|has| |#1| (-363))
-((((-848)) . T))
-(((|#1|) . T))
-(-3994 (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894)))
-(|has| |#1| (-363))
-(-3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894)))
-((((-554)) . T))
-((((-554)) . T))
-(((|#1|) . T) (((-554)) . T))
-(-3994 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894)))
-((((-848)) . T))
-((((-848)) . T))
-(((|#1|) . T) (((-402 (-554))) . T) (((-554)) . T) (($) . T))
-((((-554)) . T) (($) . T) (((-402 (-554))) . T))
-(-12 (|has| |#2| (-229)) (|has| |#2| (-1034)))
-((((-1158) #0=(-855 |#1|)) |has| #0# (-508 (-1158) #0#)) ((#0# #0#) |has| #0# (-304 #0#)))
-(((|#1|) . T))
-((((-554) |#4|) . T))
-((((-554) |#3|) . T))
-(((|#1|) . T) (((-554)) |has| |#1| (-627 (-554))))
-(-3994 (|has| |#2| (-170)) (|has| |#2| (-834)) (|has| |#2| (-1034)))
-((((-1227 |#1| |#2| |#3| |#4|)) . T))
-((((-402 (-554))) . T) (((-554)) . T))
-((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-1082))))
+((((-1163)) -12 (|has| |#1| (-362)) (|has| |#1| (-890 (-1163)))))
+((((-1145) |#1|) . T))
+(((|#1| |#2| |#3| (-529 |#3|)) . T))
+((((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T))
+(|has| |#1| (-367))
+(|has| |#1| (-367))
+(|has| |#1| (-367))
+((((-853)) . T))
+(((|#1|) . T))
+(-3998 (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899)))
+(|has| |#1| (-367))
+(-3998 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
+((((-558)) . T))
+((((-558)) . T))
+(((|#1|) . T) (((-558)) . T))
+(-3998 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899)))
+((((-853)) . T))
+((((-853)) . T))
+(((|#1|) . T) (((-406 (-558))) . T) (((-558)) . T) (($) . T))
+((((-558)) . T) (($) . T) (((-406 (-558))) . T))
+(-12 (|has| |#2| (-232)) (|has| |#2| (-1039)))
+((((-1163) #0=(-860 |#1|)) |has| #0# (-512 (-1163) #0#)) ((#0# #0#) |has| #0# (-308 #0#)))
+(((|#1|) . T))
+((((-558) |#4|) . T))
+((((-558) |#3|) . T))
+(((|#1|) . T) (((-558)) |has| |#1| (-631 (-558))))
+(-3998 (|has| |#2| (-171)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
+((((-1232 |#1| |#2| |#3| |#4|)) . T))
+((((-406 (-558))) . T) (((-558)) . T))
+((((-853)) -3998 (|has| |#1| (-605 (-853))) (|has| |#1| (-1087))))
(((|#1| |#1|) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-(((|#1|) . T))
-(((|#1|) . T))
-((($) . T) (((-554)) . T) (((-402 (-554))) . T))
-((((-554)) . T))
-((((-554)) . T))
-((($) . T) (((-554)) . T) (((-402 (-554))) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-402 (-554)) #0#) . T))
-((((-554)) -3994 (|has| |#2| (-170)) (|has| |#2| (-834)) (-12 (|has| |#2| (-1023 (-554))) (|has| |#2| (-1082))) (|has| |#2| (-1034))) ((|#2|) -3994 (|has| |#2| (-170)) (|has| |#2| (-1082))) (((-402 (-554))) -12 (|has| |#2| (-1023 (-402 (-554)))) (|has| |#2| (-1082))))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((#0=(-554) #0#) . T) ((#1=(-402 (-554)) #1#) . T) (($ $) . T))
-(((|#1|) . T) (((-554)) |has| |#1| (-1023 (-554))) (((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))))
-(((|#1|) . T) (($) . T) (((-402 (-554))) . T))
-(((|#1|) |has| |#1| (-546)))
-((((-554) |#4|) . T))
-((((-554) |#3|) . T))
-((((-848)) . T))
-((((-554)) . T) (((-402 (-554))) . T) (($) . T))
-((((-848)) . T))
-((((-554) |#1|) . T))
-(((|#1|) . T))
-((($ $) . T) ((#0=(-850 |#1|) $) . T) ((#0# |#2|) . T))
-((($) . T))
-((($ $) . T) ((#0=(-1158) $) . T) ((#0# |#1|) . T))
-(((|#2|) |has| |#2| (-170)))
-((($) -3994 (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))) ((|#2|) |has| |#2| (-170)) (((-402 (-554))) |has| |#2| (-38 (-402 (-554)))))
-(((|#2| |#2|) -3994 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1034))) (($ $) |has| |#2| (-170)))
-((((-142)) . T))
-(((|#1|) . T))
-(-12 (|has| |#1| (-363)) (|has| |#2| (-363)))
-((((-848)) . T))
-(((|#2|) -3994 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1034))) (($) |has| |#2| (-170)))
-(((|#1|) . T))
-((((-848)) . T))
-(|has| |#1| (-1082))
-(|has| $ (-145))
-((((-1163)) . T))
-((((-554) |#1|) . T))
-((($) -3994 (|has| |#1| (-302)) (|has| |#1| (-358)) (|has| |#1| (-344)) (|has| |#1| (-546))) (((-402 (-554))) -3994 (|has| |#1| (-358)) (|has| |#1| (-344))) ((|#1|) . T))
-((((-1158)) -12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158)))))
-(|has| |#1| (-358))
-(-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))
-(|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|)))
-(|has| |#1| (-358))
-(|has| |#1| (-15 * (|#1| (-758) |#1|)))
-(((|#1|) . T))
-(-3994 (|has| |#1| (-836)) (|has| |#1| (-1082)))
-((((-848)) . T))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-(-3994 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894)))
-(((|#2| (-525 (-850 |#1|))) . T))
-((((-848)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-(((|#1|) . T))
-(-3994 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894)))
-(-3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894)))
-(-3994 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894)))
-((((-571 |#1|)) . T))
-((($) . T))
-((((-554)) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-546)))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+(((|#1|) . T))
+(((|#1|) . T))
+((($) . T) (((-558)) . T) (((-406 (-558))) . T))
+((((-558)) . T))
+((((-558)) . T))
+((($) . T) (((-558)) . T) (((-406 (-558))) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-406 (-558)) #0#) . T))
+((((-558)) -3998 (|has| |#2| (-171)) (|has| |#2| (-839)) (-12 (|has| |#2| (-1028 (-558))) (|has| |#2| (-1087))) (|has| |#2| (-1039))) ((|#2|) -3998 (|has| |#2| (-171)) (|has| |#2| (-1087))) (((-406 (-558))) -12 (|has| |#2| (-1028 (-406 (-558)))) (|has| |#2| (-1087))))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((#0=(-558) #0#) . T) ((#1=(-406 (-558)) #1#) . T) (($ $) . T))
+(((|#1|) . T) (((-558)) |has| |#1| (-1028 (-558))) (((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))))
+(((|#1|) . T) (($) . T) (((-406 (-558))) . T))
+(((|#1|) |has| |#1| (-550)))
+((((-558) |#4|) . T))
+((((-558) |#3|) . T))
+((((-853)) . T))
+((((-558)) . T) (((-406 (-558))) . T) (($) . T))
+((((-853)) . T))
+((((-558) |#1|) . T))
+(((|#1|) . T))
+((($ $) . T) ((#0=(-855 |#1|) $) . T) ((#0# |#2|) . T))
+((($) . T))
+((($ $) . T) ((#0=(-1163) $) . T) ((#0# |#1|) . T))
+(((|#2|) |has| |#2| (-171)))
+((($) -3998 (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))) ((|#2|) |has| |#2| (-171)) (((-406 (-558))) |has| |#2| (-38 (-406 (-558)))))
+(((|#2| |#2|) -3998 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1039))) (($ $) |has| |#2| (-171)))
+((((-143)) . T))
+(((|#1|) . T))
+(-12 (|has| |#1| (-367)) (|has| |#2| (-367)))
+((((-853)) . T))
+(((|#2|) -3998 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1039))) (($) |has| |#2| (-171)))
+(((|#1|) . T))
+((((-853)) . T))
+(|has| |#1| (-1087))
+(|has| $ (-146))
+((((-1168)) . T))
+((((-558) |#1|) . T))
+((($) -3998 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348)) (|has| |#1| (-550))) (((-406 (-558))) -3998 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T))
+((((-1163)) -12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163)))))
+(|has| |#1| (-362))
+(-3998 (-12 (|has| (-1161 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))
+(|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|)))
+(|has| |#1| (-362))
+(|has| |#1| (-15 * (|#1| (-762) |#1|)))
+(((|#1|) . T))
+(-3998 (|has| |#1| (-841)) (|has| |#1| (-1087)))
+((((-853)) . T))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+(-3998 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899)))
+(((|#2| (-529 (-855 |#1|))) . T))
+((((-853)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+(((|#1|) . T))
+(-3998 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
+(-3998 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
+(-3998 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
+((((-575 |#1|)) . T))
+((($) . T))
+((((-558)) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-550)))
(((|#1|) . T) (($) . T))
-((((-554)) |has| |#1| (-627 (-554))) ((|#1|) . T))
-((((-1156 |#1| |#2| |#3|)) . T) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546))) (((-554)) . T) ((|#1|) |has| |#1| (-170)))
-((((-1237 |#2|)) . T) (((-1156 |#1| |#2| |#3|)) . T) (((-1149 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (((-554)) . T) (($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546))))
+((((-558)) |has| |#1| (-631 (-558))) ((|#1|) . T))
+((((-1161 |#1| |#2| |#3|)) . T) (((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (($) -3998 (|has| |#1| (-362)) (|has| |#1| (-550))) (((-558)) . T) ((|#1|) |has| |#1| (-171)))
+((((-1242 |#2|)) . T) (((-1161 |#1| |#2| |#3|)) . T) (((-1154 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (((-558)) . T) (($) -3998 (|has| |#1| (-362)) (|has| |#1| (-550))))
(((|#4|) . T))
(((|#3|) . T))
-((((-855 |#1|)) . T) (($) . T) (((-402 (-554))) . T))
-((($) |has| |#1| (-546)) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) (((-554)) . T))
-((((-1158)) -12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034))))
-(((|#1|) . T))
-((((-848)) . T))
-((((-848)) . T))
-((((-554)) . T) (((-402 (-554))) -3994 (|has| |#2| (-38 (-402 (-554)))) (|has| |#2| (-1023 (-402 (-554))))) ((|#2|) . T) (($) -3994 (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))) (((-850 |#1|)) . T))
-((((-554) |#2|) . T))
-((((-848)) . T))
-((((-848)) . T))
-((((-848)) . T))
+((((-860 |#1|)) . T) (($) . T) (((-406 (-558))) . T))
+((($) |has| |#1| (-550)) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) (((-558)) . T))
+((((-1163)) -12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039))))
+(((|#1|) . T))
+((((-853)) . T))
+((((-853)) . T))
+((((-558)) . T) (((-406 (-558))) -3998 (|has| |#2| (-38 (-406 (-558)))) (|has| |#2| (-1028 (-406 (-558))))) ((|#2|) . T) (($) -3998 (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))) (((-855 |#1|)) . T))
+((((-558) |#2|) . T))
+((((-853)) . T))
+((((-853)) . T))
+((((-853)) . T))
(((|#1| |#2| |#3| |#4| |#5|) . T))
-(((#0=(-402 (-554)) #0#) |has| |#1| (-38 (-402 (-554)))) ((|#1| |#1|) . T) (($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-546))))
-((($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546))) ((#0=(-402 (-554)) #0#) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) ((#1=(-1156 |#1| |#2| |#3|) #1#) |has| |#1| (-358)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546))) ((#0=(-402 (-554)) #0#) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))))
-((($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-546))) ((|#1| |#1|) . T) ((#0=(-402 (-554)) #0#) |has| |#1| (-38 (-402 (-554)))))
-((((-848)) . T))
-(((|#2|) |has| |#2| (-1034)))
-(|has| |#1| (-1082))
-((((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) . T) (($) -3994 (|has| |#1| (-170)) (|has| |#1| (-546))))
-((($) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546))) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (((-1156 |#1| |#2| |#3|)) |has| |#1| (-358)) ((|#1|) . T))
-(((|#1|) . T) (($) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546))) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))))
-((($) -3994 (|has| |#1| (-170)) (|has| |#1| (-546))) ((|#1|) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))))
-(((|#1|) |has| |#1| (-170)) (($) . T))
-(((|#1|) . T))
-(((#0=(-402 (-554)) #0#) |has| |#2| (-38 (-402 (-554)))) ((|#2| |#2|) . T) (($ $) -3994 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))))
-((((-848)) . T))
-((((-402 (-554))) |has| |#2| (-38 (-402 (-554)))) ((|#2|) |has| |#2| (-170)) (($) -3994 (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))))
+(((#0=(-406 (-558)) #0#) |has| |#1| (-38 (-406 (-558)))) ((|#1| |#1|) . T) (($ $) -3998 (|has| |#1| (-171)) (|has| |#1| (-550))))
+((($ $) -3998 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550))) ((#0=(-406 (-558)) #0#) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) ((#1=(-1161 |#1| |#2| |#3|) #1#) |has| |#1| (-362)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -3998 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550))) ((#0=(-406 (-558)) #0#) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))))
+((($ $) -3998 (|has| |#1| (-171)) (|has| |#1| (-550))) ((|#1| |#1|) . T) ((#0=(-406 (-558)) #0#) |has| |#1| (-38 (-406 (-558)))))
+((((-853)) . T))
+(((|#2|) |has| |#2| (-1039)))
+(|has| |#1| (-1087))
+((((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) . T) (($) -3998 (|has| |#1| (-171)) (|has| |#1| (-550))))
+((($) -3998 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550))) (((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (((-1161 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) . T))
+(((|#1|) . T) (($) -3998 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550))) (((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))))
+((($) -3998 (|has| |#1| (-171)) (|has| |#1| (-550))) ((|#1|) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
+(((|#1|) |has| |#1| (-171)) (($) . T))
+(((|#1|) . T))
+(((#0=(-406 (-558)) #0#) |has| |#2| (-38 (-406 (-558)))) ((|#2| |#2|) . T) (($ $) -3998 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))))
+((((-853)) . T))
+((((-406 (-558))) |has| |#2| (-38 (-406 (-558)))) ((|#2|) |has| |#2| (-171)) (($) -3998 (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))))
((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T))
-((((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) |has| |#1| (-170)) (($) -3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))))
-(((#0=(-1064) |#1|) . T) ((#0# $) . T) (($ $) . T))
-((((-402 (-554))) |has| |#2| (-38 (-402 (-554)))) ((|#2|) . T) (($) -3994 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))))
-((($) . T))
-(((|#1|) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) (($) . T))
-(-3994 (|has| |#1| (-836)) (|has| |#1| (-1082)))
-(((|#1|) . T))
-(((|#2|) |has| |#1| (-358)))
-(((|#2|) |has| |#2| (-1082)) (((-554)) -12 (|has| |#2| (-1023 (-554))) (|has| |#2| (-1082))) (((-402 (-554))) -12 (|has| |#2| (-1023 (-402 (-554)))) (|has| |#2| (-1082))))
-((((-554) |#1|) . T))
-((((-1163)) . T))
-((((-1163)) . T))
-((((-1163)) . T))
-((((-1163)) . T))
-((((-1163)) . T))
-((((-1163)) . T))
-((((-848)) . T))
-((((-402 |#2|) |#3|) . T))
-(((|#1| (-402 (-554))) . T))
-((((-402 (-554))) . T) (($) . T))
-((((-402 (-554))) . T) (($) . T))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-38 (-402 (-554))))
-((((-848)) . T) (((-1163)) . T))
-(|has| |#1| (-143))
-(|has| |#1| (-145))
-((((-1163)) . T))
-((((-402 (-554))) |has| |#2| (-38 (-402 (-554)))) ((|#2|) |has| |#2| (-170)) (($) -3994 (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))))
-((($) -3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))))
-((((-402 (-554))) . T) (($) . T))
-((((-402 (-554))) . T) (($) . T))
-((((-402 (-554))) . T) (($) . T))
-(((|#2| |#3| (-850 |#1|)) . T))
-((((-1158)) |has| |#2| (-885 (-1158))))
-(((|#1|) . T))
-(((|#1| (-525 |#2|) |#2|) . T))
-(((|#1| (-758) (-1064)) . T))
-((((-402 (-554))) |has| |#2| (-358)) (($) . T))
-(((|#1| (-525 (-1070 (-1158))) (-1070 (-1158))) . T))
-(-3994 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894)))
-(-3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894)))
-(((|#1|) . T))
-((((-984 |#1|)) . T) (((-554)) . T) ((|#1|) . T) (((-402 (-554))) -3994 (|has| (-984 |#1|) (-1023 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554))))))
-(-3994 (|has| |#2| (-170)) (|has| |#2| (-713)) (|has| |#2| (-834)) (|has| |#2| (-1034)))
-(|has| |#2| (-780))
-(-3994 (|has| |#2| (-780)) (|has| |#2| (-834)))
-(|has| |#1| (-363))
-(|has| |#1| (-363))
-(|has| |#1| (-363))
-(|has| |#2| (-834))
-((((-878 |#1|)) . T) (((-806 |#1|)) . T))
-((((-806 (-1158))) . T))
-(((|#1|) . T))
-(((|#2|) . T))
-(((|#2|) . T))
-((((-848)) . T))
-((((-848)) . T))
-((((-631 (-554))) . T))
-((((-631 (-554))) . T) (((-848)) . T))
-((((-402 (-554))) . T) (((-848)) . T))
-((((-530)) . T) (((-877 (-554))) . T) (((-374)) . T) (((-221)) . T))
-(|has| |#1| (-229))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
+((((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) |has| |#1| (-171)) (($) -3998 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))))
+(((#0=(-1069) |#1|) . T) ((#0# $) . T) (($ $) . T))
+((((-406 (-558))) |has| |#2| (-38 (-406 (-558)))) ((|#2|) . T) (($) -3998 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))))
+((($) . T))
+(((|#1|) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) (($) . T))
+(-3998 (|has| |#1| (-841)) (|has| |#1| (-1087)))
+(((|#1|) . T))
+(((|#2|) |has| |#1| (-362)))
+(((|#2|) |has| |#2| (-1087)) (((-558)) -12 (|has| |#2| (-1028 (-558))) (|has| |#2| (-1087))) (((-406 (-558))) -12 (|has| |#2| (-1028 (-406 (-558)))) (|has| |#2| (-1087))))
+((((-558) |#1|) . T))
+((((-1168)) . T))
+((((-1168)) . T))
+((((-1168)) . T))
+((((-1168)) . T))
+((((-1168)) . T))
+((((-1168)) . T))
+((((-853)) . T))
+((((-406 |#2|) |#3|) . T))
+(((|#1| (-406 (-558))) . T))
+((((-406 (-558))) . T) (($) . T))
+((((-406 (-558))) . T) (($) . T))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-38 (-406 (-558))))
+((((-853)) . T) (((-1168)) . T))
+(|has| |#1| (-144))
+(|has| |#1| (-146))
+((((-1168)) . T))
+((((-406 (-558))) |has| |#2| (-38 (-406 (-558)))) ((|#2|) |has| |#2| (-171)) (($) -3998 (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))))
+((($) -3998 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
+((((-406 (-558))) . T) (($) . T))
+((((-406 (-558))) . T) (($) . T))
+((((-406 (-558))) . T) (($) . T))
+(((|#2| |#3| (-855 |#1|)) . T))
+((((-1163)) |has| |#2| (-890 (-1163))))
+(((|#1|) . T))
+(((|#1| (-529 |#2|) |#2|) . T))
+(((|#1| (-762) (-1069)) . T))
+((((-406 (-558))) |has| |#2| (-362)) (($) . T))
+(((|#1| (-529 (-1075 (-1163))) (-1075 (-1163))) . T))
+(-3998 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
+(-3998 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
+(((|#1|) . T))
+((((-989 |#1|)) . T) (((-558)) . T) ((|#1|) . T) (((-406 (-558))) -3998 (|has| (-989 |#1|) (-1028 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558))))))
+(-3998 (|has| |#2| (-171)) (|has| |#2| (-717)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
+(|has| |#2| (-784))
+(-3998 (|has| |#2| (-784)) (|has| |#2| (-839)))
+(|has| |#1| (-367))
+(|has| |#1| (-367))
+(|has| |#1| (-367))
+(|has| |#2| (-839))
+((((-883 |#1|)) . T) (((-810 |#1|)) . T))
+((((-810 (-1163))) . T))
+(((|#1|) . T))
+(((|#2|) . T))
+(((|#2|) . T))
+((((-853)) . T))
+((((-853)) . T))
+((((-635 (-558))) . T))
+((((-635 (-558))) . T) (((-853)) . T))
+((((-406 (-558))) . T) (((-853)) . T))
+((((-534)) . T) (((-882 (-558))) . T) (((-378)) . T) (((-224)) . T))
+(|has| |#1| (-232))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
((($ $) . T))
(((|#1| |#1|) . T))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-((((-1233 |#1| |#2| |#3|) $) -12 (|has| (-1233 |#1| |#2| |#3|) (-281 (-1233 |#1| |#2| |#3|) (-1233 |#1| |#2| |#3|))) (|has| |#1| (-358))) (($ $) . T))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+((((-1238 |#1| |#2| |#3|) $) -12 (|has| (-1238 |#1| |#2| |#3|) (-285 (-1238 |#1| |#2| |#3|) (-1238 |#1| |#2| |#3|))) (|has| |#1| (-362))) (($ $) . T))
((($ $) . T))
((($ $) . T))
(((|#1|) . T))
-((((-1122 |#1| |#2|)) |has| (-1122 |#1| |#2|) (-304 (-1122 |#1| |#2|))))
-(((|#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))))
-(((|#2|) . T) (((-554)) |has| |#2| (-1023 (-554))) (((-402 (-554))) |has| |#2| (-1023 (-402 (-554)))))
-(((|#3| |#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082))))
-(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) |has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))))
+((((-1127 |#1| |#2|)) |has| (-1127 |#1| |#2|) (-308 (-1127 |#1| |#2|))))
+(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))
+(((|#2|) . T) (((-558)) |has| |#2| (-1028 (-558))) (((-406 (-558))) |has| |#2| (-1028 (-406 (-558)))))
+(((|#3| |#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087))))
+(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) |has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))))
(((|#1|) . T))
(((|#1| |#2|) . T))
((($) . T))
((($) . T))
(((|#2|) . T))
(((|#3|) . T))
-(-3994 (|has| |#1| (-836)) (|has| |#1| (-1082)))
-(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) |has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))))
-(((|#2|) . T))
-((((-848)) -3994 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-601 (-848))) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-713)) (|has| |#2| (-780)) (|has| |#2| (-834)) (|has| |#2| (-1034)) (|has| |#2| (-1082))) (((-1241 |#2|)) . T))
-((((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) ((|#1|) . T) (((-554)) . T) (($) . T))
-(((|#1|) |has| |#1| (-170)))
-((((-554)) . T))
-((((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) |has| |#1| (-170)) (($) -3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))))
-((($) -3994 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))))
-((((-554) (-142)) . T))
-((($) -3994 (|has| |#2| (-170)) (|has| |#2| (-834)) (|has| |#2| (-1034))) ((|#2|) -3994 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1034))))
-((((-554)) . T))
-(((|#1|) . T) ((|#2|) . T) (((-554)) . T))
-((($) |has| |#1| (-546)) ((|#1|) . T) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554))))) (((-554)) . T))
-(-3994 (|has| |#1| (-21)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-546)) (|has| |#1| (-1034)))
-(((|#1|) . T))
-(-3994 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-546)) (|has| |#1| (-1034)))
-(((|#2|) |has| |#1| (-358)))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
+(-3998 (|has| |#1| (-841)) (|has| |#1| (-1087)))
+(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) |has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))))
+(((|#2|) . T))
+((((-853)) -3998 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-605 (-853))) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-717)) (|has| |#2| (-784)) (|has| |#2| (-839)) (|has| |#2| (-1039)) (|has| |#2| (-1087))) (((-1246 |#2|)) . T))
+((((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) ((|#1|) . T) (((-558)) . T) (($) . T))
+(((|#1|) |has| |#1| (-171)))
+((((-558)) . T))
+((((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) |has| |#1| (-171)) (($) -3998 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))))
+((($) -3998 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
+((((-558) (-143)) . T))
+((($) -3998 (|has| |#2| (-171)) (|has| |#2| (-839)) (|has| |#2| (-1039))) ((|#2|) -3998 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1039))))
+((((-558)) . T))
+(((|#1|) . T) ((|#2|) . T) (((-558)) . T))
+((($) |has| |#1| (-550)) ((|#1|) . T) (((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558))))) (((-558)) . T))
+(-3998 (|has| |#1| (-21)) (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-550)) (|has| |#1| (-1039)))
+(((|#1|) . T))
+(-3998 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-550)) (|has| |#1| (-1039)))
+(((|#2|) |has| |#1| (-362)))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
(((|#1| |#1|) . T) (($ $) . T))
-((($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546))) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) ((|#1|) |has| |#1| (-170)))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-((((-1163)) . T))
-(((|#1| (-525 #0=(-1158)) #0#) . T))
+((($) -3998 (|has| |#1| (-362)) (|has| |#1| (-550))) (((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171)))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+((((-1168)) . T))
+(((|#1| (-529 #0=(-1163)) #0#) . T))
(((|#1|) . T) (($) . T))
-(|has| |#4| (-170))
-(|has| |#3| (-170))
-(((#0=(-402 (-937 |#1|)) #0#) . T))
-(-3994 (|has| |#1| (-836)) (|has| |#1| (-1082)))
-(|has| |#1| (-1082))
-(-3994 (|has| |#1| (-836)) (|has| |#1| (-1082)))
-(|has| |#1| (-1082))
-((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-836)) (|has| |#1| (-1082))))
-((((-530)) |has| |#1| (-602 (-530))))
-(-3994 (|has| |#1| (-836)) (|has| |#1| (-1082)))
-((((-848)) . T) (((-1163)) . T))
-((((-1163)) . T))
-(((|#1| |#1|) |has| |#1| (-170)))
-((($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-546))) ((|#1| |#1|) . T) ((#0=(-402 (-554)) #0#) |has| |#1| (-38 (-402 (-554)))))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-(((|#1|) . T))
-((((-402 (-937 |#1|))) . T))
-(((|#1|) |has| |#1| (-170)))
-((($) -3994 (|has| |#1| (-170)) (|has| |#1| (-546))) ((|#1|) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))))
-(-3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894)))
-((((-848)) . T))
-((((-1227 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) |has| |#1| (-1034)) (((-554)) -12 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034))))
+(|has| |#4| (-171))
+(|has| |#3| (-171))
+(((#0=(-406 (-942 |#1|)) #0#) . T))
+(-3998 (|has| |#1| (-841)) (|has| |#1| (-1087)))
+(|has| |#1| (-1087))
+(-3998 (|has| |#1| (-841)) (|has| |#1| (-1087)))
+(|has| |#1| (-1087))
+((((-853)) -3998 (|has| |#1| (-605 (-853))) (|has| |#1| (-841)) (|has| |#1| (-1087))))
+((((-534)) |has| |#1| (-606 (-534))))
+(-3998 (|has| |#1| (-841)) (|has| |#1| (-1087)))
+((((-853)) . T) (((-1168)) . T))
+((((-1168)) . T))
+(((|#1| |#1|) |has| |#1| (-171)))
+((($ $) -3998 (|has| |#1| (-171)) (|has| |#1| (-550))) ((|#1| |#1|) . T) ((#0=(-406 (-558)) #0#) |has| |#1| (-38 (-406 (-558)))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+(((|#1|) . T))
+((((-406 (-942 |#1|))) . T))
+(((|#1|) |has| |#1| (-171)))
+((($) -3998 (|has| |#1| (-171)) (|has| |#1| (-550))) ((|#1|) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
+(-3998 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
+((((-853)) . T))
+((((-1232 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) |has| |#1| (-1039)) (((-558)) -12 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039))))
(((|#1| |#2|) . T))
-(-3994 (|has| |#3| (-170)) (|has| |#3| (-713)) (|has| |#3| (-834)) (|has| |#3| (-1034)))
-(|has| |#3| (-780))
-(-3994 (|has| |#3| (-780)) (|has| |#3| (-834)))
-(|has| |#3| (-834))
-(((|#1|) . T))
-((((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546))) ((|#2|) |has| |#1| (-358)) ((|#1|) |has| |#1| (-170)))
-(((|#1|) |has| |#1| (-170)) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546))))
-(((|#2|) . T))
-((((-848)) . T))
-((((-848)) . T))
-((((-848)) . T))
-((((-848)) . T))
-(((|#1| (-1138 |#1|)) |has| |#1| (-834)))
-((((-554) |#2|) . T))
-(|has| |#1| (-1082))
-(((|#1|) . T))
-(-12 (|has| |#1| (-358)) (|has| |#2| (-1133)))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-(|has| |#1| (-1082))
-(((|#2|) . T))
-((((-530)) |has| |#2| (-602 (-530))) (((-877 (-374))) |has| |#2| (-602 (-877 (-374)))) (((-877 (-554))) |has| |#2| (-602 (-877 (-554)))))
-(((|#4|) -3994 (|has| |#4| (-170)) (|has| |#4| (-358))))
-(((|#3|) -3994 (|has| |#3| (-170)) (|has| |#3| (-358))))
-((((-848)) . T))
-(((|#1|) . T))
-(-3994 (|has| |#2| (-446)) (|has| |#2| (-894)))
-(-3994 (|has| |#1| (-446)) (|has| |#1| (-894)))
-(-3994 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-894)))
-((($ $) . T) ((#0=(-1158) $) |has| |#1| (-229)) ((#0# |#1|) |has| |#1| (-229)) ((#1=(-805 (-1158)) |#1|) . T) ((#1# $) . T))
-(-3994 (|has| |#1| (-446)) (|has| |#1| (-894)))
-((((-554) |#2|) . T))
-((((-848)) . T))
-((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T))
-((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T))
-((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-((($) -3994 (|has| |#3| (-170)) (|has| |#3| (-834)) (|has| |#3| (-1034))) ((|#3|) -3994 (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-1034))))
-((((-554) |#1|) . T))
-(|has| (-402 |#2|) (-145))
-(|has| (-402 |#2|) (-143))
-(((|#2|) -12 (|has| |#1| (-358)) (|has| |#2| (-304 |#2|))))
-(|has| |#1| (-38 (-402 (-554))))
-(((|#1|) . T))
-(((|#2|) . T) (($) . T) (((-402 (-554))) . T))
-((((-848)) . T))
-(|has| |#1| (-546))
-(|has| |#1| (-546))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-38 (-402 (-554))))
-((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T))
-((((-848)) . T))
-((((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) . T))
-(|has| |#1| (-38 (-402 (-554))))
-((((-383) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) . T))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#2| (-1133))
-(-3994 (|has| |#1| (-358)) (|has| |#1| (-546)))
-(-3994 (|has| |#1| (-358)) (|has| |#1| (-546)))
-((((-848)) . T) (((-1163)) . T))
-((((-848)) . T) (((-1163)) . T))
-((((-848)) . T) (((-1163)) . T))
-((((-1163)) . T))
-((((-1163)) . T))
-((((-1163)) . T))
-((((-848)) . T) (((-1163)) . T))
-((((-1163)) . T))
-((((-1194)) . T) (((-848)) . T) (((-1163)) . T))
+(-3998 (|has| |#3| (-171)) (|has| |#3| (-717)) (|has| |#3| (-839)) (|has| |#3| (-1039)))
+(|has| |#3| (-784))
+(-3998 (|has| |#3| (-784)) (|has| |#3| (-839)))
+(|has| |#3| (-839))
+(((|#1|) . T))
+((((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (($) -3998 (|has| |#1| (-362)) (|has| |#1| (-550))) ((|#2|) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171)))
+(((|#1|) |has| |#1| (-171)) (((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (($) -3998 (|has| |#1| (-362)) (|has| |#1| (-550))))
+(((|#2|) . T))
+((((-853)) . T))
+((((-853)) . T))
+((((-853)) . T))
+((((-853)) . T))
+(((|#1| (-1143 |#1|)) |has| |#1| (-839)))
+((((-558) |#2|) . T))
+(|has| |#1| (-1087))
+(((|#1|) . T))
+(-12 (|has| |#1| (-362)) (|has| |#2| (-1138)))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+(|has| |#1| (-1087))
+(((|#2|) . T))
+((((-534)) |has| |#2| (-606 (-534))) (((-882 (-378))) |has| |#2| (-606 (-882 (-378)))) (((-882 (-558))) |has| |#2| (-606 (-882 (-558)))))
+(((|#4|) -3998 (|has| |#4| (-171)) (|has| |#4| (-362))))
+(((|#3|) -3998 (|has| |#3| (-171)) (|has| |#3| (-362))))
+((((-853)) . T))
+(((|#1|) . T))
+(-3998 (|has| |#2| (-450)) (|has| |#2| (-899)))
+(-3998 (|has| |#1| (-450)) (|has| |#1| (-899)))
+(-3998 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-899)))
+((($ $) . T) ((#0=(-1163) $) |has| |#1| (-232)) ((#0# |#1|) |has| |#1| (-232)) ((#1=(-809 (-1163)) |#1|) . T) ((#1# $) . T))
+(-3998 (|has| |#1| (-450)) (|has| |#1| (-899)))
+((((-558) |#2|) . T))
+((((-853)) . T))
+((((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T))
+((((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T))
+((((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+((($) -3998 (|has| |#3| (-171)) (|has| |#3| (-839)) (|has| |#3| (-1039))) ((|#3|) -3998 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1039))))
+((((-558) |#1|) . T))
+(|has| (-406 |#2|) (-146))
+(|has| (-406 |#2|) (-144))
+(((|#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-308 |#2|))))
+(|has| |#1| (-38 (-406 (-558))))
+(((|#1|) . T))
+(((|#2|) . T) (($) . T) (((-406 (-558))) . T))
+((((-853)) . T))
+(|has| |#1| (-550))
+(|has| |#1| (-550))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-38 (-406 (-558))))
+((((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T))
+((((-853)) . T))
+((((-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) . T))
+(|has| |#1| (-38 (-406 (-558))))
+((((-387) (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) . T))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#2| (-1138))
+(-3998 (|has| |#1| (-362)) (|has| |#1| (-550)))
+(-3998 (|has| |#1| (-362)) (|has| |#1| (-550)))
+((((-853)) . T) (((-1168)) . T))
+((((-853)) . T) (((-1168)) . T))
+((((-853)) . T) (((-1168)) . T))
+((((-1168)) . T))
+((((-1168)) . T))
+((((-1168)) . T))
+((((-853)) . T) (((-1168)) . T))
+((((-1168)) . T))
+((((-1199)) . T) (((-853)) . T) (((-1168)) . T))
((((-116 |#1|)) . T))
-((((-1163)) . T))
-((((-848)) . T) (((-1163)) . T))
-((((-1163)) . T))
-(((|#1|) . T))
-((((-383) (-1140)) . T))
-(|has| |#1| (-546))
-((((-554) |#1|) . T))
-(-3994 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894)))
-((((-554)) . T) (($) . T) (((-402 (-554))) . T))
-((((-554)) . T) (($) . T) (((-402 (-554))) . T))
-(((|#2|) . T))
-((((-848)) . T))
-((((-806 |#1|)) . T))
-(((|#2|) |has| |#2| (-170)))
-((((-1158) (-52)) . T))
-(((|#1|) . T))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-546))
-(((|#1|) |has| |#1| (-170)))
-((((-631 |#1|)) . T))
-((((-848)) . T))
-((((-530)) |has| |#1| (-602 (-530))))
-(-3994 (|has| |#1| (-836)) (|has| |#1| (-1082)))
-(((|#2|) |has| |#2| (-304 |#2|)))
-(((#0=(-554) #0#) . T) ((#1=(-402 (-554)) #1#) . T) (($ $) . T))
-(((|#1|) . T))
-(((|#1| (-1154 |#1|)) . T))
-(|has| $ (-145))
-(((|#2|) . T))
-(((#0=(-554) #0#) . T) ((#1=(-402 (-554)) #1#) . T) (($ $) . T))
-((($) . T) (((-554)) . T) (((-402 (-554))) . T))
-(|has| |#2| (-363))
-(-3994 (|has| |#1| (-836)) (|has| |#1| (-1082)))
-(((|#1|) . T) (((-402 (-554))) . T) (($) . T))
-(((|#1|) . T) (((-402 (-554))) . T) (($) . T))
-(((|#1|) . T) (((-402 (-554))) . T) (($) . T))
-((((-554)) . T) (((-402 (-554))) . T) (($) . T))
+((((-1168)) . T))
+((((-853)) . T) (((-1168)) . T))
+((((-1168)) . T))
+(((|#1|) . T))
+((((-387) (-1145)) . T))
+(|has| |#1| (-550))
+((((-558) |#1|) . T))
+(-3998 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
+((((-558)) . T) (($) . T) (((-406 (-558))) . T))
+((((-558)) . T) (($) . T) (((-406 (-558))) . T))
+(((|#2|) . T))
+((((-853)) . T))
+((((-810 |#1|)) . T))
+(((|#2|) |has| |#2| (-171)))
+((((-1163) (-52)) . T))
+(((|#1|) . T))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-550))
+(((|#1|) |has| |#1| (-171)))
+((((-635 |#1|)) . T))
+((((-853)) . T))
+((((-534)) |has| |#1| (-606 (-534))))
+(-3998 (|has| |#1| (-841)) (|has| |#1| (-1087)))
+(((|#2|) |has| |#2| (-308 |#2|)))
+(((#0=(-558) #0#) . T) ((#1=(-406 (-558)) #1#) . T) (($ $) . T))
+(((|#1|) . T))
+(((|#1| (-1159 |#1|)) . T))
+(|has| $ (-146))
+(((|#2|) . T))
+(((#0=(-558) #0#) . T) ((#1=(-406 (-558)) #1#) . T) (($ $) . T))
+((($) . T) (((-558)) . T) (((-406 (-558))) . T))
+(|has| |#2| (-367))
+(-3998 (|has| |#1| (-841)) (|has| |#1| (-1087)))
+(((|#1|) . T) (((-406 (-558))) . T) (($) . T))
+(((|#1|) . T) (((-406 (-558))) . T) (($) . T))
+(((|#1|) . T) (((-406 (-558))) . T) (($) . T))
+((((-558)) . T) (((-406 (-558))) . T) (($) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((((-554)) . T) (((-402 (-554))) . T) (($) . T))
-((((-1156 |#1| |#2| |#3|) $) -12 (|has| (-1156 |#1| |#2| |#3|) (-281 (-1156 |#1| |#2| |#3|) (-1156 |#1| |#2| |#3|))) (|has| |#1| (-358))) (($ $) . T))
-((((-848)) . T))
-((((-848)) . T))
-((((-848)) . T))
-((((-848)) . T))
-((((-530)) |has| |#1| (-602 (-530))))
-((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-1082))))
-((($) . T) (((-402 (-554))) -3994 (|has| |#1| (-358)) (|has| |#1| (-344))) ((|#1|) . T))
+((((-558)) . T) (((-406 (-558))) . T) (($) . T))
+((((-1161 |#1| |#2| |#3|) $) -12 (|has| (-1161 |#1| |#2| |#3|) (-285 (-1161 |#1| |#2| |#3|) (-1161 |#1| |#2| |#3|))) (|has| |#1| (-362))) (($ $) . T))
+((((-853)) . T))
+((((-853)) . T))
+((((-853)) . T))
+((((-853)) . T))
+((((-534)) |has| |#1| (-606 (-534))))
+((((-853)) -3998 (|has| |#1| (-605 (-853))) (|has| |#1| (-1087))))
+((($) . T) (((-406 (-558))) -3998 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T))
((($ $) . T))
-((((-848)) . T))
+((((-853)) . T))
((($ $) . T))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-(((#0=(-1233 |#1| |#2| |#3|) #0#) -12 (|has| (-1233 |#1| |#2| |#3|) (-304 (-1233 |#1| |#2| |#3|))) (|has| |#1| (-358))) (((-1158) #0#) -12 (|has| (-1233 |#1| |#2| |#3|) (-508 (-1158) (-1233 |#1| |#2| |#3|))) (|has| |#1| (-358))))
-(-12 (|has| |#1| (-1082)) (|has| |#2| (-1082)))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+(((#0=(-1238 |#1| |#2| |#3|) #0#) -12 (|has| (-1238 |#1| |#2| |#3|) (-308 (-1238 |#1| |#2| |#3|))) (|has| |#1| (-362))) (((-1163) #0#) -12 (|has| (-1238 |#1| |#2| |#3|) (-512 (-1163) (-1238 |#1| |#2| |#3|))) (|has| |#1| (-362))))
+(-12 (|has| |#1| (-1087)) (|has| |#2| (-1087)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((($) -3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))))
-((((-402 (-554))) . T) (((-554)) . T))
-((((-554) (-142)) . T))
-((((-142)) . T))
+((($) -3998 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
+((((-406 (-558))) . T) (((-558)) . T))
+((((-558) (-143)) . T))
+((((-143)) . T))
(((|#1|) . T))
-(-3994 (|has| |#1| (-21)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-546)) (|has| |#1| (-1034)))
+(-3998 (|has| |#1| (-21)) (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-550)) (|has| |#1| (-1039)))
((((-112)) . T))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
((((-112)) . T))
(((|#1|) . T))
-((((-530)) |has| |#1| (-602 (-530))) (((-221)) . #0=(|has| |#1| (-1007))) (((-374)) . #0#))
-((((-848)) . T))
-((((-1163)) . T))
-(|has| |#1| (-807))
-(-3994 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894)))
-(|has| |#1| (-836))
-(-3994 (|has| |#1| (-170)) (|has| |#1| (-546)))
-(|has| |#1| (-546))
-((((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) ((|#1|) . T) (((-554)) . T))
-(|has| |#1| (-894))
-(((|#1|) . T))
-(|has| |#1| (-1082))
-((((-848)) . T))
-(-3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546)))
-(-3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546)))
-(-3994 (|has| |#1| (-170)) (|has| |#1| (-546)))
-((((-848)) . T))
-((((-848)) . T))
-((((-848)) . T))
-(((|#1| (-1241 |#1|) (-1241 |#1|)) . T))
-((((-554) (-142)) . T))
-((($) . T))
-(-3994 (|has| |#4| (-170)) (|has| |#4| (-834)) (|has| |#4| (-1034)))
-(-3994 (|has| |#3| (-170)) (|has| |#3| (-834)) (|has| |#3| (-1034)))
-((((-1163)) . T) (((-848)) . T))
-((((-1163)) . T))
-((((-848)) . T))
-(|has| |#1| (-1082))
-(((|#1| (-956)) . T))
+((((-534)) |has| |#1| (-606 (-534))) (((-224)) . #0=(|has| |#1| (-1012))) (((-378)) . #0#))
+((((-853)) . T))
+((((-1168)) . T))
+(|has| |#1| (-811))
+(-3998 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
+(|has| |#1| (-841))
+(-3998 (|has| |#1| (-171)) (|has| |#1| (-550)))
+(|has| |#1| (-550))
+((((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) ((|#1|) . T) (((-558)) . T))
+(|has| |#1| (-899))
+(((|#1|) . T))
+(|has| |#1| (-1087))
+((((-853)) . T))
+(-3998 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550)))
+(-3998 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550)))
+(-3998 (|has| |#1| (-171)) (|has| |#1| (-550)))
+((((-853)) . T))
+((((-853)) . T))
+((((-853)) . T))
+(((|#1| (-1246 |#1|) (-1246 |#1|)) . T))
+((((-558) (-143)) . T))
+((($) . T))
+(-3998 (|has| |#4| (-171)) (|has| |#4| (-839)) (|has| |#4| (-1039)))
+(-3998 (|has| |#3| (-171)) (|has| |#3| (-839)) (|has| |#3| (-1039)))
+((((-1168)) . T) (((-853)) . T))
+((((-1168)) . T))
+((((-853)) . T))
+(|has| |#1| (-1087))
+(((|#1| (-961)) . T))
(((|#1| |#1|) . T))
((($) . T))
-(-3994 (|has| |#2| (-780)) (|has| |#2| (-834)))
-(-3994 (|has| |#2| (-780)) (|has| |#2| (-834)))
-(-12 (|has| |#1| (-467)) (|has| |#2| (-467)))
-(-3994 (|has| |#2| (-170)) (|has| |#2| (-713)) (|has| |#2| (-834)) (|has| |#2| (-1034)))
-(-3994 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-713)) (|has| |#2| (-713))))
+(-3998 (|has| |#2| (-784)) (|has| |#2| (-839)))
+(-3998 (|has| |#2| (-784)) (|has| |#2| (-839)))
+(-12 (|has| |#1| (-471)) (|has| |#2| (-471)))
+(-3998 (|has| |#2| (-171)) (|has| |#2| (-717)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
+(-3998 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717))))
(((|#1|) . T))
-(|has| |#2| (-780))
-(-3994 (|has| |#2| (-780)) (|has| |#2| (-834)))
+(|has| |#2| (-784))
+(-3998 (|has| |#2| (-784)) (|has| |#2| (-839)))
(((|#1| |#2|) . T))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-(|has| |#2| (-834))
-(-12 (|has| |#1| (-780)) (|has| |#2| (-780)))
-(-12 (|has| |#1| (-780)) (|has| |#2| (-780)))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+(|has| |#2| (-839))
+(-12 (|has| |#1| (-784)) (|has| |#2| (-784)))
+(-12 (|has| |#1| (-784)) (|has| |#2| (-784)))
(((|#1| |#2|) . T))
-(((|#1|) |has| |#1| (-170)) ((|#4|) . T) (((-554)) . T))
-(((|#2|) |has| |#2| (-170)))
-(((|#1|) |has| |#1| (-170)))
-((((-848)) . T))
-(|has| |#1| (-344))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-402 (-554))) . T) (($) . T))
-((($) |has| |#1| (-546)) ((|#1|) . T) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554))))) (((-554)) . T))
-((($) . T) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) ((|#1|) . T))
-(|has| |#1| (-815))
-((((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) (((-554)) |has| |#1| (-1023 (-554))) ((|#1|) . T))
-(|has| |#1| (-1082))
-(((|#1| $) |has| |#1| (-281 |#1| |#1|)))
-((((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-546)))
-((($) |has| |#1| (-546)))
-(((|#4|) |has| |#4| (-1082)))
-(((|#3|) |has| |#3| (-1082)))
-(|has| |#3| (-363))
-(((|#1|) . T) (((-848)) . T))
-((((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546))) (((-1233 |#1| |#2| |#3|)) |has| |#1| (-358)) ((|#1|) |has| |#1| (-170)))
-(((|#1|) . T))
-((((-848)) . T))
+(((|#1|) |has| |#1| (-171)) ((|#4|) . T) (((-558)) . T))
+(((|#2|) |has| |#2| (-171)))
+(((|#1|) |has| |#1| (-171)))
+((((-853)) . T))
+(|has| |#1| (-348))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-406 (-558))) . T) (($) . T))
+((($) |has| |#1| (-550)) ((|#1|) . T) (((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558))))) (((-558)) . T))
+((($) . T) (((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) ((|#1|) . T))
+(|has| |#1| (-819))
+((((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) (((-558)) |has| |#1| (-1028 (-558))) ((|#1|) . T))
+(|has| |#1| (-1087))
+(((|#1| $) |has| |#1| (-285 |#1| |#1|)))
+((((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-550)))
+((($) |has| |#1| (-550)))
+(((|#4|) |has| |#4| (-1087)))
+(((|#3|) |has| |#3| (-1087)))
+(|has| |#3| (-367))
+(((|#1|) . T) (((-853)) . T))
+((((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (($) -3998 (|has| |#1| (-362)) (|has| |#1| (-550))) (((-1238 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171)))
+(((|#1|) . T))
+((((-853)) . T))
(((|#2|) . T))
(((|#1| |#2|) . T))
-(((|#1|) |has| |#1| (-170)) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546))))
-((($) |has| |#1| (-546)) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))))
-(((|#1| |#1|) |has| |#1| (-170)))
-(|has| |#2| (-358))
-(((|#1|) . T))
-(((|#1|) |has| |#1| (-170)))
-((((-402 (-554))) . T) (((-554)) . T))
-((($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-546))) ((|#1| |#1|) . T) ((#0=(-402 (-554)) #0#) |has| |#1| (-38 (-402 (-554)))))
-((($) -3994 (|has| |#1| (-170)) (|has| |#1| (-546))) ((|#1|) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))))
-(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))))
-((((-142)) . T))
-(((|#1|) . T))
-((($) -3994 (|has| |#2| (-170)) (|has| |#2| (-834)) (|has| |#2| (-1034))) ((|#2|) -3994 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1034))))
-((((-142)) . T))
-((((-142)) . T))
-((((-402 (-554))) . #0=(|has| |#2| (-358))) (($) . #0#) ((|#2|) . T) (((-554)) . T))
+(((|#1|) |has| |#1| (-171)) (((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (($) -3998 (|has| |#1| (-362)) (|has| |#1| (-550))))
+((($) |has| |#1| (-550)) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
+(((|#1| |#1|) |has| |#1| (-171)))
+(|has| |#2| (-362))
+(((|#1|) . T))
+(((|#1|) |has| |#1| (-171)))
+((((-406 (-558))) . T) (((-558)) . T))
+((($ $) -3998 (|has| |#1| (-171)) (|has| |#1| (-550))) ((|#1| |#1|) . T) ((#0=(-406 (-558)) #0#) |has| |#1| (-38 (-406 (-558)))))
+((($) -3998 (|has| |#1| (-171)) (|has| |#1| (-550))) ((|#1|) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
+(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))
+((((-143)) . T))
+(((|#1|) . T))
+((($) -3998 (|has| |#2| (-171)) (|has| |#2| (-839)) (|has| |#2| (-1039))) ((|#2|) -3998 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1039))))
+((((-143)) . T))
+((((-143)) . T))
+((((-406 (-558))) . #0=(|has| |#2| (-362))) (($) . #0#) ((|#2|) . T) (((-558)) . T))
(((|#1| |#2| |#3|) . T))
-(-3994 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-546)) (|has| |#1| (-1034)))
-(|has| $ (-145))
-(|has| $ (-145))
-((((-1163)) . T))
-(|has| |#1| (-1082))
-((((-848)) . T))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-38 (-402 (-554))))
-(-3994 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-467)) (|has| |#1| (-546)) (|has| |#1| (-1034)) (|has| |#1| (-1094)))
-((($ $) |has| |#1| (-281 $ $)) ((|#1| $) |has| |#1| (-281 |#1| |#1|)))
-(((|#1| (-402 (-554))) . T))
-(((|#1|) . T))
-((((-1158)) . T))
-(|has| |#1| (-546))
-(-3994 (|has| |#1| (-358)) (|has| |#1| (-546)))
-(-3994 (|has| |#1| (-358)) (|has| |#1| (-546)))
-(|has| |#1| (-546))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-38 (-402 (-554))))
-((((-848)) . T))
-(|has| |#2| (-143))
-(|has| |#2| (-145))
+(-3998 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-550)) (|has| |#1| (-1039)))
+(|has| $ (-146))
+(|has| $ (-146))
+((((-1168)) . T))
+(|has| |#1| (-1087))
+((((-853)) . T))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-38 (-406 (-558))))
+(-3998 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-471)) (|has| |#1| (-550)) (|has| |#1| (-1039)) (|has| |#1| (-1099)))
+((($ $) |has| |#1| (-285 $ $)) ((|#1| $) |has| |#1| (-285 |#1| |#1|)))
+(((|#1| (-406 (-558))) . T))
+(((|#1|) . T))
+((((-1163)) . T))
+(|has| |#1| (-550))
+(-3998 (|has| |#1| (-362)) (|has| |#1| (-550)))
+(-3998 (|has| |#1| (-362)) (|has| |#1| (-550)))
+(|has| |#1| (-550))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-38 (-406 (-558))))
+((((-853)) . T))
+(|has| |#2| (-144))
+(|has| |#2| (-146))
(((|#2|) . T) (($) . T))
-(|has| |#1| (-145))
-(|has| |#1| (-143))
-(|has| |#4| (-834))
-(((|#2| (-236 (-2563 |#1|) (-758)) (-850 |#1|)) . T))
-(|has| |#3| (-834))
-(((|#1| (-525 |#3|) |#3|) . T))
-(|has| |#1| (-145))
-(|has| |#1| (-143))
-(((#0=(-402 (-554)) #0#) |has| |#2| (-358)) (($ $) . T))
-((((-855 |#1|)) . T))
-(|has| |#1| (-145))
-(|has| |#1| (-363))
-(|has| |#1| (-363))
-(|has| |#1| (-363))
-(|has| |#1| (-143))
-((((-402 (-554))) |has| |#2| (-358)) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-(-3994 (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894)))
-(-3994 (|has| |#1| (-344)) (|has| |#1| (-363)))
-((((-1124 |#2| |#1|)) . T) ((|#1|) . T))
-(|has| |#2| (-170))
+(|has| |#1| (-146))
+(|has| |#1| (-144))
+(|has| |#4| (-839))
+(((|#2| (-239 (-2755 |#1|) (-762)) (-855 |#1|)) . T))
+(|has| |#3| (-839))
+(((|#1| (-529 |#3|) |#3|) . T))
+(|has| |#1| (-146))
+(|has| |#1| (-144))
+(((#0=(-406 (-558)) #0#) |has| |#2| (-362)) (($ $) . T))
+((((-860 |#1|)) . T))
+(|has| |#1| (-146))
+(|has| |#1| (-367))
+(|has| |#1| (-367))
+(|has| |#1| (-367))
+(|has| |#1| (-144))
+((((-406 (-558))) |has| |#2| (-362)) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+(-3998 (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899)))
+(-3998 (|has| |#1| (-348)) (|has| |#1| (-367)))
+((((-1129 |#2| |#1|)) . T) ((|#1|) . T))
+(|has| |#2| (-171))
(((|#1| |#2|) . T))
-(-12 (|has| |#2| (-229)) (|has| |#2| (-1034)))
-(((|#2|) . T) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T))
-(-3994 (|has| |#3| (-780)) (|has| |#3| (-834)))
-(-3994 (|has| |#3| (-780)) (|has| |#3| (-834)))
-((((-848)) . T))
+(-12 (|has| |#2| (-232)) (|has| |#2| (-1039)))
+(((|#2|) . T) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T))
+(-3998 (|has| |#3| (-784)) (|has| |#3| (-839)))
+(-3998 (|has| |#3| (-784)) (|has| |#3| (-839)))
+((((-853)) . T))
(((|#1|) . T))
(((|#2|) . T) (($) . T))
-((((-685)) . T))
-(-3994 (|has| |#2| (-170)) (|has| |#2| (-834)) (|has| |#2| (-1034)))
-(|has| |#1| (-546))
+((((-689)) . T))
+(-3998 (|has| |#2| (-171)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
+(|has| |#1| (-550))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
@@ -991,2535 +992,2539 @@
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-1158) (-52)) . T))
+((((-1163) (-52)) . T))
(((|#1|) . T) (($) . T))
-((((-989 10)) . T) (((-402 (-554))) . T) (((-848)) . T))
-((((-530)) . T) (((-877 (-554))) . T) (((-374)) . T) (((-221)) . T))
-(((|#1|) . T))
-((((-989 16)) . T) (((-402 (-554))) . T) (((-848)) . T))
-((((-530)) . T) (((-877 (-554))) . T) (((-374)) . T) (((-221)) . T))
-(((|#1| (-554)) . T))
-((((-848)) . T))
-((((-848)) . T))
+((((-994 10)) . T) (((-406 (-558))) . T) (((-853)) . T))
+((((-534)) . T) (((-882 (-558))) . T) (((-378)) . T) (((-224)) . T))
+(((|#1|) . T))
+((((-994 16)) . T) (((-406 (-558))) . T) (((-853)) . T))
+((((-534)) . T) (((-882 (-558))) . T) (((-378)) . T) (((-224)) . T))
+(((|#1| (-558)) . T))
+((((-853)) . T))
+((((-853)) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(((|#1| (-402 (-554))) . T))
-(((|#3|) . T) (((-600 $)) . T))
+(((|#1| (-406 (-558))) . T))
+(((|#3|) . T) (((-604 $)) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T))
+((((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T))
-((((-554)) -3994 (|has| |#2| (-170)) (|has| |#2| (-834)) (-12 (|has| |#2| (-1023 (-554))) (|has| |#2| (-1082))) (|has| |#2| (-1034))) ((|#2|) -3994 (|has| |#2| (-170)) (|has| |#2| (-1082))) (((-402 (-554))) -12 (|has| |#2| (-1023 (-402 (-554)))) (|has| |#2| (-1082))))
-(((|#1|) . T) (((-402 (-554))) . T) (($) . T))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+((((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T))
+((((-558)) -3998 (|has| |#2| (-171)) (|has| |#2| (-839)) (-12 (|has| |#2| (-1028 (-558))) (|has| |#2| (-1087))) (|has| |#2| (-1039))) ((|#2|) -3998 (|has| |#2| (-171)) (|has| |#2| (-1087))) (((-406 (-558))) -12 (|has| |#2| (-1028 (-406 (-558)))) (|has| |#2| (-1087))))
+(((|#1|) . T) (((-406 (-558))) . T) (($) . T))
((($ $) . T) ((|#2| $) . T))
-((((-554)) . T) (($) . T) (((-402 (-554))) . T))
-(((#0=(-1156 |#1| |#2| |#3|) #0#) -12 (|has| (-1156 |#1| |#2| |#3|) (-304 (-1156 |#1| |#2| |#3|))) (|has| |#1| (-358))) (((-1158) #0#) -12 (|has| (-1156 |#1| |#2| |#3|) (-508 (-1158) (-1156 |#1| |#2| |#3|))) (|has| |#1| (-358))))
-((((-848)) . T))
-((((-848)) . T))
+((((-558)) . T) (($) . T) (((-406 (-558))) . T))
+(((#0=(-1161 |#1| |#2| |#3|) #0#) -12 (|has| (-1161 |#1| |#2| |#3|) (-308 (-1161 |#1| |#2| |#3|))) (|has| |#1| (-362))) (((-1163) #0#) -12 (|has| (-1161 |#1| |#2| |#3|) (-512 (-1163) (-1161 |#1| |#2| |#3|))) (|has| |#1| (-362))))
+((((-853)) . T))
+((((-853)) . T))
(((|#1| |#1|) . T))
-(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) |has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) (((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) |has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-304 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)))))
-((((-848)) . T))
+(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) |has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) (((-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) |has| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-308 (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)))))
+((((-853)) . T))
(((|#1|) . T))
(((|#3| |#3|) . T))
(((|#1|) . T))
((($) . T) ((|#2|) . T))
-((((-1158) (-52)) . T))
+((((-1163) (-52)) . T))
(((|#3|) . T))
-((($ $) . T) ((#0=(-850 |#1|) $) . T) ((#0# |#2|) . T))
-(|has| |#1| (-815))
-(|has| |#1| (-1082))
-(((|#2| |#2|) -3994 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1034))) (($ $) |has| |#2| (-170)))
-(((|#2|) -3994 (|has| |#2| (-170)) (|has| |#2| (-358))))
-((((-554) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T) ((|#1| |#2|) . T))
-(((|#2|) -3994 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1034))) (($) |has| |#2| (-170)))
-((((-1163)) . T))
-((((-758)) . T))
-(|has| |#1| (-546))
-((((-554)) . T))
-((((-848)) . T))
-(((|#1| (-402 (-554)) (-1064)) . T))
-(|has| |#1| (-143))
-(((|#1|) . T))
-(|has| |#1| (-546))
-((((-554)) . T))
+((($ $) . T) ((#0=(-855 |#1|) $) . T) ((#0# |#2|) . T))
+(|has| |#1| (-819))
+(|has| |#1| (-1087))
+(((|#2| |#2|) -3998 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1039))) (($ $) |has| |#2| (-171)))
+(((|#2|) -3998 (|has| |#2| (-171)) (|has| |#2| (-362))))
+((((-558) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T) ((|#1| |#2|) . T))
+(((|#2|) -3998 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1039))) (($) |has| |#2| (-171)))
+((((-1168)) . T))
+((((-762)) . T))
+(|has| |#1| (-550))
+((((-558)) . T))
+((((-853)) . T))
+(((|#1| (-406 (-558)) (-1069)) . T))
+(|has| |#1| (-144))
+(((|#1|) . T))
+(|has| |#1| (-550))
+((((-558)) . T))
((((-116 |#1|)) . T))
(((|#1|) . T))
-(|has| |#1| (-145))
-(-3994 (|has| |#1| (-170)) (|has| |#1| (-546)))
-(-3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546)))
-(-3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546)))
-(-3994 (|has| |#1| (-170)) (|has| |#1| (-546)))
-((((-877 (-554))) . T) (((-877 (-374))) . T) (((-530)) . T) (((-1158)) . T))
-((((-848)) . T))
-(-3994 (|has| |#1| (-836)) (|has| |#1| (-1082)))
-((((-848)) . T) (((-1163)) . T))
-((((-1163)) . T))
-((($) . T))
-((((-848)) . T))
-(-3994 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894)))
-(((|#2|) |has| |#2| (-170)))
-((($) -3994 (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))) ((|#2|) |has| |#2| (-170)) (((-402 (-554))) |has| |#2| (-38 (-402 (-554)))))
-((((-855 |#1|)) . T))
-(-3994 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-713)) (|has| |#2| (-780)) (|has| |#2| (-834)) (|has| |#2| (-1034)) (|has| |#2| (-1082)))
-(-12 (|has| |#3| (-229)) (|has| |#3| (-1034)))
-(|has| |#2| (-1133))
-(((#0=(-52)) . T) (((-2 (|:| -2564 (-1158)) (|:| -2701 #0#))) . T))
+(|has| |#1| (-146))
+(-3998 (|has| |#1| (-171)) (|has| |#1| (-550)))
+(-3998 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550)))
+(-3998 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550)))
+(-3998 (|has| |#1| (-171)) (|has| |#1| (-550)))
+((((-882 (-558))) . T) (((-882 (-378))) . T) (((-534)) . T) (((-1163)) . T))
+((((-853)) . T))
+(-3998 (|has| |#1| (-841)) (|has| |#1| (-1087)))
+((((-853)) . T) (((-1168)) . T))
+((((-1168)) . T))
+((($) . T))
+((((-853)) . T))
+(-3998 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899)))
+(((|#2|) |has| |#2| (-171)))
+((($) -3998 (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))) ((|#2|) |has| |#2| (-171)) (((-406 (-558))) |has| |#2| (-38 (-406 (-558)))))
+((((-860 |#1|)) . T))
+(-3998 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-717)) (|has| |#2| (-784)) (|has| |#2| (-839)) (|has| |#2| (-1039)) (|has| |#2| (-1087)))
+(-12 (|has| |#3| (-232)) (|has| |#3| (-1039)))
+(|has| |#2| (-1138))
+(((#0=(-52)) . T) (((-2 (|:| -2700 (-1163)) (|:| -2981 #0#))) . T))
(((|#1| |#2|) . T))
-(-3994 (|has| |#3| (-170)) (|has| |#3| (-834)) (|has| |#3| (-1034)))
-(((|#1| (-554) (-1064)) . T))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-(((|#1| (-402 (-554)) (-1064)) . T))
-((($) -3994 (|has| |#1| (-302)) (|has| |#1| (-358)) (|has| |#1| (-344)) (|has| |#1| (-546))) (((-402 (-554))) -3994 (|has| |#1| (-358)) (|has| |#1| (-344))) ((|#1|) . T))
-((((-554) |#2|) . T))
+(-3998 (|has| |#3| (-171)) (|has| |#3| (-839)) (|has| |#3| (-1039)))
+(((|#1| (-558) (-1069)) . T))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+(((|#1| (-406 (-558)) (-1069)) . T))
+((($) -3998 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348)) (|has| |#1| (-550))) (((-406 (-558))) -3998 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T))
+((((-558) |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-(|has| |#2| (-363))
-(-12 (|has| |#1| (-363)) (|has| |#2| (-363)))
-((((-848)) . T))
-((((-1158) |#1|) |has| |#1| (-508 (-1158) |#1|)) ((|#1| |#1|) |has| |#1| (-304 |#1|)))
-(-3994 (|has| |#1| (-143)) (|has| |#1| (-363)))
-(-3994 (|has| |#1| (-143)) (|has| |#1| (-363)))
-(-3994 (|has| |#1| (-143)) (|has| |#1| (-363)))
-(((|#1|) . T))
-((((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-546)))
-((((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546))) (((-1156 |#1| |#2| |#3|)) |has| |#1| (-358)) ((|#1|) |has| |#1| (-170)))
-(((|#1|) |has| |#1| (-170)) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546))))
-((($) |has| |#1| (-546)) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))))
+(|has| |#2| (-367))
+(-12 (|has| |#1| (-367)) (|has| |#2| (-367)))
+((((-853)) . T))
+((((-1163) |#1|) |has| |#1| (-512 (-1163) |#1|)) ((|#1| |#1|) |has| |#1| (-308 |#1|)))
+(-3998 (|has| |#1| (-144)) (|has| |#1| (-367)))
+(-3998 (|has| |#1| (-144)) (|has| |#1| (-367)))
+(-3998 (|has| |#1| (-144)) (|has| |#1| (-367)))
+(((|#1|) . T))
+((((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-550)))
+((((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (($) -3998 (|has| |#1| (-362)) (|has| |#1| (-550))) (((-1161 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171)))
+(((|#1|) |has| |#1| (-171)) (((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (($) -3998 (|has| |#1| (-362)) (|has| |#1| (-550))))
+((($) |has| |#1| (-550)) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
(((|#4|) . T))
-(|has| |#1| (-344))
-((((-554)) -3994 (|has| |#3| (-170)) (|has| |#3| (-834)) (-12 (|has| |#3| (-1023 (-554))) (|has| |#3| (-1082))) (|has| |#3| (-1034))) ((|#3|) -3994 (|has| |#3| (-170)) (|has| |#3| (-1082))) (((-402 (-554))) -12 (|has| |#3| (-1023 (-402 (-554)))) (|has| |#3| (-1082))))
-(((|#1|) . T))
-(((|#4|) . T) (((-848)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))) ((#0=(-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) #0#) |has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))))
-(|has| |#1| (-546))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-((((-848)) . T))
+(|has| |#1| (-348))
+((((-558)) -3998 (|has| |#3| (-171)) (|has| |#3| (-839)) (-12 (|has| |#3| (-1028 (-558))) (|has| |#3| (-1087))) (|has| |#3| (-1039))) ((|#3|) -3998 (|has| |#3| (-171)) (|has| |#3| (-1087))) (((-406 (-558))) -12 (|has| |#3| (-1028 (-406 (-558)))) (|has| |#3| (-1087))))
+(((|#1|) . T))
+(((|#4|) . T) (((-853)) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))) ((#0=(-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) #0#) |has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))))
+(|has| |#1| (-550))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+((((-853)) . T))
(((|#1| |#2|) . T))
-(-3994 (|has| |#2| (-446)) (|has| |#2| (-894)))
-(-3994 (|has| |#1| (-836)) (|has| |#1| (-1082)))
-(-3994 (|has| |#1| (-446)) (|has| |#1| (-894)))
-((((-402 (-554))) . T) (((-554)) . T))
-((((-554)) . T))
-((((-402 (-554))) |has| |#2| (-38 (-402 (-554)))) ((|#2|) |has| |#2| (-170)) (($) -3994 (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))))
-((($) . T))
-((((-848)) . T))
-(((|#1|) . T))
-((((-855 |#1|)) . T) (($) . T) (((-402 (-554))) . T))
-((((-848)) . T))
-(((|#3| |#3|) -3994 (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-1034))) (($ $) |has| |#3| (-170)))
-(|has| |#1| (-1007))
-((((-848)) . T))
-(((|#3|) -3994 (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-1034))) (($) |has| |#3| (-170)))
-((((-554) (-112)) . T))
-((((-1163)) . T))
-(((|#1|) |has| |#1| (-304 |#1|)))
-((((-1163)) . T))
-(|has| |#1| (-363))
-(|has| |#1| (-363))
-(|has| |#1| (-363))
-((((-1158) $) |has| |#1| (-508 (-1158) $)) (($ $) |has| |#1| (-304 $)) ((|#1| |#1|) |has| |#1| (-304 |#1|)) (((-1158) |#1|) |has| |#1| (-508 (-1158) |#1|)))
-((((-1158)) |has| |#1| (-885 (-1158))))
-(-3994 (-12 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-344)))
+(-3998 (|has| |#2| (-450)) (|has| |#2| (-899)))
+(-3998 (|has| |#1| (-841)) (|has| |#1| (-1087)))
+(-3998 (|has| |#1| (-450)) (|has| |#1| (-899)))
+((((-406 (-558))) . T) (((-558)) . T))
+((((-558)) . T))
+((((-406 (-558))) |has| |#2| (-38 (-406 (-558)))) ((|#2|) |has| |#2| (-171)) (($) -3998 (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))))
+((($) . T))
+((((-853)) . T))
+(((|#1|) . T))
+((((-860 |#1|)) . T) (($) . T) (((-406 (-558))) . T))
+((((-853)) . T))
+(((|#3| |#3|) -3998 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1039))) (($ $) |has| |#3| (-171)))
+(|has| |#1| (-1012))
+((((-853)) . T))
+(((|#3|) -3998 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1039))) (($) |has| |#3| (-171)))
+((((-558) (-112)) . T))
+((((-1168)) . T))
+(((|#1|) |has| |#1| (-308 |#1|)))
+((((-1168)) . T))
+(|has| |#1| (-367))
+(|has| |#1| (-367))
+(|has| |#1| (-367))
+((((-1163) $) |has| |#1| (-512 (-1163) $)) (($ $) |has| |#1| (-308 $)) ((|#1| |#1|) |has| |#1| (-308 |#1|)) (((-1163) |#1|) |has| |#1| (-512 (-1163) |#1|)))
+((((-1163)) |has| |#1| (-890 (-1163))))
+(-3998 (-12 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))
(((|#1| |#4|) . T))
(((|#1| |#3|) . T))
-((((-383) |#1|) . T))
-(-3994 (|has| |#1| (-358)) (|has| |#1| (-344)))
-(|has| |#1| (-1082))
-(((|#2|) . T) (((-848)) . T))
-((((-848)) . T))
-(((|#2|) . T))
-((((-895 |#1|)) . T))
-((((-848)) . T) (((-1163)) . T))
-((((-1163)) . T))
-((((-402 (-554))) |has| |#2| (-38 (-402 (-554)))) ((|#2|) |has| |#2| (-170)) (($) -3994 (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))))
-((((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) |has| |#1| (-170)) (($) -3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))))
+((((-387) |#1|) . T))
+(-3998 (|has| |#1| (-362)) (|has| |#1| (-348)))
+(|has| |#1| (-1087))
+(((|#2|) . T) (((-853)) . T))
+((((-853)) . T))
+(((|#2|) . T))
+((((-900 |#1|)) . T))
+((((-853)) . T) (((-1168)) . T))
+((((-1168)) . T))
+((((-406 (-558))) |has| |#2| (-38 (-406 (-558)))) ((|#2|) |has| |#2| (-171)) (($) -3998 (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))))
+((((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) |has| |#1| (-171)) (($) -3998 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))))
(((|#1| |#2|) . T))
((($) . T))
-((((-554)) . T) (($) . T) (((-402 (-554))) . T))
-(((|#1|) . T) (((-402 (-554))) . T) (($) . T) (((-554)) . T))
-(((|#1|) . T) (((-402 (-554))) . T) (($) . T) (((-554)) . T))
-(((|#1|) . T) (((-402 (-554))) . T) (($) . T) (((-554)) . T))
+((((-558)) . T) (($) . T) (((-406 (-558))) . T))
+(((|#1|) . T) (((-406 (-558))) . T) (($) . T) (((-558)) . T))
+(((|#1|) . T) (((-406 (-558))) . T) (($) . T) (((-558)) . T))
+(((|#1|) . T) (((-406 (-558))) . T) (($) . T) (((-558)) . T))
(((|#1| |#1|) . T))
-(((#0=(-855 |#1|)) |has| #0# (-304 #0#)))
-((((-554)) . T) (($) -3994 (|has| |#1| (-358)) (|has| |#1| (-344))) (((-402 (-554))) -3994 (|has| |#1| (-358)) (|has| |#1| (-344)) (|has| |#1| (-1023 (-402 (-554))))) ((|#1|) . T))
+(((#0=(-860 |#1|)) |has| #0# (-308 #0#)))
+((((-558)) . T) (($) -3998 (|has| |#1| (-362)) (|has| |#1| (-348))) (((-406 (-558))) -3998 (|has| |#1| (-362)) (|has| |#1| (-348)) (|has| |#1| (-1028 (-406 (-558))))) ((|#1|) . T))
(((|#1| |#2|) . T))
-(-3994 (|has| |#2| (-780)) (|has| |#2| (-834)))
-(-3994 (|has| |#2| (-780)) (|has| |#2| (-834)))
-(-12 (|has| |#1| (-780)) (|has| |#2| (-780)))
+(-3998 (|has| |#2| (-784)) (|has| |#2| (-839)))
+(-3998 (|has| |#2| (-784)) (|has| |#2| (-839)))
+(-12 (|has| |#1| (-784)) (|has| |#2| (-784)))
(((|#1|) . T))
-(-12 (|has| |#1| (-780)) (|has| |#2| (-780)))
-(-3994 (|has| |#2| (-170)) (|has| |#2| (-834)) (|has| |#2| (-1034)))
+(-12 (|has| |#1| (-784)) (|has| |#2| (-784)))
+(-3998 (|has| |#2| (-171)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
(((|#2|) . T) (($) . T))
-(((|#2|) . T) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T))
-(|has| |#1| (-1180))
-(((#0=(-554) #0#) . T) ((#1=(-402 (-554)) #1#) . T) (($ $) . T))
-((((-402 (-554))) . T) (($) . T))
-(((|#4|) |has| |#4| (-1034)))
-(((|#3|) |has| |#3| (-1034)))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-402 (-554)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-402 (-554)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-402 (-554)) #0#) . T))
-(|has| |#1| (-358))
-((((-554)) . T) (((-402 (-554))) . T) (($) . T))
-((($ $) . T) ((#0=(-402 (-554)) #0#) -3994 (|has| |#1| (-358)) (|has| |#1| (-344))) ((|#1| |#1|) . T))
-((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-1082))))
-(((|#1|) . T) (($) . T) (((-402 (-554))) . T))
-((((-848)) . T))
-((((-848)) . T))
-(((|#1|) . T) (($) . T) (((-402 (-554))) . T))
-(((|#1|) . T) (($) . T) (((-402 (-554))) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-554) |#3|) . T))
-((((-848)) . T))
-((((-530)) |has| |#3| (-602 (-530))))
-((((-675 |#3|)) . T) (((-848)) . T))
+(((|#2|) . T) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T))
+(|has| |#1| (-1185))
+(((#0=(-558) #0#) . T) ((#1=(-406 (-558)) #1#) . T) (($ $) . T))
+((((-406 (-558))) . T) (($) . T))
+(((|#4|) |has| |#4| (-1039)))
+(((|#3|) |has| |#3| (-1039)))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-406 (-558)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-406 (-558)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-406 (-558)) #0#) . T))
+(|has| |#1| (-362))
+((((-558)) . T) (((-406 (-558))) . T) (($) . T))
+((($ $) . T) ((#0=(-406 (-558)) #0#) -3998 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1| |#1|) . T))
+((((-853)) -3998 (|has| |#1| (-605 (-853))) (|has| |#1| (-1087))))
+(((|#1|) . T) (($) . T) (((-406 (-558))) . T))
+((((-853)) . T))
+((((-853)) . T))
+(((|#1|) . T) (($) . T) (((-406 (-558))) . T))
+(((|#1|) . T) (($) . T) (((-406 (-558))) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-558) |#3|) . T))
+((((-853)) . T))
+((((-534)) |has| |#3| (-606 (-534))))
+((((-679 |#3|)) . T) (((-853)) . T))
(((|#1| |#2|) . T))
-(|has| |#1| (-834))
-(|has| |#1| (-834))
-((($) . T) (((-402 (-554))) -3994 (|has| |#1| (-358)) (|has| |#1| (-344))) ((|#1|) . T))
-(-3994 (|has| |#1| (-170)) (|has| |#1| (-546)))
-((($) . T))
-(((#0=(-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) #0#) |has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-304 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))))))
-(|has| |#2| (-836))
-((($) . T))
-(((|#2|) |has| |#2| (-1082)))
-((((-848)) -3994 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-601 (-848))) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-713)) (|has| |#2| (-780)) (|has| |#2| (-834)) (|has| |#2| (-1034)) (|has| |#2| (-1082))) (((-1241 |#2|)) . T))
-(|has| |#1| (-836))
-(|has| |#1| (-836))
-((((-1140) (-52)) . T))
-(|has| |#1| (-836))
-((((-848)) . T))
-((((-554)) |has| #0=(-402 |#2|) (-627 (-554))) ((#0#) . T))
-((($) . T) (((-554)) . T))
-((((-554) (-142)) . T))
-((((-554) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T) ((|#1| |#2|) . T))
-((((-402 (-554))) . T) (($) . T))
-(((|#1|) . T))
-((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T))
-((((-848)) . T))
-((((-895 |#1|)) . T))
-(|has| |#1| (-358))
-(|has| |#1| (-358))
-(|has| |#1| (-358))
-(|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|)))
-(|has| |#1| (-834))
-(|has| |#1| (-358))
-(|has| |#1| (-834))
+(|has| |#1| (-839))
+(|has| |#1| (-839))
+((($) . T) (((-406 (-558))) -3998 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T))
+(-3998 (|has| |#1| (-171)) (|has| |#1| (-550)))
+((($) . T))
+(((#0=(-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) #0#) |has| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-308 (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))))))
+(|has| |#2| (-841))
+((($) . T))
+(((|#2|) |has| |#2| (-1087)))
+((((-853)) -3998 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-605 (-853))) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-717)) (|has| |#2| (-784)) (|has| |#2| (-839)) (|has| |#2| (-1039)) (|has| |#2| (-1087))) (((-1246 |#2|)) . T))
+(|has| |#1| (-841))
+(|has| |#1| (-841))
+((((-1145) (-52)) . T))
+(|has| |#1| (-841))
+((((-853)) . T))
+((((-558)) |has| #0=(-406 |#2|) (-631 (-558))) ((#0#) . T))
+((($) . T) (((-558)) . T))
+((((-558) (-143)) . T))
+((((-558) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T) ((|#1| |#2|) . T))
+((((-406 (-558))) . T) (($) . T))
+(((|#1|) . T))
+((((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T))
+((((-853)) . T))
+((((-900 |#1|)) . T))
+(|has| |#1| (-362))
+(|has| |#1| (-362))
+(|has| |#1| (-362))
+(|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|)))
+(|has| |#1| (-839))
+(|has| |#1| (-362))
+(|has| |#1| (-839))
(((|#1|) . T) (($) . T))
-(|has| |#1| (-834))
-((((-1158)) |has| |#1| (-885 (-1158))))
-(((|#1| (-1158)) . T))
-(((|#1| (-1241 |#1|) (-1241 |#1|)) . T))
-((((-848)) . T) (((-1163)) . T))
+(|has| |#1| (-839))
+((((-1163)) |has| |#1| (-890 (-1163))))
+((((-504)) . T))
+(((|#1| (-1163)) . T))
+(((|#1| (-1246 |#1|) (-1246 |#1|)) . T))
+((((-853)) . T) (((-1168)) . T))
(((|#1| |#2|) . T))
((($ $) . T))
-((((-1163)) . T))
-(|has| |#1| (-1082))
-(((|#1| (-1158) (-805 (-1158)) (-525 (-805 (-1158)))) . T))
-((((-402 (-937 |#1|))) . T))
-((((-530)) . T))
-((((-848)) . T))
+((((-1168)) . T))
+(|has| |#1| (-1087))
+(((|#1| (-1163) (-809 (-1163)) (-529 (-809 (-1163)))) . T))
+((((-406 (-942 |#1|))) . T))
+((((-534)) . T))
+((((-853)) . T))
((($) . T))
(((|#2|) . T) (($) . T))
-((((-554) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T) ((|#1| |#2|) . T))
+((((-558) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T) ((|#1| |#2|) . T))
(((|#1|) . T))
-(((|#1|) |has| |#1| (-170)))
-((($) |has| |#1| (-546)) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
+(((|#1|) |has| |#1| (-171)))
+((($) |has| |#1| (-550)) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
(((|#3|) . T))
-(((|#1|) |has| |#1| (-170)))
-((((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) |has| |#1| (-170)) (($) -3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))))
-((($) -3994 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))))
-((($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546))) (((-554)) . T) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) ((|#1|) |has| |#1| (-170)))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-530)) |has| |#1| (-602 (-530))) (((-877 (-374))) |has| |#1| (-602 (-877 (-374)))) (((-877 (-554))) |has| |#1| (-602 (-877 (-554)))))
-((((-848)) . T))
-(((|#2|) . T) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T))
-(|has| |#2| (-834))
-(-12 (|has| |#2| (-229)) (|has| |#2| (-1034)))
-(|has| |#1| (-546))
-(|has| |#1| (-1133))
-((((-1140) |#1|) . T))
-(-3994 (|has| |#2| (-170)) (|has| |#2| (-834)) (|has| |#2| (-1034)))
-((((-943 |#1|)) . T))
-(((#0=(-402 (-554)) #0#) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546))) ((|#1| |#1|) . T))
-((((-402 (-554))) |has| |#1| (-1023 (-554))) (((-554)) |has| |#1| (-1023 (-554))) (((-1158)) |has| |#1| (-1023 (-1158))) ((|#1|) . T))
-((((-554) |#2|) . T))
-((((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) (((-554)) |has| |#1| (-1023 (-554))) ((|#1|) . T))
-((((-554)) |has| |#1| (-871 (-554))) (((-374)) |has| |#1| (-871 (-374))))
-((((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (($) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546))) ((|#1|) . T))
-(((|#1|) . T))
-((((-631 |#4|)) . T) (((-848)) . T))
-((((-530)) |has| |#4| (-602 (-530))))
-((((-530)) |has| |#4| (-602 (-530))))
-((((-848)) . T) (((-631 |#4|)) . T))
-((($) |has| |#1| (-834)))
-((((-554)) -3994 (|has| |#2| (-170)) (|has| |#2| (-834)) (-12 (|has| |#2| (-1023 (-554))) (|has| |#2| (-1082))) (|has| |#2| (-1034))) ((|#2|) -3994 (|has| |#2| (-170)) (|has| |#2| (-1082))) (((-402 (-554))) -12 (|has| |#2| (-1023 (-402 (-554)))) (|has| |#2| (-1082))))
-(((|#1|) . T))
-((((-631 |#4|)) . T) (((-848)) . T))
-((((-530)) |has| |#4| (-602 (-530))))
-(((|#1|) . T))
-(((|#2|) . T))
-((((-1158)) |has| (-402 |#2|) (-885 (-1158))))
-(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))) ((#0=(-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) #0#) |has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))))
-((($) . T))
-((($) . T))
-(((|#2|) . T))
-((((-848)) -3994 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-601 (-848))) (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-363)) (|has| |#3| (-713)) (|has| |#3| (-780)) (|has| |#3| (-834)) (|has| |#3| (-1034)) (|has| |#3| (-1082))) (((-1241 |#3|)) . T))
-((((-554) |#2|) . T))
-(-3994 (|has| |#1| (-836)) (|has| |#1| (-1082)))
-(((|#2| |#2|) -3994 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1034))) (($ $) |has| |#2| (-170)))
-(((|#2|) . T) (((-554)) . T))
-((((-848)) . T))
-((((-848)) . T))
-((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T) ((|#2|) . T))
-((((-848)) . T))
-((((-848)) . T))
-((((-1140) (-1158) (-554) (-221) (-848)) . T))
-((((-848)) . T))
-((((-848)) . T))
-((((-848)) . T))
-((((-848)) . T))
-((((-848)) . T))
-((((-848)) . T))
-((((-848)) . T))
-((((-848)) . T))
-((((-848)) . T))
-((((-848)) . T))
-((((-848)) . T))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-38 (-402 (-554))))
-((((-848)) . T))
-((((-554) (-112)) . T))
-(((|#1|) . T))
-((((-848)) . T))
+(((|#1|) |has| |#1| (-171)))
+((((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) |has| |#1| (-171)) (($) -3998 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))))
+((($) -3998 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
+((($) -3998 (|has| |#1| (-362)) (|has| |#1| (-550))) (((-558)) . T) (((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171)))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-534)) |has| |#1| (-606 (-534))) (((-882 (-378))) |has| |#1| (-606 (-882 (-378)))) (((-882 (-558))) |has| |#1| (-606 (-882 (-558)))))
+((((-853)) . T))
+(((|#2|) . T) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T))
+((((-504)) . T))
+(|has| |#2| (-839))
+((((-504)) . T))
+(-12 (|has| |#2| (-232)) (|has| |#2| (-1039)))
+(|has| |#1| (-550))
+((((-1145) |#1|) . T))
+(|has| |#1| (-1138))
+(-3998 (|has| |#2| (-171)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
+((((-948 |#1|)) . T))
+(((#0=(-406 (-558)) #0#) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (($ $) -3998 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550))) ((|#1| |#1|) . T))
+((((-406 (-558))) |has| |#1| (-1028 (-558))) (((-558)) |has| |#1| (-1028 (-558))) (((-1163)) |has| |#1| (-1028 (-1163))) ((|#1|) . T))
+((((-558) |#2|) . T))
+((((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) (((-558)) |has| |#1| (-1028 (-558))) ((|#1|) . T))
+((((-558)) |has| |#1| (-876 (-558))) (((-378)) |has| |#1| (-876 (-378))))
+((((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (($) -3998 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550))) ((|#1|) . T))
+(((|#1|) . T))
+((((-635 |#4|)) . T) (((-853)) . T))
+((((-534)) |has| |#4| (-606 (-534))))
+((((-534)) |has| |#4| (-606 (-534))))
+((((-853)) . T) (((-635 |#4|)) . T))
+((($) |has| |#1| (-839)))
+((((-558)) -3998 (|has| |#2| (-171)) (|has| |#2| (-839)) (-12 (|has| |#2| (-1028 (-558))) (|has| |#2| (-1087))) (|has| |#2| (-1039))) ((|#2|) -3998 (|has| |#2| (-171)) (|has| |#2| (-1087))) (((-406 (-558))) -12 (|has| |#2| (-1028 (-406 (-558)))) (|has| |#2| (-1087))))
+(((|#1|) . T))
+((((-635 |#4|)) . T) (((-853)) . T))
+((((-534)) |has| |#4| (-606 (-534))))
+(((|#1|) . T))
+(((|#2|) . T))
+((((-1163)) |has| (-406 |#2|) (-890 (-1163))))
+(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))) ((#0=(-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) #0#) |has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))))
+((($) . T))
+((($) . T))
+(((|#2|) . T))
+((((-853)) -3998 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-605 (-853))) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-367)) (|has| |#3| (-717)) (|has| |#3| (-784)) (|has| |#3| (-839)) (|has| |#3| (-1039)) (|has| |#3| (-1087))) (((-1246 |#3|)) . T))
+((((-558) |#2|) . T))
+(-3998 (|has| |#1| (-841)) (|has| |#1| (-1087)))
+(((|#2| |#2|) -3998 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1039))) (($ $) |has| |#2| (-171)))
+(((|#2|) . T) (((-558)) . T))
+((((-853)) . T))
+((((-853)) . T))
+((((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T) ((|#2|) . T))
+((((-853)) . T))
+((((-853)) . T))
+((((-1145) (-1163) (-558) (-224) (-853)) . T))
+((((-853)) . T))
+((((-853)) . T))
+((((-853)) . T))
+((((-853)) . T))
+((((-853)) . T))
+((((-853)) . T))
+((((-853)) . T))
+((((-853)) . T))
+((((-853)) . T))
+((((-853)) . T))
+((((-853)) . T))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-38 (-406 (-558))))
+((((-853)) . T))
+((((-558) (-112)) . T))
+(((|#1|) . T))
+((((-853)) . T))
((((-112)) . T))
((((-112)) . T))
-((((-848)) . T))
-((((-848)) . T))
+((((-853)) . T))
+((((-853)) . T))
((((-112)) . T))
-((((-848)) . T))
-((((-848)) . T))
-((((-848)) . T))
-((((-848)) . T))
-((((-848)) . T))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-38 (-402 (-554))))
-((((-848)) . T))
-((((-530)) |has| |#1| (-602 (-530))))
-((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-1082))))
-(((|#2|) -3994 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1034))) (($) |has| |#2| (-170)))
-(|has| $ (-145))
-((((-402 |#2|)) . T))
-((((-878 |#1|)) . T) ((|#2|) . T) (((-554)) . T) (((-806 |#1|)) . T))
-((((-402 (-554))) |has| #0=(-402 |#2|) (-1023 (-402 (-554)))) (((-554)) |has| #0# (-1023 (-554))) ((#0#) . T))
+((((-853)) . T))
+((((-853)) . T))
+((((-853)) . T))
+((((-853)) . T))
+((((-853)) . T))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-38 (-406 (-558))))
+((((-853)) . T))
+((((-534)) |has| |#1| (-606 (-534))))
+((((-853)) -3998 (|has| |#1| (-605 (-853))) (|has| |#1| (-1087))))
+(((|#2|) -3998 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1039))) (($) |has| |#2| (-171)))
+(|has| $ (-146))
+((((-406 |#2|)) . T))
+((((-883 |#1|)) . T) ((|#2|) . T) (((-558)) . T) (((-810 |#1|)) . T))
+((((-406 (-558))) |has| #0=(-406 |#2|) (-1028 (-406 (-558)))) (((-558)) |has| #0# (-1028 (-558))) ((#0#) . T))
(((|#2| |#2|) . T))
-(((|#4|) |has| |#4| (-170)))
-(|has| |#2| (-143))
-(|has| |#2| (-145))
-(((|#3|) |has| |#3| (-170)))
-(|has| |#1| (-145))
-(|has| |#1| (-143))
-(-3994 (|has| |#1| (-143)) (|has| |#1| (-363)))
-(|has| |#1| (-145))
-(-3994 (|has| |#1| (-143)) (|has| |#1| (-363)))
-(|has| |#1| (-145))
-(-3994 (|has| |#1| (-143)) (|has| |#1| (-363)))
-(|has| |#1| (-145))
-(((|#1|) . T))
-(|has| |#2| (-229))
-(((|#2|) . T))
-((((-848)) . T) (((-1163)) . T))
-((((-1163)) . T))
-((((-1158) (-52)) . T))
-((((-848)) . T))
-((((-848)) . T) (((-1163)) . T))
-((((-1163)) . T))
+(((|#4|) |has| |#4| (-171)))
+(|has| |#2| (-144))
+(|has| |#2| (-146))
+(((|#3|) |has| |#3| (-171)))
+(|has| |#1| (-146))
+(|has| |#1| (-144))
+(-3998 (|has| |#1| (-144)) (|has| |#1| (-367)))
+(|has| |#1| (-146))
+(-3998 (|has| |#1| (-144)) (|has| |#1| (-367)))
+(|has| |#1| (-146))
+(-3998 (|has| |#1| (-144)) (|has| |#1| (-367)))
+(|has| |#1| (-146))
+(((|#1|) . T))
+(|has| |#2| (-232))
+(((|#2|) . T))
+((((-853)) . T) (((-1168)) . T))
+((((-1168)) . T))
+((((-1163) (-52)) . T))
+((((-853)) . T))
+((((-853)) . T) (((-1168)) . T))
+((((-1168)) . T))
(((|#1| |#1|) . T))
-((((-1158)) |has| |#2| (-885 (-1158))))
+((((-1163)) |has| |#2| (-890 (-1163))))
((((-129)) . T))
-(((|#1|) . T) (((-554)) . T) (((-806 (-1158))) . T))
-((((-554) (-112)) . T))
-(|has| |#1| (-546))
+(((|#1|) . T) (((-558)) . T) (((-810 (-1163))) . T))
+((((-558) (-112)) . T))
+(|has| |#1| (-550))
(((|#2|) . T))
(((|#2|) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-38 (-402 (-554))))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-38 (-406 (-558))))
(((|#3|) . T))
-(|has| |#1| (-38 (-402 (-554))))
-((((-554)) . T) ((|#2|) . T) (((-402 (-554))) |has| |#2| (-1023 (-402 (-554)))))
-(((|#1|) . T))
-((((-989 2)) . T) (((-402 (-554))) . T) (((-848)) . T))
-((((-530)) . T) (((-877 (-554))) . T) (((-374)) . T) (((-221)) . T))
-((((-848)) . T))
-((((-848)) . T))
-((((-848)) . T))
-((((-984 |#1|)) . T) ((|#1|) . T))
-((((-848)) . T))
-((((-848)) . T))
-((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T))
-((((-402 (-554))) . T) (((-402 |#1|)) . T) ((|#1|) . T) (($) . T))
-(((|#1| (-1154 |#1|)) . T))
-((((-554)) . T) (($) . T) (((-402 (-554))) . T))
+(|has| |#1| (-38 (-406 (-558))))
+((((-558)) . T) ((|#2|) . T) (((-406 (-558))) |has| |#2| (-1028 (-406 (-558)))))
+(((|#1|) . T))
+((((-994 2)) . T) (((-406 (-558))) . T) (((-853)) . T))
+((((-534)) . T) (((-882 (-558))) . T) (((-378)) . T) (((-224)) . T))
+((((-853)) . T))
+((((-853)) . T))
+((((-853)) . T))
+((((-989 |#1|)) . T) ((|#1|) . T))
+((((-853)) . T))
+((((-853)) . T))
+((((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T))
+((((-406 (-558))) . T) (((-406 |#1|)) . T) ((|#1|) . T) (($) . T))
+(((|#1| (-1159 |#1|)) . T))
+((((-558)) . T) (($) . T) (((-406 (-558))) . T))
(((|#3|) . T) (($) . T))
-(|has| |#1| (-836))
-(((|#2|) . T))
-((((-554)) . T) (($) . T) (((-402 (-554))) . T))
-((((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) . T))
-((((-554) |#2|) . T))
-((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-1082))))
-(((|#2|) . T))
-((((-554) |#3|) . T))
-(((|#2|) . T))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-38 (-402 (-554))))
-((((-1233 |#1| |#2| |#3|)) |has| |#1| (-358)))
-(|has| |#1| (-38 (-402 (-554))))
-((((-848)) . T))
-(|has| |#1| (-1082))
-(((|#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))))
-(((|#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082))))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-38 (-402 (-554))))
-(((|#2|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))) ((#0=(-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) #0#) |has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))))
+(|has| |#1| (-841))
+(((|#2|) . T))
+((((-558)) . T) (($) . T) (((-406 (-558))) . T))
+((((-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) . T))
+((((-558) |#2|) . T))
+((((-853)) -3998 (|has| |#1| (-605 (-853))) (|has| |#1| (-1087))))
+(((|#2|) . T))
+((((-558) |#3|) . T))
+(((|#2|) . T))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-38 (-406 (-558))))
+((((-1238 |#1| |#2| |#3|)) |has| |#1| (-362)))
+(|has| |#1| (-38 (-406 (-558))))
+((((-853)) . T))
+(|has| |#1| (-1087))
+(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))
+(((|#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087))))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-38 (-406 (-558))))
+(((|#2|) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))) ((#0=(-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) #0#) |has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))))
(((|#2| |#2|) . T))
(((|#1|) . T))
-(|has| |#2| (-358))
-(((|#2|) . T) (((-554)) |has| |#2| (-1023 (-554))) (((-402 (-554))) |has| |#2| (-1023 (-402 (-554)))))
+(|has| |#2| (-362))
+(((|#2|) . T) (((-558)) |has| |#2| (-1028 (-558))) (((-406 (-558))) |has| |#2| (-1028 (-406 (-558)))))
(((|#2|) . T))
-((((-1140) (-52)) . T))
-(((|#2|) |has| |#2| (-170)))
-((((-554) |#3|) . T))
-((((-554) (-142)) . T))
-((((-142)) . T))
-((((-848)) . T))
-((((-1163)) . T))
+((((-1145) (-52)) . T))
+(((|#2|) |has| |#2| (-171)))
+((((-558) |#3|) . T))
+((((-558) (-143)) . T))
+((((-143)) . T))
+((((-853)) . T))
+((((-1168)) . T))
((((-112)) . T))
-(|has| |#1| (-145))
+(|has| |#1| (-146))
(((|#1|) . T))
-(|has| |#1| (-143))
+(|has| |#1| (-144))
((($) . T))
-(|has| |#1| (-546))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
+(|has| |#1| (-550))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
((($) . T))
(((|#1|) . T))
-(((|#2|) . T) (((-554)) |has| |#2| (-627 (-554))))
-((((-142)) . T))
-((((-848)) . T))
-((((-554)) |has| |#1| (-627 (-554))) ((|#1|) . T))
-((((-554)) |has| |#1| (-627 (-554))) ((|#1|) . T))
-((((-554)) |has| |#1| (-627 (-554))) ((|#1|) . T))
-((((-1140) (-52)) . T))
+(((|#2|) . T) (((-558)) |has| |#2| (-631 (-558))))
+((((-143)) . T))
+((((-853)) . T))
+((((-558)) |has| |#1| (-631 (-558))) ((|#1|) . T))
+((((-558)) |has| |#1| (-631 (-558))) ((|#1|) . T))
+((((-558)) |has| |#1| (-631 (-558))) ((|#1|) . T))
+((((-1145) (-52)) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
(((|#1| |#2|) . T))
-((((-554) (-142)) . T))
-(((#0=(-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) #0#) |has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))))
-((($) -3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))))
-(|has| |#1| (-836))
-(((|#2| (-758) (-1064)) . T))
+((((-558) (-143)) . T))
+(((#0=(-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) #0#) |has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))
+((($) -3998 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
+(|has| |#1| (-841))
+(((|#2| (-762) (-1069)) . T))
(((|#1| |#2|) . T))
-(-3994 (|has| |#1| (-170)) (|has| |#1| (-546)))
-(|has| |#1| (-778))
-(((|#1|) |has| |#1| (-170)))
+(-3998 (|has| |#1| (-171)) (|has| |#1| (-550)))
+(|has| |#1| (-782))
+(((|#1|) |has| |#1| (-171)))
(((|#4|) . T))
(((|#4|) . T))
(((|#1| |#2|) . T))
-(-3994 (|has| |#1| (-145)) (-12 (|has| |#1| (-358)) (|has| |#2| (-145))))
-(-3994 (|has| |#1| (-143)) (-12 (|has| |#1| (-358)) (|has| |#2| (-143))))
+(-3998 (|has| |#1| (-146)) (-12 (|has| |#1| (-362)) (|has| |#2| (-146))))
+(-3998 (|has| |#1| (-144)) (-12 (|has| |#1| (-362)) (|has| |#2| (-144))))
(((|#4|) . T))
-(|has| |#1| (-143))
-((((-1140) |#1|) . T))
-(|has| |#1| (-145))
+(|has| |#1| (-144))
+((((-1145) |#1|) . T))
+(|has| |#1| (-146))
(((|#1|) . T))
-((((-554)) . T))
-((((-848)) . T))
+((((-558)) . T))
+((((-853)) . T))
(((|#1| |#2|) . T))
-((((-848)) . T))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
+((((-853)) . T))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
(((|#3|) . T))
-((((-1233 |#1| |#2| |#3|)) |has| |#1| (-358)))
-((((-848)) . T))
-(-3994 (|has| |#1| (-836)) (|has| |#1| (-1082)))
-(((|#1|) . T))
-((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-1082))))
-((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-1082))) (((-943 |#1|)) . T))
-(|has| |#1| (-834))
-(|has| |#1| (-834))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-((((-943 |#1|)) . T))
-(|has| |#2| (-358))
-(((|#1|) |has| |#1| (-170)))
-(((|#2|) |has| |#2| (-1034)))
-((((-1140) |#1|) . T))
-(((|#3| |#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082))))
-(((|#2| (-878 |#1|)) . T))
-((($) . T))
-((((-383) (-1140)) . T))
-((($) |has| |#1| (-546)) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))))
-((((-848)) -3994 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-601 (-848))) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-713)) (|has| |#2| (-780)) (|has| |#2| (-834)) (|has| |#2| (-1034)) (|has| |#2| (-1082))) (((-1241 |#2|)) . T))
-(((#0=(-52)) . T) (((-2 (|:| -2564 (-1140)) (|:| -2701 #0#))) . T))
-(((|#1|) . T))
-((((-848)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))))
-((((-142)) . T))
-(|has| |#2| (-143))
-(|has| |#2| (-145))
-(|has| |#1| (-467))
-(-3994 (|has| |#1| (-467)) (|has| |#1| (-713)) (|has| |#1| (-885 (-1158))) (|has| |#1| (-1034)))
-(|has| |#1| (-358))
-((((-848)) . T))
-(|has| |#1| (-38 (-402 (-554))))
-((((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-546)))
-((($) |has| |#1| (-546)))
-((((-1163)) . T))
-(|has| |#1| (-834))
-(|has| |#1| (-834))
-((((-848)) . T))
-(((|#2|) . T))
-((((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546))) (((-1233 |#1| |#2| |#3|)) |has| |#1| (-358)) ((|#1|) |has| |#1| (-170)))
-(((|#1|) |has| |#1| (-170)) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546))))
-((($) |has| |#1| (-546)) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))))
-(((|#2|) . T) (((-554)) . T) (((-806 |#1|)) . T))
+((((-1238 |#1| |#2| |#3|)) |has| |#1| (-362)))
+((((-853)) . T))
+(-3998 (|has| |#1| (-841)) (|has| |#1| (-1087)))
+(((|#1|) . T))
+((((-853)) -3998 (|has| |#1| (-605 (-853))) (|has| |#1| (-1087))))
+((((-853)) -3998 (|has| |#1| (-605 (-853))) (|has| |#1| (-1087))) (((-948 |#1|)) . T))
+(|has| |#1| (-839))
+(|has| |#1| (-839))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+((((-948 |#1|)) . T))
+(|has| |#2| (-362))
+(((|#1|) |has| |#1| (-171)))
+(((|#2|) |has| |#2| (-1039)))
+((((-1145) |#1|) . T))
+(((|#3| |#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087))))
+(((|#2| (-883 |#1|)) . T))
+((($) . T))
+((((-387) (-1145)) . T))
+((($) |has| |#1| (-550)) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
+((((-853)) -3998 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-605 (-853))) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-717)) (|has| |#2| (-784)) (|has| |#2| (-839)) (|has| |#2| (-1039)) (|has| |#2| (-1087))) (((-1246 |#2|)) . T))
+(((#0=(-52)) . T) (((-2 (|:| -2700 (-1145)) (|:| -2981 #0#))) . T))
+(((|#1|) . T))
+((((-853)) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))
+((((-143)) . T))
+(|has| |#2| (-144))
+(|has| |#2| (-146))
+(|has| |#1| (-471))
+(-3998 (|has| |#1| (-471)) (|has| |#1| (-717)) (|has| |#1| (-890 (-1163))) (|has| |#1| (-1039)))
+(|has| |#1| (-362))
+((((-853)) . T))
+(|has| |#1| (-38 (-406 (-558))))
+((((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-550)))
+((($) |has| |#1| (-550)))
+((((-1168)) . T))
+(|has| |#1| (-839))
+(|has| |#1| (-839))
+((((-853)) . T))
+(((|#2|) . T))
+((((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (($) -3998 (|has| |#1| (-362)) (|has| |#1| (-550))) (((-1238 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171)))
+(((|#1|) |has| |#1| (-171)) (((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (($) -3998 (|has| |#1| (-362)) (|has| |#1| (-550))))
+((($) |has| |#1| (-550)) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
+(((|#2|) . T) (((-558)) . T) (((-810 |#1|)) . T))
(((|#1| |#2|) . T))
-((((-1158)) |has| |#1| (-885 (-1158))))
-((((-895 |#1|)) . T) (((-402 (-554))) . T) (($) . T))
-((((-848)) . T))
-((((-848)) . T))
-(|has| |#1| (-1082))
-(((|#2| (-476 (-2563 |#1|) (-758)) (-850 |#1|)) . T))
-((((-402 (-554))) . #0=(|has| |#2| (-358))) (($) . #0#))
-(((|#1| (-525 (-1158)) (-1158)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-848)) . T))
-((((-848)) . T))
+((((-1163)) |has| |#1| (-890 (-1163))))
+((((-900 |#1|)) . T) (((-406 (-558))) . T) (($) . T))
+((((-853)) . T))
+((((-853)) . T))
+(|has| |#1| (-1087))
+(((|#2| (-480 (-2755 |#1|) (-762)) (-855 |#1|)) . T))
+((((-406 (-558))) . #0=(|has| |#2| (-362))) (($) . #0#))
+(((|#1| (-529 (-1163)) (-1163)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-853)) . T))
+((((-853)) . T))
(((|#3|) . T))
(((|#3|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
-(|has| |#2| (-170))
+(|has| |#2| (-171))
(((|#2| |#2|) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T))
-(|has| |#1| (-143))
-(|has| |#1| (-145))
+(|has| |#1| (-144))
+(|has| |#1| (-146))
(((|#1|) . T))
(((|#2|) . T))
-(((|#1|) . T) (((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) . T))
-((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T))
-((((-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) . T))
-((((-1156 |#1| |#2| |#3|)) |has| |#1| (-358)))
-((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T))
-((((-1158) (-52)) . T))
+(((|#1|) . T) (((-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) . T))
+((((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T))
+((((-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) . T))
+((((-1161 |#1| |#2| |#3|)) |has| |#1| (-362)))
+((((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T))
+((((-1163) (-52)) . T))
((($ $) . T))
-(((|#1| (-554)) . T))
-((((-895 |#1|)) . T))
-(((|#1|) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-1034))) (($) -3994 (|has| |#1| (-885 (-1158))) (|has| |#1| (-1034))))
-(((|#1|) . T) (((-554)) |has| |#1| (-1023 (-554))) (((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))))
-(|has| |#1| (-836))
-(|has| |#1| (-836))
-((((-554) |#2|) . T))
-((((-554)) . T))
-((((-1233 |#1| |#2| |#3|)) -12 (|has| (-1233 |#1| |#2| |#3|) (-304 (-1233 |#1| |#2| |#3|))) (|has| |#1| (-358))))
-(|has| |#1| (-836))
-((((-675 |#2|)) . T) (((-848)) . T))
-((((-402 (-554))) . T) (((-554)) . T) (($) . T))
+(((|#1| (-558)) . T))
+((((-900 |#1|)) . T))
+(((|#1|) -3998 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-1039))) (($) -3998 (|has| |#1| (-890 (-1163))) (|has| |#1| (-1039))))
+(((|#1|) . T) (((-558)) |has| |#1| (-1028 (-558))) (((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))))
+(|has| |#1| (-841))
+(|has| |#1| (-841))
+((((-558) |#2|) . T))
+((((-558)) . T))
+((((-1238 |#1| |#2| |#3|)) -12 (|has| (-1238 |#1| |#2| |#3|) (-308 (-1238 |#1| |#2| |#3|))) (|has| |#1| (-362))))
+(|has| |#1| (-841))
+((((-679 |#2|)) . T) (((-853)) . T))
+((((-406 (-558))) . T) (((-558)) . T) (($) . T))
(((|#1| |#2|) . T))
-((((-402 (-937 |#1|))) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))))
-(((|#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))))
-(((|#1|) |has| |#1| (-170)))
-(((|#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))))
-(|has| |#2| (-836))
-(|has| |#1| (-836))
-(((|#3|) -3994 (|has| |#3| (-170)) (|has| |#3| (-358))))
-(-3994 (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-894)))
-((($ $) . T) ((#0=(-402 (-554)) #0#) . T))
-((((-554) |#2|) . T))
-(((|#2|) -3994 (|has| |#2| (-170)) (|has| |#2| (-358))))
-(|has| |#1| (-344))
-(((|#3| |#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082))))
-(((|#2|) . T) (((-554)) . T))
-((($) . T) (((-402 (-554))) . T))
-((((-554) (-112)) . T))
-(|has| |#1| (-807))
-(|has| |#1| (-807))
-(((|#1|) . T))
-(-3994 (|has| |#1| (-302)) (|has| |#1| (-358)) (|has| |#1| (-344)))
-(|has| |#1| (-834))
-(|has| |#1| (-834))
-(|has| |#1| (-834))
-(((|#1|) . T) (((-402 (-554))) . T) (($) . T))
-(|has| |#1| (-38 (-402 (-554))))
-((((-554)) . T) (($) . T) (((-402 (-554))) . T))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-38 (-402 (-554))))
-(-3994 (|has| |#1| (-358)) (|has| |#1| (-344)))
-(|has| |#1| (-38 (-402 (-554))))
-((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T))
-((((-1158)) |has| |#1| (-885 (-1158))) (((-1064)) . T))
-(((|#1|) . T))
-(|has| |#1| (-834))
-(((#0=(-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) #0#) |has| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-304 (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))))))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-(|has| |#1| (-1082))
-((((-848)) . T) (((-1163)) . T))
-((((-1163)) . T))
+((((-406 (-942 |#1|))) . T))
+(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))
+(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))
+(((|#1|) |has| |#1| (-171)))
+(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))
+(|has| |#2| (-841))
+(|has| |#1| (-841))
+(((|#3|) -3998 (|has| |#3| (-171)) (|has| |#3| (-362))))
+(-3998 (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-899)))
+((($ $) . T) ((#0=(-406 (-558)) #0#) . T))
+((((-558) |#2|) . T))
+(((|#2|) -3998 (|has| |#2| (-171)) (|has| |#2| (-362))))
+(|has| |#1| (-348))
+(((|#3| |#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087))))
+(((|#2|) . T) (((-558)) . T))
+((($) . T) (((-406 (-558))) . T))
+((((-558) (-112)) . T))
+(|has| |#1| (-811))
+(|has| |#1| (-811))
+(((|#1|) . T))
+(-3998 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348)))
+(|has| |#1| (-839))
+(|has| |#1| (-839))
+(|has| |#1| (-839))
+(((|#1|) . T) (((-406 (-558))) . T) (($) . T))
+(|has| |#1| (-38 (-406 (-558))))
+((((-558)) . T) (($) . T) (((-406 (-558))) . T))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-38 (-406 (-558))))
+(-3998 (|has| |#1| (-362)) (|has| |#1| (-348)))
+(|has| |#1| (-38 (-406 (-558))))
+((((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T))
+((((-1163)) |has| |#1| (-890 (-1163))) (((-1069)) . T))
+(((|#1|) . T))
+(|has| |#1| (-839))
+(((#0=(-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) #0#) |has| (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) (-308 (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+(|has| |#1| (-1087))
+((((-853)) . T) (((-1168)) . T))
+((((-1168)) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
(((|#1|) . T))
-(((|#1| |#2| |#3| (-236 |#2| |#3|) (-236 |#1| |#3|)) . T))
+(((|#1| |#2| |#3| (-239 |#2| |#3|) (-239 |#1| |#3|)) . T))
(((|#1|) . T))
(((|#3| |#3|) . T))
(((|#2|) . T))
(((|#1|) . T))
-(((|#1| (-525 |#2|) |#2|) . T))
-((((-848)) . T))
-((((-142)) . T) (((-758)) . T) (((-848)) . T))
-(((|#1| (-758) (-1064)) . T))
+(((|#1| (-529 |#2|) |#2|) . T))
+((((-853)) . T))
+((((-143)) . T) (((-762)) . T) (((-853)) . T))
+(((|#1| (-762) (-1069)) . T))
(((|#3|) . T))
-((((-142)) . T))
-((((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) (((-554)) -3994 (|has| |#1| (-834)) (|has| |#1| (-1023 (-554)))) ((|#1|) . T))
+((((-143)) . T))
+((((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) (((-558)) -3998 (|has| |#1| (-839)) (|has| |#1| (-1028 (-558)))) ((|#1|) . T))
(((|#1|) . T))
-((((-142)) . T))
-(((|#2|) |has| |#2| (-170)))
-(-3994 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-713)) (|has| |#2| (-780)) (|has| |#2| (-834)) (|has| |#2| (-1034)) (|has| |#2| (-1082)))
+((((-143)) . T))
+(((|#2|) |has| |#2| (-171)))
+(-3998 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-717)) (|has| |#2| (-784)) (|has| |#2| (-839)) (|has| |#2| (-1039)) (|has| |#2| (-1087)))
(((|#1|) . T))
-(|has| |#1| (-143))
-(|has| |#1| (-145))
-(|has| |#3| (-170))
-(((|#4|) |has| |#4| (-358)))
-(((|#3|) |has| |#3| (-358)))
+(|has| |#1| (-144))
+(|has| |#1| (-146))
+(|has| |#3| (-171))
+(((|#4|) |has| |#4| (-362)))
+(((|#3|) |has| |#3| (-362)))
(((|#1|) . T))
-(((|#2|) |has| |#1| (-358)))
-((((-848)) . T))
+(((|#2|) |has| |#1| (-362)))
+((((-853)) . T))
(((|#2|) . T))
-(((|#1| (-1154 |#1|)) . T))
-((((-1064)) . T) ((|#1|) . T) (((-554)) |has| |#1| (-1023 (-554))) (((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))))
-((($) . T) ((|#1|) . T) (((-402 (-554))) . T))
+(((|#1| (-1159 |#1|)) . T))
+((((-1069)) . T) ((|#1|) . T) (((-558)) |has| |#1| (-1028 (-558))) (((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))))
+((($) . T) ((|#1|) . T) (((-406 (-558))) . T))
(((|#2|) . T))
-((((-1156 |#1| |#2| |#3|)) |has| |#1| (-358)))
-((($) |has| |#1| (-834)))
-(|has| |#1| (-894))
-((((-1158)) . T))
-((((-848)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
+((((-1161 |#1| |#2| |#3|)) |has| |#1| (-362)))
+((($) |has| |#1| (-839)))
+(|has| |#1| (-899))
+((((-1163)) . T))
+((((-853)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
(((|#1|) . T))
(((|#1| |#2|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((#0=(-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) #0#) |has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-304 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)))))
-(-3994 (|has| |#2| (-446)) (|has| |#2| (-894)))
-(-3994 (|has| |#1| (-446)) (|has| |#1| (-894)))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((#0=(-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) #0#) |has| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-308 (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)))))
+(-3998 (|has| |#2| (-450)) (|has| |#2| (-899)))
+(-3998 (|has| |#1| (-450)) (|has| |#1| (-899)))
(((|#1|) . T) (($) . T))
-(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))))
+(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))
(((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#3|) -3994 (|has| |#3| (-170)) (|has| |#3| (-358))))
-(|has| |#1| (-836))
-(|has| |#1| (-546))
-((((-571 |#1|)) . T))
+(((|#3|) -3998 (|has| |#3| (-171)) (|has| |#3| (-362))))
+(|has| |#1| (-841))
+(|has| |#1| (-550))
+((((-575 |#1|)) . T))
((($) . T))
(((|#2|) . T))
-(-3994 (-12 (|has| |#1| (-358)) (|has| |#2| (-807))) (-12 (|has| |#1| (-358)) (|has| |#2| (-836))))
-(-3994 (|has| |#1| (-358)) (|has| |#1| (-546)))
-((((-895 |#1|)) . T))
-(((|#1| (-490 |#1| |#3|) (-490 |#1| |#2|)) . T))
+(-3998 (-12 (|has| |#1| (-362)) (|has| |#2| (-811))) (-12 (|has| |#1| (-362)) (|has| |#2| (-841))))
+(-3998 (|has| |#1| (-362)) (|has| |#1| (-550)))
+((((-900 |#1|)) . T))
+(((|#1| (-494 |#1| |#3|) (-494 |#1| |#2|)) . T))
(((|#1| |#4| |#5|) . T))
-(((|#1| (-758)) . T))
-((((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-546)))
-((((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546))) (((-1156 |#1| |#2| |#3|)) |has| |#1| (-358)) ((|#1|) |has| |#1| (-170)))
-(((|#1|) |has| |#1| (-170)) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546))))
-((($) |has| |#1| (-546)) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))))
-((((-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) . T))
-((((-402 |#2|)) . T) (((-402 (-554))) . T) (($) . T))
-((((-658 |#1|)) . T))
+(((|#1| (-762)) . T))
+((((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-550)))
+((((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (($) -3998 (|has| |#1| (-362)) (|has| |#1| (-550))) (((-1161 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171)))
+(((|#1|) |has| |#1| (-171)) (((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (($) -3998 (|has| |#1| (-362)) (|has| |#1| (-550))))
+((($) |has| |#1| (-550)) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
+((((-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) . T))
+((((-406 |#2|)) . T) (((-406 (-558))) . T) (($) . T))
+((((-662 |#1|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-848)) . T) (((-1163)) . T))
-((((-530)) . T))
-((((-848)) . T))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-((((-848)) . T))
-((((-402 (-554))) |has| |#2| (-38 (-402 (-554)))) ((|#2|) |has| |#2| (-170)) (($) -3994 (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))))
-((((-1163)) . T))
-((((-402 (-554))) . T) (($) . T) (((-402 |#1|)) . T) ((|#1|) . T) (((-554)) . T))
-(((|#3|) . T) (((-554)) . T) (((-600 $)) . T))
-((((-848)) . T))
-((((-848)) . T))
-((((-848)) . T))
-(((|#2|) . T))
-(-3994 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-363)) (|has| |#3| (-713)) (|has| |#3| (-780)) (|has| |#3| (-834)) (|has| |#3| (-1034)) (|has| |#3| (-1082)))
-(-3994 (|has| |#2| (-170)) (|has| |#2| (-834)) (|has| |#2| (-1034)))
-((((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) (((-554)) |has| |#1| (-1023 (-554))) ((|#1|) . T))
-(|has| |#1| (-1180))
-(|has| |#1| (-1180))
-(-3994 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-713)) (|has| |#2| (-780)) (|has| |#2| (-834)) (|has| |#2| (-1034)) (|has| |#2| (-1082)))
-(|has| |#1| (-1180))
-(|has| |#1| (-1180))
+((((-853)) . T) (((-1168)) . T))
+((((-534)) . T))
+((((-853)) . T))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+((((-853)) . T))
+((((-406 (-558))) |has| |#2| (-38 (-406 (-558)))) ((|#2|) |has| |#2| (-171)) (($) -3998 (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))))
+((((-1168)) . T))
+((((-406 (-558))) . T) (($) . T) (((-406 |#1|)) . T) ((|#1|) . T) (((-558)) . T))
+(((|#3|) . T) (((-558)) . T) (((-604 $)) . T))
+((((-853)) . T))
+((((-853)) . T))
+((((-853)) . T))
+(((|#2|) . T))
+(-3998 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-367)) (|has| |#3| (-717)) (|has| |#3| (-784)) (|has| |#3| (-839)) (|has| |#3| (-1039)) (|has| |#3| (-1087)))
+(-3998 (|has| |#2| (-171)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
+((((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) (((-558)) |has| |#1| (-1028 (-558))) ((|#1|) . T))
+(|has| |#1| (-1185))
+(|has| |#1| (-1185))
+(-3998 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-717)) (|has| |#2| (-784)) (|has| |#2| (-839)) (|has| |#2| (-1039)) (|has| |#2| (-1087)))
+(|has| |#1| (-1185))
+(|has| |#1| (-1185))
(((|#3| |#3|) . T))
-((((-554)) . T) (($) . T) (((-402 (-554))) . T))
-((($) . T) (((-402 (-554))) . T) (((-402 |#1|)) . T) ((|#1|) . T))
-((($ $) . T) ((#0=(-402 (-554)) #0#) . T) ((#1=(-402 |#1|) #1#) . T) ((|#1| |#1|) . T))
-(((|#1|) . T) (((-402 (-554))) . T) (($) . T))
+((((-558)) . T) (($) . T) (((-406 (-558))) . T))
+((($) . T) (((-406 (-558))) . T) (((-406 |#1|)) . T) ((|#1|) . T))
+((($ $) . T) ((#0=(-406 (-558)) #0#) . T) ((#1=(-406 |#1|) #1#) . T) ((|#1| |#1|) . T))
+(((|#1|) . T) (((-406 (-558))) . T) (($) . T))
(((|#3|) . T))
-(((|#1|) . T) (((-402 (-554))) . T) (($) . T))
-(((|#1|) . T) (((-402 (-554))) . T) (($) . T))
-((((-1140) (-52)) . T))
-(|has| |#1| (-1082))
-(-3994 (|has| |#2| (-807)) (|has| |#2| (-836)))
-(((|#1|) . T))
-(((|#1|) |has| |#1| (-170)) (($) . T))
-((($) -3994 (|has| |#1| (-358)) (|has| |#1| (-344))) (((-402 (-554))) -3994 (|has| |#1| (-358)) (|has| |#1| (-344))) ((|#1|) . T))
-((($) . T))
-((((-1156 |#1| |#2| |#3|)) -12 (|has| (-1156 |#1| |#2| |#3|) (-304 (-1156 |#1| |#2| |#3|))) (|has| |#1| (-358))))
-((((-848)) . T))
-((((-554)) . T) (($) . T))
-((((-758)) . T))
-(-3994 (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894)))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-((((-848)) . T))
-((($) . T) (((-554)) . T))
-((($) . T))
-(|has| |#2| (-894))
-(|has| |#1| (-358))
-(((|#2|) |has| |#2| (-1082)))
-(-3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894)))
-(-3994 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894)))
-(-3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894)))
-((((-530)) . T) (((-402 (-1154 (-554)))) . T) (((-221)) . T) (((-374)) . T))
-((((-374)) . T) (((-221)) . T) (((-848)) . T))
-(|has| |#1| (-894))
-(|has| |#1| (-894))
-(|has| |#1| (-894))
-(-3994 (|has| |#1| (-446)) (|has| |#1| (-894)))
+(((|#1|) . T) (((-406 (-558))) . T) (($) . T))
+(((|#1|) . T) (((-406 (-558))) . T) (($) . T))
+((((-1145) (-52)) . T))
+(|has| |#1| (-1087))
+(-3998 (|has| |#2| (-811)) (|has| |#2| (-841)))
+(((|#1|) . T))
+(((|#1|) |has| |#1| (-171)) (($) . T))
+((($) -3998 (|has| |#1| (-362)) (|has| |#1| (-348))) (((-406 (-558))) -3998 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T))
+((($) . T))
+((((-1161 |#1| |#2| |#3|)) -12 (|has| (-1161 |#1| |#2| |#3|) (-308 (-1161 |#1| |#2| |#3|))) (|has| |#1| (-362))))
+((((-853)) . T))
+((((-558)) . T) (($) . T))
+((((-762)) . T))
+(-3998 (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899)))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+((((-853)) . T))
+((($) . T) (((-558)) . T))
+((($) . T))
+(|has| |#2| (-899))
+(|has| |#1| (-362))
+(((|#2|) |has| |#2| (-1087)))
+(-3998 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
+(-3998 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
+(-3998 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
+((((-534)) . T) (((-406 (-1159 (-558)))) . T) (((-224)) . T) (((-378)) . T))
+((((-378)) . T) (((-224)) . T) (((-853)) . T))
+(|has| |#1| (-899))
+(|has| |#1| (-899))
+(|has| |#1| (-899))
+(-3998 (|has| |#1| (-450)) (|has| |#1| (-899)))
((($) . T) ((|#2|) . T))
-(-3994 (|has| |#1| (-836)) (|has| |#1| (-1082)))
-(-3994 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-894)))
+(-3998 (|has| |#1| (-841)) (|has| |#1| (-1087)))
+(-3998 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-899)))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))))
+(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))
((($ $) . T))
-((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T))
+((((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T))
((($ $) . T))
-((((-554) (-112)) . T))
+((((-558) (-112)) . T))
((($) . T))
(((|#1|) . T))
-((((-554)) . T))
+((((-558)) . T))
((((-112)) . T))
-(-3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546)))
-(|has| |#1| (-38 (-402 (-554))))
-(((|#1| (-554)) . T))
+(-3998 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550)))
+(|has| |#1| (-38 (-406 (-558))))
+(((|#1| (-558)) . T))
((($) . T))
-(((|#2|) . T) (((-554)) |has| |#2| (-627 (-554))))
-((((-554)) |has| |#1| (-627 (-554))) ((|#1|) . T))
+(((|#2|) . T) (((-558)) |has| |#2| (-631 (-558))))
+((((-558)) |has| |#1| (-631 (-558))) ((|#1|) . T))
(((|#1|) . T))
-((((-554)) . T))
+((((-558)) . T))
(((|#1| |#2|) . T))
-((((-1158)) |has| |#1| (-1034)))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-38 (-402 (-554))))
-(((|#1|) . T))
-((((-848)) . T))
-(((|#1| (-554)) . T))
-(((|#1| (-1233 |#1| |#2| |#3|)) . T))
-(((|#1|) . T))
-(((|#1| (-402 (-554))) . T))
-(((|#1| (-1205 |#1| |#2| |#3|)) . T))
-(((|#1| (-758)) . T))
-(((|#1|) . T))
-((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T))
-((((-848)) . T))
-(|has| |#1| (-1082))
-((((-1140) |#1|) . T))
-((($) . T))
-(|has| |#2| (-145))
-(|has| |#2| (-143))
-(((|#1| (-525 (-805 (-1158))) (-805 (-1158))) . T))
-((((-848)) . T))
-((((-1227 |#1| |#2| |#3| |#4|)) . T))
-((((-1227 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) |has| |#1| (-1034)))
-((((-554) (-112)) . T))
-((((-848)) |has| |#1| (-1082)))
-(|has| |#2| (-170))
-((((-554)) . T))
-(|has| |#2| (-834))
-(((|#1|) . T))
-((((-554)) . T))
-((((-848)) . T))
-(-3994 (|has| |#1| (-143)) (|has| |#1| (-344)))
-(|has| |#1| (-145))
-((((-848)) . T))
+((((-1163)) |has| |#1| (-1039)))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-38 (-406 (-558))))
+(((|#1|) . T))
+((((-853)) . T))
+(((|#1| (-558)) . T))
+(((|#1| (-1238 |#1| |#2| |#3|)) . T))
+(((|#1|) . T))
+(((|#1| (-406 (-558))) . T))
+(((|#1| (-1210 |#1| |#2| |#3|)) . T))
+(((|#1| (-762)) . T))
+(((|#1|) . T))
+((((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T))
+((((-853)) . T))
+(|has| |#1| (-1087))
+((((-1145) |#1|) . T))
+((($) . T))
+(|has| |#2| (-146))
+(|has| |#2| (-144))
+(((|#1| (-529 (-809 (-1163))) (-809 (-1163))) . T))
+((((-853)) . T))
+((((-1232 |#1| |#2| |#3| |#4|)) . T))
+((((-1232 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) |has| |#1| (-1039)))
+((((-558) (-112)) . T))
+((((-853)) |has| |#1| (-1087)))
+(|has| |#2| (-171))
+((((-558)) . T))
+(|has| |#2| (-839))
+(((|#1|) . T))
+((((-558)) . T))
+((((-853)) . T))
+(-3998 (|has| |#1| (-144)) (|has| |#1| (-348)))
+(|has| |#1| (-146))
+((((-853)) . T))
(((|#3|) . T))
-(-3994 (|has| |#3| (-170)) (|has| |#3| (-834)) (|has| |#3| (-1034)))
-((((-848)) . T))
-((((-1226 |#2| |#3| |#4|)) . T) (((-1227 |#1| |#2| |#3| |#4|)) . T))
-((((-848)) . T))
-((((-48)) -12 (|has| |#1| (-546)) (|has| |#1| (-1023 (-554)))) (((-600 $)) . T) ((|#1|) . T) (((-554)) |has| |#1| (-1023 (-554))) (((-402 (-554))) -3994 (-12 (|has| |#1| (-546)) (|has| |#1| (-1023 (-554)))) (|has| |#1| (-1023 (-402 (-554))))) (((-402 (-937 |#1|))) |has| |#1| (-546)) (((-937 |#1|)) |has| |#1| (-1034)) (((-1158)) . T))
+(-3998 (|has| |#3| (-171)) (|has| |#3| (-839)) (|has| |#3| (-1039)))
+((((-853)) . T))
+((((-1231 |#2| |#3| |#4|)) . T) (((-1232 |#1| |#2| |#3| |#4|)) . T))
+((((-853)) . T))
+((((-48)) -12 (|has| |#1| (-550)) (|has| |#1| (-1028 (-558)))) (((-604 $)) . T) ((|#1|) . T) (((-558)) |has| |#1| (-1028 (-558))) (((-406 (-558))) -3998 (-12 (|has| |#1| (-550)) (|has| |#1| (-1028 (-558)))) (|has| |#1| (-1028 (-406 (-558))))) (((-406 (-942 |#1|))) |has| |#1| (-550)) (((-942 |#1|)) |has| |#1| (-1039)) (((-1163)) . T))
(((|#1|) . T) (($) . T))
-(((|#1| (-758)) . T))
-((($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546))) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) ((|#1|) |has| |#1| (-170)))
-(((|#1|) |has| |#1| (-304 |#1|)))
-((((-1227 |#1| |#2| |#3| |#4|)) . T))
-((((-554)) |has| |#1| (-871 (-554))) (((-374)) |has| |#1| (-871 (-374))))
-(((|#1|) . T))
-(|has| |#1| (-546))
-(((|#1|) . T))
-((((-848)) . T))
-(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) |has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))))
-(((|#1|) |has| |#1| (-170)))
-((($) |has| |#1| (-546)) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))))
-(((|#1|) . T))
-(((|#3|) |has| |#3| (-1082)))
-((((-895 |#1|)) . T) (((-402 (-554))) . T) (($) . T) (((-554)) . T))
-(((|#2|) -3994 (|has| |#2| (-170)) (|has| |#2| (-358))))
-((((-1226 |#2| |#3| |#4|)) . T))
+(((|#1| (-762)) . T))
+((($) -3998 (|has| |#1| (-362)) (|has| |#1| (-550))) (((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171)))
+(((|#1|) |has| |#1| (-308 |#1|)))
+((((-1232 |#1| |#2| |#3| |#4|)) . T))
+((((-558)) |has| |#1| (-876 (-558))) (((-378)) |has| |#1| (-876 (-378))))
+(((|#1|) . T))
+(|has| |#1| (-550))
+(((|#1|) . T))
+((((-853)) . T))
+(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) |has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))))
+(((|#1|) |has| |#1| (-171)))
+((($) |has| |#1| (-550)) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))
+(((|#1|) . T))
+(((|#3|) |has| |#3| (-1087)))
+((((-900 |#1|)) . T) (((-406 (-558))) . T) (($) . T) (((-558)) . T))
+(((|#2|) -3998 (|has| |#2| (-171)) (|has| |#2| (-362))))
+((((-1231 |#2| |#3| |#4|)) . T))
((((-112)) . T))
-(|has| |#1| (-807))
-(|has| |#1| (-807))
-(((|#1| (-554) (-1064)) . T))
-((($) |has| |#1| (-304 $)) ((|#1|) |has| |#1| (-304 |#1|)))
-(|has| |#1| (-834))
-(|has| |#1| (-834))
-(((|#1| (-554) (-1064)) . T))
-(-3994 (|has| |#1| (-885 (-1158))) (|has| |#1| (-1034)))
-((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T))
-(((|#1| (-402 (-554)) (-1064)) . T))
-(((|#1| (-758) (-1064)) . T))
-(|has| |#1| (-836))
-(((#0=(-895 |#1|) #0#) . T) (($ $) . T) ((#1=(-402 (-554)) #1#) . T))
-(|has| |#2| (-143))
-(|has| |#2| (-145))
-(((|#2|) . T))
-(|has| |#1| (-143))
-(|has| |#1| (-145))
-(|has| |#1| (-1082))
-((((-895 |#1|)) . T) (($) . T) (((-402 (-554))) . T))
-(|has| |#1| (-1082))
-((((-554)) -3994 (|has| |#1| (-885 (-1158))) (|has| |#1| (-1034))))
-(((|#1|) . T))
-(|has| |#1| (-1082))
-((((-554)) -12 (|has| |#1| (-358)) (|has| |#2| (-627 (-554)))) ((|#2|) |has| |#1| (-358)))
-(-3994 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-713)) (|has| |#2| (-780)) (|has| |#2| (-834)) (|has| |#2| (-1034)) (|has| |#2| (-1082)))
-((((-675 (-334 (-3089) (-3089 (QUOTE X) (QUOTE HESS)) (-685)))) . T))
-(((|#2|) |has| |#2| (-170)))
-(((|#1|) |has| |#1| (-170)))
-((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T))
-((((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) . T))
-((((-848)) . T))
-(|has| |#3| (-834))
-((((-848)) . T))
-((((-1226 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|)) . T))
-((((-848)) . T))
-(((|#1| |#1|) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-1034))))
-(((|#1|) . T))
-((((-554)) . T))
-((((-554)) . T))
-(((|#1|) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-1034))))
-(((|#2|) |has| |#2| (-358)))
-((($) . T) ((|#1|) . T) (((-402 (-554))) |has| |#1| (-358)))
-(|has| |#1| (-836))
-((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T))
-(((|#2|) . T))
-((((-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) |has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-304 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))))))
-(-3994 (|has| |#1| (-446)) (|has| |#1| (-894)))
-(((|#2|) . T) (((-554)) |has| |#2| (-627 (-554))))
-((((-848)) . T))
-((((-848)) . T))
-((((-530)) . T) (((-554)) . T) (((-877 (-554))) . T) (((-374)) . T) (((-221)) . T))
-((((-848)) . T))
-(|has| |#1| (-38 (-402 (-554))))
-((((-554)) . T) (($) . T) (((-402 (-554))) . T))
-((((-554)) . T) (($) . T) (((-402 (-554))) . T))
-(|has| |#1| (-229))
-(((|#1|) . T))
-(((|#1| (-554)) . T))
-(|has| |#1| (-834))
-(((|#1| (-1156 |#1| |#2| |#3|)) . T))
+(|has| |#1| (-811))
+(|has| |#1| (-811))
+(((|#1| (-558) (-1069)) . T))
+((($) |has| |#1| (-308 $)) ((|#1|) |has| |#1| (-308 |#1|)))
+(|has| |#1| (-839))
+(|has| |#1| (-839))
+(((|#1| (-558) (-1069)) . T))
+(-3998 (|has| |#1| (-890 (-1163))) (|has| |#1| (-1039)))
+((((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T))
+(((|#1| (-406 (-558)) (-1069)) . T))
+(((|#1| (-762) (-1069)) . T))
+(|has| |#1| (-841))
+(((#0=(-900 |#1|) #0#) . T) (($ $) . T) ((#1=(-406 (-558)) #1#) . T))
+(|has| |#2| (-144))
+(|has| |#2| (-146))
+(((|#2|) . T))
+(|has| |#1| (-144))
+(|has| |#1| (-146))
+(|has| |#1| (-1087))
+((((-900 |#1|)) . T) (($) . T) (((-406 (-558))) . T))
+(|has| |#1| (-1087))
+((((-558)) -3998 (|has| |#1| (-890 (-1163))) (|has| |#1| (-1039))))
+(((|#1|) . T))
+(|has| |#1| (-1087))
+((((-558)) -12 (|has| |#1| (-362)) (|has| |#2| (-631 (-558)))) ((|#2|) |has| |#1| (-362)))
+(-3998 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-717)) (|has| |#2| (-784)) (|has| |#2| (-839)) (|has| |#2| (-1039)) (|has| |#2| (-1087)))
+((((-679 (-338 (-3233) (-3233 (QUOTE X) (QUOTE HESS)) (-689)))) . T))
+(((|#2|) |has| |#2| (-171)))
+(((|#1|) |has| |#1| (-171)))
+((((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T))
+((((-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) . T))
+((((-853)) . T))
+(|has| |#3| (-839))
+((((-853)) . T))
+((((-1231 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) . T))
+((((-853)) . T))
+(((|#1| |#1|) -3998 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-1039))))
+(((|#1|) . T))
+((((-558)) . T))
+((((-558)) . T))
+(((|#1|) -3998 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-1039))))
+(((|#2|) |has| |#2| (-362)))
+((($) . T) ((|#1|) . T) (((-406 (-558))) |has| |#1| (-362)))
+(|has| |#1| (-841))
+((((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T))
+(((|#2|) . T))
+((((-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) |has| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-308 (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))))))
+(-3998 (|has| |#1| (-450)) (|has| |#1| (-899)))
+(((|#2|) . T) (((-558)) |has| |#2| (-631 (-558))))
+((((-853)) . T))
+((((-853)) . T))
+((((-534)) . T) (((-558)) . T) (((-882 (-558))) . T) (((-378)) . T) (((-224)) . T))
+((((-853)) . T))
+(|has| |#1| (-38 (-406 (-558))))
+((((-558)) . T) (($) . T) (((-406 (-558))) . T))
+((((-558)) . T) (($) . T) (((-406 (-558))) . T))
+(|has| |#1| (-232))
+(((|#1|) . T))
+(((|#1| (-558)) . T))
+(|has| |#1| (-839))
+(((|#1| (-1161 |#1| |#2| |#3|)) . T))
(((|#1| |#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#1| (-402 (-554))) . T))
-(((|#1| (-1149 |#1| |#2| |#3|)) . T))
-(((|#1| (-758)) . T))
+(((|#1| (-406 (-558))) . T))
+(((|#1| (-1154 |#1| |#2| |#3|)) . T))
+(((|#1| (-762)) . T))
(((|#1|) . T))
-(((|#1| |#1| |#2| (-236 |#1| |#2|) (-236 |#1| |#2|)) . T))
+(((|#1| |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-143))
-(|has| |#1| (-145))
-(|has| |#1| (-145))
-(|has| |#1| (-143))
-((((-554)) . T) ((|#1|) . T) (($) . T) (((-402 (-554))) . T) (((-1158)) |has| |#1| (-1023 (-1158))))
+(|has| |#1| (-144))
+(|has| |#1| (-146))
+(|has| |#1| (-146))
+(|has| |#1| (-144))
+((((-558)) . T) ((|#1|) . T) (($) . T) (((-406 (-558))) . T) (((-1163)) |has| |#1| (-1028 (-1163))))
(((|#1| |#2|) . T))
-((((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) (((-554)) -3994 (|has| |#1| (-834)) (|has| |#1| (-1023 (-554)))) ((|#1|) . T))
-((((-142)) . T))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-38 (-402 (-554))))
-(((|#1|) . T))
-(-3994 (|has| |#2| (-170)) (|has| |#2| (-834)) (|has| |#2| (-1034)))
-(((|#1| |#1|) . T) ((#0=(-402 (-554)) #0#) . T) (($ $) . T))
-(((|#2|) . T) ((|#1|) . T) (((-554)) . T))
-((((-848)) . T))
-(((|#1|) . T) (((-402 (-554))) . T) (($) . T))
-((($) . T) ((|#1|) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))))
-((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-1082))))
-(|has| |#1| (-358))
-(|has| |#1| (-358))
-(|has| (-402 |#2|) (-229))
-((((-631 |#1|)) . T))
-(|has| |#1| (-894))
-(((|#2|) |has| |#2| (-1034)))
-((((-1163)) . T))
-(|has| |#1| (-358))
-(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) |has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))))
-(((|#1|) |has| |#1| (-170)))
+((((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) (((-558)) -3998 (|has| |#1| (-839)) (|has| |#1| (-1028 (-558)))) ((|#1|) . T))
+((((-143)) . T))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-38 (-406 (-558))))
+(((|#1|) . T))
+(-3998 (|has| |#2| (-171)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
+(((|#1| |#1|) . T) ((#0=(-406 (-558)) #0#) . T) (($ $) . T))
+(((|#2|) . T) ((|#1|) . T) (((-558)) . T))
+((((-853)) . T))
+(((|#1|) . T) (((-406 (-558))) . T) (($) . T))
+((($) . T) ((|#1|) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
+((((-853)) -3998 (|has| |#1| (-605 (-853))) (|has| |#1| (-1087))))
+(|has| |#1| (-362))
+(|has| |#1| (-362))
+(|has| (-406 |#2|) (-232))
+((((-635 |#1|)) . T))
+(|has| |#1| (-899))
+(((|#2|) |has| |#2| (-1039)))
+(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) |has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))))
+(|has| |#1| (-362))
+(((|#1|) |has| |#1| (-171)))
(((|#1| |#1|) . T))
-((((-855 |#1|)) . T))
-((((-848)) . T))
+((((-860 |#1|)) . T))
+((((-853)) . T))
(((|#1|) . T))
-(((|#2|) |has| |#2| (-1082)))
-(|has| |#2| (-836))
+(((|#2|) |has| |#2| (-1087)))
+(|has| |#2| (-841))
(((|#1|) . T))
-((((-402 |#2|)) . T) (((-402 (-554))) . T) (($) . T) (((-554)) . T))
-((((-631 $)) . T) (((-1140)) . T) (((-1158)) . T) (((-554)) . T) (((-221)) . T) (((-848)) . T))
-((((-402 (-554))) . T) (((-554)) . T) (((-600 $)) . T))
+((((-406 |#2|)) . T) (((-406 (-558))) . T) (($) . T) (((-558)) . T))
+((((-635 $)) . T) (((-1145)) . T) (((-1163)) . T) (((-558)) . T) (((-224)) . T) (((-853)) . T))
+((((-406 (-558))) . T) (((-558)) . T) (((-604 $)) . T))
(((|#1|) . T))
-((((-848)) . T))
+((((-853)) . T))
((($) . T))
-(|has| |#1| (-836))
-((((-848)) . T))
-(((|#1| (-525 |#2|) |#2|) . T))
-(((|#1| (-554) (-1064)) . T))
-((((-895 |#1|)) . T))
-((((-848)) . T))
+(|has| |#1| (-841))
+((((-853)) . T))
+(((|#1| (-529 |#2|) |#2|) . T))
+(((|#1| (-558) (-1069)) . T))
+((((-900 |#1|)) . T))
+((((-853)) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(((|#1| (-402 (-554)) (-1064)) . T))
-(((|#1| (-758) (-1064)) . T))
-(((#0=(-402 |#2|) #0#) . T) ((#1=(-402 (-554)) #1#) . T) (($ $) . T))
-(((|#1|) . T) (((-554)) -3994 (|has| (-402 (-554)) (-1023 (-554))) (|has| |#1| (-1023 (-554)))) (((-402 (-554))) . T))
-(((|#1| (-590 |#1| |#3|) (-590 |#1| |#2|)) . T))
-(((|#1|) |has| |#1| (-170)))
+(((|#1| (-406 (-558)) (-1069)) . T))
+(((|#1| (-762) (-1069)) . T))
+(((#0=(-406 |#2|) #0#) . T) ((#1=(-406 (-558)) #1#) . T) (($ $) . T))
+(((|#1|) . T) (((-558)) -3998 (|has| (-406 (-558)) (-1028 (-558))) (|has| |#1| (-1028 (-558)))) (((-406 (-558))) . T))
+(((|#1| (-594 |#1| |#3|) (-594 |#1| |#2|)) . T))
+(((|#1|) |has| |#1| (-171)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-402 |#2|)) . T) (((-402 (-554))) . T) (($) . T))
-(|has| |#2| (-229))
-(((|#2| (-525 (-850 |#1|)) (-850 |#1|)) . T))
-((((-848)) . T))
-((($) |has| |#1| (-546)) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))))
-((((-848)) . T))
+((((-406 |#2|)) . T) (((-406 (-558))) . T) (($) . T))
+(|has| |#2| (-232))
+(((|#2| (-529 (-855 |#1|)) (-855 |#1|)) . T))
+((((-853)) . T))
+((($) |has| |#1| (-550)) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
+((((-853)) . T))
(((|#1| |#3|) . T))
-((((-848)) . T))
-(((|#1|) |has| |#1| (-170)) (((-937 |#1|)) . T) (((-554)) . T))
-(((|#1|) |has| |#1| (-170)))
-((((-685)) . T))
-((((-685)) . T))
-(((|#2|) |has| |#2| (-170)))
-(|has| |#2| (-834))
-((((-554)) . T) ((|#2|) . T) (((-402 (-554))) |has| |#2| (-1023 (-402 (-554)))))
-((((-112)) |has| |#1| (-1082)) (((-848)) -3994 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-467)) (|has| |#1| (-713)) (|has| |#1| (-885 (-1158))) (|has| |#1| (-1034)) (|has| |#1| (-1094)) (|has| |#1| (-1082))))
+((((-853)) . T))
+(((|#1|) |has| |#1| (-171)) (((-942 |#1|)) . T) (((-558)) . T))
+(((|#1|) |has| |#1| (-171)))
+((((-689)) . T))
+((((-689)) . T))
+(((|#2|) |has| |#2| (-171)))
+(|has| |#2| (-839))
+((((-558)) . T) ((|#2|) . T) (((-406 (-558))) |has| |#2| (-1028 (-406 (-558)))))
+((((-112)) |has| |#1| (-1087)) (((-853)) -3998 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-471)) (|has| |#1| (-717)) (|has| |#1| (-890 (-1163))) (|has| |#1| (-1039)) (|has| |#1| (-1099)) (|has| |#1| (-1087))))
(((|#1|) . T) (($) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) . T))
-((((-848)) . T))
-((((-554) |#1|) . T))
-((((-848)) . T))
-((((-685)) . T) (((-402 (-554))) . T) (((-554)) . T))
-(((|#1| |#1|) |has| |#1| (-170)))
-(((|#2|) . T))
-(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) |has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))))
-((((-374)) . T))
-((((-685)) . T))
-((((-402 (-554))) . #0=(|has| |#2| (-358))) (($) . #0#))
-(((|#1|) |has| |#1| (-170)))
-((((-402 (-937 |#1|))) . T))
+((((-2 (|:| -2700 (-1145)) (|:| -2981 (-52)))) . T))
+((((-853)) . T))
+((((-558) |#1|) . T))
+((((-853)) . T))
+((((-689)) . T) (((-406 (-558))) . T) (((-558)) . T))
+(((|#1| |#1|) |has| |#1| (-171)))
+(((|#2|) . T))
+(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) |has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))))
+((((-378)) . T))
+((((-689)) . T))
+((((-406 (-558))) . #0=(|has| |#2| (-362))) (($) . #0#))
+(((|#1|) |has| |#1| (-171)))
+((((-406 (-942 |#1|))) . T))
(((|#2| |#2|) . T))
-(-3994 (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894)))
-(-3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894)))
-(((|#2|) . T))
-(|has| |#2| (-836))
-(|has| |#2| (-894))
-(|has| |#1| (-894))
-(|has| |#1| (-358))
-(|has| |#1| (-836))
-(((|#3|) |has| |#3| (-1034)))
-((((-1158)) |has| |#2| (-885 (-1158))))
-((((-848)) . T))
-((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T))
-((((-402 (-554))) . T) (($) . T))
-(|has| |#1| (-467))
-(|has| |#1| (-363))
-(|has| |#1| (-363))
-(|has| |#1| (-363))
-(|has| |#1| (-358))
-(-3994 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-467)) (|has| |#1| (-546)) (|has| |#1| (-1034)) (|has| |#1| (-1094)))
-(|has| |#1| (-38 (-402 (-554))))
+(-3998 (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899)))
+(-3998 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
+(((|#2|) . T))
+(|has| |#2| (-841))
+(|has| |#2| (-899))
+(|has| |#1| (-899))
+(|has| |#1| (-362))
+(|has| |#1| (-841))
+(((|#3|) |has| |#3| (-1039)))
+((((-1163)) |has| |#2| (-890 (-1163))))
+((((-853)) . T))
+((((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T))
+((((-406 (-558))) . T) (($) . T))
+(|has| |#1| (-471))
+(|has| |#1| (-367))
+(|has| |#1| (-367))
+(|has| |#1| (-367))
+(|has| |#1| (-362))
+(-3998 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-471)) (|has| |#1| (-550)) (|has| |#1| (-1039)) (|has| |#1| (-1099)))
+(|has| |#1| (-38 (-406 (-558))))
((((-116 |#1|)) . T))
((((-116 |#1|)) . T))
-(|has| |#1| (-344))
-((((-142)) . T))
-(|has| |#1| (-38 (-402 (-554))))
-((($) . T))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-38 (-402 (-554))))
-(((|#2|) . T) (((-848)) . T))
-(((|#2|) . T) (((-848)) . T))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-836))
-((((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) . T))
+(|has| |#1| (-348))
+((((-143)) . T))
+(|has| |#1| (-38 (-406 (-558))))
+((($) . T))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-38 (-406 (-558))))
+(((|#2|) . T) (((-853)) . T))
+(((|#2|) . T) (((-853)) . T))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-841))
+((((-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) . T))
(((|#1| |#2|) . T))
-(|has| |#1| (-145))
-(|has| |#1| (-143))
-((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) |has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) ((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))))
+(|has| |#1| (-146))
+(|has| |#1| (-144))
+((((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) |has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) ((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))
(((|#2|) . T))
(((|#3|) . T))
((((-116 |#1|)) . T))
-(|has| |#1| (-363))
-(|has| |#1| (-836))
-(((|#2|) . T) (((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) (((-554)) |has| |#1| (-1023 (-554))) ((|#1|) . T))
+(|has| |#1| (-367))
+(|has| |#1| (-841))
+(((|#2|) . T) (((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) (((-558)) |has| |#1| (-1028 (-558))) ((|#1|) . T))
((((-116 |#1|)) . T))
-(((|#2|) |has| |#2| (-170)))
-(((|#1|) . T))
-((((-554)) . T))
-(|has| |#1| (-358))
-(|has| |#1| (-358))
-((((-848)) . T))
-((((-848)) . T))
-((((-530)) |has| |#1| (-602 (-530))) (((-877 (-554))) |has| |#1| (-602 (-877 (-554)))) (((-877 (-374))) |has| |#1| (-602 (-877 (-374)))) (((-374)) . #0=(|has| |#1| (-1007))) (((-221)) . #0#))
-(((|#1|) |has| |#1| (-358)))
-((((-848)) . T))
-((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T))
-((($ $) . T) (((-600 $) $) . T))
-(-3994 (|has| |#1| (-358)) (|has| |#1| (-546)))
-((($) . T) (((-1227 |#1| |#2| |#3| |#4|)) . T) (((-402 (-554))) . T))
-((($) -3994 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-546)) (|has| |#1| (-1034))) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-546)))
-(|has| |#1| (-358))
-(|has| |#1| (-358))
-(|has| |#1| (-358))
-((((-374)) . T) (((-554)) . T) (((-402 (-554))) . T))
-((((-631 (-767 |#1| (-850 |#2|)))) . T) (((-848)) . T))
-((((-530)) |has| (-767 |#1| (-850 |#2|)) (-602 (-530))))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-((((-374)) . T))
-(((|#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082))))
-((((-848)) . T))
-(-3994 (|has| |#2| (-446)) (|has| |#2| (-894)))
-(((|#1|) . T))
-(|has| |#1| (-836))
-(|has| |#1| (-836))
-((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-1082))))
-((((-530)) |has| |#1| (-602 (-530))))
-(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))))
-((((-758)) . T))
-(|has| |#1| (-1082))
-((((-848)) . T))
-((((-1158)) . T) (((-848)) . T) (((-1163)) . T))
-((((-1163)) . T))
-((((-402 (-554))) . T) (((-554)) . T) (((-600 $)) . T))
-(|has| |#1| (-143))
-(|has| |#1| (-145))
-((((-554)) . T))
-(-3994 (|has| |#1| (-358)) (|has| |#1| (-546)))
-(-3994 (|has| |#1| (-358)) (|has| |#1| (-546)))
-(((#0=(-1226 |#2| |#3| |#4|)) . T) (((-402 (-554))) |has| #0# (-38 (-402 (-554)))) (($) . T))
-((((-554)) . T))
-(|has| |#1| (-358))
-(-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-145)) (|has| |#1| (-358))) (|has| |#1| (-145)))
-(-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-143)) (|has| |#1| (-358))) (|has| |#1| (-143)))
-(|has| |#1| (-358))
-(|has| |#1| (-143))
-(|has| |#1| (-145))
-(|has| |#1| (-145))
-(|has| |#1| (-143))
-(|has| |#1| (-229))
-(|has| |#1| (-358))
+(((|#2|) |has| |#2| (-171)))
+(((|#1|) . T))
+((((-558)) . T))
+(|has| |#1| (-362))
+(|has| |#1| (-362))
+((((-853)) . T))
+((((-853)) . T))
+((((-534)) |has| |#1| (-606 (-534))) (((-882 (-558))) |has| |#1| (-606 (-882 (-558)))) (((-882 (-378))) |has| |#1| (-606 (-882 (-378)))) (((-378)) . #0=(|has| |#1| (-1012))) (((-224)) . #0#))
+(((|#1|) |has| |#1| (-362)))
+((((-853)) . T))
+((((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T))
+((($ $) . T) (((-604 $) $) . T))
+(-3998 (|has| |#1| (-362)) (|has| |#1| (-550)))
+((($) . T) (((-1232 |#1| |#2| |#3| |#4|)) . T) (((-406 (-558))) . T))
+((($) -3998 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-550)) (|has| |#1| (-1039))) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-550)))
+(|has| |#1| (-362))
+(|has| |#1| (-362))
+(|has| |#1| (-362))
+((((-378)) . T) (((-558)) . T) (((-406 (-558))) . T))
+((((-635 (-771 |#1| (-855 |#2|)))) . T) (((-853)) . T))
+((((-534)) |has| (-771 |#1| (-855 |#2|)) (-606 (-534))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+((((-378)) . T))
+(((|#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087))))
+((((-853)) . T))
+(-3998 (|has| |#2| (-450)) (|has| |#2| (-899)))
+(((|#1|) . T))
+(|has| |#1| (-841))
+(|has| |#1| (-841))
+((((-853)) -3998 (|has| |#1| (-605 (-853))) (|has| |#1| (-1087))))
+((((-534)) |has| |#1| (-606 (-534))))
+(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))
+((((-762)) . T))
+(|has| |#1| (-1087))
+((((-853)) . T))
+((((-1163)) . T) (((-853)) . T))
+((((-406 (-558))) . T) (((-558)) . T) (((-604 $)) . T))
+(|has| |#1| (-144))
+(|has| |#1| (-146))
+((((-558)) . T))
+(-3998 (|has| |#1| (-362)) (|has| |#1| (-550)))
+(-3998 (|has| |#1| (-362)) (|has| |#1| (-550)))
+(((#0=(-1231 |#2| |#3| |#4|)) . T) (((-406 (-558))) |has| #0# (-38 (-406 (-558)))) (($) . T))
+((((-558)) . T))
+(|has| |#1| (-362))
+(-3998 (-12 (|has| (-1238 |#1| |#2| |#3|) (-146)) (|has| |#1| (-362))) (|has| |#1| (-146)))
+(-3998 (-12 (|has| (-1238 |#1| |#2| |#3|) (-144)) (|has| |#1| (-362))) (|has| |#1| (-144)))
+(|has| |#1| (-362))
+(|has| |#1| (-144))
+(|has| |#1| (-146))
+(|has| |#1| (-146))
+(|has| |#1| (-144))
+(|has| |#1| (-232))
+(|has| |#1| (-362))
(((|#3|) . T))
-((((-848)) . T))
-((((-848)) . T))
-((((-554)) |has| |#2| (-627 (-554))) ((|#2|) . T))
+((((-853)) . T))
+((((-853)) . T))
+((((-558)) |has| |#2| (-631 (-558))) ((|#2|) . T))
(((|#2|) . T))
-(|has| |#1| (-1082))
+(|has| |#1| (-1087))
(((|#1| |#2|) . T))
-((((-554)) . T) ((|#1|) . T) (((-402 (-554))) -3994 (|has| |#1| (-358)) (|has| |#1| (-1023 (-402 (-554))))))
-(((|#1|) . T) (((-554)) |has| |#1| (-627 (-554))))
-(((|#3|) |has| |#3| (-170)))
-(-3994 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-713)) (|has| |#2| (-780)) (|has| |#2| (-834)) (|has| |#2| (-1034)) (|has| |#2| (-1082)))
-((((-848)) . T))
-((((-554)) . T))
-(((|#1| $) |has| |#1| (-281 |#1| |#1|)))
-((((-402 (-554))) . T) (($) . T) (((-402 |#1|)) . T) ((|#1|) . T))
-((((-937 |#1|)) . T) (((-848)) . T))
+((((-558)) . T) ((|#1|) . T) (((-406 (-558))) -3998 (|has| |#1| (-362)) (|has| |#1| (-1028 (-406 (-558))))))
+(((|#1|) . T) (((-558)) |has| |#1| (-631 (-558))))
+(((|#3|) |has| |#3| (-171)))
+(-3998 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-717)) (|has| |#2| (-784)) (|has| |#2| (-839)) (|has| |#2| (-1039)) (|has| |#2| (-1087)))
+((((-853)) . T))
+((((-558)) . T))
+(((|#1| $) |has| |#1| (-285 |#1| |#1|)))
+((((-406 (-558))) . T) (($) . T) (((-406 |#1|)) . T) ((|#1|) . T))
+((((-942 |#1|)) . T) (((-853)) . T))
(((|#3|) . T))
-(((|#1| |#1|) . T) (($ $) -3994 (|has| |#1| (-285)) (|has| |#1| (-358))) ((#0=(-402 (-554)) #0#) |has| |#1| (-358)))
-((((-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) . T))
-((((-937 |#1|)) . T))
-((($) . T))
-((((-554) |#1|) . T))
-((((-1158)) |has| (-402 |#2|) (-885 (-1158))))
-(((|#1|) . T) (($) -3994 (|has| |#1| (-285)) (|has| |#1| (-358))) (((-402 (-554))) |has| |#1| (-358)))
-((((-530)) |has| |#2| (-602 (-530))))
-((((-675 |#2|)) . T) (((-848)) . T))
-(((|#1|) . T))
-(((|#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))))
-(((|#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))))
-((((-855 |#1|)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-(-3994 (|has| |#4| (-780)) (|has| |#4| (-834)))
-(-3994 (|has| |#3| (-780)) (|has| |#3| (-834)))
-((((-848)) . T))
-((((-848)) . T))
-(((|#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))))
-(((|#2|) |has| |#2| (-1034)))
-(((|#1|) . T))
-((((-402 |#2|)) . T))
-(((|#1|) . T))
-(((|#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082))))
-((((-554) |#1|) . T))
-(((|#1|) . T))
-((($) . T))
-((((-554)) . T) (($) . T) (((-402 (-554))) . T))
-((((-402 (-554))) . T) (($) . T))
-((((-402 (-554))) . T) (($) . T))
-((((-402 (-554))) . T) (($) . T))
-(-3994 (|has| |#1| (-446)) (|has| |#1| (-1199)))
-((($) . T))
-((((-402 (-554))) |has| #0=(-402 |#2|) (-1023 (-402 (-554)))) (((-554)) |has| #0# (-1023 (-554))) ((#0#) . T))
-(((|#2|) . T) (((-554)) |has| |#2| (-627 (-554))))
-(((|#1| (-758)) . T))
-(|has| |#1| (-836))
-(((|#1|) . T) (((-554)) |has| |#1| (-627 (-554))))
-((($) -3994 (|has| |#1| (-358)) (|has| |#1| (-344))) (((-402 (-554))) -3994 (|has| |#1| (-358)) (|has| |#1| (-344))) ((|#1|) . T))
-((((-554)) . T))
-(|has| |#1| (-38 (-402 (-554))))
-((((-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) |has| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-304 (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))))))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-(|has| |#1| (-834))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-363))
-(|has| |#1| (-363))
-(|has| |#1| (-363))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-344))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-38 (-402 (-554))))
-((((-1140)) . T) (((-1158)) . T) (((-221)) . T) (((-554)) . T))
-(((|#2|) . T) (((-554)) . T) (($) -3994 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) (((-1064)) . T) ((|#1|) . T) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554))))))
+(((|#1| |#1|) . T) (($ $) -3998 (|has| |#1| (-289)) (|has| |#1| (-362))) ((#0=(-406 (-558)) #0#) |has| |#1| (-362)))
+((((-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) . T))
+((((-942 |#1|)) . T))
+((($) . T))
+((((-558) |#1|) . T))
+((((-1163)) |has| (-406 |#2|) (-890 (-1163))))
+(((|#1|) . T) (($) -3998 (|has| |#1| (-289)) (|has| |#1| (-362))) (((-406 (-558))) |has| |#1| (-362)))
+((((-534)) |has| |#2| (-606 (-534))))
+((((-679 |#2|)) . T) (((-853)) . T))
+(((|#1|) . T))
+(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))
+(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))
+((((-860 |#1|)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+(-3998 (|has| |#4| (-784)) (|has| |#4| (-839)))
+(-3998 (|has| |#3| (-784)) (|has| |#3| (-839)))
+((((-853)) . T))
+((((-853)) . T))
+(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))
+(((|#2|) |has| |#2| (-1039)))
+(((|#1|) . T))
+((((-406 |#2|)) . T))
+(((|#1|) . T))
+(((|#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087))))
+((((-558) |#1|) . T))
+(((|#1|) . T))
+((($) . T))
+((((-558)) . T) (($) . T) (((-406 (-558))) . T))
+((((-406 (-558))) . T) (($) . T))
+((((-406 (-558))) . T) (($) . T))
+((((-406 (-558))) . T) (($) . T))
+(-3998 (|has| |#1| (-450)) (|has| |#1| (-1204)))
+((($) . T))
+((((-406 (-558))) |has| #0=(-406 |#2|) (-1028 (-406 (-558)))) (((-558)) |has| #0# (-1028 (-558))) ((#0#) . T))
+(((|#2|) . T) (((-558)) |has| |#2| (-631 (-558))))
+(((|#1| (-762)) . T))
+(|has| |#1| (-841))
+(((|#1|) . T) (((-558)) |has| |#1| (-631 (-558))))
+((($) -3998 (|has| |#1| (-362)) (|has| |#1| (-348))) (((-406 (-558))) -3998 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T))
+((((-558)) . T))
+(|has| |#1| (-38 (-406 (-558))))
+((((-2 (|:| -2700 (-1145)) (|:| -2981 (-52)))) |has| (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) (-308 (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+(|has| |#1| (-839))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-367))
+(|has| |#1| (-367))
+(|has| |#1| (-367))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-348))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-38 (-406 (-558))))
+((((-1145)) . T) (((-1163)) . T) (((-224)) . T) (((-558)) . T))
+(((|#2|) . T) (((-558)) . T) (($) -3998 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) (((-1069)) . T) ((|#1|) . T) (((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558))))))
(((|#1| |#2|) . T))
-((((-142)) . T))
-((((-767 |#1| (-850 |#2|))) . T))
-((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-1082))))
-(|has| |#1| (-1180))
-((((-848)) . T))
-(((|#1|) . T))
-(-3994 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-363)) (|has| |#3| (-713)) (|has| |#3| (-780)) (|has| |#3| (-834)) (|has| |#3| (-1034)) (|has| |#3| (-1082)))
-((((-1158) |#1|) |has| |#1| (-508 (-1158) |#1|)))
-(((|#2|) . T))
-((($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1| |#1|) . T) ((#0=(-402 (-554)) #0#) |has| |#1| (-38 (-402 (-554)))))
-((((-895 |#1|)) . T))
-((($) . T))
-((((-402 (-937 |#1|))) . T))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-((($) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))))
-((((-530)) |has| |#4| (-602 (-530))))
-((((-848)) . T) (((-631 |#4|)) . T))
-((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T))
-(((|#1|) . T))
-(|has| |#1| (-834))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) (((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) |has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-304 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)))))
-(|has| |#1| (-1082))
-(|has| |#1| (-358))
-(|has| |#1| (-836))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-658 |#1|)) . T))
-((($) . T) (((-402 (-554))) . T))
-((($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546))) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) ((|#1|) |has| |#1| (-170)))
-(|has| |#1| (-143))
-(|has| |#1| (-145))
-(-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-145)) (|has| |#1| (-358))) (|has| |#1| (-145)))
-(-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-143)) (|has| |#1| (-358))) (|has| |#1| (-143)))
-(|has| |#1| (-143))
-(|has| |#1| (-145))
-(|has| |#1| (-145))
-(|has| |#1| (-143))
-((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-1082))))
-((((-1233 |#1| |#2| |#3|)) |has| |#1| (-358)))
-(|has| |#1| (-834))
+((((-143)) . T))
+((((-771 |#1| (-855 |#2|))) . T))
+((((-853)) -3998 (|has| |#1| (-605 (-853))) (|has| |#1| (-1087))))
+(|has| |#1| (-1185))
+((((-853)) . T))
+(((|#1|) . T))
+(-3998 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-367)) (|has| |#3| (-717)) (|has| |#3| (-784)) (|has| |#3| (-839)) (|has| |#3| (-1039)) (|has| |#3| (-1087)))
+((((-1163) |#1|) |has| |#1| (-512 (-1163) |#1|)))
+(((|#2|) . T))
+((($ $) -3998 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1| |#1|) . T) ((#0=(-406 (-558)) #0#) |has| |#1| (-38 (-406 (-558)))))
+((((-900 |#1|)) . T))
+((($) . T))
+((((-406 (-942 |#1|))) . T))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+((($) -3998 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
+((((-534)) |has| |#4| (-606 (-534))))
+((((-853)) . T) (((-635 |#4|)) . T))
+((((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T))
+(((|#1|) . T))
+(|has| |#1| (-839))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) (((-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) |has| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-308 (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)))))
+(|has| |#1| (-1087))
+(|has| |#1| (-362))
+(|has| |#1| (-841))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-662 |#1|)) . T))
+((($) . T) (((-406 (-558))) . T))
+((($) -3998 (|has| |#1| (-362)) (|has| |#1| (-550))) (((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171)))
+(|has| |#1| (-144))
+(|has| |#1| (-146))
+(-3998 (-12 (|has| (-1161 |#1| |#2| |#3|) (-146)) (|has| |#1| (-362))) (|has| |#1| (-146)))
+(-3998 (-12 (|has| (-1161 |#1| |#2| |#3|) (-144)) (|has| |#1| (-362))) (|has| |#1| (-144)))
+(|has| |#1| (-144))
+(|has| |#1| (-146))
+(|has| |#1| (-146))
+(|has| |#1| (-144))
+((((-853)) -3998 (|has| |#1| (-605 (-853))) (|has| |#1| (-1087))))
+((((-1238 |#1| |#2| |#3|)) |has| |#1| (-362)))
+(|has| |#1| (-839))
(((|#1| |#2|) . T))
-(((|#1|) . T) (((-554)) |has| |#1| (-627 (-554))))
-((((-554)) |has| |#1| (-627 (-554))) ((|#1|) . T))
-((((-895 |#1|)) . T) (((-402 (-554))) . T) (($) . T))
-(|has| |#1| (-1082))
-(((|#1|) . T) (($) . T) (((-402 (-554))) . T) (((-554)) . T))
-((((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) ((|#1|) . T) (((-554)) . T))
-(|has| |#2| (-143))
-(|has| |#2| (-145))
-((((-895 |#1|)) . T) (((-402 (-554))) . T) (($) . T))
-(|has| |#1| (-1082))
-(((|#2|) |has| |#2| (-170)))
+(((|#1|) . T) (((-558)) |has| |#1| (-631 (-558))))
+((((-558)) |has| |#1| (-631 (-558))) ((|#1|) . T))
+((((-900 |#1|)) . T) (((-406 (-558))) . T) (($) . T))
+(|has| |#1| (-1087))
+(((|#1|) . T) (($) . T) (((-406 (-558))) . T) (((-558)) . T))
+((((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) ((|#1|) . T) (((-558)) . T))
+(|has| |#2| (-144))
+(|has| |#2| (-146))
+((((-900 |#1|)) . T) (((-406 (-558))) . T) (($) . T))
+(|has| |#1| (-1087))
+(((|#2|) |has| |#2| (-171)))
(((|#2|) . T))
(((|#1| |#1|) . T))
-(((|#3|) |has| |#3| (-358)))
-((((-402 |#2|)) . T))
-((((-848)) . T))
-(((|#1|) . T))
-((((-848)) . T))
-((((-848)) . T))
-((((-530)) |has| |#1| (-602 (-530))))
-((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T))
-((((-1158) |#1|) |has| |#1| (-508 (-1158) |#1|)) ((|#1| |#1|) |has| |#1| (-304 |#1|)))
-(((|#1|) -3994 (|has| |#1| (-170)) (|has| |#1| (-358))))
-((((-311 |#1|)) . T))
-(((|#2|) |has| |#2| (-358)))
-(((|#2|) . T))
-((((-402 (-554))) . T) (((-685)) . T) (($) . T))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-(((#0=(-767 |#1| (-850 |#2|)) #0#) |has| (-767 |#1| (-850 |#2|)) (-304 (-767 |#1| (-850 |#2|)))))
-((((-554)) . T) (($) . T))
-((((-850 |#1|)) . T))
-(((|#2|) |has| |#2| (-170)))
-(((|#1|) |has| |#1| (-170)))
-(((|#2|) . T))
-((((-1158)) |has| |#1| (-885 (-1158))) (((-1064)) . T))
-((((-1158)) |has| |#1| (-885 (-1158))) (((-1070 (-1158))) . T))
-(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-(|has| |#1| (-38 (-402 (-554))))
-(((|#4|) |has| |#4| (-1034)) (((-554)) -12 (|has| |#4| (-627 (-554))) (|has| |#4| (-1034))))
-(((|#3|) |has| |#3| (-1034)) (((-554)) -12 (|has| |#3| (-627 (-554))) (|has| |#3| (-1034))))
-(|has| |#1| (-143))
-(|has| |#1| (-145))
+(((|#3|) |has| |#3| (-362)))
+((((-406 |#2|)) . T))
+((((-853)) . T))
+(((|#1|) . T))
+((((-853)) . T))
+((((-853)) . T))
+((((-534)) |has| |#1| (-606 (-534))))
+((((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T))
+((((-1163) |#1|) |has| |#1| (-512 (-1163) |#1|)) ((|#1| |#1|) |has| |#1| (-308 |#1|)))
+(((|#1|) -3998 (|has| |#1| (-171)) (|has| |#1| (-362))))
+((((-315 |#1|)) . T))
+(((|#2|) |has| |#2| (-362)))
+(((|#2|) . T))
+((((-406 (-558))) . T) (((-689)) . T) (($) . T))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+(((#0=(-771 |#1| (-855 |#2|)) #0#) |has| (-771 |#1| (-855 |#2|)) (-308 (-771 |#1| (-855 |#2|)))))
+((((-558)) . T) (($) . T))
+((((-855 |#1|)) . T))
+(((|#2|) |has| |#2| (-171)))
+(((|#1|) |has| |#1| (-171)))
+(((|#2|) . T))
+((((-1163)) |has| |#1| (-890 (-1163))) (((-1069)) . T))
+((((-1163)) |has| |#1| (-890 (-1163))) (((-1075 (-1163))) . T))
+(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+(|has| |#1| (-38 (-406 (-558))))
+(((|#4|) |has| |#4| (-1039)) (((-558)) -12 (|has| |#4| (-631 (-558))) (|has| |#4| (-1039))))
+(((|#3|) |has| |#3| (-1039)) (((-558)) -12 (|has| |#3| (-631 (-558))) (|has| |#3| (-1039))))
+(|has| |#1| (-144))
+(|has| |#1| (-146))
((($ $) . T))
-(-3994 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-467)) (|has| |#1| (-713)) (|has| |#1| (-885 (-1158))) (|has| |#1| (-1034)) (|has| |#1| (-1094)) (|has| |#1| (-1082)))
-(|has| |#1| (-546))
+(-3998 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-471)) (|has| |#1| (-717)) (|has| |#1| (-890 (-1163))) (|has| |#1| (-1039)) (|has| |#1| (-1099)) (|has| |#1| (-1087)))
+(|has| |#1| (-550))
(((|#2|) . T))
-((((-554)) . T))
-((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T))
+((((-558)) . T))
+((((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T))
(((|#1|) . T))
-(-3994 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-546)) (|has| |#1| (-1034)))
-((((-571 |#1|)) . T))
+(-3998 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-550)) (|has| |#1| (-1039)))
+((((-575 |#1|)) . T))
((($) . T))
(((|#1| (-59 |#1|) (-59 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
((($) . T))
(((|#1|) . T))
-((((-848)) . T))
-(((|#2|) |has| |#2| (-6 (-4375 "*"))))
+((((-853)) . T))
+(((|#2|) |has| |#2| (-6 (-4384 "*"))))
(((|#1|) . T))
(((|#1|) . T))
(((|#3|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-1226 |#2| |#3| |#4|)) . T) (((-554)) . T) (((-1227 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-402 (-554))) . T))
-((((-48)) -12 (|has| |#1| (-546)) (|has| |#1| (-1023 (-554)))) (((-554)) -3994 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-546)) (|has| |#1| (-1023 (-554))) (|has| |#1| (-1034))) ((|#1|) . T) (((-600 $)) . T) (($) |has| |#1| (-546)) (((-402 (-554))) -3994 (|has| |#1| (-546)) (|has| |#1| (-1023 (-402 (-554))))) (((-402 (-937 |#1|))) |has| |#1| (-546)) (((-937 |#1|)) |has| |#1| (-1034)) (((-1158)) . T))
-((((-402 (-554))) |has| |#2| (-1023 (-402 (-554)))) (((-554)) |has| |#2| (-1023 (-554))) ((|#2|) . T) (((-850 |#1|)) . T))
-((($) . T) (((-116 |#1|)) . T) (((-402 (-554))) . T))
-((((-1107 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-554)) |has| |#1| (-1023 (-554))) (((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))))
-((((-1154 |#1|)) . T) (((-1064)) . T) ((|#1|) . T) (((-554)) |has| |#1| (-1023 (-554))) (((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))))
-((((-1107 |#1| (-1158))) . T) (((-1070 (-1158))) . T) ((|#1|) . T) (((-554)) |has| |#1| (-1023 (-554))) (((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) (((-1158)) . T))
-(|has| |#1| (-1082))
+((((-1231 |#2| |#3| |#4|)) . T) (((-558)) . T) (((-1232 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-406 (-558))) . T))
+((((-48)) -12 (|has| |#1| (-550)) (|has| |#1| (-1028 (-558)))) (((-558)) -3998 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-550)) (|has| |#1| (-1028 (-558))) (|has| |#1| (-1039))) ((|#1|) . T) (((-604 $)) . T) (($) |has| |#1| (-550)) (((-406 (-558))) -3998 (|has| |#1| (-550)) (|has| |#1| (-1028 (-406 (-558))))) (((-406 (-942 |#1|))) |has| |#1| (-550)) (((-942 |#1|)) |has| |#1| (-1039)) (((-1163)) . T))
+((((-406 (-558))) |has| |#2| (-1028 (-406 (-558)))) (((-558)) |has| |#2| (-1028 (-558))) ((|#2|) . T) (((-855 |#1|)) . T))
+((($) . T) (((-116 |#1|)) . T) (((-406 (-558))) . T))
+((((-1112 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-558)) |has| |#1| (-1028 (-558))) (((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))))
+((((-1159 |#1|)) . T) (((-1069)) . T) ((|#1|) . T) (((-558)) |has| |#1| (-1028 (-558))) (((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))))
+((((-1112 |#1| (-1163))) . T) (((-1075 (-1163))) . T) ((|#1|) . T) (((-558)) |has| |#1| (-1028 (-558))) (((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) (((-1163)) . T))
+(|has| |#1| (-1087))
((($) . T))
-(|has| |#1| (-1082))
-((((-554)) -12 (|has| |#1| (-871 (-554))) (|has| |#2| (-871 (-554)))) (((-374)) -12 (|has| |#1| (-871 (-374))) (|has| |#2| (-871 (-374)))))
+(|has| |#1| (-1087))
+((((-558)) -12 (|has| |#1| (-876 (-558))) (|has| |#2| (-876 (-558)))) (((-378)) -12 (|has| |#1| (-876 (-378))) (|has| |#2| (-876 (-378)))))
(((|#1| |#2|) . T))
-((((-1158) |#1|) . T))
+((((-1163) |#1|) . T))
(((|#4|) . T))
-(-3994 (|has| |#1| (-358)) (|has| |#1| (-344)))
-((((-1158) (-52)) . T))
-((((-1226 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|)) . T))
-((((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) (((-554)) |has| |#1| (-1023 (-554))) ((|#1|) . T))
-((((-848)) . T))
-(-3994 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-713)) (|has| |#2| (-780)) (|has| |#2| (-834)) (|has| |#2| (-1034)) (|has| |#2| (-1082)))
-(((#0=(-1227 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-402 (-554)) #1#) . T) (($ $) . T))
-(((|#1| |#1|) |has| |#1| (-170)) ((#0=(-402 (-554)) #0#) |has| |#1| (-546)) (($ $) |has| |#1| (-546)))
-(((|#1|) . T) (($) . T) (((-402 (-554))) . T))
-(((|#1| $) |has| |#1| (-281 |#1| |#1|)))
-((((-1227 |#1| |#2| |#3| |#4|)) . T) (((-402 (-554))) . T) (($) . T))
-(((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-546)) (($) |has| |#1| (-546)))
-(|has| |#1| (-358))
-(|has| |#1| (-143))
-(|has| |#1| (-145))
-(|has| |#1| (-145))
-(|has| |#1| (-143))
-((((-402 (-554))) . T) (($) . T))
-(((|#3|) |has| |#3| (-358)))
-(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))))
-((((-1158)) . T))
-((($) . T) (((-1226 |#2| |#3| |#4|)) . T) (((-402 (-554))) |has| (-1226 |#2| |#3| |#4|) (-38 (-402 (-554)))) (((-554)) . T))
-(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))))
+(-3998 (|has| |#1| (-362)) (|has| |#1| (-348)))
+((((-1163) (-52)) . T))
+((((-1231 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) . T))
+((((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) (((-558)) |has| |#1| (-1028 (-558))) ((|#1|) . T))
+((((-853)) . T))
+(-3998 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-717)) (|has| |#2| (-784)) (|has| |#2| (-839)) (|has| |#2| (-1039)) (|has| |#2| (-1087)))
+(((#0=(-1232 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-406 (-558)) #1#) . T) (($ $) . T))
+(((|#1| |#1|) |has| |#1| (-171)) ((#0=(-406 (-558)) #0#) |has| |#1| (-550)) (($ $) |has| |#1| (-550)))
+(((|#1|) . T) (($) . T) (((-406 (-558))) . T))
+(((|#1| $) |has| |#1| (-285 |#1| |#1|)))
+((((-1232 |#1| |#2| |#3| |#4|)) . T) (((-406 (-558))) . T) (($) . T))
+(((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-550)) (($) |has| |#1| (-550)))
+(|has| |#1| (-362))
+(|has| |#1| (-144))
+(|has| |#1| (-146))
+(|has| |#1| (-146))
+(|has| |#1| (-144))
+((((-406 (-558))) . T) (($) . T))
+(((|#3|) |has| |#3| (-362)))
+(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))
+((((-1163)) . T))
+((($) . T) (((-1231 |#2| |#3| |#4|)) . T) (((-406 (-558))) |has| (-1231 |#2| |#3| |#4|) (-38 (-406 (-558)))) (((-558)) . T))
+(((|#1|) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))
(((|#2| |#3|) . T))
-(-3994 (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894)))
-(((|#1| (-525 |#2|)) . T))
-(((|#1| (-758)) . T))
-(((|#1| (-525 (-1070 (-1158)))) . T))
-(((|#1|) |has| |#1| (-170)))
-(((|#1|) . T))
-(|has| |#2| (-894))
-(-3994 (|has| |#2| (-780)) (|has| |#2| (-834)))
-((((-848)) . T))
-((($ $) . T) ((#0=(-1226 |#2| |#3| |#4|) #0#) . T) ((#1=(-402 (-554)) #1#) |has| #0# (-38 (-402 (-554)))))
-((((-895 |#1|)) . T))
-(-12 (|has| |#1| (-358)) (|has| |#2| (-807)))
-((($) . T) (((-402 (-554))) . T))
-((((-848)) . T))
-((($) . T))
-((($) . T))
-(-3994 (|has| |#1| (-302)) (|has| |#1| (-358)) (|has| |#1| (-344)) (|has| |#1| (-546)))
-(|has| |#1| (-358))
-(|has| |#1| (-358))
+(-3998 (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899)))
+(((|#1| (-529 |#2|)) . T))
+(((|#1| (-762)) . T))
+(((|#1| (-529 (-1075 (-1163)))) . T))
+(((|#1|) |has| |#1| (-171)))
+(((|#1|) . T))
+(|has| |#2| (-899))
+(-3998 (|has| |#2| (-784)) (|has| |#2| (-839)))
+((((-853)) . T))
+((($ $) . T) ((#0=(-1231 |#2| |#3| |#4|) #0#) . T) ((#1=(-406 (-558)) #1#) |has| #0# (-38 (-406 (-558)))))
+((((-900 |#1|)) . T))
+(-12 (|has| |#1| (-362)) (|has| |#2| (-811)))
+((($) . T) (((-406 (-558))) . T))
+((((-853)) . T))
+((($) . T))
+((($) . T))
+(-3998 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348)) (|has| |#1| (-550)))
+(|has| |#1| (-362))
+(|has| |#1| (-362))
(((|#1| |#2|) . T))
-((($) . T) ((#0=(-1226 |#2| |#3| |#4|)) . T) (((-402 (-554))) |has| #0# (-38 (-402 (-554)))))
-((((-1156 |#1| |#2| |#3|)) |has| |#1| (-358)))
-(-3994 (-12 (|has| |#1| (-302)) (|has| |#1| (-894))) (|has| |#1| (-358)) (|has| |#1| (-344)))
-(-3994 (|has| |#1| (-885 (-1158))) (|has| |#1| (-1034)))
-((((-554)) |has| |#1| (-627 (-554))) ((|#1|) . T))
+((($) . T) ((#0=(-1231 |#2| |#3| |#4|)) . T) (((-406 (-558))) |has| #0# (-38 (-406 (-558)))))
+((((-1161 |#1| |#2| |#3|)) |has| |#1| (-362)))
+(-3998 (-12 (|has| |#1| (-306)) (|has| |#1| (-899))) (|has| |#1| (-362)) (|has| |#1| (-348)))
+(-3998 (|has| |#1| (-890 (-1163))) (|has| |#1| (-1039)))
+((((-558)) |has| |#1| (-631 (-558))) ((|#1|) . T))
(((|#1| |#2|) . T))
-((((-848)) . T))
-((((-848)) . T))
+((((-853)) . T))
+((((-853)) . T))
((((-112)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-402 |#2|)) . T) (((-402 (-554))) . T) (($) . T))
+((((-406 |#2|)) . T) (((-406 (-558))) . T) (($) . T))
(((|#1| |#2| |#3| |#4|) . T))
-(((|#1| (-525 (-850 |#2|)) (-850 |#2|) (-767 |#1| (-850 |#2|))) . T))
-(|has| |#2| (-358))
-(|has| |#1| (-836))
+(((|#1| (-529 (-855 |#2|)) (-855 |#2|) (-771 |#1| (-855 |#2|))) . T))
+(|has| |#2| (-362))
+(|has| |#1| (-841))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-554)) . T))
-((((-848)) . T))
-(|has| |#1| (-1082))
+((((-558)) . T))
+((((-853)) . T))
+(|has| |#1| (-1087))
(((|#4|) . T))
(((|#4|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-((((-402 $) (-402 $)) |has| |#1| (-546)) (($ $) . T) ((|#1| |#1|) . T))
-(|has| |#2| (-807))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+((((-406 $) (-406 $)) |has| |#1| (-550)) (($ $) . T) ((|#1| |#1|) . T))
+(|has| |#2| (-811))
(((|#4|) . T))
((($) . T))
((($ $) . T))
((($) . T))
-((((-848)) . T))
-(((|#1| (-525 (-1158))) . T))
-(((|#1|) |has| |#1| (-170)))
-((((-848)) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))))
-(((|#2|) -3994 (|has| |#2| (-6 (-4375 "*"))) (|has| |#2| (-170))))
-(-3994 (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894)))
-(-3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894)))
-(|has| |#2| (-836))
-(|has| |#2| (-894))
-(|has| |#1| (-894))
-(((|#2|) |has| |#2| (-170)))
-((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T))
-((((-1233 |#1| |#2| |#3|)) |has| |#1| (-358)))
-((((-848)) . T))
-((((-848)) . T))
-((((-530)) . T) (((-554)) . T) (((-877 (-554))) . T) (((-374)) . T) (((-221)) . T))
+((((-853)) . T))
+(((|#1| (-529 (-1163))) . T))
+(((|#1|) |has| |#1| (-171)))
+((((-853)) . T))
+(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))
+(((|#2|) -3998 (|has| |#2| (-6 (-4384 "*"))) (|has| |#2| (-171))))
+(-3998 (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899)))
+(-3998 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
+(|has| |#2| (-841))
+(|has| |#2| (-899))
+(|has| |#1| (-899))
+(((|#2|) |has| |#2| (-171)))
+((((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T))
+((((-1238 |#1| |#2| |#3|)) |has| |#1| (-362)))
+((((-853)) . T))
+((((-853)) . T))
+((((-534)) . T) (((-558)) . T) (((-882 (-558))) . T) (((-378)) . T) (((-224)) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T))
-((((-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) . T))
+((((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T))
+((((-2 (|:| -2700 (-1145)) (|:| -2981 (-52)))) . T))
(((|#1|) . T))
-((((-848)) . T))
+((((-853)) . T))
(((|#1| |#2|) . T))
-(((|#1| (-402 (-554))) . T))
+(((|#1| (-406 (-558))) . T))
(((|#1|) . T))
-(-3994 (|has| |#1| (-285)) (|has| |#1| (-358)))
-((((-142)) . T))
-((((-402 |#2|)) . T) (((-402 (-554))) . T) (($) . T))
-(|has| |#1| (-834))
-((((-848)) . T))
-((((-848)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-(((|#1| |#1| |#2| (-236 |#1| |#2|) (-236 |#1| |#2|)) . T))
+(-3998 (|has| |#1| (-289)) (|has| |#1| (-362)))
+((((-143)) . T))
+((((-406 |#2|)) . T) (((-406 (-558))) . T) (($) . T))
+(|has| |#1| (-839))
+((((-853)) . T))
+((((-853)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+(((|#1| |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-402 (-554))) . T) (($) . T))
-((((-848)) . T))
-((((-848)) . T))
-((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T))
+((((-406 (-558))) . T) (($) . T))
+((((-853)) . T))
+((((-853)) . T))
+((((-186)) . T) (((-853)) . T))
+((((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T))
(((|#2| |#2|) . T) ((|#1| |#1|) . T))
-((((-848)) . T))
-((((-848)) . T))
-((((-530)) |has| |#1| (-602 (-530))) (((-877 (-554))) |has| |#1| (-602 (-877 (-554)))) (((-877 (-374))) |has| |#1| (-602 (-877 (-374)))))
-((((-1158) (-52)) . T))
-(((|#2|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-631 (-142))) . T) (((-1140)) . T))
-((((-848)) . T))
-((((-1140)) . T))
-((((-1158) |#1|) |has| |#1| (-508 (-1158) |#1|)) ((|#1| |#1|) |has| |#1| (-304 |#1|)))
-((((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) . T))
-(|has| |#1| (-836))
-((((-848)) . T))
-((((-530)) |has| |#1| (-602 (-530))))
-((((-848)) . T))
-(((|#2|) |has| |#2| (-358)))
-((((-848)) . T))
-((((-530)) |has| |#4| (-602 (-530))))
-((((-848)) . T) (((-631 |#4|)) . T))
-(((|#2|) . T))
-((((-895 |#1|)) . T) (((-402 (-554))) . T) (($) . T))
-((($) . T) (((-554)) . T) (((-402 (-554))) . T) (((-600 $)) . T))
-(-3994 (|has| |#4| (-170)) (|has| |#4| (-713)) (|has| |#4| (-834)) (|has| |#4| (-1034)))
-(-3994 (|has| |#3| (-170)) (|has| |#3| (-713)) (|has| |#3| (-834)) (|has| |#3| (-1034)))
-((((-1158) (-52)) . T))
-(-3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894)))
-(-3994 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894)))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(-3994 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-780)) (|has| |#2| (-834)) (|has| |#2| (-1034)))
-(-3994 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-834)) (|has| |#2| (-1034)))
-(|has| |#1| (-894))
-((((-895 |#1|)) . T) (((-402 (-554))) . T) (($) . T) (((-554)) . T))
-(|has| |#1| (-894))
-(((|#1|) . T) (((-554)) . T) (((-402 (-554))) . T) (($) . T))
-(((|#2|) . T))
-(((|#1|) . T))
-((((-848)) . T))
-((((-554)) . T))
-(((#0=(-402 (-554)) #0#) . T) (($ $) . T))
-((((-402 (-554))) . T) (($) . T))
-(((|#1| (-402 (-554)) (-1064)) . T))
-(|has| |#1| (-1082))
-(|has| |#1| (-546))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-38 (-402 (-554))))
-(-3994 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894)))
-(|has| |#1| (-807))
-(((#0=(-895 |#1|) #0#) . T) (($ $) . T) ((#1=(-402 (-554)) #1#) . T))
-((((-402 |#2|)) . T))
-(|has| |#1| (-834))
-((((-1181 |#1|)) . T) (((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-1082))))
-(((|#1| |#1|) . T) ((#0=(-402 (-554)) #0#) . T) ((#1=(-554) #1#) . T) (($ $) . T))
-((((-895 |#1|)) . T) (($) . T) (((-402 (-554))) . T))
-(((|#2|) |has| |#2| (-1034)) (((-554)) -12 (|has| |#2| (-627 (-554))) (|has| |#2| (-1034))))
-(((|#1|) . T) (((-402 (-554))) . T) (((-554)) . T) (($) . T))
+((((-853)) . T))
+((((-853)) . T))
+((((-534)) |has| |#1| (-606 (-534))) (((-882 (-558))) |has| |#1| (-606 (-882 (-558)))) (((-882 (-378))) |has| |#1| (-606 (-882 (-378)))))
+((((-1163) (-52)) . T))
+(((|#2|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-635 (-143))) . T) (((-1145)) . T))
+((((-853)) . T))
+((((-1145)) . T))
+((((-1163) |#1|) |has| |#1| (-512 (-1163) |#1|)) ((|#1| |#1|) |has| |#1| (-308 |#1|)))
+((((-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) . T))
+(|has| |#1| (-841))
+((((-853)) . T))
+((((-534)) |has| |#1| (-606 (-534))))
+((((-853)) . T))
+(((|#2|) |has| |#2| (-362)))
+((((-853)) . T))
+((((-534)) |has| |#4| (-606 (-534))))
+((((-853)) . T) (((-635 |#4|)) . T))
+(((|#2|) . T))
+((((-900 |#1|)) . T) (((-406 (-558))) . T) (($) . T))
+((($) . T) (((-558)) . T) (((-406 (-558))) . T) (((-604 $)) . T))
+(-3998 (|has| |#4| (-171)) (|has| |#4| (-717)) (|has| |#4| (-839)) (|has| |#4| (-1039)))
+(-3998 (|has| |#3| (-171)) (|has| |#3| (-717)) (|has| |#3| (-839)) (|has| |#3| (-1039)))
+((((-1163) (-52)) . T))
+(-3998 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
+(-3998 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(-3998 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-784)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
+(-3998 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
+(|has| |#1| (-899))
+((((-900 |#1|)) . T) (((-406 (-558))) . T) (($) . T) (((-558)) . T))
+(|has| |#1| (-899))
+(((|#1|) . T) (((-558)) . T) (((-406 (-558))) . T) (($) . T))
+(((|#2|) . T))
+(((|#1|) . T))
+((((-853)) . T))
+((((-558)) . T))
+(((#0=(-406 (-558)) #0#) . T) (($ $) . T))
+((((-406 (-558))) . T) (($) . T))
+(((|#1| (-406 (-558)) (-1069)) . T))
+(|has| |#1| (-1087))
+(|has| |#1| (-550))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-38 (-406 (-558))))
+(-3998 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
+(|has| |#1| (-811))
+(((#0=(-900 |#1|) #0#) . T) (($ $) . T) ((#1=(-406 (-558)) #1#) . T))
+((((-406 |#2|)) . T))
+(|has| |#1| (-839))
+((((-1186 |#1|)) . T) (((-853)) -3998 (|has| |#1| (-605 (-853))) (|has| |#1| (-1087))))
+(((|#1| |#1|) . T) ((#0=(-406 (-558)) #0#) . T) ((#1=(-558) #1#) . T) (($ $) . T))
+((((-900 |#1|)) . T) (($) . T) (((-406 (-558))) . T))
+(((|#2|) |has| |#2| (-1039)) (((-558)) -12 (|has| |#2| (-631 (-558))) (|has| |#2| (-1039))))
+(((|#1|) . T) (((-406 (-558))) . T) (((-558)) . T) (($) . T))
(((|#1| |#2| |#3| |#4|) . T))
-(|has| |#1| (-145))
-(|has| |#1| (-143))
-(((|#2|) . T))
-((((-848)) . T))
-((((-402 (-554))) . T) (((-685)) . T) (($) . T) (((-554)) . T))
-(-3994 (|has| |#1| (-143)) (|has| |#1| (-363)))
-(-3994 (|has| |#1| (-143)) (|has| |#1| (-363)))
-(-3994 (|has| |#1| (-143)) (|has| |#1| (-363)))
-((((-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) . T))
-(((#0=(-52)) . T) (((-2 (|:| -2564 (-1158)) (|:| -2701 #0#))) . T))
-(|has| |#1| (-344))
-((((-554)) . T))
-((((-848)) . T))
-(((#0=(-1227 |#1| |#2| |#3| |#4|) $) |has| #0# (-281 #0# #0#)))
-(|has| |#1| (-358))
-(((#0=(-1064) |#1|) . T) ((#0# $) . T) (($ $) . T))
-(-3994 (|has| |#1| (-358)) (|has| |#1| (-344)))
-(((#0=(-402 (-554)) #0#) . T) ((#1=(-685) #1#) . T) (($ $) . T))
-((((-311 |#1|)) . T) (($) . T))
-(((|#1|) . T) (((-402 (-554))) |has| |#1| (-358)))
-(|has| |#1| (-1082))
-(((|#1|) . T))
-(((|#1|) -3994 (|has| |#2| (-362 |#1|)) (|has| |#2| (-412 |#1|))))
-(((|#1|) -3994 (|has| |#2| (-362 |#1|)) (|has| |#2| (-412 |#1|))))
-(((|#2|) . T))
-((((-402 (-554))) . T) (((-685)) . T) (($) . T))
-((((-569)) . T))
+(|has| |#1| (-146))
+(|has| |#1| (-144))
+(((|#2|) . T))
+((((-853)) . T))
+((((-406 (-558))) . T) (((-689)) . T) (($) . T) (((-558)) . T))
+(-3998 (|has| |#1| (-144)) (|has| |#1| (-367)))
+(-3998 (|has| |#1| (-144)) (|has| |#1| (-367)))
+(-3998 (|has| |#1| (-144)) (|has| |#1| (-367)))
+((((-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) . T))
+(((#0=(-52)) . T) (((-2 (|:| -2700 (-1163)) (|:| -2981 #0#))) . T))
+(|has| |#1| (-348))
+((((-558)) . T))
+((((-853)) . T))
+(((#0=(-1232 |#1| |#2| |#3| |#4|) $) |has| #0# (-285 #0# #0#)))
+(|has| |#1| (-362))
+(((#0=(-1069) |#1|) . T) ((#0# $) . T) (($ $) . T))
+(-3998 (|has| |#1| (-362)) (|has| |#1| (-348)))
+(((#0=(-406 (-558)) #0#) . T) ((#1=(-689) #1#) . T) (($ $) . T))
+((((-315 |#1|)) . T) (($) . T))
+(((|#1|) . T) (((-406 (-558))) |has| |#1| (-362)))
+(|has| |#1| (-1087))
+(((|#1|) . T))
+(((|#1|) -3998 (|has| |#2| (-366 |#1|)) (|has| |#2| (-416 |#1|))))
+(((|#1|) -3998 (|has| |#2| (-366 |#1|)) (|has| |#2| (-416 |#1|))))
+(((|#2|) . T))
+((((-406 (-558))) . T) (((-689)) . T) (($) . T))
+((((-573)) . T))
(((|#3| |#3|) . T))
-(|has| |#2| (-229))
-((((-850 |#1|)) . T))
-((((-1158)) |has| |#1| (-885 (-1158))) ((|#3|) . T))
-((((-631 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T))
-(-12 (|has| |#1| (-358)) (|has| |#2| (-1007)))
-((((-1156 |#1| |#2| |#3|)) |has| |#1| (-358)))
-((((-848)) . T))
-(|has| |#1| (-358))
-(|has| |#1| (-358))
-((((-402 (-554))) . T) (($) . T) (((-402 |#1|)) . T) ((|#1|) . T))
-((((-554)) . T) (((-116 |#1|)) . T) (($) . T) (((-402 (-554))) . T))
-((((-554)) . T))
+(|has| |#2| (-232))
+((((-855 |#1|)) . T))
+((((-1163)) |has| |#1| (-890 (-1163))) ((|#3|) . T))
+((((-635 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T))
+(-12 (|has| |#1| (-362)) (|has| |#2| (-1012)))
+((((-1161 |#1| |#2| |#3|)) |has| |#1| (-362)))
+((((-853)) . T))
+(|has| |#1| (-362))
+(|has| |#1| (-362))
+((((-406 (-558))) . T) (($) . T) (((-406 |#1|)) . T) ((|#1|) . T))
+((((-558)) . T) (((-116 |#1|)) . T) (($) . T) (((-406 (-558))) . T))
+((((-558)) . T))
(((|#3|) . T))
-(|has| |#1| (-1082))
+(|has| |#1| (-1087))
(((|#2|) . T))
(((|#1|) . T))
-((((-554)) . T))
-(((|#2|) . T) (((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) ((|#1|) . T) (($) . T) (((-554)) . T))
-(-3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894)))
-(((|#2|) . T) (((-554)) |has| |#2| (-627 (-554))))
+((((-558)) . T))
+(((|#2|) . T) (((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) ((|#1|) . T) (($) . T) (((-558)) . T))
+(-3998 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
+(((|#2|) . T) (((-558)) |has| |#2| (-631 (-558))))
(((|#1| |#2|) . T))
((($) . T))
-((((-571 |#1|)) . T) (((-402 (-554))) . T) (($) . T))
-((($) . T) (((-402 (-554))) . T))
+((((-575 |#1|)) . T) (((-406 (-558))) . T) (($) . T))
+((($) . T) (((-406 (-558))) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T) (($) . T))
-(((|#1| (-1241 |#1|) (-1241 |#1|)) . T))
+(((|#1| (-1246 |#1|) (-1246 |#1|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-848)) . T))
-((((-848)) . T))
-(((#0=(-116 |#1|) #0#) . T) ((#1=(-402 (-554)) #1#) . T) (($ $) . T))
-((((-402 (-554))) |has| |#2| (-1023 (-402 (-554)))) (((-554)) |has| |#2| (-1023 (-554))) ((|#2|) . T) (((-850 |#1|)) . T))
-((((-1107 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-554)) |has| |#1| (-1023 (-554))) (((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) ((|#2|) . T))
+((((-853)) . T))
+((((-853)) . T))
+(((#0=(-116 |#1|) #0#) . T) ((#1=(-406 (-558)) #1#) . T) (($ $) . T))
+((((-406 (-558))) |has| |#2| (-1028 (-406 (-558)))) (((-558)) |has| |#2| (-1028 (-558))) ((|#2|) . T) (((-855 |#1|)) . T))
+((((-1112 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-558)) |has| |#1| (-1028 (-558))) (((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) ((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
((($ $) . T))
-((((-658 |#1|)) . T))
-((($) . T) (((-402 (-554))) |has| |#2| (-38 (-402 (-554)))) ((|#2|) . T))
-((((-116 |#1|)) . T) (((-402 (-554))) . T) (($) . T))
-((((-554)) -12 (|has| |#1| (-871 (-554))) (|has| |#3| (-871 (-554)))) (((-374)) -12 (|has| |#1| (-871 (-374))) (|has| |#3| (-871 (-374)))))
+((((-662 |#1|)) . T))
+((($) . T) (((-406 (-558))) |has| |#2| (-38 (-406 (-558)))) ((|#2|) . T))
+((((-116 |#1|)) . T) (((-406 (-558))) . T) (($) . T))
+((((-558)) -12 (|has| |#1| (-876 (-558))) (|has| |#3| (-876 (-558)))) (((-378)) -12 (|has| |#1| (-876 (-378))) (|has| |#3| (-876 (-378)))))
(((|#2|) . T) ((|#6|) . T))
-(((|#1|) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) (($) . T))
-((((-142)) . T))
+(((|#1|) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) (($) . T))
+((((-143)) . T))
((($) . T))
-((($) . T) ((|#1|) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))))
-((((-374)) . T) (((-402 (-554))) . T) (($) . T) (((-554)) . T))
-((($) . T) ((|#1|) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))))
+((($) . T) ((|#1|) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
+((((-378)) . T) (((-406 (-558))) . T) (($) . T) (((-558)) . T))
+((($) . T) ((|#1|) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
(((|#1|) . T))
-(|has| |#2| (-894))
-(|has| |#1| (-894))
-(|has| |#1| (-894))
+(|has| |#2| (-899))
+(|has| |#1| (-899))
+(|has| |#1| (-899))
(((|#4|) . T))
-(|has| |#2| (-1007))
+(|has| |#2| (-1012))
((($) . T))
-(|has| |#1| (-894))
-((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T))
+(|has| |#1| (-899))
+((((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T))
((($) . T))
(((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
((($) . T))
-(|has| |#1| (-358))
-((((-895 |#1|)) . T))
-((($) -3994 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))))
-((($ $) . T) ((#0=(-402 (-554)) #0#) . T))
-(-3994 (|has| |#1| (-363)) (|has| |#1| (-836)))
-(((|#1|) . T))
-((((-758)) . T))
-((((-848)) . T))
-((((-1158)) -12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158)))))
-((((-402 |#2|) |#3|) . T))
-((($) . T) (((-402 (-554))) . T))
-((($) . T) (((-554)) . T) (((-402 (-554))) . T) (((-600 $)) . T))
-((((-554)) . T) (($) . T))
-((((-554)) . T) (($) . T))
-((((-758) |#1|) . T))
-(((|#2| (-236 (-2563 |#1|) (-758))) . T))
-(((|#1| (-525 |#3|)) . T))
-((((-402 (-554))) . T))
-(-3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894)))
-((((-1140)) . T) (((-848)) . T))
-(((#0=(-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) #0#) |has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-304 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))))))
-((((-1140)) . T))
-(|has| |#1| (-894))
-(|has| |#2| (-358))
-(-3994 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-780)) (|has| |#2| (-834)) (|has| |#2| (-1034)))
-((((-167 (-374))) . T) (((-221)) . T) (((-374)) . T))
-((((-848)) . T))
-(((|#1|) . T))
-((((-374)) . T) (((-554)) . T))
-(((#0=(-402 (-554)) #0#) . T) (($ $) . T))
+(|has| |#1| (-362))
+((((-900 |#1|)) . T))
+((($) -3998 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
+((($ $) . T) ((#0=(-406 (-558)) #0#) . T))
+(-3998 (|has| |#1| (-367)) (|has| |#1| (-841)))
+(((|#1|) . T))
+((((-762)) . T))
+((((-853)) . T))
+((((-1163)) -12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163)))))
+((((-406 |#2|) |#3|) . T))
+((($) . T) (((-406 (-558))) . T))
+((($) . T) (((-558)) . T) (((-406 (-558))) . T) (((-604 $)) . T))
+((((-558)) . T) (($) . T))
+((((-558)) . T) (($) . T))
+((((-762) |#1|) . T))
+(((|#2| (-239 (-2755 |#1|) (-762))) . T))
+(((|#1| (-529 |#3|)) . T))
+((((-406 (-558))) . T))
+(-3998 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
+((((-1145)) . T) (((-853)) . T))
+(((#0=(-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) #0#) |has| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-308 (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))))))
+((((-1145)) . T))
+(|has| |#1| (-899))
+(|has| |#2| (-362))
+(-3998 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-784)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
+((((-168 (-378))) . T) (((-224)) . T) (((-378)) . T))
+((((-853)) . T))
+(((|#1|) . T))
+((((-378)) . T) (((-558)) . T))
+(((#0=(-406 (-558)) #0#) . T) (($ $) . T))
((($ $) . T))
((($ $) . T))
(((|#1| |#1|) . T))
-((((-848)) . T))
-(|has| |#1| (-546))
-((((-402 (-554))) . T) (($) . T))
-((($) . T))
-((($) . T))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-38 (-402 (-554))))
-(-3994 (|has| |#1| (-302)) (|has| |#1| (-358)) (|has| |#1| (-344)))
-(|has| |#1| (-38 (-402 (-554))))
-(-12 (|has| |#1| (-539)) (|has| |#1| (-815)))
-((((-848)) . T))
-((((-1158)) -3994 (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158)))) (-12 (|has| |#1| (-358)) (|has| |#2| (-885 (-1158))))))
-(|has| |#1| (-358))
-((((-1158)) -12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158)))))
-(|has| |#1| (-358))
-((((-402 (-554))) . T) (($) . T))
-((($) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) . T))
-((((-554) |#1|) . T))
-(((|#1|) . T))
-(((|#2|) |has| |#1| (-358)))
-(((|#2|) |has| |#1| (-358)))
-((((-554)) . T) (($) . T))
-((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T))
-(((|#1|) . T))
-(((|#1|) |has| |#1| (-170)))
-(((|#1|) . T))
-(((|#2|) . T) (((-1158)) -12 (|has| |#1| (-358)) (|has| |#2| (-1023 (-1158)))) (((-554)) -12 (|has| |#1| (-358)) (|has| |#2| (-1023 (-554)))) (((-402 (-554))) -12 (|has| |#1| (-358)) (|has| |#2| (-1023 (-554)))))
-(((|#2|) . T))
-((((-1158) #0=(-1227 |#1| |#2| |#3| |#4|)) |has| #0# (-508 (-1158) #0#)) ((#0# #0#) |has| #0# (-304 #0#)))
-((((-600 $) $) . T) (($ $) . T))
-((((-167 (-221))) . T) (((-167 (-374))) . T) (((-1154 (-685))) . T) (((-877 (-374))) . T))
-((((-848)) . T))
-(|has| |#1| (-546))
-(|has| |#1| (-546))
-(|has| (-402 |#2|) (-229))
-(((|#1| (-402 (-554))) . T))
+((((-853)) . T))
+(|has| |#1| (-550))
+((((-406 (-558))) . T) (($) . T))
+((($) . T))
+((($) . T))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-38 (-406 (-558))))
+(-3998 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348)))
+(|has| |#1| (-38 (-406 (-558))))
+(-12 (|has| |#1| (-543)) (|has| |#1| (-819)))
+((((-853)) . T))
+((((-1163)) -3998 (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163)))) (-12 (|has| |#1| (-362)) (|has| |#2| (-890 (-1163))))))
+(|has| |#1| (-362))
+((((-1163)) -12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163)))))
+(|has| |#1| (-362))
+((((-406 (-558))) . T) (($) . T))
+((($) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) . T))
+((((-558) |#1|) . T))
+(((|#1|) . T))
+(((|#2|) |has| |#1| (-362)))
+(((|#2|) |has| |#1| (-362)))
+((((-558)) . T) (($) . T))
+((((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T))
+(((|#1|) . T))
+(((|#1|) |has| |#1| (-171)))
+(((|#1|) . T))
+(((|#2|) . T) (((-1163)) -12 (|has| |#1| (-362)) (|has| |#2| (-1028 (-1163)))) (((-558)) -12 (|has| |#1| (-362)) (|has| |#2| (-1028 (-558)))) (((-406 (-558))) -12 (|has| |#1| (-362)) (|has| |#2| (-1028 (-558)))))
+(((|#2|) . T))
+((((-1163) #0=(-1232 |#1| |#2| |#3| |#4|)) |has| #0# (-512 (-1163) #0#)) ((#0# #0#) |has| #0# (-308 #0#)))
+((((-604 $) $) . T) (($ $) . T))
+((((-168 (-224))) . T) (((-168 (-378))) . T) (((-1159 (-689))) . T) (((-882 (-378))) . T))
+((((-853)) . T))
+(|has| |#1| (-550))
+(|has| |#1| (-550))
+(|has| (-406 |#2|) (-232))
+(((|#1| (-406 (-558))) . T))
((($ $) . T))
-((((-1158)) |has| |#2| (-885 (-1158))))
-((($) . T))
-((((-848)) . T))
-((((-402 (-554))) . T) (($) . T))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-((((-848)) . T))
-(((|#2|) |has| |#1| (-358)))
-((((-374)) -12 (|has| |#1| (-358)) (|has| |#2| (-871 (-374)))) (((-554)) -12 (|has| |#1| (-358)) (|has| |#2| (-871 (-554)))))
-(|has| |#1| (-358))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-(-3994 (|has| |#1| (-358)) (|has| |#1| (-546)))
-(|has| |#1| (-358))
-(-3994 (|has| |#1| (-358)) (|has| |#1| (-546)))
-(|has| |#1| (-358))
-(|has| |#1| (-546))
-(((|#1|) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))))
+((((-1163)) |has| |#2| (-890 (-1163))))
+((($) . T))
+((((-853)) . T))
+((((-406 (-558))) . T) (($) . T))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+((((-853)) . T))
+(((|#2|) |has| |#1| (-362)))
+((((-378)) -12 (|has| |#1| (-362)) (|has| |#2| (-876 (-378)))) (((-558)) -12 (|has| |#1| (-362)) (|has| |#2| (-876 (-558)))))
+(|has| |#1| (-362))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+(-3998 (|has| |#1| (-362)) (|has| |#1| (-550)))
+(|has| |#1| (-362))
+(-3998 (|has| |#1| (-362)) (|has| |#1| (-550)))
+(|has| |#1| (-362))
+(|has| |#1| (-550))
+(((|#1|) . T))
+(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))
(((|#3|) . T))
-((((-1140)) . T) (((-1158)) . T) (((-221)) . T) (((-554)) . T))
+((((-1145)) . T) (((-1163)) . T) (((-224)) . T) (((-558)) . T))
(((|#1|) . T))
-((((-402 |#2|)) . T) (((-402 (-554))) . T) (($) . T) (((-554)) . T))
-(-3994 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-780)) (|has| |#2| (-834)) (|has| |#2| (-1034)))
+((((-406 |#2|)) . T) (((-406 (-558))) . T) (($) . T) (((-558)) . T))
+(-3998 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-784)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
(((|#2|) . T))
(((|#2|) . T))
-(-3994 (|has| |#2| (-170)) (|has| |#2| (-713)) (|has| |#2| (-834)) (|has| |#2| (-1034)))
-((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T))
-((((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) . T))
-((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T))
-(|has| |#1| (-38 (-402 (-554))))
+(-3998 (|has| |#2| (-171)) (|has| |#2| (-717)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
+((((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T))
+((((-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) . T))
+((((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T))
+(|has| |#1| (-38 (-406 (-558))))
(((|#1| |#2|) . T))
-(|has| |#1| (-38 (-402 (-554))))
-(-3994 (|has| |#1| (-143)) (|has| |#1| (-363)))
-(|has| |#1| (-145))
-((((-1140) |#1|) . T))
-(-3994 (|has| |#1| (-143)) (|has| |#1| (-363)))
-(|has| |#1| (-145))
-(-3994 (|has| |#1| (-143)) (|has| |#1| (-363)))
-(|has| |#1| (-145))
-((((-571 |#1|)) . T))
-((($) . T))
-((((-402 |#2|)) . T))
-(|has| |#1| (-546))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-38 (-402 (-554))))
-(-3994 (|has| |#1| (-143)) (|has| |#1| (-344)))
-(|has| |#1| (-145))
-((((-848)) . T))
-((($) . T))
-((((-402 (-554))) |has| |#2| (-1023 (-554))) (((-554)) |has| |#2| (-1023 (-554))) (((-1158)) |has| |#2| (-1023 (-1158))) ((|#2|) . T))
-(((#0=(-402 |#2|) #0#) . T) ((#1=(-402 (-554)) #1#) . T) (($ $) . T))
-((((-1122 |#1| |#2|)) . T))
-(((|#1| (-554)) . T))
-(((|#1| (-402 (-554))) . T))
-((((-554)) |has| |#2| (-871 (-554))) (((-374)) |has| |#2| (-871 (-374))))
-(((|#2|) . T))
-((((-402 |#2|)) . T) (((-402 (-554))) . T) (($) . T))
+(|has| |#1| (-38 (-406 (-558))))
+(-3998 (|has| |#1| (-144)) (|has| |#1| (-367)))
+(|has| |#1| (-146))
+((((-1145) |#1|) . T))
+(-3998 (|has| |#1| (-144)) (|has| |#1| (-367)))
+(|has| |#1| (-146))
+(-3998 (|has| |#1| (-144)) (|has| |#1| (-367)))
+(|has| |#1| (-146))
+((((-575 |#1|)) . T))
+((($) . T))
+((((-406 |#2|)) . T))
+(|has| |#1| (-550))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-38 (-406 (-558))))
+(-3998 (|has| |#1| (-144)) (|has| |#1| (-348)))
+(|has| |#1| (-146))
+((((-853)) . T))
+((($) . T))
+((((-406 (-558))) |has| |#2| (-1028 (-558))) (((-558)) |has| |#2| (-1028 (-558))) (((-1163)) |has| |#2| (-1028 (-1163))) ((|#2|) . T))
+(((#0=(-406 |#2|) #0#) . T) ((#1=(-406 (-558)) #1#) . T) (($ $) . T))
+((((-1127 |#1| |#2|)) . T))
+(((|#1| (-558)) . T))
+(((|#1| (-406 (-558))) . T))
+((((-558)) |has| |#2| (-876 (-558))) (((-378)) |has| |#2| (-876 (-378))))
+(((|#2|) . T))
+((((-406 |#2|)) . T) (((-406 (-558))) . T) (($) . T))
((((-112)) . T))
-(((|#1| |#2| (-236 |#1| |#2|) (-236 |#1| |#2|)) . T))
-(((|#2|) . T))
-((((-848)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-((((-1158) (-52)) . T))
-((((-402 |#2|)) . T))
-((((-848)) . T))
-(((|#1|) . T))
-(|has| |#1| (-1082))
-(|has| |#1| (-778))
-(|has| |#1| (-778))
-((((-848)) . T))
-((((-895 |#1|)) . T) (((-402 (-554))) . T) (($) . T) (((-554)) . T))
-((((-530)) |has| |#1| (-602 (-530))))
-((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-836)) (|has| |#1| (-1082))))
+(((|#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) . T))
+(((|#2|) . T))
+((((-853)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+((((-1163) (-52)) . T))
+((((-406 |#2|)) . T))
+((((-853)) . T))
+(((|#1|) . T))
+(|has| |#1| (-1087))
+(|has| |#1| (-782))
+(|has| |#1| (-782))
+((((-853)) . T))
+((((-900 |#1|)) . T) (((-406 (-558))) . T) (($) . T) (((-558)) . T))
+((((-534)) |has| |#1| (-606 (-534))))
+((((-853)) -3998 (|has| |#1| (-605 (-853))) (|has| |#1| (-841)) (|has| |#1| (-1087))))
((((-114)) . T) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-221)) . T) (((-374)) . T) (((-877 (-374))) . T))
-((((-848)) . T))
-((((-1227 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-402 (-554))) . T))
-(((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-546)) (((-402 (-554))) |has| |#1| (-546)))
-((((-848)) . T))
-((((-848)) . T))
-(((|#2|) . T))
-((((-848)) . T))
-(((#0=(-895 |#1|) #0#) . T) (($ $) . T) ((#1=(-402 (-554)) #1#) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-895 |#1|)) . T) (($) . T) (((-402 (-554))) . T))
-(|has| |#1| (-358))
-((((-848)) . T))
-(((|#2|) . T))
-((((-554)) . T))
-((((-848)) . T))
-((((-554)) . T))
-(-3994 (|has| |#2| (-780)) (|has| |#2| (-834)))
-((((-167 (-374))) . T) (((-221)) . T) (((-374)) . T))
-((((-848)) . T))
-((((-848)) . T))
-((((-1140)) . T) (((-530)) . T) (((-554)) . T) (((-877 (-554))) . T) (((-374)) . T) (((-221)) . T))
-((((-848)) . T))
-(|has| |#1| (-145))
-(|has| |#1| (-143))
-((($) . T) ((#0=(-1226 |#2| |#3| |#4|)) |has| #0# (-170)) (((-402 (-554))) |has| #0# (-38 (-402 (-554)))))
-(((|#1|) . T) (($) . T) (((-402 (-554))) . T))
-(|has| |#1| (-358))
-(|has| |#1| (-358))
-((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-1082))))
-((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-1082))))
-(-3994 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-467)) (|has| |#1| (-713)) (|has| |#1| (-885 (-1158))) (|has| |#1| (-1034)) (|has| |#1| (-1094)) (|has| |#1| (-1082)))
-(|has| |#1| (-1133))
-((((-554) |#1|) . T))
-(((|#1|) . T))
-(((#0=(-116 |#1|) $) |has| #0# (-281 #0# #0#)))
-(((|#1|) |has| |#1| (-170)))
-((((-311 |#1|)) . T) (((-554)) . T))
+((((-224)) . T) (((-378)) . T) (((-882 (-378))) . T))
+((((-853)) . T))
+((((-1232 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-406 (-558))) . T))
+(((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-550)) (((-406 (-558))) |has| |#1| (-550)))
+((((-853)) . T))
+((((-853)) . T))
+(((|#2|) . T))
+((((-853)) . T))
+(((#0=(-900 |#1|) #0#) . T) (($ $) . T) ((#1=(-406 (-558)) #1#) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-900 |#1|)) . T) (($) . T) (((-406 (-558))) . T))
+(|has| |#1| (-362))
+((((-853)) . T))
+(((|#2|) . T))
+((((-558)) . T))
+((((-853)) . T))
+((((-558)) . T))
+(-3998 (|has| |#2| (-784)) (|has| |#2| (-839)))
+((((-168 (-378))) . T) (((-224)) . T) (((-378)) . T))
+((((-853)) . T))
+((((-853)) . T))
+((((-1145)) . T) (((-534)) . T) (((-558)) . T) (((-882 (-558))) . T) (((-378)) . T) (((-224)) . T))
+((((-853)) . T))
+(|has| |#1| (-146))
+(|has| |#1| (-144))
+((($) . T) ((#0=(-1231 |#2| |#3| |#4|)) |has| #0# (-171)) (((-406 (-558))) |has| #0# (-38 (-406 (-558)))))
+(((|#1|) . T) (($) . T) (((-406 (-558))) . T))
+(|has| |#1| (-362))
+(|has| |#1| (-362))
+((((-853)) -3998 (|has| |#1| (-605 (-853))) (|has| |#1| (-1087))))
+((((-853)) -3998 (|has| |#1| (-605 (-853))) (|has| |#1| (-1087))))
+(-3998 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-471)) (|has| |#1| (-717)) (|has| |#1| (-890 (-1163))) (|has| |#1| (-1039)) (|has| |#1| (-1099)) (|has| |#1| (-1087)))
+(|has| |#1| (-1138))
+((((-558) |#1|) . T))
+(((|#1|) . T))
+(((#0=(-116 |#1|) $) |has| #0# (-285 #0# #0#)))
+(((|#1|) |has| |#1| (-171)))
+((((-315 |#1|)) . T) (((-558)) . T))
(((|#1|) . T))
((((-114)) . T) ((|#1|) . T))
-((((-848)) . T))
+((((-853)) . T))
(((|#1| |#2|) . T))
-((((-1158) |#1|) . T))
-(((|#1|) |has| |#1| (-304 |#1|)))
-((((-554) |#1|) . T))
+((((-1163) |#1|) . T))
+(((|#1|) |has| |#1| (-308 |#1|)))
+((((-558) |#1|) . T))
(((|#1|) . T))
-((((-554)) . T) (((-402 (-554))) . T))
+((((-558)) . T) (((-406 (-558))) . T))
(((|#1|) . T))
-(|has| |#1| (-546))
-((((-402 |#2|)) . T) (((-402 (-554))) . T) (($) . T))
-(-3994 (|has| |#1| (-358)) (|has| |#1| (-546)))
-(-3994 (|has| |#1| (-358)) (|has| |#1| (-546)))
-((((-374)) . T))
+(|has| |#1| (-550))
+((((-406 |#2|)) . T) (((-406 (-558))) . T) (($) . T))
+(-3998 (|has| |#1| (-362)) (|has| |#1| (-550)))
+(-3998 (|has| |#1| (-362)) (|has| |#1| (-550)))
+((((-378)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-358))
-(|has| |#1| (-358))
-(|has| |#1| (-546))
-(|has| |#1| (-1082))
-((((-767 |#1| (-850 |#2|))) |has| (-767 |#1| (-850 |#2|)) (-304 (-767 |#1| (-850 |#2|)))))
-(-3994 (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894)))
+(|has| |#1| (-362))
+(|has| |#1| (-362))
+(|has| |#1| (-550))
+(|has| |#1| (-1087))
+((((-771 |#1| (-855 |#2|))) |has| (-771 |#1| (-855 |#2|)) (-308 (-771 |#1| (-855 |#2|)))))
+(-3998 (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899)))
(((|#1|) . T))
(((|#2| |#3|) . T))
(((|#1|) . T))
-(|has| |#2| (-894))
-(((|#1| (-525 |#2|)) . T))
-(((|#1| (-758)) . T))
-(|has| |#1| (-229))
-(((|#1| (-525 (-1070 (-1158)))) . T))
-(|has| |#2| (-358))
-((((-571 |#1|)) . T) (((-402 (-554))) . T) (($) . T) (((-554)) . T))
-((((-554)) . T) (((-402 (-554))) . T) (($) . T))
-((((-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) . T))
-(((|#1|) . T))
-(((|#1|) . T) (((-554)) . T))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-((((-848)) . T))
-((((-848)) . T))
-(-3994 (|has| |#3| (-780)) (|has| |#3| (-834)))
-((((-848)) . T))
-((((-1102)) . T) (((-848)) . T))
-((((-848)) . T))
-(((|#1|) . T))
-((($ $) . T) (((-600 $) $) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-554)) . T))
+(|has| |#2| (-899))
+(((|#1| (-529 |#2|)) . T))
+(((|#1| (-762)) . T))
+(|has| |#1| (-232))
+(((|#1| (-529 (-1075 (-1163)))) . T))
+(|has| |#2| (-362))
+((((-575 |#1|)) . T) (((-406 (-558))) . T) (($) . T) (((-558)) . T))
+((((-558)) . T) (((-406 (-558))) . T) (($) . T))
+((((-2 (|:| -2700 (-1145)) (|:| -2981 (-52)))) . T))
+(((|#1|) . T))
+(((|#1|) . T) (((-558)) . T))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+((((-853)) . T))
+((((-853)) . T))
+(-3998 (|has| |#3| (-784)) (|has| |#3| (-839)))
+((((-853)) . T))
+((((-1107)) . T) (((-853)) . T))
+((((-534)) . T) (((-853)) . T))
+(((|#1|) . T))
+((($ $) . T) (((-604 $) $) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-558)) . T))
(((|#3|) . T))
-((((-848)) . T))
-(-3994 (|has| |#1| (-302)) (|has| |#1| (-358)) (|has| |#1| (-344)))
-((((-554)) . T) (((-402 (-554))) -3994 (|has| |#2| (-38 (-402 (-554)))) (|has| |#2| (-1023 (-402 (-554))))) ((|#2|) . T) (($) -3994 (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))) (((-850 |#1|)) . T))
-((((-1107 |#1| |#2|)) . T) ((|#2|) . T) (($) -3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) . T) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554))))) (((-554)) . T))
-((((-1154 |#1|)) . T) (((-554)) . T) (($) -3994 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) (((-1064)) . T) ((|#1|) . T) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554))))))
-(-3994 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-546)) (|has| |#1| (-1034)))
-((((-1107 |#1| (-1158))) . T) (((-554)) . T) (((-1070 (-1158))) . T) (($) -3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) . T) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554))))) (((-1158)) . T))
-(((#0=(-571 |#1|) #0#) . T) (($ $) . T) ((#1=(-402 (-554)) #1#) . T))
-((($ $) . T) ((#0=(-402 (-554)) #0#) . T))
-(((|#1|) |has| |#1| (-170)))
-(((|#1| (-1241 |#1|) (-1241 |#1|)) . T))
-((((-571 |#1|)) . T) (($) . T) (((-402 (-554))) . T))
-((($) . T) (((-402 (-554))) . T))
-((($) . T) (((-402 (-554))) . T))
-(((|#2|) |has| |#2| (-6 (-4375 "*"))))
-(((|#1|) . T))
-((((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) ((|#1|) . T) (((-554)) . T))
-(((|#1|) . T))
-((((-848)) . T))
-((((-289 |#3|)) . T))
-(((#0=(-402 (-554)) #0#) |has| |#2| (-38 (-402 (-554)))) ((|#2| |#2|) . T) (($ $) -3994 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))))
+((((-853)) . T))
+(-3998 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348)))
+((((-558)) . T) (((-406 (-558))) -3998 (|has| |#2| (-38 (-406 (-558)))) (|has| |#2| (-1028 (-406 (-558))))) ((|#2|) . T) (($) -3998 (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))) (((-855 |#1|)) . T))
+((((-1112 |#1| |#2|)) . T) ((|#2|) . T) (($) -3998 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) . T) (((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558))))) (((-558)) . T))
+((((-1159 |#1|)) . T) (((-558)) . T) (($) -3998 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) (((-1069)) . T) ((|#1|) . T) (((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558))))))
+(-3998 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-550)) (|has| |#1| (-1039)))
+((((-1112 |#1| (-1163))) . T) (((-558)) . T) (((-1075 (-1163))) . T) (($) -3998 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) . T) (((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558))))) (((-1163)) . T))
+(((#0=(-575 |#1|) #0#) . T) (($ $) . T) ((#1=(-406 (-558)) #1#) . T))
+((($ $) . T) ((#0=(-406 (-558)) #0#) . T))
+(((|#1|) |has| |#1| (-171)))
+(((|#1| (-1246 |#1|) (-1246 |#1|)) . T))
+((((-575 |#1|)) . T) (($) . T) (((-406 (-558))) . T))
+((($) . T) (((-406 (-558))) . T))
+((($) . T) (((-406 (-558))) . T))
+(((|#2|) |has| |#2| (-6 (-4384 "*"))))
+(((|#1|) . T))
+((((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) ((|#1|) . T) (((-558)) . T))
+(((|#1|) . T))
+((((-853)) . T))
+((((-293 |#3|)) . T))
+(((#0=(-406 (-558)) #0#) |has| |#2| (-38 (-406 (-558)))) ((|#2| |#2|) . T) (($ $) -3998 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))))
(((|#2| |#2|) . T) ((|#6| |#6|) . T))
(((|#1|) . T))
-((($) . T) (((-402 (-554))) |has| |#2| (-38 (-402 (-554)))) ((|#2|) . T))
-((($) . T) ((|#1|) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))))
-(((|#1|) . T) (((-402 (-554))) . T) (($) . T))
-(((|#1|) . T) (((-402 (-554))) . T) (($) . T))
-(((|#1|) . T) (((-402 (-554))) . T) (($) . T))
-((($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1| |#1|) . T) ((#0=(-402 (-554)) #0#) |has| |#1| (-38 (-402 (-554)))))
-((($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1| |#1|) . T) ((#0=(-402 (-554)) #0#) |has| |#1| (-38 (-402 (-554)))))
+((($) . T) (((-406 (-558))) |has| |#2| (-38 (-406 (-558)))) ((|#2|) . T))
+((($) . T) ((|#1|) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
+(((|#1|) . T) (((-406 (-558))) . T) (($) . T))
+(((|#1|) . T) (((-406 (-558))) . T) (($) . T))
+(((|#1|) . T) (((-406 (-558))) . T) (($) . T))
+((($ $) -3998 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1| |#1|) . T) ((#0=(-406 (-558)) #0#) |has| |#1| (-38 (-406 (-558)))))
+((($ $) -3998 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1| |#1|) . T) ((#0=(-406 (-558)) #0#) |has| |#1| (-38 (-406 (-558)))))
(((|#2|) . T))
-((((-402 (-554))) |has| |#2| (-38 (-402 (-554)))) ((|#2|) . T) (($) -3994 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))))
+((((-406 (-558))) |has| |#2| (-38 (-406 (-558)))) ((|#2|) . T) (($) -3998 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))))
(((|#2|) . T) ((|#6|) . T))
-((($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1| |#1|) . T) ((#0=(-402 (-554)) #0#) |has| |#1| (-38 (-402 (-554)))))
-((((-848)) . T))
-((($) -3994 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))))
-((($) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))))
-(|has| |#2| (-894))
-(|has| |#1| (-894))
-((($) -3994 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))))
-((((-848)) . T))
+((($ $) -3998 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1| |#1|) . T) ((#0=(-406 (-558)) #0#) |has| |#1| (-38 (-406 (-558)))))
+((((-853)) . T))
+((($) -3998 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
+((($) -3998 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
+(|has| |#2| (-899))
+(|has| |#1| (-899))
+((($) -3998 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
+((((-853)) . T))
(((|#1|) . T))
-((((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) . T))
+((((-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1082))
-(((|#1|) . T))
-((((-1158)) . T) ((|#1|) . T))
-((((-848)) . T))
-((((-848)) . T))
-(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))))
-(((#0=(-402 (-554)) #0#) . T))
-((((-402 (-554))) . T))
-(-3994 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-780)) (|has| |#2| (-834)) (|has| |#2| (-1034)))
-(((|#1|) . T))
-(((|#1|) . T))
-(-3994 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-834)) (|has| |#2| (-1034)))
-((((-402 (-554))) . T) (((-554)) . T) (($) . T))
-((((-530)) . T))
-((((-848)) . T))
-((((-554)) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-546)))
-((((-1158)) |has| |#2| (-885 (-1158))) (((-1064)) . T))
-((((-1226 |#2| |#3| |#4|)) . T))
-((((-895 |#1|)) . T))
-((($) . T) (((-402 (-554))) . T))
-(-12 (|has| |#1| (-358)) (|has| |#2| (-807)))
-(-12 (|has| |#1| (-358)) (|has| |#2| (-807)))
-((((-848)) . T))
-(|has| |#1| (-1199))
-(((|#2|) . T))
-((($ $) . T) ((#0=(-402 (-554)) #0#) . T))
-((((-1158)) |has| |#1| (-885 (-1158))))
-((((-895 |#1|)) . T) (((-402 (-554))) . T) (($) . T))
-((($) . T) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) ((|#1|) . T))
-(((#0=(-402 (-554)) #0#) |has| |#1| (-38 (-402 (-554)))) ((|#1| |#1|) . T) (($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-546))))
-((($) . T) (((-402 (-554))) . T))
-(((|#1|) . T) (((-402 (-554))) . T) (((-554)) . T) (($) . T))
-(((|#2|) |has| |#2| (-1034)) (((-554)) -12 (|has| |#2| (-627 (-554))) (|has| |#2| (-1034))))
-((((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) . T) (($) -3994 (|has| |#1| (-170)) (|has| |#1| (-546))))
-(|has| |#1| (-546))
-(((|#1|) |has| |#1| (-358)))
-((((-554)) . T))
-(|has| |#1| (-778))
-(|has| |#1| (-778))
-((((-1158) #0=(-116 |#1|)) |has| #0# (-508 (-1158) #0#)) ((#0# #0#) |has| #0# (-304 #0#)))
-(((|#2|) . T) (((-554)) |has| |#2| (-1023 (-554))) (((-402 (-554))) |has| |#2| (-1023 (-402 (-554)))))
-((((-1064)) . T) ((|#2|) . T) (((-554)) |has| |#2| (-1023 (-554))) (((-402 (-554))) |has| |#2| (-1023 (-402 (-554)))))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-554) (-758)) . T) ((|#3| (-758)) . T))
+(|has| |#1| (-1087))
+(((|#1|) . T))
+((((-1163)) . T) ((|#1|) . T))
+((((-853)) . T))
+((((-853)) . T))
+(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))
+(((#0=(-406 (-558)) #0#) . T))
+((((-406 (-558))) . T))
+(-3998 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-784)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
+(((|#1|) . T))
+(((|#1|) . T))
+(-3998 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
+((((-406 (-558))) . T) (((-558)) . T) (($) . T))
+((((-534)) . T))
+((((-853)) . T))
+((((-558)) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-550)))
+((((-1163)) |has| |#2| (-890 (-1163))) (((-1069)) . T))
+((((-1231 |#2| |#3| |#4|)) . T))
+((((-900 |#1|)) . T))
+((($) . T) (((-406 (-558))) . T))
+(-12 (|has| |#1| (-362)) (|has| |#2| (-811)))
+(-12 (|has| |#1| (-362)) (|has| |#2| (-811)))
+((((-853)) . T))
+(|has| |#1| (-1204))
+(((|#2|) . T))
+((($ $) . T) ((#0=(-406 (-558)) #0#) . T))
+((((-1163)) |has| |#1| (-890 (-1163))))
+((((-900 |#1|)) . T) (((-406 (-558))) . T) (($) . T))
+((($) . T) (((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) ((|#1|) . T))
+(((#0=(-406 (-558)) #0#) |has| |#1| (-38 (-406 (-558)))) ((|#1| |#1|) . T) (($ $) -3998 (|has| |#1| (-171)) (|has| |#1| (-550))))
+((($) . T) (((-406 (-558))) . T))
+(((|#1|) . T) (((-406 (-558))) . T) (((-558)) . T) (($) . T))
+(((|#2|) |has| |#2| (-1039)) (((-558)) -12 (|has| |#2| (-631 (-558))) (|has| |#2| (-1039))))
+((((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) . T) (($) -3998 (|has| |#1| (-171)) (|has| |#1| (-550))))
+(|has| |#1| (-550))
+(((|#1|) |has| |#1| (-362)))
+((((-558)) . T))
+(|has| |#1| (-782))
+(|has| |#1| (-782))
+((((-1163) #0=(-116 |#1|)) |has| #0# (-512 (-1163) #0#)) ((#0# #0#) |has| #0# (-308 #0#)))
+(((|#2|) . T) (((-558)) |has| |#2| (-1028 (-558))) (((-406 (-558))) |has| |#2| (-1028 (-406 (-558)))))
+((((-1069)) . T) ((|#2|) . T) (((-558)) |has| |#2| (-1028 (-558))) (((-406 (-558))) |has| |#2| (-1028 (-406 (-558)))))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-558) (-762)) . T) ((|#3| (-762)) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-((((-848)) . T))
-(|has| |#2| (-807))
-(|has| |#2| (-807))
-((((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) ((|#2|) |has| |#1| (-358)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-(((|#1|) . T) (((-554)) |has| |#1| (-1023 (-554))) (((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))))
-((((-554)) |has| |#1| (-871 (-554))) (((-374)) |has| |#1| (-871 (-374))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+((((-853)) . T))
+(|has| |#2| (-811))
+(|has| |#2| (-811))
+((((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) ((|#2|) |has| |#1| (-362)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+(((|#1|) . T) (((-558)) |has| |#1| (-1028 (-558))) (((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))))
+((((-558)) |has| |#1| (-876 (-558))) (((-378)) |has| |#1| (-876 (-378))))
(((|#1|) . T))
-((((-855 |#1|)) . T))
-((((-855 |#1|)) . T))
-(-12 (|has| |#1| (-358)) (|has| |#2| (-894)))
-((((-402 (-554))) . T) (((-685)) . T) (($) . T))
-(|has| |#1| (-358))
-(|has| |#1| (-358))
+((((-860 |#1|)) . T))
+((((-860 |#1|)) . T))
+(-12 (|has| |#1| (-362)) (|has| |#2| (-899)))
+((((-406 (-558))) . T) (((-689)) . T) (($) . T))
+(|has| |#1| (-362))
+(|has| |#1| (-362))
(((|#1|) . T))
(((|#1|) . T))
-(((|#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))))
-(|has| |#1| (-358))
+(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))
+(|has| |#1| (-362))
(((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-850 |#1|)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#2| (-758)) . T))
-((((-1158)) . T))
-((((-855 |#1|)) . T))
-(-3994 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-780)) (|has| |#3| (-834)) (|has| |#3| (-1034)))
-(-3994 (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-834)) (|has| |#3| (-1034)))
-((((-848)) . T))
-(((|#1|) . T))
-(-3994 (|has| |#2| (-780)) (|has| |#2| (-834)))
-(-3994 (-12 (|has| |#1| (-780)) (|has| |#2| (-780))) (-12 (|has| |#1| (-836)) (|has| |#2| (-836))))
((((-855 |#1|)) . T))
(((|#1|) . T))
-(|has| |#1| (-363))
-(|has| |#1| (-363))
-(|has| |#1| (-363))
-((($ $) . T) (((-600 $) $) . T))
-((($) . T))
-((((-848)) . T))
-((((-554)) . T))
-(((|#2|) . T))
-((((-848)) . T))
-(((|#1|) . T) (((-402 (-554))) |has| |#1| (-358)))
-((((-848)) . T))
-(((|#1|) . T))
-((((-848)) . T))
-((($) . T) ((|#2|) . T) (((-402 (-554))) . T))
-(|has| |#1| (-1082))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-848)) . T))
-(|has| |#2| (-894))
-((((-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) . T))
-((((-530)) |has| |#2| (-602 (-530))) (((-877 (-374))) |has| |#2| (-602 (-877 (-374)))) (((-877 (-554))) |has| |#2| (-602 (-877 (-554)))))
-((((-848)) . T))
-((((-848)) . T))
-(((|#3|) |has| |#3| (-1034)) (((-554)) -12 (|has| |#3| (-627 (-554))) (|has| |#3| (-1034))))
-((((-1107 |#1| |#2|)) . T) (((-937 |#1|)) |has| |#2| (-602 (-1158))) (((-848)) . T))
-((((-937 |#1|)) |has| |#2| (-602 (-1158))) (((-1140)) -12 (|has| |#1| (-1023 (-554))) (|has| |#2| (-602 (-1158)))) (((-877 (-554))) -12 (|has| |#1| (-602 (-877 (-554)))) (|has| |#2| (-602 (-877 (-554))))) (((-877 (-374))) -12 (|has| |#1| (-602 (-877 (-374)))) (|has| |#2| (-602 (-877 (-374))))) (((-530)) -12 (|has| |#1| (-602 (-530))) (|has| |#2| (-602 (-530)))))
-((((-1154 |#1|)) . T) (((-848)) . T))
-((((-848)) . T))
-((((-402 (-554))) |has| |#2| (-1023 (-402 (-554)))) (((-554)) |has| |#2| (-1023 (-554))) ((|#2|) . T) (((-850 |#1|)) . T))
-((((-116 |#1|)) . T) (($) . T) (((-402 (-554))) . T))
-((((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) (((-554)) |has| |#1| (-1023 (-554))) ((|#1|) . T) (((-1158)) . T))
-((((-848)) . T))
-((((-554)) . T))
-(((|#1|) . T))
-((($) . T))
-((((-374)) |has| |#1| (-871 (-374))) (((-554)) |has| |#1| (-871 (-554))))
-((((-554)) . T))
-(((|#1|) . T))
-((((-848)) . T))
-(((|#1|) . T))
-((((-848)) . T))
-((((-1163)) . T))
-((((-1163)) . T))
-((((-1163)) . T))
-((((-631 |#1|)) . T))
-((((-1163)) . T))
-((((-1163)) . T))
-((((-1163)) . T))
-(((|#1|) |has| |#1| (-170)) (($) . T))
-((((-554)) . T) (((-402 (-554))) . T))
-(((|#1|) |has| |#1| (-304 |#1|)))
-((((-848)) . T))
-((((-374)) . T))
-(((|#1|) . T))
(((|#1|) . T))
-((((-848)) . T))
-((((-402 (-554))) . T) (($) . T))
-((((-402 |#2|) |#3|) . T))
-(((|#1|) . T))
-(|has| |#1| (-1082))
-(((|#2| (-476 (-2563 |#1|) (-758))) . T))
-((((-554) |#1|) . T))
-((((-1140)) . T) (((-848)) . T))
+(((|#2| (-762)) . T))
+((((-1163)) . T))
+((((-860 |#1|)) . T))
+(-3998 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-784)) (|has| |#3| (-839)) (|has| |#3| (-1039)))
+(-3998 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-839)) (|has| |#3| (-1039)))
+((((-853)) . T))
+(((|#1|) . T))
+(-3998 (|has| |#2| (-784)) (|has| |#2| (-839)))
+(-3998 (-12 (|has| |#1| (-784)) (|has| |#2| (-784))) (-12 (|has| |#1| (-841)) (|has| |#2| (-841))))
+((((-860 |#1|)) . T))
+(((|#1|) . T))
+(|has| |#1| (-367))
+(|has| |#1| (-367))
+(|has| |#1| (-367))
+((($ $) . T) (((-604 $) $) . T))
+((($) . T))
+((((-853)) . T))
+((((-558)) . T))
+(((|#2|) . T))
+((((-853)) . T))
+(((|#1|) . T) (((-406 (-558))) |has| |#1| (-362)))
+((((-853)) . T))
+(((|#1|) . T))
+((((-853)) . T))
+((($) . T) ((|#2|) . T) (((-406 (-558))) . T))
+(|has| |#1| (-1087))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-853)) . T))
+(|has| |#2| (-899))
+((((-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) . T))
+((((-534)) |has| |#2| (-606 (-534))) (((-882 (-378))) |has| |#2| (-606 (-882 (-378)))) (((-882 (-558))) |has| |#2| (-606 (-882 (-558)))))
+((((-853)) . T))
+((((-853)) . T))
+(((|#3|) |has| |#3| (-1039)) (((-558)) -12 (|has| |#3| (-631 (-558))) (|has| |#3| (-1039))))
+((((-1112 |#1| |#2|)) . T) (((-942 |#1|)) |has| |#2| (-606 (-1163))) (((-853)) . T))
+((((-942 |#1|)) |has| |#2| (-606 (-1163))) (((-1145)) -12 (|has| |#1| (-1028 (-558))) (|has| |#2| (-606 (-1163)))) (((-882 (-558))) -12 (|has| |#1| (-606 (-882 (-558)))) (|has| |#2| (-606 (-882 (-558))))) (((-882 (-378))) -12 (|has| |#1| (-606 (-882 (-378)))) (|has| |#2| (-606 (-882 (-378))))) (((-534)) -12 (|has| |#1| (-606 (-534))) (|has| |#2| (-606 (-534)))))
+((((-1159 |#1|)) . T) (((-853)) . T))
+((((-853)) . T))
+((((-406 (-558))) |has| |#2| (-1028 (-406 (-558)))) (((-558)) |has| |#2| (-1028 (-558))) ((|#2|) . T) (((-855 |#1|)) . T))
+((((-116 |#1|)) . T) (($) . T) (((-406 (-558))) . T))
+((((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) (((-558)) |has| |#1| (-1028 (-558))) ((|#1|) . T) (((-1163)) . T))
+((((-853)) . T))
+((((-558)) . T))
+(((|#1|) . T))
+((($) . T))
+((((-378)) |has| |#1| (-876 (-378))) (((-558)) |has| |#1| (-876 (-558))))
+((((-558)) . T))
+(((|#1|) . T))
+((((-853)) . T))
+(((|#1|) . T))
+((((-853)) . T))
+((((-1168)) . T))
+((((-1168)) . T))
+((((-1168)) . T))
+((((-635 |#1|)) . T))
+((((-1168)) . T))
+((((-1168)) . T))
+((((-1168)) . T))
+(((|#1|) |has| |#1| (-171)) (($) . T))
+((((-558)) . T) (((-406 (-558))) . T))
+(((|#1|) |has| |#1| (-308 |#1|)))
+((((-853)) . T))
+((((-378)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-853)) . T))
+((((-406 (-558))) . T) (($) . T))
+((((-406 |#2|) |#3|) . T))
+(((|#1|) . T))
+(|has| |#1| (-1087))
+(((|#2| (-480 (-2755 |#1|) (-762))) . T))
+((((-558) |#1|) . T))
+((((-1145)) . T) (((-853)) . T))
(((|#2| |#2|) . T))
-(((|#1| (-525 (-1158))) . T))
-(-3994 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-780)) (|has| |#2| (-834)) (|has| |#2| (-1034)))
-((((-554)) . T))
+(((|#1| (-529 (-1163))) . T))
+(-3998 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-784)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
+((((-558)) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-1158)) |has| |#1| (-885 (-1158))) (((-1064)) . T))
-(((|#1|) . T) (((-554)) |has| |#1| (-627 (-554))))
-(|has| |#1| (-546))
-((($) . T) (((-402 (-554))) . T))
+((((-1163)) |has| |#1| (-890 (-1163))) (((-1069)) . T))
+(((|#1|) . T) (((-558)) |has| |#1| (-631 (-558))))
+(|has| |#1| (-550))
+((($) . T) (((-406 (-558))) . T))
((($) . T))
((($) . T))
-(-3994 (|has| |#1| (-836)) (|has| |#1| (-1082)))
+(-3998 (|has| |#1| (-841)) (|has| |#1| (-1087)))
(((|#1|) . T))
-((($) -3994 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))))
-((((-848)) . T))
-((((-142)) . T))
-(((|#1|) . T) (((-402 (-554))) . T))
+((($) -3998 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
+((((-853)) . T))
+((((-143)) . T))
+(((|#1|) . T) (((-406 (-558))) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-848)) . T))
+((((-853)) . T))
(((|#1|) . T))
-(|has| |#1| (-1133))
-(((|#1| (-525 (-850 |#2|)) (-850 |#2|) (-767 |#1| (-850 |#2|))) . T))
+(|has| |#1| (-1138))
+(((|#1| (-529 (-855 |#2|)) (-855 |#2|) (-771 |#1| (-855 |#2|))) . T))
(((|#1|) . T))
-((((-402 $) (-402 $)) |has| |#1| (-546)) (($ $) . T) ((|#1| |#1|) . T))
-(((|#1|) . T) (((-554)) |has| |#1| (-1023 (-554))) (((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))))
-((((-848)) . T))
-((((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) (((-554)) |has| |#1| (-1023 (-554))) ((|#1|) . T) ((|#2|) . T))
-((((-1064)) . T) ((|#1|) . T) (((-554)) |has| |#1| (-1023 (-554))) (((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))))
-((((-374)) -12 (|has| |#1| (-871 (-374))) (|has| |#2| (-871 (-374)))) (((-554)) -12 (|has| |#1| (-871 (-554))) (|has| |#2| (-871 (-554)))))
-((((-1227 |#1| |#2| |#3| |#4|)) . T))
-((((-554) |#1|) . T))
+((((-406 $) (-406 $)) |has| |#1| (-550)) (($ $) . T) ((|#1| |#1|) . T))
+(((|#1|) . T) (((-558)) |has| |#1| (-1028 (-558))) (((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))))
+((((-853)) . T))
+((((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) (((-558)) |has| |#1| (-1028 (-558))) ((|#1|) . T) ((|#2|) . T))
+((((-1069)) . T) ((|#1|) . T) (((-558)) |has| |#1| (-1028 (-558))) (((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))))
+((((-378)) -12 (|has| |#1| (-876 (-378))) (|has| |#2| (-876 (-378)))) (((-558)) -12 (|has| |#1| (-876 (-558))) (|has| |#2| (-876 (-558)))))
+((((-1232 |#1| |#2| |#3| |#4|)) . T))
+((((-558) |#1|) . T))
(((|#1| |#1|) . T))
((($) . T) ((|#2|) . T))
-(((|#1|) |has| |#1| (-170)) (($) . T))
-((($) . T))
-((((-685)) . T))
-((((-767 |#1| (-850 |#2|))) . T))
-((($) . T))
-((((-402 (-554))) . T) (($) . T))
-(|has| |#1| (-1082))
-(|has| |#1| (-1082))
-(|has| |#2| (-358))
-(|has| |#1| (-358))
-(|has| |#1| (-358))
-(|has| |#1| (-38 (-402 (-554))))
-((((-554)) . T))
-((((-1158)) -12 (|has| |#4| (-885 (-1158))) (|has| |#4| (-1034))))
-((((-1158)) -12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034))))
-(((|#1|) . T))
-(|has| |#1| (-229))
-(((|#1| (-525 |#3|)) . T))
-(((|#2| (-236 (-2563 |#1|) (-758))) . T))
-(|has| |#1| (-363))
-(|has| |#1| (-363))
-(|has| |#1| (-363))
+(((|#1|) |has| |#1| (-171)) (($) . T))
+((($) . T))
+((((-689)) . T))
+((((-771 |#1| (-855 |#2|))) . T))
+((($) . T))
+((((-406 (-558))) . T) (($) . T))
+(|has| |#1| (-1087))
+(|has| |#1| (-1087))
+(|has| |#2| (-362))
+(|has| |#1| (-362))
+(|has| |#1| (-362))
+(|has| |#1| (-38 (-406 (-558))))
+((((-558)) . T))
+((((-1163)) -12 (|has| |#4| (-890 (-1163))) (|has| |#4| (-1039))))
+((((-1163)) -12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039))))
+(((|#1|) . T))
+(|has| |#1| (-232))
+(((|#1| (-529 |#3|)) . T))
+(((|#2| (-239 (-2755 |#1|) (-762))) . T))
+(|has| |#1| (-367))
+(|has| |#1| (-367))
+(|has| |#1| (-367))
(((|#1|) . T) (($) . T))
-(((|#1| (-525 |#2|)) . T))
-(-3994 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-780)) (|has| |#2| (-834)) (|has| |#2| (-1034)))
-(((|#1| (-758)) . T))
-(|has| |#1| (-546))
-(-3994 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-780)) (|has| |#2| (-834)) (|has| |#2| (-1034)))
-(-3994 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-834)) (|has| |#2| (-1034)))
+(((|#1| (-529 |#2|)) . T))
+(-3998 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-784)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
+(((|#1| (-762)) . T))
+(|has| |#1| (-550))
+(-3998 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-784)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
+(-3998 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
(-12 (|has| |#1| (-21)) (|has| |#2| (-21)))
-((((-848)) . T))
-((((-554)) . T) (((-402 (-554))) . T) (($) . T))
-(-3994 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-780)) (|has| |#2| (-780))))
-(-3994 (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-780)) (|has| |#3| (-834)) (|has| |#3| (-1034)))
-(-3994 (|has| |#2| (-170)) (|has| |#2| (-713)) (|has| |#2| (-834)) (|has| |#2| (-1034)))
-(((|#1|) |has| |#1| (-170)))
-(((|#4|) |has| |#4| (-1034)))
-(((|#3|) |has| |#3| (-1034)))
-(-12 (|has| |#1| (-358)) (|has| |#2| (-807)))
-(-12 (|has| |#1| (-358)) (|has| |#2| (-807)))
-((((-554)) . T) (((-402 (-554))) -3994 (|has| |#2| (-38 (-402 (-554)))) (|has| |#2| (-1023 (-402 (-554))))) ((|#2|) . T) (($) -3994 (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))) (((-850 |#1|)) . T))
-((((-1107 |#1| |#2|)) . T) (((-554)) . T) ((|#3|) . T) (($) -3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) . T) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554))))) ((|#2|) . T))
-((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-836)) (|has| |#1| (-1082))))
-((((-530)) |has| |#1| (-602 (-530))))
-(((|#1|) . T) (((-402 (-554))) . T) (($) . T) (((-554)) . T))
-(((|#1|) . T) (((-402 (-554))) . T) (($) . T) (((-554)) . T))
-(((|#1|) . T) (((-402 (-554))) . T) (($) . T) (((-554)) . T))
-((((-1163)) . T))
-((((-658 |#1|)) . T))
-((((-402 |#2|)) . T) (((-402 (-554))) . T) (($) . T))
-((($ $) . T) ((#0=(-402 (-554)) #0#) . T))
-((((-848)) . T))
-((((-631 $)) . T) (((-1140)) . T) (((-1158)) . T) (((-554)) . T) (((-221)) . T) (((-848)) . T))
-((($) . T) (((-402 (-554))) . T))
-(((|#1|) . T))
-(((|#4|) |has| |#4| (-1082)) (((-554)) -12 (|has| |#4| (-1023 (-554))) (|has| |#4| (-1082))) (((-402 (-554))) -12 (|has| |#4| (-1023 (-402 (-554)))) (|has| |#4| (-1082))))
-(((|#3|) |has| |#3| (-1082)) (((-554)) -12 (|has| |#3| (-1023 (-554))) (|has| |#3| (-1082))) (((-402 (-554))) -12 (|has| |#3| (-1023 (-402 (-554)))) (|has| |#3| (-1082))))
-(|has| |#2| (-358))
-(((|#2|) |has| |#2| (-1034)) (((-554)) -12 (|has| |#2| (-627 (-554))) (|has| |#2| (-1034))))
-(((|#1|) . T))
-(|has| |#2| (-358))
-(((#0=(-402 (-554)) #0#) |has| |#2| (-38 (-402 (-554)))) ((|#2| |#2|) . T) (($ $) -3994 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))))
-((($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1| |#1|) . T) ((#0=(-402 (-554)) #0#) |has| |#1| (-38 (-402 (-554)))))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-402 (-554)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-402 (-554)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-402 (-554)) #0#) . T))
+((((-853)) . T))
+((((-558)) . T) (((-406 (-558))) . T) (($) . T))
+(-3998 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-784)) (|has| |#2| (-784))))
+(-3998 (|has| |#3| (-130)) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-784)) (|has| |#3| (-839)) (|has| |#3| (-1039)))
+(-3998 (|has| |#2| (-171)) (|has| |#2| (-717)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
+(((|#1|) |has| |#1| (-171)))
+(((|#4|) |has| |#4| (-1039)))
+(((|#3|) |has| |#3| (-1039)))
+(-12 (|has| |#1| (-362)) (|has| |#2| (-811)))
+(-12 (|has| |#1| (-362)) (|has| |#2| (-811)))
+((((-558)) . T) (((-406 (-558))) -3998 (|has| |#2| (-38 (-406 (-558)))) (|has| |#2| (-1028 (-406 (-558))))) ((|#2|) . T) (($) -3998 (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))) (((-855 |#1|)) . T))
+((((-1112 |#1| |#2|)) . T) (((-558)) . T) ((|#3|) . T) (($) -3998 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) . T) (((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558))))) ((|#2|) . T))
+((((-853)) -3998 (|has| |#1| (-605 (-853))) (|has| |#1| (-841)) (|has| |#1| (-1087))))
+((((-534)) |has| |#1| (-606 (-534))))
+(((|#1|) . T) (((-406 (-558))) . T) (($) . T) (((-558)) . T))
+(((|#1|) . T) (((-406 (-558))) . T) (($) . T) (((-558)) . T))
+(((|#1|) . T) (((-406 (-558))) . T) (($) . T) (((-558)) . T))
+((((-1168)) . T))
+((((-662 |#1|)) . T))
+((((-406 |#2|)) . T) (((-406 (-558))) . T) (($) . T))
+((($ $) . T) ((#0=(-406 (-558)) #0#) . T))
+((((-853)) . T))
+((((-635 $)) . T) (((-1145)) . T) (((-1163)) . T) (((-558)) . T) (((-224)) . T) (((-853)) . T))
+((($) . T) (((-406 (-558))) . T))
+(((|#1|) . T))
+(((|#4|) |has| |#4| (-1087)) (((-558)) -12 (|has| |#4| (-1028 (-558))) (|has| |#4| (-1087))) (((-406 (-558))) -12 (|has| |#4| (-1028 (-406 (-558)))) (|has| |#4| (-1087))))
+(((|#3|) |has| |#3| (-1087)) (((-558)) -12 (|has| |#3| (-1028 (-558))) (|has| |#3| (-1087))) (((-406 (-558))) -12 (|has| |#3| (-1028 (-406 (-558)))) (|has| |#3| (-1087))))
+(|has| |#2| (-362))
+(((|#2|) |has| |#2| (-1039)) (((-558)) -12 (|has| |#2| (-631 (-558))) (|has| |#2| (-1039))))
+(((|#1|) . T))
+(|has| |#2| (-362))
+(((#0=(-406 (-558)) #0#) |has| |#2| (-38 (-406 (-558)))) ((|#2| |#2|) . T) (($ $) -3998 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))))
+((($ $) -3998 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1| |#1|) . T) ((#0=(-406 (-558)) #0#) |has| |#1| (-38 (-406 (-558)))))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-406 (-558)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-406 (-558)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-406 (-558)) #0#) . T))
(((|#2| |#2|) . T))
-((((-402 (-554))) |has| |#2| (-38 (-402 (-554)))) ((|#2|) . T) (($) -3994 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))))
-((($) -3994 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))))
-(((|#1|) . T) (($) . T) (((-402 (-554))) . T))
-(((|#1|) . T) (($) . T) (((-402 (-554))) . T))
-(((|#1|) . T) (($) . T) (((-402 (-554))) . T))
-(((|#2|) . T))
-((((-848)) |has| |#1| (-1082)))
-((($) . T))
-((((-1227 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(|has| |#2| (-807))
-(|has| |#2| (-807))
-(|has| |#1| (-358))
-(|has| |#1| (-358))
-(|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|)))
-(|has| |#1| (-358))
-(((|#1|) |has| |#2| (-412 |#1|)))
-(((|#1|) |has| |#2| (-412 |#1|)))
-((((-1140)) . T))
-((((-895 |#1|)) . T) (((-402 (-554))) . T) (($) . T))
-((((-848)) . T) (((-1163)) . T))
-((((-848)) . T) (((-1163)) . T))
-((((-848)) . T) (((-1163)) . T))
-((((-631 |#1|)) . T) (((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-836)) (|has| |#1| (-1082))))
-((((-1163)) . T))
-((((-1163)) . T))
-((((-1163)) . T))
-((((-631 |#1|)) . T))
-((((-530)) |has| |#1| (-602 (-530))))
-((((-848)) . T) (((-1163)) . T))
-((((-1163)) . T))
-((((-848)) . T))
-((((-848)) . T) (((-1163)) . T))
-((((-1194)) . T) (((-848)) . T) (((-1163)) . T))
-((((-1163)) . T))
-((((-1163)) . T))
-((((-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) |has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-304 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))))))
-(-3994 (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894)))
-((((-554) |#1|) . T))
-((((-554) |#1|) . T))
-((((-554) |#1|) . T))
-(-3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894)))
-((((-554) |#1|) . T))
-(((|#1|) . T))
-(-3994 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894)))
-(-3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894)))
-((($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546))) (((-554)) . T) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) ((|#1|) |has| |#1| (-170)))
-((((-1158)) |has| |#1| (-885 (-1158))) (((-805 (-1158))) . T))
-(-3994 (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-780)) (|has| |#3| (-834)) (|has| |#3| (-1034)))
-((((-806 |#1|)) . T))
+((((-406 (-558))) |has| |#2| (-38 (-406 (-558)))) ((|#2|) . T) (($) -3998 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))))
+((($) -3998 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
+(((|#1|) . T) (($) . T) (((-406 (-558))) . T))
+(((|#1|) . T) (($) . T) (((-406 (-558))) . T))
+(((|#1|) . T) (($) . T) (((-406 (-558))) . T))
+(((|#2|) . T))
+((((-853)) |has| |#1| (-1087)))
+((($) . T))
+((((-1232 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#2| (-811))
+(|has| |#2| (-811))
+(|has| |#1| (-362))
+(|has| |#1| (-362))
+(|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|)))
+(|has| |#1| (-362))
+(((|#1|) |has| |#2| (-416 |#1|)))
+(((|#1|) |has| |#2| (-416 |#1|)))
+((((-1145)) . T))
+((((-900 |#1|)) . T) (((-406 (-558))) . T) (($) . T))
+((((-853)) . T) (((-1168)) . T))
+((((-853)) . T) (((-1168)) . T))
+((((-853)) . T) (((-1168)) . T))
+((((-635 |#1|)) . T) (((-853)) -3998 (|has| |#1| (-605 (-853))) (|has| |#1| (-841)) (|has| |#1| (-1087))))
+((((-1168)) . T))
+((((-1168)) . T))
+((((-1168)) . T))
+((((-635 |#1|)) . T))
+((((-534)) |has| |#1| (-606 (-534))))
+((((-853)) . T) (((-1168)) . T))
+((((-1168)) . T))
+((((-853)) . T))
+((((-853)) . T) (((-1168)) . T))
+((((-1199)) . T) (((-853)) . T) (((-1168)) . T))
+((((-1168)) . T))
+((((-1168)) . T))
+((((-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) |has| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-308 (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))))))
+(-3998 (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899)))
+((((-558) |#1|) . T))
+((((-558) |#1|) . T))
+((((-558) |#1|) . T))
+(-3998 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
+((((-558) |#1|) . T))
+(((|#1|) . T))
+(-3998 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
+(-3998 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
+((($) -3998 (|has| |#1| (-362)) (|has| |#1| (-550))) (((-558)) . T) (((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171)))
+((((-1163)) |has| |#1| (-890 (-1163))) (((-809 (-1163))) . T))
+(-3998 (|has| |#3| (-130)) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-784)) (|has| |#3| (-839)) (|has| |#3| (-1039)))
+((((-810 |#1|)) . T))
(((|#1| |#2|) . T))
-((((-848)) . T))
-(-3994 (|has| |#3| (-170)) (|has| |#3| (-713)) (|has| |#3| (-834)) (|has| |#3| (-1034)))
+((((-853)) . T))
+(-3998 (|has| |#3| (-171)) (|has| |#3| (-717)) (|has| |#3| (-839)) (|has| |#3| (-1039)))
(((|#1| |#2|) . T))
-(|has| |#1| (-38 (-402 (-554))))
-((((-848)) . T))
-((((-1227 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-402 (-554))) . T))
-(((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-546)) (((-402 (-554))) |has| |#1| (-546)))
-(((|#2|) . T) (((-554)) |has| |#2| (-627 (-554))))
-(|has| |#1| (-358))
-(-3994 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (-12 (|has| |#1| (-358)) (|has| |#2| (-229))))
-(|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|)))
-(|has| |#1| (-358))
-(((|#1|) . T))
-(((#0=(-402 (-554)) #0#) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546))) ((|#1| |#1|) . T))
-((((-554) |#1|) . T))
-((((-311 |#1|)) . T))
-(((#0=(-685) (-1154 #0#)) . T))
-((((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (($) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546))) ((|#1|) . T))
+(|has| |#1| (-38 (-406 (-558))))
+((((-853)) . T))
+((((-1232 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-406 (-558))) . T))
+(((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-550)) (((-406 (-558))) |has| |#1| (-550)))
+(((|#2|) . T) (((-558)) |has| |#2| (-631 (-558))))
+(|has| |#1| (-362))
+(-3998 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (-12 (|has| |#1| (-362)) (|has| |#2| (-232))))
+(|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|)))
+(|has| |#1| (-362))
+(((|#1|) . T))
+(((#0=(-406 (-558)) #0#) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (($ $) -3998 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550))) ((|#1| |#1|) . T))
+((((-558) |#1|) . T))
+((((-315 |#1|)) . T))
+(((#0=(-689) (-1159 #0#)) . T))
+((((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (($) -3998 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550))) ((|#1|) . T))
(((|#1| |#2| |#3| |#4|) . T))
-(|has| |#1| (-834))
-(((|#2|) . T) (((-1158)) -12 (|has| |#1| (-358)) (|has| |#2| (-1023 (-1158)))) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546))) (((-554)) . T) ((|#1|) |has| |#1| (-170)))
-(((|#2|) . T) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (((-554)) . T) (($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546))))
-((($ $) . T) ((#0=(-850 |#1|) $) . T) ((#0# |#2|) . T))
-((((-1107 |#1| (-1158))) . T) (((-805 (-1158))) . T) ((|#1|) . T) (((-554)) |has| |#1| (-1023 (-554))) (((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) (((-1158)) . T))
+(|has| |#1| (-839))
+(((|#2|) . T) (((-1163)) -12 (|has| |#1| (-362)) (|has| |#2| (-1028 (-1163)))) (((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (($) -3998 (|has| |#1| (-362)) (|has| |#1| (-550))) (((-558)) . T) ((|#1|) |has| |#1| (-171)))
+(((|#2|) . T) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (((-558)) . T) (($) -3998 (|has| |#1| (-362)) (|has| |#1| (-550))))
+((($ $) . T) ((#0=(-855 |#1|) $) . T) ((#0# |#2|) . T))
+((((-1112 |#1| (-1163))) . T) (((-809 (-1163))) . T) ((|#1|) . T) (((-558)) |has| |#1| (-1028 (-558))) (((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) (((-1163)) . T))
((($) . T))
(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T))
-(((#0=(-1064) |#1|) . T) ((#0# $) . T) (($ $) . T))
-((($ $) . T) ((#0=(-1158) $) |has| |#1| (-229)) ((#0# |#1|) |has| |#1| (-229)) ((#1=(-1070 (-1158)) |#1|) . T) ((#1# $) . T))
+(((#0=(-1069) |#1|) . T) ((#0# $) . T) (($ $) . T))
+((($ $) . T) ((#0=(-1163) $) |has| |#1| (-232)) ((#0# |#1|) |has| |#1| (-232)) ((#1=(-1075 (-1163)) |#1|) . T) ((#1# $) . T))
((($) . T) ((|#2|) . T))
-((($) . T) ((|#2|) . T) (((-402 (-554))) |has| |#2| (-38 (-402 (-554)))))
-(|has| |#2| (-894))
-((($) . T) ((#0=(-1226 |#2| |#3| |#4|)) |has| #0# (-170)) (((-402 (-554))) |has| #0# (-38 (-402 (-554)))))
-((((-554) |#1|) . T))
-((((-1163)) . T))
-(((#0=(-1227 |#1| |#2| |#3| |#4|)) |has| #0# (-304 #0#)))
-((($) . T))
-(((|#1|) . T))
-((($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546))) ((#0=(-402 (-554)) #0#) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) ((|#2| |#2|) |has| |#1| (-358)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546))) ((#0=(-402 (-554)) #0#) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))))
-(|has| |#2| (-229))
-(|has| $ (-145))
-((((-848)) . T))
-((($) . T) (((-402 (-554))) -3994 (|has| |#1| (-358)) (|has| |#1| (-344))) ((|#1|) . T))
-((((-848)) . T))
-(|has| |#1| (-834))
+((($) . T) ((|#2|) . T) (((-406 (-558))) |has| |#2| (-38 (-406 (-558)))))
+(|has| |#2| (-899))
+((($) . T) ((#0=(-1231 |#2| |#3| |#4|)) |has| #0# (-171)) (((-406 (-558))) |has| #0# (-38 (-406 (-558)))))
+((((-558) |#1|) . T))
+((((-1168)) . T))
+(((#0=(-1232 |#1| |#2| |#3| |#4|)) |has| #0# (-308 #0#)))
+((($) . T))
+(((|#1|) . T))
+((($ $) -3998 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550))) ((#0=(-406 (-558)) #0#) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) ((|#2| |#2|) |has| |#1| (-362)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -3998 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550))) ((#0=(-406 (-558)) #0#) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))))
+(|has| |#2| (-232))
+(|has| $ (-146))
+((((-853)) . T))
+((($) . T) (((-406 (-558))) -3998 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T))
+((((-853)) . T))
+(|has| |#1| (-839))
((((-129)) . T))
-((((-1158)) -12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158)))))
-((((-402 |#2|) |#3|) . T))
+((((-1163)) -12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163)))))
+((((-406 |#2|) |#3|) . T))
(((|#1|) . T))
((((-129)) . T))
-((((-848)) . T))
-(((|#2| (-658 |#1|)) . T))
-(-12 (|has| |#1| (-302)) (|has| |#1| (-894)))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
+((((-853)) . T))
+(((|#2| (-662 |#1|)) . T))
+(-12 (|has| |#1| (-306)) (|has| |#1| (-899)))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
(((|#4|) . T))
-(|has| |#1| (-546))
-((($) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546))) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) ((|#2|) |has| |#1| (-358)) ((|#1|) . T))
-((((-1158)) -3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158))))))
-(((|#1|) . T) (($) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546))) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))))
-((((-1158)) -12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158)))))
-((((-1158)) -12 (|has| |#1| (-15 * (|#1| (-758) |#1|))) (|has| |#1| (-885 (-1158)))))
-(((|#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))))
-((((-554) |#1|) . T))
-(-3994 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894)))
-(((|#1|) . T))
-(((|#1| (-525 (-805 (-1158)))) . T))
-(-3994 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894)))
-(-3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894)))
-((((-554)) . T) ((|#2|) . T) (($) . T) (((-402 (-554))) . T) (((-1158)) |has| |#2| (-1023 (-1158))))
-(((|#1|) . T))
-(-3994 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894)))
-(((|#1|) . T))
-(-3994 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-780)) (|has| |#2| (-834)) (|has| |#2| (-1034)))
-(-3994 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-780)) (|has| |#2| (-780))))
-((((-1233 |#1| |#2| |#3|)) |has| |#1| (-358)))
-((($) . T) (((-855 |#1|)) . T) (((-402 (-554))) . T))
-((((-1233 |#1| |#2| |#3|)) |has| |#1| (-358)))
-(|has| |#1| (-546))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-402 |#2|)) . T))
-(-3994 (|has| |#1| (-358)) (|has| |#1| (-344)))
-((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-836)) (|has| |#1| (-1082))))
-((((-530)) |has| |#1| (-602 (-530))))
-((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-1082))))
-((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-836)) (|has| |#1| (-1082))))
-((((-530)) |has| |#1| (-602 (-530))))
-((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-836)) (|has| |#1| (-1082))))
-((((-530)) |has| |#1| (-602 (-530))))
-((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-1082))))
-(((|#1|) . T))
-(((|#2| |#2|) . T) ((#0=(-402 (-554)) #0#) . T) (($ $) . T))
-((((-554)) . T))
-((((-848)) . T))
-(((|#2|) . T) (((-402 (-554))) . T) (($) . T))
-((((-571 |#1|)) . T) (((-402 (-554))) . T) (($) . T))
-((((-848)) . T))
-((((-402 (-554))) . T) (($) . T))
-((((-554) |#1|) . T))
-((((-848)) . T))
-((($ $) . T) (((-1158) $) . T))
-((((-1233 |#1| |#2| |#3|)) . T))
-((((-530)) |has| |#2| (-602 (-530))) (((-877 (-374))) |has| |#2| (-602 (-877 (-374)))) (((-877 (-554))) |has| |#2| (-602 (-877 (-554)))))
-((((-848)) . T))
-((((-848)) . T))
-((((-877 (-554))) -12 (|has| |#1| (-602 (-877 (-554)))) (|has| |#3| (-602 (-877 (-554))))) (((-877 (-374))) -12 (|has| |#1| (-602 (-877 (-374)))) (|has| |#3| (-602 (-877 (-374))))) (((-530)) -12 (|has| |#1| (-602 (-530))) (|has| |#3| (-602 (-530)))))
-((((-848)) . T))
-((((-848)) . T))
-((((-848)) . T))
-(((|#1|) . T) (((-848)) . T) (((-1163)) . T))
-((((-848)) . T))
-((((-1163)) . T))
-((((-114)) . T) ((|#1|) . T) (((-554)) . T))
-(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-(((|#1| (-525 (-850 |#2|)) (-850 |#2|) (-767 |#1| (-850 |#2|))) . T))
-(((|#1| |#2| (-236 |#1| |#2|) (-236 |#1| |#2|)) . T))
+(|has| |#1| (-550))
+((($) -3998 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550))) (((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) ((|#2|) |has| |#1| (-362)) ((|#1|) . T))
+((((-1163)) -3998 (-12 (|has| (-1238 |#1| |#2| |#3|) (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163))))))
+(((|#1|) . T) (($) -3998 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550))) (((-406 (-558))) -3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))))
+((((-1163)) -12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163)))))
+((((-1163)) -12 (|has| |#1| (-15 * (|#1| (-762) |#1|))) (|has| |#1| (-890 (-1163)))))
+(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))
+((((-558) |#1|) . T))
+(-3998 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899)))
+(((|#1|) . T))
+(((|#1| (-529 (-809 (-1163)))) . T))
+(-3998 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
+(-3998 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
+((((-558)) . T) ((|#2|) . T) (($) . T) (((-406 (-558))) . T) (((-1163)) |has| |#2| (-1028 (-1163))))
+(((|#1|) . T))
+(-3998 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
+(((|#1|) . T))
+(-3998 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-784)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
+(-3998 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-784)) (|has| |#2| (-784))))
+((((-1238 |#1| |#2| |#3|)) |has| |#1| (-362)))
+((($) . T) (((-860 |#1|)) . T) (((-406 (-558))) . T))
+((((-1238 |#1| |#2| |#3|)) |has| |#1| (-362)))
+(|has| |#1| (-550))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-406 |#2|)) . T))
+(-3998 (|has| |#1| (-362)) (|has| |#1| (-348)))
+((((-853)) -3998 (|has| |#1| (-605 (-853))) (|has| |#1| (-841)) (|has| |#1| (-1087))))
+((((-534)) |has| |#1| (-606 (-534))))
+((((-853)) -3998 (|has| |#1| (-605 (-853))) (|has| |#1| (-1087))))
+((((-853)) -3998 (|has| |#1| (-605 (-853))) (|has| |#1| (-841)) (|has| |#1| (-1087))))
+((((-534)) |has| |#1| (-606 (-534))))
+((((-853)) -3998 (|has| |#1| (-605 (-853))) (|has| |#1| (-841)) (|has| |#1| (-1087))))
+((((-534)) |has| |#1| (-606 (-534))))
+((((-853)) -3998 (|has| |#1| (-605 (-853))) (|has| |#1| (-1087))))
+(((|#1|) . T))
+(((|#2| |#2|) . T) ((#0=(-406 (-558)) #0#) . T) (($ $) . T))
+((((-558)) . T))
+(((|#2|) . T) (((-406 (-558))) . T) (($) . T))
+((((-853)) . T))
+((((-575 |#1|)) . T) (((-406 (-558))) . T) (($) . T))
+((((-853)) . T))
+((((-406 (-558))) . T) (($) . T))
+((((-558) |#1|) . T))
+((((-853)) . T))
+((($ $) . T) (((-1163) $) . T))
+((((-1238 |#1| |#2| |#3|)) . T))
+((((-534)) |has| |#2| (-606 (-534))) (((-882 (-378))) |has| |#2| (-606 (-882 (-378)))) (((-882 (-558))) |has| |#2| (-606 (-882 (-558)))))
+((((-853)) . T))
+((((-853)) . T))
+((((-882 (-558))) -12 (|has| |#1| (-606 (-882 (-558)))) (|has| |#3| (-606 (-882 (-558))))) (((-882 (-378))) -12 (|has| |#1| (-606 (-882 (-378)))) (|has| |#3| (-606 (-882 (-378))))) (((-534)) -12 (|has| |#1| (-606 (-534))) (|has| |#3| (-606 (-534)))))
+((((-853)) . T))
+((((-853)) . T))
+((((-853)) . T))
+(((|#1|) . T) (((-853)) . T) (((-1168)) . T))
+((((-853)) . T))
+((((-1168)) . T))
+((((-114)) . T) ((|#1|) . T) (((-558)) . T))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+(((|#1| (-529 (-855 |#2|)) (-855 |#2|) (-771 |#1| (-855 |#2|))) . T))
+(((|#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) . T))
((((-129)) . T))
-((((-848)) . T))
-((((-1233 |#1| |#2| |#3|)) |has| |#1| (-358)))
-((((-402 (-554))) |has| |#2| (-38 (-402 (-554)))) ((|#2|) |has| |#2| (-170)) (($) -3994 (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))))
+((((-853)) . T))
+((((-1238 |#1| |#2| |#3|)) |has| |#1| (-362)))
+((((-406 (-558))) |has| |#2| (-38 (-406 (-558)))) ((|#2|) |has| |#2| (-171)) (($) -3998 (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))))
(((|#2|) . T) ((|#6|) . T))
-((($) . T) (((-402 (-554))) |has| |#2| (-38 (-402 (-554)))) ((|#2|) . T))
-(|has| |#1| (-358))
-((($) -3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))))
-((((-1086)) . T))
-((((-848)) . T))
-((($) -3994 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))))
-((($) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) . T))
-((($) . T))
-((($) -3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))))
-((((-1233 |#1| |#2| |#3|)) . T) (((-1205 |#1| |#2| |#3|)) . T))
-((((-1158)) . T) (((-848)) . T))
-(|has| |#2| (-894))
-(((|#1|) . T))
-(|has| |#1| (-894))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1| |#1|) |has| |#1| (-170)))
-((((-685)) . T))
-((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-1082))))
-((((-1163)) . T))
-(((|#1|) |has| |#1| (-170)))
-((((-1163)) . T))
-((((-1163)) . T))
-(((|#1|) |has| |#1| (-170)))
-((((-402 (-554))) . T) (($) . T))
-(((|#1| (-554)) . T))
-((((-1163)) . T))
-((((-1163)) . T))
-((((-1163)) . T))
-((((-1163)) . T))
-(-3994 (|has| |#1| (-358)) (|has| |#1| (-344)))
-(-3994 (|has| |#1| (-358)) (|has| |#1| (-344)))
-((((-1163)) . T))
-((((-1163)) . T))
-(|has| |#1| (-358))
-(|has| |#1| (-358))
-(-3994 (|has| |#1| (-170)) (|has| |#1| (-546)))
-(((|#1| (-554)) . T))
-(((|#1| (-402 (-554))) . T))
-(((|#1| (-758)) . T))
-((((-402 (-554))) . T))
-(((|#1| (-525 |#2|) |#2|) . T))
-((((-554) |#1|) . T))
-((((-554) |#1|) . T))
-(|has| |#1| (-1082))
-((((-554) |#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-877 (-374))) . T) (((-877 (-554))) . T) (((-1158)) . T) (((-530)) . T))
-(((|#1|) . T))
-((((-848)) . T))
-(-3994 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-780)) (|has| |#2| (-834)) (|has| |#2| (-1034)))
-(-3994 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-780)) (|has| |#2| (-780))))
-((((-554)) . T))
-((((-554)) . T))
-((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T))
+((($) . T) (((-406 (-558))) |has| |#2| (-38 (-406 (-558)))) ((|#2|) . T))
+(|has| |#1| (-362))
+((($) -3998 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
+((((-1091)) . T))
+((((-853)) . T))
+((($) -3998 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
+((($) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) . T))
+((($) . T))
+((($) -3998 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
+((((-1238 |#1| |#2| |#3|)) . T) (((-1210 |#1| |#2| |#3|)) . T))
+((((-1163)) . T) (((-853)) . T))
+(|has| |#2| (-899))
+(((|#1|) . T))
+(|has| |#1| (-899))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1| |#1|) |has| |#1| (-171)))
+((((-689)) . T))
+((((-853)) -3998 (|has| |#1| (-605 (-853))) (|has| |#1| (-1087))))
+((((-1168)) . T))
+(((|#1|) |has| |#1| (-171)))
+((((-1168)) . T))
+((((-1168)) . T))
+(((|#1|) |has| |#1| (-171)))
+((((-406 (-558))) . T) (($) . T))
+(((|#1| (-558)) . T))
+((((-1168)) . T))
+((((-1168)) . T))
+((((-1168)) . T))
+((((-1168)) . T))
+(-3998 (|has| |#1| (-362)) (|has| |#1| (-348)))
+(-3998 (|has| |#1| (-362)) (|has| |#1| (-348)))
+((((-1168)) . T))
+((((-1168)) . T))
+(|has| |#1| (-362))
+(|has| |#1| (-362))
+(-3998 (|has| |#1| (-171)) (|has| |#1| (-550)))
+(((|#1| (-558)) . T))
+(((|#1| (-406 (-558))) . T))
+(((|#1| (-762)) . T))
+((((-406 (-558))) . T))
+(((|#1| (-529 |#2|) |#2|) . T))
+((((-558) |#1|) . T))
+((((-558) |#1|) . T))
+(|has| |#1| (-1087))
+((((-558) |#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-882 (-378))) . T) (((-882 (-558))) . T) (((-1163)) . T) (((-534)) . T))
+(((|#1|) . T))
+((((-853)) . T))
+(-3998 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-784)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
+(-3998 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-784)) (|has| |#2| (-784))))
+((((-558)) . T))
+((((-558)) . T))
+((((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(-3994 (|has| |#2| (-170)) (|has| |#2| (-713)) (|has| |#2| (-834)) (|has| |#2| (-1034)))
-((((-1158)) -12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034))))
-(-3994 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-713)) (|has| |#2| (-713))))
-(|has| |#1| (-143))
-(|has| |#1| (-145))
-(|has| |#1| (-358))
+(-3998 (|has| |#2| (-171)) (|has| |#2| (-717)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
+((((-1163)) -12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039))))
+(-3998 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717))))
+(|has| |#1| (-144))
+(|has| |#1| (-146))
+(|has| |#1| (-362))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-(|has| |#1| (-229))
-((((-848)) . T))
-(((|#1| (-758) (-1064)) . T))
-((((-554) |#1|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-((((-554) |#1|) . T))
-((((-554) |#1|) . T))
+(|has| |#1| (-232))
+((((-853)) . T))
+(((|#1| (-762) (-1069)) . T))
+((((-558) |#1|) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+((((-558) |#1|) . T))
+((((-558) |#1|) . T))
((((-116 |#1|)) . T))
-((((-402 (-554))) . T) (((-554)) . T))
-(((|#2|) |has| |#2| (-1034)))
-((((-402 (-554))) . T) (($) . T))
-(((|#2|) . T))
-((((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-546)))
-((((-554)) . T))
-((((-554)) . T))
-((((-1140) (-1158) (-554) (-221) (-848)) . T))
+((((-406 (-558))) . T) (((-558)) . T))
+(((|#2|) |has| |#2| (-1039)))
+((((-406 (-558))) . T) (($) . T))
+(((|#2|) . T))
+((((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-550)))
+((((-558)) . T))
+((((-558)) . T))
+((((-1145) (-1163) (-558) (-224) (-853)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-((((-554)) . T) ((|#2|) |has| |#2| (-170)))
-((((-114)) . T) ((|#1|) . T) (((-554)) . T))
-(-3994 (|has| |#1| (-344)) (|has| |#1| (-363)))
+((((-558)) . T) ((|#2|) |has| |#2| (-171)))
+((((-114)) . T) ((|#1|) . T) (((-558)) . T))
+(-3998 (|has| |#1| (-348)) (|has| |#1| (-367)))
(((|#1| |#2|) . T))
-((((-221)) . T))
-((((-402 (-554))) . T) (($) . T) (((-554)) . T))
+((((-224)) . T))
+((((-406 (-558))) . T) (($) . T) (((-558)) . T))
((($) . T) ((|#1|) . T))
-((((-848)) . T))
-((($) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) . T))
-((($) . T) ((|#1|) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))))
-(((|#2|) |has| |#2| (-1082)) (((-554)) -12 (|has| |#2| (-1023 (-554))) (|has| |#2| (-1082))) (((-402 (-554))) -12 (|has| |#2| (-1023 (-402 (-554)))) (|has| |#2| (-1082))))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-530)) |has| |#1| (-602 (-530))))
-((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-836)) (|has| |#1| (-1082))))
-((($) . T) (((-402 (-554))) . T))
-(|has| |#1| (-894))
-(|has| |#1| (-894))
-((((-221)) -12 (|has| |#1| (-358)) (|has| |#2| (-1007))) (((-374)) -12 (|has| |#1| (-358)) (|has| |#2| (-1007))) (((-877 (-374))) -12 (|has| |#1| (-358)) (|has| |#2| (-602 (-877 (-374))))) (((-877 (-554))) -12 (|has| |#1| (-358)) (|has| |#2| (-602 (-877 (-554))))) (((-530)) -12 (|has| |#1| (-358)) (|has| |#2| (-602 (-530)))))
-((((-848)) . T))
-((((-848)) . T))
+((((-853)) . T))
+((($) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) . T))
+((($) . T) ((|#1|) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
+(((|#2|) |has| |#2| (-1087)) (((-558)) -12 (|has| |#2| (-1028 (-558))) (|has| |#2| (-1087))) (((-406 (-558))) -12 (|has| |#2| (-1028 (-406 (-558)))) (|has| |#2| (-1087))))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-534)) |has| |#1| (-606 (-534))))
+((((-853)) -3998 (|has| |#1| (-605 (-853))) (|has| |#1| (-841)) (|has| |#1| (-1087))))
+((($) . T) (((-406 (-558))) . T))
+(|has| |#1| (-899))
+(|has| |#1| (-899))
+((((-224)) -12 (|has| |#1| (-362)) (|has| |#2| (-1012))) (((-378)) -12 (|has| |#1| (-362)) (|has| |#2| (-1012))) (((-882 (-378))) -12 (|has| |#1| (-362)) (|has| |#2| (-606 (-882 (-378))))) (((-882 (-558))) -12 (|has| |#1| (-362)) (|has| |#2| (-606 (-882 (-558))))) (((-534)) -12 (|has| |#1| (-362)) (|has| |#2| (-606 (-534)))))
+((((-853)) . T))
+((((-853)) . T))
(((|#2| |#2|) . T))
-(((|#1| |#1|) |has| |#1| (-170)))
-(((|#1|) . T) (((-554)) . T))
-((((-1163)) . T))
-(-3994 (|has| |#1| (-358)) (|has| |#1| (-546)))
-(-3994 (|has| |#1| (-21)) (|has| |#1| (-834)))
-(((|#2|) . T))
-(-3994 (|has| |#1| (-21)) (|has| |#1| (-834)))
-(((|#1|) |has| |#1| (-170)))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-848)) -3994 (-12 (|has| |#1| (-601 (-848))) (|has| |#2| (-601 (-848)))) (-12 (|has| |#1| (-1082)) (|has| |#2| (-1082)))))
-((((-402 |#2|) |#3|) . T))
-((((-402 (-554))) . T) (($) . T))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-358))
-((($ $) . T) ((#0=(-402 (-554)) #0#) . T))
-(|has| (-402 |#2|) (-145))
-(|has| (-402 |#2|) (-143))
-((((-685)) . T))
-(((|#1|) . T) (((-402 (-554))) . T) (((-554)) . T) (($) . T))
-(((#0=(-554) #0#) . T))
-((($) . T) (((-402 (-554))) . T))
-(-3994 (|has| |#4| (-170)) (|has| |#4| (-713)) (|has| |#4| (-834)) (|has| |#4| (-1034)))
-(-3994 (|has| |#3| (-170)) (|has| |#3| (-713)) (|has| |#3| (-834)) (|has| |#3| (-1034)))
-((((-848)) . T) (((-1163)) . T))
-(|has| |#4| (-780))
-(-3994 (|has| |#4| (-780)) (|has| |#4| (-834)))
-(|has| |#4| (-834))
-(|has| |#3| (-780))
-((((-1163)) . T))
-(-3994 (|has| |#3| (-780)) (|has| |#3| (-834)))
-(|has| |#3| (-834))
-((((-554)) . T))
-(((|#2|) . T))
-((((-1158)) -3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158))))))
-((((-1158)) -12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158)))))
-((((-1158)) -12 (|has| |#1| (-15 * (|#1| (-758) |#1|))) (|has| |#1| (-885 (-1158)))))
+(((|#1| |#1|) |has| |#1| (-171)))
+(((|#1|) . T) (((-558)) . T))
+((((-1168)) . T))
+(-3998 (|has| |#1| (-362)) (|has| |#1| (-550)))
+(-3998 (|has| |#1| (-21)) (|has| |#1| (-839)))
+(((|#2|) . T))
+(-3998 (|has| |#1| (-21)) (|has| |#1| (-839)))
+(((|#1|) |has| |#1| (-171)))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-853)) -3998 (-12 (|has| |#1| (-605 (-853))) (|has| |#2| (-605 (-853)))) (-12 (|has| |#1| (-1087)) (|has| |#2| (-1087)))))
+((((-406 |#2|) |#3|) . T))
+((((-406 (-558))) . T) (($) . T))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-362))
+((($ $) . T) ((#0=(-406 (-558)) #0#) . T))
+(|has| (-406 |#2|) (-146))
+(|has| (-406 |#2|) (-144))
+((((-689)) . T))
+(((|#1|) . T) (((-406 (-558))) . T) (((-558)) . T) (($) . T))
+(((#0=(-558) #0#) . T))
+((($) . T) (((-406 (-558))) . T))
+(-3998 (|has| |#4| (-171)) (|has| |#4| (-717)) (|has| |#4| (-839)) (|has| |#4| (-1039)))
+(-3998 (|has| |#3| (-171)) (|has| |#3| (-717)) (|has| |#3| (-839)) (|has| |#3| (-1039)))
+((((-853)) . T) (((-1168)) . T))
+(|has| |#4| (-784))
+(-3998 (|has| |#4| (-784)) (|has| |#4| (-839)))
+(|has| |#4| (-839))
+(|has| |#3| (-784))
+((((-1168)) . T))
+(-3998 (|has| |#3| (-784)) (|has| |#3| (-839)))
+(|has| |#3| (-839))
+((((-558)) . T))
+(((|#2|) . T))
+((((-1163)) -3998 (-12 (|has| (-1161 |#1| |#2| |#3|) (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163))))))
+((((-1163)) -12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163)))))
+((((-1163)) -12 (|has| |#1| (-15 * (|#1| (-762) |#1|))) (|has| |#1| (-890 (-1163)))))
(((|#1| |#1|) . T) (($ $) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
(((|#1|) . T))
-((((-850 |#1|)) . T))
-((((-1156 |#1| |#2| |#3|)) |has| |#1| (-358)))
-((((-1122 |#1| |#2|)) . T))
-((((-1156 |#1| |#2| |#3|)) |has| |#1| (-358)))
-(((|#2|) . T) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T))
-((((-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) . T))
-((($) . T))
-(|has| |#1| (-1007))
-(((|#2|) . T) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T))
-((((-848)) . T))
-((((-530)) |has| |#2| (-602 (-530))) (((-877 (-554))) |has| |#2| (-602 (-877 (-554)))) (((-877 (-374))) |has| |#2| (-602 (-877 (-374)))) (((-374)) . #0=(|has| |#2| (-1007))) (((-221)) . #0#))
-((((-289 |#3|)) . T))
-((((-1158) (-52)) . T))
-(((|#1|) . T))
-(|has| |#1| (-38 (-402 (-554))))
-(|has| |#1| (-38 (-402 (-554))))
+((((-855 |#1|)) . T))
+((((-1161 |#1| |#2| |#3|)) |has| |#1| (-362)))
+((((-1127 |#1| |#2|)) . T))
+((((-1161 |#1| |#2| |#3|)) |has| |#1| (-362)))
+(((|#2|) . T) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T))
+((((-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) . T))
+((($) . T))
+(|has| |#1| (-1012))
+(((|#2|) . T) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T))
+((((-853)) . T))
+((((-534)) |has| |#2| (-606 (-534))) (((-882 (-558))) |has| |#2| (-606 (-882 (-558)))) (((-882 (-378))) |has| |#2| (-606 (-882 (-378)))) (((-378)) . #0=(|has| |#2| (-1012))) (((-224)) . #0#))
+((((-293 |#3|)) . T))
+((((-1163) (-52)) . T))
+(((|#1|) . T))
+(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-38 (-406 (-558))))
+((((-853)) . T))
(((|#2|) . T))
((($ $) . T))
-((((-402 (-554))) . T) (((-685)) . T) (($) . T))
-((((-1156 |#1| |#2| |#3|)) . T))
-((((-1156 |#1| |#2| |#3|)) . T) (((-1149 |#1| |#2| |#3|)) . T))
-((((-848)) . T))
-((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-1082))))
-((((-554) |#1|) . T))
-((((-1156 |#1| |#2| |#3|)) |has| |#1| (-358)))
+((((-406 (-558))) . T) (((-689)) . T) (($) . T))
+((((-1161 |#1| |#2| |#3|)) . T))
+((((-1161 |#1| |#2| |#3|)) . T) (((-1154 |#1| |#2| |#3|)) . T))
+((((-853)) . T))
+((((-853)) -3998 (|has| |#1| (-605 (-853))) (|has| |#1| (-1087))))
+((((-558) |#1|) . T))
+((((-1161 |#1| |#2| |#3|)) |has| |#1| (-362)))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T))
(((|#2|) . T))
-(|has| |#2| (-358))
-(((|#3|) . T) ((|#2|) . T) (($) -3994 (|has| |#4| (-170)) (|has| |#4| (-834)) (|has| |#4| (-1034))) ((|#4|) -3994 (|has| |#4| (-170)) (|has| |#4| (-358)) (|has| |#4| (-1034))))
-(((|#2|) . T) (($) -3994 (|has| |#3| (-170)) (|has| |#3| (-834)) (|has| |#3| (-1034))) ((|#3|) -3994 (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-1034))))
+(|has| |#2| (-362))
+(((|#3|) . T) ((|#2|) . T) (($) -3998 (|has| |#4| (-171)) (|has| |#4| (-839)) (|has| |#4| (-1039))) ((|#4|) -3998 (|has| |#4| (-171)) (|has| |#4| (-362)) (|has| |#4| (-1039))))
+(((|#2|) . T) (($) -3998 (|has| |#3| (-171)) (|has| |#3| (-839)) (|has| |#3| (-1039))) ((|#3|) -3998 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1039))))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-358))
+(|has| |#1| (-362))
((((-116 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-402 (-554))) |has| |#2| (-1023 (-402 (-554)))) (((-554)) |has| |#2| (-1023 (-554))) ((|#2|) . T) (((-850 |#1|)) . T))
-((((-1158)) . T) ((|#1|) . T))
-((((-848)) . T))
-((((-848)) . T))
-((((-848)) . T))
-((((-848)) . T))
+((((-406 (-558))) |has| |#2| (-1028 (-406 (-558)))) (((-558)) |has| |#2| (-1028 (-558))) ((|#2|) . T) (((-855 |#1|)) . T))
+((((-1163)) . T) ((|#1|) . T))
+((((-853)) . T))
+((((-853)) . T))
+((((-853)) . T))
+((((-186)) . T) (((-853)) . T))
+((((-853)) . T))
(((|#1|) . T))
-((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-1082))))
-((((-129)) . T) (((-848)) . T))
-((((-554) |#1|) . T))
+((((-853)) -3998 (|has| |#1| (-605 (-853))) (|has| |#1| (-1087))))
+((((-129)) . T) (((-853)) . T))
+((((-558) |#1|) . T))
((((-129)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#2| $) -12 (|has| |#1| (-358)) (|has| |#2| (-281 |#2| |#2|))) (($ $) . T))
+(((|#2| $) -12 (|has| |#1| (-362)) (|has| |#2| (-285 |#2| |#2|))) (($ $) . T))
((($ $) . T))
-(-3994 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-894)))
-(-3994 (|has| |#1| (-836)) (|has| |#1| (-1082)))
-((((-848)) . T))
-((((-848)) . T))
-((((-848)) . T))
-(((|#1| (-525 |#2|)) . T))
-((((-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) . T))
-((((-554) (-129)) . T))
-(((|#1| (-554)) . T))
-(((|#1| (-402 (-554))) . T))
-(((|#1| (-758)) . T))
-((((-848)) . T) (((-1163)) . T))
-((((-848)) . T) (((-1163)) . T))
-((((-1163)) . T))
-((((-848)) . T) (((-1163)) . T))
-((((-1163)) . T))
-((((-116 |#1|)) . T) (($) . T) (((-402 (-554))) . T))
-((((-1163)) . T))
-((((-848)) . T) (((-1163)) . T))
-((((-848)) . T) (((-1163)) . T))
-(-3994 (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894)))
-(-3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894)))
-((($) . T))
-(((|#2| (-525 (-850 |#1|))) . T))
-((((-1163)) . T))
-((((-1163)) . T))
-((((-554) |#1|) . T))
-((((-848)) . T) (((-1163)) . T))
-((((-1163)) . T))
-(((|#2|) . T))
-((((-848)) . T) (((-1163)) . T))
-((((-1163)) . T))
-((((-848)) . T) (((-1163)) . T))
-((((-1163)) . T))
-((((-848)) . T) (((-1163)) . T))
-((((-1163)) . T))
-((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-1082))))
-(((|#1|) . T))
-(((|#2| (-758)) . T))
+(-3998 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-899)))
+(-3998 (|has| |#1| (-841)) (|has| |#1| (-1087)))
+((((-853)) . T))
+((((-853)) . T))
+((((-853)) . T))
+(((|#1| (-529 |#2|)) . T))
+((((-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) . T))
+((((-558) (-129)) . T))
+(((|#1| (-558)) . T))
+(((|#1| (-406 (-558))) . T))
+(((|#1| (-762)) . T))
+((((-853)) . T) (((-1168)) . T))
+((((-853)) . T) (((-1168)) . T))
+((((-1168)) . T))
+((((-853)) . T) (((-1168)) . T))
+((((-1168)) . T))
+((((-116 |#1|)) . T) (($) . T) (((-406 (-558))) . T))
+((((-1168)) . T))
+((((-853)) . T) (((-1168)) . T))
+((((-853)) . T) (((-1168)) . T))
+(-3998 (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899)))
+(-3998 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
+((($) . T))
+(((|#2| (-529 (-855 |#1|))) . T))
+((((-1168)) . T))
+((((-1168)) . T))
+((((-558) |#1|) . T))
+((((-853)) . T) (((-1168)) . T))
+((((-1168)) . T))
+(((|#2|) . T))
+((((-853)) . T) (((-1168)) . T))
+((((-1168)) . T))
+((((-853)) . T) (((-1168)) . T))
+((((-1168)) . T))
+((((-853)) . T) (((-1168)) . T))
+((((-1168)) . T))
+((((-853)) -3998 (|has| |#1| (-605 (-853))) (|has| |#1| (-1087))))
+(((|#1|) . T))
+(((|#2| (-762)) . T))
(((|#1| |#2|) . T))
-((((-1140) |#1|) . T))
-((((-402 |#2|)) . T))
-((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T))
-(|has| |#1| (-546))
-(|has| |#1| (-546))
+((((-1145) |#1|) . T))
+((((-406 |#2|)) . T))
+((((-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T))
+(|has| |#1| (-550))
+(|has| |#1| (-550))
((($) . T) ((|#2|) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-554)) . T) (($) . T))
-(((|#2| $) |has| |#2| (-281 |#2| |#2|)))
-(((|#1| (-631 |#1|)) |has| |#1| (-834)))
-(-3994 (|has| |#1| (-229)) (|has| |#1| (-344)))
-(-3994 (|has| |#1| (-358)) (|has| |#1| (-344)))
-((((-1237 |#1|)) . T) (((-554)) . T) ((|#2|) . T) (((-402 (-554))) |has| |#2| (-1023 (-402 (-554)))))
-(|has| |#1| (-1082))
-(((|#1|) . T))
-((((-1237 |#1|)) . T) (((-554)) . T) (($) -3994 (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))) (((-1064)) . T) ((|#2|) . T) (((-402 (-554))) -3994 (|has| |#2| (-38 (-402 (-554)))) (|has| |#2| (-1023 (-402 (-554))))))
-((((-402 (-554))) . T) (($) . T))
-((((-984 |#1|)) . T) ((|#1|) . T) (((-554)) -3994 (|has| (-984 |#1|) (-1023 (-554))) (|has| |#1| (-1023 (-554)))) (((-402 (-554))) -3994 (|has| (-984 |#1|) (-1023 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554))))))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-((((-1158)) |has| |#1| (-885 (-1158))))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))
-(((|#1| (-590 |#1| |#3|) (-590 |#1| |#2|)) . T))
+((((-558)) . T) (($) . T))
+(((|#2| $) |has| |#2| (-285 |#2| |#2|)))
+(((|#1| (-635 |#1|)) |has| |#1| (-839)))
+(-3998 (|has| |#1| (-232)) (|has| |#1| (-348)))
+(-3998 (|has| |#1| (-362)) (|has| |#1| (-348)))
+((((-1242 |#1|)) . T) (((-558)) . T) ((|#2|) . T) (((-406 (-558))) |has| |#2| (-1028 (-406 (-558)))))
+(|has| |#1| (-1087))
+(((|#1|) . T))
+((((-1242 |#1|)) . T) (((-558)) . T) (($) -3998 (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))) (((-1069)) . T) ((|#2|) . T) (((-406 (-558))) -3998 (|has| |#2| (-38 (-406 (-558)))) (|has| |#2| (-1028 (-406 (-558))))))
+((((-406 (-558))) . T) (($) . T))
+((((-989 |#1|)) . T) ((|#1|) . T) (((-558)) -3998 (|has| (-989 |#1|) (-1028 (-558))) (|has| |#1| (-1028 (-558)))) (((-406 (-558))) -3998 (|has| (-989 |#1|) (-1028 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558))))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+((((-1163)) |has| |#1| (-890 (-1163))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+(((|#1| (-594 |#1| |#3|) (-594 |#1| |#2|)) . T))
(((|#1|) . T))
(((|#1| |#2| |#3| |#4|) . T))
-(((#0=(-1122 |#1| |#2|) #0#) |has| (-1122 |#1| |#2|) (-304 (-1122 |#1| |#2|))))
+(((#0=(-1127 |#1| |#2|) #0#) |has| (-1127 |#1| |#2|) (-308 (-1127 |#1| |#2|))))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))) ((#0=(-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) #0#) |has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))))
-(((#0=(-116 |#1|)) |has| #0# (-304 #0#)))
+(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))) ((#0=(-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) #0#) |has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))))
+(((#0=(-116 |#1|)) |has| #0# (-308 #0#)))
((($ $) . T))
-(-3994 (|has| |#1| (-836)) (|has| |#1| (-1082)))
-((($ $) . T) ((#0=(-850 |#1|) $) . T) ((#0# |#2|) . T))
-((($ $) . T) ((|#2| $) |has| |#1| (-229)) ((|#2| |#1|) |has| |#1| (-229)) ((|#3| |#1|) . T) ((|#3| $) . T))
-(((-472 . -1082) T) ((-259 . -508) 161647) ((-243 . -508) 161590) ((-241 . -1082) 161540) ((-561 . -111) 161525) ((-525 . -23) T) ((-137 . -1082) T) ((-136 . -1082) T) ((-117 . -304) 161482) ((-132 . -1082) T) ((-473 . -508) 161274) ((-663 . -604) 161258) ((-680 . -102) T) ((-1123 . -508) 161177) ((-385 . -130) T) ((-1254 . -961) 161146) ((-31 . -93) T) ((-590 . -483) 161130) ((-609 . -130) T) ((-806 . -832) T) ((-517 . -57) 161080) ((-59 . -508) 161013) ((-513 . -508) 160946) ((-413 . -885) 160905) ((-167 . -1034) T) ((-510 . -508) 160838) ((-491 . -508) 160771) ((-490 . -508) 160704) ((-786 . -1023) 160487) ((-685 . -38) 160452) ((-1214 . -604) 160200) ((-338 . -344) T) ((-1076 . -1075) 160184) ((-1076 . -1082) 160162) ((-841 . -604) 160059) ((-167 . -239) 160010) ((-167 . -229) 159961) ((-1076 . -1077) 159919) ((-857 . -281) 159877) ((-221 . -782) T) ((-221 . -779) T) ((-680 . -279) NIL) ((-561 . -604) 159849) ((-1132 . -1171) 159828) ((-402 . -977) 159812) ((-687 . -21) T) ((-687 . -25) T) ((-1256 . -634) 159786) ((-311 . -158) 159765) ((-311 . -141) 159744) ((-1132 . -107) 159694) ((-133 . -25) T) ((-40 . -227) 159671) ((-116 . -21) T) ((-116 . -25) T) ((-596 . -283) 159647) ((-469 . -283) 159626) ((-1214 . -321) 159603) ((-1214 . -1034) T) ((-841 . -1034) T) ((-786 . -333) 159587) ((-117 . -1133) NIL) ((-91 . -601) 159519) ((-471 . -130) T) ((-1214 . -229) T) ((-1078 . -484) 159500) ((-1078 . -601) 159466) ((-1072 . -484) 159447) ((-1072 . -601) 159413) ((-582 . -1195) T) ((-1056 . -484) 159394) ((-561 . -1034) T) ((-1056 . -601) 159360) ((-648 . -704) 159344) ((-1049 . -484) 159325) ((-1049 . -601) 159291) ((-943 . -283) 159268) ((-60 . -34) T) ((-1045 . -782) T) ((-1045 . -779) T) ((-1021 . -484) 159249) ((-1004 . -484) 159230) ((-803 . -713) T) ((-718 . -47) 159195) ((-611 . -38) 159182) ((-350 . -285) T) ((-347 . -285) T) ((-339 . -285) T) ((-259 . -285) 159113) ((-243 . -285) 159044) ((-1021 . -601) 159010) ((-1009 . -102) T) ((-1004 . -601) 158976) ((-614 . -484) 158957) ((-408 . -713) T) ((-117 . -38) 158902) ((-477 . -484) 158883) ((-614 . -601) 158849) ((-408 . -467) T) ((-214 . -484) 158830) ((-477 . -601) 158796) ((-349 . -102) T) ((-214 . -601) 158762) ((-1189 . -1041) T) ((-698 . -1041) T) ((-1156 . -47) 158739) ((-1155 . -47) 158709) ((-1149 . -47) 158686) ((-128 . -283) 158661) ((-1020 . -149) 158607) ((-895 . -285) T) ((-1108 . -47) 158579) ((-680 . -304) NIL) ((-509 . -601) 158561) ((-504 . -601) 158543) ((-502 . -601) 158525) ((-322 . -1082) 158475) ((-699 . -446) 158406) ((-48 . -102) T) ((-1225 . -281) 158391) ((-1204 . -281) 158311) ((-631 . -652) 158295) ((-631 . -637) 158279) ((-334 . -21) T) ((-334 . -25) T) ((-40 . -344) NIL) ((-172 . -21) T) ((-172 . -25) T) ((-631 . -368) 158263) ((-593 . -484) 158245) ((-590 . -281) 158222) ((-593 . -601) 158189) ((-383 . -102) T) ((-1102 . -141) T) ((-126 . -601) 158121) ((-859 . -1082) T) ((-644 . -406) 158105) ((-701 . -601) 158087) ((-183 . -601) 158069) ((-160 . -601) 158051) ((-155 . -601) 158033) ((-1256 . -713) T) ((-1084 . -34) T) ((-856 . -782) NIL) ((-856 . -779) NIL) ((-844 . -836) T) ((-718 . -871) NIL) ((-1265 . -130) T) ((-376 . -130) T) ((-877 . -604) 158001) ((-889 . -102) T) ((-718 . -1023) 157877) ((-525 . -130) T) ((-1069 . -406) 157861) ((-985 . -483) 157845) ((-117 . -395) 157822) ((-1149 . -1195) 157801) ((-769 . -406) 157785) ((-767 . -406) 157769) ((-928 . -34) T) ((-680 . -1133) NIL) ((-246 . -634) 157604) ((-245 . -634) 157426) ((-804 . -905) 157405) ((-448 . -406) 157389) ((-590 . -19) 157373) ((-1128 . -1188) 157342) ((-1149 . -871) NIL) ((-1149 . -869) 157294) ((-590 . -592) 157271) ((-1181 . -601) 157203) ((-1157 . -601) 157185) ((-62 . -390) T) ((-1155 . -1023) 157120) ((-1149 . -1023) 157086) ((-680 . -38) 157036) ((-468 . -281) 157021) ((-718 . -372) 157005) ((-644 . -1041) T) ((-1225 . -987) 156971) ((-1204 . -987) 156937) ((-1070 . -604) 156921) ((-1046 . -1171) 156896) ((-1058 . -604) 156873) ((-857 . -602) 156680) ((-857 . -601) 156662) ((-1168 . -483) 156599) ((-413 . -1007) 156577) ((-48 . -304) 156564) ((-1046 . -107) 156510) ((-473 . -483) 156447) ((-514 . -1195) T) ((-1149 . -333) 156399) ((-1123 . -483) 156370) ((-1149 . -372) 156322) ((-1069 . -1041) T) ((-432 . -102) T) ((-181 . -1082) T) ((-246 . -34) T) ((-245 . -34) T) ((-769 . -1041) T) ((-767 . -1041) T) ((-718 . -885) 156299) ((-448 . -1041) T) ((-59 . -483) 156283) ((-1019 . -1040) 156257) ((-513 . -483) 156241) ((-510 . -483) 156225) ((-491 . -483) 156209) ((-490 . -483) 156193) ((-241 . -508) 156126) ((-1019 . -111) 156093) ((-1156 . -885) 156006) ((-1155 . -885) 155912) ((-1149 . -885) 155745) ((-1108 . -885) 155729) ((-656 . -1094) T) ((-349 . -1133) T) ((-632 . -93) T) ((-317 . -1040) 155711) ((-246 . -778) 155690) ((-246 . -781) 155641) ((-31 . -484) 155622) ((-246 . -780) 155601) ((-245 . -778) 155580) ((-245 . -781) 155531) ((-245 . -780) 155510) ((-31 . -601) 155476) ((-50 . -1041) T) ((-246 . -713) 155386) ((-245 . -713) 155296) ((-1189 . -1082) T) ((-656 . -23) T) ((-571 . -1041) T) ((-512 . -1041) T) ((-374 . -1040) 155261) ((-317 . -111) 155236) ((-73 . -378) T) ((-73 . -390) T) ((-1009 . -38) 155173) ((-680 . -395) 155155) ((-99 . -102) T) ((-698 . -1082) T) ((-988 . -143) 155127) ((-988 . -145) 155099) ((-374 . -111) 155055) ((-314 . -1199) 155034) ((-468 . -987) 155000) ((-349 . -38) 154965) ((-40 . -365) 154937) ((-858 . -601) 154809) ((-127 . -125) 154793) ((-121 . -125) 154777) ((-823 . -1040) 154747) ((-820 . -21) 154699) ((-814 . -1040) 154683) ((-820 . -25) 154635) ((-314 . -546) 154586) ((-511 . -604) 154567) ((-554 . -815) T) ((-236 . -1195) T) ((-1019 . -604) 154536) ((-823 . -111) 154501) ((-814 . -111) 154480) ((-1225 . -601) 154462) ((-1204 . -601) 154444) ((-1204 . -602) 154115) ((-1154 . -894) 154094) ((-1107 . -894) 154073) ((-48 . -38) 154038) ((-1263 . -1094) T) ((-590 . -601) 153950) ((-590 . -602) 153911) ((-1261 . -1094) T) ((-356 . -604) 153895) ((-317 . -604) 153879) ((-236 . -1023) 153706) ((-1154 . -634) 153631) ((-1107 . -634) 153556) ((-705 . -601) 153538) ((-840 . -634) 153512) ((-1263 . -23) T) ((-1261 . -23) T) ((-485 . -1082) T) ((-374 . -604) 153462) ((-374 . -606) 153444) ((-1019 . -1034) T) ((-1168 . -281) 153423) ((-167 . -363) 153374) ((-989 . -1195) T) ((-823 . -604) 153328) ((-814 . -604) 153283) ((-44 . -23) T) ((-473 . -281) 153262) ((-575 . -1082) T) ((-1128 . -1091) 153231) ((-1086 . -1085) 153183) ((-385 . -21) T) ((-385 . -25) T) ((-150 . -1094) T) ((-1269 . -102) T) ((-989 . -869) 153165) ((-989 . -871) 153147) ((-1189 . -704) 153044) ((-611 . -227) 153028) ((-609 . -21) T) ((-284 . -546) T) ((-609 . -25) T) ((-1175 . -1082) T) ((-698 . -704) 152993) ((-236 . -372) 152962) ((-989 . -1023) 152922) ((-374 . -1034) T) ((-219 . -1041) T) ((-117 . -227) 152899) ((-59 . -281) 152876) ((-150 . -23) T) ((-510 . -281) 152853) ((-322 . -508) 152786) ((-490 . -281) 152763) ((-374 . -239) T) ((-374 . -229) T) ((-823 . -1034) T) ((-814 . -1034) T) ((-699 . -934) 152732) ((-687 . -836) T) ((-468 . -601) 152714) ((-814 . -229) 152693) ((-133 . -836) T) ((-644 . -1082) T) ((-1168 . -592) 152672) ((-540 . -1171) 152651) ((-331 . -1082) T) ((-314 . -358) 152630) ((-402 . -145) 152609) ((-402 . -143) 152588) ((-949 . -1094) 152487) ((-236 . -885) 152419) ((-802 . -1094) 152329) ((-640 . -838) 152313) ((-473 . -592) 152292) ((-540 . -107) 152242) ((-989 . -372) 152224) ((-989 . -333) 152206) ((-97 . -1082) T) ((-949 . -23) 152017) ((-471 . -21) T) ((-471 . -25) T) ((-802 . -23) 151887) ((-1158 . -601) 151869) ((-59 . -19) 151853) ((-1158 . -602) 151775) ((-1154 . -713) T) ((-1107 . -713) T) ((-510 . -19) 151759) ((-490 . -19) 151743) ((-59 . -592) 151720) ((-1069 . -1082) T) ((-886 . -102) 151698) ((-840 . -713) T) ((-769 . -1082) T) ((-510 . -592) 151675) ((-490 . -592) 151652) ((-767 . -1082) T) ((-767 . -1048) 151619) ((-455 . -1082) T) ((-448 . -1082) T) ((-575 . -704) 151594) ((-635 . -1082) T) ((-1233 . -47) 151571) ((-1227 . -102) T) ((-1226 . -47) 151541) ((-1205 . -47) 151518) ((-1189 . -170) 151469) ((-1155 . -302) 151448) ((-989 . -885) NIL) ((-1149 . -302) 151427) ((-615 . -1094) T) ((-656 . -130) T) ((-1078 . -604) 151408) ((-1072 . -604) 151389) ((-1062 . -546) 151340) ((-1062 . -1199) 151291) ((-1056 . -604) 151272) ((-270 . -1082) T) ((-85 . -435) T) ((-85 . -390) T) ((-1049 . -604) 151253) ((-1021 . -604) 151234) ((-50 . -1082) T) ((-1004 . -604) 151215) ((-698 . -170) T) ((-584 . -47) 151192) ((-221 . -634) 151157) ((-571 . -1082) T) ((-512 . -1082) T) ((-354 . -1199) T) ((-348 . -1199) T) ((-340 . -1199) T) ((-481 . -807) T) ((-481 . -905) T) ((-314 . -1094) T) ((-108 . -1199) T) ((-701 . -1040) 151127) ((-334 . -836) T) ((-213 . -905) T) ((-213 . -807) T) ((-614 . -604) 151108) ((-354 . -546) T) ((-348 . -546) T) ((-340 . -546) T) ((-477 . -604) 151089) ((-108 . -546) T) ((-644 . -704) 151059) ((-1149 . -1007) NIL) ((-214 . -604) 151040) ((-314 . -23) T) ((-67 . -1195) T) ((-985 . -601) 150972) ((-680 . -227) 150954) ((-701 . -111) 150919) ((-631 . -34) T) ((-241 . -483) 150903) ((-1084 . -1080) 150887) ((-169 . -1082) T) ((-937 . -894) 150866) ((-509 . -604) 150850) ((-1269 . -1133) T) ((-1265 . -21) T) ((-475 . -894) 150829) ((-1265 . -25) T) ((-1263 . -130) T) ((-1261 . -130) T) ((-1254 . -102) T) ((-1237 . -601) 150795) ((-1226 . -1023) 150730) ((-1069 . -704) 150579) ((-1045 . -634) 150566) ((-937 . -634) 150491) ((-769 . -704) 150320) ((-530 . -601) 150302) ((-530 . -602) 150283) ((-767 . -704) 150132) ((-1205 . -1195) 150111) ((-1059 . -102) T) ((-376 . -25) T) ((-376 . -21) T) ((-475 . -634) 150036) ((-455 . -704) 150007) ((-448 . -704) 149856) ((-972 . -102) T) ((-1205 . -871) NIL) ((-1205 . -869) 149808) ((-1168 . -602) NIL) ((-724 . -102) T) ((-1168 . -601) 149790) ((-593 . -604) 149772) ((-1124 . -1105) 149717) ((-1031 . -1188) 149646) ((-525 . -25) T) ((-886 . -304) 149584) ((-701 . -604) 149538) ((-338 . -1041) T) ((-632 . -484) 149519) ((-139 . -102) T) ((-44 . -130) T) ((-284 . -1094) T) ((-667 . -93) T) ((-662 . -93) T) ((-650 . -601) 149501) ((-632 . -601) 149454) ((-472 . -93) T) ((-350 . -601) 149436) ((-347 . -601) 149418) ((-339 . -601) 149400) ((-259 . -602) 149148) ((-259 . -601) 149130) ((-243 . -601) 149112) ((-243 . -602) 148973) ((-132 . -93) T) ((-137 . -93) T) ((-136 . -93) T) ((-1205 . -1023) 148939) ((-1189 . -508) 148906) ((-1123 . -601) 148888) ((-806 . -843) T) ((-806 . -713) T) ((-590 . -283) 148865) ((-571 . -704) 148830) ((-473 . -602) NIL) ((-473 . -601) 148812) ((-512 . -704) 148757) ((-311 . -102) T) ((-308 . -102) T) ((-284 . -23) T) ((-150 . -130) T) ((-381 . -713) T) ((-857 . -1040) 148709) ((-895 . -601) 148691) ((-895 . -602) 148673) ((-857 . -111) 148611) ((-701 . -1034) T) ((-699 . -1217) 148595) ((-135 . -102) T) ((-114 . -102) T) ((-680 . -344) NIL) ((-513 . -601) 148527) ((-374 . -782) T) ((-219 . -1082) T) ((-374 . -779) T) ((-221 . -781) T) ((-221 . -778) T) ((-59 . -602) 148488) ((-59 . -601) 148400) ((-221 . -713) T) ((-510 . -602) 148361) ((-510 . -601) 148273) ((-491 . -601) 148205) ((-490 . -602) 148166) ((-490 . -601) 148078) ((-1062 . -358) 148029) ((-40 . -406) 148006) ((-77 . -1195) T) ((-856 . -894) NIL) ((-354 . -324) 147990) ((-354 . -358) T) ((-348 . -324) 147974) ((-348 . -358) T) ((-340 . -324) 147958) ((-340 . -358) T) ((-311 . -279) 147937) ((-108 . -358) T) ((-70 . -1195) T) ((-1205 . -333) 147889) ((-856 . -634) 147834) ((-1205 . -372) 147786) ((-949 . -130) 147641) ((-802 . -130) 147511) ((-943 . -637) 147495) ((-1069 . -170) 147406) ((-943 . -368) 147390) ((-1045 . -781) T) ((-1045 . -778) T) ((-857 . -604) 147288) ((-769 . -170) 147179) ((-767 . -170) 147090) ((-803 . -47) 147052) ((-1045 . -713) T) ((-322 . -483) 147036) ((-937 . -713) T) ((-448 . -170) 146947) ((-241 . -281) 146924) ((-475 . -713) T) ((-1254 . -304) 146862) ((-1233 . -885) 146775) ((-1226 . -885) 146681) ((-1225 . -1040) 146516) ((-1205 . -885) 146349) ((-1204 . -1040) 146157) ((-1189 . -285) 146136) ((-1128 . -149) 146120) ((-1102 . -102) T) ((-1100 . -1082) T) ((-1062 . -23) T) ((-1057 . -102) T) ((-912 . -940) T) ((-724 . -304) 146058) ((-75 . -1195) T) ((-30 . -940) T) ((-167 . -894) 146011) ((-650 . -377) 145983) ((-112 . -830) T) ((-1 . -601) 145965) ((-1062 . -1094) T) ((-128 . -637) 145947) ((-50 . -608) 145931) ((-988 . -404) 145903) ((-584 . -885) 145816) ((-433 . -102) T) ((-139 . -304) NIL) ((-128 . -368) 145798) ((-857 . -1034) T) ((-820 . -836) 145777) ((-81 . -1195) T) ((-698 . -285) T) ((-40 . -1041) T) ((-571 . -170) T) ((-512 . -170) T) ((-505 . -601) 145759) ((-167 . -634) 145669) ((-501 . -601) 145651) ((-346 . -145) 145633) ((-346 . -143) T) ((-354 . -1094) T) ((-348 . -1094) T) ((-340 . -1094) T) ((-989 . -302) T) ((-899 . -302) T) ((-857 . -239) T) ((-108 . -1094) T) ((-857 . -229) 145612) ((-1225 . -111) 145433) ((-1204 . -111) 145222) ((-241 . -1229) 145206) ((-554 . -834) T) ((-354 . -23) T) ((-349 . -344) T) ((-311 . -304) 145193) ((-308 . -304) 145134) ((-348 . -23) T) ((-314 . -130) T) ((-340 . -23) T) ((-989 . -1007) T) ((-31 . -604) 145115) ((-108 . -23) T) ((-241 . -592) 145092) ((-1227 . -38) 144984) ((-1214 . -894) 144963) ((-112 . -1082) T) ((-1020 . -102) T) ((-1214 . -634) 144888) ((-856 . -781) NIL) ((-841 . -634) 144862) ((-856 . -778) NIL) ((-803 . -871) NIL) ((-856 . -713) T) ((-1069 . -508) 144735) ((-769 . -508) 144682) ((-767 . -508) 144634) ((-561 . -634) 144621) ((-803 . -1023) 144449) ((-448 . -508) 144392) ((-383 . -384) T) ((-1225 . -604) 144205) ((-1204 . -604) 143953) ((-60 . -1195) T) ((-609 . -836) 143932) ((-494 . -647) T) ((-1128 . -961) 143901) ((-988 . -446) T) ((-685 . -834) T) ((-504 . -779) T) ((-468 . -1040) 143736) ((-338 . -1082) T) ((-308 . -1133) NIL) ((-284 . -130) T) ((-389 . -1082) T) ((-680 . -365) 143703) ((-855 . -1041) T) ((-219 . -608) 143680) ((-322 . -281) 143657) ((-468 . -111) 143478) ((-1225 . -1034) T) ((-1204 . -1034) T) ((-803 . -372) 143462) ((-167 . -713) T) ((-640 . -102) T) ((-1225 . -239) 143441) ((-1225 . -229) 143393) ((-1204 . -229) 143298) ((-1204 . -239) 143277) ((-988 . -397) NIL) ((-656 . -627) 143225) ((-311 . -38) 143135) ((-308 . -38) 143064) ((-69 . -601) 143046) ((-314 . -487) 143012) ((-1168 . -283) 142991) ((-1095 . -1094) 142901) ((-83 . -1195) T) ((-61 . -601) 142883) ((-473 . -283) 142862) ((-1256 . -1023) 142839) ((-1146 . -1082) T) ((-1095 . -23) 142709) ((-803 . -885) 142645) ((-1214 . -713) T) ((-1084 . -1195) T) ((-468 . -604) 142471) ((-1069 . -285) 142402) ((-951 . -1082) T) ((-878 . -102) T) ((-769 . -285) 142313) ((-322 . -19) 142297) ((-59 . -283) 142274) ((-767 . -285) 142205) ((-841 . -713) T) ((-117 . -834) NIL) ((-510 . -283) 142182) ((-322 . -592) 142159) ((-490 . -283) 142136) ((-448 . -285) 142067) ((-1020 . -304) 141918) ((-667 . -484) 141899) ((-561 . -713) T) ((-662 . -484) 141880) ((-667 . -601) 141830) ((-662 . -601) 141796) ((-648 . -601) 141778) ((-472 . -484) 141759) ((-472 . -601) 141725) ((-241 . -602) 141686) ((-241 . -484) 141663) ((-137 . -484) 141644) ((-136 . -484) 141625) ((-132 . -484) 141606) ((-241 . -601) 141498) ((-209 . -102) T) ((-137 . -601) 141464) ((-136 . -601) 141430) ((-132 . -601) 141396) ((-1129 . -34) T) ((-928 . -1195) T) ((-338 . -704) 141341) ((-656 . -25) T) ((-656 . -21) T) ((-1158 . -604) 141322) ((-468 . -1034) T) ((-623 . -412) 141287) ((-595 . -412) 141252) ((-1102 . -1133) T) ((-571 . -285) T) ((-512 . -285) T) ((-1226 . -302) 141231) ((-468 . -229) 141183) ((-468 . -239) 141162) ((-1205 . -302) 141141) ((-1205 . -1007) NIL) ((-1062 . -130) T) ((-857 . -782) 141120) ((-142 . -102) T) ((-40 . -1082) T) ((-857 . -779) 141099) ((-631 . -995) 141083) ((-570 . -1041) T) ((-554 . -1041) T) ((-489 . -1041) T) ((-402 . -446) T) ((-354 . -130) T) ((-311 . -395) 141067) ((-308 . -395) 141028) ((-348 . -130) T) ((-340 . -130) T) ((-1163 . -1082) T) ((-1102 . -38) 141015) ((-1076 . -601) 140982) ((-108 . -130) T) ((-939 . -1082) T) ((-906 . -1082) T) ((-758 . -1082) T) ((-658 . -1082) T) ((-500 . -1065) T) ((-687 . -145) T) ((-116 . -145) T) ((-1263 . -21) T) ((-1263 . -25) T) ((-1261 . -21) T) ((-1261 . -25) T) ((-650 . -1040) 140966) ((-525 . -836) T) ((-494 . -836) T) ((-350 . -1040) 140918) ((-347 . -1040) 140870) ((-339 . -1040) 140822) ((-246 . -1195) T) ((-245 . -1195) T) ((-259 . -1040) 140665) ((-243 . -1040) 140508) ((-650 . -111) 140487) ((-350 . -111) 140425) ((-347 . -111) 140363) ((-339 . -111) 140301) ((-259 . -111) 140130) ((-243 . -111) 139959) ((-804 . -1199) 139938) ((-611 . -406) 139922) ((-44 . -21) T) ((-44 . -25) T) ((-802 . -627) 139828) ((-804 . -546) 139807) ((-246 . -1023) 139634) ((-245 . -1023) 139461) ((-126 . -119) 139445) ((-895 . -1040) 139410) ((-699 . -102) T) ((-685 . -1041) T) ((-530 . -606) 139313) ((-338 . -170) T) ((-150 . -21) T) ((-150 . -25) T) ((-88 . -601) 139295) ((-895 . -111) 139251) ((-40 . -704) 139196) ((-855 . -1082) T) ((-650 . -604) 139173) ((-632 . -604) 139154) ((-350 . -604) 139091) ((-347 . -604) 139028) ((-339 . -604) 138965) ((-322 . -602) 138926) ((-322 . -601) 138838) ((-259 . -604) 138591) ((-243 . -604) 138376) ((-1204 . -779) 138329) ((-1204 . -782) 138282) ((-246 . -372) 138251) ((-245 . -372) 138220) ((-640 . -38) 138190) ((-596 . -34) T) ((-476 . -1094) 138100) ((-469 . -34) T) ((-1095 . -130) 137970) ((-949 . -25) 137781) ((-895 . -604) 137731) ((-859 . -601) 137713) ((-949 . -21) 137668) ((-802 . -21) 137578) ((-802 . -25) 137429) ((-611 . -1041) T) ((-1160 . -546) 137408) ((-1154 . -47) 137385) ((-350 . -1034) T) ((-347 . -1034) T) ((-476 . -23) 137255) ((-339 . -1034) T) ((-243 . -1034) T) ((-259 . -1034) T) ((-1107 . -47) 137227) ((-117 . -1041) T) ((-1019 . -634) 137201) ((-943 . -34) T) ((-350 . -229) 137180) ((-350 . -239) T) ((-347 . -229) 137159) ((-347 . -239) T) ((-339 . -229) 137138) ((-339 . -239) T) ((-243 . -321) 137095) ((-259 . -321) 137067) ((-259 . -229) 137046) ((-1138 . -149) 137030) ((-246 . -885) 136962) ((-245 . -885) 136894) ((-1064 . -836) T) ((-409 . -1094) T) ((-1038 . -23) T) ((-895 . -1034) T) ((-317 . -634) 136876) ((-1009 . -834) T) ((-1189 . -987) 136842) ((-1155 . -905) 136821) ((-1149 . -905) 136800) ((-1149 . -807) NIL) ((-895 . -239) T) ((-804 . -358) 136779) ((-380 . -23) T) ((-127 . -1082) 136757) ((-121 . -1082) 136735) ((-895 . -229) T) ((-128 . -34) T) ((-374 . -634) 136700) ((-855 . -704) 136687) ((-1031 . -149) 136652) ((-40 . -170) T) ((-680 . -406) 136634) ((-699 . -304) 136621) ((-823 . -634) 136581) ((-814 . -634) 136555) ((-314 . -25) T) ((-314 . -21) T) ((-644 . -281) 136534) ((-570 . -1082) T) ((-554 . -1082) T) ((-489 . -1082) T) ((-241 . -283) 136511) ((-308 . -227) 136472) ((-1154 . -871) NIL) ((-55 . -1082) T) ((-1107 . -871) 136331) ((-129 . -836) T) ((-1154 . -1023) 136211) ((-1107 . -1023) 136094) ((-181 . -601) 136076) ((-840 . -1023) 135972) ((-769 . -281) 135899) ((-804 . -1094) T) ((-1019 . -713) T) ((-590 . -637) 135883) ((-1031 . -961) 135812) ((-984 . -102) T) ((-804 . -23) T) ((-699 . -1133) 135790) ((-680 . -1041) T) ((-590 . -368) 135774) ((-346 . -446) T) ((-338 . -285) T) ((-1242 . -1082) T) ((-244 . -1082) T) ((-394 . -102) T) ((-284 . -21) T) ((-284 . -25) T) ((-356 . -713) T) ((-697 . -1082) T) ((-685 . -1082) T) ((-356 . -467) T) ((-1189 . -601) 135756) ((-1154 . -372) 135740) ((-1107 . -372) 135724) ((-1009 . -406) 135686) ((-139 . -225) 135668) ((-374 . -781) T) ((-374 . -778) T) ((-855 . -170) T) ((-374 . -713) T) ((-698 . -601) 135650) ((-699 . -38) 135479) ((-1241 . -1239) 135463) ((-346 . -397) T) ((-1241 . -1082) 135413) ((-570 . -704) 135400) ((-554 . -704) 135387) ((-489 . -704) 135352) ((-311 . -617) 135331) ((-823 . -713) T) ((-814 . -713) T) ((-631 . -1195) T) ((-1062 . -627) 135279) ((-1154 . -885) 135222) ((-1107 . -885) 135206) ((-648 . -1040) 135190) ((-108 . -627) 135172) ((-476 . -130) 135042) ((-1160 . -1094) T) ((-937 . -47) 135011) ((-611 . -1082) T) ((-648 . -111) 134990) ((-485 . -601) 134956) ((-322 . -283) 134933) ((-475 . -47) 134890) ((-1160 . -23) T) ((-117 . -1082) T) ((-103 . -102) 134868) ((-1253 . -1094) T) ((-1038 . -130) T) ((-1009 . -1041) T) ((-806 . -1023) 134852) ((-988 . -711) 134824) ((-1253 . -23) T) ((-685 . -704) 134789) ((-575 . -601) 134771) ((-381 . -1023) 134755) ((-349 . -1041) T) ((-380 . -130) T) ((-319 . -1023) 134739) ((-221 . -871) 134721) ((-989 . -905) T) ((-91 . -34) T) ((-989 . -807) T) ((-899 . -905) T) ((-1175 . -601) 134703) ((-1102 . -815) T) ((-481 . -1199) T) ((-1087 . -1082) T) ((-1062 . -21) T) ((-1062 . -25) T) ((-213 . -1199) T) ((-984 . -304) 134668) ((-221 . -1023) 134628) ((-40 . -285) T) ((-701 . -634) 134588) ((-667 . -604) 134569) ((-662 . -604) 134550) ((-481 . -546) T) ((-472 . -604) 134531) ((-354 . -25) T) ((-354 . -21) T) ((-348 . -25) T) ((-213 . -546) T) ((-348 . -21) T) ((-340 . -25) T) ((-340 . -21) T) ((-241 . -604) 134508) ((-137 . -604) 134489) ((-136 . -604) 134470) ((-132 . -604) 134451) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1041) T) ((-570 . -170) T) ((-554 . -170) T) ((-489 . -170) T) ((-644 . -601) 134433) ((-724 . -723) 134417) ((-331 . -601) 134399) ((-68 . -378) T) ((-68 . -390) T) ((-1084 . -107) 134383) ((-1045 . -871) 134365) ((-937 . -871) 134290) ((-639 . -1094) T) ((-611 . -704) 134277) ((-475 . -871) NIL) ((-1128 . -102) T) ((-1076 . -606) 134261) ((-1045 . -1023) 134243) ((-97 . -601) 134225) ((-471 . -145) T) ((-937 . -1023) 134105) ((-117 . -704) 134050) ((-639 . -23) T) ((-475 . -1023) 133926) ((-1069 . -602) NIL) ((-1069 . -601) 133908) ((-769 . -602) NIL) ((-769 . -601) 133869) ((-767 . -602) 133503) ((-767 . -601) 133417) ((-1095 . -627) 133323) ((-455 . -601) 133305) ((-448 . -601) 133287) ((-448 . -602) 133148) ((-1020 . -225) 133094) ((-857 . -894) 133073) ((-126 . -34) T) ((-804 . -130) T) ((-635 . -601) 133055) ((-568 . -102) T) ((-350 . -1260) 133039) ((-347 . -1260) 133023) ((-339 . -1260) 133007) ((-127 . -508) 132940) ((-121 . -508) 132873) ((-505 . -779) T) ((-505 . -782) T) ((-504 . -781) T) ((-103 . -304) 132811) ((-218 . -102) 132789) ((-680 . -1082) T) ((-685 . -170) T) ((-857 . -634) 132741) ((-65 . -379) T) ((-270 . -601) 132723) ((-65 . -390) T) ((-937 . -372) 132707) ((-855 . -285) T) ((-50 . -601) 132689) ((-984 . -38) 132637) ((-571 . -601) 132619) ((-475 . -372) 132603) ((-571 . -602) 132585) ((-512 . -601) 132567) ((-895 . -1260) 132554) ((-856 . -1195) T) ((-687 . -446) T) ((-489 . -508) 132520) ((-481 . -358) T) ((-350 . -363) 132499) ((-347 . -363) 132478) ((-339 . -363) 132457) ((-701 . -713) T) ((-213 . -358) T) ((-116 . -446) T) ((-1264 . -1255) 132441) ((-856 . -869) 132418) ((-856 . -871) NIL) ((-949 . -836) 132317) ((-802 . -836) 132268) ((-640 . -642) 132252) ((-1181 . -34) T) ((-169 . -601) 132234) ((-1095 . -21) 132144) ((-1095 . -25) 131995) ((-856 . -1023) 131972) ((-937 . -885) 131953) ((-1214 . -47) 131930) ((-895 . -363) T) ((-59 . -637) 131914) ((-510 . -637) 131898) ((-475 . -885) 131875) ((-71 . -435) T) ((-71 . -390) T) ((-490 . -637) 131859) ((-59 . -368) 131843) ((-611 . -170) T) ((-510 . -368) 131827) ((-490 . -368) 131811) ((-814 . -695) 131795) ((-1154 . -302) 131774) ((-1160 . -130) T) ((-117 . -170) T) ((-1128 . -304) 131712) ((-167 . -1195) T) ((-623 . -731) 131696) ((-595 . -731) 131680) ((-1253 . -130) T) ((-1226 . -905) 131659) ((-1205 . -905) 131638) ((-1205 . -807) NIL) ((-680 . -704) 131588) ((-1204 . -894) 131541) ((-1009 . -1082) T) ((-856 . -372) 131518) ((-856 . -333) 131495) ((-890 . -1094) T) ((-167 . -869) 131479) ((-167 . -871) 131404) ((-481 . -1094) T) ((-349 . -1082) T) ((-213 . -1094) T) ((-76 . -435) T) ((-76 . -390) T) ((-167 . -1023) 131300) ((-314 . -836) T) ((-1241 . -508) 131233) ((-1225 . -634) 131130) ((-1204 . -634) 131000) ((-857 . -781) 130979) ((-857 . -778) 130958) ((-857 . -713) T) ((-481 . -23) T) ((-219 . -601) 130940) ((-172 . -446) T) ((-218 . -304) 130878) ((-86 . -435) T) ((-86 . -390) T) ((-213 . -23) T) ((-1265 . -1258) 130857) ((-570 . -285) T) ((-554 . -285) T) ((-663 . -1023) 130841) ((-489 . -285) T) ((-135 . -464) 130796) ((-48 . -1082) T) ((-699 . -227) 130780) ((-856 . -885) NIL) ((-1214 . -871) NIL) ((-874 . -102) T) ((-870 . -102) T) ((-383 . -1082) T) ((-167 . -372) 130764) ((-167 . -333) 130748) ((-1214 . -1023) 130628) ((-841 . -1023) 130524) ((-1124 . -102) T) ((-639 . -130) T) ((-117 . -508) 130432) ((-648 . -779) 130411) ((-648 . -782) 130390) ((-561 . -1023) 130372) ((-289 . -1248) 130342) ((-851 . -102) T) ((-948 . -546) 130321) ((-1189 . -1040) 130204) ((-476 . -627) 130110) ((-889 . -1082) T) ((-1009 . -704) 130047) ((-698 . -1040) 130012) ((-605 . -102) T) ((-590 . -34) T) ((-1129 . -1195) T) ((-1189 . -111) 129881) ((-468 . -634) 129778) ((-349 . -704) 129723) ((-167 . -885) 129682) ((-685 . -285) T) ((-680 . -170) T) ((-698 . -111) 129638) ((-1269 . -1041) T) ((-1214 . -372) 129622) ((-413 . -1199) 129600) ((-1100 . -601) 129582) ((-308 . -834) NIL) ((-413 . -546) T) ((-221 . -302) T) ((-1204 . -778) 129535) ((-1204 . -781) 129488) ((-1225 . -713) T) ((-1204 . -713) T) ((-48 . -704) 129453) ((-221 . -1007) T) ((-346 . -1248) 129430) ((-1227 . -406) 129396) ((-705 . -713) T) ((-1214 . -885) 129339) ((-1189 . -604) 129221) ((-112 . -601) 129203) ((-112 . -602) 129185) ((-705 . -467) T) ((-698 . -604) 129135) ((-476 . -21) 129045) ((-127 . -483) 129029) ((-121 . -483) 129013) ((-476 . -25) 128864) ((-611 . -285) T) ((-575 . -1040) 128839) ((-432 . -1082) T) ((-1045 . -302) T) ((-117 . -285) T) ((-1086 . -102) T) ((-988 . -102) T) ((-575 . -111) 128807) ((-1124 . -304) 128745) ((-1189 . -1034) T) ((-1045 . -1007) T) ((-66 . -1195) T) ((-1038 . -25) T) ((-1038 . -21) T) ((-698 . -1034) T) ((-380 . -21) T) ((-380 . -25) T) ((-680 . -508) NIL) ((-1009 . -170) T) ((-698 . -239) T) ((-1045 . -539) T) ((-500 . -102) T) ((-496 . -102) T) ((-349 . -170) T) ((-338 . -601) 128727) ((-389 . -601) 128709) ((-468 . -713) T) ((-1102 . -834) T) ((-877 . -1023) 128677) ((-108 . -836) T) ((-644 . -1040) 128661) ((-481 . -130) T) ((-1227 . -1041) T) ((-213 . -130) T) ((-1138 . -102) 128639) ((-99 . -1082) T) ((-241 . -652) 128623) ((-241 . -637) 128607) ((-644 . -111) 128586) ((-575 . -604) 128570) ((-311 . -406) 128554) ((-241 . -368) 128538) ((-1141 . -231) 128485) ((-984 . -227) 128469) ((-74 . -1195) T) ((-48 . -170) T) ((-687 . -382) T) ((-687 . -141) T) ((-1264 . -102) T) ((-1175 . -604) 128451) ((-1069 . -1040) 128294) ((-259 . -894) 128273) ((-243 . -894) 128252) ((-769 . -1040) 128075) ((-767 . -1040) 127918) ((-596 . -1195) T) ((-1146 . -601) 127900) ((-1069 . -111) 127729) ((-1031 . -102) T) ((-469 . -1195) T) ((-455 . -1040) 127700) ((-448 . -1040) 127543) ((-650 . -634) 127527) ((-856 . -302) T) ((-769 . -111) 127336) ((-767 . -111) 127165) ((-350 . -634) 127117) ((-347 . -634) 127069) ((-339 . -634) 127021) ((-259 . -634) 126946) ((-243 . -634) 126871) ((-1140 . -836) T) ((-1070 . -1023) 126855) ((-455 . -111) 126816) ((-448 . -111) 126645) ((-1058 . -1023) 126622) ((-985 . -34) T) ((-951 . -601) 126604) ((-943 . -1195) T) ((-126 . -995) 126588) ((-948 . -1094) T) ((-856 . -1007) NIL) ((-722 . -1094) T) ((-702 . -1094) T) ((-644 . -604) 126506) ((-1241 . -483) 126490) ((-1124 . -38) 126450) ((-948 . -23) T) ((-829 . -102) T) ((-804 . -21) T) ((-804 . -25) T) ((-722 . -23) T) ((-702 . -23) T) ((-110 . -647) T) ((-895 . -634) 126415) ((-571 . -1040) 126380) ((-512 . -1040) 126325) ((-223 . -57) 126283) ((-447 . -23) T) ((-402 . -102) T) ((-258 . -102) T) ((-680 . -285) T) ((-851 . -38) 126253) ((-571 . -111) 126209) ((-512 . -111) 126138) ((-1069 . -604) 125874) ((-413 . -1094) T) ((-311 . -1041) 125764) ((-308 . -1041) T) ((-128 . -1195) T) ((-769 . -604) 125512) ((-767 . -604) 125278) ((-644 . -1034) T) ((-1269 . -1082) T) ((-448 . -604) 125063) ((-167 . -302) 124994) ((-413 . -23) T) ((-40 . -601) 124976) ((-40 . -602) 124960) ((-108 . -977) 124942) ((-116 . -854) 124926) ((-635 . -604) 124910) ((-48 . -508) 124876) ((-1181 . -995) 124860) ((-1163 . -601) 124842) ((-1168 . -34) T) ((-939 . -601) 124808) ((-906 . -601) 124790) ((-1095 . -836) 124741) ((-758 . -601) 124723) ((-658 . -601) 124705) ((-1138 . -304) 124643) ((-473 . -34) T) ((-1074 . -1195) T) ((-471 . -446) T) ((-1123 . -34) T) ((-1069 . -1034) T) ((-50 . -604) 124612) ((-769 . -1034) T) ((-767 . -1034) T) ((-633 . -231) 124596) ((-620 . -231) 124542) ((-571 . -604) 124492) ((-512 . -604) 124422) ((-1214 . -302) 124401) ((-1069 . -321) 124362) ((-448 . -1034) T) ((-1160 . -21) T) ((-1069 . -229) 124341) ((-769 . -321) 124318) ((-769 . -229) T) ((-767 . -321) 124290) ((-718 . -1199) 124269) ((-322 . -637) 124253) ((-1160 . -25) T) ((-59 . -34) T) ((-513 . -34) T) ((-510 . -34) T) ((-448 . -321) 124232) ((-322 . -368) 124216) ((-491 . -34) T) ((-490 . -34) T) ((-988 . -1133) NIL) ((-718 . -546) 124147) ((-623 . -102) T) ((-595 . -102) T) ((-350 . -713) T) ((-347 . -713) T) ((-339 . -713) T) ((-259 . -713) T) ((-243 . -713) T) ((-1031 . -304) 124055) ((-886 . -1082) 124033) ((-50 . -1034) T) ((-1253 . -21) T) ((-1253 . -25) T) ((-1156 . -546) 124012) ((-1155 . -1199) 123991) ((-571 . -1034) T) ((-512 . -1034) T) ((-1149 . -1199) 123970) ((-356 . -1023) 123954) ((-317 . -1023) 123938) ((-1009 . -285) T) ((-374 . -871) 123920) ((-1155 . -546) 123871) ((-1149 . -546) 123822) ((-988 . -38) 123767) ((-786 . -1094) T) ((-895 . -713) T) ((-571 . -239) T) ((-571 . -229) T) ((-512 . -229) T) ((-512 . -239) T) ((-1108 . -546) 123746) ((-349 . -285) T) ((-633 . -681) 123730) ((-374 . -1023) 123690) ((-1102 . -1041) T) ((-103 . -125) 123674) ((-786 . -23) T) ((-1241 . -281) 123651) ((-402 . -304) 123616) ((-1263 . -1258) 123592) ((-1261 . -1258) 123571) ((-1227 . -1082) T) ((-855 . -601) 123553) ((-823 . -1023) 123522) ((-199 . -774) T) ((-198 . -774) T) ((-197 . -774) T) ((-196 . -774) T) ((-195 . -774) T) ((-194 . -774) T) ((-193 . -774) T) ((-192 . -774) T) ((-191 . -774) T) ((-190 . -774) T) ((-489 . -987) T) ((-269 . -825) T) ((-268 . -825) T) ((-267 . -825) T) ((-266 . -825) T) ((-48 . -285) T) ((-265 . -825) T) ((-264 . -825) T) ((-263 . -825) T) ((-189 . -774) T) ((-600 . -836) T) ((-640 . -406) 123506) ((-219 . -604) 123468) ((-110 . -836) T) ((-639 . -21) T) ((-639 . -25) T) ((-1264 . -38) 123438) ((-117 . -281) 123389) ((-1241 . -19) 123373) ((-1241 . -592) 123350) ((-1254 . -1082) T) ((-1059 . -1082) T) ((-972 . -1082) T) ((-948 . -130) T) ((-724 . -1082) T) ((-722 . -130) T) ((-702 . -130) T) ((-505 . -780) T) ((-402 . -1133) 123328) ((-447 . -130) T) ((-505 . -781) T) ((-219 . -1034) T) ((-289 . -102) 123110) ((-139 . -1082) T) ((-685 . -987) T) ((-91 . -1195) T) ((-127 . -601) 123042) ((-121 . -601) 122974) ((-1269 . -170) T) ((-1155 . -358) 122953) ((-1149 . -358) 122932) ((-311 . -1082) T) ((-413 . -130) T) ((-308 . -1082) T) ((-402 . -38) 122884) ((-1115 . -102) T) ((-1227 . -704) 122776) ((-640 . -1041) T) ((-1117 . -1236) T) ((-314 . -143) 122755) ((-314 . -145) 122734) ((-135 . -1082) T) ((-114 . -1082) T) ((-844 . -102) T) ((-570 . -601) 122716) ((-554 . -602) 122615) ((-554 . -601) 122597) ((-489 . -601) 122579) ((-489 . -602) 122524) ((-479 . -23) T) ((-476 . -836) 122475) ((-481 . -627) 122457) ((-950 . -601) 122439) ((-213 . -627) 122421) ((-221 . -399) T) ((-648 . -634) 122405) ((-55 . -601) 122387) ((-1154 . -905) 122366) ((-718 . -1094) T) ((-346 . -102) T) ((-1194 . -1065) T) ((-805 . -836) T) ((-718 . -23) T) ((-338 . -1040) 122311) ((-1140 . -1139) T) ((-1129 . -107) 122295) ((-1156 . -1094) T) ((-1155 . -1094) T) ((-509 . -1023) 122279) ((-1149 . -1094) T) ((-1108 . -1094) T) ((-338 . -111) 122208) ((-989 . -1199) T) ((-126 . -1195) T) ((-899 . -1199) T) ((-680 . -281) NIL) ((-1242 . -601) 122190) ((-1156 . -23) T) ((-1155 . -23) T) ((-1149 . -23) T) ((-989 . -546) T) ((-1124 . -227) 122174) ((-899 . -546) T) ((-1108 . -23) T) ((-244 . -601) 122156) ((-1057 . -1082) T) ((-786 . -130) T) ((-697 . -601) 122138) ((-311 . -704) 122048) ((-308 . -704) 121977) ((-685 . -601) 121959) ((-685 . -602) 121904) ((-402 . -395) 121888) ((-433 . -1082) T) ((-481 . -25) T) ((-481 . -21) T) ((-1102 . -1082) T) ((-213 . -25) T) ((-213 . -21) T) ((-699 . -406) 121872) ((-701 . -1023) 121841) ((-1241 . -601) 121753) ((-1241 . -602) 121714) ((-1227 . -170) T) ((-241 . -34) T) ((-338 . -604) 121644) ((-389 . -604) 121626) ((-911 . -959) T) ((-1181 . -1195) T) ((-648 . -778) 121605) ((-648 . -781) 121584) ((-393 . -390) T) ((-517 . -102) 121562) ((-1020 . -1082) T) ((-218 . -980) 121546) ((-498 . -102) T) ((-611 . -601) 121528) ((-45 . -836) NIL) ((-611 . -602) 121505) ((-1020 . -598) 121480) ((-886 . -508) 121413) ((-338 . -1034) T) ((-117 . -602) NIL) ((-117 . -601) 121395) ((-857 . -1195) T) ((-656 . -412) 121379) ((-656 . -1105) 121324) ((-494 . -149) 121306) ((-338 . -229) T) ((-338 . -239) T) ((-40 . -1040) 121251) ((-857 . -869) 121235) ((-857 . -871) 121160) ((-699 . -1041) T) ((-680 . -987) NIL) ((-3 . |UnionCategory|) T) ((-1225 . -47) 121130) ((-1204 . -47) 121107) ((-1123 . -995) 121078) ((-221 . -905) T) ((-40 . -111) 121007) ((-857 . -1023) 120871) ((-1102 . -704) 120858) ((-1087 . -601) 120840) ((-1062 . -145) 120819) ((-1062 . -143) 120770) ((-989 . -358) T) ((-314 . -1183) 120736) ((-374 . -302) T) ((-314 . -1180) 120702) ((-311 . -170) 120681) ((-308 . -170) T) ((-988 . -227) 120658) ((-899 . -358) T) ((-571 . -1260) 120645) ((-512 . -1260) 120622) ((-354 . -145) 120601) ((-354 . -143) 120552) ((-348 . -145) 120531) ((-348 . -143) 120482) ((-596 . -1171) 120458) ((-340 . -145) 120437) ((-340 . -143) 120388) ((-314 . -35) 120354) ((-469 . -1171) 120333) ((0 . |EnumerationCategory|) T) ((-314 . -95) 120299) ((-374 . -1007) T) ((-108 . -145) T) ((-108 . -143) NIL) ((-45 . -231) 120249) ((-640 . -1082) T) ((-596 . -107) 120196) ((-479 . -130) T) ((-469 . -107) 120146) ((-236 . -1094) 120056) ((-857 . -372) 120040) ((-857 . -333) 120024) ((-236 . -23) 119894) ((-40 . -604) 119824) ((-1045 . -905) T) ((-1045 . -807) T) ((-571 . -363) T) ((-512 . -363) T) ((-346 . -1133) T) ((-322 . -34) T) ((-44 . -412) 119808) ((-1163 . -604) 119743) ((-858 . -1195) T) ((-385 . -731) 119727) ((-1254 . -508) 119660) ((-718 . -130) T) ((-658 . -604) 119644) ((-1233 . -546) 119623) ((-1226 . -1199) 119602) ((-1226 . -546) 119553) ((-1205 . -1199) 119532) ((-306 . -1065) T) ((-1205 . -546) 119483) ((-724 . -508) 119416) ((-1204 . -1195) 119395) ((-1204 . -871) 119268) ((-878 . -1082) T) ((-142 . -830) T) ((-1204 . -869) 119238) ((-677 . -601) 119220) ((-1156 . -130) T) ((-517 . -304) 119158) ((-1155 . -130) T) ((-139 . -508) NIL) ((-1149 . -130) T) ((-1108 . -130) T) ((-1009 . -987) T) ((-989 . -23) T) ((-346 . -38) 119123) ((-989 . -1094) T) ((-899 . -1094) T) ((-82 . -601) 119105) ((-40 . -1034) T) ((-855 . -1040) 119092) ((-988 . -344) NIL) ((-857 . -885) 119051) ((-687 . -102) T) ((-956 . -23) T) ((-590 . -1195) T) ((-899 . -23) T) ((-855 . -111) 119036) ((-422 . -1094) T) ((-209 . -1082) T) ((-468 . -47) 119006) ((-133 . -102) T) ((-40 . -229) 118978) ((-40 . -239) T) ((-116 . -102) T) ((-585 . -546) 118957) ((-584 . -546) 118936) ((-680 . -601) 118918) ((-680 . -602) 118826) ((-311 . -508) 118792) ((-308 . -508) 118684) ((-1225 . -1023) 118668) ((-1204 . -1023) 118454) ((-984 . -406) 118438) ((-422 . -23) T) ((-1102 . -170) T) ((-1227 . -285) T) ((-640 . -704) 118408) ((-142 . -1082) T) ((-48 . -987) T) ((-402 . -227) 118392) ((-290 . -231) 118342) ((-856 . -905) T) ((-856 . -807) NIL) ((-855 . -604) 118314) ((-850 . -836) T) ((-1204 . -333) 118284) ((-1204 . -372) 118254) ((-218 . -1103) 118238) ((-1241 . -283) 118215) ((-1189 . -634) 118140) ((-948 . -21) T) ((-948 . -25) T) ((-722 . -21) T) ((-722 . -25) T) ((-702 . -21) T) ((-702 . -25) T) ((-698 . -634) 118105) ((-447 . -21) T) ((-447 . -25) T) ((-334 . -102) T) ((-172 . -102) T) ((-984 . -1041) T) ((-855 . -1034) T) ((-761 . -102) T) ((-1226 . -358) 118084) ((-1225 . -885) 117990) ((-1205 . -358) 117969) ((-1204 . -885) 117820) ((-1009 . -601) 117802) ((-402 . -815) 117755) ((-1156 . -487) 117721) ((-167 . -905) 117652) ((-1155 . -487) 117618) ((-1149 . -487) 117584) ((-699 . -1082) T) ((-1108 . -487) 117550) ((-570 . -1040) 117537) ((-554 . -1040) 117524) ((-489 . -1040) 117489) ((-311 . -285) 117468) ((-308 . -285) T) ((-349 . -601) 117450) ((-413 . -25) T) ((-413 . -21) T) ((-99 . -281) 117429) ((-570 . -111) 117414) ((-554 . -111) 117399) ((-489 . -111) 117355) ((-1158 . -871) 117322) ((-886 . -483) 117306) ((-48 . -601) 117288) ((-48 . -602) 117233) ((-236 . -130) 117103) ((-1214 . -905) 117082) ((-803 . -1199) 117061) ((-383 . -484) 117042) ((-1020 . -508) 116886) ((-383 . -601) 116852) ((-803 . -546) 116783) ((-575 . -634) 116758) ((-259 . -47) 116730) ((-243 . -47) 116687) ((-525 . -503) 116664) ((-570 . -604) 116636) ((-554 . -604) 116608) ((-489 . -604) 116541) ((-985 . -1195) T) ((-685 . -1040) 116506) ((-1233 . -23) T) ((-1233 . -1094) T) ((-1226 . -1094) T) ((-1205 . -1094) T) ((-988 . -365) 116478) ((-112 . -363) T) ((-468 . -885) 116384) ((-1226 . -23) T) ((-889 . -601) 116366) ((-55 . -604) 116348) ((-91 . -107) 116332) ((-1189 . -713) T) ((-890 . -836) 116283) ((-687 . -1133) T) ((-685 . -111) 116239) ((-1205 . -23) T) ((-585 . -1094) T) ((-584 . -1094) T) ((-699 . -704) 116068) ((-698 . -713) T) ((-1102 . -285) T) ((-989 . -130) T) ((-481 . -836) T) ((-956 . -130) T) ((-899 . -130) T) ((-786 . -25) T) ((-213 . -836) T) ((-786 . -21) T) ((-570 . -1034) T) ((-554 . -1034) T) ((-489 . -1034) T) ((-585 . -23) T) ((-338 . -1260) 116045) ((-314 . -446) 116024) ((-334 . -304) 116011) ((-584 . -23) T) ((-422 . -130) T) ((-644 . -634) 115985) ((-241 . -995) 115969) ((-857 . -302) T) ((-1265 . -1255) 115953) ((-758 . -779) T) ((-758 . -782) T) ((-687 . -38) 115940) ((-554 . -229) T) ((-489 . -239) T) ((-489 . -229) T) ((-1132 . -231) 115890) ((-1069 . -894) 115869) ((-116 . -38) 115856) ((-205 . -787) T) ((-204 . -787) T) ((-203 . -787) T) ((-202 . -787) T) ((-857 . -1007) 115834) ((-1254 . -483) 115818) ((-769 . -894) 115797) ((-767 . -894) 115776) ((-1168 . -1195) T) ((-448 . -894) 115755) ((-724 . -483) 115739) ((-1069 . -634) 115664) ((-685 . -604) 115599) ((-769 . -634) 115524) ((-611 . -1040) 115511) ((-473 . -1195) T) ((-338 . -363) T) ((-139 . -483) 115493) ((-767 . -634) 115418) ((-1123 . -1195) T) ((-455 . -634) 115389) ((-259 . -871) 115248) ((-243 . -871) NIL) ((-117 . -1040) 115193) ((-448 . -634) 115118) ((-650 . -1023) 115095) ((-611 . -111) 115080) ((-350 . -1023) 115064) ((-347 . -1023) 115048) ((-339 . -1023) 115032) ((-259 . -1023) 114876) ((-243 . -1023) 114752) ((-117 . -111) 114681) ((-59 . -1195) T) ((-513 . -1195) T) ((-510 . -1195) T) ((-491 . -1195) T) ((-490 . -1195) T) ((-432 . -601) 114663) ((-429 . -601) 114645) ((-3 . -102) T) ((-1012 . -1188) 114614) ((-820 . -102) T) ((-675 . -57) 114572) ((-685 . -1034) T) ((-50 . -634) 114546) ((-284 . -446) T) ((-470 . -1188) 114515) ((0 . -102) T) ((-571 . -634) 114480) ((-512 . -634) 114425) ((-49 . -102) T) ((-895 . -1023) 114412) ((-685 . -239) T) ((-1062 . -404) 114391) ((-718 . -627) 114339) ((-984 . -1082) T) ((-699 . -170) 114230) ((-611 . -604) 114125) ((-481 . -977) 114107) ((-259 . -372) 114091) ((-243 . -372) 114075) ((-394 . -1082) T) ((-1011 . -102) 114053) ((-334 . -38) 114037) ((-213 . -977) 114019) ((-117 . -604) 113949) ((-172 . -38) 113881) ((-1225 . -302) 113860) ((-1204 . -302) 113839) ((-644 . -713) T) ((-99 . -601) 113821) ((-1149 . -627) 113773) ((-479 . -25) T) ((-479 . -21) T) ((-1204 . -1007) 113725) ((-611 . -1034) T) ((-374 . -399) T) ((-385 . -102) T) ((-1087 . -606) 113640) ((-259 . -885) 113586) ((-243 . -885) 113563) ((-117 . -1034) T) ((-803 . -1094) T) ((-1069 . -713) T) ((-611 . -229) 113542) ((-609 . -102) T) ((-769 . -713) T) ((-767 . -713) T) ((-408 . -1094) T) ((-117 . -239) T) ((-40 . -363) NIL) ((-117 . -229) NIL) ((-448 . -713) T) ((-803 . -23) T) ((-718 . -25) T) ((-718 . -21) T) ((-689 . -836) T) ((-1059 . -281) 113521) ((-78 . -391) T) ((-78 . -390) T) ((-527 . -754) 113503) ((-680 . -1040) 113453) ((-1233 . -130) T) ((-1226 . -130) T) ((-1205 . -130) T) ((-1124 . -406) 113437) ((-623 . -362) 113369) ((-595 . -362) 113301) ((-1138 . -1131) 113285) ((-103 . -1082) 113263) ((-1156 . -25) T) ((-1156 . -21) T) ((-1155 . -21) T) ((-984 . -704) 113211) ((-219 . -634) 113178) ((-680 . -111) 113112) ((-50 . -713) T) ((-1155 . -25) T) ((-346 . -344) T) ((-1149 . -21) T) ((-1062 . -446) 113063) ((-1149 . -25) T) ((-699 . -508) 113010) ((-571 . -713) T) ((-512 . -713) T) ((-1108 . -21) T) ((-1108 . -25) T) ((-585 . -130) T) ((-584 . -130) T) ((-354 . -446) T) ((-348 . -446) T) ((-340 . -446) T) ((-468 . -302) 112989) ((-308 . -281) 112924) ((-108 . -446) T) ((-79 . -435) T) ((-79 . -390) T) ((-471 . -102) T) ((-1269 . -601) 112906) ((-1269 . -602) 112888) ((-1062 . -397) 112867) ((-1020 . -483) 112798) ((-554 . -782) T) ((-554 . -779) T) ((-1046 . -231) 112744) ((-354 . -397) 112695) ((-348 . -397) 112646) ((-340 . -397) 112597) ((-1256 . -1094) T) ((-680 . -604) 112532) ((-1256 . -23) T) ((-1243 . -102) T) ((-173 . -601) 112514) ((-1124 . -1041) T) ((-656 . -731) 112498) ((-1160 . -143) 112477) ((-1160 . -145) 112456) ((-1128 . -1082) T) ((-1128 . -1054) 112425) ((-69 . -1195) T) ((-1009 . -1040) 112362) ((-851 . -1041) T) ((-236 . -627) 112268) ((-680 . -1034) T) ((-349 . -1040) 112213) ((-61 . -1195) T) ((-1009 . -111) 112129) ((-886 . -601) 112040) ((-680 . -239) T) ((-680 . -229) NIL) ((-829 . -834) 112019) ((-685 . -782) T) ((-685 . -779) T) ((-988 . -406) 111996) ((-349 . -111) 111925) ((-374 . -905) T) ((-402 . -834) 111904) ((-699 . -285) 111815) ((-219 . -713) T) ((-1233 . -487) 111781) ((-1226 . -487) 111747) ((-1205 . -487) 111713) ((-568 . -1082) T) ((-311 . -987) 111692) ((-218 . -1082) 111670) ((-314 . -958) 111632) ((-105 . -102) T) ((-48 . -1040) 111597) ((-1265 . -102) T) ((-376 . -102) T) ((-48 . -111) 111553) ((-989 . -627) 111535) ((-1227 . -601) 111517) ((-525 . -102) T) ((-494 . -102) T) ((-1115 . -1116) 111501) ((-150 . -1248) 111485) ((-241 . -1195) T) ((-1194 . -102) T) ((-1009 . -604) 111422) ((-1154 . -1199) 111401) ((-349 . -604) 111331) ((-1107 . -1199) 111310) ((-236 . -21) 111220) ((-236 . -25) 111071) ((-127 . -119) 111055) ((-121 . -119) 111039) ((-44 . -731) 111023) ((-1154 . -546) 110934) ((-1107 . -546) 110865) ((-1020 . -281) 110840) ((-1148 . -1065) T) ((-979 . -1065) T) ((-803 . -130) T) ((-117 . -782) NIL) ((-117 . -779) NIL) ((-350 . -302) T) ((-347 . -302) T) ((-339 . -302) T) ((-246 . -1094) 110750) ((-245 . -1094) 110660) ((-1009 . -1034) T) ((-988 . -1041) T) ((-48 . -604) 110593) ((-338 . -634) 110538) ((-609 . -38) 110522) ((-1254 . -601) 110484) ((-1254 . -602) 110445) ((-1059 . -601) 110427) ((-1009 . -239) T) ((-349 . -1034) T) ((-802 . -1248) 110397) ((-246 . -23) T) ((-245 . -23) T) ((-972 . -601) 110379) ((-724 . -602) 110340) ((-724 . -601) 110322) ((-786 . -836) 110301) ((-1141 . -149) 110248) ((-984 . -508) 110160) ((-349 . -229) T) ((-349 . -239) T) ((-383 . -604) 110141) ((-989 . -25) T) ((-139 . -601) 110123) ((-139 . -602) 110082) ((-895 . -302) T) ((-989 . -21) T) ((-956 . -25) T) ((-899 . -21) T) ((-899 . -25) T) ((-422 . -21) T) ((-422 . -25) T) ((-829 . -406) 110066) ((-48 . -1034) T) ((-1263 . -1255) 110050) ((-1261 . -1255) 110034) ((-1020 . -592) 110009) ((-311 . -602) 109870) ((-311 . -601) 109852) ((-308 . -602) NIL) ((-308 . -601) 109834) ((-48 . -239) T) ((-48 . -229) T) ((-640 . -281) 109795) ((-540 . -231) 109745) ((-135 . -601) 109727) ((-114 . -601) 109709) ((-471 . -38) 109674) ((-1265 . -1262) 109653) ((-1256 . -130) T) ((-1264 . -1041) T) ((-1064 . -102) T) ((-88 . -1195) T) ((-494 . -304) NIL) ((-985 . -107) 109637) ((-874 . -1082) T) ((-870 . -1082) T) ((-1241 . -637) 109621) ((-1241 . -368) 109605) ((-322 . -1195) T) ((-582 . -836) T) ((-1124 . -1082) T) ((-1124 . -1037) 109545) ((-103 . -508) 109478) ((-912 . -601) 109460) ((-338 . -713) T) ((-30 . -601) 109442) ((-851 . -1082) T) ((-829 . -1041) 109421) ((-40 . -634) 109366) ((-221 . -1199) T) ((-402 . -1041) T) ((-1140 . -149) 109348) ((-984 . -285) 109299) ((-605 . -1082) T) ((-221 . -546) T) ((-314 . -1222) 109283) ((-314 . -1219) 109253) ((-1168 . -1171) 109232) ((-1057 . -601) 109214) ((-633 . -149) 109198) ((-620 . -149) 109144) ((-1168 . -107) 109094) ((-473 . -1171) 109073) ((-481 . -145) T) ((-481 . -143) NIL) ((-1102 . -602) 108988) ((-433 . -601) 108970) ((-213 . -145) T) ((-213 . -143) NIL) ((-1102 . -601) 108952) ((-129 . -102) T) ((-52 . -102) T) ((-1205 . -627) 108904) ((-473 . -107) 108854) ((-978 . -23) T) ((-1265 . -38) 108824) ((-1154 . -1094) T) ((-1107 . -1094) T) ((-1045 . -1199) T) ((-306 . -102) T) ((-840 . -1094) T) ((-937 . -1199) 108803) ((-475 . -1199) 108782) ((-718 . -836) 108761) ((-1045 . -546) T) ((-937 . -546) 108692) ((-1154 . -23) T) ((-1107 . -23) T) ((-840 . -23) T) ((-475 . -546) 108623) ((-1124 . -704) 108555) ((-1128 . -508) 108488) ((-1020 . -602) NIL) ((-1020 . -601) 108470) ((-96 . -1065) T) ((-851 . -704) 108440) ((-1189 . -47) 108409) ((-245 . -130) T) ((-246 . -130) T) ((-1086 . -1082) T) ((-988 . -1082) T) ((-62 . -601) 108391) ((-1149 . -836) NIL) ((-1009 . -779) T) ((-1009 . -782) T) ((-1269 . -1040) 108378) ((-1269 . -111) 108363) ((-855 . -634) 108350) ((-1233 . -25) T) ((-1233 . -21) T) ((-1226 . -21) T) ((-1226 . -25) T) ((-1205 . -21) T) ((-1205 . -25) T) ((-1012 . -149) 108334) ((-857 . -807) 108313) ((-857 . -905) T) ((-699 . -281) 108240) ((-585 . -21) T) ((-585 . -25) T) ((-584 . -21) T) ((-40 . -713) T) ((-218 . -508) 108173) ((-584 . -25) T) ((-470 . -149) 108157) ((-457 . -149) 108141) ((-906 . -781) T) ((-906 . -713) T) ((-758 . -780) T) ((-758 . -781) T) ((-500 . -1082) T) ((-496 . -1082) T) ((-758 . -713) T) ((-221 . -358) T) ((-1138 . -1082) 108119) ((-856 . -1199) T) ((-640 . -601) 108101) ((-856 . -546) T) ((-680 . -363) NIL) ((-1269 . -604) 108083) ((-354 . -1248) 108067) ((-656 . -102) T) ((-348 . -1248) 108051) ((-340 . -1248) 108035) ((-1264 . -1082) T) ((-514 . -836) 108014) ((-804 . -446) 107993) ((-1031 . -1082) T) ((-1031 . -1054) 107922) ((-1012 . -961) 107891) ((-806 . -1094) T) ((-988 . -704) 107836) ((-381 . -1094) T) ((-470 . -961) 107805) ((-457 . -961) 107774) ((-110 . -149) 107756) ((-73 . -601) 107738) ((-878 . -601) 107720) ((-1062 . -711) 107699) ((-1269 . -1034) T) ((-803 . -627) 107647) ((-289 . -1041) 107589) ((-167 . -1199) 107494) ((-221 . -1094) T) ((-319 . -23) T) ((-1149 . -977) 107446) ((-829 . -1082) T) ((-1227 . -1040) 107351) ((-1108 . -727) 107330) ((-1225 . -905) 107309) ((-1204 . -905) 107288) ((-855 . -713) T) ((-167 . -546) 107199) ((-570 . -634) 107186) ((-554 . -634) 107173) ((-402 . -1082) T) ((-258 . -1082) T) ((-209 . -601) 107155) ((-489 . -634) 107120) ((-221 . -23) T) ((-1204 . -807) 107073) ((-1263 . -102) T) ((-349 . -1260) 107050) ((-1261 . -102) T) ((-1227 . -111) 106942) ((-142 . -601) 106924) ((-978 . -130) T) ((-44 . -102) T) ((-236 . -836) 106875) ((-1214 . -1199) 106854) ((-103 . -483) 106838) ((-1264 . -704) 106808) ((-1069 . -47) 106769) ((-1045 . -1094) T) ((-937 . -1094) T) ((-127 . -34) T) ((-121 . -34) T) ((-769 . -47) 106746) ((-767 . -47) 106718) ((-1214 . -546) 106629) ((-349 . -363) T) ((-475 . -1094) T) ((-1154 . -130) T) ((-1107 . -130) T) ((-448 . -47) 106608) ((-856 . -358) T) ((-840 . -130) T) ((-150 . -102) T) ((-1045 . -23) T) ((-937 . -23) T) ((-561 . -546) T) ((-803 . -25) T) ((-803 . -21) T) ((-1124 . -508) 106541) ((-581 . -1065) T) ((-575 . -1023) 106525) ((-1227 . -604) 106399) ((-475 . -23) T) ((-346 . -1041) T) ((-1189 . -885) 106380) ((-656 . -304) 106318) ((-1095 . -1248) 106288) ((-685 . -634) 106253) ((-988 . -170) T) ((-948 . -143) 106232) ((-623 . -1082) T) ((-595 . -1082) T) ((-948 . -145) 106211) ((-989 . -836) T) ((-722 . -145) 106190) ((-722 . -143) 106169) ((-956 . -836) T) ((-468 . -905) 106148) ((-311 . -1040) 106058) ((-308 . -1040) 105987) ((-984 . -281) 105945) ((-402 . -704) 105897) ((-687 . -834) T) ((-1227 . -1034) T) ((-311 . -111) 105793) ((-308 . -111) 105706) ((-949 . -102) T) ((-802 . -102) 105496) ((-699 . -602) NIL) ((-699 . -601) 105478) ((-644 . -1023) 105374) ((-1227 . -321) 105318) ((-1020 . -283) 105293) ((-570 . -713) T) ((-554 . -781) T) ((-167 . -358) 105244) ((-554 . -778) T) ((-554 . -713) T) ((-489 . -713) T) ((-1128 . -483) 105228) ((-1069 . -871) NIL) ((-856 . -1094) T) ((-117 . -894) NIL) ((-1263 . -1262) 105204) ((-1261 . -1262) 105183) ((-769 . -871) NIL) ((-767 . -871) 105042) ((-1256 . -25) T) ((-1256 . -21) T) ((-1192 . -102) 105020) ((-1088 . -390) T) ((-611 . -634) 105007) ((-448 . -871) NIL) ((-661 . -102) 104985) ((-1069 . -1023) 104812) ((-856 . -23) T) ((-769 . -1023) 104671) ((-767 . -1023) 104528) ((-117 . -634) 104473) ((-448 . -1023) 104349) ((-311 . -604) 103913) ((-308 . -604) 103796) ((-635 . -1023) 103780) ((-615 . -102) T) ((-218 . -483) 103764) ((-1241 . -34) T) ((-135 . -604) 103748) ((-623 . -704) 103732) ((-595 . -704) 103716) ((-656 . -38) 103676) ((-314 . -102) T) ((-85 . -601) 103658) ((-50 . -1023) 103642) ((-1102 . -1040) 103629) ((-1069 . -372) 103613) ((-769 . -372) 103597) ((-60 . -57) 103559) ((-685 . -781) T) ((-685 . -778) T) ((-571 . -1023) 103546) ((-512 . -1023) 103523) ((-685 . -713) T) ((-319 . -130) T) ((-311 . -1034) 103413) ((-308 . -1034) T) ((-167 . -1094) T) ((-767 . -372) 103397) ((-45 . -149) 103347) ((-989 . -977) 103329) ((-448 . -372) 103313) ((-402 . -170) T) ((-311 . -239) 103292) ((-308 . -239) T) ((-308 . -229) NIL) ((-289 . -1082) 103074) ((-221 . -130) T) ((-1102 . -111) 103059) ((-167 . -23) T) ((-786 . -145) 103038) ((-786 . -143) 103017) ((-246 . -627) 102923) ((-245 . -627) 102829) ((-314 . -279) 102795) ((-1138 . -508) 102728) ((-1115 . -1082) T) ((-221 . -1043) T) ((-802 . -304) 102666) ((-1069 . -885) 102601) ((-769 . -885) 102544) ((-767 . -885) 102528) ((-1263 . -38) 102498) ((-1261 . -38) 102468) ((-1214 . -1094) T) ((-841 . -1094) T) ((-448 . -885) 102445) ((-844 . -1082) T) ((-1214 . -23) T) ((-1102 . -604) 102417) ((-561 . -1094) T) ((-841 . -23) T) ((-611 . -713) T) ((-350 . -905) T) ((-347 . -905) T) ((-284 . -102) T) ((-339 . -905) T) ((-1045 . -130) T) ((-955 . -1065) T) ((-937 . -130) T) ((-117 . -781) NIL) ((-117 . -778) NIL) ((-117 . -713) T) ((-680 . -894) NIL) ((-1031 . -508) 102318) ((-475 . -130) T) ((-561 . -23) T) ((-661 . -304) 102256) ((-623 . -748) T) ((-595 . -748) T) ((-1205 . -836) NIL) ((-988 . -285) T) ((-246 . -21) T) ((-680 . -634) 102206) ((-346 . -1082) T) ((-246 . -25) T) ((-245 . -21) T) ((-245 . -25) T) ((-150 . -38) 102190) ((-2 . -102) T) ((-895 . -905) T) ((-476 . -1248) 102160) ((-219 . -1023) 102137) ((-1102 . -1034) T) ((-698 . -302) T) ((-289 . -704) 102079) ((-687 . -1041) T) ((-481 . -446) T) ((-402 . -508) 101991) ((-213 . -446) T) ((-1102 . -229) T) ((-290 . -149) 101941) ((-984 . -602) 101902) ((-984 . -601) 101884) ((-974 . -601) 101866) ((-116 . -1041) T) ((-640 . -1040) 101850) ((-221 . -487) T) ((-394 . -601) 101832) ((-394 . -602) 101809) ((-1038 . -1248) 101779) ((-640 . -111) 101758) ((-1124 . -483) 101742) ((-802 . -38) 101712) ((-63 . -435) T) ((-63 . -390) T) ((-1141 . -102) T) ((-856 . -130) T) ((-478 . -102) 101690) ((-1269 . -363) T) ((-1062 . -102) T) ((-1044 . -102) T) ((-346 . -704) 101635) ((-718 . -145) 101614) ((-718 . -143) 101593) ((-640 . -604) 101511) ((-1009 . -634) 101448) ((-517 . -1082) 101426) ((-354 . -102) T) ((-348 . -102) T) ((-340 . -102) T) ((-108 . -102) T) ((-498 . -1082) T) ((-349 . -634) 101371) ((-1154 . -627) 101319) ((-1107 . -627) 101267) ((-380 . -503) 101246) ((-820 . -834) 101225) ((-374 . -1199) T) ((-680 . -713) T) ((-334 . -1041) T) ((-1205 . -977) 101177) ((-172 . -1041) T) ((-103 . -601) 101109) ((-1156 . -143) 101088) ((-1156 . -145) 101067) ((-374 . -546) T) ((-1155 . -145) 101046) ((-1155 . -143) 101025) ((-1149 . -143) 100932) ((-402 . -285) T) ((-1149 . -145) 100839) ((-1108 . -145) 100818) ((-1108 . -143) 100797) ((-314 . -38) 100638) ((-167 . -130) T) ((-308 . -782) NIL) ((-308 . -779) NIL) ((-640 . -1034) T) ((-48 . -634) 100603) ((-878 . -604) 100580) ((-1148 . -102) T) ((-979 . -102) T) ((-978 . -21) T) ((-127 . -995) 100564) ((-121 . -995) 100548) ((-978 . -25) T) ((-886 . -119) 100532) ((-1140 . -102) T) ((-803 . -836) 100511) ((-1214 . -130) T) ((-1154 . -25) T) ((-1154 . -21) T) ((-841 . -130) T) ((-1107 . -25) T) ((-1107 . -21) T) ((-840 . -25) T) ((-840 . -21) T) ((-769 . -302) 100490) ((-633 . -102) 100468) ((-620 . -102) T) ((-1141 . -304) 100263) ((-561 . -130) T) ((-609 . -834) 100242) ((-1138 . -483) 100226) ((-1132 . -149) 100176) ((-1128 . -601) 100138) ((-1128 . -602) 100099) ((-1009 . -778) T) ((-1009 . -781) T) ((-1009 . -713) T) ((-699 . -1040) 99922) ((-478 . -304) 99860) ((-447 . -412) 99830) ((-346 . -170) T) ((-284 . -38) 99817) ((-269 . -102) T) ((-268 . -102) T) ((-267 . -102) T) ((-266 . -102) T) ((-265 . -102) T) ((-264 . -102) T) ((-338 . -1023) 99794) ((-263 . -102) T) ((-208 . -102) T) ((-207 . -102) T) ((-205 . -102) T) ((-204 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-194 . -102) T) ((-193 . -102) T) ((-192 . -102) T) ((-191 . -102) T) ((-190 . -102) T) ((-189 . -102) T) ((-349 . -713) T) ((-699 . -111) 99603) ((-656 . -227) 99587) ((-571 . -302) T) ((-512 . -302) T) ((-289 . -508) 99536) ((-108 . -304) NIL) ((-72 . -390) T) ((-1095 . -102) 99326) ((-820 . -406) 99310) ((-1102 . -782) T) ((-1102 . -779) T) ((-687 . -1082) T) ((-568 . -601) 99292) ((-374 . -358) T) ((-167 . -487) 99270) ((-218 . -601) 99202) ((-133 . -1082) T) ((-116 . -1082) T) ((-48 . -713) T) ((-1031 . -483) 99167) ((-500 . -93) T) ((-139 . -420) 99149) ((-139 . -363) T) ((-1012 . -102) T) ((-506 . -503) 99128) ((-699 . -604) 98884) ((-470 . -102) T) ((-457 . -102) T) ((-1019 . -1094) T) ((-1163 . -1023) 98819) ((-1156 . -35) 98785) ((-1156 . -95) 98751) ((-1156 . -1183) 98717) ((-1156 . -1180) 98683) ((-1140 . -304) NIL) ((-89 . -391) T) ((-89 . -390) T) ((-1062 . -1133) 98662) ((-1155 . -1180) 98628) ((-1155 . -1183) 98594) ((-1019 . -23) T) ((-1155 . -95) 98560) ((-561 . -487) T) ((-1155 . -35) 98526) ((-1149 . -1180) 98492) ((-1149 . -1183) 98458) ((-1149 . -95) 98424) ((-356 . -1094) T) ((-354 . -1133) 98403) ((-348 . -1133) 98382) ((-340 . -1133) 98361) ((-1149 . -35) 98327) ((-1108 . -35) 98293) ((-1108 . -95) 98259) ((-108 . -1133) T) ((-1108 . -1183) 98225) ((-820 . -1041) 98204) ((-633 . -304) 98142) ((-620 . -304) 97993) ((-1108 . -1180) 97959) ((-699 . -1034) T) ((-1045 . -627) 97941) ((-1062 . -38) 97809) ((-937 . -627) 97757) ((-989 . -145) T) ((-989 . -143) NIL) ((-374 . -1094) T) ((-319 . -25) T) ((-317 . -23) T) ((-928 . -836) 97736) ((-699 . -321) 97713) ((-475 . -627) 97661) ((-40 . -1023) 97549) ((-699 . -229) T) ((-687 . -704) 97536) ((-334 . -1082) T) ((-172 . -1082) T) ((-326 . -836) T) ((-413 . -446) 97486) ((-374 . -23) T) ((-354 . -38) 97451) ((-348 . -38) 97416) ((-340 . -38) 97381) ((-80 . -435) T) ((-80 . -390) T) ((-221 . -25) T) ((-221 . -21) T) ((-823 . -1094) T) ((-108 . -38) 97331) ((-814 . -1094) T) ((-761 . -1082) T) ((-116 . -704) 97318) ((-658 . -1023) 97302) ((-600 . -102) T) ((-823 . -23) T) ((-814 . -23) T) ((-1138 . -281) 97279) ((-1095 . -304) 97217) ((-1084 . -231) 97201) ((-64 . -391) T) ((-64 . -390) T) ((-110 . -102) T) ((-40 . -372) 97178) ((-96 . -102) T) ((-639 . -838) 97162) ((-1117 . -1065) T) ((-1045 . -21) T) ((-1045 . -25) T) ((-802 . -227) 97131) ((-937 . -25) T) ((-937 . -21) T) ((-609 . -1041) T) ((-475 . -25) T) ((-475 . -21) T) ((-1012 . -304) 97069) ((-874 . -601) 97051) ((-870 . -601) 97033) ((-246 . -836) 96984) ((-245 . -836) 96935) ((-517 . -508) 96868) ((-856 . -627) 96845) ((-470 . -304) 96783) ((-457 . -304) 96721) ((-346 . -285) T) ((-1138 . -1229) 96705) ((-1124 . -601) 96667) ((-1124 . -602) 96628) ((-1122 . -102) T) ((-984 . -1040) 96524) ((-40 . -885) 96476) ((-1138 . -592) 96453) ((-1269 . -634) 96440) ((-851 . -484) 96417) ((-1046 . -149) 96363) ((-857 . -1199) T) ((-984 . -111) 96245) ((-334 . -704) 96229) ((-851 . -601) 96191) ((-172 . -704) 96123) ((-402 . -281) 96081) ((-857 . -546) T) ((-108 . -395) 96063) ((-84 . -379) T) ((-84 . -390) T) ((-687 . -170) T) ((-605 . -601) 96045) ((-99 . -713) T) ((-476 . -102) 95835) ((-99 . -467) T) ((-116 . -170) T) ((-1095 . -38) 95805) ((-167 . -627) 95753) ((-1038 . -102) T) ((-984 . -604) 95643) ((-856 . -25) T) ((-802 . -234) 95622) ((-856 . -21) T) ((-805 . -102) T) ((-409 . -102) T) ((-380 . -102) T) ((-110 . -304) NIL) ((-223 . -102) 95600) ((-127 . -1195) T) ((-121 . -1195) T) ((-1019 . -130) T) ((-656 . -362) 95584) ((-984 . -1034) T) ((-1214 . -627) 95532) ((-1086 . -601) 95514) ((-988 . -601) 95496) ((-509 . -23) T) ((-504 . -23) T) ((-338 . -302) T) ((-502 . -23) T) ((-317 . -130) T) ((-3 . -1082) T) ((-988 . -602) 95480) ((-984 . -239) 95459) ((-984 . -229) 95438) ((-1269 . -713) T) ((-1233 . -143) 95417) ((-820 . -1082) T) ((-1233 . -145) 95396) ((-1226 . -145) 95375) ((-1226 . -143) 95354) ((-1225 . -1199) 95333) ((-1205 . -143) 95240) ((-1205 . -145) 95147) ((-1204 . -1199) 95126) ((-374 . -130) T) ((-554 . -871) 95108) ((0 . -1082) T) ((-172 . -170) T) ((-167 . -21) T) ((-167 . -25) T) ((-49 . -1082) T) ((-1227 . -634) 95013) ((-1225 . -546) 94964) ((-701 . -1094) T) ((-1204 . -546) 94915) ((-554 . -1023) 94897) ((-584 . -145) 94876) ((-584 . -143) 94855) ((-489 . -1023) 94798) ((-1117 . -1119) T) ((-87 . -379) T) ((-87 . -390) T) ((-857 . -358) T) ((-823 . -130) T) ((-814 . -130) T) ((-500 . -484) 94779) ((-701 . -23) T) ((-500 . -601) 94729) ((-496 . -601) 94711) ((-1265 . -1041) T) ((-374 . -1043) T) ((-1011 . -1082) 94689) ((-55 . -1023) 94671) ((-886 . -34) T) ((-476 . -304) 94609) ((-581 . -102) T) ((-1138 . -602) 94570) ((-1138 . -601) 94502) ((-1154 . -836) 94481) ((-45 . -102) T) ((-1107 . -836) 94460) ((-804 . -102) T) ((-1214 . -25) T) ((-1214 . -21) T) ((-841 . -25) T) ((-44 . -362) 94444) ((-841 . -21) T) ((-718 . -446) 94395) ((-1264 . -601) 94377) ((-1038 . -304) 94315) ((-657 . -1065) T) ((-594 . -1065) T) ((-385 . -1082) T) ((-561 . -25) T) ((-561 . -21) T) ((-178 . -1065) T) ((-159 . -1065) T) ((-154 . -1065) T) ((-152 . -1065) T) ((-609 . -1082) T) ((-685 . -871) 94297) ((-1241 . -1195) T) ((-223 . -304) 94235) ((-142 . -363) T) ((-1031 . -602) 94177) ((-1031 . -601) 94120) ((-308 . -894) NIL) ((-685 . -1023) 94065) ((-698 . -905) T) ((-468 . -1199) 94044) ((-1155 . -446) 94023) ((-1149 . -446) 94002) ((-325 . -102) T) ((-857 . -1094) T) ((-311 . -634) 93823) ((-308 . -634) 93752) ((-468 . -546) 93703) ((-334 . -508) 93669) ((-540 . -149) 93619) ((-40 . -302) T) ((-829 . -601) 93601) ((-687 . -285) T) ((-857 . -23) T) ((-374 . -487) T) ((-1062 . -227) 93571) ((-506 . -102) T) ((-402 . -602) 93378) ((-402 . -601) 93360) ((-258 . -601) 93342) ((-116 . -285) T) ((-1227 . -713) T) ((-1225 . -358) 93321) ((-1204 . -358) 93300) ((-1254 . -34) T) ((-117 . -1195) T) ((-108 . -227) 93282) ((-1160 . -102) T) ((-471 . -1082) T) ((-517 . -483) 93266) ((-724 . -34) T) ((-476 . -38) 93236) ((-139 . -34) T) ((-117 . -869) 93213) ((-117 . -871) NIL) ((-611 . -1023) 93096) ((-631 . -836) 93075) ((-1253 . -102) T) ((-290 . -102) T) ((-699 . -363) 93054) ((-117 . -1023) 93031) ((-385 . -704) 93015) ((-609 . -704) 92999) ((-45 . -304) 92803) ((-803 . -143) 92782) ((-803 . -145) 92761) ((-1264 . -377) 92740) ((-806 . -836) T) ((-1243 . -1082) T) ((-1141 . -225) 92687) ((-381 . -836) 92666) ((-1233 . -1183) 92632) ((-1233 . -1180) 92598) ((-1226 . -1180) 92564) ((-509 . -130) T) ((-1226 . -1183) 92530) ((-1205 . -1180) 92496) ((-1205 . -1183) 92462) ((-1233 . -35) 92428) ((-1233 . -95) 92394) ((-623 . -601) 92363) ((-595 . -601) 92332) ((-221 . -836) T) ((-1226 . -95) 92298) ((-1226 . -35) 92264) ((-1225 . -1094) T) ((-1102 . -634) 92251) ((-1205 . -95) 92217) ((-1204 . -1094) T) ((-582 . -149) 92199) ((-1062 . -344) 92178) ((-172 . -285) T) ((-117 . -372) 92155) ((-117 . -333) 92132) ((-1205 . -35) 92098) ((-855 . -302) T) ((-308 . -781) NIL) ((-308 . -778) NIL) ((-311 . -713) 91947) ((-308 . -713) T) ((-468 . -358) 91926) ((-354 . -344) 91905) ((-348 . -344) 91884) ((-340 . -344) 91863) ((-311 . -467) 91842) ((-1225 . -23) T) ((-1204 . -23) T) ((-705 . -1094) T) ((-701 . -130) T) ((-639 . -102) T) ((-471 . -704) 91807) ((-45 . -277) 91757) ((-105 . -1082) T) ((-68 . -601) 91739) ((-955 . -102) T) ((-850 . -102) T) ((-611 . -885) 91698) ((-1265 . -1082) T) ((-376 . -1082) T) ((-1194 . -1082) T) ((-1095 . -227) 91667) ((-82 . -1195) T) ((-1045 . -836) T) ((-937 . -836) 91646) ((-117 . -885) NIL) ((-769 . -905) 91625) ((-700 . -836) T) ((-525 . -1082) T) ((-494 . -1082) T) ((-350 . -1199) T) ((-347 . -1199) T) ((-339 . -1199) T) ((-259 . -1199) 91604) ((-243 . -1199) 91583) ((-527 . -846) T) ((-475 . -836) 91562) ((-1124 . -1040) 91546) ((-385 . -748) T) ((-1140 . -815) T) ((-680 . -1195) T) ((-350 . -546) T) ((-347 . -546) T) ((-339 . -546) T) ((-259 . -546) 91477) ((-243 . -546) 91408) ((-519 . -1065) T) ((-1124 . -111) 91387) ((-447 . -731) 91357) ((-851 . -1040) 91327) ((-804 . -38) 91269) ((-680 . -869) 91251) ((-680 . -871) 91233) ((-290 . -304) 91037) ((-895 . -1199) T) ((-656 . -406) 91021) ((-851 . -111) 90986) ((-680 . -1023) 90931) ((-989 . -446) T) ((-895 . -546) T) ((-527 . -601) 90913) ((-571 . -905) T) ((-468 . -1094) T) ((-512 . -905) T) ((-1138 . -283) 90890) ((-899 . -446) T) ((-65 . -601) 90872) ((-620 . -225) 90818) ((-468 . -23) T) ((-1102 . -781) T) ((-857 . -130) T) ((-1102 . -778) T) ((-1256 . -1258) 90797) ((-1102 . -713) T) ((-640 . -634) 90771) ((-289 . -601) 90512) ((-1124 . -604) 90430) ((-1020 . -34) T) ((-802 . -834) 90409) ((-570 . -302) T) ((-554 . -302) T) ((-489 . -302) T) ((-1265 . -704) 90379) ((-680 . -372) 90361) ((-680 . -333) 90343) ((-471 . -170) T) ((-376 . -704) 90313) ((-851 . -604) 90248) ((-856 . -836) NIL) ((-554 . -1007) T) ((-489 . -1007) T) ((-1115 . -601) 90230) ((-1095 . -234) 90209) ((-210 . -102) T) ((-1132 . -102) T) ((-71 . -601) 90191) ((-1124 . -1034) T) ((-1160 . -38) 90088) ((-844 . -601) 90070) ((-554 . -539) T) ((-656 . -1041) T) ((-718 . -934) 90023) ((-1124 . -229) 90002) ((-1064 . -1082) T) ((-1019 . -25) T) ((-1019 . -21) T) ((-988 . -1040) 89947) ((-890 . -102) T) ((-851 . -1034) T) ((-680 . -885) NIL) ((-350 . -324) 89931) ((-350 . -358) T) ((-347 . -324) 89915) ((-347 . -358) T) ((-339 . -324) 89899) ((-339 . -358) T) ((-481 . -102) T) ((-1253 . -38) 89869) ((-517 . -673) 89819) ((-213 . -102) T) ((-1009 . -1023) 89699) ((-988 . -111) 89628) ((-1156 . -958) 89597) ((-1155 . -958) 89559) ((-514 . -149) 89543) ((-1062 . -365) 89522) ((-346 . -601) 89504) ((-317 . -21) T) ((-349 . -1023) 89481) ((-317 . -25) T) ((-1149 . -958) 89450) ((-1108 . -958) 89417) ((-76 . -601) 89399) ((-685 . -302) T) ((-167 . -836) 89378) ((-895 . -358) T) ((-374 . -25) T) ((-374 . -21) T) ((-895 . -324) 89365) ((-86 . -601) 89347) ((-685 . -1007) T) ((-663 . -836) T) ((-1225 . -130) T) ((-1204 . -130) T) ((-886 . -995) 89331) ((-823 . -21) T) ((-48 . -1023) 89274) ((-823 . -25) T) ((-814 . -25) T) ((-814 . -21) T) ((-1263 . -1041) T) ((-1261 . -1041) T) ((-640 . -713) T) ((-1086 . -606) 89177) ((-988 . -604) 89107) ((-1264 . -1040) 89091) ((-1214 . -836) 89070) ((-802 . -406) 89039) ((-103 . -119) 89023) ((-129 . -1082) T) ((-52 . -1082) T) ((-911 . -601) 89005) ((-856 . -977) 88982) ((-810 . -102) T) ((-1264 . -111) 88961) ((-639 . -38) 88931) ((-561 . -836) T) ((-350 . -1094) T) ((-347 . -1094) T) ((-339 . -1094) T) ((-259 . -1094) T) ((-243 . -1094) T) ((-1132 . -304) 88735) ((-611 . -302) 88714) ((-518 . -1065) T) ((-306 . -1082) T) ((-650 . -23) T) ((-500 . -604) 88695) ((-476 . -227) 88664) ((-150 . -1041) T) ((-350 . -23) T) ((-347 . -23) T) ((-339 . -23) T) ((-117 . -302) T) ((-259 . -23) T) ((-243 . -23) T) ((-988 . -1034) T) ((-699 . -894) 88643) ((-1138 . -604) 88620) ((-988 . -229) 88592) ((-988 . -239) T) ((-117 . -1007) NIL) ((-895 . -1094) T) ((-1226 . -446) 88571) ((-1205 . -446) 88550) ((-517 . -601) 88482) ((-699 . -634) 88407) ((-402 . -1040) 88359) ((-498 . -601) 88341) ((-895 . -23) T) ((-481 . -304) NIL) ((-1264 . -604) 88297) ((-468 . -130) T) ((-213 . -304) NIL) ((-402 . -111) 88235) ((-802 . -1041) 88165) ((-724 . -1080) 88149) ((-1225 . -487) 88115) ((-1204 . -487) 88081) ((-139 . -1080) 88063) ((-471 . -285) T) ((-1264 . -1034) T) ((-1046 . -102) T) ((-829 . -604) 87931) ((-494 . -508) NIL) ((-689 . -102) T) ((-476 . -234) 87910) ((-402 . -604) 87808) ((-1154 . -143) 87787) ((-1154 . -145) 87766) ((-1107 . -145) 87745) ((-1107 . -143) 87724) ((-623 . -1040) 87708) ((-595 . -1040) 87692) ((-656 . -1082) T) ((-656 . -1037) 87632) ((-1156 . -1232) 87616) ((-1156 . -1219) 87593) ((-481 . -1133) T) ((-1155 . -1224) 87554) ((-1155 . -1219) 87524) ((-1155 . -1222) 87508) ((-213 . -1133) T) ((-338 . -905) T) ((-805 . -261) 87492) ((-623 . -111) 87471) ((-595 . -111) 87450) ((-1149 . -1203) 87411) ((-829 . -1034) 87390) ((-1149 . -1219) 87367) ((-509 . -25) T) ((-489 . -297) T) ((-505 . -23) T) ((-504 . -25) T) ((-502 . -25) T) ((-501 . -23) T) ((-1149 . -1201) 87351) ((-402 . -1034) T) ((-314 . -1041) T) ((-680 . -302) T) ((-108 . -834) T) ((-699 . -713) T) ((-402 . -239) T) ((-402 . -229) 87330) ((-481 . -38) 87280) ((-213 . -38) 87230) ((-468 . -487) 87196) ((-1140 . -1126) T) ((-1083 . -102) T) ((-687 . -601) 87178) ((-687 . -602) 87093) ((-701 . -21) T) ((-701 . -25) T) ((-1117 . -102) T) ((-133 . -601) 87075) ((-116 . -601) 87057) ((-155 . -25) T) ((-1263 . -1082) T) ((-857 . -627) 87005) ((-1261 . -1082) T) ((-948 . -102) T) ((-722 . -102) T) ((-702 . -102) T) ((-447 . -102) T) ((-803 . -446) 86956) ((-44 . -1082) T) ((-1070 . -836) T) ((-650 . -130) T) ((-1046 . -304) 86807) ((-656 . -704) 86791) ((-284 . -1041) T) ((-350 . -130) T) ((-347 . -130) T) ((-339 . -130) T) ((-259 . -130) T) ((-243 . -130) T) ((-413 . -102) T) ((-150 . -1082) T) ((-45 . -225) 86741) ((-943 . -836) 86720) ((-984 . -634) 86658) ((-236 . -1248) 86628) ((-1009 . -302) T) ((-289 . -1040) 86549) ((-895 . -130) T) ((-40 . -905) T) ((-481 . -395) 86531) ((-349 . -302) T) ((-213 . -395) 86513) ((-1062 . -406) 86497) ((-289 . -111) 86413) ((-857 . -25) T) ((-857 . -21) T) ((-334 . -601) 86395) ((-1227 . -47) 86339) ((-221 . -145) T) ((-172 . -601) 86321) ((-1095 . -834) 86300) ((-761 . -601) 86282) ((-128 . -836) T) ((-596 . -231) 86229) ((-469 . -231) 86179) ((-1263 . -704) 86149) ((-48 . -302) T) ((-1261 . -704) 86119) ((-65 . -604) 86048) ((-949 . -1082) T) ((-802 . -1082) 85838) ((-307 . -102) T) ((-886 . -1195) T) ((-48 . -1007) T) ((-1204 . -627) 85746) ((-675 . -102) 85724) ((-44 . -704) 85708) ((-540 . -102) T) ((-289 . -604) 85639) ((-67 . -378) T) ((-67 . -390) T) ((-648 . -23) T) ((-656 . -748) T) ((-1192 . -1082) 85617) ((-346 . -1040) 85562) ((-661 . -1082) 85540) ((-1045 . -145) T) ((-937 . -145) 85519) ((-937 . -143) 85498) ((-786 . -102) T) ((-150 . -704) 85482) ((-475 . -145) 85461) ((-475 . -143) 85440) ((-346 . -111) 85369) ((-1062 . -1041) T) ((-317 . -836) 85348) ((-1233 . -958) 85317) ((-615 . -1082) T) ((-1226 . -958) 85279) ((-505 . -130) T) ((-501 . -130) T) ((-290 . -225) 85229) ((-354 . -1041) T) ((-348 . -1041) T) ((-340 . -1041) T) ((-289 . -1034) 85171) ((-1205 . -958) 85140) ((-374 . -836) T) ((-108 . -1041) T) ((-984 . -713) T) ((-855 . -905) T) ((-829 . -782) 85119) ((-829 . -779) 85098) ((-413 . -304) 85037) ((-462 . -102) T) ((-584 . -958) 85006) ((-314 . -1082) T) ((-402 . -782) 84985) ((-402 . -779) 84964) ((-494 . -483) 84946) ((-1227 . -1023) 84912) ((-1225 . -21) T) ((-1225 . -25) T) ((-1204 . -21) T) ((-1204 . -25) T) ((-802 . -704) 84854) ((-346 . -604) 84784) ((-685 . -399) T) ((-1254 . -1195) T) ((-594 . -102) T) ((-1095 . -406) 84753) ((-988 . -363) NIL) ((-657 . -102) T) ((-178 . -102) T) ((-159 . -102) T) ((-154 . -102) T) ((-152 . -102) T) ((-103 . -34) T) ((-724 . -1195) T) ((-44 . -748) T) ((-582 . -102) T) ((-77 . -391) T) ((-77 . -390) T) ((-639 . -642) 84737) ((-139 . -1195) T) ((-856 . -145) T) ((-856 . -143) NIL) ((-1194 . -93) T) ((-346 . -1034) T) ((-70 . -378) T) ((-70 . -390) T) ((-1147 . -102) T) ((-656 . -508) 84670) ((-675 . -304) 84608) ((-948 . -38) 84505) ((-722 . -38) 84475) ((-540 . -304) 84279) ((-311 . -1195) T) ((-346 . -229) T) ((-346 . -239) T) ((-308 . -1195) T) ((-284 . -1082) T) ((-1162 . -601) 84261) ((-698 . -1199) T) ((-1138 . -637) 84245) ((-1189 . -546) 84224) ((-698 . -546) T) ((-311 . -869) 84208) ((-311 . -871) 84133) ((-308 . -869) 84094) ((-308 . -871) NIL) ((-786 . -304) 84059) ((-314 . -704) 83900) ((-319 . -318) 83877) ((-479 . -102) T) ((-468 . -25) T) ((-468 . -21) T) ((-413 . -38) 83851) ((-311 . -1023) 83514) ((-221 . -1180) T) ((-221 . -1183) T) ((-3 . -601) 83496) ((-308 . -1023) 83426) ((-2 . -1082) T) ((-2 . |RecordCategory|) T) ((-820 . -601) 83408) ((-1095 . -1041) 83338) ((-570 . -905) T) ((-554 . -807) T) ((-554 . -905) T) ((-489 . -905) T) ((-135 . -1023) 83322) ((-221 . -95) T) ((-75 . -435) T) ((-75 . -390) T) ((0 . -601) 83304) ((-167 . -145) 83283) ((-167 . -143) 83234) ((-221 . -35) T) ((-49 . -601) 83216) ((-471 . -1041) T) ((-481 . -227) 83198) ((-478 . -953) 83182) ((-476 . -834) 83161) ((-213 . -227) 83143) ((-81 . -435) T) ((-81 . -390) T) ((-1128 . -34) T) ((-802 . -170) 83122) ((-718 . -102) T) ((-1011 . -601) 83089) ((-494 . -281) 83064) ((-311 . -372) 83033) ((-308 . -372) 82994) ((-308 . -333) 82955) ((-1067 . -601) 82937) ((-803 . -934) 82884) ((-648 . -130) T) ((-1214 . -143) 82863) ((-1214 . -145) 82842) ((-1156 . -102) T) ((-1155 . -102) T) ((-1149 . -102) T) ((-1141 . -1082) T) ((-1108 . -102) T) ((-218 . -34) T) ((-284 . -704) 82829) ((-1141 . -598) 82805) ((-582 . -304) NIL) ((-478 . -1082) 82783) ((-385 . -601) 82765) ((-504 . -836) T) ((-1132 . -225) 82715) ((-1233 . -1232) 82699) ((-1233 . -1219) 82676) ((-1226 . -1224) 82637) ((-1226 . -1219) 82607) ((-1226 . -1222) 82591) ((-1205 . -1203) 82552) ((-1205 . -1219) 82529) ((-609 . -601) 82511) ((-1205 . -1201) 82495) ((-685 . -905) T) ((-1156 . -279) 82461) ((-1155 . -279) 82427) ((-1149 . -279) 82393) ((-1062 . -1082) T) ((-1044 . -1082) T) ((-48 . -297) T) ((-311 . -885) 82359) ((-308 . -885) NIL) ((-1044 . -1051) 82338) ((-1102 . -871) 82320) ((-786 . -38) 82304) ((-259 . -627) 82252) ((-243 . -627) 82200) ((-687 . -1040) 82187) ((-584 . -1219) 82164) ((-1108 . -279) 82130) ((-314 . -170) 82061) ((-354 . -1082) T) ((-348 . -1082) T) ((-340 . -1082) T) ((-494 . -19) 82043) ((-1102 . -1023) 82025) ((-1084 . -149) 82009) ((-108 . -1082) T) ((-116 . -1040) 81996) ((-698 . -358) T) ((-494 . -592) 81971) ((-687 . -111) 81956) ((-431 . -102) T) ((-45 . -1131) 81906) ((-116 . -111) 81891) ((-623 . -707) T) ((-595 . -707) T) ((-802 . -508) 81824) ((-1020 . -1195) T) ((-928 . -149) 81808) ((-1154 . -446) 81739) ((-1148 . -1082) T) ((-1140 . -1082) T) ((-519 . -102) T) ((-514 . -102) 81689) ((-1124 . -634) 81663) ((-1107 . -446) 81614) ((-1069 . -1199) 81593) ((-769 . -1199) 81572) ((-767 . -1199) 81551) ((-62 . -1195) T) ((-471 . -601) 81503) ((-471 . -602) 81425) ((-1069 . -546) 81356) ((-979 . -1082) T) ((-769 . -546) 81267) ((-767 . -546) 81198) ((-476 . -406) 81167) ((-611 . -905) 81146) ((-448 . -1199) 81125) ((-718 . -304) 81112) ((-687 . -604) 81084) ((-393 . -601) 81066) ((-661 . -508) 80999) ((-650 . -25) T) ((-650 . -21) T) ((-448 . -546) 80930) ((-350 . -25) T) ((-350 . -21) T) ((-117 . -905) T) ((-117 . -807) NIL) ((-347 . -25) T) ((-347 . -21) T) ((-339 . -25) T) ((-339 . -21) T) ((-259 . -25) T) ((-259 . -21) T) ((-243 . -25) T) ((-243 . -21) T) ((-83 . -379) T) ((-83 . -390) T) ((-133 . -604) 80912) ((-116 . -604) 80884) ((-1243 . -601) 80866) ((-1189 . -1094) T) ((-1189 . -23) T) ((-1149 . -304) 80751) ((-1108 . -304) 80738) ((-1062 . -704) 80606) ((-851 . -634) 80566) ((-928 . -965) 80550) ((-895 . -21) T) ((-284 . -170) T) ((-895 . -25) T) ((-306 . -93) T) ((-857 . -836) 80501) ((-698 . -1094) T) ((-698 . -23) T) ((-687 . -1034) T) ((-633 . -1082) 80479) ((-620 . -1082) T) ((-571 . -1199) T) ((-512 . -1199) T) ((-620 . -598) 80454) ((-571 . -546) T) ((-512 . -546) T) ((-354 . -704) 80406) ((-348 . -704) 80358) ((-334 . -1040) 80342) ((-340 . -704) 80294) ((-172 . -111) 80205) ((-172 . -1040) 80137) ((-108 . -704) 80087) ((-334 . -111) 80066) ((-269 . -1082) T) ((-268 . -1082) T) ((-267 . -1082) T) ((-266 . -1082) T) ((-265 . -1082) T) ((-264 . -1082) T) ((-263 . -1082) T) ((-208 . -1082) T) ((-207 . -1082) T) ((-205 . -1082) T) ((-167 . -1183) 80044) ((-167 . -1180) 80022) ((-204 . -1082) T) ((-203 . -1082) T) ((-116 . -1034) T) ((-202 . -1082) T) ((-199 . -1082) T) ((-687 . -229) T) ((-198 . -1082) T) ((-197 . -1082) T) ((-196 . -1082) T) ((-195 . -1082) T) ((-194 . -1082) T) ((-193 . -1082) T) ((-192 . -1082) T) ((-191 . -1082) T) ((-190 . -1082) T) ((-189 . -1082) T) ((-236 . -102) 79812) ((-167 . -35) 79790) ((-167 . -95) 79768) ((-640 . -1023) 79664) ((-476 . -1041) 79594) ((-1095 . -1082) 79384) ((-1124 . -34) T) ((-656 . -483) 79368) ((-73 . -1195) T) ((-105 . -601) 79350) ((-1265 . -601) 79332) ((-376 . -601) 79314) ((-334 . -604) 79266) ((-172 . -604) 79183) ((-1194 . -484) 79164) ((-718 . -38) 79013) ((-561 . -1183) T) ((-561 . -1180) T) ((-525 . -601) 78995) ((-514 . -304) 78933) ((-494 . -601) 78915) ((-494 . -602) 78897) ((-1194 . -601) 78863) ((-1149 . -1133) NIL) ((-1012 . -1054) 78832) ((-1012 . -1082) T) ((-989 . -102) T) ((-956 . -102) T) ((-899 . -102) T) ((-878 . -1023) 78809) ((-1124 . -713) T) ((-988 . -634) 78754) ((-470 . -1082) T) ((-457 . -1082) T) ((-575 . -23) T) ((-561 . -35) T) ((-561 . -95) T) ((-422 . -102) T) ((-1046 . -225) 78700) ((-1156 . -38) 78597) ((-851 . -713) T) ((-680 . -905) T) ((-505 . -25) T) ((-501 . -21) T) ((-501 . -25) T) ((-1155 . -38) 78438) ((-334 . -1034) T) ((-1149 . -38) 78234) ((-1062 . -170) T) ((-172 . -1034) T) ((-1108 . -38) 78131) ((-699 . -47) 78108) ((-354 . -170) T) ((-348 . -170) T) ((-513 . -57) 78082) ((-491 . -57) 78032) ((-346 . -1260) 78009) ((-221 . -446) T) ((-314 . -285) 77960) ((-340 . -170) T) ((-172 . -239) T) ((-1204 . -836) 77859) ((-108 . -170) T) ((-857 . -977) 77843) ((-644 . -1094) T) ((-571 . -358) T) ((-571 . -324) 77830) ((-512 . -324) 77807) ((-512 . -358) T) ((-311 . -302) 77786) ((-308 . -302) T) ((-590 . -836) 77765) ((-1095 . -704) 77707) ((-514 . -277) 77691) ((-644 . -23) T) ((-413 . -227) 77675) ((-308 . -1007) NIL) ((-331 . -23) T) ((-103 . -995) 77659) ((-45 . -36) 77638) ((-600 . -1082) T) ((-346 . -363) T) ((-518 . -102) T) ((-489 . -27) T) ((-236 . -304) 77576) ((-1069 . -1094) T) ((-1264 . -634) 77550) ((-769 . -1094) T) ((-767 . -1094) T) ((-448 . -1094) T) ((-1045 . -446) T) ((-937 . -446) 77501) ((-1097 . -1065) T) ((-110 . -1082) T) ((-1069 . -23) T) ((-804 . -1041) T) ((-769 . -23) T) ((-767 . -23) T) ((-475 . -446) 77452) ((-1141 . -508) 77235) ((-376 . -377) 77214) ((-1160 . -406) 77198) ((-455 . -23) T) ((-448 . -23) T) ((-96 . -1082) T) ((-478 . -508) 77131) ((-284 . -285) T) ((-1064 . -601) 77113) ((-1064 . -602) 77094) ((-402 . -894) 77073) ((-50 . -1094) T) ((-1009 . -905) T) ((-988 . -713) T) ((-699 . -871) NIL) ((-571 . -1094) T) ((-512 . -1094) T) ((-829 . -634) 77046) ((-1189 . -130) T) ((-1149 . -395) 76998) ((-989 . -304) NIL) ((-802 . -483) 76982) ((-349 . -905) T) ((-1138 . -34) T) ((-402 . -634) 76934) ((-50 . -23) T) ((-698 . -130) T) ((-699 . -1023) 76814) ((-571 . -23) T) ((-108 . -508) NIL) ((-512 . -23) T) ((-167 . -404) 76785) ((-1122 . -1082) T) ((-1256 . -1255) 76769) ((-687 . -782) T) ((-687 . -779) T) ((-1102 . -302) T) ((-374 . -145) T) ((-275 . -601) 76751) ((-1204 . -977) 76721) ((-48 . -905) T) ((-661 . -483) 76705) ((-246 . -1248) 76675) ((-245 . -1248) 76645) ((-1158 . -836) T) ((-1095 . -170) 76624) ((-1102 . -1007) T) ((-1031 . -34) T) ((-823 . -145) 76603) ((-823 . -143) 76582) ((-724 . -107) 76566) ((-600 . -131) T) ((-476 . -1082) 76356) ((-1160 . -1041) T) ((-856 . -446) T) ((-85 . -1195) T) ((-236 . -38) 76326) ((-139 . -107) 76308) ((-699 . -372) 76292) ((-820 . -604) 76160) ((-1102 . -539) T) ((-569 . -102) T) ((-129 . -484) 76142) ((-385 . -1040) 76126) ((-1264 . -713) T) ((-1154 . -934) 76095) ((-129 . -601) 76047) ((-52 . -601) 76029) ((-1107 . -934) 75996) ((-639 . -406) 75980) ((-1253 . -1041) T) ((-609 . -1040) 75964) ((-648 . -25) T) ((-648 . -21) T) ((-1140 . -508) NIL) ((-1233 . -102) T) ((-1226 . -102) T) ((-385 . -111) 75943) ((-218 . -249) 75927) ((-1205 . -102) T) ((-1038 . -1082) T) ((-989 . -1133) T) ((-1038 . -1037) 75867) ((-805 . -1082) T) ((-338 . -1199) T) ((-623 . -634) 75851) ((-609 . -111) 75830) ((-595 . -634) 75814) ((-585 . -102) T) ((-306 . -484) 75795) ((-575 . -130) T) ((-584 . -102) T) ((-409 . -1082) T) ((-380 . -1082) T) ((-306 . -601) 75761) ((-223 . -1082) 75739) ((-633 . -508) 75672) ((-620 . -508) 75516) ((-820 . -1034) 75495) ((-631 . -149) 75479) ((-338 . -546) T) ((-699 . -885) 75422) ((-540 . -225) 75372) ((-1233 . -279) 75338) ((-1062 . -285) 75289) ((-481 . -834) T) ((-219 . -1094) T) ((-1226 . -279) 75255) ((-1205 . -279) 75221) ((-989 . -38) 75171) ((-213 . -834) T) ((-1189 . -487) 75137) ((-899 . -38) 75089) ((-829 . -781) 75068) ((-829 . -778) 75047) ((-829 . -713) 75026) ((-354 . -285) T) ((-348 . -285) T) ((-340 . -285) T) ((-167 . -446) 74957) ((-422 . -38) 74941) ((-108 . -285) T) ((-219 . -23) T) ((-402 . -781) 74920) ((-402 . -778) 74899) ((-402 . -713) T) ((-494 . -283) 74874) ((-471 . -1040) 74839) ((-644 . -130) T) ((-609 . -604) 74808) ((-1095 . -508) 74741) ((-331 . -130) T) ((-167 . -397) 74720) ((-476 . -704) 74662) ((-802 . -281) 74639) ((-471 . -111) 74595) ((-639 . -1041) T) ((-1214 . -446) 74526) ((-1252 . -1065) T) ((-1251 . -1065) T) ((-1069 . -130) T) ((-1038 . -704) 74468) ((-259 . -836) 74447) ((-243 . -836) 74426) ((-769 . -130) T) ((-767 . -130) T) ((-561 . -446) T) ((-1012 . -508) 74359) ((-609 . -1034) T) ((-581 . -1082) T) ((-527 . -171) T) ((-455 . -130) T) ((-448 . -130) T) ((-45 . -1082) T) ((-380 . -704) 74329) ((-804 . -1082) T) ((-470 . -508) 74262) ((-457 . -508) 74195) ((-447 . -362) 74165) ((-45 . -598) 74144) ((-311 . -297) T) ((-471 . -604) 74094) ((-656 . -601) 74056) ((-59 . -836) 74035) ((-1205 . -304) 73920) ((-989 . -395) 73902) ((-802 . -592) 73879) ((-510 . -836) 73858) ((-490 . -836) 73837) ((-40 . -1199) T) ((-984 . -1023) 73733) ((-50 . -130) T) ((-571 . -130) T) ((-512 . -130) T) ((-289 . -634) 73593) ((-338 . -324) 73570) ((-338 . -358) T) ((-317 . -318) 73547) ((-314 . -281) 73532) ((-40 . -546) T) ((-374 . -1180) T) ((-374 . -1183) T) ((-1020 . -1171) 73507) ((-1168 . -231) 73457) ((-1149 . -227) 73409) ((-325 . -1082) T) ((-374 . -95) T) ((-374 . -35) T) ((-1020 . -107) 73355) ((-471 . -1034) T) ((-473 . -231) 73305) ((-1141 . -483) 73239) ((-1265 . -1040) 73223) ((-376 . -1040) 73207) ((-471 . -239) T) ((-803 . -102) T) ((-701 . -145) 73186) ((-701 . -143) 73165) ((-478 . -483) 73149) ((-479 . -330) 73118) ((-1265 . -111) 73097) ((-506 . -1082) T) ((-476 . -170) 73076) ((-984 . -372) 73060) ((-408 . -102) T) ((-376 . -111) 73039) ((-984 . -333) 73023) ((-274 . -968) 73007) ((-273 . -968) 72991) ((-1263 . -601) 72973) ((-1261 . -601) 72955) ((-110 . -508) NIL) ((-1154 . -1217) 72939) ((-840 . -838) 72923) ((-1160 . -1082) T) ((-103 . -1195) T) ((-937 . -934) 72884) ((-804 . -704) 72826) ((-1205 . -1133) NIL) ((-475 . -934) 72771) ((-1045 . -141) T) ((-60 . -102) 72749) ((-44 . -601) 72731) ((-78 . -601) 72713) ((-346 . -634) 72658) ((-1253 . -1082) T) ((-505 . -836) T) ((-338 . -1094) T) ((-290 . -1082) T) ((-984 . -885) 72617) ((-290 . -598) 72596) ((-1265 . -604) 72545) ((-1233 . -38) 72442) ((-1226 . -38) 72283) ((-1205 . -38) 72079) ((-481 . -1041) T) ((-376 . -604) 72063) ((-213 . -1041) T) ((-338 . -23) T) ((-150 . -601) 72045) ((-820 . -782) 72024) ((-820 . -779) 72003) ((-1194 . -604) 71984) ((-585 . -38) 71957) ((-584 . -38) 71854) ((-855 . -546) T) ((-219 . -130) T) ((-314 . -987) 71820) ((-79 . -601) 71802) ((-699 . -302) 71781) ((-289 . -713) 71683) ((-811 . -102) T) ((-850 . -830) T) ((-289 . -467) 71662) ((-1256 . -102) T) ((-40 . -358) T) ((-857 . -145) 71641) ((-857 . -143) 71620) ((-1140 . -483) 71602) ((-1265 . -1034) T) ((-476 . -508) 71535) ((-1128 . -1195) T) ((-949 . -601) 71517) ((-633 . -483) 71501) ((-620 . -483) 71432) ((-802 . -601) 71163) ((-48 . -27) T) ((-1160 . -704) 71060) ((-639 . -1082) T) ((-847 . -846) T) ((-431 . -359) 71034) ((-1084 . -102) T) ((-955 . -1082) T) ((-850 . -1082) T) ((-803 . -304) 71021) ((-527 . -521) T) ((-527 . -566) T) ((-1261 . -377) 70993) ((-1038 . -508) 70926) ((-1141 . -281) 70902) ((-236 . -227) 70871) ((-1253 . -704) 70841) ((-1148 . -93) T) ((-979 . -93) T) ((-804 . -170) 70820) ((-1192 . -484) 70797) ((-223 . -508) 70730) ((-609 . -782) 70709) ((-609 . -779) 70688) ((-1192 . -601) 70600) ((-218 . -1195) T) ((-661 . -601) 70532) ((-1138 . -995) 70516) ((-928 . -102) 70466) ((-346 . -713) T) ((-847 . -601) 70448) ((-1205 . -395) 70400) ((-1095 . -483) 70384) ((-60 . -304) 70322) ((-326 . -102) T) ((-1189 . -21) T) ((-1189 . -25) T) ((-40 . -1094) T) ((-698 . -21) T) ((-615 . -601) 70304) ((-509 . -318) 70283) ((-698 . -25) T) ((-108 . -281) NIL) ((-906 . -1094) T) ((-40 . -23) T) ((-758 . -1094) T) ((-554 . -1199) T) ((-489 . -1199) T) ((-314 . -601) 70265) ((-989 . -227) 70247) ((-167 . -164) 70231) ((-570 . -546) T) ((-554 . -546) T) ((-489 . -546) T) ((-758 . -23) T) ((-1225 . -145) 70210) ((-1141 . -592) 70186) ((-1225 . -143) 70165) ((-1012 . -483) 70149) ((-1204 . -143) 70074) ((-1204 . -145) 69999) ((-1256 . -1262) 69978) ((-470 . -483) 69962) ((-457 . -483) 69946) ((-517 . -34) T) ((-639 . -704) 69916) ((-112 . -952) T) ((-648 . -836) 69895) ((-1160 . -170) 69846) ((-360 . -102) T) ((-236 . -234) 69825) ((-246 . -102) T) ((-245 . -102) T) ((-1214 . -934) 69794) ((-241 . -836) 69773) ((-803 . -38) 69622) ((-45 . -508) 69414) ((-1140 . -281) 69389) ((-210 . -1082) T) ((-1132 . -1082) T) ((-1132 . -598) 69368) ((-575 . -25) T) ((-575 . -21) T) ((-1084 . -304) 69306) ((-948 . -406) 69290) ((-685 . -1199) T) ((-620 . -281) 69265) ((-1069 . -627) 69213) ((-769 . -627) 69161) ((-767 . -627) 69109) ((-338 . -130) T) ((-284 . -601) 69091) ((-890 . -1082) T) ((-685 . -546) T) ((-129 . -604) 69073) ((-855 . -1094) T) ((-448 . -627) 69021) ((-890 . -888) 69005) ((-374 . -446) T) ((-481 . -1082) T) ((-687 . -634) 68992) ((-928 . -304) 68930) ((-213 . -1082) T) ((-311 . -905) 68909) ((-308 . -905) T) ((-308 . -807) NIL) ((-385 . -707) T) ((-855 . -23) T) ((-116 . -634) 68896) ((-468 . -143) 68875) ((-413 . -406) 68859) ((-468 . -145) 68838) ((-110 . -483) 68820) ((-306 . -604) 68801) ((-2 . -601) 68783) ((-182 . -102) T) ((-1140 . -19) 68765) ((-1140 . -592) 68740) ((-644 . -21) T) ((-644 . -25) T) ((-582 . -1126) T) ((-1095 . -281) 68717) ((-331 . -25) T) ((-331 . -21) T) ((-489 . -358) T) ((-1256 . -38) 68687) ((-1124 . -1195) T) ((-620 . -592) 68662) ((-1069 . -25) T) ((-1069 . -21) T) ((-525 . -779) T) ((-525 . -782) T) ((-117 . -1199) T) ((-948 . -1041) T) ((-611 . -546) T) ((-769 . -25) T) ((-769 . -21) T) ((-767 . -21) T) ((-767 . -25) T) ((-722 . -1041) T) ((-702 . -1041) T) ((-656 . -1040) 68646) ((-511 . -1065) T) ((-455 . -25) T) ((-117 . -546) T) ((-455 . -21) T) ((-448 . -25) T) ((-448 . -21) T) ((-1124 . -1023) 68542) ((-804 . -285) 68521) ((-810 . -1082) T) ((-1263 . -1040) 68505) ((-951 . -952) T) ((-656 . -111) 68484) ((-290 . -508) 68276) ((-1261 . -1040) 68260) ((-1225 . -1180) 68226) ((-1225 . -1183) 68192) ((-246 . -304) 68130) ((-245 . -304) 68068) ((-1208 . -102) 68046) ((-1141 . -602) NIL) ((-1141 . -601) 68028) ((-1225 . -95) 67994) ((-1205 . -227) 67946) ((-1204 . -1180) 67912) ((-96 . -93) T) ((-1204 . -1183) 67878) ((-1124 . -372) 67862) ((-1102 . -807) T) ((-1102 . -905) T) ((-1095 . -592) 67839) ((-1062 . -602) 67823) ((-478 . -601) 67755) ((-802 . -283) 67732) ((-596 . -149) 67679) ((-413 . -1041) T) ((-481 . -704) 67629) ((-476 . -483) 67613) ((-322 . -836) 67592) ((-334 . -634) 67566) ((-50 . -21) T) ((-50 . -25) T) ((-213 . -704) 67516) ((-167 . -711) 67487) ((-172 . -634) 67419) ((-571 . -21) T) ((-571 . -25) T) ((-512 . -25) T) ((-512 . -21) T) ((-469 . -149) 67369) ((-1062 . -601) 67351) ((-1044 . -601) 67333) ((-978 . -102) T) ((-848 . -102) T) ((-786 . -406) 67297) ((-40 . -130) T) ((-685 . -358) T) ((-687 . -713) T) ((-208 . -880) T) ((-687 . -781) T) ((-687 . -778) T) ((-570 . -1094) T) ((-554 . -1094) T) ((-489 . -1094) T) ((-354 . -601) 67279) ((-348 . -601) 67261) ((-340 . -601) 67243) ((-66 . -391) T) ((-66 . -390) T) ((-108 . -602) 67173) ((-108 . -601) 67116) ((-207 . -880) T) ((-943 . -149) 67100) ((-758 . -130) T) ((-656 . -604) 67018) ((-133 . -713) T) ((-116 . -713) T) ((-1225 . -35) 66984) ((-1038 . -483) 66968) ((-570 . -23) T) ((-554 . -23) T) ((-489 . -23) T) ((-1204 . -95) 66934) ((-1204 . -35) 66900) ((-1154 . -102) T) ((-1107 . -102) T) ((-840 . -102) T) ((-223 . -483) 66884) ((-1263 . -111) 66863) ((-1261 . -111) 66842) ((-44 . -1040) 66826) ((-1214 . -1217) 66810) ((-841 . -838) 66794) ((-1160 . -285) 66773) ((-110 . -281) 66748) ((-1263 . -604) 66694) ((-128 . -149) 66676) ((-1124 . -885) 66635) ((-44 . -111) 66614) ((-1163 . -1236) T) ((-1148 . -484) 66595) ((-1148 . -601) 66561) ((-1140 . -602) NIL) ((-656 . -1034) T) ((-1140 . -601) 66543) ((-1046 . -598) 66518) ((-1046 . -1082) T) ((-979 . -484) 66499) ((-979 . -601) 66465) ((-74 . -435) T) ((-74 . -390) T) ((-689 . -1082) T) ((-150 . -1040) 66449) ((-656 . -229) 66428) ((-561 . -544) 66412) ((-350 . -145) 66391) ((-350 . -143) 66342) ((-347 . -145) 66321) ((-347 . -143) 66272) ((-339 . -145) 66251) ((-339 . -143) 66202) ((-259 . -143) 66181) ((-259 . -145) 66160) ((-246 . -38) 66130) ((-243 . -145) 66109) ((-117 . -358) T) ((-243 . -143) 66088) ((-245 . -38) 66058) ((-150 . -111) 66037) ((-988 . -1023) 65925) ((-1149 . -834) NIL) ((-680 . -1199) T) ((-786 . -1041) T) ((-685 . -1094) T) ((-1263 . -1034) T) ((-1261 . -604) 65854) ((-1261 . -1034) T) ((-1138 . -1195) T) ((-988 . -372) 65831) ((-895 . -143) T) ((-895 . -145) 65813) ((-855 . -130) T) ((-802 . -1040) 65710) ((-680 . -546) T) ((-685 . -23) T) ((-633 . -601) 65642) ((-633 . -602) 65603) ((-620 . -602) NIL) ((-620 . -601) 65585) ((-481 . -170) T) ((-219 . -21) T) ((-213 . -170) T) ((-219 . -25) T) ((-468 . -1183) 65551) ((-468 . -1180) 65517) ((-269 . -601) 65499) ((-268 . -601) 65481) ((-267 . -601) 65463) ((-266 . -601) 65445) ((-265 . -601) 65427) ((-494 . -637) 65409) ((-264 . -601) 65391) ((-334 . -713) T) ((-263 . -601) 65373) ((-110 . -19) 65355) ((-172 . -713) T) ((-494 . -368) 65337) ((-208 . -601) 65319) ((-514 . -1131) 65303) ((-494 . -123) T) ((-110 . -592) 65278) ((-207 . -601) 65260) ((-468 . -35) 65226) ((-468 . -95) 65192) ((-205 . -601) 65174) ((-204 . -601) 65156) ((-203 . -601) 65138) ((-202 . -601) 65120) ((-199 . -601) 65102) ((-198 . -601) 65084) ((-197 . -601) 65066) ((-196 . -601) 65048) ((-195 . -601) 65030) ((-194 . -601) 65012) ((-193 . -601) 64994) ((-530 . -1085) 64946) ((-192 . -601) 64928) ((-191 . -601) 64910) ((-45 . -483) 64847) ((-190 . -601) 64829) ((-189 . -601) 64811) ((-150 . -604) 64780) ((-1097 . -102) T) ((-802 . -111) 64670) ((-631 . -102) 64620) ((-476 . -281) 64597) ((-1095 . -601) 64328) ((-1083 . -1082) T) ((-1031 . -1195) T) ((-1264 . -1023) 64312) ((-611 . -1094) T) ((-1154 . -304) 64299) ((-1117 . -1082) T) ((-1107 . -304) 64286) ((-1078 . -1065) T) ((-1072 . -1065) T) ((-1056 . -1065) T) ((-1049 . -1065) T) ((-1021 . -1065) T) ((-1004 . -1065) T) ((-117 . -1094) T) ((-806 . -102) T) ((-614 . -1065) T) ((-611 . -23) T) ((-1132 . -508) 64078) ((-477 . -1065) T) ((-988 . -885) 64030) ((-381 . -102) T) ((-319 . -102) T) ((-214 . -1065) T) ((-948 . -1082) T) ((-150 . -1034) T) ((-718 . -406) 64014) ((-117 . -23) T) ((-722 . -1082) T) ((-702 . -1082) T) ((-689 . -131) T) ((-447 . -1082) T) ((-402 . -1195) T) ((-311 . -425) 63998) ((-581 . -93) T) ((-1012 . -602) 63959) ((-1009 . -1199) T) ((-221 . -102) T) ((-1012 . -601) 63921) ((-803 . -227) 63905) ((-802 . -604) 63635) ((-1009 . -546) T) ((-820 . -634) 63608) ((-349 . -1199) T) ((-470 . -601) 63570) ((-470 . -602) 63531) ((-457 . -602) 63492) ((-457 . -601) 63454) ((-402 . -869) 63438) ((-314 . -1040) 63273) ((-402 . -871) 63198) ((-829 . -1023) 63094) ((-481 . -508) NIL) ((-476 . -592) 63071) ((-349 . -546) T) ((-213 . -508) NIL) ((-857 . -446) T) ((-413 . -1082) T) ((-402 . -1023) 62935) ((-314 . -111) 62756) ((-680 . -358) T) ((-221 . -279) T) ((-1192 . -604) 62733) ((-48 . -1199) T) ((-802 . -1034) 62663) ((-570 . -130) T) ((-554 . -130) T) ((-489 . -130) T) ((-48 . -546) T) ((-1141 . -283) 62639) ((-1154 . -1133) 62617) ((-311 . -27) 62596) ((-1045 . -102) T) ((-802 . -229) 62548) ((-236 . -834) 62527) ((-937 . -102) T) ((-700 . -102) T) ((-290 . -483) 62464) ((-475 . -102) T) ((-718 . -1041) T) ((-600 . -601) 62446) ((-600 . -602) 62307) ((-402 . -372) 62291) ((-402 . -333) 62275) ((-314 . -604) 62101) ((-1154 . -38) 61930) ((-1107 . -38) 61779) ((-840 . -38) 61749) ((-385 . -634) 61733) ((-631 . -304) 61671) ((-948 . -704) 61568) ((-722 . -704) 61538) ((-218 . -107) 61522) ((-45 . -281) 61447) ((-609 . -634) 61421) ((-307 . -1082) T) ((-284 . -1040) 61408) ((-110 . -601) 61390) ((-110 . -602) 61372) ((-447 . -704) 61342) ((-803 . -248) 61281) ((-675 . -1082) 61259) ((-540 . -1082) T) ((-1156 . -1041) T) ((-1155 . -1041) T) ((-96 . -484) 61240) ((-1149 . -1041) T) ((-284 . -111) 61225) ((-1108 . -1041) T) ((-540 . -598) 61204) ((-96 . -601) 61170) ((-989 . -834) T) ((-223 . -673) 61128) ((-680 . -1094) T) ((-1189 . -727) 61104) ((-314 . -1034) T) ((-338 . -25) T) ((-338 . -21) T) ((-402 . -885) 61063) ((-68 . -1195) T) ((-820 . -781) 61042) ((-413 . -704) 61016) ((-786 . -1082) T) ((-820 . -778) 60995) ((-685 . -130) T) ((-699 . -905) 60974) ((-680 . -23) T) ((-481 . -285) T) ((-820 . -713) 60953) ((-314 . -229) 60905) ((-314 . -239) 60884) ((-213 . -285) T) ((-1009 . -358) T) ((-1225 . -446) 60863) ((-1204 . -446) 60842) ((-349 . -324) 60819) ((-349 . -358) T) ((-1122 . -601) 60801) ((-45 . -1229) 60751) ((-856 . -102) T) ((-631 . -277) 60735) ((-685 . -1043) T) ((-1252 . -102) T) ((-1251 . -102) T) ((-471 . -634) 60700) ((-462 . -1082) T) ((-45 . -592) 60625) ((-1140 . -283) 60600) ((-284 . -604) 60572) ((-40 . -627) 60511) ((-48 . -358) T) ((-1088 . -601) 60493) ((-1069 . -836) 60472) ((-620 . -283) 60447) ((-769 . -836) 60426) ((-767 . -836) 60405) ((-476 . -601) 60136) ((-236 . -406) 60105) ((-937 . -304) 60092) ((-448 . -836) 60071) ((-65 . -1195) T) ((-1046 . -508) 59915) ((-611 . -130) T) ((-475 . -304) 59902) ((-594 . -1082) T) ((-117 . -130) T) ((-657 . -1082) T) ((-284 . -1034) T) ((-178 . -1082) T) ((-159 . -1082) T) ((-154 . -1082) T) ((-152 . -1082) T) ((-447 . -748) T) ((-31 . -1065) T) ((-948 . -170) 59853) ((-955 . -93) T) ((-1062 . -1040) 59763) ((-609 . -781) 59742) ((-582 . -1082) T) ((-609 . -778) 59721) ((-609 . -713) T) ((-290 . -281) 59700) ((-289 . -1195) T) ((-1038 . -601) 59662) ((-1038 . -602) 59623) ((-1009 . -1094) T) ((-167 . -102) T) ((-270 . -836) T) ((-1147 . -1082) T) ((-805 . -601) 59605) ((-1095 . -283) 59582) ((-1084 . -225) 59566) ((-988 . -302) T) ((-786 . -704) 59550) ((-354 . -1040) 59502) ((-349 . -1094) T) ((-348 . -1040) 59454) ((-409 . -601) 59436) ((-380 . -601) 59418) ((-340 . -1040) 59370) ((-223 . -601) 59302) ((-1062 . -111) 59198) ((-1009 . -23) T) ((-108 . -1040) 59148) ((-883 . -102) T) ((-827 . -102) T) ((-795 . -102) T) ((-756 . -102) T) ((-663 . -102) T) ((-468 . -446) 59127) ((-413 . -170) T) ((-354 . -111) 59065) ((-348 . -111) 59003) ((-340 . -111) 58941) ((-246 . -227) 58910) ((-245 . -227) 58879) ((-349 . -23) T) ((-71 . -1195) T) ((-221 . -38) 58844) ((-108 . -111) 58778) ((-40 . -25) T) ((-40 . -21) T) ((-656 . -707) T) ((-167 . -279) 58756) ((-48 . -1094) T) ((-906 . -25) T) ((-758 . -25) T) ((-1132 . -483) 58693) ((-479 . -1082) T) ((-1265 . -634) 58667) ((-1214 . -102) T) ((-841 . -102) T) ((-236 . -1041) 58597) ((-1045 . -1133) T) ((-949 . -779) 58550) ((-376 . -634) 58534) ((-48 . -23) T) ((-949 . -782) 58487) ((-802 . -782) 58438) ((-802 . -779) 58389) ((-290 . -592) 58368) ((-471 . -713) T) ((-561 . -102) T) ((-1062 . -604) 58186) ((-856 . -304) 58143) ((-639 . -281) 58122) ((-112 . -647) T) ((-354 . -604) 58059) ((-348 . -604) 57996) ((-340 . -604) 57933) ((-76 . -1195) T) ((-108 . -604) 57883) ((-1045 . -38) 57870) ((-650 . -369) 57849) ((-937 . -38) 57698) ((-718 . -1082) T) ((-475 . -38) 57547) ((-86 . -1195) T) ((-581 . -484) 57528) ((-561 . -279) T) ((-1205 . -834) NIL) ((-581 . -601) 57494) ((-1156 . -1082) T) ((-1155 . -1082) T) ((-1062 . -1034) T) ((-346 . -1023) 57471) ((-804 . -484) 57455) ((-989 . -1041) T) ((-45 . -601) 57437) ((-45 . -602) NIL) ((-899 . -1041) T) ((-804 . -601) 57406) ((-1149 . -1082) T) ((-1129 . -102) 57384) ((-1062 . -239) 57335) ((-422 . -1041) T) ((-354 . -1034) T) ((-360 . -359) 57312) ((-348 . -1034) T) ((-340 . -1034) T) ((-246 . -234) 57291) ((-245 . -234) 57270) ((-1062 . -229) 57195) ((-1108 . -1082) T) ((-289 . -885) 57154) ((-108 . -1034) T) ((-680 . -130) T) ((-413 . -508) 56996) ((-354 . -229) 56975) ((-354 . -239) T) ((-44 . -707) T) ((-348 . -229) 56954) ((-348 . -239) T) ((-340 . -229) 56933) ((-340 . -239) T) ((-1148 . -604) 56914) ((-167 . -304) 56879) ((-108 . -239) T) ((-108 . -229) T) ((-979 . -604) 56860) ((-314 . -779) T) ((-855 . -21) T) ((-855 . -25) T) ((-402 . -302) T) ((-494 . -34) T) ((-110 . -283) 56835) ((-1095 . -1040) 56732) ((-856 . -1133) NIL) ((-325 . -601) 56714) ((-402 . -1007) 56692) ((-1095 . -111) 56582) ((-677 . -1236) T) ((-431 . -1082) T) ((-1265 . -713) T) ((-63 . -601) 56564) ((-856 . -38) 56509) ((-517 . -1195) T) ((-590 . -149) 56493) ((-506 . -601) 56475) ((-1214 . -304) 56462) ((-718 . -704) 56311) ((-525 . -780) T) ((-525 . -781) T) ((-554 . -627) 56293) ((-489 . -627) 56253) ((-350 . -446) T) ((-347 . -446) T) ((-339 . -446) T) ((-259 . -446) 56204) ((-519 . -1082) T) ((-514 . -1082) 56154) ((-243 . -446) 56105) ((-1132 . -281) 56084) ((-1160 . -601) 56066) ((-675 . -508) 55999) ((-948 . -285) 55978) ((-540 . -508) 55770) ((-1253 . -601) 55739) ((-1154 . -227) 55723) ((-1095 . -604) 55453) ((-167 . -1133) 55432) ((-1253 . -484) 55416) ((-1156 . -704) 55313) ((-1155 . -704) 55154) ((-877 . -102) T) ((-1149 . -704) 54950) ((-1108 . -704) 54847) ((-1138 . -660) 54831) ((-350 . -397) 54782) ((-347 . -397) 54733) ((-339 . -397) 54684) ((-1009 . -130) T) ((-786 . -508) 54596) ((-290 . -602) NIL) ((-290 . -601) 54578) ((-895 . -446) T) ((-949 . -363) 54531) ((-802 . -363) 54510) ((-504 . -503) 54489) ((-502 . -503) 54468) ((-481 . -281) NIL) ((-476 . -283) 54445) ((-413 . -285) T) ((-349 . -130) T) ((-213 . -281) NIL) ((-680 . -487) NIL) ((-99 . -1094) T) ((-167 . -38) 54273) ((-1225 . -958) 54235) ((-1129 . -304) 54173) ((-1204 . -958) 54142) ((-895 . -397) T) ((-1095 . -1034) 54072) ((-1227 . -546) T) ((-1132 . -592) 54051) ((-112 . -836) T) ((-1046 . -483) 53982) ((-570 . -21) T) ((-570 . -25) T) ((-554 . -21) T) ((-554 . -25) T) ((-489 . -25) T) ((-489 . -21) T) ((-1214 . -1133) 53960) ((-1095 . -229) 53912) ((-48 . -130) T) ((-1176 . -102) T) ((-236 . -1082) 53702) ((-856 . -395) 53679) ((-1070 . -102) T) ((-1058 . -102) T) ((-596 . -102) T) ((-469 . -102) T) ((-1214 . -38) 53508) ((-841 . -38) 53478) ((-718 . -170) 53389) ((-639 . -601) 53371) ((-632 . -1065) T) ((-561 . -38) 53358) ((-955 . -484) 53339) ((-955 . -601) 53305) ((-943 . -102) 53255) ((-850 . -601) 53237) ((-850 . -602) 53159) ((-582 . -508) NIL) ((-1233 . -1041) T) ((-1226 . -1041) T) ((-1205 . -1041) T) ((-585 . -1041) T) ((-584 . -1041) T) ((-1269 . -1094) T) ((-1156 . -170) 53110) ((-1155 . -170) 53041) ((-1149 . -170) 52972) ((-1108 . -170) 52923) ((-989 . -1082) T) ((-956 . -1082) T) ((-899 . -1082) T) ((-1189 . -145) 52902) ((-786 . -784) 52886) ((-685 . -25) T) ((-685 . -21) T) ((-117 . -627) 52863) ((-687 . -871) 52845) ((-422 . -1082) T) ((-311 . -1199) 52824) ((-308 . -1199) T) ((-167 . -395) 52808) ((-1189 . -143) 52787) ((-468 . -958) 52749) ((-128 . -102) T) ((-72 . -601) 52731) ((-108 . -782) T) ((-108 . -779) T) ((-687 . -1023) 52713) ((-311 . -546) 52692) ((-308 . -546) T) ((-1269 . -23) T) ((-133 . -1023) 52674) ((-96 . -604) 52655) ((-476 . -1040) 52552) ((-45 . -283) 52477) ((-236 . -704) 52419) ((-511 . -102) T) ((-476 . -111) 52309) ((-1074 . -102) 52287) ((-1019 . -102) T) ((-631 . -815) 52266) ((-718 . -508) 52209) ((-1038 . -1040) 52193) ((-1117 . -93) T) ((-1046 . -281) 52168) ((-611 . -21) T) ((-611 . -25) T) ((-518 . -1082) T) ((-356 . -102) T) ((-317 . -102) T) ((-656 . -634) 52142) ((-380 . -1040) 52126) ((-1038 . -111) 52105) ((-803 . -406) 52089) ((-117 . -25) T) ((-89 . -601) 52071) ((-117 . -21) T) ((-596 . -304) 51866) ((-469 . -304) 51670) ((-1132 . -602) NIL) ((-380 . -111) 51649) ((-374 . -102) T) ((-210 . -601) 51631) ((-1132 . -601) 51613) ((-1149 . -508) 51382) ((-989 . -704) 51332) ((-1108 . -508) 51302) ((-899 . -704) 51254) ((-476 . -604) 50984) ((-346 . -302) T) ((-1168 . -149) 50934) ((-943 . -304) 50872) ((-823 . -102) T) ((-422 . -704) 50856) ((-221 . -815) T) ((-814 . -102) T) ((-812 . -102) T) ((-473 . -149) 50806) ((-1225 . -1224) 50785) ((-1102 . -1199) T) ((-334 . -1023) 50752) ((-1225 . -1219) 50722) ((-1225 . -1222) 50706) ((-1204 . -1203) 50685) ((-80 . -601) 50667) ((-890 . -601) 50649) ((-1204 . -1219) 50626) ((-1102 . -546) T) ((-906 . -836) T) ((-758 . -836) T) ((-481 . -602) 50556) ((-481 . -601) 50498) ((-374 . -279) T) ((-658 . -836) T) ((-1204 . -1201) 50482) ((-1227 . -1094) T) ((-213 . -602) 50412) ((-213 . -601) 50354) ((-1263 . -634) 50328) ((-1046 . -592) 50303) ((-805 . -604) 50287) ((-59 . -149) 50271) ((-510 . -149) 50255) ((-490 . -149) 50239) ((-354 . -1260) 50223) ((-348 . -1260) 50207) ((-340 . -1260) 50191) ((-311 . -358) 50170) ((-308 . -358) T) ((-476 . -1034) 50100) ((-680 . -627) 50082) ((-1261 . -634) 50056) ((-128 . -304) NIL) ((-1227 . -23) T) ((-675 . -483) 50040) ((-64 . -601) 50022) ((-1095 . -782) 49973) ((-1095 . -779) 49924) ((-540 . -483) 49861) ((-656 . -34) T) ((-476 . -229) 49813) ((-290 . -283) 49792) ((-236 . -170) 49771) ((-803 . -1041) T) ((-44 . -634) 49729) ((-1062 . -363) 49680) ((-718 . -285) 49611) ((-514 . -508) 49544) ((-804 . -1040) 49495) ((-1069 . -143) 49474) ((-354 . -363) 49453) ((-348 . -363) 49432) ((-340 . -363) 49411) ((-1069 . -145) 49390) ((-856 . -227) 49367) ((-804 . -111) 49309) ((-769 . -143) 49288) ((-769 . -145) 49267) ((-259 . -934) 49234) ((-246 . -834) 49213) ((-243 . -934) 49158) ((-245 . -834) 49137) ((-767 . -143) 49116) ((-767 . -145) 49095) ((-150 . -634) 49069) ((-569 . -1082) T) ((-448 . -145) 49048) ((-448 . -143) 49027) ((-656 . -713) T) ((-810 . -601) 49009) ((-1233 . -1082) T) ((-1226 . -1082) T) ((-1205 . -1082) T) ((-1189 . -1183) 48975) ((-1189 . -1180) 48941) ((-1156 . -285) 48920) ((-1155 . -285) 48871) ((-1149 . -285) 48822) ((-1108 . -285) 48801) ((-334 . -885) 48782) ((-989 . -170) T) ((-899 . -170) T) ((-585 . -1082) T) ((-584 . -1082) T) ((-680 . -21) T) ((-680 . -25) T) ((-468 . -1222) 48766) ((-468 . -1219) 48736) ((-413 . -281) 48664) ((-311 . -1094) 48513) ((-308 . -1094) T) ((-1189 . -35) 48479) ((-1189 . -95) 48445) ((-84 . -601) 48427) ((-91 . -102) 48405) ((-1269 . -130) T) ((-581 . -604) 48386) ((-571 . -143) T) ((-571 . -145) 48368) ((-512 . -145) 48350) ((-512 . -143) T) ((-311 . -23) 48202) ((-40 . -337) 48176) ((-308 . -23) T) ((-804 . -604) 48090) ((-1140 . -637) 48072) ((-1256 . -1041) T) ((-1140 . -368) 48054) ((-802 . -634) 47902) ((-1078 . -102) T) ((-1072 . -102) T) ((-1056 . -102) T) ((-167 . -227) 47886) ((-1049 . -102) T) ((-1021 . -102) T) ((-1004 . -102) T) ((-582 . -483) 47868) ((-614 . -102) T) ((-236 . -508) 47801) ((-477 . -102) T) ((-1263 . -713) T) ((-1261 . -713) T) ((-214 . -102) T) ((-1160 . -1040) 47684) ((-1160 . -111) 47553) ((-847 . -171) T) ((-804 . -1034) T) ((-667 . -1065) T) ((-662 . -1065) T) ((-509 . -102) T) ((-504 . -102) T) ((-48 . -627) 47513) ((-502 . -102) T) ((-472 . -1065) T) ((-1253 . -1040) 47483) ((-137 . -1065) T) ((-136 . -1065) T) ((-132 . -1065) T) ((-1019 . -38) 47467) ((-804 . -229) T) ((-804 . -239) 47446) ((-1253 . -111) 47411) ((-1233 . -704) 47308) ((-1226 . -704) 47149) ((-540 . -281) 47128) ((-1214 . -227) 47112) ((-1046 . -602) NIL) ((-594 . -93) T) ((-1046 . -601) 47094) ((-689 . -484) 47078) ((-657 . -93) T) ((-178 . -93) T) ((-159 . -93) T) ((-154 . -93) T) ((-152 . -93) T) ((-1205 . -704) 46874) ((-988 . -905) T) ((-689 . -601) 46843) ((-150 . -713) T) ((-1095 . -363) 46822) ((-989 . -508) NIL) ((-246 . -406) 46791) ((-245 . -406) 46760) ((-1009 . -25) T) ((-1009 . -21) T) ((-585 . -704) 46733) ((-584 . -704) 46630) ((-786 . -281) 46588) ((-126 . -102) 46566) ((-820 . -1023) 46462) ((-167 . -815) 46441) ((-314 . -634) 46338) ((-802 . -34) T) ((-701 . -102) T) ((-1160 . -604) 46191) ((-1102 . -1094) T) ((-1011 . -1195) T) ((-374 . -38) 46156) ((-349 . -25) T) ((-349 . -21) T) ((-183 . -102) T) ((-160 . -102) T) ((-155 . -102) T) ((-350 . -1248) 46140) ((-347 . -1248) 46124) ((-339 . -1248) 46108) ((-167 . -344) 46087) ((-554 . -836) T) ((-489 . -836) T) ((-1102 . -23) T) ((-87 . -601) 46069) ((-687 . -302) T) ((-823 . -38) 46039) ((-814 . -38) 46009) ((-1253 . -604) 45951) ((-1227 . -130) T) ((-1132 . -283) 45930) ((-949 . -780) 45883) ((-949 . -781) 45836) ((-802 . -778) 45815) ((-116 . -302) T) ((-91 . -304) 45753) ((-661 . -34) T) ((-540 . -592) 45732) ((-48 . -25) T) ((-48 . -21) T) ((-802 . -781) 45683) ((-802 . -780) 45662) ((-687 . -1007) T) ((-639 . -1040) 45646) ((-949 . -713) 45545) ((-802 . -713) 45455) ((-949 . -467) 45408) ((-476 . -782) 45359) ((-476 . -779) 45310) ((-895 . -1248) 45297) ((-1160 . -1034) T) ((-639 . -111) 45276) ((-1160 . -321) 45253) ((-1181 . -102) 45231) ((-1083 . -601) 45213) ((-687 . -539) T) ((-803 . -1082) T) ((-1117 . -484) 45194) ((-1253 . -1034) T) ((-408 . -1082) T) ((-1117 . -601) 45160) ((-246 . -1041) 45090) ((-245 . -1041) 45020) ((-284 . -634) 45007) ((-582 . -281) 44982) ((-675 . -673) 44940) ((-948 . -601) 44922) ((-857 . -102) T) ((-722 . -601) 44904) ((-702 . -601) 44886) ((-1233 . -170) 44837) ((-1226 . -170) 44768) ((-1205 . -170) 44699) ((-685 . -836) T) ((-989 . -285) T) ((-447 . -601) 44681) ((-615 . -713) T) ((-60 . -1082) 44659) ((-241 . -149) 44643) ((-899 . -285) T) ((-1009 . -997) T) ((-615 . -467) T) ((-699 . -1199) 44622) ((-639 . -604) 44540) ((-585 . -170) 44519) ((-584 . -170) 44470) ((-1241 . -836) 44449) ((-699 . -546) 44360) ((-402 . -905) T) ((-402 . -807) 44339) ((-314 . -781) T) ((-955 . -604) 44320) ((-314 . -713) T) ((-413 . -601) 44302) ((-413 . -602) 44209) ((-631 . -1131) 44193) ((-110 . -637) 44175) ((-172 . -302) T) ((-126 . -304) 44113) ((-110 . -368) 44095) ((-393 . -1195) T) ((-311 . -130) 43966) ((-308 . -130) T) ((-69 . -390) T) ((-110 . -123) T) ((-514 . -483) 43950) ((-640 . -1094) T) ((-582 . -19) 43932) ((-61 . -435) T) ((-61 . -390) T) ((-811 . -1082) T) ((-582 . -592) 43907) ((-471 . -1023) 43867) ((-639 . -1034) T) ((-640 . -23) T) ((-1256 . -1082) T) ((-31 . -102) T) ((-803 . -704) 43716) ((-567 . -846) T) ((-117 . -836) NIL) ((-1154 . -406) 43700) ((-1107 . -406) 43684) ((-840 . -406) 43668) ((-858 . -102) 43619) ((-1225 . -102) T) ((-1205 . -508) 43388) ((-1204 . -102) T) ((-1181 . -304) 43326) ((-519 . -93) T) ((-1156 . -281) 43311) ((-307 . -601) 43293) ((-1155 . -281) 43278) ((-1084 . -1082) T) ((-1062 . -634) 43188) ((-675 . -601) 43120) ((-284 . -713) T) ((-108 . -894) NIL) ((-675 . -602) 43081) ((-589 . -601) 43063) ((-567 . -601) 43045) ((-540 . -602) NIL) ((-540 . -601) 43027) ((-523 . -601) 43009) ((-1149 . -281) 42857) ((-481 . -1040) 42807) ((-698 . -446) T) ((-505 . -503) 42786) ((-501 . -503) 42765) ((-213 . -1040) 42715) ((-354 . -634) 42667) ((-348 . -634) 42619) ((-221 . -834) T) ((-340 . -634) 42571) ((-590 . -102) 42521) ((-476 . -363) 42500) ((-108 . -634) 42450) ((-481 . -111) 42384) ((-236 . -483) 42368) ((-338 . -145) 42350) ((-338 . -143) T) ((-167 . -365) 42321) ((-928 . -1239) 42305) ((-213 . -111) 42239) ((-857 . -304) 42204) ((-928 . -1082) 42154) ((-786 . -602) 42115) ((-786 . -601) 42097) ((-705 . -102) T) ((-326 . -1082) T) ((-210 . -604) 42074) ((-1102 . -130) T) ((-701 . -38) 42044) ((-311 . -487) 42023) ((-494 . -1195) T) ((-1225 . -279) 41989) ((-1204 . -279) 41955) ((-322 . -149) 41939) ((-1046 . -283) 41914) ((-1256 . -704) 41884) ((-1141 . -34) T) ((-1265 . -1023) 41861) ((-462 . -601) 41843) ((-478 . -34) T) ((-376 . -1023) 41827) ((-1154 . -1041) T) ((-1107 . -1041) T) ((-840 . -1041) T) ((-1045 . -834) T) ((-481 . -604) 41777) ((-213 . -604) 41727) ((-803 . -170) 41638) ((-514 . -281) 41615) ((-1233 . -285) 41594) ((-1176 . -359) 41568) ((-1070 . -261) 41552) ((-657 . -484) 41533) ((-657 . -601) 41499) ((-594 . -484) 41480) ((-117 . -977) 41457) ((-594 . -601) 41407) ((-468 . -102) T) ((-178 . -484) 41388) ((-178 . -601) 41354) ((-159 . -484) 41335) ((-154 . -484) 41316) ((-152 . -484) 41297) ((-159 . -601) 41263) ((-154 . -601) 41229) ((-360 . -1082) T) ((-246 . -1082) T) ((-245 . -1082) T) ((-152 . -601) 41195) ((-1226 . -285) 41146) ((-1205 . -285) 41097) ((-857 . -1133) 41075) ((-1156 . -987) 41041) ((-596 . -359) 40981) ((-1155 . -987) 40947) ((-596 . -225) 40894) ((-582 . -601) 40876) ((-582 . -602) NIL) ((-680 . -836) T) ((-469 . -225) 40826) ((-481 . -1034) T) ((-1149 . -987) 40792) ((-88 . -434) T) ((-88 . -390) T) ((-213 . -1034) T) ((-1108 . -987) 40758) ((-1062 . -713) T) ((-699 . -1094) T) ((-585 . -285) 40737) ((-584 . -285) 40716) ((-481 . -239) T) ((-481 . -229) T) ((-213 . -239) T) ((-213 . -229) T) ((-1147 . -601) 40698) ((-857 . -38) 40650) ((-354 . -713) T) ((-348 . -713) T) ((-340 . -713) T) ((-108 . -781) T) ((-108 . -778) T) ((-699 . -23) T) ((-108 . -713) T) ((-514 . -1229) 40634) ((-1269 . -25) T) ((-468 . -279) 40600) ((-1269 . -21) T) ((-1204 . -304) 40539) ((-1158 . -102) T) ((-40 . -143) 40511) ((-40 . -145) 40483) ((-514 . -592) 40460) ((-1095 . -634) 40308) ((-590 . -304) 40246) ((-45 . -637) 40196) ((-45 . -652) 40146) ((-45 . -368) 40096) ((-1140 . -34) T) ((-856 . -834) NIL) ((-640 . -130) T) ((-479 . -601) 40078) ((-236 . -281) 40055) ((-182 . -1082) T) ((-633 . -34) T) ((-620 . -34) T) ((-1069 . -446) 40006) ((-803 . -508) 39880) ((-769 . -446) 39811) ((-767 . -446) 39762) ((-448 . -446) 39713) ((-937 . -406) 39697) ((-718 . -601) 39679) ((-246 . -704) 39621) ((-245 . -704) 39563) ((-718 . -602) 39424) ((-475 . -406) 39408) ((-334 . -297) T) ((-518 . -93) T) ((-346 . -905) T) ((-985 . -102) 39386) ((-1009 . -836) T) ((-60 . -508) 39319) ((-1204 . -1133) 39271) ((-989 . -281) NIL) ((-221 . -1041) T) ((-374 . -815) T) ((-1095 . -34) T) ((-571 . -446) T) ((-512 . -446) T) ((-1208 . -1075) 39255) ((-1208 . -1082) 39233) ((-236 . -592) 39210) ((-1208 . -1077) 39167) ((-1156 . -601) 39149) ((-1155 . -601) 39131) ((-1149 . -601) 39113) ((-1149 . -602) NIL) ((-1108 . -601) 39095) ((-857 . -395) 39079) ((-530 . -102) T) ((-1225 . -38) 38920) ((-1204 . -38) 38734) ((-855 . -145) T) ((-689 . -604) 38718) ((-571 . -397) T) ((-48 . -836) T) ((-512 . -397) T) ((-1237 . -102) T) ((-1227 . -21) T) ((-1227 . -25) T) ((-1095 . -778) 38697) ((-1095 . -781) 38648) ((-1095 . -780) 38627) ((-978 . -1082) T) ((-1012 . -34) T) ((-848 . -1082) T) ((-1095 . -713) 38537) ((-650 . -102) T) ((-632 . -102) T) ((-540 . -283) 38516) ((-1168 . -102) T) ((-470 . -34) T) ((-457 . -34) T) ((-350 . -102) T) ((-347 . -102) T) ((-339 . -102) T) ((-259 . -102) T) ((-243 . -102) T) ((-471 . -302) T) ((-1045 . -1041) T) ((-937 . -1041) T) ((-311 . -627) 38422) ((-308 . -627) 38383) ((-475 . -1041) T) ((-473 . -102) T) ((-431 . -601) 38365) ((-1154 . -1082) T) ((-1107 . -1082) T) ((-840 . -1082) T) ((-1123 . -102) T) ((-803 . -285) 38296) ((-948 . -1040) 38179) ((-471 . -1007) T) ((-722 . -1040) 38149) ((-447 . -1040) 38119) ((-1129 . -1103) 38103) ((-1084 . -508) 38036) ((-948 . -111) 37905) ((-895 . -102) T) ((-722 . -111) 37870) ((-519 . -484) 37851) ((-519 . -601) 37817) ((-59 . -102) 37767) ((-514 . -602) 37728) ((-514 . -601) 37640) ((-513 . -102) 37618) ((-510 . -102) 37568) ((-491 . -102) 37546) ((-490 . -102) 37496) ((-447 . -111) 37459) ((-246 . -170) 37438) ((-245 . -170) 37417) ((-413 . -1040) 37391) ((-1189 . -958) 37353) ((-984 . -1094) T) ((-1117 . -604) 37334) ((-928 . -508) 37267) ((-481 . -782) T) ((-468 . -38) 37108) ((-413 . -111) 37075) ((-481 . -779) T) ((-985 . -304) 37013) ((-213 . -782) T) ((-213 . -779) T) ((-984 . -23) T) ((-699 . -130) T) ((-1204 . -395) 36983) ((-311 . -25) 36835) ((-167 . -406) 36819) ((-311 . -21) 36690) ((-308 . -25) T) ((-308 . -21) T) ((-850 . -363) T) ((-948 . -604) 36543) ((-110 . -34) T) ((-722 . -604) 36499) ((-702 . -604) 36481) ((-476 . -634) 36329) ((-856 . -1041) T) ((-582 . -283) 36304) ((-570 . -145) T) ((-554 . -145) T) ((-489 . -145) T) ((-1154 . -704) 36133) ((-1107 . -704) 35982) ((-1102 . -627) 35964) ((-840 . -704) 35934) ((-656 . -1195) T) ((-1 . -102) T) ((-413 . -604) 35842) ((-236 . -601) 35573) ((-1097 . -1082) T) ((-1214 . -406) 35557) ((-1168 . -304) 35361) ((-948 . -1034) T) ((-722 . -1034) T) ((-702 . -1034) T) ((-631 . -1082) 35311) ((-1038 . -634) 35295) ((-841 . -406) 35279) ((-505 . -102) T) ((-501 . -102) T) ((-243 . -304) 35266) ((-259 . -304) 35253) ((-948 . -321) 35232) ((-380 . -634) 35216) ((-473 . -304) 35020) ((-246 . -508) 34953) ((-656 . -1023) 34849) ((-245 . -508) 34782) ((-1123 . -304) 34708) ((-806 . -1082) T) ((-786 . -1040) 34692) ((-1233 . -281) 34677) ((-1226 . -281) 34662) ((-1205 . -281) 34510) ((-381 . -1082) T) ((-319 . -1082) T) ((-413 . -1034) T) ((-167 . -1041) T) ((-59 . -304) 34448) ((-786 . -111) 34427) ((-584 . -281) 34412) ((-513 . -304) 34350) ((-510 . -304) 34288) ((-491 . -304) 34226) ((-490 . -304) 34164) ((-413 . -229) 34143) ((-476 . -34) T) ((-989 . -602) 34073) ((-221 . -1082) T) ((-989 . -601) 34033) ((-956 . -601) 33993) ((-956 . -602) 33968) ((-899 . -601) 33950) ((-685 . -145) T) ((-687 . -905) T) ((-687 . -807) T) ((-422 . -601) 33932) ((-1102 . -21) T) ((-1102 . -25) T) ((-656 . -372) 33916) ((-116 . -905) T) ((-857 . -227) 33900) ((-78 . -1195) T) ((-126 . -125) 33884) ((-1038 . -34) T) ((-1263 . -1023) 33858) ((-1261 . -1023) 33815) ((-1214 . -1041) T) ((-841 . -1041) T) ((-476 . -778) 33794) ((-350 . -1133) 33773) ((-347 . -1133) 33752) ((-339 . -1133) 33731) ((-476 . -781) 33682) ((-476 . -780) 33661) ((-223 . -34) T) ((-476 . -713) 33571) ((-786 . -604) 33419) ((-60 . -483) 33403) ((-561 . -1041) T) ((-1154 . -170) 33294) ((-1107 . -170) 33205) ((-1045 . -1082) T) ((-1069 . -934) 33150) ((-937 . -1082) T) ((-804 . -634) 33101) ((-769 . -934) 33070) ((-700 . -1082) T) ((-767 . -934) 33037) ((-510 . -277) 33021) ((-656 . -885) 32980) ((-475 . -1082) T) ((-448 . -934) 32947) ((-79 . -1195) T) ((-350 . -38) 32912) ((-347 . -38) 32877) ((-339 . -38) 32842) ((-259 . -38) 32691) ((-243 . -38) 32540) ((-895 . -1133) T) ((-518 . -484) 32521) ((-611 . -145) 32500) ((-611 . -143) 32479) ((-518 . -601) 32445) ((-117 . -145) T) ((-117 . -143) NIL) ((-409 . -713) T) ((-786 . -1034) T) ((-338 . -446) T) ((-1233 . -987) 32411) ((-1226 . -987) 32377) ((-1205 . -987) 32343) ((-895 . -38) 32308) ((-221 . -704) 32273) ((-314 . -47) 32243) ((-40 . -404) 32215) ((-138 . -601) 32197) ((-984 . -130) T) ((-802 . -1195) T) ((-172 . -905) T) ((-594 . -604) 32178) ((-338 . -397) T) ((-657 . -604) 32159) ((-178 . -604) 32140) ((-152 . -604) 32121) ((-159 . -604) 32102) ((-154 . -604) 32083) ((-514 . -283) 32060) ((-802 . -1023) 31887) ((-45 . -34) T) ((-667 . -102) T) ((-662 . -102) T) ((-648 . -102) T) ((-640 . -21) T) ((-640 . -25) T) ((-1204 . -227) 31857) ((-1084 . -483) 31841) ((-472 . -102) T) ((-661 . -1195) T) ((-241 . -102) 31791) ((-137 . -102) T) ((-136 . -102) T) ((-132 . -102) T) ((-856 . -1082) T) ((-1160 . -634) 31716) ((-1045 . -704) 31703) ((-718 . -1040) 31546) ((-1154 . -508) 31493) ((-937 . -704) 31342) ((-1107 . -508) 31294) ((-1252 . -1082) T) ((-1251 . -1082) T) ((-475 . -704) 31143) ((-67 . -601) 31125) ((-718 . -111) 30954) ((-928 . -483) 30938) ((-1253 . -634) 30898) ((-804 . -713) T) ((-1156 . -1040) 30781) ((-1155 . -1040) 30616) ((-1149 . -1040) 30406) ((-1108 . -1040) 30289) ((-988 . -1199) T) ((-1076 . -102) 30267) ((-802 . -372) 30236) ((-569 . -601) 30218) ((-988 . -546) T) ((-1156 . -111) 30087) ((-1155 . -111) 29908) ((-1149 . -111) 29677) ((-1108 . -111) 29546) ((-1087 . -1085) 29510) ((-374 . -834) T) ((-1233 . -601) 29492) ((-1226 . -601) 29474) ((-1205 . -601) 29456) ((-1205 . -602) NIL) ((-236 . -283) 29433) ((-40 . -446) T) ((-221 . -170) T) ((-167 . -1082) T) ((-718 . -604) 29218) ((-680 . -145) T) ((-680 . -143) NIL) ((-585 . -601) 29200) ((-584 . -601) 29182) ((-883 . -1082) T) ((-827 . -1082) T) ((-795 . -1082) T) ((-756 . -1082) T) ((-644 . -838) 29166) ((-663 . -1082) T) ((-802 . -885) 29098) ((-40 . -397) NIL) ((-1156 . -604) 28980) ((-1102 . -647) T) ((-856 . -704) 28925) ((-246 . -483) 28909) ((-245 . -483) 28893) ((-1155 . -604) 28636) ((-1149 . -604) 28431) ((-699 . -627) 28379) ((-639 . -634) 28353) ((-1108 . -604) 28235) ((-290 . -34) T) ((-718 . -1034) T) ((-571 . -1248) 28222) ((-512 . -1248) 28199) ((-1214 . -1082) T) ((-1154 . -285) 28110) ((-1107 . -285) 28041) ((-1045 . -170) T) ((-841 . -1082) T) ((-937 . -170) 27952) ((-769 . -1217) 27936) ((-631 . -508) 27869) ((-77 . -601) 27851) ((-718 . -321) 27816) ((-1160 . -713) T) ((-561 . -1082) T) ((-475 . -170) 27727) ((-241 . -304) 27665) ((-1124 . -1094) T) ((-70 . -601) 27647) ((-1253 . -713) T) ((-1156 . -1034) T) ((-1155 . -1034) T) ((-322 . -102) 27597) ((-1149 . -1034) T) ((-1124 . -23) T) ((-1108 . -1034) T) ((-91 . -1103) 27581) ((-851 . -1094) T) ((-1156 . -229) 27540) ((-1155 . -239) 27519) ((-1155 . -229) 27471) ((-1149 . -229) 27358) ((-1149 . -239) 27337) ((-314 . -885) 27243) ((-851 . -23) T) ((-167 . -704) 27071) ((-402 . -1199) T) ((-1083 . -363) T) ((-1009 . -145) T) ((-988 . -358) T) ((-855 . -446) T) ((-928 . -281) 27048) ((-311 . -836) T) ((-308 . -836) NIL) ((-859 . -102) T) ((-699 . -25) T) ((-402 . -546) T) ((-699 . -21) T) ((-519 . -604) 27029) ((-349 . -145) 27011) ((-349 . -143) T) ((-1129 . -1082) 26989) ((-447 . -707) T) ((-75 . -601) 26971) ((-114 . -836) T) ((-241 . -277) 26955) ((-236 . -1040) 26852) ((-81 . -601) 26834) ((-722 . -363) 26787) ((-1158 . -815) T) ((-724 . -231) 26771) ((-1141 . -1195) T) ((-139 . -231) 26753) ((-236 . -111) 26643) ((-1214 . -704) 26472) ((-48 . -145) T) ((-856 . -170) T) ((-841 . -704) 26442) ((-478 . -1195) T) ((-937 . -508) 26389) ((-639 . -713) T) ((-561 . -704) 26376) ((-1019 . -1041) T) ((-475 . -508) 26319) ((-928 . -19) 26303) ((-928 . -592) 26280) ((-803 . -602) NIL) ((-803 . -601) 26262) ((-989 . -1040) 26212) ((-408 . -601) 26194) ((-246 . -281) 26171) ((-245 . -281) 26148) ((-481 . -894) NIL) ((-311 . -29) 26118) ((-108 . -1195) T) ((-988 . -1094) T) ((-213 . -894) NIL) ((-899 . -1040) 26070) ((-1062 . -1023) 25966) ((-989 . -111) 25900) ((-988 . -23) T) ((-724 . -681) 25884) ((-259 . -227) 25868) ((-422 . -1040) 25852) ((-374 . -1041) T) ((-236 . -604) 25582) ((-899 . -111) 25520) ((-680 . -1183) NIL) ((-481 . -634) 25470) ((-108 . -869) 25452) ((-108 . -871) 25434) ((-680 . -1180) NIL) ((-213 . -634) 25384) ((-354 . -1023) 25368) ((-348 . -1023) 25352) ((-322 . -304) 25290) ((-340 . -1023) 25274) ((-221 . -285) T) ((-422 . -111) 25253) ((-60 . -601) 25185) ((-167 . -170) T) ((-1102 . -836) T) ((-108 . -1023) 25145) ((-877 . -1082) T) ((-823 . -1041) T) ((-814 . -1041) T) ((-680 . -35) NIL) ((-680 . -95) NIL) ((-308 . -977) 25106) ((-181 . -102) T) ((-570 . -446) T) ((-554 . -446) T) ((-489 . -446) T) ((-402 . -358) T) ((-236 . -1034) 25036) ((-1132 . -34) T) ((-471 . -905) T) ((-984 . -627) 24984) ((-246 . -592) 24961) ((-245 . -592) 24938) ((-1062 . -372) 24922) ((-856 . -508) 24830) ((-236 . -229) 24782) ((-1140 . -1195) T) ((-989 . -604) 24732) ((-899 . -604) 24669) ((-811 . -601) 24651) ((-1264 . -1094) T) ((-1256 . -601) 24633) ((-1214 . -170) 24524) ((-422 . -604) 24493) ((-108 . -372) 24475) ((-108 . -333) 24457) ((-1045 . -285) T) ((-937 . -285) 24388) ((-786 . -363) 24367) ((-633 . -1195) T) ((-620 . -1195) T) ((-475 . -285) 24298) ((-561 . -170) T) ((-322 . -277) 24282) ((-1264 . -23) T) ((-1189 . -102) T) ((-1176 . -1082) T) ((-1070 . -1082) T) ((-1058 . -1082) T) ((-83 . -601) 24264) ((-698 . -102) T) ((-350 . -344) 24243) ((-596 . -1082) T) ((-347 . -344) 24222) ((-339 . -344) 24201) ((-469 . -1082) T) ((-1168 . -225) 24151) ((-259 . -248) 24113) ((-1124 . -130) T) ((-596 . -598) 24089) ((-1062 . -885) 24022) ((-989 . -1034) T) ((-899 . -1034) T) ((-469 . -598) 24001) ((-1149 . -779) NIL) ((-1149 . -782) NIL) ((-1084 . -602) 23962) ((-473 . -225) 23912) ((-1084 . -601) 23894) ((-989 . -239) T) ((-989 . -229) T) ((-422 . -1034) T) ((-943 . -1082) 23844) ((-899 . -239) T) ((-851 . -130) T) ((-685 . -446) T) ((-829 . -1094) 23823) ((-108 . -885) NIL) ((-1189 . -279) 23789) ((-857 . -834) 23768) ((-1095 . -1195) T) ((-890 . -713) T) ((-167 . -508) 23680) ((-984 . -25) T) ((-890 . -467) T) ((-402 . -1094) T) ((-481 . -781) T) ((-481 . -778) T) ((-895 . -344) T) ((-481 . -713) T) ((-213 . -781) T) ((-213 . -778) T) ((-984 . -21) T) ((-213 . -713) T) ((-829 . -23) 23632) ((-518 . -604) 23613) ((-314 . -302) 23592) ((-1020 . -231) 23538) ((-402 . -23) T) ((-928 . -602) 23499) ((-928 . -601) 23411) ((-631 . -483) 23395) ((-45 . -995) 23345) ((-605 . -952) T) ((-485 . -102) T) ((-326 . -601) 23327) ((-1095 . -1023) 23154) ((-582 . -637) 23136) ((-128 . -1082) T) ((-582 . -368) 23118) ((-338 . -1248) 23095) ((-1012 . -1195) T) ((-856 . -285) T) ((-1214 . -508) 23042) ((-470 . -1195) T) ((-457 . -1195) T) ((-575 . -102) T) ((-1154 . -281) 22969) ((-611 . -446) 22948) ((-985 . -980) 22932) ((-1256 . -377) 22904) ((-511 . -1082) T) ((-117 . -446) T) ((-1175 . -102) T) ((-1074 . -1082) 22882) ((-1019 . -1082) T) ((-1097 . -93) T) ((-878 . -836) T) ((-346 . -1199) T) ((-1233 . -1040) 22765) ((-1095 . -372) 22734) ((-1226 . -1040) 22569) ((-1205 . -1040) 22359) ((-1233 . -111) 22228) ((-1226 . -111) 22049) ((-1205 . -111) 21818) ((-1189 . -304) 21805) ((-346 . -546) T) ((-360 . -601) 21787) ((-284 . -302) T) ((-585 . -1040) 21760) ((-584 . -1040) 21643) ((-356 . -1082) T) ((-317 . -1082) T) ((-246 . -601) 21604) ((-245 . -601) 21565) ((-988 . -130) T) ((-623 . -23) T) ((-680 . -404) 21532) ((-595 . -23) T) ((-644 . -102) T) ((-585 . -111) 21503) ((-584 . -111) 21372) ((-374 . -1082) T) ((-331 . -102) T) ((-167 . -285) 21283) ((-1204 . -834) 21236) ((-701 . -1041) T) ((-1129 . -508) 21169) ((-1095 . -885) 21101) ((-823 . -1082) T) ((-814 . -1082) T) ((-812 . -1082) T) ((-97 . -102) T) ((-142 . -836) T) ((-600 . -869) 21085) ((-110 . -1195) T) ((-1069 . -102) T) ((-1046 . -34) T) ((-769 . -102) T) ((-767 . -102) T) ((-1233 . -604) 20967) ((-1226 . -604) 20710) ((-455 . -102) T) ((-448 . -102) T) ((-1205 . -604) 20505) ((-236 . -782) 20456) ((-236 . -779) 20407) ((-635 . -102) T) ((-585 . -604) 20365) ((-584 . -604) 20247) ((-1214 . -285) 20158) ((-650 . -622) 20142) ((-182 . -601) 20124) ((-631 . -281) 20101) ((-1019 . -704) 20085) ((-561 . -285) T) ((-948 . -634) 20010) ((-1264 . -130) T) ((-722 . -634) 19970) ((-702 . -634) 19957) ((-270 . -102) T) ((-447 . -634) 19887) ((-50 . -102) T) ((-571 . -102) T) ((-512 . -102) T) ((-1233 . -1034) T) ((-1226 . -1034) T) ((-1205 . -1034) T) ((-1233 . -229) 19846) ((-317 . -704) 19828) ((-1226 . -239) 19807) ((-1226 . -229) 19759) ((-1205 . -229) 19646) ((-1205 . -239) 19625) ((-1189 . -38) 19522) ((-989 . -782) T) ((-585 . -1034) T) ((-584 . -1034) T) ((-989 . -779) T) ((-956 . -782) T) ((-956 . -779) T) ((-857 . -1041) T) ((-855 . -854) 19506) ((-109 . -601) 19488) ((-680 . -446) T) ((-374 . -704) 19453) ((-413 . -634) 19427) ((-699 . -836) 19406) ((-698 . -38) 19371) ((-584 . -229) 19330) ((-40 . -711) 19302) ((-346 . -324) 19279) ((-346 . -358) T) ((-1062 . -302) 19230) ((-289 . -1094) 19111) ((-1088 . -1195) T) ((-169 . -102) T) ((-1208 . -601) 19078) ((-829 . -130) 19030) ((-631 . -1229) 19014) ((-823 . -704) 18984) ((-814 . -704) 18954) ((-476 . -1195) T) ((-354 . -302) T) ((-348 . -302) T) ((-340 . -302) T) ((-631 . -592) 18931) ((-402 . -130) T) ((-514 . -652) 18915) ((-108 . -302) T) ((-289 . -23) 18798) ((-514 . -637) 18782) ((-680 . -397) NIL) ((-514 . -368) 18766) ((-286 . -601) 18748) ((-91 . -1082) 18726) ((-108 . -1007) T) ((-554 . -141) T) ((-1241 . -149) 18710) ((-476 . -1023) 18537) ((-1227 . -143) 18498) ((-1227 . -145) 18459) ((-1038 . -1195) T) ((-978 . -601) 18441) ((-848 . -601) 18423) ((-803 . -1040) 18266) ((-1252 . -93) T) ((-1251 . -93) T) ((-1154 . -602) NIL) ((-1078 . -1082) T) ((-1072 . -1082) T) ((-1069 . -304) 18253) ((-1056 . -1082) T) ((-223 . -1195) T) ((-1049 . -1082) T) ((-1021 . -1082) T) ((-1004 . -1082) T) ((-769 . -304) 18240) ((-767 . -304) 18227) ((-1154 . -601) 18209) ((-803 . -111) 18038) ((-1107 . -601) 18020) ((-614 . -1082) T) ((-567 . -171) T) ((-523 . -171) T) ((-448 . -304) 18007) ((-477 . -1082) T) ((-1107 . -602) 17755) ((-1019 . -170) T) ((-928 . -283) 17732) ((-214 . -1082) T) ((-840 . -601) 17714) ((-596 . -508) 17497) ((-81 . -604) 17438) ((-805 . -1023) 17422) ((-469 . -508) 17214) ((-948 . -713) T) ((-722 . -713) T) ((-702 . -713) T) ((-346 . -1094) T) ((-1161 . -601) 17196) ((-219 . -102) T) ((-476 . -372) 17165) ((-509 . -1082) T) ((-504 . -1082) T) ((-502 . -1082) T) ((-786 . -634) 17139) ((-1009 . -446) T) ((-943 . -508) 17072) ((-346 . -23) T) ((-623 . -130) T) ((-595 . -130) T) ((-349 . -446) T) ((-236 . -363) 17051) ((-374 . -170) T) ((-1225 . -1041) T) ((-1204 . -1041) T) ((-221 . -987) T) ((-803 . -604) 16788) ((-685 . -382) T) ((-413 . -713) T) ((-687 . -1199) T) ((-1124 . -627) 16736) ((-570 . -854) 16720) ((-1141 . -1171) 16696) ((-687 . -546) T) ((-126 . -1082) 16674) ((-1256 . -1040) 16658) ((-701 . -1082) T) ((-476 . -885) 16590) ((-183 . -1082) T) ((-644 . -38) 16560) ((-349 . -397) T) ((-311 . -145) 16539) ((-311 . -143) 16518) ((-128 . -508) NIL) ((-116 . -546) T) ((-308 . -145) 16474) ((-308 . -143) 16430) ((-48 . -446) T) ((-160 . -1082) T) ((-155 . -1082) T) ((-1141 . -107) 16377) ((-769 . -1133) 16355) ((-675 . -34) T) ((-1256 . -111) 16334) ((-540 . -34) T) ((-478 . -107) 16318) ((-246 . -283) 16295) ((-245 . -283) 16272) ((-856 . -281) 16223) ((-45 . -1195) T) ((-803 . -1034) T) ((-1160 . -47) 16200) ((-803 . -321) 16162) ((-1069 . -38) 16011) ((-803 . -229) 15990) ((-769 . -38) 15819) ((-767 . -38) 15668) ((-1097 . -484) 15649) ((-448 . -38) 15498) ((-1097 . -601) 15464) ((-1100 . -102) T) ((-631 . -602) 15425) ((-631 . -601) 15337) ((-571 . -1133) T) ((-512 . -1133) T) ((-1129 . -483) 15321) ((-1181 . -1082) 15299) ((-1124 . -25) T) ((-1124 . -21) T) ((-1256 . -604) 15248) ((-468 . -1041) T) ((-1205 . -779) NIL) ((-1205 . -782) NIL) ((-984 . -836) 15227) ((-806 . -601) 15209) ((-851 . -21) T) ((-851 . -25) T) ((-786 . -713) T) ((-172 . -1199) T) ((-571 . -38) 15174) ((-512 . -38) 15139) ((-381 . -601) 15121) ((-319 . -601) 15103) ((-167 . -281) 15061) ((-63 . -1195) T) ((-112 . -102) T) ((-857 . -1082) T) ((-172 . -546) T) ((-701 . -704) 15031) ((-289 . -130) 14914) ((-221 . -601) 14896) ((-221 . -602) 14826) ((-988 . -627) 14765) ((-1256 . -1034) T) ((-1102 . -145) T) ((-620 . -1171) 14740) ((-718 . -894) 14719) ((-582 . -34) T) ((-633 . -107) 14703) ((-620 . -107) 14649) ((-1214 . -281) 14576) ((-718 . -634) 14501) ((-290 . -1195) T) ((-1160 . -1023) 14397) ((-928 . -606) 14374) ((-567 . -566) T) ((-567 . -521) T) ((-523 . -521) T) ((-1149 . -894) NIL) ((-1045 . -602) 14289) ((-1045 . -601) 14271) ((-937 . -601) 14253) ((-700 . -484) 14203) ((-338 . -102) T) ((-246 . -1040) 14100) ((-245 . -1040) 13997) ((-389 . -102) T) ((-31 . -1082) T) ((-937 . -602) 13858) ((-700 . -601) 13793) ((-1254 . -1188) 13762) ((-475 . -601) 13744) ((-475 . -602) 13605) ((-243 . -406) 13589) ((-259 . -406) 13573) ((-246 . -111) 13463) ((-245 . -111) 13353) ((-1156 . -634) 13278) ((-1155 . -634) 13175) ((-1149 . -634) 13027) ((-1108 . -634) 12952) ((-346 . -130) T) ((-82 . -435) T) ((-82 . -390) T) ((-988 . -25) T) ((-988 . -21) T) ((-858 . -1082) 12903) ((-857 . -704) 12855) ((-374 . -285) T) ((-167 . -987) 12807) ((-680 . -382) T) ((-984 . -982) 12791) ((-687 . -1094) T) ((-680 . -164) 12773) ((-1225 . -1082) T) ((-1204 . -1082) T) ((-311 . -1180) 12752) ((-311 . -1183) 12731) ((-1146 . -102) T) ((-311 . -944) 12710) ((-133 . -1094) T) ((-116 . -1094) T) ((-590 . -1239) 12694) ((-687 . -23) T) ((-590 . -1082) 12644) ((-311 . -95) 12623) ((-91 . -508) 12556) ((-172 . -358) T) ((-246 . -604) 12286) ((-245 . -604) 12016) ((-311 . -35) 11995) ((-596 . -483) 11929) ((-133 . -23) T) ((-116 . -23) T) ((-951 . -102) T) ((-705 . -1082) T) ((-469 . -483) 11866) ((-402 . -627) 11814) ((-639 . -1023) 11710) ((-943 . -483) 11694) ((-350 . -1041) T) ((-347 . -1041) T) ((-339 . -1041) T) ((-259 . -1041) T) ((-243 . -1041) T) ((-856 . -602) NIL) ((-856 . -601) 11676) ((-1252 . -484) 11657) ((-1251 . -484) 11638) ((-1264 . -21) T) ((-1252 . -601) 11604) ((-1251 . -601) 11570) ((-561 . -987) T) ((-718 . -713) T) ((-1264 . -25) T) ((-246 . -1034) 11500) ((-245 . -1034) 11430) ((-72 . -1195) T) ((-246 . -229) 11382) ((-245 . -229) 11334) ((-40 . -102) T) ((-895 . -1041) T) ((-128 . -483) 11316) ((-1163 . -102) T) ((-1156 . -713) T) ((-1155 . -713) T) ((-1149 . -713) T) ((-1149 . -778) NIL) ((-1149 . -781) NIL) ((-939 . -102) T) ((-906 . -102) T) ((-1108 . -713) T) ((-758 . -102) T) ((-658 . -102) T) ((-468 . -1082) T) ((-334 . -1094) T) ((-172 . -1094) T) ((-314 . -905) 11295) ((-1225 . -704) 11136) ((-857 . -170) T) ((-1204 . -704) 10950) ((-829 . -21) 10902) ((-829 . -25) 10854) ((-241 . -1131) 10838) ((-126 . -508) 10771) ((-402 . -25) T) ((-402 . -21) T) ((-334 . -23) T) ((-167 . -602) 10537) ((-167 . -601) 10519) ((-172 . -23) T) ((-631 . -283) 10496) ((-514 . -34) T) ((-883 . -601) 10478) ((-89 . -1195) T) ((-827 . -601) 10460) ((-795 . -601) 10442) ((-756 . -601) 10424) ((-663 . -601) 10406) ((-236 . -634) 10254) ((-1158 . -1082) T) ((-1154 . -1040) 10077) ((-1132 . -1195) T) ((-1107 . -1040) 9920) ((-840 . -1040) 9904) ((-1208 . -606) 9888) ((-1154 . -111) 9697) ((-1107 . -111) 9526) ((-840 . -111) 9505) ((-1214 . -602) NIL) ((-1214 . -601) 9487) ((-338 . -1133) T) ((-841 . -601) 9469) ((-1058 . -281) 9448) ((-80 . -1195) T) ((-989 . -894) NIL) ((-596 . -281) 9424) ((-1181 . -508) 9357) ((-481 . -1195) T) ((-561 . -601) 9339) ((-469 . -281) 9318) ((-511 . -93) T) ((-213 . -1195) T) ((-1069 . -227) 9302) ((-284 . -905) T) ((-804 . -302) 9281) ((-855 . -102) T) ((-769 . -227) 9265) ((-989 . -634) 9215) ((-943 . -281) 9192) ((-899 . -634) 9144) ((-623 . -21) T) ((-623 . -25) T) ((-595 . -21) T) ((-338 . -38) 9109) ((-680 . -711) 9076) ((-481 . -869) 9058) ((-481 . -871) 9040) ((-468 . -704) 8881) ((-213 . -869) 8863) ((-64 . -1195) T) ((-213 . -871) 8845) ((-595 . -25) T) ((-422 . -634) 8819) ((-1154 . -604) 8588) ((-481 . -1023) 8548) ((-857 . -508) 8460) ((-1107 . -604) 8252) ((-840 . -604) 8170) ((-213 . -1023) 8130) ((-236 . -34) T) ((-985 . -1082) 8108) ((-1225 . -170) 8039) ((-1204 . -170) 7970) ((-699 . -143) 7949) ((-699 . -145) 7928) ((-687 . -130) T) ((-135 . -459) 7905) ((-1129 . -601) 7837) ((-644 . -642) 7821) ((-128 . -281) 7796) ((-116 . -130) T) ((-471 . -1199) T) ((-596 . -592) 7772) ((-469 . -592) 7751) ((-331 . -330) 7720) ((-530 . -1082) T) ((-471 . -546) T) ((-1154 . -1034) T) ((-1107 . -1034) T) ((-840 . -1034) T) ((-236 . -778) 7699) ((-236 . -781) 7650) ((-236 . -780) 7629) ((-1154 . -321) 7606) ((-236 . -713) 7516) ((-943 . -19) 7500) ((-481 . -372) 7482) ((-481 . -333) 7464) ((-1107 . -321) 7436) ((-349 . -1248) 7413) ((-213 . -372) 7395) ((-213 . -333) 7377) ((-943 . -592) 7354) ((-1154 . -229) T) ((-650 . -1082) T) ((-632 . -1082) T) ((-1237 . -1082) T) ((-1168 . -1082) T) ((-1069 . -248) 7291) ((-350 . -1082) T) ((-347 . -1082) T) ((-339 . -1082) T) ((-259 . -1082) T) ((-243 . -1082) T) ((-84 . -1195) T) ((-127 . -102) 7269) ((-121 . -102) 7247) ((-1168 . -598) 7226) ((-473 . -1082) T) ((-1123 . -1082) T) ((-473 . -598) 7205) ((-246 . -782) 7156) ((-246 . -779) 7107) ((-245 . -782) 7058) ((-40 . -1133) NIL) ((-245 . -779) 7009) ((-1097 . -604) 6990) ((-128 . -19) 6972) ((-1062 . -905) 6923) ((-989 . -781) T) ((-989 . -778) T) ((-989 . -713) T) ((-956 . -781) T) ((-128 . -592) 6898) ((-899 . -713) T) ((-91 . -483) 6882) ((-481 . -885) NIL) ((-895 . -1082) T) ((-221 . -1040) 6847) ((-857 . -285) T) ((-213 . -885) NIL) ((-820 . -1094) 6826) ((-59 . -1082) 6776) ((-513 . -1082) 6754) ((-510 . -1082) 6704) ((-491 . -1082) 6682) ((-490 . -1082) 6632) ((-570 . -102) T) ((-554 . -102) T) ((-489 . -102) T) ((-468 . -170) 6563) ((-354 . -905) T) ((-348 . -905) T) ((-340 . -905) T) ((-221 . -111) 6519) ((-820 . -23) 6471) ((-422 . -713) T) ((-108 . -905) T) ((-40 . -38) 6416) ((-108 . -807) T) ((-571 . -344) T) ((-512 . -344) T) ((-1204 . -508) 6276) ((-311 . -446) 6255) ((-308 . -446) T) ((-877 . -601) 6237) ((-823 . -281) 6216) ((-334 . -130) T) ((-172 . -130) T) ((-289 . -25) 6080) ((-289 . -21) 5963) ((-45 . -1171) 5942) ((-66 . -601) 5924) ((-55 . -102) T) ((-590 . -508) 5857) ((-45 . -107) 5807) ((-806 . -604) 5791) ((-1084 . -420) 5775) ((-1084 . -363) 5754) ((-381 . -604) 5738) ((-319 . -604) 5722) ((-1046 . -1195) T) ((-1045 . -1040) 5709) ((-937 . -1040) 5552) ((-1242 . -102) T) ((-1241 . -102) 5502) ((-1045 . -111) 5487) ((-475 . -1040) 5330) ((-650 . -704) 5314) ((-937 . -111) 5143) ((-221 . -604) 5093) ((-471 . -358) T) ((-350 . -704) 5045) ((-347 . -704) 4997) ((-339 . -704) 4949) ((-259 . -704) 4798) ((-243 . -704) 4647) ((-1233 . -634) 4572) ((-1205 . -894) NIL) ((-1078 . -93) T) ((-1072 . -93) T) ((-928 . -637) 4556) ((-1056 . -93) T) ((-475 . -111) 4385) ((-1049 . -93) T) ((-1021 . -93) T) ((-928 . -368) 4369) ((-244 . -102) T) ((-1004 . -93) T) ((-74 . -601) 4351) ((-948 . -47) 4330) ((-697 . -102) T) ((-609 . -1094) T) ((-1 . -1082) T) ((-685 . -102) T) ((-1226 . -634) 4227) ((-614 . -93) T) ((-1176 . -601) 4209) ((-1070 . -601) 4191) ((-126 . -483) 4175) ((-477 . -93) T) ((-1058 . -601) 4157) ((-385 . -23) T) ((-87 . -1195) T) ((-214 . -93) T) ((-1205 . -634) 4009) ((-895 . -704) 3974) ((-609 . -23) T) ((-596 . -601) 3956) ((-596 . -602) NIL) ((-469 . -602) NIL) ((-469 . -601) 3938) ((-505 . -1082) T) ((-501 . -1082) T) ((-346 . -25) T) ((-346 . -21) T) ((-127 . -304) 3876) ((-121 . -304) 3814) ((-585 . -634) 3801) ((-221 . -1034) T) ((-584 . -634) 3726) ((-374 . -987) T) ((-221 . -239) T) ((-221 . -229) T) ((-1045 . -604) 3698) ((-1045 . -606) 3679) ((-943 . -602) 3640) ((-943 . -601) 3552) ((-937 . -604) 3341) ((-855 . -38) 3328) ((-700 . -604) 3278) ((-1225 . -285) 3229) ((-1204 . -285) 3180) ((-475 . -604) 2965) ((-1102 . -446) T) ((-496 . -836) T) ((-311 . -1121) 2944) ((-984 . -145) 2923) ((-984 . -143) 2902) ((-489 . -304) 2889) ((-290 . -1171) 2868) ((-471 . -1094) T) ((-856 . -1040) 2813) ((-611 . -102) T) ((-1181 . -483) 2797) ((-246 . -363) 2776) ((-245 . -363) 2755) ((-1045 . -1034) T) ((-290 . -107) 2705) ((-128 . -602) NIL) ((-128 . -601) 2671) ((-117 . -102) T) ((-937 . -1034) T) ((-856 . -111) 2600) ((-471 . -23) T) ((-475 . -1034) T) ((-1045 . -229) T) ((-937 . -321) 2569) ((-475 . -321) 2526) ((-350 . -170) T) ((-347 . -170) T) ((-339 . -170) T) ((-259 . -170) 2437) ((-243 . -170) 2348) ((-948 . -1023) 2244) ((-511 . -484) 2225) ((-722 . -1023) 2196) ((-511 . -601) 2162) ((-1087 . -102) T) ((-1074 . -601) 2129) ((-1019 . -601) 2111) ((-1254 . -149) 2095) ((-1252 . -604) 2076) ((-1246 . -601) 2058) ((-1233 . -713) T) ((-1226 . -713) T) ((-1205 . -778) NIL) ((-1205 . -781) NIL) ((-167 . -1040) 1968) ((-895 . -170) T) ((-856 . -604) 1898) ((-1205 . -713) T) ((-1251 . -604) 1879) ((-988 . -337) 1853) ((-985 . -508) 1786) ((-829 . -836) 1765) ((-554 . -1133) T) ((-468 . -285) 1716) ((-585 . -713) T) ((-356 . -601) 1698) ((-317 . -601) 1680) ((-413 . -1023) 1576) ((-584 . -713) T) ((-402 . -836) 1527) ((-167 . -111) 1423) ((-820 . -130) 1375) ((-724 . -149) 1359) ((-1241 . -304) 1297) ((-481 . -302) T) ((-374 . -601) 1264) ((-514 . -995) 1248) ((-374 . -602) 1162) ((-213 . -302) T) ((-139 . -149) 1144) ((-701 . -281) 1123) ((-481 . -1007) T) ((-570 . -38) 1110) ((-554 . -38) 1097) ((-489 . -38) 1062) ((-213 . -1007) T) ((-856 . -1034) T) ((-823 . -601) 1044) ((-814 . -601) 1026) ((-812 . -601) 1008) ((-803 . -894) 987) ((-1265 . -1094) T) ((-1214 . -1040) 810) ((-841 . -1040) 794) ((-856 . -239) T) ((-856 . -229) NIL) ((-675 . -1195) T) ((-1265 . -23) T) ((-803 . -634) 719) ((-540 . -1195) T) ((-413 . -333) 703) ((-561 . -1040) 690) ((-1214 . -111) 499) ((-687 . -627) 481) ((-841 . -111) 460) ((-376 . -23) T) ((-167 . -604) 238) ((-1168 . -508) 30) ((-648 . -1082) T) ((-667 . -1082) T) ((-662 . -1082) T)) \ No newline at end of file
+(-3998 (|has| |#1| (-841)) (|has| |#1| (-1087)))
+((($ $) . T) ((#0=(-855 |#1|) $) . T) ((#0# |#2|) . T))
+((($ $) . T) ((|#2| $) |has| |#1| (-232)) ((|#2| |#1|) |has| |#1| (-232)) ((|#3| |#1|) . T) ((|#3| $) . T))
+(((-476 . -1087) T) ((-263 . -512) 161764) ((-246 . -512) 161707) ((-244 . -1087) 161657) ((-565 . -111) 161642) ((-529 . -23) T) ((-137 . -1087) T) ((-136 . -1087) T) ((-117 . -308) 161599) ((-132 . -1087) T) ((-477 . -512) 161391) ((-667 . -608) 161375) ((-684 . -102) T) ((-1128 . -512) 161294) ((-389 . -130) T) ((-1259 . -966) 161263) ((-31 . -93) T) ((-594 . -487) 161247) ((-613 . -130) T) ((-810 . -837) T) ((-521 . -57) 161197) ((-59 . -512) 161130) ((-517 . -512) 161063) ((-417 . -890) 161022) ((-168 . -1039) T) ((-514 . -512) 160955) ((-495 . -512) 160888) ((-494 . -512) 160821) ((-790 . -1028) 160604) ((-689 . -38) 160569) ((-1219 . -608) 160317) ((-342 . -348) T) ((-1081 . -1080) 160301) ((-1081 . -1087) 160279) ((-846 . -608) 160176) ((-168 . -242) 160127) ((-168 . -232) 160078) ((-1081 . -1082) 160036) ((-862 . -285) 159994) ((-224 . -786) T) ((-224 . -783) T) ((-684 . -283) NIL) ((-565 . -608) 159966) ((-1137 . -1176) 159945) ((-406 . -982) 159929) ((-691 . -21) T) ((-691 . -25) T) ((-1261 . -638) 159903) ((-315 . -159) 159882) ((-315 . -142) 159861) ((-1137 . -107) 159811) ((-133 . -25) T) ((-40 . -230) 159788) ((-116 . -21) T) ((-116 . -25) T) ((-600 . -287) 159764) ((-473 . -287) 159743) ((-1219 . -325) 159720) ((-1219 . -1039) T) ((-846 . -1039) T) ((-790 . -337) 159704) ((-138 . -184) T) ((-117 . -1138) NIL) ((-91 . -605) 159636) ((-475 . -130) T) ((-1219 . -232) T) ((-1083 . -488) 159617) ((-1083 . -605) 159583) ((-1077 . -488) 159564) ((-1077 . -605) 159530) ((-586 . -1200) T) ((-1061 . -488) 159511) ((-565 . -1039) T) ((-1061 . -605) 159477) ((-652 . -708) 159461) ((-1054 . -488) 159442) ((-1054 . -605) 159408) ((-948 . -287) 159385) ((-60 . -34) T) ((-1050 . -786) T) ((-1050 . -783) T) ((-1026 . -488) 159366) ((-1009 . -488) 159347) ((-807 . -717) T) ((-722 . -47) 159312) ((-615 . -38) 159299) ((-354 . -289) T) ((-351 . -289) T) ((-343 . -289) T) ((-263 . -289) 159230) ((-246 . -289) 159161) ((-1026 . -605) 159127) ((-1014 . -102) T) ((-1009 . -605) 159093) ((-618 . -488) 159074) ((-412 . -717) T) ((-117 . -38) 159019) ((-481 . -488) 159000) ((-618 . -605) 158966) ((-412 . -471) T) ((-217 . -488) 158947) ((-481 . -605) 158913) ((-353 . -102) T) ((-217 . -605) 158879) ((-1194 . -1046) T) ((-702 . -1046) T) ((-1161 . -47) 158856) ((-1160 . -47) 158826) ((-1154 . -47) 158803) ((-128 . -287) 158778) ((-1025 . -150) 158724) ((-900 . -289) T) ((-1113 . -47) 158696) ((-684 . -308) NIL) ((-513 . -605) 158678) ((-508 . -605) 158660) ((-506 . -605) 158642) ((-326 . -1087) 158592) ((-703 . -450) 158523) ((-48 . -102) T) ((-1230 . -285) 158508) ((-1209 . -285) 158428) ((-635 . -656) 158412) ((-635 . -641) 158396) ((-338 . -21) T) ((-338 . -25) T) ((-40 . -348) NIL) ((-173 . -21) T) ((-173 . -25) T) ((-635 . -372) 158380) ((-597 . -488) 158362) ((-594 . -285) 158339) ((-597 . -605) 158306) ((-387 . -102) T) ((-1107 . -142) T) ((-126 . -605) 158238) ((-864 . -1087) T) ((-648 . -410) 158222) ((-705 . -605) 158204) ((-248 . -605) 158171) ((-186 . -605) 158153) ((-161 . -605) 158135) ((-156 . -605) 158117) ((-1261 . -717) T) ((-1089 . -34) T) ((-861 . -786) NIL) ((-861 . -783) NIL) ((-849 . -841) T) ((-722 . -876) NIL) ((-1270 . -130) T) ((-380 . -130) T) ((-882 . -608) 158085) ((-894 . -102) T) ((-722 . -1028) 157961) ((-529 . -130) T) ((-1074 . -410) 157945) ((-990 . -487) 157929) ((-117 . -399) 157906) ((-1154 . -1200) 157885) ((-773 . -410) 157869) ((-771 . -410) 157853) ((-933 . -34) T) ((-684 . -1138) NIL) ((-250 . -638) 157688) ((-249 . -638) 157510) ((-808 . -910) 157489) ((-452 . -410) 157473) ((-594 . -19) 157457) ((-1133 . -1193) 157426) ((-1154 . -876) NIL) ((-1154 . -874) 157378) ((-594 . -596) 157355) ((-1186 . -605) 157287) ((-1162 . -605) 157269) ((-62 . -394) T) ((-1160 . -1028) 157204) ((-1154 . -1028) 157170) ((-684 . -38) 157120) ((-472 . -285) 157105) ((-722 . -376) 157089) ((-829 . -605) 157071) ((-648 . -1046) T) ((-1230 . -992) 157037) ((-1209 . -992) 157003) ((-1075 . -608) 156987) ((-1051 . -1176) 156962) ((-1063 . -608) 156939) ((-862 . -606) 156746) ((-862 . -605) 156728) ((-1173 . -487) 156665) ((-417 . -1012) 156643) ((-48 . -308) 156630) ((-1051 . -107) 156576) ((-477 . -487) 156513) ((-518 . -1200) T) ((-1154 . -337) 156465) ((-1128 . -487) 156436) ((-1154 . -376) 156388) ((-1074 . -1046) T) ((-436 . -102) T) ((-182 . -1087) T) ((-250 . -34) T) ((-249 . -34) T) ((-773 . -1046) T) ((-771 . -1046) T) ((-722 . -890) 156365) ((-452 . -1046) T) ((-59 . -487) 156349) ((-1024 . -1045) 156323) ((-517 . -487) 156307) ((-514 . -487) 156291) ((-495 . -487) 156275) ((-494 . -487) 156259) ((-244 . -512) 156192) ((-1024 . -111) 156159) ((-1161 . -890) 156072) ((-1160 . -890) 155978) ((-1154 . -890) 155811) ((-1113 . -890) 155795) ((-660 . -1099) T) ((-353 . -1138) T) ((-636 . -93) T) ((-321 . -1045) 155777) ((-250 . -782) 155756) ((-250 . -785) 155707) ((-31 . -488) 155688) ((-250 . -784) 155667) ((-249 . -782) 155646) ((-249 . -785) 155597) ((-249 . -784) 155576) ((-31 . -605) 155542) ((-50 . -1046) T) ((-250 . -717) 155452) ((-249 . -717) 155362) ((-1194 . -1087) T) ((-660 . -23) T) ((-575 . -1046) T) ((-516 . -1046) T) ((-378 . -1045) 155327) ((-321 . -111) 155302) ((-73 . -382) T) ((-73 . -394) T) ((-1014 . -38) 155239) ((-684 . -399) 155221) ((-99 . -102) T) ((-702 . -1087) T) ((-993 . -144) 155193) ((-993 . -146) 155165) ((-378 . -111) 155121) ((-318 . -1204) 155100) ((-472 . -992) 155066) ((-353 . -38) 155031) ((-40 . -369) 155003) ((-863 . -605) 154875) ((-127 . -125) 154859) ((-121 . -125) 154843) ((-827 . -1045) 154813) ((-824 . -21) 154765) ((-818 . -1045) 154749) ((-824 . -25) 154701) ((-318 . -550) 154652) ((-515 . -608) 154633) ((-558 . -819) T) ((-239 . -1200) T) ((-1024 . -608) 154602) ((-827 . -111) 154567) ((-818 . -111) 154546) ((-1230 . -605) 154528) ((-1209 . -605) 154510) ((-1209 . -606) 154181) ((-1159 . -899) 154160) ((-1112 . -899) 154139) ((-48 . -38) 154104) ((-1268 . -1099) T) ((-594 . -605) 154016) ((-594 . -606) 153977) ((-1266 . -1099) T) ((-360 . -608) 153961) ((-321 . -608) 153945) ((-239 . -1028) 153772) ((-1159 . -638) 153697) ((-1112 . -638) 153622) ((-709 . -605) 153604) ((-845 . -638) 153578) ((-1268 . -23) T) ((-1266 . -23) T) ((-489 . -1087) T) ((-378 . -608) 153528) ((-378 . -610) 153510) ((-1024 . -1039) T) ((-1173 . -285) 153489) ((-168 . -367) 153440) ((-994 . -1200) T) ((-827 . -608) 153394) ((-818 . -608) 153349) ((-44 . -23) T) ((-477 . -285) 153328) ((-579 . -1087) T) ((-1133 . -1096) 153297) ((-1091 . -1090) 153249) ((-389 . -21) T) ((-389 . -25) T) ((-151 . -1099) T) ((-1274 . -102) T) ((-994 . -874) 153231) ((-994 . -876) 153213) ((-1194 . -708) 153110) ((-615 . -230) 153094) ((-613 . -21) T) ((-288 . -550) T) ((-613 . -25) T) ((-1180 . -1087) T) ((-702 . -708) 153059) ((-239 . -376) 153028) ((-994 . -1028) 152988) ((-378 . -1039) T) ((-222 . -1046) T) ((-117 . -230) 152965) ((-59 . -285) 152942) ((-151 . -23) T) ((-514 . -285) 152919) ((-326 . -512) 152852) ((-494 . -285) 152829) ((-378 . -242) T) ((-378 . -232) T) ((-827 . -1039) T) ((-818 . -1039) T) ((-703 . -939) 152798) ((-691 . -841) T) ((-472 . -605) 152780) ((-818 . -232) 152759) ((-133 . -841) T) ((-648 . -1087) T) ((-1173 . -596) 152738) ((-544 . -1176) 152717) ((-335 . -1087) T) ((-318 . -362) 152696) ((-406 . -146) 152675) ((-406 . -144) 152654) ((-954 . -1099) 152553) ((-239 . -890) 152485) ((-806 . -1099) 152395) ((-644 . -843) 152379) ((-477 . -596) 152358) ((-544 . -107) 152308) ((-994 . -376) 152290) ((-994 . -337) 152272) ((-97 . -1087) T) ((-954 . -23) 152083) ((-475 . -21) T) ((-475 . -25) T) ((-806 . -23) 151953) ((-1163 . -605) 151935) ((-59 . -19) 151919) ((-1163 . -606) 151841) ((-1159 . -717) T) ((-1112 . -717) T) ((-514 . -19) 151825) ((-494 . -19) 151809) ((-59 . -596) 151786) ((-1074 . -1087) T) ((-891 . -102) 151764) ((-845 . -717) T) ((-773 . -1087) T) ((-514 . -596) 151741) ((-494 . -596) 151718) ((-771 . -1087) T) ((-771 . -1053) 151685) ((-459 . -1087) T) ((-452 . -1087) T) ((-579 . -708) 151660) ((-639 . -1087) T) ((-1238 . -47) 151637) ((-1232 . -102) T) ((-1231 . -47) 151607) ((-1210 . -47) 151584) ((-1194 . -171) 151535) ((-1160 . -306) 151514) ((-994 . -890) NIL) ((-1154 . -306) 151493) ((-619 . -1099) T) ((-660 . -130) T) ((-1083 . -608) 151474) ((-1077 . -608) 151455) ((-1067 . -550) 151406) ((-1067 . -1204) 151357) ((-1061 . -608) 151338) ((-274 . -1087) T) ((-85 . -439) T) ((-85 . -394) T) ((-1054 . -608) 151319) ((-1026 . -608) 151300) ((-50 . -1087) T) ((-1009 . -608) 151281) ((-702 . -171) T) ((-588 . -47) 151258) ((-224 . -638) 151223) ((-575 . -1087) T) ((-516 . -1087) T) ((-358 . -1204) T) ((-352 . -1204) T) ((-344 . -1204) T) ((-485 . -811) T) ((-485 . -910) T) ((-318 . -1099) T) ((-108 . -1204) T) ((-705 . -1045) 151193) ((-338 . -841) T) ((-216 . -910) T) ((-216 . -811) T) ((-618 . -608) 151174) ((-358 . -550) T) ((-352 . -550) T) ((-344 . -550) T) ((-481 . -608) 151155) ((-108 . -550) T) ((-648 . -708) 151125) ((-1154 . -1012) NIL) ((-217 . -608) 151106) ((-318 . -23) T) ((-67 . -1200) T) ((-990 . -605) 151038) ((-684 . -230) 151020) ((-705 . -111) 150985) ((-635 . -34) T) ((-244 . -487) 150969) ((-1089 . -1085) 150953) ((-170 . -1087) T) ((-942 . -899) 150932) ((-513 . -608) 150916) ((-1274 . -1138) T) ((-1270 . -21) T) ((-479 . -899) 150895) ((-1270 . -25) T) ((-1268 . -130) T) ((-1266 . -130) T) ((-1259 . -102) T) ((-1242 . -605) 150861) ((-1231 . -1028) 150796) ((-1074 . -708) 150645) ((-1050 . -638) 150632) ((-942 . -638) 150557) ((-773 . -708) 150386) ((-534 . -605) 150368) ((-534 . -606) 150349) ((-771 . -708) 150198) ((-1210 . -1200) 150177) ((-1064 . -102) T) ((-380 . -25) T) ((-380 . -21) T) ((-479 . -638) 150102) ((-459 . -708) 150073) ((-452 . -708) 149922) ((-977 . -102) T) ((-1210 . -876) NIL) ((-1210 . -874) 149874) ((-1173 . -606) NIL) ((-728 . -102) T) ((-1173 . -605) 149856) ((-597 . -608) 149838) ((-1129 . -1110) 149783) ((-1036 . -1193) 149712) ((-529 . -25) T) ((-891 . -308) 149650) ((-705 . -608) 149604) ((-342 . -1046) T) ((-636 . -488) 149585) ((-140 . -102) T) ((-44 . -130) T) ((-288 . -1099) T) ((-671 . -93) T) ((-666 . -93) T) ((-654 . -605) 149567) ((-636 . -605) 149520) ((-476 . -93) T) ((-354 . -605) 149502) ((-351 . -605) 149484) ((-343 . -605) 149466) ((-263 . -606) 149214) ((-263 . -605) 149196) ((-246 . -605) 149178) ((-246 . -606) 149039) ((-132 . -93) T) ((-137 . -93) T) ((-136 . -93) T) ((-1210 . -1028) 149005) ((-1194 . -512) 148972) ((-1128 . -605) 148954) ((-810 . -848) T) ((-810 . -717) T) ((-594 . -287) 148931) ((-575 . -708) 148896) ((-477 . -606) NIL) ((-477 . -605) 148878) ((-516 . -708) 148823) ((-315 . -102) T) ((-312 . -102) T) ((-288 . -23) T) ((-151 . -130) T) ((-900 . -605) 148805) ((-385 . -717) T) ((-862 . -1045) 148757) ((-900 . -606) 148739) ((-862 . -111) 148677) ((-705 . -1039) T) ((-703 . -1222) 148661) ((-138 . -102) T) ((-135 . -102) T) ((-114 . -102) T) ((-684 . -348) NIL) ((-517 . -605) 148593) ((-378 . -786) T) ((-222 . -1087) T) ((-378 . -783) T) ((-224 . -785) T) ((-224 . -782) T) ((-59 . -606) 148554) ((-59 . -605) 148466) ((-224 . -717) T) ((-514 . -606) 148427) ((-514 . -605) 148339) ((-495 . -605) 148271) ((-494 . -606) 148232) ((-494 . -605) 148144) ((-1067 . -362) 148095) ((-40 . -410) 148072) ((-77 . -1200) T) ((-861 . -899) NIL) ((-358 . -328) 148056) ((-358 . -362) T) ((-352 . -328) 148040) ((-352 . -362) T) ((-344 . -328) 148024) ((-344 . -362) T) ((-315 . -283) 148003) ((-108 . -362) T) ((-70 . -1200) T) ((-1210 . -337) 147955) ((-861 . -638) 147900) ((-1210 . -376) 147852) ((-954 . -130) 147707) ((-806 . -130) 147577) ((-948 . -641) 147561) ((-1074 . -171) 147472) ((-948 . -372) 147456) ((-1050 . -785) T) ((-1050 . -782) T) ((-862 . -608) 147354) ((-773 . -171) 147245) ((-771 . -171) 147156) ((-807 . -47) 147118) ((-1050 . -717) T) ((-326 . -487) 147102) ((-942 . -717) T) ((-452 . -171) 147013) ((-244 . -285) 146990) ((-479 . -717) T) ((-1259 . -308) 146928) ((-1238 . -890) 146841) ((-1231 . -890) 146747) ((-1230 . -1045) 146582) ((-1210 . -890) 146415) ((-1209 . -1045) 146223) ((-1194 . -289) 146202) ((-1133 . -150) 146186) ((-1107 . -102) T) ((-1105 . -1087) T) ((-1067 . -23) T) ((-1062 . -102) T) ((-917 . -945) T) ((-728 . -308) 146124) ((-75 . -1200) T) ((-30 . -945) T) ((-168 . -899) 146077) ((-654 . -381) 146049) ((-112 . -835) T) ((-1 . -605) 146031) ((-1067 . -1099) T) ((-128 . -641) 146013) ((-50 . -612) 145997) ((-993 . -408) 145969) ((-588 . -890) 145882) ((-437 . -102) T) ((-140 . -308) NIL) ((-128 . -372) 145864) ((-862 . -1039) T) ((-824 . -841) 145843) ((-81 . -1200) T) ((-702 . -289) T) ((-40 . -1046) T) ((-575 . -171) T) ((-516 . -171) T) ((-509 . -605) 145825) ((-168 . -638) 145735) ((-505 . -605) 145717) ((-350 . -146) 145699) ((-350 . -144) T) ((-358 . -1099) T) ((-352 . -1099) T) ((-344 . -1099) T) ((-994 . -306) T) ((-904 . -306) T) ((-862 . -242) T) ((-108 . -1099) T) ((-862 . -232) 145678) ((-1230 . -111) 145499) ((-1209 . -111) 145288) ((-244 . -1234) 145272) ((-558 . -839) T) ((-358 . -23) T) ((-353 . -348) T) ((-315 . -308) 145259) ((-312 . -308) 145200) ((-352 . -23) T) ((-318 . -130) T) ((-344 . -23) T) ((-994 . -1012) T) ((-31 . -608) 145181) ((-108 . -23) T) ((-244 . -596) 145158) ((-1232 . -38) 145050) ((-1219 . -899) 145029) ((-112 . -1087) T) ((-1025 . -102) T) ((-1219 . -638) 144954) ((-861 . -785) NIL) ((-846 . -638) 144928) ((-861 . -782) NIL) ((-807 . -876) NIL) ((-861 . -717) T) ((-1074 . -512) 144801) ((-773 . -512) 144748) ((-771 . -512) 144700) ((-565 . -638) 144687) ((-807 . -1028) 144515) ((-452 . -512) 144458) ((-387 . -388) T) ((-1230 . -608) 144271) ((-1209 . -608) 144019) ((-60 . -1200) T) ((-613 . -841) 143998) ((-498 . -651) T) ((-1133 . -966) 143967) ((-993 . -450) T) ((-689 . -839) T) ((-508 . -783) T) ((-472 . -1045) 143802) ((-342 . -1087) T) ((-312 . -1138) NIL) ((-288 . -130) T) ((-393 . -1087) T) ((-684 . -369) 143769) ((-860 . -1046) T) ((-222 . -612) 143746) ((-326 . -285) 143723) ((-472 . -111) 143544) ((-1230 . -1039) T) ((-1209 . -1039) T) ((-807 . -376) 143528) ((-168 . -717) T) ((-644 . -102) T) ((-1230 . -242) 143507) ((-1230 . -232) 143459) ((-1209 . -232) 143364) ((-1209 . -242) 143343) ((-993 . -401) NIL) ((-660 . -631) 143291) ((-315 . -38) 143201) ((-312 . -38) 143130) ((-69 . -605) 143112) ((-318 . -491) 143078) ((-1173 . -287) 143057) ((-1100 . -1099) 142967) ((-83 . -1200) T) ((-61 . -605) 142949) ((-477 . -287) 142928) ((-1261 . -1028) 142905) ((-1151 . -1087) T) ((-1100 . -23) 142775) ((-807 . -890) 142711) ((-1219 . -717) T) ((-1089 . -1200) T) ((-472 . -608) 142537) ((-1074 . -289) 142468) ((-956 . -1087) T) ((-883 . -102) T) ((-773 . -289) 142379) ((-326 . -19) 142363) ((-59 . -287) 142340) ((-771 . -289) 142271) ((-846 . -717) T) ((-117 . -839) NIL) ((-514 . -287) 142248) ((-326 . -596) 142225) ((-494 . -287) 142202) ((-452 . -289) 142133) ((-1025 . -308) 141984) ((-671 . -488) 141965) ((-565 . -717) T) ((-666 . -488) 141946) ((-671 . -605) 141896) ((-666 . -605) 141862) ((-652 . -605) 141844) ((-476 . -488) 141825) ((-476 . -605) 141791) ((-244 . -606) 141752) ((-244 . -488) 141729) ((-137 . -488) 141710) ((-136 . -488) 141691) ((-132 . -488) 141672) ((-244 . -605) 141564) ((-212 . -102) T) ((-137 . -605) 141530) ((-136 . -605) 141496) ((-132 . -605) 141462) ((-1134 . -34) T) ((-933 . -1200) T) ((-342 . -708) 141407) ((-660 . -25) T) ((-660 . -21) T) ((-1163 . -608) 141388) ((-472 . -1039) T) ((-627 . -416) 141353) ((-599 . -416) 141318) ((-1107 . -1138) T) ((-575 . -289) T) ((-516 . -289) T) ((-1231 . -306) 141297) ((-472 . -232) 141249) ((-472 . -242) 141228) ((-1210 . -306) 141207) ((-1210 . -1012) NIL) ((-1067 . -130) T) ((-862 . -786) 141186) ((-143 . -102) T) ((-40 . -1087) T) ((-862 . -783) 141165) ((-635 . -1000) 141149) ((-574 . -1046) T) ((-558 . -1046) T) ((-493 . -1046) T) ((-406 . -450) T) ((-358 . -130) T) ((-315 . -399) 141133) ((-312 . -399) 141094) ((-352 . -130) T) ((-344 . -130) T) ((-1168 . -1087) T) ((-1107 . -38) 141081) ((-1081 . -605) 141048) ((-108 . -130) T) ((-944 . -1087) T) ((-911 . -1087) T) ((-762 . -1087) T) ((-662 . -1087) T) ((-691 . -146) T) ((-116 . -146) T) ((-1268 . -21) T) ((-1268 . -25) T) ((-1266 . -21) T) ((-1266 . -25) T) ((-654 . -1045) 141032) ((-529 . -841) T) ((-498 . -841) T) ((-354 . -1045) 140984) ((-351 . -1045) 140936) ((-343 . -1045) 140888) ((-250 . -1200) T) ((-249 . -1200) T) ((-263 . -1045) 140731) ((-246 . -1045) 140574) ((-654 . -111) 140553) ((-354 . -111) 140491) ((-351 . -111) 140429) ((-343 . -111) 140367) ((-263 . -111) 140196) ((-246 . -111) 140025) ((-808 . -1204) 140004) ((-615 . -410) 139988) ((-44 . -21) T) ((-44 . -25) T) ((-806 . -631) 139894) ((-808 . -550) 139873) ((-250 . -1028) 139700) ((-249 . -1028) 139527) ((-126 . -119) 139511) ((-900 . -1045) 139476) ((-703 . -102) T) ((-689 . -1046) T) ((-534 . -610) 139379) ((-342 . -171) T) ((-151 . -21) T) ((-151 . -25) T) ((-88 . -605) 139361) ((-900 . -111) 139317) ((-40 . -708) 139262) ((-860 . -1087) T) ((-654 . -608) 139239) ((-636 . -608) 139220) ((-354 . -608) 139157) ((-351 . -608) 139094) ((-343 . -608) 139031) ((-326 . -606) 138992) ((-326 . -605) 138904) ((-263 . -608) 138657) ((-246 . -608) 138442) ((-1209 . -783) 138395) ((-1209 . -786) 138348) ((-250 . -376) 138317) ((-249 . -376) 138286) ((-644 . -38) 138256) ((-600 . -34) T) ((-480 . -1099) 138166) ((-473 . -34) T) ((-1100 . -130) 138036) ((-954 . -25) 137847) ((-900 . -608) 137797) ((-864 . -605) 137779) ((-954 . -21) 137734) ((-806 . -21) 137644) ((-806 . -25) 137495) ((-615 . -1046) T) ((-1165 . -550) 137474) ((-1159 . -47) 137451) ((-354 . -1039) T) ((-351 . -1039) T) ((-480 . -23) 137321) ((-343 . -1039) T) ((-246 . -1039) T) ((-263 . -1039) T) ((-1112 . -47) 137293) ((-117 . -1046) T) ((-1024 . -638) 137267) ((-948 . -34) T) ((-354 . -232) 137246) ((-354 . -242) T) ((-351 . -232) 137225) ((-351 . -242) T) ((-343 . -232) 137204) ((-343 . -242) T) ((-246 . -325) 137161) ((-263 . -325) 137133) ((-263 . -232) 137112) ((-1143 . -150) 137096) ((-250 . -890) 137028) ((-249 . -890) 136960) ((-1069 . -841) T) ((-413 . -1099) T) ((-1043 . -23) T) ((-900 . -1039) T) ((-321 . -638) 136942) ((-1014 . -839) T) ((-1194 . -992) 136908) ((-1160 . -910) 136887) ((-1154 . -910) 136866) ((-1154 . -811) NIL) ((-900 . -242) T) ((-808 . -362) 136845) ((-384 . -23) T) ((-127 . -1087) 136823) ((-121 . -1087) 136801) ((-900 . -232) T) ((-128 . -34) T) ((-378 . -638) 136766) ((-860 . -708) 136753) ((-1036 . -150) 136718) ((-40 . -171) T) ((-684 . -410) 136700) ((-703 . -308) 136687) ((-827 . -638) 136647) ((-818 . -638) 136621) ((-318 . -25) T) ((-318 . -21) T) ((-648 . -285) 136600) ((-574 . -1087) T) ((-558 . -1087) T) ((-493 . -1087) T) ((-244 . -287) 136577) ((-312 . -230) 136538) ((-1159 . -876) NIL) ((-55 . -1087) T) ((-1112 . -876) 136397) ((-129 . -841) T) ((-1159 . -1028) 136277) ((-1112 . -1028) 136160) ((-182 . -605) 136142) ((-845 . -1028) 136038) ((-773 . -285) 135965) ((-808 . -1099) T) ((-1024 . -717) T) ((-594 . -641) 135949) ((-1036 . -966) 135878) ((-989 . -102) T) ((-808 . -23) T) ((-703 . -1138) 135856) ((-684 . -1046) T) ((-594 . -372) 135840) ((-350 . -450) T) ((-342 . -289) T) ((-1247 . -1087) T) ((-247 . -1087) T) ((-398 . -102) T) ((-288 . -21) T) ((-288 . -25) T) ((-360 . -717) T) ((-701 . -1087) T) ((-689 . -1087) T) ((-360 . -471) T) ((-1194 . -605) 135822) ((-1159 . -376) 135806) ((-1112 . -376) 135790) ((-1014 . -410) 135752) ((-140 . -228) 135734) ((-378 . -785) T) ((-378 . -782) T) ((-860 . -171) T) ((-378 . -717) T) ((-702 . -605) 135716) ((-703 . -38) 135545) ((-1246 . -1244) 135529) ((-350 . -401) T) ((-1246 . -1087) 135479) ((-574 . -708) 135466) ((-558 . -708) 135453) ((-493 . -708) 135418) ((-315 . -621) 135397) ((-827 . -717) T) ((-818 . -717) T) ((-635 . -1200) T) ((-1067 . -631) 135345) ((-1159 . -890) 135288) ((-1112 . -890) 135272) ((-652 . -1045) 135256) ((-108 . -631) 135238) ((-480 . -130) 135108) ((-1165 . -1099) T) ((-942 . -47) 135077) ((-615 . -1087) T) ((-652 . -111) 135056) ((-489 . -605) 135022) ((-326 . -287) 134999) ((-479 . -47) 134956) ((-1165 . -23) T) ((-117 . -1087) T) ((-103 . -102) 134934) ((-1258 . -1099) T) ((-1043 . -130) T) ((-1014 . -1046) T) ((-810 . -1028) 134918) ((-993 . -715) 134890) ((-1258 . -23) T) ((-689 . -708) 134855) ((-579 . -605) 134837) ((-385 . -1028) 134821) ((-353 . -1046) T) ((-384 . -130) T) ((-323 . -1028) 134805) ((-224 . -876) 134787) ((-994 . -910) T) ((-91 . -34) T) ((-994 . -811) T) ((-904 . -910) T) ((-1180 . -605) 134769) ((-1107 . -819) T) ((-485 . -1204) T) ((-1092 . -1087) T) ((-1067 . -21) T) ((-1067 . -25) T) ((-216 . -1204) T) ((-989 . -308) 134734) ((-224 . -1028) 134694) ((-40 . -289) T) ((-705 . -638) 134654) ((-671 . -608) 134635) ((-666 . -608) 134616) ((-485 . -550) T) ((-476 . -608) 134597) ((-358 . -25) T) ((-358 . -21) T) ((-352 . -25) T) ((-216 . -550) T) ((-352 . -21) T) ((-344 . -25) T) ((-344 . -21) T) ((-244 . -608) 134574) ((-137 . -608) 134555) ((-136 . -608) 134536) ((-132 . -608) 134517) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1046) T) ((-574 . -171) T) ((-558 . -171) T) ((-493 . -171) T) ((-648 . -605) 134499) ((-728 . -727) 134483) ((-335 . -605) 134465) ((-68 . -382) T) ((-68 . -394) T) ((-1089 . -107) 134449) ((-1050 . -876) 134431) ((-942 . -876) 134356) ((-643 . -1099) T) ((-615 . -708) 134343) ((-479 . -876) NIL) ((-1133 . -102) T) ((-1081 . -610) 134327) ((-1050 . -1028) 134309) ((-97 . -605) 134291) ((-475 . -146) T) ((-942 . -1028) 134171) ((-117 . -708) 134116) ((-643 . -23) T) ((-479 . -1028) 133992) ((-1074 . -606) NIL) ((-1074 . -605) 133974) ((-773 . -606) NIL) ((-773 . -605) 133935) ((-771 . -606) 133569) ((-771 . -605) 133483) ((-1100 . -631) 133389) ((-459 . -605) 133371) ((-452 . -605) 133353) ((-452 . -606) 133214) ((-1025 . -228) 133160) ((-862 . -899) 133139) ((-126 . -34) T) ((-808 . -130) T) ((-639 . -605) 133121) ((-572 . -102) T) ((-354 . -1265) 133105) ((-351 . -1265) 133089) ((-343 . -1265) 133073) ((-127 . -512) 133006) ((-121 . -512) 132939) ((-509 . -783) T) ((-509 . -786) T) ((-508 . -785) T) ((-103 . -308) 132877) ((-221 . -102) 132855) ((-684 . -1087) T) ((-689 . -171) T) ((-862 . -638) 132807) ((-65 . -383) T) ((-274 . -605) 132789) ((-65 . -394) T) ((-942 . -376) 132773) ((-860 . -289) T) ((-50 . -605) 132755) ((-989 . -38) 132703) ((-575 . -605) 132685) ((-479 . -376) 132669) ((-575 . -606) 132651) ((-516 . -605) 132633) ((-900 . -1265) 132620) ((-861 . -1200) T) ((-691 . -450) T) ((-493 . -512) 132586) ((-485 . -362) T) ((-354 . -367) 132565) ((-351 . -367) 132544) ((-343 . -367) 132523) ((-705 . -717) T) ((-216 . -362) T) ((-116 . -450) T) ((-1269 . -1260) 132507) ((-861 . -874) 132484) ((-861 . -876) NIL) ((-954 . -841) 132383) ((-806 . -841) 132334) ((-644 . -646) 132318) ((-1186 . -34) T) ((-170 . -605) 132300) ((-1100 . -21) 132210) ((-1100 . -25) 132061) ((-861 . -1028) 132038) ((-942 . -890) 132019) ((-1219 . -47) 131996) ((-900 . -367) T) ((-59 . -641) 131980) ((-514 . -641) 131964) ((-479 . -890) 131941) ((-71 . -439) T) ((-71 . -394) T) ((-494 . -641) 131925) ((-59 . -372) 131909) ((-615 . -171) T) ((-514 . -372) 131893) ((-494 . -372) 131877) ((-818 . -699) 131861) ((-1159 . -306) 131840) ((-1165 . -130) T) ((-117 . -171) T) ((-1133 . -308) 131778) ((-168 . -1200) T) ((-627 . -735) 131762) ((-599 . -735) 131746) ((-1258 . -130) T) ((-1231 . -910) 131725) ((-1210 . -910) 131704) ((-1210 . -811) NIL) ((-684 . -708) 131654) ((-1209 . -899) 131607) ((-1014 . -1087) T) ((-861 . -376) 131584) ((-861 . -337) 131561) ((-895 . -1099) T) ((-168 . -874) 131545) ((-168 . -876) 131470) ((-485 . -1099) T) ((-353 . -1087) T) ((-216 . -1099) T) ((-76 . -439) T) ((-76 . -394) T) ((-168 . -1028) 131366) ((-318 . -841) T) ((-1246 . -512) 131299) ((-1230 . -638) 131196) ((-1209 . -638) 131066) ((-862 . -785) 131045) ((-862 . -782) 131024) ((-862 . -717) T) ((-485 . -23) T) ((-222 . -605) 131006) ((-173 . -450) T) ((-221 . -308) 130944) ((-86 . -439) T) ((-86 . -394) T) ((-216 . -23) T) ((-1270 . -1263) 130923) ((-574 . -289) T) ((-558 . -289) T) ((-667 . -1028) 130907) ((-493 . -289) T) ((-135 . -468) 130862) ((-48 . -1087) T) ((-703 . -230) 130846) ((-861 . -890) NIL) ((-1219 . -876) NIL) ((-879 . -102) T) ((-875 . -102) T) ((-387 . -1087) T) ((-168 . -376) 130830) ((-168 . -337) 130814) ((-1219 . -1028) 130694) ((-846 . -1028) 130590) ((-1129 . -102) T) ((-643 . -130) T) ((-117 . -512) 130498) ((-652 . -783) 130477) ((-652 . -786) 130456) ((-565 . -1028) 130438) ((-293 . -1253) 130408) ((-856 . -102) T) ((-953 . -550) 130387) ((-1194 . -1045) 130270) ((-480 . -631) 130176) ((-894 . -1087) T) ((-1014 . -708) 130113) ((-702 . -1045) 130078) ((-609 . -102) T) ((-594 . -34) T) ((-1134 . -1200) T) ((-1194 . -111) 129947) ((-472 . -638) 129844) ((-353 . -708) 129789) ((-168 . -890) 129748) ((-689 . -289) T) ((-684 . -171) T) ((-702 . -111) 129704) ((-1274 . -1046) T) ((-1219 . -376) 129688) ((-417 . -1204) 129666) ((-1105 . -605) 129648) ((-312 . -839) NIL) ((-417 . -550) T) ((-224 . -306) T) ((-1209 . -782) 129601) ((-1209 . -785) 129554) ((-1230 . -717) T) ((-1209 . -717) T) ((-48 . -708) 129519) ((-224 . -1012) T) ((-350 . -1253) 129496) ((-1232 . -410) 129462) ((-709 . -717) T) ((-1219 . -890) 129405) ((-1194 . -608) 129287) ((-112 . -605) 129269) ((-112 . -606) 129251) ((-709 . -471) T) ((-702 . -608) 129201) ((-480 . -21) 129111) ((-127 . -487) 129095) ((-121 . -487) 129079) ((-480 . -25) 128930) ((-615 . -289) T) ((-579 . -1045) 128905) ((-436 . -1087) T) ((-1050 . -306) T) ((-117 . -289) T) ((-1091 . -102) T) ((-993 . -102) T) ((-579 . -111) 128873) ((-1129 . -308) 128811) ((-1194 . -1039) T) ((-1050 . -1012) T) ((-66 . -1200) T) ((-1043 . -25) T) ((-1043 . -21) T) ((-702 . -1039) T) ((-384 . -21) T) ((-384 . -25) T) ((-684 . -512) NIL) ((-1014 . -171) T) ((-702 . -242) T) ((-1050 . -543) T) ((-504 . -102) T) ((-500 . -102) T) ((-353 . -171) T) ((-342 . -605) 128793) ((-393 . -605) 128775) ((-472 . -717) T) ((-1107 . -839) T) ((-882 . -1028) 128743) ((-108 . -841) T) ((-648 . -1045) 128727) ((-485 . -130) T) ((-1232 . -1046) T) ((-216 . -130) T) ((-1143 . -102) 128705) ((-99 . -1087) T) ((-244 . -656) 128689) ((-244 . -641) 128673) ((-648 . -111) 128652) ((-579 . -608) 128636) ((-315 . -410) 128620) ((-244 . -372) 128604) ((-1146 . -234) 128551) ((-989 . -230) 128535) ((-74 . -1200) T) ((-48 . -171) T) ((-691 . -386) T) ((-691 . -142) T) ((-1269 . -102) T) ((-1180 . -608) 128517) ((-1074 . -1045) 128360) ((-263 . -899) 128339) ((-246 . -899) 128318) ((-773 . -1045) 128141) ((-771 . -1045) 127984) ((-600 . -1200) T) ((-1151 . -605) 127966) ((-1074 . -111) 127795) ((-1036 . -102) T) ((-473 . -1200) T) ((-459 . -1045) 127766) ((-452 . -1045) 127609) ((-654 . -638) 127593) ((-861 . -306) T) ((-773 . -111) 127402) ((-771 . -111) 127231) ((-354 . -638) 127183) ((-351 . -638) 127135) ((-343 . -638) 127087) ((-263 . -638) 127012) ((-246 . -638) 126937) ((-1145 . -841) T) ((-1075 . -1028) 126921) ((-459 . -111) 126882) ((-452 . -111) 126711) ((-1063 . -1028) 126688) ((-990 . -34) T) ((-956 . -605) 126670) ((-948 . -1200) T) ((-126 . -1000) 126654) ((-953 . -1099) T) ((-861 . -1012) NIL) ((-726 . -1099) T) ((-706 . -1099) T) ((-648 . -608) 126572) ((-1246 . -487) 126556) ((-1129 . -38) 126516) ((-953 . -23) T) ((-834 . -102) T) ((-808 . -21) T) ((-808 . -25) T) ((-726 . -23) T) ((-706 . -23) T) ((-110 . -651) T) ((-900 . -638) 126481) ((-575 . -1045) 126446) ((-516 . -1045) 126391) ((-226 . -57) 126349) ((-451 . -23) T) ((-406 . -102) T) ((-262 . -102) T) ((-684 . -289) T) ((-856 . -38) 126319) ((-575 . -111) 126275) ((-516 . -111) 126204) ((-1074 . -608) 125940) ((-417 . -1099) T) ((-315 . -1046) 125830) ((-312 . -1046) T) ((-128 . -1200) T) ((-773 . -608) 125578) ((-771 . -608) 125344) ((-648 . -1039) T) ((-1274 . -1087) T) ((-452 . -608) 125129) ((-168 . -306) 125060) ((-417 . -23) T) ((-40 . -605) 125042) ((-40 . -606) 125026) ((-108 . -982) 125008) ((-116 . -859) 124992) ((-639 . -608) 124976) ((-48 . -512) 124942) ((-1186 . -1000) 124926) ((-1168 . -605) 124893) ((-1173 . -34) T) ((-944 . -605) 124859) ((-911 . -605) 124841) ((-1100 . -841) 124792) ((-762 . -605) 124774) ((-662 . -605) 124756) ((-1143 . -308) 124694) ((-477 . -34) T) ((-1079 . -1200) T) ((-475 . -450) T) ((-1128 . -34) T) ((-1074 . -1039) T) ((-50 . -608) 124663) ((-773 . -1039) T) ((-771 . -1039) T) ((-637 . -234) 124647) ((-624 . -234) 124593) ((-575 . -608) 124543) ((-516 . -608) 124473) ((-1219 . -306) 124452) ((-1074 . -325) 124413) ((-452 . -1039) T) ((-1165 . -21) T) ((-1074 . -232) 124392) ((-773 . -325) 124369) ((-773 . -232) T) ((-771 . -325) 124341) ((-722 . -1204) 124320) ((-326 . -641) 124304) ((-1165 . -25) T) ((-59 . -34) T) ((-517 . -34) T) ((-514 . -34) T) ((-452 . -325) 124283) ((-326 . -372) 124267) ((-495 . -34) T) ((-494 . -34) T) ((-993 . -1138) NIL) ((-722 . -550) 124198) ((-627 . -102) T) ((-599 . -102) T) ((-354 . -717) T) ((-351 . -717) T) ((-343 . -717) T) ((-263 . -717) T) ((-246 . -717) T) ((-1036 . -308) 124106) ((-891 . -1087) 124084) ((-50 . -1039) T) ((-1258 . -21) T) ((-1258 . -25) T) ((-1161 . -550) 124063) ((-1160 . -1204) 124042) ((-575 . -1039) T) ((-516 . -1039) T) ((-1154 . -1204) 124021) ((-360 . -1028) 124005) ((-321 . -1028) 123989) ((-1014 . -289) T) ((-378 . -876) 123971) ((-1160 . -550) 123922) ((-1154 . -550) 123873) ((-993 . -38) 123818) ((-790 . -1099) T) ((-900 . -717) T) ((-575 . -242) T) ((-575 . -232) T) ((-516 . -232) T) ((-516 . -242) T) ((-1113 . -550) 123797) ((-353 . -289) T) ((-637 . -685) 123781) ((-378 . -1028) 123741) ((-1107 . -1046) T) ((-103 . -125) 123725) ((-790 . -23) T) ((-1246 . -285) 123702) ((-406 . -308) 123667) ((-1268 . -1263) 123643) ((-1266 . -1263) 123622) ((-1232 . -1087) T) ((-860 . -605) 123604) ((-827 . -1028) 123573) ((-202 . -778) T) ((-201 . -778) T) ((-200 . -778) T) ((-199 . -778) T) ((-198 . -778) T) ((-197 . -778) T) ((-196 . -778) T) ((-195 . -778) T) ((-194 . -778) T) ((-193 . -778) T) ((-493 . -992) T) ((-273 . -830) T) ((-272 . -830) T) ((-271 . -830) T) ((-270 . -830) T) ((-48 . -289) T) ((-269 . -830) T) ((-268 . -830) T) ((-267 . -830) T) ((-192 . -778) T) ((-604 . -841) T) ((-644 . -410) 123557) ((-222 . -608) 123519) ((-110 . -841) T) ((-643 . -21) T) ((-643 . -25) T) ((-1269 . -38) 123489) ((-117 . -285) 123440) ((-1246 . -19) 123424) ((-1246 . -596) 123401) ((-1259 . -1087) T) ((-1064 . -1087) T) ((-977 . -1087) T) ((-953 . -130) T) ((-728 . -1087) T) ((-726 . -130) T) ((-706 . -130) T) ((-509 . -784) T) ((-406 . -1138) 123379) ((-451 . -130) T) ((-509 . -785) T) ((-222 . -1039) T) ((-293 . -102) 123161) ((-140 . -1087) T) ((-689 . -992) T) ((-91 . -1200) T) ((-127 . -605) 123093) ((-121 . -605) 123025) ((-1274 . -171) T) ((-1160 . -362) 123004) ((-1154 . -362) 122983) ((-315 . -1087) T) ((-417 . -130) T) ((-312 . -1087) T) ((-406 . -38) 122935) ((-1120 . -102) T) ((-1232 . -708) 122827) ((-644 . -1046) T) ((-1122 . -1241) T) ((-318 . -144) 122806) ((-318 . -146) 122785) ((-138 . -1087) T) ((-135 . -1087) T) ((-114 . -1087) T) ((-849 . -102) T) ((-574 . -605) 122767) ((-558 . -606) 122666) ((-558 . -605) 122648) ((-493 . -605) 122630) ((-493 . -606) 122575) ((-483 . -23) T) ((-480 . -841) 122526) ((-485 . -631) 122508) ((-955 . -605) 122490) ((-216 . -631) 122472) ((-224 . -403) T) ((-652 . -638) 122456) ((-55 . -605) 122438) ((-1159 . -910) 122417) ((-722 . -1099) T) ((-350 . -102) T) ((-1199 . -1070) T) ((-809 . -841) T) ((-722 . -23) T) ((-342 . -1045) 122362) ((-1145 . -1144) T) ((-1134 . -107) 122346) ((-1161 . -1099) T) ((-1160 . -1099) T) ((-513 . -1028) 122330) ((-1154 . -1099) T) ((-1113 . -1099) T) ((-342 . -111) 122259) ((-994 . -1204) T) ((-126 . -1200) T) ((-904 . -1204) T) ((-684 . -285) NIL) ((-1247 . -605) 122241) ((-1161 . -23) T) ((-1160 . -23) T) ((-1154 . -23) T) ((-994 . -550) T) ((-1129 . -230) 122225) ((-904 . -550) T) ((-1113 . -23) T) ((-247 . -605) 122207) ((-1062 . -1087) T) ((-790 . -130) T) ((-701 . -605) 122189) ((-315 . -708) 122099) ((-312 . -708) 122028) ((-689 . -605) 122010) ((-689 . -606) 121955) ((-406 . -399) 121939) ((-437 . -1087) T) ((-485 . -25) T) ((-485 . -21) T) ((-1107 . -1087) T) ((-216 . -25) T) ((-216 . -21) T) ((-703 . -410) 121923) ((-705 . -1028) 121892) ((-1246 . -605) 121804) ((-1246 . -606) 121765) ((-1232 . -171) T) ((-244 . -34) T) ((-342 . -608) 121695) ((-393 . -608) 121677) ((-916 . -964) T) ((-1186 . -1200) T) ((-652 . -782) 121656) ((-652 . -785) 121635) ((-397 . -394) T) ((-521 . -102) 121613) ((-1025 . -1087) T) ((-221 . -985) 121597) ((-502 . -102) T) ((-615 . -605) 121579) ((-45 . -841) NIL) ((-615 . -606) 121556) ((-1025 . -602) 121531) ((-891 . -512) 121464) ((-342 . -1039) T) ((-117 . -606) NIL) ((-117 . -605) 121446) ((-862 . -1200) T) ((-660 . -416) 121430) ((-660 . -1110) 121375) ((-498 . -150) 121357) ((-342 . -232) T) ((-342 . -242) T) ((-40 . -1045) 121302) ((-862 . -874) 121286) ((-862 . -876) 121211) ((-703 . -1046) T) ((-684 . -992) NIL) ((-3 . |UnionCategory|) T) ((-1230 . -47) 121181) ((-1209 . -47) 121158) ((-1128 . -1000) 121129) ((-224 . -910) T) ((-40 . -111) 121058) ((-862 . -1028) 120922) ((-1107 . -708) 120909) ((-1092 . -605) 120891) ((-1067 . -146) 120870) ((-1067 . -144) 120821) ((-994 . -362) T) ((-318 . -1188) 120787) ((-378 . -306) T) ((-318 . -1185) 120753) ((-315 . -171) 120732) ((-312 . -171) T) ((-993 . -230) 120709) ((-904 . -362) T) ((-575 . -1265) 120696) ((-516 . -1265) 120673) ((-358 . -146) 120652) ((-358 . -144) 120603) ((-352 . -146) 120582) ((-352 . -144) 120533) ((-600 . -1176) 120509) ((-344 . -146) 120488) ((-344 . -144) 120439) ((-318 . -35) 120405) ((-473 . -1176) 120384) ((0 . |EnumerationCategory|) T) ((-318 . -95) 120350) ((-378 . -1012) T) ((-108 . -146) T) ((-108 . -144) NIL) ((-45 . -234) 120300) ((-644 . -1087) T) ((-600 . -107) 120247) ((-483 . -130) T) ((-473 . -107) 120197) ((-239 . -1099) 120107) ((-862 . -376) 120091) ((-862 . -337) 120075) ((-239 . -23) 119945) ((-40 . -608) 119875) ((-1050 . -910) T) ((-1050 . -811) T) ((-575 . -367) T) ((-516 . -367) T) ((-350 . -1138) T) ((-326 . -34) T) ((-44 . -416) 119859) ((-1168 . -608) 119794) ((-863 . -1200) T) ((-389 . -735) 119778) ((-1259 . -512) 119711) ((-722 . -130) T) ((-662 . -608) 119695) ((-1238 . -550) 119674) ((-1231 . -1204) 119653) ((-1231 . -550) 119604) ((-1210 . -1204) 119583) ((-310 . -1070) T) ((-1210 . -550) 119534) ((-728 . -512) 119467) ((-1209 . -1200) 119446) ((-1209 . -876) 119319) ((-883 . -1087) T) ((-143 . -835) T) ((-1209 . -874) 119289) ((-681 . -605) 119271) ((-1161 . -130) T) ((-521 . -308) 119209) ((-1160 . -130) T) ((-140 . -512) NIL) ((-1154 . -130) T) ((-1113 . -130) T) ((-1014 . -992) T) ((-994 . -23) T) ((-350 . -38) 119174) ((-994 . -1099) T) ((-904 . -1099) T) ((-82 . -605) 119156) ((-40 . -1039) T) ((-860 . -1045) 119143) ((-993 . -348) NIL) ((-862 . -890) 119102) ((-691 . -102) T) ((-961 . -23) T) ((-594 . -1200) T) ((-904 . -23) T) ((-860 . -111) 119087) ((-426 . -1099) T) ((-212 . -1087) T) ((-472 . -47) 119057) ((-133 . -102) T) ((-40 . -232) 119029) ((-40 . -242) T) ((-116 . -102) T) ((-589 . -550) 119008) ((-588 . -550) 118987) ((-684 . -605) 118969) ((-684 . -606) 118877) ((-315 . -512) 118843) ((-312 . -512) 118735) ((-1230 . -1028) 118719) ((-1209 . -1028) 118505) ((-989 . -410) 118489) ((-426 . -23) T) ((-1107 . -171) T) ((-1232 . -289) T) ((-644 . -708) 118459) ((-143 . -1087) T) ((-48 . -992) T) ((-406 . -230) 118443) ((-294 . -234) 118393) ((-861 . -910) T) ((-861 . -811) NIL) ((-860 . -608) 118365) ((-855 . -841) T) ((-1209 . -337) 118335) ((-1209 . -376) 118305) ((-221 . -1108) 118289) ((-1246 . -287) 118266) ((-1194 . -638) 118191) ((-953 . -21) T) ((-953 . -25) T) ((-726 . -21) T) ((-726 . -25) T) ((-706 . -21) T) ((-706 . -25) T) ((-702 . -638) 118156) ((-451 . -21) T) ((-451 . -25) T) ((-338 . -102) T) ((-173 . -102) T) ((-989 . -1046) T) ((-860 . -1039) T) ((-765 . -102) T) ((-1231 . -362) 118135) ((-1230 . -890) 118041) ((-1210 . -362) 118020) ((-1209 . -890) 117871) ((-1014 . -605) 117853) ((-406 . -819) 117806) ((-1161 . -491) 117772) ((-168 . -910) 117703) ((-1160 . -491) 117669) ((-1154 . -491) 117635) ((-703 . -1087) T) ((-1113 . -491) 117601) ((-574 . -1045) 117588) ((-558 . -1045) 117575) ((-493 . -1045) 117540) ((-315 . -289) 117519) ((-312 . -289) T) ((-353 . -605) 117501) ((-417 . -25) T) ((-417 . -21) T) ((-99 . -285) 117480) ((-574 . -111) 117465) ((-558 . -111) 117450) ((-493 . -111) 117406) ((-1163 . -876) 117373) ((-891 . -487) 117357) ((-48 . -605) 117339) ((-48 . -606) 117284) ((-239 . -130) 117154) ((-1219 . -910) 117133) ((-807 . -1204) 117112) ((-387 . -488) 117093) ((-1025 . -512) 116937) ((-387 . -605) 116903) ((-807 . -550) 116834) ((-579 . -638) 116809) ((-263 . -47) 116781) ((-246 . -47) 116738) ((-529 . -507) 116715) ((-574 . -608) 116687) ((-558 . -608) 116659) ((-493 . -608) 116592) ((-990 . -1200) T) ((-689 . -1045) 116557) ((-1238 . -23) T) ((-1238 . -1099) T) ((-1231 . -1099) T) ((-1210 . -1099) T) ((-993 . -369) 116529) ((-112 . -367) T) ((-472 . -890) 116435) ((-1231 . -23) T) ((-894 . -605) 116417) ((-55 . -608) 116399) ((-91 . -107) 116383) ((-1194 . -717) T) ((-895 . -841) 116334) ((-691 . -1138) T) ((-689 . -111) 116290) ((-1210 . -23) T) ((-589 . -1099) T) ((-588 . -1099) T) ((-703 . -708) 116119) ((-702 . -717) T) ((-1107 . -289) T) ((-994 . -130) T) ((-485 . -841) T) ((-961 . -130) T) ((-904 . -130) T) ((-790 . -25) T) ((-216 . -841) T) ((-790 . -21) T) ((-574 . -1039) T) ((-558 . -1039) T) ((-493 . -1039) T) ((-589 . -23) T) ((-342 . -1265) 116096) ((-318 . -450) 116075) ((-338 . -308) 116062) ((-588 . -23) T) ((-426 . -130) T) ((-648 . -638) 116036) ((-244 . -1000) 116020) ((-862 . -306) T) ((-1270 . -1260) 116004) ((-762 . -783) T) ((-762 . -786) T) ((-691 . -38) 115991) ((-558 . -232) T) ((-493 . -242) T) ((-493 . -232) T) ((-1137 . -234) 115941) ((-1074 . -899) 115920) ((-116 . -38) 115907) ((-208 . -791) T) ((-207 . -791) T) ((-206 . -791) T) ((-205 . -791) T) ((-862 . -1012) 115885) ((-1259 . -487) 115869) ((-773 . -899) 115848) ((-771 . -899) 115827) ((-1173 . -1200) T) ((-452 . -899) 115806) ((-728 . -487) 115790) ((-1074 . -638) 115715) ((-689 . -608) 115650) ((-773 . -638) 115575) ((-615 . -1045) 115562) ((-477 . -1200) T) ((-342 . -367) T) ((-140 . -487) 115544) ((-771 . -638) 115469) ((-1128 . -1200) T) ((-459 . -638) 115440) ((-263 . -876) 115299) ((-246 . -876) NIL) ((-117 . -1045) 115244) ((-452 . -638) 115169) ((-654 . -1028) 115146) ((-615 . -111) 115131) ((-354 . -1028) 115115) ((-351 . -1028) 115099) ((-343 . -1028) 115083) ((-263 . -1028) 114927) ((-246 . -1028) 114803) ((-117 . -111) 114732) ((-59 . -1200) T) ((-517 . -1200) T) ((-514 . -1200) T) ((-495 . -1200) T) ((-494 . -1200) T) ((-436 . -605) 114714) ((-433 . -605) 114696) ((-3 . -102) T) ((-1017 . -1193) 114665) ((-824 . -102) T) ((-679 . -57) 114623) ((-689 . -1039) T) ((-50 . -638) 114597) ((-288 . -450) T) ((-474 . -1193) 114566) ((0 . -102) T) ((-575 . -638) 114531) ((-516 . -638) 114476) ((-49 . -102) T) ((-900 . -1028) 114463) ((-689 . -242) T) ((-1067 . -408) 114442) ((-722 . -631) 114390) ((-989 . -1087) T) ((-703 . -171) 114281) ((-615 . -608) 114176) ((-485 . -982) 114158) ((-263 . -376) 114142) ((-246 . -376) 114126) ((-398 . -1087) T) ((-1016 . -102) 114104) ((-338 . -38) 114088) ((-216 . -982) 114070) ((-117 . -608) 114000) ((-173 . -38) 113932) ((-1230 . -306) 113911) ((-1209 . -306) 113890) ((-648 . -717) T) ((-99 . -605) 113872) ((-1154 . -631) 113824) ((-483 . -25) T) ((-483 . -21) T) ((-1209 . -1012) 113776) ((-615 . -1039) T) ((-378 . -403) T) ((-389 . -102) T) ((-1092 . -610) 113691) ((-263 . -890) 113637) ((-246 . -890) 113614) ((-117 . -1039) T) ((-807 . -1099) T) ((-1074 . -717) T) ((-615 . -232) 113593) ((-613 . -102) T) ((-773 . -717) T) ((-771 . -717) T) ((-412 . -1099) T) ((-117 . -242) T) ((-40 . -367) NIL) ((-117 . -232) NIL) ((-452 . -717) T) ((-807 . -23) T) ((-722 . -25) T) ((-722 . -21) T) ((-693 . -841) T) ((-1064 . -285) 113572) ((-78 . -395) T) ((-78 . -394) T) ((-531 . -758) 113554) ((-684 . -1045) 113504) ((-1238 . -130) T) ((-1231 . -130) T) ((-1210 . -130) T) ((-1129 . -410) 113488) ((-627 . -366) 113420) ((-599 . -366) 113352) ((-1143 . -1136) 113336) ((-103 . -1087) 113314) ((-1161 . -25) T) ((-1161 . -21) T) ((-1160 . -21) T) ((-989 . -708) 113262) ((-222 . -638) 113229) ((-684 . -111) 113163) ((-50 . -717) T) ((-1160 . -25) T) ((-350 . -348) T) ((-1154 . -21) T) ((-1067 . -450) 113114) ((-1154 . -25) T) ((-703 . -512) 113061) ((-575 . -717) T) ((-516 . -717) T) ((-1113 . -21) T) ((-1113 . -25) T) ((-589 . -130) T) ((-588 . -130) T) ((-358 . -450) T) ((-352 . -450) T) ((-344 . -450) T) ((-472 . -306) 113040) ((-312 . -285) 112975) ((-108 . -450) T) ((-79 . -439) T) ((-79 . -394) T) ((-475 . -102) T) ((-1274 . -605) 112957) ((-1274 . -606) 112939) ((-1067 . -401) 112918) ((-1025 . -487) 112849) ((-558 . -786) T) ((-558 . -783) T) ((-1051 . -234) 112795) ((-358 . -401) 112746) ((-352 . -401) 112697) ((-344 . -401) 112648) ((-1261 . -1099) T) ((-684 . -608) 112583) ((-1261 . -23) T) ((-1248 . -102) T) ((-174 . -605) 112565) ((-1129 . -1046) T) ((-660 . -735) 112549) ((-1165 . -144) 112528) ((-1165 . -146) 112507) ((-1133 . -1087) T) ((-1133 . -1059) 112476) ((-69 . -1200) T) ((-1014 . -1045) 112413) ((-856 . -1046) T) ((-239 . -631) 112319) ((-684 . -1039) T) ((-353 . -1045) 112264) ((-61 . -1200) T) ((-1014 . -111) 112180) ((-891 . -605) 112091) ((-684 . -242) T) ((-684 . -232) NIL) ((-834 . -839) 112070) ((-689 . -786) T) ((-689 . -783) T) ((-993 . -410) 112047) ((-353 . -111) 111976) ((-378 . -910) T) ((-406 . -839) 111955) ((-703 . -289) 111866) ((-222 . -717) T) ((-1238 . -491) 111832) ((-1231 . -491) 111798) ((-1210 . -491) 111764) ((-572 . -1087) T) ((-315 . -992) 111743) ((-221 . -1087) 111721) ((-318 . -963) 111683) ((-105 . -102) T) ((-48 . -1045) 111648) ((-1270 . -102) T) ((-380 . -102) T) ((-48 . -111) 111604) ((-994 . -631) 111586) ((-1232 . -605) 111568) ((-529 . -102) T) ((-498 . -102) T) ((-1120 . -1121) 111552) ((-151 . -1253) 111536) ((-244 . -1200) T) ((-1199 . -102) T) ((-1014 . -608) 111473) ((-1159 . -1204) 111452) ((-353 . -608) 111382) ((-1112 . -1204) 111361) ((-239 . -21) 111271) ((-239 . -25) 111122) ((-127 . -119) 111106) ((-121 . -119) 111090) ((-44 . -735) 111074) ((-1159 . -550) 110985) ((-1112 . -550) 110916) ((-1025 . -285) 110891) ((-1153 . -1070) T) ((-984 . -1070) T) ((-807 . -130) T) ((-117 . -786) NIL) ((-117 . -783) NIL) ((-354 . -306) T) ((-351 . -306) T) ((-343 . -306) T) ((-250 . -1099) 110801) ((-249 . -1099) 110711) ((-1014 . -1039) T) ((-993 . -1046) T) ((-48 . -608) 110644) ((-342 . -638) 110589) ((-613 . -38) 110573) ((-1259 . -605) 110535) ((-1259 . -606) 110496) ((-1064 . -605) 110478) ((-1014 . -242) T) ((-353 . -1039) T) ((-806 . -1253) 110448) ((-250 . -23) T) ((-249 . -23) T) ((-977 . -605) 110430) ((-728 . -606) 110391) ((-728 . -605) 110373) ((-790 . -841) 110352) ((-1146 . -150) 110299) ((-989 . -512) 110211) ((-353 . -232) T) ((-353 . -242) T) ((-387 . -608) 110192) ((-994 . -25) T) ((-140 . -605) 110174) ((-140 . -606) 110133) ((-900 . -306) T) ((-994 . -21) T) ((-961 . -25) T) ((-904 . -21) T) ((-904 . -25) T) ((-426 . -21) T) ((-426 . -25) T) ((-834 . -410) 110117) ((-48 . -1039) T) ((-1268 . -1260) 110101) ((-1266 . -1260) 110085) ((-1025 . -596) 110060) ((-315 . -606) 109921) ((-315 . -605) 109903) ((-312 . -606) NIL) ((-312 . -605) 109885) ((-48 . -242) T) ((-48 . -232) T) ((-644 . -285) 109846) ((-544 . -234) 109796) ((-138 . -605) 109763) ((-135 . -605) 109745) ((-114 . -605) 109727) ((-475 . -38) 109692) ((-1270 . -1267) 109671) ((-1261 . -130) T) ((-1269 . -1046) T) ((-1069 . -102) T) ((-88 . -1200) T) ((-498 . -308) NIL) ((-990 . -107) 109655) ((-879 . -1087) T) ((-875 . -1087) T) ((-1246 . -641) 109639) ((-1246 . -372) 109623) ((-326 . -1200) T) ((-586 . -841) T) ((-1129 . -1087) T) ((-1129 . -1042) 109563) ((-103 . -512) 109496) ((-917 . -605) 109478) ((-342 . -717) T) ((-30 . -605) 109460) ((-856 . -1087) T) ((-834 . -1046) 109439) ((-40 . -638) 109384) ((-224 . -1204) T) ((-406 . -1046) T) ((-1145 . -150) 109366) ((-989 . -289) 109317) ((-609 . -1087) T) ((-224 . -550) T) ((-318 . -1227) 109301) ((-318 . -1224) 109271) ((-1173 . -1176) 109250) ((-1062 . -605) 109232) ((-637 . -150) 109216) ((-624 . -150) 109162) ((-1173 . -107) 109112) ((-477 . -1176) 109091) ((-485 . -146) T) ((-485 . -144) NIL) ((-1107 . -606) 109006) ((-437 . -605) 108988) ((-216 . -146) T) ((-216 . -144) NIL) ((-1107 . -605) 108970) ((-129 . -102) T) ((-52 . -102) T) ((-1210 . -631) 108922) ((-477 . -107) 108872) ((-983 . -23) T) ((-1270 . -38) 108842) ((-1159 . -1099) T) ((-1112 . -1099) T) ((-1050 . -1204) T) ((-310 . -102) T) ((-845 . -1099) T) ((-942 . -1204) 108821) ((-479 . -1204) 108800) ((-722 . -841) 108779) ((-1050 . -550) T) ((-942 . -550) 108710) ((-1159 . -23) T) ((-1112 . -23) T) ((-845 . -23) T) ((-479 . -550) 108641) ((-1129 . -708) 108573) ((-1133 . -512) 108506) ((-1025 . -606) NIL) ((-1025 . -605) 108488) ((-96 . -1070) T) ((-856 . -708) 108458) ((-1194 . -47) 108427) ((-250 . -130) T) ((-249 . -130) T) ((-1091 . -1087) T) ((-993 . -1087) T) ((-62 . -605) 108409) ((-1154 . -841) NIL) ((-1014 . -783) T) ((-1014 . -786) T) ((-1274 . -1045) 108396) ((-1274 . -111) 108381) ((-860 . -638) 108368) ((-1238 . -25) T) ((-1238 . -21) T) ((-1231 . -21) T) ((-1231 . -25) T) ((-1210 . -21) T) ((-1210 . -25) T) ((-1017 . -150) 108352) ((-862 . -811) 108331) ((-862 . -910) T) ((-703 . -285) 108258) ((-589 . -21) T) ((-589 . -25) T) ((-588 . -21) T) ((-40 . -717) T) ((-221 . -512) 108191) ((-588 . -25) T) ((-474 . -150) 108175) ((-461 . -150) 108159) ((-911 . -785) T) ((-911 . -717) T) ((-762 . -784) T) ((-762 . -785) T) ((-504 . -1087) T) ((-500 . -1087) T) ((-762 . -717) T) ((-224 . -362) T) ((-1143 . -1087) 108137) ((-861 . -1204) T) ((-644 . -605) 108119) ((-861 . -550) T) ((-684 . -367) NIL) ((-1274 . -608) 108101) ((-358 . -1253) 108085) ((-660 . -102) T) ((-352 . -1253) 108069) ((-344 . -1253) 108053) ((-1269 . -1087) T) ((-518 . -841) 108032) ((-808 . -450) 108011) ((-1036 . -1087) T) ((-1036 . -1059) 107940) ((-1017 . -966) 107909) ((-810 . -1099) T) ((-993 . -708) 107854) ((-385 . -1099) T) ((-474 . -966) 107823) ((-461 . -966) 107792) ((-110 . -150) 107774) ((-73 . -605) 107756) ((-883 . -605) 107738) ((-1067 . -715) 107717) ((-1274 . -1039) T) ((-807 . -631) 107665) ((-293 . -1046) 107607) ((-168 . -1204) 107512) ((-224 . -1099) T) ((-323 . -23) T) ((-1154 . -982) 107464) ((-834 . -1087) T) ((-1232 . -1045) 107369) ((-1113 . -731) 107348) ((-1230 . -910) 107327) ((-1209 . -910) 107306) ((-860 . -717) T) ((-168 . -550) 107217) ((-574 . -638) 107204) ((-558 . -638) 107191) ((-406 . -1087) T) ((-262 . -1087) T) ((-212 . -605) 107173) ((-493 . -638) 107138) ((-224 . -23) T) ((-1209 . -811) 107091) ((-1268 . -102) T) ((-353 . -1265) 107068) ((-1266 . -102) T) ((-1232 . -111) 106960) ((-143 . -605) 106942) ((-983 . -130) T) ((-44 . -102) T) ((-239 . -841) 106893) ((-1219 . -1204) 106872) ((-103 . -487) 106856) ((-1269 . -708) 106826) ((-1074 . -47) 106787) ((-1050 . -1099) T) ((-942 . -1099) T) ((-127 . -34) T) ((-121 . -34) T) ((-773 . -47) 106764) ((-771 . -47) 106736) ((-1219 . -550) 106647) ((-353 . -367) T) ((-479 . -1099) T) ((-1159 . -130) T) ((-1112 . -130) T) ((-452 . -47) 106626) ((-861 . -362) T) ((-845 . -130) T) ((-151 . -102) T) ((-1050 . -23) T) ((-942 . -23) T) ((-565 . -550) T) ((-807 . -25) T) ((-807 . -21) T) ((-1129 . -512) 106559) ((-585 . -1070) T) ((-579 . -1028) 106543) ((-1232 . -608) 106417) ((-479 . -23) T) ((-350 . -1046) T) ((-1194 . -890) 106398) ((-660 . -308) 106336) ((-1100 . -1253) 106306) ((-689 . -638) 106271) ((-993 . -171) T) ((-953 . -144) 106250) ((-627 . -1087) T) ((-599 . -1087) T) ((-953 . -146) 106229) ((-994 . -841) T) ((-726 . -146) 106208) ((-726 . -144) 106187) ((-961 . -841) T) ((-472 . -910) 106166) ((-315 . -1045) 106076) ((-312 . -1045) 106005) ((-989 . -285) 105963) ((-406 . -708) 105915) ((-691 . -839) T) ((-1232 . -1039) T) ((-315 . -111) 105811) ((-312 . -111) 105724) ((-954 . -102) T) ((-806 . -102) 105514) ((-703 . -606) NIL) ((-703 . -605) 105496) ((-648 . -1028) 105392) ((-1232 . -325) 105336) ((-1025 . -287) 105311) ((-574 . -717) T) ((-558 . -785) T) ((-168 . -362) 105262) ((-558 . -782) T) ((-558 . -717) T) ((-493 . -717) T) ((-1133 . -487) 105246) ((-1074 . -876) NIL) ((-861 . -1099) T) ((-117 . -899) NIL) ((-1268 . -1267) 105222) ((-1266 . -1267) 105201) ((-773 . -876) NIL) ((-771 . -876) 105060) ((-1261 . -25) T) ((-1261 . -21) T) ((-1197 . -102) 105038) ((-1093 . -394) T) ((-615 . -638) 105025) ((-452 . -876) NIL) ((-665 . -102) 105003) ((-1074 . -1028) 104830) ((-861 . -23) T) ((-773 . -1028) 104689) ((-771 . -1028) 104546) ((-117 . -638) 104491) ((-452 . -1028) 104367) ((-315 . -608) 103931) ((-312 . -608) 103814) ((-639 . -1028) 103798) ((-619 . -102) T) ((-221 . -487) 103782) ((-1246 . -34) T) ((-135 . -608) 103766) ((-627 . -708) 103750) ((-599 . -708) 103734) ((-660 . -38) 103694) ((-318 . -102) T) ((-85 . -605) 103676) ((-50 . -1028) 103660) ((-1107 . -1045) 103647) ((-1074 . -376) 103631) ((-773 . -376) 103615) ((-60 . -57) 103577) ((-689 . -785) T) ((-689 . -782) T) ((-575 . -1028) 103564) ((-516 . -1028) 103541) ((-689 . -717) T) ((-323 . -130) T) ((-315 . -1039) 103431) ((-312 . -1039) T) ((-168 . -1099) T) ((-771 . -376) 103415) ((-45 . -150) 103365) ((-994 . -982) 103347) ((-452 . -376) 103331) ((-406 . -171) T) ((-315 . -242) 103310) ((-312 . -242) T) ((-312 . -232) NIL) ((-293 . -1087) 103092) ((-224 . -130) T) ((-1107 . -111) 103077) ((-168 . -23) T) ((-790 . -146) 103056) ((-790 . -144) 103035) ((-250 . -631) 102941) ((-249 . -631) 102847) ((-318 . -283) 102813) ((-1143 . -512) 102746) ((-1120 . -1087) T) ((-224 . -1048) T) ((-806 . -308) 102684) ((-1074 . -890) 102619) ((-773 . -890) 102562) ((-771 . -890) 102546) ((-1268 . -38) 102516) ((-1266 . -38) 102486) ((-1219 . -1099) T) ((-846 . -1099) T) ((-452 . -890) 102463) ((-849 . -1087) T) ((-1219 . -23) T) ((-1107 . -608) 102435) ((-565 . -1099) T) ((-846 . -23) T) ((-615 . -717) T) ((-354 . -910) T) ((-351 . -910) T) ((-288 . -102) T) ((-343 . -910) T) ((-1050 . -130) T) ((-960 . -1070) T) ((-942 . -130) T) ((-117 . -785) NIL) ((-117 . -782) NIL) ((-117 . -717) T) ((-684 . -899) NIL) ((-1036 . -512) 102336) ((-479 . -130) T) ((-565 . -23) T) ((-665 . -308) 102274) ((-627 . -752) T) ((-599 . -752) T) ((-1210 . -841) NIL) ((-993 . -289) T) ((-250 . -21) T) ((-684 . -638) 102224) ((-350 . -1087) T) ((-250 . -25) T) ((-249 . -21) T) ((-249 . -25) T) ((-151 . -38) 102208) ((-2 . -102) T) ((-900 . -910) T) ((-480 . -1253) 102178) ((-222 . -1028) 102155) ((-1107 . -1039) T) ((-702 . -306) T) ((-293 . -708) 102097) ((-691 . -1046) T) ((-485 . -450) T) ((-406 . -512) 102009) ((-216 . -450) T) ((-1107 . -232) T) ((-294 . -150) 101959) ((-989 . -606) 101920) ((-989 . -605) 101902) ((-979 . -605) 101884) ((-116 . -1046) T) ((-644 . -1045) 101868) ((-224 . -491) T) ((-398 . -605) 101850) ((-398 . -606) 101827) ((-1043 . -1253) 101797) ((-644 . -111) 101776) ((-1129 . -487) 101760) ((-806 . -38) 101730) ((-63 . -439) T) ((-63 . -394) T) ((-1146 . -102) T) ((-861 . -130) T) ((-482 . -102) 101708) ((-1274 . -367) T) ((-1067 . -102) T) ((-1049 . -102) T) ((-350 . -708) 101653) ((-722 . -146) 101632) ((-722 . -144) 101611) ((-644 . -608) 101529) ((-1014 . -638) 101466) ((-521 . -1087) 101444) ((-358 . -102) T) ((-352 . -102) T) ((-344 . -102) T) ((-108 . -102) T) ((-502 . -1087) T) ((-353 . -638) 101389) ((-1159 . -631) 101337) ((-1112 . -631) 101285) ((-384 . -507) 101264) ((-824 . -839) 101243) ((-378 . -1204) T) ((-684 . -717) T) ((-338 . -1046) T) ((-1210 . -982) 101195) ((-173 . -1046) T) ((-103 . -605) 101127) ((-1161 . -144) 101106) ((-1161 . -146) 101085) ((-378 . -550) T) ((-1160 . -146) 101064) ((-1160 . -144) 101043) ((-1154 . -144) 100950) ((-406 . -289) T) ((-1154 . -146) 100857) ((-1113 . -146) 100836) ((-1113 . -144) 100815) ((-318 . -38) 100656) ((-168 . -130) T) ((-312 . -786) NIL) ((-312 . -783) NIL) ((-644 . -1039) T) ((-48 . -638) 100621) ((-883 . -608) 100598) ((-1153 . -102) T) ((-984 . -102) T) ((-983 . -21) T) ((-127 . -1000) 100582) ((-121 . -1000) 100566) ((-983 . -25) T) ((-891 . -119) 100550) ((-1145 . -102) T) ((-807 . -841) 100529) ((-1219 . -130) T) ((-1159 . -25) T) ((-1159 . -21) T) ((-846 . -130) T) ((-1112 . -25) T) ((-1112 . -21) T) ((-845 . -25) T) ((-845 . -21) T) ((-773 . -306) 100508) ((-637 . -102) 100486) ((-624 . -102) T) ((-1146 . -308) 100281) ((-565 . -130) T) ((-613 . -839) 100260) ((-1143 . -487) 100244) ((-1137 . -150) 100194) ((-1133 . -605) 100156) ((-1133 . -606) 100117) ((-1014 . -782) T) ((-1014 . -785) T) ((-1014 . -717) T) ((-703 . -1045) 99940) ((-482 . -308) 99878) ((-451 . -416) 99848) ((-350 . -171) T) ((-288 . -38) 99835) ((-273 . -102) T) ((-272 . -102) T) ((-271 . -102) T) ((-270 . -102) T) ((-269 . -102) T) ((-268 . -102) T) ((-342 . -1028) 99812) ((-267 . -102) T) ((-211 . -102) T) ((-210 . -102) T) ((-208 . -102) T) ((-207 . -102) T) ((-206 . -102) T) ((-205 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-194 . -102) T) ((-193 . -102) T) ((-192 . -102) T) ((-353 . -717) T) ((-703 . -111) 99621) ((-660 . -230) 99605) ((-575 . -306) T) ((-516 . -306) T) ((-293 . -512) 99554) ((-108 . -308) NIL) ((-72 . -394) T) ((-1100 . -102) 99344) ((-824 . -410) 99328) ((-1107 . -786) T) ((-1107 . -783) T) ((-691 . -1087) T) ((-572 . -605) 99310) ((-378 . -362) T) ((-168 . -491) 99288) ((-221 . -605) 99220) ((-133 . -1087) T) ((-116 . -1087) T) ((-48 . -717) T) ((-1036 . -487) 99185) ((-140 . -424) 99167) ((-140 . -367) T) ((-1017 . -102) T) ((-510 . -507) 99146) ((-703 . -608) 98902) ((-474 . -102) T) ((-461 . -102) T) ((-1024 . -1099) T) ((-1168 . -1028) 98837) ((-1161 . -35) 98803) ((-1161 . -95) 98769) ((-1161 . -1188) 98735) ((-1161 . -1185) 98701) ((-1145 . -308) NIL) ((-89 . -395) T) ((-89 . -394) T) ((-1067 . -1138) 98680) ((-1160 . -1185) 98646) ((-1160 . -1188) 98612) ((-1024 . -23) T) ((-1160 . -95) 98578) ((-565 . -491) T) ((-1160 . -35) 98544) ((-1154 . -1185) 98510) ((-1154 . -1188) 98476) ((-1154 . -95) 98442) ((-360 . -1099) T) ((-358 . -1138) 98421) ((-352 . -1138) 98400) ((-344 . -1138) 98379) ((-1154 . -35) 98345) ((-1113 . -35) 98311) ((-1113 . -95) 98277) ((-108 . -1138) T) ((-1113 . -1188) 98243) ((-824 . -1046) 98222) ((-637 . -308) 98160) ((-624 . -308) 98011) ((-1113 . -1185) 97977) ((-703 . -1039) T) ((-1050 . -631) 97959) ((-1067 . -38) 97827) ((-942 . -631) 97775) ((-994 . -146) T) ((-994 . -144) NIL) ((-378 . -1099) T) ((-323 . -25) T) ((-321 . -23) T) ((-933 . -841) 97754) ((-703 . -325) 97731) ((-479 . -631) 97679) ((-40 . -1028) 97567) ((-703 . -232) T) ((-691 . -708) 97554) ((-338 . -1087) T) ((-173 . -1087) T) ((-330 . -841) T) ((-417 . -450) 97504) ((-378 . -23) T) ((-358 . -38) 97469) ((-352 . -38) 97434) ((-344 . -38) 97399) ((-80 . -439) T) ((-80 . -394) T) ((-224 . -25) T) ((-224 . -21) T) ((-827 . -1099) T) ((-108 . -38) 97349) ((-818 . -1099) T) ((-765 . -1087) T) ((-116 . -708) 97336) ((-662 . -1028) 97320) ((-604 . -102) T) ((-827 . -23) T) ((-818 . -23) T) ((-1143 . -285) 97297) ((-1100 . -308) 97235) ((-1089 . -234) 97219) ((-64 . -395) T) ((-64 . -394) T) ((-110 . -102) T) ((-40 . -376) 97196) ((-96 . -102) T) ((-643 . -843) 97180) ((-1122 . -1070) T) ((-1050 . -21) T) ((-1050 . -25) T) ((-806 . -230) 97149) ((-942 . -25) T) ((-942 . -21) T) ((-613 . -1046) T) ((-479 . -25) T) ((-479 . -21) T) ((-1017 . -308) 97087) ((-879 . -605) 97069) ((-875 . -605) 97051) ((-250 . -841) 97002) ((-249 . -841) 96953) ((-521 . -512) 96886) ((-861 . -631) 96863) ((-474 . -308) 96801) ((-461 . -308) 96739) ((-350 . -289) T) ((-1143 . -1234) 96723) ((-1129 . -605) 96685) ((-1129 . -606) 96646) ((-1127 . -102) T) ((-989 . -1045) 96542) ((-40 . -890) 96494) ((-1143 . -596) 96471) ((-1274 . -638) 96458) ((-856 . -488) 96435) ((-1051 . -150) 96381) ((-862 . -1204) T) ((-989 . -111) 96263) ((-338 . -708) 96247) ((-856 . -605) 96209) ((-173 . -708) 96141) ((-406 . -285) 96099) ((-862 . -550) T) ((-108 . -399) 96081) ((-84 . -383) T) ((-84 . -394) T) ((-691 . -171) T) ((-609 . -605) 96063) ((-99 . -717) T) ((-480 . -102) 95853) ((-99 . -471) T) ((-116 . -171) T) ((-1100 . -38) 95823) ((-168 . -631) 95771) ((-1043 . -102) T) ((-989 . -608) 95661) ((-861 . -25) T) ((-806 . -237) 95640) ((-861 . -21) T) ((-809 . -102) T) ((-413 . -102) T) ((-384 . -102) T) ((-110 . -308) NIL) ((-226 . -102) 95618) ((-127 . -1200) T) ((-121 . -1200) T) ((-1024 . -130) T) ((-660 . -366) 95602) ((-989 . -1039) T) ((-1219 . -631) 95550) ((-1091 . -605) 95532) ((-993 . -605) 95514) ((-513 . -23) T) ((-508 . -23) T) ((-342 . -306) T) ((-506 . -23) T) ((-321 . -130) T) ((-3 . -1087) T) ((-993 . -606) 95498) ((-989 . -242) 95477) ((-989 . -232) 95456) ((-1274 . -717) T) ((-1238 . -144) 95435) ((-824 . -1087) T) ((-1238 . -146) 95414) ((-1231 . -146) 95393) ((-1231 . -144) 95372) ((-1230 . -1204) 95351) ((-1210 . -144) 95258) ((-1210 . -146) 95165) ((-1209 . -1204) 95144) ((-378 . -130) T) ((-558 . -876) 95126) ((0 . -1087) T) ((-173 . -171) T) ((-168 . -21) T) ((-168 . -25) T) ((-49 . -1087) T) ((-1232 . -638) 95031) ((-1230 . -550) 94982) ((-705 . -1099) T) ((-1209 . -550) 94933) ((-558 . -1028) 94915) ((-588 . -146) 94894) ((-588 . -144) 94873) ((-493 . -1028) 94816) ((-1122 . -1124) T) ((-87 . -383) T) ((-87 . -394) T) ((-862 . -362) T) ((-827 . -130) T) ((-818 . -130) T) ((-705 . -23) T) ((-504 . -605) 94782) ((-500 . -605) 94764) ((-1270 . -1046) T) ((-378 . -1048) T) ((-1016 . -1087) 94742) ((-55 . -1028) 94724) ((-891 . -34) T) ((-480 . -308) 94662) ((-585 . -102) T) ((-1143 . -606) 94623) ((-1143 . -605) 94555) ((-1159 . -841) 94534) ((-45 . -102) T) ((-1112 . -841) 94513) ((-808 . -102) T) ((-1219 . -25) T) ((-1219 . -21) T) ((-846 . -25) T) ((-44 . -366) 94497) ((-846 . -21) T) ((-722 . -450) 94448) ((-1269 . -605) 94430) ((-1043 . -308) 94368) ((-661 . -1070) T) ((-598 . -1070) T) ((-389 . -1087) T) ((-565 . -25) T) ((-565 . -21) T) ((-179 . -1070) T) ((-160 . -1070) T) ((-155 . -1070) T) ((-153 . -1070) T) ((-613 . -1087) T) ((-689 . -876) 94350) ((-1246 . -1200) T) ((-226 . -308) 94288) ((-143 . -367) T) ((-1036 . -606) 94230) ((-1036 . -605) 94173) ((-312 . -899) NIL) ((-689 . -1028) 94118) ((-702 . -910) T) ((-472 . -1204) 94097) ((-1160 . -450) 94076) ((-1154 . -450) 94055) ((-329 . -102) T) ((-862 . -1099) T) ((-315 . -638) 93876) ((-312 . -638) 93805) ((-472 . -550) 93756) ((-338 . -512) 93722) ((-544 . -150) 93672) ((-40 . -306) T) ((-834 . -605) 93654) ((-691 . -289) T) ((-862 . -23) T) ((-378 . -491) T) ((-1067 . -230) 93624) ((-510 . -102) T) ((-406 . -606) 93431) ((-406 . -605) 93413) ((-262 . -605) 93395) ((-116 . -289) T) ((-1232 . -717) T) ((-1230 . -362) 93374) ((-1209 . -362) 93353) ((-1259 . -34) T) ((-117 . -1200) T) ((-108 . -230) 93335) ((-1165 . -102) T) ((-475 . -1087) T) ((-521 . -487) 93319) ((-728 . -34) T) ((-480 . -38) 93289) ((-140 . -34) T) ((-117 . -874) 93266) ((-117 . -876) NIL) ((-615 . -1028) 93149) ((-635 . -841) 93128) ((-1258 . -102) T) ((-294 . -102) T) ((-703 . -367) 93107) ((-117 . -1028) 93084) ((-389 . -708) 93068) ((-613 . -708) 93052) ((-45 . -308) 92856) ((-807 . -144) 92835) ((-807 . -146) 92814) ((-1269 . -381) 92793) ((-810 . -841) T) ((-1248 . -1087) T) ((-1146 . -228) 92740) ((-385 . -841) 92719) ((-1238 . -1188) 92685) ((-1238 . -1185) 92651) ((-1231 . -1185) 92617) ((-513 . -130) T) ((-1231 . -1188) 92583) ((-1210 . -1185) 92549) ((-1210 . -1188) 92515) ((-1238 . -35) 92481) ((-1238 . -95) 92447) ((-627 . -605) 92416) ((-599 . -605) 92385) ((-224 . -841) T) ((-1231 . -95) 92351) ((-1231 . -35) 92317) ((-1230 . -1099) T) ((-1107 . -638) 92304) ((-1210 . -95) 92270) ((-1209 . -1099) T) ((-586 . -150) 92252) ((-1067 . -348) 92231) ((-173 . -289) T) ((-117 . -376) 92208) ((-117 . -337) 92185) ((-1210 . -35) 92151) ((-860 . -306) T) ((-312 . -785) NIL) ((-312 . -782) NIL) ((-315 . -717) 92000) ((-312 . -717) T) ((-472 . -362) 91979) ((-358 . -348) 91958) ((-352 . -348) 91937) ((-344 . -348) 91916) ((-315 . -471) 91895) ((-1230 . -23) T) ((-1209 . -23) T) ((-709 . -1099) T) ((-705 . -130) T) ((-643 . -102) T) ((-475 . -708) 91860) ((-45 . -281) 91810) ((-105 . -1087) T) ((-68 . -605) 91792) ((-960 . -102) T) ((-855 . -102) T) ((-615 . -890) 91751) ((-1270 . -1087) T) ((-380 . -1087) T) ((-1199 . -1087) T) ((-1100 . -230) 91720) ((-82 . -1200) T) ((-1050 . -841) T) ((-942 . -841) 91699) ((-117 . -890) NIL) ((-773 . -910) 91678) ((-704 . -841) T) ((-529 . -1087) T) ((-498 . -1087) T) ((-354 . -1204) T) ((-351 . -1204) T) ((-343 . -1204) T) ((-263 . -1204) 91657) ((-246 . -1204) 91636) ((-531 . -851) T) ((-479 . -841) 91615) ((-1129 . -1045) 91599) ((-389 . -752) T) ((-1145 . -819) T) ((-684 . -1200) T) ((-354 . -550) T) ((-351 . -550) T) ((-343 . -550) T) ((-263 . -550) 91530) ((-246 . -550) 91461) ((-523 . -1070) T) ((-1129 . -111) 91440) ((-451 . -735) 91410) ((-856 . -1045) 91380) ((-808 . -38) 91322) ((-684 . -874) 91304) ((-684 . -876) 91286) ((-294 . -308) 91090) ((-900 . -1204) T) ((-660 . -410) 91074) ((-856 . -111) 91039) ((-684 . -1028) 90984) ((-994 . -450) T) ((-900 . -550) T) ((-531 . -605) 90966) ((-575 . -910) T) ((-472 . -1099) T) ((-516 . -910) T) ((-1143 . -287) 90943) ((-904 . -450) T) ((-65 . -605) 90925) ((-624 . -228) 90871) ((-472 . -23) T) ((-1107 . -785) T) ((-862 . -130) T) ((-1107 . -782) T) ((-1261 . -1263) 90850) ((-1107 . -717) T) ((-644 . -638) 90824) ((-293 . -605) 90565) ((-1129 . -608) 90483) ((-1025 . -34) T) ((-806 . -839) 90462) ((-574 . -306) T) ((-558 . -306) T) ((-493 . -306) T) ((-1270 . -708) 90432) ((-684 . -376) 90414) ((-684 . -337) 90396) ((-475 . -171) T) ((-380 . -708) 90366) ((-856 . -608) 90301) ((-861 . -841) NIL) ((-558 . -1012) T) ((-493 . -1012) T) ((-1120 . -605) 90283) ((-1100 . -237) 90262) ((-213 . -102) T) ((-1137 . -102) T) ((-71 . -605) 90244) ((-1129 . -1039) T) ((-1165 . -38) 90141) ((-849 . -605) 90123) ((-558 . -543) T) ((-660 . -1046) T) ((-722 . -939) 90076) ((-1129 . -232) 90055) ((-1069 . -1087) T) ((-1024 . -25) T) ((-1024 . -21) T) ((-993 . -1045) 90000) ((-895 . -102) T) ((-856 . -1039) T) ((-684 . -890) NIL) ((-354 . -328) 89984) ((-354 . -362) T) ((-351 . -328) 89968) ((-351 . -362) T) ((-343 . -328) 89952) ((-343 . -362) T) ((-485 . -102) T) ((-1258 . -38) 89922) ((-521 . -677) 89872) ((-216 . -102) T) ((-1014 . -1028) 89752) ((-993 . -111) 89681) ((-1161 . -963) 89650) ((-1160 . -963) 89612) ((-518 . -150) 89596) ((-1067 . -369) 89575) ((-350 . -605) 89557) ((-321 . -21) T) ((-353 . -1028) 89534) ((-321 . -25) T) ((-1154 . -963) 89503) ((-1113 . -963) 89470) ((-76 . -605) 89452) ((-689 . -306) T) ((-168 . -841) 89431) ((-900 . -362) T) ((-378 . -25) T) ((-378 . -21) T) ((-900 . -328) 89418) ((-86 . -605) 89400) ((-689 . -1012) T) ((-667 . -841) T) ((-1230 . -130) T) ((-1209 . -130) T) ((-891 . -1000) 89384) ((-827 . -21) T) ((-48 . -1028) 89327) ((-827 . -25) T) ((-818 . -25) T) ((-818 . -21) T) ((-1268 . -1046) T) ((-1266 . -1046) T) ((-644 . -717) T) ((-1091 . -610) 89230) ((-993 . -608) 89160) ((-1269 . -1045) 89144) ((-1219 . -841) 89123) ((-806 . -410) 89092) ((-103 . -119) 89076) ((-129 . -1087) T) ((-52 . -1087) T) ((-916 . -605) 89058) ((-861 . -982) 89035) ((-814 . -102) T) ((-1269 . -111) 89014) ((-643 . -38) 88984) ((-565 . -841) T) ((-354 . -1099) T) ((-351 . -1099) T) ((-343 . -1099) T) ((-263 . -1099) T) ((-246 . -1099) T) ((-615 . -306) 88963) ((-1137 . -308) 88767) ((-522 . -1070) T) ((-310 . -1087) T) ((-654 . -23) T) ((-480 . -230) 88736) ((-151 . -1046) T) ((-354 . -23) T) ((-351 . -23) T) ((-343 . -23) T) ((-117 . -306) T) ((-263 . -23) T) ((-246 . -23) T) ((-993 . -1039) T) ((-703 . -899) 88715) ((-1143 . -608) 88692) ((-993 . -232) 88664) ((-993 . -242) T) ((-117 . -1012) NIL) ((-900 . -1099) T) ((-1231 . -450) 88643) ((-1210 . -450) 88622) ((-521 . -605) 88554) ((-703 . -638) 88479) ((-406 . -1045) 88431) ((-502 . -605) 88413) ((-900 . -23) T) ((-485 . -308) NIL) ((-1269 . -608) 88369) ((-472 . -130) T) ((-216 . -308) NIL) ((-406 . -111) 88307) ((-806 . -1046) 88237) ((-728 . -1085) 88221) ((-1230 . -491) 88187) ((-1209 . -491) 88153) ((-140 . -1085) 88135) ((-475 . -289) T) ((-1269 . -1039) T) ((-1051 . -102) T) ((-834 . -608) 88003) ((-498 . -512) NIL) ((-693 . -102) T) ((-480 . -237) 87982) ((-406 . -608) 87880) ((-1159 . -144) 87859) ((-1159 . -146) 87838) ((-1112 . -146) 87817) ((-1112 . -144) 87796) ((-627 . -1045) 87780) ((-599 . -1045) 87764) ((-660 . -1087) T) ((-660 . -1042) 87704) ((-1161 . -1237) 87688) ((-1161 . -1224) 87665) ((-485 . -1138) T) ((-1160 . -1229) 87626) ((-1160 . -1224) 87596) ((-1160 . -1227) 87580) ((-216 . -1138) T) ((-342 . -910) T) ((-809 . -265) 87564) ((-627 . -111) 87543) ((-599 . -111) 87522) ((-1154 . -1208) 87483) ((-834 . -1039) 87462) ((-1154 . -1224) 87439) ((-513 . -25) T) ((-493 . -301) T) ((-509 . -23) T) ((-508 . -25) T) ((-506 . -25) T) ((-505 . -23) T) ((-1154 . -1206) 87423) ((-406 . -1039) T) ((-318 . -1046) T) ((-684 . -306) T) ((-108 . -839) T) ((-703 . -717) T) ((-406 . -242) T) ((-406 . -232) 87402) ((-485 . -38) 87352) ((-216 . -38) 87302) ((-472 . -491) 87268) ((-1145 . -1131) T) ((-1088 . -102) T) ((-691 . -605) 87250) ((-691 . -606) 87165) ((-705 . -21) T) ((-705 . -25) T) ((-1122 . -102) T) ((-133 . -605) 87147) ((-116 . -605) 87129) ((-156 . -25) T) ((-1268 . -1087) T) ((-862 . -631) 87077) ((-1266 . -1087) T) ((-953 . -102) T) ((-726 . -102) T) ((-706 . -102) T) ((-451 . -102) T) ((-807 . -450) 87028) ((-44 . -1087) T) ((-1075 . -841) T) ((-654 . -130) T) ((-1051 . -308) 86879) ((-660 . -708) 86863) ((-288 . -1046) T) ((-354 . -130) T) ((-351 . -130) T) ((-343 . -130) T) ((-263 . -130) T) ((-246 . -130) T) ((-417 . -102) T) ((-151 . -1087) T) ((-45 . -228) 86813) ((-948 . -841) 86792) ((-989 . -638) 86730) ((-239 . -1253) 86700) ((-1014 . -306) T) ((-293 . -1045) 86621) ((-900 . -130) T) ((-40 . -910) T) ((-485 . -399) 86603) ((-353 . -306) T) ((-216 . -399) 86585) ((-1067 . -410) 86569) ((-293 . -111) 86485) ((-862 . -25) T) ((-862 . -21) T) ((-338 . -605) 86467) ((-1232 . -47) 86411) ((-224 . -146) T) ((-173 . -605) 86393) ((-1100 . -839) 86372) ((-765 . -605) 86354) ((-128 . -841) T) ((-600 . -234) 86301) ((-473 . -234) 86251) ((-1268 . -708) 86221) ((-48 . -306) T) ((-1266 . -708) 86191) ((-65 . -608) 86120) ((-954 . -1087) T) ((-806 . -1087) 85910) ((-311 . -102) T) ((-891 . -1200) T) ((-48 . -1012) T) ((-1209 . -631) 85818) ((-679 . -102) 85796) ((-44 . -708) 85780) ((-544 . -102) T) ((-293 . -608) 85711) ((-67 . -382) T) ((-67 . -394) T) ((-652 . -23) T) ((-660 . -752) T) ((-1197 . -1087) 85689) ((-350 . -1045) 85634) ((-665 . -1087) 85612) ((-1050 . -146) T) ((-942 . -146) 85591) ((-942 . -144) 85570) ((-790 . -102) T) ((-151 . -708) 85554) ((-479 . -146) 85533) ((-479 . -144) 85512) ((-350 . -111) 85441) ((-1067 . -1046) T) ((-321 . -841) 85420) ((-1238 . -963) 85389) ((-619 . -1087) T) ((-1231 . -963) 85351) ((-509 . -130) T) ((-505 . -130) T) ((-294 . -228) 85301) ((-358 . -1046) T) ((-352 . -1046) T) ((-344 . -1046) T) ((-293 . -1039) 85243) ((-1210 . -963) 85212) ((-378 . -841) T) ((-108 . -1046) T) ((-989 . -717) T) ((-860 . -910) T) ((-834 . -786) 85191) ((-834 . -783) 85170) ((-417 . -308) 85109) ((-466 . -102) T) ((-588 . -963) 85078) ((-318 . -1087) T) ((-406 . -786) 85057) ((-406 . -783) 85036) ((-498 . -487) 85018) ((-1232 . -1028) 84984) ((-1230 . -21) T) ((-1230 . -25) T) ((-1209 . -21) T) ((-1209 . -25) T) ((-806 . -708) 84926) ((-350 . -608) 84856) ((-689 . -403) T) ((-1259 . -1200) T) ((-598 . -102) T) ((-1100 . -410) 84825) ((-993 . -367) NIL) ((-661 . -102) T) ((-179 . -102) T) ((-160 . -102) T) ((-155 . -102) T) ((-153 . -102) T) ((-103 . -34) T) ((-728 . -1200) T) ((-44 . -752) T) ((-586 . -102) T) ((-77 . -395) T) ((-77 . -394) T) ((-643 . -646) 84809) ((-140 . -1200) T) ((-861 . -146) T) ((-861 . -144) NIL) ((-1199 . -93) T) ((-350 . -1039) T) ((-70 . -382) T) ((-70 . -394) T) ((-1152 . -102) T) ((-660 . -512) 84742) ((-679 . -308) 84680) ((-953 . -38) 84577) ((-726 . -38) 84547) ((-544 . -308) 84351) ((-315 . -1200) T) ((-350 . -232) T) ((-350 . -242) T) ((-312 . -1200) T) ((-288 . -1087) T) ((-1167 . -605) 84333) ((-702 . -1204) T) ((-1143 . -641) 84317) ((-1194 . -550) 84296) ((-702 . -550) T) ((-315 . -874) 84280) ((-315 . -876) 84205) ((-312 . -874) 84166) ((-312 . -876) NIL) ((-790 . -308) 84131) ((-318 . -708) 83972) ((-323 . -322) 83949) ((-483 . -102) T) ((-472 . -25) T) ((-472 . -21) T) ((-417 . -38) 83923) ((-315 . -1028) 83586) ((-224 . -1185) T) ((-224 . -1188) T) ((-3 . -605) 83568) ((-312 . -1028) 83498) ((-2 . -1087) T) ((-2 . |RecordCategory|) T) ((-824 . -605) 83480) ((-1100 . -1046) 83410) ((-574 . -910) T) ((-558 . -811) T) ((-558 . -910) T) ((-493 . -910) T) ((-135 . -1028) 83394) ((-224 . -95) T) ((-75 . -439) T) ((-75 . -394) T) ((0 . -605) 83376) ((-168 . -146) 83355) ((-168 . -144) 83306) ((-224 . -35) T) ((-49 . -605) 83288) ((-475 . -1046) T) ((-485 . -230) 83270) ((-482 . -958) 83254) ((-480 . -839) 83233) ((-216 . -230) 83215) ((-81 . -439) T) ((-81 . -394) T) ((-1133 . -34) T) ((-806 . -171) 83194) ((-722 . -102) T) ((-1016 . -605) 83161) ((-498 . -285) 83136) ((-315 . -376) 83105) ((-312 . -376) 83066) ((-312 . -337) 83027) ((-1072 . -605) 83009) ((-807 . -939) 82956) ((-652 . -130) T) ((-1219 . -144) 82935) ((-1219 . -146) 82914) ((-1161 . -102) T) ((-1160 . -102) T) ((-1154 . -102) T) ((-1146 . -1087) T) ((-1113 . -102) T) ((-221 . -34) T) ((-288 . -708) 82901) ((-1146 . -602) 82877) ((-586 . -308) NIL) ((-482 . -1087) 82855) ((-389 . -605) 82837) ((-508 . -841) T) ((-1137 . -228) 82787) ((-1238 . -1237) 82771) ((-1238 . -1224) 82748) ((-1231 . -1229) 82709) ((-1231 . -1224) 82679) ((-1231 . -1227) 82663) ((-1210 . -1208) 82624) ((-1210 . -1224) 82601) ((-613 . -605) 82583) ((-1210 . -1206) 82567) ((-689 . -910) T) ((-1161 . -283) 82533) ((-1160 . -283) 82499) ((-1154 . -283) 82465) ((-1067 . -1087) T) ((-1049 . -1087) T) ((-48 . -301) T) ((-315 . -890) 82431) ((-312 . -890) NIL) ((-1049 . -1056) 82410) ((-1107 . -876) 82392) ((-790 . -38) 82376) ((-263 . -631) 82324) ((-246 . -631) 82272) ((-691 . -1045) 82259) ((-588 . -1224) 82236) ((-1113 . -283) 82202) ((-318 . -171) 82133) ((-358 . -1087) T) ((-352 . -1087) T) ((-344 . -1087) T) ((-498 . -19) 82115) ((-1107 . -1028) 82097) ((-1089 . -150) 82081) ((-108 . -1087) T) ((-116 . -1045) 82068) ((-702 . -362) T) ((-498 . -596) 82043) ((-691 . -111) 82028) ((-435 . -102) T) ((-45 . -1136) 81978) ((-116 . -111) 81963) ((-627 . -711) T) ((-599 . -711) T) ((-806 . -512) 81896) ((-1025 . -1200) T) ((-933 . -150) 81880) ((-1159 . -450) 81811) ((-1153 . -1087) T) ((-1145 . -1087) T) ((-523 . -102) T) ((-518 . -102) 81761) ((-1129 . -638) 81735) ((-1112 . -450) 81686) ((-1074 . -1204) 81665) ((-773 . -1204) 81644) ((-771 . -1204) 81623) ((-62 . -1200) T) ((-475 . -605) 81575) ((-475 . -606) 81497) ((-1074 . -550) 81428) ((-984 . -1087) T) ((-773 . -550) 81339) ((-771 . -550) 81270) ((-480 . -410) 81239) ((-615 . -910) 81218) ((-452 . -1204) 81197) ((-722 . -308) 81184) ((-691 . -608) 81156) ((-397 . -605) 81138) ((-665 . -512) 81071) ((-654 . -25) T) ((-654 . -21) T) ((-452 . -550) 81002) ((-354 . -25) T) ((-354 . -21) T) ((-117 . -910) T) ((-117 . -811) NIL) ((-351 . -25) T) ((-351 . -21) T) ((-343 . -25) T) ((-343 . -21) T) ((-263 . -25) T) ((-263 . -21) T) ((-246 . -25) T) ((-246 . -21) T) ((-83 . -383) T) ((-83 . -394) T) ((-133 . -608) 80984) ((-116 . -608) 80956) ((-1248 . -605) 80938) ((-1194 . -1099) T) ((-1194 . -23) T) ((-1154 . -308) 80823) ((-1113 . -308) 80810) ((-1067 . -708) 80678) ((-856 . -638) 80638) ((-933 . -970) 80622) ((-900 . -21) T) ((-288 . -171) T) ((-900 . -25) T) ((-310 . -93) T) ((-862 . -841) 80573) ((-702 . -1099) T) ((-702 . -23) T) ((-691 . -1039) T) ((-637 . -1087) 80551) ((-624 . -1087) T) ((-575 . -1204) T) ((-516 . -1204) T) ((-624 . -602) 80526) ((-575 . -550) T) ((-516 . -550) T) ((-358 . -708) 80478) ((-352 . -708) 80430) ((-338 . -1045) 80414) ((-344 . -708) 80366) ((-173 . -111) 80277) ((-173 . -1045) 80209) ((-108 . -708) 80159) ((-338 . -111) 80138) ((-273 . -1087) T) ((-272 . -1087) T) ((-271 . -1087) T) ((-270 . -1087) T) ((-269 . -1087) T) ((-268 . -1087) T) ((-267 . -1087) T) ((-211 . -1087) T) ((-210 . -1087) T) ((-208 . -1087) T) ((-168 . -1188) 80116) ((-168 . -1185) 80094) ((-207 . -1087) T) ((-206 . -1087) T) ((-116 . -1039) T) ((-205 . -1087) T) ((-202 . -1087) T) ((-691 . -232) T) ((-201 . -1087) T) ((-200 . -1087) T) ((-199 . -1087) T) ((-198 . -1087) T) ((-197 . -1087) T) ((-196 . -1087) T) ((-195 . -1087) T) ((-194 . -1087) T) ((-193 . -1087) T) ((-192 . -1087) T) ((-239 . -102) 79884) ((-168 . -35) 79862) ((-168 . -95) 79840) ((-644 . -1028) 79736) ((-480 . -1046) 79666) ((-1100 . -1087) 79456) ((-1129 . -34) T) ((-660 . -487) 79440) ((-73 . -1200) T) ((-105 . -605) 79422) ((-1270 . -605) 79404) ((-380 . -605) 79386) ((-338 . -608) 79338) ((-173 . -608) 79255) ((-1199 . -488) 79236) ((-722 . -38) 79085) ((-565 . -1188) T) ((-565 . -1185) T) ((-529 . -605) 79067) ((-518 . -308) 79005) ((-498 . -605) 78987) ((-498 . -606) 78969) ((-1199 . -605) 78935) ((-1154 . -1138) NIL) ((-1017 . -1059) 78904) ((-1017 . -1087) T) ((-994 . -102) T) ((-961 . -102) T) ((-904 . -102) T) ((-883 . -1028) 78881) ((-1129 . -717) T) ((-993 . -638) 78826) ((-474 . -1087) T) ((-461 . -1087) T) ((-579 . -23) T) ((-565 . -35) T) ((-565 . -95) T) ((-426 . -102) T) ((-1051 . -228) 78772) ((-1161 . -38) 78669) ((-856 . -717) T) ((-684 . -910) T) ((-509 . -25) T) ((-505 . -21) T) ((-505 . -25) T) ((-1160 . -38) 78510) ((-338 . -1039) T) ((-1154 . -38) 78306) ((-1067 . -171) T) ((-173 . -1039) T) ((-1113 . -38) 78203) ((-703 . -47) 78180) ((-358 . -171) T) ((-352 . -171) T) ((-517 . -57) 78154) ((-495 . -57) 78104) ((-350 . -1265) 78081) ((-224 . -450) T) ((-318 . -289) 78032) ((-344 . -171) T) ((-173 . -242) T) ((-1209 . -841) 77931) ((-108 . -171) T) ((-862 . -982) 77915) ((-648 . -1099) T) ((-575 . -362) T) ((-575 . -328) 77902) ((-516 . -328) 77879) ((-516 . -362) T) ((-315 . -306) 77858) ((-312 . -306) T) ((-594 . -841) 77837) ((-1100 . -708) 77779) ((-518 . -281) 77763) ((-648 . -23) T) ((-417 . -230) 77747) ((-312 . -1012) NIL) ((-335 . -23) T) ((-103 . -1000) 77731) ((-45 . -36) 77710) ((-604 . -1087) T) ((-350 . -367) T) ((-522 . -102) T) ((-493 . -27) T) ((-239 . -308) 77648) ((-1074 . -1099) T) ((-1269 . -638) 77622) ((-773 . -1099) T) ((-771 . -1099) T) ((-452 . -1099) T) ((-1050 . -450) T) ((-942 . -450) 77573) ((-1102 . -1070) T) ((-110 . -1087) T) ((-1074 . -23) T) ((-808 . -1046) T) ((-773 . -23) T) ((-771 . -23) T) ((-479 . -450) 77524) ((-1146 . -512) 77307) ((-380 . -381) 77286) ((-1165 . -410) 77270) ((-459 . -23) T) ((-452 . -23) T) ((-96 . -1087) T) ((-482 . -512) 77203) ((-288 . -289) T) ((-1069 . -605) 77185) ((-1069 . -606) 77166) ((-406 . -899) 77145) ((-50 . -1099) T) ((-1014 . -910) T) ((-993 . -717) T) ((-703 . -876) NIL) ((-575 . -1099) T) ((-516 . -1099) T) ((-834 . -638) 77118) ((-1194 . -130) T) ((-1154 . -399) 77070) ((-994 . -308) NIL) ((-806 . -487) 77054) ((-353 . -910) T) ((-1143 . -34) T) ((-406 . -638) 77006) ((-50 . -23) T) ((-702 . -130) T) ((-703 . -1028) 76886) ((-575 . -23) T) ((-108 . -512) NIL) ((-516 . -23) T) ((-168 . -408) 76857) ((-1127 . -1087) T) ((-1261 . -1260) 76841) ((-691 . -786) T) ((-691 . -783) T) ((-1107 . -306) T) ((-378 . -146) T) ((-279 . -605) 76823) ((-1209 . -982) 76793) ((-48 . -910) T) ((-665 . -487) 76777) ((-250 . -1253) 76747) ((-249 . -1253) 76717) ((-1163 . -841) T) ((-1100 . -171) 76696) ((-1107 . -1012) T) ((-1036 . -34) T) ((-827 . -146) 76675) ((-827 . -144) 76654) ((-728 . -107) 76638) ((-604 . -131) T) ((-480 . -1087) 76428) ((-1165 . -1046) T) ((-861 . -450) T) ((-85 . -1200) T) ((-239 . -38) 76398) ((-140 . -107) 76380) ((-703 . -376) 76364) ((-824 . -608) 76232) ((-1107 . -543) T) ((-573 . -102) T) ((-129 . -488) 76214) ((-389 . -1045) 76198) ((-1269 . -717) T) ((-1159 . -939) 76167) ((-129 . -605) 76119) ((-52 . -605) 76101) ((-1112 . -939) 76068) ((-643 . -410) 76052) ((-1258 . -1046) T) ((-613 . -1045) 76036) ((-652 . -25) T) ((-652 . -21) T) ((-1145 . -512) NIL) ((-1238 . -102) T) ((-1231 . -102) T) ((-389 . -111) 76015) ((-221 . -253) 75999) ((-1210 . -102) T) ((-1043 . -1087) T) ((-994 . -1138) T) ((-1043 . -1042) 75939) ((-809 . -1087) T) ((-342 . -1204) T) ((-627 . -638) 75923) ((-613 . -111) 75902) ((-599 . -638) 75886) ((-589 . -102) T) ((-310 . -488) 75867) ((-579 . -130) T) ((-588 . -102) T) ((-413 . -1087) T) ((-384 . -1087) T) ((-310 . -605) 75833) ((-226 . -1087) 75811) ((-637 . -512) 75744) ((-624 . -512) 75588) ((-824 . -1039) 75567) ((-635 . -150) 75551) ((-342 . -550) T) ((-703 . -890) 75494) ((-544 . -228) 75444) ((-1238 . -283) 75410) ((-1067 . -289) 75361) ((-485 . -839) T) ((-222 . -1099) T) ((-1231 . -283) 75327) ((-1210 . -283) 75293) ((-994 . -38) 75243) ((-216 . -839) T) ((-1194 . -491) 75209) ((-904 . -38) 75161) ((-834 . -785) 75140) ((-834 . -782) 75119) ((-834 . -717) 75098) ((-358 . -289) T) ((-352 . -289) T) ((-344 . -289) T) ((-168 . -450) 75029) ((-426 . -38) 75013) ((-108 . -289) T) ((-222 . -23) T) ((-406 . -785) 74992) ((-406 . -782) 74971) ((-406 . -717) T) ((-498 . -287) 74946) ((-475 . -1045) 74911) ((-648 . -130) T) ((-613 . -608) 74880) ((-1100 . -512) 74813) ((-335 . -130) T) ((-168 . -401) 74792) ((-480 . -708) 74734) ((-806 . -285) 74711) ((-475 . -111) 74667) ((-643 . -1046) T) ((-1219 . -450) 74598) ((-1257 . -1070) T) ((-1256 . -1070) T) ((-1074 . -130) T) ((-1043 . -708) 74540) ((-263 . -841) 74519) ((-246 . -841) 74498) ((-773 . -130) T) ((-771 . -130) T) ((-565 . -450) T) ((-1017 . -512) 74431) ((-613 . -1039) T) ((-585 . -1087) T) ((-531 . -172) T) ((-459 . -130) T) ((-452 . -130) T) ((-45 . -1087) T) ((-384 . -708) 74401) ((-808 . -1087) T) ((-474 . -512) 74334) ((-461 . -512) 74267) ((-451 . -366) 74237) ((-45 . -602) 74216) ((-315 . -301) T) ((-475 . -608) 74166) ((-660 . -605) 74128) ((-59 . -841) 74107) ((-1210 . -308) 73992) ((-994 . -399) 73974) ((-806 . -596) 73951) ((-514 . -841) 73930) ((-494 . -841) 73909) ((-40 . -1204) T) ((-989 . -1028) 73805) ((-50 . -130) T) ((-575 . -130) T) ((-516 . -130) T) ((-293 . -638) 73665) ((-342 . -328) 73642) ((-342 . -362) T) ((-321 . -322) 73619) ((-318 . -285) 73604) ((-40 . -550) T) ((-378 . -1185) T) ((-378 . -1188) T) ((-1025 . -1176) 73579) ((-1173 . -234) 73529) ((-1154 . -230) 73481) ((-329 . -1087) T) ((-378 . -95) T) ((-378 . -35) T) ((-1025 . -107) 73427) ((-475 . -1039) T) ((-477 . -234) 73377) ((-1146 . -487) 73311) ((-1270 . -1045) 73295) ((-380 . -1045) 73279) ((-475 . -242) T) ((-807 . -102) T) ((-705 . -146) 73258) ((-705 . -144) 73237) ((-482 . -487) 73221) ((-483 . -334) 73190) ((-1270 . -111) 73169) ((-510 . -1087) T) ((-480 . -171) 73148) ((-989 . -376) 73132) ((-412 . -102) T) ((-380 . -111) 73111) ((-989 . -337) 73095) ((-278 . -973) 73079) ((-277 . -973) 73063) ((-1268 . -605) 73045) ((-1266 . -605) 73027) ((-110 . -512) NIL) ((-1159 . -1222) 73011) ((-845 . -843) 72995) ((-1165 . -1087) T) ((-103 . -1200) T) ((-942 . -939) 72956) ((-808 . -708) 72898) ((-1210 . -1138) NIL) ((-479 . -939) 72843) ((-1050 . -142) T) ((-60 . -102) 72821) ((-44 . -605) 72803) ((-78 . -605) 72785) ((-350 . -638) 72730) ((-1258 . -1087) T) ((-509 . -841) T) ((-342 . -1099) T) ((-294 . -1087) T) ((-989 . -890) 72689) ((-294 . -602) 72668) ((-1270 . -608) 72617) ((-1238 . -38) 72514) ((-1231 . -38) 72355) ((-1210 . -38) 72151) ((-485 . -1046) T) ((-380 . -608) 72135) ((-216 . -1046) T) ((-342 . -23) T) ((-151 . -605) 72117) ((-824 . -786) 72096) ((-824 . -783) 72075) ((-1199 . -608) 72056) ((-589 . -38) 72029) ((-588 . -38) 71926) ((-860 . -550) T) ((-222 . -130) T) ((-318 . -992) 71892) ((-79 . -605) 71874) ((-703 . -306) 71853) ((-293 . -717) 71755) ((-815 . -102) T) ((-855 . -835) T) ((-293 . -471) 71734) ((-1261 . -102) T) ((-40 . -362) T) ((-862 . -146) 71713) ((-862 . -144) 71692) ((-1145 . -487) 71674) ((-1270 . -1039) T) ((-480 . -512) 71607) ((-1133 . -1200) T) ((-954 . -605) 71589) ((-637 . -487) 71573) ((-624 . -487) 71504) ((-806 . -605) 71235) ((-48 . -27) T) ((-1165 . -708) 71132) ((-643 . -1087) T) ((-852 . -851) T) ((-435 . -363) 71106) ((-1089 . -102) T) ((-960 . -1087) T) ((-855 . -1087) T) ((-807 . -308) 71093) ((-531 . -525) T) ((-531 . -570) T) ((-1266 . -381) 71065) ((-1043 . -512) 70998) ((-1146 . -285) 70974) ((-239 . -230) 70943) ((-1258 . -708) 70913) ((-1153 . -93) T) ((-984 . -93) T) ((-808 . -171) 70892) ((-1197 . -488) 70869) ((-226 . -512) 70802) ((-613 . -786) 70781) ((-613 . -783) 70760) ((-1197 . -605) 70672) ((-221 . -1200) T) ((-665 . -605) 70604) ((-1143 . -1000) 70588) ((-933 . -102) 70538) ((-350 . -717) T) ((-852 . -605) 70520) ((-1210 . -399) 70472) ((-1100 . -487) 70456) ((-60 . -308) 70394) ((-330 . -102) T) ((-1194 . -21) T) ((-1194 . -25) T) ((-40 . -1099) T) ((-702 . -21) T) ((-619 . -605) 70376) ((-513 . -322) 70355) ((-702 . -25) T) ((-108 . -285) NIL) ((-911 . -1099) T) ((-40 . -23) T) ((-762 . -1099) T) ((-558 . -1204) T) ((-493 . -1204) T) ((-318 . -605) 70337) ((-994 . -230) 70319) ((-168 . -165) 70303) ((-574 . -550) T) ((-558 . -550) T) ((-493 . -550) T) ((-762 . -23) T) ((-1230 . -146) 70282) ((-1146 . -596) 70258) ((-1230 . -144) 70237) ((-1017 . -487) 70221) ((-1209 . -144) 70146) ((-1209 . -146) 70071) ((-1261 . -1267) 70050) ((-474 . -487) 70034) ((-461 . -487) 70018) ((-521 . -34) T) ((-643 . -708) 69988) ((-112 . -957) T) ((-652 . -841) 69967) ((-1165 . -171) 69918) ((-364 . -102) T) ((-239 . -237) 69897) ((-250 . -102) T) ((-249 . -102) T) ((-1219 . -939) 69866) ((-244 . -841) 69845) ((-807 . -38) 69694) ((-45 . -512) 69486) ((-1145 . -285) 69461) ((-213 . -1087) T) ((-1137 . -1087) T) ((-1137 . -602) 69440) ((-579 . -25) T) ((-579 . -21) T) ((-1089 . -308) 69378) ((-953 . -410) 69362) ((-689 . -1204) T) ((-624 . -285) 69337) ((-1074 . -631) 69285) ((-773 . -631) 69233) ((-771 . -631) 69181) ((-342 . -130) T) ((-288 . -605) 69163) ((-895 . -1087) T) ((-689 . -550) T) ((-129 . -608) 69145) ((-860 . -1099) T) ((-452 . -631) 69093) ((-895 . -893) 69077) ((-378 . -450) T) ((-485 . -1087) T) ((-691 . -638) 69064) ((-933 . -308) 69002) ((-216 . -1087) T) ((-315 . -910) 68981) ((-312 . -910) T) ((-312 . -811) NIL) ((-389 . -711) T) ((-860 . -23) T) ((-116 . -638) 68968) ((-472 . -144) 68947) ((-417 . -410) 68931) ((-472 . -146) 68910) ((-110 . -487) 68892) ((-310 . -608) 68873) ((-2 . -605) 68855) ((-185 . -102) T) ((-1145 . -19) 68837) ((-1145 . -596) 68812) ((-648 . -21) T) ((-648 . -25) T) ((-586 . -1131) T) ((-1100 . -285) 68789) ((-335 . -25) T) ((-335 . -21) T) ((-493 . -362) T) ((-1261 . -38) 68759) ((-1129 . -1200) T) ((-624 . -596) 68734) ((-1074 . -25) T) ((-1074 . -21) T) ((-529 . -783) T) ((-529 . -786) T) ((-117 . -1204) T) ((-953 . -1046) T) ((-615 . -550) T) ((-773 . -25) T) ((-773 . -21) T) ((-771 . -21) T) ((-771 . -25) T) ((-726 . -1046) T) ((-706 . -1046) T) ((-660 . -1045) 68718) ((-515 . -1070) T) ((-459 . -25) T) ((-117 . -550) T) ((-459 . -21) T) ((-452 . -25) T) ((-452 . -21) T) ((-1129 . -1028) 68614) ((-808 . -289) 68593) ((-814 . -1087) T) ((-1268 . -1045) 68577) ((-956 . -957) T) ((-660 . -111) 68556) ((-294 . -512) 68348) ((-1266 . -1045) 68332) ((-1230 . -1185) 68298) ((-1230 . -1188) 68264) ((-250 . -308) 68202) ((-249 . -308) 68140) ((-1213 . -102) 68118) ((-1146 . -606) NIL) ((-1146 . -605) 68100) ((-1230 . -95) 68066) ((-1210 . -230) 68018) ((-1209 . -1185) 67984) ((-96 . -93) T) ((-1209 . -1188) 67950) ((-1129 . -376) 67934) ((-1107 . -811) T) ((-1107 . -910) T) ((-1100 . -596) 67911) ((-1067 . -606) 67895) ((-482 . -605) 67827) ((-806 . -287) 67804) ((-600 . -150) 67751) ((-417 . -1046) T) ((-485 . -708) 67701) ((-480 . -487) 67685) ((-326 . -841) 67664) ((-338 . -638) 67638) ((-50 . -21) T) ((-50 . -25) T) ((-216 . -708) 67588) ((-168 . -715) 67559) ((-173 . -638) 67491) ((-575 . -21) T) ((-575 . -25) T) ((-516 . -25) T) ((-516 . -21) T) ((-473 . -150) 67441) ((-1067 . -605) 67423) ((-1049 . -605) 67405) ((-983 . -102) T) ((-853 . -102) T) ((-790 . -410) 67369) ((-40 . -130) T) ((-689 . -362) T) ((-691 . -717) T) ((-211 . -885) T) ((-691 . -785) T) ((-691 . -782) T) ((-574 . -1099) T) ((-558 . -1099) T) ((-493 . -1099) T) ((-358 . -605) 67351) ((-352 . -605) 67333) ((-344 . -605) 67315) ((-66 . -395) T) ((-66 . -394) T) ((-108 . -606) 67245) ((-108 . -605) 67188) ((-210 . -885) T) ((-948 . -150) 67172) ((-762 . -130) T) ((-660 . -608) 67090) ((-133 . -717) T) ((-116 . -717) T) ((-1230 . -35) 67056) ((-1043 . -487) 67040) ((-574 . -23) T) ((-558 . -23) T) ((-493 . -23) T) ((-1209 . -95) 67006) ((-1209 . -35) 66972) ((-1159 . -102) T) ((-1112 . -102) T) ((-845 . -102) T) ((-226 . -487) 66956) ((-1268 . -111) 66935) ((-1266 . -111) 66914) ((-44 . -1045) 66898) ((-1219 . -1222) 66882) ((-846 . -843) 66866) ((-1165 . -289) 66845) ((-110 . -285) 66820) ((-1268 . -608) 66766) ((-128 . -150) 66748) ((-1129 . -890) 66707) ((-44 . -111) 66686) ((-1168 . -1241) T) ((-1153 . -488) 66667) ((-1153 . -605) 66633) ((-1145 . -606) NIL) ((-660 . -1039) T) ((-1145 . -605) 66615) ((-1051 . -602) 66590) ((-1051 . -1087) T) ((-984 . -488) 66571) ((-984 . -605) 66537) ((-74 . -439) T) ((-74 . -394) T) ((-693 . -1087) T) ((-151 . -1045) 66521) ((-660 . -232) 66500) ((-565 . -548) 66484) ((-354 . -146) 66463) ((-354 . -144) 66414) ((-351 . -146) 66393) ((-351 . -144) 66344) ((-343 . -146) 66323) ((-343 . -144) 66274) ((-263 . -144) 66253) ((-263 . -146) 66232) ((-250 . -38) 66202) ((-246 . -146) 66181) ((-117 . -362) T) ((-246 . -144) 66160) ((-249 . -38) 66130) ((-151 . -111) 66109) ((-993 . -1028) 65997) ((-1154 . -839) NIL) ((-684 . -1204) T) ((-790 . -1046) T) ((-689 . -1099) T) ((-1268 . -1039) T) ((-1266 . -608) 65926) ((-1266 . -1039) T) ((-1143 . -1200) T) ((-993 . -376) 65903) ((-900 . -144) T) ((-900 . -146) 65885) ((-860 . -130) T) ((-806 . -1045) 65782) ((-684 . -550) T) ((-689 . -23) T) ((-637 . -605) 65714) ((-637 . -606) 65675) ((-624 . -606) NIL) ((-624 . -605) 65657) ((-485 . -171) T) ((-222 . -21) T) ((-216 . -171) T) ((-222 . -25) T) ((-472 . -1188) 65623) ((-472 . -1185) 65589) ((-273 . -605) 65571) ((-272 . -605) 65553) ((-271 . -605) 65535) ((-270 . -605) 65517) ((-269 . -605) 65499) ((-498 . -641) 65481) ((-268 . -605) 65463) ((-338 . -717) T) ((-267 . -605) 65445) ((-110 . -19) 65427) ((-173 . -717) T) ((-498 . -372) 65409) ((-211 . -605) 65391) ((-518 . -1136) 65375) ((-498 . -123) T) ((-110 . -596) 65350) ((-210 . -605) 65332) ((-472 . -35) 65298) ((-472 . -95) 65264) ((-208 . -605) 65246) ((-207 . -605) 65228) ((-206 . -605) 65210) ((-205 . -605) 65192) ((-202 . -605) 65174) ((-201 . -605) 65156) ((-200 . -605) 65138) ((-199 . -605) 65120) ((-198 . -605) 65102) ((-197 . -605) 65084) ((-196 . -605) 65066) ((-534 . -1090) 65018) ((-195 . -605) 65000) ((-194 . -605) 64982) ((-45 . -487) 64919) ((-193 . -605) 64901) ((-192 . -605) 64883) ((-151 . -608) 64852) ((-1102 . -102) T) ((-806 . -111) 64742) ((-635 . -102) 64692) ((-480 . -285) 64669) ((-1100 . -605) 64400) ((-1088 . -1087) T) ((-1036 . -1200) T) ((-1269 . -1028) 64384) ((-615 . -1099) T) ((-1159 . -308) 64371) ((-1122 . -1087) T) ((-1112 . -308) 64358) ((-1083 . -1070) T) ((-1077 . -1070) T) ((-1061 . -1070) T) ((-1054 . -1070) T) ((-1026 . -1070) T) ((-1009 . -1070) T) ((-117 . -1099) T) ((-810 . -102) T) ((-618 . -1070) T) ((-615 . -23) T) ((-1137 . -512) 64150) ((-481 . -1070) T) ((-993 . -890) 64102) ((-385 . -102) T) ((-323 . -102) T) ((-217 . -1070) T) ((-953 . -1087) T) ((-151 . -1039) T) ((-722 . -410) 64086) ((-117 . -23) T) ((-726 . -1087) T) ((-706 . -1087) T) ((-693 . -131) T) ((-451 . -1087) T) ((-406 . -1200) T) ((-315 . -429) 64070) ((-585 . -93) T) ((-1017 . -606) 64031) ((-1014 . -1204) T) ((-224 . -102) T) ((-1017 . -605) 63993) ((-807 . -230) 63977) ((-806 . -608) 63707) ((-1014 . -550) T) ((-824 . -638) 63680) ((-353 . -1204) T) ((-474 . -605) 63642) ((-474 . -606) 63603) ((-461 . -606) 63564) ((-461 . -605) 63526) ((-406 . -874) 63510) ((-318 . -1045) 63345) ((-406 . -876) 63270) ((-834 . -1028) 63166) ((-485 . -512) NIL) ((-480 . -596) 63143) ((-353 . -550) T) ((-216 . -512) NIL) ((-862 . -450) T) ((-417 . -1087) T) ((-406 . -1028) 63007) ((-318 . -111) 62828) ((-684 . -362) T) ((-224 . -283) T) ((-1197 . -608) 62805) ((-48 . -1204) T) ((-806 . -1039) 62735) ((-574 . -130) T) ((-558 . -130) T) ((-493 . -130) T) ((-1159 . -1138) 62713) ((-48 . -550) T) ((-1146 . -287) 62689) ((-1050 . -102) T) ((-942 . -102) T) ((-315 . -27) 62668) ((-806 . -232) 62620) ((-248 . -826) 62602) ((-239 . -839) 62581) ((-186 . -826) 62563) ((-704 . -102) T) ((-294 . -487) 62500) ((-479 . -102) T) ((-722 . -1046) T) ((-604 . -605) 62482) ((-604 . -606) 62343) ((-406 . -376) 62327) ((-406 . -337) 62311) ((-318 . -608) 62137) ((-1159 . -38) 61966) ((-1112 . -38) 61815) ((-845 . -38) 61785) ((-389 . -638) 61769) ((-635 . -308) 61707) ((-953 . -708) 61604) ((-726 . -708) 61574) ((-221 . -107) 61558) ((-45 . -285) 61483) ((-613 . -638) 61457) ((-311 . -1087) T) ((-288 . -1045) 61444) ((-110 . -605) 61426) ((-110 . -606) 61408) ((-451 . -708) 61378) ((-807 . -252) 61317) ((-679 . -1087) 61295) ((-544 . -1087) T) ((-1161 . -1046) T) ((-1160 . -1046) T) ((-96 . -488) 61276) ((-1154 . -1046) T) ((-288 . -111) 61261) ((-1113 . -1046) T) ((-544 . -602) 61240) ((-96 . -605) 61206) ((-994 . -839) T) ((-226 . -677) 61164) ((-684 . -1099) T) ((-1194 . -731) 61140) ((-829 . -826) 61122) ((-318 . -1039) T) ((-342 . -25) T) ((-342 . -21) T) ((-406 . -890) 61081) ((-68 . -1200) T) ((-824 . -785) 61060) ((-417 . -708) 61034) ((-790 . -1087) T) ((-824 . -782) 61013) ((-689 . -130) T) ((-703 . -910) 60992) ((-684 . -23) T) ((-485 . -289) T) ((-824 . -717) 60971) ((-318 . -232) 60923) ((-318 . -242) 60902) ((-216 . -289) T) ((-1014 . -362) T) ((-1230 . -450) 60881) ((-1209 . -450) 60860) ((-353 . -328) 60837) ((-353 . -362) T) ((-1127 . -605) 60819) ((-45 . -1234) 60769) ((-861 . -102) T) ((-635 . -281) 60753) ((-689 . -1048) T) ((-1257 . -102) T) ((-1256 . -102) T) ((-475 . -638) 60718) ((-466 . -1087) T) ((-45 . -596) 60643) ((-1145 . -287) 60618) ((-288 . -608) 60590) ((-40 . -631) 60529) ((-48 . -362) T) ((-1093 . -605) 60511) ((-1074 . -841) 60490) ((-624 . -287) 60465) ((-773 . -841) 60444) ((-771 . -841) 60423) ((-480 . -605) 60154) ((-239 . -410) 60123) ((-942 . -308) 60110) ((-452 . -841) 60089) ((-65 . -1200) T) ((-1051 . -512) 59933) ((-615 . -130) T) ((-479 . -308) 59920) ((-598 . -1087) T) ((-117 . -130) T) ((-661 . -1087) T) ((-288 . -1039) T) ((-179 . -1087) T) ((-160 . -1087) T) ((-155 . -1087) T) ((-153 . -1087) T) ((-451 . -752) T) ((-31 . -1070) T) ((-953 . -171) 59871) ((-960 . -93) T) ((-1067 . -1045) 59781) ((-613 . -785) 59760) ((-586 . -1087) T) ((-613 . -782) 59739) ((-613 . -717) T) ((-294 . -285) 59718) ((-293 . -1200) T) ((-1043 . -605) 59680) ((-1043 . -606) 59641) ((-1014 . -1099) T) ((-168 . -102) T) ((-274 . -841) T) ((-1152 . -1087) T) ((-809 . -605) 59623) ((-1100 . -287) 59600) ((-1089 . -228) 59584) ((-993 . -306) T) ((-790 . -708) 59568) ((-358 . -1045) 59520) ((-353 . -1099) T) ((-352 . -1045) 59472) ((-413 . -605) 59454) ((-384 . -605) 59436) ((-344 . -1045) 59388) ((-226 . -605) 59320) ((-1067 . -111) 59216) ((-1014 . -23) T) ((-108 . -1045) 59166) ((-888 . -102) T) ((-832 . -102) T) ((-799 . -102) T) ((-760 . -102) T) ((-667 . -102) T) ((-472 . -450) 59145) ((-417 . -171) T) ((-358 . -111) 59083) ((-352 . -111) 59021) ((-344 . -111) 58959) ((-250 . -230) 58928) ((-249 . -230) 58897) ((-353 . -23) T) ((-71 . -1200) T) ((-224 . -38) 58862) ((-108 . -111) 58796) ((-40 . -25) T) ((-40 . -21) T) ((-660 . -711) T) ((-168 . -283) 58774) ((-48 . -1099) T) ((-911 . -25) T) ((-762 . -25) T) ((-1137 . -487) 58711) ((-483 . -1087) T) ((-1270 . -638) 58685) ((-1219 . -102) T) ((-846 . -102) T) ((-239 . -1046) 58615) ((-1050 . -1138) T) ((-954 . -783) 58568) ((-380 . -638) 58552) ((-48 . -23) T) ((-954 . -786) 58505) ((-806 . -786) 58456) ((-806 . -783) 58407) ((-294 . -596) 58386) ((-475 . -717) T) ((-565 . -102) T) ((-1067 . -608) 58204) ((-248 . -184) T) ((-186 . -184) T) ((-861 . -308) 58161) ((-643 . -285) 58140) ((-112 . -651) T) ((-358 . -608) 58077) ((-352 . -608) 58014) ((-344 . -608) 57951) ((-76 . -1200) T) ((-108 . -608) 57901) ((-1050 . -38) 57888) ((-654 . -373) 57867) ((-942 . -38) 57716) ((-722 . -1087) T) ((-479 . -38) 57565) ((-86 . -1200) T) ((-585 . -488) 57546) ((-565 . -283) T) ((-1210 . -839) NIL) ((-585 . -605) 57512) ((-1161 . -1087) T) ((-1160 . -1087) T) ((-1067 . -1039) T) ((-350 . -1028) 57489) ((-808 . -488) 57473) ((-994 . -1046) T) ((-45 . -605) 57455) ((-45 . -606) NIL) ((-904 . -1046) T) ((-808 . -605) 57424) ((-1154 . -1087) T) ((-1134 . -102) 57402) ((-1067 . -242) 57353) ((-426 . -1046) T) ((-358 . -1039) T) ((-364 . -363) 57330) ((-352 . -1039) T) ((-344 . -1039) T) ((-250 . -237) 57309) ((-249 . -237) 57288) ((-1067 . -232) 57213) ((-1113 . -1087) T) ((-293 . -890) 57172) ((-108 . -1039) T) ((-684 . -130) T) ((-417 . -512) 57014) ((-358 . -232) 56993) ((-358 . -242) T) ((-44 . -711) T) ((-352 . -232) 56972) ((-352 . -242) T) ((-344 . -232) 56951) ((-344 . -242) T) ((-1153 . -608) 56932) ((-168 . -308) 56897) ((-108 . -242) T) ((-108 . -232) T) ((-984 . -608) 56878) ((-318 . -783) T) ((-860 . -21) T) ((-860 . -25) T) ((-406 . -306) T) ((-498 . -34) T) ((-110 . -287) 56853) ((-1100 . -1045) 56750) ((-861 . -1138) NIL) ((-329 . -605) 56732) ((-406 . -1012) 56710) ((-1100 . -111) 56600) ((-681 . -1241) T) ((-435 . -1087) T) ((-1270 . -717) T) ((-63 . -605) 56582) ((-861 . -38) 56527) ((-521 . -1200) T) ((-594 . -150) 56511) ((-510 . -605) 56493) ((-1219 . -308) 56480) ((-722 . -708) 56329) ((-529 . -784) T) ((-529 . -785) T) ((-558 . -631) 56311) ((-493 . -631) 56271) ((-354 . -450) T) ((-351 . -450) T) ((-343 . -450) T) ((-263 . -450) 56222) ((-523 . -1087) T) ((-518 . -1087) 56172) ((-246 . -450) 56123) ((-1137 . -285) 56102) ((-1165 . -605) 56084) ((-679 . -512) 56017) ((-953 . -289) 55996) ((-544 . -512) 55788) ((-1258 . -605) 55757) ((-1159 . -230) 55741) ((-1100 . -608) 55471) ((-168 . -1138) 55450) ((-1258 . -488) 55434) ((-1161 . -708) 55331) ((-1160 . -708) 55172) ((-882 . -102) T) ((-1154 . -708) 54968) ((-1113 . -708) 54865) ((-1143 . -664) 54849) ((-354 . -401) 54800) ((-351 . -401) 54751) ((-343 . -401) 54702) ((-1014 . -130) T) ((-790 . -512) 54614) ((-294 . -606) NIL) ((-294 . -605) 54596) ((-900 . -450) T) ((-954 . -367) 54549) ((-806 . -367) 54528) ((-508 . -507) 54507) ((-506 . -507) 54486) ((-485 . -285) NIL) ((-480 . -287) 54463) ((-417 . -289) T) ((-353 . -130) T) ((-216 . -285) NIL) ((-684 . -491) NIL) ((-99 . -1099) T) ((-168 . -38) 54291) ((-1230 . -963) 54253) ((-1134 . -308) 54191) ((-1209 . -963) 54160) ((-900 . -401) T) ((-1100 . -1039) 54090) ((-1232 . -550) T) ((-1137 . -596) 54069) ((-112 . -841) T) ((-1051 . -487) 54000) ((-574 . -21) T) ((-574 . -25) T) ((-558 . -21) T) ((-558 . -25) T) ((-493 . -25) T) ((-493 . -21) T) ((-1219 . -1138) 53978) ((-1100 . -232) 53930) ((-48 . -130) T) ((-1181 . -102) T) ((-239 . -1087) 53720) ((-861 . -399) 53697) ((-1075 . -102) T) ((-1063 . -102) T) ((-600 . -102) T) ((-473 . -102) T) ((-1219 . -38) 53526) ((-846 . -38) 53496) ((-722 . -171) 53407) ((-643 . -605) 53389) ((-636 . -1070) T) ((-565 . -38) 53376) ((-960 . -488) 53357) ((-960 . -605) 53323) ((-948 . -102) 53273) ((-855 . -605) 53255) ((-855 . -606) 53177) ((-586 . -512) NIL) ((-1238 . -1046) T) ((-1231 . -1046) T) ((-1210 . -1046) T) ((-589 . -1046) T) ((-588 . -1046) T) ((-1274 . -1099) T) ((-1161 . -171) 53128) ((-1160 . -171) 53059) ((-1154 . -171) 52990) ((-1113 . -171) 52941) ((-994 . -1087) T) ((-961 . -1087) T) ((-904 . -1087) T) ((-1194 . -146) 52920) ((-790 . -788) 52904) ((-689 . -25) T) ((-689 . -21) T) ((-117 . -631) 52881) ((-691 . -876) 52863) ((-426 . -1087) T) ((-315 . -1204) 52842) ((-312 . -1204) T) ((-168 . -399) 52826) ((-1194 . -144) 52805) ((-472 . -963) 52767) ((-128 . -102) T) ((-72 . -605) 52749) ((-108 . -786) T) ((-108 . -783) T) ((-691 . -1028) 52731) ((-315 . -550) 52710) ((-312 . -550) T) ((-1274 . -23) T) ((-133 . -1028) 52692) ((-96 . -608) 52673) ((-480 . -1045) 52570) ((-45 . -287) 52495) ((-239 . -708) 52437) ((-515 . -102) T) ((-480 . -111) 52327) ((-1079 . -102) 52305) ((-1024 . -102) T) ((-635 . -819) 52284) ((-722 . -512) 52227) ((-1043 . -1045) 52211) ((-1122 . -93) T) ((-1051 . -285) 52186) ((-615 . -21) T) ((-615 . -25) T) ((-522 . -1087) T) ((-360 . -102) T) ((-321 . -102) T) ((-660 . -638) 52160) ((-384 . -1045) 52144) ((-1043 . -111) 52123) ((-807 . -410) 52107) ((-117 . -25) T) ((-89 . -605) 52089) ((-117 . -21) T) ((-600 . -308) 51884) ((-473 . -308) 51688) ((-1137 . -606) NIL) ((-384 . -111) 51667) ((-378 . -102) T) ((-213 . -605) 51649) ((-1137 . -605) 51631) ((-1154 . -512) 51400) ((-994 . -708) 51350) ((-1113 . -512) 51320) ((-904 . -708) 51272) ((-480 . -608) 51002) ((-350 . -306) T) ((-1173 . -150) 50952) ((-948 . -308) 50890) ((-827 . -102) T) ((-426 . -708) 50874) ((-224 . -819) T) ((-818 . -102) T) ((-816 . -102) T) ((-477 . -150) 50824) ((-1230 . -1229) 50803) ((-1107 . -1204) T) ((-338 . -1028) 50770) ((-1230 . -1224) 50740) ((-1230 . -1227) 50724) ((-1209 . -1208) 50703) ((-80 . -605) 50685) ((-895 . -605) 50667) ((-1209 . -1224) 50644) ((-1107 . -550) T) ((-911 . -841) T) ((-762 . -841) T) ((-485 . -606) 50574) ((-485 . -605) 50516) ((-378 . -283) T) ((-662 . -841) T) ((-1209 . -1206) 50500) ((-1232 . -1099) T) ((-216 . -606) 50430) ((-216 . -605) 50372) ((-1268 . -638) 50346) ((-1051 . -596) 50321) ((-809 . -608) 50305) ((-59 . -150) 50289) ((-514 . -150) 50273) ((-494 . -150) 50257) ((-358 . -1265) 50241) ((-352 . -1265) 50225) ((-344 . -1265) 50209) ((-315 . -362) 50188) ((-312 . -362) T) ((-480 . -1039) 50118) ((-684 . -631) 50100) ((-1266 . -638) 50074) ((-128 . -308) NIL) ((-1232 . -23) T) ((-679 . -487) 50058) ((-64 . -605) 50040) ((-1100 . -786) 49991) ((-1100 . -783) 49942) ((-544 . -487) 49879) ((-660 . -34) T) ((-480 . -232) 49831) ((-294 . -287) 49810) ((-239 . -171) 49789) ((-807 . -1046) T) ((-44 . -638) 49747) ((-1067 . -367) 49698) ((-722 . -289) 49629) ((-518 . -512) 49562) ((-808 . -1045) 49513) ((-1074 . -144) 49492) ((-358 . -367) 49471) ((-352 . -367) 49450) ((-344 . -367) 49429) ((-1074 . -146) 49408) ((-861 . -230) 49385) ((-808 . -111) 49327) ((-773 . -144) 49306) ((-773 . -146) 49285) ((-263 . -939) 49252) ((-250 . -839) 49231) ((-246 . -939) 49176) ((-249 . -839) 49155) ((-771 . -144) 49134) ((-771 . -146) 49113) ((-151 . -638) 49087) ((-573 . -1087) T) ((-452 . -146) 49066) ((-452 . -144) 49045) ((-660 . -717) T) ((-814 . -605) 49027) ((-1238 . -1087) T) ((-1231 . -1087) T) ((-1210 . -1087) T) ((-1194 . -1188) 48993) ((-1194 . -1185) 48959) ((-1161 . -289) 48938) ((-1160 . -289) 48889) ((-1154 . -289) 48840) ((-1113 . -289) 48819) ((-338 . -890) 48800) ((-994 . -171) T) ((-904 . -171) T) ((-589 . -1087) T) ((-588 . -1087) T) ((-684 . -21) T) ((-684 . -25) T) ((-472 . -1227) 48784) ((-472 . -1224) 48754) ((-417 . -285) 48682) ((-315 . -1099) 48531) ((-312 . -1099) T) ((-1194 . -35) 48497) ((-1194 . -95) 48463) ((-84 . -605) 48445) ((-91 . -102) 48423) ((-1274 . -130) T) ((-585 . -608) 48404) ((-575 . -144) T) ((-575 . -146) 48386) ((-516 . -146) 48368) ((-516 . -144) T) ((-315 . -23) 48220) ((-40 . -341) 48194) ((-312 . -23) T) ((-808 . -608) 48108) ((-1145 . -641) 48090) ((-1261 . -1046) T) ((-1145 . -372) 48072) ((-806 . -638) 47920) ((-1083 . -102) T) ((-1077 . -102) T) ((-1061 . -102) T) ((-168 . -230) 47904) ((-1054 . -102) T) ((-1026 . -102) T) ((-1009 . -102) T) ((-586 . -487) 47886) ((-618 . -102) T) ((-239 . -512) 47819) ((-481 . -102) T) ((-1268 . -717) T) ((-1266 . -717) T) ((-217 . -102) T) ((-1165 . -1045) 47702) ((-1165 . -111) 47571) ((-852 . -172) T) ((-808 . -1039) T) ((-671 . -1070) T) ((-666 . -1070) T) ((-513 . -102) T) ((-508 . -102) T) ((-48 . -631) 47531) ((-506 . -102) T) ((-476 . -1070) T) ((-1258 . -1045) 47501) ((-137 . -1070) T) ((-136 . -1070) T) ((-132 . -1070) T) ((-1024 . -38) 47485) ((-808 . -232) T) ((-808 . -242) 47464) ((-1258 . -111) 47429) ((-1238 . -708) 47326) ((-1231 . -708) 47167) ((-544 . -285) 47146) ((-1219 . -230) 47130) ((-1051 . -606) NIL) ((-598 . -93) T) ((-1051 . -605) 47112) ((-693 . -488) 47096) ((-661 . -93) T) ((-179 . -93) T) ((-160 . -93) T) ((-155 . -93) T) ((-153 . -93) T) ((-1210 . -708) 46892) ((-993 . -910) T) ((-693 . -605) 46861) ((-151 . -717) T) ((-1100 . -367) 46840) ((-994 . -512) NIL) ((-250 . -410) 46809) ((-249 . -410) 46778) ((-1014 . -25) T) ((-1014 . -21) T) ((-589 . -708) 46751) ((-588 . -708) 46648) ((-790 . -285) 46606) ((-126 . -102) 46584) ((-824 . -1028) 46480) ((-168 . -819) 46459) ((-318 . -638) 46356) ((-806 . -34) T) ((-705 . -102) T) ((-1165 . -608) 46209) ((-1107 . -1099) T) ((-1016 . -1200) T) ((-378 . -38) 46174) ((-353 . -25) T) ((-353 . -21) T) ((-186 . -102) T) ((-161 . -102) T) ((-248 . -102) T) ((-156 . -102) T) ((-354 . -1253) 46158) ((-351 . -1253) 46142) ((-343 . -1253) 46126) ((-168 . -348) 46105) ((-558 . -841) T) ((-493 . -841) T) ((-1107 . -23) T) ((-87 . -605) 46087) ((-691 . -306) T) ((-827 . -38) 46057) ((-818 . -38) 46027) ((-1258 . -608) 45969) ((-1232 . -130) T) ((-1137 . -287) 45948) ((-954 . -784) 45901) ((-954 . -785) 45854) ((-806 . -782) 45833) ((-116 . -306) T) ((-91 . -308) 45771) ((-665 . -34) T) ((-544 . -596) 45750) ((-48 . -25) T) ((-48 . -21) T) ((-806 . -785) 45701) ((-806 . -784) 45680) ((-691 . -1012) T) ((-643 . -1045) 45664) ((-954 . -717) 45563) ((-806 . -717) 45473) ((-954 . -471) 45426) ((-480 . -786) 45377) ((-480 . -783) 45328) ((-900 . -1253) 45315) ((-1165 . -1039) T) ((-643 . -111) 45294) ((-1165 . -325) 45271) ((-1186 . -102) 45249) ((-1088 . -605) 45231) ((-691 . -543) T) ((-807 . -1087) T) ((-1122 . -488) 45212) ((-1258 . -1039) T) ((-412 . -1087) T) ((-1122 . -605) 45178) ((-250 . -1046) 45108) ((-249 . -1046) 45038) ((-829 . -102) T) ((-288 . -638) 45025) ((-586 . -285) 45000) ((-679 . -677) 44958) ((-953 . -605) 44940) ((-862 . -102) T) ((-726 . -605) 44922) ((-706 . -605) 44904) ((-1238 . -171) 44855) ((-1231 . -171) 44786) ((-1210 . -171) 44717) ((-689 . -841) T) ((-994 . -289) T) ((-451 . -605) 44699) ((-619 . -717) T) ((-60 . -1087) 44677) ((-244 . -150) 44661) ((-904 . -289) T) ((-1014 . -1002) T) ((-619 . -471) T) ((-703 . -1204) 44640) ((-643 . -608) 44558) ((-589 . -171) 44537) ((-588 . -171) 44488) ((-1246 . -841) 44467) ((-703 . -550) 44378) ((-406 . -910) T) ((-406 . -811) 44357) ((-318 . -785) T) ((-960 . -608) 44338) ((-318 . -717) T) ((-417 . -605) 44320) ((-417 . -606) 44227) ((-635 . -1136) 44211) ((-110 . -641) 44193) ((-173 . -306) T) ((-126 . -308) 44131) ((-110 . -372) 44113) ((-397 . -1200) T) ((-315 . -130) 43984) ((-312 . -130) T) ((-69 . -394) T) ((-110 . -123) T) ((-518 . -487) 43968) ((-644 . -1099) T) ((-586 . -19) 43950) ((-61 . -439) T) ((-61 . -394) T) ((-815 . -1087) T) ((-586 . -596) 43925) ((-475 . -1028) 43885) ((-643 . -1039) T) ((-644 . -23) T) ((-1261 . -1087) T) ((-31 . -102) T) ((-807 . -708) 43734) ((-571 . -851) T) ((-117 . -841) NIL) ((-1159 . -410) 43718) ((-1112 . -410) 43702) ((-845 . -410) 43686) ((-863 . -102) 43637) ((-1230 . -102) T) ((-1210 . -512) 43406) ((-1209 . -102) T) ((-1186 . -308) 43344) ((-523 . -93) T) ((-1161 . -285) 43329) ((-311 . -605) 43311) ((-1160 . -285) 43296) ((-1089 . -1087) T) ((-1067 . -638) 43206) ((-679 . -605) 43138) ((-288 . -717) T) ((-108 . -899) NIL) ((-679 . -606) 43099) ((-593 . -605) 43081) ((-571 . -605) 43063) ((-544 . -606) NIL) ((-544 . -605) 43045) ((-527 . -605) 43027) ((-1154 . -285) 42875) ((-485 . -1045) 42825) ((-702 . -450) T) ((-509 . -507) 42804) ((-505 . -507) 42783) ((-216 . -1045) 42733) ((-358 . -638) 42685) ((-352 . -638) 42637) ((-224 . -839) T) ((-344 . -638) 42589) ((-594 . -102) 42539) ((-480 . -367) 42518) ((-108 . -638) 42468) ((-485 . -111) 42402) ((-239 . -487) 42386) ((-342 . -146) 42368) ((-342 . -144) T) ((-168 . -369) 42339) ((-933 . -1244) 42323) ((-216 . -111) 42257) ((-862 . -308) 42222) ((-933 . -1087) 42172) ((-790 . -606) 42133) ((-790 . -605) 42115) ((-709 . -102) T) ((-330 . -1087) T) ((-213 . -608) 42092) ((-1107 . -130) T) ((-705 . -38) 42062) ((-315 . -491) 42041) ((-498 . -1200) T) ((-1230 . -283) 42007) ((-1209 . -283) 41973) ((-326 . -150) 41957) ((-1051 . -287) 41932) ((-1261 . -708) 41902) ((-1146 . -34) T) ((-1270 . -1028) 41879) ((-466 . -605) 41861) ((-482 . -34) T) ((-380 . -1028) 41845) ((-1159 . -1046) T) ((-1112 . -1046) T) ((-845 . -1046) T) ((-1050 . -839) T) ((-485 . -608) 41795) ((-216 . -608) 41745) ((-807 . -171) 41656) ((-518 . -285) 41633) ((-1238 . -289) 41612) ((-1181 . -363) 41586) ((-1075 . -265) 41570) ((-661 . -488) 41551) ((-661 . -605) 41517) ((-598 . -488) 41498) ((-117 . -982) 41475) ((-598 . -605) 41425) ((-472 . -102) T) ((-179 . -488) 41406) ((-179 . -605) 41372) ((-160 . -488) 41353) ((-155 . -488) 41334) ((-153 . -488) 41315) ((-160 . -605) 41281) ((-155 . -605) 41247) ((-364 . -1087) T) ((-250 . -1087) T) ((-249 . -1087) T) ((-153 . -605) 41213) ((-1231 . -289) 41164) ((-1210 . -289) 41115) ((-862 . -1138) 41093) ((-1161 . -992) 41059) ((-600 . -363) 40999) ((-1160 . -992) 40965) ((-600 . -228) 40912) ((-586 . -605) 40894) ((-586 . -606) NIL) ((-684 . -841) T) ((-473 . -228) 40844) ((-485 . -1039) T) ((-1154 . -992) 40810) ((-88 . -438) T) ((-88 . -394) T) ((-216 . -1039) T) ((-1113 . -992) 40776) ((-1067 . -717) T) ((-703 . -1099) T) ((-589 . -289) 40755) ((-588 . -289) 40734) ((-485 . -242) T) ((-485 . -232) T) ((-216 . -242) T) ((-216 . -232) T) ((-1152 . -605) 40716) ((-862 . -38) 40668) ((-358 . -717) T) ((-352 . -717) T) ((-344 . -717) T) ((-108 . -785) T) ((-108 . -782) T) ((-703 . -23) T) ((-108 . -717) T) ((-518 . -1234) 40652) ((-1274 . -25) T) ((-472 . -283) 40618) ((-1274 . -21) T) ((-1209 . -308) 40557) ((-1163 . -102) T) ((-40 . -144) 40529) ((-40 . -146) 40501) ((-518 . -596) 40478) ((-1100 . -638) 40326) ((-594 . -308) 40264) ((-45 . -641) 40214) ((-45 . -656) 40164) ((-45 . -372) 40114) ((-1145 . -34) T) ((-861 . -839) NIL) ((-644 . -130) T) ((-483 . -605) 40096) ((-239 . -285) 40073) ((-185 . -1087) T) ((-637 . -34) T) ((-624 . -34) T) ((-1074 . -450) 40024) ((-807 . -512) 39898) ((-773 . -450) 39829) ((-771 . -450) 39780) ((-452 . -450) 39731) ((-942 . -410) 39715) ((-722 . -605) 39697) ((-250 . -708) 39639) ((-249 . -708) 39581) ((-722 . -606) 39442) ((-479 . -410) 39426) ((-338 . -301) T) ((-522 . -93) T) ((-350 . -910) T) ((-990 . -102) 39404) ((-1014 . -841) T) ((-60 . -512) 39337) ((-1209 . -1138) 39289) ((-994 . -285) NIL) ((-224 . -1046) T) ((-378 . -819) T) ((-1100 . -34) T) ((-575 . -450) T) ((-516 . -450) T) ((-1213 . -1080) 39273) ((-1213 . -1087) 39251) ((-239 . -596) 39228) ((-1213 . -1082) 39185) ((-1161 . -605) 39167) ((-1160 . -605) 39149) ((-1154 . -605) 39131) ((-1154 . -606) NIL) ((-1113 . -605) 39113) ((-862 . -399) 39097) ((-534 . -102) T) ((-1230 . -38) 38938) ((-1209 . -38) 38752) ((-860 . -146) T) ((-693 . -608) 38736) ((-575 . -401) T) ((-48 . -841) T) ((-516 . -401) T) ((-1242 . -102) T) ((-1232 . -21) T) ((-1232 . -25) T) ((-1100 . -782) 38715) ((-1100 . -785) 38666) ((-1100 . -784) 38645) ((-983 . -1087) T) ((-1017 . -34) T) ((-853 . -1087) T) ((-1100 . -717) 38555) ((-654 . -102) T) ((-636 . -102) T) ((-544 . -287) 38534) ((-1173 . -102) T) ((-474 . -34) T) ((-461 . -34) T) ((-354 . -102) T) ((-351 . -102) T) ((-343 . -102) T) ((-263 . -102) T) ((-246 . -102) T) ((-475 . -306) T) ((-1050 . -1046) T) ((-942 . -1046) T) ((-315 . -631) 38440) ((-312 . -631) 38401) ((-479 . -1046) T) ((-477 . -102) T) ((-435 . -605) 38383) ((-1159 . -1087) T) ((-1112 . -1087) T) ((-845 . -1087) T) ((-1128 . -102) T) ((-807 . -289) 38314) ((-953 . -1045) 38197) ((-475 . -1012) T) ((-726 . -1045) 38167) ((-451 . -1045) 38137) ((-1134 . -1108) 38121) ((-1089 . -512) 38054) ((-953 . -111) 37923) ((-900 . -102) T) ((-726 . -111) 37888) ((-523 . -488) 37869) ((-523 . -605) 37835) ((-59 . -102) 37785) ((-518 . -606) 37746) ((-518 . -605) 37658) ((-517 . -102) 37636) ((-514 . -102) 37586) ((-495 . -102) 37564) ((-494 . -102) 37514) ((-451 . -111) 37477) ((-250 . -171) 37456) ((-249 . -171) 37435) ((-417 . -1045) 37409) ((-1194 . -963) 37371) ((-989 . -1099) T) ((-1122 . -608) 37352) ((-933 . -512) 37285) ((-485 . -786) T) ((-472 . -38) 37126) ((-417 . -111) 37093) ((-485 . -783) T) ((-990 . -308) 37031) ((-216 . -786) T) ((-216 . -783) T) ((-989 . -23) T) ((-703 . -130) T) ((-1209 . -399) 37001) ((-315 . -25) 36853) ((-168 . -410) 36837) ((-315 . -21) 36708) ((-312 . -25) T) ((-312 . -21) T) ((-855 . -367) T) ((-953 . -608) 36561) ((-110 . -34) T) ((-726 . -608) 36517) ((-706 . -608) 36499) ((-480 . -638) 36347) ((-861 . -1046) T) ((-586 . -287) 36322) ((-574 . -146) T) ((-558 . -146) T) ((-493 . -146) T) ((-1159 . -708) 36151) ((-1112 . -708) 36000) ((-1107 . -631) 35982) ((-845 . -708) 35952) ((-660 . -1200) T) ((-1 . -102) T) ((-417 . -608) 35860) ((-239 . -605) 35591) ((-1102 . -1087) T) ((-1219 . -410) 35575) ((-1173 . -308) 35379) ((-953 . -1039) T) ((-726 . -1039) T) ((-706 . -1039) T) ((-635 . -1087) 35329) ((-1043 . -638) 35313) ((-846 . -410) 35297) ((-509 . -102) T) ((-505 . -102) T) ((-246 . -308) 35284) ((-263 . -308) 35271) ((-953 . -325) 35250) ((-384 . -638) 35234) ((-477 . -308) 35038) ((-250 . -512) 34971) ((-660 . -1028) 34867) ((-249 . -512) 34800) ((-1128 . -308) 34726) ((-810 . -1087) T) ((-790 . -1045) 34710) ((-1238 . -285) 34695) ((-1231 . -285) 34680) ((-1210 . -285) 34528) ((-385 . -1087) T) ((-323 . -1087) T) ((-417 . -1039) T) ((-168 . -1046) T) ((-59 . -308) 34466) ((-790 . -111) 34445) ((-588 . -285) 34430) ((-517 . -308) 34368) ((-514 . -308) 34306) ((-495 . -308) 34244) ((-494 . -308) 34182) ((-417 . -232) 34161) ((-480 . -34) T) ((-994 . -606) 34091) ((-224 . -1087) T) ((-994 . -605) 34051) ((-961 . -605) 34011) ((-961 . -606) 33986) ((-904 . -605) 33968) ((-689 . -146) T) ((-691 . -910) T) ((-691 . -811) T) ((-426 . -605) 33950) ((-1107 . -21) T) ((-1107 . -25) T) ((-660 . -376) 33934) ((-116 . -910) T) ((-862 . -230) 33918) ((-78 . -1200) T) ((-126 . -125) 33902) ((-1043 . -34) T) ((-1268 . -1028) 33876) ((-1266 . -1028) 33833) ((-1219 . -1046) T) ((-846 . -1046) T) ((-480 . -782) 33812) ((-354 . -1138) 33791) ((-351 . -1138) 33770) ((-343 . -1138) 33749) ((-480 . -785) 33700) ((-480 . -784) 33679) ((-226 . -34) T) ((-480 . -717) 33589) ((-790 . -608) 33437) ((-60 . -487) 33421) ((-565 . -1046) T) ((-1159 . -171) 33312) ((-1112 . -171) 33223) ((-1050 . -1087) T) ((-1074 . -939) 33168) ((-942 . -1087) T) ((-808 . -638) 33119) ((-773 . -939) 33088) ((-704 . -1087) T) ((-771 . -939) 33055) ((-514 . -281) 33039) ((-660 . -890) 32998) ((-479 . -1087) T) ((-452 . -939) 32965) ((-79 . -1200) T) ((-354 . -38) 32930) ((-351 . -38) 32895) ((-343 . -38) 32860) ((-263 . -38) 32709) ((-246 . -38) 32558) ((-900 . -1138) T) ((-522 . -488) 32539) ((-615 . -146) 32518) ((-615 . -144) 32497) ((-522 . -605) 32463) ((-117 . -146) T) ((-117 . -144) NIL) ((-413 . -717) T) ((-790 . -1039) T) ((-342 . -450) T) ((-1238 . -992) 32429) ((-1231 . -992) 32395) ((-1210 . -992) 32361) ((-900 . -38) 32326) ((-224 . -708) 32291) ((-318 . -47) 32261) ((-40 . -408) 32233) ((-139 . -605) 32215) ((-989 . -130) T) ((-806 . -1200) T) ((-173 . -910) T) ((-598 . -608) 32196) ((-342 . -401) T) ((-661 . -608) 32177) ((-179 . -608) 32158) ((-160 . -608) 32139) ((-155 . -608) 32120) ((-153 . -608) 32101) ((-518 . -287) 32078) ((-806 . -1028) 31905) ((-45 . -34) T) ((-671 . -102) T) ((-666 . -102) T) ((-652 . -102) T) ((-644 . -21) T) ((-644 . -25) T) ((-1209 . -230) 31875) ((-1089 . -487) 31859) ((-476 . -102) T) ((-665 . -1200) T) ((-244 . -102) 31809) ((-137 . -102) T) ((-136 . -102) T) ((-132 . -102) T) ((-861 . -1087) T) ((-1165 . -638) 31734) ((-1050 . -708) 31721) ((-722 . -1045) 31564) ((-1159 . -512) 31511) ((-942 . -708) 31360) ((-1112 . -512) 31312) ((-1257 . -1087) T) ((-1256 . -1087) T) ((-479 . -708) 31161) ((-67 . -605) 31143) ((-722 . -111) 30972) ((-933 . -487) 30956) ((-1258 . -638) 30916) ((-808 . -717) T) ((-1161 . -1045) 30799) ((-1160 . -1045) 30634) ((-1154 . -1045) 30424) ((-1113 . -1045) 30307) ((-993 . -1204) T) ((-1081 . -102) 30285) ((-806 . -376) 30254) ((-573 . -605) 30236) ((-993 . -550) T) ((-1161 . -111) 30105) ((-1160 . -111) 29926) ((-1154 . -111) 29695) ((-1113 . -111) 29564) ((-1092 . -1090) 29528) ((-378 . -839) T) ((-1238 . -605) 29510) ((-1231 . -605) 29492) ((-1210 . -605) 29474) ((-1210 . -606) NIL) ((-239 . -287) 29451) ((-40 . -450) T) ((-224 . -171) T) ((-168 . -1087) T) ((-722 . -608) 29236) ((-684 . -146) T) ((-684 . -144) NIL) ((-589 . -605) 29218) ((-588 . -605) 29200) ((-888 . -1087) T) ((-832 . -1087) T) ((-799 . -1087) T) ((-760 . -1087) T) ((-648 . -843) 29184) ((-667 . -1087) T) ((-806 . -890) 29116) ((-40 . -401) NIL) ((-1161 . -608) 28998) ((-1107 . -651) T) ((-861 . -708) 28943) ((-250 . -487) 28927) ((-249 . -487) 28911) ((-1160 . -608) 28654) ((-1154 . -608) 28449) ((-703 . -631) 28397) ((-643 . -638) 28371) ((-1113 . -608) 28253) ((-294 . -34) T) ((-722 . -1039) T) ((-575 . -1253) 28240) ((-516 . -1253) 28217) ((-1219 . -1087) T) ((-1159 . -289) 28128) ((-1112 . -289) 28059) ((-1050 . -171) T) ((-846 . -1087) T) ((-942 . -171) 27970) ((-773 . -1222) 27954) ((-635 . -512) 27887) ((-77 . -605) 27869) ((-722 . -325) 27834) ((-1165 . -717) T) ((-565 . -1087) T) ((-479 . -171) 27745) ((-244 . -308) 27683) ((-1129 . -1099) T) ((-70 . -605) 27665) ((-1258 . -717) T) ((-1161 . -1039) T) ((-1160 . -1039) T) ((-326 . -102) 27615) ((-1154 . -1039) T) ((-1129 . -23) T) ((-1113 . -1039) T) ((-91 . -1108) 27599) ((-856 . -1099) T) ((-1161 . -232) 27558) ((-1160 . -242) 27537) ((-1160 . -232) 27489) ((-1154 . -232) 27376) ((-1154 . -242) 27355) ((-318 . -890) 27261) ((-856 . -23) T) ((-168 . -708) 27089) ((-406 . -1204) T) ((-1088 . -367) T) ((-1014 . -146) T) ((-993 . -362) T) ((-860 . -450) T) ((-933 . -285) 27066) ((-315 . -841) T) ((-312 . -841) NIL) ((-864 . -102) T) ((-703 . -25) T) ((-406 . -550) T) ((-703 . -21) T) ((-523 . -608) 27047) ((-353 . -146) 27029) ((-353 . -144) T) ((-1134 . -1087) 27007) ((-451 . -711) T) ((-75 . -605) 26989) ((-114 . -841) T) ((-244 . -281) 26973) ((-239 . -1045) 26870) ((-81 . -605) 26852) ((-726 . -367) 26805) ((-1163 . -819) T) ((-728 . -234) 26789) ((-1146 . -1200) T) ((-140 . -234) 26771) ((-239 . -111) 26661) ((-1219 . -708) 26490) ((-48 . -146) T) ((-861 . -171) T) ((-846 . -708) 26460) ((-482 . -1200) T) ((-942 . -512) 26407) ((-643 . -717) T) ((-565 . -708) 26394) ((-1024 . -1046) T) ((-479 . -512) 26337) ((-933 . -19) 26321) ((-933 . -596) 26298) ((-807 . -606) NIL) ((-807 . -605) 26280) ((-994 . -1045) 26230) ((-412 . -605) 26212) ((-250 . -285) 26189) ((-249 . -285) 26166) ((-485 . -899) NIL) ((-315 . -29) 26136) ((-108 . -1200) T) ((-993 . -1099) T) ((-216 . -899) NIL) ((-904 . -1045) 26088) ((-1067 . -1028) 25984) ((-994 . -111) 25918) ((-993 . -23) T) ((-728 . -685) 25902) ((-263 . -230) 25886) ((-426 . -1045) 25870) ((-378 . -1046) T) ((-239 . -608) 25600) ((-904 . -111) 25538) ((-684 . -1188) NIL) ((-485 . -638) 25488) ((-108 . -874) 25470) ((-108 . -876) 25452) ((-684 . -1185) NIL) ((-216 . -638) 25402) ((-358 . -1028) 25386) ((-352 . -1028) 25370) ((-326 . -308) 25308) ((-344 . -1028) 25292) ((-224 . -289) T) ((-426 . -111) 25271) ((-60 . -605) 25203) ((-168 . -171) T) ((-1107 . -841) T) ((-108 . -1028) 25163) ((-882 . -1087) T) ((-827 . -1046) T) ((-818 . -1046) T) ((-684 . -35) NIL) ((-684 . -95) NIL) ((-312 . -982) 25124) ((-182 . -102) T) ((-574 . -450) T) ((-558 . -450) T) ((-493 . -450) T) ((-406 . -362) T) ((-239 . -1039) 25054) ((-1137 . -34) T) ((-475 . -910) T) ((-989 . -631) 25002) ((-250 . -596) 24979) ((-249 . -596) 24956) ((-1067 . -376) 24940) ((-861 . -512) 24848) ((-239 . -232) 24800) ((-1145 . -1200) T) ((-994 . -608) 24750) ((-904 . -608) 24687) ((-815 . -605) 24669) ((-1269 . -1099) T) ((-1261 . -605) 24651) ((-1219 . -171) 24542) ((-426 . -608) 24511) ((-108 . -376) 24493) ((-108 . -337) 24475) ((-1050 . -289) T) ((-942 . -289) 24406) ((-790 . -367) 24385) ((-637 . -1200) T) ((-624 . -1200) T) ((-479 . -289) 24316) ((-565 . -171) T) ((-326 . -281) 24300) ((-1269 . -23) T) ((-1194 . -102) T) ((-1181 . -1087) T) ((-1075 . -1087) T) ((-1063 . -1087) T) ((-83 . -605) 24282) ((-702 . -102) T) ((-354 . -348) 24261) ((-600 . -1087) T) ((-351 . -348) 24240) ((-343 . -348) 24219) ((-473 . -1087) T) ((-1173 . -228) 24169) ((-263 . -252) 24131) ((-1129 . -130) T) ((-600 . -602) 24107) ((-1067 . -890) 24040) ((-994 . -1039) T) ((-904 . -1039) T) ((-473 . -602) 24019) ((-1154 . -783) NIL) ((-1154 . -786) NIL) ((-1089 . -606) 23980) ((-477 . -228) 23930) ((-1089 . -605) 23912) ((-994 . -242) T) ((-994 . -232) T) ((-426 . -1039) T) ((-948 . -1087) 23862) ((-904 . -242) T) ((-856 . -130) T) ((-689 . -450) T) ((-834 . -1099) 23841) ((-108 . -890) NIL) ((-1194 . -283) 23807) ((-862 . -839) 23786) ((-1100 . -1200) T) ((-895 . -717) T) ((-168 . -512) 23698) ((-989 . -25) T) ((-895 . -471) T) ((-406 . -1099) T) ((-485 . -785) T) ((-485 . -782) T) ((-900 . -348) T) ((-485 . -717) T) ((-216 . -785) T) ((-216 . -782) T) ((-989 . -21) T) ((-216 . -717) T) ((-834 . -23) 23650) ((-522 . -608) 23631) ((-318 . -306) 23610) ((-1025 . -234) 23556) ((-406 . -23) T) ((-933 . -606) 23517) ((-933 . -605) 23429) ((-635 . -487) 23413) ((-45 . -1000) 23363) ((-609 . -957) T) ((-489 . -102) T) ((-330 . -605) 23345) ((-1100 . -1028) 23172) ((-586 . -641) 23154) ((-128 . -1087) T) ((-586 . -372) 23136) ((-342 . -1253) 23113) ((-1017 . -1200) T) ((-861 . -289) T) ((-1219 . -512) 23060) ((-474 . -1200) T) ((-461 . -1200) T) ((-579 . -102) T) ((-1159 . -285) 22987) ((-615 . -450) 22966) ((-990 . -985) 22950) ((-1261 . -381) 22922) ((-515 . -1087) T) ((-117 . -450) T) ((-1180 . -102) T) ((-1079 . -1087) 22900) ((-1024 . -1087) T) ((-1102 . -93) T) ((-883 . -841) T) ((-350 . -1204) T) ((-1238 . -1045) 22783) ((-1100 . -376) 22752) ((-1231 . -1045) 22587) ((-1210 . -1045) 22377) ((-1238 . -111) 22246) ((-1231 . -111) 22067) ((-1210 . -111) 21836) ((-1194 . -308) 21823) ((-350 . -550) T) ((-364 . -605) 21805) ((-288 . -306) T) ((-589 . -1045) 21778) ((-588 . -1045) 21661) ((-360 . -1087) T) ((-321 . -1087) T) ((-250 . -605) 21622) ((-249 . -605) 21583) ((-993 . -130) T) ((-627 . -23) T) ((-684 . -408) 21550) ((-599 . -23) T) ((-648 . -102) T) ((-589 . -111) 21521) ((-588 . -111) 21390) ((-378 . -1087) T) ((-335 . -102) T) ((-168 . -289) 21301) ((-1209 . -839) 21254) ((-705 . -1046) T) ((-1134 . -512) 21187) ((-1100 . -890) 21119) ((-827 . -1087) T) ((-818 . -1087) T) ((-816 . -1087) T) ((-97 . -102) T) ((-143 . -841) T) ((-604 . -874) 21103) ((-110 . -1200) T) ((-1074 . -102) T) ((-1051 . -34) T) ((-773 . -102) T) ((-771 . -102) T) ((-1238 . -608) 20985) ((-1231 . -608) 20728) ((-459 . -102) T) ((-452 . -102) T) ((-1210 . -608) 20523) ((-239 . -786) 20474) ((-239 . -783) 20425) ((-639 . -102) T) ((-589 . -608) 20383) ((-588 . -608) 20265) ((-1219 . -289) 20176) ((-654 . -626) 20160) ((-185 . -605) 20142) ((-635 . -285) 20119) ((-1024 . -708) 20103) ((-565 . -289) T) ((-953 . -638) 20028) ((-1269 . -130) T) ((-726 . -638) 19988) ((-706 . -638) 19975) ((-274 . -102) T) ((-451 . -638) 19905) ((-50 . -102) T) ((-575 . -102) T) ((-516 . -102) T) ((-1238 . -1039) T) ((-1231 . -1039) T) ((-1210 . -1039) T) ((-1238 . -232) 19864) ((-321 . -708) 19846) ((-1231 . -242) 19825) ((-1231 . -232) 19777) ((-1210 . -232) 19664) ((-1210 . -242) 19643) ((-1194 . -38) 19540) ((-994 . -786) T) ((-589 . -1039) T) ((-588 . -1039) T) ((-994 . -783) T) ((-961 . -786) T) ((-961 . -783) T) ((-862 . -1046) T) ((-860 . -859) 19524) ((-109 . -605) 19506) ((-684 . -450) T) ((-378 . -708) 19471) ((-417 . -638) 19445) ((-703 . -841) 19424) ((-702 . -38) 19389) ((-588 . -232) 19348) ((-40 . -715) 19320) ((-350 . -328) 19297) ((-350 . -362) T) ((-1067 . -306) 19248) ((-293 . -1099) 19129) ((-1093 . -1200) T) ((-170 . -102) T) ((-1213 . -605) 19096) ((-834 . -130) 19048) ((-635 . -1234) 19032) ((-827 . -708) 19002) ((-818 . -708) 18972) ((-480 . -1200) T) ((-358 . -306) T) ((-352 . -306) T) ((-344 . -306) T) ((-635 . -596) 18949) ((-406 . -130) T) ((-518 . -656) 18933) ((-108 . -306) T) ((-293 . -23) 18816) ((-518 . -641) 18800) ((-684 . -401) NIL) ((-518 . -372) 18784) ((-290 . -605) 18766) ((-91 . -1087) 18744) ((-108 . -1012) T) ((-558 . -142) T) ((-1246 . -150) 18728) ((-480 . -1028) 18555) ((-1232 . -144) 18516) ((-1232 . -146) 18477) ((-1043 . -1200) T) ((-983 . -605) 18459) ((-853 . -605) 18441) ((-807 . -1045) 18284) ((-1257 . -93) T) ((-1256 . -93) T) ((-1159 . -606) NIL) ((-1083 . -1087) T) ((-1077 . -1087) T) ((-1074 . -308) 18271) ((-1061 . -1087) T) ((-226 . -1200) T) ((-1054 . -1087) T) ((-1026 . -1087) T) ((-1009 . -1087) T) ((-773 . -308) 18258) ((-771 . -308) 18245) ((-1159 . -605) 18227) ((-807 . -111) 18056) ((-1112 . -605) 18038) ((-618 . -1087) T) ((-571 . -172) T) ((-527 . -172) T) ((-452 . -308) 18025) ((-481 . -1087) T) ((-1112 . -606) 17773) ((-1024 . -171) T) ((-933 . -287) 17750) ((-217 . -1087) T) ((-845 . -605) 17732) ((-600 . -512) 17515) ((-81 . -608) 17456) ((-809 . -1028) 17440) ((-473 . -512) 17232) ((-953 . -717) T) ((-726 . -717) T) ((-706 . -717) T) ((-350 . -1099) T) ((-1166 . -605) 17214) ((-222 . -102) T) ((-480 . -376) 17183) ((-513 . -1087) T) ((-508 . -1087) T) ((-506 . -1087) T) ((-790 . -638) 17157) ((-1014 . -450) T) ((-948 . -512) 17090) ((-350 . -23) T) ((-627 . -130) T) ((-599 . -130) T) ((-353 . -450) T) ((-239 . -367) 17069) ((-378 . -171) T) ((-1230 . -1046) T) ((-1209 . -1046) T) ((-224 . -992) T) ((-807 . -608) 16806) ((-689 . -386) T) ((-417 . -717) T) ((-691 . -1204) T) ((-1129 . -631) 16754) ((-574 . -859) 16738) ((-1261 . -1045) 16722) ((-1146 . -1176) 16698) ((-691 . -550) T) ((-126 . -1087) 16676) ((-705 . -1087) T) ((-480 . -890) 16608) ((-248 . -1087) T) ((-186 . -1087) T) ((-648 . -38) 16578) ((-353 . -401) T) ((-315 . -146) 16557) ((-315 . -144) 16536) ((-128 . -512) NIL) ((-116 . -550) T) ((-312 . -146) 16492) ((-312 . -144) 16448) ((-48 . -450) T) ((-161 . -1087) T) ((-156 . -1087) T) ((-1146 . -107) 16395) ((-773 . -1138) 16373) ((-679 . -34) T) ((-1261 . -111) 16352) ((-544 . -34) T) ((-482 . -107) 16336) ((-250 . -287) 16313) ((-249 . -287) 16290) ((-861 . -285) 16241) ((-45 . -1200) T) ((-807 . -1039) T) ((-1165 . -47) 16218) ((-807 . -325) 16180) ((-1074 . -38) 16029) ((-807 . -232) 16008) ((-773 . -38) 15837) ((-771 . -38) 15686) ((-1102 . -488) 15667) ((-452 . -38) 15516) ((-1102 . -605) 15482) ((-1105 . -102) T) ((-635 . -606) 15443) ((-635 . -605) 15355) ((-575 . -1138) T) ((-516 . -1138) T) ((-1134 . -487) 15339) ((-1186 . -1087) 15317) ((-1129 . -25) T) ((-1129 . -21) T) ((-1261 . -608) 15266) ((-472 . -1046) T) ((-1210 . -783) NIL) ((-1210 . -786) NIL) ((-989 . -841) 15245) ((-829 . -1087) T) ((-810 . -605) 15227) ((-856 . -21) T) ((-856 . -25) T) ((-790 . -717) T) ((-173 . -1204) T) ((-575 . -38) 15192) ((-516 . -38) 15157) ((-385 . -605) 15139) ((-323 . -605) 15121) ((-168 . -285) 15079) ((-63 . -1200) T) ((-112 . -102) T) ((-862 . -1087) T) ((-173 . -550) T) ((-705 . -708) 15049) ((-293 . -130) 14932) ((-224 . -605) 14914) ((-224 . -606) 14844) ((-993 . -631) 14783) ((-1261 . -1039) T) ((-1107 . -146) T) ((-624 . -1176) 14758) ((-722 . -899) 14737) ((-586 . -34) T) ((-637 . -107) 14721) ((-624 . -107) 14667) ((-1219 . -285) 14594) ((-722 . -638) 14519) ((-294 . -1200) T) ((-1165 . -1028) 14415) ((-933 . -610) 14392) ((-571 . -570) T) ((-571 . -525) T) ((-527 . -525) T) ((-1154 . -899) NIL) ((-1050 . -606) 14307) ((-1050 . -605) 14289) ((-942 . -605) 14271) ((-704 . -488) 14221) ((-342 . -102) T) ((-250 . -1045) 14118) ((-249 . -1045) 14015) ((-393 . -102) T) ((-31 . -1087) T) ((-942 . -606) 13876) ((-704 . -605) 13811) ((-1259 . -1193) 13780) ((-479 . -605) 13762) ((-479 . -606) 13623) ((-246 . -410) 13607) ((-263 . -410) 13591) ((-250 . -111) 13481) ((-249 . -111) 13371) ((-1161 . -638) 13296) ((-1160 . -638) 13193) ((-1154 . -638) 13045) ((-1113 . -638) 12970) ((-350 . -130) T) ((-82 . -439) T) ((-82 . -394) T) ((-993 . -25) T) ((-993 . -21) T) ((-863 . -1087) 12921) ((-862 . -708) 12873) ((-378 . -289) T) ((-168 . -992) 12825) ((-684 . -386) T) ((-989 . -987) 12809) ((-691 . -1099) T) ((-684 . -165) 12791) ((-1230 . -1087) T) ((-1209 . -1087) T) ((-315 . -1185) 12770) ((-315 . -1188) 12749) ((-1151 . -102) T) ((-315 . -949) 12728) ((-133 . -1099) T) ((-116 . -1099) T) ((-594 . -1244) 12712) ((-691 . -23) T) ((-594 . -1087) 12662) ((-315 . -95) 12641) ((-91 . -512) 12574) ((-173 . -362) T) ((-250 . -608) 12304) ((-249 . -608) 12034) ((-315 . -35) 12013) ((-600 . -487) 11947) ((-133 . -23) T) ((-116 . -23) T) ((-956 . -102) T) ((-709 . -1087) T) ((-473 . -487) 11884) ((-406 . -631) 11832) ((-643 . -1028) 11728) ((-948 . -487) 11712) ((-354 . -1046) T) ((-351 . -1046) T) ((-343 . -1046) T) ((-263 . -1046) T) ((-246 . -1046) T) ((-861 . -606) NIL) ((-861 . -605) 11694) ((-1257 . -488) 11675) ((-1256 . -488) 11656) ((-1269 . -21) T) ((-1257 . -605) 11622) ((-1256 . -605) 11588) ((-565 . -992) T) ((-722 . -717) T) ((-1269 . -25) T) ((-250 . -1039) 11518) ((-249 . -1039) 11448) ((-72 . -1200) T) ((-250 . -232) 11400) ((-249 . -232) 11352) ((-40 . -102) T) ((-900 . -1046) T) ((-128 . -487) 11334) ((-1168 . -102) T) ((-1161 . -717) T) ((-1160 . -717) T) ((-1154 . -717) T) ((-1154 . -782) NIL) ((-1154 . -785) NIL) ((-944 . -102) T) ((-911 . -102) T) ((-1113 . -717) T) ((-762 . -102) T) ((-662 . -102) T) ((-472 . -1087) T) ((-338 . -1099) T) ((-173 . -1099) T) ((-318 . -910) 11313) ((-1230 . -708) 11154) ((-862 . -171) T) ((-1209 . -708) 10968) ((-834 . -21) 10920) ((-834 . -25) 10872) ((-244 . -1136) 10856) ((-126 . -512) 10789) ((-406 . -25) T) ((-406 . -21) T) ((-338 . -23) T) ((-168 . -606) 10555) ((-168 . -605) 10537) ((-173 . -23) T) ((-635 . -287) 10514) ((-518 . -34) T) ((-888 . -605) 10496) ((-89 . -1200) T) ((-832 . -605) 10478) ((-799 . -605) 10460) ((-760 . -605) 10442) ((-667 . -605) 10424) ((-239 . -638) 10272) ((-1163 . -1087) T) ((-1159 . -1045) 10095) ((-1137 . -1200) T) ((-1112 . -1045) 9938) ((-845 . -1045) 9922) ((-1213 . -610) 9906) ((-1159 . -111) 9715) ((-1112 . -111) 9544) ((-845 . -111) 9523) ((-1219 . -606) NIL) ((-1219 . -605) 9505) ((-342 . -1138) T) ((-846 . -605) 9487) ((-1063 . -285) 9466) ((-80 . -1200) T) ((-994 . -899) NIL) ((-600 . -285) 9442) ((-1186 . -512) 9375) ((-485 . -1200) T) ((-565 . -605) 9357) ((-473 . -285) 9336) ((-515 . -93) T) ((-216 . -1200) T) ((-1074 . -230) 9320) ((-288 . -910) T) ((-808 . -306) 9299) ((-860 . -102) T) ((-773 . -230) 9283) ((-994 . -638) 9233) ((-948 . -285) 9210) ((-904 . -638) 9162) ((-627 . -21) T) ((-627 . -25) T) ((-599 . -21) T) ((-342 . -38) 9127) ((-684 . -715) 9094) ((-485 . -874) 9076) ((-485 . -876) 9058) ((-472 . -708) 8899) ((-216 . -874) 8881) ((-64 . -1200) T) ((-216 . -876) 8863) ((-599 . -25) T) ((-426 . -638) 8837) ((-1159 . -608) 8606) ((-485 . -1028) 8566) ((-862 . -512) 8478) ((-1112 . -608) 8270) ((-845 . -608) 8188) ((-216 . -1028) 8148) ((-239 . -34) T) ((-990 . -1087) 8126) ((-1230 . -171) 8057) ((-1209 . -171) 7988) ((-703 . -144) 7967) ((-703 . -146) 7946) ((-691 . -130) T) ((-135 . -463) 7923) ((-1134 . -605) 7855) ((-648 . -646) 7839) ((-128 . -285) 7814) ((-116 . -130) T) ((-475 . -1204) T) ((-600 . -596) 7790) ((-473 . -596) 7769) ((-335 . -334) 7738) ((-534 . -1087) T) ((-475 . -550) T) ((-1159 . -1039) T) ((-1112 . -1039) T) ((-845 . -1039) T) ((-239 . -782) 7717) ((-239 . -785) 7668) ((-239 . -784) 7647) ((-1159 . -325) 7624) ((-239 . -717) 7534) ((-948 . -19) 7518) ((-485 . -376) 7500) ((-485 . -337) 7482) ((-1112 . -325) 7454) ((-353 . -1253) 7431) ((-216 . -376) 7413) ((-216 . -337) 7395) ((-948 . -596) 7372) ((-1159 . -232) T) ((-654 . -1087) T) ((-636 . -1087) T) ((-1242 . -1087) T) ((-1173 . -1087) T) ((-1074 . -252) 7309) ((-354 . -1087) T) ((-351 . -1087) T) ((-343 . -1087) T) ((-263 . -1087) T) ((-246 . -1087) T) ((-84 . -1200) T) ((-127 . -102) 7287) ((-121 . -102) 7265) ((-1173 . -602) 7244) ((-477 . -1087) T) ((-1128 . -1087) T) ((-477 . -602) 7223) ((-250 . -786) 7174) ((-250 . -783) 7125) ((-249 . -786) 7076) ((-40 . -1138) NIL) ((-249 . -783) 7027) ((-1102 . -608) 7008) ((-128 . -19) 6990) ((-1067 . -910) 6941) ((-994 . -785) T) ((-994 . -782) T) ((-994 . -717) T) ((-961 . -785) T) ((-128 . -596) 6916) ((-904 . -717) T) ((-91 . -487) 6900) ((-485 . -890) NIL) ((-900 . -1087) T) ((-224 . -1045) 6865) ((-862 . -289) T) ((-216 . -890) NIL) ((-824 . -1099) 6844) ((-59 . -1087) 6794) ((-517 . -1087) 6772) ((-514 . -1087) 6722) ((-495 . -1087) 6700) ((-494 . -1087) 6650) ((-574 . -102) T) ((-558 . -102) T) ((-493 . -102) T) ((-472 . -171) 6581) ((-358 . -910) T) ((-352 . -910) T) ((-344 . -910) T) ((-224 . -111) 6537) ((-824 . -23) 6489) ((-426 . -717) T) ((-108 . -910) T) ((-40 . -38) 6434) ((-108 . -811) T) ((-575 . -348) T) ((-516 . -348) T) ((-1209 . -512) 6294) ((-315 . -450) 6273) ((-312 . -450) T) ((-882 . -605) 6255) ((-827 . -285) 6234) ((-338 . -130) T) ((-173 . -130) T) ((-293 . -25) 6098) ((-293 . -21) 5981) ((-45 . -1176) 5960) ((-66 . -605) 5942) ((-55 . -102) T) ((-594 . -512) 5875) ((-45 . -107) 5825) ((-810 . -608) 5809) ((-1089 . -424) 5793) ((-1089 . -367) 5772) ((-385 . -608) 5756) ((-323 . -608) 5740) ((-1051 . -1200) T) ((-1050 . -1045) 5727) ((-942 . -1045) 5570) ((-1247 . -102) T) ((-1246 . -102) 5520) ((-1050 . -111) 5505) ((-479 . -1045) 5348) ((-654 . -708) 5332) ((-942 . -111) 5161) ((-224 . -608) 5111) ((-475 . -362) T) ((-354 . -708) 5063) ((-351 . -708) 5015) ((-343 . -708) 4967) ((-263 . -708) 4816) ((-246 . -708) 4665) ((-1238 . -638) 4590) ((-1210 . -899) NIL) ((-1083 . -93) T) ((-1077 . -93) T) ((-933 . -641) 4574) ((-1061 . -93) T) ((-479 . -111) 4403) ((-1054 . -93) T) ((-1026 . -93) T) ((-933 . -372) 4387) ((-247 . -102) T) ((-1009 . -93) T) ((-74 . -605) 4369) ((-953 . -47) 4348) ((-701 . -102) T) ((-613 . -1099) T) ((-1 . -1087) T) ((-689 . -102) T) ((-1231 . -638) 4245) ((-618 . -93) T) ((-1181 . -605) 4227) ((-1075 . -605) 4209) ((-126 . -487) 4193) ((-481 . -93) T) ((-1063 . -605) 4175) ((-389 . -23) T) ((-87 . -1200) T) ((-217 . -93) T) ((-1210 . -638) 4027) ((-900 . -708) 3992) ((-613 . -23) T) ((-600 . -605) 3974) ((-600 . -606) NIL) ((-473 . -606) NIL) ((-473 . -605) 3956) ((-509 . -1087) T) ((-505 . -1087) T) ((-350 . -25) T) ((-350 . -21) T) ((-127 . -308) 3894) ((-121 . -308) 3832) ((-589 . -638) 3819) ((-224 . -1039) T) ((-588 . -638) 3744) ((-378 . -992) T) ((-224 . -242) T) ((-224 . -232) T) ((-1050 . -608) 3716) ((-1050 . -610) 3697) ((-948 . -606) 3658) ((-948 . -605) 3570) ((-942 . -608) 3359) ((-860 . -38) 3346) ((-704 . -608) 3296) ((-1230 . -289) 3247) ((-1209 . -289) 3198) ((-479 . -608) 2983) ((-1107 . -450) T) ((-500 . -841) T) ((-315 . -1126) 2962) ((-989 . -146) 2941) ((-989 . -144) 2920) ((-493 . -308) 2907) ((-294 . -1176) 2886) ((-861 . -1045) 2831) ((-475 . -1099) T) ((-138 . -826) 2813) ((-615 . -102) T) ((-1186 . -487) 2797) ((-250 . -367) 2776) ((-249 . -367) 2755) ((-1050 . -1039) T) ((-294 . -107) 2705) ((-128 . -606) NIL) ((-128 . -605) 2671) ((-117 . -102) T) ((-942 . -1039) T) ((-861 . -111) 2600) ((-475 . -23) T) ((-479 . -1039) T) ((-1050 . -232) T) ((-942 . -325) 2569) ((-479 . -325) 2526) ((-354 . -171) T) ((-351 . -171) T) ((-343 . -171) T) ((-263 . -171) 2437) ((-246 . -171) 2348) ((-953 . -1028) 2244) ((-515 . -488) 2225) ((-726 . -1028) 2196) ((-515 . -605) 2162) ((-1092 . -102) T) ((-1079 . -605) 2129) ((-1024 . -605) 2111) ((-1259 . -150) 2095) ((-1257 . -608) 2076) ((-1251 . -605) 2058) ((-1238 . -717) T) ((-1231 . -717) T) ((-1210 . -782) NIL) ((-1210 . -785) NIL) ((-168 . -1045) 1968) ((-900 . -171) T) ((-861 . -608) 1898) ((-1210 . -717) T) ((-1256 . -608) 1879) ((-993 . -341) 1853) ((-990 . -512) 1786) ((-834 . -841) 1765) ((-558 . -1138) T) ((-472 . -289) 1716) ((-589 . -717) T) ((-360 . -605) 1698) ((-321 . -605) 1680) ((-417 . -1028) 1576) ((-588 . -717) T) ((-406 . -841) 1527) ((-168 . -111) 1423) ((-824 . -130) 1375) ((-728 . -150) 1359) ((-1246 . -308) 1297) ((-485 . -306) T) ((-378 . -605) 1264) ((-518 . -1000) 1248) ((-378 . -606) 1162) ((-216 . -306) T) ((-140 . -150) 1144) ((-705 . -285) 1123) ((-485 . -1012) T) ((-574 . -38) 1110) ((-558 . -38) 1097) ((-493 . -38) 1062) ((-216 . -1012) T) ((-861 . -1039) T) ((-827 . -605) 1044) ((-818 . -605) 1026) ((-816 . -605) 1008) ((-807 . -899) 987) ((-1270 . -1099) T) ((-1219 . -1045) 810) ((-846 . -1045) 794) ((-861 . -242) T) ((-861 . -232) NIL) ((-679 . -1200) T) ((-1270 . -23) T) ((-807 . -638) 719) ((-544 . -1200) T) ((-417 . -337) 703) ((-565 . -1045) 690) ((-1219 . -111) 499) ((-691 . -631) 481) ((-846 . -111) 460) ((-380 . -23) T) ((-168 . -608) 238) ((-1173 . -512) 30) ((-652 . -1087) T) ((-671 . -1087) T) ((-666 . -1087) T)) \ No newline at end of file
diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase
index 9f3d3473..c8de61f2 100644
--- a/src/share/algebra/compress.daase
+++ b/src/share/algebra/compress.daase
@@ -1,6 +1,6 @@
-(30 . 3437790953)
-(4376 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
+(30 . 3439227041)
+(4385 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join|
|ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&|
|OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup|
@@ -36,7 +36,7 @@
|BinaryTree| |ByteBuffer| |Byte| |CancellationAbelianMonoid|
|CachableSet| |CapsuleAst| |CardinalNumber|
|CartesianTensorFunctions2| |CartesianTensor| |CaseAst| |CategoryAst|
- |Category| |CharacterClass| |CommonDenominator|
+ |CategoryConstructor| |Category| |CharacterClass| |CommonDenominator|
|CombinatorialFunctionCategory| |Character| |CharacteristicNonZero|
|CharacteristicPolynomialPackage| |CharacteristicZero|
|ChangeOfVariable| |ComplexIntegerSolveLinearPolynomialEquation|
@@ -51,7 +51,8 @@
|ContinuedFraction| |Contour| |CoordinateSystems|
|CharacteristicPolynomialInMonogenicalAlgebra| |ComplexPatternMatch|
|CRApackage| |CoerceAst| |ComplexRootFindingPackage|
- |CyclicStreamTools| |ConstructorCall| |ConstructorKind| |Constructor|
+ |CyclicStreamTools| |ConstructorCall| |ConstructorCategory&|
+ |ConstructorCategory| |ConstructorKind| |Constructor|
|ComplexTrigonometricManipulations| |CoerceVectorMatrixPackage|
|CycleIndicators| |CyclotomicPolynomialPackage| |d01AgentsPackage|
|d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType|
@@ -72,9 +73,10 @@
|DirectProductFunctions2| |DirectProduct| |DisplayPackage|
|DivisionRing&| |DivisionRing| |DoublyLinkedAggregate| |DataList|
|DiscreteLogarithmPackage| |DistributedMultivariatePolynomial|
- |Domain| |DirectProductMatrixModule| |DirectProductModule|
- |DifferentialPolynomialCategory&| |DifferentialPolynomialCategory|
- |DequeueAggregate| |TopLevelDrawFunctionsForCompiledFunctions|
+ |Domain| |DomainConstructor| |DirectProductMatrixModule|
+ |DirectProductModule| |DifferentialPolynomialCategory&|
+ |DifferentialPolynomialCategory| |DequeueAggregate|
+ |TopLevelDrawFunctionsForCompiledFunctions|
|TopLevelDrawFunctionsForAlgebraicCurves| |DrawComplex|
|DrawNumericHack| |TopLevelDrawFunctions|
|TopLevelDrawFunctionsForPoints| |DrawOptionFunctions0|
@@ -300,11 +302,11 @@
|OpenMathPackage| |OrderedMultisetAggregate| |OpenMathServerPackage|
|OnePointCompletionFunctions2| |OnePointCompletion|
|OperatorCategory&| |OperatorCategory| |Operator| |OperationsQuery|
- |NumericalOptimizationCategory| |AnnaNumericalOptimizationPackage|
- |NumericalOptimizationProblem| |OrderedCompletionFunctions2|
- |OrderedCompletion| |OrderedFinite| |OrderingFunctions|
- |OrderedMonoid| |OrderedRing&| |OrderedRing| |OrderedSet&|
- |OrderedSet| |UnivariateSkewPolynomialCategory&|
+ |OperatorSignature| |NumericalOptimizationCategory|
+ |AnnaNumericalOptimizationPackage| |NumericalOptimizationProblem|
+ |OrderedCompletionFunctions2| |OrderedCompletion| |OrderedFinite|
+ |OrderingFunctions| |OrderedMonoid| |OrderedRing&| |OrderedRing|
+ |OrderedSet&| |OrderedSet| |UnivariateSkewPolynomialCategory&|
|UnivariateSkewPolynomialCategory|
|UnivariateSkewPolynomialCategoryOps| |SparseUnivariateSkewPolynomial|
|UnivariateSkewPolynomial| |OrthogonalPolynomialFunctions|
@@ -472,656 +474,661 @@
|XPolynomial| |XPolynomialRing| |XRecursivePolynomial|
|ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage|
|IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping|
- |Record| |Union| |hermiteH| |PDESolve| |LagrangeInterpolation| Y
- |resetAttributeButtons| |integralBasisAtInfinity| |rightScalarTimes!|
- |semiSubResultantGcdEuclidean1| |setButtonValue| |newSubProgram|
- |stoseInvertibleSetreg| ~ |byte| |mkcomm| |restorePrecision|
- |integer?| |factorSquareFreePolynomial| |adaptive3D?| |unitNormal|
- |OMputError| |qroot| |permutation| |charpol| |leftPower|
- |padicallyExpand| |mdeg| |complete| |quadraticForm| |sin?| |open|
- |generic| |minrank| |bezoutMatrix| |paraboloidal|
- |selectSumOfSquaresRoutines| |sequence| |multiplyCoefficients|
- |expextendedint| |polyred| |sin2csc| |rootSimp| |lighting| |weight|
- |numberOfComposites| |polynomialZeros| |clearTheFTable| |recip|
- |minPoints3D| |parameters| |janko2| |setErrorBound| |back|
- |basisOfRightAnnihilator| |arbitrary| |nextPrimitivePoly|
- |createIrreduciblePoly| |quartic| |birth| |tValues| |exp| |part?|
- |insertBottom!| |simplify| |setnext!| |inputOutputBinaryFile|
- |rowEchLocal| |bumptab1| |primintfldpoly| |paren|
- |lastSubResultantElseSplit| |pomopo!| |replaceKthElement|
- |exprHasAlgebraicWeight| |heap| |d01ajf| |sup| |symmetric?|
- |stopTable!| |f02akf| |leadingCoefficientRicDE| |opeval| |rootRadius|
- |compile| |acosIfCan| |coerceP| |rowEch| |tracePowMod| |coth2tanh|
- |target| |unit?| |symbolTable| |iicoth| |conjugates| |idealiserMatrix|
- |lyndonIfCan| |fractRagits| |branchIfCan| |c06gqf| |withPredicates|
- |Ci| |critBonD| |generalizedInverse| |cAsec| |LyndonBasis| |digits|
- |monicRightFactorIfCan| |rewriteIdealWithRemainder|
- |explicitlyFinite?| |pushFortranOutputStack| |symmetricProduct|
- |spherical| |sech2cosh| |weights| |insertMatch| |d02gbf| |rk4a|
- |solve1| |B1solve| |startPolynomial| |popFortranOutputStack| |expPot|
- |replace| |reflect| |rightAlternative?| |chebyshevU| |cCoth|
- |mainVariable?| |equation| |userOrdered?| |romberg| |roughSubIdeal?|
- |outputAsFortran| |number?| |exponent| |kernel| |sayLength| |nonQsign|
- |f02awf| |typeList| |musserTrials| |f02fjf| |messagePrint| |list|
- |binaryTournament| |alphabetic| |e02baf| |draw| |integerBound|
- |stosePrepareSubResAlgo| |numberOfFactors| |gcdprim|
- |extendedResultant| |presub| |car| |tanintegrate| |f02adf| |ParCond|
- |input| |ScanRoman| |weierstrass| |symbolTableOf| |prepareSubResAlgo|
- |complexForm| |iFTable| |cdr| |insertionSort!| |variable?| |child?|
- |exponentialOrder| |library| |associatorDependence| |prinb|
- |trailingCoefficient| BY |leadingExponent| |interval| |setDifference|
- |btwFact| |var1Steps| |internalSubPolSet?| |intermediateResultsIF|
- |leftRemainder| |consnewpol| |regime| |subMatrix| |subQuasiComponent?|
- |setIntersection| |s15aef| |infinityNorm| |nextSubsetGray|
- |setColumn!| |makeObject| |kind| |iisin| |d01asf| |e02bcf|
- |shiftRight| |errorKind| |setUnion| |direction| |toseSquareFreePart|
- |scalarMatrix| |leftMult| |setMinPoints3D| |linear?| |OMgetBind|
- |tanNa| |removeSuperfluousQuasiComponents| |op| |currentEnv|
- |position| |apply| |unexpand| |swap| |powern| |set| |coef| |frst|
- |chebyshevT| |setelt!| |certainlySubVariety?| |discriminant|
- |torsionIfCan| |critM| |triangulate| |getOperator| |leadingBasisTerm|
- |setelt| |initial| |thenBranch| |s17dlf| |addPointLast|
- |interpretString| |expandPower| |size| |s01eaf| |f07aef|
- |sturmSequence| |yellow| |factorset| |reify| |split| |pushdown|
- |leftFactorIfCan| |equivOperands| |iiGamma|
- |ScanFloatIgnoreSpacesIfCan| |copy| |binary| |diff| |normalizedDivide|
- |radicalSimplify| |gradient| |nativeModuleExtension| |deepCopy|
- |cyclicSubmodule| |univariatePolynomial| |iiasinh| |OMencodingSGML|
- |expr| |radicalSolve| |addiag| |initiallyReduce| |simpson| |delta|
- |first| |transcendentalDecompose| |vector| |realElementary|
- |contains?| |constructorName| |changeBase| |mkIntegral| |cAcoth|
- |imagJ| |dimensions| |match?| |rest| |cCot| |differentiate| |pToDmp|
- |reseed| |autoCoerce| |truncate| |rightUnits| |deepestTail|
- |orOperands| |changeWeightLevel| |substitute| |basisOfMiddleNucleus|
- |iisqrt2| |squareFree| |expenseOfEvaluation| |overset?| |asecIfCan|
- |d01fcf| |d03eef| |removeDuplicates| |incrementKthElement|
- |lieAdmissible?| |outputSpacing| |singleFactorBound| |variable|
- |radicalRoots| |linearDependenceOverZ| |integralCoordinates|
- |subResultantChain| |genericRightTrace| |factorial|
- |pointColorDefault| |iterators| |scale| |rootOfIrreduciblePoly|
- |palgextint| |expintfldpoly| |sinh2csch| |compiledFunction| |bag|
- |squareFreePrim| |show| |listOfMonoms| |abelianGroup|
- |mainCoefficients| |iomode| |LiePolyIfCan| |quadratic?|
- |iflist2Result| |quadratic| |laurentIfCan| |OMputBVar| |enumerate|
- |leftRecip| |optional?| |lambda| |center| |entry?| |goto|
- |rootDirectory| |trace| |latex| |innerSolve1|
- |removeRoughlyRedundantFactorsInPols|
- |generalizedContinuumHypothesisAssumed| |numberOfCycles|
- |computeBasis| |heapSort| |curry| |df2mf| |cTan| |rationalIfCan|
- |lintgcd| |solveLinearPolynomialEquation| |extractIndex| |solveLinear|
- |c02agf| |binomial| |perfectSqrt| |infix| |f02bjf| |s17ajf| |next|
- |sumSquares| |identitySquareMatrix| |gcdcofactprim| |unknown|
- |rangePascalTriangle| |setAttributeButtonStep| |OMgetString| |makeFR|
- |showScalarValues| |rules| |internalDecompose|
- |solveLinearPolynomialEquationByFractions| |sh| |shift|
- |setCondition!| |dn| |represents| |find| |poisson| |varList|
- |patternMatch| |rotatez| |lfextlimint| = |linearlyDependent?|
- |leftUnits| |supersub| |factorials| |plotPolar| |int| |module|
- |buildSyntax| |Ei| |retract| |cos2sec| |cycleTail| |uniform|
- |extractProperty| |topFortranOutputStack| |linearDependence| |s18aff|
- < |result| |trivialIdeal?| |listOfLists| |pseudoDivide| |headAst|
- |setTex!| |flagFactor| |dequeue| |normDeriv2| > |atrapezoidal| |sum|
- |reset| |radicalEigenvector| |viewpoint| |insertTop!| |tableau|
- |stoseInvertibleSet| |zero?| |sincos| <= |separant| |primintegrate|
- |abs| |plusInfinity| |selectIntegrationRoutines| |null?| |pile| |lp|
- |d02gaf| |points| >= |ratpart| |mpsode| |write| |d01apf|
- |minusInfinity| |getZechTable| |lazyResidueClass| |eigenvectors|
- |realEigenvalues| |showAllElements| |cartesian| |reduceLODE| |cCsch|
- |f02xef| |outputMeasure| |iiacoth| |fortranCompilerName| |weighted|
- |copies| |callForm?| |setAdaptive3D| |mathieu22| |clearCache| |cubic|
- |localAbs| |numericalIntegration| + |genericRightTraceForm|
- |processTemplate| |polygamma| |algDsolve| |cyclicCopy| |epilogue|
- |pdf2df| |imagK| - |LowTriBddDenomInv| |OMputEndAttr|
- |setTopPredicate| |OMputBind| |removeZeroes|
- |reducedContinuedFraction| |notelem| / |unitsColorDefault| |solid?|
- |combineFeatureCompatibility| |generateIrredPoly|
- |firstUncouplingMatrix| |d02kef| |makeFloatFunction| |e04mbf|
- |monicModulo| |type| |leftExactQuotient| |loopPoints| |lieAlgebra?|
- |completeEchelonBasis| |asinIfCan| |categoryFrame| |f02abf|
- |clearDenominator| |repSq| |innerSolve| |eisensteinIrreducible?|
- |shuffle| |leftGcd| |e01bgf| |expint| |debug| |coefficient|
- |bubbleSort!| |graphs| |insert| |definingEquations| |iicot|
- |mainMonomial| |inc| D |rightOne| |constantCoefficientRicDE| |push!|
- |sqfrFactor| |s18aef| |removeSinhSq| |f2df| |even?| |numberOfHues|
- |credPol| |asimpson| |quatern| |arrayStack| |OMgetEndAtp|
- |padicFraction| |validExponential| |ratDsolve| |monomialIntPoly|
- |cAtanh| |matrixConcat3D| |countRealRootsMultiple| |real?| |stFunc1|
- |Frobenius| |s21bbf| |postfix| |generate| |dihedralGroup|
- |perfectNthPower?| |minColIndex| |wordInGenerators| |satisfy?|
- |elements| |mr| |outputList| |minPoly| |rationalApproximation|
- |setlast!| |explicitEntries?| |completeHermite| |ffactor| |power!|
- |trapezoidal| |incrementBy| |jacobi| |OMUnknownSymbol?|
- |totalGroebner| |integralMatrixAtInfinity| |fracPart| |mantissa|
- |slex| |iteratedInitials| |internalSubQuasiComponent?| |error|
- |basisOfLeftAnnihilator| |genericLeftTraceForm| |f04mcf| |expand|
- |vertConcat| |iicsch| |s20acf| |assert| |f01qef| |hasPredicate?|
- |filterWhile| |concat!| |scalarTypeOf| |lyndon| |commutator|
- |symmetricSquare| |symmetricGroup| |setRealSteps| |minPol| |divisor|
- |filterUntil| |OMopenString| |cyclicParents| |particularSolution|
- |att2Result| |rubiksGroup| |categories| |print| |antiCommutator|
- |select| |semiResultantEuclidean2| |showTheRoutinesTable|
- |trace2PowMod| |reopen!| |ksec| |reduction| |f01mcf| |resolve|
- |bernoulli| |approximants| |innerint| |lifting| |remove!| |rightLcm|
- |OMreadStr| |resetBadValues| |sylvesterMatrix| |possiblyNewVariety?|
- |e01bef| |clearTheIFTable| |rootKerSimp| |coefficients|
- |var2StepsDefault| |cosSinInfo| |generalTwoFactor| |leader|
- |multMonom| |matrix| |solve| |safeCeiling| |belong?| |traceMatrix|
- |normalise| |unprotectedRemoveRedundantFactors| |equiv?|
- |RemainderList| |infieldIntegrate| |associates?| |d02ejf|
- |toseLastSubResultant| |nilFactor| |lowerCase| |double| |open?|
- |permutationRepresentation| |bezoutResultant| |internalIntegrate|
- |hcrf| |operation| |fillPascalTriangle| |generalSqFr| |create3Space|
- |transcendenceDegree| |constantRight| |legendre| |prinshINFO|
- |increment| |mapUnivariateIfCan| |roughUnitIdeal?| |LyndonWordsList|
- |showSummary| |zeroVector| |bothWays| |elRow2!| |makeRecord| |arity|
- |palglimint| |removeCoshSq| |setFieldInfo| |stoseInvertible?sqfreg|
- |resultantReduit| |besselY| |flexible?| |setLabelValue| |permanent|
- |maxPoints3D| |redmat| |taylorIfCan| |atanIfCan| |bright| |besselK|
- |decimal| |curryRight| |xn| |irreducible?| |checkPrecision|
- |nextNormalPoly| |airyAi| |redPo| |initTable!| |makeCrit|
- |showAttributes| |LyndonWordsList1| |currentSubProgram|
- |curveColorPalette| |s17dcf| |super| |groebnerFactorize|
- |linearPolynomials| |quasiComponent| |tree| |fortranLiteral|
- |strongGenerators| |leadingSupport| |unitCanonical| |Nul|
- |PollardSmallFactor| |adaptive| |asinhIfCan| |f01ref| |getOrder|
- |option?| |ldf2lst| |sec2cos| |iroot| |d02bhf| |showTheFTable|
- |shanksDiscLogAlgorithm| |node?| |unmakeSUP| |finiteBound| |ramified?|
- |declare!| |e02gaf| |secIfCan| |externalList|
- |genericRightDiscriminant| |sizePascalTriangle| |localReal?| |isOp|
- |iisec| |f02agf| |Zero| |backOldPos| |leviCivitaSymbol| |complexSolve|
- |doubleFloatFormat| |unrankImproperPartitions1| |var2Steps| |or?|
- |bipolar| |deepestInitial| |One| |identityMatrix|
- |primPartElseUnitCanonical!| |setOfMinN| |graphImage| |iiacot|
- |seriesToOutputForm| |delete| |c06ecf| |mainMonomials| |cfirst|
- |parseString| |reorder| |showClipRegion| |in?| |e04gcf|
- |getMultiplicationTable| |internalZeroSetSplit| |extendedEuclidean|
- |algebraicOf| |fmecg| |setleft!| |palgint0| |splitDenominator|
- |linSolve| |clearFortranOutputStack| |modifyPoint| |freeOf?|
- |clearTheSymbolTable| |nlde| |OMgetAtp| |insert!| |cycleEntry|
- |property| |primitivePart| |exprHasWeightCosWXorSinWX| |setValue!|
- |pole?| |clipSurface| |void| |bumptab| |df2fi| |coerceS| |mulmod|
- |laurentRep| |ip4Address| |tan2trig| |OMbindTCP| |localIntegralBasis|
- |segment| |elt| |numFunEvals3D| |palgRDE0| |selectPDERoutines| |label|
- |rational?| |inGroundField?| |binarySearchTree| |euclideanSize|
- |outputGeneral| |fixedDivisor| |ode1| |f04faf| |writeBytes!| |rotatey|
- |units| |rightPower| |isobaric?| |lexico| |leftRank| |charthRoot|
- |rarrow| |e02dff| |round| |iiacosh| |problemPoints| |setFormula!|
- |kmax| |derivationCoordinates| |createGenericMatrix| |fortran|
- |doubleDisc| |stiffnessAndStabilityFactor| |logIfCan| |showTheIFTable|
- |imagI| |clipBoolean| |removeIrreducibleRedundantFactors|
- |absolutelyIrreducible?| |nthExponent| |xCoord| |fortranCharacter|
- |mainDefiningPolynomial| |unaryFunction| |normInvertible?|
- |rightFactorCandidate| |complexElementary| |generalizedEigenvector|
- |hconcat| |stiffnessAndStabilityOfODEIF| |forLoop| |lineColorDefault|
- |zag| |removeRoughlyRedundantFactorsInPol| |groebner?| |duplicates|
- |singular?| |s17dgf| |numberOfMonomials| |selectOrPolynomials|
- |cot2tan| |frobenius| |code| |physicalLength!| |collect| |hclf| |/\\|
- |Aleph| |constantIfCan| |generalizedEigenvectors| |bit?| |rspace|
- |mainCharacterization| |copy!| |d01aqf| |setMaxPoints3D| |\\/|
- |integralAtInfinity?| |mainValue| |tower| |figureUnits|
- |outputBinaryFile| |bumprow| |contours| |mergeFactors| |dominantTerm|
- |hasoln| |enterInCache| |extract!| |compound?| |declare|
- |removeConstantTerm| |iiacos| |critMTonD1| |elem?| |setProperty!|
- |viewPhiDefault| |tanh2trigh| |karatsubaDivide| |getButtonValue|
- |cAcot| |drawComplexVectorField| |nextLatticePermutation| GE
- |mapSolve| |option| |OMreceive| |properties| |permutations| |exprex|
- |factorSFBRlcUnit| |coefChoose| |s13aaf| |homogeneous?| |infRittWu?|
- |cSinh| GT |gbasis| |output| |translate| |solveInField|
- |OMencodingBinary| |conjug| |addPoint2| |OMputEndBind|
- |fixedPointExquo| |rightTrim| |goodPoint| |fortranDouble| LE
- |extractClosed| |lfunc| |deepExpand| |rational| |viewThetaDefault|
- |fintegrate| |has?| |generators| |complexNumeric| |leftTrim| |e02akf|
- |bracket| |subResultantsChain| LT |zoom| |directory| |palgintegrate|
- |queue| |shade| |argscript| |nonSingularModel| |f02aaf| |taylorRep|
- |recur| |s21bdf| |normal01| |select!| |duplicates?| |RittWuCompare|
- |rightDivide| |superscript| |addmod| |script| |kernels| |e02bdf|
- |partialNumerators| |more?| |OMgetEndObject| |complexNormalize|
- |kovacic| |setrest!| |bringDown| |testDim| |univariate|
- |inconsistent?| |complementaryBasis| |fortranTypeOf|
- |exprHasLogarithmicWeights| |rewriteSetWithReduction|
- |basisOfRightNucloid| |polarCoordinates| |say| |normalForm| |bat|
- |putColorInfo| |flatten| |removeSquaresIfCan| |returns| |lllp|
- |UP2ifCan| |OMreadFile| |useSingleFactorBound?| |maxIndex|
- |isAbsolutelyIrreducible?| |collectQuasiMonic| |divide| |tex|
- |characteristic| |readable?| |tab1| |shufflein| |badValues|
- |getProperty| |powmod| |expenseOfEvaluationIF|
- |createMultiplicationTable| |factor| |closedCurve?| |dflist|
- |hasSolution?| |computeCycleEntry| |zero| |precision|
- |removeRedundantFactorsInContents| |mainContent| |integrate|
- |linearMatrix| |rootNormalize| |sqrt| |cyclicEntries| |palgint|
- |euler| |sizeLess?| |iicos| |createNormalElement| |ranges|
- |OMsetEncoding| |univariatePolynomialsGcds| |top| |real|
- |basisOfCenter| |setLength!| |acschIfCan| |And| |ratPoly| |allRootsOf|
- |linearAssociatedExp| |color| |imag| |raisePolynomial| |movedPoints|
- |semiIndiceSubResultantEuclidean| |leaves| |Or| |components|
- |pleskenSplit| |boundOfCauchy| |exp1| |front| |directProduct|
- |whileLoop| |mapUp!| |factors| |pattern| |Not| |genericLeftNorm|
- |irreducibleRepresentation| |squareMatrix| |explicitlyEmpty?| |red|
- |OMReadError?| |quotient| |minordet| |unitVector|
- |functionIsOscillatory| |deriv| |setprevious!| |shellSort| |brace|
- |factorList| |quasiRegular?| |cAcosh| |setright!| |second| |powerSum|
- |loadNativeModule| |modulus| |LiePoly| |order| |contractSolve|
- |destruct| |radPoly| |separateDegrees| |coHeight| |hexDigit|
- |perfectSquare?| |third| |stirling2| |chiSquare| |graphState|
- |readLineIfCan!| |outerProduct| |omError| |cAcsc| |irreducibleFactors|
- |semiResultantReduitEuclidean| |message| |diagonal?| |iilog|
- |mergeDifference| |elseBranch| |extensionDegree| |jacobiIdentity?|
- |function| |OMgetError| |lazyVariations| |nthExpon| |fortranReal|
- |escape| |palgRDE| |tRange| |physicalLength| GF2FG |cycleSplit!|
- |reindex| |members| |pushup| |parametersOf| |f04axf| |monomial|
- |collectUnder| |mainPrimitivePart| |eval| |parametric?| |parabolic|
- |pointColor| |complexZeros| |coerceListOfPairs| |inR?| |multivariate|
- |branchPoint?| |log| |extendedSubResultantGcd| |constant|
- |partialDenominators| |lflimitedint| |startStats!| |inHallBasis?|
- |acoshIfCan| |cons| |iiatanh| |variables| |any| |ListOfTerms| |f04qaf|
- |minset| |rischDE| |subset?| |nullSpace| |pmComplexintegrate|
- |printStats!| |key?| |swapRows!| |orthonormalBasis| |deleteProperty!|
- |imagi| |capacity| |hMonic| |stFunc2| |remainder| |f01rcf| |lprop|
- |minus!| |subResultantGcdEuclidean| |leadingTerm| |iCompose|
- |univariatePolynomials| |expressIdealMember| |modTree| |isPlus|
- |semiResultantEuclidean1| |s18acf| |prod| |sizeMultiplication| |any?|
- |OMunhandledSymbol| |elliptic?| |fill!| |decrease| |integerIfCan|
- |taylor| |identification| |printInfo| |realEigenvectors|
- |partialQuotients| |jacobian| |double?| |upperCase| |source| |bounds|
- |laurent| |equiv| |enterPointData| |flexibleArray| |f07fef|
- |setVariableOrder| |s17agf| |children| |systemSizeIF| |puiseux|
- |hypergeometric0F1| |firstSubsetGray| |parts| |OMgetFloat| |baseRDE|
- |mainExpression| |bfKeys| |printingInfo?| |probablyZeroDim?| |e02ddf|
- |errorInfo| |lcm| |eulerPhi| |minPoints| |bipolarCylindrical|
- |numberOfFractionalTerms| |stoseSquareFreePart| |vectorise| |ridHack1|
- |inv| |e01sff| |drawCurves| |rst| |lowerPolynomial|
- |integralRepresents| |pseudoQuotient| |OMParseError?| |divideIfCan|
- |ground?| |fortranLiteralLine| |eq?| |cAcsch| |ocf2ocdf| |append|
- |close| |OMputEndBVar| |accuracyIF| |reduceBasisAtInfinity|
- |useEisensteinCriterion?| |Lazard2| |ravel| |ground| |inverseColeman|
- |ParCondList| |dmpToP| |selectNonFiniteRoutines| |gcd| |iiasech|
- |exists?| |relativeApprox| |nary?| |enqueue!| |reshape| |typeLists|
- |leadingMonomial| |inverseIntegralMatrix| |imagk| |false| |uniform01|
- |basisOfNucleus| |display| |derivative| |fglmIfCan| |compBound|
- |s18dcf| |indices| |leadingCoefficient| |clipWithRanges|
- |modifyPointData| |logpart| |createZechTable| |elliptic| |f01brf|
- |constantOpIfCan| |collectUpper| |evenInfiniteProduct|
- |primitiveMonomials| |leftCharacteristicPolynomial| |redPol|
- |lastSubResultant| |numberOfDivisors| |noncommutativeJordanAlgebra?|
- |pointSizeDefault| |cRationalPower| |writeLine!| |makeTerm| |reductum|
- |d02cjf| |exponential1| |increase| |identity| |tablePow| |listLoops|
- |setRow!| |sPol| |findBinding| |cyclotomicFactorization| |factor1|
- |solid| |#| |key| |changeNameToObjf| |bezoutDiscriminant| |ScanArabic|
- |ramifiedAtInfinity?| |inputBinaryFile| |normalizeIfCan| |integers|
- |update| UTS2UP |remove| |OMgetSymbol| |sort!| |length|
- |toseInvertibleSet| |magnitude| |rightZero| |ReduceOrder| |countable?|
- |commutativeEquality| |ptree| |schema| |cycleElt| |filename| |df2st|
- |cCsc| |trigs2explogs| |scripts| |argument| |removeDuplicates!|
- |element?| |redpps| |printInfo!| |last| |pol| |not?| |areEquivalent?|
- |e02def| |semiResultantEuclideannaif| |exQuo| |light| |assoc|
- |palgLODE| |resultantnaif| |limitPlus| |cyclotomicDecomposition|
- |parse| |getMultiplicationMatrix| |quotientByP|
- |wordsForStrongGenerators| |readByteIfCan!| |OMsupportsCD?| |tanQ|
- |semiDiscriminantEuclidean| |lambert| |stoseInvertibleSetsqfreg|
- |leftNorm| |host| |coshIfCan| |e04fdf| |recoverAfterFail| |entries|
- |curveColor| |initials| |scopes| |writable?| |stronglyReduced?|
- |ptFunc| |radicalEigenvectors| |extendedint| |rightFactorIfCan|
- |zeroSquareMatrix| |prinpolINFO| |makeGraphImage| |root|
- |stopMusserTrials| |is?| |factorFraction| |resize| |mainVariables|
- |makeViewport2D| |usingTable?| |denomLODE| |middle|
- |addMatchRestricted| |mathieu12| |iitan| |monicDecomposeIfCan|
- |OMread| |delay| |evaluateInverse| |tubePlot| |primextintfrac|
- |npcoef| |hexDigit?| |imaginary| |rightQuotient| |quasiMonic?|
- |basisOfLeftNucleus| |quadraticNorm| |failed?| |f04jgf| |surface|
- |zeroDimPrimary?| |unitNormalize| |character?| |showArrayValues|
- |useNagFunctions| |expt| |printHeader| |alphabetic?| |cAsech|
- |nextsousResultant2| |edf2fi| |indiceSubResultant| |stop| |point?|
- |gcdcofact| |monic?| |tanh2coth| |lepol| |nthRootIfCan| |cycleRagits|
- |cyclic| |qfactor| |genericPosition| |setvalue!| |invmultisect|
- |stoseInvertible?reg| |normal?| |lazyPseudoDivide|
- |halfExtendedSubResultantGcd2| |digamma| |Si| LODO2FUN |ran|
- |hitherPlane| |entry| |s17aff| |shrinkable| |prepareDecompose|
- |normalDeriv| |max| |taylorQuoByVar| |exponents| |getIdentifier|
- |coerceL| |lazyPquo| |comment| |roughBase?| |unravel|
- |commonDenominator| |selectMultiDimensionalRoutines| |index|
- |linGenPos| |zerosOf| |anfactor| |nextPartition| |split!|
- |representationType| |rdregime| |coth2trigh| |maximumExponent|
- |argumentList!| |ignore?| |extractSplittingLeaf| |biRank| |Vectorise|
- |bitTruth| |fi2df| |divideExponents| |debug3D| |optimize| |makeResult|
- |lexTriangular| |OMputFloat| |functionIsContinuousAtEndPoints|
- |e04dgf| |getCurve| |hdmpToP| |gramschmidt| |positive?| |pair| |rule|
- |compose| |bytes| |mainSquareFreePart| |brillhartIrreducible?|
- |iisqrt3| |myDegree| |primitive?| |ceiling| |padecf| |transpose|
- |and?| |showTheSymbolTable| |antiAssociative?| |matrixDimensions|
- |numberOfImproperPartitions| |depth| |leastAffineMultiple|
- |leftExtendedGcd| |curryLeft| |yCoord| |hash| |cylindrical| |s21bcf|
- |createNormalPrimitivePoly| |OMgetEndError| |tanAn| |randomR|
- |rowEchelon| |power| |count| |positiveSolve| |choosemon| |leftLcm|
- |mapCoef| |wronskianMatrix| |OMgetInteger| |retractIfCan| |cothIfCan|
- |high| |maxRowIndex| |bombieriNorm| |mapExponents| |e02agf|
- |goodnessOfFit| |basicSet| |arguments| |value| |randomLC| |qelt|
- |cycleLength| |constant?| |simplifyLog| |defineProperty| |nextPrime|
- |splitNodeOf!| |totalfract| |phiCoord| |objectOf| |OMputSymbol|
- |qsetelt| |hex| |algint| |numer| |rationalPower| |palgLODE0| |csubst|
- |eof?| |setScreenResolution3D| |c06eaf| |maxdeg| |xRange|
- |standardBasisOfCyclicSubmodule| |viewport3D| |ODESolve| |denom|
- |OMgetType| |lexGroebner| |shallowExpand| |move| |iidprod|
- |primlimitedint| |yRange| |llprop| |cyclePartition| |partialFraction|
- |eyeDistance| |solveLinearlyOverQ| |f07adf| |OMputInteger|
- |getProperties| |safeFloor| |zRange| |viewPosDefault| |getStream|
- |domainOf| |inverse| |pi| |every?| |lfinfieldint| |prefixRagits|
- |level| |map!| |rightExactQuotient| |unrankImproperPartitions0|
- |showRegion| |subscript| |setProperties| |infinity| |ord| |reduced?|
- |numericIfCan| |powers| |nand| |notOperand| |qsetelt!| |isMult|
- |f02aef| |reciprocalPolynomial| |mat| |complexNumericIfCan|
- |LyndonCoordinates| |selectODEIVPRoutines| |determinant|
- |leftTraceMatrix| |viewZoomDefault| |polar| |finite?| |getBadValues|
- |resultantReduitEuclidean| |numberOfVariables| |subHeight| |map|
- |perfectNthRoot| |bandedJacobian| |prindINFO| |complexEigenvectors|
- |modularFactor| UP2UTS |setPosition| |infinite?| |Hausdorff|
- |alphanumeric| |position!| |fractionFreeGauss!| |purelyAlgebraic?|
- |elRow1!| |bandedHessian| |rationalPoint?| |bivariate?|
- |listYoungTableaus| |iitanh| |po| |meshFun2Var| |infieldint| |e02bef|
- |composite| |partitions| |upperCase!| |doublyTransitive?|
- |binomThmExpt| |acsch| |setProperty| |numericalOptimization|
- |numberOfComputedEntries| |pToHdmp| |makeSketch| |constDsolve|
- |rightRemainder| |sec| |extendedIntegrate| |youngGroup| |s13adf|
- |isPower| |printCode| |groebgen| |setchildren!| |stopTableInvSet!|
- |addMatch| |csc| |convert| |intcompBasis|
- |stoseIntegralLastSubResultant| |removeZero| |nextNormalPrimitivePoly|
- |makeSeries| |linearlyDependentOverZ?| |subtractIfCan| |limitedint|
- |interpret| |search| |asin| |bat1| |trueEqual| |fullDisplay|
- |degreeSubResultantEuclidean| |blankSeparate| |keys|
- |antiCommutative?| |showIntensityFunctions| |float?| |acos|
- |palgextint0| |SturmHabichtMultiple| |semiLastSubResultantEuclidean|
- |iiperm| |invertibleSet| |SturmHabichtSequence| |s17ahf| |tube| |test|
- |componentUpperBound| |atan| |moebiusMu| |aCubic| |fixPredicate| |cn|
- |makeSUP| |karatsuba| |viewDeltaYDefault| |digit| |adjoint| |acot|
- |qqq| |univariate?| |assign| |airyBi| |OMputAtp| |viewDefaults|
- |sdf2lst| |anticoord| |iidsum| |oblateSpheroidal| |singularitiesOf|
- |asec| |LazardQuotient2| |OMUnknownCD?| |dioSolve| |s19aaf| |mindeg|
- |node| |polyPart| |check| |OMserve| |acsc| |OMputEndApp| |isOpen?|
- |complex?| |mindegTerm| |getGoodPrime| |prefix| |traverse| |resultant|
- |subTriSet?| |scripted?| |leftOne| |sinh| |doubleResultant|
- |triangular?| |numberOfChildren| |initiallyReduced?| |cyclic?|
- |shiftRoots| FG2F |fortranLogical| |gderiv| |intPatternMatch| |cosh|
- |iisinh| |rationalFunction| |printStatement| |inrootof| |size?|
- |dAndcExp| |decomposeFunc| |dimensionOfIrreducibleRepresentation|
- |tanh| |logGamma| |linearAssociatedLog| |rCoord| |weakBiRank|
- |topPredicate| |delete!| |toseInvertible?| |overlabel| |rur|
- |OMputEndObject| |coth| |f04arf| |adaptive?| |measure| |or| |pquo|
- |outputAsTex| |acothIfCan| |terms| |complement| |minIndex|
- |coerceImages| |sech| |outputFloating| |completeSmith| |outlineRender|
- |internalInfRittWu?| |retractable?| |createLowComplexityNormalBasis|
- |subresultantSequence| |d01bbf| |polyRicDE| |basisOfRightNucleus|
- |csch| |baseRDEsys| |startTable!| |approxSqrt| |quasiAlgebraicSet| ~=
- |leftDiscriminant| |OMgetVariable| |OMgetObject| |sqfree|
- |knownInfBasis| |member?| |asinh| |equality| |e02zaf| |pair?|
- |screenResolution3D| |leftAlternative?| |coerce| |maxint|
- |gcdPolynomial| |sumOfSquares| |supRittWu?| |chvar| |push|
- |factorPolynomial| |acosh| |extractTop!| F |operator| |OMsend|
- |closed?| |construct| |term| |createRandomElement| |laplacian|
- |characteristicSerie| |splitLinear| |monomRDEsys| |atanh|
- |finiteBasis| |updatD| |OMconnInDevice| |LazardQuotient| |triangSolve|
- |factorOfDegree| |s13acf| |constantOperator| |setfirst!| |getConstant|
- |conditionsForIdempotents| |acoth| |characteristicPolynomial|
- |lowerCase!| |sncndn| |nextPrimitiveNormalPoly| |indicialEquations|
- |setClipValue| |leftTrace| |basisOfCommutingElements| |string?|
- |mapUnivariate| |transform| |asech| |f01rdf| |scanOneDimSubspaces|
- |lllip| |oddintegers| |iifact| |setImagSteps| |imagE| |iiasec|
- |OMconnectTCP| |dfRange| |OMsupportsSymbol?| |makeEq| |axes|
- |primextendedint| |mappingAst| |cotIfCan| |colorFunction| |e01saf|
- |e02bbf| |currentCategoryFrame| |kroneckerDelta| |id| |multiple|
- |untab| |upperCase?| |deleteRoutine!| |style| |principalIdeal|
- |leftScalarTimes!| |lazy?| |trunc| |numberOfOperations| |sechIfCan|
- |graeffe| |applyQuote| |ddFact| |primitiveElement| |cscIfCan|
- |symbolIfCan| |isExpt| |extractBottom!| |fortranComplex| |rename!|
- |bitCoef| |getVariableOrder| |numerators| |table| |null|
- |binaryFunction| |subPolSet?| |composites| |genericRightNorm|
- |removeCosSq| |distFact| |c06fqf| |zeroSetSplit| |e01bff|
- |makingStats?| |makeVariable| |new| |createThreeSpace| |case|
- |fibonacci| |f02axf| |lazyIntegrate| |antisymmetricTensors| |log2|
- |genericLeftMinimalPolynomial| |explogs2trigs| |exteriorDifferential|
- |trapezoidalo| |divisors| |HermiteIntegrate| |ruleset| |nthFactor|
- |pointData| |factorByRecursion| |diagonalMatrix| |mix| |selectsecond|
- |f04atf| |upDateBranches| |twist| |calcRanges|
- |tableForDiscreteLogarithm| |alternative?| |list?|
- |wordInStrongGenerators| ** |internalLastSubResultant| |lex| |isList|
- |distdfact| |FormatRoman| |rightExtendedGcd| |leaf?|
- |characteristicSet| |continue| |bits| |exprToGenUPS| |fprindINFO|
- |palglimint0| |rewriteSetByReducingWithParticularGenerators| |pdct|
- |eigenMatrix| |ratDenom| |normalElement| |indiceSubResultantEuclidean|
- |alternatingGroup| |currentScope| |char| |bottom!| |f02aff| |suchThat|
- |outputAsScript| |s17akf| |symbol?| |diagonalProduct| |cosh2sech|
- |wreath| |iicosh| |cAsin| |lyndon?| |nthFlag| EQ |lfextendedint|
- |internalIntegrate0| |one?| |makeUnit| |distance| |testModulus|
- |intChoose| |multiple?| |outputArgs| |OMputObject| |iisech|
- |component| |isQuotient| |column| |makeCos| |firstNumer|
- |roughEqualIdeals?| |triangularSystems| |BasicMethod|
- |rectangularMatrix| |noKaratsuba| |stirling1| |andOperands| |ef2edf|
- |f02wef| |genus| |systemCommand| |odd?| |norm| |routines| |content|
- |mainVariable| |squareFreePart| |iiatan| |makeViewport3D| |c06gcf|
- |evaluate| |ellipticCylindrical| |category| |top!| |zeroDimensional?|
- |makeprod| |rightMult| |prime?| |virtualDegree| |selectPolynomials|
- |oddInfiniteProduct| |yCoordinates| |factorsOfDegree| |byteBuffer|
- |domain| |invmod| |prologue| |se2rfi| |viewWriteDefault|
- |nthFractionalTerm| |float| |sort| |removeSinSq| |showTypeInOutput|
- |repeating| |selectOptimizationRoutines| |degree| |package|
- |mainKernel| |left| |normal| |nil?| |sumOfDivisors|
- |viewWriteAvailable| |discreteLog| |d01gbf| |fortranInteger| |f01qdf|
- |generic?| |rightTraceMatrix| |aLinear| |height| |right|
- |numberOfIrreduciblePoly| |clipPointsDefault|
- |squareFreeLexTriangular| |rdHack1| |makeYoungTableau| |dimension|
- |zeroDim?| |iiasin| |multiplyExponents| |unary?| |rightGcd| |droot|
- |chiSquare1| |OMgetEndApp| |nextItem| |toScale| |const| |normFactors|
- |rightMinimalPolynomial| |sturmVariationsOf| |prolateSpheroidal|
- |tanIfCan| |doubleRank| |repeating?| |commutative?|
- |removeSuperfluousCases| |imports| |polygon?| |random|
- |symmetricTensors| |complexIntegrate| |quoByVar| |csc2sin|
- |integralBasis| |recolor| |socf2socdf| |minimalPolynomial|
- |lastSubResultantEuclidean| |lfintegrate| |unvectorise| |curve|
- |f02bbf| |mathieu23| |integralDerivationMatrix| |c06frf| |OMopenFile|
- |s19adf| |difference| |rowEchelonLocal| |cycles| |BumInSepFFE|
- |nextsubResultant2| |subNodeOf?| |e02daf| |setMinPoints| |subst|
- |midpoint| |union| |resultantEuclideannaif| |SturmHabichtCoefficients|
- |numberOfNormalPoly| |lazyPremWithDefault| |tail| |realZeros| |cAcos|
- |hostPlatform| |linearPart| |expandTrigProducts| |e01sbf|
- |expintegrate| |controlPanel| |basisOfLeftNucloid| |subSet| |putGraph|
- |sparsityIF| |trigs| |minGbasis| |quote| |setPredicates| |elementary|
- |ricDsolve| |subCase?| |viewport2D| |randnum| |monicLeftDivide|
- |perspective| |OMencodingXML| |radicalEigenvalues| |OMgetEndBVar|
- |primeFactor| |leftRankPolynomial| |read!| |cyclicEqual?|
- |oneDimensionalArray| |relerror| |octon| |impliesOperands| |status|
- |wrregime| |twoFactor| |euclideanGroebner| |OMputString| |OMlistCDs|
- |matrixGcd| |variationOfParameters| |d01alf| |primes| |returnType!|
- |term?| |whitePoint| |sinhcosh| |monicCompleteDecompose| |toroidal|
- |pade| RF2UTS |primaryDecomp| |SturmHabicht| |computeInt| |df2ef|
- |squareFreeFactors| |halfExtendedResultant2|
- |halfExtendedSubResultantGcd1| |rightUnit| |simplifyExp| |objects|
- |symbol| |writeByteIfCan!| |c06ekf| |OMputEndAtp| |associative?|
- |OMencodingUnknown| |convergents| |rotatex| |extension|
- |axesColorDefault| |An| |cycle| |base| |expression| |OMlistSymbols|
- |f04adf| |vspace| |mainForm| |getExplanations| |tubePoints|
- |integralMatrix| |pointLists| |numerator| |linear| |cAsinh|
- |solveRetract| |integer| |coleman| |tubeRadius| |internalAugment|
- |cSech| |realSolve| |generalizedContinuumHypothesisAssumed?|
- |divisorCascade| |lSpaceBasis| |outputFixed| |groebner| |seed|
- |f01qcf| |operators| |ode2| |createPrimitiveNormalPoly| |headReduce|
- |returnTypeOf| |varselect| |cPower| |pushdterm| |polynomial|
- |idealiser| |associator| |f04maf| |critT| |UnVectorise| |binaryTree|
- |subspace| |lifting1| |cyclotomic| |associatedSystem| |symmetricPower|
- |universe| |listRepresentation| |algebraicDecompose| |s18def|
- |FormatArabic| |getCode| |medialSet| |pushucoef| |showAll?|
- |headReduced?| |row| |stoseLastSubResultant| |invertIfCan| |mathieu11|
- |interpolate| |applyRules| |dimensionsOf| |presuper| |iiabs|
- |companionBlocks| |radicalOfLeftTraceForm| |explimitedint| |e01baf|
- |f02ajf| |pointPlot| |deref| |sylvesterSequence| |algebraic?|
- |complexExpand| |resetNew| |separateFactors| |bivariateSLPEBR|
- |primlimintfrac| |laguerreL| |empty?| |subresultantVector| |s21baf|
- |integral| |setScreenResolution| |headRemainder| |algebraicSort|
- |OMputAttr| |Lazard| |tensorProduct| |copyInto!|
- |sumOfKthPowerDivisors| |SFunction| |possiblyInfinite?| |aQuadratic|
- |cup| |OMputVariable| |multiset| |polygon| |rk4| |mapGen|
- |minimumExponent| |localUnquote| |changeVar| |rquo| |schwerpunkt|
- |smith| |setEpilogue!| |slash| |atoms| |setClosed| |cross|
- |symmetricRemainder| |patternVariable| |OMgetAttr| |aspFilename|
- |autoReduced?| |monomial?| |exponential| |resetVariableOrder|
- |previous| |save| |d01amf| |besselJ| |revert| |fortranDoubleComplex|
- |chineseRemainder| |iiacsch| |genericLeftTrace| |karatsubaOnce| |cLog|
- |rk4f| |s17def| |obj| |nullary?| |oddlambert| |iicsc|
- |normalizeAtInfinity| |moebius| |inRadical?| |qinterval| |setAdaptive|
- |primPartElseUnitCanonical| |merge!| |multinomial| |algintegrate|
- |cache| |build| |rewriteIdealWithQuasiMonicGenerators| |getGraph|
- |rootsOf| |rootSplit| |nothing| |sts2stst| |harmonic| |index?|
- |realRoots| |linears| |supDimElseRittWu?| |mapMatrixIfCan|
- |denominator| |s17aef| |rootOf| |singularAtInfinity?|
- |balancedBinaryTree| |Gamma| |regularRepresentation| |expandLog|
- |mapmult| |getRef| |low| |badNum| |stripCommentsAndBlanks| |ref|
- |lquo| |maxrow| |pseudoRemainder| |rightDiscriminant| |laplace|
- |appendPoint| |modularGcdPrimitive| |getMeasure| |alphanumeric?|
- |unit| |constantToUnaryFunction| |block| |totalLex| |plot| |qPot|
- |plus| |gethi| |prime| |create| |coordinates| |squareTop|
- |stoseInternalLastSubResultant| |curve?| |cosIfCan| |closeComponent|
- |lift| |root?| |pushuconst| |removeRoughlyRedundantFactorsInContents|
- |numeric| |neglist| |countRealRoots| |nonLinearPart| |stack|
- |logical?| |roughBasicSet| |univcase| |d02raf| |ldf2vmf| |reduce|
- |nodes| |decompose| |radical| |s14aaf| |getPickedPoints| |e01sef|
- |mapDown!| |hue| |sinIfCan| |rename| |parent| |alternating|
- |monomialIntegrate| |dec| |continuedFraction| |s14baf| |cyclicGroup|
- |halfExtendedResultant1| |dark| |ipow| |times| |rootPoly|
- |reducedSystem| |discriminantEuclidean| |outputForm| |clearTable!|
- |inf| |d02bbf| |swapColumns!| |aromberg| |cAtan| |pointColorPalette|
- |bivariatePolynomials| |relationsIdeal| |implies?| |multisect|
- |doubleComplex?| |changeMeasure| |true| |maxrank| |merge|
- |transcendent?| |write!| |moduleSum| |balancedFactorisation|
- |fractionPart| |moreAlgebraic?| |rightRank| |factorsOfCyclicGroupSize|
- |and| |checkForZero| |e02adf| |asechIfCan| |setOrder| |less?| |cTanh|
- |pack!| |nthRoot| |splitConstant| |froot| |leastMonomial| |monom|
- |s17acf| |OMclose| |simplifyPower| |diagonals| |meshPar2Var| |cap|
- |close!| |besselI| |stFuncN| |dot| |indicialEquation| |denomRicDE|
- |OMgetApp| |lazyPrem| |f2st| |rightRecip| |fullPartialFraction|
- |substring?| |beauzamyBound| |e01bhf| |euclideanNormalForm|
- |leftMinimalPolynomial| |semiSubResultantGcdEuclidean2| |iipow|
- |createNormalPoly| |approxNthRoot| |expIfCan| |arg1| |exactQuotient|
- |c06fpf| |connectTo| |common| |implies| |tryFunctionalDecomposition?|
- |positiveRemainder| |setMaxPoints| |symmetricDifference| |fTable|
- |arg2| |isTimes| |suffix?| |hasHi| |completeEval| |basis| |critpOrder|
- |d01anf| |totalDegree| |comparison| |listBranches| |c06gbf|
- |factorGroebnerBasis| |findCycle| |psolve| |refine|
- |tryFunctionalDecomposition| |dihedral| |square?| |iiexp| |e02dcf|
- |solveid| |reverse| |reverseLex| |viewDeltaXDefault| |prefix?|
- |conditions| |computePowers| |tubeRadiusDefault| |UpTriBddDenomInv|
- |vedf2vef| |mesh?| |branchPointAtInfinity?| |f01maf| |nor| |newLine|
- |cardinality| |match| |iibinom| |multiEuclidean| |dequeue!|
- |multiEuclideanTree| |lazyGintegrate| |summation|
- |createPrimitivePoly| |ideal| |cExp| |nullary| |repeatUntilLoop|
- |leftRegularRepresentation| |range| |pascalTriangle| |leftFactor|
- |lookup| |wholePart| |cSin| |c06ebf| |init| |removeRedundantFactors|
- |lhs| |factorAndSplit| |getSyntaxFormsFromFile| |getDatabase|
- |fortranCarriageReturn| |invertibleElseSplit?| |lazyPseudoRemainder|
- |gcdPrimitive| |comp| |increasePrecision| |rootBound| |f04mbf| |rhs|
- |zCoord| |augment| |f07fdf| |cCos| |sequences| |c06gsf| |sinhIfCan|
- |zeroOf| |mightHaveRoots| |lazyPseudoQuotient| |moduloP| |setPoly|
- |changeThreshhold| |distribute| |irreducibleFactor| |scaleRoots|
- |e02ajf| |setEmpty!| |shiftLeft| |principal?| |d01gaf| |infix?|
- |diagonal| |coord| |e04ucf| |invertible?| |s18adf| |monomRDE|
- |torsion?| |dmp2rfi| |createLowComplexityTable| |degreePartition|
- |e02aef| |mask| |initializeGroupForWordProblem| |hdmpToDmp|
- |signature| |resultantEuclidean| |quasiMonicPolynomials|
- |stopTableGcd!| |algSplitSimple| |clikeUniv| |compactFraction|
- |s17adf| |minimumDegree| |getOperands| |readLine!| |mesh| |d01akf|
- |mirror| |leftUnit| |complexRoots| |groebSolve| |screenResolution|
- |pastel| |printTypes| |coordinate| |options| |totolex|
- |integralLastSubResultant| |pdf2ef| |monomials| |powerAssociative?|
- |OMcloseConn| |brillhartTrials| |setStatus| |polyRDE| |cCosh|
- |setPrologue!| |zeroMatrix| |exquo| |reverse!| |clipParametric|
- |differentialVariables| |laguerre| |argumentListOf| |dom| |compdegd|
- |makeop| |crushedSet| |directSum| |hasTopPredicate?| |div|
- |quotedOperators| |linearAssociatedOrder| |useEisensteinCriterion|
- |denominators| |nextIrreduciblePoly| |indicialEquationAtInfinity|
- |henselFact| |updateStatus!| |nthr| |partition| |string| |quo|
- |createPrimitiveElement| |useSingleFactorBound| |orbits| |s14abf|
- |extendIfCan| |morphism| |listConjugateBases| |rroot| |bindings|
- |jordanAlgebra?| |mvar| |eigenvalues| |pop!| |diag| |rischDEsys|
- |startTableInvSet!| |zeroSetSplitIntoTriangularSystems| |crest|
- |reducedForm| |factorSquareFreeByRecursion| |rem| |constantLeft| |Is|
- |atom?| |extractPoint| |colorDef| |rightRegularRepresentation|
- |measure2Result| |extractIfCan| |orbit| |midpoints| |preprocess|
- |rightNorm| |intersect| |mapBivariate| |largest| |exprToXXP| NOT
- |title| |sn| |conical| |minRowIndex| |shallowCopy| |quasiRegular|
- |edf2ef| |external?| |graphCurves| |GospersMethod| |conjugate|
- |f04asf| OR |showFortranOutputStack| |rootPower| |hspace| |bfEntry|
- |sub| |associatedEquations| |leftZero| |prevPrime| |primitivePart!|
- |drawToScale| AND |green| |symFunc| |c06fuf| |s17dhf| |makeSin|
- |semicolonSeparate| |cSec| |safetyMargin| |monicDivide| |sorted?|
- |divideIfCan!| |e| |pushNewContour| |basisOfCentroid| |cond|
- |innerEigenvectors| |separate| |vark| |leftQuotient| |over| |width|
- |rightRankPolynomial| |exptMod| |interReduce| |region| |acscIfCan|
- |leftDivide| |degreeSubResultant| |c02aff| |univariateSolve| |connect|
- |c05pbf| |OMmakeConn| |e04jaf| |s19abf| |horizConcat| |subNode?|
- |generalLambert| |limitedIntegrate| |OMgetBVar| |unparse| |someBasis|
- |OMwrite| |stoseInvertible?| |signatureAst| |call|
- |reducedDiscriminant| |leastPower| |simpsono| |fixedPoint| |s20adf|
- |stronglyReduce| |times!| |child| |tanhIfCan| |cot2trig| |log10|
- |generalPosition| |rotate| |c05nbf| |xor| |eigenvector| |internal?|
- |updatF| |charClass| |rangeIsFinite| |noLinearFactor?|
- |definingInequation| |bitand| |divergence| |simpleBounds?| |quickSort|
- |setleaves!| |specialTrigs| |formula| |not| |dim|
- |selectFiniteRoutines| |optAttributes| |normalize| |rombergo| |sample|
- |bitior| |vconcat| |semiDegreeSubResultantEuclidean|
- |factorSquareFree| |rationalPoints| |endOfFile?| |leadingIdeal|
- |normalDenom| |nextSublist| |nthCoef| |mapExpon| |integral?|
- |constantKernel| |var1StepsDefault| |totalDifferential| |makeMulti|
- |lazyEvaluate| |splitSquarefree| |optional| |singRicDE| |mapdiv|
- |fixedPoints| * |datalist| |critMonD1| |complexLimit| |bernoulliB|
- |ScanFloatIgnoreSpaces| |viewSizeDefault| |f01bsf| |graphStates|
- |intensity| |readBytes!| |iExquo| |primeFrobenius| |firstDenom| |erf|
- |box| |rootProduct| |setLegalFortranSourceExtensions| |mkPrim| |ode|
- |nrows| |hermite| |inverseIntegralMatrixAtInfinity| |head|
- |seriesSolve| |diophantineSystem| |point| |generator| |nextColeman|
- |signAround| |c05adf| |rischNormalize|
- |solveLinearPolynomialEquationByRecursion| |ncols| |zeroDimPrime?|
- |li| |overlap| |OMputEndError| |groebnerIdeal| |normalizedAssociate|
- |inspect| |OMconnOutDevice| |iiacsc| |checkRur| |fractRadix|
- |purelyAlgebraicLeadingMonomial?| |failed| |e01daf| |conditionP|
- |scan| |e04naf| |OMputApp| |evenlambert| |parabolicCylindrical|
- |dilog| |corrPoly| |thetaCoord| |insertRoot!| |geometric| |s15adf|
- |radix| |OMgetEndAttr| |overbar| |lo| |tanSum| |series| |getMatch|
- |sin| |palginfieldint| |maxPoints| |complexEigenvalues| |atanhIfCan|
- |dmpToHdmp| |purelyTranscendental?| |clip| |completeHensel| |rank|
- |superHeight| |cos| |e04ycf| |whatInfinity| |linkToFortran| |tab|
- |jordanAdmissible?| |minimize| |setStatus!| |incr| |infLex?|
- |KrullNumber| |aQuartic| |tan| |removeRedundantFactorsInPols| |prem|
- |isConnected?| |rewriteIdealWithHeadRemainder|
- |createMultiplicationMatrix| |rightTrace| |mathieu24| |port| |hi|
- |reduceByQuasiMonic| |sortConstraints| |modularGcd| |cot| |central?|
- |listexp| |d03faf| |nodeOf?| |pow| |sign| |critB| |addPoint| |edf2df|
- |min| |exprToUPS| |setref| |iprint| |idealSimplify| |addBadValue|
- |saturate| |endSubProgram| |rightCharacteristicPolynomial| |tan2cot|
- |swap!| |drawComplex| |pr2dmp| |nsqfree| |roman| |uncouplingMatrices|
- |startTableGcd!| |empty| |hessian| |predicates| |getlo|
- |highCommonTerms| |leadingIndex| |mkAnswer| |pureLex| F2FG
- |maxColIndex| |genericLeftDiscriminant| |structuralConstants| |lists|
- |normalized?| |computeCycleLength| |genericRightMinimalPolynomial|
- |elColumn2!| |meshPar1Var| |eulerE| |csch2sinh| |infiniteProduct|
- |hyperelliptic| |commaSeparate| |generalInfiniteProduct| |product|
- |coercePreimagesImages| |readIfCan!| |algebraicVariables| SEGMENT
- |patternMatchTimes| |d03edf| |wholeRagits| |monicRightDivide|
- |newTypeLists| |trim| |s19acf| |tubePointsDefault|
- |lazyIrreducibleFactors| |submod| |polCase| |Beta| |optpair| |extend|
- |lowerCase?| |numberOfPrimitivePoly| |rk4qc| |subResultantGcd| |space|
- |cschIfCan| |rotate!| |setProperties!| |HenselLift| |bitLength|
- |skewSFunction| |condition| |contract| |closedCurve| |acotIfCan|
- |changeName| |antisymmetric?| |digit?| |nil| |qualifier| |imagj|
- |negative?| |e02ahf| |permutationGroup| |drawStyle|
- |squareFreePolynomial| |name| |dictionary| |reducedQPowers| |blue|
- |subscriptedVariables| |quoted?| |functionIsFracPolynomial?|
- |newReduc| |inverseLaplace| |definingPolynomial| |body| |iterationVar|
- |limit| |predicate| |concat| |numberOfComponents| |OMgetEndBind|
- |plenaryPower| |selectAndPolynomials| |binding| |eq| |legendreP|
- |numFunEvals| |nullity| |approximate| |meatAxe| |lagrange| |iter|
- |bsolve| |fortranLinkerArgs| |floor| |selectfirst| |t|
- |chainSubResultants| |exactQuotient!| |complex| |setsubMatrix!|
- |packageCall| |pmintegrate| |htrigs| |plus!| |wholeRadix|
- |algebraicCoefficients?| |edf2efi| |decreasePrecision| |nil|
- |infinite| |arbitraryExponent| |approximate| |complex|
- |shallowMutable| |canonical| |noetherian| |central|
- |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed|
- |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation|
- |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation|
- |finiteAggregate| |shallowlyMutable| |commutative|) \ No newline at end of file
+ |Record| |Union| |nor| |iifact| |external?| |d01asf|
+ |replaceKthElement| |mindeg| |generalizedEigenvectors|
+ |primintfldpoly| |removeIrreducibleRedundantFactors| |OMReadError?|
+ |setTex!| |nand| |iibinom| |scalarTypeOf| |d01bbf|
+ |incrementKthElement| |maxdeg| |eigenvectors| |pushFortranOutputStack|
+ |expintfldpoly| |normalForm| |OMUnknownSymbol?| |setEpilogue!|
+ |iiperm| |fortranCarriageReturn| ~ |d01fcf| |float?| |RemainderList|
+ |factorAndSplit| |popFortranOutputStack| |monomialIntegrate|
+ |changeBase| |OMUnknownCD?| |prologue| |iipow| |nil| |fortranLiteral|
+ |d01gaf| |integer?| |unexpand| |rightOne| |monomialIntPoly|
+ |companionBlocks| |name| |OMParseError?| |outputAsFortran| |epilogue|
+ |iidsum| |open| |fortranLiteralLine| |d01gbf| |symbol?| |triangSolve|
+ |brillhartIrreducible?| |leftOne| |inverseLaplace| |xCoord| |body|
+ |OMwrite| |endOfFile?| |iidprod| |processTemplate| |d02bbf| |string?|
+ |univariateSolve| |brillhartTrials| |rightZero|
+ |inputOutputBinaryFile| |yCoord| |po| |readIfCan!| |ipow|
+ |approximate| |makeFR| |d02bhf| |list?| |realSolve| |leftZero|
+ |bothWays| |zCoord| |t| |OMread| |leaves| |readLineIfCan!| |factorial|
+ |complex| |musserTrials| |d02cjf| |pair?| |positiveSolve| |swap|
+ |bytes| |rCoord| |OMreadFile| |readLine!| |multinomial|
+ |stopMusserTrials| Y |d02ejf| |atom?| |squareFree| |minPoly|
+ |ip4Address| |thetaCoord| |OMreadStr| |status| |writeLine!|
+ |permutation| |numberOfFactors| |d02gaf| |null?|
+ |linearlyDependentOverZ?| |freeOf?| |iprint| |phiCoord| |target|
+ |OMlistCDs| |sign| |stirling1| |rootSimp| |modularFactor| |d02gbf|
+ |startTable!| |linearDependenceOverZ| |byte| |operators| |elem?|
+ |color| |OMlistSymbols| |nonQsign| |stirling2| |rootKerSimp|
+ |useSingleFactorBound?| |d02kef| |stopTable!| |solveLinearlyOverQ|
+ |mainKernel| |notelem| |hue| |OMsupportsCD?| |direction| |summation|
+ |leftRank| |useSingleFactorBound| |d02raf| |supDimElseRittWu?|
+ |distribute| |logpart| |shade| |OMsupportsSymbol?| |createThreeSpace|
+ |rightRank| |factorials| |arguments| |useEisensteinCriterion?|
+ |d03edf| |algebraicSort| |bezoutDiscriminant| |noLinearFactor?|
+ |functionIsFracPolynomial?| |ratpart| |nthRootIfCan|
+ |OMunhandledSymbol| |cyclicParents| |mkcomm| |doubleRank|
+ |useEisensteinCriterion| |d03eef| |moreAlgebraic?| |bfEntry|
+ |insertRoot!| |problemPoints| |mkAnswer| |expIfCan| |OMreceive|
+ |cyclicEqual?| |weakBiRank| |eisensteinIrreducible?| |d03faf|
+ |subTriSet?| |input| |zerosOf| |perfectNthPower?| |logIfCan| |OMsend|
+ |cyclicEntries| |update| |biRank| |tryFunctionalDecomposition?|
+ |systemCommand| |e01baf| |subPolSet?| |library| |singularitiesOf| BY
+ |perfectNthRoot| |sinIfCan| |OMserve| |cyclicCopy|
+ |basisOfCommutingElements| |tryFunctionalDecomposition| |e01bef|
+ |internalSubPolSet?| |polynomialZeros| |approxNthRoot| |cosIfCan|
+ |makeop| |cyclic?| |basisOfLeftAnnihilator| |btwFact| |e01bff|
+ |internalInfRittWu?| |perfectSquare?| |tanIfCan| |opeval|
+ |complexNormalize| |basisOfRightAnnihilator| |beauzamyBound| |e01bgf|
+ |normal| |internalSubQuasiComponent?| |insertBottom!| |perfectSqrt|
+ |cotIfCan| |evaluateInverse| |complexElementary| |basisOfLeftNucleus|
+ |mapUp!| |bombieriNorm| |e01bhf| |subQuasiComponent?| |set|
+ |insertTop!| |approxSqrt| |secIfCan| |evaluate| |trigs| |position|
+ |basisOfRightNucleus| |setleaves!| |rootBound| |e01daf|
+ |removeSuperfluousQuasiComponents| |bottom!| |generateIrredPoly|
+ |comp| |cscIfCan| |conjug| |real?| |basisOfMiddleNucleus| |e01saf|
+ |subCase?| |setelt| |top!| |complexExpand| |asinIfCan| |adjoint|
+ |complexForm| |sorted?| |remove| |basisOfNucleus| |e01sbf|
+ |removeSuperfluousCases| |dequeue| |complexIntegrate| |acosIfCan|
+ |arity| |UpTriBddDenomInv| |continue| |LiePoly| |basisOfCenter|
+ |e01sef| |prepareDecompose| |copy| |recolor|
+ |dimensionOfIrreducibleRepresentation| |atanIfCan| |getDatabase|
+ |LowTriBddDenomInv| |quickSort| |last| |basisOfLeftNucloid| |e01sff|
+ |branchIfCan| |drawComplex| |expr| |numericalOptimization| |simplify|
+ |assoc| |heapSort| |basisOfRightNucloid| |e02adf| |startTableGcd!|
+ |drawComplexVectorField| |innerSolve| |and?| |match?| |goodnessOfFit|
+ |htrigs| |shellSort| |basisOfCentroid| |e02aef| |stopTableGcd!|
+ |autoCoerce| |setRealSteps| |makeEq| |notOperand| |whatInfinity|
+ |simplifyExp| |zeroOf| |outputSpacing| |radicalOfLeftTraceForm|
+ |e02agf| |startTableInvSet!| |setImagSteps| |modularGcdPrimitive|
+ |variable?| |infinite?| |simplifyLog| |outputGeneral|
+ |showTypeInOutput| |setClipValue| |variable| |modularGcd| |term|
+ |rootPower| |finite?| |expandPower| |rootsOf| |outputFixed|
+ |separateFactors| |mainContent| |objectOf| |show| |option?|
+ |iterators| |reduction| |term?| |rootProduct| |pureLex| |expandLog|
+ |makeSketch| |outputFloating| |exptMod| |primitivePart!| |domainOf|
+ |range| |signAround| |equiv| |totalLex| |cos2sec| |exp1| |meshPar2Var|
+ |nextsubResultant2| |applyRules| |trace| |colorFunction| |invmod|
+ |implies| |log2| |meshFun2Var| |LazardQuotient2| |localUnquote|
+ |curveColor| |powmod| |merge!| |denomLODE| |addPointLast|
+ |rationalApproximation| |meshPar1Var| |LazardQuotient| |arbitrary|
+ |pointColor| |currentEnv| |mulmod| |resultantEuclidean|
+ |indicialEquations| |addPoint2| |relerror| |ptFunc|
+ |subResultantChain| |setColumn!| |clip| |submod|
+ |semiResultantEuclidean2| |indicialEquation| |addPoint| |next|
+ |complexSolve| |minimumExponent| |halfExtendedSubResultantGcd2|
+ |setRow!| |shift| |clipBoolean| |addmod| |semiResultantEuclidean1|
+ |denomRicDE| |merge| |oneDimensionalArray| |say| |complexRoots|
+ |maximumExponent| |halfExtendedSubResultantGcd1| = |lighting| |style|
+ |symmetricRemainder| |indiceSubResultant| |leadingCoefficientRicDE|
+ |deepCopy| |derivative| |realRoots| |rowEch| |extendedSubResultantGcd|
+ |associatedSystem| |clipSurface| |toScale| |positiveRemainder|
+ |indiceSubResultantEuclidean| |constantCoefficientRicDE| |shallowCopy|
+ |uncouplingMatrices| |constantOperator| |leadingTerm| |rowEchLocal| <
+ |exactQuotient!| |reset| |substring?| |showClipRegion| |bfKeys|
+ |pointColorPalette| |bit?| |semiIndiceSubResultantEuclidean|
+ |changeVar| |numberOfChildren| |associatedEquations| |writable?|
+ |rowEchelonLocal| |exactQuotient| > |showRegion| |inspect|
+ |curveColorPalette| |algint| |degreeSubResultant| |ratDsolve|
+ |children| |arrayStack| |readable?| |normalizedDivide| <=
+ |primPartElseUnitCanonical!| |write| |suffix?| |hitherPlane|
+ |var1Steps| |algintegrate| |degreeSubResultantEuclidean|
+ |indicialEquationAtInfinity| |child| |setButtonValue| |save| |exists?|
+ |maxint| |primPartElseUnitCanonical| |qelt| >= |eyeDistance|
+ |var2Steps| |palgintegrate| |semiDegreeSubResultantEuclidean|
+ |reduceLODE| |birth| |setAttributeButtonStep| |qsetelt| |extension|
+ |binaryFunction| |lazyResidueClass| |prefix?| |perspective| |space|
+ |palginfieldint| |lastSubResultantEuclidean| |singRicDE| |internal?|
+ |constantOpIfCan| |shallowExpand| |makeFloatFunction| |monicModulo|
+ |xRange| |resetAttributeButtons| |zoom| |tubePoints| |bitLength|
+ |semiLastSubResultantEuclidean| |polyRicDE| |root?| |getButtonValue|
+ |integerBound| |deepExpand| |unaryFunction| |lazyPseudoDivide|
+ |yRange| + |rotate| |tubeRadius| |bitCoef| |ricDsolve|
+ |subResultantGcdEuclidean| |leaf?| |clearCache| |decrease|
+ |clearFortranOutputStack| |compiledFunction| |lazyPremWithDefault|
+ |init| |zRange| - |drawStyle| |weight| |bitTruth|
+ |semiSubResultantGcdEuclidean2| |triangulate| |outputForm| |increase|
+ |showFortranOutputStack| |map!| |corrPoly| |lazyPquo| /
+ |outlineRender| |makeVariable| |contains?|
+ |semiSubResultantGcdEuclidean1| |solveInField| |sample| |qsetelt!|
+ |topFortranOutputStack| |lifting| |lazyPrem| |morphism| |diagonals|
+ |finiteBound| |inf| |discriminantEuclidean| |wronskianMatrix|
+ |argscript| |setFormula!| |lifting1| |pquo| |infix?| |axes|
+ |sortConstraints| |qinterval| |plusInfinity|
+ |semiDiscriminantEuclidean| |variationOfParameters| |superscript|
+ |linkToFortran| |exprex| |prem| |mask| |controlPanel| |sumOfSquares|
+ |interval| |rules| |minusInfinity| |chainSubResultants| |factors|
+ |subscript| |setLegalFortranSourceExtensions| |coerceL| |supRittWu?|
+ |debug| |viewpoint| |splitLinear| |unit?| |schema| |nthFactor|
+ |scripted?| |insert| |fracPart| |retract| |coerceS| |RittWuCompare| D
+ |dimensions| |flatten| |simpleBounds?| |associates?| |resultantReduit|
+ |nthExpon| |resetNew| |numer| |polyPart| |frobenius| |mainMonomials|
+ |acsch| |resize| |linearMatrix| |unitCanonical|
+ |resultantReduitEuclidean| |overlap| |symFunc| |denom|
+ |fullPartialFraction| |computePowers| |mainCoefficients| |move|
+ |linearPart| |unitNormal| |semiResultantReduitEuclidean| |hcrf|
+ |symbolTableOf| |primeFrobenius| |pow| |leastMonomial|
+ |modifyPointData| |nonLinearPart| |lfextendedint| |divide| |hclf|
+ |argumentListOf| |pi| |discreteLog| |mr| |An| |mainMonomial|
+ |balancedFactorisation| |subspace| |quadratic?| |type| |lflimitedint|
+ |Lazard| |lexico| |returnTypeOf| |infinity| |decreasePrecision|
+ |UnVectorise| |quasiMonic?| |mapDown!| |makeViewport3D|
+ |changeNameToObjf| |formula| |lfinfieldint| |Lazard2| |OMmakeConn|
+ |printHeader| |increasePrecision| |Vectorise| |monic?| |viewport3D|
+ |optAttributes| |lfintegrate| |nextsousResultant2| |OMcloseConn|
+ |returnType!| |balancedBinaryTree| |bits| |setPoly| |deepestInitial|
+ |viewDeltaYDefault| |Nul| |lfextlimint| |resultantnaif|
+ |OMconnInDevice| |argumentList!| |sylvesterMatrix| |kernel|
+ |unitNormalize| |exponent| |iteratedInitials| |viewDeltaXDefault|
+ |exponents| |BasicMethod| |resultantEuclideannaif| |OMconnOutDevice|
+ |endSubProgram| |draw| |unit| |exQuo| |deepestTail| |print|
+ |viewZoomDefault| |outerProduct| |iisqrt2| |nrows|
+ |PollardSmallFactor| |semiResultantEuclideannaif| |OMconnectTCP|
+ |currentSubProgram| |flagFactor| |mantissa| |moebius| |head| |resolve|
+ |viewPhiDefault| |iisqrt3| |ncols| |showTheFTable| |pdct| |OMbindTCP|
+ |newSubProgram| |error| |sqfrFactor| |rightRecip| |mdeg|
+ |viewThetaDefault| |iiexp| |clearTheFTable| |powers| |OMopenFile|
+ |clearTheSymbolTable| |primeFactor| |leftRecip| |assert| |mvar|
+ |pointColorDefault| |iilog| |fTable| |partition| |OMopenString|
+ |showTheSymbolTable| |makeObject| |nthFlag| |leftPower|
+ |relativeApprox| |lineColorDefault| |iisin| |palgint0| |complete|
+ |OMclose| |printTypes| |nthExponent| |rightPower| |rootOf|
+ |axesColorDefault| |iicos| |palgextint0| |pole?| |OMsetEncoding|
+ |newTypeLists| |coef| |node| |irreducibleFactor|
+ |derivationCoordinates| |allRootsOf| |unitsColorDefault| |iitan|
+ |palglimint0| |listBranches| |OMputApp| |typeLists| |nilFactor| |one?|
+ |definingPolynomial| |pointSizeDefault| |iicot| |palgRDE0|
+ |triangular?| |OMputAtp| |externalList| |regularRepresentation|
+ |splitSquarefree| |positive?| |viewPosDefault| |unary?| |iisec|
+ |palgLODE0| |rewriteIdealWithRemainder| |OMputAttr| |typeList|
+ |traceMatrix| |normalDenom| |negative?| |viewSizeDefault| |nullary?|
+ |showSummary| |iicsc| |chineseRemainder|
+ |rewriteIdealWithHeadRemainder| |OMputBind| |parametersOf| |randomLC|
+ |erf| |totalfract| |zero?| |viewDefaults| |iiasin| |divisors|
+ |remainder| |OMputBVar| |fortranTypeOf| |minimize| |pushdterm|
+ |augment| |viewWriteDefault| |iiacos| |showAttributes| |eulerPhi|
+ |headRemainder| |OMputError| |empty| |and| |module| |pushucoef|
+ |lastSubResultant| |viewWriteAvailable| |subtractIfCan| |iiatan|
+ |fibonacci| |roughUnitIdeal?| |OMputObject| |compound?| |or|
+ |rightRegularRepresentation| |dilog| |pushuconst|
+ |lastSubResultantElseSplit| |var1StepsDefault| |setPosition| |iiacot|
+ |harmonic| |roughEqualIdeals?| |OMputEndApp| |getOperands| |has?|
+ |xor| |leftRegularRepresentation| |numberOfMonomials| |invertibleSet|
+ |sin| |var2StepsDefault| |jacobi| |bright| |roughSubIdeal?|
+ |OMputEndAtp| |getOperator| |comparison| |case| |rightTraceMatrix|
+ |members| |invertible?| |cos| |tubePointsDefault|
+ |cyclotomicFactorization| |moebiusMu| |roughBase?| |OMputEndAttr|
+ |nil?| |Zero| |leftTraceMatrix| |multiset| |invertibleElseSplit?|
+ |tan| |tubeRadiusDefault| |rangeIsFinite| |numberOfDivisors|
+ |trivialIdeal?| |OMputEndBind| |buildSyntax| |One| |rightDiscriminant|
+ |mergeDifference| |purelyAlgebraicLeadingMonomial?| |cot| |property|
+ |dimension| |functionIsContinuousAtEndPoints| |sumOfDivisors|
+ |collectUpper| |OMputEndBVar| |solve| |squareFreePrim|
+ |algebraicCoefficients?| |sec| |crest| |functionIsOscillatory|
+ |sumOfKthPowerDivisors| |collect| |OMputEndError| |triangularSystems|
+ |tableForDiscreteLogarithm| |compdegd| |label| |purelyTranscendental?|
+ |csc| |cfirst| |changeName| |HermiteIntegrate| |collectUnder|
+ |OMputEndObject| |rootDirectory| |factorsOfCyclicGroupSize| |univcase|
+ |equation| |purelyAlgebraic?| |asin| |units| |sts2stst|
+ |exprHasWeightCosWXorSinWX| |palgint| |mainVariable?| |OMputInteger|
+ |hostPlatform| |sizeMultiplication| |consnewpol| |prepareSubResAlgo|
+ |acos| |clikeUniv| |exprHasAlgebraicWeight| |list| |OMputFloat|
+ |nativeModuleExtension| |elt| |getMultiplicationMatrix| |unknown|
+ |nsqfree| |internalLastSubResultant| |atan| |weierstrass|
+ |exprHasLogarithmicWeights| |car| |mapBivariate| |tValues|
+ |OMputVariable| |bumprow| |getMultiplicationTable| |intChoose|
+ |integralLastSubResultant| |acot| |qqq| |combineFeatureCompatibility|
+ |cdr| |fullDisplay| |tRange| |OMputString| |bumptab| |primitive?|
+ |coefChoose| |toseLastSubResultant| |asec| |sparsityIF|
+ |integralBasis| |declare| |setDifference| |relationsIdeal| |plot|
+ |OMputSymbol| |bumptab1| |numberOfIrreduciblePoly| |code|
+ |localIntegralBasis| |stiffnessAndStabilityFactor| |setIntersection|
+ |saturate| |pointPlot| |OMgetApp| |untab| |parts|
+ |numberOfPrimitivePoly| |lyndon| |chiSquare| |float| |qualifier|
+ |stiffnessAndStabilityOfODEIF| |setUnion| |groebner?| |calcRanges|
+ |constructor| |OMgetAtp| |bat1| |numberOfNormalPoly| |lyndon?|
+ |factorFraction| |mainExpression| |systemSizeIF| |apply|
+ |groebnerIdeal| |fixPredicate| |OMgetAttr| |bat|
+ |createIrreduciblePoly| |numberOfComputedEntries|
+ |componentUpperBound| |changeWeightLevel| |expenseOfEvaluationIF|
+ |ideal| |patternMatch| |createPrimitivePoly| |rst| |blue| |option|
+ |characteristicSerie| |accuracyIF| |size| |leadingIdeal|
+ |patternMatchTimes| |connectTo| |upperCase!| |createNormalPoly| |frst|
+ |green| |characteristicSet| |intermediateResultsIF| |backOldPos|
+ |bernoulli| |normalizedAssociate| |upperCase| |rightTrim|
+ |createNormalPrimitivePoly| |lazyEvaluate| |red| |medialSet|
+ |subscriptedVariables| |generalPosition| |chebyshevT| |normalize|
+ |lowerCase!| |leftTrim| |createPrimitiveNormalPoly| |lazy?|
+ |whitePoint| |central?| |first| |quotient| |chebyshevU| |outputArgs|
+ |lowerCase| |nextIrreduciblePoly| |explicitlyEmpty?| |uniform|
+ |dominantTerm| |elliptic?| |rest| |zeroDim?| |cyclotomic|
+ |normInvertible?| |KrullNumber| |nextPrimitivePoly| |explicitEntries?|
+ |binomial| GE |limitPlus| |setProperty| |doubleResultant| |substitute|
+ |inRadical?| |euler| |normFactors| |numberOfVariables|
+ |nextNormalPoly| |matrixDimensions| |poisson| GT |split!|
+ |deleteProperty!| |removeDuplicates| |distdfact| |in?| |fixedDivisor|
+ |npcoef| |algebraicDecompose| |nextNormalPrimitivePoly|
+ |matrixConcat3D| |geometric| LE |setlast!| |separateDegrees|
+ |element?| |laguerre| |listexp| |transcendentalDecompose| |ratDenom|
+ |nextPrimitiveNormalPoly| |setelt!| |ridHack1| LT |setrest!|
+ |trace2PowMod| |zeroDimPrime?| |legendre| |characteristicPolynomial|
+ |internalDecompose| |ratPoly| |leastAffineMultiple| |identityMatrix|
+ |interpolate| |setfirst!| |zero| |tracePowMod| |zeroDimPrimary?|
+ |dmpToHdmp| |realEigenvalues| |decompose| |sort| |reducedQPowers|
+ |zeroMatrix| |nullSpace| |cycleSplit!| |eq?| |irreducible?|
+ |primaryDecomp| |hdmpToDmp| |realEigenvectors| |upDateBranches|
+ |doublyTransitive?| |rootOfIrreduciblePoly| |mappingAst| |fortran|
+ |nullity| |concat!| |And| |decimal| |puiseux| |tower| |double|
+ |contract| |pToHdmp| |halfExtendedResultant2| |preprocess| |write!|
+ |nullary| |rowEchelon| |cycleTail| |Or| |innerint| |leadingSupport|
+ |hdmpToP| |halfExtendedResultant1| |internalZeroSetSplit| |read!|
+ |fixedPoint| |cycleLength| |column| |pattern| |Not| |inv|
+ |exteriorDifferential| |shrinkable| |dmpToP| |extendedResultant|
+ |internalAugment| |random| |iomode| |recur| |row| |cycleEntry|
+ |ground?| |totalDifferential| |physicalLength!| |pToDmp|
+ |loadNativeModule| |subResultantsChain| |possiblyInfinite?| |close!|
+ |const| |maxColIndex| |invmultisect| |ground| |homogeneous?|
+ |physicalLength| |sylvesterSequence| |lazyPseudoQuotient|
+ |explicitlyFinite?| |reopen!| |curry| |minColIndex| |condition|
+ |multisect| |leadingMonomial| |leadingBasisTerm| |complexNumeric|
+ |flexibleArray| |sturmSequence| |lazyPseudoRemainder| |nextItem|
+ |rightUnit| |diag| |maxRowIndex| |revert| |message|
+ |leadingCoefficient| |ignore?| |delta| |elseBranch| |boundOfCauchy|
+ |bernoulliB| |infiniteProduct| |leftUnit| |curryRight| |minRowIndex|
+ |computeInt| |generalLambert| |kernels| |primitiveMonomials| |eq|
+ |declare!| |thenBranch| |sturmVariationsOf| |eulerE|
+ |evenInfiniteProduct| |datalist| |rightMinimalPolynomial| |curryLeft|
+ |antisymmetric?| |checkForZero| |evenlambert| |generalizedInverse|
+ |reductum| |iter| |univariate| |lazyVariations| |depth| |numericIfCan|
+ |oddInfiniteProduct| |subst| |leftMinimalPolynomial| |constantRight|
+ |symmetric?| |oddlambert| |logGamma| |imports| |content|
+ |complexNumericIfCan| |generalInfiniteProduct| |associatorDependence|
+ |constantLeft| |diagonal?| |lambert| |hypergeometric0F1| |sequence|
+ |totalDegree| |FormatArabic| |showAll?| |cons| |lieAlgebra?| |twist|
+ |square?| |lagrange| |rotatez| |factor| |iterationVar| |minimumDegree|
+ |ScanArabic| |showAllElements| |jordanAlgebra?| |setsubMatrix!|
+ |function| |rectangularMatrix| |script| |univariatePolynomial|
+ |rotatey| |sqrt| |readBytes!| |monomials| |FormatRoman| |delay|
+ |noncommutativeJordanAlgebra?| |box| |subMatrix| |characteristic|
+ |integrate| |rotatex| |lambda| |real| |readByteIfCan!| |isPlus|
+ |ScanRoman| |findCycle| |jordanAdmissible?| |swapColumns!| |round|
+ |eval| |multiplyCoefficients| |identity| |imag| |segment|
+ |setFieldInfo| |isTimes| |ScanFloatIgnoreSpaces| |repeating?|
+ |parents| |objects| |lieAdmissible?| |precision| |swapRows!|
+ |fractionPart| |tex| |quoByVar| |dictionary| |directProduct| |exp|
+ |pol| |isExpt| |ScanFloatIgnoreSpacesIfCan| |repeating| |bezoutMatrix|
+ |base| |jacobiIdentity?| |vertConcat| |wholePart| |coefficients|
+ |dioSolve| |xn| |isPower| |numericalIntegration| |recip|
+ |bezoutResultant| |source| |powerAssociative?| |log| |horizConcat|
+ |floor| |stFunc1| |newLine| |brace| |dAndcExp| |rroot| |rk4|
+ |integers| |alternative?| |squareTop| |ceiling| |stFunc2| |copies|
+ |destruct| |repSq| |qroot| |rk4a| |oddintegers| |flexible?| |compile|
+ |elRow1!| |norm| |stFuncN| |sayLength| |expPot| |froot| |rk4qc| |int|
+ |rightAlternative?| |elRow2!| |mightHaveRoots| |fixedPointExquo|
+ |close| |setnext!| |qPot| |nthr| |rk4f| |mapmult| |leftAlternative?|
+ |elColumn2!| |refine| |ode1| |setprevious!| |lookup| |port| |aromberg|
+ |deriv| |ravel| |antiAssociative?| |fractionFreeGauss!| |middle|
+ |ode2| |display| |shanksDiscLogAlgorithm| |monomial| |normal?|
+ |firstUncouplingMatrix| |asimpson| |gderiv| |reshape| |associative?|
+ |invertIfCan| |roman| |ode| |reflect| |multivariate| |basis|
+ |integral| |atrapezoidal| |compose| |antiCommutative?| |lcm| |copy!|
+ |recoverAfterFail| |mpsode| |reify| |normalElement| |variables|
+ |primitiveElement| |center| |romberg| |addiag| |commutative?| |plus!|
+ |showTheRoutinesTable| UP2UTS |separant| |minimalPolynomial|
+ |nextPrime| |simpson| |lazyIntegrate| |rightCharacteristicPolynomial|
+ |append| |minus!| |deleteRoutine!| UTS2UP |isobaric?| |position!|
+ |prevPrime| |trapezoidal| |nlde| |previous|
+ |leftCharacteristicPolynomial| |leftScalarTimes!| |getExplanations|
+ |gcd| |key| LODO2FUN |weights| |eof?| |primes| |rombergo| |powern|
+ |any| |rightNorm| |false| |rightScalarTimes!| |getMeasure| RF2UTS
+ |differentialVariables| |inputBinaryFile| |selectsecond| |simpsono|
+ |mapdiv| |leftNorm| |times!| |changeMeasure| |filename| |magnitude|
+ |extractBottom!| |taylor| |increment| |selectfirst| |trapezoidalo|
+ |lazyGintegrate| |rightTrace| |power!| |changeThreshhold| |not?|
+ |cross| |extractTop!| |laurent| |charpol| |makeprod| |sup| |power|
+ |leftTrace| |gradient| |selectMultiDimensionalRoutines| |parse| |dot|
+ |solve1| |equivOperands| |imagE| |sincos| |setright!| |initial|
+ |someBasis| |divergence| |selectNonFiniteRoutines| |sum| |#| |scan|
+ |polarCoordinates| |innerEigenvectors| |equiv?| |imagk| |sinhcosh|
+ |setleft!| |sort!| |laplacian| |selectSumOfSquaresRoutines|
+ |graphCurves| |imaginary| |parseString| |impliesOperands| |imagj| |lp|
+ |subresultantVector| |copyInto!| |hessian| |selectFiniteRoutines|
+ |drawCurves| |solid| |makeRecord| |unparse| |implies?| |imagi|
+ |primitivePart| |bandedHessian| |selectODEIVPRoutines| |scale|
+ |solid?| |binary| |orOperands| |octon| |pointData|
+ |createNormalElement| |jacobian| |selectPDERoutines| |connect|
+ |denominators| |packageCall| |or?| |ODESolve| |parent| |setLabelValue|
+ |bandedJacobian| |selectOptimizationRoutines| |numeric| |region|
+ |numerators| |innerSolve1| |andOperands| |constDsolve|
+ |extractProperty| |getCode| |duplicates| |selectIntegrationRoutines|
+ |radical| |points| |convergents| |showTheIFTable| |extractClosed|
+ |vector| |printCode| |removeDuplicates!| |routines| |getGraph|
+ |approximants| |leftRankPolynomial| |mathieu11| |conditions|
+ |clearTheIFTable| |extractIndex| |differentiate| |printStatement|
+ |linears| |mainSquareFreePart| |putGraph| |reducedForm| |generic|
+ |mathieu12| |match| |iFTable| |extractPoint| |block| |ddFact|
+ |mainPrimitivePart| |graphs| |partialQuotients| |rightUnits|
+ |mathieu22| |showIntensityFunctions| |traverse| |returns| |rule|
+ |index| |graphStates| |partialDenominators| |leftUnits| |mathieu23|
+ |expint| |defineProperty| |goto| |laplace| |distance| |optimize|
+ |graphState| |partialNumerators| |compBound| |mathieu24| |diff|
+ |closeComponent| |repeatUntilLoop| |trailingCoefficient| |nodes|
+ |makeViewport2D| |reducedContinuedFraction| |tablePow| |janko2|
+ |algDsolve| |modifyPoint| |whileLoop| |normalizeIfCan| |rename|
+ |length| |pair| |viewport2D| |push| |solveid| |rubiksGroup| |forLoop|
+ |polCase| |rename!| |scripts| |getPickedPoints| |bindings|
+ |testModulus| |youngGroup| |f04mbf| |contractSolve| |predicate| |sin?|
+ |outputList| |distFact| |mainValue| |colorDef| |cartesian|
+ |HenselLift| |lexGroebner| |f04mcf| |decomposeFunc| |zeroVector|
+ |identification| |mainDefiningPolynomial| |intensity| |polar| |void|
+ |completeHensel| |totalGroebner| |f04qaf| |unvectorise|
+ |zeroSquareMatrix| |LyndonCoordinates| |mainForm| |cylindrical|
+ |multMonom| |expressIdealMember| |f07adf| |bubbleSort!| |value|
+ |identitySquareMatrix| |result| |LyndonBasis| |rischDE| |padecf|
+ |setOrder| |spherical| |build| |principalIdeal| |f07aef|
+ |insertionSort!| |properties| |lSpaceBasis| |zeroDimensional?|
+ |rischDEsys| |pade| |getOrder| |parabolic| |leadingIndex|
+ |LagrangeInterpolation| |f07fdf| |check| |finiteBasis| |fglmIfCan|
+ |monomRDE| |translate| |root| |less?| |parabolicCylindrical|
+ |leadingExponent| |psolve| |f07fef| |lprop| |principal?| |groebner|
+ |baseRDE| |quotientByP| |userOrdered?| |paraboloidal| |GospersMethod|
+ |wrregime| |s01eaf| |llprop| |divisor| |lexTriangular| |polyRDE|
+ |moduloP| |largest| |ellipticCylindrical| |hash| |nextSubsetGray|
+ |rdregime| |s13aaf| |lllp| |parameters| |entry| |useNagFunctions|
+ |squareFreeLexTriangular| |monomRDEsys| |modulus| |more?|
+ |prolateSpheroidal| |count| |firstSubsetGray| |bsolve| |s13acf|
+ |lllip| |inrootof| |rationalPoints| |belong?| |baseRDEsys| |digits|
+ |setVariableOrder| |oblateSpheroidal| |clipPointsDefault| |dmp2rfi|
+ |s13adf| |mesh?| |droot| |nonSingularModel| |Ci| |weighted|
+ |continuedFraction| |getVariableOrder| |bipolar| |drawToScale|
+ |se2rfi| |s14aaf| |mesh| |iroot| |algSplitSimple| |Si| |rdHack1|
+ |light| |resetVariableOrder| |bipolarCylindrical| |adaptive| |pr2dmp|
+ |s14abf| |polygon?| |size?| |hyperelliptic| |Ei| |operator| |pastel|
+ |prime?| |toroidal| |figureUnits| |hasoln| |s14baf| |polygon|
+ |elliptic| |linGenPos| |midpoint| |dark| |rationalFunction| |conical|
+ |putColorInfo| |ParCondList| |s15adf| |closedCurve?|
+ |binaryTournament| |reduce| |integralDerivationMatrix|
+ |checkPrecision| |groebgen| |midpoints| |getSyntaxFormsFromFile|
+ |taylorIfCan| |modTree| |appendPoint| |redpps| |s15aef| |closedCurve|
+ |binaryTree| |integralRepresents| |totolex| |realZeros| |surface|
+ |removeZeroes| |multiEuclideanTree| |component| |B1solve|
+ |retractIfCan| |s17acf| |curve?| |top| |integralCoordinates| |minPol|
+ |mainCharacterization| |coordinate| |taylorRep| |complexZeros|
+ |ranges| |factorset| |s17adf| |curve| |search| |dim| |yCoordinates|
+ |computeBasis| |algebraicOf| |partitions| |factorSquareFree|
+ |divisorCascade| |pointLists| |maxrank| |s17aef| |point?|
+ |inverseIntegralMatrixAtInfinity| |coord| |ReduceOrder| |conjugates|
+ |henselFact| |graeffe| |makeGraphImage| |minrank| |s17aff|
+ |enterPointData| |integralMatrixAtInfinity| |anticoord| |setref|
+ |shuffle| |hasHi| |pleskenSplit| |graphImage| |s17agf| |minset|
+ |composites| |/\\| |inverseIntegralMatrix| |intcompBasis| |deref|
+ |shufflein| |fmecg| |level| |reciprocalPolynomial| |groebSolve|
+ |s17ahf| |nextSublist| |components| |\\/| |integralMatrix| |choosemon|
+ |ref| |sequences| |commonDenominator| |rootRadius| |testDim|
+ |overset?| |s17ajf| |numberOfComposites| |reduceBasisAtInfinity|
+ |transform| |radicalEigenvectors| |permutations| |clearDenominator|
+ |schwerpunkt| |genericPosition| |ParCond| |s17akf|
+ |numberOfComponents| |normalizeAtInfinity| |pack!|
+ |radicalEigenvector| |atoms| |splitDenominator| |setErrorBound|
+ |lfunc| |redmat| |s17dcf| |create3Space| |complementaryBasis|
+ |categories| |complexLimit| |radicalEigenvalues| |makeResult|
+ |monicRightFactorIfCan| |startPolynomial| |inHallBasis?| |regime|
+ |map| |s17def| |outputAsScript| |integral?| |limit| |eigenMatrix|
+ |is?| |rightFactorIfCan| |cycleElt| |reorder| |sqfree| |s17dgf|
+ |outputAsTex| |integralAtInfinity?| |matrix| |linearlyDependent?|
+ |normalise| |Is| |leftFactorIfCan| |computeCycleLength| |headAst|
+ |inconsistent?| |s17dhf| |abs| |integralBasisAtInfinity|
+ |linearDependence| |gramschmidt| |addMatchRestricted|
+ |monicDecomposeIfCan| |computeCycleEntry| |heap| |numFunEvals|
+ |s17dlf| |Beta| |second| |ramified?| |solveLinear| |orthonormalBasis|
+ |insertMatch| |monicCompleteDecompose| ~= |dualSignature| |gcdprim|
+ |setAdaptive| |s18acf| |digamma| |third| |ramifiedAtInfinity?| F
+ |reducedSystem| |antisymmetricTensors| |addMatch| |divideIfCan|
+ |coerce| |coerceP| |gcdcofact| |adaptive?| |convert| |s18adf|
+ |polygamma| |lift| |singular?| |duplicates?| |createGenericMatrix|
+ |getMatch| |noKaratsuba| |construct| |powerSum| |interpret|
+ |gcdcofactprim| |setScreenResolution| |s18aef| |Gamma|
+ |singularAtInfinity?| |mapGen| |symmetricTensors| |failed?|
+ |karatsubaOnce| |elementary| |lintgcd| |screenResolution| |s18aff|
+ |besselJ| |branchPoint?| |mapExpon| |tensorProduct| |optpair|
+ |karatsuba| |alternating| |hex| |setMaxPoints| |s18dcf| |besselY|
+ |branchPointAtInfinity?| |commutativeEquality|
+ |permutationRepresentation| |getBadValues| |separate| |cyclic|
+ |every?| |maxPoints| |s18def| |besselI| |rationalPoint?| |leftMult|
+ |completeEchelonBasis| |resetBadValues| |pseudoDivide| |dihedral|
+ |inc| |any?| |setMinPoints| |s19aaf| |besselK| |id|
+ |absolutelyIrreducible?| |rightMult| |createRandomElement|
+ |hasTopPredicate?| |pseudoQuotient| |cap| |host| |minPoints| |s19abf|
+ |airyAi| |null| |genus| |makeUnit| |cyclicSubmodule| |topPredicate|
+ |composite| |cup| |trueEqual| |parametric?| |s19acf| |airyBi| |table|
+ |not| |getZechTable| |reverse!| |standardBasisOfCyclicSubmodule|
+ |setTopPredicate| |subResultantGcd| |wreath| |factorList| |plotPolar|
+ |s19adf| |subNode?| |new| |createZechTable| |makeMulti|
+ |areEquivalent?| |patternVariable| |resultant| |SFunction|
+ |listConjugateBases| |debug3D| |s20acf| |infLex?|
+ |createMultiplicationTable| ** |makeTerm| |isAbsolutelyIrreducible?|
+ |withPredicates| |discriminant| |skewSFunction| |isQuotient|
+ |matrixGcd| |numFunEvals3D| |s20adf| |setEmpty!|
+ |createMultiplicationMatrix| |listOfMonoms| |meatAxe| |setPredicates|
+ |pseudoRemainder| |cyclotomicDecomposition| |divideIfCan!|
+ |setAdaptive3D| |s21baf| |setStatus!| |createLowComplexityTable|
+ |symmetricSquare| |scanOneDimSubspaces| |predicates| |shiftLeft|
+ |leastPower| EQ |adaptive3D?| |s21bbf| |setCondition!|
+ |createLowComplexityNormalBasis| |factor1| |expt| |hasPredicate?|
+ |shiftRight| |idealiser| |setScreenResolution3D| |s21bcf| |setValue!|
+ |representationType| |symmetricProduct| |showArrayValues| |optional?|
+ |karatsubaDivide| |idealiserMatrix| |s21bdf| |screenResolution3D|
+ |empty?| |printInfo| |createPrimitiveElement| |symmetricPower|
+ |showScalarValues| |multiple?| |monicDivide| |height| |moduleSum|
+ |setMaxPoints3D| |fortranCompilerName| |splitNodeOf!| |category|
+ |directSum| |solveRetract| |generic?| |divideExponents|
+ |mapUnivariate| |maxPoints3D| |fortranLinkerArgs| |remove!| |f2df|
+ |domain| |solveLinearPolynomialEquationByFractions| |mainVariable|
+ |quoted?| |unmakeSUP| |mapUnivariateIfCan| |setMinPoints3D|
+ |aspFilename| |subNodeOf?| |ef2edf| |char| |package| |hasSolution?|
+ |uniform01| |inR?| |makeSUP| |mapMatrixIfCan| |minPoints3D|
+ |dimensionsOf| |nodeOf?| |left| |ocf2ocdf| |linSolve| |normal01|
+ |isList| |vectorise| |restorePrecision| |updateStatus!| |right|
+ |socf2socdf| |LyndonWordsList| |exponential1| |isOp| |extend|
+ |singleFactorBound| |coerceImages| |antiCommutator|
+ |extractSplittingLeaf| |df2fi| |tail| |LyndonWordsList1| |chiSquare1|
+ |satisfy?| |truncate| |quadraticNorm| |fixedPoints| |commutator|
+ |squareMatrix| |edf2fi| |lyndonIfCan| |exponential| |addBadValue|
+ |order| |infinityNorm| |odd?| |associator| |transpose| |edf2df|
+ |badValues| |terms| |scaleRoots| |even?| |complexEigenvalues| |trim|
+ |expenseOfEvaluation| |irreducibleRepresentation| |acotIfCan|
+ |retractable?| |squareFreePart| |shiftRoots| |numberOfCycles|
+ |complexEigenvectors| |split| |kind| |cn| |numberOfOperations|
+ |checkRur| |asecIfCan| |ListOfTerms| |BumInSepFFE| |degreePartition|
+ |cyclePartition| |isConnected?| |replace| |edf2efi| |cAcsch| |op|
+ |acscIfCan| |PDESolve| |multiplyExponents| |factorOfDegree|
+ |coerceListOfPairs| |dfRange| |cAsech| |sinhIfCan| |leftFactor|
+ |laurentIfCan| |factorsOfDegree| |coercePreimagesImages| |e02ahf|
+ |stopTableInvSet!| |dflist| |cAcoth| |coshIfCan|
+ |rightFactorCandidate| |laurentRep| |pascalTriangle|
+ |listRepresentation| |e02ajf| |stosePrepareSubResAlgo| |df2mf|
+ |cAtanh| |tanhIfCan| |measure| |rationalPower| |rangePascalTriangle|
+ |permanent| |e02akf| |stoseInternalLastSubResultant| |ldf2vmf|
+ |cAcosh| |cothIfCan| |sizePascalTriangle| |cycles| |e02baf|
+ |stoseIntegralLastSubResultant| |symbol| |extract!| |edf2ef| |cAsinh|
+ |sechIfCan| |reverseLex| |cosh2sech| |fillPascalTriangle| |cycle|
+ |e02bbf| |stoseLastSubResultant| |bag| |expression| |vedf2vef| |cCsch|
+ |cschIfCan| |union| |leftLcm| |cot2trig| |max| |knownInfBasis|
+ |safeCeiling| |initializeGroupForWordProblem| |e02bcf|
+ |stoseInvertible?sqfreg| |integer| |df2st| |cSech| |asinhIfCan|
+ |rightExtendedGcd| |coth2trigh| |rootSplit| |safeFloor| |movedPoints|
+ |e02bdf| |stoseInvertibleSetsqfreg| |f2st| |cCoth| |acoshIfCan|
+ |rightGcd| |csc2sin| |safetyMargin| |wordInGenerators| |e02bef|
+ |stoseInvertible?reg| |ldf2lst| |cTanh| |rightExactQuotient|
+ |atanhIfCan| |csch2sinh| |lo| |sumSquares| |wordInStrongGenerators|
+ |e02daf| |stoseInvertibleSetreg| |sdf2lst| |cCosh| |acothIfCan|
+ |rightRemainder| |sec2cos| |euclideanNormalForm| |orbits| |e02dcf|
+ |stoseInvertible?| |getlo| |cSinh| |asechIfCan| |rightQuotient|
+ |sech2cosh| |euclideanGroebner| |orbit| |e02ddf| |stoseInvertibleSet|
+ |gethi| |cAcsc| |acschIfCan| |rightLcm| |sin2csc| |binding|
+ |factorGroebnerBasis| |permutationGroup| |e02def|
+ |stoseSquareFreePart| |outputMeasure| |cAsec| |pushdown|
+ |leftExtendedGcd| |sinh2csch| |setProperties| |groebnerFactorize|
+ |wordsForStrongGenerators| |e02dff| |coleman| |measure2Result| |cAcot|
+ |pushup| |leftGcd| |tan2trig| |credPol| |strongGenerators| |e02gaf|
+ |inverseColeman| |att2Result| |cAtan| |reducedDiscriminant|
+ |leftExactQuotient| |tanh2trigh| |redPol| |generators| |e02zaf|
+ |listYoungTableaus| |iflist2Result| |cAcos| |idealSimplify|
+ |leftRemainder| |tan2cot| |gbasis| |bivariateSLPEBR| |e04dgf|
+ |makeYoungTableau| |pdf2ef| |cAsin| |definingInequation|
+ |leftQuotient| |tanh2coth| |critT|
+ |solveLinearPolynomialEquationByRecursion| |e04fdf| |nextColeman|
+ |obj| |pdf2df| |operation| |cCsc| |definingEquations|
+ |monicLeftDivide| |cot2tan| |critM| |factorByRecursion| |e04gcf|
+ |nextLatticePermutation| |df2ef| |cSec| |setStatus| |cache|
+ |monicRightDivide| |coth2tanh| |critB| |factorSquareFreeByRecursion|
+ |e04jaf| |nextPartition| |nothing| |fi2df| |cCot| |quasiAlgebraicSet|
+ |leftDivide| |removeCosSq| |critBonD| |randomR| |e04mbf|
+ |numberOfImproperPartitions| |mat| |cTan| |radicalSimplify|
+ |rightDivide| |removeSinSq| |critMTonD1| |factorSFBRlcUnit| |e04naf|
+ |subSet| |neglist| |cCos| |denominator| |hermiteH| |removeCoshSq|
+ |critMonD1| |charthRoot| |e04ucf| |unrankImproperPartitions0|
+ |multiEuclidean| |directory| |cSin| |numerator| |laguerreL|
+ |removeSinhSq| |constant| |redPo| |conditionP| |e04ycf|
+ |unrankImproperPartitions1| |varList| |extendedEuclidean| |cLog|
+ |quadraticForm| |legendreP| |expandTrigProducts| |hMonic|
+ |solveLinearPolynomialEquation| |f01brf| |subresultantSequence|
+ |euclideanSize| |cExp| |back| |writeBytes!| |fintegrate| |updatF|
+ |factorSquareFreePolynomial| |f01bsf| |SturmHabichtSequence|
+ |setLength!| |sizeLess?| |cRationalPower| |front| |writeByteIfCan!|
+ |coefficient| |sPol| |factorPolynomial| |f01maf|
+ |SturmHabichtCoefficients| |simplifyPower| |cPower| |rotate!|
+ |isOpen?| |coHeight| |output| |updatD| |squareFreePolynomial| |f01mcf|
+ |SturmHabicht| |number?| |seriesToOutputForm| |dequeue!|
+ |outputBinaryFile| |extendIfCan| |minGbasis| |gcdPolynomial| |f01qcf|
+ |countRealRoots| |seriesSolve| |iCompose| |enqueue!| |blankSeparate|
+ |algebraicVariables| |lepol| |torsion?| |f01qdf|
+ |SturmHabichtMultiple| |constantToUnaryFunction| |taylorQuoByVar|
+ |quatern| |semicolonSeparate| |zeroSetSplitIntoTriangularSystems|
+ |prinshINFO| |torsionIfCan| |f01qef| |countRealRootsMultiple|
+ |tubePlot| |iExquo| |imagK| |commaSeparate| |zeroSetSplit| |comment|
+ |prindINFO| |getGoodPrime| |f01rcf| |signatureAst| |exponentialOrder|
+ |getStream| |imagJ| |pile| |reduceByQuasiMonic| |fprindINFO| |badNum|
+ |f01rdf| |pop!| |completeEval| |getRef| |imagI| |paren|
+ |collectQuasiMonic| |prinpolINFO| |mix| |f01ref| |push!|
+ |lowerPolynomial| |makeSeries| |conjugate| |bracket| |removeZero|
+ |stop| |prinb| |doubleDisc| |f02aaf| |minordet| |raisePolynomial|
+ GF2FG |queue| |prod| |initiallyReduce| |critpOrder| |polyred| |f02abf|
+ |determinant| |normalDeriv| FG2F |true| |nthRoot| |overlabel|
+ |headReduce| |makeCrit| |padicFraction| |rank| |f02adf|
+ |diagonalProduct| |plus| |ran| F2FG |fractRadix| |point| |overbar|
+ |stronglyReduce| |virtualDegree| |padicallyExpand| |f02aef| |diagonal|
+ |ptree| |keys| |highCommonTerms| |explogs2trigs| |wholeRadix| |prime|
+ |rewriteSetWithReduction| |stack| |conditionsForIdempotents|
+ |numberOfFractionalTerms| |f02aff| |diagonalMatrix| |mapCoef|
+ |trigs2explogs| |cycleRagits| |quote| |autoReduced?|
+ |genericRightDiscriminant| |nthFractionalTerm| |f02agf| |scalarMatrix|
+ |nthCoef| |swap!| |prefixRagits| |series| |supersub|
+ |initiallyReduced?| |genericRightTraceForm| |firstNumer| |f02ajf|
+ |hermite| |times| |binomThmExpt| |fill!| |fractRagits| |presuper|
+ |headReduced?| |genericLeftDiscriminant| |firstDenom| |f02akf|
+ |completeHermite| |pomopo!| |minIndex| |wholeRagits| |presub|
+ |stronglyReduced?| |genericLeftTraceForm| |lists| |compactFraction|
+ |f02awf| |smith| |mapExponents| |maxIndex| |radix| |super| |reduced?|
+ |genericRightNorm| |partialFraction| |f02axf| |completeSmith|
+ |linearAssociatedLog| |entry?| |randnum| |min| |sub| |normalized?|
+ |genericRightTrace| |dec| |gcdPrimitive| |f02bbf| |diophantineSystem|
+ |monom| |linearAssociatedOrder| |indices| |reseed| |rarrow|
+ |quasiComponent| |genericRightMinimalPolynomial| |symmetricGroup|
+ |f02bjf| |csubst| |linearAssociatedExp| |index?| |seed| |assign|
+ |initials| |rightRankPolynomial| |alternatingGroup| |f02fjf|
+ |particularSolution| |entries| |rational| |slash| |basicSet|
+ |genericLeftNorm| |arg1| |abelianGroup| |f02wef| |mapSolve| |dom|
+ |capacity| |iiasec| |common| |key?| |rational?| |over| |infRittWu?|
+ |genericLeftTrace| |arg2| |cyclicGroup| |f02xef| |quadratic|
+ |byteBuffer| |iiacsc| |symbolIfCan| |rationalIfCan| |options| |zag|
+ |getCurve| |genericLeftMinimalPolynomial| |dihedralGroup| |f04adf|
+ |cubic| |iisinh| |argument| |setvalue!| |signature| |postfix|
+ |listLoops| |lhs| |f04arf| |quartic| |iicosh| |constantKernel| |infix|
+ |setchildren!| |exquo| |closed?| |leftDiscriminant| |rhs| NOT |f04asf|
+ |aLinear| |iitanh| |constantIfCan| |div| |node?| |string| |vconcat|
+ |open?| |represents| OR |f04atf| |aQuadratic| |title| |iicoth|
+ |kovacic| |quo| |child?| |hconcat| |setClosed|
+ |generalizedContinuumHypothesisAssumed| |mergeFactors| AND |f04axf|
+ |aCubic| |iisech| |rspace| |tube|
+ |generalizedContinuumHypothesisAssumed?| |isMult| |digit?| |f04faf|
+ |aQuartic| |iicsch| |palgextint| |delete| |mainVariables| |rem|
+ |vspace| |unitVector| |countable?| |exprToXXP| |f04jgf| |radicalSolve|
+ |e| |iiasinh| |palglimint| |removeSquaresIfCan| |hspace| |cosSinInfo|
+ |Aleph| |width| |exprToUPS| |tree| |f04maf| |radicalRoots| |iiacosh|
+ |palgRDE| |unprotectedRemoveRedundantFactors| |superHeight|
+ |loopPoints| |unravel| |exprToGenUPS| |iiatanh| |palgLODE|
+ |removeRedundantFactors| |subHeight| |generalTwoFactor|
+ |leviCivitaSymbol| |localAbs| |myDegree| |toseInvertible?| |acsc|
+ |iiacoth| |splitConstant| |certainlySubVariety?| |doubleFloatFormat|
+ |generalSqFr| |kroneckerDelta| |universe| |normDeriv2|
+ |toseInvertibleSet| |sinh| |iiasech| |pmComplexintegrate|
+ |possiblyNewVariety?| |messagePrint| |twoFactor| |reindex|
+ |complement| |plenaryPower| |toseSquareFreePart| |cosh| |iiacsch|
+ |pmintegrate| |probablyZeroDim?| |principalAncestors| |cardinality|
+ |c02aff| |quotedOperators| |tanh| |specialTrigs| |cond| |infieldint|
+ |selectPolynomials| |OMgetBind| |tab1| |exportedOperators| |leader|
+ |internalIntegrate0| |generator| |c02agf| * |rur| |coth| |localReal?|
+ |extendedint| |selectOrPolynomials| |OMgetBVar| |tab| |alphanumeric|
+ |optional| |makeCos| |c05adf| |create| |sech| |rischNormalize|
+ |limitedint| |li| |selectAndPolynomials| |OMgetError| |lex|
+ |alphabetic| |makeSin| |c05nbf| |enterInCache| |csch| |realElementary|
+ |integerIfCan| |reverse| |quasiMonicPolynomials| |OMgetObject| |slex|
+ |hexDigit| |iiGamma| |c05pbf| |currentCategoryFrame| |asinh|
+ |Hausdorff| |validExponential| |internalIntegrate| |univariate?|
+ |OMgetEndApp| |inverse| |failed| |digit| |iiabs| |c06eaf|
+ |currentScope| |acosh| |Frobenius| |rootNormalize| |log10|
+ |infieldIntegrate| |univariatePolynomials| |OMgetEndAtp| |maxrow|
+ |charClass| |bringDown| |c06ebf| |pushNewContour| |atanh|
+ |transcendenceDegree| |bitand| |tanQ| |limitedIntegrate| |linear?|
+ |OMgetEndAttr| |tableau| |alphanumeric?| |newReduc| |c06ecf|
+ |findBinding| |acoth| |extensionDegree| |bitior| |callForm?|
+ |extendedIntegrate| |linearPolynomials| |OMgetEndBind| |listOfLists|
+ |lowerCase?| |call| |logical?| |c06ekf| |contours| |asech|
+ |inGroundField?| |getIdentifier| |varselect| |bivariate?|
+ |OMgetEndBVar| |tanSum| |upperCase?| |character?| |c06fpf|
+ |structuralConstants| |transcendent?| |getConstant| |kmax|
+ |bivariatePolynomials| |OMgetEndError| |tanAn| |alphabetic?|
+ |doubleComplex?| |c06fqf| |multiple| |coordinates| |algebraic?|
+ |select!| |ksec| |removeRoughlyRedundantFactorsInPols|
+ |OMgetEndObject| |tanNa| |hexDigit?| |applyQuote| |complex?| |c06frf|
+ |bounds| |sh| |delete!| |vark| |removeRoughlyRedundantFactorsInPol|
+ |OMgetInteger| |initTable!| |escape| |double?| |c06fuf| |high|
+ |mirror| |sn| |removeConstantTerm| |interReduce| |OMgetFloat|
+ |printInfo!| |ord| |test| |ffactor| |c06gbf| |low| |monomial?| |dn|
+ |mkPrim| |roughBasicSet| |OMgetVariable| |startStats!| |mkIntegral|
+ |qfactor| |c06gcf| |ruleset| |subset?| |rquo| |sncndn|
+ |intPatternMatch| |crushedSet| |OMgetString| |printStats!| |generate|
+ |radPoly| |UP2ifCan| |c06gqf| |symmetricDifference| |lquo| |equality|
+ |categoryFrame| |primintegrate|
+ |rewriteSetByReducingWithParticularGenerators| |OMgetSymbol|
+ |symbolTable| |clearTable!| |rootPoly| |anfactor| |c06gsf|
+ |difference| |nary?| |mindegTerm| |setProperties!| SEGMENT
+ |incrementBy| |expintegrate| |rewriteIdealWithQuasiMonicGenerators|
+ |OMgetType| |prefix| |usingTable?| |goodPoint| |fortranCharacter|
+ |d01ajf| |suchThat| |intersect| |product| |getProperties|
+ |tanintegrate| |squareFreeFactors| |OMencodingBinary| |printingInfo?|
+ |incr| |expand| |chvar| |fortranDoubleComplex| |d01akf| |part?|
+ |LiePolyIfCan| |setProperty!| |primextendedint|
+ |univariatePolynomialsGcds| |OMencodingSGML| |makingStats?| |linear|
+ |filterWhile| |find| |fortranComplex| |d01alf| |latex| |trunc|
+ |getProperty| |expextendedint|
+ |removeRoughlyRedundantFactorsInContents| |OMencodingXML|
+ |extractIfCan| |hi| |filterUntil| |clipParametric| |fortranLogical|
+ |d01amf| |member?| |degree| |scopes| |primlimitedint|
+ |removeRedundantFactorsInContents| |OMencodingUnknown| |insert!|
+ |select| |polynomial| |clipWithRanges| |fortranInteger| |d01anf|
+ |enumerate| |quasiRegular| |eigenvalues| |explimitedint|
+ |removeRedundantFactorsInPols| |omError| |interpretString| |concat|
+ |binarySearchTree| |numberOfHues| |fortranDouble| |d01apf| |setOfMinN|
+ |quasiRegular?| |eigenvector| |primextintfrac| |irreducibleFactors|
+ |errorInfo| |stripCommentsAndBlanks| |yellow| |fortranReal| |d01aqf|
+ |elements| |constant?| |generalizedEigenvector| |primlimintfrac|
+ |lazyIrreducibleFactors| |errorKind| |setPrologue!| |nil| |infinite|
+ |arbitraryExponent| |approximate| |complex| |shallowMutable|
+ |canonical| |noetherian| |central| |partiallyOrderedSet|
+ |arbitraryPrecision| |canonicalsClosed| |noZeroDivisors|
+ |rightUnitary| |leftUnitary| |additiveValuation| |unitsKnown|
+ |canonicalUnitNormal| |multiplicativeValuation| |finiteAggregate|
+ |shallowlyMutable| |commutative|) \ No newline at end of file
diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase
index 063f1f2e..8fd4a478 100644
--- a/src/share/algebra/interp.daase
+++ b/src/share/algebra/interp.daase
@@ -1,5222 +1,5243 @@
-(3182066 . 3437790975)
-((-4015 (((-112) (-1 (-112) |#2| |#2|) $) 63) (((-112) $) NIL)) (-2576 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-1501 ((|#2| $ (-554) |#2|) NIL) ((|#2| $ (-1208 (-554)) |#2|) 34)) (-3920 (($ $) 59)) (-3676 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-1484 (((-554) (-1 (-112) |#2|) $) 22) (((-554) |#2| $) NIL) (((-554) |#2| $ (-554)) 73)) (-2466 (((-631 |#2|) $) 13)) (-3717 (($ (-1 (-112) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-2849 (($ (-1 |#2| |#2|) $) 29)) (-2879 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-1782 (($ |#2| $ (-554)) NIL) (($ $ $ (-554)) 50)) (-1652 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 24)) (-2845 (((-112) (-1 (-112) |#2|) $) 21)) (-2064 ((|#2| $ (-554) |#2|) NIL) ((|#2| $ (-554)) NIL) (($ $ (-1208 (-554))) 49)) (-2021 (($ $ (-554)) 56) (($ $ (-1208 (-554))) 55)) (-2777 (((-758) (-1 (-112) |#2|) $) 26) (((-758) |#2| $) NIL)) (-3553 (($ $ $ (-554)) 52)) (-1521 (($ $) 51)) (-3089 (($ (-631 |#2|)) 53)) (-4323 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-631 $)) 62)) (-3075 (((-848) $) 69)) (-2438 (((-112) (-1 (-112) |#2|) $) 20)) (-1658 (((-112) $ $) 72)) (-1676 (((-112) $ $) 75)))
-(((-18 |#1| |#2|) (-10 -8 (-15 -1658 ((-112) |#1| |#1|)) (-15 -3075 ((-848) |#1|)) (-15 -1676 ((-112) |#1| |#1|)) (-15 -2576 (|#1| |#1|)) (-15 -2576 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3920 (|#1| |#1|)) (-15 -3553 (|#1| |#1| |#1| (-554))) (-15 -4015 ((-112) |#1|)) (-15 -3717 (|#1| |#1| |#1|)) (-15 -1484 ((-554) |#2| |#1| (-554))) (-15 -1484 ((-554) |#2| |#1|)) (-15 -1484 ((-554) (-1 (-112) |#2|) |#1|)) (-15 -4015 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3717 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1501 (|#2| |#1| (-1208 (-554)) |#2|)) (-15 -1782 (|#1| |#1| |#1| (-554))) (-15 -1782 (|#1| |#2| |#1| (-554))) (-15 -2021 (|#1| |#1| (-1208 (-554)))) (-15 -2021 (|#1| |#1| (-554))) (-15 -2064 (|#1| |#1| (-1208 (-554)))) (-15 -2879 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4323 (|#1| (-631 |#1|))) (-15 -4323 (|#1| |#1| |#1|)) (-15 -4323 (|#1| |#2| |#1|)) (-15 -4323 (|#1| |#1| |#2|)) (-15 -3089 (|#1| (-631 |#2|))) (-15 -1652 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3676 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3676 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3676 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2064 (|#2| |#1| (-554))) (-15 -2064 (|#2| |#1| (-554) |#2|)) (-15 -1501 (|#2| |#1| (-554) |#2|)) (-15 -2777 ((-758) |#2| |#1|)) (-15 -2466 ((-631 |#2|) |#1|)) (-15 -2777 ((-758) (-1 (-112) |#2|) |#1|)) (-15 -2845 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2438 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2849 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2879 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1521 (|#1| |#1|))) (-19 |#2|) (-1195)) (T -18))
-NIL
-(-10 -8 (-15 -1658 ((-112) |#1| |#1|)) (-15 -3075 ((-848) |#1|)) (-15 -1676 ((-112) |#1| |#1|)) (-15 -2576 (|#1| |#1|)) (-15 -2576 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3920 (|#1| |#1|)) (-15 -3553 (|#1| |#1| |#1| (-554))) (-15 -4015 ((-112) |#1|)) (-15 -3717 (|#1| |#1| |#1|)) (-15 -1484 ((-554) |#2| |#1| (-554))) (-15 -1484 ((-554) |#2| |#1|)) (-15 -1484 ((-554) (-1 (-112) |#2|) |#1|)) (-15 -4015 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3717 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1501 (|#2| |#1| (-1208 (-554)) |#2|)) (-15 -1782 (|#1| |#1| |#1| (-554))) (-15 -1782 (|#1| |#2| |#1| (-554))) (-15 -2021 (|#1| |#1| (-1208 (-554)))) (-15 -2021 (|#1| |#1| (-554))) (-15 -2064 (|#1| |#1| (-1208 (-554)))) (-15 -2879 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4323 (|#1| (-631 |#1|))) (-15 -4323 (|#1| |#1| |#1|)) (-15 -4323 (|#1| |#2| |#1|)) (-15 -4323 (|#1| |#1| |#2|)) (-15 -3089 (|#1| (-631 |#2|))) (-15 -1652 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3676 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3676 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3676 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2064 (|#2| |#1| (-554))) (-15 -2064 (|#2| |#1| (-554) |#2|)) (-15 -1501 (|#2| |#1| (-554) |#2|)) (-15 -2777 ((-758) |#2| |#1|)) (-15 -2466 ((-631 |#2|) |#1|)) (-15 -2777 ((-758) (-1 (-112) |#2|) |#1|)) (-15 -2845 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2438 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2849 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2879 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1521 (|#1| |#1|)))
-((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-4233 (((-1246) $ (-554) (-554)) 40 (|has| $ (-6 -4374)))) (-4015 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-836)))) (-2576 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4374))) (($ $) 88 (-12 (|has| |#1| (-836)) (|has| $ (-6 -4374))))) (-3303 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-836)))) (-3019 (((-112) $ (-758)) 8)) (-1501 ((|#1| $ (-554) |#1|) 52 (|has| $ (-6 -4374))) ((|#1| $ (-1208 (-554)) |#1|) 58 (|has| $ (-6 -4374)))) (-1871 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4373)))) (-4087 (($) 7 T CONST)) (-3920 (($ $) 90 (|has| $ (-6 -4374)))) (-3799 (($ $) 100)) (-1571 (($ $) 78 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2574 (($ |#1| $) 77 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4373)))) (-2862 ((|#1| $ (-554) |#1|) 53 (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-554)) 51)) (-1484 (((-554) (-1 (-112) |#1|) $) 97) (((-554) |#1| $) 96 (|has| |#1| (-1082))) (((-554) |#1| $ (-554)) 95 (|has| |#1| (-1082)))) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-3180 (($ (-758) |#1|) 69)) (-2230 (((-112) $ (-758)) 9)) (-3044 (((-554) $) 43 (|has| (-554) (-836)))) (-4223 (($ $ $) 87 (|has| |#1| (-836)))) (-3717 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-836)))) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2256 (((-554) $) 44 (|has| (-554) (-836)))) (-2706 (($ $ $) 86 (|has| |#1| (-836)))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3731 (((-112) $ (-758)) 10)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-1782 (($ |#1| $ (-554)) 60) (($ $ $ (-554)) 59)) (-2529 (((-631 (-554)) $) 46)) (-3618 (((-112) (-554) $) 47)) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-1539 ((|#1| $) 42 (|has| (-554) (-836)))) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2441 (($ $ |#1|) 41 (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-1609 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) 48)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2064 ((|#1| $ (-554) |#1|) 50) ((|#1| $ (-554)) 49) (($ $ (-1208 (-554))) 63)) (-2021 (($ $ (-554)) 62) (($ $ (-1208 (-554))) 61)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-3553 (($ $ $ (-554)) 91 (|has| $ (-6 -4374)))) (-1521 (($ $) 13)) (-2927 (((-530) $) 79 (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) 70)) (-4323 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-631 $)) 65)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1708 (((-112) $ $) 84 (|has| |#1| (-836)))) (-1686 (((-112) $ $) 83 (|has| |#1| (-836)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-1697 (((-112) $ $) 85 (|has| |#1| (-836)))) (-1676 (((-112) $ $) 82 (|has| |#1| (-836)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373)))))
-(((-19 |#1|) (-138) (-1195)) (T -19))
-NIL
-(-13 (-368 |t#1|) (-10 -7 (-6 -4374)))
-(((-34) . T) ((-102) -3994 (|has| |#1| (-1082)) (|has| |#1| (-836))) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-836)) (|has| |#1| (-601 (-848)))) ((-149 |#1|) . T) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-281 #0=(-554) |#1|) . T) ((-283 #0# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-368 |#1|) . T) ((-483 |#1|) . T) ((-592 #0# |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-637 |#1|) . T) ((-836) |has| |#1| (-836)) ((-1082) -3994 (|has| |#1| (-1082)) (|has| |#1| (-836))) ((-1195) . T))
-((-2934 (((-3 $ "failed") $ $) 12)) (-1744 (($ $) NIL) (($ $ $) 9)) (* (($ (-906) $) NIL) (($ (-758) $) 16) (($ (-554) $) 21)))
-(((-20 |#1|) (-10 -8 (-15 * (|#1| (-554) |#1|)) (-15 -1744 (|#1| |#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 -2934 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-758) |#1|)) (-15 * (|#1| (-906) |#1|))) (-21)) (T -20))
-NIL
-(-10 -8 (-15 * (|#1| (-554) |#1|)) (-15 -1744 (|#1| |#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 -2934 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-758) |#1|)) (-15 * (|#1| (-906) |#1|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-2004 (($) 18 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20)))
-(((-21) (-138)) (T -21))
-((-1744 (*1 *1 *1) (-4 *1 (-21))) (-1744 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-554)))))
-(-13 (-130) (-10 -8 (-15 -1744 ($ $)) (-15 -1744 ($ $ $)) (-15 * ($ (-554) $))))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-601 (-848)) . T) ((-1082) . T))
-((-1695 (((-112) $) 10)) (-4087 (($) 15)) (* (($ (-906) $) 14) (($ (-758) $) 18)))
-(((-22 |#1|) (-10 -8 (-15 * (|#1| (-758) |#1|)) (-15 -1695 ((-112) |#1|)) (-15 -4087 (|#1|)) (-15 * (|#1| (-906) |#1|))) (-23)) (T -22))
-NIL
-(-10 -8 (-15 * (|#1| (-758) |#1|)) (-15 -1695 ((-112) |#1|)) (-15 -4087 (|#1|)) (-15 * (|#1| (-906) |#1|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-4087 (($) 17 T CONST)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-2004 (($) 18 T CONST)) (-1658 (((-112) $ $) 6)) (-1735 (($ $ $) 14)) (* (($ (-906) $) 13) (($ (-758) $) 15)))
-(((-23) (-138)) (T -23))
-((-2004 (*1 *1) (-4 *1 (-23))) (-4087 (*1 *1) (-4 *1 (-23))) (-1695 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-758)))))
-(-13 (-25) (-10 -8 (-15 (-2004) ($) -2397) (-15 -4087 ($) -2397) (-15 -1695 ((-112) $)) (-15 * ($ (-758) $))))
-(((-25) . T) ((-102) . T) ((-601 (-848)) . T) ((-1082) . T))
-((* (($ (-906) $) 10)))
-(((-24 |#1|) (-10 -8 (-15 * (|#1| (-906) |#1|))) (-25)) (T -24))
-NIL
-(-10 -8 (-15 * (|#1| (-906) |#1|)))
-((-3062 (((-112) $ $) 7)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-1658 (((-112) $ $) 6)) (-1735 (($ $ $) 14)) (* (($ (-906) $) 13)))
-(((-25) (-138)) (T -25))
-((-1735 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-906)))))
-(-13 (-1082) (-10 -8 (-15 -1735 ($ $ $)) (-15 * ($ (-906) $))))
-(((-102) . T) ((-601 (-848)) . T) ((-1082) . T))
-((-2719 (((-631 $) (-937 $)) 29) (((-631 $) (-1154 $)) 16) (((-631 $) (-1154 $) (-1158)) 20)) (-3856 (($ (-937 $)) 27) (($ (-1154 $)) 11) (($ (-1154 $) (-1158)) 54)) (-3613 (((-631 $) (-937 $)) 30) (((-631 $) (-1154 $)) 18) (((-631 $) (-1154 $) (-1158)) 19)) (-3625 (($ (-937 $)) 28) (($ (-1154 $)) 13) (($ (-1154 $) (-1158)) NIL)))
-(((-26 |#1|) (-10 -8 (-15 -2719 ((-631 |#1|) (-1154 |#1|) (-1158))) (-15 -2719 ((-631 |#1|) (-1154 |#1|))) (-15 -2719 ((-631 |#1|) (-937 |#1|))) (-15 -3856 (|#1| (-1154 |#1|) (-1158))) (-15 -3856 (|#1| (-1154 |#1|))) (-15 -3856 (|#1| (-937 |#1|))) (-15 -3613 ((-631 |#1|) (-1154 |#1|) (-1158))) (-15 -3613 ((-631 |#1|) (-1154 |#1|))) (-15 -3613 ((-631 |#1|) (-937 |#1|))) (-15 -3625 (|#1| (-1154 |#1|) (-1158))) (-15 -3625 (|#1| (-1154 |#1|))) (-15 -3625 (|#1| (-937 |#1|)))) (-27)) (T -26))
-NIL
-(-10 -8 (-15 -2719 ((-631 |#1|) (-1154 |#1|) (-1158))) (-15 -2719 ((-631 |#1|) (-1154 |#1|))) (-15 -2719 ((-631 |#1|) (-937 |#1|))) (-15 -3856 (|#1| (-1154 |#1|) (-1158))) (-15 -3856 (|#1| (-1154 |#1|))) (-15 -3856 (|#1| (-937 |#1|))) (-15 -3613 ((-631 |#1|) (-1154 |#1|) (-1158))) (-15 -3613 ((-631 |#1|) (-1154 |#1|))) (-15 -3613 ((-631 |#1|) (-937 |#1|))) (-15 -3625 (|#1| (-1154 |#1|) (-1158))) (-15 -3625 (|#1| (-1154 |#1|))) (-15 -3625 (|#1| (-937 |#1|))))
-((-3062 (((-112) $ $) 7)) (-2719 (((-631 $) (-937 $)) 81) (((-631 $) (-1154 $)) 80) (((-631 $) (-1154 $) (-1158)) 79)) (-3856 (($ (-937 $)) 84) (($ (-1154 $)) 83) (($ (-1154 $) (-1158)) 82)) (-1695 (((-112) $) 16)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 42)) (-1976 (($ $) 41)) (-1363 (((-112) $) 39)) (-2934 (((-3 $ "failed") $ $) 19)) (-3278 (($ $) 74)) (-1565 (((-413 $) $) 73)) (-2282 (($ $) 93)) (-2286 (((-112) $ $) 60)) (-4087 (($) 17 T CONST)) (-3613 (((-631 $) (-937 $)) 87) (((-631 $) (-1154 $)) 86) (((-631 $) (-1154 $) (-1158)) 85)) (-3625 (($ (-937 $)) 90) (($ (-1154 $)) 89) (($ (-1154 $) (-1158)) 88)) (-3964 (($ $ $) 56)) (-1320 (((-3 $ "failed") $) 33)) (-3943 (($ $ $) 57)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 52)) (-3289 (((-112) $) 72)) (-3248 (((-112) $) 31)) (-3734 (($ $ (-554)) 92)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 53)) (-2475 (($ $ $) 47) (($ (-631 $)) 46)) (-1613 (((-1140) $) 9)) (-2483 (($ $) 71)) (-2768 (((-1102) $) 10)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 45)) (-2510 (($ $ $) 49) (($ (-631 $)) 48)) (-2270 (((-413 $) $) 75)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3919 (((-3 $ "failed") $ $) 43)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 51)) (-2072 (((-758) $) 59)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 58)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ $) 44) (($ (-402 (-554))) 67)) (-2261 (((-758)) 28)) (-1909 (((-112) $ $) 40)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1752 (($ $ $) 66)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ (-554)) 70) (($ $ (-402 (-554))) 91)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ (-402 (-554))) 69) (($ (-402 (-554)) $) 68)))
-(((-27) (-138)) (T -27))
-((-3625 (*1 *1 *2) (-12 (-5 *2 (-937 *1)) (-4 *1 (-27)))) (-3625 (*1 *1 *2) (-12 (-5 *2 (-1154 *1)) (-4 *1 (-27)))) (-3625 (*1 *1 *2 *3) (-12 (-5 *2 (-1154 *1)) (-5 *3 (-1158)) (-4 *1 (-27)))) (-3613 (*1 *2 *3) (-12 (-5 *3 (-937 *1)) (-4 *1 (-27)) (-5 *2 (-631 *1)))) (-3613 (*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-27)) (-5 *2 (-631 *1)))) (-3613 (*1 *2 *3 *4) (-12 (-5 *3 (-1154 *1)) (-5 *4 (-1158)) (-4 *1 (-27)) (-5 *2 (-631 *1)))) (-3856 (*1 *1 *2) (-12 (-5 *2 (-937 *1)) (-4 *1 (-27)))) (-3856 (*1 *1 *2) (-12 (-5 *2 (-1154 *1)) (-4 *1 (-27)))) (-3856 (*1 *1 *2 *3) (-12 (-5 *2 (-1154 *1)) (-5 *3 (-1158)) (-4 *1 (-27)))) (-2719 (*1 *2 *3) (-12 (-5 *3 (-937 *1)) (-4 *1 (-27)) (-5 *2 (-631 *1)))) (-2719 (*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-27)) (-5 *2 (-631 *1)))) (-2719 (*1 *2 *3 *4) (-12 (-5 *3 (-1154 *1)) (-5 *4 (-1158)) (-4 *1 (-27)) (-5 *2 (-631 *1)))))
-(-13 (-358) (-987) (-10 -8 (-15 -3625 ($ (-937 $))) (-15 -3625 ($ (-1154 $))) (-15 -3625 ($ (-1154 $) (-1158))) (-15 -3613 ((-631 $) (-937 $))) (-15 -3613 ((-631 $) (-1154 $))) (-15 -3613 ((-631 $) (-1154 $) (-1158))) (-15 -3856 ($ (-937 $))) (-15 -3856 ($ (-1154 $))) (-15 -3856 ($ (-1154 $) (-1158))) (-15 -2719 ((-631 $) (-937 $))) (-15 -2719 ((-631 $) (-1154 $))) (-15 -2719 ((-631 $) (-1154 $) (-1158)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-554))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-604 #0#) . T) ((-604 (-554)) . T) ((-604 $) . T) ((-601 (-848)) . T) ((-170) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-358) . T) ((-446) . T) ((-546) . T) ((-634 #0#) . T) ((-634 $) . T) ((-704 #0#) . T) ((-704 $) . T) ((-713) . T) ((-905) . T) ((-987) . T) ((-1040 #0#) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1199) . T))
-((-2719 (((-631 $) (-937 $)) NIL) (((-631 $) (-1154 $)) NIL) (((-631 $) (-1154 $) (-1158)) 50) (((-631 $) $) 19) (((-631 $) $ (-1158)) 41)) (-3856 (($ (-937 $)) NIL) (($ (-1154 $)) NIL) (($ (-1154 $) (-1158)) 52) (($ $) 17) (($ $ (-1158)) 37)) (-3613 (((-631 $) (-937 $)) NIL) (((-631 $) (-1154 $)) NIL) (((-631 $) (-1154 $) (-1158)) 48) (((-631 $) $) 15) (((-631 $) $ (-1158)) 43)) (-3625 (($ (-937 $)) NIL) (($ (-1154 $)) NIL) (($ (-1154 $) (-1158)) NIL) (($ $) 12) (($ $ (-1158)) 39)))
-(((-28 |#1| |#2|) (-10 -8 (-15 -2719 ((-631 |#1|) |#1| (-1158))) (-15 -3856 (|#1| |#1| (-1158))) (-15 -2719 ((-631 |#1|) |#1|)) (-15 -3856 (|#1| |#1|)) (-15 -3613 ((-631 |#1|) |#1| (-1158))) (-15 -3625 (|#1| |#1| (-1158))) (-15 -3613 ((-631 |#1|) |#1|)) (-15 -3625 (|#1| |#1|)) (-15 -2719 ((-631 |#1|) (-1154 |#1|) (-1158))) (-15 -2719 ((-631 |#1|) (-1154 |#1|))) (-15 -2719 ((-631 |#1|) (-937 |#1|))) (-15 -3856 (|#1| (-1154 |#1|) (-1158))) (-15 -3856 (|#1| (-1154 |#1|))) (-15 -3856 (|#1| (-937 |#1|))) (-15 -3613 ((-631 |#1|) (-1154 |#1|) (-1158))) (-15 -3613 ((-631 |#1|) (-1154 |#1|))) (-15 -3613 ((-631 |#1|) (-937 |#1|))) (-15 -3625 (|#1| (-1154 |#1|) (-1158))) (-15 -3625 (|#1| (-1154 |#1|))) (-15 -3625 (|#1| (-937 |#1|)))) (-29 |#2|) (-13 (-836) (-546))) (T -28))
-NIL
-(-10 -8 (-15 -2719 ((-631 |#1|) |#1| (-1158))) (-15 -3856 (|#1| |#1| (-1158))) (-15 -2719 ((-631 |#1|) |#1|)) (-15 -3856 (|#1| |#1|)) (-15 -3613 ((-631 |#1|) |#1| (-1158))) (-15 -3625 (|#1| |#1| (-1158))) (-15 -3613 ((-631 |#1|) |#1|)) (-15 -3625 (|#1| |#1|)) (-15 -2719 ((-631 |#1|) (-1154 |#1|) (-1158))) (-15 -2719 ((-631 |#1|) (-1154 |#1|))) (-15 -2719 ((-631 |#1|) (-937 |#1|))) (-15 -3856 (|#1| (-1154 |#1|) (-1158))) (-15 -3856 (|#1| (-1154 |#1|))) (-15 -3856 (|#1| (-937 |#1|))) (-15 -3613 ((-631 |#1|) (-1154 |#1|) (-1158))) (-15 -3613 ((-631 |#1|) (-1154 |#1|))) (-15 -3613 ((-631 |#1|) (-937 |#1|))) (-15 -3625 (|#1| (-1154 |#1|) (-1158))) (-15 -3625 (|#1| (-1154 |#1|))) (-15 -3625 (|#1| (-937 |#1|))))
-((-3062 (((-112) $ $) 7)) (-2719 (((-631 $) (-937 $)) 81) (((-631 $) (-1154 $)) 80) (((-631 $) (-1154 $) (-1158)) 79) (((-631 $) $) 125) (((-631 $) $ (-1158)) 123)) (-3856 (($ (-937 $)) 84) (($ (-1154 $)) 83) (($ (-1154 $) (-1158)) 82) (($ $) 126) (($ $ (-1158)) 124)) (-1695 (((-112) $) 16)) (-2405 (((-631 (-1158)) $) 200)) (-2237 (((-402 (-1154 $)) $ (-600 $)) 232 (|has| |#1| (-546)))) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 42)) (-1976 (($ $) 41)) (-1363 (((-112) $) 39)) (-2143 (((-631 (-600 $)) $) 163)) (-2934 (((-3 $ "failed") $ $) 19)) (-3380 (($ $ (-631 (-600 $)) (-631 $)) 153) (($ $ (-631 (-289 $))) 152) (($ $ (-289 $)) 151)) (-3278 (($ $) 74)) (-1565 (((-413 $) $) 73)) (-2282 (($ $) 93)) (-2286 (((-112) $ $) 60)) (-4087 (($) 17 T CONST)) (-3613 (((-631 $) (-937 $)) 87) (((-631 $) (-1154 $)) 86) (((-631 $) (-1154 $) (-1158)) 85) (((-631 $) $) 129) (((-631 $) $ (-1158)) 127)) (-3625 (($ (-937 $)) 90) (($ (-1154 $)) 89) (($ (-1154 $) (-1158)) 88) (($ $) 130) (($ $ (-1158)) 128)) (-2784 (((-3 (-937 |#1|) "failed") $) 250 (|has| |#1| (-1034))) (((-3 (-402 (-937 |#1|)) "failed") $) 234 (|has| |#1| (-546))) (((-3 |#1| "failed") $) 196) (((-3 (-554) "failed") $) 193 (|has| |#1| (-1023 (-554)))) (((-3 (-1158) "failed") $) 187) (((-3 (-600 $) "failed") $) 138) (((-3 (-402 (-554)) "failed") $) 121 (-3994 (-12 (|has| |#1| (-1023 (-554))) (|has| |#1| (-546))) (|has| |#1| (-1023 (-402 (-554))))))) (-1668 (((-937 |#1|) $) 249 (|has| |#1| (-1034))) (((-402 (-937 |#1|)) $) 233 (|has| |#1| (-546))) ((|#1| $) 195) (((-554) $) 194 (|has| |#1| (-1023 (-554)))) (((-1158) $) 186) (((-600 $) $) 137) (((-402 (-554)) $) 122 (-3994 (-12 (|has| |#1| (-1023 (-554))) (|has| |#1| (-546))) (|has| |#1| (-1023 (-402 (-554))))))) (-3964 (($ $ $) 56)) (-3699 (((-675 |#1|) (-675 $)) 240 (|has| |#1| (-1034))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) 239 (|has| |#1| (-1034))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) 120 (-3994 (-3726 (|has| |#1| (-1034)) (|has| |#1| (-627 (-554)))) (-3726 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034))))) (((-675 (-554)) (-675 $)) 119 (-3994 (-3726 (|has| |#1| (-1034)) (|has| |#1| (-627 (-554)))) (-3726 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034)))))) (-1320 (((-3 $ "failed") $) 33)) (-3943 (($ $ $) 57)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 52)) (-3289 (((-112) $) 72)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) 192 (|has| |#1| (-871 (-374)))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) 191 (|has| |#1| (-871 (-554))))) (-1342 (($ (-631 $)) 157) (($ $) 156)) (-3489 (((-631 (-114)) $) 164)) (-3086 (((-114) (-114)) 165)) (-3248 (((-112) $) 31)) (-3273 (((-112) $) 185 (|has| $ (-1023 (-554))))) (-3472 (($ $) 217 (|has| |#1| (-1034)))) (-2810 (((-1107 |#1| (-600 $)) $) 216 (|has| |#1| (-1034)))) (-3734 (($ $ (-554)) 92)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 53)) (-1823 (((-1154 $) (-600 $)) 182 (|has| $ (-1034)))) (-4223 (($ $ $) 136)) (-2706 (($ $ $) 135)) (-2879 (($ (-1 $ $) (-600 $)) 171)) (-3310 (((-3 (-600 $) "failed") $) 161)) (-2475 (($ $ $) 47) (($ (-631 $)) 46)) (-1613 (((-1140) $) 9)) (-2227 (((-631 (-600 $)) $) 162)) (-1408 (($ (-114) (-631 $)) 170) (($ (-114) $) 169)) (-3778 (((-3 (-631 $) "failed") $) 211 (|has| |#1| (-1094)))) (-2920 (((-3 (-2 (|:| |val| $) (|:| -1407 (-554))) "failed") $) 220 (|has| |#1| (-1034)))) (-2433 (((-3 (-631 $) "failed") $) 213 (|has| |#1| (-25)))) (-2863 (((-3 (-2 (|:| -1490 (-554)) (|:| |var| (-600 $))) "failed") $) 214 (|has| |#1| (-25)))) (-3160 (((-3 (-2 (|:| |var| (-600 $)) (|:| -1407 (-554))) "failed") $ (-1158)) 219 (|has| |#1| (-1034))) (((-3 (-2 (|:| |var| (-600 $)) (|:| -1407 (-554))) "failed") $ (-114)) 218 (|has| |#1| (-1034))) (((-3 (-2 (|:| |var| (-600 $)) (|:| -1407 (-554))) "failed") $) 212 (|has| |#1| (-1094)))) (-2640 (((-112) $ (-1158)) 168) (((-112) $ (-114)) 167)) (-2483 (($ $) 71)) (-3323 (((-758) $) 160)) (-2768 (((-1102) $) 10)) (-2492 (((-112) $) 198)) (-2505 ((|#1| $) 199)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 45)) (-2510 (($ $ $) 49) (($ (-631 $)) 48)) (-2041 (((-112) $ (-1158)) 173) (((-112) $ $) 172)) (-2270 (((-413 $) $) 75)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3919 (((-3 $ "failed") $ $) 43)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 51)) (-1795 (((-112) $) 184 (|has| $ (-1023 (-554))))) (-2386 (($ $ (-1158) (-758) (-1 $ $)) 224 (|has| |#1| (-1034))) (($ $ (-1158) (-758) (-1 $ (-631 $))) 223 (|has| |#1| (-1034))) (($ $ (-631 (-1158)) (-631 (-758)) (-631 (-1 $ (-631 $)))) 222 (|has| |#1| (-1034))) (($ $ (-631 (-1158)) (-631 (-758)) (-631 (-1 $ $))) 221 (|has| |#1| (-1034))) (($ $ (-631 (-114)) (-631 $) (-1158)) 210 (|has| |#1| (-602 (-530)))) (($ $ (-114) $ (-1158)) 209 (|has| |#1| (-602 (-530)))) (($ $) 208 (|has| |#1| (-602 (-530)))) (($ $ (-631 (-1158))) 207 (|has| |#1| (-602 (-530)))) (($ $ (-1158)) 206 (|has| |#1| (-602 (-530)))) (($ $ (-114) (-1 $ $)) 181) (($ $ (-114) (-1 $ (-631 $))) 180) (($ $ (-631 (-114)) (-631 (-1 $ (-631 $)))) 179) (($ $ (-631 (-114)) (-631 (-1 $ $))) 178) (($ $ (-1158) (-1 $ $)) 177) (($ $ (-1158) (-1 $ (-631 $))) 176) (($ $ (-631 (-1158)) (-631 (-1 $ (-631 $)))) 175) (($ $ (-631 (-1158)) (-631 (-1 $ $))) 174) (($ $ (-631 $) (-631 $)) 145) (($ $ $ $) 144) (($ $ (-289 $)) 143) (($ $ (-631 (-289 $))) 142) (($ $ (-631 (-600 $)) (-631 $)) 141) (($ $ (-600 $) $) 140)) (-2072 (((-758) $) 59)) (-2064 (($ (-114) (-631 $)) 150) (($ (-114) $ $ $ $) 149) (($ (-114) $ $ $) 148) (($ (-114) $ $) 147) (($ (-114) $) 146)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 58)) (-3862 (($ $ $) 159) (($ $) 158)) (-1553 (($ $ (-1158)) 248 (|has| |#1| (-1034))) (($ $ (-631 (-1158))) 247 (|has| |#1| (-1034))) (($ $ (-1158) (-758)) 246 (|has| |#1| (-1034))) (($ $ (-631 (-1158)) (-631 (-758))) 245 (|has| |#1| (-1034)))) (-3623 (($ $) 227 (|has| |#1| (-546)))) (-2822 (((-1107 |#1| (-600 $)) $) 226 (|has| |#1| (-546)))) (-4318 (($ $) 183 (|has| $ (-1034)))) (-2927 (((-530) $) 254 (|has| |#1| (-602 (-530)))) (($ (-413 $)) 225 (|has| |#1| (-546))) (((-877 (-374)) $) 190 (|has| |#1| (-602 (-877 (-374))))) (((-877 (-554)) $) 189 (|has| |#1| (-602 (-877 (-554)))))) (-3992 (($ $ $) 253 (|has| |#1| (-467)))) (-1856 (($ $ $) 252 (|has| |#1| (-467)))) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ $) 44) (($ (-402 (-554))) 67) (($ (-937 |#1|)) 251 (|has| |#1| (-1034))) (($ (-402 (-937 |#1|))) 235 (|has| |#1| (-546))) (($ (-402 (-937 (-402 |#1|)))) 231 (|has| |#1| (-546))) (($ (-937 (-402 |#1|))) 230 (|has| |#1| (-546))) (($ (-402 |#1|)) 229 (|has| |#1| (-546))) (($ (-1107 |#1| (-600 $))) 215 (|has| |#1| (-1034))) (($ |#1|) 197) (($ (-1158)) 188) (($ (-600 $)) 139)) (-2084 (((-3 $ "failed") $) 238 (|has| |#1| (-143)))) (-2261 (((-758)) 28)) (-4125 (($ (-631 $)) 155) (($ $) 154)) (-1902 (((-112) (-114)) 166)) (-1909 (((-112) $ $) 40)) (-3155 (($ (-1158) (-631 $)) 205) (($ (-1158) $ $ $ $) 204) (($ (-1158) $ $ $) 203) (($ (-1158) $ $) 202) (($ (-1158) $) 201)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($ $ (-1158)) 244 (|has| |#1| (-1034))) (($ $ (-631 (-1158))) 243 (|has| |#1| (-1034))) (($ $ (-1158) (-758)) 242 (|has| |#1| (-1034))) (($ $ (-631 (-1158)) (-631 (-758))) 241 (|has| |#1| (-1034)))) (-1708 (((-112) $ $) 133)) (-1686 (((-112) $ $) 132)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 134)) (-1676 (((-112) $ $) 131)) (-1752 (($ $ $) 66) (($ (-1107 |#1| (-600 $)) (-1107 |#1| (-600 $))) 228 (|has| |#1| (-546)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ (-554)) 70) (($ $ (-402 (-554))) 91)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ (-402 (-554))) 69) (($ (-402 (-554)) $) 68) (($ $ |#1|) 237 (|has| |#1| (-170))) (($ |#1| $) 236 (|has| |#1| (-170)))))
-(((-29 |#1|) (-138) (-13 (-836) (-546))) (T -29))
-((-3625 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-836) (-546))))) (-3613 (*1 *2 *1) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *2 (-631 *1)) (-4 *1 (-29 *3)))) (-3625 (*1 *1 *1 *2) (-12 (-5 *2 (-1158)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-836) (-546))))) (-3613 (*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-836) (-546))) (-5 *2 (-631 *1)) (-4 *1 (-29 *4)))) (-3856 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-836) (-546))))) (-2719 (*1 *2 *1) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *2 (-631 *1)) (-4 *1 (-29 *3)))) (-3856 (*1 *1 *1 *2) (-12 (-5 *2 (-1158)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-836) (-546))))) (-2719 (*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-836) (-546))) (-5 *2 (-631 *1)) (-4 *1 (-29 *4)))))
-(-13 (-27) (-425 |t#1|) (-10 -8 (-15 -3625 ($ $)) (-15 -3613 ((-631 $) $)) (-15 -3625 ($ $ (-1158))) (-15 -3613 ((-631 $) $ (-1158))) (-15 -3856 ($ $)) (-15 -2719 ((-631 $) $)) (-15 -3856 ($ $ (-1158))) (-15 -2719 ((-631 $) $ (-1158)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-554))) . T) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-170)) ((-111 $ $) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-604 #0#) . T) ((-604 #1=(-402 (-937 |#1|))) |has| |#1| (-546)) ((-604 (-554)) . T) ((-604 #2=(-600 $)) . T) ((-604 #3=(-937 |#1|)) |has| |#1| (-1034)) ((-604 #4=(-1158)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-601 (-848)) . T) ((-170) . T) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-602 (-877 (-374))) |has| |#1| (-602 (-877 (-374)))) ((-602 (-877 (-554))) |has| |#1| (-602 (-877 (-554)))) ((-239) . T) ((-285) . T) ((-302) . T) ((-304 $) . T) ((-297) . T) ((-358) . T) ((-372 |#1|) |has| |#1| (-1034)) ((-395 |#1|) . T) ((-406 |#1|) . T) ((-425 |#1|) . T) ((-446) . T) ((-467) |has| |#1| (-467)) ((-508 (-600 $) $) . T) ((-508 $ $) . T) ((-546) . T) ((-634 #0#) . T) ((-634 |#1|) |has| |#1| (-170)) ((-634 $) . T) ((-627 (-554)) -12 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034))) ((-627 |#1|) |has| |#1| (-1034)) ((-704 #0#) . T) ((-704 |#1|) |has| |#1| (-170)) ((-704 $) . T) ((-713) . T) ((-836) . T) ((-885 (-1158)) |has| |#1| (-1034)) ((-871 (-374)) |has| |#1| (-871 (-374))) ((-871 (-554)) |has| |#1| (-871 (-554))) ((-869 |#1|) . T) ((-905) . T) ((-987) . T) ((-1023 (-402 (-554))) -3994 (|has| |#1| (-1023 (-402 (-554)))) (-12 (|has| |#1| (-546)) (|has| |#1| (-1023 (-554))))) ((-1023 #1#) |has| |#1| (-546)) ((-1023 (-554)) |has| |#1| (-1023 (-554))) ((-1023 #2#) . T) ((-1023 #3#) |has| |#1| (-1034)) ((-1023 #4#) . T) ((-1023 |#1|) . T) ((-1040 #0#) . T) ((-1040 |#1|) |has| |#1| (-170)) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1195) . T) ((-1199) . T))
-((-2829 (((-1076 (-221)) $) NIL)) (-2818 (((-1076 (-221)) $) NIL)) (-3792 (($ $ (-221)) 125)) (-2913 (($ (-937 (-554)) (-1158) (-1158) (-1076 (-402 (-554))) (-1076 (-402 (-554)))) 83)) (-3787 (((-631 (-631 (-928 (-221)))) $) 137)) (-3075 (((-848) $) 149)))
-(((-30) (-13 (-940) (-10 -8 (-15 -2913 ($ (-937 (-554)) (-1158) (-1158) (-1076 (-402 (-554))) (-1076 (-402 (-554))))) (-15 -3792 ($ $ (-221)))))) (T -30))
-((-2913 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-937 (-554))) (-5 *3 (-1158)) (-5 *4 (-1076 (-402 (-554)))) (-5 *1 (-30)))) (-3792 (*1 *1 *1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-30)))))
-(-13 (-940) (-10 -8 (-15 -2913 ($ (-937 (-554)) (-1158) (-1158) (-1076 (-402 (-554))) (-1076 (-402 (-554))))) (-15 -3792 ($ $ (-221)))))
-((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 19) (($ (-1163)) NIL) (((-1163) $) NIL)) (-4319 (((-1117) $) 11)) (-3462 (((-1117) $) 9)) (-1658 (((-112) $ $) NIL)))
-(((-31) (-13 (-1065) (-10 -8 (-15 -3462 ((-1117) $)) (-15 -4319 ((-1117) $))))) (T -31))
-((-3462 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-31)))) (-4319 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-31)))))
-(-13 (-1065) (-10 -8 (-15 -3462 ((-1117) $)) (-15 -4319 ((-1117) $))))
-((-3625 ((|#2| (-1154 |#2|) (-1158)) 43)) (-3086 (((-114) (-114)) 56)) (-1823 (((-1154 |#2|) (-600 |#2|)) 133 (|has| |#1| (-1023 (-554))))) (-1986 ((|#2| |#1| (-554)) 123 (|has| |#1| (-1023 (-554))))) (-3018 ((|#2| (-1154 |#2|) |#2|) 30)) (-3336 (((-848) (-631 |#2|)) 85)) (-4318 ((|#2| |#2|) 129 (|has| |#1| (-1023 (-554))))) (-1902 (((-112) (-114)) 18)) (** ((|#2| |#2| (-402 (-554))) 96 (|has| |#1| (-1023 (-554))))))
-(((-32 |#1| |#2|) (-10 -7 (-15 -3625 (|#2| (-1154 |#2|) (-1158))) (-15 -3086 ((-114) (-114))) (-15 -1902 ((-112) (-114))) (-15 -3018 (|#2| (-1154 |#2|) |#2|)) (-15 -3336 ((-848) (-631 |#2|))) (IF (|has| |#1| (-1023 (-554))) (PROGN (-15 ** (|#2| |#2| (-402 (-554)))) (-15 -1823 ((-1154 |#2|) (-600 |#2|))) (-15 -4318 (|#2| |#2|)) (-15 -1986 (|#2| |#1| (-554)))) |%noBranch|)) (-13 (-836) (-546)) (-425 |#1|)) (T -32))
-((-1986 (*1 *2 *3 *4) (-12 (-5 *4 (-554)) (-4 *2 (-425 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1023 *4)) (-4 *3 (-13 (-836) (-546))))) (-4318 (*1 *2 *2) (-12 (-4 *3 (-1023 (-554))) (-4 *3 (-13 (-836) (-546))) (-5 *1 (-32 *3 *2)) (-4 *2 (-425 *3)))) (-1823 (*1 *2 *3) (-12 (-5 *3 (-600 *5)) (-4 *5 (-425 *4)) (-4 *4 (-1023 (-554))) (-4 *4 (-13 (-836) (-546))) (-5 *2 (-1154 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-402 (-554))) (-4 *4 (-1023 (-554))) (-4 *4 (-13 (-836) (-546))) (-5 *1 (-32 *4 *2)) (-4 *2 (-425 *4)))) (-3336 (*1 *2 *3) (-12 (-5 *3 (-631 *5)) (-4 *5 (-425 *4)) (-4 *4 (-13 (-836) (-546))) (-5 *2 (-848)) (-5 *1 (-32 *4 *5)))) (-3018 (*1 *2 *3 *2) (-12 (-5 *3 (-1154 *2)) (-4 *2 (-425 *4)) (-4 *4 (-13 (-836) (-546))) (-5 *1 (-32 *4 *2)))) (-1902 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-836) (-546))) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-425 *4)))) (-3086 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-836) (-546))) (-5 *1 (-32 *3 *4)) (-4 *4 (-425 *3)))) (-3625 (*1 *2 *3 *4) (-12 (-5 *3 (-1154 *2)) (-5 *4 (-1158)) (-4 *2 (-425 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-836) (-546))))))
-(-10 -7 (-15 -3625 (|#2| (-1154 |#2|) (-1158))) (-15 -3086 ((-114) (-114))) (-15 -1902 ((-112) (-114))) (-15 -3018 (|#2| (-1154 |#2|) |#2|)) (-15 -3336 ((-848) (-631 |#2|))) (IF (|has| |#1| (-1023 (-554))) (PROGN (-15 ** (|#2| |#2| (-402 (-554)))) (-15 -1823 ((-1154 |#2|) (-600 |#2|))) (-15 -4318 (|#2| |#2|)) (-15 -1986 (|#2| |#1| (-554)))) |%noBranch|))
-((-3019 (((-112) $ (-758)) 16)) (-4087 (($) 10)) (-2230 (((-112) $ (-758)) 15)) (-3731 (((-112) $ (-758)) 14)) (-2494 (((-112) $ $) 8)) (-3543 (((-112) $) 13)))
-(((-33 |#1|) (-10 -8 (-15 -4087 (|#1|)) (-15 -3019 ((-112) |#1| (-758))) (-15 -2230 ((-112) |#1| (-758))) (-15 -3731 ((-112) |#1| (-758))) (-15 -3543 ((-112) |#1|)) (-15 -2494 ((-112) |#1| |#1|))) (-34)) (T -33))
-NIL
-(-10 -8 (-15 -4087 (|#1|)) (-15 -3019 ((-112) |#1| (-758))) (-15 -2230 ((-112) |#1| (-758))) (-15 -3731 ((-112) |#1| (-758))) (-15 -3543 ((-112) |#1|)) (-15 -2494 ((-112) |#1| |#1|)))
-((-3019 (((-112) $ (-758)) 8)) (-4087 (($) 7 T CONST)) (-2230 (((-112) $ (-758)) 9)) (-3731 (((-112) $ (-758)) 10)) (-2494 (((-112) $ $) 14)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-1521 (($ $) 13)) (-2563 (((-758) $) 6 (|has| $ (-6 -4373)))))
-(((-34) (-138)) (T -34))
-((-2494 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-1521 (*1 *1 *1) (-4 *1 (-34))) (-4240 (*1 *1) (-4 *1 (-34))) (-3543 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3731 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-758)) (-5 *2 (-112)))) (-2230 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-758)) (-5 *2 (-112)))) (-3019 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-758)) (-5 *2 (-112)))) (-4087 (*1 *1) (-4 *1 (-34))) (-2563 (*1 *2 *1) (-12 (|has| *1 (-6 -4373)) (-4 *1 (-34)) (-5 *2 (-758)))))
-(-13 (-1195) (-10 -8 (-15 -2494 ((-112) $ $)) (-15 -1521 ($ $)) (-15 -4240 ($)) (-15 -3543 ((-112) $)) (-15 -3731 ((-112) $ (-758))) (-15 -2230 ((-112) $ (-758))) (-15 -3019 ((-112) $ (-758))) (-15 -4087 ($) -2397) (IF (|has| $ (-6 -4373)) (-15 -2563 ((-758) $)) |%noBranch|)))
-(((-1195) . T))
-((-3096 (($ $) 11)) (-3069 (($ $) 10)) (-3120 (($ $) 9)) (-2908 (($ $) 8)) (-3108 (($ $) 7)) (-3083 (($ $) 6)))
-(((-35) (-138)) (T -35))
-((-3096 (*1 *1 *1) (-4 *1 (-35))) (-3069 (*1 *1 *1) (-4 *1 (-35))) (-3120 (*1 *1 *1) (-4 *1 (-35))) (-2908 (*1 *1 *1) (-4 *1 (-35))) (-3108 (*1 *1 *1) (-4 *1 (-35))) (-3083 (*1 *1 *1) (-4 *1 (-35))))
-(-13 (-10 -8 (-15 -3083 ($ $)) (-15 -3108 ($ $)) (-15 -2908 ($ $)) (-15 -3120 ($ $)) (-15 -3069 ($ $)) (-15 -3096 ($ $))))
-((-3062 (((-112) $ $) 19 (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))))) (-2794 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 125)) (-2350 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 148)) (-3387 (($ $) 146)) (-3167 (($) 72) (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) 71)) (-4233 (((-1246) $ |#1| |#1|) 99 (|has| $ (-6 -4374))) (((-1246) $ (-554) (-554)) 178 (|has| $ (-6 -4374)))) (-2722 (($ $ (-554)) 159 (|has| $ (-6 -4374)))) (-4015 (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 209) (((-112) $) 203 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)))) (-2576 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 200 (|has| $ (-6 -4374))) (($ $) 199 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)) (|has| $ (-6 -4374))))) (-3303 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)))) (-3019 (((-112) $ (-758)) 8)) (-2690 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 134 (|has| $ (-6 -4374)))) (-2234 (($ $ $) 155 (|has| $ (-6 -4374)))) (-1825 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 157 (|has| $ (-6 -4374)))) (-3105 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 153 (|has| $ (-6 -4374)))) (-1501 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-554) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 189 (|has| $ (-6 -4374))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-1208 (-554)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 160 (|has| $ (-6 -4374))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ "last" (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 158 (|has| $ (-6 -4374))) (($ $ "rest" $) 156 (|has| $ (-6 -4374))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ "first" (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 154 (|has| $ (-6 -4374))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ "value" (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 133 (|has| $ (-6 -4374)))) (-2923 (($ $ (-631 $)) 132 (|has| $ (-6 -4374)))) (-2220 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 45 (|has| $ (-6 -4373))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 216)) (-1871 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 55 (|has| $ (-6 -4373))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 175 (|has| $ (-6 -4373)))) (-2337 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 147)) (-2937 (((-3 |#2| "failed") |#1| $) 61)) (-4087 (($) 7 T CONST)) (-3920 (($ $) 201 (|has| $ (-6 -4374)))) (-3799 (($ $) 211)) (-1551 (($ $ (-758)) 142) (($ $) 140)) (-2593 (($ $) 214 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (-1571 (($ $) 58 (-3994 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| $ (-6 -4373))) (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| $ (-6 -4373)))))) (-1884 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 47 (|has| $ (-6 -4373))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 46 (|has| $ (-6 -4373))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 220) (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 215 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (-2574 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 54 (|has| $ (-6 -4373))) (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 177 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 174 (|has| $ (-6 -4373)))) (-3676 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 56 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| $ (-6 -4373)))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 53 (|has| $ (-6 -4373))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 52 (|has| $ (-6 -4373))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 176 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| $ (-6 -4373)))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 173 (|has| $ (-6 -4373))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 172 (|has| $ (-6 -4373)))) (-2862 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4374))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-554) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 190 (|has| $ (-6 -4374)))) (-2796 ((|#2| $ |#1|) 88) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-554)) 188)) (-3556 (((-112) $) 192)) (-1484 (((-554) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 208) (((-554) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 207 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))) (((-554) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-554)) 206 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (-2466 (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 30 (|has| $ (-6 -4373))) (((-631 |#2|) $) 79 (|has| $ (-6 -4373))) (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 114 (|has| $ (-6 -4373)))) (-3677 (((-631 $) $) 123)) (-1990 (((-112) $ $) 131 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (-3180 (($ (-758) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 169)) (-2230 (((-112) $ (-758)) 9)) (-3044 ((|#1| $) 96 (|has| |#1| (-836))) (((-554) $) 180 (|has| (-554) (-836)))) (-4223 (($ $ $) 198 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)))) (-3606 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)))) (-3717 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)))) (-2379 (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 29 (|has| $ (-6 -4373))) (((-631 |#2|) $) 80 (|has| $ (-6 -4373))) (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 115 (|has| $ (-6 -4373)))) (-3068 (((-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| $ (-6 -4373)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1082)) (|has| $ (-6 -4373)))) (((-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 117 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| $ (-6 -4373))))) (-2256 ((|#1| $) 95 (|has| |#1| (-836))) (((-554) $) 181 (|has| (-554) (-836)))) (-2706 (($ $ $) 197 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)))) (-2849 (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 34 (|has| $ (-6 -4374))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4374))) (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 110 (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 109)) (-1416 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 225)) (-3731 (((-112) $ (-758)) 10)) (-2306 (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 128)) (-3216 (((-112) $) 124)) (-1613 (((-1140) $) 22 (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))))) (-2597 (($ $ (-758)) 145) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 143)) (-2944 (((-631 |#1|) $) 63)) (-2415 (((-112) |#1| $) 64)) (-4150 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 39)) (-2045 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 40) (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-554)) 219) (($ $ $ (-554)) 218)) (-1782 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-554)) 162) (($ $ $ (-554)) 161)) (-2529 (((-631 |#1|) $) 93) (((-631 (-554)) $) 183)) (-3618 (((-112) |#1| $) 92) (((-112) (-554) $) 184)) (-2768 (((-1102) $) 21 (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))))) (-1539 ((|#2| $) 97 (|has| |#1| (-836))) (($ $ (-758)) 139) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 137)) (-1652 (((-3 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) "failed") (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 51) (((-3 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) "failed") (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 171)) (-2441 (($ $ |#2|) 98 (|has| $ (-6 -4374))) (($ $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 179 (|has| $ (-6 -4374)))) (-2152 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 41)) (-1381 (((-112) $) 191)) (-2845 (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 32 (|has| $ (-6 -4373))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4373))) (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 112 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))))) 26 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) 25 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 24 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) 23 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-631 |#2|) (-631 |#2|)) 86 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-289 |#2|)) 84 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-631 (-289 |#2|))) 83 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) 121 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 120 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) 119 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-631 (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))))) 118 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))))) (-2494 (((-112) $ $) 14)) (-1609 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082)))) (((-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 182 (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))))) (-2625 (((-631 |#2|) $) 91) (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 185)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2064 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-554) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 187) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-554)) 186) (($ $ (-1208 (-554))) 165) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ "first") 138) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ "value") 126)) (-3250 (((-554) $ $) 129)) (-4310 (($) 49) (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) 48)) (-3029 (($ $ (-554)) 222) (($ $ (-1208 (-554))) 221)) (-2021 (($ $ (-554)) 164) (($ $ (-1208 (-554))) 163)) (-3008 (((-112) $) 127)) (-1670 (($ $) 151)) (-2377 (($ $) 152 (|has| $ (-6 -4374)))) (-2797 (((-758) $) 150)) (-2046 (($ $) 149)) (-2777 (((-758) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 31 (|has| $ (-6 -4373))) (((-758) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| $ (-6 -4373)))) (((-758) |#2| $) 81 (-12 (|has| |#2| (-1082)) (|has| $ (-6 -4373)))) (((-758) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4373))) (((-758) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 116 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| $ (-6 -4373)))) (((-758) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 113 (|has| $ (-6 -4373)))) (-3553 (($ $ $ (-554)) 202 (|has| $ (-6 -4374)))) (-1521 (($ $) 13)) (-2927 (((-530) $) 59 (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-602 (-530))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-602 (-530)))))) (-3089 (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) 50) (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) 170)) (-1853 (($ $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 224) (($ $ $) 223)) (-4323 (($ $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 168) (($ (-631 $)) 167) (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 136) (($ $ $) 135)) (-3075 (((-848) $) 18 (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-601 (-848))) (|has| |#2| (-601 (-848))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-601 (-848)))))) (-2461 (((-631 $) $) 122)) (-1441 (((-112) $ $) 130 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (-1591 (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) 42)) (-2605 (((-3 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) "failed") |#1| $) 108)) (-2438 (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 33 (|has| $ (-6 -4373))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4373))) (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 111 (|has| $ (-6 -4373)))) (-1708 (((-112) $ $) 195 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)))) (-1686 (((-112) $ $) 194 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)))) (-1658 (((-112) $ $) 20 (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))))) (-1697 (((-112) $ $) 196 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)))) (-1676 (((-112) $ $) 193 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373)))))
-(((-36 |#1| |#2|) (-138) (-1082) (-1082)) (T -36))
-((-2605 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-5 *2 (-2 (|:| -2564 *3) (|:| -2701 *4))))))
-(-13 (-1171 |t#1| |t#2|) (-652 (-2 (|:| -2564 |t#1|) (|:| -2701 |t#2|))) (-10 -8 (-15 -2605 ((-3 (-2 (|:| -2564 |t#1|) (|:| -2701 |t#2|)) "failed") |t#1| $))))
-(((-34) . T) ((-107 #0=(-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T) ((-102) -3994 (|has| |#2| (-1082)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836))) ((-601 (-848)) -3994 (|has| |#2| (-1082)) (|has| |#2| (-601 (-848))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-601 (-848)))) ((-149 #1=(-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T) ((-602 (-530)) |has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-602 (-530))) ((-225 #0#) . T) ((-231 #0#) . T) ((-281 #2=(-554) #1#) . T) ((-281 |#1| |#2|) . T) ((-283 #2# #1#) . T) ((-283 |#1| |#2|) . T) ((-304 #1#) -12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))) ((-304 |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))) ((-277 #1#) . T) ((-368 #1#) . T) ((-483 #1#) . T) ((-483 |#2|) . T) ((-592 #2# #1#) . T) ((-592 |#1| |#2|) . T) ((-508 #1# #1#) -12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))) ((-508 |#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))) ((-598 |#1| |#2|) . T) ((-637 #1#) . T) ((-652 #1#) . T) ((-836) |has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)) ((-995 #1#) . T) ((-1082) -3994 (|has| |#2| (-1082)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836))) ((-1131 #1#) . T) ((-1171 |#1| |#2|) . T) ((-1195) . T) ((-1229 #1#) . T))
-((-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#2|) 10)))
-(((-37 |#1| |#2|) (-10 -8 (-15 -3075 (|#1| |#2|)) (-15 -3075 (|#1| (-554))) (-15 -3075 ((-848) |#1|))) (-38 |#2|) (-170)) (T -37))
-NIL
-(-10 -8 (-15 -3075 (|#1| |#2|)) (-15 -3075 (|#1| (-554))) (-15 -3075 ((-848) |#1|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1320 (((-3 $ "failed") $) 33)) (-3248 (((-112) $) 31)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ |#1|) 38)) (-2261 (((-758)) 28)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
-(((-38 |#1|) (-138) (-170)) (T -38))
-NIL
-(-13 (-1034) (-704 |t#1|) (-604 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-604 (-554)) . T) ((-604 |#1|) . T) ((-601 (-848)) . T) ((-634 |#1|) . T) ((-634 $) . T) ((-704 |#1|) . T) ((-713) . T) ((-1040 |#1|) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T))
-((-1515 (((-413 |#1|) |#1|) 41)) (-2270 (((-413 |#1|) |#1|) 30) (((-413 |#1|) |#1| (-631 (-48))) 33)) (-2906 (((-112) |#1|) 56)))
-(((-39 |#1|) (-10 -7 (-15 -2270 ((-413 |#1|) |#1| (-631 (-48)))) (-15 -2270 ((-413 |#1|) |#1|)) (-15 -1515 ((-413 |#1|) |#1|)) (-15 -2906 ((-112) |#1|))) (-1217 (-48))) (T -39))
-((-2906 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1217 (-48))))) (-1515 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1217 (-48))))) (-2270 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1217 (-48))))) (-2270 (*1 *2 *3 *4) (-12 (-5 *4 (-631 (-48))) (-5 *2 (-413 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1217 (-48))))))
-(-10 -7 (-15 -2270 ((-413 |#1|) |#1| (-631 (-48)))) (-15 -2270 ((-413 |#1|) |#1|)) (-15 -1515 ((-413 |#1|) |#1|)) (-15 -2906 ((-112) |#1|)))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-3293 (((-2 (|:| |num| (-1241 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| (-402 |#2|) (-358)))) (-1976 (($ $) NIL (|has| (-402 |#2|) (-358)))) (-1363 (((-112) $) NIL (|has| (-402 |#2|) (-358)))) (-1903 (((-675 (-402 |#2|)) (-1241 $)) NIL) (((-675 (-402 |#2|))) NIL)) (-1612 (((-402 |#2|) $) NIL)) (-3205 (((-1168 (-906) (-758)) (-554)) NIL (|has| (-402 |#2|) (-344)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL (|has| (-402 |#2|) (-358)))) (-1565 (((-413 $) $) NIL (|has| (-402 |#2|) (-358)))) (-2286 (((-112) $ $) NIL (|has| (-402 |#2|) (-358)))) (-1508 (((-758)) NIL (|has| (-402 |#2|) (-363)))) (-3626 (((-112)) NIL)) (-2120 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) NIL (|has| (-402 |#2|) (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| (-402 |#2|) (-1023 (-402 (-554))))) (((-3 (-402 |#2|) "failed") $) NIL)) (-1668 (((-554) $) NIL (|has| (-402 |#2|) (-1023 (-554)))) (((-402 (-554)) $) NIL (|has| (-402 |#2|) (-1023 (-402 (-554))))) (((-402 |#2|) $) NIL)) (-1651 (($ (-1241 (-402 |#2|)) (-1241 $)) NIL) (($ (-1241 (-402 |#2|))) 57) (($ (-1241 |#2|) |#2|) 125)) (-2723 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-402 |#2|) (-344)))) (-3964 (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-3629 (((-675 (-402 |#2|)) $ (-1241 $)) NIL) (((-675 (-402 |#2|)) $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| (-402 |#2|) (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| (-402 |#2|) (-627 (-554)))) (((-2 (|:| -2866 (-675 (-402 |#2|))) (|:| |vec| (-1241 (-402 |#2|)))) (-675 $) (-1241 $)) NIL) (((-675 (-402 |#2|)) (-675 $)) NIL)) (-2501 (((-1241 $) (-1241 $)) NIL)) (-3676 (($ |#3|) NIL) (((-3 $ "failed") (-402 |#3|)) NIL (|has| (-402 |#2|) (-358)))) (-1320 (((-3 $ "failed") $) NIL)) (-4092 (((-631 (-631 |#1|))) NIL (|has| |#1| (-363)))) (-2895 (((-112) |#1| |#1|) NIL)) (-4186 (((-906)) NIL)) (-3353 (($) NIL (|has| (-402 |#2|) (-363)))) (-2568 (((-112)) NIL)) (-1993 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3943 (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL (|has| (-402 |#2|) (-358)))) (-2048 (($ $) NIL)) (-3157 (($) NIL (|has| (-402 |#2|) (-344)))) (-2754 (((-112) $) NIL (|has| (-402 |#2|) (-344)))) (-4122 (($ $ (-758)) NIL (|has| (-402 |#2|) (-344))) (($ $) NIL (|has| (-402 |#2|) (-344)))) (-3289 (((-112) $) NIL (|has| (-402 |#2|) (-358)))) (-2342 (((-906) $) NIL (|has| (-402 |#2|) (-344))) (((-820 (-906)) $) NIL (|has| (-402 |#2|) (-344)))) (-3248 (((-112) $) NIL)) (-4324 (((-758)) NIL)) (-3600 (((-1241 $) (-1241 $)) 102)) (-3274 (((-402 |#2|) $) NIL)) (-2214 (((-631 (-937 |#1|)) (-1158)) NIL (|has| |#1| (-358)))) (-3339 (((-3 $ "failed") $) NIL (|has| (-402 |#2|) (-344)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| (-402 |#2|) (-358)))) (-3361 ((|#3| $) NIL (|has| (-402 |#2|) (-358)))) (-3830 (((-906) $) NIL (|has| (-402 |#2|) (-363)))) (-3662 ((|#3| $) NIL)) (-2475 (($ (-631 $)) NIL (|has| (-402 |#2|) (-358))) (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-1613 (((-1140) $) NIL)) (-3067 (((-1246) (-758)) 79)) (-4132 (((-675 (-402 |#2|))) 51)) (-2519 (((-675 (-402 |#2|))) 44)) (-2483 (($ $) NIL (|has| (-402 |#2|) (-358)))) (-2488 (($ (-1241 |#2|) |#2|) 126)) (-1835 (((-675 (-402 |#2|))) 45)) (-3470 (((-675 (-402 |#2|))) 43)) (-3368 (((-2 (|:| |num| (-675 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-1579 (((-2 (|:| |num| (-1241 |#2|)) (|:| |den| |#2|)) $) 64)) (-1279 (((-1241 $)) 42)) (-3358 (((-1241 $)) 41)) (-2141 (((-112) $) NIL)) (-4099 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3834 (($) NIL (|has| (-402 |#2|) (-344)) CONST)) (-2717 (($ (-906)) NIL (|has| (-402 |#2|) (-363)))) (-4261 (((-3 |#2| "failed")) NIL)) (-2768 (((-1102) $) NIL)) (-3271 (((-758)) NIL)) (-4137 (($) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| (-402 |#2|) (-358)))) (-2510 (($ (-631 $)) NIL (|has| (-402 |#2|) (-358))) (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-3725 (((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))) NIL (|has| (-402 |#2|) (-344)))) (-2270 (((-413 $) $) NIL (|has| (-402 |#2|) (-358)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-402 |#2|) (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| (-402 |#2|) (-358)))) (-3919 (((-3 $ "failed") $ $) NIL (|has| (-402 |#2|) (-358)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| (-402 |#2|) (-358)))) (-2072 (((-758) $) NIL (|has| (-402 |#2|) (-358)))) (-2064 ((|#1| $ |#1| |#1|) NIL)) (-2535 (((-3 |#2| "failed")) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| (-402 |#2|) (-358)))) (-1495 (((-402 |#2|) (-1241 $)) NIL) (((-402 |#2|)) 39)) (-3316 (((-758) $) NIL (|has| (-402 |#2|) (-344))) (((-3 (-758) "failed") $ $) NIL (|has| (-402 |#2|) (-344)))) (-1553 (($ $ (-1 (-402 |#2|) (-402 |#2|)) (-758)) NIL (|has| (-402 |#2|) (-358))) (($ $ (-1 (-402 |#2|) (-402 |#2|))) NIL (|has| (-402 |#2|) (-358))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158))))) (($ $ (-1158) (-758)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158))))) (($ $ (-631 (-1158))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158))))) (($ $ (-1158)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158))))) (($ $ (-758)) NIL (-3994 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344)))) (($ $) NIL (-3994 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344))))) (-2092 (((-675 (-402 |#2|)) (-1241 $) (-1 (-402 |#2|) (-402 |#2|))) NIL (|has| (-402 |#2|) (-358)))) (-4318 ((|#3|) 50)) (-3944 (($) NIL (|has| (-402 |#2|) (-344)))) (-3656 (((-1241 (-402 |#2|)) $ (-1241 $)) NIL) (((-675 (-402 |#2|)) (-1241 $) (-1241 $)) NIL) (((-1241 (-402 |#2|)) $) 58) (((-675 (-402 |#2|)) (-1241 $)) 103)) (-2927 (((-1241 (-402 |#2|)) $) NIL) (($ (-1241 (-402 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (|has| (-402 |#2|) (-344)))) (-2239 (((-1241 $) (-1241 $)) NIL)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ (-402 |#2|)) NIL) (($ (-402 (-554))) NIL (-3994 (|has| (-402 |#2|) (-1023 (-402 (-554)))) (|has| (-402 |#2|) (-358)))) (($ $) NIL (|has| (-402 |#2|) (-358)))) (-2084 (($ $) NIL (|has| (-402 |#2|) (-344))) (((-3 $ "failed") $) NIL (|has| (-402 |#2|) (-143)))) (-3109 ((|#3| $) NIL)) (-2261 (((-758)) NIL)) (-3809 (((-112)) 37)) (-2394 (((-112) |#1|) 49) (((-112) |#2|) 132)) (-3782 (((-1241 $)) 93)) (-1909 (((-112) $ $) NIL (|has| (-402 |#2|) (-358)))) (-3889 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2102 (((-112)) NIL)) (-2004 (($) 16 T CONST)) (-2014 (($) 26 T CONST)) (-1787 (($ $ (-1 (-402 |#2|) (-402 |#2|)) (-758)) NIL (|has| (-402 |#2|) (-358))) (($ $ (-1 (-402 |#2|) (-402 |#2|))) NIL (|has| (-402 |#2|) (-358))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158))))) (($ $ (-1158) (-758)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158))))) (($ $ (-631 (-1158))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158))))) (($ $ (-1158)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158))))) (($ $ (-758)) NIL (-3994 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344)))) (($ $) NIL (-3994 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344))))) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL (|has| (-402 |#2|) (-358)))) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 |#2|)) NIL) (($ (-402 |#2|) $) NIL) (($ (-402 (-554)) $) NIL (|has| (-402 |#2|) (-358))) (($ $ (-402 (-554))) NIL (|has| (-402 |#2|) (-358)))))
-(((-40 |#1| |#2| |#3| |#4|) (-13 (-337 |#1| |#2| |#3|) (-10 -7 (-15 -3067 ((-1246) (-758))))) (-358) (-1217 |#1|) (-1217 (-402 |#2|)) |#3|) (T -40))
-((-3067 (*1 *2 *3) (-12 (-5 *3 (-758)) (-4 *4 (-358)) (-4 *5 (-1217 *4)) (-5 *2 (-1246)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1217 (-402 *5))) (-14 *7 *6))))
-(-13 (-337 |#1| |#2| |#3|) (-10 -7 (-15 -3067 ((-1246) (-758)))))
-((-3614 ((|#2| |#2|) 48)) (-1314 ((|#2| |#2|) 120 (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-446)) (|has| |#1| (-836)) (|has| |#1| (-1023 (-554)))))) (-4126 ((|#2| |#2|) 87 (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-446)) (|has| |#1| (-836)) (|has| |#1| (-1023 (-554)))))) (-3996 ((|#2| |#2|) 88 (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-446)) (|has| |#1| (-836)) (|has| |#1| (-1023 (-554)))))) (-1892 ((|#2| (-114) |#2| (-758)) 116 (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-446)) (|has| |#1| (-836)) (|has| |#1| (-1023 (-554)))))) (-2298 (((-1154 |#2|) |#2|) 45)) (-3226 ((|#2| |#2| (-631 (-600 |#2|))) 18) ((|#2| |#2| (-631 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16)))
-(((-41 |#1| |#2|) (-10 -7 (-15 -3614 (|#2| |#2|)) (-15 -3226 (|#2| |#2|)) (-15 -3226 (|#2| |#2| |#2|)) (-15 -3226 (|#2| |#2| (-631 |#2|))) (-15 -3226 (|#2| |#2| (-631 (-600 |#2|)))) (-15 -2298 ((-1154 |#2|) |#2|)) (IF (|has| |#1| (-836)) (IF (|has| |#1| (-446)) (IF (|has| |#1| (-1023 (-554))) (IF (|has| |#2| (-425 |#1|)) (PROGN (-15 -3996 (|#2| |#2|)) (-15 -4126 (|#2| |#2|)) (-15 -1314 (|#2| |#2|)) (-15 -1892 (|#2| (-114) |#2| (-758)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-546) (-13 (-358) (-297) (-10 -8 (-15 -2810 ((-1107 |#1| (-600 $)) $)) (-15 -2822 ((-1107 |#1| (-600 $)) $)) (-15 -3075 ($ (-1107 |#1| (-600 $))))))) (T -41))
-((-1892 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-114)) (-5 *4 (-758)) (-4 *5 (-446)) (-4 *5 (-836)) (-4 *5 (-1023 (-554))) (-4 *5 (-546)) (-5 *1 (-41 *5 *2)) (-4 *2 (-425 *5)) (-4 *2 (-13 (-358) (-297) (-10 -8 (-15 -2810 ((-1107 *5 (-600 $)) $)) (-15 -2822 ((-1107 *5 (-600 $)) $)) (-15 -3075 ($ (-1107 *5 (-600 $))))))))) (-1314 (*1 *2 *2) (-12 (-4 *3 (-446)) (-4 *3 (-836)) (-4 *3 (-1023 (-554))) (-4 *3 (-546)) (-5 *1 (-41 *3 *2)) (-4 *2 (-425 *3)) (-4 *2 (-13 (-358) (-297) (-10 -8 (-15 -2810 ((-1107 *3 (-600 $)) $)) (-15 -2822 ((-1107 *3 (-600 $)) $)) (-15 -3075 ($ (-1107 *3 (-600 $))))))))) (-4126 (*1 *2 *2) (-12 (-4 *3 (-446)) (-4 *3 (-836)) (-4 *3 (-1023 (-554))) (-4 *3 (-546)) (-5 *1 (-41 *3 *2)) (-4 *2 (-425 *3)) (-4 *2 (-13 (-358) (-297) (-10 -8 (-15 -2810 ((-1107 *3 (-600 $)) $)) (-15 -2822 ((-1107 *3 (-600 $)) $)) (-15 -3075 ($ (-1107 *3 (-600 $))))))))) (-3996 (*1 *2 *2) (-12 (-4 *3 (-446)) (-4 *3 (-836)) (-4 *3 (-1023 (-554))) (-4 *3 (-546)) (-5 *1 (-41 *3 *2)) (-4 *2 (-425 *3)) (-4 *2 (-13 (-358) (-297) (-10 -8 (-15 -2810 ((-1107 *3 (-600 $)) $)) (-15 -2822 ((-1107 *3 (-600 $)) $)) (-15 -3075 ($ (-1107 *3 (-600 $))))))))) (-2298 (*1 *2 *3) (-12 (-4 *4 (-546)) (-5 *2 (-1154 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-358) (-297) (-10 -8 (-15 -2810 ((-1107 *4 (-600 $)) $)) (-15 -2822 ((-1107 *4 (-600 $)) $)) (-15 -3075 ($ (-1107 *4 (-600 $))))))))) (-3226 (*1 *2 *2 *3) (-12 (-5 *3 (-631 (-600 *2))) (-4 *2 (-13 (-358) (-297) (-10 -8 (-15 -2810 ((-1107 *4 (-600 $)) $)) (-15 -2822 ((-1107 *4 (-600 $)) $)) (-15 -3075 ($ (-1107 *4 (-600 $))))))) (-4 *4 (-546)) (-5 *1 (-41 *4 *2)))) (-3226 (*1 *2 *2 *3) (-12 (-5 *3 (-631 *2)) (-4 *2 (-13 (-358) (-297) (-10 -8 (-15 -2810 ((-1107 *4 (-600 $)) $)) (-15 -2822 ((-1107 *4 (-600 $)) $)) (-15 -3075 ($ (-1107 *4 (-600 $))))))) (-4 *4 (-546)) (-5 *1 (-41 *4 *2)))) (-3226 (*1 *2 *2 *2) (-12 (-4 *3 (-546)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-358) (-297) (-10 -8 (-15 -2810 ((-1107 *3 (-600 $)) $)) (-15 -2822 ((-1107 *3 (-600 $)) $)) (-15 -3075 ($ (-1107 *3 (-600 $))))))))) (-3226 (*1 *2 *2) (-12 (-4 *3 (-546)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-358) (-297) (-10 -8 (-15 -2810 ((-1107 *3 (-600 $)) $)) (-15 -2822 ((-1107 *3 (-600 $)) $)) (-15 -3075 ($ (-1107 *3 (-600 $))))))))) (-3614 (*1 *2 *2) (-12 (-4 *3 (-546)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-358) (-297) (-10 -8 (-15 -2810 ((-1107 *3 (-600 $)) $)) (-15 -2822 ((-1107 *3 (-600 $)) $)) (-15 -3075 ($ (-1107 *3 (-600 $))))))))))
-(-10 -7 (-15 -3614 (|#2| |#2|)) (-15 -3226 (|#2| |#2|)) (-15 -3226 (|#2| |#2| |#2|)) (-15 -3226 (|#2| |#2| (-631 |#2|))) (-15 -3226 (|#2| |#2| (-631 (-600 |#2|)))) (-15 -2298 ((-1154 |#2|) |#2|)) (IF (|has| |#1| (-836)) (IF (|has| |#1| (-446)) (IF (|has| |#1| (-1023 (-554))) (IF (|has| |#2| (-425 |#1|)) (PROGN (-15 -3996 (|#2| |#2|)) (-15 -4126 (|#2| |#2|)) (-15 -1314 (|#2| |#2|)) (-15 -1892 (|#2| (-114) |#2| (-758)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
-((-2270 (((-413 (-1154 |#3|)) (-1154 |#3|) (-631 (-48))) 23) (((-413 |#3|) |#3| (-631 (-48))) 19)))
-(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -2270 ((-413 |#3|) |#3| (-631 (-48)))) (-15 -2270 ((-413 (-1154 |#3|)) (-1154 |#3|) (-631 (-48))))) (-836) (-780) (-934 (-48) |#2| |#1|)) (T -42))
-((-2270 (*1 *2 *3 *4) (-12 (-5 *4 (-631 (-48))) (-4 *5 (-836)) (-4 *6 (-780)) (-4 *7 (-934 (-48) *6 *5)) (-5 *2 (-413 (-1154 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1154 *7)))) (-2270 (*1 *2 *3 *4) (-12 (-5 *4 (-631 (-48))) (-4 *5 (-836)) (-4 *6 (-780)) (-5 *2 (-413 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-934 (-48) *6 *5)))))
-(-10 -7 (-15 -2270 ((-413 |#3|) |#3| (-631 (-48)))) (-15 -2270 ((-413 (-1154 |#3|)) (-1154 |#3|) (-631 (-48)))))
-((-3027 (((-758) |#2|) 65)) (-3724 (((-758) |#2|) 68)) (-3529 (((-631 |#2|)) 33)) (-2083 (((-758) |#2|) 67)) (-3347 (((-758) |#2|) 64)) (-2730 (((-758) |#2|) 66)) (-2243 (((-631 (-675 |#1|))) 60)) (-3056 (((-631 |#2|)) 55)) (-1326 (((-631 |#2|) |#2|) 43)) (-2523 (((-631 |#2|)) 57)) (-1563 (((-631 |#2|)) 56)) (-3396 (((-631 (-675 |#1|))) 48)) (-2662 (((-631 |#2|)) 54)) (-1842 (((-631 |#2|) |#2|) 42)) (-3116 (((-631 |#2|)) 50)) (-4019 (((-631 (-675 |#1|))) 61)) (-2294 (((-631 |#2|)) 59)) (-3782 (((-1241 |#2|) (-1241 |#2|)) 84 (|has| |#1| (-302)))))
-(((-43 |#1| |#2|) (-10 -7 (-15 -2083 ((-758) |#2|)) (-15 -3724 ((-758) |#2|)) (-15 -3347 ((-758) |#2|)) (-15 -3027 ((-758) |#2|)) (-15 -2730 ((-758) |#2|)) (-15 -3116 ((-631 |#2|))) (-15 -1842 ((-631 |#2|) |#2|)) (-15 -1326 ((-631 |#2|) |#2|)) (-15 -2662 ((-631 |#2|))) (-15 -3056 ((-631 |#2|))) (-15 -1563 ((-631 |#2|))) (-15 -2523 ((-631 |#2|))) (-15 -2294 ((-631 |#2|))) (-15 -3396 ((-631 (-675 |#1|)))) (-15 -2243 ((-631 (-675 |#1|)))) (-15 -4019 ((-631 (-675 |#1|)))) (-15 -3529 ((-631 |#2|))) (IF (|has| |#1| (-302)) (-15 -3782 ((-1241 |#2|) (-1241 |#2|))) |%noBranch|)) (-546) (-412 |#1|)) (T -43))
-((-3782 (*1 *2 *2) (-12 (-5 *2 (-1241 *4)) (-4 *4 (-412 *3)) (-4 *3 (-302)) (-4 *3 (-546)) (-5 *1 (-43 *3 *4)))) (-3529 (*1 *2) (-12 (-4 *3 (-546)) (-5 *2 (-631 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-412 *3)))) (-4019 (*1 *2) (-12 (-4 *3 (-546)) (-5 *2 (-631 (-675 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-412 *3)))) (-2243 (*1 *2) (-12 (-4 *3 (-546)) (-5 *2 (-631 (-675 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-412 *3)))) (-3396 (*1 *2) (-12 (-4 *3 (-546)) (-5 *2 (-631 (-675 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-412 *3)))) (-2294 (*1 *2) (-12 (-4 *3 (-546)) (-5 *2 (-631 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-412 *3)))) (-2523 (*1 *2) (-12 (-4 *3 (-546)) (-5 *2 (-631 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-412 *3)))) (-1563 (*1 *2) (-12 (-4 *3 (-546)) (-5 *2 (-631 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-412 *3)))) (-3056 (*1 *2) (-12 (-4 *3 (-546)) (-5 *2 (-631 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-412 *3)))) (-2662 (*1 *2) (-12 (-4 *3 (-546)) (-5 *2 (-631 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-412 *3)))) (-1326 (*1 *2 *3) (-12 (-4 *4 (-546)) (-5 *2 (-631 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-412 *4)))) (-1842 (*1 *2 *3) (-12 (-4 *4 (-546)) (-5 *2 (-631 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-412 *4)))) (-3116 (*1 *2) (-12 (-4 *3 (-546)) (-5 *2 (-631 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-412 *3)))) (-2730 (*1 *2 *3) (-12 (-4 *4 (-546)) (-5 *2 (-758)) (-5 *1 (-43 *4 *3)) (-4 *3 (-412 *4)))) (-3027 (*1 *2 *3) (-12 (-4 *4 (-546)) (-5 *2 (-758)) (-5 *1 (-43 *4 *3)) (-4 *3 (-412 *4)))) (-3347 (*1 *2 *3) (-12 (-4 *4 (-546)) (-5 *2 (-758)) (-5 *1 (-43 *4 *3)) (-4 *3 (-412 *4)))) (-3724 (*1 *2 *3) (-12 (-4 *4 (-546)) (-5 *2 (-758)) (-5 *1 (-43 *4 *3)) (-4 *3 (-412 *4)))) (-2083 (*1 *2 *3) (-12 (-4 *4 (-546)) (-5 *2 (-758)) (-5 *1 (-43 *4 *3)) (-4 *3 (-412 *4)))))
-(-10 -7 (-15 -2083 ((-758) |#2|)) (-15 -3724 ((-758) |#2|)) (-15 -3347 ((-758) |#2|)) (-15 -3027 ((-758) |#2|)) (-15 -2730 ((-758) |#2|)) (-15 -3116 ((-631 |#2|))) (-15 -1842 ((-631 |#2|) |#2|)) (-15 -1326 ((-631 |#2|) |#2|)) (-15 -2662 ((-631 |#2|))) (-15 -3056 ((-631 |#2|))) (-15 -1563 ((-631 |#2|))) (-15 -2523 ((-631 |#2|))) (-15 -2294 ((-631 |#2|))) (-15 -3396 ((-631 (-675 |#1|)))) (-15 -2243 ((-631 (-675 |#1|)))) (-15 -4019 ((-631 (-675 |#1|)))) (-15 -3529 ((-631 |#2|))) (IF (|has| |#1| (-302)) (-15 -3782 ((-1241 |#2|) (-1241 |#2|))) |%noBranch|))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-3646 (((-3 $ "failed")) NIL (|has| |#1| (-546)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-4251 (((-1241 (-675 |#1|)) (-1241 $)) NIL) (((-1241 (-675 |#1|))) 24)) (-4047 (((-1241 $)) 51)) (-4087 (($) NIL T CONST)) (-1558 (((-3 (-2 (|:| |particular| $) (|:| -3782 (-631 $))) "failed")) NIL (|has| |#1| (-546)))) (-3447 (((-3 $ "failed")) NIL (|has| |#1| (-546)))) (-3321 (((-675 |#1|) (-1241 $)) NIL) (((-675 |#1|)) NIL)) (-4206 ((|#1| $) NIL)) (-3970 (((-675 |#1|) $ (-1241 $)) NIL) (((-675 |#1|) $) NIL)) (-3754 (((-3 $ "failed") $) NIL (|has| |#1| (-546)))) (-4027 (((-1154 (-937 |#1|))) NIL (|has| |#1| (-358)))) (-2080 (($ $ (-906)) NIL)) (-3976 ((|#1| $) NIL)) (-3343 (((-1154 |#1|) $) NIL (|has| |#1| (-546)))) (-3640 ((|#1| (-1241 $)) NIL) ((|#1|) NIL)) (-4231 (((-1154 |#1|) $) NIL)) (-1397 (((-112)) 87)) (-1651 (($ (-1241 |#1|) (-1241 $)) NIL) (($ (-1241 |#1|)) NIL)) (-1320 (((-3 $ "failed") $) 14 (|has| |#1| (-546)))) (-4186 (((-906)) 52)) (-3911 (((-112)) NIL)) (-4326 (($ $ (-906)) NIL)) (-2545 (((-112)) NIL)) (-1765 (((-112)) NIL)) (-1573 (((-112)) 89)) (-1660 (((-3 (-2 (|:| |particular| $) (|:| -3782 (-631 $))) "failed")) NIL (|has| |#1| (-546)))) (-3899 (((-3 $ "failed")) NIL (|has| |#1| (-546)))) (-2871 (((-675 |#1|) (-1241 $)) NIL) (((-675 |#1|)) NIL)) (-3115 ((|#1| $) NIL)) (-3826 (((-675 |#1|) $ (-1241 $)) NIL) (((-675 |#1|) $) NIL)) (-1605 (((-3 $ "failed") $) NIL (|has| |#1| (-546)))) (-3415 (((-1154 (-937 |#1|))) NIL (|has| |#1| (-358)))) (-1297 (($ $ (-906)) NIL)) (-2620 ((|#1| $) NIL)) (-3760 (((-1154 |#1|) $) NIL (|has| |#1| (-546)))) (-3063 ((|#1| (-1241 $)) NIL) ((|#1|) NIL)) (-2541 (((-1154 |#1|) $) NIL)) (-3074 (((-112)) 86)) (-1613 (((-1140) $) NIL)) (-3953 (((-112)) 93)) (-4193 (((-112)) 92)) (-2366 (((-112)) 94)) (-2768 (((-1102) $) NIL)) (-1944 (((-112)) 88)) (-2064 ((|#1| $ (-554)) 54)) (-3656 (((-1241 |#1|) $ (-1241 $)) 48) (((-675 |#1|) (-1241 $) (-1241 $)) NIL) (((-1241 |#1|) $) 28) (((-675 |#1|) (-1241 $)) NIL)) (-2927 (((-1241 |#1|) $) NIL) (($ (-1241 |#1|)) NIL)) (-3107 (((-631 (-937 |#1|)) (-1241 $)) NIL) (((-631 (-937 |#1|))) NIL)) (-1856 (($ $ $) NIL)) (-3349 (((-112)) 84)) (-3075 (((-848) $) 69) (($ (-1241 |#1|)) 22)) (-3782 (((-1241 $)) 45)) (-1444 (((-631 (-1241 |#1|))) NIL (|has| |#1| (-546)))) (-3499 (($ $ $ $) NIL)) (-3454 (((-112)) 82)) (-1485 (($ (-675 |#1|) $) 18)) (-1870 (($ $ $) NIL)) (-2945 (((-112)) 85)) (-2760 (((-112)) 83)) (-3206 (((-112)) 81)) (-2004 (($) NIL T CONST)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1124 |#2| |#1|) $) 19)))
-(((-44 |#1| |#2| |#3| |#4|) (-13 (-412 |#1|) (-634 (-1124 |#2| |#1|)) (-10 -8 (-15 -3075 ($ (-1241 |#1|))))) (-358) (-906) (-631 (-1158)) (-1241 (-675 |#1|))) (T -44))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-1241 *3)) (-4 *3 (-358)) (-14 *6 (-1241 (-675 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-906)) (-14 *5 (-631 (-1158))))))
-(-13 (-412 |#1|) (-634 (-1124 |#2| |#1|)) (-10 -8 (-15 -3075 ($ (-1241 |#1|)))))
-((-3062 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-2794 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-2350 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-3387 (($ $) NIL)) (-3167 (($) NIL) (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-4233 (((-1246) $ |#1| |#1|) NIL (|has| $ (-6 -4374))) (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-2722 (($ $ (-554)) NIL (|has| $ (-6 -4374)))) (-4015 (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)))) (-2576 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4374))) (($ $) NIL (-12 (|has| $ (-6 -4374)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836))))) (-3303 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)))) (-3019 (((-112) $ (-758)) NIL)) (-2690 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (|has| $ (-6 -4374)))) (-2234 (($ $ $) 27 (|has| $ (-6 -4374)))) (-1825 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (|has| $ (-6 -4374)))) (-3105 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 29 (|has| $ (-6 -4374)))) (-1501 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-554) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (|has| $ (-6 -4374))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-1208 (-554)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (|has| $ (-6 -4374))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ "last" (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (|has| $ (-6 -4374))) (($ $ "rest" $) NIL (|has| $ (-6 -4374))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ "first" (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (|has| $ (-6 -4374))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ "value" (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (|has| $ (-6 -4374)))) (-2923 (($ $ (-631 $)) NIL (|has| $ (-6 -4374)))) (-2220 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL)) (-1871 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-2337 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-2937 (((-3 |#2| "failed") |#1| $) 37)) (-4087 (($) NIL T CONST)) (-3920 (($ $) NIL (|has| $ (-6 -4374)))) (-3799 (($ $) NIL)) (-1551 (($ $ (-758)) NIL) (($ $) 24)) (-2593 (($ $) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))))) (-1884 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (|has| $ (-6 -4373))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-3 |#2| "failed") |#1| $) 48) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL) (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (-2574 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-3676 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (|has| $ (-6 -4373))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (|has| $ (-6 -4373))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-2862 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4374))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-554) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (|has| $ (-6 -4374)))) (-2796 ((|#2| $ |#1|) NIL) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-554)) NIL)) (-3556 (((-112) $) NIL)) (-1484 (((-554) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL) (((-554) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))) (((-554) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-554)) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (-2466 (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 18 (|has| $ (-6 -4373))) (((-631 |#2|) $) NIL (|has| $ (-6 -4373))) (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 18 (|has| $ (-6 -4373)))) (-3677 (((-631 $) $) NIL)) (-1990 (((-112) $ $) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (-3180 (($ (-758) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-3044 ((|#1| $) NIL (|has| |#1| (-836))) (((-554) $) 32 (|has| (-554) (-836)))) (-4223 (($ $ $) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)))) (-3606 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)))) (-3717 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)))) (-2379 (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-631 |#2|) $) NIL (|has| $ (-6 -4373))) (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082)))) (((-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))))) (-2256 ((|#1| $) NIL (|has| |#1| (-836))) (((-554) $) 34 (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)))) (-2849 (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4374))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4374))) (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL)) (-1416 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-2306 (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL)) (-3216 (((-112) $) NIL)) (-1613 (((-1140) $) 42 (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-2597 (($ $ (-758)) NIL) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-2944 (((-631 |#1|) $) 20)) (-2415 (((-112) |#1| $) NIL)) (-4150 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-2045 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL) (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-554)) NIL) (($ $ $ (-554)) NIL)) (-1782 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-554)) NIL) (($ $ $ (-554)) NIL)) (-2529 (((-631 |#1|) $) NIL) (((-631 (-554)) $) NIL)) (-3618 (((-112) |#1| $) NIL) (((-112) (-554) $) NIL)) (-2768 (((-1102) $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-1539 ((|#2| $) NIL (|has| |#1| (-836))) (($ $ (-758)) NIL) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 23)) (-1652 (((-3 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) "failed") (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL) (((-3 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) "failed") (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL)) (-2441 (($ $ |#2|) NIL (|has| $ (-6 -4374))) (($ $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (|has| $ (-6 -4374)))) (-2152 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-1381 (((-112) $) NIL)) (-2845 (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-631 |#2|) (-631 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-631 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-631 (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082)))) (((-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))))) (-2625 (((-631 |#2|) $) NIL) (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 17)) (-3543 (((-112) $) 16)) (-4240 (($) 13)) (-2064 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-554) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-554)) NIL) (($ $ (-1208 (-554))) NIL) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ "first") NIL) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ "value") NIL)) (-3250 (((-554) $ $) NIL)) (-4310 (($) 12) (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-3029 (($ $ (-554)) NIL) (($ $ (-1208 (-554))) NIL)) (-2021 (($ $ (-554)) NIL) (($ $ (-1208 (-554))) NIL)) (-3008 (((-112) $) NIL)) (-1670 (($ $) NIL)) (-2377 (($ $) NIL (|has| $ (-6 -4374)))) (-2797 (((-758) $) NIL)) (-2046 (($ $) NIL)) (-2777 (((-758) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-758) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-758) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082)))) (((-758) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373))) (((-758) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-758) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-3553 (($ $ $ (-554)) NIL (|has| $ (-6 -4374)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-602 (-530))))) (-3089 (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL) (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-1853 (($ $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL) (($ $ $) NIL)) (-4323 (($ $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL) (($ (-631 $)) NIL) (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 25) (($ $ $) NIL)) (-3075 (((-848) $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-601 (-848))) (|has| |#2| (-601 (-848)))))) (-2461 (((-631 $) $) NIL)) (-1441 (((-112) $ $) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (-1591 (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-2605 (((-3 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) "failed") |#1| $) 44)) (-2438 (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-1708 (((-112) $ $) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)))) (-1686 (((-112) $ $) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)))) (-1658 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-1697 (((-112) $ $) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)))) (-1676 (((-112) $ $) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)))) (-2563 (((-758) $) 22 (|has| $ (-6 -4373)))))
-(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1082) (-1082)) (T -45))
+(3184387 . 3439227063)
+((-1538 (((-112) (-1 (-112) |#2| |#2|) $) 62) (((-112) $) NIL)) (-2763 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-1532 ((|#2| $ (-558) |#2|) NIL) ((|#2| $ (-1213 (-558)) |#2|) 34)) (-3306 (($ $) 58)) (-3048 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-1517 (((-558) (-1 (-112) |#2|) $) 22) (((-558) |#2| $) NIL) (((-558) |#2| $ (-558)) 72)) (-2240 (((-635 |#2|) $) 13)) (-1677 (($ (-1 (-112) |#2| |#2|) $ $) 47) (($ $ $) NIL)) (-1807 (($ (-1 |#2| |#2|) $) 29)) (-3167 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-1861 (($ |#2| $ (-558)) NIL) (($ $ $ (-558)) 49)) (-4307 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 24)) (-3266 (((-112) (-1 (-112) |#2|) $) 21)) (-2195 ((|#2| $ (-558) |#2|) NIL) ((|#2| $ (-558)) NIL) (($ $ (-1213 (-558))) 48)) (-4023 (($ $ (-558)) 55) (($ $ (-1213 (-558))) 54)) (-2988 (((-762) (-1 (-112) |#2|) $) 26) (((-762) |#2| $) NIL)) (-2773 (($ $ $ (-558)) 51)) (-1553 (($ $) 50)) (-3233 (($ (-635 |#2|)) 52)) (-4341 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 63) (($ (-635 $)) 61)) (-3220 (((-853) $) 68)) (-3277 (((-112) (-1 (-112) |#2|) $) 20)) (-1683 (((-112) $ $) 71)) (-1705 (((-112) $ $) 74)))
+(((-18 |#1| |#2|) (-10 -8 (-15 -1683 ((-112) |#1| |#1|)) (-15 -3220 ((-853) |#1|)) (-15 -1705 ((-112) |#1| |#1|)) (-15 -2763 (|#1| |#1|)) (-15 -2763 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3306 (|#1| |#1|)) (-15 -2773 (|#1| |#1| |#1| (-558))) (-15 -1538 ((-112) |#1|)) (-15 -1677 (|#1| |#1| |#1|)) (-15 -1517 ((-558) |#2| |#1| (-558))) (-15 -1517 ((-558) |#2| |#1|)) (-15 -1517 ((-558) (-1 (-112) |#2|) |#1|)) (-15 -1538 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1677 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1532 (|#2| |#1| (-1213 (-558)) |#2|)) (-15 -1861 (|#1| |#1| |#1| (-558))) (-15 -1861 (|#1| |#2| |#1| (-558))) (-15 -4023 (|#1| |#1| (-1213 (-558)))) (-15 -4023 (|#1| |#1| (-558))) (-15 -2195 (|#1| |#1| (-1213 (-558)))) (-15 -3167 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4341 (|#1| (-635 |#1|))) (-15 -4341 (|#1| |#1| |#1|)) (-15 -4341 (|#1| |#2| |#1|)) (-15 -4341 (|#1| |#1| |#2|)) (-15 -3233 (|#1| (-635 |#2|))) (-15 -4307 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3048 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3048 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3048 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2195 (|#2| |#1| (-558))) (-15 -2195 (|#2| |#1| (-558) |#2|)) (-15 -1532 (|#2| |#1| (-558) |#2|)) (-15 -2988 ((-762) |#2| |#1|)) (-15 -2240 ((-635 |#2|) |#1|)) (-15 -2988 ((-762) (-1 (-112) |#2|) |#1|)) (-15 -3266 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3277 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1807 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3167 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1553 (|#1| |#1|))) (-19 |#2|) (-1200)) (T -18))
+NIL
+(-10 -8 (-15 -1683 ((-112) |#1| |#1|)) (-15 -3220 ((-853) |#1|)) (-15 -1705 ((-112) |#1| |#1|)) (-15 -2763 (|#1| |#1|)) (-15 -2763 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3306 (|#1| |#1|)) (-15 -2773 (|#1| |#1| |#1| (-558))) (-15 -1538 ((-112) |#1|)) (-15 -1677 (|#1| |#1| |#1|)) (-15 -1517 ((-558) |#2| |#1| (-558))) (-15 -1517 ((-558) |#2| |#1|)) (-15 -1517 ((-558) (-1 (-112) |#2|) |#1|)) (-15 -1538 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1677 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1532 (|#2| |#1| (-1213 (-558)) |#2|)) (-15 -1861 (|#1| |#1| |#1| (-558))) (-15 -1861 (|#1| |#2| |#1| (-558))) (-15 -4023 (|#1| |#1| (-1213 (-558)))) (-15 -4023 (|#1| |#1| (-558))) (-15 -2195 (|#1| |#1| (-1213 (-558)))) (-15 -3167 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4341 (|#1| (-635 |#1|))) (-15 -4341 (|#1| |#1| |#1|)) (-15 -4341 (|#1| |#2| |#1|)) (-15 -4341 (|#1| |#1| |#2|)) (-15 -3233 (|#1| (-635 |#2|))) (-15 -4307 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3048 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3048 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3048 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2195 (|#2| |#1| (-558))) (-15 -2195 (|#2| |#1| (-558) |#2|)) (-15 -1532 (|#2| |#1| (-558) |#2|)) (-15 -2988 ((-762) |#2| |#1|)) (-15 -2240 ((-635 |#2|) |#1|)) (-15 -2988 ((-762) (-1 (-112) |#2|) |#1|)) (-15 -3266 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3277 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1807 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3167 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1553 (|#1| |#1|)))
+((-3207 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-3869 (((-1251) $ (-558) (-558)) 40 (|has| $ (-6 -4383)))) (-1538 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-841)))) (-2763 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4383))) (($ $) 88 (-12 (|has| |#1| (-841)) (|has| $ (-6 -4383))))) (-2376 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-841)))) (-3026 (((-112) $ (-762)) 8)) (-1532 ((|#1| $ (-558) |#1|) 52 (|has| $ (-6 -4383))) ((|#1| $ (-1213 (-558)) |#1|) 58 (|has| $ (-6 -4383)))) (-4329 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4382)))) (-1816 (($) 7 T CONST)) (-3306 (($ $) 90 (|has| $ (-6 -4383)))) (-4127 (($ $) 100)) (-2338 (($ $) 78 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1539 (($ |#1| $) 77 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4382)))) (-3048 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4382))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4382)))) (-1817 ((|#1| $ (-558) |#1|) 53 (|has| $ (-6 -4383)))) (-1746 ((|#1| $ (-558)) 51)) (-1517 (((-558) (-1 (-112) |#1|) $) 97) (((-558) |#1| $) 96 (|has| |#1| (-1087))) (((-558) |#1| $ (-558)) 95 (|has| |#1| (-1087)))) (-2240 (((-635 |#1|) $) 30 (|has| $ (-6 -4382)))) (-3315 (($ (-762) |#1|) 69)) (-2986 (((-112) $ (-762)) 9)) (-3889 (((-558) $) 43 (|has| (-558) (-841)))) (-3910 (($ $ $) 87 (|has| |#1| (-841)))) (-1677 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-841)))) (-2122 (((-635 |#1|) $) 29 (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-3899 (((-558) $) 44 (|has| (-558) (-841)))) (-3542 (($ $ $) 86 (|has| |#1| (-841)))) (-1807 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2953 (((-112) $ (-762)) 10)) (-4310 (((-1145) $) 22 (|has| |#1| (-1087)))) (-1861 (($ |#1| $ (-558)) 60) (($ $ $ (-558)) 59)) (-3920 (((-635 (-558)) $) 46)) (-3929 (((-112) (-558) $) 47)) (-2975 (((-1107) $) 21 (|has| |#1| (-1087)))) (-2305 ((|#1| $) 42 (|has| (-558) (-841)))) (-4307 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3880 (($ $ |#1|) 41 (|has| $ (-6 -4383)))) (-3266 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) 14)) (-3908 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3937 (((-635 |#1|) $) 48)) (-3375 (((-112) $) 11)) (-2083 (($) 12)) (-2195 ((|#1| $ (-558) |#1|) 50) ((|#1| $ (-558)) 49) (($ $ (-1213 (-558))) 63)) (-4023 (($ $ (-558)) 62) (($ $ (-1213 (-558))) 61)) (-2988 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4382))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-2773 (($ $ $ (-558)) 91 (|has| $ (-6 -4383)))) (-1553 (($ $) 13)) (-3224 (((-534) $) 79 (|has| |#1| (-606 (-534))))) (-3233 (($ (-635 |#1|)) 70)) (-4341 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-635 $)) 65)) (-3220 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-3277 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4382)))) (-1747 (((-112) $ $) 84 (|has| |#1| (-841)))) (-1720 (((-112) $ $) 83 (|has| |#1| (-841)))) (-1683 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-1731 (((-112) $ $) 85 (|has| |#1| (-841)))) (-1705 (((-112) $ $) 82 (|has| |#1| (-841)))) (-2755 (((-762) $) 6 (|has| $ (-6 -4382)))))
+(((-19 |#1|) (-139) (-1200)) (T -19))
+NIL
+(-13 (-372 |t#1|) (-10 -7 (-6 -4383)))
+(((-34) . T) ((-102) -3998 (|has| |#1| (-1087)) (|has| |#1| (-841))) ((-605 (-853)) -3998 (|has| |#1| (-1087)) (|has| |#1| (-841)) (|has| |#1| (-605 (-853)))) ((-150 |#1|) . T) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-285 #0=(-558) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-372 |#1|) . T) ((-487 |#1|) . T) ((-596 #0# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-641 |#1|) . T) ((-841) |has| |#1| (-841)) ((-1087) -3998 (|has| |#1| (-1087)) (|has| |#1| (-841))) ((-1200) . T))
+((-2089 (((-3 $ "failed") $ $) 12)) (-1798 (($ $) NIL) (($ $ $) 9)) (* (($ (-911) $) NIL) (($ (-762) $) 16) (($ (-558) $) 21)))
+(((-20 |#1|) (-10 -8 (-15 * (|#1| (-558) |#1|)) (-15 -1798 (|#1| |#1| |#1|)) (-15 -1798 (|#1| |#1|)) (-15 -2089 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-762) |#1|)) (-15 * (|#1| (-911) |#1|))) (-21)) (T -20))
+NIL
+(-10 -8 (-15 * (|#1| (-558) |#1|)) (-15 -1798 (|#1| |#1| |#1|)) (-15 -1798 (|#1| |#1|)) (-15 -2089 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-762) |#1|)) (-15 * (|#1| (-911) |#1|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2089 (((-3 $ "failed") $ $) 19)) (-1816 (($) 17 T CONST)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11)) (-2131 (($) 18 T CONST)) (-1683 (((-112) $ $) 6)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20)))
+(((-21) (-139)) (T -21))
+((-1798 (*1 *1 *1) (-4 *1 (-21))) (-1798 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-558)))))
+(-13 (-130) (-10 -8 (-15 -1798 ($ $)) (-15 -1798 ($ $ $)) (-15 * ($ (-558) $))))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-605 (-853)) . T) ((-1087) . T))
+((-2067 (((-112) $) 10)) (-1816 (($) 15)) (* (($ (-911) $) 14) (($ (-762) $) 18)))
+(((-22 |#1|) (-10 -8 (-15 * (|#1| (-762) |#1|)) (-15 -2067 ((-112) |#1|)) (-15 -1816 (|#1|)) (-15 * (|#1| (-911) |#1|))) (-23)) (T -22))
+NIL
+(-10 -8 (-15 * (|#1| (-762) |#1|)) (-15 -2067 ((-112) |#1|)) (-15 -1816 (|#1|)) (-15 * (|#1| (-911) |#1|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-1816 (($) 17 T CONST)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11)) (-2131 (($) 18 T CONST)) (-1683 (((-112) $ $) 6)) (-1784 (($ $ $) 14)) (* (($ (-911) $) 13) (($ (-762) $) 15)))
+(((-23) (-139)) (T -23))
+((-2131 (*1 *1) (-4 *1 (-23))) (-1816 (*1 *1) (-4 *1 (-23))) (-2067 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-762)))))
+(-13 (-25) (-10 -8 (-15 (-2131) ($) -3707) (-15 -1816 ($) -3707) (-15 -2067 ((-112) $)) (-15 * ($ (-762) $))))
+(((-25) . T) ((-102) . T) ((-605 (-853)) . T) ((-1087) . T))
+((* (($ (-911) $) 10)))
+(((-24 |#1|) (-10 -8 (-15 * (|#1| (-911) |#1|))) (-25)) (T -24))
+NIL
+(-10 -8 (-15 * (|#1| (-911) |#1|)))
+((-3207 (((-112) $ $) 7)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11)) (-1683 (((-112) $ $) 6)) (-1784 (($ $ $) 14)) (* (($ (-911) $) 13)))
+(((-25) (-139)) (T -25))
+((-1784 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-911)))))
+(-13 (-1087) (-10 -8 (-15 -1784 ($ $ $)) (-15 * ($ (-911) $))))
+(((-102) . T) ((-605 (-853)) . T) ((-1087) . T))
+((-1461 (((-635 $) (-942 $)) 29) (((-635 $) (-1159 $)) 16) (((-635 $) (-1159 $) (-1163)) 20)) (-1589 (($ (-942 $)) 27) (($ (-1159 $)) 11) (($ (-1159 $) (-1163)) 54)) (-1608 (((-635 $) (-942 $)) 30) (((-635 $) (-1159 $)) 18) (((-635 $) (-1159 $) (-1163)) 19)) (-2016 (($ (-942 $)) 28) (($ (-1159 $)) 13) (($ (-1159 $) (-1163)) NIL)))
+(((-26 |#1|) (-10 -8 (-15 -1461 ((-635 |#1|) (-1159 |#1|) (-1163))) (-15 -1461 ((-635 |#1|) (-1159 |#1|))) (-15 -1461 ((-635 |#1|) (-942 |#1|))) (-15 -1589 (|#1| (-1159 |#1|) (-1163))) (-15 -1589 (|#1| (-1159 |#1|))) (-15 -1589 (|#1| (-942 |#1|))) (-15 -1608 ((-635 |#1|) (-1159 |#1|) (-1163))) (-15 -1608 ((-635 |#1|) (-1159 |#1|))) (-15 -1608 ((-635 |#1|) (-942 |#1|))) (-15 -2016 (|#1| (-1159 |#1|) (-1163))) (-15 -2016 (|#1| (-1159 |#1|))) (-15 -2016 (|#1| (-942 |#1|)))) (-27)) (T -26))
+NIL
+(-10 -8 (-15 -1461 ((-635 |#1|) (-1159 |#1|) (-1163))) (-15 -1461 ((-635 |#1|) (-1159 |#1|))) (-15 -1461 ((-635 |#1|) (-942 |#1|))) (-15 -1589 (|#1| (-1159 |#1|) (-1163))) (-15 -1589 (|#1| (-1159 |#1|))) (-15 -1589 (|#1| (-942 |#1|))) (-15 -1608 ((-635 |#1|) (-1159 |#1|) (-1163))) (-15 -1608 ((-635 |#1|) (-1159 |#1|))) (-15 -1608 ((-635 |#1|) (-942 |#1|))) (-15 -2016 (|#1| (-1159 |#1|) (-1163))) (-15 -2016 (|#1| (-1159 |#1|))) (-15 -2016 (|#1| (-942 |#1|))))
+((-3207 (((-112) $ $) 7)) (-1461 (((-635 $) (-942 $)) 81) (((-635 $) (-1159 $)) 80) (((-635 $) (-1159 $) (-1163)) 79)) (-1589 (($ (-942 $)) 84) (($ (-1159 $)) 83) (($ (-1159 $) (-1163)) 82)) (-2067 (((-112) $) 16)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 42)) (-1881 (($ $) 41)) (-1857 (((-112) $) 39)) (-2089 (((-3 $ "failed") $ $) 19)) (-3465 (($ $) 74)) (-1380 (((-417 $) $) 73)) (-2534 (($ $) 93)) (-3732 (((-112) $ $) 60)) (-1816 (($) 17 T CONST)) (-1608 (((-635 $) (-942 $)) 87) (((-635 $) (-1159 $)) 86) (((-635 $) (-1159 $) (-1163)) 85)) (-2016 (($ (-942 $)) 90) (($ (-1159 $)) 89) (($ (-1159 $) (-1163)) 88)) (-4025 (($ $ $) 56)) (-2588 (((-3 $ "failed") $) 33)) (-4004 (($ $ $) 57)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) 52)) (-3031 (((-112) $) 72)) (-2035 (((-112) $) 31)) (-3828 (($ $ (-558)) 92)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) 53)) (-2665 (($ $ $) 47) (($ (-635 $)) 46)) (-4310 (((-1145) $) 9)) (-2418 (($ $) 71)) (-2975 (((-1107) $) 10)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) 45)) (-2699 (($ $ $) 49) (($ (-635 $)) 48)) (-2522 (((-417 $) $) 75)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3983 (((-3 $ "failed") $ $) 43)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-3722 (((-762) $) 59)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 58)) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ $) 44) (($ (-406 (-558))) 67)) (-2542 (((-762)) 28)) (-1870 (((-112) $ $) 40)) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1683 (((-112) $ $) 6)) (-1810 (($ $ $) 66)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ (-558)) 70) (($ $ (-406 (-558))) 91)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ (-406 (-558))) 69) (($ (-406 (-558)) $) 68)))
+(((-27) (-139)) (T -27))
+((-2016 (*1 *1 *2) (-12 (-5 *2 (-942 *1)) (-4 *1 (-27)))) (-2016 (*1 *1 *2) (-12 (-5 *2 (-1159 *1)) (-4 *1 (-27)))) (-2016 (*1 *1 *2 *3) (-12 (-5 *2 (-1159 *1)) (-5 *3 (-1163)) (-4 *1 (-27)))) (-1608 (*1 *2 *3) (-12 (-5 *3 (-942 *1)) (-4 *1 (-27)) (-5 *2 (-635 *1)))) (-1608 (*1 *2 *3) (-12 (-5 *3 (-1159 *1)) (-4 *1 (-27)) (-5 *2 (-635 *1)))) (-1608 (*1 *2 *3 *4) (-12 (-5 *3 (-1159 *1)) (-5 *4 (-1163)) (-4 *1 (-27)) (-5 *2 (-635 *1)))) (-1589 (*1 *1 *2) (-12 (-5 *2 (-942 *1)) (-4 *1 (-27)))) (-1589 (*1 *1 *2) (-12 (-5 *2 (-1159 *1)) (-4 *1 (-27)))) (-1589 (*1 *1 *2 *3) (-12 (-5 *2 (-1159 *1)) (-5 *3 (-1163)) (-4 *1 (-27)))) (-1461 (*1 *2 *3) (-12 (-5 *3 (-942 *1)) (-4 *1 (-27)) (-5 *2 (-635 *1)))) (-1461 (*1 *2 *3) (-12 (-5 *3 (-1159 *1)) (-4 *1 (-27)) (-5 *2 (-635 *1)))) (-1461 (*1 *2 *3 *4) (-12 (-5 *3 (-1159 *1)) (-5 *4 (-1163)) (-4 *1 (-27)) (-5 *2 (-635 *1)))))
+(-13 (-362) (-992) (-10 -8 (-15 -2016 ($ (-942 $))) (-15 -2016 ($ (-1159 $))) (-15 -2016 ($ (-1159 $) (-1163))) (-15 -1608 ((-635 $) (-942 $))) (-15 -1608 ((-635 $) (-1159 $))) (-15 -1608 ((-635 $) (-1159 $) (-1163))) (-15 -1589 ($ (-942 $))) (-15 -1589 ($ (-1159 $))) (-15 -1589 ($ (-1159 $) (-1163))) (-15 -1461 ((-635 $) (-942 $))) (-15 -1461 ((-635 $) (-1159 $))) (-15 -1461 ((-635 $) (-1159 $) (-1163)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-558))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-608 #0#) . T) ((-608 (-558)) . T) ((-608 $) . T) ((-605 (-853)) . T) ((-171) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-450) . T) ((-550) . T) ((-638 #0#) . T) ((-638 $) . T) ((-708 #0#) . T) ((-708 $) . T) ((-717) . T) ((-910) . T) ((-992) . T) ((-1045 #0#) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1204) . T))
+((-1461 (((-635 $) (-942 $)) NIL) (((-635 $) (-1159 $)) NIL) (((-635 $) (-1159 $) (-1163)) 50) (((-635 $) $) 19) (((-635 $) $ (-1163)) 41)) (-1589 (($ (-942 $)) NIL) (($ (-1159 $)) NIL) (($ (-1159 $) (-1163)) 52) (($ $) 17) (($ $ (-1163)) 37)) (-1608 (((-635 $) (-942 $)) NIL) (((-635 $) (-1159 $)) NIL) (((-635 $) (-1159 $) (-1163)) 48) (((-635 $) $) 15) (((-635 $) $ (-1163)) 43)) (-2016 (($ (-942 $)) NIL) (($ (-1159 $)) NIL) (($ (-1159 $) (-1163)) NIL) (($ $) 12) (($ $ (-1163)) 39)))
+(((-28 |#1| |#2|) (-10 -8 (-15 -1461 ((-635 |#1|) |#1| (-1163))) (-15 -1589 (|#1| |#1| (-1163))) (-15 -1461 ((-635 |#1|) |#1|)) (-15 -1589 (|#1| |#1|)) (-15 -1608 ((-635 |#1|) |#1| (-1163))) (-15 -2016 (|#1| |#1| (-1163))) (-15 -1608 ((-635 |#1|) |#1|)) (-15 -2016 (|#1| |#1|)) (-15 -1461 ((-635 |#1|) (-1159 |#1|) (-1163))) (-15 -1461 ((-635 |#1|) (-1159 |#1|))) (-15 -1461 ((-635 |#1|) (-942 |#1|))) (-15 -1589 (|#1| (-1159 |#1|) (-1163))) (-15 -1589 (|#1| (-1159 |#1|))) (-15 -1589 (|#1| (-942 |#1|))) (-15 -1608 ((-635 |#1|) (-1159 |#1|) (-1163))) (-15 -1608 ((-635 |#1|) (-1159 |#1|))) (-15 -1608 ((-635 |#1|) (-942 |#1|))) (-15 -2016 (|#1| (-1159 |#1|) (-1163))) (-15 -2016 (|#1| (-1159 |#1|))) (-15 -2016 (|#1| (-942 |#1|)))) (-29 |#2|) (-13 (-841) (-550))) (T -28))
+NIL
+(-10 -8 (-15 -1461 ((-635 |#1|) |#1| (-1163))) (-15 -1589 (|#1| |#1| (-1163))) (-15 -1461 ((-635 |#1|) |#1|)) (-15 -1589 (|#1| |#1|)) (-15 -1608 ((-635 |#1|) |#1| (-1163))) (-15 -2016 (|#1| |#1| (-1163))) (-15 -1608 ((-635 |#1|) |#1|)) (-15 -2016 (|#1| |#1|)) (-15 -1461 ((-635 |#1|) (-1159 |#1|) (-1163))) (-15 -1461 ((-635 |#1|) (-1159 |#1|))) (-15 -1461 ((-635 |#1|) (-942 |#1|))) (-15 -1589 (|#1| (-1159 |#1|) (-1163))) (-15 -1589 (|#1| (-1159 |#1|))) (-15 -1589 (|#1| (-942 |#1|))) (-15 -1608 ((-635 |#1|) (-1159 |#1|) (-1163))) (-15 -1608 ((-635 |#1|) (-1159 |#1|))) (-15 -1608 ((-635 |#1|) (-942 |#1|))) (-15 -2016 (|#1| (-1159 |#1|) (-1163))) (-15 -2016 (|#1| (-1159 |#1|))) (-15 -2016 (|#1| (-942 |#1|))))
+((-3207 (((-112) $ $) 7)) (-1461 (((-635 $) (-942 $)) 81) (((-635 $) (-1159 $)) 80) (((-635 $) (-1159 $) (-1163)) 79) (((-635 $) $) 125) (((-635 $) $ (-1163)) 123)) (-1589 (($ (-942 $)) 84) (($ (-1159 $)) 83) (($ (-1159 $) (-1163)) 82) (($ $) 126) (($ $ (-1163)) 124)) (-2067 (((-112) $) 16)) (-2671 (((-635 (-1163)) $) 200)) (-2492 (((-406 (-1159 $)) $ (-604 $)) 232 (|has| |#1| (-550)))) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 42)) (-1881 (($ $) 41)) (-1857 (((-112) $) 39)) (-2396 (((-635 (-604 $)) $) 163)) (-2089 (((-3 $ "failed") $ $) 19)) (-2497 (($ $ (-635 (-604 $)) (-635 $)) 153) (($ $ (-635 (-293 $))) 152) (($ $ (-293 $)) 151)) (-3465 (($ $) 74)) (-1380 (((-417 $) $) 73)) (-2534 (($ $) 93)) (-3732 (((-112) $ $) 60)) (-1816 (($) 17 T CONST)) (-1608 (((-635 $) (-942 $)) 87) (((-635 $) (-1159 $)) 86) (((-635 $) (-1159 $) (-1163)) 85) (((-635 $) $) 129) (((-635 $) $ (-1163)) 127)) (-2016 (($ (-942 $)) 90) (($ (-1159 $)) 89) (($ (-1159 $) (-1163)) 88) (($ $) 130) (($ $ (-1163)) 128)) (-3069 (((-3 (-942 |#1|) "failed") $) 250 (|has| |#1| (-1039))) (((-3 (-406 (-942 |#1|)) "failed") $) 234 (|has| |#1| (-550))) (((-3 |#1| "failed") $) 196) (((-3 (-558) "failed") $) 193 (|has| |#1| (-1028 (-558)))) (((-3 (-1163) "failed") $) 187) (((-3 (-604 $) "failed") $) 138) (((-3 (-406 (-558)) "failed") $) 121 (-3998 (-12 (|has| |#1| (-1028 (-558))) (|has| |#1| (-550))) (|has| |#1| (-1028 (-406 (-558))))))) (-1863 (((-942 |#1|) $) 249 (|has| |#1| (-1039))) (((-406 (-942 |#1|)) $) 233 (|has| |#1| (-550))) ((|#1| $) 195) (((-558) $) 194 (|has| |#1| (-1028 (-558)))) (((-1163) $) 186) (((-604 $) $) 137) (((-406 (-558)) $) 122 (-3998 (-12 (|has| |#1| (-1028 (-558))) (|has| |#1| (-550))) (|has| |#1| (-1028 (-406 (-558))))))) (-4025 (($ $ $) 56)) (-3216 (((-679 |#1|) (-679 $)) 240 (|has| |#1| (-1039))) (((-2 (|:| -3683 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) 239 (|has| |#1| (-1039))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) 120 (-3998 (-2084 (|has| |#1| (-1039)) (|has| |#1| (-631 (-558)))) (-2084 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039))))) (((-679 (-558)) (-679 $)) 119 (-3998 (-2084 (|has| |#1| (-1039)) (|has| |#1| (-631 (-558)))) (-2084 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039)))))) (-2588 (((-3 $ "failed") $) 33)) (-4004 (($ $ $) 57)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) 52)) (-3031 (((-112) $) 72)) (-2269 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) 192 (|has| |#1| (-876 (-378)))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) 191 (|has| |#1| (-876 (-558))))) (-3800 (($ (-635 $)) 157) (($ $) 156)) (-1405 (((-635 (-114)) $) 164)) (-3029 (((-114) (-114)) 165)) (-2035 (((-112) $) 31)) (-3451 (((-112) $) 185 (|has| $ (-1028 (-558))))) (-3704 (($ $) 217 (|has| |#1| (-1039)))) (-1874 (((-1112 |#1| (-604 $)) $) 216 (|has| |#1| (-1039)))) (-3828 (($ $ (-558)) 92)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) 53)) (-1381 (((-1159 $) (-604 $)) 182 (|has| $ (-1039)))) (-3910 (($ $ $) 136)) (-3542 (($ $ $) 135)) (-3167 (($ (-1 $ $) (-604 $)) 171)) (-1416 (((-3 (-604 $) "failed") $) 161)) (-2665 (($ $ $) 47) (($ (-635 $)) 46)) (-4310 (((-1145) $) 9)) (-2475 (((-635 (-604 $)) $) 162)) (-1949 (($ (-114) (-635 $)) 170) (($ (-114) $) 169)) (-2560 (((-3 (-635 $) "failed") $) 211 (|has| |#1| (-1099)))) (-2586 (((-3 (-2 (|:| |val| $) (|:| -1951 (-558))) "failed") $) 220 (|has| |#1| (-1039)))) (-2548 (((-3 (-635 $) "failed") $) 213 (|has| |#1| (-25)))) (-4017 (((-3 (-2 (|:| -2023 (-558)) (|:| |var| (-604 $))) "failed") $) 214 (|has| |#1| (-25)))) (-2575 (((-3 (-2 (|:| |var| (-604 $)) (|:| -1951 (-558))) "failed") $ (-1163)) 219 (|has| |#1| (-1039))) (((-3 (-2 (|:| |var| (-604 $)) (|:| -1951 (-558))) "failed") $ (-114)) 218 (|has| |#1| (-1039))) (((-3 (-2 (|:| |var| (-604 $)) (|:| -1951 (-558))) "failed") $) 212 (|has| |#1| (-1099)))) (-3173 (((-112) $ (-1163)) 168) (((-112) $ (-114)) 167)) (-2418 (($ $) 71)) (-3382 (((-762) $) 160)) (-2975 (((-1107) $) 10)) (-2429 (((-112) $) 198)) (-2440 ((|#1| $) 199)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) 45)) (-2699 (($ $ $) 49) (($ (-635 $)) 48)) (-1392 (((-112) $ (-1163)) 173) (((-112) $ $) 172)) (-2522 (((-417 $) $) 75)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3983 (((-3 $ "failed") $ $) 43)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-3458 (((-112) $) 184 (|has| $ (-1028 (-558))))) (-2554 (($ $ (-1163) (-762) (-1 $ $)) 224 (|has| |#1| (-1039))) (($ $ (-1163) (-762) (-1 $ (-635 $))) 223 (|has| |#1| (-1039))) (($ $ (-635 (-1163)) (-635 (-762)) (-635 (-1 $ (-635 $)))) 222 (|has| |#1| (-1039))) (($ $ (-635 (-1163)) (-635 (-762)) (-635 (-1 $ $))) 221 (|has| |#1| (-1039))) (($ $ (-635 (-114)) (-635 $) (-1163)) 210 (|has| |#1| (-606 (-534)))) (($ $ (-114) $ (-1163)) 209 (|has| |#1| (-606 (-534)))) (($ $) 208 (|has| |#1| (-606 (-534)))) (($ $ (-635 (-1163))) 207 (|has| |#1| (-606 (-534)))) (($ $ (-1163)) 206 (|has| |#1| (-606 (-534)))) (($ $ (-114) (-1 $ $)) 181) (($ $ (-114) (-1 $ (-635 $))) 180) (($ $ (-635 (-114)) (-635 (-1 $ (-635 $)))) 179) (($ $ (-635 (-114)) (-635 (-1 $ $))) 178) (($ $ (-1163) (-1 $ $)) 177) (($ $ (-1163) (-1 $ (-635 $))) 176) (($ $ (-635 (-1163)) (-635 (-1 $ (-635 $)))) 175) (($ $ (-635 (-1163)) (-635 (-1 $ $))) 174) (($ $ (-635 $) (-635 $)) 145) (($ $ $ $) 144) (($ $ (-293 $)) 143) (($ $ (-635 (-293 $))) 142) (($ $ (-635 (-604 $)) (-635 $)) 141) (($ $ (-604 $) $) 140)) (-3722 (((-762) $) 59)) (-2195 (($ (-114) (-635 $)) 150) (($ (-114) $ $ $ $) 149) (($ (-114) $ $ $) 148) (($ (-114) $ $) 147) (($ (-114) $) 146)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 58)) (-1426 (($ $ $) 159) (($ $) 158)) (-2829 (($ $ (-1163)) 248 (|has| |#1| (-1039))) (($ $ (-635 (-1163))) 247 (|has| |#1| (-1039))) (($ $ (-1163) (-762)) 246 (|has| |#1| (-1039))) (($ $ (-635 (-1163)) (-635 (-762))) 245 (|has| |#1| (-1039)))) (-3694 (($ $) 227 (|has| |#1| (-550)))) (-1885 (((-1112 |#1| (-604 $)) $) 226 (|has| |#1| (-550)))) (-2036 (($ $) 183 (|has| $ (-1039)))) (-3224 (((-534) $) 254 (|has| |#1| (-606 (-534)))) (($ (-417 $)) 225 (|has| |#1| (-550))) (((-882 (-378)) $) 190 (|has| |#1| (-606 (-882 (-378))))) (((-882 (-558)) $) 189 (|has| |#1| (-606 (-882 (-558)))))) (-3808 (($ $ $) 253 (|has| |#1| (-471)))) (-3443 (($ $ $) 252 (|has| |#1| (-471)))) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ $) 44) (($ (-406 (-558))) 67) (($ (-942 |#1|)) 251 (|has| |#1| (-1039))) (($ (-406 (-942 |#1|))) 235 (|has| |#1| (-550))) (($ (-406 (-942 (-406 |#1|)))) 231 (|has| |#1| (-550))) (($ (-942 (-406 |#1|))) 230 (|has| |#1| (-550))) (($ (-406 |#1|)) 229 (|has| |#1| (-550))) (($ (-1112 |#1| (-604 $))) 215 (|has| |#1| (-1039))) (($ |#1|) 197) (($ (-1163)) 188) (($ (-604 $)) 139)) (-3698 (((-3 $ "failed") $) 238 (|has| |#1| (-144)))) (-2542 (((-762)) 28)) (-2540 (($ (-635 $)) 155) (($ $) 154)) (-2995 (((-112) (-114)) 166)) (-1870 (((-112) $ $) 40)) (-4213 (($ (-1163) (-635 $)) 205) (($ (-1163) $ $ $ $) 204) (($ (-1163) $ $ $) 203) (($ (-1163) $ $) 202) (($ (-1163) $) 201)) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1866 (($ $ (-1163)) 244 (|has| |#1| (-1039))) (($ $ (-635 (-1163))) 243 (|has| |#1| (-1039))) (($ $ (-1163) (-762)) 242 (|has| |#1| (-1039))) (($ $ (-635 (-1163)) (-635 (-762))) 241 (|has| |#1| (-1039)))) (-1747 (((-112) $ $) 133)) (-1720 (((-112) $ $) 132)) (-1683 (((-112) $ $) 6)) (-1731 (((-112) $ $) 134)) (-1705 (((-112) $ $) 131)) (-1810 (($ $ $) 66) (($ (-1112 |#1| (-604 $)) (-1112 |#1| (-604 $))) 228 (|has| |#1| (-550)))) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ (-558)) 70) (($ $ (-406 (-558))) 91)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ (-406 (-558))) 69) (($ (-406 (-558)) $) 68) (($ $ |#1|) 237 (|has| |#1| (-171))) (($ |#1| $) 236 (|has| |#1| (-171)))))
+(((-29 |#1|) (-139) (-13 (-841) (-550))) (T -29))
+((-2016 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-841) (-550))))) (-1608 (*1 *2 *1) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *2 (-635 *1)) (-4 *1 (-29 *3)))) (-2016 (*1 *1 *1 *2) (-12 (-5 *2 (-1163)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-841) (-550))))) (-1608 (*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-841) (-550))) (-5 *2 (-635 *1)) (-4 *1 (-29 *4)))) (-1589 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-841) (-550))))) (-1461 (*1 *2 *1) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *2 (-635 *1)) (-4 *1 (-29 *3)))) (-1589 (*1 *1 *1 *2) (-12 (-5 *2 (-1163)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-841) (-550))))) (-1461 (*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-841) (-550))) (-5 *2 (-635 *1)) (-4 *1 (-29 *4)))))
+(-13 (-27) (-429 |t#1|) (-10 -8 (-15 -2016 ($ $)) (-15 -1608 ((-635 $) $)) (-15 -2016 ($ $ (-1163))) (-15 -1608 ((-635 $) $ (-1163))) (-15 -1589 ($ $)) (-15 -1461 ((-635 $) $)) (-15 -1589 ($ $ (-1163))) (-15 -1461 ((-635 $) $ (-1163)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-558))) . T) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-171)) ((-111 $ $) . T) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-608 #0#) . T) ((-608 #1=(-406 (-942 |#1|))) |has| |#1| (-550)) ((-608 (-558)) . T) ((-608 #2=(-604 $)) . T) ((-608 #3=(-942 |#1|)) |has| |#1| (-1039)) ((-608 #4=(-1163)) . T) ((-608 |#1|) . T) ((-608 $) . T) ((-605 (-853)) . T) ((-171) . T) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-606 (-882 (-378))) |has| |#1| (-606 (-882 (-378)))) ((-606 (-882 (-558))) |has| |#1| (-606 (-882 (-558)))) ((-242) . T) ((-289) . T) ((-306) . T) ((-308 $) . T) ((-301) . T) ((-362) . T) ((-376 |#1|) |has| |#1| (-1039)) ((-399 |#1|) . T) ((-410 |#1|) . T) ((-429 |#1|) . T) ((-450) . T) ((-471) |has| |#1| (-471)) ((-512 (-604 $) $) . T) ((-512 $ $) . T) ((-550) . T) ((-638 #0#) . T) ((-638 |#1|) |has| |#1| (-171)) ((-638 $) . T) ((-631 (-558)) -12 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039))) ((-631 |#1|) |has| |#1| (-1039)) ((-708 #0#) . T) ((-708 |#1|) |has| |#1| (-171)) ((-708 $) . T) ((-717) . T) ((-841) . T) ((-890 (-1163)) |has| |#1| (-1039)) ((-876 (-378)) |has| |#1| (-876 (-378))) ((-876 (-558)) |has| |#1| (-876 (-558))) ((-874 |#1|) . T) ((-910) . T) ((-992) . T) ((-1028 (-406 (-558))) -3998 (|has| |#1| (-1028 (-406 (-558)))) (-12 (|has| |#1| (-550)) (|has| |#1| (-1028 (-558))))) ((-1028 #1#) |has| |#1| (-550)) ((-1028 (-558)) |has| |#1| (-1028 (-558))) ((-1028 #2#) . T) ((-1028 #3#) |has| |#1| (-1039)) ((-1028 #4#) . T) ((-1028 |#1|) . T) ((-1045 #0#) . T) ((-1045 |#1|) |has| |#1| (-171)) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1200) . T) ((-1204) . T))
+((-1783 (((-1081 (-224)) $) NIL)) (-1770 (((-1081 (-224)) $) NIL)) (-2634 (($ $ (-224)) 124)) (-1621 (($ (-942 (-558)) (-1163) (-1163) (-1081 (-406 (-558))) (-1081 (-406 (-558)))) 82)) (-2031 (((-635 (-635 (-933 (-224)))) $) 136)) (-3220 (((-853) $) 148)))
+(((-30) (-13 (-945) (-10 -8 (-15 -1621 ($ (-942 (-558)) (-1163) (-1163) (-1081 (-406 (-558))) (-1081 (-406 (-558))))) (-15 -2634 ($ $ (-224)))))) (T -30))
+((-1621 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-942 (-558))) (-5 *3 (-1163)) (-5 *4 (-1081 (-406 (-558)))) (-5 *1 (-30)))) (-2634 (*1 *1 *1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-30)))))
+(-13 (-945) (-10 -8 (-15 -1621 ($ (-942 (-558)) (-1163) (-1163) (-1081 (-406 (-558))) (-1081 (-406 (-558))))) (-15 -2634 ($ $ (-224)))))
+((-3207 (((-112) $ $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 19) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1337 (((-1122) $) 11)) (-2579 (((-1122) $) 9)) (-1683 (((-112) $ $) NIL)))
+(((-31) (-13 (-1070) (-10 -8 (-15 -2579 ((-1122) $)) (-15 -1337 ((-1122) $))))) (T -31))
+((-2579 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-31)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-31)))))
+(-13 (-1070) (-10 -8 (-15 -2579 ((-1122) $)) (-15 -1337 ((-1122) $))))
+((-2016 ((|#2| (-1159 |#2|) (-1163)) 43)) (-3029 (((-114) (-114)) 56)) (-1381 (((-1159 |#2|) (-604 |#2|)) 133 (|has| |#1| (-1028 (-558))))) (-3015 ((|#2| |#1| (-558)) 123 (|has| |#1| (-1028 (-558))))) (-2993 ((|#2| (-1159 |#2|) |#2|) 30)) (-3004 (((-853) (-635 |#2|)) 85)) (-2036 ((|#2| |#2|) 129 (|has| |#1| (-1028 (-558))))) (-2995 (((-112) (-114)) 18)) (** ((|#2| |#2| (-406 (-558))) 96 (|has| |#1| (-1028 (-558))))))
+(((-32 |#1| |#2|) (-10 -7 (-15 -2016 (|#2| (-1159 |#2|) (-1163))) (-15 -3029 ((-114) (-114))) (-15 -2995 ((-112) (-114))) (-15 -2993 (|#2| (-1159 |#2|) |#2|)) (-15 -3004 ((-853) (-635 |#2|))) (IF (|has| |#1| (-1028 (-558))) (PROGN (-15 ** (|#2| |#2| (-406 (-558)))) (-15 -1381 ((-1159 |#2|) (-604 |#2|))) (-15 -2036 (|#2| |#2|)) (-15 -3015 (|#2| |#1| (-558)))) |%noBranch|)) (-13 (-841) (-550)) (-429 |#1|)) (T -32))
+((-3015 (*1 *2 *3 *4) (-12 (-5 *4 (-558)) (-4 *2 (-429 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1028 *4)) (-4 *3 (-13 (-841) (-550))))) (-2036 (*1 *2 *2) (-12 (-4 *3 (-1028 (-558))) (-4 *3 (-13 (-841) (-550))) (-5 *1 (-32 *3 *2)) (-4 *2 (-429 *3)))) (-1381 (*1 *2 *3) (-12 (-5 *3 (-604 *5)) (-4 *5 (-429 *4)) (-4 *4 (-1028 (-558))) (-4 *4 (-13 (-841) (-550))) (-5 *2 (-1159 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-406 (-558))) (-4 *4 (-1028 (-558))) (-4 *4 (-13 (-841) (-550))) (-5 *1 (-32 *4 *2)) (-4 *2 (-429 *4)))) (-3004 (*1 *2 *3) (-12 (-5 *3 (-635 *5)) (-4 *5 (-429 *4)) (-4 *4 (-13 (-841) (-550))) (-5 *2 (-853)) (-5 *1 (-32 *4 *5)))) (-2993 (*1 *2 *3 *2) (-12 (-5 *3 (-1159 *2)) (-4 *2 (-429 *4)) (-4 *4 (-13 (-841) (-550))) (-5 *1 (-32 *4 *2)))) (-2995 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-841) (-550))) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-429 *4)))) (-3029 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-841) (-550))) (-5 *1 (-32 *3 *4)) (-4 *4 (-429 *3)))) (-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1159 *2)) (-5 *4 (-1163)) (-4 *2 (-429 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-841) (-550))))))
+(-10 -7 (-15 -2016 (|#2| (-1159 |#2|) (-1163))) (-15 -3029 ((-114) (-114))) (-15 -2995 ((-112) (-114))) (-15 -2993 (|#2| (-1159 |#2|) |#2|)) (-15 -3004 ((-853) (-635 |#2|))) (IF (|has| |#1| (-1028 (-558))) (PROGN (-15 ** (|#2| |#2| (-406 (-558)))) (-15 -1381 ((-1159 |#2|) (-604 |#2|))) (-15 -2036 (|#2| |#2|)) (-15 -3015 (|#2| |#1| (-558)))) |%noBranch|))
+((-3026 (((-112) $ (-762)) 16)) (-1816 (($) 10)) (-2986 (((-112) $ (-762)) 15)) (-2953 (((-112) $ (-762)) 14)) (-2381 (((-112) $ $) 8)) (-3375 (((-112) $) 13)))
+(((-33 |#1|) (-10 -8 (-15 -1816 (|#1|)) (-15 -3026 ((-112) |#1| (-762))) (-15 -2986 ((-112) |#1| (-762))) (-15 -2953 ((-112) |#1| (-762))) (-15 -3375 ((-112) |#1|)) (-15 -2381 ((-112) |#1| |#1|))) (-34)) (T -33))
+NIL
+(-10 -8 (-15 -1816 (|#1|)) (-15 -3026 ((-112) |#1| (-762))) (-15 -2986 ((-112) |#1| (-762))) (-15 -2953 ((-112) |#1| (-762))) (-15 -3375 ((-112) |#1|)) (-15 -2381 ((-112) |#1| |#1|)))
+((-3026 (((-112) $ (-762)) 8)) (-1816 (($) 7 T CONST)) (-2986 (((-112) $ (-762)) 9)) (-2953 (((-112) $ (-762)) 10)) (-2381 (((-112) $ $) 14)) (-3375 (((-112) $) 11)) (-2083 (($) 12)) (-1553 (($ $) 13)) (-2755 (((-762) $) 6 (|has| $ (-6 -4382)))))
+(((-34) (-139)) (T -34))
+((-2381 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-1553 (*1 *1 *1) (-4 *1 (-34))) (-2083 (*1 *1) (-4 *1 (-34))) (-3375 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-2953 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-762)) (-5 *2 (-112)))) (-2986 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-762)) (-5 *2 (-112)))) (-3026 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-762)) (-5 *2 (-112)))) (-1816 (*1 *1) (-4 *1 (-34))) (-2755 (*1 *2 *1) (-12 (|has| *1 (-6 -4382)) (-4 *1 (-34)) (-5 *2 (-762)))))
+(-13 (-1200) (-10 -8 (-15 -2381 ((-112) $ $)) (-15 -1553 ($ $)) (-15 -2083 ($)) (-15 -3375 ((-112) $)) (-15 -2953 ((-112) $ (-762))) (-15 -2986 ((-112) $ (-762))) (-15 -3026 ((-112) $ (-762))) (-15 -1816 ($) -3707) (IF (|has| $ (-6 -4382)) (-15 -2755 ((-762) $)) |%noBranch|)))
+(((-1200) . T))
+((-4159 (($ $) 11)) (-4135 (($ $) 10)) (-4184 (($ $) 9)) (-1878 (($ $) 8)) (-4171 (($ $) 7)) (-4147 (($ $) 6)))
+(((-35) (-139)) (T -35))
+((-4159 (*1 *1 *1) (-4 *1 (-35))) (-4135 (*1 *1 *1) (-4 *1 (-35))) (-4184 (*1 *1 *1) (-4 *1 (-35))) (-1878 (*1 *1 *1) (-4 *1 (-35))) (-4171 (*1 *1 *1) (-4 *1 (-35))) (-4147 (*1 *1 *1) (-4 *1 (-35))))
+(-13 (-10 -8 (-15 -4147 ($ $)) (-15 -4171 ($ $)) (-15 -1878 ($ $)) (-15 -4184 ($ $)) (-15 -4135 ($ $)) (-15 -4159 ($ $))))
+((-3207 (((-112) $ $) 19 (-3998 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| |#2| (-1087)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087))))) (-2925 (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) 125)) (-3213 (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) 148)) (-3436 (($ $) 146)) (-3303 (($) 72) (($ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) 71)) (-3869 (((-1251) $ |#1| |#1|) 99 (|has| $ (-6 -4383))) (((-1251) $ (-558) (-558)) 178 (|has| $ (-6 -4383)))) (-2336 (($ $ (-558)) 159 (|has| $ (-6 -4383)))) (-1538 (((-112) (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 209) (((-112) $) 203 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-841)))) (-2763 (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 200 (|has| $ (-6 -4383))) (($ $) 199 (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-841)) (|has| $ (-6 -4383))))) (-2376 (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-841)))) (-3026 (((-112) $ (-762)) 8)) (-3972 (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) 134 (|has| $ (-6 -4383)))) (-2359 (($ $ $) 155 (|has| $ (-6 -4383)))) (-2348 (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) 157 (|has| $ (-6 -4383)))) (-2369 (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) 153 (|has| $ (-6 -4383)))) (-1532 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $ (-558) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) 189 (|has| $ (-6 -4383))) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $ (-1213 (-558)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) 160 (|has| $ (-6 -4383))) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $ "last" (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) 158 (|has| $ (-6 -4383))) (($ $ "rest" $) 156 (|has| $ (-6 -4383))) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $ "first" (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) 154 (|has| $ (-6 -4383))) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $ "value" (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) 133 (|has| $ (-6 -4383)))) (-3982 (($ $ (-635 $)) 132 (|has| $ (-6 -4383)))) (-4207 (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 45 (|has| $ (-6 -4382))) (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 216)) (-4329 (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 55 (|has| $ (-6 -4382))) (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 175 (|has| $ (-6 -4382)))) (-3201 (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) 147)) (-3083 (((-3 |#2| "failed") |#1| $) 61)) (-1816 (($) 7 T CONST)) (-3306 (($ $) 201 (|has| $ (-6 -4383)))) (-4127 (($ $) 211)) (-2315 (($ $ (-762)) 142) (($ $) 140)) (-2820 (($ $) 214 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (-2338 (($ $) 58 (-3998 (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| $ (-6 -4382))) (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| $ (-6 -4382)))))) (-3395 (($ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) 47 (|has| $ (-6 -4382))) (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 46 (|has| $ (-6 -4382))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 220) (($ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) 215 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (-1539 (($ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| $ (-6 -4382)))) (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 54 (|has| $ (-6 -4382))) (($ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) 177 (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| $ (-6 -4382)))) (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 174 (|has| $ (-6 -4382)))) (-3048 (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) 56 (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| $ (-6 -4382)))) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) 53 (|has| $ (-6 -4382))) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 52 (|has| $ (-6 -4382))) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) 176 (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| $ (-6 -4382)))) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) 173 (|has| $ (-6 -4382))) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 172 (|has| $ (-6 -4382)))) (-1817 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4383))) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $ (-558) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) 190 (|has| $ (-6 -4383)))) (-1746 ((|#2| $ |#1|) 88) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $ (-558)) 188)) (-2435 (((-112) $) 192)) (-1517 (((-558) (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 208) (((-558) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) 207 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087))) (((-558) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $ (-558)) 206 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (-2240 (((-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 30 (|has| $ (-6 -4382))) (((-635 |#2|) $) 79 (|has| $ (-6 -4382))) (((-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 114 (|has| $ (-6 -4382)))) (-2870 (((-635 $) $) 123)) (-3993 (((-112) $ $) 131 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (-3315 (($ (-762) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) 169)) (-2986 (((-112) $ (-762)) 9)) (-3889 ((|#1| $) 96 (|has| |#1| (-841))) (((-558) $) 180 (|has| (-558) (-841)))) (-3910 (($ $ $) 198 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-841)))) (-1645 (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-841)))) (-1677 (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-841)))) (-2122 (((-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 29 (|has| $ (-6 -4382))) (((-635 |#2|) $) 80 (|has| $ (-6 -4382))) (((-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 115 (|has| $ (-6 -4382)))) (-4322 (((-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| $ (-6 -4382)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1087)) (|has| $ (-6 -4382)))) (((-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) 117 (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| $ (-6 -4382))))) (-3899 ((|#1| $) 95 (|has| |#1| (-841))) (((-558) $) 181 (|has| (-558) (-841)))) (-3542 (($ $ $) 197 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-841)))) (-1807 (($ (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 34 (|has| $ (-6 -4383))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4383))) (($ (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 110 (|has| $ (-6 -4383)))) (-3167 (($ (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 109)) (-2192 (($ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) 225)) (-2953 (((-112) $ (-762)) 10)) (-1362 (((-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 128)) (-1790 (((-112) $) 124)) (-4310 (((-1145) $) 22 (-3998 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| |#2| (-1087)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087))))) (-1560 (($ $ (-762)) 145) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) 143)) (-3848 (((-635 |#1|) $) 63)) (-3950 (((-112) |#1| $) 64)) (-1722 (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) 39)) (-4328 (($ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) 40) (($ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $ (-558)) 219) (($ $ $ (-558)) 218)) (-1861 (($ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $ (-558)) 162) (($ $ $ (-558)) 161)) (-3920 (((-635 |#1|) $) 93) (((-635 (-558)) $) 183)) (-3929 (((-112) |#1| $) 92) (((-112) (-558) $) 184)) (-2975 (((-1107) $) 21 (-3998 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| |#2| (-1087)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087))))) (-2305 ((|#2| $) 97 (|has| |#1| (-841))) (($ $ (-762)) 139) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) 137)) (-4307 (((-3 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) "failed") (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 51) (((-3 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) "failed") (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 171)) (-3880 (($ $ |#2|) 98 (|has| $ (-6 -4383))) (($ $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) 179 (|has| $ (-6 -4383)))) (-3524 (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) 41)) (-2445 (((-112) $) 191)) (-3266 (((-112) (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 32 (|has| $ (-6 -4382))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4382))) (((-112) (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 112 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))))) 26 (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-293 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) 25 (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) 24 (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) 23 (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-635 |#2|) (-635 |#2|)) 86 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-293 |#2|)) 84 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-635 (-293 |#2|))) 83 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) 121 (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) 120 (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-293 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) 119 (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-635 (-293 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))))) 118 (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087))))) (-2381 (((-112) $ $) 14)) (-3908 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4382)) (|has| |#2| (-1087)))) (((-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) 182 (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087))))) (-3937 (((-635 |#2|) $) 91) (((-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 185)) (-3375 (((-112) $) 11)) (-2083 (($) 12)) (-2195 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $ (-558) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) 187) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $ (-558)) 186) (($ $ (-1213 (-558))) 165) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $ "first") 138) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $ "value") 126)) (-2860 (((-558) $ $) 129)) (-2571 (($) 49) (($ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) 48)) (-4218 (($ $ (-558)) 222) (($ $ (-1213 (-558))) 221)) (-4023 (($ $ (-558)) 164) (($ $ (-1213 (-558))) 163)) (-1487 (((-112) $) 127)) (-2405 (($ $) 151)) (-2380 (($ $) 152 (|has| $ (-6 -4383)))) (-2414 (((-762) $) 150)) (-2428 (($ $) 149)) (-2988 (((-762) (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 31 (|has| $ (-6 -4382))) (((-762) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| $ (-6 -4382)))) (((-762) |#2| $) 81 (-12 (|has| |#2| (-1087)) (|has| $ (-6 -4382)))) (((-762) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4382))) (((-762) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) 116 (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| $ (-6 -4382)))) (((-762) (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 113 (|has| $ (-6 -4382)))) (-2773 (($ $ $ (-558)) 202 (|has| $ (-6 -4383)))) (-1553 (($ $) 13)) (-3224 (((-534) $) 59 (-3998 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-606 (-534))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-606 (-534)))))) (-3233 (($ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) 50) (($ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) 170)) (-2392 (($ $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) 224) (($ $ $) 223)) (-4341 (($ $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) 168) (($ (-635 $)) 167) (($ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) 136) (($ $ $) 135)) (-3220 (((-853) $) 18 (-3998 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-605 (-853))) (|has| |#2| (-605 (-853))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-605 (-853)))))) (-1727 (((-635 $) $) 122)) (-4005 (((-112) $ $) 130 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (-3534 (($ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) 42)) (-1568 (((-3 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) "failed") |#1| $) 108)) (-3277 (((-112) (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 33 (|has| $ (-6 -4382))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4382))) (((-112) (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 111 (|has| $ (-6 -4382)))) (-1747 (((-112) $ $) 195 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-841)))) (-1720 (((-112) $ $) 194 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-841)))) (-1683 (((-112) $ $) 20 (-3998 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| |#2| (-1087)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087))))) (-1731 (((-112) $ $) 196 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-841)))) (-1705 (((-112) $ $) 193 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-841)))) (-2755 (((-762) $) 6 (|has| $ (-6 -4382)))))
+(((-36 |#1| |#2|) (-139) (-1087) (-1087)) (T -36))
+((-1568 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-5 *2 (-2 (|:| -2700 *3) (|:| -2981 *4))))))
+(-13 (-1176 |t#1| |t#2|) (-656 (-2 (|:| -2700 |t#1|) (|:| -2981 |t#2|))) (-10 -8 (-15 -1568 ((-3 (-2 (|:| -2700 |t#1|) (|:| -2981 |t#2|)) "failed") |t#1| $))))
+(((-34) . T) ((-107 #0=(-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T) ((-102) -3998 (|has| |#2| (-1087)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-841))) ((-605 (-853)) -3998 (|has| |#2| (-1087)) (|has| |#2| (-605 (-853))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-841)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-605 (-853)))) ((-150 #1=(-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T) ((-606 (-534)) |has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-606 (-534))) ((-228 #0#) . T) ((-234 #0#) . T) ((-285 #2=(-558) #1#) . T) ((-285 |#1| |#2|) . T) ((-287 #2# #1#) . T) ((-287 |#1| |#2|) . T) ((-308 #1#) -12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087))) ((-308 |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))) ((-281 #1#) . T) ((-372 #1#) . T) ((-487 #1#) . T) ((-487 |#2|) . T) ((-596 #2# #1#) . T) ((-596 |#1| |#2|) . T) ((-512 #1# #1#) -12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087))) ((-512 |#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))) ((-602 |#1| |#2|) . T) ((-641 #1#) . T) ((-656 #1#) . T) ((-841) |has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-841)) ((-1000 #1#) . T) ((-1087) -3998 (|has| |#2| (-1087)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-841))) ((-1136 #1#) . T) ((-1176 |#1| |#2|) . T) ((-1200) . T) ((-1234 #1#) . T))
+((-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ |#2|) 10)))
+(((-37 |#1| |#2|) (-10 -8 (-15 -3220 (|#1| |#2|)) (-15 -3220 (|#1| (-558))) (-15 -3220 ((-853) |#1|))) (-38 |#2|) (-171)) (T -37))
+NIL
+(-10 -8 (-15 -3220 (|#1| |#2|)) (-15 -3220 (|#1| (-558))) (-15 -3220 ((-853) |#1|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2089 (((-3 $ "failed") $ $) 19)) (-1816 (($) 17 T CONST)) (-2588 (((-3 $ "failed") $) 33)) (-2035 (((-112) $) 31)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ |#1|) 38)) (-2542 (((-762)) 28)) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1683 (((-112) $ $) 6)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
+(((-38 |#1|) (-139) (-171)) (T -38))
+NIL
+(-13 (-1039) (-708 |t#1|) (-608 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-608 (-558)) . T) ((-608 |#1|) . T) ((-605 (-853)) . T) ((-638 |#1|) . T) ((-638 $) . T) ((-708 |#1|) . T) ((-717) . T) ((-1045 |#1|) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
+((-3469 (((-417 |#1|) |#1|) 41)) (-2522 (((-417 |#1|) |#1|) 30) (((-417 |#1|) |#1| (-635 (-48))) 33)) (-2387 (((-112) |#1|) 56)))
+(((-39 |#1|) (-10 -7 (-15 -2522 ((-417 |#1|) |#1| (-635 (-48)))) (-15 -2522 ((-417 |#1|) |#1|)) (-15 -3469 ((-417 |#1|) |#1|)) (-15 -2387 ((-112) |#1|))) (-1222 (-48))) (T -39))
+((-2387 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1222 (-48))))) (-3469 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1222 (-48))))) (-2522 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1222 (-48))))) (-2522 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-48))) (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1222 (-48))))))
+(-10 -7 (-15 -2522 ((-417 |#1|) |#1| (-635 (-48)))) (-15 -2522 ((-417 |#1|) |#1|)) (-15 -3469 ((-417 |#1|) |#1|)) (-15 -2387 ((-112) |#1|)))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-3085 (((-2 (|:| |num| (-1246 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL (|has| (-406 |#2|) (-362)))) (-1881 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-1857 (((-112) $) NIL (|has| (-406 |#2|) (-362)))) (-2053 (((-679 (-406 |#2|)) (-1246 $)) NIL) (((-679 (-406 |#2|))) NIL)) (-1635 (((-406 |#2|) $) NIL)) (-2163 (((-1173 (-911) (-762)) (-558)) NIL (|has| (-406 |#2|) (-348)))) (-2089 (((-3 $ "failed") $ $) NIL)) (-3465 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-1380 (((-417 $) $) NIL (|has| (-406 |#2|) (-362)))) (-3732 (((-112) $ $) NIL (|has| (-406 |#2|) (-362)))) (-2276 (((-762)) NIL (|has| (-406 |#2|) (-367)))) (-3240 (((-112)) NIL)) (-3228 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-1816 (($) NIL T CONST)) (-3069 (((-3 (-558) "failed") $) NIL (|has| (-406 |#2|) (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| (-406 |#2|) (-1028 (-406 (-558))))) (((-3 (-406 |#2|) "failed") $) NIL)) (-1863 (((-558) $) NIL (|has| (-406 |#2|) (-1028 (-558)))) (((-406 (-558)) $) NIL (|has| (-406 |#2|) (-1028 (-406 (-558))))) (((-406 |#2|) $) NIL)) (-3997 (($ (-1246 (-406 |#2|)) (-1246 $)) NIL) (($ (-1246 (-406 |#2|))) 57) (($ (-1246 |#2|) |#2|) 125)) (-3367 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-406 |#2|) (-348)))) (-4025 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-2043 (((-679 (-406 |#2|)) $ (-1246 $)) NIL) (((-679 (-406 |#2|)) $) NIL)) (-3216 (((-679 (-558)) (-679 $)) NIL (|has| (-406 |#2|) (-631 (-558)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| (-406 |#2|) (-631 (-558)))) (((-2 (|:| -3683 (-679 (-406 |#2|))) (|:| |vec| (-1246 (-406 |#2|)))) (-679 $) (-1246 $)) NIL) (((-679 (-406 |#2|)) (-679 $)) NIL)) (-3138 (((-1246 $) (-1246 $)) NIL)) (-3048 (($ |#3|) NIL) (((-3 $ "failed") (-406 |#3|)) NIL (|has| (-406 |#2|) (-362)))) (-2588 (((-3 $ "failed") $) NIL)) (-2994 (((-635 (-635 |#1|))) NIL (|has| |#1| (-367)))) (-3270 (((-112) |#1| |#1|) NIL)) (-3833 (((-911)) NIL)) (-2424 (($) NIL (|has| (-406 |#2|) (-367)))) (-3214 (((-112)) NIL)) (-3202 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-4004 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL (|has| (-406 |#2|) (-362)))) (-2782 (($ $) NIL)) (-2672 (($) NIL (|has| (-406 |#2|) (-348)))) (-2219 (((-112) $) NIL (|has| (-406 |#2|) (-348)))) (-1895 (($ $ (-762)) NIL (|has| (-406 |#2|) (-348))) (($ $) NIL (|has| (-406 |#2|) (-348)))) (-3031 (((-112) $) NIL (|has| (-406 |#2|) (-362)))) (-3449 (((-911) $) NIL (|has| (-406 |#2|) (-348))) (((-824 (-911)) $) NIL (|has| (-406 |#2|) (-348)))) (-2035 (((-112) $) NIL)) (-3147 (((-762)) NIL)) (-3148 (((-1246 $) (-1246 $)) 102)) (-2615 (((-406 |#2|) $) NIL)) (-3005 (((-635 (-942 |#1|)) (-1163)) NIL (|has| |#1| (-362)))) (-2457 (((-3 $ "failed") $) NIL (|has| (-406 |#2|) (-348)))) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| (-406 |#2|) (-362)))) (-2681 ((|#3| $) NIL (|has| (-406 |#2|) (-362)))) (-2637 (((-911) $) NIL (|has| (-406 |#2|) (-367)))) (-3227 ((|#3| $) NIL)) (-2665 (($ (-635 $)) NIL (|has| (-406 |#2|) (-362))) (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-4310 (((-1145) $) NIL)) (-3543 (((-1251) (-762)) 79)) (-3095 (((-679 (-406 |#2|))) 51)) (-3116 (((-679 (-406 |#2|))) 44)) (-2418 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-3061 (($ (-1246 |#2|) |#2|) 126)) (-3105 (((-679 (-406 |#2|))) 45)) (-3128 (((-679 (-406 |#2|))) 43)) (-3049 (((-2 (|:| |num| (-679 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-3073 (((-2 (|:| |num| (-1246 |#2|)) (|:| |den| |#2|)) $) 64)) (-3191 (((-1246 $)) 42)) (-2224 (((-1246 $)) 41)) (-3180 (((-112) $) NIL)) (-3170 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-1796 (($) NIL (|has| (-406 |#2|) (-348)) CONST)) (-2851 (($ (-911)) NIL (|has| (-406 |#2|) (-367)))) (-3027 (((-3 |#2| "failed")) NIL)) (-2975 (((-1107) $) NIL)) (-3293 (((-762)) NIL)) (-4098 (($) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| (-406 |#2|) (-362)))) (-2699 (($ (-635 $)) NIL (|has| (-406 |#2|) (-362))) (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-2174 (((-635 (-2 (|:| -2522 (-558)) (|:| -1951 (-558))))) NIL (|has| (-406 |#2|) (-348)))) (-2522 (((-417 $) $) NIL (|has| (-406 |#2|) (-362)))) (-3713 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-406 |#2|) (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL (|has| (-406 |#2|) (-362)))) (-3983 (((-3 $ "failed") $ $) NIL (|has| (-406 |#2|) (-362)))) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| (-406 |#2|) (-362)))) (-3722 (((-762) $) NIL (|has| (-406 |#2|) (-362)))) (-2195 ((|#1| $ |#1| |#1|) NIL)) (-3037 (((-3 |#2| "failed")) NIL)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL (|has| (-406 |#2|) (-362)))) (-3331 (((-406 |#2|) (-1246 $)) NIL) (((-406 |#2|)) 39)) (-1905 (((-762) $) NIL (|has| (-406 |#2|) (-348))) (((-3 (-762) "failed") $ $) NIL (|has| (-406 |#2|) (-348)))) (-2829 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-762)) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163))))) (($ $ (-1163) (-762)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163))))) (($ $ (-635 (-1163))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163))))) (($ $ (-1163)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163))))) (($ $ (-762)) NIL (-3998 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348)))) (($ $) NIL (-3998 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348))))) (-2026 (((-679 (-406 |#2|)) (-1246 $) (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362)))) (-2036 ((|#3|) 50)) (-3377 (($) NIL (|has| (-406 |#2|) (-348)))) (-4205 (((-1246 (-406 |#2|)) $ (-1246 $)) NIL) (((-679 (-406 |#2|)) (-1246 $) (-1246 $)) NIL) (((-1246 (-406 |#2|)) $) 58) (((-679 (-406 |#2|)) (-1246 $)) 103)) (-3224 (((-1246 (-406 |#2|)) $) NIL) (($ (-1246 (-406 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3709 (((-3 (-1246 $) "failed") (-679 $)) NIL (|has| (-406 |#2|) (-348)))) (-3158 (((-1246 $) (-1246 $)) NIL)) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ (-406 |#2|)) NIL) (($ (-406 (-558))) NIL (-3998 (|has| (-406 |#2|) (-1028 (-406 (-558)))) (|has| (-406 |#2|) (-362)))) (($ $) NIL (|has| (-406 |#2|) (-362)))) (-3698 (($ $) NIL (|has| (-406 |#2|) (-348))) (((-3 $ "failed") $) NIL (|has| (-406 |#2|) (-144)))) (-2363 ((|#3| $) NIL)) (-2542 (((-762)) NIL)) (-3260 (((-112)) 37)) (-3250 (((-112) |#1|) 49) (((-112) |#2|) 131)) (-2660 (((-1246 $)) 93)) (-1870 (((-112) $ $) NIL (|has| (-406 |#2|) (-362)))) (-3016 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3282 (((-112)) NIL)) (-2131 (($) 16 T CONST)) (-2142 (($) 26 T CONST)) (-1866 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-762)) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163))))) (($ $ (-1163) (-762)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163))))) (($ $ (-635 (-1163))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163))))) (($ $ (-1163)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163))))) (($ $ (-762)) NIL (-3998 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348)))) (($ $) NIL (-3998 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348))))) (-1683 (((-112) $ $) NIL)) (-1810 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL (|has| (-406 |#2|) (-362)))) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 |#2|)) NIL) (($ (-406 |#2|) $) NIL) (($ (-406 (-558)) $) NIL (|has| (-406 |#2|) (-362))) (($ $ (-406 (-558))) NIL (|has| (-406 |#2|) (-362)))))
+(((-40 |#1| |#2| |#3| |#4|) (-13 (-341 |#1| |#2| |#3|) (-10 -7 (-15 -3543 ((-1251) (-762))))) (-362) (-1222 |#1|) (-1222 (-406 |#2|)) |#3|) (T -40))
+((-3543 (*1 *2 *3) (-12 (-5 *3 (-762)) (-4 *4 (-362)) (-4 *5 (-1222 *4)) (-5 *2 (-1251)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1222 (-406 *5))) (-14 *7 *6))))
+(-13 (-341 |#1| |#2| |#3|) (-10 -7 (-15 -3543 ((-1251) (-762)))))
+((-3554 ((|#2| |#2|) 48)) (-1399 ((|#2| |#2|) 119 (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-450)) (|has| |#1| (-841)) (|has| |#1| (-1028 (-558)))))) (-1618 ((|#2| |#2|) 86 (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-450)) (|has| |#1| (-841)) (|has| |#1| (-1028 (-558)))))) (-1605 ((|#2| |#2|) 87 (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-450)) (|has| |#1| (-841)) (|has| |#1| (-1028 (-558)))))) (-1411 ((|#2| (-114) |#2| (-762)) 115 (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-450)) (|has| |#1| (-841)) (|has| |#1| (-1028 (-558)))))) (-2365 (((-1159 |#2|) |#2|) 45)) (-2354 ((|#2| |#2| (-635 (-604 |#2|))) 18) ((|#2| |#2| (-635 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16)))
+(((-41 |#1| |#2|) (-10 -7 (-15 -3554 (|#2| |#2|)) (-15 -2354 (|#2| |#2|)) (-15 -2354 (|#2| |#2| |#2|)) (-15 -2354 (|#2| |#2| (-635 |#2|))) (-15 -2354 (|#2| |#2| (-635 (-604 |#2|)))) (-15 -2365 ((-1159 |#2|) |#2|)) (IF (|has| |#1| (-841)) (IF (|has| |#1| (-450)) (IF (|has| |#1| (-1028 (-558))) (IF (|has| |#2| (-429 |#1|)) (PROGN (-15 -1605 (|#2| |#2|)) (-15 -1618 (|#2| |#2|)) (-15 -1399 (|#2| |#2|)) (-15 -1411 (|#2| (-114) |#2| (-762)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-550) (-13 (-362) (-301) (-10 -8 (-15 -1874 ((-1112 |#1| (-604 $)) $)) (-15 -1885 ((-1112 |#1| (-604 $)) $)) (-15 -3220 ($ (-1112 |#1| (-604 $))))))) (T -41))
+((-1411 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-114)) (-5 *4 (-762)) (-4 *5 (-450)) (-4 *5 (-841)) (-4 *5 (-1028 (-558))) (-4 *5 (-550)) (-5 *1 (-41 *5 *2)) (-4 *2 (-429 *5)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -1874 ((-1112 *5 (-604 $)) $)) (-15 -1885 ((-1112 *5 (-604 $)) $)) (-15 -3220 ($ (-1112 *5 (-604 $))))))))) (-1399 (*1 *2 *2) (-12 (-4 *3 (-450)) (-4 *3 (-841)) (-4 *3 (-1028 (-558))) (-4 *3 (-550)) (-5 *1 (-41 *3 *2)) (-4 *2 (-429 *3)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -1874 ((-1112 *3 (-604 $)) $)) (-15 -1885 ((-1112 *3 (-604 $)) $)) (-15 -3220 ($ (-1112 *3 (-604 $))))))))) (-1618 (*1 *2 *2) (-12 (-4 *3 (-450)) (-4 *3 (-841)) (-4 *3 (-1028 (-558))) (-4 *3 (-550)) (-5 *1 (-41 *3 *2)) (-4 *2 (-429 *3)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -1874 ((-1112 *3 (-604 $)) $)) (-15 -1885 ((-1112 *3 (-604 $)) $)) (-15 -3220 ($ (-1112 *3 (-604 $))))))))) (-1605 (*1 *2 *2) (-12 (-4 *3 (-450)) (-4 *3 (-841)) (-4 *3 (-1028 (-558))) (-4 *3 (-550)) (-5 *1 (-41 *3 *2)) (-4 *2 (-429 *3)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -1874 ((-1112 *3 (-604 $)) $)) (-15 -1885 ((-1112 *3 (-604 $)) $)) (-15 -3220 ($ (-1112 *3 (-604 $))))))))) (-2365 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-1159 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-362) (-301) (-10 -8 (-15 -1874 ((-1112 *4 (-604 $)) $)) (-15 -1885 ((-1112 *4 (-604 $)) $)) (-15 -3220 ($ (-1112 *4 (-604 $))))))))) (-2354 (*1 *2 *2 *3) (-12 (-5 *3 (-635 (-604 *2))) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -1874 ((-1112 *4 (-604 $)) $)) (-15 -1885 ((-1112 *4 (-604 $)) $)) (-15 -3220 ($ (-1112 *4 (-604 $))))))) (-4 *4 (-550)) (-5 *1 (-41 *4 *2)))) (-2354 (*1 *2 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -1874 ((-1112 *4 (-604 $)) $)) (-15 -1885 ((-1112 *4 (-604 $)) $)) (-15 -3220 ($ (-1112 *4 (-604 $))))))) (-4 *4 (-550)) (-5 *1 (-41 *4 *2)))) (-2354 (*1 *2 *2 *2) (-12 (-4 *3 (-550)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -1874 ((-1112 *3 (-604 $)) $)) (-15 -1885 ((-1112 *3 (-604 $)) $)) (-15 -3220 ($ (-1112 *3 (-604 $))))))))) (-2354 (*1 *2 *2) (-12 (-4 *3 (-550)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -1874 ((-1112 *3 (-604 $)) $)) (-15 -1885 ((-1112 *3 (-604 $)) $)) (-15 -3220 ($ (-1112 *3 (-604 $))))))))) (-3554 (*1 *2 *2) (-12 (-4 *3 (-550)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -1874 ((-1112 *3 (-604 $)) $)) (-15 -1885 ((-1112 *3 (-604 $)) $)) (-15 -3220 ($ (-1112 *3 (-604 $))))))))))
+(-10 -7 (-15 -3554 (|#2| |#2|)) (-15 -2354 (|#2| |#2|)) (-15 -2354 (|#2| |#2| |#2|)) (-15 -2354 (|#2| |#2| (-635 |#2|))) (-15 -2354 (|#2| |#2| (-635 (-604 |#2|)))) (-15 -2365 ((-1159 |#2|) |#2|)) (IF (|has| |#1| (-841)) (IF (|has| |#1| (-450)) (IF (|has| |#1| (-1028 (-558))) (IF (|has| |#2| (-429 |#1|)) (PROGN (-15 -1605 (|#2| |#2|)) (-15 -1618 (|#2| |#2|)) (-15 -1399 (|#2| |#2|)) (-15 -1411 (|#2| (-114) |#2| (-762)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
+((-2522 (((-417 (-1159 |#3|)) (-1159 |#3|) (-635 (-48))) 23) (((-417 |#3|) |#3| (-635 (-48))) 19)))
+(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -2522 ((-417 |#3|) |#3| (-635 (-48)))) (-15 -2522 ((-417 (-1159 |#3|)) (-1159 |#3|) (-635 (-48))))) (-841) (-784) (-939 (-48) |#2| |#1|)) (T -42))
+((-2522 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-48))) (-4 *5 (-841)) (-4 *6 (-784)) (-4 *7 (-939 (-48) *6 *5)) (-5 *2 (-417 (-1159 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1159 *7)))) (-2522 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-48))) (-4 *5 (-841)) (-4 *6 (-784)) (-5 *2 (-417 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-939 (-48) *6 *5)))))
+(-10 -7 (-15 -2522 ((-417 |#3|) |#3| (-635 (-48)))) (-15 -2522 ((-417 (-1159 |#3|)) (-1159 |#3|) (-635 (-48)))))
+((-1456 (((-762) |#2|) 65)) (-1431 (((-762) |#2|) 68)) (-1591 (((-635 |#2|)) 33)) (-1422 (((-762) |#2|) 67)) (-1445 (((-762) |#2|) 64)) (-1467 (((-762) |#2|) 66)) (-1570 (((-635 (-679 |#1|))) 60)) (-1518 (((-635 |#2|)) 55)) (-1496 (((-635 |#2|) |#2|) 43)) (-1540 (((-635 |#2|)) 57)) (-1529 (((-635 |#2|)) 56)) (-1561 (((-635 (-679 |#1|))) 48)) (-1506 (((-635 |#2|)) 54)) (-1488 (((-635 |#2|) |#2|) 42)) (-1479 (((-635 |#2|)) 50)) (-1580 (((-635 (-679 |#1|))) 61)) (-1550 (((-635 |#2|)) 59)) (-2660 (((-1246 |#2|) (-1246 |#2|)) 83 (|has| |#1| (-306)))))
+(((-43 |#1| |#2|) (-10 -7 (-15 -1422 ((-762) |#2|)) (-15 -1431 ((-762) |#2|)) (-15 -1445 ((-762) |#2|)) (-15 -1456 ((-762) |#2|)) (-15 -1467 ((-762) |#2|)) (-15 -1479 ((-635 |#2|))) (-15 -1488 ((-635 |#2|) |#2|)) (-15 -1496 ((-635 |#2|) |#2|)) (-15 -1506 ((-635 |#2|))) (-15 -1518 ((-635 |#2|))) (-15 -1529 ((-635 |#2|))) (-15 -1540 ((-635 |#2|))) (-15 -1550 ((-635 |#2|))) (-15 -1561 ((-635 (-679 |#1|)))) (-15 -1570 ((-635 (-679 |#1|)))) (-15 -1580 ((-635 (-679 |#1|)))) (-15 -1591 ((-635 |#2|))) (IF (|has| |#1| (-306)) (-15 -2660 ((-1246 |#2|) (-1246 |#2|))) |%noBranch|)) (-550) (-416 |#1|)) (T -43))
+((-2660 (*1 *2 *2) (-12 (-5 *2 (-1246 *4)) (-4 *4 (-416 *3)) (-4 *3 (-306)) (-4 *3 (-550)) (-5 *1 (-43 *3 *4)))) (-1591 (*1 *2) (-12 (-4 *3 (-550)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-1580 (*1 *2) (-12 (-4 *3 (-550)) (-5 *2 (-635 (-679 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-1570 (*1 *2) (-12 (-4 *3 (-550)) (-5 *2 (-635 (-679 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-1561 (*1 *2) (-12 (-4 *3 (-550)) (-5 *2 (-635 (-679 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-1550 (*1 *2) (-12 (-4 *3 (-550)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-1540 (*1 *2) (-12 (-4 *3 (-550)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-1529 (*1 *2) (-12 (-4 *3 (-550)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-1518 (*1 *2) (-12 (-4 *3 (-550)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-1506 (*1 *2) (-12 (-4 *3 (-550)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-1496 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-635 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-416 *4)))) (-1488 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-635 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-416 *4)))) (-1479 (*1 *2) (-12 (-4 *3 (-550)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-1467 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-762)) (-5 *1 (-43 *4 *3)) (-4 *3 (-416 *4)))) (-1456 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-762)) (-5 *1 (-43 *4 *3)) (-4 *3 (-416 *4)))) (-1445 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-762)) (-5 *1 (-43 *4 *3)) (-4 *3 (-416 *4)))) (-1431 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-762)) (-5 *1 (-43 *4 *3)) (-4 *3 (-416 *4)))) (-1422 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-762)) (-5 *1 (-43 *4 *3)) (-4 *3 (-416 *4)))))
+(-10 -7 (-15 -1422 ((-762) |#2|)) (-15 -1431 ((-762) |#2|)) (-15 -1445 ((-762) |#2|)) (-15 -1456 ((-762) |#2|)) (-15 -1467 ((-762) |#2|)) (-15 -1479 ((-635 |#2|))) (-15 -1488 ((-635 |#2|) |#2|)) (-15 -1496 ((-635 |#2|) |#2|)) (-15 -1506 ((-635 |#2|))) (-15 -1518 ((-635 |#2|))) (-15 -1529 ((-635 |#2|))) (-15 -1540 ((-635 |#2|))) (-15 -1550 ((-635 |#2|))) (-15 -1561 ((-635 (-679 |#1|)))) (-15 -1570 ((-635 (-679 |#1|)))) (-15 -1580 ((-635 (-679 |#1|)))) (-15 -1591 ((-635 |#2|))) (IF (|has| |#1| (-306)) (-15 -2660 ((-1246 |#2|) (-1246 |#2|))) |%noBranch|))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-1960 (((-3 $ "failed")) NIL (|has| |#1| (-550)))) (-2089 (((-3 $ "failed") $ $) NIL)) (-4194 (((-1246 (-679 |#1|)) (-1246 $)) NIL) (((-1246 (-679 |#1|))) 24)) (-2751 (((-1246 $)) 51)) (-1816 (($) NIL T CONST)) (-2845 (((-3 (-2 (|:| |particular| $) (|:| -2660 (-635 $))) "failed")) NIL (|has| |#1| (-550)))) (-2458 (((-3 $ "failed")) NIL (|has| |#1| (-550)))) (-2121 (((-679 |#1|) (-1246 $)) NIL) (((-679 |#1|)) NIL)) (-2729 ((|#1| $) NIL)) (-2096 (((-679 |#1|) $ (-1246 $)) NIL) (((-679 |#1|) $) NIL)) (-1986 (((-3 $ "failed") $) NIL (|has| |#1| (-550)))) (-3933 (((-1159 (-942 |#1|))) NIL (|has| |#1| (-362)))) (-2015 (($ $ (-911)) NIL)) (-2708 ((|#1| $) NIL)) (-2484 (((-1159 |#1|) $) NIL (|has| |#1| (-550)))) (-2143 ((|#1| (-1246 $)) NIL) ((|#1|) NIL)) (-2685 (((-1159 |#1|) $) NIL)) (-2622 (((-112)) 87)) (-3997 (($ (-1246 |#1|) (-1246 $)) NIL) (($ (-1246 |#1|)) NIL)) (-2588 (((-3 $ "failed") $) 14 (|has| |#1| (-550)))) (-3833 (((-911)) 52)) (-2591 (((-112)) NIL)) (-4078 (($ $ (-911)) NIL)) (-2539 (((-112)) NIL)) (-2517 (((-112)) NIL)) (-2565 (((-112)) 89)) (-2854 (((-3 (-2 (|:| |particular| $) (|:| -2660 (-635 $))) "failed")) NIL (|has| |#1| (-550)))) (-2470 (((-3 $ "failed")) NIL (|has| |#1| (-550)))) (-2132 (((-679 |#1|) (-1246 $)) NIL) (((-679 |#1|)) NIL)) (-2740 ((|#1| $) NIL)) (-2109 (((-679 |#1|) $ (-1246 $)) NIL) (((-679 |#1|) $) NIL)) (-1995 (((-3 $ "failed") $) NIL (|has| |#1| (-550)))) (-2824 (((-1159 (-942 |#1|))) NIL (|has| |#1| (-362)))) (-2006 (($ $ (-911)) NIL)) (-2718 ((|#1| $) NIL)) (-2498 (((-1159 |#1|) $) NIL (|has| |#1| (-550)))) (-3985 ((|#1| (-1246 $)) NIL) ((|#1|) NIL)) (-2696 (((-1159 |#1|) $) NIL)) (-2632 (((-112)) 86)) (-4310 (((-1145) $) NIL)) (-2527 (((-112)) 93)) (-2551 (((-112)) 92)) (-2580 (((-112)) 94)) (-2975 (((-1107) $) NIL)) (-2612 (((-112)) 88)) (-2195 ((|#1| $ (-558)) 54)) (-4205 (((-1246 |#1|) $ (-1246 $)) 48) (((-679 |#1|) (-1246 $) (-1246 $)) NIL) (((-1246 |#1|) $) 28) (((-679 |#1|) (-1246 $)) NIL)) (-3224 (((-1246 |#1|) $) NIL) (($ (-1246 |#1|)) NIL)) (-3855 (((-635 (-942 |#1|)) (-1246 $)) NIL) (((-635 (-942 |#1|))) NIL)) (-3443 (($ $ $) NIL)) (-2676 (((-112)) 84)) (-3220 (((-853) $) 69) (($ (-1246 |#1|)) 22)) (-2660 (((-1246 $)) 45)) (-2507 (((-635 (-1246 |#1|))) NIL (|has| |#1| (-550)))) (-3452 (($ $ $ $) NIL)) (-2654 (((-112)) 82)) (-2258 (($ (-679 |#1|) $) 18)) (-3433 (($ $ $) NIL)) (-2664 (((-112)) 85)) (-2642 (((-112)) 83)) (-2602 (((-112)) 81)) (-2131 (($) NIL T CONST)) (-1683 (((-112) $ $) NIL)) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1129 |#2| |#1|) $) 19)))
+(((-44 |#1| |#2| |#3| |#4|) (-13 (-416 |#1|) (-638 (-1129 |#2| |#1|)) (-10 -8 (-15 -3220 ($ (-1246 |#1|))))) (-362) (-911) (-635 (-1163)) (-1246 (-679 |#1|))) (T -44))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-1246 *3)) (-4 *3 (-362)) (-14 *6 (-1246 (-679 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-911)) (-14 *5 (-635 (-1163))))))
+(-13 (-416 |#1|) (-638 (-1129 |#2| |#1|)) (-10 -8 (-15 -3220 ($ (-1246 |#1|)))))
+((-3207 (((-112) $ $) NIL (-3998 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-2925 (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL)) (-3213 (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL)) (-3436 (($ $) NIL)) (-3303 (($) NIL) (($ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL)) (-3869 (((-1251) $ |#1| |#1|) NIL (|has| $ (-6 -4383))) (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4383)))) (-2336 (($ $ (-558)) NIL (|has| $ (-6 -4383)))) (-1538 (((-112) (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-841)))) (-2763 (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4383))) (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-841))))) (-2376 (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-841)))) (-3026 (((-112) $ (-762)) NIL)) (-3972 (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) NIL (|has| $ (-6 -4383)))) (-2359 (($ $ $) 27 (|has| $ (-6 -4383)))) (-2348 (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) NIL (|has| $ (-6 -4383)))) (-2369 (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) 29 (|has| $ (-6 -4383)))) (-1532 ((|#2| $ |#1| |#2|) 45) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $ (-558) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) NIL (|has| $ (-6 -4383))) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $ (-1213 (-558)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) NIL (|has| $ (-6 -4383))) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $ "last" (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) NIL (|has| $ (-6 -4383))) (($ $ "rest" $) NIL (|has| $ (-6 -4383))) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $ "first" (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) NIL (|has| $ (-6 -4383))) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $ "value" (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) NIL (|has| $ (-6 -4383)))) (-3982 (($ $ (-635 $)) NIL (|has| $ (-6 -4383)))) (-4207 (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL)) (-4329 (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382)))) (-3201 (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL)) (-3083 (((-3 |#2| "failed") |#1| $) 37)) (-1816 (($) NIL T CONST)) (-3306 (($ $) NIL (|has| $ (-6 -4383)))) (-4127 (($ $) NIL)) (-2315 (($ $ (-762)) NIL) (($ $) 24)) (-2820 (($ $) NIL (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (-2338 (($ $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087))))) (-3395 (($ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL (|has| $ (-6 -4382))) (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (((-3 |#2| "failed") |#1| $) 47) (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL) (($ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (-1539 (($ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (($ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382)))) (-3048 (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) NIL (|has| $ (-6 -4382))) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) NIL (|has| $ (-6 -4382))) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382)))) (-1817 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4383))) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $ (-558) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) NIL (|has| $ (-6 -4383)))) (-1746 ((|#2| $ |#1|) NIL) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $ (-558)) NIL)) (-2435 (((-112) $) NIL)) (-1517 (((-558) (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL) (((-558) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087))) (((-558) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $ (-558)) NIL (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (-2240 (((-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 18 (|has| $ (-6 -4382))) (((-635 |#2|) $) NIL (|has| $ (-6 -4382))) (((-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 18 (|has| $ (-6 -4382)))) (-2870 (((-635 $) $) NIL)) (-3993 (((-112) $ $) NIL (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (-3315 (($ (-762) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) NIL)) (-2986 (((-112) $ (-762)) NIL)) (-3889 ((|#1| $) NIL (|has| |#1| (-841))) (((-558) $) 32 (|has| (-558) (-841)))) (-3910 (($ $ $) NIL (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-841)))) (-1645 (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-841)))) (-1677 (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-841)))) (-2122 (((-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (((-635 |#2|) $) NIL (|has| $ (-6 -4382))) (((-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#2| (-1087)))) (((-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087))))) (-3899 ((|#1| $) NIL (|has| |#1| (-841))) (((-558) $) 34 (|has| (-558) (-841)))) (-3542 (($ $ $) NIL (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-841)))) (-1807 (($ (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4383))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4383))) (($ (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL)) (-2192 (($ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-1362 (((-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL)) (-1790 (((-112) $) NIL)) (-4310 (((-1145) $) 41 (-3998 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-1560 (($ $ (-762)) NIL) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL)) (-3848 (((-635 |#1|) $) 20)) (-3950 (((-112) |#1| $) NIL)) (-1722 (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL)) (-4328 (($ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL) (($ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $ (-558)) NIL) (($ $ $ (-558)) NIL)) (-1861 (($ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $ (-558)) NIL) (($ $ $ (-558)) NIL)) (-3920 (((-635 |#1|) $) NIL) (((-635 (-558)) $) NIL)) (-3929 (((-112) |#1| $) NIL) (((-112) (-558) $) NIL)) (-2975 (((-1107) $) NIL (-3998 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-2305 ((|#2| $) NIL (|has| |#1| (-841))) (($ $ (-762)) NIL) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) 23)) (-4307 (((-3 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) "failed") (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL) (((-3 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) "failed") (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL)) (-3880 (($ $ |#2|) NIL (|has| $ (-6 -4383))) (($ $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) NIL (|has| $ (-6 -4383)))) (-3524 (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL)) (-2445 (((-112) $) NIL)) (-3266 (((-112) (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4382))) (((-112) (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))))) NIL (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-293 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) NIL (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-635 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) NIL (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-293 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-635 (-293 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))))) NIL (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087))))) (-2381 (((-112) $ $) NIL)) (-3908 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#2| (-1087)))) (((-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087))))) (-3937 (((-635 |#2|) $) NIL) (((-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 17)) (-3375 (((-112) $) 16)) (-2083 (($) 13)) (-2195 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $ (-558) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) NIL) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $ (-558)) NIL) (($ $ (-1213 (-558))) NIL) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $ "first") NIL) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $ "value") NIL)) (-2860 (((-558) $ $) NIL)) (-2571 (($) 12) (($ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL)) (-4218 (($ $ (-558)) NIL) (($ $ (-1213 (-558))) NIL)) (-4023 (($ $ (-558)) NIL) (($ $ (-1213 (-558))) NIL)) (-1487 (((-112) $) NIL)) (-2405 (($ $) NIL)) (-2380 (($ $) NIL (|has| $ (-6 -4383)))) (-2414 (((-762) $) NIL)) (-2428 (($ $) NIL)) (-2988 (((-762) (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (((-762) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (((-762) |#2| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#2| (-1087)))) (((-762) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4382))) (((-762) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (((-762) (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382)))) (-2773 (($ $ $ (-558)) NIL (|has| $ (-6 -4383)))) (-1553 (($ $) NIL)) (-3224 (((-534) $) NIL (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-606 (-534))))) (-3233 (($ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL) (($ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL)) (-2392 (($ $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) NIL) (($ $ $) NIL)) (-4341 (($ $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) NIL) (($ (-635 $)) NIL) (($ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) 25) (($ $ $) NIL)) (-3220 (((-853) $) NIL (-3998 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-605 (-853))) (|has| |#2| (-605 (-853)))))) (-1727 (((-635 $) $) NIL)) (-4005 (((-112) $ $) NIL (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (-3534 (($ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL)) (-1568 (((-3 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) "failed") |#1| $) 43)) (-3277 (((-112) (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4382))) (((-112) (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382)))) (-1747 (((-112) $ $) NIL (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-841)))) (-1720 (((-112) $ $) NIL (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-841)))) (-1683 (((-112) $ $) NIL (-3998 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-1731 (((-112) $ $) NIL (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-841)))) (-1705 (((-112) $ $) NIL (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-841)))) (-2755 (((-762) $) 22 (|has| $ (-6 -4382)))))
+(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1087) (-1087)) (T -45))
NIL
(-36 |#1| |#2|)
-((-3580 (((-112) $) 12)) (-2879 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-402 (-554)) $) 25) (($ $ (-402 (-554))) NIL)))
-(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-402 (-554)))) (-15 * (|#1| (-402 (-554)) |#1|)) (-15 -3580 ((-112) |#1|)) (-15 -2879 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-554) |#1|)) (-15 * (|#1| (-758) |#1|)) (-15 * (|#1| (-906) |#1|))) (-47 |#2| |#3|) (-1034) (-779)) (T -46))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-402 (-554)))) (-15 * (|#1| (-402 (-554)) |#1|)) (-15 -3580 ((-112) |#1|)) (-15 -2879 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-554) |#1|)) (-15 * (|#1| (-758) |#1|)) (-15 * (|#1| (-906) |#1|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 54 (|has| |#1| (-546)))) (-1976 (($ $) 55 (|has| |#1| (-546)))) (-1363 (((-112) $) 57 (|has| |#1| (-546)))) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-2550 (($ $) 63)) (-1320 (((-3 $ "failed") $) 33)) (-3248 (((-112) $) 31)) (-3580 (((-112) $) 65)) (-2383 (($ |#1| |#2|) 64)) (-2879 (($ (-1 |#1| |#1|) $) 66)) (-2518 (($ $) 68)) (-2530 ((|#1| $) 69)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3919 (((-3 $ "failed") $ $) 53 (|has| |#1| (-546)))) (-3308 ((|#2| $) 67)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ (-402 (-554))) 60 (|has| |#1| (-38 (-402 (-554))))) (($ $) 52 (|has| |#1| (-546))) (($ |#1|) 50 (|has| |#1| (-170)))) (-1779 ((|#1| $ |#2|) 62)) (-2084 (((-3 $ "failed") $) 51 (|has| |#1| (-143)))) (-2261 (((-758)) 28)) (-1909 (((-112) $ $) 56 (|has| |#1| (-546)))) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1752 (($ $ |#1|) 61 (|has| |#1| (-358)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-402 (-554)) $) 59 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) 58 (|has| |#1| (-38 (-402 (-554)))))))
-(((-47 |#1| |#2|) (-138) (-1034) (-779)) (T -47))
-((-2530 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1034)))) (-2518 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-779)))) (-3308 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-779)))) (-2879 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-779)))) (-3580 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-779)) (-5 *2 (-112)))) (-2383 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-779)))) (-2550 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-779)))) (-1779 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1034)))) (-1752 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-779)) (-4 *2 (-358)))))
-(-13 (-1034) (-111 |t#1| |t#1|) (-10 -8 (-15 -2530 (|t#1| $)) (-15 -2518 ($ $)) (-15 -3308 (|t#2| $)) (-15 -2879 ($ (-1 |t#1| |t#1|) $)) (-15 -3580 ((-112) $)) (-15 -2383 ($ |t#1| |t#2|)) (-15 -2550 ($ $)) (-15 -1779 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-358)) (-15 -1752 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-6 (-170)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-546)) (-6 (-546)) |%noBranch|) (IF (|has| |t#1| (-38 (-402 (-554)))) (-6 (-38 (-402 (-554)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-546)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-402 (-554)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3994 (|has| |#1| (-546)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-604 #0#) |has| |#1| (-38 (-402 (-554)))) ((-604 (-554)) . T) ((-604 |#1|) |has| |#1| (-170)) ((-604 $) |has| |#1| (-546)) ((-601 (-848)) . T) ((-170) -3994 (|has| |#1| (-546)) (|has| |#1| (-170))) ((-285) |has| |#1| (-546)) ((-546) |has| |#1| (-546)) ((-634 #0#) |has| |#1| (-38 (-402 (-554)))) ((-634 |#1|) . T) ((-634 $) . T) ((-704 #0#) |has| |#1| (-38 (-402 (-554)))) ((-704 |#1|) |has| |#1| (-170)) ((-704 $) |has| |#1| (-546)) ((-713) . T) ((-1040 #0#) |has| |#1| (-38 (-402 (-554)))) ((-1040 |#1|) . T) ((-1040 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-170))) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T))
-((-3062 (((-112) $ $) NIL)) (-2719 (((-631 $) (-1154 $) (-1158)) NIL) (((-631 $) (-1154 $)) NIL) (((-631 $) (-937 $)) NIL)) (-3856 (($ (-1154 $) (-1158)) NIL) (($ (-1154 $)) NIL) (($ (-937 $)) NIL)) (-1695 (((-112) $) 11)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-2143 (((-631 (-600 $)) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-3380 (($ $ (-289 $)) NIL) (($ $ (-631 (-289 $))) NIL) (($ $ (-631 (-600 $)) (-631 $)) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2282 (($ $) NIL)) (-2286 (((-112) $ $) NIL)) (-4087 (($) NIL T CONST)) (-3613 (((-631 $) (-1154 $) (-1158)) NIL) (((-631 $) (-1154 $)) NIL) (((-631 $) (-937 $)) NIL)) (-3625 (($ (-1154 $) (-1158)) NIL) (($ (-1154 $)) NIL) (($ (-937 $)) NIL)) (-2784 (((-3 (-600 $) "failed") $) NIL) (((-3 (-554) "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL)) (-1668 (((-600 $) $) NIL) (((-554) $) NIL) (((-402 (-554)) $) NIL)) (-3964 (($ $ $) NIL)) (-3699 (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL) (((-675 (-554)) (-675 $)) NIL) (((-2 (|:| -2866 (-675 (-402 (-554)))) (|:| |vec| (-1241 (-402 (-554))))) (-675 $) (-1241 $)) NIL) (((-675 (-402 (-554))) (-675 $)) NIL)) (-3676 (($ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-1342 (($ $) NIL) (($ (-631 $)) NIL)) (-3489 (((-631 (-114)) $) NIL)) (-3086 (((-114) (-114)) NIL)) (-3248 (((-112) $) 14)) (-3273 (((-112) $) NIL (|has| $ (-1023 (-554))))) (-2810 (((-1107 (-554) (-600 $)) $) NIL)) (-3734 (($ $ (-554)) NIL)) (-3274 (((-1154 $) (-1154 $) (-600 $)) NIL) (((-1154 $) (-1154 $) (-631 (-600 $))) NIL) (($ $ (-600 $)) NIL) (($ $ (-631 (-600 $))) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-1823 (((-1154 $) (-600 $)) NIL (|has| $ (-1034)))) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-2879 (($ (-1 $ $) (-600 $)) NIL)) (-3310 (((-3 (-600 $) "failed") $) NIL)) (-2475 (($ (-631 $)) NIL) (($ $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2227 (((-631 (-600 $)) $) NIL)) (-1408 (($ (-114) $) NIL) (($ (-114) (-631 $)) NIL)) (-2640 (((-112) $ (-114)) NIL) (((-112) $ (-1158)) NIL)) (-2483 (($ $) NIL)) (-3323 (((-758) $) NIL)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ (-631 $)) NIL) (($ $ $) NIL)) (-2041 (((-112) $ $) NIL) (((-112) $ (-1158)) NIL)) (-2270 (((-413 $) $) NIL)) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-1795 (((-112) $) NIL (|has| $ (-1023 (-554))))) (-2386 (($ $ (-600 $) $) NIL) (($ $ (-631 (-600 $)) (-631 $)) NIL) (($ $ (-631 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ (-631 (-1158)) (-631 (-1 $ $))) NIL) (($ $ (-631 (-1158)) (-631 (-1 $ (-631 $)))) NIL) (($ $ (-1158) (-1 $ (-631 $))) NIL) (($ $ (-1158) (-1 $ $)) NIL) (($ $ (-631 (-114)) (-631 (-1 $ $))) NIL) (($ $ (-631 (-114)) (-631 (-1 $ (-631 $)))) NIL) (($ $ (-114) (-1 $ (-631 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-2072 (((-758) $) NIL)) (-2064 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-631 $)) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-3862 (($ $) NIL) (($ $ $) NIL)) (-1553 (($ $ (-758)) NIL) (($ $) NIL)) (-2822 (((-1107 (-554) (-600 $)) $) NIL)) (-4318 (($ $) NIL (|has| $ (-1034)))) (-2927 (((-374) $) NIL) (((-221) $) NIL) (((-167 (-374)) $) NIL)) (-3075 (((-848) $) NIL) (($ (-600 $)) NIL) (($ (-402 (-554))) NIL) (($ $) NIL) (($ (-554)) NIL) (($ (-1107 (-554) (-600 $))) NIL)) (-2261 (((-758)) NIL)) (-4125 (($ $) NIL) (($ (-631 $)) NIL)) (-1902 (((-112) (-114)) NIL)) (-1909 (((-112) $ $) NIL)) (-2004 (($) 7 T CONST)) (-2014 (($) 12 T CONST)) (-1787 (($ $ (-758)) NIL) (($ $) NIL)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 16)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) NIL)) (-1752 (($ $ $) NIL)) (-1744 (($ $ $) 15) (($ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-402 (-554))) NIL) (($ $ (-554)) NIL) (($ $ (-758)) NIL) (($ $ (-906)) NIL)) (* (($ (-402 (-554)) $) NIL) (($ $ (-402 (-554))) NIL) (($ $ $) NIL) (($ (-554) $) NIL) (($ (-758) $) NIL) (($ (-906) $) NIL)))
-(((-48) (-13 (-297) (-27) (-1023 (-554)) (-1023 (-402 (-554))) (-627 (-554)) (-1007) (-627 (-402 (-554))) (-145) (-602 (-167 (-374))) (-229) (-10 -8 (-15 -3075 ($ (-1107 (-554) (-600 $)))) (-15 -2810 ((-1107 (-554) (-600 $)) $)) (-15 -2822 ((-1107 (-554) (-600 $)) $)) (-15 -3676 ($ $)) (-15 -3274 ((-1154 $) (-1154 $) (-600 $))) (-15 -3274 ((-1154 $) (-1154 $) (-631 (-600 $)))) (-15 -3274 ($ $ (-600 $))) (-15 -3274 ($ $ (-631 (-600 $))))))) (T -48))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-1107 (-554) (-600 (-48)))) (-5 *1 (-48)))) (-2810 (*1 *2 *1) (-12 (-5 *2 (-1107 (-554) (-600 (-48)))) (-5 *1 (-48)))) (-2822 (*1 *2 *1) (-12 (-5 *2 (-1107 (-554) (-600 (-48)))) (-5 *1 (-48)))) (-3676 (*1 *1 *1) (-5 *1 (-48))) (-3274 (*1 *2 *2 *3) (-12 (-5 *2 (-1154 (-48))) (-5 *3 (-600 (-48))) (-5 *1 (-48)))) (-3274 (*1 *2 *2 *3) (-12 (-5 *2 (-1154 (-48))) (-5 *3 (-631 (-600 (-48)))) (-5 *1 (-48)))) (-3274 (*1 *1 *1 *2) (-12 (-5 *2 (-600 (-48))) (-5 *1 (-48)))) (-3274 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-600 (-48)))) (-5 *1 (-48)))))
-(-13 (-297) (-27) (-1023 (-554)) (-1023 (-402 (-554))) (-627 (-554)) (-1007) (-627 (-402 (-554))) (-145) (-602 (-167 (-374))) (-229) (-10 -8 (-15 -3075 ($ (-1107 (-554) (-600 $)))) (-15 -2810 ((-1107 (-554) (-600 $)) $)) (-15 -2822 ((-1107 (-554) (-600 $)) $)) (-15 -3676 ($ $)) (-15 -3274 ((-1154 $) (-1154 $) (-600 $))) (-15 -3274 ((-1154 $) (-1154 $) (-631 (-600 $)))) (-15 -3274 ($ $ (-600 $))) (-15 -3274 ($ $ (-631 (-600 $))))))
-((-3062 (((-112) $ $) NIL)) (-1322 (((-631 (-1158)) $) 17)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 7)) (-4319 (((-1163) $) 18)) (-1658 (((-112) $ $) NIL)))
-(((-49) (-13 (-1082) (-10 -8 (-15 -1322 ((-631 (-1158)) $)) (-15 -4319 ((-1163) $))))) (T -49))
-((-1322 (*1 *2 *1) (-12 (-5 *2 (-631 (-1158))) (-5 *1 (-49)))) (-4319 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-49)))))
-(-13 (-1082) (-10 -8 (-15 -1322 ((-631 (-1158)) $)) (-15 -4319 ((-1163) $))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 61)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-3051 (((-112) $) 20)) (-2784 (((-3 |#1| "failed") $) 23)) (-1668 ((|#1| $) 24)) (-2550 (($ $) 28)) (-1320 (((-3 $ "failed") $) NIL)) (-3248 (((-112) $) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-2530 ((|#1| $) 21)) (-1500 (($ $) 50)) (-1613 (((-1140) $) NIL)) (-2177 (((-112) $) 30)) (-2768 (((-1102) $) NIL)) (-4137 (($ (-758)) 48)) (-1333 (($ (-631 (-554))) 49)) (-3308 (((-758) $) 31)) (-3075 (((-848) $) 64) (($ (-554)) 45) (($ |#1|) 43)) (-1779 ((|#1| $ $) 19)) (-2261 (((-758)) 47)) (-2004 (($) 32 T CONST)) (-2014 (($) 14 T CONST)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) 40)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 41) (($ |#1| $) 35)))
-(((-50 |#1| |#2|) (-13 (-608 |#1|) (-1023 |#1|) (-10 -8 (-15 -2530 (|#1| $)) (-15 -1500 ($ $)) (-15 -2550 ($ $)) (-15 -1779 (|#1| $ $)) (-15 -4137 ($ (-758))) (-15 -1333 ($ (-631 (-554)))) (-15 -2177 ((-112) $)) (-15 -3051 ((-112) $)) (-15 -3308 ((-758) $)) (-15 -2879 ($ (-1 |#1| |#1|) $)))) (-1034) (-631 (-1158))) (T -50))
-((-2530 (*1 *2 *1) (-12 (-4 *2 (-1034)) (-5 *1 (-50 *2 *3)) (-14 *3 (-631 (-1158))))) (-1500 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1034)) (-14 *3 (-631 (-1158))))) (-2550 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1034)) (-14 *3 (-631 (-1158))))) (-1779 (*1 *2 *1 *1) (-12 (-4 *2 (-1034)) (-5 *1 (-50 *2 *3)) (-14 *3 (-631 (-1158))))) (-4137 (*1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1034)) (-14 *4 (-631 (-1158))))) (-1333 (*1 *1 *2) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1034)) (-14 *4 (-631 (-1158))))) (-2177 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1034)) (-14 *4 (-631 (-1158))))) (-3051 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1034)) (-14 *4 (-631 (-1158))))) (-3308 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1034)) (-14 *4 (-631 (-1158))))) (-2879 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1034)) (-5 *1 (-50 *3 *4)) (-14 *4 (-631 (-1158))))))
-(-13 (-608 |#1|) (-1023 |#1|) (-10 -8 (-15 -2530 (|#1| $)) (-15 -1500 ($ $)) (-15 -2550 ($ $)) (-15 -1779 (|#1| $ $)) (-15 -4137 ($ (-758))) (-15 -1333 ($ (-631 (-554)))) (-15 -2177 ((-112) $)) (-15 -3051 ((-112) $)) (-15 -3308 ((-758) $)) (-15 -2879 ($ (-1 |#1| |#1|) $))))
-((-3051 (((-112) (-52)) 13)) (-2784 (((-3 |#1| "failed") (-52)) 21)) (-1668 ((|#1| (-52)) 22)) (-3075 (((-52) |#1|) 18)))
-(((-51 |#1|) (-10 -7 (-15 -3075 ((-52) |#1|)) (-15 -2784 ((-3 |#1| "failed") (-52))) (-15 -3051 ((-112) (-52))) (-15 -1668 (|#1| (-52)))) (-1195)) (T -51))
-((-1668 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1195)))) (-3051 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1195)))) (-2784 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1195)))) (-3075 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1195)))))
-(-10 -7 (-15 -3075 ((-52) |#1|)) (-15 -2784 ((-3 |#1| "failed") (-52))) (-15 -3051 ((-112) (-52))) (-15 -1668 (|#1| (-52))))
-((-3062 (((-112) $ $) NIL)) (-3305 (((-1140) (-112)) 25)) (-2805 (((-848) $) 24)) (-3596 (((-761) $) 12)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2842 (((-848) $) 16)) (-3925 (((-1086) $) 14)) (-3075 (((-848) $) 32)) (-2406 (($ (-1086) (-761)) 33)) (-1658 (((-112) $ $) 18)))
-(((-52) (-13 (-1082) (-10 -8 (-15 -2406 ($ (-1086) (-761))) (-15 -2842 ((-848) $)) (-15 -2805 ((-848) $)) (-15 -3925 ((-1086) $)) (-15 -3596 ((-761) $)) (-15 -3305 ((-1140) (-112)))))) (T -52))
-((-2406 (*1 *1 *2 *3) (-12 (-5 *2 (-1086)) (-5 *3 (-761)) (-5 *1 (-52)))) (-2842 (*1 *2 *1) (-12 (-5 *2 (-848)) (-5 *1 (-52)))) (-2805 (*1 *2 *1) (-12 (-5 *2 (-848)) (-5 *1 (-52)))) (-3925 (*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-52)))) (-3596 (*1 *2 *1) (-12 (-5 *2 (-761)) (-5 *1 (-52)))) (-3305 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1140)) (-5 *1 (-52)))))
-(-13 (-1082) (-10 -8 (-15 -2406 ($ (-1086) (-761))) (-15 -2842 ((-848) $)) (-15 -2805 ((-848) $)) (-15 -3925 ((-1086) $)) (-15 -3596 ((-761) $)) (-15 -3305 ((-1140) (-112)))))
-((-1485 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16)))
-(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -1485 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1034) (-634 |#1|) (-838 |#1|)) (T -53))
-((-1485 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-634 *5)) (-4 *5 (-1034)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-838 *5)))))
-(-10 -7 (-15 -1485 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
-((-3565 ((|#3| |#3| (-631 (-1158))) 35)) (-3524 ((|#3| (-631 (-1058 |#1| |#2| |#3|)) |#3| (-906)) 22) ((|#3| (-631 (-1058 |#1| |#2| |#3|)) |#3|) 20)))
-(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -3524 (|#3| (-631 (-1058 |#1| |#2| |#3|)) |#3|)) (-15 -3524 (|#3| (-631 (-1058 |#1| |#2| |#3|)) |#3| (-906))) (-15 -3565 (|#3| |#3| (-631 (-1158))))) (-1082) (-13 (-1034) (-871 |#1|) (-836) (-602 (-877 |#1|))) (-13 (-425 |#2|) (-871 |#1|) (-602 (-877 |#1|)))) (T -54))
-((-3565 (*1 *2 *2 *3) (-12 (-5 *3 (-631 (-1158))) (-4 *4 (-1082)) (-4 *5 (-13 (-1034) (-871 *4) (-836) (-602 (-877 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-425 *5) (-871 *4) (-602 (-877 *4)))))) (-3524 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-631 (-1058 *5 *6 *2))) (-5 *4 (-906)) (-4 *5 (-1082)) (-4 *6 (-13 (-1034) (-871 *5) (-836) (-602 (-877 *5)))) (-4 *2 (-13 (-425 *6) (-871 *5) (-602 (-877 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-3524 (*1 *2 *3 *2) (-12 (-5 *3 (-631 (-1058 *4 *5 *2))) (-4 *4 (-1082)) (-4 *5 (-13 (-1034) (-871 *4) (-836) (-602 (-877 *4)))) (-4 *2 (-13 (-425 *5) (-871 *4) (-602 (-877 *4)))) (-5 *1 (-54 *4 *5 *2)))))
-(-10 -7 (-15 -3524 (|#3| (-631 (-1058 |#1| |#2| |#3|)) |#3|)) (-15 -3524 (|#3| (-631 (-1058 |#1| |#2| |#3|)) |#3| (-906))) (-15 -3565 (|#3| |#3| (-631 (-1158)))))
-((-3062 (((-112) $ $) NIL)) (-2784 (((-3 (-758) "failed") $) 22)) (-1668 (((-758) $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) 9)) (-3075 (((-848) $) 16) (($ (-758)) 20)) (-1327 (($) 7 T CONST)) (-1658 (((-112) $ $) 11)))
-(((-55) (-13 (-1082) (-1023 (-758)) (-10 -8 (-15 -1327 ($) -2397)))) (T -55))
-((-1327 (*1 *1) (-5 *1 (-55))))
-(-13 (-1082) (-1023 (-758)) (-10 -8 (-15 -1327 ($) -2397)))
-((-3019 (((-112) $ (-758)) 23)) (-2557 (($ $ (-554) |#3|) 47)) (-1464 (($ $ (-554) |#4|) 51)) (-3519 ((|#3| $ (-554)) 60)) (-2466 (((-631 |#2|) $) 30)) (-2230 (((-112) $ (-758)) 25)) (-3068 (((-112) |#2| $) 55)) (-2849 (($ (-1 |#2| |#2|) $) 38)) (-2879 (($ (-1 |#2| |#2|) $) 37) (($ (-1 |#2| |#2| |#2|) $ $) 41) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 43)) (-3731 (((-112) $ (-758)) 24)) (-2441 (($ $ |#2|) 35)) (-2845 (((-112) (-1 (-112) |#2|) $) 19)) (-2064 ((|#2| $ (-554) (-554)) NIL) ((|#2| $ (-554) (-554) |#2|) 27)) (-2777 (((-758) (-1 (-112) |#2|) $) 28) (((-758) |#2| $) 57)) (-1521 (($ $) 34)) (-3259 ((|#4| $ (-554)) 63)) (-3075 (((-848) $) 69)) (-2438 (((-112) (-1 (-112) |#2|) $) 18)) (-1658 (((-112) $ $) 54)) (-2563 (((-758) $) 26)))
-(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3075 ((-848) |#1|)) (-15 -2879 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2879 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2849 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1464 (|#1| |#1| (-554) |#4|)) (-15 -2557 (|#1| |#1| (-554) |#3|)) (-15 -2466 ((-631 |#2|) |#1|)) (-15 -3259 (|#4| |#1| (-554))) (-15 -3519 (|#3| |#1| (-554))) (-15 -2064 (|#2| |#1| (-554) (-554) |#2|)) (-15 -2064 (|#2| |#1| (-554) (-554))) (-15 -2441 (|#1| |#1| |#2|)) (-15 -1658 ((-112) |#1| |#1|)) (-15 -3068 ((-112) |#2| |#1|)) (-15 -2777 ((-758) |#2| |#1|)) (-15 -2777 ((-758) (-1 (-112) |#2|) |#1|)) (-15 -2845 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2438 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2879 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2563 ((-758) |#1|)) (-15 -3019 ((-112) |#1| (-758))) (-15 -2230 ((-112) |#1| (-758))) (-15 -3731 ((-112) |#1| (-758))) (-15 -1521 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1195) (-368 |#2|) (-368 |#2|)) (T -56))
-NIL
-(-10 -8 (-15 -3075 ((-848) |#1|)) (-15 -2879 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2879 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2849 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1464 (|#1| |#1| (-554) |#4|)) (-15 -2557 (|#1| |#1| (-554) |#3|)) (-15 -2466 ((-631 |#2|) |#1|)) (-15 -3259 (|#4| |#1| (-554))) (-15 -3519 (|#3| |#1| (-554))) (-15 -2064 (|#2| |#1| (-554) (-554) |#2|)) (-15 -2064 (|#2| |#1| (-554) (-554))) (-15 -2441 (|#1| |#1| |#2|)) (-15 -1658 ((-112) |#1| |#1|)) (-15 -3068 ((-112) |#2| |#1|)) (-15 -2777 ((-758) |#2| |#1|)) (-15 -2777 ((-758) (-1 (-112) |#2|) |#1|)) (-15 -2845 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2438 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2879 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2563 ((-758) |#1|)) (-15 -3019 ((-112) |#1| (-758))) (-15 -2230 ((-112) |#1| (-758))) (-15 -3731 ((-112) |#1| (-758))) (-15 -1521 (|#1| |#1|)))
-((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-3019 (((-112) $ (-758)) 8)) (-1501 ((|#1| $ (-554) (-554) |#1|) 44)) (-2557 (($ $ (-554) |#2|) 42)) (-1464 (($ $ (-554) |#3|) 41)) (-4087 (($) 7 T CONST)) (-3519 ((|#2| $ (-554)) 46)) (-2862 ((|#1| $ (-554) (-554) |#1|) 43)) (-2796 ((|#1| $ (-554) (-554)) 48)) (-2466 (((-631 |#1|) $) 30)) (-4130 (((-758) $) 51)) (-3180 (($ (-758) (-758) |#1|) 57)) (-4143 (((-758) $) 50)) (-2230 (((-112) $ (-758)) 9)) (-3985 (((-554) $) 55)) (-1817 (((-554) $) 53)) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2787 (((-554) $) 54)) (-4249 (((-554) $) 52)) (-2849 (($ (-1 |#1| |#1|) $) 34)) (-2879 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3731 (((-112) $ (-758)) 10)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-2441 (($ $ |#1|) 56)) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2064 ((|#1| $ (-554) (-554)) 49) ((|#1| $ (-554) (-554) |#1|) 47)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-3259 ((|#3| $ (-554)) 45)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373)))))
-(((-57 |#1| |#2| |#3|) (-138) (-1195) (-368 |t#1|) (-368 |t#1|)) (T -57))
-((-2879 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-3180 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-758)) (-4 *3 (-1195)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-2441 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1195)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)))) (-3985 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-554)))) (-2787 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-554)))) (-1817 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-554)))) (-4249 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-554)))) (-4130 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-758)))) (-4143 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-758)))) (-2064 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-554)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-368 *2)) (-4 *5 (-368 *2)) (-4 *2 (-1195)))) (-2796 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-554)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-368 *2)) (-4 *5 (-368 *2)) (-4 *2 (-1195)))) (-2064 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-554)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1195)) (-4 *4 (-368 *2)) (-4 *5 (-368 *2)))) (-3519 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1195)) (-4 *5 (-368 *4)) (-4 *2 (-368 *4)))) (-3259 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1195)) (-4 *5 (-368 *4)) (-4 *2 (-368 *4)))) (-2466 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-631 *3)))) (-1501 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-554)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1195)) (-4 *4 (-368 *2)) (-4 *5 (-368 *2)))) (-2862 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-554)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1195)) (-4 *4 (-368 *2)) (-4 *5 (-368 *2)))) (-2557 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-554)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1195)) (-4 *3 (-368 *4)) (-4 *5 (-368 *4)))) (-1464 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-554)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1195)) (-4 *5 (-368 *4)) (-4 *3 (-368 *4)))) (-2849 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-2879 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-2879 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))))
-(-13 (-483 |t#1|) (-10 -8 (-6 -4374) (-6 -4373) (-15 -3180 ($ (-758) (-758) |t#1|)) (-15 -2441 ($ $ |t#1|)) (-15 -3985 ((-554) $)) (-15 -2787 ((-554) $)) (-15 -1817 ((-554) $)) (-15 -4249 ((-554) $)) (-15 -4130 ((-758) $)) (-15 -4143 ((-758) $)) (-15 -2064 (|t#1| $ (-554) (-554))) (-15 -2796 (|t#1| $ (-554) (-554))) (-15 -2064 (|t#1| $ (-554) (-554) |t#1|)) (-15 -3519 (|t#2| $ (-554))) (-15 -3259 (|t#3| $ (-554))) (-15 -2466 ((-631 |t#1|) $)) (-15 -1501 (|t#1| $ (-554) (-554) |t#1|)) (-15 -2862 (|t#1| $ (-554) (-554) |t#1|)) (-15 -2557 ($ $ (-554) |t#2|)) (-15 -1464 ($ $ (-554) |t#3|)) (-15 -2879 ($ (-1 |t#1| |t#1|) $)) (-15 -2849 ($ (-1 |t#1| |t#1|) $)) (-15 -2879 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2879 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
-(((-34) . T) ((-102) |has| |#1| (-1082)) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-601 (-848)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-1082) |has| |#1| (-1082)) ((-1195) . T))
-((-4159 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-3676 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-2879 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13)))
-(((-58 |#1| |#2|) (-10 -7 (-15 -4159 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3676 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2879 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1195) (-1195)) (T -58))
-((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-3676 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1195)) (-4 *2 (-1195)) (-5 *1 (-58 *5 *2)))) (-4159 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1195)) (-4 *5 (-1195)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))))
-(-10 -7 (-15 -4159 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3676 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2879 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|))))
-((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-4233 (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-4015 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-836)))) (-2576 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4374))) (($ $) NIL (-12 (|has| $ (-6 -4374)) (|has| |#1| (-836))))) (-3303 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-836)))) (-3019 (((-112) $ (-758)) NIL)) (-1501 ((|#1| $ (-554) |#1|) 11 (|has| $ (-6 -4374))) ((|#1| $ (-1208 (-554)) |#1|) NIL (|has| $ (-6 -4374)))) (-1871 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-4087 (($) NIL T CONST)) (-3920 (($ $) NIL (|has| $ (-6 -4374)))) (-3799 (($ $) NIL)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2574 (($ |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4373)))) (-2862 ((|#1| $ (-554) |#1|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-554)) NIL)) (-1484 (((-554) (-1 (-112) |#1|) $) NIL) (((-554) |#1| $) NIL (|has| |#1| (-1082))) (((-554) |#1| $ (-554)) NIL (|has| |#1| (-1082)))) (-2466 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3418 (($ (-631 |#1|)) 13) (($ (-758) |#1|) 14)) (-3180 (($ (-758) |#1|) 9)) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) NIL (|has| (-554) (-836)))) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-3717 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-836)))) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2256 (((-554) $) NIL (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2849 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-1782 (($ |#1| $ (-554)) NIL) (($ $ $ (-554)) NIL)) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) NIL)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-1539 ((|#1| $) NIL (|has| (-554) (-836)))) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2441 (($ $ |#1|) NIL (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) 7)) (-2064 ((|#1| $ (-554) |#1|) NIL) ((|#1| $ (-554)) NIL) (($ $ (-1208 (-554))) NIL)) (-2021 (($ $ (-554)) NIL) (($ $ (-1208 (-554))) NIL)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-3553 (($ $ $ (-554)) NIL (|has| $ (-6 -4374)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) NIL)) (-4323 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-631 $)) NIL)) (-3075 (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -3418 ($ (-631 |#1|))) (-15 -3418 ($ (-758) |#1|)))) (-1195)) (T -59))
-((-3418 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1195)) (-5 *1 (-59 *3)))) (-3418 (*1 *1 *2 *3) (-12 (-5 *2 (-758)) (-5 *1 (-59 *3)) (-4 *3 (-1195)))))
-(-13 (-19 |#1|) (-10 -8 (-15 -3418 ($ (-631 |#1|))) (-15 -3418 ($ (-758) |#1|))))
-((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-3019 (((-112) $ (-758)) NIL)) (-1501 ((|#1| $ (-554) (-554) |#1|) NIL)) (-2557 (($ $ (-554) (-59 |#1|)) NIL)) (-1464 (($ $ (-554) (-59 |#1|)) NIL)) (-4087 (($) NIL T CONST)) (-3519 (((-59 |#1|) $ (-554)) NIL)) (-2862 ((|#1| $ (-554) (-554) |#1|) NIL)) (-2796 ((|#1| $ (-554) (-554)) NIL)) (-2466 (((-631 |#1|) $) NIL)) (-4130 (((-758) $) NIL)) (-3180 (($ (-758) (-758) |#1|) NIL)) (-4143 (((-758) $) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-3985 (((-554) $) NIL)) (-1817 (((-554) $) NIL)) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2787 (((-554) $) NIL)) (-4249 (((-554) $) NIL)) (-2849 (($ (-1 |#1| |#1|) $) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-2441 (($ $ |#1|) NIL)) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#1| $ (-554) (-554)) NIL) ((|#1| $ (-554) (-554) |#1|) NIL)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1521 (($ $) NIL)) (-3259 (((-59 |#1|) $ (-554)) NIL)) (-3075 (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4374))) (-1195)) (T -60))
-NIL
-(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4374)))
-((-2784 (((-3 $ "failed") (-1241 (-311 (-374)))) 74) (((-3 $ "failed") (-1241 (-311 (-554)))) 63) (((-3 $ "failed") (-1241 (-937 (-374)))) 94) (((-3 $ "failed") (-1241 (-937 (-554)))) 84) (((-3 $ "failed") (-1241 (-402 (-937 (-374))))) 52) (((-3 $ "failed") (-1241 (-402 (-937 (-554))))) 39)) (-1668 (($ (-1241 (-311 (-374)))) 70) (($ (-1241 (-311 (-554)))) 59) (($ (-1241 (-937 (-374)))) 90) (($ (-1241 (-937 (-554)))) 80) (($ (-1241 (-402 (-937 (-374))))) 48) (($ (-1241 (-402 (-937 (-554))))) 32)) (-1405 (((-1246) $) 120)) (-3075 (((-848) $) 113) (($ (-631 (-325))) 103) (($ (-325)) 97) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 101) (($ (-1241 (-334 (-3089 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3089) (-685)))) 31)))
-(((-61 |#1|) (-13 (-435) (-10 -8 (-15 -3075 ($ (-1241 (-334 (-3089 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3089) (-685))))))) (-1158)) (T -61))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-1241 (-334 (-3089 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3089) (-685)))) (-5 *1 (-61 *3)) (-14 *3 (-1158)))))
-(-13 (-435) (-10 -8 (-15 -3075 ($ (-1241 (-334 (-3089 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3089) (-685)))))))
-((-1405 (((-1246) $) 53) (((-1246)) 54)) (-3075 (((-848) $) 50)))
-(((-62 |#1|) (-13 (-390) (-10 -7 (-15 -1405 ((-1246))))) (-1158)) (T -62))
-((-1405 (*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-62 *3)) (-14 *3 (-1158)))))
-(-13 (-390) (-10 -7 (-15 -1405 ((-1246)))))
-((-2784 (((-3 $ "failed") (-1241 (-311 (-374)))) 144) (((-3 $ "failed") (-1241 (-311 (-554)))) 134) (((-3 $ "failed") (-1241 (-937 (-374)))) 164) (((-3 $ "failed") (-1241 (-937 (-554)))) 154) (((-3 $ "failed") (-1241 (-402 (-937 (-374))))) 123) (((-3 $ "failed") (-1241 (-402 (-937 (-554))))) 111)) (-1668 (($ (-1241 (-311 (-374)))) 140) (($ (-1241 (-311 (-554)))) 130) (($ (-1241 (-937 (-374)))) 160) (($ (-1241 (-937 (-554)))) 150) (($ (-1241 (-402 (-937 (-374))))) 119) (($ (-1241 (-402 (-937 (-554))))) 104)) (-1405 (((-1246) $) 97)) (-3075 (((-848) $) 91) (($ (-631 (-325))) 29) (($ (-325)) 34) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 32) (($ (-1241 (-334 (-3089) (-3089 (QUOTE XC)) (-685)))) 89)))
-(((-63 |#1|) (-13 (-435) (-10 -8 (-15 -3075 ($ (-1241 (-334 (-3089) (-3089 (QUOTE XC)) (-685))))))) (-1158)) (T -63))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-1241 (-334 (-3089) (-3089 (QUOTE XC)) (-685)))) (-5 *1 (-63 *3)) (-14 *3 (-1158)))))
-(-13 (-435) (-10 -8 (-15 -3075 ($ (-1241 (-334 (-3089) (-3089 (QUOTE XC)) (-685)))))))
-((-2784 (((-3 $ "failed") (-311 (-374))) 41) (((-3 $ "failed") (-311 (-554))) 46) (((-3 $ "failed") (-937 (-374))) 50) (((-3 $ "failed") (-937 (-554))) 54) (((-3 $ "failed") (-402 (-937 (-374)))) 36) (((-3 $ "failed") (-402 (-937 (-554)))) 29)) (-1668 (($ (-311 (-374))) 39) (($ (-311 (-554))) 44) (($ (-937 (-374))) 48) (($ (-937 (-554))) 52) (($ (-402 (-937 (-374)))) 34) (($ (-402 (-937 (-554)))) 26)) (-1405 (((-1246) $) 76)) (-3075 (((-848) $) 69) (($ (-631 (-325))) 61) (($ (-325)) 66) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 64) (($ (-334 (-3089 (QUOTE X)) (-3089) (-685))) 25)))
-(((-64 |#1|) (-13 (-391) (-10 -8 (-15 -3075 ($ (-334 (-3089 (QUOTE X)) (-3089) (-685)))))) (-1158)) (T -64))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-334 (-3089 (QUOTE X)) (-3089) (-685))) (-5 *1 (-64 *3)) (-14 *3 (-1158)))))
-(-13 (-391) (-10 -8 (-15 -3075 ($ (-334 (-3089 (QUOTE X)) (-3089) (-685))))))
-((-2784 (((-3 $ "failed") (-675 (-311 (-374)))) 109) (((-3 $ "failed") (-675 (-311 (-554)))) 97) (((-3 $ "failed") (-675 (-937 (-374)))) 131) (((-3 $ "failed") (-675 (-937 (-554)))) 120) (((-3 $ "failed") (-675 (-402 (-937 (-374))))) 85) (((-3 $ "failed") (-675 (-402 (-937 (-554))))) 71)) (-1668 (($ (-675 (-311 (-374)))) 105) (($ (-675 (-311 (-554)))) 93) (($ (-675 (-937 (-374)))) 127) (($ (-675 (-937 (-554)))) 116) (($ (-675 (-402 (-937 (-374))))) 81) (($ (-675 (-402 (-937 (-554))))) 64)) (-1405 (((-1246) $) 139)) (-3075 (((-848) $) 133) (($ (-631 (-325))) 28) (($ (-325)) 33) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 31) (($ (-675 (-334 (-3089) (-3089 (QUOTE X) (QUOTE HESS)) (-685)))) 54)))
-(((-65 |#1|) (-13 (-379) (-604 (-675 (-334 (-3089) (-3089 (QUOTE X) (QUOTE HESS)) (-685))))) (-1158)) (T -65))
-NIL
-(-13 (-379) (-604 (-675 (-334 (-3089) (-3089 (QUOTE X) (QUOTE HESS)) (-685)))))
-((-2784 (((-3 $ "failed") (-311 (-374))) 59) (((-3 $ "failed") (-311 (-554))) 64) (((-3 $ "failed") (-937 (-374))) 68) (((-3 $ "failed") (-937 (-554))) 72) (((-3 $ "failed") (-402 (-937 (-374)))) 54) (((-3 $ "failed") (-402 (-937 (-554)))) 47)) (-1668 (($ (-311 (-374))) 57) (($ (-311 (-554))) 62) (($ (-937 (-374))) 66) (($ (-937 (-554))) 70) (($ (-402 (-937 (-374)))) 52) (($ (-402 (-937 (-554)))) 44)) (-1405 (((-1246) $) 81)) (-3075 (((-848) $) 75) (($ (-631 (-325))) 28) (($ (-325)) 33) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 31) (($ (-334 (-3089) (-3089 (QUOTE XC)) (-685))) 39)))
-(((-66 |#1|) (-13 (-391) (-10 -8 (-15 -3075 ($ (-334 (-3089) (-3089 (QUOTE XC)) (-685)))))) (-1158)) (T -66))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-334 (-3089) (-3089 (QUOTE XC)) (-685))) (-5 *1 (-66 *3)) (-14 *3 (-1158)))))
-(-13 (-391) (-10 -8 (-15 -3075 ($ (-334 (-3089) (-3089 (QUOTE XC)) (-685))))))
-((-1405 (((-1246) $) 63)) (-3075 (((-848) $) 57) (($ (-675 (-685))) 49) (($ (-631 (-325))) 48) (($ (-325)) 55) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 53)))
-(((-67 |#1|) (-378) (-1158)) (T -67))
-NIL
-(-378)
-((-1405 (((-1246) $) 64)) (-3075 (((-848) $) 58) (($ (-675 (-685))) 50) (($ (-631 (-325))) 49) (($ (-325)) 52) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 55)))
-(((-68 |#1|) (-378) (-1158)) (T -68))
-NIL
-(-378)
-((-1405 (((-1246) $) NIL) (((-1246)) 32)) (-3075 (((-848) $) NIL)))
-(((-69 |#1|) (-13 (-390) (-10 -7 (-15 -1405 ((-1246))))) (-1158)) (T -69))
-((-1405 (*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-69 *3)) (-14 *3 (-1158)))))
-(-13 (-390) (-10 -7 (-15 -1405 ((-1246)))))
-((-1405 (((-1246) $) 73)) (-3075 (((-848) $) 67) (($ (-675 (-685))) 59) (($ (-631 (-325))) 61) (($ (-325)) 64) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 58)))
-(((-70 |#1|) (-378) (-1158)) (T -70))
-NIL
-(-378)
-((-2784 (((-3 $ "failed") (-1241 (-311 (-374)))) 103) (((-3 $ "failed") (-1241 (-311 (-554)))) 92) (((-3 $ "failed") (-1241 (-937 (-374)))) 123) (((-3 $ "failed") (-1241 (-937 (-554)))) 113) (((-3 $ "failed") (-1241 (-402 (-937 (-374))))) 81) (((-3 $ "failed") (-1241 (-402 (-937 (-554))))) 68)) (-1668 (($ (-1241 (-311 (-374)))) 99) (($ (-1241 (-311 (-554)))) 88) (($ (-1241 (-937 (-374)))) 119) (($ (-1241 (-937 (-554)))) 109) (($ (-1241 (-402 (-937 (-374))))) 77) (($ (-1241 (-402 (-937 (-554))))) 61)) (-1405 (((-1246) $) 136)) (-3075 (((-848) $) 130) (($ (-631 (-325))) 125) (($ (-325)) 128) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 53) (($ (-1241 (-334 (-3089 (QUOTE X)) (-3089 (QUOTE -1277)) (-685)))) 54)))
-(((-71 |#1|) (-13 (-435) (-10 -8 (-15 -3075 ($ (-1241 (-334 (-3089 (QUOTE X)) (-3089 (QUOTE -1277)) (-685))))))) (-1158)) (T -71))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-1241 (-334 (-3089 (QUOTE X)) (-3089 (QUOTE -1277)) (-685)))) (-5 *1 (-71 *3)) (-14 *3 (-1158)))))
-(-13 (-435) (-10 -8 (-15 -3075 ($ (-1241 (-334 (-3089 (QUOTE X)) (-3089 (QUOTE -1277)) (-685)))))))
-((-1405 (((-1246) $) 32) (((-1246)) 31)) (-3075 (((-848) $) 35)))
-(((-72 |#1|) (-13 (-390) (-10 -7 (-15 -1405 ((-1246))))) (-1158)) (T -72))
-((-1405 (*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-72 *3)) (-14 *3 (-1158)))))
-(-13 (-390) (-10 -7 (-15 -1405 ((-1246)))))
-((-1405 (((-1246) $) 63)) (-3075 (((-848) $) 57) (($ (-675 (-685))) 49) (($ (-631 (-325))) 51) (($ (-325)) 54) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 48)))
-(((-73 |#1|) (-378) (-1158)) (T -73))
-NIL
-(-378)
-((-2784 (((-3 $ "failed") (-1241 (-311 (-374)))) 125) (((-3 $ "failed") (-1241 (-311 (-554)))) 115) (((-3 $ "failed") (-1241 (-937 (-374)))) 145) (((-3 $ "failed") (-1241 (-937 (-554)))) 135) (((-3 $ "failed") (-1241 (-402 (-937 (-374))))) 105) (((-3 $ "failed") (-1241 (-402 (-937 (-554))))) 93)) (-1668 (($ (-1241 (-311 (-374)))) 121) (($ (-1241 (-311 (-554)))) 111) (($ (-1241 (-937 (-374)))) 141) (($ (-1241 (-937 (-554)))) 131) (($ (-1241 (-402 (-937 (-374))))) 101) (($ (-1241 (-402 (-937 (-554))))) 86)) (-1405 (((-1246) $) 78)) (-3075 (((-848) $) 27) (($ (-631 (-325))) 68) (($ (-325)) 64) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 71) (($ (-1241 (-334 (-3089) (-3089 (QUOTE X)) (-685)))) 65)))
-(((-74 |#1|) (-13 (-435) (-10 -8 (-15 -3075 ($ (-1241 (-334 (-3089) (-3089 (QUOTE X)) (-685))))))) (-1158)) (T -74))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-1241 (-334 (-3089) (-3089 (QUOTE X)) (-685)))) (-5 *1 (-74 *3)) (-14 *3 (-1158)))))
-(-13 (-435) (-10 -8 (-15 -3075 ($ (-1241 (-334 (-3089) (-3089 (QUOTE X)) (-685)))))))
-((-2784 (((-3 $ "failed") (-1241 (-311 (-374)))) 130) (((-3 $ "failed") (-1241 (-311 (-554)))) 119) (((-3 $ "failed") (-1241 (-937 (-374)))) 150) (((-3 $ "failed") (-1241 (-937 (-554)))) 140) (((-3 $ "failed") (-1241 (-402 (-937 (-374))))) 108) (((-3 $ "failed") (-1241 (-402 (-937 (-554))))) 95)) (-1668 (($ (-1241 (-311 (-374)))) 126) (($ (-1241 (-311 (-554)))) 115) (($ (-1241 (-937 (-374)))) 146) (($ (-1241 (-937 (-554)))) 136) (($ (-1241 (-402 (-937 (-374))))) 104) (($ (-1241 (-402 (-937 (-554))))) 88)) (-1405 (((-1246) $) 79)) (-3075 (((-848) $) 71) (($ (-631 (-325))) NIL) (($ (-325)) NIL) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) NIL) (($ (-1241 (-334 (-3089 (QUOTE X) (QUOTE EPS)) (-3089 (QUOTE -1277)) (-685)))) 66)))
-(((-75 |#1| |#2| |#3|) (-13 (-435) (-10 -8 (-15 -3075 ($ (-1241 (-334 (-3089 (QUOTE X) (QUOTE EPS)) (-3089 (QUOTE -1277)) (-685))))))) (-1158) (-1158) (-1158)) (T -75))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-1241 (-334 (-3089 (QUOTE X) (QUOTE EPS)) (-3089 (QUOTE -1277)) (-685)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1158)) (-14 *4 (-1158)) (-14 *5 (-1158)))))
-(-13 (-435) (-10 -8 (-15 -3075 ($ (-1241 (-334 (-3089 (QUOTE X) (QUOTE EPS)) (-3089 (QUOTE -1277)) (-685)))))))
-((-2784 (((-3 $ "failed") (-1241 (-311 (-374)))) 134) (((-3 $ "failed") (-1241 (-311 (-554)))) 123) (((-3 $ "failed") (-1241 (-937 (-374)))) 154) (((-3 $ "failed") (-1241 (-937 (-554)))) 144) (((-3 $ "failed") (-1241 (-402 (-937 (-374))))) 112) (((-3 $ "failed") (-1241 (-402 (-937 (-554))))) 99)) (-1668 (($ (-1241 (-311 (-374)))) 130) (($ (-1241 (-311 (-554)))) 119) (($ (-1241 (-937 (-374)))) 150) (($ (-1241 (-937 (-554)))) 140) (($ (-1241 (-402 (-937 (-374))))) 108) (($ (-1241 (-402 (-937 (-554))))) 92)) (-1405 (((-1246) $) 83)) (-3075 (((-848) $) 75) (($ (-631 (-325))) NIL) (($ (-325)) NIL) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) NIL) (($ (-1241 (-334 (-3089 (QUOTE EPS)) (-3089 (QUOTE YA) (QUOTE YB)) (-685)))) 70)))
-(((-76 |#1| |#2| |#3|) (-13 (-435) (-10 -8 (-15 -3075 ($ (-1241 (-334 (-3089 (QUOTE EPS)) (-3089 (QUOTE YA) (QUOTE YB)) (-685))))))) (-1158) (-1158) (-1158)) (T -76))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-1241 (-334 (-3089 (QUOTE EPS)) (-3089 (QUOTE YA) (QUOTE YB)) (-685)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1158)) (-14 *4 (-1158)) (-14 *5 (-1158)))))
-(-13 (-435) (-10 -8 (-15 -3075 ($ (-1241 (-334 (-3089 (QUOTE EPS)) (-3089 (QUOTE YA) (QUOTE YB)) (-685)))))))
-((-2784 (((-3 $ "failed") (-311 (-374))) 82) (((-3 $ "failed") (-311 (-554))) 87) (((-3 $ "failed") (-937 (-374))) 91) (((-3 $ "failed") (-937 (-554))) 95) (((-3 $ "failed") (-402 (-937 (-374)))) 77) (((-3 $ "failed") (-402 (-937 (-554)))) 70)) (-1668 (($ (-311 (-374))) 80) (($ (-311 (-554))) 85) (($ (-937 (-374))) 89) (($ (-937 (-554))) 93) (($ (-402 (-937 (-374)))) 75) (($ (-402 (-937 (-554)))) 67)) (-1405 (((-1246) $) 62)) (-3075 (((-848) $) 50) (($ (-631 (-325))) 46) (($ (-325)) 56) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 54) (($ (-334 (-3089) (-3089 (QUOTE X)) (-685))) 47)))
-(((-77 |#1|) (-13 (-391) (-10 -8 (-15 -3075 ($ (-334 (-3089) (-3089 (QUOTE X)) (-685)))))) (-1158)) (T -77))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-334 (-3089) (-3089 (QUOTE X)) (-685))) (-5 *1 (-77 *3)) (-14 *3 (-1158)))))
-(-13 (-391) (-10 -8 (-15 -3075 ($ (-334 (-3089) (-3089 (QUOTE X)) (-685))))))
-((-2784 (((-3 $ "failed") (-311 (-374))) 46) (((-3 $ "failed") (-311 (-554))) 51) (((-3 $ "failed") (-937 (-374))) 55) (((-3 $ "failed") (-937 (-554))) 59) (((-3 $ "failed") (-402 (-937 (-374)))) 41) (((-3 $ "failed") (-402 (-937 (-554)))) 34)) (-1668 (($ (-311 (-374))) 44) (($ (-311 (-554))) 49) (($ (-937 (-374))) 53) (($ (-937 (-554))) 57) (($ (-402 (-937 (-374)))) 39) (($ (-402 (-937 (-554)))) 31)) (-1405 (((-1246) $) 80)) (-3075 (((-848) $) 74) (($ (-631 (-325))) 66) (($ (-325)) 71) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 69) (($ (-334 (-3089) (-3089 (QUOTE X)) (-685))) 30)))
-(((-78 |#1|) (-13 (-391) (-10 -8 (-15 -3075 ($ (-334 (-3089) (-3089 (QUOTE X)) (-685)))))) (-1158)) (T -78))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-334 (-3089) (-3089 (QUOTE X)) (-685))) (-5 *1 (-78 *3)) (-14 *3 (-1158)))))
-(-13 (-391) (-10 -8 (-15 -3075 ($ (-334 (-3089) (-3089 (QUOTE X)) (-685))))))
-((-2784 (((-3 $ "failed") (-1241 (-311 (-374)))) 89) (((-3 $ "failed") (-1241 (-311 (-554)))) 78) (((-3 $ "failed") (-1241 (-937 (-374)))) 109) (((-3 $ "failed") (-1241 (-937 (-554)))) 99) (((-3 $ "failed") (-1241 (-402 (-937 (-374))))) 67) (((-3 $ "failed") (-1241 (-402 (-937 (-554))))) 54)) (-1668 (($ (-1241 (-311 (-374)))) 85) (($ (-1241 (-311 (-554)))) 74) (($ (-1241 (-937 (-374)))) 105) (($ (-1241 (-937 (-554)))) 95) (($ (-1241 (-402 (-937 (-374))))) 63) (($ (-1241 (-402 (-937 (-554))))) 47)) (-1405 (((-1246) $) 125)) (-3075 (((-848) $) 119) (($ (-631 (-325))) 112) (($ (-325)) 37) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 115) (($ (-1241 (-334 (-3089) (-3089 (QUOTE XC)) (-685)))) 38)))
-(((-79 |#1|) (-13 (-435) (-10 -8 (-15 -3075 ($ (-1241 (-334 (-3089) (-3089 (QUOTE XC)) (-685))))))) (-1158)) (T -79))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-1241 (-334 (-3089) (-3089 (QUOTE XC)) (-685)))) (-5 *1 (-79 *3)) (-14 *3 (-1158)))))
-(-13 (-435) (-10 -8 (-15 -3075 ($ (-1241 (-334 (-3089) (-3089 (QUOTE XC)) (-685)))))))
-((-2784 (((-3 $ "failed") (-1241 (-311 (-374)))) 142) (((-3 $ "failed") (-1241 (-311 (-554)))) 132) (((-3 $ "failed") (-1241 (-937 (-374)))) 162) (((-3 $ "failed") (-1241 (-937 (-554)))) 152) (((-3 $ "failed") (-1241 (-402 (-937 (-374))))) 122) (((-3 $ "failed") (-1241 (-402 (-937 (-554))))) 110)) (-1668 (($ (-1241 (-311 (-374)))) 138) (($ (-1241 (-311 (-554)))) 128) (($ (-1241 (-937 (-374)))) 158) (($ (-1241 (-937 (-554)))) 148) (($ (-1241 (-402 (-937 (-374))))) 118) (($ (-1241 (-402 (-937 (-554))))) 103)) (-1405 (((-1246) $) 96)) (-3075 (((-848) $) 90) (($ (-631 (-325))) 81) (($ (-325)) 88) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 86) (($ (-1241 (-334 (-3089) (-3089 (QUOTE X)) (-685)))) 82)))
-(((-80 |#1|) (-13 (-435) (-10 -8 (-15 -3075 ($ (-1241 (-334 (-3089) (-3089 (QUOTE X)) (-685))))))) (-1158)) (T -80))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-1241 (-334 (-3089) (-3089 (QUOTE X)) (-685)))) (-5 *1 (-80 *3)) (-14 *3 (-1158)))))
-(-13 (-435) (-10 -8 (-15 -3075 ($ (-1241 (-334 (-3089) (-3089 (QUOTE X)) (-685)))))))
-((-2784 (((-3 $ "failed") (-1241 (-311 (-374)))) 78) (((-3 $ "failed") (-1241 (-311 (-554)))) 67) (((-3 $ "failed") (-1241 (-937 (-374)))) 98) (((-3 $ "failed") (-1241 (-937 (-554)))) 88) (((-3 $ "failed") (-1241 (-402 (-937 (-374))))) 56) (((-3 $ "failed") (-1241 (-402 (-937 (-554))))) 43)) (-1668 (($ (-1241 (-311 (-374)))) 74) (($ (-1241 (-311 (-554)))) 63) (($ (-1241 (-937 (-374)))) 94) (($ (-1241 (-937 (-554)))) 84) (($ (-1241 (-402 (-937 (-374))))) 52) (($ (-1241 (-402 (-937 (-554))))) 36)) (-1405 (((-1246) $) 124)) (-3075 (((-848) $) 118) (($ (-631 (-325))) 109) (($ (-325)) 115) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 113) (($ (-1241 (-334 (-3089) (-3089 (QUOTE X)) (-685)))) 35)))
-(((-81 |#1|) (-13 (-435) (-604 (-1241 (-334 (-3089) (-3089 (QUOTE X)) (-685))))) (-1158)) (T -81))
-NIL
-(-13 (-435) (-604 (-1241 (-334 (-3089) (-3089 (QUOTE X)) (-685)))))
-((-2784 (((-3 $ "failed") (-1241 (-311 (-374)))) 95) (((-3 $ "failed") (-1241 (-311 (-554)))) 84) (((-3 $ "failed") (-1241 (-937 (-374)))) 115) (((-3 $ "failed") (-1241 (-937 (-554)))) 105) (((-3 $ "failed") (-1241 (-402 (-937 (-374))))) 73) (((-3 $ "failed") (-1241 (-402 (-937 (-554))))) 60)) (-1668 (($ (-1241 (-311 (-374)))) 91) (($ (-1241 (-311 (-554)))) 80) (($ (-1241 (-937 (-374)))) 111) (($ (-1241 (-937 (-554)))) 101) (($ (-1241 (-402 (-937 (-374))))) 69) (($ (-1241 (-402 (-937 (-554))))) 53)) (-1405 (((-1246) $) 45)) (-3075 (((-848) $) 39) (($ (-631 (-325))) 29) (($ (-325)) 32) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 35) (($ (-1241 (-334 (-3089 (QUOTE X) (QUOTE -1277)) (-3089) (-685)))) 30)))
-(((-82 |#1|) (-13 (-435) (-10 -8 (-15 -3075 ($ (-1241 (-334 (-3089 (QUOTE X) (QUOTE -1277)) (-3089) (-685))))))) (-1158)) (T -82))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-1241 (-334 (-3089 (QUOTE X) (QUOTE -1277)) (-3089) (-685)))) (-5 *1 (-82 *3)) (-14 *3 (-1158)))))
-(-13 (-435) (-10 -8 (-15 -3075 ($ (-1241 (-334 (-3089 (QUOTE X) (QUOTE -1277)) (-3089) (-685)))))))
-((-2784 (((-3 $ "failed") (-675 (-311 (-374)))) 115) (((-3 $ "failed") (-675 (-311 (-554)))) 104) (((-3 $ "failed") (-675 (-937 (-374)))) 137) (((-3 $ "failed") (-675 (-937 (-554)))) 126) (((-3 $ "failed") (-675 (-402 (-937 (-374))))) 93) (((-3 $ "failed") (-675 (-402 (-937 (-554))))) 80)) (-1668 (($ (-675 (-311 (-374)))) 111) (($ (-675 (-311 (-554)))) 100) (($ (-675 (-937 (-374)))) 133) (($ (-675 (-937 (-554)))) 122) (($ (-675 (-402 (-937 (-374))))) 89) (($ (-675 (-402 (-937 (-554))))) 73)) (-1405 (((-1246) $) 63)) (-3075 (((-848) $) 50) (($ (-631 (-325))) 57) (($ (-325)) 46) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 55) (($ (-675 (-334 (-3089 (QUOTE X) (QUOTE -1277)) (-3089) (-685)))) 47)))
-(((-83 |#1|) (-13 (-379) (-10 -8 (-15 -3075 ($ (-675 (-334 (-3089 (QUOTE X) (QUOTE -1277)) (-3089) (-685))))))) (-1158)) (T -83))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-675 (-334 (-3089 (QUOTE X) (QUOTE -1277)) (-3089) (-685)))) (-5 *1 (-83 *3)) (-14 *3 (-1158)))))
-(-13 (-379) (-10 -8 (-15 -3075 ($ (-675 (-334 (-3089 (QUOTE X) (QUOTE -1277)) (-3089) (-685)))))))
-((-2784 (((-3 $ "failed") (-675 (-311 (-374)))) 112) (((-3 $ "failed") (-675 (-311 (-554)))) 100) (((-3 $ "failed") (-675 (-937 (-374)))) 134) (((-3 $ "failed") (-675 (-937 (-554)))) 123) (((-3 $ "failed") (-675 (-402 (-937 (-374))))) 88) (((-3 $ "failed") (-675 (-402 (-937 (-554))))) 74)) (-1668 (($ (-675 (-311 (-374)))) 108) (($ (-675 (-311 (-554)))) 96) (($ (-675 (-937 (-374)))) 130) (($ (-675 (-937 (-554)))) 119) (($ (-675 (-402 (-937 (-374))))) 84) (($ (-675 (-402 (-937 (-554))))) 67)) (-1405 (((-1246) $) 59)) (-3075 (((-848) $) 53) (($ (-631 (-325))) 47) (($ (-325)) 50) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 44) (($ (-675 (-334 (-3089 (QUOTE X)) (-3089) (-685)))) 45)))
-(((-84 |#1|) (-13 (-379) (-10 -8 (-15 -3075 ($ (-675 (-334 (-3089 (QUOTE X)) (-3089) (-685))))))) (-1158)) (T -84))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-675 (-334 (-3089 (QUOTE X)) (-3089) (-685)))) (-5 *1 (-84 *3)) (-14 *3 (-1158)))))
-(-13 (-379) (-10 -8 (-15 -3075 ($ (-675 (-334 (-3089 (QUOTE X)) (-3089) (-685)))))))
-((-2784 (((-3 $ "failed") (-1241 (-311 (-374)))) 104) (((-3 $ "failed") (-1241 (-311 (-554)))) 93) (((-3 $ "failed") (-1241 (-937 (-374)))) 124) (((-3 $ "failed") (-1241 (-937 (-554)))) 114) (((-3 $ "failed") (-1241 (-402 (-937 (-374))))) 82) (((-3 $ "failed") (-1241 (-402 (-937 (-554))))) 69)) (-1668 (($ (-1241 (-311 (-374)))) 100) (($ (-1241 (-311 (-554)))) 89) (($ (-1241 (-937 (-374)))) 120) (($ (-1241 (-937 (-554)))) 110) (($ (-1241 (-402 (-937 (-374))))) 78) (($ (-1241 (-402 (-937 (-554))))) 62)) (-1405 (((-1246) $) 46)) (-3075 (((-848) $) 40) (($ (-631 (-325))) 49) (($ (-325)) 36) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 52) (($ (-1241 (-334 (-3089 (QUOTE X)) (-3089) (-685)))) 37)))
-(((-85 |#1|) (-13 (-435) (-10 -8 (-15 -3075 ($ (-1241 (-334 (-3089 (QUOTE X)) (-3089) (-685))))))) (-1158)) (T -85))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-1241 (-334 (-3089 (QUOTE X)) (-3089) (-685)))) (-5 *1 (-85 *3)) (-14 *3 (-1158)))))
-(-13 (-435) (-10 -8 (-15 -3075 ($ (-1241 (-334 (-3089 (QUOTE X)) (-3089) (-685)))))))
-((-2784 (((-3 $ "failed") (-1241 (-311 (-374)))) 79) (((-3 $ "failed") (-1241 (-311 (-554)))) 68) (((-3 $ "failed") (-1241 (-937 (-374)))) 99) (((-3 $ "failed") (-1241 (-937 (-554)))) 89) (((-3 $ "failed") (-1241 (-402 (-937 (-374))))) 57) (((-3 $ "failed") (-1241 (-402 (-937 (-554))))) 44)) (-1668 (($ (-1241 (-311 (-374)))) 75) (($ (-1241 (-311 (-554)))) 64) (($ (-1241 (-937 (-374)))) 95) (($ (-1241 (-937 (-554)))) 85) (($ (-1241 (-402 (-937 (-374))))) 53) (($ (-1241 (-402 (-937 (-554))))) 37)) (-1405 (((-1246) $) 125)) (-3075 (((-848) $) 119) (($ (-631 (-325))) 110) (($ (-325)) 116) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 114) (($ (-1241 (-334 (-3089 (QUOTE X)) (-3089 (QUOTE -1277)) (-685)))) 36)))
-(((-86 |#1|) (-13 (-435) (-10 -8 (-15 -3075 ($ (-1241 (-334 (-3089 (QUOTE X)) (-3089 (QUOTE -1277)) (-685))))))) (-1158)) (T -86))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-1241 (-334 (-3089 (QUOTE X)) (-3089 (QUOTE -1277)) (-685)))) (-5 *1 (-86 *3)) (-14 *3 (-1158)))))
-(-13 (-435) (-10 -8 (-15 -3075 ($ (-1241 (-334 (-3089 (QUOTE X)) (-3089 (QUOTE -1277)) (-685)))))))
-((-2784 (((-3 $ "failed") (-675 (-311 (-374)))) 113) (((-3 $ "failed") (-675 (-311 (-554)))) 101) (((-3 $ "failed") (-675 (-937 (-374)))) 135) (((-3 $ "failed") (-675 (-937 (-554)))) 124) (((-3 $ "failed") (-675 (-402 (-937 (-374))))) 89) (((-3 $ "failed") (-675 (-402 (-937 (-554))))) 75)) (-1668 (($ (-675 (-311 (-374)))) 109) (($ (-675 (-311 (-554)))) 97) (($ (-675 (-937 (-374)))) 131) (($ (-675 (-937 (-554)))) 120) (($ (-675 (-402 (-937 (-374))))) 85) (($ (-675 (-402 (-937 (-554))))) 68)) (-1405 (((-1246) $) 59)) (-3075 (((-848) $) 53) (($ (-631 (-325))) 43) (($ (-325)) 50) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 48) (($ (-675 (-334 (-3089 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3089) (-685)))) 44)))
-(((-87 |#1|) (-13 (-379) (-10 -8 (-15 -3075 ($ (-675 (-334 (-3089 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3089) (-685))))))) (-1158)) (T -87))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-675 (-334 (-3089 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3089) (-685)))) (-5 *1 (-87 *3)) (-14 *3 (-1158)))))
-(-13 (-379) (-10 -8 (-15 -3075 ($ (-675 (-334 (-3089 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3089) (-685)))))))
-((-1405 (((-1246) $) 44)) (-3075 (((-848) $) 38) (($ (-1241 (-685))) 92) (($ (-631 (-325))) 30) (($ (-325)) 35) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 33)))
-(((-88 |#1|) (-434) (-1158)) (T -88))
-NIL
-(-434)
-((-2784 (((-3 $ "failed") (-311 (-374))) 47) (((-3 $ "failed") (-311 (-554))) 52) (((-3 $ "failed") (-937 (-374))) 56) (((-3 $ "failed") (-937 (-554))) 60) (((-3 $ "failed") (-402 (-937 (-374)))) 42) (((-3 $ "failed") (-402 (-937 (-554)))) 35)) (-1668 (($ (-311 (-374))) 45) (($ (-311 (-554))) 50) (($ (-937 (-374))) 54) (($ (-937 (-554))) 58) (($ (-402 (-937 (-374)))) 40) (($ (-402 (-937 (-554)))) 32)) (-1405 (((-1246) $) 90)) (-3075 (((-848) $) 84) (($ (-631 (-325))) 78) (($ (-325)) 81) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 76) (($ (-334 (-3089 (QUOTE X)) (-3089 (QUOTE -1277)) (-685))) 31)))
-(((-89 |#1|) (-13 (-391) (-10 -8 (-15 -3075 ($ (-334 (-3089 (QUOTE X)) (-3089 (QUOTE -1277)) (-685)))))) (-1158)) (T -89))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-334 (-3089 (QUOTE X)) (-3089 (QUOTE -1277)) (-685))) (-5 *1 (-89 *3)) (-14 *3 (-1158)))))
-(-13 (-391) (-10 -8 (-15 -3075 ($ (-334 (-3089 (QUOTE X)) (-3089 (QUOTE -1277)) (-685))))))
-((-4238 (((-1241 (-675 |#1|)) (-675 |#1|)) 54)) (-3507 (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 (-631 (-906))))) |#2| (-906)) 44)) (-4000 (((-2 (|:| |minor| (-631 (-906))) (|:| -4329 |#2|) (|:| |minors| (-631 (-631 (-906)))) (|:| |ops| (-631 |#2|))) |#2| (-906)) 65 (|has| |#1| (-358)))))
-(((-90 |#1| |#2|) (-10 -7 (-15 -3507 ((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 (-631 (-906))))) |#2| (-906))) (-15 -4238 ((-1241 (-675 |#1|)) (-675 |#1|))) (IF (|has| |#1| (-358)) (-15 -4000 ((-2 (|:| |minor| (-631 (-906))) (|:| -4329 |#2|) (|:| |minors| (-631 (-631 (-906)))) (|:| |ops| (-631 |#2|))) |#2| (-906))) |%noBranch|)) (-546) (-642 |#1|)) (T -90))
-((-4000 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-4 *5 (-546)) (-5 *2 (-2 (|:| |minor| (-631 (-906))) (|:| -4329 *3) (|:| |minors| (-631 (-631 (-906)))) (|:| |ops| (-631 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-906)) (-4 *3 (-642 *5)))) (-4238 (*1 *2 *3) (-12 (-4 *4 (-546)) (-5 *2 (-1241 (-675 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-675 *4)) (-4 *5 (-642 *4)))) (-3507 (*1 *2 *3 *4) (-12 (-4 *5 (-546)) (-5 *2 (-2 (|:| -2866 (-675 *5)) (|:| |vec| (-1241 (-631 (-906)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-906)) (-4 *3 (-642 *5)))))
-(-10 -7 (-15 -3507 ((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 (-631 (-906))))) |#2| (-906))) (-15 -4238 ((-1241 (-675 |#1|)) (-675 |#1|))) (IF (|has| |#1| (-358)) (-15 -4000 ((-2 (|:| |minor| (-631 (-906))) (|:| -4329 |#2|) (|:| |minors| (-631 (-631 (-906)))) (|:| |ops| (-631 |#2|))) |#2| (-906))) |%noBranch|))
-((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2292 ((|#1| $) 35)) (-3019 (((-112) $ (-758)) NIL)) (-4087 (($) NIL T CONST)) (-1790 ((|#1| |#1| $) 30)) (-3956 ((|#1| $) 28)) (-2466 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) NIL)) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2849 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-4150 ((|#1| $) NIL)) (-2045 (($ |#1| $) 31)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-2152 ((|#1| $) 29)) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) 16)) (-4240 (($) 39)) (-2763 (((-758) $) 26)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1521 (($ $) 15)) (-3075 (((-848) $) 25 (|has| |#1| (-601 (-848))))) (-1591 (($ (-631 |#1|)) NIL)) (-1800 (($ (-631 |#1|)) 37)) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 13 (|has| |#1| (-1082)))) (-2563 (((-758) $) 10 (|has| $ (-6 -4373)))))
-(((-91 |#1|) (-13 (-1103 |#1|) (-10 -8 (-15 -1800 ($ (-631 |#1|))))) (-1082)) (T -91))
-((-1800 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-5 *1 (-91 *3)))))
-(-13 (-1103 |#1|) (-10 -8 (-15 -1800 ($ (-631 |#1|)))))
-((-3075 (((-848) $) 13) (($ (-1163)) 9) (((-1163) $) 8)))
-(((-92 |#1|) (-10 -8 (-15 -3075 ((-1163) |#1|)) (-15 -3075 (|#1| (-1163))) (-15 -3075 ((-848) |#1|))) (-93)) (T -92))
-NIL
-(-10 -8 (-15 -3075 ((-1163) |#1|)) (-15 -3075 (|#1| (-1163))) (-15 -3075 ((-848) |#1|)))
-((-3062 (((-112) $ $) 7)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11) (($ (-1163)) 16) (((-1163) $) 15)) (-1658 (((-112) $ $) 6)))
-(((-93) (-138)) (T -93))
-NIL
-(-13 (-1082) (-484 (-1163)))
-(((-102) . T) ((-604 #0=(-1163)) . T) ((-601 (-848)) . T) ((-601 #0#) . T) ((-484 #0#) . T) ((-1082) . T))
-((-2981 (($ $) 10)) (-2991 (($ $) 12)))
-(((-94 |#1|) (-10 -8 (-15 -2991 (|#1| |#1|)) (-15 -2981 (|#1| |#1|))) (-95)) (T -94))
-NIL
-(-10 -8 (-15 -2991 (|#1| |#1|)) (-15 -2981 (|#1| |#1|)))
-((-2959 (($ $) 11)) (-2938 (($ $) 10)) (-2981 (($ $) 9)) (-2991 (($ $) 8)) (-2969 (($ $) 7)) (-2948 (($ $) 6)))
-(((-95) (-138)) (T -95))
-((-2959 (*1 *1 *1) (-4 *1 (-95))) (-2938 (*1 *1 *1) (-4 *1 (-95))) (-2981 (*1 *1 *1) (-4 *1 (-95))) (-2991 (*1 *1 *1) (-4 *1 (-95))) (-2969 (*1 *1 *1) (-4 *1 (-95))) (-2948 (*1 *1 *1) (-4 *1 (-95))))
-(-13 (-10 -8 (-15 -2948 ($ $)) (-15 -2969 ($ $)) (-15 -2991 ($ $)) (-15 -2981 ($ $)) (-15 -2938 ($ $)) (-15 -2959 ($ $))))
-((-3062 (((-112) $ $) NIL)) (-4309 (((-1117) $) 9)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 17) (($ (-1163)) NIL) (((-1163) $) NIL)) (-1658 (((-112) $ $) NIL)))
-(((-96) (-13 (-1065) (-10 -8 (-15 -4309 ((-1117) $))))) (T -96))
-((-4309 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-96)))))
-(-13 (-1065) (-10 -8 (-15 -4309 ((-1117) $))))
-((-3062 (((-112) $ $) NIL)) (-1282 (((-374) (-1140) (-374)) 42) (((-374) (-1140) (-1140) (-374)) 41)) (-1640 (((-374) (-374)) 33)) (-1278 (((-1246)) 36)) (-1613 (((-1140) $) NIL)) (-2553 (((-374) (-1140) (-1140)) 46) (((-374) (-1140)) 48)) (-2768 (((-1102) $) NIL)) (-2163 (((-374) (-1140) (-1140)) 47)) (-2442 (((-374) (-1140) (-1140)) 49) (((-374) (-1140)) 50)) (-3075 (((-848) $) NIL)) (-1658 (((-112) $ $) NIL)))
-(((-97) (-13 (-1082) (-10 -7 (-15 -2553 ((-374) (-1140) (-1140))) (-15 -2553 ((-374) (-1140))) (-15 -2442 ((-374) (-1140) (-1140))) (-15 -2442 ((-374) (-1140))) (-15 -2163 ((-374) (-1140) (-1140))) (-15 -1278 ((-1246))) (-15 -1640 ((-374) (-374))) (-15 -1282 ((-374) (-1140) (-374))) (-15 -1282 ((-374) (-1140) (-1140) (-374))) (-6 -4373)))) (T -97))
-((-2553 (*1 *2 *3 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-374)) (-5 *1 (-97)))) (-2553 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-374)) (-5 *1 (-97)))) (-2442 (*1 *2 *3 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-374)) (-5 *1 (-97)))) (-2442 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-374)) (-5 *1 (-97)))) (-2163 (*1 *2 *3 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-374)) (-5 *1 (-97)))) (-1278 (*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-97)))) (-1640 (*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-97)))) (-1282 (*1 *2 *3 *2) (-12 (-5 *2 (-374)) (-5 *3 (-1140)) (-5 *1 (-97)))) (-1282 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-374)) (-5 *3 (-1140)) (-5 *1 (-97)))))
-(-13 (-1082) (-10 -7 (-15 -2553 ((-374) (-1140) (-1140))) (-15 -2553 ((-374) (-1140))) (-15 -2442 ((-374) (-1140) (-1140))) (-15 -2442 ((-374) (-1140))) (-15 -2163 ((-374) (-1140) (-1140))) (-15 -1278 ((-1246))) (-15 -1640 ((-374) (-374))) (-15 -1282 ((-374) (-1140) (-374))) (-15 -1282 ((-374) (-1140) (-1140) (-374))) (-6 -4373)))
-NIL
-(((-98) (-138)) (T -98))
-NIL
-(-13 (-10 -7 (-6 -4373) (-6 (-4375 "*")) (-6 -4374) (-6 -4370) (-6 -4368) (-6 -4367) (-6 -4366) (-6 -4371) (-6 -4365) (-6 -4364) (-6 -4363) (-6 -4362) (-6 -4361) (-6 -4369) (-6 -4372) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4360)))
-((-3062 (((-112) $ $) NIL)) (-4087 (($) NIL T CONST)) (-1320 (((-3 $ "failed") $) NIL)) (-3248 (((-112) $) NIL)) (-3949 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-554))) 22)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) 14)) (-2768 (((-1102) $) NIL)) (-2064 ((|#1| $ |#1|) 11)) (-3992 (($ $ $) NIL)) (-1856 (($ $ $) NIL)) (-3075 (((-848) $) 20)) (-2014 (($) 8 T CONST)) (-1658 (((-112) $ $) 10)) (-1752 (($ $ $) NIL)) (** (($ $ (-906)) 27) (($ $ (-758)) NIL) (($ $ (-554)) 16)) (* (($ $ $) 28)))
-(((-99 |#1|) (-13 (-467) (-281 |#1| |#1|) (-10 -8 (-15 -3949 ($ (-1 |#1| |#1|))) (-15 -3949 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3949 ($ (-1 |#1| |#1| (-554)))))) (-1034)) (T -99))
-((-3949 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1034)) (-5 *1 (-99 *3)))) (-3949 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1034)) (-5 *1 (-99 *3)))) (-3949 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-554))) (-4 *3 (-1034)) (-5 *1 (-99 *3)))))
-(-13 (-467) (-281 |#1| |#1|) (-10 -8 (-15 -3949 ($ (-1 |#1| |#1|))) (-15 -3949 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3949 ($ (-1 |#1| |#1| (-554))))))
-((-3721 (((-413 |#2|) |#2| (-631 |#2|)) 10) (((-413 |#2|) |#2| |#2|) 11)))
-(((-100 |#1| |#2|) (-10 -7 (-15 -3721 ((-413 |#2|) |#2| |#2|)) (-15 -3721 ((-413 |#2|) |#2| (-631 |#2|)))) (-13 (-446) (-145)) (-1217 |#1|)) (T -100))
-((-3721 (*1 *2 *3 *4) (-12 (-5 *4 (-631 *3)) (-4 *3 (-1217 *5)) (-4 *5 (-13 (-446) (-145))) (-5 *2 (-413 *3)) (-5 *1 (-100 *5 *3)))) (-3721 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-446) (-145))) (-5 *2 (-413 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1217 *4)))))
-(-10 -7 (-15 -3721 ((-413 |#2|) |#2| |#2|)) (-15 -3721 ((-413 |#2|) |#2| (-631 |#2|))))
-((-3062 (((-112) $ $) 10)))
-(((-101 |#1|) (-10 -8 (-15 -3062 ((-112) |#1| |#1|))) (-102)) (T -101))
-NIL
-(-10 -8 (-15 -3062 ((-112) |#1| |#1|)))
-((-3062 (((-112) $ $) 7)) (-1658 (((-112) $ $) 6)))
-(((-102) (-138)) (T -102))
-((-3062 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-1658 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))))
-(-13 (-10 -8 (-15 -1658 ((-112) $ $)) (-15 -3062 ((-112) $ $))))
-((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2794 ((|#1| $) NIL)) (-3019 (((-112) $ (-758)) NIL)) (-2690 ((|#1| $ |#1|) 13 (|has| $ (-6 -4374)))) (-2336 (($ $ $) NIL (|has| $ (-6 -4374)))) (-2035 (($ $ $) NIL (|has| $ (-6 -4374)))) (-4078 (($ $ (-631 |#1|)) 15)) (-1501 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4374))) (($ $ "left" $) NIL (|has| $ (-6 -4374))) (($ $ "right" $) NIL (|has| $ (-6 -4374)))) (-2923 (($ $ (-631 $)) NIL (|has| $ (-6 -4374)))) (-4087 (($) NIL T CONST)) (-3324 (($ $) 11)) (-2466 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3677 (((-631 $) $) NIL)) (-1990 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2987 (($ $ |#1| $) 17)) (-2230 (((-112) $ (-758)) NIL)) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2315 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-3683 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-631 |#1|) |#1| |#1| |#1|)) 35)) (-2849 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-3311 (($ $) 10)) (-2306 (((-631 |#1|) $) NIL)) (-3216 (((-112) $) 12)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) 9)) (-4240 (($) 16)) (-2064 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3250 (((-554) $ $) NIL)) (-3008 (((-112) $) NIL)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1521 (($ $) NIL)) (-3075 (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-2461 (((-631 $) $) NIL)) (-1441 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-3627 (($ (-758) |#1|) 19)) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-103 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4373) (-6 -4374) (-15 -3627 ($ (-758) |#1|)) (-15 -4078 ($ $ (-631 |#1|))) (-15 -2315 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2315 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3683 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3683 ($ $ |#1| (-1 (-631 |#1|) |#1| |#1| |#1|))))) (-1082)) (T -103))
-((-3627 (*1 *1 *2 *3) (-12 (-5 *2 (-758)) (-5 *1 (-103 *3)) (-4 *3 (-1082)))) (-4078 (*1 *1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-5 *1 (-103 *3)))) (-2315 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1082)))) (-2315 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1082)) (-5 *1 (-103 *3)))) (-3683 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1082)) (-5 *1 (-103 *2)))) (-3683 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-631 *2) *2 *2 *2)) (-4 *2 (-1082)) (-5 *1 (-103 *2)))))
-(-13 (-125 |#1|) (-10 -8 (-6 -4373) (-6 -4374) (-15 -3627 ($ (-758) |#1|)) (-15 -4078 ($ $ (-631 |#1|))) (-15 -2315 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2315 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3683 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3683 ($ $ |#1| (-1 (-631 |#1|) |#1| |#1| |#1|)))))
-((-1888 ((|#3| |#2| |#2|) 29)) (-1917 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4375 "*"))))) (-1306 ((|#3| |#2| |#2|) 30)) (-2566 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4375 "*"))))))
-(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1888 (|#3| |#2| |#2|)) (-15 -1306 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4375 "*"))) (PROGN (-15 -1917 (|#1| |#2| |#2|)) (-15 -2566 (|#1| |#2|))) |%noBranch|)) (-1034) (-1217 |#1|) (-673 |#1| |#4| |#5|) (-368 |#1|) (-368 |#1|)) (T -104))
-((-2566 (*1 *2 *3) (-12 (|has| *2 (-6 (-4375 "*"))) (-4 *5 (-368 *2)) (-4 *6 (-368 *2)) (-4 *2 (-1034)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1217 *2)) (-4 *4 (-673 *2 *5 *6)))) (-1917 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4375 "*"))) (-4 *5 (-368 *2)) (-4 *6 (-368 *2)) (-4 *2 (-1034)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1217 *2)) (-4 *4 (-673 *2 *5 *6)))) (-1306 (*1 *2 *3 *3) (-12 (-4 *4 (-1034)) (-4 *2 (-673 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1217 *4)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)))) (-1888 (*1 *2 *3 *3) (-12 (-4 *4 (-1034)) (-4 *2 (-673 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1217 *4)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)))))
-(-10 -7 (-15 -1888 (|#3| |#2| |#2|)) (-15 -1306 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4375 "*"))) (PROGN (-15 -1917 (|#1| |#2| |#2|)) (-15 -2566 (|#1| |#2|))) |%noBranch|))
-((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-2470 (((-631 (-1158))) 33)) (-3998 (((-2 (|:| |zeros| (-1138 (-221))) (|:| |ones| (-1138 (-221))) (|:| |singularities| (-1138 (-221)))) (-1158)) 35)) (-1658 (((-112) $ $) NIL)))
-(((-105) (-13 (-1082) (-10 -7 (-15 -2470 ((-631 (-1158)))) (-15 -3998 ((-2 (|:| |zeros| (-1138 (-221))) (|:| |ones| (-1138 (-221))) (|:| |singularities| (-1138 (-221)))) (-1158))) (-6 -4373)))) (T -105))
-((-2470 (*1 *2) (-12 (-5 *2 (-631 (-1158))) (-5 *1 (-105)))) (-3998 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-2 (|:| |zeros| (-1138 (-221))) (|:| |ones| (-1138 (-221))) (|:| |singularities| (-1138 (-221))))) (-5 *1 (-105)))))
-(-13 (-1082) (-10 -7 (-15 -2470 ((-631 (-1158)))) (-15 -3998 ((-2 (|:| |zeros| (-1138 (-221))) (|:| |ones| (-1138 (-221))) (|:| |singularities| (-1138 (-221)))) (-1158))) (-6 -4373)))
-((-1591 (($ (-631 |#2|)) 11)))
-(((-106 |#1| |#2|) (-10 -8 (-15 -1591 (|#1| (-631 |#2|)))) (-107 |#2|) (-1195)) (T -106))
-NIL
-(-10 -8 (-15 -1591 (|#1| (-631 |#2|))))
-((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-3019 (((-112) $ (-758)) 8)) (-4087 (($) 7 T CONST)) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) 9)) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35)) (-3731 (((-112) $ (-758)) 10)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-4150 ((|#1| $) 39)) (-2045 (($ |#1| $) 40)) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-2152 ((|#1| $) 41)) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-1591 (($ (-631 |#1|)) 42)) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373)))))
-(((-107 |#1|) (-138) (-1195)) (T -107))
-((-1591 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1195)) (-4 *1 (-107 *3)))) (-2152 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1195)))) (-2045 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1195)))) (-4150 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1195)))))
-(-13 (-483 |t#1|) (-10 -8 (-6 -4374) (-15 -1591 ($ (-631 |t#1|))) (-15 -2152 (|t#1| $)) (-15 -2045 ($ |t#1| $)) (-15 -4150 (|t#1| $))))
-(((-34) . T) ((-102) |has| |#1| (-1082)) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-601 (-848)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-1082) |has| |#1| (-1082)) ((-1195) . T))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-3831 (((-554) $) NIL (|has| (-554) (-302)))) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (|has| (-554) (-894)))) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (|has| (-554) (-894)))) (-2286 (((-112) $ $) NIL)) (-4219 (((-554) $) NIL (|has| (-554) (-807)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) NIL) (((-3 (-1158) "failed") $) NIL (|has| (-554) (-1023 (-1158)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| (-554) (-1023 (-554)))) (((-3 (-554) "failed") $) NIL (|has| (-554) (-1023 (-554))))) (-1668 (((-554) $) NIL) (((-1158) $) NIL (|has| (-554) (-1023 (-1158)))) (((-402 (-554)) $) NIL (|has| (-554) (-1023 (-554)))) (((-554) $) NIL (|has| (-554) (-1023 (-554))))) (-3964 (($ $ $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| (-554) (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| (-554) (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL) (((-675 (-554)) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3353 (($) NIL (|has| (-554) (-539)))) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-2745 (((-112) $) NIL (|has| (-554) (-807)))) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (|has| (-554) (-871 (-554)))) (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (|has| (-554) (-871 (-374))))) (-3248 (((-112) $) NIL)) (-3472 (($ $) NIL)) (-2810 (((-554) $) NIL)) (-3339 (((-3 $ "failed") $) NIL (|has| (-554) (-1133)))) (-4304 (((-112) $) NIL (|has| (-554) (-807)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-4223 (($ $ $) NIL (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (|has| (-554) (-836)))) (-2879 (($ (-1 (-554) (-554)) $) NIL)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-3834 (($) NIL (|has| (-554) (-1133)) CONST)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3722 (($ $) NIL (|has| (-554) (-302))) (((-402 (-554)) $) NIL)) (-4339 (((-554) $) NIL (|has| (-554) (-539)))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (|has| (-554) (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (|has| (-554) (-894)))) (-2270 (((-413 $) $) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2386 (($ $ (-631 (-554)) (-631 (-554))) NIL (|has| (-554) (-304 (-554)))) (($ $ (-554) (-554)) NIL (|has| (-554) (-304 (-554)))) (($ $ (-289 (-554))) NIL (|has| (-554) (-304 (-554)))) (($ $ (-631 (-289 (-554)))) NIL (|has| (-554) (-304 (-554)))) (($ $ (-631 (-1158)) (-631 (-554))) NIL (|has| (-554) (-508 (-1158) (-554)))) (($ $ (-1158) (-554)) NIL (|has| (-554) (-508 (-1158) (-554))))) (-2072 (((-758) $) NIL)) (-2064 (($ $ (-554)) NIL (|has| (-554) (-281 (-554) (-554))))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-1553 (($ $) NIL (|has| (-554) (-229))) (($ $ (-758)) NIL (|has| (-554) (-229))) (($ $ (-1158)) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-1 (-554) (-554)) (-758)) NIL) (($ $ (-1 (-554) (-554))) NIL)) (-3623 (($ $) NIL)) (-2822 (((-554) $) NIL)) (-2927 (((-877 (-554)) $) NIL (|has| (-554) (-602 (-877 (-554))))) (((-877 (-374)) $) NIL (|has| (-554) (-602 (-877 (-374))))) (((-530) $) NIL (|has| (-554) (-602 (-530)))) (((-374) $) NIL (|has| (-554) (-1007))) (((-221) $) NIL (|has| (-554) (-1007)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| (-554) (-894))))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL) (($ (-402 (-554))) 8) (($ (-554)) NIL) (($ (-1158)) NIL (|has| (-554) (-1023 (-1158)))) (((-402 (-554)) $) NIL) (((-989 2) $) 10)) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| (-554) (-894))) (|has| (-554) (-143))))) (-2261 (((-758)) NIL)) (-2755 (((-554) $) NIL (|has| (-554) (-539)))) (-1522 (($ (-402 (-554))) 9)) (-1909 (((-112) $ $) NIL)) (-1700 (($ $) NIL (|has| (-554) (-807)))) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $) NIL (|has| (-554) (-229))) (($ $ (-758)) NIL (|has| (-554) (-229))) (($ $ (-1158)) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-1 (-554) (-554)) (-758)) NIL) (($ $ (-1 (-554) (-554))) NIL)) (-1708 (((-112) $ $) NIL (|has| (-554) (-836)))) (-1686 (((-112) $ $) NIL (|has| (-554) (-836)))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (|has| (-554) (-836)))) (-1676 (((-112) $ $) NIL (|has| (-554) (-836)))) (-1752 (($ $ $) NIL) (($ (-554) (-554)) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL) (($ (-554) $) NIL) (($ $ (-554)) NIL)))
-(((-108) (-13 (-977 (-554)) (-601 (-402 (-554))) (-601 (-989 2)) (-10 -8 (-15 -3722 ((-402 (-554)) $)) (-15 -1522 ($ (-402 (-554))))))) (T -108))
-((-3722 (*1 *2 *1) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-108)))) (-1522 (*1 *1 *2) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-108)))))
-(-13 (-977 (-554)) (-601 (-402 (-554))) (-601 (-989 2)) (-10 -8 (-15 -3722 ((-402 (-554)) $)) (-15 -1522 ($ (-402 (-554))))))
-((-2171 (((-631 (-950)) $) 14)) (-4309 (((-1158) $) 10)) (-3075 (((-848) $) 23)) (-4328 (($ (-1158) (-631 (-950))) 15)))
-(((-109) (-13 (-601 (-848)) (-10 -8 (-15 -4309 ((-1158) $)) (-15 -2171 ((-631 (-950)) $)) (-15 -4328 ($ (-1158) (-631 (-950))))))) (T -109))
-((-4309 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-109)))) (-2171 (*1 *2 *1) (-12 (-5 *2 (-631 (-950))) (-5 *1 (-109)))) (-4328 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-631 (-950))) (-5 *1 (-109)))))
-(-13 (-601 (-848)) (-10 -8 (-15 -4309 ((-1158) $)) (-15 -2171 ((-631 (-950)) $)) (-15 -4328 ($ (-1158) (-631 (-950))))))
-((-3062 (((-112) $ $) NIL)) (-1285 (($ $) NIL)) (-4066 (($ $ $) NIL)) (-4233 (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-4015 (((-112) $) NIL (|has| (-112) (-836))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2576 (($ $) NIL (-12 (|has| $ (-6 -4374)) (|has| (-112) (-836)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4374)))) (-3303 (($ $) NIL (|has| (-112) (-836))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3019 (((-112) $ (-758)) NIL)) (-1501 (((-112) $ (-1208 (-554)) (-112)) NIL (|has| $ (-6 -4374))) (((-112) $ (-554) (-112)) NIL (|has| $ (-6 -4374)))) (-1871 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4373)))) (-4087 (($) NIL T CONST)) (-3920 (($ $) NIL (|has| $ (-6 -4374)))) (-3799 (($ $) NIL)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-112) (-1082))))) (-2574 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4373))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-112) (-1082))))) (-3676 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4373)) (|has| (-112) (-1082))))) (-2862 (((-112) $ (-554) (-112)) NIL (|has| $ (-6 -4374)))) (-2796 (((-112) $ (-554)) NIL)) (-1484 (((-554) (-112) $ (-554)) NIL (|has| (-112) (-1082))) (((-554) (-112) $) NIL (|has| (-112) (-1082))) (((-554) (-1 (-112) (-112)) $) NIL)) (-2466 (((-631 (-112)) $) NIL (|has| $ (-6 -4373)))) (-3038 (($ $ $) NIL)) (-4081 (($ $) NIL)) (-3811 (($ $ $) NIL)) (-3180 (($ (-758) (-112)) 8)) (-2860 (($ $ $) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) NIL (|has| (-554) (-836)))) (-4223 (($ $ $) NIL)) (-3717 (($ $ $) NIL (|has| (-112) (-836))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2379 (((-631 (-112)) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-112) (-1082))))) (-2256 (((-554) $) NIL (|has| (-554) (-836)))) (-2706 (($ $ $) NIL)) (-2849 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL)) (-1782 (($ $ $ (-554)) NIL) (($ (-112) $ (-554)) NIL)) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) NIL)) (-2768 (((-1102) $) NIL)) (-1539 (((-112) $) NIL (|has| (-554) (-836)))) (-1652 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2441 (($ $ (-112)) NIL (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-112)) (-631 (-112))) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1082)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1082)))) (($ $ (-289 (-112))) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1082)))) (($ $ (-631 (-289 (-112)))) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-112) (-1082))))) (-2625 (((-631 (-112)) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 (($ $ (-1208 (-554))) NIL) (((-112) $ (-554)) NIL) (((-112) $ (-554) (-112)) NIL)) (-2021 (($ $ (-1208 (-554))) NIL) (($ $ (-554)) NIL)) (-2777 (((-758) (-112) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-112) (-1082)))) (((-758) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4373)))) (-3553 (($ $ $ (-554)) NIL (|has| $ (-6 -4374)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| (-112) (-602 (-530))))) (-3089 (($ (-631 (-112))) NIL)) (-4323 (($ (-631 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3075 (((-848) $) NIL)) (-3219 (($ (-758) (-112)) 9)) (-2438 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4373)))) (-3726 (($ $ $) NIL)) (-2140 (($ $ $) NIL)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) NIL)) (-2130 (($ $ $) NIL)) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-110) (-13 (-123) (-10 -8 (-15 -3219 ($ (-758) (-112)))))) (T -110))
-((-3219 (*1 *1 *2 *3) (-12 (-5 *2 (-758)) (-5 *3 (-112)) (-5 *1 (-110)))))
-(-13 (-123) (-10 -8 (-15 -3219 ($ (-758) (-112)))))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-2004 (($) 18 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26)))
-(((-111 |#1| |#2|) (-138) (-1034) (-1034)) (T -111))
-NIL
-(-13 (-634 |t#1|) (-1040 |t#2|) (-10 -7 (-6 -4368) (-6 -4367)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-601 (-848)) . T) ((-634 |#1|) . T) ((-1040 |#2|) . T) ((-1082) . T))
-((-3062 (((-112) $ $) NIL)) (-1285 (($ $) 10)) (-4066 (($ $ $) 15)) (-3715 (($) 7 T CONST)) (-2957 (($ $) 6)) (-1508 (((-758)) 24)) (-3353 (($) 30)) (-3038 (($ $ $) 13)) (-4081 (($ $) 9)) (-3811 (($ $ $) 16)) (-2860 (($ $ $) 17)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-3830 (((-906) $) 29)) (-1613 (((-1140) $) NIL)) (-2717 (($ (-906)) 28)) (-3771 (($ $ $) 20)) (-2768 (((-1102) $) NIL)) (-2521 (($) 8 T CONST)) (-2455 (($ $ $) 21)) (-2927 (((-530) $) 36)) (-3075 (((-848) $) 39)) (-3726 (($ $ $) 11)) (-2140 (($ $ $) 14)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 19)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 22)) (-2130 (($ $ $) 12)))
-(((-112) (-13 (-830) (-647) (-952) (-602 (-530)) (-10 -8 (-15 -3715 ($) -2397) (-15 -2521 ($) -2397) (-15 -4066 ($ $ $)) (-15 -2860 ($ $ $)) (-15 -3811 ($ $ $)) (-15 -2957 ($ $))))) (T -112))
-((-3715 (*1 *1) (-5 *1 (-112))) (-2521 (*1 *1) (-5 *1 (-112))) (-4066 (*1 *1 *1 *1) (-5 *1 (-112))) (-2860 (*1 *1 *1 *1) (-5 *1 (-112))) (-3811 (*1 *1 *1 *1) (-5 *1 (-112))) (-2957 (*1 *1 *1) (-5 *1 (-112))))
-(-13 (-830) (-647) (-952) (-602 (-530)) (-10 -8 (-15 -3715 ($) -2397) (-15 -2521 ($) -2397) (-15 -4066 ($ $ $)) (-15 -2860 ($ $ $)) (-15 -3811 ($ $ $)) (-15 -2957 ($ $))))
-((-3282 (((-3 (-1 |#1| (-631 |#1|)) "failed") (-114)) 19) (((-114) (-114) (-1 |#1| |#1|)) 13) (((-114) (-114) (-1 |#1| (-631 |#1|))) 11) (((-3 |#1| "failed") (-114) (-631 |#1|)) 21)) (-2525 (((-3 (-631 (-1 |#1| (-631 |#1|))) "failed") (-114)) 25) (((-114) (-114) (-1 |#1| |#1|)) 30) (((-114) (-114) (-631 (-1 |#1| (-631 |#1|)))) 26)) (-3104 (((-114) |#1|) 56 (|has| |#1| (-836)))) (-2537 (((-3 |#1| "failed") (-114)) 50 (|has| |#1| (-836)))))
-(((-113 |#1|) (-10 -7 (-15 -3282 ((-3 |#1| "failed") (-114) (-631 |#1|))) (-15 -3282 ((-114) (-114) (-1 |#1| (-631 |#1|)))) (-15 -3282 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3282 ((-3 (-1 |#1| (-631 |#1|)) "failed") (-114))) (-15 -2525 ((-114) (-114) (-631 (-1 |#1| (-631 |#1|))))) (-15 -2525 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2525 ((-3 (-631 (-1 |#1| (-631 |#1|))) "failed") (-114))) (IF (|has| |#1| (-836)) (PROGN (-15 -3104 ((-114) |#1|)) (-15 -2537 ((-3 |#1| "failed") (-114)))) |%noBranch|)) (-1082)) (T -113))
-((-2537 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1082)) (-4 *2 (-836)) (-5 *1 (-113 *2)))) (-3104 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-836)) (-4 *3 (-1082)))) (-2525 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-631 (-1 *4 (-631 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1082)))) (-2525 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1082)) (-5 *1 (-113 *4)))) (-2525 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-631 (-1 *4 (-631 *4)))) (-4 *4 (-1082)) (-5 *1 (-113 *4)))) (-3282 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-631 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1082)))) (-3282 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1082)) (-5 *1 (-113 *4)))) (-3282 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-631 *4))) (-4 *4 (-1082)) (-5 *1 (-113 *4)))) (-3282 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-631 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1082)))))
-(-10 -7 (-15 -3282 ((-3 |#1| "failed") (-114) (-631 |#1|))) (-15 -3282 ((-114) (-114) (-1 |#1| (-631 |#1|)))) (-15 -3282 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3282 ((-3 (-1 |#1| (-631 |#1|)) "failed") (-114))) (-15 -2525 ((-114) (-114) (-631 (-1 |#1| (-631 |#1|))))) (-15 -2525 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2525 ((-3 (-631 (-1 |#1| (-631 |#1|))) "failed") (-114))) (IF (|has| |#1| (-836)) (PROGN (-15 -3104 ((-114) |#1|)) (-15 -2537 ((-3 |#1| "failed") (-114)))) |%noBranch|))
-((-3062 (((-112) $ $) NIL)) (-1316 (((-758) $) 72) (($ $ (-758)) 30)) (-3334 (((-112) $) 32)) (-2909 (($ $ (-1140) (-761)) 26)) (-2854 (($ $ (-45 (-1140) (-761))) 15)) (-2047 (((-3 (-761) "failed") $ (-1140)) 25)) (-2171 (((-45 (-1140) (-761)) $) 14)) (-3086 (($ (-1158)) 17) (($ (-1158) (-758)) 22)) (-3597 (((-112) $) 31)) (-2514 (((-112) $) 33)) (-4309 (((-1158) $) 8)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2640 (((-112) $ (-1158)) 10)) (-1431 (($ $ (-1 (-530) (-631 (-530)))) 52) (((-3 (-1 (-530) (-631 (-530))) "failed") $) 56)) (-2768 (((-1102) $) NIL)) (-2200 (((-112) $ (-1140)) 29)) (-3070 (($ $ (-1 (-112) $ $)) 35)) (-2524 (((-3 (-1 (-848) (-631 (-848))) "failed") $) 54) (($ $ (-1 (-848) (-631 (-848)))) 41) (($ $ (-1 (-848) (-848))) 43)) (-2418 (($ $ (-1140)) 45)) (-1521 (($ $) 63)) (-3786 (($ $ (-1 (-112) $ $)) 36)) (-3075 (((-848) $) 48)) (-1849 (($ $ (-1140)) 27)) (-1937 (((-3 (-758) "failed") $) 58)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 71)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 79)))
-(((-114) (-13 (-836) (-10 -8 (-15 -4309 ((-1158) $)) (-15 -2171 ((-45 (-1140) (-761)) $)) (-15 -1521 ($ $)) (-15 -3086 ($ (-1158))) (-15 -3086 ($ (-1158) (-758))) (-15 -1937 ((-3 (-758) "failed") $)) (-15 -3597 ((-112) $)) (-15 -3334 ((-112) $)) (-15 -2514 ((-112) $)) (-15 -1316 ((-758) $)) (-15 -1316 ($ $ (-758))) (-15 -3070 ($ $ (-1 (-112) $ $))) (-15 -3786 ($ $ (-1 (-112) $ $))) (-15 -2524 ((-3 (-1 (-848) (-631 (-848))) "failed") $)) (-15 -2524 ($ $ (-1 (-848) (-631 (-848))))) (-15 -2524 ($ $ (-1 (-848) (-848)))) (-15 -1431 ($ $ (-1 (-530) (-631 (-530))))) (-15 -1431 ((-3 (-1 (-530) (-631 (-530))) "failed") $)) (-15 -2640 ((-112) $ (-1158))) (-15 -2200 ((-112) $ (-1140))) (-15 -1849 ($ $ (-1140))) (-15 -2418 ($ $ (-1140))) (-15 -2047 ((-3 (-761) "failed") $ (-1140))) (-15 -2909 ($ $ (-1140) (-761))) (-15 -2854 ($ $ (-45 (-1140) (-761))))))) (T -114))
-((-4309 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-114)))) (-2171 (*1 *2 *1) (-12 (-5 *2 (-45 (-1140) (-761))) (-5 *1 (-114)))) (-1521 (*1 *1 *1) (-5 *1 (-114))) (-3086 (*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-114)))) (-3086 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-758)) (-5 *1 (-114)))) (-1937 (*1 *2 *1) (|partial| -12 (-5 *2 (-758)) (-5 *1 (-114)))) (-3597 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-3334 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-2514 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1316 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-114)))) (-1316 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-114)))) (-3070 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-3786 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-2524 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-848) (-631 (-848)))) (-5 *1 (-114)))) (-2524 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-848) (-631 (-848)))) (-5 *1 (-114)))) (-2524 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-848) (-848))) (-5 *1 (-114)))) (-1431 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-530) (-631 (-530)))) (-5 *1 (-114)))) (-1431 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-530) (-631 (-530)))) (-5 *1 (-114)))) (-2640 (*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-112)) (-5 *1 (-114)))) (-2200 (*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-112)) (-5 *1 (-114)))) (-1849 (*1 *1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-114)))) (-2418 (*1 *1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-114)))) (-2047 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1140)) (-5 *2 (-761)) (-5 *1 (-114)))) (-2909 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1140)) (-5 *3 (-761)) (-5 *1 (-114)))) (-2854 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1140) (-761))) (-5 *1 (-114)))))
-(-13 (-836) (-10 -8 (-15 -4309 ((-1158) $)) (-15 -2171 ((-45 (-1140) (-761)) $)) (-15 -1521 ($ $)) (-15 -3086 ($ (-1158))) (-15 -3086 ($ (-1158) (-758))) (-15 -1937 ((-3 (-758) "failed") $)) (-15 -3597 ((-112) $)) (-15 -3334 ((-112) $)) (-15 -2514 ((-112) $)) (-15 -1316 ((-758) $)) (-15 -1316 ($ $ (-758))) (-15 -3070 ($ $ (-1 (-112) $ $))) (-15 -3786 ($ $ (-1 (-112) $ $))) (-15 -2524 ((-3 (-1 (-848) (-631 (-848))) "failed") $)) (-15 -2524 ($ $ (-1 (-848) (-631 (-848))))) (-15 -2524 ($ $ (-1 (-848) (-848)))) (-15 -1431 ($ $ (-1 (-530) (-631 (-530))))) (-15 -1431 ((-3 (-1 (-530) (-631 (-530))) "failed") $)) (-15 -2640 ((-112) $ (-1158))) (-15 -2200 ((-112) $ (-1140))) (-15 -1849 ($ $ (-1140))) (-15 -2418 ($ $ (-1140))) (-15 -2047 ((-3 (-761) "failed") $ (-1140))) (-15 -2909 ($ $ (-1140) (-761))) (-15 -2854 ($ $ (-45 (-1140) (-761))))))
-((-1421 (((-554) |#2|) 37)))
-(((-115 |#1| |#2|) (-10 -7 (-15 -1421 ((-554) |#2|))) (-13 (-358) (-1023 (-402 (-554)))) (-1217 |#1|)) (T -115))
-((-1421 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-1023 (-402 *2)))) (-5 *2 (-554)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1217 *4)))))
-(-10 -7 (-15 -1421 ((-554) |#2|)))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-2282 (($ $ (-554)) NIL)) (-2286 (((-112) $ $) NIL)) (-4087 (($) NIL T CONST)) (-2638 (($ (-1154 (-554)) (-554)) NIL)) (-3964 (($ $ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2612 (($ $) NIL)) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-2342 (((-758) $) NIL)) (-3248 (((-112) $) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2340 (((-554)) NIL)) (-3859 (((-554) $) NIL)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4282 (($ $ (-554)) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-1378 (((-1138 (-554)) $) NIL)) (-1300 (($ $) NIL)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL)) (-2261 (((-758)) NIL)) (-1909 (((-112) $ $) NIL)) (-4333 (((-554) $ (-554)) NIL)) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL)))
-(((-116 |#1|) (-854 |#1|) (-554)) (T -116))
-NIL
-(-854 |#1|)
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-3831 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-302)))) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (|has| (-116 |#1|) (-894)))) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (|has| (-116 |#1|) (-894)))) (-2286 (((-112) $ $) NIL)) (-4219 (((-554) $) NIL (|has| (-116 |#1|) (-807)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-116 |#1|) "failed") $) NIL) (((-3 (-1158) "failed") $) NIL (|has| (-116 |#1|) (-1023 (-1158)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| (-116 |#1|) (-1023 (-554)))) (((-3 (-554) "failed") $) NIL (|has| (-116 |#1|) (-1023 (-554))))) (-1668 (((-116 |#1|) $) NIL) (((-1158) $) NIL (|has| (-116 |#1|) (-1023 (-1158)))) (((-402 (-554)) $) NIL (|has| (-116 |#1|) (-1023 (-554)))) (((-554) $) NIL (|has| (-116 |#1|) (-1023 (-554))))) (-1749 (($ $) NIL) (($ (-554) $) NIL)) (-3964 (($ $ $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| (-116 |#1|) (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| (-116 |#1|) (-627 (-554)))) (((-2 (|:| -2866 (-675 (-116 |#1|))) (|:| |vec| (-1241 (-116 |#1|)))) (-675 $) (-1241 $)) NIL) (((-675 (-116 |#1|)) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3353 (($) NIL (|has| (-116 |#1|) (-539)))) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-2745 (((-112) $) NIL (|has| (-116 |#1|) (-807)))) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (|has| (-116 |#1|) (-871 (-554)))) (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (|has| (-116 |#1|) (-871 (-374))))) (-3248 (((-112) $) NIL)) (-3472 (($ $) NIL)) (-2810 (((-116 |#1|) $) NIL)) (-3339 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1133)))) (-4304 (((-112) $) NIL (|has| (-116 |#1|) (-807)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-4223 (($ $ $) NIL (|has| (-116 |#1|) (-836)))) (-2706 (($ $ $) NIL (|has| (-116 |#1|) (-836)))) (-2879 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-3834 (($) NIL (|has| (-116 |#1|) (-1133)) CONST)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3722 (($ $) NIL (|has| (-116 |#1|) (-302)))) (-4339 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-539)))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (|has| (-116 |#1|) (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (|has| (-116 |#1|) (-894)))) (-2270 (((-413 $) $) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2386 (($ $ (-631 (-116 |#1|)) (-631 (-116 |#1|))) NIL (|has| (-116 |#1|) (-304 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-304 (-116 |#1|)))) (($ $ (-289 (-116 |#1|))) NIL (|has| (-116 |#1|) (-304 (-116 |#1|)))) (($ $ (-631 (-289 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-304 (-116 |#1|)))) (($ $ (-631 (-1158)) (-631 (-116 |#1|))) NIL (|has| (-116 |#1|) (-508 (-1158) (-116 |#1|)))) (($ $ (-1158) (-116 |#1|)) NIL (|has| (-116 |#1|) (-508 (-1158) (-116 |#1|))))) (-2072 (((-758) $) NIL)) (-2064 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-281 (-116 |#1|) (-116 |#1|))))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-1553 (($ $) NIL (|has| (-116 |#1|) (-229))) (($ $ (-758)) NIL (|has| (-116 |#1|) (-229))) (($ $ (-1158)) NIL (|has| (-116 |#1|) (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| (-116 |#1|) (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| (-116 |#1|) (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| (-116 |#1|) (-885 (-1158)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-758)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-3623 (($ $) NIL)) (-2822 (((-116 |#1|) $) NIL)) (-2927 (((-877 (-554)) $) NIL (|has| (-116 |#1|) (-602 (-877 (-554))))) (((-877 (-374)) $) NIL (|has| (-116 |#1|) (-602 (-877 (-374))))) (((-530) $) NIL (|has| (-116 |#1|) (-602 (-530)))) (((-374) $) NIL (|has| (-116 |#1|) (-1007))) (((-221) $) NIL (|has| (-116 |#1|) (-1007)))) (-3691 (((-172 (-402 (-554))) $) NIL)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| (-116 |#1|) (-894))))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL) (($ (-402 (-554))) NIL) (($ (-116 |#1|)) NIL) (($ (-1158)) NIL (|has| (-116 |#1|) (-1023 (-1158))))) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| (-116 |#1|) (-894))) (|has| (-116 |#1|) (-143))))) (-2261 (((-758)) NIL)) (-2755 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-539)))) (-1909 (((-112) $ $) NIL)) (-4333 (((-402 (-554)) $ (-554)) NIL)) (-1700 (($ $) NIL (|has| (-116 |#1|) (-807)))) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $) NIL (|has| (-116 |#1|) (-229))) (($ $ (-758)) NIL (|has| (-116 |#1|) (-229))) (($ $ (-1158)) NIL (|has| (-116 |#1|) (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| (-116 |#1|) (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| (-116 |#1|) (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| (-116 |#1|) (-885 (-1158)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-758)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-1708 (((-112) $ $) NIL (|has| (-116 |#1|) (-836)))) (-1686 (((-112) $ $) NIL (|has| (-116 |#1|) (-836)))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (|has| (-116 |#1|) (-836)))) (-1676 (((-112) $ $) NIL (|has| (-116 |#1|) (-836)))) (-1752 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL)))
-(((-117 |#1|) (-13 (-977 (-116 |#1|)) (-10 -8 (-15 -4333 ((-402 (-554)) $ (-554))) (-15 -3691 ((-172 (-402 (-554))) $)) (-15 -1749 ($ $)) (-15 -1749 ($ (-554) $)))) (-554)) (T -117))
-((-4333 (*1 *2 *1 *3) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-554)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-172 (-402 (-554)))) (-5 *1 (-117 *3)) (-14 *3 (-554)))) (-1749 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-554)))) (-1749 (*1 *1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-117 *3)) (-14 *3 *2))))
-(-13 (-977 (-116 |#1|)) (-10 -8 (-15 -4333 ((-402 (-554)) $ (-554))) (-15 -3691 ((-172 (-402 (-554))) $)) (-15 -1749 ($ $)) (-15 -1749 ($ (-554) $))))
-((-1501 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-3677 (((-631 $) $) 27)) (-1990 (((-112) $ $) 32)) (-3068 (((-112) |#2| $) 36)) (-2306 (((-631 |#2|) $) 22)) (-3216 (((-112) $) 16)) (-2064 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3008 (((-112) $) 45)) (-3075 (((-848) $) 41)) (-2461 (((-631 $) $) 28)) (-1658 (((-112) $ $) 34)) (-2563 (((-758) $) 43)))
-(((-118 |#1| |#2|) (-10 -8 (-15 -3075 ((-848) |#1|)) (-15 -1501 (|#1| |#1| "right" |#1|)) (-15 -1501 (|#1| |#1| "left" |#1|)) (-15 -2064 (|#1| |#1| "right")) (-15 -2064 (|#1| |#1| "left")) (-15 -1501 (|#2| |#1| "value" |#2|)) (-15 -1990 ((-112) |#1| |#1|)) (-15 -2306 ((-631 |#2|) |#1|)) (-15 -3008 ((-112) |#1|)) (-15 -2064 (|#2| |#1| "value")) (-15 -3216 ((-112) |#1|)) (-15 -3677 ((-631 |#1|) |#1|)) (-15 -2461 ((-631 |#1|) |#1|)) (-15 -1658 ((-112) |#1| |#1|)) (-15 -3068 ((-112) |#2| |#1|)) (-15 -2563 ((-758) |#1|))) (-119 |#2|) (-1195)) (T -118))
-NIL
-(-10 -8 (-15 -3075 ((-848) |#1|)) (-15 -1501 (|#1| |#1| "right" |#1|)) (-15 -1501 (|#1| |#1| "left" |#1|)) (-15 -2064 (|#1| |#1| "right")) (-15 -2064 (|#1| |#1| "left")) (-15 -1501 (|#2| |#1| "value" |#2|)) (-15 -1990 ((-112) |#1| |#1|)) (-15 -2306 ((-631 |#2|) |#1|)) (-15 -3008 ((-112) |#1|)) (-15 -2064 (|#2| |#1| "value")) (-15 -3216 ((-112) |#1|)) (-15 -3677 ((-631 |#1|) |#1|)) (-15 -2461 ((-631 |#1|) |#1|)) (-15 -1658 ((-112) |#1| |#1|)) (-15 -3068 ((-112) |#2| |#1|)) (-15 -2563 ((-758) |#1|)))
-((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-2794 ((|#1| $) 48)) (-3019 (((-112) $ (-758)) 8)) (-2690 ((|#1| $ |#1|) 39 (|has| $ (-6 -4374)))) (-2336 (($ $ $) 52 (|has| $ (-6 -4374)))) (-2035 (($ $ $) 54 (|has| $ (-6 -4374)))) (-1501 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4374))) (($ $ "left" $) 55 (|has| $ (-6 -4374))) (($ $ "right" $) 53 (|has| $ (-6 -4374)))) (-2923 (($ $ (-631 $)) 41 (|has| $ (-6 -4374)))) (-4087 (($) 7 T CONST)) (-3324 (($ $) 57)) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-3677 (((-631 $) $) 50)) (-1990 (((-112) $ $) 42 (|has| |#1| (-1082)))) (-2230 (((-112) $ (-758)) 9)) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35)) (-3731 (((-112) $ (-758)) 10)) (-3311 (($ $) 59)) (-2306 (((-631 |#1|) $) 45)) (-3216 (((-112) $) 49)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2064 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-3250 (((-554) $ $) 44)) (-3008 (((-112) $) 46)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-2461 (((-631 $) $) 51)) (-1441 (((-112) $ $) 43 (|has| |#1| (-1082)))) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373)))))
-(((-119 |#1|) (-138) (-1195)) (T -119))
-((-3311 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1195)))) (-2064 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1195)))) (-3324 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1195)))) (-2064 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1195)))) (-1501 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4374)) (-4 *1 (-119 *3)) (-4 *3 (-1195)))) (-2035 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4374)) (-4 *1 (-119 *2)) (-4 *2 (-1195)))) (-1501 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4374)) (-4 *1 (-119 *3)) (-4 *3 (-1195)))) (-2336 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4374)) (-4 *1 (-119 *2)) (-4 *2 (-1195)))))
-(-13 (-995 |t#1|) (-10 -8 (-15 -3311 ($ $)) (-15 -2064 ($ $ "left")) (-15 -3324 ($ $)) (-15 -2064 ($ $ "right")) (IF (|has| $ (-6 -4374)) (PROGN (-15 -1501 ($ $ "left" $)) (-15 -2035 ($ $ $)) (-15 -1501 ($ $ "right" $)) (-15 -2336 ($ $ $))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1082)) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-601 (-848)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-995 |#1|) . T) ((-1082) |has| |#1| (-1082)) ((-1195) . T))
-((-4072 (((-112) |#1|) 24)) (-3913 (((-758) (-758)) 23) (((-758)) 22)) (-2751 (((-112) |#1| (-112)) 25) (((-112) |#1|) 26)))
-(((-120 |#1|) (-10 -7 (-15 -2751 ((-112) |#1|)) (-15 -2751 ((-112) |#1| (-112))) (-15 -3913 ((-758))) (-15 -3913 ((-758) (-758))) (-15 -4072 ((-112) |#1|))) (-1217 (-554))) (T -120))
-((-4072 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1217 (-554))))) (-3913 (*1 *2 *2) (-12 (-5 *2 (-758)) (-5 *1 (-120 *3)) (-4 *3 (-1217 (-554))))) (-3913 (*1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-120 *3)) (-4 *3 (-1217 (-554))))) (-2751 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1217 (-554))))) (-2751 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1217 (-554))))))
-(-10 -7 (-15 -2751 ((-112) |#1|)) (-15 -2751 ((-112) |#1| (-112))) (-15 -3913 ((-758))) (-15 -3913 ((-758) (-758))) (-15 -4072 ((-112) |#1|)))
-((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2794 ((|#1| $) 15)) (-1515 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-3019 (((-112) $ (-758)) NIL)) (-2690 ((|#1| $ |#1|) NIL (|has| $ (-6 -4374)))) (-2336 (($ $ $) 18 (|has| $ (-6 -4374)))) (-2035 (($ $ $) 20 (|has| $ (-6 -4374)))) (-1501 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4374))) (($ $ "left" $) NIL (|has| $ (-6 -4374))) (($ $ "right" $) NIL (|has| $ (-6 -4374)))) (-2923 (($ $ (-631 $)) NIL (|has| $ (-6 -4374)))) (-4087 (($) NIL T CONST)) (-3324 (($ $) 17)) (-2466 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3677 (((-631 $) $) NIL)) (-1990 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2987 (($ $ |#1| $) 23)) (-2230 (((-112) $ (-758)) NIL)) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2849 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-3311 (($ $) 19)) (-2306 (((-631 |#1|) $) NIL)) (-3216 (((-112) $) NIL)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-4167 (($ |#1| $) 24)) (-2045 (($ |#1| $) 10)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) 14)) (-4240 (($) 8)) (-2064 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3250 (((-554) $ $) NIL)) (-3008 (((-112) $) NIL)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1521 (($ $) NIL)) (-3075 (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-2461 (((-631 $) $) NIL)) (-1441 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2071 (($ (-631 |#1|)) 12)) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4374) (-6 -4373) (-15 -2071 ($ (-631 |#1|))) (-15 -2045 ($ |#1| $)) (-15 -4167 ($ |#1| $)) (-15 -1515 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-836)) (T -121))
-((-2071 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-836)) (-5 *1 (-121 *3)))) (-2045 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-836)))) (-4167 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-836)))) (-1515 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-836)))))
-(-13 (-125 |#1|) (-10 -8 (-6 -4374) (-6 -4373) (-15 -2071 ($ (-631 |#1|))) (-15 -2045 ($ |#1| $)) (-15 -4167 ($ |#1| $)) (-15 -1515 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
-((-1285 (($ $) 13)) (-4081 (($ $) 11)) (-3811 (($ $ $) 23)) (-2860 (($ $ $) 21)) (-2140 (($ $ $) 19)) (-2130 (($ $ $) 17)))
-(((-122 |#1|) (-10 -8 (-15 -3811 (|#1| |#1| |#1|)) (-15 -2860 (|#1| |#1| |#1|)) (-15 -4081 (|#1| |#1|)) (-15 -1285 (|#1| |#1|)) (-15 -2130 (|#1| |#1| |#1|)) (-15 -2140 (|#1| |#1| |#1|))) (-123)) (T -122))
-NIL
-(-10 -8 (-15 -3811 (|#1| |#1| |#1|)) (-15 -2860 (|#1| |#1| |#1|)) (-15 -4081 (|#1| |#1|)) (-15 -1285 (|#1| |#1|)) (-15 -2130 (|#1| |#1| |#1|)) (-15 -2140 (|#1| |#1| |#1|)))
-((-3062 (((-112) $ $) 7)) (-1285 (($ $) 103)) (-4066 (($ $ $) 25)) (-4233 (((-1246) $ (-554) (-554)) 66 (|has| $ (-6 -4374)))) (-4015 (((-112) $) 98 (|has| (-112) (-836))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-2576 (($ $) 102 (-12 (|has| (-112) (-836)) (|has| $ (-6 -4374)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4374)))) (-3303 (($ $) 97 (|has| (-112) (-836))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-3019 (((-112) $ (-758)) 37)) (-1501 (((-112) $ (-1208 (-554)) (-112)) 88 (|has| $ (-6 -4374))) (((-112) $ (-554) (-112)) 54 (|has| $ (-6 -4374)))) (-1871 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4373)))) (-4087 (($) 38 T CONST)) (-3920 (($ $) 100 (|has| $ (-6 -4374)))) (-3799 (($ $) 90)) (-1571 (($ $) 68 (-12 (|has| (-112) (-1082)) (|has| $ (-6 -4373))))) (-2574 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4373))) (($ (-112) $) 69 (-12 (|has| (-112) (-1082)) (|has| $ (-6 -4373))))) (-3676 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4373))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4373))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1082)) (|has| $ (-6 -4373))))) (-2862 (((-112) $ (-554) (-112)) 53 (|has| $ (-6 -4374)))) (-2796 (((-112) $ (-554)) 55)) (-1484 (((-554) (-112) $ (-554)) 95 (|has| (-112) (-1082))) (((-554) (-112) $) 94 (|has| (-112) (-1082))) (((-554) (-1 (-112) (-112)) $) 93)) (-2466 (((-631 (-112)) $) 45 (|has| $ (-6 -4373)))) (-3038 (($ $ $) 26)) (-4081 (($ $) 30)) (-3811 (($ $ $) 28)) (-3180 (($ (-758) (-112)) 77)) (-2860 (($ $ $) 29)) (-2230 (((-112) $ (-758)) 36)) (-3044 (((-554) $) 63 (|has| (-554) (-836)))) (-4223 (($ $ $) 13)) (-3717 (($ $ $) 96 (|has| (-112) (-836))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-2379 (((-631 (-112)) $) 46 (|has| $ (-6 -4373)))) (-3068 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1082)) (|has| $ (-6 -4373))))) (-2256 (((-554) $) 62 (|has| (-554) (-836)))) (-2706 (($ $ $) 14)) (-2849 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-112) (-112) (-112)) $ $) 82) (($ (-1 (-112) (-112)) $) 40)) (-3731 (((-112) $ (-758)) 35)) (-1613 (((-1140) $) 9)) (-1782 (($ $ $ (-554)) 87) (($ (-112) $ (-554)) 86)) (-2529 (((-631 (-554)) $) 60)) (-3618 (((-112) (-554) $) 59)) (-2768 (((-1102) $) 10)) (-1539 (((-112) $) 64 (|has| (-554) (-836)))) (-1652 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-2441 (($ $ (-112)) 65 (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-112)) (-631 (-112))) 52 (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1082)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1082)))) (($ $ (-289 (-112))) 50 (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1082)))) (($ $ (-631 (-289 (-112)))) 49 (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1082))))) (-2494 (((-112) $ $) 31)) (-1609 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4373)) (|has| (-112) (-1082))))) (-2625 (((-631 (-112)) $) 58)) (-3543 (((-112) $) 34)) (-4240 (($) 33)) (-2064 (($ $ (-1208 (-554))) 83) (((-112) $ (-554)) 57) (((-112) $ (-554) (-112)) 56)) (-2021 (($ $ (-1208 (-554))) 85) (($ $ (-554)) 84)) (-2777 (((-758) (-112) $) 47 (-12 (|has| (-112) (-1082)) (|has| $ (-6 -4373)))) (((-758) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4373)))) (-3553 (($ $ $ (-554)) 99 (|has| $ (-6 -4374)))) (-1521 (($ $) 32)) (-2927 (((-530) $) 67 (|has| (-112) (-602 (-530))))) (-3089 (($ (-631 (-112))) 76)) (-4323 (($ (-631 $)) 81) (($ $ $) 80) (($ (-112) $) 79) (($ $ (-112)) 78)) (-3075 (((-848) $) 11)) (-2438 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4373)))) (-3726 (($ $ $) 27)) (-2140 (($ $ $) 105)) (-1708 (((-112) $ $) 16)) (-1686 (((-112) $ $) 17)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 15)) (-1676 (((-112) $ $) 18)) (-2130 (($ $ $) 104)) (-2563 (((-758) $) 39 (|has| $ (-6 -4373)))))
-(((-123) (-138)) (T -123))
-((-4081 (*1 *1 *1) (-4 *1 (-123))) (-2860 (*1 *1 *1 *1) (-4 *1 (-123))) (-3811 (*1 *1 *1 *1) (-4 *1 (-123))) (-3726 (*1 *1 *1 *1) (-4 *1 (-123))) (-3038 (*1 *1 *1 *1) (-4 *1 (-123))) (-4066 (*1 *1 *1 *1) (-4 *1 (-123))))
-(-13 (-836) (-647) (-19 (-112)) (-10 -8 (-15 -4081 ($ $)) (-15 -2860 ($ $ $)) (-15 -3811 ($ $ $)) (-15 -3726 ($ $ $)) (-15 -3038 ($ $ $)) (-15 -4066 ($ $ $))))
-(((-34) . T) ((-102) . T) ((-601 (-848)) . T) ((-149 #0=(-112)) . T) ((-602 (-530)) |has| (-112) (-602 (-530))) ((-281 #1=(-554) #0#) . T) ((-283 #1# #0#) . T) ((-304 #0#) -12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1082))) ((-368 #0#) . T) ((-483 #0#) . T) ((-592 #1# #0#) . T) ((-508 #0# #0#) -12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1082))) ((-637 #0#) . T) ((-647) . T) ((-19 #0#) . T) ((-836) . T) ((-1082) . T) ((-1195) . T))
-((-2849 (($ (-1 |#2| |#2|) $) 22)) (-1521 (($ $) 16)) (-2563 (((-758) $) 24)))
-(((-124 |#1| |#2|) (-10 -8 (-15 -2849 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2563 ((-758) |#1|)) (-15 -1521 (|#1| |#1|))) (-125 |#2|) (-1082)) (T -124))
-NIL
-(-10 -8 (-15 -2849 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2563 ((-758) |#1|)) (-15 -1521 (|#1| |#1|)))
-((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-2794 ((|#1| $) 48)) (-3019 (((-112) $ (-758)) 8)) (-2690 ((|#1| $ |#1|) 39 (|has| $ (-6 -4374)))) (-2336 (($ $ $) 52 (|has| $ (-6 -4374)))) (-2035 (($ $ $) 54 (|has| $ (-6 -4374)))) (-1501 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4374))) (($ $ "left" $) 55 (|has| $ (-6 -4374))) (($ $ "right" $) 53 (|has| $ (-6 -4374)))) (-2923 (($ $ (-631 $)) 41 (|has| $ (-6 -4374)))) (-4087 (($) 7 T CONST)) (-3324 (($ $) 57)) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-3677 (((-631 $) $) 50)) (-1990 (((-112) $ $) 42 (|has| |#1| (-1082)))) (-2987 (($ $ |#1| $) 60)) (-2230 (((-112) $ (-758)) 9)) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35)) (-3731 (((-112) $ (-758)) 10)) (-3311 (($ $) 59)) (-2306 (((-631 |#1|) $) 45)) (-3216 (((-112) $) 49)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2064 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-3250 (((-554) $ $) 44)) (-3008 (((-112) $) 46)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-2461 (((-631 $) $) 51)) (-1441 (((-112) $ $) 43 (|has| |#1| (-1082)))) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373)))))
-(((-125 |#1|) (-138) (-1082)) (T -125))
-((-2987 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1082)))))
-(-13 (-119 |t#1|) (-10 -8 (-6 -4374) (-6 -4373) (-15 -2987 ($ $ |t#1| $))))
-(((-34) . T) ((-102) |has| |#1| (-1082)) ((-119 |#1|) . T) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-601 (-848)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-995 |#1|) . T) ((-1082) |has| |#1| (-1082)) ((-1195) . T))
-((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2794 ((|#1| $) 15)) (-3019 (((-112) $ (-758)) NIL)) (-2690 ((|#1| $ |#1|) 19 (|has| $ (-6 -4374)))) (-2336 (($ $ $) 20 (|has| $ (-6 -4374)))) (-2035 (($ $ $) 18 (|has| $ (-6 -4374)))) (-1501 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4374))) (($ $ "left" $) NIL (|has| $ (-6 -4374))) (($ $ "right" $) NIL (|has| $ (-6 -4374)))) (-2923 (($ $ (-631 $)) NIL (|has| $ (-6 -4374)))) (-4087 (($) NIL T CONST)) (-3324 (($ $) 21)) (-2466 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3677 (((-631 $) $) NIL)) (-1990 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2987 (($ $ |#1| $) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2849 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-3311 (($ $) NIL)) (-2306 (((-631 |#1|) $) NIL)) (-3216 (((-112) $) NIL)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-2045 (($ |#1| $) 10)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) 14)) (-4240 (($) 8)) (-2064 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3250 (((-554) $ $) NIL)) (-3008 (((-112) $) NIL)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1521 (($ $) 17)) (-3075 (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-2461 (((-631 $) $) NIL)) (-1441 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-1417 (($ (-631 |#1|)) 12)) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4374) (-15 -1417 ($ (-631 |#1|))) (-15 -2045 ($ |#1| $)))) (-836)) (T -126))
-((-1417 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-836)) (-5 *1 (-126 *3)))) (-2045 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-836)))))
-(-13 (-125 |#1|) (-10 -8 (-6 -4374) (-15 -1417 ($ (-631 |#1|))) (-15 -2045 ($ |#1| $))))
-((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2794 ((|#1| $) 24)) (-3019 (((-112) $ (-758)) NIL)) (-2690 ((|#1| $ |#1|) 26 (|has| $ (-6 -4374)))) (-2336 (($ $ $) 30 (|has| $ (-6 -4374)))) (-2035 (($ $ $) 28 (|has| $ (-6 -4374)))) (-1501 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4374))) (($ $ "left" $) NIL (|has| $ (-6 -4374))) (($ $ "right" $) NIL (|has| $ (-6 -4374)))) (-2923 (($ $ (-631 $)) NIL (|has| $ (-6 -4374)))) (-4087 (($) NIL T CONST)) (-3324 (($ $) 20)) (-2466 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3677 (((-631 $) $) NIL)) (-1990 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2987 (($ $ |#1| $) 15)) (-2230 (((-112) $ (-758)) NIL)) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2849 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-3311 (($ $) 19)) (-2306 (((-631 |#1|) $) NIL)) (-3216 (((-112) $) 21)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) 18)) (-4240 (($) 11)) (-2064 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3250 (((-554) $ $) NIL)) (-3008 (((-112) $) NIL)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1521 (($ $) NIL)) (-3075 (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-2461 (((-631 $) $) NIL)) (-1441 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-3503 (($ |#1|) 17) (($ $ |#1| $) 16)) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 10 (|has| |#1| (-1082)))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -3503 ($ |#1|)) (-15 -3503 ($ $ |#1| $)))) (-1082)) (T -127))
-((-3503 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1082)))) (-3503 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1082)))))
-(-13 (-125 |#1|) (-10 -8 (-15 -3503 ($ |#1|)) (-15 -3503 ($ $ |#1| $))))
-((-3062 (((-112) $ $) NIL (|has| (-129) (-1082)))) (-4233 (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-4015 (((-112) (-1 (-112) (-129) (-129)) $) NIL) (((-112) $) NIL (|has| (-129) (-836)))) (-2576 (($ (-1 (-112) (-129) (-129)) $) NIL (|has| $ (-6 -4374))) (($ $) NIL (-12 (|has| $ (-6 -4374)) (|has| (-129) (-836))))) (-3303 (($ (-1 (-112) (-129) (-129)) $) NIL) (($ $) NIL (|has| (-129) (-836)))) (-3019 (((-112) $ (-758)) NIL)) (-1501 (((-129) $ (-554) (-129)) 17 (|has| $ (-6 -4374))) (((-129) $ (-1208 (-554)) (-129)) NIL (|has| $ (-6 -4374)))) (-2295 (((-758) $ (-758)) 7)) (-1871 (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4373)))) (-4087 (($) NIL T CONST)) (-3920 (($ $) NIL (|has| $ (-6 -4374)))) (-3799 (($ $) NIL)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-129) (-1082))))) (-2574 (($ (-129) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-129) (-1082)))) (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4373)))) (-3676 (((-129) (-1 (-129) (-129) (-129)) $ (-129) (-129)) NIL (-12 (|has| $ (-6 -4373)) (|has| (-129) (-1082)))) (((-129) (-1 (-129) (-129) (-129)) $ (-129)) NIL (|has| $ (-6 -4373))) (((-129) (-1 (-129) (-129) (-129)) $) NIL (|has| $ (-6 -4373)))) (-2862 (((-129) $ (-554) (-129)) 16 (|has| $ (-6 -4374)))) (-2796 (((-129) $ (-554)) 13)) (-1484 (((-554) (-1 (-112) (-129)) $) NIL) (((-554) (-129) $) NIL (|has| (-129) (-1082))) (((-554) (-129) $ (-554)) NIL (|has| (-129) (-1082)))) (-2466 (((-631 (-129)) $) NIL (|has| $ (-6 -4373)))) (-3180 (($ (-758) (-129)) 11)) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) 18 (|has| (-554) (-836)))) (-4223 (($ $ $) NIL (|has| (-129) (-836)))) (-3717 (($ (-1 (-112) (-129) (-129)) $ $) NIL) (($ $ $) NIL (|has| (-129) (-836)))) (-2379 (((-631 (-129)) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-129) (-1082))))) (-2256 (((-554) $) 19 (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (|has| (-129) (-836)))) (-2849 (($ (-1 (-129) (-129)) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-129) (-129)) $) NIL) (($ (-1 (-129) (-129) (-129)) $ $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (|has| (-129) (-1082)))) (-1782 (($ (-129) $ (-554)) NIL) (($ $ $ (-554)) NIL)) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) NIL)) (-2768 (((-1102) $) NIL (|has| (-129) (-1082)))) (-1539 (((-129) $) NIL (|has| (-554) (-836)))) (-1652 (((-3 (-129) "failed") (-1 (-112) (-129)) $) NIL)) (-2441 (($ $ (-129)) NIL (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 (-129)))) NIL (-12 (|has| (-129) (-304 (-129))) (|has| (-129) (-1082)))) (($ $ (-289 (-129))) NIL (-12 (|has| (-129) (-304 (-129))) (|has| (-129) (-1082)))) (($ $ (-129) (-129)) NIL (-12 (|has| (-129) (-304 (-129))) (|has| (-129) (-1082)))) (($ $ (-631 (-129)) (-631 (-129))) NIL (-12 (|has| (-129) (-304 (-129))) (|has| (-129) (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-129) (-1082))))) (-2625 (((-631 (-129)) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) 9)) (-2064 (((-129) $ (-554) (-129)) NIL) (((-129) $ (-554)) 15) (($ $ (-1208 (-554))) NIL)) (-2021 (($ $ (-554)) NIL) (($ $ (-1208 (-554))) NIL)) (-2777 (((-758) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4373))) (((-758) (-129) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-129) (-1082))))) (-3553 (($ $ $ (-554)) NIL (|has| $ (-6 -4374)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| (-129) (-602 (-530))))) (-3089 (($ (-631 (-129))) 29)) (-4323 (($ $ (-129)) NIL) (($ (-129) $) NIL) (($ $ $) 30) (($ (-631 $)) NIL)) (-3075 (((-1140) $) 27) (((-848) $) NIL (|has| (-129) (-601 (-848))))) (-2420 (((-758) $) 14)) (-3295 (($ (-758)) 8)) (-2438 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4373)))) (-1708 (((-112) $ $) NIL (|has| (-129) (-836)))) (-1686 (((-112) $ $) NIL (|has| (-129) (-836)))) (-1658 (((-112) $ $) 22 (|has| (-129) (-1082)))) (-1697 (((-112) $ $) NIL (|has| (-129) (-836)))) (-1676 (((-112) $ $) NIL (|has| (-129) (-836)))) (-2563 (((-758) $) 20)))
-(((-128) (-13 (-19 (-129)) (-601 (-1140)) (-10 -8 (-15 -3295 ($ (-758))) (-15 -2563 ((-758) $)) (-15 -2420 ((-758) $)) (-15 -2295 ((-758) $ (-758)))))) (T -128))
-((-3295 (*1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-128)))) (-2563 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-128)))) (-2420 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-128)))) (-2295 (*1 *2 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-128)))))
-(-13 (-19 (-129)) (-601 (-1140)) (-10 -8 (-15 -3295 ($ (-758))) (-15 -2563 ((-758) $)) (-15 -2420 ((-758) $)) (-15 -2295 ((-758) $ (-758)))))
-((-3062 (((-112) $ $) NIL)) (-4087 (($) NIL)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) 9)) (-3075 (((-848) $) 19) (((-758) $) 11) (($ (-142)) 14) (((-142) $) 16) (($ (-758)) 10)) (-1286 (($ (-758)) 7)) (-4088 (($ $ $) 24)) (-4074 (($ $ $) 23)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 21)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 22)))
-(((-129) (-13 (-836) (-601 (-758)) (-484 (-142)) (-10 -8 (-15 -1286 ($ (-758))) (-15 -3075 ($ (-758))) (-15 -4074 ($ $ $)) (-15 -4088 ($ $ $)) (-15 -4087 ($))))) (T -129))
-((-1286 (*1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-129)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-129)))) (-4074 (*1 *1 *1 *1) (-5 *1 (-129))) (-4088 (*1 *1 *1 *1) (-5 *1 (-129))) (-4087 (*1 *1) (-5 *1 (-129))))
-(-13 (-836) (-601 (-758)) (-484 (-142)) (-10 -8 (-15 -1286 ($ (-758))) (-15 -3075 ($ (-758))) (-15 -4074 ($ $ $)) (-15 -4088 ($ $ $)) (-15 -4087 ($))))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-2004 (($) 18 T CONST)) (-1658 (((-112) $ $) 6)) (-1735 (($ $ $) 14)) (* (($ (-906) $) 13) (($ (-758) $) 15)))
-(((-130) (-138)) (T -130))
-((-2934 (*1 *1 *1 *1) (|partial| -4 *1 (-130))))
-(-13 (-23) (-10 -8 (-15 -2934 ((-3 $ "failed") $ $))))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-601 (-848)) . T) ((-1082) . T))
-((-3062 (((-112) $ $) 7)) (-2886 (((-1246) $ (-758)) 19)) (-1484 (((-758) $) 20)) (-4223 (($ $ $) 13)) (-2706 (($ $ $) 14)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-1708 (((-112) $ $) 16)) (-1686 (((-112) $ $) 17)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 15)) (-1676 (((-112) $ $) 18)))
-(((-131) (-138)) (T -131))
-((-1484 (*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-758)))) (-2886 (*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-758)) (-5 *2 (-1246)))))
-(-13 (-836) (-10 -8 (-15 -1484 ((-758) $)) (-15 -2886 ((-1246) $ (-758)))))
-(((-102) . T) ((-601 (-848)) . T) ((-836) . T) ((-1082) . T))
-((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 18) (($ (-1163)) NIL) (((-1163) $) NIL)) (-4319 (((-631 (-1117)) $) 10)) (-1658 (((-112) $ $) NIL)))
-(((-132) (-13 (-1065) (-10 -8 (-15 -4319 ((-631 (-1117)) $))))) (T -132))
-((-4319 (*1 *2 *1) (-12 (-5 *2 (-631 (-1117))) (-5 *1 (-132)))))
-(-13 (-1065) (-10 -8 (-15 -4319 ((-631 (-1117)) $))))
-((-3062 (((-112) $ $) 34)) (-1695 (((-112) $) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-758) "failed") $) 40)) (-1668 (((-758) $) 38)) (-1320 (((-3 $ "failed") $) NIL)) (-3248 (((-112) $) NIL)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) 27)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3482 (((-112)) 41)) (-1616 (((-112) (-112)) 43)) (-2874 (((-112) $) 24)) (-2582 (((-112) $) 37)) (-3075 (((-848) $) 22) (($ (-758)) 14)) (-2004 (($) 11 T CONST)) (-2014 (($) 12 T CONST)) (-2131 (($ (-758)) 15)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 25)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 26)) (-1744 (((-3 $ "failed") $ $) 30)) (-1735 (($ $ $) 28)) (** (($ $ (-758)) NIL) (($ $ (-906)) NIL) (($ $ $) 36)) (* (($ (-758) $) 33) (($ (-906) $) NIL) (($ $ $) 31)))
-(((-133) (-13 (-836) (-23) (-713) (-1023 (-758)) (-10 -8 (-6 (-4375 "*")) (-15 -1744 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2131 ($ (-758))) (-15 -2874 ((-112) $)) (-15 -2582 ((-112) $)) (-15 -3482 ((-112))) (-15 -1616 ((-112) (-112)))))) (T -133))
-((-1744 (*1 *1 *1 *1) (|partial| -5 *1 (-133))) (** (*1 *1 *1 *1) (-5 *1 (-133))) (-2131 (*1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-133)))) (-2874 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-2582 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-3482 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-1616 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
-(-13 (-836) (-23) (-713) (-1023 (-758)) (-10 -8 (-6 (-4375 "*")) (-15 -1744 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2131 ($ (-758))) (-15 -2874 ((-112) $)) (-15 -2582 ((-112) $)) (-15 -3482 ((-112))) (-15 -1616 ((-112) (-112)))))
-((-2516 (((-135 |#1| |#2| |#4|) (-631 |#4|) (-135 |#1| |#2| |#3|)) 14)) (-2879 (((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)) 18)))
-(((-134 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2516 ((-135 |#1| |#2| |#4|) (-631 |#4|) (-135 |#1| |#2| |#3|))) (-15 -2879 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)))) (-554) (-758) (-170) (-170)) (T -134))
-((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-554)) (-14 *6 (-758)) (-4 *7 (-170)) (-4 *8 (-170)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8)))) (-2516 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-554)) (-14 *6 (-758)) (-4 *7 (-170)) (-4 *8 (-170)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8)))))
-(-10 -7 (-15 -2516 ((-135 |#1| |#2| |#4|) (-631 |#4|) (-135 |#1| |#2| |#3|))) (-15 -2879 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|))))
-((-3062 (((-112) $ $) NIL)) (-2714 (($ (-631 |#3|)) 40)) (-2757 (($ $) 99) (($ $ (-554) (-554)) 98)) (-4087 (($) 17)) (-2784 (((-3 |#3| "failed") $) 60)) (-1668 ((|#3| $) NIL)) (-2378 (($ $ (-631 (-554))) 100)) (-2504 (((-631 |#3|) $) 36)) (-4186 (((-758) $) 44)) (-4264 (($ $ $) 93)) (-2006 (($) 43)) (-1613 (((-1140) $) NIL)) (-3141 (($) 16)) (-2768 (((-1102) $) NIL)) (-2064 ((|#3| $) 46) ((|#3| $ (-554)) 47) ((|#3| $ (-554) (-554)) 48) ((|#3| $ (-554) (-554) (-554)) 49) ((|#3| $ (-554) (-554) (-554) (-554)) 50) ((|#3| $ (-631 (-554))) 52)) (-3308 (((-758) $) 45)) (-4295 (($ $ (-554) $ (-554)) 94) (($ $ (-554) (-554)) 96)) (-3075 (((-848) $) 67) (($ |#3|) 68) (($ (-236 |#2| |#3|)) 75) (($ (-1124 |#2| |#3|)) 78) (($ (-631 |#3|)) 53) (($ (-631 $)) 58)) (-2004 (($) 69 T CONST)) (-2014 (($) 70 T CONST)) (-1658 (((-112) $ $) 80)) (-1744 (($ $) 86) (($ $ $) 84)) (-1735 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-554)) 89) (($ (-554) $) 88) (($ $ $) 95)))
-(((-135 |#1| |#2| |#3|) (-13 (-459 |#3| (-758)) (-464 (-554) (-758)) (-10 -8 (-15 -3075 ($ (-236 |#2| |#3|))) (-15 -3075 ($ (-1124 |#2| |#3|))) (-15 -3075 ($ (-631 |#3|))) (-15 -3075 ($ (-631 $))) (-15 -4186 ((-758) $)) (-15 -2064 (|#3| $)) (-15 -2064 (|#3| $ (-554))) (-15 -2064 (|#3| $ (-554) (-554))) (-15 -2064 (|#3| $ (-554) (-554) (-554))) (-15 -2064 (|#3| $ (-554) (-554) (-554) (-554))) (-15 -2064 (|#3| $ (-631 (-554)))) (-15 -4264 ($ $ $)) (-15 * ($ $ $)) (-15 -4295 ($ $ (-554) $ (-554))) (-15 -4295 ($ $ (-554) (-554))) (-15 -2757 ($ $)) (-15 -2757 ($ $ (-554) (-554))) (-15 -2378 ($ $ (-631 (-554)))) (-15 -3141 ($)) (-15 -2006 ($)) (-15 -2504 ((-631 |#3|) $)) (-15 -2714 ($ (-631 |#3|))) (-15 -4087 ($)))) (-554) (-758) (-170)) (T -135))
-((-4264 (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-554)) (-14 *3 (-758)) (-4 *4 (-170)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-236 *4 *5)) (-14 *4 (-758)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-554)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-1124 *4 *5)) (-14 *4 (-758)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-554)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-631 *5)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-554)) (-14 *4 (-758)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-631 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-554)) (-14 *4 (-758)) (-4 *5 (-170)))) (-4186 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-554)) (-14 *4 *2) (-4 *5 (-170)))) (-2064 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-554)) (-14 *4 (-758)))) (-2064 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-758)))) (-2064 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-554)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-758)))) (-2064 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-554)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-758)))) (-2064 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-554)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-758)))) (-2064 (*1 *2 *1 *3) (-12 (-5 *3 (-631 (-554))) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 (-554)) (-14 *5 (-758)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-554)) (-14 *3 (-758)) (-4 *4 (-170)))) (-4295 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-758)) (-4 *5 (-170)))) (-4295 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-758)) (-4 *5 (-170)))) (-2757 (*1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-554)) (-14 *3 (-758)) (-4 *4 (-170)))) (-2757 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-758)) (-4 *5 (-170)))) (-2378 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-554)) (-14 *4 (-758)) (-4 *5 (-170)))) (-3141 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-554)) (-14 *3 (-758)) (-4 *4 (-170)))) (-2006 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-554)) (-14 *3 (-758)) (-4 *4 (-170)))) (-2504 (*1 *2 *1) (-12 (-5 *2 (-631 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-554)) (-14 *4 (-758)) (-4 *5 (-170)))) (-2714 (*1 *1 *2) (-12 (-5 *2 (-631 *5)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-554)) (-14 *4 (-758)))) (-4087 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-554)) (-14 *3 (-758)) (-4 *4 (-170)))))
-(-13 (-459 |#3| (-758)) (-464 (-554) (-758)) (-10 -8 (-15 -3075 ($ (-236 |#2| |#3|))) (-15 -3075 ($ (-1124 |#2| |#3|))) (-15 -3075 ($ (-631 |#3|))) (-15 -3075 ($ (-631 $))) (-15 -4186 ((-758) $)) (-15 -2064 (|#3| $)) (-15 -2064 (|#3| $ (-554))) (-15 -2064 (|#3| $ (-554) (-554))) (-15 -2064 (|#3| $ (-554) (-554) (-554))) (-15 -2064 (|#3| $ (-554) (-554) (-554) (-554))) (-15 -2064 (|#3| $ (-631 (-554)))) (-15 -4264 ($ $ $)) (-15 * ($ $ $)) (-15 -4295 ($ $ (-554) $ (-554))) (-15 -4295 ($ $ (-554) (-554))) (-15 -2757 ($ $)) (-15 -2757 ($ $ (-554) (-554))) (-15 -2378 ($ $ (-631 (-554)))) (-15 -3141 ($)) (-15 -2006 ($)) (-15 -2504 ((-631 |#3|) $)) (-15 -2714 ($ (-631 |#3|))) (-15 -4087 ($))))
-((-3062 (((-112) $ $) NIL)) (-3848 (((-1117) $) 11)) (-3836 (((-1117) $) 9)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 19) (($ (-1163)) NIL) (((-1163) $) NIL)) (-1658 (((-112) $ $) NIL)))
-(((-136) (-13 (-1065) (-10 -8 (-15 -3836 ((-1117) $)) (-15 -3848 ((-1117) $))))) (T -136))
-((-3836 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-136)))) (-3848 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-136)))))
-(-13 (-1065) (-10 -8 (-15 -3836 ((-1117) $)) (-15 -3848 ((-1117) $))))
-((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-1466 (((-1158) $) 10)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 19) (($ (-1163)) NIL) (((-1163) $) NIL)) (-4319 (((-631 (-1117)) $) 12)) (-1658 (((-112) $ $) NIL)))
-(((-137) (-13 (-1065) (-10 -8 (-15 -1466 ((-1158) $)) (-15 -4319 ((-631 (-1117)) $))))) (T -137))
-((-1466 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-137)))) (-4319 (*1 *2 *1) (-12 (-5 *2 (-631 (-1117))) (-5 *1 (-137)))))
-(-13 (-1065) (-10 -8 (-15 -1466 ((-1158) $)) (-15 -4319 ((-631 (-1117)) $))))
-((-3075 (((-848) $) 7)))
-(((-138) (-601 (-848))) (T -138))
-NIL
-(-601 (-848))
-((-3062 (((-112) $ $) NIL)) (-2451 (($) 15 T CONST)) (-3509 (($) NIL (|has| (-142) (-363)))) (-3382 (($ $ $) 17) (($ $ (-142)) NIL) (($ (-142) $) NIL)) (-3775 (($ $ $) NIL)) (-2411 (((-112) $ $) NIL)) (-3019 (((-112) $ (-758)) NIL)) (-1508 (((-758)) NIL (|has| (-142) (-363)))) (-1489 (($) NIL) (($ (-631 (-142))) NIL)) (-2220 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4373)))) (-4087 (($) NIL T CONST)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-142) (-1082))))) (-1884 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4373))) (($ (-142) $) 51 (|has| $ (-6 -4373)))) (-2574 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4373))) (($ (-142) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-142) (-1082))))) (-3676 (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4373))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4373))) (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4373)) (|has| (-142) (-1082))))) (-3353 (($) NIL (|has| (-142) (-363)))) (-2466 (((-631 (-142)) $) 60 (|has| $ (-6 -4373)))) (-1334 (((-112) $ $) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-4223 (((-142) $) NIL (|has| (-142) (-836)))) (-2379 (((-631 (-142)) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) (-142) $) 26 (-12 (|has| $ (-6 -4373)) (|has| (-142) (-1082))))) (-2706 (((-142) $) NIL (|has| (-142) (-836)))) (-2849 (($ (-1 (-142) (-142)) $) 59 (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-142) (-142)) $) 55)) (-1913 (($) 16 T CONST)) (-3830 (((-906) $) NIL (|has| (-142) (-363)))) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL)) (-3977 (($ $ $) 29)) (-4150 (((-142) $) 52)) (-2045 (($ (-142) $) 50)) (-2717 (($ (-906)) NIL (|has| (-142) (-363)))) (-2348 (($) 14 T CONST)) (-2768 (((-1102) $) NIL)) (-1652 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-2152 (((-142) $) 53)) (-2845 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-142)) (-631 (-142))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082)))) (($ $ (-289 (-142))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082)))) (($ $ (-631 (-289 (-142)))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) 48)) (-2967 (($) 13 T CONST)) (-3372 (($ $ $) 31) (($ $ (-142)) NIL)) (-4310 (($ (-631 (-142))) NIL) (($) NIL)) (-2777 (((-758) (-142) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-142) (-1082)))) (((-758) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4373)))) (-1521 (($ $) NIL)) (-2927 (((-1140) $) 36) (((-530) $) NIL (|has| (-142) (-602 (-530)))) (((-631 (-142)) $) 34)) (-3089 (($ (-631 (-142))) NIL)) (-3043 (($ $) 32 (|has| (-142) (-363)))) (-3075 (((-848) $) 46)) (-4070 (($ (-1140)) 12) (($ (-631 (-142))) 43)) (-3813 (((-758) $) NIL)) (-2332 (($) 49) (($ (-631 (-142))) NIL)) (-1591 (($ (-631 (-142))) NIL)) (-2438 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4373)))) (-2889 (($) 19 T CONST)) (-1418 (($) 18 T CONST)) (-1658 (((-112) $ $) 22)) (-2563 (((-758) $) 47 (|has| $ (-6 -4373)))))
-(((-139) (-13 (-1082) (-602 (-1140)) (-420 (-142)) (-602 (-631 (-142))) (-10 -8 (-15 -4070 ($ (-1140))) (-15 -4070 ($ (-631 (-142)))) (-15 -2967 ($) -2397) (-15 -2348 ($) -2397) (-15 -2451 ($) -2397) (-15 -1913 ($) -2397) (-15 -1418 ($) -2397) (-15 -2889 ($) -2397)))) (T -139))
-((-4070 (*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-139)))) (-4070 (*1 *1 *2) (-12 (-5 *2 (-631 (-142))) (-5 *1 (-139)))) (-2967 (*1 *1) (-5 *1 (-139))) (-2348 (*1 *1) (-5 *1 (-139))) (-2451 (*1 *1) (-5 *1 (-139))) (-1913 (*1 *1) (-5 *1 (-139))) (-1418 (*1 *1) (-5 *1 (-139))) (-2889 (*1 *1) (-5 *1 (-139))))
-(-13 (-1082) (-602 (-1140)) (-420 (-142)) (-602 (-631 (-142))) (-10 -8 (-15 -4070 ($ (-1140))) (-15 -4070 ($ (-631 (-142)))) (-15 -2967 ($) -2397) (-15 -2348 ($) -2397) (-15 -2451 ($) -2397) (-15 -1913 ($) -2397) (-15 -1418 ($) -2397) (-15 -2889 ($) -2397)))
-((-2037 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-2715 ((|#1| |#3|) 9)) (-1770 ((|#3| |#3|) 15)))
-(((-140 |#1| |#2| |#3|) (-10 -7 (-15 -2715 (|#1| |#3|)) (-15 -1770 (|#3| |#3|)) (-15 -2037 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-546) (-977 |#1|) (-368 |#2|)) (T -140))
-((-2037 (*1 *2 *3) (-12 (-4 *4 (-546)) (-4 *5 (-977 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-140 *4 *5 *3)) (-4 *3 (-368 *5)))) (-1770 (*1 *2 *2) (-12 (-4 *3 (-546)) (-4 *4 (-977 *3)) (-5 *1 (-140 *3 *4 *2)) (-4 *2 (-368 *4)))) (-2715 (*1 *2 *3) (-12 (-4 *4 (-977 *2)) (-4 *2 (-546)) (-5 *1 (-140 *2 *4 *3)) (-4 *3 (-368 *4)))))
-(-10 -7 (-15 -2715 (|#1| |#3|)) (-15 -1770 (|#3| |#3|)) (-15 -2037 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-1295 (($ $ $) 8)) (-1582 (($ $) 7)) (-1629 (($ $ $) 6)))
-(((-141) (-138)) (T -141))
-((-1295 (*1 *1 *1 *1) (-4 *1 (-141))) (-1582 (*1 *1 *1) (-4 *1 (-141))) (-1629 (*1 *1 *1 *1) (-4 *1 (-141))))
-(-13 (-10 -8 (-15 -1629 ($ $ $)) (-15 -1582 ($ $)) (-15 -1295 ($ $ $))))
-((-3062 (((-112) $ $) NIL)) (-3145 (((-112) $) 30)) (-2451 (($ $) 43)) (-4287 (($) 17)) (-1508 (((-758)) 10)) (-3353 (($) 16)) (-3402 (($) 18)) (-2856 (((-758) $) 14)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-4283 (((-112) $) 32)) (-1913 (($ $) 44)) (-3830 (((-906) $) 15)) (-1613 (((-1140) $) 38)) (-2717 (($ (-906)) 13)) (-2658 (((-112) $) 28)) (-2768 (((-1102) $) NIL)) (-2372 (($) 19)) (-4300 (((-112) $) 26)) (-3075 (((-848) $) 21)) (-3231 (($ (-758)) 11) (($ (-1140)) 42)) (-3645 (((-112) $) 36)) (-2674 (((-112) $) 34)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 7)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 8)))
-(((-142) (-13 (-830) (-10 -8 (-15 -2856 ((-758) $)) (-15 -3231 ($ (-758))) (-15 -3231 ($ (-1140))) (-15 -4287 ($)) (-15 -3402 ($)) (-15 -2372 ($)) (-15 -2451 ($ $)) (-15 -1913 ($ $)) (-15 -4300 ((-112) $)) (-15 -2658 ((-112) $)) (-15 -2674 ((-112) $)) (-15 -3145 ((-112) $)) (-15 -4283 ((-112) $)) (-15 -3645 ((-112) $))))) (T -142))
-((-2856 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-142)))) (-3231 (*1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-142)))) (-3231 (*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-142)))) (-4287 (*1 *1) (-5 *1 (-142))) (-3402 (*1 *1) (-5 *1 (-142))) (-2372 (*1 *1) (-5 *1 (-142))) (-2451 (*1 *1 *1) (-5 *1 (-142))) (-1913 (*1 *1 *1) (-5 *1 (-142))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-2658 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-2674 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-3145 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-4283 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-3645 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
-(-13 (-830) (-10 -8 (-15 -2856 ((-758) $)) (-15 -3231 ($ (-758))) (-15 -3231 ($ (-1140))) (-15 -4287 ($)) (-15 -3402 ($)) (-15 -2372 ($)) (-15 -2451 ($ $)) (-15 -1913 ($ $)) (-15 -4300 ((-112) $)) (-15 -2658 ((-112) $)) (-15 -2674 ((-112) $)) (-15 -3145 ((-112) $)) (-15 -4283 ((-112) $)) (-15 -3645 ((-112) $))))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1320 (((-3 $ "failed") $) 33)) (-3248 (((-112) $) 31)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11) (($ (-554)) 29)) (-2084 (((-3 $ "failed") $) 35)) (-2261 (((-758)) 28)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24)))
-(((-143) (-138)) (T -143))
-((-2084 (*1 *1 *1) (|partial| -4 *1 (-143))))
-(-13 (-1034) (-10 -8 (-15 -2084 ((-3 $ "failed") $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-604 (-554)) . T) ((-601 (-848)) . T) ((-634 $) . T) ((-713) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T))
-((-3109 ((|#1| (-675 |#1|) |#1|) 19)))
-(((-144 |#1|) (-10 -7 (-15 -3109 (|#1| (-675 |#1|) |#1|))) (-170)) (T -144))
-((-3109 (*1 *2 *3 *2) (-12 (-5 *3 (-675 *2)) (-4 *2 (-170)) (-5 *1 (-144 *2)))))
-(-10 -7 (-15 -3109 (|#1| (-675 |#1|) |#1|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1320 (((-3 $ "failed") $) 33)) (-3248 (((-112) $) 31)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11) (($ (-554)) 29)) (-2261 (((-758)) 28)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24)))
-(((-145) (-138)) (T -145))
-NIL
-(-13 (-1034))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-604 (-554)) . T) ((-601 (-848)) . T) ((-634 $) . T) ((-713) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T))
-((-3698 (((-2 (|:| -1407 (-758)) (|:| -1490 (-402 |#2|)) (|:| |radicand| |#2|)) (-402 |#2|) (-758)) 70)) (-2345 (((-3 (-2 (|:| |radicand| (-402 |#2|)) (|:| |deg| (-758))) "failed") |#3|) 52)) (-1546 (((-2 (|:| -1490 (-402 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-2191 ((|#1| |#3| |#3|) 40)) (-2386 ((|#3| |#3| (-402 |#2|) (-402 |#2|)) 19)) (-3080 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-402 |#2|)) (|:| |c2| (-402 |#2|)) (|:| |deg| (-758))) |#3| |#3|) 49)))
-(((-146 |#1| |#2| |#3|) (-10 -7 (-15 -1546 ((-2 (|:| -1490 (-402 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2345 ((-3 (-2 (|:| |radicand| (-402 |#2|)) (|:| |deg| (-758))) "failed") |#3|)) (-15 -3698 ((-2 (|:| -1407 (-758)) (|:| -1490 (-402 |#2|)) (|:| |radicand| |#2|)) (-402 |#2|) (-758))) (-15 -2191 (|#1| |#3| |#3|)) (-15 -2386 (|#3| |#3| (-402 |#2|) (-402 |#2|))) (-15 -3080 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-402 |#2|)) (|:| |c2| (-402 |#2|)) (|:| |deg| (-758))) |#3| |#3|))) (-1199) (-1217 |#1|) (-1217 (-402 |#2|))) (T -146))
-((-3080 (*1 *2 *3 *3) (-12 (-4 *4 (-1199)) (-4 *5 (-1217 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-402 *5)) (|:| |c2| (-402 *5)) (|:| |deg| (-758)))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1217 (-402 *5))))) (-2386 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-402 *5)) (-4 *4 (-1199)) (-4 *5 (-1217 *4)) (-5 *1 (-146 *4 *5 *2)) (-4 *2 (-1217 *3)))) (-2191 (*1 *2 *3 *3) (-12 (-4 *4 (-1217 *2)) (-4 *2 (-1199)) (-5 *1 (-146 *2 *4 *3)) (-4 *3 (-1217 (-402 *4))))) (-3698 (*1 *2 *3 *4) (-12 (-5 *3 (-402 *6)) (-4 *5 (-1199)) (-4 *6 (-1217 *5)) (-5 *2 (-2 (|:| -1407 (-758)) (|:| -1490 *3) (|:| |radicand| *6))) (-5 *1 (-146 *5 *6 *7)) (-5 *4 (-758)) (-4 *7 (-1217 *3)))) (-2345 (*1 *2 *3) (|partial| -12 (-4 *4 (-1199)) (-4 *5 (-1217 *4)) (-5 *2 (-2 (|:| |radicand| (-402 *5)) (|:| |deg| (-758)))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1217 (-402 *5))))) (-1546 (*1 *2 *3) (-12 (-4 *4 (-1199)) (-4 *5 (-1217 *4)) (-5 *2 (-2 (|:| -1490 (-402 *5)) (|:| |poly| *3))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1217 (-402 *5))))))
-(-10 -7 (-15 -1546 ((-2 (|:| -1490 (-402 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2345 ((-3 (-2 (|:| |radicand| (-402 |#2|)) (|:| |deg| (-758))) "failed") |#3|)) (-15 -3698 ((-2 (|:| -1407 (-758)) (|:| -1490 (-402 |#2|)) (|:| |radicand| |#2|)) (-402 |#2|) (-758))) (-15 -2191 (|#1| |#3| |#3|)) (-15 -2386 (|#3| |#3| (-402 |#2|) (-402 |#2|))) (-15 -3080 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-402 |#2|)) (|:| |c2| (-402 |#2|)) (|:| |deg| (-758))) |#3| |#3|)))
-((-1625 (((-3 (-631 (-1154 |#2|)) "failed") (-631 (-1154 |#2|)) (-1154 |#2|)) 32)))
-(((-147 |#1| |#2|) (-10 -7 (-15 -1625 ((-3 (-631 (-1154 |#2|)) "failed") (-631 (-1154 |#2|)) (-1154 |#2|)))) (-539) (-164 |#1|)) (T -147))
-((-1625 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-631 (-1154 *5))) (-5 *3 (-1154 *5)) (-4 *5 (-164 *4)) (-4 *4 (-539)) (-5 *1 (-147 *4 *5)))))
-(-10 -7 (-15 -1625 ((-3 (-631 (-1154 |#2|)) "failed") (-631 (-1154 |#2|)) (-1154 |#2|))))
-((-1871 (($ (-1 (-112) |#2|) $) 29)) (-1571 (($ $) 36)) (-2574 (($ (-1 (-112) |#2|) $) 27) (($ |#2| $) 32)) (-3676 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-1652 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 19)) (-2845 (((-112) (-1 (-112) |#2|) $) 16)) (-2777 (((-758) (-1 (-112) |#2|) $) 14) (((-758) |#2| $) NIL)) (-2438 (((-112) (-1 (-112) |#2|) $) 15)) (-2563 (((-758) $) 11)))
-(((-148 |#1| |#2|) (-10 -8 (-15 -1571 (|#1| |#1|)) (-15 -2574 (|#1| |#2| |#1|)) (-15 -3676 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1871 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2574 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3676 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3676 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1652 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2777 ((-758) |#2| |#1|)) (-15 -2777 ((-758) (-1 (-112) |#2|) |#1|)) (-15 -2845 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2438 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2563 ((-758) |#1|))) (-149 |#2|) (-1195)) (T -148))
-NIL
-(-10 -8 (-15 -1571 (|#1| |#1|)) (-15 -2574 (|#1| |#2| |#1|)) (-15 -3676 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1871 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2574 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3676 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3676 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1652 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2777 ((-758) |#2| |#1|)) (-15 -2777 ((-758) (-1 (-112) |#2|) |#1|)) (-15 -2845 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2438 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2563 ((-758) |#1|)))
-((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-3019 (((-112) $ (-758)) 8)) (-1871 (($ (-1 (-112) |#1|) $) 44 (|has| $ (-6 -4373)))) (-4087 (($) 7 T CONST)) (-1571 (($ $) 41 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2574 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4373))) (($ |#1| $) 42 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) 9)) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35)) (-3731 (((-112) $ (-758)) 10)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 48)) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-2927 (((-530) $) 40 (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) 49)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373)))))
-(((-149 |#1|) (-138) (-1195)) (T -149))
-((-3089 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1195)) (-4 *1 (-149 *3)))) (-1652 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-149 *2)) (-4 *2 (-1195)))) (-3676 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4373)) (-4 *1 (-149 *2)) (-4 *2 (-1195)))) (-3676 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4373)) (-4 *1 (-149 *2)) (-4 *2 (-1195)))) (-2574 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4373)) (-4 *1 (-149 *3)) (-4 *3 (-1195)))) (-1871 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4373)) (-4 *1 (-149 *3)) (-4 *3 (-1195)))) (-3676 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1082)) (|has| *1 (-6 -4373)) (-4 *1 (-149 *2)) (-4 *2 (-1195)))) (-2574 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4373)) (-4 *1 (-149 *2)) (-4 *2 (-1195)) (-4 *2 (-1082)))) (-1571 (*1 *1 *1) (-12 (|has| *1 (-6 -4373)) (-4 *1 (-149 *2)) (-4 *2 (-1195)) (-4 *2 (-1082)))))
-(-13 (-483 |t#1|) (-10 -8 (-15 -3089 ($ (-631 |t#1|))) (-15 -1652 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4373)) (PROGN (-15 -3676 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3676 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -2574 ($ (-1 (-112) |t#1|) $)) (-15 -1871 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1082)) (PROGN (-15 -3676 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -2574 ($ |t#1| $)) (-15 -1571 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-602 (-530))) (-6 (-602 (-530))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1082)) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-601 (-848)))) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-1082) |has| |#1| (-1082)) ((-1195) . T))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-1320 (((-3 $ "failed") $) 86)) (-3248 (((-112) $) NIL)) (-2383 (($ |#2| (-631 (-906))) 56)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-4017 (($ (-906)) 47)) (-3330 (((-133)) 23)) (-3075 (((-848) $) 69) (($ (-554)) 45) (($ |#2|) 46)) (-1779 ((|#2| $ (-631 (-906))) 59)) (-2261 (((-758)) 20)) (-2004 (($) 40 T CONST)) (-2014 (($) 43 T CONST)) (-1658 (((-112) $ $) 26)) (-1752 (($ $ |#2|) NIL)) (-1744 (($ $) 34) (($ $ $) 32)) (-1735 (($ $ $) 30)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL)))
-(((-150 |#1| |#2| |#3|) (-13 (-1034) (-38 |#2|) (-1248 |#2|) (-10 -8 (-15 -4017 ($ (-906))) (-15 -2383 ($ |#2| (-631 (-906)))) (-15 -1779 (|#2| $ (-631 (-906)))) (-15 -1320 ((-3 $ "failed") $)))) (-906) (-358) (-978 |#1| |#2|)) (T -150))
-((-1320 (*1 *1 *1) (|partial| -12 (-5 *1 (-150 *2 *3 *4)) (-14 *2 (-906)) (-4 *3 (-358)) (-14 *4 (-978 *2 *3)))) (-4017 (*1 *1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-150 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-358)) (-14 *5 (-978 *3 *4)))) (-2383 (*1 *1 *2 *3) (-12 (-5 *3 (-631 (-906))) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-906)) (-4 *2 (-358)) (-14 *5 (-978 *4 *2)))) (-1779 (*1 *2 *1 *3) (-12 (-5 *3 (-631 (-906))) (-4 *2 (-358)) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-906)) (-14 *5 (-978 *4 *2)))))
-(-13 (-1034) (-38 |#2|) (-1248 |#2|) (-10 -8 (-15 -4017 ($ (-906))) (-15 -2383 ($ |#2| (-631 (-906)))) (-15 -1779 (|#2| $ (-631 (-906)))) (-15 -1320 ((-3 $ "failed") $))))
-((-2531 (((-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))) (-631 (-631 (-928 (-221)))) (-221) (-221) (-221) (-221)) 38)) (-3921 (((-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))) (-912) (-402 (-554)) (-402 (-554))) 63) (((-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))) (-912)) 64)) (-4184 (((-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))) (-631 (-631 (-928 (-221))))) 67) (((-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))) (-631 (-928 (-221)))) 66) (((-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))) (-912) (-402 (-554)) (-402 (-554))) 58) (((-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))) (-912)) 59)))
-(((-151) (-10 -7 (-15 -4184 ((-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))) (-912))) (-15 -4184 ((-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))) (-912) (-402 (-554)) (-402 (-554)))) (-15 -3921 ((-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))) (-912))) (-15 -3921 ((-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))) (-912) (-402 (-554)) (-402 (-554)))) (-15 -2531 ((-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))) (-631 (-631 (-928 (-221)))) (-221) (-221) (-221) (-221))) (-15 -4184 ((-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))) (-631 (-928 (-221))))) (-15 -4184 ((-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))) (-631 (-631 (-928 (-221)))))))) (T -151))
-((-4184 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221))))) (-5 *1 (-151)) (-5 *3 (-631 (-631 (-928 (-221))))))) (-4184 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221))))) (-5 *1 (-151)) (-5 *3 (-631 (-928 (-221)))))) (-2531 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-221)) (-5 *2 (-2 (|:| |brans| (-631 (-631 (-928 *4)))) (|:| |xValues| (-1076 *4)) (|:| |yValues| (-1076 *4)))) (-5 *1 (-151)) (-5 *3 (-631 (-631 (-928 *4)))))) (-3921 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-912)) (-5 *4 (-402 (-554))) (-5 *2 (-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221))))) (-5 *1 (-151)))) (-3921 (*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221))))) (-5 *1 (-151)))) (-4184 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-912)) (-5 *4 (-402 (-554))) (-5 *2 (-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221))))) (-5 *1 (-151)))) (-4184 (*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221))))) (-5 *1 (-151)))))
-(-10 -7 (-15 -4184 ((-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))) (-912))) (-15 -4184 ((-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))) (-912) (-402 (-554)) (-402 (-554)))) (-15 -3921 ((-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))) (-912))) (-15 -3921 ((-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))) (-912) (-402 (-554)) (-402 (-554)))) (-15 -2531 ((-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))) (-631 (-631 (-928 (-221)))) (-221) (-221) (-221) (-221))) (-15 -4184 ((-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))) (-631 (-928 (-221))))) (-15 -4184 ((-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))) (-631 (-631 (-928 (-221)))))))
-((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-1584 (((-631 (-1117)) $) 15)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 24) (($ (-1163)) NIL) (((-1163) $) NIL)) (-4319 (((-1117) $) 9)) (-1658 (((-112) $ $) NIL)))
-(((-152) (-13 (-1065) (-10 -8 (-15 -1584 ((-631 (-1117)) $)) (-15 -4319 ((-1117) $))))) (T -152))
-((-1584 (*1 *2 *1) (-12 (-5 *2 (-631 (-1117))) (-5 *1 (-152)))) (-4319 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-152)))))
-(-13 (-1065) (-10 -8 (-15 -1584 ((-631 (-1117)) $)) (-15 -4319 ((-1117) $))))
-((-2390 (((-631 (-167 |#2|)) |#1| |#2|) 45)))
-(((-153 |#1| |#2|) (-10 -7 (-15 -2390 ((-631 (-167 |#2|)) |#1| |#2|))) (-1217 (-167 (-554))) (-13 (-358) (-834))) (T -153))
-((-2390 (*1 *2 *3 *4) (-12 (-5 *2 (-631 (-167 *4))) (-5 *1 (-153 *3 *4)) (-4 *3 (-1217 (-167 (-554)))) (-4 *4 (-13 (-358) (-834))))))
-(-10 -7 (-15 -2390 ((-631 (-167 |#2|)) |#1| |#2|)))
-((-3062 (((-112) $ $) NIL)) (-3848 (((-1194) $) 12)) (-3836 (((-1117) $) 9)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 21) (($ (-1163)) NIL) (((-1163) $) NIL)) (-1658 (((-112) $ $) NIL)))
-(((-154) (-13 (-1065) (-10 -8 (-15 -3836 ((-1117) $)) (-15 -3848 ((-1194) $))))) (T -154))
-((-3836 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-154)))) (-3848 (*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-154)))))
-(-13 (-1065) (-10 -8 (-15 -3836 ((-1117) $)) (-15 -3848 ((-1194) $))))
-((-3062 (((-112) $ $) NIL)) (-1512 (($) 15)) (-2323 (($) 14)) (-1796 (((-906)) 22)) (-1613 (((-1140) $) NIL)) (-3684 (((-554) $) 19)) (-2768 (((-1102) $) NIL)) (-4006 (($) 16)) (-2301 (($ (-554)) 23)) (-3075 (((-848) $) 29)) (-4312 (($) 17)) (-1658 (((-112) $ $) 13)) (-1735 (($ $ $) 11)) (* (($ (-906) $) 21) (($ (-221) $) 8)))
-(((-155) (-13 (-25) (-10 -8 (-15 * ($ (-906) $)) (-15 * ($ (-221) $)) (-15 -1735 ($ $ $)) (-15 -2323 ($)) (-15 -1512 ($)) (-15 -4006 ($)) (-15 -4312 ($)) (-15 -3684 ((-554) $)) (-15 -1796 ((-906))) (-15 -2301 ($ (-554)))))) (T -155))
-((-1735 (*1 *1 *1 *1) (-5 *1 (-155))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-906)) (-5 *1 (-155)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-155)))) (-2323 (*1 *1) (-5 *1 (-155))) (-1512 (*1 *1) (-5 *1 (-155))) (-4006 (*1 *1) (-5 *1 (-155))) (-4312 (*1 *1) (-5 *1 (-155))) (-3684 (*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-155)))) (-1796 (*1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-155)))) (-2301 (*1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-155)))))
-(-13 (-25) (-10 -8 (-15 * ($ (-906) $)) (-15 * ($ (-221) $)) (-15 -1735 ($ $ $)) (-15 -2323 ($)) (-15 -1512 ($)) (-15 -4006 ($)) (-15 -4312 ($)) (-15 -3684 ((-554) $)) (-15 -1796 ((-906))) (-15 -2301 ($ (-554)))))
-((-3820 ((|#2| |#2| (-1074 |#2|)) 88) ((|#2| |#2| (-1158)) 68)) (-4264 ((|#2| |#2| (-1074 |#2|)) 87) ((|#2| |#2| (-1158)) 67)) (-1295 ((|#2| |#2| |#2|) 27)) (-3086 (((-114) (-114)) 99)) (-3696 ((|#2| (-631 |#2|)) 117)) (-3762 ((|#2| (-631 |#2|)) 135)) (-2952 ((|#2| (-631 |#2|)) 125)) (-3125 ((|#2| |#2|) 123)) (-2978 ((|#2| (-631 |#2|)) 111)) (-2827 ((|#2| (-631 |#2|)) 112)) (-3815 ((|#2| (-631 |#2|)) 133)) (-1662 ((|#2| |#2| (-1158)) 56) ((|#2| |#2|) 55)) (-1582 ((|#2| |#2|) 23)) (-1629 ((|#2| |#2| |#2|) 26)) (-1902 (((-112) (-114)) 49)) (** ((|#2| |#2| |#2|) 41)))
-(((-156 |#1| |#2|) (-10 -7 (-15 -1902 ((-112) (-114))) (-15 -3086 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -1629 (|#2| |#2| |#2|)) (-15 -1295 (|#2| |#2| |#2|)) (-15 -1582 (|#2| |#2|)) (-15 -1662 (|#2| |#2|)) (-15 -1662 (|#2| |#2| (-1158))) (-15 -3820 (|#2| |#2| (-1158))) (-15 -3820 (|#2| |#2| (-1074 |#2|))) (-15 -4264 (|#2| |#2| (-1158))) (-15 -4264 (|#2| |#2| (-1074 |#2|))) (-15 -3125 (|#2| |#2|)) (-15 -3815 (|#2| (-631 |#2|))) (-15 -2952 (|#2| (-631 |#2|))) (-15 -3762 (|#2| (-631 |#2|))) (-15 -2978 (|#2| (-631 |#2|))) (-15 -2827 (|#2| (-631 |#2|))) (-15 -3696 (|#2| (-631 |#2|)))) (-13 (-836) (-546)) (-425 |#1|)) (T -156))
-((-3696 (*1 *2 *3) (-12 (-5 *3 (-631 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-836) (-546))))) (-2827 (*1 *2 *3) (-12 (-5 *3 (-631 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-836) (-546))))) (-2978 (*1 *2 *3) (-12 (-5 *3 (-631 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-836) (-546))))) (-3762 (*1 *2 *3) (-12 (-5 *3 (-631 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-836) (-546))))) (-2952 (*1 *2 *3) (-12 (-5 *3 (-631 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-836) (-546))))) (-3815 (*1 *2 *3) (-12 (-5 *3 (-631 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-836) (-546))))) (-3125 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-156 *3 *2)) (-4 *2 (-425 *3)))) (-4264 (*1 *2 *2 *3) (-12 (-5 *3 (-1074 *2)) (-4 *2 (-425 *4)) (-4 *4 (-13 (-836) (-546))) (-5 *1 (-156 *4 *2)))) (-4264 (*1 *2 *2 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-836) (-546))) (-5 *1 (-156 *4 *2)) (-4 *2 (-425 *4)))) (-3820 (*1 *2 *2 *3) (-12 (-5 *3 (-1074 *2)) (-4 *2 (-425 *4)) (-4 *4 (-13 (-836) (-546))) (-5 *1 (-156 *4 *2)))) (-3820 (*1 *2 *2 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-836) (-546))) (-5 *1 (-156 *4 *2)) (-4 *2 (-425 *4)))) (-1662 (*1 *2 *2 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-836) (-546))) (-5 *1 (-156 *4 *2)) (-4 *2 (-425 *4)))) (-1662 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-156 *3 *2)) (-4 *2 (-425 *3)))) (-1582 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-156 *3 *2)) (-4 *2 (-425 *3)))) (-1295 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-156 *3 *2)) (-4 *2 (-425 *3)))) (-1629 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-156 *3 *2)) (-4 *2 (-425 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-156 *3 *2)) (-4 *2 (-425 *3)))) (-3086 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-836) (-546))) (-5 *1 (-156 *3 *4)) (-4 *4 (-425 *3)))) (-1902 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-836) (-546))) (-5 *2 (-112)) (-5 *1 (-156 *4 *5)) (-4 *5 (-425 *4)))))
-(-10 -7 (-15 -1902 ((-112) (-114))) (-15 -3086 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -1629 (|#2| |#2| |#2|)) (-15 -1295 (|#2| |#2| |#2|)) (-15 -1582 (|#2| |#2|)) (-15 -1662 (|#2| |#2|)) (-15 -1662 (|#2| |#2| (-1158))) (-15 -3820 (|#2| |#2| (-1158))) (-15 -3820 (|#2| |#2| (-1074 |#2|))) (-15 -4264 (|#2| |#2| (-1158))) (-15 -4264 (|#2| |#2| (-1074 |#2|))) (-15 -3125 (|#2| |#2|)) (-15 -3815 (|#2| (-631 |#2|))) (-15 -2952 (|#2| (-631 |#2|))) (-15 -3762 (|#2| (-631 |#2|))) (-15 -2978 (|#2| (-631 |#2|))) (-15 -2827 (|#2| (-631 |#2|))) (-15 -3696 (|#2| (-631 |#2|))))
-((-2351 ((|#1| |#1| |#1|) 53)) (-3267 ((|#1| |#1| |#1|) 50)) (-1295 ((|#1| |#1| |#1|) 44)) (-3941 ((|#1| |#1|) 35)) (-3607 ((|#1| |#1| (-631 |#1|)) 43)) (-1582 ((|#1| |#1|) 37)) (-1629 ((|#1| |#1| |#1|) 40)))
-(((-157 |#1|) (-10 -7 (-15 -1629 (|#1| |#1| |#1|)) (-15 -1582 (|#1| |#1|)) (-15 -3607 (|#1| |#1| (-631 |#1|))) (-15 -3941 (|#1| |#1|)) (-15 -1295 (|#1| |#1| |#1|)) (-15 -3267 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1| |#1|))) (-539)) (T -157))
-((-2351 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-539)))) (-3267 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-539)))) (-1295 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-539)))) (-3941 (*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-539)))) (-3607 (*1 *2 *2 *3) (-12 (-5 *3 (-631 *2)) (-4 *2 (-539)) (-5 *1 (-157 *2)))) (-1582 (*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-539)))) (-1629 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-539)))))
-(-10 -7 (-15 -1629 (|#1| |#1| |#1|)) (-15 -1582 (|#1| |#1|)) (-15 -3607 (|#1| |#1| (-631 |#1|))) (-15 -3941 (|#1| |#1|)) (-15 -1295 (|#1| |#1| |#1|)) (-15 -3267 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1| |#1|)))
-((-3820 (($ $ (-1158)) 12) (($ $ (-1074 $)) 11)) (-4264 (($ $ (-1158)) 10) (($ $ (-1074 $)) 9)) (-1295 (($ $ $) 8)) (-1662 (($ $) 14) (($ $ (-1158)) 13)) (-1582 (($ $) 7)) (-1629 (($ $ $) 6)))
-(((-158) (-138)) (T -158))
-((-1662 (*1 *1 *1) (-4 *1 (-158))) (-1662 (*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1158)))) (-3820 (*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1158)))) (-3820 (*1 *1 *1 *2) (-12 (-5 *2 (-1074 *1)) (-4 *1 (-158)))) (-4264 (*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1158)))) (-4264 (*1 *1 *1 *2) (-12 (-5 *2 (-1074 *1)) (-4 *1 (-158)))))
-(-13 (-141) (-10 -8 (-15 -1662 ($ $)) (-15 -1662 ($ $ (-1158))) (-15 -3820 ($ $ (-1158))) (-15 -3820 ($ $ (-1074 $))) (-15 -4264 ($ $ (-1158))) (-15 -4264 ($ $ (-1074 $)))))
-(((-141) . T))
-((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 17) (($ (-1163)) NIL) (((-1163) $) NIL)) (-4319 (((-631 (-1117)) $) 9)) (-1658 (((-112) $ $) NIL)))
-(((-159) (-13 (-1065) (-10 -8 (-15 -4319 ((-631 (-1117)) $))))) (T -159))
-((-4319 (*1 *2 *1) (-12 (-5 *2 (-631 (-1117))) (-5 *1 (-159)))))
-(-13 (-1065) (-10 -8 (-15 -4319 ((-631 (-1117)) $))))
-((-3062 (((-112) $ $) NIL)) (-1287 (($ (-554)) 13) (($ $ $) 14)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 17)) (-1658 (((-112) $ $) 9)))
-(((-160) (-13 (-1082) (-10 -8 (-15 -1287 ($ (-554))) (-15 -1287 ($ $ $))))) (T -160))
-((-1287 (*1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-160)))) (-1287 (*1 *1 *1 *1) (-5 *1 (-160))))
-(-13 (-1082) (-10 -8 (-15 -1287 ($ (-554))) (-15 -1287 ($ $ $))))
-((-3086 (((-114) (-1158)) 97)))
-(((-161) (-10 -7 (-15 -3086 ((-114) (-1158))))) (T -161))
-((-3086 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-114)) (-5 *1 (-161)))))
-(-10 -7 (-15 -3086 ((-114) (-1158))))
-((-1487 ((|#3| |#3|) 19)))
-(((-162 |#1| |#2| |#3|) (-10 -7 (-15 -1487 (|#3| |#3|))) (-1034) (-1217 |#1|) (-1217 |#2|)) (T -162))
-((-1487 (*1 *2 *2) (-12 (-4 *3 (-1034)) (-4 *4 (-1217 *3)) (-5 *1 (-162 *3 *4 *2)) (-4 *2 (-1217 *4)))))
-(-10 -7 (-15 -1487 (|#3| |#3|)))
-((-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 217)) (-1612 ((|#2| $) 96)) (-3023 (($ $) 247)) (-4200 (($ $) 241)) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) 40)) (-3003 (($ $) 245)) (-4177 (($ $) 239)) (-2784 (((-3 (-554) "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL) (((-3 |#2| "failed") $) 141)) (-1668 (((-554) $) NIL) (((-402 (-554)) $) NIL) ((|#2| $) 139)) (-3964 (($ $ $) 222)) (-3699 (((-675 (-554)) (-675 $)) NIL) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL) (((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 $) (-1241 $)) 155) (((-675 |#2|) (-675 $)) 149)) (-3676 (($ (-1154 |#2|)) 119) (((-3 $ "failed") (-402 (-1154 |#2|))) NIL)) (-1320 (((-3 $ "failed") $) 209)) (-1623 (((-3 (-402 (-554)) "failed") $) 199)) (-2069 (((-112) $) 194)) (-2197 (((-402 (-554)) $) 197)) (-4186 (((-906)) 89)) (-3943 (($ $ $) 224)) (-2244 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 261)) (-2844 (($) 236)) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) 186) (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) 191)) (-3274 ((|#2| $) 94)) (-3361 (((-1154 |#2|) $) 121)) (-2879 (($ (-1 |#2| |#2|) $) 102)) (-2395 (($ $) 238)) (-3662 (((-1154 |#2|) $) 120)) (-2483 (($ $) 202)) (-2659 (($) 97)) (-1290 (((-413 (-1154 $)) (-1154 $)) 88)) (-3082 (((-413 (-1154 $)) (-1154 $)) 57)) (-3919 (((-3 $ "failed") $ |#2|) 204) (((-3 $ "failed") $ $) 207)) (-1333 (($ $) 237)) (-2072 (((-758) $) 219)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 229)) (-1495 ((|#2| (-1241 $)) NIL) ((|#2|) 91)) (-1553 (($ $ (-1 |#2| |#2|) (-758)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-631 (-1158)) (-631 (-758))) NIL) (($ $ (-1158) (-758)) NIL) (($ $ (-631 (-1158))) NIL) (($ $ (-1158)) NIL) (($ $ (-758)) NIL) (($ $) NIL)) (-4318 (((-1154 |#2|)) 114)) (-3014 (($ $) 246)) (-4188 (($ $) 240)) (-3656 (((-1241 |#2|) $ (-1241 $)) 128) (((-675 |#2|) (-1241 $) (-1241 $)) NIL) (((-1241 |#2|) $) 110) (((-675 |#2|) (-1241 $)) NIL)) (-2927 (((-1241 |#2|) $) NIL) (($ (-1241 |#2|)) NIL) (((-1154 |#2|) $) NIL) (($ (-1154 |#2|)) NIL) (((-877 (-554)) $) 177) (((-877 (-374)) $) 181) (((-167 (-374)) $) 167) (((-167 (-221)) $) 162) (((-530) $) 173)) (-3992 (($ $) 98)) (-3075 (((-848) $) 138) (($ (-554)) NIL) (($ |#2|) NIL) (($ (-402 (-554))) NIL) (($ $) NIL)) (-3109 (((-1154 |#2|) $) 23)) (-2261 (((-758)) 100)) (-3096 (($ $) 250)) (-2959 (($ $) 244)) (-3069 (($ $) 248)) (-2938 (($ $) 242)) (-2592 ((|#2| $) 233)) (-3083 (($ $) 249)) (-2948 (($ $) 243)) (-1700 (($ $) 157)) (-1658 (((-112) $ $) 104)) (-1676 (((-112) $ $) 193)) (-1744 (($ $) 106) (($ $ $) NIL)) (-1735 (($ $ $) 105)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-402 (-554))) 267) (($ $ $) NIL) (($ $ (-554)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 112) (($ $ $) 142) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-402 (-554)) $) NIL) (($ $ (-402 (-554))) NIL)))
-(((-163 |#1| |#2|) (-10 -8 (-15 -1553 (|#1| |#1|)) (-15 -1553 (|#1| |#1| (-758))) (-15 -3075 (|#1| |#1|)) (-15 -3919 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1292 ((-2 (|:| -3646 |#1|) (|:| -4360 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1553 (|#1| |#1| (-1158))) (-15 -1553 (|#1| |#1| (-631 (-1158)))) (-15 -1553 (|#1| |#1| (-1158) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 -2072 ((-758) |#1|)) (-15 -2259 ((-2 (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -3943 (|#1| |#1| |#1|)) (-15 -3964 (|#1| |#1| |#1|)) (-15 -2483 (|#1| |#1|)) (-15 ** (|#1| |#1| (-554))) (-15 * (|#1| |#1| (-402 (-554)))) (-15 * (|#1| (-402 (-554)) |#1|)) (-15 -3075 (|#1| (-402 (-554)))) (-15 -1676 ((-112) |#1| |#1|)) (-15 -2927 ((-530) |#1|)) (-15 -2927 ((-167 (-221)) |#1|)) (-15 -2927 ((-167 (-374)) |#1|)) (-15 -4200 (|#1| |#1|)) (-15 -4177 (|#1| |#1|)) (-15 -4188 (|#1| |#1|)) (-15 -2948 (|#1| |#1|)) (-15 -2938 (|#1| |#1|)) (-15 -2959 (|#1| |#1|)) (-15 -3014 (|#1| |#1|)) (-15 -3003 (|#1| |#1|)) (-15 -3023 (|#1| |#1|)) (-15 -3083 (|#1| |#1|)) (-15 -3069 (|#1| |#1|)) (-15 -3096 (|#1| |#1|)) (-15 -2395 (|#1| |#1|)) (-15 -1333 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2844 (|#1|)) (-15 ** (|#1| |#1| (-402 (-554)))) (-15 -3082 ((-413 (-1154 |#1|)) (-1154 |#1|))) (-15 -1290 ((-413 (-1154 |#1|)) (-1154 |#1|))) (-15 -1625 ((-3 (-631 (-1154 |#1|)) "failed") (-631 (-1154 |#1|)) (-1154 |#1|))) (-15 -1623 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -2197 ((-402 (-554)) |#1|)) (-15 -2069 ((-112) |#1|)) (-15 -2244 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2592 (|#2| |#1|)) (-15 -1700 (|#1| |#1|)) (-15 -3919 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3992 (|#1| |#1|)) (-15 -2659 (|#1|)) (-15 -2927 ((-877 (-374)) |#1|)) (-15 -2927 ((-877 (-554)) |#1|)) (-15 -1655 ((-874 (-374) |#1|) |#1| (-877 (-374)) (-874 (-374) |#1|))) (-15 -1655 ((-874 (-554) |#1|) |#1| (-877 (-554)) (-874 (-554) |#1|))) (-15 -2879 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|) (-758))) (-15 -3676 ((-3 |#1| "failed") (-402 (-1154 |#2|)))) (-15 -3662 ((-1154 |#2|) |#1|)) (-15 -2927 (|#1| (-1154 |#2|))) (-15 -3676 (|#1| (-1154 |#2|))) (-15 -4318 ((-1154 |#2|))) (-15 -3699 ((-675 |#2|) (-675 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 |#1|) (-1241 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 |#1|) (-1241 |#1|))) (-15 -3699 ((-675 (-554)) (-675 |#1|))) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -1668 ((-554) |#1|)) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -2927 ((-1154 |#2|) |#1|)) (-15 -1495 (|#2|)) (-15 -2927 (|#1| (-1241 |#2|))) (-15 -2927 ((-1241 |#2|) |#1|)) (-15 -3656 ((-675 |#2|) (-1241 |#1|))) (-15 -3656 ((-1241 |#2|) |#1|)) (-15 -3361 ((-1154 |#2|) |#1|)) (-15 -3109 ((-1154 |#2|) |#1|)) (-15 -1495 (|#2| (-1241 |#1|))) (-15 -3656 ((-675 |#2|) (-1241 |#1|) (-1241 |#1|))) (-15 -3656 ((-1241 |#2|) |#1| (-1241 |#1|))) (-15 -3274 (|#2| |#1|)) (-15 -1612 (|#2| |#1|)) (-15 -4186 ((-906))) (-15 -3075 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2261 ((-758))) (-15 -3075 (|#1| (-554))) (-15 ** (|#1| |#1| (-758))) (-15 -1320 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-906))) (-15 * (|#1| (-554) |#1|)) (-15 -1744 (|#1| |#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 * (|#1| (-758) |#1|)) (-15 * (|#1| (-906) |#1|)) (-15 -1735 (|#1| |#1| |#1|)) (-15 -3075 ((-848) |#1|)) (-15 -1658 ((-112) |#1| |#1|))) (-164 |#2|) (-170)) (T -163))
-((-2261 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-758)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))) (-4186 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-906)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))) (-1495 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-163 *3 *2)) (-4 *3 (-164 *2)))) (-4318 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1154 *4)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))))
-(-10 -8 (-15 -1553 (|#1| |#1|)) (-15 -1553 (|#1| |#1| (-758))) (-15 -3075 (|#1| |#1|)) (-15 -3919 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1292 ((-2 (|:| -3646 |#1|) (|:| -4360 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1553 (|#1| |#1| (-1158))) (-15 -1553 (|#1| |#1| (-631 (-1158)))) (-15 -1553 (|#1| |#1| (-1158) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 -2072 ((-758) |#1|)) (-15 -2259 ((-2 (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -3943 (|#1| |#1| |#1|)) (-15 -3964 (|#1| |#1| |#1|)) (-15 -2483 (|#1| |#1|)) (-15 ** (|#1| |#1| (-554))) (-15 * (|#1| |#1| (-402 (-554)))) (-15 * (|#1| (-402 (-554)) |#1|)) (-15 -3075 (|#1| (-402 (-554)))) (-15 -1676 ((-112) |#1| |#1|)) (-15 -2927 ((-530) |#1|)) (-15 -2927 ((-167 (-221)) |#1|)) (-15 -2927 ((-167 (-374)) |#1|)) (-15 -4200 (|#1| |#1|)) (-15 -4177 (|#1| |#1|)) (-15 -4188 (|#1| |#1|)) (-15 -2948 (|#1| |#1|)) (-15 -2938 (|#1| |#1|)) (-15 -2959 (|#1| |#1|)) (-15 -3014 (|#1| |#1|)) (-15 -3003 (|#1| |#1|)) (-15 -3023 (|#1| |#1|)) (-15 -3083 (|#1| |#1|)) (-15 -3069 (|#1| |#1|)) (-15 -3096 (|#1| |#1|)) (-15 -2395 (|#1| |#1|)) (-15 -1333 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2844 (|#1|)) (-15 ** (|#1| |#1| (-402 (-554)))) (-15 -3082 ((-413 (-1154 |#1|)) (-1154 |#1|))) (-15 -1290 ((-413 (-1154 |#1|)) (-1154 |#1|))) (-15 -1625 ((-3 (-631 (-1154 |#1|)) "failed") (-631 (-1154 |#1|)) (-1154 |#1|))) (-15 -1623 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -2197 ((-402 (-554)) |#1|)) (-15 -2069 ((-112) |#1|)) (-15 -2244 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2592 (|#2| |#1|)) (-15 -1700 (|#1| |#1|)) (-15 -3919 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3992 (|#1| |#1|)) (-15 -2659 (|#1|)) (-15 -2927 ((-877 (-374)) |#1|)) (-15 -2927 ((-877 (-554)) |#1|)) (-15 -1655 ((-874 (-374) |#1|) |#1| (-877 (-374)) (-874 (-374) |#1|))) (-15 -1655 ((-874 (-554) |#1|) |#1| (-877 (-554)) (-874 (-554) |#1|))) (-15 -2879 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|) (-758))) (-15 -3676 ((-3 |#1| "failed") (-402 (-1154 |#2|)))) (-15 -3662 ((-1154 |#2|) |#1|)) (-15 -2927 (|#1| (-1154 |#2|))) (-15 -3676 (|#1| (-1154 |#2|))) (-15 -4318 ((-1154 |#2|))) (-15 -3699 ((-675 |#2|) (-675 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 |#1|) (-1241 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 |#1|) (-1241 |#1|))) (-15 -3699 ((-675 (-554)) (-675 |#1|))) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -1668 ((-554) |#1|)) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -2927 ((-1154 |#2|) |#1|)) (-15 -1495 (|#2|)) (-15 -2927 (|#1| (-1241 |#2|))) (-15 -2927 ((-1241 |#2|) |#1|)) (-15 -3656 ((-675 |#2|) (-1241 |#1|))) (-15 -3656 ((-1241 |#2|) |#1|)) (-15 -3361 ((-1154 |#2|) |#1|)) (-15 -3109 ((-1154 |#2|) |#1|)) (-15 -1495 (|#2| (-1241 |#1|))) (-15 -3656 ((-675 |#2|) (-1241 |#1|) (-1241 |#1|))) (-15 -3656 ((-1241 |#2|) |#1| (-1241 |#1|))) (-15 -3274 (|#2| |#1|)) (-15 -1612 (|#2| |#1|)) (-15 -4186 ((-906))) (-15 -3075 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2261 ((-758))) (-15 -3075 (|#1| (-554))) (-15 ** (|#1| |#1| (-758))) (-15 -1320 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-906))) (-15 * (|#1| (-554) |#1|)) (-15 -1744 (|#1| |#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 * (|#1| (-758) |#1|)) (-15 * (|#1| (-906) |#1|)) (-15 -1735 (|#1| |#1| |#1|)) (-15 -3075 ((-848) |#1|)) (-15 -1658 ((-112) |#1| |#1|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 93 (-3994 (|has| |#1| (-546)) (-12 (|has| |#1| (-302)) (|has| |#1| (-894)))))) (-1976 (($ $) 94 (-3994 (|has| |#1| (-546)) (-12 (|has| |#1| (-302)) (|has| |#1| (-894)))))) (-1363 (((-112) $) 96 (-3994 (|has| |#1| (-546)) (-12 (|has| |#1| (-302)) (|has| |#1| (-894)))))) (-1903 (((-675 |#1|) (-1241 $)) 47) (((-675 |#1|)) 62)) (-1612 ((|#1| $) 53)) (-3023 (($ $) 227 (|has| |#1| (-1180)))) (-4200 (($ $) 210 (|has| |#1| (-1180)))) (-3205 (((-1168 (-906) (-758)) (-554)) 146 (|has| |#1| (-344)))) (-2934 (((-3 $ "failed") $ $) 19)) (-4308 (((-413 (-1154 $)) (-1154 $)) 241 (-12 (|has| |#1| (-302)) (|has| |#1| (-894))))) (-3278 (($ $) 113 (-3994 (-12 (|has| |#1| (-302)) (|has| |#1| (-894))) (|has| |#1| (-358))))) (-1565 (((-413 $) $) 114 (-3994 (-12 (|has| |#1| (-302)) (|has| |#1| (-894))) (|has| |#1| (-358))))) (-2282 (($ $) 240 (-12 (|has| |#1| (-987)) (|has| |#1| (-1180))))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) 244 (-12 (|has| |#1| (-302)) (|has| |#1| (-894))))) (-2286 (((-112) $ $) 104 (|has| |#1| (-302)))) (-1508 (((-758)) 87 (|has| |#1| (-363)))) (-3003 (($ $) 226 (|has| |#1| (-1180)))) (-4177 (($ $) 211 (|has| |#1| (-1180)))) (-3046 (($ $) 225 (|has| |#1| (-1180)))) (-2916 (($ $) 212 (|has| |#1| (-1180)))) (-4087 (($) 17 T CONST)) (-2784 (((-3 (-554) "failed") $) 169 (|has| |#1| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) 167 (|has| |#1| (-1023 (-402 (-554))))) (((-3 |#1| "failed") $) 164)) (-1668 (((-554) $) 168 (|has| |#1| (-1023 (-554)))) (((-402 (-554)) $) 166 (|has| |#1| (-1023 (-402 (-554))))) ((|#1| $) 165)) (-1651 (($ (-1241 |#1|) (-1241 $)) 49) (($ (-1241 |#1|)) 65)) (-2723 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| |#1| (-344)))) (-3964 (($ $ $) 108 (|has| |#1| (-302)))) (-3629 (((-675 |#1|) $ (-1241 $)) 54) (((-675 |#1|) $) 60)) (-3699 (((-675 (-554)) (-675 $)) 163 (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) 162 (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) 161) (((-675 |#1|) (-675 $)) 160)) (-3676 (($ (-1154 |#1|)) 157) (((-3 $ "failed") (-402 (-1154 |#1|))) 154 (|has| |#1| (-358)))) (-1320 (((-3 $ "failed") $) 33)) (-2293 ((|#1| $) 252)) (-1623 (((-3 (-402 (-554)) "failed") $) 245 (|has| |#1| (-539)))) (-2069 (((-112) $) 247 (|has| |#1| (-539)))) (-2197 (((-402 (-554)) $) 246 (|has| |#1| (-539)))) (-4186 (((-906)) 55)) (-3353 (($) 90 (|has| |#1| (-363)))) (-3943 (($ $ $) 107 (|has| |#1| (-302)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 102 (|has| |#1| (-302)))) (-3157 (($) 148 (|has| |#1| (-344)))) (-2754 (((-112) $) 149 (|has| |#1| (-344)))) (-4122 (($ $ (-758)) 140 (|has| |#1| (-344))) (($ $) 139 (|has| |#1| (-344)))) (-3289 (((-112) $) 115 (-3994 (-12 (|has| |#1| (-302)) (|has| |#1| (-894))) (|has| |#1| (-358))))) (-2244 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 248 (-12 (|has| |#1| (-1043)) (|has| |#1| (-1180))))) (-2844 (($) 237 (|has| |#1| (-1180)))) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) 260 (|has| |#1| (-871 (-554)))) (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) 259 (|has| |#1| (-871 (-374))))) (-2342 (((-906) $) 151 (|has| |#1| (-344))) (((-820 (-906)) $) 137 (|has| |#1| (-344)))) (-3248 (((-112) $) 31)) (-3734 (($ $ (-554)) 239 (-12 (|has| |#1| (-987)) (|has| |#1| (-1180))))) (-3274 ((|#1| $) 52)) (-3339 (((-3 $ "failed") $) 141 (|has| |#1| (-344)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 111 (|has| |#1| (-302)))) (-3361 (((-1154 |#1|) $) 45 (|has| |#1| (-358)))) (-4223 (($ $ $) 206 (|has| |#1| (-836)))) (-2706 (($ $ $) 205 (|has| |#1| (-836)))) (-2879 (($ (-1 |#1| |#1|) $) 261)) (-3830 (((-906) $) 89 (|has| |#1| (-363)))) (-2395 (($ $) 234 (|has| |#1| (-1180)))) (-3662 (((-1154 |#1|) $) 155)) (-2475 (($ (-631 $)) 100 (-3994 (|has| |#1| (-302)) (-12 (|has| |#1| (-302)) (|has| |#1| (-894))))) (($ $ $) 99 (-3994 (|has| |#1| (-302)) (-12 (|has| |#1| (-302)) (|has| |#1| (-894)))))) (-1613 (((-1140) $) 9)) (-2483 (($ $) 116 (|has| |#1| (-358)))) (-3834 (($) 142 (|has| |#1| (-344)) CONST)) (-2717 (($ (-906)) 88 (|has| |#1| (-363)))) (-2659 (($) 256)) (-2302 ((|#1| $) 253)) (-2768 (((-1102) $) 10)) (-4137 (($) 159)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 101 (-3994 (|has| |#1| (-302)) (-12 (|has| |#1| (-302)) (|has| |#1| (-894)))))) (-2510 (($ (-631 $)) 98 (-3994 (|has| |#1| (-302)) (-12 (|has| |#1| (-302)) (|has| |#1| (-894))))) (($ $ $) 97 (-3994 (|has| |#1| (-302)) (-12 (|has| |#1| (-302)) (|has| |#1| (-894)))))) (-3725 (((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))) 145 (|has| |#1| (-344)))) (-1290 (((-413 (-1154 $)) (-1154 $)) 243 (-12 (|has| |#1| (-302)) (|has| |#1| (-894))))) (-3082 (((-413 (-1154 $)) (-1154 $)) 242 (-12 (|has| |#1| (-302)) (|has| |#1| (-894))))) (-2270 (((-413 $) $) 112 (-3994 (-12 (|has| |#1| (-302)) (|has| |#1| (-894))) (|has| |#1| (-358))))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-302))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 109 (|has| |#1| (-302)))) (-3919 (((-3 $ "failed") $ |#1|) 251 (|has| |#1| (-546))) (((-3 $ "failed") $ $) 92 (-3994 (|has| |#1| (-546)) (-12 (|has| |#1| (-302)) (|has| |#1| (-894)))))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 103 (|has| |#1| (-302)))) (-1333 (($ $) 235 (|has| |#1| (-1180)))) (-2386 (($ $ (-631 |#1|) (-631 |#1|)) 267 (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) 266 (|has| |#1| (-304 |#1|))) (($ $ (-289 |#1|)) 265 (|has| |#1| (-304 |#1|))) (($ $ (-631 (-289 |#1|))) 264 (|has| |#1| (-304 |#1|))) (($ $ (-631 (-1158)) (-631 |#1|)) 263 (|has| |#1| (-508 (-1158) |#1|))) (($ $ (-1158) |#1|) 262 (|has| |#1| (-508 (-1158) |#1|)))) (-2072 (((-758) $) 105 (|has| |#1| (-302)))) (-2064 (($ $ |#1|) 268 (|has| |#1| (-281 |#1| |#1|)))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 106 (|has| |#1| (-302)))) (-1495 ((|#1| (-1241 $)) 48) ((|#1|) 61)) (-3316 (((-758) $) 150 (|has| |#1| (-344))) (((-3 (-758) "failed") $ $) 138 (|has| |#1| (-344)))) (-1553 (($ $ (-1 |#1| |#1|) (-758)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-631 (-1158)) (-631 (-758))) 129 (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) 130 (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) 131 (|has| |#1| (-885 (-1158)))) (($ $ (-1158)) 132 (|has| |#1| (-885 (-1158)))) (($ $ (-758)) 134 (-3994 (-3726 (|has| |#1| (-358)) (|has| |#1| (-229))) (|has| |#1| (-229)) (-3726 (|has| |#1| (-229)) (|has| |#1| (-358))))) (($ $) 136 (-3994 (-3726 (|has| |#1| (-358)) (|has| |#1| (-229))) (|has| |#1| (-229)) (-3726 (|has| |#1| (-229)) (|has| |#1| (-358)))))) (-2092 (((-675 |#1|) (-1241 $) (-1 |#1| |#1|)) 153 (|has| |#1| (-358)))) (-4318 (((-1154 |#1|)) 158)) (-3057 (($ $) 224 (|has| |#1| (-1180)))) (-2926 (($ $) 213 (|has| |#1| (-1180)))) (-3944 (($) 147 (|has| |#1| (-344)))) (-3034 (($ $) 223 (|has| |#1| (-1180)))) (-4213 (($ $) 214 (|has| |#1| (-1180)))) (-3014 (($ $) 222 (|has| |#1| (-1180)))) (-4188 (($ $) 215 (|has| |#1| (-1180)))) (-3656 (((-1241 |#1|) $ (-1241 $)) 51) (((-675 |#1|) (-1241 $) (-1241 $)) 50) (((-1241 |#1|) $) 67) (((-675 |#1|) (-1241 $)) 66)) (-2927 (((-1241 |#1|) $) 64) (($ (-1241 |#1|)) 63) (((-1154 |#1|) $) 170) (($ (-1154 |#1|)) 156) (((-877 (-554)) $) 258 (|has| |#1| (-602 (-877 (-554))))) (((-877 (-374)) $) 257 (|has| |#1| (-602 (-877 (-374))))) (((-167 (-374)) $) 209 (|has| |#1| (-1007))) (((-167 (-221)) $) 208 (|has| |#1| (-1007))) (((-530) $) 207 (|has| |#1| (-602 (-530))))) (-3992 (($ $) 255)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) 144 (-3994 (-3726 (|has| $ (-143)) (-12 (|has| |#1| (-302)) (|has| |#1| (-894)))) (|has| |#1| (-344))))) (-4344 (($ |#1| |#1|) 254)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ |#1|) 38) (($ (-402 (-554))) 86 (-3994 (|has| |#1| (-358)) (|has| |#1| (-1023 (-402 (-554)))))) (($ $) 91 (-3994 (|has| |#1| (-546)) (-12 (|has| |#1| (-302)) (|has| |#1| (-894)))))) (-2084 (($ $) 143 (|has| |#1| (-344))) (((-3 $ "failed") $) 44 (-3994 (-3726 (|has| $ (-143)) (-12 (|has| |#1| (-302)) (|has| |#1| (-894)))) (|has| |#1| (-143))))) (-3109 (((-1154 |#1|) $) 46)) (-2261 (((-758)) 28)) (-3782 (((-1241 $)) 68)) (-3096 (($ $) 233 (|has| |#1| (-1180)))) (-2959 (($ $) 221 (|has| |#1| (-1180)))) (-1909 (((-112) $ $) 95 (-3994 (|has| |#1| (-546)) (-12 (|has| |#1| (-302)) (|has| |#1| (-894)))))) (-3069 (($ $) 232 (|has| |#1| (-1180)))) (-2938 (($ $) 220 (|has| |#1| (-1180)))) (-3120 (($ $) 231 (|has| |#1| (-1180)))) (-2981 (($ $) 219 (|has| |#1| (-1180)))) (-2592 ((|#1| $) 249 (|has| |#1| (-1180)))) (-2908 (($ $) 230 (|has| |#1| (-1180)))) (-2991 (($ $) 218 (|has| |#1| (-1180)))) (-3108 (($ $) 229 (|has| |#1| (-1180)))) (-2969 (($ $) 217 (|has| |#1| (-1180)))) (-3083 (($ $) 228 (|has| |#1| (-1180)))) (-2948 (($ $) 216 (|has| |#1| (-1180)))) (-1700 (($ $) 250 (|has| |#1| (-1043)))) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($ $ (-1 |#1| |#1|) (-758)) 124) (($ $ (-1 |#1| |#1|)) 123) (($ $ (-631 (-1158)) (-631 (-758))) 125 (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) 126 (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) 127 (|has| |#1| (-885 (-1158)))) (($ $ (-1158)) 128 (|has| |#1| (-885 (-1158)))) (($ $ (-758)) 133 (-3994 (-3726 (|has| |#1| (-358)) (|has| |#1| (-229))) (|has| |#1| (-229)) (-3726 (|has| |#1| (-229)) (|has| |#1| (-358))))) (($ $) 135 (-3994 (-3726 (|has| |#1| (-358)) (|has| |#1| (-229))) (|has| |#1| (-229)) (-3726 (|has| |#1| (-229)) (|has| |#1| (-358)))))) (-1708 (((-112) $ $) 203 (|has| |#1| (-836)))) (-1686 (((-112) $ $) 202 (|has| |#1| (-836)))) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 204 (|has| |#1| (-836)))) (-1676 (((-112) $ $) 201 (|has| |#1| (-836)))) (-1752 (($ $ $) 120 (|has| |#1| (-358)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ (-402 (-554))) 238 (-12 (|has| |#1| (-987)) (|has| |#1| (-1180)))) (($ $ $) 236 (|has| |#1| (-1180))) (($ $ (-554)) 117 (|has| |#1| (-358)))) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ (-402 (-554)) $) 119 (|has| |#1| (-358))) (($ $ (-402 (-554))) 118 (|has| |#1| (-358)))))
-(((-164 |#1|) (-138) (-170)) (T -164))
-((-3274 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-2659 (*1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-3992 (*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-4344 (*1 *1 *2 *2) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-2302 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-2293 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-3919 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-546)))) (-1700 (*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1043)))) (-2592 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1180)))) (-2244 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-1043)) (-4 *3 (-1180)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-2069 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-539)) (-5 *2 (-112)))) (-2197 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-539)) (-5 *2 (-402 (-554))))) (-1623 (*1 *2 *1) (|partial| -12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-539)) (-5 *2 (-402 (-554))))))
-(-13 (-711 |t#1| (-1154 |t#1|)) (-406 |t#1|) (-227 |t#1|) (-333 |t#1|) (-395 |t#1|) (-869 |t#1|) (-372 |t#1|) (-170) (-10 -8 (-15 -2659 ($)) (-15 -3992 ($ $)) (-15 -4344 ($ |t#1| |t#1|)) (-15 -2302 (|t#1| $)) (-15 -2293 (|t#1| $)) (-15 -3274 (|t#1| $)) (IF (|has| |t#1| (-836)) (-6 (-836)) |%noBranch|) (IF (|has| |t#1| (-546)) (PROGN (-6 (-546)) (-15 -3919 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-302)) (-6 (-302)) |%noBranch|) (IF (|has| |t#1| (-6 -4372)) (-6 -4372) |%noBranch|) (IF (|has| |t#1| (-6 -4369)) (-6 -4369) |%noBranch|) (IF (|has| |t#1| (-358)) (-6 (-358)) |%noBranch|) (IF (|has| |t#1| (-602 (-530))) (-6 (-602 (-530))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1007)) (PROGN (-6 (-602 (-167 (-221)))) (-6 (-602 (-167 (-374))))) |%noBranch|) (IF (|has| |t#1| (-1043)) (-15 -1700 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1180)) (PROGN (-6 (-1180)) (-15 -2592 (|t#1| $)) (IF (|has| |t#1| (-987)) (-6 (-987)) |%noBranch|) (IF (|has| |t#1| (-1043)) (-15 -2244 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-539)) (PROGN (-15 -2069 ((-112) $)) (-15 -2197 ((-402 (-554)) $)) (-15 -1623 ((-3 (-402 (-554)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-894)) (IF (|has| |t#1| (-302)) (-6 (-894)) |%noBranch|) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-554))) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-38 |#1|) . T) ((-38 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-344)) (|has| |#1| (-358)) (|has| |#1| (-302))) ((-35) |has| |#1| (-1180)) ((-95) |has| |#1| (-1180)) ((-102) . T) ((-111 #0# #0#) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -3994 (|has| |#1| (-344)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-604 #0#) -3994 (|has| |#1| (-1023 (-402 (-554)))) (|has| |#1| (-344)) (|has| |#1| (-358))) ((-604 (-554)) . T) ((-604 |#1|) . T) ((-604 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-344)) (|has| |#1| (-358)) (|has| |#1| (-302))) ((-601 (-848)) . T) ((-170) . T) ((-602 (-167 (-221))) |has| |#1| (-1007)) ((-602 (-167 (-374))) |has| |#1| (-1007)) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-602 (-877 (-374))) |has| |#1| (-602 (-877 (-374)))) ((-602 (-877 (-554))) |has| |#1| (-602 (-877 (-554)))) ((-602 #1=(-1154 |#1|)) . T) ((-227 |#1|) . T) ((-229) -3994 (|has| |#1| (-344)) (|has| |#1| (-229))) ((-239) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-279) |has| |#1| (-1180)) ((-281 |#1| $) |has| |#1| (-281 |#1| |#1|)) ((-285) -3994 (|has| |#1| (-546)) (|has| |#1| (-344)) (|has| |#1| (-358)) (|has| |#1| (-302))) ((-302) -3994 (|has| |#1| (-344)) (|has| |#1| (-358)) (|has| |#1| (-302))) ((-304 |#1|) |has| |#1| (-304 |#1|)) ((-358) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-397) |has| |#1| (-344)) ((-363) -3994 (|has| |#1| (-363)) (|has| |#1| (-344))) ((-344) |has| |#1| (-344)) ((-365 |#1| #1#) . T) ((-404 |#1| #1#) . T) ((-333 |#1|) . T) ((-372 |#1|) . T) ((-395 |#1|) . T) ((-406 |#1|) . T) ((-446) -3994 (|has| |#1| (-344)) (|has| |#1| (-358)) (|has| |#1| (-302))) ((-487) |has| |#1| (-1180)) ((-508 (-1158) |#1|) |has| |#1| (-508 (-1158) |#1|)) ((-508 |#1| |#1|) |has| |#1| (-304 |#1|)) ((-546) -3994 (|has| |#1| (-546)) (|has| |#1| (-344)) (|has| |#1| (-358)) (|has| |#1| (-302))) ((-634 #0#) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-634 |#1|) . T) ((-634 $) . T) ((-627 (-554)) |has| |#1| (-627 (-554))) ((-627 |#1|) . T) ((-704 #0#) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-704 |#1|) . T) ((-704 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-344)) (|has| |#1| (-358)) (|has| |#1| (-302))) ((-711 |#1| #1#) . T) ((-713) . T) ((-836) |has| |#1| (-836)) ((-885 (-1158)) |has| |#1| (-885 (-1158))) ((-871 (-374)) |has| |#1| (-871 (-374))) ((-871 (-554)) |has| |#1| (-871 (-554))) ((-869 |#1|) . T) ((-894) -12 (|has| |#1| (-302)) (|has| |#1| (-894))) ((-905) -3994 (|has| |#1| (-344)) (|has| |#1| (-358)) (|has| |#1| (-302))) ((-987) -12 (|has| |#1| (-987)) (|has| |#1| (-1180))) ((-1023 (-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) ((-1023 (-554)) |has| |#1| (-1023 (-554))) ((-1023 |#1|) . T) ((-1040 #0#) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-1040 |#1|) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1133) |has| |#1| (-344)) ((-1180) |has| |#1| (-1180)) ((-1183) |has| |#1| (-1180)) ((-1195) . T) ((-1199) -3994 (|has| |#1| (-344)) (|has| |#1| (-358)) (-12 (|has| |#1| (-302)) (|has| |#1| (-894)))))
-((-2270 (((-413 |#2|) |#2|) 63)))
-(((-165 |#1| |#2|) (-10 -7 (-15 -2270 ((-413 |#2|) |#2|))) (-302) (-1217 (-167 |#1|))) (T -165))
-((-2270 (*1 *2 *3) (-12 (-4 *4 (-302)) (-5 *2 (-413 *3)) (-5 *1 (-165 *4 *3)) (-4 *3 (-1217 (-167 *4))))))
-(-10 -7 (-15 -2270 ((-413 |#2|) |#2|)))
-((-2879 (((-167 |#2|) (-1 |#2| |#1|) (-167 |#1|)) 14)))
-(((-166 |#1| |#2|) (-10 -7 (-15 -2879 ((-167 |#2|) (-1 |#2| |#1|) (-167 |#1|)))) (-170) (-170)) (T -166))
-((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-167 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-5 *2 (-167 *6)) (-5 *1 (-166 *5 *6)))))
-(-10 -7 (-15 -2879 ((-167 |#2|) (-1 |#2| |#1|) (-167 |#1|))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 33)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (-3994 (-12 (|has| |#1| (-302)) (|has| |#1| (-894))) (|has| |#1| (-546))))) (-1976 (($ $) NIL (-3994 (-12 (|has| |#1| (-302)) (|has| |#1| (-894))) (|has| |#1| (-546))))) (-1363 (((-112) $) NIL (-3994 (-12 (|has| |#1| (-302)) (|has| |#1| (-894))) (|has| |#1| (-546))))) (-1903 (((-675 |#1|) (-1241 $)) NIL) (((-675 |#1|)) NIL)) (-1612 ((|#1| $) NIL)) (-3023 (($ $) NIL (|has| |#1| (-1180)))) (-4200 (($ $) NIL (|has| |#1| (-1180)))) (-3205 (((-1168 (-906) (-758)) (-554)) NIL (|has| |#1| (-344)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (-12 (|has| |#1| (-302)) (|has| |#1| (-894))))) (-3278 (($ $) NIL (-3994 (-12 (|has| |#1| (-302)) (|has| |#1| (-894))) (|has| |#1| (-358))))) (-1565 (((-413 $) $) NIL (-3994 (-12 (|has| |#1| (-302)) (|has| |#1| (-894))) (|has| |#1| (-358))))) (-2282 (($ $) NIL (-12 (|has| |#1| (-987)) (|has| |#1| (-1180))))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (-12 (|has| |#1| (-302)) (|has| |#1| (-894))))) (-2286 (((-112) $ $) NIL (|has| |#1| (-302)))) (-1508 (((-758)) NIL (|has| |#1| (-363)))) (-3003 (($ $) NIL (|has| |#1| (-1180)))) (-4177 (($ $) NIL (|has| |#1| (-1180)))) (-3046 (($ $) NIL (|has| |#1| (-1180)))) (-2916 (($ $) NIL (|has| |#1| (-1180)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-3 |#1| "failed") $) NIL)) (-1668 (((-554) $) NIL (|has| |#1| (-1023 (-554)))) (((-402 (-554)) $) NIL (|has| |#1| (-1023 (-402 (-554))))) ((|#1| $) NIL)) (-1651 (($ (-1241 |#1|) (-1241 $)) NIL) (($ (-1241 |#1|)) NIL)) (-2723 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-344)))) (-3964 (($ $ $) NIL (|has| |#1| (-302)))) (-3629 (((-675 |#1|) $ (-1241 $)) NIL) (((-675 |#1|) $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) NIL) (((-675 |#1|) (-675 $)) NIL)) (-3676 (($ (-1154 |#1|)) NIL) (((-3 $ "failed") (-402 (-1154 |#1|))) NIL (|has| |#1| (-358)))) (-1320 (((-3 $ "failed") $) NIL)) (-2293 ((|#1| $) 13)) (-1623 (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-539)))) (-2069 (((-112) $) NIL (|has| |#1| (-539)))) (-2197 (((-402 (-554)) $) NIL (|has| |#1| (-539)))) (-4186 (((-906)) NIL)) (-3353 (($) NIL (|has| |#1| (-363)))) (-3943 (($ $ $) NIL (|has| |#1| (-302)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL (|has| |#1| (-302)))) (-3157 (($) NIL (|has| |#1| (-344)))) (-2754 (((-112) $) NIL (|has| |#1| (-344)))) (-4122 (($ $ (-758)) NIL (|has| |#1| (-344))) (($ $) NIL (|has| |#1| (-344)))) (-3289 (((-112) $) NIL (-3994 (-12 (|has| |#1| (-302)) (|has| |#1| (-894))) (|has| |#1| (-358))))) (-2244 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1043)) (|has| |#1| (-1180))))) (-2844 (($) NIL (|has| |#1| (-1180)))) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (|has| |#1| (-871 (-554)))) (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (|has| |#1| (-871 (-374))))) (-2342 (((-906) $) NIL (|has| |#1| (-344))) (((-820 (-906)) $) NIL (|has| |#1| (-344)))) (-3248 (((-112) $) 35)) (-3734 (($ $ (-554)) NIL (-12 (|has| |#1| (-987)) (|has| |#1| (-1180))))) (-3274 ((|#1| $) 46)) (-3339 (((-3 $ "failed") $) NIL (|has| |#1| (-344)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-302)))) (-3361 (((-1154 |#1|) $) NIL (|has| |#1| (-358)))) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-3830 (((-906) $) NIL (|has| |#1| (-363)))) (-2395 (($ $) NIL (|has| |#1| (-1180)))) (-3662 (((-1154 |#1|) $) NIL)) (-2475 (($ (-631 $)) NIL (|has| |#1| (-302))) (($ $ $) NIL (|has| |#1| (-302)))) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL (|has| |#1| (-358)))) (-3834 (($) NIL (|has| |#1| (-344)) CONST)) (-2717 (($ (-906)) NIL (|has| |#1| (-363)))) (-2659 (($) NIL)) (-2302 ((|#1| $) 15)) (-2768 (((-1102) $) NIL)) (-4137 (($) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#1| (-302)))) (-2510 (($ (-631 $)) NIL (|has| |#1| (-302))) (($ $ $) NIL (|has| |#1| (-302)))) (-3725 (((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))) NIL (|has| |#1| (-344)))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (-12 (|has| |#1| (-302)) (|has| |#1| (-894))))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (-12 (|has| |#1| (-302)) (|has| |#1| (-894))))) (-2270 (((-413 $) $) NIL (-3994 (-12 (|has| |#1| (-302)) (|has| |#1| (-894))) (|has| |#1| (-358))))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-302))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-302)))) (-3919 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-546))) (((-3 $ "failed") $ $) 47 (-3994 (-12 (|has| |#1| (-302)) (|has| |#1| (-894))) (|has| |#1| (-546))))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-302)))) (-1333 (($ $) NIL (|has| |#1| (-1180)))) (-2386 (($ $ (-631 |#1|) (-631 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-304 |#1|))) (($ $ (-289 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ (-631 (-289 |#1|))) NIL (|has| |#1| (-304 |#1|))) (($ $ (-631 (-1158)) (-631 |#1|)) NIL (|has| |#1| (-508 (-1158) |#1|))) (($ $ (-1158) |#1|) NIL (|has| |#1| (-508 (-1158) |#1|)))) (-2072 (((-758) $) NIL (|has| |#1| (-302)))) (-2064 (($ $ |#1|) NIL (|has| |#1| (-281 |#1| |#1|)))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-302)))) (-1495 ((|#1| (-1241 $)) NIL) ((|#1|) NIL)) (-3316 (((-758) $) NIL (|has| |#1| (-344))) (((-3 (-758) "failed") $ $) NIL (|has| |#1| (-344)))) (-1553 (($ $ (-1 |#1| |#1|) (-758)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-758)) NIL (|has| |#1| (-229))) (($ $) NIL (|has| |#1| (-229)))) (-2092 (((-675 |#1|) (-1241 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-358)))) (-4318 (((-1154 |#1|)) NIL)) (-3057 (($ $) NIL (|has| |#1| (-1180)))) (-2926 (($ $) NIL (|has| |#1| (-1180)))) (-3944 (($) NIL (|has| |#1| (-344)))) (-3034 (($ $) NIL (|has| |#1| (-1180)))) (-4213 (($ $) NIL (|has| |#1| (-1180)))) (-3014 (($ $) NIL (|has| |#1| (-1180)))) (-4188 (($ $) NIL (|has| |#1| (-1180)))) (-3656 (((-1241 |#1|) $ (-1241 $)) NIL) (((-675 |#1|) (-1241 $) (-1241 $)) NIL) (((-1241 |#1|) $) NIL) (((-675 |#1|) (-1241 $)) NIL)) (-2927 (((-1241 |#1|) $) NIL) (($ (-1241 |#1|)) NIL) (((-1154 |#1|) $) NIL) (($ (-1154 |#1|)) NIL) (((-877 (-554)) $) NIL (|has| |#1| (-602 (-877 (-554))))) (((-877 (-374)) $) NIL (|has| |#1| (-602 (-877 (-374))))) (((-167 (-374)) $) NIL (|has| |#1| (-1007))) (((-167 (-221)) $) NIL (|has| |#1| (-1007))) (((-530) $) NIL (|has| |#1| (-602 (-530))))) (-3992 (($ $) 45)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-3994 (-12 (|has| $ (-143)) (|has| |#1| (-302)) (|has| |#1| (-894))) (|has| |#1| (-344))))) (-4344 (($ |#1| |#1|) 37)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#1|) 36) (($ (-402 (-554))) NIL (-3994 (|has| |#1| (-358)) (|has| |#1| (-1023 (-402 (-554)))))) (($ $) NIL (-3994 (-12 (|has| |#1| (-302)) (|has| |#1| (-894))) (|has| |#1| (-546))))) (-2084 (($ $) NIL (|has| |#1| (-344))) (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| |#1| (-302)) (|has| |#1| (-894))) (|has| |#1| (-143))))) (-3109 (((-1154 |#1|) $) NIL)) (-2261 (((-758)) NIL)) (-3782 (((-1241 $)) NIL)) (-3096 (($ $) NIL (|has| |#1| (-1180)))) (-2959 (($ $) NIL (|has| |#1| (-1180)))) (-1909 (((-112) $ $) NIL (-3994 (-12 (|has| |#1| (-302)) (|has| |#1| (-894))) (|has| |#1| (-546))))) (-3069 (($ $) NIL (|has| |#1| (-1180)))) (-2938 (($ $) NIL (|has| |#1| (-1180)))) (-3120 (($ $) NIL (|has| |#1| (-1180)))) (-2981 (($ $) NIL (|has| |#1| (-1180)))) (-2592 ((|#1| $) NIL (|has| |#1| (-1180)))) (-2908 (($ $) NIL (|has| |#1| (-1180)))) (-2991 (($ $) NIL (|has| |#1| (-1180)))) (-3108 (($ $) NIL (|has| |#1| (-1180)))) (-2969 (($ $) NIL (|has| |#1| (-1180)))) (-3083 (($ $) NIL (|has| |#1| (-1180)))) (-2948 (($ $) NIL (|has| |#1| (-1180)))) (-1700 (($ $) NIL (|has| |#1| (-1043)))) (-2004 (($) 28 T CONST)) (-2014 (($) 30 T CONST)) (-4048 (((-1140) $) 23 (|has| |#1| (-815))) (((-1140) $ (-112)) 25 (|has| |#1| (-815))) (((-1246) (-809) $) 26 (|has| |#1| (-815))) (((-1246) (-809) $ (-112)) 27 (|has| |#1| (-815)))) (-1787 (($ $ (-1 |#1| |#1|) (-758)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-758)) NIL (|has| |#1| (-229))) (($ $) NIL (|has| |#1| (-229)))) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1752 (($ $ $) NIL (|has| |#1| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) 39)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-402 (-554))) NIL (-12 (|has| |#1| (-987)) (|has| |#1| (-1180)))) (($ $ $) NIL (|has| |#1| (-1180))) (($ $ (-554)) NIL (|has| |#1| (-358)))) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-402 (-554)) $) NIL (|has| |#1| (-358))) (($ $ (-402 (-554))) NIL (|has| |#1| (-358)))))
-(((-167 |#1|) (-13 (-164 |#1|) (-10 -7 (IF (|has| |#1| (-815)) (-6 (-815)) |%noBranch|))) (-170)) (T -167))
-NIL
-(-13 (-164 |#1|) (-10 -7 (IF (|has| |#1| (-815)) (-6 (-815)) |%noBranch|)))
-((-2927 (((-877 |#1|) |#3|) 22)))
-(((-168 |#1| |#2| |#3|) (-10 -7 (-15 -2927 ((-877 |#1|) |#3|))) (-1082) (-13 (-602 (-877 |#1|)) (-170)) (-164 |#2|)) (T -168))
-((-2927 (*1 *2 *3) (-12 (-4 *5 (-13 (-602 *2) (-170))) (-5 *2 (-877 *4)) (-5 *1 (-168 *4 *5 *3)) (-4 *4 (-1082)) (-4 *3 (-164 *5)))))
-(-10 -7 (-15 -2927 ((-877 |#1|) |#3|)))
-((-3062 (((-112) $ $) NIL)) (-1754 (((-112) $) 9)) (-2562 (((-112) $ (-112)) 11)) (-3180 (($) 12)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-1521 (($ $) 13)) (-3075 (((-848) $) 17)) (-3088 (((-112) $) 8)) (-2498 (((-112) $ (-112)) 10)) (-1658 (((-112) $ $) NIL)))
-(((-169) (-13 (-1082) (-10 -8 (-15 -3180 ($)) (-15 -3088 ((-112) $)) (-15 -1754 ((-112) $)) (-15 -2498 ((-112) $ (-112))) (-15 -2562 ((-112) $ (-112))) (-15 -1521 ($ $))))) (T -169))
-((-3180 (*1 *1) (-5 *1 (-169))) (-3088 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-1754 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-2498 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-2562 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-1521 (*1 *1 *1) (-5 *1 (-169))))
-(-13 (-1082) (-10 -8 (-15 -3180 ($)) (-15 -3088 ((-112) $)) (-15 -1754 ((-112) $)) (-15 -2498 ((-112) $ (-112))) (-15 -2562 ((-112) $ (-112))) (-15 -1521 ($ $))))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1320 (((-3 $ "failed") $) 33)) (-3248 (((-112) $) 31)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11) (($ (-554)) 29)) (-2261 (((-758)) 28)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24)))
-(((-170) (-138)) (T -170))
-NIL
-(-13 (-1034) (-111 $ $) (-10 -7 (-6 (-4375 "*"))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-604 (-554)) . T) ((-601 (-848)) . T) ((-634 $) . T) ((-713) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T))
-((-3745 (($ $) 6)))
-(((-171) (-138)) (T -171))
-((-3745 (*1 *1 *1) (-4 *1 (-171))))
-(-13 (-10 -8 (-15 -3745 ($ $))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-3831 ((|#1| $) 75)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2286 (((-112) $ $) NIL)) (-4087 (($) NIL T CONST)) (-3964 (($ $ $) NIL)) (-3962 (($ $) 19)) (-1750 (($ |#1| (-1138 |#1|)) 48)) (-1320 (((-3 $ "failed") $) 117)) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-2448 (((-1138 |#1|) $) 82)) (-2229 (((-1138 |#1|) $) 79)) (-2398 (((-1138 |#1|) $) 80)) (-3248 (((-112) $) NIL)) (-3166 (((-1138 |#1|) $) 88)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2475 (($ (-631 $)) NIL) (($ $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ (-631 $)) NIL) (($ $ $) NIL)) (-2270 (((-413 $) $) NIL)) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL)) (-4282 (($ $ (-554)) 91)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-3935 (((-1138 |#1|) $) 89)) (-3456 (((-1138 (-402 |#1|)) $) 14)) (-3691 (($ (-402 |#1|)) 17) (($ |#1| (-1138 |#1|) (-1138 |#1|)) 38)) (-1300 (($ $) 93)) (-3075 (((-848) $) 127) (($ (-554)) 51) (($ |#1|) 52) (($ (-402 |#1|)) 36) (($ (-402 (-554))) NIL) (($ $) NIL)) (-2261 (((-758)) 64)) (-1909 (((-112) $ $) NIL)) (-1881 (((-1138 (-402 |#1|)) $) 18)) (-2004 (($) 25 T CONST)) (-2014 (($) 28 T CONST)) (-1658 (((-112) $ $) 35)) (-1752 (($ $ $) 115)) (-1744 (($ $) 106) (($ $ $) 103)) (-1735 (($ $ $) 101)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-402 |#1|) $) 111) (($ $ (-402 |#1|)) NIL) (($ (-402 (-554)) $) NIL) (($ $ (-402 (-554))) NIL)))
-(((-172 |#1|) (-13 (-38 |#1|) (-38 (-402 |#1|)) (-358) (-10 -8 (-15 -3691 ($ (-402 |#1|))) (-15 -3691 ($ |#1| (-1138 |#1|) (-1138 |#1|))) (-15 -1750 ($ |#1| (-1138 |#1|))) (-15 -2229 ((-1138 |#1|) $)) (-15 -2398 ((-1138 |#1|) $)) (-15 -2448 ((-1138 |#1|) $)) (-15 -3831 (|#1| $)) (-15 -3962 ($ $)) (-15 -1881 ((-1138 (-402 |#1|)) $)) (-15 -3456 ((-1138 (-402 |#1|)) $)) (-15 -3166 ((-1138 |#1|) $)) (-15 -3935 ((-1138 |#1|) $)) (-15 -4282 ($ $ (-554))) (-15 -1300 ($ $)))) (-302)) (T -172))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-402 *3)) (-4 *3 (-302)) (-5 *1 (-172 *3)))) (-3691 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1138 *2)) (-4 *2 (-302)) (-5 *1 (-172 *2)))) (-1750 (*1 *1 *2 *3) (-12 (-5 *3 (-1138 *2)) (-4 *2 (-302)) (-5 *1 (-172 *2)))) (-2229 (*1 *2 *1) (-12 (-5 *2 (-1138 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-2398 (*1 *2 *1) (-12 (-5 *2 (-1138 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-2448 (*1 *2 *1) (-12 (-5 *2 (-1138 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-3831 (*1 *2 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-302)))) (-3962 (*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-302)))) (-1881 (*1 *2 *1) (-12 (-5 *2 (-1138 (-402 *3))) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-3456 (*1 *2 *1) (-12 (-5 *2 (-1138 (-402 *3))) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-3166 (*1 *2 *1) (-12 (-5 *2 (-1138 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-3935 (*1 *2 *1) (-12 (-5 *2 (-1138 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-4282 (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-1300 (*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-302)))))
-(-13 (-38 |#1|) (-38 (-402 |#1|)) (-358) (-10 -8 (-15 -3691 ($ (-402 |#1|))) (-15 -3691 ($ |#1| (-1138 |#1|) (-1138 |#1|))) (-15 -1750 ($ |#1| (-1138 |#1|))) (-15 -2229 ((-1138 |#1|) $)) (-15 -2398 ((-1138 |#1|) $)) (-15 -2448 ((-1138 |#1|) $)) (-15 -3831 (|#1| $)) (-15 -3962 ($ $)) (-15 -1881 ((-1138 (-402 |#1|)) $)) (-15 -3456 ((-1138 (-402 |#1|)) $)) (-15 -3166 ((-1138 |#1|) $)) (-15 -3935 ((-1138 |#1|) $)) (-15 -4282 ($ $ (-554))) (-15 -1300 ($ $))))
-((-3081 (($ (-109) $) 13)) (-2559 (((-3 (-109) "failed") (-1158) $) 12)) (-3075 (((-848) $) 16)) (-3952 (((-631 (-109)) $) 8)))
-(((-173) (-13 (-601 (-848)) (-10 -8 (-15 -3952 ((-631 (-109)) $)) (-15 -3081 ($ (-109) $)) (-15 -2559 ((-3 (-109) "failed") (-1158) $))))) (T -173))
-((-3952 (*1 *2 *1) (-12 (-5 *2 (-631 (-109))) (-5 *1 (-173)))) (-3081 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-173)))) (-2559 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1158)) (-5 *2 (-109)) (-5 *1 (-173)))))
-(-13 (-601 (-848)) (-10 -8 (-15 -3952 ((-631 (-109)) $)) (-15 -3081 ($ (-109) $)) (-15 -2559 ((-3 (-109) "failed") (-1158) $))))
-((-3437 (((-1 (-928 |#1|) (-928 |#1|)) |#1|) 40)) (-1384 (((-928 |#1|) (-928 |#1|)) 19)) (-3345 (((-1 (-928 |#1|) (-928 |#1|)) |#1|) 36)) (-2873 (((-928 |#1|) (-928 |#1|)) 17)) (-1307 (((-928 |#1|) (-928 |#1|)) 25)) (-4163 (((-928 |#1|) (-928 |#1|)) 24)) (-2388 (((-928 |#1|) (-928 |#1|)) 23)) (-2979 (((-1 (-928 |#1|) (-928 |#1|)) |#1|) 37)) (-3283 (((-1 (-928 |#1|) (-928 |#1|)) |#1|) 35)) (-2535 (((-1 (-928 |#1|) (-928 |#1|)) |#1|) 34)) (-2769 (((-928 |#1|) (-928 |#1|)) 18)) (-3984 (((-1 (-928 |#1|) (-928 |#1|)) |#1| |#1|) 43)) (-1719 (((-928 |#1|) (-928 |#1|)) 8)) (-2478 (((-1 (-928 |#1|) (-928 |#1|)) |#1|) 39)) (-2012 (((-1 (-928 |#1|) (-928 |#1|)) |#1|) 38)))
-(((-174 |#1|) (-10 -7 (-15 -1719 ((-928 |#1|) (-928 |#1|))) (-15 -2873 ((-928 |#1|) (-928 |#1|))) (-15 -2769 ((-928 |#1|) (-928 |#1|))) (-15 -1384 ((-928 |#1|) (-928 |#1|))) (-15 -2388 ((-928 |#1|) (-928 |#1|))) (-15 -4163 ((-928 |#1|) (-928 |#1|))) (-15 -1307 ((-928 |#1|) (-928 |#1|))) (-15 -2535 ((-1 (-928 |#1|) (-928 |#1|)) |#1|)) (-15 -3283 ((-1 (-928 |#1|) (-928 |#1|)) |#1|)) (-15 -3345 ((-1 (-928 |#1|) (-928 |#1|)) |#1|)) (-15 -2979 ((-1 (-928 |#1|) (-928 |#1|)) |#1|)) (-15 -2012 ((-1 (-928 |#1|) (-928 |#1|)) |#1|)) (-15 -2478 ((-1 (-928 |#1|) (-928 |#1|)) |#1|)) (-15 -3437 ((-1 (-928 |#1|) (-928 |#1|)) |#1|)) (-15 -3984 ((-1 (-928 |#1|) (-928 |#1|)) |#1| |#1|))) (-13 (-358) (-1180) (-987))) (T -174))
-((-3984 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-928 *3) (-928 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1180) (-987))))) (-3437 (*1 *2 *3) (-12 (-5 *2 (-1 (-928 *3) (-928 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1180) (-987))))) (-2478 (*1 *2 *3) (-12 (-5 *2 (-1 (-928 *3) (-928 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1180) (-987))))) (-2012 (*1 *2 *3) (-12 (-5 *2 (-1 (-928 *3) (-928 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1180) (-987))))) (-2979 (*1 *2 *3) (-12 (-5 *2 (-1 (-928 *3) (-928 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1180) (-987))))) (-3345 (*1 *2 *3) (-12 (-5 *2 (-1 (-928 *3) (-928 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1180) (-987))))) (-3283 (*1 *2 *3) (-12 (-5 *2 (-1 (-928 *3) (-928 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1180) (-987))))) (-2535 (*1 *2 *3) (-12 (-5 *2 (-1 (-928 *3) (-928 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1180) (-987))))) (-1307 (*1 *2 *2) (-12 (-5 *2 (-928 *3)) (-4 *3 (-13 (-358) (-1180) (-987))) (-5 *1 (-174 *3)))) (-4163 (*1 *2 *2) (-12 (-5 *2 (-928 *3)) (-4 *3 (-13 (-358) (-1180) (-987))) (-5 *1 (-174 *3)))) (-2388 (*1 *2 *2) (-12 (-5 *2 (-928 *3)) (-4 *3 (-13 (-358) (-1180) (-987))) (-5 *1 (-174 *3)))) (-1384 (*1 *2 *2) (-12 (-5 *2 (-928 *3)) (-4 *3 (-13 (-358) (-1180) (-987))) (-5 *1 (-174 *3)))) (-2769 (*1 *2 *2) (-12 (-5 *2 (-928 *3)) (-4 *3 (-13 (-358) (-1180) (-987))) (-5 *1 (-174 *3)))) (-2873 (*1 *2 *2) (-12 (-5 *2 (-928 *3)) (-4 *3 (-13 (-358) (-1180) (-987))) (-5 *1 (-174 *3)))) (-1719 (*1 *2 *2) (-12 (-5 *2 (-928 *3)) (-4 *3 (-13 (-358) (-1180) (-987))) (-5 *1 (-174 *3)))))
-(-10 -7 (-15 -1719 ((-928 |#1|) (-928 |#1|))) (-15 -2873 ((-928 |#1|) (-928 |#1|))) (-15 -2769 ((-928 |#1|) (-928 |#1|))) (-15 -1384 ((-928 |#1|) (-928 |#1|))) (-15 -2388 ((-928 |#1|) (-928 |#1|))) (-15 -4163 ((-928 |#1|) (-928 |#1|))) (-15 -1307 ((-928 |#1|) (-928 |#1|))) (-15 -2535 ((-1 (-928 |#1|) (-928 |#1|)) |#1|)) (-15 -3283 ((-1 (-928 |#1|) (-928 |#1|)) |#1|)) (-15 -3345 ((-1 (-928 |#1|) (-928 |#1|)) |#1|)) (-15 -2979 ((-1 (-928 |#1|) (-928 |#1|)) |#1|)) (-15 -2012 ((-1 (-928 |#1|) (-928 |#1|)) |#1|)) (-15 -2478 ((-1 (-928 |#1|) (-928 |#1|)) |#1|)) (-15 -3437 ((-1 (-928 |#1|) (-928 |#1|)) |#1|)) (-15 -3984 ((-1 (-928 |#1|) (-928 |#1|)) |#1| |#1|)))
-((-3109 ((|#2| |#3|) 27)))
-(((-175 |#1| |#2| |#3|) (-10 -7 (-15 -3109 (|#2| |#3|))) (-170) (-1217 |#1|) (-711 |#1| |#2|)) (T -175))
-((-3109 (*1 *2 *3) (-12 (-4 *4 (-170)) (-4 *2 (-1217 *4)) (-5 *1 (-175 *4 *2 *3)) (-4 *3 (-711 *4 *2)))))
-(-10 -7 (-15 -3109 (|#2| |#3|)))
-((-1655 (((-874 |#1| |#3|) |#3| (-877 |#1|) (-874 |#1| |#3|)) 47 (|has| (-937 |#2|) (-871 |#1|)))))
-(((-176 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-937 |#2|) (-871 |#1|)) (-15 -1655 ((-874 |#1| |#3|) |#3| (-877 |#1|) (-874 |#1| |#3|))) |%noBranch|)) (-1082) (-13 (-871 |#1|) (-170)) (-164 |#2|)) (T -176))
-((-1655 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-874 *5 *3)) (-5 *4 (-877 *5)) (-4 *5 (-1082)) (-4 *3 (-164 *6)) (-4 (-937 *6) (-871 *5)) (-4 *6 (-13 (-871 *5) (-170))) (-5 *1 (-176 *5 *6 *3)))))
-(-10 -7 (IF (|has| (-937 |#2|) (-871 |#1|)) (-15 -1655 ((-874 |#1| |#3|) |#3| (-877 |#1|) (-874 |#1| |#3|))) |%noBranch|))
-((-3818 (((-631 |#1|) (-631 |#1|) |#1|) 38)) (-2432 (((-631 |#1|) |#1| (-631 |#1|)) 19)) (-3589 (((-631 |#1|) (-631 (-631 |#1|)) (-631 |#1|)) 33) ((|#1| (-631 |#1|) (-631 |#1|)) 31)))
-(((-177 |#1|) (-10 -7 (-15 -2432 ((-631 |#1|) |#1| (-631 |#1|))) (-15 -3589 (|#1| (-631 |#1|) (-631 |#1|))) (-15 -3589 ((-631 |#1|) (-631 (-631 |#1|)) (-631 |#1|))) (-15 -3818 ((-631 |#1|) (-631 |#1|) |#1|))) (-302)) (T -177))
-((-3818 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-302)) (-5 *1 (-177 *3)))) (-3589 (*1 *2 *3 *2) (-12 (-5 *3 (-631 (-631 *4))) (-5 *2 (-631 *4)) (-4 *4 (-302)) (-5 *1 (-177 *4)))) (-3589 (*1 *2 *3 *3) (-12 (-5 *3 (-631 *2)) (-5 *1 (-177 *2)) (-4 *2 (-302)))) (-2432 (*1 *2 *3 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-302)) (-5 *1 (-177 *3)))))
-(-10 -7 (-15 -2432 ((-631 |#1|) |#1| (-631 |#1|))) (-15 -3589 (|#1| (-631 |#1|) (-631 |#1|))) (-15 -3589 ((-631 |#1|) (-631 (-631 |#1|)) (-631 |#1|))) (-15 -3818 ((-631 |#1|) (-631 |#1|) |#1|)))
-((-3062 (((-112) $ $) NIL)) (-1362 (((-1194) $) 13)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3463 (((-1117) $) 10)) (-3075 (((-848) $) 22) (($ (-1163)) NIL) (((-1163) $) NIL)) (-1658 (((-112) $ $) NIL)))
-(((-178) (-13 (-1065) (-10 -8 (-15 -3463 ((-1117) $)) (-15 -1362 ((-1194) $))))) (T -178))
-((-3463 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-178)))) (-1362 (*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-178)))))
-(-13 (-1065) (-10 -8 (-15 -3463 ((-1117) $)) (-15 -1362 ((-1194) $))))
-((-1392 (((-2 (|:| |start| |#2|) (|:| -2316 (-413 |#2|))) |#2|) 61)) (-1324 ((|#1| |#1|) 54)) (-3568 (((-167 |#1|) |#2|) 84)) (-1355 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 82)) (-2865 ((|#2| |#2|) 83)) (-2309 (((-413 |#2|) |#2| |#1|) 113) (((-413 |#2|) |#2| |#1| (-112)) 81)) (-3274 ((|#1| |#2|) 112)) (-3154 ((|#2| |#2|) 119)) (-2270 (((-413 |#2|) |#2|) 134) (((-413 |#2|) |#2| |#1|) 32) (((-413 |#2|) |#2| |#1| (-112)) 133)) (-3483 (((-631 (-2 (|:| -2316 (-631 |#2|)) (|:| -1841 |#1|))) |#2| |#2|) 132) (((-631 (-2 (|:| -2316 (-631 |#2|)) (|:| -1841 |#1|))) |#2| |#2| (-112)) 76)) (-2390 (((-631 (-167 |#1|)) |#2| |#1|) 40) (((-631 (-167 |#1|)) |#2|) 41)))
-(((-179 |#1| |#2|) (-10 -7 (-15 -2390 ((-631 (-167 |#1|)) |#2|)) (-15 -2390 ((-631 (-167 |#1|)) |#2| |#1|)) (-15 -3483 ((-631 (-2 (|:| -2316 (-631 |#2|)) (|:| -1841 |#1|))) |#2| |#2| (-112))) (-15 -3483 ((-631 (-2 (|:| -2316 (-631 |#2|)) (|:| -1841 |#1|))) |#2| |#2|)) (-15 -2270 ((-413 |#2|) |#2| |#1| (-112))) (-15 -2270 ((-413 |#2|) |#2| |#1|)) (-15 -2270 ((-413 |#2|) |#2|)) (-15 -3154 (|#2| |#2|)) (-15 -3274 (|#1| |#2|)) (-15 -2309 ((-413 |#2|) |#2| |#1| (-112))) (-15 -2309 ((-413 |#2|) |#2| |#1|)) (-15 -2865 (|#2| |#2|)) (-15 -1355 (|#1| |#2| |#1|)) (-15 -1355 (|#1| |#2|)) (-15 -3568 ((-167 |#1|) |#2|)) (-15 -1324 (|#1| |#1|)) (-15 -1392 ((-2 (|:| |start| |#2|) (|:| -2316 (-413 |#2|))) |#2|))) (-13 (-358) (-834)) (-1217 (-167 |#1|))) (T -179))
-((-1392 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-834))) (-5 *2 (-2 (|:| |start| *3) (|:| -2316 (-413 *3)))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1217 (-167 *4))))) (-1324 (*1 *2 *2) (-12 (-4 *2 (-13 (-358) (-834))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1217 (-167 *2))))) (-3568 (*1 *2 *3) (-12 (-5 *2 (-167 *4)) (-5 *1 (-179 *4 *3)) (-4 *4 (-13 (-358) (-834))) (-4 *3 (-1217 *2)))) (-1355 (*1 *2 *3) (-12 (-4 *2 (-13 (-358) (-834))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1217 (-167 *2))))) (-1355 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-358) (-834))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1217 (-167 *2))))) (-2865 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-834))) (-5 *1 (-179 *3 *2)) (-4 *2 (-1217 (-167 *3))))) (-2309 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-358) (-834))) (-5 *2 (-413 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1217 (-167 *4))))) (-2309 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-358) (-834))) (-5 *2 (-413 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1217 (-167 *4))))) (-3274 (*1 *2 *3) (-12 (-4 *2 (-13 (-358) (-834))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1217 (-167 *2))))) (-3154 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-834))) (-5 *1 (-179 *3 *2)) (-4 *2 (-1217 (-167 *3))))) (-2270 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-834))) (-5 *2 (-413 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1217 (-167 *4))))) (-2270 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-358) (-834))) (-5 *2 (-413 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1217 (-167 *4))))) (-2270 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-358) (-834))) (-5 *2 (-413 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1217 (-167 *4))))) (-3483 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-358) (-834))) (-5 *2 (-631 (-2 (|:| -2316 (-631 *3)) (|:| -1841 *4)))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1217 (-167 *4))))) (-3483 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-358) (-834))) (-5 *2 (-631 (-2 (|:| -2316 (-631 *3)) (|:| -1841 *5)))) (-5 *1 (-179 *5 *3)) (-4 *3 (-1217 (-167 *5))))) (-2390 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-358) (-834))) (-5 *2 (-631 (-167 *4))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1217 (-167 *4))))) (-2390 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-834))) (-5 *2 (-631 (-167 *4))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1217 (-167 *4))))))
-(-10 -7 (-15 -2390 ((-631 (-167 |#1|)) |#2|)) (-15 -2390 ((-631 (-167 |#1|)) |#2| |#1|)) (-15 -3483 ((-631 (-2 (|:| -2316 (-631 |#2|)) (|:| -1841 |#1|))) |#2| |#2| (-112))) (-15 -3483 ((-631 (-2 (|:| -2316 (-631 |#2|)) (|:| -1841 |#1|))) |#2| |#2|)) (-15 -2270 ((-413 |#2|) |#2| |#1| (-112))) (-15 -2270 ((-413 |#2|) |#2| |#1|)) (-15 -2270 ((-413 |#2|) |#2|)) (-15 -3154 (|#2| |#2|)) (-15 -3274 (|#1| |#2|)) (-15 -2309 ((-413 |#2|) |#2| |#1| (-112))) (-15 -2309 ((-413 |#2|) |#2| |#1|)) (-15 -2865 (|#2| |#2|)) (-15 -1355 (|#1| |#2| |#1|)) (-15 -1355 (|#1| |#2|)) (-15 -3568 ((-167 |#1|) |#2|)) (-15 -1324 (|#1| |#1|)) (-15 -1392 ((-2 (|:| |start| |#2|) (|:| -2316 (-413 |#2|))) |#2|)))
-((-2586 (((-3 |#2| "failed") |#2|) 14)) (-4254 (((-758) |#2|) 16)) (-2274 ((|#2| |#2| |#2|) 18)))
-(((-180 |#1| |#2|) (-10 -7 (-15 -2586 ((-3 |#2| "failed") |#2|)) (-15 -4254 ((-758) |#2|)) (-15 -2274 (|#2| |#2| |#2|))) (-1195) (-660 |#1|)) (T -180))
-((-2274 (*1 *2 *2 *2) (-12 (-4 *3 (-1195)) (-5 *1 (-180 *3 *2)) (-4 *2 (-660 *3)))) (-4254 (*1 *2 *3) (-12 (-4 *4 (-1195)) (-5 *2 (-758)) (-5 *1 (-180 *4 *3)) (-4 *3 (-660 *4)))) (-2586 (*1 *2 *2) (|partial| -12 (-4 *3 (-1195)) (-5 *1 (-180 *3 *2)) (-4 *2 (-660 *3)))))
-(-10 -7 (-15 -2586 ((-3 |#2| "failed") |#2|)) (-15 -4254 ((-758) |#2|)) (-15 -2274 (|#2| |#2| |#2|)))
-((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-1544 (((-1158) $) 10)) (-3075 (((-848) $) 17)) (-2793 (((-631 (-1163)) $) 12)) (-1658 (((-112) $ $) 15)))
-(((-181) (-13 (-1082) (-10 -8 (-15 -1544 ((-1158) $)) (-15 -2793 ((-631 (-1163)) $))))) (T -181))
-((-1544 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-181)))) (-2793 (*1 *2 *1) (-12 (-5 *2 (-631 (-1163))) (-5 *1 (-181)))))
-(-13 (-1082) (-10 -8 (-15 -1544 ((-1158) $)) (-15 -2793 ((-631 (-1163)) $))))
-((-3062 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-8 (($) 7 T CONST)) (-3075 (((-848) $) 14)) (-9 (($) 6 T CONST)) (-1658 (((-112) $ $) 10)))
-(((-182) (-13 (-1082) (-10 -8 (-15 -9 ($) -2397) (-15 -8 ($) -2397) (-15 -7 ($) -2397)))) (T -182))
-((-9 (*1 *1) (-5 *1 (-182))) (-8 (*1 *1) (-5 *1 (-182))) (-7 (*1 *1) (-5 *1 (-182))))
-(-13 (-1082) (-10 -8 (-15 -9 ($) -2397) (-15 -8 ($) -2397) (-15 -7 ($) -2397)))
-((-3062 (((-112) $ $) NIL)) (-4309 (((-500) $) 8)) (-1613 (((-1140) $) NIL)) (-1466 (((-182) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 14)) (-1937 (((-1102) $) NIL)) (-1658 (((-112) $ $) 11)))
-(((-183) (-13 (-1082) (-10 -8 (-15 -4309 ((-500) $)) (-15 -1466 ((-182) $)) (-15 -1937 ((-1102) $))))) (T -183))
-((-4309 (*1 *2 *1) (-12 (-5 *2 (-500)) (-5 *1 (-183)))) (-1466 (*1 *2 *1) (-12 (-5 *2 (-182)) (-5 *1 (-183)))) (-1937 (*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-183)))))
-(-13 (-1082) (-10 -8 (-15 -4309 ((-500) $)) (-15 -1466 ((-182) $)) (-15 -1937 ((-1102) $))))
-((-3400 ((|#2| |#2|) 28)) (-1809 (((-112) |#2|) 19)) (-2293 (((-311 |#1|) |#2|) 12)) (-2302 (((-311 |#1|) |#2|) 14)) (-2232 ((|#2| |#2| (-1158)) 68) ((|#2| |#2|) 69)) (-1436 (((-167 (-311 |#1|)) |#2|) 10)) (-2110 ((|#2| |#2| (-1158)) 65) ((|#2| |#2|) 59)))
-(((-184 |#1| |#2|) (-10 -7 (-15 -2232 (|#2| |#2|)) (-15 -2232 (|#2| |#2| (-1158))) (-15 -2110 (|#2| |#2|)) (-15 -2110 (|#2| |#2| (-1158))) (-15 -2293 ((-311 |#1|) |#2|)) (-15 -2302 ((-311 |#1|) |#2|)) (-15 -1809 ((-112) |#2|)) (-15 -3400 (|#2| |#2|)) (-15 -1436 ((-167 (-311 |#1|)) |#2|))) (-13 (-546) (-836) (-1023 (-554))) (-13 (-27) (-1180) (-425 (-167 |#1|)))) (T -184))
-((-1436 (*1 *2 *3) (-12 (-4 *4 (-13 (-546) (-836) (-1023 (-554)))) (-5 *2 (-167 (-311 *4))) (-5 *1 (-184 *4 *3)) (-4 *3 (-13 (-27) (-1180) (-425 (-167 *4)))))) (-3400 (*1 *2 *2) (-12 (-4 *3 (-13 (-546) (-836) (-1023 (-554)))) (-5 *1 (-184 *3 *2)) (-4 *2 (-13 (-27) (-1180) (-425 (-167 *3)))))) (-1809 (*1 *2 *3) (-12 (-4 *4 (-13 (-546) (-836) (-1023 (-554)))) (-5 *2 (-112)) (-5 *1 (-184 *4 *3)) (-4 *3 (-13 (-27) (-1180) (-425 (-167 *4)))))) (-2302 (*1 *2 *3) (-12 (-4 *4 (-13 (-546) (-836) (-1023 (-554)))) (-5 *2 (-311 *4)) (-5 *1 (-184 *4 *3)) (-4 *3 (-13 (-27) (-1180) (-425 (-167 *4)))))) (-2293 (*1 *2 *3) (-12 (-4 *4 (-13 (-546) (-836) (-1023 (-554)))) (-5 *2 (-311 *4)) (-5 *1 (-184 *4 *3)) (-4 *3 (-13 (-27) (-1180) (-425 (-167 *4)))))) (-2110 (*1 *2 *2 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-546) (-836) (-1023 (-554)))) (-5 *1 (-184 *4 *2)) (-4 *2 (-13 (-27) (-1180) (-425 (-167 *4)))))) (-2110 (*1 *2 *2) (-12 (-4 *3 (-13 (-546) (-836) (-1023 (-554)))) (-5 *1 (-184 *3 *2)) (-4 *2 (-13 (-27) (-1180) (-425 (-167 *3)))))) (-2232 (*1 *2 *2 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-546) (-836) (-1023 (-554)))) (-5 *1 (-184 *4 *2)) (-4 *2 (-13 (-27) (-1180) (-425 (-167 *4)))))) (-2232 (*1 *2 *2) (-12 (-4 *3 (-13 (-546) (-836) (-1023 (-554)))) (-5 *1 (-184 *3 *2)) (-4 *2 (-13 (-27) (-1180) (-425 (-167 *3)))))))
-(-10 -7 (-15 -2232 (|#2| |#2|)) (-15 -2232 (|#2| |#2| (-1158))) (-15 -2110 (|#2| |#2|)) (-15 -2110 (|#2| |#2| (-1158))) (-15 -2293 ((-311 |#1|) |#2|)) (-15 -2302 ((-311 |#1|) |#2|)) (-15 -1809 ((-112) |#2|)) (-15 -3400 (|#2| |#2|)) (-15 -1436 ((-167 (-311 |#1|)) |#2|)))
-((-1358 (((-1241 (-675 (-937 |#1|))) (-1241 (-675 |#1|))) 24)) (-3075 (((-1241 (-675 (-402 (-937 |#1|)))) (-1241 (-675 |#1|))) 33)))
-(((-185 |#1|) (-10 -7 (-15 -1358 ((-1241 (-675 (-937 |#1|))) (-1241 (-675 |#1|)))) (-15 -3075 ((-1241 (-675 (-402 (-937 |#1|)))) (-1241 (-675 |#1|))))) (-170)) (T -185))
-((-3075 (*1 *2 *3) (-12 (-5 *3 (-1241 (-675 *4))) (-4 *4 (-170)) (-5 *2 (-1241 (-675 (-402 (-937 *4))))) (-5 *1 (-185 *4)))) (-1358 (*1 *2 *3) (-12 (-5 *3 (-1241 (-675 *4))) (-4 *4 (-170)) (-5 *2 (-1241 (-675 (-937 *4)))) (-5 *1 (-185 *4)))))
-(-10 -7 (-15 -1358 ((-1241 (-675 (-937 |#1|))) (-1241 (-675 |#1|)))) (-15 -3075 ((-1241 (-675 (-402 (-937 |#1|)))) (-1241 (-675 |#1|)))))
-((-3240 (((-1160 (-402 (-554))) (-1160 (-402 (-554))) (-1160 (-402 (-554)))) 66)) (-4293 (((-1160 (-402 (-554))) (-631 (-554)) (-631 (-554))) 75)) (-2338 (((-1160 (-402 (-554))) (-554)) 40)) (-1781 (((-1160 (-402 (-554))) (-554)) 52)) (-2386 (((-402 (-554)) (-1160 (-402 (-554)))) 62)) (-3404 (((-1160 (-402 (-554))) (-554)) 32)) (-3794 (((-1160 (-402 (-554))) (-554)) 48)) (-2687 (((-1160 (-402 (-554))) (-554)) 46)) (-3558 (((-1160 (-402 (-554))) (-1160 (-402 (-554))) (-1160 (-402 (-554)))) 60)) (-1300 (((-1160 (-402 (-554))) (-554)) 25)) (-3744 (((-402 (-554)) (-1160 (-402 (-554))) (-1160 (-402 (-554)))) 64)) (-3688 (((-1160 (-402 (-554))) (-554)) 30)) (-3555 (((-1160 (-402 (-554))) (-631 (-554))) 72)))
-(((-186) (-10 -7 (-15 -1300 ((-1160 (-402 (-554))) (-554))) (-15 -2338 ((-1160 (-402 (-554))) (-554))) (-15 -3404 ((-1160 (-402 (-554))) (-554))) (-15 -3688 ((-1160 (-402 (-554))) (-554))) (-15 -2687 ((-1160 (-402 (-554))) (-554))) (-15 -3794 ((-1160 (-402 (-554))) (-554))) (-15 -1781 ((-1160 (-402 (-554))) (-554))) (-15 -3744 ((-402 (-554)) (-1160 (-402 (-554))) (-1160 (-402 (-554))))) (-15 -3558 ((-1160 (-402 (-554))) (-1160 (-402 (-554))) (-1160 (-402 (-554))))) (-15 -2386 ((-402 (-554)) (-1160 (-402 (-554))))) (-15 -3240 ((-1160 (-402 (-554))) (-1160 (-402 (-554))) (-1160 (-402 (-554))))) (-15 -3555 ((-1160 (-402 (-554))) (-631 (-554)))) (-15 -4293 ((-1160 (-402 (-554))) (-631 (-554)) (-631 (-554)))))) (T -186))
-((-4293 (*1 *2 *3 *3) (-12 (-5 *3 (-631 (-554))) (-5 *2 (-1160 (-402 (-554)))) (-5 *1 (-186)))) (-3555 (*1 *2 *3) (-12 (-5 *3 (-631 (-554))) (-5 *2 (-1160 (-402 (-554)))) (-5 *1 (-186)))) (-3240 (*1 *2 *2 *2) (-12 (-5 *2 (-1160 (-402 (-554)))) (-5 *1 (-186)))) (-2386 (*1 *2 *3) (-12 (-5 *3 (-1160 (-402 (-554)))) (-5 *2 (-402 (-554))) (-5 *1 (-186)))) (-3558 (*1 *2 *2 *2) (-12 (-5 *2 (-1160 (-402 (-554)))) (-5 *1 (-186)))) (-3744 (*1 *2 *3 *3) (-12 (-5 *3 (-1160 (-402 (-554)))) (-5 *2 (-402 (-554))) (-5 *1 (-186)))) (-1781 (*1 *2 *3) (-12 (-5 *2 (-1160 (-402 (-554)))) (-5 *1 (-186)) (-5 *3 (-554)))) (-3794 (*1 *2 *3) (-12 (-5 *2 (-1160 (-402 (-554)))) (-5 *1 (-186)) (-5 *3 (-554)))) (-2687 (*1 *2 *3) (-12 (-5 *2 (-1160 (-402 (-554)))) (-5 *1 (-186)) (-5 *3 (-554)))) (-3688 (*1 *2 *3) (-12 (-5 *2 (-1160 (-402 (-554)))) (-5 *1 (-186)) (-5 *3 (-554)))) (-3404 (*1 *2 *3) (-12 (-5 *2 (-1160 (-402 (-554)))) (-5 *1 (-186)) (-5 *3 (-554)))) (-2338 (*1 *2 *3) (-12 (-5 *2 (-1160 (-402 (-554)))) (-5 *1 (-186)) (-5 *3 (-554)))) (-1300 (*1 *2 *3) (-12 (-5 *2 (-1160 (-402 (-554)))) (-5 *1 (-186)) (-5 *3 (-554)))))
-(-10 -7 (-15 -1300 ((-1160 (-402 (-554))) (-554))) (-15 -2338 ((-1160 (-402 (-554))) (-554))) (-15 -3404 ((-1160 (-402 (-554))) (-554))) (-15 -3688 ((-1160 (-402 (-554))) (-554))) (-15 -2687 ((-1160 (-402 (-554))) (-554))) (-15 -3794 ((-1160 (-402 (-554))) (-554))) (-15 -1781 ((-1160 (-402 (-554))) (-554))) (-15 -3744 ((-402 (-554)) (-1160 (-402 (-554))) (-1160 (-402 (-554))))) (-15 -3558 ((-1160 (-402 (-554))) (-1160 (-402 (-554))) (-1160 (-402 (-554))))) (-15 -2386 ((-402 (-554)) (-1160 (-402 (-554))))) (-15 -3240 ((-1160 (-402 (-554))) (-1160 (-402 (-554))) (-1160 (-402 (-554))))) (-15 -3555 ((-1160 (-402 (-554))) (-631 (-554)))) (-15 -4293 ((-1160 (-402 (-554))) (-631 (-554)) (-631 (-554)))))
-((-2560 (((-413 (-1154 (-554))) (-554)) 28)) (-2609 (((-631 (-1154 (-554))) (-554)) 23)) (-3506 (((-1154 (-554)) (-554)) 21)))
-(((-187) (-10 -7 (-15 -2609 ((-631 (-1154 (-554))) (-554))) (-15 -3506 ((-1154 (-554)) (-554))) (-15 -2560 ((-413 (-1154 (-554))) (-554))))) (T -187))
-((-2560 (*1 *2 *3) (-12 (-5 *2 (-413 (-1154 (-554)))) (-5 *1 (-187)) (-5 *3 (-554)))) (-3506 (*1 *2 *3) (-12 (-5 *2 (-1154 (-554))) (-5 *1 (-187)) (-5 *3 (-554)))) (-2609 (*1 *2 *3) (-12 (-5 *2 (-631 (-1154 (-554)))) (-5 *1 (-187)) (-5 *3 (-554)))))
-(-10 -7 (-15 -2609 ((-631 (-1154 (-554))) (-554))) (-15 -3506 ((-1154 (-554)) (-554))) (-15 -2560 ((-413 (-1154 (-554))) (-554))))
-((-2980 (((-1138 (-221)) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 104)) (-2976 (((-631 (-1140)) (-1138 (-221))) NIL)) (-4071 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 80)) (-2089 (((-631 (-221)) (-311 (-221)) (-1158) (-1076 (-829 (-221)))) NIL)) (-1984 (((-631 (-1140)) (-631 (-221))) NIL)) (-4243 (((-221) (-1076 (-829 (-221)))) 24)) (-3653 (((-221) (-1076 (-829 (-221)))) 25)) (-2328 (((-374) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 97)) (-2740 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 42)) (-2588 (((-1140) (-221)) NIL)) (-4262 (((-1140) (-631 (-1140))) 20)) (-4298 (((-1020) (-1158) (-1158) (-1020)) 13)))
-(((-188) (-10 -7 (-15 -4071 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2740 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -4243 ((-221) (-1076 (-829 (-221))))) (-15 -3653 ((-221) (-1076 (-829 (-221))))) (-15 -2328 ((-374) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2089 ((-631 (-221)) (-311 (-221)) (-1158) (-1076 (-829 (-221))))) (-15 -2980 ((-1138 (-221)) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2588 ((-1140) (-221))) (-15 -1984 ((-631 (-1140)) (-631 (-221)))) (-15 -2976 ((-631 (-1140)) (-1138 (-221)))) (-15 -4262 ((-1140) (-631 (-1140)))) (-15 -4298 ((-1020) (-1158) (-1158) (-1020))))) (T -188))
-((-4298 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1020)) (-5 *3 (-1158)) (-5 *1 (-188)))) (-4262 (*1 *2 *3) (-12 (-5 *3 (-631 (-1140))) (-5 *2 (-1140)) (-5 *1 (-188)))) (-2976 (*1 *2 *3) (-12 (-5 *3 (-1138 (-221))) (-5 *2 (-631 (-1140))) (-5 *1 (-188)))) (-1984 (*1 *2 *3) (-12 (-5 *3 (-631 (-221))) (-5 *2 (-631 (-1140))) (-5 *1 (-188)))) (-2588 (*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1140)) (-5 *1 (-188)))) (-2980 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-1138 (-221))) (-5 *1 (-188)))) (-2089 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-311 (-221))) (-5 *4 (-1158)) (-5 *5 (-1076 (-829 (-221)))) (-5 *2 (-631 (-221))) (-5 *1 (-188)))) (-2328 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-374)) (-5 *1 (-188)))) (-3653 (*1 *2 *3) (-12 (-5 *3 (-1076 (-829 (-221)))) (-5 *2 (-221)) (-5 *1 (-188)))) (-4243 (*1 *2 *3) (-12 (-5 *3 (-1076 (-829 (-221)))) (-5 *2 (-221)) (-5 *1 (-188)))) (-2740 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-188)))) (-4071 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-188)))))
-(-10 -7 (-15 -4071 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2740 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -4243 ((-221) (-1076 (-829 (-221))))) (-15 -3653 ((-221) (-1076 (-829 (-221))))) (-15 -2328 ((-374) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2089 ((-631 (-221)) (-311 (-221)) (-1158) (-1076 (-829 (-221))))) (-15 -2980 ((-1138 (-221)) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2588 ((-1140) (-221))) (-15 -1984 ((-631 (-1140)) (-631 (-221)))) (-15 -2976 ((-631 (-1140)) (-1138 (-221)))) (-15 -4262 ((-1140) (-631 (-1140)))) (-15 -4298 ((-1020) (-1158) (-1158) (-1020))))
-((-3062 (((-112) $ $) NIL)) (-1734 (((-1020) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) 55) (((-1020) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) NIL)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 32) (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-1658 (((-112) $ $) NIL)))
-(((-189) (-774)) (T -189))
-NIL
-(-774)
-((-3062 (((-112) $ $) NIL)) (-1734 (((-1020) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) 60) (((-1020) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) NIL)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 41) (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-1658 (((-112) $ $) NIL)))
-(((-190) (-774)) (T -190))
-NIL
-(-774)
-((-3062 (((-112) $ $) NIL)) (-1734 (((-1020) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) 69) (((-1020) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) NIL)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 40) (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-1658 (((-112) $ $) NIL)))
-(((-191) (-774)) (T -191))
-NIL
-(-774)
-((-3062 (((-112) $ $) NIL)) (-1734 (((-1020) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) 56) (((-1020) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) NIL)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 34) (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-1658 (((-112) $ $) NIL)))
-(((-192) (-774)) (T -192))
-NIL
-(-774)
-((-3062 (((-112) $ $) NIL)) (-1734 (((-1020) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) 67) (((-1020) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) NIL)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 38) (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-1658 (((-112) $ $) NIL)))
-(((-193) (-774)) (T -193))
-NIL
-(-774)
-((-3062 (((-112) $ $) NIL)) (-1734 (((-1020) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) 73) (((-1020) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) NIL)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 36) (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-1658 (((-112) $ $) NIL)))
-(((-194) (-774)) (T -194))
-NIL
-(-774)
-((-3062 (((-112) $ $) NIL)) (-1734 (((-1020) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) 80) (((-1020) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) NIL)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 44) (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-1658 (((-112) $ $) NIL)))
-(((-195) (-774)) (T -195))
-NIL
-(-774)
-((-3062 (((-112) $ $) NIL)) (-1734 (((-1020) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) 70) (((-1020) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) NIL)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 40) (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-1658 (((-112) $ $) NIL)))
-(((-196) (-774)) (T -196))
-NIL
-(-774)
-((-3062 (((-112) $ $) NIL)) (-1734 (((-1020) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) NIL) (((-1020) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) 65)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL) (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 32)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-1658 (((-112) $ $) NIL)))
-(((-197) (-774)) (T -197))
-NIL
-(-774)
-((-3062 (((-112) $ $) NIL)) (-1734 (((-1020) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) NIL) (((-1020) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) 63)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL) (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 34)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-1658 (((-112) $ $) NIL)))
-(((-198) (-774)) (T -198))
-NIL
-(-774)
-((-3062 (((-112) $ $) NIL)) (-1734 (((-1020) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) 90) (((-1020) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) NIL)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 78) (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-1658 (((-112) $ $) NIL)))
-(((-199) (-774)) (T -199))
-NIL
-(-774)
-((-2049 (((-3 (-2 (|:| -1482 (-114)) (|:| |w| (-221))) "failed") (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 85)) (-2241 (((-554) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 42)) (-1346 (((-3 (-631 (-221)) "failed") (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 73)))
-(((-200) (-10 -7 (-15 -2049 ((-3 (-2 (|:| -1482 (-114)) (|:| |w| (-221))) "failed") (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1346 ((-3 (-631 (-221)) "failed") (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2241 ((-554) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))) (T -200))
-((-2241 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-554)) (-5 *1 (-200)))) (-1346 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-631 (-221))) (-5 *1 (-200)))) (-2049 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| -1482 (-114)) (|:| |w| (-221)))) (-5 *1 (-200)))))
-(-10 -7 (-15 -2049 ((-3 (-2 (|:| -1482 (-114)) (|:| |w| (-221))) "failed") (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1346 ((-3 (-631 (-221)) "failed") (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2241 ((-554) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))
-((-2462 (((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 39)) (-2113 (((-2 (|:| |stiffnessFactor| (-374)) (|:| |stabilityFactor| (-374))) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 129)) (-2096 (((-2 (|:| |stiffnessFactor| (-374)) (|:| |stabilityFactor| (-374))) (-675 (-311 (-221)))) 88)) (-3399 (((-374) (-675 (-311 (-221)))) 112)) (-2449 (((-675 (-311 (-221))) (-1241 (-311 (-221))) (-631 (-1158))) 109)) (-1454 (((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 30)) (-2268 (((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 43)) (-2386 (((-675 (-311 (-221))) (-675 (-311 (-221))) (-631 (-1158)) (-1241 (-311 (-221)))) 101)) (-1755 (((-374) (-374) (-631 (-374))) 106) (((-374) (-374) (-374)) 104)) (-2500 (((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 36)))
-(((-201) (-10 -7 (-15 -1755 ((-374) (-374) (-374))) (-15 -1755 ((-374) (-374) (-631 (-374)))) (-15 -3399 ((-374) (-675 (-311 (-221))))) (-15 -2449 ((-675 (-311 (-221))) (-1241 (-311 (-221))) (-631 (-1158)))) (-15 -2386 ((-675 (-311 (-221))) (-675 (-311 (-221))) (-631 (-1158)) (-1241 (-311 (-221))))) (-15 -2096 ((-2 (|:| |stiffnessFactor| (-374)) (|:| |stabilityFactor| (-374))) (-675 (-311 (-221))))) (-15 -2113 ((-2 (|:| |stiffnessFactor| (-374)) (|:| |stabilityFactor| (-374))) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2462 ((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2268 ((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2500 ((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1454 ((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))) (T -201))
-((-1454 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-374)) (-5 *1 (-201)))) (-2500 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-374)) (-5 *1 (-201)))) (-2268 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-374)) (-5 *1 (-201)))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-374)) (-5 *1 (-201)))) (-2113 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-374)) (|:| |stabilityFactor| (-374)))) (-5 *1 (-201)))) (-2096 (*1 *2 *3) (-12 (-5 *3 (-675 (-311 (-221)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-374)) (|:| |stabilityFactor| (-374)))) (-5 *1 (-201)))) (-2386 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-675 (-311 (-221)))) (-5 *3 (-631 (-1158))) (-5 *4 (-1241 (-311 (-221)))) (-5 *1 (-201)))) (-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1241 (-311 (-221)))) (-5 *4 (-631 (-1158))) (-5 *2 (-675 (-311 (-221)))) (-5 *1 (-201)))) (-3399 (*1 *2 *3) (-12 (-5 *3 (-675 (-311 (-221)))) (-5 *2 (-374)) (-5 *1 (-201)))) (-1755 (*1 *2 *2 *3) (-12 (-5 *3 (-631 (-374))) (-5 *2 (-374)) (-5 *1 (-201)))) (-1755 (*1 *2 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-201)))))
-(-10 -7 (-15 -1755 ((-374) (-374) (-374))) (-15 -1755 ((-374) (-374) (-631 (-374)))) (-15 -3399 ((-374) (-675 (-311 (-221))))) (-15 -2449 ((-675 (-311 (-221))) (-1241 (-311 (-221))) (-631 (-1158)))) (-15 -2386 ((-675 (-311 (-221))) (-675 (-311 (-221))) (-631 (-1158)) (-1241 (-311 (-221))))) (-15 -2096 ((-2 (|:| |stiffnessFactor| (-374)) (|:| |stabilityFactor| (-374))) (-675 (-311 (-221))))) (-15 -2113 ((-2 (|:| |stiffnessFactor| (-374)) (|:| |stabilityFactor| (-374))) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2462 ((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2268 ((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2500 ((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1454 ((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))
-((-3062 (((-112) $ $) NIL)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 41)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-2821 (((-1020) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 64)) (-1658 (((-112) $ $) NIL)))
-(((-202) (-787)) (T -202))
-NIL
-(-787)
-((-3062 (((-112) $ $) NIL)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 41)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-2821 (((-1020) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 62)) (-1658 (((-112) $ $) NIL)))
-(((-203) (-787)) (T -203))
-NIL
-(-787)
-((-3062 (((-112) $ $) NIL)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 40)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-2821 (((-1020) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 66)) (-1658 (((-112) $ $) NIL)))
-(((-204) (-787)) (T -204))
-NIL
-(-787)
-((-3062 (((-112) $ $) NIL)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 46)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-2821 (((-1020) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 75)) (-1658 (((-112) $ $) NIL)))
-(((-205) (-787)) (T -205))
-NIL
-(-787)
-((-1654 (((-631 (-1158)) (-1158) (-758)) 23)) (-4313 (((-311 (-221)) (-311 (-221))) 31)) (-2440 (((-112) (-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| (-631 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-758)) (|:| |boundaryType| (-554)) (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) (|:| |tol| (-221)))) 73)) (-4214 (((-112) (-221) (-221) (-631 (-311 (-221)))) 44)))
-(((-206) (-10 -7 (-15 -1654 ((-631 (-1158)) (-1158) (-758))) (-15 -4313 ((-311 (-221)) (-311 (-221)))) (-15 -4214 ((-112) (-221) (-221) (-631 (-311 (-221))))) (-15 -2440 ((-112) (-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| (-631 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-758)) (|:| |boundaryType| (-554)) (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) (|:| |tol| (-221))))))) (T -206))
-((-2440 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| (-631 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-758)) (|:| |boundaryType| (-554)) (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) (|:| |tol| (-221)))) (-5 *2 (-112)) (-5 *1 (-206)))) (-4214 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-631 (-311 (-221)))) (-5 *3 (-221)) (-5 *2 (-112)) (-5 *1 (-206)))) (-4313 (*1 *2 *2) (-12 (-5 *2 (-311 (-221))) (-5 *1 (-206)))) (-1654 (*1 *2 *3 *4) (-12 (-5 *4 (-758)) (-5 *2 (-631 (-1158))) (-5 *1 (-206)) (-5 *3 (-1158)))))
-(-10 -7 (-15 -1654 ((-631 (-1158)) (-1158) (-758))) (-15 -4313 ((-311 (-221)) (-311 (-221)))) (-15 -4214 ((-112) (-221) (-221) (-631 (-311 (-221))))) (-15 -2440 ((-112) (-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| (-631 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-758)) (|:| |boundaryType| (-554)) (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) (|:| |tol| (-221))))))
-((-3062 (((-112) $ $) NIL)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| (-631 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-758)) (|:| |boundaryType| (-554)) (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) (|:| |tol| (-221)))) 26)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-1275 (((-1020) (-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| (-631 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-758)) (|:| |boundaryType| (-554)) (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) (|:| |tol| (-221)))) 57)) (-1658 (((-112) $ $) NIL)))
-(((-207) (-880)) (T -207))
-NIL
-(-880)
-((-3062 (((-112) $ $) NIL)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| (-631 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-758)) (|:| |boundaryType| (-554)) (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) (|:| |tol| (-221)))) 21)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-1275 (((-1020) (-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| (-631 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-758)) (|:| |boundaryType| (-554)) (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) (|:| |tol| (-221)))) NIL)) (-1658 (((-112) $ $) NIL)))
-(((-208) (-880)) (T -208))
-NIL
-(-880)
-((-3062 (((-112) $ $) NIL)) (-2807 ((|#2| $ (-758) |#2|) 11)) (-2796 ((|#2| $ (-758)) 10)) (-3180 (($) 8)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 18)) (-1658 (((-112) $ $) 13)))
-(((-209 |#1| |#2|) (-13 (-1082) (-10 -8 (-15 -3180 ($)) (-15 -2796 (|#2| $ (-758))) (-15 -2807 (|#2| $ (-758) |#2|)))) (-906) (-1082)) (T -209))
-((-3180 (*1 *1) (-12 (-5 *1 (-209 *2 *3)) (-14 *2 (-906)) (-4 *3 (-1082)))) (-2796 (*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-4 *2 (-1082)) (-5 *1 (-209 *4 *2)) (-14 *4 (-906)))) (-2807 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-758)) (-5 *1 (-209 *4 *2)) (-14 *4 (-906)) (-4 *2 (-1082)))))
-(-13 (-1082) (-10 -8 (-15 -3180 ($)) (-15 -2796 (|#2| $ (-758))) (-15 -2807 (|#2| $ (-758) |#2|))))
-((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2941 (((-1246) $) 36) (((-1246) $ (-906) (-906)) 38)) (-2064 (($ $ (-974)) 19) (((-241 (-1140)) $ (-1158)) 15)) (-2524 (((-1246) $) 34)) (-3075 (((-848) $) 31) (($ (-631 |#1|)) 8)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $ $) 27)) (-1735 (($ $ $) 22)))
-(((-210 |#1|) (-13 (-1082) (-604 (-631 |#1|)) (-10 -8 (-15 -2064 ($ $ (-974))) (-15 -2064 ((-241 (-1140)) $ (-1158))) (-15 -1735 ($ $ $)) (-15 -1744 ($ $ $)) (-15 -2524 ((-1246) $)) (-15 -2941 ((-1246) $)) (-15 -2941 ((-1246) $ (-906) (-906))))) (-13 (-836) (-10 -8 (-15 -2064 ((-1140) $ (-1158))) (-15 -2524 ((-1246) $)) (-15 -2941 ((-1246) $))))) (T -210))
-((-2064 (*1 *1 *1 *2) (-12 (-5 *2 (-974)) (-5 *1 (-210 *3)) (-4 *3 (-13 (-836) (-10 -8 (-15 -2064 ((-1140) $ (-1158))) (-15 -2524 ((-1246) $)) (-15 -2941 ((-1246) $))))))) (-2064 (*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-241 (-1140))) (-5 *1 (-210 *4)) (-4 *4 (-13 (-836) (-10 -8 (-15 -2064 ((-1140) $ *3)) (-15 -2524 ((-1246) $)) (-15 -2941 ((-1246) $))))))) (-1735 (*1 *1 *1 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-836) (-10 -8 (-15 -2064 ((-1140) $ (-1158))) (-15 -2524 ((-1246) $)) (-15 -2941 ((-1246) $))))))) (-1744 (*1 *1 *1 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-836) (-10 -8 (-15 -2064 ((-1140) $ (-1158))) (-15 -2524 ((-1246) $)) (-15 -2941 ((-1246) $))))))) (-2524 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-210 *3)) (-4 *3 (-13 (-836) (-10 -8 (-15 -2064 ((-1140) $ (-1158))) (-15 -2524 (*2 $)) (-15 -2941 (*2 $))))))) (-2941 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-210 *3)) (-4 *3 (-13 (-836) (-10 -8 (-15 -2064 ((-1140) $ (-1158))) (-15 -2524 (*2 $)) (-15 -2941 (*2 $))))))) (-2941 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-906)) (-5 *2 (-1246)) (-5 *1 (-210 *4)) (-4 *4 (-13 (-836) (-10 -8 (-15 -2064 ((-1140) $ (-1158))) (-15 -2524 (*2 $)) (-15 -2941 (*2 $))))))))
-(-13 (-1082) (-604 (-631 |#1|)) (-10 -8 (-15 -2064 ($ $ (-974))) (-15 -2064 ((-241 (-1140)) $ (-1158))) (-15 -1735 ($ $ $)) (-15 -1744 ($ $ $)) (-15 -2524 ((-1246) $)) (-15 -2941 ((-1246) $)) (-15 -2941 ((-1246) $ (-906) (-906)))))
-((-3004 ((|#2| |#4| (-1 |#2| |#2|)) 46)))
-(((-211 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3004 (|#2| |#4| (-1 |#2| |#2|)))) (-358) (-1217 |#1|) (-1217 (-402 |#2|)) (-337 |#1| |#2| |#3|)) (T -211))
-((-3004 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-358)) (-4 *6 (-1217 (-402 *2))) (-4 *2 (-1217 *5)) (-5 *1 (-211 *5 *2 *6 *3)) (-4 *3 (-337 *5 *2 *6)))))
-(-10 -7 (-15 -3004 (|#2| |#4| (-1 |#2| |#2|))))
-((-1360 ((|#2| |#2| (-758) |#2|) 42)) (-1874 ((|#2| |#2| (-758) |#2|) 38)) (-3539 (((-631 |#2|) (-631 (-2 (|:| |deg| (-758)) (|:| -2436 |#2|)))) 57)) (-2346 (((-631 (-2 (|:| |deg| (-758)) (|:| -2436 |#2|))) |#2|) 53)) (-1956 (((-112) |#2|) 50)) (-4091 (((-413 |#2|) |#2|) 77)) (-2270 (((-413 |#2|) |#2|) 76)) (-4028 ((|#2| |#2| (-758) |#2|) 36)) (-3213 (((-2 (|:| |cont| |#1|) (|:| -2316 (-631 (-2 (|:| |irr| |#2|) (|:| -4218 (-554)))))) |#2| (-112)) 69)))
-(((-212 |#1| |#2|) (-10 -7 (-15 -2270 ((-413 |#2|) |#2|)) (-15 -4091 ((-413 |#2|) |#2|)) (-15 -3213 ((-2 (|:| |cont| |#1|) (|:| -2316 (-631 (-2 (|:| |irr| |#2|) (|:| -4218 (-554)))))) |#2| (-112))) (-15 -2346 ((-631 (-2 (|:| |deg| (-758)) (|:| -2436 |#2|))) |#2|)) (-15 -3539 ((-631 |#2|) (-631 (-2 (|:| |deg| (-758)) (|:| -2436 |#2|))))) (-15 -4028 (|#2| |#2| (-758) |#2|)) (-15 -1874 (|#2| |#2| (-758) |#2|)) (-15 -1360 (|#2| |#2| (-758) |#2|)) (-15 -1956 ((-112) |#2|))) (-344) (-1217 |#1|)) (T -212))
-((-1956 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-112)) (-5 *1 (-212 *4 *3)) (-4 *3 (-1217 *4)))) (-1360 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-758)) (-4 *4 (-344)) (-5 *1 (-212 *4 *2)) (-4 *2 (-1217 *4)))) (-1874 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-758)) (-4 *4 (-344)) (-5 *1 (-212 *4 *2)) (-4 *2 (-1217 *4)))) (-4028 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-758)) (-4 *4 (-344)) (-5 *1 (-212 *4 *2)) (-4 *2 (-1217 *4)))) (-3539 (*1 *2 *3) (-12 (-5 *3 (-631 (-2 (|:| |deg| (-758)) (|:| -2436 *5)))) (-4 *5 (-1217 *4)) (-4 *4 (-344)) (-5 *2 (-631 *5)) (-5 *1 (-212 *4 *5)))) (-2346 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-631 (-2 (|:| |deg| (-758)) (|:| -2436 *3)))) (-5 *1 (-212 *4 *3)) (-4 *3 (-1217 *4)))) (-3213 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-344)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2316 (-631 (-2 (|:| |irr| *3) (|:| -4218 (-554))))))) (-5 *1 (-212 *5 *3)) (-4 *3 (-1217 *5)))) (-4091 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-413 *3)) (-5 *1 (-212 *4 *3)) (-4 *3 (-1217 *4)))) (-2270 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-413 *3)) (-5 *1 (-212 *4 *3)) (-4 *3 (-1217 *4)))))
-(-10 -7 (-15 -2270 ((-413 |#2|) |#2|)) (-15 -4091 ((-413 |#2|) |#2|)) (-15 -3213 ((-2 (|:| |cont| |#1|) (|:| -2316 (-631 (-2 (|:| |irr| |#2|) (|:| -4218 (-554)))))) |#2| (-112))) (-15 -2346 ((-631 (-2 (|:| |deg| (-758)) (|:| -2436 |#2|))) |#2|)) (-15 -3539 ((-631 |#2|) (-631 (-2 (|:| |deg| (-758)) (|:| -2436 |#2|))))) (-15 -4028 (|#2| |#2| (-758) |#2|)) (-15 -1874 (|#2| |#2| (-758) |#2|)) (-15 -1360 (|#2| |#2| (-758) |#2|)) (-15 -1956 ((-112) |#2|)))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-3831 (((-554) $) NIL (|has| (-554) (-302)))) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (|has| (-554) (-894)))) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (|has| (-554) (-894)))) (-2286 (((-112) $ $) NIL)) (-4219 (((-554) $) NIL (|has| (-554) (-807)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) NIL) (((-3 (-1158) "failed") $) NIL (|has| (-554) (-1023 (-1158)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| (-554) (-1023 (-554)))) (((-3 (-554) "failed") $) NIL (|has| (-554) (-1023 (-554))))) (-1668 (((-554) $) NIL) (((-1158) $) NIL (|has| (-554) (-1023 (-1158)))) (((-402 (-554)) $) NIL (|has| (-554) (-1023 (-554)))) (((-554) $) NIL (|has| (-554) (-1023 (-554))))) (-3964 (($ $ $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| (-554) (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| (-554) (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL) (((-675 (-554)) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3353 (($) NIL (|has| (-554) (-539)))) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-2745 (((-112) $) NIL (|has| (-554) (-807)))) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (|has| (-554) (-871 (-554)))) (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (|has| (-554) (-871 (-374))))) (-3248 (((-112) $) NIL)) (-3472 (($ $) NIL)) (-2810 (((-554) $) NIL)) (-3339 (((-3 $ "failed") $) NIL (|has| (-554) (-1133)))) (-4304 (((-112) $) NIL (|has| (-554) (-807)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-4223 (($ $ $) NIL (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (|has| (-554) (-836)))) (-2879 (($ (-1 (-554) (-554)) $) NIL)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-3834 (($) NIL (|has| (-554) (-1133)) CONST)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3722 (($ $) NIL (|has| (-554) (-302))) (((-402 (-554)) $) NIL)) (-4339 (((-554) $) NIL (|has| (-554) (-539)))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (|has| (-554) (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (|has| (-554) (-894)))) (-2270 (((-413 $) $) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2386 (($ $ (-631 (-554)) (-631 (-554))) NIL (|has| (-554) (-304 (-554)))) (($ $ (-554) (-554)) NIL (|has| (-554) (-304 (-554)))) (($ $ (-289 (-554))) NIL (|has| (-554) (-304 (-554)))) (($ $ (-631 (-289 (-554)))) NIL (|has| (-554) (-304 (-554)))) (($ $ (-631 (-1158)) (-631 (-554))) NIL (|has| (-554) (-508 (-1158) (-554)))) (($ $ (-1158) (-554)) NIL (|has| (-554) (-508 (-1158) (-554))))) (-2072 (((-758) $) NIL)) (-2064 (($ $ (-554)) NIL (|has| (-554) (-281 (-554) (-554))))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-1553 (($ $) NIL (|has| (-554) (-229))) (($ $ (-758)) NIL (|has| (-554) (-229))) (($ $ (-1158)) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-1 (-554) (-554)) (-758)) NIL) (($ $ (-1 (-554) (-554))) NIL)) (-3623 (($ $) NIL)) (-2822 (((-554) $) NIL)) (-1953 (($ (-402 (-554))) 9)) (-2927 (((-877 (-554)) $) NIL (|has| (-554) (-602 (-877 (-554))))) (((-877 (-374)) $) NIL (|has| (-554) (-602 (-877 (-374))))) (((-530) $) NIL (|has| (-554) (-602 (-530)))) (((-374) $) NIL (|has| (-554) (-1007))) (((-221) $) NIL (|has| (-554) (-1007)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| (-554) (-894))))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL) (($ (-402 (-554))) 8) (($ (-554)) NIL) (($ (-1158)) NIL (|has| (-554) (-1023 (-1158)))) (((-402 (-554)) $) NIL) (((-989 10) $) 10)) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| (-554) (-894))) (|has| (-554) (-143))))) (-2261 (((-758)) NIL)) (-2755 (((-554) $) NIL (|has| (-554) (-539)))) (-1909 (((-112) $ $) NIL)) (-1700 (($ $) NIL (|has| (-554) (-807)))) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $) NIL (|has| (-554) (-229))) (($ $ (-758)) NIL (|has| (-554) (-229))) (($ $ (-1158)) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-1 (-554) (-554)) (-758)) NIL) (($ $ (-1 (-554) (-554))) NIL)) (-1708 (((-112) $ $) NIL (|has| (-554) (-836)))) (-1686 (((-112) $ $) NIL (|has| (-554) (-836)))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (|has| (-554) (-836)))) (-1676 (((-112) $ $) NIL (|has| (-554) (-836)))) (-1752 (($ $ $) NIL) (($ (-554) (-554)) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL) (($ (-554) $) NIL) (($ $ (-554)) NIL)))
-(((-213) (-13 (-977 (-554)) (-601 (-402 (-554))) (-601 (-989 10)) (-10 -8 (-15 -3722 ((-402 (-554)) $)) (-15 -1953 ($ (-402 (-554))))))) (T -213))
-((-3722 (*1 *2 *1) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-213)))) (-1953 (*1 *1 *2) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-213)))))
-(-13 (-977 (-554)) (-601 (-402 (-554))) (-601 (-989 10)) (-10 -8 (-15 -3722 ((-402 (-554)) $)) (-15 -1953 ($ (-402 (-554))))))
-((-3062 (((-112) $ $) NIL)) (-3885 (((-1100) $) 13)) (-1613 (((-1140) $) NIL)) (-4133 (((-477) $) 10)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 25) (($ (-1163)) NIL) (((-1163) $) NIL)) (-4319 (((-1117) $) 15)) (-1658 (((-112) $ $) NIL)))
-(((-214) (-13 (-1065) (-10 -8 (-15 -4133 ((-477) $)) (-15 -3885 ((-1100) $)) (-15 -4319 ((-1117) $))))) (T -214))
-((-4133 (*1 *2 *1) (-12 (-5 *2 (-477)) (-5 *1 (-214)))) (-3885 (*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-214)))) (-4319 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-214)))))
-(-13 (-1065) (-10 -8 (-15 -4133 ((-477) $)) (-15 -3885 ((-1100) $)) (-15 -4319 ((-1117) $))))
-((-2279 (((-3 (|:| |f1| (-829 |#2|)) (|:| |f2| (-631 (-829 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1074 (-829 |#2|)) (-1140)) 28) (((-3 (|:| |f1| (-829 |#2|)) (|:| |f2| (-631 (-829 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1074 (-829 |#2|))) 24)) (-1882 (((-3 (|:| |f1| (-829 |#2|)) (|:| |f2| (-631 (-829 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1158) (-829 |#2|) (-829 |#2|) (-112)) 17)))
-(((-215 |#1| |#2|) (-10 -7 (-15 -2279 ((-3 (|:| |f1| (-829 |#2|)) (|:| |f2| (-631 (-829 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1074 (-829 |#2|)))) (-15 -2279 ((-3 (|:| |f1| (-829 |#2|)) (|:| |f2| (-631 (-829 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1074 (-829 |#2|)) (-1140))) (-15 -1882 ((-3 (|:| |f1| (-829 |#2|)) (|:| |f2| (-631 (-829 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1158) (-829 |#2|) (-829 |#2|) (-112)))) (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554))) (-13 (-1180) (-944) (-29 |#1|))) (T -215))
-((-1882 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1158)) (-5 *6 (-112)) (-4 *7 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554)))) (-4 *3 (-13 (-1180) (-944) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-829 *3)) (|:| |f2| (-631 (-829 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-215 *7 *3)) (-5 *5 (-829 *3)))) (-2279 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1074 (-829 *3))) (-5 *5 (-1140)) (-4 *3 (-13 (-1180) (-944) (-29 *6))) (-4 *6 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-3 (|:| |f1| (-829 *3)) (|:| |f2| (-631 (-829 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-215 *6 *3)))) (-2279 (*1 *2 *3 *4) (-12 (-5 *4 (-1074 (-829 *3))) (-4 *3 (-13 (-1180) (-944) (-29 *5))) (-4 *5 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-3 (|:| |f1| (-829 *3)) (|:| |f2| (-631 (-829 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-215 *5 *3)))))
-(-10 -7 (-15 -2279 ((-3 (|:| |f1| (-829 |#2|)) (|:| |f2| (-631 (-829 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1074 (-829 |#2|)))) (-15 -2279 ((-3 (|:| |f1| (-829 |#2|)) (|:| |f2| (-631 (-829 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1074 (-829 |#2|)) (-1140))) (-15 -1882 ((-3 (|:| |f1| (-829 |#2|)) (|:| |f2| (-631 (-829 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1158) (-829 |#2|) (-829 |#2|) (-112))))
-((-2279 (((-3 (|:| |f1| (-829 (-311 |#1|))) (|:| |f2| (-631 (-829 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-937 |#1|)) (-1074 (-829 (-402 (-937 |#1|)))) (-1140)) 46) (((-3 (|:| |f1| (-829 (-311 |#1|))) (|:| |f2| (-631 (-829 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-937 |#1|)) (-1074 (-829 (-402 (-937 |#1|))))) 43) (((-3 (|:| |f1| (-829 (-311 |#1|))) (|:| |f2| (-631 (-829 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-937 |#1|)) (-1074 (-829 (-311 |#1|))) (-1140)) 47) (((-3 (|:| |f1| (-829 (-311 |#1|))) (|:| |f2| (-631 (-829 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-937 |#1|)) (-1074 (-829 (-311 |#1|)))) 20)))
-(((-216 |#1|) (-10 -7 (-15 -2279 ((-3 (|:| |f1| (-829 (-311 |#1|))) (|:| |f2| (-631 (-829 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-937 |#1|)) (-1074 (-829 (-311 |#1|))))) (-15 -2279 ((-3 (|:| |f1| (-829 (-311 |#1|))) (|:| |f2| (-631 (-829 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-937 |#1|)) (-1074 (-829 (-311 |#1|))) (-1140))) (-15 -2279 ((-3 (|:| |f1| (-829 (-311 |#1|))) (|:| |f2| (-631 (-829 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-937 |#1|)) (-1074 (-829 (-402 (-937 |#1|)))))) (-15 -2279 ((-3 (|:| |f1| (-829 (-311 |#1|))) (|:| |f2| (-631 (-829 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-937 |#1|)) (-1074 (-829 (-402 (-937 |#1|)))) (-1140)))) (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554)))) (T -216))
-((-2279 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1074 (-829 (-402 (-937 *6))))) (-5 *5 (-1140)) (-5 *3 (-402 (-937 *6))) (-4 *6 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-3 (|:| |f1| (-829 (-311 *6))) (|:| |f2| (-631 (-829 (-311 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-216 *6)))) (-2279 (*1 *2 *3 *4) (-12 (-5 *4 (-1074 (-829 (-402 (-937 *5))))) (-5 *3 (-402 (-937 *5))) (-4 *5 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-3 (|:| |f1| (-829 (-311 *5))) (|:| |f2| (-631 (-829 (-311 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-216 *5)))) (-2279 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-402 (-937 *6))) (-5 *4 (-1074 (-829 (-311 *6)))) (-5 *5 (-1140)) (-4 *6 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-3 (|:| |f1| (-829 (-311 *6))) (|:| |f2| (-631 (-829 (-311 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-216 *6)))) (-2279 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-937 *5))) (-5 *4 (-1074 (-829 (-311 *5)))) (-4 *5 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-3 (|:| |f1| (-829 (-311 *5))) (|:| |f2| (-631 (-829 (-311 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-216 *5)))))
-(-10 -7 (-15 -2279 ((-3 (|:| |f1| (-829 (-311 |#1|))) (|:| |f2| (-631 (-829 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-937 |#1|)) (-1074 (-829 (-311 |#1|))))) (-15 -2279 ((-3 (|:| |f1| (-829 (-311 |#1|))) (|:| |f2| (-631 (-829 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-937 |#1|)) (-1074 (-829 (-311 |#1|))) (-1140))) (-15 -2279 ((-3 (|:| |f1| (-829 (-311 |#1|))) (|:| |f2| (-631 (-829 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-937 |#1|)) (-1074 (-829 (-402 (-937 |#1|)))))) (-15 -2279 ((-3 (|:| |f1| (-829 (-311 |#1|))) (|:| |f2| (-631 (-829 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-937 |#1|)) (-1074 (-829 (-402 (-937 |#1|)))) (-1140))))
-((-3676 (((-2 (|:| -2598 (-1154 |#1|)) (|:| |deg| (-906))) (-1154 |#1|)) 21)) (-1845 (((-631 (-311 |#2|)) (-311 |#2|) (-906)) 42)))
-(((-217 |#1| |#2|) (-10 -7 (-15 -3676 ((-2 (|:| -2598 (-1154 |#1|)) (|:| |deg| (-906))) (-1154 |#1|))) (-15 -1845 ((-631 (-311 |#2|)) (-311 |#2|) (-906)))) (-1034) (-13 (-546) (-836))) (T -217))
-((-1845 (*1 *2 *3 *4) (-12 (-5 *4 (-906)) (-4 *6 (-13 (-546) (-836))) (-5 *2 (-631 (-311 *6))) (-5 *1 (-217 *5 *6)) (-5 *3 (-311 *6)) (-4 *5 (-1034)))) (-3676 (*1 *2 *3) (-12 (-4 *4 (-1034)) (-5 *2 (-2 (|:| -2598 (-1154 *4)) (|:| |deg| (-906)))) (-5 *1 (-217 *4 *5)) (-5 *3 (-1154 *4)) (-4 *5 (-13 (-546) (-836))))))
-(-10 -7 (-15 -3676 ((-2 (|:| -2598 (-1154 |#1|)) (|:| |deg| (-906))) (-1154 |#1|))) (-15 -1845 ((-631 (-311 |#2|)) (-311 |#2|) (-906))))
-((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-3285 ((|#1| $) NIL)) (-2292 ((|#1| $) 25)) (-3019 (((-112) $ (-758)) NIL)) (-4087 (($) NIL T CONST)) (-4289 (($ $) NIL)) (-3920 (($ $) 31)) (-1790 ((|#1| |#1| $) NIL)) (-3956 ((|#1| $) NIL)) (-2466 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) NIL)) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2849 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-2577 (((-758) $) NIL)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-4150 ((|#1| $) NIL)) (-1692 ((|#1| |#1| $) 28)) (-1335 ((|#1| |#1| $) 30)) (-2045 (($ |#1| $) NIL)) (-3323 (((-758) $) 27)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-2312 ((|#1| $) NIL)) (-3084 ((|#1| $) 26)) (-3161 ((|#1| $) 24)) (-2152 ((|#1| $) NIL)) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-2515 ((|#1| |#1| $) NIL)) (-3543 (((-112) $) 9)) (-4240 (($) NIL)) (-3817 ((|#1| $) NIL)) (-1684 (($) NIL) (($ (-631 |#1|)) 16)) (-2763 (((-758) $) NIL)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1521 (($ $) NIL)) (-3075 (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-3232 ((|#1| $) 13)) (-1591 (($ (-631 |#1|)) NIL)) (-1325 ((|#1| $) NIL)) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-218 |#1|) (-13 (-249 |#1|) (-10 -8 (-15 -1684 ($ (-631 |#1|))))) (-1082)) (T -218))
-((-1684 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-5 *1 (-218 *3)))))
-(-13 (-249 |#1|) (-10 -8 (-15 -1684 ($ (-631 |#1|)))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-4102 (($ (-311 |#1|)) 23)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-3051 (((-112) $) NIL)) (-2784 (((-3 (-311 |#1|) "failed") $) NIL)) (-1668 (((-311 |#1|) $) NIL)) (-2550 (($ $) 31)) (-1320 (((-3 $ "failed") $) NIL)) (-3248 (((-112) $) NIL)) (-2879 (($ (-1 (-311 |#1|) (-311 |#1|)) $) NIL)) (-2530 (((-311 |#1|) $) NIL)) (-1500 (($ $) 30)) (-1613 (((-1140) $) NIL)) (-2177 (((-112) $) NIL)) (-2768 (((-1102) $) NIL)) (-4137 (($ (-758)) NIL)) (-3190 (($ $) 32)) (-3308 (((-554) $) NIL)) (-3075 (((-848) $) 57) (($ (-554)) NIL) (($ (-311 |#1|)) NIL)) (-1779 (((-311 |#1|) $ $) NIL)) (-2261 (((-758)) NIL)) (-2004 (($) 25 T CONST)) (-2014 (($) 50 T CONST)) (-1658 (((-112) $ $) 28)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) 19)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 24) (($ (-311 |#1|) $) 18)))
-(((-219 |#1| |#2|) (-13 (-608 (-311 |#1|)) (-1023 (-311 |#1|)) (-10 -8 (-15 -2530 ((-311 |#1|) $)) (-15 -1500 ($ $)) (-15 -2550 ($ $)) (-15 -1779 ((-311 |#1|) $ $)) (-15 -4137 ($ (-758))) (-15 -2177 ((-112) $)) (-15 -3051 ((-112) $)) (-15 -3308 ((-554) $)) (-15 -2879 ($ (-1 (-311 |#1|) (-311 |#1|)) $)) (-15 -4102 ($ (-311 |#1|))) (-15 -3190 ($ $)))) (-13 (-1034) (-836)) (-631 (-1158))) (T -219))
-((-2530 (*1 *2 *1) (-12 (-5 *2 (-311 *3)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1034) (-836))) (-14 *4 (-631 (-1158))))) (-1500 (*1 *1 *1) (-12 (-5 *1 (-219 *2 *3)) (-4 *2 (-13 (-1034) (-836))) (-14 *3 (-631 (-1158))))) (-2550 (*1 *1 *1) (-12 (-5 *1 (-219 *2 *3)) (-4 *2 (-13 (-1034) (-836))) (-14 *3 (-631 (-1158))))) (-1779 (*1 *2 *1 *1) (-12 (-5 *2 (-311 *3)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1034) (-836))) (-14 *4 (-631 (-1158))))) (-4137 (*1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1034) (-836))) (-14 *4 (-631 (-1158))))) (-2177 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1034) (-836))) (-14 *4 (-631 (-1158))))) (-3051 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1034) (-836))) (-14 *4 (-631 (-1158))))) (-3308 (*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1034) (-836))) (-14 *4 (-631 (-1158))))) (-2879 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-311 *3) (-311 *3))) (-4 *3 (-13 (-1034) (-836))) (-5 *1 (-219 *3 *4)) (-14 *4 (-631 (-1158))))) (-4102 (*1 *1 *2) (-12 (-5 *2 (-311 *3)) (-4 *3 (-13 (-1034) (-836))) (-5 *1 (-219 *3 *4)) (-14 *4 (-631 (-1158))))) (-3190 (*1 *1 *1) (-12 (-5 *1 (-219 *2 *3)) (-4 *2 (-13 (-1034) (-836))) (-14 *3 (-631 (-1158))))))
-(-13 (-608 (-311 |#1|)) (-1023 (-311 |#1|)) (-10 -8 (-15 -2530 ((-311 |#1|) $)) (-15 -1500 ($ $)) (-15 -2550 ($ $)) (-15 -1779 ((-311 |#1|) $ $)) (-15 -4137 ($ (-758))) (-15 -2177 ((-112) $)) (-15 -3051 ((-112) $)) (-15 -3308 ((-554) $)) (-15 -2879 ($ (-1 (-311 |#1|) (-311 |#1|)) $)) (-15 -4102 ($ (-311 |#1|))) (-15 -3190 ($ $))))
-((-2728 (((-112) (-1140)) 22)) (-3442 (((-3 (-829 |#2|) "failed") (-600 |#2|) |#2| (-829 |#2|) (-829 |#2|) (-112)) 32)) (-3727 (((-3 (-112) "failed") (-1154 |#2|) (-829 |#2|) (-829 |#2|) (-112)) 73) (((-3 (-112) "failed") (-937 |#1|) (-1158) (-829 |#2|) (-829 |#2|) (-112)) 74)))
-(((-220 |#1| |#2|) (-10 -7 (-15 -2728 ((-112) (-1140))) (-15 -3442 ((-3 (-829 |#2|) "failed") (-600 |#2|) |#2| (-829 |#2|) (-829 |#2|) (-112))) (-15 -3727 ((-3 (-112) "failed") (-937 |#1|) (-1158) (-829 |#2|) (-829 |#2|) (-112))) (-15 -3727 ((-3 (-112) "failed") (-1154 |#2|) (-829 |#2|) (-829 |#2|) (-112)))) (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))) (-13 (-1180) (-29 |#1|))) (T -220))
-((-3727 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1154 *6)) (-5 *4 (-829 *6)) (-4 *6 (-13 (-1180) (-29 *5))) (-4 *5 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-220 *5 *6)))) (-3727 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-937 *6)) (-5 *4 (-1158)) (-5 *5 (-829 *7)) (-4 *6 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-4 *7 (-13 (-1180) (-29 *6))) (-5 *1 (-220 *6 *7)))) (-3442 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-829 *4)) (-5 *3 (-600 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1180) (-29 *6))) (-4 *6 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-220 *6 *4)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-112)) (-5 *1 (-220 *4 *5)) (-4 *5 (-13 (-1180) (-29 *4))))))
-(-10 -7 (-15 -2728 ((-112) (-1140))) (-15 -3442 ((-3 (-829 |#2|) "failed") (-600 |#2|) |#2| (-829 |#2|) (-829 |#2|) (-112))) (-15 -3727 ((-3 (-112) "failed") (-937 |#1|) (-1158) (-829 |#2|) (-829 |#2|) (-112))) (-15 -3727 ((-3 (-112) "failed") (-1154 |#2|) (-829 |#2|) (-829 |#2|) (-112))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 87)) (-3831 (((-554) $) 98)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-1557 (($ $) NIL)) (-3023 (($ $) 75)) (-4200 (($ $) 63)) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2282 (($ $) 54)) (-2286 (((-112) $ $) NIL)) (-3003 (($ $) 73)) (-4177 (($ $) 61)) (-4219 (((-554) $) 115)) (-3046 (($ $) 78)) (-2916 (($ $) 65)) (-4087 (($) NIL T CONST)) (-2087 (($ $) NIL)) (-2784 (((-3 (-554) "failed") $) 114) (((-3 (-402 (-554)) "failed") $) 111)) (-1668 (((-554) $) 112) (((-402 (-554)) $) 109)) (-3964 (($ $ $) NIL)) (-1320 (((-3 $ "failed") $) 91)) (-1824 (((-402 (-554)) $ (-758)) 107) (((-402 (-554)) $ (-758) (-758)) 106)) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-2276 (((-906)) 27) (((-906) (-906)) NIL (|has| $ (-6 -4364)))) (-2745 (((-112) $) NIL)) (-2844 (($) 37)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL)) (-2342 (((-554) $) 33)) (-3248 (((-112) $) NIL)) (-3734 (($ $ (-554)) NIL)) (-3274 (($ $) NIL)) (-4304 (((-112) $) 86)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-4223 (($ $ $) 51) (($) 32 (-12 (-4081 (|has| $ (-6 -4356))) (-4081 (|has| $ (-6 -4364)))))) (-2706 (($ $ $) 50) (($) 31 (-12 (-4081 (|has| $ (-6 -4356))) (-4081 (|has| $ (-6 -4364)))))) (-1837 (((-554) $) 25)) (-3187 (($ $) 28)) (-4062 (($ $) 55)) (-2395 (($ $) 60)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-3845 (((-906) (-554)) NIL (|has| $ (-6 -4364)))) (-2768 (((-1102) $) 89)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3722 (($ $) NIL)) (-4339 (($ $) NIL)) (-3302 (($ (-554) (-554)) NIL) (($ (-554) (-554) (-906)) 99)) (-2270 (((-413 $) $) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-1407 (((-554) $) 26)) (-2311 (($) 36)) (-1333 (($ $) 59)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-1378 (((-906)) NIL) (((-906) (-906)) NIL (|has| $ (-6 -4364)))) (-1553 (($ $ (-758)) NIL) (($ $) 92)) (-4353 (((-906) (-554)) NIL (|has| $ (-6 -4364)))) (-3057 (($ $) 76)) (-2926 (($ $) 66)) (-3034 (($ $) 77)) (-4213 (($ $) 64)) (-3014 (($ $) 74)) (-4188 (($ $) 62)) (-2927 (((-374) $) 103) (((-221) $) 100) (((-877 (-374)) $) NIL) (((-530) $) 43)) (-3075 (((-848) $) 40) (($ (-554)) 58) (($ $) NIL) (($ (-402 (-554))) NIL) (($ (-554)) 58) (($ (-402 (-554))) NIL)) (-2261 (((-758)) NIL)) (-2755 (($ $) NIL)) (-3219 (((-906)) 30) (((-906) (-906)) NIL (|has| $ (-6 -4364)))) (-3462 (((-906)) 23)) (-3096 (($ $) 81)) (-2959 (($ $) 69) (($ $ $) 108)) (-1909 (((-112) $ $) NIL)) (-3069 (($ $) 79)) (-2938 (($ $) 67)) (-3120 (($ $) 84)) (-2981 (($ $) 72)) (-2908 (($ $) 82)) (-2991 (($ $) 70)) (-3108 (($ $) 83)) (-2969 (($ $) 71)) (-3083 (($ $) 80)) (-2948 (($ $) 68)) (-1700 (($ $) 116)) (-2004 (($) 34 T CONST)) (-2014 (($) 35 T CONST)) (-4048 (((-1140) $) 17) (((-1140) $ (-112)) 19) (((-1246) (-809) $) 20) (((-1246) (-809) $ (-112)) 21)) (-3628 (($ $) 95)) (-1787 (($ $ (-758)) NIL) (($ $) NIL)) (-4280 (($ $ $) 97)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 52)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 44)) (-1752 (($ $ $) 85) (($ $ (-554)) 53)) (-1744 (($ $) 45) (($ $ $) 47)) (-1735 (($ $ $) 46)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) 56) (($ $ (-402 (-554))) 127) (($ $ $) 57)) (* (($ (-906) $) 29) (($ (-758) $) NIL) (($ (-554) $) 49) (($ $ $) 48) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL)))
-(((-221) (-13 (-399) (-229) (-815) (-1180) (-602 (-530)) (-10 -8 (-15 -1752 ($ $ (-554))) (-15 ** ($ $ $)) (-15 -2311 ($)) (-15 -3187 ($ $)) (-15 -4062 ($ $)) (-15 -2959 ($ $ $)) (-15 -3628 ($ $)) (-15 -4280 ($ $ $)) (-15 -1824 ((-402 (-554)) $ (-758))) (-15 -1824 ((-402 (-554)) $ (-758) (-758)))))) (T -221))
-((** (*1 *1 *1 *1) (-5 *1 (-221))) (-1752 (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-221)))) (-2311 (*1 *1) (-5 *1 (-221))) (-3187 (*1 *1 *1) (-5 *1 (-221))) (-4062 (*1 *1 *1) (-5 *1 (-221))) (-2959 (*1 *1 *1 *1) (-5 *1 (-221))) (-3628 (*1 *1 *1) (-5 *1 (-221))) (-4280 (*1 *1 *1 *1) (-5 *1 (-221))) (-1824 (*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-5 *2 (-402 (-554))) (-5 *1 (-221)))) (-1824 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-758)) (-5 *2 (-402 (-554))) (-5 *1 (-221)))))
-(-13 (-399) (-229) (-815) (-1180) (-602 (-530)) (-10 -8 (-15 -1752 ($ $ (-554))) (-15 ** ($ $ $)) (-15 -2311 ($)) (-15 -3187 ($ $)) (-15 -4062 ($ $)) (-15 -2959 ($ $ $)) (-15 -3628 ($ $)) (-15 -4280 ($ $ $)) (-15 -1824 ((-402 (-554)) $ (-758))) (-15 -1824 ((-402 (-554)) $ (-758) (-758)))))
-((-1738 (((-167 (-221)) (-758) (-167 (-221))) 11) (((-221) (-758) (-221)) 12)) (-3024 (((-167 (-221)) (-167 (-221))) 13) (((-221) (-221)) 14)) (-2464 (((-167 (-221)) (-167 (-221)) (-167 (-221))) 19) (((-221) (-221) (-221)) 22)) (-2696 (((-167 (-221)) (-167 (-221))) 25) (((-221) (-221)) 24)) (-1943 (((-167 (-221)) (-167 (-221)) (-167 (-221))) 43) (((-221) (-221) (-221)) 35)) (-1952 (((-167 (-221)) (-167 (-221)) (-167 (-221))) 48) (((-221) (-221) (-221)) 45)) (-3586 (((-167 (-221)) (-167 (-221)) (-167 (-221))) 15) (((-221) (-221) (-221)) 16)) (-3746 (((-167 (-221)) (-167 (-221)) (-167 (-221))) 17) (((-221) (-221) (-221)) 18)) (-2973 (((-167 (-221)) (-167 (-221))) 60) (((-221) (-221)) 59)) (-1959 (((-221) (-221)) 54) (((-167 (-221)) (-167 (-221))) 58)) (-3628 (((-167 (-221)) (-167 (-221))) 8) (((-221) (-221)) 9)) (-4280 (((-167 (-221)) (-167 (-221)) (-167 (-221))) 30) (((-221) (-221) (-221)) 26)))
-(((-222) (-10 -7 (-15 -3628 ((-221) (-221))) (-15 -3628 ((-167 (-221)) (-167 (-221)))) (-15 -4280 ((-221) (-221) (-221))) (-15 -4280 ((-167 (-221)) (-167 (-221)) (-167 (-221)))) (-15 -3024 ((-221) (-221))) (-15 -3024 ((-167 (-221)) (-167 (-221)))) (-15 -2696 ((-221) (-221))) (-15 -2696 ((-167 (-221)) (-167 (-221)))) (-15 -1738 ((-221) (-758) (-221))) (-15 -1738 ((-167 (-221)) (-758) (-167 (-221)))) (-15 -3586 ((-221) (-221) (-221))) (-15 -3586 ((-167 (-221)) (-167 (-221)) (-167 (-221)))) (-15 -1943 ((-221) (-221) (-221))) (-15 -1943 ((-167 (-221)) (-167 (-221)) (-167 (-221)))) (-15 -3746 ((-221) (-221) (-221))) (-15 -3746 ((-167 (-221)) (-167 (-221)) (-167 (-221)))) (-15 -1952 ((-221) (-221) (-221))) (-15 -1952 ((-167 (-221)) (-167 (-221)) (-167 (-221)))) (-15 -1959 ((-167 (-221)) (-167 (-221)))) (-15 -1959 ((-221) (-221))) (-15 -2973 ((-221) (-221))) (-15 -2973 ((-167 (-221)) (-167 (-221)))) (-15 -2464 ((-221) (-221) (-221))) (-15 -2464 ((-167 (-221)) (-167 (-221)) (-167 (-221)))))) (T -222))
-((-2464 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) (-2464 (*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-2973 (*1 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) (-2973 (*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-1959 (*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-1959 (*1 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) (-1952 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) (-1952 (*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-3746 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) (-3746 (*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-1943 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) (-1943 (*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-3586 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) (-3586 (*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-1738 (*1 *2 *3 *2) (-12 (-5 *2 (-167 (-221))) (-5 *3 (-758)) (-5 *1 (-222)))) (-1738 (*1 *2 *3 *2) (-12 (-5 *2 (-221)) (-5 *3 (-758)) (-5 *1 (-222)))) (-2696 (*1 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) (-2696 (*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-3024 (*1 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) (-3024 (*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-4280 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) (-4280 (*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-3628 (*1 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) (-3628 (*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))))
-(-10 -7 (-15 -3628 ((-221) (-221))) (-15 -3628 ((-167 (-221)) (-167 (-221)))) (-15 -4280 ((-221) (-221) (-221))) (-15 -4280 ((-167 (-221)) (-167 (-221)) (-167 (-221)))) (-15 -3024 ((-221) (-221))) (-15 -3024 ((-167 (-221)) (-167 (-221)))) (-15 -2696 ((-221) (-221))) (-15 -2696 ((-167 (-221)) (-167 (-221)))) (-15 -1738 ((-221) (-758) (-221))) (-15 -1738 ((-167 (-221)) (-758) (-167 (-221)))) (-15 -3586 ((-221) (-221) (-221))) (-15 -3586 ((-167 (-221)) (-167 (-221)) (-167 (-221)))) (-15 -1943 ((-221) (-221) (-221))) (-15 -1943 ((-167 (-221)) (-167 (-221)) (-167 (-221)))) (-15 -3746 ((-221) (-221) (-221))) (-15 -3746 ((-167 (-221)) (-167 (-221)) (-167 (-221)))) (-15 -1952 ((-221) (-221) (-221))) (-15 -1952 ((-167 (-221)) (-167 (-221)) (-167 (-221)))) (-15 -1959 ((-167 (-221)) (-167 (-221)))) (-15 -1959 ((-221) (-221))) (-15 -2973 ((-221) (-221))) (-15 -2973 ((-167 (-221)) (-167 (-221)))) (-15 -2464 ((-221) (-221) (-221))) (-15 -2464 ((-167 (-221)) (-167 (-221)) (-167 (-221)))))
-((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2275 (($ (-758) (-758)) NIL)) (-1846 (($ $ $) NIL)) (-2757 (($ (-1241 |#1|)) NIL) (($ $) NIL)) (-2183 (($ |#1| |#1| |#1|) 32)) (-1350 (((-112) $) NIL)) (-2416 (($ $ (-554) (-554)) NIL)) (-3705 (($ $ (-554) (-554)) NIL)) (-1458 (($ $ (-554) (-554) (-554) (-554)) NIL)) (-3657 (($ $) NIL)) (-3795 (((-112) $) NIL)) (-3019 (((-112) $ (-758)) NIL)) (-4345 (($ $ (-554) (-554) $) NIL)) (-1501 ((|#1| $ (-554) (-554) |#1|) NIL) (($ $ (-631 (-554)) (-631 (-554)) $) NIL)) (-2557 (($ $ (-554) (-1241 |#1|)) NIL)) (-1464 (($ $ (-554) (-1241 |#1|)) NIL)) (-1585 (($ |#1| |#1| |#1|) 31)) (-1475 (($ (-758) |#1|) NIL)) (-4087 (($) NIL T CONST)) (-2775 (($ $) NIL (|has| |#1| (-302)))) (-3519 (((-1241 |#1|) $ (-554)) NIL)) (-1656 (($ |#1|) 30)) (-2078 (($ |#1|) 29)) (-3457 (($ |#1|) 28)) (-4186 (((-758) $) NIL (|has| |#1| (-546)))) (-2862 ((|#1| $ (-554) (-554) |#1|) NIL)) (-2796 ((|#1| $ (-554) (-554)) NIL)) (-2466 (((-631 |#1|) $) NIL)) (-4332 (((-758) $) NIL (|has| |#1| (-546)))) (-2412 (((-631 (-1241 |#1|)) $) NIL (|has| |#1| (-546)))) (-4130 (((-758) $) NIL)) (-3180 (($ (-758) (-758) |#1|) NIL)) (-4143 (((-758) $) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-2326 ((|#1| $) NIL (|has| |#1| (-6 (-4375 "*"))))) (-3985 (((-554) $) NIL)) (-1817 (((-554) $) NIL)) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2787 (((-554) $) NIL)) (-4249 (((-554) $) NIL)) (-1899 (($ (-631 (-631 |#1|))) 11)) (-2849 (($ (-1 |#1| |#1|) $) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1679 (((-631 (-631 |#1|)) $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-2843 (((-3 $ "failed") $) NIL (|has| |#1| (-358)))) (-2554 (($) 12)) (-4041 (($ $ $) NIL)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-2441 (($ $ |#1|) NIL)) (-3919 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-546)))) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#1| $ (-554) (-554)) NIL) ((|#1| $ (-554) (-554) |#1|) NIL) (($ $ (-631 (-554)) (-631 (-554))) NIL)) (-3198 (($ (-631 |#1|)) NIL) (($ (-631 $)) NIL)) (-2361 (((-112) $) NIL)) (-2870 ((|#1| $) NIL (|has| |#1| (-6 (-4375 "*"))))) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1521 (($ $) NIL)) (-3259 (((-1241 |#1|) $ (-554)) NIL)) (-3075 (($ (-1241 |#1|)) NIL) (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-4299 (((-112) $) NIL)) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-1744 (($ $ $) NIL) (($ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-758)) NIL) (($ $ (-554)) NIL (|has| |#1| (-358)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-554) $) NIL) (((-1241 |#1|) $ (-1241 |#1|)) 15) (((-1241 |#1|) (-1241 |#1|) $) NIL) (((-928 |#1|) $ (-928 |#1|)) 20)) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-223 |#1|) (-13 (-673 |#1| (-1241 |#1|) (-1241 |#1|)) (-10 -8 (-15 * ((-928 |#1|) $ (-928 |#1|))) (-15 -2554 ($)) (-15 -3457 ($ |#1|)) (-15 -2078 ($ |#1|)) (-15 -1656 ($ |#1|)) (-15 -1585 ($ |#1| |#1| |#1|)) (-15 -2183 ($ |#1| |#1| |#1|)))) (-13 (-358) (-1180))) (T -223))
-((* (*1 *2 *1 *2) (-12 (-5 *2 (-928 *3)) (-4 *3 (-13 (-358) (-1180))) (-5 *1 (-223 *3)))) (-2554 (*1 *1) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1180))))) (-3457 (*1 *1 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1180))))) (-2078 (*1 *1 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1180))))) (-1656 (*1 *1 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1180))))) (-1585 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1180))))) (-2183 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1180))))))
-(-13 (-673 |#1| (-1241 |#1|) (-1241 |#1|)) (-10 -8 (-15 * ((-928 |#1|) $ (-928 |#1|))) (-15 -2554 ($)) (-15 -3457 ($ |#1|)) (-15 -2078 ($ |#1|)) (-15 -1656 ($ |#1|)) (-15 -1585 ($ |#1| |#1| |#1|)) (-15 -2183 ($ |#1| |#1| |#1|))))
-((-2220 (($ (-1 (-112) |#2|) $) 16)) (-1884 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 25)) (-4310 (($) NIL) (($ (-631 |#2|)) 11)) (-1658 (((-112) $ $) 23)))
-(((-224 |#1| |#2|) (-10 -8 (-15 -2220 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1884 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1884 (|#1| |#2| |#1|)) (-15 -4310 (|#1| (-631 |#2|))) (-15 -4310 (|#1|)) (-15 -1658 ((-112) |#1| |#1|))) (-225 |#2|) (-1082)) (T -224))
-NIL
-(-10 -8 (-15 -2220 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1884 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1884 (|#1| |#2| |#1|)) (-15 -4310 (|#1| (-631 |#2|))) (-15 -4310 (|#1|)) (-15 -1658 ((-112) |#1| |#1|)))
-((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-3019 (((-112) $ (-758)) 8)) (-2220 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4373)))) (-4087 (($) 7 T CONST)) (-1571 (($ $) 58 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1884 (($ |#1| $) 47 (|has| $ (-6 -4373))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4373)))) (-2574 (($ |#1| $) 57 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4373)))) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) 9)) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35)) (-3731 (((-112) $ (-758)) 10)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-4150 ((|#1| $) 39)) (-2045 (($ |#1| $) 40)) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2152 ((|#1| $) 41)) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-4310 (($) 49) (($ (-631 |#1|)) 48)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-2927 (((-530) $) 59 (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) 50)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-1591 (($ (-631 |#1|)) 42)) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373)))))
-(((-225 |#1|) (-138) (-1082)) (T -225))
-NIL
-(-13 (-231 |t#1|))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1082)) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-601 (-848)))) ((-149 |#1|) . T) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-231 |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-1082) |has| |#1| (-1082)) ((-1195) . T))
-((-1553 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-758)) 11) (($ $ (-631 (-1158)) (-631 (-758))) NIL) (($ $ (-1158) (-758)) NIL) (($ $ (-631 (-1158))) NIL) (($ $ (-1158)) 19) (($ $ (-758)) NIL) (($ $) 16)) (-1787 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-758)) 14) (($ $ (-631 (-1158)) (-631 (-758))) NIL) (($ $ (-1158) (-758)) NIL) (($ $ (-631 (-1158))) NIL) (($ $ (-1158)) NIL) (($ $ (-758)) NIL) (($ $) NIL)))
-(((-226 |#1| |#2|) (-10 -8 (-15 -1553 (|#1| |#1|)) (-15 -1787 (|#1| |#1|)) (-15 -1553 (|#1| |#1| (-758))) (-15 -1787 (|#1| |#1| (-758))) (-15 -1553 (|#1| |#1| (-1158))) (-15 -1553 (|#1| |#1| (-631 (-1158)))) (-15 -1553 (|#1| |#1| (-1158) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 -1787 (|#1| |#1| (-1158))) (-15 -1787 (|#1| |#1| (-631 (-1158)))) (-15 -1787 (|#1| |#1| (-1158) (-758))) (-15 -1787 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 -1787 (|#1| |#1| (-1 |#2| |#2|) (-758))) (-15 -1787 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|) (-758))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|)))) (-227 |#2|) (-1034)) (T -226))
-NIL
-(-10 -8 (-15 -1553 (|#1| |#1|)) (-15 -1787 (|#1| |#1|)) (-15 -1553 (|#1| |#1| (-758))) (-15 -1787 (|#1| |#1| (-758))) (-15 -1553 (|#1| |#1| (-1158))) (-15 -1553 (|#1| |#1| (-631 (-1158)))) (-15 -1553 (|#1| |#1| (-1158) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 -1787 (|#1| |#1| (-1158))) (-15 -1787 (|#1| |#1| (-631 (-1158)))) (-15 -1787 (|#1| |#1| (-1158) (-758))) (-15 -1787 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 -1787 (|#1| |#1| (-1 |#2| |#2|) (-758))) (-15 -1787 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|) (-758))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|))))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1320 (((-3 $ "failed") $) 33)) (-3248 (((-112) $) 31)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-1553 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-758)) 51) (($ $ (-631 (-1158)) (-631 (-758))) 44 (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) 43 (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) 42 (|has| |#1| (-885 (-1158)))) (($ $ (-1158)) 41 (|has| |#1| (-885 (-1158)))) (($ $ (-758)) 39 (|has| |#1| (-229))) (($ $) 37 (|has| |#1| (-229)))) (-3075 (((-848) $) 11) (($ (-554)) 29)) (-2261 (((-758)) 28)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-758)) 49) (($ $ (-631 (-1158)) (-631 (-758))) 48 (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) 47 (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) 46 (|has| |#1| (-885 (-1158)))) (($ $ (-1158)) 45 (|has| |#1| (-885 (-1158)))) (($ $ (-758)) 40 (|has| |#1| (-229))) (($ $) 38 (|has| |#1| (-229)))) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24)))
-(((-227 |#1|) (-138) (-1034)) (T -227))
-((-1553 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-227 *3)) (-4 *3 (-1034)))) (-1553 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-758)) (-4 *1 (-227 *4)) (-4 *4 (-1034)))) (-1787 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-227 *3)) (-4 *3 (-1034)))) (-1787 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-758)) (-4 *1 (-227 *4)) (-4 *4 (-1034)))))
-(-13 (-1034) (-10 -8 (-15 -1553 ($ $ (-1 |t#1| |t#1|))) (-15 -1553 ($ $ (-1 |t#1| |t#1|) (-758))) (-15 -1787 ($ $ (-1 |t#1| |t#1|))) (-15 -1787 ($ $ (-1 |t#1| |t#1|) (-758))) (IF (|has| |t#1| (-229)) (-6 (-229)) |%noBranch|) (IF (|has| |t#1| (-885 (-1158))) (-6 (-885 (-1158))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-604 (-554)) . T) ((-601 (-848)) . T) ((-229) |has| |#1| (-229)) ((-634 $) . T) ((-713) . T) ((-885 (-1158)) |has| |#1| (-885 (-1158))) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T))
-((-1553 (($ $) NIL) (($ $ (-758)) 10)) (-1787 (($ $) 8) (($ $ (-758)) 12)))
-(((-228 |#1|) (-10 -8 (-15 -1787 (|#1| |#1| (-758))) (-15 -1553 (|#1| |#1| (-758))) (-15 -1787 (|#1| |#1|)) (-15 -1553 (|#1| |#1|))) (-229)) (T -228))
-NIL
-(-10 -8 (-15 -1787 (|#1| |#1| (-758))) (-15 -1553 (|#1| |#1| (-758))) (-15 -1787 (|#1| |#1|)) (-15 -1553 (|#1| |#1|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1320 (((-3 $ "failed") $) 33)) (-3248 (((-112) $) 31)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-1553 (($ $) 38) (($ $ (-758)) 36)) (-3075 (((-848) $) 11) (($ (-554)) 29)) (-2261 (((-758)) 28)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($ $) 37) (($ $ (-758)) 35)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24)))
-(((-229) (-138)) (T -229))
-((-1553 (*1 *1 *1) (-4 *1 (-229))) (-1787 (*1 *1 *1) (-4 *1 (-229))) (-1553 (*1 *1 *1 *2) (-12 (-4 *1 (-229)) (-5 *2 (-758)))) (-1787 (*1 *1 *1 *2) (-12 (-4 *1 (-229)) (-5 *2 (-758)))))
-(-13 (-1034) (-10 -8 (-15 -1553 ($ $)) (-15 -1787 ($ $)) (-15 -1553 ($ $ (-758))) (-15 -1787 ($ $ (-758)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-604 (-554)) . T) ((-601 (-848)) . T) ((-634 $) . T) ((-713) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T))
-((-4310 (($) 12) (($ (-631 |#2|)) NIL)) (-1521 (($ $) 14)) (-3089 (($ (-631 |#2|)) 10)) (-3075 (((-848) $) 21)))
-(((-230 |#1| |#2|) (-10 -8 (-15 -3075 ((-848) |#1|)) (-15 -4310 (|#1| (-631 |#2|))) (-15 -4310 (|#1|)) (-15 -3089 (|#1| (-631 |#2|))) (-15 -1521 (|#1| |#1|))) (-231 |#2|) (-1082)) (T -230))
-NIL
-(-10 -8 (-15 -3075 ((-848) |#1|)) (-15 -4310 (|#1| (-631 |#2|))) (-15 -4310 (|#1|)) (-15 -3089 (|#1| (-631 |#2|))) (-15 -1521 (|#1| |#1|)))
-((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-3019 (((-112) $ (-758)) 8)) (-2220 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4373)))) (-4087 (($) 7 T CONST)) (-1571 (($ $) 58 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1884 (($ |#1| $) 47 (|has| $ (-6 -4373))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4373)))) (-2574 (($ |#1| $) 57 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4373)))) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) 9)) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35)) (-3731 (((-112) $ (-758)) 10)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-4150 ((|#1| $) 39)) (-2045 (($ |#1| $) 40)) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2152 ((|#1| $) 41)) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-4310 (($) 49) (($ (-631 |#1|)) 48)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-2927 (((-530) $) 59 (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) 50)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-1591 (($ (-631 |#1|)) 42)) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373)))))
-(((-231 |#1|) (-138) (-1082)) (T -231))
-((-4310 (*1 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1082)))) (-4310 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-4 *1 (-231 *3)))) (-1884 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4373)) (-4 *1 (-231 *2)) (-4 *2 (-1082)))) (-1884 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4373)) (-4 *1 (-231 *3)) (-4 *3 (-1082)))) (-2220 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4373)) (-4 *1 (-231 *3)) (-4 *3 (-1082)))))
-(-13 (-107 |t#1|) (-149 |t#1|) (-10 -8 (-15 -4310 ($)) (-15 -4310 ($ (-631 |t#1|))) (IF (|has| $ (-6 -4373)) (PROGN (-15 -1884 ($ |t#1| $)) (-15 -1884 ($ (-1 (-112) |t#1|) $)) (-15 -2220 ($ (-1 (-112) |t#1|) $))) |%noBranch|)))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1082)) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-601 (-848)))) ((-149 |#1|) . T) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-1082) |has| |#1| (-1082)) ((-1195) . T))
-((-2984 (((-2 (|:| |varOrder| (-631 (-1158))) (|:| |inhom| (-3 (-631 (-1241 (-758))) "failed")) (|:| |hom| (-631 (-1241 (-758))))) (-289 (-937 (-554)))) 27)))
-(((-232) (-10 -7 (-15 -2984 ((-2 (|:| |varOrder| (-631 (-1158))) (|:| |inhom| (-3 (-631 (-1241 (-758))) "failed")) (|:| |hom| (-631 (-1241 (-758))))) (-289 (-937 (-554))))))) (T -232))
-((-2984 (*1 *2 *3) (-12 (-5 *3 (-289 (-937 (-554)))) (-5 *2 (-2 (|:| |varOrder| (-631 (-1158))) (|:| |inhom| (-3 (-631 (-1241 (-758))) "failed")) (|:| |hom| (-631 (-1241 (-758)))))) (-5 *1 (-232)))))
-(-10 -7 (-15 -2984 ((-2 (|:| |varOrder| (-631 (-1158))) (|:| |inhom| (-3 (-631 (-1241 (-758))) "failed")) (|:| |hom| (-631 (-1241 (-758))))) (-289 (-937 (-554))))))
-((-1508 (((-758)) 51)) (-3699 (((-2 (|:| -2866 (-675 |#3|)) (|:| |vec| (-1241 |#3|))) (-675 $) (-1241 $)) 49) (((-675 |#3|) (-675 $)) 41) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL) (((-675 (-554)) (-675 $)) NIL)) (-3330 (((-133)) 57)) (-1553 (($ $ (-1 |#3| |#3|) (-758)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-631 (-1158)) (-631 (-758))) NIL) (($ $ (-1158) (-758)) NIL) (($ $ (-631 (-1158))) NIL) (($ $ (-1158)) NIL) (($ $ (-758)) NIL) (($ $) NIL)) (-3075 (((-1241 |#3|) $) NIL) (($ |#3|) NIL) (((-848) $) NIL) (($ (-554)) 12) (($ (-402 (-554))) NIL)) (-2261 (((-758)) 15)) (-1752 (($ $ |#3|) 54)))
-(((-233 |#1| |#2| |#3|) (-10 -8 (-15 -3075 (|#1| (-402 (-554)))) (-15 -3075 (|#1| (-554))) (-15 -3075 ((-848) |#1|)) (-15 -2261 ((-758))) (-15 -1553 (|#1| |#1|)) (-15 -1553 (|#1| |#1| (-758))) (-15 -1553 (|#1| |#1| (-1158))) (-15 -1553 (|#1| |#1| (-631 (-1158)))) (-15 -1553 (|#1| |#1| (-1158) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 -3699 ((-675 (-554)) (-675 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 |#1|) (-1241 |#1|))) (-15 -3075 (|#1| |#3|)) (-15 -1553 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1553 (|#1| |#1| (-1 |#3| |#3|) (-758))) (-15 -3699 ((-675 |#3|) (-675 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 |#3|)) (|:| |vec| (-1241 |#3|))) (-675 |#1|) (-1241 |#1|))) (-15 -1508 ((-758))) (-15 -1752 (|#1| |#1| |#3|)) (-15 -3330 ((-133))) (-15 -3075 ((-1241 |#3|) |#1|))) (-234 |#2| |#3|) (-758) (-1195)) (T -233))
-((-3330 (*1 *2) (-12 (-14 *4 (-758)) (-4 *5 (-1195)) (-5 *2 (-133)) (-5 *1 (-233 *3 *4 *5)) (-4 *3 (-234 *4 *5)))) (-1508 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1195)) (-5 *2 (-758)) (-5 *1 (-233 *3 *4 *5)) (-4 *3 (-234 *4 *5)))) (-2261 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1195)) (-5 *2 (-758)) (-5 *1 (-233 *3 *4 *5)) (-4 *3 (-234 *4 *5)))))
-(-10 -8 (-15 -3075 (|#1| (-402 (-554)))) (-15 -3075 (|#1| (-554))) (-15 -3075 ((-848) |#1|)) (-15 -2261 ((-758))) (-15 -1553 (|#1| |#1|)) (-15 -1553 (|#1| |#1| (-758))) (-15 -1553 (|#1| |#1| (-1158))) (-15 -1553 (|#1| |#1| (-631 (-1158)))) (-15 -1553 (|#1| |#1| (-1158) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 -3699 ((-675 (-554)) (-675 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 |#1|) (-1241 |#1|))) (-15 -3075 (|#1| |#3|)) (-15 -1553 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1553 (|#1| |#1| (-1 |#3| |#3|) (-758))) (-15 -3699 ((-675 |#3|) (-675 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 |#3|)) (|:| |vec| (-1241 |#3|))) (-675 |#1|) (-1241 |#1|))) (-15 -1508 ((-758))) (-15 -1752 (|#1| |#1| |#3|)) (-15 -3330 ((-133))) (-15 -3075 ((-1241 |#3|) |#1|)))
-((-3062 (((-112) $ $) 19 (|has| |#2| (-1082)))) (-1695 (((-112) $) 72 (|has| |#2| (-130)))) (-2327 (($ (-906)) 125 (|has| |#2| (-1034)))) (-4233 (((-1246) $ (-554) (-554)) 40 (|has| $ (-6 -4374)))) (-1349 (($ $ $) 121 (|has| |#2| (-780)))) (-2934 (((-3 $ "failed") $ $) 74 (|has| |#2| (-130)))) (-3019 (((-112) $ (-758)) 8)) (-1508 (((-758)) 107 (|has| |#2| (-363)))) (-4219 (((-554) $) 119 (|has| |#2| (-834)))) (-1501 ((|#2| $ (-554) |#2|) 52 (|has| $ (-6 -4374)))) (-4087 (($) 7 T CONST)) (-2784 (((-3 (-554) "failed") $) 67 (-3726 (|has| |#2| (-1023 (-554))) (|has| |#2| (-1082)))) (((-3 (-402 (-554)) "failed") $) 64 (-3726 (|has| |#2| (-1023 (-402 (-554)))) (|has| |#2| (-1082)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1082)))) (-1668 (((-554) $) 66 (-3726 (|has| |#2| (-1023 (-554))) (|has| |#2| (-1082)))) (((-402 (-554)) $) 63 (-3726 (|has| |#2| (-1023 (-402 (-554)))) (|has| |#2| (-1082)))) ((|#2| $) 62 (|has| |#2| (-1082)))) (-3699 (((-675 (-554)) (-675 $)) 106 (-3726 (|has| |#2| (-627 (-554))) (|has| |#2| (-1034)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) 105 (-3726 (|has| |#2| (-627 (-554))) (|has| |#2| (-1034)))) (((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 $) (-1241 $)) 104 (|has| |#2| (-1034))) (((-675 |#2|) (-675 $)) 103 (|has| |#2| (-1034)))) (-1320 (((-3 $ "failed") $) 79 (|has| |#2| (-713)))) (-3353 (($) 110 (|has| |#2| (-363)))) (-2862 ((|#2| $ (-554) |#2|) 53 (|has| $ (-6 -4374)))) (-2796 ((|#2| $ (-554)) 51)) (-2745 (((-112) $) 117 (|has| |#2| (-834)))) (-2466 (((-631 |#2|) $) 30 (|has| $ (-6 -4373)))) (-3248 (((-112) $) 81 (|has| |#2| (-713)))) (-4304 (((-112) $) 118 (|has| |#2| (-834)))) (-2230 (((-112) $ (-758)) 9)) (-3044 (((-554) $) 43 (|has| (-554) (-836)))) (-4223 (($ $ $) 116 (-3994 (|has| |#2| (-834)) (|has| |#2| (-780))))) (-2379 (((-631 |#2|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1082)) (|has| $ (-6 -4373))))) (-2256 (((-554) $) 44 (|has| (-554) (-836)))) (-2706 (($ $ $) 115 (-3994 (|has| |#2| (-834)) (|has| |#2| (-780))))) (-2849 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#2| |#2|) $) 35)) (-3830 (((-906) $) 109 (|has| |#2| (-363)))) (-3731 (((-112) $ (-758)) 10)) (-1613 (((-1140) $) 22 (|has| |#2| (-1082)))) (-2529 (((-631 (-554)) $) 46)) (-3618 (((-112) (-554) $) 47)) (-2717 (($ (-906)) 108 (|has| |#2| (-363)))) (-2768 (((-1102) $) 21 (|has| |#2| (-1082)))) (-1539 ((|#2| $) 42 (|has| (-554) (-836)))) (-2441 (($ $ |#2|) 41 (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#2|))) 26 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-289 |#2|)) 25 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-631 |#2|) (-631 |#2|)) 23 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))))) (-2494 (((-112) $ $) 14)) (-1609 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2625 (((-631 |#2|) $) 48)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2064 ((|#2| $ (-554) |#2|) 50) ((|#2| $ (-554)) 49)) (-3748 ((|#2| $ $) 124 (|has| |#2| (-1034)))) (-2313 (($ (-1241 |#2|)) 126)) (-3330 (((-133)) 123 (|has| |#2| (-358)))) (-1553 (($ $) 98 (-3726 (|has| |#2| (-229)) (|has| |#2| (-1034)))) (($ $ (-758)) 96 (-3726 (|has| |#2| (-229)) (|has| |#2| (-1034)))) (($ $ (-1158)) 94 (-3726 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-631 (-1158))) 93 (-3726 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-1158) (-758)) 92 (-3726 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-631 (-1158)) (-631 (-758))) 91 (-3726 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-1 |#2| |#2|) (-758)) 84 (|has| |#2| (-1034))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-1034)))) (-2777 (((-758) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4373))) (((-758) |#2| $) 28 (-12 (|has| |#2| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-3075 (((-1241 |#2|) $) 127) (($ (-554)) 68 (-3994 (-3726 (|has| |#2| (-1023 (-554))) (|has| |#2| (-1082))) (|has| |#2| (-1034)))) (($ (-402 (-554))) 65 (-3726 (|has| |#2| (-1023 (-402 (-554)))) (|has| |#2| (-1082)))) (($ |#2|) 60 (|has| |#2| (-1082))) (((-848) $) 18 (|has| |#2| (-601 (-848))))) (-2261 (((-758)) 102 (|has| |#2| (-1034)))) (-2438 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4373)))) (-1700 (($ $) 120 (|has| |#2| (-834)))) (-2004 (($) 71 (|has| |#2| (-130)) CONST)) (-2014 (($) 82 (|has| |#2| (-713)) CONST)) (-1787 (($ $) 97 (-3726 (|has| |#2| (-229)) (|has| |#2| (-1034)))) (($ $ (-758)) 95 (-3726 (|has| |#2| (-229)) (|has| |#2| (-1034)))) (($ $ (-1158)) 90 (-3726 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-631 (-1158))) 89 (-3726 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-1158) (-758)) 88 (-3726 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-631 (-1158)) (-631 (-758))) 87 (-3726 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-1 |#2| |#2|) (-758)) 86 (|has| |#2| (-1034))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-1034)))) (-1708 (((-112) $ $) 113 (-3994 (|has| |#2| (-834)) (|has| |#2| (-780))))) (-1686 (((-112) $ $) 112 (-3994 (|has| |#2| (-834)) (|has| |#2| (-780))))) (-1658 (((-112) $ $) 20 (|has| |#2| (-1082)))) (-1697 (((-112) $ $) 114 (-3994 (|has| |#2| (-834)) (|has| |#2| (-780))))) (-1676 (((-112) $ $) 111 (-3994 (|has| |#2| (-834)) (|has| |#2| (-780))))) (-1752 (($ $ |#2|) 122 (|has| |#2| (-358)))) (-1744 (($ $ $) 100 (|has| |#2| (-1034))) (($ $) 99 (|has| |#2| (-1034)))) (-1735 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-758)) 80 (|has| |#2| (-713))) (($ $ (-906)) 77 (|has| |#2| (-713)))) (* (($ (-554) $) 101 (|has| |#2| (-1034))) (($ $ $) 78 (|has| |#2| (-713))) (($ $ |#2|) 76 (|has| |#2| (-713))) (($ |#2| $) 75 (|has| |#2| (-713))) (($ (-758) $) 73 (|has| |#2| (-130))) (($ (-906) $) 70 (|has| |#2| (-25)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373)))))
-(((-234 |#1| |#2|) (-138) (-758) (-1195)) (T -234))
-((-2313 (*1 *1 *2) (-12 (-5 *2 (-1241 *4)) (-4 *4 (-1195)) (-4 *1 (-234 *3 *4)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-906)) (-4 *1 (-234 *3 *4)) (-4 *4 (-1034)) (-4 *4 (-1195)))) (-3748 (*1 *2 *1 *1) (-12 (-4 *1 (-234 *3 *2)) (-4 *2 (-1195)) (-4 *2 (-1034)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-234 *3 *2)) (-4 *2 (-1195)) (-4 *2 (-713)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-234 *3 *2)) (-4 *2 (-1195)) (-4 *2 (-713)))))
-(-13 (-592 (-554) |t#2|) (-601 (-1241 |t#2|)) (-10 -8 (-6 -4373) (-15 -2313 ($ (-1241 |t#2|))) (IF (|has| |t#2| (-1082)) (-6 (-406 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1034)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-227 |t#2|)) (-6 (-372 |t#2|)) (-15 -2327 ($ (-906))) (-15 -3748 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-130)) (-6 (-130)) |%noBranch|) (IF (|has| |t#2| (-713)) (PROGN (-6 (-713)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-363)) (-6 (-363)) |%noBranch|) (IF (|has| |t#2| (-170)) (PROGN (-6 (-38 |t#2|)) (-6 (-170))) |%noBranch|) (IF (|has| |t#2| (-6 -4370)) (-6 -4370) |%noBranch|) (IF (|has| |t#2| (-834)) (-6 (-834)) |%noBranch|) (IF (|has| |t#2| (-780)) (-6 (-780)) |%noBranch|) (IF (|has| |t#2| (-358)) (-6 (-1248 |t#2|)) |%noBranch|)))
-(((-21) -3994 (|has| |#2| (-1034)) (|has| |#2| (-834)) (|has| |#2| (-358)) (|has| |#2| (-170))) ((-23) -3994 (|has| |#2| (-1034)) (|has| |#2| (-834)) (|has| |#2| (-780)) (|has| |#2| (-358)) (|has| |#2| (-170)) (|has| |#2| (-130))) ((-25) -3994 (|has| |#2| (-1034)) (|has| |#2| (-834)) (|has| |#2| (-780)) (|has| |#2| (-358)) (|has| |#2| (-170)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-170)) ((-102) -3994 (|has| |#2| (-1082)) (|has| |#2| (-1034)) (|has| |#2| (-834)) (|has| |#2| (-780)) (|has| |#2| (-713)) (|has| |#2| (-363)) (|has| |#2| (-358)) (|has| |#2| (-170)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -3994 (|has| |#2| (-1034)) (|has| |#2| (-358)) (|has| |#2| (-170))) ((-111 $ $) |has| |#2| (-170)) ((-130) -3994 (|has| |#2| (-1034)) (|has| |#2| (-834)) (|has| |#2| (-780)) (|has| |#2| (-358)) (|has| |#2| (-170)) (|has| |#2| (-130))) ((-604 #0=(-402 (-554))) -12 (|has| |#2| (-1023 (-402 (-554)))) (|has| |#2| (-1082))) ((-604 (-554)) -3994 (|has| |#2| (-1034)) (-12 (|has| |#2| (-1023 (-554))) (|has| |#2| (-1082))) (|has| |#2| (-834)) (|has| |#2| (-170))) ((-604 |#2|) -3994 (|has| |#2| (-1082)) (|has| |#2| (-170))) ((-601 (-848)) -3994 (|has| |#2| (-1082)) (|has| |#2| (-1034)) (|has| |#2| (-834)) (|has| |#2| (-780)) (|has| |#2| (-713)) (|has| |#2| (-363)) (|has| |#2| (-358)) (|has| |#2| (-170)) (|has| |#2| (-601 (-848))) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-601 (-1241 |#2|)) . T) ((-170) |has| |#2| (-170)) ((-227 |#2|) |has| |#2| (-1034)) ((-229) -12 (|has| |#2| (-229)) (|has| |#2| (-1034))) ((-281 #1=(-554) |#2|) . T) ((-283 #1# |#2|) . T) ((-304 |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))) ((-363) |has| |#2| (-363)) ((-372 |#2|) |has| |#2| (-1034)) ((-406 |#2|) |has| |#2| (-1082)) ((-483 |#2|) . T) ((-592 #1# |#2|) . T) ((-508 |#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))) ((-634 |#2|) -3994 (|has| |#2| (-1034)) (|has| |#2| (-358)) (|has| |#2| (-170))) ((-634 $) -3994 (|has| |#2| (-1034)) (|has| |#2| (-834)) (|has| |#2| (-170))) ((-627 (-554)) -12 (|has| |#2| (-627 (-554))) (|has| |#2| (-1034))) ((-627 |#2|) |has| |#2| (-1034)) ((-704 |#2|) -3994 (|has| |#2| (-358)) (|has| |#2| (-170))) ((-713) -3994 (|has| |#2| (-1034)) (|has| |#2| (-834)) (|has| |#2| (-713)) (|has| |#2| (-170))) ((-778) |has| |#2| (-834)) ((-779) -3994 (|has| |#2| (-834)) (|has| |#2| (-780))) ((-780) |has| |#2| (-780)) ((-781) -3994 (|has| |#2| (-834)) (|has| |#2| (-780))) ((-782) -3994 (|has| |#2| (-834)) (|has| |#2| (-780))) ((-834) |has| |#2| (-834)) ((-836) -3994 (|has| |#2| (-834)) (|has| |#2| (-780))) ((-885 (-1158)) -12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034))) ((-1023 #0#) -12 (|has| |#2| (-1023 (-402 (-554)))) (|has| |#2| (-1082))) ((-1023 (-554)) -12 (|has| |#2| (-1023 (-554))) (|has| |#2| (-1082))) ((-1023 |#2|) |has| |#2| (-1082)) ((-1040 |#2|) -3994 (|has| |#2| (-1034)) (|has| |#2| (-358)) (|has| |#2| (-170))) ((-1040 $) |has| |#2| (-170)) ((-1034) -3994 (|has| |#2| (-1034)) (|has| |#2| (-834)) (|has| |#2| (-170))) ((-1041) -3994 (|has| |#2| (-1034)) (|has| |#2| (-834)) (|has| |#2| (-170))) ((-1094) -3994 (|has| |#2| (-1034)) (|has| |#2| (-834)) (|has| |#2| (-713)) (|has| |#2| (-170))) ((-1082) -3994 (|has| |#2| (-1082)) (|has| |#2| (-1034)) (|has| |#2| (-834)) (|has| |#2| (-780)) (|has| |#2| (-713)) (|has| |#2| (-363)) (|has| |#2| (-358)) (|has| |#2| (-170)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-1195) . T) ((-1248 |#2|) |has| |#2| (-358)))
-((-4159 (((-236 |#1| |#3|) (-1 |#3| |#2| |#3|) (-236 |#1| |#2|) |#3|) 21)) (-3676 ((|#3| (-1 |#3| |#2| |#3|) (-236 |#1| |#2|) |#3|) 23)) (-2879 (((-236 |#1| |#3|) (-1 |#3| |#2|) (-236 |#1| |#2|)) 18)))
-(((-235 |#1| |#2| |#3|) (-10 -7 (-15 -4159 ((-236 |#1| |#3|) (-1 |#3| |#2| |#3|) (-236 |#1| |#2|) |#3|)) (-15 -3676 (|#3| (-1 |#3| |#2| |#3|) (-236 |#1| |#2|) |#3|)) (-15 -2879 ((-236 |#1| |#3|) (-1 |#3| |#2|) (-236 |#1| |#2|)))) (-758) (-1195) (-1195)) (T -235))
-((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-236 *5 *6)) (-14 *5 (-758)) (-4 *6 (-1195)) (-4 *7 (-1195)) (-5 *2 (-236 *5 *7)) (-5 *1 (-235 *5 *6 *7)))) (-3676 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-236 *5 *6)) (-14 *5 (-758)) (-4 *6 (-1195)) (-4 *2 (-1195)) (-5 *1 (-235 *5 *6 *2)))) (-4159 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-236 *6 *7)) (-14 *6 (-758)) (-4 *7 (-1195)) (-4 *5 (-1195)) (-5 *2 (-236 *6 *5)) (-5 *1 (-235 *6 *7 *5)))))
-(-10 -7 (-15 -4159 ((-236 |#1| |#3|) (-1 |#3| |#2| |#3|) (-236 |#1| |#2|) |#3|)) (-15 -3676 (|#3| (-1 |#3| |#2| |#3|) (-236 |#1| |#2|) |#3|)) (-15 -2879 ((-236 |#1| |#3|) (-1 |#3| |#2|) (-236 |#1| |#2|))))
-((-3062 (((-112) $ $) NIL (|has| |#2| (-1082)))) (-1695 (((-112) $) NIL (|has| |#2| (-130)))) (-2327 (($ (-906)) 56 (|has| |#2| (-1034)))) (-4233 (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-1349 (($ $ $) 60 (|has| |#2| (-780)))) (-2934 (((-3 $ "failed") $ $) 49 (|has| |#2| (-130)))) (-3019 (((-112) $ (-758)) 17)) (-1508 (((-758)) NIL (|has| |#2| (-363)))) (-4219 (((-554) $) NIL (|has| |#2| (-834)))) (-1501 ((|#2| $ (-554) |#2|) NIL (|has| $ (-6 -4374)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) NIL (-12 (|has| |#2| (-1023 (-554))) (|has| |#2| (-1082)))) (((-3 (-402 (-554)) "failed") $) NIL (-12 (|has| |#2| (-1023 (-402 (-554)))) (|has| |#2| (-1082)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1082)))) (-1668 (((-554) $) NIL (-12 (|has| |#2| (-1023 (-554))) (|has| |#2| (-1082)))) (((-402 (-554)) $) NIL (-12 (|has| |#2| (-1023 (-402 (-554)))) (|has| |#2| (-1082)))) ((|#2| $) 27 (|has| |#2| (-1082)))) (-3699 (((-675 (-554)) (-675 $)) NIL (-12 (|has| |#2| (-627 (-554))) (|has| |#2| (-1034)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (-12 (|has| |#2| (-627 (-554))) (|has| |#2| (-1034)))) (((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 $) (-1241 $)) NIL (|has| |#2| (-1034))) (((-675 |#2|) (-675 $)) NIL (|has| |#2| (-1034)))) (-1320 (((-3 $ "failed") $) 53 (|has| |#2| (-713)))) (-3353 (($) NIL (|has| |#2| (-363)))) (-2862 ((|#2| $ (-554) |#2|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#2| $ (-554)) 51)) (-2745 (((-112) $) NIL (|has| |#2| (-834)))) (-2466 (((-631 |#2|) $) 15 (|has| $ (-6 -4373)))) (-3248 (((-112) $) NIL (|has| |#2| (-713)))) (-4304 (((-112) $) NIL (|has| |#2| (-834)))) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) 20 (|has| (-554) (-836)))) (-4223 (($ $ $) NIL (-3994 (|has| |#2| (-780)) (|has| |#2| (-834))))) (-2379 (((-631 |#2|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2256 (((-554) $) 50 (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (-3994 (|has| |#2| (-780)) (|has| |#2| (-834))))) (-2849 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#2| |#2|) $) 41)) (-3830 (((-906) $) NIL (|has| |#2| (-363)))) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (|has| |#2| (-1082)))) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) NIL)) (-2717 (($ (-906)) NIL (|has| |#2| (-363)))) (-2768 (((-1102) $) NIL (|has| |#2| (-1082)))) (-1539 ((|#2| $) NIL (|has| (-554) (-836)))) (-2441 (($ $ |#2|) NIL (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-631 |#2|) (-631 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2625 (((-631 |#2|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#2| $ (-554) |#2|) NIL) ((|#2| $ (-554)) 21)) (-3748 ((|#2| $ $) NIL (|has| |#2| (-1034)))) (-2313 (($ (-1241 |#2|)) 18)) (-3330 (((-133)) NIL (|has| |#2| (-358)))) (-1553 (($ $) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1034)))) (($ $ (-758)) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1034)))) (($ $ (-1158)) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-1 |#2| |#2|) (-758)) NIL (|has| |#2| (-1034))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1034)))) (-2777 (((-758) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373))) (((-758) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-1521 (($ $) NIL)) (-3075 (((-1241 |#2|) $) 10) (($ (-554)) NIL (-3994 (-12 (|has| |#2| (-1023 (-554))) (|has| |#2| (-1082))) (|has| |#2| (-1034)))) (($ (-402 (-554))) NIL (-12 (|has| |#2| (-1023 (-402 (-554)))) (|has| |#2| (-1082)))) (($ |#2|) 13 (|has| |#2| (-1082))) (((-848) $) NIL (|has| |#2| (-601 (-848))))) (-2261 (((-758)) NIL (|has| |#2| (-1034)))) (-2438 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-1700 (($ $) NIL (|has| |#2| (-834)))) (-2004 (($) 35 (|has| |#2| (-130)) CONST)) (-2014 (($) 38 (|has| |#2| (-713)) CONST)) (-1787 (($ $) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1034)))) (($ $ (-758)) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1034)))) (($ $ (-1158)) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-1 |#2| |#2|) (-758)) NIL (|has| |#2| (-1034))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1034)))) (-1708 (((-112) $ $) NIL (-3994 (|has| |#2| (-780)) (|has| |#2| (-834))))) (-1686 (((-112) $ $) NIL (-3994 (|has| |#2| (-780)) (|has| |#2| (-834))))) (-1658 (((-112) $ $) 26 (|has| |#2| (-1082)))) (-1697 (((-112) $ $) NIL (-3994 (|has| |#2| (-780)) (|has| |#2| (-834))))) (-1676 (((-112) $ $) 58 (-3994 (|has| |#2| (-780)) (|has| |#2| (-834))))) (-1752 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-1744 (($ $ $) NIL (|has| |#2| (-1034))) (($ $) NIL (|has| |#2| (-1034)))) (-1735 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-758)) NIL (|has| |#2| (-713))) (($ $ (-906)) NIL (|has| |#2| (-713)))) (* (($ (-554) $) NIL (|has| |#2| (-1034))) (($ $ $) 44 (|has| |#2| (-713))) (($ $ |#2|) 42 (|has| |#2| (-713))) (($ |#2| $) 43 (|has| |#2| (-713))) (($ (-758) $) NIL (|has| |#2| (-130))) (($ (-906) $) NIL (|has| |#2| (-25)))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-236 |#1| |#2|) (-234 |#1| |#2|) (-758) (-1195)) (T -236))
-NIL
-(-234 |#1| |#2|)
-((-1409 (((-554) (-631 (-1140))) 24) (((-554) (-1140)) 19)) (-2245 (((-1246) (-631 (-1140))) 29) (((-1246) (-1140)) 28)) (-3812 (((-1140)) 14)) (-1727 (((-1140) (-554) (-1140)) 16)) (-1608 (((-631 (-1140)) (-631 (-1140)) (-554) (-1140)) 25) (((-1140) (-1140) (-554) (-1140)) 23)) (-1951 (((-631 (-1140)) (-631 (-1140))) 13) (((-631 (-1140)) (-1140)) 11)))
-(((-237) (-10 -7 (-15 -1951 ((-631 (-1140)) (-1140))) (-15 -1951 ((-631 (-1140)) (-631 (-1140)))) (-15 -3812 ((-1140))) (-15 -1727 ((-1140) (-554) (-1140))) (-15 -1608 ((-1140) (-1140) (-554) (-1140))) (-15 -1608 ((-631 (-1140)) (-631 (-1140)) (-554) (-1140))) (-15 -2245 ((-1246) (-1140))) (-15 -2245 ((-1246) (-631 (-1140)))) (-15 -1409 ((-554) (-1140))) (-15 -1409 ((-554) (-631 (-1140)))))) (T -237))
-((-1409 (*1 *2 *3) (-12 (-5 *3 (-631 (-1140))) (-5 *2 (-554)) (-5 *1 (-237)))) (-1409 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-554)) (-5 *1 (-237)))) (-2245 (*1 *2 *3) (-12 (-5 *3 (-631 (-1140))) (-5 *2 (-1246)) (-5 *1 (-237)))) (-2245 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-237)))) (-1608 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-631 (-1140))) (-5 *3 (-554)) (-5 *4 (-1140)) (-5 *1 (-237)))) (-1608 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1140)) (-5 *3 (-554)) (-5 *1 (-237)))) (-1727 (*1 *2 *3 *2) (-12 (-5 *2 (-1140)) (-5 *3 (-554)) (-5 *1 (-237)))) (-3812 (*1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-237)))) (-1951 (*1 *2 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-237)))) (-1951 (*1 *2 *3) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-237)) (-5 *3 (-1140)))))
-(-10 -7 (-15 -1951 ((-631 (-1140)) (-1140))) (-15 -1951 ((-631 (-1140)) (-631 (-1140)))) (-15 -3812 ((-1140))) (-15 -1727 ((-1140) (-554) (-1140))) (-15 -1608 ((-1140) (-1140) (-554) (-1140))) (-15 -1608 ((-631 (-1140)) (-631 (-1140)) (-554) (-1140))) (-15 -2245 ((-1246) (-1140))) (-15 -2245 ((-1246) (-631 (-1140)))) (-15 -1409 ((-554) (-1140))) (-15 -1409 ((-554) (-631 (-1140)))))
-((** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) 16)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ (-402 (-554)) $) 23) (($ $ (-402 (-554))) NIL)))
-(((-238 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-554))) (-15 * (|#1| |#1| (-402 (-554)))) (-15 * (|#1| (-402 (-554)) |#1|)) (-15 ** (|#1| |#1| (-758))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-906))) (-15 * (|#1| (-554) |#1|)) (-15 * (|#1| (-758) |#1|)) (-15 * (|#1| (-906) |#1|))) (-239)) (T -238))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-554))) (-15 * (|#1| |#1| (-402 (-554)))) (-15 * (|#1| (-402 (-554)) |#1|)) (-15 ** (|#1| |#1| (-758))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-906))) (-15 * (|#1| (-554) |#1|)) (-15 * (|#1| (-758) |#1|)) (-15 * (|#1| (-906) |#1|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1320 (((-3 $ "failed") $) 33)) (-3248 (((-112) $) 31)) (-1613 (((-1140) $) 9)) (-2483 (($ $) 40)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ (-402 (-554))) 44)) (-2261 (((-758)) 28)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ (-554)) 41)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ (-402 (-554)) $) 43) (($ $ (-402 (-554))) 42)))
-(((-239) (-138)) (T -239))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-554)))) (-2483 (*1 *1 *1) (-4 *1 (-239))))
-(-13 (-285) (-38 (-402 (-554))) (-10 -8 (-15 ** ($ $ (-554))) (-15 -2483 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-554))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-604 #0#) . T) ((-604 (-554)) . T) ((-601 (-848)) . T) ((-285) . T) ((-634 #0#) . T) ((-634 $) . T) ((-704 #0#) . T) ((-713) . T) ((-1040 #0#) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T))
-((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-2794 ((|#1| $) 48)) (-3387 (($ $) 57)) (-3019 (((-112) $ (-758)) 8)) (-2690 ((|#1| $ |#1|) 39 (|has| $ (-6 -4374)))) (-2330 (($ $ $) 53 (|has| $ (-6 -4374)))) (-1337 (($ $ $) 52 (|has| $ (-6 -4374)))) (-1501 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4374)))) (-2923 (($ $ (-631 $)) 41 (|has| $ (-6 -4374)))) (-4087 (($) 7 T CONST)) (-3583 (($ $) 56)) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-3677 (((-631 $) $) 50)) (-1990 (((-112) $ $) 42 (|has| |#1| (-1082)))) (-1634 (($ $) 55)) (-2230 (((-112) $ (-758)) 9)) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35)) (-3731 (((-112) $ (-758)) 10)) (-2306 (((-631 |#1|) $) 45)) (-3216 (((-112) $) 49)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-2597 ((|#1| $) 59)) (-4133 (($ $) 58)) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2064 ((|#1| $ "value") 47)) (-3250 (((-554) $ $) 44)) (-3008 (((-112) $) 46)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-1853 (($ $ $) 54 (|has| $ (-6 -4374)))) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-2461 (((-631 $) $) 51)) (-1441 (((-112) $ $) 43 (|has| |#1| (-1082)))) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373)))))
-(((-240 |#1|) (-138) (-1195)) (T -240))
-((-2597 (*1 *2 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1195)))) (-4133 (*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1195)))) (-3387 (*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1195)))) (-3583 (*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1195)))) (-1634 (*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1195)))) (-1853 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4374)) (-4 *1 (-240 *2)) (-4 *2 (-1195)))) (-2330 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4374)) (-4 *1 (-240 *2)) (-4 *2 (-1195)))) (-1337 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4374)) (-4 *1 (-240 *2)) (-4 *2 (-1195)))))
-(-13 (-995 |t#1|) (-10 -8 (-15 -2597 (|t#1| $)) (-15 -4133 ($ $)) (-15 -3387 ($ $)) (-15 -3583 ($ $)) (-15 -1634 ($ $)) (IF (|has| $ (-6 -4374)) (PROGN (-15 -1853 ($ $ $)) (-15 -2330 ($ $ $)) (-15 -1337 ($ $ $))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1082)) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-601 (-848)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-995 |#1|) . T) ((-1082) |has| |#1| (-1082)) ((-1195) . T))
-((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2794 ((|#1| $) NIL)) (-2350 ((|#1| $) NIL)) (-3387 (($ $) NIL)) (-4233 (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-2722 (($ $ (-554)) NIL (|has| $ (-6 -4374)))) (-4015 (((-112) $) NIL (|has| |#1| (-836))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2576 (($ $) NIL (-12 (|has| $ (-6 -4374)) (|has| |#1| (-836)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-3303 (($ $) 10 (|has| |#1| (-836))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3019 (((-112) $ (-758)) NIL)) (-2690 ((|#1| $ |#1|) NIL (|has| $ (-6 -4374)))) (-2234 (($ $ $) NIL (|has| $ (-6 -4374)))) (-1825 ((|#1| $ |#1|) NIL (|has| $ (-6 -4374)))) (-3105 ((|#1| $ |#1|) NIL (|has| $ (-6 -4374)))) (-1501 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4374))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4374))) (($ $ "rest" $) NIL (|has| $ (-6 -4374))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4374))) ((|#1| $ (-1208 (-554)) |#1|) NIL (|has| $ (-6 -4374))) ((|#1| $ (-554) |#1|) NIL (|has| $ (-6 -4374)))) (-2923 (($ $ (-631 $)) NIL (|has| $ (-6 -4374)))) (-2220 (($ (-1 (-112) |#1|) $) NIL)) (-1871 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2337 ((|#1| $) NIL)) (-4087 (($) NIL T CONST)) (-3920 (($ $) NIL (|has| $ (-6 -4374)))) (-3799 (($ $) NIL)) (-1551 (($ $) NIL) (($ $ (-758)) NIL)) (-2593 (($ $) NIL (|has| |#1| (-1082)))) (-1571 (($ $) 7 (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1884 (($ |#1| $) NIL (|has| |#1| (-1082))) (($ (-1 (-112) |#1|) $) NIL)) (-2574 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2862 ((|#1| $ (-554) |#1|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-554)) NIL)) (-3556 (((-112) $) NIL)) (-1484 (((-554) |#1| $ (-554)) NIL (|has| |#1| (-1082))) (((-554) |#1| $) NIL (|has| |#1| (-1082))) (((-554) (-1 (-112) |#1|) $) NIL)) (-2466 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3677 (((-631 $) $) NIL)) (-1990 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-3180 (($ (-758) |#1|) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) NIL (|has| (-554) (-836)))) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-3606 (($ $ $) NIL (|has| |#1| (-836))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3717 (($ $ $) NIL (|has| |#1| (-836))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2256 (((-554) $) NIL (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2849 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1416 (($ |#1|) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-2306 (((-631 |#1|) $) NIL)) (-3216 (((-112) $) NIL)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-2597 ((|#1| $) NIL) (($ $ (-758)) NIL)) (-2045 (($ $ $ (-554)) NIL) (($ |#1| $ (-554)) NIL)) (-1782 (($ $ $ (-554)) NIL) (($ |#1| $ (-554)) NIL)) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) NIL)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-1539 ((|#1| $) NIL) (($ $ (-758)) NIL)) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2441 (($ $ |#1|) NIL (|has| $ (-6 -4374)))) (-1381 (((-112) $) NIL)) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1208 (-554))) NIL) ((|#1| $ (-554)) NIL) ((|#1| $ (-554) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-758) $ "count") 16)) (-3250 (((-554) $ $) NIL)) (-3029 (($ $ (-1208 (-554))) NIL) (($ $ (-554)) NIL)) (-2021 (($ $ (-1208 (-554))) NIL) (($ $ (-554)) NIL)) (-4111 (($ (-631 |#1|)) 22)) (-3008 (((-112) $) NIL)) (-1670 (($ $) NIL)) (-2377 (($ $) NIL (|has| $ (-6 -4374)))) (-2797 (((-758) $) NIL)) (-2046 (($ $) NIL)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-3553 (($ $ $ (-554)) NIL (|has| $ (-6 -4374)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) NIL)) (-1853 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4323 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-631 $)) NIL) (($ $ |#1|) NIL)) (-3075 (($ (-631 |#1|)) 17) (((-631 |#1|) $) 18) (((-848) $) 21 (|has| |#1| (-601 (-848))))) (-2461 (((-631 $) $) NIL)) (-1441 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-2563 (((-758) $) 14 (|has| $ (-6 -4373)))))
-(((-241 |#1|) (-13 (-652 |#1|) (-484 (-631 |#1|)) (-10 -8 (-15 -4111 ($ (-631 |#1|))) (-15 -2064 ($ $ "unique")) (-15 -2064 ($ $ "sort")) (-15 -2064 ((-758) $ "count")))) (-836)) (T -241))
-((-4111 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-836)) (-5 *1 (-241 *3)))) (-2064 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-241 *3)) (-4 *3 (-836)))) (-2064 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-241 *3)) (-4 *3 (-836)))) (-2064 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-758)) (-5 *1 (-241 *4)) (-4 *4 (-836)))))
-(-13 (-652 |#1|) (-484 (-631 |#1|)) (-10 -8 (-15 -4111 ($ (-631 |#1|))) (-15 -2064 ($ $ "unique")) (-15 -2064 ($ $ "sort")) (-15 -2064 ((-758) $ "count"))))
-((-1989 (((-3 (-758) "failed") |#1| |#1| (-758)) 27)))
-(((-242 |#1|) (-10 -7 (-15 -1989 ((-3 (-758) "failed") |#1| |#1| (-758)))) (-13 (-713) (-363) (-10 -7 (-15 ** (|#1| |#1| (-554)))))) (T -242))
-((-1989 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-758)) (-4 *3 (-13 (-713) (-363) (-10 -7 (-15 ** (*3 *3 (-554)))))) (-5 *1 (-242 *3)))))
-(-10 -7 (-15 -1989 ((-3 (-758) "failed") |#1| |#1| (-758))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2405 (((-631 (-850 |#1|)) $) NIL)) (-2237 (((-1154 $) $ (-850 |#1|)) NIL) (((-1154 |#2|) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#2| (-546)))) (-1976 (($ $) NIL (|has| |#2| (-546)))) (-1363 (((-112) $) NIL (|has| |#2| (-546)))) (-3785 (((-758) $) NIL) (((-758) $ (-631 (-850 |#1|))) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-3278 (($ $) NIL (|has| |#2| (-446)))) (-1565 (((-413 $) $) NIL (|has| |#2| (-446)))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#2| "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#2| (-1023 (-402 (-554))))) (((-3 (-554) "failed") $) NIL (|has| |#2| (-1023 (-554)))) (((-3 (-850 |#1|) "failed") $) NIL)) (-1668 ((|#2| $) NIL) (((-402 (-554)) $) NIL (|has| |#2| (-1023 (-402 (-554))))) (((-554) $) NIL (|has| |#2| (-1023 (-554)))) (((-850 |#1|) $) NIL)) (-2999 (($ $ $ (-850 |#1|)) NIL (|has| |#2| (-170)))) (-2026 (($ $ (-631 (-554))) NIL)) (-2550 (($ $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| |#2| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| |#2| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 $) (-1241 $)) NIL) (((-675 |#2|) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2048 (($ $) NIL (|has| |#2| (-446))) (($ $ (-850 |#1|)) NIL (|has| |#2| (-446)))) (-2540 (((-631 $) $) NIL)) (-3289 (((-112) $) NIL (|has| |#2| (-894)))) (-1344 (($ $ |#2| (-236 (-2563 |#1|) (-758)) $) NIL)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (-12 (|has| (-850 |#1|) (-871 (-374))) (|has| |#2| (-871 (-374))))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (-12 (|has| (-850 |#1|) (-871 (-554))) (|has| |#2| (-871 (-554)))))) (-3248 (((-112) $) NIL)) (-2122 (((-758) $) NIL)) (-2393 (($ (-1154 |#2|) (-850 |#1|)) NIL) (($ (-1154 $) (-850 |#1|)) NIL)) (-3910 (((-631 $) $) NIL)) (-3580 (((-112) $) NIL)) (-2383 (($ |#2| (-236 (-2563 |#1|) (-758))) NIL) (($ $ (-850 |#1|) (-758)) NIL) (($ $ (-631 (-850 |#1|)) (-631 (-758))) NIL)) (-4014 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $ (-850 |#1|)) NIL)) (-3893 (((-236 (-2563 |#1|) (-758)) $) NIL) (((-758) $ (-850 |#1|)) NIL) (((-631 (-758)) $ (-631 (-850 |#1|))) NIL)) (-4223 (($ $ $) NIL (|has| |#2| (-836)))) (-2706 (($ $ $) NIL (|has| |#2| (-836)))) (-2789 (($ (-1 (-236 (-2563 |#1|) (-758)) (-236 (-2563 |#1|) (-758))) $) NIL)) (-2879 (($ (-1 |#2| |#2|) $) NIL)) (-3277 (((-3 (-850 |#1|) "failed") $) NIL)) (-2518 (($ $) NIL)) (-2530 ((|#2| $) NIL)) (-2475 (($ (-631 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-1613 (((-1140) $) NIL)) (-3778 (((-3 (-631 $) "failed") $) NIL)) (-2433 (((-3 (-631 $) "failed") $) NIL)) (-3160 (((-3 (-2 (|:| |var| (-850 |#1|)) (|:| -1407 (-758))) "failed") $) NIL)) (-2768 (((-1102) $) NIL)) (-2492 (((-112) $) NIL)) (-2505 ((|#2| $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#2| (-446)))) (-2510 (($ (-631 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-2270 (((-413 $) $) NIL (|has| |#2| (-894)))) (-3919 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-546))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-546)))) (-2386 (($ $ (-631 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ (-850 |#1|) |#2|) NIL) (($ $ (-631 (-850 |#1|)) (-631 |#2|)) NIL) (($ $ (-850 |#1|) $) NIL) (($ $ (-631 (-850 |#1|)) (-631 $)) NIL)) (-1495 (($ $ (-850 |#1|)) NIL (|has| |#2| (-170)))) (-1553 (($ $ (-850 |#1|)) NIL) (($ $ (-631 (-850 |#1|))) NIL) (($ $ (-850 |#1|) (-758)) NIL) (($ $ (-631 (-850 |#1|)) (-631 (-758))) NIL)) (-3308 (((-236 (-2563 |#1|) (-758)) $) NIL) (((-758) $ (-850 |#1|)) NIL) (((-631 (-758)) $ (-631 (-850 |#1|))) NIL)) (-2927 (((-877 (-374)) $) NIL (-12 (|has| (-850 |#1|) (-602 (-877 (-374)))) (|has| |#2| (-602 (-877 (-374)))))) (((-877 (-554)) $) NIL (-12 (|has| (-850 |#1|) (-602 (-877 (-554)))) (|has| |#2| (-602 (-877 (-554)))))) (((-530) $) NIL (-12 (|has| (-850 |#1|) (-602 (-530))) (|has| |#2| (-602 (-530)))))) (-3276 ((|#2| $) NIL (|has| |#2| (-446))) (($ $ (-850 |#1|)) NIL (|has| |#2| (-446)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-894))))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#2|) NIL) (($ (-850 |#1|)) NIL) (($ (-402 (-554))) NIL (-3994 (|has| |#2| (-38 (-402 (-554)))) (|has| |#2| (-1023 (-402 (-554)))))) (($ $) NIL (|has| |#2| (-546)))) (-1893 (((-631 |#2|) $) NIL)) (-1779 ((|#2| $ (-236 (-2563 |#1|) (-758))) NIL) (($ $ (-850 |#1|) (-758)) NIL) (($ $ (-631 (-850 |#1|)) (-631 (-758))) NIL)) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| |#2| (-894))) (|has| |#2| (-143))))) (-2261 (((-758)) NIL)) (-2907 (($ $ $ (-758)) NIL (|has| |#2| (-170)))) (-1909 (((-112) $ $) NIL (|has| |#2| (-546)))) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $ (-850 |#1|)) NIL) (($ $ (-631 (-850 |#1|))) NIL) (($ $ (-850 |#1|) (-758)) NIL) (($ $ (-631 (-850 |#1|)) (-631 (-758))) NIL)) (-1708 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1752 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL (|has| |#2| (-38 (-402 (-554))))) (($ (-402 (-554)) $) NIL (|has| |#2| (-38 (-402 (-554))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-243 |#1| |#2|) (-13 (-934 |#2| (-236 (-2563 |#1|) (-758)) (-850 |#1|)) (-10 -8 (-15 -2026 ($ $ (-631 (-554)))))) (-631 (-1158)) (-1034)) (T -243))
-((-2026 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-243 *3 *4)) (-14 *3 (-631 (-1158))) (-4 *4 (-1034)))))
-(-13 (-934 |#2| (-236 (-2563 |#1|) (-758)) (-850 |#1|)) (-10 -8 (-15 -2026 ($ $ (-631 (-554))))))
-((-3062 (((-112) $ $) NIL)) (-1932 (((-1246) $) 15)) (-1514 (((-181) $) 9)) (-1396 (($ (-181)) 10)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 7)) (-1658 (((-112) $ $) 13)))
-(((-244) (-13 (-1082) (-10 -8 (-15 -1514 ((-181) $)) (-15 -1396 ($ (-181))) (-15 -1932 ((-1246) $))))) (T -244))
-((-1514 (*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-244)))) (-1396 (*1 *1 *2) (-12 (-5 *2 (-181)) (-5 *1 (-244)))) (-1932 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-244)))))
-(-13 (-1082) (-10 -8 (-15 -1514 ((-181) $)) (-15 -1396 ($ (-181))) (-15 -1932 ((-1246) $))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2327 (($ (-906)) NIL (|has| |#4| (-1034)))) (-4233 (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-1349 (($ $ $) NIL (|has| |#4| (-780)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-3019 (((-112) $ (-758)) NIL)) (-1508 (((-758)) NIL (|has| |#4| (-363)))) (-4219 (((-554) $) NIL (|has| |#4| (-834)))) (-1501 ((|#4| $ (-554) |#4|) NIL (|has| $ (-6 -4374)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1082))) (((-3 (-554) "failed") $) NIL (-12 (|has| |#4| (-1023 (-554))) (|has| |#4| (-1082)))) (((-3 (-402 (-554)) "failed") $) NIL (-12 (|has| |#4| (-1023 (-402 (-554)))) (|has| |#4| (-1082))))) (-1668 ((|#4| $) NIL (|has| |#4| (-1082))) (((-554) $) NIL (-12 (|has| |#4| (-1023 (-554))) (|has| |#4| (-1082)))) (((-402 (-554)) $) NIL (-12 (|has| |#4| (-1023 (-402 (-554)))) (|has| |#4| (-1082))))) (-3699 (((-2 (|:| -2866 (-675 |#4|)) (|:| |vec| (-1241 |#4|))) (-675 $) (-1241 $)) NIL (|has| |#4| (-1034))) (((-675 |#4|) (-675 $)) NIL (|has| |#4| (-1034))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (-12 (|has| |#4| (-627 (-554))) (|has| |#4| (-1034)))) (((-675 (-554)) (-675 $)) NIL (-12 (|has| |#4| (-627 (-554))) (|has| |#4| (-1034))))) (-1320 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| |#4| (-229)) (|has| |#4| (-1034))) (-12 (|has| |#4| (-627 (-554))) (|has| |#4| (-1034))) (|has| |#4| (-713)) (-12 (|has| |#4| (-885 (-1158))) (|has| |#4| (-1034)))))) (-3353 (($) NIL (|has| |#4| (-363)))) (-2862 ((|#4| $ (-554) |#4|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#4| $ (-554)) NIL)) (-2745 (((-112) $) NIL (|has| |#4| (-834)))) (-2466 (((-631 |#4|) $) NIL (|has| $ (-6 -4373)))) (-3248 (((-112) $) NIL (-3994 (-12 (|has| |#4| (-229)) (|has| |#4| (-1034))) (-12 (|has| |#4| (-627 (-554))) (|has| |#4| (-1034))) (|has| |#4| (-713)) (-12 (|has| |#4| (-885 (-1158))) (|has| |#4| (-1034)))))) (-4304 (((-112) $) NIL (|has| |#4| (-834)))) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) NIL (|has| (-554) (-836)))) (-4223 (($ $ $) NIL (-3994 (|has| |#4| (-780)) (|has| |#4| (-834))))) (-2379 (((-631 |#4|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082))))) (-2256 (((-554) $) NIL (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (-3994 (|has| |#4| (-780)) (|has| |#4| (-834))))) (-2849 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#4| |#4|) $) NIL)) (-3830 (((-906) $) NIL (|has| |#4| (-363)))) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL)) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) NIL)) (-2717 (($ (-906)) NIL (|has| |#4| (-363)))) (-2768 (((-1102) $) NIL)) (-1539 ((|#4| $) NIL (|has| (-554) (-836)))) (-2441 (($ $ |#4|) NIL (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#4|))) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-289 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-631 |#4|) (-631 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082))))) (-2625 (((-631 |#4|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#4| $ (-554) |#4|) NIL) ((|#4| $ (-554)) 12)) (-3748 ((|#4| $ $) NIL (|has| |#4| (-1034)))) (-2313 (($ (-1241 |#4|)) NIL)) (-3330 (((-133)) NIL (|has| |#4| (-358)))) (-1553 (($ $ (-1 |#4| |#4|) (-758)) NIL (|has| |#4| (-1034))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1034))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#4| (-885 (-1158))) (|has| |#4| (-1034)))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#4| (-885 (-1158))) (|has| |#4| (-1034)))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#4| (-885 (-1158))) (|has| |#4| (-1034)))) (($ $ (-1158)) NIL (-12 (|has| |#4| (-885 (-1158))) (|has| |#4| (-1034)))) (($ $ (-758)) NIL (-12 (|has| |#4| (-229)) (|has| |#4| (-1034)))) (($ $) NIL (-12 (|has| |#4| (-229)) (|has| |#4| (-1034))))) (-2777 (((-758) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373))) (((-758) |#4| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082))))) (-1521 (($ $) NIL)) (-3075 (((-1241 |#4|) $) NIL) (((-848) $) NIL) (($ |#4|) NIL (|has| |#4| (-1082))) (($ (-554)) NIL (-3994 (-12 (|has| |#4| (-1023 (-554))) (|has| |#4| (-1082))) (|has| |#4| (-1034)))) (($ (-402 (-554))) NIL (-12 (|has| |#4| (-1023 (-402 (-554)))) (|has| |#4| (-1082))))) (-2261 (((-758)) NIL (|has| |#4| (-1034)))) (-2438 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-1700 (($ $) NIL (|has| |#4| (-834)))) (-2004 (($) NIL T CONST)) (-2014 (($) NIL (-3994 (-12 (|has| |#4| (-229)) (|has| |#4| (-1034))) (-12 (|has| |#4| (-627 (-554))) (|has| |#4| (-1034))) (|has| |#4| (-713)) (-12 (|has| |#4| (-885 (-1158))) (|has| |#4| (-1034)))) CONST)) (-1787 (($ $ (-1 |#4| |#4|) (-758)) NIL (|has| |#4| (-1034))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1034))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#4| (-885 (-1158))) (|has| |#4| (-1034)))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#4| (-885 (-1158))) (|has| |#4| (-1034)))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#4| (-885 (-1158))) (|has| |#4| (-1034)))) (($ $ (-1158)) NIL (-12 (|has| |#4| (-885 (-1158))) (|has| |#4| (-1034)))) (($ $ (-758)) NIL (-12 (|has| |#4| (-229)) (|has| |#4| (-1034)))) (($ $) NIL (-12 (|has| |#4| (-229)) (|has| |#4| (-1034))))) (-1708 (((-112) $ $) NIL (-3994 (|has| |#4| (-780)) (|has| |#4| (-834))))) (-1686 (((-112) $ $) NIL (-3994 (|has| |#4| (-780)) (|has| |#4| (-834))))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (-3994 (|has| |#4| (-780)) (|has| |#4| (-834))))) (-1676 (((-112) $ $) NIL (-3994 (|has| |#4| (-780)) (|has| |#4| (-834))))) (-1752 (($ $ |#4|) NIL (|has| |#4| (-358)))) (-1744 (($ $ $) NIL) (($ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-758)) NIL (-3994 (-12 (|has| |#4| (-229)) (|has| |#4| (-1034))) (-12 (|has| |#4| (-627 (-554))) (|has| |#4| (-1034))) (|has| |#4| (-713)) (-12 (|has| |#4| (-885 (-1158))) (|has| |#4| (-1034))))) (($ $ (-906)) NIL (-3994 (-12 (|has| |#4| (-229)) (|has| |#4| (-1034))) (-12 (|has| |#4| (-627 (-554))) (|has| |#4| (-1034))) (|has| |#4| (-713)) (-12 (|has| |#4| (-885 (-1158))) (|has| |#4| (-1034)))))) (* (($ |#2| $) 14) (($ (-554) $) NIL) (($ (-758) $) NIL) (($ (-906) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-713))) (($ |#4| $) NIL (|has| |#4| (-713))) (($ $ $) NIL (-3994 (-12 (|has| |#4| (-229)) (|has| |#4| (-1034))) (-12 (|has| |#4| (-627 (-554))) (|has| |#4| (-1034))) (|has| |#4| (-713)) (-12 (|has| |#4| (-885 (-1158))) (|has| |#4| (-1034)))))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-245 |#1| |#2| |#3| |#4|) (-13 (-234 |#1| |#4|) (-634 |#2|) (-634 |#3|)) (-906) (-1034) (-1105 |#1| |#2| (-236 |#1| |#2|) (-236 |#1| |#2|)) (-634 |#2|)) (T -245))
-NIL
-(-13 (-234 |#1| |#4|) (-634 |#2|) (-634 |#3|))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2327 (($ (-906)) NIL (|has| |#3| (-1034)))) (-4233 (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-1349 (($ $ $) NIL (|has| |#3| (-780)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-3019 (((-112) $ (-758)) NIL)) (-1508 (((-758)) NIL (|has| |#3| (-363)))) (-4219 (((-554) $) NIL (|has| |#3| (-834)))) (-1501 ((|#3| $ (-554) |#3|) NIL (|has| $ (-6 -4374)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1082))) (((-3 (-554) "failed") $) NIL (-12 (|has| |#3| (-1023 (-554))) (|has| |#3| (-1082)))) (((-3 (-402 (-554)) "failed") $) NIL (-12 (|has| |#3| (-1023 (-402 (-554)))) (|has| |#3| (-1082))))) (-1668 ((|#3| $) NIL (|has| |#3| (-1082))) (((-554) $) NIL (-12 (|has| |#3| (-1023 (-554))) (|has| |#3| (-1082)))) (((-402 (-554)) $) NIL (-12 (|has| |#3| (-1023 (-402 (-554)))) (|has| |#3| (-1082))))) (-3699 (((-2 (|:| -2866 (-675 |#3|)) (|:| |vec| (-1241 |#3|))) (-675 $) (-1241 $)) NIL (|has| |#3| (-1034))) (((-675 |#3|) (-675 $)) NIL (|has| |#3| (-1034))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (-12 (|has| |#3| (-627 (-554))) (|has| |#3| (-1034)))) (((-675 (-554)) (-675 $)) NIL (-12 (|has| |#3| (-627 (-554))) (|has| |#3| (-1034))))) (-1320 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| |#3| (-229)) (|has| |#3| (-1034))) (-12 (|has| |#3| (-627 (-554))) (|has| |#3| (-1034))) (|has| |#3| (-713)) (-12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034)))))) (-3353 (($) NIL (|has| |#3| (-363)))) (-2862 ((|#3| $ (-554) |#3|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#3| $ (-554)) NIL)) (-2745 (((-112) $) NIL (|has| |#3| (-834)))) (-2466 (((-631 |#3|) $) NIL (|has| $ (-6 -4373)))) (-3248 (((-112) $) NIL (-3994 (-12 (|has| |#3| (-229)) (|has| |#3| (-1034))) (-12 (|has| |#3| (-627 (-554))) (|has| |#3| (-1034))) (|has| |#3| (-713)) (-12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034)))))) (-4304 (((-112) $) NIL (|has| |#3| (-834)))) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) NIL (|has| (-554) (-836)))) (-4223 (($ $ $) NIL (-3994 (|has| |#3| (-780)) (|has| |#3| (-834))))) (-2379 (((-631 |#3|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#3| (-1082))))) (-2256 (((-554) $) NIL (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (-3994 (|has| |#3| (-780)) (|has| |#3| (-834))))) (-2849 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#3| |#3|) $) NIL)) (-3830 (((-906) $) NIL (|has| |#3| (-363)))) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL)) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) NIL)) (-2717 (($ (-906)) NIL (|has| |#3| (-363)))) (-2768 (((-1102) $) NIL)) (-1539 ((|#3| $) NIL (|has| (-554) (-836)))) (-2441 (($ $ |#3|) NIL (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#3|))) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082)))) (($ $ (-289 |#3|)) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082)))) (($ $ (-631 |#3|) (-631 |#3|)) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#3| (-1082))))) (-2625 (((-631 |#3|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#3| $ (-554) |#3|) NIL) ((|#3| $ (-554)) 11)) (-3748 ((|#3| $ $) NIL (|has| |#3| (-1034)))) (-2313 (($ (-1241 |#3|)) NIL)) (-3330 (((-133)) NIL (|has| |#3| (-358)))) (-1553 (($ $ (-1 |#3| |#3|) (-758)) NIL (|has| |#3| (-1034))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1034))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034)))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034)))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034)))) (($ $ (-1158)) NIL (-12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034)))) (($ $ (-758)) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1034)))) (($ $) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1034))))) (-2777 (((-758) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4373))) (((-758) |#3| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#3| (-1082))))) (-1521 (($ $) NIL)) (-3075 (((-1241 |#3|) $) NIL) (((-848) $) NIL) (($ |#3|) NIL (|has| |#3| (-1082))) (($ (-554)) NIL (-3994 (-12 (|has| |#3| (-1023 (-554))) (|has| |#3| (-1082))) (|has| |#3| (-1034)))) (($ (-402 (-554))) NIL (-12 (|has| |#3| (-1023 (-402 (-554)))) (|has| |#3| (-1082))))) (-2261 (((-758)) NIL (|has| |#3| (-1034)))) (-2438 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4373)))) (-1700 (($ $) NIL (|has| |#3| (-834)))) (-2004 (($) NIL T CONST)) (-2014 (($) NIL (-3994 (-12 (|has| |#3| (-229)) (|has| |#3| (-1034))) (-12 (|has| |#3| (-627 (-554))) (|has| |#3| (-1034))) (|has| |#3| (-713)) (-12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034)))) CONST)) (-1787 (($ $ (-1 |#3| |#3|) (-758)) NIL (|has| |#3| (-1034))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1034))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034)))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034)))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034)))) (($ $ (-1158)) NIL (-12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034)))) (($ $ (-758)) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1034)))) (($ $) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1034))))) (-1708 (((-112) $ $) NIL (-3994 (|has| |#3| (-780)) (|has| |#3| (-834))))) (-1686 (((-112) $ $) NIL (-3994 (|has| |#3| (-780)) (|has| |#3| (-834))))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (-3994 (|has| |#3| (-780)) (|has| |#3| (-834))))) (-1676 (((-112) $ $) NIL (-3994 (|has| |#3| (-780)) (|has| |#3| (-834))))) (-1752 (($ $ |#3|) NIL (|has| |#3| (-358)))) (-1744 (($ $ $) NIL) (($ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-758)) NIL (-3994 (-12 (|has| |#3| (-229)) (|has| |#3| (-1034))) (-12 (|has| |#3| (-627 (-554))) (|has| |#3| (-1034))) (|has| |#3| (-713)) (-12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034))))) (($ $ (-906)) NIL (-3994 (-12 (|has| |#3| (-229)) (|has| |#3| (-1034))) (-12 (|has| |#3| (-627 (-554))) (|has| |#3| (-1034))) (|has| |#3| (-713)) (-12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034)))))) (* (($ |#2| $) 13) (($ (-554) $) NIL) (($ (-758) $) NIL) (($ (-906) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-713))) (($ |#3| $) NIL (|has| |#3| (-713))) (($ $ $) NIL (-3994 (-12 (|has| |#3| (-229)) (|has| |#3| (-1034))) (-12 (|has| |#3| (-627 (-554))) (|has| |#3| (-1034))) (|has| |#3| (-713)) (-12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034)))))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-246 |#1| |#2| |#3|) (-13 (-234 |#1| |#3|) (-634 |#2|)) (-758) (-1034) (-634 |#2|)) (T -246))
-NIL
-(-13 (-234 |#1| |#3|) (-634 |#2|))
-((-1386 (((-631 (-758)) $) 47) (((-631 (-758)) $ |#3|) 50)) (-1316 (((-758) $) 49) (((-758) $ |#3|) 52)) (-1698 (($ $) 65)) (-2784 (((-3 |#2| "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL) (((-3 (-554) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-2342 (((-758) $ |#3|) 39) (((-758) $) 36)) (-3179 (((-1 $ (-758)) |#3|) 15) (((-1 $ (-758)) $) 77)) (-1897 ((|#4| $) 58)) (-2081 (((-112) $) 56)) (-1502 (($ $) 64)) (-2386 (($ $ (-631 (-289 $))) 97) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-631 |#4|) (-631 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-631 |#4|) (-631 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-631 |#3|) (-631 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-631 |#3|) (-631 |#2|)) 84)) (-1553 (($ $ |#4|) NIL) (($ $ (-631 |#4|)) NIL) (($ $ |#4| (-758)) NIL) (($ $ (-631 |#4|) (-631 (-758))) NIL) (($ $) NIL) (($ $ (-758)) NIL) (($ $ (-1158)) NIL) (($ $ (-631 (-1158))) NIL) (($ $ (-1158) (-758)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL) (($ $ (-1 |#2| |#2|) (-758)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-3922 (((-631 |#3|) $) 75)) (-3308 ((|#5| $) NIL) (((-758) $ |#4|) NIL) (((-631 (-758)) $ (-631 |#4|)) NIL) (((-758) $ |#3|) 44)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-402 (-554))) NIL) (($ $) NIL)))
-(((-247 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3075 (|#1| |#1|)) (-15 -3075 (|#1| (-402 (-554)))) (-15 -2386 (|#1| |#1| (-631 |#3|) (-631 |#2|))) (-15 -2386 (|#1| |#1| |#3| |#2|)) (-15 -2386 (|#1| |#1| (-631 |#3|) (-631 |#1|))) (-15 -2386 (|#1| |#1| |#3| |#1|)) (-15 -3179 ((-1 |#1| (-758)) |#1|)) (-15 -1698 (|#1| |#1|)) (-15 -1502 (|#1| |#1|)) (-15 -1897 (|#4| |#1|)) (-15 -2081 ((-112) |#1|)) (-15 -1316 ((-758) |#1| |#3|)) (-15 -1386 ((-631 (-758)) |#1| |#3|)) (-15 -1316 ((-758) |#1|)) (-15 -1386 ((-631 (-758)) |#1|)) (-15 -3308 ((-758) |#1| |#3|)) (-15 -2342 ((-758) |#1|)) (-15 -2342 ((-758) |#1| |#3|)) (-15 -3922 ((-631 |#3|) |#1|)) (-15 -3179 ((-1 |#1| (-758)) |#3|)) (-15 -3075 (|#1| |#3|)) (-15 -2784 ((-3 |#3| "failed") |#1|)) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 -1553 (|#1| |#1| (-1158) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)))) (-15 -1553 (|#1| |#1| (-1158))) (-15 -1553 (|#1| |#1| (-758))) (-15 -1553 (|#1| |#1|)) (-15 -3308 ((-631 (-758)) |#1| (-631 |#4|))) (-15 -3308 ((-758) |#1| |#4|)) (-15 -3075 (|#1| |#4|)) (-15 -2784 ((-3 |#4| "failed") |#1|)) (-15 -2386 (|#1| |#1| (-631 |#4|) (-631 |#1|))) (-15 -2386 (|#1| |#1| |#4| |#1|)) (-15 -2386 (|#1| |#1| (-631 |#4|) (-631 |#2|))) (-15 -2386 (|#1| |#1| |#4| |#2|)) (-15 -2386 (|#1| |#1| (-631 |#1|) (-631 |#1|))) (-15 -2386 (|#1| |#1| |#1| |#1|)) (-15 -2386 (|#1| |#1| (-289 |#1|))) (-15 -2386 (|#1| |#1| (-631 (-289 |#1|)))) (-15 -3308 (|#5| |#1|)) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -3075 (|#1| |#2|)) (-15 -1553 (|#1| |#1| (-631 |#4|) (-631 (-758)))) (-15 -1553 (|#1| |#1| |#4| (-758))) (-15 -1553 (|#1| |#1| (-631 |#4|))) (-15 -1553 (|#1| |#1| |#4|)) (-15 -3075 (|#1| (-554))) (-15 -3075 ((-848) |#1|))) (-248 |#2| |#3| |#4| |#5|) (-1034) (-836) (-261 |#3|) (-780)) (T -247))
-NIL
-(-10 -8 (-15 -3075 (|#1| |#1|)) (-15 -3075 (|#1| (-402 (-554)))) (-15 -2386 (|#1| |#1| (-631 |#3|) (-631 |#2|))) (-15 -2386 (|#1| |#1| |#3| |#2|)) (-15 -2386 (|#1| |#1| (-631 |#3|) (-631 |#1|))) (-15 -2386 (|#1| |#1| |#3| |#1|)) (-15 -3179 ((-1 |#1| (-758)) |#1|)) (-15 -1698 (|#1| |#1|)) (-15 -1502 (|#1| |#1|)) (-15 -1897 (|#4| |#1|)) (-15 -2081 ((-112) |#1|)) (-15 -1316 ((-758) |#1| |#3|)) (-15 -1386 ((-631 (-758)) |#1| |#3|)) (-15 -1316 ((-758) |#1|)) (-15 -1386 ((-631 (-758)) |#1|)) (-15 -3308 ((-758) |#1| |#3|)) (-15 -2342 ((-758) |#1|)) (-15 -2342 ((-758) |#1| |#3|)) (-15 -3922 ((-631 |#3|) |#1|)) (-15 -3179 ((-1 |#1| (-758)) |#3|)) (-15 -3075 (|#1| |#3|)) (-15 -2784 ((-3 |#3| "failed") |#1|)) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 -1553 (|#1| |#1| (-1158) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)))) (-15 -1553 (|#1| |#1| (-1158))) (-15 -1553 (|#1| |#1| (-758))) (-15 -1553 (|#1| |#1|)) (-15 -3308 ((-631 (-758)) |#1| (-631 |#4|))) (-15 -3308 ((-758) |#1| |#4|)) (-15 -3075 (|#1| |#4|)) (-15 -2784 ((-3 |#4| "failed") |#1|)) (-15 -2386 (|#1| |#1| (-631 |#4|) (-631 |#1|))) (-15 -2386 (|#1| |#1| |#4| |#1|)) (-15 -2386 (|#1| |#1| (-631 |#4|) (-631 |#2|))) (-15 -2386 (|#1| |#1| |#4| |#2|)) (-15 -2386 (|#1| |#1| (-631 |#1|) (-631 |#1|))) (-15 -2386 (|#1| |#1| |#1| |#1|)) (-15 -2386 (|#1| |#1| (-289 |#1|))) (-15 -2386 (|#1| |#1| (-631 (-289 |#1|)))) (-15 -3308 (|#5| |#1|)) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -3075 (|#1| |#2|)) (-15 -1553 (|#1| |#1| (-631 |#4|) (-631 (-758)))) (-15 -1553 (|#1| |#1| |#4| (-758))) (-15 -1553 (|#1| |#1| (-631 |#4|))) (-15 -1553 (|#1| |#1| |#4|)) (-15 -3075 (|#1| (-554))) (-15 -3075 ((-848) |#1|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1386 (((-631 (-758)) $) 214) (((-631 (-758)) $ |#2|) 212)) (-1316 (((-758) $) 213) (((-758) $ |#2|) 211)) (-2405 (((-631 |#3|) $) 110)) (-2237 (((-1154 $) $ |#3|) 125) (((-1154 |#1|) $) 124)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 87 (|has| |#1| (-546)))) (-1976 (($ $) 88 (|has| |#1| (-546)))) (-1363 (((-112) $) 90 (|has| |#1| (-546)))) (-3785 (((-758) $) 112) (((-758) $ (-631 |#3|)) 111)) (-2934 (((-3 $ "failed") $ $) 19)) (-4308 (((-413 (-1154 $)) (-1154 $)) 100 (|has| |#1| (-894)))) (-3278 (($ $) 98 (|has| |#1| (-446)))) (-1565 (((-413 $) $) 97 (|has| |#1| (-446)))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) 103 (|has| |#1| (-894)))) (-1698 (($ $) 207)) (-4087 (($) 17 T CONST)) (-2784 (((-3 |#1| "failed") $) 164) (((-3 (-402 (-554)) "failed") $) 161 (|has| |#1| (-1023 (-402 (-554))))) (((-3 (-554) "failed") $) 159 (|has| |#1| (-1023 (-554)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-1668 ((|#1| $) 163) (((-402 (-554)) $) 162 (|has| |#1| (-1023 (-402 (-554))))) (((-554) $) 160 (|has| |#1| (-1023 (-554)))) ((|#3| $) 137) ((|#2| $) 222)) (-2999 (($ $ $ |#3|) 108 (|has| |#1| (-170)))) (-2550 (($ $) 154)) (-3699 (((-675 (-554)) (-675 $)) 134 (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) 133 (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) 132) (((-675 |#1|) (-675 $)) 131)) (-1320 (((-3 $ "failed") $) 33)) (-2048 (($ $) 176 (|has| |#1| (-446))) (($ $ |#3|) 105 (|has| |#1| (-446)))) (-2540 (((-631 $) $) 109)) (-3289 (((-112) $) 96 (|has| |#1| (-894)))) (-1344 (($ $ |#1| |#4| $) 172)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) 84 (-12 (|has| |#3| (-871 (-374))) (|has| |#1| (-871 (-374))))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) 83 (-12 (|has| |#3| (-871 (-554))) (|has| |#1| (-871 (-554)))))) (-2342 (((-758) $ |#2|) 217) (((-758) $) 216)) (-3248 (((-112) $) 31)) (-2122 (((-758) $) 169)) (-2393 (($ (-1154 |#1|) |#3|) 117) (($ (-1154 $) |#3|) 116)) (-3910 (((-631 $) $) 126)) (-3580 (((-112) $) 152)) (-2383 (($ |#1| |#4|) 153) (($ $ |#3| (-758)) 119) (($ $ (-631 |#3|) (-631 (-758))) 118)) (-4014 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $ |#3|) 120)) (-3893 ((|#4| $) 170) (((-758) $ |#3|) 122) (((-631 (-758)) $ (-631 |#3|)) 121)) (-4223 (($ $ $) 79 (|has| |#1| (-836)))) (-2706 (($ $ $) 78 (|has| |#1| (-836)))) (-2789 (($ (-1 |#4| |#4|) $) 171)) (-2879 (($ (-1 |#1| |#1|) $) 151)) (-3179 (((-1 $ (-758)) |#2|) 219) (((-1 $ (-758)) $) 206 (|has| |#1| (-229)))) (-3277 (((-3 |#3| "failed") $) 123)) (-2518 (($ $) 149)) (-2530 ((|#1| $) 148)) (-1897 ((|#3| $) 209)) (-2475 (($ (-631 $)) 94 (|has| |#1| (-446))) (($ $ $) 93 (|has| |#1| (-446)))) (-1613 (((-1140) $) 9)) (-2081 (((-112) $) 210)) (-3778 (((-3 (-631 $) "failed") $) 114)) (-2433 (((-3 (-631 $) "failed") $) 115)) (-3160 (((-3 (-2 (|:| |var| |#3|) (|:| -1407 (-758))) "failed") $) 113)) (-1502 (($ $) 208)) (-2768 (((-1102) $) 10)) (-2492 (((-112) $) 166)) (-2505 ((|#1| $) 167)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 95 (|has| |#1| (-446)))) (-2510 (($ (-631 $)) 92 (|has| |#1| (-446))) (($ $ $) 91 (|has| |#1| (-446)))) (-1290 (((-413 (-1154 $)) (-1154 $)) 102 (|has| |#1| (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) 101 (|has| |#1| (-894)))) (-2270 (((-413 $) $) 99 (|has| |#1| (-894)))) (-3919 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-546))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-546)))) (-2386 (($ $ (-631 (-289 $))) 145) (($ $ (-289 $)) 144) (($ $ $ $) 143) (($ $ (-631 $) (-631 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-631 |#3|) (-631 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-631 |#3|) (-631 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-229))) (($ $ (-631 |#2|) (-631 $)) 204 (|has| |#1| (-229))) (($ $ |#2| |#1|) 203 (|has| |#1| (-229))) (($ $ (-631 |#2|) (-631 |#1|)) 202 (|has| |#1| (-229)))) (-1495 (($ $ |#3|) 107 (|has| |#1| (-170)))) (-1553 (($ $ |#3|) 42) (($ $ (-631 |#3|)) 41) (($ $ |#3| (-758)) 40) (($ $ (-631 |#3|) (-631 (-758))) 39) (($ $) 238 (|has| |#1| (-229))) (($ $ (-758)) 236 (|has| |#1| (-229))) (($ $ (-1158)) 234 (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) 233 (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) 232 (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) 231 (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-3922 (((-631 |#2|) $) 218)) (-3308 ((|#4| $) 150) (((-758) $ |#3|) 130) (((-631 (-758)) $ (-631 |#3|)) 129) (((-758) $ |#2|) 215)) (-2927 (((-877 (-374)) $) 82 (-12 (|has| |#3| (-602 (-877 (-374)))) (|has| |#1| (-602 (-877 (-374)))))) (((-877 (-554)) $) 81 (-12 (|has| |#3| (-602 (-877 (-554)))) (|has| |#1| (-602 (-877 (-554)))))) (((-530) $) 80 (-12 (|has| |#3| (-602 (-530))) (|has| |#1| (-602 (-530)))))) (-3276 ((|#1| $) 175 (|has| |#1| (-446))) (($ $ |#3|) 106 (|has| |#1| (-446)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) 104 (-3726 (|has| $ (-143)) (|has| |#1| (-894))))) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ |#1|) 165) (($ |#3|) 135) (($ |#2|) 220) (($ (-402 (-554))) 72 (-3994 (|has| |#1| (-1023 (-402 (-554)))) (|has| |#1| (-38 (-402 (-554)))))) (($ $) 85 (|has| |#1| (-546)))) (-1893 (((-631 |#1|) $) 168)) (-1779 ((|#1| $ |#4|) 155) (($ $ |#3| (-758)) 128) (($ $ (-631 |#3|) (-631 (-758))) 127)) (-2084 (((-3 $ "failed") $) 73 (-3994 (-3726 (|has| $ (-143)) (|has| |#1| (-894))) (|has| |#1| (-143))))) (-2261 (((-758)) 28)) (-2907 (($ $ $ (-758)) 173 (|has| |#1| (-170)))) (-1909 (((-112) $ $) 89 (|has| |#1| (-546)))) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($ $ |#3|) 38) (($ $ (-631 |#3|)) 37) (($ $ |#3| (-758)) 36) (($ $ (-631 |#3|) (-631 (-758))) 35) (($ $) 237 (|has| |#1| (-229))) (($ $ (-758)) 235 (|has| |#1| (-229))) (($ $ (-1158)) 230 (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) 229 (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) 228 (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) 227 (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-1708 (((-112) $ $) 76 (|has| |#1| (-836)))) (-1686 (((-112) $ $) 75 (|has| |#1| (-836)))) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 77 (|has| |#1| (-836)))) (-1676 (((-112) $ $) 74 (|has| |#1| (-836)))) (-1752 (($ $ |#1|) 156 (|has| |#1| (-358)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ (-402 (-554))) 158 (|has| |#1| (-38 (-402 (-554))))) (($ (-402 (-554)) $) 157 (|has| |#1| (-38 (-402 (-554))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
-(((-248 |#1| |#2| |#3| |#4|) (-138) (-1034) (-836) (-261 |t#2|) (-780)) (T -248))
-((-3179 (*1 *2 *3) (-12 (-4 *4 (-1034)) (-4 *3 (-836)) (-4 *5 (-261 *3)) (-4 *6 (-780)) (-5 *2 (-1 *1 (-758))) (-4 *1 (-248 *4 *3 *5 *6)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-836)) (-4 *5 (-261 *4)) (-4 *6 (-780)) (-5 *2 (-631 *4)))) (-2342 (*1 *2 *1 *3) (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1034)) (-4 *3 (-836)) (-4 *5 (-261 *3)) (-4 *6 (-780)) (-5 *2 (-758)))) (-2342 (*1 *2 *1) (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-836)) (-4 *5 (-261 *4)) (-4 *6 (-780)) (-5 *2 (-758)))) (-3308 (*1 *2 *1 *3) (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1034)) (-4 *3 (-836)) (-4 *5 (-261 *3)) (-4 *6 (-780)) (-5 *2 (-758)))) (-1386 (*1 *2 *1) (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-836)) (-4 *5 (-261 *4)) (-4 *6 (-780)) (-5 *2 (-631 (-758))))) (-1316 (*1 *2 *1) (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-836)) (-4 *5 (-261 *4)) (-4 *6 (-780)) (-5 *2 (-758)))) (-1386 (*1 *2 *1 *3) (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1034)) (-4 *3 (-836)) (-4 *5 (-261 *3)) (-4 *6 (-780)) (-5 *2 (-631 (-758))))) (-1316 (*1 *2 *1 *3) (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1034)) (-4 *3 (-836)) (-4 *5 (-261 *3)) (-4 *6 (-780)) (-5 *2 (-758)))) (-2081 (*1 *2 *1) (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-836)) (-4 *5 (-261 *4)) (-4 *6 (-780)) (-5 *2 (-112)))) (-1897 (*1 *2 *1) (-12 (-4 *1 (-248 *3 *4 *2 *5)) (-4 *3 (-1034)) (-4 *4 (-836)) (-4 *5 (-780)) (-4 *2 (-261 *4)))) (-1502 (*1 *1 *1) (-12 (-4 *1 (-248 *2 *3 *4 *5)) (-4 *2 (-1034)) (-4 *3 (-836)) (-4 *4 (-261 *3)) (-4 *5 (-780)))) (-1698 (*1 *1 *1) (-12 (-4 *1 (-248 *2 *3 *4 *5)) (-4 *2 (-1034)) (-4 *3 (-836)) (-4 *4 (-261 *3)) (-4 *5 (-780)))) (-3179 (*1 *2 *1) (-12 (-4 *3 (-229)) (-4 *3 (-1034)) (-4 *4 (-836)) (-4 *5 (-261 *4)) (-4 *6 (-780)) (-5 *2 (-1 *1 (-758))) (-4 *1 (-248 *3 *4 *5 *6)))))
-(-13 (-934 |t#1| |t#4| |t#3|) (-227 |t#1|) (-1023 |t#2|) (-10 -8 (-15 -3179 ((-1 $ (-758)) |t#2|)) (-15 -3922 ((-631 |t#2|) $)) (-15 -2342 ((-758) $ |t#2|)) (-15 -2342 ((-758) $)) (-15 -3308 ((-758) $ |t#2|)) (-15 -1386 ((-631 (-758)) $)) (-15 -1316 ((-758) $)) (-15 -1386 ((-631 (-758)) $ |t#2|)) (-15 -1316 ((-758) $ |t#2|)) (-15 -2081 ((-112) $)) (-15 -1897 (|t#3| $)) (-15 -1502 ($ $)) (-15 -1698 ($ $)) (IF (|has| |t#1| (-229)) (PROGN (-6 (-508 |t#2| |t#1|)) (-6 (-508 |t#2| $)) (-6 (-304 $)) (-15 -3179 ((-1 $ (-758)) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-402 (-554)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-604 #0#) -3994 (|has| |#1| (-1023 (-402 (-554)))) (|has| |#1| (-38 (-402 (-554))))) ((-604 (-554)) . T) ((-604 |#1|) . T) ((-604 |#2|) . T) ((-604 |#3|) . T) ((-604 $) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446))) ((-601 (-848)) . T) ((-170) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-602 (-530)) -12 (|has| |#1| (-602 (-530))) (|has| |#3| (-602 (-530)))) ((-602 (-877 (-374))) -12 (|has| |#1| (-602 (-877 (-374)))) (|has| |#3| (-602 (-877 (-374))))) ((-602 (-877 (-554))) -12 (|has| |#1| (-602 (-877 (-554)))) (|has| |#3| (-602 (-877 (-554))))) ((-227 |#1|) . T) ((-229) |has| |#1| (-229)) ((-285) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446))) ((-304 $) . T) ((-321 |#1| |#4|) . T) ((-372 |#1|) . T) ((-406 |#1|) . T) ((-446) -3994 (|has| |#1| (-894)) (|has| |#1| (-446))) ((-508 |#2| |#1|) |has| |#1| (-229)) ((-508 |#2| $) |has| |#1| (-229)) ((-508 |#3| |#1|) . T) ((-508 |#3| $) . T) ((-508 $ $) . T) ((-546) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446))) ((-634 #0#) |has| |#1| (-38 (-402 (-554)))) ((-634 |#1|) . T) ((-634 $) . T) ((-627 (-554)) |has| |#1| (-627 (-554))) ((-627 |#1|) . T) ((-704 #0#) |has| |#1| (-38 (-402 (-554)))) ((-704 |#1|) |has| |#1| (-170)) ((-704 $) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446))) ((-713) . T) ((-836) |has| |#1| (-836)) ((-885 (-1158)) |has| |#1| (-885 (-1158))) ((-885 |#3|) . T) ((-871 (-374)) -12 (|has| |#1| (-871 (-374))) (|has| |#3| (-871 (-374)))) ((-871 (-554)) -12 (|has| |#1| (-871 (-554))) (|has| |#3| (-871 (-554)))) ((-934 |#1| |#4| |#3|) . T) ((-894) |has| |#1| (-894)) ((-1023 (-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) ((-1023 (-554)) |has| |#1| (-1023 (-554))) ((-1023 |#1|) . T) ((-1023 |#2|) . T) ((-1023 |#3|) . T) ((-1040 #0#) |has| |#1| (-38 (-402 (-554)))) ((-1040 |#1|) . T) ((-1040 $) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1199) |has| |#1| (-894)))
-((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-3285 ((|#1| $) 54)) (-2292 ((|#1| $) 44)) (-3019 (((-112) $ (-758)) 8)) (-4087 (($) 7 T CONST)) (-4289 (($ $) 60)) (-3920 (($ $) 48)) (-1790 ((|#1| |#1| $) 46)) (-3956 ((|#1| $) 45)) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) 9)) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35)) (-3731 (((-112) $ (-758)) 10)) (-2577 (((-758) $) 61)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-4150 ((|#1| $) 39)) (-1692 ((|#1| |#1| $) 52)) (-1335 ((|#1| |#1| $) 51)) (-2045 (($ |#1| $) 40)) (-3323 (((-758) $) 55)) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-2312 ((|#1| $) 62)) (-3084 ((|#1| $) 50)) (-3161 ((|#1| $) 49)) (-2152 ((|#1| $) 41)) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-2515 ((|#1| |#1| $) 58)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-3817 ((|#1| $) 59)) (-1684 (($) 57) (($ (-631 |#1|)) 56)) (-2763 (((-758) $) 43)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-3232 ((|#1| $) 53)) (-1591 (($ (-631 |#1|)) 42)) (-1325 ((|#1| $) 63)) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373)))))
-(((-249 |#1|) (-138) (-1195)) (T -249))
-((-1684 (*1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1195)))) (-1684 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1195)) (-4 *1 (-249 *3)))) (-3323 (*1 *2 *1) (-12 (-4 *1 (-249 *3)) (-4 *3 (-1195)) (-5 *2 (-758)))) (-3285 (*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1195)))) (-3232 (*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1195)))) (-1692 (*1 *2 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1195)))) (-1335 (*1 *2 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1195)))) (-3084 (*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1195)))) (-3161 (*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1195)))) (-3920 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1195)))))
-(-13 (-1103 |t#1|) (-980 |t#1|) (-10 -8 (-15 -1684 ($)) (-15 -1684 ($ (-631 |t#1|))) (-15 -3323 ((-758) $)) (-15 -3285 (|t#1| $)) (-15 -3232 (|t#1| $)) (-15 -1692 (|t#1| |t#1| $)) (-15 -1335 (|t#1| |t#1| $)) (-15 -3084 (|t#1| $)) (-15 -3161 (|t#1| $)) (-15 -3920 ($ $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1082)) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-601 (-848)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-980 |#1|) . T) ((-1082) |has| |#1| (-1082)) ((-1103 |#1|) . T) ((-1195) . T))
-((-3359 (((-1 (-928 (-221)) (-221) (-221)) (-1 (-928 (-221)) (-221) (-221)) (-1 (-221) (-221) (-221) (-221))) 139)) (-1465 (((-1115 (-221)) (-867 (-1 (-221) (-221) (-221))) (-1076 (-374)) (-1076 (-374))) 160) (((-1115 (-221)) (-867 (-1 (-221) (-221) (-221))) (-1076 (-374)) (-1076 (-374)) (-631 (-258))) 158) (((-1115 (-221)) (-1 (-928 (-221)) (-221) (-221)) (-1076 (-374)) (-1076 (-374))) 163) (((-1115 (-221)) (-1 (-928 (-221)) (-221) (-221)) (-1076 (-374)) (-1076 (-374)) (-631 (-258))) 159) (((-1115 (-221)) (-1 (-221) (-221) (-221)) (-1076 (-374)) (-1076 (-374))) 150) (((-1115 (-221)) (-1 (-221) (-221) (-221)) (-1076 (-374)) (-1076 (-374)) (-631 (-258))) 149) (((-1115 (-221)) (-1 (-928 (-221)) (-221)) (-1076 (-374))) 129) (((-1115 (-221)) (-1 (-928 (-221)) (-221)) (-1076 (-374)) (-631 (-258))) 127) (((-1115 (-221)) (-864 (-1 (-221) (-221))) (-1076 (-374))) 128) (((-1115 (-221)) (-864 (-1 (-221) (-221))) (-1076 (-374)) (-631 (-258))) 125)) (-1420 (((-1243) (-867 (-1 (-221) (-221) (-221))) (-1076 (-374)) (-1076 (-374))) 162) (((-1243) (-867 (-1 (-221) (-221) (-221))) (-1076 (-374)) (-1076 (-374)) (-631 (-258))) 161) (((-1243) (-1 (-928 (-221)) (-221) (-221)) (-1076 (-374)) (-1076 (-374))) 165) (((-1243) (-1 (-928 (-221)) (-221) (-221)) (-1076 (-374)) (-1076 (-374)) (-631 (-258))) 164) (((-1243) (-1 (-221) (-221) (-221)) (-1076 (-374)) (-1076 (-374))) 152) (((-1243) (-1 (-221) (-221) (-221)) (-1076 (-374)) (-1076 (-374)) (-631 (-258))) 151) (((-1243) (-1 (-928 (-221)) (-221)) (-1076 (-374))) 135) (((-1243) (-1 (-928 (-221)) (-221)) (-1076 (-374)) (-631 (-258))) 134) (((-1243) (-864 (-1 (-221) (-221))) (-1076 (-374))) 133) (((-1243) (-864 (-1 (-221) (-221))) (-1076 (-374)) (-631 (-258))) 132) (((-1242) (-862 (-1 (-221) (-221))) (-1076 (-374))) 100) (((-1242) (-862 (-1 (-221) (-221))) (-1076 (-374)) (-631 (-258))) 99) (((-1242) (-1 (-221) (-221)) (-1076 (-374))) 96) (((-1242) (-1 (-221) (-221)) (-1076 (-374)) (-631 (-258))) 95)))
-(((-250) (-10 -7 (-15 -1420 ((-1242) (-1 (-221) (-221)) (-1076 (-374)) (-631 (-258)))) (-15 -1420 ((-1242) (-1 (-221) (-221)) (-1076 (-374)))) (-15 -1420 ((-1242) (-862 (-1 (-221) (-221))) (-1076 (-374)) (-631 (-258)))) (-15 -1420 ((-1242) (-862 (-1 (-221) (-221))) (-1076 (-374)))) (-15 -1420 ((-1243) (-864 (-1 (-221) (-221))) (-1076 (-374)) (-631 (-258)))) (-15 -1420 ((-1243) (-864 (-1 (-221) (-221))) (-1076 (-374)))) (-15 -1420 ((-1243) (-1 (-928 (-221)) (-221)) (-1076 (-374)) (-631 (-258)))) (-15 -1420 ((-1243) (-1 (-928 (-221)) (-221)) (-1076 (-374)))) (-15 -1465 ((-1115 (-221)) (-864 (-1 (-221) (-221))) (-1076 (-374)) (-631 (-258)))) (-15 -1465 ((-1115 (-221)) (-864 (-1 (-221) (-221))) (-1076 (-374)))) (-15 -1465 ((-1115 (-221)) (-1 (-928 (-221)) (-221)) (-1076 (-374)) (-631 (-258)))) (-15 -1465 ((-1115 (-221)) (-1 (-928 (-221)) (-221)) (-1076 (-374)))) (-15 -1420 ((-1243) (-1 (-221) (-221) (-221)) (-1076 (-374)) (-1076 (-374)) (-631 (-258)))) (-15 -1420 ((-1243) (-1 (-221) (-221) (-221)) (-1076 (-374)) (-1076 (-374)))) (-15 -1465 ((-1115 (-221)) (-1 (-221) (-221) (-221)) (-1076 (-374)) (-1076 (-374)) (-631 (-258)))) (-15 -1465 ((-1115 (-221)) (-1 (-221) (-221) (-221)) (-1076 (-374)) (-1076 (-374)))) (-15 -1420 ((-1243) (-1 (-928 (-221)) (-221) (-221)) (-1076 (-374)) (-1076 (-374)) (-631 (-258)))) (-15 -1420 ((-1243) (-1 (-928 (-221)) (-221) (-221)) (-1076 (-374)) (-1076 (-374)))) (-15 -1465 ((-1115 (-221)) (-1 (-928 (-221)) (-221) (-221)) (-1076 (-374)) (-1076 (-374)) (-631 (-258)))) (-15 -1465 ((-1115 (-221)) (-1 (-928 (-221)) (-221) (-221)) (-1076 (-374)) (-1076 (-374)))) (-15 -1420 ((-1243) (-867 (-1 (-221) (-221) (-221))) (-1076 (-374)) (-1076 (-374)) (-631 (-258)))) (-15 -1420 ((-1243) (-867 (-1 (-221) (-221) (-221))) (-1076 (-374)) (-1076 (-374)))) (-15 -1465 ((-1115 (-221)) (-867 (-1 (-221) (-221) (-221))) (-1076 (-374)) (-1076 (-374)) (-631 (-258)))) (-15 -1465 ((-1115 (-221)) (-867 (-1 (-221) (-221) (-221))) (-1076 (-374)) (-1076 (-374)))) (-15 -3359 ((-1 (-928 (-221)) (-221) (-221)) (-1 (-928 (-221)) (-221) (-221)) (-1 (-221) (-221) (-221) (-221)))))) (T -250))
-((-3359 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-928 (-221)) (-221) (-221))) (-5 *3 (-1 (-221) (-221) (-221) (-221))) (-5 *1 (-250)))) (-1465 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-867 (-1 (-221) (-221) (-221)))) (-5 *4 (-1076 (-374))) (-5 *2 (-1115 (-221))) (-5 *1 (-250)))) (-1465 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-867 (-1 (-221) (-221) (-221)))) (-5 *4 (-1076 (-374))) (-5 *5 (-631 (-258))) (-5 *2 (-1115 (-221))) (-5 *1 (-250)))) (-1420 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-867 (-1 (-221) (-221) (-221)))) (-5 *4 (-1076 (-374))) (-5 *2 (-1243)) (-5 *1 (-250)))) (-1420 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-867 (-1 (-221) (-221) (-221)))) (-5 *4 (-1076 (-374))) (-5 *5 (-631 (-258))) (-5 *2 (-1243)) (-5 *1 (-250)))) (-1465 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-928 (-221)) (-221) (-221))) (-5 *4 (-1076 (-374))) (-5 *2 (-1115 (-221))) (-5 *1 (-250)))) (-1465 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-928 (-221)) (-221) (-221))) (-5 *4 (-1076 (-374))) (-5 *5 (-631 (-258))) (-5 *2 (-1115 (-221))) (-5 *1 (-250)))) (-1420 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-928 (-221)) (-221) (-221))) (-5 *4 (-1076 (-374))) (-5 *2 (-1243)) (-5 *1 (-250)))) (-1420 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-928 (-221)) (-221) (-221))) (-5 *4 (-1076 (-374))) (-5 *5 (-631 (-258))) (-5 *2 (-1243)) (-5 *1 (-250)))) (-1465 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1076 (-374))) (-5 *2 (-1115 (-221))) (-5 *1 (-250)))) (-1465 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1076 (-374))) (-5 *5 (-631 (-258))) (-5 *2 (-1115 (-221))) (-5 *1 (-250)))) (-1420 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1076 (-374))) (-5 *2 (-1243)) (-5 *1 (-250)))) (-1420 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1076 (-374))) (-5 *5 (-631 (-258))) (-5 *2 (-1243)) (-5 *1 (-250)))) (-1465 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-928 (-221)) (-221))) (-5 *4 (-1076 (-374))) (-5 *2 (-1115 (-221))) (-5 *1 (-250)))) (-1465 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-928 (-221)) (-221))) (-5 *4 (-1076 (-374))) (-5 *5 (-631 (-258))) (-5 *2 (-1115 (-221))) (-5 *1 (-250)))) (-1465 (*1 *2 *3 *4) (-12 (-5 *3 (-864 (-1 (-221) (-221)))) (-5 *4 (-1076 (-374))) (-5 *2 (-1115 (-221))) (-5 *1 (-250)))) (-1465 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-864 (-1 (-221) (-221)))) (-5 *4 (-1076 (-374))) (-5 *5 (-631 (-258))) (-5 *2 (-1115 (-221))) (-5 *1 (-250)))) (-1420 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-928 (-221)) (-221))) (-5 *4 (-1076 (-374))) (-5 *2 (-1243)) (-5 *1 (-250)))) (-1420 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-928 (-221)) (-221))) (-5 *4 (-1076 (-374))) (-5 *5 (-631 (-258))) (-5 *2 (-1243)) (-5 *1 (-250)))) (-1420 (*1 *2 *3 *4) (-12 (-5 *3 (-864 (-1 (-221) (-221)))) (-5 *4 (-1076 (-374))) (-5 *2 (-1243)) (-5 *1 (-250)))) (-1420 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-864 (-1 (-221) (-221)))) (-5 *4 (-1076 (-374))) (-5 *5 (-631 (-258))) (-5 *2 (-1243)) (-5 *1 (-250)))) (-1420 (*1 *2 *3 *4) (-12 (-5 *3 (-862 (-1 (-221) (-221)))) (-5 *4 (-1076 (-374))) (-5 *2 (-1242)) (-5 *1 (-250)))) (-1420 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-862 (-1 (-221) (-221)))) (-5 *4 (-1076 (-374))) (-5 *5 (-631 (-258))) (-5 *2 (-1242)) (-5 *1 (-250)))) (-1420 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-221) (-221))) (-5 *4 (-1076 (-374))) (-5 *2 (-1242)) (-5 *1 (-250)))) (-1420 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-221) (-221))) (-5 *4 (-1076 (-374))) (-5 *5 (-631 (-258))) (-5 *2 (-1242)) (-5 *1 (-250)))))
-(-10 -7 (-15 -1420 ((-1242) (-1 (-221) (-221)) (-1076 (-374)) (-631 (-258)))) (-15 -1420 ((-1242) (-1 (-221) (-221)) (-1076 (-374)))) (-15 -1420 ((-1242) (-862 (-1 (-221) (-221))) (-1076 (-374)) (-631 (-258)))) (-15 -1420 ((-1242) (-862 (-1 (-221) (-221))) (-1076 (-374)))) (-15 -1420 ((-1243) (-864 (-1 (-221) (-221))) (-1076 (-374)) (-631 (-258)))) (-15 -1420 ((-1243) (-864 (-1 (-221) (-221))) (-1076 (-374)))) (-15 -1420 ((-1243) (-1 (-928 (-221)) (-221)) (-1076 (-374)) (-631 (-258)))) (-15 -1420 ((-1243) (-1 (-928 (-221)) (-221)) (-1076 (-374)))) (-15 -1465 ((-1115 (-221)) (-864 (-1 (-221) (-221))) (-1076 (-374)) (-631 (-258)))) (-15 -1465 ((-1115 (-221)) (-864 (-1 (-221) (-221))) (-1076 (-374)))) (-15 -1465 ((-1115 (-221)) (-1 (-928 (-221)) (-221)) (-1076 (-374)) (-631 (-258)))) (-15 -1465 ((-1115 (-221)) (-1 (-928 (-221)) (-221)) (-1076 (-374)))) (-15 -1420 ((-1243) (-1 (-221) (-221) (-221)) (-1076 (-374)) (-1076 (-374)) (-631 (-258)))) (-15 -1420 ((-1243) (-1 (-221) (-221) (-221)) (-1076 (-374)) (-1076 (-374)))) (-15 -1465 ((-1115 (-221)) (-1 (-221) (-221) (-221)) (-1076 (-374)) (-1076 (-374)) (-631 (-258)))) (-15 -1465 ((-1115 (-221)) (-1 (-221) (-221) (-221)) (-1076 (-374)) (-1076 (-374)))) (-15 -1420 ((-1243) (-1 (-928 (-221)) (-221) (-221)) (-1076 (-374)) (-1076 (-374)) (-631 (-258)))) (-15 -1420 ((-1243) (-1 (-928 (-221)) (-221) (-221)) (-1076 (-374)) (-1076 (-374)))) (-15 -1465 ((-1115 (-221)) (-1 (-928 (-221)) (-221) (-221)) (-1076 (-374)) (-1076 (-374)) (-631 (-258)))) (-15 -1465 ((-1115 (-221)) (-1 (-928 (-221)) (-221) (-221)) (-1076 (-374)) (-1076 (-374)))) (-15 -1420 ((-1243) (-867 (-1 (-221) (-221) (-221))) (-1076 (-374)) (-1076 (-374)) (-631 (-258)))) (-15 -1420 ((-1243) (-867 (-1 (-221) (-221) (-221))) (-1076 (-374)) (-1076 (-374)))) (-15 -1465 ((-1115 (-221)) (-867 (-1 (-221) (-221) (-221))) (-1076 (-374)) (-1076 (-374)) (-631 (-258)))) (-15 -1465 ((-1115 (-221)) (-867 (-1 (-221) (-221) (-221))) (-1076 (-374)) (-1076 (-374)))) (-15 -3359 ((-1 (-928 (-221)) (-221) (-221)) (-1 (-928 (-221)) (-221) (-221)) (-1 (-221) (-221) (-221) (-221)))))
-((-1420 (((-1242) (-289 |#2|) (-1158) (-1158) (-631 (-258))) 96)))
-(((-251 |#1| |#2|) (-10 -7 (-15 -1420 ((-1242) (-289 |#2|) (-1158) (-1158) (-631 (-258))))) (-13 (-546) (-836) (-1023 (-554))) (-425 |#1|)) (T -251))
-((-1420 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-289 *7)) (-5 *4 (-1158)) (-5 *5 (-631 (-258))) (-4 *7 (-425 *6)) (-4 *6 (-13 (-546) (-836) (-1023 (-554)))) (-5 *2 (-1242)) (-5 *1 (-251 *6 *7)))))
-(-10 -7 (-15 -1420 ((-1242) (-289 |#2|) (-1158) (-1158) (-631 (-258)))))
-((-1859 (((-554) (-554)) 50)) (-3126 (((-554) (-554)) 51)) (-3114 (((-221) (-221)) 52)) (-2165 (((-1243) (-1 (-167 (-221)) (-167 (-221))) (-1076 (-221)) (-1076 (-221))) 49)) (-4234 (((-1243) (-1 (-167 (-221)) (-167 (-221))) (-1076 (-221)) (-1076 (-221)) (-112)) 47)))
-(((-252) (-10 -7 (-15 -4234 ((-1243) (-1 (-167 (-221)) (-167 (-221))) (-1076 (-221)) (-1076 (-221)) (-112))) (-15 -2165 ((-1243) (-1 (-167 (-221)) (-167 (-221))) (-1076 (-221)) (-1076 (-221)))) (-15 -1859 ((-554) (-554))) (-15 -3126 ((-554) (-554))) (-15 -3114 ((-221) (-221))))) (T -252))
-((-3114 (*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-252)))) (-3126 (*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-252)))) (-1859 (*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-252)))) (-2165 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-167 (-221)) (-167 (-221)))) (-5 *4 (-1076 (-221))) (-5 *2 (-1243)) (-5 *1 (-252)))) (-4234 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-167 (-221)) (-167 (-221)))) (-5 *4 (-1076 (-221))) (-5 *5 (-112)) (-5 *2 (-1243)) (-5 *1 (-252)))))
-(-10 -7 (-15 -4234 ((-1243) (-1 (-167 (-221)) (-167 (-221))) (-1076 (-221)) (-1076 (-221)) (-112))) (-15 -2165 ((-1243) (-1 (-167 (-221)) (-167 (-221))) (-1076 (-221)) (-1076 (-221)))) (-15 -1859 ((-554) (-554))) (-15 -3126 ((-554) (-554))) (-15 -3114 ((-221) (-221))))
-((-3075 (((-1074 (-374)) (-1074 (-311 |#1|))) 16)))
-(((-253 |#1|) (-10 -7 (-15 -3075 ((-1074 (-374)) (-1074 (-311 |#1|))))) (-13 (-836) (-546) (-602 (-374)))) (T -253))
-((-3075 (*1 *2 *3) (-12 (-5 *3 (-1074 (-311 *4))) (-4 *4 (-13 (-836) (-546) (-602 (-374)))) (-5 *2 (-1074 (-374))) (-5 *1 (-253 *4)))))
-(-10 -7 (-15 -3075 ((-1074 (-374)) (-1074 (-311 |#1|)))))
-((-1465 (((-1115 (-221)) (-867 |#1|) (-1074 (-374)) (-1074 (-374))) 71) (((-1115 (-221)) (-867 |#1|) (-1074 (-374)) (-1074 (-374)) (-631 (-258))) 70) (((-1115 (-221)) |#1| (-1074 (-374)) (-1074 (-374))) 61) (((-1115 (-221)) |#1| (-1074 (-374)) (-1074 (-374)) (-631 (-258))) 60) (((-1115 (-221)) (-864 |#1|) (-1074 (-374))) 52) (((-1115 (-221)) (-864 |#1|) (-1074 (-374)) (-631 (-258))) 51)) (-1420 (((-1243) (-867 |#1|) (-1074 (-374)) (-1074 (-374))) 74) (((-1243) (-867 |#1|) (-1074 (-374)) (-1074 (-374)) (-631 (-258))) 73) (((-1243) |#1| (-1074 (-374)) (-1074 (-374))) 64) (((-1243) |#1| (-1074 (-374)) (-1074 (-374)) (-631 (-258))) 63) (((-1243) (-864 |#1|) (-1074 (-374))) 56) (((-1243) (-864 |#1|) (-1074 (-374)) (-631 (-258))) 55) (((-1242) (-862 |#1|) (-1074 (-374))) 43) (((-1242) (-862 |#1|) (-1074 (-374)) (-631 (-258))) 42) (((-1242) |#1| (-1074 (-374))) 35) (((-1242) |#1| (-1074 (-374)) (-631 (-258))) 34)))
-(((-254 |#1|) (-10 -7 (-15 -1420 ((-1242) |#1| (-1074 (-374)) (-631 (-258)))) (-15 -1420 ((-1242) |#1| (-1074 (-374)))) (-15 -1420 ((-1242) (-862 |#1|) (-1074 (-374)) (-631 (-258)))) (-15 -1420 ((-1242) (-862 |#1|) (-1074 (-374)))) (-15 -1420 ((-1243) (-864 |#1|) (-1074 (-374)) (-631 (-258)))) (-15 -1420 ((-1243) (-864 |#1|) (-1074 (-374)))) (-15 -1465 ((-1115 (-221)) (-864 |#1|) (-1074 (-374)) (-631 (-258)))) (-15 -1465 ((-1115 (-221)) (-864 |#1|) (-1074 (-374)))) (-15 -1420 ((-1243) |#1| (-1074 (-374)) (-1074 (-374)) (-631 (-258)))) (-15 -1420 ((-1243) |#1| (-1074 (-374)) (-1074 (-374)))) (-15 -1465 ((-1115 (-221)) |#1| (-1074 (-374)) (-1074 (-374)) (-631 (-258)))) (-15 -1465 ((-1115 (-221)) |#1| (-1074 (-374)) (-1074 (-374)))) (-15 -1420 ((-1243) (-867 |#1|) (-1074 (-374)) (-1074 (-374)) (-631 (-258)))) (-15 -1420 ((-1243) (-867 |#1|) (-1074 (-374)) (-1074 (-374)))) (-15 -1465 ((-1115 (-221)) (-867 |#1|) (-1074 (-374)) (-1074 (-374)) (-631 (-258)))) (-15 -1465 ((-1115 (-221)) (-867 |#1|) (-1074 (-374)) (-1074 (-374))))) (-13 (-602 (-530)) (-1082))) (T -254))
-((-1465 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-867 *5)) (-5 *4 (-1074 (-374))) (-4 *5 (-13 (-602 (-530)) (-1082))) (-5 *2 (-1115 (-221))) (-5 *1 (-254 *5)))) (-1465 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-867 *6)) (-5 *4 (-1074 (-374))) (-5 *5 (-631 (-258))) (-4 *6 (-13 (-602 (-530)) (-1082))) (-5 *2 (-1115 (-221))) (-5 *1 (-254 *6)))) (-1420 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-867 *5)) (-5 *4 (-1074 (-374))) (-4 *5 (-13 (-602 (-530)) (-1082))) (-5 *2 (-1243)) (-5 *1 (-254 *5)))) (-1420 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-867 *6)) (-5 *4 (-1074 (-374))) (-5 *5 (-631 (-258))) (-4 *6 (-13 (-602 (-530)) (-1082))) (-5 *2 (-1243)) (-5 *1 (-254 *6)))) (-1465 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1074 (-374))) (-5 *2 (-1115 (-221))) (-5 *1 (-254 *3)) (-4 *3 (-13 (-602 (-530)) (-1082))))) (-1465 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1074 (-374))) (-5 *5 (-631 (-258))) (-5 *2 (-1115 (-221))) (-5 *1 (-254 *3)) (-4 *3 (-13 (-602 (-530)) (-1082))))) (-1420 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1074 (-374))) (-5 *2 (-1243)) (-5 *1 (-254 *3)) (-4 *3 (-13 (-602 (-530)) (-1082))))) (-1420 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1074 (-374))) (-5 *5 (-631 (-258))) (-5 *2 (-1243)) (-5 *1 (-254 *3)) (-4 *3 (-13 (-602 (-530)) (-1082))))) (-1465 (*1 *2 *3 *4) (-12 (-5 *3 (-864 *5)) (-5 *4 (-1074 (-374))) (-4 *5 (-13 (-602 (-530)) (-1082))) (-5 *2 (-1115 (-221))) (-5 *1 (-254 *5)))) (-1465 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-864 *6)) (-5 *4 (-1074 (-374))) (-5 *5 (-631 (-258))) (-4 *6 (-13 (-602 (-530)) (-1082))) (-5 *2 (-1115 (-221))) (-5 *1 (-254 *6)))) (-1420 (*1 *2 *3 *4) (-12 (-5 *3 (-864 *5)) (-5 *4 (-1074 (-374))) (-4 *5 (-13 (-602 (-530)) (-1082))) (-5 *2 (-1243)) (-5 *1 (-254 *5)))) (-1420 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-864 *6)) (-5 *4 (-1074 (-374))) (-5 *5 (-631 (-258))) (-4 *6 (-13 (-602 (-530)) (-1082))) (-5 *2 (-1243)) (-5 *1 (-254 *6)))) (-1420 (*1 *2 *3 *4) (-12 (-5 *3 (-862 *5)) (-5 *4 (-1074 (-374))) (-4 *5 (-13 (-602 (-530)) (-1082))) (-5 *2 (-1242)) (-5 *1 (-254 *5)))) (-1420 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-862 *6)) (-5 *4 (-1074 (-374))) (-5 *5 (-631 (-258))) (-4 *6 (-13 (-602 (-530)) (-1082))) (-5 *2 (-1242)) (-5 *1 (-254 *6)))) (-1420 (*1 *2 *3 *4) (-12 (-5 *4 (-1074 (-374))) (-5 *2 (-1242)) (-5 *1 (-254 *3)) (-4 *3 (-13 (-602 (-530)) (-1082))))) (-1420 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1074 (-374))) (-5 *5 (-631 (-258))) (-5 *2 (-1242)) (-5 *1 (-254 *3)) (-4 *3 (-13 (-602 (-530)) (-1082))))))
-(-10 -7 (-15 -1420 ((-1242) |#1| (-1074 (-374)) (-631 (-258)))) (-15 -1420 ((-1242) |#1| (-1074 (-374)))) (-15 -1420 ((-1242) (-862 |#1|) (-1074 (-374)) (-631 (-258)))) (-15 -1420 ((-1242) (-862 |#1|) (-1074 (-374)))) (-15 -1420 ((-1243) (-864 |#1|) (-1074 (-374)) (-631 (-258)))) (-15 -1420 ((-1243) (-864 |#1|) (-1074 (-374)))) (-15 -1465 ((-1115 (-221)) (-864 |#1|) (-1074 (-374)) (-631 (-258)))) (-15 -1465 ((-1115 (-221)) (-864 |#1|) (-1074 (-374)))) (-15 -1420 ((-1243) |#1| (-1074 (-374)) (-1074 (-374)) (-631 (-258)))) (-15 -1420 ((-1243) |#1| (-1074 (-374)) (-1074 (-374)))) (-15 -1465 ((-1115 (-221)) |#1| (-1074 (-374)) (-1074 (-374)) (-631 (-258)))) (-15 -1465 ((-1115 (-221)) |#1| (-1074 (-374)) (-1074 (-374)))) (-15 -1420 ((-1243) (-867 |#1|) (-1074 (-374)) (-1074 (-374)) (-631 (-258)))) (-15 -1420 ((-1243) (-867 |#1|) (-1074 (-374)) (-1074 (-374)))) (-15 -1465 ((-1115 (-221)) (-867 |#1|) (-1074 (-374)) (-1074 (-374)) (-631 (-258)))) (-15 -1465 ((-1115 (-221)) (-867 |#1|) (-1074 (-374)) (-1074 (-374)))))
-((-1420 (((-1243) (-631 (-221)) (-631 (-221)) (-631 (-221)) (-631 (-258))) 23) (((-1243) (-631 (-221)) (-631 (-221)) (-631 (-221))) 24) (((-1242) (-631 (-928 (-221))) (-631 (-258))) 16) (((-1242) (-631 (-928 (-221)))) 17) (((-1242) (-631 (-221)) (-631 (-221)) (-631 (-258))) 20) (((-1242) (-631 (-221)) (-631 (-221))) 21)))
-(((-255) (-10 -7 (-15 -1420 ((-1242) (-631 (-221)) (-631 (-221)))) (-15 -1420 ((-1242) (-631 (-221)) (-631 (-221)) (-631 (-258)))) (-15 -1420 ((-1242) (-631 (-928 (-221))))) (-15 -1420 ((-1242) (-631 (-928 (-221))) (-631 (-258)))) (-15 -1420 ((-1243) (-631 (-221)) (-631 (-221)) (-631 (-221)))) (-15 -1420 ((-1243) (-631 (-221)) (-631 (-221)) (-631 (-221)) (-631 (-258)))))) (T -255))
-((-1420 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-631 (-221))) (-5 *4 (-631 (-258))) (-5 *2 (-1243)) (-5 *1 (-255)))) (-1420 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-631 (-221))) (-5 *2 (-1243)) (-5 *1 (-255)))) (-1420 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-928 (-221)))) (-5 *4 (-631 (-258))) (-5 *2 (-1242)) (-5 *1 (-255)))) (-1420 (*1 *2 *3) (-12 (-5 *3 (-631 (-928 (-221)))) (-5 *2 (-1242)) (-5 *1 (-255)))) (-1420 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-631 (-221))) (-5 *4 (-631 (-258))) (-5 *2 (-1242)) (-5 *1 (-255)))) (-1420 (*1 *2 *3 *3) (-12 (-5 *3 (-631 (-221))) (-5 *2 (-1242)) (-5 *1 (-255)))))
-(-10 -7 (-15 -1420 ((-1242) (-631 (-221)) (-631 (-221)))) (-15 -1420 ((-1242) (-631 (-221)) (-631 (-221)) (-631 (-258)))) (-15 -1420 ((-1242) (-631 (-928 (-221))))) (-15 -1420 ((-1242) (-631 (-928 (-221))) (-631 (-258)))) (-15 -1420 ((-1243) (-631 (-221)) (-631 (-221)) (-631 (-221)))) (-15 -1420 ((-1243) (-631 (-221)) (-631 (-221)) (-631 (-221)) (-631 (-258)))))
-((-1691 (((-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))) (-631 (-258)) (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) 26)) (-2010 (((-906) (-631 (-258)) (-906)) 53)) (-1452 (((-906) (-631 (-258)) (-906)) 52)) (-2079 (((-631 (-374)) (-631 (-258)) (-631 (-374))) 69)) (-3478 (((-374) (-631 (-258)) (-374)) 58)) (-3469 (((-906) (-631 (-258)) (-906)) 54)) (-3340 (((-112) (-631 (-258)) (-112)) 28)) (-3982 (((-1140) (-631 (-258)) (-1140)) 20)) (-3147 (((-1140) (-631 (-258)) (-1140)) 27)) (-4287 (((-1115 (-221)) (-631 (-258))) 47)) (-2289 (((-631 (-1076 (-374))) (-631 (-258)) (-631 (-1076 (-374)))) 41)) (-3708 (((-859) (-631 (-258)) (-859)) 33)) (-1966 (((-859) (-631 (-258)) (-859)) 34)) (-3872 (((-1 (-928 (-221)) (-928 (-221))) (-631 (-258)) (-1 (-928 (-221)) (-928 (-221)))) 64)) (-2100 (((-112) (-631 (-258)) (-112)) 16)) (-1979 (((-112) (-631 (-258)) (-112)) 15)))
-(((-256) (-10 -7 (-15 -1979 ((-112) (-631 (-258)) (-112))) (-15 -2100 ((-112) (-631 (-258)) (-112))) (-15 -1691 ((-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))) (-631 (-258)) (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))) (-15 -3982 ((-1140) (-631 (-258)) (-1140))) (-15 -3147 ((-1140) (-631 (-258)) (-1140))) (-15 -3340 ((-112) (-631 (-258)) (-112))) (-15 -3708 ((-859) (-631 (-258)) (-859))) (-15 -1966 ((-859) (-631 (-258)) (-859))) (-15 -2289 ((-631 (-1076 (-374))) (-631 (-258)) (-631 (-1076 (-374))))) (-15 -1452 ((-906) (-631 (-258)) (-906))) (-15 -2010 ((-906) (-631 (-258)) (-906))) (-15 -4287 ((-1115 (-221)) (-631 (-258)))) (-15 -3469 ((-906) (-631 (-258)) (-906))) (-15 -3478 ((-374) (-631 (-258)) (-374))) (-15 -3872 ((-1 (-928 (-221)) (-928 (-221))) (-631 (-258)) (-1 (-928 (-221)) (-928 (-221))))) (-15 -2079 ((-631 (-374)) (-631 (-258)) (-631 (-374)))))) (T -256))
-((-2079 (*1 *2 *3 *2) (-12 (-5 *2 (-631 (-374))) (-5 *3 (-631 (-258))) (-5 *1 (-256)))) (-3872 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-928 (-221)) (-928 (-221)))) (-5 *3 (-631 (-258))) (-5 *1 (-256)))) (-3478 (*1 *2 *3 *2) (-12 (-5 *2 (-374)) (-5 *3 (-631 (-258))) (-5 *1 (-256)))) (-3469 (*1 *2 *3 *2) (-12 (-5 *2 (-906)) (-5 *3 (-631 (-258))) (-5 *1 (-256)))) (-4287 (*1 *2 *3) (-12 (-5 *3 (-631 (-258))) (-5 *2 (-1115 (-221))) (-5 *1 (-256)))) (-2010 (*1 *2 *3 *2) (-12 (-5 *2 (-906)) (-5 *3 (-631 (-258))) (-5 *1 (-256)))) (-1452 (*1 *2 *3 *2) (-12 (-5 *2 (-906)) (-5 *3 (-631 (-258))) (-5 *1 (-256)))) (-2289 (*1 *2 *3 *2) (-12 (-5 *2 (-631 (-1076 (-374)))) (-5 *3 (-631 (-258))) (-5 *1 (-256)))) (-1966 (*1 *2 *3 *2) (-12 (-5 *2 (-859)) (-5 *3 (-631 (-258))) (-5 *1 (-256)))) (-3708 (*1 *2 *3 *2) (-12 (-5 *2 (-859)) (-5 *3 (-631 (-258))) (-5 *1 (-256)))) (-3340 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-631 (-258))) (-5 *1 (-256)))) (-3147 (*1 *2 *3 *2) (-12 (-5 *2 (-1140)) (-5 *3 (-631 (-258))) (-5 *1 (-256)))) (-3982 (*1 *2 *3 *2) (-12 (-5 *2 (-1140)) (-5 *3 (-631 (-258))) (-5 *1 (-256)))) (-1691 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) (-5 *3 (-631 (-258))) (-5 *1 (-256)))) (-2100 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-631 (-258))) (-5 *1 (-256)))) (-1979 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-631 (-258))) (-5 *1 (-256)))))
-(-10 -7 (-15 -1979 ((-112) (-631 (-258)) (-112))) (-15 -2100 ((-112) (-631 (-258)) (-112))) (-15 -1691 ((-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))) (-631 (-258)) (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))) (-15 -3982 ((-1140) (-631 (-258)) (-1140))) (-15 -3147 ((-1140) (-631 (-258)) (-1140))) (-15 -3340 ((-112) (-631 (-258)) (-112))) (-15 -3708 ((-859) (-631 (-258)) (-859))) (-15 -1966 ((-859) (-631 (-258)) (-859))) (-15 -2289 ((-631 (-1076 (-374))) (-631 (-258)) (-631 (-1076 (-374))))) (-15 -1452 ((-906) (-631 (-258)) (-906))) (-15 -2010 ((-906) (-631 (-258)) (-906))) (-15 -4287 ((-1115 (-221)) (-631 (-258)))) (-15 -3469 ((-906) (-631 (-258)) (-906))) (-15 -3478 ((-374) (-631 (-258)) (-374))) (-15 -3872 ((-1 (-928 (-221)) (-928 (-221))) (-631 (-258)) (-1 (-928 (-221)) (-928 (-221))))) (-15 -2079 ((-631 (-374)) (-631 (-258)) (-631 (-374)))))
-((-2169 (((-3 |#1| "failed") (-631 (-258)) (-1158)) 17)))
-(((-257 |#1|) (-10 -7 (-15 -2169 ((-3 |#1| "failed") (-631 (-258)) (-1158)))) (-1195)) (T -257))
-((-2169 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-631 (-258))) (-5 *4 (-1158)) (-5 *1 (-257 *2)) (-4 *2 (-1195)))))
-(-10 -7 (-15 -2169 ((-3 |#1| "failed") (-631 (-258)) (-1158))))
-((-3062 (((-112) $ $) NIL)) (-1691 (($ (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) 15)) (-2010 (($ (-906)) 76)) (-1452 (($ (-906)) 75)) (-3646 (($ (-631 (-374))) 82)) (-3478 (($ (-374)) 58)) (-3469 (($ (-906)) 77)) (-3340 (($ (-112)) 23)) (-3982 (($ (-1140)) 18)) (-3147 (($ (-1140)) 19)) (-4287 (($ (-1115 (-221))) 71)) (-2289 (($ (-631 (-1076 (-374)))) 67)) (-3827 (($ (-631 (-1076 (-374)))) 59) (($ (-631 (-1076 (-402 (-554))))) 66)) (-2389 (($ (-374)) 29) (($ (-859)) 33)) (-1983 (((-112) (-631 $) (-1158)) 91)) (-2169 (((-3 (-52) "failed") (-631 $) (-1158)) 93)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2626 (($ (-374)) 34) (($ (-859)) 35)) (-3656 (($ (-1 (-928 (-221)) (-928 (-221)))) 57)) (-3872 (($ (-1 (-928 (-221)) (-928 (-221)))) 78)) (-3137 (($ (-1 (-221) (-221))) 39) (($ (-1 (-221) (-221) (-221))) 43) (($ (-1 (-221) (-221) (-221) (-221))) 47)) (-3075 (((-848) $) 87)) (-4184 (($ (-112)) 24) (($ (-631 (-1076 (-374)))) 52)) (-1979 (($ (-112)) 25)) (-1658 (((-112) $ $) 89)))
-(((-258) (-13 (-1082) (-10 -8 (-15 -1979 ($ (-112))) (-15 -4184 ($ (-112))) (-15 -1691 ($ (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))) (-15 -3982 ($ (-1140))) (-15 -3147 ($ (-1140))) (-15 -3340 ($ (-112))) (-15 -4184 ($ (-631 (-1076 (-374))))) (-15 -3656 ($ (-1 (-928 (-221)) (-928 (-221))))) (-15 -2389 ($ (-374))) (-15 -2389 ($ (-859))) (-15 -2626 ($ (-374))) (-15 -2626 ($ (-859))) (-15 -3137 ($ (-1 (-221) (-221)))) (-15 -3137 ($ (-1 (-221) (-221) (-221)))) (-15 -3137 ($ (-1 (-221) (-221) (-221) (-221)))) (-15 -3478 ($ (-374))) (-15 -3827 ($ (-631 (-1076 (-374))))) (-15 -3827 ($ (-631 (-1076 (-402 (-554)))))) (-15 -2289 ($ (-631 (-1076 (-374))))) (-15 -4287 ($ (-1115 (-221)))) (-15 -1452 ($ (-906))) (-15 -2010 ($ (-906))) (-15 -3469 ($ (-906))) (-15 -3872 ($ (-1 (-928 (-221)) (-928 (-221))))) (-15 -3646 ($ (-631 (-374)))) (-15 -2169 ((-3 (-52) "failed") (-631 $) (-1158))) (-15 -1983 ((-112) (-631 $) (-1158)))))) (T -258))
-((-1979 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-258)))) (-4184 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-258)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) (-5 *1 (-258)))) (-3982 (*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-258)))) (-3147 (*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-258)))) (-3340 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-258)))) (-4184 (*1 *1 *2) (-12 (-5 *2 (-631 (-1076 (-374)))) (-5 *1 (-258)))) (-3656 (*1 *1 *2) (-12 (-5 *2 (-1 (-928 (-221)) (-928 (-221)))) (-5 *1 (-258)))) (-2389 (*1 *1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-258)))) (-2389 (*1 *1 *2) (-12 (-5 *2 (-859)) (-5 *1 (-258)))) (-2626 (*1 *1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-258)))) (-2626 (*1 *1 *2) (-12 (-5 *2 (-859)) (-5 *1 (-258)))) (-3137 (*1 *1 *2) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *1 (-258)))) (-3137 (*1 *1 *2) (-12 (-5 *2 (-1 (-221) (-221) (-221))) (-5 *1 (-258)))) (-3137 (*1 *1 *2) (-12 (-5 *2 (-1 (-221) (-221) (-221) (-221))) (-5 *1 (-258)))) (-3478 (*1 *1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-258)))) (-3827 (*1 *1 *2) (-12 (-5 *2 (-631 (-1076 (-374)))) (-5 *1 (-258)))) (-3827 (*1 *1 *2) (-12 (-5 *2 (-631 (-1076 (-402 (-554))))) (-5 *1 (-258)))) (-2289 (*1 *1 *2) (-12 (-5 *2 (-631 (-1076 (-374)))) (-5 *1 (-258)))) (-4287 (*1 *1 *2) (-12 (-5 *2 (-1115 (-221))) (-5 *1 (-258)))) (-1452 (*1 *1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-258)))) (-2010 (*1 *1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-258)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-258)))) (-3872 (*1 *1 *2) (-12 (-5 *2 (-1 (-928 (-221)) (-928 (-221)))) (-5 *1 (-258)))) (-3646 (*1 *1 *2) (-12 (-5 *2 (-631 (-374))) (-5 *1 (-258)))) (-2169 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-631 (-258))) (-5 *4 (-1158)) (-5 *2 (-52)) (-5 *1 (-258)))) (-1983 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-258))) (-5 *4 (-1158)) (-5 *2 (-112)) (-5 *1 (-258)))))
-(-13 (-1082) (-10 -8 (-15 -1979 ($ (-112))) (-15 -4184 ($ (-112))) (-15 -1691 ($ (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))) (-15 -3982 ($ (-1140))) (-15 -3147 ($ (-1140))) (-15 -3340 ($ (-112))) (-15 -4184 ($ (-631 (-1076 (-374))))) (-15 -3656 ($ (-1 (-928 (-221)) (-928 (-221))))) (-15 -2389 ($ (-374))) (-15 -2389 ($ (-859))) (-15 -2626 ($ (-374))) (-15 -2626 ($ (-859))) (-15 -3137 ($ (-1 (-221) (-221)))) (-15 -3137 ($ (-1 (-221) (-221) (-221)))) (-15 -3137 ($ (-1 (-221) (-221) (-221) (-221)))) (-15 -3478 ($ (-374))) (-15 -3827 ($ (-631 (-1076 (-374))))) (-15 -3827 ($ (-631 (-1076 (-402 (-554)))))) (-15 -2289 ($ (-631 (-1076 (-374))))) (-15 -4287 ($ (-1115 (-221)))) (-15 -1452 ($ (-906))) (-15 -2010 ($ (-906))) (-15 -3469 ($ (-906))) (-15 -3872 ($ (-1 (-928 (-221)) (-928 (-221))))) (-15 -3646 ($ (-631 (-374)))) (-15 -2169 ((-3 (-52) "failed") (-631 $) (-1158))) (-15 -1983 ((-112) (-631 $) (-1158)))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1386 (((-631 (-758)) $) NIL) (((-631 (-758)) $ |#2|) NIL)) (-1316 (((-758) $) NIL) (((-758) $ |#2|) NIL)) (-2405 (((-631 |#3|) $) NIL)) (-2237 (((-1154 $) $ |#3|) NIL) (((-1154 |#1|) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-546)))) (-1976 (($ $) NIL (|has| |#1| (-546)))) (-1363 (((-112) $) NIL (|has| |#1| (-546)))) (-3785 (((-758) $) NIL) (((-758) $ (-631 |#3|)) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-3278 (($ $) NIL (|has| |#1| (-446)))) (-1565 (((-413 $) $) NIL (|has| |#1| (-446)))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-1698 (($ $) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1107 |#1| |#2|) "failed") $) 21)) (-1668 ((|#1| $) NIL) (((-402 (-554)) $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-554) $) NIL (|has| |#1| (-1023 (-554)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1107 |#1| |#2|) $) NIL)) (-2999 (($ $ $ |#3|) NIL (|has| |#1| (-170)))) (-2550 (($ $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) NIL) (((-675 |#1|) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2048 (($ $) NIL (|has| |#1| (-446))) (($ $ |#3|) NIL (|has| |#1| (-446)))) (-2540 (((-631 $) $) NIL)) (-3289 (((-112) $) NIL (|has| |#1| (-894)))) (-1344 (($ $ |#1| (-525 |#3|) $) NIL)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (-12 (|has| |#1| (-871 (-374))) (|has| |#3| (-871 (-374))))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (-12 (|has| |#1| (-871 (-554))) (|has| |#3| (-871 (-554)))))) (-2342 (((-758) $ |#2|) NIL) (((-758) $) 10)) (-3248 (((-112) $) NIL)) (-2122 (((-758) $) NIL)) (-2393 (($ (-1154 |#1|) |#3|) NIL) (($ (-1154 $) |#3|) NIL)) (-3910 (((-631 $) $) NIL)) (-3580 (((-112) $) NIL)) (-2383 (($ |#1| (-525 |#3|)) NIL) (($ $ |#3| (-758)) NIL) (($ $ (-631 |#3|) (-631 (-758))) NIL)) (-4014 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $ |#3|) NIL)) (-3893 (((-525 |#3|) $) NIL) (((-758) $ |#3|) NIL) (((-631 (-758)) $ (-631 |#3|)) NIL)) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2789 (($ (-1 (-525 |#3|) (-525 |#3|)) $) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-3179 (((-1 $ (-758)) |#2|) NIL) (((-1 $ (-758)) $) NIL (|has| |#1| (-229)))) (-3277 (((-3 |#3| "failed") $) NIL)) (-2518 (($ $) NIL)) (-2530 ((|#1| $) NIL)) (-1897 ((|#3| $) NIL)) (-2475 (($ (-631 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-1613 (((-1140) $) NIL)) (-2081 (((-112) $) NIL)) (-3778 (((-3 (-631 $) "failed") $) NIL)) (-2433 (((-3 (-631 $) "failed") $) NIL)) (-3160 (((-3 (-2 (|:| |var| |#3|) (|:| -1407 (-758))) "failed") $) NIL)) (-1502 (($ $) NIL)) (-2768 (((-1102) $) NIL)) (-2492 (((-112) $) NIL)) (-2505 ((|#1| $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#1| (-446)))) (-2510 (($ (-631 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-2270 (((-413 $) $) NIL (|has| |#1| (-894)))) (-3919 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-546))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-546)))) (-2386 (($ $ (-631 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-631 |#3|) (-631 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-631 |#3|) (-631 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-229))) (($ $ (-631 |#2|) (-631 $)) NIL (|has| |#1| (-229))) (($ $ |#2| |#1|) NIL (|has| |#1| (-229))) (($ $ (-631 |#2|) (-631 |#1|)) NIL (|has| |#1| (-229)))) (-1495 (($ $ |#3|) NIL (|has| |#1| (-170)))) (-1553 (($ $ |#3|) NIL) (($ $ (-631 |#3|)) NIL) (($ $ |#3| (-758)) NIL) (($ $ (-631 |#3|) (-631 (-758))) NIL) (($ $) NIL (|has| |#1| (-229))) (($ $ (-758)) NIL (|has| |#1| (-229))) (($ $ (-1158)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3922 (((-631 |#2|) $) NIL)) (-3308 (((-525 |#3|) $) NIL) (((-758) $ |#3|) NIL) (((-631 (-758)) $ (-631 |#3|)) NIL) (((-758) $ |#2|) NIL)) (-2927 (((-877 (-374)) $) NIL (-12 (|has| |#1| (-602 (-877 (-374)))) (|has| |#3| (-602 (-877 (-374)))))) (((-877 (-554)) $) NIL (-12 (|has| |#1| (-602 (-877 (-554)))) (|has| |#3| (-602 (-877 (-554)))))) (((-530) $) NIL (-12 (|has| |#1| (-602 (-530))) (|has| |#3| (-602 (-530)))))) (-3276 ((|#1| $) NIL (|has| |#1| (-446))) (($ $ |#3|) NIL (|has| |#1| (-446)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-894))))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1107 |#1| |#2|)) 30) (($ (-402 (-554))) NIL (-3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554)))))) (($ $) NIL (|has| |#1| (-546)))) (-1893 (((-631 |#1|) $) NIL)) (-1779 ((|#1| $ (-525 |#3|)) NIL) (($ $ |#3| (-758)) NIL) (($ $ (-631 |#3|) (-631 (-758))) NIL)) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| |#1| (-894))) (|has| |#1| (-143))))) (-2261 (((-758)) NIL)) (-2907 (($ $ $ (-758)) NIL (|has| |#1| (-170)))) (-1909 (((-112) $ $) NIL (|has| |#1| (-546)))) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $ |#3|) NIL) (($ $ (-631 |#3|)) NIL) (($ $ |#3| (-758)) NIL) (($ $ (-631 |#3|) (-631 (-758))) NIL) (($ $) NIL (|has| |#1| (-229))) (($ $ (-758)) NIL (|has| |#1| (-229))) (($ $ (-1158)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-259 |#1| |#2| |#3|) (-13 (-248 |#1| |#2| |#3| (-525 |#3|)) (-1023 (-1107 |#1| |#2|))) (-1034) (-836) (-261 |#2|)) (T -259))
-NIL
-(-13 (-248 |#1| |#2| |#3| (-525 |#3|)) (-1023 (-1107 |#1| |#2|)))
-((-1316 (((-758) $) 30)) (-2784 (((-3 |#2| "failed") $) 17)) (-1668 ((|#2| $) 27)) (-1553 (($ $) 12) (($ $ (-758)) 15)) (-3075 (((-848) $) 26) (($ |#2|) 10)) (-1658 (((-112) $ $) 20)) (-1676 (((-112) $ $) 29)))
-(((-260 |#1| |#2|) (-10 -8 (-15 -1553 (|#1| |#1| (-758))) (-15 -1553 (|#1| |#1|)) (-15 -1316 ((-758) |#1|)) (-15 -3075 (|#1| |#2|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -1676 ((-112) |#1| |#1|)) (-15 -3075 ((-848) |#1|)) (-15 -1658 ((-112) |#1| |#1|))) (-261 |#2|) (-836)) (T -260))
-NIL
-(-10 -8 (-15 -1553 (|#1| |#1| (-758))) (-15 -1553 (|#1| |#1|)) (-15 -1316 ((-758) |#1|)) (-15 -3075 (|#1| |#2|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -1676 ((-112) |#1| |#1|)) (-15 -3075 ((-848) |#1|)) (-15 -1658 ((-112) |#1| |#1|)))
-((-3062 (((-112) $ $) 7)) (-1316 (((-758) $) 22)) (-1576 ((|#1| $) 23)) (-2784 (((-3 |#1| "failed") $) 27)) (-1668 ((|#1| $) 28)) (-2342 (((-758) $) 24)) (-4223 (($ $ $) 13)) (-2706 (($ $ $) 14)) (-3179 (($ |#1| (-758)) 25)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-1553 (($ $) 21) (($ $ (-758)) 20)) (-3075 (((-848) $) 11) (($ |#1|) 26)) (-1708 (((-112) $ $) 16)) (-1686 (((-112) $ $) 17)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 15)) (-1676 (((-112) $ $) 18)))
-(((-261 |#1|) (-138) (-836)) (T -261))
-((-3075 (*1 *1 *2) (-12 (-4 *1 (-261 *2)) (-4 *2 (-836)))) (-3179 (*1 *1 *2 *3) (-12 (-5 *3 (-758)) (-4 *1 (-261 *2)) (-4 *2 (-836)))) (-2342 (*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-836)) (-5 *2 (-758)))) (-1576 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-836)))) (-1316 (*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-836)) (-5 *2 (-758)))) (-1553 (*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-836)))) (-1553 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *1 (-261 *3)) (-4 *3 (-836)))))
-(-13 (-836) (-1023 |t#1|) (-10 -8 (-15 -3179 ($ |t#1| (-758))) (-15 -2342 ((-758) $)) (-15 -1576 (|t#1| $)) (-15 -1316 ((-758) $)) (-15 -1553 ($ $)) (-15 -1553 ($ $ (-758))) (-15 -3075 ($ |t#1|))))
-(((-102) . T) ((-604 |#1|) . T) ((-601 (-848)) . T) ((-836) . T) ((-1023 |#1|) . T) ((-1082) . T))
-((-2405 (((-631 (-1158)) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) 41)) (-1654 (((-631 (-1158)) (-311 (-221)) (-758)) 80)) (-3078 (((-3 (-311 (-221)) "failed") (-311 (-221))) 51)) (-3094 (((-311 (-221)) (-311 (-221))) 67)) (-4211 (((-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221))))) (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) 26)) (-4076 (((-112) (-631 (-311 (-221)))) 84)) (-1599 (((-112) (-311 (-221))) 24)) (-4084 (((-631 (-1140)) (-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))))) 106)) (-3669 (((-631 (-311 (-221))) (-631 (-311 (-221)))) 88)) (-3391 (((-631 (-311 (-221))) (-631 (-311 (-221)))) 86)) (-2280 (((-675 (-221)) (-631 (-311 (-221))) (-758)) 95)) (-1478 (((-112) (-311 (-221))) 20) (((-112) (-631 (-311 (-221)))) 85)) (-1992 (((-631 (-221)) (-631 (-829 (-221))) (-221)) 14)) (-1566 (((-374) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) 101)) (-2565 (((-1020) (-1158) (-1020)) 34)))
-(((-262) (-10 -7 (-15 -1992 ((-631 (-221)) (-631 (-829 (-221))) (-221))) (-15 -4211 ((-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221))))) (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221))))))) (-15 -3078 ((-3 (-311 (-221)) "failed") (-311 (-221)))) (-15 -3094 ((-311 (-221)) (-311 (-221)))) (-15 -4076 ((-112) (-631 (-311 (-221))))) (-15 -1478 ((-112) (-631 (-311 (-221))))) (-15 -1478 ((-112) (-311 (-221)))) (-15 -2280 ((-675 (-221)) (-631 (-311 (-221))) (-758))) (-15 -3391 ((-631 (-311 (-221))) (-631 (-311 (-221))))) (-15 -3669 ((-631 (-311 (-221))) (-631 (-311 (-221))))) (-15 -1599 ((-112) (-311 (-221)))) (-15 -2405 ((-631 (-1158)) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221)))))) (-15 -1654 ((-631 (-1158)) (-311 (-221)) (-758))) (-15 -2565 ((-1020) (-1158) (-1020))) (-15 -1566 ((-374) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221)))))) (-15 -4084 ((-631 (-1140)) (-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221)))))))))) (T -262))
-((-4084 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))))) (-5 *2 (-631 (-1140))) (-5 *1 (-262)))) (-1566 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) (-5 *2 (-374)) (-5 *1 (-262)))) (-2565 (*1 *2 *3 *2) (-12 (-5 *2 (-1020)) (-5 *3 (-1158)) (-5 *1 (-262)))) (-1654 (*1 *2 *3 *4) (-12 (-5 *3 (-311 (-221))) (-5 *4 (-758)) (-5 *2 (-631 (-1158))) (-5 *1 (-262)))) (-2405 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) (-5 *2 (-631 (-1158))) (-5 *1 (-262)))) (-1599 (*1 *2 *3) (-12 (-5 *3 (-311 (-221))) (-5 *2 (-112)) (-5 *1 (-262)))) (-3669 (*1 *2 *2) (-12 (-5 *2 (-631 (-311 (-221)))) (-5 *1 (-262)))) (-3391 (*1 *2 *2) (-12 (-5 *2 (-631 (-311 (-221)))) (-5 *1 (-262)))) (-2280 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-311 (-221)))) (-5 *4 (-758)) (-5 *2 (-675 (-221))) (-5 *1 (-262)))) (-1478 (*1 *2 *3) (-12 (-5 *3 (-311 (-221))) (-5 *2 (-112)) (-5 *1 (-262)))) (-1478 (*1 *2 *3) (-12 (-5 *3 (-631 (-311 (-221)))) (-5 *2 (-112)) (-5 *1 (-262)))) (-4076 (*1 *2 *3) (-12 (-5 *3 (-631 (-311 (-221)))) (-5 *2 (-112)) (-5 *1 (-262)))) (-3094 (*1 *2 *2) (-12 (-5 *2 (-311 (-221))) (-5 *1 (-262)))) (-3078 (*1 *2 *2) (|partial| -12 (-5 *2 (-311 (-221))) (-5 *1 (-262)))) (-4211 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) (-5 *1 (-262)))) (-1992 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-829 (-221)))) (-5 *4 (-221)) (-5 *2 (-631 *4)) (-5 *1 (-262)))))
-(-10 -7 (-15 -1992 ((-631 (-221)) (-631 (-829 (-221))) (-221))) (-15 -4211 ((-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221))))) (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221))))))) (-15 -3078 ((-3 (-311 (-221)) "failed") (-311 (-221)))) (-15 -3094 ((-311 (-221)) (-311 (-221)))) (-15 -4076 ((-112) (-631 (-311 (-221))))) (-15 -1478 ((-112) (-631 (-311 (-221))))) (-15 -1478 ((-112) (-311 (-221)))) (-15 -2280 ((-675 (-221)) (-631 (-311 (-221))) (-758))) (-15 -3391 ((-631 (-311 (-221))) (-631 (-311 (-221))))) (-15 -3669 ((-631 (-311 (-221))) (-631 (-311 (-221))))) (-15 -1599 ((-112) (-311 (-221)))) (-15 -2405 ((-631 (-1158)) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221)))))) (-15 -1654 ((-631 (-1158)) (-311 (-221)) (-758))) (-15 -2565 ((-1020) (-1158) (-1020))) (-15 -1566 ((-374) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221)))))) (-15 -4084 ((-631 (-1140)) (-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221)))))))))
-((-3062 (((-112) $ $) NIL)) (-2910 (((-1020) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) NIL) (((-1020) (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) 44)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) 26) (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-1658 (((-112) $ $) NIL)))
-(((-263) (-825)) (T -263))
-NIL
-(-825)
-((-3062 (((-112) $ $) NIL)) (-2910 (((-1020) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) 58) (((-1020) (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) 54)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) 34) (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) 36)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-1658 (((-112) $ $) NIL)))
-(((-264) (-825)) (T -264))
-NIL
-(-825)
-((-3062 (((-112) $ $) NIL)) (-2910 (((-1020) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) 76) (((-1020) (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) 73)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) 44) (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) 55)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-1658 (((-112) $ $) NIL)))
-(((-265) (-825)) (T -265))
-NIL
-(-825)
-((-3062 (((-112) $ $) NIL)) (-2910 (((-1020) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) NIL) (((-1020) (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) 50)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) 31) (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-1658 (((-112) $ $) NIL)))
-(((-266) (-825)) (T -266))
-NIL
-(-825)
-((-3062 (((-112) $ $) NIL)) (-2910 (((-1020) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) NIL) (((-1020) (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) 50)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) 28) (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-1658 (((-112) $ $) NIL)))
-(((-267) (-825)) (T -267))
-NIL
-(-825)
-((-3062 (((-112) $ $) NIL)) (-2910 (((-1020) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) NIL) (((-1020) (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) 73)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) 28) (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-1658 (((-112) $ $) NIL)))
-(((-268) (-825)) (T -268))
-NIL
-(-825)
-((-3062 (((-112) $ $) NIL)) (-2910 (((-1020) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) NIL) (((-1020) (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) 77)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) 25) (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-1658 (((-112) $ $) NIL)))
-(((-269) (-825)) (T -269))
-NIL
-(-825)
-((-3062 (((-112) $ $) NIL)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2708 (((-631 (-554)) $) 19)) (-3308 (((-758) $) 17)) (-3075 (((-848) $) 23) (($ (-631 (-554))) 15)) (-1977 (($ (-758)) 20)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 9)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 11)))
-(((-270) (-13 (-836) (-10 -8 (-15 -3075 ($ (-631 (-554)))) (-15 -3308 ((-758) $)) (-15 -2708 ((-631 (-554)) $)) (-15 -1977 ($ (-758)))))) (T -270))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-270)))) (-3308 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-270)))) (-2708 (*1 *2 *1) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-270)))) (-1977 (*1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-270)))))
-(-13 (-836) (-10 -8 (-15 -3075 ($ (-631 (-554)))) (-15 -3308 ((-758) $)) (-15 -2708 ((-631 (-554)) $)) (-15 -1977 ($ (-758)))))
-((-3023 ((|#2| |#2|) 77)) (-4200 ((|#2| |#2|) 65)) (-4079 (((-3 |#2| "failed") |#2| (-631 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 116)) (-3003 ((|#2| |#2|) 75)) (-4177 ((|#2| |#2|) 63)) (-3046 ((|#2| |#2|) 79)) (-2916 ((|#2| |#2|) 67)) (-2844 ((|#2|) 46)) (-3086 (((-114) (-114)) 95)) (-2395 ((|#2| |#2|) 61)) (-2000 (((-112) |#2|) 134)) (-2898 ((|#2| |#2|) 181)) (-2650 ((|#2| |#2|) 157)) (-2752 ((|#2|) 59)) (-1564 ((|#2|) 58)) (-3015 ((|#2| |#2|) 177)) (-1467 ((|#2| |#2|) 153)) (-3256 ((|#2| |#2|) 185)) (-2002 ((|#2| |#2|) 161)) (-2362 ((|#2| |#2|) 149)) (-3796 ((|#2| |#2|) 151)) (-1847 ((|#2| |#2|) 187)) (-3599 ((|#2| |#2|) 163)) (-1365 ((|#2| |#2|) 183)) (-1784 ((|#2| |#2|) 159)) (-3241 ((|#2| |#2|) 179)) (-2287 ((|#2| |#2|) 155)) (-2404 ((|#2| |#2|) 193)) (-3279 ((|#2| |#2|) 169)) (-1531 ((|#2| |#2|) 189)) (-3332 ((|#2| |#2|) 165)) (-2511 ((|#2| |#2|) 197)) (-3128 ((|#2| |#2|) 173)) (-3590 ((|#2| |#2|) 199)) (-4152 ((|#2| |#2|) 175)) (-1724 ((|#2| |#2|) 195)) (-2019 ((|#2| |#2|) 171)) (-2088 ((|#2| |#2|) 191)) (-2156 ((|#2| |#2|) 167)) (-1333 ((|#2| |#2|) 62)) (-3057 ((|#2| |#2|) 80)) (-2926 ((|#2| |#2|) 68)) (-3034 ((|#2| |#2|) 78)) (-4213 ((|#2| |#2|) 66)) (-3014 ((|#2| |#2|) 76)) (-4188 ((|#2| |#2|) 64)) (-1902 (((-112) (-114)) 93)) (-3096 ((|#2| |#2|) 83)) (-2959 ((|#2| |#2|) 71)) (-3069 ((|#2| |#2|) 81)) (-2938 ((|#2| |#2|) 69)) (-3120 ((|#2| |#2|) 85)) (-2981 ((|#2| |#2|) 73)) (-2908 ((|#2| |#2|) 86)) (-2991 ((|#2| |#2|) 74)) (-3108 ((|#2| |#2|) 84)) (-2969 ((|#2| |#2|) 72)) (-3083 ((|#2| |#2|) 82)) (-2948 ((|#2| |#2|) 70)))
-(((-271 |#1| |#2|) (-10 -7 (-15 -1333 (|#2| |#2|)) (-15 -2395 (|#2| |#2|)) (-15 -4177 (|#2| |#2|)) (-15 -4188 (|#2| |#2|)) (-15 -4200 (|#2| |#2|)) (-15 -4213 (|#2| |#2|)) (-15 -2916 (|#2| |#2|)) (-15 -2926 (|#2| |#2|)) (-15 -2938 (|#2| |#2|)) (-15 -2948 (|#2| |#2|)) (-15 -2959 (|#2| |#2|)) (-15 -2969 (|#2| |#2|)) (-15 -2981 (|#2| |#2|)) (-15 -2991 (|#2| |#2|)) (-15 -3003 (|#2| |#2|)) (-15 -3014 (|#2| |#2|)) (-15 -3023 (|#2| |#2|)) (-15 -3034 (|#2| |#2|)) (-15 -3046 (|#2| |#2|)) (-15 -3057 (|#2| |#2|)) (-15 -3069 (|#2| |#2|)) (-15 -3083 (|#2| |#2|)) (-15 -3096 (|#2| |#2|)) (-15 -3108 (|#2| |#2|)) (-15 -3120 (|#2| |#2|)) (-15 -2908 (|#2| |#2|)) (-15 -2844 (|#2|)) (-15 -1902 ((-112) (-114))) (-15 -3086 ((-114) (-114))) (-15 -1564 (|#2|)) (-15 -2752 (|#2|)) (-15 -3796 (|#2| |#2|)) (-15 -2362 (|#2| |#2|)) (-15 -1467 (|#2| |#2|)) (-15 -2287 (|#2| |#2|)) (-15 -2650 (|#2| |#2|)) (-15 -1784 (|#2| |#2|)) (-15 -2002 (|#2| |#2|)) (-15 -3599 (|#2| |#2|)) (-15 -3332 (|#2| |#2|)) (-15 -2156 (|#2| |#2|)) (-15 -3279 (|#2| |#2|)) (-15 -2019 (|#2| |#2|)) (-15 -3128 (|#2| |#2|)) (-15 -4152 (|#2| |#2|)) (-15 -3015 (|#2| |#2|)) (-15 -3241 (|#2| |#2|)) (-15 -2898 (|#2| |#2|)) (-15 -1365 (|#2| |#2|)) (-15 -3256 (|#2| |#2|)) (-15 -1847 (|#2| |#2|)) (-15 -1531 (|#2| |#2|)) (-15 -2088 (|#2| |#2|)) (-15 -2404 (|#2| |#2|)) (-15 -1724 (|#2| |#2|)) (-15 -2511 (|#2| |#2|)) (-15 -3590 (|#2| |#2|)) (-15 -4079 ((-3 |#2| "failed") |#2| (-631 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2000 ((-112) |#2|))) (-13 (-836) (-546)) (-13 (-425 |#1|) (-987))) (T -271))
-((-2000 (*1 *2 *3) (-12 (-4 *4 (-13 (-836) (-546))) (-5 *2 (-112)) (-5 *1 (-271 *4 *3)) (-4 *3 (-13 (-425 *4) (-987))))) (-4079 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-631 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-425 *4) (-987))) (-4 *4 (-13 (-836) (-546))) (-5 *1 (-271 *4 *2)))) (-3590 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-2511 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-1724 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-2404 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-2088 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-1531 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-1847 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-3256 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-1365 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-2898 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-3241 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-3015 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-4152 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-3128 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-2019 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-3279 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-2156 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-3332 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-3599 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-2002 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-1784 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-2650 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-2287 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-1467 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-2362 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-3796 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-2752 (*1 *2) (-12 (-4 *2 (-13 (-425 *3) (-987))) (-5 *1 (-271 *3 *2)) (-4 *3 (-13 (-836) (-546))))) (-1564 (*1 *2) (-12 (-4 *2 (-13 (-425 *3) (-987))) (-5 *1 (-271 *3 *2)) (-4 *3 (-13 (-836) (-546))))) (-3086 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *4)) (-4 *4 (-13 (-425 *3) (-987))))) (-1902 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-836) (-546))) (-5 *2 (-112)) (-5 *1 (-271 *4 *5)) (-4 *5 (-13 (-425 *4) (-987))))) (-2844 (*1 *2) (-12 (-4 *2 (-13 (-425 *3) (-987))) (-5 *1 (-271 *3 *2)) (-4 *3 (-13 (-836) (-546))))) (-2908 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-3120 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-3108 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-3096 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-3083 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-3069 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-3057 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-3046 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-3034 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-3023 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-3014 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-3003 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-2991 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-2981 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-2969 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-2959 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-2948 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-2938 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-2926 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-2916 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-4213 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-4200 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-4188 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-4177 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-2395 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-1333 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))))
-(-10 -7 (-15 -1333 (|#2| |#2|)) (-15 -2395 (|#2| |#2|)) (-15 -4177 (|#2| |#2|)) (-15 -4188 (|#2| |#2|)) (-15 -4200 (|#2| |#2|)) (-15 -4213 (|#2| |#2|)) (-15 -2916 (|#2| |#2|)) (-15 -2926 (|#2| |#2|)) (-15 -2938 (|#2| |#2|)) (-15 -2948 (|#2| |#2|)) (-15 -2959 (|#2| |#2|)) (-15 -2969 (|#2| |#2|)) (-15 -2981 (|#2| |#2|)) (-15 -2991 (|#2| |#2|)) (-15 -3003 (|#2| |#2|)) (-15 -3014 (|#2| |#2|)) (-15 -3023 (|#2| |#2|)) (-15 -3034 (|#2| |#2|)) (-15 -3046 (|#2| |#2|)) (-15 -3057 (|#2| |#2|)) (-15 -3069 (|#2| |#2|)) (-15 -3083 (|#2| |#2|)) (-15 -3096 (|#2| |#2|)) (-15 -3108 (|#2| |#2|)) (-15 -3120 (|#2| |#2|)) (-15 -2908 (|#2| |#2|)) (-15 -2844 (|#2|)) (-15 -1902 ((-112) (-114))) (-15 -3086 ((-114) (-114))) (-15 -1564 (|#2|)) (-15 -2752 (|#2|)) (-15 -3796 (|#2| |#2|)) (-15 -2362 (|#2| |#2|)) (-15 -1467 (|#2| |#2|)) (-15 -2287 (|#2| |#2|)) (-15 -2650 (|#2| |#2|)) (-15 -1784 (|#2| |#2|)) (-15 -2002 (|#2| |#2|)) (-15 -3599 (|#2| |#2|)) (-15 -3332 (|#2| |#2|)) (-15 -2156 (|#2| |#2|)) (-15 -3279 (|#2| |#2|)) (-15 -2019 (|#2| |#2|)) (-15 -3128 (|#2| |#2|)) (-15 -4152 (|#2| |#2|)) (-15 -3015 (|#2| |#2|)) (-15 -3241 (|#2| |#2|)) (-15 -2898 (|#2| |#2|)) (-15 -1365 (|#2| |#2|)) (-15 -3256 (|#2| |#2|)) (-15 -1847 (|#2| |#2|)) (-15 -1531 (|#2| |#2|)) (-15 -2088 (|#2| |#2|)) (-15 -2404 (|#2| |#2|)) (-15 -1724 (|#2| |#2|)) (-15 -2511 (|#2| |#2|)) (-15 -3590 (|#2| |#2|)) (-15 -4079 ((-3 |#2| "failed") |#2| (-631 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2000 ((-112) |#2|)))
-((-1803 (((-3 |#2| "failed") (-631 (-600 |#2|)) |#2| (-1158)) 135)) (-2616 ((|#2| (-402 (-554)) |#2|) 51)) (-2281 ((|#2| |#2| (-600 |#2|)) 128)) (-4141 (((-2 (|:| |func| |#2|) (|:| |kers| (-631 (-600 |#2|))) (|:| |vals| (-631 |#2|))) |#2| (-1158)) 127)) (-1542 ((|#2| |#2| (-1158)) 20) ((|#2| |#2|) 23)) (-4085 ((|#2| |#2| (-1158)) 141) ((|#2| |#2|) 139)))
-(((-272 |#1| |#2|) (-10 -7 (-15 -4085 (|#2| |#2|)) (-15 -4085 (|#2| |#2| (-1158))) (-15 -4141 ((-2 (|:| |func| |#2|) (|:| |kers| (-631 (-600 |#2|))) (|:| |vals| (-631 |#2|))) |#2| (-1158))) (-15 -1542 (|#2| |#2|)) (-15 -1542 (|#2| |#2| (-1158))) (-15 -1803 ((-3 |#2| "failed") (-631 (-600 |#2|)) |#2| (-1158))) (-15 -2281 (|#2| |#2| (-600 |#2|))) (-15 -2616 (|#2| (-402 (-554)) |#2|))) (-13 (-546) (-836) (-1023 (-554)) (-627 (-554))) (-13 (-27) (-1180) (-425 |#1|))) (T -272))
-((-2616 (*1 *2 *3 *2) (-12 (-5 *3 (-402 (-554))) (-4 *4 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-272 *4 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *4))))) (-2281 (*1 *2 *2 *3) (-12 (-5 *3 (-600 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *4))) (-4 *4 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-272 *4 *2)))) (-1803 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-631 (-600 *2))) (-5 *4 (-1158)) (-4 *2 (-13 (-27) (-1180) (-425 *5))) (-4 *5 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-272 *5 *2)))) (-1542 (*1 *2 *2 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-272 *4 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *4))))) (-1542 (*1 *2 *2) (-12 (-4 *3 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *3))))) (-4141 (*1 *2 *3 *4) (-12 (-5 *4 (-1158)) (-4 *5 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-631 (-600 *3))) (|:| |vals| (-631 *3)))) (-5 *1 (-272 *5 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *5))))) (-4085 (*1 *2 *2 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-272 *4 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *4))))) (-4085 (*1 *2 *2) (-12 (-4 *3 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *3))))))
-(-10 -7 (-15 -4085 (|#2| |#2|)) (-15 -4085 (|#2| |#2| (-1158))) (-15 -4141 ((-2 (|:| |func| |#2|) (|:| |kers| (-631 (-600 |#2|))) (|:| |vals| (-631 |#2|))) |#2| (-1158))) (-15 -1542 (|#2| |#2|)) (-15 -1542 (|#2| |#2| (-1158))) (-15 -1803 ((-3 |#2| "failed") (-631 (-600 |#2|)) |#2| (-1158))) (-15 -2281 (|#2| |#2| (-600 |#2|))) (-15 -2616 (|#2| (-402 (-554)) |#2|)))
-((-4060 (((-3 |#3| "failed") |#3|) 110)) (-3023 ((|#3| |#3|) 131)) (-3346 (((-3 |#3| "failed") |#3|) 82)) (-4200 ((|#3| |#3|) 121)) (-3855 (((-3 |#3| "failed") |#3|) 58)) (-3003 ((|#3| |#3|) 129)) (-3685 (((-3 |#3| "failed") |#3|) 46)) (-4177 ((|#3| |#3|) 119)) (-3153 (((-3 |#3| "failed") |#3|) 112)) (-3046 ((|#3| |#3|) 133)) (-1996 (((-3 |#3| "failed") |#3|) 84)) (-2916 ((|#3| |#3|) 123)) (-2685 (((-3 |#3| "failed") |#3| (-758)) 36)) (-2097 (((-3 |#3| "failed") |#3|) 74)) (-2395 ((|#3| |#3|) 118)) (-3765 (((-3 |#3| "failed") |#3|) 44)) (-1333 ((|#3| |#3|) 117)) (-4288 (((-3 |#3| "failed") |#3|) 113)) (-3057 ((|#3| |#3|) 134)) (-3158 (((-3 |#3| "failed") |#3|) 85)) (-2926 ((|#3| |#3|) 124)) (-2785 (((-3 |#3| "failed") |#3|) 111)) (-3034 ((|#3| |#3|) 132)) (-3136 (((-3 |#3| "failed") |#3|) 83)) (-4213 ((|#3| |#3|) 122)) (-2622 (((-3 |#3| "failed") |#3|) 60)) (-3014 ((|#3| |#3|) 130)) (-3660 (((-3 |#3| "failed") |#3|) 48)) (-4188 ((|#3| |#3|) 120)) (-4181 (((-3 |#3| "failed") |#3|) 66)) (-3096 ((|#3| |#3|) 137)) (-1950 (((-3 |#3| "failed") |#3|) 104)) (-2959 ((|#3| |#3|) 142)) (-1980 (((-3 |#3| "failed") |#3|) 62)) (-3069 ((|#3| |#3|) 135)) (-1767 (((-3 |#3| "failed") |#3|) 50)) (-2938 ((|#3| |#3|) 125)) (-3729 (((-3 |#3| "failed") |#3|) 70)) (-3120 ((|#3| |#3|) 139)) (-1568 (((-3 |#3| "failed") |#3|) 54)) (-2981 ((|#3| |#3|) 127)) (-2296 (((-3 |#3| "failed") |#3|) 72)) (-2908 ((|#3| |#3|) 140)) (-4031 (((-3 |#3| "failed") |#3|) 56)) (-2991 ((|#3| |#3|) 128)) (-3041 (((-3 |#3| "failed") |#3|) 68)) (-3108 ((|#3| |#3|) 138)) (-4297 (((-3 |#3| "failed") |#3|) 107)) (-2969 ((|#3| |#3|) 143)) (-2402 (((-3 |#3| "failed") |#3|) 64)) (-3083 ((|#3| |#3|) 136)) (-1357 (((-3 |#3| "failed") |#3|) 52)) (-2948 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-402 (-554))) 40 (|has| |#1| (-358)))))
-(((-273 |#1| |#2| |#3|) (-13 (-968 |#3|) (-10 -7 (IF (|has| |#1| (-358)) (-15 ** (|#3| |#3| (-402 (-554)))) |%noBranch|) (-15 -1333 (|#3| |#3|)) (-15 -2395 (|#3| |#3|)) (-15 -4177 (|#3| |#3|)) (-15 -4188 (|#3| |#3|)) (-15 -4200 (|#3| |#3|)) (-15 -4213 (|#3| |#3|)) (-15 -2916 (|#3| |#3|)) (-15 -2926 (|#3| |#3|)) (-15 -2938 (|#3| |#3|)) (-15 -2948 (|#3| |#3|)) (-15 -2959 (|#3| |#3|)) (-15 -2969 (|#3| |#3|)) (-15 -2981 (|#3| |#3|)) (-15 -2991 (|#3| |#3|)) (-15 -3003 (|#3| |#3|)) (-15 -3014 (|#3| |#3|)) (-15 -3023 (|#3| |#3|)) (-15 -3034 (|#3| |#3|)) (-15 -3046 (|#3| |#3|)) (-15 -3057 (|#3| |#3|)) (-15 -3069 (|#3| |#3|)) (-15 -3083 (|#3| |#3|)) (-15 -3096 (|#3| |#3|)) (-15 -3108 (|#3| |#3|)) (-15 -3120 (|#3| |#3|)) (-15 -2908 (|#3| |#3|)))) (-38 (-402 (-554))) (-1232 |#1|) (-1203 |#1| |#2|)) (T -273))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-402 (-554))) (-4 *4 (-358)) (-4 *4 (-38 *3)) (-4 *5 (-1232 *4)) (-5 *1 (-273 *4 *5 *2)) (-4 *2 (-1203 *4 *5)))) (-1333 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-2395 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-4177 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-4188 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-4200 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-4213 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-2916 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-2926 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-2938 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-2948 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-2959 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-2969 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-2981 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-2991 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-3003 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-3014 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-3023 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-3034 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-3046 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-3057 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-3069 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-3083 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-3096 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-3108 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-3120 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-2908 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))))
-(-13 (-968 |#3|) (-10 -7 (IF (|has| |#1| (-358)) (-15 ** (|#3| |#3| (-402 (-554)))) |%noBranch|) (-15 -1333 (|#3| |#3|)) (-15 -2395 (|#3| |#3|)) (-15 -4177 (|#3| |#3|)) (-15 -4188 (|#3| |#3|)) (-15 -4200 (|#3| |#3|)) (-15 -4213 (|#3| |#3|)) (-15 -2916 (|#3| |#3|)) (-15 -2926 (|#3| |#3|)) (-15 -2938 (|#3| |#3|)) (-15 -2948 (|#3| |#3|)) (-15 -2959 (|#3| |#3|)) (-15 -2969 (|#3| |#3|)) (-15 -2981 (|#3| |#3|)) (-15 -2991 (|#3| |#3|)) (-15 -3003 (|#3| |#3|)) (-15 -3014 (|#3| |#3|)) (-15 -3023 (|#3| |#3|)) (-15 -3034 (|#3| |#3|)) (-15 -3046 (|#3| |#3|)) (-15 -3057 (|#3| |#3|)) (-15 -3069 (|#3| |#3|)) (-15 -3083 (|#3| |#3|)) (-15 -3096 (|#3| |#3|)) (-15 -3108 (|#3| |#3|)) (-15 -3120 (|#3| |#3|)) (-15 -2908 (|#3| |#3|))))
-((-4060 (((-3 |#3| "failed") |#3|) 66)) (-3023 ((|#3| |#3|) 129)) (-3346 (((-3 |#3| "failed") |#3|) 50)) (-4200 ((|#3| |#3|) 117)) (-3855 (((-3 |#3| "failed") |#3|) 62)) (-3003 ((|#3| |#3|) 127)) (-3685 (((-3 |#3| "failed") |#3|) 46)) (-4177 ((|#3| |#3|) 115)) (-3153 (((-3 |#3| "failed") |#3|) 70)) (-3046 ((|#3| |#3|) 131)) (-1996 (((-3 |#3| "failed") |#3|) 54)) (-2916 ((|#3| |#3|) 119)) (-2685 (((-3 |#3| "failed") |#3| (-758)) 35)) (-2097 (((-3 |#3| "failed") |#3|) 44)) (-2395 ((|#3| |#3|) 104)) (-3765 (((-3 |#3| "failed") |#3|) 42)) (-1333 ((|#3| |#3|) 114)) (-4288 (((-3 |#3| "failed") |#3|) 72)) (-3057 ((|#3| |#3|) 132)) (-3158 (((-3 |#3| "failed") |#3|) 56)) (-2926 ((|#3| |#3|) 120)) (-2785 (((-3 |#3| "failed") |#3|) 68)) (-3034 ((|#3| |#3|) 130)) (-3136 (((-3 |#3| "failed") |#3|) 52)) (-4213 ((|#3| |#3|) 118)) (-2622 (((-3 |#3| "failed") |#3|) 64)) (-3014 ((|#3| |#3|) 128)) (-3660 (((-3 |#3| "failed") |#3|) 48)) (-4188 ((|#3| |#3|) 116)) (-4181 (((-3 |#3| "failed") |#3|) 74)) (-3096 ((|#3| |#3|) 135)) (-1950 (((-3 |#3| "failed") |#3|) 58)) (-2959 ((|#3| |#3|) 123)) (-1980 (((-3 |#3| "failed") |#3|) 105)) (-3069 ((|#3| |#3|) 133)) (-1767 (((-3 |#3| "failed") |#3|) 94)) (-2938 ((|#3| |#3|) 121)) (-3729 (((-3 |#3| "failed") |#3|) 109)) (-3120 ((|#3| |#3|) 137)) (-1568 (((-3 |#3| "failed") |#3|) 101)) (-2981 ((|#3| |#3|) 125)) (-2296 (((-3 |#3| "failed") |#3|) 110)) (-2908 ((|#3| |#3|) 138)) (-4031 (((-3 |#3| "failed") |#3|) 103)) (-2991 ((|#3| |#3|) 126)) (-3041 (((-3 |#3| "failed") |#3|) 76)) (-3108 ((|#3| |#3|) 136)) (-4297 (((-3 |#3| "failed") |#3|) 60)) (-2969 ((|#3| |#3|) 124)) (-2402 (((-3 |#3| "failed") |#3|) 106)) (-3083 ((|#3| |#3|) 134)) (-1357 (((-3 |#3| "failed") |#3|) 97)) (-2948 ((|#3| |#3|) 122)) (** ((|#3| |#3| (-402 (-554))) 40 (|has| |#1| (-358)))))
-(((-274 |#1| |#2| |#3| |#4|) (-13 (-968 |#3|) (-10 -7 (IF (|has| |#1| (-358)) (-15 ** (|#3| |#3| (-402 (-554)))) |%noBranch|) (-15 -1333 (|#3| |#3|)) (-15 -2395 (|#3| |#3|)) (-15 -4177 (|#3| |#3|)) (-15 -4188 (|#3| |#3|)) (-15 -4200 (|#3| |#3|)) (-15 -4213 (|#3| |#3|)) (-15 -2916 (|#3| |#3|)) (-15 -2926 (|#3| |#3|)) (-15 -2938 (|#3| |#3|)) (-15 -2948 (|#3| |#3|)) (-15 -2959 (|#3| |#3|)) (-15 -2969 (|#3| |#3|)) (-15 -2981 (|#3| |#3|)) (-15 -2991 (|#3| |#3|)) (-15 -3003 (|#3| |#3|)) (-15 -3014 (|#3| |#3|)) (-15 -3023 (|#3| |#3|)) (-15 -3034 (|#3| |#3|)) (-15 -3046 (|#3| |#3|)) (-15 -3057 (|#3| |#3|)) (-15 -3069 (|#3| |#3|)) (-15 -3083 (|#3| |#3|)) (-15 -3096 (|#3| |#3|)) (-15 -3108 (|#3| |#3|)) (-15 -3120 (|#3| |#3|)) (-15 -2908 (|#3| |#3|)))) (-38 (-402 (-554))) (-1201 |#1|) (-1224 |#1| |#2|) (-968 |#2|)) (T -274))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-402 (-554))) (-4 *4 (-358)) (-4 *4 (-38 *3)) (-4 *5 (-1201 *4)) (-5 *1 (-274 *4 *5 *2 *6)) (-4 *2 (-1224 *4 *5)) (-4 *6 (-968 *5)))) (-1333 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-2395 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-4177 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-4188 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-4200 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-4213 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-2916 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-2926 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-2938 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-2948 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-2959 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-2969 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-2981 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-2991 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-3003 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-3014 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-3023 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-3034 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-3046 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-3057 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-3069 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-3083 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-3096 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-3108 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-3120 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-2908 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))))
-(-13 (-968 |#3|) (-10 -7 (IF (|has| |#1| (-358)) (-15 ** (|#3| |#3| (-402 (-554)))) |%noBranch|) (-15 -1333 (|#3| |#3|)) (-15 -2395 (|#3| |#3|)) (-15 -4177 (|#3| |#3|)) (-15 -4188 (|#3| |#3|)) (-15 -4200 (|#3| |#3|)) (-15 -4213 (|#3| |#3|)) (-15 -2916 (|#3| |#3|)) (-15 -2926 (|#3| |#3|)) (-15 -2938 (|#3| |#3|)) (-15 -2948 (|#3| |#3|)) (-15 -2959 (|#3| |#3|)) (-15 -2969 (|#3| |#3|)) (-15 -2981 (|#3| |#3|)) (-15 -2991 (|#3| |#3|)) (-15 -3003 (|#3| |#3|)) (-15 -3014 (|#3| |#3|)) (-15 -3023 (|#3| |#3|)) (-15 -3034 (|#3| |#3|)) (-15 -3046 (|#3| |#3|)) (-15 -3057 (|#3| |#3|)) (-15 -3069 (|#3| |#3|)) (-15 -3083 (|#3| |#3|)) (-15 -3096 (|#3| |#3|)) (-15 -3108 (|#3| |#3|)) (-15 -3120 (|#3| |#3|)) (-15 -2908 (|#3| |#3|))))
-((-1440 (((-112) $) 19)) (-1762 (((-181) $) 7)) (-1499 (((-3 (-1158) "failed") $) 14)) (-3894 (((-3 (-631 $) "failed") $) NIL)) (-2709 (((-3 (-1158) "failed") $) 21)) (-3106 (((-3 (-1086) "failed") $) 17)) (-2798 (((-112) $) 15)) (-3075 (((-848) $) NIL)) (-1728 (((-112) $) 9)))
-(((-275) (-13 (-601 (-848)) (-10 -8 (-15 -1762 ((-181) $)) (-15 -2798 ((-112) $)) (-15 -3106 ((-3 (-1086) "failed") $)) (-15 -1440 ((-112) $)) (-15 -2709 ((-3 (-1158) "failed") $)) (-15 -1728 ((-112) $)) (-15 -1499 ((-3 (-1158) "failed") $)) (-15 -3894 ((-3 (-631 $) "failed") $))))) (T -275))
-((-1762 (*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-275)))) (-2798 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-275)))) (-3106 (*1 *2 *1) (|partial| -12 (-5 *2 (-1086)) (-5 *1 (-275)))) (-1440 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-275)))) (-2709 (*1 *2 *1) (|partial| -12 (-5 *2 (-1158)) (-5 *1 (-275)))) (-1728 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-275)))) (-1499 (*1 *2 *1) (|partial| -12 (-5 *2 (-1158)) (-5 *1 (-275)))) (-3894 (*1 *2 *1) (|partial| -12 (-5 *2 (-631 (-275))) (-5 *1 (-275)))))
-(-13 (-601 (-848)) (-10 -8 (-15 -1762 ((-181) $)) (-15 -2798 ((-112) $)) (-15 -3106 ((-3 (-1086) "failed") $)) (-15 -1440 ((-112) $)) (-15 -2709 ((-3 (-1158) "failed") $)) (-15 -1728 ((-112) $)) (-15 -1499 ((-3 (-1158) "failed") $)) (-15 -3894 ((-3 (-631 $) "failed") $))))
-((-1871 (($ (-1 (-112) |#2|) $) 24)) (-1571 (($ $) 36)) (-1884 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 34)) (-2574 (($ |#2| $) 32) (($ (-1 (-112) |#2|) $) 18)) (-3606 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-1782 (($ |#2| $ (-554)) 20) (($ $ $ (-554)) 22)) (-2021 (($ $ (-554)) 11) (($ $ (-1208 (-554))) 14)) (-1853 (($ $ |#2|) 30) (($ $ $) NIL)) (-4323 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-631 $)) NIL)))
-(((-276 |#1| |#2|) (-10 -8 (-15 -3606 (|#1| |#1| |#1|)) (-15 -1884 (|#1| |#2| |#1|)) (-15 -3606 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1884 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1853 (|#1| |#1| |#1|)) (-15 -1853 (|#1| |#1| |#2|)) (-15 -1782 (|#1| |#1| |#1| (-554))) (-15 -1782 (|#1| |#2| |#1| (-554))) (-15 -2021 (|#1| |#1| (-1208 (-554)))) (-15 -2021 (|#1| |#1| (-554))) (-15 -4323 (|#1| (-631 |#1|))) (-15 -4323 (|#1| |#1| |#1|)) (-15 -4323 (|#1| |#2| |#1|)) (-15 -4323 (|#1| |#1| |#2|)) (-15 -2574 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1871 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2574 (|#1| |#2| |#1|)) (-15 -1571 (|#1| |#1|))) (-277 |#2|) (-1195)) (T -276))
-NIL
-(-10 -8 (-15 -3606 (|#1| |#1| |#1|)) (-15 -1884 (|#1| |#2| |#1|)) (-15 -3606 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1884 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1853 (|#1| |#1| |#1|)) (-15 -1853 (|#1| |#1| |#2|)) (-15 -1782 (|#1| |#1| |#1| (-554))) (-15 -1782 (|#1| |#2| |#1| (-554))) (-15 -2021 (|#1| |#1| (-1208 (-554)))) (-15 -2021 (|#1| |#1| (-554))) (-15 -4323 (|#1| (-631 |#1|))) (-15 -4323 (|#1| |#1| |#1|)) (-15 -4323 (|#1| |#2| |#1|)) (-15 -4323 (|#1| |#1| |#2|)) (-15 -2574 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1871 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2574 (|#1| |#2| |#1|)) (-15 -1571 (|#1| |#1|)))
-((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-4233 (((-1246) $ (-554) (-554)) 40 (|has| $ (-6 -4374)))) (-3019 (((-112) $ (-758)) 8)) (-1501 ((|#1| $ (-554) |#1|) 52 (|has| $ (-6 -4374))) ((|#1| $ (-1208 (-554)) |#1|) 58 (|has| $ (-6 -4374)))) (-2220 (($ (-1 (-112) |#1|) $) 85)) (-1871 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4373)))) (-4087 (($) 7 T CONST)) (-2593 (($ $) 83 (|has| |#1| (-1082)))) (-1571 (($ $) 78 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1884 (($ (-1 (-112) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1082)))) (-2574 (($ |#1| $) 77 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4373)))) (-2862 ((|#1| $ (-554) |#1|) 53 (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-554)) 51)) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-3180 (($ (-758) |#1|) 69)) (-2230 (((-112) $ (-758)) 9)) (-3044 (((-554) $) 43 (|has| (-554) (-836)))) (-3606 (($ (-1 (-112) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-836)))) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2256 (((-554) $) 44 (|has| (-554) (-836)))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3731 (((-112) $ (-758)) 10)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-2045 (($ |#1| $ (-554)) 88) (($ $ $ (-554)) 87)) (-1782 (($ |#1| $ (-554)) 60) (($ $ $ (-554)) 59)) (-2529 (((-631 (-554)) $) 46)) (-3618 (((-112) (-554) $) 47)) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-1539 ((|#1| $) 42 (|has| (-554) (-836)))) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2441 (($ $ |#1|) 41 (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-1609 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) 48)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2064 ((|#1| $ (-554) |#1|) 50) ((|#1| $ (-554)) 49) (($ $ (-1208 (-554))) 63)) (-3029 (($ $ (-554)) 91) (($ $ (-1208 (-554))) 90)) (-2021 (($ $ (-554)) 62) (($ $ (-1208 (-554))) 61)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-2927 (((-530) $) 79 (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) 70)) (-1853 (($ $ |#1|) 93) (($ $ $) 92)) (-4323 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-631 $)) 65)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373)))))
-(((-277 |#1|) (-138) (-1195)) (T -277))
-((-1853 (*1 *1 *1 *2) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1195)))) (-1853 (*1 *1 *1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1195)))) (-3029 (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-4 *1 (-277 *3)) (-4 *3 (-1195)))) (-3029 (*1 *1 *1 *2) (-12 (-5 *2 (-1208 (-554))) (-4 *1 (-277 *3)) (-4 *3 (-1195)))) (-1884 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-277 *3)) (-4 *3 (-1195)))) (-2045 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-554)) (-4 *1 (-277 *2)) (-4 *2 (-1195)))) (-2045 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-554)) (-4 *1 (-277 *3)) (-4 *3 (-1195)))) (-3606 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-277 *3)) (-4 *3 (-1195)))) (-2220 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-277 *3)) (-4 *3 (-1195)))) (-1884 (*1 *1 *2 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1195)) (-4 *2 (-1082)))) (-2593 (*1 *1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1195)) (-4 *2 (-1082)))) (-3606 (*1 *1 *1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1195)) (-4 *2 (-836)))))
-(-13 (-637 |t#1|) (-10 -8 (-6 -4374) (-15 -1853 ($ $ |t#1|)) (-15 -1853 ($ $ $)) (-15 -3029 ($ $ (-554))) (-15 -3029 ($ $ (-1208 (-554)))) (-15 -1884 ($ (-1 (-112) |t#1|) $)) (-15 -2045 ($ |t#1| $ (-554))) (-15 -2045 ($ $ $ (-554))) (-15 -3606 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2220 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1082)) (PROGN (-15 -1884 ($ |t#1| $)) (-15 -2593 ($ $))) |%noBranch|) (IF (|has| |t#1| (-836)) (-15 -3606 ($ $ $)) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1082)) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-601 (-848)))) ((-149 |#1|) . T) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-281 #0=(-554) |#1|) . T) ((-283 #0# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-592 #0# |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-637 |#1|) . T) ((-1082) |has| |#1| (-1082)) ((-1195) . T))
+((-4238 (((-112) $) 12)) (-3167 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-406 (-558)) $) 25) (($ $ (-406 (-558))) NIL)))
+(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-406 (-558)))) (-15 * (|#1| (-406 (-558)) |#1|)) (-15 -4238 ((-112) |#1|)) (-15 -3167 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-762) |#1|)) (-15 * (|#1| (-911) |#1|))) (-47 |#2| |#3|) (-1039) (-783)) (T -46))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-406 (-558)))) (-15 * (|#1| (-406 (-558)) |#1|)) (-15 -4238 ((-112) |#1|)) (-15 -3167 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-762) |#1|)) (-15 * (|#1| (-911) |#1|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 54 (|has| |#1| (-550)))) (-1881 (($ $) 55 (|has| |#1| (-550)))) (-1857 (((-112) $) 57 (|has| |#1| (-550)))) (-2089 (((-3 $ "failed") $ $) 19)) (-1816 (($) 17 T CONST)) (-2490 (($ $) 63)) (-2588 (((-3 $ "failed") $) 33)) (-2035 (((-112) $) 31)) (-4238 (((-112) $) 65)) (-2648 (($ |#1| |#2|) 64)) (-3167 (($ (-1 |#1| |#1|) $) 66)) (-2451 (($ $) 68)) (-2463 ((|#1| $) 69)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3983 (((-3 $ "failed") $ $) 53 (|has| |#1| (-550)))) (-4323 ((|#2| $) 67)) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ (-406 (-558))) 60 (|has| |#1| (-38 (-406 (-558))))) (($ $) 52 (|has| |#1| (-550))) (($ |#1|) 50 (|has| |#1| (-171)))) (-3736 ((|#1| $ |#2|) 62)) (-3698 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-2542 (((-762)) 28)) (-1870 (((-112) $ $) 56 (|has| |#1| (-550)))) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1683 (((-112) $ $) 6)) (-1810 (($ $ |#1|) 61 (|has| |#1| (-362)))) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-558)) $) 59 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) 58 (|has| |#1| (-38 (-406 (-558)))))))
+(((-47 |#1| |#2|) (-139) (-1039) (-783)) (T -47))
+((-2463 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-783)) (-4 *2 (-1039)))) (-2451 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-783)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-783)))) (-3167 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-783)))) (-4238 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-783)) (-5 *2 (-112)))) (-2648 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-783)))) (-2490 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-783)))) (-3736 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-783)) (-4 *2 (-1039)))) (-1810 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-783)) (-4 *2 (-362)))))
+(-13 (-1039) (-111 |t#1| |t#1|) (-10 -8 (-15 -2463 (|t#1| $)) (-15 -2451 ($ $)) (-15 -4323 (|t#2| $)) (-15 -3167 ($ (-1 |t#1| |t#1|) $)) (-15 -4238 ((-112) $)) (-15 -2648 ($ |t#1| |t#2|)) (-15 -2490 ($ $)) (-15 -3736 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-362)) (-15 -1810 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-171)) (PROGN (-6 (-171)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-550)) (-6 (-550)) |%noBranch|) (IF (|has| |t#1| (-38 (-406 (-558)))) (-6 (-38 (-406 (-558)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-550)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-406 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3998 (|has| |#1| (-550)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-608 #0#) |has| |#1| (-38 (-406 (-558)))) ((-608 (-558)) . T) ((-608 |#1|) |has| |#1| (-171)) ((-608 $) |has| |#1| (-550)) ((-605 (-853)) . T) ((-171) -3998 (|has| |#1| (-550)) (|has| |#1| (-171))) ((-289) |has| |#1| (-550)) ((-550) |has| |#1| (-550)) ((-638 #0#) |has| |#1| (-38 (-406 (-558)))) ((-638 |#1|) . T) ((-638 $) . T) ((-708 #0#) |has| |#1| (-38 (-406 (-558)))) ((-708 |#1|) |has| |#1| (-171)) ((-708 $) |has| |#1| (-550)) ((-717) . T) ((-1045 #0#) |has| |#1| (-38 (-406 (-558)))) ((-1045 |#1|) . T) ((-1045 $) -3998 (|has| |#1| (-550)) (|has| |#1| (-171))) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
+((-3207 (((-112) $ $) NIL)) (-1461 (((-635 $) (-1159 $) (-1163)) NIL) (((-635 $) (-1159 $)) NIL) (((-635 $) (-942 $)) NIL)) (-1589 (($ (-1159 $) (-1163)) NIL) (($ (-1159 $)) NIL) (($ (-942 $)) NIL)) (-2067 (((-112) $) 11)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL)) (-1881 (($ $) NIL)) (-1857 (((-112) $) NIL)) (-2396 (((-635 (-604 $)) $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-2497 (($ $ (-293 $)) NIL) (($ $ (-635 (-293 $))) NIL) (($ $ (-635 (-604 $)) (-635 $)) NIL)) (-3465 (($ $) NIL)) (-1380 (((-417 $) $) NIL)) (-2534 (($ $) NIL)) (-3732 (((-112) $ $) NIL)) (-1816 (($) NIL T CONST)) (-1608 (((-635 $) (-1159 $) (-1163)) NIL) (((-635 $) (-1159 $)) NIL) (((-635 $) (-942 $)) NIL)) (-2016 (($ (-1159 $) (-1163)) NIL) (($ (-1159 $)) NIL) (($ (-942 $)) NIL)) (-3069 (((-3 (-604 $) "failed") $) NIL) (((-3 (-558) "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL)) (-1863 (((-604 $) $) NIL) (((-558) $) NIL) (((-406 (-558)) $) NIL)) (-4025 (($ $ $) NIL)) (-3216 (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL) (((-679 (-558)) (-679 $)) NIL) (((-2 (|:| -3683 (-679 (-406 (-558)))) (|:| |vec| (-1246 (-406 (-558))))) (-679 $) (-1246 $)) NIL) (((-679 (-406 (-558))) (-679 $)) NIL)) (-3048 (($ $) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-4004 (($ $ $) NIL)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL)) (-3031 (((-112) $) NIL)) (-3800 (($ $) NIL) (($ (-635 $)) NIL)) (-1405 (((-635 (-114)) $) NIL)) (-3029 (((-114) (-114)) NIL)) (-2035 (((-112) $) 14)) (-3451 (((-112) $) NIL (|has| $ (-1028 (-558))))) (-1874 (((-1112 (-558) (-604 $)) $) NIL)) (-3828 (($ $ (-558)) NIL)) (-2615 (((-1159 $) (-1159 $) (-604 $)) NIL) (((-1159 $) (-1159 $) (-635 (-604 $))) NIL) (($ $ (-604 $)) NIL) (($ $ (-635 (-604 $))) NIL)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1381 (((-1159 $) (-604 $)) NIL (|has| $ (-1039)))) (-3910 (($ $ $) NIL)) (-3542 (($ $ $) NIL)) (-3167 (($ (-1 $ $) (-604 $)) NIL)) (-1416 (((-3 (-604 $) "failed") $) NIL)) (-2665 (($ (-635 $)) NIL) (($ $ $) NIL)) (-4310 (((-1145) $) NIL)) (-2475 (((-635 (-604 $)) $) NIL)) (-1949 (($ (-114) $) NIL) (($ (-114) (-635 $)) NIL)) (-3173 (((-112) $ (-114)) NIL) (((-112) $ (-1163)) NIL)) (-2418 (($ $) NIL)) (-3382 (((-762) $) NIL)) (-2975 (((-1107) $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-2699 (($ (-635 $)) NIL) (($ $ $) NIL)) (-1392 (((-112) $ $) NIL) (((-112) $ (-1163)) NIL)) (-2522 (((-417 $) $) NIL)) (-3713 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL)) (-3983 (((-3 $ "failed") $ $) NIL)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3458 (((-112) $) NIL (|has| $ (-1028 (-558))))) (-2554 (($ $ (-604 $) $) NIL) (($ $ (-635 (-604 $)) (-635 $)) NIL) (($ $ (-635 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-635 (-1163)) (-635 (-1 $ $))) NIL) (($ $ (-635 (-1163)) (-635 (-1 $ (-635 $)))) NIL) (($ $ (-1163) (-1 $ (-635 $))) NIL) (($ $ (-1163) (-1 $ $)) NIL) (($ $ (-635 (-114)) (-635 (-1 $ $))) NIL) (($ $ (-635 (-114)) (-635 (-1 $ (-635 $)))) NIL) (($ $ (-114) (-1 $ (-635 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-3722 (((-762) $) NIL)) (-2195 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-635 $)) NIL)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL)) (-1426 (($ $) NIL) (($ $ $) NIL)) (-2829 (($ $ (-762)) NIL) (($ $) NIL)) (-1885 (((-1112 (-558) (-604 $)) $) NIL)) (-2036 (($ $) NIL (|has| $ (-1039)))) (-3224 (((-378) $) NIL) (((-224) $) NIL) (((-168 (-378)) $) NIL)) (-3220 (((-853) $) NIL) (($ (-604 $)) NIL) (($ (-406 (-558))) NIL) (($ $) NIL) (($ (-558)) NIL) (($ (-1112 (-558) (-604 $))) NIL)) (-2542 (((-762)) NIL)) (-2540 (($ $) NIL) (($ (-635 $)) NIL)) (-2995 (((-112) (-114)) NIL)) (-1870 (((-112) $ $) NIL)) (-2131 (($) 7 T CONST)) (-2142 (($) 12 T CONST)) (-1866 (($ $ (-762)) NIL) (($ $) NIL)) (-1747 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1683 (((-112) $ $) 16)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1810 (($ $ $) NIL)) (-1798 (($ $ $) 15) (($ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-406 (-558))) NIL) (($ $ (-558)) NIL) (($ $ (-762)) NIL) (($ $ (-911)) NIL)) (* (($ (-406 (-558)) $) NIL) (($ $ (-406 (-558))) NIL) (($ $ $) NIL) (($ (-558) $) NIL) (($ (-762) $) NIL) (($ (-911) $) NIL)))
+(((-48) (-13 (-301) (-27) (-1028 (-558)) (-1028 (-406 (-558))) (-631 (-558)) (-1012) (-631 (-406 (-558))) (-146) (-606 (-168 (-378))) (-232) (-10 -8 (-15 -3220 ($ (-1112 (-558) (-604 $)))) (-15 -1874 ((-1112 (-558) (-604 $)) $)) (-15 -1885 ((-1112 (-558) (-604 $)) $)) (-15 -3048 ($ $)) (-15 -2615 ((-1159 $) (-1159 $) (-604 $))) (-15 -2615 ((-1159 $) (-1159 $) (-635 (-604 $)))) (-15 -2615 ($ $ (-604 $))) (-15 -2615 ($ $ (-635 (-604 $))))))) (T -48))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-1112 (-558) (-604 (-48)))) (-5 *1 (-48)))) (-1874 (*1 *2 *1) (-12 (-5 *2 (-1112 (-558) (-604 (-48)))) (-5 *1 (-48)))) (-1885 (*1 *2 *1) (-12 (-5 *2 (-1112 (-558) (-604 (-48)))) (-5 *1 (-48)))) (-3048 (*1 *1 *1) (-5 *1 (-48))) (-2615 (*1 *2 *2 *3) (-12 (-5 *2 (-1159 (-48))) (-5 *3 (-604 (-48))) (-5 *1 (-48)))) (-2615 (*1 *2 *2 *3) (-12 (-5 *2 (-1159 (-48))) (-5 *3 (-635 (-604 (-48)))) (-5 *1 (-48)))) (-2615 (*1 *1 *1 *2) (-12 (-5 *2 (-604 (-48))) (-5 *1 (-48)))) (-2615 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-604 (-48)))) (-5 *1 (-48)))))
+(-13 (-301) (-27) (-1028 (-558)) (-1028 (-406 (-558))) (-631 (-558)) (-1012) (-631 (-406 (-558))) (-146) (-606 (-168 (-378))) (-232) (-10 -8 (-15 -3220 ($ (-1112 (-558) (-604 $)))) (-15 -1874 ((-1112 (-558) (-604 $)) $)) (-15 -1885 ((-1112 (-558) (-604 $)) $)) (-15 -3048 ($ $)) (-15 -2615 ((-1159 $) (-1159 $) (-604 $))) (-15 -2615 ((-1159 $) (-1159 $) (-635 (-604 $)))) (-15 -2615 ($ $ (-604 $))) (-15 -2615 ($ $ (-635 (-604 $))))))
+((-3207 (((-112) $ $) NIL)) (-2980 (((-635 (-1163)) $) 17)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 7)) (-1337 (((-1168) $) 18)) (-1683 (((-112) $ $) NIL)))
+(((-49) (-13 (-1087) (-10 -8 (-15 -2980 ((-635 (-1163)) $)) (-15 -1337 ((-1168) $))))) (T -49))
+((-2980 (*1 *2 *1) (-12 (-5 *2 (-635 (-1163))) (-5 *1 (-49)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-49)))))
+(-13 (-1087) (-10 -8 (-15 -2980 ((-635 (-1163)) $)) (-15 -1337 ((-1168) $))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) 61)) (-2089 (((-3 $ "failed") $ $) NIL)) (-1816 (($) NIL T CONST)) (-3464 (((-112) $) 20)) (-3069 (((-3 |#1| "failed") $) 23)) (-1863 ((|#1| $) 24)) (-2490 (($ $) 28)) (-2588 (((-3 $ "failed") $) NIL)) (-2035 (((-112) $) NIL)) (-3167 (($ (-1 |#1| |#1|) $) NIL)) (-2463 ((|#1| $) 21)) (-2452 (($ $) 50)) (-4310 (((-1145) $) NIL)) (-2441 (((-112) $) 30)) (-2975 (((-1107) $) NIL)) (-4098 (($ (-762)) 48)) (-2573 (($ (-635 (-558))) 49)) (-4323 (((-762) $) 31)) (-3220 (((-853) $) 64) (($ (-558)) 45) (($ |#1|) 43)) (-3736 ((|#1| $ $) 19)) (-2542 (((-762)) 47)) (-2131 (($) 32 T CONST)) (-2142 (($) 14 T CONST)) (-1683 (((-112) $ $) NIL)) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) 40)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 41) (($ |#1| $) 35)))
+(((-50 |#1| |#2|) (-13 (-612 |#1|) (-1028 |#1|) (-10 -8 (-15 -2463 (|#1| $)) (-15 -2452 ($ $)) (-15 -2490 ($ $)) (-15 -3736 (|#1| $ $)) (-15 -4098 ($ (-762))) (-15 -2573 ($ (-635 (-558)))) (-15 -2441 ((-112) $)) (-15 -3464 ((-112) $)) (-15 -4323 ((-762) $)) (-15 -3167 ($ (-1 |#1| |#1|) $)))) (-1039) (-635 (-1163))) (T -50))
+((-2463 (*1 *2 *1) (-12 (-4 *2 (-1039)) (-5 *1 (-50 *2 *3)) (-14 *3 (-635 (-1163))))) (-2452 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1039)) (-14 *3 (-635 (-1163))))) (-2490 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1039)) (-14 *3 (-635 (-1163))))) (-3736 (*1 *2 *1 *1) (-12 (-4 *2 (-1039)) (-5 *1 (-50 *2 *3)) (-14 *3 (-635 (-1163))))) (-4098 (*1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1039)) (-14 *4 (-635 (-1163))))) (-2573 (*1 *1 *2) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1039)) (-14 *4 (-635 (-1163))))) (-2441 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1039)) (-14 *4 (-635 (-1163))))) (-3464 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1039)) (-14 *4 (-635 (-1163))))) (-4323 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1039)) (-14 *4 (-635 (-1163))))) (-3167 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1039)) (-5 *1 (-50 *3 *4)) (-14 *4 (-635 (-1163))))))
+(-13 (-612 |#1|) (-1028 |#1|) (-10 -8 (-15 -2463 (|#1| $)) (-15 -2452 ($ $)) (-15 -2490 ($ $)) (-15 -3736 (|#1| $ $)) (-15 -4098 ($ (-762))) (-15 -2573 ($ (-635 (-558)))) (-15 -2441 ((-112) $)) (-15 -3464 ((-112) $)) (-15 -4323 ((-762) $)) (-15 -3167 ($ (-1 |#1| |#1|) $))))
+((-3464 (((-112) (-52)) 13)) (-3069 (((-3 |#1| "failed") (-52)) 21)) (-1863 ((|#1| (-52)) 22)) (-3220 (((-52) |#1|) 18)))
+(((-51 |#1|) (-10 -7 (-15 -3220 ((-52) |#1|)) (-15 -3069 ((-3 |#1| "failed") (-52))) (-15 -3464 ((-112) (-52))) (-15 -1863 (|#1| (-52)))) (-1200)) (T -51))
+((-1863 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1200)))) (-3464 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1200)))) (-3069 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1200)))) (-3220 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1200)))))
+(-10 -7 (-15 -3220 ((-52) |#1|)) (-15 -3069 ((-3 |#1| "failed") (-52))) (-15 -3464 ((-112) (-52))) (-15 -1863 (|#1| (-52))))
+((-3207 (((-112) $ $) NIL)) (-1600 (((-1145) (-112)) 25)) (-1612 (((-853) $) 24)) (-3652 (((-765) $) 12)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-1625 (((-853) $) 16)) (-3946 (((-1091) $) 14)) (-3220 (((-853) $) 32)) (-2707 (($ (-1091) (-765)) 33)) (-1683 (((-112) $ $) 18)))
+(((-52) (-13 (-1087) (-10 -8 (-15 -2707 ($ (-1091) (-765))) (-15 -1625 ((-853) $)) (-15 -1612 ((-853) $)) (-15 -3946 ((-1091) $)) (-15 -3652 ((-765) $)) (-15 -1600 ((-1145) (-112)))))) (T -52))
+((-2707 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-765)) (-5 *1 (-52)))) (-1625 (*1 *2 *1) (-12 (-5 *2 (-853)) (-5 *1 (-52)))) (-1612 (*1 *2 *1) (-12 (-5 *2 (-853)) (-5 *1 (-52)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-52)))) (-3652 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-52)))) (-1600 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1145)) (-5 *1 (-52)))))
+(-13 (-1087) (-10 -8 (-15 -2707 ($ (-1091) (-765))) (-15 -1625 ((-853) $)) (-15 -1612 ((-853) $)) (-15 -3946 ((-1091) $)) (-15 -3652 ((-765) $)) (-15 -1600 ((-1145) (-112)))))
+((-2258 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16)))
+(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2258 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1039) (-638 |#1|) (-843 |#1|)) (T -53))
+((-2258 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-638 *5)) (-4 *5 (-1039)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-843 *5)))))
+(-10 -7 (-15 -2258 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
+((-1642 ((|#3| |#3| (-635 (-1163))) 35)) (-1634 ((|#3| (-635 (-1063 |#1| |#2| |#3|)) |#3| (-911)) 22) ((|#3| (-635 (-1063 |#1| |#2| |#3|)) |#3|) 20)))
+(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1634 (|#3| (-635 (-1063 |#1| |#2| |#3|)) |#3|)) (-15 -1634 (|#3| (-635 (-1063 |#1| |#2| |#3|)) |#3| (-911))) (-15 -1642 (|#3| |#3| (-635 (-1163))))) (-1087) (-13 (-1039) (-876 |#1|) (-841) (-606 (-882 |#1|))) (-13 (-429 |#2|) (-876 |#1|) (-606 (-882 |#1|)))) (T -54))
+((-1642 (*1 *2 *2 *3) (-12 (-5 *3 (-635 (-1163))) (-4 *4 (-1087)) (-4 *5 (-13 (-1039) (-876 *4) (-841) (-606 (-882 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-429 *5) (-876 *4) (-606 (-882 *4)))))) (-1634 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-635 (-1063 *5 *6 *2))) (-5 *4 (-911)) (-4 *5 (-1087)) (-4 *6 (-13 (-1039) (-876 *5) (-841) (-606 (-882 *5)))) (-4 *2 (-13 (-429 *6) (-876 *5) (-606 (-882 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1634 (*1 *2 *3 *2) (-12 (-5 *3 (-635 (-1063 *4 *5 *2))) (-4 *4 (-1087)) (-4 *5 (-13 (-1039) (-876 *4) (-841) (-606 (-882 *4)))) (-4 *2 (-13 (-429 *5) (-876 *4) (-606 (-882 *4)))) (-5 *1 (-54 *4 *5 *2)))))
+(-10 -7 (-15 -1634 (|#3| (-635 (-1063 |#1| |#2| |#3|)) |#3|)) (-15 -1634 (|#3| (-635 (-1063 |#1| |#2| |#3|)) |#3| (-911))) (-15 -1642 (|#3| |#3| (-635 (-1163)))))
+((-3207 (((-112) $ $) NIL)) (-3069 (((-3 (-762) "failed") $) 22)) (-1863 (((-762) $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) 9)) (-3220 (((-853) $) 16) (($ (-762)) 20)) (-1651 (($) 7 T CONST)) (-1683 (((-112) $ $) 11)))
+(((-55) (-13 (-1087) (-1028 (-762)) (-10 -8 (-15 -1651 ($) -3707)))) (T -55))
+((-1651 (*1 *1) (-5 *1 (-55))))
+(-13 (-1087) (-1028 (-762)) (-10 -8 (-15 -1651 ($) -3707)))
+((-3026 (((-112) $ (-762)) 23)) (-1671 (($ $ (-558) |#3|) 47)) (-1661 (($ $ (-558) |#4|) 51)) (-2427 ((|#3| $ (-558)) 60)) (-2240 (((-635 |#2|) $) 30)) (-2986 (((-112) $ (-762)) 25)) (-4322 (((-112) |#2| $) 55)) (-1807 (($ (-1 |#2| |#2|) $) 38)) (-3167 (($ (-1 |#2| |#2|) $) 37) (($ (-1 |#2| |#2| |#2|) $ $) 41) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 43)) (-2953 (((-112) $ (-762)) 24)) (-3880 (($ $ |#2|) 35)) (-3266 (((-112) (-1 (-112) |#2|) $) 19)) (-2195 ((|#2| $ (-558) (-558)) NIL) ((|#2| $ (-558) (-558) |#2|) 27)) (-2988 (((-762) (-1 (-112) |#2|) $) 28) (((-762) |#2| $) 57)) (-1553 (($ $) 34)) (-2415 ((|#4| $ (-558)) 63)) (-3220 (((-853) $) 69)) (-3277 (((-112) (-1 (-112) |#2|) $) 18)) (-1683 (((-112) $ $) 54)) (-2755 (((-762) $) 26)))
+(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3220 ((-853) |#1|)) (-15 -3167 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3167 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1807 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1661 (|#1| |#1| (-558) |#4|)) (-15 -1671 (|#1| |#1| (-558) |#3|)) (-15 -2240 ((-635 |#2|) |#1|)) (-15 -2415 (|#4| |#1| (-558))) (-15 -2427 (|#3| |#1| (-558))) (-15 -2195 (|#2| |#1| (-558) (-558) |#2|)) (-15 -2195 (|#2| |#1| (-558) (-558))) (-15 -3880 (|#1| |#1| |#2|)) (-15 -1683 ((-112) |#1| |#1|)) (-15 -4322 ((-112) |#2| |#1|)) (-15 -2988 ((-762) |#2| |#1|)) (-15 -2988 ((-762) (-1 (-112) |#2|) |#1|)) (-15 -3266 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3277 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3167 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2755 ((-762) |#1|)) (-15 -3026 ((-112) |#1| (-762))) (-15 -2986 ((-112) |#1| (-762))) (-15 -2953 ((-112) |#1| (-762))) (-15 -1553 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1200) (-372 |#2|) (-372 |#2|)) (T -56))
+NIL
+(-10 -8 (-15 -3220 ((-853) |#1|)) (-15 -3167 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3167 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1807 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1661 (|#1| |#1| (-558) |#4|)) (-15 -1671 (|#1| |#1| (-558) |#3|)) (-15 -2240 ((-635 |#2|) |#1|)) (-15 -2415 (|#4| |#1| (-558))) (-15 -2427 (|#3| |#1| (-558))) (-15 -2195 (|#2| |#1| (-558) (-558) |#2|)) (-15 -2195 (|#2| |#1| (-558) (-558))) (-15 -3880 (|#1| |#1| |#2|)) (-15 -1683 ((-112) |#1| |#1|)) (-15 -4322 ((-112) |#2| |#1|)) (-15 -2988 ((-762) |#2| |#1|)) (-15 -2988 ((-762) (-1 (-112) |#2|) |#1|)) (-15 -3266 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3277 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3167 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2755 ((-762) |#1|)) (-15 -3026 ((-112) |#1| (-762))) (-15 -2986 ((-112) |#1| (-762))) (-15 -2953 ((-112) |#1| (-762))) (-15 -1553 (|#1| |#1|)))
+((-3207 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-3026 (((-112) $ (-762)) 8)) (-1532 ((|#1| $ (-558) (-558) |#1|) 44)) (-1671 (($ $ (-558) |#2|) 42)) (-1661 (($ $ (-558) |#3|) 41)) (-1816 (($) 7 T CONST)) (-2427 ((|#2| $ (-558)) 46)) (-1817 ((|#1| $ (-558) (-558) |#1|) 43)) (-1746 ((|#1| $ (-558) (-558)) 48)) (-2240 (((-635 |#1|) $) 30)) (-1967 (((-762) $) 51)) (-3315 (($ (-762) (-762) |#1|) 57)) (-1979 (((-762) $) 50)) (-2986 (((-112) $ (-762)) 9)) (-2472 (((-558) $) 55)) (-2448 (((-558) $) 53)) (-2122 (((-635 |#1|) $) 29 (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-2460 (((-558) $) 54)) (-2438 (((-558) $) 52)) (-1807 (($ (-1 |#1| |#1|) $) 34)) (-3167 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-2953 (((-112) $ (-762)) 10)) (-4310 (((-1145) $) 22 (|has| |#1| (-1087)))) (-2975 (((-1107) $) 21 (|has| |#1| (-1087)))) (-3880 (($ $ |#1|) 56)) (-3266 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) 14)) (-3375 (((-112) $) 11)) (-2083 (($) 12)) (-2195 ((|#1| $ (-558) (-558)) 49) ((|#1| $ (-558) (-558) |#1|) 47)) (-2988 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4382))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1553 (($ $) 13)) (-2415 ((|#3| $ (-558)) 45)) (-3220 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-3277 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-2755 (((-762) $) 6 (|has| $ (-6 -4382)))))
+(((-57 |#1| |#2| |#3|) (-139) (-1200) (-372 |t#1|) (-372 |t#1|)) (T -57))
+((-3167 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1200)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-3315 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-762)) (-4 *3 (-1200)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-3880 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1200)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-2472 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1200)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-558)))) (-2460 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1200)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-558)))) (-2448 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1200)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-558)))) (-2438 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1200)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-558)))) (-1967 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1200)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-762)))) (-1979 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1200)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-762)))) (-2195 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-1200)))) (-1746 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-1200)))) (-2195 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1200)) (-4 *4 (-372 *2)) (-4 *5 (-372 *2)))) (-2427 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1200)) (-4 *5 (-372 *4)) (-4 *2 (-372 *4)))) (-2415 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1200)) (-4 *5 (-372 *4)) (-4 *2 (-372 *4)))) (-2240 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1200)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-635 *3)))) (-1532 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1200)) (-4 *4 (-372 *2)) (-4 *5 (-372 *2)))) (-1817 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1200)) (-4 *4 (-372 *2)) (-4 *5 (-372 *2)))) (-1671 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-558)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1200)) (-4 *3 (-372 *4)) (-4 *5 (-372 *4)))) (-1661 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-558)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1200)) (-4 *5 (-372 *4)) (-4 *3 (-372 *4)))) (-1807 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1200)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-3167 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1200)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-3167 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1200)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))))
+(-13 (-487 |t#1|) (-10 -8 (-6 -4383) (-6 -4382) (-15 -3315 ($ (-762) (-762) |t#1|)) (-15 -3880 ($ $ |t#1|)) (-15 -2472 ((-558) $)) (-15 -2460 ((-558) $)) (-15 -2448 ((-558) $)) (-15 -2438 ((-558) $)) (-15 -1967 ((-762) $)) (-15 -1979 ((-762) $)) (-15 -2195 (|t#1| $ (-558) (-558))) (-15 -1746 (|t#1| $ (-558) (-558))) (-15 -2195 (|t#1| $ (-558) (-558) |t#1|)) (-15 -2427 (|t#2| $ (-558))) (-15 -2415 (|t#3| $ (-558))) (-15 -2240 ((-635 |t#1|) $)) (-15 -1532 (|t#1| $ (-558) (-558) |t#1|)) (-15 -1817 (|t#1| $ (-558) (-558) |t#1|)) (-15 -1671 ($ $ (-558) |t#2|)) (-15 -1661 ($ $ (-558) |t#3|)) (-15 -3167 ($ (-1 |t#1| |t#1|) $)) (-15 -1807 ($ (-1 |t#1| |t#1|) $)) (-15 -3167 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3167 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
+(((-34) . T) ((-102) |has| |#1| (-1087)) ((-605 (-853)) -3998 (|has| |#1| (-1087)) (|has| |#1| (-605 (-853)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-1087) |has| |#1| (-1087)) ((-1200) . T))
+((-2756 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-3048 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-3167 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13)))
+(((-58 |#1| |#2|) (-10 -7 (-15 -2756 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3048 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3167 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1200) (-1200)) (T -58))
+((-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1200)) (-4 *6 (-1200)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-3048 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1200)) (-4 *2 (-1200)) (-5 *1 (-58 *5 *2)))) (-2756 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1200)) (-4 *5 (-1200)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))))
+(-10 -7 (-15 -2756 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3048 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3167 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|))))
+((-3207 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-3869 (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4383)))) (-1538 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-841)))) (-2763 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4383))) (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-841))))) (-2376 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-841)))) (-3026 (((-112) $ (-762)) NIL)) (-1532 ((|#1| $ (-558) |#1|) 11 (|has| $ (-6 -4383))) ((|#1| $ (-1213 (-558)) |#1|) NIL (|has| $ (-6 -4383)))) (-4329 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-1816 (($) NIL T CONST)) (-3306 (($ $) NIL (|has| $ (-6 -4383)))) (-4127 (($ $) NIL)) (-2338 (($ $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1539 (($ |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-3048 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4382))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4382)))) (-1817 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4383)))) (-1746 ((|#1| $ (-558)) NIL)) (-1517 (((-558) (-1 (-112) |#1|) $) NIL) (((-558) |#1| $) NIL (|has| |#1| (-1087))) (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1087)))) (-2240 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-1678 (($ (-635 |#1|)) 13) (($ (-762) |#1|) 14)) (-3315 (($ (-762) |#1|) 9)) (-2986 (((-112) $ (-762)) NIL)) (-3889 (((-558) $) NIL (|has| (-558) (-841)))) (-3910 (($ $ $) NIL (|has| |#1| (-841)))) (-1677 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-841)))) (-2122 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3899 (((-558) $) NIL (|has| (-558) (-841)))) (-3542 (($ $ $) NIL (|has| |#1| (-841)))) (-1807 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL (|has| |#1| (-1087)))) (-1861 (($ |#1| $ (-558)) NIL) (($ $ $ (-558)) NIL)) (-3920 (((-635 (-558)) $) NIL)) (-3929 (((-112) (-558) $) NIL)) (-2975 (((-1107) $) NIL (|has| |#1| (-1087)))) (-2305 ((|#1| $) NIL (|has| (-558) (-841)))) (-4307 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3880 (($ $ |#1|) NIL (|has| $ (-6 -4383)))) (-3266 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3908 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3937 (((-635 |#1|) $) NIL)) (-3375 (((-112) $) NIL)) (-2083 (($) 7)) (-2195 ((|#1| $ (-558) |#1|) NIL) ((|#1| $ (-558)) NIL) (($ $ (-1213 (-558))) NIL)) (-4023 (($ $ (-558)) NIL) (($ $ (-1213 (-558))) NIL)) (-2988 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-2773 (($ $ $ (-558)) NIL (|has| $ (-6 -4383)))) (-1553 (($ $) NIL)) (-3224 (((-534) $) NIL (|has| |#1| (-606 (-534))))) (-3233 (($ (-635 |#1|)) NIL)) (-4341 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-635 $)) NIL)) (-3220 (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-3277 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-1747 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1683 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-841)))) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1678 ($ (-635 |#1|))) (-15 -1678 ($ (-762) |#1|)))) (-1200)) (T -59))
+((-1678 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1200)) (-5 *1 (-59 *3)))) (-1678 (*1 *1 *2 *3) (-12 (-5 *2 (-762)) (-5 *1 (-59 *3)) (-4 *3 (-1200)))))
+(-13 (-19 |#1|) (-10 -8 (-15 -1678 ($ (-635 |#1|))) (-15 -1678 ($ (-762) |#1|))))
+((-3207 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-3026 (((-112) $ (-762)) NIL)) (-1532 ((|#1| $ (-558) (-558) |#1|) NIL)) (-1671 (($ $ (-558) (-59 |#1|)) NIL)) (-1661 (($ $ (-558) (-59 |#1|)) NIL)) (-1816 (($) NIL T CONST)) (-2427 (((-59 |#1|) $ (-558)) NIL)) (-1817 ((|#1| $ (-558) (-558) |#1|) NIL)) (-1746 ((|#1| $ (-558) (-558)) NIL)) (-2240 (((-635 |#1|) $) NIL)) (-1967 (((-762) $) NIL)) (-3315 (($ (-762) (-762) |#1|) NIL)) (-1979 (((-762) $) NIL)) (-2986 (((-112) $ (-762)) NIL)) (-2472 (((-558) $) NIL)) (-2448 (((-558) $) NIL)) (-2122 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-2460 (((-558) $) NIL)) (-2438 (((-558) $) NIL)) (-1807 (($ (-1 |#1| |#1|) $) NIL)) (-3167 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL (|has| |#1| (-1087)))) (-2975 (((-1107) $) NIL (|has| |#1| (-1087)))) (-3880 (($ $ |#1|) NIL)) (-3266 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3375 (((-112) $) NIL)) (-2083 (($) NIL)) (-2195 ((|#1| $ (-558) (-558)) NIL) ((|#1| $ (-558) (-558) |#1|) NIL)) (-2988 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1553 (($ $) NIL)) (-2415 (((-59 |#1|) $ (-558)) NIL)) (-3220 (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-3277 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4383))) (-1200)) (T -60))
+NIL
+(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4383)))
+((-3069 (((-3 $ "failed") (-1246 (-315 (-378)))) 74) (((-3 $ "failed") (-1246 (-315 (-558)))) 63) (((-3 $ "failed") (-1246 (-942 (-378)))) 94) (((-3 $ "failed") (-1246 (-942 (-558)))) 84) (((-3 $ "failed") (-1246 (-406 (-942 (-378))))) 52) (((-3 $ "failed") (-1246 (-406 (-942 (-558))))) 39)) (-1863 (($ (-1246 (-315 (-378)))) 70) (($ (-1246 (-315 (-558)))) 59) (($ (-1246 (-942 (-378)))) 90) (($ (-1246 (-942 (-558)))) 80) (($ (-1246 (-406 (-942 (-378))))) 48) (($ (-1246 (-406 (-942 (-558))))) 32)) (-1325 (((-1251) $) 120)) (-3220 (((-853) $) 113) (($ (-635 (-329))) 103) (($ (-329)) 97) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329))))) 101) (($ (-1246 (-338 (-3233 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3233) (-689)))) 31)))
+(((-61 |#1|) (-13 (-439) (-10 -8 (-15 -3220 ($ (-1246 (-338 (-3233 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3233) (-689))))))) (-1163)) (T -61))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-1246 (-338 (-3233 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3233) (-689)))) (-5 *1 (-61 *3)) (-14 *3 (-1163)))))
+(-13 (-439) (-10 -8 (-15 -3220 ($ (-1246 (-338 (-3233 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3233) (-689)))))))
+((-1325 (((-1251) $) 53) (((-1251)) 54)) (-3220 (((-853) $) 50)))
+(((-62 |#1|) (-13 (-394) (-10 -7 (-15 -1325 ((-1251))))) (-1163)) (T -62))
+((-1325 (*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-62 *3)) (-14 *3 (-1163)))))
+(-13 (-394) (-10 -7 (-15 -1325 ((-1251)))))
+((-3069 (((-3 $ "failed") (-1246 (-315 (-378)))) 144) (((-3 $ "failed") (-1246 (-315 (-558)))) 134) (((-3 $ "failed") (-1246 (-942 (-378)))) 164) (((-3 $ "failed") (-1246 (-942 (-558)))) 154) (((-3 $ "failed") (-1246 (-406 (-942 (-378))))) 123) (((-3 $ "failed") (-1246 (-406 (-942 (-558))))) 111)) (-1863 (($ (-1246 (-315 (-378)))) 140) (($ (-1246 (-315 (-558)))) 130) (($ (-1246 (-942 (-378)))) 160) (($ (-1246 (-942 (-558)))) 150) (($ (-1246 (-406 (-942 (-378))))) 119) (($ (-1246 (-406 (-942 (-558))))) 104)) (-1325 (((-1251) $) 97)) (-3220 (((-853) $) 91) (($ (-635 (-329))) 29) (($ (-329)) 34) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329))))) 32) (($ (-1246 (-338 (-3233) (-3233 (QUOTE XC)) (-689)))) 89)))
+(((-63 |#1|) (-13 (-439) (-10 -8 (-15 -3220 ($ (-1246 (-338 (-3233) (-3233 (QUOTE XC)) (-689))))))) (-1163)) (T -63))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-1246 (-338 (-3233) (-3233 (QUOTE XC)) (-689)))) (-5 *1 (-63 *3)) (-14 *3 (-1163)))))
+(-13 (-439) (-10 -8 (-15 -3220 ($ (-1246 (-338 (-3233) (-3233 (QUOTE XC)) (-689)))))))
+((-3069 (((-3 $ "failed") (-315 (-378))) 41) (((-3 $ "failed") (-315 (-558))) 46) (((-3 $ "failed") (-942 (-378))) 50) (((-3 $ "failed") (-942 (-558))) 54) (((-3 $ "failed") (-406 (-942 (-378)))) 36) (((-3 $ "failed") (-406 (-942 (-558)))) 29)) (-1863 (($ (-315 (-378))) 39) (($ (-315 (-558))) 44) (($ (-942 (-378))) 48) (($ (-942 (-558))) 52) (($ (-406 (-942 (-378)))) 34) (($ (-406 (-942 (-558)))) 26)) (-1325 (((-1251) $) 76)) (-3220 (((-853) $) 69) (($ (-635 (-329))) 61) (($ (-329)) 66) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329))))) 64) (($ (-338 (-3233 (QUOTE X)) (-3233) (-689))) 25)))
+(((-64 |#1|) (-13 (-395) (-10 -8 (-15 -3220 ($ (-338 (-3233 (QUOTE X)) (-3233) (-689)))))) (-1163)) (T -64))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-338 (-3233 (QUOTE X)) (-3233) (-689))) (-5 *1 (-64 *3)) (-14 *3 (-1163)))))
+(-13 (-395) (-10 -8 (-15 -3220 ($ (-338 (-3233 (QUOTE X)) (-3233) (-689))))))
+((-3069 (((-3 $ "failed") (-679 (-315 (-378)))) 109) (((-3 $ "failed") (-679 (-315 (-558)))) 97) (((-3 $ "failed") (-679 (-942 (-378)))) 131) (((-3 $ "failed") (-679 (-942 (-558)))) 120) (((-3 $ "failed") (-679 (-406 (-942 (-378))))) 85) (((-3 $ "failed") (-679 (-406 (-942 (-558))))) 71)) (-1863 (($ (-679 (-315 (-378)))) 105) (($ (-679 (-315 (-558)))) 93) (($ (-679 (-942 (-378)))) 127) (($ (-679 (-942 (-558)))) 116) (($ (-679 (-406 (-942 (-378))))) 81) (($ (-679 (-406 (-942 (-558))))) 64)) (-1325 (((-1251) $) 139)) (-3220 (((-853) $) 133) (($ (-635 (-329))) 28) (($ (-329)) 33) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329))))) 31) (($ (-679 (-338 (-3233) (-3233 (QUOTE X) (QUOTE HESS)) (-689)))) 54)))
+(((-65 |#1|) (-13 (-383) (-608 (-679 (-338 (-3233) (-3233 (QUOTE X) (QUOTE HESS)) (-689))))) (-1163)) (T -65))
+NIL
+(-13 (-383) (-608 (-679 (-338 (-3233) (-3233 (QUOTE X) (QUOTE HESS)) (-689)))))
+((-3069 (((-3 $ "failed") (-315 (-378))) 59) (((-3 $ "failed") (-315 (-558))) 64) (((-3 $ "failed") (-942 (-378))) 68) (((-3 $ "failed") (-942 (-558))) 72) (((-3 $ "failed") (-406 (-942 (-378)))) 54) (((-3 $ "failed") (-406 (-942 (-558)))) 47)) (-1863 (($ (-315 (-378))) 57) (($ (-315 (-558))) 62) (($ (-942 (-378))) 66) (($ (-942 (-558))) 70) (($ (-406 (-942 (-378)))) 52) (($ (-406 (-942 (-558)))) 44)) (-1325 (((-1251) $) 81)) (-3220 (((-853) $) 75) (($ (-635 (-329))) 28) (($ (-329)) 33) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329))))) 31) (($ (-338 (-3233) (-3233 (QUOTE XC)) (-689))) 39)))
+(((-66 |#1|) (-13 (-395) (-10 -8 (-15 -3220 ($ (-338 (-3233) (-3233 (QUOTE XC)) (-689)))))) (-1163)) (T -66))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-338 (-3233) (-3233 (QUOTE XC)) (-689))) (-5 *1 (-66 *3)) (-14 *3 (-1163)))))
+(-13 (-395) (-10 -8 (-15 -3220 ($ (-338 (-3233) (-3233 (QUOTE XC)) (-689))))))
+((-1325 (((-1251) $) 63)) (-3220 (((-853) $) 57) (($ (-679 (-689))) 49) (($ (-635 (-329))) 48) (($ (-329)) 55) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329))))) 53)))
+(((-67 |#1|) (-382) (-1163)) (T -67))
+NIL
+(-382)
+((-1325 (((-1251) $) 64)) (-3220 (((-853) $) 58) (($ (-679 (-689))) 50) (($ (-635 (-329))) 49) (($ (-329)) 52) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329))))) 55)))
+(((-68 |#1|) (-382) (-1163)) (T -68))
+NIL
+(-382)
+((-1325 (((-1251) $) NIL) (((-1251)) 32)) (-3220 (((-853) $) NIL)))
+(((-69 |#1|) (-13 (-394) (-10 -7 (-15 -1325 ((-1251))))) (-1163)) (T -69))
+((-1325 (*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-69 *3)) (-14 *3 (-1163)))))
+(-13 (-394) (-10 -7 (-15 -1325 ((-1251)))))
+((-1325 (((-1251) $) 73)) (-3220 (((-853) $) 67) (($ (-679 (-689))) 59) (($ (-635 (-329))) 61) (($ (-329)) 64) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329))))) 58)))
+(((-70 |#1|) (-382) (-1163)) (T -70))
+NIL
+(-382)
+((-3069 (((-3 $ "failed") (-1246 (-315 (-378)))) 103) (((-3 $ "failed") (-1246 (-315 (-558)))) 92) (((-3 $ "failed") (-1246 (-942 (-378)))) 123) (((-3 $ "failed") (-1246 (-942 (-558)))) 113) (((-3 $ "failed") (-1246 (-406 (-942 (-378))))) 81) (((-3 $ "failed") (-1246 (-406 (-942 (-558))))) 68)) (-1863 (($ (-1246 (-315 (-378)))) 99) (($ (-1246 (-315 (-558)))) 88) (($ (-1246 (-942 (-378)))) 119) (($ (-1246 (-942 (-558)))) 109) (($ (-1246 (-406 (-942 (-378))))) 77) (($ (-1246 (-406 (-942 (-558))))) 61)) (-1325 (((-1251) $) 136)) (-3220 (((-853) $) 130) (($ (-635 (-329))) 125) (($ (-329)) 128) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329))))) 53) (($ (-1246 (-338 (-3233 (QUOTE X)) (-3233 (QUOTE -1377)) (-689)))) 54)))
+(((-71 |#1|) (-13 (-439) (-10 -8 (-15 -3220 ($ (-1246 (-338 (-3233 (QUOTE X)) (-3233 (QUOTE -1377)) (-689))))))) (-1163)) (T -71))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-1246 (-338 (-3233 (QUOTE X)) (-3233 (QUOTE -1377)) (-689)))) (-5 *1 (-71 *3)) (-14 *3 (-1163)))))
+(-13 (-439) (-10 -8 (-15 -3220 ($ (-1246 (-338 (-3233 (QUOTE X)) (-3233 (QUOTE -1377)) (-689)))))))
+((-1325 (((-1251) $) 32) (((-1251)) 31)) (-3220 (((-853) $) 35)))
+(((-72 |#1|) (-13 (-394) (-10 -7 (-15 -1325 ((-1251))))) (-1163)) (T -72))
+((-1325 (*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-72 *3)) (-14 *3 (-1163)))))
+(-13 (-394) (-10 -7 (-15 -1325 ((-1251)))))
+((-1325 (((-1251) $) 63)) (-3220 (((-853) $) 57) (($ (-679 (-689))) 49) (($ (-635 (-329))) 51) (($ (-329)) 54) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329))))) 48)))
+(((-73 |#1|) (-382) (-1163)) (T -73))
+NIL
+(-382)
+((-3069 (((-3 $ "failed") (-1246 (-315 (-378)))) 125) (((-3 $ "failed") (-1246 (-315 (-558)))) 115) (((-3 $ "failed") (-1246 (-942 (-378)))) 145) (((-3 $ "failed") (-1246 (-942 (-558)))) 135) (((-3 $ "failed") (-1246 (-406 (-942 (-378))))) 105) (((-3 $ "failed") (-1246 (-406 (-942 (-558))))) 93)) (-1863 (($ (-1246 (-315 (-378)))) 121) (($ (-1246 (-315 (-558)))) 111) (($ (-1246 (-942 (-378)))) 141) (($ (-1246 (-942 (-558)))) 131) (($ (-1246 (-406 (-942 (-378))))) 101) (($ (-1246 (-406 (-942 (-558))))) 86)) (-1325 (((-1251) $) 78)) (-3220 (((-853) $) 27) (($ (-635 (-329))) 68) (($ (-329)) 64) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329))))) 71) (($ (-1246 (-338 (-3233) (-3233 (QUOTE X)) (-689)))) 65)))
+(((-74 |#1|) (-13 (-439) (-10 -8 (-15 -3220 ($ (-1246 (-338 (-3233) (-3233 (QUOTE X)) (-689))))))) (-1163)) (T -74))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-1246 (-338 (-3233) (-3233 (QUOTE X)) (-689)))) (-5 *1 (-74 *3)) (-14 *3 (-1163)))))
+(-13 (-439) (-10 -8 (-15 -3220 ($ (-1246 (-338 (-3233) (-3233 (QUOTE X)) (-689)))))))
+((-3069 (((-3 $ "failed") (-1246 (-315 (-378)))) 130) (((-3 $ "failed") (-1246 (-315 (-558)))) 119) (((-3 $ "failed") (-1246 (-942 (-378)))) 150) (((-3 $ "failed") (-1246 (-942 (-558)))) 140) (((-3 $ "failed") (-1246 (-406 (-942 (-378))))) 108) (((-3 $ "failed") (-1246 (-406 (-942 (-558))))) 95)) (-1863 (($ (-1246 (-315 (-378)))) 126) (($ (-1246 (-315 (-558)))) 115) (($ (-1246 (-942 (-378)))) 146) (($ (-1246 (-942 (-558)))) 136) (($ (-1246 (-406 (-942 (-378))))) 104) (($ (-1246 (-406 (-942 (-558))))) 88)) (-1325 (((-1251) $) 79)) (-3220 (((-853) $) 71) (($ (-635 (-329))) NIL) (($ (-329)) NIL) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329))))) NIL) (($ (-1246 (-338 (-3233 (QUOTE X) (QUOTE EPS)) (-3233 (QUOTE -1377)) (-689)))) 66)))
+(((-75 |#1| |#2| |#3|) (-13 (-439) (-10 -8 (-15 -3220 ($ (-1246 (-338 (-3233 (QUOTE X) (QUOTE EPS)) (-3233 (QUOTE -1377)) (-689))))))) (-1163) (-1163) (-1163)) (T -75))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-1246 (-338 (-3233 (QUOTE X) (QUOTE EPS)) (-3233 (QUOTE -1377)) (-689)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1163)) (-14 *4 (-1163)) (-14 *5 (-1163)))))
+(-13 (-439) (-10 -8 (-15 -3220 ($ (-1246 (-338 (-3233 (QUOTE X) (QUOTE EPS)) (-3233 (QUOTE -1377)) (-689)))))))
+((-3069 (((-3 $ "failed") (-1246 (-315 (-378)))) 134) (((-3 $ "failed") (-1246 (-315 (-558)))) 123) (((-3 $ "failed") (-1246 (-942 (-378)))) 154) (((-3 $ "failed") (-1246 (-942 (-558)))) 144) (((-3 $ "failed") (-1246 (-406 (-942 (-378))))) 112) (((-3 $ "failed") (-1246 (-406 (-942 (-558))))) 99)) (-1863 (($ (-1246 (-315 (-378)))) 130) (($ (-1246 (-315 (-558)))) 119) (($ (-1246 (-942 (-378)))) 150) (($ (-1246 (-942 (-558)))) 140) (($ (-1246 (-406 (-942 (-378))))) 108) (($ (-1246 (-406 (-942 (-558))))) 92)) (-1325 (((-1251) $) 83)) (-3220 (((-853) $) 75) (($ (-635 (-329))) NIL) (($ (-329)) NIL) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329))))) NIL) (($ (-1246 (-338 (-3233 (QUOTE EPS)) (-3233 (QUOTE YA) (QUOTE YB)) (-689)))) 70)))
+(((-76 |#1| |#2| |#3|) (-13 (-439) (-10 -8 (-15 -3220 ($ (-1246 (-338 (-3233 (QUOTE EPS)) (-3233 (QUOTE YA) (QUOTE YB)) (-689))))))) (-1163) (-1163) (-1163)) (T -76))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-1246 (-338 (-3233 (QUOTE EPS)) (-3233 (QUOTE YA) (QUOTE YB)) (-689)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1163)) (-14 *4 (-1163)) (-14 *5 (-1163)))))
+(-13 (-439) (-10 -8 (-15 -3220 ($ (-1246 (-338 (-3233 (QUOTE EPS)) (-3233 (QUOTE YA) (QUOTE YB)) (-689)))))))
+((-3069 (((-3 $ "failed") (-315 (-378))) 82) (((-3 $ "failed") (-315 (-558))) 87) (((-3 $ "failed") (-942 (-378))) 91) (((-3 $ "failed") (-942 (-558))) 95) (((-3 $ "failed") (-406 (-942 (-378)))) 77) (((-3 $ "failed") (-406 (-942 (-558)))) 70)) (-1863 (($ (-315 (-378))) 80) (($ (-315 (-558))) 85) (($ (-942 (-378))) 89) (($ (-942 (-558))) 93) (($ (-406 (-942 (-378)))) 75) (($ (-406 (-942 (-558)))) 67)) (-1325 (((-1251) $) 62)) (-3220 (((-853) $) 50) (($ (-635 (-329))) 46) (($ (-329)) 56) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329))))) 54) (($ (-338 (-3233) (-3233 (QUOTE X)) (-689))) 47)))
+(((-77 |#1|) (-13 (-395) (-10 -8 (-15 -3220 ($ (-338 (-3233) (-3233 (QUOTE X)) (-689)))))) (-1163)) (T -77))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-338 (-3233) (-3233 (QUOTE X)) (-689))) (-5 *1 (-77 *3)) (-14 *3 (-1163)))))
+(-13 (-395) (-10 -8 (-15 -3220 ($ (-338 (-3233) (-3233 (QUOTE X)) (-689))))))
+((-3069 (((-3 $ "failed") (-315 (-378))) 46) (((-3 $ "failed") (-315 (-558))) 51) (((-3 $ "failed") (-942 (-378))) 55) (((-3 $ "failed") (-942 (-558))) 59) (((-3 $ "failed") (-406 (-942 (-378)))) 41) (((-3 $ "failed") (-406 (-942 (-558)))) 34)) (-1863 (($ (-315 (-378))) 44) (($ (-315 (-558))) 49) (($ (-942 (-378))) 53) (($ (-942 (-558))) 57) (($ (-406 (-942 (-378)))) 39) (($ (-406 (-942 (-558)))) 31)) (-1325 (((-1251) $) 80)) (-3220 (((-853) $) 74) (($ (-635 (-329))) 66) (($ (-329)) 71) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329))))) 69) (($ (-338 (-3233) (-3233 (QUOTE X)) (-689))) 30)))
+(((-78 |#1|) (-13 (-395) (-10 -8 (-15 -3220 ($ (-338 (-3233) (-3233 (QUOTE X)) (-689)))))) (-1163)) (T -78))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-338 (-3233) (-3233 (QUOTE X)) (-689))) (-5 *1 (-78 *3)) (-14 *3 (-1163)))))
+(-13 (-395) (-10 -8 (-15 -3220 ($ (-338 (-3233) (-3233 (QUOTE X)) (-689))))))
+((-3069 (((-3 $ "failed") (-1246 (-315 (-378)))) 89) (((-3 $ "failed") (-1246 (-315 (-558)))) 78) (((-3 $ "failed") (-1246 (-942 (-378)))) 109) (((-3 $ "failed") (-1246 (-942 (-558)))) 99) (((-3 $ "failed") (-1246 (-406 (-942 (-378))))) 67) (((-3 $ "failed") (-1246 (-406 (-942 (-558))))) 54)) (-1863 (($ (-1246 (-315 (-378)))) 85) (($ (-1246 (-315 (-558)))) 74) (($ (-1246 (-942 (-378)))) 105) (($ (-1246 (-942 (-558)))) 95) (($ (-1246 (-406 (-942 (-378))))) 63) (($ (-1246 (-406 (-942 (-558))))) 47)) (-1325 (((-1251) $) 125)) (-3220 (((-853) $) 119) (($ (-635 (-329))) 112) (($ (-329)) 37) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329))))) 115) (($ (-1246 (-338 (-3233) (-3233 (QUOTE XC)) (-689)))) 38)))
+(((-79 |#1|) (-13 (-439) (-10 -8 (-15 -3220 ($ (-1246 (-338 (-3233) (-3233 (QUOTE XC)) (-689))))))) (-1163)) (T -79))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-1246 (-338 (-3233) (-3233 (QUOTE XC)) (-689)))) (-5 *1 (-79 *3)) (-14 *3 (-1163)))))
+(-13 (-439) (-10 -8 (-15 -3220 ($ (-1246 (-338 (-3233) (-3233 (QUOTE XC)) (-689)))))))
+((-3069 (((-3 $ "failed") (-1246 (-315 (-378)))) 142) (((-3 $ "failed") (-1246 (-315 (-558)))) 132) (((-3 $ "failed") (-1246 (-942 (-378)))) 162) (((-3 $ "failed") (-1246 (-942 (-558)))) 152) (((-3 $ "failed") (-1246 (-406 (-942 (-378))))) 122) (((-3 $ "failed") (-1246 (-406 (-942 (-558))))) 110)) (-1863 (($ (-1246 (-315 (-378)))) 138) (($ (-1246 (-315 (-558)))) 128) (($ (-1246 (-942 (-378)))) 158) (($ (-1246 (-942 (-558)))) 148) (($ (-1246 (-406 (-942 (-378))))) 118) (($ (-1246 (-406 (-942 (-558))))) 103)) (-1325 (((-1251) $) 96)) (-3220 (((-853) $) 90) (($ (-635 (-329))) 81) (($ (-329)) 88) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329))))) 86) (($ (-1246 (-338 (-3233) (-3233 (QUOTE X)) (-689)))) 82)))
+(((-80 |#1|) (-13 (-439) (-10 -8 (-15 -3220 ($ (-1246 (-338 (-3233) (-3233 (QUOTE X)) (-689))))))) (-1163)) (T -80))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-1246 (-338 (-3233) (-3233 (QUOTE X)) (-689)))) (-5 *1 (-80 *3)) (-14 *3 (-1163)))))
+(-13 (-439) (-10 -8 (-15 -3220 ($ (-1246 (-338 (-3233) (-3233 (QUOTE X)) (-689)))))))
+((-3069 (((-3 $ "failed") (-1246 (-315 (-378)))) 78) (((-3 $ "failed") (-1246 (-315 (-558)))) 67) (((-3 $ "failed") (-1246 (-942 (-378)))) 98) (((-3 $ "failed") (-1246 (-942 (-558)))) 88) (((-3 $ "failed") (-1246 (-406 (-942 (-378))))) 56) (((-3 $ "failed") (-1246 (-406 (-942 (-558))))) 43)) (-1863 (($ (-1246 (-315 (-378)))) 74) (($ (-1246 (-315 (-558)))) 63) (($ (-1246 (-942 (-378)))) 94) (($ (-1246 (-942 (-558)))) 84) (($ (-1246 (-406 (-942 (-378))))) 52) (($ (-1246 (-406 (-942 (-558))))) 36)) (-1325 (((-1251) $) 124)) (-3220 (((-853) $) 118) (($ (-635 (-329))) 109) (($ (-329)) 115) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329))))) 113) (($ (-1246 (-338 (-3233) (-3233 (QUOTE X)) (-689)))) 35)))
+(((-81 |#1|) (-13 (-439) (-608 (-1246 (-338 (-3233) (-3233 (QUOTE X)) (-689))))) (-1163)) (T -81))
+NIL
+(-13 (-439) (-608 (-1246 (-338 (-3233) (-3233 (QUOTE X)) (-689)))))
+((-3069 (((-3 $ "failed") (-1246 (-315 (-378)))) 95) (((-3 $ "failed") (-1246 (-315 (-558)))) 84) (((-3 $ "failed") (-1246 (-942 (-378)))) 115) (((-3 $ "failed") (-1246 (-942 (-558)))) 105) (((-3 $ "failed") (-1246 (-406 (-942 (-378))))) 73) (((-3 $ "failed") (-1246 (-406 (-942 (-558))))) 60)) (-1863 (($ (-1246 (-315 (-378)))) 91) (($ (-1246 (-315 (-558)))) 80) (($ (-1246 (-942 (-378)))) 111) (($ (-1246 (-942 (-558)))) 101) (($ (-1246 (-406 (-942 (-378))))) 69) (($ (-1246 (-406 (-942 (-558))))) 53)) (-1325 (((-1251) $) 45)) (-3220 (((-853) $) 39) (($ (-635 (-329))) 29) (($ (-329)) 32) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329))))) 35) (($ (-1246 (-338 (-3233 (QUOTE X) (QUOTE -1377)) (-3233) (-689)))) 30)))
+(((-82 |#1|) (-13 (-439) (-10 -8 (-15 -3220 ($ (-1246 (-338 (-3233 (QUOTE X) (QUOTE -1377)) (-3233) (-689))))))) (-1163)) (T -82))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-1246 (-338 (-3233 (QUOTE X) (QUOTE -1377)) (-3233) (-689)))) (-5 *1 (-82 *3)) (-14 *3 (-1163)))))
+(-13 (-439) (-10 -8 (-15 -3220 ($ (-1246 (-338 (-3233 (QUOTE X) (QUOTE -1377)) (-3233) (-689)))))))
+((-3069 (((-3 $ "failed") (-679 (-315 (-378)))) 115) (((-3 $ "failed") (-679 (-315 (-558)))) 104) (((-3 $ "failed") (-679 (-942 (-378)))) 137) (((-3 $ "failed") (-679 (-942 (-558)))) 126) (((-3 $ "failed") (-679 (-406 (-942 (-378))))) 93) (((-3 $ "failed") (-679 (-406 (-942 (-558))))) 80)) (-1863 (($ (-679 (-315 (-378)))) 111) (($ (-679 (-315 (-558)))) 100) (($ (-679 (-942 (-378)))) 133) (($ (-679 (-942 (-558)))) 122) (($ (-679 (-406 (-942 (-378))))) 89) (($ (-679 (-406 (-942 (-558))))) 73)) (-1325 (((-1251) $) 63)) (-3220 (((-853) $) 50) (($ (-635 (-329))) 57) (($ (-329)) 46) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329))))) 55) (($ (-679 (-338 (-3233 (QUOTE X) (QUOTE -1377)) (-3233) (-689)))) 47)))
+(((-83 |#1|) (-13 (-383) (-10 -8 (-15 -3220 ($ (-679 (-338 (-3233 (QUOTE X) (QUOTE -1377)) (-3233) (-689))))))) (-1163)) (T -83))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-679 (-338 (-3233 (QUOTE X) (QUOTE -1377)) (-3233) (-689)))) (-5 *1 (-83 *3)) (-14 *3 (-1163)))))
+(-13 (-383) (-10 -8 (-15 -3220 ($ (-679 (-338 (-3233 (QUOTE X) (QUOTE -1377)) (-3233) (-689)))))))
+((-3069 (((-3 $ "failed") (-679 (-315 (-378)))) 112) (((-3 $ "failed") (-679 (-315 (-558)))) 100) (((-3 $ "failed") (-679 (-942 (-378)))) 134) (((-3 $ "failed") (-679 (-942 (-558)))) 123) (((-3 $ "failed") (-679 (-406 (-942 (-378))))) 88) (((-3 $ "failed") (-679 (-406 (-942 (-558))))) 74)) (-1863 (($ (-679 (-315 (-378)))) 108) (($ (-679 (-315 (-558)))) 96) (($ (-679 (-942 (-378)))) 130) (($ (-679 (-942 (-558)))) 119) (($ (-679 (-406 (-942 (-378))))) 84) (($ (-679 (-406 (-942 (-558))))) 67)) (-1325 (((-1251) $) 59)) (-3220 (((-853) $) 53) (($ (-635 (-329))) 47) (($ (-329)) 50) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329))))) 44) (($ (-679 (-338 (-3233 (QUOTE X)) (-3233) (-689)))) 45)))
+(((-84 |#1|) (-13 (-383) (-10 -8 (-15 -3220 ($ (-679 (-338 (-3233 (QUOTE X)) (-3233) (-689))))))) (-1163)) (T -84))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-679 (-338 (-3233 (QUOTE X)) (-3233) (-689)))) (-5 *1 (-84 *3)) (-14 *3 (-1163)))))
+(-13 (-383) (-10 -8 (-15 -3220 ($ (-679 (-338 (-3233 (QUOTE X)) (-3233) (-689)))))))
+((-3069 (((-3 $ "failed") (-1246 (-315 (-378)))) 104) (((-3 $ "failed") (-1246 (-315 (-558)))) 93) (((-3 $ "failed") (-1246 (-942 (-378)))) 124) (((-3 $ "failed") (-1246 (-942 (-558)))) 114) (((-3 $ "failed") (-1246 (-406 (-942 (-378))))) 82) (((-3 $ "failed") (-1246 (-406 (-942 (-558))))) 69)) (-1863 (($ (-1246 (-315 (-378)))) 100) (($ (-1246 (-315 (-558)))) 89) (($ (-1246 (-942 (-378)))) 120) (($ (-1246 (-942 (-558)))) 110) (($ (-1246 (-406 (-942 (-378))))) 78) (($ (-1246 (-406 (-942 (-558))))) 62)) (-1325 (((-1251) $) 46)) (-3220 (((-853) $) 40) (($ (-635 (-329))) 49) (($ (-329)) 36) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329))))) 52) (($ (-1246 (-338 (-3233 (QUOTE X)) (-3233) (-689)))) 37)))
+(((-85 |#1|) (-13 (-439) (-10 -8 (-15 -3220 ($ (-1246 (-338 (-3233 (QUOTE X)) (-3233) (-689))))))) (-1163)) (T -85))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-1246 (-338 (-3233 (QUOTE X)) (-3233) (-689)))) (-5 *1 (-85 *3)) (-14 *3 (-1163)))))
+(-13 (-439) (-10 -8 (-15 -3220 ($ (-1246 (-338 (-3233 (QUOTE X)) (-3233) (-689)))))))
+((-3069 (((-3 $ "failed") (-1246 (-315 (-378)))) 79) (((-3 $ "failed") (-1246 (-315 (-558)))) 68) (((-3 $ "failed") (-1246 (-942 (-378)))) 99) (((-3 $ "failed") (-1246 (-942 (-558)))) 89) (((-3 $ "failed") (-1246 (-406 (-942 (-378))))) 57) (((-3 $ "failed") (-1246 (-406 (-942 (-558))))) 44)) (-1863 (($ (-1246 (-315 (-378)))) 75) (($ (-1246 (-315 (-558)))) 64) (($ (-1246 (-942 (-378)))) 95) (($ (-1246 (-942 (-558)))) 85) (($ (-1246 (-406 (-942 (-378))))) 53) (($ (-1246 (-406 (-942 (-558))))) 37)) (-1325 (((-1251) $) 125)) (-3220 (((-853) $) 119) (($ (-635 (-329))) 110) (($ (-329)) 116) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329))))) 114) (($ (-1246 (-338 (-3233 (QUOTE X)) (-3233 (QUOTE -1377)) (-689)))) 36)))
+(((-86 |#1|) (-13 (-439) (-10 -8 (-15 -3220 ($ (-1246 (-338 (-3233 (QUOTE X)) (-3233 (QUOTE -1377)) (-689))))))) (-1163)) (T -86))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-1246 (-338 (-3233 (QUOTE X)) (-3233 (QUOTE -1377)) (-689)))) (-5 *1 (-86 *3)) (-14 *3 (-1163)))))
+(-13 (-439) (-10 -8 (-15 -3220 ($ (-1246 (-338 (-3233 (QUOTE X)) (-3233 (QUOTE -1377)) (-689)))))))
+((-3069 (((-3 $ "failed") (-679 (-315 (-378)))) 113) (((-3 $ "failed") (-679 (-315 (-558)))) 101) (((-3 $ "failed") (-679 (-942 (-378)))) 135) (((-3 $ "failed") (-679 (-942 (-558)))) 124) (((-3 $ "failed") (-679 (-406 (-942 (-378))))) 89) (((-3 $ "failed") (-679 (-406 (-942 (-558))))) 75)) (-1863 (($ (-679 (-315 (-378)))) 109) (($ (-679 (-315 (-558)))) 97) (($ (-679 (-942 (-378)))) 131) (($ (-679 (-942 (-558)))) 120) (($ (-679 (-406 (-942 (-378))))) 85) (($ (-679 (-406 (-942 (-558))))) 68)) (-1325 (((-1251) $) 59)) (-3220 (((-853) $) 53) (($ (-635 (-329))) 43) (($ (-329)) 50) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329))))) 48) (($ (-679 (-338 (-3233 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3233) (-689)))) 44)))
+(((-87 |#1|) (-13 (-383) (-10 -8 (-15 -3220 ($ (-679 (-338 (-3233 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3233) (-689))))))) (-1163)) (T -87))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-679 (-338 (-3233 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3233) (-689)))) (-5 *1 (-87 *3)) (-14 *3 (-1163)))))
+(-13 (-383) (-10 -8 (-15 -3220 ($ (-679 (-338 (-3233 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3233) (-689)))))))
+((-1325 (((-1251) $) 44)) (-3220 (((-853) $) 38) (($ (-1246 (-689))) 92) (($ (-635 (-329))) 30) (($ (-329)) 35) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329))))) 33)))
+(((-88 |#1|) (-438) (-1163)) (T -88))
+NIL
+(-438)
+((-3069 (((-3 $ "failed") (-315 (-378))) 47) (((-3 $ "failed") (-315 (-558))) 52) (((-3 $ "failed") (-942 (-378))) 56) (((-3 $ "failed") (-942 (-558))) 60) (((-3 $ "failed") (-406 (-942 (-378)))) 42) (((-3 $ "failed") (-406 (-942 (-558)))) 35)) (-1863 (($ (-315 (-378))) 45) (($ (-315 (-558))) 50) (($ (-942 (-378))) 54) (($ (-942 (-558))) 58) (($ (-406 (-942 (-378)))) 40) (($ (-406 (-942 (-558)))) 32)) (-1325 (((-1251) $) 90)) (-3220 (((-853) $) 84) (($ (-635 (-329))) 78) (($ (-329)) 81) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329))))) 76) (($ (-338 (-3233 (QUOTE X)) (-3233 (QUOTE -1377)) (-689))) 31)))
+(((-89 |#1|) (-13 (-395) (-10 -8 (-15 -3220 ($ (-338 (-3233 (QUOTE X)) (-3233 (QUOTE -1377)) (-689)))))) (-1163)) (T -89))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-338 (-3233 (QUOTE X)) (-3233 (QUOTE -1377)) (-689))) (-5 *1 (-89 *3)) (-14 *3 (-1163)))))
+(-13 (-395) (-10 -8 (-15 -3220 ($ (-338 (-3233 (QUOTE X)) (-3233 (QUOTE -1377)) (-689))))))
+((-1701 (((-1246 (-679 |#1|)) (-679 |#1|)) 54)) (-1694 (((-2 (|:| -3683 (-679 |#1|)) (|:| |vec| (-1246 (-635 (-911))))) |#2| (-911)) 44)) (-1716 (((-2 (|:| |minor| (-635 (-911))) (|:| -2477 |#2|) (|:| |minors| (-635 (-635 (-911)))) (|:| |ops| (-635 |#2|))) |#2| (-911)) 65 (|has| |#1| (-362)))))
+(((-90 |#1| |#2|) (-10 -7 (-15 -1694 ((-2 (|:| -3683 (-679 |#1|)) (|:| |vec| (-1246 (-635 (-911))))) |#2| (-911))) (-15 -1701 ((-1246 (-679 |#1|)) (-679 |#1|))) (IF (|has| |#1| (-362)) (-15 -1716 ((-2 (|:| |minor| (-635 (-911))) (|:| -2477 |#2|) (|:| |minors| (-635 (-635 (-911)))) (|:| |ops| (-635 |#2|))) |#2| (-911))) |%noBranch|)) (-550) (-646 |#1|)) (T -90))
+((-1716 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *5 (-550)) (-5 *2 (-2 (|:| |minor| (-635 (-911))) (|:| -2477 *3) (|:| |minors| (-635 (-635 (-911)))) (|:| |ops| (-635 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-911)) (-4 *3 (-646 *5)))) (-1701 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-1246 (-679 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-679 *4)) (-4 *5 (-646 *4)))) (-1694 (*1 *2 *3 *4) (-12 (-4 *5 (-550)) (-5 *2 (-2 (|:| -3683 (-679 *5)) (|:| |vec| (-1246 (-635 (-911)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-911)) (-4 *3 (-646 *5)))))
+(-10 -7 (-15 -1694 ((-2 (|:| -3683 (-679 |#1|)) (|:| |vec| (-1246 (-635 (-911))))) |#2| (-911))) (-15 -1701 ((-1246 (-679 |#1|)) (-679 |#1|))) (IF (|has| |#1| (-362)) (-15 -1716 ((-2 (|:| |minor| (-635 (-911))) (|:| -2477 |#2|) (|:| |minors| (-635 (-635 (-911)))) (|:| |ops| (-635 |#2|))) |#2| (-911))) |%noBranch|))
+((-3207 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-3072 ((|#1| $) 35)) (-3026 (((-112) $ (-762)) NIL)) (-1816 (($) NIL T CONST)) (-3805 ((|#1| |#1| $) 30)) (-3796 ((|#1| $) 28)) (-2240 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-2986 (((-112) $ (-762)) NIL)) (-2122 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1807 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL (|has| |#1| (-1087)))) (-1722 ((|#1| $) NIL)) (-4328 (($ |#1| $) 31)) (-2975 (((-1107) $) NIL (|has| |#1| (-1087)))) (-3524 ((|#1| $) 29)) (-3266 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3375 (((-112) $) 16)) (-2083 (($) 39)) (-2494 (((-762) $) 26)) (-2988 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1553 (($ $) 15)) (-3220 (((-853) $) 25 (|has| |#1| (-605 (-853))))) (-3534 (($ (-635 |#1|)) NIL)) (-1728 (($ (-635 |#1|)) 37)) (-3277 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) 13 (|has| |#1| (-1087)))) (-2755 (((-762) $) 10 (|has| $ (-6 -4382)))))
+(((-91 |#1|) (-13 (-1108 |#1|) (-10 -8 (-15 -1728 ($ (-635 |#1|))))) (-1087)) (T -91))
+((-1728 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-5 *1 (-91 *3)))))
+(-13 (-1108 |#1|) (-10 -8 (-15 -1728 ($ (-635 |#1|)))))
+((-3220 (((-853) $) 13) (($ (-1168)) 9) (((-1168) $) 8)))
+(((-92 |#1|) (-10 -8 (-15 -3220 ((-1168) |#1|)) (-15 -3220 (|#1| (-1168))) (-15 -3220 ((-853) |#1|))) (-93)) (T -92))
+NIL
+(-10 -8 (-15 -3220 ((-1168) |#1|)) (-15 -3220 (|#1| (-1168))) (-15 -3220 ((-853) |#1|)))
+((-3207 (((-112) $ $) 7)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11) (($ (-1168)) 16) (((-1168) $) 15)) (-1683 (((-112) $ $) 6)))
+(((-93) (-139)) (T -93))
+NIL
+(-13 (-1087) (-488 (-1168)))
+(((-102) . T) ((-608 #0=(-1168)) . T) ((-605 (-853)) . T) ((-605 #0#) . T) ((-488 #0#) . T) ((-1087) . T))
+((-2222 (($ $) 10)) (-4060 (($ $) 12)))
+(((-94 |#1|) (-10 -8 (-15 -4060 (|#1| |#1|)) (-15 -2222 (|#1| |#1|))) (-95)) (T -94))
+NIL
+(-10 -8 (-15 -4060 (|#1| |#1|)) (-15 -2222 (|#1| |#1|)))
+((-2200 (($ $) 11)) (-2178 (($ $) 10)) (-2222 (($ $) 9)) (-4060 (($ $) 8)) (-2211 (($ $) 7)) (-2189 (($ $) 6)))
+(((-95) (-139)) (T -95))
+((-2200 (*1 *1 *1) (-4 *1 (-95))) (-2178 (*1 *1 *1) (-4 *1 (-95))) (-2222 (*1 *1 *1) (-4 *1 (-95))) (-4060 (*1 *1 *1) (-4 *1 (-95))) (-2211 (*1 *1 *1) (-4 *1 (-95))) (-2189 (*1 *1 *1) (-4 *1 (-95))))
+(-13 (-10 -8 (-15 -2189 ($ $)) (-15 -2211 ($ $)) (-15 -4060 ($ $)) (-15 -2222 ($ $)) (-15 -2178 ($ $)) (-15 -2200 ($ $))))
+((-3207 (((-112) $ $) NIL)) (-1323 (((-1122) $) 9)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 17) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1683 (((-112) $ $) NIL)))
+(((-96) (-13 (-1070) (-10 -8 (-15 -1323 ((-1122) $))))) (T -96))
+((-1323 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-96)))))
+(-13 (-1070) (-10 -8 (-15 -1323 ((-1122) $))))
+((-3207 (((-112) $ $) NIL)) (-1741 (((-378) (-1145) (-378)) 42) (((-378) (-1145) (-1145) (-378)) 41)) (-1754 (((-378) (-378)) 33)) (-1771 (((-1251)) 36)) (-4310 (((-1145) $) NIL)) (-1805 (((-378) (-1145) (-1145)) 46) (((-378) (-1145)) 48)) (-2975 (((-1107) $) NIL)) (-1778 (((-378) (-1145) (-1145)) 47)) (-1792 (((-378) (-1145) (-1145)) 49) (((-378) (-1145)) 50)) (-3220 (((-853) $) NIL)) (-1683 (((-112) $ $) NIL)))
+(((-97) (-13 (-1087) (-10 -7 (-15 -1805 ((-378) (-1145) (-1145))) (-15 -1805 ((-378) (-1145))) (-15 -1792 ((-378) (-1145) (-1145))) (-15 -1792 ((-378) (-1145))) (-15 -1778 ((-378) (-1145) (-1145))) (-15 -1771 ((-1251))) (-15 -1754 ((-378) (-378))) (-15 -1741 ((-378) (-1145) (-378))) (-15 -1741 ((-378) (-1145) (-1145) (-378))) (-6 -4382)))) (T -97))
+((-1805 (*1 *2 *3 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-378)) (-5 *1 (-97)))) (-1805 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-378)) (-5 *1 (-97)))) (-1792 (*1 *2 *3 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-378)) (-5 *1 (-97)))) (-1792 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-378)) (-5 *1 (-97)))) (-1778 (*1 *2 *3 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-378)) (-5 *1 (-97)))) (-1771 (*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-97)))) (-1754 (*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-97)))) (-1741 (*1 *2 *3 *2) (-12 (-5 *2 (-378)) (-5 *3 (-1145)) (-5 *1 (-97)))) (-1741 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-378)) (-5 *3 (-1145)) (-5 *1 (-97)))))
+(-13 (-1087) (-10 -7 (-15 -1805 ((-378) (-1145) (-1145))) (-15 -1805 ((-378) (-1145))) (-15 -1792 ((-378) (-1145) (-1145))) (-15 -1792 ((-378) (-1145))) (-15 -1778 ((-378) (-1145) (-1145))) (-15 -1771 ((-1251))) (-15 -1754 ((-378) (-378))) (-15 -1741 ((-378) (-1145) (-378))) (-15 -1741 ((-378) (-1145) (-1145) (-378))) (-6 -4382)))
+NIL
+(((-98) (-139)) (T -98))
+NIL
+(-13 (-10 -7 (-6 -4382) (-6 (-4384 "*")) (-6 -4383) (-6 -4379) (-6 -4377) (-6 -4376) (-6 -4375) (-6 -4380) (-6 -4374) (-6 -4373) (-6 -4372) (-6 -4371) (-6 -4370) (-6 -4378) (-6 -4381) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4369)))
+((-3207 (((-112) $ $) NIL)) (-1816 (($) NIL T CONST)) (-2588 (((-3 $ "failed") $) NIL)) (-2035 (((-112) $) NIL)) (-1821 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-558))) 22)) (-4310 (((-1145) $) NIL)) (-2418 (($ $) 14)) (-2975 (((-1107) $) NIL)) (-2195 ((|#1| $ |#1|) 11)) (-3808 (($ $ $) NIL)) (-3443 (($ $ $) NIL)) (-3220 (((-853) $) 20)) (-2142 (($) 8 T CONST)) (-1683 (((-112) $ $) 10)) (-1810 (($ $ $) NIL)) (** (($ $ (-911)) 27) (($ $ (-762)) NIL) (($ $ (-558)) 16)) (* (($ $ $) 28)))
+(((-99 |#1|) (-13 (-471) (-285 |#1| |#1|) (-10 -8 (-15 -1821 ($ (-1 |#1| |#1|))) (-15 -1821 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1821 ($ (-1 |#1| |#1| (-558)))))) (-1039)) (T -99))
+((-1821 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1039)) (-5 *1 (-99 *3)))) (-1821 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1039)) (-5 *1 (-99 *3)))) (-1821 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-558))) (-4 *3 (-1039)) (-5 *1 (-99 *3)))))
+(-13 (-471) (-285 |#1| |#1|) (-10 -8 (-15 -1821 ($ (-1 |#1| |#1|))) (-15 -1821 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1821 ($ (-1 |#1| |#1| (-558))))))
+((-1909 (((-417 |#2|) |#2| (-635 |#2|)) 10) (((-417 |#2|) |#2| |#2|) 11)))
+(((-100 |#1| |#2|) (-10 -7 (-15 -1909 ((-417 |#2|) |#2| |#2|)) (-15 -1909 ((-417 |#2|) |#2| (-635 |#2|)))) (-13 (-450) (-146)) (-1222 |#1|)) (T -100))
+((-1909 (*1 *2 *3 *4) (-12 (-5 *4 (-635 *3)) (-4 *3 (-1222 *5)) (-4 *5 (-13 (-450) (-146))) (-5 *2 (-417 *3)) (-5 *1 (-100 *5 *3)))) (-1909 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-450) (-146))) (-5 *2 (-417 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1222 *4)))))
+(-10 -7 (-15 -1909 ((-417 |#2|) |#2| |#2|)) (-15 -1909 ((-417 |#2|) |#2| (-635 |#2|))))
+((-3207 (((-112) $ $) 9)))
+(((-101 |#1|) (-10 -8 (-15 -3207 ((-112) |#1| |#1|))) (-102)) (T -101))
+NIL
+(-10 -8 (-15 -3207 ((-112) |#1| |#1|)))
+((-3207 (((-112) $ $) 7)) (-1683 (((-112) $ $) 6)))
+(((-102) (-139)) (T -102))
+((-3207 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-1683 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))))
+(-13 (-10 -8 (-15 -1683 ((-112) $ $)) (-15 -3207 ((-112) $ $))))
+((-3207 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2925 ((|#1| $) NIL)) (-3026 (((-112) $ (-762)) NIL)) (-3972 ((|#1| $ |#1|) 13 (|has| $ (-6 -4383)))) (-2749 (($ $ $) NIL (|has| $ (-6 -4383)))) (-2762 (($ $ $) NIL (|has| $ (-6 -4383)))) (-1519 (($ $ (-635 |#1|)) 15)) (-1532 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4383))) (($ $ "left" $) NIL (|has| $ (-6 -4383))) (($ $ "right" $) NIL (|has| $ (-6 -4383)))) (-3982 (($ $ (-635 $)) NIL (|has| $ (-6 -4383)))) (-1816 (($) NIL T CONST)) (-3425 (($ $) 11)) (-2240 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-2870 (((-635 $) $) NIL)) (-3993 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2024 (($ $ |#1| $) 17)) (-2986 (((-112) $ (-762)) NIL)) (-2122 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1507 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-1921 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-635 |#1|) |#1| |#1| |#1|)) 35)) (-1807 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-3417 (($ $) 10)) (-1362 (((-635 |#1|) $) NIL)) (-1790 (((-112) $) 12)) (-4310 (((-1145) $) NIL (|has| |#1| (-1087)))) (-2975 (((-1107) $) NIL (|has| |#1| (-1087)))) (-3266 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3375 (((-112) $) 9)) (-2083 (($) 16)) (-2195 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2860 (((-558) $ $) NIL)) (-1487 (((-112) $) NIL)) (-2988 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1553 (($ $) NIL)) (-3220 (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-1727 (((-635 $) $) NIL)) (-4005 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1938 (($ (-762) |#1|) 19)) (-3277 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-103 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4382) (-6 -4383) (-15 -1938 ($ (-762) |#1|)) (-15 -1519 ($ $ (-635 |#1|))) (-15 -1507 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1507 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1921 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1921 ($ $ |#1| (-1 (-635 |#1|) |#1| |#1| |#1|))))) (-1087)) (T -103))
+((-1938 (*1 *1 *2 *3) (-12 (-5 *2 (-762)) (-5 *1 (-103 *3)) (-4 *3 (-1087)))) (-1519 (*1 *1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-5 *1 (-103 *3)))) (-1507 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1087)))) (-1507 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1087)) (-5 *1 (-103 *3)))) (-1921 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1087)) (-5 *1 (-103 *2)))) (-1921 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-635 *2) *2 *2 *2)) (-4 *2 (-1087)) (-5 *1 (-103 *2)))))
+(-13 (-125 |#1|) (-10 -8 (-6 -4382) (-6 -4383) (-15 -1938 ($ (-762) |#1|)) (-15 -1519 ($ $ (-635 |#1|))) (-15 -1507 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1507 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1921 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1921 ($ $ |#1| (-1 (-635 |#1|) |#1| |#1| |#1|)))))
+((-1948 ((|#3| |#2| |#2|) 28)) (-2589 ((|#1| |#2| |#2|) 38 (|has| |#1| (-6 (-4384 "*"))))) (-2578 ((|#3| |#2| |#2|) 29)) (-1437 ((|#1| |#2|) 41 (|has| |#1| (-6 (-4384 "*"))))))
+(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1948 (|#3| |#2| |#2|)) (-15 -2578 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4384 "*"))) (PROGN (-15 -2589 (|#1| |#2| |#2|)) (-15 -1437 (|#1| |#2|))) |%noBranch|)) (-1039) (-1222 |#1|) (-677 |#1| |#4| |#5|) (-372 |#1|) (-372 |#1|)) (T -104))
+((-1437 (*1 *2 *3) (-12 (|has| *2 (-6 (-4384 "*"))) (-4 *5 (-372 *2)) (-4 *6 (-372 *2)) (-4 *2 (-1039)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1222 *2)) (-4 *4 (-677 *2 *5 *6)))) (-2589 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4384 "*"))) (-4 *5 (-372 *2)) (-4 *6 (-372 *2)) (-4 *2 (-1039)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1222 *2)) (-4 *4 (-677 *2 *5 *6)))) (-2578 (*1 *2 *3 *3) (-12 (-4 *4 (-1039)) (-4 *2 (-677 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1222 *4)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)))) (-1948 (*1 *2 *3 *3) (-12 (-4 *4 (-1039)) (-4 *2 (-677 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1222 *4)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)))))
+(-10 -7 (-15 -1948 (|#3| |#2| |#2|)) (-15 -2578 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4384 "*"))) (PROGN (-15 -2589 (|#1| |#2| |#2|)) (-15 -1437 (|#1| |#2|))) |%noBranch|))
+((-3207 (((-112) $ $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) NIL)) (-1710 (((-635 (-1163))) 33)) (-1449 (((-2 (|:| |zeros| (-1143 (-224))) (|:| |ones| (-1143 (-224))) (|:| |singularities| (-1143 (-224)))) (-1163)) 35)) (-1683 (((-112) $ $) NIL)))
+(((-105) (-13 (-1087) (-10 -7 (-15 -1710 ((-635 (-1163)))) (-15 -1449 ((-2 (|:| |zeros| (-1143 (-224))) (|:| |ones| (-1143 (-224))) (|:| |singularities| (-1143 (-224)))) (-1163))) (-6 -4382)))) (T -105))
+((-1710 (*1 *2) (-12 (-5 *2 (-635 (-1163))) (-5 *1 (-105)))) (-1449 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-2 (|:| |zeros| (-1143 (-224))) (|:| |ones| (-1143 (-224))) (|:| |singularities| (-1143 (-224))))) (-5 *1 (-105)))))
+(-13 (-1087) (-10 -7 (-15 -1710 ((-635 (-1163)))) (-15 -1449 ((-2 (|:| |zeros| (-1143 (-224))) (|:| |ones| (-1143 (-224))) (|:| |singularities| (-1143 (-224)))) (-1163))) (-6 -4382)))
+((-3534 (($ (-635 |#2|)) 11)))
+(((-106 |#1| |#2|) (-10 -8 (-15 -3534 (|#1| (-635 |#2|)))) (-107 |#2|) (-1200)) (T -106))
+NIL
+(-10 -8 (-15 -3534 (|#1| (-635 |#2|))))
+((-3207 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-3026 (((-112) $ (-762)) 8)) (-1816 (($) 7 T CONST)) (-2240 (((-635 |#1|) $) 30 (|has| $ (-6 -4382)))) (-2986 (((-112) $ (-762)) 9)) (-2122 (((-635 |#1|) $) 29 (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1807 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) 35)) (-2953 (((-112) $ (-762)) 10)) (-4310 (((-1145) $) 22 (|has| |#1| (-1087)))) (-1722 ((|#1| $) 39)) (-4328 (($ |#1| $) 40)) (-2975 (((-1107) $) 21 (|has| |#1| (-1087)))) (-3524 ((|#1| $) 41)) (-3266 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) 14)) (-3375 (((-112) $) 11)) (-2083 (($) 12)) (-2988 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4382))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1553 (($ $) 13)) (-3220 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-3534 (($ (-635 |#1|)) 42)) (-3277 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-2755 (((-762) $) 6 (|has| $ (-6 -4382)))))
+(((-107 |#1|) (-139) (-1200)) (T -107))
+((-3534 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1200)) (-4 *1 (-107 *3)))) (-3524 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1200)))) (-4328 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1200)))) (-1722 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1200)))))
+(-13 (-487 |t#1|) (-10 -8 (-6 -4383) (-15 -3534 ($ (-635 |t#1|))) (-15 -3524 (|t#1| $)) (-15 -4328 ($ |t#1| $)) (-15 -1722 (|t#1| $))))
+(((-34) . T) ((-102) |has| |#1| (-1087)) ((-605 (-853)) -3998 (|has| |#1| (-1087)) (|has| |#1| (-605 (-853)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-1087) |has| |#1| (-1087)) ((-1200) . T))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2582 (((-558) $) NIL (|has| (-558) (-306)))) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL)) (-1881 (($ $) NIL)) (-1857 (((-112) $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-3748 (((-417 (-1159 $)) (-1159 $)) NIL (|has| (-558) (-899)))) (-3465 (($ $) NIL)) (-1380 (((-417 $) $) NIL)) (-3719 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (|has| (-558) (-899)))) (-3732 (((-112) $ $) NIL)) (-1397 (((-558) $) NIL (|has| (-558) (-811)))) (-1816 (($) NIL T CONST)) (-3069 (((-3 (-558) "failed") $) NIL) (((-3 (-1163) "failed") $) NIL (|has| (-558) (-1028 (-1163)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| (-558) (-1028 (-558)))) (((-3 (-558) "failed") $) NIL (|has| (-558) (-1028 (-558))))) (-1863 (((-558) $) NIL) (((-1163) $) NIL (|has| (-558) (-1028 (-1163)))) (((-406 (-558)) $) NIL (|has| (-558) (-1028 (-558)))) (((-558) $) NIL (|has| (-558) (-1028 (-558))))) (-4025 (($ $ $) NIL)) (-3216 (((-679 (-558)) (-679 $)) NIL (|has| (-558) (-631 (-558)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| (-558) (-631 (-558)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL) (((-679 (-558)) (-679 $)) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-2424 (($) NIL (|has| (-558) (-543)))) (-4004 (($ $ $) NIL)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL)) (-3031 (((-112) $) NIL)) (-2045 (((-112) $) NIL (|has| (-558) (-811)))) (-2269 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (|has| (-558) (-876 (-558)))) (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (|has| (-558) (-876 (-378))))) (-2035 (((-112) $) NIL)) (-3704 (($ $) NIL)) (-1874 (((-558) $) NIL)) (-2457 (((-3 $ "failed") $) NIL (|has| (-558) (-1138)))) (-2055 (((-112) $) NIL (|has| (-558) (-811)))) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3910 (($ $ $) NIL (|has| (-558) (-841)))) (-3542 (($ $ $) NIL (|has| (-558) (-841)))) (-3167 (($ (-1 (-558) (-558)) $) NIL)) (-2665 (($ $ $) NIL) (($ (-635 $)) NIL)) (-4310 (((-1145) $) NIL)) (-2418 (($ $) NIL)) (-1796 (($) NIL (|has| (-558) (-1138)) CONST)) (-2975 (((-1107) $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-2699 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2568 (($ $) NIL (|has| (-558) (-306))) (((-406 (-558)) $) NIL)) (-2594 (((-558) $) NIL (|has| (-558) (-543)))) (-3728 (((-417 (-1159 $)) (-1159 $)) NIL (|has| (-558) (-899)))) (-3738 (((-417 (-1159 $)) (-1159 $)) NIL (|has| (-558) (-899)))) (-2522 (((-417 $) $) NIL)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3983 (((-3 $ "failed") $ $) NIL)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2554 (($ $ (-635 (-558)) (-635 (-558))) NIL (|has| (-558) (-308 (-558)))) (($ $ (-558) (-558)) NIL (|has| (-558) (-308 (-558)))) (($ $ (-293 (-558))) NIL (|has| (-558) (-308 (-558)))) (($ $ (-635 (-293 (-558)))) NIL (|has| (-558) (-308 (-558)))) (($ $ (-635 (-1163)) (-635 (-558))) NIL (|has| (-558) (-512 (-1163) (-558)))) (($ $ (-1163) (-558)) NIL (|has| (-558) (-512 (-1163) (-558))))) (-3722 (((-762) $) NIL)) (-2195 (($ $ (-558)) NIL (|has| (-558) (-285 (-558) (-558))))) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL)) (-2829 (($ $) NIL (|has| (-558) (-232))) (($ $ (-762)) NIL (|has| (-558) (-232))) (($ $ (-1163)) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-1 (-558) (-558)) (-762)) NIL) (($ $ (-1 (-558) (-558))) NIL)) (-3694 (($ $) NIL)) (-1885 (((-558) $) NIL)) (-3224 (((-882 (-558)) $) NIL (|has| (-558) (-606 (-882 (-558))))) (((-882 (-378)) $) NIL (|has| (-558) (-606 (-882 (-378))))) (((-534) $) NIL (|has| (-558) (-606 (-534)))) (((-378) $) NIL (|has| (-558) (-1012))) (((-224) $) NIL (|has| (-558) (-1012)))) (-3709 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| (-558) (-899))))) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL) (($ (-406 (-558))) 8) (($ (-558)) NIL) (($ (-1163)) NIL (|has| (-558) (-1028 (-1163)))) (((-406 (-558)) $) NIL) (((-994 2) $) 10)) (-3698 (((-3 $ "failed") $) NIL (-3998 (-12 (|has| $ (-144)) (|has| (-558) (-899))) (|has| (-558) (-144))))) (-2542 (((-762)) NIL)) (-2604 (((-558) $) NIL (|has| (-558) (-543)))) (-2787 (($ (-406 (-558))) 9)) (-1870 (((-112) $ $) NIL)) (-3190 (($ $) NIL (|has| (-558) (-811)))) (-2131 (($) NIL T CONST)) (-2142 (($) NIL T CONST)) (-1866 (($ $) NIL (|has| (-558) (-232))) (($ $ (-762)) NIL (|has| (-558) (-232))) (($ $ (-1163)) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-1 (-558) (-558)) (-762)) NIL) (($ $ (-1 (-558) (-558))) NIL)) (-1747 (((-112) $ $) NIL (|has| (-558) (-841)))) (-1720 (((-112) $ $) NIL (|has| (-558) (-841)))) (-1683 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL (|has| (-558) (-841)))) (-1705 (((-112) $ $) NIL (|has| (-558) (-841)))) (-1810 (($ $ $) NIL) (($ (-558) (-558)) NIL)) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL) (($ (-558) $) NIL) (($ $ (-558)) NIL)))
+(((-108) (-13 (-982 (-558)) (-605 (-406 (-558))) (-605 (-994 2)) (-10 -8 (-15 -2568 ((-406 (-558)) $)) (-15 -2787 ($ (-406 (-558))))))) (T -108))
+((-2568 (*1 *2 *1) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-108)))) (-2787 (*1 *1 *2) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-108)))))
+(-13 (-982 (-558)) (-605 (-406 (-558))) (-605 (-994 2)) (-10 -8 (-15 -2568 ((-406 (-558)) $)) (-15 -2787 ($ (-406 (-558))))))
+((-2937 (((-635 (-955)) $) 14)) (-1323 (((-1163) $) 10)) (-3220 (((-853) $) 23)) (-3601 (($ (-1163) (-635 (-955))) 15)))
+(((-109) (-13 (-605 (-853)) (-10 -8 (-15 -1323 ((-1163) $)) (-15 -2937 ((-635 (-955)) $)) (-15 -3601 ($ (-1163) (-635 (-955))))))) (T -109))
+((-1323 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-109)))) (-2937 (*1 *2 *1) (-12 (-5 *2 (-635 (-955))) (-5 *1 (-109)))) (-3601 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-635 (-955))) (-5 *1 (-109)))))
+(-13 (-605 (-853)) (-10 -8 (-15 -1323 ((-1163) $)) (-15 -2937 ((-635 (-955)) $)) (-15 -3601 ($ (-1163) (-635 (-955))))))
+((-3207 (((-112) $ $) NIL)) (-1304 (($ $) NIL)) (-2108 (($ $ $) NIL)) (-3869 (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4383)))) (-1538 (((-112) $) NIL (|has| (-112) (-841))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2763 (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-112) (-841)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4383)))) (-2376 (($ $) NIL (|has| (-112) (-841))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3026 (((-112) $ (-762)) NIL)) (-1532 (((-112) $ (-1213 (-558)) (-112)) NIL (|has| $ (-6 -4383))) (((-112) $ (-558) (-112)) NIL (|has| $ (-6 -4383)))) (-4329 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4382)))) (-1816 (($) NIL T CONST)) (-3306 (($ $) NIL (|has| $ (-6 -4383)))) (-4127 (($ $) NIL)) (-2338 (($ $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-112) (-1087))))) (-1539 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4382))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-112) (-1087))))) (-3048 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4382))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4382))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4382)) (|has| (-112) (-1087))))) (-1817 (((-112) $ (-558) (-112)) NIL (|has| $ (-6 -4383)))) (-1746 (((-112) $ (-558)) NIL)) (-1517 (((-558) (-112) $ (-558)) NIL (|has| (-112) (-1087))) (((-558) (-112) $) NIL (|has| (-112) (-1087))) (((-558) (-1 (-112) (-112)) $) NIL)) (-2240 (((-635 (-112)) $) NIL (|has| $ (-6 -4382)))) (-2095 (($ $ $) NIL)) (-3304 (($ $) NIL)) (-1279 (($ $ $) NIL)) (-3315 (($ (-762) (-112)) 8)) (-1290 (($ $ $) NIL)) (-2986 (((-112) $ (-762)) NIL)) (-3889 (((-558) $) NIL (|has| (-558) (-841)))) (-3910 (($ $ $) NIL)) (-1677 (($ $ $) NIL (|has| (-112) (-841))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2122 (((-635 (-112)) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-112) (-1087))))) (-3899 (((-558) $) NIL (|has| (-558) (-841)))) (-3542 (($ $ $) NIL)) (-1807 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL)) (-1861 (($ $ $ (-558)) NIL) (($ (-112) $ (-558)) NIL)) (-3920 (((-635 (-558)) $) NIL)) (-3929 (((-112) (-558) $) NIL)) (-2975 (((-1107) $) NIL)) (-2305 (((-112) $) NIL (|has| (-558) (-841)))) (-4307 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-3880 (($ $ (-112)) NIL (|has| $ (-6 -4383)))) (-3266 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-112)) (-635 (-112))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1087)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1087)))) (($ $ (-293 (-112))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1087)))) (($ $ (-635 (-293 (-112)))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1087))))) (-2381 (((-112) $ $) NIL)) (-3908 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-112) (-1087))))) (-3937 (((-635 (-112)) $) NIL)) (-3375 (((-112) $) NIL)) (-2083 (($) NIL)) (-2195 (($ $ (-1213 (-558))) NIL) (((-112) $ (-558)) NIL) (((-112) $ (-558) (-112)) NIL)) (-4023 (($ $ (-1213 (-558))) NIL) (($ $ (-558)) NIL)) (-2988 (((-762) (-112) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-112) (-1087)))) (((-762) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4382)))) (-2773 (($ $ $ (-558)) NIL (|has| $ (-6 -4383)))) (-1553 (($ $) NIL)) (-3224 (((-534) $) NIL (|has| (-112) (-606 (-534))))) (-3233 (($ (-635 (-112))) NIL)) (-4341 (($ (-635 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3220 (((-853) $) NIL)) (-1939 (($ (-762) (-112)) 9)) (-3277 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4382)))) (-2084 (($ $ $) NIL)) (-3127 (($ $ $) NIL)) (-1747 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1683 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-3115 (($ $ $) NIL)) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-110) (-13 (-123) (-10 -8 (-15 -1939 ($ (-762) (-112)))))) (T -110))
+((-1939 (*1 *1 *2 *3) (-12 (-5 *2 (-762)) (-5 *3 (-112)) (-5 *1 (-110)))))
+(-13 (-123) (-10 -8 (-15 -1939 ($ (-762) (-112)))))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2089 (((-3 $ "failed") $ $) 19)) (-1816 (($) 17 T CONST)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11)) (-2131 (($) 18 T CONST)) (-1683 (((-112) $ $) 6)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26)))
+(((-111 |#1| |#2|) (-139) (-1039) (-1039)) (T -111))
+NIL
+(-13 (-638 |t#1|) (-1045 |t#2|) (-10 -7 (-6 -4377) (-6 -4376)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-605 (-853)) . T) ((-638 |#1|) . T) ((-1045 |#2|) . T) ((-1087) . T))
+((-3207 (((-112) $ $) NIL)) (-1304 (($ $) 10)) (-2108 (($ $ $) 15)) (-3827 (($) 7 T CONST)) (-4234 (($ $) 6)) (-2276 (((-762)) 24)) (-2424 (($) 30)) (-2095 (($ $ $) 13)) (-3304 (($ $) 9)) (-1279 (($ $ $) 16)) (-1290 (($ $ $) 17)) (-3910 (($ $ $) NIL)) (-3542 (($ $ $) NIL)) (-2637 (((-911) $) 29)) (-4310 (((-1145) $) NIL)) (-2851 (($ (-911)) 28)) (-1638 (($ $ $) 20)) (-2975 (((-1107) $) NIL)) (-2709 (($) 8 T CONST)) (-1628 (($ $ $) 21)) (-3224 (((-534) $) 36)) (-3220 (((-853) $) 39)) (-2084 (($ $ $) 11)) (-3127 (($ $ $) 14)) (-1747 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1683 (((-112) $ $) 19)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 22)) (-3115 (($ $ $) 12)))
+(((-112) (-13 (-835) (-651) (-957) (-606 (-534)) (-10 -8 (-15 -3827 ($) -3707) (-15 -2709 ($) -3707) (-15 -2108 ($ $ $)) (-15 -1290 ($ $ $)) (-15 -1279 ($ $ $)) (-15 -4234 ($ $))))) (T -112))
+((-3827 (*1 *1) (-5 *1 (-112))) (-2709 (*1 *1) (-5 *1 (-112))) (-2108 (*1 *1 *1 *1) (-5 *1 (-112))) (-1290 (*1 *1 *1 *1) (-5 *1 (-112))) (-1279 (*1 *1 *1 *1) (-5 *1 (-112))) (-4234 (*1 *1 *1) (-5 *1 (-112))))
+(-13 (-835) (-651) (-957) (-606 (-534)) (-10 -8 (-15 -3827 ($) -3707) (-15 -2709 ($) -3707) (-15 -2108 ($ $ $)) (-15 -1290 ($ $ $)) (-15 -1279 ($ $ $)) (-15 -4234 ($ $))))
+((-1515 (((-3 (-1 |#1| (-635 |#1|)) "failed") (-114)) 19) (((-114) (-114) (-1 |#1| |#1|)) 13) (((-114) (-114) (-1 |#1| (-635 |#1|))) 11) (((-3 |#1| "failed") (-114) (-635 |#1|)) 21)) (-1690 (((-3 (-635 (-1 |#1| (-635 |#1|))) "failed") (-114)) 25) (((-114) (-114) (-1 |#1| |#1|)) 30) (((-114) (-114) (-635 (-1 |#1| (-635 |#1|)))) 26)) (-1702 (((-114) |#1|) 55 (|has| |#1| (-841)))) (-1766 (((-3 |#1| "failed") (-114)) 49 (|has| |#1| (-841)))))
+(((-113 |#1|) (-10 -7 (-15 -1515 ((-3 |#1| "failed") (-114) (-635 |#1|))) (-15 -1515 ((-114) (-114) (-1 |#1| (-635 |#1|)))) (-15 -1515 ((-114) (-114) (-1 |#1| |#1|))) (-15 -1515 ((-3 (-1 |#1| (-635 |#1|)) "failed") (-114))) (-15 -1690 ((-114) (-114) (-635 (-1 |#1| (-635 |#1|))))) (-15 -1690 ((-114) (-114) (-1 |#1| |#1|))) (-15 -1690 ((-3 (-635 (-1 |#1| (-635 |#1|))) "failed") (-114))) (IF (|has| |#1| (-841)) (PROGN (-15 -1702 ((-114) |#1|)) (-15 -1766 ((-3 |#1| "failed") (-114)))) |%noBranch|)) (-1087)) (T -113))
+((-1766 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1087)) (-4 *2 (-841)) (-5 *1 (-113 *2)))) (-1702 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-841)) (-4 *3 (-1087)))) (-1690 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-635 (-1 *4 (-635 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1087)))) (-1690 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1087)) (-5 *1 (-113 *4)))) (-1690 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-635 (-1 *4 (-635 *4)))) (-4 *4 (-1087)) (-5 *1 (-113 *4)))) (-1515 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-635 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1087)))) (-1515 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1087)) (-5 *1 (-113 *4)))) (-1515 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-635 *4))) (-4 *4 (-1087)) (-5 *1 (-113 *4)))) (-1515 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-635 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1087)))))
+(-10 -7 (-15 -1515 ((-3 |#1| "failed") (-114) (-635 |#1|))) (-15 -1515 ((-114) (-114) (-1 |#1| (-635 |#1|)))) (-15 -1515 ((-114) (-114) (-1 |#1| |#1|))) (-15 -1515 ((-3 (-1 |#1| (-635 |#1|)) "failed") (-114))) (-15 -1690 ((-114) (-114) (-635 (-1 |#1| (-635 |#1|))))) (-15 -1690 ((-114) (-114) (-1 |#1| |#1|))) (-15 -1690 ((-3 (-635 (-1 |#1| (-635 |#1|))) "failed") (-114))) (IF (|has| |#1| (-841)) (PROGN (-15 -1702 ((-114) |#1|)) (-15 -1766 ((-3 |#1| "failed") (-114)))) |%noBranch|))
+((-3207 (((-112) $ $) NIL)) (-1800 (((-762) $) 72) (($ $ (-762)) 30)) (-2047 (((-112) $) 32)) (-2325 (($ $ (-1145) (-765)) 26)) (-3611 (($ $ (-45 (-1145) (-765))) 15)) (-2147 (((-3 (-765) "failed") $ (-1145)) 25)) (-2937 (((-45 (-1145) (-765)) $) 14)) (-3029 (($ (-1163)) 17) (($ (-1163) (-762)) 22)) (-2057 (((-112) $) 31)) (-4272 (((-112) $) 33)) (-1323 (((-1163) $) 8)) (-3910 (($ $ $) NIL)) (-3542 (($ $ $) NIL)) (-4310 (((-1145) $) NIL)) (-3173 (((-112) $ (-1163)) 10)) (-1460 (($ $ (-1 (-534) (-635 (-534)))) 52) (((-3 (-1 (-534) (-635 (-534))) "failed") $) 56)) (-2975 (((-1107) $) NIL)) (-2107 (((-112) $ (-1145)) 29)) (-4261 (($ $ (-1 (-112) $ $)) 35)) (-2646 (((-3 (-1 (-853) (-635 (-853))) "failed") $) 54) (($ $ (-1 (-853) (-635 (-853)))) 41) (($ $ (-1 (-853) (-853))) 43)) (-2337 (($ $ (-1145)) 45)) (-1553 (($ $) 63)) (-2119 (($ $ (-1 (-112) $ $)) 36)) (-3220 (((-853) $) 48)) (-1996 (($ $ (-1145)) 27)) (-1546 (((-3 (-762) "failed") $) 58)) (-1747 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1683 (((-112) $ $) 71)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 78)))
+(((-114) (-13 (-841) (-10 -8 (-15 -1323 ((-1163) $)) (-15 -2937 ((-45 (-1145) (-765)) $)) (-15 -1553 ($ $)) (-15 -3029 ($ (-1163))) (-15 -3029 ($ (-1163) (-762))) (-15 -1546 ((-3 (-762) "failed") $)) (-15 -2057 ((-112) $)) (-15 -2047 ((-112) $)) (-15 -4272 ((-112) $)) (-15 -1800 ((-762) $)) (-15 -1800 ($ $ (-762))) (-15 -4261 ($ $ (-1 (-112) $ $))) (-15 -2119 ($ $ (-1 (-112) $ $))) (-15 -2646 ((-3 (-1 (-853) (-635 (-853))) "failed") $)) (-15 -2646 ($ $ (-1 (-853) (-635 (-853))))) (-15 -2646 ($ $ (-1 (-853) (-853)))) (-15 -1460 ($ $ (-1 (-534) (-635 (-534))))) (-15 -1460 ((-3 (-1 (-534) (-635 (-534))) "failed") $)) (-15 -3173 ((-112) $ (-1163))) (-15 -2107 ((-112) $ (-1145))) (-15 -1996 ($ $ (-1145))) (-15 -2337 ($ $ (-1145))) (-15 -2147 ((-3 (-765) "failed") $ (-1145))) (-15 -2325 ($ $ (-1145) (-765))) (-15 -3611 ($ $ (-45 (-1145) (-765))))))) (T -114))
+((-1323 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-114)))) (-2937 (*1 *2 *1) (-12 (-5 *2 (-45 (-1145) (-765))) (-5 *1 (-114)))) (-1553 (*1 *1 *1) (-5 *1 (-114))) (-3029 (*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-114)))) (-3029 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-762)) (-5 *1 (-114)))) (-1546 (*1 *2 *1) (|partial| -12 (-5 *2 (-762)) (-5 *1 (-114)))) (-2057 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-2047 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-4272 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1800 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-114)))) (-1800 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-114)))) (-4261 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-2119 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-2646 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-853) (-635 (-853)))) (-5 *1 (-114)))) (-2646 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-853) (-635 (-853)))) (-5 *1 (-114)))) (-2646 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-853) (-853))) (-5 *1 (-114)))) (-1460 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-534) (-635 (-534)))) (-5 *1 (-114)))) (-1460 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-534) (-635 (-534)))) (-5 *1 (-114)))) (-3173 (*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-112)) (-5 *1 (-114)))) (-2107 (*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-112)) (-5 *1 (-114)))) (-1996 (*1 *1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-114)))) (-2337 (*1 *1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-114)))) (-2147 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1145)) (-5 *2 (-765)) (-5 *1 (-114)))) (-2325 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-765)) (-5 *1 (-114)))) (-3611 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1145) (-765))) (-5 *1 (-114)))))
+(-13 (-841) (-10 -8 (-15 -1323 ((-1163) $)) (-15 -2937 ((-45 (-1145) (-765)) $)) (-15 -1553 ($ $)) (-15 -3029 ($ (-1163))) (-15 -3029 ($ (-1163) (-762))) (-15 -1546 ((-3 (-762) "failed") $)) (-15 -2057 ((-112) $)) (-15 -2047 ((-112) $)) (-15 -4272 ((-112) $)) (-15 -1800 ((-762) $)) (-15 -1800 ($ $ (-762))) (-15 -4261 ($ $ (-1 (-112) $ $))) (-15 -2119 ($ $ (-1 (-112) $ $))) (-15 -2646 ((-3 (-1 (-853) (-635 (-853))) "failed") $)) (-15 -2646 ($ $ (-1 (-853) (-635 (-853))))) (-15 -2646 ($ $ (-1 (-853) (-853)))) (-15 -1460 ($ $ (-1 (-534) (-635 (-534))))) (-15 -1460 ((-3 (-1 (-534) (-635 (-534))) "failed") $)) (-15 -3173 ((-112) $ (-1163))) (-15 -2107 ((-112) $ (-1145))) (-15 -1996 ($ $ (-1145))) (-15 -2337 ($ $ (-1145))) (-15 -2147 ((-3 (-765) "failed") $ (-1145))) (-15 -2325 ($ $ (-1145) (-765))) (-15 -3611 ($ $ (-45 (-1145) (-765))))))
+((-1779 (((-558) |#2|) 37)))
+(((-115 |#1| |#2|) (-10 -7 (-15 -1779 ((-558) |#2|))) (-13 (-362) (-1028 (-406 (-558)))) (-1222 |#1|)) (T -115))
+((-1779 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-1028 (-406 *2)))) (-5 *2 (-558)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1222 *4)))))
+(-10 -7 (-15 -1779 ((-558) |#2|)))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL)) (-1881 (($ $) NIL)) (-1857 (((-112) $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-2534 (($ $ (-558)) NIL)) (-3732 (((-112) $ $) NIL)) (-1816 (($) NIL T CONST)) (-2952 (($ (-1159 (-558)) (-558)) NIL)) (-4025 (($ $ $) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-2962 (($ $) NIL)) (-4004 (($ $ $) NIL)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL)) (-3449 (((-762) $) NIL)) (-2035 (((-112) $) NIL)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2985 (((-558)) NIL)) (-2972 (((-558) $) NIL)) (-2665 (($ $ $) NIL) (($ (-635 $)) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-2699 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3430 (($ $ (-558)) NIL)) (-3983 (((-3 $ "failed") $ $) NIL)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3722 (((-762) $) NIL)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL)) (-2997 (((-1143 (-558)) $) NIL)) (-2011 (($ $) NIL)) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL)) (-2542 (((-762)) NIL)) (-1870 (((-112) $ $) NIL)) (-1352 (((-558) $ (-558)) NIL)) (-2131 (($) NIL T CONST)) (-2142 (($) NIL T CONST)) (-1683 (((-112) $ $) NIL)) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL)))
+(((-116 |#1|) (-859 |#1|) (-558)) (T -116))
+NIL
+(-859 |#1|)
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2582 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-306)))) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL)) (-1881 (($ $) NIL)) (-1857 (((-112) $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-3748 (((-417 (-1159 $)) (-1159 $)) NIL (|has| (-116 |#1|) (-899)))) (-3465 (($ $) NIL)) (-1380 (((-417 $) $) NIL)) (-3719 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (|has| (-116 |#1|) (-899)))) (-3732 (((-112) $ $) NIL)) (-1397 (((-558) $) NIL (|has| (-116 |#1|) (-811)))) (-1816 (($) NIL T CONST)) (-3069 (((-3 (-116 |#1|) "failed") $) NIL) (((-3 (-1163) "failed") $) NIL (|has| (-116 |#1|) (-1028 (-1163)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| (-116 |#1|) (-1028 (-558)))) (((-3 (-558) "failed") $) NIL (|has| (-116 |#1|) (-1028 (-558))))) (-1863 (((-116 |#1|) $) NIL) (((-1163) $) NIL (|has| (-116 |#1|) (-1028 (-1163)))) (((-406 (-558)) $) NIL (|has| (-116 |#1|) (-1028 (-558)))) (((-558) $) NIL (|has| (-116 |#1|) (-1028 (-558))))) (-3065 (($ $) NIL) (($ (-558) $) NIL)) (-4025 (($ $ $) NIL)) (-3216 (((-679 (-558)) (-679 $)) NIL (|has| (-116 |#1|) (-631 (-558)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| (-116 |#1|) (-631 (-558)))) (((-2 (|:| -3683 (-679 (-116 |#1|))) (|:| |vec| (-1246 (-116 |#1|)))) (-679 $) (-1246 $)) NIL) (((-679 (-116 |#1|)) (-679 $)) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-2424 (($) NIL (|has| (-116 |#1|) (-543)))) (-4004 (($ $ $) NIL)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL)) (-3031 (((-112) $) NIL)) (-2045 (((-112) $) NIL (|has| (-116 |#1|) (-811)))) (-2269 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (|has| (-116 |#1|) (-876 (-558)))) (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (|has| (-116 |#1|) (-876 (-378))))) (-2035 (((-112) $) NIL)) (-3704 (($ $) NIL)) (-1874 (((-116 |#1|) $) NIL)) (-2457 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1138)))) (-2055 (((-112) $) NIL (|has| (-116 |#1|) (-811)))) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3910 (($ $ $) NIL (|has| (-116 |#1|) (-841)))) (-3542 (($ $ $) NIL (|has| (-116 |#1|) (-841)))) (-3167 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-2665 (($ $ $) NIL) (($ (-635 $)) NIL)) (-4310 (((-1145) $) NIL)) (-2418 (($ $) NIL)) (-1796 (($) NIL (|has| (-116 |#1|) (-1138)) CONST)) (-2975 (((-1107) $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-2699 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2568 (($ $) NIL (|has| (-116 |#1|) (-306)))) (-2594 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-543)))) (-3728 (((-417 (-1159 $)) (-1159 $)) NIL (|has| (-116 |#1|) (-899)))) (-3738 (((-417 (-1159 $)) (-1159 $)) NIL (|has| (-116 |#1|) (-899)))) (-2522 (((-417 $) $) NIL)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3983 (((-3 $ "failed") $ $) NIL)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2554 (($ $ (-635 (-116 |#1|)) (-635 (-116 |#1|))) NIL (|has| (-116 |#1|) (-308 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-308 (-116 |#1|)))) (($ $ (-293 (-116 |#1|))) NIL (|has| (-116 |#1|) (-308 (-116 |#1|)))) (($ $ (-635 (-293 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-308 (-116 |#1|)))) (($ $ (-635 (-1163)) (-635 (-116 |#1|))) NIL (|has| (-116 |#1|) (-512 (-1163) (-116 |#1|)))) (($ $ (-1163) (-116 |#1|)) NIL (|has| (-116 |#1|) (-512 (-1163) (-116 |#1|))))) (-3722 (((-762) $) NIL)) (-2195 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-285 (-116 |#1|) (-116 |#1|))))) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL)) (-2829 (($ $) NIL (|has| (-116 |#1|) (-232))) (($ $ (-762)) NIL (|has| (-116 |#1|) (-232))) (($ $ (-1163)) NIL (|has| (-116 |#1|) (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| (-116 |#1|) (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| (-116 |#1|) (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| (-116 |#1|) (-890 (-1163)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-762)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-3694 (($ $) NIL)) (-1885 (((-116 |#1|) $) NIL)) (-3224 (((-882 (-558)) $) NIL (|has| (-116 |#1|) (-606 (-882 (-558))))) (((-882 (-378)) $) NIL (|has| (-116 |#1|) (-606 (-882 (-378))))) (((-534) $) NIL (|has| (-116 |#1|) (-606 (-534)))) (((-378) $) NIL (|has| (-116 |#1|) (-1012))) (((-224) $) NIL (|has| (-116 |#1|) (-1012)))) (-3008 (((-173 (-406 (-558))) $) NIL)) (-3709 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| (-116 |#1|) (-899))))) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL) (($ (-406 (-558))) NIL) (($ (-116 |#1|)) NIL) (($ (-1163)) NIL (|has| (-116 |#1|) (-1028 (-1163))))) (-3698 (((-3 $ "failed") $) NIL (-3998 (-12 (|has| $ (-144)) (|has| (-116 |#1|) (-899))) (|has| (-116 |#1|) (-144))))) (-2542 (((-762)) NIL)) (-2604 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-543)))) (-1870 (((-112) $ $) NIL)) (-1352 (((-406 (-558)) $ (-558)) NIL)) (-3190 (($ $) NIL (|has| (-116 |#1|) (-811)))) (-2131 (($) NIL T CONST)) (-2142 (($) NIL T CONST)) (-1866 (($ $) NIL (|has| (-116 |#1|) (-232))) (($ $ (-762)) NIL (|has| (-116 |#1|) (-232))) (($ $ (-1163)) NIL (|has| (-116 |#1|) (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| (-116 |#1|) (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| (-116 |#1|) (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| (-116 |#1|) (-890 (-1163)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-762)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-1747 (((-112) $ $) NIL (|has| (-116 |#1|) (-841)))) (-1720 (((-112) $ $) NIL (|has| (-116 |#1|) (-841)))) (-1683 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL (|has| (-116 |#1|) (-841)))) (-1705 (((-112) $ $) NIL (|has| (-116 |#1|) (-841)))) (-1810 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL)))
+(((-117 |#1|) (-13 (-982 (-116 |#1|)) (-10 -8 (-15 -1352 ((-406 (-558)) $ (-558))) (-15 -3008 ((-173 (-406 (-558))) $)) (-15 -3065 ($ $)) (-15 -3065 ($ (-558) $)))) (-558)) (T -117))
+((-1352 (*1 *2 *1 *3) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-558)))) (-3008 (*1 *2 *1) (-12 (-5 *2 (-173 (-406 (-558)))) (-5 *1 (-117 *3)) (-14 *3 (-558)))) (-3065 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-558)))) (-3065 (*1 *1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-117 *3)) (-14 *3 *2))))
+(-13 (-982 (-116 |#1|)) (-10 -8 (-15 -1352 ((-406 (-558)) $ (-558))) (-15 -3008 ((-173 (-406 (-558))) $)) (-15 -3065 ($ $)) (-15 -3065 ($ (-558) $))))
+((-1532 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 48) (($ $ "right" $) 50)) (-2870 (((-635 $) $) 27)) (-3993 (((-112) $ $) 32)) (-4322 (((-112) |#2| $) 36)) (-1362 (((-635 |#2|) $) 22)) (-1790 (((-112) $) 16)) (-2195 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-1487 (((-112) $) 45)) (-3220 (((-853) $) 41)) (-1727 (((-635 $) $) 28)) (-1683 (((-112) $ $) 34)) (-2755 (((-762) $) 43)))
+(((-118 |#1| |#2|) (-10 -8 (-15 -3220 ((-853) |#1|)) (-15 -1532 (|#1| |#1| "right" |#1|)) (-15 -1532 (|#1| |#1| "left" |#1|)) (-15 -2195 (|#1| |#1| "right")) (-15 -2195 (|#1| |#1| "left")) (-15 -1532 (|#2| |#1| "value" |#2|)) (-15 -3993 ((-112) |#1| |#1|)) (-15 -1362 ((-635 |#2|) |#1|)) (-15 -1487 ((-112) |#1|)) (-15 -2195 (|#2| |#1| "value")) (-15 -1790 ((-112) |#1|)) (-15 -2870 ((-635 |#1|) |#1|)) (-15 -1727 ((-635 |#1|) |#1|)) (-15 -1683 ((-112) |#1| |#1|)) (-15 -4322 ((-112) |#2| |#1|)) (-15 -2755 ((-762) |#1|))) (-119 |#2|) (-1200)) (T -118))
+NIL
+(-10 -8 (-15 -3220 ((-853) |#1|)) (-15 -1532 (|#1| |#1| "right" |#1|)) (-15 -1532 (|#1| |#1| "left" |#1|)) (-15 -2195 (|#1| |#1| "right")) (-15 -2195 (|#1| |#1| "left")) (-15 -1532 (|#2| |#1| "value" |#2|)) (-15 -3993 ((-112) |#1| |#1|)) (-15 -1362 ((-635 |#2|) |#1|)) (-15 -1487 ((-112) |#1|)) (-15 -2195 (|#2| |#1| "value")) (-15 -1790 ((-112) |#1|)) (-15 -2870 ((-635 |#1|) |#1|)) (-15 -1727 ((-635 |#1|) |#1|)) (-15 -1683 ((-112) |#1| |#1|)) (-15 -4322 ((-112) |#2| |#1|)) (-15 -2755 ((-762) |#1|)))
+((-3207 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-2925 ((|#1| $) 48)) (-3026 (((-112) $ (-762)) 8)) (-3972 ((|#1| $ |#1|) 39 (|has| $ (-6 -4383)))) (-2749 (($ $ $) 52 (|has| $ (-6 -4383)))) (-2762 (($ $ $) 54 (|has| $ (-6 -4383)))) (-1532 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4383))) (($ $ "left" $) 55 (|has| $ (-6 -4383))) (($ $ "right" $) 53 (|has| $ (-6 -4383)))) (-3982 (($ $ (-635 $)) 41 (|has| $ (-6 -4383)))) (-1816 (($) 7 T CONST)) (-3425 (($ $) 57)) (-2240 (((-635 |#1|) $) 30 (|has| $ (-6 -4382)))) (-2870 (((-635 $) $) 50)) (-3993 (((-112) $ $) 42 (|has| |#1| (-1087)))) (-2986 (((-112) $ (-762)) 9)) (-2122 (((-635 |#1|) $) 29 (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1807 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) 35)) (-2953 (((-112) $ (-762)) 10)) (-3417 (($ $) 59)) (-1362 (((-635 |#1|) $) 45)) (-1790 (((-112) $) 49)) (-4310 (((-1145) $) 22 (|has| |#1| (-1087)))) (-2975 (((-1107) $) 21 (|has| |#1| (-1087)))) (-3266 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) 14)) (-3375 (((-112) $) 11)) (-2083 (($) 12)) (-2195 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-2860 (((-558) $ $) 44)) (-1487 (((-112) $) 46)) (-2988 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4382))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1553 (($ $) 13)) (-3220 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-1727 (((-635 $) $) 51)) (-4005 (((-112) $ $) 43 (|has| |#1| (-1087)))) (-3277 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-2755 (((-762) $) 6 (|has| $ (-6 -4382)))))
+(((-119 |#1|) (-139) (-1200)) (T -119))
+((-3417 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1200)))) (-2195 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1200)))) (-3425 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1200)))) (-2195 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1200)))) (-1532 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4383)) (-4 *1 (-119 *3)) (-4 *3 (-1200)))) (-2762 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4383)) (-4 *1 (-119 *2)) (-4 *2 (-1200)))) (-1532 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4383)) (-4 *1 (-119 *3)) (-4 *3 (-1200)))) (-2749 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4383)) (-4 *1 (-119 *2)) (-4 *2 (-1200)))))
+(-13 (-1000 |t#1|) (-10 -8 (-15 -3417 ($ $)) (-15 -2195 ($ $ "left")) (-15 -3425 ($ $)) (-15 -2195 ($ $ "right")) (IF (|has| $ (-6 -4383)) (PROGN (-15 -1532 ($ $ "left" $)) (-15 -2762 ($ $ $)) (-15 -1532 ($ $ "right" $)) (-15 -2749 ($ $ $))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1087)) ((-605 (-853)) -3998 (|has| |#1| (-1087)) (|has| |#1| (-605 (-853)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-1000 |#1|) . T) ((-1087) |has| |#1| (-1087)) ((-1200) . T))
+((-1438 (((-112) |#1|) 24)) (-1345 (((-762) (-762)) 23) (((-762)) 22)) (-1333 (((-112) |#1| (-112)) 25) (((-112) |#1|) 26)))
+(((-120 |#1|) (-10 -7 (-15 -1333 ((-112) |#1|)) (-15 -1333 ((-112) |#1| (-112))) (-15 -1345 ((-762))) (-15 -1345 ((-762) (-762))) (-15 -1438 ((-112) |#1|))) (-1222 (-558))) (T -120))
+((-1438 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1222 (-558))))) (-1345 (*1 *2 *2) (-12 (-5 *2 (-762)) (-5 *1 (-120 *3)) (-4 *3 (-1222 (-558))))) (-1345 (*1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-120 *3)) (-4 *3 (-1222 (-558))))) (-1333 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1222 (-558))))) (-1333 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1222 (-558))))))
+(-10 -7 (-15 -1333 ((-112) |#1|)) (-15 -1333 ((-112) |#1| (-112))) (-15 -1345 ((-762))) (-15 -1345 ((-762) (-762))) (-15 -1438 ((-112) |#1|)))
+((-3207 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2925 ((|#1| $) 15)) (-3469 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-3026 (((-112) $ (-762)) NIL)) (-3972 ((|#1| $ |#1|) NIL (|has| $ (-6 -4383)))) (-2749 (($ $ $) 18 (|has| $ (-6 -4383)))) (-2762 (($ $ $) 20 (|has| $ (-6 -4383)))) (-1532 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4383))) (($ $ "left" $) NIL (|has| $ (-6 -4383))) (($ $ "right" $) NIL (|has| $ (-6 -4383)))) (-3982 (($ $ (-635 $)) NIL (|has| $ (-6 -4383)))) (-1816 (($) NIL T CONST)) (-3425 (($ $) 17)) (-2240 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-2870 (((-635 $) $) NIL)) (-3993 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2024 (($ $ |#1| $) 23)) (-2986 (((-112) $ (-762)) NIL)) (-2122 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1807 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-3417 (($ $) 19)) (-1362 (((-635 |#1|) $) NIL)) (-1790 (((-112) $) NIL)) (-4310 (((-1145) $) NIL (|has| |#1| (-1087)))) (-1450 (($ |#1| $) 24)) (-4328 (($ |#1| $) 10)) (-2975 (((-1107) $) NIL (|has| |#1| (-1087)))) (-3266 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3375 (((-112) $) 14)) (-2083 (($) 8)) (-2195 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2860 (((-558) $ $) NIL)) (-1487 (((-112) $) NIL)) (-2988 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1553 (($ $) NIL)) (-3220 (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-1727 (((-635 $) $) NIL)) (-4005 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-4342 (($ (-635 |#1|)) 12)) (-3277 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4383) (-6 -4382) (-15 -4342 ($ (-635 |#1|))) (-15 -4328 ($ |#1| $)) (-15 -1450 ($ |#1| $)) (-15 -3469 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-841)) (T -121))
+((-4342 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-841)) (-5 *1 (-121 *3)))) (-4328 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-841)))) (-1450 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-841)))) (-3469 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-841)))))
+(-13 (-125 |#1|) (-10 -8 (-6 -4383) (-6 -4382) (-15 -4342 ($ (-635 |#1|))) (-15 -4328 ($ |#1| $)) (-15 -1450 ($ |#1| $)) (-15 -3469 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
+((-1304 (($ $) 12)) (-3304 (($ $) 10)) (-1279 (($ $ $) 22)) (-1290 (($ $ $) 20)) (-3127 (($ $ $) 18)) (-3115 (($ $ $) 16)))
+(((-122 |#1|) (-10 -8 (-15 -1279 (|#1| |#1| |#1|)) (-15 -1290 (|#1| |#1| |#1|)) (-15 -3304 (|#1| |#1|)) (-15 -1304 (|#1| |#1|)) (-15 -3115 (|#1| |#1| |#1|)) (-15 -3127 (|#1| |#1| |#1|))) (-123)) (T -122))
+NIL
+(-10 -8 (-15 -1279 (|#1| |#1| |#1|)) (-15 -1290 (|#1| |#1| |#1|)) (-15 -3304 (|#1| |#1|)) (-15 -1304 (|#1| |#1|)) (-15 -3115 (|#1| |#1| |#1|)) (-15 -3127 (|#1| |#1| |#1|)))
+((-3207 (((-112) $ $) 7)) (-1304 (($ $) 103)) (-2108 (($ $ $) 25)) (-3869 (((-1251) $ (-558) (-558)) 66 (|has| $ (-6 -4383)))) (-1538 (((-112) $) 98 (|has| (-112) (-841))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-2763 (($ $) 102 (-12 (|has| (-112) (-841)) (|has| $ (-6 -4383)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4383)))) (-2376 (($ $) 97 (|has| (-112) (-841))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-3026 (((-112) $ (-762)) 37)) (-1532 (((-112) $ (-1213 (-558)) (-112)) 88 (|has| $ (-6 -4383))) (((-112) $ (-558) (-112)) 54 (|has| $ (-6 -4383)))) (-4329 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4382)))) (-1816 (($) 38 T CONST)) (-3306 (($ $) 100 (|has| $ (-6 -4383)))) (-4127 (($ $) 90)) (-2338 (($ $) 68 (-12 (|has| (-112) (-1087)) (|has| $ (-6 -4382))))) (-1539 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4382))) (($ (-112) $) 69 (-12 (|has| (-112) (-1087)) (|has| $ (-6 -4382))))) (-3048 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4382))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4382))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1087)) (|has| $ (-6 -4382))))) (-1817 (((-112) $ (-558) (-112)) 53 (|has| $ (-6 -4383)))) (-1746 (((-112) $ (-558)) 55)) (-1517 (((-558) (-112) $ (-558)) 95 (|has| (-112) (-1087))) (((-558) (-112) $) 94 (|has| (-112) (-1087))) (((-558) (-1 (-112) (-112)) $) 93)) (-2240 (((-635 (-112)) $) 45 (|has| $ (-6 -4382)))) (-2095 (($ $ $) 26)) (-3304 (($ $) 30)) (-1279 (($ $ $) 28)) (-3315 (($ (-762) (-112)) 77)) (-1290 (($ $ $) 29)) (-2986 (((-112) $ (-762)) 36)) (-3889 (((-558) $) 63 (|has| (-558) (-841)))) (-3910 (($ $ $) 13)) (-1677 (($ $ $) 96 (|has| (-112) (-841))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-2122 (((-635 (-112)) $) 46 (|has| $ (-6 -4382)))) (-4322 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1087)) (|has| $ (-6 -4382))))) (-3899 (((-558) $) 62 (|has| (-558) (-841)))) (-3542 (($ $ $) 14)) (-1807 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4383)))) (-3167 (($ (-1 (-112) (-112) (-112)) $ $) 82) (($ (-1 (-112) (-112)) $) 40)) (-2953 (((-112) $ (-762)) 35)) (-4310 (((-1145) $) 9)) (-1861 (($ $ $ (-558)) 87) (($ (-112) $ (-558)) 86)) (-3920 (((-635 (-558)) $) 60)) (-3929 (((-112) (-558) $) 59)) (-2975 (((-1107) $) 10)) (-2305 (((-112) $) 64 (|has| (-558) (-841)))) (-4307 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-3880 (($ $ (-112)) 65 (|has| $ (-6 -4383)))) (-3266 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-112)) (-635 (-112))) 52 (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1087)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1087)))) (($ $ (-293 (-112))) 50 (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1087)))) (($ $ (-635 (-293 (-112)))) 49 (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1087))))) (-2381 (((-112) $ $) 31)) (-3908 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4382)) (|has| (-112) (-1087))))) (-3937 (((-635 (-112)) $) 58)) (-3375 (((-112) $) 34)) (-2083 (($) 33)) (-2195 (($ $ (-1213 (-558))) 83) (((-112) $ (-558)) 57) (((-112) $ (-558) (-112)) 56)) (-4023 (($ $ (-1213 (-558))) 85) (($ $ (-558)) 84)) (-2988 (((-762) (-112) $) 47 (-12 (|has| (-112) (-1087)) (|has| $ (-6 -4382)))) (((-762) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4382)))) (-2773 (($ $ $ (-558)) 99 (|has| $ (-6 -4383)))) (-1553 (($ $) 32)) (-3224 (((-534) $) 67 (|has| (-112) (-606 (-534))))) (-3233 (($ (-635 (-112))) 76)) (-4341 (($ (-635 $)) 81) (($ $ $) 80) (($ (-112) $) 79) (($ $ (-112)) 78)) (-3220 (((-853) $) 11)) (-3277 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4382)))) (-2084 (($ $ $) 27)) (-3127 (($ $ $) 105)) (-1747 (((-112) $ $) 16)) (-1720 (((-112) $ $) 17)) (-1683 (((-112) $ $) 6)) (-1731 (((-112) $ $) 15)) (-1705 (((-112) $ $) 18)) (-3115 (($ $ $) 104)) (-2755 (((-762) $) 39 (|has| $ (-6 -4382)))))
+(((-123) (-139)) (T -123))
+((-3304 (*1 *1 *1) (-4 *1 (-123))) (-1290 (*1 *1 *1 *1) (-4 *1 (-123))) (-1279 (*1 *1 *1 *1) (-4 *1 (-123))) (-2084 (*1 *1 *1 *1) (-4 *1 (-123))) (-2095 (*1 *1 *1 *1) (-4 *1 (-123))) (-2108 (*1 *1 *1 *1) (-4 *1 (-123))))
+(-13 (-841) (-651) (-19 (-112)) (-10 -8 (-15 -3304 ($ $)) (-15 -1290 ($ $ $)) (-15 -1279 ($ $ $)) (-15 -2084 ($ $ $)) (-15 -2095 ($ $ $)) (-15 -2108 ($ $ $))))
+(((-34) . T) ((-102) . T) ((-605 (-853)) . T) ((-150 #0=(-112)) . T) ((-606 (-534)) |has| (-112) (-606 (-534))) ((-285 #1=(-558) #0#) . T) ((-287 #1# #0#) . T) ((-308 #0#) -12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1087))) ((-372 #0#) . T) ((-487 #0#) . T) ((-596 #1# #0#) . T) ((-512 #0# #0#) -12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1087))) ((-641 #0#) . T) ((-651) . T) ((-19 #0#) . T) ((-841) . T) ((-1087) . T) ((-1200) . T))
+((-1807 (($ (-1 |#2| |#2|) $) 22)) (-1553 (($ $) 16)) (-2755 (((-762) $) 24)))
+(((-124 |#1| |#2|) (-10 -8 (-15 -1807 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2755 ((-762) |#1|)) (-15 -1553 (|#1| |#1|))) (-125 |#2|) (-1087)) (T -124))
+NIL
+(-10 -8 (-15 -1807 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2755 ((-762) |#1|)) (-15 -1553 (|#1| |#1|)))
+((-3207 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-2925 ((|#1| $) 48)) (-3026 (((-112) $ (-762)) 8)) (-3972 ((|#1| $ |#1|) 39 (|has| $ (-6 -4383)))) (-2749 (($ $ $) 52 (|has| $ (-6 -4383)))) (-2762 (($ $ $) 54 (|has| $ (-6 -4383)))) (-1532 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4383))) (($ $ "left" $) 55 (|has| $ (-6 -4383))) (($ $ "right" $) 53 (|has| $ (-6 -4383)))) (-3982 (($ $ (-635 $)) 41 (|has| $ (-6 -4383)))) (-1816 (($) 7 T CONST)) (-3425 (($ $) 57)) (-2240 (((-635 |#1|) $) 30 (|has| $ (-6 -4382)))) (-2870 (((-635 $) $) 50)) (-3993 (((-112) $ $) 42 (|has| |#1| (-1087)))) (-2024 (($ $ |#1| $) 60)) (-2986 (((-112) $ (-762)) 9)) (-2122 (((-635 |#1|) $) 29 (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1807 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) 35)) (-2953 (((-112) $ (-762)) 10)) (-3417 (($ $) 59)) (-1362 (((-635 |#1|) $) 45)) (-1790 (((-112) $) 49)) (-4310 (((-1145) $) 22 (|has| |#1| (-1087)))) (-2975 (((-1107) $) 21 (|has| |#1| (-1087)))) (-3266 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) 14)) (-3375 (((-112) $) 11)) (-2083 (($) 12)) (-2195 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-2860 (((-558) $ $) 44)) (-1487 (((-112) $) 46)) (-2988 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4382))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1553 (($ $) 13)) (-3220 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-1727 (((-635 $) $) 51)) (-4005 (((-112) $ $) 43 (|has| |#1| (-1087)))) (-3277 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-2755 (((-762) $) 6 (|has| $ (-6 -4382)))))
+(((-125 |#1|) (-139) (-1087)) (T -125))
+((-2024 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1087)))))
+(-13 (-119 |t#1|) (-10 -8 (-6 -4383) (-6 -4382) (-15 -2024 ($ $ |t#1| $))))
+(((-34) . T) ((-102) |has| |#1| (-1087)) ((-119 |#1|) . T) ((-605 (-853)) -3998 (|has| |#1| (-1087)) (|has| |#1| (-605 (-853)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-1000 |#1|) . T) ((-1087) |has| |#1| (-1087)) ((-1200) . T))
+((-3207 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2925 ((|#1| $) 15)) (-3026 (((-112) $ (-762)) NIL)) (-3972 ((|#1| $ |#1|) 19 (|has| $ (-6 -4383)))) (-2749 (($ $ $) 20 (|has| $ (-6 -4383)))) (-2762 (($ $ $) 18 (|has| $ (-6 -4383)))) (-1532 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4383))) (($ $ "left" $) NIL (|has| $ (-6 -4383))) (($ $ "right" $) NIL (|has| $ (-6 -4383)))) (-3982 (($ $ (-635 $)) NIL (|has| $ (-6 -4383)))) (-1816 (($) NIL T CONST)) (-3425 (($ $) 21)) (-2240 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-2870 (((-635 $) $) NIL)) (-3993 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2024 (($ $ |#1| $) NIL)) (-2986 (((-112) $ (-762)) NIL)) (-2122 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1807 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-3417 (($ $) NIL)) (-1362 (((-635 |#1|) $) NIL)) (-1790 (((-112) $) NIL)) (-4310 (((-1145) $) NIL (|has| |#1| (-1087)))) (-4328 (($ |#1| $) 10)) (-2975 (((-1107) $) NIL (|has| |#1| (-1087)))) (-3266 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3375 (((-112) $) 14)) (-2083 (($) 8)) (-2195 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2860 (((-558) $ $) NIL)) (-1487 (((-112) $) NIL)) (-2988 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1553 (($ $) 17)) (-3220 (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-1727 (((-635 $) $) NIL)) (-4005 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-3047 (($ (-635 |#1|)) 12)) (-3277 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4383) (-15 -3047 ($ (-635 |#1|))) (-15 -4328 ($ |#1| $)))) (-841)) (T -126))
+((-3047 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-841)) (-5 *1 (-126 *3)))) (-4328 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-841)))))
+(-13 (-125 |#1|) (-10 -8 (-6 -4383) (-15 -3047 ($ (-635 |#1|))) (-15 -4328 ($ |#1| $))))
+((-3207 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2925 ((|#1| $) 24)) (-3026 (((-112) $ (-762)) NIL)) (-3972 ((|#1| $ |#1|) 26 (|has| $ (-6 -4383)))) (-2749 (($ $ $) 30 (|has| $ (-6 -4383)))) (-2762 (($ $ $) 28 (|has| $ (-6 -4383)))) (-1532 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4383))) (($ $ "left" $) NIL (|has| $ (-6 -4383))) (($ $ "right" $) NIL (|has| $ (-6 -4383)))) (-3982 (($ $ (-635 $)) NIL (|has| $ (-6 -4383)))) (-1816 (($) NIL T CONST)) (-3425 (($ $) 20)) (-2240 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-2870 (((-635 $) $) NIL)) (-3993 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2024 (($ $ |#1| $) 15)) (-2986 (((-112) $ (-762)) NIL)) (-2122 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1807 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-3417 (($ $) 19)) (-1362 (((-635 |#1|) $) NIL)) (-1790 (((-112) $) 21)) (-4310 (((-1145) $) NIL (|has| |#1| (-1087)))) (-2975 (((-1107) $) NIL (|has| |#1| (-1087)))) (-3266 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3375 (((-112) $) 18)) (-2083 (($) 11)) (-2195 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2860 (((-558) $ $) NIL)) (-1487 (((-112) $) NIL)) (-2988 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1553 (($ $) NIL)) (-3220 (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-1727 (((-635 $) $) NIL)) (-4005 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-3060 (($ |#1|) 17) (($ $ |#1| $) 16)) (-3277 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) 10 (|has| |#1| (-1087)))) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -3060 ($ |#1|)) (-15 -3060 ($ $ |#1| $)))) (-1087)) (T -127))
+((-3060 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1087)))) (-3060 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1087)))))
+(-13 (-125 |#1|) (-10 -8 (-15 -3060 ($ |#1|)) (-15 -3060 ($ $ |#1| $))))
+((-3207 (((-112) $ $) NIL (|has| (-129) (-1087)))) (-3869 (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4383)))) (-1538 (((-112) (-1 (-112) (-129) (-129)) $) NIL) (((-112) $) NIL (|has| (-129) (-841)))) (-2763 (($ (-1 (-112) (-129) (-129)) $) NIL (|has| $ (-6 -4383))) (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-129) (-841))))) (-2376 (($ (-1 (-112) (-129) (-129)) $) NIL) (($ $) NIL (|has| (-129) (-841)))) (-3026 (((-112) $ (-762)) NIL)) (-1532 (((-129) $ (-558) (-129)) 17 (|has| $ (-6 -4383))) (((-129) $ (-1213 (-558)) (-129)) NIL (|has| $ (-6 -4383)))) (-3731 (((-762) $ (-762)) 7)) (-4329 (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4382)))) (-1816 (($) NIL T CONST)) (-3306 (($ $) NIL (|has| $ (-6 -4383)))) (-4127 (($ $) NIL)) (-2338 (($ $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-129) (-1087))))) (-1539 (($ (-129) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-129) (-1087)))) (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4382)))) (-3048 (((-129) (-1 (-129) (-129) (-129)) $ (-129) (-129)) NIL (-12 (|has| $ (-6 -4382)) (|has| (-129) (-1087)))) (((-129) (-1 (-129) (-129) (-129)) $ (-129)) NIL (|has| $ (-6 -4382))) (((-129) (-1 (-129) (-129) (-129)) $) NIL (|has| $ (-6 -4382)))) (-1817 (((-129) $ (-558) (-129)) 16 (|has| $ (-6 -4383)))) (-1746 (((-129) $ (-558)) 13)) (-1517 (((-558) (-1 (-112) (-129)) $) NIL) (((-558) (-129) $) NIL (|has| (-129) (-1087))) (((-558) (-129) $ (-558)) NIL (|has| (-129) (-1087)))) (-2240 (((-635 (-129)) $) NIL (|has| $ (-6 -4382)))) (-3315 (($ (-762) (-129)) 11)) (-2986 (((-112) $ (-762)) NIL)) (-3889 (((-558) $) 18 (|has| (-558) (-841)))) (-3910 (($ $ $) NIL (|has| (-129) (-841)))) (-1677 (($ (-1 (-112) (-129) (-129)) $ $) NIL) (($ $ $) NIL (|has| (-129) (-841)))) (-2122 (((-635 (-129)) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-129) (-1087))))) (-3899 (((-558) $) 19 (|has| (-558) (-841)))) (-3542 (($ $ $) NIL (|has| (-129) (-841)))) (-1807 (($ (-1 (-129) (-129)) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 (-129) (-129)) $) NIL) (($ (-1 (-129) (-129) (-129)) $ $) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL (|has| (-129) (-1087)))) (-1861 (($ (-129) $ (-558)) NIL) (($ $ $ (-558)) NIL)) (-3920 (((-635 (-558)) $) NIL)) (-3929 (((-112) (-558) $) NIL)) (-2975 (((-1107) $) NIL (|has| (-129) (-1087)))) (-2305 (((-129) $) NIL (|has| (-558) (-841)))) (-4307 (((-3 (-129) "failed") (-1 (-112) (-129)) $) NIL)) (-3880 (($ $ (-129)) NIL (|has| $ (-6 -4383)))) (-3266 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 (-129)))) NIL (-12 (|has| (-129) (-308 (-129))) (|has| (-129) (-1087)))) (($ $ (-293 (-129))) NIL (-12 (|has| (-129) (-308 (-129))) (|has| (-129) (-1087)))) (($ $ (-129) (-129)) NIL (-12 (|has| (-129) (-308 (-129))) (|has| (-129) (-1087)))) (($ $ (-635 (-129)) (-635 (-129))) NIL (-12 (|has| (-129) (-308 (-129))) (|has| (-129) (-1087))))) (-2381 (((-112) $ $) NIL)) (-3908 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-129) (-1087))))) (-3937 (((-635 (-129)) $) NIL)) (-3375 (((-112) $) NIL)) (-2083 (($) 9)) (-2195 (((-129) $ (-558) (-129)) NIL) (((-129) $ (-558)) 15) (($ $ (-1213 (-558))) NIL)) (-4023 (($ $ (-558)) NIL) (($ $ (-1213 (-558))) NIL)) (-2988 (((-762) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4382))) (((-762) (-129) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-129) (-1087))))) (-2773 (($ $ $ (-558)) NIL (|has| $ (-6 -4383)))) (-1553 (($ $) NIL)) (-3224 (((-534) $) NIL (|has| (-129) (-606 (-534))))) (-3233 (($ (-635 (-129))) 29)) (-4341 (($ $ (-129)) NIL) (($ (-129) $) NIL) (($ $ $) 30) (($ (-635 $)) NIL)) (-3220 (((-1145) $) 27) (((-853) $) NIL (|has| (-129) (-605 (-853))))) (-3947 (((-762) $) 14)) (-3959 (($ (-762)) 8)) (-3277 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4382)))) (-1747 (((-112) $ $) NIL (|has| (-129) (-841)))) (-1720 (((-112) $ $) NIL (|has| (-129) (-841)))) (-1683 (((-112) $ $) 22 (|has| (-129) (-1087)))) (-1731 (((-112) $ $) NIL (|has| (-129) (-841)))) (-1705 (((-112) $ $) NIL (|has| (-129) (-841)))) (-2755 (((-762) $) 20)))
+(((-128) (-13 (-19 (-129)) (-605 (-1145)) (-10 -8 (-15 -3959 ($ (-762))) (-15 -2755 ((-762) $)) (-15 -3947 ((-762) $)) (-15 -3731 ((-762) $ (-762)))))) (T -128))
+((-3959 (*1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-128)))) (-2755 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-128)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-128)))) (-3731 (*1 *2 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-128)))))
+(-13 (-19 (-129)) (-605 (-1145)) (-10 -8 (-15 -3959 ($ (-762))) (-15 -2755 ((-762) $)) (-15 -3947 ((-762) $)) (-15 -3731 ((-762) $ (-762)))))
+((-3207 (((-112) $ $) NIL)) (-1816 (($) NIL)) (-3910 (($ $ $) NIL)) (-3542 (($ $ $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) 9)) (-3220 (((-853) $) 19) (((-762) $) 11) (($ (-143)) 14) (((-143) $) 16) (($ (-762)) 10)) (-1404 (($ (-762)) 7)) (-4173 (($ $ $) 24)) (-4161 (($ $ $) 23)) (-1747 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1683 (((-112) $ $) 21)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 22)))
+(((-129) (-13 (-841) (-605 (-762)) (-488 (-143)) (-10 -8 (-15 -1404 ($ (-762))) (-15 -3220 ($ (-762))) (-15 -4161 ($ $ $)) (-15 -4173 ($ $ $)) (-15 -1816 ($))))) (T -129))
+((-1404 (*1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-129)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-129)))) (-4161 (*1 *1 *1 *1) (-5 *1 (-129))) (-4173 (*1 *1 *1 *1) (-5 *1 (-129))) (-1816 (*1 *1) (-5 *1 (-129))))
+(-13 (-841) (-605 (-762)) (-488 (-143)) (-10 -8 (-15 -1404 ($ (-762))) (-15 -3220 ($ (-762))) (-15 -4161 ($ $ $)) (-15 -4173 ($ $ $)) (-15 -1816 ($))))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2089 (((-3 $ "failed") $ $) 19)) (-1816 (($) 17 T CONST)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11)) (-2131 (($) 18 T CONST)) (-1683 (((-112) $ $) 6)) (-1784 (($ $ $) 14)) (* (($ (-911) $) 13) (($ (-762) $) 15)))
+(((-130) (-139)) (T -130))
+((-2089 (*1 *1 *1 *1) (|partial| -4 *1 (-130))))
+(-13 (-23) (-10 -8 (-15 -2089 ((-3 $ "failed") $ $))))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-605 (-853)) . T) ((-1087) . T))
+((-3207 (((-112) $ $) 7)) (-2101 (((-1251) $ (-762)) 19)) (-1517 (((-762) $) 20)) (-3910 (($ $ $) 13)) (-3542 (($ $ $) 14)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11)) (-1747 (((-112) $ $) 16)) (-1720 (((-112) $ $) 17)) (-1683 (((-112) $ $) 6)) (-1731 (((-112) $ $) 15)) (-1705 (((-112) $ $) 18)))
+(((-131) (-139)) (T -131))
+((-1517 (*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-762)))) (-2101 (*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-762)) (-5 *2 (-1251)))))
+(-13 (-841) (-10 -8 (-15 -1517 ((-762) $)) (-15 -2101 ((-1251) $ (-762)))))
+(((-102) . T) ((-605 (-853)) . T) ((-841) . T) ((-1087) . T))
+((-3207 (((-112) $ $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 18) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1337 (((-635 (-1122)) $) 10)) (-1683 (((-112) $ $) NIL)))
+(((-132) (-13 (-1070) (-10 -8 (-15 -1337 ((-635 (-1122)) $))))) (T -132))
+((-1337 (*1 *2 *1) (-12 (-5 *2 (-635 (-1122))) (-5 *1 (-132)))))
+(-13 (-1070) (-10 -8 (-15 -1337 ((-635 (-1122)) $))))
+((-3207 (((-112) $ $) 34)) (-2067 (((-112) $) NIL)) (-1816 (($) NIL T CONST)) (-3069 (((-3 (-762) "failed") $) 40)) (-1863 (((-762) $) 38)) (-2588 (((-3 $ "failed") $) NIL)) (-2035 (((-112) $) NIL)) (-3910 (($ $ $) NIL)) (-3542 (($ $ $) 27)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-4016 (((-112)) 41)) (-4008 (((-112) (-112)) 43)) (-1606 (((-112) $) 24)) (-4028 (((-112) $) 37)) (-3220 (((-853) $) 22) (($ (-762)) 14)) (-2131 (($) 11 T CONST)) (-2142 (($) 12 T CONST)) (-4038 (($ (-762)) 15)) (-1747 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1683 (((-112) $ $) 25)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 26)) (-1798 (((-3 $ "failed") $ $) 30)) (-1784 (($ $ $) 28)) (** (($ $ (-762)) NIL) (($ $ (-911)) NIL) (($ $ $) 36)) (* (($ (-762) $) 33) (($ (-911) $) NIL) (($ $ $) 31)))
+(((-133) (-13 (-841) (-23) (-717) (-1028 (-762)) (-10 -8 (-6 (-4384 "*")) (-15 -1798 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -4038 ($ (-762))) (-15 -1606 ((-112) $)) (-15 -4028 ((-112) $)) (-15 -4016 ((-112))) (-15 -4008 ((-112) (-112)))))) (T -133))
+((-1798 (*1 *1 *1 *1) (|partial| -5 *1 (-133))) (** (*1 *1 *1 *1) (-5 *1 (-133))) (-4038 (*1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-133)))) (-1606 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-4028 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-4016 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-4008 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
+(-13 (-841) (-23) (-717) (-1028 (-762)) (-10 -8 (-6 (-4384 "*")) (-15 -1798 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -4038 ($ (-762))) (-15 -1606 ((-112) $)) (-15 -4028 ((-112) $)) (-15 -4016 ((-112))) (-15 -4008 ((-112) (-112)))))
+((-2653 (((-135 |#1| |#2| |#4|) (-635 |#4|) (-135 |#1| |#2| |#3|)) 14)) (-3167 (((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)) 18)))
+(((-134 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2653 ((-135 |#1| |#2| |#4|) (-635 |#4|) (-135 |#1| |#2| |#3|))) (-15 -3167 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)))) (-558) (-762) (-171) (-171)) (T -134))
+((-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-558)) (-14 *6 (-762)) (-4 *7 (-171)) (-4 *8 (-171)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8)))) (-2653 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-558)) (-14 *6 (-762)) (-4 *7 (-171)) (-4 *8 (-171)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8)))))
+(-10 -7 (-15 -2653 ((-135 |#1| |#2| |#4|) (-635 |#4|) (-135 |#1| |#2| |#3|))) (-15 -3167 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|))))
+((-3207 (((-112) $ $) NIL)) (-4049 (($ (-635 |#3|)) 40)) (-3453 (($ $) 99) (($ $ (-558) (-558)) 98)) (-1816 (($) 17)) (-3069 (((-3 |#3| "failed") $) 60)) (-1863 ((|#3| $) NIL)) (-4076 (($ $ (-635 (-558))) 100)) (-2641 (((-635 |#3|) $) 36)) (-3833 (((-762) $) 44)) (-4287 (($ $ $) 93)) (-4056 (($) 43)) (-4310 (((-1145) $) NIL)) (-4066 (($) 16)) (-2975 (((-1107) $) NIL)) (-2195 ((|#3| $) 46) ((|#3| $ (-558)) 47) ((|#3| $ (-558) (-558)) 48) ((|#3| $ (-558) (-558) (-558)) 49) ((|#3| $ (-558) (-558) (-558) (-558)) 50) ((|#3| $ (-635 (-558))) 52)) (-4323 (((-762) $) 45)) (-2398 (($ $ (-558) $ (-558)) 94) (($ $ (-558) (-558)) 96)) (-3220 (((-853) $) 67) (($ |#3|) 68) (($ (-239 |#2| |#3|)) 75) (($ (-1129 |#2| |#3|)) 78) (($ (-635 |#3|)) 53) (($ (-635 $)) 58)) (-2131 (($) 69 T CONST)) (-2142 (($) 70 T CONST)) (-1683 (((-112) $ $) 80)) (-1798 (($ $) 86) (($ $ $) 84)) (-1784 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-558)) 89) (($ (-558) $) 88) (($ $ $) 95)))
+(((-135 |#1| |#2| |#3|) (-13 (-463 |#3| (-762)) (-468 (-558) (-762)) (-10 -8 (-15 -3220 ($ (-239 |#2| |#3|))) (-15 -3220 ($ (-1129 |#2| |#3|))) (-15 -3220 ($ (-635 |#3|))) (-15 -3220 ($ (-635 $))) (-15 -3833 ((-762) $)) (-15 -2195 (|#3| $)) (-15 -2195 (|#3| $ (-558))) (-15 -2195 (|#3| $ (-558) (-558))) (-15 -2195 (|#3| $ (-558) (-558) (-558))) (-15 -2195 (|#3| $ (-558) (-558) (-558) (-558))) (-15 -2195 (|#3| $ (-635 (-558)))) (-15 -4287 ($ $ $)) (-15 * ($ $ $)) (-15 -2398 ($ $ (-558) $ (-558))) (-15 -2398 ($ $ (-558) (-558))) (-15 -3453 ($ $)) (-15 -3453 ($ $ (-558) (-558))) (-15 -4076 ($ $ (-635 (-558)))) (-15 -4066 ($)) (-15 -4056 ($)) (-15 -2641 ((-635 |#3|) $)) (-15 -4049 ($ (-635 |#3|))) (-15 -1816 ($)))) (-558) (-762) (-171)) (T -135))
+((-4287 (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-762)) (-4 *4 (-171)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-239 *4 *5)) (-14 *4 (-762)) (-4 *5 (-171)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-558)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-1129 *4 *5)) (-14 *4 (-762)) (-4 *5 (-171)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-558)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-635 *5)) (-4 *5 (-171)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-558)) (-14 *4 (-762)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-635 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-558)) (-14 *4 (-762)) (-4 *5 (-171)))) (-3833 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-558)) (-14 *4 *2) (-4 *5 (-171)))) (-2195 (*1 *2 *1) (-12 (-4 *2 (-171)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-558)) (-14 *4 (-762)))) (-2195 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-762)))) (-2195 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-762)))) (-2195 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-558)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-762)))) (-2195 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-558)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-762)))) (-2195 (*1 *2 *1 *3) (-12 (-5 *3 (-635 (-558))) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 (-558)) (-14 *5 (-762)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-762)) (-4 *4 (-171)))) (-2398 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-762)) (-4 *5 (-171)))) (-2398 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-762)) (-4 *5 (-171)))) (-3453 (*1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-762)) (-4 *4 (-171)))) (-3453 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-762)) (-4 *5 (-171)))) (-4076 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-558)) (-14 *4 (-762)) (-4 *5 (-171)))) (-4066 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-762)) (-4 *4 (-171)))) (-4056 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-762)) (-4 *4 (-171)))) (-2641 (*1 *2 *1) (-12 (-5 *2 (-635 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-558)) (-14 *4 (-762)) (-4 *5 (-171)))) (-4049 (*1 *1 *2) (-12 (-5 *2 (-635 *5)) (-4 *5 (-171)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-558)) (-14 *4 (-762)))) (-1816 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-762)) (-4 *4 (-171)))))
+(-13 (-463 |#3| (-762)) (-468 (-558) (-762)) (-10 -8 (-15 -3220 ($ (-239 |#2| |#3|))) (-15 -3220 ($ (-1129 |#2| |#3|))) (-15 -3220 ($ (-635 |#3|))) (-15 -3220 ($ (-635 $))) (-15 -3833 ((-762) $)) (-15 -2195 (|#3| $)) (-15 -2195 (|#3| $ (-558))) (-15 -2195 (|#3| $ (-558) (-558))) (-15 -2195 (|#3| $ (-558) (-558) (-558))) (-15 -2195 (|#3| $ (-558) (-558) (-558) (-558))) (-15 -2195 (|#3| $ (-635 (-558)))) (-15 -4287 ($ $ $)) (-15 * ($ $ $)) (-15 -2398 ($ $ (-558) $ (-558))) (-15 -2398 ($ $ (-558) (-558))) (-15 -3453 ($ $)) (-15 -3453 ($ $ (-558) (-558))) (-15 -4076 ($ $ (-635 (-558)))) (-15 -4066 ($)) (-15 -4056 ($)) (-15 -2641 ((-635 |#3|) $)) (-15 -4049 ($ (-635 |#3|))) (-15 -1816 ($))))
+((-3207 (((-112) $ $) NIL)) (-3986 (((-1122) $) 11)) (-3976 (((-1122) $) 9)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 19) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1683 (((-112) $ $) NIL)))
+(((-136) (-13 (-1070) (-10 -8 (-15 -3976 ((-1122) $)) (-15 -3986 ((-1122) $))))) (T -136))
+((-3976 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-136)))) (-3986 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-136)))))
+(-13 (-1070) (-10 -8 (-15 -3976 ((-1122) $)) (-15 -3986 ((-1122) $))))
+((-3207 (((-112) $ $) NIL)) (-4310 (((-1145) $) NIL)) (-3470 (((-1163) $) 10)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 19) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1337 (((-635 (-1122)) $) 12)) (-1683 (((-112) $ $) NIL)))
+(((-137) (-13 (-1070) (-10 -8 (-15 -3470 ((-1163) $)) (-15 -1337 ((-635 (-1122)) $))))) (T -137))
+((-3470 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-137)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-635 (-1122))) (-5 *1 (-137)))))
+(-13 (-1070) (-10 -8 (-15 -3470 ((-1163) $)) (-15 -1337 ((-635 (-1122)) $))))
+((-3207 (((-112) $ $) NIL)) (-1323 (((-504) $) NIL)) (-4310 (((-1145) $) NIL)) (-3470 (((-185) $) NIL)) (-2975 (((-1107) $) NIL)) (-3208 (((-635 (-112)) $) NIL)) (-3220 (((-853) $) NIL) (((-186) $) 6)) (-1546 (((-55) $) NIL)) (-1683 (((-112) $ $) NIL)))
+(((-138) (-13 (-184) (-605 (-186)))) (T -138))
+NIL
+(-13 (-184) (-605 (-186)))
+((-4084 (((-635 (-182)) $) 13)) (-2563 (((-635 (-182)) $) 14)) (-4095 (((-635 (-829)) $) 10)) (-2250 (((-138) $) 7)) (-3220 (((-853) $) 16)))
+(((-139) (-13 (-605 (-853)) (-10 -8 (-15 -2250 ((-138) $)) (-15 -4095 ((-635 (-829)) $)) (-15 -4084 ((-635 (-182)) $)) (-15 -2563 ((-635 (-182)) $))))) (T -139))
+((-2250 (*1 *2 *1) (-12 (-5 *2 (-138)) (-5 *1 (-139)))) (-4095 (*1 *2 *1) (-12 (-5 *2 (-635 (-829))) (-5 *1 (-139)))) (-4084 (*1 *2 *1) (-12 (-5 *2 (-635 (-182))) (-5 *1 (-139)))) (-2563 (*1 *2 *1) (-12 (-5 *2 (-635 (-182))) (-5 *1 (-139)))))
+(-13 (-605 (-853)) (-10 -8 (-15 -2250 ((-138) $)) (-15 -4095 ((-635 (-829)) $)) (-15 -4084 ((-635 (-182)) $)) (-15 -2563 ((-635 (-182)) $))))
+((-3207 (((-112) $ $) NIL)) (-2289 (($) 15 T CONST)) (-4067 (($) NIL (|has| (-143) (-367)))) (-3539 (($ $ $) 17) (($ $ (-143)) NIL) (($ (-143) $) NIL)) (-4259 (($ $ $) NIL)) (-4248 (((-112) $ $) NIL)) (-3026 (((-112) $ (-762)) NIL)) (-2276 (((-762)) NIL (|has| (-143) (-367)))) (-1511 (($) NIL) (($ (-635 (-143))) NIL)) (-4207 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4382)))) (-4329 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4382)))) (-1816 (($) NIL T CONST)) (-2338 (($ $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-143) (-1087))))) (-3395 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4382))) (($ (-143) $) 51 (|has| $ (-6 -4382)))) (-1539 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4382))) (($ (-143) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-143) (-1087))))) (-3048 (((-143) (-1 (-143) (-143) (-143)) $) NIL (|has| $ (-6 -4382))) (((-143) (-1 (-143) (-143) (-143)) $ (-143)) NIL (|has| $ (-6 -4382))) (((-143) (-1 (-143) (-143) (-143)) $ (-143) (-143)) NIL (-12 (|has| $ (-6 -4382)) (|has| (-143) (-1087))))) (-2424 (($) NIL (|has| (-143) (-367)))) (-2240 (((-635 (-143)) $) 60 (|has| $ (-6 -4382)))) (-4298 (((-112) $ $) NIL)) (-2986 (((-112) $ (-762)) NIL)) (-3910 (((-143) $) NIL (|has| (-143) (-841)))) (-2122 (((-635 (-143)) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) (-143) $) 26 (-12 (|has| $ (-6 -4382)) (|has| (-143) (-1087))))) (-3542 (((-143) $) NIL (|has| (-143) (-841)))) (-1807 (($ (-1 (-143) (-143)) $) 59 (|has| $ (-6 -4383)))) (-3167 (($ (-1 (-143) (-143)) $) 55)) (-2309 (($) 16 T CONST)) (-2637 (((-911) $) NIL (|has| (-143) (-367)))) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL)) (-4286 (($ $ $) 29)) (-1722 (((-143) $) 52)) (-4328 (($ (-143) $) 50)) (-2851 (($ (-911)) NIL (|has| (-143) (-367)))) (-4131 (($) 14 T CONST)) (-2975 (((-1107) $) NIL)) (-4307 (((-3 (-143) "failed") (-1 (-112) (-143)) $) NIL)) (-3524 (((-143) $) 53)) (-3266 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-143)) (-635 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087)))) (($ $ (-143) (-143)) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087)))) (($ $ (-293 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087)))) (($ $ (-635 (-293 (-143)))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087))))) (-2381 (((-112) $ $) NIL)) (-3375 (((-112) $) NIL)) (-2083 (($) 48)) (-4143 (($) 13 T CONST)) (-4271 (($ $ $) 31) (($ $ (-143)) NIL)) (-2571 (($ (-635 (-143))) NIL) (($) NIL)) (-2988 (((-762) (-143) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-143) (-1087)))) (((-762) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4382)))) (-1553 (($ $) NIL)) (-3224 (((-1145) $) 36) (((-534) $) NIL (|has| (-143) (-606 (-534)))) (((-635 (-143)) $) 34)) (-3233 (($ (-635 (-143))) NIL)) (-4077 (($ $) 32 (|has| (-143) (-367)))) (-3220 (((-853) $) 46)) (-4155 (($ (-1145)) 12) (($ (-635 (-143))) 43)) (-4085 (((-762) $) NIL)) (-2597 (($) 49) (($ (-635 (-143))) NIL)) (-3534 (($ (-635 (-143))) NIL)) (-3277 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4382)))) (-4108 (($) 19 T CONST)) (-4120 (($) 18 T CONST)) (-1683 (((-112) $ $) 22)) (-2755 (((-762) $) 47 (|has| $ (-6 -4382)))))
+(((-140) (-13 (-1087) (-606 (-1145)) (-424 (-143)) (-606 (-635 (-143))) (-10 -8 (-15 -4155 ($ (-1145))) (-15 -4155 ($ (-635 (-143)))) (-15 -4143 ($) -3707) (-15 -4131 ($) -3707) (-15 -2289 ($) -3707) (-15 -2309 ($) -3707) (-15 -4120 ($) -3707) (-15 -4108 ($) -3707)))) (T -140))
+((-4155 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-140)))) (-4155 (*1 *1 *2) (-12 (-5 *2 (-635 (-143))) (-5 *1 (-140)))) (-4143 (*1 *1) (-5 *1 (-140))) (-4131 (*1 *1) (-5 *1 (-140))) (-2289 (*1 *1) (-5 *1 (-140))) (-2309 (*1 *1) (-5 *1 (-140))) (-4120 (*1 *1) (-5 *1 (-140))) (-4108 (*1 *1) (-5 *1 (-140))))
+(-13 (-1087) (-606 (-1145)) (-424 (-143)) (-606 (-635 (-143))) (-10 -8 (-15 -4155 ($ (-1145))) (-15 -4155 ($ (-635 (-143)))) (-15 -4143 ($) -3707) (-15 -4131 ($) -3707) (-15 -2289 ($) -3707) (-15 -2309 ($) -3707) (-15 -4120 ($) -3707) (-15 -4108 ($) -3707)))
+((-3152 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-3132 ((|#1| |#3|) 9)) (-3142 ((|#3| |#3|) 15)))
+(((-141 |#1| |#2| |#3|) (-10 -7 (-15 -3132 (|#1| |#3|)) (-15 -3142 (|#3| |#3|)) (-15 -3152 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-550) (-982 |#1|) (-372 |#2|)) (T -141))
+((-3152 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-982 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-372 *5)))) (-3142 (*1 *2 *2) (-12 (-4 *3 (-550)) (-4 *4 (-982 *3)) (-5 *1 (-141 *3 *4 *2)) (-4 *2 (-372 *4)))) (-3132 (*1 *2 *3) (-12 (-4 *4 (-982 *2)) (-4 *2 (-550)) (-5 *1 (-141 *2 *4 *3)) (-4 *3 (-372 *4)))))
+(-10 -7 (-15 -3132 (|#1| |#3|)) (-15 -3142 (|#3| |#3|)) (-15 -3152 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-1387 (($ $ $) 8)) (-1364 (($ $) 7)) (-2322 (($ $ $) 6)))
+(((-142) (-139)) (T -142))
+((-1387 (*1 *1 *1 *1) (-4 *1 (-142))) (-1364 (*1 *1 *1) (-4 *1 (-142))) (-2322 (*1 *1 *1 *1) (-4 *1 (-142))))
+(-13 (-10 -8 (-15 -2322 ($ $ $)) (-15 -1364 ($ $)) (-15 -1387 ($ $ $))))
+((-3207 (((-112) $ $) NIL)) (-4191 (((-112) $) 30)) (-2289 (($ $) 43)) (-1761 (($) 17)) (-2276 (((-762)) 10)) (-2424 (($) 16)) (-3862 (($) 18)) (-4233 (((-762) $) 14)) (-3910 (($ $ $) NIL)) (-3542 (($ $ $) NIL)) (-4179 (((-112) $) 32)) (-2309 (($ $) 44)) (-2637 (((-911) $) 15)) (-4310 (((-1145) $) 38)) (-2851 (($ (-911)) 13)) (-4212 (((-112) $) 28)) (-2975 (((-1107) $) NIL)) (-4223 (($) 19)) (-4018 (((-112) $) 26)) (-3220 (((-853) $) 21)) (-3407 (($ (-762)) 11) (($ (-1145)) 42)) (-4167 (((-112) $) 36)) (-4201 (((-112) $) 34)) (-1747 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1683 (((-112) $ $) 7)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 8)))
+(((-143) (-13 (-835) (-10 -8 (-15 -4233 ((-762) $)) (-15 -3407 ($ (-762))) (-15 -3407 ($ (-1145))) (-15 -1761 ($)) (-15 -3862 ($)) (-15 -4223 ($)) (-15 -2289 ($ $)) (-15 -2309 ($ $)) (-15 -4018 ((-112) $)) (-15 -4212 ((-112) $)) (-15 -4201 ((-112) $)) (-15 -4191 ((-112) $)) (-15 -4179 ((-112) $)) (-15 -4167 ((-112) $))))) (T -143))
+((-4233 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-143)))) (-3407 (*1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-143)))) (-3407 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-143)))) (-1761 (*1 *1) (-5 *1 (-143))) (-3862 (*1 *1) (-5 *1 (-143))) (-4223 (*1 *1) (-5 *1 (-143))) (-2289 (*1 *1 *1) (-5 *1 (-143))) (-2309 (*1 *1 *1) (-5 *1 (-143))) (-4018 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))) (-4212 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))) (-4201 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))) (-4191 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))) (-4179 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))) (-4167 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))))
+(-13 (-835) (-10 -8 (-15 -4233 ((-762) $)) (-15 -3407 ($ (-762))) (-15 -3407 ($ (-1145))) (-15 -1761 ($)) (-15 -3862 ($)) (-15 -4223 ($)) (-15 -2289 ($ $)) (-15 -2309 ($ $)) (-15 -4018 ((-112) $)) (-15 -4212 ((-112) $)) (-15 -4201 ((-112) $)) (-15 -4191 ((-112) $)) (-15 -4179 ((-112) $)) (-15 -4167 ((-112) $))))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2089 (((-3 $ "failed") $ $) 19)) (-1816 (($) 17 T CONST)) (-2588 (((-3 $ "failed") $) 33)) (-2035 (((-112) $) 31)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11) (($ (-558)) 29)) (-3698 (((-3 $ "failed") $) 35)) (-2542 (((-762)) 28)) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1683 (((-112) $ $) 6)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24)))
+(((-144) (-139)) (T -144))
+((-3698 (*1 *1 *1) (|partial| -4 *1 (-144))))
+(-13 (-1039) (-10 -8 (-15 -3698 ((-3 $ "failed") $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-558)) . T) ((-605 (-853)) . T) ((-638 $) . T) ((-717) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
+((-2363 ((|#1| (-679 |#1|) |#1|) 19)))
+(((-145 |#1|) (-10 -7 (-15 -2363 (|#1| (-679 |#1|) |#1|))) (-171)) (T -145))
+((-2363 (*1 *2 *3 *2) (-12 (-5 *3 (-679 *2)) (-4 *2 (-171)) (-5 *1 (-145 *2)))))
+(-10 -7 (-15 -2363 (|#1| (-679 |#1|) |#1|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2089 (((-3 $ "failed") $ $) 19)) (-1816 (($) 17 T CONST)) (-2588 (((-3 $ "failed") $) 33)) (-2035 (((-112) $) 31)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11) (($ (-558)) 29)) (-2542 (((-762)) 28)) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1683 (((-112) $ $) 6)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24)))
+(((-146) (-139)) (T -146))
+NIL
+(-13 (-1039))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-558)) . T) ((-605 (-853)) . T) ((-638 $) . T) ((-717) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
+((-4268 (((-2 (|:| -1951 (-762)) (|:| -2023 (-406 |#2|)) (|:| |radicand| |#2|)) (-406 |#2|) (-762)) 69)) (-4256 (((-3 (-2 (|:| |radicand| (-406 |#2|)) (|:| |deg| (-762))) "failed") |#3|) 51)) (-4244 (((-2 (|:| -2023 (-406 |#2|)) (|:| |poly| |#3|)) |#3|) 36)) (-4282 ((|#1| |#3| |#3|) 39)) (-2554 ((|#3| |#3| (-406 |#2|) (-406 |#2|)) 19)) (-4295 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| |deg| (-762))) |#3| |#3|) 48)))
+(((-147 |#1| |#2| |#3|) (-10 -7 (-15 -4244 ((-2 (|:| -2023 (-406 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -4256 ((-3 (-2 (|:| |radicand| (-406 |#2|)) (|:| |deg| (-762))) "failed") |#3|)) (-15 -4268 ((-2 (|:| -1951 (-762)) (|:| -2023 (-406 |#2|)) (|:| |radicand| |#2|)) (-406 |#2|) (-762))) (-15 -4282 (|#1| |#3| |#3|)) (-15 -2554 (|#3| |#3| (-406 |#2|) (-406 |#2|))) (-15 -4295 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| |deg| (-762))) |#3| |#3|))) (-1204) (-1222 |#1|) (-1222 (-406 |#2|))) (T -147))
+((-4295 (*1 *2 *3 *3) (-12 (-4 *4 (-1204)) (-4 *5 (-1222 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-406 *5)) (|:| |c2| (-406 *5)) (|:| |deg| (-762)))) (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1222 (-406 *5))))) (-2554 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-406 *5)) (-4 *4 (-1204)) (-4 *5 (-1222 *4)) (-5 *1 (-147 *4 *5 *2)) (-4 *2 (-1222 *3)))) (-4282 (*1 *2 *3 *3) (-12 (-4 *4 (-1222 *2)) (-4 *2 (-1204)) (-5 *1 (-147 *2 *4 *3)) (-4 *3 (-1222 (-406 *4))))) (-4268 (*1 *2 *3 *4) (-12 (-5 *3 (-406 *6)) (-4 *5 (-1204)) (-4 *6 (-1222 *5)) (-5 *2 (-2 (|:| -1951 (-762)) (|:| -2023 *3) (|:| |radicand| *6))) (-5 *1 (-147 *5 *6 *7)) (-5 *4 (-762)) (-4 *7 (-1222 *3)))) (-4256 (*1 *2 *3) (|partial| -12 (-4 *4 (-1204)) (-4 *5 (-1222 *4)) (-5 *2 (-2 (|:| |radicand| (-406 *5)) (|:| |deg| (-762)))) (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1222 (-406 *5))))) (-4244 (*1 *2 *3) (-12 (-4 *4 (-1204)) (-4 *5 (-1222 *4)) (-5 *2 (-2 (|:| -2023 (-406 *5)) (|:| |poly| *3))) (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1222 (-406 *5))))))
+(-10 -7 (-15 -4244 ((-2 (|:| -2023 (-406 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -4256 ((-3 (-2 (|:| |radicand| (-406 |#2|)) (|:| |deg| (-762))) "failed") |#3|)) (-15 -4268 ((-2 (|:| -1951 (-762)) (|:| -2023 (-406 |#2|)) (|:| |radicand| |#2|)) (-406 |#2|) (-762))) (-15 -4282 (|#1| |#3| |#3|)) (-15 -2554 (|#3| |#3| (-406 |#2|) (-406 |#2|))) (-15 -4295 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| |deg| (-762))) |#3| |#3|)))
+((-3719 (((-3 (-635 (-1159 |#2|)) "failed") (-635 (-1159 |#2|)) (-1159 |#2|)) 31)))
+(((-148 |#1| |#2|) (-10 -7 (-15 -3719 ((-3 (-635 (-1159 |#2|)) "failed") (-635 (-1159 |#2|)) (-1159 |#2|)))) (-543) (-165 |#1|)) (T -148))
+((-3719 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-635 (-1159 *5))) (-5 *3 (-1159 *5)) (-4 *5 (-165 *4)) (-4 *4 (-543)) (-5 *1 (-148 *4 *5)))))
+(-10 -7 (-15 -3719 ((-3 (-635 (-1159 |#2|)) "failed") (-635 (-1159 |#2|)) (-1159 |#2|))))
+((-4329 (($ (-1 (-112) |#2|) $) 29)) (-2338 (($ $) 36)) (-1539 (($ (-1 (-112) |#2|) $) 27) (($ |#2| $) 32)) (-3048 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-4307 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 19)) (-3266 (((-112) (-1 (-112) |#2|) $) 16)) (-2988 (((-762) (-1 (-112) |#2|) $) 14) (((-762) |#2| $) NIL)) (-3277 (((-112) (-1 (-112) |#2|) $) 15)) (-2755 (((-762) $) 11)))
+(((-149 |#1| |#2|) (-10 -8 (-15 -2338 (|#1| |#1|)) (-15 -1539 (|#1| |#2| |#1|)) (-15 -3048 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4329 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1539 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3048 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3048 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4307 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2988 ((-762) |#2| |#1|)) (-15 -2988 ((-762) (-1 (-112) |#2|) |#1|)) (-15 -3266 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3277 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2755 ((-762) |#1|))) (-150 |#2|) (-1200)) (T -149))
+NIL
+(-10 -8 (-15 -2338 (|#1| |#1|)) (-15 -1539 (|#1| |#2| |#1|)) (-15 -3048 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4329 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1539 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3048 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3048 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4307 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2988 ((-762) |#2| |#1|)) (-15 -2988 ((-762) (-1 (-112) |#2|) |#1|)) (-15 -3266 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3277 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2755 ((-762) |#1|)))
+((-3207 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-3026 (((-112) $ (-762)) 8)) (-4329 (($ (-1 (-112) |#1|) $) 44 (|has| $ (-6 -4382)))) (-1816 (($) 7 T CONST)) (-2338 (($ $) 41 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1539 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4382))) (($ |#1| $) 42 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-3048 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4382))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4382))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-2240 (((-635 |#1|) $) 30 (|has| $ (-6 -4382)))) (-2986 (((-112) $ (-762)) 9)) (-2122 (((-635 |#1|) $) 29 (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1807 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) 35)) (-2953 (((-112) $ (-762)) 10)) (-4310 (((-1145) $) 22 (|has| |#1| (-1087)))) (-2975 (((-1107) $) 21 (|has| |#1| (-1087)))) (-4307 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 48)) (-3266 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) 14)) (-3375 (((-112) $) 11)) (-2083 (($) 12)) (-2988 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4382))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1553 (($ $) 13)) (-3224 (((-534) $) 40 (|has| |#1| (-606 (-534))))) (-3233 (($ (-635 |#1|)) 49)) (-3220 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-3277 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-2755 (((-762) $) 6 (|has| $ (-6 -4382)))))
+(((-150 |#1|) (-139) (-1200)) (T -150))
+((-3233 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1200)) (-4 *1 (-150 *3)))) (-4307 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-150 *2)) (-4 *2 (-1200)))) (-3048 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4382)) (-4 *1 (-150 *2)) (-4 *2 (-1200)))) (-3048 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4382)) (-4 *1 (-150 *2)) (-4 *2 (-1200)))) (-1539 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4382)) (-4 *1 (-150 *3)) (-4 *3 (-1200)))) (-4329 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4382)) (-4 *1 (-150 *3)) (-4 *3 (-1200)))) (-3048 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1087)) (|has| *1 (-6 -4382)) (-4 *1 (-150 *2)) (-4 *2 (-1200)))) (-1539 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4382)) (-4 *1 (-150 *2)) (-4 *2 (-1200)) (-4 *2 (-1087)))) (-2338 (*1 *1 *1) (-12 (|has| *1 (-6 -4382)) (-4 *1 (-150 *2)) (-4 *2 (-1200)) (-4 *2 (-1087)))))
+(-13 (-487 |t#1|) (-10 -8 (-15 -3233 ($ (-635 |t#1|))) (-15 -4307 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4382)) (PROGN (-15 -3048 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3048 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -1539 ($ (-1 (-112) |t#1|) $)) (-15 -4329 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1087)) (PROGN (-15 -3048 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -1539 ($ |t#1| $)) (-15 -2338 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-606 (-534))) (-6 (-606 (-534))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1087)) ((-605 (-853)) -3998 (|has| |#1| (-1087)) (|has| |#1| (-605 (-853)))) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-1087) |has| |#1| (-1087)) ((-1200) . T))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-1816 (($) NIL T CONST)) (-2588 (((-3 $ "failed") $) 85)) (-2035 (((-112) $) NIL)) (-2648 (($ |#2| (-635 (-911))) 55)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-4032 (($ (-911)) 47)) (-2148 (((-133)) 23)) (-3220 (((-853) $) 68) (($ (-558)) 45) (($ |#2|) 46)) (-3736 ((|#2| $ (-635 (-911))) 58)) (-2542 (((-762)) 20)) (-2131 (($) 40 T CONST)) (-2142 (($) 43 T CONST)) (-1683 (((-112) $ $) 26)) (-1810 (($ $ |#2|) NIL)) (-1798 (($ $) 34) (($ $ $) 32)) (-1784 (($ $ $) 30)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL)))
+(((-151 |#1| |#2| |#3|) (-13 (-1039) (-38 |#2|) (-1253 |#2|) (-10 -8 (-15 -4032 ($ (-911))) (-15 -2648 ($ |#2| (-635 (-911)))) (-15 -3736 (|#2| $ (-635 (-911)))) (-15 -2588 ((-3 $ "failed") $)))) (-911) (-362) (-983 |#1| |#2|)) (T -151))
+((-2588 (*1 *1 *1) (|partial| -12 (-5 *1 (-151 *2 *3 *4)) (-14 *2 (-911)) (-4 *3 (-362)) (-14 *4 (-983 *2 *3)))) (-4032 (*1 *1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-151 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-362)) (-14 *5 (-983 *3 *4)))) (-2648 (*1 *1 *2 *3) (-12 (-5 *3 (-635 (-911))) (-5 *1 (-151 *4 *2 *5)) (-14 *4 (-911)) (-4 *2 (-362)) (-14 *5 (-983 *4 *2)))) (-3736 (*1 *2 *1 *3) (-12 (-5 *3 (-635 (-911))) (-4 *2 (-362)) (-5 *1 (-151 *4 *2 *5)) (-14 *4 (-911)) (-14 *5 (-983 *4 *2)))))
+(-13 (-1039) (-38 |#2|) (-1253 |#2|) (-10 -8 (-15 -4032 ($ (-911))) (-15 -2648 ($ |#2| (-635 (-911)))) (-15 -3736 (|#2| $ (-635 (-911)))) (-15 -2588 ((-3 $ "failed") $))))
+((-4331 (((-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))) (-635 (-635 (-933 (-224)))) (-224) (-224) (-224) (-224)) 37)) (-4319 (((-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))) (-917) (-406 (-558)) (-406 (-558))) 62) (((-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))) (-917)) 63)) (-1662 (((-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))) (-635 (-635 (-933 (-224))))) 66) (((-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))) (-635 (-933 (-224)))) 65) (((-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))) (-917) (-406 (-558)) (-406 (-558))) 57) (((-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))) (-917)) 58)))
+(((-152) (-10 -7 (-15 -1662 ((-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))) (-917))) (-15 -1662 ((-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))) (-917) (-406 (-558)) (-406 (-558)))) (-15 -4319 ((-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))) (-917))) (-15 -4319 ((-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))) (-917) (-406 (-558)) (-406 (-558)))) (-15 -4331 ((-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))) (-635 (-635 (-933 (-224)))) (-224) (-224) (-224) (-224))) (-15 -1662 ((-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))) (-635 (-933 (-224))))) (-15 -1662 ((-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))) (-635 (-635 (-933 (-224)))))))) (T -152))
+((-1662 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224))))) (-5 *1 (-152)) (-5 *3 (-635 (-635 (-933 (-224))))))) (-1662 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224))))) (-5 *1 (-152)) (-5 *3 (-635 (-933 (-224)))))) (-4331 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-224)) (-5 *2 (-2 (|:| |brans| (-635 (-635 (-933 *4)))) (|:| |xValues| (-1081 *4)) (|:| |yValues| (-1081 *4)))) (-5 *1 (-152)) (-5 *3 (-635 (-635 (-933 *4)))))) (-4319 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-917)) (-5 *4 (-406 (-558))) (-5 *2 (-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224))))) (-5 *1 (-152)))) (-4319 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224))))) (-5 *1 (-152)))) (-1662 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-917)) (-5 *4 (-406 (-558))) (-5 *2 (-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224))))) (-5 *1 (-152)))) (-1662 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224))))) (-5 *1 (-152)))))
+(-10 -7 (-15 -1662 ((-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))) (-917))) (-15 -1662 ((-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))) (-917) (-406 (-558)) (-406 (-558)))) (-15 -4319 ((-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))) (-917))) (-15 -4319 ((-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))) (-917) (-406 (-558)) (-406 (-558)))) (-15 -4331 ((-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))) (-635 (-635 (-933 (-224)))) (-224) (-224) (-224) (-224))) (-15 -1662 ((-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))) (-635 (-933 (-224))))) (-15 -1662 ((-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))) (-635 (-635 (-933 (-224)))))))
+((-3207 (((-112) $ $) NIL)) (-4310 (((-1145) $) NIL)) (-1615 (((-635 (-1122)) $) 15)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 24) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1337 (((-1122) $) 9)) (-1683 (((-112) $ $) NIL)))
+(((-153) (-13 (-1070) (-10 -8 (-15 -1615 ((-635 (-1122)) $)) (-15 -1337 ((-1122) $))))) (T -153))
+((-1615 (*1 *2 *1) (-12 (-5 *2 (-635 (-1122))) (-5 *1 (-153)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-153)))))
+(-13 (-1070) (-10 -8 (-15 -1615 ((-635 (-1122)) $)) (-15 -1337 ((-1122) $))))
+((-3078 (((-635 (-168 |#2|)) |#1| |#2|) 45)))
+(((-154 |#1| |#2|) (-10 -7 (-15 -3078 ((-635 (-168 |#2|)) |#1| |#2|))) (-1222 (-168 (-558))) (-13 (-362) (-839))) (T -154))
+((-3078 (*1 *2 *3 *4) (-12 (-5 *2 (-635 (-168 *4))) (-5 *1 (-154 *3 *4)) (-4 *3 (-1222 (-168 (-558)))) (-4 *4 (-13 (-362) (-839))))))
+(-10 -7 (-15 -3078 ((-635 (-168 |#2|)) |#1| |#2|)))
+((-3207 (((-112) $ $) NIL)) (-3986 (((-1199) $) 12)) (-3976 (((-1122) $) 9)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 21) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1683 (((-112) $ $) NIL)))
+(((-155) (-13 (-1070) (-10 -8 (-15 -3976 ((-1122) $)) (-15 -3986 ((-1199) $))))) (T -155))
+((-3976 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-155)))) (-3986 (*1 *2 *1) (-12 (-5 *2 (-1199)) (-5 *1 (-155)))))
+(-13 (-1070) (-10 -8 (-15 -3976 ((-1122) $)) (-15 -3986 ((-1199) $))))
+((-3207 (((-112) $ $) NIL)) (-4353 (($) 15)) (-2293 (($) 14)) (-4343 (((-911)) 22)) (-4310 (((-1145) $) NIL)) (-1418 (((-558) $) 19)) (-2975 (((-1107) $) NIL)) (-2283 (($) 16)) (-1407 (($ (-558)) 23)) (-3220 (((-853) $) 29)) (-2272 (($) 17)) (-1683 (((-112) $ $) 13)) (-1784 (($ $ $) 11)) (* (($ (-911) $) 21) (($ (-224) $) 8)))
+(((-156) (-13 (-25) (-10 -8 (-15 * ($ (-911) $)) (-15 * ($ (-224) $)) (-15 -1784 ($ $ $)) (-15 -2293 ($)) (-15 -4353 ($)) (-15 -2283 ($)) (-15 -2272 ($)) (-15 -1418 ((-558) $)) (-15 -4343 ((-911))) (-15 -1407 ($ (-558)))))) (T -156))
+((-1784 (*1 *1 *1 *1) (-5 *1 (-156))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-911)) (-5 *1 (-156)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-156)))) (-2293 (*1 *1) (-5 *1 (-156))) (-4353 (*1 *1) (-5 *1 (-156))) (-2283 (*1 *1) (-5 *1 (-156))) (-2272 (*1 *1) (-5 *1 (-156))) (-1418 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-156)))) (-4343 (*1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-156)))) (-1407 (*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-156)))))
+(-13 (-25) (-10 -8 (-15 * ($ (-911) $)) (-15 * ($ (-224) $)) (-15 -1784 ($ $ $)) (-15 -2293 ($)) (-15 -4353 ($)) (-15 -2283 ($)) (-15 -2272 ($)) (-15 -1418 ((-558) $)) (-15 -4343 ((-911))) (-15 -1407 ($ (-558)))))
+((-1421 ((|#2| |#2| (-1079 |#2|)) 88) ((|#2| |#2| (-1163)) 68)) (-4287 ((|#2| |#2| (-1079 |#2|)) 87) ((|#2| |#2| (-1163)) 67)) (-1387 ((|#2| |#2| |#2|) 27)) (-3029 (((-114) (-114)) 99)) (-1351 ((|#2| (-635 |#2|)) 117)) (-1314 ((|#2| (-635 |#2|)) 135)) (-1302 ((|#2| (-635 |#2|)) 125)) (-1280 ((|#2| |#2|) 123)) (-1327 ((|#2| (-635 |#2|)) 111)) (-1340 ((|#2| (-635 |#2|)) 112)) (-1291 ((|#2| (-635 |#2|)) 133)) (-1432 ((|#2| |#2| (-1163)) 56) ((|#2| |#2|) 55)) (-1364 ((|#2| |#2|) 23)) (-2322 ((|#2| |#2| |#2|) 26)) (-2995 (((-112) (-114)) 49)) (** ((|#2| |#2| |#2|) 41)))
+(((-157 |#1| |#2|) (-10 -7 (-15 -2995 ((-112) (-114))) (-15 -3029 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -2322 (|#2| |#2| |#2|)) (-15 -1387 (|#2| |#2| |#2|)) (-15 -1364 (|#2| |#2|)) (-15 -1432 (|#2| |#2|)) (-15 -1432 (|#2| |#2| (-1163))) (-15 -1421 (|#2| |#2| (-1163))) (-15 -1421 (|#2| |#2| (-1079 |#2|))) (-15 -4287 (|#2| |#2| (-1163))) (-15 -4287 (|#2| |#2| (-1079 |#2|))) (-15 -1280 (|#2| |#2|)) (-15 -1291 (|#2| (-635 |#2|))) (-15 -1302 (|#2| (-635 |#2|))) (-15 -1314 (|#2| (-635 |#2|))) (-15 -1327 (|#2| (-635 |#2|))) (-15 -1340 (|#2| (-635 |#2|))) (-15 -1351 (|#2| (-635 |#2|)))) (-13 (-841) (-550)) (-429 |#1|)) (T -157))
+((-1351 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-841) (-550))))) (-1340 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-841) (-550))))) (-1327 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-841) (-550))))) (-1314 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-841) (-550))))) (-1302 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-841) (-550))))) (-1291 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-841) (-550))))) (-1280 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-157 *3 *2)) (-4 *2 (-429 *3)))) (-4287 (*1 *2 *2 *3) (-12 (-5 *3 (-1079 *2)) (-4 *2 (-429 *4)) (-4 *4 (-13 (-841) (-550))) (-5 *1 (-157 *4 *2)))) (-4287 (*1 *2 *2 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-841) (-550))) (-5 *1 (-157 *4 *2)) (-4 *2 (-429 *4)))) (-1421 (*1 *2 *2 *3) (-12 (-5 *3 (-1079 *2)) (-4 *2 (-429 *4)) (-4 *4 (-13 (-841) (-550))) (-5 *1 (-157 *4 *2)))) (-1421 (*1 *2 *2 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-841) (-550))) (-5 *1 (-157 *4 *2)) (-4 *2 (-429 *4)))) (-1432 (*1 *2 *2 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-841) (-550))) (-5 *1 (-157 *4 *2)) (-4 *2 (-429 *4)))) (-1432 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-157 *3 *2)) (-4 *2 (-429 *3)))) (-1364 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-157 *3 *2)) (-4 *2 (-429 *3)))) (-1387 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-157 *3 *2)) (-4 *2 (-429 *3)))) (-2322 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-157 *3 *2)) (-4 *2 (-429 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-157 *3 *2)) (-4 *2 (-429 *3)))) (-3029 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-841) (-550))) (-5 *1 (-157 *3 *4)) (-4 *4 (-429 *3)))) (-2995 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-841) (-550))) (-5 *2 (-112)) (-5 *1 (-157 *4 *5)) (-4 *5 (-429 *4)))))
+(-10 -7 (-15 -2995 ((-112) (-114))) (-15 -3029 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -2322 (|#2| |#2| |#2|)) (-15 -1387 (|#2| |#2| |#2|)) (-15 -1364 (|#2| |#2|)) (-15 -1432 (|#2| |#2|)) (-15 -1432 (|#2| |#2| (-1163))) (-15 -1421 (|#2| |#2| (-1163))) (-15 -1421 (|#2| |#2| (-1079 |#2|))) (-15 -4287 (|#2| |#2| (-1163))) (-15 -4287 (|#2| |#2| (-1079 |#2|))) (-15 -1280 (|#2| |#2|)) (-15 -1291 (|#2| (-635 |#2|))) (-15 -1302 (|#2| (-635 |#2|))) (-15 -1314 (|#2| (-635 |#2|))) (-15 -1327 (|#2| (-635 |#2|))) (-15 -1340 (|#2| (-635 |#2|))) (-15 -1351 (|#2| (-635 |#2|))))
+((-1410 ((|#1| |#1| |#1|) 53)) (-1398 ((|#1| |#1| |#1|) 50)) (-1387 ((|#1| |#1| |#1|) 44)) (-2001 ((|#1| |#1|) 35)) (-1375 ((|#1| |#1| (-635 |#1|)) 43)) (-1364 ((|#1| |#1|) 37)) (-2322 ((|#1| |#1| |#1|) 40)))
+(((-158 |#1|) (-10 -7 (-15 -2322 (|#1| |#1| |#1|)) (-15 -1364 (|#1| |#1|)) (-15 -1375 (|#1| |#1| (-635 |#1|))) (-15 -2001 (|#1| |#1|)) (-15 -1387 (|#1| |#1| |#1|)) (-15 -1398 (|#1| |#1| |#1|)) (-15 -1410 (|#1| |#1| |#1|))) (-543)) (T -158))
+((-1410 (*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))) (-1398 (*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))) (-1387 (*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))) (-2001 (*1 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))) (-1375 (*1 *2 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-543)) (-5 *1 (-158 *2)))) (-1364 (*1 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))) (-2322 (*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))))
+(-10 -7 (-15 -2322 (|#1| |#1| |#1|)) (-15 -1364 (|#1| |#1|)) (-15 -1375 (|#1| |#1| (-635 |#1|))) (-15 -2001 (|#1| |#1|)) (-15 -1387 (|#1| |#1| |#1|)) (-15 -1398 (|#1| |#1| |#1|)) (-15 -1410 (|#1| |#1| |#1|)))
+((-1421 (($ $ (-1163)) 12) (($ $ (-1079 $)) 11)) (-4287 (($ $ (-1163)) 10) (($ $ (-1079 $)) 9)) (-1387 (($ $ $) 8)) (-1432 (($ $) 14) (($ $ (-1163)) 13)) (-1364 (($ $) 7)) (-2322 (($ $ $) 6)))
+(((-159) (-139)) (T -159))
+((-1432 (*1 *1 *1) (-4 *1 (-159))) (-1432 (*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1163)))) (-1421 (*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1163)))) (-1421 (*1 *1 *1 *2) (-12 (-5 *2 (-1079 *1)) (-4 *1 (-159)))) (-4287 (*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1163)))) (-4287 (*1 *1 *1 *2) (-12 (-5 *2 (-1079 *1)) (-4 *1 (-159)))))
+(-13 (-142) (-10 -8 (-15 -1432 ($ $)) (-15 -1432 ($ $ (-1163))) (-15 -1421 ($ $ (-1163))) (-15 -1421 ($ $ (-1079 $))) (-15 -4287 ($ $ (-1163))) (-15 -4287 ($ $ (-1079 $)))))
+(((-142) . T))
+((-3207 (((-112) $ $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 17) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1337 (((-635 (-1122)) $) 9)) (-1683 (((-112) $ $) NIL)))
+(((-160) (-13 (-1070) (-10 -8 (-15 -1337 ((-635 (-1122)) $))))) (T -160))
+((-1337 (*1 *2 *1) (-12 (-5 *2 (-635 (-1122))) (-5 *1 (-160)))))
+(-13 (-1070) (-10 -8 (-15 -1337 ((-635 (-1122)) $))))
+((-3207 (((-112) $ $) NIL)) (-1444 (($ (-558)) 13) (($ $ $) 14)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 17)) (-1683 (((-112) $ $) 9)))
+(((-161) (-13 (-1087) (-10 -8 (-15 -1444 ($ (-558))) (-15 -1444 ($ $ $))))) (T -161))
+((-1444 (*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-161)))) (-1444 (*1 *1 *1 *1) (-5 *1 (-161))))
+(-13 (-1087) (-10 -8 (-15 -1444 ($ (-558))) (-15 -1444 ($ $ $))))
+((-3029 (((-114) (-1163)) 97)))
+(((-162) (-10 -7 (-15 -3029 ((-114) (-1163))))) (T -162))
+((-3029 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-114)) (-5 *1 (-162)))))
+(-10 -7 (-15 -3029 ((-114) (-1163))))
+((-1370 ((|#3| |#3|) 19)))
+(((-163 |#1| |#2| |#3|) (-10 -7 (-15 -1370 (|#3| |#3|))) (-1039) (-1222 |#1|) (-1222 |#2|)) (T -163))
+((-1370 (*1 *2 *2) (-12 (-4 *3 (-1039)) (-4 *4 (-1222 *3)) (-5 *1 (-163 *3 *4 *2)) (-4 *2 (-1222 *4)))))
+(-10 -7 (-15 -1370 (|#3| |#3|)))
+((-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 216)) (-1635 ((|#2| $) 95)) (-4088 (($ $) 246)) (-2135 (($ $) 240)) (-3719 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) 39)) (-4070 (($ $) 244)) (-2112 (($ $) 238)) (-3069 (((-3 (-558) "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL) (((-3 |#2| "failed") $) 140)) (-1863 (((-558) $) NIL) (((-406 (-558)) $) NIL) ((|#2| $) 138)) (-4025 (($ $ $) 221)) (-3216 (((-679 (-558)) (-679 $)) NIL) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL) (((-2 (|:| -3683 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 $) (-1246 $)) 154) (((-679 |#2|) (-679 $)) 148)) (-3048 (($ (-1159 |#2|)) 118) (((-3 $ "failed") (-406 (-1159 |#2|))) NIL)) (-2588 (((-3 $ "failed") $) 208)) (-3962 (((-3 (-406 (-558)) "failed") $) 198)) (-3951 (((-112) $) 193)) (-3938 (((-406 (-558)) $) 196)) (-3833 (((-911)) 88)) (-4004 (($ $ $) 223)) (-2757 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 260)) (-1904 (($) 235)) (-2269 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) 185) (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) 190)) (-2615 ((|#2| $) 93)) (-2681 (((-1159 |#2|) $) 120)) (-3167 (($ (-1 |#2| |#2|) $) 101)) (-2592 (($ $) 237)) (-3227 (((-1159 |#2|) $) 119)) (-2418 (($ $) 201)) (-2767 (($) 96)) (-3728 (((-417 (-1159 $)) (-1159 $)) 87)) (-3738 (((-417 (-1159 $)) (-1159 $)) 56)) (-3983 (((-3 $ "failed") $ |#2|) 203) (((-3 $ "failed") $ $) 206)) (-2573 (($ $) 236)) (-3722 (((-762) $) 218)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 228)) (-3331 ((|#2| (-1246 $)) NIL) ((|#2|) 90)) (-2829 (($ $ (-1 |#2| |#2|) (-762)) NIL) (($ $ (-1 |#2| |#2|)) 112) (($ $ (-635 (-1163)) (-635 (-762))) NIL) (($ $ (-1163) (-762)) NIL) (($ $ (-635 (-1163))) NIL) (($ $ (-1163)) NIL) (($ $ (-762)) NIL) (($ $) NIL)) (-2036 (((-1159 |#2|)) 113)) (-4080 (($ $) 245)) (-2124 (($ $) 239)) (-4205 (((-1246 |#2|) $ (-1246 $)) 127) (((-679 |#2|) (-1246 $) (-1246 $)) NIL) (((-1246 |#2|) $) 109) (((-679 |#2|) (-1246 $)) NIL)) (-3224 (((-1246 |#2|) $) NIL) (($ (-1246 |#2|)) NIL) (((-1159 |#2|) $) NIL) (($ (-1159 |#2|)) NIL) (((-882 (-558)) $) 176) (((-882 (-378)) $) 180) (((-168 (-378)) $) 166) (((-168 (-224)) $) 161) (((-534) $) 172)) (-3808 (($ $) 97)) (-3220 (((-853) $) 137) (($ (-558)) NIL) (($ |#2|) NIL) (($ (-406 (-558))) NIL) (($ $) NIL)) (-2363 (((-1159 |#2|) $) 23)) (-2542 (((-762)) 99)) (-4159 (($ $) 249)) (-2200 (($ $) 243)) (-4135 (($ $) 247)) (-2178 (($ $) 241)) (-3971 ((|#2| $) 232)) (-4147 (($ $) 248)) (-2189 (($ $) 242)) (-3190 (($ $) 156)) (-1683 (((-112) $ $) 103)) (-1705 (((-112) $ $) 192)) (-1798 (($ $) 105) (($ $ $) NIL)) (-1784 (($ $ $) 104)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-406 (-558))) 266) (($ $ $) NIL) (($ $ (-558)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 111) (($ $ $) 141) (($ $ |#2|) NIL) (($ |#2| $) 107) (($ (-406 (-558)) $) NIL) (($ $ (-406 (-558))) NIL)))
+(((-164 |#1| |#2|) (-10 -8 (-15 -2829 (|#1| |#1|)) (-15 -2829 (|#1| |#1| (-762))) (-15 -3220 (|#1| |#1|)) (-15 -3983 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1891 ((-2 (|:| -1960 |#1|) (|:| -4369 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2829 (|#1| |#1| (-1163))) (-15 -2829 (|#1| |#1| (-635 (-1163)))) (-15 -2829 (|#1| |#1| (-1163) (-762))) (-15 -2829 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 -3722 ((-762) |#1|)) (-15 -1901 ((-2 (|:| -2306 |#1|) (|:| -2071 |#1|)) |#1| |#1|)) (-15 -4004 (|#1| |#1| |#1|)) (-15 -4025 (|#1| |#1| |#1|)) (-15 -2418 (|#1| |#1|)) (-15 ** (|#1| |#1| (-558))) (-15 * (|#1| |#1| (-406 (-558)))) (-15 * (|#1| (-406 (-558)) |#1|)) (-15 -3220 (|#1| (-406 (-558)))) (-15 -1705 ((-112) |#1| |#1|)) (-15 -3224 ((-534) |#1|)) (-15 -3224 ((-168 (-224)) |#1|)) (-15 -3224 ((-168 (-378)) |#1|)) (-15 -2135 (|#1| |#1|)) (-15 -2112 (|#1| |#1|)) (-15 -2124 (|#1| |#1|)) (-15 -2189 (|#1| |#1|)) (-15 -2178 (|#1| |#1|)) (-15 -2200 (|#1| |#1|)) (-15 -4080 (|#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 -4088 (|#1| |#1|)) (-15 -4147 (|#1| |#1|)) (-15 -4135 (|#1| |#1|)) (-15 -4159 (|#1| |#1|)) (-15 -2592 (|#1| |#1|)) (-15 -2573 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1904 (|#1|)) (-15 ** (|#1| |#1| (-406 (-558)))) (-15 -3738 ((-417 (-1159 |#1|)) (-1159 |#1|))) (-15 -3728 ((-417 (-1159 |#1|)) (-1159 |#1|))) (-15 -3719 ((-3 (-635 (-1159 |#1|)) "failed") (-635 (-1159 |#1|)) (-1159 |#1|))) (-15 -3962 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -3938 ((-406 (-558)) |#1|)) (-15 -3951 ((-112) |#1|)) (-15 -2757 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3971 (|#2| |#1|)) (-15 -3190 (|#1| |#1|)) (-15 -3983 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3808 (|#1| |#1|)) (-15 -2767 (|#1|)) (-15 -3224 ((-882 (-378)) |#1|)) (-15 -3224 ((-882 (-558)) |#1|)) (-15 -2269 ((-879 (-378) |#1|) |#1| (-882 (-378)) (-879 (-378) |#1|))) (-15 -2269 ((-879 (-558) |#1|) |#1| (-882 (-558)) (-879 (-558) |#1|))) (-15 -3167 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2829 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2829 (|#1| |#1| (-1 |#2| |#2|) (-762))) (-15 -3048 ((-3 |#1| "failed") (-406 (-1159 |#2|)))) (-15 -3227 ((-1159 |#2|) |#1|)) (-15 -3224 (|#1| (-1159 |#2|))) (-15 -3048 (|#1| (-1159 |#2|))) (-15 -2036 ((-1159 |#2|))) (-15 -3216 ((-679 |#2|) (-679 |#1|))) (-15 -3216 ((-2 (|:| -3683 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 |#1|) (-1246 |#1|))) (-15 -3216 ((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 |#1|) (-1246 |#1|))) (-15 -3216 ((-679 (-558)) (-679 |#1|))) (-15 -3069 ((-3 |#2| "failed") |#1|)) (-15 -1863 (|#2| |#1|)) (-15 -1863 ((-406 (-558)) |#1|)) (-15 -3069 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -1863 ((-558) |#1|)) (-15 -3069 ((-3 (-558) "failed") |#1|)) (-15 -3224 ((-1159 |#2|) |#1|)) (-15 -3331 (|#2|)) (-15 -3224 (|#1| (-1246 |#2|))) (-15 -3224 ((-1246 |#2|) |#1|)) (-15 -4205 ((-679 |#2|) (-1246 |#1|))) (-15 -4205 ((-1246 |#2|) |#1|)) (-15 -2681 ((-1159 |#2|) |#1|)) (-15 -2363 ((-1159 |#2|) |#1|)) (-15 -3331 (|#2| (-1246 |#1|))) (-15 -4205 ((-679 |#2|) (-1246 |#1|) (-1246 |#1|))) (-15 -4205 ((-1246 |#2|) |#1| (-1246 |#1|))) (-15 -2615 (|#2| |#1|)) (-15 -1635 (|#2| |#1|)) (-15 -3833 ((-911))) (-15 -3220 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2542 ((-762))) (-15 -3220 (|#1| (-558))) (-15 ** (|#1| |#1| (-762))) (-15 -2588 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-911))) (-15 * (|#1| (-558) |#1|)) (-15 -1798 (|#1| |#1| |#1|)) (-15 -1798 (|#1| |#1|)) (-15 * (|#1| (-762) |#1|)) (-15 * (|#1| (-911) |#1|)) (-15 -1784 (|#1| |#1| |#1|)) (-15 -3220 ((-853) |#1|)) (-15 -1683 ((-112) |#1| |#1|))) (-165 |#2|) (-171)) (T -164))
+((-2542 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-762)) (-5 *1 (-164 *3 *4)) (-4 *3 (-165 *4)))) (-3833 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-911)) (-5 *1 (-164 *3 *4)) (-4 *3 (-165 *4)))) (-3331 (*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-164 *3 *2)) (-4 *3 (-165 *2)))) (-2036 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-1159 *4)) (-5 *1 (-164 *3 *4)) (-4 *3 (-165 *4)))))
+(-10 -8 (-15 -2829 (|#1| |#1|)) (-15 -2829 (|#1| |#1| (-762))) (-15 -3220 (|#1| |#1|)) (-15 -3983 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1891 ((-2 (|:| -1960 |#1|) (|:| -4369 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2829 (|#1| |#1| (-1163))) (-15 -2829 (|#1| |#1| (-635 (-1163)))) (-15 -2829 (|#1| |#1| (-1163) (-762))) (-15 -2829 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 -3722 ((-762) |#1|)) (-15 -1901 ((-2 (|:| -2306 |#1|) (|:| -2071 |#1|)) |#1| |#1|)) (-15 -4004 (|#1| |#1| |#1|)) (-15 -4025 (|#1| |#1| |#1|)) (-15 -2418 (|#1| |#1|)) (-15 ** (|#1| |#1| (-558))) (-15 * (|#1| |#1| (-406 (-558)))) (-15 * (|#1| (-406 (-558)) |#1|)) (-15 -3220 (|#1| (-406 (-558)))) (-15 -1705 ((-112) |#1| |#1|)) (-15 -3224 ((-534) |#1|)) (-15 -3224 ((-168 (-224)) |#1|)) (-15 -3224 ((-168 (-378)) |#1|)) (-15 -2135 (|#1| |#1|)) (-15 -2112 (|#1| |#1|)) (-15 -2124 (|#1| |#1|)) (-15 -2189 (|#1| |#1|)) (-15 -2178 (|#1| |#1|)) (-15 -2200 (|#1| |#1|)) (-15 -4080 (|#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 -4088 (|#1| |#1|)) (-15 -4147 (|#1| |#1|)) (-15 -4135 (|#1| |#1|)) (-15 -4159 (|#1| |#1|)) (-15 -2592 (|#1| |#1|)) (-15 -2573 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1904 (|#1|)) (-15 ** (|#1| |#1| (-406 (-558)))) (-15 -3738 ((-417 (-1159 |#1|)) (-1159 |#1|))) (-15 -3728 ((-417 (-1159 |#1|)) (-1159 |#1|))) (-15 -3719 ((-3 (-635 (-1159 |#1|)) "failed") (-635 (-1159 |#1|)) (-1159 |#1|))) (-15 -3962 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -3938 ((-406 (-558)) |#1|)) (-15 -3951 ((-112) |#1|)) (-15 -2757 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3971 (|#2| |#1|)) (-15 -3190 (|#1| |#1|)) (-15 -3983 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3808 (|#1| |#1|)) (-15 -2767 (|#1|)) (-15 -3224 ((-882 (-378)) |#1|)) (-15 -3224 ((-882 (-558)) |#1|)) (-15 -2269 ((-879 (-378) |#1|) |#1| (-882 (-378)) (-879 (-378) |#1|))) (-15 -2269 ((-879 (-558) |#1|) |#1| (-882 (-558)) (-879 (-558) |#1|))) (-15 -3167 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2829 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2829 (|#1| |#1| (-1 |#2| |#2|) (-762))) (-15 -3048 ((-3 |#1| "failed") (-406 (-1159 |#2|)))) (-15 -3227 ((-1159 |#2|) |#1|)) (-15 -3224 (|#1| (-1159 |#2|))) (-15 -3048 (|#1| (-1159 |#2|))) (-15 -2036 ((-1159 |#2|))) (-15 -3216 ((-679 |#2|) (-679 |#1|))) (-15 -3216 ((-2 (|:| -3683 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 |#1|) (-1246 |#1|))) (-15 -3216 ((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 |#1|) (-1246 |#1|))) (-15 -3216 ((-679 (-558)) (-679 |#1|))) (-15 -3069 ((-3 |#2| "failed") |#1|)) (-15 -1863 (|#2| |#1|)) (-15 -1863 ((-406 (-558)) |#1|)) (-15 -3069 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -1863 ((-558) |#1|)) (-15 -3069 ((-3 (-558) "failed") |#1|)) (-15 -3224 ((-1159 |#2|) |#1|)) (-15 -3331 (|#2|)) (-15 -3224 (|#1| (-1246 |#2|))) (-15 -3224 ((-1246 |#2|) |#1|)) (-15 -4205 ((-679 |#2|) (-1246 |#1|))) (-15 -4205 ((-1246 |#2|) |#1|)) (-15 -2681 ((-1159 |#2|) |#1|)) (-15 -2363 ((-1159 |#2|) |#1|)) (-15 -3331 (|#2| (-1246 |#1|))) (-15 -4205 ((-679 |#2|) (-1246 |#1|) (-1246 |#1|))) (-15 -4205 ((-1246 |#2|) |#1| (-1246 |#1|))) (-15 -2615 (|#2| |#1|)) (-15 -1635 (|#2| |#1|)) (-15 -3833 ((-911))) (-15 -3220 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2542 ((-762))) (-15 -3220 (|#1| (-558))) (-15 ** (|#1| |#1| (-762))) (-15 -2588 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-911))) (-15 * (|#1| (-558) |#1|)) (-15 -1798 (|#1| |#1| |#1|)) (-15 -1798 (|#1| |#1|)) (-15 * (|#1| (-762) |#1|)) (-15 * (|#1| (-911) |#1|)) (-15 -1784 (|#1| |#1| |#1|)) (-15 -3220 ((-853) |#1|)) (-15 -1683 ((-112) |#1| |#1|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 93 (-3998 (|has| |#1| (-550)) (-12 (|has| |#1| (-306)) (|has| |#1| (-899)))))) (-1881 (($ $) 94 (-3998 (|has| |#1| (-550)) (-12 (|has| |#1| (-306)) (|has| |#1| (-899)))))) (-1857 (((-112) $) 96 (-3998 (|has| |#1| (-550)) (-12 (|has| |#1| (-306)) (|has| |#1| (-899)))))) (-2053 (((-679 |#1|) (-1246 $)) 47) (((-679 |#1|)) 62)) (-1635 ((|#1| $) 53)) (-4088 (($ $) 227 (|has| |#1| (-1185)))) (-2135 (($ $) 210 (|has| |#1| (-1185)))) (-2163 (((-1173 (-911) (-762)) (-558)) 146 (|has| |#1| (-348)))) (-2089 (((-3 $ "failed") $ $) 19)) (-3748 (((-417 (-1159 $)) (-1159 $)) 241 (-12 (|has| |#1| (-306)) (|has| |#1| (-899))))) (-3465 (($ $) 113 (-3998 (-12 (|has| |#1| (-306)) (|has| |#1| (-899))) (|has| |#1| (-362))))) (-1380 (((-417 $) $) 114 (-3998 (-12 (|has| |#1| (-306)) (|has| |#1| (-899))) (|has| |#1| (-362))))) (-2534 (($ $) 240 (-12 (|has| |#1| (-992)) (|has| |#1| (-1185))))) (-3719 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) 244 (-12 (|has| |#1| (-306)) (|has| |#1| (-899))))) (-3732 (((-112) $ $) 104 (|has| |#1| (-306)))) (-2276 (((-762)) 87 (|has| |#1| (-367)))) (-4070 (($ $) 226 (|has| |#1| (-1185)))) (-2112 (($ $) 211 (|has| |#1| (-1185)))) (-4113 (($ $) 225 (|has| |#1| (-1185)))) (-2156 (($ $) 212 (|has| |#1| (-1185)))) (-1816 (($) 17 T CONST)) (-3069 (((-3 (-558) "failed") $) 169 (|has| |#1| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) 167 (|has| |#1| (-1028 (-406 (-558))))) (((-3 |#1| "failed") $) 164)) (-1863 (((-558) $) 168 (|has| |#1| (-1028 (-558)))) (((-406 (-558)) $) 166 (|has| |#1| (-1028 (-406 (-558))))) ((|#1| $) 165)) (-3997 (($ (-1246 |#1|) (-1246 $)) 49) (($ (-1246 |#1|)) 65)) (-3367 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| |#1| (-348)))) (-4025 (($ $ $) 108 (|has| |#1| (-306)))) (-2043 (((-679 |#1|) $ (-1246 $)) 54) (((-679 |#1|) $) 60)) (-3216 (((-679 (-558)) (-679 $)) 163 (|has| |#1| (-631 (-558)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) 162 (|has| |#1| (-631 (-558)))) (((-2 (|:| -3683 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) 161) (((-679 |#1|) (-679 $)) 160)) (-3048 (($ (-1159 |#1|)) 157) (((-3 $ "failed") (-406 (-1159 |#1|))) 154 (|has| |#1| (-362)))) (-2588 (((-3 $ "failed") $) 33)) (-2546 ((|#1| $) 252)) (-3962 (((-3 (-406 (-558)) "failed") $) 245 (|has| |#1| (-543)))) (-3951 (((-112) $) 247 (|has| |#1| (-543)))) (-3938 (((-406 (-558)) $) 246 (|has| |#1| (-543)))) (-3833 (((-911)) 55)) (-2424 (($) 90 (|has| |#1| (-367)))) (-4004 (($ $ $) 107 (|has| |#1| (-306)))) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) 102 (|has| |#1| (-306)))) (-2672 (($) 148 (|has| |#1| (-348)))) (-2219 (((-112) $) 149 (|has| |#1| (-348)))) (-1895 (($ $ (-762)) 140 (|has| |#1| (-348))) (($ $) 139 (|has| |#1| (-348)))) (-3031 (((-112) $) 115 (-3998 (-12 (|has| |#1| (-306)) (|has| |#1| (-899))) (|has| |#1| (-362))))) (-2757 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 248 (-12 (|has| |#1| (-1048)) (|has| |#1| (-1185))))) (-1904 (($) 237 (|has| |#1| (-1185)))) (-2269 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) 260 (|has| |#1| (-876 (-558)))) (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) 259 (|has| |#1| (-876 (-378))))) (-3449 (((-911) $) 151 (|has| |#1| (-348))) (((-824 (-911)) $) 137 (|has| |#1| (-348)))) (-2035 (((-112) $) 31)) (-3828 (($ $ (-558)) 239 (-12 (|has| |#1| (-992)) (|has| |#1| (-1185))))) (-2615 ((|#1| $) 52)) (-2457 (((-3 $ "failed") $) 141 (|has| |#1| (-348)))) (-3701 (((-3 (-635 $) "failed") (-635 $) $) 111 (|has| |#1| (-306)))) (-2681 (((-1159 |#1|) $) 45 (|has| |#1| (-362)))) (-3910 (($ $ $) 206 (|has| |#1| (-841)))) (-3542 (($ $ $) 205 (|has| |#1| (-841)))) (-3167 (($ (-1 |#1| |#1|) $) 261)) (-2637 (((-911) $) 89 (|has| |#1| (-367)))) (-2592 (($ $) 234 (|has| |#1| (-1185)))) (-3227 (((-1159 |#1|) $) 155)) (-2665 (($ (-635 $)) 100 (-3998 (|has| |#1| (-306)) (-12 (|has| |#1| (-306)) (|has| |#1| (-899))))) (($ $ $) 99 (-3998 (|has| |#1| (-306)) (-12 (|has| |#1| (-306)) (|has| |#1| (-899)))))) (-4310 (((-1145) $) 9)) (-2418 (($ $) 116 (|has| |#1| (-362)))) (-1796 (($) 142 (|has| |#1| (-348)) CONST)) (-2851 (($ (-911)) 88 (|has| |#1| (-367)))) (-2767 (($) 256)) (-2557 ((|#1| $) 253)) (-2975 (((-1107) $) 10)) (-4098 (($) 159)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) 101 (-3998 (|has| |#1| (-306)) (-12 (|has| |#1| (-306)) (|has| |#1| (-899)))))) (-2699 (($ (-635 $)) 98 (-3998 (|has| |#1| (-306)) (-12 (|has| |#1| (-306)) (|has| |#1| (-899))))) (($ $ $) 97 (-3998 (|has| |#1| (-306)) (-12 (|has| |#1| (-306)) (|has| |#1| (-899)))))) (-2174 (((-635 (-2 (|:| -2522 (-558)) (|:| -1951 (-558))))) 145 (|has| |#1| (-348)))) (-3728 (((-417 (-1159 $)) (-1159 $)) 243 (-12 (|has| |#1| (-306)) (|has| |#1| (-899))))) (-3738 (((-417 (-1159 $)) (-1159 $)) 242 (-12 (|has| |#1| (-306)) (|has| |#1| (-899))))) (-2522 (((-417 $) $) 112 (-3998 (-12 (|has| |#1| (-306)) (|has| |#1| (-899))) (|has| |#1| (-362))))) (-3713 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-306))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) 109 (|has| |#1| (-306)))) (-3983 (((-3 $ "failed") $ |#1|) 251 (|has| |#1| (-550))) (((-3 $ "failed") $ $) 92 (-3998 (|has| |#1| (-550)) (-12 (|has| |#1| (-306)) (|has| |#1| (-899)))))) (-2922 (((-3 (-635 $) "failed") (-635 $) $) 103 (|has| |#1| (-306)))) (-2573 (($ $) 235 (|has| |#1| (-1185)))) (-2554 (($ $ (-635 |#1|) (-635 |#1|)) 267 (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) 266 (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) 265 (|has| |#1| (-308 |#1|))) (($ $ (-635 (-293 |#1|))) 264 (|has| |#1| (-308 |#1|))) (($ $ (-635 (-1163)) (-635 |#1|)) 263 (|has| |#1| (-512 (-1163) |#1|))) (($ $ (-1163) |#1|) 262 (|has| |#1| (-512 (-1163) |#1|)))) (-3722 (((-762) $) 105 (|has| |#1| (-306)))) (-2195 (($ $ |#1|) 268 (|has| |#1| (-285 |#1| |#1|)))) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 106 (|has| |#1| (-306)))) (-3331 ((|#1| (-1246 $)) 48) ((|#1|) 61)) (-1905 (((-762) $) 150 (|has| |#1| (-348))) (((-3 (-762) "failed") $ $) 138 (|has| |#1| (-348)))) (-2829 (($ $ (-1 |#1| |#1|) (-762)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-635 (-1163)) (-635 (-762))) 129 (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) 130 (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) 131 (|has| |#1| (-890 (-1163)))) (($ $ (-1163)) 132 (|has| |#1| (-890 (-1163)))) (($ $ (-762)) 134 (-3998 (-2084 (|has| |#1| (-362)) (|has| |#1| (-232))) (|has| |#1| (-232)) (-2084 (|has| |#1| (-232)) (|has| |#1| (-362))))) (($ $) 136 (-3998 (-2084 (|has| |#1| (-362)) (|has| |#1| (-232))) (|has| |#1| (-232)) (-2084 (|has| |#1| (-232)) (|has| |#1| (-362)))))) (-2026 (((-679 |#1|) (-1246 $) (-1 |#1| |#1|)) 153 (|has| |#1| (-362)))) (-2036 (((-1159 |#1|)) 158)) (-4124 (($ $) 224 (|has| |#1| (-1185)))) (-2167 (($ $) 213 (|has| |#1| (-1185)))) (-3377 (($) 147 (|has| |#1| (-348)))) (-4102 (($ $) 223 (|has| |#1| (-1185)))) (-2146 (($ $) 214 (|has| |#1| (-1185)))) (-4080 (($ $) 222 (|has| |#1| (-1185)))) (-2124 (($ $) 215 (|has| |#1| (-1185)))) (-4205 (((-1246 |#1|) $ (-1246 $)) 51) (((-679 |#1|) (-1246 $) (-1246 $)) 50) (((-1246 |#1|) $) 67) (((-679 |#1|) (-1246 $)) 66)) (-3224 (((-1246 |#1|) $) 64) (($ (-1246 |#1|)) 63) (((-1159 |#1|) $) 170) (($ (-1159 |#1|)) 156) (((-882 (-558)) $) 258 (|has| |#1| (-606 (-882 (-558))))) (((-882 (-378)) $) 257 (|has| |#1| (-606 (-882 (-378))))) (((-168 (-378)) $) 209 (|has| |#1| (-1012))) (((-168 (-224)) $) 208 (|has| |#1| (-1012))) (((-534) $) 207 (|has| |#1| (-606 (-534))))) (-3808 (($ $) 255)) (-3709 (((-3 (-1246 $) "failed") (-679 $)) 144 (-3998 (-2084 (|has| $ (-144)) (-12 (|has| |#1| (-306)) (|has| |#1| (-899)))) (|has| |#1| (-348))))) (-1365 (($ |#1| |#1|) 254)) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ |#1|) 38) (($ (-406 (-558))) 86 (-3998 (|has| |#1| (-362)) (|has| |#1| (-1028 (-406 (-558)))))) (($ $) 91 (-3998 (|has| |#1| (-550)) (-12 (|has| |#1| (-306)) (|has| |#1| (-899)))))) (-3698 (($ $) 143 (|has| |#1| (-348))) (((-3 $ "failed") $) 44 (-3998 (-2084 (|has| $ (-144)) (-12 (|has| |#1| (-306)) (|has| |#1| (-899)))) (|has| |#1| (-144))))) (-2363 (((-1159 |#1|) $) 46)) (-2542 (((-762)) 28)) (-2660 (((-1246 $)) 68)) (-4159 (($ $) 233 (|has| |#1| (-1185)))) (-2200 (($ $) 221 (|has| |#1| (-1185)))) (-1870 (((-112) $ $) 95 (-3998 (|has| |#1| (-550)) (-12 (|has| |#1| (-306)) (|has| |#1| (-899)))))) (-4135 (($ $) 232 (|has| |#1| (-1185)))) (-2178 (($ $) 220 (|has| |#1| (-1185)))) (-4184 (($ $) 231 (|has| |#1| (-1185)))) (-2222 (($ $) 219 (|has| |#1| (-1185)))) (-3971 ((|#1| $) 249 (|has| |#1| (-1185)))) (-1878 (($ $) 230 (|has| |#1| (-1185)))) (-4060 (($ $) 218 (|has| |#1| (-1185)))) (-4171 (($ $) 229 (|has| |#1| (-1185)))) (-2211 (($ $) 217 (|has| |#1| (-1185)))) (-4147 (($ $) 228 (|has| |#1| (-1185)))) (-2189 (($ $) 216 (|has| |#1| (-1185)))) (-3190 (($ $) 250 (|has| |#1| (-1048)))) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1866 (($ $ (-1 |#1| |#1|) (-762)) 124) (($ $ (-1 |#1| |#1|)) 123) (($ $ (-635 (-1163)) (-635 (-762))) 125 (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) 126 (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) 127 (|has| |#1| (-890 (-1163)))) (($ $ (-1163)) 128 (|has| |#1| (-890 (-1163)))) (($ $ (-762)) 133 (-3998 (-2084 (|has| |#1| (-362)) (|has| |#1| (-232))) (|has| |#1| (-232)) (-2084 (|has| |#1| (-232)) (|has| |#1| (-362))))) (($ $) 135 (-3998 (-2084 (|has| |#1| (-362)) (|has| |#1| (-232))) (|has| |#1| (-232)) (-2084 (|has| |#1| (-232)) (|has| |#1| (-362)))))) (-1747 (((-112) $ $) 203 (|has| |#1| (-841)))) (-1720 (((-112) $ $) 202 (|has| |#1| (-841)))) (-1683 (((-112) $ $) 6)) (-1731 (((-112) $ $) 204 (|has| |#1| (-841)))) (-1705 (((-112) $ $) 201 (|has| |#1| (-841)))) (-1810 (($ $ $) 120 (|has| |#1| (-362)))) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ (-406 (-558))) 238 (-12 (|has| |#1| (-992)) (|has| |#1| (-1185)))) (($ $ $) 236 (|has| |#1| (-1185))) (($ $ (-558)) 117 (|has| |#1| (-362)))) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ (-406 (-558)) $) 119 (|has| |#1| (-362))) (($ $ (-406 (-558))) 118 (|has| |#1| (-362)))))
+(((-165 |#1|) (-139) (-171)) (T -165))
+((-2615 (*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-2767 (*1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-3808 (*1 *1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-1365 (*1 *1 *2 *2) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-2557 (*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-2546 (*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-3983 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-550)))) (-3190 (*1 *1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-1048)))) (-3971 (*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-1185)))) (-2757 (*1 *2 *1) (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-1048)) (-4 *3 (-1185)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3951 (*1 *2 *1) (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-112)))) (-3938 (*1 *2 *1) (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-406 (-558))))) (-3962 (*1 *2 *1) (|partial| -12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-406 (-558))))))
+(-13 (-715 |t#1| (-1159 |t#1|)) (-410 |t#1|) (-230 |t#1|) (-337 |t#1|) (-399 |t#1|) (-874 |t#1|) (-376 |t#1|) (-171) (-10 -8 (-15 -2767 ($)) (-15 -3808 ($ $)) (-15 -1365 ($ |t#1| |t#1|)) (-15 -2557 (|t#1| $)) (-15 -2546 (|t#1| $)) (-15 -2615 (|t#1| $)) (IF (|has| |t#1| (-841)) (-6 (-841)) |%noBranch|) (IF (|has| |t#1| (-550)) (PROGN (-6 (-550)) (-15 -3983 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-306)) (-6 (-306)) |%noBranch|) (IF (|has| |t#1| (-6 -4381)) (-6 -4381) |%noBranch|) (IF (|has| |t#1| (-6 -4378)) (-6 -4378) |%noBranch|) (IF (|has| |t#1| (-362)) (-6 (-362)) |%noBranch|) (IF (|has| |t#1| (-606 (-534))) (-6 (-606 (-534))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-1012)) (PROGN (-6 (-606 (-168 (-224)))) (-6 (-606 (-168 (-378))))) |%noBranch|) (IF (|has| |t#1| (-1048)) (-15 -3190 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1185)) (PROGN (-6 (-1185)) (-15 -3971 (|t#1| $)) (IF (|has| |t#1| (-992)) (-6 (-992)) |%noBranch|) (IF (|has| |t#1| (-1048)) (-15 -2757 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-543)) (PROGN (-15 -3951 ((-112) $)) (-15 -3938 ((-406 (-558)) $)) (-15 -3962 ((-3 (-406 (-558)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-899)) (IF (|has| |t#1| (-306)) (-6 (-899)) |%noBranch|) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-558))) -3998 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-38 |#1|) . T) ((-38 $) -3998 (|has| |#1| (-550)) (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-35) |has| |#1| (-1185)) ((-95) |has| |#1| (-1185)) ((-102) . T) ((-111 #0# #0#) -3998 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-144) -3998 (|has| |#1| (-348)) (|has| |#1| (-144))) ((-146) |has| |#1| (-146)) ((-608 #0#) -3998 (|has| |#1| (-1028 (-406 (-558)))) (|has| |#1| (-348)) (|has| |#1| (-362))) ((-608 (-558)) . T) ((-608 |#1|) . T) ((-608 $) -3998 (|has| |#1| (-550)) (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-605 (-853)) . T) ((-171) . T) ((-606 (-168 (-224))) |has| |#1| (-1012)) ((-606 (-168 (-378))) |has| |#1| (-1012)) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-606 (-882 (-378))) |has| |#1| (-606 (-882 (-378)))) ((-606 (-882 (-558))) |has| |#1| (-606 (-882 (-558)))) ((-606 #1=(-1159 |#1|)) . T) ((-230 |#1|) . T) ((-232) -3998 (|has| |#1| (-348)) (|has| |#1| (-232))) ((-242) -3998 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-283) |has| |#1| (-1185)) ((-285 |#1| $) |has| |#1| (-285 |#1| |#1|)) ((-289) -3998 (|has| |#1| (-550)) (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-306) -3998 (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-308 |#1|) |has| |#1| (-308 |#1|)) ((-362) -3998 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-401) |has| |#1| (-348)) ((-367) -3998 (|has| |#1| (-367)) (|has| |#1| (-348))) ((-348) |has| |#1| (-348)) ((-369 |#1| #1#) . T) ((-408 |#1| #1#) . T) ((-337 |#1|) . T) ((-376 |#1|) . T) ((-399 |#1|) . T) ((-410 |#1|) . T) ((-450) -3998 (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-491) |has| |#1| (-1185)) ((-512 (-1163) |#1|) |has| |#1| (-512 (-1163) |#1|)) ((-512 |#1| |#1|) |has| |#1| (-308 |#1|)) ((-550) -3998 (|has| |#1| (-550)) (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-638 #0#) -3998 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-638 |#1|) . T) ((-638 $) . T) ((-631 (-558)) |has| |#1| (-631 (-558))) ((-631 |#1|) . T) ((-708 #0#) -3998 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-708 |#1|) . T) ((-708 $) -3998 (|has| |#1| (-550)) (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-715 |#1| #1#) . T) ((-717) . T) ((-841) |has| |#1| (-841)) ((-890 (-1163)) |has| |#1| (-890 (-1163))) ((-876 (-378)) |has| |#1| (-876 (-378))) ((-876 (-558)) |has| |#1| (-876 (-558))) ((-874 |#1|) . T) ((-899) -12 (|has| |#1| (-306)) (|has| |#1| (-899))) ((-910) -3998 (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-992) -12 (|has| |#1| (-992)) (|has| |#1| (-1185))) ((-1028 (-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) ((-1028 (-558)) |has| |#1| (-1028 (-558))) ((-1028 |#1|) . T) ((-1045 #0#) -3998 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-1045 |#1|) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1138) |has| |#1| (-348)) ((-1185) |has| |#1| (-1185)) ((-1188) |has| |#1| (-1185)) ((-1200) . T) ((-1204) -3998 (|has| |#1| (-348)) (|has| |#1| (-362)) (-12 (|has| |#1| (-306)) (|has| |#1| (-899)))))
+((-2522 (((-417 |#2|) |#2|) 63)))
+(((-166 |#1| |#2|) (-10 -7 (-15 -2522 ((-417 |#2|) |#2|))) (-306) (-1222 (-168 |#1|))) (T -166))
+((-2522 (*1 *2 *3) (-12 (-4 *4 (-306)) (-5 *2 (-417 *3)) (-5 *1 (-166 *4 *3)) (-4 *3 (-1222 (-168 *4))))))
+(-10 -7 (-15 -2522 ((-417 |#2|) |#2|)))
+((-3167 (((-168 |#2|) (-1 |#2| |#1|) (-168 |#1|)) 14)))
+(((-167 |#1| |#2|) (-10 -7 (-15 -3167 ((-168 |#2|) (-1 |#2| |#1|) (-168 |#1|)))) (-171) (-171)) (T -167))
+((-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-168 *5)) (-4 *5 (-171)) (-4 *6 (-171)) (-5 *2 (-168 *6)) (-5 *1 (-167 *5 *6)))))
+(-10 -7 (-15 -3167 ((-168 |#2|) (-1 |#2| |#1|) (-168 |#1|))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) 33)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL (-3998 (-12 (|has| |#1| (-306)) (|has| |#1| (-899))) (|has| |#1| (-550))))) (-1881 (($ $) NIL (-3998 (-12 (|has| |#1| (-306)) (|has| |#1| (-899))) (|has| |#1| (-550))))) (-1857 (((-112) $) NIL (-3998 (-12 (|has| |#1| (-306)) (|has| |#1| (-899))) (|has| |#1| (-550))))) (-2053 (((-679 |#1|) (-1246 $)) NIL) (((-679 |#1|)) NIL)) (-1635 ((|#1| $) NIL)) (-4088 (($ $) NIL (|has| |#1| (-1185)))) (-2135 (($ $) NIL (|has| |#1| (-1185)))) (-2163 (((-1173 (-911) (-762)) (-558)) NIL (|has| |#1| (-348)))) (-2089 (((-3 $ "failed") $ $) NIL)) (-3748 (((-417 (-1159 $)) (-1159 $)) NIL (-12 (|has| |#1| (-306)) (|has| |#1| (-899))))) (-3465 (($ $) NIL (-3998 (-12 (|has| |#1| (-306)) (|has| |#1| (-899))) (|has| |#1| (-362))))) (-1380 (((-417 $) $) NIL (-3998 (-12 (|has| |#1| (-306)) (|has| |#1| (-899))) (|has| |#1| (-362))))) (-2534 (($ $) NIL (-12 (|has| |#1| (-992)) (|has| |#1| (-1185))))) (-3719 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (-12 (|has| |#1| (-306)) (|has| |#1| (-899))))) (-3732 (((-112) $ $) NIL (|has| |#1| (-306)))) (-2276 (((-762)) NIL (|has| |#1| (-367)))) (-4070 (($ $) NIL (|has| |#1| (-1185)))) (-2112 (($ $) NIL (|has| |#1| (-1185)))) (-4113 (($ $) NIL (|has| |#1| (-1185)))) (-2156 (($ $) NIL (|has| |#1| (-1185)))) (-1816 (($) NIL T CONST)) (-3069 (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-3 |#1| "failed") $) NIL)) (-1863 (((-558) $) NIL (|has| |#1| (-1028 (-558)))) (((-406 (-558)) $) NIL (|has| |#1| (-1028 (-406 (-558))))) ((|#1| $) NIL)) (-3997 (($ (-1246 |#1|) (-1246 $)) NIL) (($ (-1246 |#1|)) NIL)) (-3367 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-348)))) (-4025 (($ $ $) NIL (|has| |#1| (-306)))) (-2043 (((-679 |#1|) $ (-1246 $)) NIL) (((-679 |#1|) $) NIL)) (-3216 (((-679 (-558)) (-679 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3683 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) NIL) (((-679 |#1|) (-679 $)) NIL)) (-3048 (($ (-1159 |#1|)) NIL) (((-3 $ "failed") (-406 (-1159 |#1|))) NIL (|has| |#1| (-362)))) (-2588 (((-3 $ "failed") $) NIL)) (-2546 ((|#1| $) 13)) (-3962 (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-543)))) (-3951 (((-112) $) NIL (|has| |#1| (-543)))) (-3938 (((-406 (-558)) $) NIL (|has| |#1| (-543)))) (-3833 (((-911)) NIL)) (-2424 (($) NIL (|has| |#1| (-367)))) (-4004 (($ $ $) NIL (|has| |#1| (-306)))) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL (|has| |#1| (-306)))) (-2672 (($) NIL (|has| |#1| (-348)))) (-2219 (((-112) $) NIL (|has| |#1| (-348)))) (-1895 (($ $ (-762)) NIL (|has| |#1| (-348))) (($ $) NIL (|has| |#1| (-348)))) (-3031 (((-112) $) NIL (-3998 (-12 (|has| |#1| (-306)) (|has| |#1| (-899))) (|has| |#1| (-362))))) (-2757 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1048)) (|has| |#1| (-1185))))) (-1904 (($) NIL (|has| |#1| (-1185)))) (-2269 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (|has| |#1| (-876 (-558)))) (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (|has| |#1| (-876 (-378))))) (-3449 (((-911) $) NIL (|has| |#1| (-348))) (((-824 (-911)) $) NIL (|has| |#1| (-348)))) (-2035 (((-112) $) 35)) (-3828 (($ $ (-558)) NIL (-12 (|has| |#1| (-992)) (|has| |#1| (-1185))))) (-2615 ((|#1| $) 46)) (-2457 (((-3 $ "failed") $) NIL (|has| |#1| (-348)))) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-306)))) (-2681 (((-1159 |#1|) $) NIL (|has| |#1| (-362)))) (-3910 (($ $ $) NIL (|has| |#1| (-841)))) (-3542 (($ $ $) NIL (|has| |#1| (-841)))) (-3167 (($ (-1 |#1| |#1|) $) NIL)) (-2637 (((-911) $) NIL (|has| |#1| (-367)))) (-2592 (($ $) NIL (|has| |#1| (-1185)))) (-3227 (((-1159 |#1|) $) NIL)) (-2665 (($ (-635 $)) NIL (|has| |#1| (-306))) (($ $ $) NIL (|has| |#1| (-306)))) (-4310 (((-1145) $) NIL)) (-2418 (($ $) NIL (|has| |#1| (-362)))) (-1796 (($) NIL (|has| |#1| (-348)) CONST)) (-2851 (($ (-911)) NIL (|has| |#1| (-367)))) (-2767 (($) NIL)) (-2557 ((|#1| $) 15)) (-2975 (((-1107) $) NIL)) (-4098 (($) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#1| (-306)))) (-2699 (($ (-635 $)) NIL (|has| |#1| (-306))) (($ $ $) NIL (|has| |#1| (-306)))) (-2174 (((-635 (-2 (|:| -2522 (-558)) (|:| -1951 (-558))))) NIL (|has| |#1| (-348)))) (-3728 (((-417 (-1159 $)) (-1159 $)) NIL (-12 (|has| |#1| (-306)) (|has| |#1| (-899))))) (-3738 (((-417 (-1159 $)) (-1159 $)) NIL (-12 (|has| |#1| (-306)) (|has| |#1| (-899))))) (-2522 (((-417 $) $) NIL (-3998 (-12 (|has| |#1| (-306)) (|has| |#1| (-899))) (|has| |#1| (-362))))) (-3713 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-306))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL (|has| |#1| (-306)))) (-3983 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-550))) (((-3 $ "failed") $ $) 47 (-3998 (-12 (|has| |#1| (-306)) (|has| |#1| (-899))) (|has| |#1| (-550))))) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-306)))) (-2573 (($ $) NIL (|has| |#1| (-1185)))) (-2554 (($ $ (-635 |#1|) (-635 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ (-635 (-293 |#1|))) NIL (|has| |#1| (-308 |#1|))) (($ $ (-635 (-1163)) (-635 |#1|)) NIL (|has| |#1| (-512 (-1163) |#1|))) (($ $ (-1163) |#1|) NIL (|has| |#1| (-512 (-1163) |#1|)))) (-3722 (((-762) $) NIL (|has| |#1| (-306)))) (-2195 (($ $ |#1|) NIL (|has| |#1| (-285 |#1| |#1|)))) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL (|has| |#1| (-306)))) (-3331 ((|#1| (-1246 $)) NIL) ((|#1|) NIL)) (-1905 (((-762) $) NIL (|has| |#1| (-348))) (((-3 (-762) "failed") $ $) NIL (|has| |#1| (-348)))) (-2829 (($ $ (-1 |#1| |#1|) (-762)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-762)) NIL (|has| |#1| (-232))) (($ $) NIL (|has| |#1| (-232)))) (-2026 (((-679 |#1|) (-1246 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-362)))) (-2036 (((-1159 |#1|)) NIL)) (-4124 (($ $) NIL (|has| |#1| (-1185)))) (-2167 (($ $) NIL (|has| |#1| (-1185)))) (-3377 (($) NIL (|has| |#1| (-348)))) (-4102 (($ $) NIL (|has| |#1| (-1185)))) (-2146 (($ $) NIL (|has| |#1| (-1185)))) (-4080 (($ $) NIL (|has| |#1| (-1185)))) (-2124 (($ $) NIL (|has| |#1| (-1185)))) (-4205 (((-1246 |#1|) $ (-1246 $)) NIL) (((-679 |#1|) (-1246 $) (-1246 $)) NIL) (((-1246 |#1|) $) NIL) (((-679 |#1|) (-1246 $)) NIL)) (-3224 (((-1246 |#1|) $) NIL) (($ (-1246 |#1|)) NIL) (((-1159 |#1|) $) NIL) (($ (-1159 |#1|)) NIL) (((-882 (-558)) $) NIL (|has| |#1| (-606 (-882 (-558))))) (((-882 (-378)) $) NIL (|has| |#1| (-606 (-882 (-378))))) (((-168 (-378)) $) NIL (|has| |#1| (-1012))) (((-168 (-224)) $) NIL (|has| |#1| (-1012))) (((-534) $) NIL (|has| |#1| (-606 (-534))))) (-3808 (($ $) 45)) (-3709 (((-3 (-1246 $) "failed") (-679 $)) NIL (-3998 (-12 (|has| $ (-144)) (|has| |#1| (-306)) (|has| |#1| (-899))) (|has| |#1| (-348))))) (-1365 (($ |#1| |#1|) 37)) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ |#1|) 36) (($ (-406 (-558))) NIL (-3998 (|has| |#1| (-362)) (|has| |#1| (-1028 (-406 (-558)))))) (($ $) NIL (-3998 (-12 (|has| |#1| (-306)) (|has| |#1| (-899))) (|has| |#1| (-550))))) (-3698 (($ $) NIL (|has| |#1| (-348))) (((-3 $ "failed") $) NIL (-3998 (-12 (|has| $ (-144)) (|has| |#1| (-306)) (|has| |#1| (-899))) (|has| |#1| (-144))))) (-2363 (((-1159 |#1|) $) NIL)) (-2542 (((-762)) NIL)) (-2660 (((-1246 $)) NIL)) (-4159 (($ $) NIL (|has| |#1| (-1185)))) (-2200 (($ $) NIL (|has| |#1| (-1185)))) (-1870 (((-112) $ $) NIL (-3998 (-12 (|has| |#1| (-306)) (|has| |#1| (-899))) (|has| |#1| (-550))))) (-4135 (($ $) NIL (|has| |#1| (-1185)))) (-2178 (($ $) NIL (|has| |#1| (-1185)))) (-4184 (($ $) NIL (|has| |#1| (-1185)))) (-2222 (($ $) NIL (|has| |#1| (-1185)))) (-3971 ((|#1| $) NIL (|has| |#1| (-1185)))) (-1878 (($ $) NIL (|has| |#1| (-1185)))) (-4060 (($ $) NIL (|has| |#1| (-1185)))) (-4171 (($ $) NIL (|has| |#1| (-1185)))) (-2211 (($ $) NIL (|has| |#1| (-1185)))) (-4147 (($ $) NIL (|has| |#1| (-1185)))) (-2189 (($ $) NIL (|has| |#1| (-1185)))) (-3190 (($ $) NIL (|has| |#1| (-1048)))) (-2131 (($) 28 T CONST)) (-2142 (($) 30 T CONST)) (-1338 (((-1145) $) 23 (|has| |#1| (-819))) (((-1145) $ (-112)) 25 (|has| |#1| (-819))) (((-1251) (-813) $) 26 (|has| |#1| (-819))) (((-1251) (-813) $ (-112)) 27 (|has| |#1| (-819)))) (-1866 (($ $ (-1 |#1| |#1|) (-762)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-762)) NIL (|has| |#1| (-232))) (($ $) NIL (|has| |#1| (-232)))) (-1747 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1683 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1810 (($ $ $) NIL (|has| |#1| (-362)))) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) 39)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-406 (-558))) NIL (-12 (|has| |#1| (-992)) (|has| |#1| (-1185)))) (($ $ $) NIL (|has| |#1| (-1185))) (($ $ (-558)) NIL (|has| |#1| (-362)))) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-406 (-558)) $) NIL (|has| |#1| (-362))) (($ $ (-406 (-558))) NIL (|has| |#1| (-362)))))
+(((-168 |#1|) (-13 (-165 |#1|) (-10 -7 (IF (|has| |#1| (-819)) (-6 (-819)) |%noBranch|))) (-171)) (T -168))
+NIL
+(-13 (-165 |#1|) (-10 -7 (IF (|has| |#1| (-819)) (-6 (-819)) |%noBranch|)))
+((-3224 (((-882 |#1|) |#3|) 22)))
+(((-169 |#1| |#2| |#3|) (-10 -7 (-15 -3224 ((-882 |#1|) |#3|))) (-1087) (-13 (-606 (-882 |#1|)) (-171)) (-165 |#2|)) (T -169))
+((-3224 (*1 *2 *3) (-12 (-4 *5 (-13 (-606 *2) (-171))) (-5 *2 (-882 *4)) (-5 *1 (-169 *4 *5 *3)) (-4 *4 (-1087)) (-4 *3 (-165 *5)))))
+(-10 -7 (-15 -3224 ((-882 |#1|) |#3|)))
+((-3207 (((-112) $ $) NIL)) (-2786 (((-112) $) 9)) (-2777 (((-112) $ (-112)) 11)) (-3315 (($) 12)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-1553 (($ $) 13)) (-3220 (((-853) $) 17)) (-3984 (((-112) $) 8)) (-2626 (((-112) $ (-112)) 10)) (-1683 (((-112) $ $) NIL)))
+(((-170) (-13 (-1087) (-10 -8 (-15 -3315 ($)) (-15 -3984 ((-112) $)) (-15 -2786 ((-112) $)) (-15 -2626 ((-112) $ (-112))) (-15 -2777 ((-112) $ (-112))) (-15 -1553 ($ $))))) (T -170))
+((-3315 (*1 *1) (-5 *1 (-170))) (-3984 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-170)))) (-2786 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-170)))) (-2626 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-170)))) (-2777 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-170)))) (-1553 (*1 *1 *1) (-5 *1 (-170))))
+(-13 (-1087) (-10 -8 (-15 -3315 ($)) (-15 -3984 ((-112) $)) (-15 -2786 ((-112) $)) (-15 -2626 ((-112) $ (-112))) (-15 -2777 ((-112) $ (-112))) (-15 -1553 ($ $))))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2089 (((-3 $ "failed") $ $) 19)) (-1816 (($) 17 T CONST)) (-2588 (((-3 $ "failed") $) 33)) (-2035 (((-112) $) 31)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11) (($ (-558)) 29)) (-2542 (((-762)) 28)) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1683 (((-112) $ $) 6)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24)))
+(((-171) (-139)) (T -171))
+NIL
+(-13 (-1039) (-111 $ $) (-10 -7 (-6 (-4384 "*"))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-608 (-558)) . T) ((-605 (-853)) . T) ((-638 $) . T) ((-717) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
+((-2436 (($ $) 6)))
+(((-172) (-139)) (T -172))
+((-2436 (*1 *1 *1) (-4 *1 (-172))))
+(-13 (-10 -8 (-15 -2436 ($ $))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2582 ((|#1| $) 74)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL)) (-1881 (($ $) NIL)) (-1857 (((-112) $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-3465 (($ $) NIL)) (-1380 (((-417 $) $) NIL)) (-3732 (((-112) $ $) NIL)) (-1816 (($) NIL T CONST)) (-4025 (($ $ $) NIL)) (-2834 (($ $) 19)) (-2872 (($ |#1| (-1143 |#1|)) 47)) (-2588 (((-3 $ "failed") $) 116)) (-4004 (($ $ $) NIL)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL)) (-3031 (((-112) $) NIL)) (-2844 (((-1143 |#1|) $) 81)) (-2863 (((-1143 |#1|) $) 78)) (-2853 (((-1143 |#1|) $) 79)) (-2035 (((-112) $) NIL)) (-2805 (((-1143 |#1|) $) 87)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2665 (($ (-635 $)) NIL) (($ $ $) NIL)) (-4310 (((-1145) $) NIL)) (-2418 (($ $) NIL)) (-2975 (((-1107) $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-2699 (($ (-635 $)) NIL) (($ $ $) NIL)) (-2522 (((-417 $) $) NIL)) (-3713 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL)) (-3430 (($ $ (-558)) 90)) (-3983 (((-3 $ "failed") $ $) NIL)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3722 (((-762) $) NIL)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL)) (-2795 (((-1143 |#1|) $) 88)) (-2815 (((-1143 (-406 |#1|)) $) 14)) (-3008 (($ (-406 |#1|)) 17) (($ |#1| (-1143 |#1|) (-1143 |#1|)) 37)) (-2011 (($ $) 92)) (-3220 (((-853) $) 126) (($ (-558)) 50) (($ |#1|) 51) (($ (-406 |#1|)) 35) (($ (-406 (-558))) NIL) (($ $) NIL)) (-2542 (((-762)) 63)) (-1870 (((-112) $ $) NIL)) (-2823 (((-1143 (-406 |#1|)) $) 18)) (-2131 (($) 25 T CONST)) (-2142 (($) 28 T CONST)) (-1683 (((-112) $ $) 34)) (-1810 (($ $ $) 114)) (-1798 (($ $) 105) (($ $ $) 102)) (-1784 (($ $ $) 100)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 112) (($ $ $) 107) (($ $ |#1|) NIL) (($ |#1| $) 109) (($ (-406 |#1|) $) 110) (($ $ (-406 |#1|)) NIL) (($ (-406 (-558)) $) NIL) (($ $ (-406 (-558))) NIL)))
+(((-173 |#1|) (-13 (-38 |#1|) (-38 (-406 |#1|)) (-362) (-10 -8 (-15 -3008 ($ (-406 |#1|))) (-15 -3008 ($ |#1| (-1143 |#1|) (-1143 |#1|))) (-15 -2872 ($ |#1| (-1143 |#1|))) (-15 -2863 ((-1143 |#1|) $)) (-15 -2853 ((-1143 |#1|) $)) (-15 -2844 ((-1143 |#1|) $)) (-15 -2582 (|#1| $)) (-15 -2834 ($ $)) (-15 -2823 ((-1143 (-406 |#1|)) $)) (-15 -2815 ((-1143 (-406 |#1|)) $)) (-15 -2805 ((-1143 |#1|) $)) (-15 -2795 ((-1143 |#1|) $)) (-15 -3430 ($ $ (-558))) (-15 -2011 ($ $)))) (-306)) (T -173))
+((-3008 (*1 *1 *2) (-12 (-5 *2 (-406 *3)) (-4 *3 (-306)) (-5 *1 (-173 *3)))) (-3008 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1143 *2)) (-4 *2 (-306)) (-5 *1 (-173 *2)))) (-2872 (*1 *1 *2 *3) (-12 (-5 *3 (-1143 *2)) (-4 *2 (-306)) (-5 *1 (-173 *2)))) (-2863 (*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-2853 (*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-2844 (*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-2582 (*1 *2 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306)))) (-2834 (*1 *1 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306)))) (-2823 (*1 *2 *1) (-12 (-5 *2 (-1143 (-406 *3))) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-2815 (*1 *2 *1) (-12 (-5 *2 (-1143 (-406 *3))) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-2805 (*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-2795 (*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-3430 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-2011 (*1 *1 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306)))))
+(-13 (-38 |#1|) (-38 (-406 |#1|)) (-362) (-10 -8 (-15 -3008 ($ (-406 |#1|))) (-15 -3008 ($ |#1| (-1143 |#1|) (-1143 |#1|))) (-15 -2872 ($ |#1| (-1143 |#1|))) (-15 -2863 ((-1143 |#1|) $)) (-15 -2853 ((-1143 |#1|) $)) (-15 -2844 ((-1143 |#1|) $)) (-15 -2582 (|#1| $)) (-15 -2834 ($ $)) (-15 -2823 ((-1143 (-406 |#1|)) $)) (-15 -2815 ((-1143 (-406 |#1|)) $)) (-15 -2805 ((-1143 |#1|) $)) (-15 -2795 ((-1143 |#1|) $)) (-15 -3430 ($ $ (-558))) (-15 -2011 ($ $))))
+((-2883 (($ (-109) $) 13)) (-4170 (((-3 (-109) "failed") (-1163) $) 12)) (-3220 (((-853) $) 16)) (-2891 (((-635 (-109)) $) 8)))
+(((-174) (-13 (-605 (-853)) (-10 -8 (-15 -2891 ((-635 (-109)) $)) (-15 -2883 ($ (-109) $)) (-15 -4170 ((-3 (-109) "failed") (-1163) $))))) (T -174))
+((-2891 (*1 *2 *1) (-12 (-5 *2 (-635 (-109))) (-5 *1 (-174)))) (-2883 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-174)))) (-4170 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1163)) (-5 *2 (-109)) (-5 *1 (-174)))))
+(-13 (-605 (-853)) (-10 -8 (-15 -2891 ((-635 (-109)) $)) (-15 -2883 ($ (-109) $)) (-15 -4170 ((-3 (-109) "failed") (-1163) $))))
+((-3032 (((-1 (-933 |#1|) (-933 |#1|)) |#1|) 40)) (-2932 (((-933 |#1|) (-933 |#1|)) 19)) (-2987 (((-1 (-933 |#1|) (-933 |#1|)) |#1|) 36)) (-2911 (((-933 |#1|) (-933 |#1|)) 17)) (-2964 (((-933 |#1|) (-933 |#1|)) 25)) (-2954 (((-933 |#1|) (-933 |#1|)) 24)) (-2943 (((-933 |#1|) (-933 |#1|)) 23)) (-2999 (((-1 (-933 |#1|) (-933 |#1|)) |#1|) 37)) (-2974 (((-1 (-933 |#1|) (-933 |#1|)) |#1|) 35)) (-3037 (((-1 (-933 |#1|) (-933 |#1|)) |#1|) 34)) (-2920 (((-933 |#1|) (-933 |#1|)) 18)) (-3042 (((-1 (-933 |#1|) (-933 |#1|)) |#1| |#1|) 43)) (-2902 (((-933 |#1|) (-933 |#1|)) 8)) (-3021 (((-1 (-933 |#1|) (-933 |#1|)) |#1|) 39)) (-3010 (((-1 (-933 |#1|) (-933 |#1|)) |#1|) 38)))
+(((-175 |#1|) (-10 -7 (-15 -2902 ((-933 |#1|) (-933 |#1|))) (-15 -2911 ((-933 |#1|) (-933 |#1|))) (-15 -2920 ((-933 |#1|) (-933 |#1|))) (-15 -2932 ((-933 |#1|) (-933 |#1|))) (-15 -2943 ((-933 |#1|) (-933 |#1|))) (-15 -2954 ((-933 |#1|) (-933 |#1|))) (-15 -2964 ((-933 |#1|) (-933 |#1|))) (-15 -3037 ((-1 (-933 |#1|) (-933 |#1|)) |#1|)) (-15 -2974 ((-1 (-933 |#1|) (-933 |#1|)) |#1|)) (-15 -2987 ((-1 (-933 |#1|) (-933 |#1|)) |#1|)) (-15 -2999 ((-1 (-933 |#1|) (-933 |#1|)) |#1|)) (-15 -3010 ((-1 (-933 |#1|) (-933 |#1|)) |#1|)) (-15 -3021 ((-1 (-933 |#1|) (-933 |#1|)) |#1|)) (-15 -3032 ((-1 (-933 |#1|) (-933 |#1|)) |#1|)) (-15 -3042 ((-1 (-933 |#1|) (-933 |#1|)) |#1| |#1|))) (-13 (-362) (-1185) (-992))) (T -175))
+((-3042 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-933 *3) (-933 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1185) (-992))))) (-3032 (*1 *2 *3) (-12 (-5 *2 (-1 (-933 *3) (-933 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1185) (-992))))) (-3021 (*1 *2 *3) (-12 (-5 *2 (-1 (-933 *3) (-933 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1185) (-992))))) (-3010 (*1 *2 *3) (-12 (-5 *2 (-1 (-933 *3) (-933 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1185) (-992))))) (-2999 (*1 *2 *3) (-12 (-5 *2 (-1 (-933 *3) (-933 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1185) (-992))))) (-2987 (*1 *2 *3) (-12 (-5 *2 (-1 (-933 *3) (-933 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1185) (-992))))) (-2974 (*1 *2 *3) (-12 (-5 *2 (-1 (-933 *3) (-933 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1185) (-992))))) (-3037 (*1 *2 *3) (-12 (-5 *2 (-1 (-933 *3) (-933 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1185) (-992))))) (-2964 (*1 *2 *2) (-12 (-5 *2 (-933 *3)) (-4 *3 (-13 (-362) (-1185) (-992))) (-5 *1 (-175 *3)))) (-2954 (*1 *2 *2) (-12 (-5 *2 (-933 *3)) (-4 *3 (-13 (-362) (-1185) (-992))) (-5 *1 (-175 *3)))) (-2943 (*1 *2 *2) (-12 (-5 *2 (-933 *3)) (-4 *3 (-13 (-362) (-1185) (-992))) (-5 *1 (-175 *3)))) (-2932 (*1 *2 *2) (-12 (-5 *2 (-933 *3)) (-4 *3 (-13 (-362) (-1185) (-992))) (-5 *1 (-175 *3)))) (-2920 (*1 *2 *2) (-12 (-5 *2 (-933 *3)) (-4 *3 (-13 (-362) (-1185) (-992))) (-5 *1 (-175 *3)))) (-2911 (*1 *2 *2) (-12 (-5 *2 (-933 *3)) (-4 *3 (-13 (-362) (-1185) (-992))) (-5 *1 (-175 *3)))) (-2902 (*1 *2 *2) (-12 (-5 *2 (-933 *3)) (-4 *3 (-13 (-362) (-1185) (-992))) (-5 *1 (-175 *3)))))
+(-10 -7 (-15 -2902 ((-933 |#1|) (-933 |#1|))) (-15 -2911 ((-933 |#1|) (-933 |#1|))) (-15 -2920 ((-933 |#1|) (-933 |#1|))) (-15 -2932 ((-933 |#1|) (-933 |#1|))) (-15 -2943 ((-933 |#1|) (-933 |#1|))) (-15 -2954 ((-933 |#1|) (-933 |#1|))) (-15 -2964 ((-933 |#1|) (-933 |#1|))) (-15 -3037 ((-1 (-933 |#1|) (-933 |#1|)) |#1|)) (-15 -2974 ((-1 (-933 |#1|) (-933 |#1|)) |#1|)) (-15 -2987 ((-1 (-933 |#1|) (-933 |#1|)) |#1|)) (-15 -2999 ((-1 (-933 |#1|) (-933 |#1|)) |#1|)) (-15 -3010 ((-1 (-933 |#1|) (-933 |#1|)) |#1|)) (-15 -3021 ((-1 (-933 |#1|) (-933 |#1|)) |#1|)) (-15 -3032 ((-1 (-933 |#1|) (-933 |#1|)) |#1|)) (-15 -3042 ((-1 (-933 |#1|) (-933 |#1|)) |#1| |#1|)))
+((-2363 ((|#2| |#3|) 27)))
+(((-176 |#1| |#2| |#3|) (-10 -7 (-15 -2363 (|#2| |#3|))) (-171) (-1222 |#1|) (-715 |#1| |#2|)) (T -176))
+((-2363 (*1 *2 *3) (-12 (-4 *4 (-171)) (-4 *2 (-1222 *4)) (-5 *1 (-176 *4 *2 *3)) (-4 *3 (-715 *4 *2)))))
+(-10 -7 (-15 -2363 (|#2| |#3|)))
+((-2269 (((-879 |#1| |#3|) |#3| (-882 |#1|) (-879 |#1| |#3|)) 47 (|has| (-942 |#2|) (-876 |#1|)))))
+(((-177 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-942 |#2|) (-876 |#1|)) (-15 -2269 ((-879 |#1| |#3|) |#3| (-882 |#1|) (-879 |#1| |#3|))) |%noBranch|)) (-1087) (-13 (-876 |#1|) (-171)) (-165 |#2|)) (T -177))
+((-2269 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-879 *5 *3)) (-5 *4 (-882 *5)) (-4 *5 (-1087)) (-4 *3 (-165 *6)) (-4 (-942 *6) (-876 *5)) (-4 *6 (-13 (-876 *5) (-171))) (-5 *1 (-177 *5 *6 *3)))))
+(-10 -7 (IF (|has| (-942 |#2|) (-876 |#1|)) (-15 -2269 ((-879 |#1| |#3|) |#3| (-882 |#1|) (-879 |#1| |#3|))) |%noBranch|))
+((-3066 (((-635 |#1|) (-635 |#1|) |#1|) 38)) (-3055 (((-635 |#1|) |#1| (-635 |#1|)) 19)) (-2060 (((-635 |#1|) (-635 (-635 |#1|)) (-635 |#1|)) 33) ((|#1| (-635 |#1|) (-635 |#1|)) 31)))
+(((-178 |#1|) (-10 -7 (-15 -3055 ((-635 |#1|) |#1| (-635 |#1|))) (-15 -2060 (|#1| (-635 |#1|) (-635 |#1|))) (-15 -2060 ((-635 |#1|) (-635 (-635 |#1|)) (-635 |#1|))) (-15 -3066 ((-635 |#1|) (-635 |#1|) |#1|))) (-306)) (T -178))
+((-3066 (*1 *2 *2 *3) (-12 (-5 *2 (-635 *3)) (-4 *3 (-306)) (-5 *1 (-178 *3)))) (-2060 (*1 *2 *3 *2) (-12 (-5 *3 (-635 (-635 *4))) (-5 *2 (-635 *4)) (-4 *4 (-306)) (-5 *1 (-178 *4)))) (-2060 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *2)) (-5 *1 (-178 *2)) (-4 *2 (-306)))) (-3055 (*1 *2 *3 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-306)) (-5 *1 (-178 *3)))))
+(-10 -7 (-15 -3055 ((-635 |#1|) |#1| (-635 |#1|))) (-15 -2060 (|#1| (-635 |#1|) (-635 |#1|))) (-15 -2060 ((-635 |#1|) (-635 (-635 |#1|)) (-635 |#1|))) (-15 -3066 ((-635 |#1|) (-635 |#1|) |#1|)))
+((-3207 (((-112) $ $) NIL)) (-1395 (((-1199) $) 13)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3535 (((-1122) $) 10)) (-3220 (((-853) $) 22) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1683 (((-112) $ $) NIL)))
+(((-179) (-13 (-1070) (-10 -8 (-15 -3535 ((-1122) $)) (-15 -1395 ((-1199) $))))) (T -179))
+((-3535 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-179)))) (-1395 (*1 *2 *1) (-12 (-5 *2 (-1199)) (-5 *1 (-179)))))
+(-13 (-1070) (-10 -8 (-15 -3535 ((-1122) $)) (-15 -1395 ((-1199) $))))
+((-3164 (((-2 (|:| |start| |#2|) (|:| -1849 (-417 |#2|))) |#2|) 61)) (-3153 ((|#1| |#1|) 54)) (-3143 (((-168 |#1|) |#2|) 83)) (-3133 ((|#1| |#2|) 122) ((|#1| |#2| |#1|) 81)) (-3122 ((|#2| |#2|) 82)) (-3110 (((-417 |#2|) |#2| |#1|) 112) (((-417 |#2|) |#2| |#1| (-112)) 80)) (-2615 ((|#1| |#2|) 111)) (-3100 ((|#2| |#2|) 118)) (-2522 (((-417 |#2|) |#2|) 133) (((-417 |#2|) |#2| |#1|) 32) (((-417 |#2|) |#2| |#1| (-112)) 132)) (-3090 (((-635 (-2 (|:| -1849 (-635 |#2|)) (|:| -1984 |#1|))) |#2| |#2|) 131) (((-635 (-2 (|:| -1849 (-635 |#2|)) (|:| -1984 |#1|))) |#2| |#2| (-112)) 76)) (-3078 (((-635 (-168 |#1|)) |#2| |#1|) 40) (((-635 (-168 |#1|)) |#2|) 41)))
+(((-180 |#1| |#2|) (-10 -7 (-15 -3078 ((-635 (-168 |#1|)) |#2|)) (-15 -3078 ((-635 (-168 |#1|)) |#2| |#1|)) (-15 -3090 ((-635 (-2 (|:| -1849 (-635 |#2|)) (|:| -1984 |#1|))) |#2| |#2| (-112))) (-15 -3090 ((-635 (-2 (|:| -1849 (-635 |#2|)) (|:| -1984 |#1|))) |#2| |#2|)) (-15 -2522 ((-417 |#2|) |#2| |#1| (-112))) (-15 -2522 ((-417 |#2|) |#2| |#1|)) (-15 -2522 ((-417 |#2|) |#2|)) (-15 -3100 (|#2| |#2|)) (-15 -2615 (|#1| |#2|)) (-15 -3110 ((-417 |#2|) |#2| |#1| (-112))) (-15 -3110 ((-417 |#2|) |#2| |#1|)) (-15 -3122 (|#2| |#2|)) (-15 -3133 (|#1| |#2| |#1|)) (-15 -3133 (|#1| |#2|)) (-15 -3143 ((-168 |#1|) |#2|)) (-15 -3153 (|#1| |#1|)) (-15 -3164 ((-2 (|:| |start| |#2|) (|:| -1849 (-417 |#2|))) |#2|))) (-13 (-362) (-839)) (-1222 (-168 |#1|))) (T -180))
+((-3164 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-839))) (-5 *2 (-2 (|:| |start| *3) (|:| -1849 (-417 *3)))) (-5 *1 (-180 *4 *3)) (-4 *3 (-1222 (-168 *4))))) (-3153 (*1 *2 *2) (-12 (-4 *2 (-13 (-362) (-839))) (-5 *1 (-180 *2 *3)) (-4 *3 (-1222 (-168 *2))))) (-3143 (*1 *2 *3) (-12 (-5 *2 (-168 *4)) (-5 *1 (-180 *4 *3)) (-4 *4 (-13 (-362) (-839))) (-4 *3 (-1222 *2)))) (-3133 (*1 *2 *3) (-12 (-4 *2 (-13 (-362) (-839))) (-5 *1 (-180 *2 *3)) (-4 *3 (-1222 (-168 *2))))) (-3133 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-362) (-839))) (-5 *1 (-180 *2 *3)) (-4 *3 (-1222 (-168 *2))))) (-3122 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-839))) (-5 *1 (-180 *3 *2)) (-4 *2 (-1222 (-168 *3))))) (-3110 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-362) (-839))) (-5 *2 (-417 *3)) (-5 *1 (-180 *4 *3)) (-4 *3 (-1222 (-168 *4))))) (-3110 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-362) (-839))) (-5 *2 (-417 *3)) (-5 *1 (-180 *4 *3)) (-4 *3 (-1222 (-168 *4))))) (-2615 (*1 *2 *3) (-12 (-4 *2 (-13 (-362) (-839))) (-5 *1 (-180 *2 *3)) (-4 *3 (-1222 (-168 *2))))) (-3100 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-839))) (-5 *1 (-180 *3 *2)) (-4 *2 (-1222 (-168 *3))))) (-2522 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-839))) (-5 *2 (-417 *3)) (-5 *1 (-180 *4 *3)) (-4 *3 (-1222 (-168 *4))))) (-2522 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-362) (-839))) (-5 *2 (-417 *3)) (-5 *1 (-180 *4 *3)) (-4 *3 (-1222 (-168 *4))))) (-2522 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-362) (-839))) (-5 *2 (-417 *3)) (-5 *1 (-180 *4 *3)) (-4 *3 (-1222 (-168 *4))))) (-3090 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-362) (-839))) (-5 *2 (-635 (-2 (|:| -1849 (-635 *3)) (|:| -1984 *4)))) (-5 *1 (-180 *4 *3)) (-4 *3 (-1222 (-168 *4))))) (-3090 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-362) (-839))) (-5 *2 (-635 (-2 (|:| -1849 (-635 *3)) (|:| -1984 *5)))) (-5 *1 (-180 *5 *3)) (-4 *3 (-1222 (-168 *5))))) (-3078 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-362) (-839))) (-5 *2 (-635 (-168 *4))) (-5 *1 (-180 *4 *3)) (-4 *3 (-1222 (-168 *4))))) (-3078 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-839))) (-5 *2 (-635 (-168 *4))) (-5 *1 (-180 *4 *3)) (-4 *3 (-1222 (-168 *4))))))
+(-10 -7 (-15 -3078 ((-635 (-168 |#1|)) |#2|)) (-15 -3078 ((-635 (-168 |#1|)) |#2| |#1|)) (-15 -3090 ((-635 (-2 (|:| -1849 (-635 |#2|)) (|:| -1984 |#1|))) |#2| |#2| (-112))) (-15 -3090 ((-635 (-2 (|:| -1849 (-635 |#2|)) (|:| -1984 |#1|))) |#2| |#2|)) (-15 -2522 ((-417 |#2|) |#2| |#1| (-112))) (-15 -2522 ((-417 |#2|) |#2| |#1|)) (-15 -2522 ((-417 |#2|) |#2|)) (-15 -3100 (|#2| |#2|)) (-15 -2615 (|#1| |#2|)) (-15 -3110 ((-417 |#2|) |#2| |#1| (-112))) (-15 -3110 ((-417 |#2|) |#2| |#1|)) (-15 -3122 (|#2| |#2|)) (-15 -3133 (|#1| |#2| |#1|)) (-15 -3133 (|#1| |#2|)) (-15 -3143 ((-168 |#1|) |#2|)) (-15 -3153 (|#1| |#1|)) (-15 -3164 ((-2 (|:| |start| |#2|) (|:| -1849 (-417 |#2|))) |#2|)))
+((-3175 (((-3 |#2| "failed") |#2|) 14)) (-3186 (((-762) |#2|) 16)) (-3196 ((|#2| |#2| |#2|) 18)))
+(((-181 |#1| |#2|) (-10 -7 (-15 -3175 ((-3 |#2| "failed") |#2|)) (-15 -3186 ((-762) |#2|)) (-15 -3196 (|#2| |#2| |#2|))) (-1200) (-664 |#1|)) (T -181))
+((-3196 (*1 *2 *2 *2) (-12 (-4 *3 (-1200)) (-5 *1 (-181 *3 *2)) (-4 *2 (-664 *3)))) (-3186 (*1 *2 *3) (-12 (-4 *4 (-1200)) (-5 *2 (-762)) (-5 *1 (-181 *4 *3)) (-4 *3 (-664 *4)))) (-3175 (*1 *2 *2) (|partial| -12 (-4 *3 (-1200)) (-5 *1 (-181 *3 *2)) (-4 *2 (-664 *3)))))
+(-10 -7 (-15 -3175 ((-3 |#2| "failed") |#2|)) (-15 -3186 ((-762) |#2|)) (-15 -3196 (|#2| |#2| |#2|)))
+((-3207 (((-112) $ $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-2250 (((-186) $) 7)) (-3220 (((-853) $) 14)) (-1433 (((-635 (-1168)) $) 10)) (-1683 (((-112) $ $) 12)))
+(((-182) (-13 (-1087) (-10 -8 (-15 -2250 ((-186) $)) (-15 -1433 ((-635 (-1168)) $))))) (T -182))
+((-2250 (*1 *2 *1) (-12 (-5 *2 (-186)) (-5 *1 (-182)))) (-1433 (*1 *2 *1) (-12 (-5 *2 (-635 (-1168))) (-5 *1 (-182)))))
+(-13 (-1087) (-10 -8 (-15 -2250 ((-186) $)) (-15 -1433 ((-635 (-1168)) $))))
+((-3470 (((-185) $) 8)) (-3208 (((-635 (-112)) $) 13)) (-1546 (((-55) $) 10)))
+(((-183 |#1|) (-10 -8 (-15 -3208 ((-635 (-112)) |#1|)) (-15 -3470 ((-185) |#1|)) (-15 -1546 ((-55) |#1|))) (-184)) (T -183))
+NIL
+(-10 -8 (-15 -3208 ((-635 (-112)) |#1|)) (-15 -3470 ((-185) |#1|)) (-15 -1546 ((-55) |#1|)))
+((-3207 (((-112) $ $) 7)) (-1323 (((-504) $) 14)) (-4310 (((-1145) $) 9)) (-3470 (((-185) $) 18)) (-2975 (((-1107) $) 10)) (-3208 (((-635 (-112)) $) 17)) (-3220 (((-853) $) 11)) (-1546 (((-55) $) 13)) (-1683 (((-112) $ $) 6)))
+(((-184) (-139)) (T -184))
+((-3470 (*1 *2 *1) (-12 (-4 *1 (-184)) (-5 *2 (-185)))) (-3208 (*1 *2 *1) (-12 (-4 *1 (-184)) (-5 *2 (-635 (-112))))))
+(-13 (-826 (-504)) (-10 -8 (-15 -3470 ((-185) $)) (-15 -3208 ((-635 (-112)) $))))
+(((-102) . T) ((-605 (-853)) . T) ((-826 (-504)) . T) ((-1087) . T))
+((-3207 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-8 (($) 7 T CONST)) (-3220 (((-853) $) 12)) (-9 (($) 6 T CONST)) (-1683 (((-112) $ $) 10)))
+(((-185) (-13 (-1087) (-10 -8 (-15 -9 ($) -3707) (-15 -8 ($) -3707) (-15 -7 ($) -3707)))) (T -185))
+((-9 (*1 *1) (-5 *1 (-185))) (-8 (*1 *1) (-5 *1 (-185))) (-7 (*1 *1) (-5 *1 (-185))))
+(-13 (-1087) (-10 -8 (-15 -9 ($) -3707) (-15 -8 ($) -3707) (-15 -7 ($) -3707)))
+((-3207 (((-112) $ $) NIL)) (-1323 (((-504) $) 8)) (-4310 (((-1145) $) NIL)) (-3470 (((-185) $) 10)) (-2975 (((-1107) $) NIL)) (-3208 (((-635 (-112)) $) NIL)) (-3220 (((-853) $) NIL)) (-1546 (((-55) $) 12)) (-1683 (((-112) $ $) NIL)))
+(((-186) (-184)) (T -186))
+NIL
+(-184)
+((-1516 ((|#2| |#2|) 28)) (-1528 (((-112) |#2|) 19)) (-2546 (((-315 |#1|) |#2|) 12)) (-2557 (((-315 |#1|) |#2|) 14)) (-1495 ((|#2| |#2| (-1163)) 68) ((|#2| |#2|) 69)) (-1537 (((-168 (-315 |#1|)) |#2|) 10)) (-1505 ((|#2| |#2| (-1163)) 65) ((|#2| |#2|) 59)))
+(((-187 |#1| |#2|) (-10 -7 (-15 -1495 (|#2| |#2|)) (-15 -1495 (|#2| |#2| (-1163))) (-15 -1505 (|#2| |#2|)) (-15 -1505 (|#2| |#2| (-1163))) (-15 -2546 ((-315 |#1|) |#2|)) (-15 -2557 ((-315 |#1|) |#2|)) (-15 -1528 ((-112) |#2|)) (-15 -1516 (|#2| |#2|)) (-15 -1537 ((-168 (-315 |#1|)) |#2|))) (-13 (-550) (-841) (-1028 (-558))) (-13 (-27) (-1185) (-429 (-168 |#1|)))) (T -187))
+((-1537 (*1 *2 *3) (-12 (-4 *4 (-13 (-550) (-841) (-1028 (-558)))) (-5 *2 (-168 (-315 *4))) (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1185) (-429 (-168 *4)))))) (-1516 (*1 *2 *2) (-12 (-4 *3 (-13 (-550) (-841) (-1028 (-558)))) (-5 *1 (-187 *3 *2)) (-4 *2 (-13 (-27) (-1185) (-429 (-168 *3)))))) (-1528 (*1 *2 *3) (-12 (-4 *4 (-13 (-550) (-841) (-1028 (-558)))) (-5 *2 (-112)) (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1185) (-429 (-168 *4)))))) (-2557 (*1 *2 *3) (-12 (-4 *4 (-13 (-550) (-841) (-1028 (-558)))) (-5 *2 (-315 *4)) (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1185) (-429 (-168 *4)))))) (-2546 (*1 *2 *3) (-12 (-4 *4 (-13 (-550) (-841) (-1028 (-558)))) (-5 *2 (-315 *4)) (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1185) (-429 (-168 *4)))))) (-1505 (*1 *2 *2 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-550) (-841) (-1028 (-558)))) (-5 *1 (-187 *4 *2)) (-4 *2 (-13 (-27) (-1185) (-429 (-168 *4)))))) (-1505 (*1 *2 *2) (-12 (-4 *3 (-13 (-550) (-841) (-1028 (-558)))) (-5 *1 (-187 *3 *2)) (-4 *2 (-13 (-27) (-1185) (-429 (-168 *3)))))) (-1495 (*1 *2 *2 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-550) (-841) (-1028 (-558)))) (-5 *1 (-187 *4 *2)) (-4 *2 (-13 (-27) (-1185) (-429 (-168 *4)))))) (-1495 (*1 *2 *2) (-12 (-4 *3 (-13 (-550) (-841) (-1028 (-558)))) (-5 *1 (-187 *3 *2)) (-4 *2 (-13 (-27) (-1185) (-429 (-168 *3)))))))
+(-10 -7 (-15 -1495 (|#2| |#2|)) (-15 -1495 (|#2| |#2| (-1163))) (-15 -1505 (|#2| |#2|)) (-15 -1505 (|#2| |#2| (-1163))) (-15 -2546 ((-315 |#1|) |#2|)) (-15 -2557 ((-315 |#1|) |#2|)) (-15 -1528 ((-112) |#2|)) (-15 -1516 (|#2| |#2|)) (-15 -1537 ((-168 (-315 |#1|)) |#2|)))
+((-3221 (((-1246 (-679 (-942 |#1|))) (-1246 (-679 |#1|))) 24)) (-3220 (((-1246 (-679 (-406 (-942 |#1|)))) (-1246 (-679 |#1|))) 33)))
+(((-188 |#1|) (-10 -7 (-15 -3221 ((-1246 (-679 (-942 |#1|))) (-1246 (-679 |#1|)))) (-15 -3220 ((-1246 (-679 (-406 (-942 |#1|)))) (-1246 (-679 |#1|))))) (-171)) (T -188))
+((-3220 (*1 *2 *3) (-12 (-5 *3 (-1246 (-679 *4))) (-4 *4 (-171)) (-5 *2 (-1246 (-679 (-406 (-942 *4))))) (-5 *1 (-188 *4)))) (-3221 (*1 *2 *3) (-12 (-5 *3 (-1246 (-679 *4))) (-4 *4 (-171)) (-5 *2 (-1246 (-679 (-942 *4)))) (-5 *1 (-188 *4)))))
+(-10 -7 (-15 -3221 ((-1246 (-679 (-942 |#1|))) (-1246 (-679 |#1|)))) (-15 -3220 ((-1246 (-679 (-406 (-942 |#1|)))) (-1246 (-679 |#1|)))))
+((-3310 (((-1165 (-406 (-558))) (-1165 (-406 (-558))) (-1165 (-406 (-558)))) 66)) (-3332 (((-1165 (-406 (-558))) (-635 (-558)) (-635 (-558))) 75)) (-3234 (((-1165 (-406 (-558))) (-558)) 40)) (-2843 (((-1165 (-406 (-558))) (-558)) 52)) (-2554 (((-406 (-558)) (-1165 (-406 (-558)))) 62)) (-3245 (((-1165 (-406 (-558))) (-558)) 32)) (-3275 (((-1165 (-406 (-558))) (-558)) 48)) (-3265 (((-1165 (-406 (-558))) (-558)) 46)) (-3298 (((-1165 (-406 (-558))) (-1165 (-406 (-558))) (-1165 (-406 (-558)))) 60)) (-2011 (((-1165 (-406 (-558))) (-558)) 25)) (-3287 (((-406 (-558)) (-1165 (-406 (-558))) (-1165 (-406 (-558)))) 64)) (-3255 (((-1165 (-406 (-558))) (-558)) 30)) (-3321 (((-1165 (-406 (-558))) (-635 (-558))) 72)))
+(((-189) (-10 -7 (-15 -2011 ((-1165 (-406 (-558))) (-558))) (-15 -3234 ((-1165 (-406 (-558))) (-558))) (-15 -3245 ((-1165 (-406 (-558))) (-558))) (-15 -3255 ((-1165 (-406 (-558))) (-558))) (-15 -3265 ((-1165 (-406 (-558))) (-558))) (-15 -3275 ((-1165 (-406 (-558))) (-558))) (-15 -2843 ((-1165 (-406 (-558))) (-558))) (-15 -3287 ((-406 (-558)) (-1165 (-406 (-558))) (-1165 (-406 (-558))))) (-15 -3298 ((-1165 (-406 (-558))) (-1165 (-406 (-558))) (-1165 (-406 (-558))))) (-15 -2554 ((-406 (-558)) (-1165 (-406 (-558))))) (-15 -3310 ((-1165 (-406 (-558))) (-1165 (-406 (-558))) (-1165 (-406 (-558))))) (-15 -3321 ((-1165 (-406 (-558))) (-635 (-558)))) (-15 -3332 ((-1165 (-406 (-558))) (-635 (-558)) (-635 (-558)))))) (T -189))
+((-3332 (*1 *2 *3 *3) (-12 (-5 *3 (-635 (-558))) (-5 *2 (-1165 (-406 (-558)))) (-5 *1 (-189)))) (-3321 (*1 *2 *3) (-12 (-5 *3 (-635 (-558))) (-5 *2 (-1165 (-406 (-558)))) (-5 *1 (-189)))) (-3310 (*1 *2 *2 *2) (-12 (-5 *2 (-1165 (-406 (-558)))) (-5 *1 (-189)))) (-2554 (*1 *2 *3) (-12 (-5 *3 (-1165 (-406 (-558)))) (-5 *2 (-406 (-558))) (-5 *1 (-189)))) (-3298 (*1 *2 *2 *2) (-12 (-5 *2 (-1165 (-406 (-558)))) (-5 *1 (-189)))) (-3287 (*1 *2 *3 *3) (-12 (-5 *3 (-1165 (-406 (-558)))) (-5 *2 (-406 (-558))) (-5 *1 (-189)))) (-2843 (*1 *2 *3) (-12 (-5 *2 (-1165 (-406 (-558)))) (-5 *1 (-189)) (-5 *3 (-558)))) (-3275 (*1 *2 *3) (-12 (-5 *2 (-1165 (-406 (-558)))) (-5 *1 (-189)) (-5 *3 (-558)))) (-3265 (*1 *2 *3) (-12 (-5 *2 (-1165 (-406 (-558)))) (-5 *1 (-189)) (-5 *3 (-558)))) (-3255 (*1 *2 *3) (-12 (-5 *2 (-1165 (-406 (-558)))) (-5 *1 (-189)) (-5 *3 (-558)))) (-3245 (*1 *2 *3) (-12 (-5 *2 (-1165 (-406 (-558)))) (-5 *1 (-189)) (-5 *3 (-558)))) (-3234 (*1 *2 *3) (-12 (-5 *2 (-1165 (-406 (-558)))) (-5 *1 (-189)) (-5 *3 (-558)))) (-2011 (*1 *2 *3) (-12 (-5 *2 (-1165 (-406 (-558)))) (-5 *1 (-189)) (-5 *3 (-558)))))
+(-10 -7 (-15 -2011 ((-1165 (-406 (-558))) (-558))) (-15 -3234 ((-1165 (-406 (-558))) (-558))) (-15 -3245 ((-1165 (-406 (-558))) (-558))) (-15 -3255 ((-1165 (-406 (-558))) (-558))) (-15 -3265 ((-1165 (-406 (-558))) (-558))) (-15 -3275 ((-1165 (-406 (-558))) (-558))) (-15 -2843 ((-1165 (-406 (-558))) (-558))) (-15 -3287 ((-406 (-558)) (-1165 (-406 (-558))) (-1165 (-406 (-558))))) (-15 -3298 ((-1165 (-406 (-558))) (-1165 (-406 (-558))) (-1165 (-406 (-558))))) (-15 -2554 ((-406 (-558)) (-1165 (-406 (-558))))) (-15 -3310 ((-1165 (-406 (-558))) (-1165 (-406 (-558))) (-1165 (-406 (-558))))) (-15 -3321 ((-1165 (-406 (-558))) (-635 (-558)))) (-15 -3332 ((-1165 (-406 (-558))) (-635 (-558)) (-635 (-558)))))
+((-2126 (((-417 (-1159 (-558))) (-558)) 28)) (-3343 (((-635 (-1159 (-558))) (-558)) 23)) (-2317 (((-1159 (-558)) (-558)) 21)))
+(((-190) (-10 -7 (-15 -3343 ((-635 (-1159 (-558))) (-558))) (-15 -2317 ((-1159 (-558)) (-558))) (-15 -2126 ((-417 (-1159 (-558))) (-558))))) (T -190))
+((-2126 (*1 *2 *3) (-12 (-5 *2 (-417 (-1159 (-558)))) (-5 *1 (-190)) (-5 *3 (-558)))) (-2317 (*1 *2 *3) (-12 (-5 *2 (-1159 (-558))) (-5 *1 (-190)) (-5 *3 (-558)))) (-3343 (*1 *2 *3) (-12 (-5 *2 (-635 (-1159 (-558)))) (-5 *1 (-190)) (-5 *3 (-558)))))
+(-10 -7 (-15 -3343 ((-635 (-1159 (-558))) (-558))) (-15 -2317 ((-1159 (-558)) (-558))) (-15 -2126 ((-417 (-1159 (-558))) (-558))))
+((-1473 (((-1143 (-224)) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 104)) (-3578 (((-635 (-1145)) (-1143 (-224))) NIL)) (-2137 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 80)) (-1451 (((-635 (-224)) (-315 (-224)) (-1163) (-1081 (-834 (-224)))) NIL)) (-3568 (((-635 (-1145)) (-635 (-224))) NIL)) (-3587 (((-224) (-1081 (-834 (-224)))) 24)) (-3596 (((-224) (-1081 (-834 (-224)))) 25)) (-2158 (((-378) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 97)) (-2149 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 42)) (-3549 (((-1145) (-224)) NIL)) (-3781 (((-1145) (-635 (-1145))) 20)) (-2169 (((-1025) (-1163) (-1163) (-1025)) 13)))
+(((-191) (-10 -7 (-15 -2137 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2149 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3587 ((-224) (-1081 (-834 (-224))))) (-15 -3596 ((-224) (-1081 (-834 (-224))))) (-15 -2158 ((-378) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1451 ((-635 (-224)) (-315 (-224)) (-1163) (-1081 (-834 (-224))))) (-15 -1473 ((-1143 (-224)) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3549 ((-1145) (-224))) (-15 -3568 ((-635 (-1145)) (-635 (-224)))) (-15 -3578 ((-635 (-1145)) (-1143 (-224)))) (-15 -3781 ((-1145) (-635 (-1145)))) (-15 -2169 ((-1025) (-1163) (-1163) (-1025))))) (T -191))
+((-2169 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1025)) (-5 *3 (-1163)) (-5 *1 (-191)))) (-3781 (*1 *2 *3) (-12 (-5 *3 (-635 (-1145))) (-5 *2 (-1145)) (-5 *1 (-191)))) (-3578 (*1 *2 *3) (-12 (-5 *3 (-1143 (-224))) (-5 *2 (-635 (-1145))) (-5 *1 (-191)))) (-3568 (*1 *2 *3) (-12 (-5 *3 (-635 (-224))) (-5 *2 (-635 (-1145))) (-5 *1 (-191)))) (-3549 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1145)) (-5 *1 (-191)))) (-1473 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-1143 (-224))) (-5 *1 (-191)))) (-1451 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-224))) (-5 *4 (-1163)) (-5 *5 (-1081 (-834 (-224)))) (-5 *2 (-635 (-224))) (-5 *1 (-191)))) (-2158 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-378)) (-5 *1 (-191)))) (-3596 (*1 *2 *3) (-12 (-5 *3 (-1081 (-834 (-224)))) (-5 *2 (-224)) (-5 *1 (-191)))) (-3587 (*1 *2 *3) (-12 (-5 *3 (-1081 (-834 (-224)))) (-5 *2 (-224)) (-5 *1 (-191)))) (-2149 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-191)))) (-2137 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-191)))))
+(-10 -7 (-15 -2137 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2149 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3587 ((-224) (-1081 (-834 (-224))))) (-15 -3596 ((-224) (-1081 (-834 (-224))))) (-15 -2158 ((-378) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1451 ((-635 (-224)) (-315 (-224)) (-1163) (-1081 (-834 (-224))))) (-15 -1473 ((-1143 (-224)) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3549 ((-1145) (-224))) (-15 -3568 ((-635 (-1145)) (-635 (-224)))) (-15 -3578 ((-635 (-1145)) (-1143 (-224)))) (-15 -3781 ((-1145) (-635 (-1145)))) (-15 -2169 ((-1025) (-1163) (-1163) (-1025))))
+((-3207 (((-112) $ $) NIL)) (-2587 (((-1025) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) 55) (((-1025) (-2 (|:| |fn| (-315 (-224))) (|:| -1626 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) NIL)) (-3510 (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 32) (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |fn| (-315 (-224))) (|:| -1626 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) NIL)) (-1683 (((-112) $ $) NIL)))
+(((-192) (-778)) (T -192))
+NIL
+(-778)
+((-3207 (((-112) $ $) NIL)) (-2587 (((-1025) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) 60) (((-1025) (-2 (|:| |fn| (-315 (-224))) (|:| -1626 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) NIL)) (-3510 (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 41) (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |fn| (-315 (-224))) (|:| -1626 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) NIL)) (-1683 (((-112) $ $) NIL)))
+(((-193) (-778)) (T -193))
+NIL
+(-778)
+((-3207 (((-112) $ $) NIL)) (-2587 (((-1025) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) 69) (((-1025) (-2 (|:| |fn| (-315 (-224))) (|:| -1626 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) NIL)) (-3510 (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 40) (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |fn| (-315 (-224))) (|:| -1626 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) NIL)) (-1683 (((-112) $ $) NIL)))
+(((-194) (-778)) (T -194))
+NIL
+(-778)
+((-3207 (((-112) $ $) NIL)) (-2587 (((-1025) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) 56) (((-1025) (-2 (|:| |fn| (-315 (-224))) (|:| -1626 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) NIL)) (-3510 (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 34) (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |fn| (-315 (-224))) (|:| -1626 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) NIL)) (-1683 (((-112) $ $) NIL)))
+(((-195) (-778)) (T -195))
+NIL
+(-778)
+((-3207 (((-112) $ $) NIL)) (-2587 (((-1025) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) 67) (((-1025) (-2 (|:| |fn| (-315 (-224))) (|:| -1626 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) NIL)) (-3510 (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 38) (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |fn| (-315 (-224))) (|:| -1626 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) NIL)) (-1683 (((-112) $ $) NIL)))
+(((-196) (-778)) (T -196))
+NIL
+(-778)
+((-3207 (((-112) $ $) NIL)) (-2587 (((-1025) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) 73) (((-1025) (-2 (|:| |fn| (-315 (-224))) (|:| -1626 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) NIL)) (-3510 (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 36) (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |fn| (-315 (-224))) (|:| -1626 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) NIL)) (-1683 (((-112) $ $) NIL)))
+(((-197) (-778)) (T -197))
+NIL
+(-778)
+((-3207 (((-112) $ $) NIL)) (-2587 (((-1025) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) 80) (((-1025) (-2 (|:| |fn| (-315 (-224))) (|:| -1626 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) NIL)) (-3510 (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 44) (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |fn| (-315 (-224))) (|:| -1626 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) NIL)) (-1683 (((-112) $ $) NIL)))
+(((-198) (-778)) (T -198))
+NIL
+(-778)
+((-3207 (((-112) $ $) NIL)) (-2587 (((-1025) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) 70) (((-1025) (-2 (|:| |fn| (-315 (-224))) (|:| -1626 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) NIL)) (-3510 (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 40) (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |fn| (-315 (-224))) (|:| -1626 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) NIL)) (-1683 (((-112) $ $) NIL)))
+(((-199) (-778)) (T -199))
+NIL
+(-778)
+((-3207 (((-112) $ $) NIL)) (-2587 (((-1025) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) NIL) (((-1025) (-2 (|:| |fn| (-315 (-224))) (|:| -1626 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) 65)) (-3510 (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL) (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |fn| (-315 (-224))) (|:| -1626 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 32)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) NIL)) (-1683 (((-112) $ $) NIL)))
+(((-200) (-778)) (T -200))
+NIL
+(-778)
+((-3207 (((-112) $ $) NIL)) (-2587 (((-1025) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) NIL) (((-1025) (-2 (|:| |fn| (-315 (-224))) (|:| -1626 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) 63)) (-3510 (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL) (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |fn| (-315 (-224))) (|:| -1626 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 34)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) NIL)) (-1683 (((-112) $ $) NIL)))
+(((-201) (-778)) (T -201))
+NIL
+(-778)
+((-3207 (((-112) $ $) NIL)) (-2587 (((-1025) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) 90) (((-1025) (-2 (|:| |fn| (-315 (-224))) (|:| -1626 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) NIL)) (-3510 (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 78) (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |fn| (-315 (-224))) (|:| -1626 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) NIL)) (-1683 (((-112) $ $) NIL)))
+(((-202) (-778)) (T -202))
+NIL
+(-778)
+((-2181 (((-3 (-2 (|:| -3483 (-114)) (|:| |w| (-224))) "failed") (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 84)) (-2202 (((-558) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 42)) (-2191 (((-3 (-635 (-224)) "failed") (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 73)))
+(((-203) (-10 -7 (-15 -2181 ((-3 (-2 (|:| -3483 (-114)) (|:| |w| (-224))) "failed") (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2191 ((-3 (-635 (-224)) "failed") (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2202 ((-558) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (T -203))
+((-2202 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-558)) (-5 *1 (-203)))) (-2191 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-635 (-224))) (-5 *1 (-203)))) (-2181 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| -3483 (-114)) (|:| |w| (-224)))) (-5 *1 (-203)))))
+(-10 -7 (-15 -2181 ((-3 (-2 (|:| -3483 (-114)) (|:| |w| (-224))) "failed") (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2191 ((-3 (-635 (-224)) "failed") (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2202 ((-558) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))
+((-2257 (((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 39)) (-2246 (((-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 128)) (-2234 (((-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))) (-679 (-315 (-224)))) 87)) (-2223 (((-378) (-679 (-315 (-224)))) 111)) (-2792 (((-679 (-315 (-224))) (-1246 (-315 (-224))) (-635 (-1163))) 108)) (-2285 (((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 30)) (-2267 (((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 43)) (-2554 (((-679 (-315 (-224))) (-679 (-315 (-224))) (-635 (-1163)) (-1246 (-315 (-224)))) 100)) (-2213 (((-378) (-378) (-635 (-378))) 105) (((-378) (-378) (-378)) 103)) (-2275 (((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 36)))
+(((-204) (-10 -7 (-15 -2213 ((-378) (-378) (-378))) (-15 -2213 ((-378) (-378) (-635 (-378)))) (-15 -2223 ((-378) (-679 (-315 (-224))))) (-15 -2792 ((-679 (-315 (-224))) (-1246 (-315 (-224))) (-635 (-1163)))) (-15 -2554 ((-679 (-315 (-224))) (-679 (-315 (-224))) (-635 (-1163)) (-1246 (-315 (-224))))) (-15 -2234 ((-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))) (-679 (-315 (-224))))) (-15 -2246 ((-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2257 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2267 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2275 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2285 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (T -204))
+((-2285 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-378)) (-5 *1 (-204)))) (-2275 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-378)) (-5 *1 (-204)))) (-2267 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-378)) (-5 *1 (-204)))) (-2257 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-378)) (-5 *1 (-204)))) (-2246 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378)))) (-5 *1 (-204)))) (-2234 (*1 *2 *3) (-12 (-5 *3 (-679 (-315 (-224)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378)))) (-5 *1 (-204)))) (-2554 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-679 (-315 (-224)))) (-5 *3 (-635 (-1163))) (-5 *4 (-1246 (-315 (-224)))) (-5 *1 (-204)))) (-2792 (*1 *2 *3 *4) (-12 (-5 *3 (-1246 (-315 (-224)))) (-5 *4 (-635 (-1163))) (-5 *2 (-679 (-315 (-224)))) (-5 *1 (-204)))) (-2223 (*1 *2 *3) (-12 (-5 *3 (-679 (-315 (-224)))) (-5 *2 (-378)) (-5 *1 (-204)))) (-2213 (*1 *2 *2 *3) (-12 (-5 *3 (-635 (-378))) (-5 *2 (-378)) (-5 *1 (-204)))) (-2213 (*1 *2 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-204)))))
+(-10 -7 (-15 -2213 ((-378) (-378) (-378))) (-15 -2213 ((-378) (-378) (-635 (-378)))) (-15 -2223 ((-378) (-679 (-315 (-224))))) (-15 -2792 ((-679 (-315 (-224))) (-1246 (-315 (-224))) (-635 (-1163)))) (-15 -2554 ((-679 (-315 (-224))) (-679 (-315 (-224))) (-635 (-1163)) (-1246 (-315 (-224))))) (-15 -2234 ((-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))) (-679 (-315 (-224))))) (-15 -2246 ((-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2257 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2267 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2275 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2285 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))
+((-3207 (((-112) $ $) NIL)) (-3510 (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 41)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) NIL)) (-2798 (((-1025) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 64)) (-1683 (((-112) $ $) NIL)))
+(((-205) (-791)) (T -205))
+NIL
+(-791)
+((-3207 (((-112) $ $) NIL)) (-3510 (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 41)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) NIL)) (-2798 (((-1025) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 62)) (-1683 (((-112) $ $) NIL)))
+(((-206) (-791)) (T -206))
+NIL
+(-791)
+((-3207 (((-112) $ $) NIL)) (-3510 (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 40)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) NIL)) (-2798 (((-1025) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 66)) (-1683 (((-112) $ $) NIL)))
+(((-207) (-791)) (T -207))
+NIL
+(-791)
+((-3207 (((-112) $ $) NIL)) (-3510 (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 46)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) NIL)) (-2798 (((-1025) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 75)) (-1683 (((-112) $ $) NIL)))
+(((-208) (-791)) (T -208))
+NIL
+(-791)
+((-3712 (((-635 (-1163)) (-1163) (-762)) 23)) (-2295 (((-315 (-224)) (-315 (-224))) 31)) (-2314 (((-112) (-2 (|:| |pde| (-635 (-315 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-762)) (|:| |boundaryType| (-558)) (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224)))))) (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145)) (|:| |tol| (-224)))) 73)) (-2304 (((-112) (-224) (-224) (-635 (-315 (-224)))) 44)))
+(((-209) (-10 -7 (-15 -3712 ((-635 (-1163)) (-1163) (-762))) (-15 -2295 ((-315 (-224)) (-315 (-224)))) (-15 -2304 ((-112) (-224) (-224) (-635 (-315 (-224))))) (-15 -2314 ((-112) (-2 (|:| |pde| (-635 (-315 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-762)) (|:| |boundaryType| (-558)) (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224)))))) (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145)) (|:| |tol| (-224))))))) (T -209))
+((-2314 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-635 (-315 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-762)) (|:| |boundaryType| (-558)) (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224)))))) (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145)) (|:| |tol| (-224)))) (-5 *2 (-112)) (-5 *1 (-209)))) (-2304 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-635 (-315 (-224)))) (-5 *3 (-224)) (-5 *2 (-112)) (-5 *1 (-209)))) (-2295 (*1 *2 *2) (-12 (-5 *2 (-315 (-224))) (-5 *1 (-209)))) (-3712 (*1 *2 *3 *4) (-12 (-5 *4 (-762)) (-5 *2 (-635 (-1163))) (-5 *1 (-209)) (-5 *3 (-1163)))))
+(-10 -7 (-15 -3712 ((-635 (-1163)) (-1163) (-762))) (-15 -2295 ((-315 (-224)) (-315 (-224)))) (-15 -2304 ((-112) (-224) (-224) (-635 (-315 (-224))))) (-15 -2314 ((-112) (-2 (|:| |pde| (-635 (-315 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-762)) (|:| |boundaryType| (-558)) (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224)))))) (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145)) (|:| |tol| (-224))))))
+((-3207 (((-112) $ $) NIL)) (-3510 (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |pde| (-635 (-315 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-762)) (|:| |boundaryType| (-558)) (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224)))))) (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145)) (|:| |tol| (-224)))) 26)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) NIL)) (-3485 (((-1025) (-2 (|:| |pde| (-635 (-315 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-762)) (|:| |boundaryType| (-558)) (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224)))))) (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145)) (|:| |tol| (-224)))) 57)) (-1683 (((-112) $ $) NIL)))
+(((-210) (-885)) (T -210))
+NIL
+(-885)
+((-3207 (((-112) $ $) NIL)) (-3510 (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |pde| (-635 (-315 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-762)) (|:| |boundaryType| (-558)) (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224)))))) (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145)) (|:| |tol| (-224)))) 21)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) NIL)) (-3485 (((-1025) (-2 (|:| |pde| (-635 (-315 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-762)) (|:| |boundaryType| (-558)) (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224)))))) (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145)) (|:| |tol| (-224)))) NIL)) (-1683 (((-112) $ $) NIL)))
+(((-211) (-885)) (T -211))
+NIL
+(-885)
+((-3207 (((-112) $ $) NIL)) (-1755 ((|#2| $ (-762) |#2|) 11)) (-1746 ((|#2| $ (-762)) 10)) (-3315 (($) 8)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 18)) (-1683 (((-112) $ $) 13)))
+(((-212 |#1| |#2|) (-13 (-1087) (-10 -8 (-15 -3315 ($)) (-15 -1746 (|#2| $ (-762))) (-15 -1755 (|#2| $ (-762) |#2|)))) (-911) (-1087)) (T -212))
+((-3315 (*1 *1) (-12 (-5 *1 (-212 *2 *3)) (-14 *2 (-911)) (-4 *3 (-1087)))) (-1746 (*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-4 *2 (-1087)) (-5 *1 (-212 *4 *2)) (-14 *4 (-911)))) (-1755 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-762)) (-5 *1 (-212 *4 *2)) (-14 *4 (-911)) (-4 *2 (-1087)))))
+(-13 (-1087) (-10 -8 (-15 -3315 ($)) (-15 -1746 (|#2| $ (-762))) (-15 -1755 (|#2| $ (-762) |#2|))))
+((-3207 (((-112) $ $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-2215 (((-1251) $) 36) (((-1251) $ (-911) (-911)) 38)) (-2195 (($ $ (-979)) 19) (((-244 (-1145)) $ (-1163)) 15)) (-2646 (((-1251) $) 34)) (-3220 (((-853) $) 31) (($ (-635 |#1|)) 8)) (-1683 (((-112) $ $) NIL)) (-1798 (($ $ $) 27)) (-1784 (($ $ $) 22)))
+(((-213 |#1|) (-13 (-1087) (-608 (-635 |#1|)) (-10 -8 (-15 -2195 ($ $ (-979))) (-15 -2195 ((-244 (-1145)) $ (-1163))) (-15 -1784 ($ $ $)) (-15 -1798 ($ $ $)) (-15 -2646 ((-1251) $)) (-15 -2215 ((-1251) $)) (-15 -2215 ((-1251) $ (-911) (-911))))) (-13 (-841) (-10 -8 (-15 -2195 ((-1145) $ (-1163))) (-15 -2646 ((-1251) $)) (-15 -2215 ((-1251) $))))) (T -213))
+((-2195 (*1 *1 *1 *2) (-12 (-5 *2 (-979)) (-5 *1 (-213 *3)) (-4 *3 (-13 (-841) (-10 -8 (-15 -2195 ((-1145) $ (-1163))) (-15 -2646 ((-1251) $)) (-15 -2215 ((-1251) $))))))) (-2195 (*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-244 (-1145))) (-5 *1 (-213 *4)) (-4 *4 (-13 (-841) (-10 -8 (-15 -2195 ((-1145) $ *3)) (-15 -2646 ((-1251) $)) (-15 -2215 ((-1251) $))))))) (-1784 (*1 *1 *1 *1) (-12 (-5 *1 (-213 *2)) (-4 *2 (-13 (-841) (-10 -8 (-15 -2195 ((-1145) $ (-1163))) (-15 -2646 ((-1251) $)) (-15 -2215 ((-1251) $))))))) (-1798 (*1 *1 *1 *1) (-12 (-5 *1 (-213 *2)) (-4 *2 (-13 (-841) (-10 -8 (-15 -2195 ((-1145) $ (-1163))) (-15 -2646 ((-1251) $)) (-15 -2215 ((-1251) $))))))) (-2646 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-213 *3)) (-4 *3 (-13 (-841) (-10 -8 (-15 -2195 ((-1145) $ (-1163))) (-15 -2646 (*2 $)) (-15 -2215 (*2 $))))))) (-2215 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-213 *3)) (-4 *3 (-13 (-841) (-10 -8 (-15 -2195 ((-1145) $ (-1163))) (-15 -2646 (*2 $)) (-15 -2215 (*2 $))))))) (-2215 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1251)) (-5 *1 (-213 *4)) (-4 *4 (-13 (-841) (-10 -8 (-15 -2195 ((-1145) $ (-1163))) (-15 -2646 (*2 $)) (-15 -2215 (*2 $))))))))
+(-13 (-1087) (-608 (-635 |#1|)) (-10 -8 (-15 -2195 ($ $ (-979))) (-15 -2195 ((-244 (-1145)) $ (-1163))) (-15 -1784 ($ $ $)) (-15 -1798 ($ $ $)) (-15 -2646 ((-1251) $)) (-15 -2215 ((-1251) $)) (-15 -2215 ((-1251) $ (-911) (-911)))))
+((-2326 ((|#2| |#4| (-1 |#2| |#2|)) 46)))
+(((-214 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2326 (|#2| |#4| (-1 |#2| |#2|)))) (-362) (-1222 |#1|) (-1222 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -214))
+((-2326 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-362)) (-4 *6 (-1222 (-406 *2))) (-4 *2 (-1222 *5)) (-5 *1 (-214 *5 *2 *6 *3)) (-4 *3 (-341 *5 *2 *6)))))
+(-10 -7 (-15 -2326 (|#2| |#4| (-1 |#2| |#2|))))
+((-2371 ((|#2| |#2| (-762) |#2|) 42)) (-2360 ((|#2| |#2| (-762) |#2|) 38)) (-1610 (((-635 |#2|) (-635 (-2 (|:| |deg| (-762)) (|:| -3819 |#2|)))) 56)) (-2349 (((-635 (-2 (|:| |deg| (-762)) (|:| -3819 |#2|))) |#2|) 52)) (-2382 (((-112) |#2|) 49)) (-3089 (((-417 |#2|) |#2|) 76)) (-2522 (((-417 |#2|) |#2|) 75)) (-1623 ((|#2| |#2| (-762) |#2|) 36)) (-2339 (((-2 (|:| |cont| |#1|) (|:| -1849 (-635 (-2 (|:| |irr| |#2|) (|:| -1896 (-558)))))) |#2| (-112)) 68)))
+(((-215 |#1| |#2|) (-10 -7 (-15 -2522 ((-417 |#2|) |#2|)) (-15 -3089 ((-417 |#2|) |#2|)) (-15 -2339 ((-2 (|:| |cont| |#1|) (|:| -1849 (-635 (-2 (|:| |irr| |#2|) (|:| -1896 (-558)))))) |#2| (-112))) (-15 -2349 ((-635 (-2 (|:| |deg| (-762)) (|:| -3819 |#2|))) |#2|)) (-15 -1610 ((-635 |#2|) (-635 (-2 (|:| |deg| (-762)) (|:| -3819 |#2|))))) (-15 -1623 (|#2| |#2| (-762) |#2|)) (-15 -2360 (|#2| |#2| (-762) |#2|)) (-15 -2371 (|#2| |#2| (-762) |#2|)) (-15 -2382 ((-112) |#2|))) (-348) (-1222 |#1|)) (T -215))
+((-2382 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-112)) (-5 *1 (-215 *4 *3)) (-4 *3 (-1222 *4)))) (-2371 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-762)) (-4 *4 (-348)) (-5 *1 (-215 *4 *2)) (-4 *2 (-1222 *4)))) (-2360 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-762)) (-4 *4 (-348)) (-5 *1 (-215 *4 *2)) (-4 *2 (-1222 *4)))) (-1623 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-762)) (-4 *4 (-348)) (-5 *1 (-215 *4 *2)) (-4 *2 (-1222 *4)))) (-1610 (*1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| |deg| (-762)) (|:| -3819 *5)))) (-4 *5 (-1222 *4)) (-4 *4 (-348)) (-5 *2 (-635 *5)) (-5 *1 (-215 *4 *5)))) (-2349 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-635 (-2 (|:| |deg| (-762)) (|:| -3819 *3)))) (-5 *1 (-215 *4 *3)) (-4 *3 (-1222 *4)))) (-2339 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-348)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1849 (-635 (-2 (|:| |irr| *3) (|:| -1896 (-558))))))) (-5 *1 (-215 *5 *3)) (-4 *3 (-1222 *5)))) (-3089 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-417 *3)) (-5 *1 (-215 *4 *3)) (-4 *3 (-1222 *4)))) (-2522 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-417 *3)) (-5 *1 (-215 *4 *3)) (-4 *3 (-1222 *4)))))
+(-10 -7 (-15 -2522 ((-417 |#2|) |#2|)) (-15 -3089 ((-417 |#2|) |#2|)) (-15 -2339 ((-2 (|:| |cont| |#1|) (|:| -1849 (-635 (-2 (|:| |irr| |#2|) (|:| -1896 (-558)))))) |#2| (-112))) (-15 -2349 ((-635 (-2 (|:| |deg| (-762)) (|:| -3819 |#2|))) |#2|)) (-15 -1610 ((-635 |#2|) (-635 (-2 (|:| |deg| (-762)) (|:| -3819 |#2|))))) (-15 -1623 (|#2| |#2| (-762) |#2|)) (-15 -2360 (|#2| |#2| (-762) |#2|)) (-15 -2371 (|#2| |#2| (-762) |#2|)) (-15 -2382 ((-112) |#2|)))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2582 (((-558) $) NIL (|has| (-558) (-306)))) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL)) (-1881 (($ $) NIL)) (-1857 (((-112) $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-3748 (((-417 (-1159 $)) (-1159 $)) NIL (|has| (-558) (-899)))) (-3465 (($ $) NIL)) (-1380 (((-417 $) $) NIL)) (-3719 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (|has| (-558) (-899)))) (-3732 (((-112) $ $) NIL)) (-1397 (((-558) $) NIL (|has| (-558) (-811)))) (-1816 (($) NIL T CONST)) (-3069 (((-3 (-558) "failed") $) NIL) (((-3 (-1163) "failed") $) NIL (|has| (-558) (-1028 (-1163)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| (-558) (-1028 (-558)))) (((-3 (-558) "failed") $) NIL (|has| (-558) (-1028 (-558))))) (-1863 (((-558) $) NIL) (((-1163) $) NIL (|has| (-558) (-1028 (-1163)))) (((-406 (-558)) $) NIL (|has| (-558) (-1028 (-558)))) (((-558) $) NIL (|has| (-558) (-1028 (-558))))) (-4025 (($ $ $) NIL)) (-3216 (((-679 (-558)) (-679 $)) NIL (|has| (-558) (-631 (-558)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| (-558) (-631 (-558)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL) (((-679 (-558)) (-679 $)) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-2424 (($) NIL (|has| (-558) (-543)))) (-4004 (($ $ $) NIL)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL)) (-3031 (((-112) $) NIL)) (-2045 (((-112) $) NIL (|has| (-558) (-811)))) (-2269 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (|has| (-558) (-876 (-558)))) (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (|has| (-558) (-876 (-378))))) (-2035 (((-112) $) NIL)) (-3704 (($ $) NIL)) (-1874 (((-558) $) NIL)) (-2457 (((-3 $ "failed") $) NIL (|has| (-558) (-1138)))) (-2055 (((-112) $) NIL (|has| (-558) (-811)))) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3910 (($ $ $) NIL (|has| (-558) (-841)))) (-3542 (($ $ $) NIL (|has| (-558) (-841)))) (-3167 (($ (-1 (-558) (-558)) $) NIL)) (-2665 (($ $ $) NIL) (($ (-635 $)) NIL)) (-4310 (((-1145) $) NIL)) (-2418 (($ $) NIL)) (-1796 (($) NIL (|has| (-558) (-1138)) CONST)) (-2975 (((-1107) $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-2699 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2568 (($ $) NIL (|has| (-558) (-306))) (((-406 (-558)) $) NIL)) (-2594 (((-558) $) NIL (|has| (-558) (-543)))) (-3728 (((-417 (-1159 $)) (-1159 $)) NIL (|has| (-558) (-899)))) (-3738 (((-417 (-1159 $)) (-1159 $)) NIL (|has| (-558) (-899)))) (-2522 (((-417 $) $) NIL)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3983 (((-3 $ "failed") $ $) NIL)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2554 (($ $ (-635 (-558)) (-635 (-558))) NIL (|has| (-558) (-308 (-558)))) (($ $ (-558) (-558)) NIL (|has| (-558) (-308 (-558)))) (($ $ (-293 (-558))) NIL (|has| (-558) (-308 (-558)))) (($ $ (-635 (-293 (-558)))) NIL (|has| (-558) (-308 (-558)))) (($ $ (-635 (-1163)) (-635 (-558))) NIL (|has| (-558) (-512 (-1163) (-558)))) (($ $ (-1163) (-558)) NIL (|has| (-558) (-512 (-1163) (-558))))) (-3722 (((-762) $) NIL)) (-2195 (($ $ (-558)) NIL (|has| (-558) (-285 (-558) (-558))))) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL)) (-2829 (($ $) NIL (|has| (-558) (-232))) (($ $ (-762)) NIL (|has| (-558) (-232))) (($ $ (-1163)) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-1 (-558) (-558)) (-762)) NIL) (($ $ (-1 (-558) (-558))) NIL)) (-3694 (($ $) NIL)) (-1885 (((-558) $) NIL)) (-2394 (($ (-406 (-558))) 9)) (-3224 (((-882 (-558)) $) NIL (|has| (-558) (-606 (-882 (-558))))) (((-882 (-378)) $) NIL (|has| (-558) (-606 (-882 (-378))))) (((-534) $) NIL (|has| (-558) (-606 (-534)))) (((-378) $) NIL (|has| (-558) (-1012))) (((-224) $) NIL (|has| (-558) (-1012)))) (-3709 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| (-558) (-899))))) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL) (($ (-406 (-558))) 8) (($ (-558)) NIL) (($ (-1163)) NIL (|has| (-558) (-1028 (-1163)))) (((-406 (-558)) $) NIL) (((-994 10) $) 10)) (-3698 (((-3 $ "failed") $) NIL (-3998 (-12 (|has| $ (-144)) (|has| (-558) (-899))) (|has| (-558) (-144))))) (-2542 (((-762)) NIL)) (-2604 (((-558) $) NIL (|has| (-558) (-543)))) (-1870 (((-112) $ $) NIL)) (-3190 (($ $) NIL (|has| (-558) (-811)))) (-2131 (($) NIL T CONST)) (-2142 (($) NIL T CONST)) (-1866 (($ $) NIL (|has| (-558) (-232))) (($ $ (-762)) NIL (|has| (-558) (-232))) (($ $ (-1163)) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-1 (-558) (-558)) (-762)) NIL) (($ $ (-1 (-558) (-558))) NIL)) (-1747 (((-112) $ $) NIL (|has| (-558) (-841)))) (-1720 (((-112) $ $) NIL (|has| (-558) (-841)))) (-1683 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL (|has| (-558) (-841)))) (-1705 (((-112) $ $) NIL (|has| (-558) (-841)))) (-1810 (($ $ $) NIL) (($ (-558) (-558)) NIL)) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL) (($ (-558) $) NIL) (($ $ (-558)) NIL)))
+(((-216) (-13 (-982 (-558)) (-605 (-406 (-558))) (-605 (-994 10)) (-10 -8 (-15 -2568 ((-406 (-558)) $)) (-15 -2394 ($ (-406 (-558))))))) (T -216))
+((-2568 (*1 *2 *1) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-216)))) (-2394 (*1 *1 *2) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-216)))))
+(-13 (-982 (-558)) (-605 (-406 (-558))) (-605 (-994 10)) (-10 -8 (-15 -2568 ((-406 (-558)) $)) (-15 -2394 ($ (-406 (-558))))))
+((-3207 (((-112) $ $) NIL)) (-3973 (((-1105) $) 13)) (-4310 (((-1145) $) NIL)) (-1975 (((-481) $) 10)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 25) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1337 (((-1122) $) 15)) (-1683 (((-112) $ $) NIL)))
+(((-217) (-13 (-1070) (-10 -8 (-15 -1975 ((-481) $)) (-15 -3973 ((-1105) $)) (-15 -1337 ((-1122) $))))) (T -217))
+((-1975 (*1 *2 *1) (-12 (-5 *2 (-481)) (-5 *1 (-217)))) (-3973 (*1 *2 *1) (-12 (-5 *2 (-1105)) (-5 *1 (-217)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-217)))))
+(-13 (-1070) (-10 -8 (-15 -1975 ((-481) $)) (-15 -3973 ((-1105) $)) (-15 -1337 ((-1122) $))))
+((-2543 (((-3 (|:| |f1| (-834 |#2|)) (|:| |f2| (-635 (-834 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1079 (-834 |#2|)) (-1145)) 28) (((-3 (|:| |f1| (-834 |#2|)) (|:| |f2| (-635 (-834 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1079 (-834 |#2|))) 24)) (-2407 (((-3 (|:| |f1| (-834 |#2|)) (|:| |f2| (-635 (-834 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1163) (-834 |#2|) (-834 |#2|) (-112)) 17)))
+(((-218 |#1| |#2|) (-10 -7 (-15 -2543 ((-3 (|:| |f1| (-834 |#2|)) (|:| |f2| (-635 (-834 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1079 (-834 |#2|)))) (-15 -2543 ((-3 (|:| |f1| (-834 |#2|)) (|:| |f2| (-635 (-834 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1079 (-834 |#2|)) (-1145))) (-15 -2407 ((-3 (|:| |f1| (-834 |#2|)) (|:| |f2| (-635 (-834 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1163) (-834 |#2|) (-834 |#2|) (-112)))) (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558))) (-13 (-1185) (-949) (-29 |#1|))) (T -218))
+((-2407 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1163)) (-5 *6 (-112)) (-4 *7 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558)))) (-4 *3 (-13 (-1185) (-949) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-834 *3)) (|:| |f2| (-635 (-834 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-218 *7 *3)) (-5 *5 (-834 *3)))) (-2543 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1079 (-834 *3))) (-5 *5 (-1145)) (-4 *3 (-13 (-1185) (-949) (-29 *6))) (-4 *6 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-3 (|:| |f1| (-834 *3)) (|:| |f2| (-635 (-834 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-218 *6 *3)))) (-2543 (*1 *2 *3 *4) (-12 (-5 *4 (-1079 (-834 *3))) (-4 *3 (-13 (-1185) (-949) (-29 *5))) (-4 *5 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-3 (|:| |f1| (-834 *3)) (|:| |f2| (-635 (-834 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-218 *5 *3)))))
+(-10 -7 (-15 -2543 ((-3 (|:| |f1| (-834 |#2|)) (|:| |f2| (-635 (-834 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1079 (-834 |#2|)))) (-15 -2543 ((-3 (|:| |f1| (-834 |#2|)) (|:| |f2| (-635 (-834 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1079 (-834 |#2|)) (-1145))) (-15 -2407 ((-3 (|:| |f1| (-834 |#2|)) (|:| |f2| (-635 (-834 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1163) (-834 |#2|) (-834 |#2|) (-112))))
+((-2543 (((-3 (|:| |f1| (-834 (-315 |#1|))) (|:| |f2| (-635 (-834 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-942 |#1|)) (-1079 (-834 (-406 (-942 |#1|)))) (-1145)) 46) (((-3 (|:| |f1| (-834 (-315 |#1|))) (|:| |f2| (-635 (-834 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-942 |#1|)) (-1079 (-834 (-406 (-942 |#1|))))) 43) (((-3 (|:| |f1| (-834 (-315 |#1|))) (|:| |f2| (-635 (-834 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-942 |#1|)) (-1079 (-834 (-315 |#1|))) (-1145)) 47) (((-3 (|:| |f1| (-834 (-315 |#1|))) (|:| |f2| (-635 (-834 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-942 |#1|)) (-1079 (-834 (-315 |#1|)))) 20)))
+(((-219 |#1|) (-10 -7 (-15 -2543 ((-3 (|:| |f1| (-834 (-315 |#1|))) (|:| |f2| (-635 (-834 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-942 |#1|)) (-1079 (-834 (-315 |#1|))))) (-15 -2543 ((-3 (|:| |f1| (-834 (-315 |#1|))) (|:| |f2| (-635 (-834 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-942 |#1|)) (-1079 (-834 (-315 |#1|))) (-1145))) (-15 -2543 ((-3 (|:| |f1| (-834 (-315 |#1|))) (|:| |f2| (-635 (-834 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-942 |#1|)) (-1079 (-834 (-406 (-942 |#1|)))))) (-15 -2543 ((-3 (|:| |f1| (-834 (-315 |#1|))) (|:| |f2| (-635 (-834 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-942 |#1|)) (-1079 (-834 (-406 (-942 |#1|)))) (-1145)))) (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558)))) (T -219))
+((-2543 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1079 (-834 (-406 (-942 *6))))) (-5 *5 (-1145)) (-5 *3 (-406 (-942 *6))) (-4 *6 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-3 (|:| |f1| (-834 (-315 *6))) (|:| |f2| (-635 (-834 (-315 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *6)))) (-2543 (*1 *2 *3 *4) (-12 (-5 *4 (-1079 (-834 (-406 (-942 *5))))) (-5 *3 (-406 (-942 *5))) (-4 *5 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-3 (|:| |f1| (-834 (-315 *5))) (|:| |f2| (-635 (-834 (-315 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *5)))) (-2543 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-406 (-942 *6))) (-5 *4 (-1079 (-834 (-315 *6)))) (-5 *5 (-1145)) (-4 *6 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-3 (|:| |f1| (-834 (-315 *6))) (|:| |f2| (-635 (-834 (-315 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *6)))) (-2543 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-942 *5))) (-5 *4 (-1079 (-834 (-315 *5)))) (-4 *5 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-3 (|:| |f1| (-834 (-315 *5))) (|:| |f2| (-635 (-834 (-315 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *5)))))
+(-10 -7 (-15 -2543 ((-3 (|:| |f1| (-834 (-315 |#1|))) (|:| |f2| (-635 (-834 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-942 |#1|)) (-1079 (-834 (-315 |#1|))))) (-15 -2543 ((-3 (|:| |f1| (-834 (-315 |#1|))) (|:| |f2| (-635 (-834 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-942 |#1|)) (-1079 (-834 (-315 |#1|))) (-1145))) (-15 -2543 ((-3 (|:| |f1| (-834 (-315 |#1|))) (|:| |f2| (-635 (-834 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-942 |#1|)) (-1079 (-834 (-406 (-942 |#1|)))))) (-15 -2543 ((-3 (|:| |f1| (-834 (-315 |#1|))) (|:| |f2| (-635 (-834 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-942 |#1|)) (-1079 (-834 (-406 (-942 |#1|)))) (-1145))))
+((-3048 (((-2 (|:| -2574 (-1159 |#1|)) (|:| |deg| (-911))) (-1159 |#1|)) 21)) (-4294 (((-635 (-315 |#2|)) (-315 |#2|) (-911)) 42)))
+(((-220 |#1| |#2|) (-10 -7 (-15 -3048 ((-2 (|:| -2574 (-1159 |#1|)) (|:| |deg| (-911))) (-1159 |#1|))) (-15 -4294 ((-635 (-315 |#2|)) (-315 |#2|) (-911)))) (-1039) (-13 (-550) (-841))) (T -220))
+((-4294 (*1 *2 *3 *4) (-12 (-5 *4 (-911)) (-4 *6 (-13 (-550) (-841))) (-5 *2 (-635 (-315 *6))) (-5 *1 (-220 *5 *6)) (-5 *3 (-315 *6)) (-4 *5 (-1039)))) (-3048 (*1 *2 *3) (-12 (-4 *4 (-1039)) (-5 *2 (-2 (|:| -2574 (-1159 *4)) (|:| |deg| (-911)))) (-5 *1 (-220 *4 *5)) (-5 *3 (-1159 *4)) (-4 *5 (-13 (-550) (-841))))))
+(-10 -7 (-15 -3048 ((-2 (|:| -2574 (-1159 |#1|)) (|:| |deg| (-911))) (-1159 |#1|))) (-15 -4294 ((-635 (-315 |#2|)) (-315 |#2|) (-911))))
+((-3207 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1533 ((|#1| $) NIL)) (-3072 ((|#1| $) 25)) (-3026 (((-112) $ (-762)) NIL)) (-1816 (($) NIL T CONST)) (-3743 (($ $) NIL)) (-3306 (($ $) 31)) (-3805 ((|#1| |#1| $) NIL)) (-3796 ((|#1| $) NIL)) (-2240 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-2986 (((-112) $ (-762)) NIL)) (-2122 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1807 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-2880 (((-762) $) NIL)) (-4310 (((-1145) $) NIL (|has| |#1| (-1087)))) (-1722 ((|#1| $) NIL)) (-1512 ((|#1| |#1| $) 28)) (-1501 ((|#1| |#1| $) 30)) (-4328 (($ |#1| $) NIL)) (-3382 (((-762) $) 27)) (-2975 (((-1107) $) NIL (|has| |#1| (-1087)))) (-3734 ((|#1| $) NIL)) (-2734 ((|#1| $) 26)) (-2723 ((|#1| $) 24)) (-3524 ((|#1| $) NIL)) (-3266 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3762 ((|#1| |#1| $) NIL)) (-3375 (((-112) $) 9)) (-2083 (($) NIL)) (-3753 ((|#1| $) NIL)) (-1543 (($) NIL) (($ (-635 |#1|)) 16)) (-2494 (((-762) $) NIL)) (-2988 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1553 (($ $) NIL)) (-3220 (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-1523 ((|#1| $) 13)) (-3534 (($ (-635 |#1|)) NIL)) (-3724 ((|#1| $) NIL)) (-3277 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-221 |#1|) (-13 (-253 |#1|) (-10 -8 (-15 -1543 ($ (-635 |#1|))))) (-1087)) (T -221))
+((-1543 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-5 *1 (-221 *3)))))
+(-13 (-253 |#1|) (-10 -8 (-15 -1543 ($ (-635 |#1|)))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2430 (($ (-315 |#1|)) 23)) (-2089 (((-3 $ "failed") $ $) NIL)) (-1816 (($) NIL T CONST)) (-3464 (((-112) $) NIL)) (-3069 (((-3 (-315 |#1|) "failed") $) NIL)) (-1863 (((-315 |#1|) $) NIL)) (-2490 (($ $) 31)) (-2588 (((-3 $ "failed") $) NIL)) (-2035 (((-112) $) NIL)) (-3167 (($ (-1 (-315 |#1|) (-315 |#1|)) $) NIL)) (-2463 (((-315 |#1|) $) NIL)) (-2452 (($ $) 30)) (-4310 (((-1145) $) NIL)) (-2441 (((-112) $) NIL)) (-2975 (((-1107) $) NIL)) (-4098 (($ (-762)) NIL)) (-2419 (($ $) 32)) (-4323 (((-558) $) NIL)) (-3220 (((-853) $) 57) (($ (-558)) NIL) (($ (-315 |#1|)) NIL)) (-3736 (((-315 |#1|) $ $) NIL)) (-2542 (((-762)) NIL)) (-2131 (($) 25 T CONST)) (-2142 (($) 50 T CONST)) (-1683 (((-112) $ $) 28)) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) 19)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 24) (($ (-315 |#1|) $) 18)))
+(((-222 |#1| |#2|) (-13 (-612 (-315 |#1|)) (-1028 (-315 |#1|)) (-10 -8 (-15 -2463 ((-315 |#1|) $)) (-15 -2452 ($ $)) (-15 -2490 ($ $)) (-15 -3736 ((-315 |#1|) $ $)) (-15 -4098 ($ (-762))) (-15 -2441 ((-112) $)) (-15 -3464 ((-112) $)) (-15 -4323 ((-558) $)) (-15 -3167 ($ (-1 (-315 |#1|) (-315 |#1|)) $)) (-15 -2430 ($ (-315 |#1|))) (-15 -2419 ($ $)))) (-13 (-1039) (-841)) (-635 (-1163))) (T -222))
+((-2463 (*1 *2 *1) (-12 (-5 *2 (-315 *3)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1039) (-841))) (-14 *4 (-635 (-1163))))) (-2452 (*1 *1 *1) (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1039) (-841))) (-14 *3 (-635 (-1163))))) (-2490 (*1 *1 *1) (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1039) (-841))) (-14 *3 (-635 (-1163))))) (-3736 (*1 *2 *1 *1) (-12 (-5 *2 (-315 *3)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1039) (-841))) (-14 *4 (-635 (-1163))))) (-4098 (*1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1039) (-841))) (-14 *4 (-635 (-1163))))) (-2441 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1039) (-841))) (-14 *4 (-635 (-1163))))) (-3464 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1039) (-841))) (-14 *4 (-635 (-1163))))) (-4323 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1039) (-841))) (-14 *4 (-635 (-1163))))) (-3167 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-315 *3) (-315 *3))) (-4 *3 (-13 (-1039) (-841))) (-5 *1 (-222 *3 *4)) (-14 *4 (-635 (-1163))))) (-2430 (*1 *1 *2) (-12 (-5 *2 (-315 *3)) (-4 *3 (-13 (-1039) (-841))) (-5 *1 (-222 *3 *4)) (-14 *4 (-635 (-1163))))) (-2419 (*1 *1 *1) (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1039) (-841))) (-14 *3 (-635 (-1163))))))
+(-13 (-612 (-315 |#1|)) (-1028 (-315 |#1|)) (-10 -8 (-15 -2463 ((-315 |#1|) $)) (-15 -2452 ($ $)) (-15 -2490 ($ $)) (-15 -3736 ((-315 |#1|) $ $)) (-15 -4098 ($ (-762))) (-15 -2441 ((-112) $)) (-15 -3464 ((-112) $)) (-15 -4323 ((-558) $)) (-15 -3167 ($ (-1 (-315 |#1|) (-315 |#1|)) $)) (-15 -2430 ($ (-315 |#1|))) (-15 -2419 ($ $))))
+((-2464 (((-112) (-1145)) 22)) (-2473 (((-3 (-834 |#2|) "failed") (-604 |#2|) |#2| (-834 |#2|) (-834 |#2|) (-112)) 32)) (-2487 (((-3 (-112) "failed") (-1159 |#2|) (-834 |#2|) (-834 |#2|) (-112)) 73) (((-3 (-112) "failed") (-942 |#1|) (-1163) (-834 |#2|) (-834 |#2|) (-112)) 74)))
+(((-223 |#1| |#2|) (-10 -7 (-15 -2464 ((-112) (-1145))) (-15 -2473 ((-3 (-834 |#2|) "failed") (-604 |#2|) |#2| (-834 |#2|) (-834 |#2|) (-112))) (-15 -2487 ((-3 (-112) "failed") (-942 |#1|) (-1163) (-834 |#2|) (-834 |#2|) (-112))) (-15 -2487 ((-3 (-112) "failed") (-1159 |#2|) (-834 |#2|) (-834 |#2|) (-112)))) (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))) (-13 (-1185) (-29 |#1|))) (T -223))
+((-2487 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1159 *6)) (-5 *4 (-834 *6)) (-4 *6 (-13 (-1185) (-29 *5))) (-4 *5 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-223 *5 *6)))) (-2487 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-942 *6)) (-5 *4 (-1163)) (-5 *5 (-834 *7)) (-4 *6 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-4 *7 (-13 (-1185) (-29 *6))) (-5 *1 (-223 *6 *7)))) (-2473 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-834 *4)) (-5 *3 (-604 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1185) (-29 *6))) (-4 *6 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-223 *6 *4)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-112)) (-5 *1 (-223 *4 *5)) (-4 *5 (-13 (-1185) (-29 *4))))))
+(-10 -7 (-15 -2464 ((-112) (-1145))) (-15 -2473 ((-3 (-834 |#2|) "failed") (-604 |#2|) |#2| (-834 |#2|) (-834 |#2|) (-112))) (-15 -2487 ((-3 (-112) "failed") (-942 |#1|) (-1163) (-834 |#2|) (-834 |#2|) (-112))) (-15 -2487 ((-3 (-112) "failed") (-1159 |#2|) (-834 |#2|) (-834 |#2|) (-112))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) 87)) (-2582 (((-558) $) 98)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL)) (-1881 (($ $) NIL)) (-1857 (((-112) $) NIL)) (-3440 (($ $) NIL)) (-4088 (($ $) 75)) (-2135 (($ $) 63)) (-2089 (((-3 $ "failed") $ $) NIL)) (-3465 (($ $) NIL)) (-1380 (((-417 $) $) NIL)) (-2534 (($ $) 54)) (-3732 (((-112) $ $) NIL)) (-4070 (($ $) 73)) (-2112 (($ $) 61)) (-1397 (((-558) $) 115)) (-4113 (($ $) 78)) (-2156 (($ $) 65)) (-1816 (($) NIL T CONST)) (-2553 (($ $) NIL)) (-3069 (((-3 (-558) "failed") $) 114) (((-3 (-406 (-558)) "failed") $) 111)) (-1863 (((-558) $) 112) (((-406 (-558)) $) 109)) (-4025 (($ $ $) NIL)) (-2588 (((-3 $ "failed") $) 91)) (-1648 (((-406 (-558)) $ (-762)) 107) (((-406 (-558)) $ (-762) (-762)) 106)) (-4004 (($ $ $) NIL)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL)) (-3031 (((-112) $) NIL)) (-2566 (((-911)) 27) (((-911) (-911)) NIL (|has| $ (-6 -4373)))) (-2045 (((-112) $) NIL)) (-1904 (($) 37)) (-2269 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL)) (-3449 (((-558) $) 33)) (-2035 (((-112) $) NIL)) (-3828 (($ $ (-558)) NIL)) (-2615 (($ $) NIL)) (-2055 (((-112) $) 86)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3910 (($ $ $) 51) (($) 32 (-12 (-3304 (|has| $ (-6 -4365))) (-3304 (|has| $ (-6 -4373)))))) (-3542 (($ $ $) 50) (($) 31 (-12 (-3304 (|has| $ (-6 -4365))) (-3304 (|has| $ (-6 -4373)))))) (-1973 (((-558) $) 25)) (-1639 (($ $) 28)) (-4150 (($ $) 55)) (-2592 (($ $) 60)) (-2665 (($ $ $) NIL) (($ (-635 $)) NIL)) (-4310 (((-1145) $) NIL)) (-2418 (($ $) NIL)) (-1929 (((-911) (-558)) NIL (|has| $ (-6 -4373)))) (-2975 (((-1107) $) 89)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-2699 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2568 (($ $) NIL)) (-2594 (($ $) NIL)) (-2244 (($ (-558) (-558)) NIL) (($ (-558) (-558) (-911)) 99)) (-2522 (((-417 $) $) NIL)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3983 (((-3 $ "failed") $ $) NIL)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1951 (((-558) $) 26)) (-1631 (($) 36)) (-2573 (($ $) 59)) (-3722 (((-762) $) NIL)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL)) (-2997 (((-911)) NIL) (((-911) (-911)) NIL (|has| $ (-6 -4373)))) (-2829 (($ $ (-762)) NIL) (($ $) 92)) (-1918 (((-911) (-558)) NIL (|has| $ (-6 -4373)))) (-4124 (($ $) 76)) (-2167 (($ $) 66)) (-4102 (($ $) 77)) (-2146 (($ $) 64)) (-4080 (($ $) 74)) (-2124 (($ $) 62)) (-3224 (((-378) $) 103) (((-224) $) 100) (((-882 (-378)) $) NIL) (((-534) $) 43)) (-3220 (((-853) $) 40) (($ (-558)) 58) (($ $) NIL) (($ (-406 (-558))) NIL) (($ (-558)) 58) (($ (-406 (-558))) NIL)) (-2542 (((-762)) NIL)) (-2604 (($ $) NIL)) (-1939 (((-911)) 30) (((-911) (-911)) NIL (|has| $ (-6 -4373)))) (-2579 (((-911)) 23)) (-4159 (($ $) 81)) (-2200 (($ $) 69) (($ $ $) 108)) (-1870 (((-112) $ $) NIL)) (-4135 (($ $) 79)) (-2178 (($ $) 67)) (-4184 (($ $) 84)) (-2222 (($ $) 72)) (-1878 (($ $) 82)) (-4060 (($ $) 70)) (-4171 (($ $) 83)) (-2211 (($ $) 71)) (-4147 (($ $) 80)) (-2189 (($ $) 68)) (-3190 (($ $) 116)) (-2131 (($) 34 T CONST)) (-2142 (($) 35 T CONST)) (-1338 (((-1145) $) 17) (((-1145) $ (-112)) 19) (((-1251) (-813) $) 20) (((-1251) (-813) $ (-112)) 21)) (-3239 (($ $) 95)) (-1866 (($ $ (-762)) NIL) (($ $) NIL)) (-3200 (($ $ $) 97)) (-1747 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1683 (((-112) $ $) 52)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 44)) (-1810 (($ $ $) 85) (($ $ (-558)) 53)) (-1798 (($ $) 45) (($ $ $) 47)) (-1784 (($ $ $) 46)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) 56) (($ $ (-406 (-558))) 127) (($ $ $) 57)) (* (($ (-911) $) 29) (($ (-762) $) NIL) (($ (-558) $) 49) (($ $ $) 48) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL)))
+(((-224) (-13 (-403) (-232) (-819) (-1185) (-606 (-534)) (-10 -8 (-15 -1810 ($ $ (-558))) (-15 ** ($ $ $)) (-15 -1631 ($)) (-15 -1639 ($ $)) (-15 -4150 ($ $)) (-15 -2200 ($ $ $)) (-15 -3239 ($ $)) (-15 -3200 ($ $ $)) (-15 -1648 ((-406 (-558)) $ (-762))) (-15 -1648 ((-406 (-558)) $ (-762) (-762)))))) (T -224))
+((** (*1 *1 *1 *1) (-5 *1 (-224))) (-1810 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-224)))) (-1631 (*1 *1) (-5 *1 (-224))) (-1639 (*1 *1 *1) (-5 *1 (-224))) (-4150 (*1 *1 *1) (-5 *1 (-224))) (-2200 (*1 *1 *1 *1) (-5 *1 (-224))) (-3239 (*1 *1 *1) (-5 *1 (-224))) (-3200 (*1 *1 *1 *1) (-5 *1 (-224))) (-1648 (*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-5 *2 (-406 (-558))) (-5 *1 (-224)))) (-1648 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-762)) (-5 *2 (-406 (-558))) (-5 *1 (-224)))))
+(-13 (-403) (-232) (-819) (-1185) (-606 (-534)) (-10 -8 (-15 -1810 ($ $ (-558))) (-15 ** ($ $ $)) (-15 -1631 ($)) (-15 -1639 ($ $)) (-15 -4150 ($ $)) (-15 -2200 ($ $ $)) (-15 -3239 ($ $)) (-15 -3200 ($ $ $)) (-15 -1648 ((-406 (-558)) $ (-762))) (-15 -1648 ((-406 (-558)) $ (-762) (-762)))))
+((-3226 (((-168 (-224)) (-762) (-168 (-224))) 11) (((-224) (-762) (-224)) 12)) (-2502 (((-168 (-224)) (-168 (-224))) 13) (((-224) (-224)) 14)) (-2511 (((-168 (-224)) (-168 (-224)) (-168 (-224))) 19) (((-224) (-224) (-224)) 22)) (-3212 (((-168 (-224)) (-168 (-224))) 25) (((-224) (-224)) 24)) (-3259 (((-168 (-224)) (-168 (-224)) (-168 (-224))) 43) (((-224) (-224) (-224)) 35)) (-3280 (((-168 (-224)) (-168 (-224)) (-168 (-224))) 48) (((-224) (-224) (-224)) 45)) (-3249 (((-168 (-224)) (-168 (-224)) (-168 (-224))) 15) (((-224) (-224) (-224)) 16)) (-3269 (((-168 (-224)) (-168 (-224)) (-168 (-224))) 17) (((-224) (-224) (-224)) 18)) (-3302 (((-168 (-224)) (-168 (-224))) 60) (((-224) (-224)) 59)) (-3291 (((-224) (-224)) 54) (((-168 (-224)) (-168 (-224))) 58)) (-3239 (((-168 (-224)) (-168 (-224))) 8) (((-224) (-224)) 9)) (-3200 (((-168 (-224)) (-168 (-224)) (-168 (-224))) 30) (((-224) (-224) (-224)) 26)))
+(((-225) (-10 -7 (-15 -3239 ((-224) (-224))) (-15 -3239 ((-168 (-224)) (-168 (-224)))) (-15 -3200 ((-224) (-224) (-224))) (-15 -3200 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -2502 ((-224) (-224))) (-15 -2502 ((-168 (-224)) (-168 (-224)))) (-15 -3212 ((-224) (-224))) (-15 -3212 ((-168 (-224)) (-168 (-224)))) (-15 -3226 ((-224) (-762) (-224))) (-15 -3226 ((-168 (-224)) (-762) (-168 (-224)))) (-15 -3249 ((-224) (-224) (-224))) (-15 -3249 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -3259 ((-224) (-224) (-224))) (-15 -3259 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -3269 ((-224) (-224) (-224))) (-15 -3269 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -3280 ((-224) (-224) (-224))) (-15 -3280 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -3291 ((-168 (-224)) (-168 (-224)))) (-15 -3291 ((-224) (-224))) (-15 -3302 ((-224) (-224))) (-15 -3302 ((-168 (-224)) (-168 (-224)))) (-15 -2511 ((-224) (-224) (-224))) (-15 -2511 ((-168 (-224)) (-168 (-224)) (-168 (-224)))))) (T -225))
+((-2511 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-2511 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3302 (*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-3302 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3291 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3291 (*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-3280 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-3280 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3269 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-3269 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3259 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-3259 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3249 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-3249 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3226 (*1 *2 *3 *2) (-12 (-5 *2 (-168 (-224))) (-5 *3 (-762)) (-5 *1 (-225)))) (-3226 (*1 *2 *3 *2) (-12 (-5 *2 (-224)) (-5 *3 (-762)) (-5 *1 (-225)))) (-3212 (*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-3212 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-2502 (*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-2502 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3200 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-3200 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3239 (*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-3239 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))))
+(-10 -7 (-15 -3239 ((-224) (-224))) (-15 -3239 ((-168 (-224)) (-168 (-224)))) (-15 -3200 ((-224) (-224) (-224))) (-15 -3200 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -2502 ((-224) (-224))) (-15 -2502 ((-168 (-224)) (-168 (-224)))) (-15 -3212 ((-224) (-224))) (-15 -3212 ((-168 (-224)) (-168 (-224)))) (-15 -3226 ((-224) (-762) (-224))) (-15 -3226 ((-168 (-224)) (-762) (-168 (-224)))) (-15 -3249 ((-224) (-224) (-224))) (-15 -3249 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -3259 ((-224) (-224) (-224))) (-15 -3259 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -3269 ((-224) (-224) (-224))) (-15 -3269 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -3280 ((-224) (-224) (-224))) (-15 -3280 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -3291 ((-168 (-224)) (-168 (-224)))) (-15 -3291 ((-224) (-224))) (-15 -3302 ((-224) (-224))) (-15 -3302 ((-168 (-224)) (-168 (-224)))) (-15 -2511 ((-224) (-224) (-224))) (-15 -2511 ((-168 (-224)) (-168 (-224)) (-168 (-224)))))
+((-3207 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2370 (($ (-762) (-762)) NIL)) (-2581 (($ $ $) NIL)) (-3453 (($ (-1246 |#1|)) NIL) (($ $) NIL)) (-2951 (($ |#1| |#1| |#1|) 32)) (-2500 (((-112) $) NIL)) (-2567 (($ $ (-558) (-558)) NIL)) (-2552 (($ $ (-558) (-558)) NIL)) (-2541 (($ $ (-558) (-558) (-558) (-558)) NIL)) (-2603 (($ $) NIL)) (-2519 (((-112) $) NIL)) (-3026 (((-112) $ (-762)) NIL)) (-2528 (($ $ (-558) (-558) $) NIL)) (-1532 ((|#1| $ (-558) (-558) |#1|) NIL) (($ $ (-635 (-558)) (-635 (-558)) $) NIL)) (-1671 (($ $ (-558) (-1246 |#1|)) NIL)) (-1661 (($ $ (-558) (-1246 |#1|)) NIL)) (-2785 (($ |#1| |#1| |#1|) 31)) (-3867 (($ (-762) |#1|) NIL)) (-1816 (($) NIL T CONST)) (-2404 (($ $) NIL (|has| |#1| (-306)))) (-2427 (((-1246 |#1|) $ (-558)) NIL)) (-2521 (($ |#1|) 30)) (-2533 (($ |#1|) 29)) (-2544 (($ |#1|) 28)) (-3833 (((-762) $) NIL (|has| |#1| (-550)))) (-1817 ((|#1| $ (-558) (-558) |#1|) NIL)) (-1746 ((|#1| $ (-558) (-558)) NIL)) (-2240 (((-635 |#1|) $) NIL)) (-2391 (((-762) $) NIL (|has| |#1| (-550)))) (-2379 (((-635 (-1246 |#1|)) $) NIL (|has| |#1| (-550)))) (-1967 (((-762) $) NIL)) (-3315 (($ (-762) (-762) |#1|) NIL)) (-1979 (((-762) $) NIL)) (-2986 (((-112) $ (-762)) NIL)) (-3815 ((|#1| $) NIL (|has| |#1| (-6 (-4384 "*"))))) (-2472 (((-558) $) NIL)) (-2448 (((-558) $) NIL)) (-2122 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-2460 (((-558) $) NIL)) (-2438 (((-558) $) NIL)) (-3181 (($ (-635 (-635 |#1|))) 11)) (-1807 (($ (-1 |#1| |#1|) $) NIL)) (-3167 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4178 (((-635 (-635 |#1|)) $) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL (|has| |#1| (-1087)))) (-4141 (((-3 $ "failed") $) NIL (|has| |#1| (-362)))) (-2556 (($) 12)) (-2593 (($ $ $) NIL)) (-2975 (((-1107) $) NIL (|has| |#1| (-1087)))) (-3880 (($ $ |#1|) NIL)) (-3983 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550)))) (-3266 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3375 (((-112) $) NIL)) (-2083 (($) NIL)) (-2195 ((|#1| $ (-558) (-558)) NIL) ((|#1| $ (-558) (-558) |#1|) NIL) (($ $ (-635 (-558)) (-635 (-558))) NIL)) (-3858 (($ (-635 |#1|)) NIL) (($ (-635 $)) NIL)) (-2509 (((-112) $) NIL)) (-3824 ((|#1| $) NIL (|has| |#1| (-6 (-4384 "*"))))) (-2988 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1553 (($ $) NIL)) (-2415 (((-1246 |#1|) $ (-558)) NIL)) (-3220 (($ (-1246 |#1|)) NIL) (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-3277 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-2486 (((-112) $) NIL)) (-1683 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1810 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1798 (($ $ $) NIL) (($ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-762)) NIL) (($ $ (-558)) NIL (|has| |#1| (-362)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-558) $) NIL) (((-1246 |#1|) $ (-1246 |#1|)) 15) (((-1246 |#1|) (-1246 |#1|) $) NIL) (((-933 |#1|) $ (-933 |#1|)) 20)) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-226 |#1|) (-13 (-677 |#1| (-1246 |#1|) (-1246 |#1|)) (-10 -8 (-15 * ((-933 |#1|) $ (-933 |#1|))) (-15 -2556 ($)) (-15 -2544 ($ |#1|)) (-15 -2533 ($ |#1|)) (-15 -2521 ($ |#1|)) (-15 -2785 ($ |#1| |#1| |#1|)) (-15 -2951 ($ |#1| |#1| |#1|)))) (-13 (-362) (-1185))) (T -226))
+((* (*1 *2 *1 *2) (-12 (-5 *2 (-933 *3)) (-4 *3 (-13 (-362) (-1185))) (-5 *1 (-226 *3)))) (-2556 (*1 *1) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1185))))) (-2544 (*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1185))))) (-2533 (*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1185))))) (-2521 (*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1185))))) (-2785 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1185))))) (-2951 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1185))))))
+(-13 (-677 |#1| (-1246 |#1|) (-1246 |#1|)) (-10 -8 (-15 * ((-933 |#1|) $ (-933 |#1|))) (-15 -2556 ($)) (-15 -2544 ($ |#1|)) (-15 -2533 ($ |#1|)) (-15 -2521 ($ |#1|)) (-15 -2785 ($ |#1| |#1| |#1|)) (-15 -2951 ($ |#1| |#1| |#1|))))
+((-4207 (($ (-1 (-112) |#2|) $) 15)) (-3395 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 24)) (-2571 (($) NIL) (($ (-635 |#2|)) 11)) (-1683 (((-112) $ $) 22)))
+(((-227 |#1| |#2|) (-10 -8 (-15 -4207 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3395 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3395 (|#1| |#2| |#1|)) (-15 -2571 (|#1| (-635 |#2|))) (-15 -2571 (|#1|)) (-15 -1683 ((-112) |#1| |#1|))) (-228 |#2|) (-1087)) (T -227))
+NIL
+(-10 -8 (-15 -4207 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3395 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3395 (|#1| |#2| |#1|)) (-15 -2571 (|#1| (-635 |#2|))) (-15 -2571 (|#1|)) (-15 -1683 ((-112) |#1| |#1|)))
+((-3207 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-3026 (((-112) $ (-762)) 8)) (-4207 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4382)))) (-4329 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4382)))) (-1816 (($) 7 T CONST)) (-2338 (($ $) 58 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-3395 (($ |#1| $) 47 (|has| $ (-6 -4382))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4382)))) (-1539 (($ |#1| $) 57 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4382)))) (-3048 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4382))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4382)))) (-2240 (((-635 |#1|) $) 30 (|has| $ (-6 -4382)))) (-2986 (((-112) $ (-762)) 9)) (-2122 (((-635 |#1|) $) 29 (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1807 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) 35)) (-2953 (((-112) $ (-762)) 10)) (-4310 (((-1145) $) 22 (|has| |#1| (-1087)))) (-1722 ((|#1| $) 39)) (-4328 (($ |#1| $) 40)) (-2975 (((-1107) $) 21 (|has| |#1| (-1087)))) (-4307 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3524 ((|#1| $) 41)) (-3266 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) 14)) (-3375 (((-112) $) 11)) (-2083 (($) 12)) (-2571 (($) 49) (($ (-635 |#1|)) 48)) (-2988 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4382))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1553 (($ $) 13)) (-3224 (((-534) $) 59 (|has| |#1| (-606 (-534))))) (-3233 (($ (-635 |#1|)) 50)) (-3220 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-3534 (($ (-635 |#1|)) 42)) (-3277 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-2755 (((-762) $) 6 (|has| $ (-6 -4382)))))
+(((-228 |#1|) (-139) (-1087)) (T -228))
+NIL
+(-13 (-234 |t#1|))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1087)) ((-605 (-853)) -3998 (|has| |#1| (-1087)) (|has| |#1| (-605 (-853)))) ((-150 |#1|) . T) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-234 |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-1087) |has| |#1| (-1087)) ((-1200) . T))
+((-2829 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-762)) 11) (($ $ (-635 (-1163)) (-635 (-762))) NIL) (($ $ (-1163) (-762)) NIL) (($ $ (-635 (-1163))) NIL) (($ $ (-1163)) 19) (($ $ (-762)) NIL) (($ $) 16)) (-1866 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-762)) 14) (($ $ (-635 (-1163)) (-635 (-762))) NIL) (($ $ (-1163) (-762)) NIL) (($ $ (-635 (-1163))) NIL) (($ $ (-1163)) NIL) (($ $ (-762)) NIL) (($ $) NIL)))
+(((-229 |#1| |#2|) (-10 -8 (-15 -2829 (|#1| |#1|)) (-15 -1866 (|#1| |#1|)) (-15 -2829 (|#1| |#1| (-762))) (-15 -1866 (|#1| |#1| (-762))) (-15 -2829 (|#1| |#1| (-1163))) (-15 -2829 (|#1| |#1| (-635 (-1163)))) (-15 -2829 (|#1| |#1| (-1163) (-762))) (-15 -2829 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 -1866 (|#1| |#1| (-1163))) (-15 -1866 (|#1| |#1| (-635 (-1163)))) (-15 -1866 (|#1| |#1| (-1163) (-762))) (-15 -1866 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 -1866 (|#1| |#1| (-1 |#2| |#2|) (-762))) (-15 -1866 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2829 (|#1| |#1| (-1 |#2| |#2|) (-762))) (-15 -2829 (|#1| |#1| (-1 |#2| |#2|)))) (-230 |#2|) (-1039)) (T -229))
+NIL
+(-10 -8 (-15 -2829 (|#1| |#1|)) (-15 -1866 (|#1| |#1|)) (-15 -2829 (|#1| |#1| (-762))) (-15 -1866 (|#1| |#1| (-762))) (-15 -2829 (|#1| |#1| (-1163))) (-15 -2829 (|#1| |#1| (-635 (-1163)))) (-15 -2829 (|#1| |#1| (-1163) (-762))) (-15 -2829 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 -1866 (|#1| |#1| (-1163))) (-15 -1866 (|#1| |#1| (-635 (-1163)))) (-15 -1866 (|#1| |#1| (-1163) (-762))) (-15 -1866 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 -1866 (|#1| |#1| (-1 |#2| |#2|) (-762))) (-15 -1866 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2829 (|#1| |#1| (-1 |#2| |#2|) (-762))) (-15 -2829 (|#1| |#1| (-1 |#2| |#2|))))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2089 (((-3 $ "failed") $ $) 19)) (-1816 (($) 17 T CONST)) (-2588 (((-3 $ "failed") $) 33)) (-2035 (((-112) $) 31)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-2829 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-762)) 51) (($ $ (-635 (-1163)) (-635 (-762))) 44 (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) 43 (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) 42 (|has| |#1| (-890 (-1163)))) (($ $ (-1163)) 41 (|has| |#1| (-890 (-1163)))) (($ $ (-762)) 39 (|has| |#1| (-232))) (($ $) 37 (|has| |#1| (-232)))) (-3220 (((-853) $) 11) (($ (-558)) 29)) (-2542 (((-762)) 28)) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1866 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-762)) 49) (($ $ (-635 (-1163)) (-635 (-762))) 48 (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) 47 (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) 46 (|has| |#1| (-890 (-1163)))) (($ $ (-1163)) 45 (|has| |#1| (-890 (-1163)))) (($ $ (-762)) 40 (|has| |#1| (-232))) (($ $) 38 (|has| |#1| (-232)))) (-1683 (((-112) $ $) 6)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24)))
+(((-230 |#1|) (-139) (-1039)) (T -230))
+((-2829 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-230 *3)) (-4 *3 (-1039)))) (-2829 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-762)) (-4 *1 (-230 *4)) (-4 *4 (-1039)))) (-1866 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-230 *3)) (-4 *3 (-1039)))) (-1866 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-762)) (-4 *1 (-230 *4)) (-4 *4 (-1039)))))
+(-13 (-1039) (-10 -8 (-15 -2829 ($ $ (-1 |t#1| |t#1|))) (-15 -2829 ($ $ (-1 |t#1| |t#1|) (-762))) (-15 -1866 ($ $ (-1 |t#1| |t#1|))) (-15 -1866 ($ $ (-1 |t#1| |t#1|) (-762))) (IF (|has| |t#1| (-232)) (-6 (-232)) |%noBranch|) (IF (|has| |t#1| (-890 (-1163))) (-6 (-890 (-1163))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-558)) . T) ((-605 (-853)) . T) ((-232) |has| |#1| (-232)) ((-638 $) . T) ((-717) . T) ((-890 (-1163)) |has| |#1| (-890 (-1163))) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
+((-2829 (($ $) NIL) (($ $ (-762)) 10)) (-1866 (($ $) 8) (($ $ (-762)) 12)))
+(((-231 |#1|) (-10 -8 (-15 -1866 (|#1| |#1| (-762))) (-15 -2829 (|#1| |#1| (-762))) (-15 -1866 (|#1| |#1|)) (-15 -2829 (|#1| |#1|))) (-232)) (T -231))
+NIL
+(-10 -8 (-15 -1866 (|#1| |#1| (-762))) (-15 -2829 (|#1| |#1| (-762))) (-15 -1866 (|#1| |#1|)) (-15 -2829 (|#1| |#1|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2089 (((-3 $ "failed") $ $) 19)) (-1816 (($) 17 T CONST)) (-2588 (((-3 $ "failed") $) 33)) (-2035 (((-112) $) 31)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-2829 (($ $) 38) (($ $ (-762)) 36)) (-3220 (((-853) $) 11) (($ (-558)) 29)) (-2542 (((-762)) 28)) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1866 (($ $) 37) (($ $ (-762)) 35)) (-1683 (((-112) $ $) 6)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24)))
+(((-232) (-139)) (T -232))
+((-2829 (*1 *1 *1) (-4 *1 (-232))) (-1866 (*1 *1 *1) (-4 *1 (-232))) (-2829 (*1 *1 *1 *2) (-12 (-4 *1 (-232)) (-5 *2 (-762)))) (-1866 (*1 *1 *1 *2) (-12 (-4 *1 (-232)) (-5 *2 (-762)))))
+(-13 (-1039) (-10 -8 (-15 -2829 ($ $)) (-15 -1866 ($ $)) (-15 -2829 ($ $ (-762))) (-15 -1866 ($ $ (-762)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-558)) . T) ((-605 (-853)) . T) ((-638 $) . T) ((-717) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
+((-2571 (($) 12) (($ (-635 |#2|)) NIL)) (-1553 (($ $) 14)) (-3233 (($ (-635 |#2|)) 10)) (-3220 (((-853) $) 21)))
+(((-233 |#1| |#2|) (-10 -8 (-15 -3220 ((-853) |#1|)) (-15 -2571 (|#1| (-635 |#2|))) (-15 -2571 (|#1|)) (-15 -3233 (|#1| (-635 |#2|))) (-15 -1553 (|#1| |#1|))) (-234 |#2|) (-1087)) (T -233))
+NIL
+(-10 -8 (-15 -3220 ((-853) |#1|)) (-15 -2571 (|#1| (-635 |#2|))) (-15 -2571 (|#1|)) (-15 -3233 (|#1| (-635 |#2|))) (-15 -1553 (|#1| |#1|)))
+((-3207 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-3026 (((-112) $ (-762)) 8)) (-4207 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4382)))) (-4329 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4382)))) (-1816 (($) 7 T CONST)) (-2338 (($ $) 58 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-3395 (($ |#1| $) 47 (|has| $ (-6 -4382))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4382)))) (-1539 (($ |#1| $) 57 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4382)))) (-3048 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4382))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4382)))) (-2240 (((-635 |#1|) $) 30 (|has| $ (-6 -4382)))) (-2986 (((-112) $ (-762)) 9)) (-2122 (((-635 |#1|) $) 29 (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1807 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) 35)) (-2953 (((-112) $ (-762)) 10)) (-4310 (((-1145) $) 22 (|has| |#1| (-1087)))) (-1722 ((|#1| $) 39)) (-4328 (($ |#1| $) 40)) (-2975 (((-1107) $) 21 (|has| |#1| (-1087)))) (-4307 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3524 ((|#1| $) 41)) (-3266 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) 14)) (-3375 (((-112) $) 11)) (-2083 (($) 12)) (-2571 (($) 49) (($ (-635 |#1|)) 48)) (-2988 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4382))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1553 (($ $) 13)) (-3224 (((-534) $) 59 (|has| |#1| (-606 (-534))))) (-3233 (($ (-635 |#1|)) 50)) (-3220 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-3534 (($ (-635 |#1|)) 42)) (-3277 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-2755 (((-762) $) 6 (|has| $ (-6 -4382)))))
+(((-234 |#1|) (-139) (-1087)) (T -234))
+((-2571 (*1 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1087)))) (-2571 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-4 *1 (-234 *3)))) (-3395 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4382)) (-4 *1 (-234 *2)) (-4 *2 (-1087)))) (-3395 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4382)) (-4 *1 (-234 *3)) (-4 *3 (-1087)))) (-4207 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4382)) (-4 *1 (-234 *3)) (-4 *3 (-1087)))))
+(-13 (-107 |t#1|) (-150 |t#1|) (-10 -8 (-15 -2571 ($)) (-15 -2571 ($ (-635 |t#1|))) (IF (|has| $ (-6 -4382)) (PROGN (-15 -3395 ($ |t#1| $)) (-15 -3395 ($ (-1 (-112) |t#1|) $)) (-15 -4207 ($ (-1 (-112) |t#1|) $))) |%noBranch|)))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1087)) ((-605 (-853)) -3998 (|has| |#1| (-1087)) (|has| |#1| (-605 (-853)))) ((-150 |#1|) . T) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-1087) |has| |#1| (-1087)) ((-1200) . T))
+((-2584 (((-2 (|:| |varOrder| (-635 (-1163))) (|:| |inhom| (-3 (-635 (-1246 (-762))) "failed")) (|:| |hom| (-635 (-1246 (-762))))) (-293 (-942 (-558)))) 27)))
+(((-235) (-10 -7 (-15 -2584 ((-2 (|:| |varOrder| (-635 (-1163))) (|:| |inhom| (-3 (-635 (-1246 (-762))) "failed")) (|:| |hom| (-635 (-1246 (-762))))) (-293 (-942 (-558))))))) (T -235))
+((-2584 (*1 *2 *3) (-12 (-5 *3 (-293 (-942 (-558)))) (-5 *2 (-2 (|:| |varOrder| (-635 (-1163))) (|:| |inhom| (-3 (-635 (-1246 (-762))) "failed")) (|:| |hom| (-635 (-1246 (-762)))))) (-5 *1 (-235)))))
+(-10 -7 (-15 -2584 ((-2 (|:| |varOrder| (-635 (-1163))) (|:| |inhom| (-3 (-635 (-1246 (-762))) "failed")) (|:| |hom| (-635 (-1246 (-762))))) (-293 (-942 (-558))))))
+((-2276 (((-762)) 51)) (-3216 (((-2 (|:| -3683 (-679 |#3|)) (|:| |vec| (-1246 |#3|))) (-679 $) (-1246 $)) 49) (((-679 |#3|) (-679 $)) 41) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL) (((-679 (-558)) (-679 $)) NIL)) (-2148 (((-133)) 57)) (-2829 (($ $ (-1 |#3| |#3|) (-762)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-635 (-1163)) (-635 (-762))) NIL) (($ $ (-1163) (-762)) NIL) (($ $ (-635 (-1163))) NIL) (($ $ (-1163)) NIL) (($ $ (-762)) NIL) (($ $) NIL)) (-3220 (((-1246 |#3|) $) NIL) (($ |#3|) NIL) (((-853) $) NIL) (($ (-558)) 12) (($ (-406 (-558))) NIL)) (-2542 (((-762)) 15)) (-1810 (($ $ |#3|) 54)))
+(((-236 |#1| |#2| |#3|) (-10 -8 (-15 -3220 (|#1| (-406 (-558)))) (-15 -3220 (|#1| (-558))) (-15 -3220 ((-853) |#1|)) (-15 -2542 ((-762))) (-15 -2829 (|#1| |#1|)) (-15 -2829 (|#1| |#1| (-762))) (-15 -2829 (|#1| |#1| (-1163))) (-15 -2829 (|#1| |#1| (-635 (-1163)))) (-15 -2829 (|#1| |#1| (-1163) (-762))) (-15 -2829 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 -3216 ((-679 (-558)) (-679 |#1|))) (-15 -3216 ((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 |#1|) (-1246 |#1|))) (-15 -3220 (|#1| |#3|)) (-15 -2829 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2829 (|#1| |#1| (-1 |#3| |#3|) (-762))) (-15 -3216 ((-679 |#3|) (-679 |#1|))) (-15 -3216 ((-2 (|:| -3683 (-679 |#3|)) (|:| |vec| (-1246 |#3|))) (-679 |#1|) (-1246 |#1|))) (-15 -2276 ((-762))) (-15 -1810 (|#1| |#1| |#3|)) (-15 -2148 ((-133))) (-15 -3220 ((-1246 |#3|) |#1|))) (-237 |#2| |#3|) (-762) (-1200)) (T -236))
+((-2148 (*1 *2) (-12 (-14 *4 (-762)) (-4 *5 (-1200)) (-5 *2 (-133)) (-5 *1 (-236 *3 *4 *5)) (-4 *3 (-237 *4 *5)))) (-2276 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1200)) (-5 *2 (-762)) (-5 *1 (-236 *3 *4 *5)) (-4 *3 (-237 *4 *5)))) (-2542 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1200)) (-5 *2 (-762)) (-5 *1 (-236 *3 *4 *5)) (-4 *3 (-237 *4 *5)))))
+(-10 -8 (-15 -3220 (|#1| (-406 (-558)))) (-15 -3220 (|#1| (-558))) (-15 -3220 ((-853) |#1|)) (-15 -2542 ((-762))) (-15 -2829 (|#1| |#1|)) (-15 -2829 (|#1| |#1| (-762))) (-15 -2829 (|#1| |#1| (-1163))) (-15 -2829 (|#1| |#1| (-635 (-1163)))) (-15 -2829 (|#1| |#1| (-1163) (-762))) (-15 -2829 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 -3216 ((-679 (-558)) (-679 |#1|))) (-15 -3216 ((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 |#1|) (-1246 |#1|))) (-15 -3220 (|#1| |#3|)) (-15 -2829 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2829 (|#1| |#1| (-1 |#3| |#3|) (-762))) (-15 -3216 ((-679 |#3|) (-679 |#1|))) (-15 -3216 ((-2 (|:| -3683 (-679 |#3|)) (|:| |vec| (-1246 |#3|))) (-679 |#1|) (-1246 |#1|))) (-15 -2276 ((-762))) (-15 -1810 (|#1| |#1| |#3|)) (-15 -2148 ((-133))) (-15 -3220 ((-1246 |#3|) |#1|)))
+((-3207 (((-112) $ $) 19 (|has| |#2| (-1087)))) (-2067 (((-112) $) 72 (|has| |#2| (-130)))) (-4027 (($ (-911)) 125 (|has| |#2| (-1039)))) (-3869 (((-1251) $ (-558) (-558)) 40 (|has| $ (-6 -4383)))) (-2738 (($ $ $) 121 (|has| |#2| (-784)))) (-2089 (((-3 $ "failed") $ $) 74 (|has| |#2| (-130)))) (-3026 (((-112) $ (-762)) 8)) (-2276 (((-762)) 107 (|has| |#2| (-367)))) (-1397 (((-558) $) 119 (|has| |#2| (-839)))) (-1532 ((|#2| $ (-558) |#2|) 52 (|has| $ (-6 -4383)))) (-1816 (($) 7 T CONST)) (-3069 (((-3 (-558) "failed") $) 67 (-2084 (|has| |#2| (-1028 (-558))) (|has| |#2| (-1087)))) (((-3 (-406 (-558)) "failed") $) 64 (-2084 (|has| |#2| (-1028 (-406 (-558)))) (|has| |#2| (-1087)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1087)))) (-1863 (((-558) $) 66 (-2084 (|has| |#2| (-1028 (-558))) (|has| |#2| (-1087)))) (((-406 (-558)) $) 63 (-2084 (|has| |#2| (-1028 (-406 (-558)))) (|has| |#2| (-1087)))) ((|#2| $) 62 (|has| |#2| (-1087)))) (-3216 (((-679 (-558)) (-679 $)) 106 (-2084 (|has| |#2| (-631 (-558))) (|has| |#2| (-1039)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) 105 (-2084 (|has| |#2| (-631 (-558))) (|has| |#2| (-1039)))) (((-2 (|:| -3683 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 $) (-1246 $)) 104 (|has| |#2| (-1039))) (((-679 |#2|) (-679 $)) 103 (|has| |#2| (-1039)))) (-2588 (((-3 $ "failed") $) 79 (|has| |#2| (-717)))) (-2424 (($) 110 (|has| |#2| (-367)))) (-1817 ((|#2| $ (-558) |#2|) 53 (|has| $ (-6 -4383)))) (-1746 ((|#2| $ (-558)) 51)) (-2045 (((-112) $) 117 (|has| |#2| (-839)))) (-2240 (((-635 |#2|) $) 30 (|has| $ (-6 -4382)))) (-2035 (((-112) $) 81 (|has| |#2| (-717)))) (-2055 (((-112) $) 118 (|has| |#2| (-839)))) (-2986 (((-112) $ (-762)) 9)) (-3889 (((-558) $) 43 (|has| (-558) (-841)))) (-3910 (($ $ $) 116 (-3998 (|has| |#2| (-839)) (|has| |#2| (-784))))) (-2122 (((-635 |#2|) $) 29 (|has| $ (-6 -4382)))) (-4322 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1087)) (|has| $ (-6 -4382))))) (-3899 (((-558) $) 44 (|has| (-558) (-841)))) (-3542 (($ $ $) 115 (-3998 (|has| |#2| (-839)) (|has| |#2| (-784))))) (-1807 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#2| |#2|) $) 35)) (-2637 (((-911) $) 109 (|has| |#2| (-367)))) (-2953 (((-112) $ (-762)) 10)) (-4310 (((-1145) $) 22 (|has| |#2| (-1087)))) (-3920 (((-635 (-558)) $) 46)) (-3929 (((-112) (-558) $) 47)) (-2851 (($ (-911)) 108 (|has| |#2| (-367)))) (-2975 (((-1107) $) 21 (|has| |#2| (-1087)))) (-2305 ((|#2| $) 42 (|has| (-558) (-841)))) (-3880 (($ $ |#2|) 41 (|has| $ (-6 -4383)))) (-3266 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#2|))) 26 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-293 |#2|)) 25 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-635 |#2|) (-635 |#2|)) 23 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))) (-2381 (((-112) $ $) 14)) (-3908 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4382)) (|has| |#2| (-1087))))) (-3937 (((-635 |#2|) $) 48)) (-3375 (((-112) $) 11)) (-2083 (($) 12)) (-2195 ((|#2| $ (-558) |#2|) 50) ((|#2| $ (-558)) 49)) (-2744 ((|#2| $ $) 124 (|has| |#2| (-1039)))) (-2572 (($ (-1246 |#2|)) 126)) (-2148 (((-133)) 123 (|has| |#2| (-362)))) (-2829 (($ $) 98 (-2084 (|has| |#2| (-232)) (|has| |#2| (-1039)))) (($ $ (-762)) 96 (-2084 (|has| |#2| (-232)) (|has| |#2| (-1039)))) (($ $ (-1163)) 94 (-2084 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-635 (-1163))) 93 (-2084 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-1163) (-762)) 92 (-2084 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-635 (-1163)) (-635 (-762))) 91 (-2084 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-1 |#2| |#2|) (-762)) 84 (|has| |#2| (-1039))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-1039)))) (-2988 (((-762) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4382))) (((-762) |#2| $) 28 (-12 (|has| |#2| (-1087)) (|has| $ (-6 -4382))))) (-1553 (($ $) 13)) (-3220 (((-1246 |#2|) $) 127) (($ (-558)) 68 (-3998 (-2084 (|has| |#2| (-1028 (-558))) (|has| |#2| (-1087))) (|has| |#2| (-1039)))) (($ (-406 (-558))) 65 (-2084 (|has| |#2| (-1028 (-406 (-558)))) (|has| |#2| (-1087)))) (($ |#2|) 60 (|has| |#2| (-1087))) (((-853) $) 18 (|has| |#2| (-605 (-853))))) (-2542 (((-762)) 102 (|has| |#2| (-1039)))) (-3277 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4382)))) (-3190 (($ $) 120 (|has| |#2| (-839)))) (-2131 (($) 71 (|has| |#2| (-130)) CONST)) (-2142 (($) 82 (|has| |#2| (-717)) CONST)) (-1866 (($ $) 97 (-2084 (|has| |#2| (-232)) (|has| |#2| (-1039)))) (($ $ (-762)) 95 (-2084 (|has| |#2| (-232)) (|has| |#2| (-1039)))) (($ $ (-1163)) 90 (-2084 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-635 (-1163))) 89 (-2084 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-1163) (-762)) 88 (-2084 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-635 (-1163)) (-635 (-762))) 87 (-2084 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-1 |#2| |#2|) (-762)) 86 (|has| |#2| (-1039))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-1039)))) (-1747 (((-112) $ $) 113 (-3998 (|has| |#2| (-839)) (|has| |#2| (-784))))) (-1720 (((-112) $ $) 112 (-3998 (|has| |#2| (-839)) (|has| |#2| (-784))))) (-1683 (((-112) $ $) 20 (|has| |#2| (-1087)))) (-1731 (((-112) $ $) 114 (-3998 (|has| |#2| (-839)) (|has| |#2| (-784))))) (-1705 (((-112) $ $) 111 (-3998 (|has| |#2| (-839)) (|has| |#2| (-784))))) (-1810 (($ $ |#2|) 122 (|has| |#2| (-362)))) (-1798 (($ $ $) 100 (|has| |#2| (-1039))) (($ $) 99 (|has| |#2| (-1039)))) (-1784 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-762)) 80 (|has| |#2| (-717))) (($ $ (-911)) 77 (|has| |#2| (-717)))) (* (($ (-558) $) 101 (|has| |#2| (-1039))) (($ $ $) 78 (|has| |#2| (-717))) (($ $ |#2|) 76 (|has| |#2| (-717))) (($ |#2| $) 75 (|has| |#2| (-717))) (($ (-762) $) 73 (|has| |#2| (-130))) (($ (-911) $) 70 (|has| |#2| (-25)))) (-2755 (((-762) $) 6 (|has| $ (-6 -4382)))))
+(((-237 |#1| |#2|) (-139) (-762) (-1200)) (T -237))
+((-2572 (*1 *1 *2) (-12 (-5 *2 (-1246 *4)) (-4 *4 (-1200)) (-4 *1 (-237 *3 *4)))) (-4027 (*1 *1 *2) (-12 (-5 *2 (-911)) (-4 *1 (-237 *3 *4)) (-4 *4 (-1039)) (-4 *4 (-1200)))) (-2744 (*1 *2 *1 *1) (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1200)) (-4 *2 (-1039)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1200)) (-4 *2 (-717)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1200)) (-4 *2 (-717)))))
+(-13 (-596 (-558) |t#2|) (-605 (-1246 |t#2|)) (-10 -8 (-6 -4382) (-15 -2572 ($ (-1246 |t#2|))) (IF (|has| |t#2| (-1087)) (-6 (-410 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1039)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-230 |t#2|)) (-6 (-376 |t#2|)) (-15 -4027 ($ (-911))) (-15 -2744 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-130)) (-6 (-130)) |%noBranch|) (IF (|has| |t#2| (-717)) (PROGN (-6 (-717)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-367)) (-6 (-367)) |%noBranch|) (IF (|has| |t#2| (-171)) (PROGN (-6 (-38 |t#2|)) (-6 (-171))) |%noBranch|) (IF (|has| |t#2| (-6 -4379)) (-6 -4379) |%noBranch|) (IF (|has| |t#2| (-839)) (-6 (-839)) |%noBranch|) (IF (|has| |t#2| (-784)) (-6 (-784)) |%noBranch|) (IF (|has| |t#2| (-362)) (-6 (-1253 |t#2|)) |%noBranch|)))
+(((-21) -3998 (|has| |#2| (-1039)) (|has| |#2| (-839)) (|has| |#2| (-362)) (|has| |#2| (-171))) ((-23) -3998 (|has| |#2| (-1039)) (|has| |#2| (-839)) (|has| |#2| (-784)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-130))) ((-25) -3998 (|has| |#2| (-1039)) (|has| |#2| (-839)) (|has| |#2| (-784)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-171)) ((-102) -3998 (|has| |#2| (-1087)) (|has| |#2| (-1039)) (|has| |#2| (-839)) (|has| |#2| (-784)) (|has| |#2| (-717)) (|has| |#2| (-367)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -3998 (|has| |#2| (-1039)) (|has| |#2| (-362)) (|has| |#2| (-171))) ((-111 $ $) |has| |#2| (-171)) ((-130) -3998 (|has| |#2| (-1039)) (|has| |#2| (-839)) (|has| |#2| (-784)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-130))) ((-608 #0=(-406 (-558))) -12 (|has| |#2| (-1028 (-406 (-558)))) (|has| |#2| (-1087))) ((-608 (-558)) -3998 (|has| |#2| (-1039)) (-12 (|has| |#2| (-1028 (-558))) (|has| |#2| (-1087))) (|has| |#2| (-839)) (|has| |#2| (-171))) ((-608 |#2|) -3998 (|has| |#2| (-1087)) (|has| |#2| (-171))) ((-605 (-853)) -3998 (|has| |#2| (-1087)) (|has| |#2| (-1039)) (|has| |#2| (-839)) (|has| |#2| (-784)) (|has| |#2| (-717)) (|has| |#2| (-367)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-605 (-853))) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-605 (-1246 |#2|)) . T) ((-171) |has| |#2| (-171)) ((-230 |#2|) |has| |#2| (-1039)) ((-232) -12 (|has| |#2| (-232)) (|has| |#2| (-1039))) ((-285 #1=(-558) |#2|) . T) ((-287 #1# |#2|) . T) ((-308 |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))) ((-367) |has| |#2| (-367)) ((-376 |#2|) |has| |#2| (-1039)) ((-410 |#2|) |has| |#2| (-1087)) ((-487 |#2|) . T) ((-596 #1# |#2|) . T) ((-512 |#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))) ((-638 |#2|) -3998 (|has| |#2| (-1039)) (|has| |#2| (-362)) (|has| |#2| (-171))) ((-638 $) -3998 (|has| |#2| (-1039)) (|has| |#2| (-839)) (|has| |#2| (-171))) ((-631 (-558)) -12 (|has| |#2| (-631 (-558))) (|has| |#2| (-1039))) ((-631 |#2|) |has| |#2| (-1039)) ((-708 |#2|) -3998 (|has| |#2| (-362)) (|has| |#2| (-171))) ((-717) -3998 (|has| |#2| (-1039)) (|has| |#2| (-839)) (|has| |#2| (-717)) (|has| |#2| (-171))) ((-782) |has| |#2| (-839)) ((-783) -3998 (|has| |#2| (-839)) (|has| |#2| (-784))) ((-784) |has| |#2| (-784)) ((-785) -3998 (|has| |#2| (-839)) (|has| |#2| (-784))) ((-786) -3998 (|has| |#2| (-839)) (|has| |#2| (-784))) ((-839) |has| |#2| (-839)) ((-841) -3998 (|has| |#2| (-839)) (|has| |#2| (-784))) ((-890 (-1163)) -12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039))) ((-1028 #0#) -12 (|has| |#2| (-1028 (-406 (-558)))) (|has| |#2| (-1087))) ((-1028 (-558)) -12 (|has| |#2| (-1028 (-558))) (|has| |#2| (-1087))) ((-1028 |#2|) |has| |#2| (-1087)) ((-1045 |#2|) -3998 (|has| |#2| (-1039)) (|has| |#2| (-362)) (|has| |#2| (-171))) ((-1045 $) |has| |#2| (-171)) ((-1039) -3998 (|has| |#2| (-1039)) (|has| |#2| (-839)) (|has| |#2| (-171))) ((-1046) -3998 (|has| |#2| (-1039)) (|has| |#2| (-839)) (|has| |#2| (-171))) ((-1099) -3998 (|has| |#2| (-1039)) (|has| |#2| (-839)) (|has| |#2| (-717)) (|has| |#2| (-171))) ((-1087) -3998 (|has| |#2| (-1087)) (|has| |#2| (-1039)) (|has| |#2| (-839)) (|has| |#2| (-784)) (|has| |#2| (-717)) (|has| |#2| (-367)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-1200) . T) ((-1253 |#2|) |has| |#2| (-362)))
+((-2756 (((-239 |#1| |#3|) (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|) 21)) (-3048 ((|#3| (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|) 23)) (-3167 (((-239 |#1| |#3|) (-1 |#3| |#2|) (-239 |#1| |#2|)) 18)))
+(((-238 |#1| |#2| |#3|) (-10 -7 (-15 -2756 ((-239 |#1| |#3|) (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|)) (-15 -3048 (|#3| (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|)) (-15 -3167 ((-239 |#1| |#3|) (-1 |#3| |#2|) (-239 |#1| |#2|)))) (-762) (-1200) (-1200)) (T -238))
+((-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-239 *5 *6)) (-14 *5 (-762)) (-4 *6 (-1200)) (-4 *7 (-1200)) (-5 *2 (-239 *5 *7)) (-5 *1 (-238 *5 *6 *7)))) (-3048 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-239 *5 *6)) (-14 *5 (-762)) (-4 *6 (-1200)) (-4 *2 (-1200)) (-5 *1 (-238 *5 *6 *2)))) (-2756 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-239 *6 *7)) (-14 *6 (-762)) (-4 *7 (-1200)) (-4 *5 (-1200)) (-5 *2 (-239 *6 *5)) (-5 *1 (-238 *6 *7 *5)))))
+(-10 -7 (-15 -2756 ((-239 |#1| |#3|) (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|)) (-15 -3048 (|#3| (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|)) (-15 -3167 ((-239 |#1| |#3|) (-1 |#3| |#2|) (-239 |#1| |#2|))))
+((-3207 (((-112) $ $) NIL (|has| |#2| (-1087)))) (-2067 (((-112) $) NIL (|has| |#2| (-130)))) (-4027 (($ (-911)) 56 (|has| |#2| (-1039)))) (-3869 (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4383)))) (-2738 (($ $ $) 60 (|has| |#2| (-784)))) (-2089 (((-3 $ "failed") $ $) 49 (|has| |#2| (-130)))) (-3026 (((-112) $ (-762)) 17)) (-2276 (((-762)) NIL (|has| |#2| (-367)))) (-1397 (((-558) $) NIL (|has| |#2| (-839)))) (-1532 ((|#2| $ (-558) |#2|) NIL (|has| $ (-6 -4383)))) (-1816 (($) NIL T CONST)) (-3069 (((-3 (-558) "failed") $) NIL (-12 (|has| |#2| (-1028 (-558))) (|has| |#2| (-1087)))) (((-3 (-406 (-558)) "failed") $) NIL (-12 (|has| |#2| (-1028 (-406 (-558)))) (|has| |#2| (-1087)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1087)))) (-1863 (((-558) $) NIL (-12 (|has| |#2| (-1028 (-558))) (|has| |#2| (-1087)))) (((-406 (-558)) $) NIL (-12 (|has| |#2| (-1028 (-406 (-558)))) (|has| |#2| (-1087)))) ((|#2| $) 27 (|has| |#2| (-1087)))) (-3216 (((-679 (-558)) (-679 $)) NIL (-12 (|has| |#2| (-631 (-558))) (|has| |#2| (-1039)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (-12 (|has| |#2| (-631 (-558))) (|has| |#2| (-1039)))) (((-2 (|:| -3683 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 $) (-1246 $)) NIL (|has| |#2| (-1039))) (((-679 |#2|) (-679 $)) NIL (|has| |#2| (-1039)))) (-2588 (((-3 $ "failed") $) 53 (|has| |#2| (-717)))) (-2424 (($) NIL (|has| |#2| (-367)))) (-1817 ((|#2| $ (-558) |#2|) NIL (|has| $ (-6 -4383)))) (-1746 ((|#2| $ (-558)) 51)) (-2045 (((-112) $) NIL (|has| |#2| (-839)))) (-2240 (((-635 |#2|) $) 15 (|has| $ (-6 -4382)))) (-2035 (((-112) $) NIL (|has| |#2| (-717)))) (-2055 (((-112) $) NIL (|has| |#2| (-839)))) (-2986 (((-112) $ (-762)) NIL)) (-3889 (((-558) $) 20 (|has| (-558) (-841)))) (-3910 (($ $ $) NIL (-3998 (|has| |#2| (-784)) (|has| |#2| (-839))))) (-2122 (((-635 |#2|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#2| (-1087))))) (-3899 (((-558) $) 50 (|has| (-558) (-841)))) (-3542 (($ $ $) NIL (-3998 (|has| |#2| (-784)) (|has| |#2| (-839))))) (-1807 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#2| |#2|) $) 41)) (-2637 (((-911) $) NIL (|has| |#2| (-367)))) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL (|has| |#2| (-1087)))) (-3920 (((-635 (-558)) $) NIL)) (-3929 (((-112) (-558) $) NIL)) (-2851 (($ (-911)) NIL (|has| |#2| (-367)))) (-2975 (((-1107) $) NIL (|has| |#2| (-1087)))) (-2305 ((|#2| $) NIL (|has| (-558) (-841)))) (-3880 (($ $ |#2|) NIL (|has| $ (-6 -4383)))) (-3266 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3908 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#2| (-1087))))) (-3937 (((-635 |#2|) $) NIL)) (-3375 (((-112) $) NIL)) (-2083 (($) NIL)) (-2195 ((|#2| $ (-558) |#2|) NIL) ((|#2| $ (-558)) 21)) (-2744 ((|#2| $ $) NIL (|has| |#2| (-1039)))) (-2572 (($ (-1246 |#2|)) 18)) (-2148 (((-133)) NIL (|has| |#2| (-362)))) (-2829 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1039)))) (($ $ (-762)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1039)))) (($ $ (-1163)) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-1 |#2| |#2|) (-762)) NIL (|has| |#2| (-1039))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1039)))) (-2988 (((-762) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4382))) (((-762) |#2| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#2| (-1087))))) (-1553 (($ $) NIL)) (-3220 (((-1246 |#2|) $) 10) (($ (-558)) NIL (-3998 (-12 (|has| |#2| (-1028 (-558))) (|has| |#2| (-1087))) (|has| |#2| (-1039)))) (($ (-406 (-558))) NIL (-12 (|has| |#2| (-1028 (-406 (-558)))) (|has| |#2| (-1087)))) (($ |#2|) 13 (|has| |#2| (-1087))) (((-853) $) NIL (|has| |#2| (-605 (-853))))) (-2542 (((-762)) NIL (|has| |#2| (-1039)))) (-3277 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4382)))) (-3190 (($ $) NIL (|has| |#2| (-839)))) (-2131 (($) 35 (|has| |#2| (-130)) CONST)) (-2142 (($) 38 (|has| |#2| (-717)) CONST)) (-1866 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1039)))) (($ $ (-762)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1039)))) (($ $ (-1163)) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-1 |#2| |#2|) (-762)) NIL (|has| |#2| (-1039))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1039)))) (-1747 (((-112) $ $) NIL (-3998 (|has| |#2| (-784)) (|has| |#2| (-839))))) (-1720 (((-112) $ $) NIL (-3998 (|has| |#2| (-784)) (|has| |#2| (-839))))) (-1683 (((-112) $ $) 26 (|has| |#2| (-1087)))) (-1731 (((-112) $ $) NIL (-3998 (|has| |#2| (-784)) (|has| |#2| (-839))))) (-1705 (((-112) $ $) 58 (-3998 (|has| |#2| (-784)) (|has| |#2| (-839))))) (-1810 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1798 (($ $ $) NIL (|has| |#2| (-1039))) (($ $) NIL (|has| |#2| (-1039)))) (-1784 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-762)) NIL (|has| |#2| (-717))) (($ $ (-911)) NIL (|has| |#2| (-717)))) (* (($ (-558) $) NIL (|has| |#2| (-1039))) (($ $ $) 44 (|has| |#2| (-717))) (($ $ |#2|) 42 (|has| |#2| (-717))) (($ |#2| $) 43 (|has| |#2| (-717))) (($ (-762) $) NIL (|has| |#2| (-130))) (($ (-911) $) NIL (|has| |#2| (-25)))) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-239 |#1| |#2|) (-237 |#1| |#2|) (-762) (-1200)) (T -239))
+NIL
+(-237 |#1| |#2|)
+((-2617 (((-558) (-635 (-1145))) 24) (((-558) (-1145)) 19)) (-1679 (((-1251) (-635 (-1145))) 29) (((-1251) (-1145)) 28)) (-2596 (((-1145)) 14)) (-2606 (((-1145) (-558) (-1145)) 16)) (-2673 (((-635 (-1145)) (-635 (-1145)) (-558) (-1145)) 25) (((-1145) (-1145) (-558) (-1145)) 23)) (-2115 (((-635 (-1145)) (-635 (-1145))) 13) (((-635 (-1145)) (-1145)) 11)))
+(((-240) (-10 -7 (-15 -2115 ((-635 (-1145)) (-1145))) (-15 -2115 ((-635 (-1145)) (-635 (-1145)))) (-15 -2596 ((-1145))) (-15 -2606 ((-1145) (-558) (-1145))) (-15 -2673 ((-1145) (-1145) (-558) (-1145))) (-15 -2673 ((-635 (-1145)) (-635 (-1145)) (-558) (-1145))) (-15 -1679 ((-1251) (-1145))) (-15 -1679 ((-1251) (-635 (-1145)))) (-15 -2617 ((-558) (-1145))) (-15 -2617 ((-558) (-635 (-1145)))))) (T -240))
+((-2617 (*1 *2 *3) (-12 (-5 *3 (-635 (-1145))) (-5 *2 (-558)) (-5 *1 (-240)))) (-2617 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-558)) (-5 *1 (-240)))) (-1679 (*1 *2 *3) (-12 (-5 *3 (-635 (-1145))) (-5 *2 (-1251)) (-5 *1 (-240)))) (-1679 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-240)))) (-2673 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-635 (-1145))) (-5 *3 (-558)) (-5 *4 (-1145)) (-5 *1 (-240)))) (-2673 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1145)) (-5 *3 (-558)) (-5 *1 (-240)))) (-2606 (*1 *2 *3 *2) (-12 (-5 *2 (-1145)) (-5 *3 (-558)) (-5 *1 (-240)))) (-2596 (*1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-240)))) (-2115 (*1 *2 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-240)))) (-2115 (*1 *2 *3) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-240)) (-5 *3 (-1145)))))
+(-10 -7 (-15 -2115 ((-635 (-1145)) (-1145))) (-15 -2115 ((-635 (-1145)) (-635 (-1145)))) (-15 -2596 ((-1145))) (-15 -2606 ((-1145) (-558) (-1145))) (-15 -2673 ((-1145) (-1145) (-558) (-1145))) (-15 -2673 ((-635 (-1145)) (-635 (-1145)) (-558) (-1145))) (-15 -1679 ((-1251) (-1145))) (-15 -1679 ((-1251) (-635 (-1145)))) (-15 -2617 ((-558) (-1145))) (-15 -2617 ((-558) (-635 (-1145)))))
+((** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) 16)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ (-406 (-558)) $) 23) (($ $ (-406 (-558))) NIL)))
+(((-241 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-558))) (-15 * (|#1| |#1| (-406 (-558)))) (-15 * (|#1| (-406 (-558)) |#1|)) (-15 ** (|#1| |#1| (-762))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-911))) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-762) |#1|)) (-15 * (|#1| (-911) |#1|))) (-242)) (T -241))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-558))) (-15 * (|#1| |#1| (-406 (-558)))) (-15 * (|#1| (-406 (-558)) |#1|)) (-15 ** (|#1| |#1| (-762))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-911))) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-762) |#1|)) (-15 * (|#1| (-911) |#1|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2089 (((-3 $ "failed") $ $) 19)) (-1816 (($) 17 T CONST)) (-2588 (((-3 $ "failed") $) 33)) (-2035 (((-112) $) 31)) (-4310 (((-1145) $) 9)) (-2418 (($ $) 40)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ (-406 (-558))) 44)) (-2542 (((-762)) 28)) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1683 (((-112) $ $) 6)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ (-558)) 41)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ (-406 (-558)) $) 43) (($ $ (-406 (-558))) 42)))
+(((-242) (-139)) (T -242))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-242)) (-5 *2 (-558)))) (-2418 (*1 *1 *1) (-4 *1 (-242))))
+(-13 (-289) (-38 (-406 (-558))) (-10 -8 (-15 ** ($ $ (-558))) (-15 -2418 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-558))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-608 #0#) . T) ((-608 (-558)) . T) ((-605 (-853)) . T) ((-289) . T) ((-638 #0#) . T) ((-638 $) . T) ((-708 #0#) . T) ((-717) . T) ((-1045 #0#) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
+((-3207 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-2925 ((|#1| $) 48)) (-3436 (($ $) 57)) (-3026 (((-112) $ (-762)) 8)) (-3972 ((|#1| $ |#1|) 39 (|has| $ (-6 -4383)))) (-2636 (($ $ $) 53 (|has| $ (-6 -4383)))) (-2627 (($ $ $) 52 (|has| $ (-6 -4383)))) (-1532 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4383)))) (-3982 (($ $ (-635 $)) 41 (|has| $ (-6 -4383)))) (-1816 (($) 7 T CONST)) (-2695 (($ $) 56)) (-2240 (((-635 |#1|) $) 30 (|has| $ (-6 -4382)))) (-2870 (((-635 $) $) 50)) (-3993 (((-112) $ $) 42 (|has| |#1| (-1087)))) (-1667 (($ $) 55)) (-2986 (((-112) $ (-762)) 9)) (-2122 (((-635 |#1|) $) 29 (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1807 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) 35)) (-2953 (((-112) $ (-762)) 10)) (-1362 (((-635 |#1|) $) 45)) (-1790 (((-112) $) 49)) (-4310 (((-1145) $) 22 (|has| |#1| (-1087)))) (-1560 ((|#1| $) 59)) (-1975 (($ $) 58)) (-2975 (((-1107) $) 21 (|has| |#1| (-1087)))) (-3266 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) 14)) (-3375 (((-112) $) 11)) (-2083 (($) 12)) (-2195 ((|#1| $ "value") 47)) (-2860 (((-558) $ $) 44)) (-1487 (((-112) $) 46)) (-2988 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4382))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1553 (($ $) 13)) (-2392 (($ $ $) 54 (|has| $ (-6 -4383)))) (-3220 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-1727 (((-635 $) $) 51)) (-4005 (((-112) $ $) 43 (|has| |#1| (-1087)))) (-3277 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-2755 (((-762) $) 6 (|has| $ (-6 -4382)))))
+(((-243 |#1|) (-139) (-1200)) (T -243))
+((-1560 (*1 *2 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1200)))) (-1975 (*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1200)))) (-3436 (*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1200)))) (-2695 (*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1200)))) (-1667 (*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1200)))) (-2392 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4383)) (-4 *1 (-243 *2)) (-4 *2 (-1200)))) (-2636 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4383)) (-4 *1 (-243 *2)) (-4 *2 (-1200)))) (-2627 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4383)) (-4 *1 (-243 *2)) (-4 *2 (-1200)))))
+(-13 (-1000 |t#1|) (-10 -8 (-15 -1560 (|t#1| $)) (-15 -1975 ($ $)) (-15 -3436 ($ $)) (-15 -2695 ($ $)) (-15 -1667 ($ $)) (IF (|has| $ (-6 -4383)) (PROGN (-15 -2392 ($ $ $)) (-15 -2636 ($ $ $)) (-15 -2627 ($ $ $))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1087)) ((-605 (-853)) -3998 (|has| |#1| (-1087)) (|has| |#1| (-605 (-853)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-1000 |#1|) . T) ((-1087) |has| |#1| (-1087)) ((-1200) . T))
+((-3207 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2925 ((|#1| $) NIL)) (-3213 ((|#1| $) NIL)) (-3436 (($ $) NIL)) (-3869 (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4383)))) (-2336 (($ $ (-558)) NIL (|has| $ (-6 -4383)))) (-1538 (((-112) $) NIL (|has| |#1| (-841))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2763 (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-841)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4383)))) (-2376 (($ $) 10 (|has| |#1| (-841))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3026 (((-112) $ (-762)) NIL)) (-3972 ((|#1| $ |#1|) NIL (|has| $ (-6 -4383)))) (-2359 (($ $ $) NIL (|has| $ (-6 -4383)))) (-2348 ((|#1| $ |#1|) NIL (|has| $ (-6 -4383)))) (-2369 ((|#1| $ |#1|) NIL (|has| $ (-6 -4383)))) (-1532 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4383))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4383))) (($ $ "rest" $) NIL (|has| $ (-6 -4383))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4383))) ((|#1| $ (-1213 (-558)) |#1|) NIL (|has| $ (-6 -4383))) ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4383)))) (-3982 (($ $ (-635 $)) NIL (|has| $ (-6 -4383)))) (-4207 (($ (-1 (-112) |#1|) $) NIL)) (-4329 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-3201 ((|#1| $) NIL)) (-1816 (($) NIL T CONST)) (-3306 (($ $) NIL (|has| $ (-6 -4383)))) (-4127 (($ $) NIL)) (-2315 (($ $) NIL) (($ $ (-762)) NIL)) (-2820 (($ $) NIL (|has| |#1| (-1087)))) (-2338 (($ $) 7 (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3395 (($ |#1| $) NIL (|has| |#1| (-1087))) (($ (-1 (-112) |#1|) $) NIL)) (-1539 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3048 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4382))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4382))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1817 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4383)))) (-1746 ((|#1| $ (-558)) NIL)) (-2435 (((-112) $) NIL)) (-1517 (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1087))) (((-558) |#1| $) NIL (|has| |#1| (-1087))) (((-558) (-1 (-112) |#1|) $) NIL)) (-2240 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-2870 (((-635 $) $) NIL)) (-3993 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-3315 (($ (-762) |#1|) NIL)) (-2986 (((-112) $ (-762)) NIL)) (-3889 (((-558) $) NIL (|has| (-558) (-841)))) (-3910 (($ $ $) NIL (|has| |#1| (-841)))) (-1645 (($ $ $) NIL (|has| |#1| (-841))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1677 (($ $ $) NIL (|has| |#1| (-841))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2122 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3899 (((-558) $) NIL (|has| (-558) (-841)))) (-3542 (($ $ $) NIL (|has| |#1| (-841)))) (-1807 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2192 (($ |#1|) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-1362 (((-635 |#1|) $) NIL)) (-1790 (((-112) $) NIL)) (-4310 (((-1145) $) NIL (|has| |#1| (-1087)))) (-1560 ((|#1| $) NIL) (($ $ (-762)) NIL)) (-4328 (($ $ $ (-558)) NIL) (($ |#1| $ (-558)) NIL)) (-1861 (($ $ $ (-558)) NIL) (($ |#1| $ (-558)) NIL)) (-3920 (((-635 (-558)) $) NIL)) (-3929 (((-112) (-558) $) NIL)) (-2975 (((-1107) $) NIL (|has| |#1| (-1087)))) (-2305 ((|#1| $) NIL) (($ $ (-762)) NIL)) (-4307 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3880 (($ $ |#1|) NIL (|has| $ (-6 -4383)))) (-2445 (((-112) $) NIL)) (-3266 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3908 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3937 (((-635 |#1|) $) NIL)) (-3375 (((-112) $) NIL)) (-2083 (($) NIL)) (-2195 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1213 (-558))) NIL) ((|#1| $ (-558)) NIL) ((|#1| $ (-558) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-762) $ "count") 16)) (-2860 (((-558) $ $) NIL)) (-4218 (($ $ (-1213 (-558))) NIL) (($ $ (-558)) NIL)) (-4023 (($ $ (-1213 (-558))) NIL) (($ $ (-558)) NIL)) (-2483 (($ (-635 |#1|)) 22)) (-1487 (((-112) $) NIL)) (-2405 (($ $) NIL)) (-2380 (($ $) NIL (|has| $ (-6 -4383)))) (-2414 (((-762) $) NIL)) (-2428 (($ $) NIL)) (-2988 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-2773 (($ $ $ (-558)) NIL (|has| $ (-6 -4383)))) (-1553 (($ $) NIL)) (-3224 (((-534) $) NIL (|has| |#1| (-606 (-534))))) (-3233 (($ (-635 |#1|)) NIL)) (-2392 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4341 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-635 $)) NIL) (($ $ |#1|) NIL)) (-3220 (($ (-635 |#1|)) 17) (((-635 |#1|) $) 18) (((-853) $) 21 (|has| |#1| (-605 (-853))))) (-1727 (((-635 $) $) NIL)) (-4005 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-3277 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-1747 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1683 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-841)))) (-2755 (((-762) $) 14 (|has| $ (-6 -4382)))))
+(((-244 |#1|) (-13 (-656 |#1|) (-488 (-635 |#1|)) (-10 -8 (-15 -2483 ($ (-635 |#1|))) (-15 -2195 ($ $ "unique")) (-15 -2195 ($ $ "sort")) (-15 -2195 ((-762) $ "count")))) (-841)) (T -244))
+((-2483 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-841)) (-5 *1 (-244 *3)))) (-2195 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-244 *3)) (-4 *3 (-841)))) (-2195 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-244 *3)) (-4 *3 (-841)))) (-2195 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-762)) (-5 *1 (-244 *4)) (-4 *4 (-841)))))
+(-13 (-656 |#1|) (-488 (-635 |#1|)) (-10 -8 (-15 -2483 ($ (-635 |#1|))) (-15 -2195 ($ $ "unique")) (-15 -2195 ($ $ "sort")) (-15 -2195 ((-762) $ "count"))))
+((-2647 (((-3 (-762) "failed") |#1| |#1| (-762)) 26)))
+(((-245 |#1|) (-10 -7 (-15 -2647 ((-3 (-762) "failed") |#1| |#1| (-762)))) (-13 (-717) (-367) (-10 -7 (-15 ** (|#1| |#1| (-558)))))) (T -245))
+((-2647 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-762)) (-4 *3 (-13 (-717) (-367) (-10 -7 (-15 ** (*3 *3 (-558)))))) (-5 *1 (-245 *3)))))
+(-10 -7 (-15 -2647 ((-3 (-762) "failed") |#1| |#1| (-762))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2671 (((-635 (-855 |#1|)) $) NIL)) (-2492 (((-1159 $) $ (-855 |#1|)) NIL) (((-1159 |#2|) $) NIL)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL (|has| |#2| (-550)))) (-1881 (($ $) NIL (|has| |#2| (-550)))) (-1857 (((-112) $) NIL (|has| |#2| (-550)))) (-2513 (((-762) $) NIL) (((-762) $ (-635 (-855 |#1|))) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-3748 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-3465 (($ $) NIL (|has| |#2| (-450)))) (-1380 (((-417 $) $) NIL (|has| |#2| (-450)))) (-3719 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-1816 (($) NIL T CONST)) (-3069 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#2| (-1028 (-406 (-558))))) (((-3 (-558) "failed") $) NIL (|has| |#2| (-1028 (-558)))) (((-3 (-855 |#1|) "failed") $) NIL)) (-1863 ((|#2| $) NIL) (((-406 (-558)) $) NIL (|has| |#2| (-1028 (-406 (-558))))) (((-558) $) NIL (|has| |#2| (-1028 (-558)))) (((-855 |#1|) $) NIL)) (-3320 (($ $ $ (-855 |#1|)) NIL (|has| |#2| (-171)))) (-3176 (($ $ (-635 (-558))) NIL)) (-2490 (($ $) NIL)) (-3216 (((-679 (-558)) (-679 $)) NIL (|has| |#2| (-631 (-558)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| |#2| (-631 (-558)))) (((-2 (|:| -3683 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 $) (-1246 $)) NIL) (((-679 |#2|) (-679 $)) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-2782 (($ $) NIL (|has| |#2| (-450))) (($ $ (-855 |#1|)) NIL (|has| |#2| (-450)))) (-2476 (((-635 $) $) NIL)) (-3031 (((-112) $) NIL (|has| |#2| (-899)))) (-3888 (($ $ |#2| (-239 (-2755 |#1|) (-762)) $) NIL)) (-2269 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (-12 (|has| (-855 |#1|) (-876 (-378))) (|has| |#2| (-876 (-378))))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (-12 (|has| (-855 |#1|) (-876 (-558))) (|has| |#2| (-876 (-558)))))) (-2035 (((-112) $) NIL)) (-2110 (((-762) $) NIL)) (-2659 (($ (-1159 |#2|) (-855 |#1|)) NIL) (($ (-1159 $) (-855 |#1|)) NIL)) (-2536 (((-635 $) $) NIL)) (-4238 (((-112) $) NIL)) (-2648 (($ |#2| (-239 (-2755 |#1|) (-762))) NIL) (($ $ (-855 |#1|) (-762)) NIL) (($ $ (-635 (-855 |#1|)) (-635 (-762))) NIL)) (-3381 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $ (-855 |#1|)) NIL)) (-2524 (((-239 (-2755 |#1|) (-762)) $) NIL) (((-762) $ (-855 |#1|)) NIL) (((-635 (-762)) $ (-635 (-855 |#1|))) NIL)) (-3910 (($ $ $) NIL (|has| |#2| (-841)))) (-3542 (($ $ $) NIL (|has| |#2| (-841)))) (-3898 (($ (-1 (-239 (-2755 |#1|) (-762)) (-239 (-2755 |#1|) (-762))) $) NIL)) (-3167 (($ (-1 |#2| |#2|) $) NIL)) (-3399 (((-3 (-855 |#1|) "failed") $) NIL)) (-2451 (($ $) NIL)) (-2463 ((|#2| $) NIL)) (-2665 (($ (-635 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-4310 (((-1145) $) NIL)) (-2560 (((-3 (-635 $) "failed") $) NIL)) (-2548 (((-3 (-635 $) "failed") $) NIL)) (-2575 (((-3 (-2 (|:| |var| (-855 |#1|)) (|:| -1951 (-762))) "failed") $) NIL)) (-2975 (((-1107) $) NIL)) (-2429 (((-112) $) NIL)) (-2440 ((|#2| $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#2| (-450)))) (-2699 (($ (-635 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-3728 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-3738 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-2522 (((-417 $) $) NIL (|has| |#2| (-899)))) (-3983 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-550))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-550)))) (-2554 (($ $ (-635 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-855 |#1|) |#2|) NIL) (($ $ (-635 (-855 |#1|)) (-635 |#2|)) NIL) (($ $ (-855 |#1|) $) NIL) (($ $ (-635 (-855 |#1|)) (-635 $)) NIL)) (-3331 (($ $ (-855 |#1|)) NIL (|has| |#2| (-171)))) (-2829 (($ $ (-855 |#1|)) NIL) (($ $ (-635 (-855 |#1|))) NIL) (($ $ (-855 |#1|) (-762)) NIL) (($ $ (-635 (-855 |#1|)) (-635 (-762))) NIL)) (-4323 (((-239 (-2755 |#1|) (-762)) $) NIL) (((-762) $ (-855 |#1|)) NIL) (((-635 (-762)) $ (-635 (-855 |#1|))) NIL)) (-3224 (((-882 (-378)) $) NIL (-12 (|has| (-855 |#1|) (-606 (-882 (-378)))) (|has| |#2| (-606 (-882 (-378)))))) (((-882 (-558)) $) NIL (-12 (|has| (-855 |#1|) (-606 (-882 (-558)))) (|has| |#2| (-606 (-882 (-558)))))) (((-534) $) NIL (-12 (|has| (-855 |#1|) (-606 (-534))) (|has| |#2| (-606 (-534)))))) (-2504 ((|#2| $) NIL (|has| |#2| (-450))) (($ $ (-855 |#1|)) NIL (|has| |#2| (-450)))) (-3709 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-899))))) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ |#2|) NIL) (($ (-855 |#1|)) NIL) (($ (-406 (-558))) NIL (-3998 (|has| |#2| (-38 (-406 (-558)))) (|has| |#2| (-1028 (-406 (-558)))))) (($ $) NIL (|has| |#2| (-550)))) (-2583 (((-635 |#2|) $) NIL)) (-3736 ((|#2| $ (-239 (-2755 |#1|) (-762))) NIL) (($ $ (-855 |#1|) (-762)) NIL) (($ $ (-635 (-855 |#1|)) (-635 (-762))) NIL)) (-3698 (((-3 $ "failed") $) NIL (-3998 (-12 (|has| $ (-144)) (|has| |#2| (-899))) (|has| |#2| (-144))))) (-2542 (((-762)) NIL)) (-3879 (($ $ $ (-762)) NIL (|has| |#2| (-171)))) (-1870 (((-112) $ $) NIL (|has| |#2| (-550)))) (-2131 (($) NIL T CONST)) (-2142 (($) NIL T CONST)) (-1866 (($ $ (-855 |#1|)) NIL) (($ $ (-635 (-855 |#1|))) NIL) (($ $ (-855 |#1|) (-762)) NIL) (($ $ (-635 (-855 |#1|)) (-635 (-762))) NIL)) (-1747 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1720 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1683 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1705 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1810 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL (|has| |#2| (-38 (-406 (-558))))) (($ (-406 (-558)) $) NIL (|has| |#2| (-38 (-406 (-558))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-246 |#1| |#2|) (-13 (-939 |#2| (-239 (-2755 |#1|) (-762)) (-855 |#1|)) (-10 -8 (-15 -3176 ($ $ (-635 (-558)))))) (-635 (-1163)) (-1039)) (T -246))
+((-3176 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-246 *3 *4)) (-14 *3 (-635 (-1163))) (-4 *4 (-1039)))))
+(-13 (-939 |#2| (-239 (-2755 |#1|) (-762)) (-855 |#1|)) (-10 -8 (-15 -3176 ($ $ (-635 (-558))))))
+((-3207 (((-112) $ $) NIL)) (-2058 (((-1251) $) 17)) (-2669 (((-182) $) 11)) (-2658 (($ (-182)) 12)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-2250 (((-248) $) 7)) (-3220 (((-853) $) 9)) (-1683 (((-112) $ $) 15)))
+(((-247) (-13 (-1087) (-10 -8 (-15 -2250 ((-248) $)) (-15 -2669 ((-182) $)) (-15 -2658 ($ (-182))) (-15 -2058 ((-1251) $))))) (T -247))
+((-2250 (*1 *2 *1) (-12 (-5 *2 (-248)) (-5 *1 (-247)))) (-2669 (*1 *2 *1) (-12 (-5 *2 (-182)) (-5 *1 (-247)))) (-2658 (*1 *1 *2) (-12 (-5 *2 (-182)) (-5 *1 (-247)))) (-2058 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-247)))))
+(-13 (-1087) (-10 -8 (-15 -2250 ((-248) $)) (-15 -2669 ((-182) $)) (-15 -2658 ($ (-182))) (-15 -2058 ((-1251) $))))
+((-3207 (((-112) $ $) NIL)) (-1323 (((-504) $) NIL)) (-4310 (((-1145) $) NIL)) (-3470 (((-185) $) NIL)) (-2975 (((-1107) $) NIL)) (-3208 (((-635 (-112)) $) NIL)) (-3220 (((-853) $) NIL) (((-186) $) 6)) (-1546 (((-55) $) NIL)) (-1683 (((-112) $ $) NIL)))
+(((-248) (-13 (-184) (-605 (-186)))) (T -248))
+NIL
+(-13 (-184) (-605 (-186)))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-4027 (($ (-911)) NIL (|has| |#4| (-1039)))) (-3869 (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4383)))) (-2738 (($ $ $) NIL (|has| |#4| (-784)))) (-2089 (((-3 $ "failed") $ $) NIL)) (-3026 (((-112) $ (-762)) NIL)) (-2276 (((-762)) NIL (|has| |#4| (-367)))) (-1397 (((-558) $) NIL (|has| |#4| (-839)))) (-1532 ((|#4| $ (-558) |#4|) NIL (|has| $ (-6 -4383)))) (-1816 (($) NIL T CONST)) (-3069 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1087))) (((-3 (-558) "failed") $) NIL (-12 (|has| |#4| (-1028 (-558))) (|has| |#4| (-1087)))) (((-3 (-406 (-558)) "failed") $) NIL (-12 (|has| |#4| (-1028 (-406 (-558)))) (|has| |#4| (-1087))))) (-1863 ((|#4| $) NIL (|has| |#4| (-1087))) (((-558) $) NIL (-12 (|has| |#4| (-1028 (-558))) (|has| |#4| (-1087)))) (((-406 (-558)) $) NIL (-12 (|has| |#4| (-1028 (-406 (-558)))) (|has| |#4| (-1087))))) (-3216 (((-2 (|:| -3683 (-679 |#4|)) (|:| |vec| (-1246 |#4|))) (-679 $) (-1246 $)) NIL (|has| |#4| (-1039))) (((-679 |#4|) (-679 $)) NIL (|has| |#4| (-1039))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (-12 (|has| |#4| (-631 (-558))) (|has| |#4| (-1039)))) (((-679 (-558)) (-679 $)) NIL (-12 (|has| |#4| (-631 (-558))) (|has| |#4| (-1039))))) (-2588 (((-3 $ "failed") $) NIL (-3998 (-12 (|has| |#4| (-232)) (|has| |#4| (-1039))) (-12 (|has| |#4| (-631 (-558))) (|has| |#4| (-1039))) (|has| |#4| (-717)) (-12 (|has| |#4| (-890 (-1163))) (|has| |#4| (-1039)))))) (-2424 (($) NIL (|has| |#4| (-367)))) (-1817 ((|#4| $ (-558) |#4|) NIL (|has| $ (-6 -4383)))) (-1746 ((|#4| $ (-558)) NIL)) (-2045 (((-112) $) NIL (|has| |#4| (-839)))) (-2240 (((-635 |#4|) $) NIL (|has| $ (-6 -4382)))) (-2035 (((-112) $) NIL (-3998 (-12 (|has| |#4| (-232)) (|has| |#4| (-1039))) (-12 (|has| |#4| (-631 (-558))) (|has| |#4| (-1039))) (|has| |#4| (-717)) (-12 (|has| |#4| (-890 (-1163))) (|has| |#4| (-1039)))))) (-2055 (((-112) $) NIL (|has| |#4| (-839)))) (-2986 (((-112) $ (-762)) NIL)) (-3889 (((-558) $) NIL (|has| (-558) (-841)))) (-3910 (($ $ $) NIL (-3998 (|has| |#4| (-784)) (|has| |#4| (-839))))) (-2122 (((-635 |#4|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#4| (-1087))))) (-3899 (((-558) $) NIL (|has| (-558) (-841)))) (-3542 (($ $ $) NIL (-3998 (|has| |#4| (-784)) (|has| |#4| (-839))))) (-1807 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#4| |#4|) $) NIL)) (-2637 (((-911) $) NIL (|has| |#4| (-367)))) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL)) (-3920 (((-635 (-558)) $) NIL)) (-3929 (((-112) (-558) $) NIL)) (-2851 (($ (-911)) NIL (|has| |#4| (-367)))) (-2975 (((-1107) $) NIL)) (-2305 ((|#4| $) NIL (|has| (-558) (-841)))) (-3880 (($ $ |#4|) NIL (|has| $ (-6 -4383)))) (-3266 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-293 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-635 |#4|) (-635 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3908 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#4| (-1087))))) (-3937 (((-635 |#4|) $) NIL)) (-3375 (((-112) $) NIL)) (-2083 (($) NIL)) (-2195 ((|#4| $ (-558) |#4|) NIL) ((|#4| $ (-558)) 12)) (-2744 ((|#4| $ $) NIL (|has| |#4| (-1039)))) (-2572 (($ (-1246 |#4|)) NIL)) (-2148 (((-133)) NIL (|has| |#4| (-362)))) (-2829 (($ $ (-1 |#4| |#4|) (-762)) NIL (|has| |#4| (-1039))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1039))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#4| (-890 (-1163))) (|has| |#4| (-1039)))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#4| (-890 (-1163))) (|has| |#4| (-1039)))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#4| (-890 (-1163))) (|has| |#4| (-1039)))) (($ $ (-1163)) NIL (-12 (|has| |#4| (-890 (-1163))) (|has| |#4| (-1039)))) (($ $ (-762)) NIL (-12 (|has| |#4| (-232)) (|has| |#4| (-1039)))) (($ $) NIL (-12 (|has| |#4| (-232)) (|has| |#4| (-1039))))) (-2988 (((-762) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4382))) (((-762) |#4| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#4| (-1087))))) (-1553 (($ $) NIL)) (-3220 (((-1246 |#4|) $) NIL) (((-853) $) NIL) (($ |#4|) NIL (|has| |#4| (-1087))) (($ (-558)) NIL (-3998 (-12 (|has| |#4| (-1028 (-558))) (|has| |#4| (-1087))) (|has| |#4| (-1039)))) (($ (-406 (-558))) NIL (-12 (|has| |#4| (-1028 (-406 (-558)))) (|has| |#4| (-1087))))) (-2542 (((-762)) NIL (|has| |#4| (-1039)))) (-3277 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4382)))) (-3190 (($ $) NIL (|has| |#4| (-839)))) (-2131 (($) NIL T CONST)) (-2142 (($) NIL (-3998 (-12 (|has| |#4| (-232)) (|has| |#4| (-1039))) (-12 (|has| |#4| (-631 (-558))) (|has| |#4| (-1039))) (|has| |#4| (-717)) (-12 (|has| |#4| (-890 (-1163))) (|has| |#4| (-1039)))) CONST)) (-1866 (($ $ (-1 |#4| |#4|) (-762)) NIL (|has| |#4| (-1039))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1039))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#4| (-890 (-1163))) (|has| |#4| (-1039)))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#4| (-890 (-1163))) (|has| |#4| (-1039)))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#4| (-890 (-1163))) (|has| |#4| (-1039)))) (($ $ (-1163)) NIL (-12 (|has| |#4| (-890 (-1163))) (|has| |#4| (-1039)))) (($ $ (-762)) NIL (-12 (|has| |#4| (-232)) (|has| |#4| (-1039)))) (($ $) NIL (-12 (|has| |#4| (-232)) (|has| |#4| (-1039))))) (-1747 (((-112) $ $) NIL (-3998 (|has| |#4| (-784)) (|has| |#4| (-839))))) (-1720 (((-112) $ $) NIL (-3998 (|has| |#4| (-784)) (|has| |#4| (-839))))) (-1683 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL (-3998 (|has| |#4| (-784)) (|has| |#4| (-839))))) (-1705 (((-112) $ $) NIL (-3998 (|has| |#4| (-784)) (|has| |#4| (-839))))) (-1810 (($ $ |#4|) NIL (|has| |#4| (-362)))) (-1798 (($ $ $) NIL) (($ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-762)) NIL (-3998 (-12 (|has| |#4| (-232)) (|has| |#4| (-1039))) (-12 (|has| |#4| (-631 (-558))) (|has| |#4| (-1039))) (|has| |#4| (-717)) (-12 (|has| |#4| (-890 (-1163))) (|has| |#4| (-1039))))) (($ $ (-911)) NIL (-3998 (-12 (|has| |#4| (-232)) (|has| |#4| (-1039))) (-12 (|has| |#4| (-631 (-558))) (|has| |#4| (-1039))) (|has| |#4| (-717)) (-12 (|has| |#4| (-890 (-1163))) (|has| |#4| (-1039)))))) (* (($ |#2| $) 14) (($ (-558) $) NIL) (($ (-762) $) NIL) (($ (-911) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-717))) (($ |#4| $) NIL (|has| |#4| (-717))) (($ $ $) NIL (-3998 (-12 (|has| |#4| (-232)) (|has| |#4| (-1039))) (-12 (|has| |#4| (-631 (-558))) (|has| |#4| (-1039))) (|has| |#4| (-717)) (-12 (|has| |#4| (-890 (-1163))) (|has| |#4| (-1039)))))) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-249 |#1| |#2| |#3| |#4|) (-13 (-237 |#1| |#4|) (-638 |#2|) (-638 |#3|)) (-911) (-1039) (-1110 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-638 |#2|)) (T -249))
+NIL
+(-13 (-237 |#1| |#4|) (-638 |#2|) (-638 |#3|))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-4027 (($ (-911)) NIL (|has| |#3| (-1039)))) (-3869 (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4383)))) (-2738 (($ $ $) NIL (|has| |#3| (-784)))) (-2089 (((-3 $ "failed") $ $) NIL)) (-3026 (((-112) $ (-762)) NIL)) (-2276 (((-762)) NIL (|has| |#3| (-367)))) (-1397 (((-558) $) NIL (|has| |#3| (-839)))) (-1532 ((|#3| $ (-558) |#3|) NIL (|has| $ (-6 -4383)))) (-1816 (($) NIL T CONST)) (-3069 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1087))) (((-3 (-558) "failed") $) NIL (-12 (|has| |#3| (-1028 (-558))) (|has| |#3| (-1087)))) (((-3 (-406 (-558)) "failed") $) NIL (-12 (|has| |#3| (-1028 (-406 (-558)))) (|has| |#3| (-1087))))) (-1863 ((|#3| $) NIL (|has| |#3| (-1087))) (((-558) $) NIL (-12 (|has| |#3| (-1028 (-558))) (|has| |#3| (-1087)))) (((-406 (-558)) $) NIL (-12 (|has| |#3| (-1028 (-406 (-558)))) (|has| |#3| (-1087))))) (-3216 (((-2 (|:| -3683 (-679 |#3|)) (|:| |vec| (-1246 |#3|))) (-679 $) (-1246 $)) NIL (|has| |#3| (-1039))) (((-679 |#3|) (-679 $)) NIL (|has| |#3| (-1039))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (-12 (|has| |#3| (-631 (-558))) (|has| |#3| (-1039)))) (((-679 (-558)) (-679 $)) NIL (-12 (|has| |#3| (-631 (-558))) (|has| |#3| (-1039))))) (-2588 (((-3 $ "failed") $) NIL (-3998 (-12 (|has| |#3| (-232)) (|has| |#3| (-1039))) (-12 (|has| |#3| (-631 (-558))) (|has| |#3| (-1039))) (|has| |#3| (-717)) (-12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039)))))) (-2424 (($) NIL (|has| |#3| (-367)))) (-1817 ((|#3| $ (-558) |#3|) NIL (|has| $ (-6 -4383)))) (-1746 ((|#3| $ (-558)) NIL)) (-2045 (((-112) $) NIL (|has| |#3| (-839)))) (-2240 (((-635 |#3|) $) NIL (|has| $ (-6 -4382)))) (-2035 (((-112) $) NIL (-3998 (-12 (|has| |#3| (-232)) (|has| |#3| (-1039))) (-12 (|has| |#3| (-631 (-558))) (|has| |#3| (-1039))) (|has| |#3| (-717)) (-12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039)))))) (-2055 (((-112) $) NIL (|has| |#3| (-839)))) (-2986 (((-112) $ (-762)) NIL)) (-3889 (((-558) $) NIL (|has| (-558) (-841)))) (-3910 (($ $ $) NIL (-3998 (|has| |#3| (-784)) (|has| |#3| (-839))))) (-2122 (((-635 |#3|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#3| (-1087))))) (-3899 (((-558) $) NIL (|has| (-558) (-841)))) (-3542 (($ $ $) NIL (-3998 (|has| |#3| (-784)) (|has| |#3| (-839))))) (-1807 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#3| |#3|) $) NIL)) (-2637 (((-911) $) NIL (|has| |#3| (-367)))) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL)) (-3920 (((-635 (-558)) $) NIL)) (-3929 (((-112) (-558) $) NIL)) (-2851 (($ (-911)) NIL (|has| |#3| (-367)))) (-2975 (((-1107) $) NIL)) (-2305 ((|#3| $) NIL (|has| (-558) (-841)))) (-3880 (($ $ |#3|) NIL (|has| $ (-6 -4383)))) (-3266 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#3|))) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087)))) (($ $ (-293 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087)))) (($ $ (-635 |#3|) (-635 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3908 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#3| (-1087))))) (-3937 (((-635 |#3|) $) NIL)) (-3375 (((-112) $) NIL)) (-2083 (($) NIL)) (-2195 ((|#3| $ (-558) |#3|) NIL) ((|#3| $ (-558)) 11)) (-2744 ((|#3| $ $) NIL (|has| |#3| (-1039)))) (-2572 (($ (-1246 |#3|)) NIL)) (-2148 (((-133)) NIL (|has| |#3| (-362)))) (-2829 (($ $ (-1 |#3| |#3|) (-762)) NIL (|has| |#3| (-1039))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1039))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039)))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039)))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039)))) (($ $ (-1163)) NIL (-12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039)))) (($ $ (-762)) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1039)))) (($ $) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1039))))) (-2988 (((-762) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4382))) (((-762) |#3| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#3| (-1087))))) (-1553 (($ $) NIL)) (-3220 (((-1246 |#3|) $) NIL) (((-853) $) NIL) (($ |#3|) NIL (|has| |#3| (-1087))) (($ (-558)) NIL (-3998 (-12 (|has| |#3| (-1028 (-558))) (|has| |#3| (-1087))) (|has| |#3| (-1039)))) (($ (-406 (-558))) NIL (-12 (|has| |#3| (-1028 (-406 (-558)))) (|has| |#3| (-1087))))) (-2542 (((-762)) NIL (|has| |#3| (-1039)))) (-3277 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4382)))) (-3190 (($ $) NIL (|has| |#3| (-839)))) (-2131 (($) NIL T CONST)) (-2142 (($) NIL (-3998 (-12 (|has| |#3| (-232)) (|has| |#3| (-1039))) (-12 (|has| |#3| (-631 (-558))) (|has| |#3| (-1039))) (|has| |#3| (-717)) (-12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039)))) CONST)) (-1866 (($ $ (-1 |#3| |#3|) (-762)) NIL (|has| |#3| (-1039))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1039))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039)))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039)))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039)))) (($ $ (-1163)) NIL (-12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039)))) (($ $ (-762)) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1039)))) (($ $) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1039))))) (-1747 (((-112) $ $) NIL (-3998 (|has| |#3| (-784)) (|has| |#3| (-839))))) (-1720 (((-112) $ $) NIL (-3998 (|has| |#3| (-784)) (|has| |#3| (-839))))) (-1683 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL (-3998 (|has| |#3| (-784)) (|has| |#3| (-839))))) (-1705 (((-112) $ $) NIL (-3998 (|has| |#3| (-784)) (|has| |#3| (-839))))) (-1810 (($ $ |#3|) NIL (|has| |#3| (-362)))) (-1798 (($ $ $) NIL) (($ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-762)) NIL (-3998 (-12 (|has| |#3| (-232)) (|has| |#3| (-1039))) (-12 (|has| |#3| (-631 (-558))) (|has| |#3| (-1039))) (|has| |#3| (-717)) (-12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039))))) (($ $ (-911)) NIL (-3998 (-12 (|has| |#3| (-232)) (|has| |#3| (-1039))) (-12 (|has| |#3| (-631 (-558))) (|has| |#3| (-1039))) (|has| |#3| (-717)) (-12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039)))))) (* (($ |#2| $) 13) (($ (-558) $) NIL) (($ (-762) $) NIL) (($ (-911) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-717))) (($ |#3| $) NIL (|has| |#3| (-717))) (($ $ $) NIL (-3998 (-12 (|has| |#3| (-232)) (|has| |#3| (-1039))) (-12 (|has| |#3| (-631 (-558))) (|has| |#3| (-1039))) (|has| |#3| (-717)) (-12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039)))))) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-250 |#1| |#2| |#3|) (-13 (-237 |#1| |#3|) (-638 |#2|)) (-762) (-1039) (-638 |#2|)) (T -250))
+NIL
+(-13 (-237 |#1| |#3|) (-638 |#2|))
+((-2702 (((-635 (-762)) $) 47) (((-635 (-762)) $ |#3|) 50)) (-1800 (((-762) $) 49) (((-762) $ |#3|) 52)) (-2680 (($ $) 65)) (-3069 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL) (((-3 (-558) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-3449 (((-762) $ |#3|) 39) (((-762) $) 36)) (-1812 (((-1 $ (-762)) |#3|) 15) (((-1 $ (-762)) $) 77)) (-4096 ((|#4| $) 58)) (-2690 (((-112) $) 56)) (-2750 (($ $) 64)) (-2554 (($ $ (-635 (-293 $))) 97) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-635 |#4|) (-635 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-635 |#4|) (-635 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-635 |#3|) (-635 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-635 |#3|) (-635 |#2|)) 84)) (-2829 (($ $ |#4|) NIL) (($ $ (-635 |#4|)) NIL) (($ $ |#4| (-762)) NIL) (($ $ (-635 |#4|) (-635 (-762))) NIL) (($ $) NIL) (($ $ (-762)) NIL) (($ $ (-1163)) NIL) (($ $ (-635 (-1163))) NIL) (($ $ (-1163) (-762)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL) (($ $ (-1 |#2| |#2|) (-762)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-2713 (((-635 |#3|) $) 75)) (-4323 ((|#5| $) NIL) (((-762) $ |#4|) NIL) (((-635 (-762)) $ (-635 |#4|)) NIL) (((-762) $ |#3|) 44)) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-406 (-558))) NIL) (($ $) NIL)))
+(((-251 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3220 (|#1| |#1|)) (-15 -3220 (|#1| (-406 (-558)))) (-15 -2554 (|#1| |#1| (-635 |#3|) (-635 |#2|))) (-15 -2554 (|#1| |#1| |#3| |#2|)) (-15 -2554 (|#1| |#1| (-635 |#3|) (-635 |#1|))) (-15 -2554 (|#1| |#1| |#3| |#1|)) (-15 -1812 ((-1 |#1| (-762)) |#1|)) (-15 -2680 (|#1| |#1|)) (-15 -2750 (|#1| |#1|)) (-15 -4096 (|#4| |#1|)) (-15 -2690 ((-112) |#1|)) (-15 -1800 ((-762) |#1| |#3|)) (-15 -2702 ((-635 (-762)) |#1| |#3|)) (-15 -1800 ((-762) |#1|)) (-15 -2702 ((-635 (-762)) |#1|)) (-15 -4323 ((-762) |#1| |#3|)) (-15 -3449 ((-762) |#1|)) (-15 -3449 ((-762) |#1| |#3|)) (-15 -2713 ((-635 |#3|) |#1|)) (-15 -1812 ((-1 |#1| (-762)) |#3|)) (-15 -3220 (|#1| |#3|)) (-15 -3069 ((-3 |#3| "failed") |#1|)) (-15 -2829 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2829 (|#1| |#1| (-1 |#2| |#2|) (-762))) (-15 -2829 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 -2829 (|#1| |#1| (-1163) (-762))) (-15 -2829 (|#1| |#1| (-635 (-1163)))) (-15 -2829 (|#1| |#1| (-1163))) (-15 -2829 (|#1| |#1| (-762))) (-15 -2829 (|#1| |#1|)) (-15 -4323 ((-635 (-762)) |#1| (-635 |#4|))) (-15 -4323 ((-762) |#1| |#4|)) (-15 -3220 (|#1| |#4|)) (-15 -3069 ((-3 |#4| "failed") |#1|)) (-15 -2554 (|#1| |#1| (-635 |#4|) (-635 |#1|))) (-15 -2554 (|#1| |#1| |#4| |#1|)) (-15 -2554 (|#1| |#1| (-635 |#4|) (-635 |#2|))) (-15 -2554 (|#1| |#1| |#4| |#2|)) (-15 -2554 (|#1| |#1| (-635 |#1|) (-635 |#1|))) (-15 -2554 (|#1| |#1| |#1| |#1|)) (-15 -2554 (|#1| |#1| (-293 |#1|))) (-15 -2554 (|#1| |#1| (-635 (-293 |#1|)))) (-15 -4323 (|#5| |#1|)) (-15 -3069 ((-3 (-558) "failed") |#1|)) (-15 -3069 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -3069 ((-3 |#2| "failed") |#1|)) (-15 -3220 (|#1| |#2|)) (-15 -2829 (|#1| |#1| (-635 |#4|) (-635 (-762)))) (-15 -2829 (|#1| |#1| |#4| (-762))) (-15 -2829 (|#1| |#1| (-635 |#4|))) (-15 -2829 (|#1| |#1| |#4|)) (-15 -3220 (|#1| (-558))) (-15 -3220 ((-853) |#1|))) (-252 |#2| |#3| |#4| |#5|) (-1039) (-841) (-265 |#3|) (-784)) (T -251))
+NIL
+(-10 -8 (-15 -3220 (|#1| |#1|)) (-15 -3220 (|#1| (-406 (-558)))) (-15 -2554 (|#1| |#1| (-635 |#3|) (-635 |#2|))) (-15 -2554 (|#1| |#1| |#3| |#2|)) (-15 -2554 (|#1| |#1| (-635 |#3|) (-635 |#1|))) (-15 -2554 (|#1| |#1| |#3| |#1|)) (-15 -1812 ((-1 |#1| (-762)) |#1|)) (-15 -2680 (|#1| |#1|)) (-15 -2750 (|#1| |#1|)) (-15 -4096 (|#4| |#1|)) (-15 -2690 ((-112) |#1|)) (-15 -1800 ((-762) |#1| |#3|)) (-15 -2702 ((-635 (-762)) |#1| |#3|)) (-15 -1800 ((-762) |#1|)) (-15 -2702 ((-635 (-762)) |#1|)) (-15 -4323 ((-762) |#1| |#3|)) (-15 -3449 ((-762) |#1|)) (-15 -3449 ((-762) |#1| |#3|)) (-15 -2713 ((-635 |#3|) |#1|)) (-15 -1812 ((-1 |#1| (-762)) |#3|)) (-15 -3220 (|#1| |#3|)) (-15 -3069 ((-3 |#3| "failed") |#1|)) (-15 -2829 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2829 (|#1| |#1| (-1 |#2| |#2|) (-762))) (-15 -2829 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 -2829 (|#1| |#1| (-1163) (-762))) (-15 -2829 (|#1| |#1| (-635 (-1163)))) (-15 -2829 (|#1| |#1| (-1163))) (-15 -2829 (|#1| |#1| (-762))) (-15 -2829 (|#1| |#1|)) (-15 -4323 ((-635 (-762)) |#1| (-635 |#4|))) (-15 -4323 ((-762) |#1| |#4|)) (-15 -3220 (|#1| |#4|)) (-15 -3069 ((-3 |#4| "failed") |#1|)) (-15 -2554 (|#1| |#1| (-635 |#4|) (-635 |#1|))) (-15 -2554 (|#1| |#1| |#4| |#1|)) (-15 -2554 (|#1| |#1| (-635 |#4|) (-635 |#2|))) (-15 -2554 (|#1| |#1| |#4| |#2|)) (-15 -2554 (|#1| |#1| (-635 |#1|) (-635 |#1|))) (-15 -2554 (|#1| |#1| |#1| |#1|)) (-15 -2554 (|#1| |#1| (-293 |#1|))) (-15 -2554 (|#1| |#1| (-635 (-293 |#1|)))) (-15 -4323 (|#5| |#1|)) (-15 -3069 ((-3 (-558) "failed") |#1|)) (-15 -3069 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -3069 ((-3 |#2| "failed") |#1|)) (-15 -3220 (|#1| |#2|)) (-15 -2829 (|#1| |#1| (-635 |#4|) (-635 (-762)))) (-15 -2829 (|#1| |#1| |#4| (-762))) (-15 -2829 (|#1| |#1| (-635 |#4|))) (-15 -2829 (|#1| |#1| |#4|)) (-15 -3220 (|#1| (-558))) (-15 -3220 ((-853) |#1|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2702 (((-635 (-762)) $) 214) (((-635 (-762)) $ |#2|) 212)) (-1800 (((-762) $) 213) (((-762) $ |#2|) 211)) (-2671 (((-635 |#3|) $) 110)) (-2492 (((-1159 $) $ |#3|) 125) (((-1159 |#1|) $) 124)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 87 (|has| |#1| (-550)))) (-1881 (($ $) 88 (|has| |#1| (-550)))) (-1857 (((-112) $) 90 (|has| |#1| (-550)))) (-2513 (((-762) $) 112) (((-762) $ (-635 |#3|)) 111)) (-2089 (((-3 $ "failed") $ $) 19)) (-3748 (((-417 (-1159 $)) (-1159 $)) 100 (|has| |#1| (-899)))) (-3465 (($ $) 98 (|has| |#1| (-450)))) (-1380 (((-417 $) $) 97 (|has| |#1| (-450)))) (-3719 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) 103 (|has| |#1| (-899)))) (-2680 (($ $) 207)) (-1816 (($) 17 T CONST)) (-3069 (((-3 |#1| "failed") $) 164) (((-3 (-406 (-558)) "failed") $) 161 (|has| |#1| (-1028 (-406 (-558))))) (((-3 (-558) "failed") $) 159 (|has| |#1| (-1028 (-558)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-1863 ((|#1| $) 163) (((-406 (-558)) $) 162 (|has| |#1| (-1028 (-406 (-558))))) (((-558) $) 160 (|has| |#1| (-1028 (-558)))) ((|#3| $) 137) ((|#2| $) 222)) (-3320 (($ $ $ |#3|) 108 (|has| |#1| (-171)))) (-2490 (($ $) 154)) (-3216 (((-679 (-558)) (-679 $)) 134 (|has| |#1| (-631 (-558)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) 133 (|has| |#1| (-631 (-558)))) (((-2 (|:| -3683 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) 132) (((-679 |#1|) (-679 $)) 131)) (-2588 (((-3 $ "failed") $) 33)) (-2782 (($ $) 176 (|has| |#1| (-450))) (($ $ |#3|) 105 (|has| |#1| (-450)))) (-2476 (((-635 $) $) 109)) (-3031 (((-112) $) 96 (|has| |#1| (-899)))) (-3888 (($ $ |#1| |#4| $) 172)) (-2269 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) 84 (-12 (|has| |#3| (-876 (-378))) (|has| |#1| (-876 (-378))))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) 83 (-12 (|has| |#3| (-876 (-558))) (|has| |#1| (-876 (-558)))))) (-3449 (((-762) $ |#2|) 217) (((-762) $) 216)) (-2035 (((-112) $) 31)) (-2110 (((-762) $) 169)) (-2659 (($ (-1159 |#1|) |#3|) 117) (($ (-1159 $) |#3|) 116)) (-2536 (((-635 $) $) 126)) (-4238 (((-112) $) 152)) (-2648 (($ |#1| |#4|) 153) (($ $ |#3| (-762)) 119) (($ $ (-635 |#3|) (-635 (-762))) 118)) (-3381 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $ |#3|) 120)) (-2524 ((|#4| $) 170) (((-762) $ |#3|) 122) (((-635 (-762)) $ (-635 |#3|)) 121)) (-3910 (($ $ $) 79 (|has| |#1| (-841)))) (-3542 (($ $ $) 78 (|has| |#1| (-841)))) (-3898 (($ (-1 |#4| |#4|) $) 171)) (-3167 (($ (-1 |#1| |#1|) $) 151)) (-1812 (((-1 $ (-762)) |#2|) 219) (((-1 $ (-762)) $) 206 (|has| |#1| (-232)))) (-3399 (((-3 |#3| "failed") $) 123)) (-2451 (($ $) 149)) (-2463 ((|#1| $) 148)) (-4096 ((|#3| $) 209)) (-2665 (($ (-635 $)) 94 (|has| |#1| (-450))) (($ $ $) 93 (|has| |#1| (-450)))) (-4310 (((-1145) $) 9)) (-2690 (((-112) $) 210)) (-2560 (((-3 (-635 $) "failed") $) 114)) (-2548 (((-3 (-635 $) "failed") $) 115)) (-2575 (((-3 (-2 (|:| |var| |#3|) (|:| -1951 (-762))) "failed") $) 113)) (-2750 (($ $) 208)) (-2975 (((-1107) $) 10)) (-2429 (((-112) $) 166)) (-2440 ((|#1| $) 167)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) 95 (|has| |#1| (-450)))) (-2699 (($ (-635 $)) 92 (|has| |#1| (-450))) (($ $ $) 91 (|has| |#1| (-450)))) (-3728 (((-417 (-1159 $)) (-1159 $)) 102 (|has| |#1| (-899)))) (-3738 (((-417 (-1159 $)) (-1159 $)) 101 (|has| |#1| (-899)))) (-2522 (((-417 $) $) 99 (|has| |#1| (-899)))) (-3983 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-550))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-550)))) (-2554 (($ $ (-635 (-293 $))) 145) (($ $ (-293 $)) 144) (($ $ $ $) 143) (($ $ (-635 $) (-635 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-635 |#3|) (-635 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-635 |#3|) (-635 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-232))) (($ $ (-635 |#2|) (-635 $)) 204 (|has| |#1| (-232))) (($ $ |#2| |#1|) 203 (|has| |#1| (-232))) (($ $ (-635 |#2|) (-635 |#1|)) 202 (|has| |#1| (-232)))) (-3331 (($ $ |#3|) 107 (|has| |#1| (-171)))) (-2829 (($ $ |#3|) 42) (($ $ (-635 |#3|)) 41) (($ $ |#3| (-762)) 40) (($ $ (-635 |#3|) (-635 (-762))) 39) (($ $) 238 (|has| |#1| (-232))) (($ $ (-762)) 236 (|has| |#1| (-232))) (($ $ (-1163)) 234 (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) 233 (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) 232 (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) 231 (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-2713 (((-635 |#2|) $) 218)) (-4323 ((|#4| $) 150) (((-762) $ |#3|) 130) (((-635 (-762)) $ (-635 |#3|)) 129) (((-762) $ |#2|) 215)) (-3224 (((-882 (-378)) $) 82 (-12 (|has| |#3| (-606 (-882 (-378)))) (|has| |#1| (-606 (-882 (-378)))))) (((-882 (-558)) $) 81 (-12 (|has| |#3| (-606 (-882 (-558)))) (|has| |#1| (-606 (-882 (-558)))))) (((-534) $) 80 (-12 (|has| |#3| (-606 (-534))) (|has| |#1| (-606 (-534)))))) (-2504 ((|#1| $) 175 (|has| |#1| (-450))) (($ $ |#3|) 106 (|has| |#1| (-450)))) (-3709 (((-3 (-1246 $) "failed") (-679 $)) 104 (-2084 (|has| $ (-144)) (|has| |#1| (-899))))) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ |#1|) 165) (($ |#3|) 135) (($ |#2|) 220) (($ (-406 (-558))) 72 (-3998 (|has| |#1| (-1028 (-406 (-558)))) (|has| |#1| (-38 (-406 (-558)))))) (($ $) 85 (|has| |#1| (-550)))) (-2583 (((-635 |#1|) $) 168)) (-3736 ((|#1| $ |#4|) 155) (($ $ |#3| (-762)) 128) (($ $ (-635 |#3|) (-635 (-762))) 127)) (-3698 (((-3 $ "failed") $) 73 (-3998 (-2084 (|has| $ (-144)) (|has| |#1| (-899))) (|has| |#1| (-144))))) (-2542 (((-762)) 28)) (-3879 (($ $ $ (-762)) 173 (|has| |#1| (-171)))) (-1870 (((-112) $ $) 89 (|has| |#1| (-550)))) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1866 (($ $ |#3|) 38) (($ $ (-635 |#3|)) 37) (($ $ |#3| (-762)) 36) (($ $ (-635 |#3|) (-635 (-762))) 35) (($ $) 237 (|has| |#1| (-232))) (($ $ (-762)) 235 (|has| |#1| (-232))) (($ $ (-1163)) 230 (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) 229 (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) 228 (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) 227 (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-1747 (((-112) $ $) 76 (|has| |#1| (-841)))) (-1720 (((-112) $ $) 75 (|has| |#1| (-841)))) (-1683 (((-112) $ $) 6)) (-1731 (((-112) $ $) 77 (|has| |#1| (-841)))) (-1705 (((-112) $ $) 74 (|has| |#1| (-841)))) (-1810 (($ $ |#1|) 156 (|has| |#1| (-362)))) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ (-406 (-558))) 158 (|has| |#1| (-38 (-406 (-558))))) (($ (-406 (-558)) $) 157 (|has| |#1| (-38 (-406 (-558))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(((-252 |#1| |#2| |#3| |#4|) (-139) (-1039) (-841) (-265 |t#2|) (-784)) (T -252))
+((-1812 (*1 *2 *3) (-12 (-4 *4 (-1039)) (-4 *3 (-841)) (-4 *5 (-265 *3)) (-4 *6 (-784)) (-5 *2 (-1 *1 (-762))) (-4 *1 (-252 *4 *3 *5 *6)))) (-2713 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-841)) (-4 *5 (-265 *4)) (-4 *6 (-784)) (-5 *2 (-635 *4)))) (-3449 (*1 *2 *1 *3) (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1039)) (-4 *3 (-841)) (-4 *5 (-265 *3)) (-4 *6 (-784)) (-5 *2 (-762)))) (-3449 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-841)) (-4 *5 (-265 *4)) (-4 *6 (-784)) (-5 *2 (-762)))) (-4323 (*1 *2 *1 *3) (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1039)) (-4 *3 (-841)) (-4 *5 (-265 *3)) (-4 *6 (-784)) (-5 *2 (-762)))) (-2702 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-841)) (-4 *5 (-265 *4)) (-4 *6 (-784)) (-5 *2 (-635 (-762))))) (-1800 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-841)) (-4 *5 (-265 *4)) (-4 *6 (-784)) (-5 *2 (-762)))) (-2702 (*1 *2 *1 *3) (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1039)) (-4 *3 (-841)) (-4 *5 (-265 *3)) (-4 *6 (-784)) (-5 *2 (-635 (-762))))) (-1800 (*1 *2 *1 *3) (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1039)) (-4 *3 (-841)) (-4 *5 (-265 *3)) (-4 *6 (-784)) (-5 *2 (-762)))) (-2690 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-841)) (-4 *5 (-265 *4)) (-4 *6 (-784)) (-5 *2 (-112)))) (-4096 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *2 *5)) (-4 *3 (-1039)) (-4 *4 (-841)) (-4 *5 (-784)) (-4 *2 (-265 *4)))) (-2750 (*1 *1 *1) (-12 (-4 *1 (-252 *2 *3 *4 *5)) (-4 *2 (-1039)) (-4 *3 (-841)) (-4 *4 (-265 *3)) (-4 *5 (-784)))) (-2680 (*1 *1 *1) (-12 (-4 *1 (-252 *2 *3 *4 *5)) (-4 *2 (-1039)) (-4 *3 (-841)) (-4 *4 (-265 *3)) (-4 *5 (-784)))) (-1812 (*1 *2 *1) (-12 (-4 *3 (-232)) (-4 *3 (-1039)) (-4 *4 (-841)) (-4 *5 (-265 *4)) (-4 *6 (-784)) (-5 *2 (-1 *1 (-762))) (-4 *1 (-252 *3 *4 *5 *6)))))
+(-13 (-939 |t#1| |t#4| |t#3|) (-230 |t#1|) (-1028 |t#2|) (-10 -8 (-15 -1812 ((-1 $ (-762)) |t#2|)) (-15 -2713 ((-635 |t#2|) $)) (-15 -3449 ((-762) $ |t#2|)) (-15 -3449 ((-762) $)) (-15 -4323 ((-762) $ |t#2|)) (-15 -2702 ((-635 (-762)) $)) (-15 -1800 ((-762) $)) (-15 -2702 ((-635 (-762)) $ |t#2|)) (-15 -1800 ((-762) $ |t#2|)) (-15 -2690 ((-112) $)) (-15 -4096 (|t#3| $)) (-15 -2750 ($ $)) (-15 -2680 ($ $)) (IF (|has| |t#1| (-232)) (PROGN (-6 (-512 |t#2| |t#1|)) (-6 (-512 |t#2| $)) (-6 (-308 $)) (-15 -1812 ((-1 $ (-762)) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -3998 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-406 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3998 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-608 #0#) -3998 (|has| |#1| (-1028 (-406 (-558)))) (|has| |#1| (-38 (-406 (-558))))) ((-608 (-558)) . T) ((-608 |#1|) . T) ((-608 |#2|) . T) ((-608 |#3|) . T) ((-608 $) -3998 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450))) ((-605 (-853)) . T) ((-171) -3998 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-606 (-534)) -12 (|has| |#1| (-606 (-534))) (|has| |#3| (-606 (-534)))) ((-606 (-882 (-378))) -12 (|has| |#1| (-606 (-882 (-378)))) (|has| |#3| (-606 (-882 (-378))))) ((-606 (-882 (-558))) -12 (|has| |#1| (-606 (-882 (-558)))) (|has| |#3| (-606 (-882 (-558))))) ((-230 |#1|) . T) ((-232) |has| |#1| (-232)) ((-289) -3998 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450))) ((-308 $) . T) ((-325 |#1| |#4|) . T) ((-376 |#1|) . T) ((-410 |#1|) . T) ((-450) -3998 (|has| |#1| (-899)) (|has| |#1| (-450))) ((-512 |#2| |#1|) |has| |#1| (-232)) ((-512 |#2| $) |has| |#1| (-232)) ((-512 |#3| |#1|) . T) ((-512 |#3| $) . T) ((-512 $ $) . T) ((-550) -3998 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450))) ((-638 #0#) |has| |#1| (-38 (-406 (-558)))) ((-638 |#1|) . T) ((-638 $) . T) ((-631 (-558)) |has| |#1| (-631 (-558))) ((-631 |#1|) . T) ((-708 #0#) |has| |#1| (-38 (-406 (-558)))) ((-708 |#1|) |has| |#1| (-171)) ((-708 $) -3998 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450))) ((-717) . T) ((-841) |has| |#1| (-841)) ((-890 (-1163)) |has| |#1| (-890 (-1163))) ((-890 |#3|) . T) ((-876 (-378)) -12 (|has| |#1| (-876 (-378))) (|has| |#3| (-876 (-378)))) ((-876 (-558)) -12 (|has| |#1| (-876 (-558))) (|has| |#3| (-876 (-558)))) ((-939 |#1| |#4| |#3|) . T) ((-899) |has| |#1| (-899)) ((-1028 (-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) ((-1028 (-558)) |has| |#1| (-1028 (-558))) ((-1028 |#1|) . T) ((-1028 |#2|) . T) ((-1028 |#3|) . T) ((-1045 #0#) |has| |#1| (-38 (-406 (-558)))) ((-1045 |#1|) . T) ((-1045 $) -3998 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1204) |has| |#1| (-899)))
+((-3207 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-1533 ((|#1| $) 54)) (-3072 ((|#1| $) 44)) (-3026 (((-112) $ (-762)) 8)) (-1816 (($) 7 T CONST)) (-3743 (($ $) 60)) (-3306 (($ $) 48)) (-3805 ((|#1| |#1| $) 46)) (-3796 ((|#1| $) 45)) (-2240 (((-635 |#1|) $) 30 (|has| $ (-6 -4382)))) (-2986 (((-112) $ (-762)) 9)) (-2122 (((-635 |#1|) $) 29 (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1807 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) 35)) (-2953 (((-112) $ (-762)) 10)) (-2880 (((-762) $) 61)) (-4310 (((-1145) $) 22 (|has| |#1| (-1087)))) (-1722 ((|#1| $) 39)) (-1512 ((|#1| |#1| $) 52)) (-1501 ((|#1| |#1| $) 51)) (-4328 (($ |#1| $) 40)) (-3382 (((-762) $) 55)) (-2975 (((-1107) $) 21 (|has| |#1| (-1087)))) (-3734 ((|#1| $) 62)) (-2734 ((|#1| $) 50)) (-2723 ((|#1| $) 49)) (-3524 ((|#1| $) 41)) (-3266 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) 14)) (-3762 ((|#1| |#1| $) 58)) (-3375 (((-112) $) 11)) (-2083 (($) 12)) (-3753 ((|#1| $) 59)) (-1543 (($) 57) (($ (-635 |#1|)) 56)) (-2494 (((-762) $) 43)) (-2988 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4382))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1553 (($ $) 13)) (-3220 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-1523 ((|#1| $) 53)) (-3534 (($ (-635 |#1|)) 42)) (-3724 ((|#1| $) 63)) (-3277 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-2755 (((-762) $) 6 (|has| $ (-6 -4382)))))
+(((-253 |#1|) (-139) (-1200)) (T -253))
+((-1543 (*1 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1200)))) (-1543 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1200)) (-4 *1 (-253 *3)))) (-3382 (*1 *2 *1) (-12 (-4 *1 (-253 *3)) (-4 *3 (-1200)) (-5 *2 (-762)))) (-1533 (*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1200)))) (-1523 (*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1200)))) (-1512 (*1 *2 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1200)))) (-1501 (*1 *2 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1200)))) (-2734 (*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1200)))) (-2723 (*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1200)))) (-3306 (*1 *1 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1200)))))
+(-13 (-1108 |t#1|) (-985 |t#1|) (-10 -8 (-15 -1543 ($)) (-15 -1543 ($ (-635 |t#1|))) (-15 -3382 ((-762) $)) (-15 -1533 (|t#1| $)) (-15 -1523 (|t#1| $)) (-15 -1512 (|t#1| |t#1| $)) (-15 -1501 (|t#1| |t#1| $)) (-15 -2734 (|t#1| $)) (-15 -2723 (|t#1| $)) (-15 -3306 ($ $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1087)) ((-605 (-853)) -3998 (|has| |#1| (-1087)) (|has| |#1| (-605 (-853)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-985 |#1|) . T) ((-1087) |has| |#1| (-1087)) ((-1108 |#1|) . T) ((-1200) . T))
+((-1554 (((-1 (-933 (-224)) (-224) (-224)) (-1 (-933 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224) (-224))) 139)) (-2004 (((-1120 (-224)) (-872 (-1 (-224) (-224) (-224))) (-1081 (-378)) (-1081 (-378))) 160) (((-1120 (-224)) (-872 (-1 (-224) (-224) (-224))) (-1081 (-378)) (-1081 (-378)) (-635 (-262))) 158) (((-1120 (-224)) (-1 (-933 (-224)) (-224) (-224)) (-1081 (-378)) (-1081 (-378))) 163) (((-1120 (-224)) (-1 (-933 (-224)) (-224) (-224)) (-1081 (-378)) (-1081 (-378)) (-635 (-262))) 159) (((-1120 (-224)) (-1 (-224) (-224) (-224)) (-1081 (-378)) (-1081 (-378))) 150) (((-1120 (-224)) (-1 (-224) (-224) (-224)) (-1081 (-378)) (-1081 (-378)) (-635 (-262))) 149) (((-1120 (-224)) (-1 (-933 (-224)) (-224)) (-1081 (-378))) 129) (((-1120 (-224)) (-1 (-933 (-224)) (-224)) (-1081 (-378)) (-635 (-262))) 127) (((-1120 (-224)) (-869 (-1 (-224) (-224))) (-1081 (-378))) 128) (((-1120 (-224)) (-869 (-1 (-224) (-224))) (-1081 (-378)) (-635 (-262))) 125)) (-1959 (((-1248) (-872 (-1 (-224) (-224) (-224))) (-1081 (-378)) (-1081 (-378))) 162) (((-1248) (-872 (-1 (-224) (-224) (-224))) (-1081 (-378)) (-1081 (-378)) (-635 (-262))) 161) (((-1248) (-1 (-933 (-224)) (-224) (-224)) (-1081 (-378)) (-1081 (-378))) 165) (((-1248) (-1 (-933 (-224)) (-224) (-224)) (-1081 (-378)) (-1081 (-378)) (-635 (-262))) 164) (((-1248) (-1 (-224) (-224) (-224)) (-1081 (-378)) (-1081 (-378))) 152) (((-1248) (-1 (-224) (-224) (-224)) (-1081 (-378)) (-1081 (-378)) (-635 (-262))) 151) (((-1248) (-1 (-933 (-224)) (-224)) (-1081 (-378))) 135) (((-1248) (-1 (-933 (-224)) (-224)) (-1081 (-378)) (-635 (-262))) 134) (((-1248) (-869 (-1 (-224) (-224))) (-1081 (-378))) 133) (((-1248) (-869 (-1 (-224) (-224))) (-1081 (-378)) (-635 (-262))) 132) (((-1247) (-867 (-1 (-224) (-224))) (-1081 (-378))) 100) (((-1247) (-867 (-1 (-224) (-224))) (-1081 (-378)) (-635 (-262))) 99) (((-1247) (-1 (-224) (-224)) (-1081 (-378))) 96) (((-1247) (-1 (-224) (-224)) (-1081 (-378)) (-635 (-262))) 95)))
+(((-254) (-10 -7 (-15 -1959 ((-1247) (-1 (-224) (-224)) (-1081 (-378)) (-635 (-262)))) (-15 -1959 ((-1247) (-1 (-224) (-224)) (-1081 (-378)))) (-15 -1959 ((-1247) (-867 (-1 (-224) (-224))) (-1081 (-378)) (-635 (-262)))) (-15 -1959 ((-1247) (-867 (-1 (-224) (-224))) (-1081 (-378)))) (-15 -1959 ((-1248) (-869 (-1 (-224) (-224))) (-1081 (-378)) (-635 (-262)))) (-15 -1959 ((-1248) (-869 (-1 (-224) (-224))) (-1081 (-378)))) (-15 -1959 ((-1248) (-1 (-933 (-224)) (-224)) (-1081 (-378)) (-635 (-262)))) (-15 -1959 ((-1248) (-1 (-933 (-224)) (-224)) (-1081 (-378)))) (-15 -2004 ((-1120 (-224)) (-869 (-1 (-224) (-224))) (-1081 (-378)) (-635 (-262)))) (-15 -2004 ((-1120 (-224)) (-869 (-1 (-224) (-224))) (-1081 (-378)))) (-15 -2004 ((-1120 (-224)) (-1 (-933 (-224)) (-224)) (-1081 (-378)) (-635 (-262)))) (-15 -2004 ((-1120 (-224)) (-1 (-933 (-224)) (-224)) (-1081 (-378)))) (-15 -1959 ((-1248) (-1 (-224) (-224) (-224)) (-1081 (-378)) (-1081 (-378)) (-635 (-262)))) (-15 -1959 ((-1248) (-1 (-224) (-224) (-224)) (-1081 (-378)) (-1081 (-378)))) (-15 -2004 ((-1120 (-224)) (-1 (-224) (-224) (-224)) (-1081 (-378)) (-1081 (-378)) (-635 (-262)))) (-15 -2004 ((-1120 (-224)) (-1 (-224) (-224) (-224)) (-1081 (-378)) (-1081 (-378)))) (-15 -1959 ((-1248) (-1 (-933 (-224)) (-224) (-224)) (-1081 (-378)) (-1081 (-378)) (-635 (-262)))) (-15 -1959 ((-1248) (-1 (-933 (-224)) (-224) (-224)) (-1081 (-378)) (-1081 (-378)))) (-15 -2004 ((-1120 (-224)) (-1 (-933 (-224)) (-224) (-224)) (-1081 (-378)) (-1081 (-378)) (-635 (-262)))) (-15 -2004 ((-1120 (-224)) (-1 (-933 (-224)) (-224) (-224)) (-1081 (-378)) (-1081 (-378)))) (-15 -1959 ((-1248) (-872 (-1 (-224) (-224) (-224))) (-1081 (-378)) (-1081 (-378)) (-635 (-262)))) (-15 -1959 ((-1248) (-872 (-1 (-224) (-224) (-224))) (-1081 (-378)) (-1081 (-378)))) (-15 -2004 ((-1120 (-224)) (-872 (-1 (-224) (-224) (-224))) (-1081 (-378)) (-1081 (-378)) (-635 (-262)))) (-15 -2004 ((-1120 (-224)) (-872 (-1 (-224) (-224) (-224))) (-1081 (-378)) (-1081 (-378)))) (-15 -1554 ((-1 (-933 (-224)) (-224) (-224)) (-1 (-933 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224) (-224)))))) (T -254))
+((-1554 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-933 (-224)) (-224) (-224))) (-5 *3 (-1 (-224) (-224) (-224) (-224))) (-5 *1 (-254)))) (-2004 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-872 (-1 (-224) (-224) (-224)))) (-5 *4 (-1081 (-378))) (-5 *2 (-1120 (-224))) (-5 *1 (-254)))) (-2004 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-872 (-1 (-224) (-224) (-224)))) (-5 *4 (-1081 (-378))) (-5 *5 (-635 (-262))) (-5 *2 (-1120 (-224))) (-5 *1 (-254)))) (-1959 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-872 (-1 (-224) (-224) (-224)))) (-5 *4 (-1081 (-378))) (-5 *2 (-1248)) (-5 *1 (-254)))) (-1959 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-872 (-1 (-224) (-224) (-224)))) (-5 *4 (-1081 (-378))) (-5 *5 (-635 (-262))) (-5 *2 (-1248)) (-5 *1 (-254)))) (-2004 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-933 (-224)) (-224) (-224))) (-5 *4 (-1081 (-378))) (-5 *2 (-1120 (-224))) (-5 *1 (-254)))) (-2004 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-933 (-224)) (-224) (-224))) (-5 *4 (-1081 (-378))) (-5 *5 (-635 (-262))) (-5 *2 (-1120 (-224))) (-5 *1 (-254)))) (-1959 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-933 (-224)) (-224) (-224))) (-5 *4 (-1081 (-378))) (-5 *2 (-1248)) (-5 *1 (-254)))) (-1959 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-933 (-224)) (-224) (-224))) (-5 *4 (-1081 (-378))) (-5 *5 (-635 (-262))) (-5 *2 (-1248)) (-5 *1 (-254)))) (-2004 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1081 (-378))) (-5 *2 (-1120 (-224))) (-5 *1 (-254)))) (-2004 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1081 (-378))) (-5 *5 (-635 (-262))) (-5 *2 (-1120 (-224))) (-5 *1 (-254)))) (-1959 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1081 (-378))) (-5 *2 (-1248)) (-5 *1 (-254)))) (-1959 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1081 (-378))) (-5 *5 (-635 (-262))) (-5 *2 (-1248)) (-5 *1 (-254)))) (-2004 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-933 (-224)) (-224))) (-5 *4 (-1081 (-378))) (-5 *2 (-1120 (-224))) (-5 *1 (-254)))) (-2004 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-933 (-224)) (-224))) (-5 *4 (-1081 (-378))) (-5 *5 (-635 (-262))) (-5 *2 (-1120 (-224))) (-5 *1 (-254)))) (-2004 (*1 *2 *3 *4) (-12 (-5 *3 (-869 (-1 (-224) (-224)))) (-5 *4 (-1081 (-378))) (-5 *2 (-1120 (-224))) (-5 *1 (-254)))) (-2004 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-869 (-1 (-224) (-224)))) (-5 *4 (-1081 (-378))) (-5 *5 (-635 (-262))) (-5 *2 (-1120 (-224))) (-5 *1 (-254)))) (-1959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-933 (-224)) (-224))) (-5 *4 (-1081 (-378))) (-5 *2 (-1248)) (-5 *1 (-254)))) (-1959 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-933 (-224)) (-224))) (-5 *4 (-1081 (-378))) (-5 *5 (-635 (-262))) (-5 *2 (-1248)) (-5 *1 (-254)))) (-1959 (*1 *2 *3 *4) (-12 (-5 *3 (-869 (-1 (-224) (-224)))) (-5 *4 (-1081 (-378))) (-5 *2 (-1248)) (-5 *1 (-254)))) (-1959 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-869 (-1 (-224) (-224)))) (-5 *4 (-1081 (-378))) (-5 *5 (-635 (-262))) (-5 *2 (-1248)) (-5 *1 (-254)))) (-1959 (*1 *2 *3 *4) (-12 (-5 *3 (-867 (-1 (-224) (-224)))) (-5 *4 (-1081 (-378))) (-5 *2 (-1247)) (-5 *1 (-254)))) (-1959 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-867 (-1 (-224) (-224)))) (-5 *4 (-1081 (-378))) (-5 *5 (-635 (-262))) (-5 *2 (-1247)) (-5 *1 (-254)))) (-1959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-224) (-224))) (-5 *4 (-1081 (-378))) (-5 *2 (-1247)) (-5 *1 (-254)))) (-1959 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-224) (-224))) (-5 *4 (-1081 (-378))) (-5 *5 (-635 (-262))) (-5 *2 (-1247)) (-5 *1 (-254)))))
+(-10 -7 (-15 -1959 ((-1247) (-1 (-224) (-224)) (-1081 (-378)) (-635 (-262)))) (-15 -1959 ((-1247) (-1 (-224) (-224)) (-1081 (-378)))) (-15 -1959 ((-1247) (-867 (-1 (-224) (-224))) (-1081 (-378)) (-635 (-262)))) (-15 -1959 ((-1247) (-867 (-1 (-224) (-224))) (-1081 (-378)))) (-15 -1959 ((-1248) (-869 (-1 (-224) (-224))) (-1081 (-378)) (-635 (-262)))) (-15 -1959 ((-1248) (-869 (-1 (-224) (-224))) (-1081 (-378)))) (-15 -1959 ((-1248) (-1 (-933 (-224)) (-224)) (-1081 (-378)) (-635 (-262)))) (-15 -1959 ((-1248) (-1 (-933 (-224)) (-224)) (-1081 (-378)))) (-15 -2004 ((-1120 (-224)) (-869 (-1 (-224) (-224))) (-1081 (-378)) (-635 (-262)))) (-15 -2004 ((-1120 (-224)) (-869 (-1 (-224) (-224))) (-1081 (-378)))) (-15 -2004 ((-1120 (-224)) (-1 (-933 (-224)) (-224)) (-1081 (-378)) (-635 (-262)))) (-15 -2004 ((-1120 (-224)) (-1 (-933 (-224)) (-224)) (-1081 (-378)))) (-15 -1959 ((-1248) (-1 (-224) (-224) (-224)) (-1081 (-378)) (-1081 (-378)) (-635 (-262)))) (-15 -1959 ((-1248) (-1 (-224) (-224) (-224)) (-1081 (-378)) (-1081 (-378)))) (-15 -2004 ((-1120 (-224)) (-1 (-224) (-224) (-224)) (-1081 (-378)) (-1081 (-378)) (-635 (-262)))) (-15 -2004 ((-1120 (-224)) (-1 (-224) (-224) (-224)) (-1081 (-378)) (-1081 (-378)))) (-15 -1959 ((-1248) (-1 (-933 (-224)) (-224) (-224)) (-1081 (-378)) (-1081 (-378)) (-635 (-262)))) (-15 -1959 ((-1248) (-1 (-933 (-224)) (-224) (-224)) (-1081 (-378)) (-1081 (-378)))) (-15 -2004 ((-1120 (-224)) (-1 (-933 (-224)) (-224) (-224)) (-1081 (-378)) (-1081 (-378)) (-635 (-262)))) (-15 -2004 ((-1120 (-224)) (-1 (-933 (-224)) (-224) (-224)) (-1081 (-378)) (-1081 (-378)))) (-15 -1959 ((-1248) (-872 (-1 (-224) (-224) (-224))) (-1081 (-378)) (-1081 (-378)) (-635 (-262)))) (-15 -1959 ((-1248) (-872 (-1 (-224) (-224) (-224))) (-1081 (-378)) (-1081 (-378)))) (-15 -2004 ((-1120 (-224)) (-872 (-1 (-224) (-224) (-224))) (-1081 (-378)) (-1081 (-378)) (-635 (-262)))) (-15 -2004 ((-1120 (-224)) (-872 (-1 (-224) (-224) (-224))) (-1081 (-378)) (-1081 (-378)))) (-15 -1554 ((-1 (-933 (-224)) (-224) (-224)) (-1 (-933 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224) (-224)))))
+((-1959 (((-1247) (-293 |#2|) (-1163) (-1163) (-635 (-262))) 96)))
+(((-255 |#1| |#2|) (-10 -7 (-15 -1959 ((-1247) (-293 |#2|) (-1163) (-1163) (-635 (-262))))) (-13 (-550) (-841) (-1028 (-558))) (-429 |#1|)) (T -255))
+((-1959 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-293 *7)) (-5 *4 (-1163)) (-5 *5 (-635 (-262))) (-4 *7 (-429 *6)) (-4 *6 (-13 (-550) (-841) (-1028 (-558)))) (-5 *2 (-1247)) (-5 *1 (-255 *6 *7)))))
+(-10 -7 (-15 -1959 ((-1247) (-293 |#2|) (-1163) (-1163) (-635 (-262)))))
+((-1584 (((-558) (-558)) 50)) (-1594 (((-558) (-558)) 51)) (-1601 (((-224) (-224)) 52)) (-1573 (((-1248) (-1 (-168 (-224)) (-168 (-224))) (-1081 (-224)) (-1081 (-224))) 49)) (-1564 (((-1248) (-1 (-168 (-224)) (-168 (-224))) (-1081 (-224)) (-1081 (-224)) (-112)) 47)))
+(((-256) (-10 -7 (-15 -1564 ((-1248) (-1 (-168 (-224)) (-168 (-224))) (-1081 (-224)) (-1081 (-224)) (-112))) (-15 -1573 ((-1248) (-1 (-168 (-224)) (-168 (-224))) (-1081 (-224)) (-1081 (-224)))) (-15 -1584 ((-558) (-558))) (-15 -1594 ((-558) (-558))) (-15 -1601 ((-224) (-224))))) (T -256))
+((-1601 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-256)))) (-1594 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-256)))) (-1584 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-256)))) (-1573 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-168 (-224)) (-168 (-224)))) (-5 *4 (-1081 (-224))) (-5 *2 (-1248)) (-5 *1 (-256)))) (-1564 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-168 (-224)) (-168 (-224)))) (-5 *4 (-1081 (-224))) (-5 *5 (-112)) (-5 *2 (-1248)) (-5 *1 (-256)))))
+(-10 -7 (-15 -1564 ((-1248) (-1 (-168 (-224)) (-168 (-224))) (-1081 (-224)) (-1081 (-224)) (-112))) (-15 -1573 ((-1248) (-1 (-168 (-224)) (-168 (-224))) (-1081 (-224)) (-1081 (-224)))) (-15 -1584 ((-558) (-558))) (-15 -1594 ((-558) (-558))) (-15 -1601 ((-224) (-224))))
+((-3220 (((-1079 (-378)) (-1079 (-315 |#1|))) 16)))
+(((-257 |#1|) (-10 -7 (-15 -3220 ((-1079 (-378)) (-1079 (-315 |#1|))))) (-13 (-841) (-550) (-606 (-378)))) (T -257))
+((-3220 (*1 *2 *3) (-12 (-5 *3 (-1079 (-315 *4))) (-4 *4 (-13 (-841) (-550) (-606 (-378)))) (-5 *2 (-1079 (-378))) (-5 *1 (-257 *4)))))
+(-10 -7 (-15 -3220 ((-1079 (-378)) (-1079 (-315 |#1|)))))
+((-2004 (((-1120 (-224)) (-872 |#1|) (-1079 (-378)) (-1079 (-378))) 71) (((-1120 (-224)) (-872 |#1|) (-1079 (-378)) (-1079 (-378)) (-635 (-262))) 70) (((-1120 (-224)) |#1| (-1079 (-378)) (-1079 (-378))) 61) (((-1120 (-224)) |#1| (-1079 (-378)) (-1079 (-378)) (-635 (-262))) 60) (((-1120 (-224)) (-869 |#1|) (-1079 (-378))) 52) (((-1120 (-224)) (-869 |#1|) (-1079 (-378)) (-635 (-262))) 51)) (-1959 (((-1248) (-872 |#1|) (-1079 (-378)) (-1079 (-378))) 74) (((-1248) (-872 |#1|) (-1079 (-378)) (-1079 (-378)) (-635 (-262))) 73) (((-1248) |#1| (-1079 (-378)) (-1079 (-378))) 64) (((-1248) |#1| (-1079 (-378)) (-1079 (-378)) (-635 (-262))) 63) (((-1248) (-869 |#1|) (-1079 (-378))) 56) (((-1248) (-869 |#1|) (-1079 (-378)) (-635 (-262))) 55) (((-1247) (-867 |#1|) (-1079 (-378))) 43) (((-1247) (-867 |#1|) (-1079 (-378)) (-635 (-262))) 42) (((-1247) |#1| (-1079 (-378))) 35) (((-1247) |#1| (-1079 (-378)) (-635 (-262))) 34)))
+(((-258 |#1|) (-10 -7 (-15 -1959 ((-1247) |#1| (-1079 (-378)) (-635 (-262)))) (-15 -1959 ((-1247) |#1| (-1079 (-378)))) (-15 -1959 ((-1247) (-867 |#1|) (-1079 (-378)) (-635 (-262)))) (-15 -1959 ((-1247) (-867 |#1|) (-1079 (-378)))) (-15 -1959 ((-1248) (-869 |#1|) (-1079 (-378)) (-635 (-262)))) (-15 -1959 ((-1248) (-869 |#1|) (-1079 (-378)))) (-15 -2004 ((-1120 (-224)) (-869 |#1|) (-1079 (-378)) (-635 (-262)))) (-15 -2004 ((-1120 (-224)) (-869 |#1|) (-1079 (-378)))) (-15 -1959 ((-1248) |#1| (-1079 (-378)) (-1079 (-378)) (-635 (-262)))) (-15 -1959 ((-1248) |#1| (-1079 (-378)) (-1079 (-378)))) (-15 -2004 ((-1120 (-224)) |#1| (-1079 (-378)) (-1079 (-378)) (-635 (-262)))) (-15 -2004 ((-1120 (-224)) |#1| (-1079 (-378)) (-1079 (-378)))) (-15 -1959 ((-1248) (-872 |#1|) (-1079 (-378)) (-1079 (-378)) (-635 (-262)))) (-15 -1959 ((-1248) (-872 |#1|) (-1079 (-378)) (-1079 (-378)))) (-15 -2004 ((-1120 (-224)) (-872 |#1|) (-1079 (-378)) (-1079 (-378)) (-635 (-262)))) (-15 -2004 ((-1120 (-224)) (-872 |#1|) (-1079 (-378)) (-1079 (-378))))) (-13 (-606 (-534)) (-1087))) (T -258))
+((-2004 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-872 *5)) (-5 *4 (-1079 (-378))) (-4 *5 (-13 (-606 (-534)) (-1087))) (-5 *2 (-1120 (-224))) (-5 *1 (-258 *5)))) (-2004 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-872 *6)) (-5 *4 (-1079 (-378))) (-5 *5 (-635 (-262))) (-4 *6 (-13 (-606 (-534)) (-1087))) (-5 *2 (-1120 (-224))) (-5 *1 (-258 *6)))) (-1959 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-872 *5)) (-5 *4 (-1079 (-378))) (-4 *5 (-13 (-606 (-534)) (-1087))) (-5 *2 (-1248)) (-5 *1 (-258 *5)))) (-1959 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-872 *6)) (-5 *4 (-1079 (-378))) (-5 *5 (-635 (-262))) (-4 *6 (-13 (-606 (-534)) (-1087))) (-5 *2 (-1248)) (-5 *1 (-258 *6)))) (-2004 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1079 (-378))) (-5 *2 (-1120 (-224))) (-5 *1 (-258 *3)) (-4 *3 (-13 (-606 (-534)) (-1087))))) (-2004 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1079 (-378))) (-5 *5 (-635 (-262))) (-5 *2 (-1120 (-224))) (-5 *1 (-258 *3)) (-4 *3 (-13 (-606 (-534)) (-1087))))) (-1959 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1079 (-378))) (-5 *2 (-1248)) (-5 *1 (-258 *3)) (-4 *3 (-13 (-606 (-534)) (-1087))))) (-1959 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1079 (-378))) (-5 *5 (-635 (-262))) (-5 *2 (-1248)) (-5 *1 (-258 *3)) (-4 *3 (-13 (-606 (-534)) (-1087))))) (-2004 (*1 *2 *3 *4) (-12 (-5 *3 (-869 *5)) (-5 *4 (-1079 (-378))) (-4 *5 (-13 (-606 (-534)) (-1087))) (-5 *2 (-1120 (-224))) (-5 *1 (-258 *5)))) (-2004 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-869 *6)) (-5 *4 (-1079 (-378))) (-5 *5 (-635 (-262))) (-4 *6 (-13 (-606 (-534)) (-1087))) (-5 *2 (-1120 (-224))) (-5 *1 (-258 *6)))) (-1959 (*1 *2 *3 *4) (-12 (-5 *3 (-869 *5)) (-5 *4 (-1079 (-378))) (-4 *5 (-13 (-606 (-534)) (-1087))) (-5 *2 (-1248)) (-5 *1 (-258 *5)))) (-1959 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-869 *6)) (-5 *4 (-1079 (-378))) (-5 *5 (-635 (-262))) (-4 *6 (-13 (-606 (-534)) (-1087))) (-5 *2 (-1248)) (-5 *1 (-258 *6)))) (-1959 (*1 *2 *3 *4) (-12 (-5 *3 (-867 *5)) (-5 *4 (-1079 (-378))) (-4 *5 (-13 (-606 (-534)) (-1087))) (-5 *2 (-1247)) (-5 *1 (-258 *5)))) (-1959 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-867 *6)) (-5 *4 (-1079 (-378))) (-5 *5 (-635 (-262))) (-4 *6 (-13 (-606 (-534)) (-1087))) (-5 *2 (-1247)) (-5 *1 (-258 *6)))) (-1959 (*1 *2 *3 *4) (-12 (-5 *4 (-1079 (-378))) (-5 *2 (-1247)) (-5 *1 (-258 *3)) (-4 *3 (-13 (-606 (-534)) (-1087))))) (-1959 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1079 (-378))) (-5 *5 (-635 (-262))) (-5 *2 (-1247)) (-5 *1 (-258 *3)) (-4 *3 (-13 (-606 (-534)) (-1087))))))
+(-10 -7 (-15 -1959 ((-1247) |#1| (-1079 (-378)) (-635 (-262)))) (-15 -1959 ((-1247) |#1| (-1079 (-378)))) (-15 -1959 ((-1247) (-867 |#1|) (-1079 (-378)) (-635 (-262)))) (-15 -1959 ((-1247) (-867 |#1|) (-1079 (-378)))) (-15 -1959 ((-1248) (-869 |#1|) (-1079 (-378)) (-635 (-262)))) (-15 -1959 ((-1248) (-869 |#1|) (-1079 (-378)))) (-15 -2004 ((-1120 (-224)) (-869 |#1|) (-1079 (-378)) (-635 (-262)))) (-15 -2004 ((-1120 (-224)) (-869 |#1|) (-1079 (-378)))) (-15 -1959 ((-1248) |#1| (-1079 (-378)) (-1079 (-378)) (-635 (-262)))) (-15 -1959 ((-1248) |#1| (-1079 (-378)) (-1079 (-378)))) (-15 -2004 ((-1120 (-224)) |#1| (-1079 (-378)) (-1079 (-378)) (-635 (-262)))) (-15 -2004 ((-1120 (-224)) |#1| (-1079 (-378)) (-1079 (-378)))) (-15 -1959 ((-1248) (-872 |#1|) (-1079 (-378)) (-1079 (-378)) (-635 (-262)))) (-15 -1959 ((-1248) (-872 |#1|) (-1079 (-378)) (-1079 (-378)))) (-15 -2004 ((-1120 (-224)) (-872 |#1|) (-1079 (-378)) (-1079 (-378)) (-635 (-262)))) (-15 -2004 ((-1120 (-224)) (-872 |#1|) (-1079 (-378)) (-1079 (-378)))))
+((-1959 (((-1248) (-635 (-224)) (-635 (-224)) (-635 (-224)) (-635 (-262))) 23) (((-1248) (-635 (-224)) (-635 (-224)) (-635 (-224))) 24) (((-1247) (-635 (-933 (-224))) (-635 (-262))) 16) (((-1247) (-635 (-933 (-224)))) 17) (((-1247) (-635 (-224)) (-635 (-224)) (-635 (-262))) 20) (((-1247) (-635 (-224)) (-635 (-224))) 21)))
+(((-259) (-10 -7 (-15 -1959 ((-1247) (-635 (-224)) (-635 (-224)))) (-15 -1959 ((-1247) (-635 (-224)) (-635 (-224)) (-635 (-262)))) (-15 -1959 ((-1247) (-635 (-933 (-224))))) (-15 -1959 ((-1247) (-635 (-933 (-224))) (-635 (-262)))) (-15 -1959 ((-1248) (-635 (-224)) (-635 (-224)) (-635 (-224)))) (-15 -1959 ((-1248) (-635 (-224)) (-635 (-224)) (-635 (-224)) (-635 (-262)))))) (T -259))
+((-1959 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-635 (-224))) (-5 *4 (-635 (-262))) (-5 *2 (-1248)) (-5 *1 (-259)))) (-1959 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-635 (-224))) (-5 *2 (-1248)) (-5 *1 (-259)))) (-1959 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-933 (-224)))) (-5 *4 (-635 (-262))) (-5 *2 (-1247)) (-5 *1 (-259)))) (-1959 (*1 *2 *3) (-12 (-5 *3 (-635 (-933 (-224)))) (-5 *2 (-1247)) (-5 *1 (-259)))) (-1959 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-635 (-224))) (-5 *4 (-635 (-262))) (-5 *2 (-1247)) (-5 *1 (-259)))) (-1959 (*1 *2 *3 *3) (-12 (-5 *3 (-635 (-224))) (-5 *2 (-1247)) (-5 *1 (-259)))))
+(-10 -7 (-15 -1959 ((-1247) (-635 (-224)) (-635 (-224)))) (-15 -1959 ((-1247) (-635 (-224)) (-635 (-224)) (-635 (-262)))) (-15 -1959 ((-1247) (-635 (-933 (-224))))) (-15 -1959 ((-1247) (-635 (-933 (-224))) (-635 (-262)))) (-15 -1959 ((-1248) (-635 (-224)) (-635 (-224)) (-635 (-224)))) (-15 -1959 ((-1248) (-635 (-224)) (-635 (-224)) (-635 (-224)) (-635 (-262)))))
+((-1855 (((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2785 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) (-635 (-262)) (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2785 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) 26)) (-1749 (((-911) (-635 (-262)) (-911)) 53)) (-1736 (((-911) (-635 (-262)) (-911)) 52)) (-2179 (((-635 (-378)) (-635 (-262)) (-635 (-378))) 69)) (-1786 (((-378) (-635 (-262)) (-378)) 58)) (-1773 (((-911) (-635 (-262)) (-911)) 54)) (-1696 (((-112) (-635 (-262)) (-112)) 28)) (-4001 (((-1145) (-635 (-262)) (-1145)) 20)) (-1685 (((-1145) (-635 (-262)) (-1145)) 27)) (-1761 (((-1120 (-224)) (-635 (-262))) 47)) (-3079 (((-635 (-1081 (-378))) (-635 (-262)) (-635 (-1081 (-378)))) 41)) (-1711 (((-864) (-635 (-262)) (-864)) 33)) (-1723 (((-864) (-635 (-262)) (-864)) 34)) (-3096 (((-1 (-933 (-224)) (-933 (-224))) (-635 (-262)) (-1 (-933 (-224)) (-933 (-224)))) 64)) (-1673 (((-112) (-635 (-262)) (-112)) 16)) (-3022 (((-112) (-635 (-262)) (-112)) 15)))
+(((-260) (-10 -7 (-15 -3022 ((-112) (-635 (-262)) (-112))) (-15 -1673 ((-112) (-635 (-262)) (-112))) (-15 -1855 ((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2785 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) (-635 (-262)) (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2785 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -4001 ((-1145) (-635 (-262)) (-1145))) (-15 -1685 ((-1145) (-635 (-262)) (-1145))) (-15 -1696 ((-112) (-635 (-262)) (-112))) (-15 -1711 ((-864) (-635 (-262)) (-864))) (-15 -1723 ((-864) (-635 (-262)) (-864))) (-15 -3079 ((-635 (-1081 (-378))) (-635 (-262)) (-635 (-1081 (-378))))) (-15 -1736 ((-911) (-635 (-262)) (-911))) (-15 -1749 ((-911) (-635 (-262)) (-911))) (-15 -1761 ((-1120 (-224)) (-635 (-262)))) (-15 -1773 ((-911) (-635 (-262)) (-911))) (-15 -1786 ((-378) (-635 (-262)) (-378))) (-15 -3096 ((-1 (-933 (-224)) (-933 (-224))) (-635 (-262)) (-1 (-933 (-224)) (-933 (-224))))) (-15 -2179 ((-635 (-378)) (-635 (-262)) (-635 (-378)))))) (T -260))
+((-2179 (*1 *2 *3 *2) (-12 (-5 *2 (-635 (-378))) (-5 *3 (-635 (-262))) (-5 *1 (-260)))) (-3096 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-933 (-224)) (-933 (-224)))) (-5 *3 (-635 (-262))) (-5 *1 (-260)))) (-1786 (*1 *2 *3 *2) (-12 (-5 *2 (-378)) (-5 *3 (-635 (-262))) (-5 *1 (-260)))) (-1773 (*1 *2 *3 *2) (-12 (-5 *2 (-911)) (-5 *3 (-635 (-262))) (-5 *1 (-260)))) (-1761 (*1 *2 *3) (-12 (-5 *3 (-635 (-262))) (-5 *2 (-1120 (-224))) (-5 *1 (-260)))) (-1749 (*1 *2 *3 *2) (-12 (-5 *2 (-911)) (-5 *3 (-635 (-262))) (-5 *1 (-260)))) (-1736 (*1 *2 *3 *2) (-12 (-5 *2 (-911)) (-5 *3 (-635 (-262))) (-5 *1 (-260)))) (-3079 (*1 *2 *3 *2) (-12 (-5 *2 (-635 (-1081 (-378)))) (-5 *3 (-635 (-262))) (-5 *1 (-260)))) (-1723 (*1 *2 *3 *2) (-12 (-5 *2 (-864)) (-5 *3 (-635 (-262))) (-5 *1 (-260)))) (-1711 (*1 *2 *3 *2) (-12 (-5 *2 (-864)) (-5 *3 (-635 (-262))) (-5 *1 (-260)))) (-1696 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-635 (-262))) (-5 *1 (-260)))) (-1685 (*1 *2 *3 *2) (-12 (-5 *2 (-1145)) (-5 *3 (-635 (-262))) (-5 *1 (-260)))) (-4001 (*1 *2 *3 *2) (-12 (-5 *2 (-1145)) (-5 *3 (-635 (-262))) (-5 *1 (-260)))) (-1855 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2785 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) (-5 *3 (-635 (-262))) (-5 *1 (-260)))) (-1673 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-635 (-262))) (-5 *1 (-260)))) (-3022 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-635 (-262))) (-5 *1 (-260)))))
+(-10 -7 (-15 -3022 ((-112) (-635 (-262)) (-112))) (-15 -1673 ((-112) (-635 (-262)) (-112))) (-15 -1855 ((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2785 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) (-635 (-262)) (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2785 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -4001 ((-1145) (-635 (-262)) (-1145))) (-15 -1685 ((-1145) (-635 (-262)) (-1145))) (-15 -1696 ((-112) (-635 (-262)) (-112))) (-15 -1711 ((-864) (-635 (-262)) (-864))) (-15 -1723 ((-864) (-635 (-262)) (-864))) (-15 -3079 ((-635 (-1081 (-378))) (-635 (-262)) (-635 (-1081 (-378))))) (-15 -1736 ((-911) (-635 (-262)) (-911))) (-15 -1749 ((-911) (-635 (-262)) (-911))) (-15 -1761 ((-1120 (-224)) (-635 (-262)))) (-15 -1773 ((-911) (-635 (-262)) (-911))) (-15 -1786 ((-378) (-635 (-262)) (-378))) (-15 -3096 ((-1 (-933 (-224)) (-933 (-224))) (-635 (-262)) (-1 (-933 (-224)) (-933 (-224))))) (-15 -2179 ((-635 (-378)) (-635 (-262)) (-635 (-378)))))
+((-2273 (((-3 |#1| "failed") (-635 (-262)) (-1163)) 17)))
+(((-261 |#1|) (-10 -7 (-15 -2273 ((-3 |#1| "failed") (-635 (-262)) (-1163)))) (-1200)) (T -261))
+((-2273 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-635 (-262))) (-5 *4 (-1163)) (-5 *1 (-261 *2)) (-4 *2 (-1200)))))
+(-10 -7 (-15 -2273 ((-3 |#1| "failed") (-635 (-262)) (-1163))))
+((-3207 (((-112) $ $) NIL)) (-1855 (($ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2785 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) 15)) (-1749 (($ (-911)) 76)) (-1736 (($ (-911)) 75)) (-1960 (($ (-635 (-378))) 82)) (-1786 (($ (-378)) 58)) (-1773 (($ (-911)) 77)) (-1696 (($ (-112)) 23)) (-4001 (($ (-1145)) 18)) (-1685 (($ (-1145)) 19)) (-1761 (($ (-1120 (-224))) 71)) (-3079 (($ (-635 (-1081 (-378)))) 67)) (-1626 (($ (-635 (-1081 (-378)))) 59) (($ (-635 (-1081 (-406 (-558))))) 66)) (-1652 (($ (-378)) 29) (($ (-864)) 33)) (-1614 (((-112) (-635 $) (-1163)) 91)) (-2273 (((-3 (-52) "failed") (-635 $) (-1163)) 93)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-1643 (($ (-378)) 34) (($ (-864)) 35)) (-4205 (($ (-1 (-933 (-224)) (-933 (-224)))) 57)) (-3096 (($ (-1 (-933 (-224)) (-933 (-224)))) 78)) (-1636 (($ (-1 (-224) (-224))) 39) (($ (-1 (-224) (-224) (-224))) 43) (($ (-1 (-224) (-224) (-224) (-224))) 47)) (-3220 (((-853) $) 87)) (-1662 (($ (-112)) 24) (($ (-635 (-1081 (-378)))) 52)) (-3022 (($ (-112)) 25)) (-1683 (((-112) $ $) 89)))
+(((-262) (-13 (-1087) (-10 -8 (-15 -3022 ($ (-112))) (-15 -1662 ($ (-112))) (-15 -1855 ($ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2785 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -4001 ($ (-1145))) (-15 -1685 ($ (-1145))) (-15 -1696 ($ (-112))) (-15 -1662 ($ (-635 (-1081 (-378))))) (-15 -4205 ($ (-1 (-933 (-224)) (-933 (-224))))) (-15 -1652 ($ (-378))) (-15 -1652 ($ (-864))) (-15 -1643 ($ (-378))) (-15 -1643 ($ (-864))) (-15 -1636 ($ (-1 (-224) (-224)))) (-15 -1636 ($ (-1 (-224) (-224) (-224)))) (-15 -1636 ($ (-1 (-224) (-224) (-224) (-224)))) (-15 -1786 ($ (-378))) (-15 -1626 ($ (-635 (-1081 (-378))))) (-15 -1626 ($ (-635 (-1081 (-406 (-558)))))) (-15 -3079 ($ (-635 (-1081 (-378))))) (-15 -1761 ($ (-1120 (-224)))) (-15 -1736 ($ (-911))) (-15 -1749 ($ (-911))) (-15 -1773 ($ (-911))) (-15 -3096 ($ (-1 (-933 (-224)) (-933 (-224))))) (-15 -1960 ($ (-635 (-378)))) (-15 -2273 ((-3 (-52) "failed") (-635 $) (-1163))) (-15 -1614 ((-112) (-635 $) (-1163)))))) (T -262))
+((-3022 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262)))) (-1662 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262)))) (-1855 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2785 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) (-5 *1 (-262)))) (-4001 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-262)))) (-1685 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-262)))) (-1696 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262)))) (-1662 (*1 *1 *2) (-12 (-5 *2 (-635 (-1081 (-378)))) (-5 *1 (-262)))) (-4205 (*1 *1 *2) (-12 (-5 *2 (-1 (-933 (-224)) (-933 (-224)))) (-5 *1 (-262)))) (-1652 (*1 *1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-262)))) (-1652 (*1 *1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-262)))) (-1643 (*1 *1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-262)))) (-1643 (*1 *1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-262)))) (-1636 (*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-262)))) (-1636 (*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224) (-224))) (-5 *1 (-262)))) (-1636 (*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224) (-224) (-224))) (-5 *1 (-262)))) (-1786 (*1 *1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-262)))) (-1626 (*1 *1 *2) (-12 (-5 *2 (-635 (-1081 (-378)))) (-5 *1 (-262)))) (-1626 (*1 *1 *2) (-12 (-5 *2 (-635 (-1081 (-406 (-558))))) (-5 *1 (-262)))) (-3079 (*1 *1 *2) (-12 (-5 *2 (-635 (-1081 (-378)))) (-5 *1 (-262)))) (-1761 (*1 *1 *2) (-12 (-5 *2 (-1120 (-224))) (-5 *1 (-262)))) (-1736 (*1 *1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-262)))) (-1749 (*1 *1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-262)))) (-1773 (*1 *1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-262)))) (-3096 (*1 *1 *2) (-12 (-5 *2 (-1 (-933 (-224)) (-933 (-224)))) (-5 *1 (-262)))) (-1960 (*1 *1 *2) (-12 (-5 *2 (-635 (-378))) (-5 *1 (-262)))) (-2273 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-635 (-262))) (-5 *4 (-1163)) (-5 *2 (-52)) (-5 *1 (-262)))) (-1614 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-262))) (-5 *4 (-1163)) (-5 *2 (-112)) (-5 *1 (-262)))))
+(-13 (-1087) (-10 -8 (-15 -3022 ($ (-112))) (-15 -1662 ($ (-112))) (-15 -1855 ($ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2785 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -4001 ($ (-1145))) (-15 -1685 ($ (-1145))) (-15 -1696 ($ (-112))) (-15 -1662 ($ (-635 (-1081 (-378))))) (-15 -4205 ($ (-1 (-933 (-224)) (-933 (-224))))) (-15 -1652 ($ (-378))) (-15 -1652 ($ (-864))) (-15 -1643 ($ (-378))) (-15 -1643 ($ (-864))) (-15 -1636 ($ (-1 (-224) (-224)))) (-15 -1636 ($ (-1 (-224) (-224) (-224)))) (-15 -1636 ($ (-1 (-224) (-224) (-224) (-224)))) (-15 -1786 ($ (-378))) (-15 -1626 ($ (-635 (-1081 (-378))))) (-15 -1626 ($ (-635 (-1081 (-406 (-558)))))) (-15 -3079 ($ (-635 (-1081 (-378))))) (-15 -1761 ($ (-1120 (-224)))) (-15 -1736 ($ (-911))) (-15 -1749 ($ (-911))) (-15 -1773 ($ (-911))) (-15 -3096 ($ (-1 (-933 (-224)) (-933 (-224))))) (-15 -1960 ($ (-635 (-378)))) (-15 -2273 ((-3 (-52) "failed") (-635 $) (-1163))) (-15 -1614 ((-112) (-635 $) (-1163)))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2702 (((-635 (-762)) $) NIL) (((-635 (-762)) $ |#2|) NIL)) (-1800 (((-762) $) NIL) (((-762) $ |#2|) NIL)) (-2671 (((-635 |#3|) $) NIL)) (-2492 (((-1159 $) $ |#3|) NIL) (((-1159 |#1|) $) NIL)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1881 (($ $) NIL (|has| |#1| (-550)))) (-1857 (((-112) $) NIL (|has| |#1| (-550)))) (-2513 (((-762) $) NIL) (((-762) $ (-635 |#3|)) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-3748 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-3465 (($ $) NIL (|has| |#1| (-450)))) (-1380 (((-417 $) $) NIL (|has| |#1| (-450)))) (-3719 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-2680 (($ $) NIL)) (-1816 (($) NIL T CONST)) (-3069 (((-3 |#1| "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1112 |#1| |#2|) "failed") $) 21)) (-1863 ((|#1| $) NIL) (((-406 (-558)) $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-558) $) NIL (|has| |#1| (-1028 (-558)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1112 |#1| |#2|) $) NIL)) (-3320 (($ $ $ |#3|) NIL (|has| |#1| (-171)))) (-2490 (($ $) NIL)) (-3216 (((-679 (-558)) (-679 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3683 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) NIL) (((-679 |#1|) (-679 $)) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-2782 (($ $) NIL (|has| |#1| (-450))) (($ $ |#3|) NIL (|has| |#1| (-450)))) (-2476 (((-635 $) $) NIL)) (-3031 (((-112) $) NIL (|has| |#1| (-899)))) (-3888 (($ $ |#1| (-529 |#3|) $) NIL)) (-2269 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (-12 (|has| |#1| (-876 (-378))) (|has| |#3| (-876 (-378))))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (-12 (|has| |#1| (-876 (-558))) (|has| |#3| (-876 (-558)))))) (-3449 (((-762) $ |#2|) NIL) (((-762) $) 10)) (-2035 (((-112) $) NIL)) (-2110 (((-762) $) NIL)) (-2659 (($ (-1159 |#1|) |#3|) NIL) (($ (-1159 $) |#3|) NIL)) (-2536 (((-635 $) $) NIL)) (-4238 (((-112) $) NIL)) (-2648 (($ |#1| (-529 |#3|)) NIL) (($ $ |#3| (-762)) NIL) (($ $ (-635 |#3|) (-635 (-762))) NIL)) (-3381 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $ |#3|) NIL)) (-2524 (((-529 |#3|) $) NIL) (((-762) $ |#3|) NIL) (((-635 (-762)) $ (-635 |#3|)) NIL)) (-3910 (($ $ $) NIL (|has| |#1| (-841)))) (-3542 (($ $ $) NIL (|has| |#1| (-841)))) (-3898 (($ (-1 (-529 |#3|) (-529 |#3|)) $) NIL)) (-3167 (($ (-1 |#1| |#1|) $) NIL)) (-1812 (((-1 $ (-762)) |#2|) NIL) (((-1 $ (-762)) $) NIL (|has| |#1| (-232)))) (-3399 (((-3 |#3| "failed") $) NIL)) (-2451 (($ $) NIL)) (-2463 ((|#1| $) NIL)) (-4096 ((|#3| $) NIL)) (-2665 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-4310 (((-1145) $) NIL)) (-2690 (((-112) $) NIL)) (-2560 (((-3 (-635 $) "failed") $) NIL)) (-2548 (((-3 (-635 $) "failed") $) NIL)) (-2575 (((-3 (-2 (|:| |var| |#3|) (|:| -1951 (-762))) "failed") $) NIL)) (-2750 (($ $) NIL)) (-2975 (((-1107) $) NIL)) (-2429 (((-112) $) NIL)) (-2440 ((|#1| $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#1| (-450)))) (-2699 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3728 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-3738 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-2522 (((-417 $) $) NIL (|has| |#1| (-899)))) (-3983 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-2554 (($ $ (-635 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-635 |#3|) (-635 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-635 |#3|) (-635 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-232))) (($ $ (-635 |#2|) (-635 $)) NIL (|has| |#1| (-232))) (($ $ |#2| |#1|) NIL (|has| |#1| (-232))) (($ $ (-635 |#2|) (-635 |#1|)) NIL (|has| |#1| (-232)))) (-3331 (($ $ |#3|) NIL (|has| |#1| (-171)))) (-2829 (($ $ |#3|) NIL) (($ $ (-635 |#3|)) NIL) (($ $ |#3| (-762)) NIL) (($ $ (-635 |#3|) (-635 (-762))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-762)) NIL (|has| |#1| (-232))) (($ $ (-1163)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2713 (((-635 |#2|) $) NIL)) (-4323 (((-529 |#3|) $) NIL) (((-762) $ |#3|) NIL) (((-635 (-762)) $ (-635 |#3|)) NIL) (((-762) $ |#2|) NIL)) (-3224 (((-882 (-378)) $) NIL (-12 (|has| |#1| (-606 (-882 (-378)))) (|has| |#3| (-606 (-882 (-378)))))) (((-882 (-558)) $) NIL (-12 (|has| |#1| (-606 (-882 (-558)))) (|has| |#3| (-606 (-882 (-558)))))) (((-534) $) NIL (-12 (|has| |#1| (-606 (-534))) (|has| |#3| (-606 (-534)))))) (-2504 ((|#1| $) NIL (|has| |#1| (-450))) (($ $ |#3|) NIL (|has| |#1| (-450)))) (-3709 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-899))))) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1112 |#1| |#2|)) 30) (($ (-406 (-558))) NIL (-3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558)))))) (($ $) NIL (|has| |#1| (-550)))) (-2583 (((-635 |#1|) $) NIL)) (-3736 ((|#1| $ (-529 |#3|)) NIL) (($ $ |#3| (-762)) NIL) (($ $ (-635 |#3|) (-635 (-762))) NIL)) (-3698 (((-3 $ "failed") $) NIL (-3998 (-12 (|has| $ (-144)) (|has| |#1| (-899))) (|has| |#1| (-144))))) (-2542 (((-762)) NIL)) (-3879 (($ $ $ (-762)) NIL (|has| |#1| (-171)))) (-1870 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2131 (($) NIL T CONST)) (-2142 (($) NIL T CONST)) (-1866 (($ $ |#3|) NIL) (($ $ (-635 |#3|)) NIL) (($ $ |#3| (-762)) NIL) (($ $ (-635 |#3|) (-635 (-762))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-762)) NIL (|has| |#1| (-232))) (($ $ (-1163)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1747 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1683 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1810 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558))))) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-263 |#1| |#2| |#3|) (-13 (-252 |#1| |#2| |#3| (-529 |#3|)) (-1028 (-1112 |#1| |#2|))) (-1039) (-841) (-265 |#2|)) (T -263))
+NIL
+(-13 (-252 |#1| |#2| |#3| (-529 |#3|)) (-1028 (-1112 |#1| |#2|)))
+((-1800 (((-762) $) 30)) (-3069 (((-3 |#2| "failed") $) 17)) (-1863 ((|#2| $) 27)) (-2829 (($ $) 12) (($ $ (-762)) 15)) (-3220 (((-853) $) 26) (($ |#2|) 10)) (-1683 (((-112) $ $) 20)) (-1705 (((-112) $ $) 29)))
+(((-264 |#1| |#2|) (-10 -8 (-15 -2829 (|#1| |#1| (-762))) (-15 -2829 (|#1| |#1|)) (-15 -1800 ((-762) |#1|)) (-15 -3220 (|#1| |#2|)) (-15 -3069 ((-3 |#2| "failed") |#1|)) (-15 -1863 (|#2| |#1|)) (-15 -1705 ((-112) |#1| |#1|)) (-15 -3220 ((-853) |#1|)) (-15 -1683 ((-112) |#1| |#1|))) (-265 |#2|) (-841)) (T -264))
+NIL
+(-10 -8 (-15 -2829 (|#1| |#1| (-762))) (-15 -2829 (|#1| |#1|)) (-15 -1800 ((-762) |#1|)) (-15 -3220 (|#1| |#2|)) (-15 -3069 ((-3 |#2| "failed") |#1|)) (-15 -1863 (|#2| |#1|)) (-15 -1705 ((-112) |#1| |#1|)) (-15 -3220 ((-853) |#1|)) (-15 -1683 ((-112) |#1| |#1|)))
+((-3207 (((-112) $ $) 7)) (-1800 (((-762) $) 22)) (-1602 ((|#1| $) 23)) (-3069 (((-3 |#1| "failed") $) 27)) (-1863 ((|#1| $) 28)) (-3449 (((-762) $) 24)) (-3910 (($ $ $) 13)) (-3542 (($ $ $) 14)) (-1812 (($ |#1| (-762)) 25)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-2829 (($ $) 21) (($ $ (-762)) 20)) (-3220 (((-853) $) 11) (($ |#1|) 26)) (-1747 (((-112) $ $) 16)) (-1720 (((-112) $ $) 17)) (-1683 (((-112) $ $) 6)) (-1731 (((-112) $ $) 15)) (-1705 (((-112) $ $) 18)))
+(((-265 |#1|) (-139) (-841)) (T -265))
+((-3220 (*1 *1 *2) (-12 (-4 *1 (-265 *2)) (-4 *2 (-841)))) (-1812 (*1 *1 *2 *3) (-12 (-5 *3 (-762)) (-4 *1 (-265 *2)) (-4 *2 (-841)))) (-3449 (*1 *2 *1) (-12 (-4 *1 (-265 *3)) (-4 *3 (-841)) (-5 *2 (-762)))) (-1602 (*1 *2 *1) (-12 (-4 *1 (-265 *2)) (-4 *2 (-841)))) (-1800 (*1 *2 *1) (-12 (-4 *1 (-265 *3)) (-4 *3 (-841)) (-5 *2 (-762)))) (-2829 (*1 *1 *1) (-12 (-4 *1 (-265 *2)) (-4 *2 (-841)))) (-2829 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *1 (-265 *3)) (-4 *3 (-841)))))
+(-13 (-841) (-1028 |t#1|) (-10 -8 (-15 -1812 ($ |t#1| (-762))) (-15 -3449 ((-762) $)) (-15 -1602 (|t#1| $)) (-15 -1800 ((-762) $)) (-15 -2829 ($ $)) (-15 -2829 ($ $ (-762))) (-15 -3220 ($ |t#1|))))
+(((-102) . T) ((-608 |#1|) . T) ((-605 (-853)) . T) ((-841) . T) ((-1028 |#1|) . T) ((-1087) . T))
+((-2671 (((-635 (-1163)) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224))))) 41)) (-3712 (((-635 (-1163)) (-315 (-224)) (-762)) 80)) (-1844 (((-3 (-315 (-224)) "failed") (-315 (-224))) 51)) (-1856 (((-315 (-224)) (-315 (-224))) 67)) (-1833 (((-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224))))) (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) 26)) (-1869 (((-112) (-635 (-315 (-224)))) 84)) (-1911 (((-112) (-315 (-224))) 24)) (-1933 (((-635 (-1145)) (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224))))))) 105)) (-1899 (((-635 (-315 (-224))) (-635 (-315 (-224)))) 87)) (-1890 (((-635 (-315 (-224))) (-635 (-315 (-224)))) 86)) (-1880 (((-679 (-224)) (-635 (-315 (-224))) (-762)) 94)) (-4164 (((-112) (-315 (-224))) 20) (((-112) (-635 (-315 (-224)))) 85)) (-1823 (((-635 (-224)) (-635 (-834 (-224))) (-224)) 14)) (-3461 (((-378) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224))))) 100)) (-1923 (((-1025) (-1163) (-1025)) 34)))
+(((-266) (-10 -7 (-15 -1823 ((-635 (-224)) (-635 (-834 (-224))) (-224))) (-15 -1833 ((-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224))))) (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224))))))) (-15 -1844 ((-3 (-315 (-224)) "failed") (-315 (-224)))) (-15 -1856 ((-315 (-224)) (-315 (-224)))) (-15 -1869 ((-112) (-635 (-315 (-224))))) (-15 -4164 ((-112) (-635 (-315 (-224))))) (-15 -4164 ((-112) (-315 (-224)))) (-15 -1880 ((-679 (-224)) (-635 (-315 (-224))) (-762))) (-15 -1890 ((-635 (-315 (-224))) (-635 (-315 (-224))))) (-15 -1899 ((-635 (-315 (-224))) (-635 (-315 (-224))))) (-15 -1911 ((-112) (-315 (-224)))) (-15 -2671 ((-635 (-1163)) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224)))))) (-15 -3712 ((-635 (-1163)) (-315 (-224)) (-762))) (-15 -1923 ((-1025) (-1163) (-1025))) (-15 -3461 ((-378) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224)))))) (-15 -1933 ((-635 (-1145)) (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224)))))))))) (T -266))
+((-1933 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224))))))) (-5 *2 (-635 (-1145))) (-5 *1 (-266)))) (-3461 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224))))) (-5 *2 (-378)) (-5 *1 (-266)))) (-1923 (*1 *2 *3 *2) (-12 (-5 *2 (-1025)) (-5 *3 (-1163)) (-5 *1 (-266)))) (-3712 (*1 *2 *3 *4) (-12 (-5 *3 (-315 (-224))) (-5 *4 (-762)) (-5 *2 (-635 (-1163))) (-5 *1 (-266)))) (-2671 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224))))) (-5 *2 (-635 (-1163))) (-5 *1 (-266)))) (-1911 (*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-112)) (-5 *1 (-266)))) (-1899 (*1 *2 *2) (-12 (-5 *2 (-635 (-315 (-224)))) (-5 *1 (-266)))) (-1890 (*1 *2 *2) (-12 (-5 *2 (-635 (-315 (-224)))) (-5 *1 (-266)))) (-1880 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-315 (-224)))) (-5 *4 (-762)) (-5 *2 (-679 (-224))) (-5 *1 (-266)))) (-4164 (*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-112)) (-5 *1 (-266)))) (-4164 (*1 *2 *3) (-12 (-5 *3 (-635 (-315 (-224)))) (-5 *2 (-112)) (-5 *1 (-266)))) (-1869 (*1 *2 *3) (-12 (-5 *3 (-635 (-315 (-224)))) (-5 *2 (-112)) (-5 *1 (-266)))) (-1856 (*1 *2 *2) (-12 (-5 *2 (-315 (-224))) (-5 *1 (-266)))) (-1844 (*1 *2 *2) (|partial| -12 (-5 *2 (-315 (-224))) (-5 *1 (-266)))) (-1833 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) (-5 *1 (-266)))) (-1823 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-834 (-224)))) (-5 *4 (-224)) (-5 *2 (-635 *4)) (-5 *1 (-266)))))
+(-10 -7 (-15 -1823 ((-635 (-224)) (-635 (-834 (-224))) (-224))) (-15 -1833 ((-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224))))) (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224))))))) (-15 -1844 ((-3 (-315 (-224)) "failed") (-315 (-224)))) (-15 -1856 ((-315 (-224)) (-315 (-224)))) (-15 -1869 ((-112) (-635 (-315 (-224))))) (-15 -4164 ((-112) (-635 (-315 (-224))))) (-15 -4164 ((-112) (-315 (-224)))) (-15 -1880 ((-679 (-224)) (-635 (-315 (-224))) (-762))) (-15 -1890 ((-635 (-315 (-224))) (-635 (-315 (-224))))) (-15 -1899 ((-635 (-315 (-224))) (-635 (-315 (-224))))) (-15 -1911 ((-112) (-315 (-224)))) (-15 -2671 ((-635 (-1163)) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224)))))) (-15 -3712 ((-635 (-1163)) (-315 (-224)) (-762))) (-15 -1923 ((-1025) (-1163) (-1025))) (-15 -3461 ((-378) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224)))))) (-15 -1933 ((-635 (-1145)) (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224)))))))))
+((-3207 (((-112) $ $) NIL)) (-1566 (((-1025) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224))))) NIL) (((-1025) (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) 44)) (-3510 (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) 26) (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224))))) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) NIL)) (-1683 (((-112) $ $) NIL)))
+(((-267) (-830)) (T -267))
+NIL
+(-830)
+((-3207 (((-112) $ $) NIL)) (-1566 (((-1025) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224))))) 58) (((-1025) (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) 54)) (-3510 (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) 34) (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224))))) 36)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) NIL)) (-1683 (((-112) $ $) NIL)))
+(((-268) (-830)) (T -268))
+NIL
+(-830)
+((-3207 (((-112) $ $) NIL)) (-1566 (((-1025) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224))))) 76) (((-1025) (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) 73)) (-3510 (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) 44) (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224))))) 55)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) NIL)) (-1683 (((-112) $ $) NIL)))
+(((-269) (-830)) (T -269))
+NIL
+(-830)
+((-3207 (((-112) $ $) NIL)) (-1566 (((-1025) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224))))) NIL) (((-1025) (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) 50)) (-3510 (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) 31) (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224))))) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) NIL)) (-1683 (((-112) $ $) NIL)))
+(((-270) (-830)) (T -270))
+NIL
+(-830)
+((-3207 (((-112) $ $) NIL)) (-1566 (((-1025) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224))))) NIL) (((-1025) (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) 50)) (-3510 (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) 28) (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224))))) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) NIL)) (-1683 (((-112) $ $) NIL)))
+(((-271) (-830)) (T -271))
+NIL
+(-830)
+((-3207 (((-112) $ $) NIL)) (-1566 (((-1025) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224))))) NIL) (((-1025) (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) 73)) (-3510 (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) 28) (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224))))) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) NIL)) (-1683 (((-112) $ $) NIL)))
+(((-272) (-830)) (T -272))
+NIL
+(-830)
+((-3207 (((-112) $ $) NIL)) (-1566 (((-1025) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224))))) NIL) (((-1025) (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) 77)) (-3510 (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) 25) (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224))))) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) NIL)) (-1683 (((-112) $ $) NIL)))
+(((-273) (-830)) (T -273))
+NIL
+(-830)
+((-3207 (((-112) $ $) NIL)) (-3910 (($ $ $) NIL)) (-3542 (($ $ $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-1954 (((-635 (-558)) $) 18)) (-4323 (((-762) $) 16)) (-3220 (((-853) $) 22) (($ (-635 (-558))) 14)) (-1943 (($ (-762)) 19)) (-1747 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1683 (((-112) $ $) 9)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 10)))
+(((-274) (-13 (-841) (-10 -8 (-15 -3220 ($ (-635 (-558)))) (-15 -4323 ((-762) $)) (-15 -1954 ((-635 (-558)) $)) (-15 -1943 ($ (-762)))))) (T -274))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-274)))) (-4323 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-274)))) (-1954 (*1 *2 *1) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-274)))) (-1943 (*1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-274)))))
+(-13 (-841) (-10 -8 (-15 -3220 ($ (-635 (-558)))) (-15 -4323 ((-762) $)) (-15 -1954 ((-635 (-558)) $)) (-15 -1943 ($ (-762)))))
+((-4088 ((|#2| |#2|) 77)) (-2135 ((|#2| |#2|) 65)) (-4089 (((-3 |#2| "failed") |#2| (-635 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 116)) (-4070 ((|#2| |#2|) 75)) (-2112 ((|#2| |#2|) 63)) (-4113 ((|#2| |#2|) 79)) (-2156 ((|#2| |#2|) 67)) (-1904 ((|#2|) 46)) (-3029 (((-114) (-114)) 95)) (-2592 ((|#2| |#2|) 61)) (-4103 (((-112) |#2|) 134)) (-3990 ((|#2| |#2|) 181)) (-2029 ((|#2| |#2|) 157)) (-1978 ((|#2|) 59)) (-1966 ((|#2|) 58)) (-3970 ((|#2| |#2|) 177)) (-2009 ((|#2| |#2|) 153)) (-4013 ((|#2| |#2|) 185)) (-2048 ((|#2| |#2|) 161)) (-1999 ((|#2| |#2|) 149)) (-1989 ((|#2| |#2|) 151)) (-4021 ((|#2| |#2|) 187)) (-2059 ((|#2| |#2|) 163)) (-4002 ((|#2| |#2|) 183)) (-2038 ((|#2| |#2|) 159)) (-3979 ((|#2| |#2|) 179)) (-2018 ((|#2| |#2|) 155)) (-4051 ((|#2| |#2|) 193)) (-2090 ((|#2| |#2|) 169)) (-4033 ((|#2| |#2|) 189)) (-2069 ((|#2| |#2|) 165)) (-4071 ((|#2| |#2|) 197)) (-3948 ((|#2| |#2|) 173)) (-4081 ((|#2| |#2|) 199)) (-3960 ((|#2| |#2|) 175)) (-4061 ((|#2| |#2|) 195)) (-2102 ((|#2| |#2|) 171)) (-4044 ((|#2| |#2|) 191)) (-2078 ((|#2| |#2|) 167)) (-2573 ((|#2| |#2|) 62)) (-4124 ((|#2| |#2|) 80)) (-2167 ((|#2| |#2|) 68)) (-4102 ((|#2| |#2|) 78)) (-2146 ((|#2| |#2|) 66)) (-4080 ((|#2| |#2|) 76)) (-2124 ((|#2| |#2|) 64)) (-2995 (((-112) (-114)) 93)) (-4159 ((|#2| |#2|) 83)) (-2200 ((|#2| |#2|) 71)) (-4135 ((|#2| |#2|) 81)) (-2178 ((|#2| |#2|) 69)) (-4184 ((|#2| |#2|) 85)) (-2222 ((|#2| |#2|) 73)) (-1878 ((|#2| |#2|) 86)) (-4060 ((|#2| |#2|) 74)) (-4171 ((|#2| |#2|) 84)) (-2211 ((|#2| |#2|) 72)) (-4147 ((|#2| |#2|) 82)) (-2189 ((|#2| |#2|) 70)))
+(((-275 |#1| |#2|) (-10 -7 (-15 -2573 (|#2| |#2|)) (-15 -2592 (|#2| |#2|)) (-15 -2112 (|#2| |#2|)) (-15 -2124 (|#2| |#2|)) (-15 -2135 (|#2| |#2|)) (-15 -2146 (|#2| |#2|)) (-15 -2156 (|#2| |#2|)) (-15 -2167 (|#2| |#2|)) (-15 -2178 (|#2| |#2|)) (-15 -2189 (|#2| |#2|)) (-15 -2200 (|#2| |#2|)) (-15 -2211 (|#2| |#2|)) (-15 -2222 (|#2| |#2|)) (-15 -4060 (|#2| |#2|)) (-15 -4070 (|#2| |#2|)) (-15 -4080 (|#2| |#2|)) (-15 -4088 (|#2| |#2|)) (-15 -4102 (|#2| |#2|)) (-15 -4113 (|#2| |#2|)) (-15 -4124 (|#2| |#2|)) (-15 -4135 (|#2| |#2|)) (-15 -4147 (|#2| |#2|)) (-15 -4159 (|#2| |#2|)) (-15 -4171 (|#2| |#2|)) (-15 -4184 (|#2| |#2|)) (-15 -1878 (|#2| |#2|)) (-15 -1904 (|#2|)) (-15 -2995 ((-112) (-114))) (-15 -3029 ((-114) (-114))) (-15 -1966 (|#2|)) (-15 -1978 (|#2|)) (-15 -1989 (|#2| |#2|)) (-15 -1999 (|#2| |#2|)) (-15 -2009 (|#2| |#2|)) (-15 -2018 (|#2| |#2|)) (-15 -2029 (|#2| |#2|)) (-15 -2038 (|#2| |#2|)) (-15 -2048 (|#2| |#2|)) (-15 -2059 (|#2| |#2|)) (-15 -2069 (|#2| |#2|)) (-15 -2078 (|#2| |#2|)) (-15 -2090 (|#2| |#2|)) (-15 -2102 (|#2| |#2|)) (-15 -3948 (|#2| |#2|)) (-15 -3960 (|#2| |#2|)) (-15 -3970 (|#2| |#2|)) (-15 -3979 (|#2| |#2|)) (-15 -3990 (|#2| |#2|)) (-15 -4002 (|#2| |#2|)) (-15 -4013 (|#2| |#2|)) (-15 -4021 (|#2| |#2|)) (-15 -4033 (|#2| |#2|)) (-15 -4044 (|#2| |#2|)) (-15 -4051 (|#2| |#2|)) (-15 -4061 (|#2| |#2|)) (-15 -4071 (|#2| |#2|)) (-15 -4081 (|#2| |#2|)) (-15 -4089 ((-3 |#2| "failed") |#2| (-635 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -4103 ((-112) |#2|))) (-13 (-841) (-550)) (-13 (-429 |#1|) (-992))) (T -275))
+((-4103 (*1 *2 *3) (-12 (-4 *4 (-13 (-841) (-550))) (-5 *2 (-112)) (-5 *1 (-275 *4 *3)) (-4 *3 (-13 (-429 *4) (-992))))) (-4089 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-635 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-429 *4) (-992))) (-4 *4 (-13 (-841) (-550))) (-5 *1 (-275 *4 *2)))) (-4081 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-4071 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-4061 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-4051 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-4044 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-4033 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-4021 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-4013 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-4002 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-3990 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-3979 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-3970 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-3960 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-3948 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2102 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2090 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2078 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2069 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2059 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2048 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2038 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2029 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2018 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2009 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-1999 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-1989 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-1978 (*1 *2) (-12 (-4 *2 (-13 (-429 *3) (-992))) (-5 *1 (-275 *3 *2)) (-4 *3 (-13 (-841) (-550))))) (-1966 (*1 *2) (-12 (-4 *2 (-13 (-429 *3) (-992))) (-5 *1 (-275 *3 *2)) (-4 *3 (-13 (-841) (-550))))) (-3029 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *4)) (-4 *4 (-13 (-429 *3) (-992))))) (-2995 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-841) (-550))) (-5 *2 (-112)) (-5 *1 (-275 *4 *5)) (-4 *5 (-13 (-429 *4) (-992))))) (-1904 (*1 *2) (-12 (-4 *2 (-13 (-429 *3) (-992))) (-5 *1 (-275 *3 *2)) (-4 *3 (-13 (-841) (-550))))) (-1878 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-4184 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-4171 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-4159 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-4147 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-4135 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-4124 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-4113 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-4102 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-4088 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-4080 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-4070 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-4060 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2222 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2211 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2200 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2189 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2178 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2167 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2156 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2146 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2135 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2124 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2112 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2592 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2573 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))))
+(-10 -7 (-15 -2573 (|#2| |#2|)) (-15 -2592 (|#2| |#2|)) (-15 -2112 (|#2| |#2|)) (-15 -2124 (|#2| |#2|)) (-15 -2135 (|#2| |#2|)) (-15 -2146 (|#2| |#2|)) (-15 -2156 (|#2| |#2|)) (-15 -2167 (|#2| |#2|)) (-15 -2178 (|#2| |#2|)) (-15 -2189 (|#2| |#2|)) (-15 -2200 (|#2| |#2|)) (-15 -2211 (|#2| |#2|)) (-15 -2222 (|#2| |#2|)) (-15 -4060 (|#2| |#2|)) (-15 -4070 (|#2| |#2|)) (-15 -4080 (|#2| |#2|)) (-15 -4088 (|#2| |#2|)) (-15 -4102 (|#2| |#2|)) (-15 -4113 (|#2| |#2|)) (-15 -4124 (|#2| |#2|)) (-15 -4135 (|#2| |#2|)) (-15 -4147 (|#2| |#2|)) (-15 -4159 (|#2| |#2|)) (-15 -4171 (|#2| |#2|)) (-15 -4184 (|#2| |#2|)) (-15 -1878 (|#2| |#2|)) (-15 -1904 (|#2|)) (-15 -2995 ((-112) (-114))) (-15 -3029 ((-114) (-114))) (-15 -1966 (|#2|)) (-15 -1978 (|#2|)) (-15 -1989 (|#2| |#2|)) (-15 -1999 (|#2| |#2|)) (-15 -2009 (|#2| |#2|)) (-15 -2018 (|#2| |#2|)) (-15 -2029 (|#2| |#2|)) (-15 -2038 (|#2| |#2|)) (-15 -2048 (|#2| |#2|)) (-15 -2059 (|#2| |#2|)) (-15 -2069 (|#2| |#2|)) (-15 -2078 (|#2| |#2|)) (-15 -2090 (|#2| |#2|)) (-15 -2102 (|#2| |#2|)) (-15 -3948 (|#2| |#2|)) (-15 -3960 (|#2| |#2|)) (-15 -3970 (|#2| |#2|)) (-15 -3979 (|#2| |#2|)) (-15 -3990 (|#2| |#2|)) (-15 -4002 (|#2| |#2|)) (-15 -4013 (|#2| |#2|)) (-15 -4021 (|#2| |#2|)) (-15 -4033 (|#2| |#2|)) (-15 -4044 (|#2| |#2|)) (-15 -4051 (|#2| |#2|)) (-15 -4061 (|#2| |#2|)) (-15 -4071 (|#2| |#2|)) (-15 -4081 (|#2| |#2|)) (-15 -4089 ((-3 |#2| "failed") |#2| (-635 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -4103 ((-112) |#2|)))
+((-4137 (((-3 |#2| "failed") (-635 (-604 |#2|)) |#2| (-1163)) 135)) (-4162 ((|#2| (-406 (-558)) |#2|) 51)) (-4149 ((|#2| |#2| (-604 |#2|)) 128)) (-4114 (((-2 (|:| |func| |#2|) (|:| |kers| (-635 (-604 |#2|))) (|:| |vals| (-635 |#2|))) |#2| (-1163)) 127)) (-4125 ((|#2| |#2| (-1163)) 20) ((|#2| |#2|) 23)) (-2298 ((|#2| |#2| (-1163)) 141) ((|#2| |#2|) 139)))
+(((-276 |#1| |#2|) (-10 -7 (-15 -2298 (|#2| |#2|)) (-15 -2298 (|#2| |#2| (-1163))) (-15 -4114 ((-2 (|:| |func| |#2|) (|:| |kers| (-635 (-604 |#2|))) (|:| |vals| (-635 |#2|))) |#2| (-1163))) (-15 -4125 (|#2| |#2|)) (-15 -4125 (|#2| |#2| (-1163))) (-15 -4137 ((-3 |#2| "failed") (-635 (-604 |#2|)) |#2| (-1163))) (-15 -4149 (|#2| |#2| (-604 |#2|))) (-15 -4162 (|#2| (-406 (-558)) |#2|))) (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))) (-13 (-27) (-1185) (-429 |#1|))) (T -276))
+((-4162 (*1 *2 *3 *2) (-12 (-5 *3 (-406 (-558))) (-4 *4 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *4))))) (-4149 (*1 *2 *2 *3) (-12 (-5 *3 (-604 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *4))) (-4 *4 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-276 *4 *2)))) (-4137 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-635 (-604 *2))) (-5 *4 (-1163)) (-4 *2 (-13 (-27) (-1185) (-429 *5))) (-4 *5 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-276 *5 *2)))) (-4125 (*1 *2 *2 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *4))))) (-4125 (*1 *2 *2) (-12 (-4 *3 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *3))))) (-4114 (*1 *2 *3 *4) (-12 (-5 *4 (-1163)) (-4 *5 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-635 (-604 *3))) (|:| |vals| (-635 *3)))) (-5 *1 (-276 *5 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *5))))) (-2298 (*1 *2 *2 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *4))))) (-2298 (*1 *2 *2) (-12 (-4 *3 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *3))))))
+(-10 -7 (-15 -2298 (|#2| |#2|)) (-15 -2298 (|#2| |#2| (-1163))) (-15 -4114 ((-2 (|:| |func| |#2|) (|:| |kers| (-635 (-604 |#2|))) (|:| |vals| (-635 |#2|))) |#2| (-1163))) (-15 -4125 (|#2| |#2|)) (-15 -4125 (|#2| |#2| (-1163))) (-15 -4137 ((-3 |#2| "failed") (-635 (-604 |#2|)) |#2| (-1163))) (-15 -4149 (|#2| |#2| (-604 |#2|))) (-15 -4162 (|#2| (-406 (-558)) |#2|)))
+((-3509 (((-3 |#3| "failed") |#3|) 110)) (-4088 ((|#3| |#3|) 131)) (-1493 (((-3 |#3| "failed") |#3|) 82)) (-2135 ((|#3| |#3|) 121)) (-3491 (((-3 |#3| "failed") |#3|) 58)) (-4070 ((|#3| |#3|) 129)) (-1476 (((-3 |#3| "failed") |#3|) 46)) (-2112 ((|#3| |#3|) 119)) (-3527 (((-3 |#3| "failed") |#3|) 112)) (-4113 ((|#3| |#3|) 133)) (-1514 (((-3 |#3| "failed") |#3|) 84)) (-2156 ((|#3| |#3|) 123)) (-1441 (((-3 |#3| "failed") |#3| (-762)) 36)) (-1463 (((-3 |#3| "failed") |#3|) 74)) (-2592 ((|#3| |#3|) 118)) (-1453 (((-3 |#3| "failed") |#3|) 44)) (-2573 ((|#3| |#3|) 117)) (-3538 (((-3 |#3| "failed") |#3|) 113)) (-4124 ((|#3| |#3|) 134)) (-1526 (((-3 |#3| "failed") |#3|) 85)) (-2167 ((|#3| |#3|) 124)) (-3518 (((-3 |#3| "failed") |#3|) 111)) (-4102 ((|#3| |#3|) 132)) (-1503 (((-3 |#3| "failed") |#3|) 83)) (-2146 ((|#3| |#3|) 122)) (-3500 (((-3 |#3| "failed") |#3|) 60)) (-4080 ((|#3| |#3|) 130)) (-1485 (((-3 |#3| "failed") |#3|) 48)) (-2124 ((|#3| |#3|) 120)) (-3571 (((-3 |#3| "failed") |#3|) 66)) (-4159 ((|#3| |#3|) 137)) (-1556 (((-3 |#3| "failed") |#3|) 104)) (-2200 ((|#3| |#3|) 142)) (-3551 (((-3 |#3| "failed") |#3|) 62)) (-4135 ((|#3| |#3|) 135)) (-1535 (((-3 |#3| "failed") |#3|) 50)) (-2178 ((|#3| |#3|) 125)) (-3589 (((-3 |#3| "failed") |#3|) 70)) (-4184 ((|#3| |#3|) 139)) (-3474 (((-3 |#3| "failed") |#3|) 54)) (-2222 ((|#3| |#3|) 127)) (-3598 (((-3 |#3| "failed") |#3|) 72)) (-1878 ((|#3| |#3|) 140)) (-3484 (((-3 |#3| "failed") |#3|) 56)) (-4060 ((|#3| |#3|) 128)) (-3580 (((-3 |#3| "failed") |#3|) 68)) (-4171 ((|#3| |#3|) 138)) (-3463 (((-3 |#3| "failed") |#3|) 107)) (-2211 ((|#3| |#3|) 143)) (-3561 (((-3 |#3| "failed") |#3|) 64)) (-4147 ((|#3| |#3|) 136)) (-1545 (((-3 |#3| "failed") |#3|) 52)) (-2189 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-406 (-558))) 40 (|has| |#1| (-362)))))
+(((-277 |#1| |#2| |#3|) (-13 (-973 |#3|) (-10 -7 (IF (|has| |#1| (-362)) (-15 ** (|#3| |#3| (-406 (-558)))) |%noBranch|) (-15 -2573 (|#3| |#3|)) (-15 -2592 (|#3| |#3|)) (-15 -2112 (|#3| |#3|)) (-15 -2124 (|#3| |#3|)) (-15 -2135 (|#3| |#3|)) (-15 -2146 (|#3| |#3|)) (-15 -2156 (|#3| |#3|)) (-15 -2167 (|#3| |#3|)) (-15 -2178 (|#3| |#3|)) (-15 -2189 (|#3| |#3|)) (-15 -2200 (|#3| |#3|)) (-15 -2211 (|#3| |#3|)) (-15 -2222 (|#3| |#3|)) (-15 -4060 (|#3| |#3|)) (-15 -4070 (|#3| |#3|)) (-15 -4080 (|#3| |#3|)) (-15 -4088 (|#3| |#3|)) (-15 -4102 (|#3| |#3|)) (-15 -4113 (|#3| |#3|)) (-15 -4124 (|#3| |#3|)) (-15 -4135 (|#3| |#3|)) (-15 -4147 (|#3| |#3|)) (-15 -4159 (|#3| |#3|)) (-15 -4171 (|#3| |#3|)) (-15 -4184 (|#3| |#3|)) (-15 -1878 (|#3| |#3|)))) (-38 (-406 (-558))) (-1237 |#1|) (-1208 |#1| |#2|)) (T -277))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-406 (-558))) (-4 *4 (-362)) (-4 *4 (-38 *3)) (-4 *5 (-1237 *4)) (-5 *1 (-277 *4 *5 *2)) (-4 *2 (-1208 *4 *5)))) (-2573 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-2592 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-2112 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-2124 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-2135 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-2146 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-2156 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-2167 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-2178 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-2189 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-2200 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-2211 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-2222 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-4060 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-4070 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-4080 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-4088 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-4102 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-4113 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-4124 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-4135 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-4147 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-4159 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-4171 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-4184 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-1878 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))))
+(-13 (-973 |#3|) (-10 -7 (IF (|has| |#1| (-362)) (-15 ** (|#3| |#3| (-406 (-558)))) |%noBranch|) (-15 -2573 (|#3| |#3|)) (-15 -2592 (|#3| |#3|)) (-15 -2112 (|#3| |#3|)) (-15 -2124 (|#3| |#3|)) (-15 -2135 (|#3| |#3|)) (-15 -2146 (|#3| |#3|)) (-15 -2156 (|#3| |#3|)) (-15 -2167 (|#3| |#3|)) (-15 -2178 (|#3| |#3|)) (-15 -2189 (|#3| |#3|)) (-15 -2200 (|#3| |#3|)) (-15 -2211 (|#3| |#3|)) (-15 -2222 (|#3| |#3|)) (-15 -4060 (|#3| |#3|)) (-15 -4070 (|#3| |#3|)) (-15 -4080 (|#3| |#3|)) (-15 -4088 (|#3| |#3|)) (-15 -4102 (|#3| |#3|)) (-15 -4113 (|#3| |#3|)) (-15 -4124 (|#3| |#3|)) (-15 -4135 (|#3| |#3|)) (-15 -4147 (|#3| |#3|)) (-15 -4159 (|#3| |#3|)) (-15 -4171 (|#3| |#3|)) (-15 -4184 (|#3| |#3|)) (-15 -1878 (|#3| |#3|))))
+((-3509 (((-3 |#3| "failed") |#3|) 66)) (-4088 ((|#3| |#3|) 129)) (-1493 (((-3 |#3| "failed") |#3|) 50)) (-2135 ((|#3| |#3|) 117)) (-3491 (((-3 |#3| "failed") |#3|) 62)) (-4070 ((|#3| |#3|) 127)) (-1476 (((-3 |#3| "failed") |#3|) 46)) (-2112 ((|#3| |#3|) 115)) (-3527 (((-3 |#3| "failed") |#3|) 70)) (-4113 ((|#3| |#3|) 131)) (-1514 (((-3 |#3| "failed") |#3|) 54)) (-2156 ((|#3| |#3|) 119)) (-1441 (((-3 |#3| "failed") |#3| (-762)) 35)) (-1463 (((-3 |#3| "failed") |#3|) 44)) (-2592 ((|#3| |#3|) 104)) (-1453 (((-3 |#3| "failed") |#3|) 42)) (-2573 ((|#3| |#3|) 114)) (-3538 (((-3 |#3| "failed") |#3|) 72)) (-4124 ((|#3| |#3|) 132)) (-1526 (((-3 |#3| "failed") |#3|) 56)) (-2167 ((|#3| |#3|) 120)) (-3518 (((-3 |#3| "failed") |#3|) 68)) (-4102 ((|#3| |#3|) 130)) (-1503 (((-3 |#3| "failed") |#3|) 52)) (-2146 ((|#3| |#3|) 118)) (-3500 (((-3 |#3| "failed") |#3|) 64)) (-4080 ((|#3| |#3|) 128)) (-1485 (((-3 |#3| "failed") |#3|) 48)) (-2124 ((|#3| |#3|) 116)) (-3571 (((-3 |#3| "failed") |#3|) 74)) (-4159 ((|#3| |#3|) 135)) (-1556 (((-3 |#3| "failed") |#3|) 58)) (-2200 ((|#3| |#3|) 123)) (-3551 (((-3 |#3| "failed") |#3|) 105)) (-4135 ((|#3| |#3|) 133)) (-1535 (((-3 |#3| "failed") |#3|) 94)) (-2178 ((|#3| |#3|) 121)) (-3589 (((-3 |#3| "failed") |#3|) 109)) (-4184 ((|#3| |#3|) 137)) (-3474 (((-3 |#3| "failed") |#3|) 101)) (-2222 ((|#3| |#3|) 125)) (-3598 (((-3 |#3| "failed") |#3|) 110)) (-1878 ((|#3| |#3|) 138)) (-3484 (((-3 |#3| "failed") |#3|) 103)) (-4060 ((|#3| |#3|) 126)) (-3580 (((-3 |#3| "failed") |#3|) 76)) (-4171 ((|#3| |#3|) 136)) (-3463 (((-3 |#3| "failed") |#3|) 60)) (-2211 ((|#3| |#3|) 124)) (-3561 (((-3 |#3| "failed") |#3|) 106)) (-4147 ((|#3| |#3|) 134)) (-1545 (((-3 |#3| "failed") |#3|) 97)) (-2189 ((|#3| |#3|) 122)) (** ((|#3| |#3| (-406 (-558))) 40 (|has| |#1| (-362)))))
+(((-278 |#1| |#2| |#3| |#4|) (-13 (-973 |#3|) (-10 -7 (IF (|has| |#1| (-362)) (-15 ** (|#3| |#3| (-406 (-558)))) |%noBranch|) (-15 -2573 (|#3| |#3|)) (-15 -2592 (|#3| |#3|)) (-15 -2112 (|#3| |#3|)) (-15 -2124 (|#3| |#3|)) (-15 -2135 (|#3| |#3|)) (-15 -2146 (|#3| |#3|)) (-15 -2156 (|#3| |#3|)) (-15 -2167 (|#3| |#3|)) (-15 -2178 (|#3| |#3|)) (-15 -2189 (|#3| |#3|)) (-15 -2200 (|#3| |#3|)) (-15 -2211 (|#3| |#3|)) (-15 -2222 (|#3| |#3|)) (-15 -4060 (|#3| |#3|)) (-15 -4070 (|#3| |#3|)) (-15 -4080 (|#3| |#3|)) (-15 -4088 (|#3| |#3|)) (-15 -4102 (|#3| |#3|)) (-15 -4113 (|#3| |#3|)) (-15 -4124 (|#3| |#3|)) (-15 -4135 (|#3| |#3|)) (-15 -4147 (|#3| |#3|)) (-15 -4159 (|#3| |#3|)) (-15 -4171 (|#3| |#3|)) (-15 -4184 (|#3| |#3|)) (-15 -1878 (|#3| |#3|)))) (-38 (-406 (-558))) (-1206 |#1|) (-1229 |#1| |#2|) (-973 |#2|)) (T -278))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-406 (-558))) (-4 *4 (-362)) (-4 *4 (-38 *3)) (-4 *5 (-1206 *4)) (-5 *1 (-278 *4 *5 *2 *6)) (-4 *2 (-1229 *4 *5)) (-4 *6 (-973 *5)))) (-2573 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-2592 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-2112 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-2124 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-2135 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-2146 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-2156 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-2167 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-2178 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-2189 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-2200 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-2211 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-2222 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-4060 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-4070 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-4080 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-4088 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-4102 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-4113 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-4124 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-4135 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-4147 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-4159 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-4171 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-4184 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-1878 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))))
+(-13 (-973 |#3|) (-10 -7 (IF (|has| |#1| (-362)) (-15 ** (|#3| |#3| (-406 (-558)))) |%noBranch|) (-15 -2573 (|#3| |#3|)) (-15 -2592 (|#3| |#3|)) (-15 -2112 (|#3| |#3|)) (-15 -2124 (|#3| |#3|)) (-15 -2135 (|#3| |#3|)) (-15 -2146 (|#3| |#3|)) (-15 -2156 (|#3| |#3|)) (-15 -2167 (|#3| |#3|)) (-15 -2178 (|#3| |#3|)) (-15 -2189 (|#3| |#3|)) (-15 -2200 (|#3| |#3|)) (-15 -2211 (|#3| |#3|)) (-15 -2222 (|#3| |#3|)) (-15 -4060 (|#3| |#3|)) (-15 -4070 (|#3| |#3|)) (-15 -4080 (|#3| |#3|)) (-15 -4088 (|#3| |#3|)) (-15 -4102 (|#3| |#3|)) (-15 -4113 (|#3| |#3|)) (-15 -4124 (|#3| |#3|)) (-15 -4135 (|#3| |#3|)) (-15 -4147 (|#3| |#3|)) (-15 -4159 (|#3| |#3|)) (-15 -4171 (|#3| |#3|)) (-15 -4184 (|#3| |#3|)) (-15 -1878 (|#3| |#3|))))
+((-1596 (((-112) $) 18)) (-1912 (((-182) $) 7)) (-2118 (((-3 (-1163) "failed") $) 14)) (-2106 (((-3 (-635 $) "failed") $) NIL)) (-4186 (((-3 (-1163) "failed") $) 20)) (-4196 (((-3 (-1091) "failed") $) 17)) (-4357 (((-112) $) 15)) (-3220 (((-853) $) NIL)) (-4174 (((-112) $) 9)))
+(((-279) (-13 (-605 (-853)) (-10 -8 (-15 -1912 ((-182) $)) (-15 -4357 ((-112) $)) (-15 -4196 ((-3 (-1091) "failed") $)) (-15 -1596 ((-112) $)) (-15 -4186 ((-3 (-1163) "failed") $)) (-15 -4174 ((-112) $)) (-15 -2118 ((-3 (-1163) "failed") $)) (-15 -2106 ((-3 (-635 $) "failed") $))))) (T -279))
+((-1912 (*1 *2 *1) (-12 (-5 *2 (-182)) (-5 *1 (-279)))) (-4357 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279)))) (-4196 (*1 *2 *1) (|partial| -12 (-5 *2 (-1091)) (-5 *1 (-279)))) (-1596 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279)))) (-4186 (*1 *2 *1) (|partial| -12 (-5 *2 (-1163)) (-5 *1 (-279)))) (-4174 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279)))) (-2118 (*1 *2 *1) (|partial| -12 (-5 *2 (-1163)) (-5 *1 (-279)))) (-2106 (*1 *2 *1) (|partial| -12 (-5 *2 (-635 (-279))) (-5 *1 (-279)))))
+(-13 (-605 (-853)) (-10 -8 (-15 -1912 ((-182) $)) (-15 -4357 ((-112) $)) (-15 -4196 ((-3 (-1091) "failed") $)) (-15 -1596 ((-112) $)) (-15 -4186 ((-3 (-1163) "failed") $)) (-15 -4174 ((-112) $)) (-15 -2118 ((-3 (-1163) "failed") $)) (-15 -2106 ((-3 (-635 $) "failed") $))))
+((-4329 (($ (-1 (-112) |#2|) $) 24)) (-2338 (($ $) 36)) (-3395 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 34)) (-1539 (($ |#2| $) 32) (($ (-1 (-112) |#2|) $) 18)) (-1645 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-1861 (($ |#2| $ (-558)) 20) (($ $ $ (-558)) 22)) (-4023 (($ $ (-558)) 11) (($ $ (-1213 (-558))) 14)) (-2392 (($ $ |#2|) 30) (($ $ $) NIL)) (-4341 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-635 $)) NIL)))
+(((-280 |#1| |#2|) (-10 -8 (-15 -1645 (|#1| |#1| |#1|)) (-15 -3395 (|#1| |#2| |#1|)) (-15 -1645 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3395 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2392 (|#1| |#1| |#1|)) (-15 -2392 (|#1| |#1| |#2|)) (-15 -1861 (|#1| |#1| |#1| (-558))) (-15 -1861 (|#1| |#2| |#1| (-558))) (-15 -4023 (|#1| |#1| (-1213 (-558)))) (-15 -4023 (|#1| |#1| (-558))) (-15 -4341 (|#1| (-635 |#1|))) (-15 -4341 (|#1| |#1| |#1|)) (-15 -4341 (|#1| |#2| |#1|)) (-15 -4341 (|#1| |#1| |#2|)) (-15 -1539 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4329 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1539 (|#1| |#2| |#1|)) (-15 -2338 (|#1| |#1|))) (-281 |#2|) (-1200)) (T -280))
+NIL
+(-10 -8 (-15 -1645 (|#1| |#1| |#1|)) (-15 -3395 (|#1| |#2| |#1|)) (-15 -1645 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3395 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2392 (|#1| |#1| |#1|)) (-15 -2392 (|#1| |#1| |#2|)) (-15 -1861 (|#1| |#1| |#1| (-558))) (-15 -1861 (|#1| |#2| |#1| (-558))) (-15 -4023 (|#1| |#1| (-1213 (-558)))) (-15 -4023 (|#1| |#1| (-558))) (-15 -4341 (|#1| (-635 |#1|))) (-15 -4341 (|#1| |#1| |#1|)) (-15 -4341 (|#1| |#2| |#1|)) (-15 -4341 (|#1| |#1| |#2|)) (-15 -1539 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4329 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1539 (|#1| |#2| |#1|)) (-15 -2338 (|#1| |#1|)))
+((-3207 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-3869 (((-1251) $ (-558) (-558)) 40 (|has| $ (-6 -4383)))) (-3026 (((-112) $ (-762)) 8)) (-1532 ((|#1| $ (-558) |#1|) 52 (|has| $ (-6 -4383))) ((|#1| $ (-1213 (-558)) |#1|) 58 (|has| $ (-6 -4383)))) (-4207 (($ (-1 (-112) |#1|) $) 85)) (-4329 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4382)))) (-1816 (($) 7 T CONST)) (-2820 (($ $) 83 (|has| |#1| (-1087)))) (-2338 (($ $) 78 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-3395 (($ (-1 (-112) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1087)))) (-1539 (($ |#1| $) 77 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4382)))) (-3048 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4382))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4382)))) (-1817 ((|#1| $ (-558) |#1|) 53 (|has| $ (-6 -4383)))) (-1746 ((|#1| $ (-558)) 51)) (-2240 (((-635 |#1|) $) 30 (|has| $ (-6 -4382)))) (-3315 (($ (-762) |#1|) 69)) (-2986 (((-112) $ (-762)) 9)) (-3889 (((-558) $) 43 (|has| (-558) (-841)))) (-1645 (($ (-1 (-112) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-841)))) (-2122 (((-635 |#1|) $) 29 (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-3899 (((-558) $) 44 (|has| (-558) (-841)))) (-1807 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2953 (((-112) $ (-762)) 10)) (-4310 (((-1145) $) 22 (|has| |#1| (-1087)))) (-4328 (($ |#1| $ (-558)) 88) (($ $ $ (-558)) 87)) (-1861 (($ |#1| $ (-558)) 60) (($ $ $ (-558)) 59)) (-3920 (((-635 (-558)) $) 46)) (-3929 (((-112) (-558) $) 47)) (-2975 (((-1107) $) 21 (|has| |#1| (-1087)))) (-2305 ((|#1| $) 42 (|has| (-558) (-841)))) (-4307 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3880 (($ $ |#1|) 41 (|has| $ (-6 -4383)))) (-3266 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) 14)) (-3908 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3937 (((-635 |#1|) $) 48)) (-3375 (((-112) $) 11)) (-2083 (($) 12)) (-2195 ((|#1| $ (-558) |#1|) 50) ((|#1| $ (-558)) 49) (($ $ (-1213 (-558))) 63)) (-4218 (($ $ (-558)) 91) (($ $ (-1213 (-558))) 90)) (-4023 (($ $ (-558)) 62) (($ $ (-1213 (-558))) 61)) (-2988 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4382))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1553 (($ $) 13)) (-3224 (((-534) $) 79 (|has| |#1| (-606 (-534))))) (-3233 (($ (-635 |#1|)) 70)) (-2392 (($ $ |#1|) 93) (($ $ $) 92)) (-4341 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-635 $)) 65)) (-3220 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-3277 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-2755 (((-762) $) 6 (|has| $ (-6 -4382)))))
+(((-281 |#1|) (-139) (-1200)) (T -281))
+((-2392 (*1 *1 *1 *2) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1200)))) (-2392 (*1 *1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1200)))) (-4218 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-281 *3)) (-4 *3 (-1200)))) (-4218 (*1 *1 *1 *2) (-12 (-5 *2 (-1213 (-558))) (-4 *1 (-281 *3)) (-4 *3 (-1200)))) (-3395 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-281 *3)) (-4 *3 (-1200)))) (-4328 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-281 *2)) (-4 *2 (-1200)))) (-4328 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-281 *3)) (-4 *3 (-1200)))) (-1645 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-281 *3)) (-4 *3 (-1200)))) (-4207 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-281 *3)) (-4 *3 (-1200)))) (-3395 (*1 *1 *2 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1200)) (-4 *2 (-1087)))) (-2820 (*1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1200)) (-4 *2 (-1087)))) (-1645 (*1 *1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1200)) (-4 *2 (-841)))))
+(-13 (-641 |t#1|) (-10 -8 (-6 -4383) (-15 -2392 ($ $ |t#1|)) (-15 -2392 ($ $ $)) (-15 -4218 ($ $ (-558))) (-15 -4218 ($ $ (-1213 (-558)))) (-15 -3395 ($ (-1 (-112) |t#1|) $)) (-15 -4328 ($ |t#1| $ (-558))) (-15 -4328 ($ $ $ (-558))) (-15 -1645 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -4207 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1087)) (PROGN (-15 -3395 ($ |t#1| $)) (-15 -2820 ($ $))) |%noBranch|) (IF (|has| |t#1| (-841)) (-15 -1645 ($ $ $)) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1087)) ((-605 (-853)) -3998 (|has| |#1| (-1087)) (|has| |#1| (-605 (-853)))) ((-150 |#1|) . T) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-285 #0=(-558) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-596 #0# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-641 |#1|) . T) ((-1087) |has| |#1| (-1087)) ((-1200) . T))
((** (($ $ $) 10)))
-(((-278 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-279)) (T -278))
+(((-282 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-283)) (T -282))
NIL
(-10 -8 (-15 ** (|#1| |#1| |#1|)))
-((-2395 (($ $) 6)) (-1333 (($ $) 7)) (** (($ $ $) 8)))
-(((-279) (-138)) (T -279))
-((** (*1 *1 *1 *1) (-4 *1 (-279))) (-1333 (*1 *1 *1) (-4 *1 (-279))) (-2395 (*1 *1 *1) (-4 *1 (-279))))
-(-13 (-10 -8 (-15 -2395 ($ $)) (-15 -1333 ($ $)) (-15 ** ($ $ $))))
-((-3111 (((-631 (-1138 |#1|)) (-1138 |#1|) |#1|) 35)) (-3983 ((|#2| |#2| |#1|) 38)) (-1650 ((|#2| |#2| |#1|) 40)) (-2963 ((|#2| |#2| |#1|) 39)))
-(((-280 |#1| |#2|) (-10 -7 (-15 -3983 (|#2| |#2| |#1|)) (-15 -2963 (|#2| |#2| |#1|)) (-15 -1650 (|#2| |#2| |#1|)) (-15 -3111 ((-631 (-1138 |#1|)) (-1138 |#1|) |#1|))) (-358) (-1232 |#1|)) (T -280))
-((-3111 (*1 *2 *3 *4) (-12 (-4 *4 (-358)) (-5 *2 (-631 (-1138 *4))) (-5 *1 (-280 *4 *5)) (-5 *3 (-1138 *4)) (-4 *5 (-1232 *4)))) (-1650 (*1 *2 *2 *3) (-12 (-4 *3 (-358)) (-5 *1 (-280 *3 *2)) (-4 *2 (-1232 *3)))) (-2963 (*1 *2 *2 *3) (-12 (-4 *3 (-358)) (-5 *1 (-280 *3 *2)) (-4 *2 (-1232 *3)))) (-3983 (*1 *2 *2 *3) (-12 (-4 *3 (-358)) (-5 *1 (-280 *3 *2)) (-4 *2 (-1232 *3)))))
-(-10 -7 (-15 -3983 (|#2| |#2| |#1|)) (-15 -2963 (|#2| |#2| |#1|)) (-15 -1650 (|#2| |#2| |#1|)) (-15 -3111 ((-631 (-1138 |#1|)) (-1138 |#1|) |#1|)))
-((-2064 ((|#2| $ |#1|) 6)))
-(((-281 |#1| |#2|) (-138) (-1082) (-1195)) (T -281))
-((-2064 (*1 *2 *1 *3) (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1195)))))
-(-13 (-10 -8 (-15 -2064 (|t#2| $ |t#1|))))
-((-2862 ((|#3| $ |#2| |#3|) 12)) (-2796 ((|#3| $ |#2|) 10)))
-(((-282 |#1| |#2| |#3|) (-10 -8 (-15 -2862 (|#3| |#1| |#2| |#3|)) (-15 -2796 (|#3| |#1| |#2|))) (-283 |#2| |#3|) (-1082) (-1195)) (T -282))
-NIL
-(-10 -8 (-15 -2862 (|#3| |#1| |#2| |#3|)) (-15 -2796 (|#3| |#1| |#2|)))
-((-1501 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4374)))) (-2862 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4374)))) (-2796 ((|#2| $ |#1|) 11)) (-2064 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
-(((-283 |#1| |#2|) (-138) (-1082) (-1195)) (T -283))
-((-2064 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-283 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1195)))) (-2796 (*1 *2 *1 *3) (-12 (-4 *1 (-283 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1195)))) (-1501 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4374)) (-4 *1 (-283 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1195)))) (-2862 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4374)) (-4 *1 (-283 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1195)))))
-(-13 (-281 |t#1| |t#2|) (-10 -8 (-15 -2064 (|t#2| $ |t#1| |t#2|)) (-15 -2796 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4374)) (PROGN (-15 -1501 (|t#2| $ |t#1| |t#2|)) (-15 -2862 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
-(((-281 |#1| |#2|) . T))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 35)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 40)) (-1976 (($ $) 38)) (-1363 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-2286 (((-112) $ $) NIL)) (-4087 (($) NIL T CONST)) (-3964 (($ $ $) 33)) (-3676 (($ |#2| |#3|) 19)) (-1320 (((-3 $ "failed") $) NIL)) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3248 (((-112) $) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2340 ((|#3| $) NIL)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) 20)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2603 (((-3 $ "failed") $ $) NIL)) (-2072 (((-758) $) 34)) (-2064 ((|#2| $ |#2|) 42)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 24)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-2261 (((-758)) NIL)) (-1909 (((-112) $ $) NIL)) (-2004 (($) 29 T CONST)) (-2014 (($) 36 T CONST)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 37)))
-(((-284 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-302) (-10 -8 (-15 -2340 (|#3| $)) (-15 -3075 (|#2| $)) (-15 -3676 ($ |#2| |#3|)) (-15 -2603 ((-3 $ "failed") $ $)) (-15 -1320 ((-3 $ "failed") $)) (-15 -2483 ($ $)) (-15 -2064 (|#2| $ |#2|)))) (-170) (-1217 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -284))
-((-1320 (*1 *1 *1) (|partial| -12 (-4 *2 (-170)) (-5 *1 (-284 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1217 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2340 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-23)) (-5 *1 (-284 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1217 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-3075 (*1 *2 *1) (-12 (-4 *2 (-1217 *3)) (-5 *1 (-284 *3 *2 *4 *5 *6 *7)) (-4 *3 (-170)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-3676 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-284 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1217 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2603 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-170)) (-5 *1 (-284 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1217 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2483 (*1 *1 *1) (-12 (-4 *2 (-170)) (-5 *1 (-284 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1217 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2064 (*1 *2 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-284 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1217 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))))
-(-13 (-302) (-10 -8 (-15 -2340 (|#3| $)) (-15 -3075 (|#2| $)) (-15 -3676 ($ |#2| |#3|)) (-15 -2603 ((-3 $ "failed") $ $)) (-15 -1320 ((-3 $ "failed") $)) (-15 -2483 ($ $)) (-15 -2064 (|#2| $ |#2|))))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1320 (((-3 $ "failed") $) 33)) (-3248 (((-112) $) 31)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11) (($ (-554)) 29)) (-2261 (((-758)) 28)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24)))
-(((-285) (-138)) (T -285))
-NIL
-(-13 (-1034) (-111 $ $) (-10 -7 (-6 -4366)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-604 (-554)) . T) ((-601 (-848)) . T) ((-634 $) . T) ((-713) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T))
-((-2159 (($ (-1158) (-1158) (-1086) $) 17)) (-4290 (($ (-1158) (-631 (-950)) $) 22)) (-2628 (((-631 (-1067)) $) 10)) (-2266 (((-3 (-1086) "failed") (-1158) (-1158) $) 16)) (-2837 (((-3 (-631 (-950)) "failed") (-1158) $) 21)) (-4240 (($) 7)) (-1483 (($) 23)) (-3075 (((-848) $) 27)) (-1768 (($) 24)))
-(((-286) (-13 (-601 (-848)) (-10 -8 (-15 -4240 ($)) (-15 -2628 ((-631 (-1067)) $)) (-15 -2266 ((-3 (-1086) "failed") (-1158) (-1158) $)) (-15 -2159 ($ (-1158) (-1158) (-1086) $)) (-15 -2837 ((-3 (-631 (-950)) "failed") (-1158) $)) (-15 -4290 ($ (-1158) (-631 (-950)) $)) (-15 -1483 ($)) (-15 -1768 ($))))) (T -286))
-((-4240 (*1 *1) (-5 *1 (-286))) (-2628 (*1 *2 *1) (-12 (-5 *2 (-631 (-1067))) (-5 *1 (-286)))) (-2266 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1158)) (-5 *2 (-1086)) (-5 *1 (-286)))) (-2159 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1158)) (-5 *3 (-1086)) (-5 *1 (-286)))) (-2837 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1158)) (-5 *2 (-631 (-950))) (-5 *1 (-286)))) (-4290 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1158)) (-5 *3 (-631 (-950))) (-5 *1 (-286)))) (-1483 (*1 *1) (-5 *1 (-286))) (-1768 (*1 *1) (-5 *1 (-286))))
-(-13 (-601 (-848)) (-10 -8 (-15 -4240 ($)) (-15 -2628 ((-631 (-1067)) $)) (-15 -2266 ((-3 (-1086) "failed") (-1158) (-1158) $)) (-15 -2159 ($ (-1158) (-1158) (-1086) $)) (-15 -2837 ((-3 (-631 (-950)) "failed") (-1158) $)) (-15 -4290 ($ (-1158) (-631 (-950)) $)) (-15 -1483 ($)) (-15 -1768 ($))))
-((-2133 (((-631 (-2 (|:| |eigval| (-3 (-402 (-937 |#1|)) (-1147 (-1158) (-937 |#1|)))) (|:| |geneigvec| (-631 (-675 (-402 (-937 |#1|))))))) (-675 (-402 (-937 |#1|)))) 85)) (-2111 (((-631 (-675 (-402 (-937 |#1|)))) (-2 (|:| |eigval| (-3 (-402 (-937 |#1|)) (-1147 (-1158) (-937 |#1|)))) (|:| |eigmult| (-758)) (|:| |eigvec| (-631 (-675 (-402 (-937 |#1|)))))) (-675 (-402 (-937 |#1|)))) 80) (((-631 (-675 (-402 (-937 |#1|)))) (-3 (-402 (-937 |#1|)) (-1147 (-1158) (-937 |#1|))) (-675 (-402 (-937 |#1|))) (-758) (-758)) 38)) (-1716 (((-631 (-2 (|:| |eigval| (-3 (-402 (-937 |#1|)) (-1147 (-1158) (-937 |#1|)))) (|:| |eigmult| (-758)) (|:| |eigvec| (-631 (-675 (-402 (-937 |#1|))))))) (-675 (-402 (-937 |#1|)))) 82)) (-4067 (((-631 (-675 (-402 (-937 |#1|)))) (-3 (-402 (-937 |#1|)) (-1147 (-1158) (-937 |#1|))) (-675 (-402 (-937 |#1|)))) 62)) (-3955 (((-631 (-3 (-402 (-937 |#1|)) (-1147 (-1158) (-937 |#1|)))) (-675 (-402 (-937 |#1|)))) 61)) (-3109 (((-937 |#1|) (-675 (-402 (-937 |#1|)))) 50) (((-937 |#1|) (-675 (-402 (-937 |#1|))) (-1158)) 51)))
-(((-287 |#1|) (-10 -7 (-15 -3109 ((-937 |#1|) (-675 (-402 (-937 |#1|))) (-1158))) (-15 -3109 ((-937 |#1|) (-675 (-402 (-937 |#1|))))) (-15 -3955 ((-631 (-3 (-402 (-937 |#1|)) (-1147 (-1158) (-937 |#1|)))) (-675 (-402 (-937 |#1|))))) (-15 -4067 ((-631 (-675 (-402 (-937 |#1|)))) (-3 (-402 (-937 |#1|)) (-1147 (-1158) (-937 |#1|))) (-675 (-402 (-937 |#1|))))) (-15 -2111 ((-631 (-675 (-402 (-937 |#1|)))) (-3 (-402 (-937 |#1|)) (-1147 (-1158) (-937 |#1|))) (-675 (-402 (-937 |#1|))) (-758) (-758))) (-15 -2111 ((-631 (-675 (-402 (-937 |#1|)))) (-2 (|:| |eigval| (-3 (-402 (-937 |#1|)) (-1147 (-1158) (-937 |#1|)))) (|:| |eigmult| (-758)) (|:| |eigvec| (-631 (-675 (-402 (-937 |#1|)))))) (-675 (-402 (-937 |#1|))))) (-15 -2133 ((-631 (-2 (|:| |eigval| (-3 (-402 (-937 |#1|)) (-1147 (-1158) (-937 |#1|)))) (|:| |geneigvec| (-631 (-675 (-402 (-937 |#1|))))))) (-675 (-402 (-937 |#1|))))) (-15 -1716 ((-631 (-2 (|:| |eigval| (-3 (-402 (-937 |#1|)) (-1147 (-1158) (-937 |#1|)))) (|:| |eigmult| (-758)) (|:| |eigvec| (-631 (-675 (-402 (-937 |#1|))))))) (-675 (-402 (-937 |#1|)))))) (-446)) (T -287))
-((-1716 (*1 *2 *3) (-12 (-4 *4 (-446)) (-5 *2 (-631 (-2 (|:| |eigval| (-3 (-402 (-937 *4)) (-1147 (-1158) (-937 *4)))) (|:| |eigmult| (-758)) (|:| |eigvec| (-631 (-675 (-402 (-937 *4)))))))) (-5 *1 (-287 *4)) (-5 *3 (-675 (-402 (-937 *4)))))) (-2133 (*1 *2 *3) (-12 (-4 *4 (-446)) (-5 *2 (-631 (-2 (|:| |eigval| (-3 (-402 (-937 *4)) (-1147 (-1158) (-937 *4)))) (|:| |geneigvec| (-631 (-675 (-402 (-937 *4)))))))) (-5 *1 (-287 *4)) (-5 *3 (-675 (-402 (-937 *4)))))) (-2111 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-402 (-937 *5)) (-1147 (-1158) (-937 *5)))) (|:| |eigmult| (-758)) (|:| |eigvec| (-631 *4)))) (-4 *5 (-446)) (-5 *2 (-631 (-675 (-402 (-937 *5))))) (-5 *1 (-287 *5)) (-5 *4 (-675 (-402 (-937 *5)))))) (-2111 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-402 (-937 *6)) (-1147 (-1158) (-937 *6)))) (-5 *5 (-758)) (-4 *6 (-446)) (-5 *2 (-631 (-675 (-402 (-937 *6))))) (-5 *1 (-287 *6)) (-5 *4 (-675 (-402 (-937 *6)))))) (-4067 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-402 (-937 *5)) (-1147 (-1158) (-937 *5)))) (-4 *5 (-446)) (-5 *2 (-631 (-675 (-402 (-937 *5))))) (-5 *1 (-287 *5)) (-5 *4 (-675 (-402 (-937 *5)))))) (-3955 (*1 *2 *3) (-12 (-5 *3 (-675 (-402 (-937 *4)))) (-4 *4 (-446)) (-5 *2 (-631 (-3 (-402 (-937 *4)) (-1147 (-1158) (-937 *4))))) (-5 *1 (-287 *4)))) (-3109 (*1 *2 *3) (-12 (-5 *3 (-675 (-402 (-937 *4)))) (-5 *2 (-937 *4)) (-5 *1 (-287 *4)) (-4 *4 (-446)))) (-3109 (*1 *2 *3 *4) (-12 (-5 *3 (-675 (-402 (-937 *5)))) (-5 *4 (-1158)) (-5 *2 (-937 *5)) (-5 *1 (-287 *5)) (-4 *5 (-446)))))
-(-10 -7 (-15 -3109 ((-937 |#1|) (-675 (-402 (-937 |#1|))) (-1158))) (-15 -3109 ((-937 |#1|) (-675 (-402 (-937 |#1|))))) (-15 -3955 ((-631 (-3 (-402 (-937 |#1|)) (-1147 (-1158) (-937 |#1|)))) (-675 (-402 (-937 |#1|))))) (-15 -4067 ((-631 (-675 (-402 (-937 |#1|)))) (-3 (-402 (-937 |#1|)) (-1147 (-1158) (-937 |#1|))) (-675 (-402 (-937 |#1|))))) (-15 -2111 ((-631 (-675 (-402 (-937 |#1|)))) (-3 (-402 (-937 |#1|)) (-1147 (-1158) (-937 |#1|))) (-675 (-402 (-937 |#1|))) (-758) (-758))) (-15 -2111 ((-631 (-675 (-402 (-937 |#1|)))) (-2 (|:| |eigval| (-3 (-402 (-937 |#1|)) (-1147 (-1158) (-937 |#1|)))) (|:| |eigmult| (-758)) (|:| |eigvec| (-631 (-675 (-402 (-937 |#1|)))))) (-675 (-402 (-937 |#1|))))) (-15 -2133 ((-631 (-2 (|:| |eigval| (-3 (-402 (-937 |#1|)) (-1147 (-1158) (-937 |#1|)))) (|:| |geneigvec| (-631 (-675 (-402 (-937 |#1|))))))) (-675 (-402 (-937 |#1|))))) (-15 -1716 ((-631 (-2 (|:| |eigval| (-3 (-402 (-937 |#1|)) (-1147 (-1158) (-937 |#1|)))) (|:| |eigmult| (-758)) (|:| |eigvec| (-631 (-675 (-402 (-937 |#1|))))))) (-675 (-402 (-937 |#1|))))))
-((-2879 (((-289 |#2|) (-1 |#2| |#1|) (-289 |#1|)) 14)))
-(((-288 |#1| |#2|) (-10 -7 (-15 -2879 ((-289 |#2|) (-1 |#2| |#1|) (-289 |#1|)))) (-1195) (-1195)) (T -288))
-((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-289 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-289 *6)) (-5 *1 (-288 *5 *6)))))
-(-10 -7 (-15 -2879 ((-289 |#2|) (-1 |#2| |#1|) (-289 |#1|))))
-((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-1695 (((-112) $) NIL (|has| |#1| (-21)))) (-1487 (($ $) 12)) (-2934 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3380 (($ $ $) 94 (|has| |#1| (-297)))) (-4087 (($) NIL (-3994 (|has| |#1| (-21)) (|has| |#1| (-713))) CONST)) (-2580 (($ $) 50 (|has| |#1| (-21)))) (-1788 (((-3 $ "failed") $) 61 (|has| |#1| (-713)))) (-3848 ((|#1| $) 11)) (-1320 (((-3 $ "failed") $) 59 (|has| |#1| (-713)))) (-3248 (((-112) $) NIL (|has| |#1| (-713)))) (-2879 (($ (-1 |#1| |#1|) $) 14)) (-3836 ((|#1| $) 10)) (-4001 (($ $) 49 (|has| |#1| (-21)))) (-3002 (((-3 $ "failed") $) 60 (|has| |#1| (-713)))) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-2483 (($ $) 63 (-3994 (|has| |#1| (-358)) (|has| |#1| (-467))))) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-3837 (((-631 $) $) 84 (|has| |#1| (-546)))) (-2386 (($ $ $) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 $)) 28 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-1158) |#1|) 17 (|has| |#1| (-508 (-1158) |#1|))) (($ $ (-631 (-1158)) (-631 |#1|)) 21 (|has| |#1| (-508 (-1158) |#1|)))) (-1401 (($ |#1| |#1|) 9)) (-3330 (((-133)) 89 (|has| |#1| (-358)))) (-1553 (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158)) 86 (|has| |#1| (-885 (-1158))))) (-3992 (($ $ $) NIL (|has| |#1| (-467)))) (-1856 (($ $ $) NIL (|has| |#1| (-467)))) (-3075 (($ (-554)) NIL (|has| |#1| (-1034))) (((-112) $) 36 (|has| |#1| (-1082))) (((-848) $) 35 (|has| |#1| (-1082)))) (-2261 (((-758)) 66 (|has| |#1| (-1034)))) (-2004 (($) 46 (|has| |#1| (-21)) CONST)) (-2014 (($) 56 (|has| |#1| (-713)) CONST)) (-1787 (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158)) NIL (|has| |#1| (-885 (-1158))))) (-1658 (($ |#1| |#1|) 8) (((-112) $ $) 31 (|has| |#1| (-1082)))) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) 91 (-3994 (|has| |#1| (-358)) (|has| |#1| (-467))))) (-1744 (($ |#1| $) 44 (|has| |#1| (-21))) (($ $ |#1|) 45 (|has| |#1| (-21))) (($ $ $) 43 (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-1735 (($ |#1| $) 39 (|has| |#1| (-25))) (($ $ |#1|) 40 (|has| |#1| (-25))) (($ $ $) 38 (|has| |#1| (-25)))) (** (($ $ (-554)) NIL (|has| |#1| (-467))) (($ $ (-758)) NIL (|has| |#1| (-713))) (($ $ (-906)) NIL (|has| |#1| (-1094)))) (* (($ $ |#1|) 54 (|has| |#1| (-1094))) (($ |#1| $) 53 (|has| |#1| (-1094))) (($ $ $) 52 (|has| |#1| (-1094))) (($ (-554) $) 69 (|has| |#1| (-21))) (($ (-758) $) NIL (|has| |#1| (-21))) (($ (-906) $) NIL (|has| |#1| (-25)))))
-(((-289 |#1|) (-13 (-1195) (-10 -8 (-15 -1658 ($ |#1| |#1|)) (-15 -1401 ($ |#1| |#1|)) (-15 -1487 ($ $)) (-15 -3836 (|#1| $)) (-15 -3848 (|#1| $)) (-15 -2879 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-508 (-1158) |#1|)) (-6 (-508 (-1158) |#1|)) |%noBranch|) (IF (|has| |#1| (-1082)) (PROGN (-6 (-1082)) (-6 (-601 (-112))) (IF (|has| |#1| (-304 |#1|)) (PROGN (-15 -2386 ($ $ $)) (-15 -2386 ($ $ (-631 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1735 ($ |#1| $)) (-15 -1735 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -4001 ($ $)) (-15 -2580 ($ $)) (-15 -1744 ($ |#1| $)) (-15 -1744 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1094)) (PROGN (-6 (-1094)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-713)) (PROGN (-6 (-713)) (-15 -3002 ((-3 $ "failed") $)) (-15 -1788 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-467)) (PROGN (-6 (-467)) (-15 -3002 ((-3 $ "failed") $)) (-15 -1788 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1034)) (PROGN (-6 (-1034)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-704 |#1|)) |%noBranch|) (IF (|has| |#1| (-546)) (-15 -3837 ((-631 $) $)) |%noBranch|) (IF (|has| |#1| (-885 (-1158))) (-6 (-885 (-1158))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-6 (-1248 |#1|)) (-15 -1752 ($ $ $)) (-15 -2483 ($ $))) |%noBranch|) (IF (|has| |#1| (-297)) (-15 -3380 ($ $ $)) |%noBranch|))) (-1195)) (T -289))
-((-1658 (*1 *1 *2 *2) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1195)))) (-1401 (*1 *1 *2 *2) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1195)))) (-1487 (*1 *1 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1195)))) (-3836 (*1 *2 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1195)))) (-3848 (*1 *2 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1195)))) (-2879 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1195)) (-5 *1 (-289 *3)))) (-2386 (*1 *1 *1 *1) (-12 (-4 *2 (-304 *2)) (-4 *2 (-1082)) (-4 *2 (-1195)) (-5 *1 (-289 *2)))) (-2386 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-289 *3))) (-4 *3 (-304 *3)) (-4 *3 (-1082)) (-4 *3 (-1195)) (-5 *1 (-289 *3)))) (-1735 (*1 *1 *2 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-25)) (-4 *2 (-1195)))) (-1735 (*1 *1 *1 *2) (-12 (-5 *1 (-289 *2)) (-4 *2 (-25)) (-4 *2 (-1195)))) (-4001 (*1 *1 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-21)) (-4 *2 (-1195)))) (-2580 (*1 *1 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-21)) (-4 *2 (-1195)))) (-1744 (*1 *1 *2 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-21)) (-4 *2 (-1195)))) (-1744 (*1 *1 *1 *2) (-12 (-5 *1 (-289 *2)) (-4 *2 (-21)) (-4 *2 (-1195)))) (-3002 (*1 *1 *1) (|partial| -12 (-5 *1 (-289 *2)) (-4 *2 (-713)) (-4 *2 (-1195)))) (-1788 (*1 *1 *1) (|partial| -12 (-5 *1 (-289 *2)) (-4 *2 (-713)) (-4 *2 (-1195)))) (-3837 (*1 *2 *1) (-12 (-5 *2 (-631 (-289 *3))) (-5 *1 (-289 *3)) (-4 *3 (-546)) (-4 *3 (-1195)))) (-3380 (*1 *1 *1 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-297)) (-4 *2 (-1195)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1094)) (-4 *2 (-1195)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1094)) (-4 *2 (-1195)))) (-1752 (*1 *1 *1 *1) (-3994 (-12 (-5 *1 (-289 *2)) (-4 *2 (-358)) (-4 *2 (-1195))) (-12 (-5 *1 (-289 *2)) (-4 *2 (-467)) (-4 *2 (-1195))))) (-2483 (*1 *1 *1) (-3994 (-12 (-5 *1 (-289 *2)) (-4 *2 (-358)) (-4 *2 (-1195))) (-12 (-5 *1 (-289 *2)) (-4 *2 (-467)) (-4 *2 (-1195))))))
-(-13 (-1195) (-10 -8 (-15 -1658 ($ |#1| |#1|)) (-15 -1401 ($ |#1| |#1|)) (-15 -1487 ($ $)) (-15 -3836 (|#1| $)) (-15 -3848 (|#1| $)) (-15 -2879 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-508 (-1158) |#1|)) (-6 (-508 (-1158) |#1|)) |%noBranch|) (IF (|has| |#1| (-1082)) (PROGN (-6 (-1082)) (-6 (-601 (-112))) (IF (|has| |#1| (-304 |#1|)) (PROGN (-15 -2386 ($ $ $)) (-15 -2386 ($ $ (-631 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1735 ($ |#1| $)) (-15 -1735 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -4001 ($ $)) (-15 -2580 ($ $)) (-15 -1744 ($ |#1| $)) (-15 -1744 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1094)) (PROGN (-6 (-1094)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-713)) (PROGN (-6 (-713)) (-15 -3002 ((-3 $ "failed") $)) (-15 -1788 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-467)) (PROGN (-6 (-467)) (-15 -3002 ((-3 $ "failed") $)) (-15 -1788 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1034)) (PROGN (-6 (-1034)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-704 |#1|)) |%noBranch|) (IF (|has| |#1| (-546)) (-15 -3837 ((-631 $) $)) |%noBranch|) (IF (|has| |#1| (-885 (-1158))) (-6 (-885 (-1158))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-6 (-1248 |#1|)) (-15 -1752 ($ $ $)) (-15 -2483 ($ $))) |%noBranch|) (IF (|has| |#1| (-297)) (-15 -3380 ($ $ $)) |%noBranch|)))
-((-3062 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-3167 (($) NIL) (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-4233 (((-1246) $ |#1| |#1|) NIL (|has| $ (-6 -4374)))) (-3019 (((-112) $ (-758)) NIL)) (-1501 ((|#2| $ |#1| |#2|) NIL)) (-2220 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-2937 (((-3 |#2| "failed") |#1| $) NIL)) (-4087 (($) NIL T CONST)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))))) (-1884 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (|has| $ (-6 -4373))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-3 |#2| "failed") |#1| $) NIL)) (-2574 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-3676 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (|has| $ (-6 -4373))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-2862 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#2| $ |#1|) NIL)) (-2466 (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-631 |#2|) $) NIL (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) NIL)) (-3044 ((|#1| $) NIL (|has| |#1| (-836)))) (-2379 (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-631 |#2|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2256 ((|#1| $) NIL (|has| |#1| (-836)))) (-2849 (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4374))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-2944 (((-631 |#1|) $) NIL)) (-2415 (((-112) |#1| $) NIL)) (-4150 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-2045 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-2529 (((-631 |#1|) $) NIL)) (-3618 (((-112) |#1| $) NIL)) (-2768 (((-1102) $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-1539 ((|#2| $) NIL (|has| |#1| (-836)))) (-1652 (((-3 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) "failed") (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL)) (-2441 (($ $ |#2|) NIL (|has| $ (-6 -4374)))) (-2152 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-2845 (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-631 |#2|) (-631 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-631 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2625 (((-631 |#2|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4310 (($) NIL) (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-2777 (((-758) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-758) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-758) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082)))) (((-758) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-602 (-530))))) (-3089 (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-3075 (((-848) $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-601 (-848))) (|has| |#2| (-601 (-848)))))) (-1591 (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-2438 (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-290 |#1| |#2|) (-13 (-1171 |#1| |#2|) (-10 -7 (-6 -4373))) (-1082) (-1082)) (T -290))
-NIL
-(-13 (-1171 |#1| |#2|) (-10 -7 (-6 -4373)))
-((-1841 (((-307) (-1140) (-631 (-1140))) 16) (((-307) (-1140) (-1140)) 15) (((-307) (-631 (-1140))) 14) (((-307) (-1140)) 12)))
-(((-291) (-10 -7 (-15 -1841 ((-307) (-1140))) (-15 -1841 ((-307) (-631 (-1140)))) (-15 -1841 ((-307) (-1140) (-1140))) (-15 -1841 ((-307) (-1140) (-631 (-1140)))))) (T -291))
-((-1841 (*1 *2 *3 *4) (-12 (-5 *4 (-631 (-1140))) (-5 *3 (-1140)) (-5 *2 (-307)) (-5 *1 (-291)))) (-1841 (*1 *2 *3 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-307)) (-5 *1 (-291)))) (-1841 (*1 *2 *3) (-12 (-5 *3 (-631 (-1140))) (-5 *2 (-307)) (-5 *1 (-291)))) (-1841 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-307)) (-5 *1 (-291)))))
-(-10 -7 (-15 -1841 ((-307) (-1140))) (-15 -1841 ((-307) (-631 (-1140)))) (-15 -1841 ((-307) (-1140) (-1140))) (-15 -1841 ((-307) (-1140) (-631 (-1140)))))
-((-2879 ((|#2| (-1 |#2| |#1|) (-1140) (-600 |#1|)) 18)))
-(((-292 |#1| |#2|) (-10 -7 (-15 -2879 (|#2| (-1 |#2| |#1|) (-1140) (-600 |#1|)))) (-297) (-1195)) (T -292))
-((-2879 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1140)) (-5 *5 (-600 *6)) (-4 *6 (-297)) (-4 *2 (-1195)) (-5 *1 (-292 *6 *2)))))
-(-10 -7 (-15 -2879 (|#2| (-1 |#2| |#1|) (-1140) (-600 |#1|))))
-((-2879 ((|#2| (-1 |#2| |#1|) (-600 |#1|)) 17)))
-(((-293 |#1| |#2|) (-10 -7 (-15 -2879 (|#2| (-1 |#2| |#1|) (-600 |#1|)))) (-297) (-297)) (T -293))
-((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-600 *5)) (-4 *5 (-297)) (-4 *2 (-297)) (-5 *1 (-293 *5 *2)))))
-(-10 -7 (-15 -2879 (|#2| (-1 |#2| |#1|) (-600 |#1|))))
-((-2028 (((-112) (-221)) 10)))
-(((-294 |#1| |#2|) (-10 -7 (-15 -2028 ((-112) (-221)))) (-221) (-221)) (T -294))
-((-2028 (*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-112)) (-5 *1 (-294 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-10 -7 (-15 -2028 ((-112) (-221))))
-((-2719 (((-1138 (-221)) (-311 (-221)) (-631 (-1158)) (-1076 (-829 (-221)))) 92)) (-2980 (((-1138 (-221)) (-1241 (-311 (-221))) (-631 (-1158)) (-1076 (-829 (-221)))) 106) (((-1138 (-221)) (-311 (-221)) (-631 (-1158)) (-1076 (-829 (-221)))) 61)) (-2976 (((-631 (-1140)) (-1138 (-221))) NIL)) (-2089 (((-631 (-221)) (-311 (-221)) (-1158) (-1076 (-829 (-221)))) 58)) (-1318 (((-631 (-221)) (-937 (-402 (-554))) (-1158) (-1076 (-829 (-221)))) 49)) (-1984 (((-631 (-1140)) (-631 (-221))) NIL)) (-4243 (((-221) (-1076 (-829 (-221)))) 25)) (-3653 (((-221) (-1076 (-829 (-221)))) 26)) (-4315 (((-112) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 54)) (-2588 (((-1140) (-221)) NIL)))
-(((-295) (-10 -7 (-15 -4243 ((-221) (-1076 (-829 (-221))))) (-15 -3653 ((-221) (-1076 (-829 (-221))))) (-15 -4315 ((-112) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2089 ((-631 (-221)) (-311 (-221)) (-1158) (-1076 (-829 (-221))))) (-15 -2719 ((-1138 (-221)) (-311 (-221)) (-631 (-1158)) (-1076 (-829 (-221))))) (-15 -2980 ((-1138 (-221)) (-311 (-221)) (-631 (-1158)) (-1076 (-829 (-221))))) (-15 -2980 ((-1138 (-221)) (-1241 (-311 (-221))) (-631 (-1158)) (-1076 (-829 (-221))))) (-15 -1318 ((-631 (-221)) (-937 (-402 (-554))) (-1158) (-1076 (-829 (-221))))) (-15 -2588 ((-1140) (-221))) (-15 -1984 ((-631 (-1140)) (-631 (-221)))) (-15 -2976 ((-631 (-1140)) (-1138 (-221)))))) (T -295))
-((-2976 (*1 *2 *3) (-12 (-5 *3 (-1138 (-221))) (-5 *2 (-631 (-1140))) (-5 *1 (-295)))) (-1984 (*1 *2 *3) (-12 (-5 *3 (-631 (-221))) (-5 *2 (-631 (-1140))) (-5 *1 (-295)))) (-2588 (*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1140)) (-5 *1 (-295)))) (-1318 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-937 (-402 (-554)))) (-5 *4 (-1158)) (-5 *5 (-1076 (-829 (-221)))) (-5 *2 (-631 (-221))) (-5 *1 (-295)))) (-2980 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1241 (-311 (-221)))) (-5 *4 (-631 (-1158))) (-5 *5 (-1076 (-829 (-221)))) (-5 *2 (-1138 (-221))) (-5 *1 (-295)))) (-2980 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-311 (-221))) (-5 *4 (-631 (-1158))) (-5 *5 (-1076 (-829 (-221)))) (-5 *2 (-1138 (-221))) (-5 *1 (-295)))) (-2719 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-311 (-221))) (-5 *4 (-631 (-1158))) (-5 *5 (-1076 (-829 (-221)))) (-5 *2 (-1138 (-221))) (-5 *1 (-295)))) (-2089 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-311 (-221))) (-5 *4 (-1158)) (-5 *5 (-1076 (-829 (-221)))) (-5 *2 (-631 (-221))) (-5 *1 (-295)))) (-4315 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-112)) (-5 *1 (-295)))) (-3653 (*1 *2 *3) (-12 (-5 *3 (-1076 (-829 (-221)))) (-5 *2 (-221)) (-5 *1 (-295)))) (-4243 (*1 *2 *3) (-12 (-5 *3 (-1076 (-829 (-221)))) (-5 *2 (-221)) (-5 *1 (-295)))))
-(-10 -7 (-15 -4243 ((-221) (-1076 (-829 (-221))))) (-15 -3653 ((-221) (-1076 (-829 (-221))))) (-15 -4315 ((-112) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2089 ((-631 (-221)) (-311 (-221)) (-1158) (-1076 (-829 (-221))))) (-15 -2719 ((-1138 (-221)) (-311 (-221)) (-631 (-1158)) (-1076 (-829 (-221))))) (-15 -2980 ((-1138 (-221)) (-311 (-221)) (-631 (-1158)) (-1076 (-829 (-221))))) (-15 -2980 ((-1138 (-221)) (-1241 (-311 (-221))) (-631 (-1158)) (-1076 (-829 (-221))))) (-15 -1318 ((-631 (-221)) (-937 (-402 (-554))) (-1158) (-1076 (-829 (-221))))) (-15 -2588 ((-1140) (-221))) (-15 -1984 ((-631 (-1140)) (-631 (-221)))) (-15 -2976 ((-631 (-1140)) (-1138 (-221)))))
-((-2143 (((-631 (-600 $)) $) 30)) (-3380 (($ $ (-289 $)) 81) (($ $ (-631 (-289 $))) 123) (($ $ (-631 (-600 $)) (-631 $)) NIL)) (-2784 (((-3 (-600 $) "failed") $) 113)) (-1668 (((-600 $) $) 112)) (-1342 (($ $) 19) (($ (-631 $)) 56)) (-3489 (((-631 (-114)) $) 38)) (-3086 (((-114) (-114)) 91)) (-3273 (((-112) $) 131)) (-2879 (($ (-1 $ $) (-600 $)) 89)) (-3310 (((-3 (-600 $) "failed") $) 93)) (-1408 (($ (-114) $) 61) (($ (-114) (-631 $)) 100)) (-2640 (((-112) $ (-114)) 117) (((-112) $ (-1158)) 116)) (-3323 (((-758) $) 46)) (-2041 (((-112) $ $) 59) (((-112) $ (-1158)) 51)) (-1795 (((-112) $) 129)) (-2386 (($ $ (-600 $) $) NIL) (($ $ (-631 (-600 $)) (-631 $)) NIL) (($ $ (-631 (-289 $))) 121) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ (-631 (-1158)) (-631 (-1 $ $))) 84) (($ $ (-631 (-1158)) (-631 (-1 $ (-631 $)))) NIL) (($ $ (-1158) (-1 $ (-631 $))) 69) (($ $ (-1158) (-1 $ $)) 75) (($ $ (-631 (-114)) (-631 (-1 $ $))) 83) (($ $ (-631 (-114)) (-631 (-1 $ (-631 $)))) 85) (($ $ (-114) (-1 $ (-631 $))) 71) (($ $ (-114) (-1 $ $)) 77)) (-2064 (($ (-114) $) 62) (($ (-114) $ $) 63) (($ (-114) $ $ $) 64) (($ (-114) $ $ $ $) 65) (($ (-114) (-631 $)) 109)) (-3862 (($ $) 53) (($ $ $) 119)) (-4125 (($ $) 17) (($ (-631 $)) 55)) (-1902 (((-112) (-114)) 22)))
-(((-296 |#1|) (-10 -8 (-15 -3273 ((-112) |#1|)) (-15 -1795 ((-112) |#1|)) (-15 -2386 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2386 (|#1| |#1| (-114) (-1 |#1| (-631 |#1|)))) (-15 -2386 (|#1| |#1| (-631 (-114)) (-631 (-1 |#1| (-631 |#1|))))) (-15 -2386 (|#1| |#1| (-631 (-114)) (-631 (-1 |#1| |#1|)))) (-15 -2386 (|#1| |#1| (-1158) (-1 |#1| |#1|))) (-15 -2386 (|#1| |#1| (-1158) (-1 |#1| (-631 |#1|)))) (-15 -2386 (|#1| |#1| (-631 (-1158)) (-631 (-1 |#1| (-631 |#1|))))) (-15 -2386 (|#1| |#1| (-631 (-1158)) (-631 (-1 |#1| |#1|)))) (-15 -2041 ((-112) |#1| (-1158))) (-15 -2041 ((-112) |#1| |#1|)) (-15 -2879 (|#1| (-1 |#1| |#1|) (-600 |#1|))) (-15 -1408 (|#1| (-114) (-631 |#1|))) (-15 -1408 (|#1| (-114) |#1|)) (-15 -2640 ((-112) |#1| (-1158))) (-15 -2640 ((-112) |#1| (-114))) (-15 -1902 ((-112) (-114))) (-15 -3086 ((-114) (-114))) (-15 -3489 ((-631 (-114)) |#1|)) (-15 -2143 ((-631 (-600 |#1|)) |#1|)) (-15 -3310 ((-3 (-600 |#1|) "failed") |#1|)) (-15 -3323 ((-758) |#1|)) (-15 -3862 (|#1| |#1| |#1|)) (-15 -3862 (|#1| |#1|)) (-15 -1342 (|#1| (-631 |#1|))) (-15 -1342 (|#1| |#1|)) (-15 -4125 (|#1| (-631 |#1|))) (-15 -4125 (|#1| |#1|)) (-15 -3380 (|#1| |#1| (-631 (-600 |#1|)) (-631 |#1|))) (-15 -3380 (|#1| |#1| (-631 (-289 |#1|)))) (-15 -3380 (|#1| |#1| (-289 |#1|))) (-15 -2064 (|#1| (-114) (-631 |#1|))) (-15 -2064 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2064 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2064 (|#1| (-114) |#1| |#1|)) (-15 -2064 (|#1| (-114) |#1|)) (-15 -2386 (|#1| |#1| (-631 |#1|) (-631 |#1|))) (-15 -2386 (|#1| |#1| |#1| |#1|)) (-15 -2386 (|#1| |#1| (-289 |#1|))) (-15 -2386 (|#1| |#1| (-631 (-289 |#1|)))) (-15 -2386 (|#1| |#1| (-631 (-600 |#1|)) (-631 |#1|))) (-15 -2386 (|#1| |#1| (-600 |#1|) |#1|)) (-15 -2784 ((-3 (-600 |#1|) "failed") |#1|)) (-15 -1668 ((-600 |#1|) |#1|))) (-297)) (T -296))
-((-3086 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-296 *3)) (-4 *3 (-297)))) (-1902 (*1 *2 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-296 *4)) (-4 *4 (-297)))))
-(-10 -8 (-15 -3273 ((-112) |#1|)) (-15 -1795 ((-112) |#1|)) (-15 -2386 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2386 (|#1| |#1| (-114) (-1 |#1| (-631 |#1|)))) (-15 -2386 (|#1| |#1| (-631 (-114)) (-631 (-1 |#1| (-631 |#1|))))) (-15 -2386 (|#1| |#1| (-631 (-114)) (-631 (-1 |#1| |#1|)))) (-15 -2386 (|#1| |#1| (-1158) (-1 |#1| |#1|))) (-15 -2386 (|#1| |#1| (-1158) (-1 |#1| (-631 |#1|)))) (-15 -2386 (|#1| |#1| (-631 (-1158)) (-631 (-1 |#1| (-631 |#1|))))) (-15 -2386 (|#1| |#1| (-631 (-1158)) (-631 (-1 |#1| |#1|)))) (-15 -2041 ((-112) |#1| (-1158))) (-15 -2041 ((-112) |#1| |#1|)) (-15 -2879 (|#1| (-1 |#1| |#1|) (-600 |#1|))) (-15 -1408 (|#1| (-114) (-631 |#1|))) (-15 -1408 (|#1| (-114) |#1|)) (-15 -2640 ((-112) |#1| (-1158))) (-15 -2640 ((-112) |#1| (-114))) (-15 -1902 ((-112) (-114))) (-15 -3086 ((-114) (-114))) (-15 -3489 ((-631 (-114)) |#1|)) (-15 -2143 ((-631 (-600 |#1|)) |#1|)) (-15 -3310 ((-3 (-600 |#1|) "failed") |#1|)) (-15 -3323 ((-758) |#1|)) (-15 -3862 (|#1| |#1| |#1|)) (-15 -3862 (|#1| |#1|)) (-15 -1342 (|#1| (-631 |#1|))) (-15 -1342 (|#1| |#1|)) (-15 -4125 (|#1| (-631 |#1|))) (-15 -4125 (|#1| |#1|)) (-15 -3380 (|#1| |#1| (-631 (-600 |#1|)) (-631 |#1|))) (-15 -3380 (|#1| |#1| (-631 (-289 |#1|)))) (-15 -3380 (|#1| |#1| (-289 |#1|))) (-15 -2064 (|#1| (-114) (-631 |#1|))) (-15 -2064 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2064 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2064 (|#1| (-114) |#1| |#1|)) (-15 -2064 (|#1| (-114) |#1|)) (-15 -2386 (|#1| |#1| (-631 |#1|) (-631 |#1|))) (-15 -2386 (|#1| |#1| |#1| |#1|)) (-15 -2386 (|#1| |#1| (-289 |#1|))) (-15 -2386 (|#1| |#1| (-631 (-289 |#1|)))) (-15 -2386 (|#1| |#1| (-631 (-600 |#1|)) (-631 |#1|))) (-15 -2386 (|#1| |#1| (-600 |#1|) |#1|)) (-15 -2784 ((-3 (-600 |#1|) "failed") |#1|)) (-15 -1668 ((-600 |#1|) |#1|)))
-((-3062 (((-112) $ $) 7)) (-2143 (((-631 (-600 $)) $) 44)) (-3380 (($ $ (-289 $)) 56) (($ $ (-631 (-289 $))) 55) (($ $ (-631 (-600 $)) (-631 $)) 54)) (-2784 (((-3 (-600 $) "failed") $) 69)) (-1668 (((-600 $) $) 70)) (-1342 (($ $) 51) (($ (-631 $)) 50)) (-3489 (((-631 (-114)) $) 43)) (-3086 (((-114) (-114)) 42)) (-3273 (((-112) $) 22 (|has| $ (-1023 (-554))))) (-1823 (((-1154 $) (-600 $)) 25 (|has| $ (-1034)))) (-4223 (($ $ $) 13)) (-2706 (($ $ $) 14)) (-2879 (($ (-1 $ $) (-600 $)) 36)) (-3310 (((-3 (-600 $) "failed") $) 46)) (-1613 (((-1140) $) 9)) (-2227 (((-631 (-600 $)) $) 45)) (-1408 (($ (-114) $) 38) (($ (-114) (-631 $)) 37)) (-2640 (((-112) $ (-114)) 40) (((-112) $ (-1158)) 39)) (-3323 (((-758) $) 47)) (-2768 (((-1102) $) 10)) (-2041 (((-112) $ $) 35) (((-112) $ (-1158)) 34)) (-1795 (((-112) $) 23 (|has| $ (-1023 (-554))))) (-2386 (($ $ (-600 $) $) 67) (($ $ (-631 (-600 $)) (-631 $)) 66) (($ $ (-631 (-289 $))) 65) (($ $ (-289 $)) 64) (($ $ $ $) 63) (($ $ (-631 $) (-631 $)) 62) (($ $ (-631 (-1158)) (-631 (-1 $ $))) 33) (($ $ (-631 (-1158)) (-631 (-1 $ (-631 $)))) 32) (($ $ (-1158) (-1 $ (-631 $))) 31) (($ $ (-1158) (-1 $ $)) 30) (($ $ (-631 (-114)) (-631 (-1 $ $))) 29) (($ $ (-631 (-114)) (-631 (-1 $ (-631 $)))) 28) (($ $ (-114) (-1 $ (-631 $))) 27) (($ $ (-114) (-1 $ $)) 26)) (-2064 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-631 $)) 57)) (-3862 (($ $) 49) (($ $ $) 48)) (-4318 (($ $) 24 (|has| $ (-1034)))) (-3075 (((-848) $) 11) (($ (-600 $)) 68)) (-4125 (($ $) 53) (($ (-631 $)) 52)) (-1902 (((-112) (-114)) 41)) (-1708 (((-112) $ $) 16)) (-1686 (((-112) $ $) 17)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 15)) (-1676 (((-112) $ $) 18)))
-(((-297) (-138)) (T -297))
-((-2064 (*1 *1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-114)))) (-2064 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-114)))) (-2064 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-114)))) (-2064 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-114)))) (-2064 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-631 *1)) (-4 *1 (-297)))) (-3380 (*1 *1 *1 *2) (-12 (-5 *2 (-289 *1)) (-4 *1 (-297)))) (-3380 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-289 *1))) (-4 *1 (-297)))) (-3380 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 (-600 *1))) (-5 *3 (-631 *1)) (-4 *1 (-297)))) (-4125 (*1 *1 *1) (-4 *1 (-297))) (-4125 (*1 *1 *2) (-12 (-5 *2 (-631 *1)) (-4 *1 (-297)))) (-1342 (*1 *1 *1) (-4 *1 (-297))) (-1342 (*1 *1 *2) (-12 (-5 *2 (-631 *1)) (-4 *1 (-297)))) (-3862 (*1 *1 *1) (-4 *1 (-297))) (-3862 (*1 *1 *1 *1) (-4 *1 (-297))) (-3323 (*1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-758)))) (-3310 (*1 *2 *1) (|partial| -12 (-5 *2 (-600 *1)) (-4 *1 (-297)))) (-2227 (*1 *2 *1) (-12 (-5 *2 (-631 (-600 *1))) (-4 *1 (-297)))) (-2143 (*1 *2 *1) (-12 (-5 *2 (-631 (-600 *1))) (-4 *1 (-297)))) (-3489 (*1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-631 (-114))))) (-3086 (*1 *2 *2) (-12 (-4 *1 (-297)) (-5 *2 (-114)))) (-1902 (*1 *2 *3) (-12 (-4 *1 (-297)) (-5 *3 (-114)) (-5 *2 (-112)))) (-2640 (*1 *2 *1 *3) (-12 (-4 *1 (-297)) (-5 *3 (-114)) (-5 *2 (-112)))) (-2640 (*1 *2 *1 *3) (-12 (-4 *1 (-297)) (-5 *3 (-1158)) (-5 *2 (-112)))) (-1408 (*1 *1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-114)))) (-1408 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-631 *1)) (-4 *1 (-297)))) (-2879 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-600 *1)) (-4 *1 (-297)))) (-2041 (*1 *2 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-112)))) (-2041 (*1 *2 *1 *3) (-12 (-4 *1 (-297)) (-5 *3 (-1158)) (-5 *2 (-112)))) (-2386 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 (-1158))) (-5 *3 (-631 (-1 *1 *1))) (-4 *1 (-297)))) (-2386 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 (-1158))) (-5 *3 (-631 (-1 *1 (-631 *1)))) (-4 *1 (-297)))) (-2386 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-1 *1 (-631 *1))) (-4 *1 (-297)))) (-2386 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-1 *1 *1)) (-4 *1 (-297)))) (-2386 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 (-114))) (-5 *3 (-631 (-1 *1 *1))) (-4 *1 (-297)))) (-2386 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 (-114))) (-5 *3 (-631 (-1 *1 (-631 *1)))) (-4 *1 (-297)))) (-2386 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-631 *1))) (-4 *1 (-297)))) (-2386 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-297)))) (-1823 (*1 *2 *3) (-12 (-5 *3 (-600 *1)) (-4 *1 (-1034)) (-4 *1 (-297)) (-5 *2 (-1154 *1)))) (-4318 (*1 *1 *1) (-12 (-4 *1 (-1034)) (-4 *1 (-297)))) (-1795 (*1 *2 *1) (-12 (-4 *1 (-1023 (-554))) (-4 *1 (-297)) (-5 *2 (-112)))) (-3273 (*1 *2 *1) (-12 (-4 *1 (-1023 (-554))) (-4 *1 (-297)) (-5 *2 (-112)))))
-(-13 (-836) (-1023 (-600 $)) (-508 (-600 $) $) (-304 $) (-10 -8 (-15 -2064 ($ (-114) $)) (-15 -2064 ($ (-114) $ $)) (-15 -2064 ($ (-114) $ $ $)) (-15 -2064 ($ (-114) $ $ $ $)) (-15 -2064 ($ (-114) (-631 $))) (-15 -3380 ($ $ (-289 $))) (-15 -3380 ($ $ (-631 (-289 $)))) (-15 -3380 ($ $ (-631 (-600 $)) (-631 $))) (-15 -4125 ($ $)) (-15 -4125 ($ (-631 $))) (-15 -1342 ($ $)) (-15 -1342 ($ (-631 $))) (-15 -3862 ($ $)) (-15 -3862 ($ $ $)) (-15 -3323 ((-758) $)) (-15 -3310 ((-3 (-600 $) "failed") $)) (-15 -2227 ((-631 (-600 $)) $)) (-15 -2143 ((-631 (-600 $)) $)) (-15 -3489 ((-631 (-114)) $)) (-15 -3086 ((-114) (-114))) (-15 -1902 ((-112) (-114))) (-15 -2640 ((-112) $ (-114))) (-15 -2640 ((-112) $ (-1158))) (-15 -1408 ($ (-114) $)) (-15 -1408 ($ (-114) (-631 $))) (-15 -2879 ($ (-1 $ $) (-600 $))) (-15 -2041 ((-112) $ $)) (-15 -2041 ((-112) $ (-1158))) (-15 -2386 ($ $ (-631 (-1158)) (-631 (-1 $ $)))) (-15 -2386 ($ $ (-631 (-1158)) (-631 (-1 $ (-631 $))))) (-15 -2386 ($ $ (-1158) (-1 $ (-631 $)))) (-15 -2386 ($ $ (-1158) (-1 $ $))) (-15 -2386 ($ $ (-631 (-114)) (-631 (-1 $ $)))) (-15 -2386 ($ $ (-631 (-114)) (-631 (-1 $ (-631 $))))) (-15 -2386 ($ $ (-114) (-1 $ (-631 $)))) (-15 -2386 ($ $ (-114) (-1 $ $))) (IF (|has| $ (-1034)) (PROGN (-15 -1823 ((-1154 $) (-600 $))) (-15 -4318 ($ $))) |%noBranch|) (IF (|has| $ (-1023 (-554))) (PROGN (-15 -1795 ((-112) $)) (-15 -3273 ((-112) $))) |%noBranch|)))
-(((-102) . T) ((-604 #0=(-600 $)) . T) ((-601 (-848)) . T) ((-304 $) . T) ((-508 (-600 $) $) . T) ((-508 $ $) . T) ((-836) . T) ((-1023 #0#) . T) ((-1082) . T))
-((-3667 (((-631 |#1|) (-631 |#1|)) 10)))
-(((-298 |#1|) (-10 -7 (-15 -3667 ((-631 |#1|) (-631 |#1|)))) (-834)) (T -298))
-((-3667 (*1 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-834)) (-5 *1 (-298 *3)))))
-(-10 -7 (-15 -3667 ((-631 |#1|) (-631 |#1|))))
-((-2879 (((-675 |#2|) (-1 |#2| |#1|) (-675 |#1|)) 17)))
-(((-299 |#1| |#2|) (-10 -7 (-15 -2879 ((-675 |#2|) (-1 |#2| |#1|) (-675 |#1|)))) (-1034) (-1034)) (T -299))
-((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-675 *5)) (-4 *5 (-1034)) (-4 *6 (-1034)) (-5 *2 (-675 *6)) (-5 *1 (-299 *5 *6)))))
-(-10 -7 (-15 -2879 ((-675 |#2|) (-1 |#2| |#1|) (-675 |#1|))))
-((-3807 (((-1241 (-311 (-374))) (-1241 (-311 (-221)))) 105)) (-3360 (((-1076 (-829 (-221))) (-1076 (-829 (-374)))) 40)) (-2976 (((-631 (-1140)) (-1138 (-221))) 87)) (-3909 (((-311 (-374)) (-937 (-221))) 50)) (-1742 (((-221) (-937 (-221))) 46)) (-1723 (((-1140) (-374)) 169)) (-2496 (((-829 (-221)) (-829 (-374))) 34)) (-3152 (((-2 (|:| |additions| (-554)) (|:| |multiplications| (-554)) (|:| |exponentiations| (-554)) (|:| |functionCalls| (-554))) (-1241 (-311 (-221)))) 143)) (-3971 (((-1020) (-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140))) (|:| |extra| (-1020)))) 181) (((-1020) (-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140))))) 179)) (-2866 (((-675 (-221)) (-631 (-221)) (-758)) 14)) (-3675 (((-1241 (-685)) (-631 (-221))) 94)) (-1984 (((-631 (-1140)) (-631 (-221))) 75)) (-3258 (((-3 (-311 (-221)) "failed") (-311 (-221))) 120)) (-2028 (((-112) (-221) (-1076 (-829 (-221)))) 109)) (-1600 (((-1020) (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374)))) 198)) (-4243 (((-221) (-1076 (-829 (-221)))) 107)) (-3653 (((-221) (-1076 (-829 (-221)))) 108)) (-2733 (((-221) (-402 (-554))) 27)) (-3753 (((-1140) (-374)) 73)) (-1794 (((-221) (-374)) 17)) (-1566 (((-374) (-1241 (-311 (-221)))) 154)) (-3269 (((-311 (-221)) (-311 (-374))) 23)) (-2677 (((-402 (-554)) (-311 (-221))) 53)) (-4352 (((-311 (-402 (-554))) (-311 (-221))) 69)) (-3988 (((-311 (-374)) (-311 (-221))) 98)) (-4222 (((-221) (-311 (-221))) 54)) (-2272 (((-631 (-221)) (-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))) 64)) (-3130 (((-1076 (-829 (-221))) (-1076 (-829 (-221)))) 61)) (-2588 (((-1140) (-221)) 72)) (-1621 (((-685) (-221)) 90)) (-2055 (((-402 (-554)) (-221)) 55)) (-3443 (((-311 (-374)) (-221)) 49)) (-2927 (((-631 (-1076 (-829 (-221)))) (-631 (-1076 (-829 (-374))))) 43)) (-4323 (((-1020) (-631 (-1020))) 165) (((-1020) (-1020) (-1020)) 162)) (-1866 (((-1020) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195)))
-(((-300) (-10 -7 (-15 -1794 ((-221) (-374))) (-15 -3269 ((-311 (-221)) (-311 (-374)))) (-15 -2496 ((-829 (-221)) (-829 (-374)))) (-15 -3360 ((-1076 (-829 (-221))) (-1076 (-829 (-374))))) (-15 -2927 ((-631 (-1076 (-829 (-221)))) (-631 (-1076 (-829 (-374)))))) (-15 -2055 ((-402 (-554)) (-221))) (-15 -2677 ((-402 (-554)) (-311 (-221)))) (-15 -4222 ((-221) (-311 (-221)))) (-15 -3258 ((-3 (-311 (-221)) "failed") (-311 (-221)))) (-15 -1566 ((-374) (-1241 (-311 (-221))))) (-15 -3152 ((-2 (|:| |additions| (-554)) (|:| |multiplications| (-554)) (|:| |exponentiations| (-554)) (|:| |functionCalls| (-554))) (-1241 (-311 (-221))))) (-15 -4352 ((-311 (-402 (-554))) (-311 (-221)))) (-15 -3130 ((-1076 (-829 (-221))) (-1076 (-829 (-221))))) (-15 -2272 ((-631 (-221)) (-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))))) (-15 -1621 ((-685) (-221))) (-15 -3675 ((-1241 (-685)) (-631 (-221)))) (-15 -3988 ((-311 (-374)) (-311 (-221)))) (-15 -3807 ((-1241 (-311 (-374))) (-1241 (-311 (-221))))) (-15 -2028 ((-112) (-221) (-1076 (-829 (-221))))) (-15 -2588 ((-1140) (-221))) (-15 -3753 ((-1140) (-374))) (-15 -1984 ((-631 (-1140)) (-631 (-221)))) (-15 -2976 ((-631 (-1140)) (-1138 (-221)))) (-15 -4243 ((-221) (-1076 (-829 (-221))))) (-15 -3653 ((-221) (-1076 (-829 (-221))))) (-15 -4323 ((-1020) (-1020) (-1020))) (-15 -4323 ((-1020) (-631 (-1020)))) (-15 -1723 ((-1140) (-374))) (-15 -3971 ((-1020) (-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140)))))) (-15 -3971 ((-1020) (-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140))) (|:| |extra| (-1020))))) (-15 -1866 ((-1020) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1600 ((-1020) (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374))))) (-15 -3909 ((-311 (-374)) (-937 (-221)))) (-15 -1742 ((-221) (-937 (-221)))) (-15 -3443 ((-311 (-374)) (-221))) (-15 -2733 ((-221) (-402 (-554)))) (-15 -2866 ((-675 (-221)) (-631 (-221)) (-758))))) (T -300))
-((-2866 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-221))) (-5 *4 (-758)) (-5 *2 (-675 (-221))) (-5 *1 (-300)))) (-2733 (*1 *2 *3) (-12 (-5 *3 (-402 (-554))) (-5 *2 (-221)) (-5 *1 (-300)))) (-3443 (*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-311 (-374))) (-5 *1 (-300)))) (-1742 (*1 *2 *3) (-12 (-5 *3 (-937 (-221))) (-5 *2 (-221)) (-5 *1 (-300)))) (-3909 (*1 *2 *3) (-12 (-5 *3 (-937 (-221))) (-5 *2 (-311 (-374))) (-5 *1 (-300)))) (-1600 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374)))) (-5 *2 (-1020)) (-5 *1 (-300)))) (-1866 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1020)) (-5 *1 (-300)))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140))) (|:| |extra| (-1020)))) (-5 *2 (-1020)) (-5 *1 (-300)))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140))))) (-5 *2 (-1020)) (-5 *1 (-300)))) (-1723 (*1 *2 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1140)) (-5 *1 (-300)))) (-4323 (*1 *2 *3) (-12 (-5 *3 (-631 (-1020))) (-5 *2 (-1020)) (-5 *1 (-300)))) (-4323 (*1 *2 *2 *2) (-12 (-5 *2 (-1020)) (-5 *1 (-300)))) (-3653 (*1 *2 *3) (-12 (-5 *3 (-1076 (-829 (-221)))) (-5 *2 (-221)) (-5 *1 (-300)))) (-4243 (*1 *2 *3) (-12 (-5 *3 (-1076 (-829 (-221)))) (-5 *2 (-221)) (-5 *1 (-300)))) (-2976 (*1 *2 *3) (-12 (-5 *3 (-1138 (-221))) (-5 *2 (-631 (-1140))) (-5 *1 (-300)))) (-1984 (*1 *2 *3) (-12 (-5 *3 (-631 (-221))) (-5 *2 (-631 (-1140))) (-5 *1 (-300)))) (-3753 (*1 *2 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1140)) (-5 *1 (-300)))) (-2588 (*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1140)) (-5 *1 (-300)))) (-2028 (*1 *2 *3 *4) (-12 (-5 *4 (-1076 (-829 (-221)))) (-5 *3 (-221)) (-5 *2 (-112)) (-5 *1 (-300)))) (-3807 (*1 *2 *3) (-12 (-5 *3 (-1241 (-311 (-221)))) (-5 *2 (-1241 (-311 (-374)))) (-5 *1 (-300)))) (-3988 (*1 *2 *3) (-12 (-5 *3 (-311 (-221))) (-5 *2 (-311 (-374))) (-5 *1 (-300)))) (-3675 (*1 *2 *3) (-12 (-5 *3 (-631 (-221))) (-5 *2 (-1241 (-685))) (-5 *1 (-300)))) (-1621 (*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-685)) (-5 *1 (-300)))) (-2272 (*1 *2 *3) (-12 (-5 *3 (-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))) (-5 *2 (-631 (-221))) (-5 *1 (-300)))) (-3130 (*1 *2 *2) (-12 (-5 *2 (-1076 (-829 (-221)))) (-5 *1 (-300)))) (-4352 (*1 *2 *3) (-12 (-5 *3 (-311 (-221))) (-5 *2 (-311 (-402 (-554)))) (-5 *1 (-300)))) (-3152 (*1 *2 *3) (-12 (-5 *3 (-1241 (-311 (-221)))) (-5 *2 (-2 (|:| |additions| (-554)) (|:| |multiplications| (-554)) (|:| |exponentiations| (-554)) (|:| |functionCalls| (-554)))) (-5 *1 (-300)))) (-1566 (*1 *2 *3) (-12 (-5 *3 (-1241 (-311 (-221)))) (-5 *2 (-374)) (-5 *1 (-300)))) (-3258 (*1 *2 *2) (|partial| -12 (-5 *2 (-311 (-221))) (-5 *1 (-300)))) (-4222 (*1 *2 *3) (-12 (-5 *3 (-311 (-221))) (-5 *2 (-221)) (-5 *1 (-300)))) (-2677 (*1 *2 *3) (-12 (-5 *3 (-311 (-221))) (-5 *2 (-402 (-554))) (-5 *1 (-300)))) (-2055 (*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-402 (-554))) (-5 *1 (-300)))) (-2927 (*1 *2 *3) (-12 (-5 *3 (-631 (-1076 (-829 (-374))))) (-5 *2 (-631 (-1076 (-829 (-221))))) (-5 *1 (-300)))) (-3360 (*1 *2 *3) (-12 (-5 *3 (-1076 (-829 (-374)))) (-5 *2 (-1076 (-829 (-221)))) (-5 *1 (-300)))) (-2496 (*1 *2 *3) (-12 (-5 *3 (-829 (-374))) (-5 *2 (-829 (-221))) (-5 *1 (-300)))) (-3269 (*1 *2 *3) (-12 (-5 *3 (-311 (-374))) (-5 *2 (-311 (-221))) (-5 *1 (-300)))) (-1794 (*1 *2 *3) (-12 (-5 *3 (-374)) (-5 *2 (-221)) (-5 *1 (-300)))))
-(-10 -7 (-15 -1794 ((-221) (-374))) (-15 -3269 ((-311 (-221)) (-311 (-374)))) (-15 -2496 ((-829 (-221)) (-829 (-374)))) (-15 -3360 ((-1076 (-829 (-221))) (-1076 (-829 (-374))))) (-15 -2927 ((-631 (-1076 (-829 (-221)))) (-631 (-1076 (-829 (-374)))))) (-15 -2055 ((-402 (-554)) (-221))) (-15 -2677 ((-402 (-554)) (-311 (-221)))) (-15 -4222 ((-221) (-311 (-221)))) (-15 -3258 ((-3 (-311 (-221)) "failed") (-311 (-221)))) (-15 -1566 ((-374) (-1241 (-311 (-221))))) (-15 -3152 ((-2 (|:| |additions| (-554)) (|:| |multiplications| (-554)) (|:| |exponentiations| (-554)) (|:| |functionCalls| (-554))) (-1241 (-311 (-221))))) (-15 -4352 ((-311 (-402 (-554))) (-311 (-221)))) (-15 -3130 ((-1076 (-829 (-221))) (-1076 (-829 (-221))))) (-15 -2272 ((-631 (-221)) (-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))))) (-15 -1621 ((-685) (-221))) (-15 -3675 ((-1241 (-685)) (-631 (-221)))) (-15 -3988 ((-311 (-374)) (-311 (-221)))) (-15 -3807 ((-1241 (-311 (-374))) (-1241 (-311 (-221))))) (-15 -2028 ((-112) (-221) (-1076 (-829 (-221))))) (-15 -2588 ((-1140) (-221))) (-15 -3753 ((-1140) (-374))) (-15 -1984 ((-631 (-1140)) (-631 (-221)))) (-15 -2976 ((-631 (-1140)) (-1138 (-221)))) (-15 -4243 ((-221) (-1076 (-829 (-221))))) (-15 -3653 ((-221) (-1076 (-829 (-221))))) (-15 -4323 ((-1020) (-1020) (-1020))) (-15 -4323 ((-1020) (-631 (-1020)))) (-15 -1723 ((-1140) (-374))) (-15 -3971 ((-1020) (-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140)))))) (-15 -3971 ((-1020) (-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140))) (|:| |extra| (-1020))))) (-15 -1866 ((-1020) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1600 ((-1020) (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374))))) (-15 -3909 ((-311 (-374)) (-937 (-221)))) (-15 -1742 ((-221) (-937 (-221)))) (-15 -3443 ((-311 (-374)) (-221))) (-15 -2733 ((-221) (-402 (-554)))) (-15 -2866 ((-675 (-221)) (-631 (-221)) (-758))))
-((-2286 (((-112) $ $) 11)) (-3964 (($ $ $) 15)) (-3943 (($ $ $) 14)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 44)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 53)) (-2510 (($ $ $) 21) (($ (-631 $)) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-3919 (((-3 $ "failed") $ $) 17)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 46)))
-(((-301 |#1|) (-10 -8 (-15 -3816 ((-3 (-631 |#1|) "failed") (-631 |#1|) |#1|)) (-15 -2032 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2032 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4137 |#1|)) |#1| |#1|)) (-15 -3964 (|#1| |#1| |#1|)) (-15 -3943 (|#1| |#1| |#1|)) (-15 -2286 ((-112) |#1| |#1|)) (-15 -2431 ((-3 (-631 |#1|) "failed") (-631 |#1|) |#1|)) (-15 -3148 ((-2 (|:| -1490 (-631 |#1|)) (|:| -4137 |#1|)) (-631 |#1|))) (-15 -2510 (|#1| (-631 |#1|))) (-15 -2510 (|#1| |#1| |#1|)) (-15 -3919 ((-3 |#1| "failed") |#1| |#1|))) (-302)) (T -301))
-NIL
-(-10 -8 (-15 -3816 ((-3 (-631 |#1|) "failed") (-631 |#1|) |#1|)) (-15 -2032 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2032 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4137 |#1|)) |#1| |#1|)) (-15 -3964 (|#1| |#1| |#1|)) (-15 -3943 (|#1| |#1| |#1|)) (-15 -2286 ((-112) |#1| |#1|)) (-15 -2431 ((-3 (-631 |#1|) "failed") (-631 |#1|) |#1|)) (-15 -3148 ((-2 (|:| -1490 (-631 |#1|)) (|:| -4137 |#1|)) (-631 |#1|))) (-15 -2510 (|#1| (-631 |#1|))) (-15 -2510 (|#1| |#1| |#1|)) (-15 -3919 ((-3 |#1| "failed") |#1| |#1|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 42)) (-1976 (($ $) 41)) (-1363 (((-112) $) 39)) (-2934 (((-3 $ "failed") $ $) 19)) (-2286 (((-112) $ $) 60)) (-4087 (($) 17 T CONST)) (-3964 (($ $ $) 56)) (-1320 (((-3 $ "failed") $) 33)) (-3943 (($ $ $) 57)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 52)) (-3248 (((-112) $) 31)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 53)) (-2475 (($ $ $) 47) (($ (-631 $)) 46)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 45)) (-2510 (($ $ $) 49) (($ (-631 $)) 48)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3919 (((-3 $ "failed") $ $) 43)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 51)) (-2072 (((-758) $) 59)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 58)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ $) 44)) (-2261 (((-758)) 28)) (-1909 (((-112) $ $) 40)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24)))
-(((-302) (-138)) (T -302))
-((-2286 (*1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-112)))) (-2072 (*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-758)))) (-2259 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2325 *1) (|:| -2423 *1))) (-4 *1 (-302)))) (-3943 (*1 *1 *1 *1) (-4 *1 (-302))) (-3964 (*1 *1 *1 *1) (-4 *1 (-302))) (-2032 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4137 *1))) (-4 *1 (-302)))) (-2032 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-302)))) (-3816 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-631 *1)) (-4 *1 (-302)))))
-(-13 (-905) (-10 -8 (-15 -2286 ((-112) $ $)) (-15 -2072 ((-758) $)) (-15 -2259 ((-2 (|:| -2325 $) (|:| -2423 $)) $ $)) (-15 -3943 ($ $ $)) (-15 -3964 ($ $ $)) (-15 -2032 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $)) (-15 -2032 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -3816 ((-3 (-631 $) "failed") (-631 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-604 (-554)) . T) ((-604 $) . T) ((-601 (-848)) . T) ((-170) . T) ((-285) . T) ((-446) . T) ((-546) . T) ((-634 $) . T) ((-704 $) . T) ((-713) . T) ((-905) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T))
-((-2386 (($ $ (-631 |#2|) (-631 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-289 |#2|)) 11) (($ $ (-631 (-289 |#2|))) NIL)))
-(((-303 |#1| |#2|) (-10 -8 (-15 -2386 (|#1| |#1| (-631 (-289 |#2|)))) (-15 -2386 (|#1| |#1| (-289 |#2|))) (-15 -2386 (|#1| |#1| |#2| |#2|)) (-15 -2386 (|#1| |#1| (-631 |#2|) (-631 |#2|)))) (-304 |#2|) (-1082)) (T -303))
-NIL
-(-10 -8 (-15 -2386 (|#1| |#1| (-631 (-289 |#2|)))) (-15 -2386 (|#1| |#1| (-289 |#2|))) (-15 -2386 (|#1| |#1| |#2| |#2|)) (-15 -2386 (|#1| |#1| (-631 |#2|) (-631 |#2|))))
-((-2386 (($ $ (-631 |#1|) (-631 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-289 |#1|)) 11) (($ $ (-631 (-289 |#1|))) 10)))
-(((-304 |#1|) (-138) (-1082)) (T -304))
-((-2386 (*1 *1 *1 *2) (-12 (-5 *2 (-289 *3)) (-4 *1 (-304 *3)) (-4 *3 (-1082)))) (-2386 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-289 *3))) (-4 *1 (-304 *3)) (-4 *3 (-1082)))))
-(-13 (-508 |t#1| |t#1|) (-10 -8 (-15 -2386 ($ $ (-289 |t#1|))) (-15 -2386 ($ $ (-631 (-289 |t#1|))))))
-(((-508 |#1| |#1|) . T))
-((-2386 ((|#1| (-1 |#1| (-554)) (-1160 (-402 (-554)))) 25)))
-(((-305 |#1|) (-10 -7 (-15 -2386 (|#1| (-1 |#1| (-554)) (-1160 (-402 (-554)))))) (-38 (-402 (-554)))) (T -305))
-((-2386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-554))) (-5 *4 (-1160 (-402 (-554)))) (-5 *1 (-305 *2)) (-4 *2 (-38 (-402 (-554)))))))
-(-10 -7 (-15 -2386 (|#1| (-1 |#1| (-554)) (-1160 (-402 (-554))))))
-((-3062 (((-112) $ $) NIL)) (-2848 (((-554) $) 12)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3463 (((-1117) $) 9)) (-3075 (((-848) $) 21) (($ (-1163)) NIL) (((-1163) $) NIL)) (-1658 (((-112) $ $) NIL)))
-(((-306) (-13 (-1065) (-10 -8 (-15 -3463 ((-1117) $)) (-15 -2848 ((-554) $))))) (T -306))
-((-3463 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-306)))) (-2848 (*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-306)))))
-(-13 (-1065) (-10 -8 (-15 -3463 ((-1117) $)) (-15 -2848 ((-554) $))))
-((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 7)) (-1658 (((-112) $ $) 9)))
-(((-307) (-1082)) (T -307))
-NIL
-(-1082)
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 62)) (-3831 (((-1227 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-302)))) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-894)))) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-894)))) (-2286 (((-112) $ $) NIL)) (-4219 (((-554) $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-807)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-1227 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1158) "failed") $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-1023 (-1158)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-1023 (-554)))) (((-3 (-554) "failed") $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-1023 (-554)))) (((-3 (-1226 |#2| |#3| |#4|) "failed") $) 25)) (-1668 (((-1227 |#1| |#2| |#3| |#4|) $) NIL) (((-1158) $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-1023 (-1158)))) (((-402 (-554)) $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-1023 (-554)))) (((-554) $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-1023 (-554)))) (((-1226 |#2| |#3| |#4|) $) NIL)) (-3964 (($ $ $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-627 (-554)))) (((-2 (|:| -2866 (-675 (-1227 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1241 (-1227 |#1| |#2| |#3| |#4|)))) (-675 $) (-1241 $)) NIL) (((-675 (-1227 |#1| |#2| |#3| |#4|)) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3353 (($) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-539)))) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-2745 (((-112) $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-807)))) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-871 (-554)))) (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-871 (-374))))) (-3248 (((-112) $) NIL)) (-3472 (($ $) NIL)) (-2810 (((-1227 |#1| |#2| |#3| |#4|) $) 21)) (-3339 (((-3 $ "failed") $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-1133)))) (-4304 (((-112) $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-807)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-4223 (($ $ $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-836)))) (-2706 (($ $ $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-836)))) (-2879 (($ (-1 (-1227 |#1| |#2| |#3| |#4|) (-1227 |#1| |#2| |#3| |#4|)) $) NIL)) (-2608 (((-3 (-829 |#2|) "failed") $) 78)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-3834 (($) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-1133)) CONST)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3722 (($ $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-302)))) (-4339 (((-1227 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-539)))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-894)))) (-2270 (((-413 $) $) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2386 (($ $ (-631 (-1227 |#1| |#2| |#3| |#4|)) (-631 (-1227 |#1| |#2| |#3| |#4|))) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-304 (-1227 |#1| |#2| |#3| |#4|)))) (($ $ (-1227 |#1| |#2| |#3| |#4|) (-1227 |#1| |#2| |#3| |#4|)) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-304 (-1227 |#1| |#2| |#3| |#4|)))) (($ $ (-289 (-1227 |#1| |#2| |#3| |#4|))) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-304 (-1227 |#1| |#2| |#3| |#4|)))) (($ $ (-631 (-289 (-1227 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-304 (-1227 |#1| |#2| |#3| |#4|)))) (($ $ (-631 (-1158)) (-631 (-1227 |#1| |#2| |#3| |#4|))) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-508 (-1158) (-1227 |#1| |#2| |#3| |#4|)))) (($ $ (-1158) (-1227 |#1| |#2| |#3| |#4|)) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-508 (-1158) (-1227 |#1| |#2| |#3| |#4|))))) (-2072 (((-758) $) NIL)) (-2064 (($ $ (-1227 |#1| |#2| |#3| |#4|)) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-281 (-1227 |#1| |#2| |#3| |#4|) (-1227 |#1| |#2| |#3| |#4|))))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-1553 (($ $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-229))) (($ $ (-758)) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-229))) (($ $ (-1158)) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-885 (-1158)))) (($ $ (-1 (-1227 |#1| |#2| |#3| |#4|) (-1227 |#1| |#2| |#3| |#4|)) (-758)) NIL) (($ $ (-1 (-1227 |#1| |#2| |#3| |#4|) (-1227 |#1| |#2| |#3| |#4|))) NIL)) (-3623 (($ $) NIL)) (-2822 (((-1227 |#1| |#2| |#3| |#4|) $) 17)) (-2927 (((-877 (-554)) $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-602 (-877 (-554))))) (((-877 (-374)) $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-602 (-877 (-374))))) (((-530) $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-602 (-530)))) (((-374) $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-1007))) (((-221) $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-1007)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| (-1227 |#1| |#2| |#3| |#4|) (-894))))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL) (($ (-402 (-554))) NIL) (($ (-1227 |#1| |#2| |#3| |#4|)) 29) (($ (-1158)) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-1023 (-1158)))) (($ (-1226 |#2| |#3| |#4|)) 36)) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| (-1227 |#1| |#2| |#3| |#4|) (-894))) (|has| (-1227 |#1| |#2| |#3| |#4|) (-143))))) (-2261 (((-758)) NIL)) (-2755 (((-1227 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-539)))) (-1909 (((-112) $ $) NIL)) (-1700 (($ $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-807)))) (-2004 (($) 41 T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-229))) (($ $ (-758)) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-229))) (($ $ (-1158)) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-885 (-1158)))) (($ $ (-1 (-1227 |#1| |#2| |#3| |#4|) (-1227 |#1| |#2| |#3| |#4|)) (-758)) NIL) (($ $ (-1 (-1227 |#1| |#2| |#3| |#4|) (-1227 |#1| |#2| |#3| |#4|))) NIL)) (-1708 (((-112) $ $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-836)))) (-1686 (((-112) $ $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-836)))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-836)))) (-1676 (((-112) $ $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-836)))) (-1752 (($ $ $) 34) (($ (-1227 |#1| |#2| |#3| |#4|) (-1227 |#1| |#2| |#3| |#4|)) 31)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL) (($ (-1227 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1227 |#1| |#2| |#3| |#4|)) NIL)))
-(((-308 |#1| |#2| |#3| |#4|) (-13 (-977 (-1227 |#1| |#2| |#3| |#4|)) (-1023 (-1226 |#2| |#3| |#4|)) (-10 -8 (-15 -2608 ((-3 (-829 |#2|) "failed") $)) (-15 -3075 ($ (-1226 |#2| |#3| |#4|))))) (-13 (-836) (-1023 (-554)) (-627 (-554)) (-446)) (-13 (-27) (-1180) (-425 |#1|)) (-1158) |#2|) (T -308))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-1226 *4 *5 *6)) (-4 *4 (-13 (-27) (-1180) (-425 *3))) (-14 *5 (-1158)) (-14 *6 *4) (-4 *3 (-13 (-836) (-1023 (-554)) (-627 (-554)) (-446))) (-5 *1 (-308 *3 *4 *5 *6)))) (-2608 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-836) (-1023 (-554)) (-627 (-554)) (-446))) (-5 *2 (-829 *4)) (-5 *1 (-308 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1180) (-425 *3))) (-14 *5 (-1158)) (-14 *6 *4))))
-(-13 (-977 (-1227 |#1| |#2| |#3| |#4|)) (-1023 (-1226 |#2| |#3| |#4|)) (-10 -8 (-15 -2608 ((-3 (-829 |#2|) "failed") $)) (-15 -3075 ($ (-1226 |#2| |#3| |#4|)))))
-((-2879 (((-311 |#2|) (-1 |#2| |#1|) (-311 |#1|)) 13)))
-(((-309 |#1| |#2|) (-10 -7 (-15 -2879 ((-311 |#2|) (-1 |#2| |#1|) (-311 |#1|)))) (-836) (-836)) (T -309))
-((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-311 *5)) (-4 *5 (-836)) (-4 *6 (-836)) (-5 *2 (-311 *6)) (-5 *1 (-309 *5 *6)))))
-(-10 -7 (-15 -2879 ((-311 |#2|) (-1 |#2| |#1|) (-311 |#1|))))
-((-2444 (((-52) |#2| (-289 |#2|) (-758)) 33) (((-52) |#2| (-289 |#2|)) 24) (((-52) |#2| (-758)) 28) (((-52) |#2|) 25) (((-52) (-1158)) 21)) (-4175 (((-52) |#2| (-289 |#2|) (-402 (-554))) 51) (((-52) |#2| (-289 |#2|)) 48) (((-52) |#2| (-402 (-554))) 50) (((-52) |#2|) 49) (((-52) (-1158)) 47)) (-2463 (((-52) |#2| (-289 |#2|) (-402 (-554))) 46) (((-52) |#2| (-289 |#2|)) 43) (((-52) |#2| (-402 (-554))) 45) (((-52) |#2|) 44) (((-52) (-1158)) 42)) (-2454 (((-52) |#2| (-289 |#2|) (-554)) 39) (((-52) |#2| (-289 |#2|)) 35) (((-52) |#2| (-554)) 38) (((-52) |#2|) 36) (((-52) (-1158)) 34)))
-(((-310 |#1| |#2|) (-10 -7 (-15 -2444 ((-52) (-1158))) (-15 -2444 ((-52) |#2|)) (-15 -2444 ((-52) |#2| (-758))) (-15 -2444 ((-52) |#2| (-289 |#2|))) (-15 -2444 ((-52) |#2| (-289 |#2|) (-758))) (-15 -2454 ((-52) (-1158))) (-15 -2454 ((-52) |#2|)) (-15 -2454 ((-52) |#2| (-554))) (-15 -2454 ((-52) |#2| (-289 |#2|))) (-15 -2454 ((-52) |#2| (-289 |#2|) (-554))) (-15 -2463 ((-52) (-1158))) (-15 -2463 ((-52) |#2|)) (-15 -2463 ((-52) |#2| (-402 (-554)))) (-15 -2463 ((-52) |#2| (-289 |#2|))) (-15 -2463 ((-52) |#2| (-289 |#2|) (-402 (-554)))) (-15 -4175 ((-52) (-1158))) (-15 -4175 ((-52) |#2|)) (-15 -4175 ((-52) |#2| (-402 (-554)))) (-15 -4175 ((-52) |#2| (-289 |#2|))) (-15 -4175 ((-52) |#2| (-289 |#2|) (-402 (-554))))) (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))) (-13 (-27) (-1180) (-425 |#1|))) (T -310))
-((-4175 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-289 *3)) (-5 *5 (-402 (-554))) (-4 *3 (-13 (-27) (-1180) (-425 *6))) (-4 *6 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-310 *6 *3)))) (-4175 (*1 *2 *3 *4) (-12 (-5 *4 (-289 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *5))) (-4 *5 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-310 *5 *3)))) (-4175 (*1 *2 *3 *4) (-12 (-5 *4 (-402 (-554))) (-4 *5 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-310 *5 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *5))))) (-4175 (*1 *2 *3) (-12 (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-310 *4 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *4))))) (-4175 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-310 *4 *5)) (-4 *5 (-13 (-27) (-1180) (-425 *4))))) (-2463 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-289 *3)) (-5 *5 (-402 (-554))) (-4 *3 (-13 (-27) (-1180) (-425 *6))) (-4 *6 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-310 *6 *3)))) (-2463 (*1 *2 *3 *4) (-12 (-5 *4 (-289 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *5))) (-4 *5 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-310 *5 *3)))) (-2463 (*1 *2 *3 *4) (-12 (-5 *4 (-402 (-554))) (-4 *5 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-310 *5 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *5))))) (-2463 (*1 *2 *3) (-12 (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-310 *4 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *4))))) (-2463 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-310 *4 *5)) (-4 *5 (-13 (-27) (-1180) (-425 *4))))) (-2454 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-289 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *6))) (-4 *6 (-13 (-446) (-836) (-1023 *5) (-627 *5))) (-5 *5 (-554)) (-5 *2 (-52)) (-5 *1 (-310 *6 *3)))) (-2454 (*1 *2 *3 *4) (-12 (-5 *4 (-289 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *5))) (-4 *5 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-310 *5 *3)))) (-2454 (*1 *2 *3 *4) (-12 (-5 *4 (-554)) (-4 *5 (-13 (-446) (-836) (-1023 *4) (-627 *4))) (-5 *2 (-52)) (-5 *1 (-310 *5 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *5))))) (-2454 (*1 *2 *3) (-12 (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-310 *4 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *4))))) (-2454 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-310 *4 *5)) (-4 *5 (-13 (-27) (-1180) (-425 *4))))) (-2444 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-289 *3)) (-5 *5 (-758)) (-4 *3 (-13 (-27) (-1180) (-425 *6))) (-4 *6 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-310 *6 *3)))) (-2444 (*1 *2 *3 *4) (-12 (-5 *4 (-289 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *5))) (-4 *5 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-310 *5 *3)))) (-2444 (*1 *2 *3 *4) (-12 (-5 *4 (-758)) (-4 *5 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-310 *5 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *5))))) (-2444 (*1 *2 *3) (-12 (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-310 *4 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *4))))) (-2444 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-310 *4 *5)) (-4 *5 (-13 (-27) (-1180) (-425 *4))))))
-(-10 -7 (-15 -2444 ((-52) (-1158))) (-15 -2444 ((-52) |#2|)) (-15 -2444 ((-52) |#2| (-758))) (-15 -2444 ((-52) |#2| (-289 |#2|))) (-15 -2444 ((-52) |#2| (-289 |#2|) (-758))) (-15 -2454 ((-52) (-1158))) (-15 -2454 ((-52) |#2|)) (-15 -2454 ((-52) |#2| (-554))) (-15 -2454 ((-52) |#2| (-289 |#2|))) (-15 -2454 ((-52) |#2| (-289 |#2|) (-554))) (-15 -2463 ((-52) (-1158))) (-15 -2463 ((-52) |#2|)) (-15 -2463 ((-52) |#2| (-402 (-554)))) (-15 -2463 ((-52) |#2| (-289 |#2|))) (-15 -2463 ((-52) |#2| (-289 |#2|) (-402 (-554)))) (-15 -4175 ((-52) (-1158))) (-15 -4175 ((-52) |#2|)) (-15 -4175 ((-52) |#2| (-402 (-554)))) (-15 -4175 ((-52) |#2| (-289 |#2|))) (-15 -4175 ((-52) |#2| (-289 |#2|) (-402 (-554)))))
-((-3062 (((-112) $ $) NIL)) (-2719 (((-631 $) $ (-1158)) NIL (|has| |#1| (-546))) (((-631 $) $) NIL (|has| |#1| (-546))) (((-631 $) (-1154 $) (-1158)) NIL (|has| |#1| (-546))) (((-631 $) (-1154 $)) NIL (|has| |#1| (-546))) (((-631 $) (-937 $)) NIL (|has| |#1| (-546)))) (-3856 (($ $ (-1158)) NIL (|has| |#1| (-546))) (($ $) NIL (|has| |#1| (-546))) (($ (-1154 $) (-1158)) NIL (|has| |#1| (-546))) (($ (-1154 $)) NIL (|has| |#1| (-546))) (($ (-937 $)) NIL (|has| |#1| (-546)))) (-1695 (((-112) $) 27 (-3994 (|has| |#1| (-25)) (-12 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034)))))) (-2405 (((-631 (-1158)) $) 350)) (-2237 (((-402 (-1154 $)) $ (-600 $)) NIL (|has| |#1| (-546)))) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-546)))) (-1976 (($ $) NIL (|has| |#1| (-546)))) (-1363 (((-112) $) NIL (|has| |#1| (-546)))) (-2143 (((-631 (-600 $)) $) NIL)) (-3023 (($ $) 159 (|has| |#1| (-546)))) (-4200 (($ $) 135 (|has| |#1| (-546)))) (-3820 (($ $ (-1074 $)) 220 (|has| |#1| (-546))) (($ $ (-1158)) 216 (|has| |#1| (-546)))) (-2934 (((-3 $ "failed") $ $) NIL (-3994 (|has| |#1| (-21)) (-12 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034)))))) (-3380 (($ $ (-289 $)) NIL) (($ $ (-631 (-289 $))) 367) (($ $ (-631 (-600 $)) (-631 $)) 411)) (-4308 (((-413 (-1154 $)) (-1154 $)) 294 (-12 (|has| |#1| (-446)) (|has| |#1| (-546))))) (-3278 (($ $) NIL (|has| |#1| (-546)))) (-1565 (((-413 $) $) NIL (|has| |#1| (-546)))) (-2282 (($ $) NIL (|has| |#1| (-546)))) (-2286 (((-112) $ $) NIL (|has| |#1| (-546)))) (-3003 (($ $) 155 (|has| |#1| (-546)))) (-4177 (($ $) 131 (|has| |#1| (-546)))) (-3741 (($ $ (-554)) 69 (|has| |#1| (-546)))) (-3046 (($ $) 163 (|has| |#1| (-546)))) (-2916 (($ $) 139 (|has| |#1| (-546)))) (-4087 (($) NIL (-3994 (|has| |#1| (-25)) (-12 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034))) (|has| |#1| (-1094))) CONST)) (-3613 (((-631 $) $ (-1158)) NIL (|has| |#1| (-546))) (((-631 $) $) NIL (|has| |#1| (-546))) (((-631 $) (-1154 $) (-1158)) NIL (|has| |#1| (-546))) (((-631 $) (-1154 $)) NIL (|has| |#1| (-546))) (((-631 $) (-937 $)) NIL (|has| |#1| (-546)))) (-3625 (($ $ (-1158)) NIL (|has| |#1| (-546))) (($ $) NIL (|has| |#1| (-546))) (($ (-1154 $) (-1158)) 122 (|has| |#1| (-546))) (($ (-1154 $)) NIL (|has| |#1| (-546))) (($ (-937 $)) NIL (|has| |#1| (-546)))) (-2784 (((-3 (-600 $) "failed") $) 17) (((-3 (-1158) "failed") $) NIL) (((-3 |#1| "failed") $) 420) (((-3 (-48) "failed") $) 322 (-12 (|has| |#1| (-546)) (|has| |#1| (-1023 (-554))))) (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 (-402 (-937 |#1|)) "failed") $) NIL (|has| |#1| (-546))) (((-3 (-937 |#1|) "failed") $) NIL (|has| |#1| (-1034))) (((-3 (-402 (-554)) "failed") $) 46 (-3994 (-12 (|has| |#1| (-546)) (|has| |#1| (-1023 (-554)))) (|has| |#1| (-1023 (-402 (-554))))))) (-1668 (((-600 $) $) 11) (((-1158) $) NIL) ((|#1| $) 402) (((-48) $) NIL (-12 (|has| |#1| (-546)) (|has| |#1| (-1023 (-554))))) (((-554) $) NIL (|has| |#1| (-1023 (-554)))) (((-402 (-937 |#1|)) $) NIL (|has| |#1| (-546))) (((-937 |#1|) $) NIL (|has| |#1| (-1034))) (((-402 (-554)) $) 305 (-3994 (-12 (|has| |#1| (-546)) (|has| |#1| (-1023 (-554)))) (|has| |#1| (-1023 (-402 (-554))))))) (-3964 (($ $ $) NIL (|has| |#1| (-546)))) (-3699 (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) 115 (|has| |#1| (-1034))) (((-675 |#1|) (-675 $)) 105 (|has| |#1| (-1034))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (-12 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034)))) (((-675 (-554)) (-675 $)) NIL (-12 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034))))) (-3676 (($ $) 87 (|has| |#1| (-546)))) (-1320 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034))) (|has| |#1| (-1094))))) (-3943 (($ $ $) NIL (|has| |#1| (-546)))) (-4264 (($ $ (-1074 $)) 224 (|has| |#1| (-546))) (($ $ (-1158)) 222 (|has| |#1| (-546)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL (|has| |#1| (-546)))) (-3289 (((-112) $) NIL (|has| |#1| (-546)))) (-1738 (($ $ $) 190 (|has| |#1| (-546)))) (-2844 (($) 125 (|has| |#1| (-546)))) (-1295 (($ $ $) 210 (|has| |#1| (-546)))) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) 373 (|has| |#1| (-871 (-554)))) (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) 380 (|has| |#1| (-871 (-374))))) (-1342 (($ $) NIL) (($ (-631 $)) NIL)) (-3489 (((-631 (-114)) $) NIL)) (-3086 (((-114) (-114)) 265)) (-3248 (((-112) $) 25 (-3994 (-12 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034))) (|has| |#1| (-1094))))) (-3273 (((-112) $) NIL (|has| $ (-1023 (-554))))) (-3472 (($ $) 68 (|has| |#1| (-1034)))) (-2810 (((-1107 |#1| (-600 $)) $) 82 (|has| |#1| (-1034)))) (-1406 (((-112) $) 61 (|has| |#1| (-546)))) (-3734 (($ $ (-554)) NIL (|has| |#1| (-546)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-546)))) (-1823 (((-1154 $) (-600 $)) 266 (|has| $ (-1034)))) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-2879 (($ (-1 $ $) (-600 $)) 407)) (-3310 (((-3 (-600 $) "failed") $) NIL)) (-2395 (($ $) 129 (|has| |#1| (-546)))) (-4145 (($ $) 235 (|has| |#1| (-546)))) (-2475 (($ (-631 $)) NIL (|has| |#1| (-546))) (($ $ $) NIL (|has| |#1| (-546)))) (-1613 (((-1140) $) NIL)) (-2227 (((-631 (-600 $)) $) 49)) (-1408 (($ (-114) $) NIL) (($ (-114) (-631 $)) 412)) (-3778 (((-3 (-631 $) "failed") $) NIL (|has| |#1| (-1094)))) (-2920 (((-3 (-2 (|:| |val| $) (|:| -1407 (-554))) "failed") $) NIL (|has| |#1| (-1034)))) (-2433 (((-3 (-631 $) "failed") $) 415 (|has| |#1| (-25)))) (-2863 (((-3 (-2 (|:| -1490 (-554)) (|:| |var| (-600 $))) "failed") $) 419 (|has| |#1| (-25)))) (-3160 (((-3 (-2 (|:| |var| (-600 $)) (|:| -1407 (-554))) "failed") $) NIL (|has| |#1| (-1094))) (((-3 (-2 (|:| |var| (-600 $)) (|:| -1407 (-554))) "failed") $ (-114)) NIL (|has| |#1| (-1034))) (((-3 (-2 (|:| |var| (-600 $)) (|:| -1407 (-554))) "failed") $ (-1158)) NIL (|has| |#1| (-1034)))) (-2640 (((-112) $ (-114)) NIL) (((-112) $ (-1158)) 53)) (-2483 (($ $) NIL (-3994 (|has| |#1| (-467)) (|has| |#1| (-546))))) (-3546 (($ $ (-1158)) 239 (|has| |#1| (-546))) (($ $ (-1074 $)) 241 (|has| |#1| (-546)))) (-3323 (((-758) $) NIL)) (-2768 (((-1102) $) NIL)) (-2492 (((-112) $) 43)) (-2505 ((|#1| $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 287 (|has| |#1| (-546)))) (-2510 (($ (-631 $)) NIL (|has| |#1| (-546))) (($ $ $) NIL (|has| |#1| (-546)))) (-2041 (((-112) $ $) NIL) (((-112) $ (-1158)) NIL)) (-1662 (($ $ (-1158)) 214 (|has| |#1| (-546))) (($ $) 212 (|has| |#1| (-546)))) (-1582 (($ $) 206 (|has| |#1| (-546)))) (-3082 (((-413 (-1154 $)) (-1154 $)) 292 (-12 (|has| |#1| (-446)) (|has| |#1| (-546))))) (-2270 (((-413 $) $) NIL (|has| |#1| (-546)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-546))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-546)))) (-3919 (((-3 $ "failed") $ $) NIL (|has| |#1| (-546)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-546)))) (-1333 (($ $) 127 (|has| |#1| (-546)))) (-1795 (((-112) $) NIL (|has| $ (-1023 (-554))))) (-2386 (($ $ (-600 $) $) NIL) (($ $ (-631 (-600 $)) (-631 $)) 406) (($ $ (-631 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ (-631 (-1158)) (-631 (-1 $ $))) NIL) (($ $ (-631 (-1158)) (-631 (-1 $ (-631 $)))) NIL) (($ $ (-1158) (-1 $ (-631 $))) NIL) (($ $ (-1158) (-1 $ $)) NIL) (($ $ (-631 (-114)) (-631 (-1 $ $))) 360) (($ $ (-631 (-114)) (-631 (-1 $ (-631 $)))) NIL) (($ $ (-114) (-1 $ (-631 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1158)) NIL (|has| |#1| (-602 (-530)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-602 (-530)))) (($ $) NIL (|has| |#1| (-602 (-530)))) (($ $ (-114) $ (-1158)) 348 (|has| |#1| (-602 (-530)))) (($ $ (-631 (-114)) (-631 $) (-1158)) 347 (|has| |#1| (-602 (-530)))) (($ $ (-631 (-1158)) (-631 (-758)) (-631 (-1 $ $))) NIL (|has| |#1| (-1034))) (($ $ (-631 (-1158)) (-631 (-758)) (-631 (-1 $ (-631 $)))) NIL (|has| |#1| (-1034))) (($ $ (-1158) (-758) (-1 $ (-631 $))) NIL (|has| |#1| (-1034))) (($ $ (-1158) (-758) (-1 $ $)) NIL (|has| |#1| (-1034)))) (-2072 (((-758) $) NIL (|has| |#1| (-546)))) (-4124 (($ $) 227 (|has| |#1| (-546)))) (-2064 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-631 $)) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-546)))) (-3862 (($ $) NIL) (($ $ $) NIL)) (-4164 (($ $) 237 (|has| |#1| (-546)))) (-2696 (($ $) 188 (|has| |#1| (-546)))) (-1553 (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-1034))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-1034))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-1034))) (($ $ (-1158)) NIL (|has| |#1| (-1034)))) (-3623 (($ $) 70 (|has| |#1| (-546)))) (-2822 (((-1107 |#1| (-600 $)) $) 84 (|has| |#1| (-546)))) (-4318 (($ $) 303 (|has| $ (-1034)))) (-3057 (($ $) 165 (|has| |#1| (-546)))) (-2926 (($ $) 141 (|has| |#1| (-546)))) (-3034 (($ $) 161 (|has| |#1| (-546)))) (-4213 (($ $) 137 (|has| |#1| (-546)))) (-3014 (($ $) 157 (|has| |#1| (-546)))) (-4188 (($ $) 133 (|has| |#1| (-546)))) (-2927 (((-877 (-554)) $) NIL (|has| |#1| (-602 (-877 (-554))))) (((-877 (-374)) $) NIL (|has| |#1| (-602 (-877 (-374))))) (($ (-413 $)) NIL (|has| |#1| (-546))) (((-530) $) 345 (|has| |#1| (-602 (-530))))) (-3992 (($ $ $) NIL (|has| |#1| (-467)))) (-1856 (($ $ $) NIL (|has| |#1| (-467)))) (-3075 (((-848) $) 405) (($ (-600 $)) 396) (($ (-1158)) 362) (($ |#1|) 323) (($ $) NIL (|has| |#1| (-546))) (($ (-48)) 298 (-12 (|has| |#1| (-546)) (|has| |#1| (-1023 (-554))))) (($ (-1107 |#1| (-600 $))) 86 (|has| |#1| (-1034))) (($ (-402 |#1|)) NIL (|has| |#1| (-546))) (($ (-937 (-402 |#1|))) NIL (|has| |#1| (-546))) (($ (-402 (-937 (-402 |#1|)))) NIL (|has| |#1| (-546))) (($ (-402 (-937 |#1|))) NIL (|has| |#1| (-546))) (($ (-937 |#1|)) NIL (|has| |#1| (-1034))) (($ (-402 (-554))) NIL (-3994 (|has| |#1| (-546)) (|has| |#1| (-1023 (-402 (-554)))))) (($ (-554)) 34 (-3994 (|has| |#1| (-1023 (-554))) (|has| |#1| (-1034))))) (-2084 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2261 (((-758)) NIL (|has| |#1| (-1034)))) (-4125 (($ $) NIL) (($ (-631 $)) NIL)) (-1629 (($ $ $) 208 (|has| |#1| (-546)))) (-1943 (($ $ $) 194 (|has| |#1| (-546)))) (-1952 (($ $ $) 198 (|has| |#1| (-546)))) (-3586 (($ $ $) 192 (|has| |#1| (-546)))) (-3746 (($ $ $) 196 (|has| |#1| (-546)))) (-1902 (((-112) (-114)) 9)) (-3096 (($ $) 171 (|has| |#1| (-546)))) (-2959 (($ $) 147 (|has| |#1| (-546)))) (-1909 (((-112) $ $) NIL (|has| |#1| (-546)))) (-3069 (($ $) 167 (|has| |#1| (-546)))) (-2938 (($ $) 143 (|has| |#1| (-546)))) (-3120 (($ $) 175 (|has| |#1| (-546)))) (-2981 (($ $) 151 (|has| |#1| (-546)))) (-3155 (($ (-1158) $) NIL) (($ (-1158) $ $) NIL) (($ (-1158) $ $ $) NIL) (($ (-1158) $ $ $ $) NIL) (($ (-1158) (-631 $)) NIL)) (-2973 (($ $) 202 (|has| |#1| (-546)))) (-1959 (($ $) 200 (|has| |#1| (-546)))) (-2908 (($ $) 177 (|has| |#1| (-546)))) (-2991 (($ $) 153 (|has| |#1| (-546)))) (-3108 (($ $) 173 (|has| |#1| (-546)))) (-2969 (($ $) 149 (|has| |#1| (-546)))) (-3083 (($ $) 169 (|has| |#1| (-546)))) (-2948 (($ $) 145 (|has| |#1| (-546)))) (-1700 (($ $) 180 (|has| |#1| (-546)))) (-2004 (($) 20 (-3994 (|has| |#1| (-25)) (-12 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034)))) CONST)) (-2697 (($ $) 231 (|has| |#1| (-546)))) (-2014 (($) 22 (-3994 (-12 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034))) (|has| |#1| (-1094))) CONST)) (-3628 (($ $) 182 (|has| |#1| (-546))) (($ $ $) 184 (|has| |#1| (-546)))) (-1667 (($ $) 229 (|has| |#1| (-546)))) (-1787 (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-1034))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-1034))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-1034))) (($ $ (-1158)) NIL (|has| |#1| (-1034)))) (-1373 (($ $) 233 (|has| |#1| (-546)))) (-4280 (($ $ $) 186 (|has| |#1| (-546)))) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 79)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 78)) (-1752 (($ (-1107 |#1| (-600 $)) (-1107 |#1| (-600 $))) 96 (|has| |#1| (-546))) (($ $ $) 42 (-3994 (|has| |#1| (-467)) (|has| |#1| (-546))))) (-1744 (($ $ $) 40 (-3994 (|has| |#1| (-21)) (-12 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034))))) (($ $) 29 (-3994 (|has| |#1| (-21)) (-12 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034)))))) (-1735 (($ $ $) 38 (-3994 (|has| |#1| (-25)) (-12 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034)))))) (** (($ $ $) 63 (|has| |#1| (-546))) (($ $ (-402 (-554))) 300 (|has| |#1| (-546))) (($ $ (-554)) 74 (-3994 (|has| |#1| (-467)) (|has| |#1| (-546)))) (($ $ (-758)) 71 (-3994 (-12 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034))) (|has| |#1| (-1094)))) (($ $ (-906)) 76 (-3994 (-12 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034))) (|has| |#1| (-1094))))) (* (($ (-402 (-554)) $) NIL (|has| |#1| (-546))) (($ $ (-402 (-554))) NIL (|has| |#1| (-546))) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))) (($ $ $) 36 (-3994 (-12 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034))) (|has| |#1| (-1094)))) (($ (-554) $) 32 (-3994 (|has| |#1| (-21)) (-12 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034))))) (($ (-758) $) NIL (-3994 (|has| |#1| (-25)) (-12 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034))))) (($ (-906) $) NIL (-3994 (|has| |#1| (-25)) (-12 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034)))))))
-(((-311 |#1|) (-13 (-425 |#1|) (-10 -8 (IF (|has| |#1| (-546)) (PROGN (-6 (-29 |#1|)) (-6 (-1180)) (-6 (-158)) (-6 (-617)) (-6 (-1121)) (-15 -3676 ($ $)) (-15 -1406 ((-112) $)) (-15 -3741 ($ $ (-554))) (IF (|has| |#1| (-446)) (PROGN (-15 -3082 ((-413 (-1154 $)) (-1154 $))) (-15 -4308 ((-413 (-1154 $)) (-1154 $)))) |%noBranch|) (IF (|has| |#1| (-1023 (-554))) (-6 (-1023 (-48))) |%noBranch|)) |%noBranch|))) (-836)) (T -311))
-((-3676 (*1 *1 *1) (-12 (-5 *1 (-311 *2)) (-4 *2 (-546)) (-4 *2 (-836)))) (-1406 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-311 *3)) (-4 *3 (-546)) (-4 *3 (-836)))) (-3741 (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-311 *3)) (-4 *3 (-546)) (-4 *3 (-836)))) (-3082 (*1 *2 *3) (-12 (-5 *2 (-413 (-1154 *1))) (-5 *1 (-311 *4)) (-5 *3 (-1154 *1)) (-4 *4 (-446)) (-4 *4 (-546)) (-4 *4 (-836)))) (-4308 (*1 *2 *3) (-12 (-5 *2 (-413 (-1154 *1))) (-5 *1 (-311 *4)) (-5 *3 (-1154 *1)) (-4 *4 (-446)) (-4 *4 (-546)) (-4 *4 (-836)))))
-(-13 (-425 |#1|) (-10 -8 (IF (|has| |#1| (-546)) (PROGN (-6 (-29 |#1|)) (-6 (-1180)) (-6 (-158)) (-6 (-617)) (-6 (-1121)) (-15 -3676 ($ $)) (-15 -1406 ((-112) $)) (-15 -3741 ($ $ (-554))) (IF (|has| |#1| (-446)) (PROGN (-15 -3082 ((-413 (-1154 $)) (-1154 $))) (-15 -4308 ((-413 (-1154 $)) (-1154 $)))) |%noBranch|) (IF (|has| |#1| (-1023 (-554))) (-6 (-1023 (-48))) |%noBranch|)) |%noBranch|)))
-((-4134 (((-52) |#2| (-114) (-289 |#2|) (-631 |#2|)) 88) (((-52) |#2| (-114) (-289 |#2|) (-289 |#2|)) 84) (((-52) |#2| (-114) (-289 |#2|) |#2|) 86) (((-52) (-289 |#2|) (-114) (-289 |#2|) |#2|) 87) (((-52) (-631 |#2|) (-631 (-114)) (-289 |#2|) (-631 (-289 |#2|))) 80) (((-52) (-631 |#2|) (-631 (-114)) (-289 |#2|) (-631 |#2|)) 82) (((-52) (-631 (-289 |#2|)) (-631 (-114)) (-289 |#2|) (-631 |#2|)) 83) (((-52) (-631 (-289 |#2|)) (-631 (-114)) (-289 |#2|) (-631 (-289 |#2|))) 81) (((-52) (-289 |#2|) (-114) (-289 |#2|) (-631 |#2|)) 89) (((-52) (-289 |#2|) (-114) (-289 |#2|) (-289 |#2|)) 85)))
-(((-312 |#1| |#2|) (-10 -7 (-15 -4134 ((-52) (-289 |#2|) (-114) (-289 |#2|) (-289 |#2|))) (-15 -4134 ((-52) (-289 |#2|) (-114) (-289 |#2|) (-631 |#2|))) (-15 -4134 ((-52) (-631 (-289 |#2|)) (-631 (-114)) (-289 |#2|) (-631 (-289 |#2|)))) (-15 -4134 ((-52) (-631 (-289 |#2|)) (-631 (-114)) (-289 |#2|) (-631 |#2|))) (-15 -4134 ((-52) (-631 |#2|) (-631 (-114)) (-289 |#2|) (-631 |#2|))) (-15 -4134 ((-52) (-631 |#2|) (-631 (-114)) (-289 |#2|) (-631 (-289 |#2|)))) (-15 -4134 ((-52) (-289 |#2|) (-114) (-289 |#2|) |#2|)) (-15 -4134 ((-52) |#2| (-114) (-289 |#2|) |#2|)) (-15 -4134 ((-52) |#2| (-114) (-289 |#2|) (-289 |#2|))) (-15 -4134 ((-52) |#2| (-114) (-289 |#2|) (-631 |#2|)))) (-13 (-836) (-546) (-602 (-530))) (-425 |#1|)) (T -312))
-((-4134 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-289 *3)) (-5 *6 (-631 *3)) (-4 *3 (-425 *7)) (-4 *7 (-13 (-836) (-546) (-602 (-530)))) (-5 *2 (-52)) (-5 *1 (-312 *7 *3)))) (-4134 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-289 *3)) (-4 *3 (-425 *6)) (-4 *6 (-13 (-836) (-546) (-602 (-530)))) (-5 *2 (-52)) (-5 *1 (-312 *6 *3)))) (-4134 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-114)) (-5 *5 (-289 *3)) (-4 *3 (-425 *6)) (-4 *6 (-13 (-836) (-546) (-602 (-530)))) (-5 *2 (-52)) (-5 *1 (-312 *6 *3)))) (-4134 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-289 *5)) (-5 *4 (-114)) (-4 *5 (-425 *6)) (-4 *6 (-13 (-836) (-546) (-602 (-530)))) (-5 *2 (-52)) (-5 *1 (-312 *6 *5)))) (-4134 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-631 *8)) (-5 *4 (-631 (-114))) (-5 *6 (-631 (-289 *8))) (-4 *8 (-425 *7)) (-5 *5 (-289 *8)) (-4 *7 (-13 (-836) (-546) (-602 (-530)))) (-5 *2 (-52)) (-5 *1 (-312 *7 *8)))) (-4134 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-631 *7)) (-5 *4 (-631 (-114))) (-5 *5 (-289 *7)) (-4 *7 (-425 *6)) (-4 *6 (-13 (-836) (-546) (-602 (-530)))) (-5 *2 (-52)) (-5 *1 (-312 *6 *7)))) (-4134 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-631 (-289 *8))) (-5 *4 (-631 (-114))) (-5 *5 (-289 *8)) (-5 *6 (-631 *8)) (-4 *8 (-425 *7)) (-4 *7 (-13 (-836) (-546) (-602 (-530)))) (-5 *2 (-52)) (-5 *1 (-312 *7 *8)))) (-4134 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-631 (-289 *7))) (-5 *4 (-631 (-114))) (-5 *5 (-289 *7)) (-4 *7 (-425 *6)) (-4 *6 (-13 (-836) (-546) (-602 (-530)))) (-5 *2 (-52)) (-5 *1 (-312 *6 *7)))) (-4134 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-289 *7)) (-5 *4 (-114)) (-5 *5 (-631 *7)) (-4 *7 (-425 *6)) (-4 *6 (-13 (-836) (-546) (-602 (-530)))) (-5 *2 (-52)) (-5 *1 (-312 *6 *7)))) (-4134 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-289 *6)) (-5 *4 (-114)) (-4 *6 (-425 *5)) (-4 *5 (-13 (-836) (-546) (-602 (-530)))) (-5 *2 (-52)) (-5 *1 (-312 *5 *6)))))
-(-10 -7 (-15 -4134 ((-52) (-289 |#2|) (-114) (-289 |#2|) (-289 |#2|))) (-15 -4134 ((-52) (-289 |#2|) (-114) (-289 |#2|) (-631 |#2|))) (-15 -4134 ((-52) (-631 (-289 |#2|)) (-631 (-114)) (-289 |#2|) (-631 (-289 |#2|)))) (-15 -4134 ((-52) (-631 (-289 |#2|)) (-631 (-114)) (-289 |#2|) (-631 |#2|))) (-15 -4134 ((-52) (-631 |#2|) (-631 (-114)) (-289 |#2|) (-631 |#2|))) (-15 -4134 ((-52) (-631 |#2|) (-631 (-114)) (-289 |#2|) (-631 (-289 |#2|)))) (-15 -4134 ((-52) (-289 |#2|) (-114) (-289 |#2|) |#2|)) (-15 -4134 ((-52) |#2| (-114) (-289 |#2|) |#2|)) (-15 -4134 ((-52) |#2| (-114) (-289 |#2|) (-289 |#2|))) (-15 -4134 ((-52) |#2| (-114) (-289 |#2|) (-631 |#2|))))
-((-2655 (((-1190 (-911)) (-311 (-554)) (-311 (-554)) (-311 (-554)) (-1 (-221) (-221)) (-1076 (-221)) (-221) (-554) (-1140)) 46) (((-1190 (-911)) (-311 (-554)) (-311 (-554)) (-311 (-554)) (-1 (-221) (-221)) (-1076 (-221)) (-221) (-554)) 47) (((-1190 (-911)) (-311 (-554)) (-311 (-554)) (-311 (-554)) (-1 (-221) (-221)) (-1076 (-221)) (-1 (-221) (-221)) (-554) (-1140)) 43) (((-1190 (-911)) (-311 (-554)) (-311 (-554)) (-311 (-554)) (-1 (-221) (-221)) (-1076 (-221)) (-1 (-221) (-221)) (-554)) 44)) (-3647 (((-1 (-221) (-221)) (-221)) 45)))
-(((-313) (-10 -7 (-15 -3647 ((-1 (-221) (-221)) (-221))) (-15 -2655 ((-1190 (-911)) (-311 (-554)) (-311 (-554)) (-311 (-554)) (-1 (-221) (-221)) (-1076 (-221)) (-1 (-221) (-221)) (-554))) (-15 -2655 ((-1190 (-911)) (-311 (-554)) (-311 (-554)) (-311 (-554)) (-1 (-221) (-221)) (-1076 (-221)) (-1 (-221) (-221)) (-554) (-1140))) (-15 -2655 ((-1190 (-911)) (-311 (-554)) (-311 (-554)) (-311 (-554)) (-1 (-221) (-221)) (-1076 (-221)) (-221) (-554))) (-15 -2655 ((-1190 (-911)) (-311 (-554)) (-311 (-554)) (-311 (-554)) (-1 (-221) (-221)) (-1076 (-221)) (-221) (-554) (-1140))))) (T -313))
-((-2655 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-311 (-554))) (-5 *4 (-1 (-221) (-221))) (-5 *5 (-1076 (-221))) (-5 *6 (-221)) (-5 *7 (-554)) (-5 *8 (-1140)) (-5 *2 (-1190 (-911))) (-5 *1 (-313)))) (-2655 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-311 (-554))) (-5 *4 (-1 (-221) (-221))) (-5 *5 (-1076 (-221))) (-5 *6 (-221)) (-5 *7 (-554)) (-5 *2 (-1190 (-911))) (-5 *1 (-313)))) (-2655 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-311 (-554))) (-5 *4 (-1 (-221) (-221))) (-5 *5 (-1076 (-221))) (-5 *6 (-554)) (-5 *7 (-1140)) (-5 *2 (-1190 (-911))) (-5 *1 (-313)))) (-2655 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-311 (-554))) (-5 *4 (-1 (-221) (-221))) (-5 *5 (-1076 (-221))) (-5 *6 (-554)) (-5 *2 (-1190 (-911))) (-5 *1 (-313)))) (-3647 (*1 *2 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *1 (-313)) (-5 *3 (-221)))))
-(-10 -7 (-15 -3647 ((-1 (-221) (-221)) (-221))) (-15 -2655 ((-1190 (-911)) (-311 (-554)) (-311 (-554)) (-311 (-554)) (-1 (-221) (-221)) (-1076 (-221)) (-1 (-221) (-221)) (-554))) (-15 -2655 ((-1190 (-911)) (-311 (-554)) (-311 (-554)) (-311 (-554)) (-1 (-221) (-221)) (-1076 (-221)) (-1 (-221) (-221)) (-554) (-1140))) (-15 -2655 ((-1190 (-911)) (-311 (-554)) (-311 (-554)) (-311 (-554)) (-1 (-221) (-221)) (-1076 (-221)) (-221) (-554))) (-15 -2655 ((-1190 (-911)) (-311 (-554)) (-311 (-554)) (-311 (-554)) (-1 (-221) (-221)) (-1076 (-221)) (-221) (-554) (-1140))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 25)) (-2405 (((-631 (-1064)) $) NIL)) (-1576 (((-1158) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-546)))) (-1976 (($ $) NIL (|has| |#1| (-546)))) (-1363 (((-112) $) NIL (|has| |#1| (-546)))) (-1557 (($ $ (-402 (-554))) NIL) (($ $ (-402 (-554)) (-402 (-554))) NIL)) (-3042 (((-1138 (-2 (|:| |k| (-402 (-554))) (|:| |c| |#1|))) $) 20)) (-3023 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4200 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL (|has| |#1| (-358)))) (-1565 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2282 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2286 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3003 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4177 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4175 (($ (-758) (-1138 (-2 (|:| |k| (-402 (-554))) (|:| |c| |#1|)))) NIL)) (-3046 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2916 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4087 (($) NIL T CONST)) (-3964 (($ $ $) NIL (|has| |#1| (-358)))) (-2550 (($ $) 32)) (-1320 (((-3 $ "failed") $) NIL)) (-3943 (($ $ $) NIL (|has| |#1| (-358)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL (|has| |#1| (-358)))) (-3289 (((-112) $) NIL (|has| |#1| (-358)))) (-2051 (((-112) $) NIL)) (-2844 (($) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2342 (((-402 (-554)) $) NIL) (((-402 (-554)) $ (-402 (-554))) 16)) (-3248 (((-112) $) NIL)) (-3734 (($ $ (-554)) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3333 (($ $ (-906)) NIL) (($ $ (-402 (-554))) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-3580 (((-112) $) NIL)) (-2383 (($ |#1| (-402 (-554))) NIL) (($ $ (-1064) (-402 (-554))) NIL) (($ $ (-631 (-1064)) (-631 (-402 (-554)))) NIL)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-2395 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2518 (($ $) NIL)) (-2530 ((|#1| $) NIL)) (-2475 (($ (-631 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL (|has| |#1| (-358)))) (-2279 (($ $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-1158)) NIL (-3994 (-12 (|has| |#1| (-15 -2279 (|#1| |#1| (-1158)))) (|has| |#1| (-15 -2405 ((-631 (-1158)) |#1|))) (|has| |#1| (-38 (-402 (-554))))) (-12 (|has| |#1| (-29 (-554))) (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-944)) (|has| |#1| (-1180)))))) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#1| (-358)))) (-2510 (($ (-631 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-2270 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-358)))) (-4282 (($ $ (-402 (-554))) NIL)) (-3919 (((-3 $ "failed") $ $) NIL (|has| |#1| (-546)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-1442 (((-402 (-554)) $) 17)) (-3581 (($ (-1226 |#1| |#2| |#3|)) 11)) (-1407 (((-1226 |#1| |#2| |#3|) $) 12)) (-1333 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2386 (((-1138 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-402 (-554))))))) (-2072 (((-758) $) NIL (|has| |#1| (-358)))) (-2064 ((|#1| $ (-402 (-554))) NIL) (($ $ $) NIL (|has| (-402 (-554)) (-1094)))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-358)))) (-1553 (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-758)) NIL (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (-3308 (((-402 (-554)) $) NIL)) (-3057 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2926 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3034 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4213 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3014 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4188 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-1300 (($ $) 10)) (-3075 (((-848) $) 38) (($ (-554)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $) NIL (|has| |#1| (-546)))) (-1779 ((|#1| $ (-402 (-554))) 30)) (-2084 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2261 (((-758)) NIL)) (-1608 ((|#1| $) NIL)) (-3096 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2959 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-1909 (((-112) $ $) NIL (|has| |#1| (-546)))) (-3069 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2938 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3120 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2981 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4333 ((|#1| $ (-402 (-554))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-554))))) (|has| |#1| (-15 -3075 (|#1| (-1158))))))) (-2908 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2991 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3108 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2969 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3083 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2948 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-758)) NIL (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 27)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 33)) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554)))))) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554)))))))
-(((-314 |#1| |#2| |#3|) (-13 (-1222 |#1|) (-779) (-10 -8 (-15 -3581 ($ (-1226 |#1| |#2| |#3|))) (-15 -1407 ((-1226 |#1| |#2| |#3|) $)) (-15 -1442 ((-402 (-554)) $)))) (-13 (-358) (-836)) (-1158) |#1|) (T -314))
-((-3581 (*1 *1 *2) (-12 (-5 *2 (-1226 *3 *4 *5)) (-4 *3 (-13 (-358) (-836))) (-14 *4 (-1158)) (-14 *5 *3) (-5 *1 (-314 *3 *4 *5)))) (-1407 (*1 *2 *1) (-12 (-5 *2 (-1226 *3 *4 *5)) (-5 *1 (-314 *3 *4 *5)) (-4 *3 (-13 (-358) (-836))) (-14 *4 (-1158)) (-14 *5 *3))) (-1442 (*1 *2 *1) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-314 *3 *4 *5)) (-4 *3 (-13 (-358) (-836))) (-14 *4 (-1158)) (-14 *5 *3))))
-(-13 (-1222 |#1|) (-779) (-10 -8 (-15 -3581 ($ (-1226 |#1| |#2| |#3|))) (-15 -1407 ((-1226 |#1| |#2| |#3|) $)) (-15 -1442 ((-402 (-554)) $))))
-((-3734 (((-2 (|:| -1407 (-758)) (|:| -1490 |#1|) (|:| |radicand| (-631 |#1|))) (-413 |#1|) (-758)) 24)) (-2395 (((-631 (-2 (|:| -1490 (-758)) (|:| |logand| |#1|))) (-413 |#1|)) 28)))
-(((-315 |#1|) (-10 -7 (-15 -3734 ((-2 (|:| -1407 (-758)) (|:| -1490 |#1|) (|:| |radicand| (-631 |#1|))) (-413 |#1|) (-758))) (-15 -2395 ((-631 (-2 (|:| -1490 (-758)) (|:| |logand| |#1|))) (-413 |#1|)))) (-546)) (T -315))
-((-2395 (*1 *2 *3) (-12 (-5 *3 (-413 *4)) (-4 *4 (-546)) (-5 *2 (-631 (-2 (|:| -1490 (-758)) (|:| |logand| *4)))) (-5 *1 (-315 *4)))) (-3734 (*1 *2 *3 *4) (-12 (-5 *3 (-413 *5)) (-4 *5 (-546)) (-5 *2 (-2 (|:| -1407 (-758)) (|:| -1490 *5) (|:| |radicand| (-631 *5)))) (-5 *1 (-315 *5)) (-5 *4 (-758)))))
-(-10 -7 (-15 -3734 ((-2 (|:| -1407 (-758)) (|:| -1490 |#1|) (|:| |radicand| (-631 |#1|))) (-413 |#1|) (-758))) (-15 -2395 ((-631 (-2 (|:| -1490 (-758)) (|:| |logand| |#1|))) (-413 |#1|))))
-((-2405 (((-631 |#2|) (-1154 |#4|)) 43)) (-2699 ((|#3| (-554)) 46)) (-2303 (((-1154 |#4|) (-1154 |#3|)) 30)) (-2705 (((-1154 |#4|) (-1154 |#4|) (-554)) 56)) (-2487 (((-1154 |#3|) (-1154 |#4|)) 21)) (-3308 (((-631 (-758)) (-1154 |#4|) (-631 |#2|)) 40)) (-3781 (((-1154 |#3|) (-1154 |#4|) (-631 |#2|) (-631 |#3|)) 35)))
-(((-316 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3781 ((-1154 |#3|) (-1154 |#4|) (-631 |#2|) (-631 |#3|))) (-15 -3308 ((-631 (-758)) (-1154 |#4|) (-631 |#2|))) (-15 -2405 ((-631 |#2|) (-1154 |#4|))) (-15 -2487 ((-1154 |#3|) (-1154 |#4|))) (-15 -2303 ((-1154 |#4|) (-1154 |#3|))) (-15 -2705 ((-1154 |#4|) (-1154 |#4|) (-554))) (-15 -2699 (|#3| (-554)))) (-780) (-836) (-1034) (-934 |#3| |#1| |#2|)) (T -316))
-((-2699 (*1 *2 *3) (-12 (-5 *3 (-554)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *2 (-1034)) (-5 *1 (-316 *4 *5 *2 *6)) (-4 *6 (-934 *2 *4 *5)))) (-2705 (*1 *2 *2 *3) (-12 (-5 *2 (-1154 *7)) (-5 *3 (-554)) (-4 *7 (-934 *6 *4 *5)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1034)) (-5 *1 (-316 *4 *5 *6 *7)))) (-2303 (*1 *2 *3) (-12 (-5 *3 (-1154 *6)) (-4 *6 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-1154 *7)) (-5 *1 (-316 *4 *5 *6 *7)) (-4 *7 (-934 *6 *4 *5)))) (-2487 (*1 *2 *3) (-12 (-5 *3 (-1154 *7)) (-4 *7 (-934 *6 *4 *5)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1034)) (-5 *2 (-1154 *6)) (-5 *1 (-316 *4 *5 *6 *7)))) (-2405 (*1 *2 *3) (-12 (-5 *3 (-1154 *7)) (-4 *7 (-934 *6 *4 *5)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1034)) (-5 *2 (-631 *5)) (-5 *1 (-316 *4 *5 *6 *7)))) (-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1154 *8)) (-5 *4 (-631 *6)) (-4 *6 (-836)) (-4 *8 (-934 *7 *5 *6)) (-4 *5 (-780)) (-4 *7 (-1034)) (-5 *2 (-631 (-758))) (-5 *1 (-316 *5 *6 *7 *8)))) (-3781 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1154 *9)) (-5 *4 (-631 *7)) (-5 *5 (-631 *8)) (-4 *7 (-836)) (-4 *8 (-1034)) (-4 *9 (-934 *8 *6 *7)) (-4 *6 (-780)) (-5 *2 (-1154 *8)) (-5 *1 (-316 *6 *7 *8 *9)))))
-(-10 -7 (-15 -3781 ((-1154 |#3|) (-1154 |#4|) (-631 |#2|) (-631 |#3|))) (-15 -3308 ((-631 (-758)) (-1154 |#4|) (-631 |#2|))) (-15 -2405 ((-631 |#2|) (-1154 |#4|))) (-15 -2487 ((-1154 |#3|) (-1154 |#4|))) (-15 -2303 ((-1154 |#4|) (-1154 |#3|))) (-15 -2705 ((-1154 |#4|) (-1154 |#4|) (-554))) (-15 -2699 (|#3| (-554))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 14)) (-3042 (((-631 (-2 (|:| |gen| |#1|) (|:| -1333 (-554)))) $) 18)) (-2934 (((-3 $ "failed") $ $) NIL)) (-1508 (((-758) $) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL)) (-1668 ((|#1| $) NIL)) (-3195 ((|#1| $ (-554)) NIL)) (-4097 (((-554) $ (-554)) NIL)) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-3563 (($ (-1 |#1| |#1|) $) NIL)) (-2781 (($ (-1 (-554) (-554)) $) 10)) (-1613 (((-1140) $) NIL)) (-4244 (($ $ $) NIL (|has| (-554) (-779)))) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL) (($ |#1|) NIL)) (-1779 (((-554) |#1| $) NIL)) (-2004 (($) 15 T CONST)) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) 21 (|has| |#1| (-836)))) (-1744 (($ $) 11) (($ $ $) 20)) (-1735 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ (-554)) NIL) (($ (-554) |#1|) 19)))
-(((-317 |#1|) (-13 (-21) (-704 (-554)) (-318 |#1| (-554)) (-10 -7 (IF (|has| |#1| (-836)) (-6 (-836)) |%noBranch|))) (-1082)) (T -317))
-NIL
-(-13 (-21) (-704 (-554)) (-318 |#1| (-554)) (-10 -7 (IF (|has| |#1| (-836)) (-6 (-836)) |%noBranch|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-3042 (((-631 (-2 (|:| |gen| |#1|) (|:| -1333 |#2|))) $) 27)) (-2934 (((-3 $ "failed") $ $) 19)) (-1508 (((-758) $) 28)) (-4087 (($) 17 T CONST)) (-2784 (((-3 |#1| "failed") $) 32)) (-1668 ((|#1| $) 33)) (-3195 ((|#1| $ (-554)) 25)) (-4097 ((|#2| $ (-554)) 26)) (-3563 (($ (-1 |#1| |#1|) $) 22)) (-2781 (($ (-1 |#2| |#2|) $) 23)) (-1613 (((-1140) $) 9)) (-4244 (($ $ $) 21 (|has| |#2| (-779)))) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11) (($ |#1|) 31)) (-1779 ((|#2| |#1| $) 24)) (-2004 (($) 18 T CONST)) (-1658 (((-112) $ $) 6)) (-1735 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ |#2| |#1|) 29)))
-(((-318 |#1| |#2|) (-138) (-1082) (-130)) (T -318))
-((-1735 (*1 *1 *2 *1) (-12 (-4 *1 (-318 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-130)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-318 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-130)))) (-1508 (*1 *2 *1) (-12 (-4 *1 (-318 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-130)) (-5 *2 (-758)))) (-3042 (*1 *2 *1) (-12 (-4 *1 (-318 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-130)) (-5 *2 (-631 (-2 (|:| |gen| *3) (|:| -1333 *4)))))) (-4097 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-4 *1 (-318 *4 *2)) (-4 *4 (-1082)) (-4 *2 (-130)))) (-3195 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-4 *1 (-318 *2 *4)) (-4 *4 (-130)) (-4 *2 (-1082)))) (-1779 (*1 *2 *3 *1) (-12 (-4 *1 (-318 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-130)))) (-2781 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-318 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-130)))) (-3563 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-318 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-130)))) (-4244 (*1 *1 *1 *1) (-12 (-4 *1 (-318 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-130)) (-4 *3 (-779)))))
-(-13 (-130) (-1023 |t#1|) (-10 -8 (-15 -1735 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -1508 ((-758) $)) (-15 -3042 ((-631 (-2 (|:| |gen| |t#1|) (|:| -1333 |t#2|))) $)) (-15 -4097 (|t#2| $ (-554))) (-15 -3195 (|t#1| $ (-554))) (-15 -1779 (|t#2| |t#1| $)) (-15 -2781 ($ (-1 |t#2| |t#2|) $)) (-15 -3563 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-779)) (-15 -4244 ($ $ $)) |%noBranch|)))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-604 |#1|) . T) ((-601 (-848)) . T) ((-1023 |#1|) . T) ((-1082) . T))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-3042 (((-631 (-2 (|:| |gen| |#1|) (|:| -1333 (-758)))) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-1508 (((-758) $) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL)) (-1668 ((|#1| $) NIL)) (-3195 ((|#1| $ (-554)) NIL)) (-4097 (((-758) $ (-554)) NIL)) (-3563 (($ (-1 |#1| |#1|) $) NIL)) (-2781 (($ (-1 (-758) (-758)) $) NIL)) (-1613 (((-1140) $) NIL)) (-4244 (($ $ $) NIL (|has| (-758) (-779)))) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL) (($ |#1|) NIL)) (-1779 (((-758) |#1| $) NIL)) (-2004 (($) NIL T CONST)) (-1658 (((-112) $ $) NIL)) (-1735 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-758) |#1|) NIL)))
-(((-319 |#1|) (-318 |#1| (-758)) (-1082)) (T -319))
-NIL
-(-318 |#1| (-758))
-((-2048 (($ $) 53)) (-1344 (($ $ |#2| |#3| $) 14)) (-2789 (($ (-1 |#3| |#3|) $) 33)) (-2492 (((-112) $) 24)) (-2505 ((|#2| $) 26)) (-3919 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 44)) (-3276 ((|#2| $) 49)) (-1893 (((-631 |#2|) $) 36)) (-2907 (($ $ $ (-758)) 20)) (-1752 (($ $ |#2|) 40)))
-(((-320 |#1| |#2| |#3|) (-10 -8 (-15 -2048 (|#1| |#1|)) (-15 -3276 (|#2| |#1|)) (-15 -3919 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2907 (|#1| |#1| |#1| (-758))) (-15 -1344 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2789 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1893 ((-631 |#2|) |#1|)) (-15 -2505 (|#2| |#1|)) (-15 -2492 ((-112) |#1|)) (-15 -3919 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1752 (|#1| |#1| |#2|))) (-321 |#2| |#3|) (-1034) (-779)) (T -320))
-NIL
-(-10 -8 (-15 -2048 (|#1| |#1|)) (-15 -3276 (|#2| |#1|)) (-15 -3919 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2907 (|#1| |#1| |#1| (-758))) (-15 -1344 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2789 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1893 ((-631 |#2|) |#1|)) (-15 -2505 (|#2| |#1|)) (-15 -2492 ((-112) |#1|)) (-15 -3919 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1752 (|#1| |#1| |#2|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 54 (|has| |#1| (-546)))) (-1976 (($ $) 55 (|has| |#1| (-546)))) (-1363 (((-112) $) 57 (|has| |#1| (-546)))) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-2784 (((-3 (-554) "failed") $) 91 (|has| |#1| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) 89 (|has| |#1| (-1023 (-402 (-554))))) (((-3 |#1| "failed") $) 86)) (-1668 (((-554) $) 90 (|has| |#1| (-1023 (-554)))) (((-402 (-554)) $) 88 (|has| |#1| (-1023 (-402 (-554))))) ((|#1| $) 87)) (-2550 (($ $) 63)) (-1320 (((-3 $ "failed") $) 33)) (-2048 (($ $) 75 (|has| |#1| (-446)))) (-1344 (($ $ |#1| |#2| $) 79)) (-3248 (((-112) $) 31)) (-2122 (((-758) $) 82)) (-3580 (((-112) $) 65)) (-2383 (($ |#1| |#2|) 64)) (-3893 ((|#2| $) 81)) (-2789 (($ (-1 |#2| |#2|) $) 80)) (-2879 (($ (-1 |#1| |#1|) $) 66)) (-2518 (($ $) 68)) (-2530 ((|#1| $) 69)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-2492 (((-112) $) 85)) (-2505 ((|#1| $) 84)) (-3919 (((-3 $ "failed") $ $) 53 (|has| |#1| (-546))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-546)))) (-3308 ((|#2| $) 67)) (-3276 ((|#1| $) 76 (|has| |#1| (-446)))) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ $) 52 (|has| |#1| (-546))) (($ |#1|) 50) (($ (-402 (-554))) 60 (-3994 (|has| |#1| (-1023 (-402 (-554)))) (|has| |#1| (-38 (-402 (-554))))))) (-1893 (((-631 |#1|) $) 83)) (-1779 ((|#1| $ |#2|) 62)) (-2084 (((-3 $ "failed") $) 51 (|has| |#1| (-143)))) (-2261 (((-758)) 28)) (-2907 (($ $ $ (-758)) 78 (|has| |#1| (-170)))) (-1909 (((-112) $ $) 56 (|has| |#1| (-546)))) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1752 (($ $ |#1|) 61 (|has| |#1| (-358)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-402 (-554)) $) 59 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) 58 (|has| |#1| (-38 (-402 (-554)))))))
-(((-321 |#1| |#2|) (-138) (-1034) (-779)) (T -321))
-((-2492 (*1 *2 *1) (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-779)) (-5 *2 (-112)))) (-2505 (*1 *2 *1) (-12 (-4 *1 (-321 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1034)))) (-1893 (*1 *2 *1) (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-779)) (-5 *2 (-631 *3)))) (-2122 (*1 *2 *1) (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-779)) (-5 *2 (-758)))) (-3893 (*1 *2 *1) (-12 (-4 *1 (-321 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-779)))) (-2789 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-321 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-779)))) (-1344 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-321 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-779)))) (-2907 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *1 (-321 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-779)) (-4 *3 (-170)))) (-3919 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-321 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-779)) (-4 *2 (-546)))) (-3276 (*1 *2 *1) (-12 (-4 *1 (-321 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1034)) (-4 *2 (-446)))) (-2048 (*1 *1 *1) (-12 (-4 *1 (-321 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-779)) (-4 *2 (-446)))))
-(-13 (-47 |t#1| |t#2|) (-406 |t#1|) (-10 -8 (-15 -2492 ((-112) $)) (-15 -2505 (|t#1| $)) (-15 -1893 ((-631 |t#1|) $)) (-15 -2122 ((-758) $)) (-15 -3893 (|t#2| $)) (-15 -2789 ($ (-1 |t#2| |t#2|) $)) (-15 -1344 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-170)) (-15 -2907 ($ $ $ (-758))) |%noBranch|) (IF (|has| |t#1| (-546)) (-15 -3919 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-446)) (PROGN (-15 -3276 (|t#1| $)) (-15 -2048 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-546)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-402 (-554)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3994 (|has| |#1| (-546)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-604 #0#) -3994 (|has| |#1| (-1023 (-402 (-554)))) (|has| |#1| (-38 (-402 (-554))))) ((-604 (-554)) . T) ((-604 |#1|) . T) ((-604 $) |has| |#1| (-546)) ((-601 (-848)) . T) ((-170) -3994 (|has| |#1| (-546)) (|has| |#1| (-170))) ((-285) |has| |#1| (-546)) ((-406 |#1|) . T) ((-546) |has| |#1| (-546)) ((-634 #0#) |has| |#1| (-38 (-402 (-554)))) ((-634 |#1|) . T) ((-634 $) . T) ((-704 #0#) |has| |#1| (-38 (-402 (-554)))) ((-704 |#1|) |has| |#1| (-170)) ((-704 $) |has| |#1| (-546)) ((-713) . T) ((-1023 (-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) ((-1023 (-554)) |has| |#1| (-1023 (-554))) ((-1023 |#1|) . T) ((-1040 #0#) |has| |#1| (-38 (-402 (-554)))) ((-1040 |#1|) . T) ((-1040 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-170))) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T))
-((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-4233 (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-4015 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-836)))) (-2576 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4374))) (($ $) NIL (-12 (|has| $ (-6 -4374)) (|has| |#1| (-836))))) (-3303 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-836)))) (-3019 (((-112) $ (-758)) NIL)) (-2703 (((-112) (-112)) NIL)) (-1501 ((|#1| $ (-554) |#1|) NIL (|has| $ (-6 -4374))) ((|#1| $ (-1208 (-554)) |#1|) NIL (|has| $ (-6 -4374)))) (-2220 (($ (-1 (-112) |#1|) $) NIL)) (-1871 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-4087 (($) NIL T CONST)) (-3920 (($ $) NIL (|has| $ (-6 -4374)))) (-3799 (($ $) NIL)) (-2593 (($ $) NIL (|has| |#1| (-1082)))) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1884 (($ |#1| $) NIL (|has| |#1| (-1082))) (($ (-1 (-112) |#1|) $) NIL)) (-2574 (($ |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4373)))) (-2862 ((|#1| $ (-554) |#1|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-554)) NIL)) (-1484 (((-554) (-1 (-112) |#1|) $) NIL) (((-554) |#1| $) NIL (|has| |#1| (-1082))) (((-554) |#1| $ (-554)) NIL (|has| |#1| (-1082)))) (-2127 (($ $ (-554)) NIL)) (-2375 (((-758) $) NIL)) (-2466 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3180 (($ (-758) |#1|) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) NIL (|has| (-554) (-836)))) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-3606 (($ $ $) NIL (|has| |#1| (-836))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3717 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-836)))) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2256 (((-554) $) NIL (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2849 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-2045 (($ $ $ (-554)) NIL) (($ |#1| $ (-554)) NIL)) (-1782 (($ |#1| $ (-554)) NIL) (($ $ $ (-554)) NIL)) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) NIL)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-2457 (($ (-631 |#1|)) NIL)) (-1539 ((|#1| $) NIL (|has| (-554) (-836)))) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2441 (($ $ |#1|) NIL (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#1| $ (-554) |#1|) NIL) ((|#1| $ (-554)) NIL) (($ $ (-1208 (-554))) NIL)) (-3029 (($ $ (-1208 (-554))) NIL) (($ $ (-554)) NIL)) (-2021 (($ $ (-554)) NIL) (($ $ (-1208 (-554))) NIL)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-3553 (($ $ $ (-554)) NIL (|has| $ (-6 -4374)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) NIL)) (-1853 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4323 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-631 $)) NIL)) (-3075 (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-322 |#1|) (-13 (-19 |#1|) (-277 |#1|) (-10 -8 (-15 -2457 ($ (-631 |#1|))) (-15 -2375 ((-758) $)) (-15 -2127 ($ $ (-554))) (-15 -2703 ((-112) (-112))))) (-1195)) (T -322))
-((-2457 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1195)) (-5 *1 (-322 *3)))) (-2375 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-322 *3)) (-4 *3 (-1195)))) (-2127 (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-322 *3)) (-4 *3 (-1195)))) (-2703 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-322 *3)) (-4 *3 (-1195)))))
-(-13 (-19 |#1|) (-277 |#1|) (-10 -8 (-15 -2457 ($ (-631 |#1|))) (-15 -2375 ((-758) $)) (-15 -2127 ($ $ (-554))) (-15 -2703 ((-112) (-112)))))
-((-3718 (((-112) $) 42)) (-1924 (((-758)) 22)) (-1612 ((|#2| $) 46) (($ $ (-906)) 101)) (-1508 (((-758)) 102)) (-1651 (($ (-1241 |#2|)) 20)) (-2693 (((-112) $) 115)) (-3274 ((|#2| $) 48) (($ $ (-906)) 99)) (-3361 (((-1154 |#2|) $) NIL) (((-1154 $) $ (-906)) 95)) (-3933 (((-1154 |#2|) $) 82)) (-3025 (((-1154 |#2|) $) 79) (((-3 (-1154 |#2|) "failed") $ $) 76)) (-2300 (($ $ (-1154 |#2|)) 53)) (-2365 (((-820 (-906))) 28) (((-906)) 43)) (-3330 (((-133)) 25)) (-3308 (((-820 (-906)) $) 30) (((-906) $) 117)) (-2288 (($) 108)) (-3656 (((-1241 |#2|) $) NIL) (((-675 |#2|) (-1241 $)) 39)) (-2084 (($ $) NIL) (((-3 $ "failed") $) 85)) (-3536 (((-112) $) 41)))
-(((-323 |#1| |#2|) (-10 -8 (-15 -2084 ((-3 |#1| "failed") |#1|)) (-15 -1508 ((-758))) (-15 -2084 (|#1| |#1|)) (-15 -3025 ((-3 (-1154 |#2|) "failed") |#1| |#1|)) (-15 -3025 ((-1154 |#2|) |#1|)) (-15 -3933 ((-1154 |#2|) |#1|)) (-15 -2300 (|#1| |#1| (-1154 |#2|))) (-15 -2693 ((-112) |#1|)) (-15 -2288 (|#1|)) (-15 -1612 (|#1| |#1| (-906))) (-15 -3274 (|#1| |#1| (-906))) (-15 -3361 ((-1154 |#1|) |#1| (-906))) (-15 -1612 (|#2| |#1|)) (-15 -3274 (|#2| |#1|)) (-15 -3308 ((-906) |#1|)) (-15 -2365 ((-906))) (-15 -3361 ((-1154 |#2|) |#1|)) (-15 -1651 (|#1| (-1241 |#2|))) (-15 -3656 ((-675 |#2|) (-1241 |#1|))) (-15 -3656 ((-1241 |#2|) |#1|)) (-15 -1924 ((-758))) (-15 -2365 ((-820 (-906)))) (-15 -3308 ((-820 (-906)) |#1|)) (-15 -3718 ((-112) |#1|)) (-15 -3536 ((-112) |#1|)) (-15 -3330 ((-133)))) (-324 |#2|) (-358)) (T -323))
-((-3330 (*1 *2) (-12 (-4 *4 (-358)) (-5 *2 (-133)) (-5 *1 (-323 *3 *4)) (-4 *3 (-324 *4)))) (-2365 (*1 *2) (-12 (-4 *4 (-358)) (-5 *2 (-820 (-906))) (-5 *1 (-323 *3 *4)) (-4 *3 (-324 *4)))) (-1924 (*1 *2) (-12 (-4 *4 (-358)) (-5 *2 (-758)) (-5 *1 (-323 *3 *4)) (-4 *3 (-324 *4)))) (-2365 (*1 *2) (-12 (-4 *4 (-358)) (-5 *2 (-906)) (-5 *1 (-323 *3 *4)) (-4 *3 (-324 *4)))) (-1508 (*1 *2) (-12 (-4 *4 (-358)) (-5 *2 (-758)) (-5 *1 (-323 *3 *4)) (-4 *3 (-324 *4)))))
-(-10 -8 (-15 -2084 ((-3 |#1| "failed") |#1|)) (-15 -1508 ((-758))) (-15 -2084 (|#1| |#1|)) (-15 -3025 ((-3 (-1154 |#2|) "failed") |#1| |#1|)) (-15 -3025 ((-1154 |#2|) |#1|)) (-15 -3933 ((-1154 |#2|) |#1|)) (-15 -2300 (|#1| |#1| (-1154 |#2|))) (-15 -2693 ((-112) |#1|)) (-15 -2288 (|#1|)) (-15 -1612 (|#1| |#1| (-906))) (-15 -3274 (|#1| |#1| (-906))) (-15 -3361 ((-1154 |#1|) |#1| (-906))) (-15 -1612 (|#2| |#1|)) (-15 -3274 (|#2| |#1|)) (-15 -3308 ((-906) |#1|)) (-15 -2365 ((-906))) (-15 -3361 ((-1154 |#2|) |#1|)) (-15 -1651 (|#1| (-1241 |#2|))) (-15 -3656 ((-675 |#2|) (-1241 |#1|))) (-15 -3656 ((-1241 |#2|) |#1|)) (-15 -1924 ((-758))) (-15 -2365 ((-820 (-906)))) (-15 -3308 ((-820 (-906)) |#1|)) (-15 -3718 ((-112) |#1|)) (-15 -3536 ((-112) |#1|)) (-15 -3330 ((-133))))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 42)) (-1976 (($ $) 41)) (-1363 (((-112) $) 39)) (-3718 (((-112) $) 95)) (-1924 (((-758)) 91)) (-1612 ((|#1| $) 141) (($ $ (-906)) 138 (|has| |#1| (-363)))) (-3205 (((-1168 (-906) (-758)) (-554)) 123 (|has| |#1| (-363)))) (-2934 (((-3 $ "failed") $ $) 19)) (-3278 (($ $) 74)) (-1565 (((-413 $) $) 73)) (-2286 (((-112) $ $) 60)) (-1508 (((-758)) 113 (|has| |#1| (-363)))) (-4087 (($) 17 T CONST)) (-2784 (((-3 |#1| "failed") $) 102)) (-1668 ((|#1| $) 103)) (-1651 (($ (-1241 |#1|)) 147)) (-2723 (((-3 "prime" "polynomial" "normal" "cyclic")) 129 (|has| |#1| (-363)))) (-3964 (($ $ $) 56)) (-1320 (((-3 $ "failed") $) 33)) (-3353 (($) 110 (|has| |#1| (-363)))) (-3943 (($ $ $) 57)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 52)) (-3157 (($) 125 (|has| |#1| (-363)))) (-2754 (((-112) $) 126 (|has| |#1| (-363)))) (-4122 (($ $ (-758)) 88 (-3994 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) 87 (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3289 (((-112) $) 72)) (-2342 (((-906) $) 128 (|has| |#1| (-363))) (((-820 (-906)) $) 85 (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3248 (((-112) $) 31)) (-3227 (($) 136 (|has| |#1| (-363)))) (-2693 (((-112) $) 135 (|has| |#1| (-363)))) (-3274 ((|#1| $) 142) (($ $ (-906)) 139 (|has| |#1| (-363)))) (-3339 (((-3 $ "failed") $) 114 (|has| |#1| (-363)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 53)) (-3361 (((-1154 |#1|) $) 146) (((-1154 $) $ (-906)) 140 (|has| |#1| (-363)))) (-3830 (((-906) $) 111 (|has| |#1| (-363)))) (-3933 (((-1154 |#1|) $) 132 (|has| |#1| (-363)))) (-3025 (((-1154 |#1|) $) 131 (|has| |#1| (-363))) (((-3 (-1154 |#1|) "failed") $ $) 130 (|has| |#1| (-363)))) (-2300 (($ $ (-1154 |#1|)) 133 (|has| |#1| (-363)))) (-2475 (($ $ $) 47) (($ (-631 $)) 46)) (-1613 (((-1140) $) 9)) (-2483 (($ $) 71)) (-3834 (($) 115 (|has| |#1| (-363)) CONST)) (-2717 (($ (-906)) 112 (|has| |#1| (-363)))) (-2070 (((-112) $) 94)) (-2768 (((-1102) $) 10)) (-4137 (($) 134 (|has| |#1| (-363)))) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 45)) (-2510 (($ $ $) 49) (($ (-631 $)) 48)) (-3725 (((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))) 122 (|has| |#1| (-363)))) (-2270 (((-413 $) $) 75)) (-2365 (((-820 (-906))) 92) (((-906)) 144)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3919 (((-3 $ "failed") $ $) 43)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 51)) (-2072 (((-758) $) 59)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 58)) (-3316 (((-758) $) 127 (|has| |#1| (-363))) (((-3 (-758) "failed") $ $) 86 (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3330 (((-133)) 100)) (-1553 (($ $) 119 (|has| |#1| (-363))) (($ $ (-758)) 117 (|has| |#1| (-363)))) (-3308 (((-820 (-906)) $) 93) (((-906) $) 143)) (-4318 (((-1154 |#1|)) 145)) (-3944 (($) 124 (|has| |#1| (-363)))) (-2288 (($) 137 (|has| |#1| (-363)))) (-3656 (((-1241 |#1|) $) 149) (((-675 |#1|) (-1241 $)) 148)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) 121 (|has| |#1| (-363)))) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ $) 44) (($ (-402 (-554))) 67) (($ |#1|) 101)) (-2084 (($ $) 120 (|has| |#1| (-363))) (((-3 $ "failed") $) 84 (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2261 (((-758)) 28)) (-3782 (((-1241 $)) 151) (((-1241 $) (-906)) 150)) (-1909 (((-112) $ $) 40)) (-3536 (((-112) $) 96)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1811 (($ $) 90 (|has| |#1| (-363))) (($ $ (-758)) 89 (|has| |#1| (-363)))) (-1787 (($ $) 118 (|has| |#1| (-363))) (($ $ (-758)) 116 (|has| |#1| (-363)))) (-1658 (((-112) $ $) 6)) (-1752 (($ $ $) 66) (($ $ |#1|) 99)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ (-554)) 70)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ (-402 (-554))) 69) (($ (-402 (-554)) $) 68) (($ $ |#1|) 98) (($ |#1| $) 97)))
-(((-324 |#1|) (-138) (-358)) (T -324))
-((-3782 (*1 *2) (-12 (-4 *3 (-358)) (-5 *2 (-1241 *1)) (-4 *1 (-324 *3)))) (-3782 (*1 *2 *3) (-12 (-5 *3 (-906)) (-4 *4 (-358)) (-5 *2 (-1241 *1)) (-4 *1 (-324 *4)))) (-3656 (*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-1241 *3)))) (-3656 (*1 *2 *3) (-12 (-5 *3 (-1241 *1)) (-4 *1 (-324 *4)) (-4 *4 (-358)) (-5 *2 (-675 *4)))) (-1651 (*1 *1 *2) (-12 (-5 *2 (-1241 *3)) (-4 *3 (-358)) (-4 *1 (-324 *3)))) (-3361 (*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-1154 *3)))) (-4318 (*1 *2) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-1154 *3)))) (-2365 (*1 *2) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-906)))) (-3308 (*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-906)))) (-3274 (*1 *2 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-358)))) (-1612 (*1 *2 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-358)))) (-3361 (*1 *2 *1 *3) (-12 (-5 *3 (-906)) (-4 *4 (-363)) (-4 *4 (-358)) (-5 *2 (-1154 *1)) (-4 *1 (-324 *4)))) (-3274 (*1 *1 *1 *2) (-12 (-5 *2 (-906)) (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)))) (-1612 (*1 *1 *1 *2) (-12 (-5 *2 (-906)) (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)))) (-2288 (*1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-363)) (-4 *2 (-358)))) (-3227 (*1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-363)) (-4 *2 (-358)))) (-2693 (*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)) (-5 *2 (-112)))) (-4137 (*1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-363)) (-4 *2 (-358)))) (-2300 (*1 *1 *1 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-363)) (-4 *1 (-324 *3)) (-4 *3 (-358)))) (-3933 (*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)) (-5 *2 (-1154 *3)))) (-3025 (*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)) (-5 *2 (-1154 *3)))) (-3025 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)) (-5 *2 (-1154 *3)))))
-(-13 (-1260 |t#1|) (-1023 |t#1|) (-10 -8 (-15 -3782 ((-1241 $))) (-15 -3782 ((-1241 $) (-906))) (-15 -3656 ((-1241 |t#1|) $)) (-15 -3656 ((-675 |t#1|) (-1241 $))) (-15 -1651 ($ (-1241 |t#1|))) (-15 -3361 ((-1154 |t#1|) $)) (-15 -4318 ((-1154 |t#1|))) (-15 -2365 ((-906))) (-15 -3308 ((-906) $)) (-15 -3274 (|t#1| $)) (-15 -1612 (|t#1| $)) (IF (|has| |t#1| (-363)) (PROGN (-6 (-344)) (-15 -3361 ((-1154 $) $ (-906))) (-15 -3274 ($ $ (-906))) (-15 -1612 ($ $ (-906))) (-15 -2288 ($)) (-15 -3227 ($)) (-15 -2693 ((-112) $)) (-15 -4137 ($)) (-15 -2300 ($ $ (-1154 |t#1|))) (-15 -3933 ((-1154 |t#1|) $)) (-15 -3025 ((-1154 |t#1|) $)) (-15 -3025 ((-3 (-1154 |t#1|) "failed") $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-554))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -3994 (|has| |#1| (-363)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-604 #0#) . T) ((-604 (-554)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-601 (-848)) . T) ((-170) . T) ((-229) |has| |#1| (-363)) ((-239) . T) ((-285) . T) ((-302) . T) ((-1260 |#1|) . T) ((-358) . T) ((-397) -3994 (|has| |#1| (-363)) (|has| |#1| (-143))) ((-363) |has| |#1| (-363)) ((-344) |has| |#1| (-363)) ((-446) . T) ((-546) . T) ((-634 #0#) . T) ((-634 |#1|) . T) ((-634 $) . T) ((-704 #0#) . T) ((-704 |#1|) . T) ((-704 $) . T) ((-713) . T) ((-905) . T) ((-1023 |#1|) . T) ((-1040 #0#) . T) ((-1040 |#1|) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1133) |has| |#1| (-363)) ((-1199) . T) ((-1248 |#1|) . T))
-((-3062 (((-112) $ $) NIL)) (-2314 (($ (-1157) $) 88)) (-2679 (($) 77)) (-1945 (((-1102) (-1102)) 11)) (-3584 (($) 78)) (-2251 (($) 90) (($ (-311 (-685))) 98) (($ (-311 (-687))) 94) (($ (-311 (-680))) 102) (($ (-311 (-374))) 109) (($ (-311 (-554))) 105) (($ (-311 (-167 (-374)))) 113)) (-3825 (($ (-1157) $) 89)) (-3017 (($ (-631 (-848))) 79)) (-2921 (((-1246) $) 75)) (-1920 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-1610 (($ (-1102)) 51)) (-3514 (((-1086) $) 25)) (-2114 (($ (-1074 (-937 (-554))) $) 85) (($ (-1074 (-937 (-554))) (-937 (-554)) $) 86)) (-3218 (($ (-1102)) 87)) (-4020 (($ (-1157) $) 115) (($ (-1157) $ $) 116)) (-3770 (($ (-1158) (-631 (-1158))) 76)) (-2712 (($ (-1140)) 82) (($ (-631 (-1140))) 80)) (-3075 (((-848) $) 118)) (-2126 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1158)) (|:| |arrayIndex| (-631 (-937 (-554)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1533 (-848)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1158)) (|:| |rand| (-848)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1157)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3543 (-112)) (|:| -2794 (-2 (|:| |ints2Floats?| (-112)) (|:| -1533 (-848)))))) (|:| |blockBranch| (-631 $)) (|:| |commentBranch| (-631 (-1140))) (|:| |callBranch| (-1140)) (|:| |forBranch| (-2 (|:| -3827 (-1074 (-937 (-554)))) (|:| |span| (-937 (-554))) (|:| -4319 $))) (|:| |labelBranch| (-1102)) (|:| |loopBranch| (-2 (|:| |switch| (-1157)) (|:| -4319 $))) (|:| |commonBranch| (-2 (|:| -4309 (-1158)) (|:| |contents| (-631 (-1158))))) (|:| |printBranch| (-631 (-848)))) $) 44)) (-4051 (($ (-1140)) 187)) (-3648 (($ (-631 $)) 114)) (-2972 (($ (-1158) (-1140)) 120) (($ (-1158) (-311 (-687))) 160) (($ (-1158) (-311 (-685))) 161) (($ (-1158) (-311 (-680))) 162) (($ (-1158) (-675 (-687))) 123) (($ (-1158) (-675 (-685))) 126) (($ (-1158) (-675 (-680))) 129) (($ (-1158) (-1241 (-687))) 132) (($ (-1158) (-1241 (-685))) 135) (($ (-1158) (-1241 (-680))) 138) (($ (-1158) (-675 (-311 (-687)))) 141) (($ (-1158) (-675 (-311 (-685)))) 144) (($ (-1158) (-675 (-311 (-680)))) 147) (($ (-1158) (-1241 (-311 (-687)))) 150) (($ (-1158) (-1241 (-311 (-685)))) 153) (($ (-1158) (-1241 (-311 (-680)))) 156) (($ (-1158) (-631 (-937 (-554))) (-311 (-687))) 157) (($ (-1158) (-631 (-937 (-554))) (-311 (-685))) 158) (($ (-1158) (-631 (-937 (-554))) (-311 (-680))) 159) (($ (-1158) (-311 (-554))) 184) (($ (-1158) (-311 (-374))) 185) (($ (-1158) (-311 (-167 (-374)))) 186) (($ (-1158) (-675 (-311 (-554)))) 165) (($ (-1158) (-675 (-311 (-374)))) 168) (($ (-1158) (-675 (-311 (-167 (-374))))) 171) (($ (-1158) (-1241 (-311 (-554)))) 174) (($ (-1158) (-1241 (-311 (-374)))) 177) (($ (-1158) (-1241 (-311 (-167 (-374))))) 180) (($ (-1158) (-631 (-937 (-554))) (-311 (-554))) 181) (($ (-1158) (-631 (-937 (-554))) (-311 (-374))) 182) (($ (-1158) (-631 (-937 (-554))) (-311 (-167 (-374)))) 183)) (-1658 (((-112) $ $) NIL)))
-(((-325) (-13 (-1082) (-10 -8 (-15 -2114 ($ (-1074 (-937 (-554))) $)) (-15 -2114 ($ (-1074 (-937 (-554))) (-937 (-554)) $)) (-15 -2314 ($ (-1157) $)) (-15 -3825 ($ (-1157) $)) (-15 -1610 ($ (-1102))) (-15 -3218 ($ (-1102))) (-15 -2712 ($ (-1140))) (-15 -2712 ($ (-631 (-1140)))) (-15 -4051 ($ (-1140))) (-15 -2251 ($)) (-15 -2251 ($ (-311 (-685)))) (-15 -2251 ($ (-311 (-687)))) (-15 -2251 ($ (-311 (-680)))) (-15 -2251 ($ (-311 (-374)))) (-15 -2251 ($ (-311 (-554)))) (-15 -2251 ($ (-311 (-167 (-374))))) (-15 -4020 ($ (-1157) $)) (-15 -4020 ($ (-1157) $ $)) (-15 -2972 ($ (-1158) (-1140))) (-15 -2972 ($ (-1158) (-311 (-687)))) (-15 -2972 ($ (-1158) (-311 (-685)))) (-15 -2972 ($ (-1158) (-311 (-680)))) (-15 -2972 ($ (-1158) (-675 (-687)))) (-15 -2972 ($ (-1158) (-675 (-685)))) (-15 -2972 ($ (-1158) (-675 (-680)))) (-15 -2972 ($ (-1158) (-1241 (-687)))) (-15 -2972 ($ (-1158) (-1241 (-685)))) (-15 -2972 ($ (-1158) (-1241 (-680)))) (-15 -2972 ($ (-1158) (-675 (-311 (-687))))) (-15 -2972 ($ (-1158) (-675 (-311 (-685))))) (-15 -2972 ($ (-1158) (-675 (-311 (-680))))) (-15 -2972 ($ (-1158) (-1241 (-311 (-687))))) (-15 -2972 ($ (-1158) (-1241 (-311 (-685))))) (-15 -2972 ($ (-1158) (-1241 (-311 (-680))))) (-15 -2972 ($ (-1158) (-631 (-937 (-554))) (-311 (-687)))) (-15 -2972 ($ (-1158) (-631 (-937 (-554))) (-311 (-685)))) (-15 -2972 ($ (-1158) (-631 (-937 (-554))) (-311 (-680)))) (-15 -2972 ($ (-1158) (-311 (-554)))) (-15 -2972 ($ (-1158) (-311 (-374)))) (-15 -2972 ($ (-1158) (-311 (-167 (-374))))) (-15 -2972 ($ (-1158) (-675 (-311 (-554))))) (-15 -2972 ($ (-1158) (-675 (-311 (-374))))) (-15 -2972 ($ (-1158) (-675 (-311 (-167 (-374)))))) (-15 -2972 ($ (-1158) (-1241 (-311 (-554))))) (-15 -2972 ($ (-1158) (-1241 (-311 (-374))))) (-15 -2972 ($ (-1158) (-1241 (-311 (-167 (-374)))))) (-15 -2972 ($ (-1158) (-631 (-937 (-554))) (-311 (-554)))) (-15 -2972 ($ (-1158) (-631 (-937 (-554))) (-311 (-374)))) (-15 -2972 ($ (-1158) (-631 (-937 (-554))) (-311 (-167 (-374))))) (-15 -3648 ($ (-631 $))) (-15 -2679 ($)) (-15 -3584 ($)) (-15 -3017 ($ (-631 (-848)))) (-15 -3770 ($ (-1158) (-631 (-1158)))) (-15 -1920 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2126 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1158)) (|:| |arrayIndex| (-631 (-937 (-554)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1533 (-848)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1158)) (|:| |rand| (-848)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1157)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3543 (-112)) (|:| -2794 (-2 (|:| |ints2Floats?| (-112)) (|:| -1533 (-848)))))) (|:| |blockBranch| (-631 $)) (|:| |commentBranch| (-631 (-1140))) (|:| |callBranch| (-1140)) (|:| |forBranch| (-2 (|:| -3827 (-1074 (-937 (-554)))) (|:| |span| (-937 (-554))) (|:| -4319 $))) (|:| |labelBranch| (-1102)) (|:| |loopBranch| (-2 (|:| |switch| (-1157)) (|:| -4319 $))) (|:| |commonBranch| (-2 (|:| -4309 (-1158)) (|:| |contents| (-631 (-1158))))) (|:| |printBranch| (-631 (-848)))) $)) (-15 -2921 ((-1246) $)) (-15 -3514 ((-1086) $)) (-15 -1945 ((-1102) (-1102)))))) (T -325))
-((-2114 (*1 *1 *2 *1) (-12 (-5 *2 (-1074 (-937 (-554)))) (-5 *1 (-325)))) (-2114 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1074 (-937 (-554)))) (-5 *3 (-937 (-554))) (-5 *1 (-325)))) (-2314 (*1 *1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-325)))) (-3825 (*1 *1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-325)))) (-1610 (*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-325)))) (-3218 (*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-325)))) (-2712 (*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-325)))) (-2712 (*1 *1 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-325)))) (-4051 (*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-325)))) (-2251 (*1 *1) (-5 *1 (-325))) (-2251 (*1 *1 *2) (-12 (-5 *2 (-311 (-685))) (-5 *1 (-325)))) (-2251 (*1 *1 *2) (-12 (-5 *2 (-311 (-687))) (-5 *1 (-325)))) (-2251 (*1 *1 *2) (-12 (-5 *2 (-311 (-680))) (-5 *1 (-325)))) (-2251 (*1 *1 *2) (-12 (-5 *2 (-311 (-374))) (-5 *1 (-325)))) (-2251 (*1 *1 *2) (-12 (-5 *2 (-311 (-554))) (-5 *1 (-325)))) (-2251 (*1 *1 *2) (-12 (-5 *2 (-311 (-167 (-374)))) (-5 *1 (-325)))) (-4020 (*1 *1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-325)))) (-4020 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-1140)) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-311 (-687))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-311 (-685))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-311 (-680))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-675 (-687))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-675 (-685))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-675 (-680))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-1241 (-687))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-1241 (-685))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-1241 (-680))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-675 (-311 (-687)))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-675 (-311 (-685)))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-675 (-311 (-680)))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-1241 (-311 (-687)))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-1241 (-311 (-685)))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-1241 (-311 (-680)))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1158)) (-5 *3 (-631 (-937 (-554)))) (-5 *4 (-311 (-687))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1158)) (-5 *3 (-631 (-937 (-554)))) (-5 *4 (-311 (-685))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1158)) (-5 *3 (-631 (-937 (-554)))) (-5 *4 (-311 (-680))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-311 (-554))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-311 (-374))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-311 (-167 (-374)))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-675 (-311 (-554)))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-675 (-311 (-374)))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-675 (-311 (-167 (-374))))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-1241 (-311 (-554)))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-1241 (-311 (-374)))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-1241 (-311 (-167 (-374))))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1158)) (-5 *3 (-631 (-937 (-554)))) (-5 *4 (-311 (-554))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1158)) (-5 *3 (-631 (-937 (-554)))) (-5 *4 (-311 (-374))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1158)) (-5 *3 (-631 (-937 (-554)))) (-5 *4 (-311 (-167 (-374)))) (-5 *1 (-325)))) (-3648 (*1 *1 *2) (-12 (-5 *2 (-631 (-325))) (-5 *1 (-325)))) (-2679 (*1 *1) (-5 *1 (-325))) (-3584 (*1 *1) (-5 *1 (-325))) (-3017 (*1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-325)))) (-3770 (*1 *1 *2 *3) (-12 (-5 *3 (-631 (-1158))) (-5 *2 (-1158)) (-5 *1 (-325)))) (-1920 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-325)))) (-2126 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1158)) (|:| |arrayIndex| (-631 (-937 (-554)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1533 (-848)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1158)) (|:| |rand| (-848)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1157)) (|:| |thenClause| (-325)) (|:| |elseClause| (-325)))) (|:| |returnBranch| (-2 (|:| -3543 (-112)) (|:| -2794 (-2 (|:| |ints2Floats?| (-112)) (|:| -1533 (-848)))))) (|:| |blockBranch| (-631 (-325))) (|:| |commentBranch| (-631 (-1140))) (|:| |callBranch| (-1140)) (|:| |forBranch| (-2 (|:| -3827 (-1074 (-937 (-554)))) (|:| |span| (-937 (-554))) (|:| -4319 (-325)))) (|:| |labelBranch| (-1102)) (|:| |loopBranch| (-2 (|:| |switch| (-1157)) (|:| -4319 (-325)))) (|:| |commonBranch| (-2 (|:| -4309 (-1158)) (|:| |contents| (-631 (-1158))))) (|:| |printBranch| (-631 (-848))))) (-5 *1 (-325)))) (-2921 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-325)))) (-3514 (*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-325)))) (-1945 (*1 *2 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-325)))))
-(-13 (-1082) (-10 -8 (-15 -2114 ($ (-1074 (-937 (-554))) $)) (-15 -2114 ($ (-1074 (-937 (-554))) (-937 (-554)) $)) (-15 -2314 ($ (-1157) $)) (-15 -3825 ($ (-1157) $)) (-15 -1610 ($ (-1102))) (-15 -3218 ($ (-1102))) (-15 -2712 ($ (-1140))) (-15 -2712 ($ (-631 (-1140)))) (-15 -4051 ($ (-1140))) (-15 -2251 ($)) (-15 -2251 ($ (-311 (-685)))) (-15 -2251 ($ (-311 (-687)))) (-15 -2251 ($ (-311 (-680)))) (-15 -2251 ($ (-311 (-374)))) (-15 -2251 ($ (-311 (-554)))) (-15 -2251 ($ (-311 (-167 (-374))))) (-15 -4020 ($ (-1157) $)) (-15 -4020 ($ (-1157) $ $)) (-15 -2972 ($ (-1158) (-1140))) (-15 -2972 ($ (-1158) (-311 (-687)))) (-15 -2972 ($ (-1158) (-311 (-685)))) (-15 -2972 ($ (-1158) (-311 (-680)))) (-15 -2972 ($ (-1158) (-675 (-687)))) (-15 -2972 ($ (-1158) (-675 (-685)))) (-15 -2972 ($ (-1158) (-675 (-680)))) (-15 -2972 ($ (-1158) (-1241 (-687)))) (-15 -2972 ($ (-1158) (-1241 (-685)))) (-15 -2972 ($ (-1158) (-1241 (-680)))) (-15 -2972 ($ (-1158) (-675 (-311 (-687))))) (-15 -2972 ($ (-1158) (-675 (-311 (-685))))) (-15 -2972 ($ (-1158) (-675 (-311 (-680))))) (-15 -2972 ($ (-1158) (-1241 (-311 (-687))))) (-15 -2972 ($ (-1158) (-1241 (-311 (-685))))) (-15 -2972 ($ (-1158) (-1241 (-311 (-680))))) (-15 -2972 ($ (-1158) (-631 (-937 (-554))) (-311 (-687)))) (-15 -2972 ($ (-1158) (-631 (-937 (-554))) (-311 (-685)))) (-15 -2972 ($ (-1158) (-631 (-937 (-554))) (-311 (-680)))) (-15 -2972 ($ (-1158) (-311 (-554)))) (-15 -2972 ($ (-1158) (-311 (-374)))) (-15 -2972 ($ (-1158) (-311 (-167 (-374))))) (-15 -2972 ($ (-1158) (-675 (-311 (-554))))) (-15 -2972 ($ (-1158) (-675 (-311 (-374))))) (-15 -2972 ($ (-1158) (-675 (-311 (-167 (-374)))))) (-15 -2972 ($ (-1158) (-1241 (-311 (-554))))) (-15 -2972 ($ (-1158) (-1241 (-311 (-374))))) (-15 -2972 ($ (-1158) (-1241 (-311 (-167 (-374)))))) (-15 -2972 ($ (-1158) (-631 (-937 (-554))) (-311 (-554)))) (-15 -2972 ($ (-1158) (-631 (-937 (-554))) (-311 (-374)))) (-15 -2972 ($ (-1158) (-631 (-937 (-554))) (-311 (-167 (-374))))) (-15 -3648 ($ (-631 $))) (-15 -2679 ($)) (-15 -3584 ($)) (-15 -3017 ($ (-631 (-848)))) (-15 -3770 ($ (-1158) (-631 (-1158)))) (-15 -1920 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2126 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1158)) (|:| |arrayIndex| (-631 (-937 (-554)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1533 (-848)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1158)) (|:| |rand| (-848)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1157)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3543 (-112)) (|:| -2794 (-2 (|:| |ints2Floats?| (-112)) (|:| -1533 (-848)))))) (|:| |blockBranch| (-631 $)) (|:| |commentBranch| (-631 (-1140))) (|:| |callBranch| (-1140)) (|:| |forBranch| (-2 (|:| -3827 (-1074 (-937 (-554)))) (|:| |span| (-937 (-554))) (|:| -4319 $))) (|:| |labelBranch| (-1102)) (|:| |loopBranch| (-2 (|:| |switch| (-1157)) (|:| -4319 $))) (|:| |commonBranch| (-2 (|:| -4309 (-1158)) (|:| |contents| (-631 (-1158))))) (|:| |printBranch| (-631 (-848)))) $)) (-15 -2921 ((-1246) $)) (-15 -3514 ((-1086) $)) (-15 -1945 ((-1102) (-1102)))))
-((-3062 (((-112) $ $) NIL)) (-1302 (((-112) $) 11)) (-4177 (($ |#1|) 8)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-4188 (($ |#1|) 9)) (-3075 (((-848) $) 17)) (-2592 ((|#1| $) 12)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 19)))
-(((-326 |#1|) (-13 (-836) (-10 -8 (-15 -4177 ($ |#1|)) (-15 -4188 ($ |#1|)) (-15 -1302 ((-112) $)) (-15 -2592 (|#1| $)))) (-836)) (T -326))
-((-4177 (*1 *1 *2) (-12 (-5 *1 (-326 *2)) (-4 *2 (-836)))) (-4188 (*1 *1 *2) (-12 (-5 *1 (-326 *2)) (-4 *2 (-836)))) (-1302 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-836)))) (-2592 (*1 *2 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-836)))))
-(-13 (-836) (-10 -8 (-15 -4177 ($ |#1|)) (-15 -4188 ($ |#1|)) (-15 -1302 ((-112) $)) (-15 -2592 (|#1| $))))
-((-1933 (((-325) (-1158) (-937 (-554))) 23)) (-2635 (((-325) (-1158) (-937 (-554))) 27)) (-3918 (((-325) (-1158) (-1074 (-937 (-554))) (-1074 (-937 (-554)))) 26) (((-325) (-1158) (-937 (-554)) (-937 (-554))) 24)) (-1636 (((-325) (-1158) (-937 (-554))) 31)))
-(((-327) (-10 -7 (-15 -1933 ((-325) (-1158) (-937 (-554)))) (-15 -3918 ((-325) (-1158) (-937 (-554)) (-937 (-554)))) (-15 -3918 ((-325) (-1158) (-1074 (-937 (-554))) (-1074 (-937 (-554))))) (-15 -2635 ((-325) (-1158) (-937 (-554)))) (-15 -1636 ((-325) (-1158) (-937 (-554)))))) (T -327))
-((-1636 (*1 *2 *3 *4) (-12 (-5 *3 (-1158)) (-5 *4 (-937 (-554))) (-5 *2 (-325)) (-5 *1 (-327)))) (-2635 (*1 *2 *3 *4) (-12 (-5 *3 (-1158)) (-5 *4 (-937 (-554))) (-5 *2 (-325)) (-5 *1 (-327)))) (-3918 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1158)) (-5 *4 (-1074 (-937 (-554)))) (-5 *2 (-325)) (-5 *1 (-327)))) (-3918 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1158)) (-5 *4 (-937 (-554))) (-5 *2 (-325)) (-5 *1 (-327)))) (-1933 (*1 *2 *3 *4) (-12 (-5 *3 (-1158)) (-5 *4 (-937 (-554))) (-5 *2 (-325)) (-5 *1 (-327)))))
-(-10 -7 (-15 -1933 ((-325) (-1158) (-937 (-554)))) (-15 -3918 ((-325) (-1158) (-937 (-554)) (-937 (-554)))) (-15 -3918 ((-325) (-1158) (-1074 (-937 (-554))) (-1074 (-937 (-554))))) (-15 -2635 ((-325) (-1158) (-937 (-554)))) (-15 -1636 ((-325) (-1158) (-937 (-554)))))
-((-2879 (((-331 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-331 |#1| |#2| |#3| |#4|)) 33)))
-(((-328 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2879 ((-331 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-331 |#1| |#2| |#3| |#4|)))) (-358) (-1217 |#1|) (-1217 (-402 |#2|)) (-337 |#1| |#2| |#3|) (-358) (-1217 |#5|) (-1217 (-402 |#6|)) (-337 |#5| |#6| |#7|)) (T -328))
-((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-331 *5 *6 *7 *8)) (-4 *5 (-358)) (-4 *6 (-1217 *5)) (-4 *7 (-1217 (-402 *6))) (-4 *8 (-337 *5 *6 *7)) (-4 *9 (-358)) (-4 *10 (-1217 *9)) (-4 *11 (-1217 (-402 *10))) (-5 *2 (-331 *9 *10 *11 *12)) (-5 *1 (-328 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-337 *9 *10 *11)))))
-(-10 -7 (-15 -2879 ((-331 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-331 |#1| |#2| |#3| |#4|))))
-((-3868 (((-112) $) 14)))
-(((-329 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3868 ((-112) |#1|))) (-330 |#2| |#3| |#4| |#5|) (-358) (-1217 |#2|) (-1217 (-402 |#3|)) (-337 |#2| |#3| |#4|)) (T -329))
-NIL
-(-10 -8 (-15 -3868 ((-112) |#1|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-3676 (($ $) 26)) (-3868 (((-112) $) 25)) (-1613 (((-1140) $) 9)) (-3822 (((-408 |#2| (-402 |#2|) |#3| |#4|) $) 32)) (-2768 (((-1102) $) 10)) (-4137 (((-3 |#4| "failed") $) 24)) (-1861 (($ (-408 |#2| (-402 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-554)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-3678 (((-2 (|:| -3142 (-408 |#2| (-402 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-3075 (((-848) $) 11)) (-2004 (($) 18 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20)))
-(((-330 |#1| |#2| |#3| |#4|) (-138) (-358) (-1217 |t#1|) (-1217 (-402 |t#2|)) (-337 |t#1| |t#2| |t#3|)) (T -330))
-((-3822 (*1 *2 *1) (-12 (-4 *1 (-330 *3 *4 *5 *6)) (-4 *3 (-358)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-4 *6 (-337 *3 *4 *5)) (-5 *2 (-408 *4 (-402 *4) *5 *6)))) (-1861 (*1 *1 *2) (-12 (-5 *2 (-408 *4 (-402 *4) *5 *6)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-4 *6 (-337 *3 *4 *5)) (-4 *3 (-358)) (-4 *1 (-330 *3 *4 *5 *6)))) (-1861 (*1 *1 *2) (-12 (-4 *3 (-358)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-4 *1 (-330 *3 *4 *5 *2)) (-4 *2 (-337 *3 *4 *5)))) (-1861 (*1 *1 *2 *2) (-12 (-4 *2 (-358)) (-4 *3 (-1217 *2)) (-4 *4 (-1217 (-402 *3))) (-4 *1 (-330 *2 *3 *4 *5)) (-4 *5 (-337 *2 *3 *4)))) (-1861 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-554)) (-4 *2 (-358)) (-4 *4 (-1217 *2)) (-4 *5 (-1217 (-402 *4))) (-4 *1 (-330 *2 *4 *5 *6)) (-4 *6 (-337 *2 *4 *5)))) (-3678 (*1 *2 *1) (-12 (-4 *1 (-330 *3 *4 *5 *6)) (-4 *3 (-358)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-4 *6 (-337 *3 *4 *5)) (-5 *2 (-2 (|:| -3142 (-408 *4 (-402 *4) *5 *6)) (|:| |principalPart| *6))))) (-3676 (*1 *1 *1) (-12 (-4 *1 (-330 *2 *3 *4 *5)) (-4 *2 (-358)) (-4 *3 (-1217 *2)) (-4 *4 (-1217 (-402 *3))) (-4 *5 (-337 *2 *3 *4)))) (-3868 (*1 *2 *1) (-12 (-4 *1 (-330 *3 *4 *5 *6)) (-4 *3 (-358)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-4 *6 (-337 *3 *4 *5)) (-5 *2 (-112)))) (-4137 (*1 *2 *1) (|partial| -12 (-4 *1 (-330 *3 *4 *5 *2)) (-4 *3 (-358)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-4 *2 (-337 *3 *4 *5)))) (-1861 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-358)) (-4 *3 (-1217 *4)) (-4 *5 (-1217 (-402 *3))) (-4 *1 (-330 *4 *3 *5 *2)) (-4 *2 (-337 *4 *3 *5)))))
-(-13 (-21) (-10 -8 (-15 -3822 ((-408 |t#2| (-402 |t#2|) |t#3| |t#4|) $)) (-15 -1861 ($ (-408 |t#2| (-402 |t#2|) |t#3| |t#4|))) (-15 -1861 ($ |t#4|)) (-15 -1861 ($ |t#1| |t#1|)) (-15 -1861 ($ |t#1| |t#1| (-554))) (-15 -3678 ((-2 (|:| -3142 (-408 |t#2| (-402 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3676 ($ $)) (-15 -3868 ((-112) $)) (-15 -4137 ((-3 |t#4| "failed") $)) (-15 -1861 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-601 (-848)) . T) ((-1082) . T))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-3676 (($ $) 33)) (-3868 (((-112) $) NIL)) (-1613 (((-1140) $) NIL)) (-3484 (((-1241 |#4|) $) 125)) (-3822 (((-408 |#2| (-402 |#2|) |#3| |#4|) $) 31)) (-2768 (((-1102) $) NIL)) (-4137 (((-3 |#4| "failed") $) 36)) (-3097 (((-1241 |#4|) $) 118)) (-1861 (($ (-408 |#2| (-402 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-554)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3678 (((-2 (|:| -3142 (-408 |#2| (-402 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-3075 (((-848) $) 17)) (-2004 (($) 14 T CONST)) (-1658 (((-112) $ $) 20)) (-1744 (($ $) 27) (($ $ $) NIL)) (-1735 (($ $ $) 25)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 23)))
-(((-331 |#1| |#2| |#3| |#4|) (-13 (-330 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3097 ((-1241 |#4|) $)) (-15 -3484 ((-1241 |#4|) $)))) (-358) (-1217 |#1|) (-1217 (-402 |#2|)) (-337 |#1| |#2| |#3|)) (T -331))
-((-3097 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-1241 *6)) (-5 *1 (-331 *3 *4 *5 *6)) (-4 *6 (-337 *3 *4 *5)))) (-3484 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-1241 *6)) (-5 *1 (-331 *3 *4 *5 *6)) (-4 *6 (-337 *3 *4 *5)))))
-(-13 (-330 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3097 ((-1241 |#4|) $)) (-15 -3484 ((-1241 |#4|) $))))
-((-2386 (($ $ (-1158) |#2|) NIL) (($ $ (-631 (-1158)) (-631 |#2|)) 20) (($ $ (-631 (-289 |#2|))) 15) (($ $ (-289 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-631 |#2|) (-631 |#2|)) NIL)) (-2064 (($ $ |#2|) 11)))
-(((-332 |#1| |#2|) (-10 -8 (-15 -2064 (|#1| |#1| |#2|)) (-15 -2386 (|#1| |#1| (-631 |#2|) (-631 |#2|))) (-15 -2386 (|#1| |#1| |#2| |#2|)) (-15 -2386 (|#1| |#1| (-289 |#2|))) (-15 -2386 (|#1| |#1| (-631 (-289 |#2|)))) (-15 -2386 (|#1| |#1| (-631 (-1158)) (-631 |#2|))) (-15 -2386 (|#1| |#1| (-1158) |#2|))) (-333 |#2|) (-1082)) (T -332))
-NIL
-(-10 -8 (-15 -2064 (|#1| |#1| |#2|)) (-15 -2386 (|#1| |#1| (-631 |#2|) (-631 |#2|))) (-15 -2386 (|#1| |#1| |#2| |#2|)) (-15 -2386 (|#1| |#1| (-289 |#2|))) (-15 -2386 (|#1| |#1| (-631 (-289 |#2|)))) (-15 -2386 (|#1| |#1| (-631 (-1158)) (-631 |#2|))) (-15 -2386 (|#1| |#1| (-1158) |#2|)))
-((-2879 (($ (-1 |#1| |#1|) $) 6)) (-2386 (($ $ (-1158) |#1|) 17 (|has| |#1| (-508 (-1158) |#1|))) (($ $ (-631 (-1158)) (-631 |#1|)) 16 (|has| |#1| (-508 (-1158) |#1|))) (($ $ (-631 (-289 |#1|))) 15 (|has| |#1| (-304 |#1|))) (($ $ (-289 |#1|)) 14 (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-304 |#1|))) (($ $ (-631 |#1|) (-631 |#1|)) 12 (|has| |#1| (-304 |#1|)))) (-2064 (($ $ |#1|) 11 (|has| |#1| (-281 |#1| |#1|)))))
-(((-333 |#1|) (-138) (-1082)) (T -333))
-((-2879 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3)) (-4 *3 (-1082)))))
-(-13 (-10 -8 (-15 -2879 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-281 |t#1| |t#1|)) (-6 (-281 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-304 |t#1|)) (-6 (-304 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-508 (-1158) |t#1|)) (-6 (-508 (-1158) |t#1|)) |%noBranch|)))
-(((-281 |#1| $) |has| |#1| (-281 |#1| |#1|)) ((-304 |#1|) |has| |#1| (-304 |#1|)) ((-508 (-1158) |#1|) |has| |#1| (-508 (-1158) |#1|)) ((-508 |#1| |#1|) |has| |#1| (-304 |#1|)))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2405 (((-631 (-1158)) $) NIL)) (-2671 (((-112)) 91) (((-112) (-112)) 92)) (-2143 (((-631 (-600 $)) $) NIL)) (-3023 (($ $) NIL)) (-4200 (($ $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-3380 (($ $ (-289 $)) NIL) (($ $ (-631 (-289 $))) NIL) (($ $ (-631 (-600 $)) (-631 $)) NIL)) (-2282 (($ $) NIL)) (-3003 (($ $) NIL)) (-4177 (($ $) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-600 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-311 |#3|)) 71) (((-3 $ "failed") (-1158)) 97) (((-3 $ "failed") (-311 (-554))) 59 (|has| |#3| (-1023 (-554)))) (((-3 $ "failed") (-402 (-937 (-554)))) 65 (|has| |#3| (-1023 (-554)))) (((-3 $ "failed") (-937 (-554))) 60 (|has| |#3| (-1023 (-554)))) (((-3 $ "failed") (-311 (-374))) 89 (|has| |#3| (-1023 (-374)))) (((-3 $ "failed") (-402 (-937 (-374)))) 83 (|has| |#3| (-1023 (-374)))) (((-3 $ "failed") (-937 (-374))) 78 (|has| |#3| (-1023 (-374))))) (-1668 (((-600 $) $) NIL) ((|#3| $) NIL) (($ (-311 |#3|)) 72) (($ (-1158)) 98) (($ (-311 (-554))) 61 (|has| |#3| (-1023 (-554)))) (($ (-402 (-937 (-554)))) 66 (|has| |#3| (-1023 (-554)))) (($ (-937 (-554))) 62 (|has| |#3| (-1023 (-554)))) (($ (-311 (-374))) 90 (|has| |#3| (-1023 (-374)))) (($ (-402 (-937 (-374)))) 84 (|has| |#3| (-1023 (-374)))) (($ (-937 (-374))) 80 (|has| |#3| (-1023 (-374))))) (-1320 (((-3 $ "failed") $) NIL)) (-2844 (($) 10)) (-1342 (($ $) NIL) (($ (-631 $)) NIL)) (-3489 (((-631 (-114)) $) NIL)) (-3086 (((-114) (-114)) NIL)) (-3248 (((-112) $) NIL)) (-3273 (((-112) $) NIL (|has| $ (-1023 (-554))))) (-1823 (((-1154 $) (-600 $)) NIL (|has| $ (-1034)))) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-2879 (($ (-1 $ $) (-600 $)) NIL)) (-3310 (((-3 (-600 $) "failed") $) NIL)) (-4062 (($ $) 94)) (-2395 (($ $) NIL)) (-1613 (((-1140) $) NIL)) (-2227 (((-631 (-600 $)) $) NIL)) (-1408 (($ (-114) $) 93) (($ (-114) (-631 $)) NIL)) (-2640 (((-112) $ (-114)) NIL) (((-112) $ (-1158)) NIL)) (-3323 (((-758) $) NIL)) (-2768 (((-1102) $) NIL)) (-2041 (((-112) $ $) NIL) (((-112) $ (-1158)) NIL)) (-1333 (($ $) NIL)) (-1795 (((-112) $) NIL (|has| $ (-1023 (-554))))) (-2386 (($ $ (-600 $) $) NIL) (($ $ (-631 (-600 $)) (-631 $)) NIL) (($ $ (-631 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ (-631 (-1158)) (-631 (-1 $ $))) NIL) (($ $ (-631 (-1158)) (-631 (-1 $ (-631 $)))) NIL) (($ $ (-1158) (-1 $ (-631 $))) NIL) (($ $ (-1158) (-1 $ $)) NIL) (($ $ (-631 (-114)) (-631 (-1 $ $))) NIL) (($ $ (-631 (-114)) (-631 (-1 $ (-631 $)))) NIL) (($ $ (-114) (-1 $ (-631 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-2064 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-631 $)) NIL)) (-3862 (($ $) NIL) (($ $ $) NIL)) (-1553 (($ $ (-631 (-1158)) (-631 (-758))) NIL) (($ $ (-1158) (-758)) NIL) (($ $ (-631 (-1158))) NIL) (($ $ (-1158)) NIL)) (-4318 (($ $) NIL (|has| $ (-1034)))) (-3014 (($ $) NIL)) (-4188 (($ $) NIL)) (-3075 (((-848) $) NIL) (($ (-600 $)) NIL) (($ |#3|) NIL) (($ (-554)) NIL) (((-311 |#3|) $) 96)) (-2261 (((-758)) NIL)) (-4125 (($ $) NIL) (($ (-631 $)) NIL)) (-1902 (((-112) (-114)) NIL)) (-2959 (($ $) NIL)) (-2938 (($ $) NIL)) (-2948 (($ $) NIL)) (-1700 (($ $) NIL)) (-2004 (($) 95 T CONST)) (-2014 (($) 24 T CONST)) (-1787 (($ $ (-631 (-1158)) (-631 (-758))) NIL) (($ $ (-1158) (-758)) NIL) (($ $ (-631 (-1158))) NIL) (($ $ (-1158)) NIL)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) NIL)) (-1744 (($ $ $) NIL) (($ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-758)) NIL) (($ $ (-906)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-554) $) NIL) (($ (-758) $) NIL) (($ (-906) $) NIL)))
-(((-334 |#1| |#2| |#3|) (-13 (-297) (-38 |#3|) (-1023 |#3|) (-885 (-1158)) (-10 -8 (-15 -1668 ($ (-311 |#3|))) (-15 -2784 ((-3 $ "failed") (-311 |#3|))) (-15 -1668 ($ (-1158))) (-15 -2784 ((-3 $ "failed") (-1158))) (-15 -3075 ((-311 |#3|) $)) (IF (|has| |#3| (-1023 (-554))) (PROGN (-15 -1668 ($ (-311 (-554)))) (-15 -2784 ((-3 $ "failed") (-311 (-554)))) (-15 -1668 ($ (-402 (-937 (-554))))) (-15 -2784 ((-3 $ "failed") (-402 (-937 (-554))))) (-15 -1668 ($ (-937 (-554)))) (-15 -2784 ((-3 $ "failed") (-937 (-554))))) |%noBranch|) (IF (|has| |#3| (-1023 (-374))) (PROGN (-15 -1668 ($ (-311 (-374)))) (-15 -2784 ((-3 $ "failed") (-311 (-374)))) (-15 -1668 ($ (-402 (-937 (-374))))) (-15 -2784 ((-3 $ "failed") (-402 (-937 (-374))))) (-15 -1668 ($ (-937 (-374)))) (-15 -2784 ((-3 $ "failed") (-937 (-374))))) |%noBranch|) (-15 -1700 ($ $)) (-15 -2282 ($ $)) (-15 -1333 ($ $)) (-15 -2395 ($ $)) (-15 -4062 ($ $)) (-15 -4177 ($ $)) (-15 -4188 ($ $)) (-15 -4200 ($ $)) (-15 -2938 ($ $)) (-15 -2948 ($ $)) (-15 -2959 ($ $)) (-15 -3003 ($ $)) (-15 -3014 ($ $)) (-15 -3023 ($ $)) (-15 -2844 ($)) (-15 -2405 ((-631 (-1158)) $)) (-15 -2671 ((-112))) (-15 -2671 ((-112) (-112))))) (-631 (-1158)) (-631 (-1158)) (-382)) (T -334))
-((-1668 (*1 *1 *2) (-12 (-5 *2 (-311 *5)) (-4 *5 (-382)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-631 (-1158))) (-14 *4 (-631 (-1158))))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-311 *5)) (-4 *5 (-382)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-631 (-1158))) (-14 *4 (-631 (-1158))))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-631 *2)) (-14 *4 (-631 *2)) (-4 *5 (-382)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-1158)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-631 *2)) (-14 *4 (-631 *2)) (-4 *5 (-382)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-311 *5)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-631 (-1158))) (-14 *4 (-631 (-1158))) (-4 *5 (-382)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-311 (-554))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1023 (-554))) (-14 *3 (-631 (-1158))) (-14 *4 (-631 (-1158))) (-4 *5 (-382)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-311 (-554))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1023 (-554))) (-14 *3 (-631 (-1158))) (-14 *4 (-631 (-1158))) (-4 *5 (-382)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-402 (-937 (-554)))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1023 (-554))) (-14 *3 (-631 (-1158))) (-14 *4 (-631 (-1158))) (-4 *5 (-382)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-402 (-937 (-554)))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1023 (-554))) (-14 *3 (-631 (-1158))) (-14 *4 (-631 (-1158))) (-4 *5 (-382)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-937 (-554))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1023 (-554))) (-14 *3 (-631 (-1158))) (-14 *4 (-631 (-1158))) (-4 *5 (-382)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-937 (-554))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1023 (-554))) (-14 *3 (-631 (-1158))) (-14 *4 (-631 (-1158))) (-4 *5 (-382)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-311 (-374))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1023 (-374))) (-14 *3 (-631 (-1158))) (-14 *4 (-631 (-1158))) (-4 *5 (-382)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-311 (-374))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1023 (-374))) (-14 *3 (-631 (-1158))) (-14 *4 (-631 (-1158))) (-4 *5 (-382)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-402 (-937 (-374)))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1023 (-374))) (-14 *3 (-631 (-1158))) (-14 *4 (-631 (-1158))) (-4 *5 (-382)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-402 (-937 (-374)))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1023 (-374))) (-14 *3 (-631 (-1158))) (-14 *4 (-631 (-1158))) (-4 *5 (-382)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-937 (-374))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1023 (-374))) (-14 *3 (-631 (-1158))) (-14 *4 (-631 (-1158))) (-4 *5 (-382)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-937 (-374))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1023 (-374))) (-14 *3 (-631 (-1158))) (-14 *4 (-631 (-1158))) (-4 *5 (-382)))) (-1700 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) (-2282 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) (-1333 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) (-2395 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) (-4062 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) (-4177 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) (-4188 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) (-4200 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) (-2938 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) (-2948 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) (-2959 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) (-3003 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) (-3014 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) (-3023 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) (-2844 (*1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) (-2405 (*1 *2 *1) (-12 (-5 *2 (-631 (-1158))) (-5 *1 (-334 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-382)))) (-2671 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-631 (-1158))) (-14 *4 (-631 (-1158))) (-4 *5 (-382)))) (-2671 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-631 (-1158))) (-14 *4 (-631 (-1158))) (-4 *5 (-382)))))
-(-13 (-297) (-38 |#3|) (-1023 |#3|) (-885 (-1158)) (-10 -8 (-15 -1668 ($ (-311 |#3|))) (-15 -2784 ((-3 $ "failed") (-311 |#3|))) (-15 -1668 ($ (-1158))) (-15 -2784 ((-3 $ "failed") (-1158))) (-15 -3075 ((-311 |#3|) $)) (IF (|has| |#3| (-1023 (-554))) (PROGN (-15 -1668 ($ (-311 (-554)))) (-15 -2784 ((-3 $ "failed") (-311 (-554)))) (-15 -1668 ($ (-402 (-937 (-554))))) (-15 -2784 ((-3 $ "failed") (-402 (-937 (-554))))) (-15 -1668 ($ (-937 (-554)))) (-15 -2784 ((-3 $ "failed") (-937 (-554))))) |%noBranch|) (IF (|has| |#3| (-1023 (-374))) (PROGN (-15 -1668 ($ (-311 (-374)))) (-15 -2784 ((-3 $ "failed") (-311 (-374)))) (-15 -1668 ($ (-402 (-937 (-374))))) (-15 -2784 ((-3 $ "failed") (-402 (-937 (-374))))) (-15 -1668 ($ (-937 (-374)))) (-15 -2784 ((-3 $ "failed") (-937 (-374))))) |%noBranch|) (-15 -1700 ($ $)) (-15 -2282 ($ $)) (-15 -1333 ($ $)) (-15 -2395 ($ $)) (-15 -4062 ($ $)) (-15 -4177 ($ $)) (-15 -4188 ($ $)) (-15 -4200 ($ $)) (-15 -2938 ($ $)) (-15 -2948 ($ $)) (-15 -2959 ($ $)) (-15 -3003 ($ $)) (-15 -3014 ($ $)) (-15 -3023 ($ $)) (-15 -2844 ($)) (-15 -2405 ((-631 (-1158)) $)) (-15 -2671 ((-112))) (-15 -2671 ((-112) (-112)))))
-((-2879 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
-(((-335 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2879 (|#8| (-1 |#5| |#1|) |#4|))) (-1199) (-1217 |#1|) (-1217 (-402 |#2|)) (-337 |#1| |#2| |#3|) (-1199) (-1217 |#5|) (-1217 (-402 |#6|)) (-337 |#5| |#6| |#7|)) (T -335))
-((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1199)) (-4 *8 (-1199)) (-4 *6 (-1217 *5)) (-4 *7 (-1217 (-402 *6))) (-4 *9 (-1217 *8)) (-4 *2 (-337 *8 *9 *10)) (-5 *1 (-335 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-337 *5 *6 *7)) (-4 *10 (-1217 (-402 *9))))))
-(-10 -7 (-15 -2879 (|#8| (-1 |#5| |#1|) |#4|)))
-((-3293 (((-2 (|:| |num| (-1241 |#3|)) (|:| |den| |#3|)) $) 38)) (-1651 (($ (-1241 (-402 |#3|)) (-1241 $)) NIL) (($ (-1241 (-402 |#3|))) NIL) (($ (-1241 |#3|) |#3|) 161)) (-2501 (((-1241 $) (-1241 $)) 145)) (-4092 (((-631 (-631 |#2|))) 119)) (-2895 (((-112) |#2| |#2|) 73)) (-2048 (($ $) 139)) (-4324 (((-758)) 31)) (-3600 (((-1241 $) (-1241 $)) 198)) (-2214 (((-631 (-937 |#2|)) (-1158)) 110)) (-2141 (((-112) $) 158)) (-4099 (((-112) $) 25) (((-112) $ |#2|) 29) (((-112) $ |#3|) 202)) (-4261 (((-3 |#3| "failed")) 50)) (-3271 (((-758)) 170)) (-2064 ((|#2| $ |#2| |#2|) 132)) (-2535 (((-3 |#3| "failed")) 68)) (-1553 (($ $ (-1 (-402 |#3|) (-402 |#3|)) (-758)) NIL) (($ $ (-1 (-402 |#3|) (-402 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 206) (($ $ (-631 (-1158)) (-631 (-758))) NIL) (($ $ (-1158) (-758)) NIL) (($ $ (-631 (-1158))) NIL) (($ $ (-1158)) NIL) (($ $ (-758)) NIL) (($ $) NIL)) (-2239 (((-1241 $) (-1241 $)) 151)) (-3889 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-2102 (((-112)) 33)))
-(((-336 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1553 (|#1| |#1|)) (-15 -1553 (|#1| |#1| (-758))) (-15 -1553 (|#1| |#1| (-1158))) (-15 -1553 (|#1| |#1| (-631 (-1158)))) (-15 -1553 (|#1| |#1| (-1158) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 -4092 ((-631 (-631 |#2|)))) (-15 -2214 ((-631 (-937 |#2|)) (-1158))) (-15 -3889 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -4261 ((-3 |#3| "failed"))) (-15 -2535 ((-3 |#3| "failed"))) (-15 -2064 (|#2| |#1| |#2| |#2|)) (-15 -2048 (|#1| |#1|)) (-15 -1553 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4099 ((-112) |#1| |#3|)) (-15 -4099 ((-112) |#1| |#2|)) (-15 -1651 (|#1| (-1241 |#3|) |#3|)) (-15 -3293 ((-2 (|:| |num| (-1241 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2501 ((-1241 |#1|) (-1241 |#1|))) (-15 -3600 ((-1241 |#1|) (-1241 |#1|))) (-15 -2239 ((-1241 |#1|) (-1241 |#1|))) (-15 -4099 ((-112) |#1|)) (-15 -2141 ((-112) |#1|)) (-15 -2895 ((-112) |#2| |#2|)) (-15 -2102 ((-112))) (-15 -3271 ((-758))) (-15 -4324 ((-758))) (-15 -1553 (|#1| |#1| (-1 (-402 |#3|) (-402 |#3|)))) (-15 -1553 (|#1| |#1| (-1 (-402 |#3|) (-402 |#3|)) (-758))) (-15 -1651 (|#1| (-1241 (-402 |#3|)))) (-15 -1651 (|#1| (-1241 (-402 |#3|)) (-1241 |#1|)))) (-337 |#2| |#3| |#4|) (-1199) (-1217 |#2|) (-1217 (-402 |#3|))) (T -336))
-((-4324 (*1 *2) (-12 (-4 *4 (-1199)) (-4 *5 (-1217 *4)) (-4 *6 (-1217 (-402 *5))) (-5 *2 (-758)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-337 *4 *5 *6)))) (-3271 (*1 *2) (-12 (-4 *4 (-1199)) (-4 *5 (-1217 *4)) (-4 *6 (-1217 (-402 *5))) (-5 *2 (-758)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-337 *4 *5 *6)))) (-2102 (*1 *2) (-12 (-4 *4 (-1199)) (-4 *5 (-1217 *4)) (-4 *6 (-1217 (-402 *5))) (-5 *2 (-112)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-337 *4 *5 *6)))) (-2895 (*1 *2 *3 *3) (-12 (-4 *3 (-1199)) (-4 *5 (-1217 *3)) (-4 *6 (-1217 (-402 *5))) (-5 *2 (-112)) (-5 *1 (-336 *4 *3 *5 *6)) (-4 *4 (-337 *3 *5 *6)))) (-2535 (*1 *2) (|partial| -12 (-4 *4 (-1199)) (-4 *5 (-1217 (-402 *2))) (-4 *2 (-1217 *4)) (-5 *1 (-336 *3 *4 *2 *5)) (-4 *3 (-337 *4 *2 *5)))) (-4261 (*1 *2) (|partial| -12 (-4 *4 (-1199)) (-4 *5 (-1217 (-402 *2))) (-4 *2 (-1217 *4)) (-5 *1 (-336 *3 *4 *2 *5)) (-4 *3 (-337 *4 *2 *5)))) (-2214 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-4 *5 (-1199)) (-4 *6 (-1217 *5)) (-4 *7 (-1217 (-402 *6))) (-5 *2 (-631 (-937 *5))) (-5 *1 (-336 *4 *5 *6 *7)) (-4 *4 (-337 *5 *6 *7)))) (-4092 (*1 *2) (-12 (-4 *4 (-1199)) (-4 *5 (-1217 *4)) (-4 *6 (-1217 (-402 *5))) (-5 *2 (-631 (-631 *4))) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-337 *4 *5 *6)))))
-(-10 -8 (-15 -1553 (|#1| |#1|)) (-15 -1553 (|#1| |#1| (-758))) (-15 -1553 (|#1| |#1| (-1158))) (-15 -1553 (|#1| |#1| (-631 (-1158)))) (-15 -1553 (|#1| |#1| (-1158) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 -4092 ((-631 (-631 |#2|)))) (-15 -2214 ((-631 (-937 |#2|)) (-1158))) (-15 -3889 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -4261 ((-3 |#3| "failed"))) (-15 -2535 ((-3 |#3| "failed"))) (-15 -2064 (|#2| |#1| |#2| |#2|)) (-15 -2048 (|#1| |#1|)) (-15 -1553 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4099 ((-112) |#1| |#3|)) (-15 -4099 ((-112) |#1| |#2|)) (-15 -1651 (|#1| (-1241 |#3|) |#3|)) (-15 -3293 ((-2 (|:| |num| (-1241 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2501 ((-1241 |#1|) (-1241 |#1|))) (-15 -3600 ((-1241 |#1|) (-1241 |#1|))) (-15 -2239 ((-1241 |#1|) (-1241 |#1|))) (-15 -4099 ((-112) |#1|)) (-15 -2141 ((-112) |#1|)) (-15 -2895 ((-112) |#2| |#2|)) (-15 -2102 ((-112))) (-15 -3271 ((-758))) (-15 -4324 ((-758))) (-15 -1553 (|#1| |#1| (-1 (-402 |#3|) (-402 |#3|)))) (-15 -1553 (|#1| |#1| (-1 (-402 |#3|) (-402 |#3|)) (-758))) (-15 -1651 (|#1| (-1241 (-402 |#3|)))) (-15 -1651 (|#1| (-1241 (-402 |#3|)) (-1241 |#1|))))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-3293 (((-2 (|:| |num| (-1241 |#2|)) (|:| |den| |#2|)) $) 195)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 93 (|has| (-402 |#2|) (-358)))) (-1976 (($ $) 94 (|has| (-402 |#2|) (-358)))) (-1363 (((-112) $) 96 (|has| (-402 |#2|) (-358)))) (-1903 (((-675 (-402 |#2|)) (-1241 $)) 47) (((-675 (-402 |#2|))) 62)) (-1612 (((-402 |#2|) $) 53)) (-3205 (((-1168 (-906) (-758)) (-554)) 146 (|has| (-402 |#2|) (-344)))) (-2934 (((-3 $ "failed") $ $) 19)) (-3278 (($ $) 113 (|has| (-402 |#2|) (-358)))) (-1565 (((-413 $) $) 114 (|has| (-402 |#2|) (-358)))) (-2286 (((-112) $ $) 104 (|has| (-402 |#2|) (-358)))) (-1508 (((-758)) 87 (|has| (-402 |#2|) (-363)))) (-3626 (((-112)) 212)) (-2120 (((-112) |#1|) 211) (((-112) |#2|) 210)) (-4087 (($) 17 T CONST)) (-2784 (((-3 (-554) "failed") $) 169 (|has| (-402 |#2|) (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) 167 (|has| (-402 |#2|) (-1023 (-402 (-554))))) (((-3 (-402 |#2|) "failed") $) 164)) (-1668 (((-554) $) 168 (|has| (-402 |#2|) (-1023 (-554)))) (((-402 (-554)) $) 166 (|has| (-402 |#2|) (-1023 (-402 (-554))))) (((-402 |#2|) $) 165)) (-1651 (($ (-1241 (-402 |#2|)) (-1241 $)) 49) (($ (-1241 (-402 |#2|))) 65) (($ (-1241 |#2|) |#2|) 194)) (-2723 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| (-402 |#2|) (-344)))) (-3964 (($ $ $) 108 (|has| (-402 |#2|) (-358)))) (-3629 (((-675 (-402 |#2|)) $ (-1241 $)) 54) (((-675 (-402 |#2|)) $) 60)) (-3699 (((-675 (-554)) (-675 $)) 163 (|has| (-402 |#2|) (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) 162 (|has| (-402 |#2|) (-627 (-554)))) (((-2 (|:| -2866 (-675 (-402 |#2|))) (|:| |vec| (-1241 (-402 |#2|)))) (-675 $) (-1241 $)) 161) (((-675 (-402 |#2|)) (-675 $)) 160)) (-2501 (((-1241 $) (-1241 $)) 200)) (-3676 (($ |#3|) 157) (((-3 $ "failed") (-402 |#3|)) 154 (|has| (-402 |#2|) (-358)))) (-1320 (((-3 $ "failed") $) 33)) (-4092 (((-631 (-631 |#1|))) 181 (|has| |#1| (-363)))) (-2895 (((-112) |#1| |#1|) 216)) (-4186 (((-906)) 55)) (-3353 (($) 90 (|has| (-402 |#2|) (-363)))) (-2568 (((-112)) 209)) (-1993 (((-112) |#1|) 208) (((-112) |#2|) 207)) (-3943 (($ $ $) 107 (|has| (-402 |#2|) (-358)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 102 (|has| (-402 |#2|) (-358)))) (-2048 (($ $) 187)) (-3157 (($) 148 (|has| (-402 |#2|) (-344)))) (-2754 (((-112) $) 149 (|has| (-402 |#2|) (-344)))) (-4122 (($ $ (-758)) 140 (|has| (-402 |#2|) (-344))) (($ $) 139 (|has| (-402 |#2|) (-344)))) (-3289 (((-112) $) 115 (|has| (-402 |#2|) (-358)))) (-2342 (((-906) $) 151 (|has| (-402 |#2|) (-344))) (((-820 (-906)) $) 137 (|has| (-402 |#2|) (-344)))) (-3248 (((-112) $) 31)) (-4324 (((-758)) 219)) (-3600 (((-1241 $) (-1241 $)) 201)) (-3274 (((-402 |#2|) $) 52)) (-2214 (((-631 (-937 |#1|)) (-1158)) 182 (|has| |#1| (-358)))) (-3339 (((-3 $ "failed") $) 141 (|has| (-402 |#2|) (-344)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 111 (|has| (-402 |#2|) (-358)))) (-3361 ((|#3| $) 45 (|has| (-402 |#2|) (-358)))) (-3830 (((-906) $) 89 (|has| (-402 |#2|) (-363)))) (-3662 ((|#3| $) 155)) (-2475 (($ (-631 $)) 100 (|has| (-402 |#2|) (-358))) (($ $ $) 99 (|has| (-402 |#2|) (-358)))) (-1613 (((-1140) $) 9)) (-4132 (((-675 (-402 |#2|))) 196)) (-2519 (((-675 (-402 |#2|))) 198)) (-2483 (($ $) 116 (|has| (-402 |#2|) (-358)))) (-2488 (($ (-1241 |#2|) |#2|) 192)) (-1835 (((-675 (-402 |#2|))) 197)) (-3470 (((-675 (-402 |#2|))) 199)) (-3368 (((-2 (|:| |num| (-675 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 191)) (-1579 (((-2 (|:| |num| (-1241 |#2|)) (|:| |den| |#2|)) $) 193)) (-1279 (((-1241 $)) 205)) (-3358 (((-1241 $)) 206)) (-2141 (((-112) $) 204)) (-4099 (((-112) $) 203) (((-112) $ |#1|) 190) (((-112) $ |#2|) 189)) (-3834 (($) 142 (|has| (-402 |#2|) (-344)) CONST)) (-2717 (($ (-906)) 88 (|has| (-402 |#2|) (-363)))) (-4261 (((-3 |#2| "failed")) 184)) (-2768 (((-1102) $) 10)) (-3271 (((-758)) 218)) (-4137 (($) 159)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 101 (|has| (-402 |#2|) (-358)))) (-2510 (($ (-631 $)) 98 (|has| (-402 |#2|) (-358))) (($ $ $) 97 (|has| (-402 |#2|) (-358)))) (-3725 (((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))) 145 (|has| (-402 |#2|) (-344)))) (-2270 (((-413 $) $) 112 (|has| (-402 |#2|) (-358)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-402 |#2|) (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 109 (|has| (-402 |#2|) (-358)))) (-3919 (((-3 $ "failed") $ $) 92 (|has| (-402 |#2|) (-358)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 103 (|has| (-402 |#2|) (-358)))) (-2072 (((-758) $) 105 (|has| (-402 |#2|) (-358)))) (-2064 ((|#1| $ |#1| |#1|) 186)) (-2535 (((-3 |#2| "failed")) 185)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 106 (|has| (-402 |#2|) (-358)))) (-1495 (((-402 |#2|) (-1241 $)) 48) (((-402 |#2|)) 61)) (-3316 (((-758) $) 150 (|has| (-402 |#2|) (-344))) (((-3 (-758) "failed") $ $) 138 (|has| (-402 |#2|) (-344)))) (-1553 (($ $ (-1 (-402 |#2|) (-402 |#2|)) (-758)) 122 (|has| (-402 |#2|) (-358))) (($ $ (-1 (-402 |#2|) (-402 |#2|))) 121 (|has| (-402 |#2|) (-358))) (($ $ (-1 |#2| |#2|)) 188) (($ $ (-631 (-1158)) (-631 (-758))) 129 (-3994 (-3726 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158)))) (-3726 (|has| (-402 |#2|) (-885 (-1158))) (|has| (-402 |#2|) (-358))))) (($ $ (-1158) (-758)) 130 (-3994 (-3726 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158)))) (-3726 (|has| (-402 |#2|) (-885 (-1158))) (|has| (-402 |#2|) (-358))))) (($ $ (-631 (-1158))) 131 (-3994 (-3726 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158)))) (-3726 (|has| (-402 |#2|) (-885 (-1158))) (|has| (-402 |#2|) (-358))))) (($ $ (-1158)) 132 (-3994 (-3726 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158)))) (-3726 (|has| (-402 |#2|) (-885 (-1158))) (|has| (-402 |#2|) (-358))))) (($ $ (-758)) 134 (-3994 (-3726 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-229))) (-3726 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344)))) (($ $) 136 (-3994 (-3726 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-229))) (-3726 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344))))) (-2092 (((-675 (-402 |#2|)) (-1241 $) (-1 (-402 |#2|) (-402 |#2|))) 153 (|has| (-402 |#2|) (-358)))) (-4318 ((|#3|) 158)) (-3944 (($) 147 (|has| (-402 |#2|) (-344)))) (-3656 (((-1241 (-402 |#2|)) $ (-1241 $)) 51) (((-675 (-402 |#2|)) (-1241 $) (-1241 $)) 50) (((-1241 (-402 |#2|)) $) 67) (((-675 (-402 |#2|)) (-1241 $)) 66)) (-2927 (((-1241 (-402 |#2|)) $) 64) (($ (-1241 (-402 |#2|))) 63) ((|#3| $) 170) (($ |#3|) 156)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) 144 (|has| (-402 |#2|) (-344)))) (-2239 (((-1241 $) (-1241 $)) 202)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ (-402 |#2|)) 38) (($ (-402 (-554))) 86 (-3994 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-1023 (-402 (-554)))))) (($ $) 91 (|has| (-402 |#2|) (-358)))) (-2084 (($ $) 143 (|has| (-402 |#2|) (-344))) (((-3 $ "failed") $) 44 (|has| (-402 |#2|) (-143)))) (-3109 ((|#3| $) 46)) (-2261 (((-758)) 28)) (-3809 (((-112)) 215)) (-2394 (((-112) |#1|) 214) (((-112) |#2|) 213)) (-3782 (((-1241 $)) 68)) (-1909 (((-112) $ $) 95 (|has| (-402 |#2|) (-358)))) (-3889 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 183)) (-2102 (((-112)) 217)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($ $ (-1 (-402 |#2|) (-402 |#2|)) (-758)) 124 (|has| (-402 |#2|) (-358))) (($ $ (-1 (-402 |#2|) (-402 |#2|))) 123 (|has| (-402 |#2|) (-358))) (($ $ (-631 (-1158)) (-631 (-758))) 125 (-3994 (-3726 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158)))) (-3726 (|has| (-402 |#2|) (-885 (-1158))) (|has| (-402 |#2|) (-358))))) (($ $ (-1158) (-758)) 126 (-3994 (-3726 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158)))) (-3726 (|has| (-402 |#2|) (-885 (-1158))) (|has| (-402 |#2|) (-358))))) (($ $ (-631 (-1158))) 127 (-3994 (-3726 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158)))) (-3726 (|has| (-402 |#2|) (-885 (-1158))) (|has| (-402 |#2|) (-358))))) (($ $ (-1158)) 128 (-3994 (-3726 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158)))) (-3726 (|has| (-402 |#2|) (-885 (-1158))) (|has| (-402 |#2|) (-358))))) (($ $ (-758)) 133 (-3994 (-3726 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-229))) (-3726 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344)))) (($ $) 135 (-3994 (-3726 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-229))) (-3726 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344))))) (-1658 (((-112) $ $) 6)) (-1752 (($ $ $) 120 (|has| (-402 |#2|) (-358)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ (-554)) 117 (|has| (-402 |#2|) (-358)))) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ (-402 |#2|)) 40) (($ (-402 |#2|) $) 39) (($ (-402 (-554)) $) 119 (|has| (-402 |#2|) (-358))) (($ $ (-402 (-554))) 118 (|has| (-402 |#2|) (-358)))))
-(((-337 |#1| |#2| |#3|) (-138) (-1199) (-1217 |t#1|) (-1217 (-402 |t#2|))) (T -337))
-((-4324 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-758)))) (-3271 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-758)))) (-2102 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-112)))) (-2895 (*1 *2 *3 *3) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-112)))) (-3809 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-112)))) (-2394 (*1 *2 *3) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-112)))) (-2394 (*1 *2 *3) (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1199)) (-4 *3 (-1217 *4)) (-4 *5 (-1217 (-402 *3))) (-5 *2 (-112)))) (-3626 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-112)))) (-2120 (*1 *2 *3) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-112)))) (-2120 (*1 *2 *3) (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1199)) (-4 *3 (-1217 *4)) (-4 *5 (-1217 (-402 *3))) (-5 *2 (-112)))) (-2568 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-112)))) (-1993 (*1 *2 *3) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-112)))) (-1993 (*1 *2 *3) (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1199)) (-4 *3 (-1217 *4)) (-4 *5 (-1217 (-402 *3))) (-5 *2 (-112)))) (-3358 (*1 *2) (-12 (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-1241 *1)) (-4 *1 (-337 *3 *4 *5)))) (-1279 (*1 *2) (-12 (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-1241 *1)) (-4 *1 (-337 *3 *4 *5)))) (-2141 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-112)))) (-4099 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-112)))) (-2239 (*1 *2 *2) (-12 (-5 *2 (-1241 *1)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))))) (-3600 (*1 *2 *2) (-12 (-5 *2 (-1241 *1)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))))) (-2501 (*1 *2 *2) (-12 (-5 *2 (-1241 *1)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))))) (-3470 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-675 (-402 *4))))) (-2519 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-675 (-402 *4))))) (-1835 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-675 (-402 *4))))) (-4132 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-675 (-402 *4))))) (-3293 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-2 (|:| |num| (-1241 *4)) (|:| |den| *4))))) (-1651 (*1 *1 *2 *3) (-12 (-5 *2 (-1241 *3)) (-4 *3 (-1217 *4)) (-4 *4 (-1199)) (-4 *1 (-337 *4 *3 *5)) (-4 *5 (-1217 (-402 *3))))) (-1579 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-2 (|:| |num| (-1241 *4)) (|:| |den| *4))))) (-2488 (*1 *1 *2 *3) (-12 (-5 *2 (-1241 *3)) (-4 *3 (-1217 *4)) (-4 *4 (-1199)) (-4 *1 (-337 *4 *3 *5)) (-4 *5 (-1217 (-402 *3))))) (-3368 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-337 *4 *5 *6)) (-4 *4 (-1199)) (-4 *5 (-1217 *4)) (-4 *6 (-1217 (-402 *5))) (-5 *2 (-2 (|:| |num| (-675 *5)) (|:| |den| *5))))) (-4099 (*1 *2 *1 *3) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-112)))) (-4099 (*1 *2 *1 *3) (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1199)) (-4 *3 (-1217 *4)) (-4 *5 (-1217 (-402 *3))) (-5 *2 (-112)))) (-1553 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))))) (-2048 (*1 *1 *1) (-12 (-4 *1 (-337 *2 *3 *4)) (-4 *2 (-1199)) (-4 *3 (-1217 *2)) (-4 *4 (-1217 (-402 *3))))) (-2064 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-337 *2 *3 *4)) (-4 *2 (-1199)) (-4 *3 (-1217 *2)) (-4 *4 (-1217 (-402 *3))))) (-2535 (*1 *2) (|partial| -12 (-4 *1 (-337 *3 *2 *4)) (-4 *3 (-1199)) (-4 *4 (-1217 (-402 *2))) (-4 *2 (-1217 *3)))) (-4261 (*1 *2) (|partial| -12 (-4 *1 (-337 *3 *2 *4)) (-4 *3 (-1199)) (-4 *4 (-1217 (-402 *2))) (-4 *2 (-1217 *3)))) (-3889 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1217 *4)) (-4 *4 (-1199)) (-4 *6 (-1217 (-402 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-337 *4 *5 *6)))) (-2214 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-4 *1 (-337 *4 *5 *6)) (-4 *4 (-1199)) (-4 *5 (-1217 *4)) (-4 *6 (-1217 (-402 *5))) (-4 *4 (-358)) (-5 *2 (-631 (-937 *4))))) (-4092 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-4 *3 (-363)) (-5 *2 (-631 (-631 *3))))))
-(-13 (-711 (-402 |t#2|) |t#3|) (-10 -8 (-15 -4324 ((-758))) (-15 -3271 ((-758))) (-15 -2102 ((-112))) (-15 -2895 ((-112) |t#1| |t#1|)) (-15 -3809 ((-112))) (-15 -2394 ((-112) |t#1|)) (-15 -2394 ((-112) |t#2|)) (-15 -3626 ((-112))) (-15 -2120 ((-112) |t#1|)) (-15 -2120 ((-112) |t#2|)) (-15 -2568 ((-112))) (-15 -1993 ((-112) |t#1|)) (-15 -1993 ((-112) |t#2|)) (-15 -3358 ((-1241 $))) (-15 -1279 ((-1241 $))) (-15 -2141 ((-112) $)) (-15 -4099 ((-112) $)) (-15 -2239 ((-1241 $) (-1241 $))) (-15 -3600 ((-1241 $) (-1241 $))) (-15 -2501 ((-1241 $) (-1241 $))) (-15 -3470 ((-675 (-402 |t#2|)))) (-15 -2519 ((-675 (-402 |t#2|)))) (-15 -1835 ((-675 (-402 |t#2|)))) (-15 -4132 ((-675 (-402 |t#2|)))) (-15 -3293 ((-2 (|:| |num| (-1241 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1651 ($ (-1241 |t#2|) |t#2|)) (-15 -1579 ((-2 (|:| |num| (-1241 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2488 ($ (-1241 |t#2|) |t#2|)) (-15 -3368 ((-2 (|:| |num| (-675 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -4099 ((-112) $ |t#1|)) (-15 -4099 ((-112) $ |t#2|)) (-15 -1553 ($ $ (-1 |t#2| |t#2|))) (-15 -2048 ($ $)) (-15 -2064 (|t#1| $ |t#1| |t#1|)) (-15 -2535 ((-3 |t#2| "failed"))) (-15 -4261 ((-3 |t#2| "failed"))) (-15 -3889 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-358)) (-15 -2214 ((-631 (-937 |t#1|)) (-1158))) |%noBranch|) (IF (|has| |t#1| (-363)) (-15 -4092 ((-631 (-631 |t#1|)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-554))) -3994 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-38 #1=(-402 |#2|)) . T) ((-38 $) -3994 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-102) . T) ((-111 #0# #0#) -3994 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -3994 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-143))) ((-145) |has| (-402 |#2|) (-145)) ((-604 #0#) -3994 (|has| (-402 |#2|) (-1023 (-402 (-554)))) (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-604 #1#) . T) ((-604 (-554)) . T) ((-604 $) -3994 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-601 (-848)) . T) ((-170) . T) ((-602 |#3|) . T) ((-227 #1#) |has| (-402 |#2|) (-358)) ((-229) -3994 (|has| (-402 |#2|) (-344)) (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358)))) ((-239) -3994 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-285) -3994 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-302) -3994 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-358) -3994 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-397) |has| (-402 |#2|) (-344)) ((-363) -3994 (|has| (-402 |#2|) (-363)) (|has| (-402 |#2|) (-344))) ((-344) |has| (-402 |#2|) (-344)) ((-365 #1# |#3|) . T) ((-404 #1# |#3|) . T) ((-372 #1#) . T) ((-406 #1#) . T) ((-446) -3994 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-546) -3994 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-634 #0#) -3994 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-634 #1#) . T) ((-634 $) . T) ((-627 #1#) . T) ((-627 (-554)) |has| (-402 |#2|) (-627 (-554))) ((-704 #0#) -3994 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-704 #1#) . T) ((-704 $) -3994 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-711 #1# |#3|) . T) ((-713) . T) ((-885 (-1158)) -12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158)))) ((-905) -3994 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-1023 (-402 (-554))) |has| (-402 |#2|) (-1023 (-402 (-554)))) ((-1023 #1#) . T) ((-1023 (-554)) |has| (-402 |#2|) (-1023 (-554))) ((-1040 #0#) -3994 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-1040 #1#) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1133) |has| (-402 |#2|) (-344)) ((-1199) -3994 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-3718 (((-112) $) NIL)) (-1924 (((-758)) NIL)) (-1612 (((-895 |#1|) $) NIL) (($ $ (-906)) NIL (|has| (-895 |#1|) (-363)))) (-3205 (((-1168 (-906) (-758)) (-554)) NIL (|has| (-895 |#1|) (-363)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2286 (((-112) $ $) NIL)) (-1508 (((-758)) NIL (|has| (-895 |#1|) (-363)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-895 |#1|) "failed") $) NIL)) (-1668 (((-895 |#1|) $) NIL)) (-1651 (($ (-1241 (-895 |#1|))) NIL)) (-2723 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-895 |#1|) (-363)))) (-3964 (($ $ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3353 (($) NIL (|has| (-895 |#1|) (-363)))) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3157 (($) NIL (|has| (-895 |#1|) (-363)))) (-2754 (((-112) $) NIL (|has| (-895 |#1|) (-363)))) (-4122 (($ $ (-758)) NIL (-3994 (|has| (-895 |#1|) (-143)) (|has| (-895 |#1|) (-363)))) (($ $) NIL (-3994 (|has| (-895 |#1|) (-143)) (|has| (-895 |#1|) (-363))))) (-3289 (((-112) $) NIL)) (-2342 (((-906) $) NIL (|has| (-895 |#1|) (-363))) (((-820 (-906)) $) NIL (-3994 (|has| (-895 |#1|) (-143)) (|has| (-895 |#1|) (-363))))) (-3248 (((-112) $) NIL)) (-3227 (($) NIL (|has| (-895 |#1|) (-363)))) (-2693 (((-112) $) NIL (|has| (-895 |#1|) (-363)))) (-3274 (((-895 |#1|) $) NIL) (($ $ (-906)) NIL (|has| (-895 |#1|) (-363)))) (-3339 (((-3 $ "failed") $) NIL (|has| (-895 |#1|) (-363)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-3361 (((-1154 (-895 |#1|)) $) NIL) (((-1154 $) $ (-906)) NIL (|has| (-895 |#1|) (-363)))) (-3830 (((-906) $) NIL (|has| (-895 |#1|) (-363)))) (-3933 (((-1154 (-895 |#1|)) $) NIL (|has| (-895 |#1|) (-363)))) (-3025 (((-1154 (-895 |#1|)) $) NIL (|has| (-895 |#1|) (-363))) (((-3 (-1154 (-895 |#1|)) "failed") $ $) NIL (|has| (-895 |#1|) (-363)))) (-2300 (($ $ (-1154 (-895 |#1|))) NIL (|has| (-895 |#1|) (-363)))) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-3834 (($) NIL (|has| (-895 |#1|) (-363)) CONST)) (-2717 (($ (-906)) NIL (|has| (-895 |#1|) (-363)))) (-2070 (((-112) $) NIL)) (-2768 (((-1102) $) NIL)) (-1714 (((-943 (-1102))) NIL)) (-4137 (($) NIL (|has| (-895 |#1|) (-363)))) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3725 (((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))) NIL (|has| (-895 |#1|) (-363)))) (-2270 (((-413 $) $) NIL)) (-2365 (((-820 (-906))) NIL) (((-906)) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-3316 (((-758) $) NIL (|has| (-895 |#1|) (-363))) (((-3 (-758) "failed") $ $) NIL (-3994 (|has| (-895 |#1|) (-143)) (|has| (-895 |#1|) (-363))))) (-3330 (((-133)) NIL)) (-1553 (($ $) NIL (|has| (-895 |#1|) (-363))) (($ $ (-758)) NIL (|has| (-895 |#1|) (-363)))) (-3308 (((-820 (-906)) $) NIL) (((-906) $) NIL)) (-4318 (((-1154 (-895 |#1|))) NIL)) (-3944 (($) NIL (|has| (-895 |#1|) (-363)))) (-2288 (($) NIL (|has| (-895 |#1|) (-363)))) (-3656 (((-1241 (-895 |#1|)) $) NIL) (((-675 (-895 |#1|)) (-1241 $)) NIL)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (|has| (-895 |#1|) (-363)))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL) (($ (-402 (-554))) NIL) (($ (-895 |#1|)) NIL)) (-2084 (($ $) NIL (|has| (-895 |#1|) (-363))) (((-3 $ "failed") $) NIL (-3994 (|has| (-895 |#1|) (-143)) (|has| (-895 |#1|) (-363))))) (-2261 (((-758)) NIL)) (-3782 (((-1241 $)) NIL) (((-1241 $) (-906)) NIL)) (-1909 (((-112) $ $) NIL)) (-3536 (((-112) $) NIL)) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1811 (($ $) NIL (|has| (-895 |#1|) (-363))) (($ $ (-758)) NIL (|has| (-895 |#1|) (-363)))) (-1787 (($ $) NIL (|has| (-895 |#1|) (-363))) (($ $ (-758)) NIL (|has| (-895 |#1|) (-363)))) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ $) NIL) (($ $ (-895 |#1|)) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL) (($ $ (-895 |#1|)) NIL) (($ (-895 |#1|) $) NIL)))
-(((-338 |#1| |#2|) (-13 (-324 (-895 |#1|)) (-10 -7 (-15 -1714 ((-943 (-1102)))))) (-906) (-906)) (T -338))
-((-1714 (*1 *2) (-12 (-5 *2 (-943 (-1102))) (-5 *1 (-338 *3 *4)) (-14 *3 (-906)) (-14 *4 (-906)))))
-(-13 (-324 (-895 |#1|)) (-10 -7 (-15 -1714 ((-943 (-1102))))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 44)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-3718 (((-112) $) NIL)) (-1924 (((-758)) NIL)) (-1612 ((|#1| $) NIL) (($ $ (-906)) NIL (|has| |#1| (-363)))) (-3205 (((-1168 (-906) (-758)) (-554)) 41 (|has| |#1| (-363)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2286 (((-112) $ $) NIL)) (-1508 (((-758)) NIL (|has| |#1| (-363)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) 115)) (-1668 ((|#1| $) 86)) (-1651 (($ (-1241 |#1|)) 104)) (-2723 (((-3 "prime" "polynomial" "normal" "cyclic")) 95 (|has| |#1| (-363)))) (-3964 (($ $ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3353 (($) 98 (|has| |#1| (-363)))) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3157 (($) 129 (|has| |#1| (-363)))) (-2754 (((-112) $) 48 (|has| |#1| (-363)))) (-4122 (($ $ (-758)) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3289 (((-112) $) NIL)) (-2342 (((-906) $) 45 (|has| |#1| (-363))) (((-820 (-906)) $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3248 (((-112) $) NIL)) (-3227 (($) 131 (|has| |#1| (-363)))) (-2693 (((-112) $) NIL (|has| |#1| (-363)))) (-3274 ((|#1| $) NIL) (($ $ (-906)) NIL (|has| |#1| (-363)))) (-3339 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-3361 (((-1154 |#1|) $) 90) (((-1154 $) $ (-906)) NIL (|has| |#1| (-363)))) (-3830 (((-906) $) 139 (|has| |#1| (-363)))) (-3933 (((-1154 |#1|) $) NIL (|has| |#1| (-363)))) (-3025 (((-1154 |#1|) $) NIL (|has| |#1| (-363))) (((-3 (-1154 |#1|) "failed") $ $) NIL (|has| |#1| (-363)))) (-2300 (($ $ (-1154 |#1|)) NIL (|has| |#1| (-363)))) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) 146)) (-3834 (($) NIL (|has| |#1| (-363)) CONST)) (-2717 (($ (-906)) 71 (|has| |#1| (-363)))) (-2070 (((-112) $) 118)) (-2768 (((-1102) $) NIL)) (-1714 (((-943 (-1102))) 42)) (-4137 (($) 127 (|has| |#1| (-363)))) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3725 (((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))) 93 (|has| |#1| (-363)))) (-2270 (((-413 $) $) NIL)) (-2365 (((-820 (-906))) 67) (((-906)) 68)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-3316 (((-758) $) 130 (|has| |#1| (-363))) (((-3 (-758) "failed") $ $) 125 (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3330 (((-133)) NIL)) (-1553 (($ $) NIL (|has| |#1| (-363))) (($ $ (-758)) NIL (|has| |#1| (-363)))) (-3308 (((-820 (-906)) $) NIL) (((-906) $) NIL)) (-4318 (((-1154 |#1|)) 96)) (-3944 (($) 128 (|has| |#1| (-363)))) (-2288 (($) 136 (|has| |#1| (-363)))) (-3656 (((-1241 |#1|) $) 59) (((-675 |#1|) (-1241 $)) NIL)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (|has| |#1| (-363)))) (-3075 (((-848) $) 142) (($ (-554)) NIL) (($ $) NIL) (($ (-402 (-554))) NIL) (($ |#1|) 75)) (-2084 (($ $) NIL (|has| |#1| (-363))) (((-3 $ "failed") $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2261 (((-758)) 138)) (-3782 (((-1241 $)) 117) (((-1241 $) (-906)) 73)) (-1909 (((-112) $ $) NIL)) (-3536 (((-112) $) NIL)) (-2004 (($) 49 T CONST)) (-2014 (($) 46 T CONST)) (-1811 (($ $) 81 (|has| |#1| (-363))) (($ $ (-758)) NIL (|has| |#1| (-363)))) (-1787 (($ $) NIL (|has| |#1| (-363))) (($ $ (-758)) NIL (|has| |#1| (-363)))) (-1658 (((-112) $ $) 47)) (-1752 (($ $ $) 144) (($ $ |#1|) 145)) (-1744 (($ $) 126) (($ $ $) NIL)) (-1735 (($ $ $) 61)) (** (($ $ (-906)) 148) (($ $ (-758)) 149) (($ $ (-554)) 147)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 77) (($ $ $) 76) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 143)))
-(((-339 |#1| |#2|) (-13 (-324 |#1|) (-10 -7 (-15 -1714 ((-943 (-1102)))))) (-344) (-1154 |#1|)) (T -339))
-((-1714 (*1 *2) (-12 (-5 *2 (-943 (-1102))) (-5 *1 (-339 *3 *4)) (-4 *3 (-344)) (-14 *4 (-1154 *3)))))
-(-13 (-324 |#1|) (-10 -7 (-15 -1714 ((-943 (-1102))))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-3718 (((-112) $) NIL)) (-1924 (((-758)) NIL)) (-1612 ((|#1| $) NIL) (($ $ (-906)) NIL (|has| |#1| (-363)))) (-3205 (((-1168 (-906) (-758)) (-554)) NIL (|has| |#1| (-363)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2286 (((-112) $ $) NIL)) (-1508 (((-758)) NIL (|has| |#1| (-363)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL)) (-1668 ((|#1| $) NIL)) (-1651 (($ (-1241 |#1|)) NIL)) (-2723 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-363)))) (-3964 (($ $ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3353 (($) NIL (|has| |#1| (-363)))) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3157 (($) NIL (|has| |#1| (-363)))) (-2754 (((-112) $) NIL (|has| |#1| (-363)))) (-4122 (($ $ (-758)) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3289 (((-112) $) NIL)) (-2342 (((-906) $) NIL (|has| |#1| (-363))) (((-820 (-906)) $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3248 (((-112) $) NIL)) (-3227 (($) NIL (|has| |#1| (-363)))) (-2693 (((-112) $) NIL (|has| |#1| (-363)))) (-3274 ((|#1| $) NIL) (($ $ (-906)) NIL (|has| |#1| (-363)))) (-3339 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-3361 (((-1154 |#1|) $) NIL) (((-1154 $) $ (-906)) NIL (|has| |#1| (-363)))) (-3830 (((-906) $) NIL (|has| |#1| (-363)))) (-3933 (((-1154 |#1|) $) NIL (|has| |#1| (-363)))) (-3025 (((-1154 |#1|) $) NIL (|has| |#1| (-363))) (((-3 (-1154 |#1|) "failed") $ $) NIL (|has| |#1| (-363)))) (-2300 (($ $ (-1154 |#1|)) NIL (|has| |#1| (-363)))) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-3834 (($) NIL (|has| |#1| (-363)) CONST)) (-2717 (($ (-906)) NIL (|has| |#1| (-363)))) (-2070 (((-112) $) NIL)) (-2768 (((-1102) $) NIL)) (-1714 (((-943 (-1102))) NIL)) (-4137 (($) NIL (|has| |#1| (-363)))) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3725 (((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))) NIL (|has| |#1| (-363)))) (-2270 (((-413 $) $) NIL)) (-2365 (((-820 (-906))) NIL) (((-906)) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-3316 (((-758) $) NIL (|has| |#1| (-363))) (((-3 (-758) "failed") $ $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3330 (((-133)) NIL)) (-1553 (($ $) NIL (|has| |#1| (-363))) (($ $ (-758)) NIL (|has| |#1| (-363)))) (-3308 (((-820 (-906)) $) NIL) (((-906) $) NIL)) (-4318 (((-1154 |#1|)) NIL)) (-3944 (($) NIL (|has| |#1| (-363)))) (-2288 (($) NIL (|has| |#1| (-363)))) (-3656 (((-1241 |#1|) $) NIL) (((-675 |#1|) (-1241 $)) NIL)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (|has| |#1| (-363)))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL) (($ (-402 (-554))) NIL) (($ |#1|) NIL)) (-2084 (($ $) NIL (|has| |#1| (-363))) (((-3 $ "failed") $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2261 (((-758)) NIL)) (-3782 (((-1241 $)) NIL) (((-1241 $) (-906)) NIL)) (-1909 (((-112) $ $) NIL)) (-3536 (((-112) $) NIL)) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1811 (($ $) NIL (|has| |#1| (-363))) (($ $ (-758)) NIL (|has| |#1| (-363)))) (-1787 (($ $) NIL (|has| |#1| (-363))) (($ $ (-758)) NIL (|has| |#1| (-363)))) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-340 |#1| |#2|) (-13 (-324 |#1|) (-10 -7 (-15 -1714 ((-943 (-1102)))))) (-344) (-906)) (T -340))
-((-1714 (*1 *2) (-12 (-5 *2 (-943 (-1102))) (-5 *1 (-340 *3 *4)) (-4 *3 (-344)) (-14 *4 (-906)))))
-(-13 (-324 |#1|) (-10 -7 (-15 -1714 ((-943 (-1102))))))
-((-2437 (((-758) (-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102)))))) 42)) (-2534 (((-943 (-1102)) (-1154 |#1|)) 85)) (-2269 (((-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102))))) (-1154 |#1|)) 78)) (-4205 (((-675 |#1|) (-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102)))))) 86)) (-3879 (((-3 (-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102))))) "failed") (-906)) 13)) (-3052 (((-3 (-1154 |#1|) (-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102)))))) (-906)) 18)))
-(((-341 |#1|) (-10 -7 (-15 -2534 ((-943 (-1102)) (-1154 |#1|))) (-15 -2269 ((-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102))))) (-1154 |#1|))) (-15 -4205 ((-675 |#1|) (-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102))))))) (-15 -2437 ((-758) (-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102))))))) (-15 -3879 ((-3 (-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102))))) "failed") (-906))) (-15 -3052 ((-3 (-1154 |#1|) (-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102)))))) (-906)))) (-344)) (T -341))
-((-3052 (*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-3 (-1154 *4) (-1241 (-631 (-2 (|:| -2794 *4) (|:| -2717 (-1102))))))) (-5 *1 (-341 *4)) (-4 *4 (-344)))) (-3879 (*1 *2 *3) (|partial| -12 (-5 *3 (-906)) (-5 *2 (-1241 (-631 (-2 (|:| -2794 *4) (|:| -2717 (-1102)))))) (-5 *1 (-341 *4)) (-4 *4 (-344)))) (-2437 (*1 *2 *3) (-12 (-5 *3 (-1241 (-631 (-2 (|:| -2794 *4) (|:| -2717 (-1102)))))) (-4 *4 (-344)) (-5 *2 (-758)) (-5 *1 (-341 *4)))) (-4205 (*1 *2 *3) (-12 (-5 *3 (-1241 (-631 (-2 (|:| -2794 *4) (|:| -2717 (-1102)))))) (-4 *4 (-344)) (-5 *2 (-675 *4)) (-5 *1 (-341 *4)))) (-2269 (*1 *2 *3) (-12 (-5 *3 (-1154 *4)) (-4 *4 (-344)) (-5 *2 (-1241 (-631 (-2 (|:| -2794 *4) (|:| -2717 (-1102)))))) (-5 *1 (-341 *4)))) (-2534 (*1 *2 *3) (-12 (-5 *3 (-1154 *4)) (-4 *4 (-344)) (-5 *2 (-943 (-1102))) (-5 *1 (-341 *4)))))
-(-10 -7 (-15 -2534 ((-943 (-1102)) (-1154 |#1|))) (-15 -2269 ((-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102))))) (-1154 |#1|))) (-15 -4205 ((-675 |#1|) (-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102))))))) (-15 -2437 ((-758) (-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102))))))) (-15 -3879 ((-3 (-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102))))) "failed") (-906))) (-15 -3052 ((-3 (-1154 |#1|) (-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102)))))) (-906))))
-((-3075 ((|#1| |#3|) 86) ((|#3| |#1|) 69)))
-(((-342 |#1| |#2| |#3|) (-10 -7 (-15 -3075 (|#3| |#1|)) (-15 -3075 (|#1| |#3|))) (-324 |#2|) (-344) (-324 |#2|)) (T -342))
-((-3075 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *2 (-324 *4)) (-5 *1 (-342 *2 *4 *3)) (-4 *3 (-324 *4)))) (-3075 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *2 (-324 *4)) (-5 *1 (-342 *3 *4 *2)) (-4 *3 (-324 *4)))))
-(-10 -7 (-15 -3075 (|#3| |#1|)) (-15 -3075 (|#1| |#3|)))
-((-2754 (((-112) $) 51)) (-2342 (((-820 (-906)) $) 21) (((-906) $) 52)) (-3339 (((-3 $ "failed") $) 16)) (-3834 (($) 9)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 93)) (-3316 (((-3 (-758) "failed") $ $) 71) (((-758) $) 60)) (-1553 (($ $ (-758)) NIL) (($ $) 8)) (-3944 (($) 44)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) 34)) (-2084 (((-3 $ "failed") $) 38) (($ $) 37)))
-(((-343 |#1|) (-10 -8 (-15 -2342 ((-906) |#1|)) (-15 -3316 ((-758) |#1|)) (-15 -2754 ((-112) |#1|)) (-15 -3944 (|#1|)) (-15 -4158 ((-3 (-1241 |#1|) "failed") (-675 |#1|))) (-15 -2084 (|#1| |#1|)) (-15 -1553 (|#1| |#1|)) (-15 -1553 (|#1| |#1| (-758))) (-15 -3834 (|#1|)) (-15 -3339 ((-3 |#1| "failed") |#1|)) (-15 -3316 ((-3 (-758) "failed") |#1| |#1|)) (-15 -2342 ((-820 (-906)) |#1|)) (-15 -2084 ((-3 |#1| "failed") |#1|)) (-15 -3077 ((-1154 |#1|) (-1154 |#1|) (-1154 |#1|)))) (-344)) (T -343))
-NIL
-(-10 -8 (-15 -2342 ((-906) |#1|)) (-15 -3316 ((-758) |#1|)) (-15 -2754 ((-112) |#1|)) (-15 -3944 (|#1|)) (-15 -4158 ((-3 (-1241 |#1|) "failed") (-675 |#1|))) (-15 -2084 (|#1| |#1|)) (-15 -1553 (|#1| |#1|)) (-15 -1553 (|#1| |#1| (-758))) (-15 -3834 (|#1|)) (-15 -3339 ((-3 |#1| "failed") |#1|)) (-15 -3316 ((-3 (-758) "failed") |#1| |#1|)) (-15 -2342 ((-820 (-906)) |#1|)) (-15 -2084 ((-3 |#1| "failed") |#1|)) (-15 -3077 ((-1154 |#1|) (-1154 |#1|) (-1154 |#1|))))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 42)) (-1976 (($ $) 41)) (-1363 (((-112) $) 39)) (-3205 (((-1168 (-906) (-758)) (-554)) 94)) (-2934 (((-3 $ "failed") $ $) 19)) (-3278 (($ $) 74)) (-1565 (((-413 $) $) 73)) (-2286 (((-112) $ $) 60)) (-1508 (((-758)) 104)) (-4087 (($) 17 T CONST)) (-2723 (((-3 "prime" "polynomial" "normal" "cyclic")) 88)) (-3964 (($ $ $) 56)) (-1320 (((-3 $ "failed") $) 33)) (-3353 (($) 107)) (-3943 (($ $ $) 57)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 52)) (-3157 (($) 92)) (-2754 (((-112) $) 91)) (-4122 (($ $) 80) (($ $ (-758)) 79)) (-3289 (((-112) $) 72)) (-2342 (((-820 (-906)) $) 82) (((-906) $) 89)) (-3248 (((-112) $) 31)) (-3339 (((-3 $ "failed") $) 103)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 53)) (-3830 (((-906) $) 106)) (-2475 (($ $ $) 47) (($ (-631 $)) 46)) (-1613 (((-1140) $) 9)) (-2483 (($ $) 71)) (-3834 (($) 102 T CONST)) (-2717 (($ (-906)) 105)) (-2768 (((-1102) $) 10)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 45)) (-2510 (($ $ $) 49) (($ (-631 $)) 48)) (-3725 (((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))) 95)) (-2270 (((-413 $) $) 75)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3919 (((-3 $ "failed") $ $) 43)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 51)) (-2072 (((-758) $) 59)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 58)) (-3316 (((-3 (-758) "failed") $ $) 81) (((-758) $) 90)) (-1553 (($ $ (-758)) 100) (($ $) 98)) (-3944 (($) 93)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) 96)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ $) 44) (($ (-402 (-554))) 67)) (-2084 (((-3 $ "failed") $) 83) (($ $) 97)) (-2261 (((-758)) 28)) (-1909 (((-112) $ $) 40)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($ $ (-758)) 101) (($ $) 99)) (-1658 (((-112) $ $) 6)) (-1752 (($ $ $) 66)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ (-554)) 70)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ (-402 (-554))) 69) (($ (-402 (-554)) $) 68)))
-(((-344) (-138)) (T -344))
-((-2084 (*1 *1 *1) (-4 *1 (-344))) (-4158 (*1 *2 *3) (|partial| -12 (-5 *3 (-675 *1)) (-4 *1 (-344)) (-5 *2 (-1241 *1)))) (-3725 (*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))))) (-3205 (*1 *2 *3) (-12 (-4 *1 (-344)) (-5 *3 (-554)) (-5 *2 (-1168 (-906) (-758))))) (-3944 (*1 *1) (-4 *1 (-344))) (-3157 (*1 *1) (-4 *1 (-344))) (-2754 (*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-112)))) (-3316 (*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-758)))) (-2342 (*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-906)))) (-2723 (*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(-13 (-397) (-363) (-1133) (-229) (-10 -8 (-15 -2084 ($ $)) (-15 -4158 ((-3 (-1241 $) "failed") (-675 $))) (-15 -3725 ((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554)))))) (-15 -3205 ((-1168 (-906) (-758)) (-554))) (-15 -3944 ($)) (-15 -3157 ($)) (-15 -2754 ((-112) $)) (-15 -3316 ((-758) $)) (-15 -2342 ((-906) $)) (-15 -2723 ((-3 "prime" "polynomial" "normal" "cyclic")))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-554))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) . T) ((-604 #0#) . T) ((-604 (-554)) . T) ((-604 $) . T) ((-601 (-848)) . T) ((-170) . T) ((-229) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-358) . T) ((-397) . T) ((-363) . T) ((-446) . T) ((-546) . T) ((-634 #0#) . T) ((-634 $) . T) ((-704 #0#) . T) ((-704 $) . T) ((-713) . T) ((-905) . T) ((-1040 #0#) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1133) . T) ((-1199) . T))
-((-2062 (((-2 (|:| -3782 (-675 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-675 |#1|))) |#1|) 53)) (-3358 (((-2 (|:| -3782 (-675 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-675 |#1|)))) 51)))
-(((-345 |#1| |#2| |#3|) (-10 -7 (-15 -3358 ((-2 (|:| -3782 (-675 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-675 |#1|))))) (-15 -2062 ((-2 (|:| -3782 (-675 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-675 |#1|))) |#1|))) (-13 (-302) (-10 -8 (-15 -1565 ((-413 $) $)))) (-1217 |#1|) (-404 |#1| |#2|)) (T -345))
-((-2062 (*1 *2 *3) (-12 (-4 *3 (-13 (-302) (-10 -8 (-15 -1565 ((-413 $) $))))) (-4 *4 (-1217 *3)) (-5 *2 (-2 (|:| -3782 (-675 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-675 *3)))) (-5 *1 (-345 *3 *4 *5)) (-4 *5 (-404 *3 *4)))) (-3358 (*1 *2) (-12 (-4 *3 (-13 (-302) (-10 -8 (-15 -1565 ((-413 $) $))))) (-4 *4 (-1217 *3)) (-5 *2 (-2 (|:| -3782 (-675 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-675 *3)))) (-5 *1 (-345 *3 *4 *5)) (-4 *5 (-404 *3 *4)))))
-(-10 -7 (-15 -3358 ((-2 (|:| -3782 (-675 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-675 |#1|))))) (-15 -2062 ((-2 (|:| -3782 (-675 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-675 |#1|))) |#1|)))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-3718 (((-112) $) NIL)) (-1924 (((-758)) NIL)) (-1612 (((-895 |#1|) $) NIL) (($ $ (-906)) NIL (|has| (-895 |#1|) (-363)))) (-3205 (((-1168 (-906) (-758)) (-554)) NIL (|has| (-895 |#1|) (-363)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2437 (((-758)) NIL)) (-2286 (((-112) $ $) NIL)) (-1508 (((-758)) NIL (|has| (-895 |#1|) (-363)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-895 |#1|) "failed") $) NIL)) (-1668 (((-895 |#1|) $) NIL)) (-1651 (($ (-1241 (-895 |#1|))) NIL)) (-2723 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-895 |#1|) (-363)))) (-3964 (($ $ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3353 (($) NIL (|has| (-895 |#1|) (-363)))) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3157 (($) NIL (|has| (-895 |#1|) (-363)))) (-2754 (((-112) $) NIL (|has| (-895 |#1|) (-363)))) (-4122 (($ $ (-758)) NIL (-3994 (|has| (-895 |#1|) (-143)) (|has| (-895 |#1|) (-363)))) (($ $) NIL (-3994 (|has| (-895 |#1|) (-143)) (|has| (-895 |#1|) (-363))))) (-3289 (((-112) $) NIL)) (-2342 (((-906) $) NIL (|has| (-895 |#1|) (-363))) (((-820 (-906)) $) NIL (-3994 (|has| (-895 |#1|) (-143)) (|has| (-895 |#1|) (-363))))) (-3248 (((-112) $) NIL)) (-3227 (($) NIL (|has| (-895 |#1|) (-363)))) (-2693 (((-112) $) NIL (|has| (-895 |#1|) (-363)))) (-3274 (((-895 |#1|) $) NIL) (($ $ (-906)) NIL (|has| (-895 |#1|) (-363)))) (-3339 (((-3 $ "failed") $) NIL (|has| (-895 |#1|) (-363)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-3361 (((-1154 (-895 |#1|)) $) NIL) (((-1154 $) $ (-906)) NIL (|has| (-895 |#1|) (-363)))) (-3830 (((-906) $) NIL (|has| (-895 |#1|) (-363)))) (-3933 (((-1154 (-895 |#1|)) $) NIL (|has| (-895 |#1|) (-363)))) (-3025 (((-1154 (-895 |#1|)) $) NIL (|has| (-895 |#1|) (-363))) (((-3 (-1154 (-895 |#1|)) "failed") $ $) NIL (|has| (-895 |#1|) (-363)))) (-2300 (($ $ (-1154 (-895 |#1|))) NIL (|has| (-895 |#1|) (-363)))) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-3834 (($) NIL (|has| (-895 |#1|) (-363)) CONST)) (-2717 (($ (-906)) NIL (|has| (-895 |#1|) (-363)))) (-2070 (((-112) $) NIL)) (-2768 (((-1102) $) NIL)) (-2030 (((-1241 (-631 (-2 (|:| -2794 (-895 |#1|)) (|:| -2717 (-1102)))))) NIL)) (-2611 (((-675 (-895 |#1|))) NIL)) (-4137 (($) NIL (|has| (-895 |#1|) (-363)))) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3725 (((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))) NIL (|has| (-895 |#1|) (-363)))) (-2270 (((-413 $) $) NIL)) (-2365 (((-820 (-906))) NIL) (((-906)) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-3316 (((-758) $) NIL (|has| (-895 |#1|) (-363))) (((-3 (-758) "failed") $ $) NIL (-3994 (|has| (-895 |#1|) (-143)) (|has| (-895 |#1|) (-363))))) (-3330 (((-133)) NIL)) (-1553 (($ $) NIL (|has| (-895 |#1|) (-363))) (($ $ (-758)) NIL (|has| (-895 |#1|) (-363)))) (-3308 (((-820 (-906)) $) NIL) (((-906) $) NIL)) (-4318 (((-1154 (-895 |#1|))) NIL)) (-3944 (($) NIL (|has| (-895 |#1|) (-363)))) (-2288 (($) NIL (|has| (-895 |#1|) (-363)))) (-3656 (((-1241 (-895 |#1|)) $) NIL) (((-675 (-895 |#1|)) (-1241 $)) NIL)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (|has| (-895 |#1|) (-363)))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL) (($ (-402 (-554))) NIL) (($ (-895 |#1|)) NIL)) (-2084 (($ $) NIL (|has| (-895 |#1|) (-363))) (((-3 $ "failed") $) NIL (-3994 (|has| (-895 |#1|) (-143)) (|has| (-895 |#1|) (-363))))) (-2261 (((-758)) NIL)) (-3782 (((-1241 $)) NIL) (((-1241 $) (-906)) NIL)) (-1909 (((-112) $ $) NIL)) (-3536 (((-112) $) NIL)) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1811 (($ $) NIL (|has| (-895 |#1|) (-363))) (($ $ (-758)) NIL (|has| (-895 |#1|) (-363)))) (-1787 (($ $) NIL (|has| (-895 |#1|) (-363))) (($ $ (-758)) NIL (|has| (-895 |#1|) (-363)))) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ $) NIL) (($ $ (-895 |#1|)) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL) (($ $ (-895 |#1|)) NIL) (($ (-895 |#1|) $) NIL)))
-(((-346 |#1| |#2|) (-13 (-324 (-895 |#1|)) (-10 -7 (-15 -2030 ((-1241 (-631 (-2 (|:| -2794 (-895 |#1|)) (|:| -2717 (-1102))))))) (-15 -2611 ((-675 (-895 |#1|)))) (-15 -2437 ((-758))))) (-906) (-906)) (T -346))
-((-2030 (*1 *2) (-12 (-5 *2 (-1241 (-631 (-2 (|:| -2794 (-895 *3)) (|:| -2717 (-1102)))))) (-5 *1 (-346 *3 *4)) (-14 *3 (-906)) (-14 *4 (-906)))) (-2611 (*1 *2) (-12 (-5 *2 (-675 (-895 *3))) (-5 *1 (-346 *3 *4)) (-14 *3 (-906)) (-14 *4 (-906)))) (-2437 (*1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-346 *3 *4)) (-14 *3 (-906)) (-14 *4 (-906)))))
-(-13 (-324 (-895 |#1|)) (-10 -7 (-15 -2030 ((-1241 (-631 (-2 (|:| -2794 (-895 |#1|)) (|:| -2717 (-1102))))))) (-15 -2611 ((-675 (-895 |#1|)))) (-15 -2437 ((-758)))))
-((-3062 (((-112) $ $) 61)) (-1695 (((-112) $) 74)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-3718 (((-112) $) NIL)) (-1924 (((-758)) NIL)) (-1612 ((|#1| $) 92) (($ $ (-906)) 90 (|has| |#1| (-363)))) (-3205 (((-1168 (-906) (-758)) (-554)) 148 (|has| |#1| (-363)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2437 (((-758)) 89)) (-2286 (((-112) $ $) NIL)) (-1508 (((-758)) 162 (|has| |#1| (-363)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) 112)) (-1668 ((|#1| $) 91)) (-1651 (($ (-1241 |#1|)) 58)) (-2723 (((-3 "prime" "polynomial" "normal" "cyclic")) 188 (|has| |#1| (-363)))) (-3964 (($ $ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3353 (($) 158 (|has| |#1| (-363)))) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3157 (($) 149 (|has| |#1| (-363)))) (-2754 (((-112) $) NIL (|has| |#1| (-363)))) (-4122 (($ $ (-758)) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3289 (((-112) $) NIL)) (-2342 (((-906) $) NIL (|has| |#1| (-363))) (((-820 (-906)) $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3248 (((-112) $) NIL)) (-3227 (($) 98 (|has| |#1| (-363)))) (-2693 (((-112) $) 175 (|has| |#1| (-363)))) (-3274 ((|#1| $) 94) (($ $ (-906)) 93 (|has| |#1| (-363)))) (-3339 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-3361 (((-1154 |#1|) $) 189) (((-1154 $) $ (-906)) NIL (|has| |#1| (-363)))) (-3830 (((-906) $) 134 (|has| |#1| (-363)))) (-3933 (((-1154 |#1|) $) 73 (|has| |#1| (-363)))) (-3025 (((-1154 |#1|) $) 70 (|has| |#1| (-363))) (((-3 (-1154 |#1|) "failed") $ $) 82 (|has| |#1| (-363)))) (-2300 (($ $ (-1154 |#1|)) 69 (|has| |#1| (-363)))) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) 192)) (-3834 (($) NIL (|has| |#1| (-363)) CONST)) (-2717 (($ (-906)) 137 (|has| |#1| (-363)))) (-2070 (((-112) $) 108)) (-2768 (((-1102) $) NIL)) (-2030 (((-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102)))))) 83)) (-2611 (((-675 |#1|)) 87)) (-4137 (($) 96 (|has| |#1| (-363)))) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3725 (((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))) 150 (|has| |#1| (-363)))) (-2270 (((-413 $) $) NIL)) (-2365 (((-820 (-906))) NIL) (((-906)) 151)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-3316 (((-758) $) NIL (|has| |#1| (-363))) (((-3 (-758) "failed") $ $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3330 (((-133)) NIL)) (-1553 (($ $) NIL (|has| |#1| (-363))) (($ $ (-758)) NIL (|has| |#1| (-363)))) (-3308 (((-820 (-906)) $) NIL) (((-906) $) 62)) (-4318 (((-1154 |#1|)) 152)) (-3944 (($) 133 (|has| |#1| (-363)))) (-2288 (($) NIL (|has| |#1| (-363)))) (-3656 (((-1241 |#1|) $) 106) (((-675 |#1|) (-1241 $)) NIL)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (|has| |#1| (-363)))) (-3075 (((-848) $) 124) (($ (-554)) NIL) (($ $) NIL) (($ (-402 (-554))) NIL) (($ |#1|) 57)) (-2084 (($ $) NIL (|has| |#1| (-363))) (((-3 $ "failed") $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2261 (((-758)) 156)) (-3782 (((-1241 $)) 172) (((-1241 $) (-906)) 101)) (-1909 (((-112) $ $) NIL)) (-3536 (((-112) $) NIL)) (-2004 (($) 117 T CONST)) (-2014 (($) 33 T CONST)) (-1811 (($ $) 107 (|has| |#1| (-363))) (($ $ (-758)) 99 (|has| |#1| (-363)))) (-1787 (($ $) NIL (|has| |#1| (-363))) (($ $ (-758)) NIL (|has| |#1| (-363)))) (-1658 (((-112) $ $) 183)) (-1752 (($ $ $) 104) (($ $ |#1|) 105)) (-1744 (($ $) 177) (($ $ $) 181)) (-1735 (($ $ $) 179)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) 138)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 186) (($ $ $) 142) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103)))
-(((-347 |#1| |#2|) (-13 (-324 |#1|) (-10 -7 (-15 -2030 ((-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102))))))) (-15 -2611 ((-675 |#1|))) (-15 -2437 ((-758))))) (-344) (-3 (-1154 |#1|) (-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102))))))) (T -347))
-((-2030 (*1 *2) (-12 (-5 *2 (-1241 (-631 (-2 (|:| -2794 *3) (|:| -2717 (-1102)))))) (-5 *1 (-347 *3 *4)) (-4 *3 (-344)) (-14 *4 (-3 (-1154 *3) *2)))) (-2611 (*1 *2) (-12 (-5 *2 (-675 *3)) (-5 *1 (-347 *3 *4)) (-4 *3 (-344)) (-14 *4 (-3 (-1154 *3) (-1241 (-631 (-2 (|:| -2794 *3) (|:| -2717 (-1102))))))))) (-2437 (*1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-347 *3 *4)) (-4 *3 (-344)) (-14 *4 (-3 (-1154 *3) (-1241 (-631 (-2 (|:| -2794 *3) (|:| -2717 (-1102))))))))))
-(-13 (-324 |#1|) (-10 -7 (-15 -2030 ((-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102))))))) (-15 -2611 ((-675 |#1|))) (-15 -2437 ((-758)))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-3718 (((-112) $) NIL)) (-1924 (((-758)) NIL)) (-1612 ((|#1| $) NIL) (($ $ (-906)) NIL (|has| |#1| (-363)))) (-3205 (((-1168 (-906) (-758)) (-554)) NIL (|has| |#1| (-363)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2437 (((-758)) NIL)) (-2286 (((-112) $ $) NIL)) (-1508 (((-758)) NIL (|has| |#1| (-363)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL)) (-1668 ((|#1| $) NIL)) (-1651 (($ (-1241 |#1|)) NIL)) (-2723 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-363)))) (-3964 (($ $ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3353 (($) NIL (|has| |#1| (-363)))) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3157 (($) NIL (|has| |#1| (-363)))) (-2754 (((-112) $) NIL (|has| |#1| (-363)))) (-4122 (($ $ (-758)) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3289 (((-112) $) NIL)) (-2342 (((-906) $) NIL (|has| |#1| (-363))) (((-820 (-906)) $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3248 (((-112) $) NIL)) (-3227 (($) NIL (|has| |#1| (-363)))) (-2693 (((-112) $) NIL (|has| |#1| (-363)))) (-3274 ((|#1| $) NIL) (($ $ (-906)) NIL (|has| |#1| (-363)))) (-3339 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-3361 (((-1154 |#1|) $) NIL) (((-1154 $) $ (-906)) NIL (|has| |#1| (-363)))) (-3830 (((-906) $) NIL (|has| |#1| (-363)))) (-3933 (((-1154 |#1|) $) NIL (|has| |#1| (-363)))) (-3025 (((-1154 |#1|) $) NIL (|has| |#1| (-363))) (((-3 (-1154 |#1|) "failed") $ $) NIL (|has| |#1| (-363)))) (-2300 (($ $ (-1154 |#1|)) NIL (|has| |#1| (-363)))) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-3834 (($) NIL (|has| |#1| (-363)) CONST)) (-2717 (($ (-906)) NIL (|has| |#1| (-363)))) (-2070 (((-112) $) NIL)) (-2768 (((-1102) $) NIL)) (-2030 (((-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102)))))) NIL)) (-2611 (((-675 |#1|)) NIL)) (-4137 (($) NIL (|has| |#1| (-363)))) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3725 (((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))) NIL (|has| |#1| (-363)))) (-2270 (((-413 $) $) NIL)) (-2365 (((-820 (-906))) NIL) (((-906)) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-3316 (((-758) $) NIL (|has| |#1| (-363))) (((-3 (-758) "failed") $ $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3330 (((-133)) NIL)) (-1553 (($ $) NIL (|has| |#1| (-363))) (($ $ (-758)) NIL (|has| |#1| (-363)))) (-3308 (((-820 (-906)) $) NIL) (((-906) $) NIL)) (-4318 (((-1154 |#1|)) NIL)) (-3944 (($) NIL (|has| |#1| (-363)))) (-2288 (($) NIL (|has| |#1| (-363)))) (-3656 (((-1241 |#1|) $) NIL) (((-675 |#1|) (-1241 $)) NIL)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (|has| |#1| (-363)))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL) (($ (-402 (-554))) NIL) (($ |#1|) NIL)) (-2084 (($ $) NIL (|has| |#1| (-363))) (((-3 $ "failed") $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2261 (((-758)) NIL)) (-3782 (((-1241 $)) NIL) (((-1241 $) (-906)) NIL)) (-1909 (((-112) $ $) NIL)) (-3536 (((-112) $) NIL)) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1811 (($ $) NIL (|has| |#1| (-363))) (($ $ (-758)) NIL (|has| |#1| (-363)))) (-1787 (($ $) NIL (|has| |#1| (-363))) (($ $ (-758)) NIL (|has| |#1| (-363)))) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-348 |#1| |#2|) (-13 (-324 |#1|) (-10 -7 (-15 -2030 ((-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102))))))) (-15 -2611 ((-675 |#1|))) (-15 -2437 ((-758))))) (-344) (-906)) (T -348))
-((-2030 (*1 *2) (-12 (-5 *2 (-1241 (-631 (-2 (|:| -2794 *3) (|:| -2717 (-1102)))))) (-5 *1 (-348 *3 *4)) (-4 *3 (-344)) (-14 *4 (-906)))) (-2611 (*1 *2) (-12 (-5 *2 (-675 *3)) (-5 *1 (-348 *3 *4)) (-4 *3 (-344)) (-14 *4 (-906)))) (-2437 (*1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-348 *3 *4)) (-4 *3 (-344)) (-14 *4 (-906)))))
-(-13 (-324 |#1|) (-10 -7 (-15 -2030 ((-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102))))))) (-15 -2611 ((-675 |#1|))) (-15 -2437 ((-758)))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-3718 (((-112) $) NIL)) (-1924 (((-758)) NIL)) (-1612 (((-895 |#1|) $) NIL) (($ $ (-906)) NIL (|has| (-895 |#1|) (-363)))) (-3205 (((-1168 (-906) (-758)) (-554)) NIL (|has| (-895 |#1|) (-363)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2286 (((-112) $ $) NIL)) (-1508 (((-758)) NIL (|has| (-895 |#1|) (-363)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-895 |#1|) "failed") $) NIL)) (-1668 (((-895 |#1|) $) NIL)) (-1651 (($ (-1241 (-895 |#1|))) NIL)) (-2723 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-895 |#1|) (-363)))) (-3964 (($ $ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3353 (($) NIL (|has| (-895 |#1|) (-363)))) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3157 (($) NIL (|has| (-895 |#1|) (-363)))) (-2754 (((-112) $) NIL (|has| (-895 |#1|) (-363)))) (-4122 (($ $ (-758)) NIL (-3994 (|has| (-895 |#1|) (-143)) (|has| (-895 |#1|) (-363)))) (($ $) NIL (-3994 (|has| (-895 |#1|) (-143)) (|has| (-895 |#1|) (-363))))) (-3289 (((-112) $) NIL)) (-2342 (((-906) $) NIL (|has| (-895 |#1|) (-363))) (((-820 (-906)) $) NIL (-3994 (|has| (-895 |#1|) (-143)) (|has| (-895 |#1|) (-363))))) (-3248 (((-112) $) NIL)) (-3227 (($) NIL (|has| (-895 |#1|) (-363)))) (-2693 (((-112) $) NIL (|has| (-895 |#1|) (-363)))) (-3274 (((-895 |#1|) $) NIL) (($ $ (-906)) NIL (|has| (-895 |#1|) (-363)))) (-3339 (((-3 $ "failed") $) NIL (|has| (-895 |#1|) (-363)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-3361 (((-1154 (-895 |#1|)) $) NIL) (((-1154 $) $ (-906)) NIL (|has| (-895 |#1|) (-363)))) (-3830 (((-906) $) NIL (|has| (-895 |#1|) (-363)))) (-3933 (((-1154 (-895 |#1|)) $) NIL (|has| (-895 |#1|) (-363)))) (-3025 (((-1154 (-895 |#1|)) $) NIL (|has| (-895 |#1|) (-363))) (((-3 (-1154 (-895 |#1|)) "failed") $ $) NIL (|has| (-895 |#1|) (-363)))) (-2300 (($ $ (-1154 (-895 |#1|))) NIL (|has| (-895 |#1|) (-363)))) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-3834 (($) NIL (|has| (-895 |#1|) (-363)) CONST)) (-2717 (($ (-906)) NIL (|has| (-895 |#1|) (-363)))) (-2070 (((-112) $) NIL)) (-2768 (((-1102) $) NIL)) (-4137 (($) NIL (|has| (-895 |#1|) (-363)))) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3725 (((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))) NIL (|has| (-895 |#1|) (-363)))) (-2270 (((-413 $) $) NIL)) (-2365 (((-820 (-906))) NIL) (((-906)) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-3316 (((-758) $) NIL (|has| (-895 |#1|) (-363))) (((-3 (-758) "failed") $ $) NIL (-3994 (|has| (-895 |#1|) (-143)) (|has| (-895 |#1|) (-363))))) (-3330 (((-133)) NIL)) (-1553 (($ $) NIL (|has| (-895 |#1|) (-363))) (($ $ (-758)) NIL (|has| (-895 |#1|) (-363)))) (-3308 (((-820 (-906)) $) NIL) (((-906) $) NIL)) (-4318 (((-1154 (-895 |#1|))) NIL)) (-3944 (($) NIL (|has| (-895 |#1|) (-363)))) (-2288 (($) NIL (|has| (-895 |#1|) (-363)))) (-3656 (((-1241 (-895 |#1|)) $) NIL) (((-675 (-895 |#1|)) (-1241 $)) NIL)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (|has| (-895 |#1|) (-363)))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL) (($ (-402 (-554))) NIL) (($ (-895 |#1|)) NIL)) (-2084 (($ $) NIL (|has| (-895 |#1|) (-363))) (((-3 $ "failed") $) NIL (-3994 (|has| (-895 |#1|) (-143)) (|has| (-895 |#1|) (-363))))) (-2261 (((-758)) NIL)) (-3782 (((-1241 $)) NIL) (((-1241 $) (-906)) NIL)) (-1909 (((-112) $ $) NIL)) (-3536 (((-112) $) NIL)) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1811 (($ $) NIL (|has| (-895 |#1|) (-363))) (($ $ (-758)) NIL (|has| (-895 |#1|) (-363)))) (-1787 (($ $) NIL (|has| (-895 |#1|) (-363))) (($ $ (-758)) NIL (|has| (-895 |#1|) (-363)))) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ $) NIL) (($ $ (-895 |#1|)) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL) (($ $ (-895 |#1|)) NIL) (($ (-895 |#1|) $) NIL)))
-(((-349 |#1| |#2|) (-324 (-895 |#1|)) (-906) (-906)) (T -349))
-NIL
-(-324 (-895 |#1|))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-3718 (((-112) $) NIL)) (-1924 (((-758)) NIL)) (-1612 ((|#1| $) NIL) (($ $ (-906)) NIL (|has| |#1| (-363)))) (-3205 (((-1168 (-906) (-758)) (-554)) 120 (|has| |#1| (-363)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2286 (((-112) $ $) NIL)) (-1508 (((-758)) 140 (|has| |#1| (-363)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) 93)) (-1668 ((|#1| $) 90)) (-1651 (($ (-1241 |#1|)) 85)) (-2723 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-363)))) (-3964 (($ $ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3353 (($) 82 (|has| |#1| (-363)))) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3157 (($) 42 (|has| |#1| (-363)))) (-2754 (((-112) $) NIL (|has| |#1| (-363)))) (-4122 (($ $ (-758)) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3289 (((-112) $) NIL)) (-2342 (((-906) $) NIL (|has| |#1| (-363))) (((-820 (-906)) $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3248 (((-112) $) NIL)) (-3227 (($) 121 (|has| |#1| (-363)))) (-2693 (((-112) $) 74 (|has| |#1| (-363)))) (-3274 ((|#1| $) 39) (($ $ (-906)) 43 (|has| |#1| (-363)))) (-3339 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-3361 (((-1154 |#1|) $) 65) (((-1154 $) $ (-906)) NIL (|has| |#1| (-363)))) (-3830 (((-906) $) 97 (|has| |#1| (-363)))) (-3933 (((-1154 |#1|) $) NIL (|has| |#1| (-363)))) (-3025 (((-1154 |#1|) $) NIL (|has| |#1| (-363))) (((-3 (-1154 |#1|) "failed") $ $) NIL (|has| |#1| (-363)))) (-2300 (($ $ (-1154 |#1|)) NIL (|has| |#1| (-363)))) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-3834 (($) NIL (|has| |#1| (-363)) CONST)) (-2717 (($ (-906)) 95 (|has| |#1| (-363)))) (-2070 (((-112) $) 142)) (-2768 (((-1102) $) NIL)) (-4137 (($) 36 (|has| |#1| (-363)))) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3725 (((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))) 115 (|has| |#1| (-363)))) (-2270 (((-413 $) $) NIL)) (-2365 (((-820 (-906))) NIL) (((-906)) 139)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-3316 (((-758) $) NIL (|has| |#1| (-363))) (((-3 (-758) "failed") $ $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3330 (((-133)) NIL)) (-1553 (($ $) NIL (|has| |#1| (-363))) (($ $ (-758)) NIL (|has| |#1| (-363)))) (-3308 (((-820 (-906)) $) NIL) (((-906) $) 59)) (-4318 (((-1154 |#1|)) 88)) (-3944 (($) 126 (|has| |#1| (-363)))) (-2288 (($) NIL (|has| |#1| (-363)))) (-3656 (((-1241 |#1|) $) 53) (((-675 |#1|) (-1241 $)) NIL)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (|has| |#1| (-363)))) (-3075 (((-848) $) 138) (($ (-554)) NIL) (($ $) NIL) (($ (-402 (-554))) NIL) (($ |#1|) 87)) (-2084 (($ $) NIL (|has| |#1| (-363))) (((-3 $ "failed") $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2261 (((-758)) 144)) (-3782 (((-1241 $)) 109) (((-1241 $) (-906)) 49)) (-1909 (((-112) $ $) NIL)) (-3536 (((-112) $) NIL)) (-2004 (($) 111 T CONST)) (-2014 (($) 32 T CONST)) (-1811 (($ $) 68 (|has| |#1| (-363))) (($ $ (-758)) NIL (|has| |#1| (-363)))) (-1787 (($ $) NIL (|has| |#1| (-363))) (($ $ (-758)) NIL (|has| |#1| (-363)))) (-1658 (((-112) $ $) 107)) (-1752 (($ $ $) 99) (($ $ |#1|) 100)) (-1744 (($ $) 80) (($ $ $) 105)) (-1735 (($ $ $) 103)) (** (($ $ (-906)) NIL) (($ $ (-758)) 44) (($ $ (-554)) 130)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 78) (($ $ $) 56) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76)))
-(((-350 |#1| |#2|) (-324 |#1|) (-344) (-1154 |#1|)) (T -350))
-NIL
-(-324 |#1|)
-((-1586 ((|#1| (-1154 |#2|)) 52)))
-(((-351 |#1| |#2|) (-10 -7 (-15 -1586 (|#1| (-1154 |#2|)))) (-13 (-397) (-10 -7 (-15 -3075 (|#1| |#2|)) (-15 -3830 ((-906) |#1|)) (-15 -3782 ((-1241 |#1|) (-906))) (-15 -1811 (|#1| |#1|)))) (-344)) (T -351))
-((-1586 (*1 *2 *3) (-12 (-5 *3 (-1154 *4)) (-4 *4 (-344)) (-4 *2 (-13 (-397) (-10 -7 (-15 -3075 (*2 *4)) (-15 -3830 ((-906) *2)) (-15 -3782 ((-1241 *2) (-906))) (-15 -1811 (*2 *2))))) (-5 *1 (-351 *2 *4)))))
-(-10 -7 (-15 -1586 (|#1| (-1154 |#2|))))
-((-4311 (((-943 (-1154 |#1|)) (-1154 |#1|)) 36)) (-3353 (((-1154 |#1|) (-906) (-906)) 113) (((-1154 |#1|) (-906)) 112)) (-2754 (((-112) (-1154 |#1|)) 84)) (-4284 (((-906) (-906)) 71)) (-3385 (((-906) (-906)) 74)) (-3325 (((-906) (-906)) 69)) (-2693 (((-112) (-1154 |#1|)) 88)) (-1328 (((-3 (-1154 |#1|) "failed") (-1154 |#1|)) 101)) (-3112 (((-3 (-1154 |#1|) "failed") (-1154 |#1|)) 104)) (-2931 (((-3 (-1154 |#1|) "failed") (-1154 |#1|)) 103)) (-1958 (((-3 (-1154 |#1|) "failed") (-1154 |#1|)) 102)) (-3936 (((-3 (-1154 |#1|) "failed") (-1154 |#1|)) 98)) (-2764 (((-1154 |#1|) (-1154 |#1|)) 62)) (-3821 (((-1154 |#1|) (-906)) 107)) (-3491 (((-1154 |#1|) (-906)) 110)) (-2771 (((-1154 |#1|) (-906)) 109)) (-3763 (((-1154 |#1|) (-906)) 108)) (-1329 (((-1154 |#1|) (-906)) 105)))
-(((-352 |#1|) (-10 -7 (-15 -2754 ((-112) (-1154 |#1|))) (-15 -2693 ((-112) (-1154 |#1|))) (-15 -3325 ((-906) (-906))) (-15 -4284 ((-906) (-906))) (-15 -3385 ((-906) (-906))) (-15 -1329 ((-1154 |#1|) (-906))) (-15 -3821 ((-1154 |#1|) (-906))) (-15 -3763 ((-1154 |#1|) (-906))) (-15 -2771 ((-1154 |#1|) (-906))) (-15 -3491 ((-1154 |#1|) (-906))) (-15 -3936 ((-3 (-1154 |#1|) "failed") (-1154 |#1|))) (-15 -1328 ((-3 (-1154 |#1|) "failed") (-1154 |#1|))) (-15 -1958 ((-3 (-1154 |#1|) "failed") (-1154 |#1|))) (-15 -2931 ((-3 (-1154 |#1|) "failed") (-1154 |#1|))) (-15 -3112 ((-3 (-1154 |#1|) "failed") (-1154 |#1|))) (-15 -3353 ((-1154 |#1|) (-906))) (-15 -3353 ((-1154 |#1|) (-906) (-906))) (-15 -2764 ((-1154 |#1|) (-1154 |#1|))) (-15 -4311 ((-943 (-1154 |#1|)) (-1154 |#1|)))) (-344)) (T -352))
-((-4311 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-943 (-1154 *4))) (-5 *1 (-352 *4)) (-5 *3 (-1154 *4)))) (-2764 (*1 *2 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3)))) (-3353 (*1 *2 *3 *3) (-12 (-5 *3 (-906)) (-5 *2 (-1154 *4)) (-5 *1 (-352 *4)) (-4 *4 (-344)))) (-3353 (*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-1154 *4)) (-5 *1 (-352 *4)) (-4 *4 (-344)))) (-3112 (*1 *2 *2) (|partial| -12 (-5 *2 (-1154 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3)))) (-2931 (*1 *2 *2) (|partial| -12 (-5 *2 (-1154 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3)))) (-1958 (*1 *2 *2) (|partial| -12 (-5 *2 (-1154 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3)))) (-1328 (*1 *2 *2) (|partial| -12 (-5 *2 (-1154 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3)))) (-3936 (*1 *2 *2) (|partial| -12 (-5 *2 (-1154 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3)))) (-3491 (*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-1154 *4)) (-5 *1 (-352 *4)) (-4 *4 (-344)))) (-2771 (*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-1154 *4)) (-5 *1 (-352 *4)) (-4 *4 (-344)))) (-3763 (*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-1154 *4)) (-5 *1 (-352 *4)) (-4 *4 (-344)))) (-3821 (*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-1154 *4)) (-5 *1 (-352 *4)) (-4 *4 (-344)))) (-1329 (*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-1154 *4)) (-5 *1 (-352 *4)) (-4 *4 (-344)))) (-3385 (*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-352 *3)) (-4 *3 (-344)))) (-4284 (*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-352 *3)) (-4 *3 (-344)))) (-3325 (*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-352 *3)) (-4 *3 (-344)))) (-2693 (*1 *2 *3) (-12 (-5 *3 (-1154 *4)) (-4 *4 (-344)) (-5 *2 (-112)) (-5 *1 (-352 *4)))) (-2754 (*1 *2 *3) (-12 (-5 *3 (-1154 *4)) (-4 *4 (-344)) (-5 *2 (-112)) (-5 *1 (-352 *4)))))
-(-10 -7 (-15 -2754 ((-112) (-1154 |#1|))) (-15 -2693 ((-112) (-1154 |#1|))) (-15 -3325 ((-906) (-906))) (-15 -4284 ((-906) (-906))) (-15 -3385 ((-906) (-906))) (-15 -1329 ((-1154 |#1|) (-906))) (-15 -3821 ((-1154 |#1|) (-906))) (-15 -3763 ((-1154 |#1|) (-906))) (-15 -2771 ((-1154 |#1|) (-906))) (-15 -3491 ((-1154 |#1|) (-906))) (-15 -3936 ((-3 (-1154 |#1|) "failed") (-1154 |#1|))) (-15 -1328 ((-3 (-1154 |#1|) "failed") (-1154 |#1|))) (-15 -1958 ((-3 (-1154 |#1|) "failed") (-1154 |#1|))) (-15 -2931 ((-3 (-1154 |#1|) "failed") (-1154 |#1|))) (-15 -3112 ((-3 (-1154 |#1|) "failed") (-1154 |#1|))) (-15 -3353 ((-1154 |#1|) (-906))) (-15 -3353 ((-1154 |#1|) (-906) (-906))) (-15 -2764 ((-1154 |#1|) (-1154 |#1|))) (-15 -4311 ((-943 (-1154 |#1|)) (-1154 |#1|))))
-((-1625 (((-3 (-631 |#3|) "failed") (-631 |#3|) |#3|) 34)))
-(((-353 |#1| |#2| |#3|) (-10 -7 (-15 -1625 ((-3 (-631 |#3|) "failed") (-631 |#3|) |#3|))) (-344) (-1217 |#1|) (-1217 |#2|)) (T -353))
-((-1625 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-631 *3)) (-4 *3 (-1217 *5)) (-4 *5 (-1217 *4)) (-4 *4 (-344)) (-5 *1 (-353 *4 *5 *3)))))
-(-10 -7 (-15 -1625 ((-3 (-631 |#3|) "failed") (-631 |#3|) |#3|)))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-3718 (((-112) $) NIL)) (-1924 (((-758)) NIL)) (-1612 ((|#1| $) NIL) (($ $ (-906)) NIL (|has| |#1| (-363)))) (-3205 (((-1168 (-906) (-758)) (-554)) NIL (|has| |#1| (-363)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2286 (((-112) $ $) NIL)) (-1508 (((-758)) NIL (|has| |#1| (-363)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL)) (-1668 ((|#1| $) NIL)) (-1651 (($ (-1241 |#1|)) NIL)) (-2723 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-363)))) (-3964 (($ $ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3353 (($) NIL (|has| |#1| (-363)))) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3157 (($) NIL (|has| |#1| (-363)))) (-2754 (((-112) $) NIL (|has| |#1| (-363)))) (-4122 (($ $ (-758)) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3289 (((-112) $) NIL)) (-2342 (((-906) $) NIL (|has| |#1| (-363))) (((-820 (-906)) $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3248 (((-112) $) NIL)) (-3227 (($) NIL (|has| |#1| (-363)))) (-2693 (((-112) $) NIL (|has| |#1| (-363)))) (-3274 ((|#1| $) NIL) (($ $ (-906)) NIL (|has| |#1| (-363)))) (-3339 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-3361 (((-1154 |#1|) $) NIL) (((-1154 $) $ (-906)) NIL (|has| |#1| (-363)))) (-3830 (((-906) $) NIL (|has| |#1| (-363)))) (-3933 (((-1154 |#1|) $) NIL (|has| |#1| (-363)))) (-3025 (((-1154 |#1|) $) NIL (|has| |#1| (-363))) (((-3 (-1154 |#1|) "failed") $ $) NIL (|has| |#1| (-363)))) (-2300 (($ $ (-1154 |#1|)) NIL (|has| |#1| (-363)))) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-3834 (($) NIL (|has| |#1| (-363)) CONST)) (-2717 (($ (-906)) NIL (|has| |#1| (-363)))) (-2070 (((-112) $) NIL)) (-2768 (((-1102) $) NIL)) (-4137 (($) NIL (|has| |#1| (-363)))) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3725 (((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))) NIL (|has| |#1| (-363)))) (-2270 (((-413 $) $) NIL)) (-2365 (((-820 (-906))) NIL) (((-906)) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-3316 (((-758) $) NIL (|has| |#1| (-363))) (((-3 (-758) "failed") $ $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3330 (((-133)) NIL)) (-1553 (($ $) NIL (|has| |#1| (-363))) (($ $ (-758)) NIL (|has| |#1| (-363)))) (-3308 (((-820 (-906)) $) NIL) (((-906) $) NIL)) (-4318 (((-1154 |#1|)) NIL)) (-3944 (($) NIL (|has| |#1| (-363)))) (-2288 (($) NIL (|has| |#1| (-363)))) (-3656 (((-1241 |#1|) $) NIL) (((-675 |#1|) (-1241 $)) NIL)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (|has| |#1| (-363)))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL) (($ (-402 (-554))) NIL) (($ |#1|) NIL)) (-2084 (($ $) NIL (|has| |#1| (-363))) (((-3 $ "failed") $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2261 (((-758)) NIL)) (-3782 (((-1241 $)) NIL) (((-1241 $) (-906)) NIL)) (-1909 (((-112) $ $) NIL)) (-3536 (((-112) $) NIL)) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1811 (($ $) NIL (|has| |#1| (-363))) (($ $ (-758)) NIL (|has| |#1| (-363)))) (-1787 (($ $) NIL (|has| |#1| (-363))) (($ $ (-758)) NIL (|has| |#1| (-363)))) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-354 |#1| |#2|) (-324 |#1|) (-344) (-906)) (T -354))
-NIL
-(-324 |#1|)
-((-3286 (((-112) (-631 (-937 |#1|))) 34)) (-3486 (((-631 (-937 |#1|)) (-631 (-937 |#1|))) 46)) (-2526 (((-3 (-631 (-937 |#1|)) "failed") (-631 (-937 |#1|))) 41)))
-(((-355 |#1| |#2|) (-10 -7 (-15 -3286 ((-112) (-631 (-937 |#1|)))) (-15 -2526 ((-3 (-631 (-937 |#1|)) "failed") (-631 (-937 |#1|)))) (-15 -3486 ((-631 (-937 |#1|)) (-631 (-937 |#1|))))) (-446) (-631 (-1158))) (T -355))
-((-3486 (*1 *2 *2) (-12 (-5 *2 (-631 (-937 *3))) (-4 *3 (-446)) (-5 *1 (-355 *3 *4)) (-14 *4 (-631 (-1158))))) (-2526 (*1 *2 *2) (|partial| -12 (-5 *2 (-631 (-937 *3))) (-4 *3 (-446)) (-5 *1 (-355 *3 *4)) (-14 *4 (-631 (-1158))))) (-3286 (*1 *2 *3) (-12 (-5 *3 (-631 (-937 *4))) (-4 *4 (-446)) (-5 *2 (-112)) (-5 *1 (-355 *4 *5)) (-14 *5 (-631 (-1158))))))
-(-10 -7 (-15 -3286 ((-112) (-631 (-937 |#1|)))) (-15 -2526 ((-3 (-631 (-937 |#1|)) "failed") (-631 (-937 |#1|)))) (-15 -3486 ((-631 (-937 |#1|)) (-631 (-937 |#1|)))))
-((-3062 (((-112) $ $) NIL)) (-1508 (((-758) $) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL)) (-1668 ((|#1| $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3248 (((-112) $) 15)) (-3195 ((|#1| $ (-554)) NIL)) (-2370 (((-554) $ (-554)) NIL)) (-3563 (($ (-1 |#1| |#1|) $) 32)) (-4098 (($ (-1 (-554) (-554)) $) 24)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) 26)) (-2768 (((-1102) $) NIL)) (-2316 (((-631 (-2 (|:| |gen| |#1|) (|:| -1333 (-554)))) $) 28)) (-3992 (($ $ $) NIL)) (-1856 (($ $ $) NIL)) (-3075 (((-848) $) 38) (($ |#1|) NIL)) (-2014 (($) 9 T CONST)) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL) (($ |#1| (-554)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19)))
-(((-356 |#1|) (-13 (-467) (-1023 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-554))) (-15 -1508 ((-758) $)) (-15 -2370 ((-554) $ (-554))) (-15 -3195 (|#1| $ (-554))) (-15 -4098 ($ (-1 (-554) (-554)) $)) (-15 -3563 ($ (-1 |#1| |#1|) $)) (-15 -2316 ((-631 (-2 (|:| |gen| |#1|) (|:| -1333 (-554)))) $)))) (-1082)) (T -356))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1082)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1082)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-554)) (-5 *1 (-356 *2)) (-4 *2 (-1082)))) (-1508 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-356 *3)) (-4 *3 (-1082)))) (-2370 (*1 *2 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-356 *3)) (-4 *3 (-1082)))) (-3195 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-5 *1 (-356 *2)) (-4 *2 (-1082)))) (-4098 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-554) (-554))) (-5 *1 (-356 *3)) (-4 *3 (-1082)))) (-3563 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1082)) (-5 *1 (-356 *3)))) (-2316 (*1 *2 *1) (-12 (-5 *2 (-631 (-2 (|:| |gen| *3) (|:| -1333 (-554))))) (-5 *1 (-356 *3)) (-4 *3 (-1082)))))
-(-13 (-467) (-1023 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-554))) (-15 -1508 ((-758) $)) (-15 -2370 ((-554) $ (-554))) (-15 -3195 (|#1| $ (-554))) (-15 -4098 ($ (-1 (-554) (-554)) $)) (-15 -3563 ($ (-1 |#1| |#1|) $)) (-15 -2316 ((-631 (-2 (|:| |gen| |#1|) (|:| -1333 (-554)))) $))))
-((-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 13)) (-1976 (($ $) 14)) (-1565 (((-413 $) $) 30)) (-3289 (((-112) $) 26)) (-2483 (($ $) 19)) (-2510 (($ $ $) 23) (($ (-631 $)) NIL)) (-2270 (((-413 $) $) 31)) (-3919 (((-3 $ "failed") $ $) 22)) (-2072 (((-758) $) 25)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 35)) (-1909 (((-112) $ $) 16)) (-1752 (($ $ $) 33)))
-(((-357 |#1|) (-10 -8 (-15 -1752 (|#1| |#1| |#1|)) (-15 -2483 (|#1| |#1|)) (-15 -3289 ((-112) |#1|)) (-15 -1565 ((-413 |#1|) |#1|)) (-15 -2270 ((-413 |#1|) |#1|)) (-15 -2259 ((-2 (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -2072 ((-758) |#1|)) (-15 -2510 (|#1| (-631 |#1|))) (-15 -2510 (|#1| |#1| |#1|)) (-15 -1909 ((-112) |#1| |#1|)) (-15 -1976 (|#1| |#1|)) (-15 -1292 ((-2 (|:| -3646 |#1|) (|:| -4360 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3919 ((-3 |#1| "failed") |#1| |#1|))) (-358)) (T -357))
-NIL
-(-10 -8 (-15 -1752 (|#1| |#1| |#1|)) (-15 -2483 (|#1| |#1|)) (-15 -3289 ((-112) |#1|)) (-15 -1565 ((-413 |#1|) |#1|)) (-15 -2270 ((-413 |#1|) |#1|)) (-15 -2259 ((-2 (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -2072 ((-758) |#1|)) (-15 -2510 (|#1| (-631 |#1|))) (-15 -2510 (|#1| |#1| |#1|)) (-15 -1909 ((-112) |#1| |#1|)) (-15 -1976 (|#1| |#1|)) (-15 -1292 ((-2 (|:| -3646 |#1|) (|:| -4360 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3919 ((-3 |#1| "failed") |#1| |#1|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 42)) (-1976 (($ $) 41)) (-1363 (((-112) $) 39)) (-2934 (((-3 $ "failed") $ $) 19)) (-3278 (($ $) 74)) (-1565 (((-413 $) $) 73)) (-2286 (((-112) $ $) 60)) (-4087 (($) 17 T CONST)) (-3964 (($ $ $) 56)) (-1320 (((-3 $ "failed") $) 33)) (-3943 (($ $ $) 57)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 52)) (-3289 (((-112) $) 72)) (-3248 (((-112) $) 31)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 53)) (-2475 (($ $ $) 47) (($ (-631 $)) 46)) (-1613 (((-1140) $) 9)) (-2483 (($ $) 71)) (-2768 (((-1102) $) 10)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 45)) (-2510 (($ $ $) 49) (($ (-631 $)) 48)) (-2270 (((-413 $) $) 75)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3919 (((-3 $ "failed") $ $) 43)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 51)) (-2072 (((-758) $) 59)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 58)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ $) 44) (($ (-402 (-554))) 67)) (-2261 (((-758)) 28)) (-1909 (((-112) $ $) 40)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1752 (($ $ $) 66)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ (-554)) 70)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ (-402 (-554))) 69) (($ (-402 (-554)) $) 68)))
-(((-358) (-138)) (T -358))
-((-1752 (*1 *1 *1 *1) (-4 *1 (-358))))
-(-13 (-302) (-1199) (-239) (-10 -8 (-15 -1752 ($ $ $)) (-6 -4371) (-6 -4365)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-554))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-604 #0#) . T) ((-604 (-554)) . T) ((-604 $) . T) ((-601 (-848)) . T) ((-170) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-446) . T) ((-546) . T) ((-634 #0#) . T) ((-634 $) . T) ((-704 #0#) . T) ((-704 $) . T) ((-713) . T) ((-905) . T) ((-1040 #0#) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1199) . T))
-((-3062 (((-112) $ $) 7)) (-3719 ((|#2| $ |#2|) 13)) (-1875 (($ $ (-1140)) 18)) (-3416 ((|#2| $) 14)) (-1303 (($ |#1|) 20) (($ |#1| (-1140)) 19)) (-4309 ((|#1| $) 16)) (-1613 (((-1140) $) 9)) (-1597 (((-1140) $) 15)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-3745 (($ $) 17)) (-1658 (((-112) $ $) 6)))
-(((-359 |#1| |#2|) (-138) (-1082) (-1082)) (T -359))
-((-1303 (*1 *1 *2) (-12 (-4 *1 (-359 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082)))) (-1303 (*1 *1 *2 *3) (-12 (-5 *3 (-1140)) (-4 *1 (-359 *2 *4)) (-4 *2 (-1082)) (-4 *4 (-1082)))) (-1875 (*1 *1 *1 *2) (-12 (-5 *2 (-1140)) (-4 *1 (-359 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)))) (-3745 (*1 *1 *1) (-12 (-4 *1 (-359 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082)))) (-4309 (*1 *2 *1) (-12 (-4 *1 (-359 *2 *3)) (-4 *3 (-1082)) (-4 *2 (-1082)))) (-1597 (*1 *2 *1) (-12 (-4 *1 (-359 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-5 *2 (-1140)))) (-3416 (*1 *2 *1) (-12 (-4 *1 (-359 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1082)))) (-3719 (*1 *2 *1 *2) (-12 (-4 *1 (-359 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1082)))))
-(-13 (-1082) (-10 -8 (-15 -1303 ($ |t#1|)) (-15 -1303 ($ |t#1| (-1140))) (-15 -1875 ($ $ (-1140))) (-15 -3745 ($ $)) (-15 -4309 (|t#1| $)) (-15 -1597 ((-1140) $)) (-15 -3416 (|t#2| $)) (-15 -3719 (|t#2| $ |t#2|))))
-(((-102) . T) ((-601 (-848)) . T) ((-1082) . T))
-((-3062 (((-112) $ $) NIL)) (-3719 ((|#1| $ |#1|) 30)) (-1875 (($ $ (-1140)) 22)) (-4266 (((-3 |#1| "failed") $) 29)) (-3416 ((|#1| $) 27)) (-1303 (($ (-383)) 21) (($ (-383) (-1140)) 20)) (-4309 (((-383) $) 24)) (-1613 (((-1140) $) NIL)) (-1597 (((-1140) $) 25)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 19)) (-3745 (($ $) 23)) (-1658 (((-112) $ $) 18)))
-(((-360 |#1|) (-13 (-359 (-383) |#1|) (-10 -8 (-15 -4266 ((-3 |#1| "failed") $)))) (-1082)) (T -360))
-((-4266 (*1 *2 *1) (|partial| -12 (-5 *1 (-360 *2)) (-4 *2 (-1082)))))
-(-13 (-359 (-383) |#1|) (-10 -8 (-15 -4266 ((-3 |#1| "failed") $))))
-((-4251 (((-1241 (-675 |#2|)) (-1241 $)) 61)) (-3321 (((-675 |#2|) (-1241 $)) 120)) (-4206 ((|#2| $) 32)) (-3970 (((-675 |#2|) $ (-1241 $)) 123)) (-3754 (((-3 $ "failed") $) 75)) (-3976 ((|#2| $) 35)) (-3343 (((-1154 |#2|) $) 83)) (-3640 ((|#2| (-1241 $)) 106)) (-4231 (((-1154 |#2|) $) 28)) (-1397 (((-112)) 100)) (-1651 (($ (-1241 |#2|) (-1241 $)) 113)) (-1320 (((-3 $ "failed") $) 79)) (-2545 (((-112)) 95)) (-1765 (((-112)) 90)) (-1573 (((-112)) 53)) (-2871 (((-675 |#2|) (-1241 $)) 118)) (-3115 ((|#2| $) 31)) (-3826 (((-675 |#2|) $ (-1241 $)) 122)) (-1605 (((-3 $ "failed") $) 73)) (-2620 ((|#2| $) 34)) (-3760 (((-1154 |#2|) $) 82)) (-3063 ((|#2| (-1241 $)) 104)) (-2541 (((-1154 |#2|) $) 26)) (-3074 (((-112)) 99)) (-3953 (((-112)) 92)) (-4193 (((-112)) 51)) (-2366 (((-112)) 87)) (-1944 (((-112)) 101)) (-3656 (((-1241 |#2|) $ (-1241 $)) NIL) (((-675 |#2|) (-1241 $) (-1241 $)) 111)) (-3349 (((-112)) 97)) (-1444 (((-631 (-1241 |#2|))) 86)) (-3454 (((-112)) 98)) (-2945 (((-112)) 96)) (-2760 (((-112)) 46)) (-3206 (((-112)) 102)))
-(((-361 |#1| |#2|) (-10 -8 (-15 -3343 ((-1154 |#2|) |#1|)) (-15 -3760 ((-1154 |#2|) |#1|)) (-15 -1444 ((-631 (-1241 |#2|)))) (-15 -3754 ((-3 |#1| "failed") |#1|)) (-15 -1605 ((-3 |#1| "failed") |#1|)) (-15 -1320 ((-3 |#1| "failed") |#1|)) (-15 -1765 ((-112))) (-15 -3953 ((-112))) (-15 -2545 ((-112))) (-15 -4193 ((-112))) (-15 -1573 ((-112))) (-15 -2366 ((-112))) (-15 -3206 ((-112))) (-15 -1944 ((-112))) (-15 -1397 ((-112))) (-15 -3074 ((-112))) (-15 -2760 ((-112))) (-15 -3454 ((-112))) (-15 -2945 ((-112))) (-15 -3349 ((-112))) (-15 -4231 ((-1154 |#2|) |#1|)) (-15 -2541 ((-1154 |#2|) |#1|)) (-15 -3321 ((-675 |#2|) (-1241 |#1|))) (-15 -2871 ((-675 |#2|) (-1241 |#1|))) (-15 -3640 (|#2| (-1241 |#1|))) (-15 -3063 (|#2| (-1241 |#1|))) (-15 -1651 (|#1| (-1241 |#2|) (-1241 |#1|))) (-15 -3656 ((-675 |#2|) (-1241 |#1|) (-1241 |#1|))) (-15 -3656 ((-1241 |#2|) |#1| (-1241 |#1|))) (-15 -3976 (|#2| |#1|)) (-15 -2620 (|#2| |#1|)) (-15 -4206 (|#2| |#1|)) (-15 -3115 (|#2| |#1|)) (-15 -3970 ((-675 |#2|) |#1| (-1241 |#1|))) (-15 -3826 ((-675 |#2|) |#1| (-1241 |#1|))) (-15 -4251 ((-1241 (-675 |#2|)) (-1241 |#1|)))) (-362 |#2|) (-170)) (T -361))
-((-3349 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-2945 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-3454 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-2760 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-3074 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-1397 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-1944 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-3206 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-2366 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-1573 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-4193 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-2545 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-3953 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-1765 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-1444 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-631 (-1241 *4))) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))))
-(-10 -8 (-15 -3343 ((-1154 |#2|) |#1|)) (-15 -3760 ((-1154 |#2|) |#1|)) (-15 -1444 ((-631 (-1241 |#2|)))) (-15 -3754 ((-3 |#1| "failed") |#1|)) (-15 -1605 ((-3 |#1| "failed") |#1|)) (-15 -1320 ((-3 |#1| "failed") |#1|)) (-15 -1765 ((-112))) (-15 -3953 ((-112))) (-15 -2545 ((-112))) (-15 -4193 ((-112))) (-15 -1573 ((-112))) (-15 -2366 ((-112))) (-15 -3206 ((-112))) (-15 -1944 ((-112))) (-15 -1397 ((-112))) (-15 -3074 ((-112))) (-15 -2760 ((-112))) (-15 -3454 ((-112))) (-15 -2945 ((-112))) (-15 -3349 ((-112))) (-15 -4231 ((-1154 |#2|) |#1|)) (-15 -2541 ((-1154 |#2|) |#1|)) (-15 -3321 ((-675 |#2|) (-1241 |#1|))) (-15 -2871 ((-675 |#2|) (-1241 |#1|))) (-15 -3640 (|#2| (-1241 |#1|))) (-15 -3063 (|#2| (-1241 |#1|))) (-15 -1651 (|#1| (-1241 |#2|) (-1241 |#1|))) (-15 -3656 ((-675 |#2|) (-1241 |#1|) (-1241 |#1|))) (-15 -3656 ((-1241 |#2|) |#1| (-1241 |#1|))) (-15 -3976 (|#2| |#1|)) (-15 -2620 (|#2| |#1|)) (-15 -4206 (|#2| |#1|)) (-15 -3115 (|#2| |#1|)) (-15 -3970 ((-675 |#2|) |#1| (-1241 |#1|))) (-15 -3826 ((-675 |#2|) |#1| (-1241 |#1|))) (-15 -4251 ((-1241 (-675 |#2|)) (-1241 |#1|))))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-3646 (((-3 $ "failed")) 37 (|has| |#1| (-546)))) (-2934 (((-3 $ "failed") $ $) 19)) (-4251 (((-1241 (-675 |#1|)) (-1241 $)) 78)) (-4047 (((-1241 $)) 81)) (-4087 (($) 17 T CONST)) (-1558 (((-3 (-2 (|:| |particular| $) (|:| -3782 (-631 $))) "failed")) 40 (|has| |#1| (-546)))) (-3447 (((-3 $ "failed")) 38 (|has| |#1| (-546)))) (-3321 (((-675 |#1|) (-1241 $)) 65)) (-4206 ((|#1| $) 74)) (-3970 (((-675 |#1|) $ (-1241 $)) 76)) (-3754 (((-3 $ "failed") $) 45 (|has| |#1| (-546)))) (-2080 (($ $ (-906)) 28)) (-3976 ((|#1| $) 72)) (-3343 (((-1154 |#1|) $) 42 (|has| |#1| (-546)))) (-3640 ((|#1| (-1241 $)) 67)) (-4231 (((-1154 |#1|) $) 63)) (-1397 (((-112)) 57)) (-1651 (($ (-1241 |#1|) (-1241 $)) 69)) (-1320 (((-3 $ "failed") $) 47 (|has| |#1| (-546)))) (-4186 (((-906)) 80)) (-3911 (((-112)) 54)) (-4326 (($ $ (-906)) 33)) (-2545 (((-112)) 50)) (-1765 (((-112)) 48)) (-1573 (((-112)) 52)) (-1660 (((-3 (-2 (|:| |particular| $) (|:| -3782 (-631 $))) "failed")) 41 (|has| |#1| (-546)))) (-3899 (((-3 $ "failed")) 39 (|has| |#1| (-546)))) (-2871 (((-675 |#1|) (-1241 $)) 66)) (-3115 ((|#1| $) 75)) (-3826 (((-675 |#1|) $ (-1241 $)) 77)) (-1605 (((-3 $ "failed") $) 46 (|has| |#1| (-546)))) (-1297 (($ $ (-906)) 29)) (-2620 ((|#1| $) 73)) (-3760 (((-1154 |#1|) $) 43 (|has| |#1| (-546)))) (-3063 ((|#1| (-1241 $)) 68)) (-2541 (((-1154 |#1|) $) 64)) (-3074 (((-112)) 58)) (-1613 (((-1140) $) 9)) (-3953 (((-112)) 49)) (-4193 (((-112)) 51)) (-2366 (((-112)) 53)) (-2768 (((-1102) $) 10)) (-1944 (((-112)) 56)) (-3656 (((-1241 |#1|) $ (-1241 $)) 71) (((-675 |#1|) (-1241 $) (-1241 $)) 70)) (-3107 (((-631 (-937 |#1|)) (-1241 $)) 79)) (-1856 (($ $ $) 25)) (-3349 (((-112)) 62)) (-3075 (((-848) $) 11)) (-1444 (((-631 (-1241 |#1|))) 44 (|has| |#1| (-546)))) (-3499 (($ $ $ $) 26)) (-3454 (((-112)) 60)) (-1870 (($ $ $) 24)) (-2945 (((-112)) 61)) (-2760 (((-112)) 59)) (-3206 (((-112)) 55)) (-2004 (($) 18 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 30)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
-(((-362 |#1|) (-138) (-170)) (T -362))
-((-4047 (*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1241 *1)) (-4 *1 (-362 *3)))) (-4186 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-906)))) (-3107 (*1 *2 *3) (-12 (-5 *3 (-1241 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-631 (-937 *4))))) (-4251 (*1 *2 *3) (-12 (-5 *3 (-1241 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-1241 (-675 *4))))) (-3826 (*1 *2 *1 *3) (-12 (-5 *3 (-1241 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-675 *4)))) (-3970 (*1 *2 *1 *3) (-12 (-5 *3 (-1241 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-675 *4)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170)))) (-4206 (*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170)))) (-2620 (*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170)))) (-3976 (*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170)))) (-3656 (*1 *2 *1 *3) (-12 (-5 *3 (-1241 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-1241 *4)))) (-3656 (*1 *2 *3 *3) (-12 (-5 *3 (-1241 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-675 *4)))) (-1651 (*1 *1 *2 *3) (-12 (-5 *2 (-1241 *4)) (-5 *3 (-1241 *1)) (-4 *4 (-170)) (-4 *1 (-362 *4)))) (-3063 (*1 *2 *3) (-12 (-5 *3 (-1241 *1)) (-4 *1 (-362 *2)) (-4 *2 (-170)))) (-3640 (*1 *2 *3) (-12 (-5 *3 (-1241 *1)) (-4 *1 (-362 *2)) (-4 *2 (-170)))) (-2871 (*1 *2 *3) (-12 (-5 *3 (-1241 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-675 *4)))) (-3321 (*1 *2 *3) (-12 (-5 *3 (-1241 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-675 *4)))) (-2541 (*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-1154 *3)))) (-4231 (*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-1154 *3)))) (-3349 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-2945 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-3454 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-2760 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-3074 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1397 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1944 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-3206 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-3911 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-2366 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1573 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-4193 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-2545 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-3953 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1765 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1320 (*1 *1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-170)) (-4 *2 (-546)))) (-1605 (*1 *1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-170)) (-4 *2 (-546)))) (-3754 (*1 *1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-170)) (-4 *2 (-546)))) (-1444 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-4 *3 (-546)) (-5 *2 (-631 (-1241 *3))))) (-3760 (*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-4 *3 (-546)) (-5 *2 (-1154 *3)))) (-3343 (*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-4 *3 (-546)) (-5 *2 (-1154 *3)))) (-1660 (*1 *2) (|partial| -12 (-4 *3 (-546)) (-4 *3 (-170)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3782 (-631 *1)))) (-4 *1 (-362 *3)))) (-1558 (*1 *2) (|partial| -12 (-4 *3 (-546)) (-4 *3 (-170)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3782 (-631 *1)))) (-4 *1 (-362 *3)))) (-3899 (*1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-546)) (-4 *2 (-170)))) (-3447 (*1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-546)) (-4 *2 (-170)))) (-3646 (*1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-546)) (-4 *2 (-170)))))
-(-13 (-731 |t#1|) (-10 -8 (-15 -4047 ((-1241 $))) (-15 -4186 ((-906))) (-15 -3107 ((-631 (-937 |t#1|)) (-1241 $))) (-15 -4251 ((-1241 (-675 |t#1|)) (-1241 $))) (-15 -3826 ((-675 |t#1|) $ (-1241 $))) (-15 -3970 ((-675 |t#1|) $ (-1241 $))) (-15 -3115 (|t#1| $)) (-15 -4206 (|t#1| $)) (-15 -2620 (|t#1| $)) (-15 -3976 (|t#1| $)) (-15 -3656 ((-1241 |t#1|) $ (-1241 $))) (-15 -3656 ((-675 |t#1|) (-1241 $) (-1241 $))) (-15 -1651 ($ (-1241 |t#1|) (-1241 $))) (-15 -3063 (|t#1| (-1241 $))) (-15 -3640 (|t#1| (-1241 $))) (-15 -2871 ((-675 |t#1|) (-1241 $))) (-15 -3321 ((-675 |t#1|) (-1241 $))) (-15 -2541 ((-1154 |t#1|) $)) (-15 -4231 ((-1154 |t#1|) $)) (-15 -3349 ((-112))) (-15 -2945 ((-112))) (-15 -3454 ((-112))) (-15 -2760 ((-112))) (-15 -3074 ((-112))) (-15 -1397 ((-112))) (-15 -1944 ((-112))) (-15 -3206 ((-112))) (-15 -3911 ((-112))) (-15 -2366 ((-112))) (-15 -1573 ((-112))) (-15 -4193 ((-112))) (-15 -2545 ((-112))) (-15 -3953 ((-112))) (-15 -1765 ((-112))) (IF (|has| |t#1| (-546)) (PROGN (-15 -1320 ((-3 $ "failed") $)) (-15 -1605 ((-3 $ "failed") $)) (-15 -3754 ((-3 $ "failed") $)) (-15 -1444 ((-631 (-1241 |t#1|)))) (-15 -3760 ((-1154 |t#1|) $)) (-15 -3343 ((-1154 |t#1|) $)) (-15 -1660 ((-3 (-2 (|:| |particular| $) (|:| -3782 (-631 $))) "failed"))) (-15 -1558 ((-3 (-2 (|:| |particular| $) (|:| -3782 (-631 $))) "failed"))) (-15 -3899 ((-3 $ "failed"))) (-15 -3447 ((-3 $ "failed"))) (-15 -3646 ((-3 $ "failed"))) (-6 -4370)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-601 (-848)) . T) ((-634 |#1|) . T) ((-704 |#1|) . T) ((-707) . T) ((-731 |#1|) . T) ((-748) . T) ((-1040 |#1|) . T) ((-1082) . T))
-((-3062 (((-112) $ $) 7)) (-1508 (((-758)) 16)) (-3353 (($) 13)) (-3830 (((-906) $) 14)) (-1613 (((-1140) $) 9)) (-2717 (($ (-906)) 15)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-1658 (((-112) $ $) 6)))
-(((-363) (-138)) (T -363))
-((-1508 (*1 *2) (-12 (-4 *1 (-363)) (-5 *2 (-758)))) (-2717 (*1 *1 *2) (-12 (-5 *2 (-906)) (-4 *1 (-363)))) (-3830 (*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-906)))) (-3353 (*1 *1) (-4 *1 (-363))))
-(-13 (-1082) (-10 -8 (-15 -1508 ((-758))) (-15 -2717 ($ (-906))) (-15 -3830 ((-906) $)) (-15 -3353 ($))))
-(((-102) . T) ((-601 (-848)) . T) ((-1082) . T))
-((-1903 (((-675 |#2|) (-1241 $)) 40)) (-1651 (($ (-1241 |#2|) (-1241 $)) 34)) (-3629 (((-675 |#2|) $ (-1241 $)) 42)) (-1495 ((|#2| (-1241 $)) 13)) (-3656 (((-1241 |#2|) $ (-1241 $)) NIL) (((-675 |#2|) (-1241 $) (-1241 $)) 25)))
-(((-364 |#1| |#2| |#3|) (-10 -8 (-15 -1903 ((-675 |#2|) (-1241 |#1|))) (-15 -1495 (|#2| (-1241 |#1|))) (-15 -1651 (|#1| (-1241 |#2|) (-1241 |#1|))) (-15 -3656 ((-675 |#2|) (-1241 |#1|) (-1241 |#1|))) (-15 -3656 ((-1241 |#2|) |#1| (-1241 |#1|))) (-15 -3629 ((-675 |#2|) |#1| (-1241 |#1|)))) (-365 |#2| |#3|) (-170) (-1217 |#2|)) (T -364))
-NIL
-(-10 -8 (-15 -1903 ((-675 |#2|) (-1241 |#1|))) (-15 -1495 (|#2| (-1241 |#1|))) (-15 -1651 (|#1| (-1241 |#2|) (-1241 |#1|))) (-15 -3656 ((-675 |#2|) (-1241 |#1|) (-1241 |#1|))) (-15 -3656 ((-1241 |#2|) |#1| (-1241 |#1|))) (-15 -3629 ((-675 |#2|) |#1| (-1241 |#1|))))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1903 (((-675 |#1|) (-1241 $)) 47)) (-1612 ((|#1| $) 53)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1651 (($ (-1241 |#1|) (-1241 $)) 49)) (-3629 (((-675 |#1|) $ (-1241 $)) 54)) (-1320 (((-3 $ "failed") $) 33)) (-4186 (((-906)) 55)) (-3248 (((-112) $) 31)) (-3274 ((|#1| $) 52)) (-3361 ((|#2| $) 45 (|has| |#1| (-358)))) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-1495 ((|#1| (-1241 $)) 48)) (-3656 (((-1241 |#1|) $ (-1241 $)) 51) (((-675 |#1|) (-1241 $) (-1241 $)) 50)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ |#1|) 38)) (-2084 (((-3 $ "failed") $) 44 (|has| |#1| (-143)))) (-3109 ((|#2| $) 46)) (-2261 (((-758)) 28)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
-(((-365 |#1| |#2|) (-138) (-170) (-1217 |t#1|)) (T -365))
-((-4186 (*1 *2) (-12 (-4 *1 (-365 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1217 *3)) (-5 *2 (-906)))) (-3629 (*1 *2 *1 *3) (-12 (-5 *3 (-1241 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1217 *4)) (-5 *2 (-675 *4)))) (-1612 (*1 *2 *1) (-12 (-4 *1 (-365 *2 *3)) (-4 *3 (-1217 *2)) (-4 *2 (-170)))) (-3274 (*1 *2 *1) (-12 (-4 *1 (-365 *2 *3)) (-4 *3 (-1217 *2)) (-4 *2 (-170)))) (-3656 (*1 *2 *1 *3) (-12 (-5 *3 (-1241 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1217 *4)) (-5 *2 (-1241 *4)))) (-3656 (*1 *2 *3 *3) (-12 (-5 *3 (-1241 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1217 *4)) (-5 *2 (-675 *4)))) (-1651 (*1 *1 *2 *3) (-12 (-5 *2 (-1241 *4)) (-5 *3 (-1241 *1)) (-4 *4 (-170)) (-4 *1 (-365 *4 *5)) (-4 *5 (-1217 *4)))) (-1495 (*1 *2 *3) (-12 (-5 *3 (-1241 *1)) (-4 *1 (-365 *2 *4)) (-4 *4 (-1217 *2)) (-4 *2 (-170)))) (-1903 (*1 *2 *3) (-12 (-5 *3 (-1241 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1217 *4)) (-5 *2 (-675 *4)))) (-3109 (*1 *2 *1) (-12 (-4 *1 (-365 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1217 *3)))) (-3361 (*1 *2 *1) (-12 (-4 *1 (-365 *3 *2)) (-4 *3 (-170)) (-4 *3 (-358)) (-4 *2 (-1217 *3)))))
-(-13 (-38 |t#1|) (-10 -8 (-15 -4186 ((-906))) (-15 -3629 ((-675 |t#1|) $ (-1241 $))) (-15 -1612 (|t#1| $)) (-15 -3274 (|t#1| $)) (-15 -3656 ((-1241 |t#1|) $ (-1241 $))) (-15 -3656 ((-675 |t#1|) (-1241 $) (-1241 $))) (-15 -1651 ($ (-1241 |t#1|) (-1241 $))) (-15 -1495 (|t#1| (-1241 $))) (-15 -1903 ((-675 |t#1|) (-1241 $))) (-15 -3109 (|t#2| $)) (IF (|has| |t#1| (-358)) (-15 -3361 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-604 (-554)) . T) ((-604 |#1|) . T) ((-601 (-848)) . T) ((-634 |#1|) . T) ((-634 $) . T) ((-704 |#1|) . T) ((-713) . T) ((-1040 |#1|) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T))
-((-4159 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-3676 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-2879 ((|#4| (-1 |#3| |#1|) |#2|) 21)))
-(((-366 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2879 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3676 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4159 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1195) (-368 |#1|) (-1195) (-368 |#3|)) (T -366))
-((-4159 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1195)) (-4 *5 (-1195)) (-4 *2 (-368 *5)) (-5 *1 (-366 *6 *4 *5 *2)) (-4 *4 (-368 *6)))) (-3676 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1195)) (-4 *2 (-1195)) (-5 *1 (-366 *5 *4 *2 *6)) (-4 *4 (-368 *5)) (-4 *6 (-368 *2)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-4 *2 (-368 *6)) (-5 *1 (-366 *5 *4 *6 *2)) (-4 *4 (-368 *5)))))
-(-10 -7 (-15 -2879 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3676 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4159 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-4015 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-2576 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-3303 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-3799 (($ $) 25)) (-1484 (((-554) (-1 (-112) |#2|) $) NIL) (((-554) |#2| $) 11) (((-554) |#2| $ (-554)) NIL)) (-3717 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
-(((-367 |#1| |#2|) (-10 -8 (-15 -2576 (|#1| |#1|)) (-15 -2576 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4015 ((-112) |#1|)) (-15 -3303 (|#1| |#1|)) (-15 -3717 (|#1| |#1| |#1|)) (-15 -1484 ((-554) |#2| |#1| (-554))) (-15 -1484 ((-554) |#2| |#1|)) (-15 -1484 ((-554) (-1 (-112) |#2|) |#1|)) (-15 -4015 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3303 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3799 (|#1| |#1|)) (-15 -3717 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-368 |#2|) (-1195)) (T -367))
-NIL
-(-10 -8 (-15 -2576 (|#1| |#1|)) (-15 -2576 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4015 ((-112) |#1|)) (-15 -3303 (|#1| |#1|)) (-15 -3717 (|#1| |#1| |#1|)) (-15 -1484 ((-554) |#2| |#1| (-554))) (-15 -1484 ((-554) |#2| |#1|)) (-15 -1484 ((-554) (-1 (-112) |#2|) |#1|)) (-15 -4015 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3303 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3799 (|#1| |#1|)) (-15 -3717 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)))
-((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-4233 (((-1246) $ (-554) (-554)) 40 (|has| $ (-6 -4374)))) (-4015 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-836)))) (-2576 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4374))) (($ $) 88 (-12 (|has| |#1| (-836)) (|has| $ (-6 -4374))))) (-3303 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-836)))) (-3019 (((-112) $ (-758)) 8)) (-1501 ((|#1| $ (-554) |#1|) 52 (|has| $ (-6 -4374))) ((|#1| $ (-1208 (-554)) |#1|) 58 (|has| $ (-6 -4374)))) (-1871 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4373)))) (-4087 (($) 7 T CONST)) (-3920 (($ $) 90 (|has| $ (-6 -4374)))) (-3799 (($ $) 100)) (-1571 (($ $) 78 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2574 (($ |#1| $) 77 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4373)))) (-2862 ((|#1| $ (-554) |#1|) 53 (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-554)) 51)) (-1484 (((-554) (-1 (-112) |#1|) $) 97) (((-554) |#1| $) 96 (|has| |#1| (-1082))) (((-554) |#1| $ (-554)) 95 (|has| |#1| (-1082)))) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-3180 (($ (-758) |#1|) 69)) (-2230 (((-112) $ (-758)) 9)) (-3044 (((-554) $) 43 (|has| (-554) (-836)))) (-4223 (($ $ $) 87 (|has| |#1| (-836)))) (-3717 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-836)))) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2256 (((-554) $) 44 (|has| (-554) (-836)))) (-2706 (($ $ $) 86 (|has| |#1| (-836)))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3731 (((-112) $ (-758)) 10)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-1782 (($ |#1| $ (-554)) 60) (($ $ $ (-554)) 59)) (-2529 (((-631 (-554)) $) 46)) (-3618 (((-112) (-554) $) 47)) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-1539 ((|#1| $) 42 (|has| (-554) (-836)))) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2441 (($ $ |#1|) 41 (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-1609 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) 48)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2064 ((|#1| $ (-554) |#1|) 50) ((|#1| $ (-554)) 49) (($ $ (-1208 (-554))) 63)) (-2021 (($ $ (-554)) 62) (($ $ (-1208 (-554))) 61)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-3553 (($ $ $ (-554)) 91 (|has| $ (-6 -4374)))) (-1521 (($ $) 13)) (-2927 (((-530) $) 79 (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) 70)) (-4323 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-631 $)) 65)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1708 (((-112) $ $) 84 (|has| |#1| (-836)))) (-1686 (((-112) $ $) 83 (|has| |#1| (-836)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-1697 (((-112) $ $) 85 (|has| |#1| (-836)))) (-1676 (((-112) $ $) 82 (|has| |#1| (-836)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373)))))
-(((-368 |#1|) (-138) (-1195)) (T -368))
-((-3717 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-368 *3)) (-4 *3 (-1195)))) (-3799 (*1 *1 *1) (-12 (-4 *1 (-368 *2)) (-4 *2 (-1195)))) (-3303 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-368 *3)) (-4 *3 (-1195)))) (-4015 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-368 *4)) (-4 *4 (-1195)) (-5 *2 (-112)))) (-1484 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-368 *4)) (-4 *4 (-1195)) (-5 *2 (-554)))) (-1484 (*1 *2 *3 *1) (-12 (-4 *1 (-368 *3)) (-4 *3 (-1195)) (-4 *3 (-1082)) (-5 *2 (-554)))) (-1484 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-554)) (-4 *1 (-368 *3)) (-4 *3 (-1195)) (-4 *3 (-1082)))) (-3717 (*1 *1 *1 *1) (-12 (-4 *1 (-368 *2)) (-4 *2 (-1195)) (-4 *2 (-836)))) (-3303 (*1 *1 *1) (-12 (-4 *1 (-368 *2)) (-4 *2 (-1195)) (-4 *2 (-836)))) (-4015 (*1 *2 *1) (-12 (-4 *1 (-368 *3)) (-4 *3 (-1195)) (-4 *3 (-836)) (-5 *2 (-112)))) (-3553 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-554)) (|has| *1 (-6 -4374)) (-4 *1 (-368 *3)) (-4 *3 (-1195)))) (-3920 (*1 *1 *1) (-12 (|has| *1 (-6 -4374)) (-4 *1 (-368 *2)) (-4 *2 (-1195)))) (-2576 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4374)) (-4 *1 (-368 *3)) (-4 *3 (-1195)))) (-2576 (*1 *1 *1) (-12 (|has| *1 (-6 -4374)) (-4 *1 (-368 *2)) (-4 *2 (-1195)) (-4 *2 (-836)))))
-(-13 (-637 |t#1|) (-10 -8 (-6 -4373) (-15 -3717 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3799 ($ $)) (-15 -3303 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -4015 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -1484 ((-554) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1082)) (PROGN (-15 -1484 ((-554) |t#1| $)) (-15 -1484 ((-554) |t#1| $ (-554)))) |%noBranch|) (IF (|has| |t#1| (-836)) (PROGN (-6 (-836)) (-15 -3717 ($ $ $)) (-15 -3303 ($ $)) (-15 -4015 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4374)) (PROGN (-15 -3553 ($ $ $ (-554))) (-15 -3920 ($ $)) (-15 -2576 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-836)) (-15 -2576 ($ $)) |%noBranch|)) |%noBranch|)))
-(((-34) . T) ((-102) -3994 (|has| |#1| (-1082)) (|has| |#1| (-836))) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-836)) (|has| |#1| (-601 (-848)))) ((-149 |#1|) . T) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-281 #0=(-554) |#1|) . T) ((-283 #0# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-592 #0# |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-637 |#1|) . T) ((-836) |has| |#1| (-836)) ((-1082) -3994 (|has| |#1| (-1082)) (|has| |#1| (-836))) ((-1195) . T))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1654 (((-631 |#1|) $) 32)) (-3151 (($ $ (-758)) 33)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-3567 (((-1265 |#1| |#2|) (-1265 |#1| |#2|) $) 36)) (-3898 (($ $) 34)) (-3637 (((-1265 |#1| |#2|) (-1265 |#1| |#2|) $) 37)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-2386 (($ $ |#1| $) 31) (($ $ (-631 |#1|) (-631 $)) 30)) (-3308 (((-758) $) 38)) (-3089 (($ $ $) 29)) (-3075 (((-848) $) 11) (($ |#1|) 41) (((-1256 |#1| |#2|) $) 40) (((-1265 |#1| |#2|) $) 39)) (-1490 ((|#2| (-1265 |#1| |#2|) $) 42)) (-2004 (($) 18 T CONST)) (-2341 (($ (-658 |#1|)) 35)) (-1658 (((-112) $ $) 6)) (-1752 (($ $ |#2|) 28 (|has| |#2| (-358)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26)))
-(((-369 |#1| |#2|) (-138) (-836) (-170)) (T -369))
-((-1490 (*1 *2 *3 *1) (-12 (-5 *3 (-1265 *4 *2)) (-4 *1 (-369 *4 *2)) (-4 *4 (-836)) (-4 *2 (-170)))) (-3075 (*1 *1 *2) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-836)) (-4 *3 (-170)))) (-3075 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-836)) (-4 *4 (-170)) (-5 *2 (-1256 *3 *4)))) (-3075 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-836)) (-4 *4 (-170)) (-5 *2 (-1265 *3 *4)))) (-3308 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-836)) (-4 *4 (-170)) (-5 *2 (-758)))) (-3637 (*1 *2 *2 *1) (-12 (-5 *2 (-1265 *3 *4)) (-4 *1 (-369 *3 *4)) (-4 *3 (-836)) (-4 *4 (-170)))) (-3567 (*1 *2 *2 *1) (-12 (-5 *2 (-1265 *3 *4)) (-4 *1 (-369 *3 *4)) (-4 *3 (-836)) (-4 *4 (-170)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-658 *3)) (-4 *3 (-836)) (-4 *1 (-369 *3 *4)) (-4 *4 (-170)))) (-3898 (*1 *1 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-836)) (-4 *3 (-170)))) (-3151 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *1 (-369 *3 *4)) (-4 *3 (-836)) (-4 *4 (-170)))) (-1654 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-836)) (-4 *4 (-170)) (-5 *2 (-631 *3)))) (-2386 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-836)) (-4 *3 (-170)))) (-2386 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 *4)) (-5 *3 (-631 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-836)) (-4 *5 (-170)))))
-(-13 (-622 |t#2|) (-10 -8 (-15 -1490 (|t#2| (-1265 |t#1| |t#2|) $)) (-15 -3075 ($ |t#1|)) (-15 -3075 ((-1256 |t#1| |t#2|) $)) (-15 -3075 ((-1265 |t#1| |t#2|) $)) (-15 -3308 ((-758) $)) (-15 -3637 ((-1265 |t#1| |t#2|) (-1265 |t#1| |t#2|) $)) (-15 -3567 ((-1265 |t#1| |t#2|) (-1265 |t#1| |t#2|) $)) (-15 -2341 ($ (-658 |t#1|))) (-15 -3898 ($ $)) (-15 -3151 ($ $ (-758))) (-15 -1654 ((-631 |t#1|) $)) (-15 -2386 ($ $ |t#1| $)) (-15 -2386 ($ $ (-631 |t#1|) (-631 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-601 (-848)) . T) ((-634 |#2|) . T) ((-622 |#2|) . T) ((-704 |#2|) . T) ((-1040 |#2|) . T) ((-1082) . T))
-((-2331 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 24)) (-4077 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-1619 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 22)))
-(((-370 |#1| |#2|) (-10 -7 (-15 -4077 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1619 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2331 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1195) (-13 (-368 |#1|) (-10 -7 (-6 -4374)))) (T -370))
-((-2331 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1195)) (-5 *1 (-370 *4 *2)) (-4 *2 (-13 (-368 *4) (-10 -7 (-6 -4374)))))) (-1619 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1195)) (-5 *1 (-370 *4 *2)) (-4 *2 (-13 (-368 *4) (-10 -7 (-6 -4374)))))) (-4077 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1195)) (-5 *1 (-370 *4 *2)) (-4 *2 (-13 (-368 *4) (-10 -7 (-6 -4374)))))))
-(-10 -7 (-15 -4077 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1619 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2331 (|#2| (-1 (-112) |#1| |#1|) |#2|)))
-((-3699 (((-675 |#2|) (-675 $)) NIL) (((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 $) (-1241 $)) NIL) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) 22) (((-675 (-554)) (-675 $)) 14)))
-(((-371 |#1| |#2|) (-10 -8 (-15 -3699 ((-675 (-554)) (-675 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 |#1|) (-1241 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 |#1|) (-1241 |#1|))) (-15 -3699 ((-675 |#2|) (-675 |#1|)))) (-372 |#2|) (-1034)) (T -371))
-NIL
-(-10 -8 (-15 -3699 ((-675 (-554)) (-675 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 |#1|) (-1241 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 |#1|) (-1241 |#1|))) (-15 -3699 ((-675 |#2|) (-675 |#1|))))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-3699 (((-675 |#1|) (-675 $)) 36) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) 35) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) 43 (|has| |#1| (-627 (-554)))) (((-675 (-554)) (-675 $)) 42 (|has| |#1| (-627 (-554))))) (-1320 (((-3 $ "failed") $) 33)) (-3248 (((-112) $) 31)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11) (($ (-554)) 29)) (-2261 (((-758)) 28)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24)))
-(((-372 |#1|) (-138) (-1034)) (T -372))
-NIL
-(-13 (-627 |t#1|) (-10 -7 (IF (|has| |t#1| (-627 (-554))) (-6 (-627 (-554))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-604 (-554)) . T) ((-601 (-848)) . T) ((-634 $) . T) ((-627 (-554)) |has| |#1| (-627 (-554))) ((-627 |#1|) . T) ((-713) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T))
-((-2007 (((-631 (-289 (-937 (-167 |#1|)))) (-289 (-402 (-937 (-167 (-554))))) |#1|) 51) (((-631 (-289 (-937 (-167 |#1|)))) (-402 (-937 (-167 (-554)))) |#1|) 50) (((-631 (-631 (-289 (-937 (-167 |#1|))))) (-631 (-289 (-402 (-937 (-167 (-554)))))) |#1|) 47) (((-631 (-631 (-289 (-937 (-167 |#1|))))) (-631 (-402 (-937 (-167 (-554))))) |#1|) 41)) (-3900 (((-631 (-631 (-167 |#1|))) (-631 (-402 (-937 (-167 (-554))))) (-631 (-1158)) |#1|) 30) (((-631 (-167 |#1|)) (-402 (-937 (-167 (-554)))) |#1|) 18)))
-(((-373 |#1|) (-10 -7 (-15 -2007 ((-631 (-631 (-289 (-937 (-167 |#1|))))) (-631 (-402 (-937 (-167 (-554))))) |#1|)) (-15 -2007 ((-631 (-631 (-289 (-937 (-167 |#1|))))) (-631 (-289 (-402 (-937 (-167 (-554)))))) |#1|)) (-15 -2007 ((-631 (-289 (-937 (-167 |#1|)))) (-402 (-937 (-167 (-554)))) |#1|)) (-15 -2007 ((-631 (-289 (-937 (-167 |#1|)))) (-289 (-402 (-937 (-167 (-554))))) |#1|)) (-15 -3900 ((-631 (-167 |#1|)) (-402 (-937 (-167 (-554)))) |#1|)) (-15 -3900 ((-631 (-631 (-167 |#1|))) (-631 (-402 (-937 (-167 (-554))))) (-631 (-1158)) |#1|))) (-13 (-358) (-834))) (T -373))
-((-3900 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 (-402 (-937 (-167 (-554)))))) (-5 *4 (-631 (-1158))) (-5 *2 (-631 (-631 (-167 *5)))) (-5 *1 (-373 *5)) (-4 *5 (-13 (-358) (-834))))) (-3900 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-937 (-167 (-554))))) (-5 *2 (-631 (-167 *4))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-358) (-834))))) (-2007 (*1 *2 *3 *4) (-12 (-5 *3 (-289 (-402 (-937 (-167 (-554)))))) (-5 *2 (-631 (-289 (-937 (-167 *4))))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-358) (-834))))) (-2007 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-937 (-167 (-554))))) (-5 *2 (-631 (-289 (-937 (-167 *4))))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-358) (-834))))) (-2007 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-289 (-402 (-937 (-167 (-554))))))) (-5 *2 (-631 (-631 (-289 (-937 (-167 *4)))))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-358) (-834))))) (-2007 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-402 (-937 (-167 (-554)))))) (-5 *2 (-631 (-631 (-289 (-937 (-167 *4)))))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-358) (-834))))))
-(-10 -7 (-15 -2007 ((-631 (-631 (-289 (-937 (-167 |#1|))))) (-631 (-402 (-937 (-167 (-554))))) |#1|)) (-15 -2007 ((-631 (-631 (-289 (-937 (-167 |#1|))))) (-631 (-289 (-402 (-937 (-167 (-554)))))) |#1|)) (-15 -2007 ((-631 (-289 (-937 (-167 |#1|)))) (-402 (-937 (-167 (-554)))) |#1|)) (-15 -2007 ((-631 (-289 (-937 (-167 |#1|)))) (-289 (-402 (-937 (-167 (-554))))) |#1|)) (-15 -3900 ((-631 (-167 |#1|)) (-402 (-937 (-167 (-554)))) |#1|)) (-15 -3900 ((-631 (-631 (-167 |#1|))) (-631 (-402 (-937 (-167 (-554))))) (-631 (-1158)) |#1|)))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 33)) (-3831 (((-554) $) 55)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-1557 (($ $) 110)) (-3023 (($ $) 82)) (-4200 (($ $) 71)) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2282 (($ $) 44)) (-2286 (((-112) $ $) NIL)) (-3003 (($ $) 80)) (-4177 (($ $) 69)) (-4219 (((-554) $) 64)) (-1648 (($ $ (-554)) 62)) (-3046 (($ $) NIL)) (-2916 (($ $) NIL)) (-4087 (($) NIL T CONST)) (-2087 (($ $) 112)) (-2784 (((-3 (-554) "failed") $) 189) (((-3 (-402 (-554)) "failed") $) 185)) (-1668 (((-554) $) 187) (((-402 (-554)) $) 183)) (-3964 (($ $ $) NIL)) (-3419 (((-554) $ $) 102)) (-1320 (((-3 $ "failed") $) 114)) (-1824 (((-402 (-554)) $ (-758)) 190) (((-402 (-554)) $ (-758) (-758)) 182)) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-2276 (((-906)) 73) (((-906) (-906)) 98 (|has| $ (-6 -4364)))) (-2745 (((-112) $) 106)) (-2844 (($) 40)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL)) (-1574 (((-1246) (-758)) 152)) (-2073 (((-1246)) 157) (((-1246) (-758)) 158)) (-3047 (((-1246)) 159) (((-1246) (-758)) 160)) (-3485 (((-1246)) 155) (((-1246) (-758)) 156)) (-2342 (((-554) $) 58)) (-3248 (((-112) $) 104)) (-3734 (($ $ (-554)) NIL)) (-4085 (($ $) 48)) (-3274 (($ $) NIL)) (-4304 (((-112) $) 35)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-4223 (($ $ $) NIL) (($) NIL (-12 (-4081 (|has| $ (-6 -4356))) (-4081 (|has| $ (-6 -4364)))))) (-2706 (($ $ $) NIL) (($) 99 (-12 (-4081 (|has| $ (-6 -4356))) (-4081 (|has| $ (-6 -4364)))))) (-1837 (((-554) $) 17)) (-3187 (($) 87) (($ $) 92)) (-4062 (($) 91) (($ $) 93)) (-2395 (($ $) 83)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) 116)) (-3845 (((-906) (-554)) 43 (|has| $ (-6 -4364)))) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3722 (($ $) 53)) (-4339 (($ $) 109)) (-3302 (($ (-554) (-554)) 107) (($ (-554) (-554) (-906)) 108)) (-2270 (((-413 $) $) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-1407 (((-554) $) 19)) (-2311 (($) 94)) (-1333 (($ $) 79)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-1378 (((-906)) 100) (((-906) (-906)) 101 (|has| $ (-6 -4364)))) (-1553 (($ $ (-758)) NIL) (($ $) 115)) (-4353 (((-906) (-554)) 47 (|has| $ (-6 -4364)))) (-3057 (($ $) NIL)) (-2926 (($ $) NIL)) (-3034 (($ $) NIL)) (-4213 (($ $) NIL)) (-3014 (($ $) 81)) (-4188 (($ $) 70)) (-2927 (((-374) $) 175) (((-221) $) 177) (((-877 (-374)) $) NIL) (((-1140) $) 162) (((-530) $) 173) (($ (-221)) 181)) (-3075 (((-848) $) 164) (($ (-554)) 186) (($ $) NIL) (($ (-402 (-554))) NIL) (($ (-554)) 186) (($ (-402 (-554))) NIL) (((-221) $) 178)) (-2261 (((-758)) NIL)) (-2755 (($ $) 111)) (-3219 (((-906)) 54) (((-906) (-906)) 66 (|has| $ (-6 -4364)))) (-3462 (((-906)) 103)) (-3096 (($ $) 86)) (-2959 (($ $) 46) (($ $ $) 52)) (-1909 (((-112) $ $) NIL)) (-3069 (($ $) 84)) (-2938 (($ $) 37)) (-3120 (($ $) NIL)) (-2981 (($ $) NIL)) (-2908 (($ $) NIL)) (-2991 (($ $) NIL)) (-3108 (($ $) NIL)) (-2969 (($ $) NIL)) (-3083 (($ $) 85)) (-2948 (($ $) 49)) (-1700 (($ $) 51)) (-2004 (($) 34 T CONST)) (-2014 (($) 38 T CONST)) (-4048 (((-1140) $) 27) (((-1140) $ (-112)) 29) (((-1246) (-809) $) 30) (((-1246) (-809) $ (-112)) 31)) (-1787 (($ $ (-758)) NIL) (($ $) NIL)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 39)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 42)) (-1752 (($ $ $) 45) (($ $ (-554)) 41)) (-1744 (($ $) 36) (($ $ $) 50)) (-1735 (($ $ $) 61)) (** (($ $ (-906)) 67) (($ $ (-758)) NIL) (($ $ (-554)) 88) (($ $ (-402 (-554))) 125) (($ $ $) 117)) (* (($ (-906) $) 65) (($ (-758) $) NIL) (($ (-554) $) 68) (($ $ $) 60) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL)))
-(((-374) (-13 (-399) (-229) (-602 (-1140)) (-815) (-601 (-221)) (-1180) (-602 (-530)) (-606 (-221)) (-10 -8 (-15 -1752 ($ $ (-554))) (-15 ** ($ $ $)) (-15 -4085 ($ $)) (-15 -3419 ((-554) $ $)) (-15 -1648 ($ $ (-554))) (-15 -1824 ((-402 (-554)) $ (-758))) (-15 -1824 ((-402 (-554)) $ (-758) (-758))) (-15 -3187 ($)) (-15 -4062 ($)) (-15 -2311 ($)) (-15 -2959 ($ $ $)) (-15 -3187 ($ $)) (-15 -4062 ($ $)) (-15 -3047 ((-1246))) (-15 -3047 ((-1246) (-758))) (-15 -3485 ((-1246))) (-15 -3485 ((-1246) (-758))) (-15 -2073 ((-1246))) (-15 -2073 ((-1246) (-758))) (-15 -1574 ((-1246) (-758))) (-6 -4364) (-6 -4356)))) (T -374))
-((** (*1 *1 *1 *1) (-5 *1 (-374))) (-1752 (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-374)))) (-4085 (*1 *1 *1) (-5 *1 (-374))) (-3419 (*1 *2 *1 *1) (-12 (-5 *2 (-554)) (-5 *1 (-374)))) (-1648 (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-374)))) (-1824 (*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-5 *2 (-402 (-554))) (-5 *1 (-374)))) (-1824 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-758)) (-5 *2 (-402 (-554))) (-5 *1 (-374)))) (-3187 (*1 *1) (-5 *1 (-374))) (-4062 (*1 *1) (-5 *1 (-374))) (-2311 (*1 *1) (-5 *1 (-374))) (-2959 (*1 *1 *1 *1) (-5 *1 (-374))) (-3187 (*1 *1 *1) (-5 *1 (-374))) (-4062 (*1 *1 *1) (-5 *1 (-374))) (-3047 (*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-374)))) (-3047 (*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1246)) (-5 *1 (-374)))) (-3485 (*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-374)))) (-3485 (*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1246)) (-5 *1 (-374)))) (-2073 (*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-374)))) (-2073 (*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1246)) (-5 *1 (-374)))) (-1574 (*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1246)) (-5 *1 (-374)))))
-(-13 (-399) (-229) (-602 (-1140)) (-815) (-601 (-221)) (-1180) (-602 (-530)) (-606 (-221)) (-10 -8 (-15 -1752 ($ $ (-554))) (-15 ** ($ $ $)) (-15 -4085 ($ $)) (-15 -3419 ((-554) $ $)) (-15 -1648 ($ $ (-554))) (-15 -1824 ((-402 (-554)) $ (-758))) (-15 -1824 ((-402 (-554)) $ (-758) (-758))) (-15 -3187 ($)) (-15 -4062 ($)) (-15 -2311 ($)) (-15 -2959 ($ $ $)) (-15 -3187 ($ $)) (-15 -4062 ($ $)) (-15 -3047 ((-1246))) (-15 -3047 ((-1246) (-758))) (-15 -3485 ((-1246))) (-15 -3485 ((-1246) (-758))) (-15 -2073 ((-1246))) (-15 -2073 ((-1246) (-758))) (-15 -1574 ((-1246) (-758))) (-6 -4364) (-6 -4356)))
-((-1900 (((-631 (-289 (-937 |#1|))) (-289 (-402 (-937 (-554)))) |#1|) 46) (((-631 (-289 (-937 |#1|))) (-402 (-937 (-554))) |#1|) 45) (((-631 (-631 (-289 (-937 |#1|)))) (-631 (-289 (-402 (-937 (-554))))) |#1|) 42) (((-631 (-631 (-289 (-937 |#1|)))) (-631 (-402 (-937 (-554)))) |#1|) 36)) (-3619 (((-631 |#1|) (-402 (-937 (-554))) |#1|) 20) (((-631 (-631 |#1|)) (-631 (-402 (-937 (-554)))) (-631 (-1158)) |#1|) 30)))
-(((-375 |#1|) (-10 -7 (-15 -1900 ((-631 (-631 (-289 (-937 |#1|)))) (-631 (-402 (-937 (-554)))) |#1|)) (-15 -1900 ((-631 (-631 (-289 (-937 |#1|)))) (-631 (-289 (-402 (-937 (-554))))) |#1|)) (-15 -1900 ((-631 (-289 (-937 |#1|))) (-402 (-937 (-554))) |#1|)) (-15 -1900 ((-631 (-289 (-937 |#1|))) (-289 (-402 (-937 (-554)))) |#1|)) (-15 -3619 ((-631 (-631 |#1|)) (-631 (-402 (-937 (-554)))) (-631 (-1158)) |#1|)) (-15 -3619 ((-631 |#1|) (-402 (-937 (-554))) |#1|))) (-13 (-834) (-358))) (T -375))
-((-3619 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-937 (-554)))) (-5 *2 (-631 *4)) (-5 *1 (-375 *4)) (-4 *4 (-13 (-834) (-358))))) (-3619 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 (-402 (-937 (-554))))) (-5 *4 (-631 (-1158))) (-5 *2 (-631 (-631 *5))) (-5 *1 (-375 *5)) (-4 *5 (-13 (-834) (-358))))) (-1900 (*1 *2 *3 *4) (-12 (-5 *3 (-289 (-402 (-937 (-554))))) (-5 *2 (-631 (-289 (-937 *4)))) (-5 *1 (-375 *4)) (-4 *4 (-13 (-834) (-358))))) (-1900 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-937 (-554)))) (-5 *2 (-631 (-289 (-937 *4)))) (-5 *1 (-375 *4)) (-4 *4 (-13 (-834) (-358))))) (-1900 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-289 (-402 (-937 (-554)))))) (-5 *2 (-631 (-631 (-289 (-937 *4))))) (-5 *1 (-375 *4)) (-4 *4 (-13 (-834) (-358))))) (-1900 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-402 (-937 (-554))))) (-5 *2 (-631 (-631 (-289 (-937 *4))))) (-5 *1 (-375 *4)) (-4 *4 (-13 (-834) (-358))))))
-(-10 -7 (-15 -1900 ((-631 (-631 (-289 (-937 |#1|)))) (-631 (-402 (-937 (-554)))) |#1|)) (-15 -1900 ((-631 (-631 (-289 (-937 |#1|)))) (-631 (-289 (-402 (-937 (-554))))) |#1|)) (-15 -1900 ((-631 (-289 (-937 |#1|))) (-402 (-937 (-554))) |#1|)) (-15 -1900 ((-631 (-289 (-937 |#1|))) (-289 (-402 (-937 (-554)))) |#1|)) (-15 -3619 ((-631 (-631 |#1|)) (-631 (-402 (-937 (-554)))) (-631 (-1158)) |#1|)) (-15 -3619 ((-631 |#1|) (-402 (-937 (-554))) |#1|)))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#2| "failed") $) 26)) (-1668 ((|#2| $) 28)) (-2550 (($ $) NIL)) (-2122 (((-758) $) 10)) (-3910 (((-631 $) $) 20)) (-3580 (((-112) $) NIL)) (-3738 (($ |#2| |#1|) 18)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-2428 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-2518 ((|#2| $) 15)) (-2530 ((|#1| $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 45) (($ |#2|) 27)) (-1893 (((-631 |#1|) $) 17)) (-1779 ((|#1| $ |#2|) 47)) (-2004 (($) 29 T CONST)) (-2407 (((-631 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 35) (($ |#2| |#1|) 36)))
-(((-376 |#1| |#2|) (-13 (-377 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1034) (-836)) (T -376))
-((* (*1 *1 *2 *3) (-12 (-5 *1 (-376 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-836)))))
-(-13 (-377 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|))))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-2784 (((-3 |#2| "failed") $) 44)) (-1668 ((|#2| $) 45)) (-2550 (($ $) 30)) (-2122 (((-758) $) 34)) (-3910 (((-631 $) $) 35)) (-3580 (((-112) $) 38)) (-3738 (($ |#2| |#1|) 39)) (-2879 (($ (-1 |#1| |#1|) $) 40)) (-2428 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-2518 ((|#2| $) 33)) (-2530 ((|#1| $) 32)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11) (($ |#2|) 43)) (-1893 (((-631 |#1|) $) 36)) (-1779 ((|#1| $ |#2|) 41)) (-2004 (($) 18 T CONST)) (-2407 (((-631 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42)))
-(((-377 |#1| |#2|) (-138) (-1034) (-1082)) (T -377))
-((* (*1 *1 *2 *3) (-12 (-4 *1 (-377 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-1082)))) (-1779 (*1 *2 *1 *3) (-12 (-4 *1 (-377 *2 *3)) (-4 *3 (-1082)) (-4 *2 (-1034)))) (-2879 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-377 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-1082)))) (-3738 (*1 *1 *2 *3) (-12 (-4 *1 (-377 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-1082)))) (-3580 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-1082)) (-5 *2 (-112)))) (-2407 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-1082)) (-5 *2 (-631 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1893 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-1082)) (-5 *2 (-631 *3)))) (-3910 (*1 *2 *1) (-12 (-4 *3 (-1034)) (-4 *4 (-1082)) (-5 *2 (-631 *1)) (-4 *1 (-377 *3 *4)))) (-2122 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-1082)) (-5 *2 (-758)))) (-2518 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-1082)))) (-2530 (*1 *2 *1) (-12 (-4 *1 (-377 *2 *3)) (-4 *3 (-1082)) (-4 *2 (-1034)))) (-2428 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-1082)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-2550 (*1 *1 *1) (-12 (-4 *1 (-377 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-1082)))))
-(-13 (-111 |t#1| |t#1|) (-1023 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -1779 (|t#1| $ |t#2|)) (-15 -2879 ($ (-1 |t#1| |t#1|) $)) (-15 -3738 ($ |t#2| |t#1|)) (-15 -3580 ((-112) $)) (-15 -2407 ((-631 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1893 ((-631 |t#1|) $)) (-15 -3910 ((-631 $) $)) (-15 -2122 ((-758) $)) (-15 -2518 (|t#2| $)) (-15 -2530 (|t#1| $)) (-15 -2428 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -2550 ($ $)) (IF (|has| |t#1| (-170)) (-6 (-704 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-604 |#2|) . T) ((-601 (-848)) . T) ((-634 |#1|) . T) ((-704 |#1|) |has| |#1| (-170)) ((-1023 |#2|) . T) ((-1040 |#1|) . T) ((-1082) . T))
-((-1405 (((-1246) $) 7)) (-3075 (((-848) $) 8) (($ (-675 (-685))) 14) (($ (-631 (-325))) 13) (($ (-325)) 12) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 11)))
-(((-378) (-138)) (T -378))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-675 (-685))) (-4 *1 (-378)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-631 (-325))) (-4 *1 (-378)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-378)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) (-4 *1 (-378)))))
-(-13 (-390) (-10 -8 (-15 -3075 ($ (-675 (-685)))) (-15 -3075 ($ (-631 (-325)))) (-15 -3075 ($ (-325))) (-15 -3075 ($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))))))
-(((-601 (-848)) . T) ((-390) . T) ((-1195) . T))
-((-2784 (((-3 $ "failed") (-675 (-311 (-374)))) 21) (((-3 $ "failed") (-675 (-311 (-554)))) 19) (((-3 $ "failed") (-675 (-937 (-374)))) 17) (((-3 $ "failed") (-675 (-937 (-554)))) 15) (((-3 $ "failed") (-675 (-402 (-937 (-374))))) 13) (((-3 $ "failed") (-675 (-402 (-937 (-554))))) 11)) (-1668 (($ (-675 (-311 (-374)))) 22) (($ (-675 (-311 (-554)))) 20) (($ (-675 (-937 (-374)))) 18) (($ (-675 (-937 (-554)))) 16) (($ (-675 (-402 (-937 (-374))))) 14) (($ (-675 (-402 (-937 (-554))))) 12)) (-1405 (((-1246) $) 7)) (-3075 (((-848) $) 8) (($ (-631 (-325))) 25) (($ (-325)) 24) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 23)))
-(((-379) (-138)) (T -379))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-631 (-325))) (-4 *1 (-379)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-379)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) (-4 *1 (-379)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-675 (-311 (-374)))) (-4 *1 (-379)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-675 (-311 (-374)))) (-4 *1 (-379)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-675 (-311 (-554)))) (-4 *1 (-379)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-675 (-311 (-554)))) (-4 *1 (-379)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-675 (-937 (-374)))) (-4 *1 (-379)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-675 (-937 (-374)))) (-4 *1 (-379)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-675 (-937 (-554)))) (-4 *1 (-379)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-675 (-937 (-554)))) (-4 *1 (-379)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-675 (-402 (-937 (-374))))) (-4 *1 (-379)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-675 (-402 (-937 (-374))))) (-4 *1 (-379)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-675 (-402 (-937 (-554))))) (-4 *1 (-379)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-675 (-402 (-937 (-554))))) (-4 *1 (-379)))))
-(-13 (-390) (-10 -8 (-15 -3075 ($ (-631 (-325)))) (-15 -3075 ($ (-325))) (-15 -3075 ($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325)))))) (-15 -1668 ($ (-675 (-311 (-374))))) (-15 -2784 ((-3 $ "failed") (-675 (-311 (-374))))) (-15 -1668 ($ (-675 (-311 (-554))))) (-15 -2784 ((-3 $ "failed") (-675 (-311 (-554))))) (-15 -1668 ($ (-675 (-937 (-374))))) (-15 -2784 ((-3 $ "failed") (-675 (-937 (-374))))) (-15 -1668 ($ (-675 (-937 (-554))))) (-15 -2784 ((-3 $ "failed") (-675 (-937 (-554))))) (-15 -1668 ($ (-675 (-402 (-937 (-374)))))) (-15 -2784 ((-3 $ "failed") (-675 (-402 (-937 (-374)))))) (-15 -1668 ($ (-675 (-402 (-937 (-554)))))) (-15 -2784 ((-3 $ "failed") (-675 (-402 (-937 (-554))))))))
-(((-601 (-848)) . T) ((-390) . T) ((-1195) . T))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-2550 (($ $) NIL)) (-2383 (($ |#1| |#2|) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-1975 ((|#2| $) NIL)) (-2530 ((|#1| $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 28)) (-2004 (($) 12 T CONST)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19)))
-(((-380 |#1| |#2|) (-13 (-111 |#1| |#1|) (-503 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-170)) (-6 (-704 |#1|)) |%noBranch|))) (-1034) (-836)) (T -380))
-NIL
-(-13 (-111 |#1| |#1|) (-503 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-170)) (-6 (-704 |#1|)) |%noBranch|)))
-((-3062 (((-112) $ $) NIL)) (-1508 (((-758) $) 59)) (-4087 (($) NIL T CONST)) (-3567 (((-3 $ "failed") $ $) 61)) (-2784 (((-3 |#1| "failed") $) NIL)) (-1668 ((|#1| $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-4146 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-3248 (((-112) $) 15)) (-3195 ((|#1| $ (-554)) NIL)) (-2370 (((-758) $ (-554)) NIL)) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-3563 (($ (-1 |#1| |#1|) $) 38)) (-4098 (($ (-1 (-758) (-758)) $) 35)) (-3637 (((-3 $ "failed") $ $) 50)) (-1613 (((-1140) $) NIL)) (-1919 (($ $ $) 26)) (-2129 (($ $ $) 24)) (-2768 (((-1102) $) NIL)) (-2316 (((-631 (-2 (|:| |gen| |#1|) (|:| -1333 (-758)))) $) 32)) (-2259 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-3075 (((-848) $) 22) (($ |#1|) NIL)) (-2014 (($) 9 T CONST)) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) 41)) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) 63 (|has| |#1| (-836)))) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ |#1| (-758)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28)))
-(((-381 |#1|) (-13 (-713) (-1023 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-758))) (-15 -2129 ($ $ $)) (-15 -1919 ($ $ $)) (-15 -3637 ((-3 $ "failed") $ $)) (-15 -3567 ((-3 $ "failed") $ $)) (-15 -2259 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4146 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1508 ((-758) $)) (-15 -2316 ((-631 (-2 (|:| |gen| |#1|) (|:| -1333 (-758)))) $)) (-15 -2370 ((-758) $ (-554))) (-15 -3195 (|#1| $ (-554))) (-15 -4098 ($ (-1 (-758) (-758)) $)) (-15 -3563 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-836)) (-6 (-836)) |%noBranch|))) (-1082)) (T -381))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1082)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1082)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-758)) (-5 *1 (-381 *2)) (-4 *2 (-1082)))) (-2129 (*1 *1 *1 *1) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1082)))) (-1919 (*1 *1 *1 *1) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1082)))) (-3637 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-381 *2)) (-4 *2 (-1082)))) (-3567 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-381 *2)) (-4 *2 (-1082)))) (-2259 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-381 *3)) (|:| |rm| (-381 *3)))) (-5 *1 (-381 *3)) (-4 *3 (-1082)))) (-4146 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-381 *3)) (|:| |mm| (-381 *3)) (|:| |rm| (-381 *3)))) (-5 *1 (-381 *3)) (-4 *3 (-1082)))) (-1508 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-381 *3)) (-4 *3 (-1082)))) (-2316 (*1 *2 *1) (-12 (-5 *2 (-631 (-2 (|:| |gen| *3) (|:| -1333 (-758))))) (-5 *1 (-381 *3)) (-4 *3 (-1082)))) (-2370 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-5 *2 (-758)) (-5 *1 (-381 *4)) (-4 *4 (-1082)))) (-3195 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-5 *1 (-381 *2)) (-4 *2 (-1082)))) (-4098 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-758) (-758))) (-5 *1 (-381 *3)) (-4 *3 (-1082)))) (-3563 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1082)) (-5 *1 (-381 *3)))))
-(-13 (-713) (-1023 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-758))) (-15 -2129 ($ $ $)) (-15 -1919 ($ $ $)) (-15 -3637 ((-3 $ "failed") $ $)) (-15 -3567 ((-3 $ "failed") $ $)) (-15 -2259 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4146 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1508 ((-758) $)) (-15 -2316 ((-631 (-2 (|:| |gen| |#1|) (|:| -1333 (-758)))) $)) (-15 -2370 ((-758) $ (-554))) (-15 -3195 (|#1| $ (-554))) (-15 -4098 ($ (-1 (-758) (-758)) $)) (-15 -3563 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-836)) (-6 (-836)) |%noBranch|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 42)) (-1976 (($ $) 41)) (-1363 (((-112) $) 39)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-2784 (((-3 (-554) "failed") $) 48)) (-1668 (((-554) $) 49)) (-1320 (((-3 $ "failed") $) 33)) (-3248 (((-112) $) 31)) (-4223 (($ $ $) 55)) (-2706 (($ $ $) 54)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3919 (((-3 $ "failed") $ $) 43)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ $) 44) (($ (-554)) 47)) (-2261 (((-758)) 28)) (-1909 (((-112) $ $) 40)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1708 (((-112) $ $) 52)) (-1686 (((-112) $ $) 51)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 53)) (-1676 (((-112) $ $) 50)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24)))
-(((-382) (-138)) (T -382))
-NIL
-(-13 (-546) (-836) (-1023 (-554)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-604 (-554)) . T) ((-604 $) . T) ((-601 (-848)) . T) ((-170) . T) ((-285) . T) ((-546) . T) ((-634 $) . T) ((-704 $) . T) ((-713) . T) ((-836) . T) ((-1023 (-554)) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T))
-((-3062 (((-112) $ $) NIL)) (-2629 (((-112) $) 20)) (-2262 (((-112) $) 19)) (-3180 (($ (-1140) (-1140) (-1140)) 21)) (-4309 (((-1140) $) 16)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2587 (($ (-1140) (-1140) (-1140)) 14)) (-3458 (((-1140) $) 17)) (-2512 (((-112) $) 18)) (-2209 (((-1140) $) 15)) (-3075 (((-848) $) 12) (($ (-1140)) 13) (((-1140) $) 9)) (-1658 (((-112) $ $) 7)))
-(((-383) (-384)) (T -383))
-NIL
-(-384)
-((-3062 (((-112) $ $) 7)) (-2629 (((-112) $) 16)) (-2262 (((-112) $) 17)) (-3180 (($ (-1140) (-1140) (-1140)) 15)) (-4309 (((-1140) $) 20)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-2587 (($ (-1140) (-1140) (-1140)) 22)) (-3458 (((-1140) $) 19)) (-2512 (((-112) $) 18)) (-2209 (((-1140) $) 21)) (-3075 (((-848) $) 11) (($ (-1140)) 24) (((-1140) $) 23)) (-1658 (((-112) $ $) 6)))
-(((-384) (-138)) (T -384))
-((-2587 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1140)) (-4 *1 (-384)))) (-2209 (*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-1140)))) (-4309 (*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-1140)))) (-3458 (*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-1140)))) (-2512 (*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-112)))) (-2262 (*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-112)))) (-2629 (*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-112)))) (-3180 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1140)) (-4 *1 (-384)))))
-(-13 (-1082) (-484 (-1140)) (-10 -8 (-15 -2587 ($ (-1140) (-1140) (-1140))) (-15 -2209 ((-1140) $)) (-15 -4309 ((-1140) $)) (-15 -3458 ((-1140) $)) (-15 -2512 ((-112) $)) (-15 -2262 ((-112) $)) (-15 -2629 ((-112) $)) (-15 -3180 ($ (-1140) (-1140) (-1140)))))
-(((-102) . T) ((-604 #0=(-1140)) . T) ((-601 (-848)) . T) ((-601 #0#) . T) ((-484 #0#) . T) ((-1082) . T))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-2825 (((-848) $) 50)) (-4087 (($) NIL T CONST)) (-2080 (($ $ (-906)) NIL)) (-4326 (($ $ (-906)) NIL)) (-1297 (($ $ (-906)) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-4137 (($ (-758)) 26)) (-3330 (((-758)) 17)) (-2196 (((-848) $) 52)) (-1856 (($ $ $) NIL)) (-3075 (((-848) $) NIL)) (-3499 (($ $ $ $) NIL)) (-1870 (($ $ $) NIL)) (-2004 (($) 20 T CONST)) (-1658 (((-112) $ $) 28)) (-1744 (($ $) 34) (($ $ $) 36)) (-1735 (($ $ $) 37)) (** (($ $ (-906)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33)))
-(((-385 |#1| |#2| |#3|) (-13 (-731 |#3|) (-10 -8 (-15 -3330 ((-758))) (-15 -2196 ((-848) $)) (-15 -2825 ((-848) $)) (-15 -4137 ($ (-758))))) (-758) (-758) (-170)) (T -385))
-((-3330 (*1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-170)))) (-2196 (*1 *2 *1) (-12 (-5 *2 (-848)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 (-758)) (-14 *4 (-758)) (-4 *5 (-170)))) (-2825 (*1 *2 *1) (-12 (-5 *2 (-848)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 (-758)) (-14 *4 (-758)) (-4 *5 (-170)))) (-4137 (*1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-170)))))
-(-13 (-731 |#3|) (-10 -8 (-15 -3330 ((-758))) (-15 -2196 ((-848) $)) (-15 -2825 ((-848) $)) (-15 -4137 ($ (-758)))))
-((-1673 (((-1140)) 10)) (-3995 (((-1129 (-1140))) 28)) (-1382 (((-1246) (-1140)) 25) (((-1246) (-383)) 24)) (-1393 (((-1246)) 26)) (-2039 (((-1129 (-1140))) 27)))
-(((-386) (-10 -7 (-15 -2039 ((-1129 (-1140)))) (-15 -3995 ((-1129 (-1140)))) (-15 -1393 ((-1246))) (-15 -1382 ((-1246) (-383))) (-15 -1382 ((-1246) (-1140))) (-15 -1673 ((-1140))))) (T -386))
-((-1673 (*1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-386)))) (-1382 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-386)))) (-1382 (*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1246)) (-5 *1 (-386)))) (-1393 (*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-386)))) (-3995 (*1 *2) (-12 (-5 *2 (-1129 (-1140))) (-5 *1 (-386)))) (-2039 (*1 *2) (-12 (-5 *2 (-1129 (-1140))) (-5 *1 (-386)))))
-(-10 -7 (-15 -2039 ((-1129 (-1140)))) (-15 -3995 ((-1129 (-1140)))) (-15 -1393 ((-1246))) (-15 -1382 ((-1246) (-383))) (-15 -1382 ((-1246) (-1140))) (-15 -1673 ((-1140))))
-((-2342 (((-758) (-331 |#1| |#2| |#3| |#4|)) 16)))
-(((-387 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2342 ((-758) (-331 |#1| |#2| |#3| |#4|)))) (-13 (-363) (-358)) (-1217 |#1|) (-1217 (-402 |#2|)) (-337 |#1| |#2| |#3|)) (T -387))
-((-2342 (*1 *2 *3) (-12 (-5 *3 (-331 *4 *5 *6 *7)) (-4 *4 (-13 (-363) (-358))) (-4 *5 (-1217 *4)) (-4 *6 (-1217 (-402 *5))) (-4 *7 (-337 *4 *5 *6)) (-5 *2 (-758)) (-5 *1 (-387 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2342 ((-758) (-331 |#1| |#2| |#3| |#4|))))
-((-3075 (((-389) |#1|) 11)))
-(((-388 |#1|) (-10 -7 (-15 -3075 ((-389) |#1|))) (-1082)) (T -388))
-((-3075 (*1 *2 *3) (-12 (-5 *2 (-389)) (-5 *1 (-388 *3)) (-4 *3 (-1082)))))
-(-10 -7 (-15 -3075 ((-389) |#1|)))
-((-3062 (((-112) $ $) NIL)) (-3917 (((-631 (-1140)) $ (-631 (-1140))) 38)) (-2090 (((-631 (-1140)) $ (-631 (-1140))) 39)) (-3570 (((-631 (-1140)) $ (-631 (-1140))) 40)) (-3298 (((-631 (-1140)) $) 35)) (-3180 (($) 23)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-4080 (((-631 (-1140)) $) 36)) (-1741 (((-631 (-1140)) $) 37)) (-2524 (((-1246) $ (-554)) 33) (((-1246) $) 34)) (-2927 (($ (-848) (-554)) 30)) (-3075 (((-848) $) 42) (($ (-848)) 25)) (-1658 (((-112) $ $) NIL)))
-(((-389) (-13 (-1082) (-604 (-848)) (-10 -8 (-15 -2927 ($ (-848) (-554))) (-15 -2524 ((-1246) $ (-554))) (-15 -2524 ((-1246) $)) (-15 -1741 ((-631 (-1140)) $)) (-15 -4080 ((-631 (-1140)) $)) (-15 -3180 ($)) (-15 -3298 ((-631 (-1140)) $)) (-15 -3570 ((-631 (-1140)) $ (-631 (-1140)))) (-15 -2090 ((-631 (-1140)) $ (-631 (-1140)))) (-15 -3917 ((-631 (-1140)) $ (-631 (-1140))))))) (T -389))
-((-2927 (*1 *1 *2 *3) (-12 (-5 *2 (-848)) (-5 *3 (-554)) (-5 *1 (-389)))) (-2524 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-5 *2 (-1246)) (-5 *1 (-389)))) (-2524 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-389)))) (-1741 (*1 *2 *1) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-389)))) (-4080 (*1 *2 *1) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-389)))) (-3180 (*1 *1) (-5 *1 (-389))) (-3298 (*1 *2 *1) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-389)))) (-3570 (*1 *2 *1 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-389)))) (-2090 (*1 *2 *1 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-389)))) (-3917 (*1 *2 *1 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-389)))))
-(-13 (-1082) (-604 (-848)) (-10 -8 (-15 -2927 ($ (-848) (-554))) (-15 -2524 ((-1246) $ (-554))) (-15 -2524 ((-1246) $)) (-15 -1741 ((-631 (-1140)) $)) (-15 -4080 ((-631 (-1140)) $)) (-15 -3180 ($)) (-15 -3298 ((-631 (-1140)) $)) (-15 -3570 ((-631 (-1140)) $ (-631 (-1140)))) (-15 -2090 ((-631 (-1140)) $ (-631 (-1140)))) (-15 -3917 ((-631 (-1140)) $ (-631 (-1140))))))
-((-1405 (((-1246) $) 7)) (-3075 (((-848) $) 8)))
-(((-390) (-138)) (T -390))
-((-1405 (*1 *2 *1) (-12 (-4 *1 (-390)) (-5 *2 (-1246)))))
-(-13 (-1195) (-601 (-848)) (-10 -8 (-15 -1405 ((-1246) $))))
-(((-601 (-848)) . T) ((-1195) . T))
-((-2784 (((-3 $ "failed") (-311 (-374))) 21) (((-3 $ "failed") (-311 (-554))) 19) (((-3 $ "failed") (-937 (-374))) 17) (((-3 $ "failed") (-937 (-554))) 15) (((-3 $ "failed") (-402 (-937 (-374)))) 13) (((-3 $ "failed") (-402 (-937 (-554)))) 11)) (-1668 (($ (-311 (-374))) 22) (($ (-311 (-554))) 20) (($ (-937 (-374))) 18) (($ (-937 (-554))) 16) (($ (-402 (-937 (-374)))) 14) (($ (-402 (-937 (-554)))) 12)) (-1405 (((-1246) $) 7)) (-3075 (((-848) $) 8) (($ (-631 (-325))) 25) (($ (-325)) 24) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 23)))
-(((-391) (-138)) (T -391))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-631 (-325))) (-4 *1 (-391)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-391)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) (-4 *1 (-391)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-311 (-374))) (-4 *1 (-391)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-311 (-374))) (-4 *1 (-391)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-311 (-554))) (-4 *1 (-391)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-311 (-554))) (-4 *1 (-391)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-937 (-374))) (-4 *1 (-391)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-937 (-374))) (-4 *1 (-391)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-937 (-554))) (-4 *1 (-391)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-937 (-554))) (-4 *1 (-391)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-402 (-937 (-374)))) (-4 *1 (-391)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-402 (-937 (-374)))) (-4 *1 (-391)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-402 (-937 (-554)))) (-4 *1 (-391)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-402 (-937 (-554)))) (-4 *1 (-391)))))
-(-13 (-390) (-10 -8 (-15 -3075 ($ (-631 (-325)))) (-15 -3075 ($ (-325))) (-15 -3075 ($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325)))))) (-15 -1668 ($ (-311 (-374)))) (-15 -2784 ((-3 $ "failed") (-311 (-374)))) (-15 -1668 ($ (-311 (-554)))) (-15 -2784 ((-3 $ "failed") (-311 (-554)))) (-15 -1668 ($ (-937 (-374)))) (-15 -2784 ((-3 $ "failed") (-937 (-374)))) (-15 -1668 ($ (-937 (-554)))) (-15 -2784 ((-3 $ "failed") (-937 (-554)))) (-15 -1668 ($ (-402 (-937 (-374))))) (-15 -2784 ((-3 $ "failed") (-402 (-937 (-374))))) (-15 -1668 ($ (-402 (-937 (-554))))) (-15 -2784 ((-3 $ "failed") (-402 (-937 (-554)))))))
-(((-601 (-848)) . T) ((-390) . T) ((-1195) . T))
-((-4127 (((-631 (-1140)) (-631 (-1140))) 9)) (-1405 (((-1246) (-383)) 27)) (-4191 (((-1086) (-1158) (-631 (-1158)) (-1161) (-631 (-1158))) 60) (((-1086) (-1158) (-631 (-3 (|:| |array| (-631 (-1158))) (|:| |scalar| (-1158)))) (-631 (-631 (-3 (|:| |array| (-631 (-1158))) (|:| |scalar| (-1158))))) (-631 (-1158)) (-1158)) 35) (((-1086) (-1158) (-631 (-3 (|:| |array| (-631 (-1158))) (|:| |scalar| (-1158)))) (-631 (-631 (-3 (|:| |array| (-631 (-1158))) (|:| |scalar| (-1158))))) (-631 (-1158))) 34)))
-(((-392) (-10 -7 (-15 -4191 ((-1086) (-1158) (-631 (-3 (|:| |array| (-631 (-1158))) (|:| |scalar| (-1158)))) (-631 (-631 (-3 (|:| |array| (-631 (-1158))) (|:| |scalar| (-1158))))) (-631 (-1158)))) (-15 -4191 ((-1086) (-1158) (-631 (-3 (|:| |array| (-631 (-1158))) (|:| |scalar| (-1158)))) (-631 (-631 (-3 (|:| |array| (-631 (-1158))) (|:| |scalar| (-1158))))) (-631 (-1158)) (-1158))) (-15 -4191 ((-1086) (-1158) (-631 (-1158)) (-1161) (-631 (-1158)))) (-15 -1405 ((-1246) (-383))) (-15 -4127 ((-631 (-1140)) (-631 (-1140)))))) (T -392))
-((-4127 (*1 *2 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-392)))) (-1405 (*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1246)) (-5 *1 (-392)))) (-4191 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-631 (-1158))) (-5 *5 (-1161)) (-5 *3 (-1158)) (-5 *2 (-1086)) (-5 *1 (-392)))) (-4191 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-631 (-631 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-631 (-3 (|:| |array| (-631 *3)) (|:| |scalar| (-1158))))) (-5 *6 (-631 (-1158))) (-5 *3 (-1158)) (-5 *2 (-1086)) (-5 *1 (-392)))) (-4191 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-631 (-631 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-631 (-3 (|:| |array| (-631 *3)) (|:| |scalar| (-1158))))) (-5 *6 (-631 (-1158))) (-5 *3 (-1158)) (-5 *2 (-1086)) (-5 *1 (-392)))))
-(-10 -7 (-15 -4191 ((-1086) (-1158) (-631 (-3 (|:| |array| (-631 (-1158))) (|:| |scalar| (-1158)))) (-631 (-631 (-3 (|:| |array| (-631 (-1158))) (|:| |scalar| (-1158))))) (-631 (-1158)))) (-15 -4191 ((-1086) (-1158) (-631 (-3 (|:| |array| (-631 (-1158))) (|:| |scalar| (-1158)))) (-631 (-631 (-3 (|:| |array| (-631 (-1158))) (|:| |scalar| (-1158))))) (-631 (-1158)) (-1158))) (-15 -4191 ((-1086) (-1158) (-631 (-1158)) (-1161) (-631 (-1158)))) (-15 -1405 ((-1246) (-383))) (-15 -4127 ((-631 (-1140)) (-631 (-1140)))))
-((-1405 (((-1246) $) 38)) (-3075 (((-848) $) 98) (($ (-325)) 100) (($ (-631 (-325))) 99) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 97) (($ (-311 (-687))) 54) (($ (-311 (-685))) 73) (($ (-311 (-680))) 86) (($ (-289 (-311 (-687)))) 68) (($ (-289 (-311 (-685)))) 81) (($ (-289 (-311 (-680)))) 94) (($ (-311 (-554))) 104) (($ (-311 (-374))) 117) (($ (-311 (-167 (-374)))) 130) (($ (-289 (-311 (-554)))) 112) (($ (-289 (-311 (-374)))) 125) (($ (-289 (-311 (-167 (-374))))) 138)))
-(((-393 |#1| |#2| |#3| |#4|) (-13 (-390) (-10 -8 (-15 -3075 ($ (-325))) (-15 -3075 ($ (-631 (-325)))) (-15 -3075 ($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325)))))) (-15 -3075 ($ (-311 (-687)))) (-15 -3075 ($ (-311 (-685)))) (-15 -3075 ($ (-311 (-680)))) (-15 -3075 ($ (-289 (-311 (-687))))) (-15 -3075 ($ (-289 (-311 (-685))))) (-15 -3075 ($ (-289 (-311 (-680))))) (-15 -3075 ($ (-311 (-554)))) (-15 -3075 ($ (-311 (-374)))) (-15 -3075 ($ (-311 (-167 (-374))))) (-15 -3075 ($ (-289 (-311 (-554))))) (-15 -3075 ($ (-289 (-311 (-374))))) (-15 -3075 ($ (-289 (-311 (-167 (-374)))))))) (-1158) (-3 (|:| |fst| (-429)) (|:| -2053 "void")) (-631 (-1158)) (-1162)) (T -393))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-325)) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-14 *5 (-631 (-1158))) (-14 *6 (-1162)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-631 (-325))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-14 *5 (-631 (-1158))) (-14 *6 (-1162)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-14 *5 (-631 (-1158))) (-14 *6 (-1162)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-311 (-687))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-14 *5 (-631 (-1158))) (-14 *6 (-1162)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-311 (-685))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-14 *5 (-631 (-1158))) (-14 *6 (-1162)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-311 (-680))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-14 *5 (-631 (-1158))) (-14 *6 (-1162)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-289 (-311 (-687)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-14 *5 (-631 (-1158))) (-14 *6 (-1162)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-289 (-311 (-685)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-14 *5 (-631 (-1158))) (-14 *6 (-1162)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-289 (-311 (-680)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-14 *5 (-631 (-1158))) (-14 *6 (-1162)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-311 (-554))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-14 *5 (-631 (-1158))) (-14 *6 (-1162)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-311 (-374))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-14 *5 (-631 (-1158))) (-14 *6 (-1162)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-311 (-167 (-374)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-14 *5 (-631 (-1158))) (-14 *6 (-1162)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-289 (-311 (-554)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-14 *5 (-631 (-1158))) (-14 *6 (-1162)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-289 (-311 (-374)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-14 *5 (-631 (-1158))) (-14 *6 (-1162)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-289 (-311 (-167 (-374))))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-14 *5 (-631 (-1158))) (-14 *6 (-1162)))))
-(-13 (-390) (-10 -8 (-15 -3075 ($ (-325))) (-15 -3075 ($ (-631 (-325)))) (-15 -3075 ($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325)))))) (-15 -3075 ($ (-311 (-687)))) (-15 -3075 ($ (-311 (-685)))) (-15 -3075 ($ (-311 (-680)))) (-15 -3075 ($ (-289 (-311 (-687))))) (-15 -3075 ($ (-289 (-311 (-685))))) (-15 -3075 ($ (-289 (-311 (-680))))) (-15 -3075 ($ (-311 (-554)))) (-15 -3075 ($ (-311 (-374)))) (-15 -3075 ($ (-311 (-167 (-374))))) (-15 -3075 ($ (-289 (-311 (-554))))) (-15 -3075 ($ (-289 (-311 (-374))))) (-15 -3075 ($ (-289 (-311 (-167 (-374))))))))
-((-3062 (((-112) $ $) NIL)) (-2988 ((|#2| $) 36)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3755 (($ (-402 |#2|)) 85)) (-1836 (((-631 (-2 (|:| -1407 (-758)) (|:| -1608 |#2|) (|:| |num| |#2|))) $) 37)) (-1553 (($ $) 32) (($ $ (-758)) 34)) (-2927 (((-402 |#2|) $) 46)) (-3089 (($ (-631 (-2 (|:| -1407 (-758)) (|:| -1608 |#2|) (|:| |num| |#2|)))) 31)) (-3075 (((-848) $) 120)) (-1787 (($ $) 33) (($ $ (-758)) 35)) (-1658 (((-112) $ $) NIL)) (-1735 (($ |#2| $) 39)))
-(((-394 |#1| |#2|) (-13 (-1082) (-602 (-402 |#2|)) (-10 -8 (-15 -1735 ($ |#2| $)) (-15 -3755 ($ (-402 |#2|))) (-15 -2988 (|#2| $)) (-15 -1836 ((-631 (-2 (|:| -1407 (-758)) (|:| -1608 |#2|) (|:| |num| |#2|))) $)) (-15 -3089 ($ (-631 (-2 (|:| -1407 (-758)) (|:| -1608 |#2|) (|:| |num| |#2|))))) (-15 -1553 ($ $)) (-15 -1787 ($ $)) (-15 -1553 ($ $ (-758))) (-15 -1787 ($ $ (-758))))) (-13 (-358) (-145)) (-1217 |#1|)) (T -394))
-((-1735 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *2)) (-4 *2 (-1217 *3)))) (-3755 (*1 *1 *2) (-12 (-5 *2 (-402 *4)) (-4 *4 (-1217 *3)) (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *4)))) (-2988 (*1 *2 *1) (-12 (-4 *2 (-1217 *3)) (-5 *1 (-394 *3 *2)) (-4 *3 (-13 (-358) (-145))))) (-1836 (*1 *2 *1) (-12 (-4 *3 (-13 (-358) (-145))) (-5 *2 (-631 (-2 (|:| -1407 (-758)) (|:| -1608 *4) (|:| |num| *4)))) (-5 *1 (-394 *3 *4)) (-4 *4 (-1217 *3)))) (-3089 (*1 *1 *2) (-12 (-5 *2 (-631 (-2 (|:| -1407 (-758)) (|:| -1608 *4) (|:| |num| *4)))) (-4 *4 (-1217 *3)) (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *4)))) (-1553 (*1 *1 *1) (-12 (-4 *2 (-13 (-358) (-145))) (-5 *1 (-394 *2 *3)) (-4 *3 (-1217 *2)))) (-1787 (*1 *1 *1) (-12 (-4 *2 (-13 (-358) (-145))) (-5 *1 (-394 *2 *3)) (-4 *3 (-1217 *2)))) (-1553 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *4)) (-4 *4 (-1217 *3)))) (-1787 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *4)) (-4 *4 (-1217 *3)))))
-(-13 (-1082) (-602 (-402 |#2|)) (-10 -8 (-15 -1735 ($ |#2| $)) (-15 -3755 ($ (-402 |#2|))) (-15 -2988 (|#2| $)) (-15 -1836 ((-631 (-2 (|:| -1407 (-758)) (|:| -1608 |#2|) (|:| |num| |#2|))) $)) (-15 -3089 ($ (-631 (-2 (|:| -1407 (-758)) (|:| -1608 |#2|) (|:| |num| |#2|))))) (-15 -1553 ($ $)) (-15 -1787 ($ $)) (-15 -1553 ($ $ (-758))) (-15 -1787 ($ $ (-758)))))
-((-3062 (((-112) $ $) 9 (-3994 (|has| |#1| (-871 (-554))) (|has| |#1| (-871 (-374)))))) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) 15 (|has| |#1| (-871 (-374)))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) 14 (|has| |#1| (-871 (-554))))) (-1613 (((-1140) $) 13 (-3994 (|has| |#1| (-871 (-554))) (|has| |#1| (-871 (-374)))))) (-2768 (((-1102) $) 12 (-3994 (|has| |#1| (-871 (-554))) (|has| |#1| (-871 (-374)))))) (-3075 (((-848) $) 11 (-3994 (|has| |#1| (-871 (-554))) (|has| |#1| (-871 (-374)))))) (-1658 (((-112) $ $) 10 (-3994 (|has| |#1| (-871 (-554))) (|has| |#1| (-871 (-374)))))))
-(((-395 |#1|) (-138) (-1195)) (T -395))
-NIL
-(-13 (-1195) (-10 -7 (IF (|has| |t#1| (-871 (-554))) (-6 (-871 (-554))) |%noBranch|) (IF (|has| |t#1| (-871 (-374))) (-6 (-871 (-374))) |%noBranch|)))
-(((-102) -3994 (|has| |#1| (-871 (-554))) (|has| |#1| (-871 (-374)))) ((-601 (-848)) -3994 (|has| |#1| (-871 (-554))) (|has| |#1| (-871 (-374)))) ((-871 (-374)) |has| |#1| (-871 (-374))) ((-871 (-554)) |has| |#1| (-871 (-554))) ((-1082) -3994 (|has| |#1| (-871 (-554))) (|has| |#1| (-871 (-374)))) ((-1195) . T))
-((-4122 (($ $) 10) (($ $ (-758)) 11)))
-(((-396 |#1|) (-10 -8 (-15 -4122 (|#1| |#1| (-758))) (-15 -4122 (|#1| |#1|))) (-397)) (T -396))
-NIL
-(-10 -8 (-15 -4122 (|#1| |#1| (-758))) (-15 -4122 (|#1| |#1|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 42)) (-1976 (($ $) 41)) (-1363 (((-112) $) 39)) (-2934 (((-3 $ "failed") $ $) 19)) (-3278 (($ $) 74)) (-1565 (((-413 $) $) 73)) (-2286 (((-112) $ $) 60)) (-4087 (($) 17 T CONST)) (-3964 (($ $ $) 56)) (-1320 (((-3 $ "failed") $) 33)) (-3943 (($ $ $) 57)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 52)) (-4122 (($ $) 80) (($ $ (-758)) 79)) (-3289 (((-112) $) 72)) (-2342 (((-820 (-906)) $) 82)) (-3248 (((-112) $) 31)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 53)) (-2475 (($ $ $) 47) (($ (-631 $)) 46)) (-1613 (((-1140) $) 9)) (-2483 (($ $) 71)) (-2768 (((-1102) $) 10)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 45)) (-2510 (($ $ $) 49) (($ (-631 $)) 48)) (-2270 (((-413 $) $) 75)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3919 (((-3 $ "failed") $ $) 43)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 51)) (-2072 (((-758) $) 59)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 58)) (-3316 (((-3 (-758) "failed") $ $) 81)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ $) 44) (($ (-402 (-554))) 67)) (-2084 (((-3 $ "failed") $) 83)) (-2261 (((-758)) 28)) (-1909 (((-112) $ $) 40)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1752 (($ $ $) 66)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ (-554)) 70)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ (-402 (-554))) 69) (($ (-402 (-554)) $) 68)))
-(((-397) (-138)) (T -397))
-((-2342 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-820 (-906))))) (-3316 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-397)) (-5 *2 (-758)))) (-4122 (*1 *1 *1) (-4 *1 (-397))) (-4122 (*1 *1 *1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-758)))))
-(-13 (-358) (-143) (-10 -8 (-15 -2342 ((-820 (-906)) $)) (-15 -3316 ((-3 (-758) "failed") $ $)) (-15 -4122 ($ $)) (-15 -4122 ($ $ (-758)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-554))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) . T) ((-604 #0#) . T) ((-604 (-554)) . T) ((-604 $) . T) ((-601 (-848)) . T) ((-170) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-358) . T) ((-446) . T) ((-546) . T) ((-634 #0#) . T) ((-634 $) . T) ((-704 #0#) . T) ((-704 $) . T) ((-713) . T) ((-905) . T) ((-1040 #0#) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1199) . T))
-((-3302 (($ (-554) (-554)) 11) (($ (-554) (-554) (-906)) NIL)) (-1378 (((-906)) 16) (((-906) (-906)) NIL)))
-(((-398 |#1|) (-10 -8 (-15 -1378 ((-906) (-906))) (-15 -1378 ((-906))) (-15 -3302 (|#1| (-554) (-554) (-906))) (-15 -3302 (|#1| (-554) (-554)))) (-399)) (T -398))
-((-1378 (*1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-398 *3)) (-4 *3 (-399)))) (-1378 (*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-398 *3)) (-4 *3 (-399)))))
-(-10 -8 (-15 -1378 ((-906) (-906))) (-15 -1378 ((-906))) (-15 -3302 (|#1| (-554) (-554) (-906))) (-15 -3302 (|#1| (-554) (-554))))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-3831 (((-554) $) 90)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 42)) (-1976 (($ $) 41)) (-1363 (((-112) $) 39)) (-1557 (($ $) 88)) (-2934 (((-3 $ "failed") $ $) 19)) (-3278 (($ $) 74)) (-1565 (((-413 $) $) 73)) (-2282 (($ $) 98)) (-2286 (((-112) $ $) 60)) (-4219 (((-554) $) 115)) (-4087 (($) 17 T CONST)) (-2087 (($ $) 87)) (-2784 (((-3 (-554) "failed") $) 103) (((-3 (-402 (-554)) "failed") $) 100)) (-1668 (((-554) $) 104) (((-402 (-554)) $) 101)) (-3964 (($ $ $) 56)) (-1320 (((-3 $ "failed") $) 33)) (-3943 (($ $ $) 57)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 52)) (-3289 (((-112) $) 72)) (-2276 (((-906)) 131) (((-906) (-906)) 128 (|has| $ (-6 -4364)))) (-2745 (((-112) $) 113)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) 94)) (-2342 (((-554) $) 137)) (-3248 (((-112) $) 31)) (-3734 (($ $ (-554)) 97)) (-3274 (($ $) 93)) (-4304 (((-112) $) 114)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 53)) (-4223 (($ $ $) 112) (($) 125 (-12 (-4081 (|has| $ (-6 -4364))) (-4081 (|has| $ (-6 -4356)))))) (-2706 (($ $ $) 111) (($) 124 (-12 (-4081 (|has| $ (-6 -4364))) (-4081 (|has| $ (-6 -4356)))))) (-1837 (((-554) $) 134)) (-2475 (($ $ $) 47) (($ (-631 $)) 46)) (-1613 (((-1140) $) 9)) (-2483 (($ $) 71)) (-3845 (((-906) (-554)) 127 (|has| $ (-6 -4364)))) (-2768 (((-1102) $) 10)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 45)) (-2510 (($ $ $) 49) (($ (-631 $)) 48)) (-3722 (($ $) 89)) (-4339 (($ $) 91)) (-3302 (($ (-554) (-554)) 139) (($ (-554) (-554) (-906)) 138)) (-2270 (((-413 $) $) 75)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3919 (((-3 $ "failed") $ $) 43)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 51)) (-1407 (((-554) $) 135)) (-2072 (((-758) $) 59)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 58)) (-1378 (((-906)) 132) (((-906) (-906)) 129 (|has| $ (-6 -4364)))) (-4353 (((-906) (-554)) 126 (|has| $ (-6 -4364)))) (-2927 (((-374) $) 106) (((-221) $) 105) (((-877 (-374)) $) 95)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ $) 44) (($ (-402 (-554))) 67) (($ (-554)) 102) (($ (-402 (-554))) 99)) (-2261 (((-758)) 28)) (-2755 (($ $) 92)) (-3219 (((-906)) 133) (((-906) (-906)) 130 (|has| $ (-6 -4364)))) (-3462 (((-906)) 136)) (-1909 (((-112) $ $) 40)) (-1700 (($ $) 116)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1708 (((-112) $ $) 109)) (-1686 (((-112) $ $) 108)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 110)) (-1676 (((-112) $ $) 107)) (-1752 (($ $ $) 66)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ (-554)) 70) (($ $ (-402 (-554))) 96)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ (-402 (-554))) 69) (($ (-402 (-554)) $) 68)))
-(((-399) (-138)) (T -399))
-((-3302 (*1 *1 *2 *2) (-12 (-5 *2 (-554)) (-4 *1 (-399)))) (-3302 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-554)) (-5 *3 (-906)) (-4 *1 (-399)))) (-2342 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-554)))) (-3462 (*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-906)))) (-1407 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-554)))) (-1837 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-554)))) (-3219 (*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-906)))) (-1378 (*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-906)))) (-2276 (*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-906)))) (-3219 (*1 *2 *2) (-12 (-5 *2 (-906)) (|has| *1 (-6 -4364)) (-4 *1 (-399)))) (-1378 (*1 *2 *2) (-12 (-5 *2 (-906)) (|has| *1 (-6 -4364)) (-4 *1 (-399)))) (-2276 (*1 *2 *2) (-12 (-5 *2 (-906)) (|has| *1 (-6 -4364)) (-4 *1 (-399)))) (-3845 (*1 *2 *3) (-12 (-5 *3 (-554)) (|has| *1 (-6 -4364)) (-4 *1 (-399)) (-5 *2 (-906)))) (-4353 (*1 *2 *3) (-12 (-5 *3 (-554)) (|has| *1 (-6 -4364)) (-4 *1 (-399)) (-5 *2 (-906)))) (-4223 (*1 *1) (-12 (-4 *1 (-399)) (-4081 (|has| *1 (-6 -4364))) (-4081 (|has| *1 (-6 -4356))))) (-2706 (*1 *1) (-12 (-4 *1 (-399)) (-4081 (|has| *1 (-6 -4364))) (-4081 (|has| *1 (-6 -4356))))))
-(-13 (-1043) (-10 -8 (-6 -4333) (-15 -3302 ($ (-554) (-554))) (-15 -3302 ($ (-554) (-554) (-906))) (-15 -2342 ((-554) $)) (-15 -3462 ((-906))) (-15 -1407 ((-554) $)) (-15 -1837 ((-554) $)) (-15 -3219 ((-906))) (-15 -1378 ((-906))) (-15 -2276 ((-906))) (IF (|has| $ (-6 -4364)) (PROGN (-15 -3219 ((-906) (-906))) (-15 -1378 ((-906) (-906))) (-15 -2276 ((-906) (-906))) (-15 -3845 ((-906) (-554))) (-15 -4353 ((-906) (-554)))) |%noBranch|) (IF (|has| $ (-6 -4356)) |%noBranch| (IF (|has| $ (-6 -4364)) |%noBranch| (PROGN (-15 -4223 ($)) (-15 -2706 ($)))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-554))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-604 #0#) . T) ((-604 (-554)) . T) ((-604 $) . T) ((-601 (-848)) . T) ((-170) . T) ((-602 (-221)) . T) ((-602 (-374)) . T) ((-602 (-877 (-374))) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-358) . T) ((-446) . T) ((-546) . T) ((-634 #0#) . T) ((-634 $) . T) ((-704 #0#) . T) ((-704 $) . T) ((-713) . T) ((-778) . T) ((-779) . T) ((-781) . T) ((-782) . T) ((-834) . T) ((-836) . T) ((-871 (-374)) . T) ((-905) . T) ((-987) . T) ((-1007) . T) ((-1043) . T) ((-1023 (-402 (-554))) . T) ((-1023 (-554)) . T) ((-1040 #0#) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1199) . T))
-((-2879 (((-413 |#2|) (-1 |#2| |#1|) (-413 |#1|)) 20)))
-(((-400 |#1| |#2|) (-10 -7 (-15 -2879 ((-413 |#2|) (-1 |#2| |#1|) (-413 |#1|)))) (-546) (-546)) (T -400))
-((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-413 *5)) (-4 *5 (-546)) (-4 *6 (-546)) (-5 *2 (-413 *6)) (-5 *1 (-400 *5 *6)))))
-(-10 -7 (-15 -2879 ((-413 |#2|) (-1 |#2| |#1|) (-413 |#1|))))
-((-2879 (((-402 |#2|) (-1 |#2| |#1|) (-402 |#1|)) 13)))
-(((-401 |#1| |#2|) (-10 -7 (-15 -2879 ((-402 |#2|) (-1 |#2| |#1|) (-402 |#1|)))) (-546) (-546)) (T -401))
-((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-402 *5)) (-4 *5 (-546)) (-4 *6 (-546)) (-5 *2 (-402 *6)) (-5 *1 (-401 *5 *6)))))
-(-10 -7 (-15 -2879 ((-402 |#2|) (-1 |#2| |#1|) (-402 |#1|))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 13)) (-3831 ((|#1| $) 21 (|has| |#1| (-302)))) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-2286 (((-112) $ $) NIL)) (-4219 (((-554) $) NIL (|has| |#1| (-807)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) 17) (((-3 (-1158) "failed") $) NIL (|has| |#1| (-1023 (-1158)))) (((-3 (-402 (-554)) "failed") $) 70 (|has| |#1| (-1023 (-554)))) (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554))))) (-1668 ((|#1| $) 15) (((-1158) $) NIL (|has| |#1| (-1023 (-1158)))) (((-402 (-554)) $) 67 (|has| |#1| (-1023 (-554)))) (((-554) $) NIL (|has| |#1| (-1023 (-554))))) (-3964 (($ $ $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) NIL) (((-675 |#1|) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) 50)) (-3353 (($) NIL (|has| |#1| (-539)))) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-2745 (((-112) $) NIL (|has| |#1| (-807)))) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (|has| |#1| (-871 (-554)))) (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (|has| |#1| (-871 (-374))))) (-3248 (((-112) $) 64)) (-3472 (($ $) NIL)) (-2810 ((|#1| $) 71)) (-3339 (((-3 $ "failed") $) NIL (|has| |#1| (-1133)))) (-4304 (((-112) $) NIL (|has| |#1| (-807)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-3834 (($) NIL (|has| |#1| (-1133)) CONST)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 97)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3722 (($ $) NIL (|has| |#1| (-302)))) (-4339 ((|#1| $) 28 (|has| |#1| (-539)))) (-1290 (((-413 (-1154 $)) (-1154 $)) 135 (|has| |#1| (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) 131 (|has| |#1| (-894)))) (-2270 (((-413 $) $) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2386 (($ $ (-631 |#1|) (-631 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-304 |#1|))) (($ $ (-289 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ (-631 (-289 |#1|))) NIL (|has| |#1| (-304 |#1|))) (($ $ (-631 (-1158)) (-631 |#1|)) NIL (|has| |#1| (-508 (-1158) |#1|))) (($ $ (-1158) |#1|) NIL (|has| |#1| (-508 (-1158) |#1|)))) (-2072 (((-758) $) NIL)) (-2064 (($ $ |#1|) NIL (|has| |#1| (-281 |#1| |#1|)))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-1553 (($ $) NIL (|has| |#1| (-229))) (($ $ (-758)) NIL (|has| |#1| (-229))) (($ $ (-1158)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-3623 (($ $) NIL)) (-2822 ((|#1| $) 73)) (-2927 (((-877 (-554)) $) NIL (|has| |#1| (-602 (-877 (-554))))) (((-877 (-374)) $) NIL (|has| |#1| (-602 (-877 (-374))))) (((-530) $) NIL (|has| |#1| (-602 (-530)))) (((-374) $) NIL (|has| |#1| (-1007))) (((-221) $) NIL (|has| |#1| (-1007)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) 115 (-12 (|has| $ (-143)) (|has| |#1| (-894))))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL) (($ (-402 (-554))) NIL) (($ |#1|) 10) (($ (-1158)) NIL (|has| |#1| (-1023 (-1158))))) (-2084 (((-3 $ "failed") $) 99 (-3994 (-12 (|has| $ (-143)) (|has| |#1| (-894))) (|has| |#1| (-143))))) (-2261 (((-758)) 100)) (-2755 ((|#1| $) 26 (|has| |#1| (-539)))) (-1909 (((-112) $ $) NIL)) (-1700 (($ $) NIL (|has| |#1| (-807)))) (-2004 (($) 22 T CONST)) (-2014 (($) 8 T CONST)) (-4048 (((-1140) $) 43 (-12 (|has| |#1| (-539)) (|has| |#1| (-815)))) (((-1140) $ (-112)) 44 (-12 (|has| |#1| (-539)) (|has| |#1| (-815)))) (((-1246) (-809) $) 45 (-12 (|has| |#1| (-539)) (|has| |#1| (-815)))) (((-1246) (-809) $ (-112)) 46 (-12 (|has| |#1| (-539)) (|has| |#1| (-815))))) (-1787 (($ $) NIL (|has| |#1| (-229))) (($ $ (-758)) NIL (|has| |#1| (-229))) (($ $ (-1158)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) 56)) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) 24 (|has| |#1| (-836)))) (-1752 (($ $ $) 126) (($ |#1| |#1|) 52)) (-1744 (($ $) 25) (($ $ $) 55)) (-1735 (($ $ $) 53)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) 125)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 60) (($ $ $) 57) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85)))
-(((-402 |#1|) (-13 (-977 |#1|) (-10 -7 (IF (|has| |#1| (-539)) (IF (|has| |#1| (-815)) (-6 (-815)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4360)) (IF (|has| |#1| (-446)) (IF (|has| |#1| (-6 -4371)) (-6 -4360) |%noBranch|) |%noBranch|) |%noBranch|))) (-546)) (T -402))
-NIL
-(-13 (-977 |#1|) (-10 -7 (IF (|has| |#1| (-539)) (IF (|has| |#1| (-815)) (-6 (-815)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4360)) (IF (|has| |#1| (-446)) (IF (|has| |#1| (-6 -4371)) (-6 -4360) |%noBranch|) |%noBranch|) |%noBranch|)))
-((-1903 (((-675 |#2|) (-1241 $)) NIL) (((-675 |#2|)) 18)) (-1651 (($ (-1241 |#2|) (-1241 $)) NIL) (($ (-1241 |#2|)) 24)) (-3629 (((-675 |#2|) $ (-1241 $)) NIL) (((-675 |#2|) $) 38)) (-3361 ((|#3| $) 60)) (-1495 ((|#2| (-1241 $)) NIL) ((|#2|) 20)) (-3656 (((-1241 |#2|) $ (-1241 $)) NIL) (((-675 |#2|) (-1241 $) (-1241 $)) NIL) (((-1241 |#2|) $) 22) (((-675 |#2|) (-1241 $)) 36)) (-2927 (((-1241 |#2|) $) 11) (($ (-1241 |#2|)) 13)) (-3109 ((|#3| $) 52)))
-(((-403 |#1| |#2| |#3|) (-10 -8 (-15 -3629 ((-675 |#2|) |#1|)) (-15 -1495 (|#2|)) (-15 -1903 ((-675 |#2|))) (-15 -2927 (|#1| (-1241 |#2|))) (-15 -2927 ((-1241 |#2|) |#1|)) (-15 -1651 (|#1| (-1241 |#2|))) (-15 -3656 ((-675 |#2|) (-1241 |#1|))) (-15 -3656 ((-1241 |#2|) |#1|)) (-15 -3361 (|#3| |#1|)) (-15 -3109 (|#3| |#1|)) (-15 -1903 ((-675 |#2|) (-1241 |#1|))) (-15 -1495 (|#2| (-1241 |#1|))) (-15 -1651 (|#1| (-1241 |#2|) (-1241 |#1|))) (-15 -3656 ((-675 |#2|) (-1241 |#1|) (-1241 |#1|))) (-15 -3656 ((-1241 |#2|) |#1| (-1241 |#1|))) (-15 -3629 ((-675 |#2|) |#1| (-1241 |#1|)))) (-404 |#2| |#3|) (-170) (-1217 |#2|)) (T -403))
-((-1903 (*1 *2) (-12 (-4 *4 (-170)) (-4 *5 (-1217 *4)) (-5 *2 (-675 *4)) (-5 *1 (-403 *3 *4 *5)) (-4 *3 (-404 *4 *5)))) (-1495 (*1 *2) (-12 (-4 *4 (-1217 *2)) (-4 *2 (-170)) (-5 *1 (-403 *3 *2 *4)) (-4 *3 (-404 *2 *4)))))
-(-10 -8 (-15 -3629 ((-675 |#2|) |#1|)) (-15 -1495 (|#2|)) (-15 -1903 ((-675 |#2|))) (-15 -2927 (|#1| (-1241 |#2|))) (-15 -2927 ((-1241 |#2|) |#1|)) (-15 -1651 (|#1| (-1241 |#2|))) (-15 -3656 ((-675 |#2|) (-1241 |#1|))) (-15 -3656 ((-1241 |#2|) |#1|)) (-15 -3361 (|#3| |#1|)) (-15 -3109 (|#3| |#1|)) (-15 -1903 ((-675 |#2|) (-1241 |#1|))) (-15 -1495 (|#2| (-1241 |#1|))) (-15 -1651 (|#1| (-1241 |#2|) (-1241 |#1|))) (-15 -3656 ((-675 |#2|) (-1241 |#1|) (-1241 |#1|))) (-15 -3656 ((-1241 |#2|) |#1| (-1241 |#1|))) (-15 -3629 ((-675 |#2|) |#1| (-1241 |#1|))))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1903 (((-675 |#1|) (-1241 $)) 47) (((-675 |#1|)) 62)) (-1612 ((|#1| $) 53)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1651 (($ (-1241 |#1|) (-1241 $)) 49) (($ (-1241 |#1|)) 65)) (-3629 (((-675 |#1|) $ (-1241 $)) 54) (((-675 |#1|) $) 60)) (-1320 (((-3 $ "failed") $) 33)) (-4186 (((-906)) 55)) (-3248 (((-112) $) 31)) (-3274 ((|#1| $) 52)) (-3361 ((|#2| $) 45 (|has| |#1| (-358)))) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-1495 ((|#1| (-1241 $)) 48) ((|#1|) 61)) (-3656 (((-1241 |#1|) $ (-1241 $)) 51) (((-675 |#1|) (-1241 $) (-1241 $)) 50) (((-1241 |#1|) $) 67) (((-675 |#1|) (-1241 $)) 66)) (-2927 (((-1241 |#1|) $) 64) (($ (-1241 |#1|)) 63)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ |#1|) 38)) (-2084 (((-3 $ "failed") $) 44 (|has| |#1| (-143)))) (-3109 ((|#2| $) 46)) (-2261 (((-758)) 28)) (-3782 (((-1241 $)) 68)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
-(((-404 |#1| |#2|) (-138) (-170) (-1217 |t#1|)) (T -404))
-((-3782 (*1 *2) (-12 (-4 *3 (-170)) (-4 *4 (-1217 *3)) (-5 *2 (-1241 *1)) (-4 *1 (-404 *3 *4)))) (-3656 (*1 *2 *1) (-12 (-4 *1 (-404 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1217 *3)) (-5 *2 (-1241 *3)))) (-3656 (*1 *2 *3) (-12 (-5 *3 (-1241 *1)) (-4 *1 (-404 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1217 *4)) (-5 *2 (-675 *4)))) (-1651 (*1 *1 *2) (-12 (-5 *2 (-1241 *3)) (-4 *3 (-170)) (-4 *1 (-404 *3 *4)) (-4 *4 (-1217 *3)))) (-2927 (*1 *2 *1) (-12 (-4 *1 (-404 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1217 *3)) (-5 *2 (-1241 *3)))) (-2927 (*1 *1 *2) (-12 (-5 *2 (-1241 *3)) (-4 *3 (-170)) (-4 *1 (-404 *3 *4)) (-4 *4 (-1217 *3)))) (-1903 (*1 *2) (-12 (-4 *1 (-404 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1217 *3)) (-5 *2 (-675 *3)))) (-1495 (*1 *2) (-12 (-4 *1 (-404 *2 *3)) (-4 *3 (-1217 *2)) (-4 *2 (-170)))) (-3629 (*1 *2 *1) (-12 (-4 *1 (-404 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1217 *3)) (-5 *2 (-675 *3)))))
-(-13 (-365 |t#1| |t#2|) (-10 -8 (-15 -3782 ((-1241 $))) (-15 -3656 ((-1241 |t#1|) $)) (-15 -3656 ((-675 |t#1|) (-1241 $))) (-15 -1651 ($ (-1241 |t#1|))) (-15 -2927 ((-1241 |t#1|) $)) (-15 -2927 ($ (-1241 |t#1|))) (-15 -1903 ((-675 |t#1|))) (-15 -1495 (|t#1|)) (-15 -3629 ((-675 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-604 (-554)) . T) ((-604 |#1|) . T) ((-601 (-848)) . T) ((-365 |#1| |#2|) . T) ((-634 |#1|) . T) ((-634 $) . T) ((-704 |#1|) . T) ((-713) . T) ((-1040 |#1|) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T))
-((-2784 (((-3 |#2| "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) 27) (((-3 (-554) "failed") $) 19)) (-1668 ((|#2| $) NIL) (((-402 (-554)) $) 24) (((-554) $) 14)) (-3075 (($ |#2|) NIL) (($ (-402 (-554))) 22) (($ (-554)) 11)))
-(((-405 |#1| |#2|) (-10 -8 (-15 -3075 (|#1| (-554))) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -1668 ((-554) |#1|)) (-15 -3075 (|#1| (-402 (-554)))) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -3075 (|#1| |#2|))) (-406 |#2|) (-1195)) (T -405))
-NIL
-(-10 -8 (-15 -3075 (|#1| (-554))) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -1668 ((-554) |#1|)) (-15 -3075 (|#1| (-402 (-554)))) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -3075 (|#1| |#2|)))
-((-2784 (((-3 |#1| "failed") $) 9) (((-3 (-402 (-554)) "failed") $) 16 (|has| |#1| (-1023 (-402 (-554))))) (((-3 (-554) "failed") $) 13 (|has| |#1| (-1023 (-554))))) (-1668 ((|#1| $) 8) (((-402 (-554)) $) 17 (|has| |#1| (-1023 (-402 (-554))))) (((-554) $) 14 (|has| |#1| (-1023 (-554))))) (-3075 (($ |#1|) 6) (($ (-402 (-554))) 15 (|has| |#1| (-1023 (-402 (-554))))) (($ (-554)) 12 (|has| |#1| (-1023 (-554))))))
-(((-406 |#1|) (-138) (-1195)) (T -406))
-NIL
-(-13 (-1023 |t#1|) (-10 -7 (IF (|has| |t#1| (-1023 (-554))) (-6 (-1023 (-554))) |%noBranch|) (IF (|has| |t#1| (-1023 (-402 (-554)))) (-6 (-1023 (-402 (-554)))) |%noBranch|)))
-(((-604 #0=(-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) ((-604 #1=(-554)) |has| |#1| (-1023 (-554))) ((-604 |#1|) . T) ((-1023 #0#) |has| |#1| (-1023 (-402 (-554)))) ((-1023 #1#) |has| |#1| (-1023 (-554))) ((-1023 |#1|) . T))
-((-2879 (((-408 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-408 |#1| |#2| |#3| |#4|)) 33)))
-(((-407 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2879 ((-408 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-408 |#1| |#2| |#3| |#4|)))) (-302) (-977 |#1|) (-1217 |#2|) (-13 (-404 |#2| |#3|) (-1023 |#2|)) (-302) (-977 |#5|) (-1217 |#6|) (-13 (-404 |#6| |#7|) (-1023 |#6|))) (T -407))
-((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-408 *5 *6 *7 *8)) (-4 *5 (-302)) (-4 *6 (-977 *5)) (-4 *7 (-1217 *6)) (-4 *8 (-13 (-404 *6 *7) (-1023 *6))) (-4 *9 (-302)) (-4 *10 (-977 *9)) (-4 *11 (-1217 *10)) (-5 *2 (-408 *9 *10 *11 *12)) (-5 *1 (-407 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-404 *10 *11) (-1023 *10))))))
-(-10 -7 (-15 -2879 ((-408 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-408 |#1| |#2| |#3| |#4|))))
-((-3062 (((-112) $ $) NIL)) (-4087 (($) NIL T CONST)) (-1320 (((-3 $ "failed") $) NIL)) (-2795 ((|#4| (-758) (-1241 |#4|)) 56)) (-3248 (((-112) $) NIL)) (-2810 (((-1241 |#4|) $) 17)) (-3274 ((|#2| $) 54)) (-4194 (($ $) 139)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) 100)) (-3822 (($ (-1241 |#4|)) 99)) (-2768 (((-1102) $) NIL)) (-2822 ((|#1| $) 18)) (-3992 (($ $ $) NIL)) (-1856 (($ $ $) NIL)) (-3075 (((-848) $) 134)) (-3782 (((-1241 |#4|) $) 129)) (-2014 (($) 11 T CONST)) (-1658 (((-112) $ $) 40)) (-1752 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) 122)) (* (($ $ $) 121)))
-(((-408 |#1| |#2| |#3| |#4|) (-13 (-467) (-10 -8 (-15 -3822 ($ (-1241 |#4|))) (-15 -3782 ((-1241 |#4|) $)) (-15 -3274 (|#2| $)) (-15 -2810 ((-1241 |#4|) $)) (-15 -2822 (|#1| $)) (-15 -4194 ($ $)) (-15 -2795 (|#4| (-758) (-1241 |#4|))))) (-302) (-977 |#1|) (-1217 |#2|) (-13 (-404 |#2| |#3|) (-1023 |#2|))) (T -408))
-((-3822 (*1 *1 *2) (-12 (-5 *2 (-1241 *6)) (-4 *6 (-13 (-404 *4 *5) (-1023 *4))) (-4 *4 (-977 *3)) (-4 *5 (-1217 *4)) (-4 *3 (-302)) (-5 *1 (-408 *3 *4 *5 *6)))) (-3782 (*1 *2 *1) (-12 (-4 *3 (-302)) (-4 *4 (-977 *3)) (-4 *5 (-1217 *4)) (-5 *2 (-1241 *6)) (-5 *1 (-408 *3 *4 *5 *6)) (-4 *6 (-13 (-404 *4 *5) (-1023 *4))))) (-3274 (*1 *2 *1) (-12 (-4 *4 (-1217 *2)) (-4 *2 (-977 *3)) (-5 *1 (-408 *3 *2 *4 *5)) (-4 *3 (-302)) (-4 *5 (-13 (-404 *2 *4) (-1023 *2))))) (-2810 (*1 *2 *1) (-12 (-4 *3 (-302)) (-4 *4 (-977 *3)) (-4 *5 (-1217 *4)) (-5 *2 (-1241 *6)) (-5 *1 (-408 *3 *4 *5 *6)) (-4 *6 (-13 (-404 *4 *5) (-1023 *4))))) (-2822 (*1 *2 *1) (-12 (-4 *3 (-977 *2)) (-4 *4 (-1217 *3)) (-4 *2 (-302)) (-5 *1 (-408 *2 *3 *4 *5)) (-4 *5 (-13 (-404 *3 *4) (-1023 *3))))) (-4194 (*1 *1 *1) (-12 (-4 *2 (-302)) (-4 *3 (-977 *2)) (-4 *4 (-1217 *3)) (-5 *1 (-408 *2 *3 *4 *5)) (-4 *5 (-13 (-404 *3 *4) (-1023 *3))))) (-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-758)) (-5 *4 (-1241 *2)) (-4 *5 (-302)) (-4 *6 (-977 *5)) (-4 *2 (-13 (-404 *6 *7) (-1023 *6))) (-5 *1 (-408 *5 *6 *7 *2)) (-4 *7 (-1217 *6)))))
-(-13 (-467) (-10 -8 (-15 -3822 ($ (-1241 |#4|))) (-15 -3782 ((-1241 |#4|) $)) (-15 -3274 (|#2| $)) (-15 -2810 ((-1241 |#4|) $)) (-15 -2822 (|#1| $)) (-15 -4194 ($ $)) (-15 -2795 (|#4| (-758) (-1241 |#4|)))))
-((-3062 (((-112) $ $) NIL)) (-4087 (($) NIL T CONST)) (-1320 (((-3 $ "failed") $) NIL)) (-3248 (((-112) $) NIL)) (-3274 ((|#2| $) 61)) (-1665 (($ (-1241 |#4|)) 25) (($ (-408 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-1023 |#2|)))) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 34)) (-3782 (((-1241 |#4|) $) 26)) (-2014 (($) 23 T CONST)) (-1658 (((-112) $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ $ $) 72)))
-(((-409 |#1| |#2| |#3| |#4| |#5|) (-13 (-713) (-10 -8 (-15 -3782 ((-1241 |#4|) $)) (-15 -3274 (|#2| $)) (-15 -1665 ($ (-1241 |#4|))) (IF (|has| |#4| (-1023 |#2|)) (-15 -1665 ($ (-408 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-302) (-977 |#1|) (-1217 |#2|) (-404 |#2| |#3|) (-1241 |#4|)) (T -409))
-((-3782 (*1 *2 *1) (-12 (-4 *3 (-302)) (-4 *4 (-977 *3)) (-4 *5 (-1217 *4)) (-5 *2 (-1241 *6)) (-5 *1 (-409 *3 *4 *5 *6 *7)) (-4 *6 (-404 *4 *5)) (-14 *7 *2))) (-3274 (*1 *2 *1) (-12 (-4 *4 (-1217 *2)) (-4 *2 (-977 *3)) (-5 *1 (-409 *3 *2 *4 *5 *6)) (-4 *3 (-302)) (-4 *5 (-404 *2 *4)) (-14 *6 (-1241 *5)))) (-1665 (*1 *1 *2) (-12 (-5 *2 (-1241 *6)) (-4 *6 (-404 *4 *5)) (-4 *4 (-977 *3)) (-4 *5 (-1217 *4)) (-4 *3 (-302)) (-5 *1 (-409 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1665 (*1 *1 *2) (-12 (-5 *2 (-408 *3 *4 *5 *6)) (-4 *6 (-1023 *4)) (-4 *3 (-302)) (-4 *4 (-977 *3)) (-4 *5 (-1217 *4)) (-4 *6 (-404 *4 *5)) (-14 *7 (-1241 *6)) (-5 *1 (-409 *3 *4 *5 *6 *7)))))
-(-13 (-713) (-10 -8 (-15 -3782 ((-1241 |#4|) $)) (-15 -3274 (|#2| $)) (-15 -1665 ($ (-1241 |#4|))) (IF (|has| |#4| (-1023 |#2|)) (-15 -1665 ($ (-408 |#1| |#2| |#3| |#4|))) |%noBranch|)))
-((-2879 ((|#3| (-1 |#4| |#2|) |#1|) 26)))
-(((-410 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2879 (|#3| (-1 |#4| |#2|) |#1|))) (-412 |#2|) (-170) (-412 |#4|) (-170)) (T -410))
-((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-412 *6)) (-5 *1 (-410 *4 *5 *2 *6)) (-4 *4 (-412 *5)))))
-(-10 -7 (-15 -2879 (|#3| (-1 |#4| |#2|) |#1|)))
-((-3646 (((-3 $ "failed")) 86)) (-4251 (((-1241 (-675 |#2|)) (-1241 $)) NIL) (((-1241 (-675 |#2|))) 91)) (-1558 (((-3 (-2 (|:| |particular| $) (|:| -3782 (-631 $))) "failed")) 85)) (-3447 (((-3 $ "failed")) 84)) (-3321 (((-675 |#2|) (-1241 $)) NIL) (((-675 |#2|)) 102)) (-3970 (((-675 |#2|) $ (-1241 $)) NIL) (((-675 |#2|) $) 110)) (-4027 (((-1154 (-937 |#2|))) 55)) (-3640 ((|#2| (-1241 $)) NIL) ((|#2|) 106)) (-1651 (($ (-1241 |#2|) (-1241 $)) NIL) (($ (-1241 |#2|)) 112)) (-1660 (((-3 (-2 (|:| |particular| $) (|:| -3782 (-631 $))) "failed")) 83)) (-3899 (((-3 $ "failed")) 75)) (-2871 (((-675 |#2|) (-1241 $)) NIL) (((-675 |#2|)) 100)) (-3826 (((-675 |#2|) $ (-1241 $)) NIL) (((-675 |#2|) $) 108)) (-3415 (((-1154 (-937 |#2|))) 54)) (-3063 ((|#2| (-1241 $)) NIL) ((|#2|) 104)) (-3656 (((-1241 |#2|) $ (-1241 $)) NIL) (((-675 |#2|) (-1241 $) (-1241 $)) NIL) (((-1241 |#2|) $) 111) (((-675 |#2|) (-1241 $)) 118)) (-2927 (((-1241 |#2|) $) 96) (($ (-1241 |#2|)) 98)) (-3107 (((-631 (-937 |#2|)) (-1241 $)) NIL) (((-631 (-937 |#2|))) 94)) (-1485 (($ (-675 |#2|) $) 90)))
-(((-411 |#1| |#2|) (-10 -8 (-15 -1485 (|#1| (-675 |#2|) |#1|)) (-15 -4027 ((-1154 (-937 |#2|)))) (-15 -3415 ((-1154 (-937 |#2|)))) (-15 -3970 ((-675 |#2|) |#1|)) (-15 -3826 ((-675 |#2|) |#1|)) (-15 -3321 ((-675 |#2|))) (-15 -2871 ((-675 |#2|))) (-15 -3640 (|#2|)) (-15 -3063 (|#2|)) (-15 -2927 (|#1| (-1241 |#2|))) (-15 -2927 ((-1241 |#2|) |#1|)) (-15 -1651 (|#1| (-1241 |#2|))) (-15 -3107 ((-631 (-937 |#2|)))) (-15 -4251 ((-1241 (-675 |#2|)))) (-15 -3656 ((-675 |#2|) (-1241 |#1|))) (-15 -3656 ((-1241 |#2|) |#1|)) (-15 -3646 ((-3 |#1| "failed"))) (-15 -3447 ((-3 |#1| "failed"))) (-15 -3899 ((-3 |#1| "failed"))) (-15 -1558 ((-3 (-2 (|:| |particular| |#1|) (|:| -3782 (-631 |#1|))) "failed"))) (-15 -1660 ((-3 (-2 (|:| |particular| |#1|) (|:| -3782 (-631 |#1|))) "failed"))) (-15 -3321 ((-675 |#2|) (-1241 |#1|))) (-15 -2871 ((-675 |#2|) (-1241 |#1|))) (-15 -3640 (|#2| (-1241 |#1|))) (-15 -3063 (|#2| (-1241 |#1|))) (-15 -1651 (|#1| (-1241 |#2|) (-1241 |#1|))) (-15 -3656 ((-675 |#2|) (-1241 |#1|) (-1241 |#1|))) (-15 -3656 ((-1241 |#2|) |#1| (-1241 |#1|))) (-15 -3970 ((-675 |#2|) |#1| (-1241 |#1|))) (-15 -3826 ((-675 |#2|) |#1| (-1241 |#1|))) (-15 -4251 ((-1241 (-675 |#2|)) (-1241 |#1|))) (-15 -3107 ((-631 (-937 |#2|)) (-1241 |#1|)))) (-412 |#2|) (-170)) (T -411))
-((-4251 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1241 (-675 *4))) (-5 *1 (-411 *3 *4)) (-4 *3 (-412 *4)))) (-3107 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-631 (-937 *4))) (-5 *1 (-411 *3 *4)) (-4 *3 (-412 *4)))) (-3063 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-411 *3 *2)) (-4 *3 (-412 *2)))) (-3640 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-411 *3 *2)) (-4 *3 (-412 *2)))) (-2871 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-675 *4)) (-5 *1 (-411 *3 *4)) (-4 *3 (-412 *4)))) (-3321 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-675 *4)) (-5 *1 (-411 *3 *4)) (-4 *3 (-412 *4)))) (-3415 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1154 (-937 *4))) (-5 *1 (-411 *3 *4)) (-4 *3 (-412 *4)))) (-4027 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1154 (-937 *4))) (-5 *1 (-411 *3 *4)) (-4 *3 (-412 *4)))))
-(-10 -8 (-15 -1485 (|#1| (-675 |#2|) |#1|)) (-15 -4027 ((-1154 (-937 |#2|)))) (-15 -3415 ((-1154 (-937 |#2|)))) (-15 -3970 ((-675 |#2|) |#1|)) (-15 -3826 ((-675 |#2|) |#1|)) (-15 -3321 ((-675 |#2|))) (-15 -2871 ((-675 |#2|))) (-15 -3640 (|#2|)) (-15 -3063 (|#2|)) (-15 -2927 (|#1| (-1241 |#2|))) (-15 -2927 ((-1241 |#2|) |#1|)) (-15 -1651 (|#1| (-1241 |#2|))) (-15 -3107 ((-631 (-937 |#2|)))) (-15 -4251 ((-1241 (-675 |#2|)))) (-15 -3656 ((-675 |#2|) (-1241 |#1|))) (-15 -3656 ((-1241 |#2|) |#1|)) (-15 -3646 ((-3 |#1| "failed"))) (-15 -3447 ((-3 |#1| "failed"))) (-15 -3899 ((-3 |#1| "failed"))) (-15 -1558 ((-3 (-2 (|:| |particular| |#1|) (|:| -3782 (-631 |#1|))) "failed"))) (-15 -1660 ((-3 (-2 (|:| |particular| |#1|) (|:| -3782 (-631 |#1|))) "failed"))) (-15 -3321 ((-675 |#2|) (-1241 |#1|))) (-15 -2871 ((-675 |#2|) (-1241 |#1|))) (-15 -3640 (|#2| (-1241 |#1|))) (-15 -3063 (|#2| (-1241 |#1|))) (-15 -1651 (|#1| (-1241 |#2|) (-1241 |#1|))) (-15 -3656 ((-675 |#2|) (-1241 |#1|) (-1241 |#1|))) (-15 -3656 ((-1241 |#2|) |#1| (-1241 |#1|))) (-15 -3970 ((-675 |#2|) |#1| (-1241 |#1|))) (-15 -3826 ((-675 |#2|) |#1| (-1241 |#1|))) (-15 -4251 ((-1241 (-675 |#2|)) (-1241 |#1|))) (-15 -3107 ((-631 (-937 |#2|)) (-1241 |#1|))))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-3646 (((-3 $ "failed")) 37 (|has| |#1| (-546)))) (-2934 (((-3 $ "failed") $ $) 19)) (-4251 (((-1241 (-675 |#1|)) (-1241 $)) 78) (((-1241 (-675 |#1|))) 100)) (-4047 (((-1241 $)) 81)) (-4087 (($) 17 T CONST)) (-1558 (((-3 (-2 (|:| |particular| $) (|:| -3782 (-631 $))) "failed")) 40 (|has| |#1| (-546)))) (-3447 (((-3 $ "failed")) 38 (|has| |#1| (-546)))) (-3321 (((-675 |#1|) (-1241 $)) 65) (((-675 |#1|)) 92)) (-4206 ((|#1| $) 74)) (-3970 (((-675 |#1|) $ (-1241 $)) 76) (((-675 |#1|) $) 90)) (-3754 (((-3 $ "failed") $) 45 (|has| |#1| (-546)))) (-4027 (((-1154 (-937 |#1|))) 88 (|has| |#1| (-358)))) (-2080 (($ $ (-906)) 28)) (-3976 ((|#1| $) 72)) (-3343 (((-1154 |#1|) $) 42 (|has| |#1| (-546)))) (-3640 ((|#1| (-1241 $)) 67) ((|#1|) 94)) (-4231 (((-1154 |#1|) $) 63)) (-1397 (((-112)) 57)) (-1651 (($ (-1241 |#1|) (-1241 $)) 69) (($ (-1241 |#1|)) 98)) (-1320 (((-3 $ "failed") $) 47 (|has| |#1| (-546)))) (-4186 (((-906)) 80)) (-3911 (((-112)) 54)) (-4326 (($ $ (-906)) 33)) (-2545 (((-112)) 50)) (-1765 (((-112)) 48)) (-1573 (((-112)) 52)) (-1660 (((-3 (-2 (|:| |particular| $) (|:| -3782 (-631 $))) "failed")) 41 (|has| |#1| (-546)))) (-3899 (((-3 $ "failed")) 39 (|has| |#1| (-546)))) (-2871 (((-675 |#1|) (-1241 $)) 66) (((-675 |#1|)) 93)) (-3115 ((|#1| $) 75)) (-3826 (((-675 |#1|) $ (-1241 $)) 77) (((-675 |#1|) $) 91)) (-1605 (((-3 $ "failed") $) 46 (|has| |#1| (-546)))) (-3415 (((-1154 (-937 |#1|))) 89 (|has| |#1| (-358)))) (-1297 (($ $ (-906)) 29)) (-2620 ((|#1| $) 73)) (-3760 (((-1154 |#1|) $) 43 (|has| |#1| (-546)))) (-3063 ((|#1| (-1241 $)) 68) ((|#1|) 95)) (-2541 (((-1154 |#1|) $) 64)) (-3074 (((-112)) 58)) (-1613 (((-1140) $) 9)) (-3953 (((-112)) 49)) (-4193 (((-112)) 51)) (-2366 (((-112)) 53)) (-2768 (((-1102) $) 10)) (-1944 (((-112)) 56)) (-2064 ((|#1| $ (-554)) 101)) (-3656 (((-1241 |#1|) $ (-1241 $)) 71) (((-675 |#1|) (-1241 $) (-1241 $)) 70) (((-1241 |#1|) $) 103) (((-675 |#1|) (-1241 $)) 102)) (-2927 (((-1241 |#1|) $) 97) (($ (-1241 |#1|)) 96)) (-3107 (((-631 (-937 |#1|)) (-1241 $)) 79) (((-631 (-937 |#1|))) 99)) (-1856 (($ $ $) 25)) (-3349 (((-112)) 62)) (-3075 (((-848) $) 11)) (-3782 (((-1241 $)) 104)) (-1444 (((-631 (-1241 |#1|))) 44 (|has| |#1| (-546)))) (-3499 (($ $ $ $) 26)) (-3454 (((-112)) 60)) (-1485 (($ (-675 |#1|) $) 87)) (-1870 (($ $ $) 24)) (-2945 (((-112)) 61)) (-2760 (((-112)) 59)) (-3206 (((-112)) 55)) (-2004 (($) 18 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 30)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
-(((-412 |#1|) (-138) (-170)) (T -412))
-((-3782 (*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1241 *1)) (-4 *1 (-412 *3)))) (-3656 (*1 *2 *1) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-1241 *3)))) (-3656 (*1 *2 *3) (-12 (-5 *3 (-1241 *1)) (-4 *1 (-412 *4)) (-4 *4 (-170)) (-5 *2 (-675 *4)))) (-2064 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-4 *1 (-412 *2)) (-4 *2 (-170)))) (-4251 (*1 *2) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-1241 (-675 *3))))) (-3107 (*1 *2) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-631 (-937 *3))))) (-1651 (*1 *1 *2) (-12 (-5 *2 (-1241 *3)) (-4 *3 (-170)) (-4 *1 (-412 *3)))) (-2927 (*1 *2 *1) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-1241 *3)))) (-2927 (*1 *1 *2) (-12 (-5 *2 (-1241 *3)) (-4 *3 (-170)) (-4 *1 (-412 *3)))) (-3063 (*1 *2) (-12 (-4 *1 (-412 *2)) (-4 *2 (-170)))) (-3640 (*1 *2) (-12 (-4 *1 (-412 *2)) (-4 *2 (-170)))) (-2871 (*1 *2) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-675 *3)))) (-3321 (*1 *2) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-675 *3)))) (-3826 (*1 *2 *1) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-675 *3)))) (-3970 (*1 *2 *1) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-675 *3)))) (-3415 (*1 *2) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-4 *3 (-358)) (-5 *2 (-1154 (-937 *3))))) (-4027 (*1 *2) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-4 *3 (-358)) (-5 *2 (-1154 (-937 *3))))) (-1485 (*1 *1 *2 *1) (-12 (-5 *2 (-675 *3)) (-4 *1 (-412 *3)) (-4 *3 (-170)))))
-(-13 (-362 |t#1|) (-10 -8 (-15 -3782 ((-1241 $))) (-15 -3656 ((-1241 |t#1|) $)) (-15 -3656 ((-675 |t#1|) (-1241 $))) (-15 -2064 (|t#1| $ (-554))) (-15 -4251 ((-1241 (-675 |t#1|)))) (-15 -3107 ((-631 (-937 |t#1|)))) (-15 -1651 ($ (-1241 |t#1|))) (-15 -2927 ((-1241 |t#1|) $)) (-15 -2927 ($ (-1241 |t#1|))) (-15 -3063 (|t#1|)) (-15 -3640 (|t#1|)) (-15 -2871 ((-675 |t#1|))) (-15 -3321 ((-675 |t#1|))) (-15 -3826 ((-675 |t#1|) $)) (-15 -3970 ((-675 |t#1|) $)) (IF (|has| |t#1| (-358)) (PROGN (-15 -3415 ((-1154 (-937 |t#1|)))) (-15 -4027 ((-1154 (-937 |t#1|))))) |%noBranch|) (-15 -1485 ($ (-675 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-601 (-848)) . T) ((-362 |#1|) . T) ((-634 |#1|) . T) ((-704 |#1|) . T) ((-707) . T) ((-731 |#1|) . T) ((-748) . T) ((-1040 |#1|) . T) ((-1082) . T))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 45)) (-2668 (($ $) 60)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 148)) (-1976 (($ $) NIL)) (-1363 (((-112) $) 39)) (-3646 ((|#1| $) 13)) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL (|has| |#1| (-1199)))) (-1565 (((-413 $) $) NIL (|has| |#1| (-1199)))) (-1791 (($ |#1| (-554)) 34)) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-3 |#1| "failed") $) 118)) (-1668 (((-554) $) NIL (|has| |#1| (-1023 (-554)))) (((-402 (-554)) $) NIL (|has| |#1| (-1023 (-402 (-554))))) ((|#1| $) 58)) (-1320 (((-3 $ "failed") $) 133)) (-1623 (((-3 (-402 (-554)) "failed") $) 66 (|has| |#1| (-539)))) (-2069 (((-112) $) 62 (|has| |#1| (-539)))) (-2197 (((-402 (-554)) $) 73 (|has| |#1| (-539)))) (-3414 (($ |#1| (-554)) 36)) (-3289 (((-112) $) 154 (|has| |#1| (-1199)))) (-3248 (((-112) $) 46)) (-1423 (((-758) $) 41)) (-3244 (((-3 "nil" "sqfr" "irred" "prime") $ (-554)) 139)) (-3195 ((|#1| $ (-554)) 138)) (-2103 (((-554) $ (-554)) 137)) (-1912 (($ |#1| (-554)) 33)) (-2879 (($ (-1 |#1| |#1|) $) 145)) (-1642 (($ |#1| (-631 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-554))))) 61)) (-2475 (($ (-631 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-1613 (((-1140) $) NIL)) (-3863 (($ |#1| (-554)) 35)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#1| (-446)))) (-2510 (($ (-631 $)) NIL (|has| |#1| (-446))) (($ $ $) 149 (|has| |#1| (-446)))) (-1683 (($ |#1| (-554) (-3 "nil" "sqfr" "irred" "prime")) 32)) (-2316 (((-631 (-2 (|:| -2270 |#1|) (|:| -1407 (-554)))) $) 57)) (-2333 (((-631 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-554)))) $) 12)) (-2270 (((-413 $) $) NIL (|has| |#1| (-1199)))) (-3919 (((-3 $ "failed") $ $) 140)) (-1407 (((-554) $) 134)) (-1845 ((|#1| $) 59)) (-2386 (($ $ (-631 |#1|) (-631 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-304 |#1|))) (($ $ (-289 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ (-631 (-289 |#1|))) 82 (|has| |#1| (-304 |#1|))) (($ $ (-631 (-1158)) (-631 |#1|)) 88 (|has| |#1| (-508 (-1158) |#1|))) (($ $ (-1158) |#1|) NIL (|has| |#1| (-508 (-1158) |#1|))) (($ $ (-1158) $) NIL (|has| |#1| (-508 (-1158) $))) (($ $ (-631 (-1158)) (-631 $)) 89 (|has| |#1| (-508 (-1158) $))) (($ $ (-631 (-289 $))) 85 (|has| |#1| (-304 $))) (($ $ (-289 $)) NIL (|has| |#1| (-304 $))) (($ $ $ $) NIL (|has| |#1| (-304 $))) (($ $ (-631 $) (-631 $)) NIL (|has| |#1| (-304 $)))) (-2064 (($ $ |#1|) 74 (|has| |#1| (-281 |#1| |#1|))) (($ $ $) 75 (|has| |#1| (-281 $ $)))) (-1553 (($ $) NIL (|has| |#1| (-229))) (($ $ (-758)) NIL (|has| |#1| (-229))) (($ $ (-1158)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) NIL) (($ $ (-1 |#1| |#1|)) 144)) (-2927 (((-530) $) 30 (|has| |#1| (-602 (-530)))) (((-374) $) 95 (|has| |#1| (-1007))) (((-221) $) 98 (|has| |#1| (-1007)))) (-3075 (((-848) $) 116) (($ (-554)) 49) (($ $) NIL) (($ |#1|) 48) (($ (-402 (-554))) NIL (|has| |#1| (-1023 (-402 (-554)))))) (-2261 (((-758)) 51)) (-1909 (((-112) $ $) NIL)) (-2004 (($) 43 T CONST)) (-2014 (($) 42 T CONST)) (-1787 (($ $) NIL (|has| |#1| (-229))) (($ $ (-758)) NIL (|has| |#1| (-229))) (($ $ (-1158)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1658 (((-112) $ $) 99)) (-1744 (($ $) 130) (($ $ $) NIL)) (-1735 (($ $ $) 142)) (** (($ $ (-906)) NIL) (($ $ (-758)) 105)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 53) (($ $ $) 52) (($ |#1| $) 54) (($ $ |#1|) NIL)))
-(((-413 |#1|) (-13 (-546) (-227 |#1|) (-38 |#1|) (-333 |#1|) (-406 |#1|) (-10 -8 (-15 -1845 (|#1| $)) (-15 -1407 ((-554) $)) (-15 -1642 ($ |#1| (-631 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-554)))))) (-15 -2333 ((-631 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-554)))) $)) (-15 -1912 ($ |#1| (-554))) (-15 -2316 ((-631 (-2 (|:| -2270 |#1|) (|:| -1407 (-554)))) $)) (-15 -3863 ($ |#1| (-554))) (-15 -2103 ((-554) $ (-554))) (-15 -3195 (|#1| $ (-554))) (-15 -3244 ((-3 "nil" "sqfr" "irred" "prime") $ (-554))) (-15 -1423 ((-758) $)) (-15 -3414 ($ |#1| (-554))) (-15 -1791 ($ |#1| (-554))) (-15 -1683 ($ |#1| (-554) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3646 (|#1| $)) (-15 -2668 ($ $)) (-15 -2879 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-446)) (-6 (-446)) |%noBranch|) (IF (|has| |#1| (-1007)) (-6 (-1007)) |%noBranch|) (IF (|has| |#1| (-1199)) (-6 (-1199)) |%noBranch|) (IF (|has| |#1| (-602 (-530))) (-6 (-602 (-530))) |%noBranch|) (IF (|has| |#1| (-539)) (PROGN (-15 -2069 ((-112) $)) (-15 -2197 ((-402 (-554)) $)) (-15 -1623 ((-3 (-402 (-554)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-281 $ $)) (-6 (-281 $ $)) |%noBranch|) (IF (|has| |#1| (-304 $)) (-6 (-304 $)) |%noBranch|) (IF (|has| |#1| (-508 (-1158) $)) (-6 (-508 (-1158) $)) |%noBranch|))) (-546)) (T -413))
-((-2879 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-546)) (-5 *1 (-413 *3)))) (-1845 (*1 *2 *1) (-12 (-5 *1 (-413 *2)) (-4 *2 (-546)))) (-1407 (*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-413 *3)) (-4 *3 (-546)))) (-1642 (*1 *1 *2 *3) (-12 (-5 *3 (-631 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-554))))) (-4 *2 (-546)) (-5 *1 (-413 *2)))) (-2333 (*1 *2 *1) (-12 (-5 *2 (-631 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-554))))) (-5 *1 (-413 *3)) (-4 *3 (-546)))) (-1912 (*1 *1 *2 *3) (-12 (-5 *3 (-554)) (-5 *1 (-413 *2)) (-4 *2 (-546)))) (-2316 (*1 *2 *1) (-12 (-5 *2 (-631 (-2 (|:| -2270 *3) (|:| -1407 (-554))))) (-5 *1 (-413 *3)) (-4 *3 (-546)))) (-3863 (*1 *1 *2 *3) (-12 (-5 *3 (-554)) (-5 *1 (-413 *2)) (-4 *2 (-546)))) (-2103 (*1 *2 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-413 *3)) (-4 *3 (-546)))) (-3195 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-5 *1 (-413 *2)) (-4 *2 (-546)))) (-3244 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-413 *4)) (-4 *4 (-546)))) (-1423 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-413 *3)) (-4 *3 (-546)))) (-3414 (*1 *1 *2 *3) (-12 (-5 *3 (-554)) (-5 *1 (-413 *2)) (-4 *2 (-546)))) (-1791 (*1 *1 *2 *3) (-12 (-5 *3 (-554)) (-5 *1 (-413 *2)) (-4 *2 (-546)))) (-1683 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-554)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-413 *2)) (-4 *2 (-546)))) (-3646 (*1 *2 *1) (-12 (-5 *1 (-413 *2)) (-4 *2 (-546)))) (-2668 (*1 *1 *1) (-12 (-5 *1 (-413 *2)) (-4 *2 (-546)))) (-2069 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-413 *3)) (-4 *3 (-539)) (-4 *3 (-546)))) (-2197 (*1 *2 *1) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-413 *3)) (-4 *3 (-539)) (-4 *3 (-546)))) (-1623 (*1 *2 *1) (|partial| -12 (-5 *2 (-402 (-554))) (-5 *1 (-413 *3)) (-4 *3 (-539)) (-4 *3 (-546)))))
-(-13 (-546) (-227 |#1|) (-38 |#1|) (-333 |#1|) (-406 |#1|) (-10 -8 (-15 -1845 (|#1| $)) (-15 -1407 ((-554) $)) (-15 -1642 ($ |#1| (-631 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-554)))))) (-15 -2333 ((-631 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-554)))) $)) (-15 -1912 ($ |#1| (-554))) (-15 -2316 ((-631 (-2 (|:| -2270 |#1|) (|:| -1407 (-554)))) $)) (-15 -3863 ($ |#1| (-554))) (-15 -2103 ((-554) $ (-554))) (-15 -3195 (|#1| $ (-554))) (-15 -3244 ((-3 "nil" "sqfr" "irred" "prime") $ (-554))) (-15 -1423 ((-758) $)) (-15 -3414 ($ |#1| (-554))) (-15 -1791 ($ |#1| (-554))) (-15 -1683 ($ |#1| (-554) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3646 (|#1| $)) (-15 -2668 ($ $)) (-15 -2879 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-446)) (-6 (-446)) |%noBranch|) (IF (|has| |#1| (-1007)) (-6 (-1007)) |%noBranch|) (IF (|has| |#1| (-1199)) (-6 (-1199)) |%noBranch|) (IF (|has| |#1| (-602 (-530))) (-6 (-602 (-530))) |%noBranch|) (IF (|has| |#1| (-539)) (PROGN (-15 -2069 ((-112) $)) (-15 -2197 ((-402 (-554)) $)) (-15 -1623 ((-3 (-402 (-554)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-281 $ $)) (-6 (-281 $ $)) |%noBranch|) (IF (|has| |#1| (-304 $)) (-6 (-304 $)) |%noBranch|) (IF (|has| |#1| (-508 (-1158) $)) (-6 (-508 (-1158) $)) |%noBranch|)))
-((-3792 (((-413 |#1|) (-413 |#1|) (-1 (-413 |#1|) |#1|)) 21)) (-2148 (((-413 |#1|) (-413 |#1|) (-413 |#1|)) 16)))
-(((-414 |#1|) (-10 -7 (-15 -3792 ((-413 |#1|) (-413 |#1|) (-1 (-413 |#1|) |#1|))) (-15 -2148 ((-413 |#1|) (-413 |#1|) (-413 |#1|)))) (-546)) (T -414))
-((-2148 (*1 *2 *2 *2) (-12 (-5 *2 (-413 *3)) (-4 *3 (-546)) (-5 *1 (-414 *3)))) (-3792 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-413 *4) *4)) (-4 *4 (-546)) (-5 *2 (-413 *4)) (-5 *1 (-414 *4)))))
-(-10 -7 (-15 -3792 ((-413 |#1|) (-413 |#1|) (-1 (-413 |#1|) |#1|))) (-15 -2148 ((-413 |#1|) (-413 |#1|) (-413 |#1|))))
-((-1733 ((|#2| |#2|) 166)) (-3980 (((-3 (|:| |%expansion| (-308 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1140)) (|:| |prob| (-1140))))) |#2| (-112)) 57)))
-(((-415 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3980 ((-3 (|:| |%expansion| (-308 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1140)) (|:| |prob| (-1140))))) |#2| (-112))) (-15 -1733 (|#2| |#2|))) (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))) (-13 (-27) (-1180) (-425 |#1|)) (-1158) |#2|) (T -415))
-((-1733 (*1 *2 *2) (-12 (-4 *3 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-415 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1180) (-425 *3))) (-14 *4 (-1158)) (-14 *5 *2))) (-3980 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-3 (|:| |%expansion| (-308 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1140)) (|:| |prob| (-1140)))))) (-5 *1 (-415 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1180) (-425 *5))) (-14 *6 (-1158)) (-14 *7 *3))))
-(-10 -7 (-15 -3980 ((-3 (|:| |%expansion| (-308 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1140)) (|:| |prob| (-1140))))) |#2| (-112))) (-15 -1733 (|#2| |#2|)))
-((-2879 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
-(((-416 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2879 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-1034) (-836)) (-425 |#1|) (-13 (-1034) (-836)) (-425 |#3|)) (T -416))
-((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1034) (-836))) (-4 *6 (-13 (-1034) (-836))) (-4 *2 (-425 *6)) (-5 *1 (-416 *5 *4 *6 *2)) (-4 *4 (-425 *5)))))
-(-10 -7 (-15 -2879 (|#4| (-1 |#3| |#1|) |#2|)))
-((-1733 ((|#2| |#2|) 90)) (-4224 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1140)) (|:| |prob| (-1140))))) |#2| (-112) (-1140)) 48)) (-3220 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1140)) (|:| |prob| (-1140))))) |#2| (-112) (-1140)) 154)))
-(((-417 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4224 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1140)) (|:| |prob| (-1140))))) |#2| (-112) (-1140))) (-15 -3220 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1140)) (|:| |prob| (-1140))))) |#2| (-112) (-1140))) (-15 -1733 (|#2| |#2|))) (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))) (-13 (-27) (-1180) (-425 |#1|) (-10 -8 (-15 -3075 ($ |#3|)))) (-834) (-13 (-1219 |#2| |#3|) (-358) (-1180) (-10 -8 (-15 -1553 ($ $)) (-15 -2279 ($ $)))) (-968 |#4|) (-1158)) (T -417))
-((-1733 (*1 *2 *2) (-12 (-4 *3 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-4 *2 (-13 (-27) (-1180) (-425 *3) (-10 -8 (-15 -3075 ($ *4))))) (-4 *4 (-834)) (-4 *5 (-13 (-1219 *2 *4) (-358) (-1180) (-10 -8 (-15 -1553 ($ $)) (-15 -2279 ($ $))))) (-5 *1 (-417 *3 *2 *4 *5 *6 *7)) (-4 *6 (-968 *5)) (-14 *7 (-1158)))) (-3220 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-4 *3 (-13 (-27) (-1180) (-425 *6) (-10 -8 (-15 -3075 ($ *7))))) (-4 *7 (-834)) (-4 *8 (-13 (-1219 *3 *7) (-358) (-1180) (-10 -8 (-15 -1553 ($ $)) (-15 -2279 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1140)) (|:| |prob| (-1140)))))) (-5 *1 (-417 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1140)) (-4 *9 (-968 *8)) (-14 *10 (-1158)))) (-4224 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-4 *3 (-13 (-27) (-1180) (-425 *6) (-10 -8 (-15 -3075 ($ *7))))) (-4 *7 (-834)) (-4 *8 (-13 (-1219 *3 *7) (-358) (-1180) (-10 -8 (-15 -1553 ($ $)) (-15 -2279 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1140)) (|:| |prob| (-1140)))))) (-5 *1 (-417 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1140)) (-4 *9 (-968 *8)) (-14 *10 (-1158)))))
-(-10 -7 (-15 -4224 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1140)) (|:| |prob| (-1140))))) |#2| (-112) (-1140))) (-15 -3220 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1140)) (|:| |prob| (-1140))))) |#2| (-112) (-1140))) (-15 -1733 (|#2| |#2|)))
-((-4159 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-3676 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-2879 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
-(((-418 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2879 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3676 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4159 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1082) (-420 |#1|) (-1082) (-420 |#3|)) (T -418))
-((-4159 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1082)) (-4 *5 (-1082)) (-4 *2 (-420 *5)) (-5 *1 (-418 *6 *4 *5 *2)) (-4 *4 (-420 *6)))) (-3676 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1082)) (-4 *2 (-1082)) (-5 *1 (-418 *5 *4 *2 *6)) (-4 *4 (-420 *5)) (-4 *6 (-420 *2)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *2 (-420 *6)) (-5 *1 (-418 *5 *4 *6 *2)) (-4 *4 (-420 *5)))))
-(-10 -7 (-15 -2879 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3676 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4159 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-3509 (($) 44)) (-3382 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-3775 (($ $ $) 39)) (-2411 (((-112) $ $) 28)) (-1508 (((-758)) 47)) (-1489 (($ (-631 |#2|)) 20) (($) NIL)) (-3353 (($) 53)) (-1334 (((-112) $ $) 13)) (-4223 ((|#2| $) 61)) (-2706 ((|#2| $) 59)) (-3830 (((-906) $) 55)) (-3977 (($ $ $) 35)) (-2717 (($ (-906)) 50)) (-3372 (($ $ |#2|) NIL) (($ $ $) 38)) (-2777 (((-758) (-1 (-112) |#2|) $) NIL) (((-758) |#2| $) 26)) (-3089 (($ (-631 |#2|)) 24)) (-3043 (($ $) 46)) (-3075 (((-848) $) 33)) (-3813 (((-758) $) 21)) (-2332 (($ (-631 |#2|)) 19) (($) NIL)) (-1658 (((-112) $ $) 16)))
-(((-419 |#1| |#2|) (-10 -8 (-15 -1508 ((-758))) (-15 -2717 (|#1| (-906))) (-15 -3830 ((-906) |#1|)) (-15 -3353 (|#1|)) (-15 -4223 (|#2| |#1|)) (-15 -2706 (|#2| |#1|)) (-15 -3509 (|#1|)) (-15 -3043 (|#1| |#1|)) (-15 -3813 ((-758) |#1|)) (-15 -1658 ((-112) |#1| |#1|)) (-15 -3075 ((-848) |#1|)) (-15 -1334 ((-112) |#1| |#1|)) (-15 -2332 (|#1|)) (-15 -2332 (|#1| (-631 |#2|))) (-15 -1489 (|#1|)) (-15 -1489 (|#1| (-631 |#2|))) (-15 -3977 (|#1| |#1| |#1|)) (-15 -3372 (|#1| |#1| |#1|)) (-15 -3372 (|#1| |#1| |#2|)) (-15 -3775 (|#1| |#1| |#1|)) (-15 -2411 ((-112) |#1| |#1|)) (-15 -3382 (|#1| |#1| |#1|)) (-15 -3382 (|#1| |#1| |#2|)) (-15 -3382 (|#1| |#2| |#1|)) (-15 -3089 (|#1| (-631 |#2|))) (-15 -2777 ((-758) |#2| |#1|)) (-15 -2777 ((-758) (-1 (-112) |#2|) |#1|))) (-420 |#2|) (-1082)) (T -419))
-((-1508 (*1 *2) (-12 (-4 *4 (-1082)) (-5 *2 (-758)) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4)))))
-(-10 -8 (-15 -1508 ((-758))) (-15 -2717 (|#1| (-906))) (-15 -3830 ((-906) |#1|)) (-15 -3353 (|#1|)) (-15 -4223 (|#2| |#1|)) (-15 -2706 (|#2| |#1|)) (-15 -3509 (|#1|)) (-15 -3043 (|#1| |#1|)) (-15 -3813 ((-758) |#1|)) (-15 -1658 ((-112) |#1| |#1|)) (-15 -3075 ((-848) |#1|)) (-15 -1334 ((-112) |#1| |#1|)) (-15 -2332 (|#1|)) (-15 -2332 (|#1| (-631 |#2|))) (-15 -1489 (|#1|)) (-15 -1489 (|#1| (-631 |#2|))) (-15 -3977 (|#1| |#1| |#1|)) (-15 -3372 (|#1| |#1| |#1|)) (-15 -3372 (|#1| |#1| |#2|)) (-15 -3775 (|#1| |#1| |#1|)) (-15 -2411 ((-112) |#1| |#1|)) (-15 -3382 (|#1| |#1| |#1|)) (-15 -3382 (|#1| |#1| |#2|)) (-15 -3382 (|#1| |#2| |#1|)) (-15 -3089 (|#1| (-631 |#2|))) (-15 -2777 ((-758) |#2| |#1|)) (-15 -2777 ((-758) (-1 (-112) |#2|) |#1|)))
-((-3062 (((-112) $ $) 19)) (-3509 (($) 67 (|has| |#1| (-363)))) (-3382 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-3775 (($ $ $) 78)) (-2411 (((-112) $ $) 79)) (-3019 (((-112) $ (-758)) 8)) (-1508 (((-758)) 61 (|has| |#1| (-363)))) (-1489 (($ (-631 |#1|)) 74) (($) 73)) (-2220 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4373)))) (-4087 (($) 7 T CONST)) (-1571 (($ $) 58 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1884 (($ |#1| $) 47 (|has| $ (-6 -4373))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4373)))) (-2574 (($ |#1| $) 57 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4373)))) (-3353 (($) 64 (|has| |#1| (-363)))) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-1334 (((-112) $ $) 70)) (-2230 (((-112) $ (-758)) 9)) (-4223 ((|#1| $) 65 (|has| |#1| (-836)))) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2706 ((|#1| $) 66 (|has| |#1| (-836)))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35)) (-3830 (((-906) $) 63 (|has| |#1| (-363)))) (-3731 (((-112) $ (-758)) 10)) (-1613 (((-1140) $) 22)) (-3977 (($ $ $) 75)) (-4150 ((|#1| $) 39)) (-2045 (($ |#1| $) 40)) (-2717 (($ (-906)) 62 (|has| |#1| (-363)))) (-2768 (((-1102) $) 21)) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2152 ((|#1| $) 41)) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-3372 (($ $ |#1|) 77) (($ $ $) 76)) (-4310 (($) 49) (($ (-631 |#1|)) 48)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-2927 (((-530) $) 59 (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) 50)) (-3043 (($ $) 68 (|has| |#1| (-363)))) (-3075 (((-848) $) 18)) (-3813 (((-758) $) 69)) (-2332 (($ (-631 |#1|)) 72) (($) 71)) (-1591 (($ (-631 |#1|)) 42)) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20)) (-2563 (((-758) $) 6 (|has| $ (-6 -4373)))))
-(((-420 |#1|) (-138) (-1082)) (T -420))
-((-3813 (*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-1082)) (-5 *2 (-758)))) (-3043 (*1 *1 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-1082)) (-4 *2 (-363)))) (-3509 (*1 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-363)) (-4 *2 (-1082)))) (-2706 (*1 *2 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-1082)) (-4 *2 (-836)))) (-4223 (*1 *2 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-1082)) (-4 *2 (-836)))))
-(-13 (-225 |t#1|) (-1080 |t#1|) (-10 -8 (-6 -4373) (-15 -3813 ((-758) $)) (IF (|has| |t#1| (-363)) (PROGN (-6 (-363)) (-15 -3043 ($ $)) (-15 -3509 ($))) |%noBranch|) (IF (|has| |t#1| (-836)) (PROGN (-15 -2706 (|t#1| $)) (-15 -4223 (|t#1| $))) |%noBranch|)))
-(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-601 (-848)) . T) ((-149 |#1|) . T) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-225 |#1|) . T) ((-231 |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-363) |has| |#1| (-363)) ((-483 |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-1080 |#1|) . T) ((-1082) . T) ((-1195) . T))
-((-3247 (((-575 |#2|) |#2| (-1158)) 36)) (-1918 (((-575 |#2|) |#2| (-1158)) 20)) (-3355 ((|#2| |#2| (-1158)) 25)))
-(((-421 |#1| |#2|) (-10 -7 (-15 -1918 ((-575 |#2|) |#2| (-1158))) (-15 -3247 ((-575 |#2|) |#2| (-1158))) (-15 -3355 (|#2| |#2| (-1158)))) (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554))) (-13 (-1180) (-29 |#1|))) (T -421))
-((-3355 (*1 *2 *2 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-421 *4 *2)) (-4 *2 (-13 (-1180) (-29 *4))))) (-3247 (*1 *2 *3 *4) (-12 (-5 *4 (-1158)) (-4 *5 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-575 *3)) (-5 *1 (-421 *5 *3)) (-4 *3 (-13 (-1180) (-29 *5))))) (-1918 (*1 *2 *3 *4) (-12 (-5 *4 (-1158)) (-4 *5 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-575 *3)) (-5 *1 (-421 *5 *3)) (-4 *3 (-13 (-1180) (-29 *5))))))
-(-10 -7 (-15 -1918 ((-575 |#2|) |#2| (-1158))) (-15 -3247 ((-575 |#2|) |#2| (-1158))) (-15 -3355 (|#2| |#2| (-1158))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-1320 (((-3 $ "failed") $) NIL)) (-3248 (((-112) $) NIL)) (-4010 (($ |#2| |#1|) 35)) (-3260 (($ |#2| |#1|) 33)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#1|) NIL) (($ (-326 |#2|)) 25)) (-2261 (((-758)) NIL)) (-2004 (($) 10 T CONST)) (-2014 (($) 16 T CONST)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) 34)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-422 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4360)) (IF (|has| |#1| (-6 -4360)) (-6 -4360) |%noBranch|) |%noBranch|) (-15 -3075 ($ |#1|)) (-15 -3075 ($ (-326 |#2|))) (-15 -4010 ($ |#2| |#1|)) (-15 -3260 ($ |#2| |#1|)))) (-13 (-170) (-38 (-402 (-554)))) (-13 (-836) (-21))) (T -422))
-((-3075 (*1 *1 *2) (-12 (-5 *1 (-422 *2 *3)) (-4 *2 (-13 (-170) (-38 (-402 (-554))))) (-4 *3 (-13 (-836) (-21))))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-326 *4)) (-4 *4 (-13 (-836) (-21))) (-5 *1 (-422 *3 *4)) (-4 *3 (-13 (-170) (-38 (-402 (-554))))))) (-4010 (*1 *1 *2 *3) (-12 (-5 *1 (-422 *3 *2)) (-4 *3 (-13 (-170) (-38 (-402 (-554))))) (-4 *2 (-13 (-836) (-21))))) (-3260 (*1 *1 *2 *3) (-12 (-5 *1 (-422 *3 *2)) (-4 *3 (-13 (-170) (-38 (-402 (-554))))) (-4 *2 (-13 (-836) (-21))))))
-(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4360)) (IF (|has| |#1| (-6 -4360)) (-6 -4360) |%noBranch|) |%noBranch|) (-15 -3075 ($ |#1|)) (-15 -3075 ($ (-326 |#2|))) (-15 -4010 ($ |#2| |#1|)) (-15 -3260 ($ |#2| |#1|))))
-((-2279 (((-3 |#2| (-631 |#2|)) |#2| (-1158)) 109)))
-(((-423 |#1| |#2|) (-10 -7 (-15 -2279 ((-3 |#2| (-631 |#2|)) |#2| (-1158)))) (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554))) (-13 (-1180) (-944) (-29 |#1|))) (T -423))
-((-2279 (*1 *2 *3 *4) (-12 (-5 *4 (-1158)) (-4 *5 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-3 *3 (-631 *3))) (-5 *1 (-423 *5 *3)) (-4 *3 (-13 (-1180) (-944) (-29 *5))))))
-(-10 -7 (-15 -2279 ((-3 |#2| (-631 |#2|)) |#2| (-1158))))
-((-2405 (((-631 (-1158)) $) 72)) (-2237 (((-402 (-1154 $)) $ (-600 $)) 273)) (-3380 (($ $ (-289 $)) NIL) (($ $ (-631 (-289 $))) NIL) (($ $ (-631 (-600 $)) (-631 $)) 237)) (-2784 (((-3 (-600 $) "failed") $) NIL) (((-3 (-1158) "failed") $) 75) (((-3 (-554) "failed") $) NIL) (((-3 |#2| "failed") $) 233) (((-3 (-402 (-937 |#2|)) "failed") $) 324) (((-3 (-937 |#2|) "failed") $) 235) (((-3 (-402 (-554)) "failed") $) NIL)) (-1668 (((-600 $) $) NIL) (((-1158) $) 30) (((-554) $) NIL) ((|#2| $) 231) (((-402 (-937 |#2|)) $) 305) (((-937 |#2|) $) 232) (((-402 (-554)) $) NIL)) (-3086 (((-114) (-114)) 47)) (-3472 (($ $) 87)) (-3310 (((-3 (-600 $) "failed") $) 228)) (-2227 (((-631 (-600 $)) $) 229)) (-3778 (((-3 (-631 $) "failed") $) 247)) (-2920 (((-3 (-2 (|:| |val| $) (|:| -1407 (-554))) "failed") $) 254)) (-2433 (((-3 (-631 $) "failed") $) 245)) (-2863 (((-3 (-2 (|:| -1490 (-554)) (|:| |var| (-600 $))) "failed") $) 264)) (-3160 (((-3 (-2 (|:| |var| (-600 $)) (|:| -1407 (-554))) "failed") $) 251) (((-3 (-2 (|:| |var| (-600 $)) (|:| -1407 (-554))) "failed") $ (-114)) 217) (((-3 (-2 (|:| |var| (-600 $)) (|:| -1407 (-554))) "failed") $ (-1158)) 219)) (-2492 (((-112) $) 19)) (-2505 ((|#2| $) 21)) (-2386 (($ $ (-600 $) $) NIL) (($ $ (-631 (-600 $)) (-631 $)) 236) (($ $ (-631 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ (-631 (-1158)) (-631 (-1 $ $))) NIL) (($ $ (-631 (-1158)) (-631 (-1 $ (-631 $)))) 96) (($ $ (-1158) (-1 $ (-631 $))) NIL) (($ $ (-1158) (-1 $ $)) NIL) (($ $ (-631 (-114)) (-631 (-1 $ $))) NIL) (($ $ (-631 (-114)) (-631 (-1 $ (-631 $)))) NIL) (($ $ (-114) (-1 $ (-631 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1158)) 57) (($ $ (-631 (-1158))) 240) (($ $) 241) (($ $ (-114) $ (-1158)) 60) (($ $ (-631 (-114)) (-631 $) (-1158)) 67) (($ $ (-631 (-1158)) (-631 (-758)) (-631 (-1 $ $))) 107) (($ $ (-631 (-1158)) (-631 (-758)) (-631 (-1 $ (-631 $)))) 242) (($ $ (-1158) (-758) (-1 $ (-631 $))) 94) (($ $ (-1158) (-758) (-1 $ $)) 93)) (-2064 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-631 $)) 106)) (-1553 (($ $ (-631 (-1158)) (-631 (-758))) NIL) (($ $ (-1158) (-758)) NIL) (($ $ (-631 (-1158))) NIL) (($ $ (-1158)) 238)) (-3623 (($ $) 284)) (-2927 (((-877 (-554)) $) 257) (((-877 (-374)) $) 261) (($ (-413 $)) 320) (((-530) $) NIL)) (-3075 (((-848) $) 239) (($ (-600 $)) 84) (($ (-1158)) 26) (($ |#2|) NIL) (($ (-1107 |#2| (-600 $))) NIL) (($ (-402 |#2|)) 289) (($ (-937 (-402 |#2|))) 329) (($ (-402 (-937 (-402 |#2|)))) 301) (($ (-402 (-937 |#2|))) 295) (($ $) NIL) (($ (-937 |#2|)) 185) (($ (-402 (-554))) 334) (($ (-554)) NIL)) (-2261 (((-758)) 79)) (-1902 (((-112) (-114)) 41)) (-3155 (($ (-1158) $) 33) (($ (-1158) $ $) 34) (($ (-1158) $ $ $) 35) (($ (-1158) $ $ $ $) 36) (($ (-1158) (-631 $)) 39)) (* (($ (-402 (-554)) $) NIL) (($ $ (-402 (-554))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-554) $) NIL) (($ (-758) $) NIL) (($ (-906) $) NIL)))
-(((-424 |#1| |#2|) (-10 -8 (-15 * (|#1| (-906) |#1|)) (-15 * (|#1| (-758) |#1|)) (-15 * (|#1| (-554) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3075 (|#1| (-554))) (-15 -2261 ((-758))) (-15 -3075 (|#1| (-402 (-554)))) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -2927 ((-530) |#1|)) (-15 -3075 (|#1| (-937 |#2|))) (-15 -2784 ((-3 (-937 |#2|) "failed") |#1|)) (-15 -1668 ((-937 |#2|) |#1|)) (-15 -1553 (|#1| |#1| (-1158))) (-15 -1553 (|#1| |#1| (-631 (-1158)))) (-15 -1553 (|#1| |#1| (-1158) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3075 (|#1| |#1|)) (-15 * (|#1| |#1| (-402 (-554)))) (-15 * (|#1| (-402 (-554)) |#1|)) (-15 -3075 (|#1| (-402 (-937 |#2|)))) (-15 -2784 ((-3 (-402 (-937 |#2|)) "failed") |#1|)) (-15 -1668 ((-402 (-937 |#2|)) |#1|)) (-15 -2237 ((-402 (-1154 |#1|)) |#1| (-600 |#1|))) (-15 -3075 (|#1| (-402 (-937 (-402 |#2|))))) (-15 -3075 (|#1| (-937 (-402 |#2|)))) (-15 -3075 (|#1| (-402 |#2|))) (-15 -3623 (|#1| |#1|)) (-15 -2927 (|#1| (-413 |#1|))) (-15 -2386 (|#1| |#1| (-1158) (-758) (-1 |#1| |#1|))) (-15 -2386 (|#1| |#1| (-1158) (-758) (-1 |#1| (-631 |#1|)))) (-15 -2386 (|#1| |#1| (-631 (-1158)) (-631 (-758)) (-631 (-1 |#1| (-631 |#1|))))) (-15 -2386 (|#1| |#1| (-631 (-1158)) (-631 (-758)) (-631 (-1 |#1| |#1|)))) (-15 -2920 ((-3 (-2 (|:| |val| |#1|) (|:| -1407 (-554))) "failed") |#1|)) (-15 -3160 ((-3 (-2 (|:| |var| (-600 |#1|)) (|:| -1407 (-554))) "failed") |#1| (-1158))) (-15 -3160 ((-3 (-2 (|:| |var| (-600 |#1|)) (|:| -1407 (-554))) "failed") |#1| (-114))) (-15 -3472 (|#1| |#1|)) (-15 -3075 (|#1| (-1107 |#2| (-600 |#1|)))) (-15 -2863 ((-3 (-2 (|:| -1490 (-554)) (|:| |var| (-600 |#1|))) "failed") |#1|)) (-15 -2433 ((-3 (-631 |#1|) "failed") |#1|)) (-15 -3160 ((-3 (-2 (|:| |var| (-600 |#1|)) (|:| -1407 (-554))) "failed") |#1|)) (-15 -3778 ((-3 (-631 |#1|) "failed") |#1|)) (-15 -2386 (|#1| |#1| (-631 (-114)) (-631 |#1|) (-1158))) (-15 -2386 (|#1| |#1| (-114) |#1| (-1158))) (-15 -2386 (|#1| |#1|)) (-15 -2386 (|#1| |#1| (-631 (-1158)))) (-15 -2386 (|#1| |#1| (-1158))) (-15 -3155 (|#1| (-1158) (-631 |#1|))) (-15 -3155 (|#1| (-1158) |#1| |#1| |#1| |#1|)) (-15 -3155 (|#1| (-1158) |#1| |#1| |#1|)) (-15 -3155 (|#1| (-1158) |#1| |#1|)) (-15 -3155 (|#1| (-1158) |#1|)) (-15 -2405 ((-631 (-1158)) |#1|)) (-15 -2505 (|#2| |#1|)) (-15 -2492 ((-112) |#1|)) (-15 -3075 (|#1| |#2|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -1668 ((-554) |#1|)) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -2927 ((-877 (-374)) |#1|)) (-15 -2927 ((-877 (-554)) |#1|)) (-15 -3075 (|#1| (-1158))) (-15 -2784 ((-3 (-1158) "failed") |#1|)) (-15 -1668 ((-1158) |#1|)) (-15 -2386 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2386 (|#1| |#1| (-114) (-1 |#1| (-631 |#1|)))) (-15 -2386 (|#1| |#1| (-631 (-114)) (-631 (-1 |#1| (-631 |#1|))))) (-15 -2386 (|#1| |#1| (-631 (-114)) (-631 (-1 |#1| |#1|)))) (-15 -2386 (|#1| |#1| (-1158) (-1 |#1| |#1|))) (-15 -2386 (|#1| |#1| (-1158) (-1 |#1| (-631 |#1|)))) (-15 -2386 (|#1| |#1| (-631 (-1158)) (-631 (-1 |#1| (-631 |#1|))))) (-15 -2386 (|#1| |#1| (-631 (-1158)) (-631 (-1 |#1| |#1|)))) (-15 -1902 ((-112) (-114))) (-15 -3086 ((-114) (-114))) (-15 -2227 ((-631 (-600 |#1|)) |#1|)) (-15 -3310 ((-3 (-600 |#1|) "failed") |#1|)) (-15 -3380 (|#1| |#1| (-631 (-600 |#1|)) (-631 |#1|))) (-15 -3380 (|#1| |#1| (-631 (-289 |#1|)))) (-15 -3380 (|#1| |#1| (-289 |#1|))) (-15 -2064 (|#1| (-114) (-631 |#1|))) (-15 -2064 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2064 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2064 (|#1| (-114) |#1| |#1|)) (-15 -2064 (|#1| (-114) |#1|)) (-15 -2386 (|#1| |#1| (-631 |#1|) (-631 |#1|))) (-15 -2386 (|#1| |#1| |#1| |#1|)) (-15 -2386 (|#1| |#1| (-289 |#1|))) (-15 -2386 (|#1| |#1| (-631 (-289 |#1|)))) (-15 -2386 (|#1| |#1| (-631 (-600 |#1|)) (-631 |#1|))) (-15 -2386 (|#1| |#1| (-600 |#1|) |#1|)) (-15 -3075 (|#1| (-600 |#1|))) (-15 -2784 ((-3 (-600 |#1|) "failed") |#1|)) (-15 -1668 ((-600 |#1|) |#1|)) (-15 -3075 ((-848) |#1|))) (-425 |#2|) (-836)) (T -424))
-((-3086 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *4 (-836)) (-5 *1 (-424 *3 *4)) (-4 *3 (-425 *4)))) (-1902 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *5 (-836)) (-5 *2 (-112)) (-5 *1 (-424 *4 *5)) (-4 *4 (-425 *5)))) (-2261 (*1 *2) (-12 (-4 *4 (-836)) (-5 *2 (-758)) (-5 *1 (-424 *3 *4)) (-4 *3 (-425 *4)))))
-(-10 -8 (-15 * (|#1| (-906) |#1|)) (-15 * (|#1| (-758) |#1|)) (-15 * (|#1| (-554) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3075 (|#1| (-554))) (-15 -2261 ((-758))) (-15 -3075 (|#1| (-402 (-554)))) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -2927 ((-530) |#1|)) (-15 -3075 (|#1| (-937 |#2|))) (-15 -2784 ((-3 (-937 |#2|) "failed") |#1|)) (-15 -1668 ((-937 |#2|) |#1|)) (-15 -1553 (|#1| |#1| (-1158))) (-15 -1553 (|#1| |#1| (-631 (-1158)))) (-15 -1553 (|#1| |#1| (-1158) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3075 (|#1| |#1|)) (-15 * (|#1| |#1| (-402 (-554)))) (-15 * (|#1| (-402 (-554)) |#1|)) (-15 -3075 (|#1| (-402 (-937 |#2|)))) (-15 -2784 ((-3 (-402 (-937 |#2|)) "failed") |#1|)) (-15 -1668 ((-402 (-937 |#2|)) |#1|)) (-15 -2237 ((-402 (-1154 |#1|)) |#1| (-600 |#1|))) (-15 -3075 (|#1| (-402 (-937 (-402 |#2|))))) (-15 -3075 (|#1| (-937 (-402 |#2|)))) (-15 -3075 (|#1| (-402 |#2|))) (-15 -3623 (|#1| |#1|)) (-15 -2927 (|#1| (-413 |#1|))) (-15 -2386 (|#1| |#1| (-1158) (-758) (-1 |#1| |#1|))) (-15 -2386 (|#1| |#1| (-1158) (-758) (-1 |#1| (-631 |#1|)))) (-15 -2386 (|#1| |#1| (-631 (-1158)) (-631 (-758)) (-631 (-1 |#1| (-631 |#1|))))) (-15 -2386 (|#1| |#1| (-631 (-1158)) (-631 (-758)) (-631 (-1 |#1| |#1|)))) (-15 -2920 ((-3 (-2 (|:| |val| |#1|) (|:| -1407 (-554))) "failed") |#1|)) (-15 -3160 ((-3 (-2 (|:| |var| (-600 |#1|)) (|:| -1407 (-554))) "failed") |#1| (-1158))) (-15 -3160 ((-3 (-2 (|:| |var| (-600 |#1|)) (|:| -1407 (-554))) "failed") |#1| (-114))) (-15 -3472 (|#1| |#1|)) (-15 -3075 (|#1| (-1107 |#2| (-600 |#1|)))) (-15 -2863 ((-3 (-2 (|:| -1490 (-554)) (|:| |var| (-600 |#1|))) "failed") |#1|)) (-15 -2433 ((-3 (-631 |#1|) "failed") |#1|)) (-15 -3160 ((-3 (-2 (|:| |var| (-600 |#1|)) (|:| -1407 (-554))) "failed") |#1|)) (-15 -3778 ((-3 (-631 |#1|) "failed") |#1|)) (-15 -2386 (|#1| |#1| (-631 (-114)) (-631 |#1|) (-1158))) (-15 -2386 (|#1| |#1| (-114) |#1| (-1158))) (-15 -2386 (|#1| |#1|)) (-15 -2386 (|#1| |#1| (-631 (-1158)))) (-15 -2386 (|#1| |#1| (-1158))) (-15 -3155 (|#1| (-1158) (-631 |#1|))) (-15 -3155 (|#1| (-1158) |#1| |#1| |#1| |#1|)) (-15 -3155 (|#1| (-1158) |#1| |#1| |#1|)) (-15 -3155 (|#1| (-1158) |#1| |#1|)) (-15 -3155 (|#1| (-1158) |#1|)) (-15 -2405 ((-631 (-1158)) |#1|)) (-15 -2505 (|#2| |#1|)) (-15 -2492 ((-112) |#1|)) (-15 -3075 (|#1| |#2|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -1668 ((-554) |#1|)) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -2927 ((-877 (-374)) |#1|)) (-15 -2927 ((-877 (-554)) |#1|)) (-15 -3075 (|#1| (-1158))) (-15 -2784 ((-3 (-1158) "failed") |#1|)) (-15 -1668 ((-1158) |#1|)) (-15 -2386 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2386 (|#1| |#1| (-114) (-1 |#1| (-631 |#1|)))) (-15 -2386 (|#1| |#1| (-631 (-114)) (-631 (-1 |#1| (-631 |#1|))))) (-15 -2386 (|#1| |#1| (-631 (-114)) (-631 (-1 |#1| |#1|)))) (-15 -2386 (|#1| |#1| (-1158) (-1 |#1| |#1|))) (-15 -2386 (|#1| |#1| (-1158) (-1 |#1| (-631 |#1|)))) (-15 -2386 (|#1| |#1| (-631 (-1158)) (-631 (-1 |#1| (-631 |#1|))))) (-15 -2386 (|#1| |#1| (-631 (-1158)) (-631 (-1 |#1| |#1|)))) (-15 -1902 ((-112) (-114))) (-15 -3086 ((-114) (-114))) (-15 -2227 ((-631 (-600 |#1|)) |#1|)) (-15 -3310 ((-3 (-600 |#1|) "failed") |#1|)) (-15 -3380 (|#1| |#1| (-631 (-600 |#1|)) (-631 |#1|))) (-15 -3380 (|#1| |#1| (-631 (-289 |#1|)))) (-15 -3380 (|#1| |#1| (-289 |#1|))) (-15 -2064 (|#1| (-114) (-631 |#1|))) (-15 -2064 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2064 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2064 (|#1| (-114) |#1| |#1|)) (-15 -2064 (|#1| (-114) |#1|)) (-15 -2386 (|#1| |#1| (-631 |#1|) (-631 |#1|))) (-15 -2386 (|#1| |#1| |#1| |#1|)) (-15 -2386 (|#1| |#1| (-289 |#1|))) (-15 -2386 (|#1| |#1| (-631 (-289 |#1|)))) (-15 -2386 (|#1| |#1| (-631 (-600 |#1|)) (-631 |#1|))) (-15 -2386 (|#1| |#1| (-600 |#1|) |#1|)) (-15 -3075 (|#1| (-600 |#1|))) (-15 -2784 ((-3 (-600 |#1|) "failed") |#1|)) (-15 -1668 ((-600 |#1|) |#1|)) (-15 -3075 ((-848) |#1|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 114 (|has| |#1| (-25)))) (-2405 (((-631 (-1158)) $) 201)) (-2237 (((-402 (-1154 $)) $ (-600 $)) 169 (|has| |#1| (-546)))) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 141 (|has| |#1| (-546)))) (-1976 (($ $) 142 (|has| |#1| (-546)))) (-1363 (((-112) $) 144 (|has| |#1| (-546)))) (-2143 (((-631 (-600 $)) $) 44)) (-2934 (((-3 $ "failed") $ $) 116 (|has| |#1| (-21)))) (-3380 (($ $ (-289 $)) 56) (($ $ (-631 (-289 $))) 55) (($ $ (-631 (-600 $)) (-631 $)) 54)) (-3278 (($ $) 161 (|has| |#1| (-546)))) (-1565 (((-413 $) $) 162 (|has| |#1| (-546)))) (-2286 (((-112) $ $) 152 (|has| |#1| (-546)))) (-4087 (($) 102 (-3994 (|has| |#1| (-1094)) (|has| |#1| (-25))) CONST)) (-2784 (((-3 (-600 $) "failed") $) 69) (((-3 (-1158) "failed") $) 214) (((-3 (-554) "failed") $) 208 (|has| |#1| (-1023 (-554)))) (((-3 |#1| "failed") $) 205) (((-3 (-402 (-937 |#1|)) "failed") $) 167 (|has| |#1| (-546))) (((-3 (-937 |#1|) "failed") $) 121 (|has| |#1| (-1034))) (((-3 (-402 (-554)) "failed") $) 96 (-3994 (-12 (|has| |#1| (-1023 (-554))) (|has| |#1| (-546))) (|has| |#1| (-1023 (-402 (-554))))))) (-1668 (((-600 $) $) 70) (((-1158) $) 215) (((-554) $) 207 (|has| |#1| (-1023 (-554)))) ((|#1| $) 206) (((-402 (-937 |#1|)) $) 168 (|has| |#1| (-546))) (((-937 |#1|) $) 122 (|has| |#1| (-1034))) (((-402 (-554)) $) 97 (-3994 (-12 (|has| |#1| (-1023 (-554))) (|has| |#1| (-546))) (|has| |#1| (-1023 (-402 (-554))))))) (-3964 (($ $ $) 156 (|has| |#1| (-546)))) (-3699 (((-675 (-554)) (-675 $)) 135 (-3726 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) 134 (-3726 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034)))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) 133 (|has| |#1| (-1034))) (((-675 |#1|) (-675 $)) 132 (|has| |#1| (-1034)))) (-1320 (((-3 $ "failed") $) 104 (|has| |#1| (-1094)))) (-3943 (($ $ $) 155 (|has| |#1| (-546)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 150 (|has| |#1| (-546)))) (-3289 (((-112) $) 163 (|has| |#1| (-546)))) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) 210 (|has| |#1| (-871 (-554)))) (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) 209 (|has| |#1| (-871 (-374))))) (-1342 (($ $) 51) (($ (-631 $)) 50)) (-3489 (((-631 (-114)) $) 43)) (-3086 (((-114) (-114)) 42)) (-3248 (((-112) $) 103 (|has| |#1| (-1094)))) (-3273 (((-112) $) 22 (|has| $ (-1023 (-554))))) (-3472 (($ $) 184 (|has| |#1| (-1034)))) (-2810 (((-1107 |#1| (-600 $)) $) 185 (|has| |#1| (-1034)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 159 (|has| |#1| (-546)))) (-1823 (((-1154 $) (-600 $)) 25 (|has| $ (-1034)))) (-4223 (($ $ $) 13)) (-2706 (($ $ $) 14)) (-2879 (($ (-1 $ $) (-600 $)) 36)) (-3310 (((-3 (-600 $) "failed") $) 46)) (-2475 (($ (-631 $)) 148 (|has| |#1| (-546))) (($ $ $) 147 (|has| |#1| (-546)))) (-1613 (((-1140) $) 9)) (-2227 (((-631 (-600 $)) $) 45)) (-1408 (($ (-114) $) 38) (($ (-114) (-631 $)) 37)) (-3778 (((-3 (-631 $) "failed") $) 190 (|has| |#1| (-1094)))) (-2920 (((-3 (-2 (|:| |val| $) (|:| -1407 (-554))) "failed") $) 181 (|has| |#1| (-1034)))) (-2433 (((-3 (-631 $) "failed") $) 188 (|has| |#1| (-25)))) (-2863 (((-3 (-2 (|:| -1490 (-554)) (|:| |var| (-600 $))) "failed") $) 187 (|has| |#1| (-25)))) (-3160 (((-3 (-2 (|:| |var| (-600 $)) (|:| -1407 (-554))) "failed") $) 189 (|has| |#1| (-1094))) (((-3 (-2 (|:| |var| (-600 $)) (|:| -1407 (-554))) "failed") $ (-114)) 183 (|has| |#1| (-1034))) (((-3 (-2 (|:| |var| (-600 $)) (|:| -1407 (-554))) "failed") $ (-1158)) 182 (|has| |#1| (-1034)))) (-2640 (((-112) $ (-114)) 40) (((-112) $ (-1158)) 39)) (-2483 (($ $) 106 (-3994 (|has| |#1| (-467)) (|has| |#1| (-546))))) (-3323 (((-758) $) 47)) (-2768 (((-1102) $) 10)) (-2492 (((-112) $) 203)) (-2505 ((|#1| $) 202)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 149 (|has| |#1| (-546)))) (-2510 (($ (-631 $)) 146 (|has| |#1| (-546))) (($ $ $) 145 (|has| |#1| (-546)))) (-2041 (((-112) $ $) 35) (((-112) $ (-1158)) 34)) (-2270 (((-413 $) $) 160 (|has| |#1| (-546)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 158 (|has| |#1| (-546))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 157 (|has| |#1| (-546)))) (-3919 (((-3 $ "failed") $ $) 140 (|has| |#1| (-546)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 151 (|has| |#1| (-546)))) (-1795 (((-112) $) 23 (|has| $ (-1023 (-554))))) (-2386 (($ $ (-600 $) $) 67) (($ $ (-631 (-600 $)) (-631 $)) 66) (($ $ (-631 (-289 $))) 65) (($ $ (-289 $)) 64) (($ $ $ $) 63) (($ $ (-631 $) (-631 $)) 62) (($ $ (-631 (-1158)) (-631 (-1 $ $))) 33) (($ $ (-631 (-1158)) (-631 (-1 $ (-631 $)))) 32) (($ $ (-1158) (-1 $ (-631 $))) 31) (($ $ (-1158) (-1 $ $)) 30) (($ $ (-631 (-114)) (-631 (-1 $ $))) 29) (($ $ (-631 (-114)) (-631 (-1 $ (-631 $)))) 28) (($ $ (-114) (-1 $ (-631 $))) 27) (($ $ (-114) (-1 $ $)) 26) (($ $ (-1158)) 195 (|has| |#1| (-602 (-530)))) (($ $ (-631 (-1158))) 194 (|has| |#1| (-602 (-530)))) (($ $) 193 (|has| |#1| (-602 (-530)))) (($ $ (-114) $ (-1158)) 192 (|has| |#1| (-602 (-530)))) (($ $ (-631 (-114)) (-631 $) (-1158)) 191 (|has| |#1| (-602 (-530)))) (($ $ (-631 (-1158)) (-631 (-758)) (-631 (-1 $ $))) 180 (|has| |#1| (-1034))) (($ $ (-631 (-1158)) (-631 (-758)) (-631 (-1 $ (-631 $)))) 179 (|has| |#1| (-1034))) (($ $ (-1158) (-758) (-1 $ (-631 $))) 178 (|has| |#1| (-1034))) (($ $ (-1158) (-758) (-1 $ $)) 177 (|has| |#1| (-1034)))) (-2072 (((-758) $) 153 (|has| |#1| (-546)))) (-2064 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-631 $)) 57)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 154 (|has| |#1| (-546)))) (-3862 (($ $) 49) (($ $ $) 48)) (-1553 (($ $ (-631 (-1158)) (-631 (-758))) 126 (|has| |#1| (-1034))) (($ $ (-1158) (-758)) 125 (|has| |#1| (-1034))) (($ $ (-631 (-1158))) 124 (|has| |#1| (-1034))) (($ $ (-1158)) 123 (|has| |#1| (-1034)))) (-3623 (($ $) 174 (|has| |#1| (-546)))) (-2822 (((-1107 |#1| (-600 $)) $) 175 (|has| |#1| (-546)))) (-4318 (($ $) 24 (|has| $ (-1034)))) (-2927 (((-877 (-554)) $) 212 (|has| |#1| (-602 (-877 (-554))))) (((-877 (-374)) $) 211 (|has| |#1| (-602 (-877 (-374))))) (($ (-413 $)) 176 (|has| |#1| (-546))) (((-530) $) 98 (|has| |#1| (-602 (-530))))) (-3992 (($ $ $) 109 (|has| |#1| (-467)))) (-1856 (($ $ $) 110 (|has| |#1| (-467)))) (-3075 (((-848) $) 11) (($ (-600 $)) 68) (($ (-1158)) 213) (($ |#1|) 204) (($ (-1107 |#1| (-600 $))) 186 (|has| |#1| (-1034))) (($ (-402 |#1|)) 172 (|has| |#1| (-546))) (($ (-937 (-402 |#1|))) 171 (|has| |#1| (-546))) (($ (-402 (-937 (-402 |#1|)))) 170 (|has| |#1| (-546))) (($ (-402 (-937 |#1|))) 166 (|has| |#1| (-546))) (($ $) 139 (|has| |#1| (-546))) (($ (-937 |#1|)) 120 (|has| |#1| (-1034))) (($ (-402 (-554))) 95 (-3994 (|has| |#1| (-546)) (-12 (|has| |#1| (-1023 (-554))) (|has| |#1| (-546))) (|has| |#1| (-1023 (-402 (-554)))))) (($ (-554)) 94 (-3994 (|has| |#1| (-1034)) (|has| |#1| (-1023 (-554)))))) (-2084 (((-3 $ "failed") $) 136 (|has| |#1| (-143)))) (-2261 (((-758)) 131 (|has| |#1| (-1034)))) (-4125 (($ $) 53) (($ (-631 $)) 52)) (-1902 (((-112) (-114)) 41)) (-1909 (((-112) $ $) 143 (|has| |#1| (-546)))) (-3155 (($ (-1158) $) 200) (($ (-1158) $ $) 199) (($ (-1158) $ $ $) 198) (($ (-1158) $ $ $ $) 197) (($ (-1158) (-631 $)) 196)) (-2004 (($) 113 (|has| |#1| (-25)) CONST)) (-2014 (($) 101 (|has| |#1| (-1094)) CONST)) (-1787 (($ $ (-631 (-1158)) (-631 (-758))) 130 (|has| |#1| (-1034))) (($ $ (-1158) (-758)) 129 (|has| |#1| (-1034))) (($ $ (-631 (-1158))) 128 (|has| |#1| (-1034))) (($ $ (-1158)) 127 (|has| |#1| (-1034)))) (-1708 (((-112) $ $) 16)) (-1686 (((-112) $ $) 17)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 15)) (-1676 (((-112) $ $) 18)) (-1752 (($ (-1107 |#1| (-600 $)) (-1107 |#1| (-600 $))) 173 (|has| |#1| (-546))) (($ $ $) 107 (-3994 (|has| |#1| (-467)) (|has| |#1| (-546))))) (-1744 (($ $ $) 118 (|has| |#1| (-21))) (($ $) 117 (|has| |#1| (-21)))) (-1735 (($ $ $) 111 (|has| |#1| (-25)))) (** (($ $ (-554)) 108 (-3994 (|has| |#1| (-467)) (|has| |#1| (-546)))) (($ $ (-758)) 105 (|has| |#1| (-1094))) (($ $ (-906)) 100 (|has| |#1| (-1094)))) (* (($ (-402 (-554)) $) 165 (|has| |#1| (-546))) (($ $ (-402 (-554))) 164 (|has| |#1| (-546))) (($ |#1| $) 138 (|has| |#1| (-170))) (($ $ |#1|) 137 (|has| |#1| (-170))) (($ (-554) $) 119 (|has| |#1| (-21))) (($ (-758) $) 115 (|has| |#1| (-25))) (($ (-906) $) 112 (|has| |#1| (-25))) (($ $ $) 99 (|has| |#1| (-1094)))))
-(((-425 |#1|) (-138) (-836)) (T -425))
-((-2492 (*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-836)) (-5 *2 (-112)))) (-2505 (*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-836)))) (-2405 (*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-836)) (-5 *2 (-631 (-1158))))) (-3155 (*1 *1 *2 *1) (-12 (-5 *2 (-1158)) (-4 *1 (-425 *3)) (-4 *3 (-836)))) (-3155 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1158)) (-4 *1 (-425 *3)) (-4 *3 (-836)))) (-3155 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1158)) (-4 *1 (-425 *3)) (-4 *3 (-836)))) (-3155 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1158)) (-4 *1 (-425 *3)) (-4 *3 (-836)))) (-3155 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-631 *1)) (-4 *1 (-425 *4)) (-4 *4 (-836)))) (-2386 (*1 *1 *1 *2) (-12 (-5 *2 (-1158)) (-4 *1 (-425 *3)) (-4 *3 (-836)) (-4 *3 (-602 (-530))))) (-2386 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-1158))) (-4 *1 (-425 *3)) (-4 *3 (-836)) (-4 *3 (-602 (-530))))) (-2386 (*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-836)) (-4 *2 (-602 (-530))))) (-2386 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1158)) (-4 *1 (-425 *4)) (-4 *4 (-836)) (-4 *4 (-602 (-530))))) (-2386 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-631 (-114))) (-5 *3 (-631 *1)) (-5 *4 (-1158)) (-4 *1 (-425 *5)) (-4 *5 (-836)) (-4 *5 (-602 (-530))))) (-3778 (*1 *2 *1) (|partial| -12 (-4 *3 (-1094)) (-4 *3 (-836)) (-5 *2 (-631 *1)) (-4 *1 (-425 *3)))) (-3160 (*1 *2 *1) (|partial| -12 (-4 *3 (-1094)) (-4 *3 (-836)) (-5 *2 (-2 (|:| |var| (-600 *1)) (|:| -1407 (-554)))) (-4 *1 (-425 *3)))) (-2433 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-836)) (-5 *2 (-631 *1)) (-4 *1 (-425 *3)))) (-2863 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-836)) (-5 *2 (-2 (|:| -1490 (-554)) (|:| |var| (-600 *1)))) (-4 *1 (-425 *3)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-1107 *3 (-600 *1))) (-4 *3 (-1034)) (-4 *3 (-836)) (-4 *1 (-425 *3)))) (-2810 (*1 *2 *1) (-12 (-4 *3 (-1034)) (-4 *3 (-836)) (-5 *2 (-1107 *3 (-600 *1))) (-4 *1 (-425 *3)))) (-3472 (*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-836)) (-4 *2 (-1034)))) (-3160 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1034)) (-4 *4 (-836)) (-5 *2 (-2 (|:| |var| (-600 *1)) (|:| -1407 (-554)))) (-4 *1 (-425 *4)))) (-3160 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1158)) (-4 *4 (-1034)) (-4 *4 (-836)) (-5 *2 (-2 (|:| |var| (-600 *1)) (|:| -1407 (-554)))) (-4 *1 (-425 *4)))) (-2920 (*1 *2 *1) (|partial| -12 (-4 *3 (-1034)) (-4 *3 (-836)) (-5 *2 (-2 (|:| |val| *1) (|:| -1407 (-554)))) (-4 *1 (-425 *3)))) (-2386 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-631 (-1158))) (-5 *3 (-631 (-758))) (-5 *4 (-631 (-1 *1 *1))) (-4 *1 (-425 *5)) (-4 *5 (-836)) (-4 *5 (-1034)))) (-2386 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-631 (-1158))) (-5 *3 (-631 (-758))) (-5 *4 (-631 (-1 *1 (-631 *1)))) (-4 *1 (-425 *5)) (-4 *5 (-836)) (-4 *5 (-1034)))) (-2386 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1158)) (-5 *3 (-758)) (-5 *4 (-1 *1 (-631 *1))) (-4 *1 (-425 *5)) (-4 *5 (-836)) (-4 *5 (-1034)))) (-2386 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1158)) (-5 *3 (-758)) (-5 *4 (-1 *1 *1)) (-4 *1 (-425 *5)) (-4 *5 (-836)) (-4 *5 (-1034)))) (-2927 (*1 *1 *2) (-12 (-5 *2 (-413 *1)) (-4 *1 (-425 *3)) (-4 *3 (-546)) (-4 *3 (-836)))) (-2822 (*1 *2 *1) (-12 (-4 *3 (-546)) (-4 *3 (-836)) (-5 *2 (-1107 *3 (-600 *1))) (-4 *1 (-425 *3)))) (-3623 (*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-836)) (-4 *2 (-546)))) (-1752 (*1 *1 *2 *2) (-12 (-5 *2 (-1107 *3 (-600 *1))) (-4 *3 (-546)) (-4 *3 (-836)) (-4 *1 (-425 *3)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-402 *3)) (-4 *3 (-546)) (-4 *3 (-836)) (-4 *1 (-425 *3)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-937 (-402 *3))) (-4 *3 (-546)) (-4 *3 (-836)) (-4 *1 (-425 *3)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-402 (-937 (-402 *3)))) (-4 *3 (-546)) (-4 *3 (-836)) (-4 *1 (-425 *3)))) (-2237 (*1 *2 *1 *3) (-12 (-5 *3 (-600 *1)) (-4 *1 (-425 *4)) (-4 *4 (-836)) (-4 *4 (-546)) (-5 *2 (-402 (-1154 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *1 (-425 *3)) (-4 *3 (-836)) (-4 *3 (-1094)))))
-(-13 (-297) (-1023 (-1158)) (-869 |t#1|) (-395 |t#1|) (-406 |t#1|) (-10 -8 (-15 -2492 ((-112) $)) (-15 -2505 (|t#1| $)) (-15 -2405 ((-631 (-1158)) $)) (-15 -3155 ($ (-1158) $)) (-15 -3155 ($ (-1158) $ $)) (-15 -3155 ($ (-1158) $ $ $)) (-15 -3155 ($ (-1158) $ $ $ $)) (-15 -3155 ($ (-1158) (-631 $))) (IF (|has| |t#1| (-602 (-530))) (PROGN (-6 (-602 (-530))) (-15 -2386 ($ $ (-1158))) (-15 -2386 ($ $ (-631 (-1158)))) (-15 -2386 ($ $)) (-15 -2386 ($ $ (-114) $ (-1158))) (-15 -2386 ($ $ (-631 (-114)) (-631 $) (-1158)))) |%noBranch|) (IF (|has| |t#1| (-1094)) (PROGN (-6 (-713)) (-15 ** ($ $ (-758))) (-15 -3778 ((-3 (-631 $) "failed") $)) (-15 -3160 ((-3 (-2 (|:| |var| (-600 $)) (|:| -1407 (-554))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-467)) (-6 (-467)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2433 ((-3 (-631 $) "failed") $)) (-15 -2863 ((-3 (-2 (|:| -1490 (-554)) (|:| |var| (-600 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1034)) (PROGN (-6 (-1034)) (-6 (-1023 (-937 |t#1|))) (-6 (-885 (-1158))) (-6 (-372 |t#1|)) (-15 -3075 ($ (-1107 |t#1| (-600 $)))) (-15 -2810 ((-1107 |t#1| (-600 $)) $)) (-15 -3472 ($ $)) (-15 -3160 ((-3 (-2 (|:| |var| (-600 $)) (|:| -1407 (-554))) "failed") $ (-114))) (-15 -3160 ((-3 (-2 (|:| |var| (-600 $)) (|:| -1407 (-554))) "failed") $ (-1158))) (-15 -2920 ((-3 (-2 (|:| |val| $) (|:| -1407 (-554))) "failed") $)) (-15 -2386 ($ $ (-631 (-1158)) (-631 (-758)) (-631 (-1 $ $)))) (-15 -2386 ($ $ (-631 (-1158)) (-631 (-758)) (-631 (-1 $ (-631 $))))) (-15 -2386 ($ $ (-1158) (-758) (-1 $ (-631 $)))) (-15 -2386 ($ $ (-1158) (-758) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-546)) (PROGN (-6 (-358)) (-6 (-1023 (-402 (-937 |t#1|)))) (-15 -2927 ($ (-413 $))) (-15 -2822 ((-1107 |t#1| (-600 $)) $)) (-15 -3623 ($ $)) (-15 -1752 ($ (-1107 |t#1| (-600 $)) (-1107 |t#1| (-600 $)))) (-15 -3075 ($ (-402 |t#1|))) (-15 -3075 ($ (-937 (-402 |t#1|)))) (-15 -3075 ($ (-402 (-937 (-402 |t#1|))))) (-15 -2237 ((-402 (-1154 $)) $ (-600 $))) (IF (|has| |t#1| (-1023 (-554))) (-6 (-1023 (-402 (-554)))) |%noBranch|)) |%noBranch|)))
-(((-21) -3994 (|has| |#1| (-1034)) (|has| |#1| (-546)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-21))) ((-23) -3994 (|has| |#1| (-1034)) (|has| |#1| (-546)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3994 (|has| |#1| (-1034)) (|has| |#1| (-546)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-402 (-554))) |has| |#1| (-546)) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-546)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-546)) ((-111 |#1| |#1|) |has| |#1| (-170)) ((-111 $ $) |has| |#1| (-546)) ((-130) -3994 (|has| |#1| (-1034)) (|has| |#1| (-546)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-21))) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-604 #0#) -3994 (|has| |#1| (-1023 (-402 (-554)))) (|has| |#1| (-546))) ((-604 #1=(-402 (-937 |#1|))) |has| |#1| (-546)) ((-604 (-554)) -3994 (|has| |#1| (-1034)) (|has| |#1| (-1023 (-554))) (|has| |#1| (-546)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-604 #2=(-600 $)) . T) ((-604 #3=(-937 |#1|)) |has| |#1| (-1034)) ((-604 #4=(-1158)) . T) ((-604 |#1|) . T) ((-604 $) |has| |#1| (-546)) ((-601 (-848)) . T) ((-170) |has| |#1| (-546)) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-602 (-877 (-374))) |has| |#1| (-602 (-877 (-374)))) ((-602 (-877 (-554))) |has| |#1| (-602 (-877 (-554)))) ((-239) |has| |#1| (-546)) ((-285) |has| |#1| (-546)) ((-302) |has| |#1| (-546)) ((-304 $) . T) ((-297) . T) ((-358) |has| |#1| (-546)) ((-372 |#1|) |has| |#1| (-1034)) ((-395 |#1|) . T) ((-406 |#1|) . T) ((-446) |has| |#1| (-546)) ((-467) |has| |#1| (-467)) ((-508 (-600 $) $) . T) ((-508 $ $) . T) ((-546) |has| |#1| (-546)) ((-634 #0#) |has| |#1| (-546)) ((-634 |#1|) |has| |#1| (-170)) ((-634 $) -3994 (|has| |#1| (-1034)) (|has| |#1| (-546)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-627 (-554)) -12 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034))) ((-627 |#1|) |has| |#1| (-1034)) ((-704 #0#) |has| |#1| (-546)) ((-704 |#1|) |has| |#1| (-170)) ((-704 $) |has| |#1| (-546)) ((-713) -3994 (|has| |#1| (-1094)) (|has| |#1| (-1034)) (|has| |#1| (-546)) (|has| |#1| (-467)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-836) . T) ((-885 (-1158)) |has| |#1| (-1034)) ((-871 (-374)) |has| |#1| (-871 (-374))) ((-871 (-554)) |has| |#1| (-871 (-554))) ((-869 |#1|) . T) ((-905) |has| |#1| (-546)) ((-1023 (-402 (-554))) -3994 (|has| |#1| (-1023 (-402 (-554)))) (-12 (|has| |#1| (-546)) (|has| |#1| (-1023 (-554))))) ((-1023 #1#) |has| |#1| (-546)) ((-1023 (-554)) |has| |#1| (-1023 (-554))) ((-1023 #2#) . T) ((-1023 #3#) |has| |#1| (-1034)) ((-1023 #4#) . T) ((-1023 |#1|) . T) ((-1040 #0#) |has| |#1| (-546)) ((-1040 |#1|) |has| |#1| (-170)) ((-1040 $) |has| |#1| (-546)) ((-1034) -3994 (|has| |#1| (-1034)) (|has| |#1| (-546)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1041) -3994 (|has| |#1| (-1034)) (|has| |#1| (-546)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1094) -3994 (|has| |#1| (-1094)) (|has| |#1| (-1034)) (|has| |#1| (-546)) (|has| |#1| (-467)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1082) . T) ((-1195) . T) ((-1199) |has| |#1| (-546)))
-((-1738 ((|#2| |#2| |#2|) 33)) (-3086 (((-114) (-114)) 44)) (-3527 ((|#2| |#2|) 66)) (-1519 ((|#2| |#2|) 69)) (-2696 ((|#2| |#2|) 32)) (-1943 ((|#2| |#2| |#2|) 35)) (-1952 ((|#2| |#2| |#2|) 37)) (-3586 ((|#2| |#2| |#2|) 34)) (-3746 ((|#2| |#2| |#2|) 36)) (-1902 (((-112) (-114)) 42)) (-2973 ((|#2| |#2|) 39)) (-1959 ((|#2| |#2|) 38)) (-1700 ((|#2| |#2|) 27)) (-3628 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-4280 ((|#2| |#2| |#2|) 31)))
-(((-426 |#1| |#2|) (-10 -7 (-15 -1902 ((-112) (-114))) (-15 -3086 ((-114) (-114))) (-15 -1700 (|#2| |#2|)) (-15 -3628 (|#2| |#2|)) (-15 -3628 (|#2| |#2| |#2|)) (-15 -4280 (|#2| |#2| |#2|)) (-15 -2696 (|#2| |#2|)) (-15 -1738 (|#2| |#2| |#2|)) (-15 -3586 (|#2| |#2| |#2|)) (-15 -1943 (|#2| |#2| |#2|)) (-15 -3746 (|#2| |#2| |#2|)) (-15 -1952 (|#2| |#2| |#2|)) (-15 -1959 (|#2| |#2|)) (-15 -2973 (|#2| |#2|)) (-15 -1519 (|#2| |#2|)) (-15 -3527 (|#2| |#2|))) (-13 (-836) (-546)) (-425 |#1|)) (T -426))
-((-3527 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-1519 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-2973 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-1959 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-1952 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-3746 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-1943 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-3586 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-1738 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-2696 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-4280 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-3628 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-3628 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-1700 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-3086 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *4)) (-4 *4 (-425 *3)))) (-1902 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-836) (-546))) (-5 *2 (-112)) (-5 *1 (-426 *4 *5)) (-4 *5 (-425 *4)))))
-(-10 -7 (-15 -1902 ((-112) (-114))) (-15 -3086 ((-114) (-114))) (-15 -1700 (|#2| |#2|)) (-15 -3628 (|#2| |#2|)) (-15 -3628 (|#2| |#2| |#2|)) (-15 -4280 (|#2| |#2| |#2|)) (-15 -2696 (|#2| |#2|)) (-15 -1738 (|#2| |#2| |#2|)) (-15 -3586 (|#2| |#2| |#2|)) (-15 -1943 (|#2| |#2| |#2|)) (-15 -3746 (|#2| |#2| |#2|)) (-15 -1952 (|#2| |#2| |#2|)) (-15 -1959 (|#2| |#2|)) (-15 -2973 (|#2| |#2|)) (-15 -1519 (|#2| |#2|)) (-15 -3527 (|#2| |#2|)))
-((-3157 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1154 |#2|)) (|:| |pol2| (-1154 |#2|)) (|:| |prim| (-1154 |#2|))) |#2| |#2|) 97 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-631 (-1154 |#2|))) (|:| |prim| (-1154 |#2|))) (-631 |#2|)) 61)))
-(((-427 |#1| |#2|) (-10 -7 (-15 -3157 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-631 (-1154 |#2|))) (|:| |prim| (-1154 |#2|))) (-631 |#2|))) (IF (|has| |#2| (-27)) (-15 -3157 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1154 |#2|)) (|:| |pol2| (-1154 |#2|)) (|:| |prim| (-1154 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-546) (-836) (-145)) (-425 |#1|)) (T -427))
-((-3157 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-546) (-836) (-145))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1154 *3)) (|:| |pol2| (-1154 *3)) (|:| |prim| (-1154 *3)))) (-5 *1 (-427 *4 *3)) (-4 *3 (-27)) (-4 *3 (-425 *4)))) (-3157 (*1 *2 *3) (-12 (-5 *3 (-631 *5)) (-4 *5 (-425 *4)) (-4 *4 (-13 (-546) (-836) (-145))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-631 (-1154 *5))) (|:| |prim| (-1154 *5)))) (-5 *1 (-427 *4 *5)))))
-(-10 -7 (-15 -3157 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-631 (-1154 |#2|))) (|:| |prim| (-1154 |#2|))) (-631 |#2|))) (IF (|has| |#2| (-27)) (-15 -3157 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1154 |#2|)) (|:| |pol2| (-1154 |#2|)) (|:| |prim| (-1154 |#2|))) |#2| |#2|)) |%noBranch|))
-((-4316 (((-1246)) 19)) (-2235 (((-1154 (-402 (-554))) |#2| (-600 |#2|)) 41) (((-402 (-554)) |#2|) 25)))
-(((-428 |#1| |#2|) (-10 -7 (-15 -2235 ((-402 (-554)) |#2|)) (-15 -2235 ((-1154 (-402 (-554))) |#2| (-600 |#2|))) (-15 -4316 ((-1246)))) (-13 (-836) (-546) (-1023 (-554))) (-425 |#1|)) (T -428))
-((-4316 (*1 *2) (-12 (-4 *3 (-13 (-836) (-546) (-1023 (-554)))) (-5 *2 (-1246)) (-5 *1 (-428 *3 *4)) (-4 *4 (-425 *3)))) (-2235 (*1 *2 *3 *4) (-12 (-5 *4 (-600 *3)) (-4 *3 (-425 *5)) (-4 *5 (-13 (-836) (-546) (-1023 (-554)))) (-5 *2 (-1154 (-402 (-554)))) (-5 *1 (-428 *5 *3)))) (-2235 (*1 *2 *3) (-12 (-4 *4 (-13 (-836) (-546) (-1023 (-554)))) (-5 *2 (-402 (-554))) (-5 *1 (-428 *4 *3)) (-4 *3 (-425 *4)))))
-(-10 -7 (-15 -2235 ((-402 (-554)) |#2|)) (-15 -2235 ((-1154 (-402 (-554))) |#2| (-600 |#2|))) (-15 -4316 ((-1246))))
-((-1809 (((-112) $) 28)) (-3671 (((-112) $) 30)) (-1289 (((-112) $) 31)) (-3713 (((-112) $) 34)) (-2450 (((-112) $) 29)) (-2994 (((-112) $) 33)) (-3075 (((-848) $) 18) (($ (-1140)) 27) (($ (-1158)) 23) (((-1158) $) 22) (((-1086) $) 21)) (-2669 (((-112) $) 32)) (-1658 (((-112) $ $) 15)))
-(((-429) (-13 (-601 (-848)) (-10 -8 (-15 -3075 ($ (-1140))) (-15 -3075 ($ (-1158))) (-15 -3075 ((-1158) $)) (-15 -3075 ((-1086) $)) (-15 -1809 ((-112) $)) (-15 -2450 ((-112) $)) (-15 -1289 ((-112) $)) (-15 -2994 ((-112) $)) (-15 -3713 ((-112) $)) (-15 -2669 ((-112) $)) (-15 -3671 ((-112) $)) (-15 -1658 ((-112) $ $))))) (T -429))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-429)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-429)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-429)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-429)))) (-1809 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-2450 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-1289 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-2994 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-3713 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-2669 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-3671 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-1658 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))))
-(-13 (-601 (-848)) (-10 -8 (-15 -3075 ($ (-1140))) (-15 -3075 ($ (-1158))) (-15 -3075 ((-1158) $)) (-15 -3075 ((-1086) $)) (-15 -1809 ((-112) $)) (-15 -2450 ((-112) $)) (-15 -1289 ((-112) $)) (-15 -2994 ((-112) $)) (-15 -3713 ((-112) $)) (-15 -2669 ((-112) $)) (-15 -3671 ((-112) $)) (-15 -1658 ((-112) $ $))))
-((-2688 (((-3 (-413 (-1154 (-402 (-554)))) "failed") |#3|) 70)) (-1828 (((-413 |#3|) |#3|) 34)) (-2720 (((-3 (-413 (-1154 (-48))) "failed") |#3|) 46 (|has| |#2| (-1023 (-48))))) (-2253 (((-3 (|:| |overq| (-1154 (-402 (-554)))) (|:| |overan| (-1154 (-48))) (|:| -4156 (-112))) |#3|) 37)))
-(((-430 |#1| |#2| |#3|) (-10 -7 (-15 -1828 ((-413 |#3|) |#3|)) (-15 -2688 ((-3 (-413 (-1154 (-402 (-554)))) "failed") |#3|)) (-15 -2253 ((-3 (|:| |overq| (-1154 (-402 (-554)))) (|:| |overan| (-1154 (-48))) (|:| -4156 (-112))) |#3|)) (IF (|has| |#2| (-1023 (-48))) (-15 -2720 ((-3 (-413 (-1154 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-546) (-836) (-1023 (-554))) (-425 |#1|) (-1217 |#2|)) (T -430))
-((-2720 (*1 *2 *3) (|partial| -12 (-4 *5 (-1023 (-48))) (-4 *4 (-13 (-546) (-836) (-1023 (-554)))) (-4 *5 (-425 *4)) (-5 *2 (-413 (-1154 (-48)))) (-5 *1 (-430 *4 *5 *3)) (-4 *3 (-1217 *5)))) (-2253 (*1 *2 *3) (-12 (-4 *4 (-13 (-546) (-836) (-1023 (-554)))) (-4 *5 (-425 *4)) (-5 *2 (-3 (|:| |overq| (-1154 (-402 (-554)))) (|:| |overan| (-1154 (-48))) (|:| -4156 (-112)))) (-5 *1 (-430 *4 *5 *3)) (-4 *3 (-1217 *5)))) (-2688 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-546) (-836) (-1023 (-554)))) (-4 *5 (-425 *4)) (-5 *2 (-413 (-1154 (-402 (-554))))) (-5 *1 (-430 *4 *5 *3)) (-4 *3 (-1217 *5)))) (-1828 (*1 *2 *3) (-12 (-4 *4 (-13 (-546) (-836) (-1023 (-554)))) (-4 *5 (-425 *4)) (-5 *2 (-413 *3)) (-5 *1 (-430 *4 *5 *3)) (-4 *3 (-1217 *5)))))
-(-10 -7 (-15 -1828 ((-413 |#3|) |#3|)) (-15 -2688 ((-3 (-413 (-1154 (-402 (-554)))) "failed") |#3|)) (-15 -2253 ((-3 (|:| |overq| (-1154 (-402 (-554)))) (|:| |overan| (-1154 (-48))) (|:| -4156 (-112))) |#3|)) (IF (|has| |#2| (-1023 (-48))) (-15 -2720 ((-3 (-413 (-1154 (-48))) "failed") |#3|)) |%noBranch|))
-((-3062 (((-112) $ $) NIL)) (-3719 (((-1140) $ (-1140)) NIL)) (-1875 (($ $ (-1140)) NIL)) (-3416 (((-1140) $) NIL)) (-1737 (((-383) (-383) (-383)) 17) (((-383) (-383)) 15)) (-1303 (($ (-383)) NIL) (($ (-383) (-1140)) NIL)) (-4309 (((-383) $) NIL)) (-1613 (((-1140) $) NIL)) (-1597 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2493 (((-1246) (-1140)) 9)) (-1973 (((-1246) (-1140)) 10)) (-3840 (((-1246)) 11)) (-3075 (((-848) $) NIL)) (-3745 (($ $) 35)) (-1658 (((-112) $ $) NIL)))
-(((-431) (-13 (-359 (-383) (-1140)) (-10 -7 (-15 -1737 ((-383) (-383) (-383))) (-15 -1737 ((-383) (-383))) (-15 -2493 ((-1246) (-1140))) (-15 -1973 ((-1246) (-1140))) (-15 -3840 ((-1246)))))) (T -431))
-((-1737 (*1 *2 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-431)))) (-1737 (*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-431)))) (-2493 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-431)))) (-1973 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-431)))) (-3840 (*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-431)))))
-(-13 (-359 (-383) (-1140)) (-10 -7 (-15 -1737 ((-383) (-383) (-383))) (-15 -1737 ((-383) (-383))) (-15 -2493 ((-1246) (-1140))) (-15 -1973 ((-1246) (-1140))) (-15 -3840 ((-1246)))))
-((-3062 (((-112) $ $) NIL)) (-1854 (((-3 (|:| |fst| (-429)) (|:| -2053 "void")) $) 11)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2371 (($) 32)) (-3011 (($) 38)) (-3318 (($) 34)) (-3588 (($) 36)) (-2192 (($) 33)) (-3162 (($) 35)) (-2105 (($) 37)) (-3989 (((-112) $) 8)) (-3525 (((-631 (-937 (-554))) $) 19)) (-3089 (($ (-3 (|:| |fst| (-429)) (|:| -2053 "void")) (-631 (-1158)) (-112)) 27) (($ (-3 (|:| |fst| (-429)) (|:| -2053 "void")) (-631 (-937 (-554))) (-112)) 28)) (-3075 (((-848) $) 23) (($ (-429)) 29)) (-1658 (((-112) $ $) NIL)))
-(((-432) (-13 (-1082) (-10 -8 (-15 -3075 ($ (-429))) (-15 -1854 ((-3 (|:| |fst| (-429)) (|:| -2053 "void")) $)) (-15 -3525 ((-631 (-937 (-554))) $)) (-15 -3989 ((-112) $)) (-15 -3089 ($ (-3 (|:| |fst| (-429)) (|:| -2053 "void")) (-631 (-1158)) (-112))) (-15 -3089 ($ (-3 (|:| |fst| (-429)) (|:| -2053 "void")) (-631 (-937 (-554))) (-112))) (-15 -2371 ($)) (-15 -2192 ($)) (-15 -3318 ($)) (-15 -3011 ($)) (-15 -3162 ($)) (-15 -3588 ($)) (-15 -2105 ($))))) (T -432))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-429)) (-5 *1 (-432)))) (-1854 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-5 *1 (-432)))) (-3525 (*1 *2 *1) (-12 (-5 *2 (-631 (-937 (-554)))) (-5 *1 (-432)))) (-3989 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-432)))) (-3089 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-5 *3 (-631 (-1158))) (-5 *4 (-112)) (-5 *1 (-432)))) (-3089 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-5 *3 (-631 (-937 (-554)))) (-5 *4 (-112)) (-5 *1 (-432)))) (-2371 (*1 *1) (-5 *1 (-432))) (-2192 (*1 *1) (-5 *1 (-432))) (-3318 (*1 *1) (-5 *1 (-432))) (-3011 (*1 *1) (-5 *1 (-432))) (-3162 (*1 *1) (-5 *1 (-432))) (-3588 (*1 *1) (-5 *1 (-432))) (-2105 (*1 *1) (-5 *1 (-432))))
-(-13 (-1082) (-10 -8 (-15 -3075 ($ (-429))) (-15 -1854 ((-3 (|:| |fst| (-429)) (|:| -2053 "void")) $)) (-15 -3525 ((-631 (-937 (-554))) $)) (-15 -3989 ((-112) $)) (-15 -3089 ($ (-3 (|:| |fst| (-429)) (|:| -2053 "void")) (-631 (-1158)) (-112))) (-15 -3089 ($ (-3 (|:| |fst| (-429)) (|:| -2053 "void")) (-631 (-937 (-554))) (-112))) (-15 -2371 ($)) (-15 -2192 ($)) (-15 -3318 ($)) (-15 -3011 ($)) (-15 -3162 ($)) (-15 -3588 ($)) (-15 -2105 ($))))
-((-3062 (((-112) $ $) NIL)) (-4309 (((-1158) $) 8)) (-1613 (((-1140) $) 16)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 11)) (-1658 (((-112) $ $) 13)))
-(((-433 |#1|) (-13 (-1082) (-10 -8 (-15 -4309 ((-1158) $)))) (-1158)) (T -433))
-((-4309 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-433 *3)) (-14 *3 *2))))
-(-13 (-1082) (-10 -8 (-15 -4309 ((-1158) $))))
-((-1405 (((-1246) $) 7)) (-3075 (((-848) $) 8) (($ (-1241 (-685))) 14) (($ (-631 (-325))) 13) (($ (-325)) 12) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 11)))
-(((-434) (-138)) (T -434))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-1241 (-685))) (-4 *1 (-434)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-631 (-325))) (-4 *1 (-434)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-434)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) (-4 *1 (-434)))))
-(-13 (-390) (-10 -8 (-15 -3075 ($ (-1241 (-685)))) (-15 -3075 ($ (-631 (-325)))) (-15 -3075 ($ (-325))) (-15 -3075 ($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))))))
-(((-601 (-848)) . T) ((-390) . T) ((-1195) . T))
-((-2784 (((-3 $ "failed") (-1241 (-311 (-374)))) 21) (((-3 $ "failed") (-1241 (-311 (-554)))) 19) (((-3 $ "failed") (-1241 (-937 (-374)))) 17) (((-3 $ "failed") (-1241 (-937 (-554)))) 15) (((-3 $ "failed") (-1241 (-402 (-937 (-374))))) 13) (((-3 $ "failed") (-1241 (-402 (-937 (-554))))) 11)) (-1668 (($ (-1241 (-311 (-374)))) 22) (($ (-1241 (-311 (-554)))) 20) (($ (-1241 (-937 (-374)))) 18) (($ (-1241 (-937 (-554)))) 16) (($ (-1241 (-402 (-937 (-374))))) 14) (($ (-1241 (-402 (-937 (-554))))) 12)) (-1405 (((-1246) $) 7)) (-3075 (((-848) $) 8) (($ (-631 (-325))) 25) (($ (-325)) 24) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 23)))
-(((-435) (-138)) (T -435))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-631 (-325))) (-4 *1 (-435)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-435)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) (-4 *1 (-435)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-1241 (-311 (-374)))) (-4 *1 (-435)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-1241 (-311 (-374)))) (-4 *1 (-435)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-1241 (-311 (-554)))) (-4 *1 (-435)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-1241 (-311 (-554)))) (-4 *1 (-435)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-1241 (-937 (-374)))) (-4 *1 (-435)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-1241 (-937 (-374)))) (-4 *1 (-435)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-1241 (-937 (-554)))) (-4 *1 (-435)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-1241 (-937 (-554)))) (-4 *1 (-435)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-1241 (-402 (-937 (-374))))) (-4 *1 (-435)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-1241 (-402 (-937 (-374))))) (-4 *1 (-435)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-1241 (-402 (-937 (-554))))) (-4 *1 (-435)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-1241 (-402 (-937 (-554))))) (-4 *1 (-435)))))
-(-13 (-390) (-10 -8 (-15 -3075 ($ (-631 (-325)))) (-15 -3075 ($ (-325))) (-15 -3075 ($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325)))))) (-15 -1668 ($ (-1241 (-311 (-374))))) (-15 -2784 ((-3 $ "failed") (-1241 (-311 (-374))))) (-15 -1668 ($ (-1241 (-311 (-554))))) (-15 -2784 ((-3 $ "failed") (-1241 (-311 (-554))))) (-15 -1668 ($ (-1241 (-937 (-374))))) (-15 -2784 ((-3 $ "failed") (-1241 (-937 (-374))))) (-15 -1668 ($ (-1241 (-937 (-554))))) (-15 -2784 ((-3 $ "failed") (-1241 (-937 (-554))))) (-15 -1668 ($ (-1241 (-402 (-937 (-374)))))) (-15 -2784 ((-3 $ "failed") (-1241 (-402 (-937 (-374)))))) (-15 -1668 ($ (-1241 (-402 (-937 (-554)))))) (-15 -2784 ((-3 $ "failed") (-1241 (-402 (-937 (-554))))))))
-(((-601 (-848)) . T) ((-390) . T) ((-1195) . T))
-((-2255 (((-112)) 17)) (-3945 (((-112) (-112)) 18)) (-2502 (((-112)) 13)) (-3934 (((-112) (-112)) 14)) (-3772 (((-112)) 15)) (-3793 (((-112) (-112)) 16)) (-2639 (((-906) (-906)) 21) (((-906)) 20)) (-1423 (((-758) (-631 (-2 (|:| -2270 |#1|) (|:| -3308 (-554))))) 42)) (-1413 (((-906) (-906)) 23) (((-906)) 22)) (-2884 (((-2 (|:| -3654 (-554)) (|:| -2316 (-631 |#1|))) |#1|) 62)) (-1642 (((-413 |#1|) (-2 (|:| |contp| (-554)) (|:| -2316 (-631 (-2 (|:| |irr| |#1|) (|:| -4218 (-554))))))) 126)) (-3938 (((-2 (|:| |contp| (-554)) (|:| -2316 (-631 (-2 (|:| |irr| |#1|) (|:| -4218 (-554)))))) |#1| (-112)) 152)) (-4091 (((-413 |#1|) |#1| (-758) (-758)) 165) (((-413 |#1|) |#1| (-631 (-758)) (-758)) 162) (((-413 |#1|) |#1| (-631 (-758))) 164) (((-413 |#1|) |#1| (-758)) 163) (((-413 |#1|) |#1|) 161)) (-3102 (((-3 |#1| "failed") (-906) |#1| (-631 (-758)) (-758) (-112)) 167) (((-3 |#1| "failed") (-906) |#1| (-631 (-758)) (-758)) 168) (((-3 |#1| "failed") (-906) |#1| (-631 (-758))) 170) (((-3 |#1| "failed") (-906) |#1| (-758)) 169) (((-3 |#1| "failed") (-906) |#1|) 171)) (-2270 (((-413 |#1|) |#1| (-758) (-758)) 160) (((-413 |#1|) |#1| (-631 (-758)) (-758)) 156) (((-413 |#1|) |#1| (-631 (-758))) 158) (((-413 |#1|) |#1| (-758)) 157) (((-413 |#1|) |#1|) 155)) (-1773 (((-112) |#1|) 37)) (-3880 (((-724 (-758)) (-631 (-2 (|:| -2270 |#1|) (|:| -3308 (-554))))) 67)) (-1451 (((-2 (|:| |contp| (-554)) (|:| -2316 (-631 (-2 (|:| |irr| |#1|) (|:| -4218 (-554)))))) |#1| (-112) (-1084 (-758)) (-758)) 154)))
-(((-436 |#1|) (-10 -7 (-15 -1642 ((-413 |#1|) (-2 (|:| |contp| (-554)) (|:| -2316 (-631 (-2 (|:| |irr| |#1|) (|:| -4218 (-554)))))))) (-15 -3880 ((-724 (-758)) (-631 (-2 (|:| -2270 |#1|) (|:| -3308 (-554)))))) (-15 -1413 ((-906))) (-15 -1413 ((-906) (-906))) (-15 -2639 ((-906))) (-15 -2639 ((-906) (-906))) (-15 -1423 ((-758) (-631 (-2 (|:| -2270 |#1|) (|:| -3308 (-554)))))) (-15 -2884 ((-2 (|:| -3654 (-554)) (|:| -2316 (-631 |#1|))) |#1|)) (-15 -2255 ((-112))) (-15 -3945 ((-112) (-112))) (-15 -2502 ((-112))) (-15 -3934 ((-112) (-112))) (-15 -1773 ((-112) |#1|)) (-15 -3772 ((-112))) (-15 -3793 ((-112) (-112))) (-15 -2270 ((-413 |#1|) |#1|)) (-15 -2270 ((-413 |#1|) |#1| (-758))) (-15 -2270 ((-413 |#1|) |#1| (-631 (-758)))) (-15 -2270 ((-413 |#1|) |#1| (-631 (-758)) (-758))) (-15 -2270 ((-413 |#1|) |#1| (-758) (-758))) (-15 -4091 ((-413 |#1|) |#1|)) (-15 -4091 ((-413 |#1|) |#1| (-758))) (-15 -4091 ((-413 |#1|) |#1| (-631 (-758)))) (-15 -4091 ((-413 |#1|) |#1| (-631 (-758)) (-758))) (-15 -4091 ((-413 |#1|) |#1| (-758) (-758))) (-15 -3102 ((-3 |#1| "failed") (-906) |#1|)) (-15 -3102 ((-3 |#1| "failed") (-906) |#1| (-758))) (-15 -3102 ((-3 |#1| "failed") (-906) |#1| (-631 (-758)))) (-15 -3102 ((-3 |#1| "failed") (-906) |#1| (-631 (-758)) (-758))) (-15 -3102 ((-3 |#1| "failed") (-906) |#1| (-631 (-758)) (-758) (-112))) (-15 -3938 ((-2 (|:| |contp| (-554)) (|:| -2316 (-631 (-2 (|:| |irr| |#1|) (|:| -4218 (-554)))))) |#1| (-112))) (-15 -1451 ((-2 (|:| |contp| (-554)) (|:| -2316 (-631 (-2 (|:| |irr| |#1|) (|:| -4218 (-554)))))) |#1| (-112) (-1084 (-758)) (-758)))) (-1217 (-554))) (T -436))
-((-1451 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1084 (-758))) (-5 *6 (-758)) (-5 *2 (-2 (|:| |contp| (-554)) (|:| -2316 (-631 (-2 (|:| |irr| *3) (|:| -4218 (-554))))))) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-3938 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-554)) (|:| -2316 (-631 (-2 (|:| |irr| *3) (|:| -4218 (-554))))))) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-3102 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-906)) (-5 *4 (-631 (-758))) (-5 *5 (-758)) (-5 *6 (-112)) (-5 *1 (-436 *2)) (-4 *2 (-1217 (-554))))) (-3102 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-906)) (-5 *4 (-631 (-758))) (-5 *5 (-758)) (-5 *1 (-436 *2)) (-4 *2 (-1217 (-554))))) (-3102 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-906)) (-5 *4 (-631 (-758))) (-5 *1 (-436 *2)) (-4 *2 (-1217 (-554))))) (-3102 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-906)) (-5 *4 (-758)) (-5 *1 (-436 *2)) (-4 *2 (-1217 (-554))))) (-3102 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-906)) (-5 *1 (-436 *2)) (-4 *2 (-1217 (-554))))) (-4091 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-758)) (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-4091 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-631 (-758))) (-5 *5 (-758)) (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-4091 (*1 *2 *3 *4) (-12 (-5 *4 (-631 (-758))) (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-4091 (*1 *2 *3 *4) (-12 (-5 *4 (-758)) (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-4091 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-2270 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-758)) (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-2270 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-631 (-758))) (-5 *5 (-758)) (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-2270 (*1 *2 *3 *4) (-12 (-5 *4 (-631 (-758))) (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-2270 (*1 *2 *3 *4) (-12 (-5 *4 (-758)) (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-2270 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-3793 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-3772 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-1773 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-3934 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-2502 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-3945 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-2255 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-2884 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3654 (-554)) (|:| -2316 (-631 *3)))) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-1423 (*1 *2 *3) (-12 (-5 *3 (-631 (-2 (|:| -2270 *4) (|:| -3308 (-554))))) (-4 *4 (-1217 (-554))) (-5 *2 (-758)) (-5 *1 (-436 *4)))) (-2639 (*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-2639 (*1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-1413 (*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-1413 (*1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-3880 (*1 *2 *3) (-12 (-5 *3 (-631 (-2 (|:| -2270 *4) (|:| -3308 (-554))))) (-4 *4 (-1217 (-554))) (-5 *2 (-724 (-758))) (-5 *1 (-436 *4)))) (-1642 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-554)) (|:| -2316 (-631 (-2 (|:| |irr| *4) (|:| -4218 (-554))))))) (-4 *4 (-1217 (-554))) (-5 *2 (-413 *4)) (-5 *1 (-436 *4)))))
-(-10 -7 (-15 -1642 ((-413 |#1|) (-2 (|:| |contp| (-554)) (|:| -2316 (-631 (-2 (|:| |irr| |#1|) (|:| -4218 (-554)))))))) (-15 -3880 ((-724 (-758)) (-631 (-2 (|:| -2270 |#1|) (|:| -3308 (-554)))))) (-15 -1413 ((-906))) (-15 -1413 ((-906) (-906))) (-15 -2639 ((-906))) (-15 -2639 ((-906) (-906))) (-15 -1423 ((-758) (-631 (-2 (|:| -2270 |#1|) (|:| -3308 (-554)))))) (-15 -2884 ((-2 (|:| -3654 (-554)) (|:| -2316 (-631 |#1|))) |#1|)) (-15 -2255 ((-112))) (-15 -3945 ((-112) (-112))) (-15 -2502 ((-112))) (-15 -3934 ((-112) (-112))) (-15 -1773 ((-112) |#1|)) (-15 -3772 ((-112))) (-15 -3793 ((-112) (-112))) (-15 -2270 ((-413 |#1|) |#1|)) (-15 -2270 ((-413 |#1|) |#1| (-758))) (-15 -2270 ((-413 |#1|) |#1| (-631 (-758)))) (-15 -2270 ((-413 |#1|) |#1| (-631 (-758)) (-758))) (-15 -2270 ((-413 |#1|) |#1| (-758) (-758))) (-15 -4091 ((-413 |#1|) |#1|)) (-15 -4091 ((-413 |#1|) |#1| (-758))) (-15 -4091 ((-413 |#1|) |#1| (-631 (-758)))) (-15 -4091 ((-413 |#1|) |#1| (-631 (-758)) (-758))) (-15 -4091 ((-413 |#1|) |#1| (-758) (-758))) (-15 -3102 ((-3 |#1| "failed") (-906) |#1|)) (-15 -3102 ((-3 |#1| "failed") (-906) |#1| (-758))) (-15 -3102 ((-3 |#1| "failed") (-906) |#1| (-631 (-758)))) (-15 -3102 ((-3 |#1| "failed") (-906) |#1| (-631 (-758)) (-758))) (-15 -3102 ((-3 |#1| "failed") (-906) |#1| (-631 (-758)) (-758) (-112))) (-15 -3938 ((-2 (|:| |contp| (-554)) (|:| -2316 (-631 (-2 (|:| |irr| |#1|) (|:| -4218 (-554)))))) |#1| (-112))) (-15 -1451 ((-2 (|:| |contp| (-554)) (|:| -2316 (-631 (-2 (|:| |irr| |#1|) (|:| -4218 (-554)))))) |#1| (-112) (-1084 (-758)) (-758))))
-((-1575 (((-554) |#2|) 48) (((-554) |#2| (-758)) 47)) (-3846 (((-554) |#2|) 55)) (-2663 ((|#3| |#2|) 25)) (-3274 ((|#3| |#2| (-906)) 14)) (-2577 ((|#3| |#2|) 15)) (-1462 ((|#3| |#2|) 9)) (-3323 ((|#3| |#2|) 10)) (-2788 ((|#3| |#2| (-906)) 62) ((|#3| |#2|) 30)) (-3757 (((-554) |#2|) 57)))
-(((-437 |#1| |#2| |#3|) (-10 -7 (-15 -3757 ((-554) |#2|)) (-15 -2788 (|#3| |#2|)) (-15 -2788 (|#3| |#2| (-906))) (-15 -3846 ((-554) |#2|)) (-15 -1575 ((-554) |#2| (-758))) (-15 -1575 ((-554) |#2|)) (-15 -3274 (|#3| |#2| (-906))) (-15 -2663 (|#3| |#2|)) (-15 -1462 (|#3| |#2|)) (-15 -3323 (|#3| |#2|)) (-15 -2577 (|#3| |#2|))) (-1034) (-1217 |#1|) (-13 (-399) (-1023 |#1|) (-358) (-1180) (-279))) (T -437))
-((-2577 (*1 *2 *3) (-12 (-4 *4 (-1034)) (-4 *2 (-13 (-399) (-1023 *4) (-358) (-1180) (-279))) (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1217 *4)))) (-3323 (*1 *2 *3) (-12 (-4 *4 (-1034)) (-4 *2 (-13 (-399) (-1023 *4) (-358) (-1180) (-279))) (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1217 *4)))) (-1462 (*1 *2 *3) (-12 (-4 *4 (-1034)) (-4 *2 (-13 (-399) (-1023 *4) (-358) (-1180) (-279))) (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1217 *4)))) (-2663 (*1 *2 *3) (-12 (-4 *4 (-1034)) (-4 *2 (-13 (-399) (-1023 *4) (-358) (-1180) (-279))) (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1217 *4)))) (-3274 (*1 *2 *3 *4) (-12 (-5 *4 (-906)) (-4 *5 (-1034)) (-4 *2 (-13 (-399) (-1023 *5) (-358) (-1180) (-279))) (-5 *1 (-437 *5 *3 *2)) (-4 *3 (-1217 *5)))) (-1575 (*1 *2 *3) (-12 (-4 *4 (-1034)) (-5 *2 (-554)) (-5 *1 (-437 *4 *3 *5)) (-4 *3 (-1217 *4)) (-4 *5 (-13 (-399) (-1023 *4) (-358) (-1180) (-279))))) (-1575 (*1 *2 *3 *4) (-12 (-5 *4 (-758)) (-4 *5 (-1034)) (-5 *2 (-554)) (-5 *1 (-437 *5 *3 *6)) (-4 *3 (-1217 *5)) (-4 *6 (-13 (-399) (-1023 *5) (-358) (-1180) (-279))))) (-3846 (*1 *2 *3) (-12 (-4 *4 (-1034)) (-5 *2 (-554)) (-5 *1 (-437 *4 *3 *5)) (-4 *3 (-1217 *4)) (-4 *5 (-13 (-399) (-1023 *4) (-358) (-1180) (-279))))) (-2788 (*1 *2 *3 *4) (-12 (-5 *4 (-906)) (-4 *5 (-1034)) (-4 *2 (-13 (-399) (-1023 *5) (-358) (-1180) (-279))) (-5 *1 (-437 *5 *3 *2)) (-4 *3 (-1217 *5)))) (-2788 (*1 *2 *3) (-12 (-4 *4 (-1034)) (-4 *2 (-13 (-399) (-1023 *4) (-358) (-1180) (-279))) (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1217 *4)))) (-3757 (*1 *2 *3) (-12 (-4 *4 (-1034)) (-5 *2 (-554)) (-5 *1 (-437 *4 *3 *5)) (-4 *3 (-1217 *4)) (-4 *5 (-13 (-399) (-1023 *4) (-358) (-1180) (-279))))))
-(-10 -7 (-15 -3757 ((-554) |#2|)) (-15 -2788 (|#3| |#2|)) (-15 -2788 (|#3| |#2| (-906))) (-15 -3846 ((-554) |#2|)) (-15 -1575 ((-554) |#2| (-758))) (-15 -1575 ((-554) |#2|)) (-15 -3274 (|#3| |#2| (-906))) (-15 -2663 (|#3| |#2|)) (-15 -1462 (|#3| |#2|)) (-15 -3323 (|#3| |#2|)) (-15 -2577 (|#3| |#2|)))
-((-3364 ((|#2| (-1241 |#1|)) 36)) (-3009 ((|#2| |#2| |#1|) 49)) (-3864 ((|#2| |#2| |#1|) 41)) (-3799 ((|#2| |#2|) 38)) (-2682 (((-112) |#2|) 30)) (-3294 (((-631 |#2|) (-906) (-413 |#2|)) 17)) (-3102 ((|#2| (-906) (-413 |#2|)) 21)) (-3880 (((-724 (-758)) (-413 |#2|)) 25)))
-(((-438 |#1| |#2|) (-10 -7 (-15 -2682 ((-112) |#2|)) (-15 -3364 (|#2| (-1241 |#1|))) (-15 -3799 (|#2| |#2|)) (-15 -3864 (|#2| |#2| |#1|)) (-15 -3009 (|#2| |#2| |#1|)) (-15 -3880 ((-724 (-758)) (-413 |#2|))) (-15 -3102 (|#2| (-906) (-413 |#2|))) (-15 -3294 ((-631 |#2|) (-906) (-413 |#2|)))) (-1034) (-1217 |#1|)) (T -438))
-((-3294 (*1 *2 *3 *4) (-12 (-5 *3 (-906)) (-5 *4 (-413 *6)) (-4 *6 (-1217 *5)) (-4 *5 (-1034)) (-5 *2 (-631 *6)) (-5 *1 (-438 *5 *6)))) (-3102 (*1 *2 *3 *4) (-12 (-5 *3 (-906)) (-5 *4 (-413 *2)) (-4 *2 (-1217 *5)) (-5 *1 (-438 *5 *2)) (-4 *5 (-1034)))) (-3880 (*1 *2 *3) (-12 (-5 *3 (-413 *5)) (-4 *5 (-1217 *4)) (-4 *4 (-1034)) (-5 *2 (-724 (-758))) (-5 *1 (-438 *4 *5)))) (-3009 (*1 *2 *2 *3) (-12 (-4 *3 (-1034)) (-5 *1 (-438 *3 *2)) (-4 *2 (-1217 *3)))) (-3864 (*1 *2 *2 *3) (-12 (-4 *3 (-1034)) (-5 *1 (-438 *3 *2)) (-4 *2 (-1217 *3)))) (-3799 (*1 *2 *2) (-12 (-4 *3 (-1034)) (-5 *1 (-438 *3 *2)) (-4 *2 (-1217 *3)))) (-3364 (*1 *2 *3) (-12 (-5 *3 (-1241 *4)) (-4 *4 (-1034)) (-4 *2 (-1217 *4)) (-5 *1 (-438 *4 *2)))) (-2682 (*1 *2 *3) (-12 (-4 *4 (-1034)) (-5 *2 (-112)) (-5 *1 (-438 *4 *3)) (-4 *3 (-1217 *4)))))
-(-10 -7 (-15 -2682 ((-112) |#2|)) (-15 -3364 (|#2| (-1241 |#1|))) (-15 -3799 (|#2| |#2|)) (-15 -3864 (|#2| |#2| |#1|)) (-15 -3009 (|#2| |#2| |#1|)) (-15 -3880 ((-724 (-758)) (-413 |#2|))) (-15 -3102 (|#2| (-906) (-413 |#2|))) (-15 -3294 ((-631 |#2|) (-906) (-413 |#2|))))
-((-1999 (((-758)) 41)) (-4013 (((-758)) 23 (|has| |#1| (-399))) (((-758) (-758)) 22 (|has| |#1| (-399)))) (-2838 (((-554) |#1|) 18 (|has| |#1| (-399)))) (-1901 (((-554) |#1|) 20 (|has| |#1| (-399)))) (-1639 (((-758)) 40) (((-758) (-758)) 39)) (-3828 ((|#1| (-758) (-554)) 29)) (-1921 (((-1246)) 43)))
-(((-439 |#1|) (-10 -7 (-15 -3828 (|#1| (-758) (-554))) (-15 -1639 ((-758) (-758))) (-15 -1639 ((-758))) (-15 -1999 ((-758))) (-15 -1921 ((-1246))) (IF (|has| |#1| (-399)) (PROGN (-15 -1901 ((-554) |#1|)) (-15 -2838 ((-554) |#1|)) (-15 -4013 ((-758) (-758))) (-15 -4013 ((-758)))) |%noBranch|)) (-1034)) (T -439))
-((-4013 (*1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1034)))) (-4013 (*1 *2 *2) (-12 (-5 *2 (-758)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1034)))) (-2838 (*1 *2 *3) (-12 (-5 *2 (-554)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1034)))) (-1901 (*1 *2 *3) (-12 (-5 *2 (-554)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1034)))) (-1921 (*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-439 *3)) (-4 *3 (-1034)))) (-1999 (*1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-439 *3)) (-4 *3 (-1034)))) (-1639 (*1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-439 *3)) (-4 *3 (-1034)))) (-1639 (*1 *2 *2) (-12 (-5 *2 (-758)) (-5 *1 (-439 *3)) (-4 *3 (-1034)))) (-3828 (*1 *2 *3 *4) (-12 (-5 *3 (-758)) (-5 *4 (-554)) (-5 *1 (-439 *2)) (-4 *2 (-1034)))))
-(-10 -7 (-15 -3828 (|#1| (-758) (-554))) (-15 -1639 ((-758) (-758))) (-15 -1639 ((-758))) (-15 -1999 ((-758))) (-15 -1921 ((-1246))) (IF (|has| |#1| (-399)) (PROGN (-15 -1901 ((-554) |#1|)) (-15 -2838 ((-554) |#1|)) (-15 -4013 ((-758) (-758))) (-15 -4013 ((-758)))) |%noBranch|))
-((-1635 (((-631 (-554)) (-554)) 61)) (-3289 (((-112) (-167 (-554))) 65)) (-2270 (((-413 (-167 (-554))) (-167 (-554))) 60)))
-(((-440) (-10 -7 (-15 -2270 ((-413 (-167 (-554))) (-167 (-554)))) (-15 -1635 ((-631 (-554)) (-554))) (-15 -3289 ((-112) (-167 (-554)))))) (T -440))
-((-3289 (*1 *2 *3) (-12 (-5 *3 (-167 (-554))) (-5 *2 (-112)) (-5 *1 (-440)))) (-1635 (*1 *2 *3) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-440)) (-5 *3 (-554)))) (-2270 (*1 *2 *3) (-12 (-5 *2 (-413 (-167 (-554)))) (-5 *1 (-440)) (-5 *3 (-167 (-554))))))
-(-10 -7 (-15 -2270 ((-413 (-167 (-554))) (-167 (-554)))) (-15 -1635 ((-631 (-554)) (-554))) (-15 -3289 ((-112) (-167 (-554)))))
-((-3759 ((|#4| |#4| (-631 |#4|)) 61)) (-3425 (((-631 |#4|) (-631 |#4|) (-1140) (-1140)) 17) (((-631 |#4|) (-631 |#4|) (-1140)) 16) (((-631 |#4|) (-631 |#4|)) 11)))
-(((-441 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3759 (|#4| |#4| (-631 |#4|))) (-15 -3425 ((-631 |#4|) (-631 |#4|))) (-15 -3425 ((-631 |#4|) (-631 |#4|) (-1140))) (-15 -3425 ((-631 |#4|) (-631 |#4|) (-1140) (-1140)))) (-302) (-780) (-836) (-934 |#1| |#2| |#3|)) (T -441))
-((-3425 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-631 *7)) (-5 *3 (-1140)) (-4 *7 (-934 *4 *5 *6)) (-4 *4 (-302)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *1 (-441 *4 *5 *6 *7)))) (-3425 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *7)) (-5 *3 (-1140)) (-4 *7 (-934 *4 *5 *6)) (-4 *4 (-302)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *1 (-441 *4 *5 *6 *7)))) (-3425 (*1 *2 *2) (-12 (-5 *2 (-631 *6)) (-4 *6 (-934 *3 *4 *5)) (-4 *3 (-302)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-441 *3 *4 *5 *6)))) (-3759 (*1 *2 *2 *3) (-12 (-5 *3 (-631 *2)) (-4 *2 (-934 *4 *5 *6)) (-4 *4 (-302)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *1 (-441 *4 *5 *6 *2)))))
-(-10 -7 (-15 -3759 (|#4| |#4| (-631 |#4|))) (-15 -3425 ((-631 |#4|) (-631 |#4|))) (-15 -3425 ((-631 |#4|) (-631 |#4|) (-1140))) (-15 -3425 ((-631 |#4|) (-631 |#4|) (-1140) (-1140))))
-((-1969 (((-631 (-631 |#4|)) (-631 |#4|) (-112)) 73) (((-631 (-631 |#4|)) (-631 |#4|)) 72) (((-631 (-631 |#4|)) (-631 |#4|) (-631 |#4|) (-112)) 66) (((-631 (-631 |#4|)) (-631 |#4|) (-631 |#4|)) 67)) (-3789 (((-631 (-631 |#4|)) (-631 |#4|) (-112)) 42) (((-631 (-631 |#4|)) (-631 |#4|)) 63)))
-(((-442 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3789 ((-631 (-631 |#4|)) (-631 |#4|))) (-15 -3789 ((-631 (-631 |#4|)) (-631 |#4|) (-112))) (-15 -1969 ((-631 (-631 |#4|)) (-631 |#4|) (-631 |#4|))) (-15 -1969 ((-631 (-631 |#4|)) (-631 |#4|) (-631 |#4|) (-112))) (-15 -1969 ((-631 (-631 |#4|)) (-631 |#4|))) (-15 -1969 ((-631 (-631 |#4|)) (-631 |#4|) (-112)))) (-13 (-302) (-145)) (-780) (-836) (-934 |#1| |#2| |#3|)) (T -442))
-((-1969 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *8 (-934 *5 *6 *7)) (-5 *2 (-631 (-631 *8))) (-5 *1 (-442 *5 *6 *7 *8)) (-5 *3 (-631 *8)))) (-1969 (*1 *2 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-934 *4 *5 *6)) (-5 *2 (-631 (-631 *7))) (-5 *1 (-442 *4 *5 *6 *7)) (-5 *3 (-631 *7)))) (-1969 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *8 (-934 *5 *6 *7)) (-5 *2 (-631 (-631 *8))) (-5 *1 (-442 *5 *6 *7 *8)) (-5 *3 (-631 *8)))) (-1969 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-934 *4 *5 *6)) (-5 *2 (-631 (-631 *7))) (-5 *1 (-442 *4 *5 *6 *7)) (-5 *3 (-631 *7)))) (-3789 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *8 (-934 *5 *6 *7)) (-5 *2 (-631 (-631 *8))) (-5 *1 (-442 *5 *6 *7 *8)) (-5 *3 (-631 *8)))) (-3789 (*1 *2 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-934 *4 *5 *6)) (-5 *2 (-631 (-631 *7))) (-5 *1 (-442 *4 *5 *6 *7)) (-5 *3 (-631 *7)))))
-(-10 -7 (-15 -3789 ((-631 (-631 |#4|)) (-631 |#4|))) (-15 -3789 ((-631 (-631 |#4|)) (-631 |#4|) (-112))) (-15 -1969 ((-631 (-631 |#4|)) (-631 |#4|) (-631 |#4|))) (-15 -1969 ((-631 (-631 |#4|)) (-631 |#4|) (-631 |#4|) (-112))) (-15 -1969 ((-631 (-631 |#4|)) (-631 |#4|))) (-15 -1969 ((-631 (-631 |#4|)) (-631 |#4|) (-112))))
-((-3290 (((-758) |#4|) 12)) (-4069 (((-631 (-2 (|:| |totdeg| (-758)) (|:| -2598 |#4|))) |#4| (-758) (-631 (-2 (|:| |totdeg| (-758)) (|:| -2598 |#4|)))) 31)) (-3098 (((-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-2558 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-2542 ((|#4| |#4| (-631 |#4|)) 40)) (-1960 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-631 |#4|)) 70)) (-1927 (((-1246) |#4|) 42)) (-2636 (((-1246) (-631 |#4|)) 51)) (-2882 (((-554) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-554) (-554) (-554)) 48)) (-1445 (((-1246) (-554)) 79)) (-3401 (((-631 |#4|) (-631 |#4|)) 77)) (-1962 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-758)) (|:| -2598 |#4|)) |#4| (-758)) 25)) (-2684 (((-554) |#4|) 78)) (-2421 ((|#4| |#4|) 29)) (-2181 (((-631 |#4|) (-631 |#4|) (-554) (-554)) 56)) (-3221 (((-554) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-554) (-554) (-554) (-554)) 89)) (-3783 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-3501 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 59)) (-4112 (((-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 58)) (-2157 (((-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-1497 (((-112) |#2| |#2|) 57)) (-1374 (((-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-4220 (((-112) |#2| |#2| |#2| |#2|) 60)) (-1797 ((|#4| |#4| (-631 |#4|)) 71)))
-(((-443 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1797 (|#4| |#4| (-631 |#4|))) (-15 -2542 (|#4| |#4| (-631 |#4|))) (-15 -2181 ((-631 |#4|) (-631 |#4|) (-554) (-554))) (-15 -3501 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1497 ((-112) |#2| |#2|)) (-15 -4220 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1374 ((-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2157 ((-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4112 ((-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1960 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-631 |#4|))) (-15 -2421 (|#4| |#4|)) (-15 -4069 ((-631 (-2 (|:| |totdeg| (-758)) (|:| -2598 |#4|))) |#4| (-758) (-631 (-2 (|:| |totdeg| (-758)) (|:| -2598 |#4|))))) (-15 -2558 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3098 ((-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3401 ((-631 |#4|) (-631 |#4|))) (-15 -2684 ((-554) |#4|)) (-15 -1927 ((-1246) |#4|)) (-15 -2882 ((-554) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-554) (-554) (-554))) (-15 -3221 ((-554) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-554) (-554) (-554) (-554))) (-15 -2636 ((-1246) (-631 |#4|))) (-15 -1445 ((-1246) (-554))) (-15 -3783 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1962 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-758)) (|:| -2598 |#4|)) |#4| (-758))) (-15 -3290 ((-758) |#4|))) (-446) (-780) (-836) (-934 |#1| |#2| |#3|)) (T -443))
-((-3290 (*1 *2 *3) (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-758)) (-5 *1 (-443 *4 *5 *6 *3)) (-4 *3 (-934 *4 *5 *6)))) (-1962 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-758)) (|:| -2598 *4))) (-5 *5 (-758)) (-4 *4 (-934 *6 *7 *8)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-443 *6 *7 *8 *4)))) (-3783 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-758)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-780)) (-4 *7 (-934 *4 *5 *6)) (-4 *4 (-446)) (-4 *6 (-836)) (-5 *2 (-112)) (-5 *1 (-443 *4 *5 *6 *7)))) (-1445 (*1 *2 *3) (-12 (-5 *3 (-554)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-1246)) (-5 *1 (-443 *4 *5 *6 *7)) (-4 *7 (-934 *4 *5 *6)))) (-2636 (*1 *2 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-934 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-1246)) (-5 *1 (-443 *4 *5 *6 *7)))) (-3221 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-554)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-758)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-780)) (-4 *4 (-934 *5 *6 *7)) (-4 *5 (-446)) (-4 *7 (-836)) (-5 *1 (-443 *5 *6 *7 *4)))) (-2882 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-554)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-758)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-780)) (-4 *4 (-934 *5 *6 *7)) (-4 *5 (-446)) (-4 *7 (-836)) (-5 *1 (-443 *5 *6 *7 *4)))) (-1927 (*1 *2 *3) (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-1246)) (-5 *1 (-443 *4 *5 *6 *3)) (-4 *3 (-934 *4 *5 *6)))) (-2684 (*1 *2 *3) (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-554)) (-5 *1 (-443 *4 *5 *6 *3)) (-4 *3 (-934 *4 *5 *6)))) (-3401 (*1 *2 *2) (-12 (-5 *2 (-631 *6)) (-4 *6 (-934 *3 *4 *5)) (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-443 *3 *4 *5 *6)))) (-3098 (*1 *2 *2 *2) (-12 (-5 *2 (-631 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-758)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-780)) (-4 *6 (-934 *3 *4 *5)) (-4 *3 (-446)) (-4 *5 (-836)) (-5 *1 (-443 *3 *4 *5 *6)))) (-2558 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-758)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-780)) (-4 *2 (-934 *4 *5 *6)) (-5 *1 (-443 *4 *5 *6 *2)) (-4 *4 (-446)) (-4 *6 (-836)))) (-4069 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-631 (-2 (|:| |totdeg| (-758)) (|:| -2598 *3)))) (-5 *4 (-758)) (-4 *3 (-934 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *1 (-443 *5 *6 *7 *3)))) (-2421 (*1 *2 *2) (-12 (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-443 *3 *4 *5 *2)) (-4 *2 (-934 *3 *4 *5)))) (-1960 (*1 *2 *3 *4) (-12 (-5 *4 (-631 *3)) (-4 *3 (-934 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-443 *5 *6 *7 *3)))) (-4112 (*1 *2 *3 *2) (-12 (-5 *2 (-631 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-758)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-780)) (-4 *6 (-934 *4 *3 *5)) (-4 *4 (-446)) (-4 *5 (-836)) (-5 *1 (-443 *4 *3 *5 *6)))) (-2157 (*1 *2 *2) (-12 (-5 *2 (-631 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-758)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-780)) (-4 *6 (-934 *3 *4 *5)) (-4 *3 (-446)) (-4 *5 (-836)) (-5 *1 (-443 *3 *4 *5 *6)))) (-1374 (*1 *2 *3 *2) (-12 (-5 *2 (-631 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-758)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-780)) (-4 *3 (-934 *4 *5 *6)) (-4 *4 (-446)) (-4 *6 (-836)) (-5 *1 (-443 *4 *5 *6 *3)))) (-4220 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-446)) (-4 *3 (-780)) (-4 *5 (-836)) (-5 *2 (-112)) (-5 *1 (-443 *4 *3 *5 *6)) (-4 *6 (-934 *4 *3 *5)))) (-1497 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *3 (-780)) (-4 *5 (-836)) (-5 *2 (-112)) (-5 *1 (-443 *4 *3 *5 *6)) (-4 *6 (-934 *4 *3 *5)))) (-3501 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-758)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-780)) (-4 *7 (-934 *4 *5 *6)) (-4 *4 (-446)) (-4 *6 (-836)) (-5 *2 (-112)) (-5 *1 (-443 *4 *5 *6 *7)))) (-2181 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-631 *7)) (-5 *3 (-554)) (-4 *7 (-934 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *1 (-443 *4 *5 *6 *7)))) (-2542 (*1 *2 *2 *3) (-12 (-5 *3 (-631 *2)) (-4 *2 (-934 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *1 (-443 *4 *5 *6 *2)))) (-1797 (*1 *2 *2 *3) (-12 (-5 *3 (-631 *2)) (-4 *2 (-934 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *1 (-443 *4 *5 *6 *2)))))
-(-10 -7 (-15 -1797 (|#4| |#4| (-631 |#4|))) (-15 -2542 (|#4| |#4| (-631 |#4|))) (-15 -2181 ((-631 |#4|) (-631 |#4|) (-554) (-554))) (-15 -3501 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1497 ((-112) |#2| |#2|)) (-15 -4220 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1374 ((-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2157 ((-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4112 ((-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1960 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-631 |#4|))) (-15 -2421 (|#4| |#4|)) (-15 -4069 ((-631 (-2 (|:| |totdeg| (-758)) (|:| -2598 |#4|))) |#4| (-758) (-631 (-2 (|:| |totdeg| (-758)) (|:| -2598 |#4|))))) (-15 -2558 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3098 ((-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3401 ((-631 |#4|) (-631 |#4|))) (-15 -2684 ((-554) |#4|)) (-15 -1927 ((-1246) |#4|)) (-15 -2882 ((-554) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-554) (-554) (-554))) (-15 -3221 ((-554) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-554) (-554) (-554) (-554))) (-15 -2636 ((-1246) (-631 |#4|))) (-15 -1445 ((-1246) (-554))) (-15 -3783 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1962 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-758)) (|:| -2598 |#4|)) |#4| (-758))) (-15 -3290 ((-758) |#4|)))
-((-2246 ((|#4| |#4| (-631 |#4|)) 22 (|has| |#1| (-358)))) (-3486 (((-631 |#4|) (-631 |#4|) (-1140) (-1140)) 41) (((-631 |#4|) (-631 |#4|) (-1140)) 40) (((-631 |#4|) (-631 |#4|)) 35)))
-(((-444 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3486 ((-631 |#4|) (-631 |#4|))) (-15 -3486 ((-631 |#4|) (-631 |#4|) (-1140))) (-15 -3486 ((-631 |#4|) (-631 |#4|) (-1140) (-1140))) (IF (|has| |#1| (-358)) (-15 -2246 (|#4| |#4| (-631 |#4|))) |%noBranch|)) (-446) (-780) (-836) (-934 |#1| |#2| |#3|)) (T -444))
-((-2246 (*1 *2 *2 *3) (-12 (-5 *3 (-631 *2)) (-4 *2 (-934 *4 *5 *6)) (-4 *4 (-358)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *1 (-444 *4 *5 *6 *2)))) (-3486 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-631 *7)) (-5 *3 (-1140)) (-4 *7 (-934 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *1 (-444 *4 *5 *6 *7)))) (-3486 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *7)) (-5 *3 (-1140)) (-4 *7 (-934 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *1 (-444 *4 *5 *6 *7)))) (-3486 (*1 *2 *2) (-12 (-5 *2 (-631 *6)) (-4 *6 (-934 *3 *4 *5)) (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-444 *3 *4 *5 *6)))))
-(-10 -7 (-15 -3486 ((-631 |#4|) (-631 |#4|))) (-15 -3486 ((-631 |#4|) (-631 |#4|) (-1140))) (-15 -3486 ((-631 |#4|) (-631 |#4|) (-1140) (-1140))) (IF (|has| |#1| (-358)) (-15 -2246 (|#4| |#4| (-631 |#4|))) |%noBranch|))
-((-2475 (($ $ $) 14) (($ (-631 $)) 21)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 41)) (-2510 (($ $ $) NIL) (($ (-631 $)) 22)))
-(((-445 |#1|) (-10 -8 (-15 -3077 ((-1154 |#1|) (-1154 |#1|) (-1154 |#1|))) (-15 -2475 (|#1| (-631 |#1|))) (-15 -2475 (|#1| |#1| |#1|)) (-15 -2510 (|#1| (-631 |#1|))) (-15 -2510 (|#1| |#1| |#1|))) (-446)) (T -445))
-NIL
-(-10 -8 (-15 -3077 ((-1154 |#1|) (-1154 |#1|) (-1154 |#1|))) (-15 -2475 (|#1| (-631 |#1|))) (-15 -2475 (|#1| |#1| |#1|)) (-15 -2510 (|#1| (-631 |#1|))) (-15 -2510 (|#1| |#1| |#1|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 42)) (-1976 (($ $) 41)) (-1363 (((-112) $) 39)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1320 (((-3 $ "failed") $) 33)) (-3248 (((-112) $) 31)) (-2475 (($ $ $) 47) (($ (-631 $)) 46)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 45)) (-2510 (($ $ $) 49) (($ (-631 $)) 48)) (-3919 (((-3 $ "failed") $ $) 43)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ $) 44)) (-2261 (((-758)) 28)) (-1909 (((-112) $ $) 40)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24)))
-(((-446) (-138)) (T -446))
-((-2510 (*1 *1 *1 *1) (-4 *1 (-446))) (-2510 (*1 *1 *2) (-12 (-5 *2 (-631 *1)) (-4 *1 (-446)))) (-2475 (*1 *1 *1 *1) (-4 *1 (-446))) (-2475 (*1 *1 *2) (-12 (-5 *2 (-631 *1)) (-4 *1 (-446)))) (-3077 (*1 *2 *2 *2) (-12 (-5 *2 (-1154 *1)) (-4 *1 (-446)))))
-(-13 (-546) (-10 -8 (-15 -2510 ($ $ $)) (-15 -2510 ($ (-631 $))) (-15 -2475 ($ $ $)) (-15 -2475 ($ (-631 $))) (-15 -3077 ((-1154 $) (-1154 $) (-1154 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-604 (-554)) . T) ((-604 $) . T) ((-601 (-848)) . T) ((-170) . T) ((-285) . T) ((-546) . T) ((-634 $) . T) ((-704 $) . T) ((-713) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-3646 (((-3 $ "failed")) NIL (|has| (-402 (-937 |#1|)) (-546)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-4251 (((-1241 (-675 (-402 (-937 |#1|)))) (-1241 $)) NIL) (((-1241 (-675 (-402 (-937 |#1|))))) NIL)) (-4047 (((-1241 $)) NIL)) (-4087 (($) NIL T CONST)) (-1558 (((-3 (-2 (|:| |particular| $) (|:| -3782 (-631 $))) "failed")) NIL)) (-3447 (((-3 $ "failed")) NIL (|has| (-402 (-937 |#1|)) (-546)))) (-3321 (((-675 (-402 (-937 |#1|))) (-1241 $)) NIL) (((-675 (-402 (-937 |#1|)))) NIL)) (-4206 (((-402 (-937 |#1|)) $) NIL)) (-3970 (((-675 (-402 (-937 |#1|))) $ (-1241 $)) NIL) (((-675 (-402 (-937 |#1|))) $) NIL)) (-3754 (((-3 $ "failed") $) NIL (|has| (-402 (-937 |#1|)) (-546)))) (-4027 (((-1154 (-937 (-402 (-937 |#1|))))) NIL (|has| (-402 (-937 |#1|)) (-358))) (((-1154 (-402 (-937 |#1|)))) 84 (|has| |#1| (-546)))) (-2080 (($ $ (-906)) NIL)) (-3976 (((-402 (-937 |#1|)) $) NIL)) (-3343 (((-1154 (-402 (-937 |#1|))) $) 82 (|has| (-402 (-937 |#1|)) (-546)))) (-3640 (((-402 (-937 |#1|)) (-1241 $)) NIL) (((-402 (-937 |#1|))) NIL)) (-4231 (((-1154 (-402 (-937 |#1|))) $) NIL)) (-1397 (((-112)) NIL)) (-1651 (($ (-1241 (-402 (-937 |#1|))) (-1241 $)) 103) (($ (-1241 (-402 (-937 |#1|)))) NIL)) (-1320 (((-3 $ "failed") $) NIL (|has| (-402 (-937 |#1|)) (-546)))) (-4186 (((-906)) NIL)) (-3911 (((-112)) NIL)) (-4326 (($ $ (-906)) NIL)) (-2545 (((-112)) NIL)) (-1765 (((-112)) NIL)) (-1573 (((-112)) NIL)) (-1660 (((-3 (-2 (|:| |particular| $) (|:| -3782 (-631 $))) "failed")) NIL)) (-3899 (((-3 $ "failed")) NIL (|has| (-402 (-937 |#1|)) (-546)))) (-2871 (((-675 (-402 (-937 |#1|))) (-1241 $)) NIL) (((-675 (-402 (-937 |#1|)))) NIL)) (-3115 (((-402 (-937 |#1|)) $) NIL)) (-3826 (((-675 (-402 (-937 |#1|))) $ (-1241 $)) NIL) (((-675 (-402 (-937 |#1|))) $) NIL)) (-1605 (((-3 $ "failed") $) NIL (|has| (-402 (-937 |#1|)) (-546)))) (-3415 (((-1154 (-937 (-402 (-937 |#1|))))) NIL (|has| (-402 (-937 |#1|)) (-358))) (((-1154 (-402 (-937 |#1|)))) 83 (|has| |#1| (-546)))) (-1297 (($ $ (-906)) NIL)) (-2620 (((-402 (-937 |#1|)) $) NIL)) (-3760 (((-1154 (-402 (-937 |#1|))) $) 77 (|has| (-402 (-937 |#1|)) (-546)))) (-3063 (((-402 (-937 |#1|)) (-1241 $)) NIL) (((-402 (-937 |#1|))) NIL)) (-2541 (((-1154 (-402 (-937 |#1|))) $) NIL)) (-3074 (((-112)) NIL)) (-1613 (((-1140) $) NIL)) (-3953 (((-112)) NIL)) (-4193 (((-112)) NIL)) (-2366 (((-112)) NIL)) (-2768 (((-1102) $) NIL)) (-1736 (((-402 (-937 |#1|)) $ $) 71 (|has| |#1| (-546)))) (-1581 (((-402 (-937 |#1|)) $) 93 (|has| |#1| (-546)))) (-3172 (((-402 (-937 |#1|)) $) 95 (|has| |#1| (-546)))) (-4255 (((-1154 (-402 (-937 |#1|))) $) 88 (|has| |#1| (-546)))) (-1998 (((-402 (-937 |#1|))) 72 (|has| |#1| (-546)))) (-1843 (((-402 (-937 |#1|)) $ $) 64 (|has| |#1| (-546)))) (-3591 (((-402 (-937 |#1|)) $) 92 (|has| |#1| (-546)))) (-2319 (((-402 (-937 |#1|)) $) 94 (|has| |#1| (-546)))) (-3188 (((-1154 (-402 (-937 |#1|))) $) 87 (|has| |#1| (-546)))) (-4250 (((-402 (-937 |#1|))) 68 (|has| |#1| (-546)))) (-1304 (($) 101) (($ (-1158)) 107) (($ (-1241 (-1158))) 106) (($ (-1241 $)) 96) (($ (-1158) (-1241 $)) 105) (($ (-1241 (-1158)) (-1241 $)) 104)) (-1944 (((-112)) NIL)) (-2064 (((-402 (-937 |#1|)) $ (-554)) NIL)) (-3656 (((-1241 (-402 (-937 |#1|))) $ (-1241 $)) 98) (((-675 (-402 (-937 |#1|))) (-1241 $) (-1241 $)) NIL) (((-1241 (-402 (-937 |#1|))) $) 40) (((-675 (-402 (-937 |#1|))) (-1241 $)) NIL)) (-2927 (((-1241 (-402 (-937 |#1|))) $) NIL) (($ (-1241 (-402 (-937 |#1|)))) 37)) (-3107 (((-631 (-937 (-402 (-937 |#1|)))) (-1241 $)) NIL) (((-631 (-937 (-402 (-937 |#1|))))) NIL) (((-631 (-937 |#1|)) (-1241 $)) 99 (|has| |#1| (-546))) (((-631 (-937 |#1|))) 100 (|has| |#1| (-546)))) (-1856 (($ $ $) NIL)) (-3349 (((-112)) NIL)) (-3075 (((-848) $) NIL) (($ (-1241 (-402 (-937 |#1|)))) NIL)) (-3782 (((-1241 $)) 60)) (-1444 (((-631 (-1241 (-402 (-937 |#1|))))) NIL (|has| (-402 (-937 |#1|)) (-546)))) (-3499 (($ $ $ $) NIL)) (-3454 (((-112)) NIL)) (-1485 (($ (-675 (-402 (-937 |#1|))) $) NIL)) (-1870 (($ $ $) NIL)) (-2945 (((-112)) NIL)) (-2760 (((-112)) NIL)) (-3206 (((-112)) NIL)) (-2004 (($) NIL T CONST)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) 97)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 56) (($ $ (-402 (-937 |#1|))) NIL) (($ (-402 (-937 |#1|)) $) NIL) (($ (-1124 |#2| (-402 (-937 |#1|))) $) NIL)))
-(((-447 |#1| |#2| |#3| |#4|) (-13 (-412 (-402 (-937 |#1|))) (-634 (-1124 |#2| (-402 (-937 |#1|)))) (-10 -8 (-15 -3075 ($ (-1241 (-402 (-937 |#1|))))) (-15 -1660 ((-3 (-2 (|:| |particular| $) (|:| -3782 (-631 $))) "failed"))) (-15 -1558 ((-3 (-2 (|:| |particular| $) (|:| -3782 (-631 $))) "failed"))) (-15 -1304 ($)) (-15 -1304 ($ (-1158))) (-15 -1304 ($ (-1241 (-1158)))) (-15 -1304 ($ (-1241 $))) (-15 -1304 ($ (-1158) (-1241 $))) (-15 -1304 ($ (-1241 (-1158)) (-1241 $))) (IF (|has| |#1| (-546)) (PROGN (-15 -3415 ((-1154 (-402 (-937 |#1|))))) (-15 -3188 ((-1154 (-402 (-937 |#1|))) $)) (-15 -3591 ((-402 (-937 |#1|)) $)) (-15 -2319 ((-402 (-937 |#1|)) $)) (-15 -4027 ((-1154 (-402 (-937 |#1|))))) (-15 -4255 ((-1154 (-402 (-937 |#1|))) $)) (-15 -1581 ((-402 (-937 |#1|)) $)) (-15 -3172 ((-402 (-937 |#1|)) $)) (-15 -1843 ((-402 (-937 |#1|)) $ $)) (-15 -4250 ((-402 (-937 |#1|)))) (-15 -1736 ((-402 (-937 |#1|)) $ $)) (-15 -1998 ((-402 (-937 |#1|)))) (-15 -3107 ((-631 (-937 |#1|)) (-1241 $))) (-15 -3107 ((-631 (-937 |#1|))))) |%noBranch|))) (-170) (-906) (-631 (-1158)) (-1241 (-675 |#1|))) (T -447))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-1241 (-402 (-937 *3)))) (-4 *3 (-170)) (-14 *6 (-1241 (-675 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-14 *4 (-906)) (-14 *5 (-631 (-1158))))) (-1660 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-447 *3 *4 *5 *6)) (|:| -3782 (-631 (-447 *3 *4 *5 *6))))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-906)) (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))) (-1558 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-447 *3 *4 *5 *6)) (|:| -3782 (-631 (-447 *3 *4 *5 *6))))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-906)) (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))) (-1304 (*1 *1) (-12 (-5 *1 (-447 *2 *3 *4 *5)) (-4 *2 (-170)) (-14 *3 (-906)) (-14 *4 (-631 (-1158))) (-14 *5 (-1241 (-675 *2))))) (-1304 (*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-906)) (-14 *5 (-631 *2)) (-14 *6 (-1241 (-675 *3))))) (-1304 (*1 *1 *2) (-12 (-5 *2 (-1241 (-1158))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-906)) (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))) (-1304 (*1 *1 *2) (-12 (-5 *2 (-1241 (-447 *3 *4 *5 *6))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-906)) (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))) (-1304 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-1241 (-447 *4 *5 *6 *7))) (-5 *1 (-447 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-906)) (-14 *6 (-631 *2)) (-14 *7 (-1241 (-675 *4))))) (-1304 (*1 *1 *2 *3) (-12 (-5 *2 (-1241 (-1158))) (-5 *3 (-1241 (-447 *4 *5 *6 *7))) (-5 *1 (-447 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-906)) (-14 *6 (-631 (-1158))) (-14 *7 (-1241 (-675 *4))))) (-3415 (*1 *2) (-12 (-5 *2 (-1154 (-402 (-937 *3)))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906)) (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))) (-3188 (*1 *2 *1) (-12 (-5 *2 (-1154 (-402 (-937 *3)))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906)) (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))) (-3591 (*1 *2 *1) (-12 (-5 *2 (-402 (-937 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906)) (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))) (-2319 (*1 *2 *1) (-12 (-5 *2 (-402 (-937 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906)) (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))) (-4027 (*1 *2) (-12 (-5 *2 (-1154 (-402 (-937 *3)))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906)) (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))) (-4255 (*1 *2 *1) (-12 (-5 *2 (-1154 (-402 (-937 *3)))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906)) (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))) (-1581 (*1 *2 *1) (-12 (-5 *2 (-402 (-937 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906)) (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))) (-3172 (*1 *2 *1) (-12 (-5 *2 (-402 (-937 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906)) (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))) (-1843 (*1 *2 *1 *1) (-12 (-5 *2 (-402 (-937 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906)) (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))) (-4250 (*1 *2) (-12 (-5 *2 (-402 (-937 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906)) (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))) (-1736 (*1 *2 *1 *1) (-12 (-5 *2 (-402 (-937 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906)) (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))) (-1998 (*1 *2) (-12 (-5 *2 (-402 (-937 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906)) (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))) (-3107 (*1 *2 *3) (-12 (-5 *3 (-1241 (-447 *4 *5 *6 *7))) (-5 *2 (-631 (-937 *4))) (-5 *1 (-447 *4 *5 *6 *7)) (-4 *4 (-546)) (-4 *4 (-170)) (-14 *5 (-906)) (-14 *6 (-631 (-1158))) (-14 *7 (-1241 (-675 *4))))) (-3107 (*1 *2) (-12 (-5 *2 (-631 (-937 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906)) (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))))
-(-13 (-412 (-402 (-937 |#1|))) (-634 (-1124 |#2| (-402 (-937 |#1|)))) (-10 -8 (-15 -3075 ($ (-1241 (-402 (-937 |#1|))))) (-15 -1660 ((-3 (-2 (|:| |particular| $) (|:| -3782 (-631 $))) "failed"))) (-15 -1558 ((-3 (-2 (|:| |particular| $) (|:| -3782 (-631 $))) "failed"))) (-15 -1304 ($)) (-15 -1304 ($ (-1158))) (-15 -1304 ($ (-1241 (-1158)))) (-15 -1304 ($ (-1241 $))) (-15 -1304 ($ (-1158) (-1241 $))) (-15 -1304 ($ (-1241 (-1158)) (-1241 $))) (IF (|has| |#1| (-546)) (PROGN (-15 -3415 ((-1154 (-402 (-937 |#1|))))) (-15 -3188 ((-1154 (-402 (-937 |#1|))) $)) (-15 -3591 ((-402 (-937 |#1|)) $)) (-15 -2319 ((-402 (-937 |#1|)) $)) (-15 -4027 ((-1154 (-402 (-937 |#1|))))) (-15 -4255 ((-1154 (-402 (-937 |#1|))) $)) (-15 -1581 ((-402 (-937 |#1|)) $)) (-15 -3172 ((-402 (-937 |#1|)) $)) (-15 -1843 ((-402 (-937 |#1|)) $ $)) (-15 -4250 ((-402 (-937 |#1|)))) (-15 -1736 ((-402 (-937 |#1|)) $ $)) (-15 -1998 ((-402 (-937 |#1|)))) (-15 -3107 ((-631 (-937 |#1|)) (-1241 $))) (-15 -3107 ((-631 (-937 |#1|))))) |%noBranch|)))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 13)) (-2405 (((-631 (-850 |#1|)) $) 75)) (-2237 (((-1154 $) $ (-850 |#1|)) 46) (((-1154 |#2|) $) 118)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#2| (-546)))) (-1976 (($ $) NIL (|has| |#2| (-546)))) (-1363 (((-112) $) NIL (|has| |#2| (-546)))) (-3785 (((-758) $) 21) (((-758) $ (-631 (-850 |#1|))) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-3278 (($ $) NIL (|has| |#2| (-446)))) (-1565 (((-413 $) $) NIL (|has| |#2| (-446)))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#2| "failed") $) 44) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#2| (-1023 (-402 (-554))))) (((-3 (-554) "failed") $) NIL (|has| |#2| (-1023 (-554)))) (((-3 (-850 |#1|) "failed") $) NIL)) (-1668 ((|#2| $) 42) (((-402 (-554)) $) NIL (|has| |#2| (-1023 (-402 (-554))))) (((-554) $) NIL (|has| |#2| (-1023 (-554)))) (((-850 |#1|) $) NIL)) (-2999 (($ $ $ (-850 |#1|)) NIL (|has| |#2| (-170)))) (-2026 (($ $ (-631 (-554))) 80)) (-2550 (($ $) 68)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| |#2| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| |#2| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 $) (-1241 $)) NIL) (((-675 |#2|) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2048 (($ $) NIL (|has| |#2| (-446))) (($ $ (-850 |#1|)) NIL (|has| |#2| (-446)))) (-2540 (((-631 $) $) NIL)) (-3289 (((-112) $) NIL (|has| |#2| (-894)))) (-1344 (($ $ |#2| |#3| $) NIL)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (-12 (|has| (-850 |#1|) (-871 (-374))) (|has| |#2| (-871 (-374))))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (-12 (|has| (-850 |#1|) (-871 (-554))) (|has| |#2| (-871 (-554)))))) (-3248 (((-112) $) NIL)) (-2122 (((-758) $) 58)) (-2393 (($ (-1154 |#2|) (-850 |#1|)) 123) (($ (-1154 $) (-850 |#1|)) 52)) (-3910 (((-631 $) $) NIL)) (-3580 (((-112) $) 59)) (-2383 (($ |#2| |#3|) 28) (($ $ (-850 |#1|) (-758)) 30) (($ $ (-631 (-850 |#1|)) (-631 (-758))) NIL)) (-4014 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $ (-850 |#1|)) NIL)) (-3893 ((|#3| $) NIL) (((-758) $ (-850 |#1|)) 50) (((-631 (-758)) $ (-631 (-850 |#1|))) 57)) (-4223 (($ $ $) NIL (|has| |#2| (-836)))) (-2706 (($ $ $) NIL (|has| |#2| (-836)))) (-2789 (($ (-1 |#3| |#3|) $) NIL)) (-2879 (($ (-1 |#2| |#2|) $) NIL)) (-3277 (((-3 (-850 |#1|) "failed") $) 39)) (-2518 (($ $) NIL)) (-2530 ((|#2| $) 41)) (-2475 (($ (-631 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-1613 (((-1140) $) NIL)) (-3778 (((-3 (-631 $) "failed") $) NIL)) (-2433 (((-3 (-631 $) "failed") $) NIL)) (-3160 (((-3 (-2 (|:| |var| (-850 |#1|)) (|:| -1407 (-758))) "failed") $) NIL)) (-2768 (((-1102) $) NIL)) (-2492 (((-112) $) 40)) (-2505 ((|#2| $) 116)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#2| (-446)))) (-2510 (($ (-631 $)) NIL (|has| |#2| (-446))) (($ $ $) 128 (|has| |#2| (-446)))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-2270 (((-413 $) $) NIL (|has| |#2| (-894)))) (-3919 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-546))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-546)))) (-2386 (($ $ (-631 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ (-850 |#1|) |#2|) 87) (($ $ (-631 (-850 |#1|)) (-631 |#2|)) 90) (($ $ (-850 |#1|) $) 85) (($ $ (-631 (-850 |#1|)) (-631 $)) 106)) (-1495 (($ $ (-850 |#1|)) NIL (|has| |#2| (-170)))) (-1553 (($ $ (-850 |#1|)) 53) (($ $ (-631 (-850 |#1|))) NIL) (($ $ (-850 |#1|) (-758)) NIL) (($ $ (-631 (-850 |#1|)) (-631 (-758))) NIL)) (-3308 ((|#3| $) 67) (((-758) $ (-850 |#1|)) 37) (((-631 (-758)) $ (-631 (-850 |#1|))) 56)) (-2927 (((-877 (-374)) $) NIL (-12 (|has| (-850 |#1|) (-602 (-877 (-374)))) (|has| |#2| (-602 (-877 (-374)))))) (((-877 (-554)) $) NIL (-12 (|has| (-850 |#1|) (-602 (-877 (-554)))) (|has| |#2| (-602 (-877 (-554)))))) (((-530) $) NIL (-12 (|has| (-850 |#1|) (-602 (-530))) (|has| |#2| (-602 (-530)))))) (-3276 ((|#2| $) 125 (|has| |#2| (-446))) (($ $ (-850 |#1|)) NIL (|has| |#2| (-446)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-894))))) (-3075 (((-848) $) 145) (($ (-554)) NIL) (($ |#2|) 86) (($ (-850 |#1|)) 31) (($ (-402 (-554))) NIL (-3994 (|has| |#2| (-38 (-402 (-554)))) (|has| |#2| (-1023 (-402 (-554)))))) (($ $) NIL (|has| |#2| (-546)))) (-1893 (((-631 |#2|) $) NIL)) (-1779 ((|#2| $ |#3|) NIL) (($ $ (-850 |#1|) (-758)) NIL) (($ $ (-631 (-850 |#1|)) (-631 (-758))) NIL)) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| |#2| (-894))) (|has| |#2| (-143))))) (-2261 (((-758)) NIL)) (-2907 (($ $ $ (-758)) NIL (|has| |#2| (-170)))) (-1909 (((-112) $ $) NIL (|has| |#2| (-546)))) (-2004 (($) 17 T CONST)) (-2014 (($) 25 T CONST)) (-1787 (($ $ (-850 |#1|)) NIL) (($ $ (-631 (-850 |#1|))) NIL) (($ $ (-850 |#1|) (-758)) NIL) (($ $ (-631 (-850 |#1|)) (-631 (-758))) NIL)) (-1708 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1752 (($ $ |#2|) 64 (|has| |#2| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) 111)) (** (($ $ (-906)) NIL) (($ $ (-758)) 109)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 29) (($ $ (-402 (-554))) NIL (|has| |#2| (-38 (-402 (-554))))) (($ (-402 (-554)) $) NIL (|has| |#2| (-38 (-402 (-554))))) (($ |#2| $) 63) (($ $ |#2|) NIL)))
-(((-448 |#1| |#2| |#3|) (-13 (-934 |#2| |#3| (-850 |#1|)) (-10 -8 (-15 -2026 ($ $ (-631 (-554)))))) (-631 (-1158)) (-1034) (-234 (-2563 |#1|) (-758))) (T -448))
-((-2026 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-554))) (-14 *3 (-631 (-1158))) (-5 *1 (-448 *3 *4 *5)) (-4 *4 (-1034)) (-4 *5 (-234 (-2563 *3) (-758))))))
-(-13 (-934 |#2| |#3| (-850 |#1|)) (-10 -8 (-15 -2026 ($ $ (-631 (-554))))))
-((-3251 (((-112) |#1| (-631 |#2|)) 69)) (-2555 (((-3 (-1241 (-631 |#2|)) "failed") (-758) |#1| (-631 |#2|)) 78)) (-3798 (((-3 (-631 |#2|) "failed") |#2| |#1| (-1241 (-631 |#2|))) 80)) (-1877 ((|#2| |#2| |#1|) 28)) (-2527 (((-758) |#2| (-631 |#2|)) 20)))
-(((-449 |#1| |#2|) (-10 -7 (-15 -1877 (|#2| |#2| |#1|)) (-15 -2527 ((-758) |#2| (-631 |#2|))) (-15 -2555 ((-3 (-1241 (-631 |#2|)) "failed") (-758) |#1| (-631 |#2|))) (-15 -3798 ((-3 (-631 |#2|) "failed") |#2| |#1| (-1241 (-631 |#2|)))) (-15 -3251 ((-112) |#1| (-631 |#2|)))) (-302) (-1217 |#1|)) (T -449))
-((-3251 (*1 *2 *3 *4) (-12 (-5 *4 (-631 *5)) (-4 *5 (-1217 *3)) (-4 *3 (-302)) (-5 *2 (-112)) (-5 *1 (-449 *3 *5)))) (-3798 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1241 (-631 *3))) (-4 *4 (-302)) (-5 *2 (-631 *3)) (-5 *1 (-449 *4 *3)) (-4 *3 (-1217 *4)))) (-2555 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-758)) (-4 *4 (-302)) (-4 *6 (-1217 *4)) (-5 *2 (-1241 (-631 *6))) (-5 *1 (-449 *4 *6)) (-5 *5 (-631 *6)))) (-2527 (*1 *2 *3 *4) (-12 (-5 *4 (-631 *3)) (-4 *3 (-1217 *5)) (-4 *5 (-302)) (-5 *2 (-758)) (-5 *1 (-449 *5 *3)))) (-1877 (*1 *2 *2 *3) (-12 (-4 *3 (-302)) (-5 *1 (-449 *3 *2)) (-4 *2 (-1217 *3)))))
-(-10 -7 (-15 -1877 (|#2| |#2| |#1|)) (-15 -2527 ((-758) |#2| (-631 |#2|))) (-15 -2555 ((-3 (-1241 (-631 |#2|)) "failed") (-758) |#1| (-631 |#2|))) (-15 -3798 ((-3 (-631 |#2|) "failed") |#2| |#1| (-1241 (-631 |#2|)))) (-15 -3251 ((-112) |#1| (-631 |#2|))))
-((-2270 (((-413 |#5|) |#5|) 24)))
-(((-450 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2270 ((-413 |#5|) |#5|))) (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $)) (-15 -1576 ((-3 $ "failed") (-1158))))) (-780) (-546) (-546) (-934 |#4| |#2| |#1|)) (T -450))
-((-2270 (*1 *2 *3) (-12 (-4 *4 (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $)) (-15 -1576 ((-3 $ "failed") (-1158)))))) (-4 *5 (-780)) (-4 *7 (-546)) (-5 *2 (-413 *3)) (-5 *1 (-450 *4 *5 *6 *7 *3)) (-4 *6 (-546)) (-4 *3 (-934 *7 *5 *4)))))
-(-10 -7 (-15 -2270 ((-413 |#5|) |#5|)))
-((-2774 ((|#3|) 37)) (-3077 (((-1154 |#4|) (-1154 |#4|) (-1154 |#4|)) 33)))
-(((-451 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3077 ((-1154 |#4|) (-1154 |#4|) (-1154 |#4|))) (-15 -2774 (|#3|))) (-780) (-836) (-894) (-934 |#3| |#1| |#2|)) (T -451))
-((-2774 (*1 *2) (-12 (-4 *3 (-780)) (-4 *4 (-836)) (-4 *2 (-894)) (-5 *1 (-451 *3 *4 *2 *5)) (-4 *5 (-934 *2 *3 *4)))) (-3077 (*1 *2 *2 *2) (-12 (-5 *2 (-1154 *6)) (-4 *6 (-934 *5 *3 *4)) (-4 *3 (-780)) (-4 *4 (-836)) (-4 *5 (-894)) (-5 *1 (-451 *3 *4 *5 *6)))))
-(-10 -7 (-15 -3077 ((-1154 |#4|) (-1154 |#4|) (-1154 |#4|))) (-15 -2774 (|#3|)))
-((-2270 (((-413 (-1154 |#1|)) (-1154 |#1|)) 43)))
-(((-452 |#1|) (-10 -7 (-15 -2270 ((-413 (-1154 |#1|)) (-1154 |#1|)))) (-302)) (T -452))
-((-2270 (*1 *2 *3) (-12 (-4 *4 (-302)) (-5 *2 (-413 (-1154 *4))) (-5 *1 (-452 *4)) (-5 *3 (-1154 *4)))))
-(-10 -7 (-15 -2270 ((-413 (-1154 |#1|)) (-1154 |#1|))))
-((-2444 (((-52) |#2| (-1158) (-289 |#2|) (-1208 (-758))) 42) (((-52) (-1 |#2| (-554)) (-289 |#2|) (-1208 (-758))) 41) (((-52) |#2| (-1158) (-289 |#2|)) 35) (((-52) (-1 |#2| (-554)) (-289 |#2|)) 28)) (-4175 (((-52) |#2| (-1158) (-289 |#2|) (-1208 (-402 (-554))) (-402 (-554))) 80) (((-52) (-1 |#2| (-402 (-554))) (-289 |#2|) (-1208 (-402 (-554))) (-402 (-554))) 79) (((-52) |#2| (-1158) (-289 |#2|) (-1208 (-554))) 78) (((-52) (-1 |#2| (-554)) (-289 |#2|) (-1208 (-554))) 77) (((-52) |#2| (-1158) (-289 |#2|)) 72) (((-52) (-1 |#2| (-554)) (-289 |#2|)) 71)) (-2463 (((-52) |#2| (-1158) (-289 |#2|) (-1208 (-402 (-554))) (-402 (-554))) 66) (((-52) (-1 |#2| (-402 (-554))) (-289 |#2|) (-1208 (-402 (-554))) (-402 (-554))) 64)) (-2454 (((-52) |#2| (-1158) (-289 |#2|) (-1208 (-554))) 48) (((-52) (-1 |#2| (-554)) (-289 |#2|) (-1208 (-554))) 47)))
-(((-453 |#1| |#2|) (-10 -7 (-15 -2444 ((-52) (-1 |#2| (-554)) (-289 |#2|))) (-15 -2444 ((-52) |#2| (-1158) (-289 |#2|))) (-15 -2444 ((-52) (-1 |#2| (-554)) (-289 |#2|) (-1208 (-758)))) (-15 -2444 ((-52) |#2| (-1158) (-289 |#2|) (-1208 (-758)))) (-15 -2454 ((-52) (-1 |#2| (-554)) (-289 |#2|) (-1208 (-554)))) (-15 -2454 ((-52) |#2| (-1158) (-289 |#2|) (-1208 (-554)))) (-15 -2463 ((-52) (-1 |#2| (-402 (-554))) (-289 |#2|) (-1208 (-402 (-554))) (-402 (-554)))) (-15 -2463 ((-52) |#2| (-1158) (-289 |#2|) (-1208 (-402 (-554))) (-402 (-554)))) (-15 -4175 ((-52) (-1 |#2| (-554)) (-289 |#2|))) (-15 -4175 ((-52) |#2| (-1158) (-289 |#2|))) (-15 -4175 ((-52) (-1 |#2| (-554)) (-289 |#2|) (-1208 (-554)))) (-15 -4175 ((-52) |#2| (-1158) (-289 |#2|) (-1208 (-554)))) (-15 -4175 ((-52) (-1 |#2| (-402 (-554))) (-289 |#2|) (-1208 (-402 (-554))) (-402 (-554)))) (-15 -4175 ((-52) |#2| (-1158) (-289 |#2|) (-1208 (-402 (-554))) (-402 (-554))))) (-13 (-546) (-836) (-1023 (-554)) (-627 (-554))) (-13 (-27) (-1180) (-425 |#1|))) (T -453))
-((-4175 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1158)) (-5 *5 (-289 *3)) (-5 *6 (-1208 (-402 (-554)))) (-5 *7 (-402 (-554))) (-4 *3 (-13 (-27) (-1180) (-425 *8))) (-4 *8 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-453 *8 *3)))) (-4175 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-402 (-554)))) (-5 *4 (-289 *8)) (-5 *5 (-1208 (-402 (-554)))) (-5 *6 (-402 (-554))) (-4 *8 (-13 (-27) (-1180) (-425 *7))) (-4 *7 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-453 *7 *8)))) (-4175 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1158)) (-5 *5 (-289 *3)) (-5 *6 (-1208 (-554))) (-4 *3 (-13 (-27) (-1180) (-425 *7))) (-4 *7 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-453 *7 *3)))) (-4175 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-554))) (-5 *4 (-289 *7)) (-5 *5 (-1208 (-554))) (-4 *7 (-13 (-27) (-1180) (-425 *6))) (-4 *6 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-453 *6 *7)))) (-4175 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1158)) (-5 *5 (-289 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *6))) (-4 *6 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-453 *6 *3)))) (-4175 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-554))) (-5 *4 (-289 *6)) (-4 *6 (-13 (-27) (-1180) (-425 *5))) (-4 *5 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-453 *5 *6)))) (-2463 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1158)) (-5 *5 (-289 *3)) (-5 *6 (-1208 (-402 (-554)))) (-5 *7 (-402 (-554))) (-4 *3 (-13 (-27) (-1180) (-425 *8))) (-4 *8 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-453 *8 *3)))) (-2463 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-402 (-554)))) (-5 *4 (-289 *8)) (-5 *5 (-1208 (-402 (-554)))) (-5 *6 (-402 (-554))) (-4 *8 (-13 (-27) (-1180) (-425 *7))) (-4 *7 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-453 *7 *8)))) (-2454 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1158)) (-5 *5 (-289 *3)) (-5 *6 (-1208 (-554))) (-4 *3 (-13 (-27) (-1180) (-425 *7))) (-4 *7 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-453 *7 *3)))) (-2454 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-554))) (-5 *4 (-289 *7)) (-5 *5 (-1208 (-554))) (-4 *7 (-13 (-27) (-1180) (-425 *6))) (-4 *6 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-453 *6 *7)))) (-2444 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1158)) (-5 *5 (-289 *3)) (-5 *6 (-1208 (-758))) (-4 *3 (-13 (-27) (-1180) (-425 *7))) (-4 *7 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-453 *7 *3)))) (-2444 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-554))) (-5 *4 (-289 *7)) (-5 *5 (-1208 (-758))) (-4 *7 (-13 (-27) (-1180) (-425 *6))) (-4 *6 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-453 *6 *7)))) (-2444 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1158)) (-5 *5 (-289 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *6))) (-4 *6 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-453 *6 *3)))) (-2444 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-554))) (-5 *4 (-289 *6)) (-4 *6 (-13 (-27) (-1180) (-425 *5))) (-4 *5 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-453 *5 *6)))))
-(-10 -7 (-15 -2444 ((-52) (-1 |#2| (-554)) (-289 |#2|))) (-15 -2444 ((-52) |#2| (-1158) (-289 |#2|))) (-15 -2444 ((-52) (-1 |#2| (-554)) (-289 |#2|) (-1208 (-758)))) (-15 -2444 ((-52) |#2| (-1158) (-289 |#2|) (-1208 (-758)))) (-15 -2454 ((-52) (-1 |#2| (-554)) (-289 |#2|) (-1208 (-554)))) (-15 -2454 ((-52) |#2| (-1158) (-289 |#2|) (-1208 (-554)))) (-15 -2463 ((-52) (-1 |#2| (-402 (-554))) (-289 |#2|) (-1208 (-402 (-554))) (-402 (-554)))) (-15 -2463 ((-52) |#2| (-1158) (-289 |#2|) (-1208 (-402 (-554))) (-402 (-554)))) (-15 -4175 ((-52) (-1 |#2| (-554)) (-289 |#2|))) (-15 -4175 ((-52) |#2| (-1158) (-289 |#2|))) (-15 -4175 ((-52) (-1 |#2| (-554)) (-289 |#2|) (-1208 (-554)))) (-15 -4175 ((-52) |#2| (-1158) (-289 |#2|) (-1208 (-554)))) (-15 -4175 ((-52) (-1 |#2| (-402 (-554))) (-289 |#2|) (-1208 (-402 (-554))) (-402 (-554)))) (-15 -4175 ((-52) |#2| (-1158) (-289 |#2|) (-1208 (-402 (-554))) (-402 (-554)))))
-((-1877 ((|#2| |#2| |#1|) 15)) (-4185 (((-631 |#2|) |#2| (-631 |#2|) |#1| (-906)) 69)) (-4291 (((-2 (|:| |plist| (-631 |#2|)) (|:| |modulo| |#1|)) |#2| (-631 |#2|) |#1| (-906)) 60)))
-(((-454 |#1| |#2|) (-10 -7 (-15 -4291 ((-2 (|:| |plist| (-631 |#2|)) (|:| |modulo| |#1|)) |#2| (-631 |#2|) |#1| (-906))) (-15 -4185 ((-631 |#2|) |#2| (-631 |#2|) |#1| (-906))) (-15 -1877 (|#2| |#2| |#1|))) (-302) (-1217 |#1|)) (T -454))
-((-1877 (*1 *2 *2 *3) (-12 (-4 *3 (-302)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1217 *3)))) (-4185 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-631 *3)) (-5 *5 (-906)) (-4 *3 (-1217 *4)) (-4 *4 (-302)) (-5 *1 (-454 *4 *3)))) (-4291 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-906)) (-4 *5 (-302)) (-4 *3 (-1217 *5)) (-5 *2 (-2 (|:| |plist| (-631 *3)) (|:| |modulo| *5))) (-5 *1 (-454 *5 *3)) (-5 *4 (-631 *3)))))
-(-10 -7 (-15 -4291 ((-2 (|:| |plist| (-631 |#2|)) (|:| |modulo| |#1|)) |#2| (-631 |#2|) |#1| (-906))) (-15 -4185 ((-631 |#2|) |#2| (-631 |#2|) |#1| (-906))) (-15 -1877 (|#2| |#2| |#1|)))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 28)) (-2327 (($ |#3|) 25)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-2550 (($ $) 32)) (-1898 (($ |#2| |#4| $) 33)) (-2383 (($ |#2| (-700 |#3| |#4| |#5|)) 24)) (-2518 (((-700 |#3| |#4| |#5|) $) 15)) (-4245 ((|#3| $) 19)) (-1448 ((|#4| $) 17)) (-2530 ((|#2| $) 29)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-3610 (($ |#2| |#3| |#4|) 26)) (-2004 (($) 36 T CONST)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) 34)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-455 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-704 |#6|) (-704 |#2|) (-10 -8 (-15 -2530 (|#2| $)) (-15 -2518 ((-700 |#3| |#4| |#5|) $)) (-15 -1448 (|#4| $)) (-15 -4245 (|#3| $)) (-15 -2550 ($ $)) (-15 -2383 ($ |#2| (-700 |#3| |#4| |#5|))) (-15 -2327 ($ |#3|)) (-15 -3610 ($ |#2| |#3| |#4|)) (-15 -1898 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-631 (-1158)) (-170) (-836) (-234 (-2563 |#1|) (-758)) (-1 (-112) (-2 (|:| -2717 |#3|) (|:| -1407 |#4|)) (-2 (|:| -2717 |#3|) (|:| -1407 |#4|))) (-934 |#2| |#4| (-850 |#1|))) (T -455))
-((* (*1 *1 *2 *1) (-12 (-14 *3 (-631 (-1158))) (-4 *4 (-170)) (-4 *6 (-234 (-2563 *3) (-758))) (-14 *7 (-1 (-112) (-2 (|:| -2717 *5) (|:| -1407 *6)) (-2 (|:| -2717 *5) (|:| -1407 *6)))) (-5 *1 (-455 *3 *4 *5 *6 *7 *2)) (-4 *5 (-836)) (-4 *2 (-934 *4 *6 (-850 *3))))) (-2530 (*1 *2 *1) (-12 (-14 *3 (-631 (-1158))) (-4 *5 (-234 (-2563 *3) (-758))) (-14 *6 (-1 (-112) (-2 (|:| -2717 *4) (|:| -1407 *5)) (-2 (|:| -2717 *4) (|:| -1407 *5)))) (-4 *2 (-170)) (-5 *1 (-455 *3 *2 *4 *5 *6 *7)) (-4 *4 (-836)) (-4 *7 (-934 *2 *5 (-850 *3))))) (-2518 (*1 *2 *1) (-12 (-14 *3 (-631 (-1158))) (-4 *4 (-170)) (-4 *6 (-234 (-2563 *3) (-758))) (-14 *7 (-1 (-112) (-2 (|:| -2717 *5) (|:| -1407 *6)) (-2 (|:| -2717 *5) (|:| -1407 *6)))) (-5 *2 (-700 *5 *6 *7)) (-5 *1 (-455 *3 *4 *5 *6 *7 *8)) (-4 *5 (-836)) (-4 *8 (-934 *4 *6 (-850 *3))))) (-1448 (*1 *2 *1) (-12 (-14 *3 (-631 (-1158))) (-4 *4 (-170)) (-14 *6 (-1 (-112) (-2 (|:| -2717 *5) (|:| -1407 *2)) (-2 (|:| -2717 *5) (|:| -1407 *2)))) (-4 *2 (-234 (-2563 *3) (-758))) (-5 *1 (-455 *3 *4 *5 *2 *6 *7)) (-4 *5 (-836)) (-4 *7 (-934 *4 *2 (-850 *3))))) (-4245 (*1 *2 *1) (-12 (-14 *3 (-631 (-1158))) (-4 *4 (-170)) (-4 *5 (-234 (-2563 *3) (-758))) (-14 *6 (-1 (-112) (-2 (|:| -2717 *2) (|:| -1407 *5)) (-2 (|:| -2717 *2) (|:| -1407 *5)))) (-4 *2 (-836)) (-5 *1 (-455 *3 *4 *2 *5 *6 *7)) (-4 *7 (-934 *4 *5 (-850 *3))))) (-2550 (*1 *1 *1) (-12 (-14 *2 (-631 (-1158))) (-4 *3 (-170)) (-4 *5 (-234 (-2563 *2) (-758))) (-14 *6 (-1 (-112) (-2 (|:| -2717 *4) (|:| -1407 *5)) (-2 (|:| -2717 *4) (|:| -1407 *5)))) (-5 *1 (-455 *2 *3 *4 *5 *6 *7)) (-4 *4 (-836)) (-4 *7 (-934 *3 *5 (-850 *2))))) (-2383 (*1 *1 *2 *3) (-12 (-5 *3 (-700 *5 *6 *7)) (-4 *5 (-836)) (-4 *6 (-234 (-2563 *4) (-758))) (-14 *7 (-1 (-112) (-2 (|:| -2717 *5) (|:| -1407 *6)) (-2 (|:| -2717 *5) (|:| -1407 *6)))) (-14 *4 (-631 (-1158))) (-4 *2 (-170)) (-5 *1 (-455 *4 *2 *5 *6 *7 *8)) (-4 *8 (-934 *2 *6 (-850 *4))))) (-2327 (*1 *1 *2) (-12 (-14 *3 (-631 (-1158))) (-4 *4 (-170)) (-4 *5 (-234 (-2563 *3) (-758))) (-14 *6 (-1 (-112) (-2 (|:| -2717 *2) (|:| -1407 *5)) (-2 (|:| -2717 *2) (|:| -1407 *5)))) (-5 *1 (-455 *3 *4 *2 *5 *6 *7)) (-4 *2 (-836)) (-4 *7 (-934 *4 *5 (-850 *3))))) (-3610 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-631 (-1158))) (-4 *2 (-170)) (-4 *4 (-234 (-2563 *5) (-758))) (-14 *6 (-1 (-112) (-2 (|:| -2717 *3) (|:| -1407 *4)) (-2 (|:| -2717 *3) (|:| -1407 *4)))) (-5 *1 (-455 *5 *2 *3 *4 *6 *7)) (-4 *3 (-836)) (-4 *7 (-934 *2 *4 (-850 *5))))) (-1898 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-631 (-1158))) (-4 *2 (-170)) (-4 *3 (-234 (-2563 *4) (-758))) (-14 *6 (-1 (-112) (-2 (|:| -2717 *5) (|:| -1407 *3)) (-2 (|:| -2717 *5) (|:| -1407 *3)))) (-5 *1 (-455 *4 *2 *5 *3 *6 *7)) (-4 *5 (-836)) (-4 *7 (-934 *2 *3 (-850 *4))))))
-(-13 (-704 |#6|) (-704 |#2|) (-10 -8 (-15 -2530 (|#2| $)) (-15 -2518 ((-700 |#3| |#4| |#5|) $)) (-15 -1448 (|#4| $)) (-15 -4245 (|#3| $)) (-15 -2550 ($ $)) (-15 -2383 ($ |#2| (-700 |#3| |#4| |#5|))) (-15 -2327 ($ |#3|)) (-15 -3610 ($ |#2| |#3| |#4|)) (-15 -1898 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
-((-3991 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37)))
-(((-456 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3991 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-780) (-836) (-546) (-934 |#3| |#1| |#2|) (-13 (-1023 (-402 (-554))) (-358) (-10 -8 (-15 -3075 ($ |#4|)) (-15 -2810 (|#4| $)) (-15 -2822 (|#4| $))))) (T -456))
-((-3991 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-836)) (-4 *5 (-780)) (-4 *6 (-546)) (-4 *7 (-934 *6 *5 *3)) (-5 *1 (-456 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1023 (-402 (-554))) (-358) (-10 -8 (-15 -3075 ($ *7)) (-15 -2810 (*7 $)) (-15 -2822 (*7 $))))))))
-(-10 -7 (-15 -3991 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
-((-3062 (((-112) $ $) NIL)) (-2405 (((-631 |#3|) $) 41)) (-1678 (((-112) $) NIL)) (-3005 (((-112) $) NIL (|has| |#1| (-546)))) (-3303 (((-2 (|:| |under| $) (|:| -4339 $) (|:| |upper| $)) $ |#3|) NIL)) (-3019 (((-112) $ (-758)) NIL)) (-1871 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-4087 (($) NIL T CONST)) (-1930 (((-112) $) NIL (|has| |#1| (-546)))) (-1404 (((-112) $ $) NIL (|has| |#1| (-546)))) (-3262 (((-112) $ $) NIL (|has| |#1| (-546)))) (-2713 (((-112) $) NIL (|has| |#1| (-546)))) (-1380 (((-631 |#4|) (-631 |#4|) $) NIL (|has| |#1| (-546)))) (-4204 (((-631 |#4|) (-631 |#4|) $) NIL (|has| |#1| (-546)))) (-2784 (((-3 $ "failed") (-631 |#4|)) 47)) (-1668 (($ (-631 |#4|)) NIL)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082))))) (-2574 (($ |#4| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-2423 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-546)))) (-3676 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4373))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4373)))) (-2466 (((-631 |#4|) $) 18 (|has| $ (-6 -4373)))) (-3954 ((|#3| $) 45)) (-2230 (((-112) $ (-758)) NIL)) (-2379 (((-631 |#4|) $) 14 (|has| $ (-6 -4373)))) (-3068 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082))))) (-2849 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#4| |#4|) $) 21)) (-2643 (((-631 |#3|) $) NIL)) (-1400 (((-112) |#3| $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL)) (-3548 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-546)))) (-2768 (((-1102) $) NIL)) (-1652 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2845 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 |#4|) (-631 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-289 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-631 (-289 |#4|))) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) 39)) (-4240 (($) 17)) (-2777 (((-758) |#4| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082)))) (((-758) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-1521 (($ $) 16)) (-2927 (((-530) $) NIL (|has| |#4| (-602 (-530)))) (($ (-631 |#4|)) 49)) (-3089 (($ (-631 |#4|)) 13)) (-2538 (($ $ |#3|) NIL)) (-2384 (($ $ |#3|) NIL)) (-2128 (($ $ |#3|) NIL)) (-3075 (((-848) $) 38) (((-631 |#4|) $) 48)) (-2438 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 30)) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-457 |#1| |#2| |#3| |#4|) (-13 (-961 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2927 ($ (-631 |#4|))) (-6 -4373) (-6 -4374))) (-1034) (-780) (-836) (-1048 |#1| |#2| |#3|)) (T -457))
-((-2927 (*1 *1 *2) (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-457 *3 *4 *5 *6)))))
-(-13 (-961 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2927 ($ (-631 |#4|))) (-6 -4373) (-6 -4374)))
-((-2004 (($) 11)) (-2014 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
-(((-458 |#1| |#2| |#3|) (-10 -8 (-15 -2014 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2004 (|#1|))) (-459 |#2| |#3|) (-170) (-23)) (T -458))
-NIL
-(-10 -8 (-15 -2014 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2004 (|#1|)))
-((-3062 (((-112) $ $) 7)) (-2784 (((-3 |#1| "failed") $) 26)) (-1668 ((|#1| $) 27)) (-4264 (($ $ $) 23)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3308 ((|#2| $) 19)) (-3075 (((-848) $) 11) (($ |#1|) 25)) (-2004 (($) 18 T CONST)) (-2014 (($) 24 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 15) (($ $ $) 13)) (-1735 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
-(((-459 |#1| |#2|) (-138) (-170) (-23)) (T -459))
-((-2014 (*1 *1) (-12 (-4 *1 (-459 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-4264 (*1 *1 *1 *1) (-12 (-4 *1 (-459 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))))
-(-13 (-464 |t#1| |t#2|) (-1023 |t#1|) (-10 -8 (-15 (-2014) ($) -2397) (-15 -4264 ($ $ $))))
-(((-102) . T) ((-604 |#1|) . T) ((-601 (-848)) . T) ((-464 |#1| |#2|) . T) ((-1023 |#1|) . T) ((-1082) . T))
-((-1463 (((-1241 (-1241 (-554))) (-1241 (-1241 (-554))) (-906)) 18)) (-2465 (((-1241 (-1241 (-554))) (-906)) 16)))
-(((-460) (-10 -7 (-15 -1463 ((-1241 (-1241 (-554))) (-1241 (-1241 (-554))) (-906))) (-15 -2465 ((-1241 (-1241 (-554))) (-906))))) (T -460))
-((-2465 (*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-1241 (-1241 (-554)))) (-5 *1 (-460)))) (-1463 (*1 *2 *2 *3) (-12 (-5 *2 (-1241 (-1241 (-554)))) (-5 *3 (-906)) (-5 *1 (-460)))))
-(-10 -7 (-15 -1463 ((-1241 (-1241 (-554))) (-1241 (-1241 (-554))) (-906))) (-15 -2465 ((-1241 (-1241 (-554))) (-906))))
-((-3902 (((-554) (-554)) 30) (((-554)) 22)) (-2477 (((-554) (-554)) 26) (((-554)) 18)) (-4179 (((-554) (-554)) 28) (((-554)) 20)) (-4004 (((-112) (-112)) 12) (((-112)) 10)) (-3326 (((-112) (-112)) 11) (((-112)) 9)) (-1979 (((-112) (-112)) 24) (((-112)) 15)))
-(((-461) (-10 -7 (-15 -3326 ((-112))) (-15 -4004 ((-112))) (-15 -3326 ((-112) (-112))) (-15 -4004 ((-112) (-112))) (-15 -1979 ((-112))) (-15 -4179 ((-554))) (-15 -2477 ((-554))) (-15 -3902 ((-554))) (-15 -1979 ((-112) (-112))) (-15 -4179 ((-554) (-554))) (-15 -2477 ((-554) (-554))) (-15 -3902 ((-554) (-554))))) (T -461))
-((-3902 (*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-461)))) (-2477 (*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-461)))) (-4179 (*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-461)))) (-1979 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))) (-3902 (*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-461)))) (-2477 (*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-461)))) (-4179 (*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-461)))) (-1979 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))) (-4004 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))) (-3326 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))) (-4004 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))) (-3326 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))))
-(-10 -7 (-15 -3326 ((-112))) (-15 -4004 ((-112))) (-15 -3326 ((-112) (-112))) (-15 -4004 ((-112) (-112))) (-15 -1979 ((-112))) (-15 -4179 ((-554))) (-15 -2477 ((-554))) (-15 -3902 ((-554))) (-15 -1979 ((-112) (-112))) (-15 -4179 ((-554) (-554))) (-15 -2477 ((-554) (-554))) (-15 -3902 ((-554) (-554))))
-((-3062 (((-112) $ $) NIL)) (-2079 (((-631 (-374)) $) 28) (((-631 (-374)) $ (-631 (-374))) 95)) (-2289 (((-631 (-1076 (-374))) $) 16) (((-631 (-1076 (-374))) $ (-631 (-1076 (-374)))) 92)) (-2248 (((-631 (-631 (-928 (-221)))) (-631 (-631 (-928 (-221)))) (-631 (-859))) 44)) (-3471 (((-631 (-631 (-928 (-221)))) $) 88)) (-4136 (((-1246) $ (-928 (-221)) (-859)) 107)) (-2637 (($ $) 87) (($ (-631 (-631 (-928 (-221))))) 98) (($ (-631 (-631 (-928 (-221)))) (-631 (-859)) (-631 (-859)) (-631 (-906))) 97) (($ (-631 (-631 (-928 (-221)))) (-631 (-859)) (-631 (-859)) (-631 (-906)) (-631 (-258))) 99)) (-1613 (((-1140) $) NIL)) (-2564 (((-554) $) 69)) (-2768 (((-1102) $) NIL)) (-2018 (($) 96)) (-2144 (((-631 (-221)) (-631 (-631 (-928 (-221))))) 54)) (-3257 (((-1246) $ (-631 (-928 (-221))) (-859) (-859) (-906)) 101) (((-1246) $ (-928 (-221))) 103) (((-1246) $ (-928 (-221)) (-859) (-859) (-906)) 102)) (-3075 (((-848) $) 113) (($ (-631 (-631 (-928 (-221))))) 108)) (-3642 (((-1246) $ (-928 (-221))) 106)) (-1658 (((-112) $ $) NIL)))
-(((-462) (-13 (-1082) (-10 -8 (-15 -2018 ($)) (-15 -2637 ($ $)) (-15 -2637 ($ (-631 (-631 (-928 (-221)))))) (-15 -2637 ($ (-631 (-631 (-928 (-221)))) (-631 (-859)) (-631 (-859)) (-631 (-906)))) (-15 -2637 ($ (-631 (-631 (-928 (-221)))) (-631 (-859)) (-631 (-859)) (-631 (-906)) (-631 (-258)))) (-15 -3471 ((-631 (-631 (-928 (-221)))) $)) (-15 -2564 ((-554) $)) (-15 -2289 ((-631 (-1076 (-374))) $)) (-15 -2289 ((-631 (-1076 (-374))) $ (-631 (-1076 (-374))))) (-15 -2079 ((-631 (-374)) $)) (-15 -2079 ((-631 (-374)) $ (-631 (-374)))) (-15 -3257 ((-1246) $ (-631 (-928 (-221))) (-859) (-859) (-906))) (-15 -3257 ((-1246) $ (-928 (-221)))) (-15 -3257 ((-1246) $ (-928 (-221)) (-859) (-859) (-906))) (-15 -3642 ((-1246) $ (-928 (-221)))) (-15 -4136 ((-1246) $ (-928 (-221)) (-859))) (-15 -3075 ($ (-631 (-631 (-928 (-221)))))) (-15 -3075 ((-848) $)) (-15 -2248 ((-631 (-631 (-928 (-221)))) (-631 (-631 (-928 (-221)))) (-631 (-859)))) (-15 -2144 ((-631 (-221)) (-631 (-631 (-928 (-221))))))))) (T -462))
-((-3075 (*1 *2 *1) (-12 (-5 *2 (-848)) (-5 *1 (-462)))) (-2018 (*1 *1) (-5 *1 (-462))) (-2637 (*1 *1 *1) (-5 *1 (-462))) (-2637 (*1 *1 *2) (-12 (-5 *2 (-631 (-631 (-928 (-221))))) (-5 *1 (-462)))) (-2637 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-631 (-631 (-928 (-221))))) (-5 *3 (-631 (-859))) (-5 *4 (-631 (-906))) (-5 *1 (-462)))) (-2637 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-631 (-631 (-928 (-221))))) (-5 *3 (-631 (-859))) (-5 *4 (-631 (-906))) (-5 *5 (-631 (-258))) (-5 *1 (-462)))) (-3471 (*1 *2 *1) (-12 (-5 *2 (-631 (-631 (-928 (-221))))) (-5 *1 (-462)))) (-2564 (*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-462)))) (-2289 (*1 *2 *1) (-12 (-5 *2 (-631 (-1076 (-374)))) (-5 *1 (-462)))) (-2289 (*1 *2 *1 *2) (-12 (-5 *2 (-631 (-1076 (-374)))) (-5 *1 (-462)))) (-2079 (*1 *2 *1) (-12 (-5 *2 (-631 (-374))) (-5 *1 (-462)))) (-2079 (*1 *2 *1 *2) (-12 (-5 *2 (-631 (-374))) (-5 *1 (-462)))) (-3257 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-631 (-928 (-221)))) (-5 *4 (-859)) (-5 *5 (-906)) (-5 *2 (-1246)) (-5 *1 (-462)))) (-3257 (*1 *2 *1 *3) (-12 (-5 *3 (-928 (-221))) (-5 *2 (-1246)) (-5 *1 (-462)))) (-3257 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-928 (-221))) (-5 *4 (-859)) (-5 *5 (-906)) (-5 *2 (-1246)) (-5 *1 (-462)))) (-3642 (*1 *2 *1 *3) (-12 (-5 *3 (-928 (-221))) (-5 *2 (-1246)) (-5 *1 (-462)))) (-4136 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-928 (-221))) (-5 *4 (-859)) (-5 *2 (-1246)) (-5 *1 (-462)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-631 (-631 (-928 (-221))))) (-5 *1 (-462)))) (-2248 (*1 *2 *2 *3) (-12 (-5 *2 (-631 (-631 (-928 (-221))))) (-5 *3 (-631 (-859))) (-5 *1 (-462)))) (-2144 (*1 *2 *3) (-12 (-5 *3 (-631 (-631 (-928 (-221))))) (-5 *2 (-631 (-221))) (-5 *1 (-462)))))
-(-13 (-1082) (-10 -8 (-15 -2018 ($)) (-15 -2637 ($ $)) (-15 -2637 ($ (-631 (-631 (-928 (-221)))))) (-15 -2637 ($ (-631 (-631 (-928 (-221)))) (-631 (-859)) (-631 (-859)) (-631 (-906)))) (-15 -2637 ($ (-631 (-631 (-928 (-221)))) (-631 (-859)) (-631 (-859)) (-631 (-906)) (-631 (-258)))) (-15 -3471 ((-631 (-631 (-928 (-221)))) $)) (-15 -2564 ((-554) $)) (-15 -2289 ((-631 (-1076 (-374))) $)) (-15 -2289 ((-631 (-1076 (-374))) $ (-631 (-1076 (-374))))) (-15 -2079 ((-631 (-374)) $)) (-15 -2079 ((-631 (-374)) $ (-631 (-374)))) (-15 -3257 ((-1246) $ (-631 (-928 (-221))) (-859) (-859) (-906))) (-15 -3257 ((-1246) $ (-928 (-221)))) (-15 -3257 ((-1246) $ (-928 (-221)) (-859) (-859) (-906))) (-15 -3642 ((-1246) $ (-928 (-221)))) (-15 -4136 ((-1246) $ (-928 (-221)) (-859))) (-15 -3075 ($ (-631 (-631 (-928 (-221)))))) (-15 -3075 ((-848) $)) (-15 -2248 ((-631 (-631 (-928 (-221)))) (-631 (-631 (-928 (-221)))) (-631 (-859)))) (-15 -2144 ((-631 (-221)) (-631 (-631 (-928 (-221))))))))
-((-1744 (($ $) NIL) (($ $ $) 11)))
-(((-463 |#1| |#2| |#3|) (-10 -8 (-15 -1744 (|#1| |#1| |#1|)) (-15 -1744 (|#1| |#1|))) (-464 |#2| |#3|) (-170) (-23)) (T -463))
-NIL
-(-10 -8 (-15 -1744 (|#1| |#1| |#1|)) (-15 -1744 (|#1| |#1|)))
-((-3062 (((-112) $ $) 7)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3308 ((|#2| $) 19)) (-3075 (((-848) $) 11)) (-2004 (($) 18 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 15) (($ $ $) 13)) (-1735 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
-(((-464 |#1| |#2|) (-138) (-170) (-23)) (T -464))
-((-3308 (*1 *2 *1) (-12 (-4 *1 (-464 *3 *2)) (-4 *3 (-170)) (-4 *2 (-23)))) (-2004 (*1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-1744 (*1 *1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-1735 (*1 *1 *1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-1744 (*1 *1 *1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))))
-(-13 (-1082) (-10 -8 (-15 -3308 (|t#2| $)) (-15 (-2004) ($) -2397) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -1744 ($ $)) (-15 -1735 ($ $ $)) (-15 -1744 ($ $ $))))
-(((-102) . T) ((-601 (-848)) . T) ((-1082) . T))
-((-2236 (((-3 (-631 (-475 |#1| |#2|)) "failed") (-631 (-475 |#1| |#2|)) (-631 (-850 |#1|))) 92)) (-3901 (((-631 (-631 (-243 |#1| |#2|))) (-631 (-243 |#1| |#2|)) (-631 (-850 |#1|))) 90)) (-2689 (((-2 (|:| |dpolys| (-631 (-243 |#1| |#2|))) (|:| |coords| (-631 (-554)))) (-631 (-243 |#1| |#2|)) (-631 (-850 |#1|))) 61)))
-(((-465 |#1| |#2| |#3|) (-10 -7 (-15 -3901 ((-631 (-631 (-243 |#1| |#2|))) (-631 (-243 |#1| |#2|)) (-631 (-850 |#1|)))) (-15 -2236 ((-3 (-631 (-475 |#1| |#2|)) "failed") (-631 (-475 |#1| |#2|)) (-631 (-850 |#1|)))) (-15 -2689 ((-2 (|:| |dpolys| (-631 (-243 |#1| |#2|))) (|:| |coords| (-631 (-554)))) (-631 (-243 |#1| |#2|)) (-631 (-850 |#1|))))) (-631 (-1158)) (-446) (-446)) (T -465))
-((-2689 (*1 *2 *3 *4) (-12 (-5 *4 (-631 (-850 *5))) (-14 *5 (-631 (-1158))) (-4 *6 (-446)) (-5 *2 (-2 (|:| |dpolys| (-631 (-243 *5 *6))) (|:| |coords| (-631 (-554))))) (-5 *1 (-465 *5 *6 *7)) (-5 *3 (-631 (-243 *5 *6))) (-4 *7 (-446)))) (-2236 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-631 (-475 *4 *5))) (-5 *3 (-631 (-850 *4))) (-14 *4 (-631 (-1158))) (-4 *5 (-446)) (-5 *1 (-465 *4 *5 *6)) (-4 *6 (-446)))) (-3901 (*1 *2 *3 *4) (-12 (-5 *4 (-631 (-850 *5))) (-14 *5 (-631 (-1158))) (-4 *6 (-446)) (-5 *2 (-631 (-631 (-243 *5 *6)))) (-5 *1 (-465 *5 *6 *7)) (-5 *3 (-631 (-243 *5 *6))) (-4 *7 (-446)))))
-(-10 -7 (-15 -3901 ((-631 (-631 (-243 |#1| |#2|))) (-631 (-243 |#1| |#2|)) (-631 (-850 |#1|)))) (-15 -2236 ((-3 (-631 (-475 |#1| |#2|)) "failed") (-631 (-475 |#1| |#2|)) (-631 (-850 |#1|)))) (-15 -2689 ((-2 (|:| |dpolys| (-631 (-243 |#1| |#2|))) (|:| |coords| (-631 (-554)))) (-631 (-243 |#1| |#2|)) (-631 (-850 |#1|)))))
-((-1320 (((-3 $ "failed") $) 11)) (-3992 (($ $ $) 18)) (-1856 (($ $ $) 19)) (-1752 (($ $ $) 9)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) 17)))
-(((-466 |#1|) (-10 -8 (-15 -1856 (|#1| |#1| |#1|)) (-15 -3992 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-554))) (-15 -1752 (|#1| |#1| |#1|)) (-15 -1320 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-758))) (-15 ** (|#1| |#1| (-906)))) (-467)) (T -466))
-NIL
-(-10 -8 (-15 -1856 (|#1| |#1| |#1|)) (-15 -3992 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-554))) (-15 -1752 (|#1| |#1| |#1|)) (-15 -1320 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-758))) (-15 ** (|#1| |#1| (-906))))
-((-3062 (((-112) $ $) 7)) (-4087 (($) 18 T CONST)) (-1320 (((-3 $ "failed") $) 15)) (-3248 (((-112) $) 17)) (-1613 (((-1140) $) 9)) (-2483 (($ $) 24)) (-2768 (((-1102) $) 10)) (-3992 (($ $ $) 21)) (-1856 (($ $ $) 20)) (-3075 (((-848) $) 11)) (-2014 (($) 19 T CONST)) (-1658 (((-112) $ $) 6)) (-1752 (($ $ $) 23)) (** (($ $ (-906)) 13) (($ $ (-758)) 16) (($ $ (-554)) 22)) (* (($ $ $) 14)))
-(((-467) (-138)) (T -467))
-((-2483 (*1 *1 *1) (-4 *1 (-467))) (-1752 (*1 *1 *1 *1) (-4 *1 (-467))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-467)) (-5 *2 (-554)))) (-3992 (*1 *1 *1 *1) (-4 *1 (-467))) (-1856 (*1 *1 *1 *1) (-4 *1 (-467))))
-(-13 (-713) (-10 -8 (-15 -2483 ($ $)) (-15 -1752 ($ $ $)) (-15 ** ($ $ (-554))) (-6 -4370) (-15 -3992 ($ $ $)) (-15 -1856 ($ $ $))))
-(((-102) . T) ((-601 (-848)) . T) ((-713) . T) ((-1094) . T) ((-1082) . T))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2405 (((-631 (-1064)) $) NIL)) (-1576 (((-1158) $) 17)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-546)))) (-1976 (($ $) NIL (|has| |#1| (-546)))) (-1363 (((-112) $) NIL (|has| |#1| (-546)))) (-1557 (($ $ (-402 (-554))) NIL) (($ $ (-402 (-554)) (-402 (-554))) NIL)) (-3042 (((-1138 (-2 (|:| |k| (-402 (-554))) (|:| |c| |#1|))) $) NIL)) (-3023 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4200 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL (|has| |#1| (-358)))) (-1565 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2282 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2286 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3003 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4177 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4175 (($ (-758) (-1138 (-2 (|:| |k| (-402 (-554))) (|:| |c| |#1|)))) NIL)) (-3046 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2916 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4087 (($) NIL T CONST)) (-3964 (($ $ $) NIL (|has| |#1| (-358)))) (-2550 (($ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3943 (($ $ $) NIL (|has| |#1| (-358)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL (|has| |#1| (-358)))) (-3289 (((-112) $) NIL (|has| |#1| (-358)))) (-2051 (((-112) $) NIL)) (-2844 (($) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2342 (((-402 (-554)) $) NIL) (((-402 (-554)) $ (-402 (-554))) NIL)) (-3248 (((-112) $) NIL)) (-3734 (($ $ (-554)) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3333 (($ $ (-906)) NIL) (($ $ (-402 (-554))) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-3580 (((-112) $) NIL)) (-2383 (($ |#1| (-402 (-554))) NIL) (($ $ (-1064) (-402 (-554))) NIL) (($ $ (-631 (-1064)) (-631 (-402 (-554)))) NIL)) (-2879 (($ (-1 |#1| |#1|) $) 22)) (-2395 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2518 (($ $) NIL)) (-2530 ((|#1| $) NIL)) (-2475 (($ (-631 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL (|has| |#1| (-358)))) (-2279 (($ $) 26 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-1158)) 33 (-3994 (-12 (|has| |#1| (-15 -2279 (|#1| |#1| (-1158)))) (|has| |#1| (-15 -2405 ((-631 (-1158)) |#1|))) (|has| |#1| (-38 (-402 (-554))))) (-12 (|has| |#1| (-29 (-554))) (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-944)) (|has| |#1| (-1180))))) (($ $ (-1237 |#2|)) 27 (|has| |#1| (-38 (-402 (-554)))))) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#1| (-358)))) (-2510 (($ (-631 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-2270 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-358)))) (-4282 (($ $ (-402 (-554))) NIL)) (-3919 (((-3 $ "failed") $ $) NIL (|has| |#1| (-546)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-1333 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2386 (((-1138 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-402 (-554))))))) (-2072 (((-758) $) NIL (|has| |#1| (-358)))) (-2064 ((|#1| $ (-402 (-554))) NIL) (($ $ $) NIL (|has| (-402 (-554)) (-1094)))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-358)))) (-1553 (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158)) 25 (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-758)) NIL (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|)))) (($ $ (-1237 |#2|)) 15)) (-3308 (((-402 (-554)) $) NIL)) (-3057 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2926 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3034 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4213 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3014 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4188 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-1300 (($ $) NIL)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1237 |#2|)) NIL) (($ (-1226 |#1| |#2| |#3|)) 9) (($ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $) NIL (|has| |#1| (-546)))) (-1779 ((|#1| $ (-402 (-554))) NIL)) (-2084 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2261 (((-758)) NIL)) (-1608 ((|#1| $) 18)) (-3096 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2959 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-1909 (((-112) $ $) NIL (|has| |#1| (-546)))) (-3069 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2938 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3120 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2981 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4333 ((|#1| $ (-402 (-554))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-554))))) (|has| |#1| (-15 -3075 (|#1| (-1158))))))) (-2908 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2991 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3108 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2969 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3083 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2948 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-758)) NIL (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-1744 (($ $) NIL) (($ $ $) 24)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554)))))) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554)))))))
-(((-468 |#1| |#2| |#3|) (-13 (-1222 |#1|) (-10 -8 (-15 -3075 ($ (-1237 |#2|))) (-15 -3075 ($ (-1226 |#1| |#2| |#3|))) (-15 -1553 ($ $ (-1237 |#2|))) (IF (|has| |#1| (-38 (-402 (-554)))) (-15 -2279 ($ $ (-1237 |#2|))) |%noBranch|))) (-1034) (-1158) |#1|) (T -468))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-468 *3 *4 *5)) (-4 *3 (-1034)) (-14 *5 *3))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-1226 *3 *4 *5)) (-4 *3 (-1034)) (-14 *4 (-1158)) (-14 *5 *3) (-5 *1 (-468 *3 *4 *5)))) (-1553 (*1 *1 *1 *2) (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-468 *3 *4 *5)) (-4 *3 (-1034)) (-14 *5 *3))) (-2279 (*1 *1 *1 *2) (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-468 *3 *4 *5)) (-4 *3 (-38 (-402 (-554)))) (-4 *3 (-1034)) (-14 *5 *3))))
-(-13 (-1222 |#1|) (-10 -8 (-15 -3075 ($ (-1237 |#2|))) (-15 -3075 ($ (-1226 |#1| |#2| |#3|))) (-15 -1553 ($ $ (-1237 |#2|))) (IF (|has| |#1| (-38 (-402 (-554)))) (-15 -2279 ($ $ (-1237 |#2|))) |%noBranch|)))
-((-3062 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-3167 (($) NIL) (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-4233 (((-1246) $ |#1| |#1|) NIL (|has| $ (-6 -4374)))) (-3019 (((-112) $ (-758)) NIL)) (-1501 ((|#2| $ |#1| |#2|) 18)) (-2220 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-2937 (((-3 |#2| "failed") |#1| $) 19)) (-4087 (($) NIL T CONST)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))))) (-1884 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (|has| $ (-6 -4373))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-3 |#2| "failed") |#1| $) 16)) (-2574 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-3676 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (|has| $ (-6 -4373))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-2862 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#2| $ |#1|) NIL)) (-2466 (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-631 |#2|) $) NIL (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) NIL)) (-3044 ((|#1| $) NIL (|has| |#1| (-836)))) (-2379 (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-631 |#2|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2256 ((|#1| $) NIL (|has| |#1| (-836)))) (-2849 (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4374))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-2944 (((-631 |#1|) $) NIL)) (-2415 (((-112) |#1| $) NIL)) (-4150 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-2045 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-2529 (((-631 |#1|) $) NIL)) (-3618 (((-112) |#1| $) NIL)) (-2768 (((-1102) $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-1539 ((|#2| $) NIL (|has| |#1| (-836)))) (-1652 (((-3 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) "failed") (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL)) (-2441 (($ $ |#2|) NIL (|has| $ (-6 -4374)))) (-2152 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-2845 (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-631 |#2|) (-631 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-631 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2625 (((-631 |#2|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-4310 (($) NIL) (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-2777 (((-758) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-758) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-758) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082)))) (((-758) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-602 (-530))))) (-3089 (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-3075 (((-848) $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-601 (-848))) (|has| |#2| (-601 (-848)))))) (-1591 (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-2438 (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-469 |#1| |#2| |#3| |#4|) (-1171 |#1| |#2|) (-1082) (-1082) (-1171 |#1| |#2|) |#2|) (T -469))
-NIL
-(-1171 |#1| |#2|)
-((-3062 (((-112) $ $) NIL)) (-3960 (((-631 (-2 (|:| -2498 $) (|:| -1303 (-631 |#4|)))) (-631 |#4|)) NIL)) (-3176 (((-631 $) (-631 |#4|)) NIL)) (-2405 (((-631 |#3|) $) NIL)) (-1678 (((-112) $) NIL)) (-3005 (((-112) $) NIL (|has| |#1| (-546)))) (-2630 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4057 ((|#4| |#4| $) NIL)) (-3303 (((-2 (|:| |under| $) (|:| -4339 $) (|:| |upper| $)) $ |#3|) NIL)) (-3019 (((-112) $ (-758)) NIL)) (-1871 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373))) (((-3 |#4| "failed") $ |#3|) NIL)) (-4087 (($) NIL T CONST)) (-1930 (((-112) $) 26 (|has| |#1| (-546)))) (-1404 (((-112) $ $) NIL (|has| |#1| (-546)))) (-3262 (((-112) $ $) NIL (|has| |#1| (-546)))) (-2713 (((-112) $) NIL (|has| |#1| (-546)))) (-2242 (((-631 |#4|) (-631 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1380 (((-631 |#4|) (-631 |#4|) $) NIL (|has| |#1| (-546)))) (-4204 (((-631 |#4|) (-631 |#4|) $) NIL (|has| |#1| (-546)))) (-2784 (((-3 $ "failed") (-631 |#4|)) NIL)) (-1668 (($ (-631 |#4|)) NIL)) (-1551 (((-3 $ "failed") $) 39)) (-2930 ((|#4| |#4| $) NIL)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082))))) (-2574 (($ |#4| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-2423 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-546)))) (-2857 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4210 ((|#4| |#4| $) NIL)) (-3676 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4373))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4373))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1971 (((-2 (|:| -2498 (-631 |#4|)) (|:| -1303 (-631 |#4|))) $) NIL)) (-2466 (((-631 |#4|) $) 16 (|has| $ (-6 -4373)))) (-4253 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3954 ((|#3| $) 33)) (-2230 (((-112) $ (-758)) NIL)) (-2379 (((-631 |#4|) $) 17 (|has| $ (-6 -4373)))) (-3068 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082))))) (-2849 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#4| |#4|) $) 21)) (-2643 (((-631 |#3|) $) NIL)) (-1400 (((-112) |#3| $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL)) (-2597 (((-3 |#4| "failed") $) 37)) (-2627 (((-631 |#4|) $) NIL)) (-3007 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1536 ((|#4| |#4| $) NIL)) (-2178 (((-112) $ $) NIL)) (-3548 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-546)))) (-3518 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3492 ((|#4| |#4| $) NIL)) (-2768 (((-1102) $) NIL)) (-1539 (((-3 |#4| "failed") $) 35)) (-1652 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3948 (((-3 $ "failed") $ |#4|) 47)) (-4282 (($ $ |#4|) NIL)) (-2845 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 |#4|) (-631 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-289 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-631 (-289 |#4|))) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) 15)) (-4240 (($) 13)) (-3308 (((-758) $) NIL)) (-2777 (((-758) |#4| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082)))) (((-758) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-1521 (($ $) 12)) (-2927 (((-530) $) NIL (|has| |#4| (-602 (-530))))) (-3089 (($ (-631 |#4|)) 20)) (-2538 (($ $ |#3|) 42)) (-2384 (($ $ |#3|) 44)) (-2258 (($ $) NIL)) (-2128 (($ $ |#3|) NIL)) (-3075 (((-848) $) 31) (((-631 |#4|) $) 40)) (-2347 (((-758) $) NIL (|has| |#3| (-363)))) (-2792 (((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 |#4|))) "failed") (-631 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 |#4|))) "failed") (-631 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3579 (((-112) $ (-1 (-112) |#4| (-631 |#4|))) NIL)) (-2438 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-4267 (((-631 |#3|) $) NIL)) (-3536 (((-112) |#3| $) NIL)) (-1658 (((-112) $ $) NIL)) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-470 |#1| |#2| |#3| |#4|) (-1188 |#1| |#2| |#3| |#4|) (-546) (-780) (-836) (-1048 |#1| |#2| |#3|)) (T -470))
-NIL
-(-1188 |#1| |#2| |#3| |#4|)
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2286 (((-112) $ $) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL)) (-1668 (((-554) $) NIL) (((-402 (-554)) $) NIL)) (-3964 (($ $ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-2844 (($) 18)) (-3248 (((-112) $) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-2270 (((-413 $) $) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-2927 (((-374) $) 22) (((-221) $) 25) (((-402 (-1154 (-554))) $) 19) (((-530) $) 52)) (-3075 (((-848) $) 50) (($ (-554)) NIL) (($ $) NIL) (($ (-402 (-554))) NIL) (((-221) $) 24) (((-374) $) 21)) (-2261 (((-758)) NIL)) (-1909 (((-112) $ $) NIL)) (-2004 (($) 36 T CONST)) (-2014 (($) 11 T CONST)) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL)))
-(((-471) (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))) (-1007) (-601 (-221)) (-601 (-374)) (-602 (-402 (-1154 (-554)))) (-602 (-530)) (-10 -8 (-15 -2844 ($))))) (T -471))
-((-2844 (*1 *1) (-5 *1 (-471))))
-(-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))) (-1007) (-601 (-221)) (-601 (-374)) (-602 (-402 (-1154 (-554)))) (-602 (-530)) (-10 -8 (-15 -2844 ($))))
-((-3062 (((-112) $ $) NIL)) (-3848 (((-1117) $) 11)) (-3836 (((-1117) $) 9)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 19) (($ (-1163)) NIL) (((-1163) $) NIL)) (-1658 (((-112) $ $) NIL)))
-(((-472) (-13 (-1065) (-10 -8 (-15 -3836 ((-1117) $)) (-15 -3848 ((-1117) $))))) (T -472))
-((-3836 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-472)))) (-3848 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-472)))))
-(-13 (-1065) (-10 -8 (-15 -3836 ((-1117) $)) (-15 -3848 ((-1117) $))))
-((-3062 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-3167 (($) NIL) (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-4233 (((-1246) $ |#1| |#1|) NIL (|has| $ (-6 -4374)))) (-3019 (((-112) $ (-758)) NIL)) (-1501 ((|#2| $ |#1| |#2|) 16)) (-2220 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-2937 (((-3 |#2| "failed") |#1| $) 20)) (-4087 (($) NIL T CONST)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))))) (-1884 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (|has| $ (-6 -4373))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-3 |#2| "failed") |#1| $) 18)) (-2574 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-3676 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (|has| $ (-6 -4373))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-2862 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#2| $ |#1|) NIL)) (-2466 (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-631 |#2|) $) NIL (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) NIL)) (-3044 ((|#1| $) NIL (|has| |#1| (-836)))) (-2379 (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-631 |#2|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2256 ((|#1| $) NIL (|has| |#1| (-836)))) (-2849 (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4374))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-2944 (((-631 |#1|) $) 13)) (-2415 (((-112) |#1| $) NIL)) (-4150 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-2045 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-2529 (((-631 |#1|) $) NIL)) (-3618 (((-112) |#1| $) NIL)) (-2768 (((-1102) $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-1539 ((|#2| $) NIL (|has| |#1| (-836)))) (-1652 (((-3 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) "failed") (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL)) (-2441 (($ $ |#2|) NIL (|has| $ (-6 -4374)))) (-2152 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-2845 (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-631 |#2|) (-631 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-631 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2625 (((-631 |#2|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) 19)) (-2064 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4310 (($) NIL) (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-2777 (((-758) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-758) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-758) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082)))) (((-758) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-602 (-530))))) (-3089 (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-3075 (((-848) $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-601 (-848))) (|has| |#2| (-601 (-848)))))) (-1591 (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-2438 (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 11 (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-2563 (((-758) $) 15 (|has| $ (-6 -4373)))))
-(((-473 |#1| |#2| |#3|) (-13 (-1171 |#1| |#2|) (-10 -7 (-6 -4373))) (-1082) (-1082) (-1140)) (T -473))
-NIL
-(-13 (-1171 |#1| |#2|) (-10 -7 (-6 -4373)))
-((-2195 (((-554) (-554) (-554)) 7)) (-2401 (((-112) (-554) (-554) (-554) (-554)) 11)) (-1814 (((-1241 (-631 (-554))) (-758) (-758)) 23)))
-(((-474) (-10 -7 (-15 -2195 ((-554) (-554) (-554))) (-15 -2401 ((-112) (-554) (-554) (-554) (-554))) (-15 -1814 ((-1241 (-631 (-554))) (-758) (-758))))) (T -474))
-((-1814 (*1 *2 *3 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1241 (-631 (-554)))) (-5 *1 (-474)))) (-2401 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-554)) (-5 *2 (-112)) (-5 *1 (-474)))) (-2195 (*1 *2 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-474)))))
-(-10 -7 (-15 -2195 ((-554) (-554) (-554))) (-15 -2401 ((-112) (-554) (-554) (-554) (-554))) (-15 -1814 ((-1241 (-631 (-554))) (-758) (-758))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2405 (((-631 (-850 |#1|)) $) NIL)) (-2237 (((-1154 $) $ (-850 |#1|)) NIL) (((-1154 |#2|) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#2| (-546)))) (-1976 (($ $) NIL (|has| |#2| (-546)))) (-1363 (((-112) $) NIL (|has| |#2| (-546)))) (-3785 (((-758) $) NIL) (((-758) $ (-631 (-850 |#1|))) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-3278 (($ $) NIL (|has| |#2| (-446)))) (-1565 (((-413 $) $) NIL (|has| |#2| (-446)))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#2| "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#2| (-1023 (-402 (-554))))) (((-3 (-554) "failed") $) NIL (|has| |#2| (-1023 (-554)))) (((-3 (-850 |#1|) "failed") $) NIL)) (-1668 ((|#2| $) NIL) (((-402 (-554)) $) NIL (|has| |#2| (-1023 (-402 (-554))))) (((-554) $) NIL (|has| |#2| (-1023 (-554)))) (((-850 |#1|) $) NIL)) (-2999 (($ $ $ (-850 |#1|)) NIL (|has| |#2| (-170)))) (-2026 (($ $ (-631 (-554))) NIL)) (-2550 (($ $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| |#2| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| |#2| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 $) (-1241 $)) NIL) (((-675 |#2|) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2048 (($ $) NIL (|has| |#2| (-446))) (($ $ (-850 |#1|)) NIL (|has| |#2| (-446)))) (-2540 (((-631 $) $) NIL)) (-3289 (((-112) $) NIL (|has| |#2| (-894)))) (-1344 (($ $ |#2| (-476 (-2563 |#1|) (-758)) $) NIL)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (-12 (|has| (-850 |#1|) (-871 (-374))) (|has| |#2| (-871 (-374))))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (-12 (|has| (-850 |#1|) (-871 (-554))) (|has| |#2| (-871 (-554)))))) (-3248 (((-112) $) NIL)) (-2122 (((-758) $) NIL)) (-2393 (($ (-1154 |#2|) (-850 |#1|)) NIL) (($ (-1154 $) (-850 |#1|)) NIL)) (-3910 (((-631 $) $) NIL)) (-3580 (((-112) $) NIL)) (-2383 (($ |#2| (-476 (-2563 |#1|) (-758))) NIL) (($ $ (-850 |#1|) (-758)) NIL) (($ $ (-631 (-850 |#1|)) (-631 (-758))) NIL)) (-4014 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $ (-850 |#1|)) NIL)) (-3893 (((-476 (-2563 |#1|) (-758)) $) NIL) (((-758) $ (-850 |#1|)) NIL) (((-631 (-758)) $ (-631 (-850 |#1|))) NIL)) (-4223 (($ $ $) NIL (|has| |#2| (-836)))) (-2706 (($ $ $) NIL (|has| |#2| (-836)))) (-2789 (($ (-1 (-476 (-2563 |#1|) (-758)) (-476 (-2563 |#1|) (-758))) $) NIL)) (-2879 (($ (-1 |#2| |#2|) $) NIL)) (-3277 (((-3 (-850 |#1|) "failed") $) NIL)) (-2518 (($ $) NIL)) (-2530 ((|#2| $) NIL)) (-2475 (($ (-631 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-1613 (((-1140) $) NIL)) (-3778 (((-3 (-631 $) "failed") $) NIL)) (-2433 (((-3 (-631 $) "failed") $) NIL)) (-3160 (((-3 (-2 (|:| |var| (-850 |#1|)) (|:| -1407 (-758))) "failed") $) NIL)) (-2768 (((-1102) $) NIL)) (-2492 (((-112) $) NIL)) (-2505 ((|#2| $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#2| (-446)))) (-2510 (($ (-631 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-2270 (((-413 $) $) NIL (|has| |#2| (-894)))) (-3919 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-546))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-546)))) (-2386 (($ $ (-631 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ (-850 |#1|) |#2|) NIL) (($ $ (-631 (-850 |#1|)) (-631 |#2|)) NIL) (($ $ (-850 |#1|) $) NIL) (($ $ (-631 (-850 |#1|)) (-631 $)) NIL)) (-1495 (($ $ (-850 |#1|)) NIL (|has| |#2| (-170)))) (-1553 (($ $ (-850 |#1|)) NIL) (($ $ (-631 (-850 |#1|))) NIL) (($ $ (-850 |#1|) (-758)) NIL) (($ $ (-631 (-850 |#1|)) (-631 (-758))) NIL)) (-3308 (((-476 (-2563 |#1|) (-758)) $) NIL) (((-758) $ (-850 |#1|)) NIL) (((-631 (-758)) $ (-631 (-850 |#1|))) NIL)) (-2927 (((-877 (-374)) $) NIL (-12 (|has| (-850 |#1|) (-602 (-877 (-374)))) (|has| |#2| (-602 (-877 (-374)))))) (((-877 (-554)) $) NIL (-12 (|has| (-850 |#1|) (-602 (-877 (-554)))) (|has| |#2| (-602 (-877 (-554)))))) (((-530) $) NIL (-12 (|has| (-850 |#1|) (-602 (-530))) (|has| |#2| (-602 (-530)))))) (-3276 ((|#2| $) NIL (|has| |#2| (-446))) (($ $ (-850 |#1|)) NIL (|has| |#2| (-446)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-894))))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#2|) NIL) (($ (-850 |#1|)) NIL) (($ (-402 (-554))) NIL (-3994 (|has| |#2| (-38 (-402 (-554)))) (|has| |#2| (-1023 (-402 (-554)))))) (($ $) NIL (|has| |#2| (-546)))) (-1893 (((-631 |#2|) $) NIL)) (-1779 ((|#2| $ (-476 (-2563 |#1|) (-758))) NIL) (($ $ (-850 |#1|) (-758)) NIL) (($ $ (-631 (-850 |#1|)) (-631 (-758))) NIL)) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| |#2| (-894))) (|has| |#2| (-143))))) (-2261 (((-758)) NIL)) (-2907 (($ $ $ (-758)) NIL (|has| |#2| (-170)))) (-1909 (((-112) $ $) NIL (|has| |#2| (-546)))) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $ (-850 |#1|)) NIL) (($ $ (-631 (-850 |#1|))) NIL) (($ $ (-850 |#1|) (-758)) NIL) (($ $ (-631 (-850 |#1|)) (-631 (-758))) NIL)) (-1708 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1752 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL (|has| |#2| (-38 (-402 (-554))))) (($ (-402 (-554)) $) NIL (|has| |#2| (-38 (-402 (-554))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-475 |#1| |#2|) (-13 (-934 |#2| (-476 (-2563 |#1|) (-758)) (-850 |#1|)) (-10 -8 (-15 -2026 ($ $ (-631 (-554)))))) (-631 (-1158)) (-1034)) (T -475))
-((-2026 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-475 *3 *4)) (-14 *3 (-631 (-1158))) (-4 *4 (-1034)))))
-(-13 (-934 |#2| (-476 (-2563 |#1|) (-758)) (-850 |#1|)) (-10 -8 (-15 -2026 ($ $ (-631 (-554))))))
-((-3062 (((-112) $ $) NIL (|has| |#2| (-1082)))) (-1695 (((-112) $) NIL (|has| |#2| (-130)))) (-2327 (($ (-906)) NIL (|has| |#2| (-1034)))) (-4233 (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-1349 (($ $ $) NIL (|has| |#2| (-780)))) (-2934 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-3019 (((-112) $ (-758)) NIL)) (-1508 (((-758)) NIL (|has| |#2| (-363)))) (-4219 (((-554) $) NIL (|has| |#2| (-834)))) (-1501 ((|#2| $ (-554) |#2|) NIL (|has| $ (-6 -4374)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) NIL (-12 (|has| |#2| (-1023 (-554))) (|has| |#2| (-1082)))) (((-3 (-402 (-554)) "failed") $) NIL (-12 (|has| |#2| (-1023 (-402 (-554)))) (|has| |#2| (-1082)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1082)))) (-1668 (((-554) $) NIL (-12 (|has| |#2| (-1023 (-554))) (|has| |#2| (-1082)))) (((-402 (-554)) $) NIL (-12 (|has| |#2| (-1023 (-402 (-554)))) (|has| |#2| (-1082)))) ((|#2| $) NIL (|has| |#2| (-1082)))) (-3699 (((-675 (-554)) (-675 $)) NIL (-12 (|has| |#2| (-627 (-554))) (|has| |#2| (-1034)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (-12 (|has| |#2| (-627 (-554))) (|has| |#2| (-1034)))) (((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 $) (-1241 $)) NIL (|has| |#2| (-1034))) (((-675 |#2|) (-675 $)) NIL (|has| |#2| (-1034)))) (-1320 (((-3 $ "failed") $) NIL (|has| |#2| (-713)))) (-3353 (($) NIL (|has| |#2| (-363)))) (-2862 ((|#2| $ (-554) |#2|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#2| $ (-554)) 11)) (-2745 (((-112) $) NIL (|has| |#2| (-834)))) (-2466 (((-631 |#2|) $) NIL (|has| $ (-6 -4373)))) (-3248 (((-112) $) NIL (|has| |#2| (-713)))) (-4304 (((-112) $) NIL (|has| |#2| (-834)))) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) NIL (|has| (-554) (-836)))) (-4223 (($ $ $) NIL (-3994 (|has| |#2| (-780)) (|has| |#2| (-834))))) (-2379 (((-631 |#2|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2256 (((-554) $) NIL (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (-3994 (|has| |#2| (-780)) (|has| |#2| (-834))))) (-2849 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#2| |#2|) $) NIL)) (-3830 (((-906) $) NIL (|has| |#2| (-363)))) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (|has| |#2| (-1082)))) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) NIL)) (-2717 (($ (-906)) NIL (|has| |#2| (-363)))) (-2768 (((-1102) $) NIL (|has| |#2| (-1082)))) (-1539 ((|#2| $) NIL (|has| (-554) (-836)))) (-2441 (($ $ |#2|) NIL (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-631 |#2|) (-631 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2625 (((-631 |#2|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#2| $ (-554) |#2|) NIL) ((|#2| $ (-554)) NIL)) (-3748 ((|#2| $ $) NIL (|has| |#2| (-1034)))) (-2313 (($ (-1241 |#2|)) NIL)) (-3330 (((-133)) NIL (|has| |#2| (-358)))) (-1553 (($ $) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1034)))) (($ $ (-758)) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1034)))) (($ $ (-1158)) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-1 |#2| |#2|) (-758)) NIL (|has| |#2| (-1034))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1034)))) (-2777 (((-758) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373))) (((-758) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-1521 (($ $) NIL)) (-3075 (((-1241 |#2|) $) NIL) (($ (-554)) NIL (-3994 (-12 (|has| |#2| (-1023 (-554))) (|has| |#2| (-1082))) (|has| |#2| (-1034)))) (($ (-402 (-554))) NIL (-12 (|has| |#2| (-1023 (-402 (-554)))) (|has| |#2| (-1082)))) (($ |#2|) NIL (|has| |#2| (-1082))) (((-848) $) NIL (|has| |#2| (-601 (-848))))) (-2261 (((-758)) NIL (|has| |#2| (-1034)))) (-2438 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-1700 (($ $) NIL (|has| |#2| (-834)))) (-2004 (($) NIL (|has| |#2| (-130)) CONST)) (-2014 (($) NIL (|has| |#2| (-713)) CONST)) (-1787 (($ $) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1034)))) (($ $ (-758)) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1034)))) (($ $ (-1158)) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-1 |#2| |#2|) (-758)) NIL (|has| |#2| (-1034))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1034)))) (-1708 (((-112) $ $) NIL (-3994 (|has| |#2| (-780)) (|has| |#2| (-834))))) (-1686 (((-112) $ $) NIL (-3994 (|has| |#2| (-780)) (|has| |#2| (-834))))) (-1658 (((-112) $ $) NIL (|has| |#2| (-1082)))) (-1697 (((-112) $ $) NIL (-3994 (|has| |#2| (-780)) (|has| |#2| (-834))))) (-1676 (((-112) $ $) 15 (-3994 (|has| |#2| (-780)) (|has| |#2| (-834))))) (-1752 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-1744 (($ $ $) NIL (|has| |#2| (-1034))) (($ $) NIL (|has| |#2| (-1034)))) (-1735 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-758)) NIL (|has| |#2| (-713))) (($ $ (-906)) NIL (|has| |#2| (-713)))) (* (($ (-554) $) NIL (|has| |#2| (-1034))) (($ $ $) NIL (|has| |#2| (-713))) (($ $ |#2|) NIL (|has| |#2| (-713))) (($ |#2| $) NIL (|has| |#2| (-713))) (($ (-758) $) NIL (|has| |#2| (-130))) (($ (-906) $) NIL (|has| |#2| (-25)))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-476 |#1| |#2|) (-234 |#1| |#2|) (-758) (-780)) (T -476))
-NIL
-(-234 |#1| |#2|)
-((-3062 (((-112) $ $) NIL)) (-1322 (((-631 (-500)) $) 11)) (-4309 (((-500) $) 10)) (-1613 (((-1140) $) NIL)) (-1681 (($ (-500) (-631 (-500))) 9)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 20) (($ (-1163)) NIL) (((-1163) $) NIL)) (-1658 (((-112) $ $) NIL)))
-(((-477) (-13 (-1065) (-10 -8 (-15 -1681 ($ (-500) (-631 (-500)))) (-15 -4309 ((-500) $)) (-15 -1322 ((-631 (-500)) $))))) (T -477))
-((-1681 (*1 *1 *2 *3) (-12 (-5 *3 (-631 (-500))) (-5 *2 (-500)) (-5 *1 (-477)))) (-4309 (*1 *2 *1) (-12 (-5 *2 (-500)) (-5 *1 (-477)))) (-1322 (*1 *2 *1) (-12 (-5 *2 (-631 (-500))) (-5 *1 (-477)))))
-(-13 (-1065) (-10 -8 (-15 -1681 ($ (-500) (-631 (-500)))) (-15 -4309 ((-500) $)) (-15 -1322 ((-631 (-500)) $))))
-((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-3019 (((-112) $ (-758)) NIL)) (-4087 (($) NIL T CONST)) (-2466 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) NIL)) (-3606 (($ $ $) 32)) (-3717 (($ $ $) 31)) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2706 ((|#1| $) 26)) (-2849 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-4150 ((|#1| $) 27)) (-2045 (($ |#1| $) 10)) (-1347 (($ (-631 |#1|)) 12)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-2152 ((|#1| $) 23)) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) 9)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1521 (($ $) NIL)) (-3075 (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-1591 (($ (-631 |#1|)) 29)) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2563 (((-758) $) 21 (|has| $ (-6 -4373)))))
-(((-478 |#1|) (-13 (-953 |#1|) (-10 -8 (-15 -1347 ($ (-631 |#1|))))) (-836)) (T -478))
-((-1347 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-836)) (-5 *1 (-478 *3)))))
-(-13 (-953 |#1|) (-10 -8 (-15 -1347 ($ (-631 |#1|)))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-3676 (($ $) 69)) (-3868 (((-112) $) NIL)) (-1613 (((-1140) $) NIL)) (-3822 (((-408 |#2| (-402 |#2|) |#3| |#4|) $) 44)) (-2768 (((-1102) $) NIL)) (-4137 (((-3 |#4| "failed") $) 107)) (-1861 (($ (-408 |#2| (-402 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-554)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-3678 (((-2 (|:| -3142 (-408 |#2| (-402 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-3075 (((-848) $) 102)) (-2004 (($) 33 T CONST)) (-1658 (((-112) $ $) 109)) (-1744 (($ $) 72) (($ $ $) NIL)) (-1735 (($ $ $) 70)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 73)))
-(((-479 |#1| |#2| |#3| |#4|) (-330 |#1| |#2| |#3| |#4|) (-358) (-1217 |#1|) (-1217 (-402 |#2|)) (-337 |#1| |#2| |#3|)) (T -479))
-NIL
-(-330 |#1| |#2| |#3| |#4|)
-((-1624 (((-554) (-631 (-554))) 30)) (-1424 ((|#1| (-631 |#1|)) 56)) (-1637 (((-631 |#1|) (-631 |#1|)) 57)) (-2681 (((-631 |#1|) (-631 |#1|)) 59)) (-2510 ((|#1| (-631 |#1|)) 58)) (-3276 (((-631 (-554)) (-631 |#1|)) 33)))
-(((-480 |#1|) (-10 -7 (-15 -2510 (|#1| (-631 |#1|))) (-15 -1424 (|#1| (-631 |#1|))) (-15 -2681 ((-631 |#1|) (-631 |#1|))) (-15 -1637 ((-631 |#1|) (-631 |#1|))) (-15 -3276 ((-631 (-554)) (-631 |#1|))) (-15 -1624 ((-554) (-631 (-554))))) (-1217 (-554))) (T -480))
-((-1624 (*1 *2 *3) (-12 (-5 *3 (-631 (-554))) (-5 *2 (-554)) (-5 *1 (-480 *4)) (-4 *4 (-1217 *2)))) (-3276 (*1 *2 *3) (-12 (-5 *3 (-631 *4)) (-4 *4 (-1217 (-554))) (-5 *2 (-631 (-554))) (-5 *1 (-480 *4)))) (-1637 (*1 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1217 (-554))) (-5 *1 (-480 *3)))) (-2681 (*1 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1217 (-554))) (-5 *1 (-480 *3)))) (-1424 (*1 *2 *3) (-12 (-5 *3 (-631 *2)) (-5 *1 (-480 *2)) (-4 *2 (-1217 (-554))))) (-2510 (*1 *2 *3) (-12 (-5 *3 (-631 *2)) (-5 *1 (-480 *2)) (-4 *2 (-1217 (-554))))))
-(-10 -7 (-15 -2510 (|#1| (-631 |#1|))) (-15 -1424 (|#1| (-631 |#1|))) (-15 -2681 ((-631 |#1|) (-631 |#1|))) (-15 -1637 ((-631 |#1|) (-631 |#1|))) (-15 -3276 ((-631 (-554)) (-631 |#1|))) (-15 -1624 ((-554) (-631 (-554)))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-3831 (((-554) $) NIL (|has| (-554) (-302)))) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (|has| (-554) (-894)))) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (|has| (-554) (-894)))) (-2286 (((-112) $ $) NIL)) (-4219 (((-554) $) NIL (|has| (-554) (-807)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) NIL) (((-3 (-1158) "failed") $) NIL (|has| (-554) (-1023 (-1158)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| (-554) (-1023 (-554)))) (((-3 (-554) "failed") $) NIL (|has| (-554) (-1023 (-554))))) (-1668 (((-554) $) NIL) (((-1158) $) NIL (|has| (-554) (-1023 (-1158)))) (((-402 (-554)) $) NIL (|has| (-554) (-1023 (-554)))) (((-554) $) NIL (|has| (-554) (-1023 (-554))))) (-3964 (($ $ $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| (-554) (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| (-554) (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL) (((-675 (-554)) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3353 (($) NIL (|has| (-554) (-539)))) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-2745 (((-112) $) NIL (|has| (-554) (-807)))) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (|has| (-554) (-871 (-554)))) (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (|has| (-554) (-871 (-374))))) (-3248 (((-112) $) NIL)) (-3472 (($ $) NIL)) (-2810 (((-554) $) NIL)) (-3339 (((-3 $ "failed") $) NIL (|has| (-554) (-1133)))) (-4304 (((-112) $) NIL (|has| (-554) (-807)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-4223 (($ $ $) NIL (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (|has| (-554) (-836)))) (-2879 (($ (-1 (-554) (-554)) $) NIL)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-3834 (($) NIL (|has| (-554) (-1133)) CONST)) (-2808 (($ (-402 (-554))) 9)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3722 (($ $) NIL (|has| (-554) (-302))) (((-402 (-554)) $) NIL)) (-4339 (((-554) $) NIL (|has| (-554) (-539)))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (|has| (-554) (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (|has| (-554) (-894)))) (-2270 (((-413 $) $) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2386 (($ $ (-631 (-554)) (-631 (-554))) NIL (|has| (-554) (-304 (-554)))) (($ $ (-554) (-554)) NIL (|has| (-554) (-304 (-554)))) (($ $ (-289 (-554))) NIL (|has| (-554) (-304 (-554)))) (($ $ (-631 (-289 (-554)))) NIL (|has| (-554) (-304 (-554)))) (($ $ (-631 (-1158)) (-631 (-554))) NIL (|has| (-554) (-508 (-1158) (-554)))) (($ $ (-1158) (-554)) NIL (|has| (-554) (-508 (-1158) (-554))))) (-2072 (((-758) $) NIL)) (-2064 (($ $ (-554)) NIL (|has| (-554) (-281 (-554) (-554))))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-1553 (($ $) NIL (|has| (-554) (-229))) (($ $ (-758)) NIL (|has| (-554) (-229))) (($ $ (-1158)) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-1 (-554) (-554)) (-758)) NIL) (($ $ (-1 (-554) (-554))) NIL)) (-3623 (($ $) NIL)) (-2822 (((-554) $) NIL)) (-2927 (((-877 (-554)) $) NIL (|has| (-554) (-602 (-877 (-554))))) (((-877 (-374)) $) NIL (|has| (-554) (-602 (-877 (-374))))) (((-530) $) NIL (|has| (-554) (-602 (-530)))) (((-374) $) NIL (|has| (-554) (-1007))) (((-221) $) NIL (|has| (-554) (-1007)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| (-554) (-894))))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL) (($ (-402 (-554))) 8) (($ (-554)) NIL) (($ (-1158)) NIL (|has| (-554) (-1023 (-1158)))) (((-402 (-554)) $) NIL) (((-989 16) $) 10)) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| (-554) (-894))) (|has| (-554) (-143))))) (-2261 (((-758)) NIL)) (-2755 (((-554) $) NIL (|has| (-554) (-539)))) (-1909 (((-112) $ $) NIL)) (-1700 (($ $) NIL (|has| (-554) (-807)))) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $) NIL (|has| (-554) (-229))) (($ $ (-758)) NIL (|has| (-554) (-229))) (($ $ (-1158)) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-1 (-554) (-554)) (-758)) NIL) (($ $ (-1 (-554) (-554))) NIL)) (-1708 (((-112) $ $) NIL (|has| (-554) (-836)))) (-1686 (((-112) $ $) NIL (|has| (-554) (-836)))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (|has| (-554) (-836)))) (-1676 (((-112) $ $) NIL (|has| (-554) (-836)))) (-1752 (($ $ $) NIL) (($ (-554) (-554)) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL) (($ (-554) $) NIL) (($ $ (-554)) NIL)))
-(((-481) (-13 (-977 (-554)) (-601 (-402 (-554))) (-601 (-989 16)) (-10 -8 (-15 -3722 ((-402 (-554)) $)) (-15 -2808 ($ (-402 (-554))))))) (T -481))
-((-3722 (*1 *2 *1) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-481)))) (-2808 (*1 *1 *2) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-481)))))
-(-13 (-977 (-554)) (-601 (-402 (-554))) (-601 (-989 16)) (-10 -8 (-15 -3722 ((-402 (-554)) $)) (-15 -2808 ($ (-402 (-554))))))
-((-2379 (((-631 |#2|) $) 23)) (-3068 (((-112) |#2| $) 28)) (-2845 (((-112) (-1 (-112) |#2|) $) 21)) (-2386 (($ $ (-631 (-289 |#2|))) 13) (($ $ (-289 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-631 |#2|) (-631 |#2|)) NIL)) (-2777 (((-758) (-1 (-112) |#2|) $) 22) (((-758) |#2| $) 26)) (-3075 (((-848) $) 37)) (-2438 (((-112) (-1 (-112) |#2|) $) 20)) (-1658 (((-112) $ $) 31)) (-2563 (((-758) $) 17)))
-(((-482 |#1| |#2|) (-10 -8 (-15 -3075 ((-848) |#1|)) (-15 -1658 ((-112) |#1| |#1|)) (-15 -2386 (|#1| |#1| (-631 |#2|) (-631 |#2|))) (-15 -2386 (|#1| |#1| |#2| |#2|)) (-15 -2386 (|#1| |#1| (-289 |#2|))) (-15 -2386 (|#1| |#1| (-631 (-289 |#2|)))) (-15 -3068 ((-112) |#2| |#1|)) (-15 -2777 ((-758) |#2| |#1|)) (-15 -2379 ((-631 |#2|) |#1|)) (-15 -2777 ((-758) (-1 (-112) |#2|) |#1|)) (-15 -2845 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2438 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2563 ((-758) |#1|))) (-483 |#2|) (-1195)) (T -482))
-NIL
-(-10 -8 (-15 -3075 ((-848) |#1|)) (-15 -1658 ((-112) |#1| |#1|)) (-15 -2386 (|#1| |#1| (-631 |#2|) (-631 |#2|))) (-15 -2386 (|#1| |#1| |#2| |#2|)) (-15 -2386 (|#1| |#1| (-289 |#2|))) (-15 -2386 (|#1| |#1| (-631 (-289 |#2|)))) (-15 -3068 ((-112) |#2| |#1|)) (-15 -2777 ((-758) |#2| |#1|)) (-15 -2379 ((-631 |#2|) |#1|)) (-15 -2777 ((-758) (-1 (-112) |#2|) |#1|)) (-15 -2845 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2438 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2563 ((-758) |#1|)))
-((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-3019 (((-112) $ (-758)) 8)) (-4087 (($) 7 T CONST)) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) 9)) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35)) (-3731 (((-112) $ (-758)) 10)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373)))))
-(((-483 |#1|) (-138) (-1195)) (T -483))
-((-2879 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-483 *3)) (-4 *3 (-1195)))) (-2849 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4374)) (-4 *1 (-483 *3)) (-4 *3 (-1195)))) (-2438 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4373)) (-4 *1 (-483 *4)) (-4 *4 (-1195)) (-5 *2 (-112)))) (-2845 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4373)) (-4 *1 (-483 *4)) (-4 *4 (-1195)) (-5 *2 (-112)))) (-2777 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4373)) (-4 *1 (-483 *4)) (-4 *4 (-1195)) (-5 *2 (-758)))) (-2466 (*1 *2 *1) (-12 (|has| *1 (-6 -4373)) (-4 *1 (-483 *3)) (-4 *3 (-1195)) (-5 *2 (-631 *3)))) (-2379 (*1 *2 *1) (-12 (|has| *1 (-6 -4373)) (-4 *1 (-483 *3)) (-4 *3 (-1195)) (-5 *2 (-631 *3)))) (-2777 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4373)) (-4 *1 (-483 *3)) (-4 *3 (-1195)) (-4 *3 (-1082)) (-5 *2 (-758)))) (-3068 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4373)) (-4 *1 (-483 *3)) (-4 *3 (-1195)) (-4 *3 (-1082)) (-5 *2 (-112)))))
-(-13 (-34) (-10 -8 (IF (|has| |t#1| (-601 (-848))) (-6 (-601 (-848))) |%noBranch|) (IF (|has| |t#1| (-1082)) (-6 (-1082)) |%noBranch|) (IF (|has| |t#1| (-1082)) (IF (|has| |t#1| (-304 |t#1|)) (-6 (-304 |t#1|)) |%noBranch|) |%noBranch|) (-15 -2879 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4374)) (-15 -2849 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4373)) (PROGN (-15 -2438 ((-112) (-1 (-112) |t#1|) $)) (-15 -2845 ((-112) (-1 (-112) |t#1|) $)) (-15 -2777 ((-758) (-1 (-112) |t#1|) $)) (-15 -2466 ((-631 |t#1|) $)) (-15 -2379 ((-631 |t#1|) $)) (IF (|has| |t#1| (-1082)) (PROGN (-15 -2777 ((-758) |t#1| $)) (-15 -3068 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1082)) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-601 (-848)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-1082) |has| |#1| (-1082)) ((-1195) . T))
-((-3075 ((|#1| $) 6) (($ |#1|) 9)))
-(((-484 |#1|) (-138) (-1195)) (T -484))
-NIL
-(-13 (-601 |t#1|) (-604 |t#1|))
-(((-604 |#1|) . T) ((-601 |#1|) . T))
-((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2621 (($ (-1140)) 8)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 14) (((-1140) $) 11)) (-1658 (((-112) $ $) 10)))
-(((-485) (-13 (-1082) (-601 (-1140)) (-10 -8 (-15 -2621 ($ (-1140)))))) (T -485))
-((-2621 (*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-485)))))
-(-13 (-1082) (-601 (-1140)) (-10 -8 (-15 -2621 ($ (-1140)))))
-((-3023 (($ $) 15)) (-3003 (($ $) 24)) (-3046 (($ $) 12)) (-3057 (($ $) 10)) (-3034 (($ $) 17)) (-3014 (($ $) 22)))
-(((-486 |#1|) (-10 -8 (-15 -3014 (|#1| |#1|)) (-15 -3034 (|#1| |#1|)) (-15 -3057 (|#1| |#1|)) (-15 -3046 (|#1| |#1|)) (-15 -3003 (|#1| |#1|)) (-15 -3023 (|#1| |#1|))) (-487)) (T -486))
-NIL
-(-10 -8 (-15 -3014 (|#1| |#1|)) (-15 -3034 (|#1| |#1|)) (-15 -3057 (|#1| |#1|)) (-15 -3046 (|#1| |#1|)) (-15 -3003 (|#1| |#1|)) (-15 -3023 (|#1| |#1|)))
-((-3023 (($ $) 11)) (-3003 (($ $) 10)) (-3046 (($ $) 9)) (-3057 (($ $) 8)) (-3034 (($ $) 7)) (-3014 (($ $) 6)))
-(((-487) (-138)) (T -487))
-((-3023 (*1 *1 *1) (-4 *1 (-487))) (-3003 (*1 *1 *1) (-4 *1 (-487))) (-3046 (*1 *1 *1) (-4 *1 (-487))) (-3057 (*1 *1 *1) (-4 *1 (-487))) (-3034 (*1 *1 *1) (-4 *1 (-487))) (-3014 (*1 *1 *1) (-4 *1 (-487))))
-(-13 (-10 -8 (-15 -3014 ($ $)) (-15 -3034 ($ $)) (-15 -3057 ($ $)) (-15 -3046 ($ $)) (-15 -3003 ($ $)) (-15 -3023 ($ $))))
-((-2270 (((-413 |#4|) |#4| (-1 (-413 |#2|) |#2|)) 42)))
-(((-488 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2270 ((-413 |#4|) |#4| (-1 (-413 |#2|) |#2|)))) (-358) (-1217 |#1|) (-13 (-358) (-145) (-711 |#1| |#2|)) (-1217 |#3|)) (T -488))
-((-2270 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-413 *6) *6)) (-4 *6 (-1217 *5)) (-4 *5 (-358)) (-4 *7 (-13 (-358) (-145) (-711 *5 *6))) (-5 *2 (-413 *3)) (-5 *1 (-488 *5 *6 *7 *3)) (-4 *3 (-1217 *7)))))
-(-10 -7 (-15 -2270 ((-413 |#4|) |#4| (-1 (-413 |#2|) |#2|))))
-((-3062 (((-112) $ $) NIL)) (-2719 (((-631 $) (-1154 $) (-1158)) NIL) (((-631 $) (-1154 $)) NIL) (((-631 $) (-937 $)) NIL)) (-3856 (($ (-1154 $) (-1158)) NIL) (($ (-1154 $)) NIL) (($ (-937 $)) NIL)) (-1695 (((-112) $) 39)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-2940 (((-112) $ $) 64)) (-2143 (((-631 (-600 $)) $) 48)) (-2934 (((-3 $ "failed") $ $) NIL)) (-3380 (($ $ (-289 $)) NIL) (($ $ (-631 (-289 $))) NIL) (($ $ (-631 (-600 $)) (-631 $)) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2282 (($ $) NIL)) (-2286 (((-112) $ $) NIL)) (-4087 (($) NIL T CONST)) (-3613 (((-631 $) (-1154 $) (-1158)) NIL) (((-631 $) (-1154 $)) NIL) (((-631 $) (-937 $)) NIL)) (-3625 (($ (-1154 $) (-1158)) NIL) (($ (-1154 $)) NIL) (($ (-937 $)) NIL)) (-2784 (((-3 (-600 $) "failed") $) NIL) (((-3 (-554) "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL)) (-1668 (((-600 $) $) NIL) (((-554) $) NIL) (((-402 (-554)) $) 50)) (-3964 (($ $ $) NIL)) (-3699 (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL) (((-675 (-554)) (-675 $)) NIL) (((-2 (|:| -2866 (-675 (-402 (-554)))) (|:| |vec| (-1241 (-402 (-554))))) (-675 $) (-1241 $)) NIL) (((-675 (-402 (-554))) (-675 $)) NIL)) (-3676 (($ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-1342 (($ $) NIL) (($ (-631 $)) NIL)) (-3489 (((-631 (-114)) $) NIL)) (-3086 (((-114) (-114)) NIL)) (-3248 (((-112) $) 42)) (-3273 (((-112) $) NIL (|has| $ (-1023 (-554))))) (-2810 (((-1107 (-554) (-600 $)) $) 37)) (-3734 (($ $ (-554)) NIL)) (-3274 (((-1154 $) (-1154 $) (-600 $)) 78) (((-1154 $) (-1154 $) (-631 (-600 $))) 55) (($ $ (-600 $)) 67) (($ $ (-631 (-600 $))) 68)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-1823 (((-1154 $) (-600 $)) 65 (|has| $ (-1034)))) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-2879 (($ (-1 $ $) (-600 $)) NIL)) (-3310 (((-3 (-600 $) "failed") $) NIL)) (-2475 (($ (-631 $)) NIL) (($ $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2227 (((-631 (-600 $)) $) NIL)) (-1408 (($ (-114) $) NIL) (($ (-114) (-631 $)) NIL)) (-2640 (((-112) $ (-114)) NIL) (((-112) $ (-1158)) NIL)) (-2483 (($ $) NIL)) (-3323 (((-758) $) NIL)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ (-631 $)) NIL) (($ $ $) NIL)) (-2041 (((-112) $ $) NIL) (((-112) $ (-1158)) NIL)) (-2270 (((-413 $) $) NIL)) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-1795 (((-112) $) NIL (|has| $ (-1023 (-554))))) (-2386 (($ $ (-600 $) $) NIL) (($ $ (-631 (-600 $)) (-631 $)) NIL) (($ $ (-631 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ (-631 (-1158)) (-631 (-1 $ $))) NIL) (($ $ (-631 (-1158)) (-631 (-1 $ (-631 $)))) NIL) (($ $ (-1158) (-1 $ (-631 $))) NIL) (($ $ (-1158) (-1 $ $)) NIL) (($ $ (-631 (-114)) (-631 (-1 $ $))) NIL) (($ $ (-631 (-114)) (-631 (-1 $ (-631 $)))) NIL) (($ $ (-114) (-1 $ (-631 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-2072 (((-758) $) NIL)) (-2064 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-631 $)) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-3862 (($ $) NIL) (($ $ $) NIL)) (-1553 (($ $ (-758)) NIL) (($ $) 36)) (-2822 (((-1107 (-554) (-600 $)) $) 20)) (-4318 (($ $) NIL (|has| $ (-1034)))) (-2927 (((-374) $) 92) (((-221) $) 100) (((-167 (-374)) $) 108)) (-3075 (((-848) $) NIL) (($ (-600 $)) NIL) (($ (-402 (-554))) NIL) (($ $) NIL) (($ (-554)) NIL) (($ (-1107 (-554) (-600 $))) 21)) (-2261 (((-758)) NIL)) (-4125 (($ $) NIL) (($ (-631 $)) NIL)) (-1902 (((-112) (-114)) 84)) (-1909 (((-112) $ $) NIL)) (-2004 (($) 10 T CONST)) (-2014 (($) 22 T CONST)) (-1787 (($ $ (-758)) NIL) (($ $) NIL)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 24)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) NIL)) (-1752 (($ $ $) 44)) (-1744 (($ $ $) NIL) (($ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-402 (-554))) NIL) (($ $ (-554)) 46) (($ $ (-758)) NIL) (($ $ (-906)) NIL)) (* (($ (-402 (-554)) $) NIL) (($ $ (-402 (-554))) NIL) (($ $ $) 27) (($ (-554) $) NIL) (($ (-758) $) NIL) (($ (-906) $) NIL)))
-(((-489) (-13 (-297) (-27) (-1023 (-554)) (-1023 (-402 (-554))) (-627 (-554)) (-1007) (-627 (-402 (-554))) (-145) (-602 (-167 (-374))) (-229) (-10 -8 (-15 -3075 ($ (-1107 (-554) (-600 $)))) (-15 -2810 ((-1107 (-554) (-600 $)) $)) (-15 -2822 ((-1107 (-554) (-600 $)) $)) (-15 -3676 ($ $)) (-15 -2940 ((-112) $ $)) (-15 -3274 ((-1154 $) (-1154 $) (-600 $))) (-15 -3274 ((-1154 $) (-1154 $) (-631 (-600 $)))) (-15 -3274 ($ $ (-600 $))) (-15 -3274 ($ $ (-631 (-600 $))))))) (T -489))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-1107 (-554) (-600 (-489)))) (-5 *1 (-489)))) (-2810 (*1 *2 *1) (-12 (-5 *2 (-1107 (-554) (-600 (-489)))) (-5 *1 (-489)))) (-2822 (*1 *2 *1) (-12 (-5 *2 (-1107 (-554) (-600 (-489)))) (-5 *1 (-489)))) (-3676 (*1 *1 *1) (-5 *1 (-489))) (-2940 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-489)))) (-3274 (*1 *2 *2 *3) (-12 (-5 *2 (-1154 (-489))) (-5 *3 (-600 (-489))) (-5 *1 (-489)))) (-3274 (*1 *2 *2 *3) (-12 (-5 *2 (-1154 (-489))) (-5 *3 (-631 (-600 (-489)))) (-5 *1 (-489)))) (-3274 (*1 *1 *1 *2) (-12 (-5 *2 (-600 (-489))) (-5 *1 (-489)))) (-3274 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-600 (-489)))) (-5 *1 (-489)))))
-(-13 (-297) (-27) (-1023 (-554)) (-1023 (-402 (-554))) (-627 (-554)) (-1007) (-627 (-402 (-554))) (-145) (-602 (-167 (-374))) (-229) (-10 -8 (-15 -3075 ($ (-1107 (-554) (-600 $)))) (-15 -2810 ((-1107 (-554) (-600 $)) $)) (-15 -2822 ((-1107 (-554) (-600 $)) $)) (-15 -3676 ($ $)) (-15 -2940 ((-112) $ $)) (-15 -3274 ((-1154 $) (-1154 $) (-600 $))) (-15 -3274 ((-1154 $) (-1154 $) (-631 (-600 $)))) (-15 -3274 ($ $ (-600 $))) (-15 -3274 ($ $ (-631 (-600 $))))))
-((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-4233 (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-4015 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-836)))) (-2576 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4374))) (($ $) NIL (-12 (|has| $ (-6 -4374)) (|has| |#1| (-836))))) (-3303 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-836)))) (-3019 (((-112) $ (-758)) NIL)) (-1501 ((|#1| $ (-554) |#1|) 25 (|has| $ (-6 -4374))) ((|#1| $ (-1208 (-554)) |#1|) NIL (|has| $ (-6 -4374)))) (-1871 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-4087 (($) NIL T CONST)) (-3920 (($ $) NIL (|has| $ (-6 -4374)))) (-3799 (($ $) NIL)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2574 (($ |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4373)))) (-2862 ((|#1| $ (-554) |#1|) 22 (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-554)) 21)) (-1484 (((-554) (-1 (-112) |#1|) $) NIL) (((-554) |#1| $) NIL (|has| |#1| (-1082))) (((-554) |#1| $ (-554)) NIL (|has| |#1| (-1082)))) (-2466 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3180 (($ (-758) |#1|) 14)) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) 12 (|has| (-554) (-836)))) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-3717 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-836)))) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2256 (((-554) $) 23 (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2849 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-1782 (($ |#1| $ (-554)) NIL) (($ $ $ (-554)) NIL)) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) NIL)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-1539 ((|#1| $) NIL (|has| (-554) (-836)))) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2441 (($ $ |#1|) 10 (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) 13)) (-2064 ((|#1| $ (-554) |#1|) NIL) ((|#1| $ (-554)) 24) (($ $ (-1208 (-554))) NIL)) (-2021 (($ $ (-554)) NIL) (($ $ (-1208 (-554))) NIL)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-3553 (($ $ $ (-554)) NIL (|has| $ (-6 -4374)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) NIL)) (-4323 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-631 $)) NIL)) (-3075 (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-2563 (((-758) $) 9 (|has| $ (-6 -4373)))))
-(((-490 |#1| |#2|) (-19 |#1|) (-1195) (-554)) (T -490))
+((-2592 (($ $) 6)) (-2573 (($ $) 7)) (** (($ $ $) 8)))
+(((-283) (-139)) (T -283))
+((** (*1 *1 *1 *1) (-4 *1 (-283))) (-2573 (*1 *1 *1) (-4 *1 (-283))) (-2592 (*1 *1 *1) (-4 *1 (-283))))
+(-13 (-10 -8 (-15 -2592 ($ $)) (-15 -2573 ($ $)) (-15 ** ($ $ $))))
+((-4250 (((-635 (-1143 |#1|)) (-1143 |#1|) |#1|) 35)) (-4228 ((|#2| |#2| |#1|) 38)) (-4239 ((|#2| |#2| |#1|) 40)) (-3471 ((|#2| |#2| |#1|) 39)))
+(((-284 |#1| |#2|) (-10 -7 (-15 -4228 (|#2| |#2| |#1|)) (-15 -3471 (|#2| |#2| |#1|)) (-15 -4239 (|#2| |#2| |#1|)) (-15 -4250 ((-635 (-1143 |#1|)) (-1143 |#1|) |#1|))) (-362) (-1237 |#1|)) (T -284))
+((-4250 (*1 *2 *3 *4) (-12 (-4 *4 (-362)) (-5 *2 (-635 (-1143 *4))) (-5 *1 (-284 *4 *5)) (-5 *3 (-1143 *4)) (-4 *5 (-1237 *4)))) (-4239 (*1 *2 *2 *3) (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1237 *3)))) (-3471 (*1 *2 *2 *3) (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1237 *3)))) (-4228 (*1 *2 *2 *3) (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1237 *3)))))
+(-10 -7 (-15 -4228 (|#2| |#2| |#1|)) (-15 -3471 (|#2| |#2| |#1|)) (-15 -4239 (|#2| |#2| |#1|)) (-15 -4250 ((-635 (-1143 |#1|)) (-1143 |#1|) |#1|)))
+((-2195 ((|#2| $ |#1|) 6)))
+(((-285 |#1| |#2|) (-139) (-1087) (-1200)) (T -285))
+((-2195 (*1 *2 *1 *3) (-12 (-4 *1 (-285 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-1200)))))
+(-13 (-10 -8 (-15 -2195 (|t#2| $ |t#1|))))
+((-1817 ((|#3| $ |#2| |#3|) 12)) (-1746 ((|#3| $ |#2|) 10)))
+(((-286 |#1| |#2| |#3|) (-10 -8 (-15 -1817 (|#3| |#1| |#2| |#3|)) (-15 -1746 (|#3| |#1| |#2|))) (-287 |#2| |#3|) (-1087) (-1200)) (T -286))
+NIL
+(-10 -8 (-15 -1817 (|#3| |#1| |#2| |#3|)) (-15 -1746 (|#3| |#1| |#2|)))
+((-1532 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4383)))) (-1817 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4383)))) (-1746 ((|#2| $ |#1|) 11)) (-2195 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
+(((-287 |#1| |#2|) (-139) (-1087) (-1200)) (T -287))
+((-2195 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-1200)))) (-1746 (*1 *2 *1 *3) (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-1200)))) (-1532 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4383)) (-4 *1 (-287 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-1200)))) (-1817 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4383)) (-4 *1 (-287 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-1200)))))
+(-13 (-285 |t#1| |t#2|) (-10 -8 (-15 -2195 (|t#2| $ |t#1| |t#2|)) (-15 -1746 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4383)) (PROGN (-15 -1532 (|t#2| $ |t#1| |t#2|)) (-15 -1817 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
+(((-285 |#1| |#2|) . T))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) 34)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 39)) (-1881 (($ $) 37)) (-1857 (((-112) $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-3732 (((-112) $ $) NIL)) (-1816 (($) NIL T CONST)) (-4025 (($ $ $) 32)) (-3048 (($ |#2| |#3|) 19)) (-2588 (((-3 $ "failed") $) NIL)) (-4004 (($ $ $) NIL)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL)) (-2035 (((-112) $) NIL)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2985 ((|#3| $) NIL)) (-2665 (($ $ $) NIL) (($ (-635 $)) NIL)) (-4310 (((-1145) $) NIL)) (-2418 (($ $) 20)) (-2975 (((-1107) $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-2699 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3983 (((-3 $ "failed") $ $) NIL)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1961 (((-3 $ "failed") $ $) NIL)) (-3722 (((-762) $) 33)) (-2195 ((|#2| $ |#2|) 41)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 24)) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-2542 (((-762)) NIL)) (-1870 (((-112) $ $) NIL)) (-2131 (($) 28 T CONST)) (-2142 (($) 35 T CONST)) (-1683 (((-112) $ $) NIL)) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 36)))
+(((-288 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-306) (-10 -8 (-15 -2985 (|#3| $)) (-15 -3220 (|#2| $)) (-15 -3048 ($ |#2| |#3|)) (-15 -1961 ((-3 $ "failed") $ $)) (-15 -2588 ((-3 $ "failed") $)) (-15 -2418 ($ $)) (-15 -2195 (|#2| $ |#2|)))) (-171) (-1222 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -288))
+((-2588 (*1 *1 *1) (|partial| -12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1222 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2985 (*1 *2 *1) (-12 (-4 *3 (-171)) (-4 *2 (-23)) (-5 *1 (-288 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1222 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-3220 (*1 *2 *1) (-12 (-4 *2 (-1222 *3)) (-5 *1 (-288 *3 *2 *4 *5 *6 *7)) (-4 *3 (-171)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-3048 (*1 *1 *2 *3) (-12 (-4 *4 (-171)) (-5 *1 (-288 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1222 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1961 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1222 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2418 (*1 *1 *1) (-12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1222 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2195 (*1 *2 *1 *2) (-12 (-4 *3 (-171)) (-5 *1 (-288 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1222 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))))
+(-13 (-306) (-10 -8 (-15 -2985 (|#3| $)) (-15 -3220 (|#2| $)) (-15 -3048 ($ |#2| |#3|)) (-15 -1961 ((-3 $ "failed") $ $)) (-15 -2588 ((-3 $ "failed") $)) (-15 -2418 ($ $)) (-15 -2195 (|#2| $ |#2|))))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2089 (((-3 $ "failed") $ $) 19)) (-1816 (($) 17 T CONST)) (-2588 (((-3 $ "failed") $) 33)) (-2035 (((-112) $) 31)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11) (($ (-558)) 29)) (-2542 (((-762)) 28)) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1683 (((-112) $ $) 6)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24)))
+(((-289) (-139)) (T -289))
+NIL
+(-13 (-1039) (-111 $ $) (-10 -7 (-6 -4375)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-608 (-558)) . T) ((-605 (-853)) . T) ((-638 $) . T) ((-717) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
+((-4300 (($ (-1163) (-1163) (-1091) $) 17)) (-4274 (($ (-1163) (-635 (-955)) $) 22)) (-4324 (((-635 (-1072)) $) 10)) (-4312 (((-3 (-1091) "failed") (-1163) (-1163) $) 16)) (-4288 (((-3 (-635 (-955)) "failed") (-1163) $) 21)) (-2083 (($) 7)) (-1653 (($) 23)) (-3220 (((-853) $) 27)) (-4262 (($) 24)))
+(((-290) (-13 (-605 (-853)) (-10 -8 (-15 -2083 ($)) (-15 -4324 ((-635 (-1072)) $)) (-15 -4312 ((-3 (-1091) "failed") (-1163) (-1163) $)) (-15 -4300 ($ (-1163) (-1163) (-1091) $)) (-15 -4288 ((-3 (-635 (-955)) "failed") (-1163) $)) (-15 -4274 ($ (-1163) (-635 (-955)) $)) (-15 -1653 ($)) (-15 -4262 ($))))) (T -290))
+((-2083 (*1 *1) (-5 *1 (-290))) (-4324 (*1 *2 *1) (-12 (-5 *2 (-635 (-1072))) (-5 *1 (-290)))) (-4312 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1163)) (-5 *2 (-1091)) (-5 *1 (-290)))) (-4300 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1163)) (-5 *3 (-1091)) (-5 *1 (-290)))) (-4288 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1163)) (-5 *2 (-635 (-955))) (-5 *1 (-290)))) (-4274 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1163)) (-5 *3 (-635 (-955))) (-5 *1 (-290)))) (-1653 (*1 *1) (-5 *1 (-290))) (-4262 (*1 *1) (-5 *1 (-290))))
+(-13 (-605 (-853)) (-10 -8 (-15 -2083 ($)) (-15 -4324 ((-635 (-1072)) $)) (-15 -4312 ((-3 (-1091) "failed") (-1163) (-1163) $)) (-15 -4300 ($ (-1163) (-1163) (-1091) $)) (-15 -4288 ((-3 (-635 (-955)) "failed") (-1163) $)) (-15 -4274 ($ (-1163) (-635 (-955)) $)) (-15 -1653 ($)) (-15 -4262 ($))))
+((-1285 (((-635 (-2 (|:| |eigval| (-3 (-406 (-942 |#1|)) (-1152 (-1163) (-942 |#1|)))) (|:| |geneigvec| (-635 (-679 (-406 (-942 |#1|))))))) (-679 (-406 (-942 |#1|)))) 85)) (-4358 (((-635 (-679 (-406 (-942 |#1|)))) (-2 (|:| |eigval| (-3 (-406 (-942 |#1|)) (-1152 (-1163) (-942 |#1|)))) (|:| |eigmult| (-762)) (|:| |eigvec| (-635 (-679 (-406 (-942 |#1|)))))) (-679 (-406 (-942 |#1|)))) 80) (((-635 (-679 (-406 (-942 |#1|)))) (-3 (-406 (-942 |#1|)) (-1152 (-1163) (-942 |#1|))) (-679 (-406 (-942 |#1|))) (-762) (-762)) 38)) (-1296 (((-635 (-2 (|:| |eigval| (-3 (-406 (-942 |#1|)) (-1152 (-1163) (-942 |#1|)))) (|:| |eigmult| (-762)) (|:| |eigvec| (-635 (-679 (-406 (-942 |#1|))))))) (-679 (-406 (-942 |#1|)))) 82)) (-4348 (((-635 (-679 (-406 (-942 |#1|)))) (-3 (-406 (-942 |#1|)) (-1152 (-1163) (-942 |#1|))) (-679 (-406 (-942 |#1|)))) 62)) (-4336 (((-635 (-3 (-406 (-942 |#1|)) (-1152 (-1163) (-942 |#1|)))) (-679 (-406 (-942 |#1|)))) 61)) (-2363 (((-942 |#1|) (-679 (-406 (-942 |#1|)))) 50) (((-942 |#1|) (-679 (-406 (-942 |#1|))) (-1163)) 51)))
+(((-291 |#1|) (-10 -7 (-15 -2363 ((-942 |#1|) (-679 (-406 (-942 |#1|))) (-1163))) (-15 -2363 ((-942 |#1|) (-679 (-406 (-942 |#1|))))) (-15 -4336 ((-635 (-3 (-406 (-942 |#1|)) (-1152 (-1163) (-942 |#1|)))) (-679 (-406 (-942 |#1|))))) (-15 -4348 ((-635 (-679 (-406 (-942 |#1|)))) (-3 (-406 (-942 |#1|)) (-1152 (-1163) (-942 |#1|))) (-679 (-406 (-942 |#1|))))) (-15 -4358 ((-635 (-679 (-406 (-942 |#1|)))) (-3 (-406 (-942 |#1|)) (-1152 (-1163) (-942 |#1|))) (-679 (-406 (-942 |#1|))) (-762) (-762))) (-15 -4358 ((-635 (-679 (-406 (-942 |#1|)))) (-2 (|:| |eigval| (-3 (-406 (-942 |#1|)) (-1152 (-1163) (-942 |#1|)))) (|:| |eigmult| (-762)) (|:| |eigvec| (-635 (-679 (-406 (-942 |#1|)))))) (-679 (-406 (-942 |#1|))))) (-15 -1285 ((-635 (-2 (|:| |eigval| (-3 (-406 (-942 |#1|)) (-1152 (-1163) (-942 |#1|)))) (|:| |geneigvec| (-635 (-679 (-406 (-942 |#1|))))))) (-679 (-406 (-942 |#1|))))) (-15 -1296 ((-635 (-2 (|:| |eigval| (-3 (-406 (-942 |#1|)) (-1152 (-1163) (-942 |#1|)))) (|:| |eigmult| (-762)) (|:| |eigvec| (-635 (-679 (-406 (-942 |#1|))))))) (-679 (-406 (-942 |#1|)))))) (-450)) (T -291))
+((-1296 (*1 *2 *3) (-12 (-4 *4 (-450)) (-5 *2 (-635 (-2 (|:| |eigval| (-3 (-406 (-942 *4)) (-1152 (-1163) (-942 *4)))) (|:| |eigmult| (-762)) (|:| |eigvec| (-635 (-679 (-406 (-942 *4)))))))) (-5 *1 (-291 *4)) (-5 *3 (-679 (-406 (-942 *4)))))) (-1285 (*1 *2 *3) (-12 (-4 *4 (-450)) (-5 *2 (-635 (-2 (|:| |eigval| (-3 (-406 (-942 *4)) (-1152 (-1163) (-942 *4)))) (|:| |geneigvec| (-635 (-679 (-406 (-942 *4)))))))) (-5 *1 (-291 *4)) (-5 *3 (-679 (-406 (-942 *4)))))) (-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-406 (-942 *5)) (-1152 (-1163) (-942 *5)))) (|:| |eigmult| (-762)) (|:| |eigvec| (-635 *4)))) (-4 *5 (-450)) (-5 *2 (-635 (-679 (-406 (-942 *5))))) (-5 *1 (-291 *5)) (-5 *4 (-679 (-406 (-942 *5)))))) (-4358 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-406 (-942 *6)) (-1152 (-1163) (-942 *6)))) (-5 *5 (-762)) (-4 *6 (-450)) (-5 *2 (-635 (-679 (-406 (-942 *6))))) (-5 *1 (-291 *6)) (-5 *4 (-679 (-406 (-942 *6)))))) (-4348 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-406 (-942 *5)) (-1152 (-1163) (-942 *5)))) (-4 *5 (-450)) (-5 *2 (-635 (-679 (-406 (-942 *5))))) (-5 *1 (-291 *5)) (-5 *4 (-679 (-406 (-942 *5)))))) (-4336 (*1 *2 *3) (-12 (-5 *3 (-679 (-406 (-942 *4)))) (-4 *4 (-450)) (-5 *2 (-635 (-3 (-406 (-942 *4)) (-1152 (-1163) (-942 *4))))) (-5 *1 (-291 *4)))) (-2363 (*1 *2 *3) (-12 (-5 *3 (-679 (-406 (-942 *4)))) (-5 *2 (-942 *4)) (-5 *1 (-291 *4)) (-4 *4 (-450)))) (-2363 (*1 *2 *3 *4) (-12 (-5 *3 (-679 (-406 (-942 *5)))) (-5 *4 (-1163)) (-5 *2 (-942 *5)) (-5 *1 (-291 *5)) (-4 *5 (-450)))))
+(-10 -7 (-15 -2363 ((-942 |#1|) (-679 (-406 (-942 |#1|))) (-1163))) (-15 -2363 ((-942 |#1|) (-679 (-406 (-942 |#1|))))) (-15 -4336 ((-635 (-3 (-406 (-942 |#1|)) (-1152 (-1163) (-942 |#1|)))) (-679 (-406 (-942 |#1|))))) (-15 -4348 ((-635 (-679 (-406 (-942 |#1|)))) (-3 (-406 (-942 |#1|)) (-1152 (-1163) (-942 |#1|))) (-679 (-406 (-942 |#1|))))) (-15 -4358 ((-635 (-679 (-406 (-942 |#1|)))) (-3 (-406 (-942 |#1|)) (-1152 (-1163) (-942 |#1|))) (-679 (-406 (-942 |#1|))) (-762) (-762))) (-15 -4358 ((-635 (-679 (-406 (-942 |#1|)))) (-2 (|:| |eigval| (-3 (-406 (-942 |#1|)) (-1152 (-1163) (-942 |#1|)))) (|:| |eigmult| (-762)) (|:| |eigvec| (-635 (-679 (-406 (-942 |#1|)))))) (-679 (-406 (-942 |#1|))))) (-15 -1285 ((-635 (-2 (|:| |eigval| (-3 (-406 (-942 |#1|)) (-1152 (-1163) (-942 |#1|)))) (|:| |geneigvec| (-635 (-679 (-406 (-942 |#1|))))))) (-679 (-406 (-942 |#1|))))) (-15 -1296 ((-635 (-2 (|:| |eigval| (-3 (-406 (-942 |#1|)) (-1152 (-1163) (-942 |#1|)))) (|:| |eigmult| (-762)) (|:| |eigvec| (-635 (-679 (-406 (-942 |#1|))))))) (-679 (-406 (-942 |#1|))))))
+((-3167 (((-293 |#2|) (-1 |#2| |#1|) (-293 |#1|)) 14)))
+(((-292 |#1| |#2|) (-10 -7 (-15 -3167 ((-293 |#2|) (-1 |#2| |#1|) (-293 |#1|)))) (-1200) (-1200)) (T -292))
+((-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-293 *5)) (-4 *5 (-1200)) (-4 *6 (-1200)) (-5 *2 (-293 *6)) (-5 *1 (-292 *5 *6)))))
+(-10 -7 (-15 -3167 ((-293 |#2|) (-1 |#2| |#1|) (-293 |#1|))))
+((-3207 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2067 (((-112) $) NIL (|has| |#1| (-21)))) (-1370 (($ $) 12)) (-2089 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2497 (($ $ $) 94 (|has| |#1| (-301)))) (-1816 (($) NIL (-3998 (|has| |#1| (-21)) (|has| |#1| (-717))) CONST)) (-1346 (($ $) 50 (|has| |#1| (-21)))) (-1320 (((-3 $ "failed") $) 61 (|has| |#1| (-717)))) (-3986 ((|#1| $) 11)) (-2588 (((-3 $ "failed") $) 59 (|has| |#1| (-717)))) (-2035 (((-112) $) NIL (|has| |#1| (-717)))) (-3167 (($ (-1 |#1| |#1|) $) 14)) (-3976 ((|#1| $) 10)) (-1357 (($ $) 49 (|has| |#1| (-21)))) (-1334 (((-3 $ "failed") $) 60 (|has| |#1| (-717)))) (-4310 (((-1145) $) NIL (|has| |#1| (-1087)))) (-2418 (($ $) 63 (-3998 (|has| |#1| (-362)) (|has| |#1| (-471))))) (-2975 (((-1107) $) NIL (|has| |#1| (-1087)))) (-1308 (((-635 $) $) 84 (|has| |#1| (-550)))) (-2554 (($ $ $) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 $)) 28 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-1163) |#1|) 17 (|has| |#1| (-512 (-1163) |#1|))) (($ $ (-635 (-1163)) (-635 |#1|)) 21 (|has| |#1| (-512 (-1163) |#1|)))) (-2176 (($ |#1| |#1|) 9)) (-2148 (((-133)) 89 (|has| |#1| (-362)))) (-2829 (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163)) 86 (|has| |#1| (-890 (-1163))))) (-3808 (($ $ $) NIL (|has| |#1| (-471)))) (-3443 (($ $ $) NIL (|has| |#1| (-471)))) (-3220 (($ (-558)) NIL (|has| |#1| (-1039))) (((-112) $) 36 (|has| |#1| (-1087))) (((-853) $) 35 (|has| |#1| (-1087)))) (-2542 (((-762)) 66 (|has| |#1| (-1039)))) (-2131 (($) 46 (|has| |#1| (-21)) CONST)) (-2142 (($) 56 (|has| |#1| (-717)) CONST)) (-1866 (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163)) NIL (|has| |#1| (-890 (-1163))))) (-1683 (($ |#1| |#1|) 8) (((-112) $ $) 31 (|has| |#1| (-1087)))) (-1810 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) 91 (-3998 (|has| |#1| (-362)) (|has| |#1| (-471))))) (-1798 (($ |#1| $) 44 (|has| |#1| (-21))) (($ $ |#1|) 45 (|has| |#1| (-21))) (($ $ $) 43 (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-1784 (($ |#1| $) 39 (|has| |#1| (-25))) (($ $ |#1|) 40 (|has| |#1| (-25))) (($ $ $) 38 (|has| |#1| (-25)))) (** (($ $ (-558)) NIL (|has| |#1| (-471))) (($ $ (-762)) NIL (|has| |#1| (-717))) (($ $ (-911)) NIL (|has| |#1| (-1099)))) (* (($ $ |#1|) 54 (|has| |#1| (-1099))) (($ |#1| $) 53 (|has| |#1| (-1099))) (($ $ $) 52 (|has| |#1| (-1099))) (($ (-558) $) 69 (|has| |#1| (-21))) (($ (-762) $) NIL (|has| |#1| (-21))) (($ (-911) $) NIL (|has| |#1| (-25)))))
+(((-293 |#1|) (-13 (-1200) (-10 -8 (-15 -1683 ($ |#1| |#1|)) (-15 -2176 ($ |#1| |#1|)) (-15 -1370 ($ $)) (-15 -3976 (|#1| $)) (-15 -3986 (|#1| $)) (-15 -3167 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-512 (-1163) |#1|)) (-6 (-512 (-1163) |#1|)) |%noBranch|) (IF (|has| |#1| (-1087)) (PROGN (-6 (-1087)) (-6 (-605 (-112))) (IF (|has| |#1| (-308 |#1|)) (PROGN (-15 -2554 ($ $ $)) (-15 -2554 ($ $ (-635 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1784 ($ |#1| $)) (-15 -1784 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1357 ($ $)) (-15 -1346 ($ $)) (-15 -1798 ($ |#1| $)) (-15 -1798 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1099)) (PROGN (-6 (-1099)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-717)) (PROGN (-6 (-717)) (-15 -1334 ((-3 $ "failed") $)) (-15 -1320 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-471)) (PROGN (-6 (-471)) (-15 -1334 ((-3 $ "failed") $)) (-15 -1320 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1039)) (PROGN (-6 (-1039)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-171)) (-6 (-708 |#1|)) |%noBranch|) (IF (|has| |#1| (-550)) (-15 -1308 ((-635 $) $)) |%noBranch|) (IF (|has| |#1| (-890 (-1163))) (-6 (-890 (-1163))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-6 (-1253 |#1|)) (-15 -1810 ($ $ $)) (-15 -2418 ($ $))) |%noBranch|) (IF (|has| |#1| (-301)) (-15 -2497 ($ $ $)) |%noBranch|))) (-1200)) (T -293))
+((-1683 (*1 *1 *2 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1200)))) (-2176 (*1 *1 *2 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1200)))) (-1370 (*1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1200)))) (-3976 (*1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1200)))) (-3986 (*1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1200)))) (-3167 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1200)) (-5 *1 (-293 *3)))) (-2554 (*1 *1 *1 *1) (-12 (-4 *2 (-308 *2)) (-4 *2 (-1087)) (-4 *2 (-1200)) (-5 *1 (-293 *2)))) (-2554 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-293 *3))) (-4 *3 (-308 *3)) (-4 *3 (-1087)) (-4 *3 (-1200)) (-5 *1 (-293 *3)))) (-1784 (*1 *1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-25)) (-4 *2 (-1200)))) (-1784 (*1 *1 *1 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-25)) (-4 *2 (-1200)))) (-1357 (*1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1200)))) (-1346 (*1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1200)))) (-1798 (*1 *1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1200)))) (-1798 (*1 *1 *1 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1200)))) (-1334 (*1 *1 *1) (|partial| -12 (-5 *1 (-293 *2)) (-4 *2 (-717)) (-4 *2 (-1200)))) (-1320 (*1 *1 *1) (|partial| -12 (-5 *1 (-293 *2)) (-4 *2 (-717)) (-4 *2 (-1200)))) (-1308 (*1 *2 *1) (-12 (-5 *2 (-635 (-293 *3))) (-5 *1 (-293 *3)) (-4 *3 (-550)) (-4 *3 (-1200)))) (-2497 (*1 *1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-301)) (-4 *2 (-1200)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1099)) (-4 *2 (-1200)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1099)) (-4 *2 (-1200)))) (-1810 (*1 *1 *1 *1) (-3998 (-12 (-5 *1 (-293 *2)) (-4 *2 (-362)) (-4 *2 (-1200))) (-12 (-5 *1 (-293 *2)) (-4 *2 (-471)) (-4 *2 (-1200))))) (-2418 (*1 *1 *1) (-3998 (-12 (-5 *1 (-293 *2)) (-4 *2 (-362)) (-4 *2 (-1200))) (-12 (-5 *1 (-293 *2)) (-4 *2 (-471)) (-4 *2 (-1200))))))
+(-13 (-1200) (-10 -8 (-15 -1683 ($ |#1| |#1|)) (-15 -2176 ($ |#1| |#1|)) (-15 -1370 ($ $)) (-15 -3976 (|#1| $)) (-15 -3986 (|#1| $)) (-15 -3167 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-512 (-1163) |#1|)) (-6 (-512 (-1163) |#1|)) |%noBranch|) (IF (|has| |#1| (-1087)) (PROGN (-6 (-1087)) (-6 (-605 (-112))) (IF (|has| |#1| (-308 |#1|)) (PROGN (-15 -2554 ($ $ $)) (-15 -2554 ($ $ (-635 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1784 ($ |#1| $)) (-15 -1784 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1357 ($ $)) (-15 -1346 ($ $)) (-15 -1798 ($ |#1| $)) (-15 -1798 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1099)) (PROGN (-6 (-1099)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-717)) (PROGN (-6 (-717)) (-15 -1334 ((-3 $ "failed") $)) (-15 -1320 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-471)) (PROGN (-6 (-471)) (-15 -1334 ((-3 $ "failed") $)) (-15 -1320 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1039)) (PROGN (-6 (-1039)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-171)) (-6 (-708 |#1|)) |%noBranch|) (IF (|has| |#1| (-550)) (-15 -1308 ((-635 $) $)) |%noBranch|) (IF (|has| |#1| (-890 (-1163))) (-6 (-890 (-1163))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-6 (-1253 |#1|)) (-15 -1810 ($ $ $)) (-15 -2418 ($ $))) |%noBranch|) (IF (|has| |#1| (-301)) (-15 -2497 ($ $ $)) |%noBranch|)))
+((-3207 (((-112) $ $) NIL (-3998 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-3303 (($) NIL) (($ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL)) (-3869 (((-1251) $ |#1| |#1|) NIL (|has| $ (-6 -4383)))) (-3026 (((-112) $ (-762)) NIL)) (-1532 ((|#2| $ |#1| |#2|) NIL)) (-4207 (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382)))) (-4329 (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382)))) (-3083 (((-3 |#2| "failed") |#1| $) NIL)) (-1816 (($) NIL T CONST)) (-2338 (($ $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087))))) (-3395 (($ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL (|has| $ (-6 -4382))) (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (((-3 |#2| "failed") |#1| $) NIL)) (-1539 (($ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382)))) (-3048 (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) NIL (|has| $ (-6 -4382))) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382)))) (-1817 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4383)))) (-1746 ((|#2| $ |#1|) NIL)) (-2240 (((-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (((-635 |#2|) $) NIL (|has| $ (-6 -4382)))) (-2986 (((-112) $ (-762)) NIL)) (-3889 ((|#1| $) NIL (|has| |#1| (-841)))) (-2122 (((-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (((-635 |#2|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#2| (-1087))))) (-3899 ((|#1| $) NIL (|has| |#1| (-841)))) (-1807 (($ (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4383))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL (-3998 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-3848 (((-635 |#1|) $) NIL)) (-3950 (((-112) |#1| $) NIL)) (-1722 (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL)) (-4328 (($ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL)) (-3920 (((-635 |#1|) $) NIL)) (-3929 (((-112) |#1| $) NIL)) (-2975 (((-1107) $) NIL (-3998 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-2305 ((|#2| $) NIL (|has| |#1| (-841)))) (-4307 (((-3 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) "failed") (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL)) (-3880 (($ $ |#2|) NIL (|has| $ (-6 -4383)))) (-3524 (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL)) (-3266 (((-112) (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))))) NIL (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-293 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) NIL (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-635 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3908 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#2| (-1087))))) (-3937 (((-635 |#2|) $) NIL)) (-3375 (((-112) $) NIL)) (-2083 (($) NIL)) (-2195 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2571 (($) NIL) (($ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL)) (-2988 (((-762) (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (((-762) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (((-762) |#2| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#2| (-1087)))) (((-762) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4382)))) (-1553 (($ $) NIL)) (-3224 (((-534) $) NIL (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-606 (-534))))) (-3233 (($ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL)) (-3220 (((-853) $) NIL (-3998 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-605 (-853))) (|has| |#2| (-605 (-853)))))) (-3534 (($ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL)) (-3277 (((-112) (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) NIL (-3998 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-294 |#1| |#2|) (-13 (-1176 |#1| |#2|) (-10 -7 (-6 -4382))) (-1087) (-1087)) (T -294))
+NIL
+(-13 (-1176 |#1| |#2|) (-10 -7 (-6 -4382)))
+((-1984 (((-311) (-1145) (-635 (-1145))) 16) (((-311) (-1145) (-1145)) 15) (((-311) (-635 (-1145))) 14) (((-311) (-1145)) 12)))
+(((-295) (-10 -7 (-15 -1984 ((-311) (-1145))) (-15 -1984 ((-311) (-635 (-1145)))) (-15 -1984 ((-311) (-1145) (-1145))) (-15 -1984 ((-311) (-1145) (-635 (-1145)))))) (T -295))
+((-1984 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-1145))) (-5 *3 (-1145)) (-5 *2 (-311)) (-5 *1 (-295)))) (-1984 (*1 *2 *3 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-311)) (-5 *1 (-295)))) (-1984 (*1 *2 *3) (-12 (-5 *3 (-635 (-1145))) (-5 *2 (-311)) (-5 *1 (-295)))) (-1984 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-311)) (-5 *1 (-295)))))
+(-10 -7 (-15 -1984 ((-311) (-1145))) (-15 -1984 ((-311) (-635 (-1145)))) (-15 -1984 ((-311) (-1145) (-1145))) (-15 -1984 ((-311) (-1145) (-635 (-1145)))))
+((-3167 ((|#2| (-1 |#2| |#1|) (-1145) (-604 |#1|)) 18)))
+(((-296 |#1| |#2|) (-10 -7 (-15 -3167 (|#2| (-1 |#2| |#1|) (-1145) (-604 |#1|)))) (-301) (-1200)) (T -296))
+((-3167 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1145)) (-5 *5 (-604 *6)) (-4 *6 (-301)) (-4 *2 (-1200)) (-5 *1 (-296 *6 *2)))))
+(-10 -7 (-15 -3167 (|#2| (-1 |#2| |#1|) (-1145) (-604 |#1|))))
+((-3167 ((|#2| (-1 |#2| |#1|) (-604 |#1|)) 17)))
+(((-297 |#1| |#2|) (-10 -7 (-15 -3167 (|#2| (-1 |#2| |#1|) (-604 |#1|)))) (-301) (-301)) (T -297))
+((-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-604 *5)) (-4 *5 (-301)) (-4 *2 (-301)) (-5 *1 (-297 *5 *2)))))
+(-10 -7 (-15 -3167 (|#2| (-1 |#2| |#1|) (-604 |#1|))))
+((-2340 (((-112) (-224)) 10)))
+(((-298 |#1| |#2|) (-10 -7 (-15 -2340 ((-112) (-224)))) (-224) (-224)) (T -298))
+((-2340 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-112)) (-5 *1 (-298 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-10 -7 (-15 -2340 ((-112) (-224))))
+((-1461 (((-1143 (-224)) (-315 (-224)) (-635 (-1163)) (-1081 (-834 (-224)))) 92)) (-1473 (((-1143 (-224)) (-1246 (-315 (-224))) (-635 (-1163)) (-1081 (-834 (-224)))) 106) (((-1143 (-224)) (-315 (-224)) (-635 (-1163)) (-1081 (-834 (-224)))) 61)) (-3578 (((-635 (-1145)) (-1143 (-224))) NIL)) (-1451 (((-635 (-224)) (-315 (-224)) (-1163) (-1081 (-834 (-224)))) 58)) (-1483 (((-635 (-224)) (-942 (-406 (-558))) (-1163) (-1081 (-834 (-224)))) 49)) (-3568 (((-635 (-1145)) (-635 (-224))) NIL)) (-3587 (((-224) (-1081 (-834 (-224)))) 25)) (-3596 (((-224) (-1081 (-834 (-224)))) 26)) (-1439 (((-112) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 54)) (-3549 (((-1145) (-224)) NIL)))
+(((-299) (-10 -7 (-15 -3587 ((-224) (-1081 (-834 (-224))))) (-15 -3596 ((-224) (-1081 (-834 (-224))))) (-15 -1439 ((-112) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1451 ((-635 (-224)) (-315 (-224)) (-1163) (-1081 (-834 (-224))))) (-15 -1461 ((-1143 (-224)) (-315 (-224)) (-635 (-1163)) (-1081 (-834 (-224))))) (-15 -1473 ((-1143 (-224)) (-315 (-224)) (-635 (-1163)) (-1081 (-834 (-224))))) (-15 -1473 ((-1143 (-224)) (-1246 (-315 (-224))) (-635 (-1163)) (-1081 (-834 (-224))))) (-15 -1483 ((-635 (-224)) (-942 (-406 (-558))) (-1163) (-1081 (-834 (-224))))) (-15 -3549 ((-1145) (-224))) (-15 -3568 ((-635 (-1145)) (-635 (-224)))) (-15 -3578 ((-635 (-1145)) (-1143 (-224)))))) (T -299))
+((-3578 (*1 *2 *3) (-12 (-5 *3 (-1143 (-224))) (-5 *2 (-635 (-1145))) (-5 *1 (-299)))) (-3568 (*1 *2 *3) (-12 (-5 *3 (-635 (-224))) (-5 *2 (-635 (-1145))) (-5 *1 (-299)))) (-3549 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1145)) (-5 *1 (-299)))) (-1483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-942 (-406 (-558)))) (-5 *4 (-1163)) (-5 *5 (-1081 (-834 (-224)))) (-5 *2 (-635 (-224))) (-5 *1 (-299)))) (-1473 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1246 (-315 (-224)))) (-5 *4 (-635 (-1163))) (-5 *5 (-1081 (-834 (-224)))) (-5 *2 (-1143 (-224))) (-5 *1 (-299)))) (-1473 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-224))) (-5 *4 (-635 (-1163))) (-5 *5 (-1081 (-834 (-224)))) (-5 *2 (-1143 (-224))) (-5 *1 (-299)))) (-1461 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-224))) (-5 *4 (-635 (-1163))) (-5 *5 (-1081 (-834 (-224)))) (-5 *2 (-1143 (-224))) (-5 *1 (-299)))) (-1451 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-224))) (-5 *4 (-1163)) (-5 *5 (-1081 (-834 (-224)))) (-5 *2 (-635 (-224))) (-5 *1 (-299)))) (-1439 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-112)) (-5 *1 (-299)))) (-3596 (*1 *2 *3) (-12 (-5 *3 (-1081 (-834 (-224)))) (-5 *2 (-224)) (-5 *1 (-299)))) (-3587 (*1 *2 *3) (-12 (-5 *3 (-1081 (-834 (-224)))) (-5 *2 (-224)) (-5 *1 (-299)))))
+(-10 -7 (-15 -3587 ((-224) (-1081 (-834 (-224))))) (-15 -3596 ((-224) (-1081 (-834 (-224))))) (-15 -1439 ((-112) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1451 ((-635 (-224)) (-315 (-224)) (-1163) (-1081 (-834 (-224))))) (-15 -1461 ((-1143 (-224)) (-315 (-224)) (-635 (-1163)) (-1081 (-834 (-224))))) (-15 -1473 ((-1143 (-224)) (-315 (-224)) (-635 (-1163)) (-1081 (-834 (-224))))) (-15 -1473 ((-1143 (-224)) (-1246 (-315 (-224))) (-635 (-1163)) (-1081 (-834 (-224))))) (-15 -1483 ((-635 (-224)) (-942 (-406 (-558))) (-1163) (-1081 (-834 (-224))))) (-15 -3549 ((-1145) (-224))) (-15 -3568 ((-635 (-1145)) (-635 (-224)))) (-15 -3578 ((-635 (-1145)) (-1143 (-224)))))
+((-2396 (((-635 (-604 $)) $) 30)) (-2497 (($ $ (-293 $)) 80) (($ $ (-635 (-293 $))) 122) (($ $ (-635 (-604 $)) (-635 $)) NIL)) (-3069 (((-3 (-604 $) "failed") $) 112)) (-1863 (((-604 $) $) 111)) (-3800 (($ $) 19) (($ (-635 $)) 55)) (-1405 (((-635 (-114)) $) 38)) (-3029 (((-114) (-114)) 90)) (-3451 (((-112) $) 130)) (-3167 (($ (-1 $ $) (-604 $)) 88)) (-1416 (((-3 (-604 $) "failed") $) 92)) (-1949 (($ (-114) $) 60) (($ (-114) (-635 $)) 99)) (-3173 (((-112) $ (-114)) 116) (((-112) $ (-1163)) 115)) (-3382 (((-762) $) 46)) (-1392 (((-112) $ $) 58) (((-112) $ (-1163)) 50)) (-3458 (((-112) $) 128)) (-2554 (($ $ (-604 $) $) NIL) (($ $ (-635 (-604 $)) (-635 $)) NIL) (($ $ (-635 (-293 $))) 120) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-635 (-1163)) (-635 (-1 $ $))) 83) (($ $ (-635 (-1163)) (-635 (-1 $ (-635 $)))) NIL) (($ $ (-1163) (-1 $ (-635 $))) 68) (($ $ (-1163) (-1 $ $)) 74) (($ $ (-635 (-114)) (-635 (-1 $ $))) 82) (($ $ (-635 (-114)) (-635 (-1 $ (-635 $)))) 84) (($ $ (-114) (-1 $ (-635 $))) 70) (($ $ (-114) (-1 $ $)) 76)) (-2195 (($ (-114) $) 61) (($ (-114) $ $) 62) (($ (-114) $ $ $) 63) (($ (-114) $ $ $ $) 64) (($ (-114) (-635 $)) 108)) (-1426 (($ $) 52) (($ $ $) 118)) (-2540 (($ $) 17) (($ (-635 $)) 54)) (-2995 (((-112) (-114)) 22)))
+(((-300 |#1|) (-10 -8 (-15 -3451 ((-112) |#1|)) (-15 -3458 ((-112) |#1|)) (-15 -2554 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2554 (|#1| |#1| (-114) (-1 |#1| (-635 |#1|)))) (-15 -2554 (|#1| |#1| (-635 (-114)) (-635 (-1 |#1| (-635 |#1|))))) (-15 -2554 (|#1| |#1| (-635 (-114)) (-635 (-1 |#1| |#1|)))) (-15 -2554 (|#1| |#1| (-1163) (-1 |#1| |#1|))) (-15 -2554 (|#1| |#1| (-1163) (-1 |#1| (-635 |#1|)))) (-15 -2554 (|#1| |#1| (-635 (-1163)) (-635 (-1 |#1| (-635 |#1|))))) (-15 -2554 (|#1| |#1| (-635 (-1163)) (-635 (-1 |#1| |#1|)))) (-15 -1392 ((-112) |#1| (-1163))) (-15 -1392 ((-112) |#1| |#1|)) (-15 -3167 (|#1| (-1 |#1| |#1|) (-604 |#1|))) (-15 -1949 (|#1| (-114) (-635 |#1|))) (-15 -1949 (|#1| (-114) |#1|)) (-15 -3173 ((-112) |#1| (-1163))) (-15 -3173 ((-112) |#1| (-114))) (-15 -2995 ((-112) (-114))) (-15 -3029 ((-114) (-114))) (-15 -1405 ((-635 (-114)) |#1|)) (-15 -2396 ((-635 (-604 |#1|)) |#1|)) (-15 -1416 ((-3 (-604 |#1|) "failed") |#1|)) (-15 -3382 ((-762) |#1|)) (-15 -1426 (|#1| |#1| |#1|)) (-15 -1426 (|#1| |#1|)) (-15 -3800 (|#1| (-635 |#1|))) (-15 -3800 (|#1| |#1|)) (-15 -2540 (|#1| (-635 |#1|))) (-15 -2540 (|#1| |#1|)) (-15 -2497 (|#1| |#1| (-635 (-604 |#1|)) (-635 |#1|))) (-15 -2497 (|#1| |#1| (-635 (-293 |#1|)))) (-15 -2497 (|#1| |#1| (-293 |#1|))) (-15 -2195 (|#1| (-114) (-635 |#1|))) (-15 -2195 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2195 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2195 (|#1| (-114) |#1| |#1|)) (-15 -2195 (|#1| (-114) |#1|)) (-15 -2554 (|#1| |#1| (-635 |#1|) (-635 |#1|))) (-15 -2554 (|#1| |#1| |#1| |#1|)) (-15 -2554 (|#1| |#1| (-293 |#1|))) (-15 -2554 (|#1| |#1| (-635 (-293 |#1|)))) (-15 -2554 (|#1| |#1| (-635 (-604 |#1|)) (-635 |#1|))) (-15 -2554 (|#1| |#1| (-604 |#1|) |#1|)) (-15 -3069 ((-3 (-604 |#1|) "failed") |#1|)) (-15 -1863 ((-604 |#1|) |#1|))) (-301)) (T -300))
+((-3029 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-300 *3)) (-4 *3 (-301)))) (-2995 (*1 *2 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-300 *4)) (-4 *4 (-301)))))
+(-10 -8 (-15 -3451 ((-112) |#1|)) (-15 -3458 ((-112) |#1|)) (-15 -2554 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2554 (|#1| |#1| (-114) (-1 |#1| (-635 |#1|)))) (-15 -2554 (|#1| |#1| (-635 (-114)) (-635 (-1 |#1| (-635 |#1|))))) (-15 -2554 (|#1| |#1| (-635 (-114)) (-635 (-1 |#1| |#1|)))) (-15 -2554 (|#1| |#1| (-1163) (-1 |#1| |#1|))) (-15 -2554 (|#1| |#1| (-1163) (-1 |#1| (-635 |#1|)))) (-15 -2554 (|#1| |#1| (-635 (-1163)) (-635 (-1 |#1| (-635 |#1|))))) (-15 -2554 (|#1| |#1| (-635 (-1163)) (-635 (-1 |#1| |#1|)))) (-15 -1392 ((-112) |#1| (-1163))) (-15 -1392 ((-112) |#1| |#1|)) (-15 -3167 (|#1| (-1 |#1| |#1|) (-604 |#1|))) (-15 -1949 (|#1| (-114) (-635 |#1|))) (-15 -1949 (|#1| (-114) |#1|)) (-15 -3173 ((-112) |#1| (-1163))) (-15 -3173 ((-112) |#1| (-114))) (-15 -2995 ((-112) (-114))) (-15 -3029 ((-114) (-114))) (-15 -1405 ((-635 (-114)) |#1|)) (-15 -2396 ((-635 (-604 |#1|)) |#1|)) (-15 -1416 ((-3 (-604 |#1|) "failed") |#1|)) (-15 -3382 ((-762) |#1|)) (-15 -1426 (|#1| |#1| |#1|)) (-15 -1426 (|#1| |#1|)) (-15 -3800 (|#1| (-635 |#1|))) (-15 -3800 (|#1| |#1|)) (-15 -2540 (|#1| (-635 |#1|))) (-15 -2540 (|#1| |#1|)) (-15 -2497 (|#1| |#1| (-635 (-604 |#1|)) (-635 |#1|))) (-15 -2497 (|#1| |#1| (-635 (-293 |#1|)))) (-15 -2497 (|#1| |#1| (-293 |#1|))) (-15 -2195 (|#1| (-114) (-635 |#1|))) (-15 -2195 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2195 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2195 (|#1| (-114) |#1| |#1|)) (-15 -2195 (|#1| (-114) |#1|)) (-15 -2554 (|#1| |#1| (-635 |#1|) (-635 |#1|))) (-15 -2554 (|#1| |#1| |#1| |#1|)) (-15 -2554 (|#1| |#1| (-293 |#1|))) (-15 -2554 (|#1| |#1| (-635 (-293 |#1|)))) (-15 -2554 (|#1| |#1| (-635 (-604 |#1|)) (-635 |#1|))) (-15 -2554 (|#1| |#1| (-604 |#1|) |#1|)) (-15 -3069 ((-3 (-604 |#1|) "failed") |#1|)) (-15 -1863 ((-604 |#1|) |#1|)))
+((-3207 (((-112) $ $) 7)) (-2396 (((-635 (-604 $)) $) 44)) (-2497 (($ $ (-293 $)) 56) (($ $ (-635 (-293 $))) 55) (($ $ (-635 (-604 $)) (-635 $)) 54)) (-3069 (((-3 (-604 $) "failed") $) 69)) (-1863 (((-604 $) $) 70)) (-3800 (($ $) 51) (($ (-635 $)) 50)) (-1405 (((-635 (-114)) $) 43)) (-3029 (((-114) (-114)) 42)) (-3451 (((-112) $) 22 (|has| $ (-1028 (-558))))) (-1381 (((-1159 $) (-604 $)) 25 (|has| $ (-1039)))) (-3910 (($ $ $) 13)) (-3542 (($ $ $) 14)) (-3167 (($ (-1 $ $) (-604 $)) 36)) (-1416 (((-3 (-604 $) "failed") $) 46)) (-4310 (((-1145) $) 9)) (-2475 (((-635 (-604 $)) $) 45)) (-1949 (($ (-114) $) 38) (($ (-114) (-635 $)) 37)) (-3173 (((-112) $ (-114)) 40) (((-112) $ (-1163)) 39)) (-3382 (((-762) $) 47)) (-2975 (((-1107) $) 10)) (-1392 (((-112) $ $) 35) (((-112) $ (-1163)) 34)) (-3458 (((-112) $) 23 (|has| $ (-1028 (-558))))) (-2554 (($ $ (-604 $) $) 67) (($ $ (-635 (-604 $)) (-635 $)) 66) (($ $ (-635 (-293 $))) 65) (($ $ (-293 $)) 64) (($ $ $ $) 63) (($ $ (-635 $) (-635 $)) 62) (($ $ (-635 (-1163)) (-635 (-1 $ $))) 33) (($ $ (-635 (-1163)) (-635 (-1 $ (-635 $)))) 32) (($ $ (-1163) (-1 $ (-635 $))) 31) (($ $ (-1163) (-1 $ $)) 30) (($ $ (-635 (-114)) (-635 (-1 $ $))) 29) (($ $ (-635 (-114)) (-635 (-1 $ (-635 $)))) 28) (($ $ (-114) (-1 $ (-635 $))) 27) (($ $ (-114) (-1 $ $)) 26)) (-2195 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-635 $)) 57)) (-1426 (($ $) 49) (($ $ $) 48)) (-2036 (($ $) 24 (|has| $ (-1039)))) (-3220 (((-853) $) 11) (($ (-604 $)) 68)) (-2540 (($ $) 53) (($ (-635 $)) 52)) (-2995 (((-112) (-114)) 41)) (-1747 (((-112) $ $) 16)) (-1720 (((-112) $ $) 17)) (-1683 (((-112) $ $) 6)) (-1731 (((-112) $ $) 15)) (-1705 (((-112) $ $) 18)))
+(((-301) (-139)) (T -301))
+((-2195 (*1 *1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) (-2195 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) (-2195 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) (-2195 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) (-2195 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-635 *1)) (-4 *1 (-301)))) (-2497 (*1 *1 *1 *2) (-12 (-5 *2 (-293 *1)) (-4 *1 (-301)))) (-2497 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-293 *1))) (-4 *1 (-301)))) (-2497 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-604 *1))) (-5 *3 (-635 *1)) (-4 *1 (-301)))) (-2540 (*1 *1 *1) (-4 *1 (-301))) (-2540 (*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-301)))) (-3800 (*1 *1 *1) (-4 *1 (-301))) (-3800 (*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-301)))) (-1426 (*1 *1 *1) (-4 *1 (-301))) (-1426 (*1 *1 *1 *1) (-4 *1 (-301))) (-3382 (*1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-762)))) (-1416 (*1 *2 *1) (|partial| -12 (-5 *2 (-604 *1)) (-4 *1 (-301)))) (-2475 (*1 *2 *1) (-12 (-5 *2 (-635 (-604 *1))) (-4 *1 (-301)))) (-2396 (*1 *2 *1) (-12 (-5 *2 (-635 (-604 *1))) (-4 *1 (-301)))) (-1405 (*1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-635 (-114))))) (-3029 (*1 *2 *2) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) (-2995 (*1 *2 *3) (-12 (-4 *1 (-301)) (-5 *3 (-114)) (-5 *2 (-112)))) (-3173 (*1 *2 *1 *3) (-12 (-4 *1 (-301)) (-5 *3 (-114)) (-5 *2 (-112)))) (-3173 (*1 *2 *1 *3) (-12 (-4 *1 (-301)) (-5 *3 (-1163)) (-5 *2 (-112)))) (-1949 (*1 *1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) (-1949 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-635 *1)) (-4 *1 (-301)))) (-3167 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-604 *1)) (-4 *1 (-301)))) (-1392 (*1 *2 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-112)))) (-1392 (*1 *2 *1 *3) (-12 (-4 *1 (-301)) (-5 *3 (-1163)) (-5 *2 (-112)))) (-2554 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-1163))) (-5 *3 (-635 (-1 *1 *1))) (-4 *1 (-301)))) (-2554 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-1163))) (-5 *3 (-635 (-1 *1 (-635 *1)))) (-4 *1 (-301)))) (-2554 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-1 *1 (-635 *1))) (-4 *1 (-301)))) (-2554 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-1 *1 *1)) (-4 *1 (-301)))) (-2554 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-114))) (-5 *3 (-635 (-1 *1 *1))) (-4 *1 (-301)))) (-2554 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-114))) (-5 *3 (-635 (-1 *1 (-635 *1)))) (-4 *1 (-301)))) (-2554 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-635 *1))) (-4 *1 (-301)))) (-2554 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-301)))) (-1381 (*1 *2 *3) (-12 (-5 *3 (-604 *1)) (-4 *1 (-1039)) (-4 *1 (-301)) (-5 *2 (-1159 *1)))) (-2036 (*1 *1 *1) (-12 (-4 *1 (-1039)) (-4 *1 (-301)))) (-3458 (*1 *2 *1) (-12 (-4 *1 (-1028 (-558))) (-4 *1 (-301)) (-5 *2 (-112)))) (-3451 (*1 *2 *1) (-12 (-4 *1 (-1028 (-558))) (-4 *1 (-301)) (-5 *2 (-112)))))
+(-13 (-841) (-1028 (-604 $)) (-512 (-604 $) $) (-308 $) (-10 -8 (-15 -2195 ($ (-114) $)) (-15 -2195 ($ (-114) $ $)) (-15 -2195 ($ (-114) $ $ $)) (-15 -2195 ($ (-114) $ $ $ $)) (-15 -2195 ($ (-114) (-635 $))) (-15 -2497 ($ $ (-293 $))) (-15 -2497 ($ $ (-635 (-293 $)))) (-15 -2497 ($ $ (-635 (-604 $)) (-635 $))) (-15 -2540 ($ $)) (-15 -2540 ($ (-635 $))) (-15 -3800 ($ $)) (-15 -3800 ($ (-635 $))) (-15 -1426 ($ $)) (-15 -1426 ($ $ $)) (-15 -3382 ((-762) $)) (-15 -1416 ((-3 (-604 $) "failed") $)) (-15 -2475 ((-635 (-604 $)) $)) (-15 -2396 ((-635 (-604 $)) $)) (-15 -1405 ((-635 (-114)) $)) (-15 -3029 ((-114) (-114))) (-15 -2995 ((-112) (-114))) (-15 -3173 ((-112) $ (-114))) (-15 -3173 ((-112) $ (-1163))) (-15 -1949 ($ (-114) $)) (-15 -1949 ($ (-114) (-635 $))) (-15 -3167 ($ (-1 $ $) (-604 $))) (-15 -1392 ((-112) $ $)) (-15 -1392 ((-112) $ (-1163))) (-15 -2554 ($ $ (-635 (-1163)) (-635 (-1 $ $)))) (-15 -2554 ($ $ (-635 (-1163)) (-635 (-1 $ (-635 $))))) (-15 -2554 ($ $ (-1163) (-1 $ (-635 $)))) (-15 -2554 ($ $ (-1163) (-1 $ $))) (-15 -2554 ($ $ (-635 (-114)) (-635 (-1 $ $)))) (-15 -2554 ($ $ (-635 (-114)) (-635 (-1 $ (-635 $))))) (-15 -2554 ($ $ (-114) (-1 $ (-635 $)))) (-15 -2554 ($ $ (-114) (-1 $ $))) (IF (|has| $ (-1039)) (PROGN (-15 -1381 ((-1159 $) (-604 $))) (-15 -2036 ($ $))) |%noBranch|) (IF (|has| $ (-1028 (-558))) (PROGN (-15 -3458 ((-112) $)) (-15 -3451 ((-112) $))) |%noBranch|)))
+(((-102) . T) ((-608 #0=(-604 $)) . T) ((-605 (-853)) . T) ((-308 $) . T) ((-512 (-604 $) $) . T) ((-512 $ $) . T) ((-841) . T) ((-1028 #0#) . T) ((-1087) . T))
+((-3692 (((-635 |#1|) (-635 |#1|)) 10)))
+(((-302 |#1|) (-10 -7 (-15 -3692 ((-635 |#1|) (-635 |#1|)))) (-839)) (T -302))
+((-3692 (*1 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-839)) (-5 *1 (-302 *3)))))
+(-10 -7 (-15 -3692 ((-635 |#1|) (-635 |#1|))))
+((-3167 (((-679 |#2|) (-1 |#2| |#1|) (-679 |#1|)) 17)))
+(((-303 |#1| |#2|) (-10 -7 (-15 -3167 ((-679 |#2|) (-1 |#2| |#1|) (-679 |#1|)))) (-1039) (-1039)) (T -303))
+((-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-679 *5)) (-4 *5 (-1039)) (-4 *6 (-1039)) (-5 *2 (-679 *6)) (-5 *1 (-303 *5 *6)))))
+(-10 -7 (-15 -3167 ((-679 |#2|) (-1 |#2| |#1|) (-679 |#1|))))
+((-3536 (((-1246 (-315 (-378))) (-1246 (-315 (-224)))) 105)) (-3426 (((-1081 (-834 (-224))) (-1081 (-834 (-378)))) 40)) (-3578 (((-635 (-1145)) (-1143 (-224))) 87)) (-3643 (((-315 (-378)) (-942 (-224))) 50)) (-3653 (((-224) (-942 (-224))) 46)) (-3606 (((-1145) (-378)) 169)) (-3418 (((-834 (-224)) (-834 (-378))) 34)) (-3472 (((-2 (|:| |additions| (-558)) (|:| |multiplications| (-558)) (|:| |exponentiations| (-558)) (|:| |functionCalls| (-558))) (-1246 (-315 (-224)))) 143)) (-3616 (((-1025) (-2 (|:| -3510 (-378)) (|:| -1323 (-1145)) (|:| |explanations| (-635 (-1145))) (|:| |extra| (-1025)))) 181) (((-1025) (-2 (|:| -3510 (-378)) (|:| -1323 (-1145)) (|:| |explanations| (-635 (-1145))))) 179)) (-3683 (((-679 (-224)) (-635 (-224)) (-762)) 14)) (-3516 (((-1246 (-689)) (-635 (-224))) 94)) (-3568 (((-635 (-1145)) (-635 (-224))) 75)) (-3333 (((-3 (-315 (-224)) "failed") (-315 (-224))) 120)) (-2340 (((-112) (-224) (-1081 (-834 (-224)))) 109)) (-3634 (((-1025) (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))) 198)) (-3587 (((-224) (-1081 (-834 (-224)))) 107)) (-3596 (((-224) (-1081 (-834 (-224)))) 108)) (-3674 (((-224) (-406 (-558))) 27)) (-3559 (((-1145) (-378)) 73)) (-3396 (((-224) (-378)) 17)) (-3461 (((-378) (-1246 (-315 (-224)))) 154)) (-3406 (((-315 (-224)) (-315 (-378))) 23)) (-3445 (((-406 (-558)) (-315 (-224))) 53)) (-3481 (((-315 (-406 (-558))) (-315 (-224))) 69)) (-3525 (((-315 (-378)) (-315 (-224))) 98)) (-3454 (((-224) (-315 (-224))) 54)) (-3498 (((-635 (-224)) (-635 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))))) 64)) (-3489 (((-1081 (-834 (-224))) (-1081 (-834 (-224)))) 61)) (-3549 (((-1145) (-224)) 72)) (-3507 (((-689) (-224)) 90)) (-3435 (((-406 (-558)) (-224)) 55)) (-3663 (((-315 (-378)) (-224)) 49)) (-3224 (((-635 (-1081 (-834 (-224)))) (-635 (-1081 (-834 (-378))))) 43)) (-4341 (((-1025) (-635 (-1025))) 165) (((-1025) (-1025) (-1025)) 162)) (-3625 (((-1025) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1626 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195)))
+(((-304) (-10 -7 (-15 -3396 ((-224) (-378))) (-15 -3406 ((-315 (-224)) (-315 (-378)))) (-15 -3418 ((-834 (-224)) (-834 (-378)))) (-15 -3426 ((-1081 (-834 (-224))) (-1081 (-834 (-378))))) (-15 -3224 ((-635 (-1081 (-834 (-224)))) (-635 (-1081 (-834 (-378)))))) (-15 -3435 ((-406 (-558)) (-224))) (-15 -3445 ((-406 (-558)) (-315 (-224)))) (-15 -3454 ((-224) (-315 (-224)))) (-15 -3333 ((-3 (-315 (-224)) "failed") (-315 (-224)))) (-15 -3461 ((-378) (-1246 (-315 (-224))))) (-15 -3472 ((-2 (|:| |additions| (-558)) (|:| |multiplications| (-558)) (|:| |exponentiations| (-558)) (|:| |functionCalls| (-558))) (-1246 (-315 (-224))))) (-15 -3481 ((-315 (-406 (-558))) (-315 (-224)))) (-15 -3489 ((-1081 (-834 (-224))) (-1081 (-834 (-224))))) (-15 -3498 ((-635 (-224)) (-635 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))))) (-15 -3507 ((-689) (-224))) (-15 -3516 ((-1246 (-689)) (-635 (-224)))) (-15 -3525 ((-315 (-378)) (-315 (-224)))) (-15 -3536 ((-1246 (-315 (-378))) (-1246 (-315 (-224))))) (-15 -2340 ((-112) (-224) (-1081 (-834 (-224))))) (-15 -3549 ((-1145) (-224))) (-15 -3559 ((-1145) (-378))) (-15 -3568 ((-635 (-1145)) (-635 (-224)))) (-15 -3578 ((-635 (-1145)) (-1143 (-224)))) (-15 -3587 ((-224) (-1081 (-834 (-224))))) (-15 -3596 ((-224) (-1081 (-834 (-224))))) (-15 -4341 ((-1025) (-1025) (-1025))) (-15 -4341 ((-1025) (-635 (-1025)))) (-15 -3606 ((-1145) (-378))) (-15 -3616 ((-1025) (-2 (|:| -3510 (-378)) (|:| -1323 (-1145)) (|:| |explanations| (-635 (-1145)))))) (-15 -3616 ((-1025) (-2 (|:| -3510 (-378)) (|:| -1323 (-1145)) (|:| |explanations| (-635 (-1145))) (|:| |extra| (-1025))))) (-15 -3625 ((-1025) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1626 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3634 ((-1025) (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))))) (-15 -3643 ((-315 (-378)) (-942 (-224)))) (-15 -3653 ((-224) (-942 (-224)))) (-15 -3663 ((-315 (-378)) (-224))) (-15 -3674 ((-224) (-406 (-558)))) (-15 -3683 ((-679 (-224)) (-635 (-224)) (-762))))) (T -304))
+((-3683 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-224))) (-5 *4 (-762)) (-5 *2 (-679 (-224))) (-5 *1 (-304)))) (-3674 (*1 *2 *3) (-12 (-5 *3 (-406 (-558))) (-5 *2 (-224)) (-5 *1 (-304)))) (-3663 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-315 (-378))) (-5 *1 (-304)))) (-3653 (*1 *2 *3) (-12 (-5 *3 (-942 (-224))) (-5 *2 (-224)) (-5 *1 (-304)))) (-3643 (*1 *2 *3) (-12 (-5 *3 (-942 (-224))) (-5 *2 (-315 (-378))) (-5 *1 (-304)))) (-3634 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))) (-5 *2 (-1025)) (-5 *1 (-304)))) (-3625 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1626 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1025)) (-5 *1 (-304)))) (-3616 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3510 (-378)) (|:| -1323 (-1145)) (|:| |explanations| (-635 (-1145))) (|:| |extra| (-1025)))) (-5 *2 (-1025)) (-5 *1 (-304)))) (-3616 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3510 (-378)) (|:| -1323 (-1145)) (|:| |explanations| (-635 (-1145))))) (-5 *2 (-1025)) (-5 *1 (-304)))) (-3606 (*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1145)) (-5 *1 (-304)))) (-4341 (*1 *2 *3) (-12 (-5 *3 (-635 (-1025))) (-5 *2 (-1025)) (-5 *1 (-304)))) (-4341 (*1 *2 *2 *2) (-12 (-5 *2 (-1025)) (-5 *1 (-304)))) (-3596 (*1 *2 *3) (-12 (-5 *3 (-1081 (-834 (-224)))) (-5 *2 (-224)) (-5 *1 (-304)))) (-3587 (*1 *2 *3) (-12 (-5 *3 (-1081 (-834 (-224)))) (-5 *2 (-224)) (-5 *1 (-304)))) (-3578 (*1 *2 *3) (-12 (-5 *3 (-1143 (-224))) (-5 *2 (-635 (-1145))) (-5 *1 (-304)))) (-3568 (*1 *2 *3) (-12 (-5 *3 (-635 (-224))) (-5 *2 (-635 (-1145))) (-5 *1 (-304)))) (-3559 (*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1145)) (-5 *1 (-304)))) (-3549 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1145)) (-5 *1 (-304)))) (-2340 (*1 *2 *3 *4) (-12 (-5 *4 (-1081 (-834 (-224)))) (-5 *3 (-224)) (-5 *2 (-112)) (-5 *1 (-304)))) (-3536 (*1 *2 *3) (-12 (-5 *3 (-1246 (-315 (-224)))) (-5 *2 (-1246 (-315 (-378)))) (-5 *1 (-304)))) (-3525 (*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-315 (-378))) (-5 *1 (-304)))) (-3516 (*1 *2 *3) (-12 (-5 *3 (-635 (-224))) (-5 *2 (-1246 (-689))) (-5 *1 (-304)))) (-3507 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-689)) (-5 *1 (-304)))) (-3498 (*1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))))) (-5 *2 (-635 (-224))) (-5 *1 (-304)))) (-3489 (*1 *2 *2) (-12 (-5 *2 (-1081 (-834 (-224)))) (-5 *1 (-304)))) (-3481 (*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-315 (-406 (-558)))) (-5 *1 (-304)))) (-3472 (*1 *2 *3) (-12 (-5 *3 (-1246 (-315 (-224)))) (-5 *2 (-2 (|:| |additions| (-558)) (|:| |multiplications| (-558)) (|:| |exponentiations| (-558)) (|:| |functionCalls| (-558)))) (-5 *1 (-304)))) (-3461 (*1 *2 *3) (-12 (-5 *3 (-1246 (-315 (-224)))) (-5 *2 (-378)) (-5 *1 (-304)))) (-3333 (*1 *2 *2) (|partial| -12 (-5 *2 (-315 (-224))) (-5 *1 (-304)))) (-3454 (*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-224)) (-5 *1 (-304)))) (-3445 (*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-406 (-558))) (-5 *1 (-304)))) (-3435 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-406 (-558))) (-5 *1 (-304)))) (-3224 (*1 *2 *3) (-12 (-5 *3 (-635 (-1081 (-834 (-378))))) (-5 *2 (-635 (-1081 (-834 (-224))))) (-5 *1 (-304)))) (-3426 (*1 *2 *3) (-12 (-5 *3 (-1081 (-834 (-378)))) (-5 *2 (-1081 (-834 (-224)))) (-5 *1 (-304)))) (-3418 (*1 *2 *3) (-12 (-5 *3 (-834 (-378))) (-5 *2 (-834 (-224))) (-5 *1 (-304)))) (-3406 (*1 *2 *3) (-12 (-5 *3 (-315 (-378))) (-5 *2 (-315 (-224))) (-5 *1 (-304)))) (-3396 (*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-224)) (-5 *1 (-304)))))
+(-10 -7 (-15 -3396 ((-224) (-378))) (-15 -3406 ((-315 (-224)) (-315 (-378)))) (-15 -3418 ((-834 (-224)) (-834 (-378)))) (-15 -3426 ((-1081 (-834 (-224))) (-1081 (-834 (-378))))) (-15 -3224 ((-635 (-1081 (-834 (-224)))) (-635 (-1081 (-834 (-378)))))) (-15 -3435 ((-406 (-558)) (-224))) (-15 -3445 ((-406 (-558)) (-315 (-224)))) (-15 -3454 ((-224) (-315 (-224)))) (-15 -3333 ((-3 (-315 (-224)) "failed") (-315 (-224)))) (-15 -3461 ((-378) (-1246 (-315 (-224))))) (-15 -3472 ((-2 (|:| |additions| (-558)) (|:| |multiplications| (-558)) (|:| |exponentiations| (-558)) (|:| |functionCalls| (-558))) (-1246 (-315 (-224))))) (-15 -3481 ((-315 (-406 (-558))) (-315 (-224)))) (-15 -3489 ((-1081 (-834 (-224))) (-1081 (-834 (-224))))) (-15 -3498 ((-635 (-224)) (-635 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))))) (-15 -3507 ((-689) (-224))) (-15 -3516 ((-1246 (-689)) (-635 (-224)))) (-15 -3525 ((-315 (-378)) (-315 (-224)))) (-15 -3536 ((-1246 (-315 (-378))) (-1246 (-315 (-224))))) (-15 -2340 ((-112) (-224) (-1081 (-834 (-224))))) (-15 -3549 ((-1145) (-224))) (-15 -3559 ((-1145) (-378))) (-15 -3568 ((-635 (-1145)) (-635 (-224)))) (-15 -3578 ((-635 (-1145)) (-1143 (-224)))) (-15 -3587 ((-224) (-1081 (-834 (-224))))) (-15 -3596 ((-224) (-1081 (-834 (-224))))) (-15 -4341 ((-1025) (-1025) (-1025))) (-15 -4341 ((-1025) (-635 (-1025)))) (-15 -3606 ((-1145) (-378))) (-15 -3616 ((-1025) (-2 (|:| -3510 (-378)) (|:| -1323 (-1145)) (|:| |explanations| (-635 (-1145)))))) (-15 -3616 ((-1025) (-2 (|:| -3510 (-378)) (|:| -1323 (-1145)) (|:| |explanations| (-635 (-1145))) (|:| |extra| (-1025))))) (-15 -3625 ((-1025) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1626 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3634 ((-1025) (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))))) (-15 -3643 ((-315 (-378)) (-942 (-224)))) (-15 -3653 ((-224) (-942 (-224)))) (-15 -3663 ((-315 (-378)) (-224))) (-15 -3674 ((-224) (-406 (-558)))) (-15 -3683 ((-679 (-224)) (-635 (-224)) (-762))))
+((-3732 (((-112) $ $) 11)) (-4025 (($ $ $) 15)) (-4004 (($ $ $) 14)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) 43)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) 52)) (-2699 (($ $ $) 20) (($ (-635 $)) NIL)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) 31) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 36)) (-3983 (((-3 $ "failed") $ $) 17)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) 45)))
+(((-305 |#1|) (-10 -8 (-15 -3701 ((-3 (-635 |#1|) "failed") (-635 |#1|) |#1|)) (-15 -3713 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3713 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4098 |#1|)) |#1| |#1|)) (-15 -4025 (|#1| |#1| |#1|)) (-15 -4004 (|#1| |#1| |#1|)) (-15 -3732 ((-112) |#1| |#1|)) (-15 -2922 ((-3 (-635 |#1|) "failed") (-635 |#1|) |#1|)) (-15 -2934 ((-2 (|:| -2023 (-635 |#1|)) (|:| -4098 |#1|)) (-635 |#1|))) (-15 -2699 (|#1| (-635 |#1|))) (-15 -2699 (|#1| |#1| |#1|)) (-15 -3983 ((-3 |#1| "failed") |#1| |#1|))) (-306)) (T -305))
+NIL
+(-10 -8 (-15 -3701 ((-3 (-635 |#1|) "failed") (-635 |#1|) |#1|)) (-15 -3713 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3713 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4098 |#1|)) |#1| |#1|)) (-15 -4025 (|#1| |#1| |#1|)) (-15 -4004 (|#1| |#1| |#1|)) (-15 -3732 ((-112) |#1| |#1|)) (-15 -2922 ((-3 (-635 |#1|) "failed") (-635 |#1|) |#1|)) (-15 -2934 ((-2 (|:| -2023 (-635 |#1|)) (|:| -4098 |#1|)) (-635 |#1|))) (-15 -2699 (|#1| (-635 |#1|))) (-15 -2699 (|#1| |#1| |#1|)) (-15 -3983 ((-3 |#1| "failed") |#1| |#1|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 42)) (-1881 (($ $) 41)) (-1857 (((-112) $) 39)) (-2089 (((-3 $ "failed") $ $) 19)) (-3732 (((-112) $ $) 60)) (-1816 (($) 17 T CONST)) (-4025 (($ $ $) 56)) (-2588 (((-3 $ "failed") $) 33)) (-4004 (($ $ $) 57)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) 52)) (-2035 (((-112) $) 31)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) 53)) (-2665 (($ $ $) 47) (($ (-635 $)) 46)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) 45)) (-2699 (($ $ $) 49) (($ (-635 $)) 48)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3983 (((-3 $ "failed") $ $) 43)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-3722 (((-762) $) 59)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 58)) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ $) 44)) (-2542 (((-762)) 28)) (-1870 (((-112) $ $) 40)) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1683 (((-112) $ $) 6)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24)))
+(((-306) (-139)) (T -306))
+((-3732 (*1 *2 *1 *1) (-12 (-4 *1 (-306)) (-5 *2 (-112)))) (-3722 (*1 *2 *1) (-12 (-4 *1 (-306)) (-5 *2 (-762)))) (-1901 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2306 *1) (|:| -2071 *1))) (-4 *1 (-306)))) (-4004 (*1 *1 *1 *1) (-4 *1 (-306))) (-4025 (*1 *1 *1 *1) (-4 *1 (-306))) (-3713 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4098 *1))) (-4 *1 (-306)))) (-3713 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-306)))) (-3701 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-635 *1)) (-4 *1 (-306)))))
+(-13 (-910) (-10 -8 (-15 -3732 ((-112) $ $)) (-15 -3722 ((-762) $)) (-15 -1901 ((-2 (|:| -2306 $) (|:| -2071 $)) $ $)) (-15 -4004 ($ $ $)) (-15 -4025 ($ $ $)) (-15 -3713 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $)) (-15 -3713 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -3701 ((-3 (-635 $) "failed") (-635 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-608 (-558)) . T) ((-608 $) . T) ((-605 (-853)) . T) ((-171) . T) ((-289) . T) ((-450) . T) ((-550) . T) ((-638 $) . T) ((-708 $) . T) ((-717) . T) ((-910) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
+((-2554 (($ $ (-635 |#2|) (-635 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-293 |#2|)) 11) (($ $ (-635 (-293 |#2|))) NIL)))
+(((-307 |#1| |#2|) (-10 -8 (-15 -2554 (|#1| |#1| (-635 (-293 |#2|)))) (-15 -2554 (|#1| |#1| (-293 |#2|))) (-15 -2554 (|#1| |#1| |#2| |#2|)) (-15 -2554 (|#1| |#1| (-635 |#2|) (-635 |#2|)))) (-308 |#2|) (-1087)) (T -307))
+NIL
+(-10 -8 (-15 -2554 (|#1| |#1| (-635 (-293 |#2|)))) (-15 -2554 (|#1| |#1| (-293 |#2|))) (-15 -2554 (|#1| |#1| |#2| |#2|)) (-15 -2554 (|#1| |#1| (-635 |#2|) (-635 |#2|))))
+((-2554 (($ $ (-635 |#1|) (-635 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-293 |#1|)) 11) (($ $ (-635 (-293 |#1|))) 10)))
+(((-308 |#1|) (-139) (-1087)) (T -308))
+((-2554 (*1 *1 *1 *2) (-12 (-5 *2 (-293 *3)) (-4 *1 (-308 *3)) (-4 *3 (-1087)))) (-2554 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-293 *3))) (-4 *1 (-308 *3)) (-4 *3 (-1087)))))
+(-13 (-512 |t#1| |t#1|) (-10 -8 (-15 -2554 ($ $ (-293 |t#1|))) (-15 -2554 ($ $ (-635 (-293 |t#1|))))))
+(((-512 |#1| |#1|) . T))
+((-2554 ((|#1| (-1 |#1| (-558)) (-1165 (-406 (-558)))) 25)))
+(((-309 |#1|) (-10 -7 (-15 -2554 (|#1| (-1 |#1| (-558)) (-1165 (-406 (-558)))))) (-38 (-406 (-558)))) (T -309))
+((-2554 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-558))) (-5 *4 (-1165 (-406 (-558)))) (-5 *1 (-309 *2)) (-4 *2 (-38 (-406 (-558)))))))
+(-10 -7 (-15 -2554 (|#1| (-1 |#1| (-558)) (-1165 (-406 (-558))))))
+((-3207 (((-112) $ $) NIL)) (-3121 (((-558) $) 12)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3535 (((-1122) $) 9)) (-3220 (((-853) $) 21) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1683 (((-112) $ $) NIL)))
+(((-310) (-13 (-1070) (-10 -8 (-15 -3535 ((-1122) $)) (-15 -3121 ((-558) $))))) (T -310))
+((-3535 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-310)))) (-3121 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-310)))))
+(-13 (-1070) (-10 -8 (-15 -3535 ((-1122) $)) (-15 -3121 ((-558) $))))
+((-3207 (((-112) $ $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 7)) (-1683 (((-112) $ $) 9)))
+(((-311) (-1087)) (T -311))
+NIL
+(-1087)
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) 62)) (-2582 (((-1232 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-306)))) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL)) (-1881 (($ $) NIL)) (-1857 (((-112) $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-3748 (((-417 (-1159 $)) (-1159 $)) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-899)))) (-3465 (($ $) NIL)) (-1380 (((-417 $) $) NIL)) (-3719 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-899)))) (-3732 (((-112) $ $) NIL)) (-1397 (((-558) $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-811)))) (-1816 (($) NIL T CONST)) (-3069 (((-3 (-1232 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1163) "failed") $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-1028 (-1163)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-1028 (-558)))) (((-3 (-558) "failed") $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-1028 (-558)))) (((-3 (-1231 |#2| |#3| |#4|) "failed") $) 25)) (-1863 (((-1232 |#1| |#2| |#3| |#4|) $) NIL) (((-1163) $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-1028 (-1163)))) (((-406 (-558)) $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-1028 (-558)))) (((-558) $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-1028 (-558)))) (((-1231 |#2| |#3| |#4|) $) NIL)) (-4025 (($ $ $) NIL)) (-3216 (((-679 (-558)) (-679 $)) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-631 (-558)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-631 (-558)))) (((-2 (|:| -3683 (-679 (-1232 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1246 (-1232 |#1| |#2| |#3| |#4|)))) (-679 $) (-1246 $)) NIL) (((-679 (-1232 |#1| |#2| |#3| |#4|)) (-679 $)) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-2424 (($) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-543)))) (-4004 (($ $ $) NIL)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL)) (-3031 (((-112) $) NIL)) (-2045 (((-112) $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-811)))) (-2269 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-876 (-558)))) (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-876 (-378))))) (-2035 (((-112) $) NIL)) (-3704 (($ $) NIL)) (-1874 (((-1232 |#1| |#2| |#3| |#4|) $) 21)) (-2457 (((-3 $ "failed") $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-1138)))) (-2055 (((-112) $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-811)))) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3910 (($ $ $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-841)))) (-3542 (($ $ $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-841)))) (-3167 (($ (-1 (-1232 |#1| |#2| |#3| |#4|) (-1232 |#1| |#2| |#3| |#4|)) $) NIL)) (-2324 (((-3 (-834 |#2|) "failed") $) 78)) (-2665 (($ $ $) NIL) (($ (-635 $)) NIL)) (-4310 (((-1145) $) NIL)) (-2418 (($ $) NIL)) (-1796 (($) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-1138)) CONST)) (-2975 (((-1107) $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-2699 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2568 (($ $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-306)))) (-2594 (((-1232 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-543)))) (-3728 (((-417 (-1159 $)) (-1159 $)) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-899)))) (-3738 (((-417 (-1159 $)) (-1159 $)) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-899)))) (-2522 (((-417 $) $) NIL)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3983 (((-3 $ "failed") $ $) NIL)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2554 (($ $ (-635 (-1232 |#1| |#2| |#3| |#4|)) (-635 (-1232 |#1| |#2| |#3| |#4|))) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-308 (-1232 |#1| |#2| |#3| |#4|)))) (($ $ (-1232 |#1| |#2| |#3| |#4|) (-1232 |#1| |#2| |#3| |#4|)) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-308 (-1232 |#1| |#2| |#3| |#4|)))) (($ $ (-293 (-1232 |#1| |#2| |#3| |#4|))) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-308 (-1232 |#1| |#2| |#3| |#4|)))) (($ $ (-635 (-293 (-1232 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-308 (-1232 |#1| |#2| |#3| |#4|)))) (($ $ (-635 (-1163)) (-635 (-1232 |#1| |#2| |#3| |#4|))) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-512 (-1163) (-1232 |#1| |#2| |#3| |#4|)))) (($ $ (-1163) (-1232 |#1| |#2| |#3| |#4|)) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-512 (-1163) (-1232 |#1| |#2| |#3| |#4|))))) (-3722 (((-762) $) NIL)) (-2195 (($ $ (-1232 |#1| |#2| |#3| |#4|)) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-285 (-1232 |#1| |#2| |#3| |#4|) (-1232 |#1| |#2| |#3| |#4|))))) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL)) (-2829 (($ $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-232))) (($ $ (-762)) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-232))) (($ $ (-1163)) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-890 (-1163)))) (($ $ (-1 (-1232 |#1| |#2| |#3| |#4|) (-1232 |#1| |#2| |#3| |#4|)) (-762)) NIL) (($ $ (-1 (-1232 |#1| |#2| |#3| |#4|) (-1232 |#1| |#2| |#3| |#4|))) NIL)) (-3694 (($ $) NIL)) (-1885 (((-1232 |#1| |#2| |#3| |#4|) $) 17)) (-3224 (((-882 (-558)) $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-606 (-882 (-558))))) (((-882 (-378)) $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-606 (-882 (-378))))) (((-534) $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-606 (-534)))) (((-378) $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-1012))) (((-224) $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-1012)))) (-3709 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| (-1232 |#1| |#2| |#3| |#4|) (-899))))) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL) (($ (-406 (-558))) NIL) (($ (-1232 |#1| |#2| |#3| |#4|)) 29) (($ (-1163)) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-1028 (-1163)))) (($ (-1231 |#2| |#3| |#4|)) 36)) (-3698 (((-3 $ "failed") $) NIL (-3998 (-12 (|has| $ (-144)) (|has| (-1232 |#1| |#2| |#3| |#4|) (-899))) (|has| (-1232 |#1| |#2| |#3| |#4|) (-144))))) (-2542 (((-762)) NIL)) (-2604 (((-1232 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-543)))) (-1870 (((-112) $ $) NIL)) (-3190 (($ $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-811)))) (-2131 (($) 41 T CONST)) (-2142 (($) NIL T CONST)) (-1866 (($ $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-232))) (($ $ (-762)) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-232))) (($ $ (-1163)) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-890 (-1163)))) (($ $ (-1 (-1232 |#1| |#2| |#3| |#4|) (-1232 |#1| |#2| |#3| |#4|)) (-762)) NIL) (($ $ (-1 (-1232 |#1| |#2| |#3| |#4|) (-1232 |#1| |#2| |#3| |#4|))) NIL)) (-1747 (((-112) $ $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-841)))) (-1720 (((-112) $ $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-841)))) (-1683 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-841)))) (-1705 (((-112) $ $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-841)))) (-1810 (($ $ $) 34) (($ (-1232 |#1| |#2| |#3| |#4|) (-1232 |#1| |#2| |#3| |#4|)) 31)) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL) (($ (-1232 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1232 |#1| |#2| |#3| |#4|)) NIL)))
+(((-312 |#1| |#2| |#3| |#4|) (-13 (-982 (-1232 |#1| |#2| |#3| |#4|)) (-1028 (-1231 |#2| |#3| |#4|)) (-10 -8 (-15 -2324 ((-3 (-834 |#2|) "failed") $)) (-15 -3220 ($ (-1231 |#2| |#3| |#4|))))) (-13 (-841) (-1028 (-558)) (-631 (-558)) (-450)) (-13 (-27) (-1185) (-429 |#1|)) (-1163) |#2|) (T -312))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-1231 *4 *5 *6)) (-4 *4 (-13 (-27) (-1185) (-429 *3))) (-14 *5 (-1163)) (-14 *6 *4) (-4 *3 (-13 (-841) (-1028 (-558)) (-631 (-558)) (-450))) (-5 *1 (-312 *3 *4 *5 *6)))) (-2324 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-841) (-1028 (-558)) (-631 (-558)) (-450))) (-5 *2 (-834 *4)) (-5 *1 (-312 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1185) (-429 *3))) (-14 *5 (-1163)) (-14 *6 *4))))
+(-13 (-982 (-1232 |#1| |#2| |#3| |#4|)) (-1028 (-1231 |#2| |#3| |#4|)) (-10 -8 (-15 -2324 ((-3 (-834 |#2|) "failed") $)) (-15 -3220 ($ (-1231 |#2| |#3| |#4|)))))
+((-3167 (((-315 |#2|) (-1 |#2| |#1|) (-315 |#1|)) 13)))
+(((-313 |#1| |#2|) (-10 -7 (-15 -3167 ((-315 |#2|) (-1 |#2| |#1|) (-315 |#1|)))) (-841) (-841)) (T -313))
+((-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-315 *5)) (-4 *5 (-841)) (-4 *6 (-841)) (-5 *2 (-315 *6)) (-5 *1 (-313 *5 *6)))))
+(-10 -7 (-15 -3167 ((-315 |#2|) (-1 |#2| |#1|) (-315 |#1|))))
+((-2724 (((-52) |#2| (-293 |#2|) (-762)) 33) (((-52) |#2| (-293 |#2|)) 24) (((-52) |#2| (-762)) 28) (((-52) |#2|) 25) (((-52) (-1163)) 21)) (-3871 (((-52) |#2| (-293 |#2|) (-406 (-558))) 51) (((-52) |#2| (-293 |#2|)) 48) (((-52) |#2| (-406 (-558))) 50) (((-52) |#2|) 49) (((-52) (-1163)) 47)) (-2395 (((-52) |#2| (-293 |#2|) (-406 (-558))) 46) (((-52) |#2| (-293 |#2|)) 43) (((-52) |#2| (-406 (-558))) 45) (((-52) |#2|) 44) (((-52) (-1163)) 42)) (-2735 (((-52) |#2| (-293 |#2|) (-558)) 39) (((-52) |#2| (-293 |#2|)) 35) (((-52) |#2| (-558)) 38) (((-52) |#2|) 36) (((-52) (-1163)) 34)))
+(((-314 |#1| |#2|) (-10 -7 (-15 -2724 ((-52) (-1163))) (-15 -2724 ((-52) |#2|)) (-15 -2724 ((-52) |#2| (-762))) (-15 -2724 ((-52) |#2| (-293 |#2|))) (-15 -2724 ((-52) |#2| (-293 |#2|) (-762))) (-15 -2735 ((-52) (-1163))) (-15 -2735 ((-52) |#2|)) (-15 -2735 ((-52) |#2| (-558))) (-15 -2735 ((-52) |#2| (-293 |#2|))) (-15 -2735 ((-52) |#2| (-293 |#2|) (-558))) (-15 -2395 ((-52) (-1163))) (-15 -2395 ((-52) |#2|)) (-15 -2395 ((-52) |#2| (-406 (-558)))) (-15 -2395 ((-52) |#2| (-293 |#2|))) (-15 -2395 ((-52) |#2| (-293 |#2|) (-406 (-558)))) (-15 -3871 ((-52) (-1163))) (-15 -3871 ((-52) |#2|)) (-15 -3871 ((-52) |#2| (-406 (-558)))) (-15 -3871 ((-52) |#2| (-293 |#2|))) (-15 -3871 ((-52) |#2| (-293 |#2|) (-406 (-558))))) (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))) (-13 (-27) (-1185) (-429 |#1|))) (T -314))
+((-3871 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-293 *3)) (-5 *5 (-406 (-558))) (-4 *3 (-13 (-27) (-1185) (-429 *6))) (-4 *6 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-314 *6 *3)))) (-3871 (*1 *2 *3 *4) (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *5))) (-4 *5 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)))) (-3871 (*1 *2 *3 *4) (-12 (-5 *4 (-406 (-558))) (-4 *5 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *5))))) (-3871 (*1 *2 *3) (-12 (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *4))))) (-3871 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *5)) (-4 *5 (-13 (-27) (-1185) (-429 *4))))) (-2395 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-293 *3)) (-5 *5 (-406 (-558))) (-4 *3 (-13 (-27) (-1185) (-429 *6))) (-4 *6 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-314 *6 *3)))) (-2395 (*1 *2 *3 *4) (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *5))) (-4 *5 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)))) (-2395 (*1 *2 *3 *4) (-12 (-5 *4 (-406 (-558))) (-4 *5 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *5))))) (-2395 (*1 *2 *3) (-12 (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *4))))) (-2395 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *5)) (-4 *5 (-13 (-27) (-1185) (-429 *4))))) (-2735 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *6))) (-4 *6 (-13 (-450) (-841) (-1028 *5) (-631 *5))) (-5 *5 (-558)) (-5 *2 (-52)) (-5 *1 (-314 *6 *3)))) (-2735 (*1 *2 *3 *4) (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *5))) (-4 *5 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)))) (-2735 (*1 *2 *3 *4) (-12 (-5 *4 (-558)) (-4 *5 (-13 (-450) (-841) (-1028 *4) (-631 *4))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *5))))) (-2735 (*1 *2 *3) (-12 (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *4))))) (-2735 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *5)) (-4 *5 (-13 (-27) (-1185) (-429 *4))))) (-2724 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-293 *3)) (-5 *5 (-762)) (-4 *3 (-13 (-27) (-1185) (-429 *6))) (-4 *6 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-314 *6 *3)))) (-2724 (*1 *2 *3 *4) (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *5))) (-4 *5 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)))) (-2724 (*1 *2 *3 *4) (-12 (-5 *4 (-762)) (-4 *5 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *5))))) (-2724 (*1 *2 *3) (-12 (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *4))))) (-2724 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *5)) (-4 *5 (-13 (-27) (-1185) (-429 *4))))))
+(-10 -7 (-15 -2724 ((-52) (-1163))) (-15 -2724 ((-52) |#2|)) (-15 -2724 ((-52) |#2| (-762))) (-15 -2724 ((-52) |#2| (-293 |#2|))) (-15 -2724 ((-52) |#2| (-293 |#2|) (-762))) (-15 -2735 ((-52) (-1163))) (-15 -2735 ((-52) |#2|)) (-15 -2735 ((-52) |#2| (-558))) (-15 -2735 ((-52) |#2| (-293 |#2|))) (-15 -2735 ((-52) |#2| (-293 |#2|) (-558))) (-15 -2395 ((-52) (-1163))) (-15 -2395 ((-52) |#2|)) (-15 -2395 ((-52) |#2| (-406 (-558)))) (-15 -2395 ((-52) |#2| (-293 |#2|))) (-15 -2395 ((-52) |#2| (-293 |#2|) (-406 (-558)))) (-15 -3871 ((-52) (-1163))) (-15 -3871 ((-52) |#2|)) (-15 -3871 ((-52) |#2| (-406 (-558)))) (-15 -3871 ((-52) |#2| (-293 |#2|))) (-15 -3871 ((-52) |#2| (-293 |#2|) (-406 (-558)))))
+((-3207 (((-112) $ $) NIL)) (-1461 (((-635 $) $ (-1163)) NIL (|has| |#1| (-550))) (((-635 $) $) NIL (|has| |#1| (-550))) (((-635 $) (-1159 $) (-1163)) NIL (|has| |#1| (-550))) (((-635 $) (-1159 $)) NIL (|has| |#1| (-550))) (((-635 $) (-942 $)) NIL (|has| |#1| (-550)))) (-1589 (($ $ (-1163)) NIL (|has| |#1| (-550))) (($ $) NIL (|has| |#1| (-550))) (($ (-1159 $) (-1163)) NIL (|has| |#1| (-550))) (($ (-1159 $)) NIL (|has| |#1| (-550))) (($ (-942 $)) NIL (|has| |#1| (-550)))) (-2067 (((-112) $) 27 (-3998 (|has| |#1| (-25)) (-12 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039)))))) (-2671 (((-635 (-1163)) $) 349)) (-2492 (((-406 (-1159 $)) $ (-604 $)) NIL (|has| |#1| (-550)))) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1881 (($ $) NIL (|has| |#1| (-550)))) (-1857 (((-112) $) NIL (|has| |#1| (-550)))) (-2396 (((-635 (-604 $)) $) NIL)) (-4088 (($ $) 159 (|has| |#1| (-550)))) (-2135 (($ $) 135 (|has| |#1| (-550)))) (-1421 (($ $ (-1079 $)) 220 (|has| |#1| (-550))) (($ $ (-1163)) 216 (|has| |#1| (-550)))) (-2089 (((-3 $ "failed") $ $) NIL (-3998 (|has| |#1| (-21)) (-12 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039)))))) (-2497 (($ $ (-293 $)) NIL) (($ $ (-635 (-293 $))) 366) (($ $ (-635 (-604 $)) (-635 $)) 410)) (-3748 (((-417 (-1159 $)) (-1159 $)) 294 (-12 (|has| |#1| (-450)) (|has| |#1| (-550))))) (-3465 (($ $) NIL (|has| |#1| (-550)))) (-1380 (((-417 $) $) NIL (|has| |#1| (-550)))) (-2534 (($ $) NIL (|has| |#1| (-550)))) (-3732 (((-112) $ $) NIL (|has| |#1| (-550)))) (-4070 (($ $) 155 (|has| |#1| (-550)))) (-2112 (($ $) 131 (|has| |#1| (-550)))) (-3741 (($ $ (-558)) 69 (|has| |#1| (-550)))) (-4113 (($ $) 163 (|has| |#1| (-550)))) (-2156 (($ $) 139 (|has| |#1| (-550)))) (-1816 (($) NIL (-3998 (|has| |#1| (-25)) (-12 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039))) (|has| |#1| (-1099))) CONST)) (-1608 (((-635 $) $ (-1163)) NIL (|has| |#1| (-550))) (((-635 $) $) NIL (|has| |#1| (-550))) (((-635 $) (-1159 $) (-1163)) NIL (|has| |#1| (-550))) (((-635 $) (-1159 $)) NIL (|has| |#1| (-550))) (((-635 $) (-942 $)) NIL (|has| |#1| (-550)))) (-2016 (($ $ (-1163)) NIL (|has| |#1| (-550))) (($ $) NIL (|has| |#1| (-550))) (($ (-1159 $) (-1163)) 122 (|has| |#1| (-550))) (($ (-1159 $)) NIL (|has| |#1| (-550))) (($ (-942 $)) NIL (|has| |#1| (-550)))) (-3069 (((-3 (-604 $) "failed") $) 17) (((-3 (-1163) "failed") $) NIL) (((-3 |#1| "failed") $) 419) (((-3 (-48) "failed") $) 322 (-12 (|has| |#1| (-550)) (|has| |#1| (-1028 (-558))))) (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 (-406 (-942 |#1|)) "failed") $) NIL (|has| |#1| (-550))) (((-3 (-942 |#1|) "failed") $) NIL (|has| |#1| (-1039))) (((-3 (-406 (-558)) "failed") $) 46 (-3998 (-12 (|has| |#1| (-550)) (|has| |#1| (-1028 (-558)))) (|has| |#1| (-1028 (-406 (-558))))))) (-1863 (((-604 $) $) 11) (((-1163) $) NIL) ((|#1| $) 401) (((-48) $) NIL (-12 (|has| |#1| (-550)) (|has| |#1| (-1028 (-558))))) (((-558) $) NIL (|has| |#1| (-1028 (-558)))) (((-406 (-942 |#1|)) $) NIL (|has| |#1| (-550))) (((-942 |#1|) $) NIL (|has| |#1| (-1039))) (((-406 (-558)) $) 305 (-3998 (-12 (|has| |#1| (-550)) (|has| |#1| (-1028 (-558)))) (|has| |#1| (-1028 (-406 (-558))))))) (-4025 (($ $ $) NIL (|has| |#1| (-550)))) (-3216 (((-2 (|:| -3683 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) 115 (|has| |#1| (-1039))) (((-679 |#1|) (-679 $)) 105 (|has| |#1| (-1039))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (-12 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039)))) (((-679 (-558)) (-679 $)) NIL (-12 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039))))) (-3048 (($ $) 87 (|has| |#1| (-550)))) (-2588 (((-3 $ "failed") $) NIL (-3998 (-12 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039))) (|has| |#1| (-1099))))) (-4004 (($ $ $) NIL (|has| |#1| (-550)))) (-4287 (($ $ (-1079 $)) 224 (|has| |#1| (-550))) (($ $ (-1163)) 222 (|has| |#1| (-550)))) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL (|has| |#1| (-550)))) (-3031 (((-112) $) NIL (|has| |#1| (-550)))) (-3226 (($ $ $) 190 (|has| |#1| (-550)))) (-1904 (($) 125 (|has| |#1| (-550)))) (-1387 (($ $ $) 210 (|has| |#1| (-550)))) (-2269 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) 372 (|has| |#1| (-876 (-558)))) (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) 379 (|has| |#1| (-876 (-378))))) (-3800 (($ $) NIL) (($ (-635 $)) NIL)) (-1405 (((-635 (-114)) $) NIL)) (-3029 (((-114) (-114)) 265)) (-2035 (((-112) $) 25 (-3998 (-12 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039))) (|has| |#1| (-1099))))) (-3451 (((-112) $) NIL (|has| $ (-1028 (-558))))) (-3704 (($ $) 68 (|has| |#1| (-1039)))) (-1874 (((-1112 |#1| (-604 $)) $) 82 (|has| |#1| (-1039)))) (-3751 (((-112) $) 61 (|has| |#1| (-550)))) (-3828 (($ $ (-558)) NIL (|has| |#1| (-550)))) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-550)))) (-1381 (((-1159 $) (-604 $)) 266 (|has| $ (-1039)))) (-3910 (($ $ $) NIL)) (-3542 (($ $ $) NIL)) (-3167 (($ (-1 $ $) (-604 $)) 406)) (-1416 (((-3 (-604 $) "failed") $) NIL)) (-2592 (($ $) 129 (|has| |#1| (-550)))) (-4116 (($ $) 235 (|has| |#1| (-550)))) (-2665 (($ (-635 $)) NIL (|has| |#1| (-550))) (($ $ $) NIL (|has| |#1| (-550)))) (-4310 (((-1145) $) NIL)) (-2475 (((-635 (-604 $)) $) 49)) (-1949 (($ (-114) $) NIL) (($ (-114) (-635 $)) 411)) (-2560 (((-3 (-635 $) "failed") $) NIL (|has| |#1| (-1099)))) (-2586 (((-3 (-2 (|:| |val| $) (|:| -1951 (-558))) "failed") $) NIL (|has| |#1| (-1039)))) (-2548 (((-3 (-635 $) "failed") $) 414 (|has| |#1| (-25)))) (-4017 (((-3 (-2 (|:| -2023 (-558)) (|:| |var| (-604 $))) "failed") $) 418 (|has| |#1| (-25)))) (-2575 (((-3 (-2 (|:| |var| (-604 $)) (|:| -1951 (-558))) "failed") $) NIL (|has| |#1| (-1099))) (((-3 (-2 (|:| |var| (-604 $)) (|:| -1951 (-558))) "failed") $ (-114)) NIL (|has| |#1| (-1039))) (((-3 (-2 (|:| |var| (-604 $)) (|:| -1951 (-558))) "failed") $ (-1163)) NIL (|has| |#1| (-1039)))) (-3173 (((-112) $ (-114)) NIL) (((-112) $ (-1163)) 53)) (-2418 (($ $) NIL (-3998 (|has| |#1| (-471)) (|has| |#1| (-550))))) (-2661 (($ $ (-1163)) 239 (|has| |#1| (-550))) (($ $ (-1079 $)) 241 (|has| |#1| (-550)))) (-3382 (((-762) $) NIL)) (-2975 (((-1107) $) NIL)) (-2429 (((-112) $) 43)) (-2440 ((|#1| $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) 287 (|has| |#1| (-550)))) (-2699 (($ (-635 $)) NIL (|has| |#1| (-550))) (($ $ $) NIL (|has| |#1| (-550)))) (-1392 (((-112) $ $) NIL) (((-112) $ (-1163)) NIL)) (-1432 (($ $ (-1163)) 214 (|has| |#1| (-550))) (($ $) 212 (|has| |#1| (-550)))) (-1364 (($ $) 206 (|has| |#1| (-550)))) (-3738 (((-417 (-1159 $)) (-1159 $)) 292 (-12 (|has| |#1| (-450)) (|has| |#1| (-550))))) (-2522 (((-417 $) $) NIL (|has| |#1| (-550)))) (-3713 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-550))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL (|has| |#1| (-550)))) (-3983 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-550)))) (-2573 (($ $) 127 (|has| |#1| (-550)))) (-3458 (((-112) $) NIL (|has| $ (-1028 (-558))))) (-2554 (($ $ (-604 $) $) NIL) (($ $ (-635 (-604 $)) (-635 $)) 405) (($ $ (-635 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-635 (-1163)) (-635 (-1 $ $))) NIL) (($ $ (-635 (-1163)) (-635 (-1 $ (-635 $)))) NIL) (($ $ (-1163) (-1 $ (-635 $))) NIL) (($ $ (-1163) (-1 $ $)) NIL) (($ $ (-635 (-114)) (-635 (-1 $ $))) 359) (($ $ (-635 (-114)) (-635 (-1 $ (-635 $)))) NIL) (($ $ (-114) (-1 $ (-635 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1163)) NIL (|has| |#1| (-606 (-534)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-606 (-534)))) (($ $) NIL (|has| |#1| (-606 (-534)))) (($ $ (-114) $ (-1163)) 347 (|has| |#1| (-606 (-534)))) (($ $ (-635 (-114)) (-635 $) (-1163)) 346 (|has| |#1| (-606 (-534)))) (($ $ (-635 (-1163)) (-635 (-762)) (-635 (-1 $ $))) NIL (|has| |#1| (-1039))) (($ $ (-635 (-1163)) (-635 (-762)) (-635 (-1 $ (-635 $)))) NIL (|has| |#1| (-1039))) (($ $ (-1163) (-762) (-1 $ (-635 $))) NIL (|has| |#1| (-1039))) (($ $ (-1163) (-762) (-1 $ $)) NIL (|has| |#1| (-1039)))) (-3722 (((-762) $) NIL (|has| |#1| (-550)))) (-2065 (($ $) 227 (|has| |#1| (-550)))) (-2195 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-635 $)) NIL)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL (|has| |#1| (-550)))) (-1426 (($ $) NIL) (($ $ $) NIL)) (-2097 (($ $) 237 (|has| |#1| (-550)))) (-3212 (($ $) 188 (|has| |#1| (-550)))) (-2829 (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-1039))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-1039))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-1039))) (($ $ (-1163)) NIL (|has| |#1| (-1039)))) (-3694 (($ $) 70 (|has| |#1| (-550)))) (-1885 (((-1112 |#1| (-604 $)) $) 84 (|has| |#1| (-550)))) (-2036 (($ $) 303 (|has| $ (-1039)))) (-4124 (($ $) 165 (|has| |#1| (-550)))) (-2167 (($ $) 141 (|has| |#1| (-550)))) (-4102 (($ $) 161 (|has| |#1| (-550)))) (-2146 (($ $) 137 (|has| |#1| (-550)))) (-4080 (($ $) 157 (|has| |#1| (-550)))) (-2124 (($ $) 133 (|has| |#1| (-550)))) (-3224 (((-882 (-558)) $) NIL (|has| |#1| (-606 (-882 (-558))))) (((-882 (-378)) $) NIL (|has| |#1| (-606 (-882 (-378))))) (($ (-417 $)) NIL (|has| |#1| (-550))) (((-534) $) 344 (|has| |#1| (-606 (-534))))) (-3808 (($ $ $) NIL (|has| |#1| (-471)))) (-3443 (($ $ $) NIL (|has| |#1| (-471)))) (-3220 (((-853) $) 404) (($ (-604 $)) 395) (($ (-1163)) 361) (($ |#1|) 323) (($ $) NIL (|has| |#1| (-550))) (($ (-48)) 298 (-12 (|has| |#1| (-550)) (|has| |#1| (-1028 (-558))))) (($ (-1112 |#1| (-604 $))) 86 (|has| |#1| (-1039))) (($ (-406 |#1|)) NIL (|has| |#1| (-550))) (($ (-942 (-406 |#1|))) NIL (|has| |#1| (-550))) (($ (-406 (-942 (-406 |#1|)))) NIL (|has| |#1| (-550))) (($ (-406 (-942 |#1|))) NIL (|has| |#1| (-550))) (($ (-942 |#1|)) NIL (|has| |#1| (-1039))) (($ (-406 (-558))) NIL (-3998 (|has| |#1| (-550)) (|has| |#1| (-1028 (-406 (-558)))))) (($ (-558)) 34 (-3998 (|has| |#1| (-1028 (-558))) (|has| |#1| (-1039))))) (-3698 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2542 (((-762)) NIL (|has| |#1| (-1039)))) (-2540 (($ $) NIL) (($ (-635 $)) NIL)) (-2322 (($ $ $) 208 (|has| |#1| (-550)))) (-3259 (($ $ $) 194 (|has| |#1| (-550)))) (-3280 (($ $ $) 198 (|has| |#1| (-550)))) (-3249 (($ $ $) 192 (|has| |#1| (-550)))) (-3269 (($ $ $) 196 (|has| |#1| (-550)))) (-2995 (((-112) (-114)) 9)) (-4159 (($ $) 171 (|has| |#1| (-550)))) (-2200 (($ $) 147 (|has| |#1| (-550)))) (-1870 (((-112) $ $) NIL (|has| |#1| (-550)))) (-4135 (($ $) 167 (|has| |#1| (-550)))) (-2178 (($ $) 143 (|has| |#1| (-550)))) (-4184 (($ $) 175 (|has| |#1| (-550)))) (-2222 (($ $) 151 (|has| |#1| (-550)))) (-4213 (($ (-1163) $) NIL) (($ (-1163) $ $) NIL) (($ (-1163) $ $ $) NIL) (($ (-1163) $ $ $ $) NIL) (($ (-1163) (-635 $)) NIL)) (-3302 (($ $) 202 (|has| |#1| (-550)))) (-3291 (($ $) 200 (|has| |#1| (-550)))) (-1878 (($ $) 177 (|has| |#1| (-550)))) (-4060 (($ $) 153 (|has| |#1| (-550)))) (-4171 (($ $) 173 (|has| |#1| (-550)))) (-2211 (($ $) 149 (|has| |#1| (-550)))) (-4147 (($ $) 169 (|has| |#1| (-550)))) (-2189 (($ $) 145 (|has| |#1| (-550)))) (-3190 (($ $) 180 (|has| |#1| (-550)))) (-2131 (($) 20 (-3998 (|has| |#1| (-25)) (-12 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039)))) CONST)) (-3017 (($ $) 231 (|has| |#1| (-550)))) (-2142 (($) 22 (-3998 (-12 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039))) (|has| |#1| (-1099))) CONST)) (-3239 (($ $) 182 (|has| |#1| (-550))) (($ $ $) 184 (|has| |#1| (-550)))) (-3028 (($ $) 229 (|has| |#1| (-550)))) (-1866 (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-1039))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-1039))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-1039))) (($ $ (-1163)) NIL (|has| |#1| (-1039)))) (-3006 (($ $) 233 (|has| |#1| (-550)))) (-3200 (($ $ $) 186 (|has| |#1| (-550)))) (-1747 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1683 (((-112) $ $) 79)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 78)) (-1810 (($ (-1112 |#1| (-604 $)) (-1112 |#1| (-604 $))) 96 (|has| |#1| (-550))) (($ $ $) 42 (-3998 (|has| |#1| (-471)) (|has| |#1| (-550))))) (-1798 (($ $ $) 40 (-3998 (|has| |#1| (-21)) (-12 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039))))) (($ $) 29 (-3998 (|has| |#1| (-21)) (-12 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039)))))) (-1784 (($ $ $) 38 (-3998 (|has| |#1| (-25)) (-12 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039)))))) (** (($ $ $) 63 (|has| |#1| (-550))) (($ $ (-406 (-558))) 300 (|has| |#1| (-550))) (($ $ (-558)) 74 (-3998 (|has| |#1| (-471)) (|has| |#1| (-550)))) (($ $ (-762)) 71 (-3998 (-12 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039))) (|has| |#1| (-1099)))) (($ $ (-911)) 76 (-3998 (-12 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039))) (|has| |#1| (-1099))))) (* (($ (-406 (-558)) $) NIL (|has| |#1| (-550))) (($ $ (-406 (-558))) NIL (|has| |#1| (-550))) (($ |#1| $) NIL (|has| |#1| (-171))) (($ $ |#1|) NIL (|has| |#1| (-171))) (($ $ $) 36 (-3998 (-12 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039))) (|has| |#1| (-1099)))) (($ (-558) $) 32 (-3998 (|has| |#1| (-21)) (-12 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039))))) (($ (-762) $) NIL (-3998 (|has| |#1| (-25)) (-12 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039))))) (($ (-911) $) NIL (-3998 (|has| |#1| (-25)) (-12 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039)))))))
+(((-315 |#1|) (-13 (-429 |#1|) (-10 -8 (IF (|has| |#1| (-550)) (PROGN (-6 (-29 |#1|)) (-6 (-1185)) (-6 (-159)) (-6 (-621)) (-6 (-1126)) (-15 -3048 ($ $)) (-15 -3751 ((-112) $)) (-15 -3741 ($ $ (-558))) (IF (|has| |#1| (-450)) (PROGN (-15 -3738 ((-417 (-1159 $)) (-1159 $))) (-15 -3748 ((-417 (-1159 $)) (-1159 $)))) |%noBranch|) (IF (|has| |#1| (-1028 (-558))) (-6 (-1028 (-48))) |%noBranch|)) |%noBranch|))) (-841)) (T -315))
+((-3048 (*1 *1 *1) (-12 (-5 *1 (-315 *2)) (-4 *2 (-550)) (-4 *2 (-841)))) (-3751 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-315 *3)) (-4 *3 (-550)) (-4 *3 (-841)))) (-3741 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-315 *3)) (-4 *3 (-550)) (-4 *3 (-841)))) (-3738 (*1 *2 *3) (-12 (-5 *2 (-417 (-1159 *1))) (-5 *1 (-315 *4)) (-5 *3 (-1159 *1)) (-4 *4 (-450)) (-4 *4 (-550)) (-4 *4 (-841)))) (-3748 (*1 *2 *3) (-12 (-5 *2 (-417 (-1159 *1))) (-5 *1 (-315 *4)) (-5 *3 (-1159 *1)) (-4 *4 (-450)) (-4 *4 (-550)) (-4 *4 (-841)))))
+(-13 (-429 |#1|) (-10 -8 (IF (|has| |#1| (-550)) (PROGN (-6 (-29 |#1|)) (-6 (-1185)) (-6 (-159)) (-6 (-621)) (-6 (-1126)) (-15 -3048 ($ $)) (-15 -3751 ((-112) $)) (-15 -3741 ($ $ (-558))) (IF (|has| |#1| (-450)) (PROGN (-15 -3738 ((-417 (-1159 $)) (-1159 $))) (-15 -3748 ((-417 (-1159 $)) (-1159 $)))) |%noBranch|) (IF (|has| |#1| (-1028 (-558))) (-6 (-1028 (-48))) |%noBranch|)) |%noBranch|)))
+((-3760 (((-52) |#2| (-114) (-293 |#2|) (-635 |#2|)) 88) (((-52) |#2| (-114) (-293 |#2|) (-293 |#2|)) 84) (((-52) |#2| (-114) (-293 |#2|) |#2|) 86) (((-52) (-293 |#2|) (-114) (-293 |#2|) |#2|) 87) (((-52) (-635 |#2|) (-635 (-114)) (-293 |#2|) (-635 (-293 |#2|))) 80) (((-52) (-635 |#2|) (-635 (-114)) (-293 |#2|) (-635 |#2|)) 82) (((-52) (-635 (-293 |#2|)) (-635 (-114)) (-293 |#2|) (-635 |#2|)) 83) (((-52) (-635 (-293 |#2|)) (-635 (-114)) (-293 |#2|) (-635 (-293 |#2|))) 81) (((-52) (-293 |#2|) (-114) (-293 |#2|) (-635 |#2|)) 89) (((-52) (-293 |#2|) (-114) (-293 |#2|) (-293 |#2|)) 85)))
+(((-316 |#1| |#2|) (-10 -7 (-15 -3760 ((-52) (-293 |#2|) (-114) (-293 |#2|) (-293 |#2|))) (-15 -3760 ((-52) (-293 |#2|) (-114) (-293 |#2|) (-635 |#2|))) (-15 -3760 ((-52) (-635 (-293 |#2|)) (-635 (-114)) (-293 |#2|) (-635 (-293 |#2|)))) (-15 -3760 ((-52) (-635 (-293 |#2|)) (-635 (-114)) (-293 |#2|) (-635 |#2|))) (-15 -3760 ((-52) (-635 |#2|) (-635 (-114)) (-293 |#2|) (-635 |#2|))) (-15 -3760 ((-52) (-635 |#2|) (-635 (-114)) (-293 |#2|) (-635 (-293 |#2|)))) (-15 -3760 ((-52) (-293 |#2|) (-114) (-293 |#2|) |#2|)) (-15 -3760 ((-52) |#2| (-114) (-293 |#2|) |#2|)) (-15 -3760 ((-52) |#2| (-114) (-293 |#2|) (-293 |#2|))) (-15 -3760 ((-52) |#2| (-114) (-293 |#2|) (-635 |#2|)))) (-13 (-841) (-550) (-606 (-534))) (-429 |#1|)) (T -316))
+((-3760 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-293 *3)) (-5 *6 (-635 *3)) (-4 *3 (-429 *7)) (-4 *7 (-13 (-841) (-550) (-606 (-534)))) (-5 *2 (-52)) (-5 *1 (-316 *7 *3)))) (-3760 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-293 *3)) (-4 *3 (-429 *6)) (-4 *6 (-13 (-841) (-550) (-606 (-534)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-3760 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-114)) (-5 *5 (-293 *3)) (-4 *3 (-429 *6)) (-4 *6 (-13 (-841) (-550) (-606 (-534)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-3760 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-293 *5)) (-5 *4 (-114)) (-4 *5 (-429 *6)) (-4 *6 (-13 (-841) (-550) (-606 (-534)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *5)))) (-3760 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 (-114))) (-5 *6 (-635 (-293 *8))) (-4 *8 (-429 *7)) (-5 *5 (-293 *8)) (-4 *7 (-13 (-841) (-550) (-606 (-534)))) (-5 *2 (-52)) (-5 *1 (-316 *7 *8)))) (-3760 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-635 *7)) (-5 *4 (-635 (-114))) (-5 *5 (-293 *7)) (-4 *7 (-429 *6)) (-4 *6 (-13 (-841) (-550) (-606 (-534)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *7)))) (-3760 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-635 (-293 *8))) (-5 *4 (-635 (-114))) (-5 *5 (-293 *8)) (-5 *6 (-635 *8)) (-4 *8 (-429 *7)) (-4 *7 (-13 (-841) (-550) (-606 (-534)))) (-5 *2 (-52)) (-5 *1 (-316 *7 *8)))) (-3760 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-635 (-293 *7))) (-5 *4 (-635 (-114))) (-5 *5 (-293 *7)) (-4 *7 (-429 *6)) (-4 *6 (-13 (-841) (-550) (-606 (-534)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *7)))) (-3760 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-293 *7)) (-5 *4 (-114)) (-5 *5 (-635 *7)) (-4 *7 (-429 *6)) (-4 *6 (-13 (-841) (-550) (-606 (-534)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *7)))) (-3760 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-293 *6)) (-5 *4 (-114)) (-4 *6 (-429 *5)) (-4 *5 (-13 (-841) (-550) (-606 (-534)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *6)))))
+(-10 -7 (-15 -3760 ((-52) (-293 |#2|) (-114) (-293 |#2|) (-293 |#2|))) (-15 -3760 ((-52) (-293 |#2|) (-114) (-293 |#2|) (-635 |#2|))) (-15 -3760 ((-52) (-635 (-293 |#2|)) (-635 (-114)) (-293 |#2|) (-635 (-293 |#2|)))) (-15 -3760 ((-52) (-635 (-293 |#2|)) (-635 (-114)) (-293 |#2|) (-635 |#2|))) (-15 -3760 ((-52) (-635 |#2|) (-635 (-114)) (-293 |#2|) (-635 |#2|))) (-15 -3760 ((-52) (-635 |#2|) (-635 (-114)) (-293 |#2|) (-635 (-293 |#2|)))) (-15 -3760 ((-52) (-293 |#2|) (-114) (-293 |#2|) |#2|)) (-15 -3760 ((-52) |#2| (-114) (-293 |#2|) |#2|)) (-15 -3760 ((-52) |#2| (-114) (-293 |#2|) (-293 |#2|))) (-15 -3760 ((-52) |#2| (-114) (-293 |#2|) (-635 |#2|))))
+((-3778 (((-1195 (-916)) (-315 (-558)) (-315 (-558)) (-315 (-558)) (-1 (-224) (-224)) (-1081 (-224)) (-224) (-558) (-1145)) 45) (((-1195 (-916)) (-315 (-558)) (-315 (-558)) (-315 (-558)) (-1 (-224) (-224)) (-1081 (-224)) (-224) (-558)) 46) (((-1195 (-916)) (-315 (-558)) (-315 (-558)) (-315 (-558)) (-1 (-224) (-224)) (-1081 (-224)) (-1 (-224) (-224)) (-558) (-1145)) 42) (((-1195 (-916)) (-315 (-558)) (-315 (-558)) (-315 (-558)) (-1 (-224) (-224)) (-1081 (-224)) (-1 (-224) (-224)) (-558)) 43)) (-3769 (((-1 (-224) (-224)) (-224)) 44)))
+(((-317) (-10 -7 (-15 -3769 ((-1 (-224) (-224)) (-224))) (-15 -3778 ((-1195 (-916)) (-315 (-558)) (-315 (-558)) (-315 (-558)) (-1 (-224) (-224)) (-1081 (-224)) (-1 (-224) (-224)) (-558))) (-15 -3778 ((-1195 (-916)) (-315 (-558)) (-315 (-558)) (-315 (-558)) (-1 (-224) (-224)) (-1081 (-224)) (-1 (-224) (-224)) (-558) (-1145))) (-15 -3778 ((-1195 (-916)) (-315 (-558)) (-315 (-558)) (-315 (-558)) (-1 (-224) (-224)) (-1081 (-224)) (-224) (-558))) (-15 -3778 ((-1195 (-916)) (-315 (-558)) (-315 (-558)) (-315 (-558)) (-1 (-224) (-224)) (-1081 (-224)) (-224) (-558) (-1145))))) (T -317))
+((-3778 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-315 (-558))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1081 (-224))) (-5 *6 (-224)) (-5 *7 (-558)) (-5 *8 (-1145)) (-5 *2 (-1195 (-916))) (-5 *1 (-317)))) (-3778 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-315 (-558))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1081 (-224))) (-5 *6 (-224)) (-5 *7 (-558)) (-5 *2 (-1195 (-916))) (-5 *1 (-317)))) (-3778 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-315 (-558))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1081 (-224))) (-5 *6 (-558)) (-5 *7 (-1145)) (-5 *2 (-1195 (-916))) (-5 *1 (-317)))) (-3778 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-315 (-558))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1081 (-224))) (-5 *6 (-558)) (-5 *2 (-1195 (-916))) (-5 *1 (-317)))) (-3769 (*1 *2 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-317)) (-5 *3 (-224)))))
+(-10 -7 (-15 -3769 ((-1 (-224) (-224)) (-224))) (-15 -3778 ((-1195 (-916)) (-315 (-558)) (-315 (-558)) (-315 (-558)) (-1 (-224) (-224)) (-1081 (-224)) (-1 (-224) (-224)) (-558))) (-15 -3778 ((-1195 (-916)) (-315 (-558)) (-315 (-558)) (-315 (-558)) (-1 (-224) (-224)) (-1081 (-224)) (-1 (-224) (-224)) (-558) (-1145))) (-15 -3778 ((-1195 (-916)) (-315 (-558)) (-315 (-558)) (-315 (-558)) (-1 (-224) (-224)) (-1081 (-224)) (-224) (-558))) (-15 -3778 ((-1195 (-916)) (-315 (-558)) (-315 (-558)) (-315 (-558)) (-1 (-224) (-224)) (-1081 (-224)) (-224) (-558) (-1145))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) 25)) (-2671 (((-635 (-1069)) $) NIL)) (-1602 (((-1163) $) NIL)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1881 (($ $) NIL (|has| |#1| (-550)))) (-1857 (((-112) $) NIL (|has| |#1| (-550)))) (-3440 (($ $ (-406 (-558))) NIL) (($ $ (-406 (-558)) (-406 (-558))) NIL)) (-3456 (((-1143 (-2 (|:| |k| (-406 (-558))) (|:| |c| |#1|))) $) 20)) (-4088 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2135 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2089 (((-3 $ "failed") $ $) NIL)) (-3465 (($ $) NIL (|has| |#1| (-362)))) (-1380 (((-417 $) $) NIL (|has| |#1| (-362)))) (-2534 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3732 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4070 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2112 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3871 (($ (-762) (-1143 (-2 (|:| |k| (-406 (-558))) (|:| |c| |#1|)))) NIL)) (-4113 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2156 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1816 (($) NIL T CONST)) (-4025 (($ $ $) NIL (|has| |#1| (-362)))) (-2490 (($ $) 31)) (-2588 (((-3 $ "failed") $) NIL)) (-4004 (($ $ $) NIL (|has| |#1| (-362)))) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-3031 (((-112) $) NIL (|has| |#1| (-362)))) (-2020 (((-112) $) NIL)) (-1904 (($) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3449 (((-406 (-558)) $) NIL) (((-406 (-558)) $ (-406 (-558))) 16)) (-2035 (((-112) $) NIL)) (-3828 (($ $ (-558)) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3486 (($ $ (-911)) NIL) (($ $ (-406 (-558))) NIL)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4238 (((-112) $) NIL)) (-2648 (($ |#1| (-406 (-558))) NIL) (($ $ (-1069) (-406 (-558))) NIL) (($ $ (-635 (-1069)) (-635 (-406 (-558)))) NIL)) (-3910 (($ $ $) NIL)) (-3542 (($ $ $) NIL)) (-3167 (($ (-1 |#1| |#1|) $) NIL)) (-2592 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2451 (($ $) NIL)) (-2463 ((|#1| $) NIL)) (-2665 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-4310 (((-1145) $) NIL)) (-2418 (($ $) NIL (|has| |#1| (-362)))) (-2543 (($ $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-1163)) NIL (-3998 (-12 (|has| |#1| (-15 -2543 (|#1| |#1| (-1163)))) (|has| |#1| (-15 -2671 ((-635 (-1163)) |#1|))) (|has| |#1| (-38 (-406 (-558))))) (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-949)) (|has| |#1| (-1185)))))) (-2975 (((-1107) $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#1| (-362)))) (-2699 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-2522 (((-417 $) $) NIL (|has| |#1| (-362)))) (-3713 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL (|has| |#1| (-362)))) (-3430 (($ $ (-406 (-558))) NIL)) (-3983 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-3788 (((-406 (-558)) $) 17)) (-3447 (($ (-1231 |#1| |#2| |#3|)) 11)) (-1951 (((-1231 |#1| |#2| |#3|) $) 12)) (-2573 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2554 (((-1143 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-406 (-558))))))) (-3722 (((-762) $) NIL (|has| |#1| (-362)))) (-2195 ((|#1| $ (-406 (-558))) NIL) (($ $ $) NIL (|has| (-406 (-558)) (-1099)))) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL (|has| |#1| (-362)))) (-2829 (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-762)) NIL (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (-4323 (((-406 (-558)) $) NIL)) (-4124 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2167 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4102 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2146 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4080 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2124 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2011 (($ $) 10)) (-3220 (((-853) $) 37) (($ (-558)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $) NIL (|has| |#1| (-550)))) (-3736 ((|#1| $ (-406 (-558))) 29)) (-3698 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2542 (((-762)) NIL)) (-2673 ((|#1| $) NIL)) (-4159 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2200 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1870 (((-112) $ $) NIL (|has| |#1| (-550)))) (-4135 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2178 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4184 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2222 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1352 ((|#1| $ (-406 (-558))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-558))))) (|has| |#1| (-15 -3220 (|#1| (-1163))))))) (-1878 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4060 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4171 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2211 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4147 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2189 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2131 (($) NIL T CONST)) (-2142 (($) NIL T CONST)) (-1866 (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-762)) NIL (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (-1747 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1683 (((-112) $ $) 27)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 32)) (-1810 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558)))))) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558)))))))
+(((-318 |#1| |#2| |#3|) (-13 (-1227 |#1|) (-783) (-10 -8 (-15 -3447 ($ (-1231 |#1| |#2| |#3|))) (-15 -1951 ((-1231 |#1| |#2| |#3|) $)) (-15 -3788 ((-406 (-558)) $)))) (-13 (-362) (-841)) (-1163) |#1|) (T -318))
+((-3447 (*1 *1 *2) (-12 (-5 *2 (-1231 *3 *4 *5)) (-4 *3 (-13 (-362) (-841))) (-14 *4 (-1163)) (-14 *5 *3) (-5 *1 (-318 *3 *4 *5)))) (-1951 (*1 *2 *1) (-12 (-5 *2 (-1231 *3 *4 *5)) (-5 *1 (-318 *3 *4 *5)) (-4 *3 (-13 (-362) (-841))) (-14 *4 (-1163)) (-14 *5 *3))) (-3788 (*1 *2 *1) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-318 *3 *4 *5)) (-4 *3 (-13 (-362) (-841))) (-14 *4 (-1163)) (-14 *5 *3))))
+(-13 (-1227 |#1|) (-783) (-10 -8 (-15 -3447 ($ (-1231 |#1| |#2| |#3|))) (-15 -1951 ((-1231 |#1| |#2| |#3|) $)) (-15 -3788 ((-406 (-558)) $))))
+((-3828 (((-2 (|:| -1951 (-762)) (|:| -2023 |#1|) (|:| |radicand| (-635 |#1|))) (-417 |#1|) (-762)) 24)) (-2592 (((-635 (-2 (|:| -2023 (-762)) (|:| |logand| |#1|))) (-417 |#1|)) 28)))
+(((-319 |#1|) (-10 -7 (-15 -3828 ((-2 (|:| -1951 (-762)) (|:| -2023 |#1|) (|:| |radicand| (-635 |#1|))) (-417 |#1|) (-762))) (-15 -2592 ((-635 (-2 (|:| -2023 (-762)) (|:| |logand| |#1|))) (-417 |#1|)))) (-550)) (T -319))
+((-2592 (*1 *2 *3) (-12 (-5 *3 (-417 *4)) (-4 *4 (-550)) (-5 *2 (-635 (-2 (|:| -2023 (-762)) (|:| |logand| *4)))) (-5 *1 (-319 *4)))) (-3828 (*1 *2 *3 *4) (-12 (-5 *3 (-417 *5)) (-4 *5 (-550)) (-5 *2 (-2 (|:| -1951 (-762)) (|:| -2023 *5) (|:| |radicand| (-635 *5)))) (-5 *1 (-319 *5)) (-5 *4 (-762)))))
+(-10 -7 (-15 -3828 ((-2 (|:| -1951 (-762)) (|:| -2023 |#1|) (|:| |radicand| (-635 |#1|))) (-417 |#1|) (-762))) (-15 -2592 ((-635 (-2 (|:| -2023 (-762)) (|:| |logand| |#1|))) (-417 |#1|))))
+((-2671 (((-635 |#2|) (-1159 |#4|)) 43)) (-3837 ((|#3| (-558)) 46)) (-3816 (((-1159 |#4|) (-1159 |#3|)) 30)) (-3825 (((-1159 |#4|) (-1159 |#4|) (-558)) 55)) (-3806 (((-1159 |#3|) (-1159 |#4|)) 21)) (-4323 (((-635 (-762)) (-1159 |#4|) (-635 |#2|)) 40)) (-3797 (((-1159 |#3|) (-1159 |#4|) (-635 |#2|) (-635 |#3|)) 35)))
+(((-320 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3797 ((-1159 |#3|) (-1159 |#4|) (-635 |#2|) (-635 |#3|))) (-15 -4323 ((-635 (-762)) (-1159 |#4|) (-635 |#2|))) (-15 -2671 ((-635 |#2|) (-1159 |#4|))) (-15 -3806 ((-1159 |#3|) (-1159 |#4|))) (-15 -3816 ((-1159 |#4|) (-1159 |#3|))) (-15 -3825 ((-1159 |#4|) (-1159 |#4|) (-558))) (-15 -3837 (|#3| (-558)))) (-784) (-841) (-1039) (-939 |#3| |#1| |#2|)) (T -320))
+((-3837 (*1 *2 *3) (-12 (-5 *3 (-558)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *2 (-1039)) (-5 *1 (-320 *4 *5 *2 *6)) (-4 *6 (-939 *2 *4 *5)))) (-3825 (*1 *2 *2 *3) (-12 (-5 *2 (-1159 *7)) (-5 *3 (-558)) (-4 *7 (-939 *6 *4 *5)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1039)) (-5 *1 (-320 *4 *5 *6 *7)))) (-3816 (*1 *2 *3) (-12 (-5 *3 (-1159 *6)) (-4 *6 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-1159 *7)) (-5 *1 (-320 *4 *5 *6 *7)) (-4 *7 (-939 *6 *4 *5)))) (-3806 (*1 *2 *3) (-12 (-5 *3 (-1159 *7)) (-4 *7 (-939 *6 *4 *5)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1039)) (-5 *2 (-1159 *6)) (-5 *1 (-320 *4 *5 *6 *7)))) (-2671 (*1 *2 *3) (-12 (-5 *3 (-1159 *7)) (-4 *7 (-939 *6 *4 *5)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1039)) (-5 *2 (-635 *5)) (-5 *1 (-320 *4 *5 *6 *7)))) (-4323 (*1 *2 *3 *4) (-12 (-5 *3 (-1159 *8)) (-5 *4 (-635 *6)) (-4 *6 (-841)) (-4 *8 (-939 *7 *5 *6)) (-4 *5 (-784)) (-4 *7 (-1039)) (-5 *2 (-635 (-762))) (-5 *1 (-320 *5 *6 *7 *8)))) (-3797 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1159 *9)) (-5 *4 (-635 *7)) (-5 *5 (-635 *8)) (-4 *7 (-841)) (-4 *8 (-1039)) (-4 *9 (-939 *8 *6 *7)) (-4 *6 (-784)) (-5 *2 (-1159 *8)) (-5 *1 (-320 *6 *7 *8 *9)))))
+(-10 -7 (-15 -3797 ((-1159 |#3|) (-1159 |#4|) (-635 |#2|) (-635 |#3|))) (-15 -4323 ((-635 (-762)) (-1159 |#4|) (-635 |#2|))) (-15 -2671 ((-635 |#2|) (-1159 |#4|))) (-15 -3806 ((-1159 |#3|) (-1159 |#4|))) (-15 -3816 ((-1159 |#4|) (-1159 |#3|))) (-15 -3825 ((-1159 |#4|) (-1159 |#4|) (-558))) (-15 -3837 (|#3| (-558))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) 14)) (-3456 (((-635 (-2 (|:| |gen| |#1|) (|:| -2573 (-558)))) $) 18)) (-2089 (((-3 $ "failed") $ $) NIL)) (-2276 (((-762) $) NIL)) (-1816 (($) NIL T CONST)) (-3069 (((-3 |#1| "failed") $) NIL)) (-1863 ((|#1| $) NIL)) (-1859 ((|#1| $ (-558)) NIL)) (-3868 (((-558) $ (-558)) NIL)) (-3910 (($ $ $) NIL (|has| |#1| (-841)))) (-3542 (($ $ $) NIL (|has| |#1| (-841)))) (-3241 (($ (-1 |#1| |#1|) $) NIL)) (-3859 (($ (-1 (-558) (-558)) $) 10)) (-4310 (((-1145) $) NIL)) (-3849 (($ $ $) NIL (|has| (-558) (-783)))) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) NIL) (($ |#1|) NIL)) (-3736 (((-558) |#1| $) NIL)) (-2131 (($) 15 T CONST)) (-1747 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1683 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1705 (((-112) $ $) 21 (|has| |#1| (-841)))) (-1798 (($ $) 11) (($ $ $) 20)) (-1784 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ (-558)) NIL) (($ (-558) |#1|) 19)))
+(((-321 |#1|) (-13 (-21) (-708 (-558)) (-322 |#1| (-558)) (-10 -7 (IF (|has| |#1| (-841)) (-6 (-841)) |%noBranch|))) (-1087)) (T -321))
+NIL
+(-13 (-21) (-708 (-558)) (-322 |#1| (-558)) (-10 -7 (IF (|has| |#1| (-841)) (-6 (-841)) |%noBranch|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-3456 (((-635 (-2 (|:| |gen| |#1|) (|:| -2573 |#2|))) $) 27)) (-2089 (((-3 $ "failed") $ $) 19)) (-2276 (((-762) $) 28)) (-1816 (($) 17 T CONST)) (-3069 (((-3 |#1| "failed") $) 32)) (-1863 ((|#1| $) 33)) (-1859 ((|#1| $ (-558)) 25)) (-3868 ((|#2| $ (-558)) 26)) (-3241 (($ (-1 |#1| |#1|) $) 22)) (-3859 (($ (-1 |#2| |#2|) $) 23)) (-4310 (((-1145) $) 9)) (-3849 (($ $ $) 21 (|has| |#2| (-783)))) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11) (($ |#1|) 31)) (-3736 ((|#2| |#1| $) 24)) (-2131 (($) 18 T CONST)) (-1683 (((-112) $ $) 6)) (-1784 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ |#2| |#1|) 29)))
+(((-322 |#1| |#2|) (-139) (-1087) (-130)) (T -322))
+((-1784 (*1 *1 *2 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-130)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-130)))) (-2276 (*1 *2 *1) (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-130)) (-5 *2 (-762)))) (-3456 (*1 *2 *1) (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-130)) (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -2573 *4)))))) (-3868 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-322 *4 *2)) (-4 *4 (-1087)) (-4 *2 (-130)))) (-1859 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-322 *2 *4)) (-4 *4 (-130)) (-4 *2 (-1087)))) (-3736 (*1 *2 *3 *1) (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-130)))) (-3859 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-322 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-130)))) (-3241 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-322 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-130)))) (-3849 (*1 *1 *1 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-130)) (-4 *3 (-783)))))
+(-13 (-130) (-1028 |t#1|) (-10 -8 (-15 -1784 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -2276 ((-762) $)) (-15 -3456 ((-635 (-2 (|:| |gen| |t#1|) (|:| -2573 |t#2|))) $)) (-15 -3868 (|t#2| $ (-558))) (-15 -1859 (|t#1| $ (-558))) (-15 -3736 (|t#2| |t#1| $)) (-15 -3859 ($ (-1 |t#2| |t#2|) $)) (-15 -3241 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-783)) (-15 -3849 ($ $ $)) |%noBranch|)))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 |#1|) . T) ((-605 (-853)) . T) ((-1028 |#1|) . T) ((-1087) . T))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-3456 (((-635 (-2 (|:| |gen| |#1|) (|:| -2573 (-762)))) $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-2276 (((-762) $) NIL)) (-1816 (($) NIL T CONST)) (-3069 (((-3 |#1| "failed") $) NIL)) (-1863 ((|#1| $) NIL)) (-1859 ((|#1| $ (-558)) NIL)) (-3868 (((-762) $ (-558)) NIL)) (-3241 (($ (-1 |#1| |#1|) $) NIL)) (-3859 (($ (-1 (-762) (-762)) $) NIL)) (-4310 (((-1145) $) NIL)) (-3849 (($ $ $) NIL (|has| (-762) (-783)))) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) NIL) (($ |#1|) NIL)) (-3736 (((-762) |#1| $) NIL)) (-2131 (($) NIL T CONST)) (-1683 (((-112) $ $) NIL)) (-1784 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-762) |#1|) NIL)))
+(((-323 |#1|) (-322 |#1| (-762)) (-1087)) (T -323))
+NIL
+(-322 |#1| (-762))
+((-2782 (($ $) 52)) (-3888 (($ $ |#2| |#3| $) 14)) (-3898 (($ (-1 |#3| |#3|) $) 33)) (-2429 (((-112) $) 24)) (-2440 ((|#2| $) 26)) (-3983 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 43)) (-2504 ((|#2| $) 48)) (-2583 (((-635 |#2|) $) 36)) (-3879 (($ $ $ (-762)) 20)) (-1810 (($ $ |#2|) 40)))
+(((-324 |#1| |#2| |#3|) (-10 -8 (-15 -2782 (|#1| |#1|)) (-15 -2504 (|#2| |#1|)) (-15 -3983 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3879 (|#1| |#1| |#1| (-762))) (-15 -3888 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3898 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2583 ((-635 |#2|) |#1|)) (-15 -2440 (|#2| |#1|)) (-15 -2429 ((-112) |#1|)) (-15 -3983 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1810 (|#1| |#1| |#2|))) (-325 |#2| |#3|) (-1039) (-783)) (T -324))
+NIL
+(-10 -8 (-15 -2782 (|#1| |#1|)) (-15 -2504 (|#2| |#1|)) (-15 -3983 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3879 (|#1| |#1| |#1| (-762))) (-15 -3888 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3898 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2583 ((-635 |#2|) |#1|)) (-15 -2440 (|#2| |#1|)) (-15 -2429 ((-112) |#1|)) (-15 -3983 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1810 (|#1| |#1| |#2|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 54 (|has| |#1| (-550)))) (-1881 (($ $) 55 (|has| |#1| (-550)))) (-1857 (((-112) $) 57 (|has| |#1| (-550)))) (-2089 (((-3 $ "failed") $ $) 19)) (-1816 (($) 17 T CONST)) (-3069 (((-3 (-558) "failed") $) 91 (|has| |#1| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) 89 (|has| |#1| (-1028 (-406 (-558))))) (((-3 |#1| "failed") $) 86)) (-1863 (((-558) $) 90 (|has| |#1| (-1028 (-558)))) (((-406 (-558)) $) 88 (|has| |#1| (-1028 (-406 (-558))))) ((|#1| $) 87)) (-2490 (($ $) 63)) (-2588 (((-3 $ "failed") $) 33)) (-2782 (($ $) 75 (|has| |#1| (-450)))) (-3888 (($ $ |#1| |#2| $) 79)) (-2035 (((-112) $) 31)) (-2110 (((-762) $) 82)) (-4238 (((-112) $) 65)) (-2648 (($ |#1| |#2|) 64)) (-2524 ((|#2| $) 81)) (-3898 (($ (-1 |#2| |#2|) $) 80)) (-3167 (($ (-1 |#1| |#1|) $) 66)) (-2451 (($ $) 68)) (-2463 ((|#1| $) 69)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-2429 (((-112) $) 85)) (-2440 ((|#1| $) 84)) (-3983 (((-3 $ "failed") $ $) 53 (|has| |#1| (-550))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-550)))) (-4323 ((|#2| $) 67)) (-2504 ((|#1| $) 76 (|has| |#1| (-450)))) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ $) 52 (|has| |#1| (-550))) (($ |#1|) 50) (($ (-406 (-558))) 60 (-3998 (|has| |#1| (-1028 (-406 (-558)))) (|has| |#1| (-38 (-406 (-558))))))) (-2583 (((-635 |#1|) $) 83)) (-3736 ((|#1| $ |#2|) 62)) (-3698 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-2542 (((-762)) 28)) (-3879 (($ $ $ (-762)) 78 (|has| |#1| (-171)))) (-1870 (((-112) $ $) 56 (|has| |#1| (-550)))) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1683 (((-112) $ $) 6)) (-1810 (($ $ |#1|) 61 (|has| |#1| (-362)))) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-558)) $) 59 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) 58 (|has| |#1| (-38 (-406 (-558)))))))
+(((-325 |#1| |#2|) (-139) (-1039) (-783)) (T -325))
+((-2429 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-783)) (-5 *2 (-112)))) (-2440 (*1 *2 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *3 (-783)) (-4 *2 (-1039)))) (-2583 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-783)) (-5 *2 (-635 *3)))) (-2110 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-783)) (-5 *2 (-762)))) (-2524 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-783)))) (-3898 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-325 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-783)))) (-3888 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-783)))) (-3879 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *1 (-325 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-783)) (-4 *3 (-171)))) (-3983 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-783)) (-4 *2 (-550)))) (-2504 (*1 *2 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *3 (-783)) (-4 *2 (-1039)) (-4 *2 (-450)))) (-2782 (*1 *1 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-783)) (-4 *2 (-450)))))
+(-13 (-47 |t#1| |t#2|) (-410 |t#1|) (-10 -8 (-15 -2429 ((-112) $)) (-15 -2440 (|t#1| $)) (-15 -2583 ((-635 |t#1|) $)) (-15 -2110 ((-762) $)) (-15 -2524 (|t#2| $)) (-15 -3898 ($ (-1 |t#2| |t#2|) $)) (-15 -3888 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-171)) (-15 -3879 ($ $ $ (-762))) |%noBranch|) (IF (|has| |t#1| (-550)) (-15 -3983 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-450)) (PROGN (-15 -2504 (|t#1| $)) (-15 -2782 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-550)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-406 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3998 (|has| |#1| (-550)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-608 #0#) -3998 (|has| |#1| (-1028 (-406 (-558)))) (|has| |#1| (-38 (-406 (-558))))) ((-608 (-558)) . T) ((-608 |#1|) . T) ((-608 $) |has| |#1| (-550)) ((-605 (-853)) . T) ((-171) -3998 (|has| |#1| (-550)) (|has| |#1| (-171))) ((-289) |has| |#1| (-550)) ((-410 |#1|) . T) ((-550) |has| |#1| (-550)) ((-638 #0#) |has| |#1| (-38 (-406 (-558)))) ((-638 |#1|) . T) ((-638 $) . T) ((-708 #0#) |has| |#1| (-38 (-406 (-558)))) ((-708 |#1|) |has| |#1| (-171)) ((-708 $) |has| |#1| (-550)) ((-717) . T) ((-1028 (-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) ((-1028 (-558)) |has| |#1| (-1028 (-558))) ((-1028 |#1|) . T) ((-1045 #0#) |has| |#1| (-38 (-406 (-558)))) ((-1045 |#1|) . T) ((-1045 $) -3998 (|has| |#1| (-550)) (|has| |#1| (-171))) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
+((-3207 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-3869 (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4383)))) (-1538 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-841)))) (-2763 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4383))) (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-841))))) (-2376 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-841)))) (-3026 (((-112) $ (-762)) NIL)) (-2420 (((-112) (-112)) NIL)) (-1532 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4383))) ((|#1| $ (-1213 (-558)) |#1|) NIL (|has| $ (-6 -4383)))) (-4207 (($ (-1 (-112) |#1|) $) NIL)) (-4329 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-1816 (($) NIL T CONST)) (-3306 (($ $) NIL (|has| $ (-6 -4383)))) (-4127 (($ $) NIL)) (-2820 (($ $) NIL (|has| |#1| (-1087)))) (-2338 (($ $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3395 (($ |#1| $) NIL (|has| |#1| (-1087))) (($ (-1 (-112) |#1|) $) NIL)) (-1539 (($ |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-3048 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4382))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4382)))) (-1817 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4383)))) (-1746 ((|#1| $ (-558)) NIL)) (-1517 (((-558) (-1 (-112) |#1|) $) NIL) (((-558) |#1| $) NIL (|has| |#1| (-1087))) (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1087)))) (-2431 (($ $ (-558)) NIL)) (-2442 (((-762) $) NIL)) (-2240 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-3315 (($ (-762) |#1|) NIL)) (-2986 (((-112) $ (-762)) NIL)) (-3889 (((-558) $) NIL (|has| (-558) (-841)))) (-3910 (($ $ $) NIL (|has| |#1| (-841)))) (-1645 (($ $ $) NIL (|has| |#1| (-841))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1677 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-841)))) (-2122 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3899 (((-558) $) NIL (|has| (-558) (-841)))) (-3542 (($ $ $) NIL (|has| |#1| (-841)))) (-1807 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL (|has| |#1| (-1087)))) (-4328 (($ $ $ (-558)) NIL) (($ |#1| $ (-558)) NIL)) (-1861 (($ |#1| $ (-558)) NIL) (($ $ $ (-558)) NIL)) (-3920 (((-635 (-558)) $) NIL)) (-3929 (((-112) (-558) $) NIL)) (-2975 (((-1107) $) NIL (|has| |#1| (-1087)))) (-2454 (($ (-635 |#1|)) NIL)) (-2305 ((|#1| $) NIL (|has| (-558) (-841)))) (-4307 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3880 (($ $ |#1|) NIL (|has| $ (-6 -4383)))) (-3266 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3908 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3937 (((-635 |#1|) $) NIL)) (-3375 (((-112) $) NIL)) (-2083 (($) NIL)) (-2195 ((|#1| $ (-558) |#1|) NIL) ((|#1| $ (-558)) NIL) (($ $ (-1213 (-558))) NIL)) (-4218 (($ $ (-1213 (-558))) NIL) (($ $ (-558)) NIL)) (-4023 (($ $ (-558)) NIL) (($ $ (-1213 (-558))) NIL)) (-2988 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-2773 (($ $ $ (-558)) NIL (|has| $ (-6 -4383)))) (-1553 (($ $) NIL)) (-3224 (((-534) $) NIL (|has| |#1| (-606 (-534))))) (-3233 (($ (-635 |#1|)) NIL)) (-2392 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4341 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-635 $)) NIL)) (-3220 (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-3277 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-1747 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1683 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-841)))) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-326 |#1|) (-13 (-19 |#1|) (-281 |#1|) (-10 -8 (-15 -2454 ($ (-635 |#1|))) (-15 -2442 ((-762) $)) (-15 -2431 ($ $ (-558))) (-15 -2420 ((-112) (-112))))) (-1200)) (T -326))
+((-2454 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1200)) (-5 *1 (-326 *3)))) (-2442 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-326 *3)) (-4 *3 (-1200)))) (-2431 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-326 *3)) (-4 *3 (-1200)))) (-2420 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-1200)))))
+(-13 (-19 |#1|) (-281 |#1|) (-10 -8 (-15 -2454 ($ (-635 |#1|))) (-15 -2442 ((-762) $)) (-15 -2431 ($ $ (-558))) (-15 -2420 ((-112) (-112)))))
+((-4195 (((-112) $) 42)) (-4160 (((-762)) 22)) (-1635 ((|#2| $) 46) (($ $ (-911)) 100)) (-2276 (((-762)) 101)) (-3997 (($ (-1246 |#2|)) 20)) (-2649 (((-112) $) 114)) (-2615 ((|#2| $) 48) (($ $ (-911)) 98)) (-2681 (((-1159 |#2|) $) NIL) (((-1159 $) $ (-911)) 94)) (-3919 (((-1159 |#2|) $) 82)) (-3907 (((-1159 |#2|) $) 79) (((-3 (-1159 |#2|) "failed") $ $) 76)) (-3928 (($ $ (-1159 |#2|)) 53)) (-4172 (((-824 (-911))) 28) (((-911)) 43)) (-2148 (((-133)) 25)) (-4323 (((-824 (-911)) $) 30) (((-911) $) 116)) (-2791 (($) 107)) (-4205 (((-1246 |#2|) $) NIL) (((-679 |#2|) (-1246 $)) 39)) (-3698 (($ $) NIL) (((-3 $ "failed") $) 85)) (-4206 (((-112) $) 41)))
+(((-327 |#1| |#2|) (-10 -8 (-15 -3698 ((-3 |#1| "failed") |#1|)) (-15 -2276 ((-762))) (-15 -3698 (|#1| |#1|)) (-15 -3907 ((-3 (-1159 |#2|) "failed") |#1| |#1|)) (-15 -3907 ((-1159 |#2|) |#1|)) (-15 -3919 ((-1159 |#2|) |#1|)) (-15 -3928 (|#1| |#1| (-1159 |#2|))) (-15 -2649 ((-112) |#1|)) (-15 -2791 (|#1|)) (-15 -1635 (|#1| |#1| (-911))) (-15 -2615 (|#1| |#1| (-911))) (-15 -2681 ((-1159 |#1|) |#1| (-911))) (-15 -1635 (|#2| |#1|)) (-15 -2615 (|#2| |#1|)) (-15 -4323 ((-911) |#1|)) (-15 -4172 ((-911))) (-15 -2681 ((-1159 |#2|) |#1|)) (-15 -3997 (|#1| (-1246 |#2|))) (-15 -4205 ((-679 |#2|) (-1246 |#1|))) (-15 -4205 ((-1246 |#2|) |#1|)) (-15 -4160 ((-762))) (-15 -4172 ((-824 (-911)))) (-15 -4323 ((-824 (-911)) |#1|)) (-15 -4195 ((-112) |#1|)) (-15 -4206 ((-112) |#1|)) (-15 -2148 ((-133)))) (-328 |#2|) (-362)) (T -327))
+((-2148 (*1 *2) (-12 (-4 *4 (-362)) (-5 *2 (-133)) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4)))) (-4172 (*1 *2) (-12 (-4 *4 (-362)) (-5 *2 (-824 (-911))) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4)))) (-4160 (*1 *2) (-12 (-4 *4 (-362)) (-5 *2 (-762)) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4)))) (-4172 (*1 *2) (-12 (-4 *4 (-362)) (-5 *2 (-911)) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4)))) (-2276 (*1 *2) (-12 (-4 *4 (-362)) (-5 *2 (-762)) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4)))))
+(-10 -8 (-15 -3698 ((-3 |#1| "failed") |#1|)) (-15 -2276 ((-762))) (-15 -3698 (|#1| |#1|)) (-15 -3907 ((-3 (-1159 |#2|) "failed") |#1| |#1|)) (-15 -3907 ((-1159 |#2|) |#1|)) (-15 -3919 ((-1159 |#2|) |#1|)) (-15 -3928 (|#1| |#1| (-1159 |#2|))) (-15 -2649 ((-112) |#1|)) (-15 -2791 (|#1|)) (-15 -1635 (|#1| |#1| (-911))) (-15 -2615 (|#1| |#1| (-911))) (-15 -2681 ((-1159 |#1|) |#1| (-911))) (-15 -1635 (|#2| |#1|)) (-15 -2615 (|#2| |#1|)) (-15 -4323 ((-911) |#1|)) (-15 -4172 ((-911))) (-15 -2681 ((-1159 |#2|) |#1|)) (-15 -3997 (|#1| (-1246 |#2|))) (-15 -4205 ((-679 |#2|) (-1246 |#1|))) (-15 -4205 ((-1246 |#2|) |#1|)) (-15 -4160 ((-762))) (-15 -4172 ((-824 (-911)))) (-15 -4323 ((-824 (-911)) |#1|)) (-15 -4195 ((-112) |#1|)) (-15 -4206 ((-112) |#1|)) (-15 -2148 ((-133))))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 42)) (-1881 (($ $) 41)) (-1857 (((-112) $) 39)) (-4195 (((-112) $) 95)) (-4160 (((-762)) 91)) (-1635 ((|#1| $) 141) (($ $ (-911)) 138 (|has| |#1| (-367)))) (-2163 (((-1173 (-911) (-762)) (-558)) 123 (|has| |#1| (-367)))) (-2089 (((-3 $ "failed") $ $) 19)) (-3465 (($ $) 74)) (-1380 (((-417 $) $) 73)) (-3732 (((-112) $ $) 60)) (-2276 (((-762)) 113 (|has| |#1| (-367)))) (-1816 (($) 17 T CONST)) (-3069 (((-3 |#1| "failed") $) 102)) (-1863 ((|#1| $) 103)) (-3997 (($ (-1246 |#1|)) 147)) (-3367 (((-3 "prime" "polynomial" "normal" "cyclic")) 129 (|has| |#1| (-367)))) (-4025 (($ $ $) 56)) (-2588 (((-3 $ "failed") $) 33)) (-2424 (($) 110 (|has| |#1| (-367)))) (-4004 (($ $ $) 57)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) 52)) (-2672 (($) 125 (|has| |#1| (-367)))) (-2219 (((-112) $) 126 (|has| |#1| (-367)))) (-1895 (($ $ (-762)) 88 (-3998 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) 87 (-3998 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3031 (((-112) $) 72)) (-3449 (((-911) $) 128 (|has| |#1| (-367))) (((-824 (-911)) $) 85 (-3998 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2035 (((-112) $) 31)) (-2670 (($) 136 (|has| |#1| (-367)))) (-2649 (((-112) $) 135 (|has| |#1| (-367)))) (-2615 ((|#1| $) 142) (($ $ (-911)) 139 (|has| |#1| (-367)))) (-2457 (((-3 $ "failed") $) 114 (|has| |#1| (-367)))) (-3701 (((-3 (-635 $) "failed") (-635 $) $) 53)) (-2681 (((-1159 |#1|) $) 146) (((-1159 $) $ (-911)) 140 (|has| |#1| (-367)))) (-2637 (((-911) $) 111 (|has| |#1| (-367)))) (-3919 (((-1159 |#1|) $) 132 (|has| |#1| (-367)))) (-3907 (((-1159 |#1|) $) 131 (|has| |#1| (-367))) (((-3 (-1159 |#1|) "failed") $ $) 130 (|has| |#1| (-367)))) (-3928 (($ $ (-1159 |#1|)) 133 (|has| |#1| (-367)))) (-2665 (($ $ $) 47) (($ (-635 $)) 46)) (-4310 (((-1145) $) 9)) (-2418 (($ $) 71)) (-1796 (($) 115 (|has| |#1| (-367)) CONST)) (-2851 (($ (-911)) 112 (|has| |#1| (-367)))) (-4185 (((-112) $) 94)) (-2975 (((-1107) $) 10)) (-4098 (($) 134 (|has| |#1| (-367)))) (-3757 (((-1159 $) (-1159 $) (-1159 $)) 45)) (-2699 (($ $ $) 49) (($ (-635 $)) 48)) (-2174 (((-635 (-2 (|:| -2522 (-558)) (|:| -1951 (-558))))) 122 (|has| |#1| (-367)))) (-2522 (((-417 $) $) 75)) (-4172 (((-824 (-911))) 92) (((-911)) 144)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3983 (((-3 $ "failed") $ $) 43)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-3722 (((-762) $) 59)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 58)) (-1905 (((-762) $) 127 (|has| |#1| (-367))) (((-3 (-762) "failed") $ $) 86 (-3998 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2148 (((-133)) 100)) (-2829 (($ $) 119 (|has| |#1| (-367))) (($ $ (-762)) 117 (|has| |#1| (-367)))) (-4323 (((-824 (-911)) $) 93) (((-911) $) 143)) (-2036 (((-1159 |#1|)) 145)) (-3377 (($) 124 (|has| |#1| (-367)))) (-2791 (($) 137 (|has| |#1| (-367)))) (-4205 (((-1246 |#1|) $) 149) (((-679 |#1|) (-1246 $)) 148)) (-3709 (((-3 (-1246 $) "failed") (-679 $)) 121 (|has| |#1| (-367)))) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ $) 44) (($ (-406 (-558))) 67) (($ |#1|) 101)) (-3698 (($ $) 120 (|has| |#1| (-367))) (((-3 $ "failed") $) 84 (-3998 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2542 (((-762)) 28)) (-2660 (((-1246 $)) 151) (((-1246 $) (-911)) 150)) (-1870 (((-112) $ $) 40)) (-4206 (((-112) $) 96)) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-4148 (($ $) 90 (|has| |#1| (-367))) (($ $ (-762)) 89 (|has| |#1| (-367)))) (-1866 (($ $) 118 (|has| |#1| (-367))) (($ $ (-762)) 116 (|has| |#1| (-367)))) (-1683 (((-112) $ $) 6)) (-1810 (($ $ $) 66) (($ $ |#1|) 99)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ (-558)) 70)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ (-406 (-558))) 69) (($ (-406 (-558)) $) 68) (($ $ |#1|) 98) (($ |#1| $) 97)))
+(((-328 |#1|) (-139) (-362)) (T -328))
+((-2660 (*1 *2) (-12 (-4 *3 (-362)) (-5 *2 (-1246 *1)) (-4 *1 (-328 *3)))) (-2660 (*1 *2 *3) (-12 (-5 *3 (-911)) (-4 *4 (-362)) (-5 *2 (-1246 *1)) (-4 *1 (-328 *4)))) (-4205 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1246 *3)))) (-4205 (*1 *2 *3) (-12 (-5 *3 (-1246 *1)) (-4 *1 (-328 *4)) (-4 *4 (-362)) (-5 *2 (-679 *4)))) (-3997 (*1 *1 *2) (-12 (-5 *2 (-1246 *3)) (-4 *3 (-362)) (-4 *1 (-328 *3)))) (-2681 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1159 *3)))) (-2036 (*1 *2) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1159 *3)))) (-4172 (*1 *2) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-911)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-911)))) (-2615 (*1 *2 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-362)))) (-1635 (*1 *2 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-362)))) (-2681 (*1 *2 *1 *3) (-12 (-5 *3 (-911)) (-4 *4 (-367)) (-4 *4 (-362)) (-5 *2 (-1159 *1)) (-4 *1 (-328 *4)))) (-2615 (*1 *1 *1 *2) (-12 (-5 *2 (-911)) (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)))) (-1635 (*1 *1 *1 *2) (-12 (-5 *2 (-911)) (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)))) (-2791 (*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362)))) (-2670 (*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362)))) (-2649 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) (-5 *2 (-112)))) (-4098 (*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362)))) (-3928 (*1 *1 *1 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-367)) (-4 *1 (-328 *3)) (-4 *3 (-362)))) (-3919 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) (-5 *2 (-1159 *3)))) (-3907 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) (-5 *2 (-1159 *3)))) (-3907 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) (-5 *2 (-1159 *3)))))
+(-13 (-1265 |t#1|) (-1028 |t#1|) (-10 -8 (-15 -2660 ((-1246 $))) (-15 -2660 ((-1246 $) (-911))) (-15 -4205 ((-1246 |t#1|) $)) (-15 -4205 ((-679 |t#1|) (-1246 $))) (-15 -3997 ($ (-1246 |t#1|))) (-15 -2681 ((-1159 |t#1|) $)) (-15 -2036 ((-1159 |t#1|))) (-15 -4172 ((-911))) (-15 -4323 ((-911) $)) (-15 -2615 (|t#1| $)) (-15 -1635 (|t#1| $)) (IF (|has| |t#1| (-367)) (PROGN (-6 (-348)) (-15 -2681 ((-1159 $) $ (-911))) (-15 -2615 ($ $ (-911))) (-15 -1635 ($ $ (-911))) (-15 -2791 ($)) (-15 -2670 ($)) (-15 -2649 ((-112) $)) (-15 -4098 ($)) (-15 -3928 ($ $ (-1159 |t#1|))) (-15 -3919 ((-1159 |t#1|) $)) (-15 -3907 ((-1159 |t#1|) $)) (-15 -3907 ((-3 (-1159 |t#1|) "failed") $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-558))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-144) -3998 (|has| |#1| (-367)) (|has| |#1| (-144))) ((-146) |has| |#1| (-146)) ((-608 #0#) . T) ((-608 (-558)) . T) ((-608 |#1|) . T) ((-608 $) . T) ((-605 (-853)) . T) ((-171) . T) ((-232) |has| |#1| (-367)) ((-242) . T) ((-289) . T) ((-306) . T) ((-1265 |#1|) . T) ((-362) . T) ((-401) -3998 (|has| |#1| (-367)) (|has| |#1| (-144))) ((-367) |has| |#1| (-367)) ((-348) |has| |#1| (-367)) ((-450) . T) ((-550) . T) ((-638 #0#) . T) ((-638 |#1|) . T) ((-638 $) . T) ((-708 #0#) . T) ((-708 |#1|) . T) ((-708 $) . T) ((-717) . T) ((-910) . T) ((-1028 |#1|) . T) ((-1045 #0#) . T) ((-1045 |#1|) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1138) |has| |#1| (-367)) ((-1204) . T) ((-1253 |#1|) . T))
+((-3207 (((-112) $ $) NIL)) (-2877 (($ (-1162) $) 88)) (-3811 (($) 77)) (-2800 (((-1107) (-1107)) 11)) (-1742 (($) 78)) (-2849 (($) 90) (($ (-315 (-689))) 98) (($ (-315 (-691))) 94) (($ (-315 (-684))) 102) (($ (-315 (-378))) 109) (($ (-315 (-558))) 105) (($ (-315 (-168 (-378)))) 113)) (-2868 (($ (-1162) $) 89)) (-2830 (($ (-635 (-853))) 79)) (-2819 (((-1251) $) 75)) (-3654 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-2858 (($ (-1107)) 51)) (-2810 (((-1091) $) 25)) (-2886 (($ (-1079 (-942 (-558))) $) 85) (($ (-1079 (-942 (-558))) (-942 (-558)) $) 86)) (-1548 (($ (-1107)) 87)) (-4090 (($ (-1162) $) 115) (($ (-1162) $ $) 116)) (-3949 (($ (-1163) (-635 (-1163))) 76)) (-3783 (($ (-1145)) 82) (($ (-635 (-1145))) 80)) (-3220 (((-853) $) 118)) (-2232 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1163)) (|:| |arrayIndex| (-635 (-942 (-558)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1565 (-853)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1163)) (|:| |rand| (-853)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1162)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3375 (-112)) (|:| -2925 (-2 (|:| |ints2Floats?| (-112)) (|:| -1565 (-853)))))) (|:| |blockBranch| (-635 $)) (|:| |commentBranch| (-635 (-1145))) (|:| |callBranch| (-1145)) (|:| |forBranch| (-2 (|:| -1626 (-1079 (-942 (-558)))) (|:| |span| (-942 (-558))) (|:| -1337 $))) (|:| |labelBranch| (-1107)) (|:| |loopBranch| (-2 (|:| |switch| (-1162)) (|:| -1337 $))) (|:| |commonBranch| (-2 (|:| -1323 (-1163)) (|:| |contents| (-635 (-1163))))) (|:| |printBranch| (-635 (-853)))) $) 44)) (-4180 (($ (-1145)) 187)) (-2840 (($ (-635 $)) 114)) (-3931 (($ (-1163) (-1145)) 120) (($ (-1163) (-315 (-691))) 160) (($ (-1163) (-315 (-689))) 161) (($ (-1163) (-315 (-684))) 162) (($ (-1163) (-679 (-691))) 123) (($ (-1163) (-679 (-689))) 126) (($ (-1163) (-679 (-684))) 129) (($ (-1163) (-1246 (-691))) 132) (($ (-1163) (-1246 (-689))) 135) (($ (-1163) (-1246 (-684))) 138) (($ (-1163) (-679 (-315 (-691)))) 141) (($ (-1163) (-679 (-315 (-689)))) 144) (($ (-1163) (-679 (-315 (-684)))) 147) (($ (-1163) (-1246 (-315 (-691)))) 150) (($ (-1163) (-1246 (-315 (-689)))) 153) (($ (-1163) (-1246 (-315 (-684)))) 156) (($ (-1163) (-635 (-942 (-558))) (-315 (-691))) 157) (($ (-1163) (-635 (-942 (-558))) (-315 (-689))) 158) (($ (-1163) (-635 (-942 (-558))) (-315 (-684))) 159) (($ (-1163) (-315 (-558))) 184) (($ (-1163) (-315 (-378))) 185) (($ (-1163) (-315 (-168 (-378)))) 186) (($ (-1163) (-679 (-315 (-558)))) 165) (($ (-1163) (-679 (-315 (-378)))) 168) (($ (-1163) (-679 (-315 (-168 (-378))))) 171) (($ (-1163) (-1246 (-315 (-558)))) 174) (($ (-1163) (-1246 (-315 (-378)))) 177) (($ (-1163) (-1246 (-315 (-168 (-378))))) 180) (($ (-1163) (-635 (-942 (-558))) (-315 (-558))) 181) (($ (-1163) (-635 (-942 (-558))) (-315 (-378))) 182) (($ (-1163) (-635 (-942 (-558))) (-315 (-168 (-378)))) 183)) (-1683 (((-112) $ $) NIL)))
+(((-329) (-13 (-1087) (-10 -8 (-15 -2886 ($ (-1079 (-942 (-558))) $)) (-15 -2886 ($ (-1079 (-942 (-558))) (-942 (-558)) $)) (-15 -2877 ($ (-1162) $)) (-15 -2868 ($ (-1162) $)) (-15 -2858 ($ (-1107))) (-15 -1548 ($ (-1107))) (-15 -3783 ($ (-1145))) (-15 -3783 ($ (-635 (-1145)))) (-15 -4180 ($ (-1145))) (-15 -2849 ($)) (-15 -2849 ($ (-315 (-689)))) (-15 -2849 ($ (-315 (-691)))) (-15 -2849 ($ (-315 (-684)))) (-15 -2849 ($ (-315 (-378)))) (-15 -2849 ($ (-315 (-558)))) (-15 -2849 ($ (-315 (-168 (-378))))) (-15 -4090 ($ (-1162) $)) (-15 -4090 ($ (-1162) $ $)) (-15 -3931 ($ (-1163) (-1145))) (-15 -3931 ($ (-1163) (-315 (-691)))) (-15 -3931 ($ (-1163) (-315 (-689)))) (-15 -3931 ($ (-1163) (-315 (-684)))) (-15 -3931 ($ (-1163) (-679 (-691)))) (-15 -3931 ($ (-1163) (-679 (-689)))) (-15 -3931 ($ (-1163) (-679 (-684)))) (-15 -3931 ($ (-1163) (-1246 (-691)))) (-15 -3931 ($ (-1163) (-1246 (-689)))) (-15 -3931 ($ (-1163) (-1246 (-684)))) (-15 -3931 ($ (-1163) (-679 (-315 (-691))))) (-15 -3931 ($ (-1163) (-679 (-315 (-689))))) (-15 -3931 ($ (-1163) (-679 (-315 (-684))))) (-15 -3931 ($ (-1163) (-1246 (-315 (-691))))) (-15 -3931 ($ (-1163) (-1246 (-315 (-689))))) (-15 -3931 ($ (-1163) (-1246 (-315 (-684))))) (-15 -3931 ($ (-1163) (-635 (-942 (-558))) (-315 (-691)))) (-15 -3931 ($ (-1163) (-635 (-942 (-558))) (-315 (-689)))) (-15 -3931 ($ (-1163) (-635 (-942 (-558))) (-315 (-684)))) (-15 -3931 ($ (-1163) (-315 (-558)))) (-15 -3931 ($ (-1163) (-315 (-378)))) (-15 -3931 ($ (-1163) (-315 (-168 (-378))))) (-15 -3931 ($ (-1163) (-679 (-315 (-558))))) (-15 -3931 ($ (-1163) (-679 (-315 (-378))))) (-15 -3931 ($ (-1163) (-679 (-315 (-168 (-378)))))) (-15 -3931 ($ (-1163) (-1246 (-315 (-558))))) (-15 -3931 ($ (-1163) (-1246 (-315 (-378))))) (-15 -3931 ($ (-1163) (-1246 (-315 (-168 (-378)))))) (-15 -3931 ($ (-1163) (-635 (-942 (-558))) (-315 (-558)))) (-15 -3931 ($ (-1163) (-635 (-942 (-558))) (-315 (-378)))) (-15 -3931 ($ (-1163) (-635 (-942 (-558))) (-315 (-168 (-378))))) (-15 -2840 ($ (-635 $))) (-15 -3811 ($)) (-15 -1742 ($)) (-15 -2830 ($ (-635 (-853)))) (-15 -3949 ($ (-1163) (-635 (-1163)))) (-15 -3654 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2232 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1163)) (|:| |arrayIndex| (-635 (-942 (-558)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1565 (-853)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1163)) (|:| |rand| (-853)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1162)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3375 (-112)) (|:| -2925 (-2 (|:| |ints2Floats?| (-112)) (|:| -1565 (-853)))))) (|:| |blockBranch| (-635 $)) (|:| |commentBranch| (-635 (-1145))) (|:| |callBranch| (-1145)) (|:| |forBranch| (-2 (|:| -1626 (-1079 (-942 (-558)))) (|:| |span| (-942 (-558))) (|:| -1337 $))) (|:| |labelBranch| (-1107)) (|:| |loopBranch| (-2 (|:| |switch| (-1162)) (|:| -1337 $))) (|:| |commonBranch| (-2 (|:| -1323 (-1163)) (|:| |contents| (-635 (-1163))))) (|:| |printBranch| (-635 (-853)))) $)) (-15 -2819 ((-1251) $)) (-15 -2810 ((-1091) $)) (-15 -2800 ((-1107) (-1107)))))) (T -329))
+((-2886 (*1 *1 *2 *1) (-12 (-5 *2 (-1079 (-942 (-558)))) (-5 *1 (-329)))) (-2886 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1079 (-942 (-558)))) (-5 *3 (-942 (-558))) (-5 *1 (-329)))) (-2877 (*1 *1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-329)))) (-2868 (*1 *1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-329)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-1107)) (-5 *1 (-329)))) (-1548 (*1 *1 *2) (-12 (-5 *2 (-1107)) (-5 *1 (-329)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-329)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-329)))) (-4180 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-329)))) (-2849 (*1 *1) (-5 *1 (-329))) (-2849 (*1 *1 *2) (-12 (-5 *2 (-315 (-689))) (-5 *1 (-329)))) (-2849 (*1 *1 *2) (-12 (-5 *2 (-315 (-691))) (-5 *1 (-329)))) (-2849 (*1 *1 *2) (-12 (-5 *2 (-315 (-684))) (-5 *1 (-329)))) (-2849 (*1 *1 *2) (-12 (-5 *2 (-315 (-378))) (-5 *1 (-329)))) (-2849 (*1 *1 *2) (-12 (-5 *2 (-315 (-558))) (-5 *1 (-329)))) (-2849 (*1 *1 *2) (-12 (-5 *2 (-315 (-168 (-378)))) (-5 *1 (-329)))) (-4090 (*1 *1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-329)))) (-4090 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-329)))) (-3931 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-1145)) (-5 *1 (-329)))) (-3931 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-315 (-691))) (-5 *1 (-329)))) (-3931 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-315 (-689))) (-5 *1 (-329)))) (-3931 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-315 (-684))) (-5 *1 (-329)))) (-3931 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-679 (-691))) (-5 *1 (-329)))) (-3931 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-679 (-689))) (-5 *1 (-329)))) (-3931 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-679 (-684))) (-5 *1 (-329)))) (-3931 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-1246 (-691))) (-5 *1 (-329)))) (-3931 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-1246 (-689))) (-5 *1 (-329)))) (-3931 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-1246 (-684))) (-5 *1 (-329)))) (-3931 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-679 (-315 (-691)))) (-5 *1 (-329)))) (-3931 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-679 (-315 (-689)))) (-5 *1 (-329)))) (-3931 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-679 (-315 (-684)))) (-5 *1 (-329)))) (-3931 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-1246 (-315 (-691)))) (-5 *1 (-329)))) (-3931 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-1246 (-315 (-689)))) (-5 *1 (-329)))) (-3931 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-1246 (-315 (-684)))) (-5 *1 (-329)))) (-3931 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1163)) (-5 *3 (-635 (-942 (-558)))) (-5 *4 (-315 (-691))) (-5 *1 (-329)))) (-3931 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1163)) (-5 *3 (-635 (-942 (-558)))) (-5 *4 (-315 (-689))) (-5 *1 (-329)))) (-3931 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1163)) (-5 *3 (-635 (-942 (-558)))) (-5 *4 (-315 (-684))) (-5 *1 (-329)))) (-3931 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-315 (-558))) (-5 *1 (-329)))) (-3931 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-315 (-378))) (-5 *1 (-329)))) (-3931 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-315 (-168 (-378)))) (-5 *1 (-329)))) (-3931 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-679 (-315 (-558)))) (-5 *1 (-329)))) (-3931 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-679 (-315 (-378)))) (-5 *1 (-329)))) (-3931 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-679 (-315 (-168 (-378))))) (-5 *1 (-329)))) (-3931 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-1246 (-315 (-558)))) (-5 *1 (-329)))) (-3931 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-1246 (-315 (-378)))) (-5 *1 (-329)))) (-3931 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-1246 (-315 (-168 (-378))))) (-5 *1 (-329)))) (-3931 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1163)) (-5 *3 (-635 (-942 (-558)))) (-5 *4 (-315 (-558))) (-5 *1 (-329)))) (-3931 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1163)) (-5 *3 (-635 (-942 (-558)))) (-5 *4 (-315 (-378))) (-5 *1 (-329)))) (-3931 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1163)) (-5 *3 (-635 (-942 (-558)))) (-5 *4 (-315 (-168 (-378)))) (-5 *1 (-329)))) (-2840 (*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-5 *1 (-329)))) (-3811 (*1 *1) (-5 *1 (-329))) (-1742 (*1 *1) (-5 *1 (-329))) (-2830 (*1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-329)))) (-3949 (*1 *1 *2 *3) (-12 (-5 *3 (-635 (-1163))) (-5 *2 (-1163)) (-5 *1 (-329)))) (-3654 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-329)))) (-2232 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1163)) (|:| |arrayIndex| (-635 (-942 (-558)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1565 (-853)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1163)) (|:| |rand| (-853)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1162)) (|:| |thenClause| (-329)) (|:| |elseClause| (-329)))) (|:| |returnBranch| (-2 (|:| -3375 (-112)) (|:| -2925 (-2 (|:| |ints2Floats?| (-112)) (|:| -1565 (-853)))))) (|:| |blockBranch| (-635 (-329))) (|:| |commentBranch| (-635 (-1145))) (|:| |callBranch| (-1145)) (|:| |forBranch| (-2 (|:| -1626 (-1079 (-942 (-558)))) (|:| |span| (-942 (-558))) (|:| -1337 (-329)))) (|:| |labelBranch| (-1107)) (|:| |loopBranch| (-2 (|:| |switch| (-1162)) (|:| -1337 (-329)))) (|:| |commonBranch| (-2 (|:| -1323 (-1163)) (|:| |contents| (-635 (-1163))))) (|:| |printBranch| (-635 (-853))))) (-5 *1 (-329)))) (-2819 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-329)))) (-2810 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-329)))) (-2800 (*1 *2 *2) (-12 (-5 *2 (-1107)) (-5 *1 (-329)))))
+(-13 (-1087) (-10 -8 (-15 -2886 ($ (-1079 (-942 (-558))) $)) (-15 -2886 ($ (-1079 (-942 (-558))) (-942 (-558)) $)) (-15 -2877 ($ (-1162) $)) (-15 -2868 ($ (-1162) $)) (-15 -2858 ($ (-1107))) (-15 -1548 ($ (-1107))) (-15 -3783 ($ (-1145))) (-15 -3783 ($ (-635 (-1145)))) (-15 -4180 ($ (-1145))) (-15 -2849 ($)) (-15 -2849 ($ (-315 (-689)))) (-15 -2849 ($ (-315 (-691)))) (-15 -2849 ($ (-315 (-684)))) (-15 -2849 ($ (-315 (-378)))) (-15 -2849 ($ (-315 (-558)))) (-15 -2849 ($ (-315 (-168 (-378))))) (-15 -4090 ($ (-1162) $)) (-15 -4090 ($ (-1162) $ $)) (-15 -3931 ($ (-1163) (-1145))) (-15 -3931 ($ (-1163) (-315 (-691)))) (-15 -3931 ($ (-1163) (-315 (-689)))) (-15 -3931 ($ (-1163) (-315 (-684)))) (-15 -3931 ($ (-1163) (-679 (-691)))) (-15 -3931 ($ (-1163) (-679 (-689)))) (-15 -3931 ($ (-1163) (-679 (-684)))) (-15 -3931 ($ (-1163) (-1246 (-691)))) (-15 -3931 ($ (-1163) (-1246 (-689)))) (-15 -3931 ($ (-1163) (-1246 (-684)))) (-15 -3931 ($ (-1163) (-679 (-315 (-691))))) (-15 -3931 ($ (-1163) (-679 (-315 (-689))))) (-15 -3931 ($ (-1163) (-679 (-315 (-684))))) (-15 -3931 ($ (-1163) (-1246 (-315 (-691))))) (-15 -3931 ($ (-1163) (-1246 (-315 (-689))))) (-15 -3931 ($ (-1163) (-1246 (-315 (-684))))) (-15 -3931 ($ (-1163) (-635 (-942 (-558))) (-315 (-691)))) (-15 -3931 ($ (-1163) (-635 (-942 (-558))) (-315 (-689)))) (-15 -3931 ($ (-1163) (-635 (-942 (-558))) (-315 (-684)))) (-15 -3931 ($ (-1163) (-315 (-558)))) (-15 -3931 ($ (-1163) (-315 (-378)))) (-15 -3931 ($ (-1163) (-315 (-168 (-378))))) (-15 -3931 ($ (-1163) (-679 (-315 (-558))))) (-15 -3931 ($ (-1163) (-679 (-315 (-378))))) (-15 -3931 ($ (-1163) (-679 (-315 (-168 (-378)))))) (-15 -3931 ($ (-1163) (-1246 (-315 (-558))))) (-15 -3931 ($ (-1163) (-1246 (-315 (-378))))) (-15 -3931 ($ (-1163) (-1246 (-315 (-168 (-378)))))) (-15 -3931 ($ (-1163) (-635 (-942 (-558))) (-315 (-558)))) (-15 -3931 ($ (-1163) (-635 (-942 (-558))) (-315 (-378)))) (-15 -3931 ($ (-1163) (-635 (-942 (-558))) (-315 (-168 (-378))))) (-15 -2840 ($ (-635 $))) (-15 -3811 ($)) (-15 -1742 ($)) (-15 -2830 ($ (-635 (-853)))) (-15 -3949 ($ (-1163) (-635 (-1163)))) (-15 -3654 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2232 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1163)) (|:| |arrayIndex| (-635 (-942 (-558)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1565 (-853)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1163)) (|:| |rand| (-853)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1162)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3375 (-112)) (|:| -2925 (-2 (|:| |ints2Floats?| (-112)) (|:| -1565 (-853)))))) (|:| |blockBranch| (-635 $)) (|:| |commentBranch| (-635 (-1145))) (|:| |callBranch| (-1145)) (|:| |forBranch| (-2 (|:| -1626 (-1079 (-942 (-558)))) (|:| |span| (-942 (-558))) (|:| -1337 $))) (|:| |labelBranch| (-1107)) (|:| |loopBranch| (-2 (|:| |switch| (-1162)) (|:| -1337 $))) (|:| |commonBranch| (-2 (|:| -1323 (-1163)) (|:| |contents| (-635 (-1163))))) (|:| |printBranch| (-635 (-853)))) $)) (-15 -2819 ((-1251) $)) (-15 -2810 ((-1091) $)) (-15 -2800 ((-1107) (-1107)))))
+((-3207 (((-112) $ $) NIL)) (-2897 (((-112) $) 11)) (-2112 (($ |#1|) 8)) (-3910 (($ $ $) NIL)) (-3542 (($ $ $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-2124 (($ |#1|) 9)) (-3220 (((-853) $) 17)) (-3971 ((|#1| $) 12)) (-1747 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1683 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 19)))
+(((-330 |#1|) (-13 (-841) (-10 -8 (-15 -2112 ($ |#1|)) (-15 -2124 ($ |#1|)) (-15 -2897 ((-112) $)) (-15 -3971 (|#1| $)))) (-841)) (T -330))
+((-2112 (*1 *1 *2) (-12 (-5 *1 (-330 *2)) (-4 *2 (-841)))) (-2124 (*1 *1 *2) (-12 (-5 *1 (-330 *2)) (-4 *2 (-841)))) (-2897 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-330 *3)) (-4 *3 (-841)))) (-3971 (*1 *2 *1) (-12 (-5 *1 (-330 *2)) (-4 *2 (-841)))))
+(-13 (-841) (-10 -8 (-15 -2112 ($ |#1|)) (-15 -2124 ($ |#1|)) (-15 -2897 ((-112) $)) (-15 -3971 (|#1| $))))
+((-2907 (((-329) (-1163) (-942 (-558))) 23)) (-2917 (((-329) (-1163) (-942 (-558))) 27)) (-2378 (((-329) (-1163) (-1079 (-942 (-558))) (-1079 (-942 (-558)))) 26) (((-329) (-1163) (-942 (-558)) (-942 (-558))) 24)) (-2926 (((-329) (-1163) (-942 (-558))) 31)))
+(((-331) (-10 -7 (-15 -2907 ((-329) (-1163) (-942 (-558)))) (-15 -2378 ((-329) (-1163) (-942 (-558)) (-942 (-558)))) (-15 -2378 ((-329) (-1163) (-1079 (-942 (-558))) (-1079 (-942 (-558))))) (-15 -2917 ((-329) (-1163) (-942 (-558)))) (-15 -2926 ((-329) (-1163) (-942 (-558)))))) (T -331))
+((-2926 (*1 *2 *3 *4) (-12 (-5 *3 (-1163)) (-5 *4 (-942 (-558))) (-5 *2 (-329)) (-5 *1 (-331)))) (-2917 (*1 *2 *3 *4) (-12 (-5 *3 (-1163)) (-5 *4 (-942 (-558))) (-5 *2 (-329)) (-5 *1 (-331)))) (-2378 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1163)) (-5 *4 (-1079 (-942 (-558)))) (-5 *2 (-329)) (-5 *1 (-331)))) (-2378 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1163)) (-5 *4 (-942 (-558))) (-5 *2 (-329)) (-5 *1 (-331)))) (-2907 (*1 *2 *3 *4) (-12 (-5 *3 (-1163)) (-5 *4 (-942 (-558))) (-5 *2 (-329)) (-5 *1 (-331)))))
+(-10 -7 (-15 -2907 ((-329) (-1163) (-942 (-558)))) (-15 -2378 ((-329) (-1163) (-942 (-558)) (-942 (-558)))) (-15 -2378 ((-329) (-1163) (-1079 (-942 (-558))) (-1079 (-942 (-558))))) (-15 -2917 ((-329) (-1163) (-942 (-558)))) (-15 -2926 ((-329) (-1163) (-942 (-558)))))
+((-3167 (((-335 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-335 |#1| |#2| |#3| |#4|)) 33)))
+(((-332 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3167 ((-335 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-335 |#1| |#2| |#3| |#4|)))) (-362) (-1222 |#1|) (-1222 (-406 |#2|)) (-341 |#1| |#2| |#3|) (-362) (-1222 |#5|) (-1222 (-406 |#6|)) (-341 |#5| |#6| |#7|)) (T -332))
+((-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-335 *5 *6 *7 *8)) (-4 *5 (-362)) (-4 *6 (-1222 *5)) (-4 *7 (-1222 (-406 *6))) (-4 *8 (-341 *5 *6 *7)) (-4 *9 (-362)) (-4 *10 (-1222 *9)) (-4 *11 (-1222 (-406 *10))) (-5 *2 (-335 *9 *10 *11 *12)) (-5 *1 (-332 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-341 *9 *10 *11)))))
+(-10 -7 (-15 -3167 ((-335 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-335 |#1| |#2| |#3| |#4|))))
+((-2959 (((-112) $) 14)))
+(((-333 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2959 ((-112) |#1|))) (-334 |#2| |#3| |#4| |#5|) (-362) (-1222 |#2|) (-1222 (-406 |#3|)) (-341 |#2| |#3| |#4|)) (T -333))
+NIL
+(-10 -8 (-15 -2959 ((-112) |#1|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2089 (((-3 $ "failed") $ $) 19)) (-1816 (($) 17 T CONST)) (-3048 (($ $) 26)) (-2959 (((-112) $) 25)) (-4310 (((-1145) $) 9)) (-2268 (((-412 |#2| (-406 |#2|) |#3| |#4|) $) 32)) (-2975 (((-1107) $) 10)) (-4098 (((-3 |#4| "failed") $) 24)) (-2969 (($ (-412 |#2| (-406 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-558)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-2375 (((-2 (|:| -3281 (-412 |#2| (-406 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-3220 (((-853) $) 11)) (-2131 (($) 18 T CONST)) (-1683 (((-112) $ $) 6)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20)))
+(((-334 |#1| |#2| |#3| |#4|) (-139) (-362) (-1222 |t#1|) (-1222 (-406 |t#2|)) (-341 |t#1| |t#2| |t#3|)) (T -334))
+((-2268 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-5 *2 (-412 *4 (-406 *4) *5 *6)))) (-2969 (*1 *1 *2) (-12 (-5 *2 (-412 *4 (-406 *4) *5 *6)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-4 *3 (-362)) (-4 *1 (-334 *3 *4 *5 *6)))) (-2969 (*1 *1 *2) (-12 (-4 *3 (-362)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-4 *1 (-334 *3 *4 *5 *2)) (-4 *2 (-341 *3 *4 *5)))) (-2969 (*1 *1 *2 *2) (-12 (-4 *2 (-362)) (-4 *3 (-1222 *2)) (-4 *4 (-1222 (-406 *3))) (-4 *1 (-334 *2 *3 *4 *5)) (-4 *5 (-341 *2 *3 *4)))) (-2969 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-558)) (-4 *2 (-362)) (-4 *4 (-1222 *2)) (-4 *5 (-1222 (-406 *4))) (-4 *1 (-334 *2 *4 *5 *6)) (-4 *6 (-341 *2 *4 *5)))) (-2375 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-5 *2 (-2 (|:| -3281 (-412 *4 (-406 *4) *5 *6)) (|:| |principalPart| *6))))) (-3048 (*1 *1 *1) (-12 (-4 *1 (-334 *2 *3 *4 *5)) (-4 *2 (-362)) (-4 *3 (-1222 *2)) (-4 *4 (-1222 (-406 *3))) (-4 *5 (-341 *2 *3 *4)))) (-2959 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-5 *2 (-112)))) (-4098 (*1 *2 *1) (|partial| -12 (-4 *1 (-334 *3 *4 *5 *2)) (-4 *3 (-362)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-4 *2 (-341 *3 *4 *5)))) (-2969 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-362)) (-4 *3 (-1222 *4)) (-4 *5 (-1222 (-406 *3))) (-4 *1 (-334 *4 *3 *5 *2)) (-4 *2 (-341 *4 *3 *5)))))
+(-13 (-21) (-10 -8 (-15 -2268 ((-412 |t#2| (-406 |t#2|) |t#3| |t#4|) $)) (-15 -2969 ($ (-412 |t#2| (-406 |t#2|) |t#3| |t#4|))) (-15 -2969 ($ |t#4|)) (-15 -2969 ($ |t#1| |t#1|)) (-15 -2969 ($ |t#1| |t#1| (-558))) (-15 -2375 ((-2 (|:| -3281 (-412 |t#2| (-406 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3048 ($ $)) (-15 -2959 ((-112) $)) (-15 -4098 ((-3 |t#4| "failed") $)) (-15 -2969 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-605 (-853)) . T) ((-1087) . T))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-1816 (($) NIL T CONST)) (-3048 (($ $) 33)) (-2959 (((-112) $) NIL)) (-4310 (((-1145) $) NIL)) (-2938 (((-1246 |#4|) $) 125)) (-2268 (((-412 |#2| (-406 |#2|) |#3| |#4|) $) 31)) (-2975 (((-1107) $) NIL)) (-4098 (((-3 |#4| "failed") $) 36)) (-2948 (((-1246 |#4|) $) 118)) (-2969 (($ (-412 |#2| (-406 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-558)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-2375 (((-2 (|:| -3281 (-412 |#2| (-406 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-3220 (((-853) $) 17)) (-2131 (($) 14 T CONST)) (-1683 (((-112) $ $) 20)) (-1798 (($ $) 27) (($ $ $) NIL)) (-1784 (($ $ $) 25)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 23)))
+(((-335 |#1| |#2| |#3| |#4|) (-13 (-334 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2948 ((-1246 |#4|) $)) (-15 -2938 ((-1246 |#4|) $)))) (-362) (-1222 |#1|) (-1222 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -335))
+((-2948 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-1246 *6)) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *6 (-341 *3 *4 *5)))) (-2938 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-1246 *6)) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *6 (-341 *3 *4 *5)))))
+(-13 (-334 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2948 ((-1246 |#4|) $)) (-15 -2938 ((-1246 |#4|) $))))
+((-2554 (($ $ (-1163) |#2|) NIL) (($ $ (-635 (-1163)) (-635 |#2|)) 20) (($ $ (-635 (-293 |#2|))) 15) (($ $ (-293 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-635 |#2|) (-635 |#2|)) NIL)) (-2195 (($ $ |#2|) 11)))
+(((-336 |#1| |#2|) (-10 -8 (-15 -2195 (|#1| |#1| |#2|)) (-15 -2554 (|#1| |#1| (-635 |#2|) (-635 |#2|))) (-15 -2554 (|#1| |#1| |#2| |#2|)) (-15 -2554 (|#1| |#1| (-293 |#2|))) (-15 -2554 (|#1| |#1| (-635 (-293 |#2|)))) (-15 -2554 (|#1| |#1| (-635 (-1163)) (-635 |#2|))) (-15 -2554 (|#1| |#1| (-1163) |#2|))) (-337 |#2|) (-1087)) (T -336))
+NIL
+(-10 -8 (-15 -2195 (|#1| |#1| |#2|)) (-15 -2554 (|#1| |#1| (-635 |#2|) (-635 |#2|))) (-15 -2554 (|#1| |#1| |#2| |#2|)) (-15 -2554 (|#1| |#1| (-293 |#2|))) (-15 -2554 (|#1| |#1| (-635 (-293 |#2|)))) (-15 -2554 (|#1| |#1| (-635 (-1163)) (-635 |#2|))) (-15 -2554 (|#1| |#1| (-1163) |#2|)))
+((-3167 (($ (-1 |#1| |#1|) $) 6)) (-2554 (($ $ (-1163) |#1|) 17 (|has| |#1| (-512 (-1163) |#1|))) (($ $ (-635 (-1163)) (-635 |#1|)) 16 (|has| |#1| (-512 (-1163) |#1|))) (($ $ (-635 (-293 |#1|))) 15 (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) 14 (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-308 |#1|))) (($ $ (-635 |#1|) (-635 |#1|)) 12 (|has| |#1| (-308 |#1|)))) (-2195 (($ $ |#1|) 11 (|has| |#1| (-285 |#1| |#1|)))))
+(((-337 |#1|) (-139) (-1087)) (T -337))
+((-3167 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-337 *3)) (-4 *3 (-1087)))))
+(-13 (-10 -8 (-15 -3167 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-285 |t#1| |t#1|)) (-6 (-285 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-308 |t#1|)) (-6 (-308 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-512 (-1163) |t#1|)) (-6 (-512 (-1163) |t#1|)) |%noBranch|)))
+(((-285 |#1| $) |has| |#1| (-285 |#1| |#1|)) ((-308 |#1|) |has| |#1| (-308 |#1|)) ((-512 (-1163) |#1|) |has| |#1| (-512 (-1163) |#1|)) ((-512 |#1| |#1|) |has| |#1| (-308 |#1|)))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2671 (((-635 (-1163)) $) NIL)) (-2982 (((-112)) 90) (((-112) (-112)) 91)) (-2396 (((-635 (-604 $)) $) NIL)) (-4088 (($ $) NIL)) (-2135 (($ $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-2497 (($ $ (-293 $)) NIL) (($ $ (-635 (-293 $))) NIL) (($ $ (-635 (-604 $)) (-635 $)) NIL)) (-2534 (($ $) NIL)) (-4070 (($ $) NIL)) (-2112 (($ $) NIL)) (-1816 (($) NIL T CONST)) (-3069 (((-3 (-604 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-315 |#3|)) 70) (((-3 $ "failed") (-1163)) 96) (((-3 $ "failed") (-315 (-558))) 58 (|has| |#3| (-1028 (-558)))) (((-3 $ "failed") (-406 (-942 (-558)))) 64 (|has| |#3| (-1028 (-558)))) (((-3 $ "failed") (-942 (-558))) 59 (|has| |#3| (-1028 (-558)))) (((-3 $ "failed") (-315 (-378))) 88 (|has| |#3| (-1028 (-378)))) (((-3 $ "failed") (-406 (-942 (-378)))) 82 (|has| |#3| (-1028 (-378)))) (((-3 $ "failed") (-942 (-378))) 77 (|has| |#3| (-1028 (-378))))) (-1863 (((-604 $) $) NIL) ((|#3| $) NIL) (($ (-315 |#3|)) 71) (($ (-1163)) 97) (($ (-315 (-558))) 60 (|has| |#3| (-1028 (-558)))) (($ (-406 (-942 (-558)))) 65 (|has| |#3| (-1028 (-558)))) (($ (-942 (-558))) 61 (|has| |#3| (-1028 (-558)))) (($ (-315 (-378))) 89 (|has| |#3| (-1028 (-378)))) (($ (-406 (-942 (-378)))) 83 (|has| |#3| (-1028 (-378)))) (($ (-942 (-378))) 79 (|has| |#3| (-1028 (-378))))) (-2588 (((-3 $ "failed") $) NIL)) (-1904 (($) 10)) (-3800 (($ $) NIL) (($ (-635 $)) NIL)) (-1405 (((-635 (-114)) $) NIL)) (-3029 (((-114) (-114)) NIL)) (-2035 (((-112) $) NIL)) (-3451 (((-112) $) NIL (|has| $ (-1028 (-558))))) (-1381 (((-1159 $) (-604 $)) NIL (|has| $ (-1039)))) (-3910 (($ $ $) NIL)) (-3542 (($ $ $) NIL)) (-3167 (($ (-1 $ $) (-604 $)) NIL)) (-1416 (((-3 (-604 $) "failed") $) NIL)) (-4150 (($ $) 93)) (-2592 (($ $) NIL)) (-4310 (((-1145) $) NIL)) (-2475 (((-635 (-604 $)) $) NIL)) (-1949 (($ (-114) $) 92) (($ (-114) (-635 $)) NIL)) (-3173 (((-112) $ (-114)) NIL) (((-112) $ (-1163)) NIL)) (-3382 (((-762) $) NIL)) (-2975 (((-1107) $) NIL)) (-1392 (((-112) $ $) NIL) (((-112) $ (-1163)) NIL)) (-2573 (($ $) NIL)) (-3458 (((-112) $) NIL (|has| $ (-1028 (-558))))) (-2554 (($ $ (-604 $) $) NIL) (($ $ (-635 (-604 $)) (-635 $)) NIL) (($ $ (-635 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-635 (-1163)) (-635 (-1 $ $))) NIL) (($ $ (-635 (-1163)) (-635 (-1 $ (-635 $)))) NIL) (($ $ (-1163) (-1 $ (-635 $))) NIL) (($ $ (-1163) (-1 $ $)) NIL) (($ $ (-635 (-114)) (-635 (-1 $ $))) NIL) (($ $ (-635 (-114)) (-635 (-1 $ (-635 $)))) NIL) (($ $ (-114) (-1 $ (-635 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-2195 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-635 $)) NIL)) (-1426 (($ $) NIL) (($ $ $) NIL)) (-2829 (($ $ (-635 (-1163)) (-635 (-762))) NIL) (($ $ (-1163) (-762)) NIL) (($ $ (-635 (-1163))) NIL) (($ $ (-1163)) NIL)) (-2036 (($ $) NIL (|has| $ (-1039)))) (-4080 (($ $) NIL)) (-2124 (($ $) NIL)) (-3220 (((-853) $) NIL) (($ (-604 $)) NIL) (($ |#3|) NIL) (($ (-558)) NIL) (((-315 |#3|) $) 95)) (-2542 (((-762)) NIL)) (-2540 (($ $) NIL) (($ (-635 $)) NIL)) (-2995 (((-112) (-114)) NIL)) (-2200 (($ $) NIL)) (-2178 (($ $) NIL)) (-2189 (($ $) NIL)) (-3190 (($ $) NIL)) (-2131 (($) 94 T CONST)) (-2142 (($) 24 T CONST)) (-1866 (($ $ (-635 (-1163)) (-635 (-762))) NIL) (($ $ (-1163) (-762)) NIL) (($ $ (-635 (-1163))) NIL) (($ $ (-1163)) NIL)) (-1747 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1683 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1798 (($ $ $) NIL) (($ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-762)) NIL) (($ $ (-911)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-558) $) NIL) (($ (-762) $) NIL) (($ (-911) $) NIL)))
+(((-338 |#1| |#2| |#3|) (-13 (-301) (-38 |#3|) (-1028 |#3|) (-890 (-1163)) (-10 -8 (-15 -1863 ($ (-315 |#3|))) (-15 -3069 ((-3 $ "failed") (-315 |#3|))) (-15 -1863 ($ (-1163))) (-15 -3069 ((-3 $ "failed") (-1163))) (-15 -3220 ((-315 |#3|) $)) (IF (|has| |#3| (-1028 (-558))) (PROGN (-15 -1863 ($ (-315 (-558)))) (-15 -3069 ((-3 $ "failed") (-315 (-558)))) (-15 -1863 ($ (-406 (-942 (-558))))) (-15 -3069 ((-3 $ "failed") (-406 (-942 (-558))))) (-15 -1863 ($ (-942 (-558)))) (-15 -3069 ((-3 $ "failed") (-942 (-558))))) |%noBranch|) (IF (|has| |#3| (-1028 (-378))) (PROGN (-15 -1863 ($ (-315 (-378)))) (-15 -3069 ((-3 $ "failed") (-315 (-378)))) (-15 -1863 ($ (-406 (-942 (-378))))) (-15 -3069 ((-3 $ "failed") (-406 (-942 (-378))))) (-15 -1863 ($ (-942 (-378)))) (-15 -3069 ((-3 $ "failed") (-942 (-378))))) |%noBranch|) (-15 -3190 ($ $)) (-15 -2534 ($ $)) (-15 -2573 ($ $)) (-15 -2592 ($ $)) (-15 -4150 ($ $)) (-15 -2112 ($ $)) (-15 -2124 ($ $)) (-15 -2135 ($ $)) (-15 -2178 ($ $)) (-15 -2189 ($ $)) (-15 -2200 ($ $)) (-15 -4070 ($ $)) (-15 -4080 ($ $)) (-15 -4088 ($ $)) (-15 -1904 ($)) (-15 -2671 ((-635 (-1163)) $)) (-15 -2982 ((-112))) (-15 -2982 ((-112) (-112))))) (-635 (-1163)) (-635 (-1163)) (-386)) (T -338))
+((-1863 (*1 *1 *2) (-12 (-5 *2 (-315 *5)) (-4 *5 (-386)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 (-1163))) (-14 *4 (-635 (-1163))))) (-3069 (*1 *1 *2) (|partial| -12 (-5 *2 (-315 *5)) (-4 *5 (-386)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 (-1163))) (-14 *4 (-635 (-1163))))) (-1863 (*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 *2)) (-14 *4 (-635 *2)) (-4 *5 (-386)))) (-3069 (*1 *1 *2) (|partial| -12 (-5 *2 (-1163)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 *2)) (-14 *4 (-635 *2)) (-4 *5 (-386)))) (-3220 (*1 *2 *1) (-12 (-5 *2 (-315 *5)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 (-1163))) (-14 *4 (-635 (-1163))) (-4 *5 (-386)))) (-1863 (*1 *1 *2) (-12 (-5 *2 (-315 (-558))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1028 (-558))) (-14 *3 (-635 (-1163))) (-14 *4 (-635 (-1163))) (-4 *5 (-386)))) (-3069 (*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-558))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1028 (-558))) (-14 *3 (-635 (-1163))) (-14 *4 (-635 (-1163))) (-4 *5 (-386)))) (-1863 (*1 *1 *2) (-12 (-5 *2 (-406 (-942 (-558)))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1028 (-558))) (-14 *3 (-635 (-1163))) (-14 *4 (-635 (-1163))) (-4 *5 (-386)))) (-3069 (*1 *1 *2) (|partial| -12 (-5 *2 (-406 (-942 (-558)))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1028 (-558))) (-14 *3 (-635 (-1163))) (-14 *4 (-635 (-1163))) (-4 *5 (-386)))) (-1863 (*1 *1 *2) (-12 (-5 *2 (-942 (-558))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1028 (-558))) (-14 *3 (-635 (-1163))) (-14 *4 (-635 (-1163))) (-4 *5 (-386)))) (-3069 (*1 *1 *2) (|partial| -12 (-5 *2 (-942 (-558))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1028 (-558))) (-14 *3 (-635 (-1163))) (-14 *4 (-635 (-1163))) (-4 *5 (-386)))) (-1863 (*1 *1 *2) (-12 (-5 *2 (-315 (-378))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1028 (-378))) (-14 *3 (-635 (-1163))) (-14 *4 (-635 (-1163))) (-4 *5 (-386)))) (-3069 (*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-378))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1028 (-378))) (-14 *3 (-635 (-1163))) (-14 *4 (-635 (-1163))) (-4 *5 (-386)))) (-1863 (*1 *1 *2) (-12 (-5 *2 (-406 (-942 (-378)))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1028 (-378))) (-14 *3 (-635 (-1163))) (-14 *4 (-635 (-1163))) (-4 *5 (-386)))) (-3069 (*1 *1 *2) (|partial| -12 (-5 *2 (-406 (-942 (-378)))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1028 (-378))) (-14 *3 (-635 (-1163))) (-14 *4 (-635 (-1163))) (-4 *5 (-386)))) (-1863 (*1 *1 *2) (-12 (-5 *2 (-942 (-378))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1028 (-378))) (-14 *3 (-635 (-1163))) (-14 *4 (-635 (-1163))) (-4 *5 (-386)))) (-3069 (*1 *1 *2) (|partial| -12 (-5 *2 (-942 (-378))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1028 (-378))) (-14 *3 (-635 (-1163))) (-14 *4 (-635 (-1163))) (-4 *5 (-386)))) (-3190 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163))) (-14 *3 (-635 (-1163))) (-4 *4 (-386)))) (-2534 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163))) (-14 *3 (-635 (-1163))) (-4 *4 (-386)))) (-2573 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163))) (-14 *3 (-635 (-1163))) (-4 *4 (-386)))) (-2592 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163))) (-14 *3 (-635 (-1163))) (-4 *4 (-386)))) (-4150 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163))) (-14 *3 (-635 (-1163))) (-4 *4 (-386)))) (-2112 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163))) (-14 *3 (-635 (-1163))) (-4 *4 (-386)))) (-2124 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163))) (-14 *3 (-635 (-1163))) (-4 *4 (-386)))) (-2135 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163))) (-14 *3 (-635 (-1163))) (-4 *4 (-386)))) (-2178 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163))) (-14 *3 (-635 (-1163))) (-4 *4 (-386)))) (-2189 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163))) (-14 *3 (-635 (-1163))) (-4 *4 (-386)))) (-2200 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163))) (-14 *3 (-635 (-1163))) (-4 *4 (-386)))) (-4070 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163))) (-14 *3 (-635 (-1163))) (-4 *4 (-386)))) (-4080 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163))) (-14 *3 (-635 (-1163))) (-4 *4 (-386)))) (-4088 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163))) (-14 *3 (-635 (-1163))) (-4 *4 (-386)))) (-1904 (*1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163))) (-14 *3 (-635 (-1163))) (-4 *4 (-386)))) (-2671 (*1 *2 *1) (-12 (-5 *2 (-635 (-1163))) (-5 *1 (-338 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-386)))) (-2982 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 (-1163))) (-14 *4 (-635 (-1163))) (-4 *5 (-386)))) (-2982 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 (-1163))) (-14 *4 (-635 (-1163))) (-4 *5 (-386)))))
+(-13 (-301) (-38 |#3|) (-1028 |#3|) (-890 (-1163)) (-10 -8 (-15 -1863 ($ (-315 |#3|))) (-15 -3069 ((-3 $ "failed") (-315 |#3|))) (-15 -1863 ($ (-1163))) (-15 -3069 ((-3 $ "failed") (-1163))) (-15 -3220 ((-315 |#3|) $)) (IF (|has| |#3| (-1028 (-558))) (PROGN (-15 -1863 ($ (-315 (-558)))) (-15 -3069 ((-3 $ "failed") (-315 (-558)))) (-15 -1863 ($ (-406 (-942 (-558))))) (-15 -3069 ((-3 $ "failed") (-406 (-942 (-558))))) (-15 -1863 ($ (-942 (-558)))) (-15 -3069 ((-3 $ "failed") (-942 (-558))))) |%noBranch|) (IF (|has| |#3| (-1028 (-378))) (PROGN (-15 -1863 ($ (-315 (-378)))) (-15 -3069 ((-3 $ "failed") (-315 (-378)))) (-15 -1863 ($ (-406 (-942 (-378))))) (-15 -3069 ((-3 $ "failed") (-406 (-942 (-378))))) (-15 -1863 ($ (-942 (-378)))) (-15 -3069 ((-3 $ "failed") (-942 (-378))))) |%noBranch|) (-15 -3190 ($ $)) (-15 -2534 ($ $)) (-15 -2573 ($ $)) (-15 -2592 ($ $)) (-15 -4150 ($ $)) (-15 -2112 ($ $)) (-15 -2124 ($ $)) (-15 -2135 ($ $)) (-15 -2178 ($ $)) (-15 -2189 ($ $)) (-15 -2200 ($ $)) (-15 -4070 ($ $)) (-15 -4080 ($ $)) (-15 -4088 ($ $)) (-15 -1904 ($)) (-15 -2671 ((-635 (-1163)) $)) (-15 -2982 ((-112))) (-15 -2982 ((-112) (-112)))))
+((-3167 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
+(((-339 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3167 (|#8| (-1 |#5| |#1|) |#4|))) (-1204) (-1222 |#1|) (-1222 (-406 |#2|)) (-341 |#1| |#2| |#3|) (-1204) (-1222 |#5|) (-1222 (-406 |#6|)) (-341 |#5| |#6| |#7|)) (T -339))
+((-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1204)) (-4 *8 (-1204)) (-4 *6 (-1222 *5)) (-4 *7 (-1222 (-406 *6))) (-4 *9 (-1222 *8)) (-4 *2 (-341 *8 *9 *10)) (-5 *1 (-339 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-341 *5 *6 *7)) (-4 *10 (-1222 (-406 *9))))))
+(-10 -7 (-15 -3167 (|#8| (-1 |#5| |#1|) |#4|)))
+((-3085 (((-2 (|:| |num| (-1246 |#3|)) (|:| |den| |#3|)) $) 38)) (-3997 (($ (-1246 (-406 |#3|)) (-1246 $)) NIL) (($ (-1246 (-406 |#3|))) NIL) (($ (-1246 |#3|) |#3|) 160)) (-3138 (((-1246 $) (-1246 $)) 144)) (-2994 (((-635 (-635 |#2|))) 118)) (-3270 (((-112) |#2| |#2|) 73)) (-2782 (($ $) 138)) (-3147 (((-762)) 31)) (-3148 (((-1246 $) (-1246 $)) 197)) (-3005 (((-635 (-942 |#2|)) (-1163)) 110)) (-3180 (((-112) $) 157)) (-3170 (((-112) $) 25) (((-112) $ |#2|) 29) (((-112) $ |#3|) 201)) (-3027 (((-3 |#3| "failed")) 50)) (-3293 (((-762)) 169)) (-2195 ((|#2| $ |#2| |#2|) 131)) (-3037 (((-3 |#3| "failed")) 68)) (-2829 (($ $ (-1 (-406 |#3|) (-406 |#3|)) (-762)) NIL) (($ $ (-1 (-406 |#3|) (-406 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 205) (($ $ (-635 (-1163)) (-635 (-762))) NIL) (($ $ (-1163) (-762)) NIL) (($ $ (-635 (-1163))) NIL) (($ $ (-1163)) NIL) (($ $ (-762)) NIL) (($ $) NIL)) (-3158 (((-1246 $) (-1246 $)) 150)) (-3016 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-3282 (((-112)) 33)))
+(((-340 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2829 (|#1| |#1|)) (-15 -2829 (|#1| |#1| (-762))) (-15 -2829 (|#1| |#1| (-1163))) (-15 -2829 (|#1| |#1| (-635 (-1163)))) (-15 -2829 (|#1| |#1| (-1163) (-762))) (-15 -2829 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 -2994 ((-635 (-635 |#2|)))) (-15 -3005 ((-635 (-942 |#2|)) (-1163))) (-15 -3016 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3027 ((-3 |#3| "failed"))) (-15 -3037 ((-3 |#3| "failed"))) (-15 -2195 (|#2| |#1| |#2| |#2|)) (-15 -2782 (|#1| |#1|)) (-15 -2829 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3170 ((-112) |#1| |#3|)) (-15 -3170 ((-112) |#1| |#2|)) (-15 -3997 (|#1| (-1246 |#3|) |#3|)) (-15 -3085 ((-2 (|:| |num| (-1246 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3138 ((-1246 |#1|) (-1246 |#1|))) (-15 -3148 ((-1246 |#1|) (-1246 |#1|))) (-15 -3158 ((-1246 |#1|) (-1246 |#1|))) (-15 -3170 ((-112) |#1|)) (-15 -3180 ((-112) |#1|)) (-15 -3270 ((-112) |#2| |#2|)) (-15 -3282 ((-112))) (-15 -3293 ((-762))) (-15 -3147 ((-762))) (-15 -2829 (|#1| |#1| (-1 (-406 |#3|) (-406 |#3|)))) (-15 -2829 (|#1| |#1| (-1 (-406 |#3|) (-406 |#3|)) (-762))) (-15 -3997 (|#1| (-1246 (-406 |#3|)))) (-15 -3997 (|#1| (-1246 (-406 |#3|)) (-1246 |#1|)))) (-341 |#2| |#3| |#4|) (-1204) (-1222 |#2|) (-1222 (-406 |#3|))) (T -340))
+((-3147 (*1 *2) (-12 (-4 *4 (-1204)) (-4 *5 (-1222 *4)) (-4 *6 (-1222 (-406 *5))) (-5 *2 (-762)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6)))) (-3293 (*1 *2) (-12 (-4 *4 (-1204)) (-4 *5 (-1222 *4)) (-4 *6 (-1222 (-406 *5))) (-5 *2 (-762)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6)))) (-3282 (*1 *2) (-12 (-4 *4 (-1204)) (-4 *5 (-1222 *4)) (-4 *6 (-1222 (-406 *5))) (-5 *2 (-112)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6)))) (-3270 (*1 *2 *3 *3) (-12 (-4 *3 (-1204)) (-4 *5 (-1222 *3)) (-4 *6 (-1222 (-406 *5))) (-5 *2 (-112)) (-5 *1 (-340 *4 *3 *5 *6)) (-4 *4 (-341 *3 *5 *6)))) (-3037 (*1 *2) (|partial| -12 (-4 *4 (-1204)) (-4 *5 (-1222 (-406 *2))) (-4 *2 (-1222 *4)) (-5 *1 (-340 *3 *4 *2 *5)) (-4 *3 (-341 *4 *2 *5)))) (-3027 (*1 *2) (|partial| -12 (-4 *4 (-1204)) (-4 *5 (-1222 (-406 *2))) (-4 *2 (-1222 *4)) (-5 *1 (-340 *3 *4 *2 *5)) (-4 *3 (-341 *4 *2 *5)))) (-3005 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-4 *5 (-1204)) (-4 *6 (-1222 *5)) (-4 *7 (-1222 (-406 *6))) (-5 *2 (-635 (-942 *5))) (-5 *1 (-340 *4 *5 *6 *7)) (-4 *4 (-341 *5 *6 *7)))) (-2994 (*1 *2) (-12 (-4 *4 (-1204)) (-4 *5 (-1222 *4)) (-4 *6 (-1222 (-406 *5))) (-5 *2 (-635 (-635 *4))) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6)))))
+(-10 -8 (-15 -2829 (|#1| |#1|)) (-15 -2829 (|#1| |#1| (-762))) (-15 -2829 (|#1| |#1| (-1163))) (-15 -2829 (|#1| |#1| (-635 (-1163)))) (-15 -2829 (|#1| |#1| (-1163) (-762))) (-15 -2829 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 -2994 ((-635 (-635 |#2|)))) (-15 -3005 ((-635 (-942 |#2|)) (-1163))) (-15 -3016 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3027 ((-3 |#3| "failed"))) (-15 -3037 ((-3 |#3| "failed"))) (-15 -2195 (|#2| |#1| |#2| |#2|)) (-15 -2782 (|#1| |#1|)) (-15 -2829 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3170 ((-112) |#1| |#3|)) (-15 -3170 ((-112) |#1| |#2|)) (-15 -3997 (|#1| (-1246 |#3|) |#3|)) (-15 -3085 ((-2 (|:| |num| (-1246 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3138 ((-1246 |#1|) (-1246 |#1|))) (-15 -3148 ((-1246 |#1|) (-1246 |#1|))) (-15 -3158 ((-1246 |#1|) (-1246 |#1|))) (-15 -3170 ((-112) |#1|)) (-15 -3180 ((-112) |#1|)) (-15 -3270 ((-112) |#2| |#2|)) (-15 -3282 ((-112))) (-15 -3293 ((-762))) (-15 -3147 ((-762))) (-15 -2829 (|#1| |#1| (-1 (-406 |#3|) (-406 |#3|)))) (-15 -2829 (|#1| |#1| (-1 (-406 |#3|) (-406 |#3|)) (-762))) (-15 -3997 (|#1| (-1246 (-406 |#3|)))) (-15 -3997 (|#1| (-1246 (-406 |#3|)) (-1246 |#1|))))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-3085 (((-2 (|:| |num| (-1246 |#2|)) (|:| |den| |#2|)) $) 195)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 93 (|has| (-406 |#2|) (-362)))) (-1881 (($ $) 94 (|has| (-406 |#2|) (-362)))) (-1857 (((-112) $) 96 (|has| (-406 |#2|) (-362)))) (-2053 (((-679 (-406 |#2|)) (-1246 $)) 47) (((-679 (-406 |#2|))) 62)) (-1635 (((-406 |#2|) $) 53)) (-2163 (((-1173 (-911) (-762)) (-558)) 146 (|has| (-406 |#2|) (-348)))) (-2089 (((-3 $ "failed") $ $) 19)) (-3465 (($ $) 113 (|has| (-406 |#2|) (-362)))) (-1380 (((-417 $) $) 114 (|has| (-406 |#2|) (-362)))) (-3732 (((-112) $ $) 104 (|has| (-406 |#2|) (-362)))) (-2276 (((-762)) 87 (|has| (-406 |#2|) (-367)))) (-3240 (((-112)) 212)) (-3228 (((-112) |#1|) 211) (((-112) |#2|) 210)) (-1816 (($) 17 T CONST)) (-3069 (((-3 (-558) "failed") $) 169 (|has| (-406 |#2|) (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) 167 (|has| (-406 |#2|) (-1028 (-406 (-558))))) (((-3 (-406 |#2|) "failed") $) 164)) (-1863 (((-558) $) 168 (|has| (-406 |#2|) (-1028 (-558)))) (((-406 (-558)) $) 166 (|has| (-406 |#2|) (-1028 (-406 (-558))))) (((-406 |#2|) $) 165)) (-3997 (($ (-1246 (-406 |#2|)) (-1246 $)) 49) (($ (-1246 (-406 |#2|))) 65) (($ (-1246 |#2|) |#2|) 194)) (-3367 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| (-406 |#2|) (-348)))) (-4025 (($ $ $) 108 (|has| (-406 |#2|) (-362)))) (-2043 (((-679 (-406 |#2|)) $ (-1246 $)) 54) (((-679 (-406 |#2|)) $) 60)) (-3216 (((-679 (-558)) (-679 $)) 163 (|has| (-406 |#2|) (-631 (-558)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) 162 (|has| (-406 |#2|) (-631 (-558)))) (((-2 (|:| -3683 (-679 (-406 |#2|))) (|:| |vec| (-1246 (-406 |#2|)))) (-679 $) (-1246 $)) 161) (((-679 (-406 |#2|)) (-679 $)) 160)) (-3138 (((-1246 $) (-1246 $)) 200)) (-3048 (($ |#3|) 157) (((-3 $ "failed") (-406 |#3|)) 154 (|has| (-406 |#2|) (-362)))) (-2588 (((-3 $ "failed") $) 33)) (-2994 (((-635 (-635 |#1|))) 181 (|has| |#1| (-367)))) (-3270 (((-112) |#1| |#1|) 216)) (-3833 (((-911)) 55)) (-2424 (($) 90 (|has| (-406 |#2|) (-367)))) (-3214 (((-112)) 209)) (-3202 (((-112) |#1|) 208) (((-112) |#2|) 207)) (-4004 (($ $ $) 107 (|has| (-406 |#2|) (-362)))) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) 102 (|has| (-406 |#2|) (-362)))) (-2782 (($ $) 187)) (-2672 (($) 148 (|has| (-406 |#2|) (-348)))) (-2219 (((-112) $) 149 (|has| (-406 |#2|) (-348)))) (-1895 (($ $ (-762)) 140 (|has| (-406 |#2|) (-348))) (($ $) 139 (|has| (-406 |#2|) (-348)))) (-3031 (((-112) $) 115 (|has| (-406 |#2|) (-362)))) (-3449 (((-911) $) 151 (|has| (-406 |#2|) (-348))) (((-824 (-911)) $) 137 (|has| (-406 |#2|) (-348)))) (-2035 (((-112) $) 31)) (-3147 (((-762)) 219)) (-3148 (((-1246 $) (-1246 $)) 201)) (-2615 (((-406 |#2|) $) 52)) (-3005 (((-635 (-942 |#1|)) (-1163)) 182 (|has| |#1| (-362)))) (-2457 (((-3 $ "failed") $) 141 (|has| (-406 |#2|) (-348)))) (-3701 (((-3 (-635 $) "failed") (-635 $) $) 111 (|has| (-406 |#2|) (-362)))) (-2681 ((|#3| $) 45 (|has| (-406 |#2|) (-362)))) (-2637 (((-911) $) 89 (|has| (-406 |#2|) (-367)))) (-3227 ((|#3| $) 155)) (-2665 (($ (-635 $)) 100 (|has| (-406 |#2|) (-362))) (($ $ $) 99 (|has| (-406 |#2|) (-362)))) (-4310 (((-1145) $) 9)) (-3095 (((-679 (-406 |#2|))) 196)) (-3116 (((-679 (-406 |#2|))) 198)) (-2418 (($ $) 116 (|has| (-406 |#2|) (-362)))) (-3061 (($ (-1246 |#2|) |#2|) 192)) (-3105 (((-679 (-406 |#2|))) 197)) (-3128 (((-679 (-406 |#2|))) 199)) (-3049 (((-2 (|:| |num| (-679 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 191)) (-3073 (((-2 (|:| |num| (-1246 |#2|)) (|:| |den| |#2|)) $) 193)) (-3191 (((-1246 $)) 205)) (-2224 (((-1246 $)) 206)) (-3180 (((-112) $) 204)) (-3170 (((-112) $) 203) (((-112) $ |#1|) 190) (((-112) $ |#2|) 189)) (-1796 (($) 142 (|has| (-406 |#2|) (-348)) CONST)) (-2851 (($ (-911)) 88 (|has| (-406 |#2|) (-367)))) (-3027 (((-3 |#2| "failed")) 184)) (-2975 (((-1107) $) 10)) (-3293 (((-762)) 218)) (-4098 (($) 159)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) 101 (|has| (-406 |#2|) (-362)))) (-2699 (($ (-635 $)) 98 (|has| (-406 |#2|) (-362))) (($ $ $) 97 (|has| (-406 |#2|) (-362)))) (-2174 (((-635 (-2 (|:| -2522 (-558)) (|:| -1951 (-558))))) 145 (|has| (-406 |#2|) (-348)))) (-2522 (((-417 $) $) 112 (|has| (-406 |#2|) (-362)))) (-3713 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-406 |#2|) (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) 109 (|has| (-406 |#2|) (-362)))) (-3983 (((-3 $ "failed") $ $) 92 (|has| (-406 |#2|) (-362)))) (-2922 (((-3 (-635 $) "failed") (-635 $) $) 103 (|has| (-406 |#2|) (-362)))) (-3722 (((-762) $) 105 (|has| (-406 |#2|) (-362)))) (-2195 ((|#1| $ |#1| |#1|) 186)) (-3037 (((-3 |#2| "failed")) 185)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 106 (|has| (-406 |#2|) (-362)))) (-3331 (((-406 |#2|) (-1246 $)) 48) (((-406 |#2|)) 61)) (-1905 (((-762) $) 150 (|has| (-406 |#2|) (-348))) (((-3 (-762) "failed") $ $) 138 (|has| (-406 |#2|) (-348)))) (-2829 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-762)) 122 (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) 121 (|has| (-406 |#2|) (-362))) (($ $ (-1 |#2| |#2|)) 188) (($ $ (-635 (-1163)) (-635 (-762))) 129 (-3998 (-2084 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163)))) (-2084 (|has| (-406 |#2|) (-890 (-1163))) (|has| (-406 |#2|) (-362))))) (($ $ (-1163) (-762)) 130 (-3998 (-2084 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163)))) (-2084 (|has| (-406 |#2|) (-890 (-1163))) (|has| (-406 |#2|) (-362))))) (($ $ (-635 (-1163))) 131 (-3998 (-2084 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163)))) (-2084 (|has| (-406 |#2|) (-890 (-1163))) (|has| (-406 |#2|) (-362))))) (($ $ (-1163)) 132 (-3998 (-2084 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163)))) (-2084 (|has| (-406 |#2|) (-890 (-1163))) (|has| (-406 |#2|) (-362))))) (($ $ (-762)) 134 (-3998 (-2084 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-232))) (-2084 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348)))) (($ $) 136 (-3998 (-2084 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-232))) (-2084 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348))))) (-2026 (((-679 (-406 |#2|)) (-1246 $) (-1 (-406 |#2|) (-406 |#2|))) 153 (|has| (-406 |#2|) (-362)))) (-2036 ((|#3|) 158)) (-3377 (($) 147 (|has| (-406 |#2|) (-348)))) (-4205 (((-1246 (-406 |#2|)) $ (-1246 $)) 51) (((-679 (-406 |#2|)) (-1246 $) (-1246 $)) 50) (((-1246 (-406 |#2|)) $) 67) (((-679 (-406 |#2|)) (-1246 $)) 66)) (-3224 (((-1246 (-406 |#2|)) $) 64) (($ (-1246 (-406 |#2|))) 63) ((|#3| $) 170) (($ |#3|) 156)) (-3709 (((-3 (-1246 $) "failed") (-679 $)) 144 (|has| (-406 |#2|) (-348)))) (-3158 (((-1246 $) (-1246 $)) 202)) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ (-406 |#2|)) 38) (($ (-406 (-558))) 86 (-3998 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-1028 (-406 (-558)))))) (($ $) 91 (|has| (-406 |#2|) (-362)))) (-3698 (($ $) 143 (|has| (-406 |#2|) (-348))) (((-3 $ "failed") $) 44 (|has| (-406 |#2|) (-144)))) (-2363 ((|#3| $) 46)) (-2542 (((-762)) 28)) (-3260 (((-112)) 215)) (-3250 (((-112) |#1|) 214) (((-112) |#2|) 213)) (-2660 (((-1246 $)) 68)) (-1870 (((-112) $ $) 95 (|has| (-406 |#2|) (-362)))) (-3016 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 183)) (-3282 (((-112)) 217)) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1866 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-762)) 124 (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) 123 (|has| (-406 |#2|) (-362))) (($ $ (-635 (-1163)) (-635 (-762))) 125 (-3998 (-2084 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163)))) (-2084 (|has| (-406 |#2|) (-890 (-1163))) (|has| (-406 |#2|) (-362))))) (($ $ (-1163) (-762)) 126 (-3998 (-2084 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163)))) (-2084 (|has| (-406 |#2|) (-890 (-1163))) (|has| (-406 |#2|) (-362))))) (($ $ (-635 (-1163))) 127 (-3998 (-2084 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163)))) (-2084 (|has| (-406 |#2|) (-890 (-1163))) (|has| (-406 |#2|) (-362))))) (($ $ (-1163)) 128 (-3998 (-2084 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163)))) (-2084 (|has| (-406 |#2|) (-890 (-1163))) (|has| (-406 |#2|) (-362))))) (($ $ (-762)) 133 (-3998 (-2084 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-232))) (-2084 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348)))) (($ $) 135 (-3998 (-2084 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-232))) (-2084 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348))))) (-1683 (((-112) $ $) 6)) (-1810 (($ $ $) 120 (|has| (-406 |#2|) (-362)))) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ (-558)) 117 (|has| (-406 |#2|) (-362)))) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ (-406 |#2|)) 40) (($ (-406 |#2|) $) 39) (($ (-406 (-558)) $) 119 (|has| (-406 |#2|) (-362))) (($ $ (-406 (-558))) 118 (|has| (-406 |#2|) (-362)))))
+(((-341 |#1| |#2| |#3|) (-139) (-1204) (-1222 |t#1|) (-1222 (-406 |t#2|))) (T -341))
+((-3147 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-762)))) (-3293 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-762)))) (-3282 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-112)))) (-3270 (*1 *2 *3 *3) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-112)))) (-3260 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-112)))) (-3250 (*1 *2 *3) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-112)))) (-3250 (*1 *2 *3) (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1204)) (-4 *3 (-1222 *4)) (-4 *5 (-1222 (-406 *3))) (-5 *2 (-112)))) (-3240 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-112)))) (-3228 (*1 *2 *3) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-112)))) (-3228 (*1 *2 *3) (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1204)) (-4 *3 (-1222 *4)) (-4 *5 (-1222 (-406 *3))) (-5 *2 (-112)))) (-3214 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-112)))) (-3202 (*1 *2 *3) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-112)))) (-3202 (*1 *2 *3) (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1204)) (-4 *3 (-1222 *4)) (-4 *5 (-1222 (-406 *3))) (-5 *2 (-112)))) (-2224 (*1 *2) (-12 (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-1246 *1)) (-4 *1 (-341 *3 *4 *5)))) (-3191 (*1 *2) (-12 (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-1246 *1)) (-4 *1 (-341 *3 *4 *5)))) (-3180 (*1 *2 *1) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-112)))) (-3170 (*1 *2 *1) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-112)))) (-3158 (*1 *2 *2) (-12 (-5 *2 (-1246 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))))) (-3148 (*1 *2 *2) (-12 (-5 *2 (-1246 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))))) (-3138 (*1 *2 *2) (-12 (-5 *2 (-1246 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))))) (-3128 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-679 (-406 *4))))) (-3116 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-679 (-406 *4))))) (-3105 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-679 (-406 *4))))) (-3095 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-679 (-406 *4))))) (-3085 (*1 *2 *1) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-2 (|:| |num| (-1246 *4)) (|:| |den| *4))))) (-3997 (*1 *1 *2 *3) (-12 (-5 *2 (-1246 *3)) (-4 *3 (-1222 *4)) (-4 *4 (-1204)) (-4 *1 (-341 *4 *3 *5)) (-4 *5 (-1222 (-406 *3))))) (-3073 (*1 *2 *1) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-2 (|:| |num| (-1246 *4)) (|:| |den| *4))))) (-3061 (*1 *1 *2 *3) (-12 (-5 *2 (-1246 *3)) (-4 *3 (-1222 *4)) (-4 *4 (-1204)) (-4 *1 (-341 *4 *3 *5)) (-4 *5 (-1222 (-406 *3))))) (-3049 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-341 *4 *5 *6)) (-4 *4 (-1204)) (-4 *5 (-1222 *4)) (-4 *6 (-1222 (-406 *5))) (-5 *2 (-2 (|:| |num| (-679 *5)) (|:| |den| *5))))) (-3170 (*1 *2 *1 *3) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-112)))) (-3170 (*1 *2 *1 *3) (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1204)) (-4 *3 (-1222 *4)) (-4 *5 (-1222 (-406 *3))) (-5 *2 (-112)))) (-2829 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))))) (-2782 (*1 *1 *1) (-12 (-4 *1 (-341 *2 *3 *4)) (-4 *2 (-1204)) (-4 *3 (-1222 *2)) (-4 *4 (-1222 (-406 *3))))) (-2195 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-341 *2 *3 *4)) (-4 *2 (-1204)) (-4 *3 (-1222 *2)) (-4 *4 (-1222 (-406 *3))))) (-3037 (*1 *2) (|partial| -12 (-4 *1 (-341 *3 *2 *4)) (-4 *3 (-1204)) (-4 *4 (-1222 (-406 *2))) (-4 *2 (-1222 *3)))) (-3027 (*1 *2) (|partial| -12 (-4 *1 (-341 *3 *2 *4)) (-4 *3 (-1204)) (-4 *4 (-1222 (-406 *2))) (-4 *2 (-1222 *3)))) (-3016 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1222 *4)) (-4 *4 (-1204)) (-4 *6 (-1222 (-406 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-341 *4 *5 *6)))) (-3005 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-4 *1 (-341 *4 *5 *6)) (-4 *4 (-1204)) (-4 *5 (-1222 *4)) (-4 *6 (-1222 (-406 *5))) (-4 *4 (-362)) (-5 *2 (-635 (-942 *4))))) (-2994 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-4 *3 (-367)) (-5 *2 (-635 (-635 *3))))))
+(-13 (-715 (-406 |t#2|) |t#3|) (-10 -8 (-15 -3147 ((-762))) (-15 -3293 ((-762))) (-15 -3282 ((-112))) (-15 -3270 ((-112) |t#1| |t#1|)) (-15 -3260 ((-112))) (-15 -3250 ((-112) |t#1|)) (-15 -3250 ((-112) |t#2|)) (-15 -3240 ((-112))) (-15 -3228 ((-112) |t#1|)) (-15 -3228 ((-112) |t#2|)) (-15 -3214 ((-112))) (-15 -3202 ((-112) |t#1|)) (-15 -3202 ((-112) |t#2|)) (-15 -2224 ((-1246 $))) (-15 -3191 ((-1246 $))) (-15 -3180 ((-112) $)) (-15 -3170 ((-112) $)) (-15 -3158 ((-1246 $) (-1246 $))) (-15 -3148 ((-1246 $) (-1246 $))) (-15 -3138 ((-1246 $) (-1246 $))) (-15 -3128 ((-679 (-406 |t#2|)))) (-15 -3116 ((-679 (-406 |t#2|)))) (-15 -3105 ((-679 (-406 |t#2|)))) (-15 -3095 ((-679 (-406 |t#2|)))) (-15 -3085 ((-2 (|:| |num| (-1246 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3997 ($ (-1246 |t#2|) |t#2|)) (-15 -3073 ((-2 (|:| |num| (-1246 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3061 ($ (-1246 |t#2|) |t#2|)) (-15 -3049 ((-2 (|:| |num| (-679 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -3170 ((-112) $ |t#1|)) (-15 -3170 ((-112) $ |t#2|)) (-15 -2829 ($ $ (-1 |t#2| |t#2|))) (-15 -2782 ($ $)) (-15 -2195 (|t#1| $ |t#1| |t#1|)) (-15 -3037 ((-3 |t#2| "failed"))) (-15 -3027 ((-3 |t#2| "failed"))) (-15 -3016 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-362)) (-15 -3005 ((-635 (-942 |t#1|)) (-1163))) |%noBranch|) (IF (|has| |t#1| (-367)) (-15 -2994 ((-635 (-635 |t#1|)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-558))) -3998 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-38 #1=(-406 |#2|)) . T) ((-38 $) -3998 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-102) . T) ((-111 #0# #0#) -3998 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-144) -3998 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-144))) ((-146) |has| (-406 |#2|) (-146)) ((-608 #0#) -3998 (|has| (-406 |#2|) (-1028 (-406 (-558)))) (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-608 #1#) . T) ((-608 (-558)) . T) ((-608 $) -3998 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-605 (-853)) . T) ((-171) . T) ((-606 |#3|) . T) ((-230 #1#) |has| (-406 |#2|) (-362)) ((-232) -3998 (|has| (-406 |#2|) (-348)) (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362)))) ((-242) -3998 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-289) -3998 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-306) -3998 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-362) -3998 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-401) |has| (-406 |#2|) (-348)) ((-367) -3998 (|has| (-406 |#2|) (-367)) (|has| (-406 |#2|) (-348))) ((-348) |has| (-406 |#2|) (-348)) ((-369 #1# |#3|) . T) ((-408 #1# |#3|) . T) ((-376 #1#) . T) ((-410 #1#) . T) ((-450) -3998 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-550) -3998 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-638 #0#) -3998 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-638 #1#) . T) ((-638 $) . T) ((-631 #1#) . T) ((-631 (-558)) |has| (-406 |#2|) (-631 (-558))) ((-708 #0#) -3998 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-708 #1#) . T) ((-708 $) -3998 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-715 #1# |#3|) . T) ((-717) . T) ((-890 (-1163)) -12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163)))) ((-910) -3998 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-1028 (-406 (-558))) |has| (-406 |#2|) (-1028 (-406 (-558)))) ((-1028 #1#) . T) ((-1028 (-558)) |has| (-406 |#2|) (-1028 (-558))) ((-1045 #0#) -3998 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-1045 #1#) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1138) |has| (-406 |#2|) (-348)) ((-1204) -3998 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL)) (-1881 (($ $) NIL)) (-1857 (((-112) $) NIL)) (-4195 (((-112) $) NIL)) (-4160 (((-762)) NIL)) (-1635 (((-900 |#1|) $) NIL) (($ $ (-911)) NIL (|has| (-900 |#1|) (-367)))) (-2163 (((-1173 (-911) (-762)) (-558)) NIL (|has| (-900 |#1|) (-367)))) (-2089 (((-3 $ "failed") $ $) NIL)) (-3465 (($ $) NIL)) (-1380 (((-417 $) $) NIL)) (-3732 (((-112) $ $) NIL)) (-2276 (((-762)) NIL (|has| (-900 |#1|) (-367)))) (-1816 (($) NIL T CONST)) (-3069 (((-3 (-900 |#1|) "failed") $) NIL)) (-1863 (((-900 |#1|) $) NIL)) (-3997 (($ (-1246 (-900 |#1|))) NIL)) (-3367 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-900 |#1|) (-367)))) (-4025 (($ $ $) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-2424 (($) NIL (|has| (-900 |#1|) (-367)))) (-4004 (($ $ $) NIL)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL)) (-2672 (($) NIL (|has| (-900 |#1|) (-367)))) (-2219 (((-112) $) NIL (|has| (-900 |#1|) (-367)))) (-1895 (($ $ (-762)) NIL (-3998 (|has| (-900 |#1|) (-144)) (|has| (-900 |#1|) (-367)))) (($ $) NIL (-3998 (|has| (-900 |#1|) (-144)) (|has| (-900 |#1|) (-367))))) (-3031 (((-112) $) NIL)) (-3449 (((-911) $) NIL (|has| (-900 |#1|) (-367))) (((-824 (-911)) $) NIL (-3998 (|has| (-900 |#1|) (-144)) (|has| (-900 |#1|) (-367))))) (-2035 (((-112) $) NIL)) (-2670 (($) NIL (|has| (-900 |#1|) (-367)))) (-2649 (((-112) $) NIL (|has| (-900 |#1|) (-367)))) (-2615 (((-900 |#1|) $) NIL) (($ $ (-911)) NIL (|has| (-900 |#1|) (-367)))) (-2457 (((-3 $ "failed") $) NIL (|has| (-900 |#1|) (-367)))) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2681 (((-1159 (-900 |#1|)) $) NIL) (((-1159 $) $ (-911)) NIL (|has| (-900 |#1|) (-367)))) (-2637 (((-911) $) NIL (|has| (-900 |#1|) (-367)))) (-3919 (((-1159 (-900 |#1|)) $) NIL (|has| (-900 |#1|) (-367)))) (-3907 (((-1159 (-900 |#1|)) $) NIL (|has| (-900 |#1|) (-367))) (((-3 (-1159 (-900 |#1|)) "failed") $ $) NIL (|has| (-900 |#1|) (-367)))) (-3928 (($ $ (-1159 (-900 |#1|))) NIL (|has| (-900 |#1|) (-367)))) (-2665 (($ $ $) NIL) (($ (-635 $)) NIL)) (-4310 (((-1145) $) NIL)) (-2418 (($ $) NIL)) (-1796 (($) NIL (|has| (-900 |#1|) (-367)) CONST)) (-2851 (($ (-911)) NIL (|has| (-900 |#1|) (-367)))) (-4185 (((-112) $) NIL)) (-2975 (((-1107) $) NIL)) (-3305 (((-948 (-1107))) NIL)) (-4098 (($) NIL (|has| (-900 |#1|) (-367)))) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-2699 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2174 (((-635 (-2 (|:| -2522 (-558)) (|:| -1951 (-558))))) NIL (|has| (-900 |#1|) (-367)))) (-2522 (((-417 $) $) NIL)) (-4172 (((-824 (-911))) NIL) (((-911)) NIL)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3983 (((-3 $ "failed") $ $) NIL)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3722 (((-762) $) NIL)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL)) (-1905 (((-762) $) NIL (|has| (-900 |#1|) (-367))) (((-3 (-762) "failed") $ $) NIL (-3998 (|has| (-900 |#1|) (-144)) (|has| (-900 |#1|) (-367))))) (-2148 (((-133)) NIL)) (-2829 (($ $) NIL (|has| (-900 |#1|) (-367))) (($ $ (-762)) NIL (|has| (-900 |#1|) (-367)))) (-4323 (((-824 (-911)) $) NIL) (((-911) $) NIL)) (-2036 (((-1159 (-900 |#1|))) NIL)) (-3377 (($) NIL (|has| (-900 |#1|) (-367)))) (-2791 (($) NIL (|has| (-900 |#1|) (-367)))) (-4205 (((-1246 (-900 |#1|)) $) NIL) (((-679 (-900 |#1|)) (-1246 $)) NIL)) (-3709 (((-3 (-1246 $) "failed") (-679 $)) NIL (|has| (-900 |#1|) (-367)))) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL) (($ (-406 (-558))) NIL) (($ (-900 |#1|)) NIL)) (-3698 (($ $) NIL (|has| (-900 |#1|) (-367))) (((-3 $ "failed") $) NIL (-3998 (|has| (-900 |#1|) (-144)) (|has| (-900 |#1|) (-367))))) (-2542 (((-762)) NIL)) (-2660 (((-1246 $)) NIL) (((-1246 $) (-911)) NIL)) (-1870 (((-112) $ $) NIL)) (-4206 (((-112) $) NIL)) (-2131 (($) NIL T CONST)) (-2142 (($) NIL T CONST)) (-4148 (($ $) NIL (|has| (-900 |#1|) (-367))) (($ $ (-762)) NIL (|has| (-900 |#1|) (-367)))) (-1866 (($ $) NIL (|has| (-900 |#1|) (-367))) (($ $ (-762)) NIL (|has| (-900 |#1|) (-367)))) (-1683 (((-112) $ $) NIL)) (-1810 (($ $ $) NIL) (($ $ (-900 |#1|)) NIL)) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL) (($ $ (-900 |#1|)) NIL) (($ (-900 |#1|) $) NIL)))
+(((-342 |#1| |#2|) (-13 (-328 (-900 |#1|)) (-10 -7 (-15 -3305 ((-948 (-1107)))))) (-911) (-911)) (T -342))
+((-3305 (*1 *2) (-12 (-5 *2 (-948 (-1107))) (-5 *1 (-342 *3 *4)) (-14 *3 (-911)) (-14 *4 (-911)))))
+(-13 (-328 (-900 |#1|)) (-10 -7 (-15 -3305 ((-948 (-1107))))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) 44)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL)) (-1881 (($ $) NIL)) (-1857 (((-112) $) NIL)) (-4195 (((-112) $) NIL)) (-4160 (((-762)) NIL)) (-1635 ((|#1| $) NIL) (($ $ (-911)) NIL (|has| |#1| (-367)))) (-2163 (((-1173 (-911) (-762)) (-558)) 41 (|has| |#1| (-367)))) (-2089 (((-3 $ "failed") $ $) NIL)) (-3465 (($ $) NIL)) (-1380 (((-417 $) $) NIL)) (-3732 (((-112) $ $) NIL)) (-2276 (((-762)) NIL (|has| |#1| (-367)))) (-1816 (($) NIL T CONST)) (-3069 (((-3 |#1| "failed") $) 114)) (-1863 ((|#1| $) 85)) (-3997 (($ (-1246 |#1|)) 103)) (-3367 (((-3 "prime" "polynomial" "normal" "cyclic")) 94 (|has| |#1| (-367)))) (-4025 (($ $ $) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-2424 (($) 97 (|has| |#1| (-367)))) (-4004 (($ $ $) NIL)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL)) (-2672 (($) 128 (|has| |#1| (-367)))) (-2219 (((-112) $) 48 (|has| |#1| (-367)))) (-1895 (($ $ (-762)) NIL (-3998 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-3998 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3031 (((-112) $) NIL)) (-3449 (((-911) $) 45 (|has| |#1| (-367))) (((-824 (-911)) $) NIL (-3998 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2035 (((-112) $) NIL)) (-2670 (($) 130 (|has| |#1| (-367)))) (-2649 (((-112) $) NIL (|has| |#1| (-367)))) (-2615 ((|#1| $) NIL) (($ $ (-911)) NIL (|has| |#1| (-367)))) (-2457 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2681 (((-1159 |#1|) $) 89) (((-1159 $) $ (-911)) NIL (|has| |#1| (-367)))) (-2637 (((-911) $) 138 (|has| |#1| (-367)))) (-3919 (((-1159 |#1|) $) NIL (|has| |#1| (-367)))) (-3907 (((-1159 |#1|) $) NIL (|has| |#1| (-367))) (((-3 (-1159 |#1|) "failed") $ $) NIL (|has| |#1| (-367)))) (-3928 (($ $ (-1159 |#1|)) NIL (|has| |#1| (-367)))) (-2665 (($ $ $) NIL) (($ (-635 $)) NIL)) (-4310 (((-1145) $) NIL)) (-2418 (($ $) 145)) (-1796 (($) NIL (|has| |#1| (-367)) CONST)) (-2851 (($ (-911)) 71 (|has| |#1| (-367)))) (-4185 (((-112) $) 117)) (-2975 (((-1107) $) NIL)) (-3305 (((-948 (-1107))) 42)) (-4098 (($) 126 (|has| |#1| (-367)))) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-2699 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2174 (((-635 (-2 (|:| -2522 (-558)) (|:| -1951 (-558))))) 92 (|has| |#1| (-367)))) (-2522 (((-417 $) $) NIL)) (-4172 (((-824 (-911))) 67) (((-911)) 68)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3983 (((-3 $ "failed") $ $) NIL)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3722 (((-762) $) NIL)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL)) (-1905 (((-762) $) 129 (|has| |#1| (-367))) (((-3 (-762) "failed") $ $) 124 (-3998 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2148 (((-133)) NIL)) (-2829 (($ $) NIL (|has| |#1| (-367))) (($ $ (-762)) NIL (|has| |#1| (-367)))) (-4323 (((-824 (-911)) $) NIL) (((-911) $) NIL)) (-2036 (((-1159 |#1|)) 95)) (-3377 (($) 127 (|has| |#1| (-367)))) (-2791 (($) 135 (|has| |#1| (-367)))) (-4205 (((-1246 |#1|) $) 59) (((-679 |#1|) (-1246 $)) NIL)) (-3709 (((-3 (-1246 $) "failed") (-679 $)) NIL (|has| |#1| (-367)))) (-3220 (((-853) $) 141) (($ (-558)) NIL) (($ $) NIL) (($ (-406 (-558))) NIL) (($ |#1|) 75)) (-3698 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-3998 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2542 (((-762)) 137)) (-2660 (((-1246 $)) 116) (((-1246 $) (-911)) 73)) (-1870 (((-112) $ $) NIL)) (-4206 (((-112) $) NIL)) (-2131 (($) 49 T CONST)) (-2142 (($) 46 T CONST)) (-4148 (($ $) 81 (|has| |#1| (-367))) (($ $ (-762)) NIL (|has| |#1| (-367)))) (-1866 (($ $) NIL (|has| |#1| (-367))) (($ $ (-762)) NIL (|has| |#1| (-367)))) (-1683 (((-112) $ $) 47)) (-1810 (($ $ $) 143) (($ $ |#1|) 144)) (-1798 (($ $) 125) (($ $ $) NIL)) (-1784 (($ $ $) 61)) (** (($ $ (-911)) 147) (($ $ (-762)) 148) (($ $ (-558)) 146)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 77) (($ $ $) 76) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 142)))
+(((-343 |#1| |#2|) (-13 (-328 |#1|) (-10 -7 (-15 -3305 ((-948 (-1107)))))) (-348) (-1159 |#1|)) (T -343))
+((-3305 (*1 *2) (-12 (-5 *2 (-948 (-1107))) (-5 *1 (-343 *3 *4)) (-4 *3 (-348)) (-14 *4 (-1159 *3)))))
+(-13 (-328 |#1|) (-10 -7 (-15 -3305 ((-948 (-1107))))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL)) (-1881 (($ $) NIL)) (-1857 (((-112) $) NIL)) (-4195 (((-112) $) NIL)) (-4160 (((-762)) NIL)) (-1635 ((|#1| $) NIL) (($ $ (-911)) NIL (|has| |#1| (-367)))) (-2163 (((-1173 (-911) (-762)) (-558)) NIL (|has| |#1| (-367)))) (-2089 (((-3 $ "failed") $ $) NIL)) (-3465 (($ $) NIL)) (-1380 (((-417 $) $) NIL)) (-3732 (((-112) $ $) NIL)) (-2276 (((-762)) NIL (|has| |#1| (-367)))) (-1816 (($) NIL T CONST)) (-3069 (((-3 |#1| "failed") $) NIL)) (-1863 ((|#1| $) NIL)) (-3997 (($ (-1246 |#1|)) NIL)) (-3367 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-367)))) (-4025 (($ $ $) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-2424 (($) NIL (|has| |#1| (-367)))) (-4004 (($ $ $) NIL)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL)) (-2672 (($) NIL (|has| |#1| (-367)))) (-2219 (((-112) $) NIL (|has| |#1| (-367)))) (-1895 (($ $ (-762)) NIL (-3998 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-3998 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3031 (((-112) $) NIL)) (-3449 (((-911) $) NIL (|has| |#1| (-367))) (((-824 (-911)) $) NIL (-3998 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2035 (((-112) $) NIL)) (-2670 (($) NIL (|has| |#1| (-367)))) (-2649 (((-112) $) NIL (|has| |#1| (-367)))) (-2615 ((|#1| $) NIL) (($ $ (-911)) NIL (|has| |#1| (-367)))) (-2457 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2681 (((-1159 |#1|) $) NIL) (((-1159 $) $ (-911)) NIL (|has| |#1| (-367)))) (-2637 (((-911) $) NIL (|has| |#1| (-367)))) (-3919 (((-1159 |#1|) $) NIL (|has| |#1| (-367)))) (-3907 (((-1159 |#1|) $) NIL (|has| |#1| (-367))) (((-3 (-1159 |#1|) "failed") $ $) NIL (|has| |#1| (-367)))) (-3928 (($ $ (-1159 |#1|)) NIL (|has| |#1| (-367)))) (-2665 (($ $ $) NIL) (($ (-635 $)) NIL)) (-4310 (((-1145) $) NIL)) (-2418 (($ $) NIL)) (-1796 (($) NIL (|has| |#1| (-367)) CONST)) (-2851 (($ (-911)) NIL (|has| |#1| (-367)))) (-4185 (((-112) $) NIL)) (-2975 (((-1107) $) NIL)) (-3305 (((-948 (-1107))) NIL)) (-4098 (($) NIL (|has| |#1| (-367)))) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-2699 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2174 (((-635 (-2 (|:| -2522 (-558)) (|:| -1951 (-558))))) NIL (|has| |#1| (-367)))) (-2522 (((-417 $) $) NIL)) (-4172 (((-824 (-911))) NIL) (((-911)) NIL)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3983 (((-3 $ "failed") $ $) NIL)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3722 (((-762) $) NIL)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL)) (-1905 (((-762) $) NIL (|has| |#1| (-367))) (((-3 (-762) "failed") $ $) NIL (-3998 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2148 (((-133)) NIL)) (-2829 (($ $) NIL (|has| |#1| (-367))) (($ $ (-762)) NIL (|has| |#1| (-367)))) (-4323 (((-824 (-911)) $) NIL) (((-911) $) NIL)) (-2036 (((-1159 |#1|)) NIL)) (-3377 (($) NIL (|has| |#1| (-367)))) (-2791 (($) NIL (|has| |#1| (-367)))) (-4205 (((-1246 |#1|) $) NIL) (((-679 |#1|) (-1246 $)) NIL)) (-3709 (((-3 (-1246 $) "failed") (-679 $)) NIL (|has| |#1| (-367)))) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL) (($ (-406 (-558))) NIL) (($ |#1|) NIL)) (-3698 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-3998 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2542 (((-762)) NIL)) (-2660 (((-1246 $)) NIL) (((-1246 $) (-911)) NIL)) (-1870 (((-112) $ $) NIL)) (-4206 (((-112) $) NIL)) (-2131 (($) NIL T CONST)) (-2142 (($) NIL T CONST)) (-4148 (($ $) NIL (|has| |#1| (-367))) (($ $ (-762)) NIL (|has| |#1| (-367)))) (-1866 (($ $) NIL (|has| |#1| (-367))) (($ $ (-762)) NIL (|has| |#1| (-367)))) (-1683 (((-112) $ $) NIL)) (-1810 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-344 |#1| |#2|) (-13 (-328 |#1|) (-10 -7 (-15 -3305 ((-948 (-1107)))))) (-348) (-911)) (T -344))
+((-3305 (*1 *2) (-12 (-5 *2 (-948 (-1107))) (-5 *1 (-344 *3 *4)) (-4 *3 (-348)) (-14 *4 (-911)))))
+(-13 (-328 |#1|) (-10 -7 (-15 -3305 ((-948 (-1107))))))
+((-2186 (((-762) (-1246 (-635 (-2 (|:| -2925 |#1|) (|:| -2851 (-1107)))))) 42)) (-3316 (((-948 (-1107)) (-1159 |#1|)) 85)) (-3326 (((-1246 (-635 (-2 (|:| -2925 |#1|) (|:| -2851 (-1107))))) (-1159 |#1|)) 78)) (-3338 (((-679 |#1|) (-1246 (-635 (-2 (|:| -2925 |#1|) (|:| -2851 (-1107)))))) 86)) (-3348 (((-3 (-1246 (-635 (-2 (|:| -2925 |#1|) (|:| -2851 (-1107))))) "failed") (-911)) 13)) (-3358 (((-3 (-1159 |#1|) (-1246 (-635 (-2 (|:| -2925 |#1|) (|:| -2851 (-1107)))))) (-911)) 18)))
+(((-345 |#1|) (-10 -7 (-15 -3316 ((-948 (-1107)) (-1159 |#1|))) (-15 -3326 ((-1246 (-635 (-2 (|:| -2925 |#1|) (|:| -2851 (-1107))))) (-1159 |#1|))) (-15 -3338 ((-679 |#1|) (-1246 (-635 (-2 (|:| -2925 |#1|) (|:| -2851 (-1107))))))) (-15 -2186 ((-762) (-1246 (-635 (-2 (|:| -2925 |#1|) (|:| -2851 (-1107))))))) (-15 -3348 ((-3 (-1246 (-635 (-2 (|:| -2925 |#1|) (|:| -2851 (-1107))))) "failed") (-911))) (-15 -3358 ((-3 (-1159 |#1|) (-1246 (-635 (-2 (|:| -2925 |#1|) (|:| -2851 (-1107)))))) (-911)))) (-348)) (T -345))
+((-3358 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-3 (-1159 *4) (-1246 (-635 (-2 (|:| -2925 *4) (|:| -2851 (-1107))))))) (-5 *1 (-345 *4)) (-4 *4 (-348)))) (-3348 (*1 *2 *3) (|partial| -12 (-5 *3 (-911)) (-5 *2 (-1246 (-635 (-2 (|:| -2925 *4) (|:| -2851 (-1107)))))) (-5 *1 (-345 *4)) (-4 *4 (-348)))) (-2186 (*1 *2 *3) (-12 (-5 *3 (-1246 (-635 (-2 (|:| -2925 *4) (|:| -2851 (-1107)))))) (-4 *4 (-348)) (-5 *2 (-762)) (-5 *1 (-345 *4)))) (-3338 (*1 *2 *3) (-12 (-5 *3 (-1246 (-635 (-2 (|:| -2925 *4) (|:| -2851 (-1107)))))) (-4 *4 (-348)) (-5 *2 (-679 *4)) (-5 *1 (-345 *4)))) (-3326 (*1 *2 *3) (-12 (-5 *3 (-1159 *4)) (-4 *4 (-348)) (-5 *2 (-1246 (-635 (-2 (|:| -2925 *4) (|:| -2851 (-1107)))))) (-5 *1 (-345 *4)))) (-3316 (*1 *2 *3) (-12 (-5 *3 (-1159 *4)) (-4 *4 (-348)) (-5 *2 (-948 (-1107))) (-5 *1 (-345 *4)))))
+(-10 -7 (-15 -3316 ((-948 (-1107)) (-1159 |#1|))) (-15 -3326 ((-1246 (-635 (-2 (|:| -2925 |#1|) (|:| -2851 (-1107))))) (-1159 |#1|))) (-15 -3338 ((-679 |#1|) (-1246 (-635 (-2 (|:| -2925 |#1|) (|:| -2851 (-1107))))))) (-15 -2186 ((-762) (-1246 (-635 (-2 (|:| -2925 |#1|) (|:| -2851 (-1107))))))) (-15 -3348 ((-3 (-1246 (-635 (-2 (|:| -2925 |#1|) (|:| -2851 (-1107))))) "failed") (-911))) (-15 -3358 ((-3 (-1159 |#1|) (-1246 (-635 (-2 (|:| -2925 |#1|) (|:| -2851 (-1107)))))) (-911))))
+((-3220 ((|#1| |#3|) 86) ((|#3| |#1|) 69)))
+(((-346 |#1| |#2| |#3|) (-10 -7 (-15 -3220 (|#3| |#1|)) (-15 -3220 (|#1| |#3|))) (-328 |#2|) (-348) (-328 |#2|)) (T -346))
+((-3220 (*1 *2 *3) (-12 (-4 *4 (-348)) (-4 *2 (-328 *4)) (-5 *1 (-346 *2 *4 *3)) (-4 *3 (-328 *4)))) (-3220 (*1 *2 *3) (-12 (-4 *4 (-348)) (-4 *2 (-328 *4)) (-5 *1 (-346 *3 *4 *2)) (-4 *3 (-328 *4)))))
+(-10 -7 (-15 -3220 (|#3| |#1|)) (-15 -3220 (|#1| |#3|)))
+((-2219 (((-112) $) 50)) (-3449 (((-824 (-911)) $) 21) (((-911) $) 51)) (-2457 (((-3 $ "failed") $) 16)) (-1796 (($) 9)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) 92)) (-1905 (((-3 (-762) "failed") $ $) 70) (((-762) $) 59)) (-2829 (($ $ (-762)) NIL) (($ $) 8)) (-3377 (($) 43)) (-3709 (((-3 (-1246 $) "failed") (-679 $)) 34)) (-3698 (((-3 $ "failed") $) 38) (($ $) 37)))
+(((-347 |#1|) (-10 -8 (-15 -3449 ((-911) |#1|)) (-15 -1905 ((-762) |#1|)) (-15 -2219 ((-112) |#1|)) (-15 -3377 (|#1|)) (-15 -3709 ((-3 (-1246 |#1|) "failed") (-679 |#1|))) (-15 -3698 (|#1| |#1|)) (-15 -2829 (|#1| |#1|)) (-15 -2829 (|#1| |#1| (-762))) (-15 -1796 (|#1|)) (-15 -2457 ((-3 |#1| "failed") |#1|)) (-15 -1905 ((-3 (-762) "failed") |#1| |#1|)) (-15 -3449 ((-824 (-911)) |#1|)) (-15 -3698 ((-3 |#1| "failed") |#1|)) (-15 -3757 ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|)))) (-348)) (T -347))
+NIL
+(-10 -8 (-15 -3449 ((-911) |#1|)) (-15 -1905 ((-762) |#1|)) (-15 -2219 ((-112) |#1|)) (-15 -3377 (|#1|)) (-15 -3709 ((-3 (-1246 |#1|) "failed") (-679 |#1|))) (-15 -3698 (|#1| |#1|)) (-15 -2829 (|#1| |#1|)) (-15 -2829 (|#1| |#1| (-762))) (-15 -1796 (|#1|)) (-15 -2457 ((-3 |#1| "failed") |#1|)) (-15 -1905 ((-3 (-762) "failed") |#1| |#1|)) (-15 -3449 ((-824 (-911)) |#1|)) (-15 -3698 ((-3 |#1| "failed") |#1|)) (-15 -3757 ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 42)) (-1881 (($ $) 41)) (-1857 (((-112) $) 39)) (-2163 (((-1173 (-911) (-762)) (-558)) 94)) (-2089 (((-3 $ "failed") $ $) 19)) (-3465 (($ $) 74)) (-1380 (((-417 $) $) 73)) (-3732 (((-112) $ $) 60)) (-2276 (((-762)) 104)) (-1816 (($) 17 T CONST)) (-3367 (((-3 "prime" "polynomial" "normal" "cyclic")) 88)) (-4025 (($ $ $) 56)) (-2588 (((-3 $ "failed") $) 33)) (-2424 (($) 107)) (-4004 (($ $ $) 57)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) 52)) (-2672 (($) 92)) (-2219 (((-112) $) 91)) (-1895 (($ $) 80) (($ $ (-762)) 79)) (-3031 (((-112) $) 72)) (-3449 (((-824 (-911)) $) 82) (((-911) $) 89)) (-2035 (((-112) $) 31)) (-2457 (((-3 $ "failed") $) 103)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) 53)) (-2637 (((-911) $) 106)) (-2665 (($ $ $) 47) (($ (-635 $)) 46)) (-4310 (((-1145) $) 9)) (-2418 (($ $) 71)) (-1796 (($) 102 T CONST)) (-2851 (($ (-911)) 105)) (-2975 (((-1107) $) 10)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) 45)) (-2699 (($ $ $) 49) (($ (-635 $)) 48)) (-2174 (((-635 (-2 (|:| -2522 (-558)) (|:| -1951 (-558))))) 95)) (-2522 (((-417 $) $) 75)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3983 (((-3 $ "failed") $ $) 43)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-3722 (((-762) $) 59)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 58)) (-1905 (((-3 (-762) "failed") $ $) 81) (((-762) $) 90)) (-2829 (($ $ (-762)) 100) (($ $) 98)) (-3377 (($) 93)) (-3709 (((-3 (-1246 $) "failed") (-679 $)) 96)) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ $) 44) (($ (-406 (-558))) 67)) (-3698 (((-3 $ "failed") $) 83) (($ $) 97)) (-2542 (((-762)) 28)) (-1870 (((-112) $ $) 40)) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1866 (($ $ (-762)) 101) (($ $) 99)) (-1683 (((-112) $ $) 6)) (-1810 (($ $ $) 66)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ (-558)) 70)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ (-406 (-558))) 69) (($ (-406 (-558)) $) 68)))
+(((-348) (-139)) (T -348))
+((-3698 (*1 *1 *1) (-4 *1 (-348))) (-3709 (*1 *2 *3) (|partial| -12 (-5 *3 (-679 *1)) (-4 *1 (-348)) (-5 *2 (-1246 *1)))) (-2174 (*1 *2) (-12 (-4 *1 (-348)) (-5 *2 (-635 (-2 (|:| -2522 (-558)) (|:| -1951 (-558))))))) (-2163 (*1 *2 *3) (-12 (-4 *1 (-348)) (-5 *3 (-558)) (-5 *2 (-1173 (-911) (-762))))) (-3377 (*1 *1) (-4 *1 (-348))) (-2672 (*1 *1) (-4 *1 (-348))) (-2219 (*1 *2 *1) (-12 (-4 *1 (-348)) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-348)) (-5 *2 (-762)))) (-3449 (*1 *2 *1) (-12 (-4 *1 (-348)) (-5 *2 (-911)))) (-3367 (*1 *2) (-12 (-4 *1 (-348)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(-13 (-401) (-367) (-1138) (-232) (-10 -8 (-15 -3698 ($ $)) (-15 -3709 ((-3 (-1246 $) "failed") (-679 $))) (-15 -2174 ((-635 (-2 (|:| -2522 (-558)) (|:| -1951 (-558)))))) (-15 -2163 ((-1173 (-911) (-762)) (-558))) (-15 -3377 ($)) (-15 -2672 ($)) (-15 -2219 ((-112) $)) (-15 -1905 ((-762) $)) (-15 -3449 ((-911) $)) (-15 -3367 ((-3 "prime" "polynomial" "normal" "cyclic")))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-558))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-144) . T) ((-608 #0#) . T) ((-608 (-558)) . T) ((-608 $) . T) ((-605 (-853)) . T) ((-171) . T) ((-232) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-401) . T) ((-367) . T) ((-450) . T) ((-550) . T) ((-638 #0#) . T) ((-638 $) . T) ((-708 #0#) . T) ((-708 $) . T) ((-717) . T) ((-910) . T) ((-1045 #0#) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1138) . T) ((-1204) . T))
+((-2233 (((-2 (|:| -2660 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|))) |#1|) 53)) (-2224 (((-2 (|:| -2660 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|)))) 51)))
+(((-349 |#1| |#2| |#3|) (-10 -7 (-15 -2224 ((-2 (|:| -2660 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|))))) (-15 -2233 ((-2 (|:| -2660 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|))) |#1|))) (-13 (-306) (-10 -8 (-15 -1380 ((-417 $) $)))) (-1222 |#1|) (-408 |#1| |#2|)) (T -349))
+((-2233 (*1 *2 *3) (-12 (-4 *3 (-13 (-306) (-10 -8 (-15 -1380 ((-417 $) $))))) (-4 *4 (-1222 *3)) (-5 *2 (-2 (|:| -2660 (-679 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-679 *3)))) (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-408 *3 *4)))) (-2224 (*1 *2) (-12 (-4 *3 (-13 (-306) (-10 -8 (-15 -1380 ((-417 $) $))))) (-4 *4 (-1222 *3)) (-5 *2 (-2 (|:| -2660 (-679 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-679 *3)))) (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-408 *3 *4)))))
+(-10 -7 (-15 -2224 ((-2 (|:| -2660 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|))))) (-15 -2233 ((-2 (|:| -2660 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|))) |#1|)))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL)) (-1881 (($ $) NIL)) (-1857 (((-112) $) NIL)) (-4195 (((-112) $) NIL)) (-4160 (((-762)) NIL)) (-1635 (((-900 |#1|) $) NIL) (($ $ (-911)) NIL (|has| (-900 |#1|) (-367)))) (-2163 (((-1173 (-911) (-762)) (-558)) NIL (|has| (-900 |#1|) (-367)))) (-2089 (((-3 $ "failed") $ $) NIL)) (-3465 (($ $) NIL)) (-1380 (((-417 $) $) NIL)) (-2186 (((-762)) NIL)) (-3732 (((-112) $ $) NIL)) (-2276 (((-762)) NIL (|has| (-900 |#1|) (-367)))) (-1816 (($) NIL T CONST)) (-3069 (((-3 (-900 |#1|) "failed") $) NIL)) (-1863 (((-900 |#1|) $) NIL)) (-3997 (($ (-1246 (-900 |#1|))) NIL)) (-3367 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-900 |#1|) (-367)))) (-4025 (($ $ $) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-2424 (($) NIL (|has| (-900 |#1|) (-367)))) (-4004 (($ $ $) NIL)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL)) (-2672 (($) NIL (|has| (-900 |#1|) (-367)))) (-2219 (((-112) $) NIL (|has| (-900 |#1|) (-367)))) (-1895 (($ $ (-762)) NIL (-3998 (|has| (-900 |#1|) (-144)) (|has| (-900 |#1|) (-367)))) (($ $) NIL (-3998 (|has| (-900 |#1|) (-144)) (|has| (-900 |#1|) (-367))))) (-3031 (((-112) $) NIL)) (-3449 (((-911) $) NIL (|has| (-900 |#1|) (-367))) (((-824 (-911)) $) NIL (-3998 (|has| (-900 |#1|) (-144)) (|has| (-900 |#1|) (-367))))) (-2035 (((-112) $) NIL)) (-2670 (($) NIL (|has| (-900 |#1|) (-367)))) (-2649 (((-112) $) NIL (|has| (-900 |#1|) (-367)))) (-2615 (((-900 |#1|) $) NIL) (($ $ (-911)) NIL (|has| (-900 |#1|) (-367)))) (-2457 (((-3 $ "failed") $) NIL (|has| (-900 |#1|) (-367)))) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2681 (((-1159 (-900 |#1|)) $) NIL) (((-1159 $) $ (-911)) NIL (|has| (-900 |#1|) (-367)))) (-2637 (((-911) $) NIL (|has| (-900 |#1|) (-367)))) (-3919 (((-1159 (-900 |#1|)) $) NIL (|has| (-900 |#1|) (-367)))) (-3907 (((-1159 (-900 |#1|)) $) NIL (|has| (-900 |#1|) (-367))) (((-3 (-1159 (-900 |#1|)) "failed") $ $) NIL (|has| (-900 |#1|) (-367)))) (-3928 (($ $ (-1159 (-900 |#1|))) NIL (|has| (-900 |#1|) (-367)))) (-2665 (($ $ $) NIL) (($ (-635 $)) NIL)) (-4310 (((-1145) $) NIL)) (-2418 (($ $) NIL)) (-1796 (($) NIL (|has| (-900 |#1|) (-367)) CONST)) (-2851 (($ (-911)) NIL (|has| (-900 |#1|) (-367)))) (-4185 (((-112) $) NIL)) (-2975 (((-1107) $) NIL)) (-2208 (((-1246 (-635 (-2 (|:| -2925 (-900 |#1|)) (|:| -2851 (-1107)))))) NIL)) (-2196 (((-679 (-900 |#1|))) NIL)) (-4098 (($) NIL (|has| (-900 |#1|) (-367)))) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-2699 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2174 (((-635 (-2 (|:| -2522 (-558)) (|:| -1951 (-558))))) NIL (|has| (-900 |#1|) (-367)))) (-2522 (((-417 $) $) NIL)) (-4172 (((-824 (-911))) NIL) (((-911)) NIL)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3983 (((-3 $ "failed") $ $) NIL)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3722 (((-762) $) NIL)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL)) (-1905 (((-762) $) NIL (|has| (-900 |#1|) (-367))) (((-3 (-762) "failed") $ $) NIL (-3998 (|has| (-900 |#1|) (-144)) (|has| (-900 |#1|) (-367))))) (-2148 (((-133)) NIL)) (-2829 (($ $) NIL (|has| (-900 |#1|) (-367))) (($ $ (-762)) NIL (|has| (-900 |#1|) (-367)))) (-4323 (((-824 (-911)) $) NIL) (((-911) $) NIL)) (-2036 (((-1159 (-900 |#1|))) NIL)) (-3377 (($) NIL (|has| (-900 |#1|) (-367)))) (-2791 (($) NIL (|has| (-900 |#1|) (-367)))) (-4205 (((-1246 (-900 |#1|)) $) NIL) (((-679 (-900 |#1|)) (-1246 $)) NIL)) (-3709 (((-3 (-1246 $) "failed") (-679 $)) NIL (|has| (-900 |#1|) (-367)))) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL) (($ (-406 (-558))) NIL) (($ (-900 |#1|)) NIL)) (-3698 (($ $) NIL (|has| (-900 |#1|) (-367))) (((-3 $ "failed") $) NIL (-3998 (|has| (-900 |#1|) (-144)) (|has| (-900 |#1|) (-367))))) (-2542 (((-762)) NIL)) (-2660 (((-1246 $)) NIL) (((-1246 $) (-911)) NIL)) (-1870 (((-112) $ $) NIL)) (-4206 (((-112) $) NIL)) (-2131 (($) NIL T CONST)) (-2142 (($) NIL T CONST)) (-4148 (($ $) NIL (|has| (-900 |#1|) (-367))) (($ $ (-762)) NIL (|has| (-900 |#1|) (-367)))) (-1866 (($ $) NIL (|has| (-900 |#1|) (-367))) (($ $ (-762)) NIL (|has| (-900 |#1|) (-367)))) (-1683 (((-112) $ $) NIL)) (-1810 (($ $ $) NIL) (($ $ (-900 |#1|)) NIL)) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL) (($ $ (-900 |#1|)) NIL) (($ (-900 |#1|) $) NIL)))
+(((-350 |#1| |#2|) (-13 (-328 (-900 |#1|)) (-10 -7 (-15 -2208 ((-1246 (-635 (-2 (|:| -2925 (-900 |#1|)) (|:| -2851 (-1107))))))) (-15 -2196 ((-679 (-900 |#1|)))) (-15 -2186 ((-762))))) (-911) (-911)) (T -350))
+((-2208 (*1 *2) (-12 (-5 *2 (-1246 (-635 (-2 (|:| -2925 (-900 *3)) (|:| -2851 (-1107)))))) (-5 *1 (-350 *3 *4)) (-14 *3 (-911)) (-14 *4 (-911)))) (-2196 (*1 *2) (-12 (-5 *2 (-679 (-900 *3))) (-5 *1 (-350 *3 *4)) (-14 *3 (-911)) (-14 *4 (-911)))) (-2186 (*1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-350 *3 *4)) (-14 *3 (-911)) (-14 *4 (-911)))))
+(-13 (-328 (-900 |#1|)) (-10 -7 (-15 -2208 ((-1246 (-635 (-2 (|:| -2925 (-900 |#1|)) (|:| -2851 (-1107))))))) (-15 -2196 ((-679 (-900 |#1|)))) (-15 -2186 ((-762)))))
+((-3207 (((-112) $ $) 61)) (-2067 (((-112) $) 74)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL)) (-1881 (($ $) NIL)) (-1857 (((-112) $) NIL)) (-4195 (((-112) $) NIL)) (-4160 (((-762)) NIL)) (-1635 ((|#1| $) 92) (($ $ (-911)) 90 (|has| |#1| (-367)))) (-2163 (((-1173 (-911) (-762)) (-558)) 148 (|has| |#1| (-367)))) (-2089 (((-3 $ "failed") $ $) NIL)) (-3465 (($ $) NIL)) (-1380 (((-417 $) $) NIL)) (-2186 (((-762)) 89)) (-3732 (((-112) $ $) NIL)) (-2276 (((-762)) 162 (|has| |#1| (-367)))) (-1816 (($) NIL T CONST)) (-3069 (((-3 |#1| "failed") $) 112)) (-1863 ((|#1| $) 91)) (-3997 (($ (-1246 |#1|)) 58)) (-3367 (((-3 "prime" "polynomial" "normal" "cyclic")) 188 (|has| |#1| (-367)))) (-4025 (($ $ $) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-2424 (($) 158 (|has| |#1| (-367)))) (-4004 (($ $ $) NIL)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL)) (-2672 (($) 149 (|has| |#1| (-367)))) (-2219 (((-112) $) NIL (|has| |#1| (-367)))) (-1895 (($ $ (-762)) NIL (-3998 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-3998 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3031 (((-112) $) NIL)) (-3449 (((-911) $) NIL (|has| |#1| (-367))) (((-824 (-911)) $) NIL (-3998 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2035 (((-112) $) NIL)) (-2670 (($) 98 (|has| |#1| (-367)))) (-2649 (((-112) $) 175 (|has| |#1| (-367)))) (-2615 ((|#1| $) 94) (($ $ (-911)) 93 (|has| |#1| (-367)))) (-2457 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2681 (((-1159 |#1|) $) 189) (((-1159 $) $ (-911)) NIL (|has| |#1| (-367)))) (-2637 (((-911) $) 134 (|has| |#1| (-367)))) (-3919 (((-1159 |#1|) $) 73 (|has| |#1| (-367)))) (-3907 (((-1159 |#1|) $) 70 (|has| |#1| (-367))) (((-3 (-1159 |#1|) "failed") $ $) 82 (|has| |#1| (-367)))) (-3928 (($ $ (-1159 |#1|)) 69 (|has| |#1| (-367)))) (-2665 (($ $ $) NIL) (($ (-635 $)) NIL)) (-4310 (((-1145) $) NIL)) (-2418 (($ $) 192)) (-1796 (($) NIL (|has| |#1| (-367)) CONST)) (-2851 (($ (-911)) 137 (|has| |#1| (-367)))) (-4185 (((-112) $) 108)) (-2975 (((-1107) $) NIL)) (-2208 (((-1246 (-635 (-2 (|:| -2925 |#1|) (|:| -2851 (-1107)))))) 83)) (-2196 (((-679 |#1|)) 87)) (-4098 (($) 96 (|has| |#1| (-367)))) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-2699 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2174 (((-635 (-2 (|:| -2522 (-558)) (|:| -1951 (-558))))) 150 (|has| |#1| (-367)))) (-2522 (((-417 $) $) NIL)) (-4172 (((-824 (-911))) NIL) (((-911)) 151)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3983 (((-3 $ "failed") $ $) NIL)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3722 (((-762) $) NIL)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL)) (-1905 (((-762) $) NIL (|has| |#1| (-367))) (((-3 (-762) "failed") $ $) NIL (-3998 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2148 (((-133)) NIL)) (-2829 (($ $) NIL (|has| |#1| (-367))) (($ $ (-762)) NIL (|has| |#1| (-367)))) (-4323 (((-824 (-911)) $) NIL) (((-911) $) 62)) (-2036 (((-1159 |#1|)) 152)) (-3377 (($) 133 (|has| |#1| (-367)))) (-2791 (($) NIL (|has| |#1| (-367)))) (-4205 (((-1246 |#1|) $) 106) (((-679 |#1|) (-1246 $)) NIL)) (-3709 (((-3 (-1246 $) "failed") (-679 $)) NIL (|has| |#1| (-367)))) (-3220 (((-853) $) 124) (($ (-558)) NIL) (($ $) NIL) (($ (-406 (-558))) NIL) (($ |#1|) 57)) (-3698 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-3998 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2542 (((-762)) 156)) (-2660 (((-1246 $)) 172) (((-1246 $) (-911)) 101)) (-1870 (((-112) $ $) NIL)) (-4206 (((-112) $) NIL)) (-2131 (($) 117 T CONST)) (-2142 (($) 33 T CONST)) (-4148 (($ $) 107 (|has| |#1| (-367))) (($ $ (-762)) 99 (|has| |#1| (-367)))) (-1866 (($ $) NIL (|has| |#1| (-367))) (($ $ (-762)) NIL (|has| |#1| (-367)))) (-1683 (((-112) $ $) 183)) (-1810 (($ $ $) 104) (($ $ |#1|) 105)) (-1798 (($ $) 177) (($ $ $) 181)) (-1784 (($ $ $) 179)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) 138)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 186) (($ $ $) 142) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103)))
+(((-351 |#1| |#2|) (-13 (-328 |#1|) (-10 -7 (-15 -2208 ((-1246 (-635 (-2 (|:| -2925 |#1|) (|:| -2851 (-1107))))))) (-15 -2196 ((-679 |#1|))) (-15 -2186 ((-762))))) (-348) (-3 (-1159 |#1|) (-1246 (-635 (-2 (|:| -2925 |#1|) (|:| -2851 (-1107))))))) (T -351))
+((-2208 (*1 *2) (-12 (-5 *2 (-1246 (-635 (-2 (|:| -2925 *3) (|:| -2851 (-1107)))))) (-5 *1 (-351 *3 *4)) (-4 *3 (-348)) (-14 *4 (-3 (-1159 *3) *2)))) (-2196 (*1 *2) (-12 (-5 *2 (-679 *3)) (-5 *1 (-351 *3 *4)) (-4 *3 (-348)) (-14 *4 (-3 (-1159 *3) (-1246 (-635 (-2 (|:| -2925 *3) (|:| -2851 (-1107))))))))) (-2186 (*1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-351 *3 *4)) (-4 *3 (-348)) (-14 *4 (-3 (-1159 *3) (-1246 (-635 (-2 (|:| -2925 *3) (|:| -2851 (-1107))))))))))
+(-13 (-328 |#1|) (-10 -7 (-15 -2208 ((-1246 (-635 (-2 (|:| -2925 |#1|) (|:| -2851 (-1107))))))) (-15 -2196 ((-679 |#1|))) (-15 -2186 ((-762)))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL)) (-1881 (($ $) NIL)) (-1857 (((-112) $) NIL)) (-4195 (((-112) $) NIL)) (-4160 (((-762)) NIL)) (-1635 ((|#1| $) NIL) (($ $ (-911)) NIL (|has| |#1| (-367)))) (-2163 (((-1173 (-911) (-762)) (-558)) NIL (|has| |#1| (-367)))) (-2089 (((-3 $ "failed") $ $) NIL)) (-3465 (($ $) NIL)) (-1380 (((-417 $) $) NIL)) (-2186 (((-762)) NIL)) (-3732 (((-112) $ $) NIL)) (-2276 (((-762)) NIL (|has| |#1| (-367)))) (-1816 (($) NIL T CONST)) (-3069 (((-3 |#1| "failed") $) NIL)) (-1863 ((|#1| $) NIL)) (-3997 (($ (-1246 |#1|)) NIL)) (-3367 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-367)))) (-4025 (($ $ $) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-2424 (($) NIL (|has| |#1| (-367)))) (-4004 (($ $ $) NIL)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL)) (-2672 (($) NIL (|has| |#1| (-367)))) (-2219 (((-112) $) NIL (|has| |#1| (-367)))) (-1895 (($ $ (-762)) NIL (-3998 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-3998 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3031 (((-112) $) NIL)) (-3449 (((-911) $) NIL (|has| |#1| (-367))) (((-824 (-911)) $) NIL (-3998 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2035 (((-112) $) NIL)) (-2670 (($) NIL (|has| |#1| (-367)))) (-2649 (((-112) $) NIL (|has| |#1| (-367)))) (-2615 ((|#1| $) NIL) (($ $ (-911)) NIL (|has| |#1| (-367)))) (-2457 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2681 (((-1159 |#1|) $) NIL) (((-1159 $) $ (-911)) NIL (|has| |#1| (-367)))) (-2637 (((-911) $) NIL (|has| |#1| (-367)))) (-3919 (((-1159 |#1|) $) NIL (|has| |#1| (-367)))) (-3907 (((-1159 |#1|) $) NIL (|has| |#1| (-367))) (((-3 (-1159 |#1|) "failed") $ $) NIL (|has| |#1| (-367)))) (-3928 (($ $ (-1159 |#1|)) NIL (|has| |#1| (-367)))) (-2665 (($ $ $) NIL) (($ (-635 $)) NIL)) (-4310 (((-1145) $) NIL)) (-2418 (($ $) NIL)) (-1796 (($) NIL (|has| |#1| (-367)) CONST)) (-2851 (($ (-911)) NIL (|has| |#1| (-367)))) (-4185 (((-112) $) NIL)) (-2975 (((-1107) $) NIL)) (-2208 (((-1246 (-635 (-2 (|:| -2925 |#1|) (|:| -2851 (-1107)))))) NIL)) (-2196 (((-679 |#1|)) NIL)) (-4098 (($) NIL (|has| |#1| (-367)))) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-2699 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2174 (((-635 (-2 (|:| -2522 (-558)) (|:| -1951 (-558))))) NIL (|has| |#1| (-367)))) (-2522 (((-417 $) $) NIL)) (-4172 (((-824 (-911))) NIL) (((-911)) NIL)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3983 (((-3 $ "failed") $ $) NIL)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3722 (((-762) $) NIL)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL)) (-1905 (((-762) $) NIL (|has| |#1| (-367))) (((-3 (-762) "failed") $ $) NIL (-3998 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2148 (((-133)) NIL)) (-2829 (($ $) NIL (|has| |#1| (-367))) (($ $ (-762)) NIL (|has| |#1| (-367)))) (-4323 (((-824 (-911)) $) NIL) (((-911) $) NIL)) (-2036 (((-1159 |#1|)) NIL)) (-3377 (($) NIL (|has| |#1| (-367)))) (-2791 (($) NIL (|has| |#1| (-367)))) (-4205 (((-1246 |#1|) $) NIL) (((-679 |#1|) (-1246 $)) NIL)) (-3709 (((-3 (-1246 $) "failed") (-679 $)) NIL (|has| |#1| (-367)))) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL) (($ (-406 (-558))) NIL) (($ |#1|) NIL)) (-3698 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-3998 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2542 (((-762)) NIL)) (-2660 (((-1246 $)) NIL) (((-1246 $) (-911)) NIL)) (-1870 (((-112) $ $) NIL)) (-4206 (((-112) $) NIL)) (-2131 (($) NIL T CONST)) (-2142 (($) NIL T CONST)) (-4148 (($ $) NIL (|has| |#1| (-367))) (($ $ (-762)) NIL (|has| |#1| (-367)))) (-1866 (($ $) NIL (|has| |#1| (-367))) (($ $ (-762)) NIL (|has| |#1| (-367)))) (-1683 (((-112) $ $) NIL)) (-1810 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-352 |#1| |#2|) (-13 (-328 |#1|) (-10 -7 (-15 -2208 ((-1246 (-635 (-2 (|:| -2925 |#1|) (|:| -2851 (-1107))))))) (-15 -2196 ((-679 |#1|))) (-15 -2186 ((-762))))) (-348) (-911)) (T -352))
+((-2208 (*1 *2) (-12 (-5 *2 (-1246 (-635 (-2 (|:| -2925 *3) (|:| -2851 (-1107)))))) (-5 *1 (-352 *3 *4)) (-4 *3 (-348)) (-14 *4 (-911)))) (-2196 (*1 *2) (-12 (-5 *2 (-679 *3)) (-5 *1 (-352 *3 *4)) (-4 *3 (-348)) (-14 *4 (-911)))) (-2186 (*1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-352 *3 *4)) (-4 *3 (-348)) (-14 *4 (-911)))))
+(-13 (-328 |#1|) (-10 -7 (-15 -2208 ((-1246 (-635 (-2 (|:| -2925 |#1|) (|:| -2851 (-1107))))))) (-15 -2196 ((-679 |#1|))) (-15 -2186 ((-762)))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL)) (-1881 (($ $) NIL)) (-1857 (((-112) $) NIL)) (-4195 (((-112) $) NIL)) (-4160 (((-762)) NIL)) (-1635 (((-900 |#1|) $) NIL) (($ $ (-911)) NIL (|has| (-900 |#1|) (-367)))) (-2163 (((-1173 (-911) (-762)) (-558)) NIL (|has| (-900 |#1|) (-367)))) (-2089 (((-3 $ "failed") $ $) NIL)) (-3465 (($ $) NIL)) (-1380 (((-417 $) $) NIL)) (-3732 (((-112) $ $) NIL)) (-2276 (((-762)) NIL (|has| (-900 |#1|) (-367)))) (-1816 (($) NIL T CONST)) (-3069 (((-3 (-900 |#1|) "failed") $) NIL)) (-1863 (((-900 |#1|) $) NIL)) (-3997 (($ (-1246 (-900 |#1|))) NIL)) (-3367 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-900 |#1|) (-367)))) (-4025 (($ $ $) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-2424 (($) NIL (|has| (-900 |#1|) (-367)))) (-4004 (($ $ $) NIL)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL)) (-2672 (($) NIL (|has| (-900 |#1|) (-367)))) (-2219 (((-112) $) NIL (|has| (-900 |#1|) (-367)))) (-1895 (($ $ (-762)) NIL (-3998 (|has| (-900 |#1|) (-144)) (|has| (-900 |#1|) (-367)))) (($ $) NIL (-3998 (|has| (-900 |#1|) (-144)) (|has| (-900 |#1|) (-367))))) (-3031 (((-112) $) NIL)) (-3449 (((-911) $) NIL (|has| (-900 |#1|) (-367))) (((-824 (-911)) $) NIL (-3998 (|has| (-900 |#1|) (-144)) (|has| (-900 |#1|) (-367))))) (-2035 (((-112) $) NIL)) (-2670 (($) NIL (|has| (-900 |#1|) (-367)))) (-2649 (((-112) $) NIL (|has| (-900 |#1|) (-367)))) (-2615 (((-900 |#1|) $) NIL) (($ $ (-911)) NIL (|has| (-900 |#1|) (-367)))) (-2457 (((-3 $ "failed") $) NIL (|has| (-900 |#1|) (-367)))) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2681 (((-1159 (-900 |#1|)) $) NIL) (((-1159 $) $ (-911)) NIL (|has| (-900 |#1|) (-367)))) (-2637 (((-911) $) NIL (|has| (-900 |#1|) (-367)))) (-3919 (((-1159 (-900 |#1|)) $) NIL (|has| (-900 |#1|) (-367)))) (-3907 (((-1159 (-900 |#1|)) $) NIL (|has| (-900 |#1|) (-367))) (((-3 (-1159 (-900 |#1|)) "failed") $ $) NIL (|has| (-900 |#1|) (-367)))) (-3928 (($ $ (-1159 (-900 |#1|))) NIL (|has| (-900 |#1|) (-367)))) (-2665 (($ $ $) NIL) (($ (-635 $)) NIL)) (-4310 (((-1145) $) NIL)) (-2418 (($ $) NIL)) (-1796 (($) NIL (|has| (-900 |#1|) (-367)) CONST)) (-2851 (($ (-911)) NIL (|has| (-900 |#1|) (-367)))) (-4185 (((-112) $) NIL)) (-2975 (((-1107) $) NIL)) (-4098 (($) NIL (|has| (-900 |#1|) (-367)))) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-2699 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2174 (((-635 (-2 (|:| -2522 (-558)) (|:| -1951 (-558))))) NIL (|has| (-900 |#1|) (-367)))) (-2522 (((-417 $) $) NIL)) (-4172 (((-824 (-911))) NIL) (((-911)) NIL)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3983 (((-3 $ "failed") $ $) NIL)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3722 (((-762) $) NIL)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL)) (-1905 (((-762) $) NIL (|has| (-900 |#1|) (-367))) (((-3 (-762) "failed") $ $) NIL (-3998 (|has| (-900 |#1|) (-144)) (|has| (-900 |#1|) (-367))))) (-2148 (((-133)) NIL)) (-2829 (($ $) NIL (|has| (-900 |#1|) (-367))) (($ $ (-762)) NIL (|has| (-900 |#1|) (-367)))) (-4323 (((-824 (-911)) $) NIL) (((-911) $) NIL)) (-2036 (((-1159 (-900 |#1|))) NIL)) (-3377 (($) NIL (|has| (-900 |#1|) (-367)))) (-2791 (($) NIL (|has| (-900 |#1|) (-367)))) (-4205 (((-1246 (-900 |#1|)) $) NIL) (((-679 (-900 |#1|)) (-1246 $)) NIL)) (-3709 (((-3 (-1246 $) "failed") (-679 $)) NIL (|has| (-900 |#1|) (-367)))) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL) (($ (-406 (-558))) NIL) (($ (-900 |#1|)) NIL)) (-3698 (($ $) NIL (|has| (-900 |#1|) (-367))) (((-3 $ "failed") $) NIL (-3998 (|has| (-900 |#1|) (-144)) (|has| (-900 |#1|) (-367))))) (-2542 (((-762)) NIL)) (-2660 (((-1246 $)) NIL) (((-1246 $) (-911)) NIL)) (-1870 (((-112) $ $) NIL)) (-4206 (((-112) $) NIL)) (-2131 (($) NIL T CONST)) (-2142 (($) NIL T CONST)) (-4148 (($ $) NIL (|has| (-900 |#1|) (-367))) (($ $ (-762)) NIL (|has| (-900 |#1|) (-367)))) (-1866 (($ $) NIL (|has| (-900 |#1|) (-367))) (($ $ (-762)) NIL (|has| (-900 |#1|) (-367)))) (-1683 (((-112) $ $) NIL)) (-1810 (($ $ $) NIL) (($ $ (-900 |#1|)) NIL)) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL) (($ $ (-900 |#1|)) NIL) (($ (-900 |#1|) $) NIL)))
+(((-353 |#1| |#2|) (-328 (-900 |#1|)) (-911) (-911)) (T -353))
+NIL
+(-328 (-900 |#1|))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL)) (-1881 (($ $) NIL)) (-1857 (((-112) $) NIL)) (-4195 (((-112) $) NIL)) (-4160 (((-762)) NIL)) (-1635 ((|#1| $) NIL) (($ $ (-911)) NIL (|has| |#1| (-367)))) (-2163 (((-1173 (-911) (-762)) (-558)) 120 (|has| |#1| (-367)))) (-2089 (((-3 $ "failed") $ $) NIL)) (-3465 (($ $) NIL)) (-1380 (((-417 $) $) NIL)) (-3732 (((-112) $ $) NIL)) (-2276 (((-762)) 139 (|has| |#1| (-367)))) (-1816 (($) NIL T CONST)) (-3069 (((-3 |#1| "failed") $) 93)) (-1863 ((|#1| $) 90)) (-3997 (($ (-1246 |#1|)) 85)) (-3367 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-367)))) (-4025 (($ $ $) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-2424 (($) 82 (|has| |#1| (-367)))) (-4004 (($ $ $) NIL)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL)) (-2672 (($) 42 (|has| |#1| (-367)))) (-2219 (((-112) $) NIL (|has| |#1| (-367)))) (-1895 (($ $ (-762)) NIL (-3998 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-3998 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3031 (((-112) $) NIL)) (-3449 (((-911) $) NIL (|has| |#1| (-367))) (((-824 (-911)) $) NIL (-3998 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2035 (((-112) $) NIL)) (-2670 (($) 121 (|has| |#1| (-367)))) (-2649 (((-112) $) 74 (|has| |#1| (-367)))) (-2615 ((|#1| $) 39) (($ $ (-911)) 43 (|has| |#1| (-367)))) (-2457 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2681 (((-1159 |#1|) $) 65) (((-1159 $) $ (-911)) NIL (|has| |#1| (-367)))) (-2637 (((-911) $) 97 (|has| |#1| (-367)))) (-3919 (((-1159 |#1|) $) NIL (|has| |#1| (-367)))) (-3907 (((-1159 |#1|) $) NIL (|has| |#1| (-367))) (((-3 (-1159 |#1|) "failed") $ $) NIL (|has| |#1| (-367)))) (-3928 (($ $ (-1159 |#1|)) NIL (|has| |#1| (-367)))) (-2665 (($ $ $) NIL) (($ (-635 $)) NIL)) (-4310 (((-1145) $) NIL)) (-2418 (($ $) NIL)) (-1796 (($) NIL (|has| |#1| (-367)) CONST)) (-2851 (($ (-911)) 95 (|has| |#1| (-367)))) (-4185 (((-112) $) 141)) (-2975 (((-1107) $) NIL)) (-4098 (($) 36 (|has| |#1| (-367)))) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-2699 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2174 (((-635 (-2 (|:| -2522 (-558)) (|:| -1951 (-558))))) 115 (|has| |#1| (-367)))) (-2522 (((-417 $) $) NIL)) (-4172 (((-824 (-911))) NIL) (((-911)) 138)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3983 (((-3 $ "failed") $ $) NIL)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3722 (((-762) $) NIL)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL)) (-1905 (((-762) $) NIL (|has| |#1| (-367))) (((-3 (-762) "failed") $ $) NIL (-3998 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2148 (((-133)) NIL)) (-2829 (($ $) NIL (|has| |#1| (-367))) (($ $ (-762)) NIL (|has| |#1| (-367)))) (-4323 (((-824 (-911)) $) NIL) (((-911) $) 59)) (-2036 (((-1159 |#1|)) 88)) (-3377 (($) 126 (|has| |#1| (-367)))) (-2791 (($) NIL (|has| |#1| (-367)))) (-4205 (((-1246 |#1|) $) 53) (((-679 |#1|) (-1246 $)) NIL)) (-3709 (((-3 (-1246 $) "failed") (-679 $)) NIL (|has| |#1| (-367)))) (-3220 (((-853) $) 137) (($ (-558)) NIL) (($ $) NIL) (($ (-406 (-558))) NIL) (($ |#1|) 87)) (-3698 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-3998 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2542 (((-762)) 143)) (-2660 (((-1246 $)) 109) (((-1246 $) (-911)) 49)) (-1870 (((-112) $ $) NIL)) (-4206 (((-112) $) NIL)) (-2131 (($) 111 T CONST)) (-2142 (($) 32 T CONST)) (-4148 (($ $) 68 (|has| |#1| (-367))) (($ $ (-762)) NIL (|has| |#1| (-367)))) (-1866 (($ $) NIL (|has| |#1| (-367))) (($ $ (-762)) NIL (|has| |#1| (-367)))) (-1683 (((-112) $ $) 107)) (-1810 (($ $ $) 99) (($ $ |#1|) 100)) (-1798 (($ $) 80) (($ $ $) 105)) (-1784 (($ $ $) 103)) (** (($ $ (-911)) NIL) (($ $ (-762)) 44) (($ $ (-558)) 129)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 78) (($ $ $) 56) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76)))
+(((-354 |#1| |#2|) (-328 |#1|) (-348) (-1159 |#1|)) (T -354))
+NIL
+(-328 |#1|)
+((-2388 ((|#1| (-1159 |#2|)) 52)))
+(((-355 |#1| |#2|) (-10 -7 (-15 -2388 (|#1| (-1159 |#2|)))) (-13 (-401) (-10 -7 (-15 -3220 (|#1| |#2|)) (-15 -2637 ((-911) |#1|)) (-15 -2660 ((-1246 |#1|) (-911))) (-15 -4148 (|#1| |#1|)))) (-348)) (T -355))
+((-2388 (*1 *2 *3) (-12 (-5 *3 (-1159 *4)) (-4 *4 (-348)) (-4 *2 (-13 (-401) (-10 -7 (-15 -3220 (*2 *4)) (-15 -2637 ((-911) *2)) (-15 -2660 ((-1246 *2) (-911))) (-15 -4148 (*2 *2))))) (-5 *1 (-355 *2 *4)))))
+(-10 -7 (-15 -2388 (|#1| (-1159 |#2|))))
+((-2377 (((-948 (-1159 |#1|)) (-1159 |#1|)) 36)) (-2424 (((-1159 |#1|) (-911) (-911)) 112) (((-1159 |#1|) (-911)) 111)) (-2219 (((-112) (-1159 |#1|)) 84)) (-2241 (((-911) (-911)) 71)) (-2253 (((-911) (-911)) 74)) (-2231 (((-911) (-911)) 69)) (-2649 (((-112) (-1159 |#1|)) 88)) (-2320 (((-3 (-1159 |#1|) "failed") (-1159 |#1|)) 100)) (-2355 (((-3 (-1159 |#1|) "failed") (-1159 |#1|)) 103)) (-2344 (((-3 (-1159 |#1|) "failed") (-1159 |#1|)) 102)) (-2332 (((-3 (-1159 |#1|) "failed") (-1159 |#1|)) 101)) (-2310 (((-3 (-1159 |#1|) "failed") (-1159 |#1|)) 97)) (-2366 (((-1159 |#1|) (-1159 |#1|)) 62)) (-2270 (((-1159 |#1|) (-911)) 106)) (-2301 (((-1159 |#1|) (-911)) 109)) (-2291 (((-1159 |#1|) (-911)) 108)) (-2281 (((-1159 |#1|) (-911)) 107)) (-2263 (((-1159 |#1|) (-911)) 104)))
+(((-356 |#1|) (-10 -7 (-15 -2219 ((-112) (-1159 |#1|))) (-15 -2649 ((-112) (-1159 |#1|))) (-15 -2231 ((-911) (-911))) (-15 -2241 ((-911) (-911))) (-15 -2253 ((-911) (-911))) (-15 -2263 ((-1159 |#1|) (-911))) (-15 -2270 ((-1159 |#1|) (-911))) (-15 -2281 ((-1159 |#1|) (-911))) (-15 -2291 ((-1159 |#1|) (-911))) (-15 -2301 ((-1159 |#1|) (-911))) (-15 -2310 ((-3 (-1159 |#1|) "failed") (-1159 |#1|))) (-15 -2320 ((-3 (-1159 |#1|) "failed") (-1159 |#1|))) (-15 -2332 ((-3 (-1159 |#1|) "failed") (-1159 |#1|))) (-15 -2344 ((-3 (-1159 |#1|) "failed") (-1159 |#1|))) (-15 -2355 ((-3 (-1159 |#1|) "failed") (-1159 |#1|))) (-15 -2424 ((-1159 |#1|) (-911))) (-15 -2424 ((-1159 |#1|) (-911) (-911))) (-15 -2366 ((-1159 |#1|) (-1159 |#1|))) (-15 -2377 ((-948 (-1159 |#1|)) (-1159 |#1|)))) (-348)) (T -356))
+((-2377 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-948 (-1159 *4))) (-5 *1 (-356 *4)) (-5 *3 (-1159 *4)))) (-2366 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))) (-2424 (*1 *2 *3 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1159 *4)) (-5 *1 (-356 *4)) (-4 *4 (-348)))) (-2424 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1159 *4)) (-5 *1 (-356 *4)) (-4 *4 (-348)))) (-2355 (*1 *2 *2) (|partial| -12 (-5 *2 (-1159 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))) (-2344 (*1 *2 *2) (|partial| -12 (-5 *2 (-1159 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))) (-2332 (*1 *2 *2) (|partial| -12 (-5 *2 (-1159 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))) (-2320 (*1 *2 *2) (|partial| -12 (-5 *2 (-1159 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))) (-2310 (*1 *2 *2) (|partial| -12 (-5 *2 (-1159 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))) (-2301 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1159 *4)) (-5 *1 (-356 *4)) (-4 *4 (-348)))) (-2291 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1159 *4)) (-5 *1 (-356 *4)) (-4 *4 (-348)))) (-2281 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1159 *4)) (-5 *1 (-356 *4)) (-4 *4 (-348)))) (-2270 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1159 *4)) (-5 *1 (-356 *4)) (-4 *4 (-348)))) (-2263 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1159 *4)) (-5 *1 (-356 *4)) (-4 *4 (-348)))) (-2253 (*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-356 *3)) (-4 *3 (-348)))) (-2241 (*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-356 *3)) (-4 *3 (-348)))) (-2231 (*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-356 *3)) (-4 *3 (-348)))) (-2649 (*1 *2 *3) (-12 (-5 *3 (-1159 *4)) (-4 *4 (-348)) (-5 *2 (-112)) (-5 *1 (-356 *4)))) (-2219 (*1 *2 *3) (-12 (-5 *3 (-1159 *4)) (-4 *4 (-348)) (-5 *2 (-112)) (-5 *1 (-356 *4)))))
+(-10 -7 (-15 -2219 ((-112) (-1159 |#1|))) (-15 -2649 ((-112) (-1159 |#1|))) (-15 -2231 ((-911) (-911))) (-15 -2241 ((-911) (-911))) (-15 -2253 ((-911) (-911))) (-15 -2263 ((-1159 |#1|) (-911))) (-15 -2270 ((-1159 |#1|) (-911))) (-15 -2281 ((-1159 |#1|) (-911))) (-15 -2291 ((-1159 |#1|) (-911))) (-15 -2301 ((-1159 |#1|) (-911))) (-15 -2310 ((-3 (-1159 |#1|) "failed") (-1159 |#1|))) (-15 -2320 ((-3 (-1159 |#1|) "failed") (-1159 |#1|))) (-15 -2332 ((-3 (-1159 |#1|) "failed") (-1159 |#1|))) (-15 -2344 ((-3 (-1159 |#1|) "failed") (-1159 |#1|))) (-15 -2355 ((-3 (-1159 |#1|) "failed") (-1159 |#1|))) (-15 -2424 ((-1159 |#1|) (-911))) (-15 -2424 ((-1159 |#1|) (-911) (-911))) (-15 -2366 ((-1159 |#1|) (-1159 |#1|))) (-15 -2377 ((-948 (-1159 |#1|)) (-1159 |#1|))))
+((-3719 (((-3 (-635 |#3|) "failed") (-635 |#3|) |#3|) 33)))
+(((-357 |#1| |#2| |#3|) (-10 -7 (-15 -3719 ((-3 (-635 |#3|) "failed") (-635 |#3|) |#3|))) (-348) (-1222 |#1|) (-1222 |#2|)) (T -357))
+((-3719 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-635 *3)) (-4 *3 (-1222 *5)) (-4 *5 (-1222 *4)) (-4 *4 (-348)) (-5 *1 (-357 *4 *5 *3)))))
+(-10 -7 (-15 -3719 ((-3 (-635 |#3|) "failed") (-635 |#3|) |#3|)))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL)) (-1881 (($ $) NIL)) (-1857 (((-112) $) NIL)) (-4195 (((-112) $) NIL)) (-4160 (((-762)) NIL)) (-1635 ((|#1| $) NIL) (($ $ (-911)) NIL (|has| |#1| (-367)))) (-2163 (((-1173 (-911) (-762)) (-558)) NIL (|has| |#1| (-367)))) (-2089 (((-3 $ "failed") $ $) NIL)) (-3465 (($ $) NIL)) (-1380 (((-417 $) $) NIL)) (-3732 (((-112) $ $) NIL)) (-2276 (((-762)) NIL (|has| |#1| (-367)))) (-1816 (($) NIL T CONST)) (-3069 (((-3 |#1| "failed") $) NIL)) (-1863 ((|#1| $) NIL)) (-3997 (($ (-1246 |#1|)) NIL)) (-3367 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-367)))) (-4025 (($ $ $) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-2424 (($) NIL (|has| |#1| (-367)))) (-4004 (($ $ $) NIL)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL)) (-2672 (($) NIL (|has| |#1| (-367)))) (-2219 (((-112) $) NIL (|has| |#1| (-367)))) (-1895 (($ $ (-762)) NIL (-3998 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-3998 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3031 (((-112) $) NIL)) (-3449 (((-911) $) NIL (|has| |#1| (-367))) (((-824 (-911)) $) NIL (-3998 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2035 (((-112) $) NIL)) (-2670 (($) NIL (|has| |#1| (-367)))) (-2649 (((-112) $) NIL (|has| |#1| (-367)))) (-2615 ((|#1| $) NIL) (($ $ (-911)) NIL (|has| |#1| (-367)))) (-2457 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2681 (((-1159 |#1|) $) NIL) (((-1159 $) $ (-911)) NIL (|has| |#1| (-367)))) (-2637 (((-911) $) NIL (|has| |#1| (-367)))) (-3919 (((-1159 |#1|) $) NIL (|has| |#1| (-367)))) (-3907 (((-1159 |#1|) $) NIL (|has| |#1| (-367))) (((-3 (-1159 |#1|) "failed") $ $) NIL (|has| |#1| (-367)))) (-3928 (($ $ (-1159 |#1|)) NIL (|has| |#1| (-367)))) (-2665 (($ $ $) NIL) (($ (-635 $)) NIL)) (-4310 (((-1145) $) NIL)) (-2418 (($ $) NIL)) (-1796 (($) NIL (|has| |#1| (-367)) CONST)) (-2851 (($ (-911)) NIL (|has| |#1| (-367)))) (-4185 (((-112) $) NIL)) (-2975 (((-1107) $) NIL)) (-4098 (($) NIL (|has| |#1| (-367)))) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-2699 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2174 (((-635 (-2 (|:| -2522 (-558)) (|:| -1951 (-558))))) NIL (|has| |#1| (-367)))) (-2522 (((-417 $) $) NIL)) (-4172 (((-824 (-911))) NIL) (((-911)) NIL)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3983 (((-3 $ "failed") $ $) NIL)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3722 (((-762) $) NIL)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL)) (-1905 (((-762) $) NIL (|has| |#1| (-367))) (((-3 (-762) "failed") $ $) NIL (-3998 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2148 (((-133)) NIL)) (-2829 (($ $) NIL (|has| |#1| (-367))) (($ $ (-762)) NIL (|has| |#1| (-367)))) (-4323 (((-824 (-911)) $) NIL) (((-911) $) NIL)) (-2036 (((-1159 |#1|)) NIL)) (-3377 (($) NIL (|has| |#1| (-367)))) (-2791 (($) NIL (|has| |#1| (-367)))) (-4205 (((-1246 |#1|) $) NIL) (((-679 |#1|) (-1246 $)) NIL)) (-3709 (((-3 (-1246 $) "failed") (-679 $)) NIL (|has| |#1| (-367)))) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL) (($ (-406 (-558))) NIL) (($ |#1|) NIL)) (-3698 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-3998 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2542 (((-762)) NIL)) (-2660 (((-1246 $)) NIL) (((-1246 $) (-911)) NIL)) (-1870 (((-112) $ $) NIL)) (-4206 (((-112) $) NIL)) (-2131 (($) NIL T CONST)) (-2142 (($) NIL T CONST)) (-4148 (($ $) NIL (|has| |#1| (-367))) (($ $ (-762)) NIL (|has| |#1| (-367)))) (-1866 (($ $) NIL (|has| |#1| (-367))) (($ $ (-762)) NIL (|has| |#1| (-367)))) (-1683 (((-112) $ $) NIL)) (-1810 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-358 |#1| |#2|) (-328 |#1|) (-348) (-911)) (T -358))
+NIL
+(-328 |#1|)
+((-2939 (((-112) (-635 (-942 |#1|))) 33)) (-2960 (((-635 (-942 |#1|)) (-635 (-942 |#1|))) 45)) (-2949 (((-3 (-635 (-942 |#1|)) "failed") (-635 (-942 |#1|))) 40)))
+(((-359 |#1| |#2|) (-10 -7 (-15 -2939 ((-112) (-635 (-942 |#1|)))) (-15 -2949 ((-3 (-635 (-942 |#1|)) "failed") (-635 (-942 |#1|)))) (-15 -2960 ((-635 (-942 |#1|)) (-635 (-942 |#1|))))) (-450) (-635 (-1163))) (T -359))
+((-2960 (*1 *2 *2) (-12 (-5 *2 (-635 (-942 *3))) (-4 *3 (-450)) (-5 *1 (-359 *3 *4)) (-14 *4 (-635 (-1163))))) (-2949 (*1 *2 *2) (|partial| -12 (-5 *2 (-635 (-942 *3))) (-4 *3 (-450)) (-5 *1 (-359 *3 *4)) (-14 *4 (-635 (-1163))))) (-2939 (*1 *2 *3) (-12 (-5 *3 (-635 (-942 *4))) (-4 *4 (-450)) (-5 *2 (-112)) (-5 *1 (-359 *4 *5)) (-14 *5 (-635 (-1163))))))
+(-10 -7 (-15 -2939 ((-112) (-635 (-942 |#1|)))) (-15 -2949 ((-3 (-635 (-942 |#1|)) "failed") (-635 (-942 |#1|)))) (-15 -2960 ((-635 (-942 |#1|)) (-635 (-942 |#1|)))))
+((-3207 (((-112) $ $) NIL)) (-2276 (((-762) $) NIL)) (-1816 (($) NIL T CONST)) (-3069 (((-3 |#1| "failed") $) NIL)) (-1863 ((|#1| $) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-2035 (((-112) $) 15)) (-1859 ((|#1| $ (-558)) NIL)) (-1872 (((-558) $ (-558)) NIL)) (-3241 (($ (-1 |#1| |#1|) $) 32)) (-3251 (($ (-1 (-558) (-558)) $) 24)) (-4310 (((-1145) $) NIL)) (-2418 (($ $) 26)) (-2975 (((-1107) $) NIL)) (-1849 (((-635 (-2 (|:| |gen| |#1|) (|:| -2573 (-558)))) $) 28)) (-3808 (($ $ $) NIL)) (-3443 (($ $ $) NIL)) (-3220 (((-853) $) 38) (($ |#1|) NIL)) (-2142 (($) 9 T CONST)) (-1683 (((-112) $ $) NIL)) (-1810 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL) (($ |#1| (-558)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19)))
+(((-360 |#1|) (-13 (-471) (-1028 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-558))) (-15 -2276 ((-762) $)) (-15 -1872 ((-558) $ (-558))) (-15 -1859 (|#1| $ (-558))) (-15 -3251 ($ (-1 (-558) (-558)) $)) (-15 -3241 ($ (-1 |#1| |#1|) $)) (-15 -1849 ((-635 (-2 (|:| |gen| |#1|) (|:| -2573 (-558)))) $)))) (-1087)) (T -360))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1087)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1087)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-360 *2)) (-4 *2 (-1087)))) (-2276 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-360 *3)) (-4 *3 (-1087)))) (-1872 (*1 *2 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-360 *3)) (-4 *3 (-1087)))) (-1859 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *1 (-360 *2)) (-4 *2 (-1087)))) (-3251 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-558) (-558))) (-5 *1 (-360 *3)) (-4 *3 (-1087)))) (-3241 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1087)) (-5 *1 (-360 *3)))) (-1849 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -2573 (-558))))) (-5 *1 (-360 *3)) (-4 *3 (-1087)))))
+(-13 (-471) (-1028 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-558))) (-15 -2276 ((-762) $)) (-15 -1872 ((-558) $ (-558))) (-15 -1859 (|#1| $ (-558))) (-15 -3251 ($ (-1 (-558) (-558)) $)) (-15 -3241 ($ (-1 |#1| |#1|) $)) (-15 -1849 ((-635 (-2 (|:| |gen| |#1|) (|:| -2573 (-558)))) $))))
+((-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 13)) (-1881 (($ $) 14)) (-1380 (((-417 $) $) 29)) (-3031 (((-112) $) 25)) (-2418 (($ $) 18)) (-2699 (($ $ $) 22) (($ (-635 $)) NIL)) (-2522 (((-417 $) $) 30)) (-3983 (((-3 $ "failed") $ $) 21)) (-3722 (((-762) $) 24)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 34)) (-1870 (((-112) $ $) 15)) (-1810 (($ $ $) 32)))
+(((-361 |#1|) (-10 -8 (-15 -1810 (|#1| |#1| |#1|)) (-15 -2418 (|#1| |#1|)) (-15 -3031 ((-112) |#1|)) (-15 -1380 ((-417 |#1|) |#1|)) (-15 -2522 ((-417 |#1|) |#1|)) (-15 -1901 ((-2 (|:| -2306 |#1|) (|:| -2071 |#1|)) |#1| |#1|)) (-15 -3722 ((-762) |#1|)) (-15 -2699 (|#1| (-635 |#1|))) (-15 -2699 (|#1| |#1| |#1|)) (-15 -1870 ((-112) |#1| |#1|)) (-15 -1881 (|#1| |#1|)) (-15 -1891 ((-2 (|:| -1960 |#1|) (|:| -4369 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3983 ((-3 |#1| "failed") |#1| |#1|))) (-362)) (T -361))
+NIL
+(-10 -8 (-15 -1810 (|#1| |#1| |#1|)) (-15 -2418 (|#1| |#1|)) (-15 -3031 ((-112) |#1|)) (-15 -1380 ((-417 |#1|) |#1|)) (-15 -2522 ((-417 |#1|) |#1|)) (-15 -1901 ((-2 (|:| -2306 |#1|) (|:| -2071 |#1|)) |#1| |#1|)) (-15 -3722 ((-762) |#1|)) (-15 -2699 (|#1| (-635 |#1|))) (-15 -2699 (|#1| |#1| |#1|)) (-15 -1870 ((-112) |#1| |#1|)) (-15 -1881 (|#1| |#1|)) (-15 -1891 ((-2 (|:| -1960 |#1|) (|:| -4369 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3983 ((-3 |#1| "failed") |#1| |#1|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 42)) (-1881 (($ $) 41)) (-1857 (((-112) $) 39)) (-2089 (((-3 $ "failed") $ $) 19)) (-3465 (($ $) 74)) (-1380 (((-417 $) $) 73)) (-3732 (((-112) $ $) 60)) (-1816 (($) 17 T CONST)) (-4025 (($ $ $) 56)) (-2588 (((-3 $ "failed") $) 33)) (-4004 (($ $ $) 57)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) 52)) (-3031 (((-112) $) 72)) (-2035 (((-112) $) 31)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) 53)) (-2665 (($ $ $) 47) (($ (-635 $)) 46)) (-4310 (((-1145) $) 9)) (-2418 (($ $) 71)) (-2975 (((-1107) $) 10)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) 45)) (-2699 (($ $ $) 49) (($ (-635 $)) 48)) (-2522 (((-417 $) $) 75)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3983 (((-3 $ "failed") $ $) 43)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-3722 (((-762) $) 59)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 58)) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ $) 44) (($ (-406 (-558))) 67)) (-2542 (((-762)) 28)) (-1870 (((-112) $ $) 40)) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1683 (((-112) $ $) 6)) (-1810 (($ $ $) 66)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ (-558)) 70)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ (-406 (-558))) 69) (($ (-406 (-558)) $) 68)))
+(((-362) (-139)) (T -362))
+((-1810 (*1 *1 *1 *1) (-4 *1 (-362))))
+(-13 (-306) (-1204) (-242) (-10 -8 (-15 -1810 ($ $ $)) (-6 -4380) (-6 -4374)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-558))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-608 #0#) . T) ((-608 (-558)) . T) ((-608 $) . T) ((-605 (-853)) . T) ((-171) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-450) . T) ((-550) . T) ((-638 #0#) . T) ((-638 $) . T) ((-708 #0#) . T) ((-708 $) . T) ((-717) . T) ((-910) . T) ((-1045 #0#) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1204) . T))
+((-3207 (((-112) $ $) 7)) (-2402 ((|#2| $ |#2|) 13)) (-2446 (($ $ (-1145)) 18)) (-2412 ((|#2| $) 14)) (-1328 (($ |#1|) 20) (($ |#1| (-1145)) 19)) (-1323 ((|#1| $) 16)) (-4310 (((-1145) $) 9)) (-2425 (((-1145) $) 15)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11)) (-2436 (($ $) 17)) (-1683 (((-112) $ $) 6)))
+(((-363 |#1| |#2|) (-139) (-1087) (-1087)) (T -363))
+((-1328 (*1 *1 *2) (-12 (-4 *1 (-363 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-1087)))) (-1328 (*1 *1 *2 *3) (-12 (-5 *3 (-1145)) (-4 *1 (-363 *2 *4)) (-4 *2 (-1087)) (-4 *4 (-1087)))) (-2446 (*1 *1 *1 *2) (-12 (-5 *2 (-1145)) (-4 *1 (-363 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1087)))) (-2436 (*1 *1 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-1087)))) (-1323 (*1 *2 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1087)) (-4 *2 (-1087)))) (-2425 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-5 *2 (-1145)))) (-2412 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-1087)))) (-2402 (*1 *2 *1 *2) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-1087)))))
+(-13 (-1087) (-10 -8 (-15 -1328 ($ |t#1|)) (-15 -1328 ($ |t#1| (-1145))) (-15 -2446 ($ $ (-1145))) (-15 -2436 ($ $)) (-15 -1323 (|t#1| $)) (-15 -2425 ((-1145) $)) (-15 -2412 (|t#2| $)) (-15 -2402 (|t#2| $ |t#2|))))
+(((-102) . T) ((-605 (-853)) . T) ((-1087) . T))
+((-3207 (((-112) $ $) NIL)) (-2402 ((|#1| $ |#1|) 30)) (-2446 (($ $ (-1145)) 22)) (-1350 (((-3 |#1| "failed") $) 29)) (-2412 ((|#1| $) 27)) (-1328 (($ (-387)) 21) (($ (-387) (-1145)) 20)) (-1323 (((-387) $) 24)) (-4310 (((-1145) $) NIL)) (-2425 (((-1145) $) 25)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 19)) (-2436 (($ $) 23)) (-1683 (((-112) $ $) 18)))
+(((-364 |#1|) (-13 (-363 (-387) |#1|) (-10 -8 (-15 -1350 ((-3 |#1| "failed") $)))) (-1087)) (T -364))
+((-1350 (*1 *2 *1) (|partial| -12 (-5 *1 (-364 *2)) (-4 *2 (-1087)))))
+(-13 (-363 (-387) |#1|) (-10 -8 (-15 -1350 ((-3 |#1| "failed") $))))
+((-4194 (((-1246 (-679 |#2|)) (-1246 $)) 61)) (-2121 (((-679 |#2|) (-1246 $)) 120)) (-2729 ((|#2| $) 32)) (-2096 (((-679 |#2|) $ (-1246 $)) 123)) (-1986 (((-3 $ "failed") $) 75)) (-2708 ((|#2| $) 35)) (-2484 (((-1159 |#2|) $) 83)) (-2143 ((|#2| (-1246 $)) 106)) (-2685 (((-1159 |#2|) $) 28)) (-2622 (((-112)) 100)) (-3997 (($ (-1246 |#2|) (-1246 $)) 113)) (-2588 (((-3 $ "failed") $) 79)) (-2539 (((-112)) 95)) (-2517 (((-112)) 90)) (-2565 (((-112)) 53)) (-2132 (((-679 |#2|) (-1246 $)) 118)) (-2740 ((|#2| $) 31)) (-2109 (((-679 |#2|) $ (-1246 $)) 122)) (-1995 (((-3 $ "failed") $) 73)) (-2718 ((|#2| $) 34)) (-2498 (((-1159 |#2|) $) 82)) (-3985 ((|#2| (-1246 $)) 104)) (-2696 (((-1159 |#2|) $) 26)) (-2632 (((-112)) 99)) (-2527 (((-112)) 92)) (-2551 (((-112)) 51)) (-2580 (((-112)) 87)) (-2612 (((-112)) 101)) (-4205 (((-1246 |#2|) $ (-1246 $)) NIL) (((-679 |#2|) (-1246 $) (-1246 $)) 111)) (-2676 (((-112)) 97)) (-2507 (((-635 (-1246 |#2|))) 86)) (-2654 (((-112)) 98)) (-2664 (((-112)) 96)) (-2642 (((-112)) 46)) (-2602 (((-112)) 102)))
+(((-365 |#1| |#2|) (-10 -8 (-15 -2484 ((-1159 |#2|) |#1|)) (-15 -2498 ((-1159 |#2|) |#1|)) (-15 -2507 ((-635 (-1246 |#2|)))) (-15 -1986 ((-3 |#1| "failed") |#1|)) (-15 -1995 ((-3 |#1| "failed") |#1|)) (-15 -2588 ((-3 |#1| "failed") |#1|)) (-15 -2517 ((-112))) (-15 -2527 ((-112))) (-15 -2539 ((-112))) (-15 -2551 ((-112))) (-15 -2565 ((-112))) (-15 -2580 ((-112))) (-15 -2602 ((-112))) (-15 -2612 ((-112))) (-15 -2622 ((-112))) (-15 -2632 ((-112))) (-15 -2642 ((-112))) (-15 -2654 ((-112))) (-15 -2664 ((-112))) (-15 -2676 ((-112))) (-15 -2685 ((-1159 |#2|) |#1|)) (-15 -2696 ((-1159 |#2|) |#1|)) (-15 -2121 ((-679 |#2|) (-1246 |#1|))) (-15 -2132 ((-679 |#2|) (-1246 |#1|))) (-15 -2143 (|#2| (-1246 |#1|))) (-15 -3985 (|#2| (-1246 |#1|))) (-15 -3997 (|#1| (-1246 |#2|) (-1246 |#1|))) (-15 -4205 ((-679 |#2|) (-1246 |#1|) (-1246 |#1|))) (-15 -4205 ((-1246 |#2|) |#1| (-1246 |#1|))) (-15 -2708 (|#2| |#1|)) (-15 -2718 (|#2| |#1|)) (-15 -2729 (|#2| |#1|)) (-15 -2740 (|#2| |#1|)) (-15 -2096 ((-679 |#2|) |#1| (-1246 |#1|))) (-15 -2109 ((-679 |#2|) |#1| (-1246 |#1|))) (-15 -4194 ((-1246 (-679 |#2|)) (-1246 |#1|)))) (-366 |#2|) (-171)) (T -365))
+((-2676 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-2664 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-2654 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-2642 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-2632 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-2622 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-2612 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-2602 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-2580 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-2565 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-2551 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-2539 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-2527 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-2517 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-2507 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-635 (-1246 *4))) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))))
+(-10 -8 (-15 -2484 ((-1159 |#2|) |#1|)) (-15 -2498 ((-1159 |#2|) |#1|)) (-15 -2507 ((-635 (-1246 |#2|)))) (-15 -1986 ((-3 |#1| "failed") |#1|)) (-15 -1995 ((-3 |#1| "failed") |#1|)) (-15 -2588 ((-3 |#1| "failed") |#1|)) (-15 -2517 ((-112))) (-15 -2527 ((-112))) (-15 -2539 ((-112))) (-15 -2551 ((-112))) (-15 -2565 ((-112))) (-15 -2580 ((-112))) (-15 -2602 ((-112))) (-15 -2612 ((-112))) (-15 -2622 ((-112))) (-15 -2632 ((-112))) (-15 -2642 ((-112))) (-15 -2654 ((-112))) (-15 -2664 ((-112))) (-15 -2676 ((-112))) (-15 -2685 ((-1159 |#2|) |#1|)) (-15 -2696 ((-1159 |#2|) |#1|)) (-15 -2121 ((-679 |#2|) (-1246 |#1|))) (-15 -2132 ((-679 |#2|) (-1246 |#1|))) (-15 -2143 (|#2| (-1246 |#1|))) (-15 -3985 (|#2| (-1246 |#1|))) (-15 -3997 (|#1| (-1246 |#2|) (-1246 |#1|))) (-15 -4205 ((-679 |#2|) (-1246 |#1|) (-1246 |#1|))) (-15 -4205 ((-1246 |#2|) |#1| (-1246 |#1|))) (-15 -2708 (|#2| |#1|)) (-15 -2718 (|#2| |#1|)) (-15 -2729 (|#2| |#1|)) (-15 -2740 (|#2| |#1|)) (-15 -2096 ((-679 |#2|) |#1| (-1246 |#1|))) (-15 -2109 ((-679 |#2|) |#1| (-1246 |#1|))) (-15 -4194 ((-1246 (-679 |#2|)) (-1246 |#1|))))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-1960 (((-3 $ "failed")) 37 (|has| |#1| (-550)))) (-2089 (((-3 $ "failed") $ $) 19)) (-4194 (((-1246 (-679 |#1|)) (-1246 $)) 78)) (-2751 (((-1246 $)) 81)) (-1816 (($) 17 T CONST)) (-2845 (((-3 (-2 (|:| |particular| $) (|:| -2660 (-635 $))) "failed")) 40 (|has| |#1| (-550)))) (-2458 (((-3 $ "failed")) 38 (|has| |#1| (-550)))) (-2121 (((-679 |#1|) (-1246 $)) 65)) (-2729 ((|#1| $) 74)) (-2096 (((-679 |#1|) $ (-1246 $)) 76)) (-1986 (((-3 $ "failed") $) 45 (|has| |#1| (-550)))) (-2015 (($ $ (-911)) 28)) (-2708 ((|#1| $) 72)) (-2484 (((-1159 |#1|) $) 42 (|has| |#1| (-550)))) (-2143 ((|#1| (-1246 $)) 67)) (-2685 (((-1159 |#1|) $) 63)) (-2622 (((-112)) 57)) (-3997 (($ (-1246 |#1|) (-1246 $)) 69)) (-2588 (((-3 $ "failed") $) 47 (|has| |#1| (-550)))) (-3833 (((-911)) 80)) (-2591 (((-112)) 54)) (-4078 (($ $ (-911)) 33)) (-2539 (((-112)) 50)) (-2517 (((-112)) 48)) (-2565 (((-112)) 52)) (-2854 (((-3 (-2 (|:| |particular| $) (|:| -2660 (-635 $))) "failed")) 41 (|has| |#1| (-550)))) (-2470 (((-3 $ "failed")) 39 (|has| |#1| (-550)))) (-2132 (((-679 |#1|) (-1246 $)) 66)) (-2740 ((|#1| $) 75)) (-2109 (((-679 |#1|) $ (-1246 $)) 77)) (-1995 (((-3 $ "failed") $) 46 (|has| |#1| (-550)))) (-2006 (($ $ (-911)) 29)) (-2718 ((|#1| $) 73)) (-2498 (((-1159 |#1|) $) 43 (|has| |#1| (-550)))) (-3985 ((|#1| (-1246 $)) 68)) (-2696 (((-1159 |#1|) $) 64)) (-2632 (((-112)) 58)) (-4310 (((-1145) $) 9)) (-2527 (((-112)) 49)) (-2551 (((-112)) 51)) (-2580 (((-112)) 53)) (-2975 (((-1107) $) 10)) (-2612 (((-112)) 56)) (-4205 (((-1246 |#1|) $ (-1246 $)) 71) (((-679 |#1|) (-1246 $) (-1246 $)) 70)) (-3855 (((-635 (-942 |#1|)) (-1246 $)) 79)) (-3443 (($ $ $) 25)) (-2676 (((-112)) 62)) (-3220 (((-853) $) 11)) (-2507 (((-635 (-1246 |#1|))) 44 (|has| |#1| (-550)))) (-3452 (($ $ $ $) 26)) (-2654 (((-112)) 60)) (-3433 (($ $ $) 24)) (-2664 (((-112)) 61)) (-2642 (((-112)) 59)) (-2602 (((-112)) 55)) (-2131 (($) 18 T CONST)) (-1683 (((-112) $ $) 6)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 30)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+(((-366 |#1|) (-139) (-171)) (T -366))
+((-2751 (*1 *2) (-12 (-4 *3 (-171)) (-5 *2 (-1246 *1)) (-4 *1 (-366 *3)))) (-3833 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-911)))) (-3855 (*1 *2 *3) (-12 (-5 *3 (-1246 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-635 (-942 *4))))) (-4194 (*1 *2 *3) (-12 (-5 *3 (-1246 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-1246 (-679 *4))))) (-2109 (*1 *2 *1 *3) (-12 (-5 *3 (-1246 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-679 *4)))) (-2096 (*1 *2 *1 *3) (-12 (-5 *3 (-1246 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-679 *4)))) (-2740 (*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-2729 (*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-2718 (*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-2708 (*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-4205 (*1 *2 *1 *3) (-12 (-5 *3 (-1246 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-1246 *4)))) (-4205 (*1 *2 *3 *3) (-12 (-5 *3 (-1246 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-679 *4)))) (-3997 (*1 *1 *2 *3) (-12 (-5 *2 (-1246 *4)) (-5 *3 (-1246 *1)) (-4 *4 (-171)) (-4 *1 (-366 *4)))) (-3985 (*1 *2 *3) (-12 (-5 *3 (-1246 *1)) (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-2143 (*1 *2 *3) (-12 (-5 *3 (-1246 *1)) (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-2132 (*1 *2 *3) (-12 (-5 *3 (-1246 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-679 *4)))) (-2121 (*1 *2 *3) (-12 (-5 *3 (-1246 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-679 *4)))) (-2696 (*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-1159 *3)))) (-2685 (*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-1159 *3)))) (-2676 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-2664 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-2654 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-2642 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-2632 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-2622 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-2612 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-2602 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-2591 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-2580 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-2565 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-2551 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-2539 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-2527 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-2517 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-2588 (*1 *1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-550)))) (-1995 (*1 *1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-550)))) (-1986 (*1 *1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-550)))) (-2507 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-550)) (-5 *2 (-635 (-1246 *3))))) (-2498 (*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-550)) (-5 *2 (-1159 *3)))) (-2484 (*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-550)) (-5 *2 (-1159 *3)))) (-2854 (*1 *2) (|partial| -12 (-4 *3 (-550)) (-4 *3 (-171)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2660 (-635 *1)))) (-4 *1 (-366 *3)))) (-2845 (*1 *2) (|partial| -12 (-4 *3 (-550)) (-4 *3 (-171)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2660 (-635 *1)))) (-4 *1 (-366 *3)))) (-2470 (*1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-550)) (-4 *2 (-171)))) (-2458 (*1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-550)) (-4 *2 (-171)))) (-1960 (*1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-550)) (-4 *2 (-171)))))
+(-13 (-735 |t#1|) (-10 -8 (-15 -2751 ((-1246 $))) (-15 -3833 ((-911))) (-15 -3855 ((-635 (-942 |t#1|)) (-1246 $))) (-15 -4194 ((-1246 (-679 |t#1|)) (-1246 $))) (-15 -2109 ((-679 |t#1|) $ (-1246 $))) (-15 -2096 ((-679 |t#1|) $ (-1246 $))) (-15 -2740 (|t#1| $)) (-15 -2729 (|t#1| $)) (-15 -2718 (|t#1| $)) (-15 -2708 (|t#1| $)) (-15 -4205 ((-1246 |t#1|) $ (-1246 $))) (-15 -4205 ((-679 |t#1|) (-1246 $) (-1246 $))) (-15 -3997 ($ (-1246 |t#1|) (-1246 $))) (-15 -3985 (|t#1| (-1246 $))) (-15 -2143 (|t#1| (-1246 $))) (-15 -2132 ((-679 |t#1|) (-1246 $))) (-15 -2121 ((-679 |t#1|) (-1246 $))) (-15 -2696 ((-1159 |t#1|) $)) (-15 -2685 ((-1159 |t#1|) $)) (-15 -2676 ((-112))) (-15 -2664 ((-112))) (-15 -2654 ((-112))) (-15 -2642 ((-112))) (-15 -2632 ((-112))) (-15 -2622 ((-112))) (-15 -2612 ((-112))) (-15 -2602 ((-112))) (-15 -2591 ((-112))) (-15 -2580 ((-112))) (-15 -2565 ((-112))) (-15 -2551 ((-112))) (-15 -2539 ((-112))) (-15 -2527 ((-112))) (-15 -2517 ((-112))) (IF (|has| |t#1| (-550)) (PROGN (-15 -2588 ((-3 $ "failed") $)) (-15 -1995 ((-3 $ "failed") $)) (-15 -1986 ((-3 $ "failed") $)) (-15 -2507 ((-635 (-1246 |t#1|)))) (-15 -2498 ((-1159 |t#1|) $)) (-15 -2484 ((-1159 |t#1|) $)) (-15 -2854 ((-3 (-2 (|:| |particular| $) (|:| -2660 (-635 $))) "failed"))) (-15 -2845 ((-3 (-2 (|:| |particular| $) (|:| -2660 (-635 $))) "failed"))) (-15 -2470 ((-3 $ "failed"))) (-15 -2458 ((-3 $ "failed"))) (-15 -1960 ((-3 $ "failed"))) (-6 -4379)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-605 (-853)) . T) ((-638 |#1|) . T) ((-708 |#1|) . T) ((-711) . T) ((-735 |#1|) . T) ((-752) . T) ((-1045 |#1|) . T) ((-1087) . T))
+((-3207 (((-112) $ $) 7)) (-2276 (((-762)) 16)) (-2424 (($) 13)) (-2637 (((-911) $) 14)) (-4310 (((-1145) $) 9)) (-2851 (($ (-911)) 15)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11)) (-1683 (((-112) $ $) 6)))
+(((-367) (-139)) (T -367))
+((-2276 (*1 *2) (-12 (-4 *1 (-367)) (-5 *2 (-762)))) (-2851 (*1 *1 *2) (-12 (-5 *2 (-911)) (-4 *1 (-367)))) (-2637 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-911)))) (-2424 (*1 *1) (-4 *1 (-367))))
+(-13 (-1087) (-10 -8 (-15 -2276 ((-762))) (-15 -2851 ($ (-911))) (-15 -2637 ((-911) $)) (-15 -2424 ($))))
+(((-102) . T) ((-605 (-853)) . T) ((-1087) . T))
+((-2053 (((-679 |#2|) (-1246 $)) 40)) (-3997 (($ (-1246 |#2|) (-1246 $)) 34)) (-2043 (((-679 |#2|) $ (-1246 $)) 42)) (-3331 ((|#2| (-1246 $)) 13)) (-4205 (((-1246 |#2|) $ (-1246 $)) NIL) (((-679 |#2|) (-1246 $) (-1246 $)) 25)))
+(((-368 |#1| |#2| |#3|) (-10 -8 (-15 -2053 ((-679 |#2|) (-1246 |#1|))) (-15 -3331 (|#2| (-1246 |#1|))) (-15 -3997 (|#1| (-1246 |#2|) (-1246 |#1|))) (-15 -4205 ((-679 |#2|) (-1246 |#1|) (-1246 |#1|))) (-15 -4205 ((-1246 |#2|) |#1| (-1246 |#1|))) (-15 -2043 ((-679 |#2|) |#1| (-1246 |#1|)))) (-369 |#2| |#3|) (-171) (-1222 |#2|)) (T -368))
+NIL
+(-10 -8 (-15 -2053 ((-679 |#2|) (-1246 |#1|))) (-15 -3331 (|#2| (-1246 |#1|))) (-15 -3997 (|#1| (-1246 |#2|) (-1246 |#1|))) (-15 -4205 ((-679 |#2|) (-1246 |#1|) (-1246 |#1|))) (-15 -4205 ((-1246 |#2|) |#1| (-1246 |#1|))) (-15 -2043 ((-679 |#2|) |#1| (-1246 |#1|))))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2053 (((-679 |#1|) (-1246 $)) 47)) (-1635 ((|#1| $) 53)) (-2089 (((-3 $ "failed") $ $) 19)) (-1816 (($) 17 T CONST)) (-3997 (($ (-1246 |#1|) (-1246 $)) 49)) (-2043 (((-679 |#1|) $ (-1246 $)) 54)) (-2588 (((-3 $ "failed") $) 33)) (-3833 (((-911)) 55)) (-2035 (((-112) $) 31)) (-2615 ((|#1| $) 52)) (-2681 ((|#2| $) 45 (|has| |#1| (-362)))) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3331 ((|#1| (-1246 $)) 48)) (-4205 (((-1246 |#1|) $ (-1246 $)) 51) (((-679 |#1|) (-1246 $) (-1246 $)) 50)) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ |#1|) 38)) (-3698 (((-3 $ "failed") $) 44 (|has| |#1| (-144)))) (-2363 ((|#2| $) 46)) (-2542 (((-762)) 28)) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1683 (((-112) $ $) 6)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
+(((-369 |#1| |#2|) (-139) (-171) (-1222 |t#1|)) (T -369))
+((-3833 (*1 *2) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1222 *3)) (-5 *2 (-911)))) (-2043 (*1 *2 *1 *3) (-12 (-5 *3 (-1246 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171)) (-4 *5 (-1222 *4)) (-5 *2 (-679 *4)))) (-1635 (*1 *2 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1222 *2)) (-4 *2 (-171)))) (-2615 (*1 *2 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1222 *2)) (-4 *2 (-171)))) (-4205 (*1 *2 *1 *3) (-12 (-5 *3 (-1246 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171)) (-4 *5 (-1222 *4)) (-5 *2 (-1246 *4)))) (-4205 (*1 *2 *3 *3) (-12 (-5 *3 (-1246 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171)) (-4 *5 (-1222 *4)) (-5 *2 (-679 *4)))) (-3997 (*1 *1 *2 *3) (-12 (-5 *2 (-1246 *4)) (-5 *3 (-1246 *1)) (-4 *4 (-171)) (-4 *1 (-369 *4 *5)) (-4 *5 (-1222 *4)))) (-3331 (*1 *2 *3) (-12 (-5 *3 (-1246 *1)) (-4 *1 (-369 *2 *4)) (-4 *4 (-1222 *2)) (-4 *2 (-171)))) (-2053 (*1 *2 *3) (-12 (-5 *3 (-1246 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171)) (-4 *5 (-1222 *4)) (-5 *2 (-679 *4)))) (-2363 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1222 *3)))) (-2681 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-171)) (-4 *3 (-362)) (-4 *2 (-1222 *3)))))
+(-13 (-38 |t#1|) (-10 -8 (-15 -3833 ((-911))) (-15 -2043 ((-679 |t#1|) $ (-1246 $))) (-15 -1635 (|t#1| $)) (-15 -2615 (|t#1| $)) (-15 -4205 ((-1246 |t#1|) $ (-1246 $))) (-15 -4205 ((-679 |t#1|) (-1246 $) (-1246 $))) (-15 -3997 ($ (-1246 |t#1|) (-1246 $))) (-15 -3331 (|t#1| (-1246 $))) (-15 -2053 ((-679 |t#1|) (-1246 $))) (-15 -2363 (|t#2| $)) (IF (|has| |t#1| (-362)) (-15 -2681 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-608 (-558)) . T) ((-608 |#1|) . T) ((-605 (-853)) . T) ((-638 |#1|) . T) ((-638 $) . T) ((-708 |#1|) . T) ((-717) . T) ((-1045 |#1|) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
+((-2756 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-3048 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-3167 ((|#4| (-1 |#3| |#1|) |#2|) 21)))
+(((-370 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3167 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3048 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2756 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1200) (-372 |#1|) (-1200) (-372 |#3|)) (T -370))
+((-2756 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1200)) (-4 *5 (-1200)) (-4 *2 (-372 *5)) (-5 *1 (-370 *6 *4 *5 *2)) (-4 *4 (-372 *6)))) (-3048 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1200)) (-4 *2 (-1200)) (-5 *1 (-370 *5 *4 *2 *6)) (-4 *4 (-372 *5)) (-4 *6 (-372 *2)))) (-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1200)) (-4 *6 (-1200)) (-4 *2 (-372 *6)) (-5 *1 (-370 *5 *4 *6 *2)) (-4 *4 (-372 *5)))))
+(-10 -7 (-15 -3167 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3048 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2756 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-1538 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-2763 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-2376 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-4127 (($ $) 25)) (-1517 (((-558) (-1 (-112) |#2|) $) NIL) (((-558) |#2| $) 11) (((-558) |#2| $ (-558)) NIL)) (-1677 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
+(((-371 |#1| |#2|) (-10 -8 (-15 -2763 (|#1| |#1|)) (-15 -2763 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1538 ((-112) |#1|)) (-15 -2376 (|#1| |#1|)) (-15 -1677 (|#1| |#1| |#1|)) (-15 -1517 ((-558) |#2| |#1| (-558))) (-15 -1517 ((-558) |#2| |#1|)) (-15 -1517 ((-558) (-1 (-112) |#2|) |#1|)) (-15 -1538 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2376 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4127 (|#1| |#1|)) (-15 -1677 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-372 |#2|) (-1200)) (T -371))
+NIL
+(-10 -8 (-15 -2763 (|#1| |#1|)) (-15 -2763 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1538 ((-112) |#1|)) (-15 -2376 (|#1| |#1|)) (-15 -1677 (|#1| |#1| |#1|)) (-15 -1517 ((-558) |#2| |#1| (-558))) (-15 -1517 ((-558) |#2| |#1|)) (-15 -1517 ((-558) (-1 (-112) |#2|) |#1|)) (-15 -1538 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2376 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4127 (|#1| |#1|)) (-15 -1677 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)))
+((-3207 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-3869 (((-1251) $ (-558) (-558)) 40 (|has| $ (-6 -4383)))) (-1538 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-841)))) (-2763 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4383))) (($ $) 88 (-12 (|has| |#1| (-841)) (|has| $ (-6 -4383))))) (-2376 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-841)))) (-3026 (((-112) $ (-762)) 8)) (-1532 ((|#1| $ (-558) |#1|) 52 (|has| $ (-6 -4383))) ((|#1| $ (-1213 (-558)) |#1|) 58 (|has| $ (-6 -4383)))) (-4329 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4382)))) (-1816 (($) 7 T CONST)) (-3306 (($ $) 90 (|has| $ (-6 -4383)))) (-4127 (($ $) 100)) (-2338 (($ $) 78 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1539 (($ |#1| $) 77 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4382)))) (-3048 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4382))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4382)))) (-1817 ((|#1| $ (-558) |#1|) 53 (|has| $ (-6 -4383)))) (-1746 ((|#1| $ (-558)) 51)) (-1517 (((-558) (-1 (-112) |#1|) $) 97) (((-558) |#1| $) 96 (|has| |#1| (-1087))) (((-558) |#1| $ (-558)) 95 (|has| |#1| (-1087)))) (-2240 (((-635 |#1|) $) 30 (|has| $ (-6 -4382)))) (-3315 (($ (-762) |#1|) 69)) (-2986 (((-112) $ (-762)) 9)) (-3889 (((-558) $) 43 (|has| (-558) (-841)))) (-3910 (($ $ $) 87 (|has| |#1| (-841)))) (-1677 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-841)))) (-2122 (((-635 |#1|) $) 29 (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-3899 (((-558) $) 44 (|has| (-558) (-841)))) (-3542 (($ $ $) 86 (|has| |#1| (-841)))) (-1807 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2953 (((-112) $ (-762)) 10)) (-4310 (((-1145) $) 22 (|has| |#1| (-1087)))) (-1861 (($ |#1| $ (-558)) 60) (($ $ $ (-558)) 59)) (-3920 (((-635 (-558)) $) 46)) (-3929 (((-112) (-558) $) 47)) (-2975 (((-1107) $) 21 (|has| |#1| (-1087)))) (-2305 ((|#1| $) 42 (|has| (-558) (-841)))) (-4307 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3880 (($ $ |#1|) 41 (|has| $ (-6 -4383)))) (-3266 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) 14)) (-3908 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3937 (((-635 |#1|) $) 48)) (-3375 (((-112) $) 11)) (-2083 (($) 12)) (-2195 ((|#1| $ (-558) |#1|) 50) ((|#1| $ (-558)) 49) (($ $ (-1213 (-558))) 63)) (-4023 (($ $ (-558)) 62) (($ $ (-1213 (-558))) 61)) (-2988 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4382))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-2773 (($ $ $ (-558)) 91 (|has| $ (-6 -4383)))) (-1553 (($ $) 13)) (-3224 (((-534) $) 79 (|has| |#1| (-606 (-534))))) (-3233 (($ (-635 |#1|)) 70)) (-4341 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-635 $)) 65)) (-3220 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-3277 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4382)))) (-1747 (((-112) $ $) 84 (|has| |#1| (-841)))) (-1720 (((-112) $ $) 83 (|has| |#1| (-841)))) (-1683 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-1731 (((-112) $ $) 85 (|has| |#1| (-841)))) (-1705 (((-112) $ $) 82 (|has| |#1| (-841)))) (-2755 (((-762) $) 6 (|has| $ (-6 -4382)))))
+(((-372 |#1|) (-139) (-1200)) (T -372))
+((-1677 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-372 *3)) (-4 *3 (-1200)))) (-4127 (*1 *1 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-1200)))) (-2376 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-372 *3)) (-4 *3 (-1200)))) (-1538 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-372 *4)) (-4 *4 (-1200)) (-5 *2 (-112)))) (-1517 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-372 *4)) (-4 *4 (-1200)) (-5 *2 (-558)))) (-1517 (*1 *2 *3 *1) (-12 (-4 *1 (-372 *3)) (-4 *3 (-1200)) (-4 *3 (-1087)) (-5 *2 (-558)))) (-1517 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-372 *3)) (-4 *3 (-1200)) (-4 *3 (-1087)))) (-1677 (*1 *1 *1 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-1200)) (-4 *2 (-841)))) (-2376 (*1 *1 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-1200)) (-4 *2 (-841)))) (-1538 (*1 *2 *1) (-12 (-4 *1 (-372 *3)) (-4 *3 (-1200)) (-4 *3 (-841)) (-5 *2 (-112)))) (-2773 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-558)) (|has| *1 (-6 -4383)) (-4 *1 (-372 *3)) (-4 *3 (-1200)))) (-3306 (*1 *1 *1) (-12 (|has| *1 (-6 -4383)) (-4 *1 (-372 *2)) (-4 *2 (-1200)))) (-2763 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4383)) (-4 *1 (-372 *3)) (-4 *3 (-1200)))) (-2763 (*1 *1 *1) (-12 (|has| *1 (-6 -4383)) (-4 *1 (-372 *2)) (-4 *2 (-1200)) (-4 *2 (-841)))))
+(-13 (-641 |t#1|) (-10 -8 (-6 -4382) (-15 -1677 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -4127 ($ $)) (-15 -2376 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -1538 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -1517 ((-558) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1087)) (PROGN (-15 -1517 ((-558) |t#1| $)) (-15 -1517 ((-558) |t#1| $ (-558)))) |%noBranch|) (IF (|has| |t#1| (-841)) (PROGN (-6 (-841)) (-15 -1677 ($ $ $)) (-15 -2376 ($ $)) (-15 -1538 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4383)) (PROGN (-15 -2773 ($ $ $ (-558))) (-15 -3306 ($ $)) (-15 -2763 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-841)) (-15 -2763 ($ $)) |%noBranch|)) |%noBranch|)))
+(((-34) . T) ((-102) -3998 (|has| |#1| (-1087)) (|has| |#1| (-841))) ((-605 (-853)) -3998 (|has| |#1| (-1087)) (|has| |#1| (-841)) (|has| |#1| (-605 (-853)))) ((-150 |#1|) . T) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-285 #0=(-558) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-596 #0# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-641 |#1|) . T) ((-841) |has| |#1| (-841)) ((-1087) -3998 (|has| |#1| (-1087)) (|has| |#1| (-841))) ((-1200) . T))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-3712 (((-635 |#1|) $) 32)) (-4311 (($ $ (-762)) 33)) (-2089 (((-3 $ "failed") $ $) 19)) (-1816 (($) 17 T CONST)) (-4249 (((-1270 |#1| |#2|) (-1270 |#1| |#2|) $) 36)) (-4227 (($ $) 34)) (-4260 (((-1270 |#1| |#2|) (-1270 |#1| |#2|) $) 37)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-2554 (($ $ |#1| $) 31) (($ $ (-635 |#1|) (-635 $)) 30)) (-4323 (((-762) $) 38)) (-3233 (($ $ $) 29)) (-3220 (((-853) $) 11) (($ |#1|) 41) (((-1261 |#1| |#2|) $) 40) (((-1270 |#1| |#2|) $) 39)) (-2023 ((|#2| (-1270 |#1| |#2|) $) 42)) (-2131 (($) 18 T CONST)) (-1549 (($ (-662 |#1|)) 35)) (-1683 (((-112) $ $) 6)) (-1810 (($ $ |#2|) 28 (|has| |#2| (-362)))) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26)))
+(((-373 |#1| |#2|) (-139) (-841) (-171)) (T -373))
+((-2023 (*1 *2 *3 *1) (-12 (-5 *3 (-1270 *4 *2)) (-4 *1 (-373 *4 *2)) (-4 *4 (-841)) (-4 *2 (-171)))) (-3220 (*1 *1 *2) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-841)) (-4 *3 (-171)))) (-3220 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-841)) (-4 *4 (-171)) (-5 *2 (-1261 *3 *4)))) (-3220 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-841)) (-4 *4 (-171)) (-5 *2 (-1270 *3 *4)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-841)) (-4 *4 (-171)) (-5 *2 (-762)))) (-4260 (*1 *2 *2 *1) (-12 (-5 *2 (-1270 *3 *4)) (-4 *1 (-373 *3 *4)) (-4 *3 (-841)) (-4 *4 (-171)))) (-4249 (*1 *2 *2 *1) (-12 (-5 *2 (-1270 *3 *4)) (-4 *1 (-373 *3 *4)) (-4 *3 (-841)) (-4 *4 (-171)))) (-1549 (*1 *1 *2) (-12 (-5 *2 (-662 *3)) (-4 *3 (-841)) (-4 *1 (-373 *3 *4)) (-4 *4 (-171)))) (-4227 (*1 *1 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-841)) (-4 *3 (-171)))) (-4311 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *1 (-373 *3 *4)) (-4 *3 (-841)) (-4 *4 (-171)))) (-3712 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-841)) (-4 *4 (-171)) (-5 *2 (-635 *3)))) (-2554 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-841)) (-4 *3 (-171)))) (-2554 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 *4)) (-5 *3 (-635 *1)) (-4 *1 (-373 *4 *5)) (-4 *4 (-841)) (-4 *5 (-171)))))
+(-13 (-626 |t#2|) (-10 -8 (-15 -2023 (|t#2| (-1270 |t#1| |t#2|) $)) (-15 -3220 ($ |t#1|)) (-15 -3220 ((-1261 |t#1| |t#2|) $)) (-15 -3220 ((-1270 |t#1| |t#2|) $)) (-15 -4323 ((-762) $)) (-15 -4260 ((-1270 |t#1| |t#2|) (-1270 |t#1| |t#2|) $)) (-15 -4249 ((-1270 |t#1| |t#2|) (-1270 |t#1| |t#2|) $)) (-15 -1549 ($ (-662 |t#1|))) (-15 -4227 ($ $)) (-15 -4311 ($ $ (-762))) (-15 -3712 ((-635 |t#1|) $)) (-15 -2554 ($ $ |t#1| $)) (-15 -2554 ($ $ (-635 |t#1|) (-635 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-605 (-853)) . T) ((-638 |#2|) . T) ((-626 |#2|) . T) ((-708 |#2|) . T) ((-1045 |#2|) . T) ((-1087) . T))
+((-1579 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 23)) (-1559 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-1569 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 22)))
+(((-374 |#1| |#2|) (-10 -7 (-15 -1559 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1569 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1579 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1200) (-13 (-372 |#1|) (-10 -7 (-6 -4383)))) (T -374))
+((-1579 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1200)) (-5 *1 (-374 *4 *2)) (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4383)))))) (-1569 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1200)) (-5 *1 (-374 *4 *2)) (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4383)))))) (-1559 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1200)) (-5 *1 (-374 *4 *2)) (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4383)))))))
+(-10 -7 (-15 -1559 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1569 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1579 (|#2| (-1 (-112) |#1| |#1|) |#2|)))
+((-3216 (((-679 |#2|) (-679 $)) NIL) (((-2 (|:| -3683 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 $) (-1246 $)) NIL) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) 22) (((-679 (-558)) (-679 $)) 14)))
+(((-375 |#1| |#2|) (-10 -8 (-15 -3216 ((-679 (-558)) (-679 |#1|))) (-15 -3216 ((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 |#1|) (-1246 |#1|))) (-15 -3216 ((-2 (|:| -3683 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 |#1|) (-1246 |#1|))) (-15 -3216 ((-679 |#2|) (-679 |#1|)))) (-376 |#2|) (-1039)) (T -375))
+NIL
+(-10 -8 (-15 -3216 ((-679 (-558)) (-679 |#1|))) (-15 -3216 ((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 |#1|) (-1246 |#1|))) (-15 -3216 ((-2 (|:| -3683 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 |#1|) (-1246 |#1|))) (-15 -3216 ((-679 |#2|) (-679 |#1|))))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2089 (((-3 $ "failed") $ $) 19)) (-1816 (($) 17 T CONST)) (-3216 (((-679 |#1|) (-679 $)) 36) (((-2 (|:| -3683 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) 35) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) 43 (|has| |#1| (-631 (-558)))) (((-679 (-558)) (-679 $)) 42 (|has| |#1| (-631 (-558))))) (-2588 (((-3 $ "failed") $) 33)) (-2035 (((-112) $) 31)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11) (($ (-558)) 29)) (-2542 (((-762)) 28)) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1683 (((-112) $ $) 6)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24)))
+(((-376 |#1|) (-139) (-1039)) (T -376))
+NIL
+(-13 (-631 |t#1|) (-10 -7 (IF (|has| |t#1| (-631 (-558))) (-6 (-631 (-558))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-558)) . T) ((-605 (-853)) . T) ((-638 $) . T) ((-631 (-558)) |has| |#1| (-631 (-558))) ((-631 |#1|) . T) ((-717) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
+((-1668 (((-635 (-293 (-942 (-168 |#1|)))) (-293 (-406 (-942 (-168 (-558))))) |#1|) 51) (((-635 (-293 (-942 (-168 |#1|)))) (-406 (-942 (-168 (-558)))) |#1|) 50) (((-635 (-635 (-293 (-942 (-168 |#1|))))) (-635 (-293 (-406 (-942 (-168 (-558)))))) |#1|) 47) (((-635 (-635 (-293 (-942 (-168 |#1|))))) (-635 (-406 (-942 (-168 (-558))))) |#1|) 41)) (-1680 (((-635 (-635 (-168 |#1|))) (-635 (-406 (-942 (-168 (-558))))) (-635 (-1163)) |#1|) 30) (((-635 (-168 |#1|)) (-406 (-942 (-168 (-558)))) |#1|) 18)))
+(((-377 |#1|) (-10 -7 (-15 -1668 ((-635 (-635 (-293 (-942 (-168 |#1|))))) (-635 (-406 (-942 (-168 (-558))))) |#1|)) (-15 -1668 ((-635 (-635 (-293 (-942 (-168 |#1|))))) (-635 (-293 (-406 (-942 (-168 (-558)))))) |#1|)) (-15 -1668 ((-635 (-293 (-942 (-168 |#1|)))) (-406 (-942 (-168 (-558)))) |#1|)) (-15 -1668 ((-635 (-293 (-942 (-168 |#1|)))) (-293 (-406 (-942 (-168 (-558))))) |#1|)) (-15 -1680 ((-635 (-168 |#1|)) (-406 (-942 (-168 (-558)))) |#1|)) (-15 -1680 ((-635 (-635 (-168 |#1|))) (-635 (-406 (-942 (-168 (-558))))) (-635 (-1163)) |#1|))) (-13 (-362) (-839))) (T -377))
+((-1680 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 (-406 (-942 (-168 (-558)))))) (-5 *4 (-635 (-1163))) (-5 *2 (-635 (-635 (-168 *5)))) (-5 *1 (-377 *5)) (-4 *5 (-13 (-362) (-839))))) (-1680 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-942 (-168 (-558))))) (-5 *2 (-635 (-168 *4))) (-5 *1 (-377 *4)) (-4 *4 (-13 (-362) (-839))))) (-1668 (*1 *2 *3 *4) (-12 (-5 *3 (-293 (-406 (-942 (-168 (-558)))))) (-5 *2 (-635 (-293 (-942 (-168 *4))))) (-5 *1 (-377 *4)) (-4 *4 (-13 (-362) (-839))))) (-1668 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-942 (-168 (-558))))) (-5 *2 (-635 (-293 (-942 (-168 *4))))) (-5 *1 (-377 *4)) (-4 *4 (-13 (-362) (-839))))) (-1668 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-293 (-406 (-942 (-168 (-558))))))) (-5 *2 (-635 (-635 (-293 (-942 (-168 *4)))))) (-5 *1 (-377 *4)) (-4 *4 (-13 (-362) (-839))))) (-1668 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-406 (-942 (-168 (-558)))))) (-5 *2 (-635 (-635 (-293 (-942 (-168 *4)))))) (-5 *1 (-377 *4)) (-4 *4 (-13 (-362) (-839))))))
+(-10 -7 (-15 -1668 ((-635 (-635 (-293 (-942 (-168 |#1|))))) (-635 (-406 (-942 (-168 (-558))))) |#1|)) (-15 -1668 ((-635 (-635 (-293 (-942 (-168 |#1|))))) (-635 (-293 (-406 (-942 (-168 (-558)))))) |#1|)) (-15 -1668 ((-635 (-293 (-942 (-168 |#1|)))) (-406 (-942 (-168 (-558)))) |#1|)) (-15 -1668 ((-635 (-293 (-942 (-168 |#1|)))) (-293 (-406 (-942 (-168 (-558))))) |#1|)) (-15 -1680 ((-635 (-168 |#1|)) (-406 (-942 (-168 (-558)))) |#1|)) (-15 -1680 ((-635 (-635 (-168 |#1|))) (-635 (-406 (-942 (-168 (-558))))) (-635 (-1163)) |#1|)))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) 33)) (-2582 (((-558) $) 55)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL)) (-1881 (($ $) NIL)) (-1857 (((-112) $) NIL)) (-3440 (($ $) 110)) (-4088 (($ $) 82)) (-2135 (($ $) 71)) (-2089 (((-3 $ "failed") $ $) NIL)) (-3465 (($ $) NIL)) (-1380 (((-417 $) $) NIL)) (-2534 (($ $) 44)) (-3732 (((-112) $ $) NIL)) (-4070 (($ $) 80)) (-2112 (($ $) 69)) (-1397 (((-558) $) 64)) (-1672 (($ $ (-558)) 62)) (-4113 (($ $) NIL)) (-2156 (($ $) NIL)) (-1816 (($) NIL T CONST)) (-2553 (($ $) 112)) (-3069 (((-3 (-558) "failed") $) 188) (((-3 (-406 (-558)) "failed") $) 184)) (-1863 (((-558) $) 186) (((-406 (-558)) $) 182)) (-4025 (($ $ $) NIL)) (-1658 (((-558) $ $) 102)) (-2588 (((-3 $ "failed") $) 114)) (-1648 (((-406 (-558)) $ (-762)) 189) (((-406 (-558)) $ (-762) (-762)) 181)) (-4004 (($ $ $) NIL)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL)) (-3031 (((-112) $) NIL)) (-2566 (((-911)) 73) (((-911) (-911)) 98 (|has| $ (-6 -4373)))) (-2045 (((-112) $) 106)) (-1904 (($) 40)) (-2269 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL)) (-1590 (((-1251) (-762)) 151)) (-1599 (((-1251)) 156) (((-1251) (-762)) 157)) (-1622 (((-1251)) 158) (((-1251) (-762)) 159)) (-1609 (((-1251)) 154) (((-1251) (-762)) 155)) (-3449 (((-558) $) 58)) (-2035 (((-112) $) 104)) (-3828 (($ $ (-558)) NIL)) (-2298 (($ $) 48)) (-2615 (($ $) NIL)) (-2055 (((-112) $) 35)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3910 (($ $ $) NIL) (($) NIL (-12 (-3304 (|has| $ (-6 -4365))) (-3304 (|has| $ (-6 -4373)))))) (-3542 (($ $ $) NIL) (($) 99 (-12 (-3304 (|has| $ (-6 -4365))) (-3304 (|has| $ (-6 -4373)))))) (-1973 (((-558) $) 17)) (-1639 (($) 87) (($ $) 92)) (-4150 (($) 91) (($ $) 93)) (-2592 (($ $) 83)) (-2665 (($ $ $) NIL) (($ (-635 $)) NIL)) (-4310 (((-1145) $) NIL)) (-2418 (($ $) 116)) (-1929 (((-911) (-558)) 43 (|has| $ (-6 -4373)))) (-2975 (((-1107) $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-2699 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2568 (($ $) 53)) (-2594 (($ $) 109)) (-2244 (($ (-558) (-558)) 107) (($ (-558) (-558) (-911)) 108)) (-2522 (((-417 $) $) NIL)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3983 (((-3 $ "failed") $ $) NIL)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1951 (((-558) $) 19)) (-1631 (($) 94)) (-2573 (($ $) 79)) (-3722 (((-762) $) NIL)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL)) (-2997 (((-911)) 100) (((-911) (-911)) 101 (|has| $ (-6 -4373)))) (-2829 (($ $ (-762)) NIL) (($ $) 115)) (-1918 (((-911) (-558)) 47 (|has| $ (-6 -4373)))) (-4124 (($ $) NIL)) (-2167 (($ $) NIL)) (-4102 (($ $) NIL)) (-2146 (($ $) NIL)) (-4080 (($ $) 81)) (-2124 (($ $) 70)) (-3224 (((-378) $) 174) (((-224) $) 176) (((-882 (-378)) $) NIL) (((-1145) $) 161) (((-534) $) 172) (($ (-224)) 180)) (-3220 (((-853) $) 163) (($ (-558)) 185) (($ $) NIL) (($ (-406 (-558))) NIL) (($ (-558)) 185) (($ (-406 (-558))) NIL) (((-224) $) 177)) (-2542 (((-762)) NIL)) (-2604 (($ $) 111)) (-1939 (((-911)) 54) (((-911) (-911)) 66 (|has| $ (-6 -4373)))) (-2579 (((-911)) 103)) (-4159 (($ $) 86)) (-2200 (($ $) 46) (($ $ $) 52)) (-1870 (((-112) $ $) NIL)) (-4135 (($ $) 84)) (-2178 (($ $) 37)) (-4184 (($ $) NIL)) (-2222 (($ $) NIL)) (-1878 (($ $) NIL)) (-4060 (($ $) NIL)) (-4171 (($ $) NIL)) (-2211 (($ $) NIL)) (-4147 (($ $) 85)) (-2189 (($ $) 49)) (-3190 (($ $) 51)) (-2131 (($) 34 T CONST)) (-2142 (($) 38 T CONST)) (-1338 (((-1145) $) 27) (((-1145) $ (-112)) 29) (((-1251) (-813) $) 30) (((-1251) (-813) $ (-112)) 31)) (-1866 (($ $ (-762)) NIL) (($ $) NIL)) (-1747 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1683 (((-112) $ $) 39)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 42)) (-1810 (($ $ $) 45) (($ $ (-558)) 41)) (-1798 (($ $) 36) (($ $ $) 50)) (-1784 (($ $ $) 61)) (** (($ $ (-911)) 67) (($ $ (-762)) NIL) (($ $ (-558)) 88) (($ $ (-406 (-558))) 125) (($ $ $) 117)) (* (($ (-911) $) 65) (($ (-762) $) NIL) (($ (-558) $) 68) (($ $ $) 60) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL)))
+(((-378) (-13 (-403) (-232) (-606 (-1145)) (-819) (-605 (-224)) (-1185) (-606 (-534)) (-610 (-224)) (-10 -8 (-15 -1810 ($ $ (-558))) (-15 ** ($ $ $)) (-15 -2298 ($ $)) (-15 -1658 ((-558) $ $)) (-15 -1672 ($ $ (-558))) (-15 -1648 ((-406 (-558)) $ (-762))) (-15 -1648 ((-406 (-558)) $ (-762) (-762))) (-15 -1639 ($)) (-15 -4150 ($)) (-15 -1631 ($)) (-15 -2200 ($ $ $)) (-15 -1639 ($ $)) (-15 -4150 ($ $)) (-15 -1622 ((-1251))) (-15 -1622 ((-1251) (-762))) (-15 -1609 ((-1251))) (-15 -1609 ((-1251) (-762))) (-15 -1599 ((-1251))) (-15 -1599 ((-1251) (-762))) (-15 -1590 ((-1251) (-762))) (-6 -4373) (-6 -4365)))) (T -378))
+((** (*1 *1 *1 *1) (-5 *1 (-378))) (-1810 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-378)))) (-2298 (*1 *1 *1) (-5 *1 (-378))) (-1658 (*1 *2 *1 *1) (-12 (-5 *2 (-558)) (-5 *1 (-378)))) (-1672 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-378)))) (-1648 (*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-5 *2 (-406 (-558))) (-5 *1 (-378)))) (-1648 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-762)) (-5 *2 (-406 (-558))) (-5 *1 (-378)))) (-1639 (*1 *1) (-5 *1 (-378))) (-4150 (*1 *1) (-5 *1 (-378))) (-1631 (*1 *1) (-5 *1 (-378))) (-2200 (*1 *1 *1 *1) (-5 *1 (-378))) (-1639 (*1 *1 *1) (-5 *1 (-378))) (-4150 (*1 *1 *1) (-5 *1 (-378))) (-1622 (*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-378)))) (-1622 (*1 *2 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1251)) (-5 *1 (-378)))) (-1609 (*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-378)))) (-1609 (*1 *2 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1251)) (-5 *1 (-378)))) (-1599 (*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-378)))) (-1599 (*1 *2 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1251)) (-5 *1 (-378)))) (-1590 (*1 *2 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1251)) (-5 *1 (-378)))))
+(-13 (-403) (-232) (-606 (-1145)) (-819) (-605 (-224)) (-1185) (-606 (-534)) (-610 (-224)) (-10 -8 (-15 -1810 ($ $ (-558))) (-15 ** ($ $ $)) (-15 -2298 ($ $)) (-15 -1658 ((-558) $ $)) (-15 -1672 ($ $ (-558))) (-15 -1648 ((-406 (-558)) $ (-762))) (-15 -1648 ((-406 (-558)) $ (-762) (-762))) (-15 -1639 ($)) (-15 -4150 ($)) (-15 -1631 ($)) (-15 -2200 ($ $ $)) (-15 -1639 ($ $)) (-15 -4150 ($ $)) (-15 -1622 ((-1251))) (-15 -1622 ((-1251) (-762))) (-15 -1609 ((-1251))) (-15 -1609 ((-1251) (-762))) (-15 -1599 ((-1251))) (-15 -1599 ((-1251) (-762))) (-15 -1590 ((-1251) (-762))) (-6 -4373) (-6 -4365)))
+((-2153 (((-635 (-293 (-942 |#1|))) (-293 (-406 (-942 (-558)))) |#1|) 46) (((-635 (-293 (-942 |#1|))) (-406 (-942 (-558))) |#1|) 45) (((-635 (-635 (-293 (-942 |#1|)))) (-635 (-293 (-406 (-942 (-558))))) |#1|) 42) (((-635 (-635 (-293 (-942 |#1|)))) (-635 (-406 (-942 (-558)))) |#1|) 36)) (-1691 (((-635 |#1|) (-406 (-942 (-558))) |#1|) 20) (((-635 (-635 |#1|)) (-635 (-406 (-942 (-558)))) (-635 (-1163)) |#1|) 30)))
+(((-379 |#1|) (-10 -7 (-15 -2153 ((-635 (-635 (-293 (-942 |#1|)))) (-635 (-406 (-942 (-558)))) |#1|)) (-15 -2153 ((-635 (-635 (-293 (-942 |#1|)))) (-635 (-293 (-406 (-942 (-558))))) |#1|)) (-15 -2153 ((-635 (-293 (-942 |#1|))) (-406 (-942 (-558))) |#1|)) (-15 -2153 ((-635 (-293 (-942 |#1|))) (-293 (-406 (-942 (-558)))) |#1|)) (-15 -1691 ((-635 (-635 |#1|)) (-635 (-406 (-942 (-558)))) (-635 (-1163)) |#1|)) (-15 -1691 ((-635 |#1|) (-406 (-942 (-558))) |#1|))) (-13 (-839) (-362))) (T -379))
+((-1691 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-942 (-558)))) (-5 *2 (-635 *4)) (-5 *1 (-379 *4)) (-4 *4 (-13 (-839) (-362))))) (-1691 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 (-406 (-942 (-558))))) (-5 *4 (-635 (-1163))) (-5 *2 (-635 (-635 *5))) (-5 *1 (-379 *5)) (-4 *5 (-13 (-839) (-362))))) (-2153 (*1 *2 *3 *4) (-12 (-5 *3 (-293 (-406 (-942 (-558))))) (-5 *2 (-635 (-293 (-942 *4)))) (-5 *1 (-379 *4)) (-4 *4 (-13 (-839) (-362))))) (-2153 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-942 (-558)))) (-5 *2 (-635 (-293 (-942 *4)))) (-5 *1 (-379 *4)) (-4 *4 (-13 (-839) (-362))))) (-2153 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-293 (-406 (-942 (-558)))))) (-5 *2 (-635 (-635 (-293 (-942 *4))))) (-5 *1 (-379 *4)) (-4 *4 (-13 (-839) (-362))))) (-2153 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-406 (-942 (-558))))) (-5 *2 (-635 (-635 (-293 (-942 *4))))) (-5 *1 (-379 *4)) (-4 *4 (-13 (-839) (-362))))))
+(-10 -7 (-15 -2153 ((-635 (-635 (-293 (-942 |#1|)))) (-635 (-406 (-942 (-558)))) |#1|)) (-15 -2153 ((-635 (-635 (-293 (-942 |#1|)))) (-635 (-293 (-406 (-942 (-558))))) |#1|)) (-15 -2153 ((-635 (-293 (-942 |#1|))) (-406 (-942 (-558))) |#1|)) (-15 -2153 ((-635 (-293 (-942 |#1|))) (-293 (-406 (-942 (-558)))) |#1|)) (-15 -1691 ((-635 (-635 |#1|)) (-635 (-406 (-942 (-558)))) (-635 (-1163)) |#1|)) (-15 -1691 ((-635 |#1|) (-406 (-942 (-558))) |#1|)))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-1816 (($) NIL T CONST)) (-3069 (((-3 |#2| "failed") $) 26)) (-1863 ((|#2| $) 28)) (-2490 (($ $) NIL)) (-2110 (((-762) $) 10)) (-2536 (((-635 $) $) 20)) (-4238 (((-112) $) NIL)) (-3918 (($ |#2| |#1|) 18)) (-3167 (($ (-1 |#1| |#1|) $) NIL)) (-1703 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-2451 ((|#2| $) 15)) (-2463 ((|#1| $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 44) (($ |#2|) 27)) (-2583 (((-635 |#1|) $) 17)) (-3736 ((|#1| $ |#2|) 46)) (-2131 (($) 29 T CONST)) (-3475 (((-635 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-1683 (((-112) $ $) NIL)) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 34) (($ |#2| |#1|) 35)))
+(((-380 |#1| |#2|) (-13 (-381 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1039) (-841)) (T -380))
+((* (*1 *1 *2 *3) (-12 (-5 *1 (-380 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-841)))))
+(-13 (-381 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|))))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2089 (((-3 $ "failed") $ $) 19)) (-1816 (($) 17 T CONST)) (-3069 (((-3 |#2| "failed") $) 44)) (-1863 ((|#2| $) 45)) (-2490 (($ $) 30)) (-2110 (((-762) $) 34)) (-2536 (((-635 $) $) 35)) (-4238 (((-112) $) 38)) (-3918 (($ |#2| |#1|) 39)) (-3167 (($ (-1 |#1| |#1|) $) 40)) (-1703 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-2451 ((|#2| $) 33)) (-2463 ((|#1| $) 32)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11) (($ |#2|) 43)) (-2583 (((-635 |#1|) $) 36)) (-3736 ((|#1| $ |#2|) 41)) (-2131 (($) 18 T CONST)) (-3475 (((-635 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-1683 (((-112) $ $) 6)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42)))
+(((-381 |#1| |#2|) (-139) (-1039) (-1087)) (T -381))
+((* (*1 *1 *2 *3) (-12 (-4 *1 (-381 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-1087)))) (-3736 (*1 *2 *1 *3) (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1087)) (-4 *2 (-1039)))) (-3167 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-381 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1087)))) (-3918 (*1 *1 *2 *3) (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-1087)))) (-4238 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1087)) (-5 *2 (-112)))) (-3475 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1087)) (-5 *2 (-635 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2583 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1087)) (-5 *2 (-635 *3)))) (-2536 (*1 *2 *1) (-12 (-4 *3 (-1039)) (-4 *4 (-1087)) (-5 *2 (-635 *1)) (-4 *1 (-381 *3 *4)))) (-2110 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1087)) (-5 *2 (-762)))) (-2451 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-1087)))) (-2463 (*1 *2 *1) (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1087)) (-4 *2 (-1039)))) (-1703 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1087)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-2490 (*1 *1 *1) (-12 (-4 *1 (-381 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-1087)))))
+(-13 (-111 |t#1| |t#1|) (-1028 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3736 (|t#1| $ |t#2|)) (-15 -3167 ($ (-1 |t#1| |t#1|) $)) (-15 -3918 ($ |t#2| |t#1|)) (-15 -4238 ((-112) $)) (-15 -3475 ((-635 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2583 ((-635 |t#1|) $)) (-15 -2536 ((-635 $) $)) (-15 -2110 ((-762) $)) (-15 -2451 (|t#2| $)) (-15 -2463 (|t#1| $)) (-15 -1703 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -2490 ($ $)) (IF (|has| |t#1| (-171)) (-6 (-708 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-608 |#2|) . T) ((-605 (-853)) . T) ((-638 |#1|) . T) ((-708 |#1|) |has| |#1| (-171)) ((-1028 |#2|) . T) ((-1045 |#1|) . T) ((-1087) . T))
+((-1325 (((-1251) $) 7)) (-3220 (((-853) $) 8) (($ (-679 (-689))) 14) (($ (-635 (-329))) 13) (($ (-329)) 12) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329))))) 11)))
+(((-382) (-139)) (T -382))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-679 (-689))) (-4 *1 (-382)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-4 *1 (-382)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-382)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329))))) (-4 *1 (-382)))))
+(-13 (-394) (-10 -8 (-15 -3220 ($ (-679 (-689)))) (-15 -3220 ($ (-635 (-329)))) (-15 -3220 ($ (-329))) (-15 -3220 ($ (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329))))))))
+(((-605 (-853)) . T) ((-394) . T) ((-1200) . T))
+((-3069 (((-3 $ "failed") (-679 (-315 (-378)))) 21) (((-3 $ "failed") (-679 (-315 (-558)))) 19) (((-3 $ "failed") (-679 (-942 (-378)))) 17) (((-3 $ "failed") (-679 (-942 (-558)))) 15) (((-3 $ "failed") (-679 (-406 (-942 (-378))))) 13) (((-3 $ "failed") (-679 (-406 (-942 (-558))))) 11)) (-1863 (($ (-679 (-315 (-378)))) 22) (($ (-679 (-315 (-558)))) 20) (($ (-679 (-942 (-378)))) 18) (($ (-679 (-942 (-558)))) 16) (($ (-679 (-406 (-942 (-378))))) 14) (($ (-679 (-406 (-942 (-558))))) 12)) (-1325 (((-1251) $) 7)) (-3220 (((-853) $) 8) (($ (-635 (-329))) 25) (($ (-329)) 24) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329))))) 23)))
+(((-383) (-139)) (T -383))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-4 *1 (-383)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-383)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329))))) (-4 *1 (-383)))) (-1863 (*1 *1 *2) (-12 (-5 *2 (-679 (-315 (-378)))) (-4 *1 (-383)))) (-3069 (*1 *1 *2) (|partial| -12 (-5 *2 (-679 (-315 (-378)))) (-4 *1 (-383)))) (-1863 (*1 *1 *2) (-12 (-5 *2 (-679 (-315 (-558)))) (-4 *1 (-383)))) (-3069 (*1 *1 *2) (|partial| -12 (-5 *2 (-679 (-315 (-558)))) (-4 *1 (-383)))) (-1863 (*1 *1 *2) (-12 (-5 *2 (-679 (-942 (-378)))) (-4 *1 (-383)))) (-3069 (*1 *1 *2) (|partial| -12 (-5 *2 (-679 (-942 (-378)))) (-4 *1 (-383)))) (-1863 (*1 *1 *2) (-12 (-5 *2 (-679 (-942 (-558)))) (-4 *1 (-383)))) (-3069 (*1 *1 *2) (|partial| -12 (-5 *2 (-679 (-942 (-558)))) (-4 *1 (-383)))) (-1863 (*1 *1 *2) (-12 (-5 *2 (-679 (-406 (-942 (-378))))) (-4 *1 (-383)))) (-3069 (*1 *1 *2) (|partial| -12 (-5 *2 (-679 (-406 (-942 (-378))))) (-4 *1 (-383)))) (-1863 (*1 *1 *2) (-12 (-5 *2 (-679 (-406 (-942 (-558))))) (-4 *1 (-383)))) (-3069 (*1 *1 *2) (|partial| -12 (-5 *2 (-679 (-406 (-942 (-558))))) (-4 *1 (-383)))))
+(-13 (-394) (-10 -8 (-15 -3220 ($ (-635 (-329)))) (-15 -3220 ($ (-329))) (-15 -3220 ($ (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329)))))) (-15 -1863 ($ (-679 (-315 (-378))))) (-15 -3069 ((-3 $ "failed") (-679 (-315 (-378))))) (-15 -1863 ($ (-679 (-315 (-558))))) (-15 -3069 ((-3 $ "failed") (-679 (-315 (-558))))) (-15 -1863 ($ (-679 (-942 (-378))))) (-15 -3069 ((-3 $ "failed") (-679 (-942 (-378))))) (-15 -1863 ($ (-679 (-942 (-558))))) (-15 -3069 ((-3 $ "failed") (-679 (-942 (-558))))) (-15 -1863 ($ (-679 (-406 (-942 (-378)))))) (-15 -3069 ((-3 $ "failed") (-679 (-406 (-942 (-378)))))) (-15 -1863 ($ (-679 (-406 (-942 (-558)))))) (-15 -3069 ((-3 $ "failed") (-679 (-406 (-942 (-558))))))))
+(((-605 (-853)) . T) ((-394) . T) ((-1200) . T))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-1816 (($) NIL T CONST)) (-2490 (($ $) NIL)) (-2648 (($ |#1| |#2|) NIL)) (-3167 (($ (-1 |#1| |#1|) $) NIL)) (-2408 ((|#2| $) NIL)) (-2463 ((|#1| $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 28)) (-2131 (($) 12 T CONST)) (-1683 (((-112) $ $) NIL)) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19)))
+(((-384 |#1| |#2|) (-13 (-111 |#1| |#1|) (-507 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-171)) (-6 (-708 |#1|)) |%noBranch|))) (-1039) (-841)) (T -384))
+NIL
+(-13 (-111 |#1| |#1|) (-507 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-171)) (-6 (-708 |#1|)) |%noBranch|)))
+((-3207 (((-112) $ $) NIL)) (-2276 (((-762) $) 58)) (-1816 (($) NIL T CONST)) (-4249 (((-3 $ "failed") $ $) 60)) (-3069 (((-3 |#1| "failed") $) NIL)) (-1863 ((|#1| $) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-1883 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 52)) (-2035 (((-112) $) 15)) (-1859 ((|#1| $ (-558)) NIL)) (-1872 (((-762) $ (-558)) NIL)) (-3910 (($ $ $) NIL (|has| |#1| (-841)))) (-3542 (($ $ $) NIL (|has| |#1| (-841)))) (-3241 (($ (-1 |#1| |#1|) $) 38)) (-3251 (($ (-1 (-762) (-762)) $) 35)) (-4260 (((-3 $ "failed") $ $) 49)) (-4310 (((-1145) $) NIL)) (-1893 (($ $ $) 26)) (-1902 (($ $ $) 24)) (-2975 (((-1107) $) NIL)) (-1849 (((-635 (-2 (|:| |gen| |#1|) (|:| -2573 (-762)))) $) 32)) (-1901 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 55)) (-3220 (((-853) $) 22) (($ |#1|) NIL)) (-2142 (($) 9 T CONST)) (-1747 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1683 (((-112) $ $) 41)) (-1731 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1705 (((-112) $ $) 62 (|has| |#1| (-841)))) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ |#1| (-762)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28)))
+(((-385 |#1|) (-13 (-717) (-1028 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-762))) (-15 -1902 ($ $ $)) (-15 -1893 ($ $ $)) (-15 -4260 ((-3 $ "failed") $ $)) (-15 -4249 ((-3 $ "failed") $ $)) (-15 -1901 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1883 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2276 ((-762) $)) (-15 -1849 ((-635 (-2 (|:| |gen| |#1|) (|:| -2573 (-762)))) $)) (-15 -1872 ((-762) $ (-558))) (-15 -1859 (|#1| $ (-558))) (-15 -3251 ($ (-1 (-762) (-762)) $)) (-15 -3241 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-841)) (-6 (-841)) |%noBranch|))) (-1087)) (T -385))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1087)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1087)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-762)) (-5 *1 (-385 *2)) (-4 *2 (-1087)))) (-1902 (*1 *1 *1 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1087)))) (-1893 (*1 *1 *1 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1087)))) (-4260 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-385 *2)) (-4 *2 (-1087)))) (-4249 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-385 *2)) (-4 *2 (-1087)))) (-1901 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-385 *3)) (|:| |rm| (-385 *3)))) (-5 *1 (-385 *3)) (-4 *3 (-1087)))) (-1883 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-385 *3)) (|:| |mm| (-385 *3)) (|:| |rm| (-385 *3)))) (-5 *1 (-385 *3)) (-4 *3 (-1087)))) (-2276 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-385 *3)) (-4 *3 (-1087)))) (-1849 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -2573 (-762))))) (-5 *1 (-385 *3)) (-4 *3 (-1087)))) (-1872 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *2 (-762)) (-5 *1 (-385 *4)) (-4 *4 (-1087)))) (-1859 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *1 (-385 *2)) (-4 *2 (-1087)))) (-3251 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-762) (-762))) (-5 *1 (-385 *3)) (-4 *3 (-1087)))) (-3241 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1087)) (-5 *1 (-385 *3)))))
+(-13 (-717) (-1028 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-762))) (-15 -1902 ($ $ $)) (-15 -1893 ($ $ $)) (-15 -4260 ((-3 $ "failed") $ $)) (-15 -4249 ((-3 $ "failed") $ $)) (-15 -1901 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1883 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2276 ((-762) $)) (-15 -1849 ((-635 (-2 (|:| |gen| |#1|) (|:| -2573 (-762)))) $)) (-15 -1872 ((-762) $ (-558))) (-15 -1859 (|#1| $ (-558))) (-15 -3251 ($ (-1 (-762) (-762)) $)) (-15 -3241 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-841)) (-6 (-841)) |%noBranch|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 42)) (-1881 (($ $) 41)) (-1857 (((-112) $) 39)) (-2089 (((-3 $ "failed") $ $) 19)) (-1816 (($) 17 T CONST)) (-3069 (((-3 (-558) "failed") $) 48)) (-1863 (((-558) $) 49)) (-2588 (((-3 $ "failed") $) 33)) (-2035 (((-112) $) 31)) (-3910 (($ $ $) 55)) (-3542 (($ $ $) 54)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3983 (((-3 $ "failed") $ $) 43)) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ $) 44) (($ (-558)) 47)) (-2542 (((-762)) 28)) (-1870 (((-112) $ $) 40)) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1747 (((-112) $ $) 52)) (-1720 (((-112) $ $) 51)) (-1683 (((-112) $ $) 6)) (-1731 (((-112) $ $) 53)) (-1705 (((-112) $ $) 50)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24)))
+(((-386) (-139)) (T -386))
+NIL
+(-13 (-550) (-841) (-1028 (-558)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-608 (-558)) . T) ((-608 $) . T) ((-605 (-853)) . T) ((-171) . T) ((-289) . T) ((-550) . T) ((-638 $) . T) ((-708 $) . T) ((-717) . T) ((-841) . T) ((-1028 (-558)) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
+((-3207 (((-112) $ $) NIL)) (-1717 (((-112) $) 20)) (-1729 (((-112) $) 19)) (-3315 (($ (-1145) (-1145) (-1145)) 21)) (-1323 (((-1145) $) 16)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-2721 (($ (-1145) (-1145) (-1145)) 14)) (-1756 (((-1145) $) 17)) (-1743 (((-112) $) 18)) (-3702 (((-1145) $) 15)) (-3220 (((-853) $) 12) (($ (-1145)) 13) (((-1145) $) 9)) (-1683 (((-112) $ $) 7)))
+(((-387) (-388)) (T -387))
+NIL
+(-388)
+((-3207 (((-112) $ $) 7)) (-1717 (((-112) $) 16)) (-1729 (((-112) $) 17)) (-3315 (($ (-1145) (-1145) (-1145)) 15)) (-1323 (((-1145) $) 20)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-2721 (($ (-1145) (-1145) (-1145)) 22)) (-1756 (((-1145) $) 19)) (-1743 (((-112) $) 18)) (-3702 (((-1145) $) 21)) (-3220 (((-853) $) 11) (($ (-1145)) 24) (((-1145) $) 23)) (-1683 (((-112) $ $) 6)))
+(((-388) (-139)) (T -388))
+((-2721 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1145)) (-4 *1 (-388)))) (-3702 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1145)))) (-1323 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1145)))) (-1756 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1145)))) (-1743 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112)))) (-1729 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112)))) (-1717 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112)))) (-3315 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1145)) (-4 *1 (-388)))))
+(-13 (-1087) (-488 (-1145)) (-10 -8 (-15 -2721 ($ (-1145) (-1145) (-1145))) (-15 -3702 ((-1145) $)) (-15 -1323 ((-1145) $)) (-15 -1756 ((-1145) $)) (-15 -1743 ((-112) $)) (-15 -1729 ((-112) $)) (-15 -1717 ((-112) $)) (-15 -3315 ($ (-1145) (-1145) (-1145)))))
+(((-102) . T) ((-608 #0=(-1145)) . T) ((-605 (-853)) . T) ((-605 #0#) . T) ((-488 #0#) . T) ((-1087) . T))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-1767 (((-853) $) 50)) (-1816 (($) NIL T CONST)) (-2015 (($ $ (-911)) NIL)) (-4078 (($ $ (-911)) NIL)) (-2006 (($ $ (-911)) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-4098 (($ (-762)) 26)) (-2148 (((-762)) 17)) (-1780 (((-853) $) 52)) (-3443 (($ $ $) NIL)) (-3220 (((-853) $) NIL)) (-3452 (($ $ $ $) NIL)) (-3433 (($ $ $) NIL)) (-2131 (($) 20 T CONST)) (-1683 (((-112) $ $) 28)) (-1798 (($ $) 34) (($ $ $) 36)) (-1784 (($ $ $) 37)) (** (($ $ (-911)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33)))
+(((-389 |#1| |#2| |#3|) (-13 (-735 |#3|) (-10 -8 (-15 -2148 ((-762))) (-15 -1780 ((-853) $)) (-15 -1767 ((-853) $)) (-15 -4098 ($ (-762))))) (-762) (-762) (-171)) (T -389))
+((-2148 (*1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-171)))) (-1780 (*1 *2 *1) (-12 (-5 *2 (-853)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 (-762)) (-14 *4 (-762)) (-4 *5 (-171)))) (-1767 (*1 *2 *1) (-12 (-5 *2 (-853)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 (-762)) (-14 *4 (-762)) (-4 *5 (-171)))) (-4098 (*1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-171)))))
+(-13 (-735 |#3|) (-10 -8 (-15 -2148 ((-762))) (-15 -1780 ((-853) $)) (-15 -1767 ((-853) $)) (-15 -4098 ($ (-762)))))
+((-1818 (((-1145)) 10)) (-1806 (((-1134 (-1145))) 28)) (-1297 (((-1251) (-1145)) 25) (((-1251) (-387)) 24)) (-1309 (((-1251)) 26)) (-1793 (((-1134 (-1145))) 27)))
+(((-390) (-10 -7 (-15 -1793 ((-1134 (-1145)))) (-15 -1806 ((-1134 (-1145)))) (-15 -1309 ((-1251))) (-15 -1297 ((-1251) (-387))) (-15 -1297 ((-1251) (-1145))) (-15 -1818 ((-1145))))) (T -390))
+((-1818 (*1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-390)))) (-1297 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-390)))) (-1297 (*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1251)) (-5 *1 (-390)))) (-1309 (*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-390)))) (-1806 (*1 *2) (-12 (-5 *2 (-1134 (-1145))) (-5 *1 (-390)))) (-1793 (*1 *2) (-12 (-5 *2 (-1134 (-1145))) (-5 *1 (-390)))))
+(-10 -7 (-15 -1793 ((-1134 (-1145)))) (-15 -1806 ((-1134 (-1145)))) (-15 -1309 ((-1251))) (-15 -1297 ((-1251) (-387))) (-15 -1297 ((-1251) (-1145))) (-15 -1818 ((-1145))))
+((-3449 (((-762) (-335 |#1| |#2| |#3| |#4|)) 16)))
+(((-391 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3449 ((-762) (-335 |#1| |#2| |#3| |#4|)))) (-13 (-367) (-362)) (-1222 |#1|) (-1222 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -391))
+((-3449 (*1 *2 *3) (-12 (-5 *3 (-335 *4 *5 *6 *7)) (-4 *4 (-13 (-367) (-362))) (-4 *5 (-1222 *4)) (-4 *6 (-1222 (-406 *5))) (-4 *7 (-341 *4 *5 *6)) (-5 *2 (-762)) (-5 *1 (-391 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3449 ((-762) (-335 |#1| |#2| |#3| |#4|))))
+((-3220 (((-393) |#1|) 11)))
+(((-392 |#1|) (-10 -7 (-15 -3220 ((-393) |#1|))) (-1087)) (T -392))
+((-3220 (*1 *2 *3) (-12 (-5 *2 (-393)) (-5 *1 (-392 *3)) (-4 *3 (-1087)))))
+(-10 -7 (-15 -3220 ((-393) |#1|)))
+((-3207 (((-112) $ $) NIL)) (-4362 (((-635 (-1145)) $ (-635 (-1145))) 38)) (-1828 (((-635 (-1145)) $ (-635 (-1145))) 39)) (-1301 (((-635 (-1145)) $ (-635 (-1145))) 40)) (-1313 (((-635 (-1145)) $) 35)) (-3315 (($) 23)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-1924 (((-635 (-1145)) $) 36)) (-1326 (((-635 (-1145)) $) 37)) (-2646 (((-1251) $ (-558)) 33) (((-1251) $) 34)) (-3224 (($ (-853) (-558)) 30)) (-3220 (((-853) $) 42) (($ (-853)) 25)) (-1683 (((-112) $ $) NIL)))
+(((-393) (-13 (-1087) (-608 (-853)) (-10 -8 (-15 -3224 ($ (-853) (-558))) (-15 -2646 ((-1251) $ (-558))) (-15 -2646 ((-1251) $)) (-15 -1326 ((-635 (-1145)) $)) (-15 -1924 ((-635 (-1145)) $)) (-15 -3315 ($)) (-15 -1313 ((-635 (-1145)) $)) (-15 -1301 ((-635 (-1145)) $ (-635 (-1145)))) (-15 -1828 ((-635 (-1145)) $ (-635 (-1145)))) (-15 -4362 ((-635 (-1145)) $ (-635 (-1145))))))) (T -393))
+((-3224 (*1 *1 *2 *3) (-12 (-5 *2 (-853)) (-5 *3 (-558)) (-5 *1 (-393)))) (-2646 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *2 (-1251)) (-5 *1 (-393)))) (-2646 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-393)))) (-1326 (*1 *2 *1) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-393)))) (-1924 (*1 *2 *1) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-393)))) (-3315 (*1 *1) (-5 *1 (-393))) (-1313 (*1 *2 *1) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-393)))) (-1301 (*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-393)))) (-1828 (*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-393)))) (-4362 (*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-393)))))
+(-13 (-1087) (-608 (-853)) (-10 -8 (-15 -3224 ($ (-853) (-558))) (-15 -2646 ((-1251) $ (-558))) (-15 -2646 ((-1251) $)) (-15 -1326 ((-635 (-1145)) $)) (-15 -1924 ((-635 (-1145)) $)) (-15 -3315 ($)) (-15 -1313 ((-635 (-1145)) $)) (-15 -1301 ((-635 (-1145)) $ (-635 (-1145)))) (-15 -1828 ((-635 (-1145)) $ (-635 (-1145)))) (-15 -4362 ((-635 (-1145)) $ (-635 (-1145))))))
+((-1325 (((-1251) $) 7)) (-3220 (((-853) $) 8)))
+(((-394) (-139)) (T -394))
+((-1325 (*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-1251)))))
+(-13 (-1200) (-605 (-853)) (-10 -8 (-15 -1325 ((-1251) $))))
+(((-605 (-853)) . T) ((-1200) . T))
+((-3069 (((-3 $ "failed") (-315 (-378))) 21) (((-3 $ "failed") (-315 (-558))) 19) (((-3 $ "failed") (-942 (-378))) 17) (((-3 $ "failed") (-942 (-558))) 15) (((-3 $ "failed") (-406 (-942 (-378)))) 13) (((-3 $ "failed") (-406 (-942 (-558)))) 11)) (-1863 (($ (-315 (-378))) 22) (($ (-315 (-558))) 20) (($ (-942 (-378))) 18) (($ (-942 (-558))) 16) (($ (-406 (-942 (-378)))) 14) (($ (-406 (-942 (-558)))) 12)) (-1325 (((-1251) $) 7)) (-3220 (((-853) $) 8) (($ (-635 (-329))) 25) (($ (-329)) 24) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329))))) 23)))
+(((-395) (-139)) (T -395))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-4 *1 (-395)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-395)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329))))) (-4 *1 (-395)))) (-1863 (*1 *1 *2) (-12 (-5 *2 (-315 (-378))) (-4 *1 (-395)))) (-3069 (*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-378))) (-4 *1 (-395)))) (-1863 (*1 *1 *2) (-12 (-5 *2 (-315 (-558))) (-4 *1 (-395)))) (-3069 (*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-558))) (-4 *1 (-395)))) (-1863 (*1 *1 *2) (-12 (-5 *2 (-942 (-378))) (-4 *1 (-395)))) (-3069 (*1 *1 *2) (|partial| -12 (-5 *2 (-942 (-378))) (-4 *1 (-395)))) (-1863 (*1 *1 *2) (-12 (-5 *2 (-942 (-558))) (-4 *1 (-395)))) (-3069 (*1 *1 *2) (|partial| -12 (-5 *2 (-942 (-558))) (-4 *1 (-395)))) (-1863 (*1 *1 *2) (-12 (-5 *2 (-406 (-942 (-378)))) (-4 *1 (-395)))) (-3069 (*1 *1 *2) (|partial| -12 (-5 *2 (-406 (-942 (-378)))) (-4 *1 (-395)))) (-1863 (*1 *1 *2) (-12 (-5 *2 (-406 (-942 (-558)))) (-4 *1 (-395)))) (-3069 (*1 *1 *2) (|partial| -12 (-5 *2 (-406 (-942 (-558)))) (-4 *1 (-395)))))
+(-13 (-394) (-10 -8 (-15 -3220 ($ (-635 (-329)))) (-15 -3220 ($ (-329))) (-15 -3220 ($ (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329)))))) (-15 -1863 ($ (-315 (-378)))) (-15 -3069 ((-3 $ "failed") (-315 (-378)))) (-15 -1863 ($ (-315 (-558)))) (-15 -3069 ((-3 $ "failed") (-315 (-558)))) (-15 -1863 ($ (-942 (-378)))) (-15 -3069 ((-3 $ "failed") (-942 (-378)))) (-15 -1863 ($ (-942 (-558)))) (-15 -3069 ((-3 $ "failed") (-942 (-558)))) (-15 -1863 ($ (-406 (-942 (-378))))) (-15 -3069 ((-3 $ "failed") (-406 (-942 (-378))))) (-15 -1863 ($ (-406 (-942 (-558))))) (-15 -3069 ((-3 $ "failed") (-406 (-942 (-558)))))))
+(((-605 (-853)) . T) ((-394) . T) ((-1200) . T))
+((-1851 (((-635 (-1145)) (-635 (-1145))) 9)) (-1325 (((-1251) (-387)) 27)) (-1839 (((-1091) (-1163) (-635 (-1163)) (-1166) (-635 (-1163))) 60) (((-1091) (-1163) (-635 (-3 (|:| |array| (-635 (-1163))) (|:| |scalar| (-1163)))) (-635 (-635 (-3 (|:| |array| (-635 (-1163))) (|:| |scalar| (-1163))))) (-635 (-1163)) (-1163)) 35) (((-1091) (-1163) (-635 (-3 (|:| |array| (-635 (-1163))) (|:| |scalar| (-1163)))) (-635 (-635 (-3 (|:| |array| (-635 (-1163))) (|:| |scalar| (-1163))))) (-635 (-1163))) 34)))
+(((-396) (-10 -7 (-15 -1839 ((-1091) (-1163) (-635 (-3 (|:| |array| (-635 (-1163))) (|:| |scalar| (-1163)))) (-635 (-635 (-3 (|:| |array| (-635 (-1163))) (|:| |scalar| (-1163))))) (-635 (-1163)))) (-15 -1839 ((-1091) (-1163) (-635 (-3 (|:| |array| (-635 (-1163))) (|:| |scalar| (-1163)))) (-635 (-635 (-3 (|:| |array| (-635 (-1163))) (|:| |scalar| (-1163))))) (-635 (-1163)) (-1163))) (-15 -1839 ((-1091) (-1163) (-635 (-1163)) (-1166) (-635 (-1163)))) (-15 -1325 ((-1251) (-387))) (-15 -1851 ((-635 (-1145)) (-635 (-1145)))))) (T -396))
+((-1851 (*1 *2 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-396)))) (-1325 (*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1251)) (-5 *1 (-396)))) (-1839 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-635 (-1163))) (-5 *5 (-1166)) (-5 *3 (-1163)) (-5 *2 (-1091)) (-5 *1 (-396)))) (-1839 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-635 (-635 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-635 (-3 (|:| |array| (-635 *3)) (|:| |scalar| (-1163))))) (-5 *6 (-635 (-1163))) (-5 *3 (-1163)) (-5 *2 (-1091)) (-5 *1 (-396)))) (-1839 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-635 (-635 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-635 (-3 (|:| |array| (-635 *3)) (|:| |scalar| (-1163))))) (-5 *6 (-635 (-1163))) (-5 *3 (-1163)) (-5 *2 (-1091)) (-5 *1 (-396)))))
+(-10 -7 (-15 -1839 ((-1091) (-1163) (-635 (-3 (|:| |array| (-635 (-1163))) (|:| |scalar| (-1163)))) (-635 (-635 (-3 (|:| |array| (-635 (-1163))) (|:| |scalar| (-1163))))) (-635 (-1163)))) (-15 -1839 ((-1091) (-1163) (-635 (-3 (|:| |array| (-635 (-1163))) (|:| |scalar| (-1163)))) (-635 (-635 (-3 (|:| |array| (-635 (-1163))) (|:| |scalar| (-1163))))) (-635 (-1163)) (-1163))) (-15 -1839 ((-1091) (-1163) (-635 (-1163)) (-1166) (-635 (-1163)))) (-15 -1325 ((-1251) (-387))) (-15 -1851 ((-635 (-1145)) (-635 (-1145)))))
+((-1325 (((-1251) $) 38)) (-3220 (((-853) $) 98) (($ (-329)) 100) (($ (-635 (-329))) 99) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329))))) 97) (($ (-315 (-691))) 54) (($ (-315 (-689))) 73) (($ (-315 (-684))) 86) (($ (-293 (-315 (-691)))) 68) (($ (-293 (-315 (-689)))) 81) (($ (-293 (-315 (-684)))) 94) (($ (-315 (-558))) 104) (($ (-315 (-378))) 117) (($ (-315 (-168 (-378)))) 130) (($ (-293 (-315 (-558)))) 112) (($ (-293 (-315 (-378)))) 125) (($ (-293 (-315 (-168 (-378))))) 138)))
+(((-397 |#1| |#2| |#3| |#4|) (-13 (-394) (-10 -8 (-15 -3220 ($ (-329))) (-15 -3220 ($ (-635 (-329)))) (-15 -3220 ($ (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329)))))) (-15 -3220 ($ (-315 (-691)))) (-15 -3220 ($ (-315 (-689)))) (-15 -3220 ($ (-315 (-684)))) (-15 -3220 ($ (-293 (-315 (-691))))) (-15 -3220 ($ (-293 (-315 (-689))))) (-15 -3220 ($ (-293 (-315 (-684))))) (-15 -3220 ($ (-315 (-558)))) (-15 -3220 ($ (-315 (-378)))) (-15 -3220 ($ (-315 (-168 (-378))))) (-15 -3220 ($ (-293 (-315 (-558))))) (-15 -3220 ($ (-293 (-315 (-378))))) (-15 -3220 ($ (-293 (-315 (-168 (-378)))))))) (-1163) (-3 (|:| |fst| (-433)) (|:| -2912 "void")) (-635 (-1163)) (-1167)) (T -397))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2912 "void"))) (-14 *5 (-635 (-1163))) (-14 *6 (-1167)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2912 "void"))) (-14 *5 (-635 (-1163))) (-14 *6 (-1167)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329))))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2912 "void"))) (-14 *5 (-635 (-1163))) (-14 *6 (-1167)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-315 (-691))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2912 "void"))) (-14 *5 (-635 (-1163))) (-14 *6 (-1167)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-315 (-689))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2912 "void"))) (-14 *5 (-635 (-1163))) (-14 *6 (-1167)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-315 (-684))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2912 "void"))) (-14 *5 (-635 (-1163))) (-14 *6 (-1167)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-293 (-315 (-691)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2912 "void"))) (-14 *5 (-635 (-1163))) (-14 *6 (-1167)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-293 (-315 (-689)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2912 "void"))) (-14 *5 (-635 (-1163))) (-14 *6 (-1167)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-293 (-315 (-684)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2912 "void"))) (-14 *5 (-635 (-1163))) (-14 *6 (-1167)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-315 (-558))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2912 "void"))) (-14 *5 (-635 (-1163))) (-14 *6 (-1167)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-315 (-378))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2912 "void"))) (-14 *5 (-635 (-1163))) (-14 *6 (-1167)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-315 (-168 (-378)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2912 "void"))) (-14 *5 (-635 (-1163))) (-14 *6 (-1167)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-293 (-315 (-558)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2912 "void"))) (-14 *5 (-635 (-1163))) (-14 *6 (-1167)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-293 (-315 (-378)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2912 "void"))) (-14 *5 (-635 (-1163))) (-14 *6 (-1167)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-293 (-315 (-168 (-378))))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2912 "void"))) (-14 *5 (-635 (-1163))) (-14 *6 (-1167)))))
+(-13 (-394) (-10 -8 (-15 -3220 ($ (-329))) (-15 -3220 ($ (-635 (-329)))) (-15 -3220 ($ (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329)))))) (-15 -3220 ($ (-315 (-691)))) (-15 -3220 ($ (-315 (-689)))) (-15 -3220 ($ (-315 (-684)))) (-15 -3220 ($ (-293 (-315 (-691))))) (-15 -3220 ($ (-293 (-315 (-689))))) (-15 -3220 ($ (-293 (-315 (-684))))) (-15 -3220 ($ (-315 (-558)))) (-15 -3220 ($ (-315 (-378)))) (-15 -3220 ($ (-315 (-168 (-378))))) (-15 -3220 ($ (-293 (-315 (-558))))) (-15 -3220 ($ (-293 (-315 (-378))))) (-15 -3220 ($ (-293 (-315 (-168 (-378))))))))
+((-3207 (((-112) $ $) NIL)) (-1875 ((|#2| $) 36)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-1886 (($ (-406 |#2|)) 85)) (-1862 (((-635 (-2 (|:| -1951 (-762)) (|:| -2673 |#2|) (|:| |num| |#2|))) $) 37)) (-2829 (($ $) 32) (($ $ (-762)) 34)) (-3224 (((-406 |#2|) $) 46)) (-3233 (($ (-635 (-2 (|:| -1951 (-762)) (|:| -2673 |#2|) (|:| |num| |#2|)))) 31)) (-3220 (((-853) $) 120)) (-1866 (($ $) 33) (($ $ (-762)) 35)) (-1683 (((-112) $ $) NIL)) (-1784 (($ |#2| $) 39)))
+(((-398 |#1| |#2|) (-13 (-1087) (-606 (-406 |#2|)) (-10 -8 (-15 -1784 ($ |#2| $)) (-15 -1886 ($ (-406 |#2|))) (-15 -1875 (|#2| $)) (-15 -1862 ((-635 (-2 (|:| -1951 (-762)) (|:| -2673 |#2|) (|:| |num| |#2|))) $)) (-15 -3233 ($ (-635 (-2 (|:| -1951 (-762)) (|:| -2673 |#2|) (|:| |num| |#2|))))) (-15 -2829 ($ $)) (-15 -1866 ($ $)) (-15 -2829 ($ $ (-762))) (-15 -1866 ($ $ (-762))))) (-13 (-362) (-146)) (-1222 |#1|)) (T -398))
+((-1784 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *2)) (-4 *2 (-1222 *3)))) (-1886 (*1 *1 *2) (-12 (-5 *2 (-406 *4)) (-4 *4 (-1222 *3)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4)))) (-1875 (*1 *2 *1) (-12 (-4 *2 (-1222 *3)) (-5 *1 (-398 *3 *2)) (-4 *3 (-13 (-362) (-146))))) (-1862 (*1 *2 *1) (-12 (-4 *3 (-13 (-362) (-146))) (-5 *2 (-635 (-2 (|:| -1951 (-762)) (|:| -2673 *4) (|:| |num| *4)))) (-5 *1 (-398 *3 *4)) (-4 *4 (-1222 *3)))) (-3233 (*1 *1 *2) (-12 (-5 *2 (-635 (-2 (|:| -1951 (-762)) (|:| -2673 *4) (|:| |num| *4)))) (-4 *4 (-1222 *3)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4)))) (-2829 (*1 *1 *1) (-12 (-4 *2 (-13 (-362) (-146))) (-5 *1 (-398 *2 *3)) (-4 *3 (-1222 *2)))) (-1866 (*1 *1 *1) (-12 (-4 *2 (-13 (-362) (-146))) (-5 *1 (-398 *2 *3)) (-4 *3 (-1222 *2)))) (-2829 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4)) (-4 *4 (-1222 *3)))) (-1866 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4)) (-4 *4 (-1222 *3)))))
+(-13 (-1087) (-606 (-406 |#2|)) (-10 -8 (-15 -1784 ($ |#2| $)) (-15 -1886 ($ (-406 |#2|))) (-15 -1875 (|#2| $)) (-15 -1862 ((-635 (-2 (|:| -1951 (-762)) (|:| -2673 |#2|) (|:| |num| |#2|))) $)) (-15 -3233 ($ (-635 (-2 (|:| -1951 (-762)) (|:| -2673 |#2|) (|:| |num| |#2|))))) (-15 -2829 ($ $)) (-15 -1866 ($ $)) (-15 -2829 ($ $ (-762))) (-15 -1866 ($ $ (-762)))))
+((-3207 (((-112) $ $) 9 (-3998 (|has| |#1| (-876 (-558))) (|has| |#1| (-876 (-378)))))) (-2269 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) 15 (|has| |#1| (-876 (-378)))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) 14 (|has| |#1| (-876 (-558))))) (-4310 (((-1145) $) 13 (-3998 (|has| |#1| (-876 (-558))) (|has| |#1| (-876 (-378)))))) (-2975 (((-1107) $) 12 (-3998 (|has| |#1| (-876 (-558))) (|has| |#1| (-876 (-378)))))) (-3220 (((-853) $) 11 (-3998 (|has| |#1| (-876 (-558))) (|has| |#1| (-876 (-378)))))) (-1683 (((-112) $ $) 10 (-3998 (|has| |#1| (-876 (-558))) (|has| |#1| (-876 (-378)))))))
+(((-399 |#1|) (-139) (-1200)) (T -399))
+NIL
+(-13 (-1200) (-10 -7 (IF (|has| |t#1| (-876 (-558))) (-6 (-876 (-558))) |%noBranch|) (IF (|has| |t#1| (-876 (-378))) (-6 (-876 (-378))) |%noBranch|)))
+(((-102) -3998 (|has| |#1| (-876 (-558))) (|has| |#1| (-876 (-378)))) ((-605 (-853)) -3998 (|has| |#1| (-876 (-558))) (|has| |#1| (-876 (-378)))) ((-876 (-378)) |has| |#1| (-876 (-378))) ((-876 (-558)) |has| |#1| (-876 (-558))) ((-1087) -3998 (|has| |#1| (-876 (-558))) (|has| |#1| (-876 (-378)))) ((-1200) . T))
+((-1895 (($ $) 10) (($ $ (-762)) 11)))
+(((-400 |#1|) (-10 -8 (-15 -1895 (|#1| |#1| (-762))) (-15 -1895 (|#1| |#1|))) (-401)) (T -400))
+NIL
+(-10 -8 (-15 -1895 (|#1| |#1| (-762))) (-15 -1895 (|#1| |#1|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 42)) (-1881 (($ $) 41)) (-1857 (((-112) $) 39)) (-2089 (((-3 $ "failed") $ $) 19)) (-3465 (($ $) 74)) (-1380 (((-417 $) $) 73)) (-3732 (((-112) $ $) 60)) (-1816 (($) 17 T CONST)) (-4025 (($ $ $) 56)) (-2588 (((-3 $ "failed") $) 33)) (-4004 (($ $ $) 57)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) 52)) (-1895 (($ $) 80) (($ $ (-762)) 79)) (-3031 (((-112) $) 72)) (-3449 (((-824 (-911)) $) 82)) (-2035 (((-112) $) 31)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) 53)) (-2665 (($ $ $) 47) (($ (-635 $)) 46)) (-4310 (((-1145) $) 9)) (-2418 (($ $) 71)) (-2975 (((-1107) $) 10)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) 45)) (-2699 (($ $ $) 49) (($ (-635 $)) 48)) (-2522 (((-417 $) $) 75)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3983 (((-3 $ "failed") $ $) 43)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-3722 (((-762) $) 59)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 58)) (-1905 (((-3 (-762) "failed") $ $) 81)) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ $) 44) (($ (-406 (-558))) 67)) (-3698 (((-3 $ "failed") $) 83)) (-2542 (((-762)) 28)) (-1870 (((-112) $ $) 40)) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1683 (((-112) $ $) 6)) (-1810 (($ $ $) 66)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ (-558)) 70)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ (-406 (-558))) 69) (($ (-406 (-558)) $) 68)))
+(((-401) (-139)) (T -401))
+((-3449 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-824 (-911))))) (-1905 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-401)) (-5 *2 (-762)))) (-1895 (*1 *1 *1) (-4 *1 (-401))) (-1895 (*1 *1 *1 *2) (-12 (-4 *1 (-401)) (-5 *2 (-762)))))
+(-13 (-362) (-144) (-10 -8 (-15 -3449 ((-824 (-911)) $)) (-15 -1905 ((-3 (-762) "failed") $ $)) (-15 -1895 ($ $)) (-15 -1895 ($ $ (-762)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-558))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-144) . T) ((-608 #0#) . T) ((-608 (-558)) . T) ((-608 $) . T) ((-605 (-853)) . T) ((-171) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-450) . T) ((-550) . T) ((-638 #0#) . T) ((-638 $) . T) ((-708 #0#) . T) ((-708 $) . T) ((-717) . T) ((-910) . T) ((-1045 #0#) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1204) . T))
+((-2244 (($ (-558) (-558)) 11) (($ (-558) (-558) (-911)) NIL)) (-2997 (((-911)) 16) (((-911) (-911)) NIL)))
+(((-402 |#1|) (-10 -8 (-15 -2997 ((-911) (-911))) (-15 -2997 ((-911))) (-15 -2244 (|#1| (-558) (-558) (-911))) (-15 -2244 (|#1| (-558) (-558)))) (-403)) (T -402))
+((-2997 (*1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-402 *3)) (-4 *3 (-403)))) (-2997 (*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-402 *3)) (-4 *3 (-403)))))
+(-10 -8 (-15 -2997 ((-911) (-911))) (-15 -2997 ((-911))) (-15 -2244 (|#1| (-558) (-558) (-911))) (-15 -2244 (|#1| (-558) (-558))))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2582 (((-558) $) 90)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 42)) (-1881 (($ $) 41)) (-1857 (((-112) $) 39)) (-3440 (($ $) 88)) (-2089 (((-3 $ "failed") $ $) 19)) (-3465 (($ $) 74)) (-1380 (((-417 $) $) 73)) (-2534 (($ $) 98)) (-3732 (((-112) $ $) 60)) (-1397 (((-558) $) 115)) (-1816 (($) 17 T CONST)) (-2553 (($ $) 87)) (-3069 (((-3 (-558) "failed") $) 103) (((-3 (-406 (-558)) "failed") $) 100)) (-1863 (((-558) $) 104) (((-406 (-558)) $) 101)) (-4025 (($ $ $) 56)) (-2588 (((-3 $ "failed") $) 33)) (-4004 (($ $ $) 57)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) 52)) (-3031 (((-112) $) 72)) (-2566 (((-911)) 131) (((-911) (-911)) 128 (|has| $ (-6 -4373)))) (-2045 (((-112) $) 113)) (-2269 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) 94)) (-3449 (((-558) $) 137)) (-2035 (((-112) $) 31)) (-3828 (($ $ (-558)) 97)) (-2615 (($ $) 93)) (-2055 (((-112) $) 114)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) 53)) (-3910 (($ $ $) 112) (($) 125 (-12 (-3304 (|has| $ (-6 -4373))) (-3304 (|has| $ (-6 -4365)))))) (-3542 (($ $ $) 111) (($) 124 (-12 (-3304 (|has| $ (-6 -4373))) (-3304 (|has| $ (-6 -4365)))))) (-1973 (((-558) $) 134)) (-2665 (($ $ $) 47) (($ (-635 $)) 46)) (-4310 (((-1145) $) 9)) (-2418 (($ $) 71)) (-1929 (((-911) (-558)) 127 (|has| $ (-6 -4373)))) (-2975 (((-1107) $) 10)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) 45)) (-2699 (($ $ $) 49) (($ (-635 $)) 48)) (-2568 (($ $) 89)) (-2594 (($ $) 91)) (-2244 (($ (-558) (-558)) 139) (($ (-558) (-558) (-911)) 138)) (-2522 (((-417 $) $) 75)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3983 (((-3 $ "failed") $ $) 43)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-1951 (((-558) $) 135)) (-3722 (((-762) $) 59)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 58)) (-2997 (((-911)) 132) (((-911) (-911)) 129 (|has| $ (-6 -4373)))) (-1918 (((-911) (-558)) 126 (|has| $ (-6 -4373)))) (-3224 (((-378) $) 106) (((-224) $) 105) (((-882 (-378)) $) 95)) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ $) 44) (($ (-406 (-558))) 67) (($ (-558)) 102) (($ (-406 (-558))) 99)) (-2542 (((-762)) 28)) (-2604 (($ $) 92)) (-1939 (((-911)) 133) (((-911) (-911)) 130 (|has| $ (-6 -4373)))) (-2579 (((-911)) 136)) (-1870 (((-112) $ $) 40)) (-3190 (($ $) 116)) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1747 (((-112) $ $) 109)) (-1720 (((-112) $ $) 108)) (-1683 (((-112) $ $) 6)) (-1731 (((-112) $ $) 110)) (-1705 (((-112) $ $) 107)) (-1810 (($ $ $) 66)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ (-558)) 70) (($ $ (-406 (-558))) 96)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ (-406 (-558))) 69) (($ (-406 (-558)) $) 68)))
+(((-403) (-139)) (T -403))
+((-2244 (*1 *1 *2 *2) (-12 (-5 *2 (-558)) (-4 *1 (-403)))) (-2244 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-558)) (-5 *3 (-911)) (-4 *1 (-403)))) (-3449 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-558)))) (-2579 (*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-911)))) (-1951 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-558)))) (-1973 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-558)))) (-1939 (*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-911)))) (-2997 (*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-911)))) (-2566 (*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-911)))) (-1939 (*1 *2 *2) (-12 (-5 *2 (-911)) (|has| *1 (-6 -4373)) (-4 *1 (-403)))) (-2997 (*1 *2 *2) (-12 (-5 *2 (-911)) (|has| *1 (-6 -4373)) (-4 *1 (-403)))) (-2566 (*1 *2 *2) (-12 (-5 *2 (-911)) (|has| *1 (-6 -4373)) (-4 *1 (-403)))) (-1929 (*1 *2 *3) (-12 (-5 *3 (-558)) (|has| *1 (-6 -4373)) (-4 *1 (-403)) (-5 *2 (-911)))) (-1918 (*1 *2 *3) (-12 (-5 *3 (-558)) (|has| *1 (-6 -4373)) (-4 *1 (-403)) (-5 *2 (-911)))) (-3910 (*1 *1) (-12 (-4 *1 (-403)) (-3304 (|has| *1 (-6 -4373))) (-3304 (|has| *1 (-6 -4365))))) (-3542 (*1 *1) (-12 (-4 *1 (-403)) (-3304 (|has| *1 (-6 -4373))) (-3304 (|has| *1 (-6 -4365))))))
+(-13 (-1048) (-10 -8 (-6 -1352) (-15 -2244 ($ (-558) (-558))) (-15 -2244 ($ (-558) (-558) (-911))) (-15 -3449 ((-558) $)) (-15 -2579 ((-911))) (-15 -1951 ((-558) $)) (-15 -1973 ((-558) $)) (-15 -1939 ((-911))) (-15 -2997 ((-911))) (-15 -2566 ((-911))) (IF (|has| $ (-6 -4373)) (PROGN (-15 -1939 ((-911) (-911))) (-15 -2997 ((-911) (-911))) (-15 -2566 ((-911) (-911))) (-15 -1929 ((-911) (-558))) (-15 -1918 ((-911) (-558)))) |%noBranch|) (IF (|has| $ (-6 -4365)) |%noBranch| (IF (|has| $ (-6 -4373)) |%noBranch| (PROGN (-15 -3910 ($)) (-15 -3542 ($)))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-558))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-146) . T) ((-608 #0#) . T) ((-608 (-558)) . T) ((-608 $) . T) ((-605 (-853)) . T) ((-171) . T) ((-606 (-224)) . T) ((-606 (-378)) . T) ((-606 (-882 (-378))) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-450) . T) ((-550) . T) ((-638 #0#) . T) ((-638 $) . T) ((-708 #0#) . T) ((-708 $) . T) ((-717) . T) ((-782) . T) ((-783) . T) ((-785) . T) ((-786) . T) ((-839) . T) ((-841) . T) ((-876 (-378)) . T) ((-910) . T) ((-992) . T) ((-1012) . T) ((-1048) . T) ((-1028 (-406 (-558))) . T) ((-1028 (-558)) . T) ((-1045 #0#) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1204) . T))
+((-3167 (((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|)) 20)))
+(((-404 |#1| |#2|) (-10 -7 (-15 -3167 ((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|)))) (-550) (-550)) (T -404))
+((-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-417 *5)) (-4 *5 (-550)) (-4 *6 (-550)) (-5 *2 (-417 *6)) (-5 *1 (-404 *5 *6)))))
+(-10 -7 (-15 -3167 ((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|))))
+((-3167 (((-406 |#2|) (-1 |#2| |#1|) (-406 |#1|)) 13)))
+(((-405 |#1| |#2|) (-10 -7 (-15 -3167 ((-406 |#2|) (-1 |#2| |#1|) (-406 |#1|)))) (-550) (-550)) (T -405))
+((-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-406 *5)) (-4 *5 (-550)) (-4 *6 (-550)) (-5 *2 (-406 *6)) (-5 *1 (-405 *5 *6)))))
+(-10 -7 (-15 -3167 ((-406 |#2|) (-1 |#2| |#1|) (-406 |#1|))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) 13)) (-2582 ((|#1| $) 21 (|has| |#1| (-306)))) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL)) (-1881 (($ $) NIL)) (-1857 (((-112) $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-3748 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-3465 (($ $) NIL)) (-1380 (((-417 $) $) NIL)) (-3719 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-3732 (((-112) $ $) NIL)) (-1397 (((-558) $) NIL (|has| |#1| (-811)))) (-1816 (($) NIL T CONST)) (-3069 (((-3 |#1| "failed") $) 17) (((-3 (-1163) "failed") $) NIL (|has| |#1| (-1028 (-1163)))) (((-3 (-406 (-558)) "failed") $) 70 (|has| |#1| (-1028 (-558)))) (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558))))) (-1863 ((|#1| $) 15) (((-1163) $) NIL (|has| |#1| (-1028 (-1163)))) (((-406 (-558)) $) 67 (|has| |#1| (-1028 (-558)))) (((-558) $) NIL (|has| |#1| (-1028 (-558))))) (-4025 (($ $ $) NIL)) (-3216 (((-679 (-558)) (-679 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3683 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) NIL) (((-679 |#1|) (-679 $)) NIL)) (-2588 (((-3 $ "failed") $) 50)) (-2424 (($) NIL (|has| |#1| (-543)))) (-4004 (($ $ $) NIL)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL)) (-3031 (((-112) $) NIL)) (-2045 (((-112) $) NIL (|has| |#1| (-811)))) (-2269 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (|has| |#1| (-876 (-558)))) (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (|has| |#1| (-876 (-378))))) (-2035 (((-112) $) 64)) (-3704 (($ $) NIL)) (-1874 ((|#1| $) 71)) (-2457 (((-3 $ "failed") $) NIL (|has| |#1| (-1138)))) (-2055 (((-112) $) NIL (|has| |#1| (-811)))) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3910 (($ $ $) NIL (|has| |#1| (-841)))) (-3542 (($ $ $) NIL (|has| |#1| (-841)))) (-3167 (($ (-1 |#1| |#1|) $) NIL)) (-2665 (($ $ $) NIL) (($ (-635 $)) NIL)) (-4310 (((-1145) $) NIL)) (-2418 (($ $) NIL)) (-1796 (($) NIL (|has| |#1| (-1138)) CONST)) (-2975 (((-1107) $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) 97)) (-2699 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2568 (($ $) NIL (|has| |#1| (-306)))) (-2594 ((|#1| $) 28 (|has| |#1| (-543)))) (-3728 (((-417 (-1159 $)) (-1159 $)) 135 (|has| |#1| (-899)))) (-3738 (((-417 (-1159 $)) (-1159 $)) 131 (|has| |#1| (-899)))) (-2522 (((-417 $) $) NIL)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3983 (((-3 $ "failed") $ $) NIL)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2554 (($ $ (-635 |#1|) (-635 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ (-635 (-293 |#1|))) NIL (|has| |#1| (-308 |#1|))) (($ $ (-635 (-1163)) (-635 |#1|)) NIL (|has| |#1| (-512 (-1163) |#1|))) (($ $ (-1163) |#1|) NIL (|has| |#1| (-512 (-1163) |#1|)))) (-3722 (((-762) $) NIL)) (-2195 (($ $ |#1|) NIL (|has| |#1| (-285 |#1| |#1|)))) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL)) (-2829 (($ $) NIL (|has| |#1| (-232))) (($ $ (-762)) NIL (|has| |#1| (-232))) (($ $ (-1163)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-3694 (($ $) NIL)) (-1885 ((|#1| $) 73)) (-3224 (((-882 (-558)) $) NIL (|has| |#1| (-606 (-882 (-558))))) (((-882 (-378)) $) NIL (|has| |#1| (-606 (-882 (-378))))) (((-534) $) NIL (|has| |#1| (-606 (-534)))) (((-378) $) NIL (|has| |#1| (-1012))) (((-224) $) NIL (|has| |#1| (-1012)))) (-3709 (((-3 (-1246 $) "failed") (-679 $)) 115 (-12 (|has| $ (-144)) (|has| |#1| (-899))))) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL) (($ (-406 (-558))) NIL) (($ |#1|) 10) (($ (-1163)) NIL (|has| |#1| (-1028 (-1163))))) (-3698 (((-3 $ "failed") $) 99 (-3998 (-12 (|has| $ (-144)) (|has| |#1| (-899))) (|has| |#1| (-144))))) (-2542 (((-762)) 100)) (-2604 ((|#1| $) 26 (|has| |#1| (-543)))) (-1870 (((-112) $ $) NIL)) (-3190 (($ $) NIL (|has| |#1| (-811)))) (-2131 (($) 22 T CONST)) (-2142 (($) 8 T CONST)) (-1338 (((-1145) $) 43 (-12 (|has| |#1| (-543)) (|has| |#1| (-819)))) (((-1145) $ (-112)) 44 (-12 (|has| |#1| (-543)) (|has| |#1| (-819)))) (((-1251) (-813) $) 45 (-12 (|has| |#1| (-543)) (|has| |#1| (-819)))) (((-1251) (-813) $ (-112)) 46 (-12 (|has| |#1| (-543)) (|has| |#1| (-819))))) (-1866 (($ $) NIL (|has| |#1| (-232))) (($ $ (-762)) NIL (|has| |#1| (-232))) (($ $ (-1163)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1747 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1683 (((-112) $ $) 56)) (-1731 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1705 (((-112) $ $) 24 (|has| |#1| (-841)))) (-1810 (($ $ $) 126) (($ |#1| |#1|) 52)) (-1798 (($ $) 25) (($ $ $) 55)) (-1784 (($ $ $) 53)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) 125)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 60) (($ $ $) 57) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85)))
+(((-406 |#1|) (-13 (-982 |#1|) (-10 -7 (IF (|has| |#1| (-543)) (IF (|has| |#1| (-819)) (-6 (-819)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4369)) (IF (|has| |#1| (-450)) (IF (|has| |#1| (-6 -4380)) (-6 -4369) |%noBranch|) |%noBranch|) |%noBranch|))) (-550)) (T -406))
+NIL
+(-13 (-982 |#1|) (-10 -7 (IF (|has| |#1| (-543)) (IF (|has| |#1| (-819)) (-6 (-819)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4369)) (IF (|has| |#1| (-450)) (IF (|has| |#1| (-6 -4380)) (-6 -4369) |%noBranch|) |%noBranch|) |%noBranch|)))
+((-2053 (((-679 |#2|) (-1246 $)) NIL) (((-679 |#2|)) 18)) (-3997 (($ (-1246 |#2|) (-1246 $)) NIL) (($ (-1246 |#2|)) 24)) (-2043 (((-679 |#2|) $ (-1246 $)) NIL) (((-679 |#2|) $) 38)) (-2681 ((|#3| $) 60)) (-3331 ((|#2| (-1246 $)) NIL) ((|#2|) 20)) (-4205 (((-1246 |#2|) $ (-1246 $)) NIL) (((-679 |#2|) (-1246 $) (-1246 $)) NIL) (((-1246 |#2|) $) 22) (((-679 |#2|) (-1246 $)) 36)) (-3224 (((-1246 |#2|) $) 11) (($ (-1246 |#2|)) 13)) (-2363 ((|#3| $) 52)))
+(((-407 |#1| |#2| |#3|) (-10 -8 (-15 -2043 ((-679 |#2|) |#1|)) (-15 -3331 (|#2|)) (-15 -2053 ((-679 |#2|))) (-15 -3224 (|#1| (-1246 |#2|))) (-15 -3224 ((-1246 |#2|) |#1|)) (-15 -3997 (|#1| (-1246 |#2|))) (-15 -4205 ((-679 |#2|) (-1246 |#1|))) (-15 -4205 ((-1246 |#2|) |#1|)) (-15 -2681 (|#3| |#1|)) (-15 -2363 (|#3| |#1|)) (-15 -2053 ((-679 |#2|) (-1246 |#1|))) (-15 -3331 (|#2| (-1246 |#1|))) (-15 -3997 (|#1| (-1246 |#2|) (-1246 |#1|))) (-15 -4205 ((-679 |#2|) (-1246 |#1|) (-1246 |#1|))) (-15 -4205 ((-1246 |#2|) |#1| (-1246 |#1|))) (-15 -2043 ((-679 |#2|) |#1| (-1246 |#1|)))) (-408 |#2| |#3|) (-171) (-1222 |#2|)) (T -407))
+((-2053 (*1 *2) (-12 (-4 *4 (-171)) (-4 *5 (-1222 *4)) (-5 *2 (-679 *4)) (-5 *1 (-407 *3 *4 *5)) (-4 *3 (-408 *4 *5)))) (-3331 (*1 *2) (-12 (-4 *4 (-1222 *2)) (-4 *2 (-171)) (-5 *1 (-407 *3 *2 *4)) (-4 *3 (-408 *2 *4)))))
+(-10 -8 (-15 -2043 ((-679 |#2|) |#1|)) (-15 -3331 (|#2|)) (-15 -2053 ((-679 |#2|))) (-15 -3224 (|#1| (-1246 |#2|))) (-15 -3224 ((-1246 |#2|) |#1|)) (-15 -3997 (|#1| (-1246 |#2|))) (-15 -4205 ((-679 |#2|) (-1246 |#1|))) (-15 -4205 ((-1246 |#2|) |#1|)) (-15 -2681 (|#3| |#1|)) (-15 -2363 (|#3| |#1|)) (-15 -2053 ((-679 |#2|) (-1246 |#1|))) (-15 -3331 (|#2| (-1246 |#1|))) (-15 -3997 (|#1| (-1246 |#2|) (-1246 |#1|))) (-15 -4205 ((-679 |#2|) (-1246 |#1|) (-1246 |#1|))) (-15 -4205 ((-1246 |#2|) |#1| (-1246 |#1|))) (-15 -2043 ((-679 |#2|) |#1| (-1246 |#1|))))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2053 (((-679 |#1|) (-1246 $)) 47) (((-679 |#1|)) 62)) (-1635 ((|#1| $) 53)) (-2089 (((-3 $ "failed") $ $) 19)) (-1816 (($) 17 T CONST)) (-3997 (($ (-1246 |#1|) (-1246 $)) 49) (($ (-1246 |#1|)) 65)) (-2043 (((-679 |#1|) $ (-1246 $)) 54) (((-679 |#1|) $) 60)) (-2588 (((-3 $ "failed") $) 33)) (-3833 (((-911)) 55)) (-2035 (((-112) $) 31)) (-2615 ((|#1| $) 52)) (-2681 ((|#2| $) 45 (|has| |#1| (-362)))) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3331 ((|#1| (-1246 $)) 48) ((|#1|) 61)) (-4205 (((-1246 |#1|) $ (-1246 $)) 51) (((-679 |#1|) (-1246 $) (-1246 $)) 50) (((-1246 |#1|) $) 67) (((-679 |#1|) (-1246 $)) 66)) (-3224 (((-1246 |#1|) $) 64) (($ (-1246 |#1|)) 63)) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ |#1|) 38)) (-3698 (((-3 $ "failed") $) 44 (|has| |#1| (-144)))) (-2363 ((|#2| $) 46)) (-2542 (((-762)) 28)) (-2660 (((-1246 $)) 68)) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1683 (((-112) $ $) 6)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
+(((-408 |#1| |#2|) (-139) (-171) (-1222 |t#1|)) (T -408))
+((-2660 (*1 *2) (-12 (-4 *3 (-171)) (-4 *4 (-1222 *3)) (-5 *2 (-1246 *1)) (-4 *1 (-408 *3 *4)))) (-4205 (*1 *2 *1) (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1222 *3)) (-5 *2 (-1246 *3)))) (-4205 (*1 *2 *3) (-12 (-5 *3 (-1246 *1)) (-4 *1 (-408 *4 *5)) (-4 *4 (-171)) (-4 *5 (-1222 *4)) (-5 *2 (-679 *4)))) (-3997 (*1 *1 *2) (-12 (-5 *2 (-1246 *3)) (-4 *3 (-171)) (-4 *1 (-408 *3 *4)) (-4 *4 (-1222 *3)))) (-3224 (*1 *2 *1) (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1222 *3)) (-5 *2 (-1246 *3)))) (-3224 (*1 *1 *2) (-12 (-5 *2 (-1246 *3)) (-4 *3 (-171)) (-4 *1 (-408 *3 *4)) (-4 *4 (-1222 *3)))) (-2053 (*1 *2) (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1222 *3)) (-5 *2 (-679 *3)))) (-3331 (*1 *2) (-12 (-4 *1 (-408 *2 *3)) (-4 *3 (-1222 *2)) (-4 *2 (-171)))) (-2043 (*1 *2 *1) (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1222 *3)) (-5 *2 (-679 *3)))))
+(-13 (-369 |t#1| |t#2|) (-10 -8 (-15 -2660 ((-1246 $))) (-15 -4205 ((-1246 |t#1|) $)) (-15 -4205 ((-679 |t#1|) (-1246 $))) (-15 -3997 ($ (-1246 |t#1|))) (-15 -3224 ((-1246 |t#1|) $)) (-15 -3224 ($ (-1246 |t#1|))) (-15 -2053 ((-679 |t#1|))) (-15 -3331 (|t#1|)) (-15 -2043 ((-679 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-608 (-558)) . T) ((-608 |#1|) . T) ((-605 (-853)) . T) ((-369 |#1| |#2|) . T) ((-638 |#1|) . T) ((-638 $) . T) ((-708 |#1|) . T) ((-717) . T) ((-1045 |#1|) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
+((-3069 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) 27) (((-3 (-558) "failed") $) 19)) (-1863 ((|#2| $) NIL) (((-406 (-558)) $) 24) (((-558) $) 14)) (-3220 (($ |#2|) NIL) (($ (-406 (-558))) 22) (($ (-558)) 11)))
+(((-409 |#1| |#2|) (-10 -8 (-15 -3220 (|#1| (-558))) (-15 -3069 ((-3 (-558) "failed") |#1|)) (-15 -1863 ((-558) |#1|)) (-15 -3220 (|#1| (-406 (-558)))) (-15 -3069 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -1863 ((-406 (-558)) |#1|)) (-15 -1863 (|#2| |#1|)) (-15 -3069 ((-3 |#2| "failed") |#1|)) (-15 -3220 (|#1| |#2|))) (-410 |#2|) (-1200)) (T -409))
+NIL
+(-10 -8 (-15 -3220 (|#1| (-558))) (-15 -3069 ((-3 (-558) "failed") |#1|)) (-15 -1863 ((-558) |#1|)) (-15 -3220 (|#1| (-406 (-558)))) (-15 -3069 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -1863 ((-406 (-558)) |#1|)) (-15 -1863 (|#2| |#1|)) (-15 -3069 ((-3 |#2| "failed") |#1|)) (-15 -3220 (|#1| |#2|)))
+((-3069 (((-3 |#1| "failed") $) 9) (((-3 (-406 (-558)) "failed") $) 16 (|has| |#1| (-1028 (-406 (-558))))) (((-3 (-558) "failed") $) 13 (|has| |#1| (-1028 (-558))))) (-1863 ((|#1| $) 8) (((-406 (-558)) $) 17 (|has| |#1| (-1028 (-406 (-558))))) (((-558) $) 14 (|has| |#1| (-1028 (-558))))) (-3220 (($ |#1|) 6) (($ (-406 (-558))) 15 (|has| |#1| (-1028 (-406 (-558))))) (($ (-558)) 12 (|has| |#1| (-1028 (-558))))))
+(((-410 |#1|) (-139) (-1200)) (T -410))
+NIL
+(-13 (-1028 |t#1|) (-10 -7 (IF (|has| |t#1| (-1028 (-558))) (-6 (-1028 (-558))) |%noBranch|) (IF (|has| |t#1| (-1028 (-406 (-558)))) (-6 (-1028 (-406 (-558)))) |%noBranch|)))
+(((-608 #0=(-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) ((-608 #1=(-558)) |has| |#1| (-1028 (-558))) ((-608 |#1|) . T) ((-1028 #0#) |has| |#1| (-1028 (-406 (-558)))) ((-1028 #1#) |has| |#1| (-1028 (-558))) ((-1028 |#1|) . T))
+((-3167 (((-412 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-412 |#1| |#2| |#3| |#4|)) 33)))
+(((-411 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3167 ((-412 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-412 |#1| |#2| |#3| |#4|)))) (-306) (-982 |#1|) (-1222 |#2|) (-13 (-408 |#2| |#3|) (-1028 |#2|)) (-306) (-982 |#5|) (-1222 |#6|) (-13 (-408 |#6| |#7|) (-1028 |#6|))) (T -411))
+((-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-412 *5 *6 *7 *8)) (-4 *5 (-306)) (-4 *6 (-982 *5)) (-4 *7 (-1222 *6)) (-4 *8 (-13 (-408 *6 *7) (-1028 *6))) (-4 *9 (-306)) (-4 *10 (-982 *9)) (-4 *11 (-1222 *10)) (-5 *2 (-412 *9 *10 *11 *12)) (-5 *1 (-411 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-408 *10 *11) (-1028 *10))))))
+(-10 -7 (-15 -3167 ((-412 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-412 |#1| |#2| |#3| |#4|))))
+((-3207 (((-112) $ $) NIL)) (-1816 (($) NIL T CONST)) (-2588 (((-3 $ "failed") $) NIL)) (-2064 ((|#4| (-762) (-1246 |#4|)) 56)) (-2035 (((-112) $) NIL)) (-1874 (((-1246 |#4|) $) 17)) (-2615 ((|#2| $) 54)) (-2074 (($ $) 139)) (-4310 (((-1145) $) NIL)) (-2418 (($ $) 100)) (-2268 (($ (-1246 |#4|)) 99)) (-2975 (((-1107) $) NIL)) (-1885 ((|#1| $) 18)) (-3808 (($ $ $) NIL)) (-3443 (($ $ $) NIL)) (-3220 (((-853) $) 134)) (-2660 (((-1246 |#4|) $) 129)) (-2142 (($) 11 T CONST)) (-1683 (((-112) $ $) 40)) (-1810 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) 122)) (* (($ $ $) 121)))
+(((-412 |#1| |#2| |#3| |#4|) (-13 (-471) (-10 -8 (-15 -2268 ($ (-1246 |#4|))) (-15 -2660 ((-1246 |#4|) $)) (-15 -2615 (|#2| $)) (-15 -1874 ((-1246 |#4|) $)) (-15 -1885 (|#1| $)) (-15 -2074 ($ $)) (-15 -2064 (|#4| (-762) (-1246 |#4|))))) (-306) (-982 |#1|) (-1222 |#2|) (-13 (-408 |#2| |#3|) (-1028 |#2|))) (T -412))
+((-2268 (*1 *1 *2) (-12 (-5 *2 (-1246 *6)) (-4 *6 (-13 (-408 *4 *5) (-1028 *4))) (-4 *4 (-982 *3)) (-4 *5 (-1222 *4)) (-4 *3 (-306)) (-5 *1 (-412 *3 *4 *5 *6)))) (-2660 (*1 *2 *1) (-12 (-4 *3 (-306)) (-4 *4 (-982 *3)) (-4 *5 (-1222 *4)) (-5 *2 (-1246 *6)) (-5 *1 (-412 *3 *4 *5 *6)) (-4 *6 (-13 (-408 *4 *5) (-1028 *4))))) (-2615 (*1 *2 *1) (-12 (-4 *4 (-1222 *2)) (-4 *2 (-982 *3)) (-5 *1 (-412 *3 *2 *4 *5)) (-4 *3 (-306)) (-4 *5 (-13 (-408 *2 *4) (-1028 *2))))) (-1874 (*1 *2 *1) (-12 (-4 *3 (-306)) (-4 *4 (-982 *3)) (-4 *5 (-1222 *4)) (-5 *2 (-1246 *6)) (-5 *1 (-412 *3 *4 *5 *6)) (-4 *6 (-13 (-408 *4 *5) (-1028 *4))))) (-1885 (*1 *2 *1) (-12 (-4 *3 (-982 *2)) (-4 *4 (-1222 *3)) (-4 *2 (-306)) (-5 *1 (-412 *2 *3 *4 *5)) (-4 *5 (-13 (-408 *3 *4) (-1028 *3))))) (-2074 (*1 *1 *1) (-12 (-4 *2 (-306)) (-4 *3 (-982 *2)) (-4 *4 (-1222 *3)) (-5 *1 (-412 *2 *3 *4 *5)) (-4 *5 (-13 (-408 *3 *4) (-1028 *3))))) (-2064 (*1 *2 *3 *4) (-12 (-5 *3 (-762)) (-5 *4 (-1246 *2)) (-4 *5 (-306)) (-4 *6 (-982 *5)) (-4 *2 (-13 (-408 *6 *7) (-1028 *6))) (-5 *1 (-412 *5 *6 *7 *2)) (-4 *7 (-1222 *6)))))
+(-13 (-471) (-10 -8 (-15 -2268 ($ (-1246 |#4|))) (-15 -2660 ((-1246 |#4|) $)) (-15 -2615 (|#2| $)) (-15 -1874 ((-1246 |#4|) $)) (-15 -1885 (|#1| $)) (-15 -2074 ($ $)) (-15 -2064 (|#4| (-762) (-1246 |#4|)))))
+((-3207 (((-112) $ $) NIL)) (-1816 (($) NIL T CONST)) (-2588 (((-3 $ "failed") $) NIL)) (-2035 (((-112) $) NIL)) (-2615 ((|#2| $) 61)) (-2085 (($ (-1246 |#4|)) 25) (($ (-412 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-1028 |#2|)))) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 34)) (-2660 (((-1246 |#4|) $) 26)) (-2142 (($) 23 T CONST)) (-1683 (((-112) $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ $ $) 72)))
+(((-413 |#1| |#2| |#3| |#4| |#5|) (-13 (-717) (-10 -8 (-15 -2660 ((-1246 |#4|) $)) (-15 -2615 (|#2| $)) (-15 -2085 ($ (-1246 |#4|))) (IF (|has| |#4| (-1028 |#2|)) (-15 -2085 ($ (-412 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-306) (-982 |#1|) (-1222 |#2|) (-408 |#2| |#3|) (-1246 |#4|)) (T -413))
+((-2660 (*1 *2 *1) (-12 (-4 *3 (-306)) (-4 *4 (-982 *3)) (-4 *5 (-1222 *4)) (-5 *2 (-1246 *6)) (-5 *1 (-413 *3 *4 *5 *6 *7)) (-4 *6 (-408 *4 *5)) (-14 *7 *2))) (-2615 (*1 *2 *1) (-12 (-4 *4 (-1222 *2)) (-4 *2 (-982 *3)) (-5 *1 (-413 *3 *2 *4 *5 *6)) (-4 *3 (-306)) (-4 *5 (-408 *2 *4)) (-14 *6 (-1246 *5)))) (-2085 (*1 *1 *2) (-12 (-5 *2 (-1246 *6)) (-4 *6 (-408 *4 *5)) (-4 *4 (-982 *3)) (-4 *5 (-1222 *4)) (-4 *3 (-306)) (-5 *1 (-413 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-2085 (*1 *1 *2) (-12 (-5 *2 (-412 *3 *4 *5 *6)) (-4 *6 (-1028 *4)) (-4 *3 (-306)) (-4 *4 (-982 *3)) (-4 *5 (-1222 *4)) (-4 *6 (-408 *4 *5)) (-14 *7 (-1246 *6)) (-5 *1 (-413 *3 *4 *5 *6 *7)))))
+(-13 (-717) (-10 -8 (-15 -2660 ((-1246 |#4|) $)) (-15 -2615 (|#2| $)) (-15 -2085 ($ (-1246 |#4|))) (IF (|has| |#4| (-1028 |#2|)) (-15 -2085 ($ (-412 |#1| |#2| |#3| |#4|))) |%noBranch|)))
+((-3167 ((|#3| (-1 |#4| |#2|) |#1|) 26)))
+(((-414 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3167 (|#3| (-1 |#4| |#2|) |#1|))) (-416 |#2|) (-171) (-416 |#4|) (-171)) (T -414))
+((-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171)) (-4 *2 (-416 *6)) (-5 *1 (-414 *4 *5 *2 *6)) (-4 *4 (-416 *5)))))
+(-10 -7 (-15 -3167 (|#3| (-1 |#4| |#2|) |#1|)))
+((-1960 (((-3 $ "failed")) 86)) (-4194 (((-1246 (-679 |#2|)) (-1246 $)) NIL) (((-1246 (-679 |#2|))) 91)) (-2845 (((-3 (-2 (|:| |particular| $) (|:| -2660 (-635 $))) "failed")) 85)) (-2458 (((-3 $ "failed")) 84)) (-2121 (((-679 |#2|) (-1246 $)) NIL) (((-679 |#2|)) 102)) (-2096 (((-679 |#2|) $ (-1246 $)) NIL) (((-679 |#2|) $) 110)) (-3933 (((-1159 (-942 |#2|))) 55)) (-2143 ((|#2| (-1246 $)) NIL) ((|#2|) 106)) (-3997 (($ (-1246 |#2|) (-1246 $)) NIL) (($ (-1246 |#2|)) 112)) (-2854 (((-3 (-2 (|:| |particular| $) (|:| -2660 (-635 $))) "failed")) 83)) (-2470 (((-3 $ "failed")) 75)) (-2132 (((-679 |#2|) (-1246 $)) NIL) (((-679 |#2|)) 100)) (-2109 (((-679 |#2|) $ (-1246 $)) NIL) (((-679 |#2|) $) 108)) (-2824 (((-1159 (-942 |#2|))) 54)) (-3985 ((|#2| (-1246 $)) NIL) ((|#2|) 104)) (-4205 (((-1246 |#2|) $ (-1246 $)) NIL) (((-679 |#2|) (-1246 $) (-1246 $)) NIL) (((-1246 |#2|) $) 111) (((-679 |#2|) (-1246 $)) 118)) (-3224 (((-1246 |#2|) $) 96) (($ (-1246 |#2|)) 98)) (-3855 (((-635 (-942 |#2|)) (-1246 $)) NIL) (((-635 (-942 |#2|))) 94)) (-2258 (($ (-679 |#2|) $) 90)))
+(((-415 |#1| |#2|) (-10 -8 (-15 -2258 (|#1| (-679 |#2|) |#1|)) (-15 -3933 ((-1159 (-942 |#2|)))) (-15 -2824 ((-1159 (-942 |#2|)))) (-15 -2096 ((-679 |#2|) |#1|)) (-15 -2109 ((-679 |#2|) |#1|)) (-15 -2121 ((-679 |#2|))) (-15 -2132 ((-679 |#2|))) (-15 -2143 (|#2|)) (-15 -3985 (|#2|)) (-15 -3224 (|#1| (-1246 |#2|))) (-15 -3224 ((-1246 |#2|) |#1|)) (-15 -3997 (|#1| (-1246 |#2|))) (-15 -3855 ((-635 (-942 |#2|)))) (-15 -4194 ((-1246 (-679 |#2|)))) (-15 -4205 ((-679 |#2|) (-1246 |#1|))) (-15 -4205 ((-1246 |#2|) |#1|)) (-15 -1960 ((-3 |#1| "failed"))) (-15 -2458 ((-3 |#1| "failed"))) (-15 -2470 ((-3 |#1| "failed"))) (-15 -2845 ((-3 (-2 (|:| |particular| |#1|) (|:| -2660 (-635 |#1|))) "failed"))) (-15 -2854 ((-3 (-2 (|:| |particular| |#1|) (|:| -2660 (-635 |#1|))) "failed"))) (-15 -2121 ((-679 |#2|) (-1246 |#1|))) (-15 -2132 ((-679 |#2|) (-1246 |#1|))) (-15 -2143 (|#2| (-1246 |#1|))) (-15 -3985 (|#2| (-1246 |#1|))) (-15 -3997 (|#1| (-1246 |#2|) (-1246 |#1|))) (-15 -4205 ((-679 |#2|) (-1246 |#1|) (-1246 |#1|))) (-15 -4205 ((-1246 |#2|) |#1| (-1246 |#1|))) (-15 -2096 ((-679 |#2|) |#1| (-1246 |#1|))) (-15 -2109 ((-679 |#2|) |#1| (-1246 |#1|))) (-15 -4194 ((-1246 (-679 |#2|)) (-1246 |#1|))) (-15 -3855 ((-635 (-942 |#2|)) (-1246 |#1|)))) (-416 |#2|) (-171)) (T -415))
+((-4194 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-1246 (-679 *4))) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4)))) (-3855 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-635 (-942 *4))) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4)))) (-3985 (*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-415 *3 *2)) (-4 *3 (-416 *2)))) (-2143 (*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-415 *3 *2)) (-4 *3 (-416 *2)))) (-2132 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-679 *4)) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4)))) (-2121 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-679 *4)) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4)))) (-2824 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-1159 (-942 *4))) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4)))) (-3933 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-1159 (-942 *4))) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4)))))
+(-10 -8 (-15 -2258 (|#1| (-679 |#2|) |#1|)) (-15 -3933 ((-1159 (-942 |#2|)))) (-15 -2824 ((-1159 (-942 |#2|)))) (-15 -2096 ((-679 |#2|) |#1|)) (-15 -2109 ((-679 |#2|) |#1|)) (-15 -2121 ((-679 |#2|))) (-15 -2132 ((-679 |#2|))) (-15 -2143 (|#2|)) (-15 -3985 (|#2|)) (-15 -3224 (|#1| (-1246 |#2|))) (-15 -3224 ((-1246 |#2|) |#1|)) (-15 -3997 (|#1| (-1246 |#2|))) (-15 -3855 ((-635 (-942 |#2|)))) (-15 -4194 ((-1246 (-679 |#2|)))) (-15 -4205 ((-679 |#2|) (-1246 |#1|))) (-15 -4205 ((-1246 |#2|) |#1|)) (-15 -1960 ((-3 |#1| "failed"))) (-15 -2458 ((-3 |#1| "failed"))) (-15 -2470 ((-3 |#1| "failed"))) (-15 -2845 ((-3 (-2 (|:| |particular| |#1|) (|:| -2660 (-635 |#1|))) "failed"))) (-15 -2854 ((-3 (-2 (|:| |particular| |#1|) (|:| -2660 (-635 |#1|))) "failed"))) (-15 -2121 ((-679 |#2|) (-1246 |#1|))) (-15 -2132 ((-679 |#2|) (-1246 |#1|))) (-15 -2143 (|#2| (-1246 |#1|))) (-15 -3985 (|#2| (-1246 |#1|))) (-15 -3997 (|#1| (-1246 |#2|) (-1246 |#1|))) (-15 -4205 ((-679 |#2|) (-1246 |#1|) (-1246 |#1|))) (-15 -4205 ((-1246 |#2|) |#1| (-1246 |#1|))) (-15 -2096 ((-679 |#2|) |#1| (-1246 |#1|))) (-15 -2109 ((-679 |#2|) |#1| (-1246 |#1|))) (-15 -4194 ((-1246 (-679 |#2|)) (-1246 |#1|))) (-15 -3855 ((-635 (-942 |#2|)) (-1246 |#1|))))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-1960 (((-3 $ "failed")) 37 (|has| |#1| (-550)))) (-2089 (((-3 $ "failed") $ $) 19)) (-4194 (((-1246 (-679 |#1|)) (-1246 $)) 78) (((-1246 (-679 |#1|))) 100)) (-2751 (((-1246 $)) 81)) (-1816 (($) 17 T CONST)) (-2845 (((-3 (-2 (|:| |particular| $) (|:| -2660 (-635 $))) "failed")) 40 (|has| |#1| (-550)))) (-2458 (((-3 $ "failed")) 38 (|has| |#1| (-550)))) (-2121 (((-679 |#1|) (-1246 $)) 65) (((-679 |#1|)) 92)) (-2729 ((|#1| $) 74)) (-2096 (((-679 |#1|) $ (-1246 $)) 76) (((-679 |#1|) $) 90)) (-1986 (((-3 $ "failed") $) 45 (|has| |#1| (-550)))) (-3933 (((-1159 (-942 |#1|))) 88 (|has| |#1| (-362)))) (-2015 (($ $ (-911)) 28)) (-2708 ((|#1| $) 72)) (-2484 (((-1159 |#1|) $) 42 (|has| |#1| (-550)))) (-2143 ((|#1| (-1246 $)) 67) ((|#1|) 94)) (-2685 (((-1159 |#1|) $) 63)) (-2622 (((-112)) 57)) (-3997 (($ (-1246 |#1|) (-1246 $)) 69) (($ (-1246 |#1|)) 98)) (-2588 (((-3 $ "failed") $) 47 (|has| |#1| (-550)))) (-3833 (((-911)) 80)) (-2591 (((-112)) 54)) (-4078 (($ $ (-911)) 33)) (-2539 (((-112)) 50)) (-2517 (((-112)) 48)) (-2565 (((-112)) 52)) (-2854 (((-3 (-2 (|:| |particular| $) (|:| -2660 (-635 $))) "failed")) 41 (|has| |#1| (-550)))) (-2470 (((-3 $ "failed")) 39 (|has| |#1| (-550)))) (-2132 (((-679 |#1|) (-1246 $)) 66) (((-679 |#1|)) 93)) (-2740 ((|#1| $) 75)) (-2109 (((-679 |#1|) $ (-1246 $)) 77) (((-679 |#1|) $) 91)) (-1995 (((-3 $ "failed") $) 46 (|has| |#1| (-550)))) (-2824 (((-1159 (-942 |#1|))) 89 (|has| |#1| (-362)))) (-2006 (($ $ (-911)) 29)) (-2718 ((|#1| $) 73)) (-2498 (((-1159 |#1|) $) 43 (|has| |#1| (-550)))) (-3985 ((|#1| (-1246 $)) 68) ((|#1|) 95)) (-2696 (((-1159 |#1|) $) 64)) (-2632 (((-112)) 58)) (-4310 (((-1145) $) 9)) (-2527 (((-112)) 49)) (-2551 (((-112)) 51)) (-2580 (((-112)) 53)) (-2975 (((-1107) $) 10)) (-2612 (((-112)) 56)) (-2195 ((|#1| $ (-558)) 101)) (-4205 (((-1246 |#1|) $ (-1246 $)) 71) (((-679 |#1|) (-1246 $) (-1246 $)) 70) (((-1246 |#1|) $) 103) (((-679 |#1|) (-1246 $)) 102)) (-3224 (((-1246 |#1|) $) 97) (($ (-1246 |#1|)) 96)) (-3855 (((-635 (-942 |#1|)) (-1246 $)) 79) (((-635 (-942 |#1|))) 99)) (-3443 (($ $ $) 25)) (-2676 (((-112)) 62)) (-3220 (((-853) $) 11)) (-2660 (((-1246 $)) 104)) (-2507 (((-635 (-1246 |#1|))) 44 (|has| |#1| (-550)))) (-3452 (($ $ $ $) 26)) (-2654 (((-112)) 60)) (-2258 (($ (-679 |#1|) $) 87)) (-3433 (($ $ $) 24)) (-2664 (((-112)) 61)) (-2642 (((-112)) 59)) (-2602 (((-112)) 55)) (-2131 (($) 18 T CONST)) (-1683 (((-112) $ $) 6)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 30)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+(((-416 |#1|) (-139) (-171)) (T -416))
+((-2660 (*1 *2) (-12 (-4 *3 (-171)) (-5 *2 (-1246 *1)) (-4 *1 (-416 *3)))) (-4205 (*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-1246 *3)))) (-4205 (*1 *2 *3) (-12 (-5 *3 (-1246 *1)) (-4 *1 (-416 *4)) (-4 *4 (-171)) (-5 *2 (-679 *4)))) (-2195 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-416 *2)) (-4 *2 (-171)))) (-4194 (*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-1246 (-679 *3))))) (-3855 (*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-635 (-942 *3))))) (-3997 (*1 *1 *2) (-12 (-5 *2 (-1246 *3)) (-4 *3 (-171)) (-4 *1 (-416 *3)))) (-3224 (*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-1246 *3)))) (-3224 (*1 *1 *2) (-12 (-5 *2 (-1246 *3)) (-4 *3 (-171)) (-4 *1 (-416 *3)))) (-3985 (*1 *2) (-12 (-4 *1 (-416 *2)) (-4 *2 (-171)))) (-2143 (*1 *2) (-12 (-4 *1 (-416 *2)) (-4 *2 (-171)))) (-2132 (*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-679 *3)))) (-2121 (*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-679 *3)))) (-2109 (*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-679 *3)))) (-2096 (*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-679 *3)))) (-2824 (*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-4 *3 (-362)) (-5 *2 (-1159 (-942 *3))))) (-3933 (*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-4 *3 (-362)) (-5 *2 (-1159 (-942 *3))))) (-2258 (*1 *1 *2 *1) (-12 (-5 *2 (-679 *3)) (-4 *1 (-416 *3)) (-4 *3 (-171)))))
+(-13 (-366 |t#1|) (-10 -8 (-15 -2660 ((-1246 $))) (-15 -4205 ((-1246 |t#1|) $)) (-15 -4205 ((-679 |t#1|) (-1246 $))) (-15 -2195 (|t#1| $ (-558))) (-15 -4194 ((-1246 (-679 |t#1|)))) (-15 -3855 ((-635 (-942 |t#1|)))) (-15 -3997 ($ (-1246 |t#1|))) (-15 -3224 ((-1246 |t#1|) $)) (-15 -3224 ($ (-1246 |t#1|))) (-15 -3985 (|t#1|)) (-15 -2143 (|t#1|)) (-15 -2132 ((-679 |t#1|))) (-15 -2121 ((-679 |t#1|))) (-15 -2109 ((-679 |t#1|) $)) (-15 -2096 ((-679 |t#1|) $)) (IF (|has| |t#1| (-362)) (PROGN (-15 -2824 ((-1159 (-942 |t#1|)))) (-15 -3933 ((-1159 (-942 |t#1|))))) |%noBranch|) (-15 -2258 ($ (-679 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-605 (-853)) . T) ((-366 |#1|) . T) ((-638 |#1|) . T) ((-708 |#1|) . T) ((-711) . T) ((-735 |#1|) . T) ((-752) . T) ((-1045 |#1|) . T) ((-1087) . T))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) 44)) (-1950 (($ $) 59)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 147)) (-1881 (($ $) NIL)) (-1857 (((-112) $) 38)) (-1960 ((|#1| $) 13)) (-2089 (((-3 $ "failed") $ $) NIL)) (-3465 (($ $) NIL (|has| |#1| (-1204)))) (-1380 (((-417 $) $) NIL (|has| |#1| (-1204)))) (-1985 (($ |#1| (-558)) 34)) (-1816 (($) NIL T CONST)) (-3069 (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-3 |#1| "failed") $) 117)) (-1863 (((-558) $) NIL (|has| |#1| (-1028 (-558)))) (((-406 (-558)) $) NIL (|has| |#1| (-1028 (-406 (-558))))) ((|#1| $) 57)) (-2588 (((-3 $ "failed") $) 132)) (-3962 (((-3 (-406 (-558)) "failed") $) 65 (|has| |#1| (-543)))) (-3951 (((-112) $) 61 (|has| |#1| (-543)))) (-3938 (((-406 (-558)) $) 72 (|has| |#1| (-543)))) (-1994 (($ |#1| (-558)) 36)) (-3031 (((-112) $) 153 (|has| |#1| (-1204)))) (-2035 (((-112) $) 45)) (-1388 (((-762) $) 40)) (-2005 (((-3 "nil" "sqfr" "irred" "prime") $ (-558)) 138)) (-1859 ((|#1| $ (-558)) 137)) (-2014 (((-558) $ (-558)) 136)) (-2034 (($ |#1| (-558)) 33)) (-3167 (($ (-1 |#1| |#1|) $) 144)) (-1353 (($ |#1| (-635 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-558))))) 60)) (-2665 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-4310 (((-1145) $) NIL)) (-2025 (($ |#1| (-558)) 35)) (-2975 (((-1107) $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#1| (-450)))) (-2699 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) 148 (|has| |#1| (-450)))) (-1972 (($ |#1| (-558) (-3 "nil" "sqfr" "irred" "prime")) 32)) (-1849 (((-635 (-2 (|:| -2522 |#1|) (|:| -1951 (-558)))) $) 56)) (-3311 (((-635 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-558)))) $) 12)) (-2522 (((-417 $) $) NIL (|has| |#1| (-1204)))) (-3983 (((-3 $ "failed") $ $) 139)) (-1951 (((-558) $) 133)) (-4294 ((|#1| $) 58)) (-2554 (($ $ (-635 |#1|) (-635 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ (-635 (-293 |#1|))) 81 (|has| |#1| (-308 |#1|))) (($ $ (-635 (-1163)) (-635 |#1|)) 87 (|has| |#1| (-512 (-1163) |#1|))) (($ $ (-1163) |#1|) NIL (|has| |#1| (-512 (-1163) |#1|))) (($ $ (-1163) $) NIL (|has| |#1| (-512 (-1163) $))) (($ $ (-635 (-1163)) (-635 $)) 88 (|has| |#1| (-512 (-1163) $))) (($ $ (-635 (-293 $))) 84 (|has| |#1| (-308 $))) (($ $ (-293 $)) NIL (|has| |#1| (-308 $))) (($ $ $ $) NIL (|has| |#1| (-308 $))) (($ $ (-635 $) (-635 $)) NIL (|has| |#1| (-308 $)))) (-2195 (($ $ |#1|) 73 (|has| |#1| (-285 |#1| |#1|))) (($ $ $) 74 (|has| |#1| (-285 $ $)))) (-2829 (($ $) NIL (|has| |#1| (-232))) (($ $ (-762)) NIL (|has| |#1| (-232))) (($ $ (-1163)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) NIL) (($ $ (-1 |#1| |#1|)) 143)) (-3224 (((-534) $) 30 (|has| |#1| (-606 (-534)))) (((-378) $) 94 (|has| |#1| (-1012))) (((-224) $) 97 (|has| |#1| (-1012)))) (-3220 (((-853) $) 115) (($ (-558)) 48) (($ $) NIL) (($ |#1|) 47) (($ (-406 (-558))) NIL (|has| |#1| (-1028 (-406 (-558)))))) (-2542 (((-762)) 50)) (-1870 (((-112) $ $) NIL)) (-2131 (($) 42 T CONST)) (-2142 (($) 41 T CONST)) (-1866 (($ $) NIL (|has| |#1| (-232))) (($ $ (-762)) NIL (|has| |#1| (-232))) (($ $ (-1163)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1683 (((-112) $ $) 98)) (-1798 (($ $) 129) (($ $ $) NIL)) (-1784 (($ $ $) 141)) (** (($ $ (-911)) NIL) (($ $ (-762)) 104)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 52) (($ $ $) 51) (($ |#1| $) 53) (($ $ |#1|) NIL)))
+(((-417 |#1|) (-13 (-550) (-230 |#1|) (-38 |#1|) (-337 |#1|) (-410 |#1|) (-10 -8 (-15 -4294 (|#1| $)) (-15 -1951 ((-558) $)) (-15 -1353 ($ |#1| (-635 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-558)))))) (-15 -3311 ((-635 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-558)))) $)) (-15 -2034 ($ |#1| (-558))) (-15 -1849 ((-635 (-2 (|:| -2522 |#1|) (|:| -1951 (-558)))) $)) (-15 -2025 ($ |#1| (-558))) (-15 -2014 ((-558) $ (-558))) (-15 -1859 (|#1| $ (-558))) (-15 -2005 ((-3 "nil" "sqfr" "irred" "prime") $ (-558))) (-15 -1388 ((-762) $)) (-15 -1994 ($ |#1| (-558))) (-15 -1985 ($ |#1| (-558))) (-15 -1972 ($ |#1| (-558) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1960 (|#1| $)) (-15 -1950 ($ $)) (-15 -3167 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-450)) (-6 (-450)) |%noBranch|) (IF (|has| |#1| (-1012)) (-6 (-1012)) |%noBranch|) (IF (|has| |#1| (-1204)) (-6 (-1204)) |%noBranch|) (IF (|has| |#1| (-606 (-534))) (-6 (-606 (-534))) |%noBranch|) (IF (|has| |#1| (-543)) (PROGN (-15 -3951 ((-112) $)) (-15 -3938 ((-406 (-558)) $)) (-15 -3962 ((-3 (-406 (-558)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-285 $ $)) (-6 (-285 $ $)) |%noBranch|) (IF (|has| |#1| (-308 $)) (-6 (-308 $)) |%noBranch|) (IF (|has| |#1| (-512 (-1163) $)) (-6 (-512 (-1163) $)) |%noBranch|))) (-550)) (T -417))
+((-3167 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-550)) (-5 *1 (-417 *3)))) (-4294 (*1 *2 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-550)))) (-1951 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-417 *3)) (-4 *3 (-550)))) (-1353 (*1 *1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-558))))) (-4 *2 (-550)) (-5 *1 (-417 *2)))) (-3311 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-558))))) (-5 *1 (-417 *3)) (-4 *3 (-550)))) (-2034 (*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-417 *2)) (-4 *2 (-550)))) (-1849 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| -2522 *3) (|:| -1951 (-558))))) (-5 *1 (-417 *3)) (-4 *3 (-550)))) (-2025 (*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-417 *2)) (-4 *2 (-550)))) (-2014 (*1 *2 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-417 *3)) (-4 *3 (-550)))) (-1859 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *1 (-417 *2)) (-4 *2 (-550)))) (-2005 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-417 *4)) (-4 *4 (-550)))) (-1388 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-417 *3)) (-4 *3 (-550)))) (-1994 (*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-417 *2)) (-4 *2 (-550)))) (-1985 (*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-417 *2)) (-4 *2 (-550)))) (-1972 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-558)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-417 *2)) (-4 *2 (-550)))) (-1960 (*1 *2 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-550)))) (-1950 (*1 *1 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-550)))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-417 *3)) (-4 *3 (-543)) (-4 *3 (-550)))) (-3938 (*1 *2 *1) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-417 *3)) (-4 *3 (-543)) (-4 *3 (-550)))) (-3962 (*1 *2 *1) (|partial| -12 (-5 *2 (-406 (-558))) (-5 *1 (-417 *3)) (-4 *3 (-543)) (-4 *3 (-550)))))
+(-13 (-550) (-230 |#1|) (-38 |#1|) (-337 |#1|) (-410 |#1|) (-10 -8 (-15 -4294 (|#1| $)) (-15 -1951 ((-558) $)) (-15 -1353 ($ |#1| (-635 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-558)))))) (-15 -3311 ((-635 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-558)))) $)) (-15 -2034 ($ |#1| (-558))) (-15 -1849 ((-635 (-2 (|:| -2522 |#1|) (|:| -1951 (-558)))) $)) (-15 -2025 ($ |#1| (-558))) (-15 -2014 ((-558) $ (-558))) (-15 -1859 (|#1| $ (-558))) (-15 -2005 ((-3 "nil" "sqfr" "irred" "prime") $ (-558))) (-15 -1388 ((-762) $)) (-15 -1994 ($ |#1| (-558))) (-15 -1985 ($ |#1| (-558))) (-15 -1972 ($ |#1| (-558) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1960 (|#1| $)) (-15 -1950 ($ $)) (-15 -3167 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-450)) (-6 (-450)) |%noBranch|) (IF (|has| |#1| (-1012)) (-6 (-1012)) |%noBranch|) (IF (|has| |#1| (-1204)) (-6 (-1204)) |%noBranch|) (IF (|has| |#1| (-606 (-534))) (-6 (-606 (-534))) |%noBranch|) (IF (|has| |#1| (-543)) (PROGN (-15 -3951 ((-112) $)) (-15 -3938 ((-406 (-558)) $)) (-15 -3962 ((-3 (-406 (-558)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-285 $ $)) (-6 (-285 $ $)) |%noBranch|) (IF (|has| |#1| (-308 $)) (-6 (-308 $)) |%noBranch|) (IF (|has| |#1| (-512 (-1163) $)) (-6 (-512 (-1163) $)) |%noBranch|)))
+((-2634 (((-417 |#1|) (-417 |#1|) (-1 (-417 |#1|) |#1|)) 21)) (-4009 (((-417 |#1|) (-417 |#1|) (-417 |#1|)) 16)))
+(((-418 |#1|) (-10 -7 (-15 -2634 ((-417 |#1|) (-417 |#1|) (-1 (-417 |#1|) |#1|))) (-15 -4009 ((-417 |#1|) (-417 |#1|) (-417 |#1|)))) (-550)) (T -418))
+((-4009 (*1 *2 *2 *2) (-12 (-5 *2 (-417 *3)) (-4 *3 (-550)) (-5 *1 (-418 *3)))) (-2634 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-417 *4) *4)) (-4 *4 (-550)) (-5 *2 (-417 *4)) (-5 *1 (-418 *4)))))
+(-10 -7 (-15 -2634 ((-417 |#1|) (-417 |#1|) (-1 (-417 |#1|) |#1|))) (-15 -4009 ((-417 |#1|) (-417 |#1|) (-417 |#1|))))
+((-4057 ((|#2| |#2|) 165)) (-4029 (((-3 (|:| |%expansion| (-312 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1145)) (|:| |prob| (-1145))))) |#2| (-112)) 57)))
+(((-419 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4029 ((-3 (|:| |%expansion| (-312 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1145)) (|:| |prob| (-1145))))) |#2| (-112))) (-15 -4057 (|#2| |#2|))) (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))) (-13 (-27) (-1185) (-429 |#1|)) (-1163) |#2|) (T -419))
+((-4057 (*1 *2 *2) (-12 (-4 *3 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-419 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1185) (-429 *3))) (-14 *4 (-1163)) (-14 *5 *2))) (-4029 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-3 (|:| |%expansion| (-312 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1145)) (|:| |prob| (-1145)))))) (-5 *1 (-419 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1185) (-429 *5))) (-14 *6 (-1163)) (-14 *7 *3))))
+(-10 -7 (-15 -4029 ((-3 (|:| |%expansion| (-312 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1145)) (|:| |prob| (-1145))))) |#2| (-112))) (-15 -4057 (|#2| |#2|)))
+((-3167 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
+(((-420 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3167 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-1039) (-841)) (-429 |#1|) (-13 (-1039) (-841)) (-429 |#3|)) (T -420))
+((-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1039) (-841))) (-4 *6 (-13 (-1039) (-841))) (-4 *2 (-429 *6)) (-5 *1 (-420 *5 *4 *6 *2)) (-4 *4 (-429 *5)))))
+(-10 -7 (-15 -3167 (|#4| (-1 |#3| |#1|) |#2|)))
+((-4057 ((|#2| |#2|) 89)) (-4040 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1145)) (|:| |prob| (-1145))))) |#2| (-112) (-1145)) 48)) (-4050 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1145)) (|:| |prob| (-1145))))) |#2| (-112) (-1145)) 153)))
+(((-421 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4040 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1145)) (|:| |prob| (-1145))))) |#2| (-112) (-1145))) (-15 -4050 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1145)) (|:| |prob| (-1145))))) |#2| (-112) (-1145))) (-15 -4057 (|#2| |#2|))) (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))) (-13 (-27) (-1185) (-429 |#1|) (-10 -8 (-15 -3220 ($ |#3|)))) (-839) (-13 (-1224 |#2| |#3|) (-362) (-1185) (-10 -8 (-15 -2829 ($ $)) (-15 -2543 ($ $)))) (-973 |#4|) (-1163)) (T -421))
+((-4057 (*1 *2 *2) (-12 (-4 *3 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-4 *2 (-13 (-27) (-1185) (-429 *3) (-10 -8 (-15 -3220 ($ *4))))) (-4 *4 (-839)) (-4 *5 (-13 (-1224 *2 *4) (-362) (-1185) (-10 -8 (-15 -2829 ($ $)) (-15 -2543 ($ $))))) (-5 *1 (-421 *3 *2 *4 *5 *6 *7)) (-4 *6 (-973 *5)) (-14 *7 (-1163)))) (-4050 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-4 *3 (-13 (-27) (-1185) (-429 *6) (-10 -8 (-15 -3220 ($ *7))))) (-4 *7 (-839)) (-4 *8 (-13 (-1224 *3 *7) (-362) (-1185) (-10 -8 (-15 -2829 ($ $)) (-15 -2543 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1145)) (|:| |prob| (-1145)))))) (-5 *1 (-421 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1145)) (-4 *9 (-973 *8)) (-14 *10 (-1163)))) (-4040 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-4 *3 (-13 (-27) (-1185) (-429 *6) (-10 -8 (-15 -3220 ($ *7))))) (-4 *7 (-839)) (-4 *8 (-13 (-1224 *3 *7) (-362) (-1185) (-10 -8 (-15 -2829 ($ $)) (-15 -2543 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1145)) (|:| |prob| (-1145)))))) (-5 *1 (-421 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1145)) (-4 *9 (-973 *8)) (-14 *10 (-1163)))))
+(-10 -7 (-15 -4040 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1145)) (|:| |prob| (-1145))))) |#2| (-112) (-1145))) (-15 -4050 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1145)) (|:| |prob| (-1145))))) |#2| (-112) (-1145))) (-15 -4057 (|#2| |#2|)))
+((-2756 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-3048 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-3167 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
+(((-422 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3167 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3048 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2756 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1087) (-424 |#1|) (-1087) (-424 |#3|)) (T -422))
+((-2756 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1087)) (-4 *5 (-1087)) (-4 *2 (-424 *5)) (-5 *1 (-422 *6 *4 *5 *2)) (-4 *4 (-424 *6)))) (-3048 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1087)) (-4 *2 (-1087)) (-5 *1 (-422 *5 *4 *2 *6)) (-4 *4 (-424 *5)) (-4 *6 (-424 *2)))) (-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *2 (-424 *6)) (-5 *1 (-422 *5 *4 *6 *2)) (-4 *4 (-424 *5)))))
+(-10 -7 (-15 -3167 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3048 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2756 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-4067 (($) 44)) (-3539 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-4259 (($ $ $) 39)) (-4248 (((-112) $ $) 28)) (-2276 (((-762)) 47)) (-1511 (($ (-635 |#2|)) 20) (($) NIL)) (-2424 (($) 53)) (-4298 (((-112) $ $) 13)) (-3910 ((|#2| $) 61)) (-3542 ((|#2| $) 59)) (-2637 (((-911) $) 55)) (-4286 (($ $ $) 35)) (-2851 (($ (-911)) 50)) (-4271 (($ $ |#2|) NIL) (($ $ $) 38)) (-2988 (((-762) (-1 (-112) |#2|) $) NIL) (((-762) |#2| $) 26)) (-3233 (($ (-635 |#2|)) 24)) (-4077 (($ $) 46)) (-3220 (((-853) $) 33)) (-4085 (((-762) $) 21)) (-2597 (($ (-635 |#2|)) 19) (($) NIL)) (-1683 (((-112) $ $) 16)))
+(((-423 |#1| |#2|) (-10 -8 (-15 -2276 ((-762))) (-15 -2851 (|#1| (-911))) (-15 -2637 ((-911) |#1|)) (-15 -2424 (|#1|)) (-15 -3910 (|#2| |#1|)) (-15 -3542 (|#2| |#1|)) (-15 -4067 (|#1|)) (-15 -4077 (|#1| |#1|)) (-15 -4085 ((-762) |#1|)) (-15 -1683 ((-112) |#1| |#1|)) (-15 -3220 ((-853) |#1|)) (-15 -4298 ((-112) |#1| |#1|)) (-15 -2597 (|#1|)) (-15 -2597 (|#1| (-635 |#2|))) (-15 -1511 (|#1|)) (-15 -1511 (|#1| (-635 |#2|))) (-15 -4286 (|#1| |#1| |#1|)) (-15 -4271 (|#1| |#1| |#1|)) (-15 -4271 (|#1| |#1| |#2|)) (-15 -4259 (|#1| |#1| |#1|)) (-15 -4248 ((-112) |#1| |#1|)) (-15 -3539 (|#1| |#1| |#1|)) (-15 -3539 (|#1| |#1| |#2|)) (-15 -3539 (|#1| |#2| |#1|)) (-15 -3233 (|#1| (-635 |#2|))) (-15 -2988 ((-762) |#2| |#1|)) (-15 -2988 ((-762) (-1 (-112) |#2|) |#1|))) (-424 |#2|) (-1087)) (T -423))
+((-2276 (*1 *2) (-12 (-4 *4 (-1087)) (-5 *2 (-762)) (-5 *1 (-423 *3 *4)) (-4 *3 (-424 *4)))))
+(-10 -8 (-15 -2276 ((-762))) (-15 -2851 (|#1| (-911))) (-15 -2637 ((-911) |#1|)) (-15 -2424 (|#1|)) (-15 -3910 (|#2| |#1|)) (-15 -3542 (|#2| |#1|)) (-15 -4067 (|#1|)) (-15 -4077 (|#1| |#1|)) (-15 -4085 ((-762) |#1|)) (-15 -1683 ((-112) |#1| |#1|)) (-15 -3220 ((-853) |#1|)) (-15 -4298 ((-112) |#1| |#1|)) (-15 -2597 (|#1|)) (-15 -2597 (|#1| (-635 |#2|))) (-15 -1511 (|#1|)) (-15 -1511 (|#1| (-635 |#2|))) (-15 -4286 (|#1| |#1| |#1|)) (-15 -4271 (|#1| |#1| |#1|)) (-15 -4271 (|#1| |#1| |#2|)) (-15 -4259 (|#1| |#1| |#1|)) (-15 -4248 ((-112) |#1| |#1|)) (-15 -3539 (|#1| |#1| |#1|)) (-15 -3539 (|#1| |#1| |#2|)) (-15 -3539 (|#1| |#2| |#1|)) (-15 -3233 (|#1| (-635 |#2|))) (-15 -2988 ((-762) |#2| |#1|)) (-15 -2988 ((-762) (-1 (-112) |#2|) |#1|)))
+((-3207 (((-112) $ $) 19)) (-4067 (($) 67 (|has| |#1| (-367)))) (-3539 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-4259 (($ $ $) 78)) (-4248 (((-112) $ $) 79)) (-3026 (((-112) $ (-762)) 8)) (-2276 (((-762)) 61 (|has| |#1| (-367)))) (-1511 (($ (-635 |#1|)) 74) (($) 73)) (-4207 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4382)))) (-4329 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4382)))) (-1816 (($) 7 T CONST)) (-2338 (($ $) 58 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-3395 (($ |#1| $) 47 (|has| $ (-6 -4382))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4382)))) (-1539 (($ |#1| $) 57 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4382)))) (-3048 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4382))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4382)))) (-2424 (($) 64 (|has| |#1| (-367)))) (-2240 (((-635 |#1|) $) 30 (|has| $ (-6 -4382)))) (-4298 (((-112) $ $) 70)) (-2986 (((-112) $ (-762)) 9)) (-3910 ((|#1| $) 65 (|has| |#1| (-841)))) (-2122 (((-635 |#1|) $) 29 (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-3542 ((|#1| $) 66 (|has| |#1| (-841)))) (-1807 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) 35)) (-2637 (((-911) $) 63 (|has| |#1| (-367)))) (-2953 (((-112) $ (-762)) 10)) (-4310 (((-1145) $) 22)) (-4286 (($ $ $) 75)) (-1722 ((|#1| $) 39)) (-4328 (($ |#1| $) 40)) (-2851 (($ (-911)) 62 (|has| |#1| (-367)))) (-2975 (((-1107) $) 21)) (-4307 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3524 ((|#1| $) 41)) (-3266 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) 14)) (-3375 (((-112) $) 11)) (-2083 (($) 12)) (-4271 (($ $ |#1|) 77) (($ $ $) 76)) (-2571 (($) 49) (($ (-635 |#1|)) 48)) (-2988 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4382))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1553 (($ $) 13)) (-3224 (((-534) $) 59 (|has| |#1| (-606 (-534))))) (-3233 (($ (-635 |#1|)) 50)) (-4077 (($ $) 68 (|has| |#1| (-367)))) (-3220 (((-853) $) 18)) (-4085 (((-762) $) 69)) (-2597 (($ (-635 |#1|)) 72) (($) 71)) (-3534 (($ (-635 |#1|)) 42)) (-3277 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) 20)) (-2755 (((-762) $) 6 (|has| $ (-6 -4382)))))
+(((-424 |#1|) (-139) (-1087)) (T -424))
+((-4085 (*1 *2 *1) (-12 (-4 *1 (-424 *3)) (-4 *3 (-1087)) (-5 *2 (-762)))) (-4077 (*1 *1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1087)) (-4 *2 (-367)))) (-4067 (*1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-367)) (-4 *2 (-1087)))) (-3542 (*1 *2 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1087)) (-4 *2 (-841)))) (-3910 (*1 *2 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1087)) (-4 *2 (-841)))))
+(-13 (-228 |t#1|) (-1085 |t#1|) (-10 -8 (-6 -4382) (-15 -4085 ((-762) $)) (IF (|has| |t#1| (-367)) (PROGN (-6 (-367)) (-15 -4077 ($ $)) (-15 -4067 ($))) |%noBranch|) (IF (|has| |t#1| (-841)) (PROGN (-15 -3542 (|t#1| $)) (-15 -3910 (|t#1| $))) |%noBranch|)))
+(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-605 (-853)) . T) ((-150 |#1|) . T) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-228 |#1|) . T) ((-234 |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-367) |has| |#1| (-367)) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-1085 |#1|) . T) ((-1087) . T) ((-1200) . T))
+((-4097 (((-579 |#2|) |#2| (-1163)) 35)) (-4138 (((-579 |#2|) |#2| (-1163)) 20)) (-1544 ((|#2| |#2| (-1163)) 25)))
+(((-425 |#1| |#2|) (-10 -7 (-15 -4138 ((-579 |#2|) |#2| (-1163))) (-15 -4097 ((-579 |#2|) |#2| (-1163))) (-15 -1544 (|#2| |#2| (-1163)))) (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558))) (-13 (-1185) (-29 |#1|))) (T -425))
+((-1544 (*1 *2 *2 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-425 *4 *2)) (-4 *2 (-13 (-1185) (-29 *4))))) (-4097 (*1 *2 *3 *4) (-12 (-5 *4 (-1163)) (-4 *5 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-579 *3)) (-5 *1 (-425 *5 *3)) (-4 *3 (-13 (-1185) (-29 *5))))) (-4138 (*1 *2 *3 *4) (-12 (-5 *4 (-1163)) (-4 *5 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-579 *3)) (-5 *1 (-425 *5 *3)) (-4 *3 (-13 (-1185) (-29 *5))))))
+(-10 -7 (-15 -4138 ((-579 |#2|) |#2| (-1163))) (-15 -4097 ((-579 |#2|) |#2| (-1163))) (-15 -1544 (|#2| |#2| (-1163))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-1816 (($) NIL T CONST)) (-2588 (((-3 $ "failed") $) NIL)) (-2035 (((-112) $) NIL)) (-4121 (($ |#2| |#1|) 35)) (-4110 (($ |#2| |#1|) 33)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ |#1|) NIL) (($ (-330 |#2|)) 25)) (-2542 (((-762)) NIL)) (-2131 (($) 10 T CONST)) (-2142 (($) 16 T CONST)) (-1683 (((-112) $ $) NIL)) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) 34)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-426 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4369)) (IF (|has| |#1| (-6 -4369)) (-6 -4369) |%noBranch|) |%noBranch|) (-15 -3220 ($ |#1|)) (-15 -3220 ($ (-330 |#2|))) (-15 -4121 ($ |#2| |#1|)) (-15 -4110 ($ |#2| |#1|)))) (-13 (-171) (-38 (-406 (-558)))) (-13 (-841) (-21))) (T -426))
+((-3220 (*1 *1 *2) (-12 (-5 *1 (-426 *2 *3)) (-4 *2 (-13 (-171) (-38 (-406 (-558))))) (-4 *3 (-13 (-841) (-21))))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-330 *4)) (-4 *4 (-13 (-841) (-21))) (-5 *1 (-426 *3 *4)) (-4 *3 (-13 (-171) (-38 (-406 (-558))))))) (-4121 (*1 *1 *2 *3) (-12 (-5 *1 (-426 *3 *2)) (-4 *3 (-13 (-171) (-38 (-406 (-558))))) (-4 *2 (-13 (-841) (-21))))) (-4110 (*1 *1 *2 *3) (-12 (-5 *1 (-426 *3 *2)) (-4 *3 (-13 (-171) (-38 (-406 (-558))))) (-4 *2 (-13 (-841) (-21))))))
+(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4369)) (IF (|has| |#1| (-6 -4369)) (-6 -4369) |%noBranch|) |%noBranch|) (-15 -3220 ($ |#1|)) (-15 -3220 ($ (-330 |#2|))) (-15 -4121 ($ |#2| |#1|)) (-15 -4110 ($ |#2| |#1|))))
+((-2543 (((-3 |#2| (-635 |#2|)) |#2| (-1163)) 108)))
+(((-427 |#1| |#2|) (-10 -7 (-15 -2543 ((-3 |#2| (-635 |#2|)) |#2| (-1163)))) (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558))) (-13 (-1185) (-949) (-29 |#1|))) (T -427))
+((-2543 (*1 *2 *3 *4) (-12 (-5 *4 (-1163)) (-4 *5 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-3 *3 (-635 *3))) (-5 *1 (-427 *5 *3)) (-4 *3 (-13 (-1185) (-949) (-29 *5))))))
+(-10 -7 (-15 -2543 ((-3 |#2| (-635 |#2|)) |#2| (-1163))))
+((-2671 (((-635 (-1163)) $) 72)) (-2492 (((-406 (-1159 $)) $ (-604 $)) 273)) (-2497 (($ $ (-293 $)) NIL) (($ $ (-635 (-293 $))) NIL) (($ $ (-635 (-604 $)) (-635 $)) 237)) (-3069 (((-3 (-604 $) "failed") $) NIL) (((-3 (-1163) "failed") $) 75) (((-3 (-558) "failed") $) NIL) (((-3 |#2| "failed") $) 233) (((-3 (-406 (-942 |#2|)) "failed") $) 324) (((-3 (-942 |#2|) "failed") $) 235) (((-3 (-406 (-558)) "failed") $) NIL)) (-1863 (((-604 $) $) NIL) (((-1163) $) 30) (((-558) $) NIL) ((|#2| $) 231) (((-406 (-942 |#2|)) $) 305) (((-942 |#2|) $) 232) (((-406 (-558)) $) NIL)) (-3029 (((-114) (-114)) 47)) (-3704 (($ $) 87)) (-1416 (((-3 (-604 $) "failed") $) 228)) (-2475 (((-635 (-604 $)) $) 229)) (-2560 (((-3 (-635 $) "failed") $) 247)) (-2586 (((-3 (-2 (|:| |val| $) (|:| -1951 (-558))) "failed") $) 254)) (-2548 (((-3 (-635 $) "failed") $) 245)) (-4017 (((-3 (-2 (|:| -2023 (-558)) (|:| |var| (-604 $))) "failed") $) 264)) (-2575 (((-3 (-2 (|:| |var| (-604 $)) (|:| -1951 (-558))) "failed") $) 251) (((-3 (-2 (|:| |var| (-604 $)) (|:| -1951 (-558))) "failed") $ (-114)) 217) (((-3 (-2 (|:| |var| (-604 $)) (|:| -1951 (-558))) "failed") $ (-1163)) 219)) (-2429 (((-112) $) 19)) (-2440 ((|#2| $) 21)) (-2554 (($ $ (-604 $) $) NIL) (($ $ (-635 (-604 $)) (-635 $)) 236) (($ $ (-635 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-635 (-1163)) (-635 (-1 $ $))) NIL) (($ $ (-635 (-1163)) (-635 (-1 $ (-635 $)))) 96) (($ $ (-1163) (-1 $ (-635 $))) NIL) (($ $ (-1163) (-1 $ $)) NIL) (($ $ (-635 (-114)) (-635 (-1 $ $))) NIL) (($ $ (-635 (-114)) (-635 (-1 $ (-635 $)))) NIL) (($ $ (-114) (-1 $ (-635 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1163)) 57) (($ $ (-635 (-1163))) 240) (($ $) 241) (($ $ (-114) $ (-1163)) 60) (($ $ (-635 (-114)) (-635 $) (-1163)) 67) (($ $ (-635 (-1163)) (-635 (-762)) (-635 (-1 $ $))) 107) (($ $ (-635 (-1163)) (-635 (-762)) (-635 (-1 $ (-635 $)))) 242) (($ $ (-1163) (-762) (-1 $ (-635 $))) 94) (($ $ (-1163) (-762) (-1 $ $)) 93)) (-2195 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-635 $)) 106)) (-2829 (($ $ (-635 (-1163)) (-635 (-762))) NIL) (($ $ (-1163) (-762)) NIL) (($ $ (-635 (-1163))) NIL) (($ $ (-1163)) 238)) (-3694 (($ $) 284)) (-3224 (((-882 (-558)) $) 257) (((-882 (-378)) $) 261) (($ (-417 $)) 320) (((-534) $) NIL)) (-3220 (((-853) $) 239) (($ (-604 $)) 84) (($ (-1163)) 26) (($ |#2|) NIL) (($ (-1112 |#2| (-604 $))) NIL) (($ (-406 |#2|)) 289) (($ (-942 (-406 |#2|))) 329) (($ (-406 (-942 (-406 |#2|)))) 301) (($ (-406 (-942 |#2|))) 295) (($ $) NIL) (($ (-942 |#2|)) 185) (($ (-406 (-558))) 334) (($ (-558)) NIL)) (-2542 (((-762)) 79)) (-2995 (((-112) (-114)) 41)) (-4213 (($ (-1163) $) 33) (($ (-1163) $ $) 34) (($ (-1163) $ $ $) 35) (($ (-1163) $ $ $ $) 36) (($ (-1163) (-635 $)) 39)) (* (($ (-406 (-558)) $) NIL) (($ $ (-406 (-558))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-558) $) NIL) (($ (-762) $) NIL) (($ (-911) $) NIL)))
+(((-428 |#1| |#2|) (-10 -8 (-15 * (|#1| (-911) |#1|)) (-15 * (|#1| (-762) |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3220 (|#1| (-558))) (-15 -2542 ((-762))) (-15 -3220 (|#1| (-406 (-558)))) (-15 -3069 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -1863 ((-406 (-558)) |#1|)) (-15 -3224 ((-534) |#1|)) (-15 -3220 (|#1| (-942 |#2|))) (-15 -3069 ((-3 (-942 |#2|) "failed") |#1|)) (-15 -1863 ((-942 |#2|) |#1|)) (-15 -2829 (|#1| |#1| (-1163))) (-15 -2829 (|#1| |#1| (-635 (-1163)))) (-15 -2829 (|#1| |#1| (-1163) (-762))) (-15 -2829 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3220 (|#1| |#1|)) (-15 * (|#1| |#1| (-406 (-558)))) (-15 * (|#1| (-406 (-558)) |#1|)) (-15 -3220 (|#1| (-406 (-942 |#2|)))) (-15 -3069 ((-3 (-406 (-942 |#2|)) "failed") |#1|)) (-15 -1863 ((-406 (-942 |#2|)) |#1|)) (-15 -2492 ((-406 (-1159 |#1|)) |#1| (-604 |#1|))) (-15 -3220 (|#1| (-406 (-942 (-406 |#2|))))) (-15 -3220 (|#1| (-942 (-406 |#2|)))) (-15 -3220 (|#1| (-406 |#2|))) (-15 -3694 (|#1| |#1|)) (-15 -3224 (|#1| (-417 |#1|))) (-15 -2554 (|#1| |#1| (-1163) (-762) (-1 |#1| |#1|))) (-15 -2554 (|#1| |#1| (-1163) (-762) (-1 |#1| (-635 |#1|)))) (-15 -2554 (|#1| |#1| (-635 (-1163)) (-635 (-762)) (-635 (-1 |#1| (-635 |#1|))))) (-15 -2554 (|#1| |#1| (-635 (-1163)) (-635 (-762)) (-635 (-1 |#1| |#1|)))) (-15 -2586 ((-3 (-2 (|:| |val| |#1|) (|:| -1951 (-558))) "failed") |#1|)) (-15 -2575 ((-3 (-2 (|:| |var| (-604 |#1|)) (|:| -1951 (-558))) "failed") |#1| (-1163))) (-15 -2575 ((-3 (-2 (|:| |var| (-604 |#1|)) (|:| -1951 (-558))) "failed") |#1| (-114))) (-15 -3704 (|#1| |#1|)) (-15 -3220 (|#1| (-1112 |#2| (-604 |#1|)))) (-15 -4017 ((-3 (-2 (|:| -2023 (-558)) (|:| |var| (-604 |#1|))) "failed") |#1|)) (-15 -2548 ((-3 (-635 |#1|) "failed") |#1|)) (-15 -2575 ((-3 (-2 (|:| |var| (-604 |#1|)) (|:| -1951 (-558))) "failed") |#1|)) (-15 -2560 ((-3 (-635 |#1|) "failed") |#1|)) (-15 -2554 (|#1| |#1| (-635 (-114)) (-635 |#1|) (-1163))) (-15 -2554 (|#1| |#1| (-114) |#1| (-1163))) (-15 -2554 (|#1| |#1|)) (-15 -2554 (|#1| |#1| (-635 (-1163)))) (-15 -2554 (|#1| |#1| (-1163))) (-15 -4213 (|#1| (-1163) (-635 |#1|))) (-15 -4213 (|#1| (-1163) |#1| |#1| |#1| |#1|)) (-15 -4213 (|#1| (-1163) |#1| |#1| |#1|)) (-15 -4213 (|#1| (-1163) |#1| |#1|)) (-15 -4213 (|#1| (-1163) |#1|)) (-15 -2671 ((-635 (-1163)) |#1|)) (-15 -2440 (|#2| |#1|)) (-15 -2429 ((-112) |#1|)) (-15 -3220 (|#1| |#2|)) (-15 -3069 ((-3 |#2| "failed") |#1|)) (-15 -1863 (|#2| |#1|)) (-15 -1863 ((-558) |#1|)) (-15 -3069 ((-3 (-558) "failed") |#1|)) (-15 -3224 ((-882 (-378)) |#1|)) (-15 -3224 ((-882 (-558)) |#1|)) (-15 -3220 (|#1| (-1163))) (-15 -3069 ((-3 (-1163) "failed") |#1|)) (-15 -1863 ((-1163) |#1|)) (-15 -2554 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2554 (|#1| |#1| (-114) (-1 |#1| (-635 |#1|)))) (-15 -2554 (|#1| |#1| (-635 (-114)) (-635 (-1 |#1| (-635 |#1|))))) (-15 -2554 (|#1| |#1| (-635 (-114)) (-635 (-1 |#1| |#1|)))) (-15 -2554 (|#1| |#1| (-1163) (-1 |#1| |#1|))) (-15 -2554 (|#1| |#1| (-1163) (-1 |#1| (-635 |#1|)))) (-15 -2554 (|#1| |#1| (-635 (-1163)) (-635 (-1 |#1| (-635 |#1|))))) (-15 -2554 (|#1| |#1| (-635 (-1163)) (-635 (-1 |#1| |#1|)))) (-15 -2995 ((-112) (-114))) (-15 -3029 ((-114) (-114))) (-15 -2475 ((-635 (-604 |#1|)) |#1|)) (-15 -1416 ((-3 (-604 |#1|) "failed") |#1|)) (-15 -2497 (|#1| |#1| (-635 (-604 |#1|)) (-635 |#1|))) (-15 -2497 (|#1| |#1| (-635 (-293 |#1|)))) (-15 -2497 (|#1| |#1| (-293 |#1|))) (-15 -2195 (|#1| (-114) (-635 |#1|))) (-15 -2195 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2195 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2195 (|#1| (-114) |#1| |#1|)) (-15 -2195 (|#1| (-114) |#1|)) (-15 -2554 (|#1| |#1| (-635 |#1|) (-635 |#1|))) (-15 -2554 (|#1| |#1| |#1| |#1|)) (-15 -2554 (|#1| |#1| (-293 |#1|))) (-15 -2554 (|#1| |#1| (-635 (-293 |#1|)))) (-15 -2554 (|#1| |#1| (-635 (-604 |#1|)) (-635 |#1|))) (-15 -2554 (|#1| |#1| (-604 |#1|) |#1|)) (-15 -3220 (|#1| (-604 |#1|))) (-15 -3069 ((-3 (-604 |#1|) "failed") |#1|)) (-15 -1863 ((-604 |#1|) |#1|)) (-15 -3220 ((-853) |#1|))) (-429 |#2|) (-841)) (T -428))
+((-3029 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *4 (-841)) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-2995 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *5 (-841)) (-5 *2 (-112)) (-5 *1 (-428 *4 *5)) (-4 *4 (-429 *5)))) (-2542 (*1 *2) (-12 (-4 *4 (-841)) (-5 *2 (-762)) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))))
+(-10 -8 (-15 * (|#1| (-911) |#1|)) (-15 * (|#1| (-762) |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3220 (|#1| (-558))) (-15 -2542 ((-762))) (-15 -3220 (|#1| (-406 (-558)))) (-15 -3069 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -1863 ((-406 (-558)) |#1|)) (-15 -3224 ((-534) |#1|)) (-15 -3220 (|#1| (-942 |#2|))) (-15 -3069 ((-3 (-942 |#2|) "failed") |#1|)) (-15 -1863 ((-942 |#2|) |#1|)) (-15 -2829 (|#1| |#1| (-1163))) (-15 -2829 (|#1| |#1| (-635 (-1163)))) (-15 -2829 (|#1| |#1| (-1163) (-762))) (-15 -2829 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3220 (|#1| |#1|)) (-15 * (|#1| |#1| (-406 (-558)))) (-15 * (|#1| (-406 (-558)) |#1|)) (-15 -3220 (|#1| (-406 (-942 |#2|)))) (-15 -3069 ((-3 (-406 (-942 |#2|)) "failed") |#1|)) (-15 -1863 ((-406 (-942 |#2|)) |#1|)) (-15 -2492 ((-406 (-1159 |#1|)) |#1| (-604 |#1|))) (-15 -3220 (|#1| (-406 (-942 (-406 |#2|))))) (-15 -3220 (|#1| (-942 (-406 |#2|)))) (-15 -3220 (|#1| (-406 |#2|))) (-15 -3694 (|#1| |#1|)) (-15 -3224 (|#1| (-417 |#1|))) (-15 -2554 (|#1| |#1| (-1163) (-762) (-1 |#1| |#1|))) (-15 -2554 (|#1| |#1| (-1163) (-762) (-1 |#1| (-635 |#1|)))) (-15 -2554 (|#1| |#1| (-635 (-1163)) (-635 (-762)) (-635 (-1 |#1| (-635 |#1|))))) (-15 -2554 (|#1| |#1| (-635 (-1163)) (-635 (-762)) (-635 (-1 |#1| |#1|)))) (-15 -2586 ((-3 (-2 (|:| |val| |#1|) (|:| -1951 (-558))) "failed") |#1|)) (-15 -2575 ((-3 (-2 (|:| |var| (-604 |#1|)) (|:| -1951 (-558))) "failed") |#1| (-1163))) (-15 -2575 ((-3 (-2 (|:| |var| (-604 |#1|)) (|:| -1951 (-558))) "failed") |#1| (-114))) (-15 -3704 (|#1| |#1|)) (-15 -3220 (|#1| (-1112 |#2| (-604 |#1|)))) (-15 -4017 ((-3 (-2 (|:| -2023 (-558)) (|:| |var| (-604 |#1|))) "failed") |#1|)) (-15 -2548 ((-3 (-635 |#1|) "failed") |#1|)) (-15 -2575 ((-3 (-2 (|:| |var| (-604 |#1|)) (|:| -1951 (-558))) "failed") |#1|)) (-15 -2560 ((-3 (-635 |#1|) "failed") |#1|)) (-15 -2554 (|#1| |#1| (-635 (-114)) (-635 |#1|) (-1163))) (-15 -2554 (|#1| |#1| (-114) |#1| (-1163))) (-15 -2554 (|#1| |#1|)) (-15 -2554 (|#1| |#1| (-635 (-1163)))) (-15 -2554 (|#1| |#1| (-1163))) (-15 -4213 (|#1| (-1163) (-635 |#1|))) (-15 -4213 (|#1| (-1163) |#1| |#1| |#1| |#1|)) (-15 -4213 (|#1| (-1163) |#1| |#1| |#1|)) (-15 -4213 (|#1| (-1163) |#1| |#1|)) (-15 -4213 (|#1| (-1163) |#1|)) (-15 -2671 ((-635 (-1163)) |#1|)) (-15 -2440 (|#2| |#1|)) (-15 -2429 ((-112) |#1|)) (-15 -3220 (|#1| |#2|)) (-15 -3069 ((-3 |#2| "failed") |#1|)) (-15 -1863 (|#2| |#1|)) (-15 -1863 ((-558) |#1|)) (-15 -3069 ((-3 (-558) "failed") |#1|)) (-15 -3224 ((-882 (-378)) |#1|)) (-15 -3224 ((-882 (-558)) |#1|)) (-15 -3220 (|#1| (-1163))) (-15 -3069 ((-3 (-1163) "failed") |#1|)) (-15 -1863 ((-1163) |#1|)) (-15 -2554 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2554 (|#1| |#1| (-114) (-1 |#1| (-635 |#1|)))) (-15 -2554 (|#1| |#1| (-635 (-114)) (-635 (-1 |#1| (-635 |#1|))))) (-15 -2554 (|#1| |#1| (-635 (-114)) (-635 (-1 |#1| |#1|)))) (-15 -2554 (|#1| |#1| (-1163) (-1 |#1| |#1|))) (-15 -2554 (|#1| |#1| (-1163) (-1 |#1| (-635 |#1|)))) (-15 -2554 (|#1| |#1| (-635 (-1163)) (-635 (-1 |#1| (-635 |#1|))))) (-15 -2554 (|#1| |#1| (-635 (-1163)) (-635 (-1 |#1| |#1|)))) (-15 -2995 ((-112) (-114))) (-15 -3029 ((-114) (-114))) (-15 -2475 ((-635 (-604 |#1|)) |#1|)) (-15 -1416 ((-3 (-604 |#1|) "failed") |#1|)) (-15 -2497 (|#1| |#1| (-635 (-604 |#1|)) (-635 |#1|))) (-15 -2497 (|#1| |#1| (-635 (-293 |#1|)))) (-15 -2497 (|#1| |#1| (-293 |#1|))) (-15 -2195 (|#1| (-114) (-635 |#1|))) (-15 -2195 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2195 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2195 (|#1| (-114) |#1| |#1|)) (-15 -2195 (|#1| (-114) |#1|)) (-15 -2554 (|#1| |#1| (-635 |#1|) (-635 |#1|))) (-15 -2554 (|#1| |#1| |#1| |#1|)) (-15 -2554 (|#1| |#1| (-293 |#1|))) (-15 -2554 (|#1| |#1| (-635 (-293 |#1|)))) (-15 -2554 (|#1| |#1| (-635 (-604 |#1|)) (-635 |#1|))) (-15 -2554 (|#1| |#1| (-604 |#1|) |#1|)) (-15 -3220 (|#1| (-604 |#1|))) (-15 -3069 ((-3 (-604 |#1|) "failed") |#1|)) (-15 -1863 ((-604 |#1|) |#1|)) (-15 -3220 ((-853) |#1|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 114 (|has| |#1| (-25)))) (-2671 (((-635 (-1163)) $) 201)) (-2492 (((-406 (-1159 $)) $ (-604 $)) 169 (|has| |#1| (-550)))) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 141 (|has| |#1| (-550)))) (-1881 (($ $) 142 (|has| |#1| (-550)))) (-1857 (((-112) $) 144 (|has| |#1| (-550)))) (-2396 (((-635 (-604 $)) $) 44)) (-2089 (((-3 $ "failed") $ $) 116 (|has| |#1| (-21)))) (-2497 (($ $ (-293 $)) 56) (($ $ (-635 (-293 $))) 55) (($ $ (-635 (-604 $)) (-635 $)) 54)) (-3465 (($ $) 161 (|has| |#1| (-550)))) (-1380 (((-417 $) $) 162 (|has| |#1| (-550)))) (-3732 (((-112) $ $) 152 (|has| |#1| (-550)))) (-1816 (($) 102 (-3998 (|has| |#1| (-1099)) (|has| |#1| (-25))) CONST)) (-3069 (((-3 (-604 $) "failed") $) 69) (((-3 (-1163) "failed") $) 214) (((-3 (-558) "failed") $) 208 (|has| |#1| (-1028 (-558)))) (((-3 |#1| "failed") $) 205) (((-3 (-406 (-942 |#1|)) "failed") $) 167 (|has| |#1| (-550))) (((-3 (-942 |#1|) "failed") $) 121 (|has| |#1| (-1039))) (((-3 (-406 (-558)) "failed") $) 96 (-3998 (-12 (|has| |#1| (-1028 (-558))) (|has| |#1| (-550))) (|has| |#1| (-1028 (-406 (-558))))))) (-1863 (((-604 $) $) 70) (((-1163) $) 215) (((-558) $) 207 (|has| |#1| (-1028 (-558)))) ((|#1| $) 206) (((-406 (-942 |#1|)) $) 168 (|has| |#1| (-550))) (((-942 |#1|) $) 122 (|has| |#1| (-1039))) (((-406 (-558)) $) 97 (-3998 (-12 (|has| |#1| (-1028 (-558))) (|has| |#1| (-550))) (|has| |#1| (-1028 (-406 (-558))))))) (-4025 (($ $ $) 156 (|has| |#1| (-550)))) (-3216 (((-679 (-558)) (-679 $)) 135 (-2084 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) 134 (-2084 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039)))) (((-2 (|:| -3683 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) 133 (|has| |#1| (-1039))) (((-679 |#1|) (-679 $)) 132 (|has| |#1| (-1039)))) (-2588 (((-3 $ "failed") $) 104 (|has| |#1| (-1099)))) (-4004 (($ $ $) 155 (|has| |#1| (-550)))) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) 150 (|has| |#1| (-550)))) (-3031 (((-112) $) 163 (|has| |#1| (-550)))) (-2269 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) 210 (|has| |#1| (-876 (-558)))) (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) 209 (|has| |#1| (-876 (-378))))) (-3800 (($ $) 51) (($ (-635 $)) 50)) (-1405 (((-635 (-114)) $) 43)) (-3029 (((-114) (-114)) 42)) (-2035 (((-112) $) 103 (|has| |#1| (-1099)))) (-3451 (((-112) $) 22 (|has| $ (-1028 (-558))))) (-3704 (($ $) 184 (|has| |#1| (-1039)))) (-1874 (((-1112 |#1| (-604 $)) $) 185 (|has| |#1| (-1039)))) (-3701 (((-3 (-635 $) "failed") (-635 $) $) 159 (|has| |#1| (-550)))) (-1381 (((-1159 $) (-604 $)) 25 (|has| $ (-1039)))) (-3910 (($ $ $) 13)) (-3542 (($ $ $) 14)) (-3167 (($ (-1 $ $) (-604 $)) 36)) (-1416 (((-3 (-604 $) "failed") $) 46)) (-2665 (($ (-635 $)) 148 (|has| |#1| (-550))) (($ $ $) 147 (|has| |#1| (-550)))) (-4310 (((-1145) $) 9)) (-2475 (((-635 (-604 $)) $) 45)) (-1949 (($ (-114) $) 38) (($ (-114) (-635 $)) 37)) (-2560 (((-3 (-635 $) "failed") $) 190 (|has| |#1| (-1099)))) (-2586 (((-3 (-2 (|:| |val| $) (|:| -1951 (-558))) "failed") $) 181 (|has| |#1| (-1039)))) (-2548 (((-3 (-635 $) "failed") $) 188 (|has| |#1| (-25)))) (-4017 (((-3 (-2 (|:| -2023 (-558)) (|:| |var| (-604 $))) "failed") $) 187 (|has| |#1| (-25)))) (-2575 (((-3 (-2 (|:| |var| (-604 $)) (|:| -1951 (-558))) "failed") $) 189 (|has| |#1| (-1099))) (((-3 (-2 (|:| |var| (-604 $)) (|:| -1951 (-558))) "failed") $ (-114)) 183 (|has| |#1| (-1039))) (((-3 (-2 (|:| |var| (-604 $)) (|:| -1951 (-558))) "failed") $ (-1163)) 182 (|has| |#1| (-1039)))) (-3173 (((-112) $ (-114)) 40) (((-112) $ (-1163)) 39)) (-2418 (($ $) 106 (-3998 (|has| |#1| (-471)) (|has| |#1| (-550))))) (-3382 (((-762) $) 47)) (-2975 (((-1107) $) 10)) (-2429 (((-112) $) 203)) (-2440 ((|#1| $) 202)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) 149 (|has| |#1| (-550)))) (-2699 (($ (-635 $)) 146 (|has| |#1| (-550))) (($ $ $) 145 (|has| |#1| (-550)))) (-1392 (((-112) $ $) 35) (((-112) $ (-1163)) 34)) (-2522 (((-417 $) $) 160 (|has| |#1| (-550)))) (-3713 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 158 (|has| |#1| (-550))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) 157 (|has| |#1| (-550)))) (-3983 (((-3 $ "failed") $ $) 140 (|has| |#1| (-550)))) (-2922 (((-3 (-635 $) "failed") (-635 $) $) 151 (|has| |#1| (-550)))) (-3458 (((-112) $) 23 (|has| $ (-1028 (-558))))) (-2554 (($ $ (-604 $) $) 67) (($ $ (-635 (-604 $)) (-635 $)) 66) (($ $ (-635 (-293 $))) 65) (($ $ (-293 $)) 64) (($ $ $ $) 63) (($ $ (-635 $) (-635 $)) 62) (($ $ (-635 (-1163)) (-635 (-1 $ $))) 33) (($ $ (-635 (-1163)) (-635 (-1 $ (-635 $)))) 32) (($ $ (-1163) (-1 $ (-635 $))) 31) (($ $ (-1163) (-1 $ $)) 30) (($ $ (-635 (-114)) (-635 (-1 $ $))) 29) (($ $ (-635 (-114)) (-635 (-1 $ (-635 $)))) 28) (($ $ (-114) (-1 $ (-635 $))) 27) (($ $ (-114) (-1 $ $)) 26) (($ $ (-1163)) 195 (|has| |#1| (-606 (-534)))) (($ $ (-635 (-1163))) 194 (|has| |#1| (-606 (-534)))) (($ $) 193 (|has| |#1| (-606 (-534)))) (($ $ (-114) $ (-1163)) 192 (|has| |#1| (-606 (-534)))) (($ $ (-635 (-114)) (-635 $) (-1163)) 191 (|has| |#1| (-606 (-534)))) (($ $ (-635 (-1163)) (-635 (-762)) (-635 (-1 $ $))) 180 (|has| |#1| (-1039))) (($ $ (-635 (-1163)) (-635 (-762)) (-635 (-1 $ (-635 $)))) 179 (|has| |#1| (-1039))) (($ $ (-1163) (-762) (-1 $ (-635 $))) 178 (|has| |#1| (-1039))) (($ $ (-1163) (-762) (-1 $ $)) 177 (|has| |#1| (-1039)))) (-3722 (((-762) $) 153 (|has| |#1| (-550)))) (-2195 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-635 $)) 57)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 154 (|has| |#1| (-550)))) (-1426 (($ $) 49) (($ $ $) 48)) (-2829 (($ $ (-635 (-1163)) (-635 (-762))) 126 (|has| |#1| (-1039))) (($ $ (-1163) (-762)) 125 (|has| |#1| (-1039))) (($ $ (-635 (-1163))) 124 (|has| |#1| (-1039))) (($ $ (-1163)) 123 (|has| |#1| (-1039)))) (-3694 (($ $) 174 (|has| |#1| (-550)))) (-1885 (((-1112 |#1| (-604 $)) $) 175 (|has| |#1| (-550)))) (-2036 (($ $) 24 (|has| $ (-1039)))) (-3224 (((-882 (-558)) $) 212 (|has| |#1| (-606 (-882 (-558))))) (((-882 (-378)) $) 211 (|has| |#1| (-606 (-882 (-378))))) (($ (-417 $)) 176 (|has| |#1| (-550))) (((-534) $) 98 (|has| |#1| (-606 (-534))))) (-3808 (($ $ $) 109 (|has| |#1| (-471)))) (-3443 (($ $ $) 110 (|has| |#1| (-471)))) (-3220 (((-853) $) 11) (($ (-604 $)) 68) (($ (-1163)) 213) (($ |#1|) 204) (($ (-1112 |#1| (-604 $))) 186 (|has| |#1| (-1039))) (($ (-406 |#1|)) 172 (|has| |#1| (-550))) (($ (-942 (-406 |#1|))) 171 (|has| |#1| (-550))) (($ (-406 (-942 (-406 |#1|)))) 170 (|has| |#1| (-550))) (($ (-406 (-942 |#1|))) 166 (|has| |#1| (-550))) (($ $) 139 (|has| |#1| (-550))) (($ (-942 |#1|)) 120 (|has| |#1| (-1039))) (($ (-406 (-558))) 95 (-3998 (|has| |#1| (-550)) (-12 (|has| |#1| (-1028 (-558))) (|has| |#1| (-550))) (|has| |#1| (-1028 (-406 (-558)))))) (($ (-558)) 94 (-3998 (|has| |#1| (-1039)) (|has| |#1| (-1028 (-558)))))) (-3698 (((-3 $ "failed") $) 136 (|has| |#1| (-144)))) (-2542 (((-762)) 131 (|has| |#1| (-1039)))) (-2540 (($ $) 53) (($ (-635 $)) 52)) (-2995 (((-112) (-114)) 41)) (-1870 (((-112) $ $) 143 (|has| |#1| (-550)))) (-4213 (($ (-1163) $) 200) (($ (-1163) $ $) 199) (($ (-1163) $ $ $) 198) (($ (-1163) $ $ $ $) 197) (($ (-1163) (-635 $)) 196)) (-2131 (($) 113 (|has| |#1| (-25)) CONST)) (-2142 (($) 101 (|has| |#1| (-1099)) CONST)) (-1866 (($ $ (-635 (-1163)) (-635 (-762))) 130 (|has| |#1| (-1039))) (($ $ (-1163) (-762)) 129 (|has| |#1| (-1039))) (($ $ (-635 (-1163))) 128 (|has| |#1| (-1039))) (($ $ (-1163)) 127 (|has| |#1| (-1039)))) (-1747 (((-112) $ $) 16)) (-1720 (((-112) $ $) 17)) (-1683 (((-112) $ $) 6)) (-1731 (((-112) $ $) 15)) (-1705 (((-112) $ $) 18)) (-1810 (($ (-1112 |#1| (-604 $)) (-1112 |#1| (-604 $))) 173 (|has| |#1| (-550))) (($ $ $) 107 (-3998 (|has| |#1| (-471)) (|has| |#1| (-550))))) (-1798 (($ $ $) 118 (|has| |#1| (-21))) (($ $) 117 (|has| |#1| (-21)))) (-1784 (($ $ $) 111 (|has| |#1| (-25)))) (** (($ $ (-558)) 108 (-3998 (|has| |#1| (-471)) (|has| |#1| (-550)))) (($ $ (-762)) 105 (|has| |#1| (-1099))) (($ $ (-911)) 100 (|has| |#1| (-1099)))) (* (($ (-406 (-558)) $) 165 (|has| |#1| (-550))) (($ $ (-406 (-558))) 164 (|has| |#1| (-550))) (($ |#1| $) 138 (|has| |#1| (-171))) (($ $ |#1|) 137 (|has| |#1| (-171))) (($ (-558) $) 119 (|has| |#1| (-21))) (($ (-762) $) 115 (|has| |#1| (-25))) (($ (-911) $) 112 (|has| |#1| (-25))) (($ $ $) 99 (|has| |#1| (-1099)))))
+(((-429 |#1|) (-139) (-841)) (T -429))
+((-2429 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-841)) (-5 *2 (-112)))) (-2440 (*1 *2 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-841)))) (-2671 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-841)) (-5 *2 (-635 (-1163))))) (-4213 (*1 *1 *2 *1) (-12 (-5 *2 (-1163)) (-4 *1 (-429 *3)) (-4 *3 (-841)))) (-4213 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1163)) (-4 *1 (-429 *3)) (-4 *3 (-841)))) (-4213 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1163)) (-4 *1 (-429 *3)) (-4 *3 (-841)))) (-4213 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1163)) (-4 *1 (-429 *3)) (-4 *3 (-841)))) (-4213 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-635 *1)) (-4 *1 (-429 *4)) (-4 *4 (-841)))) (-2554 (*1 *1 *1 *2) (-12 (-5 *2 (-1163)) (-4 *1 (-429 *3)) (-4 *3 (-841)) (-4 *3 (-606 (-534))))) (-2554 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-1163))) (-4 *1 (-429 *3)) (-4 *3 (-841)) (-4 *3 (-606 (-534))))) (-2554 (*1 *1 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-841)) (-4 *2 (-606 (-534))))) (-2554 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1163)) (-4 *1 (-429 *4)) (-4 *4 (-841)) (-4 *4 (-606 (-534))))) (-2554 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-635 (-114))) (-5 *3 (-635 *1)) (-5 *4 (-1163)) (-4 *1 (-429 *5)) (-4 *5 (-841)) (-4 *5 (-606 (-534))))) (-2560 (*1 *2 *1) (|partial| -12 (-4 *3 (-1099)) (-4 *3 (-841)) (-5 *2 (-635 *1)) (-4 *1 (-429 *3)))) (-2575 (*1 *2 *1) (|partial| -12 (-4 *3 (-1099)) (-4 *3 (-841)) (-5 *2 (-2 (|:| |var| (-604 *1)) (|:| -1951 (-558)))) (-4 *1 (-429 *3)))) (-2548 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-841)) (-5 *2 (-635 *1)) (-4 *1 (-429 *3)))) (-4017 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-841)) (-5 *2 (-2 (|:| -2023 (-558)) (|:| |var| (-604 *1)))) (-4 *1 (-429 *3)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-1112 *3 (-604 *1))) (-4 *3 (-1039)) (-4 *3 (-841)) (-4 *1 (-429 *3)))) (-1874 (*1 *2 *1) (-12 (-4 *3 (-1039)) (-4 *3 (-841)) (-5 *2 (-1112 *3 (-604 *1))) (-4 *1 (-429 *3)))) (-3704 (*1 *1 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-841)) (-4 *2 (-1039)))) (-2575 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1039)) (-4 *4 (-841)) (-5 *2 (-2 (|:| |var| (-604 *1)) (|:| -1951 (-558)))) (-4 *1 (-429 *4)))) (-2575 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1163)) (-4 *4 (-1039)) (-4 *4 (-841)) (-5 *2 (-2 (|:| |var| (-604 *1)) (|:| -1951 (-558)))) (-4 *1 (-429 *4)))) (-2586 (*1 *2 *1) (|partial| -12 (-4 *3 (-1039)) (-4 *3 (-841)) (-5 *2 (-2 (|:| |val| *1) (|:| -1951 (-558)))) (-4 *1 (-429 *3)))) (-2554 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-635 (-1163))) (-5 *3 (-635 (-762))) (-5 *4 (-635 (-1 *1 *1))) (-4 *1 (-429 *5)) (-4 *5 (-841)) (-4 *5 (-1039)))) (-2554 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-635 (-1163))) (-5 *3 (-635 (-762))) (-5 *4 (-635 (-1 *1 (-635 *1)))) (-4 *1 (-429 *5)) (-4 *5 (-841)) (-4 *5 (-1039)))) (-2554 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1163)) (-5 *3 (-762)) (-5 *4 (-1 *1 (-635 *1))) (-4 *1 (-429 *5)) (-4 *5 (-841)) (-4 *5 (-1039)))) (-2554 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1163)) (-5 *3 (-762)) (-5 *4 (-1 *1 *1)) (-4 *1 (-429 *5)) (-4 *5 (-841)) (-4 *5 (-1039)))) (-3224 (*1 *1 *2) (-12 (-5 *2 (-417 *1)) (-4 *1 (-429 *3)) (-4 *3 (-550)) (-4 *3 (-841)))) (-1885 (*1 *2 *1) (-12 (-4 *3 (-550)) (-4 *3 (-841)) (-5 *2 (-1112 *3 (-604 *1))) (-4 *1 (-429 *3)))) (-3694 (*1 *1 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-841)) (-4 *2 (-550)))) (-1810 (*1 *1 *2 *2) (-12 (-5 *2 (-1112 *3 (-604 *1))) (-4 *3 (-550)) (-4 *3 (-841)) (-4 *1 (-429 *3)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-406 *3)) (-4 *3 (-550)) (-4 *3 (-841)) (-4 *1 (-429 *3)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-942 (-406 *3))) (-4 *3 (-550)) (-4 *3 (-841)) (-4 *1 (-429 *3)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-406 (-942 (-406 *3)))) (-4 *3 (-550)) (-4 *3 (-841)) (-4 *1 (-429 *3)))) (-2492 (*1 *2 *1 *3) (-12 (-5 *3 (-604 *1)) (-4 *1 (-429 *4)) (-4 *4 (-841)) (-4 *4 (-550)) (-5 *2 (-406 (-1159 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *1 (-429 *3)) (-4 *3 (-841)) (-4 *3 (-1099)))))
+(-13 (-301) (-1028 (-1163)) (-874 |t#1|) (-399 |t#1|) (-410 |t#1|) (-10 -8 (-15 -2429 ((-112) $)) (-15 -2440 (|t#1| $)) (-15 -2671 ((-635 (-1163)) $)) (-15 -4213 ($ (-1163) $)) (-15 -4213 ($ (-1163) $ $)) (-15 -4213 ($ (-1163) $ $ $)) (-15 -4213 ($ (-1163) $ $ $ $)) (-15 -4213 ($ (-1163) (-635 $))) (IF (|has| |t#1| (-606 (-534))) (PROGN (-6 (-606 (-534))) (-15 -2554 ($ $ (-1163))) (-15 -2554 ($ $ (-635 (-1163)))) (-15 -2554 ($ $)) (-15 -2554 ($ $ (-114) $ (-1163))) (-15 -2554 ($ $ (-635 (-114)) (-635 $) (-1163)))) |%noBranch|) (IF (|has| |t#1| (-1099)) (PROGN (-6 (-717)) (-15 ** ($ $ (-762))) (-15 -2560 ((-3 (-635 $) "failed") $)) (-15 -2575 ((-3 (-2 (|:| |var| (-604 $)) (|:| -1951 (-558))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-471)) (-6 (-471)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2548 ((-3 (-635 $) "failed") $)) (-15 -4017 ((-3 (-2 (|:| -2023 (-558)) (|:| |var| (-604 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1039)) (PROGN (-6 (-1039)) (-6 (-1028 (-942 |t#1|))) (-6 (-890 (-1163))) (-6 (-376 |t#1|)) (-15 -3220 ($ (-1112 |t#1| (-604 $)))) (-15 -1874 ((-1112 |t#1| (-604 $)) $)) (-15 -3704 ($ $)) (-15 -2575 ((-3 (-2 (|:| |var| (-604 $)) (|:| -1951 (-558))) "failed") $ (-114))) (-15 -2575 ((-3 (-2 (|:| |var| (-604 $)) (|:| -1951 (-558))) "failed") $ (-1163))) (-15 -2586 ((-3 (-2 (|:| |val| $) (|:| -1951 (-558))) "failed") $)) (-15 -2554 ($ $ (-635 (-1163)) (-635 (-762)) (-635 (-1 $ $)))) (-15 -2554 ($ $ (-635 (-1163)) (-635 (-762)) (-635 (-1 $ (-635 $))))) (-15 -2554 ($ $ (-1163) (-762) (-1 $ (-635 $)))) (-15 -2554 ($ $ (-1163) (-762) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-171)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-550)) (PROGN (-6 (-362)) (-6 (-1028 (-406 (-942 |t#1|)))) (-15 -3224 ($ (-417 $))) (-15 -1885 ((-1112 |t#1| (-604 $)) $)) (-15 -3694 ($ $)) (-15 -1810 ($ (-1112 |t#1| (-604 $)) (-1112 |t#1| (-604 $)))) (-15 -3220 ($ (-406 |t#1|))) (-15 -3220 ($ (-942 (-406 |t#1|)))) (-15 -3220 ($ (-406 (-942 (-406 |t#1|))))) (-15 -2492 ((-406 (-1159 $)) $ (-604 $))) (IF (|has| |t#1| (-1028 (-558))) (-6 (-1028 (-406 (-558)))) |%noBranch|)) |%noBranch|)))
+(((-21) -3998 (|has| |#1| (-1039)) (|has| |#1| (-550)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144)) (|has| |#1| (-21))) ((-23) -3998 (|has| |#1| (-1039)) (|has| |#1| (-550)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3998 (|has| |#1| (-1039)) (|has| |#1| (-550)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-406 (-558))) |has| |#1| (-550)) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-550)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-550)) ((-111 |#1| |#1|) |has| |#1| (-171)) ((-111 $ $) |has| |#1| (-550)) ((-130) -3998 (|has| |#1| (-1039)) (|has| |#1| (-550)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144)) (|has| |#1| (-21))) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-608 #0#) -3998 (|has| |#1| (-1028 (-406 (-558)))) (|has| |#1| (-550))) ((-608 #1=(-406 (-942 |#1|))) |has| |#1| (-550)) ((-608 (-558)) -3998 (|has| |#1| (-1039)) (|has| |#1| (-1028 (-558))) (|has| |#1| (-550)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-608 #2=(-604 $)) . T) ((-608 #3=(-942 |#1|)) |has| |#1| (-1039)) ((-608 #4=(-1163)) . T) ((-608 |#1|) . T) ((-608 $) |has| |#1| (-550)) ((-605 (-853)) . T) ((-171) |has| |#1| (-550)) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-606 (-882 (-378))) |has| |#1| (-606 (-882 (-378)))) ((-606 (-882 (-558))) |has| |#1| (-606 (-882 (-558)))) ((-242) |has| |#1| (-550)) ((-289) |has| |#1| (-550)) ((-306) |has| |#1| (-550)) ((-308 $) . T) ((-301) . T) ((-362) |has| |#1| (-550)) ((-376 |#1|) |has| |#1| (-1039)) ((-399 |#1|) . T) ((-410 |#1|) . T) ((-450) |has| |#1| (-550)) ((-471) |has| |#1| (-471)) ((-512 (-604 $) $) . T) ((-512 $ $) . T) ((-550) |has| |#1| (-550)) ((-638 #0#) |has| |#1| (-550)) ((-638 |#1|) |has| |#1| (-171)) ((-638 $) -3998 (|has| |#1| (-1039)) (|has| |#1| (-550)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-631 (-558)) -12 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039))) ((-631 |#1|) |has| |#1| (-1039)) ((-708 #0#) |has| |#1| (-550)) ((-708 |#1|) |has| |#1| (-171)) ((-708 $) |has| |#1| (-550)) ((-717) -3998 (|has| |#1| (-1099)) (|has| |#1| (-1039)) (|has| |#1| (-550)) (|has| |#1| (-471)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-841) . T) ((-890 (-1163)) |has| |#1| (-1039)) ((-876 (-378)) |has| |#1| (-876 (-378))) ((-876 (-558)) |has| |#1| (-876 (-558))) ((-874 |#1|) . T) ((-910) |has| |#1| (-550)) ((-1028 (-406 (-558))) -3998 (|has| |#1| (-1028 (-406 (-558)))) (-12 (|has| |#1| (-550)) (|has| |#1| (-1028 (-558))))) ((-1028 #1#) |has| |#1| (-550)) ((-1028 (-558)) |has| |#1| (-1028 (-558))) ((-1028 #2#) . T) ((-1028 #3#) |has| |#1| (-1039)) ((-1028 #4#) . T) ((-1028 |#1|) . T) ((-1045 #0#) |has| |#1| (-550)) ((-1045 |#1|) |has| |#1| (-171)) ((-1045 $) |has| |#1| (-550)) ((-1039) -3998 (|has| |#1| (-1039)) (|has| |#1| (-550)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-1046) -3998 (|has| |#1| (-1039)) (|has| |#1| (-550)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-1099) -3998 (|has| |#1| (-1099)) (|has| |#1| (-1039)) (|has| |#1| (-550)) (|has| |#1| (-471)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-1087) . T) ((-1200) . T) ((-1204) |has| |#1| (-550)))
+((-3226 ((|#2| |#2| |#2|) 33)) (-3029 (((-114) (-114)) 44)) (-4144 ((|#2| |#2|) 66)) (-4132 ((|#2| |#2|) 69)) (-3212 ((|#2| |#2|) 32)) (-3259 ((|#2| |#2| |#2|) 35)) (-3280 ((|#2| |#2| |#2|) 37)) (-3249 ((|#2| |#2| |#2|) 34)) (-3269 ((|#2| |#2| |#2|) 36)) (-2995 (((-112) (-114)) 42)) (-3302 ((|#2| |#2|) 39)) (-3291 ((|#2| |#2|) 38)) (-3190 ((|#2| |#2|) 27)) (-3239 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-3200 ((|#2| |#2| |#2|) 31)))
+(((-430 |#1| |#2|) (-10 -7 (-15 -2995 ((-112) (-114))) (-15 -3029 ((-114) (-114))) (-15 -3190 (|#2| |#2|)) (-15 -3239 (|#2| |#2|)) (-15 -3239 (|#2| |#2| |#2|)) (-15 -3200 (|#2| |#2| |#2|)) (-15 -3212 (|#2| |#2|)) (-15 -3226 (|#2| |#2| |#2|)) (-15 -3249 (|#2| |#2| |#2|)) (-15 -3259 (|#2| |#2| |#2|)) (-15 -3269 (|#2| |#2| |#2|)) (-15 -3280 (|#2| |#2| |#2|)) (-15 -3291 (|#2| |#2|)) (-15 -3302 (|#2| |#2|)) (-15 -4132 (|#2| |#2|)) (-15 -4144 (|#2| |#2|))) (-13 (-841) (-550)) (-429 |#1|)) (T -430))
+((-4144 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-4132 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-3302 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-3291 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-3280 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-3269 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-3259 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-3249 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-3226 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-3212 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-3200 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-3239 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-3239 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-3190 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-3029 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *4)) (-4 *4 (-429 *3)))) (-2995 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-841) (-550))) (-5 *2 (-112)) (-5 *1 (-430 *4 *5)) (-4 *5 (-429 *4)))))
+(-10 -7 (-15 -2995 ((-112) (-114))) (-15 -3029 ((-114) (-114))) (-15 -3190 (|#2| |#2|)) (-15 -3239 (|#2| |#2|)) (-15 -3239 (|#2| |#2| |#2|)) (-15 -3200 (|#2| |#2| |#2|)) (-15 -3212 (|#2| |#2|)) (-15 -3226 (|#2| |#2| |#2|)) (-15 -3249 (|#2| |#2| |#2|)) (-15 -3259 (|#2| |#2| |#2|)) (-15 -3269 (|#2| |#2| |#2|)) (-15 -3280 (|#2| |#2| |#2|)) (-15 -3291 (|#2| |#2|)) (-15 -3302 (|#2| |#2|)) (-15 -4132 (|#2| |#2|)) (-15 -4144 (|#2| |#2|)))
+((-2672 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1159 |#2|)) (|:| |pol2| (-1159 |#2|)) (|:| |prim| (-1159 |#2|))) |#2| |#2|) 96 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-635 (-1159 |#2|))) (|:| |prim| (-1159 |#2|))) (-635 |#2|)) 61)))
+(((-431 |#1| |#2|) (-10 -7 (-15 -2672 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-635 (-1159 |#2|))) (|:| |prim| (-1159 |#2|))) (-635 |#2|))) (IF (|has| |#2| (-27)) (-15 -2672 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1159 |#2|)) (|:| |pol2| (-1159 |#2|)) (|:| |prim| (-1159 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-550) (-841) (-146)) (-429 |#1|)) (T -431))
+((-2672 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-550) (-841) (-146))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1159 *3)) (|:| |pol2| (-1159 *3)) (|:| |prim| (-1159 *3)))) (-5 *1 (-431 *4 *3)) (-4 *3 (-27)) (-4 *3 (-429 *4)))) (-2672 (*1 *2 *3) (-12 (-5 *3 (-635 *5)) (-4 *5 (-429 *4)) (-4 *4 (-13 (-550) (-841) (-146))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-635 (-1159 *5))) (|:| |prim| (-1159 *5)))) (-5 *1 (-431 *4 *5)))))
+(-10 -7 (-15 -2672 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-635 (-1159 |#2|))) (|:| |prim| (-1159 |#2|))) (-635 |#2|))) (IF (|has| |#2| (-27)) (-15 -2672 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1159 |#2|)) (|:| |pol2| (-1159 |#2|)) (|:| |prim| (-1159 |#2|))) |#2| |#2|)) |%noBranch|))
+((-4168 (((-1251)) 19)) (-4156 (((-1159 (-406 (-558))) |#2| (-604 |#2|)) 41) (((-406 (-558)) |#2|) 25)))
+(((-432 |#1| |#2|) (-10 -7 (-15 -4156 ((-406 (-558)) |#2|)) (-15 -4156 ((-1159 (-406 (-558))) |#2| (-604 |#2|))) (-15 -4168 ((-1251)))) (-13 (-841) (-550) (-1028 (-558))) (-429 |#1|)) (T -432))
+((-4168 (*1 *2) (-12 (-4 *3 (-13 (-841) (-550) (-1028 (-558)))) (-5 *2 (-1251)) (-5 *1 (-432 *3 *4)) (-4 *4 (-429 *3)))) (-4156 (*1 *2 *3 *4) (-12 (-5 *4 (-604 *3)) (-4 *3 (-429 *5)) (-4 *5 (-13 (-841) (-550) (-1028 (-558)))) (-5 *2 (-1159 (-406 (-558)))) (-5 *1 (-432 *5 *3)))) (-4156 (*1 *2 *3) (-12 (-4 *4 (-13 (-841) (-550) (-1028 (-558)))) (-5 *2 (-406 (-558))) (-5 *1 (-432 *4 *3)) (-4 *3 (-429 *4)))))
+(-10 -7 (-15 -4156 ((-406 (-558)) |#2|)) (-15 -4156 ((-1159 (-406 (-558))) |#2| (-604 |#2|))) (-15 -4168 ((-1251))))
+((-1528 (((-112) $) 28)) (-4181 (((-112) $) 30)) (-1318 (((-112) $) 31)) (-4202 (((-112) $) 34)) (-4224 (((-112) $) 29)) (-4214 (((-112) $) 33)) (-3220 (((-853) $) 18) (($ (-1145)) 27) (($ (-1163)) 23) (((-1163) $) 22) (((-1091) $) 21)) (-4192 (((-112) $) 32)) (-1683 (((-112) $ $) 15)))
+(((-433) (-13 (-605 (-853)) (-10 -8 (-15 -3220 ($ (-1145))) (-15 -3220 ($ (-1163))) (-15 -3220 ((-1163) $)) (-15 -3220 ((-1091) $)) (-15 -1528 ((-112) $)) (-15 -4224 ((-112) $)) (-15 -1318 ((-112) $)) (-15 -4214 ((-112) $)) (-15 -4202 ((-112) $)) (-15 -4192 ((-112) $)) (-15 -4181 ((-112) $)) (-15 -1683 ((-112) $ $))))) (T -433))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-433)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-433)))) (-3220 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-433)))) (-3220 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-433)))) (-1528 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-4224 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-1318 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-4214 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-4202 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-4192 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-4181 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-1683 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))))
+(-13 (-605 (-853)) (-10 -8 (-15 -3220 ($ (-1145))) (-15 -3220 ($ (-1163))) (-15 -3220 ((-1163) $)) (-15 -3220 ((-1091) $)) (-15 -1528 ((-112) $)) (-15 -4224 ((-112) $)) (-15 -1318 ((-112) $)) (-15 -4214 ((-112) $)) (-15 -4202 ((-112) $)) (-15 -4192 ((-112) $)) (-15 -4181 ((-112) $)) (-15 -1683 ((-112) $ $))))
+((-4245 (((-3 (-417 (-1159 (-406 (-558)))) "failed") |#3|) 70)) (-4235 (((-417 |#3|) |#3|) 34)) (-4269 (((-3 (-417 (-1159 (-48))) "failed") |#3|) 46 (|has| |#2| (-1028 (-48))))) (-4257 (((-3 (|:| |overq| (-1159 (-406 (-558)))) (|:| |overan| (-1159 (-48))) (|:| -4142 (-112))) |#3|) 37)))
+(((-434 |#1| |#2| |#3|) (-10 -7 (-15 -4235 ((-417 |#3|) |#3|)) (-15 -4245 ((-3 (-417 (-1159 (-406 (-558)))) "failed") |#3|)) (-15 -4257 ((-3 (|:| |overq| (-1159 (-406 (-558)))) (|:| |overan| (-1159 (-48))) (|:| -4142 (-112))) |#3|)) (IF (|has| |#2| (-1028 (-48))) (-15 -4269 ((-3 (-417 (-1159 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-550) (-841) (-1028 (-558))) (-429 |#1|) (-1222 |#2|)) (T -434))
+((-4269 (*1 *2 *3) (|partial| -12 (-4 *5 (-1028 (-48))) (-4 *4 (-13 (-550) (-841) (-1028 (-558)))) (-4 *5 (-429 *4)) (-5 *2 (-417 (-1159 (-48)))) (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1222 *5)))) (-4257 (*1 *2 *3) (-12 (-4 *4 (-13 (-550) (-841) (-1028 (-558)))) (-4 *5 (-429 *4)) (-5 *2 (-3 (|:| |overq| (-1159 (-406 (-558)))) (|:| |overan| (-1159 (-48))) (|:| -4142 (-112)))) (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1222 *5)))) (-4245 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-550) (-841) (-1028 (-558)))) (-4 *5 (-429 *4)) (-5 *2 (-417 (-1159 (-406 (-558))))) (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1222 *5)))) (-4235 (*1 *2 *3) (-12 (-4 *4 (-13 (-550) (-841) (-1028 (-558)))) (-4 *5 (-429 *4)) (-5 *2 (-417 *3)) (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1222 *5)))))
+(-10 -7 (-15 -4235 ((-417 |#3|) |#3|)) (-15 -4245 ((-3 (-417 (-1159 (-406 (-558)))) "failed") |#3|)) (-15 -4257 ((-3 (|:| |overq| (-1159 (-406 (-558)))) (|:| |overan| (-1159 (-48))) (|:| -4142 (-112))) |#3|)) (IF (|has| |#2| (-1028 (-48))) (-15 -4269 ((-3 (-417 (-1159 (-48))) "failed") |#3|)) |%noBranch|))
+((-3207 (((-112) $ $) NIL)) (-2402 (((-1145) $ (-1145)) NIL)) (-2446 (($ $ (-1145)) NIL)) (-2412 (((-1145) $) NIL)) (-1341 (((-387) (-387) (-387)) 17) (((-387) (-387)) 15)) (-1328 (($ (-387)) NIL) (($ (-387) (-1145)) NIL)) (-1323 (((-387) $) NIL)) (-4310 (((-1145) $) NIL)) (-2425 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-1329 (((-1251) (-1145)) 9)) (-1316 (((-1251) (-1145)) 10)) (-1303 (((-1251)) 11)) (-3220 (((-853) $) NIL)) (-2436 (($ $) 34)) (-1683 (((-112) $ $) NIL)))
+(((-435) (-13 (-363 (-387) (-1145)) (-10 -7 (-15 -1341 ((-387) (-387) (-387))) (-15 -1341 ((-387) (-387))) (-15 -1329 ((-1251) (-1145))) (-15 -1316 ((-1251) (-1145))) (-15 -1303 ((-1251)))))) (T -435))
+((-1341 (*1 *2 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-435)))) (-1341 (*1 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-435)))) (-1329 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-435)))) (-1316 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-435)))) (-1303 (*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-435)))))
+(-13 (-363 (-387) (-1145)) (-10 -7 (-15 -1341 ((-387) (-387) (-387))) (-15 -1341 ((-387) (-387))) (-15 -1329 ((-1251) (-1145))) (-15 -1316 ((-1251) (-1145))) (-15 -1303 ((-1251)))))
+((-3207 (((-112) $ $) NIL)) (-1292 (((-3 (|:| |fst| (-433)) (|:| -2912 "void")) $) 11)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-4354 (($) 32)) (-4320 (($) 38)) (-4332 (($) 34)) (-4296 (($) 36)) (-4344 (($) 33)) (-4308 (($) 35)) (-4283 (($) 37)) (-1281 (((-112) $) 8)) (-3415 (((-635 (-942 (-558))) $) 19)) (-3233 (($ (-3 (|:| |fst| (-433)) (|:| -2912 "void")) (-635 (-1163)) (-112)) 27) (($ (-3 (|:| |fst| (-433)) (|:| -2912 "void")) (-635 (-942 (-558))) (-112)) 28)) (-3220 (((-853) $) 23) (($ (-433)) 29)) (-1683 (((-112) $ $) NIL)))
+(((-436) (-13 (-1087) (-10 -8 (-15 -3220 ($ (-433))) (-15 -1292 ((-3 (|:| |fst| (-433)) (|:| -2912 "void")) $)) (-15 -3415 ((-635 (-942 (-558))) $)) (-15 -1281 ((-112) $)) (-15 -3233 ($ (-3 (|:| |fst| (-433)) (|:| -2912 "void")) (-635 (-1163)) (-112))) (-15 -3233 ($ (-3 (|:| |fst| (-433)) (|:| -2912 "void")) (-635 (-942 (-558))) (-112))) (-15 -4354 ($)) (-15 -4344 ($)) (-15 -4332 ($)) (-15 -4320 ($)) (-15 -4308 ($)) (-15 -4296 ($)) (-15 -4283 ($))))) (T -436))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-433)) (-5 *1 (-436)))) (-1292 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -2912 "void"))) (-5 *1 (-436)))) (-3415 (*1 *2 *1) (-12 (-5 *2 (-635 (-942 (-558)))) (-5 *1 (-436)))) (-1281 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))) (-3233 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -2912 "void"))) (-5 *3 (-635 (-1163))) (-5 *4 (-112)) (-5 *1 (-436)))) (-3233 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -2912 "void"))) (-5 *3 (-635 (-942 (-558)))) (-5 *4 (-112)) (-5 *1 (-436)))) (-4354 (*1 *1) (-5 *1 (-436))) (-4344 (*1 *1) (-5 *1 (-436))) (-4332 (*1 *1) (-5 *1 (-436))) (-4320 (*1 *1) (-5 *1 (-436))) (-4308 (*1 *1) (-5 *1 (-436))) (-4296 (*1 *1) (-5 *1 (-436))) (-4283 (*1 *1) (-5 *1 (-436))))
+(-13 (-1087) (-10 -8 (-15 -3220 ($ (-433))) (-15 -1292 ((-3 (|:| |fst| (-433)) (|:| -2912 "void")) $)) (-15 -3415 ((-635 (-942 (-558))) $)) (-15 -1281 ((-112) $)) (-15 -3233 ($ (-3 (|:| |fst| (-433)) (|:| -2912 "void")) (-635 (-1163)) (-112))) (-15 -3233 ($ (-3 (|:| |fst| (-433)) (|:| -2912 "void")) (-635 (-942 (-558))) (-112))) (-15 -4354 ($)) (-15 -4344 ($)) (-15 -4332 ($)) (-15 -4320 ($)) (-15 -4308 ($)) (-15 -4296 ($)) (-15 -4283 ($))))
+((-3207 (((-112) $ $) NIL)) (-1323 (((-1163) $) 8)) (-4310 (((-1145) $) 16)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 11)) (-1683 (((-112) $ $) 13)))
+(((-437 |#1|) (-13 (-1087) (-10 -8 (-15 -1323 ((-1163) $)))) (-1163)) (T -437))
+((-1323 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-437 *3)) (-14 *3 *2))))
+(-13 (-1087) (-10 -8 (-15 -1323 ((-1163) $))))
+((-1325 (((-1251) $) 7)) (-3220 (((-853) $) 8) (($ (-1246 (-689))) 14) (($ (-635 (-329))) 13) (($ (-329)) 12) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329))))) 11)))
+(((-438) (-139)) (T -438))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-1246 (-689))) (-4 *1 (-438)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-4 *1 (-438)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-438)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329))))) (-4 *1 (-438)))))
+(-13 (-394) (-10 -8 (-15 -3220 ($ (-1246 (-689)))) (-15 -3220 ($ (-635 (-329)))) (-15 -3220 ($ (-329))) (-15 -3220 ($ (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329))))))))
+(((-605 (-853)) . T) ((-394) . T) ((-1200) . T))
+((-3069 (((-3 $ "failed") (-1246 (-315 (-378)))) 21) (((-3 $ "failed") (-1246 (-315 (-558)))) 19) (((-3 $ "failed") (-1246 (-942 (-378)))) 17) (((-3 $ "failed") (-1246 (-942 (-558)))) 15) (((-3 $ "failed") (-1246 (-406 (-942 (-378))))) 13) (((-3 $ "failed") (-1246 (-406 (-942 (-558))))) 11)) (-1863 (($ (-1246 (-315 (-378)))) 22) (($ (-1246 (-315 (-558)))) 20) (($ (-1246 (-942 (-378)))) 18) (($ (-1246 (-942 (-558)))) 16) (($ (-1246 (-406 (-942 (-378))))) 14) (($ (-1246 (-406 (-942 (-558))))) 12)) (-1325 (((-1251) $) 7)) (-3220 (((-853) $) 8) (($ (-635 (-329))) 25) (($ (-329)) 24) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329))))) 23)))
+(((-439) (-139)) (T -439))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-4 *1 (-439)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-439)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329))))) (-4 *1 (-439)))) (-1863 (*1 *1 *2) (-12 (-5 *2 (-1246 (-315 (-378)))) (-4 *1 (-439)))) (-3069 (*1 *1 *2) (|partial| -12 (-5 *2 (-1246 (-315 (-378)))) (-4 *1 (-439)))) (-1863 (*1 *1 *2) (-12 (-5 *2 (-1246 (-315 (-558)))) (-4 *1 (-439)))) (-3069 (*1 *1 *2) (|partial| -12 (-5 *2 (-1246 (-315 (-558)))) (-4 *1 (-439)))) (-1863 (*1 *1 *2) (-12 (-5 *2 (-1246 (-942 (-378)))) (-4 *1 (-439)))) (-3069 (*1 *1 *2) (|partial| -12 (-5 *2 (-1246 (-942 (-378)))) (-4 *1 (-439)))) (-1863 (*1 *1 *2) (-12 (-5 *2 (-1246 (-942 (-558)))) (-4 *1 (-439)))) (-3069 (*1 *1 *2) (|partial| -12 (-5 *2 (-1246 (-942 (-558)))) (-4 *1 (-439)))) (-1863 (*1 *1 *2) (-12 (-5 *2 (-1246 (-406 (-942 (-378))))) (-4 *1 (-439)))) (-3069 (*1 *1 *2) (|partial| -12 (-5 *2 (-1246 (-406 (-942 (-378))))) (-4 *1 (-439)))) (-1863 (*1 *1 *2) (-12 (-5 *2 (-1246 (-406 (-942 (-558))))) (-4 *1 (-439)))) (-3069 (*1 *1 *2) (|partial| -12 (-5 *2 (-1246 (-406 (-942 (-558))))) (-4 *1 (-439)))))
+(-13 (-394) (-10 -8 (-15 -3220 ($ (-635 (-329)))) (-15 -3220 ($ (-329))) (-15 -3220 ($ (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329)))))) (-15 -1863 ($ (-1246 (-315 (-378))))) (-15 -3069 ((-3 $ "failed") (-1246 (-315 (-378))))) (-15 -1863 ($ (-1246 (-315 (-558))))) (-15 -3069 ((-3 $ "failed") (-1246 (-315 (-558))))) (-15 -1863 ($ (-1246 (-942 (-378))))) (-15 -3069 ((-3 $ "failed") (-1246 (-942 (-378))))) (-15 -1863 ($ (-1246 (-942 (-558))))) (-15 -3069 ((-3 $ "failed") (-1246 (-942 (-558))))) (-15 -1863 ($ (-1246 (-406 (-942 (-378)))))) (-15 -3069 ((-3 $ "failed") (-1246 (-406 (-942 (-378)))))) (-15 -1863 ($ (-1246 (-406 (-942 (-558)))))) (-15 -3069 ((-3 $ "failed") (-1246 (-406 (-942 (-558))))))))
+(((-605 (-853)) . T) ((-394) . T) ((-1200) . T))
+((-1412 (((-112)) 17)) (-1423 (((-112) (-112)) 18)) (-1434 (((-112)) 13)) (-1446 (((-112) (-112)) 14)) (-1468 (((-112)) 15)) (-1480 (((-112) (-112)) 16)) (-1376 (((-911) (-911)) 21) (((-911)) 20)) (-1388 (((-762) (-635 (-2 (|:| -2522 |#1|) (|:| -4323 (-558))))) 41)) (-1366 (((-911) (-911)) 23) (((-911)) 22)) (-1400 (((-2 (|:| -3852 (-558)) (|:| -1849 (-635 |#1|))) |#1|) 61)) (-1353 (((-417 |#1|) (-2 (|:| |contp| (-558)) (|:| -1849 (-635 (-2 (|:| |irr| |#1|) (|:| -1896 (-558))))))) 125)) (-3099 (((-2 (|:| |contp| (-558)) (|:| -1849 (-635 (-2 (|:| |irr| |#1|) (|:| -1896 (-558)))))) |#1| (-112)) 151)) (-3089 (((-417 |#1|) |#1| (-762) (-762)) 164) (((-417 |#1|) |#1| (-635 (-762)) (-762)) 161) (((-417 |#1|) |#1| (-635 (-762))) 163) (((-417 |#1|) |#1| (-762)) 162) (((-417 |#1|) |#1|) 160)) (-3487 (((-3 |#1| "failed") (-911) |#1| (-635 (-762)) (-762) (-112)) 166) (((-3 |#1| "failed") (-911) |#1| (-635 (-762)) (-762)) 167) (((-3 |#1| "failed") (-911) |#1| (-635 (-762))) 169) (((-3 |#1| "failed") (-911) |#1| (-762)) 168) (((-3 |#1| "failed") (-911) |#1|) 170)) (-2522 (((-417 |#1|) |#1| (-762) (-762)) 159) (((-417 |#1|) |#1| (-635 (-762)) (-762)) 155) (((-417 |#1|) |#1| (-635 (-762))) 157) (((-417 |#1|) |#1| (-762)) 156) (((-417 |#1|) |#1|) 154)) (-1457 (((-112) |#1|) 36)) (-3477 (((-728 (-762)) (-635 (-2 (|:| -2522 |#1|) (|:| -4323 (-558))))) 66)) (-1489 (((-2 (|:| |contp| (-558)) (|:| -1849 (-635 (-2 (|:| |irr| |#1|) (|:| -1896 (-558)))))) |#1| (-112) (-1089 (-762)) (-762)) 153)))
+(((-440 |#1|) (-10 -7 (-15 -1353 ((-417 |#1|) (-2 (|:| |contp| (-558)) (|:| -1849 (-635 (-2 (|:| |irr| |#1|) (|:| -1896 (-558)))))))) (-15 -3477 ((-728 (-762)) (-635 (-2 (|:| -2522 |#1|) (|:| -4323 (-558)))))) (-15 -1366 ((-911))) (-15 -1366 ((-911) (-911))) (-15 -1376 ((-911))) (-15 -1376 ((-911) (-911))) (-15 -1388 ((-762) (-635 (-2 (|:| -2522 |#1|) (|:| -4323 (-558)))))) (-15 -1400 ((-2 (|:| -3852 (-558)) (|:| -1849 (-635 |#1|))) |#1|)) (-15 -1412 ((-112))) (-15 -1423 ((-112) (-112))) (-15 -1434 ((-112))) (-15 -1446 ((-112) (-112))) (-15 -1457 ((-112) |#1|)) (-15 -1468 ((-112))) (-15 -1480 ((-112) (-112))) (-15 -2522 ((-417 |#1|) |#1|)) (-15 -2522 ((-417 |#1|) |#1| (-762))) (-15 -2522 ((-417 |#1|) |#1| (-635 (-762)))) (-15 -2522 ((-417 |#1|) |#1| (-635 (-762)) (-762))) (-15 -2522 ((-417 |#1|) |#1| (-762) (-762))) (-15 -3089 ((-417 |#1|) |#1|)) (-15 -3089 ((-417 |#1|) |#1| (-762))) (-15 -3089 ((-417 |#1|) |#1| (-635 (-762)))) (-15 -3089 ((-417 |#1|) |#1| (-635 (-762)) (-762))) (-15 -3089 ((-417 |#1|) |#1| (-762) (-762))) (-15 -3487 ((-3 |#1| "failed") (-911) |#1|)) (-15 -3487 ((-3 |#1| "failed") (-911) |#1| (-762))) (-15 -3487 ((-3 |#1| "failed") (-911) |#1| (-635 (-762)))) (-15 -3487 ((-3 |#1| "failed") (-911) |#1| (-635 (-762)) (-762))) (-15 -3487 ((-3 |#1| "failed") (-911) |#1| (-635 (-762)) (-762) (-112))) (-15 -3099 ((-2 (|:| |contp| (-558)) (|:| -1849 (-635 (-2 (|:| |irr| |#1|) (|:| -1896 (-558)))))) |#1| (-112))) (-15 -1489 ((-2 (|:| |contp| (-558)) (|:| -1849 (-635 (-2 (|:| |irr| |#1|) (|:| -1896 (-558)))))) |#1| (-112) (-1089 (-762)) (-762)))) (-1222 (-558))) (T -440))
+((-1489 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1089 (-762))) (-5 *6 (-762)) (-5 *2 (-2 (|:| |contp| (-558)) (|:| -1849 (-635 (-2 (|:| |irr| *3) (|:| -1896 (-558))))))) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-3099 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-558)) (|:| -1849 (-635 (-2 (|:| |irr| *3) (|:| -1896 (-558))))))) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-3487 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-911)) (-5 *4 (-635 (-762))) (-5 *5 (-762)) (-5 *6 (-112)) (-5 *1 (-440 *2)) (-4 *2 (-1222 (-558))))) (-3487 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-911)) (-5 *4 (-635 (-762))) (-5 *5 (-762)) (-5 *1 (-440 *2)) (-4 *2 (-1222 (-558))))) (-3487 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-911)) (-5 *4 (-635 (-762))) (-5 *1 (-440 *2)) (-4 *2 (-1222 (-558))))) (-3487 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-911)) (-5 *4 (-762)) (-5 *1 (-440 *2)) (-4 *2 (-1222 (-558))))) (-3487 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-911)) (-5 *1 (-440 *2)) (-4 *2 (-1222 (-558))))) (-3089 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-762)) (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-3089 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-635 (-762))) (-5 *5 (-762)) (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-3089 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-762))) (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-3089 (*1 *2 *3 *4) (-12 (-5 *4 (-762)) (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-3089 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-2522 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-762)) (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-2522 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-635 (-762))) (-5 *5 (-762)) (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-2522 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-762))) (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-2522 (*1 *2 *3 *4) (-12 (-5 *4 (-762)) (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-2522 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-1480 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-1468 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-1457 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-1446 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-1434 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-1423 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-1412 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-1400 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3852 (-558)) (|:| -1849 (-635 *3)))) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-1388 (*1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| -2522 *4) (|:| -4323 (-558))))) (-4 *4 (-1222 (-558))) (-5 *2 (-762)) (-5 *1 (-440 *4)))) (-1376 (*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-1376 (*1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-1366 (*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-1366 (*1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-3477 (*1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| -2522 *4) (|:| -4323 (-558))))) (-4 *4 (-1222 (-558))) (-5 *2 (-728 (-762))) (-5 *1 (-440 *4)))) (-1353 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-558)) (|:| -1849 (-635 (-2 (|:| |irr| *4) (|:| -1896 (-558))))))) (-4 *4 (-1222 (-558))) (-5 *2 (-417 *4)) (-5 *1 (-440 *4)))))
+(-10 -7 (-15 -1353 ((-417 |#1|) (-2 (|:| |contp| (-558)) (|:| -1849 (-635 (-2 (|:| |irr| |#1|) (|:| -1896 (-558)))))))) (-15 -3477 ((-728 (-762)) (-635 (-2 (|:| -2522 |#1|) (|:| -4323 (-558)))))) (-15 -1366 ((-911))) (-15 -1366 ((-911) (-911))) (-15 -1376 ((-911))) (-15 -1376 ((-911) (-911))) (-15 -1388 ((-762) (-635 (-2 (|:| -2522 |#1|) (|:| -4323 (-558)))))) (-15 -1400 ((-2 (|:| -3852 (-558)) (|:| -1849 (-635 |#1|))) |#1|)) (-15 -1412 ((-112))) (-15 -1423 ((-112) (-112))) (-15 -1434 ((-112))) (-15 -1446 ((-112) (-112))) (-15 -1457 ((-112) |#1|)) (-15 -1468 ((-112))) (-15 -1480 ((-112) (-112))) (-15 -2522 ((-417 |#1|) |#1|)) (-15 -2522 ((-417 |#1|) |#1| (-762))) (-15 -2522 ((-417 |#1|) |#1| (-635 (-762)))) (-15 -2522 ((-417 |#1|) |#1| (-635 (-762)) (-762))) (-15 -2522 ((-417 |#1|) |#1| (-762) (-762))) (-15 -3089 ((-417 |#1|) |#1|)) (-15 -3089 ((-417 |#1|) |#1| (-762))) (-15 -3089 ((-417 |#1|) |#1| (-635 (-762)))) (-15 -3089 ((-417 |#1|) |#1| (-635 (-762)) (-762))) (-15 -3089 ((-417 |#1|) |#1| (-762) (-762))) (-15 -3487 ((-3 |#1| "failed") (-911) |#1|)) (-15 -3487 ((-3 |#1| "failed") (-911) |#1| (-762))) (-15 -3487 ((-3 |#1| "failed") (-911) |#1| (-635 (-762)))) (-15 -3487 ((-3 |#1| "failed") (-911) |#1| (-635 (-762)) (-762))) (-15 -3487 ((-3 |#1| "failed") (-911) |#1| (-635 (-762)) (-762) (-112))) (-15 -3099 ((-2 (|:| |contp| (-558)) (|:| -1849 (-635 (-2 (|:| |irr| |#1|) (|:| -1896 (-558)))))) |#1| (-112))) (-15 -1489 ((-2 (|:| |contp| (-558)) (|:| -1849 (-635 (-2 (|:| |irr| |#1|) (|:| -1896 (-558)))))) |#1| (-112) (-1089 (-762)) (-762))))
+((-3431 (((-558) |#2|) 48) (((-558) |#2| (-762)) 47)) (-1520 (((-558) |#2|) 55)) (-3441 ((|#3| |#2|) 25)) (-2615 ((|#3| |#2| (-911)) 14)) (-2880 ((|#3| |#2|) 15)) (-3450 ((|#3| |#2|) 9)) (-3382 ((|#3| |#2|) 10)) (-1508 ((|#3| |#2| (-911)) 62) ((|#3| |#2|) 30)) (-1497 (((-558) |#2|) 57)))
+(((-441 |#1| |#2| |#3|) (-10 -7 (-15 -1497 ((-558) |#2|)) (-15 -1508 (|#3| |#2|)) (-15 -1508 (|#3| |#2| (-911))) (-15 -1520 ((-558) |#2|)) (-15 -3431 ((-558) |#2| (-762))) (-15 -3431 ((-558) |#2|)) (-15 -2615 (|#3| |#2| (-911))) (-15 -3441 (|#3| |#2|)) (-15 -3450 (|#3| |#2|)) (-15 -3382 (|#3| |#2|)) (-15 -2880 (|#3| |#2|))) (-1039) (-1222 |#1|) (-13 (-403) (-1028 |#1|) (-362) (-1185) (-283))) (T -441))
+((-2880 (*1 *2 *3) (-12 (-4 *4 (-1039)) (-4 *2 (-13 (-403) (-1028 *4) (-362) (-1185) (-283))) (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1222 *4)))) (-3382 (*1 *2 *3) (-12 (-4 *4 (-1039)) (-4 *2 (-13 (-403) (-1028 *4) (-362) (-1185) (-283))) (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1222 *4)))) (-3450 (*1 *2 *3) (-12 (-4 *4 (-1039)) (-4 *2 (-13 (-403) (-1028 *4) (-362) (-1185) (-283))) (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1222 *4)))) (-3441 (*1 *2 *3) (-12 (-4 *4 (-1039)) (-4 *2 (-13 (-403) (-1028 *4) (-362) (-1185) (-283))) (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1222 *4)))) (-2615 (*1 *2 *3 *4) (-12 (-5 *4 (-911)) (-4 *5 (-1039)) (-4 *2 (-13 (-403) (-1028 *5) (-362) (-1185) (-283))) (-5 *1 (-441 *5 *3 *2)) (-4 *3 (-1222 *5)))) (-3431 (*1 *2 *3) (-12 (-4 *4 (-1039)) (-5 *2 (-558)) (-5 *1 (-441 *4 *3 *5)) (-4 *3 (-1222 *4)) (-4 *5 (-13 (-403) (-1028 *4) (-362) (-1185) (-283))))) (-3431 (*1 *2 *3 *4) (-12 (-5 *4 (-762)) (-4 *5 (-1039)) (-5 *2 (-558)) (-5 *1 (-441 *5 *3 *6)) (-4 *3 (-1222 *5)) (-4 *6 (-13 (-403) (-1028 *5) (-362) (-1185) (-283))))) (-1520 (*1 *2 *3) (-12 (-4 *4 (-1039)) (-5 *2 (-558)) (-5 *1 (-441 *4 *3 *5)) (-4 *3 (-1222 *4)) (-4 *5 (-13 (-403) (-1028 *4) (-362) (-1185) (-283))))) (-1508 (*1 *2 *3 *4) (-12 (-5 *4 (-911)) (-4 *5 (-1039)) (-4 *2 (-13 (-403) (-1028 *5) (-362) (-1185) (-283))) (-5 *1 (-441 *5 *3 *2)) (-4 *3 (-1222 *5)))) (-1508 (*1 *2 *3) (-12 (-4 *4 (-1039)) (-4 *2 (-13 (-403) (-1028 *4) (-362) (-1185) (-283))) (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1222 *4)))) (-1497 (*1 *2 *3) (-12 (-4 *4 (-1039)) (-5 *2 (-558)) (-5 *1 (-441 *4 *3 *5)) (-4 *3 (-1222 *4)) (-4 *5 (-13 (-403) (-1028 *4) (-362) (-1185) (-283))))))
+(-10 -7 (-15 -1497 ((-558) |#2|)) (-15 -1508 (|#3| |#2|)) (-15 -1508 (|#3| |#2| (-911))) (-15 -1520 ((-558) |#2|)) (-15 -3431 ((-558) |#2| (-762))) (-15 -3431 ((-558) |#2|)) (-15 -2615 (|#3| |#2| (-911))) (-15 -3441 (|#3| |#2|)) (-15 -3450 (|#3| |#2|)) (-15 -3382 (|#3| |#2|)) (-15 -2880 (|#3| |#2|)))
+((-2916 ((|#2| (-1246 |#1|)) 36)) (-3466 ((|#2| |#2| |#1|) 49)) (-3457 ((|#2| |#2| |#1|) 41)) (-4127 ((|#2| |#2|) 38)) (-1931 (((-112) |#2|) 30)) (-3494 (((-635 |#2|) (-911) (-417 |#2|)) 17)) (-3487 ((|#2| (-911) (-417 |#2|)) 21)) (-3477 (((-728 (-762)) (-417 |#2|)) 25)))
+(((-442 |#1| |#2|) (-10 -7 (-15 -1931 ((-112) |#2|)) (-15 -2916 (|#2| (-1246 |#1|))) (-15 -4127 (|#2| |#2|)) (-15 -3457 (|#2| |#2| |#1|)) (-15 -3466 (|#2| |#2| |#1|)) (-15 -3477 ((-728 (-762)) (-417 |#2|))) (-15 -3487 (|#2| (-911) (-417 |#2|))) (-15 -3494 ((-635 |#2|) (-911) (-417 |#2|)))) (-1039) (-1222 |#1|)) (T -442))
+((-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-911)) (-5 *4 (-417 *6)) (-4 *6 (-1222 *5)) (-4 *5 (-1039)) (-5 *2 (-635 *6)) (-5 *1 (-442 *5 *6)))) (-3487 (*1 *2 *3 *4) (-12 (-5 *3 (-911)) (-5 *4 (-417 *2)) (-4 *2 (-1222 *5)) (-5 *1 (-442 *5 *2)) (-4 *5 (-1039)))) (-3477 (*1 *2 *3) (-12 (-5 *3 (-417 *5)) (-4 *5 (-1222 *4)) (-4 *4 (-1039)) (-5 *2 (-728 (-762))) (-5 *1 (-442 *4 *5)))) (-3466 (*1 *2 *2 *3) (-12 (-4 *3 (-1039)) (-5 *1 (-442 *3 *2)) (-4 *2 (-1222 *3)))) (-3457 (*1 *2 *2 *3) (-12 (-4 *3 (-1039)) (-5 *1 (-442 *3 *2)) (-4 *2 (-1222 *3)))) (-4127 (*1 *2 *2) (-12 (-4 *3 (-1039)) (-5 *1 (-442 *3 *2)) (-4 *2 (-1222 *3)))) (-2916 (*1 *2 *3) (-12 (-5 *3 (-1246 *4)) (-4 *4 (-1039)) (-4 *2 (-1222 *4)) (-5 *1 (-442 *4 *2)))) (-1931 (*1 *2 *3) (-12 (-4 *4 (-1039)) (-5 *2 (-112)) (-5 *1 (-442 *4 *3)) (-4 *3 (-1222 *4)))))
+(-10 -7 (-15 -1931 ((-112) |#2|)) (-15 -2916 (|#2| (-1246 |#1|))) (-15 -4127 (|#2| |#2|)) (-15 -3457 (|#2| |#2| |#1|)) (-15 -3466 (|#2| |#2| |#1|)) (-15 -3477 ((-728 (-762)) (-417 |#2|))) (-15 -3487 (|#2| (-911) (-417 |#2|))) (-15 -3494 ((-635 |#2|) (-911) (-417 |#2|))))
+((-3519 (((-762)) 41)) (-3564 (((-762)) 23 (|has| |#1| (-403))) (((-762) (-762)) 22 (|has| |#1| (-403)))) (-3555 (((-558) |#1|) 18 (|has| |#1| (-403)))) (-3544 (((-558) |#1|) 20 (|has| |#1| (-403)))) (-3512 (((-762)) 40) (((-762) (-762)) 39)) (-3503 ((|#1| (-762) (-558)) 29)) (-3530 (((-1251)) 43)))
+(((-443 |#1|) (-10 -7 (-15 -3503 (|#1| (-762) (-558))) (-15 -3512 ((-762) (-762))) (-15 -3512 ((-762))) (-15 -3519 ((-762))) (-15 -3530 ((-1251))) (IF (|has| |#1| (-403)) (PROGN (-15 -3544 ((-558) |#1|)) (-15 -3555 ((-558) |#1|)) (-15 -3564 ((-762) (-762))) (-15 -3564 ((-762)))) |%noBranch|)) (-1039)) (T -443))
+((-3564 (*1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1039)))) (-3564 (*1 *2 *2) (-12 (-5 *2 (-762)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1039)))) (-3555 (*1 *2 *3) (-12 (-5 *2 (-558)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1039)))) (-3544 (*1 *2 *3) (-12 (-5 *2 (-558)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1039)))) (-3530 (*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-443 *3)) (-4 *3 (-1039)))) (-3519 (*1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-443 *3)) (-4 *3 (-1039)))) (-3512 (*1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-443 *3)) (-4 *3 (-1039)))) (-3512 (*1 *2 *2) (-12 (-5 *2 (-762)) (-5 *1 (-443 *3)) (-4 *3 (-1039)))) (-3503 (*1 *2 *3 *4) (-12 (-5 *3 (-762)) (-5 *4 (-558)) (-5 *1 (-443 *2)) (-4 *2 (-1039)))))
+(-10 -7 (-15 -3503 (|#1| (-762) (-558))) (-15 -3512 ((-762) (-762))) (-15 -3512 ((-762))) (-15 -3519 ((-762))) (-15 -3530 ((-1251))) (IF (|has| |#1| (-403)) (PROGN (-15 -3544 ((-558) |#1|)) (-15 -3555 ((-558) |#1|)) (-15 -3564 ((-762) (-762))) (-15 -3564 ((-762)))) |%noBranch|))
+((-3574 (((-635 (-558)) (-558)) 60)) (-3031 (((-112) (-168 (-558))) 64)) (-2522 (((-417 (-168 (-558))) (-168 (-558))) 59)))
+(((-444) (-10 -7 (-15 -2522 ((-417 (-168 (-558))) (-168 (-558)))) (-15 -3574 ((-635 (-558)) (-558))) (-15 -3031 ((-112) (-168 (-558)))))) (T -444))
+((-3031 (*1 *2 *3) (-12 (-5 *3 (-168 (-558))) (-5 *2 (-112)) (-5 *1 (-444)))) (-3574 (*1 *2 *3) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-444)) (-5 *3 (-558)))) (-2522 (*1 *2 *3) (-12 (-5 *2 (-417 (-168 (-558)))) (-5 *1 (-444)) (-5 *3 (-168 (-558))))))
+(-10 -7 (-15 -2522 ((-417 (-168 (-558))) (-168 (-558)))) (-15 -3574 ((-635 (-558)) (-558))) (-15 -3031 ((-112) (-168 (-558)))))
+((-3583 ((|#4| |#4| (-635 |#4|)) 60)) (-3592 (((-635 |#4|) (-635 |#4|) (-1145) (-1145)) 17) (((-635 |#4|) (-635 |#4|) (-1145)) 16) (((-635 |#4|) (-635 |#4|)) 11)))
+(((-445 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3583 (|#4| |#4| (-635 |#4|))) (-15 -3592 ((-635 |#4|) (-635 |#4|))) (-15 -3592 ((-635 |#4|) (-635 |#4|) (-1145))) (-15 -3592 ((-635 |#4|) (-635 |#4|) (-1145) (-1145)))) (-306) (-784) (-841) (-939 |#1| |#2| |#3|)) (T -445))
+((-3592 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-635 *7)) (-5 *3 (-1145)) (-4 *7 (-939 *4 *5 *6)) (-4 *4 (-306)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *1 (-445 *4 *5 *6 *7)))) (-3592 (*1 *2 *2 *3) (-12 (-5 *2 (-635 *7)) (-5 *3 (-1145)) (-4 *7 (-939 *4 *5 *6)) (-4 *4 (-306)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *1 (-445 *4 *5 *6 *7)))) (-3592 (*1 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-939 *3 *4 *5)) (-4 *3 (-306)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-445 *3 *4 *5 *6)))) (-3583 (*1 *2 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-939 *4 *5 *6)) (-4 *4 (-306)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *1 (-445 *4 *5 *6 *2)))))
+(-10 -7 (-15 -3583 (|#4| |#4| (-635 |#4|))) (-15 -3592 ((-635 |#4|) (-635 |#4|))) (-15 -3592 ((-635 |#4|) (-635 |#4|) (-1145))) (-15 -3592 ((-635 |#4|) (-635 |#4|) (-1145) (-1145))))
+((-3612 (((-635 (-635 |#4|)) (-635 |#4|) (-112)) 72) (((-635 (-635 |#4|)) (-635 |#4|)) 71) (((-635 (-635 |#4|)) (-635 |#4|) (-635 |#4|) (-112)) 65) (((-635 (-635 |#4|)) (-635 |#4|) (-635 |#4|)) 66)) (-3602 (((-635 (-635 |#4|)) (-635 |#4|) (-112)) 41) (((-635 (-635 |#4|)) (-635 |#4|)) 62)))
+(((-446 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3602 ((-635 (-635 |#4|)) (-635 |#4|))) (-15 -3602 ((-635 (-635 |#4|)) (-635 |#4|) (-112))) (-15 -3612 ((-635 (-635 |#4|)) (-635 |#4|) (-635 |#4|))) (-15 -3612 ((-635 (-635 |#4|)) (-635 |#4|) (-635 |#4|) (-112))) (-15 -3612 ((-635 (-635 |#4|)) (-635 |#4|))) (-15 -3612 ((-635 (-635 |#4|)) (-635 |#4|) (-112)))) (-13 (-306) (-146)) (-784) (-841) (-939 |#1| |#2| |#3|)) (T -446))
+((-3612 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *8 (-939 *5 *6 *7)) (-5 *2 (-635 (-635 *8))) (-5 *1 (-446 *5 *6 *7 *8)) (-5 *3 (-635 *8)))) (-3612 (*1 *2 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-939 *4 *5 *6)) (-5 *2 (-635 (-635 *7))) (-5 *1 (-446 *4 *5 *6 *7)) (-5 *3 (-635 *7)))) (-3612 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *8 (-939 *5 *6 *7)) (-5 *2 (-635 (-635 *8))) (-5 *1 (-446 *5 *6 *7 *8)) (-5 *3 (-635 *8)))) (-3612 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-939 *4 *5 *6)) (-5 *2 (-635 (-635 *7))) (-5 *1 (-446 *4 *5 *6 *7)) (-5 *3 (-635 *7)))) (-3602 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *8 (-939 *5 *6 *7)) (-5 *2 (-635 (-635 *8))) (-5 *1 (-446 *5 *6 *7 *8)) (-5 *3 (-635 *8)))) (-3602 (*1 *2 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-939 *4 *5 *6)) (-5 *2 (-635 (-635 *7))) (-5 *1 (-446 *4 *5 *6 *7)) (-5 *3 (-635 *7)))))
+(-10 -7 (-15 -3602 ((-635 (-635 |#4|)) (-635 |#4|))) (-15 -3602 ((-635 (-635 |#4|)) (-635 |#4|) (-112))) (-15 -3612 ((-635 (-635 |#4|)) (-635 |#4|) (-635 |#4|))) (-15 -3612 ((-635 (-635 |#4|)) (-635 |#4|) (-635 |#4|) (-112))) (-15 -3612 ((-635 (-635 |#4|)) (-635 |#4|))) (-15 -3612 ((-635 (-635 |#4|)) (-635 |#4|) (-112))))
+((-3843 (((-762) |#4|) 12)) (-3727 (((-635 (-2 (|:| |totdeg| (-762)) (|:| -2574 |#4|))) |#4| (-762) (-635 (-2 (|:| |totdeg| (-762)) (|:| -2574 |#4|)))) 31)) (-3747 (((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-3737 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 38)) (-3630 ((|#4| |#4| (-635 |#4|)) 39)) (-3708 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-635 |#4|)) 69)) (-3774 (((-1251) |#4|) 41)) (-3802 (((-1251) (-635 |#4|)) 50)) (-3784 (((-558) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-558) (-558) (-558)) 47)) (-3812 (((-1251) (-558)) 78)) (-3756 (((-635 |#4|) (-635 |#4|)) 76)) (-3831 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-762)) (|:| -2574 |#4|)) |#4| (-762)) 25)) (-3765 (((-558) |#4|) 77)) (-3718 ((|#4| |#4|) 29)) (-3639 (((-635 |#4|) (-635 |#4|) (-558) (-558)) 55)) (-3793 (((-558) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-558) (-558) (-558) (-558)) 88)) (-3821 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-3648 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 58)) (-3697 (((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 57)) (-3688 (((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 35)) (-3659 (((-112) |#2| |#2|) 56)) (-3679 (((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-3669 (((-112) |#2| |#2| |#2| |#2|) 59)) (-3621 ((|#4| |#4| (-635 |#4|)) 70)))
+(((-447 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3621 (|#4| |#4| (-635 |#4|))) (-15 -3630 (|#4| |#4| (-635 |#4|))) (-15 -3639 ((-635 |#4|) (-635 |#4|) (-558) (-558))) (-15 -3648 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3659 ((-112) |#2| |#2|)) (-15 -3669 ((-112) |#2| |#2| |#2| |#2|)) (-15 -3679 ((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3688 ((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3697 ((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3708 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-635 |#4|))) (-15 -3718 (|#4| |#4|)) (-15 -3727 ((-635 (-2 (|:| |totdeg| (-762)) (|:| -2574 |#4|))) |#4| (-762) (-635 (-2 (|:| |totdeg| (-762)) (|:| -2574 |#4|))))) (-15 -3737 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3747 ((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3756 ((-635 |#4|) (-635 |#4|))) (-15 -3765 ((-558) |#4|)) (-15 -3774 ((-1251) |#4|)) (-15 -3784 ((-558) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-558) (-558) (-558))) (-15 -3793 ((-558) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-558) (-558) (-558) (-558))) (-15 -3802 ((-1251) (-635 |#4|))) (-15 -3812 ((-1251) (-558))) (-15 -3821 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3831 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-762)) (|:| -2574 |#4|)) |#4| (-762))) (-15 -3843 ((-762) |#4|))) (-450) (-784) (-841) (-939 |#1| |#2| |#3|)) (T -447))
+((-3843 (*1 *2 *3) (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-762)) (-5 *1 (-447 *4 *5 *6 *3)) (-4 *3 (-939 *4 *5 *6)))) (-3831 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-762)) (|:| -2574 *4))) (-5 *5 (-762)) (-4 *4 (-939 *6 *7 *8)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-447 *6 *7 *8 *4)))) (-3821 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-762)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-784)) (-4 *7 (-939 *4 *5 *6)) (-4 *4 (-450)) (-4 *6 (-841)) (-5 *2 (-112)) (-5 *1 (-447 *4 *5 *6 *7)))) (-3812 (*1 *2 *3) (-12 (-5 *3 (-558)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-1251)) (-5 *1 (-447 *4 *5 *6 *7)) (-4 *7 (-939 *4 *5 *6)))) (-3802 (*1 *2 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-939 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-1251)) (-5 *1 (-447 *4 *5 *6 *7)))) (-3793 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-762)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-784)) (-4 *4 (-939 *5 *6 *7)) (-4 *5 (-450)) (-4 *7 (-841)) (-5 *1 (-447 *5 *6 *7 *4)))) (-3784 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-762)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-784)) (-4 *4 (-939 *5 *6 *7)) (-4 *5 (-450)) (-4 *7 (-841)) (-5 *1 (-447 *5 *6 *7 *4)))) (-3774 (*1 *2 *3) (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-1251)) (-5 *1 (-447 *4 *5 *6 *3)) (-4 *3 (-939 *4 *5 *6)))) (-3765 (*1 *2 *3) (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-558)) (-5 *1 (-447 *4 *5 *6 *3)) (-4 *3 (-939 *4 *5 *6)))) (-3756 (*1 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-939 *3 *4 *5)) (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-447 *3 *4 *5 *6)))) (-3747 (*1 *2 *2 *2) (-12 (-5 *2 (-635 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-762)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-784)) (-4 *6 (-939 *3 *4 *5)) (-4 *3 (-450)) (-4 *5 (-841)) (-5 *1 (-447 *3 *4 *5 *6)))) (-3737 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-762)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-784)) (-4 *2 (-939 *4 *5 *6)) (-5 *1 (-447 *4 *5 *6 *2)) (-4 *4 (-450)) (-4 *6 (-841)))) (-3727 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-635 (-2 (|:| |totdeg| (-762)) (|:| -2574 *3)))) (-5 *4 (-762)) (-4 *3 (-939 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *1 (-447 *5 *6 *7 *3)))) (-3718 (*1 *2 *2) (-12 (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-447 *3 *4 *5 *2)) (-4 *2 (-939 *3 *4 *5)))) (-3708 (*1 *2 *3 *4) (-12 (-5 *4 (-635 *3)) (-4 *3 (-939 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-447 *5 *6 *7 *3)))) (-3697 (*1 *2 *3 *2) (-12 (-5 *2 (-635 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-762)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-784)) (-4 *6 (-939 *4 *3 *5)) (-4 *4 (-450)) (-4 *5 (-841)) (-5 *1 (-447 *4 *3 *5 *6)))) (-3688 (*1 *2 *2) (-12 (-5 *2 (-635 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-762)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-784)) (-4 *6 (-939 *3 *4 *5)) (-4 *3 (-450)) (-4 *5 (-841)) (-5 *1 (-447 *3 *4 *5 *6)))) (-3679 (*1 *2 *3 *2) (-12 (-5 *2 (-635 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-762)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-784)) (-4 *3 (-939 *4 *5 *6)) (-4 *4 (-450)) (-4 *6 (-841)) (-5 *1 (-447 *4 *5 *6 *3)))) (-3669 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-450)) (-4 *3 (-784)) (-4 *5 (-841)) (-5 *2 (-112)) (-5 *1 (-447 *4 *3 *5 *6)) (-4 *6 (-939 *4 *3 *5)))) (-3659 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *3 (-784)) (-4 *5 (-841)) (-5 *2 (-112)) (-5 *1 (-447 *4 *3 *5 *6)) (-4 *6 (-939 *4 *3 *5)))) (-3648 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-762)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-784)) (-4 *7 (-939 *4 *5 *6)) (-4 *4 (-450)) (-4 *6 (-841)) (-5 *2 (-112)) (-5 *1 (-447 *4 *5 *6 *7)))) (-3639 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-635 *7)) (-5 *3 (-558)) (-4 *7 (-939 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *1 (-447 *4 *5 *6 *7)))) (-3630 (*1 *2 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-939 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *1 (-447 *4 *5 *6 *2)))) (-3621 (*1 *2 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-939 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *1 (-447 *4 *5 *6 *2)))))
+(-10 -7 (-15 -3621 (|#4| |#4| (-635 |#4|))) (-15 -3630 (|#4| |#4| (-635 |#4|))) (-15 -3639 ((-635 |#4|) (-635 |#4|) (-558) (-558))) (-15 -3648 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3659 ((-112) |#2| |#2|)) (-15 -3669 ((-112) |#2| |#2| |#2| |#2|)) (-15 -3679 ((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3688 ((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3697 ((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3708 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-635 |#4|))) (-15 -3718 (|#4| |#4|)) (-15 -3727 ((-635 (-2 (|:| |totdeg| (-762)) (|:| -2574 |#4|))) |#4| (-762) (-635 (-2 (|:| |totdeg| (-762)) (|:| -2574 |#4|))))) (-15 -3737 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3747 ((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3756 ((-635 |#4|) (-635 |#4|))) (-15 -3765 ((-558) |#4|)) (-15 -3774 ((-1251) |#4|)) (-15 -3784 ((-558) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-558) (-558) (-558))) (-15 -3793 ((-558) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-558) (-558) (-558) (-558))) (-15 -3802 ((-1251) (-635 |#4|))) (-15 -3812 ((-1251) (-558))) (-15 -3821 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3831 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-762)) (|:| -2574 |#4|)) |#4| (-762))) (-15 -3843 ((-762) |#4|)))
+((-1299 ((|#4| |#4| (-635 |#4|)) 22 (|has| |#1| (-362)))) (-2960 (((-635 |#4|) (-635 |#4|) (-1145) (-1145)) 41) (((-635 |#4|) (-635 |#4|) (-1145)) 40) (((-635 |#4|) (-635 |#4|)) 35)))
+(((-448 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2960 ((-635 |#4|) (-635 |#4|))) (-15 -2960 ((-635 |#4|) (-635 |#4|) (-1145))) (-15 -2960 ((-635 |#4|) (-635 |#4|) (-1145) (-1145))) (IF (|has| |#1| (-362)) (-15 -1299 (|#4| |#4| (-635 |#4|))) |%noBranch|)) (-450) (-784) (-841) (-939 |#1| |#2| |#3|)) (T -448))
+((-1299 (*1 *2 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-939 *4 *5 *6)) (-4 *4 (-362)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *1 (-448 *4 *5 *6 *2)))) (-2960 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-635 *7)) (-5 *3 (-1145)) (-4 *7 (-939 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *1 (-448 *4 *5 *6 *7)))) (-2960 (*1 *2 *2 *3) (-12 (-5 *2 (-635 *7)) (-5 *3 (-1145)) (-4 *7 (-939 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *1 (-448 *4 *5 *6 *7)))) (-2960 (*1 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-939 *3 *4 *5)) (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-448 *3 *4 *5 *6)))))
+(-10 -7 (-15 -2960 ((-635 |#4|) (-635 |#4|))) (-15 -2960 ((-635 |#4|) (-635 |#4|) (-1145))) (-15 -2960 ((-635 |#4|) (-635 |#4|) (-1145) (-1145))) (IF (|has| |#1| (-362)) (-15 -1299 (|#4| |#4| (-635 |#4|))) |%noBranch|))
+((-2665 (($ $ $) 14) (($ (-635 $)) 21)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) 41)) (-2699 (($ $ $) NIL) (($ (-635 $)) 22)))
+(((-449 |#1|) (-10 -8 (-15 -3757 ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 -2665 (|#1| (-635 |#1|))) (-15 -2665 (|#1| |#1| |#1|)) (-15 -2699 (|#1| (-635 |#1|))) (-15 -2699 (|#1| |#1| |#1|))) (-450)) (T -449))
+NIL
+(-10 -8 (-15 -3757 ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 -2665 (|#1| (-635 |#1|))) (-15 -2665 (|#1| |#1| |#1|)) (-15 -2699 (|#1| (-635 |#1|))) (-15 -2699 (|#1| |#1| |#1|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 42)) (-1881 (($ $) 41)) (-1857 (((-112) $) 39)) (-2089 (((-3 $ "failed") $ $) 19)) (-1816 (($) 17 T CONST)) (-2588 (((-3 $ "failed") $) 33)) (-2035 (((-112) $) 31)) (-2665 (($ $ $) 47) (($ (-635 $)) 46)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) 45)) (-2699 (($ $ $) 49) (($ (-635 $)) 48)) (-3983 (((-3 $ "failed") $ $) 43)) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ $) 44)) (-2542 (((-762)) 28)) (-1870 (((-112) $ $) 40)) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1683 (((-112) $ $) 6)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24)))
+(((-450) (-139)) (T -450))
+((-2699 (*1 *1 *1 *1) (-4 *1 (-450))) (-2699 (*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-450)))) (-2665 (*1 *1 *1 *1) (-4 *1 (-450))) (-2665 (*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-450)))) (-3757 (*1 *2 *2 *2) (-12 (-5 *2 (-1159 *1)) (-4 *1 (-450)))))
+(-13 (-550) (-10 -8 (-15 -2699 ($ $ $)) (-15 -2699 ($ (-635 $))) (-15 -2665 ($ $ $)) (-15 -2665 ($ (-635 $))) (-15 -3757 ((-1159 $) (-1159 $) (-1159 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-608 (-558)) . T) ((-608 $) . T) ((-605 (-853)) . T) ((-171) . T) ((-289) . T) ((-550) . T) ((-638 $) . T) ((-708 $) . T) ((-717) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-1960 (((-3 $ "failed")) NIL (|has| (-406 (-942 |#1|)) (-550)))) (-2089 (((-3 $ "failed") $ $) NIL)) (-4194 (((-1246 (-679 (-406 (-942 |#1|)))) (-1246 $)) NIL) (((-1246 (-679 (-406 (-942 |#1|))))) NIL)) (-2751 (((-1246 $)) NIL)) (-1816 (($) NIL T CONST)) (-2845 (((-3 (-2 (|:| |particular| $) (|:| -2660 (-635 $))) "failed")) NIL)) (-2458 (((-3 $ "failed")) NIL (|has| (-406 (-942 |#1|)) (-550)))) (-2121 (((-679 (-406 (-942 |#1|))) (-1246 $)) NIL) (((-679 (-406 (-942 |#1|)))) NIL)) (-2729 (((-406 (-942 |#1|)) $) NIL)) (-2096 (((-679 (-406 (-942 |#1|))) $ (-1246 $)) NIL) (((-679 (-406 (-942 |#1|))) $) NIL)) (-1986 (((-3 $ "failed") $) NIL (|has| (-406 (-942 |#1|)) (-550)))) (-3933 (((-1159 (-942 (-406 (-942 |#1|))))) NIL (|has| (-406 (-942 |#1|)) (-362))) (((-1159 (-406 (-942 |#1|)))) 84 (|has| |#1| (-550)))) (-2015 (($ $ (-911)) NIL)) (-2708 (((-406 (-942 |#1|)) $) NIL)) (-2484 (((-1159 (-406 (-942 |#1|))) $) 82 (|has| (-406 (-942 |#1|)) (-550)))) (-2143 (((-406 (-942 |#1|)) (-1246 $)) NIL) (((-406 (-942 |#1|))) NIL)) (-2685 (((-1159 (-406 (-942 |#1|))) $) NIL)) (-2622 (((-112)) NIL)) (-3997 (($ (-1246 (-406 (-942 |#1|))) (-1246 $)) 103) (($ (-1246 (-406 (-942 |#1|)))) NIL)) (-2588 (((-3 $ "failed") $) NIL (|has| (-406 (-942 |#1|)) (-550)))) (-3833 (((-911)) NIL)) (-2591 (((-112)) NIL)) (-4078 (($ $ (-911)) NIL)) (-2539 (((-112)) NIL)) (-2517 (((-112)) NIL)) (-2565 (((-112)) NIL)) (-2854 (((-3 (-2 (|:| |particular| $) (|:| -2660 (-635 $))) "failed")) NIL)) (-2470 (((-3 $ "failed")) NIL (|has| (-406 (-942 |#1|)) (-550)))) (-2132 (((-679 (-406 (-942 |#1|))) (-1246 $)) NIL) (((-679 (-406 (-942 |#1|)))) NIL)) (-2740 (((-406 (-942 |#1|)) $) NIL)) (-2109 (((-679 (-406 (-942 |#1|))) $ (-1246 $)) NIL) (((-679 (-406 (-942 |#1|))) $) NIL)) (-1995 (((-3 $ "failed") $) NIL (|has| (-406 (-942 |#1|)) (-550)))) (-2824 (((-1159 (-942 (-406 (-942 |#1|))))) NIL (|has| (-406 (-942 |#1|)) (-362))) (((-1159 (-406 (-942 |#1|)))) 83 (|has| |#1| (-550)))) (-2006 (($ $ (-911)) NIL)) (-2718 (((-406 (-942 |#1|)) $) NIL)) (-2498 (((-1159 (-406 (-942 |#1|))) $) 77 (|has| (-406 (-942 |#1|)) (-550)))) (-3985 (((-406 (-942 |#1|)) (-1246 $)) NIL) (((-406 (-942 |#1|))) NIL)) (-2696 (((-1159 (-406 (-942 |#1|))) $) NIL)) (-2632 (((-112)) NIL)) (-4310 (((-1145) $) NIL)) (-2527 (((-112)) NIL)) (-2551 (((-112)) NIL)) (-2580 (((-112)) NIL)) (-2975 (((-1107) $) NIL)) (-3874 (((-406 (-942 |#1|)) $ $) 71 (|has| |#1| (-550)))) (-3913 (((-406 (-942 |#1|)) $) 93 (|has| |#1| (-550)))) (-3903 (((-406 (-942 |#1|)) $) 95 (|has| |#1| (-550)))) (-3924 (((-1159 (-406 (-942 |#1|))) $) 88 (|has| |#1| (-550)))) (-3864 (((-406 (-942 |#1|))) 72 (|has| |#1| (-550)))) (-3893 (((-406 (-942 |#1|)) $ $) 64 (|has| |#1| (-550)))) (-3954 (((-406 (-942 |#1|)) $) 92 (|has| |#1| (-550)))) (-3941 (((-406 (-942 |#1|)) $) 94 (|has| |#1| (-550)))) (-3966 (((-1159 (-406 (-942 |#1|))) $) 87 (|has| |#1| (-550)))) (-3884 (((-406 (-942 |#1|))) 68 (|has| |#1| (-550)))) (-2835 (($) 101) (($ (-1163)) 107) (($ (-1246 (-1163))) 106) (($ (-1246 $)) 96) (($ (-1163) (-1246 $)) 105) (($ (-1246 (-1163)) (-1246 $)) 104)) (-2612 (((-112)) NIL)) (-2195 (((-406 (-942 |#1|)) $ (-558)) NIL)) (-4205 (((-1246 (-406 (-942 |#1|))) $ (-1246 $)) 98) (((-679 (-406 (-942 |#1|))) (-1246 $) (-1246 $)) NIL) (((-1246 (-406 (-942 |#1|))) $) 40) (((-679 (-406 (-942 |#1|))) (-1246 $)) NIL)) (-3224 (((-1246 (-406 (-942 |#1|))) $) NIL) (($ (-1246 (-406 (-942 |#1|)))) 37)) (-3855 (((-635 (-942 (-406 (-942 |#1|)))) (-1246 $)) NIL) (((-635 (-942 (-406 (-942 |#1|))))) NIL) (((-635 (-942 |#1|)) (-1246 $)) 99 (|has| |#1| (-550))) (((-635 (-942 |#1|))) 100 (|has| |#1| (-550)))) (-3443 (($ $ $) NIL)) (-2676 (((-112)) NIL)) (-3220 (((-853) $) NIL) (($ (-1246 (-406 (-942 |#1|)))) NIL)) (-2660 (((-1246 $)) 60)) (-2507 (((-635 (-1246 (-406 (-942 |#1|))))) NIL (|has| (-406 (-942 |#1|)) (-550)))) (-3452 (($ $ $ $) NIL)) (-2654 (((-112)) NIL)) (-2258 (($ (-679 (-406 (-942 |#1|))) $) NIL)) (-3433 (($ $ $) NIL)) (-2664 (((-112)) NIL)) (-2642 (((-112)) NIL)) (-2602 (((-112)) NIL)) (-2131 (($) NIL T CONST)) (-1683 (((-112) $ $) NIL)) (-1798 (($ $) NIL) (($ $ $) 97)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 56) (($ $ (-406 (-942 |#1|))) NIL) (($ (-406 (-942 |#1|)) $) NIL) (($ (-1129 |#2| (-406 (-942 |#1|))) $) NIL)))
+(((-451 |#1| |#2| |#3| |#4|) (-13 (-416 (-406 (-942 |#1|))) (-638 (-1129 |#2| (-406 (-942 |#1|)))) (-10 -8 (-15 -3220 ($ (-1246 (-406 (-942 |#1|))))) (-15 -2854 ((-3 (-2 (|:| |particular| $) (|:| -2660 (-635 $))) "failed"))) (-15 -2845 ((-3 (-2 (|:| |particular| $) (|:| -2660 (-635 $))) "failed"))) (-15 -2835 ($)) (-15 -2835 ($ (-1163))) (-15 -2835 ($ (-1246 (-1163)))) (-15 -2835 ($ (-1246 $))) (-15 -2835 ($ (-1163) (-1246 $))) (-15 -2835 ($ (-1246 (-1163)) (-1246 $))) (IF (|has| |#1| (-550)) (PROGN (-15 -2824 ((-1159 (-406 (-942 |#1|))))) (-15 -3966 ((-1159 (-406 (-942 |#1|))) $)) (-15 -3954 ((-406 (-942 |#1|)) $)) (-15 -3941 ((-406 (-942 |#1|)) $)) (-15 -3933 ((-1159 (-406 (-942 |#1|))))) (-15 -3924 ((-1159 (-406 (-942 |#1|))) $)) (-15 -3913 ((-406 (-942 |#1|)) $)) (-15 -3903 ((-406 (-942 |#1|)) $)) (-15 -3893 ((-406 (-942 |#1|)) $ $)) (-15 -3884 ((-406 (-942 |#1|)))) (-15 -3874 ((-406 (-942 |#1|)) $ $)) (-15 -3864 ((-406 (-942 |#1|)))) (-15 -3855 ((-635 (-942 |#1|)) (-1246 $))) (-15 -3855 ((-635 (-942 |#1|))))) |%noBranch|))) (-171) (-911) (-635 (-1163)) (-1246 (-679 |#1|))) (T -451))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-1246 (-406 (-942 *3)))) (-4 *3 (-171)) (-14 *6 (-1246 (-679 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-14 *4 (-911)) (-14 *5 (-635 (-1163))))) (-2854 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-451 *3 *4 *5 *6)) (|:| -2660 (-635 (-451 *3 *4 *5 *6))))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-911)) (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))) (-2845 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-451 *3 *4 *5 *6)) (|:| -2660 (-635 (-451 *3 *4 *5 *6))))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-911)) (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))) (-2835 (*1 *1) (-12 (-5 *1 (-451 *2 *3 *4 *5)) (-4 *2 (-171)) (-14 *3 (-911)) (-14 *4 (-635 (-1163))) (-14 *5 (-1246 (-679 *2))))) (-2835 (*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-911)) (-14 *5 (-635 *2)) (-14 *6 (-1246 (-679 *3))))) (-2835 (*1 *1 *2) (-12 (-5 *2 (-1246 (-1163))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-911)) (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))) (-2835 (*1 *1 *2) (-12 (-5 *2 (-1246 (-451 *3 *4 *5 *6))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-911)) (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))) (-2835 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-1246 (-451 *4 *5 *6 *7))) (-5 *1 (-451 *4 *5 *6 *7)) (-4 *4 (-171)) (-14 *5 (-911)) (-14 *6 (-635 *2)) (-14 *7 (-1246 (-679 *4))))) (-2835 (*1 *1 *2 *3) (-12 (-5 *2 (-1246 (-1163))) (-5 *3 (-1246 (-451 *4 *5 *6 *7))) (-5 *1 (-451 *4 *5 *6 *7)) (-4 *4 (-171)) (-14 *5 (-911)) (-14 *6 (-635 (-1163))) (-14 *7 (-1246 (-679 *4))))) (-2824 (*1 *2) (-12 (-5 *2 (-1159 (-406 (-942 *3)))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911)) (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))) (-3966 (*1 *2 *1) (-12 (-5 *2 (-1159 (-406 (-942 *3)))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911)) (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))) (-3954 (*1 *2 *1) (-12 (-5 *2 (-406 (-942 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911)) (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))) (-3941 (*1 *2 *1) (-12 (-5 *2 (-406 (-942 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911)) (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))) (-3933 (*1 *2) (-12 (-5 *2 (-1159 (-406 (-942 *3)))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911)) (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))) (-3924 (*1 *2 *1) (-12 (-5 *2 (-1159 (-406 (-942 *3)))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911)) (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))) (-3913 (*1 *2 *1) (-12 (-5 *2 (-406 (-942 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911)) (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))) (-3903 (*1 *2 *1) (-12 (-5 *2 (-406 (-942 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911)) (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))) (-3893 (*1 *2 *1 *1) (-12 (-5 *2 (-406 (-942 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911)) (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))) (-3884 (*1 *2) (-12 (-5 *2 (-406 (-942 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911)) (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))) (-3874 (*1 *2 *1 *1) (-12 (-5 *2 (-406 (-942 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911)) (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))) (-3864 (*1 *2) (-12 (-5 *2 (-406 (-942 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911)) (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))) (-3855 (*1 *2 *3) (-12 (-5 *3 (-1246 (-451 *4 *5 *6 *7))) (-5 *2 (-635 (-942 *4))) (-5 *1 (-451 *4 *5 *6 *7)) (-4 *4 (-550)) (-4 *4 (-171)) (-14 *5 (-911)) (-14 *6 (-635 (-1163))) (-14 *7 (-1246 (-679 *4))))) (-3855 (*1 *2) (-12 (-5 *2 (-635 (-942 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911)) (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))))
+(-13 (-416 (-406 (-942 |#1|))) (-638 (-1129 |#2| (-406 (-942 |#1|)))) (-10 -8 (-15 -3220 ($ (-1246 (-406 (-942 |#1|))))) (-15 -2854 ((-3 (-2 (|:| |particular| $) (|:| -2660 (-635 $))) "failed"))) (-15 -2845 ((-3 (-2 (|:| |particular| $) (|:| -2660 (-635 $))) "failed"))) (-15 -2835 ($)) (-15 -2835 ($ (-1163))) (-15 -2835 ($ (-1246 (-1163)))) (-15 -2835 ($ (-1246 $))) (-15 -2835 ($ (-1163) (-1246 $))) (-15 -2835 ($ (-1246 (-1163)) (-1246 $))) (IF (|has| |#1| (-550)) (PROGN (-15 -2824 ((-1159 (-406 (-942 |#1|))))) (-15 -3966 ((-1159 (-406 (-942 |#1|))) $)) (-15 -3954 ((-406 (-942 |#1|)) $)) (-15 -3941 ((-406 (-942 |#1|)) $)) (-15 -3933 ((-1159 (-406 (-942 |#1|))))) (-15 -3924 ((-1159 (-406 (-942 |#1|))) $)) (-15 -3913 ((-406 (-942 |#1|)) $)) (-15 -3903 ((-406 (-942 |#1|)) $)) (-15 -3893 ((-406 (-942 |#1|)) $ $)) (-15 -3884 ((-406 (-942 |#1|)))) (-15 -3874 ((-406 (-942 |#1|)) $ $)) (-15 -3864 ((-406 (-942 |#1|)))) (-15 -3855 ((-635 (-942 |#1|)) (-1246 $))) (-15 -3855 ((-635 (-942 |#1|))))) |%noBranch|)))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) 13)) (-2671 (((-635 (-855 |#1|)) $) 74)) (-2492 (((-1159 $) $ (-855 |#1|)) 46) (((-1159 |#2|) $) 117)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL (|has| |#2| (-550)))) (-1881 (($ $) NIL (|has| |#2| (-550)))) (-1857 (((-112) $) NIL (|has| |#2| (-550)))) (-2513 (((-762) $) 21) (((-762) $ (-635 (-855 |#1|))) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-3748 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-3465 (($ $) NIL (|has| |#2| (-450)))) (-1380 (((-417 $) $) NIL (|has| |#2| (-450)))) (-3719 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-1816 (($) NIL T CONST)) (-3069 (((-3 |#2| "failed") $) 44) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#2| (-1028 (-406 (-558))))) (((-3 (-558) "failed") $) NIL (|has| |#2| (-1028 (-558)))) (((-3 (-855 |#1|) "failed") $) NIL)) (-1863 ((|#2| $) 42) (((-406 (-558)) $) NIL (|has| |#2| (-1028 (-406 (-558))))) (((-558) $) NIL (|has| |#2| (-1028 (-558)))) (((-855 |#1|) $) NIL)) (-3320 (($ $ $ (-855 |#1|)) NIL (|has| |#2| (-171)))) (-3176 (($ $ (-635 (-558))) 79)) (-2490 (($ $) 67)) (-3216 (((-679 (-558)) (-679 $)) NIL (|has| |#2| (-631 (-558)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| |#2| (-631 (-558)))) (((-2 (|:| -3683 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 $) (-1246 $)) NIL) (((-679 |#2|) (-679 $)) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-2782 (($ $) NIL (|has| |#2| (-450))) (($ $ (-855 |#1|)) NIL (|has| |#2| (-450)))) (-2476 (((-635 $) $) NIL)) (-3031 (((-112) $) NIL (|has| |#2| (-899)))) (-3888 (($ $ |#2| |#3| $) NIL)) (-2269 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (-12 (|has| (-855 |#1|) (-876 (-378))) (|has| |#2| (-876 (-378))))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (-12 (|has| (-855 |#1|) (-876 (-558))) (|has| |#2| (-876 (-558)))))) (-2035 (((-112) $) NIL)) (-2110 (((-762) $) 58)) (-2659 (($ (-1159 |#2|) (-855 |#1|)) 122) (($ (-1159 $) (-855 |#1|)) 52)) (-2536 (((-635 $) $) NIL)) (-4238 (((-112) $) 59)) (-2648 (($ |#2| |#3|) 28) (($ $ (-855 |#1|) (-762)) 30) (($ $ (-635 (-855 |#1|)) (-635 (-762))) NIL)) (-3381 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $ (-855 |#1|)) NIL)) (-2524 ((|#3| $) NIL) (((-762) $ (-855 |#1|)) 50) (((-635 (-762)) $ (-635 (-855 |#1|))) 57)) (-3910 (($ $ $) NIL (|has| |#2| (-841)))) (-3542 (($ $ $) NIL (|has| |#2| (-841)))) (-3898 (($ (-1 |#3| |#3|) $) NIL)) (-3167 (($ (-1 |#2| |#2|) $) NIL)) (-3399 (((-3 (-855 |#1|) "failed") $) 39)) (-2451 (($ $) NIL)) (-2463 ((|#2| $) 41)) (-2665 (($ (-635 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-4310 (((-1145) $) NIL)) (-2560 (((-3 (-635 $) "failed") $) NIL)) (-2548 (((-3 (-635 $) "failed") $) NIL)) (-2575 (((-3 (-2 (|:| |var| (-855 |#1|)) (|:| -1951 (-762))) "failed") $) NIL)) (-2975 (((-1107) $) NIL)) (-2429 (((-112) $) 40)) (-2440 ((|#2| $) 115)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#2| (-450)))) (-2699 (($ (-635 $)) NIL (|has| |#2| (-450))) (($ $ $) 127 (|has| |#2| (-450)))) (-3728 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-3738 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-2522 (((-417 $) $) NIL (|has| |#2| (-899)))) (-3983 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-550))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-550)))) (-2554 (($ $ (-635 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-855 |#1|) |#2|) 86) (($ $ (-635 (-855 |#1|)) (-635 |#2|)) 89) (($ $ (-855 |#1|) $) 84) (($ $ (-635 (-855 |#1|)) (-635 $)) 105)) (-3331 (($ $ (-855 |#1|)) NIL (|has| |#2| (-171)))) (-2829 (($ $ (-855 |#1|)) 53) (($ $ (-635 (-855 |#1|))) NIL) (($ $ (-855 |#1|) (-762)) NIL) (($ $ (-635 (-855 |#1|)) (-635 (-762))) NIL)) (-4323 ((|#3| $) 66) (((-762) $ (-855 |#1|)) 37) (((-635 (-762)) $ (-635 (-855 |#1|))) 56)) (-3224 (((-882 (-378)) $) NIL (-12 (|has| (-855 |#1|) (-606 (-882 (-378)))) (|has| |#2| (-606 (-882 (-378)))))) (((-882 (-558)) $) NIL (-12 (|has| (-855 |#1|) (-606 (-882 (-558)))) (|has| |#2| (-606 (-882 (-558)))))) (((-534) $) NIL (-12 (|has| (-855 |#1|) (-606 (-534))) (|has| |#2| (-606 (-534)))))) (-2504 ((|#2| $) 124 (|has| |#2| (-450))) (($ $ (-855 |#1|)) NIL (|has| |#2| (-450)))) (-3709 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-899))))) (-3220 (((-853) $) 144) (($ (-558)) NIL) (($ |#2|) 85) (($ (-855 |#1|)) 31) (($ (-406 (-558))) NIL (-3998 (|has| |#2| (-38 (-406 (-558)))) (|has| |#2| (-1028 (-406 (-558)))))) (($ $) NIL (|has| |#2| (-550)))) (-2583 (((-635 |#2|) $) NIL)) (-3736 ((|#2| $ |#3|) NIL) (($ $ (-855 |#1|) (-762)) NIL) (($ $ (-635 (-855 |#1|)) (-635 (-762))) NIL)) (-3698 (((-3 $ "failed") $) NIL (-3998 (-12 (|has| $ (-144)) (|has| |#2| (-899))) (|has| |#2| (-144))))) (-2542 (((-762)) NIL)) (-3879 (($ $ $ (-762)) NIL (|has| |#2| (-171)))) (-1870 (((-112) $ $) NIL (|has| |#2| (-550)))) (-2131 (($) 17 T CONST)) (-2142 (($) 25 T CONST)) (-1866 (($ $ (-855 |#1|)) NIL) (($ $ (-635 (-855 |#1|))) NIL) (($ $ (-855 |#1|) (-762)) NIL) (($ $ (-635 (-855 |#1|)) (-635 (-762))) NIL)) (-1747 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1720 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1683 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1705 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1810 (($ $ |#2|) 64 (|has| |#2| (-362)))) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) 110)) (** (($ $ (-911)) NIL) (($ $ (-762)) 108)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 29) (($ $ (-406 (-558))) NIL (|has| |#2| (-38 (-406 (-558))))) (($ (-406 (-558)) $) NIL (|has| |#2| (-38 (-406 (-558))))) (($ |#2| $) 63) (($ $ |#2|) NIL)))
+(((-452 |#1| |#2| |#3|) (-13 (-939 |#2| |#3| (-855 |#1|)) (-10 -8 (-15 -3176 ($ $ (-635 (-558)))))) (-635 (-1163)) (-1039) (-237 (-2755 |#1|) (-762))) (T -452))
+((-3176 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-558))) (-14 *3 (-635 (-1163))) (-5 *1 (-452 *3 *4 *5)) (-4 *4 (-1039)) (-4 *5 (-237 (-2755 *3) (-762))))))
+(-13 (-939 |#2| |#3| (-855 |#1|)) (-10 -8 (-15 -3176 ($ $ (-635 (-558))))))
+((-2892 (((-112) |#1| (-635 |#2|)) 68)) (-2873 (((-3 (-1246 (-635 |#2|)) "failed") (-762) |#1| (-635 |#2|)) 77)) (-2884 (((-3 (-635 |#2|) "failed") |#2| |#1| (-1246 (-635 |#2|))) 79)) (-1616 ((|#2| |#2| |#1|) 28)) (-2864 (((-762) |#2| (-635 |#2|)) 20)))
+(((-453 |#1| |#2|) (-10 -7 (-15 -1616 (|#2| |#2| |#1|)) (-15 -2864 ((-762) |#2| (-635 |#2|))) (-15 -2873 ((-3 (-1246 (-635 |#2|)) "failed") (-762) |#1| (-635 |#2|))) (-15 -2884 ((-3 (-635 |#2|) "failed") |#2| |#1| (-1246 (-635 |#2|)))) (-15 -2892 ((-112) |#1| (-635 |#2|)))) (-306) (-1222 |#1|)) (T -453))
+((-2892 (*1 *2 *3 *4) (-12 (-5 *4 (-635 *5)) (-4 *5 (-1222 *3)) (-4 *3 (-306)) (-5 *2 (-112)) (-5 *1 (-453 *3 *5)))) (-2884 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1246 (-635 *3))) (-4 *4 (-306)) (-5 *2 (-635 *3)) (-5 *1 (-453 *4 *3)) (-4 *3 (-1222 *4)))) (-2873 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-762)) (-4 *4 (-306)) (-4 *6 (-1222 *4)) (-5 *2 (-1246 (-635 *6))) (-5 *1 (-453 *4 *6)) (-5 *5 (-635 *6)))) (-2864 (*1 *2 *3 *4) (-12 (-5 *4 (-635 *3)) (-4 *3 (-1222 *5)) (-4 *5 (-306)) (-5 *2 (-762)) (-5 *1 (-453 *5 *3)))) (-1616 (*1 *2 *2 *3) (-12 (-4 *3 (-306)) (-5 *1 (-453 *3 *2)) (-4 *2 (-1222 *3)))))
+(-10 -7 (-15 -1616 (|#2| |#2| |#1|)) (-15 -2864 ((-762) |#2| (-635 |#2|))) (-15 -2873 ((-3 (-1246 (-635 |#2|)) "failed") (-762) |#1| (-635 |#2|))) (-15 -2884 ((-3 (-635 |#2|) "failed") |#2| |#1| (-1246 (-635 |#2|)))) (-15 -2892 ((-112) |#1| (-635 |#2|))))
+((-2522 (((-417 |#5|) |#5|) 24)))
+(((-454 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2522 ((-417 |#5|) |#5|))) (-13 (-841) (-10 -8 (-15 -3224 ((-1163) $)) (-15 -1602 ((-3 $ "failed") (-1163))))) (-784) (-550) (-550) (-939 |#4| |#2| |#1|)) (T -454))
+((-2522 (*1 *2 *3) (-12 (-4 *4 (-13 (-841) (-10 -8 (-15 -3224 ((-1163) $)) (-15 -1602 ((-3 $ "failed") (-1163)))))) (-4 *5 (-784)) (-4 *7 (-550)) (-5 *2 (-417 *3)) (-5 *1 (-454 *4 *5 *6 *7 *3)) (-4 *6 (-550)) (-4 *3 (-939 *7 *5 *4)))))
+(-10 -7 (-15 -2522 ((-417 |#5|) |#5|)))
+((-3680 ((|#3|) 37)) (-3757 (((-1159 |#4|) (-1159 |#4|) (-1159 |#4|)) 33)))
+(((-455 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3757 ((-1159 |#4|) (-1159 |#4|) (-1159 |#4|))) (-15 -3680 (|#3|))) (-784) (-841) (-899) (-939 |#3| |#1| |#2|)) (T -455))
+((-3680 (*1 *2) (-12 (-4 *3 (-784)) (-4 *4 (-841)) (-4 *2 (-899)) (-5 *1 (-455 *3 *4 *2 *5)) (-4 *5 (-939 *2 *3 *4)))) (-3757 (*1 *2 *2 *2) (-12 (-5 *2 (-1159 *6)) (-4 *6 (-939 *5 *3 *4)) (-4 *3 (-784)) (-4 *4 (-841)) (-4 *5 (-899)) (-5 *1 (-455 *3 *4 *5 *6)))))
+(-10 -7 (-15 -3757 ((-1159 |#4|) (-1159 |#4|) (-1159 |#4|))) (-15 -3680 (|#3|)))
+((-2522 (((-417 (-1159 |#1|)) (-1159 |#1|)) 43)))
+(((-456 |#1|) (-10 -7 (-15 -2522 ((-417 (-1159 |#1|)) (-1159 |#1|)))) (-306)) (T -456))
+((-2522 (*1 *2 *3) (-12 (-4 *4 (-306)) (-5 *2 (-417 (-1159 *4))) (-5 *1 (-456 *4)) (-5 *3 (-1159 *4)))))
+(-10 -7 (-15 -2522 ((-417 (-1159 |#1|)) (-1159 |#1|))))
+((-2724 (((-52) |#2| (-1163) (-293 |#2|) (-1213 (-762))) 42) (((-52) (-1 |#2| (-558)) (-293 |#2|) (-1213 (-762))) 41) (((-52) |#2| (-1163) (-293 |#2|)) 35) (((-52) (-1 |#2| (-558)) (-293 |#2|)) 28)) (-3871 (((-52) |#2| (-1163) (-293 |#2|) (-1213 (-406 (-558))) (-406 (-558))) 80) (((-52) (-1 |#2| (-406 (-558))) (-293 |#2|) (-1213 (-406 (-558))) (-406 (-558))) 79) (((-52) |#2| (-1163) (-293 |#2|) (-1213 (-558))) 78) (((-52) (-1 |#2| (-558)) (-293 |#2|) (-1213 (-558))) 77) (((-52) |#2| (-1163) (-293 |#2|)) 72) (((-52) (-1 |#2| (-558)) (-293 |#2|)) 71)) (-2395 (((-52) |#2| (-1163) (-293 |#2|) (-1213 (-406 (-558))) (-406 (-558))) 66) (((-52) (-1 |#2| (-406 (-558))) (-293 |#2|) (-1213 (-406 (-558))) (-406 (-558))) 64)) (-2735 (((-52) |#2| (-1163) (-293 |#2|) (-1213 (-558))) 48) (((-52) (-1 |#2| (-558)) (-293 |#2|) (-1213 (-558))) 47)))
+(((-457 |#1| |#2|) (-10 -7 (-15 -2724 ((-52) (-1 |#2| (-558)) (-293 |#2|))) (-15 -2724 ((-52) |#2| (-1163) (-293 |#2|))) (-15 -2724 ((-52) (-1 |#2| (-558)) (-293 |#2|) (-1213 (-762)))) (-15 -2724 ((-52) |#2| (-1163) (-293 |#2|) (-1213 (-762)))) (-15 -2735 ((-52) (-1 |#2| (-558)) (-293 |#2|) (-1213 (-558)))) (-15 -2735 ((-52) |#2| (-1163) (-293 |#2|) (-1213 (-558)))) (-15 -2395 ((-52) (-1 |#2| (-406 (-558))) (-293 |#2|) (-1213 (-406 (-558))) (-406 (-558)))) (-15 -2395 ((-52) |#2| (-1163) (-293 |#2|) (-1213 (-406 (-558))) (-406 (-558)))) (-15 -3871 ((-52) (-1 |#2| (-558)) (-293 |#2|))) (-15 -3871 ((-52) |#2| (-1163) (-293 |#2|))) (-15 -3871 ((-52) (-1 |#2| (-558)) (-293 |#2|) (-1213 (-558)))) (-15 -3871 ((-52) |#2| (-1163) (-293 |#2|) (-1213 (-558)))) (-15 -3871 ((-52) (-1 |#2| (-406 (-558))) (-293 |#2|) (-1213 (-406 (-558))) (-406 (-558)))) (-15 -3871 ((-52) |#2| (-1163) (-293 |#2|) (-1213 (-406 (-558))) (-406 (-558))))) (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))) (-13 (-27) (-1185) (-429 |#1|))) (T -457))
+((-3871 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1163)) (-5 *5 (-293 *3)) (-5 *6 (-1213 (-406 (-558)))) (-5 *7 (-406 (-558))) (-4 *3 (-13 (-27) (-1185) (-429 *8))) (-4 *8 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-457 *8 *3)))) (-3871 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-406 (-558)))) (-5 *4 (-293 *8)) (-5 *5 (-1213 (-406 (-558)))) (-5 *6 (-406 (-558))) (-4 *8 (-13 (-27) (-1185) (-429 *7))) (-4 *7 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-457 *7 *8)))) (-3871 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1163)) (-5 *5 (-293 *3)) (-5 *6 (-1213 (-558))) (-4 *3 (-13 (-27) (-1185) (-429 *7))) (-4 *7 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-457 *7 *3)))) (-3871 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-558))) (-5 *4 (-293 *7)) (-5 *5 (-1213 (-558))) (-4 *7 (-13 (-27) (-1185) (-429 *6))) (-4 *6 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-457 *6 *7)))) (-3871 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1163)) (-5 *5 (-293 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *6))) (-4 *6 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-457 *6 *3)))) (-3871 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-558))) (-5 *4 (-293 *6)) (-4 *6 (-13 (-27) (-1185) (-429 *5))) (-4 *5 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-457 *5 *6)))) (-2395 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1163)) (-5 *5 (-293 *3)) (-5 *6 (-1213 (-406 (-558)))) (-5 *7 (-406 (-558))) (-4 *3 (-13 (-27) (-1185) (-429 *8))) (-4 *8 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-457 *8 *3)))) (-2395 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-406 (-558)))) (-5 *4 (-293 *8)) (-5 *5 (-1213 (-406 (-558)))) (-5 *6 (-406 (-558))) (-4 *8 (-13 (-27) (-1185) (-429 *7))) (-4 *7 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-457 *7 *8)))) (-2735 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1163)) (-5 *5 (-293 *3)) (-5 *6 (-1213 (-558))) (-4 *3 (-13 (-27) (-1185) (-429 *7))) (-4 *7 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-457 *7 *3)))) (-2735 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-558))) (-5 *4 (-293 *7)) (-5 *5 (-1213 (-558))) (-4 *7 (-13 (-27) (-1185) (-429 *6))) (-4 *6 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-457 *6 *7)))) (-2724 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1163)) (-5 *5 (-293 *3)) (-5 *6 (-1213 (-762))) (-4 *3 (-13 (-27) (-1185) (-429 *7))) (-4 *7 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-457 *7 *3)))) (-2724 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-558))) (-5 *4 (-293 *7)) (-5 *5 (-1213 (-762))) (-4 *7 (-13 (-27) (-1185) (-429 *6))) (-4 *6 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-457 *6 *7)))) (-2724 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1163)) (-5 *5 (-293 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *6))) (-4 *6 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-457 *6 *3)))) (-2724 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-558))) (-5 *4 (-293 *6)) (-4 *6 (-13 (-27) (-1185) (-429 *5))) (-4 *5 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-457 *5 *6)))))
+(-10 -7 (-15 -2724 ((-52) (-1 |#2| (-558)) (-293 |#2|))) (-15 -2724 ((-52) |#2| (-1163) (-293 |#2|))) (-15 -2724 ((-52) (-1 |#2| (-558)) (-293 |#2|) (-1213 (-762)))) (-15 -2724 ((-52) |#2| (-1163) (-293 |#2|) (-1213 (-762)))) (-15 -2735 ((-52) (-1 |#2| (-558)) (-293 |#2|) (-1213 (-558)))) (-15 -2735 ((-52) |#2| (-1163) (-293 |#2|) (-1213 (-558)))) (-15 -2395 ((-52) (-1 |#2| (-406 (-558))) (-293 |#2|) (-1213 (-406 (-558))) (-406 (-558)))) (-15 -2395 ((-52) |#2| (-1163) (-293 |#2|) (-1213 (-406 (-558))) (-406 (-558)))) (-15 -3871 ((-52) (-1 |#2| (-558)) (-293 |#2|))) (-15 -3871 ((-52) |#2| (-1163) (-293 |#2|))) (-15 -3871 ((-52) (-1 |#2| (-558)) (-293 |#2|) (-1213 (-558)))) (-15 -3871 ((-52) |#2| (-1163) (-293 |#2|) (-1213 (-558)))) (-15 -3871 ((-52) (-1 |#2| (-406 (-558))) (-293 |#2|) (-1213 (-406 (-558))) (-406 (-558)))) (-15 -3871 ((-52) |#2| (-1163) (-293 |#2|) (-1213 (-406 (-558))) (-406 (-558)))))
+((-1616 ((|#2| |#2| |#1|) 15)) (-2913 (((-635 |#2|) |#2| (-635 |#2|) |#1| (-911)) 68)) (-2903 (((-2 (|:| |plist| (-635 |#2|)) (|:| |modulo| |#1|)) |#2| (-635 |#2|) |#1| (-911)) 59)))
+(((-458 |#1| |#2|) (-10 -7 (-15 -2903 ((-2 (|:| |plist| (-635 |#2|)) (|:| |modulo| |#1|)) |#2| (-635 |#2|) |#1| (-911))) (-15 -2913 ((-635 |#2|) |#2| (-635 |#2|) |#1| (-911))) (-15 -1616 (|#2| |#2| |#1|))) (-306) (-1222 |#1|)) (T -458))
+((-1616 (*1 *2 *2 *3) (-12 (-4 *3 (-306)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1222 *3)))) (-2913 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-635 *3)) (-5 *5 (-911)) (-4 *3 (-1222 *4)) (-4 *4 (-306)) (-5 *1 (-458 *4 *3)))) (-2903 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-911)) (-4 *5 (-306)) (-4 *3 (-1222 *5)) (-5 *2 (-2 (|:| |plist| (-635 *3)) (|:| |modulo| *5))) (-5 *1 (-458 *5 *3)) (-5 *4 (-635 *3)))))
+(-10 -7 (-15 -2903 ((-2 (|:| |plist| (-635 |#2|)) (|:| |modulo| |#1|)) |#2| (-635 |#2|) |#1| (-911))) (-15 -2913 ((-635 |#2|) |#2| (-635 |#2|) |#1| (-911))) (-15 -1616 (|#2| |#2| |#1|)))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) 28)) (-4027 (($ |#3|) 25)) (-2089 (((-3 $ "failed") $ $) NIL)) (-1816 (($) NIL T CONST)) (-2490 (($ $) 32)) (-2921 (($ |#2| |#4| $) 33)) (-2648 (($ |#2| (-704 |#3| |#4| |#5|)) 24)) (-2451 (((-704 |#3| |#4| |#5|) $) 15)) (-2944 ((|#3| $) 19)) (-2955 ((|#4| $) 17)) (-2463 ((|#2| $) 29)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) NIL)) (-2933 (($ |#2| |#3| |#4|) 26)) (-2131 (($) 36 T CONST)) (-1683 (((-112) $ $) NIL)) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) 34)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-459 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-708 |#6|) (-708 |#2|) (-10 -8 (-15 -2463 (|#2| $)) (-15 -2451 ((-704 |#3| |#4| |#5|) $)) (-15 -2955 (|#4| $)) (-15 -2944 (|#3| $)) (-15 -2490 ($ $)) (-15 -2648 ($ |#2| (-704 |#3| |#4| |#5|))) (-15 -4027 ($ |#3|)) (-15 -2933 ($ |#2| |#3| |#4|)) (-15 -2921 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-635 (-1163)) (-171) (-841) (-237 (-2755 |#1|) (-762)) (-1 (-112) (-2 (|:| -2851 |#3|) (|:| -1951 |#4|)) (-2 (|:| -2851 |#3|) (|:| -1951 |#4|))) (-939 |#2| |#4| (-855 |#1|))) (T -459))
+((* (*1 *1 *2 *1) (-12 (-14 *3 (-635 (-1163))) (-4 *4 (-171)) (-4 *6 (-237 (-2755 *3) (-762))) (-14 *7 (-1 (-112) (-2 (|:| -2851 *5) (|:| -1951 *6)) (-2 (|:| -2851 *5) (|:| -1951 *6)))) (-5 *1 (-459 *3 *4 *5 *6 *7 *2)) (-4 *5 (-841)) (-4 *2 (-939 *4 *6 (-855 *3))))) (-2463 (*1 *2 *1) (-12 (-14 *3 (-635 (-1163))) (-4 *5 (-237 (-2755 *3) (-762))) (-14 *6 (-1 (-112) (-2 (|:| -2851 *4) (|:| -1951 *5)) (-2 (|:| -2851 *4) (|:| -1951 *5)))) (-4 *2 (-171)) (-5 *1 (-459 *3 *2 *4 *5 *6 *7)) (-4 *4 (-841)) (-4 *7 (-939 *2 *5 (-855 *3))))) (-2451 (*1 *2 *1) (-12 (-14 *3 (-635 (-1163))) (-4 *4 (-171)) (-4 *6 (-237 (-2755 *3) (-762))) (-14 *7 (-1 (-112) (-2 (|:| -2851 *5) (|:| -1951 *6)) (-2 (|:| -2851 *5) (|:| -1951 *6)))) (-5 *2 (-704 *5 *6 *7)) (-5 *1 (-459 *3 *4 *5 *6 *7 *8)) (-4 *5 (-841)) (-4 *8 (-939 *4 *6 (-855 *3))))) (-2955 (*1 *2 *1) (-12 (-14 *3 (-635 (-1163))) (-4 *4 (-171)) (-14 *6 (-1 (-112) (-2 (|:| -2851 *5) (|:| -1951 *2)) (-2 (|:| -2851 *5) (|:| -1951 *2)))) (-4 *2 (-237 (-2755 *3) (-762))) (-5 *1 (-459 *3 *4 *5 *2 *6 *7)) (-4 *5 (-841)) (-4 *7 (-939 *4 *2 (-855 *3))))) (-2944 (*1 *2 *1) (-12 (-14 *3 (-635 (-1163))) (-4 *4 (-171)) (-4 *5 (-237 (-2755 *3) (-762))) (-14 *6 (-1 (-112) (-2 (|:| -2851 *2) (|:| -1951 *5)) (-2 (|:| -2851 *2) (|:| -1951 *5)))) (-4 *2 (-841)) (-5 *1 (-459 *3 *4 *2 *5 *6 *7)) (-4 *7 (-939 *4 *5 (-855 *3))))) (-2490 (*1 *1 *1) (-12 (-14 *2 (-635 (-1163))) (-4 *3 (-171)) (-4 *5 (-237 (-2755 *2) (-762))) (-14 *6 (-1 (-112) (-2 (|:| -2851 *4) (|:| -1951 *5)) (-2 (|:| -2851 *4) (|:| -1951 *5)))) (-5 *1 (-459 *2 *3 *4 *5 *6 *7)) (-4 *4 (-841)) (-4 *7 (-939 *3 *5 (-855 *2))))) (-2648 (*1 *1 *2 *3) (-12 (-5 *3 (-704 *5 *6 *7)) (-4 *5 (-841)) (-4 *6 (-237 (-2755 *4) (-762))) (-14 *7 (-1 (-112) (-2 (|:| -2851 *5) (|:| -1951 *6)) (-2 (|:| -2851 *5) (|:| -1951 *6)))) (-14 *4 (-635 (-1163))) (-4 *2 (-171)) (-5 *1 (-459 *4 *2 *5 *6 *7 *8)) (-4 *8 (-939 *2 *6 (-855 *4))))) (-4027 (*1 *1 *2) (-12 (-14 *3 (-635 (-1163))) (-4 *4 (-171)) (-4 *5 (-237 (-2755 *3) (-762))) (-14 *6 (-1 (-112) (-2 (|:| -2851 *2) (|:| -1951 *5)) (-2 (|:| -2851 *2) (|:| -1951 *5)))) (-5 *1 (-459 *3 *4 *2 *5 *6 *7)) (-4 *2 (-841)) (-4 *7 (-939 *4 *5 (-855 *3))))) (-2933 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-635 (-1163))) (-4 *2 (-171)) (-4 *4 (-237 (-2755 *5) (-762))) (-14 *6 (-1 (-112) (-2 (|:| -2851 *3) (|:| -1951 *4)) (-2 (|:| -2851 *3) (|:| -1951 *4)))) (-5 *1 (-459 *5 *2 *3 *4 *6 *7)) (-4 *3 (-841)) (-4 *7 (-939 *2 *4 (-855 *5))))) (-2921 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-635 (-1163))) (-4 *2 (-171)) (-4 *3 (-237 (-2755 *4) (-762))) (-14 *6 (-1 (-112) (-2 (|:| -2851 *5) (|:| -1951 *3)) (-2 (|:| -2851 *5) (|:| -1951 *3)))) (-5 *1 (-459 *4 *2 *5 *3 *6 *7)) (-4 *5 (-841)) (-4 *7 (-939 *2 *3 (-855 *4))))))
+(-13 (-708 |#6|) (-708 |#2|) (-10 -8 (-15 -2463 (|#2| $)) (-15 -2451 ((-704 |#3| |#4| |#5|) $)) (-15 -2955 (|#4| $)) (-15 -2944 (|#3| $)) (-15 -2490 ($ $)) (-15 -2648 ($ |#2| (-704 |#3| |#4| |#5|))) (-15 -4027 ($ |#3|)) (-15 -2933 ($ |#2| |#3| |#4|)) (-15 -2921 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
+((-2965 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37)))
+(((-460 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2965 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-784) (-841) (-550) (-939 |#3| |#1| |#2|) (-13 (-1028 (-406 (-558))) (-362) (-10 -8 (-15 -3220 ($ |#4|)) (-15 -1874 (|#4| $)) (-15 -1885 (|#4| $))))) (T -460))
+((-2965 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-841)) (-4 *5 (-784)) (-4 *6 (-550)) (-4 *7 (-939 *6 *5 *3)) (-5 *1 (-460 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1028 (-406 (-558))) (-362) (-10 -8 (-15 -3220 ($ *7)) (-15 -1874 (*7 $)) (-15 -1885 (*7 $))))))))
+(-10 -7 (-15 -2965 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
+((-3207 (((-112) $ $) NIL)) (-2671 (((-635 |#3|) $) 41)) (-2139 (((-112) $) NIL)) (-2040 (((-112) $) NIL (|has| |#1| (-550)))) (-2376 (((-2 (|:| |under| $) (|:| -2594 $) (|:| |upper| $)) $ |#3|) NIL)) (-3026 (((-112) $ (-762)) NIL)) (-4329 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4382)))) (-1816 (($) NIL T CONST)) (-2092 (((-112) $) NIL (|has| |#1| (-550)))) (-2116 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2104 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2128 (((-112) $) NIL (|has| |#1| (-550)))) (-2050 (((-635 |#4|) (-635 |#4|) $) NIL (|has| |#1| (-550)))) (-2061 (((-635 |#4|) (-635 |#4|) $) NIL (|has| |#1| (-550)))) (-3069 (((-3 $ "failed") (-635 |#4|)) 47)) (-1863 (($ (-635 |#4|)) NIL)) (-2338 (($ $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#4| (-1087))))) (-1539 (($ |#4| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#4| (-1087)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4382)))) (-2071 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-550)))) (-3048 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4382)) (|has| |#4| (-1087)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4382))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4382)))) (-2240 (((-635 |#4|) $) 18 (|has| $ (-6 -4382)))) (-1997 ((|#3| $) 45)) (-2986 (((-112) $ (-762)) NIL)) (-2122 (((-635 |#4|) $) 14 (|has| $ (-6 -4382)))) (-4322 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4382)) (|has| |#4| (-1087))))) (-1807 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#4| |#4|) $) 21)) (-4024 (((-635 |#3|) $) NIL)) (-2183 (((-112) |#3| $) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL)) (-2081 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-550)))) (-2975 (((-1107) $) NIL)) (-4307 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3266 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 |#4|) (-635 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-293 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-635 (-293 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3375 (((-112) $) 39)) (-2083 (($) 17)) (-2988 (((-762) |#4| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#4| (-1087)))) (((-762) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4382)))) (-1553 (($ $) 16)) (-3224 (((-534) $) NIL (|has| |#4| (-606 (-534)))) (($ (-635 |#4|)) 49)) (-3233 (($ (-635 |#4|)) 13)) (-2151 (($ $ |#3|) NIL)) (-2171 (($ $ |#3|) NIL)) (-2160 (($ $ |#3|) NIL)) (-3220 (((-853) $) 38) (((-635 |#4|) $) 48)) (-3277 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) 30)) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-461 |#1| |#2| |#3| |#4|) (-13 (-966 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3224 ($ (-635 |#4|))) (-6 -4382) (-6 -4383))) (-1039) (-784) (-841) (-1053 |#1| |#2| |#3|)) (T -461))
+((-3224 (*1 *1 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-461 *3 *4 *5 *6)))))
+(-13 (-966 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3224 ($ (-635 |#4|))) (-6 -4382) (-6 -4383)))
+((-2131 (($) 11)) (-2142 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
+(((-462 |#1| |#2| |#3|) (-10 -8 (-15 -2142 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2131 (|#1|))) (-463 |#2| |#3|) (-171) (-23)) (T -462))
+NIL
+(-10 -8 (-15 -2142 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2131 (|#1|)))
+((-3207 (((-112) $ $) 7)) (-3069 (((-3 |#1| "failed") $) 26)) (-1863 ((|#1| $) 27)) (-4287 (($ $ $) 23)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-4323 ((|#2| $) 19)) (-3220 (((-853) $) 11) (($ |#1|) 25)) (-2131 (($) 18 T CONST)) (-2142 (($) 24 T CONST)) (-1683 (((-112) $ $) 6)) (-1798 (($ $) 15) (($ $ $) 13)) (-1784 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
+(((-463 |#1| |#2|) (-139) (-171) (-23)) (T -463))
+((-2142 (*1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (-4287 (*1 *1 *1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))))
+(-13 (-468 |t#1| |t#2|) (-1028 |t#1|) (-10 -8 (-15 (-2142) ($) -3707) (-15 -4287 ($ $ $))))
+(((-102) . T) ((-608 |#1|) . T) ((-605 (-853)) . T) ((-468 |#1| |#2|) . T) ((-1028 |#1|) . T) ((-1087) . T))
+((-2976 (((-1246 (-1246 (-558))) (-1246 (-1246 (-558))) (-911)) 18)) (-2989 (((-1246 (-1246 (-558))) (-911)) 16)))
+(((-464) (-10 -7 (-15 -2976 ((-1246 (-1246 (-558))) (-1246 (-1246 (-558))) (-911))) (-15 -2989 ((-1246 (-1246 (-558))) (-911))))) (T -464))
+((-2989 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1246 (-1246 (-558)))) (-5 *1 (-464)))) (-2976 (*1 *2 *2 *3) (-12 (-5 *2 (-1246 (-1246 (-558)))) (-5 *3 (-911)) (-5 *1 (-464)))))
+(-10 -7 (-15 -2976 ((-1246 (-1246 (-558))) (-1246 (-1246 (-558))) (-911))) (-15 -2989 ((-1246 (-1246 (-558))) (-911))))
+((-3247 (((-558) (-558)) 30) (((-558)) 22)) (-3289 (((-558) (-558)) 26) (((-558)) 18)) (-3267 (((-558) (-558)) 28) (((-558)) 20)) (-3011 (((-112) (-112)) 12) (((-112)) 10)) (-3000 (((-112) (-112)) 11) (((-112)) 9)) (-3022 (((-112) (-112)) 24) (((-112)) 15)))
+(((-465) (-10 -7 (-15 -3000 ((-112))) (-15 -3011 ((-112))) (-15 -3000 ((-112) (-112))) (-15 -3011 ((-112) (-112))) (-15 -3022 ((-112))) (-15 -3267 ((-558))) (-15 -3289 ((-558))) (-15 -3247 ((-558))) (-15 -3022 ((-112) (-112))) (-15 -3267 ((-558) (-558))) (-15 -3289 ((-558) (-558))) (-15 -3247 ((-558) (-558))))) (T -465))
+((-3247 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-465)))) (-3289 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-465)))) (-3267 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-465)))) (-3022 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))) (-3247 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-465)))) (-3289 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-465)))) (-3267 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-465)))) (-3022 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))) (-3011 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))) (-3000 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))) (-3011 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))) (-3000 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))))
+(-10 -7 (-15 -3000 ((-112))) (-15 -3011 ((-112))) (-15 -3000 ((-112) (-112))) (-15 -3011 ((-112) (-112))) (-15 -3022 ((-112))) (-15 -3267 ((-558))) (-15 -3289 ((-558))) (-15 -3247 ((-558))) (-15 -3022 ((-112) (-112))) (-15 -3267 ((-558) (-558))) (-15 -3289 ((-558) (-558))) (-15 -3247 ((-558) (-558))))
+((-3207 (((-112) $ $) NIL)) (-2179 (((-635 (-378)) $) 28) (((-635 (-378)) $ (-635 (-378))) 94)) (-3079 (((-635 (-1081 (-378))) $) 16) (((-635 (-1081 (-378))) $ (-635 (-1081 (-378)))) 91)) (-3043 (((-635 (-635 (-933 (-224)))) (-635 (-635 (-933 (-224)))) (-635 (-864))) 44)) (-3091 (((-635 (-635 (-933 (-224)))) $) 87)) (-3840 (((-1251) $ (-933 (-224)) (-864)) 106)) (-3101 (($ $) 86) (($ (-635 (-635 (-933 (-224))))) 97) (($ (-635 (-635 (-933 (-224)))) (-635 (-864)) (-635 (-864)) (-635 (-911))) 96) (($ (-635 (-635 (-933 (-224)))) (-635 (-864)) (-635 (-864)) (-635 (-911)) (-635 (-262))) 98)) (-4310 (((-1145) $) NIL)) (-2700 (((-558) $) 68)) (-2975 (((-1107) $) NIL)) (-3111 (($) 95)) (-3033 (((-635 (-224)) (-635 (-635 (-933 (-224))))) 54)) (-3067 (((-1251) $ (-635 (-933 (-224))) (-864) (-864) (-911)) 100) (((-1251) $ (-933 (-224))) 102) (((-1251) $ (-933 (-224)) (-864) (-864) (-911)) 101)) (-3220 (((-853) $) 112) (($ (-635 (-635 (-933 (-224))))) 107)) (-3056 (((-1251) $ (-933 (-224))) 105)) (-1683 (((-112) $ $) NIL)))
+(((-466) (-13 (-1087) (-10 -8 (-15 -3111 ($)) (-15 -3101 ($ $)) (-15 -3101 ($ (-635 (-635 (-933 (-224)))))) (-15 -3101 ($ (-635 (-635 (-933 (-224)))) (-635 (-864)) (-635 (-864)) (-635 (-911)))) (-15 -3101 ($ (-635 (-635 (-933 (-224)))) (-635 (-864)) (-635 (-864)) (-635 (-911)) (-635 (-262)))) (-15 -3091 ((-635 (-635 (-933 (-224)))) $)) (-15 -2700 ((-558) $)) (-15 -3079 ((-635 (-1081 (-378))) $)) (-15 -3079 ((-635 (-1081 (-378))) $ (-635 (-1081 (-378))))) (-15 -2179 ((-635 (-378)) $)) (-15 -2179 ((-635 (-378)) $ (-635 (-378)))) (-15 -3067 ((-1251) $ (-635 (-933 (-224))) (-864) (-864) (-911))) (-15 -3067 ((-1251) $ (-933 (-224)))) (-15 -3067 ((-1251) $ (-933 (-224)) (-864) (-864) (-911))) (-15 -3056 ((-1251) $ (-933 (-224)))) (-15 -3840 ((-1251) $ (-933 (-224)) (-864))) (-15 -3220 ($ (-635 (-635 (-933 (-224)))))) (-15 -3220 ((-853) $)) (-15 -3043 ((-635 (-635 (-933 (-224)))) (-635 (-635 (-933 (-224)))) (-635 (-864)))) (-15 -3033 ((-635 (-224)) (-635 (-635 (-933 (-224))))))))) (T -466))
+((-3220 (*1 *2 *1) (-12 (-5 *2 (-853)) (-5 *1 (-466)))) (-3111 (*1 *1) (-5 *1 (-466))) (-3101 (*1 *1 *1) (-5 *1 (-466))) (-3101 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 (-933 (-224))))) (-5 *1 (-466)))) (-3101 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-635 (-635 (-933 (-224))))) (-5 *3 (-635 (-864))) (-5 *4 (-635 (-911))) (-5 *1 (-466)))) (-3101 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-635 (-635 (-933 (-224))))) (-5 *3 (-635 (-864))) (-5 *4 (-635 (-911))) (-5 *5 (-635 (-262))) (-5 *1 (-466)))) (-3091 (*1 *2 *1) (-12 (-5 *2 (-635 (-635 (-933 (-224))))) (-5 *1 (-466)))) (-2700 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-466)))) (-3079 (*1 *2 *1) (-12 (-5 *2 (-635 (-1081 (-378)))) (-5 *1 (-466)))) (-3079 (*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1081 (-378)))) (-5 *1 (-466)))) (-2179 (*1 *2 *1) (-12 (-5 *2 (-635 (-378))) (-5 *1 (-466)))) (-2179 (*1 *2 *1 *2) (-12 (-5 *2 (-635 (-378))) (-5 *1 (-466)))) (-3067 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-635 (-933 (-224)))) (-5 *4 (-864)) (-5 *5 (-911)) (-5 *2 (-1251)) (-5 *1 (-466)))) (-3067 (*1 *2 *1 *3) (-12 (-5 *3 (-933 (-224))) (-5 *2 (-1251)) (-5 *1 (-466)))) (-3067 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-933 (-224))) (-5 *4 (-864)) (-5 *5 (-911)) (-5 *2 (-1251)) (-5 *1 (-466)))) (-3056 (*1 *2 *1 *3) (-12 (-5 *3 (-933 (-224))) (-5 *2 (-1251)) (-5 *1 (-466)))) (-3840 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-933 (-224))) (-5 *4 (-864)) (-5 *2 (-1251)) (-5 *1 (-466)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 (-933 (-224))))) (-5 *1 (-466)))) (-3043 (*1 *2 *2 *3) (-12 (-5 *2 (-635 (-635 (-933 (-224))))) (-5 *3 (-635 (-864))) (-5 *1 (-466)))) (-3033 (*1 *2 *3) (-12 (-5 *3 (-635 (-635 (-933 (-224))))) (-5 *2 (-635 (-224))) (-5 *1 (-466)))))
+(-13 (-1087) (-10 -8 (-15 -3111 ($)) (-15 -3101 ($ $)) (-15 -3101 ($ (-635 (-635 (-933 (-224)))))) (-15 -3101 ($ (-635 (-635 (-933 (-224)))) (-635 (-864)) (-635 (-864)) (-635 (-911)))) (-15 -3101 ($ (-635 (-635 (-933 (-224)))) (-635 (-864)) (-635 (-864)) (-635 (-911)) (-635 (-262)))) (-15 -3091 ((-635 (-635 (-933 (-224)))) $)) (-15 -2700 ((-558) $)) (-15 -3079 ((-635 (-1081 (-378))) $)) (-15 -3079 ((-635 (-1081 (-378))) $ (-635 (-1081 (-378))))) (-15 -2179 ((-635 (-378)) $)) (-15 -2179 ((-635 (-378)) $ (-635 (-378)))) (-15 -3067 ((-1251) $ (-635 (-933 (-224))) (-864) (-864) (-911))) (-15 -3067 ((-1251) $ (-933 (-224)))) (-15 -3067 ((-1251) $ (-933 (-224)) (-864) (-864) (-911))) (-15 -3056 ((-1251) $ (-933 (-224)))) (-15 -3840 ((-1251) $ (-933 (-224)) (-864))) (-15 -3220 ($ (-635 (-635 (-933 (-224)))))) (-15 -3220 ((-853) $)) (-15 -3043 ((-635 (-635 (-933 (-224)))) (-635 (-635 (-933 (-224)))) (-635 (-864)))) (-15 -3033 ((-635 (-224)) (-635 (-635 (-933 (-224))))))))
+((-1798 (($ $) NIL) (($ $ $) 11)))
+(((-467 |#1| |#2| |#3|) (-10 -8 (-15 -1798 (|#1| |#1| |#1|)) (-15 -1798 (|#1| |#1|))) (-468 |#2| |#3|) (-171) (-23)) (T -467))
+NIL
+(-10 -8 (-15 -1798 (|#1| |#1| |#1|)) (-15 -1798 (|#1| |#1|)))
+((-3207 (((-112) $ $) 7)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-4323 ((|#2| $) 19)) (-3220 (((-853) $) 11)) (-2131 (($) 18 T CONST)) (-1683 (((-112) $ $) 6)) (-1798 (($ $) 15) (($ $ $) 13)) (-1784 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
+(((-468 |#1| |#2|) (-139) (-171) (-23)) (T -468))
+((-4323 (*1 *2 *1) (-12 (-4 *1 (-468 *3 *2)) (-4 *3 (-171)) (-4 *2 (-23)))) (-2131 (*1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (-1798 (*1 *1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (-1784 (*1 *1 *1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (-1798 (*1 *1 *1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))))
+(-13 (-1087) (-10 -8 (-15 -4323 (|t#2| $)) (-15 (-2131) ($) -3707) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -1798 ($ $)) (-15 -1784 ($ $ $)) (-15 -1798 ($ $ $))))
+(((-102) . T) ((-605 (-853)) . T) ((-1087) . T))
+((-3134 (((-3 (-635 (-479 |#1| |#2|)) "failed") (-635 (-479 |#1| |#2|)) (-635 (-855 |#1|))) 91)) (-3123 (((-635 (-635 (-246 |#1| |#2|))) (-635 (-246 |#1| |#2|)) (-635 (-855 |#1|))) 89)) (-3144 (((-2 (|:| |dpolys| (-635 (-246 |#1| |#2|))) (|:| |coords| (-635 (-558)))) (-635 (-246 |#1| |#2|)) (-635 (-855 |#1|))) 61)))
+(((-469 |#1| |#2| |#3|) (-10 -7 (-15 -3123 ((-635 (-635 (-246 |#1| |#2|))) (-635 (-246 |#1| |#2|)) (-635 (-855 |#1|)))) (-15 -3134 ((-3 (-635 (-479 |#1| |#2|)) "failed") (-635 (-479 |#1| |#2|)) (-635 (-855 |#1|)))) (-15 -3144 ((-2 (|:| |dpolys| (-635 (-246 |#1| |#2|))) (|:| |coords| (-635 (-558)))) (-635 (-246 |#1| |#2|)) (-635 (-855 |#1|))))) (-635 (-1163)) (-450) (-450)) (T -469))
+((-3144 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-855 *5))) (-14 *5 (-635 (-1163))) (-4 *6 (-450)) (-5 *2 (-2 (|:| |dpolys| (-635 (-246 *5 *6))) (|:| |coords| (-635 (-558))))) (-5 *1 (-469 *5 *6 *7)) (-5 *3 (-635 (-246 *5 *6))) (-4 *7 (-450)))) (-3134 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-635 (-479 *4 *5))) (-5 *3 (-635 (-855 *4))) (-14 *4 (-635 (-1163))) (-4 *5 (-450)) (-5 *1 (-469 *4 *5 *6)) (-4 *6 (-450)))) (-3123 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-855 *5))) (-14 *5 (-635 (-1163))) (-4 *6 (-450)) (-5 *2 (-635 (-635 (-246 *5 *6)))) (-5 *1 (-469 *5 *6 *7)) (-5 *3 (-635 (-246 *5 *6))) (-4 *7 (-450)))))
+(-10 -7 (-15 -3123 ((-635 (-635 (-246 |#1| |#2|))) (-635 (-246 |#1| |#2|)) (-635 (-855 |#1|)))) (-15 -3134 ((-3 (-635 (-479 |#1| |#2|)) "failed") (-635 (-479 |#1| |#2|)) (-635 (-855 |#1|)))) (-15 -3144 ((-2 (|:| |dpolys| (-635 (-246 |#1| |#2|))) (|:| |coords| (-635 (-558)))) (-635 (-246 |#1| |#2|)) (-635 (-855 |#1|)))))
+((-2588 (((-3 $ "failed") $) 11)) (-3808 (($ $ $) 18)) (-3443 (($ $ $) 19)) (-1810 (($ $ $) 9)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) 17)))
+(((-470 |#1|) (-10 -8 (-15 -3443 (|#1| |#1| |#1|)) (-15 -3808 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-558))) (-15 -1810 (|#1| |#1| |#1|)) (-15 -2588 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-762))) (-15 ** (|#1| |#1| (-911)))) (-471)) (T -470))
+NIL
+(-10 -8 (-15 -3443 (|#1| |#1| |#1|)) (-15 -3808 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-558))) (-15 -1810 (|#1| |#1| |#1|)) (-15 -2588 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-762))) (-15 ** (|#1| |#1| (-911))))
+((-3207 (((-112) $ $) 7)) (-1816 (($) 18 T CONST)) (-2588 (((-3 $ "failed") $) 15)) (-2035 (((-112) $) 17)) (-4310 (((-1145) $) 9)) (-2418 (($ $) 24)) (-2975 (((-1107) $) 10)) (-3808 (($ $ $) 21)) (-3443 (($ $ $) 20)) (-3220 (((-853) $) 11)) (-2142 (($) 19 T CONST)) (-1683 (((-112) $ $) 6)) (-1810 (($ $ $) 23)) (** (($ $ (-911)) 13) (($ $ (-762)) 16) (($ $ (-558)) 22)) (* (($ $ $) 14)))
+(((-471) (-139)) (T -471))
+((-2418 (*1 *1 *1) (-4 *1 (-471))) (-1810 (*1 *1 *1 *1) (-4 *1 (-471))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-471)) (-5 *2 (-558)))) (-3808 (*1 *1 *1 *1) (-4 *1 (-471))) (-3443 (*1 *1 *1 *1) (-4 *1 (-471))))
+(-13 (-717) (-10 -8 (-15 -2418 ($ $)) (-15 -1810 ($ $ $)) (-15 ** ($ $ (-558))) (-6 -4379) (-15 -3808 ($ $ $)) (-15 -3443 ($ $ $))))
+(((-102) . T) ((-605 (-853)) . T) ((-717) . T) ((-1099) . T) ((-1087) . T))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2671 (((-635 (-1069)) $) NIL)) (-1602 (((-1163) $) 17)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1881 (($ $) NIL (|has| |#1| (-550)))) (-1857 (((-112) $) NIL (|has| |#1| (-550)))) (-3440 (($ $ (-406 (-558))) NIL) (($ $ (-406 (-558)) (-406 (-558))) NIL)) (-3456 (((-1143 (-2 (|:| |k| (-406 (-558))) (|:| |c| |#1|))) $) NIL)) (-4088 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2135 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2089 (((-3 $ "failed") $ $) NIL)) (-3465 (($ $) NIL (|has| |#1| (-362)))) (-1380 (((-417 $) $) NIL (|has| |#1| (-362)))) (-2534 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3732 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4070 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2112 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3871 (($ (-762) (-1143 (-2 (|:| |k| (-406 (-558))) (|:| |c| |#1|)))) NIL)) (-4113 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2156 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1816 (($) NIL T CONST)) (-4025 (($ $ $) NIL (|has| |#1| (-362)))) (-2490 (($ $) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-4004 (($ $ $) NIL (|has| |#1| (-362)))) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-3031 (((-112) $) NIL (|has| |#1| (-362)))) (-2020 (((-112) $) NIL)) (-1904 (($) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3449 (((-406 (-558)) $) NIL) (((-406 (-558)) $ (-406 (-558))) NIL)) (-2035 (((-112) $) NIL)) (-3828 (($ $ (-558)) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3486 (($ $ (-911)) NIL) (($ $ (-406 (-558))) NIL)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4238 (((-112) $) NIL)) (-2648 (($ |#1| (-406 (-558))) NIL) (($ $ (-1069) (-406 (-558))) NIL) (($ $ (-635 (-1069)) (-635 (-406 (-558)))) NIL)) (-3167 (($ (-1 |#1| |#1|) $) 22)) (-2592 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2451 (($ $) NIL)) (-2463 ((|#1| $) NIL)) (-2665 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-4310 (((-1145) $) NIL)) (-2418 (($ $) NIL (|has| |#1| (-362)))) (-2543 (($ $) 26 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-1163)) 33 (-3998 (-12 (|has| |#1| (-15 -2543 (|#1| |#1| (-1163)))) (|has| |#1| (-15 -2671 ((-635 (-1163)) |#1|))) (|has| |#1| (-38 (-406 (-558))))) (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-949)) (|has| |#1| (-1185))))) (($ $ (-1242 |#2|)) 27 (|has| |#1| (-38 (-406 (-558)))))) (-2975 (((-1107) $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#1| (-362)))) (-2699 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-2522 (((-417 $) $) NIL (|has| |#1| (-362)))) (-3713 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL (|has| |#1| (-362)))) (-3430 (($ $ (-406 (-558))) NIL)) (-3983 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-2573 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2554 (((-1143 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-406 (-558))))))) (-3722 (((-762) $) NIL (|has| |#1| (-362)))) (-2195 ((|#1| $ (-406 (-558))) NIL) (($ $ $) NIL (|has| (-406 (-558)) (-1099)))) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL (|has| |#1| (-362)))) (-2829 (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163)) 25 (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-762)) NIL (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|)))) (($ $ (-1242 |#2|)) 15)) (-4323 (((-406 (-558)) $) NIL)) (-4124 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2167 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4102 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2146 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4080 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2124 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2011 (($ $) NIL)) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-1242 |#2|)) NIL) (($ (-1231 |#1| |#2| |#3|)) 9) (($ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $) NIL (|has| |#1| (-550)))) (-3736 ((|#1| $ (-406 (-558))) NIL)) (-3698 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2542 (((-762)) NIL)) (-2673 ((|#1| $) 18)) (-4159 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2200 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1870 (((-112) $ $) NIL (|has| |#1| (-550)))) (-4135 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2178 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4184 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2222 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1352 ((|#1| $ (-406 (-558))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-558))))) (|has| |#1| (-15 -3220 (|#1| (-1163))))))) (-1878 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4060 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4171 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2211 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4147 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2189 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2131 (($) NIL T CONST)) (-2142 (($) NIL T CONST)) (-1866 (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-762)) NIL (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (-1683 (((-112) $ $) NIL)) (-1810 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1798 (($ $) NIL) (($ $ $) 24)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558)))))) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558)))))))
+(((-472 |#1| |#2| |#3|) (-13 (-1227 |#1|) (-10 -8 (-15 -3220 ($ (-1242 |#2|))) (-15 -3220 ($ (-1231 |#1| |#2| |#3|))) (-15 -2829 ($ $ (-1242 |#2|))) (IF (|has| |#1| (-38 (-406 (-558)))) (-15 -2543 ($ $ (-1242 |#2|))) |%noBranch|))) (-1039) (-1163) |#1|) (T -472))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-472 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-1231 *3 *4 *5)) (-4 *3 (-1039)) (-14 *4 (-1163)) (-14 *5 *3) (-5 *1 (-472 *3 *4 *5)))) (-2829 (*1 *1 *1 *2) (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-472 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) (-2543 (*1 *1 *1 *2) (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-472 *3 *4 *5)) (-4 *3 (-38 (-406 (-558)))) (-4 *3 (-1039)) (-14 *5 *3))))
+(-13 (-1227 |#1|) (-10 -8 (-15 -3220 ($ (-1242 |#2|))) (-15 -3220 ($ (-1231 |#1| |#2| |#3|))) (-15 -2829 ($ $ (-1242 |#2|))) (IF (|has| |#1| (-38 (-406 (-558)))) (-15 -2543 ($ $ (-1242 |#2|))) |%noBranch|)))
+((-3207 (((-112) $ $) NIL (-3998 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-3303 (($) NIL) (($ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL)) (-3869 (((-1251) $ |#1| |#1|) NIL (|has| $ (-6 -4383)))) (-3026 (((-112) $ (-762)) NIL)) (-1532 ((|#2| $ |#1| |#2|) 18)) (-4207 (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382)))) (-4329 (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382)))) (-3083 (((-3 |#2| "failed") |#1| $) 19)) (-1816 (($) NIL T CONST)) (-2338 (($ $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087))))) (-3395 (($ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL (|has| $ (-6 -4382))) (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (((-3 |#2| "failed") |#1| $) 16)) (-1539 (($ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382)))) (-3048 (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) NIL (|has| $ (-6 -4382))) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382)))) (-1817 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4383)))) (-1746 ((|#2| $ |#1|) NIL)) (-2240 (((-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (((-635 |#2|) $) NIL (|has| $ (-6 -4382)))) (-2986 (((-112) $ (-762)) NIL)) (-3889 ((|#1| $) NIL (|has| |#1| (-841)))) (-2122 (((-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (((-635 |#2|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#2| (-1087))))) (-3899 ((|#1| $) NIL (|has| |#1| (-841)))) (-1807 (($ (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4383))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL (-3998 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-3848 (((-635 |#1|) $) NIL)) (-3950 (((-112) |#1| $) NIL)) (-1722 (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL)) (-4328 (($ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL)) (-3920 (((-635 |#1|) $) NIL)) (-3929 (((-112) |#1| $) NIL)) (-2975 (((-1107) $) NIL (-3998 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-2305 ((|#2| $) NIL (|has| |#1| (-841)))) (-4307 (((-3 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) "failed") (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL)) (-3880 (($ $ |#2|) NIL (|has| $ (-6 -4383)))) (-3524 (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL)) (-3266 (((-112) (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))))) NIL (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-293 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) NIL (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-635 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3908 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#2| (-1087))))) (-3937 (((-635 |#2|) $) NIL)) (-3375 (((-112) $) NIL)) (-2083 (($) NIL)) (-2195 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-2571 (($) NIL) (($ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL)) (-2988 (((-762) (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (((-762) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (((-762) |#2| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#2| (-1087)))) (((-762) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4382)))) (-1553 (($ $) NIL)) (-3224 (((-534) $) NIL (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-606 (-534))))) (-3233 (($ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL)) (-3220 (((-853) $) NIL (-3998 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-605 (-853))) (|has| |#2| (-605 (-853)))))) (-3534 (($ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL)) (-3277 (((-112) (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) NIL (-3998 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-473 |#1| |#2| |#3| |#4|) (-1176 |#1| |#2|) (-1087) (-1087) (-1176 |#1| |#2|) |#2|) (T -473))
+NIL
+(-1176 |#1| |#2|)
+((-3207 (((-112) $ $) NIL)) (-3773 (((-635 (-2 (|:| -2626 $) (|:| -1328 (-635 |#4|)))) (-635 |#4|)) NIL)) (-3782 (((-635 $) (-635 |#4|)) NIL)) (-2671 (((-635 |#3|) $) NIL)) (-2139 (((-112) $) NIL)) (-2040 (((-112) $) NIL (|has| |#1| (-550)))) (-3892 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3842 ((|#4| |#4| $) NIL)) (-2376 (((-2 (|:| |under| $) (|:| -2594 $) (|:| |upper| $)) $ |#3|) NIL)) (-3026 (((-112) $ (-762)) NIL)) (-4329 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4382))) (((-3 |#4| "failed") $ |#3|) NIL)) (-1816 (($) NIL T CONST)) (-2092 (((-112) $) 27 (|has| |#1| (-550)))) (-2116 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2104 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2128 (((-112) $) NIL (|has| |#1| (-550)))) (-3853 (((-635 |#4|) (-635 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2050 (((-635 |#4|) (-635 |#4|) $) NIL (|has| |#1| (-550)))) (-2061 (((-635 |#4|) (-635 |#4|) $) NIL (|has| |#1| (-550)))) (-3069 (((-3 $ "failed") (-635 |#4|)) NIL)) (-1863 (($ (-635 |#4|)) NIL)) (-2315 (((-3 $ "failed") $) 40)) (-3810 ((|#4| |#4| $) NIL)) (-2338 (($ $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#4| (-1087))))) (-1539 (($ |#4| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#4| (-1087)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4382)))) (-2071 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-550)))) (-3902 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3792 ((|#4| |#4| $) NIL)) (-3048 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4382)) (|has| |#4| (-1087)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4382))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4382))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3923 (((-2 (|:| -2626 (-635 |#4|)) (|:| -1328 (-635 |#4|))) $) NIL)) (-2240 (((-635 |#4|) $) 17 (|has| $ (-6 -4382)))) (-3912 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1997 ((|#3| $) 34)) (-2986 (((-112) $ (-762)) NIL)) (-2122 (((-635 |#4|) $) 18 (|has| $ (-6 -4382)))) (-4322 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4382)) (|has| |#4| (-1087))))) (-1807 (($ (-1 |#4| |#4|) $) 24 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#4| |#4|) $) 22)) (-4024 (((-635 |#3|) $) NIL)) (-2183 (((-112) |#3| $) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL)) (-1560 (((-3 |#4| "failed") $) 38)) (-3932 (((-635 |#4|) $) NIL)) (-3873 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3820 ((|#4| |#4| $) NIL)) (-3953 (((-112) $ $) NIL)) (-2081 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-550)))) (-3883 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3830 ((|#4| |#4| $) NIL)) (-2975 (((-1107) $) NIL)) (-2305 (((-3 |#4| "failed") $) 36)) (-4307 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3755 (((-3 $ "failed") $ |#4|) 47)) (-3430 (($ $ |#4|) NIL)) (-3266 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 |#4|) (-635 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-293 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-635 (-293 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3375 (((-112) $) 16)) (-2083 (($) 14)) (-4323 (((-762) $) NIL)) (-2988 (((-762) |#4| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#4| (-1087)))) (((-762) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4382)))) (-1553 (($ $) 13)) (-3224 (((-534) $) NIL (|has| |#4| (-606 (-534))))) (-3233 (($ (-635 |#4|)) 21)) (-2151 (($ $ |#3|) 43)) (-2171 (($ $ |#3|) 44)) (-3801 (($ $) NIL)) (-2160 (($ $ |#3|) NIL)) (-3220 (((-853) $) 32) (((-635 |#4|) $) 41)) (-3745 (((-762) $) NIL (|has| |#3| (-367)))) (-3940 (((-3 (-2 (|:| |bas| $) (|:| -3072 (-635 |#4|))) "failed") (-635 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3072 (-635 |#4|))) "failed") (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3863 (((-112) $ (-1 (-112) |#4| (-635 |#4|))) NIL)) (-3277 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4382)))) (-3764 (((-635 |#3|) $) NIL)) (-4206 (((-112) |#3| $) NIL)) (-1683 (((-112) $ $) NIL)) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-474 |#1| |#2| |#3| |#4|) (-1193 |#1| |#2| |#3| |#4|) (-550) (-784) (-841) (-1053 |#1| |#2| |#3|)) (T -474))
+NIL
+(-1193 |#1| |#2| |#3| |#4|)
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL)) (-1881 (($ $) NIL)) (-1857 (((-112) $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-3465 (($ $) NIL)) (-1380 (((-417 $) $) NIL)) (-3732 (((-112) $ $) NIL)) (-1816 (($) NIL T CONST)) (-3069 (((-3 (-558) "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL)) (-1863 (((-558) $) NIL) (((-406 (-558)) $) NIL)) (-4025 (($ $ $) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-4004 (($ $ $) NIL)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL)) (-3031 (((-112) $) NIL)) (-1904 (($) 18)) (-2035 (((-112) $) NIL)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2665 (($ $ $) NIL) (($ (-635 $)) NIL)) (-4310 (((-1145) $) NIL)) (-2418 (($ $) NIL)) (-2975 (((-1107) $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-2699 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2522 (((-417 $) $) NIL)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3983 (((-3 $ "failed") $ $) NIL)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3722 (((-762) $) NIL)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL)) (-3224 (((-378) $) 22) (((-224) $) 25) (((-406 (-1159 (-558))) $) 19) (((-534) $) 52)) (-3220 (((-853) $) 50) (($ (-558)) NIL) (($ $) NIL) (($ (-406 (-558))) NIL) (((-224) $) 24) (((-378) $) 21)) (-2542 (((-762)) NIL)) (-1870 (((-112) $ $) NIL)) (-2131 (($) 36 T CONST)) (-2142 (($) 11 T CONST)) (-1683 (((-112) $ $) NIL)) (-1810 (($ $ $) NIL)) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL)))
+(((-475) (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))) (-1012) (-605 (-224)) (-605 (-378)) (-606 (-406 (-1159 (-558)))) (-606 (-534)) (-10 -8 (-15 -1904 ($))))) (T -475))
+((-1904 (*1 *1) (-5 *1 (-475))))
+(-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))) (-1012) (-605 (-224)) (-605 (-378)) (-606 (-406 (-1159 (-558)))) (-606 (-534)) (-10 -8 (-15 -1904 ($))))
+((-3207 (((-112) $ $) NIL)) (-3986 (((-1122) $) 11)) (-3976 (((-1122) $) 9)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 19) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1683 (((-112) $ $) NIL)))
+(((-476) (-13 (-1070) (-10 -8 (-15 -3976 ((-1122) $)) (-15 -3986 ((-1122) $))))) (T -476))
+((-3976 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-476)))) (-3986 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-476)))))
+(-13 (-1070) (-10 -8 (-15 -3976 ((-1122) $)) (-15 -3986 ((-1122) $))))
+((-3207 (((-112) $ $) NIL (-3998 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-3303 (($) NIL) (($ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL)) (-3869 (((-1251) $ |#1| |#1|) NIL (|has| $ (-6 -4383)))) (-3026 (((-112) $ (-762)) NIL)) (-1532 ((|#2| $ |#1| |#2|) 16)) (-4207 (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382)))) (-4329 (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382)))) (-3083 (((-3 |#2| "failed") |#1| $) 20)) (-1816 (($) NIL T CONST)) (-2338 (($ $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087))))) (-3395 (($ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL (|has| $ (-6 -4382))) (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (((-3 |#2| "failed") |#1| $) 18)) (-1539 (($ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382)))) (-3048 (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) NIL (|has| $ (-6 -4382))) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382)))) (-1817 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4383)))) (-1746 ((|#2| $ |#1|) NIL)) (-2240 (((-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (((-635 |#2|) $) NIL (|has| $ (-6 -4382)))) (-2986 (((-112) $ (-762)) NIL)) (-3889 ((|#1| $) NIL (|has| |#1| (-841)))) (-2122 (((-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (((-635 |#2|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#2| (-1087))))) (-3899 ((|#1| $) NIL (|has| |#1| (-841)))) (-1807 (($ (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4383))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL (-3998 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-3848 (((-635 |#1|) $) 13)) (-3950 (((-112) |#1| $) NIL)) (-1722 (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL)) (-4328 (($ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL)) (-3920 (((-635 |#1|) $) NIL)) (-3929 (((-112) |#1| $) NIL)) (-2975 (((-1107) $) NIL (-3998 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-2305 ((|#2| $) NIL (|has| |#1| (-841)))) (-4307 (((-3 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) "failed") (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL)) (-3880 (($ $ |#2|) NIL (|has| $ (-6 -4383)))) (-3524 (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL)) (-3266 (((-112) (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))))) NIL (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-293 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) NIL (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-635 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3908 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#2| (-1087))))) (-3937 (((-635 |#2|) $) NIL)) (-3375 (((-112) $) NIL)) (-2083 (($) 19)) (-2195 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2571 (($) NIL) (($ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL)) (-2988 (((-762) (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (((-762) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (((-762) |#2| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#2| (-1087)))) (((-762) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4382)))) (-1553 (($ $) NIL)) (-3224 (((-534) $) NIL (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-606 (-534))))) (-3233 (($ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL)) (-3220 (((-853) $) NIL (-3998 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-605 (-853))) (|has| |#2| (-605 (-853)))))) (-3534 (($ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL)) (-3277 (((-112) (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) 11 (-3998 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-2755 (((-762) $) 15 (|has| $ (-6 -4382)))))
+(((-477 |#1| |#2| |#3|) (-13 (-1176 |#1| |#2|) (-10 -7 (-6 -4382))) (-1087) (-1087) (-1145)) (T -477))
+NIL
+(-13 (-1176 |#1| |#2|) (-10 -7 (-6 -4382)))
+((-3154 (((-558) (-558) (-558)) 7)) (-3165 (((-112) (-558) (-558) (-558) (-558)) 11)) (-4255 (((-1246 (-635 (-558))) (-762) (-762)) 22)))
+(((-478) (-10 -7 (-15 -3154 ((-558) (-558) (-558))) (-15 -3165 ((-112) (-558) (-558) (-558) (-558))) (-15 -4255 ((-1246 (-635 (-558))) (-762) (-762))))) (T -478))
+((-4255 (*1 *2 *3 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1246 (-635 (-558)))) (-5 *1 (-478)))) (-3165 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-558)) (-5 *2 (-112)) (-5 *1 (-478)))) (-3154 (*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-478)))))
+(-10 -7 (-15 -3154 ((-558) (-558) (-558))) (-15 -3165 ((-112) (-558) (-558) (-558) (-558))) (-15 -4255 ((-1246 (-635 (-558))) (-762) (-762))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2671 (((-635 (-855 |#1|)) $) NIL)) (-2492 (((-1159 $) $ (-855 |#1|)) NIL) (((-1159 |#2|) $) NIL)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL (|has| |#2| (-550)))) (-1881 (($ $) NIL (|has| |#2| (-550)))) (-1857 (((-112) $) NIL (|has| |#2| (-550)))) (-2513 (((-762) $) NIL) (((-762) $ (-635 (-855 |#1|))) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-3748 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-3465 (($ $) NIL (|has| |#2| (-450)))) (-1380 (((-417 $) $) NIL (|has| |#2| (-450)))) (-3719 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-1816 (($) NIL T CONST)) (-3069 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#2| (-1028 (-406 (-558))))) (((-3 (-558) "failed") $) NIL (|has| |#2| (-1028 (-558)))) (((-3 (-855 |#1|) "failed") $) NIL)) (-1863 ((|#2| $) NIL) (((-406 (-558)) $) NIL (|has| |#2| (-1028 (-406 (-558))))) (((-558) $) NIL (|has| |#2| (-1028 (-558)))) (((-855 |#1|) $) NIL)) (-3320 (($ $ $ (-855 |#1|)) NIL (|has| |#2| (-171)))) (-3176 (($ $ (-635 (-558))) NIL)) (-2490 (($ $) NIL)) (-3216 (((-679 (-558)) (-679 $)) NIL (|has| |#2| (-631 (-558)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| |#2| (-631 (-558)))) (((-2 (|:| -3683 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 $) (-1246 $)) NIL) (((-679 |#2|) (-679 $)) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-2782 (($ $) NIL (|has| |#2| (-450))) (($ $ (-855 |#1|)) NIL (|has| |#2| (-450)))) (-2476 (((-635 $) $) NIL)) (-3031 (((-112) $) NIL (|has| |#2| (-899)))) (-3888 (($ $ |#2| (-480 (-2755 |#1|) (-762)) $) NIL)) (-2269 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (-12 (|has| (-855 |#1|) (-876 (-378))) (|has| |#2| (-876 (-378))))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (-12 (|has| (-855 |#1|) (-876 (-558))) (|has| |#2| (-876 (-558)))))) (-2035 (((-112) $) NIL)) (-2110 (((-762) $) NIL)) (-2659 (($ (-1159 |#2|) (-855 |#1|)) NIL) (($ (-1159 $) (-855 |#1|)) NIL)) (-2536 (((-635 $) $) NIL)) (-4238 (((-112) $) NIL)) (-2648 (($ |#2| (-480 (-2755 |#1|) (-762))) NIL) (($ $ (-855 |#1|) (-762)) NIL) (($ $ (-635 (-855 |#1|)) (-635 (-762))) NIL)) (-3381 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $ (-855 |#1|)) NIL)) (-2524 (((-480 (-2755 |#1|) (-762)) $) NIL) (((-762) $ (-855 |#1|)) NIL) (((-635 (-762)) $ (-635 (-855 |#1|))) NIL)) (-3910 (($ $ $) NIL (|has| |#2| (-841)))) (-3542 (($ $ $) NIL (|has| |#2| (-841)))) (-3898 (($ (-1 (-480 (-2755 |#1|) (-762)) (-480 (-2755 |#1|) (-762))) $) NIL)) (-3167 (($ (-1 |#2| |#2|) $) NIL)) (-3399 (((-3 (-855 |#1|) "failed") $) NIL)) (-2451 (($ $) NIL)) (-2463 ((|#2| $) NIL)) (-2665 (($ (-635 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-4310 (((-1145) $) NIL)) (-2560 (((-3 (-635 $) "failed") $) NIL)) (-2548 (((-3 (-635 $) "failed") $) NIL)) (-2575 (((-3 (-2 (|:| |var| (-855 |#1|)) (|:| -1951 (-762))) "failed") $) NIL)) (-2975 (((-1107) $) NIL)) (-2429 (((-112) $) NIL)) (-2440 ((|#2| $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#2| (-450)))) (-2699 (($ (-635 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-3728 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-3738 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-2522 (((-417 $) $) NIL (|has| |#2| (-899)))) (-3983 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-550))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-550)))) (-2554 (($ $ (-635 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-855 |#1|) |#2|) NIL) (($ $ (-635 (-855 |#1|)) (-635 |#2|)) NIL) (($ $ (-855 |#1|) $) NIL) (($ $ (-635 (-855 |#1|)) (-635 $)) NIL)) (-3331 (($ $ (-855 |#1|)) NIL (|has| |#2| (-171)))) (-2829 (($ $ (-855 |#1|)) NIL) (($ $ (-635 (-855 |#1|))) NIL) (($ $ (-855 |#1|) (-762)) NIL) (($ $ (-635 (-855 |#1|)) (-635 (-762))) NIL)) (-4323 (((-480 (-2755 |#1|) (-762)) $) NIL) (((-762) $ (-855 |#1|)) NIL) (((-635 (-762)) $ (-635 (-855 |#1|))) NIL)) (-3224 (((-882 (-378)) $) NIL (-12 (|has| (-855 |#1|) (-606 (-882 (-378)))) (|has| |#2| (-606 (-882 (-378)))))) (((-882 (-558)) $) NIL (-12 (|has| (-855 |#1|) (-606 (-882 (-558)))) (|has| |#2| (-606 (-882 (-558)))))) (((-534) $) NIL (-12 (|has| (-855 |#1|) (-606 (-534))) (|has| |#2| (-606 (-534)))))) (-2504 ((|#2| $) NIL (|has| |#2| (-450))) (($ $ (-855 |#1|)) NIL (|has| |#2| (-450)))) (-3709 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-899))))) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ |#2|) NIL) (($ (-855 |#1|)) NIL) (($ (-406 (-558))) NIL (-3998 (|has| |#2| (-38 (-406 (-558)))) (|has| |#2| (-1028 (-406 (-558)))))) (($ $) NIL (|has| |#2| (-550)))) (-2583 (((-635 |#2|) $) NIL)) (-3736 ((|#2| $ (-480 (-2755 |#1|) (-762))) NIL) (($ $ (-855 |#1|) (-762)) NIL) (($ $ (-635 (-855 |#1|)) (-635 (-762))) NIL)) (-3698 (((-3 $ "failed") $) NIL (-3998 (-12 (|has| $ (-144)) (|has| |#2| (-899))) (|has| |#2| (-144))))) (-2542 (((-762)) NIL)) (-3879 (($ $ $ (-762)) NIL (|has| |#2| (-171)))) (-1870 (((-112) $ $) NIL (|has| |#2| (-550)))) (-2131 (($) NIL T CONST)) (-2142 (($) NIL T CONST)) (-1866 (($ $ (-855 |#1|)) NIL) (($ $ (-635 (-855 |#1|))) NIL) (($ $ (-855 |#1|) (-762)) NIL) (($ $ (-635 (-855 |#1|)) (-635 (-762))) NIL)) (-1747 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1720 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1683 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1705 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1810 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL (|has| |#2| (-38 (-406 (-558))))) (($ (-406 (-558)) $) NIL (|has| |#2| (-38 (-406 (-558))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-479 |#1| |#2|) (-13 (-939 |#2| (-480 (-2755 |#1|) (-762)) (-855 |#1|)) (-10 -8 (-15 -3176 ($ $ (-635 (-558)))))) (-635 (-1163)) (-1039)) (T -479))
+((-3176 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-479 *3 *4)) (-14 *3 (-635 (-1163))) (-4 *4 (-1039)))))
+(-13 (-939 |#2| (-480 (-2755 |#1|) (-762)) (-855 |#1|)) (-10 -8 (-15 -3176 ($ $ (-635 (-558))))))
+((-3207 (((-112) $ $) NIL (|has| |#2| (-1087)))) (-2067 (((-112) $) NIL (|has| |#2| (-130)))) (-4027 (($ (-911)) NIL (|has| |#2| (-1039)))) (-3869 (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4383)))) (-2738 (($ $ $) NIL (|has| |#2| (-784)))) (-2089 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-3026 (((-112) $ (-762)) NIL)) (-2276 (((-762)) NIL (|has| |#2| (-367)))) (-1397 (((-558) $) NIL (|has| |#2| (-839)))) (-1532 ((|#2| $ (-558) |#2|) NIL (|has| $ (-6 -4383)))) (-1816 (($) NIL T CONST)) (-3069 (((-3 (-558) "failed") $) NIL (-12 (|has| |#2| (-1028 (-558))) (|has| |#2| (-1087)))) (((-3 (-406 (-558)) "failed") $) NIL (-12 (|has| |#2| (-1028 (-406 (-558)))) (|has| |#2| (-1087)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1087)))) (-1863 (((-558) $) NIL (-12 (|has| |#2| (-1028 (-558))) (|has| |#2| (-1087)))) (((-406 (-558)) $) NIL (-12 (|has| |#2| (-1028 (-406 (-558)))) (|has| |#2| (-1087)))) ((|#2| $) NIL (|has| |#2| (-1087)))) (-3216 (((-679 (-558)) (-679 $)) NIL (-12 (|has| |#2| (-631 (-558))) (|has| |#2| (-1039)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (-12 (|has| |#2| (-631 (-558))) (|has| |#2| (-1039)))) (((-2 (|:| -3683 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 $) (-1246 $)) NIL (|has| |#2| (-1039))) (((-679 |#2|) (-679 $)) NIL (|has| |#2| (-1039)))) (-2588 (((-3 $ "failed") $) NIL (|has| |#2| (-717)))) (-2424 (($) NIL (|has| |#2| (-367)))) (-1817 ((|#2| $ (-558) |#2|) NIL (|has| $ (-6 -4383)))) (-1746 ((|#2| $ (-558)) 11)) (-2045 (((-112) $) NIL (|has| |#2| (-839)))) (-2240 (((-635 |#2|) $) NIL (|has| $ (-6 -4382)))) (-2035 (((-112) $) NIL (|has| |#2| (-717)))) (-2055 (((-112) $) NIL (|has| |#2| (-839)))) (-2986 (((-112) $ (-762)) NIL)) (-3889 (((-558) $) NIL (|has| (-558) (-841)))) (-3910 (($ $ $) NIL (-3998 (|has| |#2| (-784)) (|has| |#2| (-839))))) (-2122 (((-635 |#2|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#2| (-1087))))) (-3899 (((-558) $) NIL (|has| (-558) (-841)))) (-3542 (($ $ $) NIL (-3998 (|has| |#2| (-784)) (|has| |#2| (-839))))) (-1807 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#2| |#2|) $) NIL)) (-2637 (((-911) $) NIL (|has| |#2| (-367)))) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL (|has| |#2| (-1087)))) (-3920 (((-635 (-558)) $) NIL)) (-3929 (((-112) (-558) $) NIL)) (-2851 (($ (-911)) NIL (|has| |#2| (-367)))) (-2975 (((-1107) $) NIL (|has| |#2| (-1087)))) (-2305 ((|#2| $) NIL (|has| (-558) (-841)))) (-3880 (($ $ |#2|) NIL (|has| $ (-6 -4383)))) (-3266 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3908 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#2| (-1087))))) (-3937 (((-635 |#2|) $) NIL)) (-3375 (((-112) $) NIL)) (-2083 (($) NIL)) (-2195 ((|#2| $ (-558) |#2|) NIL) ((|#2| $ (-558)) NIL)) (-2744 ((|#2| $ $) NIL (|has| |#2| (-1039)))) (-2572 (($ (-1246 |#2|)) NIL)) (-2148 (((-133)) NIL (|has| |#2| (-362)))) (-2829 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1039)))) (($ $ (-762)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1039)))) (($ $ (-1163)) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-1 |#2| |#2|) (-762)) NIL (|has| |#2| (-1039))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1039)))) (-2988 (((-762) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4382))) (((-762) |#2| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#2| (-1087))))) (-1553 (($ $) NIL)) (-3220 (((-1246 |#2|) $) NIL) (($ (-558)) NIL (-3998 (-12 (|has| |#2| (-1028 (-558))) (|has| |#2| (-1087))) (|has| |#2| (-1039)))) (($ (-406 (-558))) NIL (-12 (|has| |#2| (-1028 (-406 (-558)))) (|has| |#2| (-1087)))) (($ |#2|) NIL (|has| |#2| (-1087))) (((-853) $) NIL (|has| |#2| (-605 (-853))))) (-2542 (((-762)) NIL (|has| |#2| (-1039)))) (-3277 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4382)))) (-3190 (($ $) NIL (|has| |#2| (-839)))) (-2131 (($) NIL (|has| |#2| (-130)) CONST)) (-2142 (($) NIL (|has| |#2| (-717)) CONST)) (-1866 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1039)))) (($ $ (-762)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1039)))) (($ $ (-1163)) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-1 |#2| |#2|) (-762)) NIL (|has| |#2| (-1039))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1039)))) (-1747 (((-112) $ $) NIL (-3998 (|has| |#2| (-784)) (|has| |#2| (-839))))) (-1720 (((-112) $ $) NIL (-3998 (|has| |#2| (-784)) (|has| |#2| (-839))))) (-1683 (((-112) $ $) NIL (|has| |#2| (-1087)))) (-1731 (((-112) $ $) NIL (-3998 (|has| |#2| (-784)) (|has| |#2| (-839))))) (-1705 (((-112) $ $) 15 (-3998 (|has| |#2| (-784)) (|has| |#2| (-839))))) (-1810 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1798 (($ $ $) NIL (|has| |#2| (-1039))) (($ $) NIL (|has| |#2| (-1039)))) (-1784 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-762)) NIL (|has| |#2| (-717))) (($ $ (-911)) NIL (|has| |#2| (-717)))) (* (($ (-558) $) NIL (|has| |#2| (-1039))) (($ $ $) NIL (|has| |#2| (-717))) (($ $ |#2|) NIL (|has| |#2| (-717))) (($ |#2| $) NIL (|has| |#2| (-717))) (($ (-762) $) NIL (|has| |#2| (-130))) (($ (-911) $) NIL (|has| |#2| (-25)))) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-480 |#1| |#2|) (-237 |#1| |#2|) (-762) (-784)) (T -480))
+NIL
+(-237 |#1| |#2|)
+((-3207 (((-112) $ $) NIL)) (-2980 (((-635 (-504)) $) 11)) (-1323 (((-504) $) 10)) (-4310 (((-1145) $) NIL)) (-3187 (($ (-504) (-635 (-504))) 9)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 20) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1683 (((-112) $ $) NIL)))
+(((-481) (-13 (-1070) (-10 -8 (-15 -3187 ($ (-504) (-635 (-504)))) (-15 -1323 ((-504) $)) (-15 -2980 ((-635 (-504)) $))))) (T -481))
+((-3187 (*1 *1 *2 *3) (-12 (-5 *3 (-635 (-504))) (-5 *2 (-504)) (-5 *1 (-481)))) (-1323 (*1 *2 *1) (-12 (-5 *2 (-504)) (-5 *1 (-481)))) (-2980 (*1 *2 *1) (-12 (-5 *2 (-635 (-504))) (-5 *1 (-481)))))
+(-13 (-1070) (-10 -8 (-15 -3187 ($ (-504) (-635 (-504)))) (-15 -1323 ((-504) $)) (-15 -2980 ((-635 (-504)) $))))
+((-3207 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-3026 (((-112) $ (-762)) NIL)) (-1816 (($) NIL T CONST)) (-2240 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-2986 (((-112) $ (-762)) NIL)) (-1645 (($ $ $) 32)) (-1677 (($ $ $) 31)) (-2122 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3542 ((|#1| $) 26)) (-1807 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL (|has| |#1| (-1087)))) (-1722 ((|#1| $) 27)) (-4328 (($ |#1| $) 10)) (-3197 (($ (-635 |#1|)) 12)) (-2975 (((-1107) $) NIL (|has| |#1| (-1087)))) (-3524 ((|#1| $) 23)) (-3266 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3375 (((-112) $) NIL)) (-2083 (($) 9)) (-2988 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1553 (($ $) NIL)) (-3220 (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-3534 (($ (-635 |#1|)) 29)) (-3277 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2755 (((-762) $) 21 (|has| $ (-6 -4382)))))
+(((-482 |#1|) (-13 (-958 |#1|) (-10 -8 (-15 -3197 ($ (-635 |#1|))))) (-841)) (T -482))
+((-3197 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-841)) (-5 *1 (-482 *3)))))
+(-13 (-958 |#1|) (-10 -8 (-15 -3197 ($ (-635 |#1|)))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-1816 (($) NIL T CONST)) (-3048 (($ $) 69)) (-2959 (((-112) $) NIL)) (-4310 (((-1145) $) NIL)) (-2268 (((-412 |#2| (-406 |#2|) |#3| |#4|) $) 44)) (-2975 (((-1107) $) NIL)) (-4098 (((-3 |#4| "failed") $) 107)) (-2969 (($ (-412 |#2| (-406 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-558)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-2375 (((-2 (|:| -3281 (-412 |#2| (-406 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-3220 (((-853) $) 102)) (-2131 (($) 33 T CONST)) (-1683 (((-112) $ $) 109)) (-1798 (($ $) 72) (($ $ $) NIL)) (-1784 (($ $ $) 70)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 73)))
+(((-483 |#1| |#2| |#3| |#4|) (-334 |#1| |#2| |#3| |#4|) (-362) (-1222 |#1|) (-1222 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -483))
+NIL
+(-334 |#1| |#2| |#3| |#4|)
+((-3246 (((-558) (-635 (-558))) 29)) (-3209 ((|#1| (-635 |#1|)) 55)) (-3236 (((-635 |#1|) (-635 |#1|)) 56)) (-3222 (((-635 |#1|) (-635 |#1|)) 58)) (-2699 ((|#1| (-635 |#1|)) 57)) (-2504 (((-635 (-558)) (-635 |#1|)) 32)))
+(((-484 |#1|) (-10 -7 (-15 -2699 (|#1| (-635 |#1|))) (-15 -3209 (|#1| (-635 |#1|))) (-15 -3222 ((-635 |#1|) (-635 |#1|))) (-15 -3236 ((-635 |#1|) (-635 |#1|))) (-15 -2504 ((-635 (-558)) (-635 |#1|))) (-15 -3246 ((-558) (-635 (-558))))) (-1222 (-558))) (T -484))
+((-3246 (*1 *2 *3) (-12 (-5 *3 (-635 (-558))) (-5 *2 (-558)) (-5 *1 (-484 *4)) (-4 *4 (-1222 *2)))) (-2504 (*1 *2 *3) (-12 (-5 *3 (-635 *4)) (-4 *4 (-1222 (-558))) (-5 *2 (-635 (-558))) (-5 *1 (-484 *4)))) (-3236 (*1 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1222 (-558))) (-5 *1 (-484 *3)))) (-3222 (*1 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1222 (-558))) (-5 *1 (-484 *3)))) (-3209 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-5 *1 (-484 *2)) (-4 *2 (-1222 (-558))))) (-2699 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-5 *1 (-484 *2)) (-4 *2 (-1222 (-558))))))
+(-10 -7 (-15 -2699 (|#1| (-635 |#1|))) (-15 -3209 (|#1| (-635 |#1|))) (-15 -3222 ((-635 |#1|) (-635 |#1|))) (-15 -3236 ((-635 |#1|) (-635 |#1|))) (-15 -2504 ((-635 (-558)) (-635 |#1|))) (-15 -3246 ((-558) (-635 (-558)))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2582 (((-558) $) NIL (|has| (-558) (-306)))) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL)) (-1881 (($ $) NIL)) (-1857 (((-112) $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-3748 (((-417 (-1159 $)) (-1159 $)) NIL (|has| (-558) (-899)))) (-3465 (($ $) NIL)) (-1380 (((-417 $) $) NIL)) (-3719 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (|has| (-558) (-899)))) (-3732 (((-112) $ $) NIL)) (-1397 (((-558) $) NIL (|has| (-558) (-811)))) (-1816 (($) NIL T CONST)) (-3069 (((-3 (-558) "failed") $) NIL) (((-3 (-1163) "failed") $) NIL (|has| (-558) (-1028 (-1163)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| (-558) (-1028 (-558)))) (((-3 (-558) "failed") $) NIL (|has| (-558) (-1028 (-558))))) (-1863 (((-558) $) NIL) (((-1163) $) NIL (|has| (-558) (-1028 (-1163)))) (((-406 (-558)) $) NIL (|has| (-558) (-1028 (-558)))) (((-558) $) NIL (|has| (-558) (-1028 (-558))))) (-4025 (($ $ $) NIL)) (-3216 (((-679 (-558)) (-679 $)) NIL (|has| (-558) (-631 (-558)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| (-558) (-631 (-558)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL) (((-679 (-558)) (-679 $)) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-2424 (($) NIL (|has| (-558) (-543)))) (-4004 (($ $ $) NIL)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL)) (-3031 (((-112) $) NIL)) (-2045 (((-112) $) NIL (|has| (-558) (-811)))) (-2269 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (|has| (-558) (-876 (-558)))) (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (|has| (-558) (-876 (-378))))) (-2035 (((-112) $) NIL)) (-3704 (($ $) NIL)) (-1874 (((-558) $) NIL)) (-2457 (((-3 $ "failed") $) NIL (|has| (-558) (-1138)))) (-2055 (((-112) $) NIL (|has| (-558) (-811)))) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3910 (($ $ $) NIL (|has| (-558) (-841)))) (-3542 (($ $ $) NIL (|has| (-558) (-841)))) (-3167 (($ (-1 (-558) (-558)) $) NIL)) (-2665 (($ $ $) NIL) (($ (-635 $)) NIL)) (-4310 (((-1145) $) NIL)) (-2418 (($ $) NIL)) (-1796 (($) NIL (|has| (-558) (-1138)) CONST)) (-3256 (($ (-406 (-558))) 9)) (-2975 (((-1107) $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-2699 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2568 (($ $) NIL (|has| (-558) (-306))) (((-406 (-558)) $) NIL)) (-2594 (((-558) $) NIL (|has| (-558) (-543)))) (-3728 (((-417 (-1159 $)) (-1159 $)) NIL (|has| (-558) (-899)))) (-3738 (((-417 (-1159 $)) (-1159 $)) NIL (|has| (-558) (-899)))) (-2522 (((-417 $) $) NIL)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3983 (((-3 $ "failed") $ $) NIL)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2554 (($ $ (-635 (-558)) (-635 (-558))) NIL (|has| (-558) (-308 (-558)))) (($ $ (-558) (-558)) NIL (|has| (-558) (-308 (-558)))) (($ $ (-293 (-558))) NIL (|has| (-558) (-308 (-558)))) (($ $ (-635 (-293 (-558)))) NIL (|has| (-558) (-308 (-558)))) (($ $ (-635 (-1163)) (-635 (-558))) NIL (|has| (-558) (-512 (-1163) (-558)))) (($ $ (-1163) (-558)) NIL (|has| (-558) (-512 (-1163) (-558))))) (-3722 (((-762) $) NIL)) (-2195 (($ $ (-558)) NIL (|has| (-558) (-285 (-558) (-558))))) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL)) (-2829 (($ $) NIL (|has| (-558) (-232))) (($ $ (-762)) NIL (|has| (-558) (-232))) (($ $ (-1163)) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-1 (-558) (-558)) (-762)) NIL) (($ $ (-1 (-558) (-558))) NIL)) (-3694 (($ $) NIL)) (-1885 (((-558) $) NIL)) (-3224 (((-882 (-558)) $) NIL (|has| (-558) (-606 (-882 (-558))))) (((-882 (-378)) $) NIL (|has| (-558) (-606 (-882 (-378))))) (((-534) $) NIL (|has| (-558) (-606 (-534)))) (((-378) $) NIL (|has| (-558) (-1012))) (((-224) $) NIL (|has| (-558) (-1012)))) (-3709 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| (-558) (-899))))) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL) (($ (-406 (-558))) 8) (($ (-558)) NIL) (($ (-1163)) NIL (|has| (-558) (-1028 (-1163)))) (((-406 (-558)) $) NIL) (((-994 16) $) 10)) (-3698 (((-3 $ "failed") $) NIL (-3998 (-12 (|has| $ (-144)) (|has| (-558) (-899))) (|has| (-558) (-144))))) (-2542 (((-762)) NIL)) (-2604 (((-558) $) NIL (|has| (-558) (-543)))) (-1870 (((-112) $ $) NIL)) (-3190 (($ $) NIL (|has| (-558) (-811)))) (-2131 (($) NIL T CONST)) (-2142 (($) NIL T CONST)) (-1866 (($ $) NIL (|has| (-558) (-232))) (($ $ (-762)) NIL (|has| (-558) (-232))) (($ $ (-1163)) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-1 (-558) (-558)) (-762)) NIL) (($ $ (-1 (-558) (-558))) NIL)) (-1747 (((-112) $ $) NIL (|has| (-558) (-841)))) (-1720 (((-112) $ $) NIL (|has| (-558) (-841)))) (-1683 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL (|has| (-558) (-841)))) (-1705 (((-112) $ $) NIL (|has| (-558) (-841)))) (-1810 (($ $ $) NIL) (($ (-558) (-558)) NIL)) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL) (($ (-558) $) NIL) (($ $ (-558)) NIL)))
+(((-485) (-13 (-982 (-558)) (-605 (-406 (-558))) (-605 (-994 16)) (-10 -8 (-15 -2568 ((-406 (-558)) $)) (-15 -3256 ($ (-406 (-558))))))) (T -485))
+((-2568 (*1 *2 *1) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-485)))) (-3256 (*1 *1 *2) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-485)))))
+(-13 (-982 (-558)) (-605 (-406 (-558))) (-605 (-994 16)) (-10 -8 (-15 -2568 ((-406 (-558)) $)) (-15 -3256 ($ (-406 (-558))))))
+((-2122 (((-635 |#2|) $) 23)) (-4322 (((-112) |#2| $) 28)) (-3266 (((-112) (-1 (-112) |#2|) $) 21)) (-2554 (($ $ (-635 (-293 |#2|))) 13) (($ $ (-293 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-635 |#2|) (-635 |#2|)) NIL)) (-2988 (((-762) (-1 (-112) |#2|) $) 22) (((-762) |#2| $) 26)) (-3220 (((-853) $) 37)) (-3277 (((-112) (-1 (-112) |#2|) $) 20)) (-1683 (((-112) $ $) 31)) (-2755 (((-762) $) 17)))
+(((-486 |#1| |#2|) (-10 -8 (-15 -3220 ((-853) |#1|)) (-15 -1683 ((-112) |#1| |#1|)) (-15 -2554 (|#1| |#1| (-635 |#2|) (-635 |#2|))) (-15 -2554 (|#1| |#1| |#2| |#2|)) (-15 -2554 (|#1| |#1| (-293 |#2|))) (-15 -2554 (|#1| |#1| (-635 (-293 |#2|)))) (-15 -4322 ((-112) |#2| |#1|)) (-15 -2988 ((-762) |#2| |#1|)) (-15 -2122 ((-635 |#2|) |#1|)) (-15 -2988 ((-762) (-1 (-112) |#2|) |#1|)) (-15 -3266 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3277 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2755 ((-762) |#1|))) (-487 |#2|) (-1200)) (T -486))
+NIL
+(-10 -8 (-15 -3220 ((-853) |#1|)) (-15 -1683 ((-112) |#1| |#1|)) (-15 -2554 (|#1| |#1| (-635 |#2|) (-635 |#2|))) (-15 -2554 (|#1| |#1| |#2| |#2|)) (-15 -2554 (|#1| |#1| (-293 |#2|))) (-15 -2554 (|#1| |#1| (-635 (-293 |#2|)))) (-15 -4322 ((-112) |#2| |#1|)) (-15 -2988 ((-762) |#2| |#1|)) (-15 -2122 ((-635 |#2|) |#1|)) (-15 -2988 ((-762) (-1 (-112) |#2|) |#1|)) (-15 -3266 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3277 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2755 ((-762) |#1|)))
+((-3207 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-3026 (((-112) $ (-762)) 8)) (-1816 (($) 7 T CONST)) (-2240 (((-635 |#1|) $) 30 (|has| $ (-6 -4382)))) (-2986 (((-112) $ (-762)) 9)) (-2122 (((-635 |#1|) $) 29 (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1807 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) 35)) (-2953 (((-112) $ (-762)) 10)) (-4310 (((-1145) $) 22 (|has| |#1| (-1087)))) (-2975 (((-1107) $) 21 (|has| |#1| (-1087)))) (-3266 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) 14)) (-3375 (((-112) $) 11)) (-2083 (($) 12)) (-2988 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4382))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1553 (($ $) 13)) (-3220 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-3277 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-2755 (((-762) $) 6 (|has| $ (-6 -4382)))))
+(((-487 |#1|) (-139) (-1200)) (T -487))
+((-3167 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-487 *3)) (-4 *3 (-1200)))) (-1807 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4383)) (-4 *1 (-487 *3)) (-4 *3 (-1200)))) (-3277 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4382)) (-4 *1 (-487 *4)) (-4 *4 (-1200)) (-5 *2 (-112)))) (-3266 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4382)) (-4 *1 (-487 *4)) (-4 *4 (-1200)) (-5 *2 (-112)))) (-2988 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4382)) (-4 *1 (-487 *4)) (-4 *4 (-1200)) (-5 *2 (-762)))) (-2240 (*1 *2 *1) (-12 (|has| *1 (-6 -4382)) (-4 *1 (-487 *3)) (-4 *3 (-1200)) (-5 *2 (-635 *3)))) (-2122 (*1 *2 *1) (-12 (|has| *1 (-6 -4382)) (-4 *1 (-487 *3)) (-4 *3 (-1200)) (-5 *2 (-635 *3)))) (-2988 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4382)) (-4 *1 (-487 *3)) (-4 *3 (-1200)) (-4 *3 (-1087)) (-5 *2 (-762)))) (-4322 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4382)) (-4 *1 (-487 *3)) (-4 *3 (-1200)) (-4 *3 (-1087)) (-5 *2 (-112)))))
+(-13 (-34) (-10 -8 (IF (|has| |t#1| (-605 (-853))) (-6 (-605 (-853))) |%noBranch|) (IF (|has| |t#1| (-1087)) (-6 (-1087)) |%noBranch|) (IF (|has| |t#1| (-1087)) (IF (|has| |t#1| (-308 |t#1|)) (-6 (-308 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3167 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4383)) (-15 -1807 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4382)) (PROGN (-15 -3277 ((-112) (-1 (-112) |t#1|) $)) (-15 -3266 ((-112) (-1 (-112) |t#1|) $)) (-15 -2988 ((-762) (-1 (-112) |t#1|) $)) (-15 -2240 ((-635 |t#1|) $)) (-15 -2122 ((-635 |t#1|) $)) (IF (|has| |t#1| (-1087)) (PROGN (-15 -2988 ((-762) |t#1| $)) (-15 -4322 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1087)) ((-605 (-853)) -3998 (|has| |#1| (-1087)) (|has| |#1| (-605 (-853)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-1087) |has| |#1| (-1087)) ((-1200) . T))
+((-3220 ((|#1| $) 6) (($ |#1|) 9)))
+(((-488 |#1|) (-139) (-1200)) (T -488))
+NIL
+(-13 (-605 |t#1|) (-608 |t#1|))
+(((-608 |#1|) . T) ((-605 |#1|) . T))
+((-3207 (((-112) $ $) NIL)) (-4310 (((-1145) $) NIL)) (-3288 (($ (-1145)) 8)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 14) (((-1145) $) 11)) (-1683 (((-112) $ $) 10)))
+(((-489) (-13 (-1087) (-605 (-1145)) (-10 -8 (-15 -3288 ($ (-1145)))))) (T -489))
+((-3288 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-489)))))
+(-13 (-1087) (-605 (-1145)) (-10 -8 (-15 -3288 ($ (-1145)))))
+((-4088 (($ $) 15)) (-4070 (($ $) 24)) (-4113 (($ $) 12)) (-4124 (($ $) 10)) (-4102 (($ $) 17)) (-4080 (($ $) 22)))
+(((-490 |#1|) (-10 -8 (-15 -4080 (|#1| |#1|)) (-15 -4102 (|#1| |#1|)) (-15 -4124 (|#1| |#1|)) (-15 -4113 (|#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 -4088 (|#1| |#1|))) (-491)) (T -490))
+NIL
+(-10 -8 (-15 -4080 (|#1| |#1|)) (-15 -4102 (|#1| |#1|)) (-15 -4124 (|#1| |#1|)) (-15 -4113 (|#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 -4088 (|#1| |#1|)))
+((-4088 (($ $) 11)) (-4070 (($ $) 10)) (-4113 (($ $) 9)) (-4124 (($ $) 8)) (-4102 (($ $) 7)) (-4080 (($ $) 6)))
+(((-491) (-139)) (T -491))
+((-4088 (*1 *1 *1) (-4 *1 (-491))) (-4070 (*1 *1 *1) (-4 *1 (-491))) (-4113 (*1 *1 *1) (-4 *1 (-491))) (-4124 (*1 *1 *1) (-4 *1 (-491))) (-4102 (*1 *1 *1) (-4 *1 (-491))) (-4080 (*1 *1 *1) (-4 *1 (-491))))
+(-13 (-10 -8 (-15 -4080 ($ $)) (-15 -4102 ($ $)) (-15 -4124 ($ $)) (-15 -4113 ($ $)) (-15 -4070 ($ $)) (-15 -4088 ($ $))))
+((-2522 (((-417 |#4|) |#4| (-1 (-417 |#2|) |#2|)) 42)))
+(((-492 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2522 ((-417 |#4|) |#4| (-1 (-417 |#2|) |#2|)))) (-362) (-1222 |#1|) (-13 (-362) (-146) (-715 |#1| |#2|)) (-1222 |#3|)) (T -492))
+((-2522 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1222 *5)) (-4 *5 (-362)) (-4 *7 (-13 (-362) (-146) (-715 *5 *6))) (-5 *2 (-417 *3)) (-5 *1 (-492 *5 *6 *7 *3)) (-4 *3 (-1222 *7)))))
+(-10 -7 (-15 -2522 ((-417 |#4|) |#4| (-1 (-417 |#2|) |#2|))))
+((-3207 (((-112) $ $) NIL)) (-1461 (((-635 $) (-1159 $) (-1163)) NIL) (((-635 $) (-1159 $)) NIL) (((-635 $) (-942 $)) NIL)) (-1589 (($ (-1159 $) (-1163)) NIL) (($ (-1159 $)) NIL) (($ (-942 $)) NIL)) (-2067 (((-112) $) 38)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL)) (-1881 (($ $) NIL)) (-1857 (((-112) $) NIL)) (-3299 (((-112) $ $) 63)) (-2396 (((-635 (-604 $)) $) 47)) (-2089 (((-3 $ "failed") $ $) NIL)) (-2497 (($ $ (-293 $)) NIL) (($ $ (-635 (-293 $))) NIL) (($ $ (-635 (-604 $)) (-635 $)) NIL)) (-3465 (($ $) NIL)) (-1380 (((-417 $) $) NIL)) (-2534 (($ $) NIL)) (-3732 (((-112) $ $) NIL)) (-1816 (($) NIL T CONST)) (-1608 (((-635 $) (-1159 $) (-1163)) NIL) (((-635 $) (-1159 $)) NIL) (((-635 $) (-942 $)) NIL)) (-2016 (($ (-1159 $) (-1163)) NIL) (($ (-1159 $)) NIL) (($ (-942 $)) NIL)) (-3069 (((-3 (-604 $) "failed") $) NIL) (((-3 (-558) "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL)) (-1863 (((-604 $) $) NIL) (((-558) $) NIL) (((-406 (-558)) $) 49)) (-4025 (($ $ $) NIL)) (-3216 (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL) (((-679 (-558)) (-679 $)) NIL) (((-2 (|:| -3683 (-679 (-406 (-558)))) (|:| |vec| (-1246 (-406 (-558))))) (-679 $) (-1246 $)) NIL) (((-679 (-406 (-558))) (-679 $)) NIL)) (-3048 (($ $) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-4004 (($ $ $) NIL)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL)) (-3031 (((-112) $) NIL)) (-3800 (($ $) NIL) (($ (-635 $)) NIL)) (-1405 (((-635 (-114)) $) NIL)) (-3029 (((-114) (-114)) NIL)) (-2035 (((-112) $) 41)) (-3451 (((-112) $) NIL (|has| $ (-1028 (-558))))) (-1874 (((-1112 (-558) (-604 $)) $) 36)) (-3828 (($ $ (-558)) NIL)) (-2615 (((-1159 $) (-1159 $) (-604 $)) 77) (((-1159 $) (-1159 $) (-635 (-604 $))) 54) (($ $ (-604 $)) 66) (($ $ (-635 (-604 $))) 67)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1381 (((-1159 $) (-604 $)) 64 (|has| $ (-1039)))) (-3910 (($ $ $) NIL)) (-3542 (($ $ $) NIL)) (-3167 (($ (-1 $ $) (-604 $)) NIL)) (-1416 (((-3 (-604 $) "failed") $) NIL)) (-2665 (($ (-635 $)) NIL) (($ $ $) NIL)) (-4310 (((-1145) $) NIL)) (-2475 (((-635 (-604 $)) $) NIL)) (-1949 (($ (-114) $) NIL) (($ (-114) (-635 $)) NIL)) (-3173 (((-112) $ (-114)) NIL) (((-112) $ (-1163)) NIL)) (-2418 (($ $) NIL)) (-3382 (((-762) $) NIL)) (-2975 (((-1107) $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-2699 (($ (-635 $)) NIL) (($ $ $) NIL)) (-1392 (((-112) $ $) NIL) (((-112) $ (-1163)) NIL)) (-2522 (((-417 $) $) NIL)) (-3713 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL)) (-3983 (((-3 $ "failed") $ $) NIL)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3458 (((-112) $) NIL (|has| $ (-1028 (-558))))) (-2554 (($ $ (-604 $) $) NIL) (($ $ (-635 (-604 $)) (-635 $)) NIL) (($ $ (-635 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-635 (-1163)) (-635 (-1 $ $))) NIL) (($ $ (-635 (-1163)) (-635 (-1 $ (-635 $)))) NIL) (($ $ (-1163) (-1 $ (-635 $))) NIL) (($ $ (-1163) (-1 $ $)) NIL) (($ $ (-635 (-114)) (-635 (-1 $ $))) NIL) (($ $ (-635 (-114)) (-635 (-1 $ (-635 $)))) NIL) (($ $ (-114) (-1 $ (-635 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-3722 (((-762) $) NIL)) (-2195 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-635 $)) NIL)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL)) (-1426 (($ $) NIL) (($ $ $) NIL)) (-2829 (($ $ (-762)) NIL) (($ $) 35)) (-1885 (((-1112 (-558) (-604 $)) $) 19)) (-2036 (($ $) NIL (|has| $ (-1039)))) (-3224 (((-378) $) 91) (((-224) $) 99) (((-168 (-378)) $) 107)) (-3220 (((-853) $) NIL) (($ (-604 $)) NIL) (($ (-406 (-558))) NIL) (($ $) NIL) (($ (-558)) NIL) (($ (-1112 (-558) (-604 $))) 20)) (-2542 (((-762)) NIL)) (-2540 (($ $) NIL) (($ (-635 $)) NIL)) (-2995 (((-112) (-114)) 83)) (-1870 (((-112) $ $) NIL)) (-2131 (($) 10 T CONST)) (-2142 (($) 21 T CONST)) (-1866 (($ $ (-762)) NIL) (($ $) NIL)) (-1747 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1683 (((-112) $ $) 23)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1810 (($ $ $) 43)) (-1798 (($ $ $) NIL) (($ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-406 (-558))) NIL) (($ $ (-558)) 45) (($ $ (-762)) NIL) (($ $ (-911)) NIL)) (* (($ (-406 (-558)) $) NIL) (($ $ (-406 (-558))) NIL) (($ $ $) 26) (($ (-558) $) NIL) (($ (-762) $) NIL) (($ (-911) $) NIL)))
+(((-493) (-13 (-301) (-27) (-1028 (-558)) (-1028 (-406 (-558))) (-631 (-558)) (-1012) (-631 (-406 (-558))) (-146) (-606 (-168 (-378))) (-232) (-10 -8 (-15 -3220 ($ (-1112 (-558) (-604 $)))) (-15 -1874 ((-1112 (-558) (-604 $)) $)) (-15 -1885 ((-1112 (-558) (-604 $)) $)) (-15 -3048 ($ $)) (-15 -3299 ((-112) $ $)) (-15 -2615 ((-1159 $) (-1159 $) (-604 $))) (-15 -2615 ((-1159 $) (-1159 $) (-635 (-604 $)))) (-15 -2615 ($ $ (-604 $))) (-15 -2615 ($ $ (-635 (-604 $))))))) (T -493))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-1112 (-558) (-604 (-493)))) (-5 *1 (-493)))) (-1874 (*1 *2 *1) (-12 (-5 *2 (-1112 (-558) (-604 (-493)))) (-5 *1 (-493)))) (-1885 (*1 *2 *1) (-12 (-5 *2 (-1112 (-558) (-604 (-493)))) (-5 *1 (-493)))) (-3048 (*1 *1 *1) (-5 *1 (-493))) (-3299 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-493)))) (-2615 (*1 *2 *2 *3) (-12 (-5 *2 (-1159 (-493))) (-5 *3 (-604 (-493))) (-5 *1 (-493)))) (-2615 (*1 *2 *2 *3) (-12 (-5 *2 (-1159 (-493))) (-5 *3 (-635 (-604 (-493)))) (-5 *1 (-493)))) (-2615 (*1 *1 *1 *2) (-12 (-5 *2 (-604 (-493))) (-5 *1 (-493)))) (-2615 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-604 (-493)))) (-5 *1 (-493)))))
+(-13 (-301) (-27) (-1028 (-558)) (-1028 (-406 (-558))) (-631 (-558)) (-1012) (-631 (-406 (-558))) (-146) (-606 (-168 (-378))) (-232) (-10 -8 (-15 -3220 ($ (-1112 (-558) (-604 $)))) (-15 -1874 ((-1112 (-558) (-604 $)) $)) (-15 -1885 ((-1112 (-558) (-604 $)) $)) (-15 -3048 ($ $)) (-15 -3299 ((-112) $ $)) (-15 -2615 ((-1159 $) (-1159 $) (-604 $))) (-15 -2615 ((-1159 $) (-1159 $) (-635 (-604 $)))) (-15 -2615 ($ $ (-604 $))) (-15 -2615 ($ $ (-635 (-604 $))))))
+((-3207 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-3869 (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4383)))) (-1538 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-841)))) (-2763 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4383))) (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-841))))) (-2376 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-841)))) (-3026 (((-112) $ (-762)) NIL)) (-1532 ((|#1| $ (-558) |#1|) 25 (|has| $ (-6 -4383))) ((|#1| $ (-1213 (-558)) |#1|) NIL (|has| $ (-6 -4383)))) (-4329 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-1816 (($) NIL T CONST)) (-3306 (($ $) NIL (|has| $ (-6 -4383)))) (-4127 (($ $) NIL)) (-2338 (($ $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1539 (($ |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-3048 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4382))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4382)))) (-1817 ((|#1| $ (-558) |#1|) 22 (|has| $ (-6 -4383)))) (-1746 ((|#1| $ (-558)) 21)) (-1517 (((-558) (-1 (-112) |#1|) $) NIL) (((-558) |#1| $) NIL (|has| |#1| (-1087))) (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1087)))) (-2240 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-3315 (($ (-762) |#1|) 14)) (-2986 (((-112) $ (-762)) NIL)) (-3889 (((-558) $) 12 (|has| (-558) (-841)))) (-3910 (($ $ $) NIL (|has| |#1| (-841)))) (-1677 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-841)))) (-2122 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3899 (((-558) $) 23 (|has| (-558) (-841)))) (-3542 (($ $ $) NIL (|has| |#1| (-841)))) (-1807 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL (|has| |#1| (-1087)))) (-1861 (($ |#1| $ (-558)) NIL) (($ $ $ (-558)) NIL)) (-3920 (((-635 (-558)) $) NIL)) (-3929 (((-112) (-558) $) NIL)) (-2975 (((-1107) $) NIL (|has| |#1| (-1087)))) (-2305 ((|#1| $) NIL (|has| (-558) (-841)))) (-4307 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3880 (($ $ |#1|) 10 (|has| $ (-6 -4383)))) (-3266 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3908 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3937 (((-635 |#1|) $) NIL)) (-3375 (((-112) $) NIL)) (-2083 (($) 13)) (-2195 ((|#1| $ (-558) |#1|) NIL) ((|#1| $ (-558)) 24) (($ $ (-1213 (-558))) NIL)) (-4023 (($ $ (-558)) NIL) (($ $ (-1213 (-558))) NIL)) (-2988 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-2773 (($ $ $ (-558)) NIL (|has| $ (-6 -4383)))) (-1553 (($ $) NIL)) (-3224 (((-534) $) NIL (|has| |#1| (-606 (-534))))) (-3233 (($ (-635 |#1|)) NIL)) (-4341 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-635 $)) NIL)) (-3220 (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-3277 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-1747 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1683 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-841)))) (-2755 (((-762) $) 9 (|has| $ (-6 -4382)))))
+(((-494 |#1| |#2|) (-19 |#1|) (-1200) (-558)) (T -494))
NIL
(-19 |#1|)
-((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-3019 (((-112) $ (-758)) NIL)) (-1501 ((|#1| $ (-554) (-554) |#1|) NIL)) (-2557 (($ $ (-554) (-490 |#1| |#3|)) NIL)) (-1464 (($ $ (-554) (-490 |#1| |#2|)) NIL)) (-4087 (($) NIL T CONST)) (-3519 (((-490 |#1| |#3|) $ (-554)) NIL)) (-2862 ((|#1| $ (-554) (-554) |#1|) NIL)) (-2796 ((|#1| $ (-554) (-554)) NIL)) (-2466 (((-631 |#1|) $) NIL)) (-4130 (((-758) $) NIL)) (-3180 (($ (-758) (-758) |#1|) NIL)) (-4143 (((-758) $) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-3985 (((-554) $) NIL)) (-1817 (((-554) $) NIL)) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2787 (((-554) $) NIL)) (-4249 (((-554) $) NIL)) (-2849 (($ (-1 |#1| |#1|) $) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-2441 (($ $ |#1|) NIL)) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#1| $ (-554) (-554)) NIL) ((|#1| $ (-554) (-554) |#1|) NIL)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1521 (($ $) NIL)) (-3259 (((-490 |#1| |#2|) $ (-554)) NIL)) (-3075 (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-491 |#1| |#2| |#3|) (-57 |#1| (-490 |#1| |#3|) (-490 |#1| |#2|)) (-1195) (-554) (-554)) (T -491))
-NIL
-(-57 |#1| (-490 |#1| |#3|) (-490 |#1| |#2|))
-((-3950 (((-631 (-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|)))) (-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|))) (-758) (-758)) 27)) (-2333 (((-631 (-1154 |#1|)) |#1| (-758) (-758) (-758)) 34)) (-3589 (((-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|))) (-631 |#3|) (-631 (-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|)))) (-758)) 85)))
-(((-492 |#1| |#2| |#3|) (-10 -7 (-15 -2333 ((-631 (-1154 |#1|)) |#1| (-758) (-758) (-758))) (-15 -3950 ((-631 (-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|)))) (-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|))) (-758) (-758))) (-15 -3589 ((-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|))) (-631 |#3|) (-631 (-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|)))) (-758)))) (-344) (-1217 |#1|) (-1217 |#2|)) (T -492))
-((-3589 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *8)) (-5 *4 (-631 (-2 (|:| -3782 (-675 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-675 *7))))) (-5 *5 (-758)) (-4 *8 (-1217 *7)) (-4 *7 (-1217 *6)) (-4 *6 (-344)) (-5 *2 (-2 (|:| -3782 (-675 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-675 *7)))) (-5 *1 (-492 *6 *7 *8)))) (-3950 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-758)) (-4 *5 (-344)) (-4 *6 (-1217 *5)) (-5 *2 (-631 (-2 (|:| -3782 (-675 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-675 *6))))) (-5 *1 (-492 *5 *6 *7)) (-5 *3 (-2 (|:| -3782 (-675 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-675 *6)))) (-4 *7 (-1217 *6)))) (-2333 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-758)) (-4 *3 (-344)) (-4 *5 (-1217 *3)) (-5 *2 (-631 (-1154 *3))) (-5 *1 (-492 *3 *5 *6)) (-4 *6 (-1217 *5)))))
-(-10 -7 (-15 -2333 ((-631 (-1154 |#1|)) |#1| (-758) (-758) (-758))) (-15 -3950 ((-631 (-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|)))) (-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|))) (-758) (-758))) (-15 -3589 ((-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|))) (-631 |#3|) (-631 (-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|)))) (-758))))
-((-3720 (((-2 (|:| -3782 (-675 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-675 |#1|))) (-2 (|:| -3782 (-675 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-675 |#1|))) (-2 (|:| -3782 (-675 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-675 |#1|)))) 62)) (-3428 ((|#1| (-675 |#1|) |#1| (-758)) 25)) (-4053 (((-758) (-758) (-758)) 30)) (-1367 (((-675 |#1|) (-675 |#1|) (-675 |#1|)) 42)) (-3498 (((-675 |#1|) (-675 |#1|) (-675 |#1|) |#1|) 50) (((-675 |#1|) (-675 |#1|) (-675 |#1|)) 47)) (-4016 ((|#1| (-675 |#1|) (-675 |#1|) |#1| (-554)) 29)) (-3238 ((|#1| (-675 |#1|)) 18)))
-(((-493 |#1| |#2| |#3|) (-10 -7 (-15 -3238 (|#1| (-675 |#1|))) (-15 -3428 (|#1| (-675 |#1|) |#1| (-758))) (-15 -4016 (|#1| (-675 |#1|) (-675 |#1|) |#1| (-554))) (-15 -4053 ((-758) (-758) (-758))) (-15 -3498 ((-675 |#1|) (-675 |#1|) (-675 |#1|))) (-15 -3498 ((-675 |#1|) (-675 |#1|) (-675 |#1|) |#1|)) (-15 -1367 ((-675 |#1|) (-675 |#1|) (-675 |#1|))) (-15 -3720 ((-2 (|:| -3782 (-675 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-675 |#1|))) (-2 (|:| -3782 (-675 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-675 |#1|))) (-2 (|:| -3782 (-675 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-675 |#1|)))))) (-13 (-302) (-10 -8 (-15 -1565 ((-413 $) $)))) (-1217 |#1|) (-404 |#1| |#2|)) (T -493))
-((-3720 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -3782 (-675 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-675 *3)))) (-4 *3 (-13 (-302) (-10 -8 (-15 -1565 ((-413 $) $))))) (-4 *4 (-1217 *3)) (-5 *1 (-493 *3 *4 *5)) (-4 *5 (-404 *3 *4)))) (-1367 (*1 *2 *2 *2) (-12 (-5 *2 (-675 *3)) (-4 *3 (-13 (-302) (-10 -8 (-15 -1565 ((-413 $) $))))) (-4 *4 (-1217 *3)) (-5 *1 (-493 *3 *4 *5)) (-4 *5 (-404 *3 *4)))) (-3498 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-675 *3)) (-4 *3 (-13 (-302) (-10 -8 (-15 -1565 ((-413 $) $))))) (-4 *4 (-1217 *3)) (-5 *1 (-493 *3 *4 *5)) (-4 *5 (-404 *3 *4)))) (-3498 (*1 *2 *2 *2) (-12 (-5 *2 (-675 *3)) (-4 *3 (-13 (-302) (-10 -8 (-15 -1565 ((-413 $) $))))) (-4 *4 (-1217 *3)) (-5 *1 (-493 *3 *4 *5)) (-4 *5 (-404 *3 *4)))) (-4053 (*1 *2 *2 *2) (-12 (-5 *2 (-758)) (-4 *3 (-13 (-302) (-10 -8 (-15 -1565 ((-413 $) $))))) (-4 *4 (-1217 *3)) (-5 *1 (-493 *3 *4 *5)) (-4 *5 (-404 *3 *4)))) (-4016 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-675 *2)) (-5 *4 (-554)) (-4 *2 (-13 (-302) (-10 -8 (-15 -1565 ((-413 $) $))))) (-4 *5 (-1217 *2)) (-5 *1 (-493 *2 *5 *6)) (-4 *6 (-404 *2 *5)))) (-3428 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-675 *2)) (-5 *4 (-758)) (-4 *2 (-13 (-302) (-10 -8 (-15 -1565 ((-413 $) $))))) (-4 *5 (-1217 *2)) (-5 *1 (-493 *2 *5 *6)) (-4 *6 (-404 *2 *5)))) (-3238 (*1 *2 *3) (-12 (-5 *3 (-675 *2)) (-4 *4 (-1217 *2)) (-4 *2 (-13 (-302) (-10 -8 (-15 -1565 ((-413 $) $))))) (-5 *1 (-493 *2 *4 *5)) (-4 *5 (-404 *2 *4)))))
-(-10 -7 (-15 -3238 (|#1| (-675 |#1|))) (-15 -3428 (|#1| (-675 |#1|) |#1| (-758))) (-15 -4016 (|#1| (-675 |#1|) (-675 |#1|) |#1| (-554))) (-15 -4053 ((-758) (-758) (-758))) (-15 -3498 ((-675 |#1|) (-675 |#1|) (-675 |#1|))) (-15 -3498 ((-675 |#1|) (-675 |#1|) (-675 |#1|) |#1|)) (-15 -1367 ((-675 |#1|) (-675 |#1|) (-675 |#1|))) (-15 -3720 ((-2 (|:| -3782 (-675 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-675 |#1|))) (-2 (|:| -3782 (-675 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-675 |#1|))) (-2 (|:| -3782 (-675 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-675 |#1|))))))
-((-3062 (((-112) $ $) NIL)) (-1285 (($ $) NIL)) (-4066 (($ $ $) 35)) (-4233 (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-4015 (((-112) $) NIL (|has| (-112) (-836))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2576 (($ $) NIL (-12 (|has| $ (-6 -4374)) (|has| (-112) (-836)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4374)))) (-3303 (($ $) NIL (|has| (-112) (-836))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3019 (((-112) $ (-758)) NIL)) (-1501 (((-112) $ (-1208 (-554)) (-112)) NIL (|has| $ (-6 -4374))) (((-112) $ (-554) (-112)) 36 (|has| $ (-6 -4374)))) (-1871 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4373)))) (-4087 (($) NIL T CONST)) (-3920 (($ $) NIL (|has| $ (-6 -4374)))) (-3799 (($ $) NIL)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-112) (-1082))))) (-2574 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4373))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-112) (-1082))))) (-3676 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4373)) (|has| (-112) (-1082))))) (-2862 (((-112) $ (-554) (-112)) NIL (|has| $ (-6 -4374)))) (-2796 (((-112) $ (-554)) NIL)) (-1484 (((-554) (-112) $ (-554)) NIL (|has| (-112) (-1082))) (((-554) (-112) $) NIL (|has| (-112) (-1082))) (((-554) (-1 (-112) (-112)) $) NIL)) (-2466 (((-631 (-112)) $) NIL (|has| $ (-6 -4373)))) (-3038 (($ $ $) 33)) (-4081 (($ $) NIL)) (-3811 (($ $ $) NIL)) (-3180 (($ (-758) (-112)) 23)) (-2860 (($ $ $) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) 8 (|has| (-554) (-836)))) (-4223 (($ $ $) NIL)) (-3717 (($ $ $) NIL (|has| (-112) (-836))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2379 (((-631 (-112)) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-112) (-1082))))) (-2256 (((-554) $) NIL (|has| (-554) (-836)))) (-2706 (($ $ $) NIL)) (-2849 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-112) (-112) (-112)) $ $) 30) (($ (-1 (-112) (-112)) $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL)) (-1782 (($ $ $ (-554)) NIL) (($ (-112) $ (-554)) NIL)) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) NIL)) (-2768 (((-1102) $) NIL)) (-1539 (((-112) $) NIL (|has| (-554) (-836)))) (-1652 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2441 (($ $ (-112)) NIL (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-112)) (-631 (-112))) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1082)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1082)))) (($ $ (-289 (-112))) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1082)))) (($ $ (-631 (-289 (-112)))) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-112) (-1082))))) (-2625 (((-631 (-112)) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) 24)) (-2064 (($ $ (-1208 (-554))) NIL) (((-112) $ (-554)) 18) (((-112) $ (-554) (-112)) NIL)) (-2021 (($ $ (-1208 (-554))) NIL) (($ $ (-554)) NIL)) (-2777 (((-758) (-112) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-112) (-1082)))) (((-758) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4373)))) (-3553 (($ $ $ (-554)) NIL (|has| $ (-6 -4374)))) (-1521 (($ $) 25)) (-2927 (((-530) $) NIL (|has| (-112) (-602 (-530))))) (-3089 (($ (-631 (-112))) NIL)) (-4323 (($ (-631 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3075 (((-848) $) 22)) (-2438 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4373)))) (-3726 (($ $ $) 31)) (-2140 (($ $ $) NIL)) (-2307 (($ $ $) 39)) (-2318 (($ $) 37)) (-2297 (($ $ $) 38)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 26)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 27)) (-2130 (($ $ $) NIL)) (-2563 (((-758) $) 10 (|has| $ (-6 -4373)))))
-(((-494 |#1|) (-13 (-123) (-10 -8 (-15 -2318 ($ $)) (-15 -2307 ($ $ $)) (-15 -2297 ($ $ $)))) (-554)) (T -494))
-((-2318 (*1 *1 *1) (-12 (-5 *1 (-494 *2)) (-14 *2 (-554)))) (-2307 (*1 *1 *1 *1) (-12 (-5 *1 (-494 *2)) (-14 *2 (-554)))) (-2297 (*1 *1 *1 *1) (-12 (-5 *1 (-494 *2)) (-14 *2 (-554)))))
-(-13 (-123) (-10 -8 (-15 -2318 ($ $)) (-15 -2307 ($ $ $)) (-15 -2297 ($ $ $))))
-((-1929 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1154 |#4|)) 35)) (-3118 (((-1154 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1154 |#4|)) 22)) (-3622 (((-3 (-675 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-675 (-1154 |#4|))) 46)) (-3978 (((-1154 (-1154 |#4|)) (-1 |#4| |#1|) |#3|) 55)))
-(((-495 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3118 (|#2| (-1 |#1| |#4|) (-1154 |#4|))) (-15 -3118 ((-1154 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1929 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1154 |#4|))) (-15 -3622 ((-3 (-675 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-675 (-1154 |#4|)))) (-15 -3978 ((-1154 (-1154 |#4|)) (-1 |#4| |#1|) |#3|))) (-1034) (-1217 |#1|) (-1217 |#2|) (-1034)) (T -495))
-((-3978 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1034)) (-4 *7 (-1034)) (-4 *6 (-1217 *5)) (-5 *2 (-1154 (-1154 *7))) (-5 *1 (-495 *5 *6 *4 *7)) (-4 *4 (-1217 *6)))) (-3622 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-675 (-1154 *8))) (-4 *5 (-1034)) (-4 *8 (-1034)) (-4 *6 (-1217 *5)) (-5 *2 (-675 *6)) (-5 *1 (-495 *5 *6 *7 *8)) (-4 *7 (-1217 *6)))) (-1929 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1154 *7)) (-4 *5 (-1034)) (-4 *7 (-1034)) (-4 *2 (-1217 *5)) (-5 *1 (-495 *5 *2 *6 *7)) (-4 *6 (-1217 *2)))) (-3118 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1034)) (-4 *7 (-1034)) (-4 *4 (-1217 *5)) (-5 *2 (-1154 *7)) (-5 *1 (-495 *5 *4 *6 *7)) (-4 *6 (-1217 *4)))) (-3118 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1154 *7)) (-4 *5 (-1034)) (-4 *7 (-1034)) (-4 *2 (-1217 *5)) (-5 *1 (-495 *5 *2 *6 *7)) (-4 *6 (-1217 *2)))))
-(-10 -7 (-15 -3118 (|#2| (-1 |#1| |#4|) (-1154 |#4|))) (-15 -3118 ((-1154 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1929 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1154 |#4|))) (-15 -3622 ((-3 (-675 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-675 (-1154 |#4|)))) (-15 -3978 ((-1154 (-1154 |#4|)) (-1 |#4| |#1|) |#3|)))
-((-3062 (((-112) $ $) NIL)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2941 (((-1246) $) 19)) (-2064 (((-1140) $ (-1158)) 23)) (-2524 (((-1246) $) 15)) (-3075 (((-848) $) 21) (($ (-1140)) 20)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 9)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 8)))
-(((-496) (-13 (-836) (-10 -8 (-15 -2064 ((-1140) $ (-1158))) (-15 -2524 ((-1246) $)) (-15 -2941 ((-1246) $)) (-15 -3075 ($ (-1140)))))) (T -496))
-((-2064 (*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1140)) (-5 *1 (-496)))) (-2524 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-496)))) (-2941 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-496)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-496)))))
-(-13 (-836) (-10 -8 (-15 -2064 ((-1140) $ (-1158))) (-15 -2524 ((-1246) $)) (-15 -2941 ((-1246) $)) (-15 -3075 ($ (-1140)))))
-((-2037 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-2715 ((|#1| |#4|) 10)) (-1770 ((|#3| |#4|) 17)))
-(((-497 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2715 (|#1| |#4|)) (-15 -1770 (|#3| |#4|)) (-15 -2037 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-546) (-977 |#1|) (-368 |#1|) (-368 |#2|)) (T -497))
-((-2037 (*1 *2 *3) (-12 (-4 *4 (-546)) (-4 *5 (-977 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-497 *4 *5 *6 *3)) (-4 *6 (-368 *4)) (-4 *3 (-368 *5)))) (-1770 (*1 *2 *3) (-12 (-4 *4 (-546)) (-4 *5 (-977 *4)) (-4 *2 (-368 *4)) (-5 *1 (-497 *4 *5 *2 *3)) (-4 *3 (-368 *5)))) (-2715 (*1 *2 *3) (-12 (-4 *4 (-977 *2)) (-4 *2 (-546)) (-5 *1 (-497 *2 *4 *5 *3)) (-4 *5 (-368 *2)) (-4 *3 (-368 *4)))))
-(-10 -7 (-15 -2715 (|#1| |#4|)) (-15 -1770 (|#3| |#4|)) (-15 -2037 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
-((-3062 (((-112) $ $) NIL)) (-3331 (((-112) $ (-631 |#3|)) 104) (((-112) $) 105)) (-1695 (((-112) $) 148)) (-4229 (($ $ |#4|) 96) (($ $ |#4| (-631 |#3|)) 100)) (-3710 (((-1147 (-631 (-937 |#1|)) (-631 (-289 (-937 |#1|)))) (-631 |#4|)) 141 (|has| |#3| (-602 (-1158))))) (-2325 (($ $ $) 90) (($ $ |#4|) 88)) (-3248 (((-112) $) 147)) (-4094 (($ $) 108)) (-1613 (((-1140) $) NIL)) (-3977 (($ $ $) 82) (($ (-631 $)) 84)) (-3602 (((-112) |#4| $) 107)) (-2028 (((-112) $ $) 71)) (-3822 (($ (-631 |#4|)) 89)) (-2768 (((-1102) $) NIL)) (-4148 (($ (-631 |#4|)) 145)) (-2118 (((-112) $) 146)) (-3486 (($ $) 73)) (-2201 (((-631 |#4|) $) 57)) (-4063 (((-2 (|:| |mval| (-675 |#1|)) (|:| |invmval| (-675 |#1|)) (|:| |genIdeal| $)) $ (-631 |#3|)) NIL)) (-2594 (((-112) |#4| $) 76)) (-3330 (((-554) $ (-631 |#3|)) 109) (((-554) $) 110)) (-3075 (((-848) $) 144) (($ (-631 |#4|)) 85)) (-2005 (($ (-2 (|:| |mval| (-675 |#1|)) (|:| |invmval| (-675 |#1|)) (|:| |genIdeal| $))) NIL)) (-1658 (((-112) $ $) 72)) (-1735 (($ $ $) 92)) (** (($ $ (-758)) 95)) (* (($ $ $) 94)))
-(((-498 |#1| |#2| |#3| |#4|) (-13 (-1082) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-758))) (-15 -1735 ($ $ $)) (-15 -3248 ((-112) $)) (-15 -1695 ((-112) $)) (-15 -2594 ((-112) |#4| $)) (-15 -2028 ((-112) $ $)) (-15 -3602 ((-112) |#4| $)) (-15 -3331 ((-112) $ (-631 |#3|))) (-15 -3331 ((-112) $)) (-15 -3977 ($ $ $)) (-15 -3977 ($ (-631 $))) (-15 -2325 ($ $ $)) (-15 -2325 ($ $ |#4|)) (-15 -3486 ($ $)) (-15 -4063 ((-2 (|:| |mval| (-675 |#1|)) (|:| |invmval| (-675 |#1|)) (|:| |genIdeal| $)) $ (-631 |#3|))) (-15 -2005 ($ (-2 (|:| |mval| (-675 |#1|)) (|:| |invmval| (-675 |#1|)) (|:| |genIdeal| $)))) (-15 -3330 ((-554) $ (-631 |#3|))) (-15 -3330 ((-554) $)) (-15 -4094 ($ $)) (-15 -3822 ($ (-631 |#4|))) (-15 -4148 ($ (-631 |#4|))) (-15 -2118 ((-112) $)) (-15 -2201 ((-631 |#4|) $)) (-15 -3075 ($ (-631 |#4|))) (-15 -4229 ($ $ |#4|)) (-15 -4229 ($ $ |#4| (-631 |#3|))) (IF (|has| |#3| (-602 (-1158))) (-15 -3710 ((-1147 (-631 (-937 |#1|)) (-631 (-289 (-937 |#1|)))) (-631 |#4|))) |%noBranch|))) (-358) (-780) (-836) (-934 |#1| |#2| |#3|)) (T -498))
-((* (*1 *1 *1 *1) (-12 (-4 *2 (-358)) (-4 *3 (-780)) (-4 *4 (-836)) (-5 *1 (-498 *2 *3 *4 *5)) (-4 *5 (-934 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-498 *3 *4 *5 *6)) (-4 *6 (-934 *3 *4 *5)))) (-1735 (*1 *1 *1 *1) (-12 (-4 *2 (-358)) (-4 *3 (-780)) (-4 *4 (-836)) (-5 *1 (-498 *2 *3 *4 *5)) (-4 *5 (-934 *2 *3 *4)))) (-3248 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-112)) (-5 *1 (-498 *3 *4 *5 *6)) (-4 *6 (-934 *3 *4 *5)))) (-1695 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-112)) (-5 *1 (-498 *3 *4 *5 *6)) (-4 *6 (-934 *3 *4 *5)))) (-2594 (*1 *2 *3 *1) (-12 (-4 *4 (-358)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) (-5 *1 (-498 *4 *5 *6 *3)) (-4 *3 (-934 *4 *5 *6)))) (-2028 (*1 *2 *1 *1) (-12 (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-112)) (-5 *1 (-498 *3 *4 *5 *6)) (-4 *6 (-934 *3 *4 *5)))) (-3602 (*1 *2 *3 *1) (-12 (-4 *4 (-358)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) (-5 *1 (-498 *4 *5 *6 *3)) (-4 *3 (-934 *4 *5 *6)))) (-3331 (*1 *2 *1 *3) (-12 (-5 *3 (-631 *6)) (-4 *6 (-836)) (-4 *4 (-358)) (-4 *5 (-780)) (-5 *2 (-112)) (-5 *1 (-498 *4 *5 *6 *7)) (-4 *7 (-934 *4 *5 *6)))) (-3331 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-112)) (-5 *1 (-498 *3 *4 *5 *6)) (-4 *6 (-934 *3 *4 *5)))) (-3977 (*1 *1 *1 *1) (-12 (-4 *2 (-358)) (-4 *3 (-780)) (-4 *4 (-836)) (-5 *1 (-498 *2 *3 *4 *5)) (-4 *5 (-934 *2 *3 *4)))) (-3977 (*1 *1 *2) (-12 (-5 *2 (-631 (-498 *3 *4 *5 *6))) (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-498 *3 *4 *5 *6)) (-4 *6 (-934 *3 *4 *5)))) (-2325 (*1 *1 *1 *1) (-12 (-4 *2 (-358)) (-4 *3 (-780)) (-4 *4 (-836)) (-5 *1 (-498 *2 *3 *4 *5)) (-4 *5 (-934 *2 *3 *4)))) (-2325 (*1 *1 *1 *2) (-12 (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-934 *3 *4 *5)))) (-3486 (*1 *1 *1) (-12 (-4 *2 (-358)) (-4 *3 (-780)) (-4 *4 (-836)) (-5 *1 (-498 *2 *3 *4 *5)) (-4 *5 (-934 *2 *3 *4)))) (-4063 (*1 *2 *1 *3) (-12 (-5 *3 (-631 *6)) (-4 *6 (-836)) (-4 *4 (-358)) (-4 *5 (-780)) (-5 *2 (-2 (|:| |mval| (-675 *4)) (|:| |invmval| (-675 *4)) (|:| |genIdeal| (-498 *4 *5 *6 *7)))) (-5 *1 (-498 *4 *5 *6 *7)) (-4 *7 (-934 *4 *5 *6)))) (-2005 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-675 *3)) (|:| |invmval| (-675 *3)) (|:| |genIdeal| (-498 *3 *4 *5 *6)))) (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-498 *3 *4 *5 *6)) (-4 *6 (-934 *3 *4 *5)))) (-3330 (*1 *2 *1 *3) (-12 (-5 *3 (-631 *6)) (-4 *6 (-836)) (-4 *4 (-358)) (-4 *5 (-780)) (-5 *2 (-554)) (-5 *1 (-498 *4 *5 *6 *7)) (-4 *7 (-934 *4 *5 *6)))) (-3330 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-554)) (-5 *1 (-498 *3 *4 *5 *6)) (-4 *6 (-934 *3 *4 *5)))) (-4094 (*1 *1 *1) (-12 (-4 *2 (-358)) (-4 *3 (-780)) (-4 *4 (-836)) (-5 *1 (-498 *2 *3 *4 *5)) (-4 *5 (-934 *2 *3 *4)))) (-3822 (*1 *1 *2) (-12 (-5 *2 (-631 *6)) (-4 *6 (-934 *3 *4 *5)) (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-498 *3 *4 *5 *6)))) (-4148 (*1 *1 *2) (-12 (-5 *2 (-631 *6)) (-4 *6 (-934 *3 *4 *5)) (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-498 *3 *4 *5 *6)))) (-2118 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-112)) (-5 *1 (-498 *3 *4 *5 *6)) (-4 *6 (-934 *3 *4 *5)))) (-2201 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-631 *6)) (-5 *1 (-498 *3 *4 *5 *6)) (-4 *6 (-934 *3 *4 *5)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-631 *6)) (-4 *6 (-934 *3 *4 *5)) (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-498 *3 *4 *5 *6)))) (-4229 (*1 *1 *1 *2) (-12 (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-934 *3 *4 *5)))) (-4229 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-631 *6)) (-4 *6 (-836)) (-4 *4 (-358)) (-4 *5 (-780)) (-5 *1 (-498 *4 *5 *6 *2)) (-4 *2 (-934 *4 *5 *6)))) (-3710 (*1 *2 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-934 *4 *5 *6)) (-4 *6 (-602 (-1158))) (-4 *4 (-358)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-1147 (-631 (-937 *4)) (-631 (-289 (-937 *4))))) (-5 *1 (-498 *4 *5 *6 *7)))))
-(-13 (-1082) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-758))) (-15 -1735 ($ $ $)) (-15 -3248 ((-112) $)) (-15 -1695 ((-112) $)) (-15 -2594 ((-112) |#4| $)) (-15 -2028 ((-112) $ $)) (-15 -3602 ((-112) |#4| $)) (-15 -3331 ((-112) $ (-631 |#3|))) (-15 -3331 ((-112) $)) (-15 -3977 ($ $ $)) (-15 -3977 ($ (-631 $))) (-15 -2325 ($ $ $)) (-15 -2325 ($ $ |#4|)) (-15 -3486 ($ $)) (-15 -4063 ((-2 (|:| |mval| (-675 |#1|)) (|:| |invmval| (-675 |#1|)) (|:| |genIdeal| $)) $ (-631 |#3|))) (-15 -2005 ($ (-2 (|:| |mval| (-675 |#1|)) (|:| |invmval| (-675 |#1|)) (|:| |genIdeal| $)))) (-15 -3330 ((-554) $ (-631 |#3|))) (-15 -3330 ((-554) $)) (-15 -4094 ($ $)) (-15 -3822 ($ (-631 |#4|))) (-15 -4148 ($ (-631 |#4|))) (-15 -2118 ((-112) $)) (-15 -2201 ((-631 |#4|) $)) (-15 -3075 ($ (-631 |#4|))) (-15 -4229 ($ $ |#4|)) (-15 -4229 ($ $ |#4| (-631 |#3|))) (IF (|has| |#3| (-602 (-1158))) (-15 -3710 ((-1147 (-631 (-937 |#1|)) (-631 (-289 (-937 |#1|)))) (-631 |#4|))) |%noBranch|)))
-((-4144 (((-112) (-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554))))) 149)) (-2667 (((-112) (-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554))))) 150)) (-3679 (((-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554)))) (-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554))))) 108)) (-3289 (((-112) (-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554))))) NIL)) (-3440 (((-631 (-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554))))) (-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554))))) 152)) (-4295 (((-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554)))) (-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554)))) (-631 (-850 |#1|))) 164)))
-(((-499 |#1| |#2|) (-10 -7 (-15 -4144 ((-112) (-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554)))))) (-15 -2667 ((-112) (-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554)))))) (-15 -3289 ((-112) (-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554)))))) (-15 -3679 ((-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554)))) (-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554)))))) (-15 -3440 ((-631 (-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554))))) (-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554)))))) (-15 -4295 ((-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554)))) (-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554)))) (-631 (-850 |#1|))))) (-631 (-1158)) (-758)) (T -499))
-((-4295 (*1 *2 *2 *3) (-12 (-5 *2 (-498 (-402 (-554)) (-236 *5 (-758)) (-850 *4) (-243 *4 (-402 (-554))))) (-5 *3 (-631 (-850 *4))) (-14 *4 (-631 (-1158))) (-14 *5 (-758)) (-5 *1 (-499 *4 *5)))) (-3440 (*1 *2 *3) (-12 (-14 *4 (-631 (-1158))) (-14 *5 (-758)) (-5 *2 (-631 (-498 (-402 (-554)) (-236 *5 (-758)) (-850 *4) (-243 *4 (-402 (-554)))))) (-5 *1 (-499 *4 *5)) (-5 *3 (-498 (-402 (-554)) (-236 *5 (-758)) (-850 *4) (-243 *4 (-402 (-554))))))) (-3679 (*1 *2 *2) (-12 (-5 *2 (-498 (-402 (-554)) (-236 *4 (-758)) (-850 *3) (-243 *3 (-402 (-554))))) (-14 *3 (-631 (-1158))) (-14 *4 (-758)) (-5 *1 (-499 *3 *4)))) (-3289 (*1 *2 *3) (-12 (-5 *3 (-498 (-402 (-554)) (-236 *5 (-758)) (-850 *4) (-243 *4 (-402 (-554))))) (-14 *4 (-631 (-1158))) (-14 *5 (-758)) (-5 *2 (-112)) (-5 *1 (-499 *4 *5)))) (-2667 (*1 *2 *3) (-12 (-5 *3 (-498 (-402 (-554)) (-236 *5 (-758)) (-850 *4) (-243 *4 (-402 (-554))))) (-14 *4 (-631 (-1158))) (-14 *5 (-758)) (-5 *2 (-112)) (-5 *1 (-499 *4 *5)))) (-4144 (*1 *2 *3) (-12 (-5 *3 (-498 (-402 (-554)) (-236 *5 (-758)) (-850 *4) (-243 *4 (-402 (-554))))) (-14 *4 (-631 (-1158))) (-14 *5 (-758)) (-5 *2 (-112)) (-5 *1 (-499 *4 *5)))))
-(-10 -7 (-15 -4144 ((-112) (-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554)))))) (-15 -2667 ((-112) (-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554)))))) (-15 -3289 ((-112) (-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554)))))) (-15 -3679 ((-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554)))) (-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554)))))) (-15 -3440 ((-631 (-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554))))) (-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554)))))) (-15 -4295 ((-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554)))) (-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554)))) (-631 (-850 |#1|)))))
-((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 11) (($ (-1163)) NIL) (((-1163) $) NIL) (((-1158) $) 8)) (-1658 (((-112) $ $) NIL)))
-(((-500) (-13 (-1065) (-601 (-1158)))) (T -500))
-NIL
-(-13 (-1065) (-601 (-1158)))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-2550 (($ $) NIL)) (-2383 (($ |#1| |#2|) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-1975 ((|#2| $) NIL)) (-2530 ((|#1| $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-2004 (($) 12 T CONST)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) 11) (($ $ $) 24)) (-1735 (($ $ $) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 18)))
-(((-501 |#1| |#2|) (-13 (-21) (-503 |#1| |#2|)) (-21) (-836)) (T -501))
-NIL
-(-13 (-21) (-503 |#1| |#2|))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 12)) (-4087 (($) NIL T CONST)) (-2550 (($ $) 28)) (-2383 (($ |#1| |#2|) 25)) (-2879 (($ (-1 |#1| |#1|) $) 27)) (-1975 ((|#2| $) NIL)) (-2530 ((|#1| $) 29)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-2004 (($) 10 T CONST)) (-1658 (((-112) $ $) NIL)) (-1735 (($ $ $) 18)) (* (($ (-906) $) NIL) (($ (-758) $) 23)))
-(((-502 |#1| |#2|) (-13 (-23) (-503 |#1| |#2|)) (-23) (-836)) (T -502))
-NIL
-(-13 (-23) (-503 |#1| |#2|))
-((-3062 (((-112) $ $) 7)) (-2550 (($ $) 13)) (-2383 (($ |#1| |#2|) 16)) (-2879 (($ (-1 |#1| |#1|) $) 17)) (-1975 ((|#2| $) 14)) (-2530 ((|#1| $) 15)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-1658 (((-112) $ $) 6)))
-(((-503 |#1| |#2|) (-138) (-1082) (-836)) (T -503))
-((-2879 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-503 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-836)))) (-2383 (*1 *1 *2 *3) (-12 (-4 *1 (-503 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-836)))) (-2530 (*1 *2 *1) (-12 (-4 *1 (-503 *2 *3)) (-4 *3 (-836)) (-4 *2 (-1082)))) (-1975 (*1 *2 *1) (-12 (-4 *1 (-503 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-836)))) (-2550 (*1 *1 *1) (-12 (-4 *1 (-503 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-836)))))
-(-13 (-1082) (-10 -8 (-15 -2879 ($ (-1 |t#1| |t#1|) $)) (-15 -2383 ($ |t#1| |t#2|)) (-15 -2530 (|t#1| $)) (-15 -1975 (|t#2| $)) (-15 -2550 ($ $))))
-(((-102) . T) ((-601 (-848)) . T) ((-1082) . T))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-4087 (($) NIL T CONST)) (-2550 (($ $) NIL)) (-2383 (($ |#1| |#2|) NIL)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-1975 ((|#2| $) NIL)) (-2530 ((|#1| $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-2004 (($) NIL T CONST)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 13)) (-1735 (($ $ $) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL)))
-(((-504 |#1| |#2|) (-13 (-779) (-503 |#1| |#2|)) (-779) (-836)) (T -504))
-NIL
-(-13 (-779) (-503 |#1| |#2|))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1349 (($ $ $) 16)) (-2934 (((-3 $ "failed") $ $) 13)) (-4087 (($) NIL T CONST)) (-2550 (($ $) NIL)) (-2383 (($ |#1| |#2|) NIL)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-1975 ((|#2| $) NIL)) (-2530 ((|#1| $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-2004 (($) NIL T CONST)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) NIL)) (-1735 (($ $ $) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL)))
-(((-505 |#1| |#2|) (-13 (-780) (-503 |#1| |#2|)) (-780) (-836)) (T -505))
-NIL
-(-13 (-780) (-503 |#1| |#2|))
-((-3062 (((-112) $ $) NIL)) (-2550 (($ $) 25)) (-2383 (($ |#1| |#2|) 22)) (-2879 (($ (-1 |#1| |#1|) $) 24)) (-1975 ((|#2| $) 27)) (-2530 ((|#1| $) 26)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 21)) (-1658 (((-112) $ $) 14)))
-(((-506 |#1| |#2|) (-503 |#1| |#2|) (-1082) (-836)) (T -506))
-NIL
-(-503 |#1| |#2|)
-((-2386 (($ $ (-631 |#2|) (-631 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
-(((-507 |#1| |#2| |#3|) (-10 -8 (-15 -2386 (|#1| |#1| |#2| |#3|)) (-15 -2386 (|#1| |#1| (-631 |#2|) (-631 |#3|)))) (-508 |#2| |#3|) (-1082) (-1195)) (T -507))
-NIL
-(-10 -8 (-15 -2386 (|#1| |#1| |#2| |#3|)) (-15 -2386 (|#1| |#1| (-631 |#2|) (-631 |#3|))))
-((-2386 (($ $ (-631 |#1|) (-631 |#2|)) 7) (($ $ |#1| |#2|) 6)))
-(((-508 |#1| |#2|) (-138) (-1082) (-1195)) (T -508))
-((-2386 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 *4)) (-5 *3 (-631 *5)) (-4 *1 (-508 *4 *5)) (-4 *4 (-1082)) (-4 *5 (-1195)))) (-2386 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-508 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1195)))))
-(-13 (-10 -8 (-15 -2386 ($ $ |t#1| |t#2|)) (-15 -2386 ($ $ (-631 |t#1|) (-631 |t#2|)))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 16)) (-3042 (((-631 (-2 (|:| |gen| |#1|) (|:| -1333 |#2|))) $) 18)) (-2934 (((-3 $ "failed") $ $) NIL)) (-1508 (((-758) $) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL)) (-1668 ((|#1| $) NIL)) (-3195 ((|#1| $ (-554)) 23)) (-4097 ((|#2| $ (-554)) 21)) (-3563 (($ (-1 |#1| |#1|) $) 46)) (-2781 (($ (-1 |#2| |#2|) $) 43)) (-1613 (((-1140) $) NIL)) (-4244 (($ $ $) 53 (|has| |#2| (-779)))) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 42) (($ |#1|) NIL)) (-1779 ((|#2| |#1| $) 49)) (-2004 (($) 11 T CONST)) (-1658 (((-112) $ $) 29)) (-1735 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-906) $) NIL) (($ (-758) $) 36) (($ |#2| |#1|) 31)))
-(((-509 |#1| |#2| |#3|) (-318 |#1| |#2|) (-1082) (-130) |#2|) (T -509))
-NIL
-(-318 |#1| |#2|)
-((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-4233 (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-4015 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-836)))) (-2576 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4374))) (($ $) NIL (-12 (|has| $ (-6 -4374)) (|has| |#1| (-836))))) (-3303 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-836)))) (-3019 (((-112) $ (-758)) NIL)) (-2703 (((-112) (-112)) 25)) (-1501 ((|#1| $ (-554) |#1|) 28 (|has| $ (-6 -4374))) ((|#1| $ (-1208 (-554)) |#1|) NIL (|has| $ (-6 -4374)))) (-2220 (($ (-1 (-112) |#1|) $) 52)) (-1871 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-4087 (($) NIL T CONST)) (-3920 (($ $) NIL (|has| $ (-6 -4374)))) (-3799 (($ $) NIL)) (-2593 (($ $) 56 (|has| |#1| (-1082)))) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1884 (($ |#1| $) NIL (|has| |#1| (-1082))) (($ (-1 (-112) |#1|) $) 44)) (-2574 (($ |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4373)))) (-2862 ((|#1| $ (-554) |#1|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-554)) NIL)) (-1484 (((-554) (-1 (-112) |#1|) $) NIL) (((-554) |#1| $) NIL (|has| |#1| (-1082))) (((-554) |#1| $ (-554)) NIL (|has| |#1| (-1082)))) (-2127 (($ $ (-554)) 13)) (-2375 (((-758) $) 11)) (-2466 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3180 (($ (-758) |#1|) 23)) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) 21 (|has| (-554) (-836)))) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-3606 (($ $ $) NIL (|has| |#1| (-836))) (($ (-1 (-112) |#1| |#1|) $ $) 35)) (-3717 (($ (-1 (-112) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-836)))) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2256 (((-554) $) 20 (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2849 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-2045 (($ $ $ (-554)) 51) (($ |#1| $ (-554)) 37)) (-1782 (($ |#1| $ (-554)) NIL) (($ $ $ (-554)) NIL)) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) NIL)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-2457 (($ (-631 |#1|)) 29)) (-1539 ((|#1| $) NIL (|has| (-554) (-836)))) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2441 (($ $ |#1|) 19 (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 40)) (-1609 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) 16)) (-2064 ((|#1| $ (-554) |#1|) NIL) ((|#1| $ (-554)) 33) (($ $ (-1208 (-554))) NIL)) (-3029 (($ $ (-1208 (-554))) 50) (($ $ (-554)) 45)) (-2021 (($ $ (-554)) NIL) (($ $ (-1208 (-554))) NIL)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-3553 (($ $ $ (-554)) 41 (|has| $ (-6 -4374)))) (-1521 (($ $) 32)) (-2927 (((-530) $) NIL (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) NIL)) (-1853 (($ $ $) 42) (($ $ |#1|) 39)) (-4323 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-631 $)) NIL)) (-3075 (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-2563 (((-758) $) 17 (|has| $ (-6 -4373)))))
-(((-510 |#1| |#2|) (-13 (-19 |#1|) (-277 |#1|) (-10 -8 (-15 -2457 ($ (-631 |#1|))) (-15 -2375 ((-758) $)) (-15 -2127 ($ $ (-554))) (-15 -2703 ((-112) (-112))))) (-1195) (-554)) (T -510))
-((-2457 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1195)) (-5 *1 (-510 *3 *4)) (-14 *4 (-554)))) (-2375 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-510 *3 *4)) (-4 *3 (-1195)) (-14 *4 (-554)))) (-2127 (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-510 *3 *4)) (-4 *3 (-1195)) (-14 *4 *2))) (-2703 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-510 *3 *4)) (-4 *3 (-1195)) (-14 *4 (-554)))))
-(-13 (-19 |#1|) (-277 |#1|) (-10 -8 (-15 -2457 ($ (-631 |#1|))) (-15 -2375 ((-758) $)) (-15 -2127 ($ $ (-554))) (-15 -2703 ((-112) (-112)))))
-((-3062 (((-112) $ $) NIL)) (-1503 (((-1117) $) 11)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2364 (((-1117) $) 13)) (-4294 (((-1117) $) 9)) (-3075 (((-848) $) 21) (($ (-1163)) NIL) (((-1163) $) NIL)) (-1658 (((-112) $ $) NIL)))
-(((-511) (-13 (-1065) (-10 -8 (-15 -4294 ((-1117) $)) (-15 -1503 ((-1117) $)) (-15 -2364 ((-1117) $))))) (T -511))
-((-4294 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-511)))) (-1503 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-511)))) (-2364 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-511)))))
-(-13 (-1065) (-10 -8 (-15 -4294 ((-1117) $)) (-15 -1503 ((-1117) $)) (-15 -2364 ((-1117) $))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-3718 (((-112) $) NIL)) (-1924 (((-758)) NIL)) (-1612 (((-571 |#1|) $) NIL) (($ $ (-906)) NIL (|has| (-571 |#1|) (-363)))) (-3205 (((-1168 (-906) (-758)) (-554)) NIL (|has| (-571 |#1|) (-363)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2286 (((-112) $ $) NIL)) (-1508 (((-758)) NIL (|has| (-571 |#1|) (-363)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-571 |#1|) "failed") $) NIL)) (-1668 (((-571 |#1|) $) NIL)) (-1651 (($ (-1241 (-571 |#1|))) NIL)) (-2723 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-571 |#1|) (-363)))) (-3964 (($ $ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3353 (($) NIL (|has| (-571 |#1|) (-363)))) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3157 (($) NIL (|has| (-571 |#1|) (-363)))) (-2754 (((-112) $) NIL (|has| (-571 |#1|) (-363)))) (-4122 (($ $ (-758)) NIL (-3994 (|has| (-571 |#1|) (-143)) (|has| (-571 |#1|) (-363)))) (($ $) NIL (-3994 (|has| (-571 |#1|) (-143)) (|has| (-571 |#1|) (-363))))) (-3289 (((-112) $) NIL)) (-2342 (((-906) $) NIL (|has| (-571 |#1|) (-363))) (((-820 (-906)) $) NIL (-3994 (|has| (-571 |#1|) (-143)) (|has| (-571 |#1|) (-363))))) (-3248 (((-112) $) NIL)) (-3227 (($) NIL (|has| (-571 |#1|) (-363)))) (-2693 (((-112) $) NIL (|has| (-571 |#1|) (-363)))) (-3274 (((-571 |#1|) $) NIL) (($ $ (-906)) NIL (|has| (-571 |#1|) (-363)))) (-3339 (((-3 $ "failed") $) NIL (|has| (-571 |#1|) (-363)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-3361 (((-1154 (-571 |#1|)) $) NIL) (((-1154 $) $ (-906)) NIL (|has| (-571 |#1|) (-363)))) (-3830 (((-906) $) NIL (|has| (-571 |#1|) (-363)))) (-3933 (((-1154 (-571 |#1|)) $) NIL (|has| (-571 |#1|) (-363)))) (-3025 (((-1154 (-571 |#1|)) $) NIL (|has| (-571 |#1|) (-363))) (((-3 (-1154 (-571 |#1|)) "failed") $ $) NIL (|has| (-571 |#1|) (-363)))) (-2300 (($ $ (-1154 (-571 |#1|))) NIL (|has| (-571 |#1|) (-363)))) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-3834 (($) NIL (|has| (-571 |#1|) (-363)) CONST)) (-2717 (($ (-906)) NIL (|has| (-571 |#1|) (-363)))) (-2070 (((-112) $) NIL)) (-2768 (((-1102) $) NIL)) (-4137 (($) NIL (|has| (-571 |#1|) (-363)))) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3725 (((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))) NIL (|has| (-571 |#1|) (-363)))) (-2270 (((-413 $) $) NIL)) (-2365 (((-820 (-906))) NIL) (((-906)) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-3316 (((-758) $) NIL (|has| (-571 |#1|) (-363))) (((-3 (-758) "failed") $ $) NIL (-3994 (|has| (-571 |#1|) (-143)) (|has| (-571 |#1|) (-363))))) (-3330 (((-133)) NIL)) (-1553 (($ $) NIL (|has| (-571 |#1|) (-363))) (($ $ (-758)) NIL (|has| (-571 |#1|) (-363)))) (-3308 (((-820 (-906)) $) NIL) (((-906) $) NIL)) (-4318 (((-1154 (-571 |#1|))) NIL)) (-3944 (($) NIL (|has| (-571 |#1|) (-363)))) (-2288 (($) NIL (|has| (-571 |#1|) (-363)))) (-3656 (((-1241 (-571 |#1|)) $) NIL) (((-675 (-571 |#1|)) (-1241 $)) NIL)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (|has| (-571 |#1|) (-363)))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL) (($ (-402 (-554))) NIL) (($ (-571 |#1|)) NIL)) (-2084 (($ $) NIL (|has| (-571 |#1|) (-363))) (((-3 $ "failed") $) NIL (-3994 (|has| (-571 |#1|) (-143)) (|has| (-571 |#1|) (-363))))) (-2261 (((-758)) NIL)) (-3782 (((-1241 $)) NIL) (((-1241 $) (-906)) NIL)) (-1909 (((-112) $ $) NIL)) (-3536 (((-112) $) NIL)) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1811 (($ $) NIL (|has| (-571 |#1|) (-363))) (($ $ (-758)) NIL (|has| (-571 |#1|) (-363)))) (-1787 (($ $) NIL (|has| (-571 |#1|) (-363))) (($ $ (-758)) NIL (|has| (-571 |#1|) (-363)))) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ $) NIL) (($ $ (-571 |#1|)) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL) (($ $ (-571 |#1|)) NIL) (($ (-571 |#1|) $) NIL)))
-(((-512 |#1| |#2|) (-324 (-571 |#1|)) (-906) (-906)) (T -512))
-NIL
-(-324 (-571 |#1|))
-((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-3019 (((-112) $ (-758)) NIL)) (-1501 ((|#1| $ (-554) (-554) |#1|) 35)) (-2557 (($ $ (-554) |#4|) NIL)) (-1464 (($ $ (-554) |#5|) NIL)) (-4087 (($) NIL T CONST)) (-3519 ((|#4| $ (-554)) NIL)) (-2862 ((|#1| $ (-554) (-554) |#1|) 34)) (-2796 ((|#1| $ (-554) (-554)) 32)) (-2466 (((-631 |#1|) $) NIL)) (-4130 (((-758) $) 28)) (-3180 (($ (-758) (-758) |#1|) 25)) (-4143 (((-758) $) 30)) (-2230 (((-112) $ (-758)) NIL)) (-3985 (((-554) $) 26)) (-1817 (((-554) $) 27)) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2787 (((-554) $) 29)) (-4249 (((-554) $) 31)) (-2849 (($ (-1 |#1| |#1|) $) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) 38 (|has| |#1| (-1082)))) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-2441 (($ $ |#1|) NIL)) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) 14)) (-4240 (($) 16)) (-2064 ((|#1| $ (-554) (-554)) 33) ((|#1| $ (-554) (-554) |#1|) NIL)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1521 (($ $) NIL)) (-3259 ((|#5| $ (-554)) NIL)) (-3075 (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-513 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1195) (-554) (-554) (-368 |#1|) (-368 |#1|)) (T -513))
+((-3207 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-3026 (((-112) $ (-762)) NIL)) (-1532 ((|#1| $ (-558) (-558) |#1|) NIL)) (-1671 (($ $ (-558) (-494 |#1| |#3|)) NIL)) (-1661 (($ $ (-558) (-494 |#1| |#2|)) NIL)) (-1816 (($) NIL T CONST)) (-2427 (((-494 |#1| |#3|) $ (-558)) NIL)) (-1817 ((|#1| $ (-558) (-558) |#1|) NIL)) (-1746 ((|#1| $ (-558) (-558)) NIL)) (-2240 (((-635 |#1|) $) NIL)) (-1967 (((-762) $) NIL)) (-3315 (($ (-762) (-762) |#1|) NIL)) (-1979 (((-762) $) NIL)) (-2986 (((-112) $ (-762)) NIL)) (-2472 (((-558) $) NIL)) (-2448 (((-558) $) NIL)) (-2122 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-2460 (((-558) $) NIL)) (-2438 (((-558) $) NIL)) (-1807 (($ (-1 |#1| |#1|) $) NIL)) (-3167 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL (|has| |#1| (-1087)))) (-2975 (((-1107) $) NIL (|has| |#1| (-1087)))) (-3880 (($ $ |#1|) NIL)) (-3266 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3375 (((-112) $) NIL)) (-2083 (($) NIL)) (-2195 ((|#1| $ (-558) (-558)) NIL) ((|#1| $ (-558) (-558) |#1|) NIL)) (-2988 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1553 (($ $) NIL)) (-2415 (((-494 |#1| |#2|) $ (-558)) NIL)) (-3220 (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-3277 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-495 |#1| |#2| |#3|) (-57 |#1| (-494 |#1| |#3|) (-494 |#1| |#2|)) (-1200) (-558) (-558)) (T -495))
+NIL
+(-57 |#1| (-494 |#1| |#3|) (-494 |#1| |#2|))
+((-3322 (((-635 (-2 (|:| -2660 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|)))) (-2 (|:| -2660 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))) (-762) (-762)) 27)) (-3311 (((-635 (-1159 |#1|)) |#1| (-762) (-762) (-762)) 34)) (-2060 (((-2 (|:| -2660 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))) (-635 |#3|) (-635 (-2 (|:| -2660 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|)))) (-762)) 84)))
+(((-496 |#1| |#2| |#3|) (-10 -7 (-15 -3311 ((-635 (-1159 |#1|)) |#1| (-762) (-762) (-762))) (-15 -3322 ((-635 (-2 (|:| -2660 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|)))) (-2 (|:| -2660 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))) (-762) (-762))) (-15 -2060 ((-2 (|:| -2660 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))) (-635 |#3|) (-635 (-2 (|:| -2660 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|)))) (-762)))) (-348) (-1222 |#1|) (-1222 |#2|)) (T -496))
+((-2060 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 (-2 (|:| -2660 (-679 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-679 *7))))) (-5 *5 (-762)) (-4 *8 (-1222 *7)) (-4 *7 (-1222 *6)) (-4 *6 (-348)) (-5 *2 (-2 (|:| -2660 (-679 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-679 *7)))) (-5 *1 (-496 *6 *7 *8)))) (-3322 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-762)) (-4 *5 (-348)) (-4 *6 (-1222 *5)) (-5 *2 (-635 (-2 (|:| -2660 (-679 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-679 *6))))) (-5 *1 (-496 *5 *6 *7)) (-5 *3 (-2 (|:| -2660 (-679 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-679 *6)))) (-4 *7 (-1222 *6)))) (-3311 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-762)) (-4 *3 (-348)) (-4 *5 (-1222 *3)) (-5 *2 (-635 (-1159 *3))) (-5 *1 (-496 *3 *5 *6)) (-4 *6 (-1222 *5)))))
+(-10 -7 (-15 -3311 ((-635 (-1159 |#1|)) |#1| (-762) (-762) (-762))) (-15 -3322 ((-635 (-2 (|:| -2660 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|)))) (-2 (|:| -2660 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))) (-762) (-762))) (-15 -2060 ((-2 (|:| -2660 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))) (-635 |#3|) (-635 (-2 (|:| -2660 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|)))) (-762))))
+((-3383 (((-2 (|:| -2660 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|))) (-2 (|:| -2660 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|))) (-2 (|:| -2660 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|)))) 62)) (-3334 ((|#1| (-679 |#1|) |#1| (-762)) 25)) (-3353 (((-762) (-762) (-762)) 30)) (-3372 (((-679 |#1|) (-679 |#1|) (-679 |#1|)) 42)) (-3363 (((-679 |#1|) (-679 |#1|) (-679 |#1|) |#1|) 50) (((-679 |#1|) (-679 |#1|) (-679 |#1|)) 47)) (-3344 ((|#1| (-679 |#1|) (-679 |#1|) |#1| (-558)) 29)) (-3835 ((|#1| (-679 |#1|)) 18)))
+(((-497 |#1| |#2| |#3|) (-10 -7 (-15 -3835 (|#1| (-679 |#1|))) (-15 -3334 (|#1| (-679 |#1|) |#1| (-762))) (-15 -3344 (|#1| (-679 |#1|) (-679 |#1|) |#1| (-558))) (-15 -3353 ((-762) (-762) (-762))) (-15 -3363 ((-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -3363 ((-679 |#1|) (-679 |#1|) (-679 |#1|) |#1|)) (-15 -3372 ((-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -3383 ((-2 (|:| -2660 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|))) (-2 (|:| -2660 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|))) (-2 (|:| -2660 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|)))))) (-13 (-306) (-10 -8 (-15 -1380 ((-417 $) $)))) (-1222 |#1|) (-408 |#1| |#2|)) (T -497))
+((-3383 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2660 (-679 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-679 *3)))) (-4 *3 (-13 (-306) (-10 -8 (-15 -1380 ((-417 $) $))))) (-4 *4 (-1222 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-408 *3 *4)))) (-3372 (*1 *2 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-13 (-306) (-10 -8 (-15 -1380 ((-417 $) $))))) (-4 *4 (-1222 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-408 *3 *4)))) (-3363 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-679 *3)) (-4 *3 (-13 (-306) (-10 -8 (-15 -1380 ((-417 $) $))))) (-4 *4 (-1222 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-408 *3 *4)))) (-3363 (*1 *2 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-13 (-306) (-10 -8 (-15 -1380 ((-417 $) $))))) (-4 *4 (-1222 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-408 *3 *4)))) (-3353 (*1 *2 *2 *2) (-12 (-5 *2 (-762)) (-4 *3 (-13 (-306) (-10 -8 (-15 -1380 ((-417 $) $))))) (-4 *4 (-1222 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-408 *3 *4)))) (-3344 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-679 *2)) (-5 *4 (-558)) (-4 *2 (-13 (-306) (-10 -8 (-15 -1380 ((-417 $) $))))) (-4 *5 (-1222 *2)) (-5 *1 (-497 *2 *5 *6)) (-4 *6 (-408 *2 *5)))) (-3334 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-679 *2)) (-5 *4 (-762)) (-4 *2 (-13 (-306) (-10 -8 (-15 -1380 ((-417 $) $))))) (-4 *5 (-1222 *2)) (-5 *1 (-497 *2 *5 *6)) (-4 *6 (-408 *2 *5)))) (-3835 (*1 *2 *3) (-12 (-5 *3 (-679 *2)) (-4 *4 (-1222 *2)) (-4 *2 (-13 (-306) (-10 -8 (-15 -1380 ((-417 $) $))))) (-5 *1 (-497 *2 *4 *5)) (-4 *5 (-408 *2 *4)))))
+(-10 -7 (-15 -3835 (|#1| (-679 |#1|))) (-15 -3334 (|#1| (-679 |#1|) |#1| (-762))) (-15 -3344 (|#1| (-679 |#1|) (-679 |#1|) |#1| (-558))) (-15 -3353 ((-762) (-762) (-762))) (-15 -3363 ((-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -3363 ((-679 |#1|) (-679 |#1|) (-679 |#1|) |#1|)) (-15 -3372 ((-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -3383 ((-2 (|:| -2660 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|))) (-2 (|:| -2660 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|))) (-2 (|:| -2660 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|))))))
+((-3207 (((-112) $ $) NIL)) (-1304 (($ $) NIL)) (-2108 (($ $ $) 35)) (-3869 (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4383)))) (-1538 (((-112) $) NIL (|has| (-112) (-841))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2763 (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-112) (-841)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4383)))) (-2376 (($ $) NIL (|has| (-112) (-841))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3026 (((-112) $ (-762)) NIL)) (-1532 (((-112) $ (-1213 (-558)) (-112)) NIL (|has| $ (-6 -4383))) (((-112) $ (-558) (-112)) 36 (|has| $ (-6 -4383)))) (-4329 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4382)))) (-1816 (($) NIL T CONST)) (-3306 (($ $) NIL (|has| $ (-6 -4383)))) (-4127 (($ $) NIL)) (-2338 (($ $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-112) (-1087))))) (-1539 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4382))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-112) (-1087))))) (-3048 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4382))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4382))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4382)) (|has| (-112) (-1087))))) (-1817 (((-112) $ (-558) (-112)) NIL (|has| $ (-6 -4383)))) (-1746 (((-112) $ (-558)) NIL)) (-1517 (((-558) (-112) $ (-558)) NIL (|has| (-112) (-1087))) (((-558) (-112) $) NIL (|has| (-112) (-1087))) (((-558) (-1 (-112) (-112)) $) NIL)) (-2240 (((-635 (-112)) $) NIL (|has| $ (-6 -4382)))) (-2095 (($ $ $) 33)) (-3304 (($ $) NIL)) (-1279 (($ $ $) NIL)) (-3315 (($ (-762) (-112)) 23)) (-1290 (($ $ $) NIL)) (-2986 (((-112) $ (-762)) NIL)) (-3889 (((-558) $) 8 (|has| (-558) (-841)))) (-3910 (($ $ $) NIL)) (-1677 (($ $ $) NIL (|has| (-112) (-841))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2122 (((-635 (-112)) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-112) (-1087))))) (-3899 (((-558) $) NIL (|has| (-558) (-841)))) (-3542 (($ $ $) NIL)) (-1807 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 (-112) (-112) (-112)) $ $) 30) (($ (-1 (-112) (-112)) $) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL)) (-1861 (($ $ $ (-558)) NIL) (($ (-112) $ (-558)) NIL)) (-3920 (((-635 (-558)) $) NIL)) (-3929 (((-112) (-558) $) NIL)) (-2975 (((-1107) $) NIL)) (-2305 (((-112) $) NIL (|has| (-558) (-841)))) (-4307 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-3880 (($ $ (-112)) NIL (|has| $ (-6 -4383)))) (-3266 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-112)) (-635 (-112))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1087)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1087)))) (($ $ (-293 (-112))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1087)))) (($ $ (-635 (-293 (-112)))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1087))))) (-2381 (((-112) $ $) NIL)) (-3908 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-112) (-1087))))) (-3937 (((-635 (-112)) $) NIL)) (-3375 (((-112) $) NIL)) (-2083 (($) 24)) (-2195 (($ $ (-1213 (-558))) NIL) (((-112) $ (-558)) 18) (((-112) $ (-558) (-112)) NIL)) (-4023 (($ $ (-1213 (-558))) NIL) (($ $ (-558)) NIL)) (-2988 (((-762) (-112) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-112) (-1087)))) (((-762) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4382)))) (-2773 (($ $ $ (-558)) NIL (|has| $ (-6 -4383)))) (-1553 (($ $) 25)) (-3224 (((-534) $) NIL (|has| (-112) (-606 (-534))))) (-3233 (($ (-635 (-112))) NIL)) (-4341 (($ (-635 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3220 (((-853) $) 22)) (-3277 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4382)))) (-2084 (($ $ $) 31)) (-3127 (($ $ $) NIL)) (-2406 (($ $ $) 39)) (-2417 (($ $) 37)) (-2393 (($ $ $) 38)) (-1747 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1683 (((-112) $ $) 26)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 27)) (-3115 (($ $ $) NIL)) (-2755 (((-762) $) 10 (|has| $ (-6 -4382)))))
+(((-498 |#1|) (-13 (-123) (-10 -8 (-15 -2417 ($ $)) (-15 -2406 ($ $ $)) (-15 -2393 ($ $ $)))) (-558)) (T -498))
+((-2417 (*1 *1 *1) (-12 (-5 *1 (-498 *2)) (-14 *2 (-558)))) (-2406 (*1 *1 *1 *1) (-12 (-5 *1 (-498 *2)) (-14 *2 (-558)))) (-2393 (*1 *1 *1 *1) (-12 (-5 *1 (-498 *2)) (-14 *2 (-558)))))
+(-13 (-123) (-10 -8 (-15 -2417 ($ $)) (-15 -2406 ($ $ $)) (-15 -2393 ($ $ $))))
+((-3402 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1159 |#4|)) 34)) (-3392 (((-1159 |#4|) (-1 |#4| |#1|) |#2|) 30) ((|#2| (-1 |#1| |#4|) (-1159 |#4|)) 21)) (-3413 (((-3 (-679 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-679 (-1159 |#4|))) 45)) (-2204 (((-1159 (-1159 |#4|)) (-1 |#4| |#1|) |#3|) 54)))
+(((-499 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3392 (|#2| (-1 |#1| |#4|) (-1159 |#4|))) (-15 -3392 ((-1159 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3402 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1159 |#4|))) (-15 -3413 ((-3 (-679 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-679 (-1159 |#4|)))) (-15 -2204 ((-1159 (-1159 |#4|)) (-1 |#4| |#1|) |#3|))) (-1039) (-1222 |#1|) (-1222 |#2|) (-1039)) (T -499))
+((-2204 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1039)) (-4 *7 (-1039)) (-4 *6 (-1222 *5)) (-5 *2 (-1159 (-1159 *7))) (-5 *1 (-499 *5 *6 *4 *7)) (-4 *4 (-1222 *6)))) (-3413 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-679 (-1159 *8))) (-4 *5 (-1039)) (-4 *8 (-1039)) (-4 *6 (-1222 *5)) (-5 *2 (-679 *6)) (-5 *1 (-499 *5 *6 *7 *8)) (-4 *7 (-1222 *6)))) (-3402 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1159 *7)) (-4 *5 (-1039)) (-4 *7 (-1039)) (-4 *2 (-1222 *5)) (-5 *1 (-499 *5 *2 *6 *7)) (-4 *6 (-1222 *2)))) (-3392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1039)) (-4 *7 (-1039)) (-4 *4 (-1222 *5)) (-5 *2 (-1159 *7)) (-5 *1 (-499 *5 *4 *6 *7)) (-4 *6 (-1222 *4)))) (-3392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1159 *7)) (-4 *5 (-1039)) (-4 *7 (-1039)) (-4 *2 (-1222 *5)) (-5 *1 (-499 *5 *2 *6 *7)) (-4 *6 (-1222 *2)))))
+(-10 -7 (-15 -3392 (|#2| (-1 |#1| |#4|) (-1159 |#4|))) (-15 -3392 ((-1159 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3402 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1159 |#4|))) (-15 -3413 ((-3 (-679 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-679 (-1159 |#4|)))) (-15 -2204 ((-1159 (-1159 |#4|)) (-1 |#4| |#1|) |#3|)))
+((-3207 (((-112) $ $) NIL)) (-3910 (($ $ $) NIL)) (-3542 (($ $ $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-2215 (((-1251) $) 19)) (-2195 (((-1145) $ (-1163)) 23)) (-2646 (((-1251) $) 15)) (-3220 (((-853) $) 21) (($ (-1145)) 20)) (-1747 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1683 (((-112) $ $) 9)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 8)))
+(((-500) (-13 (-841) (-10 -8 (-15 -2195 ((-1145) $ (-1163))) (-15 -2646 ((-1251) $)) (-15 -2215 ((-1251) $)) (-15 -3220 ($ (-1145)))))) (T -500))
+((-2195 (*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1145)) (-5 *1 (-500)))) (-2646 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-500)))) (-2215 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-500)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-500)))))
+(-13 (-841) (-10 -8 (-15 -2195 ((-1145) $ (-1163))) (-15 -2646 ((-1251) $)) (-15 -2215 ((-1251) $)) (-15 -3220 ($ (-1145)))))
+((-3152 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-3132 ((|#1| |#4|) 10)) (-3142 ((|#3| |#4|) 17)))
+(((-501 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3132 (|#1| |#4|)) (-15 -3142 (|#3| |#4|)) (-15 -3152 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-550) (-982 |#1|) (-372 |#1|) (-372 |#2|)) (T -501))
+((-3152 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-982 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-501 *4 *5 *6 *3)) (-4 *6 (-372 *4)) (-4 *3 (-372 *5)))) (-3142 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-982 *4)) (-4 *2 (-372 *4)) (-5 *1 (-501 *4 *5 *2 *3)) (-4 *3 (-372 *5)))) (-3132 (*1 *2 *3) (-12 (-4 *4 (-982 *2)) (-4 *2 (-550)) (-5 *1 (-501 *2 *4 *5 *3)) (-4 *5 (-372 *2)) (-4 *3 (-372 *4)))))
+(-10 -7 (-15 -3132 (|#1| |#4|)) (-15 -3142 (|#3| |#4|)) (-15 -3152 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
+((-3207 (((-112) $ $) NIL)) (-2316 (((-112) $ (-635 |#3|)) 103) (((-112) $) 104)) (-2067 (((-112) $) 147)) (-2236 (($ $ |#4|) 95) (($ $ |#4| (-635 |#3|)) 99)) (-2227 (((-1152 (-635 (-942 |#1|)) (-635 (-293 (-942 |#1|)))) (-635 |#4|)) 140 (|has| |#3| (-606 (-1163))))) (-2306 (($ $ $) 89) (($ $ |#4|) 87)) (-2035 (((-112) $) 146)) (-2277 (($ $) 107)) (-4310 (((-1145) $) NIL)) (-4286 (($ $ $) 81) (($ (-635 $)) 83)) (-2328 (((-112) |#4| $) 106)) (-2340 (((-112) $ $) 70)) (-2268 (($ (-635 |#4|)) 88)) (-2975 (((-1107) $) NIL)) (-2259 (($ (-635 |#4|)) 144)) (-2248 (((-112) $) 145)) (-2960 (($ $) 72)) (-3631 (((-635 |#4|) $) 56)) (-2296 (((-2 (|:| |mval| (-679 |#1|)) (|:| |invmval| (-679 |#1|)) (|:| |genIdeal| $)) $ (-635 |#3|)) NIL)) (-2350 (((-112) |#4| $) 75)) (-2148 (((-558) $ (-635 |#3|)) 108) (((-558) $) 109)) (-3220 (((-853) $) 143) (($ (-635 |#4|)) 84)) (-2286 (($ (-2 (|:| |mval| (-679 |#1|)) (|:| |invmval| (-679 |#1|)) (|:| |genIdeal| $))) NIL)) (-1683 (((-112) $ $) 71)) (-1784 (($ $ $) 91)) (** (($ $ (-762)) 94)) (* (($ $ $) 93)))
+(((-502 |#1| |#2| |#3| |#4|) (-13 (-1087) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-762))) (-15 -1784 ($ $ $)) (-15 -2035 ((-112) $)) (-15 -2067 ((-112) $)) (-15 -2350 ((-112) |#4| $)) (-15 -2340 ((-112) $ $)) (-15 -2328 ((-112) |#4| $)) (-15 -2316 ((-112) $ (-635 |#3|))) (-15 -2316 ((-112) $)) (-15 -4286 ($ $ $)) (-15 -4286 ($ (-635 $))) (-15 -2306 ($ $ $)) (-15 -2306 ($ $ |#4|)) (-15 -2960 ($ $)) (-15 -2296 ((-2 (|:| |mval| (-679 |#1|)) (|:| |invmval| (-679 |#1|)) (|:| |genIdeal| $)) $ (-635 |#3|))) (-15 -2286 ($ (-2 (|:| |mval| (-679 |#1|)) (|:| |invmval| (-679 |#1|)) (|:| |genIdeal| $)))) (-15 -2148 ((-558) $ (-635 |#3|))) (-15 -2148 ((-558) $)) (-15 -2277 ($ $)) (-15 -2268 ($ (-635 |#4|))) (-15 -2259 ($ (-635 |#4|))) (-15 -2248 ((-112) $)) (-15 -3631 ((-635 |#4|) $)) (-15 -3220 ($ (-635 |#4|))) (-15 -2236 ($ $ |#4|)) (-15 -2236 ($ $ |#4| (-635 |#3|))) (IF (|has| |#3| (-606 (-1163))) (-15 -2227 ((-1152 (-635 (-942 |#1|)) (-635 (-293 (-942 |#1|)))) (-635 |#4|))) |%noBranch|))) (-362) (-784) (-841) (-939 |#1| |#2| |#3|)) (T -502))
+((* (*1 *1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-784)) (-4 *4 (-841)) (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-939 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-939 *3 *4 *5)))) (-1784 (*1 *1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-784)) (-4 *4 (-841)) (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-939 *2 *3 *4)))) (-2035 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-112)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-939 *3 *4 *5)))) (-2067 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-112)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-939 *3 *4 *5)))) (-2350 (*1 *2 *3 *1) (-12 (-4 *4 (-362)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112)) (-5 *1 (-502 *4 *5 *6 *3)) (-4 *3 (-939 *4 *5 *6)))) (-2340 (*1 *2 *1 *1) (-12 (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-112)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-939 *3 *4 *5)))) (-2328 (*1 *2 *3 *1) (-12 (-4 *4 (-362)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112)) (-5 *1 (-502 *4 *5 *6 *3)) (-4 *3 (-939 *4 *5 *6)))) (-2316 (*1 *2 *1 *3) (-12 (-5 *3 (-635 *6)) (-4 *6 (-841)) (-4 *4 (-362)) (-4 *5 (-784)) (-5 *2 (-112)) (-5 *1 (-502 *4 *5 *6 *7)) (-4 *7 (-939 *4 *5 *6)))) (-2316 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-112)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-939 *3 *4 *5)))) (-4286 (*1 *1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-784)) (-4 *4 (-841)) (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-939 *2 *3 *4)))) (-4286 (*1 *1 *2) (-12 (-5 *2 (-635 (-502 *3 *4 *5 *6))) (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-939 *3 *4 *5)))) (-2306 (*1 *1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-784)) (-4 *4 (-841)) (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-939 *2 *3 *4)))) (-2306 (*1 *1 *1 *2) (-12 (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-502 *3 *4 *5 *2)) (-4 *2 (-939 *3 *4 *5)))) (-2960 (*1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-784)) (-4 *4 (-841)) (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-939 *2 *3 *4)))) (-2296 (*1 *2 *1 *3) (-12 (-5 *3 (-635 *6)) (-4 *6 (-841)) (-4 *4 (-362)) (-4 *5 (-784)) (-5 *2 (-2 (|:| |mval| (-679 *4)) (|:| |invmval| (-679 *4)) (|:| |genIdeal| (-502 *4 *5 *6 *7)))) (-5 *1 (-502 *4 *5 *6 *7)) (-4 *7 (-939 *4 *5 *6)))) (-2286 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-679 *3)) (|:| |invmval| (-679 *3)) (|:| |genIdeal| (-502 *3 *4 *5 *6)))) (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-939 *3 *4 *5)))) (-2148 (*1 *2 *1 *3) (-12 (-5 *3 (-635 *6)) (-4 *6 (-841)) (-4 *4 (-362)) (-4 *5 (-784)) (-5 *2 (-558)) (-5 *1 (-502 *4 *5 *6 *7)) (-4 *7 (-939 *4 *5 *6)))) (-2148 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-558)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-939 *3 *4 *5)))) (-2277 (*1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-784)) (-4 *4 (-841)) (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-939 *2 *3 *4)))) (-2268 (*1 *1 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-939 *3 *4 *5)) (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-502 *3 *4 *5 *6)))) (-2259 (*1 *1 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-939 *3 *4 *5)) (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-502 *3 *4 *5 *6)))) (-2248 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-112)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-939 *3 *4 *5)))) (-3631 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-635 *6)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-939 *3 *4 *5)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-939 *3 *4 *5)) (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-502 *3 *4 *5 *6)))) (-2236 (*1 *1 *1 *2) (-12 (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-502 *3 *4 *5 *2)) (-4 *2 (-939 *3 *4 *5)))) (-2236 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-635 *6)) (-4 *6 (-841)) (-4 *4 (-362)) (-4 *5 (-784)) (-5 *1 (-502 *4 *5 *6 *2)) (-4 *2 (-939 *4 *5 *6)))) (-2227 (*1 *2 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-939 *4 *5 *6)) (-4 *6 (-606 (-1163))) (-4 *4 (-362)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-1152 (-635 (-942 *4)) (-635 (-293 (-942 *4))))) (-5 *1 (-502 *4 *5 *6 *7)))))
+(-13 (-1087) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-762))) (-15 -1784 ($ $ $)) (-15 -2035 ((-112) $)) (-15 -2067 ((-112) $)) (-15 -2350 ((-112) |#4| $)) (-15 -2340 ((-112) $ $)) (-15 -2328 ((-112) |#4| $)) (-15 -2316 ((-112) $ (-635 |#3|))) (-15 -2316 ((-112) $)) (-15 -4286 ($ $ $)) (-15 -4286 ($ (-635 $))) (-15 -2306 ($ $ $)) (-15 -2306 ($ $ |#4|)) (-15 -2960 ($ $)) (-15 -2296 ((-2 (|:| |mval| (-679 |#1|)) (|:| |invmval| (-679 |#1|)) (|:| |genIdeal| $)) $ (-635 |#3|))) (-15 -2286 ($ (-2 (|:| |mval| (-679 |#1|)) (|:| |invmval| (-679 |#1|)) (|:| |genIdeal| $)))) (-15 -2148 ((-558) $ (-635 |#3|))) (-15 -2148 ((-558) $)) (-15 -2277 ($ $)) (-15 -2268 ($ (-635 |#4|))) (-15 -2259 ($ (-635 |#4|))) (-15 -2248 ((-112) $)) (-15 -3631 ((-635 |#4|) $)) (-15 -3220 ($ (-635 |#4|))) (-15 -2236 ($ $ |#4|)) (-15 -2236 ($ $ |#4| (-635 |#3|))) (IF (|has| |#3| (-606 (-1163))) (-15 -2227 ((-1152 (-635 (-942 |#1|)) (-635 (-293 (-942 |#1|)))) (-635 |#4|))) |%noBranch|)))
+((-2361 (((-112) (-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558))))) 148)) (-2372 (((-112) (-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558))))) 149)) (-2813 (((-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558)))) (-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558))))) 107)) (-3031 (((-112) (-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558))))) NIL)) (-2383 (((-635 (-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558))))) (-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558))))) 151)) (-2398 (((-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558)))) (-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558)))) (-635 (-855 |#1|))) 163)))
+(((-503 |#1| |#2|) (-10 -7 (-15 -2361 ((-112) (-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558)))))) (-15 -2372 ((-112) (-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558)))))) (-15 -3031 ((-112) (-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558)))))) (-15 -2813 ((-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558)))) (-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558)))))) (-15 -2383 ((-635 (-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558))))) (-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558)))))) (-15 -2398 ((-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558)))) (-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558)))) (-635 (-855 |#1|))))) (-635 (-1163)) (-762)) (T -503))
+((-2398 (*1 *2 *2 *3) (-12 (-5 *2 (-502 (-406 (-558)) (-239 *5 (-762)) (-855 *4) (-246 *4 (-406 (-558))))) (-5 *3 (-635 (-855 *4))) (-14 *4 (-635 (-1163))) (-14 *5 (-762)) (-5 *1 (-503 *4 *5)))) (-2383 (*1 *2 *3) (-12 (-14 *4 (-635 (-1163))) (-14 *5 (-762)) (-5 *2 (-635 (-502 (-406 (-558)) (-239 *5 (-762)) (-855 *4) (-246 *4 (-406 (-558)))))) (-5 *1 (-503 *4 *5)) (-5 *3 (-502 (-406 (-558)) (-239 *5 (-762)) (-855 *4) (-246 *4 (-406 (-558))))))) (-2813 (*1 *2 *2) (-12 (-5 *2 (-502 (-406 (-558)) (-239 *4 (-762)) (-855 *3) (-246 *3 (-406 (-558))))) (-14 *3 (-635 (-1163))) (-14 *4 (-762)) (-5 *1 (-503 *3 *4)))) (-3031 (*1 *2 *3) (-12 (-5 *3 (-502 (-406 (-558)) (-239 *5 (-762)) (-855 *4) (-246 *4 (-406 (-558))))) (-14 *4 (-635 (-1163))) (-14 *5 (-762)) (-5 *2 (-112)) (-5 *1 (-503 *4 *5)))) (-2372 (*1 *2 *3) (-12 (-5 *3 (-502 (-406 (-558)) (-239 *5 (-762)) (-855 *4) (-246 *4 (-406 (-558))))) (-14 *4 (-635 (-1163))) (-14 *5 (-762)) (-5 *2 (-112)) (-5 *1 (-503 *4 *5)))) (-2361 (*1 *2 *3) (-12 (-5 *3 (-502 (-406 (-558)) (-239 *5 (-762)) (-855 *4) (-246 *4 (-406 (-558))))) (-14 *4 (-635 (-1163))) (-14 *5 (-762)) (-5 *2 (-112)) (-5 *1 (-503 *4 *5)))))
+(-10 -7 (-15 -2361 ((-112) (-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558)))))) (-15 -2372 ((-112) (-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558)))))) (-15 -3031 ((-112) (-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558)))))) (-15 -2813 ((-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558)))) (-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558)))))) (-15 -2383 ((-635 (-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558))))) (-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558)))))) (-15 -2398 ((-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558)))) (-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558)))) (-635 (-855 |#1|)))))
+((-3207 (((-112) $ $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 11) (((-1163) $) 9)) (-1683 (((-112) $ $) 7)))
+(((-504) (-13 (-1087) (-605 (-1163)))) (T -504))
+NIL
+(-13 (-1087) (-605 (-1163)))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-1816 (($) NIL T CONST)) (-2490 (($ $) NIL)) (-2648 (($ |#1| |#2|) NIL)) (-3167 (($ (-1 |#1| |#1|) $) NIL)) (-2408 ((|#2| $) NIL)) (-2463 ((|#1| $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) NIL)) (-2131 (($) 12 T CONST)) (-1683 (((-112) $ $) NIL)) (-1798 (($ $) 11) (($ $ $) 23)) (-1784 (($ $ $) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 18)))
+(((-505 |#1| |#2|) (-13 (-21) (-507 |#1| |#2|)) (-21) (-841)) (T -505))
+NIL
+(-13 (-21) (-507 |#1| |#2|))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) 12)) (-1816 (($) NIL T CONST)) (-2490 (($ $) 27)) (-2648 (($ |#1| |#2|) 24)) (-3167 (($ (-1 |#1| |#1|) $) 26)) (-2408 ((|#2| $) NIL)) (-2463 ((|#1| $) 28)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) NIL)) (-2131 (($) 10 T CONST)) (-1683 (((-112) $ $) NIL)) (-1784 (($ $ $) 17)) (* (($ (-911) $) NIL) (($ (-762) $) 22)))
+(((-506 |#1| |#2|) (-13 (-23) (-507 |#1| |#2|)) (-23) (-841)) (T -506))
+NIL
+(-13 (-23) (-507 |#1| |#2|))
+((-3207 (((-112) $ $) 7)) (-2490 (($ $) 13)) (-2648 (($ |#1| |#2|) 16)) (-3167 (($ (-1 |#1| |#1|) $) 17)) (-2408 ((|#2| $) 14)) (-2463 ((|#1| $) 15)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11)) (-1683 (((-112) $ $) 6)))
+(((-507 |#1| |#2|) (-139) (-1087) (-841)) (T -507))
+((-3167 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-507 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-841)))) (-2648 (*1 *1 *2 *3) (-12 (-4 *1 (-507 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-841)))) (-2463 (*1 *2 *1) (-12 (-4 *1 (-507 *2 *3)) (-4 *3 (-841)) (-4 *2 (-1087)))) (-2408 (*1 *2 *1) (-12 (-4 *1 (-507 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-841)))) (-2490 (*1 *1 *1) (-12 (-4 *1 (-507 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-841)))))
+(-13 (-1087) (-10 -8 (-15 -3167 ($ (-1 |t#1| |t#1|) $)) (-15 -2648 ($ |t#1| |t#2|)) (-15 -2463 (|t#1| $)) (-15 -2408 (|t#2| $)) (-15 -2490 ($ $))))
+(((-102) . T) ((-605 (-853)) . T) ((-1087) . T))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-1816 (($) NIL T CONST)) (-2490 (($ $) NIL)) (-2648 (($ |#1| |#2|) NIL)) (-3910 (($ $ $) NIL)) (-3542 (($ $ $) NIL)) (-3167 (($ (-1 |#1| |#1|) $) NIL)) (-2408 ((|#2| $) NIL)) (-2463 ((|#1| $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) NIL)) (-2131 (($) NIL T CONST)) (-1747 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1683 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 13)) (-1784 (($ $ $) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL)))
+(((-508 |#1| |#2|) (-13 (-783) (-507 |#1| |#2|)) (-783) (-841)) (T -508))
+NIL
+(-13 (-783) (-507 |#1| |#2|))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2738 (($ $ $) 16)) (-2089 (((-3 $ "failed") $ $) 13)) (-1816 (($) NIL T CONST)) (-2490 (($ $) NIL)) (-2648 (($ |#1| |#2|) NIL)) (-3910 (($ $ $) NIL)) (-3542 (($ $ $) NIL)) (-3167 (($ (-1 |#1| |#1|) $) NIL)) (-2408 ((|#2| $) NIL)) (-2463 ((|#1| $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) NIL)) (-2131 (($) NIL T CONST)) (-1747 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1683 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1784 (($ $ $) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL)))
+(((-509 |#1| |#2|) (-13 (-784) (-507 |#1| |#2|)) (-784) (-841)) (T -509))
+NIL
+(-13 (-784) (-507 |#1| |#2|))
+((-3207 (((-112) $ $) NIL)) (-2490 (($ $) 24)) (-2648 (($ |#1| |#2|) 21)) (-3167 (($ (-1 |#1| |#1|) $) 23)) (-2408 ((|#2| $) 26)) (-2463 ((|#1| $) 25)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 20)) (-1683 (((-112) $ $) 13)))
+(((-510 |#1| |#2|) (-507 |#1| |#2|) (-1087) (-841)) (T -510))
+NIL
+(-507 |#1| |#2|)
+((-2554 (($ $ (-635 |#2|) (-635 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
+(((-511 |#1| |#2| |#3|) (-10 -8 (-15 -2554 (|#1| |#1| |#2| |#3|)) (-15 -2554 (|#1| |#1| (-635 |#2|) (-635 |#3|)))) (-512 |#2| |#3|) (-1087) (-1200)) (T -511))
+NIL
+(-10 -8 (-15 -2554 (|#1| |#1| |#2| |#3|)) (-15 -2554 (|#1| |#1| (-635 |#2|) (-635 |#3|))))
+((-2554 (($ $ (-635 |#1|) (-635 |#2|)) 7) (($ $ |#1| |#2|) 6)))
+(((-512 |#1| |#2|) (-139) (-1087) (-1200)) (T -512))
+((-2554 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 *4)) (-5 *3 (-635 *5)) (-4 *1 (-512 *4 *5)) (-4 *4 (-1087)) (-4 *5 (-1200)))) (-2554 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-512 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-1200)))))
+(-13 (-10 -8 (-15 -2554 ($ $ |t#1| |t#2|)) (-15 -2554 ($ $ (-635 |t#1|) (-635 |t#2|)))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) 16)) (-3456 (((-635 (-2 (|:| |gen| |#1|) (|:| -2573 |#2|))) $) 18)) (-2089 (((-3 $ "failed") $ $) NIL)) (-2276 (((-762) $) NIL)) (-1816 (($) NIL T CONST)) (-3069 (((-3 |#1| "failed") $) NIL)) (-1863 ((|#1| $) NIL)) (-1859 ((|#1| $ (-558)) 23)) (-3868 ((|#2| $ (-558)) 21)) (-3241 (($ (-1 |#1| |#1|) $) 46)) (-3859 (($ (-1 |#2| |#2|) $) 43)) (-4310 (((-1145) $) NIL)) (-3849 (($ $ $) 53 (|has| |#2| (-783)))) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 42) (($ |#1|) NIL)) (-3736 ((|#2| |#1| $) 49)) (-2131 (($) 11 T CONST)) (-1683 (((-112) $ $) 29)) (-1784 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-911) $) NIL) (($ (-762) $) 36) (($ |#2| |#1|) 31)))
+(((-513 |#1| |#2| |#3|) (-322 |#1| |#2|) (-1087) (-130) |#2|) (T -513))
+NIL
+(-322 |#1| |#2|)
+((-3207 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-3869 (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4383)))) (-1538 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-841)))) (-2763 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4383))) (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-841))))) (-2376 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-841)))) (-3026 (((-112) $ (-762)) NIL)) (-2420 (((-112) (-112)) 25)) (-1532 ((|#1| $ (-558) |#1|) 28 (|has| $ (-6 -4383))) ((|#1| $ (-1213 (-558)) |#1|) NIL (|has| $ (-6 -4383)))) (-4207 (($ (-1 (-112) |#1|) $) 52)) (-4329 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-1816 (($) NIL T CONST)) (-3306 (($ $) NIL (|has| $ (-6 -4383)))) (-4127 (($ $) NIL)) (-2820 (($ $) 56 (|has| |#1| (-1087)))) (-2338 (($ $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3395 (($ |#1| $) NIL (|has| |#1| (-1087))) (($ (-1 (-112) |#1|) $) 44)) (-1539 (($ |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-3048 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4382))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4382)))) (-1817 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4383)))) (-1746 ((|#1| $ (-558)) NIL)) (-1517 (((-558) (-1 (-112) |#1|) $) NIL) (((-558) |#1| $) NIL (|has| |#1| (-1087))) (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1087)))) (-2431 (($ $ (-558)) 13)) (-2442 (((-762) $) 11)) (-2240 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-3315 (($ (-762) |#1|) 23)) (-2986 (((-112) $ (-762)) NIL)) (-3889 (((-558) $) 21 (|has| (-558) (-841)))) (-3910 (($ $ $) NIL (|has| |#1| (-841)))) (-1645 (($ $ $) NIL (|has| |#1| (-841))) (($ (-1 (-112) |#1| |#1|) $ $) 35)) (-1677 (($ (-1 (-112) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-841)))) (-2122 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3899 (((-558) $) 20 (|has| (-558) (-841)))) (-3542 (($ $ $) NIL (|has| |#1| (-841)))) (-1807 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL (|has| |#1| (-1087)))) (-4328 (($ $ $ (-558)) 51) (($ |#1| $ (-558)) 37)) (-1861 (($ |#1| $ (-558)) NIL) (($ $ $ (-558)) NIL)) (-3920 (((-635 (-558)) $) NIL)) (-3929 (((-112) (-558) $) NIL)) (-2975 (((-1107) $) NIL (|has| |#1| (-1087)))) (-2454 (($ (-635 |#1|)) 29)) (-2305 ((|#1| $) NIL (|has| (-558) (-841)))) (-4307 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3880 (($ $ |#1|) 19 (|has| $ (-6 -4383)))) (-3266 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) 40)) (-3908 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3937 (((-635 |#1|) $) NIL)) (-3375 (((-112) $) NIL)) (-2083 (($) 16)) (-2195 ((|#1| $ (-558) |#1|) NIL) ((|#1| $ (-558)) 33) (($ $ (-1213 (-558))) NIL)) (-4218 (($ $ (-1213 (-558))) 50) (($ $ (-558)) 45)) (-4023 (($ $ (-558)) NIL) (($ $ (-1213 (-558))) NIL)) (-2988 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-2773 (($ $ $ (-558)) 41 (|has| $ (-6 -4383)))) (-1553 (($ $) 32)) (-3224 (((-534) $) NIL (|has| |#1| (-606 (-534))))) (-3233 (($ (-635 |#1|)) NIL)) (-2392 (($ $ $) 42) (($ $ |#1|) 39)) (-4341 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-635 $)) NIL)) (-3220 (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-3277 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-1747 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1683 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-841)))) (-2755 (((-762) $) 17 (|has| $ (-6 -4382)))))
+(((-514 |#1| |#2|) (-13 (-19 |#1|) (-281 |#1|) (-10 -8 (-15 -2454 ($ (-635 |#1|))) (-15 -2442 ((-762) $)) (-15 -2431 ($ $ (-558))) (-15 -2420 ((-112) (-112))))) (-1200) (-558)) (T -514))
+((-2454 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1200)) (-5 *1 (-514 *3 *4)) (-14 *4 (-558)))) (-2442 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-514 *3 *4)) (-4 *3 (-1200)) (-14 *4 (-558)))) (-2431 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-514 *3 *4)) (-4 *3 (-1200)) (-14 *4 *2))) (-2420 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-514 *3 *4)) (-4 *3 (-1200)) (-14 *4 (-558)))))
+(-13 (-19 |#1|) (-281 |#1|) (-10 -8 (-15 -2454 ($ (-635 |#1|))) (-15 -2442 ((-762) $)) (-15 -2431 ($ $ (-558))) (-15 -2420 ((-112) (-112)))))
+((-3207 (((-112) $ $) NIL)) (-2479 (((-1122) $) 11)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-2466 (((-1122) $) 13)) (-2449 (((-1122) $) 9)) (-3220 (((-853) $) 21) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1683 (((-112) $ $) NIL)))
+(((-515) (-13 (-1070) (-10 -8 (-15 -2449 ((-1122) $)) (-15 -2479 ((-1122) $)) (-15 -2466 ((-1122) $))))) (T -515))
+((-2449 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-515)))) (-2479 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-515)))) (-2466 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-515)))))
+(-13 (-1070) (-10 -8 (-15 -2449 ((-1122) $)) (-15 -2479 ((-1122) $)) (-15 -2466 ((-1122) $))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL)) (-1881 (($ $) NIL)) (-1857 (((-112) $) NIL)) (-4195 (((-112) $) NIL)) (-4160 (((-762)) NIL)) (-1635 (((-575 |#1|) $) NIL) (($ $ (-911)) NIL (|has| (-575 |#1|) (-367)))) (-2163 (((-1173 (-911) (-762)) (-558)) NIL (|has| (-575 |#1|) (-367)))) (-2089 (((-3 $ "failed") $ $) NIL)) (-3465 (($ $) NIL)) (-1380 (((-417 $) $) NIL)) (-3732 (((-112) $ $) NIL)) (-2276 (((-762)) NIL (|has| (-575 |#1|) (-367)))) (-1816 (($) NIL T CONST)) (-3069 (((-3 (-575 |#1|) "failed") $) NIL)) (-1863 (((-575 |#1|) $) NIL)) (-3997 (($ (-1246 (-575 |#1|))) NIL)) (-3367 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-575 |#1|) (-367)))) (-4025 (($ $ $) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-2424 (($) NIL (|has| (-575 |#1|) (-367)))) (-4004 (($ $ $) NIL)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL)) (-2672 (($) NIL (|has| (-575 |#1|) (-367)))) (-2219 (((-112) $) NIL (|has| (-575 |#1|) (-367)))) (-1895 (($ $ (-762)) NIL (-3998 (|has| (-575 |#1|) (-144)) (|has| (-575 |#1|) (-367)))) (($ $) NIL (-3998 (|has| (-575 |#1|) (-144)) (|has| (-575 |#1|) (-367))))) (-3031 (((-112) $) NIL)) (-3449 (((-911) $) NIL (|has| (-575 |#1|) (-367))) (((-824 (-911)) $) NIL (-3998 (|has| (-575 |#1|) (-144)) (|has| (-575 |#1|) (-367))))) (-2035 (((-112) $) NIL)) (-2670 (($) NIL (|has| (-575 |#1|) (-367)))) (-2649 (((-112) $) NIL (|has| (-575 |#1|) (-367)))) (-2615 (((-575 |#1|) $) NIL) (($ $ (-911)) NIL (|has| (-575 |#1|) (-367)))) (-2457 (((-3 $ "failed") $) NIL (|has| (-575 |#1|) (-367)))) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2681 (((-1159 (-575 |#1|)) $) NIL) (((-1159 $) $ (-911)) NIL (|has| (-575 |#1|) (-367)))) (-2637 (((-911) $) NIL (|has| (-575 |#1|) (-367)))) (-3919 (((-1159 (-575 |#1|)) $) NIL (|has| (-575 |#1|) (-367)))) (-3907 (((-1159 (-575 |#1|)) $) NIL (|has| (-575 |#1|) (-367))) (((-3 (-1159 (-575 |#1|)) "failed") $ $) NIL (|has| (-575 |#1|) (-367)))) (-3928 (($ $ (-1159 (-575 |#1|))) NIL (|has| (-575 |#1|) (-367)))) (-2665 (($ $ $) NIL) (($ (-635 $)) NIL)) (-4310 (((-1145) $) NIL)) (-2418 (($ $) NIL)) (-1796 (($) NIL (|has| (-575 |#1|) (-367)) CONST)) (-2851 (($ (-911)) NIL (|has| (-575 |#1|) (-367)))) (-4185 (((-112) $) NIL)) (-2975 (((-1107) $) NIL)) (-4098 (($) NIL (|has| (-575 |#1|) (-367)))) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-2699 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2174 (((-635 (-2 (|:| -2522 (-558)) (|:| -1951 (-558))))) NIL (|has| (-575 |#1|) (-367)))) (-2522 (((-417 $) $) NIL)) (-4172 (((-824 (-911))) NIL) (((-911)) NIL)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3983 (((-3 $ "failed") $ $) NIL)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3722 (((-762) $) NIL)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL)) (-1905 (((-762) $) NIL (|has| (-575 |#1|) (-367))) (((-3 (-762) "failed") $ $) NIL (-3998 (|has| (-575 |#1|) (-144)) (|has| (-575 |#1|) (-367))))) (-2148 (((-133)) NIL)) (-2829 (($ $) NIL (|has| (-575 |#1|) (-367))) (($ $ (-762)) NIL (|has| (-575 |#1|) (-367)))) (-4323 (((-824 (-911)) $) NIL) (((-911) $) NIL)) (-2036 (((-1159 (-575 |#1|))) NIL)) (-3377 (($) NIL (|has| (-575 |#1|) (-367)))) (-2791 (($) NIL (|has| (-575 |#1|) (-367)))) (-4205 (((-1246 (-575 |#1|)) $) NIL) (((-679 (-575 |#1|)) (-1246 $)) NIL)) (-3709 (((-3 (-1246 $) "failed") (-679 $)) NIL (|has| (-575 |#1|) (-367)))) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL) (($ (-406 (-558))) NIL) (($ (-575 |#1|)) NIL)) (-3698 (($ $) NIL (|has| (-575 |#1|) (-367))) (((-3 $ "failed") $) NIL (-3998 (|has| (-575 |#1|) (-144)) (|has| (-575 |#1|) (-367))))) (-2542 (((-762)) NIL)) (-2660 (((-1246 $)) NIL) (((-1246 $) (-911)) NIL)) (-1870 (((-112) $ $) NIL)) (-4206 (((-112) $) NIL)) (-2131 (($) NIL T CONST)) (-2142 (($) NIL T CONST)) (-4148 (($ $) NIL (|has| (-575 |#1|) (-367))) (($ $ (-762)) NIL (|has| (-575 |#1|) (-367)))) (-1866 (($ $) NIL (|has| (-575 |#1|) (-367))) (($ $ (-762)) NIL (|has| (-575 |#1|) (-367)))) (-1683 (((-112) $ $) NIL)) (-1810 (($ $ $) NIL) (($ $ (-575 |#1|)) NIL)) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL) (($ $ (-575 |#1|)) NIL) (($ (-575 |#1|) $) NIL)))
+(((-516 |#1| |#2|) (-328 (-575 |#1|)) (-911) (-911)) (T -516))
+NIL
+(-328 (-575 |#1|))
+((-3207 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-3026 (((-112) $ (-762)) NIL)) (-1532 ((|#1| $ (-558) (-558) |#1|) 35)) (-1671 (($ $ (-558) |#4|) NIL)) (-1661 (($ $ (-558) |#5|) NIL)) (-1816 (($) NIL T CONST)) (-2427 ((|#4| $ (-558)) NIL)) (-1817 ((|#1| $ (-558) (-558) |#1|) 34)) (-1746 ((|#1| $ (-558) (-558)) 32)) (-2240 (((-635 |#1|) $) NIL)) (-1967 (((-762) $) 28)) (-3315 (($ (-762) (-762) |#1|) 25)) (-1979 (((-762) $) 30)) (-2986 (((-112) $ (-762)) NIL)) (-2472 (((-558) $) 26)) (-2448 (((-558) $) 27)) (-2122 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-2460 (((-558) $) 29)) (-2438 (((-558) $) 31)) (-1807 (($ (-1 |#1| |#1|) $) NIL)) (-3167 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) 38 (|has| |#1| (-1087)))) (-2975 (((-1107) $) NIL (|has| |#1| (-1087)))) (-3880 (($ $ |#1|) NIL)) (-3266 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3375 (((-112) $) 14)) (-2083 (($) 16)) (-2195 ((|#1| $ (-558) (-558)) 33) ((|#1| $ (-558) (-558) |#1|) NIL)) (-2988 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1553 (($ $) NIL)) (-2415 ((|#5| $ (-558)) NIL)) (-3220 (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-3277 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-517 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1200) (-558) (-558) (-372 |#1|) (-372 |#1|)) (T -517))
NIL
(-57 |#1| |#4| |#5|)
-((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2794 ((|#1| $) NIL)) (-2350 ((|#1| $) NIL)) (-3387 (($ $) NIL)) (-4233 (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-2722 (($ $ (-554)) 59 (|has| $ (-6 -4374)))) (-4015 (((-112) $) NIL (|has| |#1| (-836))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2576 (($ $) NIL (-12 (|has| $ (-6 -4374)) (|has| |#1| (-836)))) (($ (-1 (-112) |#1| |#1|) $) 57 (|has| $ (-6 -4374)))) (-3303 (($ $) NIL (|has| |#1| (-836))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3019 (((-112) $ (-758)) NIL)) (-2690 ((|#1| $ |#1|) NIL (|has| $ (-6 -4374)))) (-2234 (($ $ $) 23 (|has| $ (-6 -4374)))) (-1825 ((|#1| $ |#1|) NIL (|has| $ (-6 -4374)))) (-3105 ((|#1| $ |#1|) 21 (|has| $ (-6 -4374)))) (-1501 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4374))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4374))) (($ $ "rest" $) 24 (|has| $ (-6 -4374))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4374))) ((|#1| $ (-1208 (-554)) |#1|) NIL (|has| $ (-6 -4374))) ((|#1| $ (-554) |#1|) NIL (|has| $ (-6 -4374)))) (-2923 (($ $ (-631 $)) NIL (|has| $ (-6 -4374)))) (-2220 (($ (-1 (-112) |#1|) $) NIL)) (-1871 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2337 ((|#1| $) NIL)) (-4087 (($) NIL T CONST)) (-3920 (($ $) 28 (|has| $ (-6 -4374)))) (-3799 (($ $) 29)) (-1551 (($ $) 18) (($ $ (-758)) 32)) (-2593 (($ $) 55 (|has| |#1| (-1082)))) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1884 (($ |#1| $) NIL (|has| |#1| (-1082))) (($ (-1 (-112) |#1|) $) NIL)) (-2574 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2862 ((|#1| $ (-554) |#1|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-554)) NIL)) (-3556 (((-112) $) NIL)) (-1484 (((-554) |#1| $ (-554)) NIL (|has| |#1| (-1082))) (((-554) |#1| $) NIL (|has| |#1| (-1082))) (((-554) (-1 (-112) |#1|) $) NIL)) (-2466 (((-631 |#1|) $) 27 (|has| $ (-6 -4373)))) (-3677 (((-631 $) $) NIL)) (-1990 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-3180 (($ (-758) |#1|) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) 31 (|has| (-554) (-836)))) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-3606 (($ $ $) NIL (|has| |#1| (-836))) (($ (-1 (-112) |#1| |#1|) $ $) 58)) (-3717 (($ $ $) NIL (|has| |#1| (-836))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 53 (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2256 (((-554) $) NIL (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2849 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1416 (($ |#1|) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-2306 (((-631 |#1|) $) NIL)) (-3216 (((-112) $) NIL)) (-1613 (((-1140) $) 51 (|has| |#1| (-1082)))) (-2597 ((|#1| $) NIL) (($ $ (-758)) NIL)) (-2045 (($ $ $ (-554)) NIL) (($ |#1| $ (-554)) NIL)) (-1782 (($ $ $ (-554)) NIL) (($ |#1| $ (-554)) NIL)) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) NIL)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-1539 ((|#1| $) 13) (($ $ (-758)) NIL)) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2441 (($ $ |#1|) NIL (|has| $ (-6 -4374)))) (-1381 (((-112) $) NIL)) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 12)) (-1609 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) NIL)) (-3543 (((-112) $) 17)) (-4240 (($) 16)) (-2064 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1208 (-554))) NIL) ((|#1| $ (-554)) NIL) ((|#1| $ (-554) |#1|) NIL)) (-3250 (((-554) $ $) NIL)) (-3029 (($ $ (-1208 (-554))) NIL) (($ $ (-554)) NIL)) (-2021 (($ $ (-1208 (-554))) NIL) (($ $ (-554)) NIL)) (-3008 (((-112) $) 34)) (-1670 (($ $) NIL)) (-2377 (($ $) NIL (|has| $ (-6 -4374)))) (-2797 (((-758) $) NIL)) (-2046 (($ $) 36)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-3553 (($ $ $ (-554)) NIL (|has| $ (-6 -4374)))) (-1521 (($ $) 35)) (-2927 (((-530) $) NIL (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) 26)) (-1853 (($ $ $) 54) (($ $ |#1|) NIL)) (-4323 (($ $ $) NIL) (($ |#1| $) 10) (($ (-631 $)) NIL) (($ $ |#1|) NIL)) (-3075 (((-848) $) 46 (|has| |#1| (-601 (-848))))) (-2461 (((-631 $) $) NIL)) (-1441 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) 48 (|has| |#1| (-1082)))) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-2563 (((-758) $) 9 (|has| $ (-6 -4373)))))
-(((-514 |#1| |#2|) (-652 |#1|) (-1195) (-554)) (T -514))
-NIL
-(-652 |#1|)
-((-2775 ((|#4| |#4|) 27)) (-4186 (((-758) |#4|) 32)) (-4332 (((-758) |#4|) 33)) (-2412 (((-631 |#3|) |#4|) 40 (|has| |#3| (-6 -4374)))) (-2843 (((-3 |#4| "failed") |#4|) 51)) (-1375 ((|#4| |#4|) 44)) (-2870 ((|#1| |#4|) 43)))
-(((-515 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2775 (|#4| |#4|)) (-15 -4186 ((-758) |#4|)) (-15 -4332 ((-758) |#4|)) (IF (|has| |#3| (-6 -4374)) (-15 -2412 ((-631 |#3|) |#4|)) |%noBranch|) (-15 -2870 (|#1| |#4|)) (-15 -1375 (|#4| |#4|)) (-15 -2843 ((-3 |#4| "failed") |#4|))) (-358) (-368 |#1|) (-368 |#1|) (-673 |#1| |#2| |#3|)) (T -515))
-((-2843 (*1 *2 *2) (|partial| -12 (-4 *3 (-358)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *1 (-515 *3 *4 *5 *2)) (-4 *2 (-673 *3 *4 *5)))) (-1375 (*1 *2 *2) (-12 (-4 *3 (-358)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *1 (-515 *3 *4 *5 *2)) (-4 *2 (-673 *3 *4 *5)))) (-2870 (*1 *2 *3) (-12 (-4 *4 (-368 *2)) (-4 *5 (-368 *2)) (-4 *2 (-358)) (-5 *1 (-515 *2 *4 *5 *3)) (-4 *3 (-673 *2 *4 *5)))) (-2412 (*1 *2 *3) (-12 (|has| *6 (-6 -4374)) (-4 *4 (-358)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-5 *2 (-631 *6)) (-5 *1 (-515 *4 *5 *6 *3)) (-4 *3 (-673 *4 *5 *6)))) (-4332 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-5 *2 (-758)) (-5 *1 (-515 *4 *5 *6 *3)) (-4 *3 (-673 *4 *5 *6)))) (-4186 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-5 *2 (-758)) (-5 *1 (-515 *4 *5 *6 *3)) (-4 *3 (-673 *4 *5 *6)))) (-2775 (*1 *2 *2) (-12 (-4 *3 (-358)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *1 (-515 *3 *4 *5 *2)) (-4 *2 (-673 *3 *4 *5)))))
-(-10 -7 (-15 -2775 (|#4| |#4|)) (-15 -4186 ((-758) |#4|)) (-15 -4332 ((-758) |#4|)) (IF (|has| |#3| (-6 -4374)) (-15 -2412 ((-631 |#3|) |#4|)) |%noBranch|) (-15 -2870 (|#1| |#4|)) (-15 -1375 (|#4| |#4|)) (-15 -2843 ((-3 |#4| "failed") |#4|)))
-((-2775 ((|#8| |#4|) 20)) (-2412 (((-631 |#3|) |#4|) 29 (|has| |#7| (-6 -4374)))) (-2843 (((-3 |#8| "failed") |#4|) 23)))
-(((-516 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2775 (|#8| |#4|)) (-15 -2843 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4374)) (-15 -2412 ((-631 |#3|) |#4|)) |%noBranch|)) (-546) (-368 |#1|) (-368 |#1|) (-673 |#1| |#2| |#3|) (-977 |#1|) (-368 |#5|) (-368 |#5|) (-673 |#5| |#6| |#7|)) (T -516))
-((-2412 (*1 *2 *3) (-12 (|has| *9 (-6 -4374)) (-4 *4 (-546)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-4 *7 (-977 *4)) (-4 *8 (-368 *7)) (-4 *9 (-368 *7)) (-5 *2 (-631 *6)) (-5 *1 (-516 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-673 *4 *5 *6)) (-4 *10 (-673 *7 *8 *9)))) (-2843 (*1 *2 *3) (|partial| -12 (-4 *4 (-546)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-4 *7 (-977 *4)) (-4 *2 (-673 *7 *8 *9)) (-5 *1 (-516 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-673 *4 *5 *6)) (-4 *8 (-368 *7)) (-4 *9 (-368 *7)))) (-2775 (*1 *2 *3) (-12 (-4 *4 (-546)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-4 *7 (-977 *4)) (-4 *2 (-673 *7 *8 *9)) (-5 *1 (-516 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-673 *4 *5 *6)) (-4 *8 (-368 *7)) (-4 *9 (-368 *7)))))
-(-10 -7 (-15 -2775 (|#8| |#4|)) (-15 -2843 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4374)) (-15 -2412 ((-631 |#3|) |#4|)) |%noBranch|))
-((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2275 (($ (-758) (-758)) NIL)) (-1846 (($ $ $) NIL)) (-2757 (($ (-590 |#1| |#3|)) NIL) (($ $) NIL)) (-1350 (((-112) $) NIL)) (-2416 (($ $ (-554) (-554)) 12)) (-3705 (($ $ (-554) (-554)) NIL)) (-1458 (($ $ (-554) (-554) (-554) (-554)) NIL)) (-3657 (($ $) NIL)) (-3795 (((-112) $) NIL)) (-3019 (((-112) $ (-758)) NIL)) (-4345 (($ $ (-554) (-554) $) NIL)) (-1501 ((|#1| $ (-554) (-554) |#1|) NIL) (($ $ (-631 (-554)) (-631 (-554)) $) NIL)) (-2557 (($ $ (-554) (-590 |#1| |#3|)) NIL)) (-1464 (($ $ (-554) (-590 |#1| |#2|)) NIL)) (-1475 (($ (-758) |#1|) NIL)) (-4087 (($) NIL T CONST)) (-2775 (($ $) 21 (|has| |#1| (-302)))) (-3519 (((-590 |#1| |#3|) $ (-554)) NIL)) (-4186 (((-758) $) 24 (|has| |#1| (-546)))) (-2862 ((|#1| $ (-554) (-554) |#1|) NIL)) (-2796 ((|#1| $ (-554) (-554)) NIL)) (-2466 (((-631 |#1|) $) NIL)) (-4332 (((-758) $) 26 (|has| |#1| (-546)))) (-2412 (((-631 (-590 |#1| |#2|)) $) 29 (|has| |#1| (-546)))) (-4130 (((-758) $) NIL)) (-3180 (($ (-758) (-758) |#1|) NIL)) (-4143 (((-758) $) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-2326 ((|#1| $) 19 (|has| |#1| (-6 (-4375 "*"))))) (-3985 (((-554) $) 10)) (-1817 (((-554) $) NIL)) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2787 (((-554) $) 11)) (-4249 (((-554) $) NIL)) (-1899 (($ (-631 (-631 |#1|))) NIL)) (-2849 (($ (-1 |#1| |#1|) $) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1679 (((-631 (-631 |#1|)) $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-2843 (((-3 $ "failed") $) 33 (|has| |#1| (-358)))) (-4041 (($ $ $) NIL)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-2441 (($ $ |#1|) NIL)) (-3919 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-546)))) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#1| $ (-554) (-554)) NIL) ((|#1| $ (-554) (-554) |#1|) NIL) (($ $ (-631 (-554)) (-631 (-554))) NIL)) (-3198 (($ (-631 |#1|)) NIL) (($ (-631 $)) NIL)) (-2361 (((-112) $) NIL)) (-2870 ((|#1| $) 17 (|has| |#1| (-6 (-4375 "*"))))) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1521 (($ $) NIL)) (-3259 (((-590 |#1| |#2|) $ (-554)) NIL)) (-3075 (($ (-590 |#1| |#2|)) NIL) (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-4299 (((-112) $) NIL)) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-1744 (($ $ $) NIL) (($ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-758)) NIL) (($ $ (-554)) NIL (|has| |#1| (-358)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-554) $) NIL) (((-590 |#1| |#2|) $ (-590 |#1| |#2|)) NIL) (((-590 |#1| |#3|) (-590 |#1| |#3|) $) NIL)) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-517 |#1| |#2| |#3|) (-673 |#1| (-590 |#1| |#3|) (-590 |#1| |#2|)) (-1034) (-554) (-554)) (T -517))
-NIL
-(-673 |#1| (-590 |#1| |#3|) (-590 |#1| |#2|))
-((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-3351 (((-631 (-1194)) $) 13)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 20) (($ (-1163)) NIL) (((-1163) $) NIL) (($ (-631 (-1194))) 11)) (-1658 (((-112) $ $) NIL)))
-(((-518) (-13 (-1065) (-10 -8 (-15 -3075 ($ (-631 (-1194)))) (-15 -3351 ((-631 (-1194)) $))))) (T -518))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-631 (-1194))) (-5 *1 (-518)))) (-3351 (*1 *2 *1) (-12 (-5 *2 (-631 (-1194))) (-5 *1 (-518)))))
-(-13 (-1065) (-10 -8 (-15 -3075 ($ (-631 (-1194)))) (-15 -3351 ((-631 (-1194)) $))))
-((-3062 (((-112) $ $) NIL)) (-1309 (((-1117) $) 14)) (-1613 (((-1140) $) NIL)) (-4320 (((-1158) $) 11)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 21) (($ (-1163)) NIL) (((-1163) $) NIL)) (-1658 (((-112) $ $) NIL)))
-(((-519) (-13 (-1065) (-10 -8 (-15 -4320 ((-1158) $)) (-15 -1309 ((-1117) $))))) (T -519))
-((-4320 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-519)))) (-1309 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-519)))))
-(-13 (-1065) (-10 -8 (-15 -4320 ((-1158) $)) (-15 -1309 ((-1117) $))))
-((-4120 (((-1102) $ (-128)) 17)))
-(((-520 |#1|) (-10 -8 (-15 -4120 ((-1102) |#1| (-128)))) (-521)) (T -520))
-NIL
-(-10 -8 (-15 -4120 ((-1102) |#1| (-128))))
-((-4120 (((-1102) $ (-128)) 7)) (-2614 (((-1102) $) 8)) (-3745 (($ $) 6)))
-(((-521) (-138)) (T -521))
-((-2614 (*1 *2 *1) (-12 (-4 *1 (-521)) (-5 *2 (-1102)))) (-4120 (*1 *2 *1 *3) (-12 (-4 *1 (-521)) (-5 *3 (-128)) (-5 *2 (-1102)))))
-(-13 (-171) (-10 -8 (-15 -2614 ((-1102) $)) (-15 -4120 ((-1102) $ (-128)))))
-(((-171) . T))
-((-1955 (((-1154 |#1|) (-758)) 76)) (-1612 (((-1241 |#1|) (-1241 |#1|) (-906)) 69)) (-1940 (((-1246) (-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102))))) |#1|) 84)) (-1771 (((-1241 |#1|) (-1241 |#1|) (-758)) 36)) (-3353 (((-1241 |#1|) (-906)) 71)) (-3651 (((-1241 |#1|) (-1241 |#1|) (-554)) 24)) (-2598 (((-1154 |#1|) (-1241 |#1|)) 77)) (-3227 (((-1241 |#1|) (-906)) 95)) (-2693 (((-112) (-1241 |#1|)) 80)) (-3274 (((-1241 |#1|) (-1241 |#1|) (-906)) 62)) (-3361 (((-1154 |#1|) (-1241 |#1|)) 89)) (-3830 (((-906) (-1241 |#1|)) 59)) (-2483 (((-1241 |#1|) (-1241 |#1|)) 30)) (-2717 (((-1241 |#1|) (-906) (-906)) 97)) (-1394 (((-1241 |#1|) (-1241 |#1|) (-1102) (-1102)) 23)) (-3020 (((-1241 |#1|) (-1241 |#1|) (-758) (-1102)) 37)) (-3782 (((-1241 (-1241 |#1|)) (-906)) 94)) (-1752 (((-1241 |#1|) (-1241 |#1|) (-1241 |#1|)) 81)) (** (((-1241 |#1|) (-1241 |#1|) (-554)) 45)) (* (((-1241 |#1|) (-1241 |#1|) (-1241 |#1|)) 25)))
-(((-522 |#1|) (-10 -7 (-15 -1940 ((-1246) (-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102))))) |#1|)) (-15 -3353 ((-1241 |#1|) (-906))) (-15 -2717 ((-1241 |#1|) (-906) (-906))) (-15 -2598 ((-1154 |#1|) (-1241 |#1|))) (-15 -1955 ((-1154 |#1|) (-758))) (-15 -3020 ((-1241 |#1|) (-1241 |#1|) (-758) (-1102))) (-15 -1771 ((-1241 |#1|) (-1241 |#1|) (-758))) (-15 -1394 ((-1241 |#1|) (-1241 |#1|) (-1102) (-1102))) (-15 -3651 ((-1241 |#1|) (-1241 |#1|) (-554))) (-15 ** ((-1241 |#1|) (-1241 |#1|) (-554))) (-15 * ((-1241 |#1|) (-1241 |#1|) (-1241 |#1|))) (-15 -1752 ((-1241 |#1|) (-1241 |#1|) (-1241 |#1|))) (-15 -3274 ((-1241 |#1|) (-1241 |#1|) (-906))) (-15 -1612 ((-1241 |#1|) (-1241 |#1|) (-906))) (-15 -2483 ((-1241 |#1|) (-1241 |#1|))) (-15 -3830 ((-906) (-1241 |#1|))) (-15 -2693 ((-112) (-1241 |#1|))) (-15 -3782 ((-1241 (-1241 |#1|)) (-906))) (-15 -3227 ((-1241 |#1|) (-906))) (-15 -3361 ((-1154 |#1|) (-1241 |#1|)))) (-344)) (T -522))
-((-3361 (*1 *2 *3) (-12 (-5 *3 (-1241 *4)) (-4 *4 (-344)) (-5 *2 (-1154 *4)) (-5 *1 (-522 *4)))) (-3227 (*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-1241 *4)) (-5 *1 (-522 *4)) (-4 *4 (-344)))) (-3782 (*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-1241 (-1241 *4))) (-5 *1 (-522 *4)) (-4 *4 (-344)))) (-2693 (*1 *2 *3) (-12 (-5 *3 (-1241 *4)) (-4 *4 (-344)) (-5 *2 (-112)) (-5 *1 (-522 *4)))) (-3830 (*1 *2 *3) (-12 (-5 *3 (-1241 *4)) (-4 *4 (-344)) (-5 *2 (-906)) (-5 *1 (-522 *4)))) (-2483 (*1 *2 *2) (-12 (-5 *2 (-1241 *3)) (-4 *3 (-344)) (-5 *1 (-522 *3)))) (-1612 (*1 *2 *2 *3) (-12 (-5 *2 (-1241 *4)) (-5 *3 (-906)) (-4 *4 (-344)) (-5 *1 (-522 *4)))) (-3274 (*1 *2 *2 *3) (-12 (-5 *2 (-1241 *4)) (-5 *3 (-906)) (-4 *4 (-344)) (-5 *1 (-522 *4)))) (-1752 (*1 *2 *2 *2) (-12 (-5 *2 (-1241 *3)) (-4 *3 (-344)) (-5 *1 (-522 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1241 *3)) (-4 *3 (-344)) (-5 *1 (-522 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1241 *4)) (-5 *3 (-554)) (-4 *4 (-344)) (-5 *1 (-522 *4)))) (-3651 (*1 *2 *2 *3) (-12 (-5 *2 (-1241 *4)) (-5 *3 (-554)) (-4 *4 (-344)) (-5 *1 (-522 *4)))) (-1394 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1241 *4)) (-5 *3 (-1102)) (-4 *4 (-344)) (-5 *1 (-522 *4)))) (-1771 (*1 *2 *2 *3) (-12 (-5 *2 (-1241 *4)) (-5 *3 (-758)) (-4 *4 (-344)) (-5 *1 (-522 *4)))) (-3020 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1241 *5)) (-5 *3 (-758)) (-5 *4 (-1102)) (-4 *5 (-344)) (-5 *1 (-522 *5)))) (-1955 (*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1154 *4)) (-5 *1 (-522 *4)) (-4 *4 (-344)))) (-2598 (*1 *2 *3) (-12 (-5 *3 (-1241 *4)) (-4 *4 (-344)) (-5 *2 (-1154 *4)) (-5 *1 (-522 *4)))) (-2717 (*1 *2 *3 *3) (-12 (-5 *3 (-906)) (-5 *2 (-1241 *4)) (-5 *1 (-522 *4)) (-4 *4 (-344)))) (-3353 (*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-1241 *4)) (-5 *1 (-522 *4)) (-4 *4 (-344)))) (-1940 (*1 *2 *3 *4) (-12 (-5 *3 (-1241 (-631 (-2 (|:| -2794 *4) (|:| -2717 (-1102)))))) (-4 *4 (-344)) (-5 *2 (-1246)) (-5 *1 (-522 *4)))))
-(-10 -7 (-15 -1940 ((-1246) (-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102))))) |#1|)) (-15 -3353 ((-1241 |#1|) (-906))) (-15 -2717 ((-1241 |#1|) (-906) (-906))) (-15 -2598 ((-1154 |#1|) (-1241 |#1|))) (-15 -1955 ((-1154 |#1|) (-758))) (-15 -3020 ((-1241 |#1|) (-1241 |#1|) (-758) (-1102))) (-15 -1771 ((-1241 |#1|) (-1241 |#1|) (-758))) (-15 -1394 ((-1241 |#1|) (-1241 |#1|) (-1102) (-1102))) (-15 -3651 ((-1241 |#1|) (-1241 |#1|) (-554))) (-15 ** ((-1241 |#1|) (-1241 |#1|) (-554))) (-15 * ((-1241 |#1|) (-1241 |#1|) (-1241 |#1|))) (-15 -1752 ((-1241 |#1|) (-1241 |#1|) (-1241 |#1|))) (-15 -3274 ((-1241 |#1|) (-1241 |#1|) (-906))) (-15 -1612 ((-1241 |#1|) (-1241 |#1|) (-906))) (-15 -2483 ((-1241 |#1|) (-1241 |#1|))) (-15 -3830 ((-906) (-1241 |#1|))) (-15 -2693 ((-112) (-1241 |#1|))) (-15 -3782 ((-1241 (-1241 |#1|)) (-906))) (-15 -3227 ((-1241 |#1|) (-906))) (-15 -3361 ((-1154 |#1|) (-1241 |#1|))))
-((-4120 (((-1102) $ (-128)) NIL)) (-2614 (((-1102) $) 21)) (-2890 (((-1102) $ (-1102)) 25)) (-1484 (((-1102) $) 24)) (-2993 (((-112) $) 19)) (-2569 (($ (-383)) 12) (($ (-1140)) 14)) (-2814 (((-112) $) 22)) (-3075 (((-848) $) 28)) (-3745 (($ $) 23)))
-(((-523) (-13 (-521) (-601 (-848)) (-10 -8 (-15 -2569 ($ (-383))) (-15 -2569 ($ (-1140))) (-15 -2814 ((-112) $)) (-15 -2993 ((-112) $)) (-15 -1484 ((-1102) $)) (-15 -2890 ((-1102) $ (-1102)))))) (T -523))
-((-2569 (*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-523)))) (-2569 (*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-523)))) (-2814 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-523)))) (-2993 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-523)))) (-1484 (*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-523)))) (-2890 (*1 *2 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-523)))))
-(-13 (-521) (-601 (-848)) (-10 -8 (-15 -2569 ($ (-383))) (-15 -2569 ($ (-1140))) (-15 -2814 ((-112) $)) (-15 -2993 ((-112) $)) (-15 -1484 ((-1102) $)) (-15 -2890 ((-1102) $ (-1102)))))
-((-1831 (((-1 |#1| |#1|) |#1|) 11)) (-1928 (((-1 |#1| |#1|)) 10)))
-(((-524 |#1|) (-10 -7 (-15 -1928 ((-1 |#1| |#1|))) (-15 -1831 ((-1 |#1| |#1|) |#1|))) (-13 (-713) (-25))) (T -524))
-((-1831 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-524 *3)) (-4 *3 (-13 (-713) (-25))))) (-1928 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-524 *3)) (-4 *3 (-13 (-713) (-25))))))
-(-10 -7 (-15 -1928 ((-1 |#1| |#1|))) (-15 -1831 ((-1 |#1| |#1|) |#1|)))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1349 (($ $ $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-2550 (($ $) NIL)) (-2383 (($ (-758) |#1|) NIL)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-2879 (($ (-1 (-758) (-758)) $) NIL)) (-1975 ((|#1| $) NIL)) (-2530 (((-758) $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 20)) (-2004 (($) NIL T CONST)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) NIL)) (-1735 (($ $ $) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL)))
-(((-525 |#1|) (-13 (-780) (-503 (-758) |#1|)) (-836)) (T -525))
-NIL
-(-13 (-780) (-503 (-758) |#1|))
-((-1390 (((-631 |#2|) (-1154 |#1|) |#3|) 83)) (-4021 (((-631 (-2 (|:| |outval| |#2|) (|:| |outmult| (-554)) (|:| |outvect| (-631 (-675 |#2|))))) (-675 |#1|) |#3| (-1 (-413 (-1154 |#1|)) (-1154 |#1|))) 100)) (-1296 (((-1154 |#1|) (-675 |#1|)) 95)))
-(((-526 |#1| |#2| |#3|) (-10 -7 (-15 -1296 ((-1154 |#1|) (-675 |#1|))) (-15 -1390 ((-631 |#2|) (-1154 |#1|) |#3|)) (-15 -4021 ((-631 (-2 (|:| |outval| |#2|) (|:| |outmult| (-554)) (|:| |outvect| (-631 (-675 |#2|))))) (-675 |#1|) |#3| (-1 (-413 (-1154 |#1|)) (-1154 |#1|))))) (-358) (-358) (-13 (-358) (-834))) (T -526))
-((-4021 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-675 *6)) (-5 *5 (-1 (-413 (-1154 *6)) (-1154 *6))) (-4 *6 (-358)) (-5 *2 (-631 (-2 (|:| |outval| *7) (|:| |outmult| (-554)) (|:| |outvect| (-631 (-675 *7)))))) (-5 *1 (-526 *6 *7 *4)) (-4 *7 (-358)) (-4 *4 (-13 (-358) (-834))))) (-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1154 *5)) (-4 *5 (-358)) (-5 *2 (-631 *6)) (-5 *1 (-526 *5 *6 *4)) (-4 *6 (-358)) (-4 *4 (-13 (-358) (-834))))) (-1296 (*1 *2 *3) (-12 (-5 *3 (-675 *4)) (-4 *4 (-358)) (-5 *2 (-1154 *4)) (-5 *1 (-526 *4 *5 *6)) (-4 *5 (-358)) (-4 *6 (-13 (-358) (-834))))))
-(-10 -7 (-15 -1296 ((-1154 |#1|) (-675 |#1|))) (-15 -1390 ((-631 |#2|) (-1154 |#1|) |#3|)) (-15 -4021 ((-631 (-2 (|:| |outval| |#2|) (|:| |outmult| (-554)) (|:| |outvect| (-631 (-675 |#2|))))) (-675 |#1|) |#3| (-1 (-413 (-1154 |#1|)) (-1154 |#1|)))))
-((-2077 (((-1102) $ (-128)) 25)) (-3451 (((-1102) $ (-129)) 27)) (-4120 (((-1102) $ (-128)) 23)) (-2614 (((-1102) $) 24)) (-4203 (((-112) $) 17)) (-3769 (((-3 $ "failed") (-569) (-939)) 10) (((-3 $ "failed") (-485) (-939)) 13)) (-3075 (((-848) $) 35)) (-3745 (($ $) 22)))
-(((-527) (-13 (-754 (-569)) (-601 (-848)) (-10 -8 (-15 -3769 ((-3 $ "failed") (-485) (-939)))))) (T -527))
-((-3769 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-485)) (-5 *3 (-939)) (-5 *1 (-527)))))
-(-13 (-754 (-569)) (-601 (-848)) (-10 -8 (-15 -3769 ((-3 $ "failed") (-485) (-939)))))
-((-1701 (((-829 (-554))) 12)) (-1713 (((-829 (-554))) 14)) (-2855 (((-820 (-554))) 9)))
-(((-528) (-10 -7 (-15 -2855 ((-820 (-554)))) (-15 -1701 ((-829 (-554)))) (-15 -1713 ((-829 (-554)))))) (T -528))
-((-1713 (*1 *2) (-12 (-5 *2 (-829 (-554))) (-5 *1 (-528)))) (-1701 (*1 *2) (-12 (-5 *2 (-829 (-554))) (-5 *1 (-528)))) (-2855 (*1 *2) (-12 (-5 *2 (-820 (-554))) (-5 *1 (-528)))))
-(-10 -7 (-15 -2855 ((-820 (-554)))) (-15 -1701 ((-829 (-554)))) (-15 -1713 ((-829 (-554)))))
-((-4346 (((-530) (-1158)) 15)) (-2936 ((|#1| (-530)) 20)))
-(((-529 |#1|) (-10 -7 (-15 -4346 ((-530) (-1158))) (-15 -2936 (|#1| (-530)))) (-1195)) (T -529))
-((-2936 (*1 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-529 *2)) (-4 *2 (-1195)))) (-4346 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-530)) (-5 *1 (-529 *4)) (-4 *4 (-1195)))))
-(-10 -7 (-15 -4346 ((-530) (-1158))) (-15 -2936 (|#1| (-530))))
-((-3062 (((-112) $ $) NIL)) (-4046 (((-1140) $) 47)) (-3237 (((-112) $) 43)) (-3450 (((-1158) $) 44)) (-3117 (((-112) $) 41)) (-3942 (((-1140) $) 42)) (-2025 (($ (-1140)) 48)) (-3072 (((-112) $) NIL)) (-1703 (((-112) $) NIL)) (-3207 (((-112) $) NIL)) (-1613 (((-1140) $) NIL)) (-1607 (($ $ (-631 (-1158))) 20)) (-2936 (((-52) $) 22)) (-1289 (((-112) $) NIL)) (-3476 (((-554) $) NIL)) (-2768 (((-1102) $) NIL)) (-2367 (($ $ (-631 (-1158)) (-1158)) 60)) (-2947 (((-112) $) NIL)) (-3302 (((-221) $) NIL)) (-2249 (($ $) 38)) (-1533 (((-848) $) NIL)) (-4329 (((-112) $ $) NIL)) (-2064 (($ $ (-554)) NIL) (($ $ (-631 (-554))) NIL)) (-2344 (((-631 $) $) 28)) (-2154 (((-1158) (-631 $)) 49)) (-2927 (($ (-1140)) NIL) (($ (-1158)) 18) (($ (-554)) 8) (($ (-221)) 25) (($ (-848)) NIL) (($ (-631 $)) 56) (((-1086) $) 11) (($ (-1086)) 12)) (-1356 (((-1158) (-1158) (-631 $)) 52)) (-3075 (((-848) $) 46)) (-1438 (($ $) 51)) (-1427 (($ $) 50)) (-1522 (($ $ (-631 $)) 57)) (-3967 (((-112) $) 27)) (-2004 (($) 9 T CONST)) (-2014 (($) 10 T CONST)) (-1658 (((-112) $ $) 61)) (-1752 (($ $ $) 66)) (-1735 (($ $ $) 62)) (** (($ $ (-758)) 65) (($ $ (-554)) 64)) (* (($ $ $) 63)) (-2563 (((-554) $) NIL)))
-(((-530) (-13 (-1085 (-1140) (-1158) (-554) (-221) (-848)) (-602 (-1086)) (-10 -8 (-15 -2936 ((-52) $)) (-15 -2927 ($ (-1086))) (-15 -1522 ($ $ (-631 $))) (-15 -2367 ($ $ (-631 (-1158)) (-1158))) (-15 -1607 ($ $ (-631 (-1158)))) (-15 -1735 ($ $ $)) (-15 * ($ $ $)) (-15 -1752 ($ $ $)) (-15 ** ($ $ (-758))) (-15 ** ($ $ (-554))) (-15 0 ($) -2397) (-15 1 ($) -2397) (-15 -2249 ($ $)) (-15 -4046 ((-1140) $)) (-15 -2025 ($ (-1140))) (-15 -2154 ((-1158) (-631 $))) (-15 -1356 ((-1158) (-1158) (-631 $)))))) (T -530))
-((-2936 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-530)))) (-2927 (*1 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-530)))) (-1522 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-530))) (-5 *1 (-530)))) (-2367 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 (-1158))) (-5 *3 (-1158)) (-5 *1 (-530)))) (-1607 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-1158))) (-5 *1 (-530)))) (-1735 (*1 *1 *1 *1) (-5 *1 (-530))) (* (*1 *1 *1 *1) (-5 *1 (-530))) (-1752 (*1 *1 *1 *1) (-5 *1 (-530))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-530)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-530)))) (-2004 (*1 *1) (-5 *1 (-530))) (-2014 (*1 *1) (-5 *1 (-530))) (-2249 (*1 *1 *1) (-5 *1 (-530))) (-4046 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-530)))) (-2025 (*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-530)))) (-2154 (*1 *2 *3) (-12 (-5 *3 (-631 (-530))) (-5 *2 (-1158)) (-5 *1 (-530)))) (-1356 (*1 *2 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-631 (-530))) (-5 *1 (-530)))))
-(-13 (-1085 (-1140) (-1158) (-554) (-221) (-848)) (-602 (-1086)) (-10 -8 (-15 -2936 ((-52) $)) (-15 -2927 ($ (-1086))) (-15 -1522 ($ $ (-631 $))) (-15 -2367 ($ $ (-631 (-1158)) (-1158))) (-15 -1607 ($ $ (-631 (-1158)))) (-15 -1735 ($ $ $)) (-15 * ($ $ $)) (-15 -1752 ($ $ $)) (-15 ** ($ $ (-758))) (-15 ** ($ $ (-554))) (-15 (-2004) ($) -2397) (-15 (-2014) ($) -2397) (-15 -2249 ($ $)) (-15 -4046 ((-1140) $)) (-15 -2025 ($ (-1140))) (-15 -2154 ((-1158) (-631 $))) (-15 -1356 ((-1158) (-1158) (-631 $)))))
-((-3292 ((|#2| |#2|) 17)) (-4260 ((|#2| |#2|) 13)) (-4263 ((|#2| |#2| (-554) (-554)) 20)) (-2539 ((|#2| |#2|) 15)))
-(((-531 |#1| |#2|) (-10 -7 (-15 -4260 (|#2| |#2|)) (-15 -2539 (|#2| |#2|)) (-15 -3292 (|#2| |#2|)) (-15 -4263 (|#2| |#2| (-554) (-554)))) (-13 (-546) (-145)) (-1232 |#1|)) (T -531))
-((-4263 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-554)) (-4 *4 (-13 (-546) (-145))) (-5 *1 (-531 *4 *2)) (-4 *2 (-1232 *4)))) (-3292 (*1 *2 *2) (-12 (-4 *3 (-13 (-546) (-145))) (-5 *1 (-531 *3 *2)) (-4 *2 (-1232 *3)))) (-2539 (*1 *2 *2) (-12 (-4 *3 (-13 (-546) (-145))) (-5 *1 (-531 *3 *2)) (-4 *2 (-1232 *3)))) (-4260 (*1 *2 *2) (-12 (-4 *3 (-13 (-546) (-145))) (-5 *1 (-531 *3 *2)) (-4 *2 (-1232 *3)))))
-(-10 -7 (-15 -4260 (|#2| |#2|)) (-15 -2539 (|#2| |#2|)) (-15 -3292 (|#2| |#2|)) (-15 -4263 (|#2| |#2| (-554) (-554))))
-((-3132 (((-631 (-289 (-937 |#2|))) (-631 |#2|) (-631 (-1158))) 32)) (-1614 (((-631 |#2|) (-937 |#1|) |#3|) 53) (((-631 |#2|) (-1154 |#1|) |#3|) 52)) (-1772 (((-631 (-631 |#2|)) (-631 (-937 |#1|)) (-631 (-937 |#1|)) (-631 (-1158)) |#3|) 88)))
-(((-532 |#1| |#2| |#3|) (-10 -7 (-15 -1614 ((-631 |#2|) (-1154 |#1|) |#3|)) (-15 -1614 ((-631 |#2|) (-937 |#1|) |#3|)) (-15 -1772 ((-631 (-631 |#2|)) (-631 (-937 |#1|)) (-631 (-937 |#1|)) (-631 (-1158)) |#3|)) (-15 -3132 ((-631 (-289 (-937 |#2|))) (-631 |#2|) (-631 (-1158))))) (-446) (-358) (-13 (-358) (-834))) (T -532))
-((-3132 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *6)) (-5 *4 (-631 (-1158))) (-4 *6 (-358)) (-5 *2 (-631 (-289 (-937 *6)))) (-5 *1 (-532 *5 *6 *7)) (-4 *5 (-446)) (-4 *7 (-13 (-358) (-834))))) (-1772 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-631 (-937 *6))) (-5 *4 (-631 (-1158))) (-4 *6 (-446)) (-5 *2 (-631 (-631 *7))) (-5 *1 (-532 *6 *7 *5)) (-4 *7 (-358)) (-4 *5 (-13 (-358) (-834))))) (-1614 (*1 *2 *3 *4) (-12 (-5 *3 (-937 *5)) (-4 *5 (-446)) (-5 *2 (-631 *6)) (-5 *1 (-532 *5 *6 *4)) (-4 *6 (-358)) (-4 *4 (-13 (-358) (-834))))) (-1614 (*1 *2 *3 *4) (-12 (-5 *3 (-1154 *5)) (-4 *5 (-446)) (-5 *2 (-631 *6)) (-5 *1 (-532 *5 *6 *4)) (-4 *6 (-358)) (-4 *4 (-13 (-358) (-834))))))
-(-10 -7 (-15 -1614 ((-631 |#2|) (-1154 |#1|) |#3|)) (-15 -1614 ((-631 |#2|) (-937 |#1|) |#3|)) (-15 -1772 ((-631 (-631 |#2|)) (-631 (-937 |#1|)) (-631 (-937 |#1|)) (-631 (-1158)) |#3|)) (-15 -3132 ((-631 (-289 (-937 |#2|))) (-631 |#2|) (-631 (-1158)))))
-((-1877 ((|#2| |#2| |#1|) 17)) (-3643 ((|#2| (-631 |#2|)) 27)) (-4212 ((|#2| (-631 |#2|)) 46)))
-(((-533 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3643 (|#2| (-631 |#2|))) (-15 -4212 (|#2| (-631 |#2|))) (-15 -1877 (|#2| |#2| |#1|))) (-302) (-1217 |#1|) |#1| (-1 |#1| |#1| (-758))) (T -533))
-((-1877 (*1 *2 *2 *3) (-12 (-4 *3 (-302)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-758))) (-5 *1 (-533 *3 *2 *4 *5)) (-4 *2 (-1217 *3)))) (-4212 (*1 *2 *3) (-12 (-5 *3 (-631 *2)) (-4 *2 (-1217 *4)) (-5 *1 (-533 *4 *2 *5 *6)) (-4 *4 (-302)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-758))))) (-3643 (*1 *2 *3) (-12 (-5 *3 (-631 *2)) (-4 *2 (-1217 *4)) (-5 *1 (-533 *4 *2 *5 *6)) (-4 *4 (-302)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-758))))))
-(-10 -7 (-15 -3643 (|#2| (-631 |#2|))) (-15 -4212 (|#2| (-631 |#2|))) (-15 -1877 (|#2| |#2| |#1|)))
-((-2270 (((-413 (-1154 |#4|)) (-1154 |#4|) (-1 (-413 (-1154 |#3|)) (-1154 |#3|))) 79) (((-413 |#4|) |#4| (-1 (-413 (-1154 |#3|)) (-1154 |#3|))) 168)))
-(((-534 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2270 ((-413 |#4|) |#4| (-1 (-413 (-1154 |#3|)) (-1154 |#3|)))) (-15 -2270 ((-413 (-1154 |#4|)) (-1154 |#4|) (-1 (-413 (-1154 |#3|)) (-1154 |#3|))))) (-836) (-780) (-13 (-302) (-145)) (-934 |#3| |#2| |#1|)) (T -534))
-((-2270 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-413 (-1154 *7)) (-1154 *7))) (-4 *7 (-13 (-302) (-145))) (-4 *5 (-836)) (-4 *6 (-780)) (-4 *8 (-934 *7 *6 *5)) (-5 *2 (-413 (-1154 *8))) (-5 *1 (-534 *5 *6 *7 *8)) (-5 *3 (-1154 *8)))) (-2270 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-413 (-1154 *7)) (-1154 *7))) (-4 *7 (-13 (-302) (-145))) (-4 *5 (-836)) (-4 *6 (-780)) (-5 *2 (-413 *3)) (-5 *1 (-534 *5 *6 *7 *3)) (-4 *3 (-934 *7 *6 *5)))))
-(-10 -7 (-15 -2270 ((-413 |#4|) |#4| (-1 (-413 (-1154 |#3|)) (-1154 |#3|)))) (-15 -2270 ((-413 (-1154 |#4|)) (-1154 |#4|) (-1 (-413 (-1154 |#3|)) (-1154 |#3|)))))
-((-3292 ((|#4| |#4|) 74)) (-4260 ((|#4| |#4|) 70)) (-4263 ((|#4| |#4| (-554) (-554)) 76)) (-2539 ((|#4| |#4|) 72)))
-(((-535 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4260 (|#4| |#4|)) (-15 -2539 (|#4| |#4|)) (-15 -3292 (|#4| |#4|)) (-15 -4263 (|#4| |#4| (-554) (-554)))) (-13 (-358) (-363) (-602 (-554))) (-1217 |#1|) (-711 |#1| |#2|) (-1232 |#3|)) (T -535))
-((-4263 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-554)) (-4 *4 (-13 (-358) (-363) (-602 *3))) (-4 *5 (-1217 *4)) (-4 *6 (-711 *4 *5)) (-5 *1 (-535 *4 *5 *6 *2)) (-4 *2 (-1232 *6)))) (-3292 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-363) (-602 (-554)))) (-4 *4 (-1217 *3)) (-4 *5 (-711 *3 *4)) (-5 *1 (-535 *3 *4 *5 *2)) (-4 *2 (-1232 *5)))) (-2539 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-363) (-602 (-554)))) (-4 *4 (-1217 *3)) (-4 *5 (-711 *3 *4)) (-5 *1 (-535 *3 *4 *5 *2)) (-4 *2 (-1232 *5)))) (-4260 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-363) (-602 (-554)))) (-4 *4 (-1217 *3)) (-4 *5 (-711 *3 *4)) (-5 *1 (-535 *3 *4 *5 *2)) (-4 *2 (-1232 *5)))))
-(-10 -7 (-15 -4260 (|#4| |#4|)) (-15 -2539 (|#4| |#4|)) (-15 -3292 (|#4| |#4|)) (-15 -4263 (|#4| |#4| (-554) (-554))))
-((-3292 ((|#2| |#2|) 27)) (-4260 ((|#2| |#2|) 23)) (-4263 ((|#2| |#2| (-554) (-554)) 29)) (-2539 ((|#2| |#2|) 25)))
-(((-536 |#1| |#2|) (-10 -7 (-15 -4260 (|#2| |#2|)) (-15 -2539 (|#2| |#2|)) (-15 -3292 (|#2| |#2|)) (-15 -4263 (|#2| |#2| (-554) (-554)))) (-13 (-358) (-363) (-602 (-554))) (-1232 |#1|)) (T -536))
-((-4263 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-554)) (-4 *4 (-13 (-358) (-363) (-602 *3))) (-5 *1 (-536 *4 *2)) (-4 *2 (-1232 *4)))) (-3292 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-363) (-602 (-554)))) (-5 *1 (-536 *3 *2)) (-4 *2 (-1232 *3)))) (-2539 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-363) (-602 (-554)))) (-5 *1 (-536 *3 *2)) (-4 *2 (-1232 *3)))) (-4260 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-363) (-602 (-554)))) (-5 *1 (-536 *3 *2)) (-4 *2 (-1232 *3)))))
-(-10 -7 (-15 -4260 (|#2| |#2|)) (-15 -2539 (|#2| |#2|)) (-15 -3292 (|#2| |#2|)) (-15 -4263 (|#2| |#2| (-554) (-554))))
-((-4139 (((-3 (-554) "failed") |#2| |#1| (-1 (-3 (-554) "failed") |#1|)) 14) (((-3 (-554) "failed") |#2| |#1| (-554) (-1 (-3 (-554) "failed") |#1|)) 13) (((-3 (-554) "failed") |#2| (-554) (-1 (-3 (-554) "failed") |#1|)) 26)))
-(((-537 |#1| |#2|) (-10 -7 (-15 -4139 ((-3 (-554) "failed") |#2| (-554) (-1 (-3 (-554) "failed") |#1|))) (-15 -4139 ((-3 (-554) "failed") |#2| |#1| (-554) (-1 (-3 (-554) "failed") |#1|))) (-15 -4139 ((-3 (-554) "failed") |#2| |#1| (-1 (-3 (-554) "failed") |#1|)))) (-1034) (-1217 |#1|)) (T -537))
-((-4139 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-554) "failed") *4)) (-4 *4 (-1034)) (-5 *2 (-554)) (-5 *1 (-537 *4 *3)) (-4 *3 (-1217 *4)))) (-4139 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-554) "failed") *4)) (-4 *4 (-1034)) (-5 *2 (-554)) (-5 *1 (-537 *4 *3)) (-4 *3 (-1217 *4)))) (-4139 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-554) "failed") *5)) (-4 *5 (-1034)) (-5 *2 (-554)) (-5 *1 (-537 *5 *3)) (-4 *3 (-1217 *5)))))
-(-10 -7 (-15 -4139 ((-3 (-554) "failed") |#2| (-554) (-1 (-3 (-554) "failed") |#1|))) (-15 -4139 ((-3 (-554) "failed") |#2| |#1| (-554) (-1 (-3 (-554) "failed") |#1|))) (-15 -4139 ((-3 (-554) "failed") |#2| |#1| (-1 (-3 (-554) "failed") |#1|))))
-((-3575 (($ $ $) 79)) (-1565 (((-413 $) $) 47)) (-2784 (((-3 (-554) "failed") $) 59)) (-1668 (((-554) $) 37)) (-1623 (((-3 (-402 (-554)) "failed") $) 74)) (-2069 (((-112) $) 24)) (-2197 (((-402 (-554)) $) 72)) (-3289 (((-112) $) 50)) (-2267 (($ $ $ $) 86)) (-2745 (((-112) $) 16)) (-1295 (($ $ $) 57)) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) 69)) (-3339 (((-3 $ "failed") $) 64)) (-3882 (($ $) 23)) (-3297 (($ $ $) 84)) (-3834 (($) 60)) (-1582 (($ $) 53)) (-2270 (((-413 $) $) 45)) (-1795 (((-112) $) 14)) (-2072 (((-758) $) 28)) (-1553 (($ $ (-758)) NIL) (($ $) 10)) (-1521 (($ $) 17)) (-2927 (((-554) $) NIL) (((-530) $) 36) (((-877 (-554)) $) 40) (((-374) $) 31) (((-221) $) 33)) (-2261 (((-758)) 8)) (-2134 (((-112) $ $) 20)) (-1629 (($ $ $) 55)))
-(((-538 |#1|) (-10 -8 (-15 -3297 (|#1| |#1| |#1|)) (-15 -2267 (|#1| |#1| |#1| |#1|)) (-15 -3882 (|#1| |#1|)) (-15 -1521 (|#1| |#1|)) (-15 -1623 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -2197 ((-402 (-554)) |#1|)) (-15 -2069 ((-112) |#1|)) (-15 -3575 (|#1| |#1| |#1|)) (-15 -2134 ((-112) |#1| |#1|)) (-15 -1795 ((-112) |#1|)) (-15 -3834 (|#1|)) (-15 -3339 ((-3 |#1| "failed") |#1|)) (-15 -2927 ((-221) |#1|)) (-15 -2927 ((-374) |#1|)) (-15 -1295 (|#1| |#1| |#1|)) (-15 -1582 (|#1| |#1|)) (-15 -1629 (|#1| |#1| |#1|)) (-15 -1655 ((-874 (-554) |#1|) |#1| (-877 (-554)) (-874 (-554) |#1|))) (-15 -2927 ((-877 (-554)) |#1|)) (-15 -2927 ((-530) |#1|)) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -1668 ((-554) |#1|)) (-15 -2927 ((-554) |#1|)) (-15 -1553 (|#1| |#1|)) (-15 -1553 (|#1| |#1| (-758))) (-15 -2745 ((-112) |#1|)) (-15 -2072 ((-758) |#1|)) (-15 -2270 ((-413 |#1|) |#1|)) (-15 -1565 ((-413 |#1|) |#1|)) (-15 -3289 ((-112) |#1|)) (-15 -2261 ((-758)))) (-539)) (T -538))
-((-2261 (*1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-538 *3)) (-4 *3 (-539)))))
-(-10 -8 (-15 -3297 (|#1| |#1| |#1|)) (-15 -2267 (|#1| |#1| |#1| |#1|)) (-15 -3882 (|#1| |#1|)) (-15 -1521 (|#1| |#1|)) (-15 -1623 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -2197 ((-402 (-554)) |#1|)) (-15 -2069 ((-112) |#1|)) (-15 -3575 (|#1| |#1| |#1|)) (-15 -2134 ((-112) |#1| |#1|)) (-15 -1795 ((-112) |#1|)) (-15 -3834 (|#1|)) (-15 -3339 ((-3 |#1| "failed") |#1|)) (-15 -2927 ((-221) |#1|)) (-15 -2927 ((-374) |#1|)) (-15 -1295 (|#1| |#1| |#1|)) (-15 -1582 (|#1| |#1|)) (-15 -1629 (|#1| |#1| |#1|)) (-15 -1655 ((-874 (-554) |#1|) |#1| (-877 (-554)) (-874 (-554) |#1|))) (-15 -2927 ((-877 (-554)) |#1|)) (-15 -2927 ((-530) |#1|)) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -1668 ((-554) |#1|)) (-15 -2927 ((-554) |#1|)) (-15 -1553 (|#1| |#1|)) (-15 -1553 (|#1| |#1| (-758))) (-15 -2745 ((-112) |#1|)) (-15 -2072 ((-758) |#1|)) (-15 -2270 ((-413 |#1|) |#1|)) (-15 -1565 ((-413 |#1|) |#1|)) (-15 -3289 ((-112) |#1|)) (-15 -2261 ((-758))))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 42)) (-1976 (($ $) 41)) (-1363 (((-112) $) 39)) (-3575 (($ $ $) 85)) (-2934 (((-3 $ "failed") $ $) 19)) (-4278 (($ $ $ $) 74)) (-3278 (($ $) 52)) (-1565 (((-413 $) $) 53)) (-2286 (((-112) $ $) 125)) (-4219 (((-554) $) 114)) (-1648 (($ $ $) 88)) (-4087 (($) 17 T CONST)) (-2784 (((-3 (-554) "failed") $) 106)) (-1668 (((-554) $) 107)) (-3964 (($ $ $) 129)) (-3699 (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) 104) (((-675 (-554)) (-675 $)) 103)) (-1320 (((-3 $ "failed") $) 33)) (-1623 (((-3 (-402 (-554)) "failed") $) 82)) (-2069 (((-112) $) 84)) (-2197 (((-402 (-554)) $) 83)) (-3353 (($) 81) (($ $) 80)) (-3943 (($ $ $) 128)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 123)) (-3289 (((-112) $) 54)) (-2267 (($ $ $ $) 72)) (-3773 (($ $ $) 86)) (-2745 (((-112) $) 116)) (-1295 (($ $ $) 97)) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) 100)) (-3248 (((-112) $) 31)) (-3273 (((-112) $) 92)) (-3339 (((-3 $ "failed") $) 94)) (-4304 (((-112) $) 115)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 132)) (-2057 (($ $ $ $) 73)) (-4223 (($ $ $) 117)) (-2706 (($ $ $) 118)) (-3882 (($ $) 76)) (-2577 (($ $) 89)) (-2475 (($ $ $) 47) (($ (-631 $)) 46)) (-1613 (((-1140) $) 9)) (-3297 (($ $ $) 71)) (-3834 (($) 93 T CONST)) (-1786 (($ $) 78)) (-2768 (((-1102) $) 10)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 45)) (-2510 (($ $ $) 49) (($ (-631 $)) 48)) (-1582 (($ $) 98)) (-2270 (((-413 $) $) 51)) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 130)) (-3919 (((-3 $ "failed") $ $) 43)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 124)) (-1795 (((-112) $) 91)) (-2072 (((-758) $) 126)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 127)) (-1553 (($ $ (-758)) 111) (($ $) 109)) (-3690 (($ $) 77)) (-1521 (($ $) 79)) (-2927 (((-554) $) 108) (((-530) $) 102) (((-877 (-554)) $) 101) (((-374) $) 96) (((-221) $) 95)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ $) 44) (($ (-554)) 105)) (-2261 (((-758)) 28)) (-2134 (((-112) $ $) 87)) (-1629 (($ $ $) 99)) (-3462 (($) 90)) (-1909 (((-112) $ $) 40)) (-2225 (($ $ $ $) 75)) (-1700 (($ $) 113)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($ $ (-758)) 112) (($ $) 110)) (-1708 (((-112) $ $) 120)) (-1686 (((-112) $ $) 121)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 119)) (-1676 (((-112) $ $) 122)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24)))
-(((-539) (-138)) (T -539))
-((-3273 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-112)))) (-1795 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-112)))) (-3462 (*1 *1) (-4 *1 (-539))) (-2577 (*1 *1 *1) (-4 *1 (-539))) (-1648 (*1 *1 *1 *1) (-4 *1 (-539))) (-2134 (*1 *2 *1 *1) (-12 (-4 *1 (-539)) (-5 *2 (-112)))) (-3773 (*1 *1 *1 *1) (-4 *1 (-539))) (-3575 (*1 *1 *1 *1) (-4 *1 (-539))) (-2069 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-112)))) (-2197 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-402 (-554))))) (-1623 (*1 *2 *1) (|partial| -12 (-4 *1 (-539)) (-5 *2 (-402 (-554))))) (-3353 (*1 *1) (-4 *1 (-539))) (-3353 (*1 *1 *1) (-4 *1 (-539))) (-1521 (*1 *1 *1) (-4 *1 (-539))) (-1786 (*1 *1 *1) (-4 *1 (-539))) (-3690 (*1 *1 *1) (-4 *1 (-539))) (-3882 (*1 *1 *1) (-4 *1 (-539))) (-2225 (*1 *1 *1 *1 *1) (-4 *1 (-539))) (-4278 (*1 *1 *1 *1 *1) (-4 *1 (-539))) (-2057 (*1 *1 *1 *1 *1) (-4 *1 (-539))) (-2267 (*1 *1 *1 *1 *1) (-4 *1 (-539))) (-3297 (*1 *1 *1 *1) (-4 *1 (-539))))
-(-13 (-1199) (-302) (-807) (-229) (-602 (-554)) (-1023 (-554)) (-627 (-554)) (-602 (-530)) (-602 (-877 (-554))) (-871 (-554)) (-141) (-1007) (-145) (-1133) (-10 -8 (-15 -3273 ((-112) $)) (-15 -1795 ((-112) $)) (-6 -4372) (-15 -3462 ($)) (-15 -2577 ($ $)) (-15 -1648 ($ $ $)) (-15 -2134 ((-112) $ $)) (-15 -3773 ($ $ $)) (-15 -3575 ($ $ $)) (-15 -2069 ((-112) $)) (-15 -2197 ((-402 (-554)) $)) (-15 -1623 ((-3 (-402 (-554)) "failed") $)) (-15 -3353 ($)) (-15 -3353 ($ $)) (-15 -1521 ($ $)) (-15 -1786 ($ $)) (-15 -3690 ($ $)) (-15 -3882 ($ $)) (-15 -2225 ($ $ $ $)) (-15 -4278 ($ $ $ $)) (-15 -2057 ($ $ $ $)) (-15 -2267 ($ $ $ $)) (-15 -3297 ($ $ $)) (-6 -4371)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-604 (-554)) . T) ((-604 $) . T) ((-601 (-848)) . T) ((-141) . T) ((-170) . T) ((-602 (-221)) . T) ((-602 (-374)) . T) ((-602 (-530)) . T) ((-602 (-554)) . T) ((-602 (-877 (-554))) . T) ((-229) . T) ((-285) . T) ((-302) . T) ((-446) . T) ((-546) . T) ((-634 $) . T) ((-627 (-554)) . T) ((-704 $) . T) ((-713) . T) ((-778) . T) ((-779) . T) ((-781) . T) ((-782) . T) ((-807) . T) ((-834) . T) ((-836) . T) ((-871 (-554)) . T) ((-905) . T) ((-1007) . T) ((-1023 (-554)) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1133) . T) ((-1199) . T))
-((-3062 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-3167 (($) NIL) (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-4233 (((-1246) $ |#1| |#1|) NIL (|has| $ (-6 -4374)))) (-3019 (((-112) $ (-758)) NIL)) (-1501 ((|#2| $ |#1| |#2|) NIL)) (-2220 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-2937 (((-3 |#2| "failed") |#1| $) NIL)) (-4087 (($) NIL T CONST)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))))) (-1884 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (|has| $ (-6 -4373))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-3 |#2| "failed") |#1| $) NIL)) (-2574 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-3676 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (|has| $ (-6 -4373))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-2862 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#2| $ |#1|) NIL)) (-2466 (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-631 |#2|) $) NIL (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) NIL)) (-3044 ((|#1| $) NIL (|has| |#1| (-836)))) (-2379 (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-631 |#2|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2256 ((|#1| $) NIL (|has| |#1| (-836)))) (-2849 (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4374))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-2944 (((-631 |#1|) $) NIL)) (-2415 (((-112) |#1| $) NIL)) (-4150 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-2045 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-2529 (((-631 |#1|) $) NIL)) (-3618 (((-112) |#1| $) NIL)) (-2768 (((-1102) $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-1539 ((|#2| $) NIL (|has| |#1| (-836)))) (-1652 (((-3 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) "failed") (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL)) (-2441 (($ $ |#2|) NIL (|has| $ (-6 -4374)))) (-2152 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-2845 (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-631 |#2|) (-631 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-631 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2625 (((-631 |#2|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4310 (($) NIL) (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-2777 (((-758) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-758) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-758) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082)))) (((-758) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-602 (-530))))) (-3089 (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-3075 (((-848) $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-601 (-848))) (|has| |#2| (-601 (-848)))))) (-1591 (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-2438 (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-540 |#1| |#2| |#3|) (-13 (-1171 |#1| |#2|) (-10 -7 (-6 -4373))) (-1082) (-1082) (-13 (-1171 |#1| |#2|) (-10 -7 (-6 -4373)))) (T -540))
-NIL
-(-13 (-1171 |#1| |#2|) (-10 -7 (-6 -4373)))
-((-2809 (((-575 |#2|) |#2| (-600 |#2|) (-600 |#2|) (-1 (-1154 |#2|) (-1154 |#2|))) 51)))
-(((-541 |#1| |#2|) (-10 -7 (-15 -2809 ((-575 |#2|) |#2| (-600 |#2|) (-600 |#2|) (-1 (-1154 |#2|) (-1154 |#2|))))) (-13 (-836) (-546)) (-13 (-27) (-425 |#1|))) (T -541))
-((-2809 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-600 *3)) (-5 *5 (-1 (-1154 *3) (-1154 *3))) (-4 *3 (-13 (-27) (-425 *6))) (-4 *6 (-13 (-836) (-546))) (-5 *2 (-575 *3)) (-5 *1 (-541 *6 *3)))))
-(-10 -7 (-15 -2809 ((-575 |#2|) |#2| (-600 |#2|) (-600 |#2|) (-1 (-1154 |#2|) (-1154 |#2|)))))
-((-2210 (((-575 |#5|) |#5| (-1 |#3| |#3|)) 198)) (-4178 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 194)) (-3608 (((-575 |#5|) |#5| (-1 |#3| |#3|)) 201)))
-(((-542 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3608 ((-575 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2210 ((-575 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4178 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-836) (-546) (-1023 (-554))) (-13 (-27) (-425 |#1|)) (-1217 |#2|) (-1217 (-402 |#3|)) (-337 |#2| |#3| |#4|)) (T -542))
-((-4178 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1217 *5)) (-4 *5 (-13 (-27) (-425 *4))) (-4 *4 (-13 (-836) (-546) (-1023 (-554)))) (-4 *7 (-1217 (-402 *6))) (-5 *1 (-542 *4 *5 *6 *7 *2)) (-4 *2 (-337 *5 *6 *7)))) (-2210 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1217 *6)) (-4 *6 (-13 (-27) (-425 *5))) (-4 *5 (-13 (-836) (-546) (-1023 (-554)))) (-4 *8 (-1217 (-402 *7))) (-5 *2 (-575 *3)) (-5 *1 (-542 *5 *6 *7 *8 *3)) (-4 *3 (-337 *6 *7 *8)))) (-3608 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1217 *6)) (-4 *6 (-13 (-27) (-425 *5))) (-4 *5 (-13 (-836) (-546) (-1023 (-554)))) (-4 *8 (-1217 (-402 *7))) (-5 *2 (-575 *3)) (-5 *1 (-542 *5 *6 *7 *8 *3)) (-4 *3 (-337 *6 *7 *8)))))
-(-10 -7 (-15 -3608 ((-575 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2210 ((-575 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4178 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
-((-2732 (((-112) (-554) (-554)) 10)) (-4292 (((-554) (-554)) 7)) (-3164 (((-554) (-554) (-554)) 8)))
-(((-543) (-10 -7 (-15 -4292 ((-554) (-554))) (-15 -3164 ((-554) (-554) (-554))) (-15 -2732 ((-112) (-554) (-554))))) (T -543))
-((-2732 (*1 *2 *3 *3) (-12 (-5 *3 (-554)) (-5 *2 (-112)) (-5 *1 (-543)))) (-3164 (*1 *2 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-543)))) (-4292 (*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-543)))))
-(-10 -7 (-15 -4292 ((-554) (-554))) (-15 -3164 ((-554) (-554) (-554))) (-15 -2732 ((-112) (-554) (-554))))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-4026 ((|#1| $) 62)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 42)) (-1976 (($ $) 41)) (-1363 (((-112) $) 39)) (-3023 (($ $) 92)) (-4200 (($ $) 75)) (-1349 ((|#1| $) 63)) (-2934 (((-3 $ "failed") $ $) 19)) (-2282 (($ $) 74)) (-3003 (($ $) 91)) (-4177 (($ $) 76)) (-3046 (($ $) 90)) (-2916 (($ $) 77)) (-4087 (($) 17 T CONST)) (-2784 (((-3 (-554) "failed") $) 70)) (-1668 (((-554) $) 71)) (-1320 (((-3 $ "failed") $) 33)) (-3603 (($ |#1| |#1|) 67)) (-2745 (((-112) $) 61)) (-2844 (($) 102)) (-3248 (((-112) $) 31)) (-3734 (($ $ (-554)) 73)) (-4304 (((-112) $) 60)) (-4223 (($ $ $) 108)) (-2706 (($ $ $) 107)) (-2395 (($ $) 99)) (-2475 (($ $ $) 47) (($ (-631 $)) 46)) (-1613 (((-1140) $) 9)) (-1449 (($ |#1| |#1|) 68) (($ |#1|) 66) (($ (-402 (-554))) 65)) (-3703 ((|#1| $) 64)) (-2768 (((-1102) $) 10)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 45)) (-2510 (($ $ $) 49) (($ (-631 $)) 48)) (-3919 (((-3 $ "failed") $ $) 43)) (-1333 (($ $) 100)) (-3057 (($ $) 89)) (-2926 (($ $) 78)) (-3034 (($ $) 88)) (-4213 (($ $) 79)) (-3014 (($ $) 87)) (-4188 (($ $) 80)) (-1543 (((-112) $ |#1|) 59)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ $) 44) (($ (-554)) 69)) (-2261 (((-758)) 28)) (-3096 (($ $) 98)) (-2959 (($ $) 86)) (-1909 (((-112) $ $) 40)) (-3069 (($ $) 97)) (-2938 (($ $) 85)) (-3120 (($ $) 96)) (-2981 (($ $) 84)) (-2908 (($ $) 95)) (-2991 (($ $) 83)) (-3108 (($ $) 94)) (-2969 (($ $) 82)) (-3083 (($ $) 93)) (-2948 (($ $) 81)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1708 (((-112) $ $) 105)) (-1686 (((-112) $ $) 104)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 106)) (-1676 (((-112) $ $) 103)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ $) 101) (($ $ (-402 (-554))) 72)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24)))
-(((-544 |#1|) (-138) (-13 (-399) (-1180))) (T -544))
-((-1449 (*1 *1 *2 *2) (-12 (-4 *1 (-544 *2)) (-4 *2 (-13 (-399) (-1180))))) (-3603 (*1 *1 *2 *2) (-12 (-4 *1 (-544 *2)) (-4 *2 (-13 (-399) (-1180))))) (-1449 (*1 *1 *2) (-12 (-4 *1 (-544 *2)) (-4 *2 (-13 (-399) (-1180))))) (-1449 (*1 *1 *2) (-12 (-5 *2 (-402 (-554))) (-4 *1 (-544 *3)) (-4 *3 (-13 (-399) (-1180))))) (-3703 (*1 *2 *1) (-12 (-4 *1 (-544 *2)) (-4 *2 (-13 (-399) (-1180))))) (-1349 (*1 *2 *1) (-12 (-4 *1 (-544 *2)) (-4 *2 (-13 (-399) (-1180))))) (-4026 (*1 *2 *1) (-12 (-4 *1 (-544 *2)) (-4 *2 (-13 (-399) (-1180))))) (-2745 (*1 *2 *1) (-12 (-4 *1 (-544 *3)) (-4 *3 (-13 (-399) (-1180))) (-5 *2 (-112)))) (-4304 (*1 *2 *1) (-12 (-4 *1 (-544 *3)) (-4 *3 (-13 (-399) (-1180))) (-5 *2 (-112)))) (-1543 (*1 *2 *1 *3) (-12 (-4 *1 (-544 *3)) (-4 *3 (-13 (-399) (-1180))) (-5 *2 (-112)))))
-(-13 (-446) (-836) (-1180) (-987) (-1023 (-554)) (-10 -8 (-6 -4333) (-15 -1449 ($ |t#1| |t#1|)) (-15 -3603 ($ |t#1| |t#1|)) (-15 -1449 ($ |t#1|)) (-15 -1449 ($ (-402 (-554)))) (-15 -3703 (|t#1| $)) (-15 -1349 (|t#1| $)) (-15 -4026 (|t#1| $)) (-15 -2745 ((-112) $)) (-15 -4304 ((-112) $)) (-15 -1543 ((-112) $ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-604 (-554)) . T) ((-604 $) . T) ((-601 (-848)) . T) ((-170) . T) ((-279) . T) ((-285) . T) ((-446) . T) ((-487) . T) ((-546) . T) ((-634 $) . T) ((-704 $) . T) ((-713) . T) ((-836) . T) ((-987) . T) ((-1023 (-554)) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1180) . T) ((-1183) . T))
-((-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 9)) (-1976 (($ $) 11)) (-1363 (((-112) $) 18)) (-1320 (((-3 $ "failed") $) 16)) (-1909 (((-112) $ $) 20)))
-(((-545 |#1|) (-10 -8 (-15 -1363 ((-112) |#1|)) (-15 -1909 ((-112) |#1| |#1|)) (-15 -1976 (|#1| |#1|)) (-15 -1292 ((-2 (|:| -3646 |#1|) (|:| -4360 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1320 ((-3 |#1| "failed") |#1|))) (-546)) (T -545))
-NIL
-(-10 -8 (-15 -1363 ((-112) |#1|)) (-15 -1909 ((-112) |#1| |#1|)) (-15 -1976 (|#1| |#1|)) (-15 -1292 ((-2 (|:| -3646 |#1|) (|:| -4360 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1320 ((-3 |#1| "failed") |#1|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 42)) (-1976 (($ $) 41)) (-1363 (((-112) $) 39)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1320 (((-3 $ "failed") $) 33)) (-3248 (((-112) $) 31)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3919 (((-3 $ "failed") $ $) 43)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ $) 44)) (-2261 (((-758)) 28)) (-1909 (((-112) $ $) 40)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24)))
-(((-546) (-138)) (T -546))
-((-3919 (*1 *1 *1 *1) (|partial| -4 *1 (-546))) (-1292 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3646 *1) (|:| -4360 *1) (|:| |associate| *1))) (-4 *1 (-546)))) (-1976 (*1 *1 *1) (-4 *1 (-546))) (-1909 (*1 *2 *1 *1) (-12 (-4 *1 (-546)) (-5 *2 (-112)))) (-1363 (*1 *2 *1) (-12 (-4 *1 (-546)) (-5 *2 (-112)))))
-(-13 (-170) (-38 $) (-285) (-10 -8 (-15 -3919 ((-3 $ "failed") $ $)) (-15 -1292 ((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $)) (-15 -1976 ($ $)) (-15 -1909 ((-112) $ $)) (-15 -1363 ((-112) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-604 (-554)) . T) ((-604 $) . T) ((-601 (-848)) . T) ((-170) . T) ((-285) . T) ((-634 $) . T) ((-704 $) . T) ((-713) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T))
-((-2399 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1158) (-631 |#2|)) 37)) (-3363 (((-575 |#2|) |#2| (-1158)) 62)) (-2846 (((-3 |#2| "failed") |#2| (-1158)) 152)) (-1657 (((-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1158) (-600 |#2|) (-631 (-600 |#2|))) 155)) (-3246 (((-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1158) |#2|) 40)))
-(((-547 |#1| |#2|) (-10 -7 (-15 -3246 ((-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1158) |#2|)) (-15 -2399 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1158) (-631 |#2|))) (-15 -2846 ((-3 |#2| "failed") |#2| (-1158))) (-15 -3363 ((-575 |#2|) |#2| (-1158))) (-15 -1657 ((-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1158) (-600 |#2|) (-631 (-600 |#2|))))) (-13 (-446) (-836) (-145) (-1023 (-554)) (-627 (-554))) (-13 (-27) (-1180) (-425 |#1|))) (T -547))
-((-1657 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1158)) (-5 *6 (-631 (-600 *3))) (-5 *5 (-600 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *7))) (-4 *7 (-13 (-446) (-836) (-145) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-2 (|:| -1709 *3) (|:| |coeff| *3))) (-5 *1 (-547 *7 *3)))) (-3363 (*1 *2 *3 *4) (-12 (-5 *4 (-1158)) (-4 *5 (-13 (-446) (-836) (-145) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-575 *3)) (-5 *1 (-547 *5 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *5))))) (-2846 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1158)) (-4 *4 (-13 (-446) (-836) (-145) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-547 *4 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *4))))) (-2399 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1158)) (-5 *5 (-631 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *6))) (-4 *6 (-13 (-446) (-836) (-145) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-547 *6 *3)))) (-3246 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1158)) (-4 *5 (-13 (-446) (-836) (-145) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-2 (|:| -1709 *3) (|:| |coeff| *3))) (-5 *1 (-547 *5 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *5))))))
-(-10 -7 (-15 -3246 ((-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1158) |#2|)) (-15 -2399 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1158) (-631 |#2|))) (-15 -2846 ((-3 |#2| "failed") |#2| (-1158))) (-15 -3363 ((-575 |#2|) |#2| (-1158))) (-15 -1657 ((-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1158) (-600 |#2|) (-631 (-600 |#2|)))))
-((-1565 (((-413 |#1|) |#1|) 18)) (-2270 (((-413 |#1|) |#1|) 33)) (-1978 (((-3 |#1| "failed") |#1|) 44)) (-3264 (((-413 |#1|) |#1|) 51)))
-(((-548 |#1|) (-10 -7 (-15 -2270 ((-413 |#1|) |#1|)) (-15 -1565 ((-413 |#1|) |#1|)) (-15 -3264 ((-413 |#1|) |#1|)) (-15 -1978 ((-3 |#1| "failed") |#1|))) (-539)) (T -548))
-((-1978 (*1 *2 *2) (|partial| -12 (-5 *1 (-548 *2)) (-4 *2 (-539)))) (-3264 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-548 *3)) (-4 *3 (-539)))) (-1565 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-548 *3)) (-4 *3 (-539)))) (-2270 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-548 *3)) (-4 *3 (-539)))))
-(-10 -7 (-15 -2270 ((-413 |#1|) |#1|)) (-15 -1565 ((-413 |#1|) |#1|)) (-15 -3264 ((-413 |#1|) |#1|)) (-15 -1978 ((-3 |#1| "failed") |#1|)))
-((-1988 (($) 9)) (-1963 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 35)) (-2944 (((-631 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) $) 32)) (-2045 (($ (-2 (|:| -2564 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2701 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-3776 (($ (-631 (-2 (|:| -2564 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2701 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-2701 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 39)) (-2625 (((-631 (-2 (|:| -2564 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2701 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-1319 (((-1246)) 12)))
-(((-549) (-10 -8 (-15 -1988 ($)) (-15 -1319 ((-1246))) (-15 -2944 ((-631 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) $)) (-15 -3776 ($ (-631 (-2 (|:| -2564 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2701 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2045 ($ (-2 (|:| -2564 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2701 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1963 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2625 ((-631 (-2 (|:| -2564 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2701 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2701 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))) (T -549))
-((-2701 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-549)))) (-2625 (*1 *2 *1) (-12 (-5 *2 (-631 (-2 (|:| -2564 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2701 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-549)))) (-1963 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-549)))) (-2045 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2564 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2701 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-549)))) (-3776 (*1 *1 *2) (-12 (-5 *2 (-631 (-2 (|:| -2564 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2701 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-549)))) (-2944 (*1 *2 *1) (-12 (-5 *2 (-631 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-5 *1 (-549)))) (-1319 (*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-549)))) (-1988 (*1 *1) (-5 *1 (-549))))
-(-10 -8 (-15 -1988 ($)) (-15 -1319 ((-1246))) (-15 -2944 ((-631 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) $)) (-15 -3776 ($ (-631 (-2 (|:| -2564 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2701 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2045 ($ (-2 (|:| -2564 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2701 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1963 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2625 ((-631 (-2 (|:| -2564 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2701 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2701 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))
-((-2237 (((-1154 (-402 (-1154 |#2|))) |#2| (-600 |#2|) (-600 |#2|) (-1154 |#2|)) 32)) (-3222 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-600 |#2|) (-600 |#2|) (-631 |#2|) (-600 |#2|) |#2| (-402 (-1154 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-600 |#2|) (-600 |#2|) (-631 |#2|) |#2| (-1154 |#2|)) 110)) (-2036 (((-575 |#2|) |#2| (-600 |#2|) (-600 |#2|) (-600 |#2|) |#2| (-402 (-1154 |#2|))) 80) (((-575 |#2|) |#2| (-600 |#2|) (-600 |#2|) |#2| (-1154 |#2|)) 52)) (-2949 (((-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-600 |#2|) (-600 |#2|) |#2| (-600 |#2|) |#2| (-402 (-1154 |#2|))) 87) (((-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-600 |#2|) (-600 |#2|) |#2| |#2| (-1154 |#2|)) 109)) (-2066 (((-3 |#2| "failed") |#2| |#2| (-600 |#2|) (-600 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1158)) (-600 |#2|) |#2| (-402 (-1154 |#2|))) 105) (((-3 |#2| "failed") |#2| |#2| (-600 |#2|) (-600 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1158)) |#2| (-1154 |#2|)) 111)) (-2812 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3782 (-631 |#2|))) |#3| |#2| (-600 |#2|) (-600 |#2|) (-600 |#2|) |#2| (-402 (-1154 |#2|))) 128 (|has| |#3| (-642 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3782 (-631 |#2|))) |#3| |#2| (-600 |#2|) (-600 |#2|) |#2| (-1154 |#2|)) 127 (|has| |#3| (-642 |#2|)))) (-2393 ((|#2| (-1154 (-402 (-1154 |#2|))) (-600 |#2|) |#2|) 50)) (-3662 (((-1154 (-402 (-1154 |#2|))) (-1154 |#2|) (-600 |#2|)) 31)))
-(((-550 |#1| |#2| |#3|) (-10 -7 (-15 -2036 ((-575 |#2|) |#2| (-600 |#2|) (-600 |#2|) |#2| (-1154 |#2|))) (-15 -2036 ((-575 |#2|) |#2| (-600 |#2|) (-600 |#2|) (-600 |#2|) |#2| (-402 (-1154 |#2|)))) (-15 -2949 ((-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-600 |#2|) (-600 |#2|) |#2| |#2| (-1154 |#2|))) (-15 -2949 ((-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-600 |#2|) (-600 |#2|) |#2| (-600 |#2|) |#2| (-402 (-1154 |#2|)))) (-15 -3222 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-600 |#2|) (-600 |#2|) (-631 |#2|) |#2| (-1154 |#2|))) (-15 -3222 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-600 |#2|) (-600 |#2|) (-631 |#2|) (-600 |#2|) |#2| (-402 (-1154 |#2|)))) (-15 -2066 ((-3 |#2| "failed") |#2| |#2| (-600 |#2|) (-600 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1158)) |#2| (-1154 |#2|))) (-15 -2066 ((-3 |#2| "failed") |#2| |#2| (-600 |#2|) (-600 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1158)) (-600 |#2|) |#2| (-402 (-1154 |#2|)))) (-15 -2237 ((-1154 (-402 (-1154 |#2|))) |#2| (-600 |#2|) (-600 |#2|) (-1154 |#2|))) (-15 -2393 (|#2| (-1154 (-402 (-1154 |#2|))) (-600 |#2|) |#2|)) (-15 -3662 ((-1154 (-402 (-1154 |#2|))) (-1154 |#2|) (-600 |#2|))) (IF (|has| |#3| (-642 |#2|)) (PROGN (-15 -2812 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3782 (-631 |#2|))) |#3| |#2| (-600 |#2|) (-600 |#2|) |#2| (-1154 |#2|))) (-15 -2812 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3782 (-631 |#2|))) |#3| |#2| (-600 |#2|) (-600 |#2|) (-600 |#2|) |#2| (-402 (-1154 |#2|))))) |%noBranch|)) (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554))) (-13 (-425 |#1|) (-27) (-1180)) (-1082)) (T -550))
-((-2812 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-600 *4)) (-5 *6 (-402 (-1154 *4))) (-4 *4 (-13 (-425 *7) (-27) (-1180))) (-4 *7 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3782 (-631 *4)))) (-5 *1 (-550 *7 *4 *3)) (-4 *3 (-642 *4)) (-4 *3 (-1082)))) (-2812 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-600 *4)) (-5 *6 (-1154 *4)) (-4 *4 (-13 (-425 *7) (-27) (-1180))) (-4 *7 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3782 (-631 *4)))) (-5 *1 (-550 *7 *4 *3)) (-4 *3 (-642 *4)) (-4 *3 (-1082)))) (-3662 (*1 *2 *3 *4) (-12 (-5 *4 (-600 *6)) (-4 *6 (-13 (-425 *5) (-27) (-1180))) (-4 *5 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) (-5 *2 (-1154 (-402 (-1154 *6)))) (-5 *1 (-550 *5 *6 *7)) (-5 *3 (-1154 *6)) (-4 *7 (-1082)))) (-2393 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1154 (-402 (-1154 *2)))) (-5 *4 (-600 *2)) (-4 *2 (-13 (-425 *5) (-27) (-1180))) (-4 *5 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) (-5 *1 (-550 *5 *2 *6)) (-4 *6 (-1082)))) (-2237 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-600 *3)) (-4 *3 (-13 (-425 *6) (-27) (-1180))) (-4 *6 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) (-5 *2 (-1154 (-402 (-1154 *3)))) (-5 *1 (-550 *6 *3 *7)) (-5 *5 (-1154 *3)) (-4 *7 (-1082)))) (-2066 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-600 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1158))) (-5 *5 (-402 (-1154 *2))) (-4 *2 (-13 (-425 *6) (-27) (-1180))) (-4 *6 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) (-5 *1 (-550 *6 *2 *7)) (-4 *7 (-1082)))) (-2066 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-600 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1158))) (-5 *5 (-1154 *2)) (-4 *2 (-13 (-425 *6) (-27) (-1180))) (-4 *6 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) (-5 *1 (-550 *6 *2 *7)) (-4 *7 (-1082)))) (-3222 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-600 *3)) (-5 *5 (-631 *3)) (-5 *6 (-402 (-1154 *3))) (-4 *3 (-13 (-425 *7) (-27) (-1180))) (-4 *7 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-550 *7 *3 *8)) (-4 *8 (-1082)))) (-3222 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-600 *3)) (-5 *5 (-631 *3)) (-5 *6 (-1154 *3)) (-4 *3 (-13 (-425 *7) (-27) (-1180))) (-4 *7 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-550 *7 *3 *8)) (-4 *8 (-1082)))) (-2949 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-600 *3)) (-5 *5 (-402 (-1154 *3))) (-4 *3 (-13 (-425 *6) (-27) (-1180))) (-4 *6 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) (-5 *2 (-2 (|:| -1709 *3) (|:| |coeff| *3))) (-5 *1 (-550 *6 *3 *7)) (-4 *7 (-1082)))) (-2949 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-600 *3)) (-5 *5 (-1154 *3)) (-4 *3 (-13 (-425 *6) (-27) (-1180))) (-4 *6 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) (-5 *2 (-2 (|:| -1709 *3) (|:| |coeff| *3))) (-5 *1 (-550 *6 *3 *7)) (-4 *7 (-1082)))) (-2036 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-600 *3)) (-5 *5 (-402 (-1154 *3))) (-4 *3 (-13 (-425 *6) (-27) (-1180))) (-4 *6 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) (-5 *2 (-575 *3)) (-5 *1 (-550 *6 *3 *7)) (-4 *7 (-1082)))) (-2036 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-600 *3)) (-5 *5 (-1154 *3)) (-4 *3 (-13 (-425 *6) (-27) (-1180))) (-4 *6 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) (-5 *2 (-575 *3)) (-5 *1 (-550 *6 *3 *7)) (-4 *7 (-1082)))))
-(-10 -7 (-15 -2036 ((-575 |#2|) |#2| (-600 |#2|) (-600 |#2|) |#2| (-1154 |#2|))) (-15 -2036 ((-575 |#2|) |#2| (-600 |#2|) (-600 |#2|) (-600 |#2|) |#2| (-402 (-1154 |#2|)))) (-15 -2949 ((-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-600 |#2|) (-600 |#2|) |#2| |#2| (-1154 |#2|))) (-15 -2949 ((-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-600 |#2|) (-600 |#2|) |#2| (-600 |#2|) |#2| (-402 (-1154 |#2|)))) (-15 -3222 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-600 |#2|) (-600 |#2|) (-631 |#2|) |#2| (-1154 |#2|))) (-15 -3222 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-600 |#2|) (-600 |#2|) (-631 |#2|) (-600 |#2|) |#2| (-402 (-1154 |#2|)))) (-15 -2066 ((-3 |#2| "failed") |#2| |#2| (-600 |#2|) (-600 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1158)) |#2| (-1154 |#2|))) (-15 -2066 ((-3 |#2| "failed") |#2| |#2| (-600 |#2|) (-600 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1158)) (-600 |#2|) |#2| (-402 (-1154 |#2|)))) (-15 -2237 ((-1154 (-402 (-1154 |#2|))) |#2| (-600 |#2|) (-600 |#2|) (-1154 |#2|))) (-15 -2393 (|#2| (-1154 (-402 (-1154 |#2|))) (-600 |#2|) |#2|)) (-15 -3662 ((-1154 (-402 (-1154 |#2|))) (-1154 |#2|) (-600 |#2|))) (IF (|has| |#3| (-642 |#2|)) (PROGN (-15 -2812 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3782 (-631 |#2|))) |#3| |#2| (-600 |#2|) (-600 |#2|) |#2| (-1154 |#2|))) (-15 -2812 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3782 (-631 |#2|))) |#3| |#2| (-600 |#2|) (-600 |#2|) (-600 |#2|) |#2| (-402 (-1154 |#2|))))) |%noBranch|))
-((-3554 (((-554) (-554) (-758)) 66)) (-3314 (((-554) (-554)) 65)) (-2544 (((-554) (-554)) 64)) (-2960 (((-554) (-554)) 69)) (-1926 (((-554) (-554) (-554)) 49)) (-1832 (((-554) (-554) (-554)) 46)) (-3617 (((-402 (-554)) (-554)) 20)) (-3183 (((-554) (-554)) 21)) (-2476 (((-554) (-554)) 58)) (-2285 (((-554) (-554)) 32)) (-3192 (((-631 (-554)) (-554)) 63)) (-3589 (((-554) (-554) (-554) (-554) (-554)) 44)) (-1880 (((-402 (-554)) (-554)) 41)))
-(((-551) (-10 -7 (-15 -1880 ((-402 (-554)) (-554))) (-15 -3589 ((-554) (-554) (-554) (-554) (-554))) (-15 -3192 ((-631 (-554)) (-554))) (-15 -2285 ((-554) (-554))) (-15 -2476 ((-554) (-554))) (-15 -3183 ((-554) (-554))) (-15 -3617 ((-402 (-554)) (-554))) (-15 -1832 ((-554) (-554) (-554))) (-15 -1926 ((-554) (-554) (-554))) (-15 -2960 ((-554) (-554))) (-15 -2544 ((-554) (-554))) (-15 -3314 ((-554) (-554))) (-15 -3554 ((-554) (-554) (-758))))) (T -551))
-((-3554 (*1 *2 *2 *3) (-12 (-5 *2 (-554)) (-5 *3 (-758)) (-5 *1 (-551)))) (-3314 (*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-551)))) (-2544 (*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-551)))) (-2960 (*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-551)))) (-1926 (*1 *2 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-551)))) (-1832 (*1 *2 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-551)))) (-3617 (*1 *2 *3) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-551)) (-5 *3 (-554)))) (-3183 (*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-551)))) (-2476 (*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-551)))) (-2285 (*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-551)))) (-3192 (*1 *2 *3) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-551)) (-5 *3 (-554)))) (-3589 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-551)))) (-1880 (*1 *2 *3) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-551)) (-5 *3 (-554)))))
-(-10 -7 (-15 -1880 ((-402 (-554)) (-554))) (-15 -3589 ((-554) (-554) (-554) (-554) (-554))) (-15 -3192 ((-631 (-554)) (-554))) (-15 -2285 ((-554) (-554))) (-15 -2476 ((-554) (-554))) (-15 -3183 ((-554) (-554))) (-15 -3617 ((-402 (-554)) (-554))) (-15 -1832 ((-554) (-554) (-554))) (-15 -1926 ((-554) (-554) (-554))) (-15 -2960 ((-554) (-554))) (-15 -2544 ((-554) (-554))) (-15 -3314 ((-554) (-554))) (-15 -3554 ((-554) (-554) (-758))))
-((-3193 (((-2 (|:| |answer| |#4|) (|:| -2533 |#4|)) |#4| (-1 |#2| |#2|)) 52)))
-(((-552 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3193 ((-2 (|:| |answer| |#4|) (|:| -2533 |#4|)) |#4| (-1 |#2| |#2|)))) (-358) (-1217 |#1|) (-1217 (-402 |#2|)) (-337 |#1| |#2| |#3|)) (T -552))
-((-3193 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1217 *5)) (-4 *5 (-358)) (-4 *7 (-1217 (-402 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2533 *3))) (-5 *1 (-552 *5 *6 *7 *3)) (-4 *3 (-337 *5 *6 *7)))))
-(-10 -7 (-15 -3193 ((-2 (|:| |answer| |#4|) (|:| -2533 |#4|)) |#4| (-1 |#2| |#2|))))
-((-3193 (((-2 (|:| |answer| (-402 |#2|)) (|:| -2533 (-402 |#2|)) (|:| |specpart| (-402 |#2|)) (|:| |polypart| |#2|)) (-402 |#2|) (-1 |#2| |#2|)) 18)))
-(((-553 |#1| |#2|) (-10 -7 (-15 -3193 ((-2 (|:| |answer| (-402 |#2|)) (|:| -2533 (-402 |#2|)) (|:| |specpart| (-402 |#2|)) (|:| |polypart| |#2|)) (-402 |#2|) (-1 |#2| |#2|)))) (-358) (-1217 |#1|)) (T -553))
-((-3193 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1217 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| |answer| (-402 *6)) (|:| -2533 (-402 *6)) (|:| |specpart| (-402 *6)) (|:| |polypart| *6))) (-5 *1 (-553 *5 *6)) (-5 *3 (-402 *6)))))
-(-10 -7 (-15 -3193 ((-2 (|:| |answer| (-402 |#2|)) (|:| -2533 (-402 |#2|)) (|:| |specpart| (-402 |#2|)) (|:| |polypart| |#2|)) (-402 |#2|) (-1 |#2| |#2|))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 25)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 88)) (-1976 (($ $) 89)) (-1363 (((-112) $) NIL)) (-3575 (($ $ $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4278 (($ $ $ $) 43)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2286 (((-112) $ $) NIL)) (-4219 (((-554) $) NIL)) (-1648 (($ $ $) 82)) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) NIL)) (-1668 (((-554) $) NIL)) (-3964 (($ $ $) 81)) (-3699 (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) 62) (((-675 (-554)) (-675 $)) 58)) (-1320 (((-3 $ "failed") $) 85)) (-1623 (((-3 (-402 (-554)) "failed") $) NIL)) (-2069 (((-112) $) NIL)) (-2197 (((-402 (-554)) $) NIL)) (-3353 (($) 64) (($ $) 65)) (-3943 (($ $ $) 80)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-2267 (($ $ $ $) NIL)) (-3773 (($ $ $) 55)) (-2745 (((-112) $) NIL)) (-1295 (($ $ $) NIL)) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL)) (-3248 (((-112) $) 26)) (-3273 (((-112) $) 75)) (-3339 (((-3 $ "failed") $) NIL)) (-4304 (((-112) $) 35)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2057 (($ $ $ $) 44)) (-4223 (($ $ $) 77)) (-2706 (($ $ $) 76)) (-3882 (($ $) NIL)) (-2577 (($ $) 41)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) 54)) (-3297 (($ $ $) NIL)) (-3834 (($) NIL T CONST)) (-1786 (($ $) 31)) (-2768 (((-1102) $) 34)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 119)) (-2510 (($ $ $) 86) (($ (-631 $)) NIL)) (-1582 (($ $) NIL)) (-2270 (((-413 $) $) 105)) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL)) (-3919 (((-3 $ "failed") $ $) 84)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-1795 (((-112) $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 79)) (-1553 (($ $ (-758)) NIL) (($ $) NIL)) (-3690 (($ $) 32)) (-1521 (($ $) 30)) (-2927 (((-554) $) 40) (((-530) $) 52) (((-877 (-554)) $) NIL) (((-374) $) 47) (((-221) $) 49) (((-1140) $) 53)) (-3075 (((-848) $) 38) (($ (-554)) 39) (($ $) NIL) (($ (-554)) 39)) (-2261 (((-758)) NIL)) (-2134 (((-112) $ $) NIL)) (-1629 (($ $ $) NIL)) (-3462 (($) 29)) (-1909 (((-112) $ $) NIL)) (-2225 (($ $ $ $) 42)) (-1700 (($ $) 63)) (-2004 (($) 27 T CONST)) (-2014 (($) 28 T CONST)) (-4048 (((-1140) $) 20) (((-1140) $ (-112)) 22) (((-1246) (-809) $) 23) (((-1246) (-809) $ (-112)) 24)) (-1787 (($ $ (-758)) NIL) (($ $) NIL)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 66)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 67)) (-1744 (($ $) 68) (($ $ $) 70)) (-1735 (($ $ $) 69)) (** (($ $ (-906)) NIL) (($ $ (-758)) 74)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 72) (($ $ $) 71)))
-(((-554) (-13 (-539) (-602 (-1140)) (-815) (-10 -8 (-15 -3353 ($ $)) (-6 -4360) (-6 -4365) (-6 -4361) (-6 -4355)))) (T -554))
-((-3353 (*1 *1 *1) (-5 *1 (-554))))
-(-13 (-539) (-602 (-1140)) (-815) (-10 -8 (-15 -3353 ($ $)) (-6 -4360) (-6 -4365) (-6 -4361) (-6 -4355)))
-((-3037 (((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140))) (|:| |extra| (-1020))) (-756) (-1046)) 108) (((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140))) (|:| |extra| (-1020))) (-756)) 110)) (-2279 (((-3 (-1020) "failed") (-311 (-374)) (-1074 (-829 (-374))) (-1158)) 172) (((-3 (-1020) "failed") (-311 (-374)) (-1074 (-829 (-374))) (-1140)) 171) (((-1020) (-311 (-374)) (-631 (-1076 (-829 (-374)))) (-374) (-374) (-1046)) 176) (((-1020) (-311 (-374)) (-631 (-1076 (-829 (-374)))) (-374) (-374)) 177) (((-1020) (-311 (-374)) (-631 (-1076 (-829 (-374)))) (-374)) 178) (((-1020) (-311 (-374)) (-631 (-1076 (-829 (-374))))) 179) (((-1020) (-311 (-374)) (-1076 (-829 (-374)))) 167) (((-1020) (-311 (-374)) (-1076 (-829 (-374))) (-374)) 166) (((-1020) (-311 (-374)) (-1076 (-829 (-374))) (-374) (-374)) 162) (((-1020) (-756)) 155) (((-1020) (-311 (-374)) (-1076 (-829 (-374))) (-374) (-374) (-1046)) 161)))
-(((-555) (-10 -7 (-15 -2279 ((-1020) (-311 (-374)) (-1076 (-829 (-374))) (-374) (-374) (-1046))) (-15 -2279 ((-1020) (-756))) (-15 -2279 ((-1020) (-311 (-374)) (-1076 (-829 (-374))) (-374) (-374))) (-15 -2279 ((-1020) (-311 (-374)) (-1076 (-829 (-374))) (-374))) (-15 -2279 ((-1020) (-311 (-374)) (-1076 (-829 (-374))))) (-15 -2279 ((-1020) (-311 (-374)) (-631 (-1076 (-829 (-374)))))) (-15 -2279 ((-1020) (-311 (-374)) (-631 (-1076 (-829 (-374)))) (-374))) (-15 -2279 ((-1020) (-311 (-374)) (-631 (-1076 (-829 (-374)))) (-374) (-374))) (-15 -2279 ((-1020) (-311 (-374)) (-631 (-1076 (-829 (-374)))) (-374) (-374) (-1046))) (-15 -3037 ((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140))) (|:| |extra| (-1020))) (-756))) (-15 -3037 ((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140))) (|:| |extra| (-1020))) (-756) (-1046))) (-15 -2279 ((-3 (-1020) "failed") (-311 (-374)) (-1074 (-829 (-374))) (-1140))) (-15 -2279 ((-3 (-1020) "failed") (-311 (-374)) (-1074 (-829 (-374))) (-1158))))) (T -555))
-((-2279 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-311 (-374))) (-5 *4 (-1074 (-829 (-374)))) (-5 *5 (-1158)) (-5 *2 (-1020)) (-5 *1 (-555)))) (-2279 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-311 (-374))) (-5 *4 (-1074 (-829 (-374)))) (-5 *5 (-1140)) (-5 *2 (-1020)) (-5 *1 (-555)))) (-3037 (*1 *2 *3 *4) (-12 (-5 *3 (-756)) (-5 *4 (-1046)) (-5 *2 (-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140))) (|:| |extra| (-1020)))) (-5 *1 (-555)))) (-3037 (*1 *2 *3) (-12 (-5 *3 (-756)) (-5 *2 (-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140))) (|:| |extra| (-1020)))) (-5 *1 (-555)))) (-2279 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-311 (-374))) (-5 *4 (-631 (-1076 (-829 (-374))))) (-5 *5 (-374)) (-5 *6 (-1046)) (-5 *2 (-1020)) (-5 *1 (-555)))) (-2279 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-311 (-374))) (-5 *4 (-631 (-1076 (-829 (-374))))) (-5 *5 (-374)) (-5 *2 (-1020)) (-5 *1 (-555)))) (-2279 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-311 (-374))) (-5 *4 (-631 (-1076 (-829 (-374))))) (-5 *5 (-374)) (-5 *2 (-1020)) (-5 *1 (-555)))) (-2279 (*1 *2 *3 *4) (-12 (-5 *3 (-311 (-374))) (-5 *4 (-631 (-1076 (-829 (-374))))) (-5 *2 (-1020)) (-5 *1 (-555)))) (-2279 (*1 *2 *3 *4) (-12 (-5 *3 (-311 (-374))) (-5 *4 (-1076 (-829 (-374)))) (-5 *2 (-1020)) (-5 *1 (-555)))) (-2279 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-311 (-374))) (-5 *4 (-1076 (-829 (-374)))) (-5 *5 (-374)) (-5 *2 (-1020)) (-5 *1 (-555)))) (-2279 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-311 (-374))) (-5 *4 (-1076 (-829 (-374)))) (-5 *5 (-374)) (-5 *2 (-1020)) (-5 *1 (-555)))) (-2279 (*1 *2 *3) (-12 (-5 *3 (-756)) (-5 *2 (-1020)) (-5 *1 (-555)))) (-2279 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-311 (-374))) (-5 *4 (-1076 (-829 (-374)))) (-5 *5 (-374)) (-5 *6 (-1046)) (-5 *2 (-1020)) (-5 *1 (-555)))))
-(-10 -7 (-15 -2279 ((-1020) (-311 (-374)) (-1076 (-829 (-374))) (-374) (-374) (-1046))) (-15 -2279 ((-1020) (-756))) (-15 -2279 ((-1020) (-311 (-374)) (-1076 (-829 (-374))) (-374) (-374))) (-15 -2279 ((-1020) (-311 (-374)) (-1076 (-829 (-374))) (-374))) (-15 -2279 ((-1020) (-311 (-374)) (-1076 (-829 (-374))))) (-15 -2279 ((-1020) (-311 (-374)) (-631 (-1076 (-829 (-374)))))) (-15 -2279 ((-1020) (-311 (-374)) (-631 (-1076 (-829 (-374)))) (-374))) (-15 -2279 ((-1020) (-311 (-374)) (-631 (-1076 (-829 (-374)))) (-374) (-374))) (-15 -2279 ((-1020) (-311 (-374)) (-631 (-1076 (-829 (-374)))) (-374) (-374) (-1046))) (-15 -3037 ((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140))) (|:| |extra| (-1020))) (-756))) (-15 -3037 ((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140))) (|:| |extra| (-1020))) (-756) (-1046))) (-15 -2279 ((-3 (-1020) "failed") (-311 (-374)) (-1074 (-829 (-374))) (-1140))) (-15 -2279 ((-3 (-1020) "failed") (-311 (-374)) (-1074 (-829 (-374))) (-1158))))
-((-1938 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-600 |#2|) (-600 |#2|) (-631 |#2|)) 183)) (-2284 (((-575 |#2|) |#2| (-600 |#2|) (-600 |#2|)) 98)) (-1587 (((-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-600 |#2|) (-600 |#2|) |#2|) 179)) (-2373 (((-3 |#2| "failed") |#2| |#2| |#2| (-600 |#2|) (-600 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1158))) 188)) (-2606 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3782 (-631 |#2|))) |#3| |#2| (-600 |#2|) (-600 |#2|) (-1158)) 196 (|has| |#3| (-642 |#2|)))))
-(((-556 |#1| |#2| |#3|) (-10 -7 (-15 -2284 ((-575 |#2|) |#2| (-600 |#2|) (-600 |#2|))) (-15 -1587 ((-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-600 |#2|) (-600 |#2|) |#2|)) (-15 -1938 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-600 |#2|) (-600 |#2|) (-631 |#2|))) (-15 -2373 ((-3 |#2| "failed") |#2| |#2| |#2| (-600 |#2|) (-600 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1158)))) (IF (|has| |#3| (-642 |#2|)) (-15 -2606 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3782 (-631 |#2|))) |#3| |#2| (-600 |#2|) (-600 |#2|) (-1158))) |%noBranch|)) (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554))) (-13 (-425 |#1|) (-27) (-1180)) (-1082)) (T -556))
-((-2606 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-600 *4)) (-5 *6 (-1158)) (-4 *4 (-13 (-425 *7) (-27) (-1180))) (-4 *7 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3782 (-631 *4)))) (-5 *1 (-556 *7 *4 *3)) (-4 *3 (-642 *4)) (-4 *3 (-1082)))) (-2373 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-600 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1158))) (-4 *2 (-13 (-425 *5) (-27) (-1180))) (-4 *5 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) (-5 *1 (-556 *5 *2 *6)) (-4 *6 (-1082)))) (-1938 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-600 *3)) (-5 *5 (-631 *3)) (-4 *3 (-13 (-425 *6) (-27) (-1180))) (-4 *6 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-556 *6 *3 *7)) (-4 *7 (-1082)))) (-1587 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-600 *3)) (-4 *3 (-13 (-425 *5) (-27) (-1180))) (-4 *5 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) (-5 *2 (-2 (|:| -1709 *3) (|:| |coeff| *3))) (-5 *1 (-556 *5 *3 *6)) (-4 *6 (-1082)))) (-2284 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-600 *3)) (-4 *3 (-13 (-425 *5) (-27) (-1180))) (-4 *5 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) (-5 *2 (-575 *3)) (-5 *1 (-556 *5 *3 *6)) (-4 *6 (-1082)))))
-(-10 -7 (-15 -2284 ((-575 |#2|) |#2| (-600 |#2|) (-600 |#2|))) (-15 -1587 ((-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-600 |#2|) (-600 |#2|) |#2|)) (-15 -1938 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-600 |#2|) (-600 |#2|) (-631 |#2|))) (-15 -2373 ((-3 |#2| "failed") |#2| |#2| |#2| (-600 |#2|) (-600 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1158)))) (IF (|has| |#3| (-642 |#2|)) (-15 -2606 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3782 (-631 |#2|))) |#3| |#2| (-600 |#2|) (-600 |#2|) (-1158))) |%noBranch|))
-((-3735 (((-2 (|:| -3341 |#2|) (|:| |nconst| |#2|)) |#2| (-1158)) 64)) (-4347 (((-3 |#2| "failed") |#2| (-1158) (-829 |#2|) (-829 |#2|)) 164 (-12 (|has| |#2| (-1121)) (|has| |#1| (-602 (-877 (-554)))) (|has| |#1| (-871 (-554))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1158)) 147 (-12 (|has| |#2| (-617)) (|has| |#1| (-602 (-877 (-554)))) (|has| |#1| (-871 (-554)))))) (-2413 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1158)) 148 (-12 (|has| |#2| (-617)) (|has| |#1| (-602 (-877 (-554)))) (|has| |#1| (-871 (-554)))))))
-(((-557 |#1| |#2|) (-10 -7 (-15 -3735 ((-2 (|:| -3341 |#2|) (|:| |nconst| |#2|)) |#2| (-1158))) (IF (|has| |#1| (-602 (-877 (-554)))) (IF (|has| |#1| (-871 (-554))) (PROGN (IF (|has| |#2| (-617)) (PROGN (-15 -2413 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1158))) (-15 -4347 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1158)))) |%noBranch|) (IF (|has| |#2| (-1121)) (-15 -4347 ((-3 |#2| "failed") |#2| (-1158) (-829 |#2|) (-829 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-836) (-1023 (-554)) (-446) (-627 (-554))) (-13 (-27) (-1180) (-425 |#1|))) (T -557))
-((-4347 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1158)) (-5 *4 (-829 *2)) (-4 *2 (-1121)) (-4 *2 (-13 (-27) (-1180) (-425 *5))) (-4 *5 (-602 (-877 (-554)))) (-4 *5 (-871 (-554))) (-4 *5 (-13 (-836) (-1023 (-554)) (-446) (-627 (-554)))) (-5 *1 (-557 *5 *2)))) (-4347 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1158)) (-4 *5 (-602 (-877 (-554)))) (-4 *5 (-871 (-554))) (-4 *5 (-13 (-836) (-1023 (-554)) (-446) (-627 (-554)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-557 *5 *3)) (-4 *3 (-617)) (-4 *3 (-13 (-27) (-1180) (-425 *5))))) (-2413 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1158)) (-4 *5 (-602 (-877 (-554)))) (-4 *5 (-871 (-554))) (-4 *5 (-13 (-836) (-1023 (-554)) (-446) (-627 (-554)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-557 *5 *3)) (-4 *3 (-617)) (-4 *3 (-13 (-27) (-1180) (-425 *5))))) (-3735 (*1 *2 *3 *4) (-12 (-5 *4 (-1158)) (-4 *5 (-13 (-836) (-1023 (-554)) (-446) (-627 (-554)))) (-5 *2 (-2 (|:| -3341 *3) (|:| |nconst| *3))) (-5 *1 (-557 *5 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *5))))))
-(-10 -7 (-15 -3735 ((-2 (|:| -3341 |#2|) (|:| |nconst| |#2|)) |#2| (-1158))) (IF (|has| |#1| (-602 (-877 (-554)))) (IF (|has| |#1| (-871 (-554))) (PROGN (IF (|has| |#2| (-617)) (PROGN (-15 -2413 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1158))) (-15 -4347 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1158)))) |%noBranch|) (IF (|has| |#2| (-1121)) (-15 -4347 ((-3 |#2| "failed") |#2| (-1158) (-829 |#2|) (-829 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-2935 (((-3 (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|)))))) "failed") (-402 |#2|) (-631 (-402 |#2|))) 41)) (-2279 (((-575 (-402 |#2|)) (-402 |#2|)) 28)) (-2901 (((-3 (-402 |#2|) "failed") (-402 |#2|)) 17)) (-2633 (((-3 (-2 (|:| -1709 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-402 |#2|)) 48)))
-(((-558 |#1| |#2|) (-10 -7 (-15 -2279 ((-575 (-402 |#2|)) (-402 |#2|))) (-15 -2901 ((-3 (-402 |#2|) "failed") (-402 |#2|))) (-15 -2633 ((-3 (-2 (|:| -1709 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-402 |#2|))) (-15 -2935 ((-3 (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|)))))) "failed") (-402 |#2|) (-631 (-402 |#2|))))) (-13 (-358) (-145) (-1023 (-554))) (-1217 |#1|)) (T -558))
-((-2935 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-631 (-402 *6))) (-5 *3 (-402 *6)) (-4 *6 (-1217 *5)) (-4 *5 (-13 (-358) (-145) (-1023 (-554)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-558 *5 *6)))) (-2633 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-358) (-145) (-1023 (-554)))) (-4 *5 (-1217 *4)) (-5 *2 (-2 (|:| -1709 (-402 *5)) (|:| |coeff| (-402 *5)))) (-5 *1 (-558 *4 *5)) (-5 *3 (-402 *5)))) (-2901 (*1 *2 *2) (|partial| -12 (-5 *2 (-402 *4)) (-4 *4 (-1217 *3)) (-4 *3 (-13 (-358) (-145) (-1023 (-554)))) (-5 *1 (-558 *3 *4)))) (-2279 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-145) (-1023 (-554)))) (-4 *5 (-1217 *4)) (-5 *2 (-575 (-402 *5))) (-5 *1 (-558 *4 *5)) (-5 *3 (-402 *5)))))
-(-10 -7 (-15 -2279 ((-575 (-402 |#2|)) (-402 |#2|))) (-15 -2901 ((-3 (-402 |#2|) "failed") (-402 |#2|))) (-15 -2633 ((-3 (-2 (|:| -1709 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-402 |#2|))) (-15 -2935 ((-3 (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|)))))) "failed") (-402 |#2|) (-631 (-402 |#2|)))))
-((-2443 (((-3 (-554) "failed") |#1|) 14)) (-1289 (((-112) |#1|) 13)) (-3476 (((-554) |#1|) 9)))
-(((-559 |#1|) (-10 -7 (-15 -3476 ((-554) |#1|)) (-15 -1289 ((-112) |#1|)) (-15 -2443 ((-3 (-554) "failed") |#1|))) (-1023 (-554))) (T -559))
-((-2443 (*1 *2 *3) (|partial| -12 (-5 *2 (-554)) (-5 *1 (-559 *3)) (-4 *3 (-1023 *2)))) (-1289 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-559 *3)) (-4 *3 (-1023 (-554))))) (-3476 (*1 *2 *3) (-12 (-5 *2 (-554)) (-5 *1 (-559 *3)) (-4 *3 (-1023 *2)))))
-(-10 -7 (-15 -3476 ((-554) |#1|)) (-15 -1289 ((-112) |#1|)) (-15 -2443 ((-3 (-554) "failed") |#1|)))
-((-4044 (((-3 (-2 (|:| |mainpart| (-402 (-937 |#1|))) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| (-402 (-937 |#1|))) (|:| |logand| (-402 (-937 |#1|))))))) "failed") (-402 (-937 |#1|)) (-1158) (-631 (-402 (-937 |#1|)))) 48)) (-1918 (((-575 (-402 (-937 |#1|))) (-402 (-937 |#1|)) (-1158)) 28)) (-1908 (((-3 (-402 (-937 |#1|)) "failed") (-402 (-937 |#1|)) (-1158)) 23)) (-2917 (((-3 (-2 (|:| -1709 (-402 (-937 |#1|))) (|:| |coeff| (-402 (-937 |#1|)))) "failed") (-402 (-937 |#1|)) (-1158) (-402 (-937 |#1|))) 35)))
-(((-560 |#1|) (-10 -7 (-15 -1918 ((-575 (-402 (-937 |#1|))) (-402 (-937 |#1|)) (-1158))) (-15 -1908 ((-3 (-402 (-937 |#1|)) "failed") (-402 (-937 |#1|)) (-1158))) (-15 -4044 ((-3 (-2 (|:| |mainpart| (-402 (-937 |#1|))) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| (-402 (-937 |#1|))) (|:| |logand| (-402 (-937 |#1|))))))) "failed") (-402 (-937 |#1|)) (-1158) (-631 (-402 (-937 |#1|))))) (-15 -2917 ((-3 (-2 (|:| -1709 (-402 (-937 |#1|))) (|:| |coeff| (-402 (-937 |#1|)))) "failed") (-402 (-937 |#1|)) (-1158) (-402 (-937 |#1|))))) (-13 (-546) (-1023 (-554)) (-145))) (T -560))
-((-2917 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1158)) (-4 *5 (-13 (-546) (-1023 (-554)) (-145))) (-5 *2 (-2 (|:| -1709 (-402 (-937 *5))) (|:| |coeff| (-402 (-937 *5))))) (-5 *1 (-560 *5)) (-5 *3 (-402 (-937 *5))))) (-4044 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1158)) (-5 *5 (-631 (-402 (-937 *6)))) (-5 *3 (-402 (-937 *6))) (-4 *6 (-13 (-546) (-1023 (-554)) (-145))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-560 *6)))) (-1908 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-402 (-937 *4))) (-5 *3 (-1158)) (-4 *4 (-13 (-546) (-1023 (-554)) (-145))) (-5 *1 (-560 *4)))) (-1918 (*1 *2 *3 *4) (-12 (-5 *4 (-1158)) (-4 *5 (-13 (-546) (-1023 (-554)) (-145))) (-5 *2 (-575 (-402 (-937 *5)))) (-5 *1 (-560 *5)) (-5 *3 (-402 (-937 *5))))))
-(-10 -7 (-15 -1918 ((-575 (-402 (-937 |#1|))) (-402 (-937 |#1|)) (-1158))) (-15 -1908 ((-3 (-402 (-937 |#1|)) "failed") (-402 (-937 |#1|)) (-1158))) (-15 -4044 ((-3 (-2 (|:| |mainpart| (-402 (-937 |#1|))) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| (-402 (-937 |#1|))) (|:| |logand| (-402 (-937 |#1|))))))) "failed") (-402 (-937 |#1|)) (-1158) (-631 (-402 (-937 |#1|))))) (-15 -2917 ((-3 (-2 (|:| -1709 (-402 (-937 |#1|))) (|:| |coeff| (-402 (-937 |#1|)))) "failed") (-402 (-937 |#1|)) (-1158) (-402 (-937 |#1|)))))
-((-3062 (((-112) $ $) 58)) (-1695 (((-112) $) 36)) (-4026 ((|#1| $) 30)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) 62)) (-3023 (($ $) 122)) (-4200 (($ $) 102)) (-1349 ((|#1| $) 28)) (-2934 (((-3 $ "failed") $ $) NIL)) (-2282 (($ $) NIL)) (-3003 (($ $) 124)) (-4177 (($ $) 98)) (-3046 (($ $) 126)) (-2916 (($ $) 106)) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) 77)) (-1668 (((-554) $) 79)) (-1320 (((-3 $ "failed") $) 61)) (-3603 (($ |#1| |#1|) 26)) (-2745 (((-112) $) 33)) (-2844 (($) 88)) (-3248 (((-112) $) 43)) (-3734 (($ $ (-554)) NIL)) (-4304 (((-112) $) 34)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-2395 (($ $) 90)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-1449 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-402 (-554))) 76)) (-3703 ((|#1| $) 27)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) 64) (($ (-631 $)) NIL)) (-3919 (((-3 $ "failed") $ $) 63)) (-1333 (($ $) 92)) (-3057 (($ $) 130)) (-2926 (($ $) 104)) (-3034 (($ $) 132)) (-4213 (($ $) 108)) (-3014 (($ $) 128)) (-4188 (($ $) 100)) (-1543 (((-112) $ |#1|) 31)) (-3075 (((-848) $) 84) (($ (-554)) 66) (($ $) NIL) (($ (-554)) 66)) (-2261 (((-758)) 86)) (-3096 (($ $) 144)) (-2959 (($ $) 114)) (-1909 (((-112) $ $) NIL)) (-3069 (($ $) 142)) (-2938 (($ $) 110)) (-3120 (($ $) 140)) (-2981 (($ $) 120)) (-2908 (($ $) 138)) (-2991 (($ $) 118)) (-3108 (($ $) 136)) (-2969 (($ $) 116)) (-3083 (($ $) 134)) (-2948 (($ $) 112)) (-2004 (($) 21 T CONST)) (-2014 (($) 10 T CONST)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 37)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 35)) (-1744 (($ $) 41) (($ $ $) 42)) (-1735 (($ $ $) 40)) (** (($ $ (-906)) 54) (($ $ (-758)) NIL) (($ $ $) 94) (($ $ (-402 (-554))) 146)) (* (($ (-906) $) 51) (($ (-758) $) NIL) (($ (-554) $) 50) (($ $ $) 48)))
-(((-561 |#1|) (-544 |#1|) (-13 (-399) (-1180))) (T -561))
-NIL
-(-544 |#1|)
-((-1625 (((-3 (-631 (-1154 (-554))) "failed") (-631 (-1154 (-554))) (-1154 (-554))) 24)))
-(((-562) (-10 -7 (-15 -1625 ((-3 (-631 (-1154 (-554))) "failed") (-631 (-1154 (-554))) (-1154 (-554)))))) (T -562))
-((-1625 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-631 (-1154 (-554)))) (-5 *3 (-1154 (-554))) (-5 *1 (-562)))))
-(-10 -7 (-15 -1625 ((-3 (-631 (-1154 (-554))) "failed") (-631 (-1154 (-554))) (-1154 (-554)))))
-((-3494 (((-631 (-600 |#2|)) (-631 (-600 |#2|)) (-1158)) 19)) (-4023 (((-631 (-600 |#2|)) (-631 |#2|) (-1158)) 23)) (-3382 (((-631 (-600 |#2|)) (-631 (-600 |#2|)) (-631 (-600 |#2|))) 11)) (-2155 ((|#2| |#2| (-1158)) 54 (|has| |#1| (-546)))) (-4128 ((|#2| |#2| (-1158)) 78 (-12 (|has| |#2| (-279)) (|has| |#1| (-446))))) (-1876 (((-600 |#2|) (-600 |#2|) (-631 (-600 |#2|)) (-1158)) 25)) (-2091 (((-600 |#2|) (-631 (-600 |#2|))) 24)) (-3013 (((-575 |#2|) |#2| (-1158) (-1 (-575 |#2|) |#2| (-1158)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1158))) 103 (-12 (|has| |#2| (-279)) (|has| |#2| (-617)) (|has| |#2| (-1023 (-1158))) (|has| |#1| (-602 (-877 (-554)))) (|has| |#1| (-446)) (|has| |#1| (-871 (-554)))))))
-(((-563 |#1| |#2|) (-10 -7 (-15 -3494 ((-631 (-600 |#2|)) (-631 (-600 |#2|)) (-1158))) (-15 -2091 ((-600 |#2|) (-631 (-600 |#2|)))) (-15 -1876 ((-600 |#2|) (-600 |#2|) (-631 (-600 |#2|)) (-1158))) (-15 -3382 ((-631 (-600 |#2|)) (-631 (-600 |#2|)) (-631 (-600 |#2|)))) (-15 -4023 ((-631 (-600 |#2|)) (-631 |#2|) (-1158))) (IF (|has| |#1| (-546)) (-15 -2155 (|#2| |#2| (-1158))) |%noBranch|) (IF (|has| |#1| (-446)) (IF (|has| |#2| (-279)) (PROGN (-15 -4128 (|#2| |#2| (-1158))) (IF (|has| |#1| (-602 (-877 (-554)))) (IF (|has| |#1| (-871 (-554))) (IF (|has| |#2| (-617)) (IF (|has| |#2| (-1023 (-1158))) (-15 -3013 ((-575 |#2|) |#2| (-1158) (-1 (-575 |#2|) |#2| (-1158)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1158)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-836) (-425 |#1|)) (T -563))
-((-3013 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-575 *3) *3 (-1158))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1158))) (-4 *3 (-279)) (-4 *3 (-617)) (-4 *3 (-1023 *4)) (-4 *3 (-425 *7)) (-5 *4 (-1158)) (-4 *7 (-602 (-877 (-554)))) (-4 *7 (-446)) (-4 *7 (-871 (-554))) (-4 *7 (-836)) (-5 *2 (-575 *3)) (-5 *1 (-563 *7 *3)))) (-4128 (*1 *2 *2 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-446)) (-4 *4 (-836)) (-5 *1 (-563 *4 *2)) (-4 *2 (-279)) (-4 *2 (-425 *4)))) (-2155 (*1 *2 *2 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-546)) (-4 *4 (-836)) (-5 *1 (-563 *4 *2)) (-4 *2 (-425 *4)))) (-4023 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *6)) (-5 *4 (-1158)) (-4 *6 (-425 *5)) (-4 *5 (-836)) (-5 *2 (-631 (-600 *6))) (-5 *1 (-563 *5 *6)))) (-3382 (*1 *2 *2 *2) (-12 (-5 *2 (-631 (-600 *4))) (-4 *4 (-425 *3)) (-4 *3 (-836)) (-5 *1 (-563 *3 *4)))) (-1876 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-631 (-600 *6))) (-5 *4 (-1158)) (-5 *2 (-600 *6)) (-4 *6 (-425 *5)) (-4 *5 (-836)) (-5 *1 (-563 *5 *6)))) (-2091 (*1 *2 *3) (-12 (-5 *3 (-631 (-600 *5))) (-4 *4 (-836)) (-5 *2 (-600 *5)) (-5 *1 (-563 *4 *5)) (-4 *5 (-425 *4)))) (-3494 (*1 *2 *2 *3) (-12 (-5 *2 (-631 (-600 *5))) (-5 *3 (-1158)) (-4 *5 (-425 *4)) (-4 *4 (-836)) (-5 *1 (-563 *4 *5)))))
-(-10 -7 (-15 -3494 ((-631 (-600 |#2|)) (-631 (-600 |#2|)) (-1158))) (-15 -2091 ((-600 |#2|) (-631 (-600 |#2|)))) (-15 -1876 ((-600 |#2|) (-600 |#2|) (-631 (-600 |#2|)) (-1158))) (-15 -3382 ((-631 (-600 |#2|)) (-631 (-600 |#2|)) (-631 (-600 |#2|)))) (-15 -4023 ((-631 (-600 |#2|)) (-631 |#2|) (-1158))) (IF (|has| |#1| (-546)) (-15 -2155 (|#2| |#2| (-1158))) |%noBranch|) (IF (|has| |#1| (-446)) (IF (|has| |#2| (-279)) (PROGN (-15 -4128 (|#2| |#2| (-1158))) (IF (|has| |#1| (-602 (-877 (-554)))) (IF (|has| |#1| (-871 (-554))) (IF (|has| |#2| (-617)) (IF (|has| |#2| (-1023 (-1158))) (-15 -3013 ((-575 |#2|) |#2| (-1158) (-1 (-575 |#2|) |#2| (-1158)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1158)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-1428 (((-2 (|:| |answer| (-575 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-631 |#1|) "failed") (-554) |#1| |#1|)) 172)) (-2828 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|))))))) (|:| |a0| |#1|)) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1709 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-631 (-402 |#2|))) 148)) (-3541 (((-3 (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|)))))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-631 (-402 |#2|))) 145)) (-1341 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1709 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 133)) (-1699 (((-2 (|:| |answer| (-575 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1709 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 158)) (-2656 (((-3 (-2 (|:| -1709 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-402 |#2|)) 175)) (-3134 (((-3 (-2 (|:| |answer| (-402 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1709 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1709 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-402 |#2|)) 178)) (-3689 (((-2 (|:| |ir| (-575 (-402 |#2|))) (|:| |specpart| (-402 |#2|)) (|:| |polypart| |#2|)) (-402 |#2|) (-1 |#2| |#2|)) 84)) (-1805 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-3530 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|))))))) (|:| |a0| |#1|)) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3324 |#1|) (|:| |sol?| (-112))) (-554) |#1|) (-631 (-402 |#2|))) 152)) (-1588 (((-3 (-611 |#1| |#2|) "failed") (-611 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3324 |#1|) (|:| |sol?| (-112))) (-554) |#1|)) 137)) (-3394 (((-2 (|:| |answer| (-575 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3324 |#1|) (|:| |sol?| (-112))) (-554) |#1|)) 162)) (-1311 (((-3 (-2 (|:| |answer| (-402 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1709 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3324 |#1|) (|:| |sol?| (-112))) (-554) |#1|) (-402 |#2|)) 183)))
-(((-564 |#1| |#2|) (-10 -7 (-15 -1699 ((-2 (|:| |answer| (-575 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1709 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3394 ((-2 (|:| |answer| (-575 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3324 |#1|) (|:| |sol?| (-112))) (-554) |#1|))) (-15 -1428 ((-2 (|:| |answer| (-575 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-631 |#1|) "failed") (-554) |#1| |#1|))) (-15 -3134 ((-3 (-2 (|:| |answer| (-402 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1709 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1709 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-402 |#2|))) (-15 -1311 ((-3 (-2 (|:| |answer| (-402 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1709 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3324 |#1|) (|:| |sol?| (-112))) (-554) |#1|) (-402 |#2|))) (-15 -2828 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|))))))) (|:| |a0| |#1|)) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1709 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-631 (-402 |#2|)))) (-15 -3530 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|))))))) (|:| |a0| |#1|)) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3324 |#1|) (|:| |sol?| (-112))) (-554) |#1|) (-631 (-402 |#2|)))) (-15 -2656 ((-3 (-2 (|:| -1709 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-402 |#2|))) (-15 -3541 ((-3 (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|)))))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-631 (-402 |#2|)))) (-15 -1341 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1709 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1588 ((-3 (-611 |#1| |#2|) "failed") (-611 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3324 |#1|) (|:| |sol?| (-112))) (-554) |#1|))) (-15 -3689 ((-2 (|:| |ir| (-575 (-402 |#2|))) (|:| |specpart| (-402 |#2|)) (|:| |polypart| |#2|)) (-402 |#2|) (-1 |#2| |#2|))) (-15 -1805 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-358) (-1217 |#1|)) (T -564))
-((-1805 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1217 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-564 *5 *3)))) (-3689 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1217 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| |ir| (-575 (-402 *6))) (|:| |specpart| (-402 *6)) (|:| |polypart| *6))) (-5 *1 (-564 *5 *6)) (-5 *3 (-402 *6)))) (-1588 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-611 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3324 *4) (|:| |sol?| (-112))) (-554) *4)) (-4 *4 (-358)) (-4 *5 (-1217 *4)) (-5 *1 (-564 *4 *5)))) (-1341 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -1709 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-358)) (-5 *1 (-564 *4 *2)) (-4 *2 (-1217 *4)))) (-3541 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-631 (-402 *7))) (-4 *7 (-1217 *6)) (-5 *3 (-402 *7)) (-4 *6 (-358)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-564 *6 *7)))) (-2656 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1217 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| -1709 (-402 *6)) (|:| |coeff| (-402 *6)))) (-5 *1 (-564 *5 *6)) (-5 *3 (-402 *6)))) (-3530 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3324 *7) (|:| |sol?| (-112))) (-554) *7)) (-5 *6 (-631 (-402 *8))) (-4 *7 (-358)) (-4 *8 (-1217 *7)) (-5 *3 (-402 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-564 *7 *8)))) (-2828 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -1709 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-631 (-402 *8))) (-4 *7 (-358)) (-4 *8 (-1217 *7)) (-5 *3 (-402 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-564 *7 *8)))) (-1311 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3324 *6) (|:| |sol?| (-112))) (-554) *6)) (-4 *6 (-358)) (-4 *7 (-1217 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-402 *7)) (|:| |a0| *6)) (-2 (|:| -1709 (-402 *7)) (|:| |coeff| (-402 *7))) "failed")) (-5 *1 (-564 *6 *7)) (-5 *3 (-402 *7)))) (-3134 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1709 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-358)) (-4 *7 (-1217 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-402 *7)) (|:| |a0| *6)) (-2 (|:| -1709 (-402 *7)) (|:| |coeff| (-402 *7))) "failed")) (-5 *1 (-564 *6 *7)) (-5 *3 (-402 *7)))) (-1428 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-631 *6) "failed") (-554) *6 *6)) (-4 *6 (-358)) (-4 *7 (-1217 *6)) (-5 *2 (-2 (|:| |answer| (-575 (-402 *7))) (|:| |a0| *6))) (-5 *1 (-564 *6 *7)) (-5 *3 (-402 *7)))) (-3394 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3324 *6) (|:| |sol?| (-112))) (-554) *6)) (-4 *6 (-358)) (-4 *7 (-1217 *6)) (-5 *2 (-2 (|:| |answer| (-575 (-402 *7))) (|:| |a0| *6))) (-5 *1 (-564 *6 *7)) (-5 *3 (-402 *7)))) (-1699 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1709 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-358)) (-4 *7 (-1217 *6)) (-5 *2 (-2 (|:| |answer| (-575 (-402 *7))) (|:| |a0| *6))) (-5 *1 (-564 *6 *7)) (-5 *3 (-402 *7)))))
-(-10 -7 (-15 -1699 ((-2 (|:| |answer| (-575 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1709 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3394 ((-2 (|:| |answer| (-575 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3324 |#1|) (|:| |sol?| (-112))) (-554) |#1|))) (-15 -1428 ((-2 (|:| |answer| (-575 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-631 |#1|) "failed") (-554) |#1| |#1|))) (-15 -3134 ((-3 (-2 (|:| |answer| (-402 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1709 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1709 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-402 |#2|))) (-15 -1311 ((-3 (-2 (|:| |answer| (-402 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1709 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3324 |#1|) (|:| |sol?| (-112))) (-554) |#1|) (-402 |#2|))) (-15 -2828 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|))))))) (|:| |a0| |#1|)) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1709 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-631 (-402 |#2|)))) (-15 -3530 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|))))))) (|:| |a0| |#1|)) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3324 |#1|) (|:| |sol?| (-112))) (-554) |#1|) (-631 (-402 |#2|)))) (-15 -2656 ((-3 (-2 (|:| -1709 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-402 |#2|))) (-15 -3541 ((-3 (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|)))))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-631 (-402 |#2|)))) (-15 -1341 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1709 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1588 ((-3 (-611 |#1| |#2|) "failed") (-611 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3324 |#1|) (|:| |sol?| (-112))) (-554) |#1|))) (-15 -3689 ((-2 (|:| |ir| (-575 (-402 |#2|))) (|:| |specpart| (-402 |#2|)) (|:| |polypart| |#2|)) (-402 |#2|) (-1 |#2| |#2|))) (-15 -1805 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
-((-4317 (((-3 |#2| "failed") |#2| (-1158) (-1158)) 10)))
-(((-565 |#1| |#2|) (-10 -7 (-15 -4317 ((-3 |#2| "failed") |#2| (-1158) (-1158)))) (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554))) (-13 (-1180) (-944) (-1121) (-29 |#1|))) (T -565))
-((-4317 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1158)) (-4 *4 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-565 *4 *2)) (-4 *2 (-13 (-1180) (-944) (-1121) (-29 *4))))))
-(-10 -7 (-15 -4317 ((-3 |#2| "failed") |#2| (-1158) (-1158))))
-((-2077 (((-1102) $ (-128)) 12)) (-3451 (((-1102) $ (-129)) 11)) (-4120 (((-1102) $ (-128)) 7)) (-2614 (((-1102) $) 8)) (-3745 (($ $) 6)))
-(((-566) (-138)) (T -566))
-NIL
-(-13 (-521) (-846))
-(((-171) . T) ((-521) . T) ((-846) . T))
-((-2077 (((-1102) $ (-128)) NIL)) (-3451 (((-1102) $ (-129)) NIL)) (-4120 (((-1102) $ (-128)) NIL)) (-2614 (((-1102) $) NIL)) (-2993 (((-112) $) NIL)) (-1338 (($ (-383)) 14) (($ (-1140)) 16)) (-3075 (((-848) $) NIL)) (-3745 (($ $) NIL)))
-(((-567) (-13 (-566) (-601 (-848)) (-10 -8 (-15 -1338 ($ (-383))) (-15 -1338 ($ (-1140))) (-15 -2993 ((-112) $))))) (T -567))
-((-1338 (*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-567)))) (-1338 (*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-567)))) (-2993 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-567)))))
-(-13 (-566) (-601 (-848)) (-10 -8 (-15 -1338 ($ (-383))) (-15 -1338 ($ (-1140))) (-15 -2993 ((-112) $))))
-((-3062 (((-112) $ $) NIL)) (-2182 (($) 7 T CONST)) (-1613 (((-1140) $) NIL)) (-1431 (($) 6 T CONST)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 14)) (-1934 (($) 8 T CONST)) (-1658 (((-112) $ $) 10)))
-(((-568) (-13 (-1082) (-10 -8 (-15 -1431 ($) -2397) (-15 -2182 ($) -2397) (-15 -1934 ($) -2397)))) (T -568))
-((-1431 (*1 *1) (-5 *1 (-568))) (-2182 (*1 *1) (-5 *1 (-568))) (-1934 (*1 *1) (-5 *1 (-568))))
-(-13 (-1082) (-10 -8 (-15 -1431 ($) -2397) (-15 -2182 ($) -2397) (-15 -1934 ($) -2397)))
-((-3062 (((-112) $ $) NIL)) (-1879 (((-3 $ "failed") (-485)) 13)) (-1613 (((-1140) $) NIL)) (-2059 (($ (-1140)) 9)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 28)) (-2749 (((-209 4 (-129)) $) 16)) (-1658 (((-112) $ $) 19)))
-(((-569) (-13 (-1082) (-10 -8 (-15 -2059 ($ (-1140))) (-15 -2749 ((-209 4 (-129)) $)) (-15 -1879 ((-3 $ "failed") (-485)))))) (T -569))
-((-2059 (*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-569)))) (-2749 (*1 *2 *1) (-12 (-5 *2 (-209 4 (-129))) (-5 *1 (-569)))) (-1879 (*1 *1 *2) (|partial| -12 (-5 *2 (-485)) (-5 *1 (-569)))))
-(-13 (-1082) (-10 -8 (-15 -2059 ($ (-1140))) (-15 -2749 ((-209 4 (-129)) $)) (-15 -1879 ((-3 $ "failed") (-485)))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-2282 (($ $ (-554)) 66)) (-2286 (((-112) $ $) NIL)) (-4087 (($) NIL T CONST)) (-2638 (($ (-1154 (-554)) (-554)) 72)) (-3964 (($ $ $) NIL)) (-1320 (((-3 $ "failed") $) 58)) (-2612 (($ $) 34)) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-2342 (((-758) $) 15)) (-3248 (((-112) $) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2340 (((-554)) 29)) (-3859 (((-554) $) 32)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4282 (($ $ (-554)) 21)) (-3919 (((-3 $ "failed") $ $) 59)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2072 (((-758) $) 16)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 61)) (-1378 (((-1138 (-554)) $) 18)) (-1300 (($ $) 23)) (-3075 (((-848) $) 87) (($ (-554)) 52) (($ $) NIL)) (-2261 (((-758)) 14)) (-1909 (((-112) $ $) NIL)) (-4333 (((-554) $ (-554)) 36)) (-2004 (($) 35 T CONST)) (-2014 (($) 19 T CONST)) (-1658 (((-112) $ $) 39)) (-1744 (($ $) 51) (($ $ $) 37)) (-1735 (($ $ $) 50)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 54) (($ $ $) 55)))
-(((-570 |#1| |#2|) (-854 |#1|) (-554) (-112)) (T -570))
-NIL
-(-854 |#1|)
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 21)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-3718 (((-112) $) NIL)) (-1924 (((-758)) NIL)) (-1612 (($ $ (-906)) NIL (|has| $ (-363))) (($ $) NIL)) (-3205 (((-1168 (-906) (-758)) (-554)) 47)) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2286 (((-112) $ $) NIL)) (-1508 (((-758)) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 $ "failed") $) 75)) (-1668 (($ $) 74)) (-1651 (($ (-1241 $)) 73)) (-2723 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-3964 (($ $ $) NIL)) (-1320 (((-3 $ "failed") $) 32)) (-3353 (($) NIL)) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3157 (($) 49)) (-2754 (((-112) $) NIL)) (-4122 (($ $) NIL) (($ $ (-758)) NIL)) (-3289 (((-112) $) NIL)) (-2342 (((-820 (-906)) $) NIL) (((-906) $) NIL)) (-3248 (((-112) $) NIL)) (-3227 (($) 37 (|has| $ (-363)))) (-2693 (((-112) $) NIL (|has| $ (-363)))) (-3274 (($ $ (-906)) NIL (|has| $ (-363))) (($ $) NIL)) (-3339 (((-3 $ "failed") $) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-3361 (((-1154 $) $ (-906)) NIL (|has| $ (-363))) (((-1154 $) $) 83)) (-3830 (((-906) $) 55)) (-3933 (((-1154 $) $) NIL (|has| $ (-363)))) (-3025 (((-3 (-1154 $) "failed") $ $) NIL (|has| $ (-363))) (((-1154 $) $) NIL (|has| $ (-363)))) (-2300 (($ $ (-1154 $)) NIL (|has| $ (-363)))) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-3834 (($) NIL T CONST)) (-2717 (($ (-906)) 48)) (-2070 (((-112) $) 67)) (-2768 (((-1102) $) NIL)) (-4137 (($) 19 (|has| $ (-363)))) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3725 (((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))) 42)) (-2270 (((-413 $) $) NIL)) (-2365 (((-906)) 66) (((-820 (-906))) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-3316 (((-3 (-758) "failed") $ $) NIL) (((-758) $) NIL)) (-3330 (((-133)) NIL)) (-1553 (($ $ (-758)) NIL) (($ $) NIL)) (-3308 (((-906) $) 65) (((-820 (-906)) $) NIL)) (-4318 (((-1154 $)) 82)) (-3944 (($) 54)) (-2288 (($) 38 (|has| $ (-363)))) (-3656 (((-675 $) (-1241 $)) NIL) (((-1241 $) $) 71)) (-2927 (((-554) $) 28)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL)) (-3075 (((-848) $) NIL) (($ (-554)) 30) (($ $) NIL) (($ (-402 (-554))) NIL)) (-2084 (((-3 $ "failed") $) NIL) (($ $) 84)) (-2261 (((-758)) 39)) (-3782 (((-1241 $) (-906)) 77) (((-1241 $)) 76)) (-1909 (((-112) $ $) NIL)) (-3536 (((-112) $) NIL)) (-2004 (($) 22 T CONST)) (-2014 (($) 18 T CONST)) (-1811 (($ $ (-758)) NIL (|has| $ (-363))) (($ $) NIL (|has| $ (-363)))) (-1787 (($ $ (-758)) NIL) (($ $) NIL)) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) 26)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 61) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL)))
-(((-571 |#1|) (-13 (-344) (-324 $) (-602 (-554))) (-906)) (T -571))
-NIL
-(-13 (-344) (-324 $) (-602 (-554)))
-((-4226 (((-1246) (-1140)) 10)))
-(((-572) (-10 -7 (-15 -4226 ((-1246) (-1140))))) (T -572))
-((-4226 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-572)))))
-(-10 -7 (-15 -4226 ((-1246) (-1140))))
-((-1515 (((-575 |#2|) (-575 |#2|)) 40)) (-1845 (((-631 |#2|) (-575 |#2|)) 42)) (-3537 ((|#2| (-575 |#2|)) 48)))
-(((-573 |#1| |#2|) (-10 -7 (-15 -1515 ((-575 |#2|) (-575 |#2|))) (-15 -1845 ((-631 |#2|) (-575 |#2|))) (-15 -3537 (|#2| (-575 |#2|)))) (-13 (-446) (-1023 (-554)) (-836) (-627 (-554))) (-13 (-29 |#1|) (-1180))) (T -573))
-((-3537 (*1 *2 *3) (-12 (-5 *3 (-575 *2)) (-4 *2 (-13 (-29 *4) (-1180))) (-5 *1 (-573 *4 *2)) (-4 *4 (-13 (-446) (-1023 (-554)) (-836) (-627 (-554)))))) (-1845 (*1 *2 *3) (-12 (-5 *3 (-575 *5)) (-4 *5 (-13 (-29 *4) (-1180))) (-4 *4 (-13 (-446) (-1023 (-554)) (-836) (-627 (-554)))) (-5 *2 (-631 *5)) (-5 *1 (-573 *4 *5)))) (-1515 (*1 *2 *2) (-12 (-5 *2 (-575 *4)) (-4 *4 (-13 (-29 *3) (-1180))) (-4 *3 (-13 (-446) (-1023 (-554)) (-836) (-627 (-554)))) (-5 *1 (-573 *3 *4)))))
-(-10 -7 (-15 -1515 ((-575 |#2|) (-575 |#2|))) (-15 -1845 ((-631 |#2|) (-575 |#2|))) (-15 -3537 (|#2| (-575 |#2|))))
-((-2879 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1709 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-575 |#2|) (-1 |#2| |#1|) (-575 |#1|)) 30)))
-(((-574 |#1| |#2|) (-10 -7 (-15 -2879 ((-575 |#2|) (-1 |#2| |#1|) (-575 |#1|))) (-15 -2879 ((-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1709 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2879 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2879 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-358) (-358)) (T -574))
-((-2879 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-358)) (-4 *6 (-358)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-574 *5 *6)))) (-2879 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-358)) (-4 *2 (-358)) (-5 *1 (-574 *5 *2)))) (-2879 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -1709 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-358)) (-4 *6 (-358)) (-5 *2 (-2 (|:| -1709 *6) (|:| |coeff| *6))) (-5 *1 (-574 *5 *6)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-575 *5)) (-4 *5 (-358)) (-4 *6 (-358)) (-5 *2 (-575 *6)) (-5 *1 (-574 *5 *6)))))
-(-10 -7 (-15 -2879 ((-575 |#2|) (-1 |#2| |#1|) (-575 |#1|))) (-15 -2879 ((-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1709 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2879 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2879 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) 69)) (-1668 ((|#1| $) NIL)) (-1709 ((|#1| $) 26)) (-1751 (((-631 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-4246 (($ |#1| (-631 (-2 (|:| |scalar| (-402 (-554))) (|:| |coeff| (-1154 |#1|)) (|:| |logand| (-1154 |#1|)))) (-631 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-2533 (((-631 (-2 (|:| |scalar| (-402 (-554))) (|:| |coeff| (-1154 |#1|)) (|:| |logand| (-1154 |#1|)))) $) 27)) (-1613 (((-1140) $) NIL)) (-3546 (($ |#1| |#1|) 33) (($ |#1| (-1158)) 44 (|has| |#1| (-1023 (-1158))))) (-2768 (((-1102) $) NIL)) (-2158 (((-112) $) 30)) (-1553 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1158)) 82 (|has| |#1| (-885 (-1158))))) (-3075 (((-848) $) 96) (($ |#1|) 25)) (-2004 (($) 16 T CONST)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) 15) (($ $ $) NIL)) (-1735 (($ $ $) 78)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 14) (($ (-402 (-554)) $) 36) (($ $ (-402 (-554))) NIL)))
-(((-575 |#1|) (-13 (-704 (-402 (-554))) (-1023 |#1|) (-10 -8 (-15 -4246 ($ |#1| (-631 (-2 (|:| |scalar| (-402 (-554))) (|:| |coeff| (-1154 |#1|)) (|:| |logand| (-1154 |#1|)))) (-631 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1709 (|#1| $)) (-15 -2533 ((-631 (-2 (|:| |scalar| (-402 (-554))) (|:| |coeff| (-1154 |#1|)) (|:| |logand| (-1154 |#1|)))) $)) (-15 -1751 ((-631 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2158 ((-112) $)) (-15 -3546 ($ |#1| |#1|)) (-15 -1553 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-885 (-1158))) (-15 -1553 (|#1| $ (-1158))) |%noBranch|) (IF (|has| |#1| (-1023 (-1158))) (-15 -3546 ($ |#1| (-1158))) |%noBranch|))) (-358)) (T -575))
-((-4246 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-631 (-2 (|:| |scalar| (-402 (-554))) (|:| |coeff| (-1154 *2)) (|:| |logand| (-1154 *2))))) (-5 *4 (-631 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-358)) (-5 *1 (-575 *2)))) (-1709 (*1 *2 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-358)))) (-2533 (*1 *2 *1) (-12 (-5 *2 (-631 (-2 (|:| |scalar| (-402 (-554))) (|:| |coeff| (-1154 *3)) (|:| |logand| (-1154 *3))))) (-5 *1 (-575 *3)) (-4 *3 (-358)))) (-1751 (*1 *2 *1) (-12 (-5 *2 (-631 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-575 *3)) (-4 *3 (-358)))) (-2158 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-575 *3)) (-4 *3 (-358)))) (-3546 (*1 *1 *2 *2) (-12 (-5 *1 (-575 *2)) (-4 *2 (-358)))) (-1553 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-575 *2)) (-4 *2 (-358)))) (-1553 (*1 *2 *1 *3) (-12 (-4 *2 (-358)) (-4 *2 (-885 *3)) (-5 *1 (-575 *2)) (-5 *3 (-1158)))) (-3546 (*1 *1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *1 (-575 *2)) (-4 *2 (-1023 *3)) (-4 *2 (-358)))))
-(-13 (-704 (-402 (-554))) (-1023 |#1|) (-10 -8 (-15 -4246 ($ |#1| (-631 (-2 (|:| |scalar| (-402 (-554))) (|:| |coeff| (-1154 |#1|)) (|:| |logand| (-1154 |#1|)))) (-631 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1709 (|#1| $)) (-15 -2533 ((-631 (-2 (|:| |scalar| (-402 (-554))) (|:| |coeff| (-1154 |#1|)) (|:| |logand| (-1154 |#1|)))) $)) (-15 -1751 ((-631 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2158 ((-112) $)) (-15 -3546 ($ |#1| |#1|)) (-15 -1553 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-885 (-1158))) (-15 -1553 (|#1| $ (-1158))) |%noBranch|) (IF (|has| |#1| (-1023 (-1158))) (-15 -3546 ($ |#1| (-1158))) |%noBranch|)))
-((-2349 (((-112) |#1|) 16)) (-1630 (((-3 |#1| "failed") |#1|) 14)) (-2880 (((-2 (|:| -3462 |#1|) (|:| -1407 (-758))) |#1|) 31) (((-3 |#1| "failed") |#1| (-758)) 18)) (-1816 (((-112) |#1| (-758)) 19)) (-3060 ((|#1| |#1|) 32)) (-3764 ((|#1| |#1| (-758)) 34)))
-(((-576 |#1|) (-10 -7 (-15 -1816 ((-112) |#1| (-758))) (-15 -2880 ((-3 |#1| "failed") |#1| (-758))) (-15 -2880 ((-2 (|:| -3462 |#1|) (|:| -1407 (-758))) |#1|)) (-15 -3764 (|#1| |#1| (-758))) (-15 -2349 ((-112) |#1|)) (-15 -1630 ((-3 |#1| "failed") |#1|)) (-15 -3060 (|#1| |#1|))) (-539)) (T -576))
-((-3060 (*1 *2 *2) (-12 (-5 *1 (-576 *2)) (-4 *2 (-539)))) (-1630 (*1 *2 *2) (|partial| -12 (-5 *1 (-576 *2)) (-4 *2 (-539)))) (-2349 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-576 *3)) (-4 *3 (-539)))) (-3764 (*1 *2 *2 *3) (-12 (-5 *3 (-758)) (-5 *1 (-576 *2)) (-4 *2 (-539)))) (-2880 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3462 *3) (|:| -1407 (-758)))) (-5 *1 (-576 *3)) (-4 *3 (-539)))) (-2880 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-758)) (-5 *1 (-576 *2)) (-4 *2 (-539)))) (-1816 (*1 *2 *3 *4) (-12 (-5 *4 (-758)) (-5 *2 (-112)) (-5 *1 (-576 *3)) (-4 *3 (-539)))))
-(-10 -7 (-15 -1816 ((-112) |#1| (-758))) (-15 -2880 ((-3 |#1| "failed") |#1| (-758))) (-15 -2880 ((-2 (|:| -3462 |#1|) (|:| -1407 (-758))) |#1|)) (-15 -3764 (|#1| |#1| (-758))) (-15 -2349 ((-112) |#1|)) (-15 -1630 ((-3 |#1| "failed") |#1|)) (-15 -3060 (|#1| |#1|)))
-((-1756 (((-1154 |#1|) (-906)) 27)))
-(((-577 |#1|) (-10 -7 (-15 -1756 ((-1154 |#1|) (-906)))) (-344)) (T -577))
-((-1756 (*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-1154 *4)) (-5 *1 (-577 *4)) (-4 *4 (-344)))))
-(-10 -7 (-15 -1756 ((-1154 |#1|) (-906))))
-((-1515 (((-575 (-402 (-937 |#1|))) (-575 (-402 (-937 |#1|)))) 27)) (-2279 (((-3 (-311 |#1|) (-631 (-311 |#1|))) (-402 (-937 |#1|)) (-1158)) 34 (|has| |#1| (-145)))) (-1845 (((-631 (-311 |#1|)) (-575 (-402 (-937 |#1|)))) 19)) (-3355 (((-311 |#1|) (-402 (-937 |#1|)) (-1158)) 32 (|has| |#1| (-145)))) (-3537 (((-311 |#1|) (-575 (-402 (-937 |#1|)))) 21)))
-(((-578 |#1|) (-10 -7 (-15 -1515 ((-575 (-402 (-937 |#1|))) (-575 (-402 (-937 |#1|))))) (-15 -1845 ((-631 (-311 |#1|)) (-575 (-402 (-937 |#1|))))) (-15 -3537 ((-311 |#1|) (-575 (-402 (-937 |#1|))))) (IF (|has| |#1| (-145)) (PROGN (-15 -2279 ((-3 (-311 |#1|) (-631 (-311 |#1|))) (-402 (-937 |#1|)) (-1158))) (-15 -3355 ((-311 |#1|) (-402 (-937 |#1|)) (-1158)))) |%noBranch|)) (-13 (-446) (-1023 (-554)) (-836) (-627 (-554)))) (T -578))
-((-3355 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-937 *5))) (-5 *4 (-1158)) (-4 *5 (-145)) (-4 *5 (-13 (-446) (-1023 (-554)) (-836) (-627 (-554)))) (-5 *2 (-311 *5)) (-5 *1 (-578 *5)))) (-2279 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-937 *5))) (-5 *4 (-1158)) (-4 *5 (-145)) (-4 *5 (-13 (-446) (-1023 (-554)) (-836) (-627 (-554)))) (-5 *2 (-3 (-311 *5) (-631 (-311 *5)))) (-5 *1 (-578 *5)))) (-3537 (*1 *2 *3) (-12 (-5 *3 (-575 (-402 (-937 *4)))) (-4 *4 (-13 (-446) (-1023 (-554)) (-836) (-627 (-554)))) (-5 *2 (-311 *4)) (-5 *1 (-578 *4)))) (-1845 (*1 *2 *3) (-12 (-5 *3 (-575 (-402 (-937 *4)))) (-4 *4 (-13 (-446) (-1023 (-554)) (-836) (-627 (-554)))) (-5 *2 (-631 (-311 *4))) (-5 *1 (-578 *4)))) (-1515 (*1 *2 *2) (-12 (-5 *2 (-575 (-402 (-937 *3)))) (-4 *3 (-13 (-446) (-1023 (-554)) (-836) (-627 (-554)))) (-5 *1 (-578 *3)))))
-(-10 -7 (-15 -1515 ((-575 (-402 (-937 |#1|))) (-575 (-402 (-937 |#1|))))) (-15 -1845 ((-631 (-311 |#1|)) (-575 (-402 (-937 |#1|))))) (-15 -3537 ((-311 |#1|) (-575 (-402 (-937 |#1|))))) (IF (|has| |#1| (-145)) (PROGN (-15 -2279 ((-3 (-311 |#1|) (-631 (-311 |#1|))) (-402 (-937 |#1|)) (-1158))) (-15 -3355 ((-311 |#1|) (-402 (-937 |#1|)) (-1158)))) |%noBranch|))
-((-2320 (((-631 (-675 (-554))) (-631 (-554)) (-631 (-890 (-554)))) 46) (((-631 (-675 (-554))) (-631 (-554))) 47) (((-675 (-554)) (-631 (-554)) (-890 (-554))) 42)) (-3022 (((-758) (-631 (-554))) 40)))
-(((-579) (-10 -7 (-15 -3022 ((-758) (-631 (-554)))) (-15 -2320 ((-675 (-554)) (-631 (-554)) (-890 (-554)))) (-15 -2320 ((-631 (-675 (-554))) (-631 (-554)))) (-15 -2320 ((-631 (-675 (-554))) (-631 (-554)) (-631 (-890 (-554))))))) (T -579))
-((-2320 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-554))) (-5 *4 (-631 (-890 (-554)))) (-5 *2 (-631 (-675 (-554)))) (-5 *1 (-579)))) (-2320 (*1 *2 *3) (-12 (-5 *3 (-631 (-554))) (-5 *2 (-631 (-675 (-554)))) (-5 *1 (-579)))) (-2320 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-554))) (-5 *4 (-890 (-554))) (-5 *2 (-675 (-554))) (-5 *1 (-579)))) (-3022 (*1 *2 *3) (-12 (-5 *3 (-631 (-554))) (-5 *2 (-758)) (-5 *1 (-579)))))
-(-10 -7 (-15 -3022 ((-758) (-631 (-554)))) (-15 -2320 ((-675 (-554)) (-631 (-554)) (-890 (-554)))) (-15 -2320 ((-631 (-675 (-554))) (-631 (-554)))) (-15 -2320 ((-631 (-675 (-554))) (-631 (-554)) (-631 (-890 (-554))))))
-((-3032 (((-631 |#5|) |#5| (-112)) 73)) (-4153 (((-112) |#5| (-631 |#5|)) 30)))
-(((-580 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3032 ((-631 |#5|) |#5| (-112))) (-15 -4153 ((-112) |#5| (-631 |#5|)))) (-13 (-302) (-145)) (-780) (-836) (-1048 |#1| |#2| |#3|) (-1091 |#1| |#2| |#3| |#4|)) (T -580))
-((-4153 (*1 *2 *3 *4) (-12 (-5 *4 (-631 *3)) (-4 *3 (-1091 *5 *6 *7 *8)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *8 (-1048 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-580 *5 *6 *7 *8 *3)))) (-3032 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *8 (-1048 *5 *6 *7)) (-5 *2 (-631 *3)) (-5 *1 (-580 *5 *6 *7 *8 *3)) (-4 *3 (-1091 *5 *6 *7 *8)))))
-(-10 -7 (-15 -3032 ((-631 |#5|) |#5| (-112))) (-15 -4153 ((-112) |#5| (-631 |#5|))))
-((-3062 (((-112) $ $) NIL)) (-3848 (((-1117) $) 11)) (-3836 (((-1117) $) 9)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 19) (($ (-1163)) NIL) (((-1163) $) NIL)) (-1658 (((-112) $ $) NIL)))
-(((-581) (-13 (-1065) (-10 -8 (-15 -3836 ((-1117) $)) (-15 -3848 ((-1117) $))))) (T -581))
-((-3836 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-581)))) (-3848 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-581)))))
-(-13 (-1065) (-10 -8 (-15 -3836 ((-1117) $)) (-15 -3848 ((-1117) $))))
-((-3062 (((-112) $ $) NIL (|has| (-142) (-1082)))) (-2905 (($ $) 34)) (-2451 (($ $) NIL)) (-4274 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-4233 (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-3779 (((-112) $ $) 51)) (-3756 (((-112) $ $ (-554)) 46)) (-1515 (((-631 $) $ (-142)) 60) (((-631 $) $ (-139)) 61)) (-4015 (((-112) (-1 (-112) (-142) (-142)) $) NIL) (((-112) $) NIL (|has| (-142) (-836)))) (-2576 (($ (-1 (-112) (-142) (-142)) $) NIL (|has| $ (-6 -4374))) (($ $) NIL (-12 (|has| $ (-6 -4374)) (|has| (-142) (-836))))) (-3303 (($ (-1 (-112) (-142) (-142)) $) NIL) (($ $) NIL (|has| (-142) (-836)))) (-3019 (((-112) $ (-758)) NIL)) (-1501 (((-142) $ (-554) (-142)) 45 (|has| $ (-6 -4374))) (((-142) $ (-1208 (-554)) (-142)) NIL (|has| $ (-6 -4374)))) (-1871 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4373)))) (-4087 (($) NIL T CONST)) (-2190 (($ $ (-142)) 64) (($ $ (-139)) 65)) (-3920 (($ $) NIL (|has| $ (-6 -4374)))) (-3799 (($ $) NIL)) (-1395 (($ $ (-1208 (-554)) $) 44)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-142) (-1082))))) (-2574 (($ (-142) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-142) (-1082)))) (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4373)))) (-3676 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4373)) (|has| (-142) (-1082)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4373))) (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4373)))) (-2862 (((-142) $ (-554) (-142)) NIL (|has| $ (-6 -4374)))) (-2796 (((-142) $ (-554)) NIL)) (-3802 (((-112) $ $) 72)) (-1484 (((-554) (-1 (-112) (-142)) $) NIL) (((-554) (-142) $) NIL (|has| (-142) (-1082))) (((-554) (-142) $ (-554)) 48 (|has| (-142) (-1082))) (((-554) $ $ (-554)) 47) (((-554) (-139) $ (-554)) 50)) (-2466 (((-631 (-142)) $) NIL (|has| $ (-6 -4373)))) (-3180 (($ (-758) (-142)) 9)) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) 28 (|has| (-554) (-836)))) (-4223 (($ $ $) NIL (|has| (-142) (-836)))) (-3717 (($ (-1 (-112) (-142) (-142)) $ $) NIL) (($ $ $) NIL (|has| (-142) (-836)))) (-2379 (((-631 (-142)) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-142) (-1082))))) (-2256 (((-554) $) 42 (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (|has| (-142) (-836)))) (-1550 (((-112) $ $ (-142)) 73)) (-3814 (((-758) $ $ (-142)) 70)) (-2849 (($ (-1 (-142) (-142)) $) 33 (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-142) (-142)) $) NIL) (($ (-1 (-142) (-142) (-142)) $ $) NIL)) (-3110 (($ $) 37)) (-1913 (($ $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-2203 (($ $ (-142)) 62) (($ $ (-139)) 63)) (-1613 (((-1140) $) 38 (|has| (-142) (-1082)))) (-1782 (($ (-142) $ (-554)) NIL) (($ $ $ (-554)) 23)) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) NIL)) (-2768 (((-554) $) 69) (((-1102) $) NIL (|has| (-142) (-1082)))) (-1539 (((-142) $) NIL (|has| (-554) (-836)))) (-1652 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-2441 (($ $ (-142)) NIL (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 (-142)))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082)))) (($ $ (-289 (-142))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082)))) (($ $ (-631 (-142)) (-631 (-142))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-142) (-1082))))) (-2625 (((-631 (-142)) $) NIL)) (-3543 (((-112) $) 12)) (-4240 (($) 10)) (-2064 (((-142) $ (-554) (-142)) NIL) (((-142) $ (-554)) 52) (($ $ (-1208 (-554))) 21) (($ $ $) NIL)) (-2021 (($ $ (-554)) NIL) (($ $ (-1208 (-554))) NIL)) (-2777 (((-758) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4373))) (((-758) (-142) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-142) (-1082))))) (-3553 (($ $ $ (-554)) 66 (|has| $ (-6 -4374)))) (-1521 (($ $) 17)) (-2927 (((-530) $) NIL (|has| (-142) (-602 (-530))))) (-3089 (($ (-631 (-142))) NIL)) (-4323 (($ $ (-142)) NIL) (($ (-142) $) NIL) (($ $ $) 16) (($ (-631 $)) 67)) (-3075 (($ (-142)) NIL) (((-848) $) 27 (|has| (-142) (-601 (-848))))) (-2438 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4373)))) (-1708 (((-112) $ $) NIL (|has| (-142) (-836)))) (-1686 (((-112) $ $) NIL (|has| (-142) (-836)))) (-1658 (((-112) $ $) 14 (|has| (-142) (-1082)))) (-1697 (((-112) $ $) NIL (|has| (-142) (-836)))) (-1676 (((-112) $ $) 15 (|has| (-142) (-836)))) (-2563 (((-758) $) 13 (|has| $ (-6 -4373)))))
-(((-582 |#1|) (-13 (-1126) (-10 -8 (-15 -2768 ((-554) $)))) (-554)) (T -582))
-((-2768 (*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-582 *3)) (-14 *3 *2))))
-(-13 (-1126) (-10 -8 (-15 -2768 ((-554) $))))
-((-1688 (((-2 (|:| |num| |#4|) (|:| |den| (-554))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-554))) |#4| |#2| (-1076 |#4|)) 32)))
-(((-583 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1688 ((-2 (|:| |num| |#4|) (|:| |den| (-554))) |#4| |#2| (-1076 |#4|))) (-15 -1688 ((-2 (|:| |num| |#4|) (|:| |den| (-554))) |#4| |#2|))) (-780) (-836) (-546) (-934 |#3| |#1| |#2|)) (T -583))
-((-1688 (*1 *2 *3 *4) (-12 (-4 *5 (-780)) (-4 *4 (-836)) (-4 *6 (-546)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-554)))) (-5 *1 (-583 *5 *4 *6 *3)) (-4 *3 (-934 *6 *5 *4)))) (-1688 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1076 *3)) (-4 *3 (-934 *7 *6 *4)) (-4 *6 (-780)) (-4 *4 (-836)) (-4 *7 (-546)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-554)))) (-5 *1 (-583 *6 *4 *7 *3)))))
-(-10 -7 (-15 -1688 ((-2 (|:| |num| |#4|) (|:| |den| (-554))) |#4| |#2| (-1076 |#4|))) (-15 -1688 ((-2 (|:| |num| |#4|) (|:| |den| (-554))) |#4| |#2|)))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 63)) (-2405 (((-631 (-1064)) $) NIL)) (-1576 (((-1158) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-546)))) (-1976 (($ $) NIL (|has| |#1| (-546)))) (-1363 (((-112) $) NIL (|has| |#1| (-546)))) (-1557 (($ $ (-554)) 54) (($ $ (-554) (-554)) 55)) (-3042 (((-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|))) $) 60)) (-2707 (($ $) 100)) (-2934 (((-3 $ "failed") $ $) NIL)) (-2020 (((-848) (-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|))) (-1011 (-829 (-554))) (-1158) |#1| (-402 (-554))) 224)) (-4175 (($ (-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|)))) 34)) (-4087 (($) NIL T CONST)) (-2550 (($ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2051 (((-112) $) NIL)) (-2342 (((-554) $) 58) (((-554) $ (-554)) 59)) (-3248 (((-112) $) NIL)) (-3333 (($ $ (-906)) 76)) (-1310 (($ (-1 |#1| (-554)) $) 73)) (-3580 (((-112) $) 25)) (-2383 (($ |#1| (-554)) 22) (($ $ (-1064) (-554)) NIL) (($ $ (-631 (-1064)) (-631 (-554))) NIL)) (-2879 (($ (-1 |#1| |#1|) $) 67)) (-2932 (($ (-1011 (-829 (-554))) (-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|)))) 13)) (-2518 (($ $) NIL)) (-2530 ((|#1| $) NIL)) (-1613 (((-1140) $) NIL)) (-2279 (($ $) 150 (|has| |#1| (-38 (-402 (-554)))))) (-4121 (((-3 $ "failed") $ $ (-112)) 99)) (-2429 (($ $ $) 108)) (-2768 (((-1102) $) NIL)) (-2841 (((-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|))) $) 15)) (-3632 (((-1011 (-829 (-554))) $) 14)) (-4282 (($ $ (-554)) 45)) (-3919 (((-3 $ "failed") $ $) NIL (|has| |#1| (-546)))) (-2386 (((-1138 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-554)))))) (-2064 ((|#1| $ (-554)) 57) (($ $ $) NIL (|has| (-554) (-1094)))) (-1553 (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158)) NIL (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-758)) NIL (|has| |#1| (-15 * (|#1| (-554) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (-3308 (((-554) $) NIL)) (-1300 (($ $) 46)) (-3075 (((-848) $) NIL) (($ (-554)) 28) (($ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $) NIL (|has| |#1| (-546))) (($ |#1|) 27 (|has| |#1| (-170)))) (-1779 ((|#1| $ (-554)) 56)) (-2084 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2261 (((-758)) 37)) (-1608 ((|#1| $) NIL)) (-3732 (($ $) 186 (|has| |#1| (-38 (-402 (-554)))))) (-1622 (($ $) 158 (|has| |#1| (-38 (-402 (-554)))))) (-2179 (($ $) 190 (|has| |#1| (-38 (-402 (-554)))))) (-3832 (($ $) 163 (|has| |#1| (-38 (-402 (-554)))))) (-3480 (($ $) 189 (|has| |#1| (-38 (-402 (-554)))))) (-4012 (($ $) 162 (|has| |#1| (-38 (-402 (-554)))))) (-2547 (($ $ (-402 (-554))) 166 (|has| |#1| (-38 (-402 (-554)))))) (-3495 (($ $ |#1|) 146 (|has| |#1| (-38 (-402 (-554)))))) (-3593 (($ $) 192 (|has| |#1| (-38 (-402 (-554)))))) (-3823 (($ $) 149 (|has| |#1| (-38 (-402 (-554)))))) (-1721 (($ $) 191 (|has| |#1| (-38 (-402 (-554)))))) (-2589 (($ $) 164 (|has| |#1| (-38 (-402 (-554)))))) (-1399 (($ $) 187 (|has| |#1| (-38 (-402 (-554)))))) (-1552 (($ $) 160 (|has| |#1| (-38 (-402 (-554)))))) (-3916 (($ $) 188 (|has| |#1| (-38 (-402 (-554)))))) (-3852 (($ $) 161 (|has| |#1| (-38 (-402 (-554)))))) (-1806 (($ $) 197 (|has| |#1| (-38 (-402 (-554)))))) (-3707 (($ $) 173 (|has| |#1| (-38 (-402 (-554)))))) (-3474 (($ $) 194 (|has| |#1| (-38 (-402 (-554)))))) (-3242 (($ $) 168 (|has| |#1| (-38 (-402 (-554)))))) (-2675 (($ $) 201 (|has| |#1| (-38 (-402 (-554)))))) (-1376 (($ $) 177 (|has| |#1| (-38 (-402 (-554)))))) (-2495 (($ $) 203 (|has| |#1| (-38 (-402 (-554)))))) (-2357 (($ $) 179 (|has| |#1| (-38 (-402 (-554)))))) (-1547 (($ $) 199 (|has| |#1| (-38 (-402 (-554)))))) (-2164 (($ $) 175 (|has| |#1| (-38 (-402 (-554)))))) (-2335 (($ $) 196 (|has| |#1| (-38 (-402 (-554)))))) (-3389 (($ $) 171 (|has| |#1| (-38 (-402 (-554)))))) (-1909 (((-112) $ $) NIL (|has| |#1| (-546)))) (-4333 ((|#1| $ (-554)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-554)))) (|has| |#1| (-15 -3075 (|#1| (-1158))))))) (-2004 (($) 29 T CONST)) (-2014 (($) 38 T CONST)) (-1787 (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158)) NIL (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-758)) NIL (|has| |#1| (-15 * (|#1| (-554) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (-1658 (((-112) $ $) 65)) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-1744 (($ $) 84) (($ $ $) 64)) (-1735 (($ $ $) 81)) (** (($ $ (-906)) NIL) (($ $ (-758)) 103)) (* (($ (-906) $) 89) (($ (-758) $) 87) (($ (-554) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554)))))))
-(((-584 |#1|) (-13 (-1219 |#1| (-554)) (-10 -8 (-15 -2932 ($ (-1011 (-829 (-554))) (-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|))))) (-15 -3632 ((-1011 (-829 (-554))) $)) (-15 -2841 ((-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|))) $)) (-15 -4175 ($ (-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|))))) (-15 -3580 ((-112) $)) (-15 -1310 ($ (-1 |#1| (-554)) $)) (-15 -4121 ((-3 $ "failed") $ $ (-112))) (-15 -2707 ($ $)) (-15 -2429 ($ $ $)) (-15 -2020 ((-848) (-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|))) (-1011 (-829 (-554))) (-1158) |#1| (-402 (-554)))) (IF (|has| |#1| (-38 (-402 (-554)))) (PROGN (-15 -2279 ($ $)) (-15 -3495 ($ $ |#1|)) (-15 -2547 ($ $ (-402 (-554)))) (-15 -3823 ($ $)) (-15 -3593 ($ $)) (-15 -3832 ($ $)) (-15 -3852 ($ $)) (-15 -1622 ($ $)) (-15 -1552 ($ $)) (-15 -4012 ($ $)) (-15 -2589 ($ $)) (-15 -3242 ($ $)) (-15 -3389 ($ $)) (-15 -3707 ($ $)) (-15 -2164 ($ $)) (-15 -1376 ($ $)) (-15 -2357 ($ $)) (-15 -2179 ($ $)) (-15 -3916 ($ $)) (-15 -3732 ($ $)) (-15 -1399 ($ $)) (-15 -3480 ($ $)) (-15 -1721 ($ $)) (-15 -3474 ($ $)) (-15 -2335 ($ $)) (-15 -1806 ($ $)) (-15 -1547 ($ $)) (-15 -2675 ($ $)) (-15 -2495 ($ $))) |%noBranch|))) (-1034)) (T -584))
-((-3580 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-584 *3)) (-4 *3 (-1034)))) (-2932 (*1 *1 *2 *3) (-12 (-5 *2 (-1011 (-829 (-554)))) (-5 *3 (-1138 (-2 (|:| |k| (-554)) (|:| |c| *4)))) (-4 *4 (-1034)) (-5 *1 (-584 *4)))) (-3632 (*1 *2 *1) (-12 (-5 *2 (-1011 (-829 (-554)))) (-5 *1 (-584 *3)) (-4 *3 (-1034)))) (-2841 (*1 *2 *1) (-12 (-5 *2 (-1138 (-2 (|:| |k| (-554)) (|:| |c| *3)))) (-5 *1 (-584 *3)) (-4 *3 (-1034)))) (-4175 (*1 *1 *2) (-12 (-5 *2 (-1138 (-2 (|:| |k| (-554)) (|:| |c| *3)))) (-4 *3 (-1034)) (-5 *1 (-584 *3)))) (-1310 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-554))) (-4 *3 (-1034)) (-5 *1 (-584 *3)))) (-4121 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-584 *3)) (-4 *3 (-1034)))) (-2707 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1034)))) (-2429 (*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1034)))) (-2020 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1138 (-2 (|:| |k| (-554)) (|:| |c| *6)))) (-5 *4 (-1011 (-829 (-554)))) (-5 *5 (-1158)) (-5 *7 (-402 (-554))) (-4 *6 (-1034)) (-5 *2 (-848)) (-5 *1 (-584 *6)))) (-2279 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-3495 (*1 *1 *1 *2) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-2547 (*1 *1 *1 *2) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-584 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1034)))) (-3823 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-3593 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-3832 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-3852 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-1622 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-1552 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-4012 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-2589 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-3242 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-3389 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-3707 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-2164 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-1376 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-2357 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-2179 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-3916 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-3732 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-1399 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-3480 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-1721 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-3474 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-2335 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-1806 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-1547 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-2675 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-2495 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))))
-(-13 (-1219 |#1| (-554)) (-10 -8 (-15 -2932 ($ (-1011 (-829 (-554))) (-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|))))) (-15 -3632 ((-1011 (-829 (-554))) $)) (-15 -2841 ((-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|))) $)) (-15 -4175 ($ (-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|))))) (-15 -3580 ((-112) $)) (-15 -1310 ($ (-1 |#1| (-554)) $)) (-15 -4121 ((-3 $ "failed") $ $ (-112))) (-15 -2707 ($ $)) (-15 -2429 ($ $ $)) (-15 -2020 ((-848) (-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|))) (-1011 (-829 (-554))) (-1158) |#1| (-402 (-554)))) (IF (|has| |#1| (-38 (-402 (-554)))) (PROGN (-15 -2279 ($ $)) (-15 -3495 ($ $ |#1|)) (-15 -2547 ($ $ (-402 (-554)))) (-15 -3823 ($ $)) (-15 -3593 ($ $)) (-15 -3832 ($ $)) (-15 -3852 ($ $)) (-15 -1622 ($ $)) (-15 -1552 ($ $)) (-15 -4012 ($ $)) (-15 -2589 ($ $)) (-15 -3242 ($ $)) (-15 -3389 ($ $)) (-15 -3707 ($ $)) (-15 -2164 ($ $)) (-15 -1376 ($ $)) (-15 -2357 ($ $)) (-15 -2179 ($ $)) (-15 -3916 ($ $)) (-15 -3732 ($ $)) (-15 -1399 ($ $)) (-15 -3480 ($ $)) (-15 -1721 ($ $)) (-15 -3474 ($ $)) (-15 -2335 ($ $)) (-15 -1806 ($ $)) (-15 -1547 ($ $)) (-15 -2675 ($ $)) (-15 -2495 ($ $))) |%noBranch|)))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-546)))) (-1976 (($ $) NIL (|has| |#1| (-546)))) (-1363 (((-112) $) NIL (|has| |#1| (-546)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-4175 (($ (-1138 |#1|)) 9)) (-4087 (($) NIL T CONST)) (-1320 (((-3 $ "failed") $) 42)) (-2051 (((-112) $) 52)) (-2342 (((-758) $) 55) (((-758) $ (-758)) 54)) (-3248 (((-112) $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3919 (((-3 $ "failed") $ $) 44 (|has| |#1| (-546)))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL (|has| |#1| (-546)))) (-1893 (((-1138 |#1|) $) 23)) (-2261 (((-758)) 51)) (-1909 (((-112) $ $) NIL (|has| |#1| (-546)))) (-2004 (($) 10 T CONST)) (-2014 (($) 14 T CONST)) (-1658 (((-112) $ $) 22)) (-1744 (($ $) 30) (($ $ $) 16)) (-1735 (($ $ $) 25)) (** (($ $ (-906)) NIL) (($ $ (-758)) 49)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-554)) 36)))
-(((-585 |#1|) (-13 (-1034) (-10 -8 (-15 -1893 ((-1138 |#1|) $)) (-15 -4175 ($ (-1138 |#1|))) (-15 -2051 ((-112) $)) (-15 -2342 ((-758) $)) (-15 -2342 ((-758) $ (-758))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-554))) (IF (|has| |#1| (-546)) (-6 (-546)) |%noBranch|))) (-1034)) (T -585))
-((-1893 (*1 *2 *1) (-12 (-5 *2 (-1138 *3)) (-5 *1 (-585 *3)) (-4 *3 (-1034)))) (-4175 (*1 *1 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-585 *3)))) (-2051 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-585 *3)) (-4 *3 (-1034)))) (-2342 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-585 *3)) (-4 *3 (-1034)))) (-2342 (*1 *2 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-585 *3)) (-4 *3 (-1034)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1034)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1034)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-585 *3)) (-4 *3 (-1034)))))
-(-13 (-1034) (-10 -8 (-15 -1893 ((-1138 |#1|) $)) (-15 -4175 ($ (-1138 |#1|))) (-15 -2051 ((-112) $)) (-15 -2342 ((-758) $)) (-15 -2342 ((-758) $ (-758))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-554))) (IF (|has| |#1| (-546)) (-6 (-546)) |%noBranch|)))
-((-2879 (((-589 |#2|) (-1 |#2| |#1|) (-589 |#1|)) 15)))
-(((-586 |#1| |#2|) (-10 -7 (-15 -2879 ((-589 |#2|) (-1 |#2| |#1|) (-589 |#1|)))) (-1195) (-1195)) (T -586))
-((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-589 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-589 *6)) (-5 *1 (-586 *5 *6)))))
-(-10 -7 (-15 -2879 ((-589 |#2|) (-1 |#2| |#1|) (-589 |#1|))))
-((-2879 (((-1138 |#3|) (-1 |#3| |#1| |#2|) (-589 |#1|) (-1138 |#2|)) 20) (((-1138 |#3|) (-1 |#3| |#1| |#2|) (-1138 |#1|) (-589 |#2|)) 19) (((-589 |#3|) (-1 |#3| |#1| |#2|) (-589 |#1|) (-589 |#2|)) 18)))
-(((-587 |#1| |#2| |#3|) (-10 -7 (-15 -2879 ((-589 |#3|) (-1 |#3| |#1| |#2|) (-589 |#1|) (-589 |#2|))) (-15 -2879 ((-1138 |#3|) (-1 |#3| |#1| |#2|) (-1138 |#1|) (-589 |#2|))) (-15 -2879 ((-1138 |#3|) (-1 |#3| |#1| |#2|) (-589 |#1|) (-1138 |#2|)))) (-1195) (-1195) (-1195)) (T -587))
-((-2879 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-589 *6)) (-5 *5 (-1138 *7)) (-4 *6 (-1195)) (-4 *7 (-1195)) (-4 *8 (-1195)) (-5 *2 (-1138 *8)) (-5 *1 (-587 *6 *7 *8)))) (-2879 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1138 *6)) (-5 *5 (-589 *7)) (-4 *6 (-1195)) (-4 *7 (-1195)) (-4 *8 (-1195)) (-5 *2 (-1138 *8)) (-5 *1 (-587 *6 *7 *8)))) (-2879 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-589 *6)) (-5 *5 (-589 *7)) (-4 *6 (-1195)) (-4 *7 (-1195)) (-4 *8 (-1195)) (-5 *2 (-589 *8)) (-5 *1 (-587 *6 *7 *8)))))
-(-10 -7 (-15 -2879 ((-589 |#3|) (-1 |#3| |#1| |#2|) (-589 |#1|) (-589 |#2|))) (-15 -2879 ((-1138 |#3|) (-1 |#3| |#1| |#2|) (-1138 |#1|) (-589 |#2|))) (-15 -2879 ((-1138 |#3|) (-1 |#3| |#1| |#2|) (-589 |#1|) (-1138 |#2|))))
-((-2590 ((|#3| |#3| (-631 (-600 |#3|)) (-631 (-1158))) 55)) (-3189 (((-167 |#2|) |#3|) 117)) (-2376 ((|#3| (-167 |#2|)) 44)) (-3010 ((|#2| |#3|) 19)) (-4248 ((|#3| |#2|) 33)))
-(((-588 |#1| |#2| |#3|) (-10 -7 (-15 -2376 (|#3| (-167 |#2|))) (-15 -3010 (|#2| |#3|)) (-15 -4248 (|#3| |#2|)) (-15 -3189 ((-167 |#2|) |#3|)) (-15 -2590 (|#3| |#3| (-631 (-600 |#3|)) (-631 (-1158))))) (-13 (-546) (-836)) (-13 (-425 |#1|) (-987) (-1180)) (-13 (-425 (-167 |#1|)) (-987) (-1180))) (T -588))
-((-2590 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-631 (-600 *2))) (-5 *4 (-631 (-1158))) (-4 *2 (-13 (-425 (-167 *5)) (-987) (-1180))) (-4 *5 (-13 (-546) (-836))) (-5 *1 (-588 *5 *6 *2)) (-4 *6 (-13 (-425 *5) (-987) (-1180))))) (-3189 (*1 *2 *3) (-12 (-4 *4 (-13 (-546) (-836))) (-5 *2 (-167 *5)) (-5 *1 (-588 *4 *5 *3)) (-4 *5 (-13 (-425 *4) (-987) (-1180))) (-4 *3 (-13 (-425 (-167 *4)) (-987) (-1180))))) (-4248 (*1 *2 *3) (-12 (-4 *4 (-13 (-546) (-836))) (-4 *2 (-13 (-425 (-167 *4)) (-987) (-1180))) (-5 *1 (-588 *4 *3 *2)) (-4 *3 (-13 (-425 *4) (-987) (-1180))))) (-3010 (*1 *2 *3) (-12 (-4 *4 (-13 (-546) (-836))) (-4 *2 (-13 (-425 *4) (-987) (-1180))) (-5 *1 (-588 *4 *2 *3)) (-4 *3 (-13 (-425 (-167 *4)) (-987) (-1180))))) (-2376 (*1 *2 *3) (-12 (-5 *3 (-167 *5)) (-4 *5 (-13 (-425 *4) (-987) (-1180))) (-4 *4 (-13 (-546) (-836))) (-4 *2 (-13 (-425 (-167 *4)) (-987) (-1180))) (-5 *1 (-588 *4 *5 *2)))))
-(-10 -7 (-15 -2376 (|#3| (-167 |#2|))) (-15 -3010 (|#2| |#3|)) (-15 -4248 (|#3| |#2|)) (-15 -3189 ((-167 |#2|) |#3|)) (-15 -2590 (|#3| |#3| (-631 (-600 |#3|)) (-631 (-1158)))))
-((-1871 (($ (-1 (-112) |#1|) $) 17)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-1814 (($ (-1 |#1| |#1|) |#1|) 9)) (-1852 (($ (-1 (-112) |#1|) $) 13)) (-1862 (($ (-1 (-112) |#1|) $) 15)) (-3089 (((-1138 |#1|) $) 18)) (-3075 (((-848) $) NIL)))
-(((-589 |#1|) (-13 (-601 (-848)) (-10 -8 (-15 -2879 ($ (-1 |#1| |#1|) $)) (-15 -1852 ($ (-1 (-112) |#1|) $)) (-15 -1862 ($ (-1 (-112) |#1|) $)) (-15 -1871 ($ (-1 (-112) |#1|) $)) (-15 -1814 ($ (-1 |#1| |#1|) |#1|)) (-15 -3089 ((-1138 |#1|) $)))) (-1195)) (T -589))
-((-2879 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1195)) (-5 *1 (-589 *3)))) (-1852 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1195)) (-5 *1 (-589 *3)))) (-1862 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1195)) (-5 *1 (-589 *3)))) (-1871 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1195)) (-5 *1 (-589 *3)))) (-1814 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1195)) (-5 *1 (-589 *3)))) (-3089 (*1 *2 *1) (-12 (-5 *2 (-1138 *3)) (-5 *1 (-589 *3)) (-4 *3 (-1195)))))
-(-13 (-601 (-848)) (-10 -8 (-15 -2879 ($ (-1 |#1| |#1|) $)) (-15 -1852 ($ (-1 (-112) |#1|) $)) (-15 -1862 ($ (-1 (-112) |#1|) $)) (-15 -1871 ($ (-1 (-112) |#1|) $)) (-15 -1814 ($ (-1 |#1| |#1|) |#1|)) (-15 -3089 ((-1138 |#1|) $))))
-((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2275 (($ (-758)) NIL (|has| |#1| (-23)))) (-4233 (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-4015 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-836)))) (-2576 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4374))) (($ $) NIL (-12 (|has| $ (-6 -4374)) (|has| |#1| (-836))))) (-3303 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-836)))) (-3019 (((-112) $ (-758)) NIL)) (-1501 ((|#1| $ (-554) |#1|) NIL (|has| $ (-6 -4374))) ((|#1| $ (-1208 (-554)) |#1|) NIL (|has| $ (-6 -4374)))) (-1871 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-4087 (($) NIL T CONST)) (-3920 (($ $) NIL (|has| $ (-6 -4374)))) (-3799 (($ $) NIL)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2574 (($ |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4373)))) (-2862 ((|#1| $ (-554) |#1|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-554)) NIL)) (-1484 (((-554) (-1 (-112) |#1|) $) NIL) (((-554) |#1| $) NIL (|has| |#1| (-1082))) (((-554) |#1| $ (-554)) NIL (|has| |#1| (-1082)))) (-2466 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-2355 (((-675 |#1|) $ $) NIL (|has| |#1| (-1034)))) (-3180 (($ (-758) |#1|) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) NIL (|has| (-554) (-836)))) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-3717 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-836)))) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2256 (((-554) $) NIL (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2849 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2579 ((|#1| $) NIL (-12 (|has| |#1| (-987)) (|has| |#1| (-1034))))) (-3731 (((-112) $ (-758)) NIL)) (-2577 ((|#1| $) NIL (-12 (|has| |#1| (-987)) (|has| |#1| (-1034))))) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-1782 (($ |#1| $ (-554)) NIL) (($ $ $ (-554)) NIL)) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) NIL)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-1539 ((|#1| $) NIL (|has| (-554) (-836)))) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2441 (($ $ |#1|) NIL (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#1| $ (-554) |#1|) NIL) ((|#1| $ (-554)) NIL) (($ $ (-1208 (-554))) NIL)) (-3748 ((|#1| $ $) NIL (|has| |#1| (-1034)))) (-2021 (($ $ (-554)) NIL) (($ $ (-1208 (-554))) NIL)) (-3574 (($ $ $) NIL (|has| |#1| (-1034)))) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-3553 (($ $ $ (-554)) NIL (|has| $ (-6 -4374)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) NIL)) (-4323 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-631 $)) NIL)) (-3075 (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1744 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1735 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-554) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-713))) (($ $ |#1|) NIL (|has| |#1| (-713)))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-590 |#1| |#2|) (-1239 |#1|) (-1195) (-554)) (T -590))
-NIL
-(-1239 |#1|)
-((-4233 (((-1246) $ |#2| |#2|) 36)) (-3044 ((|#2| $) 23)) (-2256 ((|#2| $) 21)) (-2849 (($ (-1 |#3| |#3|) $) 32)) (-2879 (($ (-1 |#3| |#3|) $) 30)) (-1539 ((|#3| $) 26)) (-2441 (($ $ |#3|) 33)) (-1609 (((-112) |#3| $) 17)) (-2625 (((-631 |#3|) $) 15)) (-2064 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
-(((-591 |#1| |#2| |#3|) (-10 -8 (-15 -4233 ((-1246) |#1| |#2| |#2|)) (-15 -2441 (|#1| |#1| |#3|)) (-15 -1539 (|#3| |#1|)) (-15 -3044 (|#2| |#1|)) (-15 -2256 (|#2| |#1|)) (-15 -1609 ((-112) |#3| |#1|)) (-15 -2625 ((-631 |#3|) |#1|)) (-15 -2064 (|#3| |#1| |#2|)) (-15 -2064 (|#3| |#1| |#2| |#3|)) (-15 -2849 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2879 (|#1| (-1 |#3| |#3|) |#1|))) (-592 |#2| |#3|) (-1082) (-1195)) (T -591))
-NIL
-(-10 -8 (-15 -4233 ((-1246) |#1| |#2| |#2|)) (-15 -2441 (|#1| |#1| |#3|)) (-15 -1539 (|#3| |#1|)) (-15 -3044 (|#2| |#1|)) (-15 -2256 (|#2| |#1|)) (-15 -1609 ((-112) |#3| |#1|)) (-15 -2625 ((-631 |#3|) |#1|)) (-15 -2064 (|#3| |#1| |#2|)) (-15 -2064 (|#3| |#1| |#2| |#3|)) (-15 -2849 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2879 (|#1| (-1 |#3| |#3|) |#1|)))
-((-3062 (((-112) $ $) 19 (|has| |#2| (-1082)))) (-4233 (((-1246) $ |#1| |#1|) 40 (|has| $ (-6 -4374)))) (-3019 (((-112) $ (-758)) 8)) (-1501 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4374)))) (-4087 (($) 7 T CONST)) (-2862 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4374)))) (-2796 ((|#2| $ |#1|) 51)) (-2466 (((-631 |#2|) $) 30 (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) 9)) (-3044 ((|#1| $) 43 (|has| |#1| (-836)))) (-2379 (((-631 |#2|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1082)) (|has| $ (-6 -4373))))) (-2256 ((|#1| $) 44 (|has| |#1| (-836)))) (-2849 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#2| |#2|) $) 35)) (-3731 (((-112) $ (-758)) 10)) (-1613 (((-1140) $) 22 (|has| |#2| (-1082)))) (-2529 (((-631 |#1|) $) 46)) (-3618 (((-112) |#1| $) 47)) (-2768 (((-1102) $) 21 (|has| |#2| (-1082)))) (-1539 ((|#2| $) 42 (|has| |#1| (-836)))) (-2441 (($ $ |#2|) 41 (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#2|))) 26 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-289 |#2|)) 25 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-631 |#2|) (-631 |#2|)) 23 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))))) (-2494 (((-112) $ $) 14)) (-1609 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2625 (((-631 |#2|) $) 48)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2064 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-2777 (((-758) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4373))) (((-758) |#2| $) 28 (-12 (|has| |#2| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-3075 (((-848) $) 18 (|has| |#2| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (|has| |#2| (-1082)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373)))))
-(((-592 |#1| |#2|) (-138) (-1082) (-1195)) (T -592))
-((-2625 (*1 *2 *1) (-12 (-4 *1 (-592 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1195)) (-5 *2 (-631 *4)))) (-3618 (*1 *2 *3 *1) (-12 (-4 *1 (-592 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1195)) (-5 *2 (-112)))) (-2529 (*1 *2 *1) (-12 (-4 *1 (-592 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1195)) (-5 *2 (-631 *3)))) (-1609 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4373)) (-4 *1 (-592 *4 *3)) (-4 *4 (-1082)) (-4 *3 (-1195)) (-4 *3 (-1082)) (-5 *2 (-112)))) (-2256 (*1 *2 *1) (-12 (-4 *1 (-592 *2 *3)) (-4 *3 (-1195)) (-4 *2 (-1082)) (-4 *2 (-836)))) (-3044 (*1 *2 *1) (-12 (-4 *1 (-592 *2 *3)) (-4 *3 (-1195)) (-4 *2 (-1082)) (-4 *2 (-836)))) (-1539 (*1 *2 *1) (-12 (-4 *1 (-592 *3 *2)) (-4 *3 (-1082)) (-4 *3 (-836)) (-4 *2 (-1195)))) (-2441 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4374)) (-4 *1 (-592 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1195)))) (-4233 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4374)) (-4 *1 (-592 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1195)) (-5 *2 (-1246)))))
-(-13 (-483 |t#2|) (-283 |t#1| |t#2|) (-10 -8 (-15 -2625 ((-631 |t#2|) $)) (-15 -3618 ((-112) |t#1| $)) (-15 -2529 ((-631 |t#1|) $)) (IF (|has| |t#2| (-1082)) (IF (|has| $ (-6 -4373)) (-15 -1609 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-836)) (PROGN (-15 -2256 (|t#1| $)) (-15 -3044 (|t#1| $)) (-15 -1539 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4374)) (PROGN (-15 -2441 ($ $ |t#2|)) (-15 -4233 ((-1246) $ |t#1| |t#1|))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#2| (-1082)) ((-601 (-848)) -3994 (|has| |#2| (-1082)) (|has| |#2| (-601 (-848)))) ((-281 |#1| |#2|) . T) ((-283 |#1| |#2|) . T) ((-304 |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))) ((-483 |#2|) . T) ((-508 |#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))) ((-1082) |has| |#2| (-1082)) ((-1195) . T))
-((-3075 (((-848) $) 19) (($ (-129)) 13) (((-129) $) 14)))
-(((-593) (-13 (-601 (-848)) (-484 (-129)))) (T -593))
-NIL
-(-13 (-601 (-848)) (-484 (-129)))
-((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL) (($ (-1163)) NIL) (((-1163) $) NIL) (((-1194) $) 14) (($ (-631 (-1194))) 13)) (-1868 (((-631 (-1194)) $) 10)) (-1658 (((-112) $ $) NIL)))
-(((-594) (-13 (-1065) (-601 (-1194)) (-10 -8 (-15 -3075 ($ (-631 (-1194)))) (-15 -1868 ((-631 (-1194)) $))))) (T -594))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-631 (-1194))) (-5 *1 (-594)))) (-1868 (*1 *2 *1) (-12 (-5 *2 (-631 (-1194))) (-5 *1 (-594)))))
-(-13 (-1065) (-601 (-1194)) (-10 -8 (-15 -3075 ($ (-631 (-1194)))) (-15 -1868 ((-631 (-1194)) $))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-3646 (((-3 $ "failed")) NIL (-3994 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))))) (-2934 (((-3 $ "failed") $ $) NIL)) (-4251 (((-1241 (-675 |#1|))) NIL (|has| |#2| (-412 |#1|))) (((-1241 (-675 |#1|)) (-1241 $)) NIL (|has| |#2| (-362 |#1|)))) (-4047 (((-1241 $)) NIL (|has| |#2| (-362 |#1|)))) (-4087 (($) NIL T CONST)) (-1558 (((-3 (-2 (|:| |particular| $) (|:| -3782 (-631 $))) "failed")) NIL (-3994 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))))) (-3447 (((-3 $ "failed")) NIL (-3994 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))))) (-3321 (((-675 |#1|)) NIL (|has| |#2| (-412 |#1|))) (((-675 |#1|) (-1241 $)) NIL (|has| |#2| (-362 |#1|)))) (-4206 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-3970 (((-675 |#1|) $) NIL (|has| |#2| (-412 |#1|))) (((-675 |#1|) $ (-1241 $)) NIL (|has| |#2| (-362 |#1|)))) (-3754 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))))) (-4027 (((-1154 (-937 |#1|))) NIL (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-358))))) (-2080 (($ $ (-906)) NIL)) (-3976 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-3343 (((-1154 |#1|) $) NIL (-3994 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))))) (-3640 ((|#1|) NIL (|has| |#2| (-412 |#1|))) ((|#1| (-1241 $)) NIL (|has| |#2| (-362 |#1|)))) (-4231 (((-1154 |#1|) $) NIL (|has| |#2| (-362 |#1|)))) (-1397 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1651 (($ (-1241 |#1|)) NIL (|has| |#2| (-412 |#1|))) (($ (-1241 |#1|) (-1241 $)) NIL (|has| |#2| (-362 |#1|)))) (-1320 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))))) (-4186 (((-906)) NIL (|has| |#2| (-362 |#1|)))) (-3911 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-4326 (($ $ (-906)) NIL)) (-2545 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1765 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1573 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1660 (((-3 (-2 (|:| |particular| $) (|:| -3782 (-631 $))) "failed")) NIL (-3994 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))))) (-3899 (((-3 $ "failed")) NIL (-3994 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))))) (-2871 (((-675 |#1|)) NIL (|has| |#2| (-412 |#1|))) (((-675 |#1|) (-1241 $)) NIL (|has| |#2| (-362 |#1|)))) (-3115 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-3826 (((-675 |#1|) $) NIL (|has| |#2| (-412 |#1|))) (((-675 |#1|) $ (-1241 $)) NIL (|has| |#2| (-362 |#1|)))) (-1605 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))))) (-3415 (((-1154 (-937 |#1|))) NIL (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-358))))) (-1297 (($ $ (-906)) NIL)) (-2620 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-3760 (((-1154 |#1|) $) NIL (-3994 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))))) (-3063 ((|#1|) NIL (|has| |#2| (-412 |#1|))) ((|#1| (-1241 $)) NIL (|has| |#2| (-362 |#1|)))) (-2541 (((-1154 |#1|) $) NIL (|has| |#2| (-362 |#1|)))) (-3074 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1613 (((-1140) $) NIL)) (-3953 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-4193 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2366 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2768 (((-1102) $) NIL)) (-1944 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2064 ((|#1| $ (-554)) NIL (|has| |#2| (-412 |#1|)))) (-3656 (((-675 |#1|) (-1241 $)) NIL (|has| |#2| (-412 |#1|))) (((-1241 |#1|) $) NIL (|has| |#2| (-412 |#1|))) (((-675 |#1|) (-1241 $) (-1241 $)) NIL (|has| |#2| (-362 |#1|))) (((-1241 |#1|) $ (-1241 $)) NIL (|has| |#2| (-362 |#1|)))) (-2927 (($ (-1241 |#1|)) NIL (|has| |#2| (-412 |#1|))) (((-1241 |#1|) $) NIL (|has| |#2| (-412 |#1|)))) (-3107 (((-631 (-937 |#1|))) NIL (|has| |#2| (-412 |#1|))) (((-631 (-937 |#1|)) (-1241 $)) NIL (|has| |#2| (-362 |#1|)))) (-1856 (($ $ $) NIL)) (-3349 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-3075 (((-848) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-3782 (((-1241 $)) NIL (|has| |#2| (-412 |#1|)))) (-1444 (((-631 (-1241 |#1|))) NIL (-3994 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))))) (-3499 (($ $ $ $) NIL)) (-3454 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1485 (($ (-675 |#1|) $) NIL (|has| |#2| (-412 |#1|)))) (-1870 (($ $ $) NIL)) (-2945 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2760 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-3206 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2004 (($) NIL T CONST)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) 24)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
-(((-595 |#1| |#2|) (-13 (-731 |#1|) (-601 |#2|) (-10 -8 (-15 -3075 ($ |#2|)) (IF (|has| |#2| (-412 |#1|)) (-6 (-412 |#1|)) |%noBranch|) (IF (|has| |#2| (-362 |#1|)) (-6 (-362 |#1|)) |%noBranch|))) (-170) (-731 |#1|)) (T -595))
-((-3075 (*1 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-595 *3 *2)) (-4 *2 (-731 *3)))))
-(-13 (-731 |#1|) (-601 |#2|) (-10 -8 (-15 -3075 ($ |#2|)) (IF (|has| |#2| (-412 |#1|)) (-6 (-412 |#1|)) |%noBranch|) (IF (|has| |#2| (-362 |#1|)) (-6 (-362 |#1|)) |%noBranch|)))
-((-3062 (((-112) $ $) NIL)) (-3719 (((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) $ (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) 33)) (-3167 (($ (-631 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)))) NIL) (($) NIL)) (-4233 (((-1246) $ (-1140) (-1140)) NIL (|has| $ (-6 -4374)))) (-3019 (((-112) $ (-758)) NIL)) (-1501 ((|#1| $ (-1140) |#1|) 43)) (-2220 (($ (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL (|has| $ (-6 -4373)))) (-2937 (((-3 |#1| "failed") (-1140) $) 46)) (-4087 (($) NIL T CONST)) (-1875 (($ $ (-1140)) 24)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1082))))) (-1884 (((-3 |#1| "failed") (-1140) $) 47) (($ (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL (|has| $ (-6 -4373))) (($ (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) $) NIL (|has| $ (-6 -4373)))) (-2574 (($ (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL (|has| $ (-6 -4373))) (($ (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1082))))) (-3676 (((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL (|has| $ (-6 -4373))) (((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $ (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) NIL (|has| $ (-6 -4373))) (((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $ (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1082))))) (-3416 (((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) $) 32)) (-2862 ((|#1| $ (-1140) |#1|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-1140)) NIL)) (-2466 (((-631 |#1|) $) NIL (|has| $ (-6 -4373))) (((-631 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL (|has| $ (-6 -4373)))) (-3733 (($ $) 48)) (-1303 (($ (-383)) 22) (($ (-383) (-1140)) 21)) (-4309 (((-383) $) 34)) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-1140) $) NIL (|has| (-1140) (-836)))) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373))) (((-631 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) (((-112) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1082))))) (-2256 (((-1140) $) NIL (|has| (-1140) (-836)))) (-2849 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4374))) (($ (-1 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL)) (-2944 (((-631 (-1140)) $) 39)) (-2415 (((-112) (-1140) $) NIL)) (-1597 (((-1140) $) 35)) (-4150 (((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) $) NIL)) (-2045 (($ (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) $) NIL)) (-2529 (((-631 (-1140)) $) NIL)) (-3618 (((-112) (-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-1539 ((|#1| $) NIL (|has| (-1140) (-836)))) (-1652 (((-3 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) "failed") (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL)) (-2441 (($ $ |#1|) NIL (|has| $ (-6 -4374)))) (-2152 (((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) $) NIL)) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) (-631 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)))) NIL (-12 (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-304 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)))) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1082)))) (($ $ (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) NIL (-12 (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-304 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)))) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1082)))) (($ $ (-289 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)))) NIL (-12 (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-304 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)))) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1082)))) (($ $ (-631 (-289 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))))) NIL (-12 (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-304 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)))) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) 37)) (-2064 ((|#1| $ (-1140) |#1|) NIL) ((|#1| $ (-1140)) 42)) (-4310 (($ (-631 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)))) NIL) (($) NIL)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) (((-758) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1082)))) (((-758) (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL (|has| $ (-6 -4373)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-602 (-530))))) (-3089 (($ (-631 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)))) NIL)) (-3075 (((-848) $) 20)) (-3745 (($ $) 25)) (-1591 (($ (-631 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)))) NIL)) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 19)) (-2563 (((-758) $) 41 (|has| $ (-6 -4373)))))
-(((-596 |#1|) (-13 (-359 (-383) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) (-1171 (-1140) |#1|) (-10 -8 (-6 -4373) (-15 -3733 ($ $)))) (-1082)) (T -596))
-((-3733 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-1082)))))
-(-13 (-359 (-383) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) (-1171 (-1140) |#1|) (-10 -8 (-6 -4373) (-15 -3733 ($ $))))
-((-3068 (((-112) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) $) 15)) (-2944 (((-631 |#2|) $) 19)) (-2415 (((-112) |#2| $) 12)))
-(((-597 |#1| |#2| |#3|) (-10 -8 (-15 -2944 ((-631 |#2|) |#1|)) (-15 -2415 ((-112) |#2| |#1|)) (-15 -3068 ((-112) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) |#1|))) (-598 |#2| |#3|) (-1082) (-1082)) (T -597))
-NIL
-(-10 -8 (-15 -2944 ((-631 |#2|) |#1|)) (-15 -2415 ((-112) |#2| |#1|)) (-15 -3068 ((-112) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) |#1|)))
-((-3062 (((-112) $ $) 19 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (-3019 (((-112) $ (-758)) 8)) (-2220 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 45 (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 55 (|has| $ (-6 -4373)))) (-2937 (((-3 |#2| "failed") |#1| $) 61)) (-4087 (($) 7 T CONST)) (-1571 (($ $) 58 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| $ (-6 -4373))))) (-1884 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 47 (|has| $ (-6 -4373))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 46 (|has| $ (-6 -4373))) (((-3 |#2| "failed") |#1| $) 62)) (-2574 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 54 (|has| $ (-6 -4373)))) (-3676 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 56 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| $ (-6 -4373)))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 53 (|has| $ (-6 -4373))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 52 (|has| $ (-6 -4373)))) (-2466 (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 30 (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) 9)) (-2379 (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 35)) (-3731 (((-112) $ (-758)) 10)) (-1613 (((-1140) $) 22 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (-2944 (((-631 |#1|) $) 63)) (-2415 (((-112) |#1| $) 64)) (-4150 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 39)) (-2045 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 40)) (-2768 (((-1102) $) 21 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (-1652 (((-3 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) "failed") (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 51)) (-2152 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 41)) (-2845 (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))))) 26 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) 25 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 24 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) 23 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))))) (-2494 (((-112) $ $) 14)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-4310 (($) 49) (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) 48)) (-2777 (((-758) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 31 (|has| $ (-6 -4373))) (((-758) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-2927 (((-530) $) 59 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-602 (-530))))) (-3089 (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) 50)) (-3075 (((-848) $) 18 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-601 (-848))))) (-1591 (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) 42)) (-2438 (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373)))))
-(((-598 |#1| |#2|) (-138) (-1082) (-1082)) (T -598))
-((-2415 (*1 *2 *3 *1) (-12 (-4 *1 (-598 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-5 *2 (-112)))) (-2944 (*1 *2 *1) (-12 (-4 *1 (-598 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-5 *2 (-631 *3)))) (-1884 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-598 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1082)))) (-2937 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-598 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1082)))))
-(-13 (-225 (-2 (|:| -2564 |t#1|) (|:| -2701 |t#2|))) (-10 -8 (-15 -2415 ((-112) |t#1| $)) (-15 -2944 ((-631 |t#1|) $)) (-15 -1884 ((-3 |t#2| "failed") |t#1| $)) (-15 -2937 ((-3 |t#2| "failed") |t#1| $))))
-(((-34) . T) ((-107 #0=(-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T) ((-102) |has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) ((-601 (-848)) -3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-601 (-848)))) ((-149 #0#) . T) ((-602 (-530)) |has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-602 (-530))) ((-225 #0#) . T) ((-231 #0#) . T) ((-304 #0#) -12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))) ((-483 #0#) . T) ((-508 #0# #0#) -12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))) ((-1082) |has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) ((-1195) . T))
-((-4100 (((-600 |#2|) |#1|) 15)) (-2132 (((-3 |#1| "failed") (-600 |#2|)) 19)))
-(((-599 |#1| |#2|) (-10 -7 (-15 -4100 ((-600 |#2|) |#1|)) (-15 -2132 ((-3 |#1| "failed") (-600 |#2|)))) (-836) (-836)) (T -599))
-((-2132 (*1 *2 *3) (|partial| -12 (-5 *3 (-600 *4)) (-4 *4 (-836)) (-4 *2 (-836)) (-5 *1 (-599 *2 *4)))) (-4100 (*1 *2 *3) (-12 (-5 *2 (-600 *4)) (-5 *1 (-599 *3 *4)) (-4 *3 (-836)) (-4 *4 (-836)))))
-(-10 -7 (-15 -4100 ((-600 |#2|) |#1|)) (-15 -2132 ((-3 |#1| "failed") (-600 |#2|))))
-((-3062 (((-112) $ $) NIL)) (-3159 (((-3 (-1158) "failed") $) 37)) (-2886 (((-1246) $ (-758)) 26)) (-1484 (((-758) $) 25)) (-3086 (((-114) $) 12)) (-4309 (((-1158) $) 20)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-1613 (((-1140) $) NIL)) (-1408 (($ (-114) (-631 |#1|) (-758)) 30) (($ (-1158)) 31)) (-2640 (((-112) $ (-114)) 18) (((-112) $ (-1158)) 16)) (-3323 (((-758) $) 22)) (-2768 (((-1102) $) NIL)) (-2927 (((-877 (-554)) $) 77 (|has| |#1| (-602 (-877 (-554))))) (((-877 (-374)) $) 84 (|has| |#1| (-602 (-877 (-374))))) (((-530) $) 69 (|has| |#1| (-602 (-530))))) (-3075 (((-848) $) 55)) (-2592 (((-631 |#1|) $) 24)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 41)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 42)))
-(((-600 |#1|) (-13 (-131) (-869 |#1|) (-10 -8 (-15 -4309 ((-1158) $)) (-15 -3086 ((-114) $)) (-15 -2592 ((-631 |#1|) $)) (-15 -3323 ((-758) $)) (-15 -1408 ($ (-114) (-631 |#1|) (-758))) (-15 -1408 ($ (-1158))) (-15 -3159 ((-3 (-1158) "failed") $)) (-15 -2640 ((-112) $ (-114))) (-15 -2640 ((-112) $ (-1158))) (IF (|has| |#1| (-602 (-530))) (-6 (-602 (-530))) |%noBranch|))) (-836)) (T -600))
-((-4309 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-600 *3)) (-4 *3 (-836)))) (-3086 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-600 *3)) (-4 *3 (-836)))) (-2592 (*1 *2 *1) (-12 (-5 *2 (-631 *3)) (-5 *1 (-600 *3)) (-4 *3 (-836)))) (-3323 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-600 *3)) (-4 *3 (-836)))) (-1408 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-631 *5)) (-5 *4 (-758)) (-4 *5 (-836)) (-5 *1 (-600 *5)))) (-1408 (*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-600 *3)) (-4 *3 (-836)))) (-3159 (*1 *2 *1) (|partial| -12 (-5 *2 (-1158)) (-5 *1 (-600 *3)) (-4 *3 (-836)))) (-2640 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-600 *4)) (-4 *4 (-836)))) (-2640 (*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-112)) (-5 *1 (-600 *4)) (-4 *4 (-836)))))
-(-13 (-131) (-869 |#1|) (-10 -8 (-15 -4309 ((-1158) $)) (-15 -3086 ((-114) $)) (-15 -2592 ((-631 |#1|) $)) (-15 -3323 ((-758) $)) (-15 -1408 ($ (-114) (-631 |#1|) (-758))) (-15 -1408 ($ (-1158))) (-15 -3159 ((-3 (-1158) "failed") $)) (-15 -2640 ((-112) $ (-114))) (-15 -2640 ((-112) $ (-1158))) (IF (|has| |#1| (-602 (-530))) (-6 (-602 (-530))) |%noBranch|)))
-((-3075 ((|#1| $) 6)))
-(((-601 |#1|) (-138) (-1195)) (T -601))
-((-3075 (*1 *2 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-1195)))))
-(-13 (-10 -8 (-15 -3075 (|t#1| $))))
-((-2927 ((|#1| $) 6)))
-(((-602 |#1|) (-138) (-1195)) (T -602))
-((-2927 (*1 *2 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-1195)))))
-(-13 (-10 -8 (-15 -2927 (|t#1| $))))
-((-2233 (((-3 (-1154 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|) (-1 (-413 |#2|) |#2|)) 15) (((-3 (-1154 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|)) 16)))
-(((-603 |#1| |#2|) (-10 -7 (-15 -2233 ((-3 (-1154 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|))) (-15 -2233 ((-3 (-1154 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|) (-1 (-413 |#2|) |#2|)))) (-13 (-145) (-27) (-1023 (-554)) (-1023 (-402 (-554)))) (-1217 |#1|)) (T -603))
-((-2233 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-413 *6) *6)) (-4 *6 (-1217 *5)) (-4 *5 (-13 (-145) (-27) (-1023 (-554)) (-1023 (-402 (-554))))) (-5 *2 (-1154 (-402 *6))) (-5 *1 (-603 *5 *6)) (-5 *3 (-402 *6)))) (-2233 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-145) (-27) (-1023 (-554)) (-1023 (-402 (-554))))) (-4 *5 (-1217 *4)) (-5 *2 (-1154 (-402 *5))) (-5 *1 (-603 *4 *5)) (-5 *3 (-402 *5)))))
-(-10 -7 (-15 -2233 ((-3 (-1154 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|))) (-15 -2233 ((-3 (-1154 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|) (-1 (-413 |#2|) |#2|))))
-((-3075 (($ |#1|) 6)))
-(((-604 |#1|) (-138) (-1195)) (T -604))
-((-3075 (*1 *1 *2) (-12 (-4 *1 (-604 *2)) (-4 *2 (-1195)))))
-(-13 (-10 -8 (-15 -3075 ($ |t#1|))))
-((-3062 (((-112) $ $) NIL)) (-1638 (($) 11 T CONST)) (-3715 (($) 12 T CONST)) (-3038 (($ $ $) 24)) (-4081 (($ $) 22)) (-1613 (((-1140) $) NIL)) (-3771 (($ $ $) 25)) (-2768 (((-1102) $) NIL)) (-2521 (($) 10 T CONST)) (-2455 (($ $ $) 26)) (-3075 (((-848) $) 30)) (-3182 (((-112) $ (|[\|\|]| -2521)) 19) (((-112) $ (|[\|\|]| -1638)) 21) (((-112) $ (|[\|\|]| -3715)) 17)) (-3726 (($ $ $) 23)) (-1658 (((-112) $ $) 15)))
-(((-605) (-13 (-952) (-10 -8 (-15 -2521 ($) -2397) (-15 -1638 ($) -2397) (-15 -3715 ($) -2397) (-15 -3182 ((-112) $ (|[\|\|]| -2521))) (-15 -3182 ((-112) $ (|[\|\|]| -1638))) (-15 -3182 ((-112) $ (|[\|\|]| -3715)))))) (T -605))
-((-2521 (*1 *1) (-5 *1 (-605))) (-1638 (*1 *1) (-5 *1 (-605))) (-3715 (*1 *1) (-5 *1 (-605))) (-3182 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2521)) (-5 *2 (-112)) (-5 *1 (-605)))) (-3182 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1638)) (-5 *2 (-112)) (-5 *1 (-605)))) (-3182 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3715)) (-5 *2 (-112)) (-5 *1 (-605)))))
-(-13 (-952) (-10 -8 (-15 -2521 ($) -2397) (-15 -1638 ($) -2397) (-15 -3715 ($) -2397) (-15 -3182 ((-112) $ (|[\|\|]| -2521))) (-15 -3182 ((-112) $ (|[\|\|]| -1638))) (-15 -3182 ((-112) $ (|[\|\|]| -3715)))))
-((-2927 (($ |#1|) 6)))
-(((-606 |#1|) (-138) (-1195)) (T -606))
-((-2927 (*1 *1 *2) (-12 (-4 *1 (-606 *2)) (-4 *2 (-1195)))))
-(-13 (-10 -8 (-15 -2927 ($ |t#1|))))
-((-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#2|) 10)))
-(((-607 |#1| |#2|) (-10 -8 (-15 -3075 (|#1| |#2|)) (-15 -3075 (|#1| (-554))) (-15 -3075 ((-848) |#1|))) (-608 |#2|) (-1034)) (T -607))
-NIL
-(-10 -8 (-15 -3075 (|#1| |#2|)) (-15 -3075 (|#1| (-554))) (-15 -3075 ((-848) |#1|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1320 (((-3 $ "failed") $) 33)) (-3248 (((-112) $) 31)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ |#1|) 36)) (-2261 (((-758)) 28)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ |#1| $) 37)))
-(((-608 |#1|) (-138) (-1034)) (T -608))
-((-3075 (*1 *1 *2) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1034)))))
-(-13 (-1034) (-634 |t#1|) (-10 -8 (-15 -3075 ($ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-604 (-554)) . T) ((-601 (-848)) . T) ((-634 |#1|) . T) ((-634 $) . T) ((-713) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4219 (((-554) $) NIL (|has| |#1| (-834)))) (-4087 (($) NIL T CONST)) (-1320 (((-3 $ "failed") $) NIL)) (-2745 (((-112) $) NIL (|has| |#1| (-834)))) (-3248 (((-112) $) NIL)) (-2810 ((|#1| $) 13)) (-4304 (((-112) $) NIL (|has| |#1| (-834)))) (-4223 (($ $ $) NIL (|has| |#1| (-834)))) (-2706 (($ $ $) NIL (|has| |#1| (-834)))) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2822 ((|#3| $) 15)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#2|) NIL)) (-2261 (((-758)) 20)) (-1700 (($ $) NIL (|has| |#1| (-834)))) (-2004 (($) NIL T CONST)) (-2014 (($) 12 T CONST)) (-1708 (((-112) $ $) NIL (|has| |#1| (-834)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-834)))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (|has| |#1| (-834)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-834)))) (-1752 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-609 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-834)) (-6 (-834)) |%noBranch|) (-15 -1752 ($ $ |#3|)) (-15 -1752 ($ |#1| |#3|)) (-15 -2810 (|#1| $)) (-15 -2822 (|#3| $)))) (-38 |#2|) (-170) (|SubsetCategory| (-713) |#2|)) (T -609))
-((-1752 (*1 *1 *1 *2) (-12 (-4 *4 (-170)) (-5 *1 (-609 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-713) *4)))) (-1752 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-609 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-713) *4)))) (-2810 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-38 *3)) (-5 *1 (-609 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-713) *3)))) (-2822 (*1 *2 *1) (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-713) *4)) (-5 *1 (-609 *3 *4 *2)) (-4 *3 (-38 *4)))))
-(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-834)) (-6 (-834)) |%noBranch|) (-15 -1752 ($ $ |#3|)) (-15 -1752 ($ |#1| |#3|)) (-15 -2810 (|#1| $)) (-15 -2822 (|#3| $))))
-((-3641 ((|#2| |#2| (-1158) (-1158)) 18)))
-(((-610 |#1| |#2|) (-10 -7 (-15 -3641 (|#2| |#2| (-1158) (-1158)))) (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554))) (-13 (-1180) (-944) (-29 |#1|))) (T -610))
-((-3641 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-610 *4 *2)) (-4 *2 (-13 (-1180) (-944) (-29 *4))))))
-(-10 -7 (-15 -3641 (|#2| |#2| (-1158) (-1158))))
-((-3062 (((-112) $ $) 56)) (-1695 (((-112) $) 52)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-1446 ((|#1| $) 49)) (-2934 (((-3 $ "failed") $ $) NIL)) (-2286 (((-112) $ $) NIL (|has| |#1| (-358)))) (-4022 (((-2 (|:| -2988 $) (|:| -1836 (-402 |#2|))) (-402 |#2|)) 97 (|has| |#1| (-358)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 81)) (-1668 (((-554) $) NIL (|has| |#1| (-1023 (-554)))) (((-402 (-554)) $) NIL (|has| |#1| (-1023 (-402 (-554))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-3964 (($ $ $) NIL (|has| |#1| (-358)))) (-2550 (($ $) 24)) (-1320 (((-3 $ "failed") $) 75)) (-3943 (($ $ $) NIL (|has| |#1| (-358)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL (|has| |#1| (-358)))) (-2342 (((-554) $) 19)) (-3248 (((-112) $) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-3580 (((-112) $) 36)) (-2383 (($ |#1| (-554)) 21)) (-2530 ((|#1| $) 51)) (-2475 (($ (-631 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#1| (-358)))) (-2510 (($ (-631 $)) NIL (|has| |#1| (-358))) (($ $ $) 87 (|has| |#1| (-358)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 100 (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-358)))) (-3919 (((-3 $ "failed") $ $) 79)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-2072 (((-758) $) 99 (|has| |#1| (-358)))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 98 (|has| |#1| (-358)))) (-1553 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-758)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-1158)) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-758)) NIL (|has| |#2| (-229))) (($ $) NIL (|has| |#2| (-229)))) (-3308 (((-554) $) 34)) (-2927 (((-402 |#2|) $) 42)) (-3075 (((-848) $) 62) (($ (-554)) 32) (($ $) NIL) (($ (-402 (-554))) NIL (|has| |#1| (-1023 (-402 (-554))))) (($ |#1|) 31) (($ |#2|) 22)) (-1779 ((|#1| $ (-554)) 63)) (-2084 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2261 (((-758)) 29)) (-1909 (((-112) $ $) NIL)) (-2004 (($) 9 T CONST)) (-2014 (($) 12 T CONST)) (-1787 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-758)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-1158)) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-758)) NIL (|has| |#2| (-229))) (($ $) NIL (|has| |#2| (-229)))) (-1658 (((-112) $ $) 17)) (-1744 (($ $) 46) (($ $ $) NIL)) (-1735 (($ $ $) 76)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 26) (($ $ $) 44)))
-(((-611 |#1| |#2|) (-13 (-227 |#2|) (-546) (-602 (-402 |#2|)) (-406 |#1|) (-1023 |#2|) (-10 -8 (-15 -3580 ((-112) $)) (-15 -3308 ((-554) $)) (-15 -2342 ((-554) $)) (-15 -2550 ($ $)) (-15 -2530 (|#1| $)) (-15 -1446 (|#1| $)) (-15 -1779 (|#1| $ (-554))) (-15 -2383 ($ |#1| (-554))) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-6 (-302)) (-15 -4022 ((-2 (|:| -2988 $) (|:| -1836 (-402 |#2|))) (-402 |#2|)))) |%noBranch|))) (-546) (-1217 |#1|)) (T -611))
-((-3580 (*1 *2 *1) (-12 (-4 *3 (-546)) (-5 *2 (-112)) (-5 *1 (-611 *3 *4)) (-4 *4 (-1217 *3)))) (-3308 (*1 *2 *1) (-12 (-4 *3 (-546)) (-5 *2 (-554)) (-5 *1 (-611 *3 *4)) (-4 *4 (-1217 *3)))) (-2342 (*1 *2 *1) (-12 (-4 *3 (-546)) (-5 *2 (-554)) (-5 *1 (-611 *3 *4)) (-4 *4 (-1217 *3)))) (-2550 (*1 *1 *1) (-12 (-4 *2 (-546)) (-5 *1 (-611 *2 *3)) (-4 *3 (-1217 *2)))) (-2530 (*1 *2 *1) (-12 (-4 *2 (-546)) (-5 *1 (-611 *2 *3)) (-4 *3 (-1217 *2)))) (-1446 (*1 *2 *1) (-12 (-4 *2 (-546)) (-5 *1 (-611 *2 *3)) (-4 *3 (-1217 *2)))) (-1779 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-4 *2 (-546)) (-5 *1 (-611 *2 *4)) (-4 *4 (-1217 *2)))) (-2383 (*1 *1 *2 *3) (-12 (-5 *3 (-554)) (-4 *2 (-546)) (-5 *1 (-611 *2 *4)) (-4 *4 (-1217 *2)))) (-4022 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *4 (-546)) (-4 *5 (-1217 *4)) (-5 *2 (-2 (|:| -2988 (-611 *4 *5)) (|:| -1836 (-402 *5)))) (-5 *1 (-611 *4 *5)) (-5 *3 (-402 *5)))))
-(-13 (-227 |#2|) (-546) (-602 (-402 |#2|)) (-406 |#1|) (-1023 |#2|) (-10 -8 (-15 -3580 ((-112) $)) (-15 -3308 ((-554) $)) (-15 -2342 ((-554) $)) (-15 -2550 ($ $)) (-15 -2530 (|#1| $)) (-15 -1446 (|#1| $)) (-15 -1779 (|#1| $ (-554))) (-15 -2383 ($ |#1| (-554))) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-6 (-302)) (-15 -4022 ((-2 (|:| -2988 $) (|:| -1836 (-402 |#2|))) (-402 |#2|)))) |%noBranch|)))
-((-3176 (((-631 |#6|) (-631 |#4|) (-112)) 47)) (-2570 ((|#6| |#6|) 40)))
-(((-612 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2570 (|#6| |#6|)) (-15 -3176 ((-631 |#6|) (-631 |#4|) (-112)))) (-446) (-780) (-836) (-1048 |#1| |#2| |#3|) (-1054 |#1| |#2| |#3| |#4|) (-1091 |#1| |#2| |#3| |#4|)) (T -612))
-((-3176 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-112)) (-4 *8 (-1048 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-631 *10)) (-5 *1 (-612 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1054 *5 *6 *7 *8)) (-4 *10 (-1091 *5 *6 *7 *8)))) (-2570 (*1 *2 *2) (-12 (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *1 (-612 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1054 *3 *4 *5 *6)) (-4 *2 (-1091 *3 *4 *5 *6)))))
-(-10 -7 (-15 -2570 (|#6| |#6|)) (-15 -3176 ((-631 |#6|) (-631 |#4|) (-112))))
-((-4279 (((-112) |#3| (-758) (-631 |#3|)) 23)) (-3174 (((-3 (-2 (|:| |polfac| (-631 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-631 (-1154 |#3|)))) "failed") |#3| (-631 (-1154 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2316 (-631 (-2 (|:| |irr| |#4|) (|:| -4218 (-554)))))) (-631 |#3|) (-631 |#1|) (-631 |#3|)) 55)))
-(((-613 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4279 ((-112) |#3| (-758) (-631 |#3|))) (-15 -3174 ((-3 (-2 (|:| |polfac| (-631 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-631 (-1154 |#3|)))) "failed") |#3| (-631 (-1154 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2316 (-631 (-2 (|:| |irr| |#4|) (|:| -4218 (-554)))))) (-631 |#3|) (-631 |#1|) (-631 |#3|)))) (-836) (-780) (-302) (-934 |#3| |#2| |#1|)) (T -613))
-((-3174 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2316 (-631 (-2 (|:| |irr| *10) (|:| -4218 (-554))))))) (-5 *6 (-631 *3)) (-5 *7 (-631 *8)) (-4 *8 (-836)) (-4 *3 (-302)) (-4 *10 (-934 *3 *9 *8)) (-4 *9 (-780)) (-5 *2 (-2 (|:| |polfac| (-631 *10)) (|:| |correct| *3) (|:| |corrfact| (-631 (-1154 *3))))) (-5 *1 (-613 *8 *9 *3 *10)) (-5 *4 (-631 (-1154 *3))))) (-4279 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-758)) (-5 *5 (-631 *3)) (-4 *3 (-302)) (-4 *6 (-836)) (-4 *7 (-780)) (-5 *2 (-112)) (-5 *1 (-613 *6 *7 *3 *8)) (-4 *8 (-934 *3 *7 *6)))))
-(-10 -7 (-15 -4279 ((-112) |#3| (-758) (-631 |#3|))) (-15 -3174 ((-3 (-2 (|:| |polfac| (-631 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-631 (-1154 |#3|)))) "failed") |#3| (-631 (-1154 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2316 (-631 (-2 (|:| |irr| |#4|) (|:| -4218 (-554)))))) (-631 |#3|) (-631 |#1|) (-631 |#3|))))
-((-3062 (((-112) $ $) NIL)) (-3848 (((-1117) $) 11)) (-3836 (((-1117) $) 9)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 19) (($ (-1163)) NIL) (((-1163) $) NIL)) (-1658 (((-112) $ $) NIL)))
-(((-614) (-13 (-1065) (-10 -8 (-15 -3836 ((-1117) $)) (-15 -3848 ((-1117) $))))) (T -614))
-((-3836 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-614)))) (-3848 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-614)))))
-(-13 (-1065) (-10 -8 (-15 -3836 ((-1117) $)) (-15 -3848 ((-1117) $))))
-((-3062 (((-112) $ $) NIL)) (-1654 (((-631 |#1|) $) NIL)) (-4087 (($) NIL T CONST)) (-1320 (((-3 $ "failed") $) NIL)) (-3248 (((-112) $) NIL)) (-3898 (($ $) 67)) (-2395 (((-650 |#1| |#2|) $) 52)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) 70)) (-2445 (((-631 (-289 |#2|)) $ $) 33)) (-2768 (((-1102) $) NIL)) (-1333 (($ (-650 |#1| |#2|)) 48)) (-3992 (($ $ $) NIL)) (-1856 (($ $ $) NIL)) (-3075 (((-848) $) 58) (((-1256 |#1| |#2|) $) NIL) (((-1261 |#1| |#2|) $) 66)) (-2014 (($) 53 T CONST)) (-2868 (((-631 (-2 (|:| |k| (-658 |#1|)) (|:| |c| |#2|))) $) 31)) (-1377 (((-631 (-650 |#1| |#2|)) (-631 |#1|)) 65)) (-2407 (((-631 (-2 (|:| |k| (-878 |#1|)) (|:| |c| |#2|))) $) 37)) (-1658 (((-112) $ $) 54)) (-1752 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL)) (* (($ $ $) 44)))
-(((-615 |#1| |#2| |#3|) (-13 (-467) (-10 -8 (-15 -1333 ($ (-650 |#1| |#2|))) (-15 -2395 ((-650 |#1| |#2|) $)) (-15 -2407 ((-631 (-2 (|:| |k| (-878 |#1|)) (|:| |c| |#2|))) $)) (-15 -3075 ((-1256 |#1| |#2|) $)) (-15 -3075 ((-1261 |#1| |#2|) $)) (-15 -3898 ($ $)) (-15 -1654 ((-631 |#1|) $)) (-15 -1377 ((-631 (-650 |#1| |#2|)) (-631 |#1|))) (-15 -2868 ((-631 (-2 (|:| |k| (-658 |#1|)) (|:| |c| |#2|))) $)) (-15 -2445 ((-631 (-289 |#2|)) $ $)))) (-836) (-13 (-170) (-704 (-402 (-554)))) (-906)) (T -615))
-((-1333 (*1 *1 *2) (-12 (-5 *2 (-650 *3 *4)) (-4 *3 (-836)) (-4 *4 (-13 (-170) (-704 (-402 (-554))))) (-5 *1 (-615 *3 *4 *5)) (-14 *5 (-906)))) (-2395 (*1 *2 *1) (-12 (-5 *2 (-650 *3 *4)) (-5 *1 (-615 *3 *4 *5)) (-4 *3 (-836)) (-4 *4 (-13 (-170) (-704 (-402 (-554))))) (-14 *5 (-906)))) (-2407 (*1 *2 *1) (-12 (-5 *2 (-631 (-2 (|:| |k| (-878 *3)) (|:| |c| *4)))) (-5 *1 (-615 *3 *4 *5)) (-4 *3 (-836)) (-4 *4 (-13 (-170) (-704 (-402 (-554))))) (-14 *5 (-906)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-1256 *3 *4)) (-5 *1 (-615 *3 *4 *5)) (-4 *3 (-836)) (-4 *4 (-13 (-170) (-704 (-402 (-554))))) (-14 *5 (-906)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-1261 *3 *4)) (-5 *1 (-615 *3 *4 *5)) (-4 *3 (-836)) (-4 *4 (-13 (-170) (-704 (-402 (-554))))) (-14 *5 (-906)))) (-3898 (*1 *1 *1) (-12 (-5 *1 (-615 *2 *3 *4)) (-4 *2 (-836)) (-4 *3 (-13 (-170) (-704 (-402 (-554))))) (-14 *4 (-906)))) (-1654 (*1 *2 *1) (-12 (-5 *2 (-631 *3)) (-5 *1 (-615 *3 *4 *5)) (-4 *3 (-836)) (-4 *4 (-13 (-170) (-704 (-402 (-554))))) (-14 *5 (-906)))) (-1377 (*1 *2 *3) (-12 (-5 *3 (-631 *4)) (-4 *4 (-836)) (-5 *2 (-631 (-650 *4 *5))) (-5 *1 (-615 *4 *5 *6)) (-4 *5 (-13 (-170) (-704 (-402 (-554))))) (-14 *6 (-906)))) (-2868 (*1 *2 *1) (-12 (-5 *2 (-631 (-2 (|:| |k| (-658 *3)) (|:| |c| *4)))) (-5 *1 (-615 *3 *4 *5)) (-4 *3 (-836)) (-4 *4 (-13 (-170) (-704 (-402 (-554))))) (-14 *5 (-906)))) (-2445 (*1 *2 *1 *1) (-12 (-5 *2 (-631 (-289 *4))) (-5 *1 (-615 *3 *4 *5)) (-4 *3 (-836)) (-4 *4 (-13 (-170) (-704 (-402 (-554))))) (-14 *5 (-906)))))
-(-13 (-467) (-10 -8 (-15 -1333 ($ (-650 |#1| |#2|))) (-15 -2395 ((-650 |#1| |#2|) $)) (-15 -2407 ((-631 (-2 (|:| |k| (-878 |#1|)) (|:| |c| |#2|))) $)) (-15 -3075 ((-1256 |#1| |#2|) $)) (-15 -3075 ((-1261 |#1| |#2|) $)) (-15 -3898 ($ $)) (-15 -1654 ((-631 |#1|) $)) (-15 -1377 ((-631 (-650 |#1| |#2|)) (-631 |#1|))) (-15 -2868 ((-631 (-2 (|:| |k| (-658 |#1|)) (|:| |c| |#2|))) $)) (-15 -2445 ((-631 (-289 |#2|)) $ $))))
-((-3176 (((-631 (-1128 |#1| (-525 (-850 |#2|)) (-850 |#2|) (-767 |#1| (-850 |#2|)))) (-631 (-767 |#1| (-850 |#2|))) (-112)) 72) (((-631 (-1031 |#1| |#2|)) (-631 (-767 |#1| (-850 |#2|))) (-112)) 58)) (-3286 (((-112) (-631 (-767 |#1| (-850 |#2|)))) 23)) (-3327 (((-631 (-1128 |#1| (-525 (-850 |#2|)) (-850 |#2|) (-767 |#1| (-850 |#2|)))) (-631 (-767 |#1| (-850 |#2|))) (-112)) 71)) (-2738 (((-631 (-1031 |#1| |#2|)) (-631 (-767 |#1| (-850 |#2|))) (-112)) 57)) (-3486 (((-631 (-767 |#1| (-850 |#2|))) (-631 (-767 |#1| (-850 |#2|)))) 27)) (-2526 (((-3 (-631 (-767 |#1| (-850 |#2|))) "failed") (-631 (-767 |#1| (-850 |#2|)))) 26)))
-(((-616 |#1| |#2|) (-10 -7 (-15 -3286 ((-112) (-631 (-767 |#1| (-850 |#2|))))) (-15 -2526 ((-3 (-631 (-767 |#1| (-850 |#2|))) "failed") (-631 (-767 |#1| (-850 |#2|))))) (-15 -3486 ((-631 (-767 |#1| (-850 |#2|))) (-631 (-767 |#1| (-850 |#2|))))) (-15 -2738 ((-631 (-1031 |#1| |#2|)) (-631 (-767 |#1| (-850 |#2|))) (-112))) (-15 -3327 ((-631 (-1128 |#1| (-525 (-850 |#2|)) (-850 |#2|) (-767 |#1| (-850 |#2|)))) (-631 (-767 |#1| (-850 |#2|))) (-112))) (-15 -3176 ((-631 (-1031 |#1| |#2|)) (-631 (-767 |#1| (-850 |#2|))) (-112))) (-15 -3176 ((-631 (-1128 |#1| (-525 (-850 |#2|)) (-850 |#2|) (-767 |#1| (-850 |#2|)))) (-631 (-767 |#1| (-850 |#2|))) (-112)))) (-446) (-631 (-1158))) (T -616))
-((-3176 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-767 *5 (-850 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) (-14 *6 (-631 (-1158))) (-5 *2 (-631 (-1128 *5 (-525 (-850 *6)) (-850 *6) (-767 *5 (-850 *6))))) (-5 *1 (-616 *5 *6)))) (-3176 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-767 *5 (-850 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) (-14 *6 (-631 (-1158))) (-5 *2 (-631 (-1031 *5 *6))) (-5 *1 (-616 *5 *6)))) (-3327 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-767 *5 (-850 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) (-14 *6 (-631 (-1158))) (-5 *2 (-631 (-1128 *5 (-525 (-850 *6)) (-850 *6) (-767 *5 (-850 *6))))) (-5 *1 (-616 *5 *6)))) (-2738 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-767 *5 (-850 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) (-14 *6 (-631 (-1158))) (-5 *2 (-631 (-1031 *5 *6))) (-5 *1 (-616 *5 *6)))) (-3486 (*1 *2 *2) (-12 (-5 *2 (-631 (-767 *3 (-850 *4)))) (-4 *3 (-446)) (-14 *4 (-631 (-1158))) (-5 *1 (-616 *3 *4)))) (-2526 (*1 *2 *2) (|partial| -12 (-5 *2 (-631 (-767 *3 (-850 *4)))) (-4 *3 (-446)) (-14 *4 (-631 (-1158))) (-5 *1 (-616 *3 *4)))) (-3286 (*1 *2 *3) (-12 (-5 *3 (-631 (-767 *4 (-850 *5)))) (-4 *4 (-446)) (-14 *5 (-631 (-1158))) (-5 *2 (-112)) (-5 *1 (-616 *4 *5)))))
-(-10 -7 (-15 -3286 ((-112) (-631 (-767 |#1| (-850 |#2|))))) (-15 -2526 ((-3 (-631 (-767 |#1| (-850 |#2|))) "failed") (-631 (-767 |#1| (-850 |#2|))))) (-15 -3486 ((-631 (-767 |#1| (-850 |#2|))) (-631 (-767 |#1| (-850 |#2|))))) (-15 -2738 ((-631 (-1031 |#1| |#2|)) (-631 (-767 |#1| (-850 |#2|))) (-112))) (-15 -3327 ((-631 (-1128 |#1| (-525 (-850 |#2|)) (-850 |#2|) (-767 |#1| (-850 |#2|)))) (-631 (-767 |#1| (-850 |#2|))) (-112))) (-15 -3176 ((-631 (-1031 |#1| |#2|)) (-631 (-767 |#1| (-850 |#2|))) (-112))) (-15 -3176 ((-631 (-1128 |#1| (-525 (-850 |#2|)) (-850 |#2|) (-767 |#1| (-850 |#2|)))) (-631 (-767 |#1| (-850 |#2|))) (-112))))
-((-3023 (($ $) 38)) (-4200 (($ $) 21)) (-3003 (($ $) 37)) (-4177 (($ $) 22)) (-3046 (($ $) 36)) (-2916 (($ $) 23)) (-2844 (($) 48)) (-2395 (($ $) 45)) (-4145 (($ $) 17)) (-3546 (($ $ (-1074 $)) 7) (($ $ (-1158)) 6)) (-1333 (($ $) 46)) (-4124 (($ $) 15)) (-4164 (($ $) 16)) (-3057 (($ $) 35)) (-2926 (($ $) 24)) (-3034 (($ $) 34)) (-4213 (($ $) 25)) (-3014 (($ $) 33)) (-4188 (($ $) 26)) (-3096 (($ $) 44)) (-2959 (($ $) 32)) (-3069 (($ $) 43)) (-2938 (($ $) 31)) (-3120 (($ $) 42)) (-2981 (($ $) 30)) (-2908 (($ $) 41)) (-2991 (($ $) 29)) (-3108 (($ $) 40)) (-2969 (($ $) 28)) (-3083 (($ $) 39)) (-2948 (($ $) 27)) (-2697 (($ $) 19)) (-1667 (($ $) 20)) (-1373 (($ $) 18)) (** (($ $ $) 47)))
-(((-617) (-138)) (T -617))
-((-1667 (*1 *1 *1) (-4 *1 (-617))) (-2697 (*1 *1 *1) (-4 *1 (-617))) (-1373 (*1 *1 *1) (-4 *1 (-617))) (-4145 (*1 *1 *1) (-4 *1 (-617))) (-4164 (*1 *1 *1) (-4 *1 (-617))) (-4124 (*1 *1 *1) (-4 *1 (-617))))
-(-13 (-944) (-1180) (-10 -8 (-15 -1667 ($ $)) (-15 -2697 ($ $)) (-15 -1373 ($ $)) (-15 -4145 ($ $)) (-15 -4164 ($ $)) (-15 -4124 ($ $))))
-(((-35) . T) ((-95) . T) ((-279) . T) ((-487) . T) ((-944) . T) ((-1180) . T) ((-1183) . T))
-((-3086 (((-114) (-114)) 83)) (-4145 ((|#2| |#2|) 30)) (-3546 ((|#2| |#2| (-1074 |#2|)) 79) ((|#2| |#2| (-1158)) 52)) (-4124 ((|#2| |#2|) 29)) (-4164 ((|#2| |#2|) 31)) (-1902 (((-112) (-114)) 34)) (-2697 ((|#2| |#2|) 26)) (-1667 ((|#2| |#2|) 28)) (-1373 ((|#2| |#2|) 27)))
-(((-618 |#1| |#2|) (-10 -7 (-15 -1902 ((-112) (-114))) (-15 -3086 ((-114) (-114))) (-15 -1667 (|#2| |#2|)) (-15 -2697 (|#2| |#2|)) (-15 -1373 (|#2| |#2|)) (-15 -4145 (|#2| |#2|)) (-15 -4124 (|#2| |#2|)) (-15 -4164 (|#2| |#2|)) (-15 -3546 (|#2| |#2| (-1158))) (-15 -3546 (|#2| |#2| (-1074 |#2|)))) (-13 (-836) (-546)) (-13 (-425 |#1|) (-987) (-1180))) (T -618))
-((-3546 (*1 *2 *2 *3) (-12 (-5 *3 (-1074 *2)) (-4 *2 (-13 (-425 *4) (-987) (-1180))) (-4 *4 (-13 (-836) (-546))) (-5 *1 (-618 *4 *2)))) (-3546 (*1 *2 *2 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-836) (-546))) (-5 *1 (-618 *4 *2)) (-4 *2 (-13 (-425 *4) (-987) (-1180))))) (-4164 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-618 *3 *2)) (-4 *2 (-13 (-425 *3) (-987) (-1180))))) (-4124 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-618 *3 *2)) (-4 *2 (-13 (-425 *3) (-987) (-1180))))) (-4145 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-618 *3 *2)) (-4 *2 (-13 (-425 *3) (-987) (-1180))))) (-1373 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-618 *3 *2)) (-4 *2 (-13 (-425 *3) (-987) (-1180))))) (-2697 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-618 *3 *2)) (-4 *2 (-13 (-425 *3) (-987) (-1180))))) (-1667 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-618 *3 *2)) (-4 *2 (-13 (-425 *3) (-987) (-1180))))) (-3086 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-836) (-546))) (-5 *1 (-618 *3 *4)) (-4 *4 (-13 (-425 *3) (-987) (-1180))))) (-1902 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-836) (-546))) (-5 *2 (-112)) (-5 *1 (-618 *4 *5)) (-4 *5 (-13 (-425 *4) (-987) (-1180))))))
-(-10 -7 (-15 -1902 ((-112) (-114))) (-15 -3086 ((-114) (-114))) (-15 -1667 (|#2| |#2|)) (-15 -2697 (|#2| |#2|)) (-15 -1373 (|#2| |#2|)) (-15 -4145 (|#2| |#2|)) (-15 -4124 (|#2| |#2|)) (-15 -4164 (|#2| |#2|)) (-15 -3546 (|#2| |#2| (-1158))) (-15 -3546 (|#2| |#2| (-1074 |#2|))))
-((-3119 (((-475 |#1| |#2|) (-243 |#1| |#2|)) 53)) (-3907 (((-631 (-243 |#1| |#2|)) (-631 (-475 |#1| |#2|))) 68)) (-1860 (((-475 |#1| |#2|) (-631 (-475 |#1| |#2|)) (-850 |#1|)) 70) (((-475 |#1| |#2|) (-631 (-475 |#1| |#2|)) (-631 (-475 |#1| |#2|)) (-850 |#1|)) 69)) (-2718 (((-2 (|:| |gblist| (-631 (-243 |#1| |#2|))) (|:| |gvlist| (-631 (-554)))) (-631 (-475 |#1| |#2|))) 108)) (-2928 (((-631 (-475 |#1| |#2|)) (-850 |#1|) (-631 (-475 |#1| |#2|)) (-631 (-475 |#1| |#2|))) 83)) (-2922 (((-2 (|:| |glbase| (-631 (-243 |#1| |#2|))) (|:| |glval| (-631 (-554)))) (-631 (-243 |#1| |#2|))) 118)) (-3872 (((-1241 |#2|) (-475 |#1| |#2|) (-631 (-475 |#1| |#2|))) 58)) (-1618 (((-631 (-475 |#1| |#2|)) (-631 (-475 |#1| |#2|))) 41)) (-2779 (((-243 |#1| |#2|) (-243 |#1| |#2|) (-631 (-243 |#1| |#2|))) 50)) (-2977 (((-243 |#1| |#2|) (-631 |#2|) (-243 |#1| |#2|) (-631 (-243 |#1| |#2|))) 91)))
-(((-619 |#1| |#2|) (-10 -7 (-15 -2718 ((-2 (|:| |gblist| (-631 (-243 |#1| |#2|))) (|:| |gvlist| (-631 (-554)))) (-631 (-475 |#1| |#2|)))) (-15 -2922 ((-2 (|:| |glbase| (-631 (-243 |#1| |#2|))) (|:| |glval| (-631 (-554)))) (-631 (-243 |#1| |#2|)))) (-15 -3907 ((-631 (-243 |#1| |#2|)) (-631 (-475 |#1| |#2|)))) (-15 -1860 ((-475 |#1| |#2|) (-631 (-475 |#1| |#2|)) (-631 (-475 |#1| |#2|)) (-850 |#1|))) (-15 -1860 ((-475 |#1| |#2|) (-631 (-475 |#1| |#2|)) (-850 |#1|))) (-15 -1618 ((-631 (-475 |#1| |#2|)) (-631 (-475 |#1| |#2|)))) (-15 -3872 ((-1241 |#2|) (-475 |#1| |#2|) (-631 (-475 |#1| |#2|)))) (-15 -2977 ((-243 |#1| |#2|) (-631 |#2|) (-243 |#1| |#2|) (-631 (-243 |#1| |#2|)))) (-15 -2928 ((-631 (-475 |#1| |#2|)) (-850 |#1|) (-631 (-475 |#1| |#2|)) (-631 (-475 |#1| |#2|)))) (-15 -2779 ((-243 |#1| |#2|) (-243 |#1| |#2|) (-631 (-243 |#1| |#2|)))) (-15 -3119 ((-475 |#1| |#2|) (-243 |#1| |#2|)))) (-631 (-1158)) (-446)) (T -619))
-((-3119 (*1 *2 *3) (-12 (-5 *3 (-243 *4 *5)) (-14 *4 (-631 (-1158))) (-4 *5 (-446)) (-5 *2 (-475 *4 *5)) (-5 *1 (-619 *4 *5)))) (-2779 (*1 *2 *2 *3) (-12 (-5 *3 (-631 (-243 *4 *5))) (-5 *2 (-243 *4 *5)) (-14 *4 (-631 (-1158))) (-4 *5 (-446)) (-5 *1 (-619 *4 *5)))) (-2928 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-631 (-475 *4 *5))) (-5 *3 (-850 *4)) (-14 *4 (-631 (-1158))) (-4 *5 (-446)) (-5 *1 (-619 *4 *5)))) (-2977 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-631 *6)) (-5 *4 (-631 (-243 *5 *6))) (-4 *6 (-446)) (-5 *2 (-243 *5 *6)) (-14 *5 (-631 (-1158))) (-5 *1 (-619 *5 *6)))) (-3872 (*1 *2 *3 *4) (-12 (-5 *4 (-631 (-475 *5 *6))) (-5 *3 (-475 *5 *6)) (-14 *5 (-631 (-1158))) (-4 *6 (-446)) (-5 *2 (-1241 *6)) (-5 *1 (-619 *5 *6)))) (-1618 (*1 *2 *2) (-12 (-5 *2 (-631 (-475 *3 *4))) (-14 *3 (-631 (-1158))) (-4 *4 (-446)) (-5 *1 (-619 *3 *4)))) (-1860 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-475 *5 *6))) (-5 *4 (-850 *5)) (-14 *5 (-631 (-1158))) (-5 *2 (-475 *5 *6)) (-5 *1 (-619 *5 *6)) (-4 *6 (-446)))) (-1860 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-631 (-475 *5 *6))) (-5 *4 (-850 *5)) (-14 *5 (-631 (-1158))) (-5 *2 (-475 *5 *6)) (-5 *1 (-619 *5 *6)) (-4 *6 (-446)))) (-3907 (*1 *2 *3) (-12 (-5 *3 (-631 (-475 *4 *5))) (-14 *4 (-631 (-1158))) (-4 *5 (-446)) (-5 *2 (-631 (-243 *4 *5))) (-5 *1 (-619 *4 *5)))) (-2922 (*1 *2 *3) (-12 (-14 *4 (-631 (-1158))) (-4 *5 (-446)) (-5 *2 (-2 (|:| |glbase| (-631 (-243 *4 *5))) (|:| |glval| (-631 (-554))))) (-5 *1 (-619 *4 *5)) (-5 *3 (-631 (-243 *4 *5))))) (-2718 (*1 *2 *3) (-12 (-5 *3 (-631 (-475 *4 *5))) (-14 *4 (-631 (-1158))) (-4 *5 (-446)) (-5 *2 (-2 (|:| |gblist| (-631 (-243 *4 *5))) (|:| |gvlist| (-631 (-554))))) (-5 *1 (-619 *4 *5)))))
-(-10 -7 (-15 -2718 ((-2 (|:| |gblist| (-631 (-243 |#1| |#2|))) (|:| |gvlist| (-631 (-554)))) (-631 (-475 |#1| |#2|)))) (-15 -2922 ((-2 (|:| |glbase| (-631 (-243 |#1| |#2|))) (|:| |glval| (-631 (-554)))) (-631 (-243 |#1| |#2|)))) (-15 -3907 ((-631 (-243 |#1| |#2|)) (-631 (-475 |#1| |#2|)))) (-15 -1860 ((-475 |#1| |#2|) (-631 (-475 |#1| |#2|)) (-631 (-475 |#1| |#2|)) (-850 |#1|))) (-15 -1860 ((-475 |#1| |#2|) (-631 (-475 |#1| |#2|)) (-850 |#1|))) (-15 -1618 ((-631 (-475 |#1| |#2|)) (-631 (-475 |#1| |#2|)))) (-15 -3872 ((-1241 |#2|) (-475 |#1| |#2|) (-631 (-475 |#1| |#2|)))) (-15 -2977 ((-243 |#1| |#2|) (-631 |#2|) (-243 |#1| |#2|) (-631 (-243 |#1| |#2|)))) (-15 -2928 ((-631 (-475 |#1| |#2|)) (-850 |#1|) (-631 (-475 |#1| |#2|)) (-631 (-475 |#1| |#2|)))) (-15 -2779 ((-243 |#1| |#2|) (-243 |#1| |#2|) (-631 (-243 |#1| |#2|)))) (-15 -3119 ((-475 |#1| |#2|) (-243 |#1| |#2|))))
-((-3062 (((-112) $ $) NIL (-3994 (|has| (-52) (-1082)) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-1082))))) (-3167 (($) NIL) (($ (-631 (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))))) NIL)) (-4233 (((-1246) $ (-1140) (-1140)) NIL (|has| $ (-6 -4374)))) (-3019 (((-112) $ (-758)) NIL)) (-1501 (((-52) $ (-1140) (-52)) 16) (((-52) $ (-1158) (-52)) 17)) (-2220 (($ (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373)))) (-2937 (((-3 (-52) "failed") (-1140) $) NIL)) (-4087 (($) NIL T CONST)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-1082))))) (-1884 (($ (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) $) NIL (|has| $ (-6 -4373))) (($ (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373))) (((-3 (-52) "failed") (-1140) $) NIL)) (-2574 (($ (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-1082)))) (($ (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373)))) (-3676 (((-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-1 (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) $ (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-1082)))) (((-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-1 (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) $ (-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) NIL (|has| $ (-6 -4373))) (((-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-1 (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373)))) (-2862 (((-52) $ (-1140) (-52)) NIL (|has| $ (-6 -4374)))) (-2796 (((-52) $ (-1140)) NIL)) (-2466 (((-631 (-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373))) (((-631 (-52)) $) NIL (|has| $ (-6 -4373)))) (-3733 (($ $) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-1140) $) NIL (|has| (-1140) (-836)))) (-2379 (((-631 (-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373))) (((-631 (-52)) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-1082)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-52) (-1082))))) (-2256 (((-1140) $) NIL (|has| (-1140) (-836)))) (-2849 (($ (-1 (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4374))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1443 (($ (-383)) 9)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (-3994 (|has| (-52) (-1082)) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-1082))))) (-2944 (((-631 (-1140)) $) NIL)) (-2415 (((-112) (-1140) $) NIL)) (-4150 (((-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) $) NIL)) (-2045 (($ (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) $) NIL)) (-2529 (((-631 (-1140)) $) NIL)) (-3618 (((-112) (-1140) $) NIL)) (-2768 (((-1102) $) NIL (-3994 (|has| (-52) (-1082)) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-1082))))) (-1539 (((-52) $) NIL (|has| (-1140) (-836)))) (-1652 (((-3 (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) "failed") (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) $) NIL)) (-2441 (($ $ (-52)) NIL (|has| $ (-6 -4374)))) (-2152 (((-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) $) NIL)) (-2845 (((-112) (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 (-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))))) NIL (-12 (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-304 (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))))) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-1082)))) (($ $ (-289 (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))))) NIL (-12 (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-304 (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))))) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-1082)))) (($ $ (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) NIL (-12 (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-304 (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))))) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-1082)))) (($ $ (-631 (-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) (-631 (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))))) NIL (-12 (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-304 (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))))) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-1082)))) (($ $ (-631 (-52)) (-631 (-52))) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1082)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1082)))) (($ $ (-289 (-52))) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1082)))) (($ $ (-631 (-289 (-52)))) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-52) (-1082))))) (-2625 (((-631 (-52)) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 (((-52) $ (-1140)) 14) (((-52) $ (-1140) (-52)) NIL) (((-52) $ (-1158)) 15)) (-4310 (($) NIL) (($ (-631 (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))))) NIL)) (-2777 (((-758) (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373))) (((-758) (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-1082)))) (((-758) (-52) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-52) (-1082)))) (((-758) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4373)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-602 (-530))))) (-3089 (($ (-631 (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))))) NIL)) (-3075 (((-848) $) NIL (-3994 (|has| (-52) (-601 (-848))) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-601 (-848)))))) (-1591 (($ (-631 (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))))) NIL)) (-2438 (((-112) (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) NIL (-3994 (|has| (-52) (-1082)) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-1082))))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-620) (-13 (-1171 (-1140) (-52)) (-10 -8 (-15 -1443 ($ (-383))) (-15 -3733 ($ $)) (-15 -2064 ((-52) $ (-1158))) (-15 -1501 ((-52) $ (-1158) (-52)))))) (T -620))
-((-1443 (*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-620)))) (-3733 (*1 *1 *1) (-5 *1 (-620))) (-2064 (*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-52)) (-5 *1 (-620)))) (-1501 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1158)) (-5 *1 (-620)))))
-(-13 (-1171 (-1140) (-52)) (-10 -8 (-15 -1443 ($ (-383))) (-15 -3733 ($ $)) (-15 -2064 ((-52) $ (-1158))) (-15 -1501 ((-52) $ (-1158) (-52)))))
-((-1752 (($ $ |#2|) 10)))
-(((-621 |#1| |#2|) (-10 -8 (-15 -1752 (|#1| |#1| |#2|))) (-622 |#2|) (-170)) (T -621))
-NIL
-(-10 -8 (-15 -1752 (|#1| |#1| |#2|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3089 (($ $ $) 29)) (-3075 (((-848) $) 11)) (-2004 (($) 18 T CONST)) (-1658 (((-112) $ $) 6)) (-1752 (($ $ |#1|) 28 (|has| |#1| (-358)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
-(((-622 |#1|) (-138) (-170)) (T -622))
-((-3089 (*1 *1 *1 *1) (-12 (-4 *1 (-622 *2)) (-4 *2 (-170)))) (-1752 (*1 *1 *1 *2) (-12 (-4 *1 (-622 *2)) (-4 *2 (-170)) (-4 *2 (-358)))))
-(-13 (-704 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3089 ($ $ $)) (IF (|has| |t#1| (-358)) (-15 -1752 ($ $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-601 (-848)) . T) ((-634 |#1|) . T) ((-704 |#1|) . T) ((-1040 |#1|) . T) ((-1082) . T))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-3646 (((-3 $ "failed")) NIL (-3994 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))))) (-2934 (((-3 $ "failed") $ $) NIL)) (-4251 (((-1241 (-675 |#1|))) NIL (|has| |#2| (-412 |#1|))) (((-1241 (-675 |#1|)) (-1241 $)) NIL (|has| |#2| (-362 |#1|)))) (-4047 (((-1241 $)) NIL (|has| |#2| (-362 |#1|)))) (-4087 (($) NIL T CONST)) (-1558 (((-3 (-2 (|:| |particular| $) (|:| -3782 (-631 $))) "failed")) NIL (-3994 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))))) (-3447 (((-3 $ "failed")) NIL (-3994 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))))) (-3321 (((-675 |#1|)) NIL (|has| |#2| (-412 |#1|))) (((-675 |#1|) (-1241 $)) NIL (|has| |#2| (-362 |#1|)))) (-4206 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-3970 (((-675 |#1|) $) NIL (|has| |#2| (-412 |#1|))) (((-675 |#1|) $ (-1241 $)) NIL (|has| |#2| (-362 |#1|)))) (-3754 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))))) (-4027 (((-1154 (-937 |#1|))) NIL (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-358))))) (-2080 (($ $ (-906)) NIL)) (-3976 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-3343 (((-1154 |#1|) $) NIL (-3994 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))))) (-3640 ((|#1|) NIL (|has| |#2| (-412 |#1|))) ((|#1| (-1241 $)) NIL (|has| |#2| (-362 |#1|)))) (-4231 (((-1154 |#1|) $) NIL (|has| |#2| (-362 |#1|)))) (-1397 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1651 (($ (-1241 |#1|)) NIL (|has| |#2| (-412 |#1|))) (($ (-1241 |#1|) (-1241 $)) NIL (|has| |#2| (-362 |#1|)))) (-1320 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))))) (-4186 (((-906)) NIL (|has| |#2| (-362 |#1|)))) (-3911 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-4326 (($ $ (-906)) NIL)) (-2545 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1765 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1573 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1660 (((-3 (-2 (|:| |particular| $) (|:| -3782 (-631 $))) "failed")) NIL (-3994 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))))) (-3899 (((-3 $ "failed")) NIL (-3994 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))))) (-2871 (((-675 |#1|)) NIL (|has| |#2| (-412 |#1|))) (((-675 |#1|) (-1241 $)) NIL (|has| |#2| (-362 |#1|)))) (-3115 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-3826 (((-675 |#1|) $) NIL (|has| |#2| (-412 |#1|))) (((-675 |#1|) $ (-1241 $)) NIL (|has| |#2| (-362 |#1|)))) (-1605 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))))) (-3415 (((-1154 (-937 |#1|))) NIL (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-358))))) (-1297 (($ $ (-906)) NIL)) (-2620 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-3760 (((-1154 |#1|) $) NIL (-3994 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))))) (-3063 ((|#1|) NIL (|has| |#2| (-412 |#1|))) ((|#1| (-1241 $)) NIL (|has| |#2| (-362 |#1|)))) (-2541 (((-1154 |#1|) $) NIL (|has| |#2| (-362 |#1|)))) (-3074 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1613 (((-1140) $) NIL)) (-3953 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-4193 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2366 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2768 (((-1102) $) NIL)) (-1944 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2064 ((|#1| $ (-554)) NIL (|has| |#2| (-412 |#1|)))) (-3656 (((-675 |#1|) (-1241 $)) NIL (|has| |#2| (-412 |#1|))) (((-1241 |#1|) $) NIL (|has| |#2| (-412 |#1|))) (((-675 |#1|) (-1241 $) (-1241 $)) NIL (|has| |#2| (-362 |#1|))) (((-1241 |#1|) $ (-1241 $)) NIL (|has| |#2| (-362 |#1|)))) (-2927 (($ (-1241 |#1|)) NIL (|has| |#2| (-412 |#1|))) (((-1241 |#1|) $) NIL (|has| |#2| (-412 |#1|)))) (-3107 (((-631 (-937 |#1|))) NIL (|has| |#2| (-412 |#1|))) (((-631 (-937 |#1|)) (-1241 $)) NIL (|has| |#2| (-362 |#1|)))) (-1856 (($ $ $) NIL)) (-3349 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-3075 (((-848) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-3782 (((-1241 $)) NIL (|has| |#2| (-412 |#1|)))) (-1444 (((-631 (-1241 |#1|))) NIL (-3994 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))))) (-3499 (($ $ $ $) NIL)) (-3454 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1485 (($ (-675 |#1|) $) NIL (|has| |#2| (-412 |#1|)))) (-1870 (($ $ $) NIL)) (-2945 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2760 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-3206 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2004 (($) 15 T CONST)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) 17)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-623 |#1| |#2|) (-13 (-731 |#1|) (-601 |#2|) (-10 -8 (-15 -3075 ($ |#2|)) (IF (|has| |#2| (-412 |#1|)) (-6 (-412 |#1|)) |%noBranch|) (IF (|has| |#2| (-362 |#1|)) (-6 (-362 |#1|)) |%noBranch|))) (-170) (-731 |#1|)) (T -623))
-((-3075 (*1 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-623 *3 *2)) (-4 *2 (-731 *3)))))
-(-13 (-731 |#1|) (-601 |#2|) (-10 -8 (-15 -3075 ($ |#2|)) (IF (|has| |#2| (-412 |#1|)) (-6 (-412 |#1|)) |%noBranch|) (IF (|has| |#2| (-362 |#1|)) (-6 (-362 |#1|)) |%noBranch|)))
-((-4321 (((-3 (-829 |#2|) "failed") |#2| (-289 |#2|) (-1140)) 82) (((-3 (-829 |#2|) (-2 (|:| |leftHandLimit| (-3 (-829 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-829 |#2|) "failed"))) "failed") |#2| (-289 (-829 |#2|))) 104)) (-4113 (((-3 (-820 |#2|) "failed") |#2| (-289 (-820 |#2|))) 109)))
-(((-624 |#1| |#2|) (-10 -7 (-15 -4321 ((-3 (-829 |#2|) (-2 (|:| |leftHandLimit| (-3 (-829 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-829 |#2|) "failed"))) "failed") |#2| (-289 (-829 |#2|)))) (-15 -4113 ((-3 (-820 |#2|) "failed") |#2| (-289 (-820 |#2|)))) (-15 -4321 ((-3 (-829 |#2|) "failed") |#2| (-289 |#2|) (-1140)))) (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))) (-13 (-27) (-1180) (-425 |#1|))) (T -624))
-((-4321 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-289 *3)) (-5 *5 (-1140)) (-4 *3 (-13 (-27) (-1180) (-425 *6))) (-4 *6 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-829 *3)) (-5 *1 (-624 *6 *3)))) (-4113 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-289 (-820 *3))) (-4 *5 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-820 *3)) (-5 *1 (-624 *5 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *5))))) (-4321 (*1 *2 *3 *4) (-12 (-5 *4 (-289 (-829 *3))) (-4 *3 (-13 (-27) (-1180) (-425 *5))) (-4 *5 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-3 (-829 *3) (-2 (|:| |leftHandLimit| (-3 (-829 *3) "failed")) (|:| |rightHandLimit| (-3 (-829 *3) "failed"))) "failed")) (-5 *1 (-624 *5 *3)))))
-(-10 -7 (-15 -4321 ((-3 (-829 |#2|) (-2 (|:| |leftHandLimit| (-3 (-829 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-829 |#2|) "failed"))) "failed") |#2| (-289 (-829 |#2|)))) (-15 -4113 ((-3 (-820 |#2|) "failed") |#2| (-289 (-820 |#2|)))) (-15 -4321 ((-3 (-829 |#2|) "failed") |#2| (-289 |#2|) (-1140))))
-((-4321 (((-3 (-829 (-402 (-937 |#1|))) "failed") (-402 (-937 |#1|)) (-289 (-402 (-937 |#1|))) (-1140)) 80) (((-3 (-829 (-402 (-937 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-829 (-402 (-937 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-829 (-402 (-937 |#1|))) "failed"))) "failed") (-402 (-937 |#1|)) (-289 (-402 (-937 |#1|)))) 20) (((-3 (-829 (-402 (-937 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-829 (-402 (-937 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-829 (-402 (-937 |#1|))) "failed"))) "failed") (-402 (-937 |#1|)) (-289 (-829 (-937 |#1|)))) 35)) (-4113 (((-820 (-402 (-937 |#1|))) (-402 (-937 |#1|)) (-289 (-402 (-937 |#1|)))) 23) (((-820 (-402 (-937 |#1|))) (-402 (-937 |#1|)) (-289 (-820 (-937 |#1|)))) 43)))
-(((-625 |#1|) (-10 -7 (-15 -4321 ((-3 (-829 (-402 (-937 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-829 (-402 (-937 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-829 (-402 (-937 |#1|))) "failed"))) "failed") (-402 (-937 |#1|)) (-289 (-829 (-937 |#1|))))) (-15 -4321 ((-3 (-829 (-402 (-937 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-829 (-402 (-937 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-829 (-402 (-937 |#1|))) "failed"))) "failed") (-402 (-937 |#1|)) (-289 (-402 (-937 |#1|))))) (-15 -4113 ((-820 (-402 (-937 |#1|))) (-402 (-937 |#1|)) (-289 (-820 (-937 |#1|))))) (-15 -4113 ((-820 (-402 (-937 |#1|))) (-402 (-937 |#1|)) (-289 (-402 (-937 |#1|))))) (-15 -4321 ((-3 (-829 (-402 (-937 |#1|))) "failed") (-402 (-937 |#1|)) (-289 (-402 (-937 |#1|))) (-1140)))) (-446)) (T -625))
-((-4321 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-289 (-402 (-937 *6)))) (-5 *5 (-1140)) (-5 *3 (-402 (-937 *6))) (-4 *6 (-446)) (-5 *2 (-829 *3)) (-5 *1 (-625 *6)))) (-4113 (*1 *2 *3 *4) (-12 (-5 *4 (-289 (-402 (-937 *5)))) (-5 *3 (-402 (-937 *5))) (-4 *5 (-446)) (-5 *2 (-820 *3)) (-5 *1 (-625 *5)))) (-4113 (*1 *2 *3 *4) (-12 (-5 *4 (-289 (-820 (-937 *5)))) (-4 *5 (-446)) (-5 *2 (-820 (-402 (-937 *5)))) (-5 *1 (-625 *5)) (-5 *3 (-402 (-937 *5))))) (-4321 (*1 *2 *3 *4) (-12 (-5 *4 (-289 (-402 (-937 *5)))) (-5 *3 (-402 (-937 *5))) (-4 *5 (-446)) (-5 *2 (-3 (-829 *3) (-2 (|:| |leftHandLimit| (-3 (-829 *3) "failed")) (|:| |rightHandLimit| (-3 (-829 *3) "failed"))) "failed")) (-5 *1 (-625 *5)))) (-4321 (*1 *2 *3 *4) (-12 (-5 *4 (-289 (-829 (-937 *5)))) (-4 *5 (-446)) (-5 *2 (-3 (-829 (-402 (-937 *5))) (-2 (|:| |leftHandLimit| (-3 (-829 (-402 (-937 *5))) "failed")) (|:| |rightHandLimit| (-3 (-829 (-402 (-937 *5))) "failed"))) "failed")) (-5 *1 (-625 *5)) (-5 *3 (-402 (-937 *5))))))
-(-10 -7 (-15 -4321 ((-3 (-829 (-402 (-937 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-829 (-402 (-937 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-829 (-402 (-937 |#1|))) "failed"))) "failed") (-402 (-937 |#1|)) (-289 (-829 (-937 |#1|))))) (-15 -4321 ((-3 (-829 (-402 (-937 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-829 (-402 (-937 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-829 (-402 (-937 |#1|))) "failed"))) "failed") (-402 (-937 |#1|)) (-289 (-402 (-937 |#1|))))) (-15 -4113 ((-820 (-402 (-937 |#1|))) (-402 (-937 |#1|)) (-289 (-820 (-937 |#1|))))) (-15 -4113 ((-820 (-402 (-937 |#1|))) (-402 (-937 |#1|)) (-289 (-402 (-937 |#1|))))) (-15 -4321 ((-3 (-829 (-402 (-937 |#1|))) "failed") (-402 (-937 |#1|)) (-289 (-402 (-937 |#1|))) (-1140))))
-((-1627 (((-3 (-1241 (-402 |#1|)) "failed") (-1241 |#2|) |#2|) 57 (-4081 (|has| |#1| (-358)))) (((-3 (-1241 |#1|) "failed") (-1241 |#2|) |#2|) 42 (|has| |#1| (-358)))) (-1659 (((-112) (-1241 |#2|)) 30)) (-1674 (((-3 (-1241 |#1|) "failed") (-1241 |#2|)) 33)))
-(((-626 |#1| |#2|) (-10 -7 (-15 -1659 ((-112) (-1241 |#2|))) (-15 -1674 ((-3 (-1241 |#1|) "failed") (-1241 |#2|))) (IF (|has| |#1| (-358)) (-15 -1627 ((-3 (-1241 |#1|) "failed") (-1241 |#2|) |#2|)) (-15 -1627 ((-3 (-1241 (-402 |#1|)) "failed") (-1241 |#2|) |#2|)))) (-546) (-627 |#1|)) (T -626))
-((-1627 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1241 *4)) (-4 *4 (-627 *5)) (-4081 (-4 *5 (-358))) (-4 *5 (-546)) (-5 *2 (-1241 (-402 *5))) (-5 *1 (-626 *5 *4)))) (-1627 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1241 *4)) (-4 *4 (-627 *5)) (-4 *5 (-358)) (-4 *5 (-546)) (-5 *2 (-1241 *5)) (-5 *1 (-626 *5 *4)))) (-1674 (*1 *2 *3) (|partial| -12 (-5 *3 (-1241 *5)) (-4 *5 (-627 *4)) (-4 *4 (-546)) (-5 *2 (-1241 *4)) (-5 *1 (-626 *4 *5)))) (-1659 (*1 *2 *3) (-12 (-5 *3 (-1241 *5)) (-4 *5 (-627 *4)) (-4 *4 (-546)) (-5 *2 (-112)) (-5 *1 (-626 *4 *5)))))
-(-10 -7 (-15 -1659 ((-112) (-1241 |#2|))) (-15 -1674 ((-3 (-1241 |#1|) "failed") (-1241 |#2|))) (IF (|has| |#1| (-358)) (-15 -1627 ((-3 (-1241 |#1|) "failed") (-1241 |#2|) |#2|)) (-15 -1627 ((-3 (-1241 (-402 |#1|)) "failed") (-1241 |#2|) |#2|))))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-3699 (((-675 |#1|) (-675 $)) 36) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) 35)) (-1320 (((-3 $ "failed") $) 33)) (-3248 (((-112) $) 31)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11) (($ (-554)) 29)) (-2261 (((-758)) 28)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24)))
-(((-627 |#1|) (-138) (-1034)) (T -627))
-((-3699 (*1 *2 *3) (-12 (-5 *3 (-675 *1)) (-4 *1 (-627 *4)) (-4 *4 (-1034)) (-5 *2 (-675 *4)))) (-3699 (*1 *2 *3 *4) (-12 (-5 *3 (-675 *1)) (-5 *4 (-1241 *1)) (-4 *1 (-627 *5)) (-4 *5 (-1034)) (-5 *2 (-2 (|:| -2866 (-675 *5)) (|:| |vec| (-1241 *5)))))))
-(-13 (-1034) (-10 -8 (-15 -3699 ((-675 |t#1|) (-675 $))) (-15 -3699 ((-2 (|:| -2866 (-675 |t#1|)) (|:| |vec| (-1241 |t#1|))) (-675 $) (-1241 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-604 (-554)) . T) ((-601 (-848)) . T) ((-634 $) . T) ((-713) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T))
-((-3814 ((|#2| (-631 |#1|) (-631 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-631 |#1|) (-631 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-631 |#1|) (-631 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-631 |#1|) (-631 |#2|) |#2|) 17) ((|#2| (-631 |#1|) (-631 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-631 |#1|) (-631 |#2|)) 12)))
-(((-628 |#1| |#2|) (-10 -7 (-15 -3814 ((-1 |#2| |#1|) (-631 |#1|) (-631 |#2|))) (-15 -3814 (|#2| (-631 |#1|) (-631 |#2|) |#1|)) (-15 -3814 ((-1 |#2| |#1|) (-631 |#1|) (-631 |#2|) |#2|)) (-15 -3814 (|#2| (-631 |#1|) (-631 |#2|) |#1| |#2|)) (-15 -3814 ((-1 |#2| |#1|) (-631 |#1|) (-631 |#2|) (-1 |#2| |#1|))) (-15 -3814 (|#2| (-631 |#1|) (-631 |#2|) |#1| (-1 |#2| |#1|)))) (-1082) (-1195)) (T -628))
-((-3814 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-631 *5)) (-5 *4 (-631 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1082)) (-4 *2 (-1195)) (-5 *1 (-628 *5 *2)))) (-3814 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-631 *5)) (-5 *4 (-631 *6)) (-4 *5 (-1082)) (-4 *6 (-1195)) (-5 *1 (-628 *5 *6)))) (-3814 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-631 *5)) (-5 *4 (-631 *2)) (-4 *5 (-1082)) (-4 *2 (-1195)) (-5 *1 (-628 *5 *2)))) (-3814 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *6)) (-5 *4 (-631 *5)) (-4 *6 (-1082)) (-4 *5 (-1195)) (-5 *2 (-1 *5 *6)) (-5 *1 (-628 *6 *5)))) (-3814 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *5)) (-5 *4 (-631 *2)) (-4 *5 (-1082)) (-4 *2 (-1195)) (-5 *1 (-628 *5 *2)))) (-3814 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *5)) (-5 *4 (-631 *6)) (-4 *5 (-1082)) (-4 *6 (-1195)) (-5 *2 (-1 *6 *5)) (-5 *1 (-628 *5 *6)))))
-(-10 -7 (-15 -3814 ((-1 |#2| |#1|) (-631 |#1|) (-631 |#2|))) (-15 -3814 (|#2| (-631 |#1|) (-631 |#2|) |#1|)) (-15 -3814 ((-1 |#2| |#1|) (-631 |#1|) (-631 |#2|) |#2|)) (-15 -3814 (|#2| (-631 |#1|) (-631 |#2|) |#1| |#2|)) (-15 -3814 ((-1 |#2| |#1|) (-631 |#1|) (-631 |#2|) (-1 |#2| |#1|))) (-15 -3814 (|#2| (-631 |#1|) (-631 |#2|) |#1| (-1 |#2| |#1|))))
-((-4159 (((-631 |#2|) (-1 |#2| |#1| |#2|) (-631 |#1|) |#2|) 16)) (-3676 ((|#2| (-1 |#2| |#1| |#2|) (-631 |#1|) |#2|) 18)) (-2879 (((-631 |#2|) (-1 |#2| |#1|) (-631 |#1|)) 13)))
-(((-629 |#1| |#2|) (-10 -7 (-15 -4159 ((-631 |#2|) (-1 |#2| |#1| |#2|) (-631 |#1|) |#2|)) (-15 -3676 (|#2| (-1 |#2| |#1| |#2|) (-631 |#1|) |#2|)) (-15 -2879 ((-631 |#2|) (-1 |#2| |#1|) (-631 |#1|)))) (-1195) (-1195)) (T -629))
-((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-631 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-631 *6)) (-5 *1 (-629 *5 *6)))) (-3676 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-631 *5)) (-4 *5 (-1195)) (-4 *2 (-1195)) (-5 *1 (-629 *5 *2)))) (-4159 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-631 *6)) (-4 *6 (-1195)) (-4 *5 (-1195)) (-5 *2 (-631 *5)) (-5 *1 (-629 *6 *5)))))
-(-10 -7 (-15 -4159 ((-631 |#2|) (-1 |#2| |#1| |#2|) (-631 |#1|) |#2|)) (-15 -3676 (|#2| (-1 |#2| |#1| |#2|) (-631 |#1|) |#2|)) (-15 -2879 ((-631 |#2|) (-1 |#2| |#1|) (-631 |#1|))))
-((-2879 (((-631 |#3|) (-1 |#3| |#1| |#2|) (-631 |#1|) (-631 |#2|)) 13)))
-(((-630 |#1| |#2| |#3|) (-10 -7 (-15 -2879 ((-631 |#3|) (-1 |#3| |#1| |#2|) (-631 |#1|) (-631 |#2|)))) (-1195) (-1195) (-1195)) (T -630))
-((-2879 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-631 *6)) (-5 *5 (-631 *7)) (-4 *6 (-1195)) (-4 *7 (-1195)) (-4 *8 (-1195)) (-5 *2 (-631 *8)) (-5 *1 (-630 *6 *7 *8)))))
-(-10 -7 (-15 -2879 ((-631 |#3|) (-1 |#3| |#1| |#2|) (-631 |#1|) (-631 |#2|))))
-((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2794 ((|#1| $) NIL)) (-2350 ((|#1| $) NIL)) (-3387 (($ $) NIL)) (-4233 (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-2722 (($ $ (-554)) NIL (|has| $ (-6 -4374)))) (-4015 (((-112) $) NIL (|has| |#1| (-836))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2576 (($ $) NIL (-12 (|has| $ (-6 -4374)) (|has| |#1| (-836)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-3303 (($ $) NIL (|has| |#1| (-836))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3019 (((-112) $ (-758)) NIL)) (-2690 ((|#1| $ |#1|) NIL (|has| $ (-6 -4374)))) (-2234 (($ $ $) NIL (|has| $ (-6 -4374)))) (-1825 ((|#1| $ |#1|) NIL (|has| $ (-6 -4374)))) (-3105 ((|#1| $ |#1|) NIL (|has| $ (-6 -4374)))) (-1501 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4374))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4374))) (($ $ "rest" $) NIL (|has| $ (-6 -4374))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4374))) ((|#1| $ (-1208 (-554)) |#1|) NIL (|has| $ (-6 -4374))) ((|#1| $ (-554) |#1|) NIL (|has| $ (-6 -4374)))) (-2923 (($ $ (-631 $)) NIL (|has| $ (-6 -4374)))) (-1472 (($ $ $) 32 (|has| |#1| (-1082)))) (-1460 (($ $ $) 34 (|has| |#1| (-1082)))) (-1450 (($ $ $) 37 (|has| |#1| (-1082)))) (-2220 (($ (-1 (-112) |#1|) $) NIL)) (-1871 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2337 ((|#1| $) NIL)) (-4087 (($) NIL T CONST)) (-3920 (($ $) NIL (|has| $ (-6 -4374)))) (-3799 (($ $) NIL)) (-1551 (($ $) NIL) (($ $ (-758)) NIL)) (-2593 (($ $) NIL (|has| |#1| (-1082)))) (-1571 (($ $) 31 (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1884 (($ |#1| $) NIL (|has| |#1| (-1082))) (($ (-1 (-112) |#1|) $) NIL)) (-2574 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2862 ((|#1| $ (-554) |#1|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-554)) NIL)) (-3556 (((-112) $) NIL)) (-1484 (((-554) |#1| $ (-554)) NIL (|has| |#1| (-1082))) (((-554) |#1| $) NIL (|has| |#1| (-1082))) (((-554) (-1 (-112) |#1|) $) NIL)) (-2466 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3168 (((-112) $) 9)) (-3677 (((-631 $) $) NIL)) (-1990 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-4301 (($) 7)) (-3180 (($ (-758) |#1|) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) NIL (|has| (-554) (-836)))) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-3606 (($ $ $) NIL (|has| |#1| (-836))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3717 (($ $ $) NIL (|has| |#1| (-836))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 33 (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2256 (((-554) $) NIL (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2849 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1416 (($ |#1|) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-2306 (((-631 |#1|) $) NIL)) (-3216 (((-112) $) NIL)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-2597 ((|#1| $) NIL) (($ $ (-758)) NIL)) (-2045 (($ $ $ (-554)) NIL) (($ |#1| $ (-554)) NIL)) (-1782 (($ $ $ (-554)) NIL) (($ |#1| $ (-554)) NIL)) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) NIL)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-1539 ((|#1| $) NIL) (($ $ (-758)) NIL)) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2441 (($ $ |#1|) NIL (|has| $ (-6 -4374)))) (-1381 (((-112) $) NIL)) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1208 (-554))) NIL) ((|#1| $ (-554)) 36) ((|#1| $ (-554) |#1|) NIL)) (-3250 (((-554) $ $) NIL)) (-3029 (($ $ (-1208 (-554))) NIL) (($ $ (-554)) NIL)) (-2021 (($ $ (-1208 (-554))) NIL) (($ $ (-554)) NIL)) (-3008 (((-112) $) NIL)) (-1670 (($ $) NIL)) (-2377 (($ $) NIL (|has| $ (-6 -4374)))) (-2797 (((-758) $) NIL)) (-2046 (($ $) NIL)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-3553 (($ $ $ (-554)) NIL (|has| $ (-6 -4374)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) 45 (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) NIL)) (-2403 (($ |#1| $) 10)) (-1853 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4323 (($ $ $) 30) (($ |#1| $) NIL) (($ (-631 $)) NIL) (($ $ |#1|) NIL)) (-3075 (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-2461 (((-631 $) $) NIL)) (-1441 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2497 (($ $ $) 11)) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-4048 (((-1140) $) 26 (|has| |#1| (-815))) (((-1140) $ (-112)) 27 (|has| |#1| (-815))) (((-1246) (-809) $) 28 (|has| |#1| (-815))) (((-1246) (-809) $ (-112)) 29 (|has| |#1| (-815)))) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-631 |#1|) (-13 (-652 |#1|) (-10 -8 (-15 -4301 ($)) (-15 -3168 ((-112) $)) (-15 -2403 ($ |#1| $)) (-15 -2497 ($ $ $)) (IF (|has| |#1| (-1082)) (PROGN (-15 -1472 ($ $ $)) (-15 -1460 ($ $ $)) (-15 -1450 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-815)) (-6 (-815)) |%noBranch|))) (-1195)) (T -631))
-((-4301 (*1 *1) (-12 (-5 *1 (-631 *2)) (-4 *2 (-1195)))) (-3168 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-631 *3)) (-4 *3 (-1195)))) (-2403 (*1 *1 *2 *1) (-12 (-5 *1 (-631 *2)) (-4 *2 (-1195)))) (-2497 (*1 *1 *1 *1) (-12 (-5 *1 (-631 *2)) (-4 *2 (-1195)))) (-1472 (*1 *1 *1 *1) (-12 (-5 *1 (-631 *2)) (-4 *2 (-1082)) (-4 *2 (-1195)))) (-1460 (*1 *1 *1 *1) (-12 (-5 *1 (-631 *2)) (-4 *2 (-1082)) (-4 *2 (-1195)))) (-1450 (*1 *1 *1 *1) (-12 (-5 *1 (-631 *2)) (-4 *2 (-1082)) (-4 *2 (-1195)))))
-(-13 (-652 |#1|) (-10 -8 (-15 -4301 ($)) (-15 -3168 ((-112) $)) (-15 -2403 ($ |#1| $)) (-15 -2497 ($ $ $)) (IF (|has| |#1| (-1082)) (PROGN (-15 -1472 ($ $ $)) (-15 -1460 ($ $ $)) (-15 -1450 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-815)) (-6 (-815)) |%noBranch|)))
-((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 11) (($ (-1163)) NIL) (((-1163) $) NIL) ((|#1| $) 8)) (-1658 (((-112) $ $) NIL)))
-(((-632 |#1|) (-13 (-1065) (-601 |#1|)) (-1082)) (T -632))
-NIL
-(-13 (-1065) (-601 |#1|))
-((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-1562 (($ |#1| |#1| $) 43)) (-3019 (((-112) $ (-758)) NIL)) (-2220 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-4087 (($) NIL T CONST)) (-2593 (($ $) 45)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1884 (($ |#1| $) 52 (|has| $ (-6 -4373))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4373)))) (-2574 (($ |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4373)))) (-2466 (((-631 |#1|) $) 9 (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) NIL)) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2849 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 37)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-4150 ((|#1| $) 46)) (-2045 (($ |#1| $) 26) (($ |#1| $ (-758)) 42)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2152 ((|#1| $) 48)) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) 21)) (-4240 (($) 25)) (-2221 (((-112) $) 50)) (-2119 (((-631 (-2 (|:| -2701 |#1|) (|:| -2777 (-758)))) $) 59)) (-4310 (($) 23) (($ (-631 |#1|)) 18)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) 56 (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1521 (($ $) 19)) (-2927 (((-530) $) 34 (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) NIL)) (-3075 (((-848) $) 14 (|has| |#1| (-601 (-848))))) (-1591 (($ (-631 |#1|)) 22)) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 61 (|has| |#1| (-1082)))) (-2563 (((-758) $) 16 (|has| $ (-6 -4373)))))
-(((-633 |#1|) (-13 (-681 |#1|) (-10 -8 (-6 -4373) (-15 -2221 ((-112) $)) (-15 -1562 ($ |#1| |#1| $)))) (-1082)) (T -633))
-((-2221 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-633 *3)) (-4 *3 (-1082)))) (-1562 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-633 *2)) (-4 *2 (-1082)))))
-(-13 (-681 |#1|) (-10 -8 (-6 -4373) (-15 -2221 ((-112) $)) (-15 -1562 ($ |#1| |#1| $))))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-2004 (($) 18 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ |#1| $) 23)))
-(((-634 |#1|) (-138) (-1041)) (T -634))
-((* (*1 *1 *2 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1041)))))
+((-3207 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2925 ((|#1| $) NIL)) (-3213 ((|#1| $) NIL)) (-3436 (($ $) NIL)) (-3869 (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4383)))) (-2336 (($ $ (-558)) 58 (|has| $ (-6 -4383)))) (-1538 (((-112) $) NIL (|has| |#1| (-841))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2763 (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-841)))) (($ (-1 (-112) |#1| |#1|) $) 56 (|has| $ (-6 -4383)))) (-2376 (($ $) NIL (|has| |#1| (-841))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3026 (((-112) $ (-762)) NIL)) (-3972 ((|#1| $ |#1|) NIL (|has| $ (-6 -4383)))) (-2359 (($ $ $) 23 (|has| $ (-6 -4383)))) (-2348 ((|#1| $ |#1|) NIL (|has| $ (-6 -4383)))) (-2369 ((|#1| $ |#1|) 21 (|has| $ (-6 -4383)))) (-1532 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4383))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4383))) (($ $ "rest" $) 24 (|has| $ (-6 -4383))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4383))) ((|#1| $ (-1213 (-558)) |#1|) NIL (|has| $ (-6 -4383))) ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4383)))) (-3982 (($ $ (-635 $)) NIL (|has| $ (-6 -4383)))) (-4207 (($ (-1 (-112) |#1|) $) NIL)) (-4329 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-3201 ((|#1| $) NIL)) (-1816 (($) NIL T CONST)) (-3306 (($ $) 28 (|has| $ (-6 -4383)))) (-4127 (($ $) 29)) (-2315 (($ $) 18) (($ $ (-762)) 32)) (-2820 (($ $) 54 (|has| |#1| (-1087)))) (-2338 (($ $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3395 (($ |#1| $) NIL (|has| |#1| (-1087))) (($ (-1 (-112) |#1|) $) NIL)) (-1539 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3048 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4382))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4382))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1817 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4383)))) (-1746 ((|#1| $ (-558)) NIL)) (-2435 (((-112) $) NIL)) (-1517 (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1087))) (((-558) |#1| $) NIL (|has| |#1| (-1087))) (((-558) (-1 (-112) |#1|) $) NIL)) (-2240 (((-635 |#1|) $) 27 (|has| $ (-6 -4382)))) (-2870 (((-635 $) $) NIL)) (-3993 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-3315 (($ (-762) |#1|) NIL)) (-2986 (((-112) $ (-762)) NIL)) (-3889 (((-558) $) 31 (|has| (-558) (-841)))) (-3910 (($ $ $) NIL (|has| |#1| (-841)))) (-1645 (($ $ $) NIL (|has| |#1| (-841))) (($ (-1 (-112) |#1| |#1|) $ $) 57)) (-1677 (($ $ $) NIL (|has| |#1| (-841))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2122 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) 52 (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3899 (((-558) $) NIL (|has| (-558) (-841)))) (-3542 (($ $ $) NIL (|has| |#1| (-841)))) (-1807 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2192 (($ |#1|) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-1362 (((-635 |#1|) $) NIL)) (-1790 (((-112) $) NIL)) (-4310 (((-1145) $) 50 (|has| |#1| (-1087)))) (-1560 ((|#1| $) NIL) (($ $ (-762)) NIL)) (-4328 (($ $ $ (-558)) NIL) (($ |#1| $ (-558)) NIL)) (-1861 (($ $ $ (-558)) NIL) (($ |#1| $ (-558)) NIL)) (-3920 (((-635 (-558)) $) NIL)) (-3929 (((-112) (-558) $) NIL)) (-2975 (((-1107) $) NIL (|has| |#1| (-1087)))) (-2305 ((|#1| $) 13) (($ $ (-762)) NIL)) (-4307 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3880 (($ $ |#1|) NIL (|has| $ (-6 -4383)))) (-2445 (((-112) $) NIL)) (-3266 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) 12)) (-3908 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3937 (((-635 |#1|) $) NIL)) (-3375 (((-112) $) 17)) (-2083 (($) 16)) (-2195 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1213 (-558))) NIL) ((|#1| $ (-558)) NIL) ((|#1| $ (-558) |#1|) NIL)) (-2860 (((-558) $ $) NIL)) (-4218 (($ $ (-1213 (-558))) NIL) (($ $ (-558)) NIL)) (-4023 (($ $ (-1213 (-558))) NIL) (($ $ (-558)) NIL)) (-1487 (((-112) $) 33)) (-2405 (($ $) NIL)) (-2380 (($ $) NIL (|has| $ (-6 -4383)))) (-2414 (((-762) $) NIL)) (-2428 (($ $) 35)) (-2988 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-2773 (($ $ $ (-558)) NIL (|has| $ (-6 -4383)))) (-1553 (($ $) 34)) (-3224 (((-534) $) NIL (|has| |#1| (-606 (-534))))) (-3233 (($ (-635 |#1|)) 26)) (-2392 (($ $ $) 53) (($ $ |#1|) NIL)) (-4341 (($ $ $) NIL) (($ |#1| $) 10) (($ (-635 $)) NIL) (($ $ |#1|) NIL)) (-3220 (((-853) $) 45 (|has| |#1| (-605 (-853))))) (-1727 (((-635 $) $) NIL)) (-4005 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-3277 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-1747 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1683 (((-112) $ $) 47 (|has| |#1| (-1087)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-841)))) (-2755 (((-762) $) 9 (|has| $ (-6 -4382)))))
+(((-518 |#1| |#2|) (-656 |#1|) (-1200) (-558)) (T -518))
+NIL
+(-656 |#1|)
+((-2404 ((|#4| |#4|) 27)) (-3833 (((-762) |#4|) 32)) (-2391 (((-762) |#4|) 33)) (-2379 (((-635 |#3|) |#4|) 39 (|has| |#3| (-6 -4383)))) (-4141 (((-3 |#4| "failed") |#4|) 50)) (-2489 ((|#4| |#4|) 43)) (-3824 ((|#1| |#4|) 42)))
+(((-519 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2404 (|#4| |#4|)) (-15 -3833 ((-762) |#4|)) (-15 -2391 ((-762) |#4|)) (IF (|has| |#3| (-6 -4383)) (-15 -2379 ((-635 |#3|) |#4|)) |%noBranch|) (-15 -3824 (|#1| |#4|)) (-15 -2489 (|#4| |#4|)) (-15 -4141 ((-3 |#4| "failed") |#4|))) (-362) (-372 |#1|) (-372 |#1|) (-677 |#1| |#2| |#3|)) (T -519))
+((-4141 (*1 *2 *2) (|partial| -12 (-4 *3 (-362)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-519 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5)))) (-2489 (*1 *2 *2) (-12 (-4 *3 (-362)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-519 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5)))) (-3824 (*1 *2 *3) (-12 (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-362)) (-5 *1 (-519 *2 *4 *5 *3)) (-4 *3 (-677 *2 *4 *5)))) (-2379 (*1 *2 *3) (-12 (|has| *6 (-6 -4383)) (-4 *4 (-362)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-635 *6)) (-5 *1 (-519 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6)))) (-2391 (*1 *2 *3) (-12 (-4 *4 (-362)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-762)) (-5 *1 (-519 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6)))) (-3833 (*1 *2 *3) (-12 (-4 *4 (-362)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-762)) (-5 *1 (-519 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6)))) (-2404 (*1 *2 *2) (-12 (-4 *3 (-362)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-519 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5)))))
+(-10 -7 (-15 -2404 (|#4| |#4|)) (-15 -3833 ((-762) |#4|)) (-15 -2391 ((-762) |#4|)) (IF (|has| |#3| (-6 -4383)) (-15 -2379 ((-635 |#3|) |#4|)) |%noBranch|) (-15 -3824 (|#1| |#4|)) (-15 -2489 (|#4| |#4|)) (-15 -4141 ((-3 |#4| "failed") |#4|)))
+((-2404 ((|#8| |#4|) 20)) (-2379 (((-635 |#3|) |#4|) 29 (|has| |#7| (-6 -4383)))) (-4141 (((-3 |#8| "failed") |#4|) 23)))
+(((-520 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2404 (|#8| |#4|)) (-15 -4141 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4383)) (-15 -2379 ((-635 |#3|) |#4|)) |%noBranch|)) (-550) (-372 |#1|) (-372 |#1|) (-677 |#1| |#2| |#3|) (-982 |#1|) (-372 |#5|) (-372 |#5|) (-677 |#5| |#6| |#7|)) (T -520))
+((-2379 (*1 *2 *3) (-12 (|has| *9 (-6 -4383)) (-4 *4 (-550)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-4 *7 (-982 *4)) (-4 *8 (-372 *7)) (-4 *9 (-372 *7)) (-5 *2 (-635 *6)) (-5 *1 (-520 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-677 *4 *5 *6)) (-4 *10 (-677 *7 *8 *9)))) (-4141 (*1 *2 *3) (|partial| -12 (-4 *4 (-550)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-4 *7 (-982 *4)) (-4 *2 (-677 *7 *8 *9)) (-5 *1 (-520 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-677 *4 *5 *6)) (-4 *8 (-372 *7)) (-4 *9 (-372 *7)))) (-2404 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-4 *7 (-982 *4)) (-4 *2 (-677 *7 *8 *9)) (-5 *1 (-520 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-677 *4 *5 *6)) (-4 *8 (-372 *7)) (-4 *9 (-372 *7)))))
+(-10 -7 (-15 -2404 (|#8| |#4|)) (-15 -4141 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4383)) (-15 -2379 ((-635 |#3|) |#4|)) |%noBranch|))
+((-3207 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2370 (($ (-762) (-762)) NIL)) (-2581 (($ $ $) NIL)) (-3453 (($ (-594 |#1| |#3|)) NIL) (($ $) NIL)) (-2500 (((-112) $) NIL)) (-2567 (($ $ (-558) (-558)) 12)) (-2552 (($ $ (-558) (-558)) NIL)) (-2541 (($ $ (-558) (-558) (-558) (-558)) NIL)) (-2603 (($ $) NIL)) (-2519 (((-112) $) NIL)) (-3026 (((-112) $ (-762)) NIL)) (-2528 (($ $ (-558) (-558) $) NIL)) (-1532 ((|#1| $ (-558) (-558) |#1|) NIL) (($ $ (-635 (-558)) (-635 (-558)) $) NIL)) (-1671 (($ $ (-558) (-594 |#1| |#3|)) NIL)) (-1661 (($ $ (-558) (-594 |#1| |#2|)) NIL)) (-3867 (($ (-762) |#1|) NIL)) (-1816 (($) NIL T CONST)) (-2404 (($ $) 21 (|has| |#1| (-306)))) (-2427 (((-594 |#1| |#3|) $ (-558)) NIL)) (-3833 (((-762) $) 24 (|has| |#1| (-550)))) (-1817 ((|#1| $ (-558) (-558) |#1|) NIL)) (-1746 ((|#1| $ (-558) (-558)) NIL)) (-2240 (((-635 |#1|) $) NIL)) (-2391 (((-762) $) 26 (|has| |#1| (-550)))) (-2379 (((-635 (-594 |#1| |#2|)) $) 29 (|has| |#1| (-550)))) (-1967 (((-762) $) NIL)) (-3315 (($ (-762) (-762) |#1|) NIL)) (-1979 (((-762) $) NIL)) (-2986 (((-112) $ (-762)) NIL)) (-3815 ((|#1| $) 19 (|has| |#1| (-6 (-4384 "*"))))) (-2472 (((-558) $) 10)) (-2448 (((-558) $) NIL)) (-2122 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-2460 (((-558) $) 11)) (-2438 (((-558) $) NIL)) (-3181 (($ (-635 (-635 |#1|))) NIL)) (-1807 (($ (-1 |#1| |#1|) $) NIL)) (-3167 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4178 (((-635 (-635 |#1|)) $) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL (|has| |#1| (-1087)))) (-4141 (((-3 $ "failed") $) 33 (|has| |#1| (-362)))) (-2593 (($ $ $) NIL)) (-2975 (((-1107) $) NIL (|has| |#1| (-1087)))) (-3880 (($ $ |#1|) NIL)) (-3983 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550)))) (-3266 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3375 (((-112) $) NIL)) (-2083 (($) NIL)) (-2195 ((|#1| $ (-558) (-558)) NIL) ((|#1| $ (-558) (-558) |#1|) NIL) (($ $ (-635 (-558)) (-635 (-558))) NIL)) (-3858 (($ (-635 |#1|)) NIL) (($ (-635 $)) NIL)) (-2509 (((-112) $) NIL)) (-3824 ((|#1| $) 17 (|has| |#1| (-6 (-4384 "*"))))) (-2988 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1553 (($ $) NIL)) (-2415 (((-594 |#1| |#2|) $ (-558)) NIL)) (-3220 (($ (-594 |#1| |#2|)) NIL) (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-3277 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-2486 (((-112) $) NIL)) (-1683 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1810 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1798 (($ $ $) NIL) (($ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-762)) NIL) (($ $ (-558)) NIL (|has| |#1| (-362)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-558) $) NIL) (((-594 |#1| |#2|) $ (-594 |#1| |#2|)) NIL) (((-594 |#1| |#3|) (-594 |#1| |#3|) $) NIL)) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-521 |#1| |#2| |#3|) (-677 |#1| (-594 |#1| |#3|) (-594 |#1| |#2|)) (-1039) (-558) (-558)) (T -521))
+NIL
+(-677 |#1| (-594 |#1| |#3|) (-594 |#1| |#2|))
+((-3207 (((-112) $ $) NIL)) (-4310 (((-1145) $) NIL)) (-2503 (((-635 (-1199)) $) 13)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 20) (($ (-1168)) NIL) (((-1168) $) NIL) (($ (-635 (-1199))) 11)) (-1683 (((-112) $ $) NIL)))
+(((-522) (-13 (-1070) (-10 -8 (-15 -3220 ($ (-635 (-1199)))) (-15 -2503 ((-635 (-1199)) $))))) (T -522))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-635 (-1199))) (-5 *1 (-522)))) (-2503 (*1 *2 *1) (-12 (-5 *2 (-635 (-1199))) (-5 *1 (-522)))))
+(-13 (-1070) (-10 -8 (-15 -3220 ($ (-635 (-1199)))) (-15 -2503 ((-635 (-1199)) $))))
+((-3207 (((-112) $ $) NIL)) (-2512 (((-1122) $) 14)) (-4310 (((-1145) $) NIL)) (-2523 (((-1163) $) 11)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 21) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1683 (((-112) $ $) NIL)))
+(((-523) (-13 (-1070) (-10 -8 (-15 -2523 ((-1163) $)) (-15 -2512 ((-1122) $))))) (T -523))
+((-2523 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-523)))) (-2512 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-523)))))
+(-13 (-1070) (-10 -8 (-15 -2523 ((-1163) $)) (-15 -2512 ((-1122) $))))
+((-2535 (((-1107) $ (-128)) 15)))
+(((-524 |#1|) (-10 -8 (-15 -2535 ((-1107) |#1| (-128)))) (-525)) (T -524))
+NIL
+(-10 -8 (-15 -2535 ((-1107) |#1| (-128))))
+((-2535 (((-1107) $ (-128)) 7)) (-2547 (((-1107) $) 8)) (-2436 (($ $) 6)))
+(((-525) (-139)) (T -525))
+((-2547 (*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-1107)))) (-2535 (*1 *2 *1 *3) (-12 (-4 *1 (-525)) (-5 *3 (-128)) (-5 *2 (-1107)))))
+(-13 (-172) (-10 -8 (-15 -2547 ((-1107) $)) (-15 -2535 ((-1107) $ (-128)))))
+(((-172) . T))
+((-2585 (((-1159 |#1|) (-762)) 75)) (-1635 (((-1246 |#1|) (-1246 |#1|) (-911)) 68)) (-2559 (((-1251) (-1246 (-635 (-2 (|:| -2925 |#1|) (|:| -2851 (-1107))))) |#1|) 83)) (-2608 (((-1246 |#1|) (-1246 |#1|) (-762)) 36)) (-2424 (((-1246 |#1|) (-911)) 70)) (-2628 (((-1246 |#1|) (-1246 |#1|) (-558)) 24)) (-2574 (((-1159 |#1|) (-1246 |#1|)) 76)) (-2670 (((-1246 |#1|) (-911)) 94)) (-2649 (((-112) (-1246 |#1|)) 79)) (-2615 (((-1246 |#1|) (-1246 |#1|) (-911)) 61)) (-2681 (((-1159 |#1|) (-1246 |#1|)) 88)) (-2637 (((-911) (-1246 |#1|)) 58)) (-2418 (((-1246 |#1|) (-1246 |#1|)) 30)) (-2851 (((-1246 |#1|) (-911) (-911)) 96)) (-2618 (((-1246 |#1|) (-1246 |#1|) (-1107) (-1107)) 23)) (-2598 (((-1246 |#1|) (-1246 |#1|) (-762) (-1107)) 37)) (-2660 (((-1246 (-1246 |#1|)) (-911)) 93)) (-1810 (((-1246 |#1|) (-1246 |#1|) (-1246 |#1|)) 80)) (** (((-1246 |#1|) (-1246 |#1|) (-558)) 43)) (* (((-1246 |#1|) (-1246 |#1|) (-1246 |#1|)) 25)))
+(((-526 |#1|) (-10 -7 (-15 -2559 ((-1251) (-1246 (-635 (-2 (|:| -2925 |#1|) (|:| -2851 (-1107))))) |#1|)) (-15 -2424 ((-1246 |#1|) (-911))) (-15 -2851 ((-1246 |#1|) (-911) (-911))) (-15 -2574 ((-1159 |#1|) (-1246 |#1|))) (-15 -2585 ((-1159 |#1|) (-762))) (-15 -2598 ((-1246 |#1|) (-1246 |#1|) (-762) (-1107))) (-15 -2608 ((-1246 |#1|) (-1246 |#1|) (-762))) (-15 -2618 ((-1246 |#1|) (-1246 |#1|) (-1107) (-1107))) (-15 -2628 ((-1246 |#1|) (-1246 |#1|) (-558))) (-15 ** ((-1246 |#1|) (-1246 |#1|) (-558))) (-15 * ((-1246 |#1|) (-1246 |#1|) (-1246 |#1|))) (-15 -1810 ((-1246 |#1|) (-1246 |#1|) (-1246 |#1|))) (-15 -2615 ((-1246 |#1|) (-1246 |#1|) (-911))) (-15 -1635 ((-1246 |#1|) (-1246 |#1|) (-911))) (-15 -2418 ((-1246 |#1|) (-1246 |#1|))) (-15 -2637 ((-911) (-1246 |#1|))) (-15 -2649 ((-112) (-1246 |#1|))) (-15 -2660 ((-1246 (-1246 |#1|)) (-911))) (-15 -2670 ((-1246 |#1|) (-911))) (-15 -2681 ((-1159 |#1|) (-1246 |#1|)))) (-348)) (T -526))
+((-2681 (*1 *2 *3) (-12 (-5 *3 (-1246 *4)) (-4 *4 (-348)) (-5 *2 (-1159 *4)) (-5 *1 (-526 *4)))) (-2670 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1246 *4)) (-5 *1 (-526 *4)) (-4 *4 (-348)))) (-2660 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1246 (-1246 *4))) (-5 *1 (-526 *4)) (-4 *4 (-348)))) (-2649 (*1 *2 *3) (-12 (-5 *3 (-1246 *4)) (-4 *4 (-348)) (-5 *2 (-112)) (-5 *1 (-526 *4)))) (-2637 (*1 *2 *3) (-12 (-5 *3 (-1246 *4)) (-4 *4 (-348)) (-5 *2 (-911)) (-5 *1 (-526 *4)))) (-2418 (*1 *2 *2) (-12 (-5 *2 (-1246 *3)) (-4 *3 (-348)) (-5 *1 (-526 *3)))) (-1635 (*1 *2 *2 *3) (-12 (-5 *2 (-1246 *4)) (-5 *3 (-911)) (-4 *4 (-348)) (-5 *1 (-526 *4)))) (-2615 (*1 *2 *2 *3) (-12 (-5 *2 (-1246 *4)) (-5 *3 (-911)) (-4 *4 (-348)) (-5 *1 (-526 *4)))) (-1810 (*1 *2 *2 *2) (-12 (-5 *2 (-1246 *3)) (-4 *3 (-348)) (-5 *1 (-526 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1246 *3)) (-4 *3 (-348)) (-5 *1 (-526 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1246 *4)) (-5 *3 (-558)) (-4 *4 (-348)) (-5 *1 (-526 *4)))) (-2628 (*1 *2 *2 *3) (-12 (-5 *2 (-1246 *4)) (-5 *3 (-558)) (-4 *4 (-348)) (-5 *1 (-526 *4)))) (-2618 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1246 *4)) (-5 *3 (-1107)) (-4 *4 (-348)) (-5 *1 (-526 *4)))) (-2608 (*1 *2 *2 *3) (-12 (-5 *2 (-1246 *4)) (-5 *3 (-762)) (-4 *4 (-348)) (-5 *1 (-526 *4)))) (-2598 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1246 *5)) (-5 *3 (-762)) (-5 *4 (-1107)) (-4 *5 (-348)) (-5 *1 (-526 *5)))) (-2585 (*1 *2 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1159 *4)) (-5 *1 (-526 *4)) (-4 *4 (-348)))) (-2574 (*1 *2 *3) (-12 (-5 *3 (-1246 *4)) (-4 *4 (-348)) (-5 *2 (-1159 *4)) (-5 *1 (-526 *4)))) (-2851 (*1 *2 *3 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1246 *4)) (-5 *1 (-526 *4)) (-4 *4 (-348)))) (-2424 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1246 *4)) (-5 *1 (-526 *4)) (-4 *4 (-348)))) (-2559 (*1 *2 *3 *4) (-12 (-5 *3 (-1246 (-635 (-2 (|:| -2925 *4) (|:| -2851 (-1107)))))) (-4 *4 (-348)) (-5 *2 (-1251)) (-5 *1 (-526 *4)))))
+(-10 -7 (-15 -2559 ((-1251) (-1246 (-635 (-2 (|:| -2925 |#1|) (|:| -2851 (-1107))))) |#1|)) (-15 -2424 ((-1246 |#1|) (-911))) (-15 -2851 ((-1246 |#1|) (-911) (-911))) (-15 -2574 ((-1159 |#1|) (-1246 |#1|))) (-15 -2585 ((-1159 |#1|) (-762))) (-15 -2598 ((-1246 |#1|) (-1246 |#1|) (-762) (-1107))) (-15 -2608 ((-1246 |#1|) (-1246 |#1|) (-762))) (-15 -2618 ((-1246 |#1|) (-1246 |#1|) (-1107) (-1107))) (-15 -2628 ((-1246 |#1|) (-1246 |#1|) (-558))) (-15 ** ((-1246 |#1|) (-1246 |#1|) (-558))) (-15 * ((-1246 |#1|) (-1246 |#1|) (-1246 |#1|))) (-15 -1810 ((-1246 |#1|) (-1246 |#1|) (-1246 |#1|))) (-15 -2615 ((-1246 |#1|) (-1246 |#1|) (-911))) (-15 -1635 ((-1246 |#1|) (-1246 |#1|) (-911))) (-15 -2418 ((-1246 |#1|) (-1246 |#1|))) (-15 -2637 ((-911) (-1246 |#1|))) (-15 -2649 ((-112) (-1246 |#1|))) (-15 -2660 ((-1246 (-1246 |#1|)) (-911))) (-15 -2670 ((-1246 |#1|) (-911))) (-15 -2681 ((-1159 |#1|) (-1246 |#1|))))
+((-2535 (((-1107) $ (-128)) NIL)) (-2547 (((-1107) $) 20)) (-2691 (((-1107) $ (-1107)) 24)) (-1517 (((-1107) $) 23)) (-3744 (((-112) $) 18)) (-2714 (($ (-387)) 12) (($ (-1145)) 14)) (-2703 (((-112) $) 21)) (-3220 (((-853) $) 27)) (-2436 (($ $) 22)))
+(((-527) (-13 (-525) (-605 (-853)) (-10 -8 (-15 -2714 ($ (-387))) (-15 -2714 ($ (-1145))) (-15 -2703 ((-112) $)) (-15 -3744 ((-112) $)) (-15 -1517 ((-1107) $)) (-15 -2691 ((-1107) $ (-1107)))))) (T -527))
+((-2714 (*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-527)))) (-2714 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-527)))) (-2703 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-527)))) (-3744 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-527)))) (-1517 (*1 *2 *1) (-12 (-5 *2 (-1107)) (-5 *1 (-527)))) (-2691 (*1 *2 *1 *2) (-12 (-5 *2 (-1107)) (-5 *1 (-527)))))
+(-13 (-525) (-605 (-853)) (-10 -8 (-15 -2714 ($ (-387))) (-15 -2714 ($ (-1145))) (-15 -2703 ((-112) $)) (-15 -3744 ((-112) $)) (-15 -1517 ((-1107) $)) (-15 -2691 ((-1107) $ (-1107)))))
+((-4276 (((-1 |#1| |#1|) |#1|) 11)) (-2725 (((-1 |#1| |#1|)) 10)))
+(((-528 |#1|) (-10 -7 (-15 -2725 ((-1 |#1| |#1|))) (-15 -4276 ((-1 |#1| |#1|) |#1|))) (-13 (-717) (-25))) (T -528))
+((-4276 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-528 *3)) (-4 *3 (-13 (-717) (-25))))) (-2725 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-528 *3)) (-4 *3 (-13 (-717) (-25))))))
+(-10 -7 (-15 -2725 ((-1 |#1| |#1|))) (-15 -4276 ((-1 |#1| |#1|) |#1|)))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2738 (($ $ $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-1816 (($) NIL T CONST)) (-2490 (($ $) NIL)) (-2648 (($ (-762) |#1|) NIL)) (-3910 (($ $ $) NIL)) (-3542 (($ $ $) NIL)) (-3167 (($ (-1 (-762) (-762)) $) NIL)) (-2408 ((|#1| $) NIL)) (-2463 (((-762) $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 20)) (-2131 (($) NIL T CONST)) (-1747 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1683 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1784 (($ $ $) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL)))
+(((-529 |#1|) (-13 (-784) (-507 (-762) |#1|)) (-841)) (T -529))
+NIL
+(-13 (-784) (-507 (-762) |#1|))
+((-2745 (((-635 |#2|) (-1159 |#1|) |#3|) 83)) (-2758 (((-635 (-2 (|:| |outval| |#2|) (|:| |outmult| (-558)) (|:| |outvect| (-635 (-679 |#2|))))) (-679 |#1|) |#3| (-1 (-417 (-1159 |#1|)) (-1159 |#1|))) 100)) (-2736 (((-1159 |#1|) (-679 |#1|)) 95)))
+(((-530 |#1| |#2| |#3|) (-10 -7 (-15 -2736 ((-1159 |#1|) (-679 |#1|))) (-15 -2745 ((-635 |#2|) (-1159 |#1|) |#3|)) (-15 -2758 ((-635 (-2 (|:| |outval| |#2|) (|:| |outmult| (-558)) (|:| |outvect| (-635 (-679 |#2|))))) (-679 |#1|) |#3| (-1 (-417 (-1159 |#1|)) (-1159 |#1|))))) (-362) (-362) (-13 (-362) (-839))) (T -530))
+((-2758 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-679 *6)) (-5 *5 (-1 (-417 (-1159 *6)) (-1159 *6))) (-4 *6 (-362)) (-5 *2 (-635 (-2 (|:| |outval| *7) (|:| |outmult| (-558)) (|:| |outvect| (-635 (-679 *7)))))) (-5 *1 (-530 *6 *7 *4)) (-4 *7 (-362)) (-4 *4 (-13 (-362) (-839))))) (-2745 (*1 *2 *3 *4) (-12 (-5 *3 (-1159 *5)) (-4 *5 (-362)) (-5 *2 (-635 *6)) (-5 *1 (-530 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-839))))) (-2736 (*1 *2 *3) (-12 (-5 *3 (-679 *4)) (-4 *4 (-362)) (-5 *2 (-1159 *4)) (-5 *1 (-530 *4 *5 *6)) (-4 *5 (-362)) (-4 *6 (-13 (-362) (-839))))))
+(-10 -7 (-15 -2736 ((-1159 |#1|) (-679 |#1|))) (-15 -2745 ((-635 |#2|) (-1159 |#1|) |#3|)) (-15 -2758 ((-635 (-2 (|:| |outval| |#2|) (|:| |outmult| (-558)) (|:| |outvect| (-635 (-679 |#2|))))) (-679 |#1|) |#3| (-1 (-417 (-1159 |#1|)) (-1159 |#1|)))))
+((-3725 (((-1107) $ (-128)) 25)) (-3735 (((-1107) $ (-129)) 27)) (-2535 (((-1107) $ (-128)) 23)) (-2547 (((-1107) $) 24)) (-3479 (((-112) $) 17)) (-2279 (((-3 $ "failed") (-573) (-944)) 10) (((-3 $ "failed") (-489) (-944)) 13)) (-3220 (((-853) $) 35)) (-2436 (($ $) 22)))
+(((-531) (-13 (-758 (-573)) (-605 (-853)) (-10 -8 (-15 -2279 ((-3 $ "failed") (-489) (-944)))))) (T -531))
+((-2279 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-489)) (-5 *3 (-944)) (-5 *1 (-531)))))
+(-13 (-758 (-573)) (-605 (-853)) (-10 -8 (-15 -2279 ((-3 $ "failed") (-489) (-944)))))
+((-1835 (((-834 (-558))) 12)) (-1847 (((-834 (-558))) 14)) (-1917 (((-824 (-558))) 9)))
+(((-532) (-10 -7 (-15 -1917 ((-824 (-558)))) (-15 -1835 ((-834 (-558)))) (-15 -1847 ((-834 (-558)))))) (T -532))
+((-1847 (*1 *2) (-12 (-5 *2 (-834 (-558))) (-5 *1 (-532)))) (-1835 (*1 *2) (-12 (-5 *2 (-834 (-558))) (-5 *1 (-532)))) (-1917 (*1 *2) (-12 (-5 *2 (-824 (-558))) (-5 *1 (-532)))))
+(-10 -7 (-15 -1917 ((-824 (-558)))) (-15 -1835 ((-834 (-558)))) (-15 -1847 ((-834 (-558)))))
+((-2796 (((-534) (-1163)) 15)) (-3235 ((|#1| (-534)) 20)))
+(((-533 |#1|) (-10 -7 (-15 -2796 ((-534) (-1163))) (-15 -3235 (|#1| (-534)))) (-1200)) (T -533))
+((-3235 (*1 *2 *3) (-12 (-5 *3 (-534)) (-5 *1 (-533 *2)) (-4 *2 (-1200)))) (-2796 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-534)) (-5 *1 (-533 *4)) (-4 *4 (-1200)))))
+(-10 -7 (-15 -2796 ((-534) (-1163))) (-15 -3235 (|#1| (-534))))
+((-3207 (((-112) $ $) NIL)) (-2779 (((-1145) $) 47)) (-1331 (((-112) $) 43)) (-3523 (((-1163) $) 44)) (-1343 (((-112) $) 41)) (-3994 (((-1145) $) 42)) (-2768 (($ (-1145)) 48)) (-1368 (((-112) $) NIL)) (-1390 (((-112) $) NIL)) (-1355 (((-112) $) NIL)) (-4310 (((-1145) $) NIL)) (-2545 (($ $ (-635 (-1163))) 20)) (-3235 (((-52) $) 22)) (-1318 (((-112) $) NIL)) (-3548 (((-558) $) NIL)) (-2975 (((-1107) $) NIL)) (-2529 (($ $ (-635 (-1163)) (-1163)) 60)) (-1306 (((-112) $) NIL)) (-2244 (((-224) $) NIL)) (-1868 (($ $) 38)) (-1565 (((-853) $) NIL)) (-2477 (((-112) $ $) NIL)) (-2195 (($ $ (-558)) NIL) (($ $ (-635 (-558))) NIL)) (-2607 (((-635 $) $) 28)) (-2225 (((-1163) (-635 $)) 49)) (-3224 (($ (-1145)) NIL) (($ (-1163)) 18) (($ (-558)) 8) (($ (-224)) 25) (($ (-853)) NIL) (($ (-635 $)) 56) (((-1091) $) 11) (($ (-1091)) 12)) (-2613 (((-1163) (-1163) (-635 $)) 52)) (-3220 (((-853) $) 46)) (-2214 (($ $) 51)) (-2203 (($ $) 50)) (-2787 (($ $ (-635 $)) 57)) (-1379 (((-112) $) 27)) (-2131 (($) 9 T CONST)) (-2142 (($) 10 T CONST)) (-1683 (((-112) $ $) 61)) (-1810 (($ $ $) 66)) (-1784 (($ $ $) 62)) (** (($ $ (-762)) 65) (($ $ (-558)) 64)) (* (($ $ $) 63)) (-2755 (((-558) $) NIL)))
+(((-534) (-13 (-1090 (-1145) (-1163) (-558) (-224) (-853)) (-606 (-1091)) (-10 -8 (-15 -3235 ((-52) $)) (-15 -3224 ($ (-1091))) (-15 -2787 ($ $ (-635 $))) (-15 -2529 ($ $ (-635 (-1163)) (-1163))) (-15 -2545 ($ $ (-635 (-1163)))) (-15 -1784 ($ $ $)) (-15 * ($ $ $)) (-15 -1810 ($ $ $)) (-15 ** ($ $ (-762))) (-15 ** ($ $ (-558))) (-15 0 ($) -3707) (-15 1 ($) -3707) (-15 -1868 ($ $)) (-15 -2779 ((-1145) $)) (-15 -2768 ($ (-1145))) (-15 -2225 ((-1163) (-635 $))) (-15 -2613 ((-1163) (-1163) (-635 $)))))) (T -534))
+((-3235 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-534)))) (-3224 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-534)))) (-2787 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-534))) (-5 *1 (-534)))) (-2529 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-1163))) (-5 *3 (-1163)) (-5 *1 (-534)))) (-2545 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-1163))) (-5 *1 (-534)))) (-1784 (*1 *1 *1 *1) (-5 *1 (-534))) (* (*1 *1 *1 *1) (-5 *1 (-534))) (-1810 (*1 *1 *1 *1) (-5 *1 (-534))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-534)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-534)))) (-2131 (*1 *1) (-5 *1 (-534))) (-2142 (*1 *1) (-5 *1 (-534))) (-1868 (*1 *1 *1) (-5 *1 (-534))) (-2779 (*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-534)))) (-2768 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-534)))) (-2225 (*1 *2 *3) (-12 (-5 *3 (-635 (-534))) (-5 *2 (-1163)) (-5 *1 (-534)))) (-2613 (*1 *2 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-635 (-534))) (-5 *1 (-534)))))
+(-13 (-1090 (-1145) (-1163) (-558) (-224) (-853)) (-606 (-1091)) (-10 -8 (-15 -3235 ((-52) $)) (-15 -3224 ($ (-1091))) (-15 -2787 ($ $ (-635 $))) (-15 -2529 ($ $ (-635 (-1163)) (-1163))) (-15 -2545 ($ $ (-635 (-1163)))) (-15 -1784 ($ $ $)) (-15 * ($ $ $)) (-15 -1810 ($ $ $)) (-15 ** ($ $ (-762))) (-15 ** ($ $ (-558))) (-15 (-2131) ($) -3707) (-15 (-2142) ($) -3707) (-15 -1868 ($ $)) (-15 -2779 ((-1145) $)) (-15 -2768 ($ (-1145))) (-15 -2225 ((-1163) (-635 $))) (-15 -2613 ((-1163) (-1163) (-635 $)))))
+((-2496 ((|#2| |#2|) 17)) (-2469 ((|#2| |#2|) 13)) (-2506 ((|#2| |#2| (-558) (-558)) 20)) (-2482 ((|#2| |#2|) 15)))
+(((-535 |#1| |#2|) (-10 -7 (-15 -2469 (|#2| |#2|)) (-15 -2482 (|#2| |#2|)) (-15 -2496 (|#2| |#2|)) (-15 -2506 (|#2| |#2| (-558) (-558)))) (-13 (-550) (-146)) (-1237 |#1|)) (T -535))
+((-2506 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-558)) (-4 *4 (-13 (-550) (-146))) (-5 *1 (-535 *4 *2)) (-4 *2 (-1237 *4)))) (-2496 (*1 *2 *2) (-12 (-4 *3 (-13 (-550) (-146))) (-5 *1 (-535 *3 *2)) (-4 *2 (-1237 *3)))) (-2482 (*1 *2 *2) (-12 (-4 *3 (-13 (-550) (-146))) (-5 *1 (-535 *3 *2)) (-4 *2 (-1237 *3)))) (-2469 (*1 *2 *2) (-12 (-4 *3 (-13 (-550) (-146))) (-5 *1 (-535 *3 *2)) (-4 *2 (-1237 *3)))))
+(-10 -7 (-15 -2469 (|#2| |#2|)) (-15 -2482 (|#2| |#2|)) (-15 -2496 (|#2| |#2|)) (-15 -2506 (|#2| |#2| (-558) (-558))))
+((-1585 (((-635 (-293 (-942 |#2|))) (-635 |#2|) (-635 (-1163))) 32)) (-2806 (((-635 |#2|) (-942 |#1|) |#3|) 53) (((-635 |#2|) (-1159 |#1|) |#3|) 52)) (-1574 (((-635 (-635 |#2|)) (-635 (-942 |#1|)) (-635 (-942 |#1|)) (-635 (-1163)) |#3|) 88)))
+(((-536 |#1| |#2| |#3|) (-10 -7 (-15 -2806 ((-635 |#2|) (-1159 |#1|) |#3|)) (-15 -2806 ((-635 |#2|) (-942 |#1|) |#3|)) (-15 -1574 ((-635 (-635 |#2|)) (-635 (-942 |#1|)) (-635 (-942 |#1|)) (-635 (-1163)) |#3|)) (-15 -1585 ((-635 (-293 (-942 |#2|))) (-635 |#2|) (-635 (-1163))))) (-450) (-362) (-13 (-362) (-839))) (T -536))
+((-1585 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *6)) (-5 *4 (-635 (-1163))) (-4 *6 (-362)) (-5 *2 (-635 (-293 (-942 *6)))) (-5 *1 (-536 *5 *6 *7)) (-4 *5 (-450)) (-4 *7 (-13 (-362) (-839))))) (-1574 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-635 (-942 *6))) (-5 *4 (-635 (-1163))) (-4 *6 (-450)) (-5 *2 (-635 (-635 *7))) (-5 *1 (-536 *6 *7 *5)) (-4 *7 (-362)) (-4 *5 (-13 (-362) (-839))))) (-2806 (*1 *2 *3 *4) (-12 (-5 *3 (-942 *5)) (-4 *5 (-450)) (-5 *2 (-635 *6)) (-5 *1 (-536 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-839))))) (-2806 (*1 *2 *3 *4) (-12 (-5 *3 (-1159 *5)) (-4 *5 (-450)) (-5 *2 (-635 *6)) (-5 *1 (-536 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-839))))))
+(-10 -7 (-15 -2806 ((-635 |#2|) (-1159 |#1|) |#3|)) (-15 -2806 ((-635 |#2|) (-942 |#1|) |#3|)) (-15 -1574 ((-635 (-635 |#2|)) (-635 (-942 |#1|)) (-635 (-942 |#1|)) (-635 (-1163)) |#3|)) (-15 -1585 ((-635 (-293 (-942 |#2|))) (-635 |#2|) (-635 (-1163)))))
+((-1616 ((|#2| |#2| |#1|) 17)) (-1595 ((|#2| (-635 |#2|)) 26)) (-1603 ((|#2| (-635 |#2|)) 45)))
+(((-537 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1595 (|#2| (-635 |#2|))) (-15 -1603 (|#2| (-635 |#2|))) (-15 -1616 (|#2| |#2| |#1|))) (-306) (-1222 |#1|) |#1| (-1 |#1| |#1| (-762))) (T -537))
+((-1616 (*1 *2 *2 *3) (-12 (-4 *3 (-306)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-762))) (-5 *1 (-537 *3 *2 *4 *5)) (-4 *2 (-1222 *3)))) (-1603 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-1222 *4)) (-5 *1 (-537 *4 *2 *5 *6)) (-4 *4 (-306)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-762))))) (-1595 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-1222 *4)) (-5 *1 (-537 *4 *2 *5 *6)) (-4 *4 (-306)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-762))))))
+(-10 -7 (-15 -1595 (|#2| (-635 |#2|))) (-15 -1603 (|#2| (-635 |#2|))) (-15 -1616 (|#2| |#2| |#1|)))
+((-2522 (((-417 (-1159 |#4|)) (-1159 |#4|) (-1 (-417 (-1159 |#3|)) (-1159 |#3|))) 79) (((-417 |#4|) |#4| (-1 (-417 (-1159 |#3|)) (-1159 |#3|))) 167)))
+(((-538 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2522 ((-417 |#4|) |#4| (-1 (-417 (-1159 |#3|)) (-1159 |#3|)))) (-15 -2522 ((-417 (-1159 |#4|)) (-1159 |#4|) (-1 (-417 (-1159 |#3|)) (-1159 |#3|))))) (-841) (-784) (-13 (-306) (-146)) (-939 |#3| |#2| |#1|)) (T -538))
+((-2522 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-417 (-1159 *7)) (-1159 *7))) (-4 *7 (-13 (-306) (-146))) (-4 *5 (-841)) (-4 *6 (-784)) (-4 *8 (-939 *7 *6 *5)) (-5 *2 (-417 (-1159 *8))) (-5 *1 (-538 *5 *6 *7 *8)) (-5 *3 (-1159 *8)))) (-2522 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-417 (-1159 *7)) (-1159 *7))) (-4 *7 (-13 (-306) (-146))) (-4 *5 (-841)) (-4 *6 (-784)) (-5 *2 (-417 *3)) (-5 *1 (-538 *5 *6 *7 *3)) (-4 *3 (-939 *7 *6 *5)))))
+(-10 -7 (-15 -2522 ((-417 |#4|) |#4| (-1 (-417 (-1159 |#3|)) (-1159 |#3|)))) (-15 -2522 ((-417 (-1159 |#4|)) (-1159 |#4|) (-1 (-417 (-1159 |#3|)) (-1159 |#3|)))))
+((-2496 ((|#4| |#4|) 73)) (-2469 ((|#4| |#4|) 69)) (-2506 ((|#4| |#4| (-558) (-558)) 75)) (-2482 ((|#4| |#4|) 71)))
+(((-539 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2469 (|#4| |#4|)) (-15 -2482 (|#4| |#4|)) (-15 -2496 (|#4| |#4|)) (-15 -2506 (|#4| |#4| (-558) (-558)))) (-13 (-362) (-367) (-606 (-558))) (-1222 |#1|) (-715 |#1| |#2|) (-1237 |#3|)) (T -539))
+((-2506 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-558)) (-4 *4 (-13 (-362) (-367) (-606 *3))) (-4 *5 (-1222 *4)) (-4 *6 (-715 *4 *5)) (-5 *1 (-539 *4 *5 *6 *2)) (-4 *2 (-1237 *6)))) (-2496 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-606 (-558)))) (-4 *4 (-1222 *3)) (-4 *5 (-715 *3 *4)) (-5 *1 (-539 *3 *4 *5 *2)) (-4 *2 (-1237 *5)))) (-2482 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-606 (-558)))) (-4 *4 (-1222 *3)) (-4 *5 (-715 *3 *4)) (-5 *1 (-539 *3 *4 *5 *2)) (-4 *2 (-1237 *5)))) (-2469 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-606 (-558)))) (-4 *4 (-1222 *3)) (-4 *5 (-715 *3 *4)) (-5 *1 (-539 *3 *4 *5 *2)) (-4 *2 (-1237 *5)))))
+(-10 -7 (-15 -2469 (|#4| |#4|)) (-15 -2482 (|#4| |#4|)) (-15 -2496 (|#4| |#4|)) (-15 -2506 (|#4| |#4| (-558) (-558))))
+((-2496 ((|#2| |#2|) 27)) (-2469 ((|#2| |#2|) 23)) (-2506 ((|#2| |#2| (-558) (-558)) 29)) (-2482 ((|#2| |#2|) 25)))
+(((-540 |#1| |#2|) (-10 -7 (-15 -2469 (|#2| |#2|)) (-15 -2482 (|#2| |#2|)) (-15 -2496 (|#2| |#2|)) (-15 -2506 (|#2| |#2| (-558) (-558)))) (-13 (-362) (-367) (-606 (-558))) (-1237 |#1|)) (T -540))
+((-2506 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-558)) (-4 *4 (-13 (-362) (-367) (-606 *3))) (-5 *1 (-540 *4 *2)) (-4 *2 (-1237 *4)))) (-2496 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-606 (-558)))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1237 *3)))) (-2482 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-606 (-558)))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1237 *3)))) (-2469 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-606 (-558)))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1237 *3)))))
+(-10 -7 (-15 -2469 (|#2| |#2|)) (-15 -2482 (|#2| |#2|)) (-15 -2496 (|#2| |#2|)) (-15 -2506 (|#2| |#2| (-558) (-558))))
+((-1627 (((-3 (-558) "failed") |#2| |#1| (-1 (-3 (-558) "failed") |#1|)) 14) (((-3 (-558) "failed") |#2| |#1| (-558) (-1 (-3 (-558) "failed") |#1|)) 13) (((-3 (-558) "failed") |#2| (-558) (-1 (-3 (-558) "failed") |#1|)) 26)))
+(((-541 |#1| |#2|) (-10 -7 (-15 -1627 ((-3 (-558) "failed") |#2| (-558) (-1 (-3 (-558) "failed") |#1|))) (-15 -1627 ((-3 (-558) "failed") |#2| |#1| (-558) (-1 (-3 (-558) "failed") |#1|))) (-15 -1627 ((-3 (-558) "failed") |#2| |#1| (-1 (-3 (-558) "failed") |#1|)))) (-1039) (-1222 |#1|)) (T -541))
+((-1627 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-558) "failed") *4)) (-4 *4 (-1039)) (-5 *2 (-558)) (-5 *1 (-541 *4 *3)) (-4 *3 (-1222 *4)))) (-1627 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-558) "failed") *4)) (-4 *4 (-1039)) (-5 *2 (-558)) (-5 *1 (-541 *4 *3)) (-4 *3 (-1222 *4)))) (-1627 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-558) "failed") *5)) (-4 *5 (-1039)) (-5 *2 (-558)) (-5 *1 (-541 *5 *3)) (-4 *3 (-1222 *5)))))
+(-10 -7 (-15 -1627 ((-3 (-558) "failed") |#2| (-558) (-1 (-3 (-558) "failed") |#1|))) (-15 -1627 ((-3 (-558) "failed") |#2| |#1| (-558) (-1 (-3 (-558) "failed") |#1|))) (-15 -1627 ((-3 (-558) "failed") |#2| |#1| (-1 (-3 (-558) "failed") |#1|))))
+((-1686 (($ $ $) 78)) (-1380 (((-417 $) $) 46)) (-3069 (((-3 (-558) "failed") $) 58)) (-1863 (((-558) $) 36)) (-3962 (((-3 (-406 (-558)) "failed") $) 73)) (-3951 (((-112) $) 23)) (-3938 (((-406 (-558)) $) 71)) (-3031 (((-112) $) 49)) (-1644 (($ $ $ $) 85)) (-2045 (((-112) $) 15)) (-1387 (($ $ $) 56)) (-2269 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) 68)) (-2457 (((-3 $ "failed") $) 63)) (-1842 (($ $) 22)) (-1637 (($ $ $) 83)) (-1796 (($) 59)) (-1364 (($ $) 52)) (-2522 (((-417 $) $) 44)) (-3458 (((-112) $) 13)) (-3722 (((-762) $) 27)) (-2829 (($ $ (-762)) NIL) (($ $) 10)) (-1553 (($ $) 16)) (-3224 (((-558) $) NIL) (((-534) $) 35) (((-882 (-558)) $) 39) (((-378) $) 30) (((-224) $) 32)) (-2542 (((-762)) 8)) (-1712 (((-112) $ $) 19)) (-2322 (($ $ $) 54)))
+(((-542 |#1|) (-10 -8 (-15 -1637 (|#1| |#1| |#1|)) (-15 -1644 (|#1| |#1| |#1| |#1|)) (-15 -1842 (|#1| |#1|)) (-15 -1553 (|#1| |#1|)) (-15 -3962 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -3938 ((-406 (-558)) |#1|)) (-15 -3951 ((-112) |#1|)) (-15 -1686 (|#1| |#1| |#1|)) (-15 -1712 ((-112) |#1| |#1|)) (-15 -3458 ((-112) |#1|)) (-15 -1796 (|#1|)) (-15 -2457 ((-3 |#1| "failed") |#1|)) (-15 -3224 ((-224) |#1|)) (-15 -3224 ((-378) |#1|)) (-15 -1387 (|#1| |#1| |#1|)) (-15 -1364 (|#1| |#1|)) (-15 -2322 (|#1| |#1| |#1|)) (-15 -2269 ((-879 (-558) |#1|) |#1| (-882 (-558)) (-879 (-558) |#1|))) (-15 -3224 ((-882 (-558)) |#1|)) (-15 -3224 ((-534) |#1|)) (-15 -3069 ((-3 (-558) "failed") |#1|)) (-15 -1863 ((-558) |#1|)) (-15 -3224 ((-558) |#1|)) (-15 -2829 (|#1| |#1|)) (-15 -2829 (|#1| |#1| (-762))) (-15 -2045 ((-112) |#1|)) (-15 -3722 ((-762) |#1|)) (-15 -2522 ((-417 |#1|) |#1|)) (-15 -1380 ((-417 |#1|) |#1|)) (-15 -3031 ((-112) |#1|)) (-15 -2542 ((-762)))) (-543)) (T -542))
+((-2542 (*1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-542 *3)) (-4 *3 (-543)))))
+(-10 -8 (-15 -1637 (|#1| |#1| |#1|)) (-15 -1644 (|#1| |#1| |#1| |#1|)) (-15 -1842 (|#1| |#1|)) (-15 -1553 (|#1| |#1|)) (-15 -3962 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -3938 ((-406 (-558)) |#1|)) (-15 -3951 ((-112) |#1|)) (-15 -1686 (|#1| |#1| |#1|)) (-15 -1712 ((-112) |#1| |#1|)) (-15 -3458 ((-112) |#1|)) (-15 -1796 (|#1|)) (-15 -2457 ((-3 |#1| "failed") |#1|)) (-15 -3224 ((-224) |#1|)) (-15 -3224 ((-378) |#1|)) (-15 -1387 (|#1| |#1| |#1|)) (-15 -1364 (|#1| |#1|)) (-15 -2322 (|#1| |#1| |#1|)) (-15 -2269 ((-879 (-558) |#1|) |#1| (-882 (-558)) (-879 (-558) |#1|))) (-15 -3224 ((-882 (-558)) |#1|)) (-15 -3224 ((-534) |#1|)) (-15 -3069 ((-3 (-558) "failed") |#1|)) (-15 -1863 ((-558) |#1|)) (-15 -3224 ((-558) |#1|)) (-15 -2829 (|#1| |#1|)) (-15 -2829 (|#1| |#1| (-762))) (-15 -2045 ((-112) |#1|)) (-15 -3722 ((-762) |#1|)) (-15 -2522 ((-417 |#1|) |#1|)) (-15 -1380 ((-417 |#1|) |#1|)) (-15 -3031 ((-112) |#1|)) (-15 -2542 ((-762))))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 42)) (-1881 (($ $) 41)) (-1857 (((-112) $) 39)) (-1686 (($ $ $) 85)) (-2089 (((-3 $ "failed") $ $) 19)) (-1663 (($ $ $ $) 74)) (-3465 (($ $) 52)) (-1380 (((-417 $) $) 53)) (-3732 (((-112) $ $) 125)) (-1397 (((-558) $) 114)) (-1672 (($ $ $) 88)) (-1816 (($) 17 T CONST)) (-3069 (((-3 (-558) "failed") $) 106)) (-1863 (((-558) $) 107)) (-4025 (($ $ $) 129)) (-3216 (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) 104) (((-679 (-558)) (-679 $)) 103)) (-2588 (((-3 $ "failed") $) 33)) (-3962 (((-3 (-406 (-558)) "failed") $) 82)) (-3951 (((-112) $) 84)) (-3938 (((-406 (-558)) $) 83)) (-2424 (($) 81) (($ $) 80)) (-4004 (($ $ $) 128)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) 123)) (-3031 (((-112) $) 54)) (-1644 (($ $ $ $) 72)) (-1697 (($ $ $) 86)) (-2045 (((-112) $) 116)) (-1387 (($ $ $) 97)) (-2269 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) 100)) (-2035 (((-112) $) 31)) (-3451 (((-112) $) 92)) (-2457 (((-3 $ "failed") $) 94)) (-2055 (((-112) $) 115)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) 132)) (-1654 (($ $ $ $) 73)) (-3910 (($ $ $) 117)) (-3542 (($ $ $) 118)) (-1842 (($ $) 76)) (-2880 (($ $) 89)) (-2665 (($ $ $) 47) (($ (-635 $)) 46)) (-4310 (((-1145) $) 9)) (-1637 (($ $ $) 71)) (-1796 (($) 93 T CONST)) (-3276 (($ $) 78)) (-2975 (((-1107) $) 10)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) 45)) (-2699 (($ $ $) 49) (($ (-635 $)) 48)) (-1364 (($ $) 98)) (-2522 (((-417 $) $) 51)) (-3713 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) 130)) (-3983 (((-3 $ "failed") $ $) 43)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) 124)) (-3458 (((-112) $) 91)) (-3722 (((-762) $) 126)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 127)) (-2829 (($ $ (-762)) 111) (($ $) 109)) (-3914 (($ $) 77)) (-1553 (($ $) 79)) (-3224 (((-558) $) 108) (((-534) $) 102) (((-882 (-558)) $) 101) (((-378) $) 96) (((-224) $) 95)) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ $) 44) (($ (-558)) 105)) (-2542 (((-762)) 28)) (-1712 (((-112) $ $) 87)) (-2322 (($ $ $) 99)) (-2579 (($) 90)) (-1870 (((-112) $ $) 40)) (-1674 (($ $ $ $) 75)) (-3190 (($ $) 113)) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1866 (($ $ (-762)) 112) (($ $) 110)) (-1747 (((-112) $ $) 120)) (-1720 (((-112) $ $) 121)) (-1683 (((-112) $ $) 6)) (-1731 (((-112) $ $) 119)) (-1705 (((-112) $ $) 122)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24)))
+(((-543) (-139)) (T -543))
+((-3451 (*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112)))) (-3458 (*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112)))) (-2579 (*1 *1) (-4 *1 (-543))) (-2880 (*1 *1 *1) (-4 *1 (-543))) (-1672 (*1 *1 *1 *1) (-4 *1 (-543))) (-1712 (*1 *2 *1 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112)))) (-1697 (*1 *1 *1 *1) (-4 *1 (-543))) (-1686 (*1 *1 *1 *1) (-4 *1 (-543))) (-3951 (*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112)))) (-3938 (*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-406 (-558))))) (-3962 (*1 *2 *1) (|partial| -12 (-4 *1 (-543)) (-5 *2 (-406 (-558))))) (-2424 (*1 *1) (-4 *1 (-543))) (-2424 (*1 *1 *1) (-4 *1 (-543))) (-1553 (*1 *1 *1) (-4 *1 (-543))) (-3276 (*1 *1 *1) (-4 *1 (-543))) (-3914 (*1 *1 *1) (-4 *1 (-543))) (-1842 (*1 *1 *1) (-4 *1 (-543))) (-1674 (*1 *1 *1 *1 *1) (-4 *1 (-543))) (-1663 (*1 *1 *1 *1 *1) (-4 *1 (-543))) (-1654 (*1 *1 *1 *1 *1) (-4 *1 (-543))) (-1644 (*1 *1 *1 *1 *1) (-4 *1 (-543))) (-1637 (*1 *1 *1 *1) (-4 *1 (-543))))
+(-13 (-1204) (-306) (-811) (-232) (-606 (-558)) (-1028 (-558)) (-631 (-558)) (-606 (-534)) (-606 (-882 (-558))) (-876 (-558)) (-142) (-1012) (-146) (-1138) (-10 -8 (-15 -3451 ((-112) $)) (-15 -3458 ((-112) $)) (-6 -4381) (-15 -2579 ($)) (-15 -2880 ($ $)) (-15 -1672 ($ $ $)) (-15 -1712 ((-112) $ $)) (-15 -1697 ($ $ $)) (-15 -1686 ($ $ $)) (-15 -3951 ((-112) $)) (-15 -3938 ((-406 (-558)) $)) (-15 -3962 ((-3 (-406 (-558)) "failed") $)) (-15 -2424 ($)) (-15 -2424 ($ $)) (-15 -1553 ($ $)) (-15 -3276 ($ $)) (-15 -3914 ($ $)) (-15 -1842 ($ $)) (-15 -1674 ($ $ $ $)) (-15 -1663 ($ $ $ $)) (-15 -1654 ($ $ $ $)) (-15 -1644 ($ $ $ $)) (-15 -1637 ($ $ $)) (-6 -4380)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-146) . T) ((-608 (-558)) . T) ((-608 $) . T) ((-605 (-853)) . T) ((-142) . T) ((-171) . T) ((-606 (-224)) . T) ((-606 (-378)) . T) ((-606 (-534)) . T) ((-606 (-558)) . T) ((-606 (-882 (-558))) . T) ((-232) . T) ((-289) . T) ((-306) . T) ((-450) . T) ((-550) . T) ((-638 $) . T) ((-631 (-558)) . T) ((-708 $) . T) ((-717) . T) ((-782) . T) ((-783) . T) ((-785) . T) ((-786) . T) ((-811) . T) ((-839) . T) ((-841) . T) ((-876 (-558)) . T) ((-910) . T) ((-1012) . T) ((-1028 (-558)) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1138) . T) ((-1204) . T))
+((-3207 (((-112) $ $) NIL (-3998 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-3303 (($) NIL) (($ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL)) (-3869 (((-1251) $ |#1| |#1|) NIL (|has| $ (-6 -4383)))) (-3026 (((-112) $ (-762)) NIL)) (-1532 ((|#2| $ |#1| |#2|) NIL)) (-4207 (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382)))) (-4329 (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382)))) (-3083 (((-3 |#2| "failed") |#1| $) NIL)) (-1816 (($) NIL T CONST)) (-2338 (($ $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087))))) (-3395 (($ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL (|has| $ (-6 -4382))) (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (((-3 |#2| "failed") |#1| $) NIL)) (-1539 (($ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382)))) (-3048 (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) NIL (|has| $ (-6 -4382))) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382)))) (-1817 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4383)))) (-1746 ((|#2| $ |#1|) NIL)) (-2240 (((-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (((-635 |#2|) $) NIL (|has| $ (-6 -4382)))) (-2986 (((-112) $ (-762)) NIL)) (-3889 ((|#1| $) NIL (|has| |#1| (-841)))) (-2122 (((-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (((-635 |#2|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#2| (-1087))))) (-3899 ((|#1| $) NIL (|has| |#1| (-841)))) (-1807 (($ (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4383))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL (-3998 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-3848 (((-635 |#1|) $) NIL)) (-3950 (((-112) |#1| $) NIL)) (-1722 (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL)) (-4328 (($ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL)) (-3920 (((-635 |#1|) $) NIL)) (-3929 (((-112) |#1| $) NIL)) (-2975 (((-1107) $) NIL (-3998 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-2305 ((|#2| $) NIL (|has| |#1| (-841)))) (-4307 (((-3 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) "failed") (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL)) (-3880 (($ $ |#2|) NIL (|has| $ (-6 -4383)))) (-3524 (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL)) (-3266 (((-112) (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))))) NIL (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-293 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) NIL (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-635 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3908 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#2| (-1087))))) (-3937 (((-635 |#2|) $) NIL)) (-3375 (((-112) $) NIL)) (-2083 (($) NIL)) (-2195 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2571 (($) NIL) (($ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL)) (-2988 (((-762) (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (((-762) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (((-762) |#2| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#2| (-1087)))) (((-762) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4382)))) (-1553 (($ $) NIL)) (-3224 (((-534) $) NIL (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-606 (-534))))) (-3233 (($ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL)) (-3220 (((-853) $) NIL (-3998 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-605 (-853))) (|has| |#2| (-605 (-853)))))) (-3534 (($ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL)) (-3277 (((-112) (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) NIL (-3998 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-544 |#1| |#2| |#3|) (-13 (-1176 |#1| |#2|) (-10 -7 (-6 -4382))) (-1087) (-1087) (-13 (-1176 |#1| |#2|) (-10 -7 (-6 -4382)))) (T -544))
+NIL
+(-13 (-1176 |#1| |#2|) (-10 -7 (-6 -4382)))
+((-1724 (((-579 |#2|) |#2| (-604 |#2|) (-604 |#2|) (-1 (-1159 |#2|) (-1159 |#2|))) 51)))
+(((-545 |#1| |#2|) (-10 -7 (-15 -1724 ((-579 |#2|) |#2| (-604 |#2|) (-604 |#2|) (-1 (-1159 |#2|) (-1159 |#2|))))) (-13 (-841) (-550)) (-13 (-27) (-429 |#1|))) (T -545))
+((-1724 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-604 *3)) (-5 *5 (-1 (-1159 *3) (-1159 *3))) (-4 *3 (-13 (-27) (-429 *6))) (-4 *6 (-13 (-841) (-550))) (-5 *2 (-579 *3)) (-5 *1 (-545 *6 *3)))))
+(-10 -7 (-15 -1724 ((-579 |#2|) |#2| (-604 |#2|) (-604 |#2|) (-1 (-1159 |#2|) (-1159 |#2|)))))
+((-1750 (((-579 |#5|) |#5| (-1 |#3| |#3|)) 198)) (-1762 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 194)) (-1737 (((-579 |#5|) |#5| (-1 |#3| |#3|)) 201)))
+(((-546 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1737 ((-579 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1750 ((-579 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1762 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-841) (-550) (-1028 (-558))) (-13 (-27) (-429 |#1|)) (-1222 |#2|) (-1222 (-406 |#3|)) (-341 |#2| |#3| |#4|)) (T -546))
+((-1762 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1222 *5)) (-4 *5 (-13 (-27) (-429 *4))) (-4 *4 (-13 (-841) (-550) (-1028 (-558)))) (-4 *7 (-1222 (-406 *6))) (-5 *1 (-546 *4 *5 *6 *7 *2)) (-4 *2 (-341 *5 *6 *7)))) (-1750 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1222 *6)) (-4 *6 (-13 (-27) (-429 *5))) (-4 *5 (-13 (-841) (-550) (-1028 (-558)))) (-4 *8 (-1222 (-406 *7))) (-5 *2 (-579 *3)) (-5 *1 (-546 *5 *6 *7 *8 *3)) (-4 *3 (-341 *6 *7 *8)))) (-1737 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1222 *6)) (-4 *6 (-13 (-27) (-429 *5))) (-4 *5 (-13 (-841) (-550) (-1028 (-558)))) (-4 *8 (-1222 (-406 *7))) (-5 *2 (-579 *3)) (-5 *1 (-546 *5 *6 *7 *8 *3)) (-4 *3 (-341 *6 *7 *8)))))
+(-10 -7 (-15 -1737 ((-579 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1750 ((-579 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1762 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
+((-1801 (((-112) (-558) (-558)) 10)) (-1774 (((-558) (-558)) 7)) (-1787 (((-558) (-558) (-558)) 8)))
+(((-547) (-10 -7 (-15 -1774 ((-558) (-558))) (-15 -1787 ((-558) (-558) (-558))) (-15 -1801 ((-112) (-558) (-558))))) (T -547))
+((-1801 (*1 *2 *3 *3) (-12 (-5 *3 (-558)) (-5 *2 (-112)) (-5 *1 (-547)))) (-1787 (*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-547)))) (-1774 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-547)))))
+(-10 -7 (-15 -1774 ((-558) (-558))) (-15 -1787 ((-558) (-558) (-558))) (-15 -1801 ((-112) (-558) (-558))))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-4039 ((|#1| $) 62)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 42)) (-1881 (($ $) 41)) (-1857 (((-112) $) 39)) (-4088 (($ $) 92)) (-2135 (($ $) 75)) (-2738 ((|#1| $) 63)) (-2089 (((-3 $ "failed") $ $) 19)) (-2534 (($ $) 74)) (-4070 (($ $) 91)) (-2112 (($ $) 76)) (-4113 (($ $) 90)) (-2156 (($ $) 77)) (-1816 (($) 17 T CONST)) (-3069 (((-3 (-558) "failed") $) 70)) (-1863 (((-558) $) 71)) (-2588 (((-3 $ "failed") $) 33)) (-1834 (($ |#1| |#1|) 67)) (-2045 (((-112) $) 61)) (-1904 (($) 102)) (-2035 (((-112) $) 31)) (-3828 (($ $ (-558)) 73)) (-2055 (((-112) $) 60)) (-3910 (($ $ $) 108)) (-3542 (($ $ $) 107)) (-2592 (($ $) 99)) (-2665 (($ $ $) 47) (($ (-635 $)) 46)) (-4310 (((-1145) $) 9)) (-1845 (($ |#1| |#1|) 68) (($ |#1|) 66) (($ (-406 (-558))) 65)) (-1824 ((|#1| $) 64)) (-2975 (((-1107) $) 10)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) 45)) (-2699 (($ $ $) 49) (($ (-635 $)) 48)) (-3983 (((-3 $ "failed") $ $) 43)) (-2573 (($ $) 100)) (-4124 (($ $) 89)) (-2167 (($ $) 78)) (-4102 (($ $) 88)) (-2146 (($ $) 79)) (-4080 (($ $) 87)) (-2124 (($ $) 80)) (-1813 (((-112) $ |#1|) 59)) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ $) 44) (($ (-558)) 69)) (-2542 (((-762)) 28)) (-4159 (($ $) 98)) (-2200 (($ $) 86)) (-1870 (((-112) $ $) 40)) (-4135 (($ $) 97)) (-2178 (($ $) 85)) (-4184 (($ $) 96)) (-2222 (($ $) 84)) (-1878 (($ $) 95)) (-4060 (($ $) 83)) (-4171 (($ $) 94)) (-2211 (($ $) 82)) (-4147 (($ $) 93)) (-2189 (($ $) 81)) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1747 (((-112) $ $) 105)) (-1720 (((-112) $ $) 104)) (-1683 (((-112) $ $) 6)) (-1731 (((-112) $ $) 106)) (-1705 (((-112) $ $) 103)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ $) 101) (($ $ (-406 (-558))) 72)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24)))
+(((-548 |#1|) (-139) (-13 (-403) (-1185))) (T -548))
+((-1845 (*1 *1 *2 *2) (-12 (-4 *1 (-548 *2)) (-4 *2 (-13 (-403) (-1185))))) (-1834 (*1 *1 *2 *2) (-12 (-4 *1 (-548 *2)) (-4 *2 (-13 (-403) (-1185))))) (-1845 (*1 *1 *2) (-12 (-4 *1 (-548 *2)) (-4 *2 (-13 (-403) (-1185))))) (-1845 (*1 *1 *2) (-12 (-5 *2 (-406 (-558))) (-4 *1 (-548 *3)) (-4 *3 (-13 (-403) (-1185))))) (-1824 (*1 *2 *1) (-12 (-4 *1 (-548 *2)) (-4 *2 (-13 (-403) (-1185))))) (-2738 (*1 *2 *1) (-12 (-4 *1 (-548 *2)) (-4 *2 (-13 (-403) (-1185))))) (-4039 (*1 *2 *1) (-12 (-4 *1 (-548 *2)) (-4 *2 (-13 (-403) (-1185))))) (-2045 (*1 *2 *1) (-12 (-4 *1 (-548 *3)) (-4 *3 (-13 (-403) (-1185))) (-5 *2 (-112)))) (-2055 (*1 *2 *1) (-12 (-4 *1 (-548 *3)) (-4 *3 (-13 (-403) (-1185))) (-5 *2 (-112)))) (-1813 (*1 *2 *1 *3) (-12 (-4 *1 (-548 *3)) (-4 *3 (-13 (-403) (-1185))) (-5 *2 (-112)))))
+(-13 (-450) (-841) (-1185) (-992) (-1028 (-558)) (-10 -8 (-6 -1352) (-15 -1845 ($ |t#1| |t#1|)) (-15 -1834 ($ |t#1| |t#1|)) (-15 -1845 ($ |t#1|)) (-15 -1845 ($ (-406 (-558)))) (-15 -1824 (|t#1| $)) (-15 -2738 (|t#1| $)) (-15 -4039 (|t#1| $)) (-15 -2045 ((-112) $)) (-15 -2055 ((-112) $)) (-15 -1813 ((-112) $ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-608 (-558)) . T) ((-608 $) . T) ((-605 (-853)) . T) ((-171) . T) ((-283) . T) ((-289) . T) ((-450) . T) ((-491) . T) ((-550) . T) ((-638 $) . T) ((-708 $) . T) ((-717) . T) ((-841) . T) ((-992) . T) ((-1028 (-558)) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1185) . T) ((-1188) . T))
+((-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 9)) (-1881 (($ $) 11)) (-1857 (((-112) $) 18)) (-2588 (((-3 $ "failed") $) 16)) (-1870 (((-112) $ $) 20)))
+(((-549 |#1|) (-10 -8 (-15 -1857 ((-112) |#1|)) (-15 -1870 ((-112) |#1| |#1|)) (-15 -1881 (|#1| |#1|)) (-15 -1891 ((-2 (|:| -1960 |#1|) (|:| -4369 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2588 ((-3 |#1| "failed") |#1|))) (-550)) (T -549))
+NIL
+(-10 -8 (-15 -1857 ((-112) |#1|)) (-15 -1870 ((-112) |#1| |#1|)) (-15 -1881 (|#1| |#1|)) (-15 -1891 ((-2 (|:| -1960 |#1|) (|:| -4369 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2588 ((-3 |#1| "failed") |#1|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 42)) (-1881 (($ $) 41)) (-1857 (((-112) $) 39)) (-2089 (((-3 $ "failed") $ $) 19)) (-1816 (($) 17 T CONST)) (-2588 (((-3 $ "failed") $) 33)) (-2035 (((-112) $) 31)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3983 (((-3 $ "failed") $ $) 43)) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ $) 44)) (-2542 (((-762)) 28)) (-1870 (((-112) $ $) 40)) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1683 (((-112) $ $) 6)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24)))
+(((-550) (-139)) (T -550))
+((-3983 (*1 *1 *1 *1) (|partial| -4 *1 (-550))) (-1891 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1960 *1) (|:| -4369 *1) (|:| |associate| *1))) (-4 *1 (-550)))) (-1881 (*1 *1 *1) (-4 *1 (-550))) (-1870 (*1 *2 *1 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112)))) (-1857 (*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112)))))
+(-13 (-171) (-38 $) (-289) (-10 -8 (-15 -3983 ((-3 $ "failed") $ $)) (-15 -1891 ((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $)) (-15 -1881 ($ $)) (-15 -1870 ((-112) $ $)) (-15 -1857 ((-112) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-608 (-558)) . T) ((-608 $) . T) ((-605 (-853)) . T) ((-171) . T) ((-289) . T) ((-638 $) . T) ((-708 $) . T) ((-717) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
+((-1913 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1163) (-635 |#2|)) 37)) (-1934 (((-579 |#2|) |#2| (-1163)) 62)) (-1925 (((-3 |#2| "failed") |#2| (-1163)) 151)) (-1944 (((-3 (-2 (|:| -1440 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1163) (-604 |#2|) (-635 (-604 |#2|))) 154)) (-1900 (((-3 (-2 (|:| -1440 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1163) |#2|) 40)))
+(((-551 |#1| |#2|) (-10 -7 (-15 -1900 ((-3 (-2 (|:| -1440 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1163) |#2|)) (-15 -1913 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1163) (-635 |#2|))) (-15 -1925 ((-3 |#2| "failed") |#2| (-1163))) (-15 -1934 ((-579 |#2|) |#2| (-1163))) (-15 -1944 ((-3 (-2 (|:| -1440 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1163) (-604 |#2|) (-635 (-604 |#2|))))) (-13 (-450) (-841) (-146) (-1028 (-558)) (-631 (-558))) (-13 (-27) (-1185) (-429 |#1|))) (T -551))
+((-1944 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1163)) (-5 *6 (-635 (-604 *3))) (-5 *5 (-604 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *7))) (-4 *7 (-13 (-450) (-841) (-146) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-2 (|:| -1440 *3) (|:| |coeff| *3))) (-5 *1 (-551 *7 *3)))) (-1934 (*1 *2 *3 *4) (-12 (-5 *4 (-1163)) (-4 *5 (-13 (-450) (-841) (-146) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-579 *3)) (-5 *1 (-551 *5 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *5))))) (-1925 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1163)) (-4 *4 (-13 (-450) (-841) (-146) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-551 *4 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *4))))) (-1913 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1163)) (-5 *5 (-635 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *6))) (-4 *6 (-13 (-450) (-841) (-146) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-551 *6 *3)))) (-1900 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1163)) (-4 *5 (-13 (-450) (-841) (-146) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-2 (|:| -1440 *3) (|:| |coeff| *3))) (-5 *1 (-551 *5 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *5))))))
+(-10 -7 (-15 -1900 ((-3 (-2 (|:| -1440 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1163) |#2|)) (-15 -1913 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1163) (-635 |#2|))) (-15 -1925 ((-3 |#2| "failed") |#2| (-1163))) (-15 -1934 ((-579 |#2|) |#2| (-1163))) (-15 -1944 ((-3 (-2 (|:| -1440 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1163) (-604 |#2|) (-635 (-604 |#2|)))))
+((-1380 (((-417 |#1|) |#1|) 18)) (-2522 (((-417 |#1|) |#1|) 33)) (-1968 (((-3 |#1| "failed") |#1|) 44)) (-1955 (((-417 |#1|) |#1|) 51)))
+(((-552 |#1|) (-10 -7 (-15 -2522 ((-417 |#1|) |#1|)) (-15 -1380 ((-417 |#1|) |#1|)) (-15 -1955 ((-417 |#1|) |#1|)) (-15 -1968 ((-3 |#1| "failed") |#1|))) (-543)) (T -552))
+((-1968 (*1 *2 *2) (|partial| -12 (-5 *1 (-552 *2)) (-4 *2 (-543)))) (-1955 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-552 *3)) (-4 *3 (-543)))) (-1380 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-552 *3)) (-4 *3 (-543)))) (-2522 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-552 *3)) (-4 *3 (-543)))))
+(-10 -7 (-15 -2522 ((-417 |#1|) |#1|)) (-15 -1380 ((-417 |#1|) |#1|)) (-15 -1955 ((-417 |#1|) |#1|)) (-15 -1968 ((-3 |#1| "failed") |#1|)))
+((-1980 (($) 9)) (-2079 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1626 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 35)) (-3848 (((-635 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $) 32)) (-4328 (($ (-2 (|:| -2700 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2981 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1626 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-2000 (($ (-635 (-2 (|:| -2700 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2981 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1626 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-2981 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1626 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 39)) (-3937 (((-635 (-2 (|:| -2700 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2981 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1626 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-1990 (((-1251)) 12)))
+(((-553) (-10 -8 (-15 -1980 ($)) (-15 -1990 ((-1251))) (-15 -3848 ((-635 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $)) (-15 -2000 ($ (-635 (-2 (|:| -2700 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2981 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1626 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -4328 ($ (-2 (|:| -2700 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2981 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1626 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2079 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1626 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3937 ((-635 (-2 (|:| -2700 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2981 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1626 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2981 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1626 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (T -553))
+((-2981 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1626 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-553)))) (-3937 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| -2700 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2981 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1626 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-553)))) (-2079 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1626 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-553)))) (-4328 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2700 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2981 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1626 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-553)))) (-2000 (*1 *1 *2) (-12 (-5 *2 (-635 (-2 (|:| -2700 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2981 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1626 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-553)))) (-3848 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-5 *1 (-553)))) (-1990 (*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-553)))) (-1980 (*1 *1) (-5 *1 (-553))))
+(-10 -8 (-15 -1980 ($)) (-15 -1990 ((-1251))) (-15 -3848 ((-635 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $)) (-15 -2000 ($ (-635 (-2 (|:| -2700 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2981 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1626 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -4328 ($ (-2 (|:| -2700 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2981 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1626 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2079 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1626 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3937 ((-635 (-2 (|:| -2700 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2981 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1626 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2981 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1626 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))
+((-2492 (((-1159 (-406 (-1159 |#2|))) |#2| (-604 |#2|) (-604 |#2|) (-1159 |#2|)) 32)) (-2030 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-604 |#2|) (-604 |#2|) (-635 |#2|) (-604 |#2|) |#2| (-406 (-1159 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-604 |#2|) (-604 |#2|) (-635 |#2|) |#2| (-1159 |#2|)) 110)) (-2010 (((-579 |#2|) |#2| (-604 |#2|) (-604 |#2|) (-604 |#2|) |#2| (-406 (-1159 |#2|))) 80) (((-579 |#2|) |#2| (-604 |#2|) (-604 |#2|) |#2| (-1159 |#2|)) 52)) (-2019 (((-3 (-2 (|:| -1440 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-604 |#2|) (-604 |#2|) |#2| (-604 |#2|) |#2| (-406 (-1159 |#2|))) 87) (((-3 (-2 (|:| -1440 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-604 |#2|) (-604 |#2|) |#2| |#2| (-1159 |#2|)) 109)) (-2039 (((-3 |#2| "failed") |#2| |#2| (-604 |#2|) (-604 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1163)) (-604 |#2|) |#2| (-406 (-1159 |#2|))) 105) (((-3 |#2| "failed") |#2| |#2| (-604 |#2|) (-604 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1163)) |#2| (-1159 |#2|)) 111)) (-2049 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2660 (-635 |#2|))) |#3| |#2| (-604 |#2|) (-604 |#2|) (-604 |#2|) |#2| (-406 (-1159 |#2|))) 128 (|has| |#3| (-646 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2660 (-635 |#2|))) |#3| |#2| (-604 |#2|) (-604 |#2|) |#2| (-1159 |#2|)) 127 (|has| |#3| (-646 |#2|)))) (-2659 ((|#2| (-1159 (-406 (-1159 |#2|))) (-604 |#2|) |#2|) 50)) (-3227 (((-1159 (-406 (-1159 |#2|))) (-1159 |#2|) (-604 |#2|)) 31)))
+(((-554 |#1| |#2| |#3|) (-10 -7 (-15 -2010 ((-579 |#2|) |#2| (-604 |#2|) (-604 |#2|) |#2| (-1159 |#2|))) (-15 -2010 ((-579 |#2|) |#2| (-604 |#2|) (-604 |#2|) (-604 |#2|) |#2| (-406 (-1159 |#2|)))) (-15 -2019 ((-3 (-2 (|:| -1440 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-604 |#2|) (-604 |#2|) |#2| |#2| (-1159 |#2|))) (-15 -2019 ((-3 (-2 (|:| -1440 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-604 |#2|) (-604 |#2|) |#2| (-604 |#2|) |#2| (-406 (-1159 |#2|)))) (-15 -2030 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-604 |#2|) (-604 |#2|) (-635 |#2|) |#2| (-1159 |#2|))) (-15 -2030 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-604 |#2|) (-604 |#2|) (-635 |#2|) (-604 |#2|) |#2| (-406 (-1159 |#2|)))) (-15 -2039 ((-3 |#2| "failed") |#2| |#2| (-604 |#2|) (-604 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1163)) |#2| (-1159 |#2|))) (-15 -2039 ((-3 |#2| "failed") |#2| |#2| (-604 |#2|) (-604 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1163)) (-604 |#2|) |#2| (-406 (-1159 |#2|)))) (-15 -2492 ((-1159 (-406 (-1159 |#2|))) |#2| (-604 |#2|) (-604 |#2|) (-1159 |#2|))) (-15 -2659 (|#2| (-1159 (-406 (-1159 |#2|))) (-604 |#2|) |#2|)) (-15 -3227 ((-1159 (-406 (-1159 |#2|))) (-1159 |#2|) (-604 |#2|))) (IF (|has| |#3| (-646 |#2|)) (PROGN (-15 -2049 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2660 (-635 |#2|))) |#3| |#2| (-604 |#2|) (-604 |#2|) |#2| (-1159 |#2|))) (-15 -2049 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2660 (-635 |#2|))) |#3| |#2| (-604 |#2|) (-604 |#2|) (-604 |#2|) |#2| (-406 (-1159 |#2|))))) |%noBranch|)) (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558))) (-13 (-429 |#1|) (-27) (-1185)) (-1087)) (T -554))
+((-2049 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-604 *4)) (-5 *6 (-406 (-1159 *4))) (-4 *4 (-13 (-429 *7) (-27) (-1185))) (-4 *7 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2660 (-635 *4)))) (-5 *1 (-554 *7 *4 *3)) (-4 *3 (-646 *4)) (-4 *3 (-1087)))) (-2049 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-604 *4)) (-5 *6 (-1159 *4)) (-4 *4 (-13 (-429 *7) (-27) (-1185))) (-4 *7 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2660 (-635 *4)))) (-5 *1 (-554 *7 *4 *3)) (-4 *3 (-646 *4)) (-4 *3 (-1087)))) (-3227 (*1 *2 *3 *4) (-12 (-5 *4 (-604 *6)) (-4 *6 (-13 (-429 *5) (-27) (-1185))) (-4 *5 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558)))) (-5 *2 (-1159 (-406 (-1159 *6)))) (-5 *1 (-554 *5 *6 *7)) (-5 *3 (-1159 *6)) (-4 *7 (-1087)))) (-2659 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1159 (-406 (-1159 *2)))) (-5 *4 (-604 *2)) (-4 *2 (-13 (-429 *5) (-27) (-1185))) (-4 *5 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558)))) (-5 *1 (-554 *5 *2 *6)) (-4 *6 (-1087)))) (-2492 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-604 *3)) (-4 *3 (-13 (-429 *6) (-27) (-1185))) (-4 *6 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558)))) (-5 *2 (-1159 (-406 (-1159 *3)))) (-5 *1 (-554 *6 *3 *7)) (-5 *5 (-1159 *3)) (-4 *7 (-1087)))) (-2039 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-604 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1163))) (-5 *5 (-406 (-1159 *2))) (-4 *2 (-13 (-429 *6) (-27) (-1185))) (-4 *6 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558)))) (-5 *1 (-554 *6 *2 *7)) (-4 *7 (-1087)))) (-2039 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-604 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1163))) (-5 *5 (-1159 *2)) (-4 *2 (-13 (-429 *6) (-27) (-1185))) (-4 *6 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558)))) (-5 *1 (-554 *6 *2 *7)) (-4 *7 (-1087)))) (-2030 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-604 *3)) (-5 *5 (-635 *3)) (-5 *6 (-406 (-1159 *3))) (-4 *3 (-13 (-429 *7) (-27) (-1185))) (-4 *7 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-554 *7 *3 *8)) (-4 *8 (-1087)))) (-2030 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-604 *3)) (-5 *5 (-635 *3)) (-5 *6 (-1159 *3)) (-4 *3 (-13 (-429 *7) (-27) (-1185))) (-4 *7 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-554 *7 *3 *8)) (-4 *8 (-1087)))) (-2019 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-604 *3)) (-5 *5 (-406 (-1159 *3))) (-4 *3 (-13 (-429 *6) (-27) (-1185))) (-4 *6 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558)))) (-5 *2 (-2 (|:| -1440 *3) (|:| |coeff| *3))) (-5 *1 (-554 *6 *3 *7)) (-4 *7 (-1087)))) (-2019 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-604 *3)) (-5 *5 (-1159 *3)) (-4 *3 (-13 (-429 *6) (-27) (-1185))) (-4 *6 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558)))) (-5 *2 (-2 (|:| -1440 *3) (|:| |coeff| *3))) (-5 *1 (-554 *6 *3 *7)) (-4 *7 (-1087)))) (-2010 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-604 *3)) (-5 *5 (-406 (-1159 *3))) (-4 *3 (-13 (-429 *6) (-27) (-1185))) (-4 *6 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558)))) (-5 *2 (-579 *3)) (-5 *1 (-554 *6 *3 *7)) (-4 *7 (-1087)))) (-2010 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-604 *3)) (-5 *5 (-1159 *3)) (-4 *3 (-13 (-429 *6) (-27) (-1185))) (-4 *6 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558)))) (-5 *2 (-579 *3)) (-5 *1 (-554 *6 *3 *7)) (-4 *7 (-1087)))))
+(-10 -7 (-15 -2010 ((-579 |#2|) |#2| (-604 |#2|) (-604 |#2|) |#2| (-1159 |#2|))) (-15 -2010 ((-579 |#2|) |#2| (-604 |#2|) (-604 |#2|) (-604 |#2|) |#2| (-406 (-1159 |#2|)))) (-15 -2019 ((-3 (-2 (|:| -1440 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-604 |#2|) (-604 |#2|) |#2| |#2| (-1159 |#2|))) (-15 -2019 ((-3 (-2 (|:| -1440 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-604 |#2|) (-604 |#2|) |#2| (-604 |#2|) |#2| (-406 (-1159 |#2|)))) (-15 -2030 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-604 |#2|) (-604 |#2|) (-635 |#2|) |#2| (-1159 |#2|))) (-15 -2030 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-604 |#2|) (-604 |#2|) (-635 |#2|) (-604 |#2|) |#2| (-406 (-1159 |#2|)))) (-15 -2039 ((-3 |#2| "failed") |#2| |#2| (-604 |#2|) (-604 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1163)) |#2| (-1159 |#2|))) (-15 -2039 ((-3 |#2| "failed") |#2| |#2| (-604 |#2|) (-604 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1163)) (-604 |#2|) |#2| (-406 (-1159 |#2|)))) (-15 -2492 ((-1159 (-406 (-1159 |#2|))) |#2| (-604 |#2|) (-604 |#2|) (-1159 |#2|))) (-15 -2659 (|#2| (-1159 (-406 (-1159 |#2|))) (-604 |#2|) |#2|)) (-15 -3227 ((-1159 (-406 (-1159 |#2|))) (-1159 |#2|) (-604 |#2|))) (IF (|has| |#3| (-646 |#2|)) (PROGN (-15 -2049 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2660 (-635 |#2|))) |#3| |#2| (-604 |#2|) (-604 |#2|) |#2| (-1159 |#2|))) (-15 -2049 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2660 (-635 |#2|))) |#3| |#2| (-604 |#2|) (-604 |#2|) (-604 |#2|) |#2| (-406 (-1159 |#2|))))) |%noBranch|))
+((-2159 (((-558) (-558) (-762)) 66)) (-2150 (((-558) (-558)) 65)) (-2138 (((-558) (-558)) 64)) (-2127 (((-558) (-558)) 69)) (-2362 (((-558) (-558) (-558)) 49)) (-2114 (((-558) (-558) (-558)) 46)) (-2103 (((-406 (-558)) (-558)) 20)) (-2091 (((-558) (-558)) 21)) (-2080 (((-558) (-558)) 58)) (-2329 (((-558) (-558)) 32)) (-2070 (((-635 (-558)) (-558)) 63)) (-2060 (((-558) (-558) (-558) (-558) (-558)) 44)) (-2287 (((-406 (-558)) (-558)) 41)))
+(((-555) (-10 -7 (-15 -2287 ((-406 (-558)) (-558))) (-15 -2060 ((-558) (-558) (-558) (-558) (-558))) (-15 -2070 ((-635 (-558)) (-558))) (-15 -2329 ((-558) (-558))) (-15 -2080 ((-558) (-558))) (-15 -2091 ((-558) (-558))) (-15 -2103 ((-406 (-558)) (-558))) (-15 -2114 ((-558) (-558) (-558))) (-15 -2362 ((-558) (-558) (-558))) (-15 -2127 ((-558) (-558))) (-15 -2138 ((-558) (-558))) (-15 -2150 ((-558) (-558))) (-15 -2159 ((-558) (-558) (-762))))) (T -555))
+((-2159 (*1 *2 *2 *3) (-12 (-5 *2 (-558)) (-5 *3 (-762)) (-5 *1 (-555)))) (-2150 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-555)))) (-2138 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-555)))) (-2127 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-555)))) (-2362 (*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-555)))) (-2114 (*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-555)))) (-2103 (*1 *2 *3) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-555)) (-5 *3 (-558)))) (-2091 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-555)))) (-2080 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-555)))) (-2329 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-555)))) (-2070 (*1 *2 *3) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-555)) (-5 *3 (-558)))) (-2060 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-555)))) (-2287 (*1 *2 *3) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-555)) (-5 *3 (-558)))))
+(-10 -7 (-15 -2287 ((-406 (-558)) (-558))) (-15 -2060 ((-558) (-558) (-558) (-558) (-558))) (-15 -2070 ((-635 (-558)) (-558))) (-15 -2329 ((-558) (-558))) (-15 -2080 ((-558) (-558))) (-15 -2091 ((-558) (-558))) (-15 -2103 ((-406 (-558)) (-558))) (-15 -2114 ((-558) (-558) (-558))) (-15 -2362 ((-558) (-558) (-558))) (-15 -2127 ((-558) (-558))) (-15 -2138 ((-558) (-558))) (-15 -2150 ((-558) (-558))) (-15 -2159 ((-558) (-558) (-762))))
+((-2170 (((-2 (|:| |answer| |#4|) (|:| -1427 |#4|)) |#4| (-1 |#2| |#2|)) 52)))
+(((-556 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2170 ((-2 (|:| |answer| |#4|) (|:| -1427 |#4|)) |#4| (-1 |#2| |#2|)))) (-362) (-1222 |#1|) (-1222 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -556))
+((-2170 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1222 *5)) (-4 *5 (-362)) (-4 *7 (-1222 (-406 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -1427 *3))) (-5 *1 (-556 *5 *6 *7 *3)) (-4 *3 (-341 *5 *6 *7)))))
+(-10 -7 (-15 -2170 ((-2 (|:| |answer| |#4|) (|:| -1427 |#4|)) |#4| (-1 |#2| |#2|))))
+((-2170 (((-2 (|:| |answer| (-406 |#2|)) (|:| -1427 (-406 |#2|)) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|)) 18)))
+(((-557 |#1| |#2|) (-10 -7 (-15 -2170 ((-2 (|:| |answer| (-406 |#2|)) (|:| -1427 (-406 |#2|)) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|)))) (-362) (-1222 |#1|)) (T -557))
+((-2170 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1222 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| |answer| (-406 *6)) (|:| -1427 (-406 *6)) (|:| |specpart| (-406 *6)) (|:| |polypart| *6))) (-5 *1 (-557 *5 *6)) (-5 *3 (-406 *6)))))
+(-10 -7 (-15 -2170 ((-2 (|:| |answer| (-406 |#2|)) (|:| -1427 (-406 |#2|)) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) 25)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 88)) (-1881 (($ $) 89)) (-1857 (((-112) $) NIL)) (-1686 (($ $ $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-1663 (($ $ $ $) 43)) (-3465 (($ $) NIL)) (-1380 (((-417 $) $) NIL)) (-3732 (((-112) $ $) NIL)) (-1397 (((-558) $) NIL)) (-1672 (($ $ $) 82)) (-1816 (($) NIL T CONST)) (-3069 (((-3 (-558) "failed") $) NIL)) (-1863 (((-558) $) NIL)) (-4025 (($ $ $) 81)) (-3216 (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) 62) (((-679 (-558)) (-679 $)) 58)) (-2588 (((-3 $ "failed") $) 85)) (-3962 (((-3 (-406 (-558)) "failed") $) NIL)) (-3951 (((-112) $) NIL)) (-3938 (((-406 (-558)) $) NIL)) (-2424 (($) 64) (($ $) 65)) (-4004 (($ $ $) 80)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL)) (-3031 (((-112) $) NIL)) (-1644 (($ $ $ $) NIL)) (-1697 (($ $ $) 55)) (-2045 (((-112) $) NIL)) (-1387 (($ $ $) NIL)) (-2269 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL)) (-2035 (((-112) $) 26)) (-3451 (((-112) $) 75)) (-2457 (((-3 $ "failed") $) NIL)) (-2055 (((-112) $) 35)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1654 (($ $ $ $) 44)) (-3910 (($ $ $) 77)) (-3542 (($ $ $) 76)) (-1842 (($ $) NIL)) (-2880 (($ $) 41)) (-2665 (($ $ $) NIL) (($ (-635 $)) NIL)) (-4310 (((-1145) $) 54)) (-1637 (($ $ $) NIL)) (-1796 (($) NIL T CONST)) (-3276 (($ $) 31)) (-2975 (((-1107) $) 34)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) 119)) (-2699 (($ $ $) 86) (($ (-635 $)) NIL)) (-1364 (($ $) NIL)) (-2522 (((-417 $) $) 105)) (-3713 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL)) (-3983 (((-3 $ "failed") $ $) 84)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3458 (((-112) $) NIL)) (-3722 (((-762) $) NIL)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 79)) (-2829 (($ $ (-762)) NIL) (($ $) NIL)) (-3914 (($ $) 32)) (-1553 (($ $) 30)) (-3224 (((-558) $) 40) (((-534) $) 52) (((-882 (-558)) $) NIL) (((-378) $) 47) (((-224) $) 49) (((-1145) $) 53)) (-3220 (((-853) $) 38) (($ (-558)) 39) (($ $) NIL) (($ (-558)) 39)) (-2542 (((-762)) NIL)) (-1712 (((-112) $ $) NIL)) (-2322 (($ $ $) NIL)) (-2579 (($) 29)) (-1870 (((-112) $ $) NIL)) (-1674 (($ $ $ $) 42)) (-3190 (($ $) 63)) (-2131 (($) 27 T CONST)) (-2142 (($) 28 T CONST)) (-1338 (((-1145) $) 20) (((-1145) $ (-112)) 22) (((-1251) (-813) $) 23) (((-1251) (-813) $ (-112)) 24)) (-1866 (($ $ (-762)) NIL) (($ $) NIL)) (-1747 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1683 (((-112) $ $) 66)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 67)) (-1798 (($ $) 68) (($ $ $) 70)) (-1784 (($ $ $) 69)) (** (($ $ (-911)) NIL) (($ $ (-762)) 74)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 72) (($ $ $) 71)))
+(((-558) (-13 (-543) (-606 (-1145)) (-819) (-10 -8 (-15 -2424 ($ $)) (-6 -4369) (-6 -4374) (-6 -4370) (-6 -4364)))) (T -558))
+((-2424 (*1 *1 *1) (-5 *1 (-558))))
+(-13 (-543) (-606 (-1145)) (-819) (-10 -8 (-15 -2424 ($ $)) (-6 -4369) (-6 -4374) (-6 -4370) (-6 -4364)))
+((-3510 (((-2 (|:| -3510 (-378)) (|:| -1323 (-1145)) (|:| |explanations| (-635 (-1145))) (|:| |extra| (-1025))) (-760) (-1051)) 108) (((-2 (|:| -3510 (-378)) (|:| -1323 (-1145)) (|:| |explanations| (-635 (-1145))) (|:| |extra| (-1025))) (-760)) 110)) (-2543 (((-3 (-1025) "failed") (-315 (-378)) (-1079 (-834 (-378))) (-1163)) 172) (((-3 (-1025) "failed") (-315 (-378)) (-1079 (-834 (-378))) (-1145)) 171) (((-1025) (-315 (-378)) (-635 (-1081 (-834 (-378)))) (-378) (-378) (-1051)) 176) (((-1025) (-315 (-378)) (-635 (-1081 (-834 (-378)))) (-378) (-378)) 177) (((-1025) (-315 (-378)) (-635 (-1081 (-834 (-378)))) (-378)) 178) (((-1025) (-315 (-378)) (-635 (-1081 (-834 (-378))))) 179) (((-1025) (-315 (-378)) (-1081 (-834 (-378)))) 167) (((-1025) (-315 (-378)) (-1081 (-834 (-378))) (-378)) 166) (((-1025) (-315 (-378)) (-1081 (-834 (-378))) (-378) (-378)) 162) (((-1025) (-760)) 155) (((-1025) (-315 (-378)) (-1081 (-834 (-378))) (-378) (-378) (-1051)) 161)))
+(((-559) (-10 -7 (-15 -2543 ((-1025) (-315 (-378)) (-1081 (-834 (-378))) (-378) (-378) (-1051))) (-15 -2543 ((-1025) (-760))) (-15 -2543 ((-1025) (-315 (-378)) (-1081 (-834 (-378))) (-378) (-378))) (-15 -2543 ((-1025) (-315 (-378)) (-1081 (-834 (-378))) (-378))) (-15 -2543 ((-1025) (-315 (-378)) (-1081 (-834 (-378))))) (-15 -2543 ((-1025) (-315 (-378)) (-635 (-1081 (-834 (-378)))))) (-15 -2543 ((-1025) (-315 (-378)) (-635 (-1081 (-834 (-378)))) (-378))) (-15 -2543 ((-1025) (-315 (-378)) (-635 (-1081 (-834 (-378)))) (-378) (-378))) (-15 -2543 ((-1025) (-315 (-378)) (-635 (-1081 (-834 (-378)))) (-378) (-378) (-1051))) (-15 -3510 ((-2 (|:| -3510 (-378)) (|:| -1323 (-1145)) (|:| |explanations| (-635 (-1145))) (|:| |extra| (-1025))) (-760))) (-15 -3510 ((-2 (|:| -3510 (-378)) (|:| -1323 (-1145)) (|:| |explanations| (-635 (-1145))) (|:| |extra| (-1025))) (-760) (-1051))) (-15 -2543 ((-3 (-1025) "failed") (-315 (-378)) (-1079 (-834 (-378))) (-1145))) (-15 -2543 ((-3 (-1025) "failed") (-315 (-378)) (-1079 (-834 (-378))) (-1163))))) (T -559))
+((-2543 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-315 (-378))) (-5 *4 (-1079 (-834 (-378)))) (-5 *5 (-1163)) (-5 *2 (-1025)) (-5 *1 (-559)))) (-2543 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-315 (-378))) (-5 *4 (-1079 (-834 (-378)))) (-5 *5 (-1145)) (-5 *2 (-1025)) (-5 *1 (-559)))) (-3510 (*1 *2 *3 *4) (-12 (-5 *3 (-760)) (-5 *4 (-1051)) (-5 *2 (-2 (|:| -3510 (-378)) (|:| -1323 (-1145)) (|:| |explanations| (-635 (-1145))) (|:| |extra| (-1025)))) (-5 *1 (-559)))) (-3510 (*1 *2 *3) (-12 (-5 *3 (-760)) (-5 *2 (-2 (|:| -3510 (-378)) (|:| -1323 (-1145)) (|:| |explanations| (-635 (-1145))) (|:| |extra| (-1025)))) (-5 *1 (-559)))) (-2543 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-635 (-1081 (-834 (-378))))) (-5 *5 (-378)) (-5 *6 (-1051)) (-5 *2 (-1025)) (-5 *1 (-559)))) (-2543 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-635 (-1081 (-834 (-378))))) (-5 *5 (-378)) (-5 *2 (-1025)) (-5 *1 (-559)))) (-2543 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-635 (-1081 (-834 (-378))))) (-5 *5 (-378)) (-5 *2 (-1025)) (-5 *1 (-559)))) (-2543 (*1 *2 *3 *4) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-635 (-1081 (-834 (-378))))) (-5 *2 (-1025)) (-5 *1 (-559)))) (-2543 (*1 *2 *3 *4) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1081 (-834 (-378)))) (-5 *2 (-1025)) (-5 *1 (-559)))) (-2543 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1081 (-834 (-378)))) (-5 *5 (-378)) (-5 *2 (-1025)) (-5 *1 (-559)))) (-2543 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1081 (-834 (-378)))) (-5 *5 (-378)) (-5 *2 (-1025)) (-5 *1 (-559)))) (-2543 (*1 *2 *3) (-12 (-5 *3 (-760)) (-5 *2 (-1025)) (-5 *1 (-559)))) (-2543 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1081 (-834 (-378)))) (-5 *5 (-378)) (-5 *6 (-1051)) (-5 *2 (-1025)) (-5 *1 (-559)))))
+(-10 -7 (-15 -2543 ((-1025) (-315 (-378)) (-1081 (-834 (-378))) (-378) (-378) (-1051))) (-15 -2543 ((-1025) (-760))) (-15 -2543 ((-1025) (-315 (-378)) (-1081 (-834 (-378))) (-378) (-378))) (-15 -2543 ((-1025) (-315 (-378)) (-1081 (-834 (-378))) (-378))) (-15 -2543 ((-1025) (-315 (-378)) (-1081 (-834 (-378))))) (-15 -2543 ((-1025) (-315 (-378)) (-635 (-1081 (-834 (-378)))))) (-15 -2543 ((-1025) (-315 (-378)) (-635 (-1081 (-834 (-378)))) (-378))) (-15 -2543 ((-1025) (-315 (-378)) (-635 (-1081 (-834 (-378)))) (-378) (-378))) (-15 -2543 ((-1025) (-315 (-378)) (-635 (-1081 (-834 (-378)))) (-378) (-378) (-1051))) (-15 -3510 ((-2 (|:| -3510 (-378)) (|:| -1323 (-1145)) (|:| |explanations| (-635 (-1145))) (|:| |extra| (-1025))) (-760))) (-15 -3510 ((-2 (|:| -3510 (-378)) (|:| -1323 (-1145)) (|:| |explanations| (-635 (-1145))) (|:| |extra| (-1025))) (-760) (-1051))) (-15 -2543 ((-3 (-1025) "failed") (-315 (-378)) (-1079 (-834 (-378))) (-1145))) (-15 -2543 ((-3 (-1025) "failed") (-315 (-378)) (-1079 (-834 (-378))) (-1163))))
+((-4034 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-604 |#2|) (-604 |#2|) (-635 |#2|)) 183)) (-2182 (((-579 |#2|) |#2| (-604 |#2|) (-604 |#2|)) 98)) (-4022 (((-3 (-2 (|:| -1440 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-604 |#2|) (-604 |#2|) |#2|) 179)) (-4045 (((-3 |#2| "failed") |#2| |#2| |#2| (-604 |#2|) (-604 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1163))) 188)) (-4052 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2660 (-635 |#2|))) |#3| |#2| (-604 |#2|) (-604 |#2|) (-1163)) 196 (|has| |#3| (-646 |#2|)))))
+(((-560 |#1| |#2| |#3|) (-10 -7 (-15 -2182 ((-579 |#2|) |#2| (-604 |#2|) (-604 |#2|))) (-15 -4022 ((-3 (-2 (|:| -1440 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-604 |#2|) (-604 |#2|) |#2|)) (-15 -4034 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-604 |#2|) (-604 |#2|) (-635 |#2|))) (-15 -4045 ((-3 |#2| "failed") |#2| |#2| |#2| (-604 |#2|) (-604 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1163)))) (IF (|has| |#3| (-646 |#2|)) (-15 -4052 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2660 (-635 |#2|))) |#3| |#2| (-604 |#2|) (-604 |#2|) (-1163))) |%noBranch|)) (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558))) (-13 (-429 |#1|) (-27) (-1185)) (-1087)) (T -560))
+((-4052 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-604 *4)) (-5 *6 (-1163)) (-4 *4 (-13 (-429 *7) (-27) (-1185))) (-4 *7 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2660 (-635 *4)))) (-5 *1 (-560 *7 *4 *3)) (-4 *3 (-646 *4)) (-4 *3 (-1087)))) (-4045 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-604 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1163))) (-4 *2 (-13 (-429 *5) (-27) (-1185))) (-4 *5 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558)))) (-5 *1 (-560 *5 *2 *6)) (-4 *6 (-1087)))) (-4034 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-604 *3)) (-5 *5 (-635 *3)) (-4 *3 (-13 (-429 *6) (-27) (-1185))) (-4 *6 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1087)))) (-4022 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-604 *3)) (-4 *3 (-13 (-429 *5) (-27) (-1185))) (-4 *5 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558)))) (-5 *2 (-2 (|:| -1440 *3) (|:| |coeff| *3))) (-5 *1 (-560 *5 *3 *6)) (-4 *6 (-1087)))) (-2182 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-604 *3)) (-4 *3 (-13 (-429 *5) (-27) (-1185))) (-4 *5 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558)))) (-5 *2 (-579 *3)) (-5 *1 (-560 *5 *3 *6)) (-4 *6 (-1087)))))
+(-10 -7 (-15 -2182 ((-579 |#2|) |#2| (-604 |#2|) (-604 |#2|))) (-15 -4022 ((-3 (-2 (|:| -1440 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-604 |#2|) (-604 |#2|) |#2|)) (-15 -4034 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-604 |#2|) (-604 |#2|) (-635 |#2|))) (-15 -4045 ((-3 |#2| "failed") |#2| |#2| |#2| (-604 |#2|) (-604 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1163)))) (IF (|has| |#3| (-646 |#2|)) (-15 -4052 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2660 (-635 |#2|))) |#3| |#2| (-604 |#2|) (-604 |#2|) (-1163))) |%noBranch|))
+((-4062 (((-2 (|:| -2437 |#2|) (|:| |nconst| |#2|)) |#2| (-1163)) 63)) (-4082 (((-3 |#2| "failed") |#2| (-1163) (-834 |#2|) (-834 |#2|)) 163 (-12 (|has| |#2| (-1126)) (|has| |#1| (-606 (-882 (-558)))) (|has| |#1| (-876 (-558))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1163)) 146 (-12 (|has| |#2| (-621)) (|has| |#1| (-606 (-882 (-558)))) (|has| |#1| (-876 (-558)))))) (-4072 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1163)) 147 (-12 (|has| |#2| (-621)) (|has| |#1| (-606 (-882 (-558)))) (|has| |#1| (-876 (-558)))))))
+(((-561 |#1| |#2|) (-10 -7 (-15 -4062 ((-2 (|:| -2437 |#2|) (|:| |nconst| |#2|)) |#2| (-1163))) (IF (|has| |#1| (-606 (-882 (-558)))) (IF (|has| |#1| (-876 (-558))) (PROGN (IF (|has| |#2| (-621)) (PROGN (-15 -4072 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1163))) (-15 -4082 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1163)))) |%noBranch|) (IF (|has| |#2| (-1126)) (-15 -4082 ((-3 |#2| "failed") |#2| (-1163) (-834 |#2|) (-834 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-841) (-1028 (-558)) (-450) (-631 (-558))) (-13 (-27) (-1185) (-429 |#1|))) (T -561))
+((-4082 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1163)) (-5 *4 (-834 *2)) (-4 *2 (-1126)) (-4 *2 (-13 (-27) (-1185) (-429 *5))) (-4 *5 (-606 (-882 (-558)))) (-4 *5 (-876 (-558))) (-4 *5 (-13 (-841) (-1028 (-558)) (-450) (-631 (-558)))) (-5 *1 (-561 *5 *2)))) (-4082 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1163)) (-4 *5 (-606 (-882 (-558)))) (-4 *5 (-876 (-558))) (-4 *5 (-13 (-841) (-1028 (-558)) (-450) (-631 (-558)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-561 *5 *3)) (-4 *3 (-621)) (-4 *3 (-13 (-27) (-1185) (-429 *5))))) (-4072 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1163)) (-4 *5 (-606 (-882 (-558)))) (-4 *5 (-876 (-558))) (-4 *5 (-13 (-841) (-1028 (-558)) (-450) (-631 (-558)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-561 *5 *3)) (-4 *3 (-621)) (-4 *3 (-13 (-27) (-1185) (-429 *5))))) (-4062 (*1 *2 *3 *4) (-12 (-5 *4 (-1163)) (-4 *5 (-13 (-841) (-1028 (-558)) (-450) (-631 (-558)))) (-5 *2 (-2 (|:| -2437 *3) (|:| |nconst| *3))) (-5 *1 (-561 *5 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *5))))))
+(-10 -7 (-15 -4062 ((-2 (|:| -2437 |#2|) (|:| |nconst| |#2|)) |#2| (-1163))) (IF (|has| |#1| (-606 (-882 (-558)))) (IF (|has| |#1| (-876 (-558))) (PROGN (IF (|has| |#2| (-621)) (PROGN (-15 -4072 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1163))) (-15 -4082 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1163)))) |%noBranch|) (IF (|has| |#2| (-1126)) (-15 -4082 ((-3 |#2| "failed") |#2| (-1163) (-834 |#2|) (-834 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-4115 (((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-635 (-406 |#2|))) 41)) (-2543 (((-579 (-406 |#2|)) (-406 |#2|)) 28)) (-4091 (((-3 (-406 |#2|) "failed") (-406 |#2|)) 17)) (-4104 (((-3 (-2 (|:| -1440 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-406 |#2|)) 48)))
+(((-562 |#1| |#2|) (-10 -7 (-15 -2543 ((-579 (-406 |#2|)) (-406 |#2|))) (-15 -4091 ((-3 (-406 |#2|) "failed") (-406 |#2|))) (-15 -4104 ((-3 (-2 (|:| -1440 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-406 |#2|))) (-15 -4115 ((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-635 (-406 |#2|))))) (-13 (-362) (-146) (-1028 (-558))) (-1222 |#1|)) (T -562))
+((-4115 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-635 (-406 *6))) (-5 *3 (-406 *6)) (-4 *6 (-1222 *5)) (-4 *5 (-13 (-362) (-146) (-1028 (-558)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-562 *5 *6)))) (-4104 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-362) (-146) (-1028 (-558)))) (-4 *5 (-1222 *4)) (-5 *2 (-2 (|:| -1440 (-406 *5)) (|:| |coeff| (-406 *5)))) (-5 *1 (-562 *4 *5)) (-5 *3 (-406 *5)))) (-4091 (*1 *2 *2) (|partial| -12 (-5 *2 (-406 *4)) (-4 *4 (-1222 *3)) (-4 *3 (-13 (-362) (-146) (-1028 (-558)))) (-5 *1 (-562 *3 *4)))) (-2543 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1028 (-558)))) (-4 *5 (-1222 *4)) (-5 *2 (-579 (-406 *5))) (-5 *1 (-562 *4 *5)) (-5 *3 (-406 *5)))))
+(-10 -7 (-15 -2543 ((-579 (-406 |#2|)) (-406 |#2|))) (-15 -4091 ((-3 (-406 |#2|) "failed") (-406 |#2|))) (-15 -4104 ((-3 (-2 (|:| -1440 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-406 |#2|))) (-15 -4115 ((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-635 (-406 |#2|)))))
+((-4126 (((-3 (-558) "failed") |#1|) 14)) (-1318 (((-112) |#1|) 13)) (-3548 (((-558) |#1|) 9)))
+(((-563 |#1|) (-10 -7 (-15 -3548 ((-558) |#1|)) (-15 -1318 ((-112) |#1|)) (-15 -4126 ((-3 (-558) "failed") |#1|))) (-1028 (-558))) (T -563))
+((-4126 (*1 *2 *3) (|partial| -12 (-5 *2 (-558)) (-5 *1 (-563 *3)) (-4 *3 (-1028 *2)))) (-1318 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-563 *3)) (-4 *3 (-1028 (-558))))) (-3548 (*1 *2 *3) (-12 (-5 *2 (-558)) (-5 *1 (-563 *3)) (-4 *3 (-1028 *2)))))
+(-10 -7 (-15 -3548 ((-558) |#1|)) (-15 -1318 ((-112) |#1|)) (-15 -4126 ((-3 (-558) "failed") |#1|)))
+((-4163 (((-3 (-2 (|:| |mainpart| (-406 (-942 |#1|))) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 (-942 |#1|))) (|:| |logand| (-406 (-942 |#1|))))))) "failed") (-406 (-942 |#1|)) (-1163) (-635 (-406 (-942 |#1|)))) 48)) (-4138 (((-579 (-406 (-942 |#1|))) (-406 (-942 |#1|)) (-1163)) 28)) (-4151 (((-3 (-406 (-942 |#1|)) "failed") (-406 (-942 |#1|)) (-1163)) 23)) (-4175 (((-3 (-2 (|:| -1440 (-406 (-942 |#1|))) (|:| |coeff| (-406 (-942 |#1|)))) "failed") (-406 (-942 |#1|)) (-1163) (-406 (-942 |#1|))) 35)))
+(((-564 |#1|) (-10 -7 (-15 -4138 ((-579 (-406 (-942 |#1|))) (-406 (-942 |#1|)) (-1163))) (-15 -4151 ((-3 (-406 (-942 |#1|)) "failed") (-406 (-942 |#1|)) (-1163))) (-15 -4163 ((-3 (-2 (|:| |mainpart| (-406 (-942 |#1|))) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 (-942 |#1|))) (|:| |logand| (-406 (-942 |#1|))))))) "failed") (-406 (-942 |#1|)) (-1163) (-635 (-406 (-942 |#1|))))) (-15 -4175 ((-3 (-2 (|:| -1440 (-406 (-942 |#1|))) (|:| |coeff| (-406 (-942 |#1|)))) "failed") (-406 (-942 |#1|)) (-1163) (-406 (-942 |#1|))))) (-13 (-550) (-1028 (-558)) (-146))) (T -564))
+((-4175 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1163)) (-4 *5 (-13 (-550) (-1028 (-558)) (-146))) (-5 *2 (-2 (|:| -1440 (-406 (-942 *5))) (|:| |coeff| (-406 (-942 *5))))) (-5 *1 (-564 *5)) (-5 *3 (-406 (-942 *5))))) (-4163 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1163)) (-5 *5 (-635 (-406 (-942 *6)))) (-5 *3 (-406 (-942 *6))) (-4 *6 (-13 (-550) (-1028 (-558)) (-146))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-564 *6)))) (-4151 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-406 (-942 *4))) (-5 *3 (-1163)) (-4 *4 (-13 (-550) (-1028 (-558)) (-146))) (-5 *1 (-564 *4)))) (-4138 (*1 *2 *3 *4) (-12 (-5 *4 (-1163)) (-4 *5 (-13 (-550) (-1028 (-558)) (-146))) (-5 *2 (-579 (-406 (-942 *5)))) (-5 *1 (-564 *5)) (-5 *3 (-406 (-942 *5))))))
+(-10 -7 (-15 -4138 ((-579 (-406 (-942 |#1|))) (-406 (-942 |#1|)) (-1163))) (-15 -4151 ((-3 (-406 (-942 |#1|)) "failed") (-406 (-942 |#1|)) (-1163))) (-15 -4163 ((-3 (-2 (|:| |mainpart| (-406 (-942 |#1|))) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 (-942 |#1|))) (|:| |logand| (-406 (-942 |#1|))))))) "failed") (-406 (-942 |#1|)) (-1163) (-635 (-406 (-942 |#1|))))) (-15 -4175 ((-3 (-2 (|:| -1440 (-406 (-942 |#1|))) (|:| |coeff| (-406 (-942 |#1|)))) "failed") (-406 (-942 |#1|)) (-1163) (-406 (-942 |#1|)))))
+((-3207 (((-112) $ $) 58)) (-2067 (((-112) $) 36)) (-4039 ((|#1| $) 30)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL)) (-1881 (($ $) NIL)) (-1857 (((-112) $) 62)) (-4088 (($ $) 122)) (-2135 (($ $) 102)) (-2738 ((|#1| $) 28)) (-2089 (((-3 $ "failed") $ $) NIL)) (-2534 (($ $) NIL)) (-4070 (($ $) 124)) (-2112 (($ $) 98)) (-4113 (($ $) 126)) (-2156 (($ $) 106)) (-1816 (($) NIL T CONST)) (-3069 (((-3 (-558) "failed") $) 77)) (-1863 (((-558) $) 79)) (-2588 (((-3 $ "failed") $) 61)) (-1834 (($ |#1| |#1|) 26)) (-2045 (((-112) $) 33)) (-1904 (($) 88)) (-2035 (((-112) $) 43)) (-3828 (($ $ (-558)) NIL)) (-2055 (((-112) $) 34)) (-3910 (($ $ $) NIL)) (-3542 (($ $ $) NIL)) (-2592 (($ $) 90)) (-2665 (($ $ $) NIL) (($ (-635 $)) NIL)) (-4310 (((-1145) $) NIL)) (-1845 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-406 (-558))) 76)) (-1824 ((|#1| $) 27)) (-2975 (((-1107) $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-2699 (($ $ $) 64) (($ (-635 $)) NIL)) (-3983 (((-3 $ "failed") $ $) 63)) (-2573 (($ $) 92)) (-4124 (($ $) 130)) (-2167 (($ $) 104)) (-4102 (($ $) 132)) (-2146 (($ $) 108)) (-4080 (($ $) 128)) (-2124 (($ $) 100)) (-1813 (((-112) $ |#1|) 31)) (-3220 (((-853) $) 84) (($ (-558)) 66) (($ $) NIL) (($ (-558)) 66)) (-2542 (((-762)) 86)) (-4159 (($ $) 144)) (-2200 (($ $) 114)) (-1870 (((-112) $ $) NIL)) (-4135 (($ $) 142)) (-2178 (($ $) 110)) (-4184 (($ $) 140)) (-2222 (($ $) 120)) (-1878 (($ $) 138)) (-4060 (($ $) 118)) (-4171 (($ $) 136)) (-2211 (($ $) 116)) (-4147 (($ $) 134)) (-2189 (($ $) 112)) (-2131 (($) 21 T CONST)) (-2142 (($) 10 T CONST)) (-1747 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1683 (((-112) $ $) 37)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 35)) (-1798 (($ $) 41) (($ $ $) 42)) (-1784 (($ $ $) 40)) (** (($ $ (-911)) 54) (($ $ (-762)) NIL) (($ $ $) 94) (($ $ (-406 (-558))) 146)) (* (($ (-911) $) 51) (($ (-762) $) NIL) (($ (-558) $) 50) (($ $ $) 48)))
+(((-565 |#1|) (-548 |#1|) (-13 (-403) (-1185))) (T -565))
+NIL
+(-548 |#1|)
+((-3719 (((-3 (-635 (-1159 (-558))) "failed") (-635 (-1159 (-558))) (-1159 (-558))) 24)))
+(((-566) (-10 -7 (-15 -3719 ((-3 (-635 (-1159 (-558))) "failed") (-635 (-1159 (-558))) (-1159 (-558)))))) (T -566))
+((-3719 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-635 (-1159 (-558)))) (-5 *3 (-1159 (-558))) (-5 *1 (-566)))))
+(-10 -7 (-15 -3719 ((-3 (-635 (-1159 (-558))) "failed") (-635 (-1159 (-558))) (-1159 (-558)))))
+((-4187 (((-635 (-604 |#2|)) (-635 (-604 |#2|)) (-1163)) 19)) (-4219 (((-635 (-604 |#2|)) (-635 |#2|) (-1163)) 23)) (-3539 (((-635 (-604 |#2|)) (-635 (-604 |#2|)) (-635 (-604 |#2|))) 11)) (-4229 ((|#2| |#2| (-1163)) 53 (|has| |#1| (-550)))) (-4240 ((|#2| |#2| (-1163)) 77 (-12 (|has| |#2| (-283)) (|has| |#1| (-450))))) (-4208 (((-604 |#2|) (-604 |#2|) (-635 (-604 |#2|)) (-1163)) 25)) (-4197 (((-604 |#2|) (-635 (-604 |#2|))) 24)) (-4251 (((-579 |#2|) |#2| (-1163) (-1 (-579 |#2|) |#2| (-1163)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1163))) 101 (-12 (|has| |#2| (-283)) (|has| |#2| (-621)) (|has| |#2| (-1028 (-1163))) (|has| |#1| (-606 (-882 (-558)))) (|has| |#1| (-450)) (|has| |#1| (-876 (-558)))))))
+(((-567 |#1| |#2|) (-10 -7 (-15 -4187 ((-635 (-604 |#2|)) (-635 (-604 |#2|)) (-1163))) (-15 -4197 ((-604 |#2|) (-635 (-604 |#2|)))) (-15 -4208 ((-604 |#2|) (-604 |#2|) (-635 (-604 |#2|)) (-1163))) (-15 -3539 ((-635 (-604 |#2|)) (-635 (-604 |#2|)) (-635 (-604 |#2|)))) (-15 -4219 ((-635 (-604 |#2|)) (-635 |#2|) (-1163))) (IF (|has| |#1| (-550)) (-15 -4229 (|#2| |#2| (-1163))) |%noBranch|) (IF (|has| |#1| (-450)) (IF (|has| |#2| (-283)) (PROGN (-15 -4240 (|#2| |#2| (-1163))) (IF (|has| |#1| (-606 (-882 (-558)))) (IF (|has| |#1| (-876 (-558))) (IF (|has| |#2| (-621)) (IF (|has| |#2| (-1028 (-1163))) (-15 -4251 ((-579 |#2|) |#2| (-1163) (-1 (-579 |#2|) |#2| (-1163)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1163)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-841) (-429 |#1|)) (T -567))
+((-4251 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-579 *3) *3 (-1163))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1163))) (-4 *3 (-283)) (-4 *3 (-621)) (-4 *3 (-1028 *4)) (-4 *3 (-429 *7)) (-5 *4 (-1163)) (-4 *7 (-606 (-882 (-558)))) (-4 *7 (-450)) (-4 *7 (-876 (-558))) (-4 *7 (-841)) (-5 *2 (-579 *3)) (-5 *1 (-567 *7 *3)))) (-4240 (*1 *2 *2 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-450)) (-4 *4 (-841)) (-5 *1 (-567 *4 *2)) (-4 *2 (-283)) (-4 *2 (-429 *4)))) (-4229 (*1 *2 *2 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-550)) (-4 *4 (-841)) (-5 *1 (-567 *4 *2)) (-4 *2 (-429 *4)))) (-4219 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *6)) (-5 *4 (-1163)) (-4 *6 (-429 *5)) (-4 *5 (-841)) (-5 *2 (-635 (-604 *6))) (-5 *1 (-567 *5 *6)))) (-3539 (*1 *2 *2 *2) (-12 (-5 *2 (-635 (-604 *4))) (-4 *4 (-429 *3)) (-4 *3 (-841)) (-5 *1 (-567 *3 *4)))) (-4208 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-635 (-604 *6))) (-5 *4 (-1163)) (-5 *2 (-604 *6)) (-4 *6 (-429 *5)) (-4 *5 (-841)) (-5 *1 (-567 *5 *6)))) (-4197 (*1 *2 *3) (-12 (-5 *3 (-635 (-604 *5))) (-4 *4 (-841)) (-5 *2 (-604 *5)) (-5 *1 (-567 *4 *5)) (-4 *5 (-429 *4)))) (-4187 (*1 *2 *2 *3) (-12 (-5 *2 (-635 (-604 *5))) (-5 *3 (-1163)) (-4 *5 (-429 *4)) (-4 *4 (-841)) (-5 *1 (-567 *4 *5)))))
+(-10 -7 (-15 -4187 ((-635 (-604 |#2|)) (-635 (-604 |#2|)) (-1163))) (-15 -4197 ((-604 |#2|) (-635 (-604 |#2|)))) (-15 -4208 ((-604 |#2|) (-604 |#2|) (-635 (-604 |#2|)) (-1163))) (-15 -3539 ((-635 (-604 |#2|)) (-635 (-604 |#2|)) (-635 (-604 |#2|)))) (-15 -4219 ((-635 (-604 |#2|)) (-635 |#2|) (-1163))) (IF (|has| |#1| (-550)) (-15 -4229 (|#2| |#2| (-1163))) |%noBranch|) (IF (|has| |#1| (-450)) (IF (|has| |#2| (-283)) (PROGN (-15 -4240 (|#2| |#2| (-1163))) (IF (|has| |#1| (-606 (-882 (-558)))) (IF (|has| |#1| (-876 (-558))) (IF (|has| |#2| (-621)) (IF (|has| |#2| (-1028 (-1163))) (-15 -4251 ((-579 |#2|) |#2| (-1163) (-1 (-579 |#2|) |#2| (-1163)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1163)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-4289 (((-2 (|:| |answer| (-579 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-635 |#1|) "failed") (-558) |#1| |#1|)) 171)) (-4325 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1440 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-635 (-406 |#2|))) 147)) (-4359 (((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-635 (-406 |#2|))) 144)) (-1286 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1440 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 132)) (-4263 (((-2 (|:| |answer| (-579 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1440 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 157)) (-4349 (((-3 (-2 (|:| -1440 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-406 |#2|)) 174)) (-4301 (((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1440 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1440 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-406 |#2|)) 177)) (-1310 (((-2 (|:| |ir| (-579 (-406 |#2|))) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|)) 84)) (-1321 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-4337 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3425 |#1|) (|:| |sol?| (-112))) (-558) |#1|) (-635 (-406 |#2|))) 151)) (-1298 (((-3 (-615 |#1| |#2|) "failed") (-615 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3425 |#1|) (|:| |sol?| (-112))) (-558) |#1|)) 136)) (-4277 (((-2 (|:| |answer| (-579 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3425 |#1|) (|:| |sol?| (-112))) (-558) |#1|)) 161)) (-4313 (((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1440 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3425 |#1|) (|:| |sol?| (-112))) (-558) |#1|) (-406 |#2|)) 182)))
+(((-568 |#1| |#2|) (-10 -7 (-15 -4263 ((-2 (|:| |answer| (-579 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1440 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -4277 ((-2 (|:| |answer| (-579 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3425 |#1|) (|:| |sol?| (-112))) (-558) |#1|))) (-15 -4289 ((-2 (|:| |answer| (-579 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-635 |#1|) "failed") (-558) |#1| |#1|))) (-15 -4301 ((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1440 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1440 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-406 |#2|))) (-15 -4313 ((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1440 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3425 |#1|) (|:| |sol?| (-112))) (-558) |#1|) (-406 |#2|))) (-15 -4325 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1440 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-635 (-406 |#2|)))) (-15 -4337 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3425 |#1|) (|:| |sol?| (-112))) (-558) |#1|) (-635 (-406 |#2|)))) (-15 -4349 ((-3 (-2 (|:| -1440 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-406 |#2|))) (-15 -4359 ((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-635 (-406 |#2|)))) (-15 -1286 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1440 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1298 ((-3 (-615 |#1| |#2|) "failed") (-615 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3425 |#1|) (|:| |sol?| (-112))) (-558) |#1|))) (-15 -1310 ((-2 (|:| |ir| (-579 (-406 |#2|))) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|))) (-15 -1321 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-362) (-1222 |#1|)) (T -568))
+((-1321 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1222 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-568 *5 *3)))) (-1310 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1222 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| |ir| (-579 (-406 *6))) (|:| |specpart| (-406 *6)) (|:| |polypart| *6))) (-5 *1 (-568 *5 *6)) (-5 *3 (-406 *6)))) (-1298 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-615 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3425 *4) (|:| |sol?| (-112))) (-558) *4)) (-4 *4 (-362)) (-4 *5 (-1222 *4)) (-5 *1 (-568 *4 *5)))) (-1286 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -1440 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-362)) (-5 *1 (-568 *4 *2)) (-4 *2 (-1222 *4)))) (-4359 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-635 (-406 *7))) (-4 *7 (-1222 *6)) (-5 *3 (-406 *7)) (-4 *6 (-362)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-568 *6 *7)))) (-4349 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1222 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| -1440 (-406 *6)) (|:| |coeff| (-406 *6)))) (-5 *1 (-568 *5 *6)) (-5 *3 (-406 *6)))) (-4337 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3425 *7) (|:| |sol?| (-112))) (-558) *7)) (-5 *6 (-635 (-406 *8))) (-4 *7 (-362)) (-4 *8 (-1222 *7)) (-5 *3 (-406 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-568 *7 *8)))) (-4325 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -1440 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-635 (-406 *8))) (-4 *7 (-362)) (-4 *8 (-1222 *7)) (-5 *3 (-406 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-568 *7 *8)))) (-4313 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3425 *6) (|:| |sol?| (-112))) (-558) *6)) (-4 *6 (-362)) (-4 *7 (-1222 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-406 *7)) (|:| |a0| *6)) (-2 (|:| -1440 (-406 *7)) (|:| |coeff| (-406 *7))) "failed")) (-5 *1 (-568 *6 *7)) (-5 *3 (-406 *7)))) (-4301 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1440 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-362)) (-4 *7 (-1222 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-406 *7)) (|:| |a0| *6)) (-2 (|:| -1440 (-406 *7)) (|:| |coeff| (-406 *7))) "failed")) (-5 *1 (-568 *6 *7)) (-5 *3 (-406 *7)))) (-4289 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-635 *6) "failed") (-558) *6 *6)) (-4 *6 (-362)) (-4 *7 (-1222 *6)) (-5 *2 (-2 (|:| |answer| (-579 (-406 *7))) (|:| |a0| *6))) (-5 *1 (-568 *6 *7)) (-5 *3 (-406 *7)))) (-4277 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3425 *6) (|:| |sol?| (-112))) (-558) *6)) (-4 *6 (-362)) (-4 *7 (-1222 *6)) (-5 *2 (-2 (|:| |answer| (-579 (-406 *7))) (|:| |a0| *6))) (-5 *1 (-568 *6 *7)) (-5 *3 (-406 *7)))) (-4263 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1440 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-362)) (-4 *7 (-1222 *6)) (-5 *2 (-2 (|:| |answer| (-579 (-406 *7))) (|:| |a0| *6))) (-5 *1 (-568 *6 *7)) (-5 *3 (-406 *7)))))
+(-10 -7 (-15 -4263 ((-2 (|:| |answer| (-579 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1440 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -4277 ((-2 (|:| |answer| (-579 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3425 |#1|) (|:| |sol?| (-112))) (-558) |#1|))) (-15 -4289 ((-2 (|:| |answer| (-579 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-635 |#1|) "failed") (-558) |#1| |#1|))) (-15 -4301 ((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1440 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1440 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-406 |#2|))) (-15 -4313 ((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1440 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3425 |#1|) (|:| |sol?| (-112))) (-558) |#1|) (-406 |#2|))) (-15 -4325 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1440 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-635 (-406 |#2|)))) (-15 -4337 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3425 |#1|) (|:| |sol?| (-112))) (-558) |#1|) (-635 (-406 |#2|)))) (-15 -4349 ((-3 (-2 (|:| -1440 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-406 |#2|))) (-15 -4359 ((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-635 (-406 |#2|)))) (-15 -1286 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1440 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1298 ((-3 (-615 |#1| |#2|) "failed") (-615 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3425 |#1|) (|:| |sol?| (-112))) (-558) |#1|))) (-15 -1310 ((-2 (|:| |ir| (-579 (-406 |#2|))) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|))) (-15 -1321 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
+((-1335 (((-3 |#2| "failed") |#2| (-1163) (-1163)) 10)))
+(((-569 |#1| |#2|) (-10 -7 (-15 -1335 ((-3 |#2| "failed") |#2| (-1163) (-1163)))) (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558))) (-13 (-1185) (-949) (-1126) (-29 |#1|))) (T -569))
+((-1335 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1163)) (-4 *4 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-569 *4 *2)) (-4 *2 (-13 (-1185) (-949) (-1126) (-29 *4))))))
+(-10 -7 (-15 -1335 ((-3 |#2| "failed") |#2| (-1163) (-1163))))
+((-3725 (((-1107) $ (-128)) 12)) (-3735 (((-1107) $ (-129)) 11)) (-2535 (((-1107) $ (-128)) 7)) (-2547 (((-1107) $) 8)) (-2436 (($ $) 6)))
+(((-570) (-139)) (T -570))
+NIL
+(-13 (-525) (-851))
+(((-172) . T) ((-525) . T) ((-851) . T))
+((-3725 (((-1107) $ (-128)) NIL)) (-3735 (((-1107) $ (-129)) NIL)) (-2535 (((-1107) $ (-128)) NIL)) (-2547 (((-1107) $) NIL)) (-3744 (((-112) $) NIL)) (-1347 (($ (-387)) 14) (($ (-1145)) 16)) (-3220 (((-853) $) NIL)) (-2436 (($ $) NIL)))
+(((-571) (-13 (-570) (-605 (-853)) (-10 -8 (-15 -1347 ($ (-387))) (-15 -1347 ($ (-1145))) (-15 -3744 ((-112) $))))) (T -571))
+((-1347 (*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-571)))) (-1347 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-571)))) (-3744 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-571)))))
+(-13 (-570) (-605 (-853)) (-10 -8 (-15 -1347 ($ (-387))) (-15 -1347 ($ (-1145))) (-15 -3744 ((-112) $))))
+((-3207 (((-112) $ $) NIL)) (-3746 (($) 7 T CONST)) (-4310 (((-1145) $) NIL)) (-1460 (($) 6 T CONST)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 14)) (-1358 (($) 8 T CONST)) (-1683 (((-112) $ $) 10)))
+(((-572) (-13 (-1087) (-10 -8 (-15 -1460 ($) -3707) (-15 -3746 ($) -3707) (-15 -1358 ($) -3707)))) (T -572))
+((-1460 (*1 *1) (-5 *1 (-572))) (-3746 (*1 *1) (-5 *1 (-572))) (-1358 (*1 *1) (-5 *1 (-572))))
+(-13 (-1087) (-10 -8 (-15 -1460 ($) -3707) (-15 -3746 ($) -3707) (-15 -1358 ($) -3707)))
+((-3207 (((-112) $ $) NIL)) (-1976 (((-3 $ "failed") (-489)) 13)) (-4310 (((-1145) $) NIL)) (-1382 (($ (-1145)) 9)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 28)) (-1371 (((-212 4 (-129)) $) 16)) (-1683 (((-112) $ $) 19)))
+(((-573) (-13 (-1087) (-10 -8 (-15 -1382 ($ (-1145))) (-15 -1371 ((-212 4 (-129)) $)) (-15 -1976 ((-3 $ "failed") (-489)))))) (T -573))
+((-1382 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-573)))) (-1371 (*1 *2 *1) (-12 (-5 *2 (-212 4 (-129))) (-5 *1 (-573)))) (-1976 (*1 *1 *2) (|partial| -12 (-5 *2 (-489)) (-5 *1 (-573)))))
+(-13 (-1087) (-10 -8 (-15 -1382 ($ (-1145))) (-15 -1371 ((-212 4 (-129)) $)) (-15 -1976 ((-3 $ "failed") (-489)))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL)) (-1881 (($ $) NIL)) (-1857 (((-112) $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-2534 (($ $ (-558)) 66)) (-3732 (((-112) $ $) NIL)) (-1816 (($) NIL T CONST)) (-2952 (($ (-1159 (-558)) (-558)) 72)) (-4025 (($ $ $) NIL)) (-2588 (((-3 $ "failed") $) 58)) (-2962 (($ $) 34)) (-4004 (($ $ $) NIL)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL)) (-3449 (((-762) $) 15)) (-2035 (((-112) $) NIL)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2985 (((-558)) 29)) (-2972 (((-558) $) 32)) (-2665 (($ $ $) NIL) (($ (-635 $)) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-2699 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3430 (($ $ (-558)) 21)) (-3983 (((-3 $ "failed") $ $) 59)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3722 (((-762) $) 16)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 61)) (-2997 (((-1143 (-558)) $) 18)) (-2011 (($ $) 23)) (-3220 (((-853) $) 86) (($ (-558)) 52) (($ $) NIL)) (-2542 (((-762)) 14)) (-1870 (((-112) $ $) NIL)) (-1352 (((-558) $ (-558)) 36)) (-2131 (($) 35 T CONST)) (-2142 (($) 19 T CONST)) (-1683 (((-112) $ $) 39)) (-1798 (($ $) 51) (($ $ $) 37)) (-1784 (($ $ $) 50)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 54) (($ $ $) 55)))
+(((-574 |#1| |#2|) (-859 |#1|) (-558) (-112)) (T -574))
+NIL
+(-859 |#1|)
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) 21)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL)) (-1881 (($ $) NIL)) (-1857 (((-112) $) NIL)) (-4195 (((-112) $) NIL)) (-4160 (((-762)) NIL)) (-1635 (($ $ (-911)) NIL (|has| $ (-367))) (($ $) NIL)) (-2163 (((-1173 (-911) (-762)) (-558)) 47)) (-2089 (((-3 $ "failed") $ $) NIL)) (-3465 (($ $) NIL)) (-1380 (((-417 $) $) NIL)) (-3732 (((-112) $ $) NIL)) (-2276 (((-762)) NIL)) (-1816 (($) NIL T CONST)) (-3069 (((-3 $ "failed") $) 75)) (-1863 (($ $) 74)) (-3997 (($ (-1246 $)) 73)) (-3367 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-4025 (($ $ $) NIL)) (-2588 (((-3 $ "failed") $) 32)) (-2424 (($) NIL)) (-4004 (($ $ $) NIL)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL)) (-2672 (($) 49)) (-2219 (((-112) $) NIL)) (-1895 (($ $) NIL) (($ $ (-762)) NIL)) (-3031 (((-112) $) NIL)) (-3449 (((-824 (-911)) $) NIL) (((-911) $) NIL)) (-2035 (((-112) $) NIL)) (-2670 (($) 37 (|has| $ (-367)))) (-2649 (((-112) $) NIL (|has| $ (-367)))) (-2615 (($ $ (-911)) NIL (|has| $ (-367))) (($ $) NIL)) (-2457 (((-3 $ "failed") $) NIL)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2681 (((-1159 $) $ (-911)) NIL (|has| $ (-367))) (((-1159 $) $) 83)) (-2637 (((-911) $) 55)) (-3919 (((-1159 $) $) NIL (|has| $ (-367)))) (-3907 (((-3 (-1159 $) "failed") $ $) NIL (|has| $ (-367))) (((-1159 $) $) NIL (|has| $ (-367)))) (-3928 (($ $ (-1159 $)) NIL (|has| $ (-367)))) (-2665 (($ $ $) NIL) (($ (-635 $)) NIL)) (-4310 (((-1145) $) NIL)) (-2418 (($ $) NIL)) (-1796 (($) NIL T CONST)) (-2851 (($ (-911)) 48)) (-4185 (((-112) $) 67)) (-2975 (((-1107) $) NIL)) (-4098 (($) 19 (|has| $ (-367)))) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-2699 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2174 (((-635 (-2 (|:| -2522 (-558)) (|:| -1951 (-558))))) 42)) (-2522 (((-417 $) $) NIL)) (-4172 (((-911)) 66) (((-824 (-911))) NIL)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3983 (((-3 $ "failed") $ $) NIL)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3722 (((-762) $) NIL)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL)) (-1905 (((-3 (-762) "failed") $ $) NIL) (((-762) $) NIL)) (-2148 (((-133)) NIL)) (-2829 (($ $ (-762)) NIL) (($ $) NIL)) (-4323 (((-911) $) 65) (((-824 (-911)) $) NIL)) (-2036 (((-1159 $)) 82)) (-3377 (($) 54)) (-2791 (($) 38 (|has| $ (-367)))) (-4205 (((-679 $) (-1246 $)) NIL) (((-1246 $) $) 71)) (-3224 (((-558) $) 28)) (-3709 (((-3 (-1246 $) "failed") (-679 $)) NIL)) (-3220 (((-853) $) NIL) (($ (-558)) 30) (($ $) NIL) (($ (-406 (-558))) NIL)) (-3698 (((-3 $ "failed") $) NIL) (($ $) 84)) (-2542 (((-762)) 39)) (-2660 (((-1246 $) (-911)) 77) (((-1246 $)) 76)) (-1870 (((-112) $ $) NIL)) (-4206 (((-112) $) NIL)) (-2131 (($) 22 T CONST)) (-2142 (($) 18 T CONST)) (-4148 (($ $ (-762)) NIL (|has| $ (-367))) (($ $) NIL (|has| $ (-367)))) (-1866 (($ $ (-762)) NIL) (($ $) NIL)) (-1683 (((-112) $ $) NIL)) (-1810 (($ $ $) NIL)) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) 26)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 61) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL)))
+(((-575 |#1|) (-13 (-348) (-328 $) (-606 (-558))) (-911)) (T -575))
+NIL
+(-13 (-348) (-328 $) (-606 (-558)))
+((-1393 (((-1251) (-1145)) 10)))
+(((-576) (-10 -7 (-15 -1393 ((-1251) (-1145))))) (T -576))
+((-1393 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-576)))))
+(-10 -7 (-15 -1393 ((-1251) (-1145))))
+((-3469 (((-579 |#2|) (-579 |#2|)) 39)) (-4294 (((-635 |#2|) (-579 |#2|)) 41)) (-1534 ((|#2| (-579 |#2|)) 47)))
+(((-577 |#1| |#2|) (-10 -7 (-15 -3469 ((-579 |#2|) (-579 |#2|))) (-15 -4294 ((-635 |#2|) (-579 |#2|))) (-15 -1534 (|#2| (-579 |#2|)))) (-13 (-450) (-1028 (-558)) (-841) (-631 (-558))) (-13 (-29 |#1|) (-1185))) (T -577))
+((-1534 (*1 *2 *3) (-12 (-5 *3 (-579 *2)) (-4 *2 (-13 (-29 *4) (-1185))) (-5 *1 (-577 *4 *2)) (-4 *4 (-13 (-450) (-1028 (-558)) (-841) (-631 (-558)))))) (-4294 (*1 *2 *3) (-12 (-5 *3 (-579 *5)) (-4 *5 (-13 (-29 *4) (-1185))) (-4 *4 (-13 (-450) (-1028 (-558)) (-841) (-631 (-558)))) (-5 *2 (-635 *5)) (-5 *1 (-577 *4 *5)))) (-3469 (*1 *2 *2) (-12 (-5 *2 (-579 *4)) (-4 *4 (-13 (-29 *3) (-1185))) (-4 *3 (-13 (-450) (-1028 (-558)) (-841) (-631 (-558)))) (-5 *1 (-577 *3 *4)))))
+(-10 -7 (-15 -3469 ((-579 |#2|) (-579 |#2|))) (-15 -4294 ((-635 |#2|) (-579 |#2|))) (-15 -1534 (|#2| (-579 |#2|))))
+((-3167 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -1440 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1440 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-579 |#2|) (-1 |#2| |#1|) (-579 |#1|)) 30)))
+(((-578 |#1| |#2|) (-10 -7 (-15 -3167 ((-579 |#2|) (-1 |#2| |#1|) (-579 |#1|))) (-15 -3167 ((-3 (-2 (|:| -1440 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1440 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3167 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3167 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-362) (-362)) (T -578))
+((-3167 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-362)) (-4 *6 (-362)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-578 *5 *6)))) (-3167 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-362)) (-4 *2 (-362)) (-5 *1 (-578 *5 *2)))) (-3167 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -1440 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-362)) (-4 *6 (-362)) (-5 *2 (-2 (|:| -1440 *6) (|:| |coeff| *6))) (-5 *1 (-578 *5 *6)))) (-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-579 *5)) (-4 *5 (-362)) (-4 *6 (-362)) (-5 *2 (-579 *6)) (-5 *1 (-578 *5 *6)))))
+(-10 -7 (-15 -3167 ((-579 |#2|) (-1 |#2| |#1|) (-579 |#1|))) (-15 -3167 ((-3 (-2 (|:| -1440 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1440 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3167 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3167 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-1816 (($) NIL T CONST)) (-3069 (((-3 |#1| "failed") $) 69)) (-1863 ((|#1| $) NIL)) (-1440 ((|#1| $) 26)) (-1417 (((-635 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-1452 (($ |#1| (-635 (-2 (|:| |scalar| (-406 (-558))) (|:| |coeff| (-1159 |#1|)) (|:| |logand| (-1159 |#1|)))) (-635 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-1427 (((-635 (-2 (|:| |scalar| (-406 (-558))) (|:| |coeff| (-1159 |#1|)) (|:| |logand| (-1159 |#1|)))) $) 27)) (-4310 (((-1145) $) NIL)) (-2661 (($ |#1| |#1|) 33) (($ |#1| (-1163)) 44 (|has| |#1| (-1028 (-1163))))) (-2975 (((-1107) $) NIL)) (-1406 (((-112) $) 30)) (-2829 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1163)) 82 (|has| |#1| (-890 (-1163))))) (-3220 (((-853) $) 96) (($ |#1|) 25)) (-2131 (($) 16 T CONST)) (-1683 (((-112) $ $) NIL)) (-1798 (($ $) 15) (($ $ $) NIL)) (-1784 (($ $ $) 78)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 14) (($ (-406 (-558)) $) 36) (($ $ (-406 (-558))) NIL)))
+(((-579 |#1|) (-13 (-708 (-406 (-558))) (-1028 |#1|) (-10 -8 (-15 -1452 ($ |#1| (-635 (-2 (|:| |scalar| (-406 (-558))) (|:| |coeff| (-1159 |#1|)) (|:| |logand| (-1159 |#1|)))) (-635 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1440 (|#1| $)) (-15 -1427 ((-635 (-2 (|:| |scalar| (-406 (-558))) (|:| |coeff| (-1159 |#1|)) (|:| |logand| (-1159 |#1|)))) $)) (-15 -1417 ((-635 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1406 ((-112) $)) (-15 -2661 ($ |#1| |#1|)) (-15 -2829 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-890 (-1163))) (-15 -2829 (|#1| $ (-1163))) |%noBranch|) (IF (|has| |#1| (-1028 (-1163))) (-15 -2661 ($ |#1| (-1163))) |%noBranch|))) (-362)) (T -579))
+((-1452 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-635 (-2 (|:| |scalar| (-406 (-558))) (|:| |coeff| (-1159 *2)) (|:| |logand| (-1159 *2))))) (-5 *4 (-635 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-362)) (-5 *1 (-579 *2)))) (-1440 (*1 *2 *1) (-12 (-5 *1 (-579 *2)) (-4 *2 (-362)))) (-1427 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |scalar| (-406 (-558))) (|:| |coeff| (-1159 *3)) (|:| |logand| (-1159 *3))))) (-5 *1 (-579 *3)) (-4 *3 (-362)))) (-1417 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-579 *3)) (-4 *3 (-362)))) (-1406 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-579 *3)) (-4 *3 (-362)))) (-2661 (*1 *1 *2 *2) (-12 (-5 *1 (-579 *2)) (-4 *2 (-362)))) (-2829 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-579 *2)) (-4 *2 (-362)))) (-2829 (*1 *2 *1 *3) (-12 (-4 *2 (-362)) (-4 *2 (-890 *3)) (-5 *1 (-579 *2)) (-5 *3 (-1163)))) (-2661 (*1 *1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *1 (-579 *2)) (-4 *2 (-1028 *3)) (-4 *2 (-362)))))
+(-13 (-708 (-406 (-558))) (-1028 |#1|) (-10 -8 (-15 -1452 ($ |#1| (-635 (-2 (|:| |scalar| (-406 (-558))) (|:| |coeff| (-1159 |#1|)) (|:| |logand| (-1159 |#1|)))) (-635 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1440 (|#1| $)) (-15 -1427 ((-635 (-2 (|:| |scalar| (-406 (-558))) (|:| |coeff| (-1159 |#1|)) (|:| |logand| (-1159 |#1|)))) $)) (-15 -1417 ((-635 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1406 ((-112) $)) (-15 -2661 ($ |#1| |#1|)) (-15 -2829 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-890 (-1163))) (-15 -2829 (|#1| $ (-1163))) |%noBranch|) (IF (|has| |#1| (-1028 (-1163))) (-15 -2661 ($ |#1| (-1163))) |%noBranch|)))
+((-1492 (((-112) |#1|) 16)) (-1502 (((-3 |#1| "failed") |#1|) 14)) (-1475 (((-2 (|:| -2579 |#1|) (|:| -1951 (-762))) |#1|) 30) (((-3 |#1| "failed") |#1| (-762)) 18)) (-1462 (((-112) |#1| (-762)) 19)) (-1513 ((|#1| |#1|) 31)) (-1484 ((|#1| |#1| (-762)) 33)))
+(((-580 |#1|) (-10 -7 (-15 -1462 ((-112) |#1| (-762))) (-15 -1475 ((-3 |#1| "failed") |#1| (-762))) (-15 -1475 ((-2 (|:| -2579 |#1|) (|:| -1951 (-762))) |#1|)) (-15 -1484 (|#1| |#1| (-762))) (-15 -1492 ((-112) |#1|)) (-15 -1502 ((-3 |#1| "failed") |#1|)) (-15 -1513 (|#1| |#1|))) (-543)) (T -580))
+((-1513 (*1 *2 *2) (-12 (-5 *1 (-580 *2)) (-4 *2 (-543)))) (-1502 (*1 *2 *2) (|partial| -12 (-5 *1 (-580 *2)) (-4 *2 (-543)))) (-1492 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-580 *3)) (-4 *3 (-543)))) (-1484 (*1 *2 *2 *3) (-12 (-5 *3 (-762)) (-5 *1 (-580 *2)) (-4 *2 (-543)))) (-1475 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2579 *3) (|:| -1951 (-762)))) (-5 *1 (-580 *3)) (-4 *3 (-543)))) (-1475 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-762)) (-5 *1 (-580 *2)) (-4 *2 (-543)))) (-1462 (*1 *2 *3 *4) (-12 (-5 *4 (-762)) (-5 *2 (-112)) (-5 *1 (-580 *3)) (-4 *3 (-543)))))
+(-10 -7 (-15 -1462 ((-112) |#1| (-762))) (-15 -1475 ((-3 |#1| "failed") |#1| (-762))) (-15 -1475 ((-2 (|:| -2579 |#1|) (|:| -1951 (-762))) |#1|)) (-15 -1484 (|#1| |#1| (-762))) (-15 -1492 ((-112) |#1|)) (-15 -1502 ((-3 |#1| "failed") |#1|)) (-15 -1513 (|#1| |#1|)))
+((-1524 (((-1159 |#1|) (-911)) 26)))
+(((-581 |#1|) (-10 -7 (-15 -1524 ((-1159 |#1|) (-911)))) (-348)) (T -581))
+((-1524 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1159 *4)) (-5 *1 (-581 *4)) (-4 *4 (-348)))))
+(-10 -7 (-15 -1524 ((-1159 |#1|) (-911))))
+((-3469 (((-579 (-406 (-942 |#1|))) (-579 (-406 (-942 |#1|)))) 27)) (-2543 (((-3 (-315 |#1|) (-635 (-315 |#1|))) (-406 (-942 |#1|)) (-1163)) 34 (|has| |#1| (-146)))) (-4294 (((-635 (-315 |#1|)) (-579 (-406 (-942 |#1|)))) 19)) (-1544 (((-315 |#1|) (-406 (-942 |#1|)) (-1163)) 32 (|has| |#1| (-146)))) (-1534 (((-315 |#1|) (-579 (-406 (-942 |#1|)))) 21)))
+(((-582 |#1|) (-10 -7 (-15 -3469 ((-579 (-406 (-942 |#1|))) (-579 (-406 (-942 |#1|))))) (-15 -4294 ((-635 (-315 |#1|)) (-579 (-406 (-942 |#1|))))) (-15 -1534 ((-315 |#1|) (-579 (-406 (-942 |#1|))))) (IF (|has| |#1| (-146)) (PROGN (-15 -2543 ((-3 (-315 |#1|) (-635 (-315 |#1|))) (-406 (-942 |#1|)) (-1163))) (-15 -1544 ((-315 |#1|) (-406 (-942 |#1|)) (-1163)))) |%noBranch|)) (-13 (-450) (-1028 (-558)) (-841) (-631 (-558)))) (T -582))
+((-1544 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-942 *5))) (-5 *4 (-1163)) (-4 *5 (-146)) (-4 *5 (-13 (-450) (-1028 (-558)) (-841) (-631 (-558)))) (-5 *2 (-315 *5)) (-5 *1 (-582 *5)))) (-2543 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-942 *5))) (-5 *4 (-1163)) (-4 *5 (-146)) (-4 *5 (-13 (-450) (-1028 (-558)) (-841) (-631 (-558)))) (-5 *2 (-3 (-315 *5) (-635 (-315 *5)))) (-5 *1 (-582 *5)))) (-1534 (*1 *2 *3) (-12 (-5 *3 (-579 (-406 (-942 *4)))) (-4 *4 (-13 (-450) (-1028 (-558)) (-841) (-631 (-558)))) (-5 *2 (-315 *4)) (-5 *1 (-582 *4)))) (-4294 (*1 *2 *3) (-12 (-5 *3 (-579 (-406 (-942 *4)))) (-4 *4 (-13 (-450) (-1028 (-558)) (-841) (-631 (-558)))) (-5 *2 (-635 (-315 *4))) (-5 *1 (-582 *4)))) (-3469 (*1 *2 *2) (-12 (-5 *2 (-579 (-406 (-942 *3)))) (-4 *3 (-13 (-450) (-1028 (-558)) (-841) (-631 (-558)))) (-5 *1 (-582 *3)))))
+(-10 -7 (-15 -3469 ((-579 (-406 (-942 |#1|))) (-579 (-406 (-942 |#1|))))) (-15 -4294 ((-635 (-315 |#1|)) (-579 (-406 (-942 |#1|))))) (-15 -1534 ((-315 |#1|) (-579 (-406 (-942 |#1|))))) (IF (|has| |#1| (-146)) (PROGN (-15 -2543 ((-3 (-315 |#1|) (-635 (-315 |#1|))) (-406 (-942 |#1|)) (-1163))) (-15 -1544 ((-315 |#1|) (-406 (-942 |#1|)) (-1163)))) |%noBranch|))
+((-3462 (((-635 (-679 (-558))) (-635 (-558)) (-635 (-895 (-558)))) 45) (((-635 (-679 (-558))) (-635 (-558))) 46) (((-679 (-558)) (-635 (-558)) (-895 (-558))) 41)) (-1555 (((-762) (-635 (-558))) 39)))
+(((-583) (-10 -7 (-15 -1555 ((-762) (-635 (-558)))) (-15 -3462 ((-679 (-558)) (-635 (-558)) (-895 (-558)))) (-15 -3462 ((-635 (-679 (-558))) (-635 (-558)))) (-15 -3462 ((-635 (-679 (-558))) (-635 (-558)) (-635 (-895 (-558))))))) (T -583))
+((-3462 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-558))) (-5 *4 (-635 (-895 (-558)))) (-5 *2 (-635 (-679 (-558)))) (-5 *1 (-583)))) (-3462 (*1 *2 *3) (-12 (-5 *3 (-635 (-558))) (-5 *2 (-635 (-679 (-558)))) (-5 *1 (-583)))) (-3462 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-558))) (-5 *4 (-895 (-558))) (-5 *2 (-679 (-558))) (-5 *1 (-583)))) (-1555 (*1 *2 *3) (-12 (-5 *3 (-635 (-558))) (-5 *2 (-762)) (-5 *1 (-583)))))
+(-10 -7 (-15 -1555 ((-762) (-635 (-558)))) (-15 -3462 ((-679 (-558)) (-635 (-558)) (-895 (-558)))) (-15 -3462 ((-635 (-679 (-558))) (-635 (-558)))) (-15 -3462 ((-635 (-679 (-558))) (-635 (-558)) (-635 (-895 (-558))))))
+((-4101 (((-635 |#5|) |#5| (-112)) 72)) (-3473 (((-112) |#5| (-635 |#5|)) 30)))
+(((-584 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4101 ((-635 |#5|) |#5| (-112))) (-15 -3473 ((-112) |#5| (-635 |#5|)))) (-13 (-306) (-146)) (-784) (-841) (-1053 |#1| |#2| |#3|) (-1096 |#1| |#2| |#3| |#4|)) (T -584))
+((-3473 (*1 *2 *3 *4) (-12 (-5 *4 (-635 *3)) (-4 *3 (-1096 *5 *6 *7 *8)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *8 (-1053 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-584 *5 *6 *7 *8 *3)))) (-4101 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *8 (-1053 *5 *6 *7)) (-5 *2 (-635 *3)) (-5 *1 (-584 *5 *6 *7 *8 *3)) (-4 *3 (-1096 *5 *6 *7 *8)))))
+(-10 -7 (-15 -4101 ((-635 |#5|) |#5| (-112))) (-15 -3473 ((-112) |#5| (-635 |#5|))))
+((-3207 (((-112) $ $) NIL)) (-3986 (((-1122) $) 11)) (-3976 (((-1122) $) 9)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 19) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1683 (((-112) $ $) NIL)))
+(((-585) (-13 (-1070) (-10 -8 (-15 -3976 ((-1122) $)) (-15 -3986 ((-1122) $))))) (T -585))
+((-3976 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-585)))) (-3986 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-585)))))
+(-13 (-1070) (-10 -8 (-15 -3976 ((-1122) $)) (-15 -3986 ((-1122) $))))
+((-3207 (((-112) $ $) NIL (|has| (-143) (-1087)))) (-2280 (($ $) 34)) (-2289 (($ $) NIL)) (-3460 (($ $ (-143)) NIL) (($ $ (-140)) NIL)) (-3869 (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4383)))) (-1734 (((-112) $ $) 51)) (-1708 (((-112) $ $ (-558)) 46)) (-3469 (((-635 $) $ (-143)) 59) (((-635 $) $ (-140)) 60)) (-1538 (((-112) (-1 (-112) (-143) (-143)) $) NIL) (((-112) $) NIL (|has| (-143) (-841)))) (-2763 (($ (-1 (-112) (-143) (-143)) $) NIL (|has| $ (-6 -4383))) (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-143) (-841))))) (-2376 (($ (-1 (-112) (-143) (-143)) $) NIL) (($ $) NIL (|has| (-143) (-841)))) (-3026 (((-112) $ (-762)) NIL)) (-1532 (((-143) $ (-558) (-143)) 45 (|has| $ (-6 -4383))) (((-143) $ (-1213 (-558)) (-143)) NIL (|has| $ (-6 -4383)))) (-4329 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4382)))) (-1816 (($) NIL T CONST)) (-2290 (($ $ (-143)) 63) (($ $ (-140)) 64)) (-3306 (($ $) NIL (|has| $ (-6 -4383)))) (-4127 (($ $) NIL)) (-3480 (($ $ (-1213 (-558)) $) 44)) (-2338 (($ $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-143) (-1087))))) (-1539 (($ (-143) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-143) (-1087)))) (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4382)))) (-3048 (((-143) (-1 (-143) (-143) (-143)) $ (-143) (-143)) NIL (-12 (|has| $ (-6 -4382)) (|has| (-143) (-1087)))) (((-143) (-1 (-143) (-143) (-143)) $ (-143)) NIL (|has| $ (-6 -4382))) (((-143) (-1 (-143) (-143) (-143)) $) NIL (|has| $ (-6 -4382)))) (-1817 (((-143) $ (-558) (-143)) NIL (|has| $ (-6 -4383)))) (-1746 (((-143) $ (-558)) NIL)) (-1759 (((-112) $ $) 71)) (-1517 (((-558) (-1 (-112) (-143)) $) NIL) (((-558) (-143) $) NIL (|has| (-143) (-1087))) (((-558) (-143) $ (-558)) 48 (|has| (-143) (-1087))) (((-558) $ $ (-558)) 47) (((-558) (-140) $ (-558)) 50)) (-2240 (((-635 (-143)) $) NIL (|has| $ (-6 -4382)))) (-3315 (($ (-762) (-143)) 9)) (-2986 (((-112) $ (-762)) NIL)) (-3889 (((-558) $) 28 (|has| (-558) (-841)))) (-3910 (($ $ $) NIL (|has| (-143) (-841)))) (-1677 (($ (-1 (-112) (-143) (-143)) $ $) NIL) (($ $ $) NIL (|has| (-143) (-841)))) (-2122 (((-635 (-143)) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) (-143) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-143) (-1087))))) (-3899 (((-558) $) 42 (|has| (-558) (-841)))) (-3542 (($ $ $) NIL (|has| (-143) (-841)))) (-1576 (((-112) $ $ (-143)) 72)) (-2837 (((-762) $ $ (-143)) 69)) (-1807 (($ (-1 (-143) (-143)) $) 33 (|has| $ (-6 -4383)))) (-3167 (($ (-1 (-143) (-143)) $) NIL) (($ (-1 (-143) (-143) (-143)) $ $) NIL)) (-2299 (($ $) 37)) (-2309 (($ $) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-2300 (($ $ (-143)) 61) (($ $ (-140)) 62)) (-4310 (((-1145) $) 38 (|has| (-143) (-1087)))) (-1861 (($ (-143) $ (-558)) NIL) (($ $ $ (-558)) 23)) (-3920 (((-635 (-558)) $) NIL)) (-3929 (((-112) (-558) $) NIL)) (-2975 (((-558) $) 68) (((-1107) $) NIL (|has| (-143) (-1087)))) (-2305 (((-143) $) NIL (|has| (-558) (-841)))) (-4307 (((-3 (-143) "failed") (-1 (-112) (-143)) $) NIL)) (-3880 (($ $ (-143)) NIL (|has| $ (-6 -4383)))) (-3266 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 (-143)))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087)))) (($ $ (-293 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087)))) (($ $ (-143) (-143)) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087)))) (($ $ (-635 (-143)) (-635 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087))))) (-2381 (((-112) $ $) NIL)) (-3908 (((-112) (-143) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-143) (-1087))))) (-3937 (((-635 (-143)) $) NIL)) (-3375 (((-112) $) 12)) (-2083 (($) 10)) (-2195 (((-143) $ (-558) (-143)) NIL) (((-143) $ (-558)) 52) (($ $ (-1213 (-558))) 21) (($ $ $) NIL)) (-4023 (($ $ (-558)) NIL) (($ $ (-1213 (-558))) NIL)) (-2988 (((-762) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4382))) (((-762) (-143) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-143) (-1087))))) (-2773 (($ $ $ (-558)) 65 (|has| $ (-6 -4383)))) (-1553 (($ $) 17)) (-3224 (((-534) $) NIL (|has| (-143) (-606 (-534))))) (-3233 (($ (-635 (-143))) NIL)) (-4341 (($ $ (-143)) NIL) (($ (-143) $) NIL) (($ $ $) 16) (($ (-635 $)) 66)) (-3220 (($ (-143)) NIL) (((-853) $) 27 (|has| (-143) (-605 (-853))))) (-3277 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4382)))) (-1747 (((-112) $ $) NIL (|has| (-143) (-841)))) (-1720 (((-112) $ $) NIL (|has| (-143) (-841)))) (-1683 (((-112) $ $) 14 (|has| (-143) (-1087)))) (-1731 (((-112) $ $) NIL (|has| (-143) (-841)))) (-1705 (((-112) $ $) 15 (|has| (-143) (-841)))) (-2755 (((-762) $) 13 (|has| $ (-6 -4382)))))
+(((-586 |#1|) (-13 (-1131) (-10 -8 (-15 -2975 ((-558) $)))) (-558)) (T -586))
+((-2975 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-586 *3)) (-14 *3 *2))))
+(-13 (-1131) (-10 -8 (-15 -2975 ((-558) $))))
+((-2754 (((-2 (|:| |num| |#4|) (|:| |den| (-558))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-558))) |#4| |#2| (-1081 |#4|)) 32)))
+(((-587 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2754 ((-2 (|:| |num| |#4|) (|:| |den| (-558))) |#4| |#2| (-1081 |#4|))) (-15 -2754 ((-2 (|:| |num| |#4|) (|:| |den| (-558))) |#4| |#2|))) (-784) (-841) (-550) (-939 |#3| |#1| |#2|)) (T -587))
+((-2754 (*1 *2 *3 *4) (-12 (-4 *5 (-784)) (-4 *4 (-841)) (-4 *6 (-550)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-558)))) (-5 *1 (-587 *5 *4 *6 *3)) (-4 *3 (-939 *6 *5 *4)))) (-2754 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1081 *3)) (-4 *3 (-939 *7 *6 *4)) (-4 *6 (-784)) (-4 *4 (-841)) (-4 *7 (-550)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-558)))) (-5 *1 (-587 *6 *4 *7 *3)))))
+(-10 -7 (-15 -2754 ((-2 (|:| |num| |#4|) (|:| |den| (-558))) |#4| |#2| (-1081 |#4|))) (-15 -2754 ((-2 (|:| |num| |#4|) (|:| |den| (-558))) |#4| |#2|)))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) 63)) (-2671 (((-635 (-1069)) $) NIL)) (-1602 (((-1163) $) NIL)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1881 (($ $) NIL (|has| |#1| (-550)))) (-1857 (((-112) $) NIL (|has| |#1| (-550)))) (-3440 (($ $ (-558)) 54) (($ $ (-558) (-558)) 55)) (-3456 (((-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) $) 60)) (-3770 (($ $) 99)) (-2089 (((-3 $ "failed") $ $) NIL)) (-3752 (((-853) (-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) (-1016 (-834 (-558))) (-1163) |#1| (-406 (-558))) 223)) (-3871 (($ (-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|)))) 34)) (-1816 (($) NIL T CONST)) (-2490 (($ $) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-2020 (((-112) $) NIL)) (-3449 (((-558) $) 58) (((-558) $ (-558)) 59)) (-2035 (((-112) $) NIL)) (-3486 (($ $ (-911)) 76)) (-2555 (($ (-1 |#1| (-558)) $) 73)) (-4238 (((-112) $) 25)) (-2648 (($ |#1| (-558)) 22) (($ $ (-1069) (-558)) NIL) (($ $ (-635 (-1069)) (-635 (-558))) NIL)) (-3167 (($ (-1 |#1| |#1|) $) 67)) (-3807 (($ (-1016 (-834 (-558))) (-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|)))) 13)) (-2451 (($ $) NIL)) (-2463 ((|#1| $) NIL)) (-4310 (((-1145) $) NIL)) (-2543 (($ $) 149 (|has| |#1| (-38 (-406 (-558)))))) (-3779 (((-3 $ "failed") $ $ (-112)) 98)) (-3761 (($ $ $) 107)) (-2975 (((-1107) $) NIL)) (-3789 (((-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) $) 15)) (-3798 (((-1016 (-834 (-558))) $) 14)) (-3430 (($ $ (-558)) 45)) (-3983 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-2554 (((-1143 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-558)))))) (-2195 ((|#1| $ (-558)) 57) (($ $ $) NIL (|has| (-558) (-1099)))) (-2829 (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163)) NIL (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-762)) NIL (|has| |#1| (-15 * (|#1| (-558) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (-4323 (((-558) $) NIL)) (-2011 (($ $) 46)) (-3220 (((-853) $) NIL) (($ (-558)) 28) (($ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $) NIL (|has| |#1| (-550))) (($ |#1|) 27 (|has| |#1| (-171)))) (-3736 ((|#1| $ (-558)) 56)) (-3698 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2542 (((-762)) 37)) (-2673 ((|#1| $) NIL)) (-3569 (($ $) 185 (|has| |#1| (-38 (-406 (-558)))))) (-3684 (($ $) 157 (|has| |#1| (-38 (-406 (-558)))))) (-3588 (($ $) 189 (|has| |#1| (-38 (-406 (-558)))))) (-3703 (($ $) 162 (|has| |#1| (-38 (-406 (-558)))))) (-3550 (($ $) 188 (|has| |#1| (-38 (-406 (-558)))))) (-3664 (($ $) 161 (|has| |#1| (-38 (-406 (-558)))))) (-3733 (($ $ (-406 (-558))) 165 (|has| |#1| (-38 (-406 (-558)))))) (-3742 (($ $ |#1|) 145 (|has| |#1| (-38 (-406 (-558)))))) (-3714 (($ $) 191 (|has| |#1| (-38 (-406 (-558)))))) (-3723 (($ $) 148 (|has| |#1| (-38 (-406 (-558)))))) (-3537 (($ $) 190 (|has| |#1| (-38 (-406 (-558)))))) (-3655 (($ $) 163 (|has| |#1| (-38 (-406 (-558)))))) (-3560 (($ $) 186 (|has| |#1| (-38 (-406 (-558)))))) (-3675 (($ $) 159 (|has| |#1| (-38 (-406 (-558)))))) (-3579 (($ $) 187 (|has| |#1| (-38 (-406 (-558)))))) (-3693 (($ $) 160 (|has| |#1| (-38 (-406 (-558)))))) (-3508 (($ $) 196 (|has| |#1| (-38 (-406 (-558)))))) (-3626 (($ $) 172 (|has| |#1| (-38 (-406 (-558)))))) (-3526 (($ $) 193 (|has| |#1| (-38 (-406 (-558)))))) (-3644 (($ $) 167 (|has| |#1| (-38 (-406 (-558)))))) (-3490 (($ $) 200 (|has| |#1| (-38 (-406 (-558)))))) (-3607 (($ $) 176 (|has| |#1| (-38 (-406 (-558)))))) (-3482 (($ $) 202 (|has| |#1| (-38 (-406 (-558)))))) (-3597 (($ $) 178 (|has| |#1| (-38 (-406 (-558)))))) (-3499 (($ $) 198 (|has| |#1| (-38 (-406 (-558)))))) (-3617 (($ $) 174 (|has| |#1| (-38 (-406 (-558)))))) (-3517 (($ $) 195 (|has| |#1| (-38 (-406 (-558)))))) (-3635 (($ $) 170 (|has| |#1| (-38 (-406 (-558)))))) (-1870 (((-112) $ $) NIL (|has| |#1| (-550)))) (-1352 ((|#1| $ (-558)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-558)))) (|has| |#1| (-15 -3220 (|#1| (-1163))))))) (-2131 (($) 29 T CONST)) (-2142 (($) 38 T CONST)) (-1866 (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163)) NIL (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-762)) NIL (|has| |#1| (-15 * (|#1| (-558) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (-1683 (((-112) $ $) 65)) (-1810 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1798 (($ $) 84) (($ $ $) 64)) (-1784 (($ $ $) 81)) (** (($ $ (-911)) NIL) (($ $ (-762)) 102)) (* (($ (-911) $) 89) (($ (-762) $) 87) (($ (-558) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 114) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558)))))))
+(((-588 |#1|) (-13 (-1224 |#1| (-558)) (-10 -8 (-15 -3807 ($ (-1016 (-834 (-558))) (-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|))))) (-15 -3798 ((-1016 (-834 (-558))) $)) (-15 -3789 ((-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) $)) (-15 -3871 ($ (-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|))))) (-15 -4238 ((-112) $)) (-15 -2555 ($ (-1 |#1| (-558)) $)) (-15 -3779 ((-3 $ "failed") $ $ (-112))) (-15 -3770 ($ $)) (-15 -3761 ($ $ $)) (-15 -3752 ((-853) (-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) (-1016 (-834 (-558))) (-1163) |#1| (-406 (-558)))) (IF (|has| |#1| (-38 (-406 (-558)))) (PROGN (-15 -2543 ($ $)) (-15 -3742 ($ $ |#1|)) (-15 -3733 ($ $ (-406 (-558)))) (-15 -3723 ($ $)) (-15 -3714 ($ $)) (-15 -3703 ($ $)) (-15 -3693 ($ $)) (-15 -3684 ($ $)) (-15 -3675 ($ $)) (-15 -3664 ($ $)) (-15 -3655 ($ $)) (-15 -3644 ($ $)) (-15 -3635 ($ $)) (-15 -3626 ($ $)) (-15 -3617 ($ $)) (-15 -3607 ($ $)) (-15 -3597 ($ $)) (-15 -3588 ($ $)) (-15 -3579 ($ $)) (-15 -3569 ($ $)) (-15 -3560 ($ $)) (-15 -3550 ($ $)) (-15 -3537 ($ $)) (-15 -3526 ($ $)) (-15 -3517 ($ $)) (-15 -3508 ($ $)) (-15 -3499 ($ $)) (-15 -3490 ($ $)) (-15 -3482 ($ $))) |%noBranch|))) (-1039)) (T -588))
+((-4238 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-588 *3)) (-4 *3 (-1039)))) (-3807 (*1 *1 *2 *3) (-12 (-5 *2 (-1016 (-834 (-558)))) (-5 *3 (-1143 (-2 (|:| |k| (-558)) (|:| |c| *4)))) (-4 *4 (-1039)) (-5 *1 (-588 *4)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-1016 (-834 (-558)))) (-5 *1 (-588 *3)) (-4 *3 (-1039)))) (-3789 (*1 *2 *1) (-12 (-5 *2 (-1143 (-2 (|:| |k| (-558)) (|:| |c| *3)))) (-5 *1 (-588 *3)) (-4 *3 (-1039)))) (-3871 (*1 *1 *2) (-12 (-5 *2 (-1143 (-2 (|:| |k| (-558)) (|:| |c| *3)))) (-4 *3 (-1039)) (-5 *1 (-588 *3)))) (-2555 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-558))) (-4 *3 (-1039)) (-5 *1 (-588 *3)))) (-3779 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-588 *3)) (-4 *3 (-1039)))) (-3770 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-1039)))) (-3761 (*1 *1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-1039)))) (-3752 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1143 (-2 (|:| |k| (-558)) (|:| |c| *6)))) (-5 *4 (-1016 (-834 (-558)))) (-5 *5 (-1163)) (-5 *7 (-406 (-558))) (-4 *6 (-1039)) (-5 *2 (-853)) (-5 *1 (-588 *6)))) (-2543 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-3742 (*1 *1 *1 *2) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-3733 (*1 *1 *1 *2) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-588 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1039)))) (-3723 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-3714 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-3703 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-3693 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-3684 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-3675 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-3664 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-3655 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-3644 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-3635 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-3626 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-3617 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-3607 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-3597 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-3588 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-3579 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-3569 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-3560 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-3550 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-3537 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-3526 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-3517 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-3508 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-3499 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-3490 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-3482 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
+(-13 (-1224 |#1| (-558)) (-10 -8 (-15 -3807 ($ (-1016 (-834 (-558))) (-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|))))) (-15 -3798 ((-1016 (-834 (-558))) $)) (-15 -3789 ((-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) $)) (-15 -3871 ($ (-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|))))) (-15 -4238 ((-112) $)) (-15 -2555 ($ (-1 |#1| (-558)) $)) (-15 -3779 ((-3 $ "failed") $ $ (-112))) (-15 -3770 ($ $)) (-15 -3761 ($ $ $)) (-15 -3752 ((-853) (-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) (-1016 (-834 (-558))) (-1163) |#1| (-406 (-558)))) (IF (|has| |#1| (-38 (-406 (-558)))) (PROGN (-15 -2543 ($ $)) (-15 -3742 ($ $ |#1|)) (-15 -3733 ($ $ (-406 (-558)))) (-15 -3723 ($ $)) (-15 -3714 ($ $)) (-15 -3703 ($ $)) (-15 -3693 ($ $)) (-15 -3684 ($ $)) (-15 -3675 ($ $)) (-15 -3664 ($ $)) (-15 -3655 ($ $)) (-15 -3644 ($ $)) (-15 -3635 ($ $)) (-15 -3626 ($ $)) (-15 -3617 ($ $)) (-15 -3607 ($ $)) (-15 -3597 ($ $)) (-15 -3588 ($ $)) (-15 -3579 ($ $)) (-15 -3569 ($ $)) (-15 -3560 ($ $)) (-15 -3550 ($ $)) (-15 -3537 ($ $)) (-15 -3526 ($ $)) (-15 -3517 ($ $)) (-15 -3508 ($ $)) (-15 -3499 ($ $)) (-15 -3490 ($ $)) (-15 -3482 ($ $))) |%noBranch|)))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1881 (($ $) NIL (|has| |#1| (-550)))) (-1857 (((-112) $) NIL (|has| |#1| (-550)))) (-2089 (((-3 $ "failed") $ $) NIL)) (-3871 (($ (-1143 |#1|)) 9)) (-1816 (($) NIL T CONST)) (-2588 (((-3 $ "failed") $) 42)) (-2020 (((-112) $) 52)) (-3449 (((-762) $) 55) (((-762) $ (-762)) 54)) (-2035 (((-112) $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3983 (((-3 $ "failed") $ $) 44 (|has| |#1| (-550)))) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL (|has| |#1| (-550)))) (-2583 (((-1143 |#1|) $) 23)) (-2542 (((-762)) 51)) (-1870 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2131 (($) 10 T CONST)) (-2142 (($) 14 T CONST)) (-1683 (((-112) $ $) 22)) (-1798 (($ $) 30) (($ $ $) 16)) (-1784 (($ $ $) 25)) (** (($ $ (-911)) NIL) (($ $ (-762)) 49)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-558)) 36)))
+(((-589 |#1|) (-13 (-1039) (-10 -8 (-15 -2583 ((-1143 |#1|) $)) (-15 -3871 ($ (-1143 |#1|))) (-15 -2020 ((-112) $)) (-15 -3449 ((-762) $)) (-15 -3449 ((-762) $ (-762))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-558))) (IF (|has| |#1| (-550)) (-6 (-550)) |%noBranch|))) (-1039)) (T -589))
+((-2583 (*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-589 *3)) (-4 *3 (-1039)))) (-3871 (*1 *1 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-589 *3)))) (-2020 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-589 *3)) (-4 *3 (-1039)))) (-3449 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-589 *3)) (-4 *3 (-1039)))) (-3449 (*1 *2 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-589 *3)) (-4 *3 (-1039)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1039)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1039)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-589 *3)) (-4 *3 (-1039)))))
+(-13 (-1039) (-10 -8 (-15 -2583 ((-1143 |#1|) $)) (-15 -3871 ($ (-1143 |#1|))) (-15 -2020 ((-112) $)) (-15 -3449 ((-762) $)) (-15 -3449 ((-762) $ (-762))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-558))) (IF (|has| |#1| (-550)) (-6 (-550)) |%noBranch|)))
+((-3167 (((-593 |#2|) (-1 |#2| |#1|) (-593 |#1|)) 15)))
+(((-590 |#1| |#2|) (-10 -7 (-15 -3167 ((-593 |#2|) (-1 |#2| |#1|) (-593 |#1|)))) (-1200) (-1200)) (T -590))
+((-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-593 *5)) (-4 *5 (-1200)) (-4 *6 (-1200)) (-5 *2 (-593 *6)) (-5 *1 (-590 *5 *6)))))
+(-10 -7 (-15 -3167 ((-593 |#2|) (-1 |#2| |#1|) (-593 |#1|))))
+((-3167 (((-1143 |#3|) (-1 |#3| |#1| |#2|) (-593 |#1|) (-1143 |#2|)) 20) (((-1143 |#3|) (-1 |#3| |#1| |#2|) (-1143 |#1|) (-593 |#2|)) 19) (((-593 |#3|) (-1 |#3| |#1| |#2|) (-593 |#1|) (-593 |#2|)) 18)))
+(((-591 |#1| |#2| |#3|) (-10 -7 (-15 -3167 ((-593 |#3|) (-1 |#3| |#1| |#2|) (-593 |#1|) (-593 |#2|))) (-15 -3167 ((-1143 |#3|) (-1 |#3| |#1| |#2|) (-1143 |#1|) (-593 |#2|))) (-15 -3167 ((-1143 |#3|) (-1 |#3| |#1| |#2|) (-593 |#1|) (-1143 |#2|)))) (-1200) (-1200) (-1200)) (T -591))
+((-3167 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-593 *6)) (-5 *5 (-1143 *7)) (-4 *6 (-1200)) (-4 *7 (-1200)) (-4 *8 (-1200)) (-5 *2 (-1143 *8)) (-5 *1 (-591 *6 *7 *8)))) (-3167 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1143 *6)) (-5 *5 (-593 *7)) (-4 *6 (-1200)) (-4 *7 (-1200)) (-4 *8 (-1200)) (-5 *2 (-1143 *8)) (-5 *1 (-591 *6 *7 *8)))) (-3167 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-593 *6)) (-5 *5 (-593 *7)) (-4 *6 (-1200)) (-4 *7 (-1200)) (-4 *8 (-1200)) (-5 *2 (-593 *8)) (-5 *1 (-591 *6 *7 *8)))))
+(-10 -7 (-15 -3167 ((-593 |#3|) (-1 |#3| |#1| |#2|) (-593 |#1|) (-593 |#2|))) (-15 -3167 ((-1143 |#3|) (-1 |#3| |#1| |#2|) (-1143 |#1|) (-593 |#2|))) (-15 -3167 ((-1143 |#3|) (-1 |#3| |#1| |#2|) (-593 |#1|) (-1143 |#2|))))
+((-3860 ((|#3| |#3| (-635 (-604 |#3|)) (-635 (-1163))) 55)) (-3850 (((-168 |#2|) |#3|) 117)) (-3817 ((|#3| (-168 |#2|)) 44)) (-3826 ((|#2| |#3|) 19)) (-3838 ((|#3| |#2|) 33)))
+(((-592 |#1| |#2| |#3|) (-10 -7 (-15 -3817 (|#3| (-168 |#2|))) (-15 -3826 (|#2| |#3|)) (-15 -3838 (|#3| |#2|)) (-15 -3850 ((-168 |#2|) |#3|)) (-15 -3860 (|#3| |#3| (-635 (-604 |#3|)) (-635 (-1163))))) (-13 (-550) (-841)) (-13 (-429 |#1|) (-992) (-1185)) (-13 (-429 (-168 |#1|)) (-992) (-1185))) (T -592))
+((-3860 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-635 (-604 *2))) (-5 *4 (-635 (-1163))) (-4 *2 (-13 (-429 (-168 *5)) (-992) (-1185))) (-4 *5 (-13 (-550) (-841))) (-5 *1 (-592 *5 *6 *2)) (-4 *6 (-13 (-429 *5) (-992) (-1185))))) (-3850 (*1 *2 *3) (-12 (-4 *4 (-13 (-550) (-841))) (-5 *2 (-168 *5)) (-5 *1 (-592 *4 *5 *3)) (-4 *5 (-13 (-429 *4) (-992) (-1185))) (-4 *3 (-13 (-429 (-168 *4)) (-992) (-1185))))) (-3838 (*1 *2 *3) (-12 (-4 *4 (-13 (-550) (-841))) (-4 *2 (-13 (-429 (-168 *4)) (-992) (-1185))) (-5 *1 (-592 *4 *3 *2)) (-4 *3 (-13 (-429 *4) (-992) (-1185))))) (-3826 (*1 *2 *3) (-12 (-4 *4 (-13 (-550) (-841))) (-4 *2 (-13 (-429 *4) (-992) (-1185))) (-5 *1 (-592 *4 *2 *3)) (-4 *3 (-13 (-429 (-168 *4)) (-992) (-1185))))) (-3817 (*1 *2 *3) (-12 (-5 *3 (-168 *5)) (-4 *5 (-13 (-429 *4) (-992) (-1185))) (-4 *4 (-13 (-550) (-841))) (-4 *2 (-13 (-429 (-168 *4)) (-992) (-1185))) (-5 *1 (-592 *4 *5 *2)))))
+(-10 -7 (-15 -3817 (|#3| (-168 |#2|))) (-15 -3826 (|#2| |#3|)) (-15 -3838 (|#3| |#2|)) (-15 -3850 ((-168 |#2|) |#3|)) (-15 -3860 (|#3| |#3| (-635 (-604 |#3|)) (-635 (-1163)))))
+((-4329 (($ (-1 (-112) |#1|) $) 17)) (-3167 (($ (-1 |#1| |#1|) $) NIL)) (-4255 (($ (-1 |#1| |#1|) |#1|) 9)) (-4306 (($ (-1 (-112) |#1|) $) 13)) (-4318 (($ (-1 (-112) |#1|) $) 15)) (-3233 (((-1143 |#1|) $) 18)) (-3220 (((-853) $) NIL)))
+(((-593 |#1|) (-13 (-605 (-853)) (-10 -8 (-15 -3167 ($ (-1 |#1| |#1|) $)) (-15 -4306 ($ (-1 (-112) |#1|) $)) (-15 -4318 ($ (-1 (-112) |#1|) $)) (-15 -4329 ($ (-1 (-112) |#1|) $)) (-15 -4255 ($ (-1 |#1| |#1|) |#1|)) (-15 -3233 ((-1143 |#1|) $)))) (-1200)) (T -593))
+((-3167 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1200)) (-5 *1 (-593 *3)))) (-4306 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1200)) (-5 *1 (-593 *3)))) (-4318 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1200)) (-5 *1 (-593 *3)))) (-4329 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1200)) (-5 *1 (-593 *3)))) (-4255 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1200)) (-5 *1 (-593 *3)))) (-3233 (*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-593 *3)) (-4 *3 (-1200)))))
+(-13 (-605 (-853)) (-10 -8 (-15 -3167 ($ (-1 |#1| |#1|) $)) (-15 -4306 ($ (-1 (-112) |#1|) $)) (-15 -4318 ($ (-1 (-112) |#1|) $)) (-15 -4329 ($ (-1 (-112) |#1|) $)) (-15 -4255 ($ (-1 |#1| |#1|) |#1|)) (-15 -3233 ((-1143 |#1|) $))))
+((-3207 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2370 (($ (-762)) NIL (|has| |#1| (-23)))) (-3869 (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4383)))) (-1538 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-841)))) (-2763 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4383))) (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-841))))) (-2376 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-841)))) (-3026 (((-112) $ (-762)) NIL)) (-1532 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4383))) ((|#1| $ (-1213 (-558)) |#1|) NIL (|has| $ (-6 -4383)))) (-4329 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-1816 (($) NIL T CONST)) (-3306 (($ $) NIL (|has| $ (-6 -4383)))) (-4127 (($ $) NIL)) (-2338 (($ $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1539 (($ |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-3048 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4382))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4382)))) (-1817 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4383)))) (-1746 ((|#1| $ (-558)) NIL)) (-1517 (((-558) (-1 (-112) |#1|) $) NIL) (((-558) |#1| $) NIL (|has| |#1| (-1087))) (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1087)))) (-2240 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-1965 (((-679 |#1|) $ $) NIL (|has| |#1| (-1039)))) (-3315 (($ (-762) |#1|) NIL)) (-2986 (((-112) $ (-762)) NIL)) (-3889 (((-558) $) NIL (|has| (-558) (-841)))) (-3910 (($ $ $) NIL (|has| |#1| (-841)))) (-1677 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-841)))) (-2122 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3899 (((-558) $) NIL (|has| (-558) (-841)))) (-3542 (($ $ $) NIL (|has| |#1| (-841)))) (-1807 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2722 ((|#1| $) NIL (-12 (|has| |#1| (-992)) (|has| |#1| (-1039))))) (-2953 (((-112) $ (-762)) NIL)) (-2880 ((|#1| $) NIL (-12 (|has| |#1| (-992)) (|has| |#1| (-1039))))) (-4310 (((-1145) $) NIL (|has| |#1| (-1087)))) (-1861 (($ |#1| $ (-558)) NIL) (($ $ $ (-558)) NIL)) (-3920 (((-635 (-558)) $) NIL)) (-3929 (((-112) (-558) $) NIL)) (-2975 (((-1107) $) NIL (|has| |#1| (-1087)))) (-2305 ((|#1| $) NIL (|has| (-558) (-841)))) (-4307 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3880 (($ $ |#1|) NIL (|has| $ (-6 -4383)))) (-3266 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3908 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3937 (((-635 |#1|) $) NIL)) (-3375 (((-112) $) NIL)) (-2083 (($) NIL)) (-2195 ((|#1| $ (-558) |#1|) NIL) ((|#1| $ (-558)) NIL) (($ $ (-1213 (-558))) NIL)) (-2744 ((|#1| $ $) NIL (|has| |#1| (-1039)))) (-4023 (($ $ (-558)) NIL) (($ $ (-1213 (-558))) NIL)) (-2733 (($ $ $) NIL (|has| |#1| (-1039)))) (-2988 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-2773 (($ $ $ (-558)) NIL (|has| $ (-6 -4383)))) (-1553 (($ $) NIL)) (-3224 (((-534) $) NIL (|has| |#1| (-606 (-534))))) (-3233 (($ (-635 |#1|)) NIL)) (-4341 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-635 $)) NIL)) (-3220 (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-3277 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-1747 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1683 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1798 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1784 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-558) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-717))) (($ $ |#1|) NIL (|has| |#1| (-717)))) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-594 |#1| |#2|) (-1244 |#1|) (-1200) (-558)) (T -594))
+NIL
+(-1244 |#1|)
+((-3869 (((-1251) $ |#2| |#2|) 36)) (-3889 ((|#2| $) 23)) (-3899 ((|#2| $) 21)) (-1807 (($ (-1 |#3| |#3|) $) 32)) (-3167 (($ (-1 |#3| |#3|) $) 30)) (-2305 ((|#3| $) 26)) (-3880 (($ $ |#3|) 33)) (-3908 (((-112) |#3| $) 17)) (-3937 (((-635 |#3|) $) 15)) (-2195 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
+(((-595 |#1| |#2| |#3|) (-10 -8 (-15 -3869 ((-1251) |#1| |#2| |#2|)) (-15 -3880 (|#1| |#1| |#3|)) (-15 -2305 (|#3| |#1|)) (-15 -3889 (|#2| |#1|)) (-15 -3899 (|#2| |#1|)) (-15 -3908 ((-112) |#3| |#1|)) (-15 -3937 ((-635 |#3|) |#1|)) (-15 -2195 (|#3| |#1| |#2|)) (-15 -2195 (|#3| |#1| |#2| |#3|)) (-15 -1807 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3167 (|#1| (-1 |#3| |#3|) |#1|))) (-596 |#2| |#3|) (-1087) (-1200)) (T -595))
+NIL
+(-10 -8 (-15 -3869 ((-1251) |#1| |#2| |#2|)) (-15 -3880 (|#1| |#1| |#3|)) (-15 -2305 (|#3| |#1|)) (-15 -3889 (|#2| |#1|)) (-15 -3899 (|#2| |#1|)) (-15 -3908 ((-112) |#3| |#1|)) (-15 -3937 ((-635 |#3|) |#1|)) (-15 -2195 (|#3| |#1| |#2|)) (-15 -2195 (|#3| |#1| |#2| |#3|)) (-15 -1807 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3167 (|#1| (-1 |#3| |#3|) |#1|)))
+((-3207 (((-112) $ $) 19 (|has| |#2| (-1087)))) (-3869 (((-1251) $ |#1| |#1|) 40 (|has| $ (-6 -4383)))) (-3026 (((-112) $ (-762)) 8)) (-1532 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4383)))) (-1816 (($) 7 T CONST)) (-1817 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4383)))) (-1746 ((|#2| $ |#1|) 51)) (-2240 (((-635 |#2|) $) 30 (|has| $ (-6 -4382)))) (-2986 (((-112) $ (-762)) 9)) (-3889 ((|#1| $) 43 (|has| |#1| (-841)))) (-2122 (((-635 |#2|) $) 29 (|has| $ (-6 -4382)))) (-4322 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1087)) (|has| $ (-6 -4382))))) (-3899 ((|#1| $) 44 (|has| |#1| (-841)))) (-1807 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#2| |#2|) $) 35)) (-2953 (((-112) $ (-762)) 10)) (-4310 (((-1145) $) 22 (|has| |#2| (-1087)))) (-3920 (((-635 |#1|) $) 46)) (-3929 (((-112) |#1| $) 47)) (-2975 (((-1107) $) 21 (|has| |#2| (-1087)))) (-2305 ((|#2| $) 42 (|has| |#1| (-841)))) (-3880 (($ $ |#2|) 41 (|has| $ (-6 -4383)))) (-3266 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#2|))) 26 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-293 |#2|)) 25 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-635 |#2|) (-635 |#2|)) 23 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))) (-2381 (((-112) $ $) 14)) (-3908 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4382)) (|has| |#2| (-1087))))) (-3937 (((-635 |#2|) $) 48)) (-3375 (((-112) $) 11)) (-2083 (($) 12)) (-2195 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-2988 (((-762) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4382))) (((-762) |#2| $) 28 (-12 (|has| |#2| (-1087)) (|has| $ (-6 -4382))))) (-1553 (($ $) 13)) (-3220 (((-853) $) 18 (|has| |#2| (-605 (-853))))) (-3277 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) 20 (|has| |#2| (-1087)))) (-2755 (((-762) $) 6 (|has| $ (-6 -4382)))))
+(((-596 |#1| |#2|) (-139) (-1087) (-1200)) (T -596))
+((-3937 (*1 *2 *1) (-12 (-4 *1 (-596 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1200)) (-5 *2 (-635 *4)))) (-3929 (*1 *2 *3 *1) (-12 (-4 *1 (-596 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1200)) (-5 *2 (-112)))) (-3920 (*1 *2 *1) (-12 (-4 *1 (-596 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1200)) (-5 *2 (-635 *3)))) (-3908 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4382)) (-4 *1 (-596 *4 *3)) (-4 *4 (-1087)) (-4 *3 (-1200)) (-4 *3 (-1087)) (-5 *2 (-112)))) (-3899 (*1 *2 *1) (-12 (-4 *1 (-596 *2 *3)) (-4 *3 (-1200)) (-4 *2 (-1087)) (-4 *2 (-841)))) (-3889 (*1 *2 *1) (-12 (-4 *1 (-596 *2 *3)) (-4 *3 (-1200)) (-4 *2 (-1087)) (-4 *2 (-841)))) (-2305 (*1 *2 *1) (-12 (-4 *1 (-596 *3 *2)) (-4 *3 (-1087)) (-4 *3 (-841)) (-4 *2 (-1200)))) (-3880 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4383)) (-4 *1 (-596 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-1200)))) (-3869 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4383)) (-4 *1 (-596 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1200)) (-5 *2 (-1251)))))
+(-13 (-487 |t#2|) (-287 |t#1| |t#2|) (-10 -8 (-15 -3937 ((-635 |t#2|) $)) (-15 -3929 ((-112) |t#1| $)) (-15 -3920 ((-635 |t#1|) $)) (IF (|has| |t#2| (-1087)) (IF (|has| $ (-6 -4382)) (-15 -3908 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-841)) (PROGN (-15 -3899 (|t#1| $)) (-15 -3889 (|t#1| $)) (-15 -2305 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4383)) (PROGN (-15 -3880 ($ $ |t#2|)) (-15 -3869 ((-1251) $ |t#1| |t#1|))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#2| (-1087)) ((-605 (-853)) -3998 (|has| |#2| (-1087)) (|has| |#2| (-605 (-853)))) ((-285 |#1| |#2|) . T) ((-287 |#1| |#2|) . T) ((-308 |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))) ((-487 |#2|) . T) ((-512 |#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))) ((-1087) |has| |#2| (-1087)) ((-1200) . T))
+((-3220 (((-853) $) 19) (($ (-129)) 13) (((-129) $) 14)))
+(((-597) (-13 (-605 (-853)) (-488 (-129)))) (T -597))
+NIL
+(-13 (-605 (-853)) (-488 (-129)))
+((-3207 (((-112) $ $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) NIL) (($ (-1168)) NIL) (((-1168) $) NIL) (((-1199) $) 14) (($ (-635 (-1199))) 13)) (-3159 (((-635 (-1199)) $) 10)) (-1683 (((-112) $ $) NIL)))
+(((-598) (-13 (-1070) (-605 (-1199)) (-10 -8 (-15 -3220 ($ (-635 (-1199)))) (-15 -3159 ((-635 (-1199)) $))))) (T -598))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-635 (-1199))) (-5 *1 (-598)))) (-3159 (*1 *2 *1) (-12 (-5 *2 (-635 (-1199))) (-5 *1 (-598)))))
+(-13 (-1070) (-605 (-1199)) (-10 -8 (-15 -3220 ($ (-635 (-1199)))) (-15 -3159 ((-635 (-1199)) $))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-1960 (((-3 $ "failed")) NIL (-3998 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))))) (-2089 (((-3 $ "failed") $ $) NIL)) (-4194 (((-1246 (-679 |#1|))) NIL (|has| |#2| (-416 |#1|))) (((-1246 (-679 |#1|)) (-1246 $)) NIL (|has| |#2| (-366 |#1|)))) (-2751 (((-1246 $)) NIL (|has| |#2| (-366 |#1|)))) (-1816 (($) NIL T CONST)) (-2845 (((-3 (-2 (|:| |particular| $) (|:| -2660 (-635 $))) "failed")) NIL (-3998 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))))) (-2458 (((-3 $ "failed")) NIL (-3998 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))))) (-2121 (((-679 |#1|)) NIL (|has| |#2| (-416 |#1|))) (((-679 |#1|) (-1246 $)) NIL (|has| |#2| (-366 |#1|)))) (-2729 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-2096 (((-679 |#1|) $) NIL (|has| |#2| (-416 |#1|))) (((-679 |#1|) $ (-1246 $)) NIL (|has| |#2| (-366 |#1|)))) (-1986 (((-3 $ "failed") $) NIL (-3998 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))))) (-3933 (((-1159 (-942 |#1|))) NIL (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-362))))) (-2015 (($ $ (-911)) NIL)) (-2708 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-2484 (((-1159 |#1|) $) NIL (-3998 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))))) (-2143 ((|#1|) NIL (|has| |#2| (-416 |#1|))) ((|#1| (-1246 $)) NIL (|has| |#2| (-366 |#1|)))) (-2685 (((-1159 |#1|) $) NIL (|has| |#2| (-366 |#1|)))) (-2622 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3997 (($ (-1246 |#1|)) NIL (|has| |#2| (-416 |#1|))) (($ (-1246 |#1|) (-1246 $)) NIL (|has| |#2| (-366 |#1|)))) (-2588 (((-3 $ "failed") $) NIL (-3998 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))))) (-3833 (((-911)) NIL (|has| |#2| (-366 |#1|)))) (-2591 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-4078 (($ $ (-911)) NIL)) (-2539 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2517 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2565 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2854 (((-3 (-2 (|:| |particular| $) (|:| -2660 (-635 $))) "failed")) NIL (-3998 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))))) (-2470 (((-3 $ "failed")) NIL (-3998 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))))) (-2132 (((-679 |#1|)) NIL (|has| |#2| (-416 |#1|))) (((-679 |#1|) (-1246 $)) NIL (|has| |#2| (-366 |#1|)))) (-2740 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-2109 (((-679 |#1|) $) NIL (|has| |#2| (-416 |#1|))) (((-679 |#1|) $ (-1246 $)) NIL (|has| |#2| (-366 |#1|)))) (-1995 (((-3 $ "failed") $) NIL (-3998 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))))) (-2824 (((-1159 (-942 |#1|))) NIL (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-362))))) (-2006 (($ $ (-911)) NIL)) (-2718 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-2498 (((-1159 |#1|) $) NIL (-3998 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))))) (-3985 ((|#1|) NIL (|has| |#2| (-416 |#1|))) ((|#1| (-1246 $)) NIL (|has| |#2| (-366 |#1|)))) (-2696 (((-1159 |#1|) $) NIL (|has| |#2| (-366 |#1|)))) (-2632 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-4310 (((-1145) $) NIL)) (-2527 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2551 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2580 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2975 (((-1107) $) NIL)) (-2612 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2195 ((|#1| $ (-558)) NIL (|has| |#2| (-416 |#1|)))) (-4205 (((-679 |#1|) (-1246 $)) NIL (|has| |#2| (-416 |#1|))) (((-1246 |#1|) $) NIL (|has| |#2| (-416 |#1|))) (((-679 |#1|) (-1246 $) (-1246 $)) NIL (|has| |#2| (-366 |#1|))) (((-1246 |#1|) $ (-1246 $)) NIL (|has| |#2| (-366 |#1|)))) (-3224 (($ (-1246 |#1|)) NIL (|has| |#2| (-416 |#1|))) (((-1246 |#1|) $) NIL (|has| |#2| (-416 |#1|)))) (-3855 (((-635 (-942 |#1|))) NIL (|has| |#2| (-416 |#1|))) (((-635 (-942 |#1|)) (-1246 $)) NIL (|has| |#2| (-366 |#1|)))) (-3443 (($ $ $) NIL)) (-2676 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3220 (((-853) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-2660 (((-1246 $)) NIL (|has| |#2| (-416 |#1|)))) (-2507 (((-635 (-1246 |#1|))) NIL (-3998 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))))) (-3452 (($ $ $ $) NIL)) (-2654 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2258 (($ (-679 |#1|) $) NIL (|has| |#2| (-416 |#1|)))) (-3433 (($ $ $) NIL)) (-2664 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2642 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2602 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2131 (($) NIL T CONST)) (-1683 (((-112) $ $) NIL)) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) 24)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
+(((-599 |#1| |#2|) (-13 (-735 |#1|) (-605 |#2|) (-10 -8 (-15 -3220 ($ |#2|)) (IF (|has| |#2| (-416 |#1|)) (-6 (-416 |#1|)) |%noBranch|) (IF (|has| |#2| (-366 |#1|)) (-6 (-366 |#1|)) |%noBranch|))) (-171) (-735 |#1|)) (T -599))
+((-3220 (*1 *1 *2) (-12 (-4 *3 (-171)) (-5 *1 (-599 *3 *2)) (-4 *2 (-735 *3)))))
+(-13 (-735 |#1|) (-605 |#2|) (-10 -8 (-15 -3220 ($ |#2|)) (IF (|has| |#2| (-416 |#1|)) (-6 (-416 |#1|)) |%noBranch|) (IF (|has| |#2| (-366 |#1|)) (-6 (-366 |#1|)) |%noBranch|)))
+((-3207 (((-112) $ $) NIL)) (-2402 (((-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) $ (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) 33)) (-3303 (($ (-635 (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)))) NIL) (($) NIL)) (-3869 (((-1251) $ (-1145) (-1145)) NIL (|has| $ (-6 -4383)))) (-3026 (((-112) $ (-762)) NIL)) (-1532 ((|#1| $ (-1145) |#1|) 43)) (-4207 (($ (-1 (-112) (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) $) NIL (|has| $ (-6 -4382)))) (-4329 (($ (-1 (-112) (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) $) NIL (|has| $ (-6 -4382)))) (-3083 (((-3 |#1| "failed") (-1145) $) 46)) (-1816 (($) NIL T CONST)) (-2446 (($ $ (-1145)) 24)) (-2338 (($ $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-1087))))) (-3395 (((-3 |#1| "failed") (-1145) $) 47) (($ (-1 (-112) (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) $) NIL (|has| $ (-6 -4382))) (($ (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) $) NIL (|has| $ (-6 -4382)))) (-1539 (($ (-1 (-112) (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) $) NIL (|has| $ (-6 -4382))) (($ (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-1087))))) (-3048 (((-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-1 (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) $) NIL (|has| $ (-6 -4382))) (((-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-1 (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) $ (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) NIL (|has| $ (-6 -4382))) (((-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-1 (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) $ (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-1087))))) (-2412 (((-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) $) 32)) (-1817 ((|#1| $ (-1145) |#1|) NIL (|has| $ (-6 -4383)))) (-1746 ((|#1| $ (-1145)) NIL)) (-2240 (((-635 |#1|) $) NIL (|has| $ (-6 -4382))) (((-635 (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) $) NIL (|has| $ (-6 -4382)))) (-3149 (($ $) 48)) (-1328 (($ (-387)) 22) (($ (-387) (-1145)) 21)) (-1323 (((-387) $) 34)) (-2986 (((-112) $ (-762)) NIL)) (-3889 (((-1145) $) NIL (|has| (-1145) (-841)))) (-2122 (((-635 |#1|) $) NIL (|has| $ (-6 -4382))) (((-635 (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087)))) (((-112) (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-1087))))) (-3899 (((-1145) $) NIL (|has| (-1145) (-841)))) (-1807 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4383))) (($ (-1 (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) $) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL)) (-3848 (((-635 (-1145)) $) 39)) (-3950 (((-112) (-1145) $) NIL)) (-2425 (((-1145) $) 35)) (-1722 (((-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) $) NIL)) (-4328 (($ (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) $) NIL)) (-3920 (((-635 (-1145)) $) NIL)) (-3929 (((-112) (-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-2305 ((|#1| $) NIL (|has| (-1145) (-841)))) (-4307 (((-3 (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) "failed") (-1 (-112) (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) $) NIL)) (-3880 (($ $ |#1|) NIL (|has| $ (-6 -4383)))) (-3524 (((-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) $) NIL)) (-3266 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382))) (((-112) (-1 (-112) (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) (-635 (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)))) NIL (-12 (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-308 (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)))) (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-1087)))) (($ $ (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) NIL (-12 (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-308 (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)))) (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-1087)))) (($ $ (-293 (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)))) NIL (-12 (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-308 (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)))) (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-1087)))) (($ $ (-635 (-293 (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))))) NIL (-12 (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-308 (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)))) (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-1087))))) (-2381 (((-112) $ $) NIL)) (-3908 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3937 (((-635 |#1|) $) NIL)) (-3375 (((-112) $) NIL)) (-2083 (($) 37)) (-2195 ((|#1| $ (-1145) |#1|) NIL) ((|#1| $ (-1145)) 42)) (-2571 (($ (-635 (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)))) NIL) (($) NIL)) (-2988 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087)))) (((-762) (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-1087)))) (((-762) (-1 (-112) (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) $) NIL (|has| $ (-6 -4382)))) (-1553 (($ $) NIL)) (-3224 (((-534) $) NIL (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-606 (-534))))) (-3233 (($ (-635 (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)))) NIL)) (-3220 (((-853) $) 20)) (-2436 (($ $) 25)) (-3534 (($ (-635 (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)))) NIL)) (-3277 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382))) (((-112) (-1 (-112) (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) $) NIL (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) 19)) (-2755 (((-762) $) 41 (|has| $ (-6 -4382)))))
+(((-600 |#1|) (-13 (-363 (-387) (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) (-1176 (-1145) |#1|) (-10 -8 (-6 -4382) (-15 -3149 ($ $)))) (-1087)) (T -600))
+((-3149 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-1087)))))
+(-13 (-363 (-387) (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) (-1176 (-1145) |#1|) (-10 -8 (-6 -4382) (-15 -3149 ($ $))))
+((-4322 (((-112) (-2 (|:| -2700 |#2|) (|:| -2981 |#3|)) $) 15)) (-3848 (((-635 |#2|) $) 19)) (-3950 (((-112) |#2| $) 12)))
+(((-601 |#1| |#2| |#3|) (-10 -8 (-15 -3848 ((-635 |#2|) |#1|)) (-15 -3950 ((-112) |#2| |#1|)) (-15 -4322 ((-112) (-2 (|:| -2700 |#2|) (|:| -2981 |#3|)) |#1|))) (-602 |#2| |#3|) (-1087) (-1087)) (T -601))
+NIL
+(-10 -8 (-15 -3848 ((-635 |#2|) |#1|)) (-15 -3950 ((-112) |#2| |#1|)) (-15 -4322 ((-112) (-2 (|:| -2700 |#2|) (|:| -2981 |#3|)) |#1|)))
+((-3207 (((-112) $ $) 19 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (-3026 (((-112) $ (-762)) 8)) (-4207 (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 45 (|has| $ (-6 -4382)))) (-4329 (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 55 (|has| $ (-6 -4382)))) (-3083 (((-3 |#2| "failed") |#1| $) 61)) (-1816 (($) 7 T CONST)) (-2338 (($ $) 58 (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| $ (-6 -4382))))) (-3395 (($ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) 47 (|has| $ (-6 -4382))) (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 46 (|has| $ (-6 -4382))) (((-3 |#2| "failed") |#1| $) 62)) (-1539 (($ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| $ (-6 -4382)))) (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 54 (|has| $ (-6 -4382)))) (-3048 (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) 56 (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| $ (-6 -4382)))) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) 53 (|has| $ (-6 -4382))) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 52 (|has| $ (-6 -4382)))) (-2240 (((-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 30 (|has| $ (-6 -4382)))) (-2986 (((-112) $ (-762)) 9)) (-2122 (((-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 29 (|has| $ (-6 -4382)))) (-4322 (((-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| $ (-6 -4382))))) (-1807 (($ (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 34 (|has| $ (-6 -4383)))) (-3167 (($ (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 35)) (-2953 (((-112) $ (-762)) 10)) (-4310 (((-1145) $) 22 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (-3848 (((-635 |#1|) $) 63)) (-3950 (((-112) |#1| $) 64)) (-1722 (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) 39)) (-4328 (($ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) 40)) (-2975 (((-1107) $) 21 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (-4307 (((-3 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) "failed") (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 51)) (-3524 (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) 41)) (-3266 (((-112) (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 32 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))))) 26 (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-293 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) 25 (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) 24 (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) 23 (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087))))) (-2381 (((-112) $ $) 14)) (-3375 (((-112) $) 11)) (-2083 (($) 12)) (-2571 (($) 49) (($ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) 48)) (-2988 (((-762) (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 31 (|has| $ (-6 -4382))) (((-762) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| $ (-6 -4382))))) (-1553 (($ $) 13)) (-3224 (((-534) $) 59 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-606 (-534))))) (-3233 (($ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) 50)) (-3220 (((-853) $) 18 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-605 (-853))))) (-3534 (($ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) 42)) (-3277 (((-112) (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 33 (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) 20 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (-2755 (((-762) $) 6 (|has| $ (-6 -4382)))))
+(((-602 |#1| |#2|) (-139) (-1087) (-1087)) (T -602))
+((-3950 (*1 *2 *3 *1) (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-5 *2 (-112)))) (-3848 (*1 *2 *1) (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-5 *2 (-635 *3)))) (-3395 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-602 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-1087)))) (-3083 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-602 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-1087)))))
+(-13 (-228 (-2 (|:| -2700 |t#1|) (|:| -2981 |t#2|))) (-10 -8 (-15 -3950 ((-112) |t#1| $)) (-15 -3848 ((-635 |t#1|) $)) (-15 -3395 ((-3 |t#2| "failed") |t#1| $)) (-15 -3083 ((-3 |t#2| "failed") |t#1| $))))
+(((-34) . T) ((-107 #0=(-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T) ((-102) |has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) ((-605 (-853)) -3998 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-605 (-853)))) ((-150 #0#) . T) ((-606 (-534)) |has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-606 (-534))) ((-228 #0#) . T) ((-234 #0#) . T) ((-308 #0#) -12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087))) ((-487 #0#) . T) ((-512 #0# #0#) -12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087))) ((-1087) |has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) ((-1200) . T))
+((-3980 (((-604 |#2|) |#1|) 15)) (-3991 (((-3 |#1| "failed") (-604 |#2|)) 19)))
+(((-603 |#1| |#2|) (-10 -7 (-15 -3980 ((-604 |#2|) |#1|)) (-15 -3991 ((-3 |#1| "failed") (-604 |#2|)))) (-841) (-841)) (T -603))
+((-3991 (*1 *2 *3) (|partial| -12 (-5 *3 (-604 *4)) (-4 *4 (-841)) (-4 *2 (-841)) (-5 *1 (-603 *2 *4)))) (-3980 (*1 *2 *3) (-12 (-5 *2 (-604 *4)) (-5 *1 (-603 *3 *4)) (-4 *3 (-841)) (-4 *4 (-841)))))
+(-10 -7 (-15 -3980 ((-604 |#2|) |#1|)) (-15 -3991 ((-3 |#1| "failed") (-604 |#2|))))
+((-3207 (((-112) $ $) NIL)) (-3961 (((-3 (-1163) "failed") $) 37)) (-2101 (((-1251) $ (-762)) 26)) (-1517 (((-762) $) 25)) (-3029 (((-114) $) 12)) (-1323 (((-1163) $) 20)) (-3910 (($ $ $) NIL)) (-3542 (($ $ $) NIL)) (-4310 (((-1145) $) NIL)) (-1949 (($ (-114) (-635 |#1|) (-762)) 30) (($ (-1163)) 31)) (-3173 (((-112) $ (-114)) 18) (((-112) $ (-1163)) 16)) (-3382 (((-762) $) 22)) (-2975 (((-1107) $) NIL)) (-3224 (((-882 (-558)) $) 77 (|has| |#1| (-606 (-882 (-558))))) (((-882 (-378)) $) 84 (|has| |#1| (-606 (-882 (-378))))) (((-534) $) 69 (|has| |#1| (-606 (-534))))) (-3220 (((-853) $) 55)) (-3971 (((-635 |#1|) $) 24)) (-1747 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1683 (((-112) $ $) 41)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 42)))
+(((-604 |#1|) (-13 (-131) (-874 |#1|) (-10 -8 (-15 -1323 ((-1163) $)) (-15 -3029 ((-114) $)) (-15 -3971 ((-635 |#1|) $)) (-15 -3382 ((-762) $)) (-15 -1949 ($ (-114) (-635 |#1|) (-762))) (-15 -1949 ($ (-1163))) (-15 -3961 ((-3 (-1163) "failed") $)) (-15 -3173 ((-112) $ (-114))) (-15 -3173 ((-112) $ (-1163))) (IF (|has| |#1| (-606 (-534))) (-6 (-606 (-534))) |%noBranch|))) (-841)) (T -604))
+((-1323 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-604 *3)) (-4 *3 (-841)))) (-3029 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-604 *3)) (-4 *3 (-841)))) (-3971 (*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-604 *3)) (-4 *3 (-841)))) (-3382 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-604 *3)) (-4 *3 (-841)))) (-1949 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-635 *5)) (-5 *4 (-762)) (-4 *5 (-841)) (-5 *1 (-604 *5)))) (-1949 (*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-604 *3)) (-4 *3 (-841)))) (-3961 (*1 *2 *1) (|partial| -12 (-5 *2 (-1163)) (-5 *1 (-604 *3)) (-4 *3 (-841)))) (-3173 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-604 *4)) (-4 *4 (-841)))) (-3173 (*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-112)) (-5 *1 (-604 *4)) (-4 *4 (-841)))))
+(-13 (-131) (-874 |#1|) (-10 -8 (-15 -1323 ((-1163) $)) (-15 -3029 ((-114) $)) (-15 -3971 ((-635 |#1|) $)) (-15 -3382 ((-762) $)) (-15 -1949 ($ (-114) (-635 |#1|) (-762))) (-15 -1949 ($ (-1163))) (-15 -3961 ((-3 (-1163) "failed") $)) (-15 -3173 ((-112) $ (-114))) (-15 -3173 ((-112) $ (-1163))) (IF (|has| |#1| (-606 (-534))) (-6 (-606 (-534))) |%noBranch|)))
+((-3220 ((|#1| $) 6)))
+(((-605 |#1|) (-139) (-1200)) (T -605))
+((-3220 (*1 *2 *1) (-12 (-4 *1 (-605 *2)) (-4 *2 (-1200)))))
+(-13 (-10 -8 (-15 -3220 (|t#1| $))))
+((-3224 ((|#1| $) 6)))
+(((-606 |#1|) (-139) (-1200)) (T -606))
+((-3224 (*1 *2 *1) (-12 (-4 *1 (-606 *2)) (-4 *2 (-1200)))))
+(-13 (-10 -8 (-15 -3224 (|t#1| $))))
+((-4003 (((-3 (-1159 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 (-417 |#2|) |#2|)) 15) (((-3 (-1159 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|)) 16)))
+(((-607 |#1| |#2|) (-10 -7 (-15 -4003 ((-3 (-1159 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|))) (-15 -4003 ((-3 (-1159 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 (-417 |#2|) |#2|)))) (-13 (-146) (-27) (-1028 (-558)) (-1028 (-406 (-558)))) (-1222 |#1|)) (T -607))
+((-4003 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1222 *5)) (-4 *5 (-13 (-146) (-27) (-1028 (-558)) (-1028 (-406 (-558))))) (-5 *2 (-1159 (-406 *6))) (-5 *1 (-607 *5 *6)) (-5 *3 (-406 *6)))) (-4003 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-146) (-27) (-1028 (-558)) (-1028 (-406 (-558))))) (-4 *5 (-1222 *4)) (-5 *2 (-1159 (-406 *5))) (-5 *1 (-607 *4 *5)) (-5 *3 (-406 *5)))))
+(-10 -7 (-15 -4003 ((-3 (-1159 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|))) (-15 -4003 ((-3 (-1159 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 (-417 |#2|) |#2|))))
+((-3220 (($ |#1|) 6)))
+(((-608 |#1|) (-139) (-1200)) (T -608))
+((-3220 (*1 *1 *2) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1200)))))
+(-13 (-10 -8 (-15 -3220 ($ |t#1|))))
+((-3207 (((-112) $ $) NIL)) (-2197 (($) 11 T CONST)) (-3827 (($) 12 T CONST)) (-2095 (($ $ $) 24)) (-3304 (($ $) 22)) (-4310 (((-1145) $) NIL)) (-1638 (($ $ $) 25)) (-2975 (((-1107) $) NIL)) (-2709 (($) 10 T CONST)) (-1628 (($ $ $) 26)) (-3220 (((-853) $) 30)) (-2120 (((-112) $ (|[\|\|]| -2709)) 19) (((-112) $ (|[\|\|]| -2197)) 21) (((-112) $ (|[\|\|]| -3827)) 17)) (-2084 (($ $ $) 23)) (-1683 (((-112) $ $) 15)))
+(((-609) (-13 (-957) (-10 -8 (-15 -2709 ($) -3707) (-15 -2197 ($) -3707) (-15 -3827 ($) -3707) (-15 -2120 ((-112) $ (|[\|\|]| -2709))) (-15 -2120 ((-112) $ (|[\|\|]| -2197))) (-15 -2120 ((-112) $ (|[\|\|]| -3827)))))) (T -609))
+((-2709 (*1 *1) (-5 *1 (-609))) (-2197 (*1 *1) (-5 *1 (-609))) (-3827 (*1 *1) (-5 *1 (-609))) (-2120 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2709)) (-5 *2 (-112)) (-5 *1 (-609)))) (-2120 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2197)) (-5 *2 (-112)) (-5 *1 (-609)))) (-2120 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3827)) (-5 *2 (-112)) (-5 *1 (-609)))))
+(-13 (-957) (-10 -8 (-15 -2709 ($) -3707) (-15 -2197 ($) -3707) (-15 -3827 ($) -3707) (-15 -2120 ((-112) $ (|[\|\|]| -2709))) (-15 -2120 ((-112) $ (|[\|\|]| -2197))) (-15 -2120 ((-112) $ (|[\|\|]| -3827)))))
+((-3224 (($ |#1|) 6)))
+(((-610 |#1|) (-139) (-1200)) (T -610))
+((-3224 (*1 *1 *2) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1200)))))
+(-13 (-10 -8 (-15 -3224 ($ |t#1|))))
+((-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ |#2|) 10)))
+(((-611 |#1| |#2|) (-10 -8 (-15 -3220 (|#1| |#2|)) (-15 -3220 (|#1| (-558))) (-15 -3220 ((-853) |#1|))) (-612 |#2|) (-1039)) (T -611))
+NIL
+(-10 -8 (-15 -3220 (|#1| |#2|)) (-15 -3220 (|#1| (-558))) (-15 -3220 ((-853) |#1|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2089 (((-3 $ "failed") $ $) 19)) (-1816 (($) 17 T CONST)) (-2588 (((-3 $ "failed") $) 33)) (-2035 (((-112) $) 31)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ |#1|) 36)) (-2542 (((-762)) 28)) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1683 (((-112) $ $) 6)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ |#1| $) 37)))
+(((-612 |#1|) (-139) (-1039)) (T -612))
+((-3220 (*1 *1 *2) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1039)))))
+(-13 (-1039) (-638 |t#1|) (-10 -8 (-15 -3220 ($ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-558)) . T) ((-605 (-853)) . T) ((-638 |#1|) . T) ((-638 $) . T) ((-717) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-1397 (((-558) $) NIL (|has| |#1| (-839)))) (-1816 (($) NIL T CONST)) (-2588 (((-3 $ "failed") $) NIL)) (-2045 (((-112) $) NIL (|has| |#1| (-839)))) (-2035 (((-112) $) NIL)) (-1874 ((|#1| $) 13)) (-2055 (((-112) $) NIL (|has| |#1| (-839)))) (-3910 (($ $ $) NIL (|has| |#1| (-839)))) (-3542 (($ $ $) NIL (|has| |#1| (-839)))) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-1885 ((|#3| $) 15)) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ |#2|) NIL)) (-2542 (((-762)) 20)) (-3190 (($ $) NIL (|has| |#1| (-839)))) (-2131 (($) NIL T CONST)) (-2142 (($) 12 T CONST)) (-1747 (((-112) $ $) NIL (|has| |#1| (-839)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-839)))) (-1683 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL (|has| |#1| (-839)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-839)))) (-1810 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-613 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-839)) (-6 (-839)) |%noBranch|) (-15 -1810 ($ $ |#3|)) (-15 -1810 ($ |#1| |#3|)) (-15 -1874 (|#1| $)) (-15 -1885 (|#3| $)))) (-38 |#2|) (-171) (|SubsetCategory| (-717) |#2|)) (T -613))
+((-1810 (*1 *1 *1 *2) (-12 (-4 *4 (-171)) (-5 *1 (-613 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-717) *4)))) (-1810 (*1 *1 *2 *3) (-12 (-4 *4 (-171)) (-5 *1 (-613 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-717) *4)))) (-1874 (*1 *2 *1) (-12 (-4 *3 (-171)) (-4 *2 (-38 *3)) (-5 *1 (-613 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-717) *3)))) (-1885 (*1 *2 *1) (-12 (-4 *4 (-171)) (-4 *2 (|SubsetCategory| (-717) *4)) (-5 *1 (-613 *3 *4 *2)) (-4 *3 (-38 *4)))))
+(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-839)) (-6 (-839)) |%noBranch|) (-15 -1810 ($ $ |#3|)) (-15 -1810 ($ |#1| |#3|)) (-15 -1874 (|#1| $)) (-15 -1885 (|#3| $))))
+((-2859 ((|#2| |#2| (-1163) (-1163)) 18)))
+(((-614 |#1| |#2|) (-10 -7 (-15 -2859 (|#2| |#2| (-1163) (-1163)))) (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558))) (-13 (-1185) (-949) (-29 |#1|))) (T -614))
+((-2859 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-614 *4 *2)) (-4 *2 (-13 (-1185) (-949) (-29 *4))))))
+(-10 -7 (-15 -2859 (|#2| |#2| (-1163) (-1163))))
+((-3207 (((-112) $ $) 56)) (-2067 (((-112) $) 52)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL)) (-1881 (($ $) NIL)) (-1857 (((-112) $) NIL)) (-2869 ((|#1| $) 49)) (-2089 (((-3 $ "failed") $ $) NIL)) (-3732 (((-112) $ $) NIL (|has| |#1| (-362)))) (-3264 (((-2 (|:| -1875 $) (|:| -1862 (-406 |#2|))) (-406 |#2|)) 97 (|has| |#1| (-362)))) (-1816 (($) NIL T CONST)) (-3069 (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 81)) (-1863 (((-558) $) NIL (|has| |#1| (-1028 (-558)))) (((-406 (-558)) $) NIL (|has| |#1| (-1028 (-406 (-558))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-4025 (($ $ $) NIL (|has| |#1| (-362)))) (-2490 (($ $) 24)) (-2588 (((-3 $ "failed") $) 75)) (-4004 (($ $ $) NIL (|has| |#1| (-362)))) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-3449 (((-558) $) 19)) (-2035 (((-112) $) NIL)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4238 (((-112) $) 36)) (-2648 (($ |#1| (-558)) 21)) (-2463 ((|#1| $) 51)) (-2665 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#1| (-362)))) (-2699 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) 87 (|has| |#1| (-362)))) (-3713 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 100 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL (|has| |#1| (-362)))) (-3983 (((-3 $ "failed") $ $) 79)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-3722 (((-762) $) 99 (|has| |#1| (-362)))) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 98 (|has| |#1| (-362)))) (-2829 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-762)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-1163)) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-762)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-4323 (((-558) $) 34)) (-3224 (((-406 |#2|) $) 42)) (-3220 (((-853) $) 62) (($ (-558)) 32) (($ $) NIL) (($ (-406 (-558))) NIL (|has| |#1| (-1028 (-406 (-558))))) (($ |#1|) 31) (($ |#2|) 22)) (-3736 ((|#1| $ (-558)) 63)) (-3698 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2542 (((-762)) 29)) (-1870 (((-112) $ $) NIL)) (-2131 (($) 9 T CONST)) (-2142 (($) 12 T CONST)) (-1866 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-762)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-1163)) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-762)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-1683 (((-112) $ $) 17)) (-1798 (($ $) 46) (($ $ $) NIL)) (-1784 (($ $ $) 76)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 26) (($ $ $) 44)))
+(((-615 |#1| |#2|) (-13 (-230 |#2|) (-550) (-606 (-406 |#2|)) (-410 |#1|) (-1028 |#2|) (-10 -8 (-15 -4238 ((-112) $)) (-15 -4323 ((-558) $)) (-15 -3449 ((-558) $)) (-15 -2490 ($ $)) (-15 -2463 (|#1| $)) (-15 -2869 (|#1| $)) (-15 -3736 (|#1| $ (-558))) (-15 -2648 ($ |#1| (-558))) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-6 (-306)) (-15 -3264 ((-2 (|:| -1875 $) (|:| -1862 (-406 |#2|))) (-406 |#2|)))) |%noBranch|))) (-550) (-1222 |#1|)) (T -615))
+((-4238 (*1 *2 *1) (-12 (-4 *3 (-550)) (-5 *2 (-112)) (-5 *1 (-615 *3 *4)) (-4 *4 (-1222 *3)))) (-4323 (*1 *2 *1) (-12 (-4 *3 (-550)) (-5 *2 (-558)) (-5 *1 (-615 *3 *4)) (-4 *4 (-1222 *3)))) (-3449 (*1 *2 *1) (-12 (-4 *3 (-550)) (-5 *2 (-558)) (-5 *1 (-615 *3 *4)) (-4 *4 (-1222 *3)))) (-2490 (*1 *1 *1) (-12 (-4 *2 (-550)) (-5 *1 (-615 *2 *3)) (-4 *3 (-1222 *2)))) (-2463 (*1 *2 *1) (-12 (-4 *2 (-550)) (-5 *1 (-615 *2 *3)) (-4 *3 (-1222 *2)))) (-2869 (*1 *2 *1) (-12 (-4 *2 (-550)) (-5 *1 (-615 *2 *3)) (-4 *3 (-1222 *2)))) (-3736 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *2 (-550)) (-5 *1 (-615 *2 *4)) (-4 *4 (-1222 *2)))) (-2648 (*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-4 *2 (-550)) (-5 *1 (-615 *2 *4)) (-4 *4 (-1222 *2)))) (-3264 (*1 *2 *3) (-12 (-4 *4 (-362)) (-4 *4 (-550)) (-4 *5 (-1222 *4)) (-5 *2 (-2 (|:| -1875 (-615 *4 *5)) (|:| -1862 (-406 *5)))) (-5 *1 (-615 *4 *5)) (-5 *3 (-406 *5)))))
+(-13 (-230 |#2|) (-550) (-606 (-406 |#2|)) (-410 |#1|) (-1028 |#2|) (-10 -8 (-15 -4238 ((-112) $)) (-15 -4323 ((-558) $)) (-15 -3449 ((-558) $)) (-15 -2490 ($ $)) (-15 -2463 (|#1| $)) (-15 -2869 (|#1| $)) (-15 -3736 (|#1| $ (-558))) (-15 -2648 ($ |#1| (-558))) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-6 (-306)) (-15 -3264 ((-2 (|:| -1875 $) (|:| -1862 (-406 |#2|))) (-406 |#2|)))) |%noBranch|)))
+((-3782 (((-635 |#6|) (-635 |#4|) (-112)) 46)) (-2878 ((|#6| |#6|) 39)))
+(((-616 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2878 (|#6| |#6|)) (-15 -3782 ((-635 |#6|) (-635 |#4|) (-112)))) (-450) (-784) (-841) (-1053 |#1| |#2| |#3|) (-1059 |#1| |#2| |#3| |#4|) (-1096 |#1| |#2| |#3| |#4|)) (T -616))
+((-3782 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-635 *10)) (-5 *1 (-616 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1059 *5 *6 *7 *8)) (-4 *10 (-1096 *5 *6 *7 *8)))) (-2878 (*1 *2 *2) (-12 (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *1 (-616 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1059 *3 *4 *5 *6)) (-4 *2 (-1096 *3 *4 *5 *6)))))
+(-10 -7 (-15 -2878 (|#6| |#6|)) (-15 -3782 ((-635 |#6|) (-635 |#4|) (-112))))
+((-2887 (((-112) |#3| (-762) (-635 |#3|)) 23)) (-2899 (((-3 (-2 (|:| |polfac| (-635 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-635 (-1159 |#3|)))) "failed") |#3| (-635 (-1159 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1849 (-635 (-2 (|:| |irr| |#4|) (|:| -1896 (-558)))))) (-635 |#3|) (-635 |#1|) (-635 |#3|)) 55)))
+(((-617 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2887 ((-112) |#3| (-762) (-635 |#3|))) (-15 -2899 ((-3 (-2 (|:| |polfac| (-635 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-635 (-1159 |#3|)))) "failed") |#3| (-635 (-1159 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1849 (-635 (-2 (|:| |irr| |#4|) (|:| -1896 (-558)))))) (-635 |#3|) (-635 |#1|) (-635 |#3|)))) (-841) (-784) (-306) (-939 |#3| |#2| |#1|)) (T -617))
+((-2899 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1849 (-635 (-2 (|:| |irr| *10) (|:| -1896 (-558))))))) (-5 *6 (-635 *3)) (-5 *7 (-635 *8)) (-4 *8 (-841)) (-4 *3 (-306)) (-4 *10 (-939 *3 *9 *8)) (-4 *9 (-784)) (-5 *2 (-2 (|:| |polfac| (-635 *10)) (|:| |correct| *3) (|:| |corrfact| (-635 (-1159 *3))))) (-5 *1 (-617 *8 *9 *3 *10)) (-5 *4 (-635 (-1159 *3))))) (-2887 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-762)) (-5 *5 (-635 *3)) (-4 *3 (-306)) (-4 *6 (-841)) (-4 *7 (-784)) (-5 *2 (-112)) (-5 *1 (-617 *6 *7 *3 *8)) (-4 *8 (-939 *3 *7 *6)))))
+(-10 -7 (-15 -2887 ((-112) |#3| (-762) (-635 |#3|))) (-15 -2899 ((-3 (-2 (|:| |polfac| (-635 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-635 (-1159 |#3|)))) "failed") |#3| (-635 (-1159 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1849 (-635 (-2 (|:| |irr| |#4|) (|:| -1896 (-558)))))) (-635 |#3|) (-635 |#1|) (-635 |#3|))))
+((-3207 (((-112) $ $) NIL)) (-3986 (((-1122) $) 11)) (-3976 (((-1122) $) 9)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 19) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1683 (((-112) $ $) NIL)))
+(((-618) (-13 (-1070) (-10 -8 (-15 -3976 ((-1122) $)) (-15 -3986 ((-1122) $))))) (T -618))
+((-3976 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-618)))) (-3986 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-618)))))
+(-13 (-1070) (-10 -8 (-15 -3976 ((-1122) $)) (-15 -3986 ((-1122) $))))
+((-3207 (((-112) $ $) NIL)) (-3712 (((-635 |#1|) $) NIL)) (-1816 (($) NIL T CONST)) (-2588 (((-3 $ "failed") $) NIL)) (-2035 (((-112) $) NIL)) (-4227 (($ $) 67)) (-2592 (((-654 |#1| |#2|) $) 52)) (-4310 (((-1145) $) NIL)) (-2418 (($ $) 70)) (-2908 (((-635 (-293 |#2|)) $ $) 33)) (-2975 (((-1107) $) NIL)) (-2573 (($ (-654 |#1| |#2|)) 48)) (-3808 (($ $ $) NIL)) (-3443 (($ $ $) NIL)) (-3220 (((-853) $) 58) (((-1261 |#1| |#2|) $) NIL) (((-1266 |#1| |#2|) $) 66)) (-2142 (($) 53 T CONST)) (-2918 (((-635 (-2 (|:| |k| (-662 |#1|)) (|:| |c| |#2|))) $) 31)) (-2928 (((-635 (-654 |#1| |#2|)) (-635 |#1|)) 65)) (-3475 (((-635 (-2 (|:| |k| (-883 |#1|)) (|:| |c| |#2|))) $) 37)) (-1683 (((-112) $ $) 54)) (-1810 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL)) (* (($ $ $) 44)))
+(((-619 |#1| |#2| |#3|) (-13 (-471) (-10 -8 (-15 -2573 ($ (-654 |#1| |#2|))) (-15 -2592 ((-654 |#1| |#2|) $)) (-15 -3475 ((-635 (-2 (|:| |k| (-883 |#1|)) (|:| |c| |#2|))) $)) (-15 -3220 ((-1261 |#1| |#2|) $)) (-15 -3220 ((-1266 |#1| |#2|) $)) (-15 -4227 ($ $)) (-15 -3712 ((-635 |#1|) $)) (-15 -2928 ((-635 (-654 |#1| |#2|)) (-635 |#1|))) (-15 -2918 ((-635 (-2 (|:| |k| (-662 |#1|)) (|:| |c| |#2|))) $)) (-15 -2908 ((-635 (-293 |#2|)) $ $)))) (-841) (-13 (-171) (-708 (-406 (-558)))) (-911)) (T -619))
+((-2573 (*1 *1 *2) (-12 (-5 *2 (-654 *3 *4)) (-4 *3 (-841)) (-4 *4 (-13 (-171) (-708 (-406 (-558))))) (-5 *1 (-619 *3 *4 *5)) (-14 *5 (-911)))) (-2592 (*1 *2 *1) (-12 (-5 *2 (-654 *3 *4)) (-5 *1 (-619 *3 *4 *5)) (-4 *3 (-841)) (-4 *4 (-13 (-171) (-708 (-406 (-558))))) (-14 *5 (-911)))) (-3475 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |k| (-883 *3)) (|:| |c| *4)))) (-5 *1 (-619 *3 *4 *5)) (-4 *3 (-841)) (-4 *4 (-13 (-171) (-708 (-406 (-558))))) (-14 *5 (-911)))) (-3220 (*1 *2 *1) (-12 (-5 *2 (-1261 *3 *4)) (-5 *1 (-619 *3 *4 *5)) (-4 *3 (-841)) (-4 *4 (-13 (-171) (-708 (-406 (-558))))) (-14 *5 (-911)))) (-3220 (*1 *2 *1) (-12 (-5 *2 (-1266 *3 *4)) (-5 *1 (-619 *3 *4 *5)) (-4 *3 (-841)) (-4 *4 (-13 (-171) (-708 (-406 (-558))))) (-14 *5 (-911)))) (-4227 (*1 *1 *1) (-12 (-5 *1 (-619 *2 *3 *4)) (-4 *2 (-841)) (-4 *3 (-13 (-171) (-708 (-406 (-558))))) (-14 *4 (-911)))) (-3712 (*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-619 *3 *4 *5)) (-4 *3 (-841)) (-4 *4 (-13 (-171) (-708 (-406 (-558))))) (-14 *5 (-911)))) (-2928 (*1 *2 *3) (-12 (-5 *3 (-635 *4)) (-4 *4 (-841)) (-5 *2 (-635 (-654 *4 *5))) (-5 *1 (-619 *4 *5 *6)) (-4 *5 (-13 (-171) (-708 (-406 (-558))))) (-14 *6 (-911)))) (-2918 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |k| (-662 *3)) (|:| |c| *4)))) (-5 *1 (-619 *3 *4 *5)) (-4 *3 (-841)) (-4 *4 (-13 (-171) (-708 (-406 (-558))))) (-14 *5 (-911)))) (-2908 (*1 *2 *1 *1) (-12 (-5 *2 (-635 (-293 *4))) (-5 *1 (-619 *3 *4 *5)) (-4 *3 (-841)) (-4 *4 (-13 (-171) (-708 (-406 (-558))))) (-14 *5 (-911)))))
+(-13 (-471) (-10 -8 (-15 -2573 ($ (-654 |#1| |#2|))) (-15 -2592 ((-654 |#1| |#2|) $)) (-15 -3475 ((-635 (-2 (|:| |k| (-883 |#1|)) (|:| |c| |#2|))) $)) (-15 -3220 ((-1261 |#1| |#2|) $)) (-15 -3220 ((-1266 |#1| |#2|) $)) (-15 -4227 ($ $)) (-15 -3712 ((-635 |#1|) $)) (-15 -2928 ((-635 (-654 |#1| |#2|)) (-635 |#1|))) (-15 -2918 ((-635 (-2 (|:| |k| (-662 |#1|)) (|:| |c| |#2|))) $)) (-15 -2908 ((-635 (-293 |#2|)) $ $))))
+((-3782 (((-635 (-1133 |#1| (-529 (-855 |#2|)) (-855 |#2|) (-771 |#1| (-855 |#2|)))) (-635 (-771 |#1| (-855 |#2|))) (-112)) 71) (((-635 (-1036 |#1| |#2|)) (-635 (-771 |#1| (-855 |#2|))) (-112)) 57)) (-2939 (((-112) (-635 (-771 |#1| (-855 |#2|)))) 23)) (-2983 (((-635 (-1133 |#1| (-529 (-855 |#2|)) (-855 |#2|) (-771 |#1| (-855 |#2|)))) (-635 (-771 |#1| (-855 |#2|))) (-112)) 70)) (-2970 (((-635 (-1036 |#1| |#2|)) (-635 (-771 |#1| (-855 |#2|))) (-112)) 56)) (-2960 (((-635 (-771 |#1| (-855 |#2|))) (-635 (-771 |#1| (-855 |#2|)))) 27)) (-2949 (((-3 (-635 (-771 |#1| (-855 |#2|))) "failed") (-635 (-771 |#1| (-855 |#2|)))) 26)))
+(((-620 |#1| |#2|) (-10 -7 (-15 -2939 ((-112) (-635 (-771 |#1| (-855 |#2|))))) (-15 -2949 ((-3 (-635 (-771 |#1| (-855 |#2|))) "failed") (-635 (-771 |#1| (-855 |#2|))))) (-15 -2960 ((-635 (-771 |#1| (-855 |#2|))) (-635 (-771 |#1| (-855 |#2|))))) (-15 -2970 ((-635 (-1036 |#1| |#2|)) (-635 (-771 |#1| (-855 |#2|))) (-112))) (-15 -2983 ((-635 (-1133 |#1| (-529 (-855 |#2|)) (-855 |#2|) (-771 |#1| (-855 |#2|)))) (-635 (-771 |#1| (-855 |#2|))) (-112))) (-15 -3782 ((-635 (-1036 |#1| |#2|)) (-635 (-771 |#1| (-855 |#2|))) (-112))) (-15 -3782 ((-635 (-1133 |#1| (-529 (-855 |#2|)) (-855 |#2|) (-771 |#1| (-855 |#2|)))) (-635 (-771 |#1| (-855 |#2|))) (-112)))) (-450) (-635 (-1163))) (T -620))
+((-3782 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-771 *5 (-855 *6)))) (-5 *4 (-112)) (-4 *5 (-450)) (-14 *6 (-635 (-1163))) (-5 *2 (-635 (-1133 *5 (-529 (-855 *6)) (-855 *6) (-771 *5 (-855 *6))))) (-5 *1 (-620 *5 *6)))) (-3782 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-771 *5 (-855 *6)))) (-5 *4 (-112)) (-4 *5 (-450)) (-14 *6 (-635 (-1163))) (-5 *2 (-635 (-1036 *5 *6))) (-5 *1 (-620 *5 *6)))) (-2983 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-771 *5 (-855 *6)))) (-5 *4 (-112)) (-4 *5 (-450)) (-14 *6 (-635 (-1163))) (-5 *2 (-635 (-1133 *5 (-529 (-855 *6)) (-855 *6) (-771 *5 (-855 *6))))) (-5 *1 (-620 *5 *6)))) (-2970 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-771 *5 (-855 *6)))) (-5 *4 (-112)) (-4 *5 (-450)) (-14 *6 (-635 (-1163))) (-5 *2 (-635 (-1036 *5 *6))) (-5 *1 (-620 *5 *6)))) (-2960 (*1 *2 *2) (-12 (-5 *2 (-635 (-771 *3 (-855 *4)))) (-4 *3 (-450)) (-14 *4 (-635 (-1163))) (-5 *1 (-620 *3 *4)))) (-2949 (*1 *2 *2) (|partial| -12 (-5 *2 (-635 (-771 *3 (-855 *4)))) (-4 *3 (-450)) (-14 *4 (-635 (-1163))) (-5 *1 (-620 *3 *4)))) (-2939 (*1 *2 *3) (-12 (-5 *3 (-635 (-771 *4 (-855 *5)))) (-4 *4 (-450)) (-14 *5 (-635 (-1163))) (-5 *2 (-112)) (-5 *1 (-620 *4 *5)))))
+(-10 -7 (-15 -2939 ((-112) (-635 (-771 |#1| (-855 |#2|))))) (-15 -2949 ((-3 (-635 (-771 |#1| (-855 |#2|))) "failed") (-635 (-771 |#1| (-855 |#2|))))) (-15 -2960 ((-635 (-771 |#1| (-855 |#2|))) (-635 (-771 |#1| (-855 |#2|))))) (-15 -2970 ((-635 (-1036 |#1| |#2|)) (-635 (-771 |#1| (-855 |#2|))) (-112))) (-15 -2983 ((-635 (-1133 |#1| (-529 (-855 |#2|)) (-855 |#2|) (-771 |#1| (-855 |#2|)))) (-635 (-771 |#1| (-855 |#2|))) (-112))) (-15 -3782 ((-635 (-1036 |#1| |#2|)) (-635 (-771 |#1| (-855 |#2|))) (-112))) (-15 -3782 ((-635 (-1133 |#1| (-529 (-855 |#2|)) (-855 |#2|) (-771 |#1| (-855 |#2|)))) (-635 (-771 |#1| (-855 |#2|))) (-112))))
+((-4088 (($ $) 38)) (-2135 (($ $) 21)) (-4070 (($ $) 37)) (-2112 (($ $) 22)) (-4113 (($ $) 36)) (-2156 (($ $) 23)) (-1904 (($) 48)) (-2592 (($ $) 45)) (-4116 (($ $) 17)) (-2661 (($ $ (-1079 $)) 7) (($ $ (-1163)) 6)) (-2573 (($ $) 46)) (-2065 (($ $) 15)) (-2097 (($ $) 16)) (-4124 (($ $) 35)) (-2167 (($ $) 24)) (-4102 (($ $) 34)) (-2146 (($ $) 25)) (-4080 (($ $) 33)) (-2124 (($ $) 26)) (-4159 (($ $) 44)) (-2200 (($ $) 32)) (-4135 (($ $) 43)) (-2178 (($ $) 31)) (-4184 (($ $) 42)) (-2222 (($ $) 30)) (-1878 (($ $) 41)) (-4060 (($ $) 29)) (-4171 (($ $) 40)) (-2211 (($ $) 28)) (-4147 (($ $) 39)) (-2189 (($ $) 27)) (-3017 (($ $) 19)) (-3028 (($ $) 20)) (-3006 (($ $) 18)) (** (($ $ $) 47)))
+(((-621) (-139)) (T -621))
+((-3028 (*1 *1 *1) (-4 *1 (-621))) (-3017 (*1 *1 *1) (-4 *1 (-621))) (-3006 (*1 *1 *1) (-4 *1 (-621))) (-4116 (*1 *1 *1) (-4 *1 (-621))) (-2097 (*1 *1 *1) (-4 *1 (-621))) (-2065 (*1 *1 *1) (-4 *1 (-621))))
+(-13 (-949) (-1185) (-10 -8 (-15 -3028 ($ $)) (-15 -3017 ($ $)) (-15 -3006 ($ $)) (-15 -4116 ($ $)) (-15 -2097 ($ $)) (-15 -2065 ($ $))))
+(((-35) . T) ((-95) . T) ((-283) . T) ((-491) . T) ((-949) . T) ((-1185) . T) ((-1188) . T))
+((-3029 (((-114) (-114)) 83)) (-4116 ((|#2| |#2|) 30)) (-2661 ((|#2| |#2| (-1079 |#2|)) 79) ((|#2| |#2| (-1163)) 52)) (-2065 ((|#2| |#2|) 29)) (-2097 ((|#2| |#2|) 31)) (-2995 (((-112) (-114)) 34)) (-3017 ((|#2| |#2|) 26)) (-3028 ((|#2| |#2|) 28)) (-3006 ((|#2| |#2|) 27)))
+(((-622 |#1| |#2|) (-10 -7 (-15 -2995 ((-112) (-114))) (-15 -3029 ((-114) (-114))) (-15 -3028 (|#2| |#2|)) (-15 -3017 (|#2| |#2|)) (-15 -3006 (|#2| |#2|)) (-15 -4116 (|#2| |#2|)) (-15 -2065 (|#2| |#2|)) (-15 -2097 (|#2| |#2|)) (-15 -2661 (|#2| |#2| (-1163))) (-15 -2661 (|#2| |#2| (-1079 |#2|)))) (-13 (-841) (-550)) (-13 (-429 |#1|) (-992) (-1185))) (T -622))
+((-2661 (*1 *2 *2 *3) (-12 (-5 *3 (-1079 *2)) (-4 *2 (-13 (-429 *4) (-992) (-1185))) (-4 *4 (-13 (-841) (-550))) (-5 *1 (-622 *4 *2)))) (-2661 (*1 *2 *2 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-841) (-550))) (-5 *1 (-622 *4 *2)) (-4 *2 (-13 (-429 *4) (-992) (-1185))))) (-2097 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-622 *3 *2)) (-4 *2 (-13 (-429 *3) (-992) (-1185))))) (-2065 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-622 *3 *2)) (-4 *2 (-13 (-429 *3) (-992) (-1185))))) (-4116 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-622 *3 *2)) (-4 *2 (-13 (-429 *3) (-992) (-1185))))) (-3006 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-622 *3 *2)) (-4 *2 (-13 (-429 *3) (-992) (-1185))))) (-3017 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-622 *3 *2)) (-4 *2 (-13 (-429 *3) (-992) (-1185))))) (-3028 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-622 *3 *2)) (-4 *2 (-13 (-429 *3) (-992) (-1185))))) (-3029 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-841) (-550))) (-5 *1 (-622 *3 *4)) (-4 *4 (-13 (-429 *3) (-992) (-1185))))) (-2995 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-841) (-550))) (-5 *2 (-112)) (-5 *1 (-622 *4 *5)) (-4 *5 (-13 (-429 *4) (-992) (-1185))))))
+(-10 -7 (-15 -2995 ((-112) (-114))) (-15 -3029 ((-114) (-114))) (-15 -3028 (|#2| |#2|)) (-15 -3017 (|#2| |#2|)) (-15 -3006 (|#2| |#2|)) (-15 -4116 (|#2| |#2|)) (-15 -2065 (|#2| |#2|)) (-15 -2097 (|#2| |#2|)) (-15 -2661 (|#2| |#2| (-1163))) (-15 -2661 (|#2| |#2| (-1079 |#2|))))
+((-3139 (((-479 |#1| |#2|) (-246 |#1| |#2|)) 53)) (-3062 (((-635 (-246 |#1| |#2|)) (-635 (-479 |#1| |#2|))) 68)) (-3074 (((-479 |#1| |#2|) (-635 (-479 |#1| |#2|)) (-855 |#1|)) 70) (((-479 |#1| |#2|) (-635 (-479 |#1| |#2|)) (-635 (-479 |#1| |#2|)) (-855 |#1|)) 69)) (-3038 (((-2 (|:| |gblist| (-635 (-246 |#1| |#2|))) (|:| |gvlist| (-635 (-558)))) (-635 (-479 |#1| |#2|))) 108)) (-3117 (((-635 (-479 |#1| |#2|)) (-855 |#1|) (-635 (-479 |#1| |#2|)) (-635 (-479 |#1| |#2|))) 83)) (-3051 (((-2 (|:| |glbase| (-635 (-246 |#1| |#2|))) (|:| |glval| (-635 (-558)))) (-635 (-246 |#1| |#2|))) 118)) (-3096 (((-1246 |#2|) (-479 |#1| |#2|) (-635 (-479 |#1| |#2|))) 58)) (-3086 (((-635 (-479 |#1| |#2|)) (-635 (-479 |#1| |#2|))) 41)) (-3129 (((-246 |#1| |#2|) (-246 |#1| |#2|) (-635 (-246 |#1| |#2|))) 50)) (-3106 (((-246 |#1| |#2|) (-635 |#2|) (-246 |#1| |#2|) (-635 (-246 |#1| |#2|))) 91)))
+(((-623 |#1| |#2|) (-10 -7 (-15 -3038 ((-2 (|:| |gblist| (-635 (-246 |#1| |#2|))) (|:| |gvlist| (-635 (-558)))) (-635 (-479 |#1| |#2|)))) (-15 -3051 ((-2 (|:| |glbase| (-635 (-246 |#1| |#2|))) (|:| |glval| (-635 (-558)))) (-635 (-246 |#1| |#2|)))) (-15 -3062 ((-635 (-246 |#1| |#2|)) (-635 (-479 |#1| |#2|)))) (-15 -3074 ((-479 |#1| |#2|) (-635 (-479 |#1| |#2|)) (-635 (-479 |#1| |#2|)) (-855 |#1|))) (-15 -3074 ((-479 |#1| |#2|) (-635 (-479 |#1| |#2|)) (-855 |#1|))) (-15 -3086 ((-635 (-479 |#1| |#2|)) (-635 (-479 |#1| |#2|)))) (-15 -3096 ((-1246 |#2|) (-479 |#1| |#2|) (-635 (-479 |#1| |#2|)))) (-15 -3106 ((-246 |#1| |#2|) (-635 |#2|) (-246 |#1| |#2|) (-635 (-246 |#1| |#2|)))) (-15 -3117 ((-635 (-479 |#1| |#2|)) (-855 |#1|) (-635 (-479 |#1| |#2|)) (-635 (-479 |#1| |#2|)))) (-15 -3129 ((-246 |#1| |#2|) (-246 |#1| |#2|) (-635 (-246 |#1| |#2|)))) (-15 -3139 ((-479 |#1| |#2|) (-246 |#1| |#2|)))) (-635 (-1163)) (-450)) (T -623))
+((-3139 (*1 *2 *3) (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-635 (-1163))) (-4 *5 (-450)) (-5 *2 (-479 *4 *5)) (-5 *1 (-623 *4 *5)))) (-3129 (*1 *2 *2 *3) (-12 (-5 *3 (-635 (-246 *4 *5))) (-5 *2 (-246 *4 *5)) (-14 *4 (-635 (-1163))) (-4 *5 (-450)) (-5 *1 (-623 *4 *5)))) (-3117 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-635 (-479 *4 *5))) (-5 *3 (-855 *4)) (-14 *4 (-635 (-1163))) (-4 *5 (-450)) (-5 *1 (-623 *4 *5)))) (-3106 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-635 *6)) (-5 *4 (-635 (-246 *5 *6))) (-4 *6 (-450)) (-5 *2 (-246 *5 *6)) (-14 *5 (-635 (-1163))) (-5 *1 (-623 *5 *6)))) (-3096 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-479 *5 *6))) (-5 *3 (-479 *5 *6)) (-14 *5 (-635 (-1163))) (-4 *6 (-450)) (-5 *2 (-1246 *6)) (-5 *1 (-623 *5 *6)))) (-3086 (*1 *2 *2) (-12 (-5 *2 (-635 (-479 *3 *4))) (-14 *3 (-635 (-1163))) (-4 *4 (-450)) (-5 *1 (-623 *3 *4)))) (-3074 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-479 *5 *6))) (-5 *4 (-855 *5)) (-14 *5 (-635 (-1163))) (-5 *2 (-479 *5 *6)) (-5 *1 (-623 *5 *6)) (-4 *6 (-450)))) (-3074 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-635 (-479 *5 *6))) (-5 *4 (-855 *5)) (-14 *5 (-635 (-1163))) (-5 *2 (-479 *5 *6)) (-5 *1 (-623 *5 *6)) (-4 *6 (-450)))) (-3062 (*1 *2 *3) (-12 (-5 *3 (-635 (-479 *4 *5))) (-14 *4 (-635 (-1163))) (-4 *5 (-450)) (-5 *2 (-635 (-246 *4 *5))) (-5 *1 (-623 *4 *5)))) (-3051 (*1 *2 *3) (-12 (-14 *4 (-635 (-1163))) (-4 *5 (-450)) (-5 *2 (-2 (|:| |glbase| (-635 (-246 *4 *5))) (|:| |glval| (-635 (-558))))) (-5 *1 (-623 *4 *5)) (-5 *3 (-635 (-246 *4 *5))))) (-3038 (*1 *2 *3) (-12 (-5 *3 (-635 (-479 *4 *5))) (-14 *4 (-635 (-1163))) (-4 *5 (-450)) (-5 *2 (-2 (|:| |gblist| (-635 (-246 *4 *5))) (|:| |gvlist| (-635 (-558))))) (-5 *1 (-623 *4 *5)))))
+(-10 -7 (-15 -3038 ((-2 (|:| |gblist| (-635 (-246 |#1| |#2|))) (|:| |gvlist| (-635 (-558)))) (-635 (-479 |#1| |#2|)))) (-15 -3051 ((-2 (|:| |glbase| (-635 (-246 |#1| |#2|))) (|:| |glval| (-635 (-558)))) (-635 (-246 |#1| |#2|)))) (-15 -3062 ((-635 (-246 |#1| |#2|)) (-635 (-479 |#1| |#2|)))) (-15 -3074 ((-479 |#1| |#2|) (-635 (-479 |#1| |#2|)) (-635 (-479 |#1| |#2|)) (-855 |#1|))) (-15 -3074 ((-479 |#1| |#2|) (-635 (-479 |#1| |#2|)) (-855 |#1|))) (-15 -3086 ((-635 (-479 |#1| |#2|)) (-635 (-479 |#1| |#2|)))) (-15 -3096 ((-1246 |#2|) (-479 |#1| |#2|) (-635 (-479 |#1| |#2|)))) (-15 -3106 ((-246 |#1| |#2|) (-635 |#2|) (-246 |#1| |#2|) (-635 (-246 |#1| |#2|)))) (-15 -3117 ((-635 (-479 |#1| |#2|)) (-855 |#1|) (-635 (-479 |#1| |#2|)) (-635 (-479 |#1| |#2|)))) (-15 -3129 ((-246 |#1| |#2|) (-246 |#1| |#2|) (-635 (-246 |#1| |#2|)))) (-15 -3139 ((-479 |#1| |#2|) (-246 |#1| |#2|))))
+((-3207 (((-112) $ $) NIL (-3998 (|has| (-52) (-1087)) (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) (-1087))))) (-3303 (($) NIL) (($ (-635 (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))))) NIL)) (-3869 (((-1251) $ (-1145) (-1145)) NIL (|has| $ (-6 -4383)))) (-3026 (((-112) $ (-762)) NIL)) (-1532 (((-52) $ (-1145) (-52)) 16) (((-52) $ (-1163) (-52)) 17)) (-4207 (($ (-1 (-112) (-2 (|:| -2700 (-1145)) (|:| -2981 (-52)))) $) NIL (|has| $ (-6 -4382)))) (-4329 (($ (-1 (-112) (-2 (|:| -2700 (-1145)) (|:| -2981 (-52)))) $) NIL (|has| $ (-6 -4382)))) (-3083 (((-3 (-52) "failed") (-1145) $) NIL)) (-1816 (($) NIL T CONST)) (-2338 (($ $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) (-1087))))) (-3395 (($ (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) $) NIL (|has| $ (-6 -4382))) (($ (-1 (-112) (-2 (|:| -2700 (-1145)) (|:| -2981 (-52)))) $) NIL (|has| $ (-6 -4382))) (((-3 (-52) "failed") (-1145) $) NIL)) (-1539 (($ (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) (-1087)))) (($ (-1 (-112) (-2 (|:| -2700 (-1145)) (|:| -2981 (-52)))) $) NIL (|has| $ (-6 -4382)))) (-3048 (((-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) (-1 (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) (-2 (|:| -2700 (-1145)) (|:| -2981 (-52)))) $ (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) (-2 (|:| -2700 (-1145)) (|:| -2981 (-52)))) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) (-1087)))) (((-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) (-1 (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) (-2 (|:| -2700 (-1145)) (|:| -2981 (-52)))) $ (-2 (|:| -2700 (-1145)) (|:| -2981 (-52)))) NIL (|has| $ (-6 -4382))) (((-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) (-1 (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) (-2 (|:| -2700 (-1145)) (|:| -2981 (-52)))) $) NIL (|has| $ (-6 -4382)))) (-1817 (((-52) $ (-1145) (-52)) NIL (|has| $ (-6 -4383)))) (-1746 (((-52) $ (-1145)) NIL)) (-2240 (((-635 (-2 (|:| -2700 (-1145)) (|:| -2981 (-52)))) $) NIL (|has| $ (-6 -4382))) (((-635 (-52)) $) NIL (|has| $ (-6 -4382)))) (-3149 (($ $) NIL)) (-2986 (((-112) $ (-762)) NIL)) (-3889 (((-1145) $) NIL (|has| (-1145) (-841)))) (-2122 (((-635 (-2 (|:| -2700 (-1145)) (|:| -2981 (-52)))) $) NIL (|has| $ (-6 -4382))) (((-635 (-52)) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) (-1087)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-52) (-1087))))) (-3899 (((-1145) $) NIL (|has| (-1145) (-841)))) (-1807 (($ (-1 (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) (-2 (|:| -2700 (-1145)) (|:| -2981 (-52)))) $) NIL (|has| $ (-6 -4383))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) (-2 (|:| -2700 (-1145)) (|:| -2981 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1472 (($ (-387)) 9)) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL (-3998 (|has| (-52) (-1087)) (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) (-1087))))) (-3848 (((-635 (-1145)) $) NIL)) (-3950 (((-112) (-1145) $) NIL)) (-1722 (((-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) $) NIL)) (-4328 (($ (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) $) NIL)) (-3920 (((-635 (-1145)) $) NIL)) (-3929 (((-112) (-1145) $) NIL)) (-2975 (((-1107) $) NIL (-3998 (|has| (-52) (-1087)) (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) (-1087))))) (-2305 (((-52) $) NIL (|has| (-1145) (-841)))) (-4307 (((-3 (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) "failed") (-1 (-112) (-2 (|:| -2700 (-1145)) (|:| -2981 (-52)))) $) NIL)) (-3880 (($ $ (-52)) NIL (|has| $ (-6 -4383)))) (-3524 (((-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) $) NIL)) (-3266 (((-112) (-1 (-112) (-2 (|:| -2700 (-1145)) (|:| -2981 (-52)))) $) NIL (|has| $ (-6 -4382))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 (-2 (|:| -2700 (-1145)) (|:| -2981 (-52)))))) NIL (-12 (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) (-308 (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))))) (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) (-1087)))) (($ $ (-293 (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))))) NIL (-12 (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) (-308 (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))))) (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) (-1087)))) (($ $ (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) (-2 (|:| -2700 (-1145)) (|:| -2981 (-52)))) NIL (-12 (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) (-308 (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))))) (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) (-1087)))) (($ $ (-635 (-2 (|:| -2700 (-1145)) (|:| -2981 (-52)))) (-635 (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))))) NIL (-12 (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) (-308 (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))))) (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) (-1087)))) (($ $ (-635 (-52)) (-635 (-52))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1087)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1087)))) (($ $ (-293 (-52))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1087)))) (($ $ (-635 (-293 (-52)))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1087))))) (-2381 (((-112) $ $) NIL)) (-3908 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-52) (-1087))))) (-3937 (((-635 (-52)) $) NIL)) (-3375 (((-112) $) NIL)) (-2083 (($) NIL)) (-2195 (((-52) $ (-1145)) 14) (((-52) $ (-1145) (-52)) NIL) (((-52) $ (-1163)) 15)) (-2571 (($) NIL) (($ (-635 (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))))) NIL)) (-2988 (((-762) (-1 (-112) (-2 (|:| -2700 (-1145)) (|:| -2981 (-52)))) $) NIL (|has| $ (-6 -4382))) (((-762) (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) (-1087)))) (((-762) (-52) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-52) (-1087)))) (((-762) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4382)))) (-1553 (($ $) NIL)) (-3224 (((-534) $) NIL (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) (-606 (-534))))) (-3233 (($ (-635 (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))))) NIL)) (-3220 (((-853) $) NIL (-3998 (|has| (-52) (-605 (-853))) (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) (-605 (-853)))))) (-3534 (($ (-635 (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))))) NIL)) (-3277 (((-112) (-1 (-112) (-2 (|:| -2700 (-1145)) (|:| -2981 (-52)))) $) NIL (|has| $ (-6 -4382))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) NIL (-3998 (|has| (-52) (-1087)) (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 (-52))) (-1087))))) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-624) (-13 (-1176 (-1145) (-52)) (-10 -8 (-15 -1472 ($ (-387))) (-15 -3149 ($ $)) (-15 -2195 ((-52) $ (-1163))) (-15 -1532 ((-52) $ (-1163) (-52)))))) (T -624))
+((-1472 (*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-624)))) (-3149 (*1 *1 *1) (-5 *1 (-624))) (-2195 (*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-52)) (-5 *1 (-624)))) (-1532 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1163)) (-5 *1 (-624)))))
+(-13 (-1176 (-1145) (-52)) (-10 -8 (-15 -1472 ($ (-387))) (-15 -3149 ($ $)) (-15 -2195 ((-52) $ (-1163))) (-15 -1532 ((-52) $ (-1163) (-52)))))
+((-1810 (($ $ |#2|) 10)))
+(((-625 |#1| |#2|) (-10 -8 (-15 -1810 (|#1| |#1| |#2|))) (-626 |#2|) (-171)) (T -625))
+NIL
+(-10 -8 (-15 -1810 (|#1| |#1| |#2|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2089 (((-3 $ "failed") $ $) 19)) (-1816 (($) 17 T CONST)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3233 (($ $ $) 29)) (-3220 (((-853) $) 11)) (-2131 (($) 18 T CONST)) (-1683 (((-112) $ $) 6)) (-1810 (($ $ |#1|) 28 (|has| |#1| (-362)))) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+(((-626 |#1|) (-139) (-171)) (T -626))
+((-3233 (*1 *1 *1 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-171)))) (-1810 (*1 *1 *1 *2) (-12 (-4 *1 (-626 *2)) (-4 *2 (-171)) (-4 *2 (-362)))))
+(-13 (-708 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3233 ($ $ $)) (IF (|has| |t#1| (-362)) (-15 -1810 ($ $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-605 (-853)) . T) ((-638 |#1|) . T) ((-708 |#1|) . T) ((-1045 |#1|) . T) ((-1087) . T))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-1960 (((-3 $ "failed")) NIL (-3998 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))))) (-2089 (((-3 $ "failed") $ $) NIL)) (-4194 (((-1246 (-679 |#1|))) NIL (|has| |#2| (-416 |#1|))) (((-1246 (-679 |#1|)) (-1246 $)) NIL (|has| |#2| (-366 |#1|)))) (-2751 (((-1246 $)) NIL (|has| |#2| (-366 |#1|)))) (-1816 (($) NIL T CONST)) (-2845 (((-3 (-2 (|:| |particular| $) (|:| -2660 (-635 $))) "failed")) NIL (-3998 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))))) (-2458 (((-3 $ "failed")) NIL (-3998 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))))) (-2121 (((-679 |#1|)) NIL (|has| |#2| (-416 |#1|))) (((-679 |#1|) (-1246 $)) NIL (|has| |#2| (-366 |#1|)))) (-2729 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-2096 (((-679 |#1|) $) NIL (|has| |#2| (-416 |#1|))) (((-679 |#1|) $ (-1246 $)) NIL (|has| |#2| (-366 |#1|)))) (-1986 (((-3 $ "failed") $) NIL (-3998 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))))) (-3933 (((-1159 (-942 |#1|))) NIL (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-362))))) (-2015 (($ $ (-911)) NIL)) (-2708 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-2484 (((-1159 |#1|) $) NIL (-3998 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))))) (-2143 ((|#1|) NIL (|has| |#2| (-416 |#1|))) ((|#1| (-1246 $)) NIL (|has| |#2| (-366 |#1|)))) (-2685 (((-1159 |#1|) $) NIL (|has| |#2| (-366 |#1|)))) (-2622 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3997 (($ (-1246 |#1|)) NIL (|has| |#2| (-416 |#1|))) (($ (-1246 |#1|) (-1246 $)) NIL (|has| |#2| (-366 |#1|)))) (-2588 (((-3 $ "failed") $) NIL (-3998 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))))) (-3833 (((-911)) NIL (|has| |#2| (-366 |#1|)))) (-2591 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-4078 (($ $ (-911)) NIL)) (-2539 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2517 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2565 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2854 (((-3 (-2 (|:| |particular| $) (|:| -2660 (-635 $))) "failed")) NIL (-3998 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))))) (-2470 (((-3 $ "failed")) NIL (-3998 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))))) (-2132 (((-679 |#1|)) NIL (|has| |#2| (-416 |#1|))) (((-679 |#1|) (-1246 $)) NIL (|has| |#2| (-366 |#1|)))) (-2740 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-2109 (((-679 |#1|) $) NIL (|has| |#2| (-416 |#1|))) (((-679 |#1|) $ (-1246 $)) NIL (|has| |#2| (-366 |#1|)))) (-1995 (((-3 $ "failed") $) NIL (-3998 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))))) (-2824 (((-1159 (-942 |#1|))) NIL (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-362))))) (-2006 (($ $ (-911)) NIL)) (-2718 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-2498 (((-1159 |#1|) $) NIL (-3998 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))))) (-3985 ((|#1|) NIL (|has| |#2| (-416 |#1|))) ((|#1| (-1246 $)) NIL (|has| |#2| (-366 |#1|)))) (-2696 (((-1159 |#1|) $) NIL (|has| |#2| (-366 |#1|)))) (-2632 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-4310 (((-1145) $) NIL)) (-2527 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2551 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2580 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2975 (((-1107) $) NIL)) (-2612 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2195 ((|#1| $ (-558)) NIL (|has| |#2| (-416 |#1|)))) (-4205 (((-679 |#1|) (-1246 $)) NIL (|has| |#2| (-416 |#1|))) (((-1246 |#1|) $) NIL (|has| |#2| (-416 |#1|))) (((-679 |#1|) (-1246 $) (-1246 $)) NIL (|has| |#2| (-366 |#1|))) (((-1246 |#1|) $ (-1246 $)) NIL (|has| |#2| (-366 |#1|)))) (-3224 (($ (-1246 |#1|)) NIL (|has| |#2| (-416 |#1|))) (((-1246 |#1|) $) NIL (|has| |#2| (-416 |#1|)))) (-3855 (((-635 (-942 |#1|))) NIL (|has| |#2| (-416 |#1|))) (((-635 (-942 |#1|)) (-1246 $)) NIL (|has| |#2| (-366 |#1|)))) (-3443 (($ $ $) NIL)) (-2676 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3220 (((-853) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-2660 (((-1246 $)) NIL (|has| |#2| (-416 |#1|)))) (-2507 (((-635 (-1246 |#1|))) NIL (-3998 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))))) (-3452 (($ $ $ $) NIL)) (-2654 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2258 (($ (-679 |#1|) $) NIL (|has| |#2| (-416 |#1|)))) (-3433 (($ $ $) NIL)) (-2664 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2642 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2602 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2131 (($) 15 T CONST)) (-1683 (((-112) $ $) NIL)) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) 17)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-627 |#1| |#2|) (-13 (-735 |#1|) (-605 |#2|) (-10 -8 (-15 -3220 ($ |#2|)) (IF (|has| |#2| (-416 |#1|)) (-6 (-416 |#1|)) |%noBranch|) (IF (|has| |#2| (-366 |#1|)) (-6 (-366 |#1|)) |%noBranch|))) (-171) (-735 |#1|)) (T -627))
+((-3220 (*1 *1 *2) (-12 (-4 *3 (-171)) (-5 *1 (-627 *3 *2)) (-4 *2 (-735 *3)))))
+(-13 (-735 |#1|) (-605 |#2|) (-10 -8 (-15 -3220 ($ |#2|)) (IF (|has| |#2| (-416 |#1|)) (-6 (-416 |#1|)) |%noBranch|) (IF (|has| |#2| (-366 |#1|)) (-6 (-366 |#1|)) |%noBranch|)))
+((-3171 (((-3 (-834 |#2|) "failed") |#2| (-293 |#2|) (-1145)) 81) (((-3 (-834 |#2|) (-2 (|:| |leftHandLimit| (-3 (-834 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-834 |#2|) "failed"))) "failed") |#2| (-293 (-834 |#2|))) 103)) (-3160 (((-3 (-824 |#2|) "failed") |#2| (-293 (-824 |#2|))) 108)))
+(((-628 |#1| |#2|) (-10 -7 (-15 -3171 ((-3 (-834 |#2|) (-2 (|:| |leftHandLimit| (-3 (-834 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-834 |#2|) "failed"))) "failed") |#2| (-293 (-834 |#2|)))) (-15 -3160 ((-3 (-824 |#2|) "failed") |#2| (-293 (-824 |#2|)))) (-15 -3171 ((-3 (-834 |#2|) "failed") |#2| (-293 |#2|) (-1145)))) (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))) (-13 (-27) (-1185) (-429 |#1|))) (T -628))
+((-3171 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-293 *3)) (-5 *5 (-1145)) (-4 *3 (-13 (-27) (-1185) (-429 *6))) (-4 *6 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-834 *3)) (-5 *1 (-628 *6 *3)))) (-3160 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-293 (-824 *3))) (-4 *5 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-824 *3)) (-5 *1 (-628 *5 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *5))))) (-3171 (*1 *2 *3 *4) (-12 (-5 *4 (-293 (-834 *3))) (-4 *3 (-13 (-27) (-1185) (-429 *5))) (-4 *5 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-3 (-834 *3) (-2 (|:| |leftHandLimit| (-3 (-834 *3) "failed")) (|:| |rightHandLimit| (-3 (-834 *3) "failed"))) "failed")) (-5 *1 (-628 *5 *3)))))
+(-10 -7 (-15 -3171 ((-3 (-834 |#2|) (-2 (|:| |leftHandLimit| (-3 (-834 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-834 |#2|) "failed"))) "failed") |#2| (-293 (-834 |#2|)))) (-15 -3160 ((-3 (-824 |#2|) "failed") |#2| (-293 (-824 |#2|)))) (-15 -3171 ((-3 (-834 |#2|) "failed") |#2| (-293 |#2|) (-1145))))
+((-3171 (((-3 (-834 (-406 (-942 |#1|))) "failed") (-406 (-942 |#1|)) (-293 (-406 (-942 |#1|))) (-1145)) 80) (((-3 (-834 (-406 (-942 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-834 (-406 (-942 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-834 (-406 (-942 |#1|))) "failed"))) "failed") (-406 (-942 |#1|)) (-293 (-406 (-942 |#1|)))) 20) (((-3 (-834 (-406 (-942 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-834 (-406 (-942 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-834 (-406 (-942 |#1|))) "failed"))) "failed") (-406 (-942 |#1|)) (-293 (-834 (-942 |#1|)))) 35)) (-3160 (((-824 (-406 (-942 |#1|))) (-406 (-942 |#1|)) (-293 (-406 (-942 |#1|)))) 23) (((-824 (-406 (-942 |#1|))) (-406 (-942 |#1|)) (-293 (-824 (-942 |#1|)))) 43)))
+(((-629 |#1|) (-10 -7 (-15 -3171 ((-3 (-834 (-406 (-942 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-834 (-406 (-942 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-834 (-406 (-942 |#1|))) "failed"))) "failed") (-406 (-942 |#1|)) (-293 (-834 (-942 |#1|))))) (-15 -3171 ((-3 (-834 (-406 (-942 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-834 (-406 (-942 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-834 (-406 (-942 |#1|))) "failed"))) "failed") (-406 (-942 |#1|)) (-293 (-406 (-942 |#1|))))) (-15 -3160 ((-824 (-406 (-942 |#1|))) (-406 (-942 |#1|)) (-293 (-824 (-942 |#1|))))) (-15 -3160 ((-824 (-406 (-942 |#1|))) (-406 (-942 |#1|)) (-293 (-406 (-942 |#1|))))) (-15 -3171 ((-3 (-834 (-406 (-942 |#1|))) "failed") (-406 (-942 |#1|)) (-293 (-406 (-942 |#1|))) (-1145)))) (-450)) (T -629))
+((-3171 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-293 (-406 (-942 *6)))) (-5 *5 (-1145)) (-5 *3 (-406 (-942 *6))) (-4 *6 (-450)) (-5 *2 (-834 *3)) (-5 *1 (-629 *6)))) (-3160 (*1 *2 *3 *4) (-12 (-5 *4 (-293 (-406 (-942 *5)))) (-5 *3 (-406 (-942 *5))) (-4 *5 (-450)) (-5 *2 (-824 *3)) (-5 *1 (-629 *5)))) (-3160 (*1 *2 *3 *4) (-12 (-5 *4 (-293 (-824 (-942 *5)))) (-4 *5 (-450)) (-5 *2 (-824 (-406 (-942 *5)))) (-5 *1 (-629 *5)) (-5 *3 (-406 (-942 *5))))) (-3171 (*1 *2 *3 *4) (-12 (-5 *4 (-293 (-406 (-942 *5)))) (-5 *3 (-406 (-942 *5))) (-4 *5 (-450)) (-5 *2 (-3 (-834 *3) (-2 (|:| |leftHandLimit| (-3 (-834 *3) "failed")) (|:| |rightHandLimit| (-3 (-834 *3) "failed"))) "failed")) (-5 *1 (-629 *5)))) (-3171 (*1 *2 *3 *4) (-12 (-5 *4 (-293 (-834 (-942 *5)))) (-4 *5 (-450)) (-5 *2 (-3 (-834 (-406 (-942 *5))) (-2 (|:| |leftHandLimit| (-3 (-834 (-406 (-942 *5))) "failed")) (|:| |rightHandLimit| (-3 (-834 (-406 (-942 *5))) "failed"))) "failed")) (-5 *1 (-629 *5)) (-5 *3 (-406 (-942 *5))))))
+(-10 -7 (-15 -3171 ((-3 (-834 (-406 (-942 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-834 (-406 (-942 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-834 (-406 (-942 |#1|))) "failed"))) "failed") (-406 (-942 |#1|)) (-293 (-834 (-942 |#1|))))) (-15 -3171 ((-3 (-834 (-406 (-942 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-834 (-406 (-942 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-834 (-406 (-942 |#1|))) "failed"))) "failed") (-406 (-942 |#1|)) (-293 (-406 (-942 |#1|))))) (-15 -3160 ((-824 (-406 (-942 |#1|))) (-406 (-942 |#1|)) (-293 (-824 (-942 |#1|))))) (-15 -3160 ((-824 (-406 (-942 |#1|))) (-406 (-942 |#1|)) (-293 (-406 (-942 |#1|))))) (-15 -3171 ((-3 (-834 (-406 (-942 |#1|))) "failed") (-406 (-942 |#1|)) (-293 (-406 (-942 |#1|))) (-1145))))
+((-3203 (((-3 (-1246 (-406 |#1|)) "failed") (-1246 |#2|) |#2|) 57 (-3304 (|has| |#1| (-362)))) (((-3 (-1246 |#1|) "failed") (-1246 |#2|) |#2|) 42 (|has| |#1| (-362)))) (-3182 (((-112) (-1246 |#2|)) 30)) (-3192 (((-3 (-1246 |#1|) "failed") (-1246 |#2|)) 33)))
+(((-630 |#1| |#2|) (-10 -7 (-15 -3182 ((-112) (-1246 |#2|))) (-15 -3192 ((-3 (-1246 |#1|) "failed") (-1246 |#2|))) (IF (|has| |#1| (-362)) (-15 -3203 ((-3 (-1246 |#1|) "failed") (-1246 |#2|) |#2|)) (-15 -3203 ((-3 (-1246 (-406 |#1|)) "failed") (-1246 |#2|) |#2|)))) (-550) (-631 |#1|)) (T -630))
+((-3203 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1246 *4)) (-4 *4 (-631 *5)) (-3304 (-4 *5 (-362))) (-4 *5 (-550)) (-5 *2 (-1246 (-406 *5))) (-5 *1 (-630 *5 *4)))) (-3203 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1246 *4)) (-4 *4 (-631 *5)) (-4 *5 (-362)) (-4 *5 (-550)) (-5 *2 (-1246 *5)) (-5 *1 (-630 *5 *4)))) (-3192 (*1 *2 *3) (|partial| -12 (-5 *3 (-1246 *5)) (-4 *5 (-631 *4)) (-4 *4 (-550)) (-5 *2 (-1246 *4)) (-5 *1 (-630 *4 *5)))) (-3182 (*1 *2 *3) (-12 (-5 *3 (-1246 *5)) (-4 *5 (-631 *4)) (-4 *4 (-550)) (-5 *2 (-112)) (-5 *1 (-630 *4 *5)))))
+(-10 -7 (-15 -3182 ((-112) (-1246 |#2|))) (-15 -3192 ((-3 (-1246 |#1|) "failed") (-1246 |#2|))) (IF (|has| |#1| (-362)) (-15 -3203 ((-3 (-1246 |#1|) "failed") (-1246 |#2|) |#2|)) (-15 -3203 ((-3 (-1246 (-406 |#1|)) "failed") (-1246 |#2|) |#2|))))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2089 (((-3 $ "failed") $ $) 19)) (-1816 (($) 17 T CONST)) (-3216 (((-679 |#1|) (-679 $)) 36) (((-2 (|:| -3683 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) 35)) (-2588 (((-3 $ "failed") $) 33)) (-2035 (((-112) $) 31)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11) (($ (-558)) 29)) (-2542 (((-762)) 28)) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1683 (((-112) $ $) 6)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24)))
+(((-631 |#1|) (-139) (-1039)) (T -631))
+((-3216 (*1 *2 *3) (-12 (-5 *3 (-679 *1)) (-4 *1 (-631 *4)) (-4 *4 (-1039)) (-5 *2 (-679 *4)))) (-3216 (*1 *2 *3 *4) (-12 (-5 *3 (-679 *1)) (-5 *4 (-1246 *1)) (-4 *1 (-631 *5)) (-4 *5 (-1039)) (-5 *2 (-2 (|:| -3683 (-679 *5)) (|:| |vec| (-1246 *5)))))))
+(-13 (-1039) (-10 -8 (-15 -3216 ((-679 |t#1|) (-679 $))) (-15 -3216 ((-2 (|:| -3683 (-679 |t#1|)) (|:| |vec| (-1246 |t#1|))) (-679 $) (-1246 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-558)) . T) ((-605 (-853)) . T) ((-638 $) . T) ((-717) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
+((-2837 ((|#2| (-635 |#1|) (-635 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-635 |#1|) (-635 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-635 |#1|) (-635 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-635 |#1|) (-635 |#2|) |#2|) 17) ((|#2| (-635 |#1|) (-635 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-635 |#1|) (-635 |#2|)) 12)))
+(((-632 |#1| |#2|) (-10 -7 (-15 -2837 ((-1 |#2| |#1|) (-635 |#1|) (-635 |#2|))) (-15 -2837 (|#2| (-635 |#1|) (-635 |#2|) |#1|)) (-15 -2837 ((-1 |#2| |#1|) (-635 |#1|) (-635 |#2|) |#2|)) (-15 -2837 (|#2| (-635 |#1|) (-635 |#2|) |#1| |#2|)) (-15 -2837 ((-1 |#2| |#1|) (-635 |#1|) (-635 |#2|) (-1 |#2| |#1|))) (-15 -2837 (|#2| (-635 |#1|) (-635 |#2|) |#1| (-1 |#2| |#1|)))) (-1087) (-1200)) (T -632))
+((-2837 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-635 *5)) (-5 *4 (-635 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1087)) (-4 *2 (-1200)) (-5 *1 (-632 *5 *2)))) (-2837 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-635 *5)) (-5 *4 (-635 *6)) (-4 *5 (-1087)) (-4 *6 (-1200)) (-5 *1 (-632 *5 *6)))) (-2837 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-635 *5)) (-5 *4 (-635 *2)) (-4 *5 (-1087)) (-4 *2 (-1200)) (-5 *1 (-632 *5 *2)))) (-2837 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 *6)) (-5 *4 (-635 *5)) (-4 *6 (-1087)) (-4 *5 (-1200)) (-5 *2 (-1 *5 *6)) (-5 *1 (-632 *6 *5)))) (-2837 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 *5)) (-5 *4 (-635 *2)) (-4 *5 (-1087)) (-4 *2 (-1200)) (-5 *1 (-632 *5 *2)))) (-2837 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *5)) (-5 *4 (-635 *6)) (-4 *5 (-1087)) (-4 *6 (-1200)) (-5 *2 (-1 *6 *5)) (-5 *1 (-632 *5 *6)))))
+(-10 -7 (-15 -2837 ((-1 |#2| |#1|) (-635 |#1|) (-635 |#2|))) (-15 -2837 (|#2| (-635 |#1|) (-635 |#2|) |#1|)) (-15 -2837 ((-1 |#2| |#1|) (-635 |#1|) (-635 |#2|) |#2|)) (-15 -2837 (|#2| (-635 |#1|) (-635 |#2|) |#1| |#2|)) (-15 -2837 ((-1 |#2| |#1|) (-635 |#1|) (-635 |#2|) (-1 |#2| |#1|))) (-15 -2837 (|#2| (-635 |#1|) (-635 |#2|) |#1| (-1 |#2| |#1|))))
+((-2756 (((-635 |#2|) (-1 |#2| |#1| |#2|) (-635 |#1|) |#2|) 16)) (-3048 ((|#2| (-1 |#2| |#1| |#2|) (-635 |#1|) |#2|) 18)) (-3167 (((-635 |#2|) (-1 |#2| |#1|) (-635 |#1|)) 13)))
+(((-633 |#1| |#2|) (-10 -7 (-15 -2756 ((-635 |#2|) (-1 |#2| |#1| |#2|) (-635 |#1|) |#2|)) (-15 -3048 (|#2| (-1 |#2| |#1| |#2|) (-635 |#1|) |#2|)) (-15 -3167 ((-635 |#2|) (-1 |#2| |#1|) (-635 |#1|)))) (-1200) (-1200)) (T -633))
+((-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-635 *5)) (-4 *5 (-1200)) (-4 *6 (-1200)) (-5 *2 (-635 *6)) (-5 *1 (-633 *5 *6)))) (-3048 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-635 *5)) (-4 *5 (-1200)) (-4 *2 (-1200)) (-5 *1 (-633 *5 *2)))) (-2756 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-635 *6)) (-4 *6 (-1200)) (-4 *5 (-1200)) (-5 *2 (-635 *5)) (-5 *1 (-633 *6 *5)))))
+(-10 -7 (-15 -2756 ((-635 |#2|) (-1 |#2| |#1| |#2|) (-635 |#1|) |#2|)) (-15 -3048 (|#2| (-1 |#2| |#1| |#2|) (-635 |#1|) |#2|)) (-15 -3167 ((-635 |#2|) (-1 |#2| |#1|) (-635 |#1|))))
+((-3167 (((-635 |#3|) (-1 |#3| |#1| |#2|) (-635 |#1|) (-635 |#2|)) 13)))
+(((-634 |#1| |#2| |#3|) (-10 -7 (-15 -3167 ((-635 |#3|) (-1 |#3| |#1| |#2|) (-635 |#1|) (-635 |#2|)))) (-1200) (-1200) (-1200)) (T -634))
+((-3167 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-635 *6)) (-5 *5 (-635 *7)) (-4 *6 (-1200)) (-4 *7 (-1200)) (-4 *8 (-1200)) (-5 *2 (-635 *8)) (-5 *1 (-634 *6 *7 *8)))))
+(-10 -7 (-15 -3167 ((-635 |#3|) (-1 |#3| |#1| |#2|) (-635 |#1|) (-635 |#2|))))
+((-3207 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2925 ((|#1| $) NIL)) (-3213 ((|#1| $) NIL)) (-3436 (($ $) NIL)) (-3869 (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4383)))) (-2336 (($ $ (-558)) NIL (|has| $ (-6 -4383)))) (-1538 (((-112) $) NIL (|has| |#1| (-841))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2763 (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-841)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4383)))) (-2376 (($ $) NIL (|has| |#1| (-841))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3026 (((-112) $ (-762)) NIL)) (-3972 ((|#1| $ |#1|) NIL (|has| $ (-6 -4383)))) (-2359 (($ $ $) NIL (|has| $ (-6 -4383)))) (-2348 ((|#1| $ |#1|) NIL (|has| $ (-6 -4383)))) (-2369 ((|#1| $ |#1|) NIL (|has| $ (-6 -4383)))) (-1532 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4383))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4383))) (($ $ "rest" $) NIL (|has| $ (-6 -4383))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4383))) ((|#1| $ (-1213 (-558)) |#1|) NIL (|has| $ (-6 -4383))) ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4383)))) (-3982 (($ $ (-635 $)) NIL (|has| $ (-6 -4383)))) (-2247 (($ $ $) 31 (|has| |#1| (-1087)))) (-2235 (($ $ $) 33 (|has| |#1| (-1087)))) (-2226 (($ $ $) 36 (|has| |#1| (-1087)))) (-4207 (($ (-1 (-112) |#1|) $) NIL)) (-4329 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-3201 ((|#1| $) NIL)) (-1816 (($) NIL T CONST)) (-3306 (($ $) NIL (|has| $ (-6 -4383)))) (-4127 (($ $) NIL)) (-2315 (($ $) NIL) (($ $ (-762)) NIL)) (-2820 (($ $) NIL (|has| |#1| (-1087)))) (-2338 (($ $) 30 (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3395 (($ |#1| $) NIL (|has| |#1| (-1087))) (($ (-1 (-112) |#1|) $) NIL)) (-1539 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3048 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4382))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4382))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1817 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4383)))) (-1746 ((|#1| $ (-558)) NIL)) (-2435 (((-112) $) NIL)) (-1517 (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1087))) (((-558) |#1| $) NIL (|has| |#1| (-1087))) (((-558) (-1 (-112) |#1|) $) NIL)) (-2240 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-3292 (((-112) $) 9)) (-2870 (((-635 $) $) NIL)) (-3993 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1315 (($) 7)) (-3315 (($ (-762) |#1|) NIL)) (-2986 (((-112) $ (-762)) NIL)) (-3889 (((-558) $) NIL (|has| (-558) (-841)))) (-3910 (($ $ $) NIL (|has| |#1| (-841)))) (-1645 (($ $ $) NIL (|has| |#1| (-841))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1677 (($ $ $) NIL (|has| |#1| (-841))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2122 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) 32 (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3899 (((-558) $) NIL (|has| (-558) (-841)))) (-3542 (($ $ $) NIL (|has| |#1| (-841)))) (-1807 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2192 (($ |#1|) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-1362 (((-635 |#1|) $) NIL)) (-1790 (((-112) $) NIL)) (-4310 (((-1145) $) NIL (|has| |#1| (-1087)))) (-1560 ((|#1| $) NIL) (($ $ (-762)) NIL)) (-4328 (($ $ $ (-558)) NIL) (($ |#1| $ (-558)) NIL)) (-1861 (($ $ $ (-558)) NIL) (($ |#1| $ (-558)) NIL)) (-3920 (((-635 (-558)) $) NIL)) (-3929 (((-112) (-558) $) NIL)) (-2975 (((-1107) $) NIL (|has| |#1| (-1087)))) (-2305 ((|#1| $) NIL) (($ $ (-762)) NIL)) (-4307 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3880 (($ $ |#1|) NIL (|has| $ (-6 -4383)))) (-2445 (((-112) $) NIL)) (-3266 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3908 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3937 (((-635 |#1|) $) NIL)) (-3375 (((-112) $) NIL)) (-2083 (($) NIL)) (-2195 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1213 (-558))) NIL) ((|#1| $ (-558)) 35) ((|#1| $ (-558) |#1|) NIL)) (-2860 (((-558) $ $) NIL)) (-4218 (($ $ (-1213 (-558))) NIL) (($ $ (-558)) NIL)) (-4023 (($ $ (-1213 (-558))) NIL) (($ $ (-558)) NIL)) (-1487 (((-112) $) NIL)) (-2405 (($ $) NIL)) (-2380 (($ $) NIL (|has| $ (-6 -4383)))) (-2414 (((-762) $) NIL)) (-2428 (($ $) NIL)) (-2988 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-2773 (($ $ $ (-558)) NIL (|has| $ (-6 -4383)))) (-1553 (($ $) NIL)) (-3224 (((-534) $) 44 (|has| |#1| (-606 (-534))))) (-3233 (($ (-635 |#1|)) NIL)) (-2516 (($ |#1| $) 10)) (-2392 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4341 (($ $ $) 29) (($ |#1| $) NIL) (($ (-635 $)) NIL) (($ $ |#1|) NIL)) (-3220 (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-1727 (((-635 $) $) NIL)) (-4005 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2686 (($ $ $) 11)) (-3277 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-1338 (((-1145) $) 25 (|has| |#1| (-819))) (((-1145) $ (-112)) 26 (|has| |#1| (-819))) (((-1251) (-813) $) 27 (|has| |#1| (-819))) (((-1251) (-813) $ (-112)) 28 (|has| |#1| (-819)))) (-1747 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1683 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-841)))) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-635 |#1|) (-13 (-656 |#1|) (-10 -8 (-15 -1315 ($)) (-15 -3292 ((-112) $)) (-15 -2516 ($ |#1| $)) (-15 -2686 ($ $ $)) (IF (|has| |#1| (-1087)) (PROGN (-15 -2247 ($ $ $)) (-15 -2235 ($ $ $)) (-15 -2226 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-819)) (-6 (-819)) |%noBranch|))) (-1200)) (T -635))
+((-1315 (*1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-1200)))) (-3292 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-635 *3)) (-4 *3 (-1200)))) (-2516 (*1 *1 *2 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-1200)))) (-2686 (*1 *1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-1200)))) (-2247 (*1 *1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-1087)) (-4 *2 (-1200)))) (-2235 (*1 *1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-1087)) (-4 *2 (-1200)))) (-2226 (*1 *1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-1087)) (-4 *2 (-1200)))))
+(-13 (-656 |#1|) (-10 -8 (-15 -1315 ($)) (-15 -3292 ((-112) $)) (-15 -2516 ($ |#1| $)) (-15 -2686 ($ $ $)) (IF (|has| |#1| (-1087)) (PROGN (-15 -2247 ($ $ $)) (-15 -2235 ($ $ $)) (-15 -2226 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-819)) (-6 (-819)) |%noBranch|)))
+((-3207 (((-112) $ $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 11) (($ (-1168)) NIL) (((-1168) $) NIL) ((|#1| $) 8)) (-1683 (((-112) $ $) NIL)))
+(((-636 |#1|) (-13 (-1070) (-605 |#1|)) (-1087)) (T -636))
+NIL
+(-13 (-1070) (-605 |#1|))
+((-3207 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2327 (($ |#1| |#1| $) 43)) (-3026 (((-112) $ (-762)) NIL)) (-4207 (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4382)))) (-4329 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-1816 (($) NIL T CONST)) (-2820 (($ $) 45)) (-2338 (($ $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3395 (($ |#1| $) 51 (|has| $ (-6 -4382))) (($ (-1 (-112) |#1|) $) 53 (|has| $ (-6 -4382)))) (-1539 (($ |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-3048 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4382))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4382)))) (-2240 (((-635 |#1|) $) 9 (|has| $ (-6 -4382)))) (-2986 (((-112) $ (-762)) NIL)) (-2122 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1807 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) 37)) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL (|has| |#1| (-1087)))) (-1722 ((|#1| $) 46)) (-4328 (($ |#1| $) 26) (($ |#1| $ (-762)) 42)) (-2975 (((-1107) $) NIL (|has| |#1| (-1087)))) (-4307 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3524 ((|#1| $) 48)) (-3266 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3375 (((-112) $) 21)) (-2083 (($) 25)) (-3229 (((-112) $) 49)) (-2811 (((-635 (-2 (|:| -2981 |#1|) (|:| -2988 (-762)))) $) 58)) (-2571 (($) 23) (($ (-635 |#1|)) 18)) (-2988 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382))) (((-762) |#1| $) 55 (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1553 (($ $) 19)) (-3224 (((-534) $) 34 (|has| |#1| (-606 (-534))))) (-3233 (($ (-635 |#1|)) NIL)) (-3220 (((-853) $) 14 (|has| |#1| (-605 (-853))))) (-3534 (($ (-635 |#1|)) 22)) (-3277 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) 60 (|has| |#1| (-1087)))) (-2755 (((-762) $) 16 (|has| $ (-6 -4382)))))
+(((-637 |#1|) (-13 (-685 |#1|) (-10 -8 (-6 -4382) (-15 -3229 ((-112) $)) (-15 -2327 ($ |#1| |#1| $)))) (-1087)) (T -637))
+((-3229 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-637 *3)) (-4 *3 (-1087)))) (-2327 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-1087)))))
+(-13 (-685 |#1|) (-10 -8 (-6 -4382) (-15 -3229 ((-112) $)) (-15 -2327 ($ |#1| |#1| $))))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2089 (((-3 $ "failed") $ $) 19)) (-1816 (($) 17 T CONST)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11)) (-2131 (($) 18 T CONST)) (-1683 (((-112) $ $) 6)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ |#1| $) 23)))
+(((-638 |#1|) (-139) (-1046)) (T -638))
+((* (*1 *1 *2 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1046)))))
(-13 (-21) (-10 -8 (-15 * ($ |t#1| $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-601 (-848)) . T) ((-1082) . T))
-((-3062 (((-112) $ $) NIL)) (-1508 (((-758) $) 15)) (-3288 (($ $ |#1|) 56)) (-3920 (($ $) 32)) (-3799 (($ $) 31)) (-2784 (((-3 |#1| "failed") $) 48)) (-1668 ((|#1| $) NIL)) (-3652 (($ |#1| |#2| $) 63) (($ $ $) 64)) (-3701 (((-848) $ (-1 (-848) (-848) (-848)) (-1 (-848) (-848) (-848)) (-554)) 46)) (-3195 ((|#1| $ (-554)) 30)) (-2370 ((|#2| $ (-554)) 29)) (-3563 (($ (-1 |#1| |#1|) $) 34)) (-4098 (($ (-1 |#2| |#2|) $) 38)) (-3249 (($) 10)) (-2549 (($ |#1| |#2|) 22)) (-4103 (($ (-631 (-2 (|:| |gen| |#1|) (|:| -1333 |#2|)))) 23)) (-1594 (((-631 (-2 (|:| |gen| |#1|) (|:| -1333 |#2|))) $) 13)) (-1476 (($ |#1| $) 57)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2583 (((-112) $ $) 60)) (-3075 (((-848) $) 19) (($ |#1|) 16)) (-1658 (((-112) $ $) 25)))
-(((-635 |#1| |#2| |#3|) (-13 (-1082) (-1023 |#1|) (-10 -8 (-15 -3701 ((-848) $ (-1 (-848) (-848) (-848)) (-1 (-848) (-848) (-848)) (-554))) (-15 -1594 ((-631 (-2 (|:| |gen| |#1|) (|:| -1333 |#2|))) $)) (-15 -2549 ($ |#1| |#2|)) (-15 -4103 ($ (-631 (-2 (|:| |gen| |#1|) (|:| -1333 |#2|))))) (-15 -2370 (|#2| $ (-554))) (-15 -3195 (|#1| $ (-554))) (-15 -3799 ($ $)) (-15 -3920 ($ $)) (-15 -1508 ((-758) $)) (-15 -3249 ($)) (-15 -3288 ($ $ |#1|)) (-15 -1476 ($ |#1| $)) (-15 -3652 ($ |#1| |#2| $)) (-15 -3652 ($ $ $)) (-15 -2583 ((-112) $ $)) (-15 -4098 ($ (-1 |#2| |#2|) $)) (-15 -3563 ($ (-1 |#1| |#1|) $)))) (-1082) (-23) |#2|) (T -635))
-((-3701 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-848) (-848) (-848))) (-5 *4 (-554)) (-5 *2 (-848)) (-5 *1 (-635 *5 *6 *7)) (-4 *5 (-1082)) (-4 *6 (-23)) (-14 *7 *6))) (-1594 (*1 *2 *1) (-12 (-5 *2 (-631 (-2 (|:| |gen| *3) (|:| -1333 *4)))) (-5 *1 (-635 *3 *4 *5)) (-4 *3 (-1082)) (-4 *4 (-23)) (-14 *5 *4))) (-2549 (*1 *1 *2 *3) (-12 (-5 *1 (-635 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23)) (-14 *4 *3))) (-4103 (*1 *1 *2) (-12 (-5 *2 (-631 (-2 (|:| |gen| *3) (|:| -1333 *4)))) (-4 *3 (-1082)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-635 *3 *4 *5)))) (-2370 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-4 *2 (-23)) (-5 *1 (-635 *4 *2 *5)) (-4 *4 (-1082)) (-14 *5 *2))) (-3195 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-4 *2 (-1082)) (-5 *1 (-635 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3799 (*1 *1 *1) (-12 (-5 *1 (-635 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23)) (-14 *4 *3))) (-3920 (*1 *1 *1) (-12 (-5 *1 (-635 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23)) (-14 *4 *3))) (-1508 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-635 *3 *4 *5)) (-4 *3 (-1082)) (-4 *4 (-23)) (-14 *5 *4))) (-3249 (*1 *1) (-12 (-5 *1 (-635 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23)) (-14 *4 *3))) (-3288 (*1 *1 *1 *2) (-12 (-5 *1 (-635 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23)) (-14 *4 *3))) (-1476 (*1 *1 *2 *1) (-12 (-5 *1 (-635 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23)) (-14 *4 *3))) (-3652 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-635 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23)) (-14 *4 *3))) (-3652 (*1 *1 *1 *1) (-12 (-5 *1 (-635 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23)) (-14 *4 *3))) (-2583 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-635 *3 *4 *5)) (-4 *3 (-1082)) (-4 *4 (-23)) (-14 *5 *4))) (-4098 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-635 *3 *4 *5)) (-4 *3 (-1082)))) (-3563 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1082)) (-5 *1 (-635 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
-(-13 (-1082) (-1023 |#1|) (-10 -8 (-15 -3701 ((-848) $ (-1 (-848) (-848) (-848)) (-1 (-848) (-848) (-848)) (-554))) (-15 -1594 ((-631 (-2 (|:| |gen| |#1|) (|:| -1333 |#2|))) $)) (-15 -2549 ($ |#1| |#2|)) (-15 -4103 ($ (-631 (-2 (|:| |gen| |#1|) (|:| -1333 |#2|))))) (-15 -2370 (|#2| $ (-554))) (-15 -3195 (|#1| $ (-554))) (-15 -3799 ($ $)) (-15 -3920 ($ $)) (-15 -1508 ((-758) $)) (-15 -3249 ($)) (-15 -3288 ($ $ |#1|)) (-15 -1476 ($ |#1| $)) (-15 -3652 ($ |#1| |#2| $)) (-15 -3652 ($ $ $)) (-15 -2583 ((-112) $ $)) (-15 -4098 ($ (-1 |#2| |#2|) $)) (-15 -3563 ($ (-1 |#1| |#1|) $))))
-((-2256 (((-554) $) 24)) (-1782 (($ |#2| $ (-554)) 22) (($ $ $ (-554)) NIL)) (-2529 (((-631 (-554)) $) 12)) (-3618 (((-112) (-554) $) 15)) (-4323 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-631 $)) NIL)))
-(((-636 |#1| |#2|) (-10 -8 (-15 -1782 (|#1| |#1| |#1| (-554))) (-15 -1782 (|#1| |#2| |#1| (-554))) (-15 -4323 (|#1| (-631 |#1|))) (-15 -4323 (|#1| |#1| |#1|)) (-15 -4323 (|#1| |#2| |#1|)) (-15 -4323 (|#1| |#1| |#2|)) (-15 -2256 ((-554) |#1|)) (-15 -2529 ((-631 (-554)) |#1|)) (-15 -3618 ((-112) (-554) |#1|))) (-637 |#2|) (-1195)) (T -636))
-NIL
-(-10 -8 (-15 -1782 (|#1| |#1| |#1| (-554))) (-15 -1782 (|#1| |#2| |#1| (-554))) (-15 -4323 (|#1| (-631 |#1|))) (-15 -4323 (|#1| |#1| |#1|)) (-15 -4323 (|#1| |#2| |#1|)) (-15 -4323 (|#1| |#1| |#2|)) (-15 -2256 ((-554) |#1|)) (-15 -2529 ((-631 (-554)) |#1|)) (-15 -3618 ((-112) (-554) |#1|)))
-((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-4233 (((-1246) $ (-554) (-554)) 40 (|has| $ (-6 -4374)))) (-3019 (((-112) $ (-758)) 8)) (-1501 ((|#1| $ (-554) |#1|) 52 (|has| $ (-6 -4374))) ((|#1| $ (-1208 (-554)) |#1|) 58 (|has| $ (-6 -4374)))) (-1871 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4373)))) (-4087 (($) 7 T CONST)) (-1571 (($ $) 78 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2574 (($ |#1| $) 77 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4373)))) (-2862 ((|#1| $ (-554) |#1|) 53 (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-554)) 51)) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-3180 (($ (-758) |#1|) 69)) (-2230 (((-112) $ (-758)) 9)) (-3044 (((-554) $) 43 (|has| (-554) (-836)))) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2256 (((-554) $) 44 (|has| (-554) (-836)))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3731 (((-112) $ (-758)) 10)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-1782 (($ |#1| $ (-554)) 60) (($ $ $ (-554)) 59)) (-2529 (((-631 (-554)) $) 46)) (-3618 (((-112) (-554) $) 47)) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-1539 ((|#1| $) 42 (|has| (-554) (-836)))) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2441 (($ $ |#1|) 41 (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-1609 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) 48)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2064 ((|#1| $ (-554) |#1|) 50) ((|#1| $ (-554)) 49) (($ $ (-1208 (-554))) 63)) (-2021 (($ $ (-554)) 62) (($ $ (-1208 (-554))) 61)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-2927 (((-530) $) 79 (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) 70)) (-4323 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-631 $)) 65)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373)))))
-(((-637 |#1|) (-138) (-1195)) (T -637))
-((-3180 (*1 *1 *2 *3) (-12 (-5 *2 (-758)) (-4 *1 (-637 *3)) (-4 *3 (-1195)))) (-4323 (*1 *1 *1 *2) (-12 (-4 *1 (-637 *2)) (-4 *2 (-1195)))) (-4323 (*1 *1 *2 *1) (-12 (-4 *1 (-637 *2)) (-4 *2 (-1195)))) (-4323 (*1 *1 *1 *1) (-12 (-4 *1 (-637 *2)) (-4 *2 (-1195)))) (-4323 (*1 *1 *2) (-12 (-5 *2 (-631 *1)) (-4 *1 (-637 *3)) (-4 *3 (-1195)))) (-2879 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-637 *3)) (-4 *3 (-1195)))) (-2064 (*1 *1 *1 *2) (-12 (-5 *2 (-1208 (-554))) (-4 *1 (-637 *3)) (-4 *3 (-1195)))) (-2021 (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-4 *1 (-637 *3)) (-4 *3 (-1195)))) (-2021 (*1 *1 *1 *2) (-12 (-5 *2 (-1208 (-554))) (-4 *1 (-637 *3)) (-4 *3 (-1195)))) (-1782 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-554)) (-4 *1 (-637 *2)) (-4 *2 (-1195)))) (-1782 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-554)) (-4 *1 (-637 *3)) (-4 *3 (-1195)))) (-1501 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1208 (-554))) (|has| *1 (-6 -4374)) (-4 *1 (-637 *2)) (-4 *2 (-1195)))))
-(-13 (-592 (-554) |t#1|) (-149 |t#1|) (-10 -8 (-15 -3180 ($ (-758) |t#1|)) (-15 -4323 ($ $ |t#1|)) (-15 -4323 ($ |t#1| $)) (-15 -4323 ($ $ $)) (-15 -4323 ($ (-631 $))) (-15 -2879 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2064 ($ $ (-1208 (-554)))) (-15 -2021 ($ $ (-554))) (-15 -2021 ($ $ (-1208 (-554)))) (-15 -1782 ($ |t#1| $ (-554))) (-15 -1782 ($ $ $ (-554))) (IF (|has| $ (-6 -4374)) (-15 -1501 (|t#1| $ (-1208 (-554)) |t#1|)) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1082)) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-601 (-848)))) ((-149 |#1|) . T) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-281 #0=(-554) |#1|) . T) ((-283 #0# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-592 #0# |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-1082) |has| |#1| (-1082)) ((-1195) . T))
-((-1900 (((-3 |#2| "failed") |#3| |#2| (-1158) |#2| (-631 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -3782 (-631 |#2|))) "failed") |#3| |#2| (-1158)) 44)))
-(((-638 |#1| |#2| |#3|) (-10 -7 (-15 -1900 ((-3 (-2 (|:| |particular| |#2|) (|:| -3782 (-631 |#2|))) "failed") |#3| |#2| (-1158))) (-15 -1900 ((-3 |#2| "failed") |#3| |#2| (-1158) |#2| (-631 |#2|)))) (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145)) (-13 (-29 |#1|) (-1180) (-944)) (-642 |#2|)) (T -638))
-((-1900 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1158)) (-5 *5 (-631 *2)) (-4 *2 (-13 (-29 *6) (-1180) (-944))) (-4 *6 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (-5 *1 (-638 *6 *2 *3)) (-4 *3 (-642 *2)))) (-1900 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1158)) (-4 *6 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (-4 *4 (-13 (-29 *6) (-1180) (-944))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3782 (-631 *4)))) (-5 *1 (-638 *6 *4 *3)) (-4 *3 (-642 *4)))))
-(-10 -7 (-15 -1900 ((-3 (-2 (|:| |particular| |#2|) (|:| -3782 (-631 |#2|))) "failed") |#3| |#2| (-1158))) (-15 -1900 ((-3 |#2| "failed") |#3| |#2| (-1158) |#2| (-631 |#2|))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1857 (($ $) NIL (|has| |#1| (-358)))) (-1383 (($ $ $) NIL (|has| |#1| (-358)))) (-3508 (($ $ (-758)) NIL (|has| |#1| (-358)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-2915 (($ $ $) NIL (|has| |#1| (-358)))) (-2660 (($ $ $) NIL (|has| |#1| (-358)))) (-1885 (($ $ $) NIL (|has| |#1| (-358)))) (-3335 (($ $ $) NIL (|has| |#1| (-358)))) (-3215 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-358)))) (-2850 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-2223 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-358)))) (-2784 (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-3 |#1| "failed") $) NIL)) (-1668 (((-554) $) NIL (|has| |#1| (-1023 (-554)))) (((-402 (-554)) $) NIL (|has| |#1| (-1023 (-402 (-554))))) ((|#1| $) NIL)) (-2550 (($ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2048 (($ $) NIL (|has| |#1| (-446)))) (-3248 (((-112) $) NIL)) (-2383 (($ |#1| (-758)) NIL)) (-4272 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-546)))) (-3409 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-546)))) (-3893 (((-758) $) NIL)) (-1455 (($ $ $) NIL (|has| |#1| (-358)))) (-4024 (($ $ $) NIL (|has| |#1| (-358)))) (-2780 (($ $ $) NIL (|has| |#1| (-358)))) (-1775 (($ $ $) NIL (|has| |#1| (-358)))) (-2765 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-358)))) (-1763 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-4032 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-358)))) (-2530 ((|#1| $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3919 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-546)))) (-2064 ((|#1| $ |#1|) NIL)) (-3929 (($ $ $) NIL (|has| |#1| (-358)))) (-3308 (((-758) $) NIL)) (-3276 ((|#1| $) NIL (|has| |#1| (-446)))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ (-402 (-554))) NIL (|has| |#1| (-1023 (-402 (-554))))) (($ |#1|) NIL)) (-1893 (((-631 |#1|) $) NIL)) (-1779 ((|#1| $ (-758)) NIL)) (-2261 (((-758)) NIL)) (-1485 ((|#1| $ |#1| |#1|) NIL)) (-2968 (($ $) NIL)) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($) NIL)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-639 |#1|) (-642 |#1|) (-229)) (T -639))
-NIL
-(-642 |#1|)
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1857 (($ $) NIL (|has| |#1| (-358)))) (-1383 (($ $ $) NIL (|has| |#1| (-358)))) (-3508 (($ $ (-758)) NIL (|has| |#1| (-358)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-2915 (($ $ $) NIL (|has| |#1| (-358)))) (-2660 (($ $ $) NIL (|has| |#1| (-358)))) (-1885 (($ $ $) NIL (|has| |#1| (-358)))) (-3335 (($ $ $) NIL (|has| |#1| (-358)))) (-3215 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-358)))) (-2850 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-2223 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-358)))) (-2784 (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-3 |#1| "failed") $) NIL)) (-1668 (((-554) $) NIL (|has| |#1| (-1023 (-554)))) (((-402 (-554)) $) NIL (|has| |#1| (-1023 (-402 (-554))))) ((|#1| $) NIL)) (-2550 (($ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2048 (($ $) NIL (|has| |#1| (-446)))) (-3248 (((-112) $) NIL)) (-2383 (($ |#1| (-758)) NIL)) (-4272 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-546)))) (-3409 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-546)))) (-3893 (((-758) $) NIL)) (-1455 (($ $ $) NIL (|has| |#1| (-358)))) (-4024 (($ $ $) NIL (|has| |#1| (-358)))) (-2780 (($ $ $) NIL (|has| |#1| (-358)))) (-1775 (($ $ $) NIL (|has| |#1| (-358)))) (-2765 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-358)))) (-1763 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-4032 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-358)))) (-2530 ((|#1| $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3919 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-546)))) (-2064 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3929 (($ $ $) NIL (|has| |#1| (-358)))) (-3308 (((-758) $) NIL)) (-3276 ((|#1| $) NIL (|has| |#1| (-446)))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ (-402 (-554))) NIL (|has| |#1| (-1023 (-402 (-554))))) (($ |#1|) NIL)) (-1893 (((-631 |#1|) $) NIL)) (-1779 ((|#1| $ (-758)) NIL)) (-2261 (((-758)) NIL)) (-1485 ((|#1| $ |#1| |#1|) NIL)) (-2968 (($ $) NIL)) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($) NIL)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-640 |#1| |#2|) (-13 (-642 |#1|) (-281 |#2| |#2|)) (-229) (-13 (-634 |#1|) (-10 -8 (-15 -1553 ($ $))))) (T -640))
-NIL
-(-13 (-642 |#1|) (-281 |#2| |#2|))
-((-1857 (($ $) 26)) (-2968 (($ $) 24)) (-1787 (($) 12)))
-(((-641 |#1| |#2|) (-10 -8 (-15 -1857 (|#1| |#1|)) (-15 -2968 (|#1| |#1|)) (-15 -1787 (|#1|))) (-642 |#2|) (-1034)) (T -641))
-NIL
-(-10 -8 (-15 -1857 (|#1| |#1|)) (-15 -2968 (|#1| |#1|)) (-15 -1787 (|#1|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1857 (($ $) 81 (|has| |#1| (-358)))) (-1383 (($ $ $) 83 (|has| |#1| (-358)))) (-3508 (($ $ (-758)) 82 (|has| |#1| (-358)))) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-2915 (($ $ $) 44 (|has| |#1| (-358)))) (-2660 (($ $ $) 45 (|has| |#1| (-358)))) (-1885 (($ $ $) 47 (|has| |#1| (-358)))) (-3335 (($ $ $) 42 (|has| |#1| (-358)))) (-3215 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 41 (|has| |#1| (-358)))) (-2850 (((-3 $ "failed") $ $) 43 (|has| |#1| (-358)))) (-2223 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 46 (|has| |#1| (-358)))) (-2784 (((-3 (-554) "failed") $) 74 (|has| |#1| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) 71 (|has| |#1| (-1023 (-402 (-554))))) (((-3 |#1| "failed") $) 68)) (-1668 (((-554) $) 73 (|has| |#1| (-1023 (-554)))) (((-402 (-554)) $) 70 (|has| |#1| (-1023 (-402 (-554))))) ((|#1| $) 69)) (-2550 (($ $) 63)) (-1320 (((-3 $ "failed") $) 33)) (-2048 (($ $) 54 (|has| |#1| (-446)))) (-3248 (((-112) $) 31)) (-2383 (($ |#1| (-758)) 61)) (-4272 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 56 (|has| |#1| (-546)))) (-3409 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 57 (|has| |#1| (-546)))) (-3893 (((-758) $) 65)) (-1455 (($ $ $) 51 (|has| |#1| (-358)))) (-4024 (($ $ $) 52 (|has| |#1| (-358)))) (-2780 (($ $ $) 40 (|has| |#1| (-358)))) (-1775 (($ $ $) 49 (|has| |#1| (-358)))) (-2765 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 48 (|has| |#1| (-358)))) (-1763 (((-3 $ "failed") $ $) 50 (|has| |#1| (-358)))) (-4032 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 53 (|has| |#1| (-358)))) (-2530 ((|#1| $) 64)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3919 (((-3 $ "failed") $ |#1|) 58 (|has| |#1| (-546)))) (-2064 ((|#1| $ |#1|) 86)) (-3929 (($ $ $) 80 (|has| |#1| (-358)))) (-3308 (((-758) $) 66)) (-3276 ((|#1| $) 55 (|has| |#1| (-446)))) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ (-402 (-554))) 72 (|has| |#1| (-1023 (-402 (-554))))) (($ |#1|) 67)) (-1893 (((-631 |#1|) $) 60)) (-1779 ((|#1| $ (-758)) 62)) (-2261 (((-758)) 28)) (-1485 ((|#1| $ |#1| |#1|) 59)) (-2968 (($ $) 84)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($) 85)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ |#1|) 76) (($ |#1| $) 75)))
-(((-642 |#1|) (-138) (-1034)) (T -642))
-((-1787 (*1 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-1034)))) (-2968 (*1 *1 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-1034)))) (-1383 (*1 *1 *1 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-1034)) (-4 *2 (-358)))) (-3508 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *1 (-642 *3)) (-4 *3 (-1034)) (-4 *3 (-358)))) (-1857 (*1 *1 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-1034)) (-4 *2 (-358)))) (-3929 (*1 *1 *1 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-1034)) (-4 *2 (-358)))))
-(-13 (-838 |t#1|) (-281 |t#1| |t#1|) (-10 -8 (-15 -1787 ($)) (-15 -2968 ($ $)) (IF (|has| |t#1| (-358)) (PROGN (-15 -1383 ($ $ $)) (-15 -3508 ($ $ (-758))) (-15 -1857 ($ $)) (-15 -3929 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-604 #0=(-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) ((-604 (-554)) . T) ((-604 |#1|) . T) ((-601 (-848)) . T) ((-281 |#1| |#1|) . T) ((-406 |#1|) . T) ((-634 |#1|) . T) ((-634 $) . T) ((-704 |#1|) |has| |#1| (-170)) ((-713) . T) ((-1023 #0#) |has| |#1| (-1023 (-402 (-554)))) ((-1023 (-554)) |has| |#1| (-1023 (-554))) ((-1023 |#1|) . T) ((-1040 |#1|) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-838 |#1|) . T))
-((-2561 (((-631 (-639 (-402 |#2|))) (-639 (-402 |#2|))) 74 (|has| |#1| (-27)))) (-2270 (((-631 (-639 (-402 |#2|))) (-639 (-402 |#2|))) 73 (|has| |#1| (-27))) (((-631 (-639 (-402 |#2|))) (-639 (-402 |#2|)) (-1 (-631 |#1|) |#2|)) 17)))
-(((-643 |#1| |#2|) (-10 -7 (-15 -2270 ((-631 (-639 (-402 |#2|))) (-639 (-402 |#2|)) (-1 (-631 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2270 ((-631 (-639 (-402 |#2|))) (-639 (-402 |#2|)))) (-15 -2561 ((-631 (-639 (-402 |#2|))) (-639 (-402 |#2|))))) |%noBranch|)) (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554)))) (-1217 |#1|)) (T -643))
-((-2561 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) (-4 *5 (-1217 *4)) (-5 *2 (-631 (-639 (-402 *5)))) (-5 *1 (-643 *4 *5)) (-5 *3 (-639 (-402 *5))))) (-2270 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) (-4 *5 (-1217 *4)) (-5 *2 (-631 (-639 (-402 *5)))) (-5 *1 (-643 *4 *5)) (-5 *3 (-639 (-402 *5))))) (-2270 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-631 *5) *6)) (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) (-4 *6 (-1217 *5)) (-5 *2 (-631 (-639 (-402 *6)))) (-5 *1 (-643 *5 *6)) (-5 *3 (-639 (-402 *6))))))
-(-10 -7 (-15 -2270 ((-631 (-639 (-402 |#2|))) (-639 (-402 |#2|)) (-1 (-631 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2270 ((-631 (-639 (-402 |#2|))) (-639 (-402 |#2|)))) (-15 -2561 ((-631 (-639 (-402 |#2|))) (-639 (-402 |#2|))))) |%noBranch|))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1857 (($ $) NIL (|has| |#1| (-358)))) (-1383 (($ $ $) 28 (|has| |#1| (-358)))) (-3508 (($ $ (-758)) 31 (|has| |#1| (-358)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-2915 (($ $ $) NIL (|has| |#1| (-358)))) (-2660 (($ $ $) NIL (|has| |#1| (-358)))) (-1885 (($ $ $) NIL (|has| |#1| (-358)))) (-3335 (($ $ $) NIL (|has| |#1| (-358)))) (-3215 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-358)))) (-2850 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-2223 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-358)))) (-2784 (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-3 |#1| "failed") $) NIL)) (-1668 (((-554) $) NIL (|has| |#1| (-1023 (-554)))) (((-402 (-554)) $) NIL (|has| |#1| (-1023 (-402 (-554))))) ((|#1| $) NIL)) (-2550 (($ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2048 (($ $) NIL (|has| |#1| (-446)))) (-3248 (((-112) $) NIL)) (-2383 (($ |#1| (-758)) NIL)) (-4272 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-546)))) (-3409 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-546)))) (-3893 (((-758) $) NIL)) (-1455 (($ $ $) NIL (|has| |#1| (-358)))) (-4024 (($ $ $) NIL (|has| |#1| (-358)))) (-2780 (($ $ $) NIL (|has| |#1| (-358)))) (-1775 (($ $ $) NIL (|has| |#1| (-358)))) (-2765 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-358)))) (-1763 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-4032 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-358)))) (-2530 ((|#1| $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3919 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-546)))) (-2064 ((|#1| $ |#1|) 24)) (-3929 (($ $ $) 33 (|has| |#1| (-358)))) (-3308 (((-758) $) NIL)) (-3276 ((|#1| $) NIL (|has| |#1| (-446)))) (-3075 (((-848) $) 20) (($ (-554)) NIL) (($ (-402 (-554))) NIL (|has| |#1| (-1023 (-402 (-554))))) (($ |#1|) NIL)) (-1893 (((-631 |#1|) $) NIL)) (-1779 ((|#1| $ (-758)) NIL)) (-2261 (((-758)) NIL)) (-1485 ((|#1| $ |#1| |#1|) 23)) (-2968 (($ $) NIL)) (-2004 (($) 21 T CONST)) (-2014 (($) 8 T CONST)) (-1787 (($) NIL)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-644 |#1| |#2|) (-642 |#1|) (-1034) (-1 |#1| |#1|)) (T -644))
-NIL
-(-642 |#1|)
-((-1383 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-3508 ((|#2| |#2| (-758) (-1 |#1| |#1|)) 40)) (-3929 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61)))
-(((-645 |#1| |#2|) (-10 -7 (-15 -1383 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3508 (|#2| |#2| (-758) (-1 |#1| |#1|))) (-15 -3929 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-358) (-642 |#1|)) (T -645))
-((-3929 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-358)) (-5 *1 (-645 *4 *2)) (-4 *2 (-642 *4)))) (-3508 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-758)) (-5 *4 (-1 *5 *5)) (-4 *5 (-358)) (-5 *1 (-645 *5 *2)) (-4 *2 (-642 *5)))) (-1383 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-358)) (-5 *1 (-645 *4 *2)) (-4 *2 (-642 *4)))))
-(-10 -7 (-15 -1383 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3508 (|#2| |#2| (-758) (-1 |#1| |#1|))) (-15 -3929 (|#2| |#2| |#2| (-1 |#1| |#1|))))
-((-2140 (($ $ $) 9)))
-(((-646 |#1|) (-10 -8 (-15 -2140 (|#1| |#1| |#1|))) (-647)) (T -646))
-NIL
-(-10 -8 (-15 -2140 (|#1| |#1| |#1|)))
-((-3062 (((-112) $ $) 7)) (-1285 (($ $) 10)) (-2140 (($ $ $) 8)) (-1658 (((-112) $ $) 6)) (-2130 (($ $ $) 9)))
-(((-647) (-138)) (T -647))
-((-1285 (*1 *1 *1) (-4 *1 (-647))) (-2130 (*1 *1 *1 *1) (-4 *1 (-647))) (-2140 (*1 *1 *1 *1) (-4 *1 (-647))))
-(-13 (-102) (-10 -8 (-15 -1285 ($ $)) (-15 -2130 ($ $ $)) (-15 -2140 ($ $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-605 (-853)) . T) ((-1087) . T))
+((-3207 (((-112) $ $) NIL)) (-2276 (((-762) $) 15)) (-3283 (($ $ |#1|) 56)) (-3306 (($ $) 32)) (-4127 (($ $) 31)) (-3069 (((-3 |#1| "failed") $) 48)) (-1863 ((|#1| $) NIL)) (-3836 (($ |#1| |#2| $) 62) (($ $ $) 63)) (-1804 (((-853) $ (-1 (-853) (-853) (-853)) (-1 (-853) (-853) (-853)) (-558)) 46)) (-1859 ((|#1| $ (-558)) 30)) (-1872 ((|#2| $ (-558)) 29)) (-3241 (($ (-1 |#1| |#1|) $) 34)) (-3251 (($ (-1 |#2| |#2|) $) 38)) (-3294 (($) 10)) (-3328 (($ |#1| |#2|) 22)) (-3317 (($ (-635 (-2 (|:| |gen| |#1|) (|:| -2573 |#2|)))) 23)) (-3339 (((-635 (-2 (|:| |gen| |#1|) (|:| -2573 |#2|))) $) 13)) (-3271 (($ |#1| $) 57)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3261 (((-112) $ $) 60)) (-3220 (((-853) $) 19) (($ |#1|) 16)) (-1683 (((-112) $ $) 25)))
+(((-639 |#1| |#2| |#3|) (-13 (-1087) (-1028 |#1|) (-10 -8 (-15 -1804 ((-853) $ (-1 (-853) (-853) (-853)) (-1 (-853) (-853) (-853)) (-558))) (-15 -3339 ((-635 (-2 (|:| |gen| |#1|) (|:| -2573 |#2|))) $)) (-15 -3328 ($ |#1| |#2|)) (-15 -3317 ($ (-635 (-2 (|:| |gen| |#1|) (|:| -2573 |#2|))))) (-15 -1872 (|#2| $ (-558))) (-15 -1859 (|#1| $ (-558))) (-15 -4127 ($ $)) (-15 -3306 ($ $)) (-15 -2276 ((-762) $)) (-15 -3294 ($)) (-15 -3283 ($ $ |#1|)) (-15 -3271 ($ |#1| $)) (-15 -3836 ($ |#1| |#2| $)) (-15 -3836 ($ $ $)) (-15 -3261 ((-112) $ $)) (-15 -3251 ($ (-1 |#2| |#2|) $)) (-15 -3241 ($ (-1 |#1| |#1|) $)))) (-1087) (-23) |#2|) (T -639))
+((-1804 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-853) (-853) (-853))) (-5 *4 (-558)) (-5 *2 (-853)) (-5 *1 (-639 *5 *6 *7)) (-4 *5 (-1087)) (-4 *6 (-23)) (-14 *7 *6))) (-3339 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -2573 *4)))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-1087)) (-4 *4 (-23)) (-14 *5 *4))) (-3328 (*1 *1 *2 *3) (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-1087)) (-4 *3 (-23)) (-14 *4 *3))) (-3317 (*1 *1 *2) (-12 (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -2573 *4)))) (-4 *3 (-1087)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-639 *3 *4 *5)))) (-1872 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *2 (-23)) (-5 *1 (-639 *4 *2 *5)) (-4 *4 (-1087)) (-14 *5 *2))) (-1859 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *2 (-1087)) (-5 *1 (-639 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-4127 (*1 *1 *1) (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-1087)) (-4 *3 (-23)) (-14 *4 *3))) (-3306 (*1 *1 *1) (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-1087)) (-4 *3 (-23)) (-14 *4 *3))) (-2276 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-1087)) (-4 *4 (-23)) (-14 *5 *4))) (-3294 (*1 *1) (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-1087)) (-4 *3 (-23)) (-14 *4 *3))) (-3283 (*1 *1 *1 *2) (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-1087)) (-4 *3 (-23)) (-14 *4 *3))) (-3271 (*1 *1 *2 *1) (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-1087)) (-4 *3 (-23)) (-14 *4 *3))) (-3836 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-1087)) (-4 *3 (-23)) (-14 *4 *3))) (-3836 (*1 *1 *1 *1) (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-1087)) (-4 *3 (-23)) (-14 *4 *3))) (-3261 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-1087)) (-4 *4 (-23)) (-14 *5 *4))) (-3251 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-1087)))) (-3241 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1087)) (-5 *1 (-639 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
+(-13 (-1087) (-1028 |#1|) (-10 -8 (-15 -1804 ((-853) $ (-1 (-853) (-853) (-853)) (-1 (-853) (-853) (-853)) (-558))) (-15 -3339 ((-635 (-2 (|:| |gen| |#1|) (|:| -2573 |#2|))) $)) (-15 -3328 ($ |#1| |#2|)) (-15 -3317 ($ (-635 (-2 (|:| |gen| |#1|) (|:| -2573 |#2|))))) (-15 -1872 (|#2| $ (-558))) (-15 -1859 (|#1| $ (-558))) (-15 -4127 ($ $)) (-15 -3306 ($ $)) (-15 -2276 ((-762) $)) (-15 -3294 ($)) (-15 -3283 ($ $ |#1|)) (-15 -3271 ($ |#1| $)) (-15 -3836 ($ |#1| |#2| $)) (-15 -3836 ($ $ $)) (-15 -3261 ((-112) $ $)) (-15 -3251 ($ (-1 |#2| |#2|) $)) (-15 -3241 ($ (-1 |#1| |#1|) $))))
+((-3899 (((-558) $) 23)) (-1861 (($ |#2| $ (-558)) 21) (($ $ $ (-558)) NIL)) (-3920 (((-635 (-558)) $) 12)) (-3929 (((-112) (-558) $) 14)) (-4341 (($ $ |#2|) 18) (($ |#2| $) 19) (($ $ $) NIL) (($ (-635 $)) NIL)))
+(((-640 |#1| |#2|) (-10 -8 (-15 -1861 (|#1| |#1| |#1| (-558))) (-15 -1861 (|#1| |#2| |#1| (-558))) (-15 -4341 (|#1| (-635 |#1|))) (-15 -4341 (|#1| |#1| |#1|)) (-15 -4341 (|#1| |#2| |#1|)) (-15 -4341 (|#1| |#1| |#2|)) (-15 -3899 ((-558) |#1|)) (-15 -3920 ((-635 (-558)) |#1|)) (-15 -3929 ((-112) (-558) |#1|))) (-641 |#2|) (-1200)) (T -640))
+NIL
+(-10 -8 (-15 -1861 (|#1| |#1| |#1| (-558))) (-15 -1861 (|#1| |#2| |#1| (-558))) (-15 -4341 (|#1| (-635 |#1|))) (-15 -4341 (|#1| |#1| |#1|)) (-15 -4341 (|#1| |#2| |#1|)) (-15 -4341 (|#1| |#1| |#2|)) (-15 -3899 ((-558) |#1|)) (-15 -3920 ((-635 (-558)) |#1|)) (-15 -3929 ((-112) (-558) |#1|)))
+((-3207 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-3869 (((-1251) $ (-558) (-558)) 40 (|has| $ (-6 -4383)))) (-3026 (((-112) $ (-762)) 8)) (-1532 ((|#1| $ (-558) |#1|) 52 (|has| $ (-6 -4383))) ((|#1| $ (-1213 (-558)) |#1|) 58 (|has| $ (-6 -4383)))) (-4329 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4382)))) (-1816 (($) 7 T CONST)) (-2338 (($ $) 78 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1539 (($ |#1| $) 77 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4382)))) (-3048 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4382))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4382)))) (-1817 ((|#1| $ (-558) |#1|) 53 (|has| $ (-6 -4383)))) (-1746 ((|#1| $ (-558)) 51)) (-2240 (((-635 |#1|) $) 30 (|has| $ (-6 -4382)))) (-3315 (($ (-762) |#1|) 69)) (-2986 (((-112) $ (-762)) 9)) (-3889 (((-558) $) 43 (|has| (-558) (-841)))) (-2122 (((-635 |#1|) $) 29 (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-3899 (((-558) $) 44 (|has| (-558) (-841)))) (-1807 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2953 (((-112) $ (-762)) 10)) (-4310 (((-1145) $) 22 (|has| |#1| (-1087)))) (-1861 (($ |#1| $ (-558)) 60) (($ $ $ (-558)) 59)) (-3920 (((-635 (-558)) $) 46)) (-3929 (((-112) (-558) $) 47)) (-2975 (((-1107) $) 21 (|has| |#1| (-1087)))) (-2305 ((|#1| $) 42 (|has| (-558) (-841)))) (-4307 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3880 (($ $ |#1|) 41 (|has| $ (-6 -4383)))) (-3266 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) 14)) (-3908 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3937 (((-635 |#1|) $) 48)) (-3375 (((-112) $) 11)) (-2083 (($) 12)) (-2195 ((|#1| $ (-558) |#1|) 50) ((|#1| $ (-558)) 49) (($ $ (-1213 (-558))) 63)) (-4023 (($ $ (-558)) 62) (($ $ (-1213 (-558))) 61)) (-2988 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4382))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1553 (($ $) 13)) (-3224 (((-534) $) 79 (|has| |#1| (-606 (-534))))) (-3233 (($ (-635 |#1|)) 70)) (-4341 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-635 $)) 65)) (-3220 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-3277 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-2755 (((-762) $) 6 (|has| $ (-6 -4382)))))
+(((-641 |#1|) (-139) (-1200)) (T -641))
+((-3315 (*1 *1 *2 *3) (-12 (-5 *2 (-762)) (-4 *1 (-641 *3)) (-4 *3 (-1200)))) (-4341 (*1 *1 *1 *2) (-12 (-4 *1 (-641 *2)) (-4 *2 (-1200)))) (-4341 (*1 *1 *2 *1) (-12 (-4 *1 (-641 *2)) (-4 *2 (-1200)))) (-4341 (*1 *1 *1 *1) (-12 (-4 *1 (-641 *2)) (-4 *2 (-1200)))) (-4341 (*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-641 *3)) (-4 *3 (-1200)))) (-3167 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-641 *3)) (-4 *3 (-1200)))) (-2195 (*1 *1 *1 *2) (-12 (-5 *2 (-1213 (-558))) (-4 *1 (-641 *3)) (-4 *3 (-1200)))) (-4023 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-641 *3)) (-4 *3 (-1200)))) (-4023 (*1 *1 *1 *2) (-12 (-5 *2 (-1213 (-558))) (-4 *1 (-641 *3)) (-4 *3 (-1200)))) (-1861 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-641 *2)) (-4 *2 (-1200)))) (-1861 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-641 *3)) (-4 *3 (-1200)))) (-1532 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1213 (-558))) (|has| *1 (-6 -4383)) (-4 *1 (-641 *2)) (-4 *2 (-1200)))))
+(-13 (-596 (-558) |t#1|) (-150 |t#1|) (-10 -8 (-15 -3315 ($ (-762) |t#1|)) (-15 -4341 ($ $ |t#1|)) (-15 -4341 ($ |t#1| $)) (-15 -4341 ($ $ $)) (-15 -4341 ($ (-635 $))) (-15 -3167 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2195 ($ $ (-1213 (-558)))) (-15 -4023 ($ $ (-558))) (-15 -4023 ($ $ (-1213 (-558)))) (-15 -1861 ($ |t#1| $ (-558))) (-15 -1861 ($ $ $ (-558))) (IF (|has| $ (-6 -4383)) (-15 -1532 (|t#1| $ (-1213 (-558)) |t#1|)) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1087)) ((-605 (-853)) -3998 (|has| |#1| (-1087)) (|has| |#1| (-605 (-853)))) ((-150 |#1|) . T) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-285 #0=(-558) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-596 #0# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-1087) |has| |#1| (-1087)) ((-1200) . T))
+((-2153 (((-3 |#2| "failed") |#3| |#2| (-1163) |#2| (-635 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -2660 (-635 |#2|))) "failed") |#3| |#2| (-1163)) 44)))
+(((-642 |#1| |#2| |#3|) (-10 -7 (-15 -2153 ((-3 (-2 (|:| |particular| |#2|) (|:| -2660 (-635 |#2|))) "failed") |#3| |#2| (-1163))) (-15 -2153 ((-3 |#2| "failed") |#3| |#2| (-1163) |#2| (-635 |#2|)))) (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)) (-13 (-29 |#1|) (-1185) (-949)) (-646 |#2|)) (T -642))
+((-2153 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1163)) (-5 *5 (-635 *2)) (-4 *2 (-13 (-29 *6) (-1185) (-949))) (-4 *6 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146))) (-5 *1 (-642 *6 *2 *3)) (-4 *3 (-646 *2)))) (-2153 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1163)) (-4 *6 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146))) (-4 *4 (-13 (-29 *6) (-1185) (-949))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2660 (-635 *4)))) (-5 *1 (-642 *6 *4 *3)) (-4 *3 (-646 *4)))))
+(-10 -7 (-15 -2153 ((-3 (-2 (|:| |particular| |#2|) (|:| -2660 (-635 |#2|))) "failed") |#3| |#2| (-1163))) (-15 -2153 ((-3 |#2| "failed") |#3| |#2| (-1163) |#2| (-635 |#2|))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-3349 (($ $) NIL (|has| |#1| (-362)))) (-3368 (($ $ $) NIL (|has| |#1| (-362)))) (-3378 (($ $ (-762)) NIL (|has| |#1| (-362)))) (-2089 (((-3 $ "failed") $ $) NIL)) (-1816 (($) NIL T CONST)) (-3581 (($ $ $) NIL (|has| |#1| (-362)))) (-3590 (($ $ $) NIL (|has| |#1| (-362)))) (-3599 (($ $ $) NIL (|has| |#1| (-362)))) (-3562 (($ $ $) NIL (|has| |#1| (-362)))) (-3552 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL (|has| |#1| (-362)))) (-3570 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-3686 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL (|has| |#1| (-362)))) (-3069 (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-3 |#1| "failed") $) NIL)) (-1863 (((-558) $) NIL (|has| |#1| (-1028 (-558)))) (((-406 (-558)) $) NIL (|has| |#1| (-1028 (-406 (-558))))) ((|#1| $) NIL)) (-2490 (($ $) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-2782 (($ $) NIL (|has| |#1| (-450)))) (-2035 (((-112) $) NIL)) (-2648 (($ |#1| (-762)) NIL)) (-3667 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL (|has| |#1| (-550)))) (-3657 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL (|has| |#1| (-550)))) (-2524 (((-762) $) NIL)) (-3637 (($ $ $) NIL (|has| |#1| (-362)))) (-3646 (($ $ $) NIL (|has| |#1| (-362)))) (-3540 (($ $ $) NIL (|has| |#1| (-362)))) (-3619 (($ $ $) NIL (|has| |#1| (-362)))) (-3609 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL (|has| |#1| (-362)))) (-3628 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-3677 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL (|has| |#1| (-362)))) (-2463 ((|#1| $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3983 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550)))) (-2195 ((|#1| $ |#1|) NIL)) (-3388 (($ $ $) NIL (|has| |#1| (-362)))) (-4323 (((-762) $) NIL)) (-2504 ((|#1| $) NIL (|has| |#1| (-450)))) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ (-406 (-558))) NIL (|has| |#1| (-1028 (-406 (-558))))) (($ |#1|) NIL)) (-2583 (((-635 |#1|) $) NIL)) (-3736 ((|#1| $ (-762)) NIL)) (-2542 (((-762)) NIL)) (-2258 ((|#1| $ |#1| |#1|) NIL)) (-1536 (($ $) NIL)) (-2131 (($) NIL T CONST)) (-2142 (($) NIL T CONST)) (-1866 (($) NIL)) (-1683 (((-112) $ $) NIL)) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-643 |#1|) (-646 |#1|) (-232)) (T -643))
+NIL
+(-646 |#1|)
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-3349 (($ $) NIL (|has| |#1| (-362)))) (-3368 (($ $ $) NIL (|has| |#1| (-362)))) (-3378 (($ $ (-762)) NIL (|has| |#1| (-362)))) (-2089 (((-3 $ "failed") $ $) NIL)) (-1816 (($) NIL T CONST)) (-3581 (($ $ $) NIL (|has| |#1| (-362)))) (-3590 (($ $ $) NIL (|has| |#1| (-362)))) (-3599 (($ $ $) NIL (|has| |#1| (-362)))) (-3562 (($ $ $) NIL (|has| |#1| (-362)))) (-3552 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL (|has| |#1| (-362)))) (-3570 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-3686 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL (|has| |#1| (-362)))) (-3069 (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-3 |#1| "failed") $) NIL)) (-1863 (((-558) $) NIL (|has| |#1| (-1028 (-558)))) (((-406 (-558)) $) NIL (|has| |#1| (-1028 (-406 (-558))))) ((|#1| $) NIL)) (-2490 (($ $) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-2782 (($ $) NIL (|has| |#1| (-450)))) (-2035 (((-112) $) NIL)) (-2648 (($ |#1| (-762)) NIL)) (-3667 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL (|has| |#1| (-550)))) (-3657 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL (|has| |#1| (-550)))) (-2524 (((-762) $) NIL)) (-3637 (($ $ $) NIL (|has| |#1| (-362)))) (-3646 (($ $ $) NIL (|has| |#1| (-362)))) (-3540 (($ $ $) NIL (|has| |#1| (-362)))) (-3619 (($ $ $) NIL (|has| |#1| (-362)))) (-3609 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL (|has| |#1| (-362)))) (-3628 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-3677 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL (|has| |#1| (-362)))) (-2463 ((|#1| $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3983 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550)))) (-2195 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3388 (($ $ $) NIL (|has| |#1| (-362)))) (-4323 (((-762) $) NIL)) (-2504 ((|#1| $) NIL (|has| |#1| (-450)))) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ (-406 (-558))) NIL (|has| |#1| (-1028 (-406 (-558))))) (($ |#1|) NIL)) (-2583 (((-635 |#1|) $) NIL)) (-3736 ((|#1| $ (-762)) NIL)) (-2542 (((-762)) NIL)) (-2258 ((|#1| $ |#1| |#1|) NIL)) (-1536 (($ $) NIL)) (-2131 (($) NIL T CONST)) (-2142 (($) NIL T CONST)) (-1866 (($) NIL)) (-1683 (((-112) $ $) NIL)) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-644 |#1| |#2|) (-13 (-646 |#1|) (-285 |#2| |#2|)) (-232) (-13 (-638 |#1|) (-10 -8 (-15 -2829 ($ $))))) (T -644))
+NIL
+(-13 (-646 |#1|) (-285 |#2| |#2|))
+((-3349 (($ $) 26)) (-1536 (($ $) 24)) (-1866 (($) 12)))
+(((-645 |#1| |#2|) (-10 -8 (-15 -3349 (|#1| |#1|)) (-15 -1536 (|#1| |#1|)) (-15 -1866 (|#1|))) (-646 |#2|) (-1039)) (T -645))
+NIL
+(-10 -8 (-15 -3349 (|#1| |#1|)) (-15 -1536 (|#1| |#1|)) (-15 -1866 (|#1|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-3349 (($ $) 81 (|has| |#1| (-362)))) (-3368 (($ $ $) 83 (|has| |#1| (-362)))) (-3378 (($ $ (-762)) 82 (|has| |#1| (-362)))) (-2089 (((-3 $ "failed") $ $) 19)) (-1816 (($) 17 T CONST)) (-3581 (($ $ $) 44 (|has| |#1| (-362)))) (-3590 (($ $ $) 45 (|has| |#1| (-362)))) (-3599 (($ $ $) 47 (|has| |#1| (-362)))) (-3562 (($ $ $) 42 (|has| |#1| (-362)))) (-3552 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) 41 (|has| |#1| (-362)))) (-3570 (((-3 $ "failed") $ $) 43 (|has| |#1| (-362)))) (-3686 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 46 (|has| |#1| (-362)))) (-3069 (((-3 (-558) "failed") $) 74 (|has| |#1| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) 71 (|has| |#1| (-1028 (-406 (-558))))) (((-3 |#1| "failed") $) 68)) (-1863 (((-558) $) 73 (|has| |#1| (-1028 (-558)))) (((-406 (-558)) $) 70 (|has| |#1| (-1028 (-406 (-558))))) ((|#1| $) 69)) (-2490 (($ $) 63)) (-2588 (((-3 $ "failed") $) 33)) (-2782 (($ $) 54 (|has| |#1| (-450)))) (-2035 (((-112) $) 31)) (-2648 (($ |#1| (-762)) 61)) (-3667 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 56 (|has| |#1| (-550)))) (-3657 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 57 (|has| |#1| (-550)))) (-2524 (((-762) $) 65)) (-3637 (($ $ $) 51 (|has| |#1| (-362)))) (-3646 (($ $ $) 52 (|has| |#1| (-362)))) (-3540 (($ $ $) 40 (|has| |#1| (-362)))) (-3619 (($ $ $) 49 (|has| |#1| (-362)))) (-3609 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) 48 (|has| |#1| (-362)))) (-3628 (((-3 $ "failed") $ $) 50 (|has| |#1| (-362)))) (-3677 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 53 (|has| |#1| (-362)))) (-2463 ((|#1| $) 64)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3983 (((-3 $ "failed") $ |#1|) 58 (|has| |#1| (-550)))) (-2195 ((|#1| $ |#1|) 86)) (-3388 (($ $ $) 80 (|has| |#1| (-362)))) (-4323 (((-762) $) 66)) (-2504 ((|#1| $) 55 (|has| |#1| (-450)))) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ (-406 (-558))) 72 (|has| |#1| (-1028 (-406 (-558))))) (($ |#1|) 67)) (-2583 (((-635 |#1|) $) 60)) (-3736 ((|#1| $ (-762)) 62)) (-2542 (((-762)) 28)) (-2258 ((|#1| $ |#1| |#1|) 59)) (-1536 (($ $) 84)) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1866 (($) 85)) (-1683 (((-112) $ $) 6)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ |#1|) 76) (($ |#1| $) 75)))
+(((-646 |#1|) (-139) (-1039)) (T -646))
+((-1866 (*1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1039)))) (-1536 (*1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1039)))) (-3368 (*1 *1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))) (-3378 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *1 (-646 *3)) (-4 *3 (-1039)) (-4 *3 (-362)))) (-3349 (*1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))) (-3388 (*1 *1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))))
+(-13 (-843 |t#1|) (-285 |t#1| |t#1|) (-10 -8 (-15 -1866 ($)) (-15 -1536 ($ $)) (IF (|has| |t#1| (-362)) (PROGN (-15 -3368 ($ $ $)) (-15 -3378 ($ $ (-762))) (-15 -3349 ($ $)) (-15 -3388 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-171)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-608 #0=(-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) ((-608 (-558)) . T) ((-608 |#1|) . T) ((-605 (-853)) . T) ((-285 |#1| |#1|) . T) ((-410 |#1|) . T) ((-638 |#1|) . T) ((-638 $) . T) ((-708 |#1|) |has| |#1| (-171)) ((-717) . T) ((-1028 #0#) |has| |#1| (-1028 (-406 (-558)))) ((-1028 (-558)) |has| |#1| (-1028 (-558))) ((-1028 |#1|) . T) ((-1045 |#1|) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-843 |#1|) . T))
+((-3359 (((-635 (-643 (-406 |#2|))) (-643 (-406 |#2|))) 74 (|has| |#1| (-27)))) (-2522 (((-635 (-643 (-406 |#2|))) (-643 (-406 |#2|))) 73 (|has| |#1| (-27))) (((-635 (-643 (-406 |#2|))) (-643 (-406 |#2|)) (-1 (-635 |#1|) |#2|)) 17)))
+(((-647 |#1| |#2|) (-10 -7 (-15 -2522 ((-635 (-643 (-406 |#2|))) (-643 (-406 |#2|)) (-1 (-635 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2522 ((-635 (-643 (-406 |#2|))) (-643 (-406 |#2|)))) (-15 -3359 ((-635 (-643 (-406 |#2|))) (-643 (-406 |#2|))))) |%noBranch|)) (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))) (-1222 |#1|)) (T -647))
+((-3359 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))))) (-4 *5 (-1222 *4)) (-5 *2 (-635 (-643 (-406 *5)))) (-5 *1 (-647 *4 *5)) (-5 *3 (-643 (-406 *5))))) (-2522 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))))) (-4 *5 (-1222 *4)) (-5 *2 (-635 (-643 (-406 *5)))) (-5 *1 (-647 *4 *5)) (-5 *3 (-643 (-406 *5))))) (-2522 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-635 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))))) (-4 *6 (-1222 *5)) (-5 *2 (-635 (-643 (-406 *6)))) (-5 *1 (-647 *5 *6)) (-5 *3 (-643 (-406 *6))))))
+(-10 -7 (-15 -2522 ((-635 (-643 (-406 |#2|))) (-643 (-406 |#2|)) (-1 (-635 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2522 ((-635 (-643 (-406 |#2|))) (-643 (-406 |#2|)))) (-15 -3359 ((-635 (-643 (-406 |#2|))) (-643 (-406 |#2|))))) |%noBranch|))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-3349 (($ $) NIL (|has| |#1| (-362)))) (-3368 (($ $ $) 28 (|has| |#1| (-362)))) (-3378 (($ $ (-762)) 31 (|has| |#1| (-362)))) (-2089 (((-3 $ "failed") $ $) NIL)) (-1816 (($) NIL T CONST)) (-3581 (($ $ $) NIL (|has| |#1| (-362)))) (-3590 (($ $ $) NIL (|has| |#1| (-362)))) (-3599 (($ $ $) NIL (|has| |#1| (-362)))) (-3562 (($ $ $) NIL (|has| |#1| (-362)))) (-3552 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL (|has| |#1| (-362)))) (-3570 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-3686 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL (|has| |#1| (-362)))) (-3069 (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-3 |#1| "failed") $) NIL)) (-1863 (((-558) $) NIL (|has| |#1| (-1028 (-558)))) (((-406 (-558)) $) NIL (|has| |#1| (-1028 (-406 (-558))))) ((|#1| $) NIL)) (-2490 (($ $) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-2782 (($ $) NIL (|has| |#1| (-450)))) (-2035 (((-112) $) NIL)) (-2648 (($ |#1| (-762)) NIL)) (-3667 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL (|has| |#1| (-550)))) (-3657 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL (|has| |#1| (-550)))) (-2524 (((-762) $) NIL)) (-3637 (($ $ $) NIL (|has| |#1| (-362)))) (-3646 (($ $ $) NIL (|has| |#1| (-362)))) (-3540 (($ $ $) NIL (|has| |#1| (-362)))) (-3619 (($ $ $) NIL (|has| |#1| (-362)))) (-3609 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL (|has| |#1| (-362)))) (-3628 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-3677 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL (|has| |#1| (-362)))) (-2463 ((|#1| $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3983 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550)))) (-2195 ((|#1| $ |#1|) 24)) (-3388 (($ $ $) 33 (|has| |#1| (-362)))) (-4323 (((-762) $) NIL)) (-2504 ((|#1| $) NIL (|has| |#1| (-450)))) (-3220 (((-853) $) 20) (($ (-558)) NIL) (($ (-406 (-558))) NIL (|has| |#1| (-1028 (-406 (-558))))) (($ |#1|) NIL)) (-2583 (((-635 |#1|) $) NIL)) (-3736 ((|#1| $ (-762)) NIL)) (-2542 (((-762)) NIL)) (-2258 ((|#1| $ |#1| |#1|) 23)) (-1536 (($ $) NIL)) (-2131 (($) 21 T CONST)) (-2142 (($) 8 T CONST)) (-1866 (($) NIL)) (-1683 (((-112) $ $) NIL)) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-648 |#1| |#2|) (-646 |#1|) (-1039) (-1 |#1| |#1|)) (T -648))
+NIL
+(-646 |#1|)
+((-3368 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-3378 ((|#2| |#2| (-762) (-1 |#1| |#1|)) 40)) (-3388 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61)))
+(((-649 |#1| |#2|) (-10 -7 (-15 -3368 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3378 (|#2| |#2| (-762) (-1 |#1| |#1|))) (-15 -3388 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-362) (-646 |#1|)) (T -649))
+((-3388 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-362)) (-5 *1 (-649 *4 *2)) (-4 *2 (-646 *4)))) (-3378 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-762)) (-5 *4 (-1 *5 *5)) (-4 *5 (-362)) (-5 *1 (-649 *5 *2)) (-4 *2 (-646 *5)))) (-3368 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-362)) (-5 *1 (-649 *4 *2)) (-4 *2 (-646 *4)))))
+(-10 -7 (-15 -3368 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3378 (|#2| |#2| (-762) (-1 |#1| |#1|))) (-15 -3388 (|#2| |#2| |#2| (-1 |#1| |#1|))))
+((-3127 (($ $ $) 9)))
+(((-650 |#1|) (-10 -8 (-15 -3127 (|#1| |#1| |#1|))) (-651)) (T -650))
+NIL
+(-10 -8 (-15 -3127 (|#1| |#1| |#1|)))
+((-3207 (((-112) $ $) 7)) (-1304 (($ $) 10)) (-3127 (($ $ $) 8)) (-1683 (((-112) $ $) 6)) (-3115 (($ $ $) 9)))
+(((-651) (-139)) (T -651))
+((-1304 (*1 *1 *1) (-4 *1 (-651))) (-3115 (*1 *1 *1 *1) (-4 *1 (-651))) (-3127 (*1 *1 *1 *1) (-4 *1 (-651))))
+(-13 (-102) (-10 -8 (-15 -1304 ($ $)) (-15 -3115 ($ $ $)) (-15 -3127 ($ $ $))))
(((-102) . T))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 15)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-2810 ((|#1| $) 21)) (-4223 (($ $ $) NIL (|has| |#1| (-778)))) (-2706 (($ $ $) NIL (|has| |#1| (-778)))) (-1613 (((-1140) $) 46)) (-2768 (((-1102) $) NIL)) (-2822 ((|#3| $) 22)) (-3075 (((-848) $) 42)) (-2004 (($) 10 T CONST)) (-1708 (((-112) $ $) NIL (|has| |#1| (-778)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-778)))) (-1658 (((-112) $ $) 20)) (-1697 (((-112) $ $) NIL (|has| |#1| (-778)))) (-1676 (((-112) $ $) 24 (|has| |#1| (-778)))) (-1752 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-1744 (($ $) 17) (($ $ $) NIL)) (-1735 (($ $ $) 27)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL)))
-(((-648 |#1| |#2| |#3|) (-13 (-704 |#2|) (-10 -8 (IF (|has| |#1| (-778)) (-6 (-778)) |%noBranch|) (-15 -1752 ($ $ |#3|)) (-15 -1752 ($ |#1| |#3|)) (-15 -2810 (|#1| $)) (-15 -2822 (|#3| $)))) (-704 |#2|) (-170) (|SubsetCategory| (-713) |#2|)) (T -648))
-((-1752 (*1 *1 *1 *2) (-12 (-4 *4 (-170)) (-5 *1 (-648 *3 *4 *2)) (-4 *3 (-704 *4)) (-4 *2 (|SubsetCategory| (-713) *4)))) (-1752 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-648 *2 *4 *3)) (-4 *2 (-704 *4)) (-4 *3 (|SubsetCategory| (-713) *4)))) (-2810 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-704 *3)) (-5 *1 (-648 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-713) *3)))) (-2822 (*1 *2 *1) (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-713) *4)) (-5 *1 (-648 *3 *4 *2)) (-4 *3 (-704 *4)))))
-(-13 (-704 |#2|) (-10 -8 (IF (|has| |#1| (-778)) (-6 (-778)) |%noBranch|) (-15 -1752 ($ $ |#3|)) (-15 -1752 ($ |#1| |#3|)) (-15 -2810 (|#1| $)) (-15 -2822 (|#3| $))))
-((-1646 (((-3 (-631 (-1154 |#1|)) "failed") (-631 (-1154 |#1|)) (-1154 |#1|)) 33)))
-(((-649 |#1|) (-10 -7 (-15 -1646 ((-3 (-631 (-1154 |#1|)) "failed") (-631 (-1154 |#1|)) (-1154 |#1|)))) (-894)) (T -649))
-((-1646 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-631 (-1154 *4))) (-5 *3 (-1154 *4)) (-4 *4 (-894)) (-5 *1 (-649 *4)))))
-(-10 -7 (-15 -1646 ((-3 (-631 (-1154 |#1|)) "failed") (-631 (-1154 |#1|)) (-1154 |#1|))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1654 (((-631 |#1|) $) 82)) (-3151 (($ $ (-758)) 90)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-3567 (((-1265 |#1| |#2|) (-1265 |#1| |#2|) $) 48)) (-2784 (((-3 (-658 |#1|) "failed") $) NIL)) (-1668 (((-658 |#1|) $) NIL)) (-2550 (($ $) 89)) (-2122 (((-758) $) NIL)) (-3910 (((-631 $) $) NIL)) (-3580 (((-112) $) NIL)) (-3738 (($ (-658 |#1|) |#2|) 68)) (-3898 (($ $) 86)) (-2879 (($ (-1 |#2| |#2|) $) NIL)) (-3637 (((-1265 |#1| |#2|) (-1265 |#1| |#2|) $) 47)) (-2428 (((-2 (|:| |k| (-658 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2518 (((-658 |#1|) $) NIL)) (-2530 ((|#2| $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2386 (($ $ |#1| $) 30) (($ $ (-631 |#1|) (-631 $)) 32)) (-3308 (((-758) $) 88)) (-3089 (($ $ $) 20) (($ (-658 |#1|) (-658 |#1|)) 77) (($ (-658 |#1|) $) 75) (($ $ (-658 |#1|)) 76)) (-3075 (((-848) $) NIL) (($ |#1|) 74) (((-1256 |#1| |#2|) $) 58) (((-1265 |#1| |#2|) $) 41) (($ (-658 |#1|)) 25)) (-1893 (((-631 |#2|) $) NIL)) (-1779 ((|#2| $ (-658 |#1|)) NIL)) (-1490 ((|#2| (-1265 |#1| |#2|) $) 43)) (-2004 (($) 23 T CONST)) (-2407 (((-631 (-2 (|:| |k| (-658 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1598 (((-3 $ "failed") (-1256 |#1| |#2|)) 60)) (-2341 (($ (-658 |#1|)) 14)) (-1658 (((-112) $ $) 44)) (-1752 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-1744 (($ $) 66) (($ $ $) NIL)) (-1735 (($ $ $) 29)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-658 |#1|)) NIL)))
-(((-650 |#1| |#2|) (-13 (-369 |#1| |#2|) (-377 |#2| (-658 |#1|)) (-10 -8 (-15 -1598 ((-3 $ "failed") (-1256 |#1| |#2|))) (-15 -3089 ($ (-658 |#1|) (-658 |#1|))) (-15 -3089 ($ (-658 |#1|) $)) (-15 -3089 ($ $ (-658 |#1|))))) (-836) (-170)) (T -650))
-((-1598 (*1 *1 *2) (|partial| -12 (-5 *2 (-1256 *3 *4)) (-4 *3 (-836)) (-4 *4 (-170)) (-5 *1 (-650 *3 *4)))) (-3089 (*1 *1 *2 *2) (-12 (-5 *2 (-658 *3)) (-4 *3 (-836)) (-5 *1 (-650 *3 *4)) (-4 *4 (-170)))) (-3089 (*1 *1 *2 *1) (-12 (-5 *2 (-658 *3)) (-4 *3 (-836)) (-5 *1 (-650 *3 *4)) (-4 *4 (-170)))) (-3089 (*1 *1 *1 *2) (-12 (-5 *2 (-658 *3)) (-4 *3 (-836)) (-5 *1 (-650 *3 *4)) (-4 *4 (-170)))))
-(-13 (-369 |#1| |#2|) (-377 |#2| (-658 |#1|)) (-10 -8 (-15 -1598 ((-3 $ "failed") (-1256 |#1| |#2|))) (-15 -3089 ($ (-658 |#1|) (-658 |#1|))) (-15 -3089 ($ (-658 |#1|) $)) (-15 -3089 ($ $ (-658 |#1|)))))
-((-4015 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 50)) (-2576 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-2220 (($ (-1 (-112) |#2|) $) 28)) (-3920 (($ $) 56)) (-2593 (($ $) 64)) (-1884 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 37)) (-3676 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-1484 (((-554) |#2| $ (-554)) 61) (((-554) |#2| $) NIL) (((-554) (-1 (-112) |#2|) $) 47)) (-3180 (($ (-758) |#2|) 54)) (-3606 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 30)) (-3717 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-2879 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-1416 (($ |#2|) 15)) (-2045 (($ $ $ (-554)) 36) (($ |#2| $ (-554)) 34)) (-1652 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 46)) (-3029 (($ $ (-1208 (-554))) 44) (($ $ (-554)) 38)) (-3553 (($ $ $ (-554)) 60)) (-1521 (($ $) 58)) (-1676 (((-112) $ $) 66)))
-(((-651 |#1| |#2|) (-10 -8 (-15 -1416 (|#1| |#2|)) (-15 -3029 (|#1| |#1| (-554))) (-15 -3029 (|#1| |#1| (-1208 (-554)))) (-15 -1884 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2045 (|#1| |#2| |#1| (-554))) (-15 -2045 (|#1| |#1| |#1| (-554))) (-15 -3606 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2220 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1884 (|#1| |#2| |#1|)) (-15 -2593 (|#1| |#1|)) (-15 -3606 (|#1| |#1| |#1|)) (-15 -3717 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4015 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1484 ((-554) (-1 (-112) |#2|) |#1|)) (-15 -1484 ((-554) |#2| |#1|)) (-15 -1484 ((-554) |#2| |#1| (-554))) (-15 -3717 (|#1| |#1| |#1|)) (-15 -4015 ((-112) |#1|)) (-15 -3553 (|#1| |#1| |#1| (-554))) (-15 -3920 (|#1| |#1|)) (-15 -2576 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2576 (|#1| |#1|)) (-15 -1676 ((-112) |#1| |#1|)) (-15 -3676 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3676 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3676 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1652 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3180 (|#1| (-758) |#2|)) (-15 -2879 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2879 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1521 (|#1| |#1|))) (-652 |#2|) (-1195)) (T -651))
-NIL
-(-10 -8 (-15 -1416 (|#1| |#2|)) (-15 -3029 (|#1| |#1| (-554))) (-15 -3029 (|#1| |#1| (-1208 (-554)))) (-15 -1884 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2045 (|#1| |#2| |#1| (-554))) (-15 -2045 (|#1| |#1| |#1| (-554))) (-15 -3606 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2220 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1884 (|#1| |#2| |#1|)) (-15 -2593 (|#1| |#1|)) (-15 -3606 (|#1| |#1| |#1|)) (-15 -3717 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4015 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1484 ((-554) (-1 (-112) |#2|) |#1|)) (-15 -1484 ((-554) |#2| |#1|)) (-15 -1484 ((-554) |#2| |#1| (-554))) (-15 -3717 (|#1| |#1| |#1|)) (-15 -4015 ((-112) |#1|)) (-15 -3553 (|#1| |#1| |#1| (-554))) (-15 -3920 (|#1| |#1|)) (-15 -2576 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2576 (|#1| |#1|)) (-15 -1676 ((-112) |#1| |#1|)) (-15 -3676 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3676 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3676 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1652 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3180 (|#1| (-758) |#2|)) (-15 -2879 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2879 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1521 (|#1| |#1|)))
-((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-2794 ((|#1| $) 48)) (-2350 ((|#1| $) 65)) (-3387 (($ $) 67)) (-4233 (((-1246) $ (-554) (-554)) 97 (|has| $ (-6 -4374)))) (-2722 (($ $ (-554)) 52 (|has| $ (-6 -4374)))) (-4015 (((-112) $) 142 (|has| |#1| (-836))) (((-112) (-1 (-112) |#1| |#1|) $) 136)) (-2576 (($ $) 146 (-12 (|has| |#1| (-836)) (|has| $ (-6 -4374)))) (($ (-1 (-112) |#1| |#1|) $) 145 (|has| $ (-6 -4374)))) (-3303 (($ $) 141 (|has| |#1| (-836))) (($ (-1 (-112) |#1| |#1|) $) 135)) (-3019 (((-112) $ (-758)) 8)) (-2690 ((|#1| $ |#1|) 39 (|has| $ (-6 -4374)))) (-2234 (($ $ $) 56 (|has| $ (-6 -4374)))) (-1825 ((|#1| $ |#1|) 54 (|has| $ (-6 -4374)))) (-3105 ((|#1| $ |#1|) 58 (|has| $ (-6 -4374)))) (-1501 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4374))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4374))) (($ $ "rest" $) 55 (|has| $ (-6 -4374))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4374))) ((|#1| $ (-1208 (-554)) |#1|) 117 (|has| $ (-6 -4374))) ((|#1| $ (-554) |#1|) 86 (|has| $ (-6 -4374)))) (-2923 (($ $ (-631 $)) 41 (|has| $ (-6 -4374)))) (-2220 (($ (-1 (-112) |#1|) $) 129)) (-1871 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4373)))) (-2337 ((|#1| $) 66)) (-4087 (($) 7 T CONST)) (-3920 (($ $) 144 (|has| $ (-6 -4374)))) (-3799 (($ $) 134)) (-1551 (($ $) 73) (($ $ (-758)) 71)) (-2593 (($ $) 131 (|has| |#1| (-1082)))) (-1571 (($ $) 99 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1884 (($ |#1| $) 130 (|has| |#1| (-1082))) (($ (-1 (-112) |#1|) $) 125)) (-2574 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4373))) (($ |#1| $) 100 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2862 ((|#1| $ (-554) |#1|) 85 (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-554)) 87)) (-3556 (((-112) $) 83)) (-1484 (((-554) |#1| $ (-554)) 139 (|has| |#1| (-1082))) (((-554) |#1| $) 138 (|has| |#1| (-1082))) (((-554) (-1 (-112) |#1|) $) 137)) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-3677 (((-631 $) $) 50)) (-1990 (((-112) $ $) 42 (|has| |#1| (-1082)))) (-3180 (($ (-758) |#1|) 108)) (-2230 (((-112) $ (-758)) 9)) (-3044 (((-554) $) 95 (|has| (-554) (-836)))) (-4223 (($ $ $) 147 (|has| |#1| (-836)))) (-3606 (($ $ $) 132 (|has| |#1| (-836))) (($ (-1 (-112) |#1| |#1|) $ $) 128)) (-3717 (($ $ $) 140 (|has| |#1| (-836))) (($ (-1 (-112) |#1| |#1|) $ $) 133)) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2256 (((-554) $) 94 (|has| (-554) (-836)))) (-2706 (($ $ $) 148 (|has| |#1| (-836)))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1416 (($ |#1|) 122)) (-3731 (((-112) $ (-758)) 10)) (-2306 (((-631 |#1|) $) 45)) (-3216 (((-112) $) 49)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-2597 ((|#1| $) 70) (($ $ (-758)) 68)) (-2045 (($ $ $ (-554)) 127) (($ |#1| $ (-554)) 126)) (-1782 (($ $ $ (-554)) 116) (($ |#1| $ (-554)) 115)) (-2529 (((-631 (-554)) $) 92)) (-3618 (((-112) (-554) $) 91)) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-1539 ((|#1| $) 76) (($ $ (-758)) 74)) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2441 (($ $ |#1|) 96 (|has| $ (-6 -4374)))) (-1381 (((-112) $) 84)) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-1609 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) 90)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2064 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1208 (-554))) 112) ((|#1| $ (-554)) 89) ((|#1| $ (-554) |#1|) 88)) (-3250 (((-554) $ $) 44)) (-3029 (($ $ (-1208 (-554))) 124) (($ $ (-554)) 123)) (-2021 (($ $ (-1208 (-554))) 114) (($ $ (-554)) 113)) (-3008 (((-112) $) 46)) (-1670 (($ $) 62)) (-2377 (($ $) 59 (|has| $ (-6 -4374)))) (-2797 (((-758) $) 63)) (-2046 (($ $) 64)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-3553 (($ $ $ (-554)) 143 (|has| $ (-6 -4374)))) (-1521 (($ $) 13)) (-2927 (((-530) $) 98 (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) 107)) (-1853 (($ $ $) 61) (($ $ |#1|) 60)) (-4323 (($ $ $) 78) (($ |#1| $) 77) (($ (-631 $)) 110) (($ $ |#1|) 109)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-2461 (((-631 $) $) 51)) (-1441 (((-112) $ $) 43 (|has| |#1| (-1082)))) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1708 (((-112) $ $) 150 (|has| |#1| (-836)))) (-1686 (((-112) $ $) 151 (|has| |#1| (-836)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-1697 (((-112) $ $) 149 (|has| |#1| (-836)))) (-1676 (((-112) $ $) 152 (|has| |#1| (-836)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373)))))
-(((-652 |#1|) (-138) (-1195)) (T -652))
-((-1416 (*1 *1 *2) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1195)))))
-(-13 (-1131 |t#1|) (-368 |t#1|) (-277 |t#1|) (-10 -8 (-15 -1416 ($ |t#1|))))
-(((-34) . T) ((-102) -3994 (|has| |#1| (-1082)) (|has| |#1| (-836))) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-836)) (|has| |#1| (-601 (-848)))) ((-149 |#1|) . T) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-281 #0=(-554) |#1|) . T) ((-283 #0# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-277 |#1|) . T) ((-368 |#1|) . T) ((-483 |#1|) . T) ((-592 #0# |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-637 |#1|) . T) ((-836) |has| |#1| (-836)) ((-995 |#1|) . T) ((-1082) -3994 (|has| |#1| (-1082)) (|has| |#1| (-836))) ((-1131 |#1|) . T) ((-1195) . T) ((-1229 |#1|) . T))
-((-1900 (((-631 (-2 (|:| |particular| (-3 (-1241 |#1|) "failed")) (|:| -3782 (-631 (-1241 |#1|))))) (-631 (-631 |#1|)) (-631 (-1241 |#1|))) 22) (((-631 (-2 (|:| |particular| (-3 (-1241 |#1|) "failed")) (|:| -3782 (-631 (-1241 |#1|))))) (-675 |#1|) (-631 (-1241 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1241 |#1|) "failed")) (|:| -3782 (-631 (-1241 |#1|)))) (-631 (-631 |#1|)) (-1241 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1241 |#1|) "failed")) (|:| -3782 (-631 (-1241 |#1|)))) (-675 |#1|) (-1241 |#1|)) 14)) (-4186 (((-758) (-675 |#1|) (-1241 |#1|)) 30)) (-1865 (((-3 (-1241 |#1|) "failed") (-675 |#1|) (-1241 |#1|)) 24)) (-2273 (((-112) (-675 |#1|) (-1241 |#1|)) 27)))
-(((-653 |#1|) (-10 -7 (-15 -1900 ((-2 (|:| |particular| (-3 (-1241 |#1|) "failed")) (|:| -3782 (-631 (-1241 |#1|)))) (-675 |#1|) (-1241 |#1|))) (-15 -1900 ((-2 (|:| |particular| (-3 (-1241 |#1|) "failed")) (|:| -3782 (-631 (-1241 |#1|)))) (-631 (-631 |#1|)) (-1241 |#1|))) (-15 -1900 ((-631 (-2 (|:| |particular| (-3 (-1241 |#1|) "failed")) (|:| -3782 (-631 (-1241 |#1|))))) (-675 |#1|) (-631 (-1241 |#1|)))) (-15 -1900 ((-631 (-2 (|:| |particular| (-3 (-1241 |#1|) "failed")) (|:| -3782 (-631 (-1241 |#1|))))) (-631 (-631 |#1|)) (-631 (-1241 |#1|)))) (-15 -1865 ((-3 (-1241 |#1|) "failed") (-675 |#1|) (-1241 |#1|))) (-15 -2273 ((-112) (-675 |#1|) (-1241 |#1|))) (-15 -4186 ((-758) (-675 |#1|) (-1241 |#1|)))) (-358)) (T -653))
-((-4186 (*1 *2 *3 *4) (-12 (-5 *3 (-675 *5)) (-5 *4 (-1241 *5)) (-4 *5 (-358)) (-5 *2 (-758)) (-5 *1 (-653 *5)))) (-2273 (*1 *2 *3 *4) (-12 (-5 *3 (-675 *5)) (-5 *4 (-1241 *5)) (-4 *5 (-358)) (-5 *2 (-112)) (-5 *1 (-653 *5)))) (-1865 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1241 *4)) (-5 *3 (-675 *4)) (-4 *4 (-358)) (-5 *1 (-653 *4)))) (-1900 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-631 *5))) (-4 *5 (-358)) (-5 *2 (-631 (-2 (|:| |particular| (-3 (-1241 *5) "failed")) (|:| -3782 (-631 (-1241 *5)))))) (-5 *1 (-653 *5)) (-5 *4 (-631 (-1241 *5))))) (-1900 (*1 *2 *3 *4) (-12 (-5 *3 (-675 *5)) (-4 *5 (-358)) (-5 *2 (-631 (-2 (|:| |particular| (-3 (-1241 *5) "failed")) (|:| -3782 (-631 (-1241 *5)))))) (-5 *1 (-653 *5)) (-5 *4 (-631 (-1241 *5))))) (-1900 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-631 *5))) (-4 *5 (-358)) (-5 *2 (-2 (|:| |particular| (-3 (-1241 *5) "failed")) (|:| -3782 (-631 (-1241 *5))))) (-5 *1 (-653 *5)) (-5 *4 (-1241 *5)))) (-1900 (*1 *2 *3 *4) (-12 (-5 *3 (-675 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| |particular| (-3 (-1241 *5) "failed")) (|:| -3782 (-631 (-1241 *5))))) (-5 *1 (-653 *5)) (-5 *4 (-1241 *5)))))
-(-10 -7 (-15 -1900 ((-2 (|:| |particular| (-3 (-1241 |#1|) "failed")) (|:| -3782 (-631 (-1241 |#1|)))) (-675 |#1|) (-1241 |#1|))) (-15 -1900 ((-2 (|:| |particular| (-3 (-1241 |#1|) "failed")) (|:| -3782 (-631 (-1241 |#1|)))) (-631 (-631 |#1|)) (-1241 |#1|))) (-15 -1900 ((-631 (-2 (|:| |particular| (-3 (-1241 |#1|) "failed")) (|:| -3782 (-631 (-1241 |#1|))))) (-675 |#1|) (-631 (-1241 |#1|)))) (-15 -1900 ((-631 (-2 (|:| |particular| (-3 (-1241 |#1|) "failed")) (|:| -3782 (-631 (-1241 |#1|))))) (-631 (-631 |#1|)) (-631 (-1241 |#1|)))) (-15 -1865 ((-3 (-1241 |#1|) "failed") (-675 |#1|) (-1241 |#1|))) (-15 -2273 ((-112) (-675 |#1|) (-1241 |#1|))) (-15 -4186 ((-758) (-675 |#1|) (-1241 |#1|))))
-((-1900 (((-631 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3782 (-631 |#3|)))) |#4| (-631 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3782 (-631 |#3|))) |#4| |#3|) 45)) (-4186 (((-758) |#4| |#3|) 17)) (-1865 (((-3 |#3| "failed") |#4| |#3|) 20)) (-2273 (((-112) |#4| |#3|) 13)))
-(((-654 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1900 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3782 (-631 |#3|))) |#4| |#3|)) (-15 -1900 ((-631 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3782 (-631 |#3|)))) |#4| (-631 |#3|))) (-15 -1865 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2273 ((-112) |#4| |#3|)) (-15 -4186 ((-758) |#4| |#3|))) (-358) (-13 (-368 |#1|) (-10 -7 (-6 -4374))) (-13 (-368 |#1|) (-10 -7 (-6 -4374))) (-673 |#1| |#2| |#3|)) (T -654))
-((-4186 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-4 *6 (-13 (-368 *5) (-10 -7 (-6 -4374)))) (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4374)))) (-5 *2 (-758)) (-5 *1 (-654 *5 *6 *4 *3)) (-4 *3 (-673 *5 *6 *4)))) (-2273 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-4 *6 (-13 (-368 *5) (-10 -7 (-6 -4374)))) (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4374)))) (-5 *2 (-112)) (-5 *1 (-654 *5 *6 *4 *3)) (-4 *3 (-673 *5 *6 *4)))) (-1865 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-358)) (-4 *5 (-13 (-368 *4) (-10 -7 (-6 -4374)))) (-4 *2 (-13 (-368 *4) (-10 -7 (-6 -4374)))) (-5 *1 (-654 *4 *5 *2 *3)) (-4 *3 (-673 *4 *5 *2)))) (-1900 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-4 *6 (-13 (-368 *5) (-10 -7 (-6 -4374)))) (-4 *7 (-13 (-368 *5) (-10 -7 (-6 -4374)))) (-5 *2 (-631 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3782 (-631 *7))))) (-5 *1 (-654 *5 *6 *7 *3)) (-5 *4 (-631 *7)) (-4 *3 (-673 *5 *6 *7)))) (-1900 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-4 *6 (-13 (-368 *5) (-10 -7 (-6 -4374)))) (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4374)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3782 (-631 *4)))) (-5 *1 (-654 *5 *6 *4 *3)) (-4 *3 (-673 *5 *6 *4)))))
-(-10 -7 (-15 -1900 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3782 (-631 |#3|))) |#4| |#3|)) (-15 -1900 ((-631 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3782 (-631 |#3|)))) |#4| (-631 |#3|))) (-15 -1865 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2273 ((-112) |#4| |#3|)) (-15 -4186 ((-758) |#4| |#3|)))
-((-2038 (((-2 (|:| |particular| (-3 (-1241 (-402 |#4|)) "failed")) (|:| -3782 (-631 (-1241 (-402 |#4|))))) (-631 |#4|) (-631 |#3|)) 45)))
-(((-655 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2038 ((-2 (|:| |particular| (-3 (-1241 (-402 |#4|)) "failed")) (|:| -3782 (-631 (-1241 (-402 |#4|))))) (-631 |#4|) (-631 |#3|)))) (-546) (-780) (-836) (-934 |#1| |#2| |#3|)) (T -655))
-((-2038 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-631 *7)) (-4 *7 (-836)) (-4 *8 (-934 *5 *6 *7)) (-4 *5 (-546)) (-4 *6 (-780)) (-5 *2 (-2 (|:| |particular| (-3 (-1241 (-402 *8)) "failed")) (|:| -3782 (-631 (-1241 (-402 *8)))))) (-5 *1 (-655 *5 *6 *7 *8)))))
-(-10 -7 (-15 -2038 ((-2 (|:| |particular| (-3 (-1241 (-402 |#4|)) "failed")) (|:| -3782 (-631 (-1241 (-402 |#4|))))) (-631 |#4|) (-631 |#3|))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-3646 (((-3 $ "failed")) NIL (|has| |#2| (-546)))) (-1612 ((|#2| $) NIL)) (-1350 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4251 (((-1241 (-675 |#2|))) NIL) (((-1241 (-675 |#2|)) (-1241 $)) NIL)) (-3795 (((-112) $) NIL)) (-4047 (((-1241 $)) 37)) (-3019 (((-112) $ (-758)) NIL)) (-1475 (($ |#2|) NIL)) (-4087 (($) NIL T CONST)) (-2775 (($ $) NIL (|has| |#2| (-302)))) (-3519 (((-236 |#1| |#2|) $ (-554)) NIL)) (-1558 (((-3 (-2 (|:| |particular| $) (|:| -3782 (-631 $))) "failed")) NIL (|has| |#2| (-546)))) (-3447 (((-3 $ "failed")) NIL (|has| |#2| (-546)))) (-3321 (((-675 |#2|)) NIL) (((-675 |#2|) (-1241 $)) NIL)) (-4206 ((|#2| $) NIL)) (-3970 (((-675 |#2|) $) NIL) (((-675 |#2|) $ (-1241 $)) NIL)) (-3754 (((-3 $ "failed") $) NIL (|has| |#2| (-546)))) (-4027 (((-1154 (-937 |#2|))) NIL (|has| |#2| (-358)))) (-2080 (($ $ (-906)) NIL)) (-3976 ((|#2| $) NIL)) (-3343 (((-1154 |#2|) $) NIL (|has| |#2| (-546)))) (-3640 ((|#2|) NIL) ((|#2| (-1241 $)) NIL)) (-4231 (((-1154 |#2|) $) NIL)) (-1397 (((-112)) NIL)) (-2784 (((-3 (-554) "failed") $) NIL (|has| |#2| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#2| (-1023 (-402 (-554))))) (((-3 |#2| "failed") $) NIL)) (-1668 (((-554) $) NIL (|has| |#2| (-1023 (-554)))) (((-402 (-554)) $) NIL (|has| |#2| (-1023 (-402 (-554))))) ((|#2| $) NIL)) (-1651 (($ (-1241 |#2|)) NIL) (($ (-1241 |#2|) (-1241 $)) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| |#2| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| |#2| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 $) (-1241 $)) NIL) (((-675 |#2|) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-4186 (((-758) $) NIL (|has| |#2| (-546))) (((-906)) 38)) (-2796 ((|#2| $ (-554) (-554)) NIL)) (-3911 (((-112)) NIL)) (-4326 (($ $ (-906)) NIL)) (-2466 (((-631 |#2|) $) NIL (|has| $ (-6 -4373)))) (-3248 (((-112) $) NIL)) (-4332 (((-758) $) NIL (|has| |#2| (-546)))) (-2412 (((-631 (-236 |#1| |#2|)) $) NIL (|has| |#2| (-546)))) (-4130 (((-758) $) NIL)) (-2545 (((-112)) NIL)) (-4143 (((-758) $) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-2326 ((|#2| $) NIL (|has| |#2| (-6 (-4375 "*"))))) (-3985 (((-554) $) NIL)) (-1817 (((-554) $) NIL)) (-2379 (((-631 |#2|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2787 (((-554) $) NIL)) (-4249 (((-554) $) NIL)) (-1899 (($ (-631 (-631 |#2|))) NIL)) (-2849 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-1679 (((-631 (-631 |#2|)) $) NIL)) (-1765 (((-112)) NIL)) (-1573 (((-112)) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1660 (((-3 (-2 (|:| |particular| $) (|:| -3782 (-631 $))) "failed")) NIL (|has| |#2| (-546)))) (-3899 (((-3 $ "failed")) NIL (|has| |#2| (-546)))) (-2871 (((-675 |#2|)) NIL) (((-675 |#2|) (-1241 $)) NIL)) (-3115 ((|#2| $) NIL)) (-3826 (((-675 |#2|) $) NIL) (((-675 |#2|) $ (-1241 $)) NIL)) (-1605 (((-3 $ "failed") $) NIL (|has| |#2| (-546)))) (-3415 (((-1154 (-937 |#2|))) NIL (|has| |#2| (-358)))) (-1297 (($ $ (-906)) NIL)) (-2620 ((|#2| $) NIL)) (-3760 (((-1154 |#2|) $) NIL (|has| |#2| (-546)))) (-3063 ((|#2|) NIL) ((|#2| (-1241 $)) NIL)) (-2541 (((-1154 |#2|) $) NIL)) (-3074 (((-112)) NIL)) (-1613 (((-1140) $) NIL)) (-3953 (((-112)) NIL)) (-4193 (((-112)) NIL)) (-2366 (((-112)) NIL)) (-2843 (((-3 $ "failed") $) NIL (|has| |#2| (-358)))) (-2768 (((-1102) $) NIL)) (-1944 (((-112)) NIL)) (-3919 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-546)))) (-2845 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-631 |#2|) (-631 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#2| $ (-554) (-554) |#2|) NIL) ((|#2| $ (-554) (-554)) 22) ((|#2| $ (-554)) NIL)) (-1553 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-758)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-1158)) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-758)) NIL (|has| |#2| (-229))) (($ $) NIL (|has| |#2| (-229)))) (-3238 ((|#2| $) NIL)) (-3198 (($ (-631 |#2|)) NIL)) (-2361 (((-112) $) NIL)) (-3871 (((-236 |#1| |#2|) $) NIL)) (-2870 ((|#2| $) NIL (|has| |#2| (-6 (-4375 "*"))))) (-2777 (((-758) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373))) (((-758) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-1521 (($ $) NIL)) (-3656 (((-675 |#2|) (-1241 $)) NIL) (((-1241 |#2|) $) NIL) (((-675 |#2|) (-1241 $) (-1241 $)) NIL) (((-1241 |#2|) $ (-1241 $)) 25)) (-2927 (($ (-1241 |#2|)) NIL) (((-1241 |#2|) $) NIL)) (-3107 (((-631 (-937 |#2|))) NIL) (((-631 (-937 |#2|)) (-1241 $)) NIL)) (-1856 (($ $ $) NIL)) (-3349 (((-112)) NIL)) (-3259 (((-236 |#1| |#2|) $ (-554)) NIL)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ (-402 (-554))) NIL (|has| |#2| (-1023 (-402 (-554))))) (($ |#2|) NIL) (((-675 |#2|) $) NIL)) (-2261 (((-758)) NIL)) (-3782 (((-1241 $)) 36)) (-1444 (((-631 (-1241 |#2|))) NIL (|has| |#2| (-546)))) (-3499 (($ $ $ $) NIL)) (-3454 (((-112)) NIL)) (-1485 (($ (-675 |#2|) $) NIL)) (-2438 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-4299 (((-112) $) NIL)) (-1870 (($ $ $) NIL)) (-2945 (((-112)) NIL)) (-2760 (((-112)) NIL)) (-3206 (((-112)) NIL)) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-758)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-1158)) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-758)) NIL (|has| |#2| (-229))) (($ $) NIL (|has| |#2| (-229)))) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL (|has| |#2| (-358)))) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-236 |#1| |#2|) $ (-236 |#1| |#2|)) NIL) (((-236 |#1| |#2|) (-236 |#1| |#2|) $) NIL)) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-656 |#1| |#2|) (-13 (-1105 |#1| |#2| (-236 |#1| |#2|) (-236 |#1| |#2|)) (-601 (-675 |#2|)) (-412 |#2|)) (-906) (-170)) (T -656))
-NIL
-(-13 (-1105 |#1| |#2| (-236 |#1| |#2|) (-236 |#1| |#2|)) (-601 (-675 |#2|)) (-412 |#2|))
-((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-1820 (((-631 (-1117)) $) 10)) (-3075 (((-848) $) 18) (($ (-1163)) NIL) (((-1163) $) NIL)) (-1658 (((-112) $ $) NIL)))
-(((-657) (-13 (-1065) (-10 -8 (-15 -1820 ((-631 (-1117)) $))))) (T -657))
-((-1820 (*1 *2 *1) (-12 (-5 *2 (-631 (-1117))) (-5 *1 (-657)))))
-(-13 (-1065) (-10 -8 (-15 -1820 ((-631 (-1117)) $))))
-((-3062 (((-112) $ $) NIL)) (-1654 (((-631 |#1|) $) NIL)) (-3324 (($ $) 52)) (-3051 (((-112) $) NIL)) (-2784 (((-3 |#1| "failed") $) NIL)) (-1668 ((|#1| $) NIL)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-1368 (((-3 $ "failed") (-806 |#1|)) 23)) (-3243 (((-112) (-806 |#1|)) 15)) (-1855 (($ (-806 |#1|)) 24)) (-2082 (((-112) $ $) 30)) (-2577 (((-906) $) 37)) (-3311 (($ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2270 (((-631 $) (-806 |#1|)) 17)) (-3075 (((-848) $) 43) (($ |#1|) 34) (((-806 |#1|) $) 39) (((-663 |#1|) $) 44)) (-1964 (((-59 (-631 $)) (-631 |#1|) (-906)) 57)) (-1931 (((-631 $) (-631 |#1|) (-906)) 60)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 53)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 38)))
-(((-658 |#1|) (-13 (-836) (-1023 |#1|) (-10 -8 (-15 -3051 ((-112) $)) (-15 -3311 ($ $)) (-15 -3324 ($ $)) (-15 -2577 ((-906) $)) (-15 -2082 ((-112) $ $)) (-15 -3075 ((-806 |#1|) $)) (-15 -3075 ((-663 |#1|) $)) (-15 -2270 ((-631 $) (-806 |#1|))) (-15 -3243 ((-112) (-806 |#1|))) (-15 -1855 ($ (-806 |#1|))) (-15 -1368 ((-3 $ "failed") (-806 |#1|))) (-15 -1654 ((-631 |#1|) $)) (-15 -1964 ((-59 (-631 $)) (-631 |#1|) (-906))) (-15 -1931 ((-631 $) (-631 |#1|) (-906))))) (-836)) (T -658))
-((-3051 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-658 *3)) (-4 *3 (-836)))) (-3311 (*1 *1 *1) (-12 (-5 *1 (-658 *2)) (-4 *2 (-836)))) (-3324 (*1 *1 *1) (-12 (-5 *1 (-658 *2)) (-4 *2 (-836)))) (-2577 (*1 *2 *1) (-12 (-5 *2 (-906)) (-5 *1 (-658 *3)) (-4 *3 (-836)))) (-2082 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-658 *3)) (-4 *3 (-836)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-806 *3)) (-5 *1 (-658 *3)) (-4 *3 (-836)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-658 *3)) (-4 *3 (-836)))) (-2270 (*1 *2 *3) (-12 (-5 *3 (-806 *4)) (-4 *4 (-836)) (-5 *2 (-631 (-658 *4))) (-5 *1 (-658 *4)))) (-3243 (*1 *2 *3) (-12 (-5 *3 (-806 *4)) (-4 *4 (-836)) (-5 *2 (-112)) (-5 *1 (-658 *4)))) (-1855 (*1 *1 *2) (-12 (-5 *2 (-806 *3)) (-4 *3 (-836)) (-5 *1 (-658 *3)))) (-1368 (*1 *1 *2) (|partial| -12 (-5 *2 (-806 *3)) (-4 *3 (-836)) (-5 *1 (-658 *3)))) (-1654 (*1 *2 *1) (-12 (-5 *2 (-631 *3)) (-5 *1 (-658 *3)) (-4 *3 (-836)))) (-1964 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *5)) (-5 *4 (-906)) (-4 *5 (-836)) (-5 *2 (-59 (-631 (-658 *5)))) (-5 *1 (-658 *5)))) (-1931 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *5)) (-5 *4 (-906)) (-4 *5 (-836)) (-5 *2 (-631 (-658 *5))) (-5 *1 (-658 *5)))))
-(-13 (-836) (-1023 |#1|) (-10 -8 (-15 -3051 ((-112) $)) (-15 -3311 ($ $)) (-15 -3324 ($ $)) (-15 -2577 ((-906) $)) (-15 -2082 ((-112) $ $)) (-15 -3075 ((-806 |#1|) $)) (-15 -3075 ((-663 |#1|) $)) (-15 -2270 ((-631 $) (-806 |#1|))) (-15 -3243 ((-112) (-806 |#1|))) (-15 -1855 ($ (-806 |#1|))) (-15 -1368 ((-3 $ "failed") (-806 |#1|))) (-15 -1654 ((-631 |#1|) $)) (-15 -1964 ((-59 (-631 $)) (-631 |#1|) (-906))) (-15 -1931 ((-631 $) (-631 |#1|) (-906)))))
-((-2794 ((|#2| $) 76)) (-3387 (($ $) 96)) (-3019 (((-112) $ (-758)) 26)) (-1551 (($ $) 85) (($ $ (-758)) 88)) (-3556 (((-112) $) 97)) (-3677 (((-631 $) $) 72)) (-1990 (((-112) $ $) 71)) (-2230 (((-112) $ (-758)) 24)) (-3044 (((-554) $) 46)) (-2256 (((-554) $) 45)) (-3731 (((-112) $ (-758)) 22)) (-3216 (((-112) $) 74)) (-2597 ((|#2| $) 89) (($ $ (-758)) 92)) (-1782 (($ $ $ (-554)) 62) (($ |#2| $ (-554)) 61)) (-2529 (((-631 (-554)) $) 44)) (-3618 (((-112) (-554) $) 42)) (-1539 ((|#2| $) NIL) (($ $ (-758)) 84)) (-4282 (($ $ (-554)) 100)) (-1381 (((-112) $) 99)) (-2845 (((-112) (-1 (-112) |#2|) $) 32)) (-2625 (((-631 |#2|) $) 33)) (-2064 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1208 (-554))) 58) ((|#2| $ (-554)) 40) ((|#2| $ (-554) |#2|) 41)) (-3250 (((-554) $ $) 70)) (-2021 (($ $ (-1208 (-554))) 57) (($ $ (-554)) 51)) (-3008 (((-112) $) 66)) (-1670 (($ $) 81)) (-2797 (((-758) $) 80)) (-2046 (($ $) 79)) (-3089 (($ (-631 |#2|)) 37)) (-1300 (($ $) 101)) (-2461 (((-631 $) $) 69)) (-1441 (((-112) $ $) 68)) (-2438 (((-112) (-1 (-112) |#2|) $) 31)) (-1658 (((-112) $ $) 18)) (-2563 (((-758) $) 29)))
-(((-659 |#1| |#2|) (-10 -8 (-15 -1300 (|#1| |#1|)) (-15 -4282 (|#1| |#1| (-554))) (-15 -3556 ((-112) |#1|)) (-15 -1381 ((-112) |#1|)) (-15 -2064 (|#2| |#1| (-554) |#2|)) (-15 -2064 (|#2| |#1| (-554))) (-15 -2625 ((-631 |#2|) |#1|)) (-15 -3618 ((-112) (-554) |#1|)) (-15 -2529 ((-631 (-554)) |#1|)) (-15 -2256 ((-554) |#1|)) (-15 -3044 ((-554) |#1|)) (-15 -3089 (|#1| (-631 |#2|))) (-15 -2064 (|#1| |#1| (-1208 (-554)))) (-15 -2021 (|#1| |#1| (-554))) (-15 -2021 (|#1| |#1| (-1208 (-554)))) (-15 -1782 (|#1| |#2| |#1| (-554))) (-15 -1782 (|#1| |#1| |#1| (-554))) (-15 -1670 (|#1| |#1|)) (-15 -2797 ((-758) |#1|)) (-15 -2046 (|#1| |#1|)) (-15 -3387 (|#1| |#1|)) (-15 -2597 (|#1| |#1| (-758))) (-15 -2064 (|#2| |#1| "last")) (-15 -2597 (|#2| |#1|)) (-15 -1551 (|#1| |#1| (-758))) (-15 -2064 (|#1| |#1| "rest")) (-15 -1551 (|#1| |#1|)) (-15 -1539 (|#1| |#1| (-758))) (-15 -2064 (|#2| |#1| "first")) (-15 -1539 (|#2| |#1|)) (-15 -1990 ((-112) |#1| |#1|)) (-15 -1441 ((-112) |#1| |#1|)) (-15 -3250 ((-554) |#1| |#1|)) (-15 -3008 ((-112) |#1|)) (-15 -2064 (|#2| |#1| "value")) (-15 -2794 (|#2| |#1|)) (-15 -3216 ((-112) |#1|)) (-15 -3677 ((-631 |#1|) |#1|)) (-15 -2461 ((-631 |#1|) |#1|)) (-15 -1658 ((-112) |#1| |#1|)) (-15 -2845 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2438 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2563 ((-758) |#1|)) (-15 -3019 ((-112) |#1| (-758))) (-15 -2230 ((-112) |#1| (-758))) (-15 -3731 ((-112) |#1| (-758)))) (-660 |#2|) (-1195)) (T -659))
-NIL
-(-10 -8 (-15 -1300 (|#1| |#1|)) (-15 -4282 (|#1| |#1| (-554))) (-15 -3556 ((-112) |#1|)) (-15 -1381 ((-112) |#1|)) (-15 -2064 (|#2| |#1| (-554) |#2|)) (-15 -2064 (|#2| |#1| (-554))) (-15 -2625 ((-631 |#2|) |#1|)) (-15 -3618 ((-112) (-554) |#1|)) (-15 -2529 ((-631 (-554)) |#1|)) (-15 -2256 ((-554) |#1|)) (-15 -3044 ((-554) |#1|)) (-15 -3089 (|#1| (-631 |#2|))) (-15 -2064 (|#1| |#1| (-1208 (-554)))) (-15 -2021 (|#1| |#1| (-554))) (-15 -2021 (|#1| |#1| (-1208 (-554)))) (-15 -1782 (|#1| |#2| |#1| (-554))) (-15 -1782 (|#1| |#1| |#1| (-554))) (-15 -1670 (|#1| |#1|)) (-15 -2797 ((-758) |#1|)) (-15 -2046 (|#1| |#1|)) (-15 -3387 (|#1| |#1|)) (-15 -2597 (|#1| |#1| (-758))) (-15 -2064 (|#2| |#1| "last")) (-15 -2597 (|#2| |#1|)) (-15 -1551 (|#1| |#1| (-758))) (-15 -2064 (|#1| |#1| "rest")) (-15 -1551 (|#1| |#1|)) (-15 -1539 (|#1| |#1| (-758))) (-15 -2064 (|#2| |#1| "first")) (-15 -1539 (|#2| |#1|)) (-15 -1990 ((-112) |#1| |#1|)) (-15 -1441 ((-112) |#1| |#1|)) (-15 -3250 ((-554) |#1| |#1|)) (-15 -3008 ((-112) |#1|)) (-15 -2064 (|#2| |#1| "value")) (-15 -2794 (|#2| |#1|)) (-15 -3216 ((-112) |#1|)) (-15 -3677 ((-631 |#1|) |#1|)) (-15 -2461 ((-631 |#1|) |#1|)) (-15 -1658 ((-112) |#1| |#1|)) (-15 -2845 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2438 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2563 ((-758) |#1|)) (-15 -3019 ((-112) |#1| (-758))) (-15 -2230 ((-112) |#1| (-758))) (-15 -3731 ((-112) |#1| (-758))))
-((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-2794 ((|#1| $) 48)) (-2350 ((|#1| $) 65)) (-3387 (($ $) 67)) (-4233 (((-1246) $ (-554) (-554)) 97 (|has| $ (-6 -4374)))) (-2722 (($ $ (-554)) 52 (|has| $ (-6 -4374)))) (-3019 (((-112) $ (-758)) 8)) (-2690 ((|#1| $ |#1|) 39 (|has| $ (-6 -4374)))) (-2234 (($ $ $) 56 (|has| $ (-6 -4374)))) (-1825 ((|#1| $ |#1|) 54 (|has| $ (-6 -4374)))) (-3105 ((|#1| $ |#1|) 58 (|has| $ (-6 -4374)))) (-1501 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4374))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4374))) (($ $ "rest" $) 55 (|has| $ (-6 -4374))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4374))) ((|#1| $ (-1208 (-554)) |#1|) 117 (|has| $ (-6 -4374))) ((|#1| $ (-554) |#1|) 86 (|has| $ (-6 -4374)))) (-2923 (($ $ (-631 $)) 41 (|has| $ (-6 -4374)))) (-1871 (($ (-1 (-112) |#1|) $) 102)) (-2337 ((|#1| $) 66)) (-4087 (($) 7 T CONST)) (-2486 (($ $) 124)) (-1551 (($ $) 73) (($ $ (-758)) 71)) (-1571 (($ $) 99 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2574 (($ |#1| $) 100 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) |#1|) $) 103)) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2862 ((|#1| $ (-554) |#1|) 85 (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-554)) 87)) (-3556 (((-112) $) 83)) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-2911 (((-758) $) 123)) (-3677 (((-631 $) $) 50)) (-1990 (((-112) $ $) 42 (|has| |#1| (-1082)))) (-3180 (($ (-758) |#1|) 108)) (-2230 (((-112) $ (-758)) 9)) (-3044 (((-554) $) 95 (|has| (-554) (-836)))) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2256 (((-554) $) 94 (|has| (-554) (-836)))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3731 (((-112) $ (-758)) 10)) (-2306 (((-631 |#1|) $) 45)) (-3216 (((-112) $) 49)) (-4104 (($ $) 126)) (-3150 (((-112) $) 127)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-2597 ((|#1| $) 70) (($ $ (-758)) 68)) (-1782 (($ $ $ (-554)) 116) (($ |#1| $ (-554)) 115)) (-2529 (((-631 (-554)) $) 92)) (-3618 (((-112) (-554) $) 91)) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-1491 ((|#1| $) 125)) (-1539 ((|#1| $) 76) (($ $ (-758)) 74)) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2441 (($ $ |#1|) 96 (|has| $ (-6 -4374)))) (-4282 (($ $ (-554)) 122)) (-1381 (((-112) $) 84)) (-2322 (((-112) $) 128)) (-1826 (((-112) $) 129)) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-1609 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) 90)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2064 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1208 (-554))) 112) ((|#1| $ (-554)) 89) ((|#1| $ (-554) |#1|) 88)) (-3250 (((-554) $ $) 44)) (-2021 (($ $ (-1208 (-554))) 114) (($ $ (-554)) 113)) (-3008 (((-112) $) 46)) (-1670 (($ $) 62)) (-2377 (($ $) 59 (|has| $ (-6 -4374)))) (-2797 (((-758) $) 63)) (-2046 (($ $) 64)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-2927 (((-530) $) 98 (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) 107)) (-1853 (($ $ $) 61 (|has| $ (-6 -4374))) (($ $ |#1|) 60 (|has| $ (-6 -4374)))) (-4323 (($ $ $) 78) (($ |#1| $) 77) (($ (-631 $)) 110) (($ $ |#1|) 109)) (-1300 (($ $) 121)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-2461 (((-631 $) $) 51)) (-1441 (((-112) $ $) 43 (|has| |#1| (-1082)))) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373)))))
-(((-660 |#1|) (-138) (-1195)) (T -660))
-((-2574 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-660 *3)) (-4 *3 (-1195)))) (-1871 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-660 *3)) (-4 *3 (-1195)))) (-1826 (*1 *2 *1) (-12 (-4 *1 (-660 *3)) (-4 *3 (-1195)) (-5 *2 (-112)))) (-2322 (*1 *2 *1) (-12 (-4 *1 (-660 *3)) (-4 *3 (-1195)) (-5 *2 (-112)))) (-3150 (*1 *2 *1) (-12 (-4 *1 (-660 *3)) (-4 *3 (-1195)) (-5 *2 (-112)))) (-4104 (*1 *1 *1) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1195)))) (-1491 (*1 *2 *1) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1195)))) (-2486 (*1 *1 *1) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1195)))) (-2911 (*1 *2 *1) (-12 (-4 *1 (-660 *3)) (-4 *3 (-1195)) (-5 *2 (-758)))) (-4282 (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-4 *1 (-660 *3)) (-4 *3 (-1195)))) (-1300 (*1 *1 *1) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1195)))))
-(-13 (-1131 |t#1|) (-10 -8 (-15 -2574 ($ (-1 (-112) |t#1|) $)) (-15 -1871 ($ (-1 (-112) |t#1|) $)) (-15 -1826 ((-112) $)) (-15 -2322 ((-112) $)) (-15 -3150 ((-112) $)) (-15 -4104 ($ $)) (-15 -1491 (|t#1| $)) (-15 -2486 ($ $)) (-15 -2911 ((-758) $)) (-15 -4282 ($ $ (-554))) (-15 -1300 ($ $))))
-(((-34) . T) ((-102) |has| |#1| (-1082)) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-601 (-848)))) ((-149 |#1|) . T) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-281 #0=(-554) |#1|) . T) ((-283 #0# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-592 #0# |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-637 |#1|) . T) ((-995 |#1|) . T) ((-1082) |has| |#1| (-1082)) ((-1131 |#1|) . T) ((-1195) . T) ((-1229 |#1|) . T))
-((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-3918 (($ (-758) (-758) (-758)) 33 (|has| |#1| (-1034)))) (-3019 (((-112) $ (-758)) NIL)) (-1493 ((|#1| $ (-758) (-758) (-758) |#1|) 27)) (-4087 (($) NIL T CONST)) (-3652 (($ $ $) 37 (|has| |#1| (-1034)))) (-2466 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) NIL)) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2761 (((-1241 (-758)) $) 9)) (-1807 (($ (-1158) $ $) 22)) (-2849 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-2015 (($ (-758)) 35 (|has| |#1| (-1034)))) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#1| $ (-758) (-758) (-758)) 25)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1521 (($ $) NIL)) (-3089 (($ (-631 (-631 (-631 |#1|)))) 44)) (-3075 (($ (-943 (-943 (-943 |#1|)))) 15) (((-943 (-943 (-943 |#1|))) $) 12) (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-661 |#1|) (-13 (-483 |#1|) (-10 -8 (IF (|has| |#1| (-1034)) (PROGN (-15 -3918 ($ (-758) (-758) (-758))) (-15 -2015 ($ (-758))) (-15 -3652 ($ $ $))) |%noBranch|) (-15 -3089 ($ (-631 (-631 (-631 |#1|))))) (-15 -2064 (|#1| $ (-758) (-758) (-758))) (-15 -1493 (|#1| $ (-758) (-758) (-758) |#1|)) (-15 -3075 ($ (-943 (-943 (-943 |#1|))))) (-15 -3075 ((-943 (-943 (-943 |#1|))) $)) (-15 -1807 ($ (-1158) $ $)) (-15 -2761 ((-1241 (-758)) $)))) (-1082)) (T -661))
-((-3918 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-758)) (-5 *1 (-661 *3)) (-4 *3 (-1034)) (-4 *3 (-1082)))) (-2015 (*1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-661 *3)) (-4 *3 (-1034)) (-4 *3 (-1082)))) (-3652 (*1 *1 *1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-1034)) (-4 *2 (-1082)))) (-3089 (*1 *1 *2) (-12 (-5 *2 (-631 (-631 (-631 *3)))) (-4 *3 (-1082)) (-5 *1 (-661 *3)))) (-2064 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-758)) (-5 *1 (-661 *2)) (-4 *2 (-1082)))) (-1493 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-758)) (-5 *1 (-661 *2)) (-4 *2 (-1082)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-943 (-943 (-943 *3)))) (-4 *3 (-1082)) (-5 *1 (-661 *3)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-943 (-943 (-943 *3)))) (-5 *1 (-661 *3)) (-4 *3 (-1082)))) (-1807 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-661 *3)) (-4 *3 (-1082)))) (-2761 (*1 *2 *1) (-12 (-5 *2 (-1241 (-758))) (-5 *1 (-661 *3)) (-4 *3 (-1082)))))
-(-13 (-483 |#1|) (-10 -8 (IF (|has| |#1| (-1034)) (PROGN (-15 -3918 ($ (-758) (-758) (-758))) (-15 -2015 ($ (-758))) (-15 -3652 ($ $ $))) |%noBranch|) (-15 -3089 ($ (-631 (-631 (-631 |#1|))))) (-15 -2064 (|#1| $ (-758) (-758) (-758))) (-15 -1493 (|#1| $ (-758) (-758) (-758) |#1|)) (-15 -3075 ($ (-943 (-943 (-943 |#1|))))) (-15 -3075 ((-943 (-943 (-943 |#1|))) $)) (-15 -1807 ($ (-1158) $ $)) (-15 -2761 ((-1241 (-758)) $))))
-((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-4133 (((-477) $) 10)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 21) (($ (-1163)) NIL) (((-1163) $) NIL)) (-4319 (((-1117) $) 12)) (-1658 (((-112) $ $) NIL)))
-(((-662) (-13 (-1065) (-10 -8 (-15 -4133 ((-477) $)) (-15 -4319 ((-1117) $))))) (T -662))
-((-4133 (*1 *2 *1) (-12 (-5 *2 (-477)) (-5 *1 (-662)))) (-4319 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-662)))))
-(-13 (-1065) (-10 -8 (-15 -4133 ((-477) $)) (-15 -4319 ((-1117) $))))
-((-3062 (((-112) $ $) NIL)) (-1654 (((-631 |#1|) $) 14)) (-3324 (($ $) 18)) (-3051 (((-112) $) 19)) (-2784 (((-3 |#1| "failed") $) 22)) (-1668 ((|#1| $) 20)) (-1551 (($ $) 36)) (-3898 (($ $) 24)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-2082 (((-112) $ $) 42)) (-2577 (((-906) $) 38)) (-3311 (($ $) 17)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-1539 ((|#1| $) 35)) (-3075 (((-848) $) 31) (($ |#1|) 23) (((-806 |#1|) $) 27)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 12)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 40)) (* (($ $ $) 34)))
-(((-663 |#1|) (-13 (-836) (-1023 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3075 ((-806 |#1|) $)) (-15 -1539 (|#1| $)) (-15 -3311 ($ $)) (-15 -2577 ((-906) $)) (-15 -2082 ((-112) $ $)) (-15 -3898 ($ $)) (-15 -1551 ($ $)) (-15 -3051 ((-112) $)) (-15 -3324 ($ $)) (-15 -1654 ((-631 |#1|) $)))) (-836)) (T -663))
-((* (*1 *1 *1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-836)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-806 *3)) (-5 *1 (-663 *3)) (-4 *3 (-836)))) (-1539 (*1 *2 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-836)))) (-3311 (*1 *1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-836)))) (-2577 (*1 *2 *1) (-12 (-5 *2 (-906)) (-5 *1 (-663 *3)) (-4 *3 (-836)))) (-2082 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-663 *3)) (-4 *3 (-836)))) (-3898 (*1 *1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-836)))) (-1551 (*1 *1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-836)))) (-3051 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-663 *3)) (-4 *3 (-836)))) (-3324 (*1 *1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-836)))) (-1654 (*1 *2 *1) (-12 (-5 *2 (-631 *3)) (-5 *1 (-663 *3)) (-4 *3 (-836)))))
-(-13 (-836) (-1023 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3075 ((-806 |#1|) $)) (-15 -1539 (|#1| $)) (-15 -3311 ($ $)) (-15 -2577 ((-906) $)) (-15 -2082 ((-112) $ $)) (-15 -3898 ($ $)) (-15 -1551 ($ $)) (-15 -3051 ((-112) $)) (-15 -3324 ($ $)) (-15 -1654 ((-631 |#1|) $))))
-((-2217 ((|#1| (-1 |#1| (-758) |#1|) (-758) |#1|) 11)) (-4336 ((|#1| (-1 |#1| |#1|) (-758) |#1|) 9)))
-(((-664 |#1|) (-10 -7 (-15 -4336 (|#1| (-1 |#1| |#1|) (-758) |#1|)) (-15 -2217 (|#1| (-1 |#1| (-758) |#1|) (-758) |#1|))) (-1082)) (T -664))
-((-2217 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-758) *2)) (-5 *4 (-758)) (-4 *2 (-1082)) (-5 *1 (-664 *2)))) (-4336 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-758)) (-4 *2 (-1082)) (-5 *1 (-664 *2)))))
-(-10 -7 (-15 -4336 (|#1| (-1 |#1| |#1|) (-758) |#1|)) (-15 -2217 (|#1| (-1 |#1| (-758) |#1|) (-758) |#1|)))
-((-3777 ((|#2| |#1| |#2|) 9)) (-3766 ((|#1| |#1| |#2|) 8)))
-(((-665 |#1| |#2|) (-10 -7 (-15 -3766 (|#1| |#1| |#2|)) (-15 -3777 (|#2| |#1| |#2|))) (-1082) (-1082)) (T -665))
-((-3777 (*1 *2 *3 *2) (-12 (-5 *1 (-665 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1082)))) (-3766 (*1 *2 *2 *3) (-12 (-5 *1 (-665 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082)))))
-(-10 -7 (-15 -3766 (|#1| |#1| |#2|)) (-15 -3777 (|#2| |#1| |#2|)))
-((-3844 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
-(((-666 |#1| |#2| |#3|) (-10 -7 (-15 -3844 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1082) (-1082) (-1082)) (T -666))
-((-3844 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *2 (-1082)) (-5 *1 (-666 *5 *6 *2)))))
-(-10 -7 (-15 -3844 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
-((-3062 (((-112) $ $) NIL)) (-1362 (((-1194) $) 20)) (-2452 (((-631 (-1194)) $) 18)) (-3135 (($ (-631 (-1194)) (-1194)) 13)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 29) (($ (-1163)) NIL) (((-1163) $) NIL) (((-1194) $) 21) (($ (-1100)) 10)) (-1658 (((-112) $ $) NIL)))
-(((-667) (-13 (-1065) (-601 (-1194)) (-10 -8 (-15 -3075 ($ (-1100))) (-15 -3135 ($ (-631 (-1194)) (-1194))) (-15 -2452 ((-631 (-1194)) $)) (-15 -1362 ((-1194) $))))) (T -667))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-667)))) (-3135 (*1 *1 *2 *3) (-12 (-5 *2 (-631 (-1194))) (-5 *3 (-1194)) (-5 *1 (-667)))) (-2452 (*1 *2 *1) (-12 (-5 *2 (-631 (-1194))) (-5 *1 (-667)))) (-1362 (*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-667)))))
-(-13 (-1065) (-601 (-1194)) (-10 -8 (-15 -3075 ($ (-1100))) (-15 -3135 ($ (-631 (-1194)) (-1194))) (-15 -2452 ((-631 (-1194)) $)) (-15 -1362 ((-1194) $))))
-((-2217 (((-1 |#1| (-758) |#1|) (-1 |#1| (-758) |#1|)) 23)) (-3824 (((-1 |#1|) |#1|) 8)) (-3142 ((|#1| |#1|) 16)) (-4055 (((-631 |#1|) (-1 (-631 |#1|) (-631 |#1|)) (-554)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-3075 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-758)) 20)))
-(((-668 |#1|) (-10 -7 (-15 -3824 ((-1 |#1|) |#1|)) (-15 -3075 ((-1 |#1|) |#1|)) (-15 -4055 (|#1| (-1 |#1| |#1|))) (-15 -4055 ((-631 |#1|) (-1 (-631 |#1|) (-631 |#1|)) (-554))) (-15 -3142 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-758))) (-15 -2217 ((-1 |#1| (-758) |#1|) (-1 |#1| (-758) |#1|)))) (-1082)) (T -668))
-((-2217 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-758) *3)) (-4 *3 (-1082)) (-5 *1 (-668 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-758)) (-4 *4 (-1082)) (-5 *1 (-668 *4)))) (-3142 (*1 *2 *2) (-12 (-5 *1 (-668 *2)) (-4 *2 (-1082)))) (-4055 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-631 *5) (-631 *5))) (-5 *4 (-554)) (-5 *2 (-631 *5)) (-5 *1 (-668 *5)) (-4 *5 (-1082)))) (-4055 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-668 *2)) (-4 *2 (-1082)))) (-3075 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-668 *3)) (-4 *3 (-1082)))) (-3824 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-668 *3)) (-4 *3 (-1082)))))
-(-10 -7 (-15 -3824 ((-1 |#1|) |#1|)) (-15 -3075 ((-1 |#1|) |#1|)) (-15 -4055 (|#1| (-1 |#1| |#1|))) (-15 -4055 ((-631 |#1|) (-1 (-631 |#1|) (-631 |#1|)) (-554))) (-15 -3142 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-758))) (-15 -2217 ((-1 |#1| (-758) |#1|) (-1 |#1| (-758) |#1|))))
-((-3957 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-1620 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-2397 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-3341 (((-1 |#2| |#1|) |#2|) 11)))
-(((-669 |#1| |#2|) (-10 -7 (-15 -3341 ((-1 |#2| |#1|) |#2|)) (-15 -1620 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2397 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3957 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1082) (-1082)) (T -669))
-((-3957 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-5 *2 (-1 *5 *4)) (-5 *1 (-669 *4 *5)))) (-2397 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1082)) (-5 *2 (-1 *5 *4)) (-5 *1 (-669 *4 *5)) (-4 *4 (-1082)))) (-1620 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-5 *2 (-1 *5)) (-5 *1 (-669 *4 *5)))) (-3341 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-669 *4 *3)) (-4 *4 (-1082)) (-4 *3 (-1082)))))
-(-10 -7 (-15 -3341 ((-1 |#2| |#1|) |#2|)) (-15 -1620 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2397 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3957 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
-((-3203 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-1954 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-2766 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-1925 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-3965 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
-(((-670 |#1| |#2| |#3|) (-10 -7 (-15 -1954 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2766 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1925 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3965 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3203 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1082) (-1082) (-1082)) (T -670))
-((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-1 *7 *5)) (-5 *1 (-670 *5 *6 *7)))) (-3203 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-670 *4 *5 *6)))) (-3965 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-670 *4 *5 *6)) (-4 *4 (-1082)))) (-1925 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1082)) (-4 *6 (-1082)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-670 *4 *5 *6)) (-4 *5 (-1082)))) (-2766 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-5 *2 (-1 *6 *5)) (-5 *1 (-670 *4 *5 *6)))) (-1954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1082)) (-4 *4 (-1082)) (-4 *6 (-1082)) (-5 *2 (-1 *6 *5)) (-5 *1 (-670 *5 *4 *6)))))
-(-10 -7 (-15 -1954 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2766 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1925 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3965 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3203 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
-((-3676 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-2879 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
-(((-671 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2879 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2879 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3676 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1034) (-368 |#1|) (-368 |#1|) (-673 |#1| |#2| |#3|) (-1034) (-368 |#5|) (-368 |#5|) (-673 |#5| |#6| |#7|)) (T -671))
-((-3676 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1034)) (-4 *2 (-1034)) (-4 *6 (-368 *5)) (-4 *7 (-368 *5)) (-4 *8 (-368 *2)) (-4 *9 (-368 *2)) (-5 *1 (-671 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-673 *5 *6 *7)) (-4 *10 (-673 *2 *8 *9)))) (-2879 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1034)) (-4 *8 (-1034)) (-4 *6 (-368 *5)) (-4 *7 (-368 *5)) (-4 *2 (-673 *8 *9 *10)) (-5 *1 (-671 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-673 *5 *6 *7)) (-4 *9 (-368 *8)) (-4 *10 (-368 *8)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1034)) (-4 *8 (-1034)) (-4 *6 (-368 *5)) (-4 *7 (-368 *5)) (-4 *2 (-673 *8 *9 *10)) (-5 *1 (-671 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-673 *5 *6 *7)) (-4 *9 (-368 *8)) (-4 *10 (-368 *8)))))
-(-10 -7 (-15 -2879 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2879 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3676 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
-((-2275 (($ (-758) (-758)) 33)) (-1846 (($ $ $) 56)) (-2757 (($ |#3|) 52) (($ $) 53)) (-1350 (((-112) $) 28)) (-2416 (($ $ (-554) (-554)) 58)) (-3705 (($ $ (-554) (-554)) 59)) (-1458 (($ $ (-554) (-554) (-554) (-554)) 63)) (-3657 (($ $) 54)) (-3795 (((-112) $) 14)) (-4345 (($ $ (-554) (-554) $) 64)) (-1501 ((|#2| $ (-554) (-554) |#2|) NIL) (($ $ (-631 (-554)) (-631 (-554)) $) 62)) (-1475 (($ (-758) |#2|) 39)) (-1899 (($ (-631 (-631 |#2|))) 37)) (-1679 (((-631 (-631 |#2|)) $) 57)) (-4041 (($ $ $) 55)) (-3919 (((-3 $ "failed") $ |#2|) 91)) (-2064 ((|#2| $ (-554) (-554)) NIL) ((|#2| $ (-554) (-554) |#2|) NIL) (($ $ (-631 (-554)) (-631 (-554))) 61)) (-3198 (($ (-631 |#2|)) 40) (($ (-631 $)) 42)) (-2361 (((-112) $) 24)) (-3075 (($ |#4|) 47) (((-848) $) NIL)) (-4299 (((-112) $) 30)) (-1752 (($ $ |#2|) 93)) (-1744 (($ $ $) 68) (($ $) 71)) (-1735 (($ $ $) 66)) (** (($ $ (-758)) 80) (($ $ (-554)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-554) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88)))
-(((-672 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3075 ((-848) |#1|)) (-15 ** (|#1| |#1| (-554))) (-15 -1752 (|#1| |#1| |#2|)) (-15 -3919 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-758))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-554) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 -1744 (|#1| |#1| |#1|)) (-15 -1735 (|#1| |#1| |#1|)) (-15 -4345 (|#1| |#1| (-554) (-554) |#1|)) (-15 -1458 (|#1| |#1| (-554) (-554) (-554) (-554))) (-15 -3705 (|#1| |#1| (-554) (-554))) (-15 -2416 (|#1| |#1| (-554) (-554))) (-15 -1501 (|#1| |#1| (-631 (-554)) (-631 (-554)) |#1|)) (-15 -2064 (|#1| |#1| (-631 (-554)) (-631 (-554)))) (-15 -1679 ((-631 (-631 |#2|)) |#1|)) (-15 -1846 (|#1| |#1| |#1|)) (-15 -4041 (|#1| |#1| |#1|)) (-15 -3657 (|#1| |#1|)) (-15 -2757 (|#1| |#1|)) (-15 -2757 (|#1| |#3|)) (-15 -3075 (|#1| |#4|)) (-15 -3198 (|#1| (-631 |#1|))) (-15 -3198 (|#1| (-631 |#2|))) (-15 -1475 (|#1| (-758) |#2|)) (-15 -1899 (|#1| (-631 (-631 |#2|)))) (-15 -2275 (|#1| (-758) (-758))) (-15 -4299 ((-112) |#1|)) (-15 -1350 ((-112) |#1|)) (-15 -2361 ((-112) |#1|)) (-15 -3795 ((-112) |#1|)) (-15 -1501 (|#2| |#1| (-554) (-554) |#2|)) (-15 -2064 (|#2| |#1| (-554) (-554) |#2|)) (-15 -2064 (|#2| |#1| (-554) (-554)))) (-673 |#2| |#3| |#4|) (-1034) (-368 |#2|) (-368 |#2|)) (T -672))
-NIL
-(-10 -8 (-15 -3075 ((-848) |#1|)) (-15 ** (|#1| |#1| (-554))) (-15 -1752 (|#1| |#1| |#2|)) (-15 -3919 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-758))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-554) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 -1744 (|#1| |#1| |#1|)) (-15 -1735 (|#1| |#1| |#1|)) (-15 -4345 (|#1| |#1| (-554) (-554) |#1|)) (-15 -1458 (|#1| |#1| (-554) (-554) (-554) (-554))) (-15 -3705 (|#1| |#1| (-554) (-554))) (-15 -2416 (|#1| |#1| (-554) (-554))) (-15 -1501 (|#1| |#1| (-631 (-554)) (-631 (-554)) |#1|)) (-15 -2064 (|#1| |#1| (-631 (-554)) (-631 (-554)))) (-15 -1679 ((-631 (-631 |#2|)) |#1|)) (-15 -1846 (|#1| |#1| |#1|)) (-15 -4041 (|#1| |#1| |#1|)) (-15 -3657 (|#1| |#1|)) (-15 -2757 (|#1| |#1|)) (-15 -2757 (|#1| |#3|)) (-15 -3075 (|#1| |#4|)) (-15 -3198 (|#1| (-631 |#1|))) (-15 -3198 (|#1| (-631 |#2|))) (-15 -1475 (|#1| (-758) |#2|)) (-15 -1899 (|#1| (-631 (-631 |#2|)))) (-15 -2275 (|#1| (-758) (-758))) (-15 -4299 ((-112) |#1|)) (-15 -1350 ((-112) |#1|)) (-15 -2361 ((-112) |#1|)) (-15 -3795 ((-112) |#1|)) (-15 -1501 (|#2| |#1| (-554) (-554) |#2|)) (-15 -2064 (|#2| |#1| (-554) (-554) |#2|)) (-15 -2064 (|#2| |#1| (-554) (-554))))
-((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-2275 (($ (-758) (-758)) 97)) (-1846 (($ $ $) 87)) (-2757 (($ |#2|) 91) (($ $) 90)) (-1350 (((-112) $) 99)) (-2416 (($ $ (-554) (-554)) 83)) (-3705 (($ $ (-554) (-554)) 82)) (-1458 (($ $ (-554) (-554) (-554) (-554)) 81)) (-3657 (($ $) 89)) (-3795 (((-112) $) 101)) (-3019 (((-112) $ (-758)) 8)) (-4345 (($ $ (-554) (-554) $) 80)) (-1501 ((|#1| $ (-554) (-554) |#1|) 44) (($ $ (-631 (-554)) (-631 (-554)) $) 84)) (-2557 (($ $ (-554) |#2|) 42)) (-1464 (($ $ (-554) |#3|) 41)) (-1475 (($ (-758) |#1|) 95)) (-4087 (($) 7 T CONST)) (-2775 (($ $) 67 (|has| |#1| (-302)))) (-3519 ((|#2| $ (-554)) 46)) (-4186 (((-758) $) 66 (|has| |#1| (-546)))) (-2862 ((|#1| $ (-554) (-554) |#1|) 43)) (-2796 ((|#1| $ (-554) (-554)) 48)) (-2466 (((-631 |#1|) $) 30)) (-4332 (((-758) $) 65 (|has| |#1| (-546)))) (-2412 (((-631 |#3|) $) 64 (|has| |#1| (-546)))) (-4130 (((-758) $) 51)) (-3180 (($ (-758) (-758) |#1|) 57)) (-4143 (((-758) $) 50)) (-2230 (((-112) $ (-758)) 9)) (-2326 ((|#1| $) 62 (|has| |#1| (-6 (-4375 "*"))))) (-3985 (((-554) $) 55)) (-1817 (((-554) $) 53)) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2787 (((-554) $) 54)) (-4249 (((-554) $) 52)) (-1899 (($ (-631 (-631 |#1|))) 96)) (-2849 (($ (-1 |#1| |#1|) $) 34)) (-2879 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-1679 (((-631 (-631 |#1|)) $) 86)) (-3731 (((-112) $ (-758)) 10)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-2843 (((-3 $ "failed") $) 61 (|has| |#1| (-358)))) (-4041 (($ $ $) 88)) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-2441 (($ $ |#1|) 56)) (-3919 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-546)))) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2064 ((|#1| $ (-554) (-554)) 49) ((|#1| $ (-554) (-554) |#1|) 47) (($ $ (-631 (-554)) (-631 (-554))) 85)) (-3198 (($ (-631 |#1|)) 94) (($ (-631 $)) 93)) (-2361 (((-112) $) 100)) (-2870 ((|#1| $) 63 (|has| |#1| (-6 (-4375 "*"))))) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-3259 ((|#3| $ (-554)) 45)) (-3075 (($ |#3|) 92) (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-4299 (((-112) $) 98)) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-1752 (($ $ |#1|) 68 (|has| |#1| (-358)))) (-1744 (($ $ $) 78) (($ $) 77)) (-1735 (($ $ $) 79)) (** (($ $ (-758)) 70) (($ $ (-554)) 60 (|has| |#1| (-358)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-554) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-2563 (((-758) $) 6 (|has| $ (-6 -4373)))))
-(((-673 |#1| |#2| |#3|) (-138) (-1034) (-368 |t#1|) (-368 |t#1|)) (T -673))
-((-3795 (*1 *2 *1) (-12 (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-112)))) (-2361 (*1 *2 *1) (-12 (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-112)))) (-1350 (*1 *2 *1) (-12 (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-112)))) (-4299 (*1 *2 *1) (-12 (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-112)))) (-2275 (*1 *1 *2 *2) (-12 (-5 *2 (-758)) (-4 *3 (-1034)) (-4 *1 (-673 *3 *4 *5)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-1899 (*1 *1 *2) (-12 (-5 *2 (-631 (-631 *3))) (-4 *3 (-1034)) (-4 *1 (-673 *3 *4 *5)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-1475 (*1 *1 *2 *3) (-12 (-5 *2 (-758)) (-4 *3 (-1034)) (-4 *1 (-673 *3 *4 *5)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-3198 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1034)) (-4 *1 (-673 *3 *4 *5)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-3198 (*1 *1 *2) (-12 (-5 *2 (-631 *1)) (-4 *3 (-1034)) (-4 *1 (-673 *3 *4 *5)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-3075 (*1 *1 *2) (-12 (-4 *3 (-1034)) (-4 *1 (-673 *3 *4 *2)) (-4 *4 (-368 *3)) (-4 *2 (-368 *3)))) (-2757 (*1 *1 *2) (-12 (-4 *3 (-1034)) (-4 *1 (-673 *3 *2 *4)) (-4 *2 (-368 *3)) (-4 *4 (-368 *3)))) (-2757 (*1 *1 *1) (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)))) (-3657 (*1 *1 *1) (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)))) (-4041 (*1 *1 *1 *1) (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)))) (-1846 (*1 *1 *1 *1) (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)))) (-1679 (*1 *2 *1) (-12 (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-631 (-631 *3))))) (-2064 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-631 (-554))) (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-1501 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-631 (-554))) (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-2416 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-554)) (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-3705 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-554)) (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-1458 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-554)) (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-4345 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-554)) (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-1735 (*1 *1 *1 *1) (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)))) (-1744 (*1 *1 *1 *1) (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)))) (-1744 (*1 *1 *1) (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-554)) (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-673 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) (-4 *2 (-368 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-673 *3 *2 *4)) (-4 *3 (-1034)) (-4 *2 (-368 *3)) (-4 *4 (-368 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-3919 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)) (-4 *2 (-546)))) (-1752 (*1 *1 *1 *2) (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)) (-4 *2 (-358)))) (-2775 (*1 *1 *1) (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)) (-4 *2 (-302)))) (-4186 (*1 *2 *1) (-12 (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-4 *3 (-546)) (-5 *2 (-758)))) (-4332 (*1 *2 *1) (-12 (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-4 *3 (-546)) (-5 *2 (-758)))) (-2412 (*1 *2 *1) (-12 (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-4 *3 (-546)) (-5 *2 (-631 *5)))) (-2870 (*1 *2 *1) (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)) (|has| *2 (-6 (-4375 "*"))) (-4 *2 (-1034)))) (-2326 (*1 *2 *1) (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)) (|has| *2 (-6 (-4375 "*"))) (-4 *2 (-1034)))) (-2843 (*1 *1 *1) (|partial| -12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)) (-4 *2 (-358)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-4 *3 (-358)))))
-(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4374) (-6 -4373) (-15 -3795 ((-112) $)) (-15 -2361 ((-112) $)) (-15 -1350 ((-112) $)) (-15 -4299 ((-112) $)) (-15 -2275 ($ (-758) (-758))) (-15 -1899 ($ (-631 (-631 |t#1|)))) (-15 -1475 ($ (-758) |t#1|)) (-15 -3198 ($ (-631 |t#1|))) (-15 -3198 ($ (-631 $))) (-15 -3075 ($ |t#3|)) (-15 -2757 ($ |t#2|)) (-15 -2757 ($ $)) (-15 -3657 ($ $)) (-15 -4041 ($ $ $)) (-15 -1846 ($ $ $)) (-15 -1679 ((-631 (-631 |t#1|)) $)) (-15 -2064 ($ $ (-631 (-554)) (-631 (-554)))) (-15 -1501 ($ $ (-631 (-554)) (-631 (-554)) $)) (-15 -2416 ($ $ (-554) (-554))) (-15 -3705 ($ $ (-554) (-554))) (-15 -1458 ($ $ (-554) (-554) (-554) (-554))) (-15 -4345 ($ $ (-554) (-554) $)) (-15 -1735 ($ $ $)) (-15 -1744 ($ $ $)) (-15 -1744 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-554) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-758))) (IF (|has| |t#1| (-546)) (-15 -3919 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-358)) (-15 -1752 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-302)) (-15 -2775 ($ $)) |%noBranch|) (IF (|has| |t#1| (-546)) (PROGN (-15 -4186 ((-758) $)) (-15 -4332 ((-758) $)) (-15 -2412 ((-631 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4375 "*"))) (PROGN (-15 -2870 (|t#1| $)) (-15 -2326 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-358)) (PROGN (-15 -2843 ((-3 $ "failed") $)) (-15 ** ($ $ (-554)))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1082)) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-601 (-848)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-1082) |has| |#1| (-1082)) ((-57 |#1| |#2| |#3|) . T) ((-1195) . T))
-((-2775 ((|#4| |#4|) 72 (|has| |#1| (-302)))) (-4186 (((-758) |#4|) 99 (|has| |#1| (-546)))) (-4332 (((-758) |#4|) 76 (|has| |#1| (-546)))) (-2412 (((-631 |#3|) |#4|) 83 (|has| |#1| (-546)))) (-1524 (((-2 (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1|) 111 (|has| |#1| (-302)))) (-2326 ((|#1| |#4|) 35)) (-3521 (((-3 |#4| "failed") |#4|) 64 (|has| |#1| (-546)))) (-2843 (((-3 |#4| "failed") |#4|) 80 (|has| |#1| (-358)))) (-2891 ((|#4| |#4|) 68 (|has| |#1| (-546)))) (-1935 ((|#4| |#4| |#1| (-554) (-554)) 43)) (-2893 ((|#4| |#4| (-554) (-554)) 38)) (-4256 ((|#4| |#4| |#1| (-554) (-554)) 48)) (-2870 ((|#1| |#4|) 78)) (-2968 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 69 (|has| |#1| (-546)))))
-(((-674 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2870 (|#1| |#4|)) (-15 -2326 (|#1| |#4|)) (-15 -2893 (|#4| |#4| (-554) (-554))) (-15 -1935 (|#4| |#4| |#1| (-554) (-554))) (-15 -4256 (|#4| |#4| |#1| (-554) (-554))) (IF (|has| |#1| (-546)) (PROGN (-15 -4186 ((-758) |#4|)) (-15 -4332 ((-758) |#4|)) (-15 -2412 ((-631 |#3|) |#4|)) (-15 -2891 (|#4| |#4|)) (-15 -3521 ((-3 |#4| "failed") |#4|)) (-15 -2968 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-302)) (PROGN (-15 -2775 (|#4| |#4|)) (-15 -1524 ((-2 (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-358)) (-15 -2843 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-170) (-368 |#1|) (-368 |#1|) (-673 |#1| |#2| |#3|)) (T -674))
-((-2843 (*1 *2 *2) (|partial| -12 (-4 *3 (-358)) (-4 *3 (-170)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *1 (-674 *3 *4 *5 *2)) (-4 *2 (-673 *3 *4 *5)))) (-1524 (*1 *2 *3 *3) (-12 (-4 *3 (-302)) (-4 *3 (-170)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-2 (|:| -2325 *3) (|:| -2423 *3))) (-5 *1 (-674 *3 *4 *5 *6)) (-4 *6 (-673 *3 *4 *5)))) (-2775 (*1 *2 *2) (-12 (-4 *3 (-302)) (-4 *3 (-170)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *1 (-674 *3 *4 *5 *2)) (-4 *2 (-673 *3 *4 *5)))) (-2968 (*1 *2 *3) (-12 (-4 *4 (-546)) (-4 *4 (-170)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-673 *4 *5 *6)))) (-3521 (*1 *2 *2) (|partial| -12 (-4 *3 (-546)) (-4 *3 (-170)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *1 (-674 *3 *4 *5 *2)) (-4 *2 (-673 *3 *4 *5)))) (-2891 (*1 *2 *2) (-12 (-4 *3 (-546)) (-4 *3 (-170)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *1 (-674 *3 *4 *5 *2)) (-4 *2 (-673 *3 *4 *5)))) (-2412 (*1 *2 *3) (-12 (-4 *4 (-546)) (-4 *4 (-170)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-5 *2 (-631 *6)) (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-673 *4 *5 *6)))) (-4332 (*1 *2 *3) (-12 (-4 *4 (-546)) (-4 *4 (-170)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-5 *2 (-758)) (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-673 *4 *5 *6)))) (-4186 (*1 *2 *3) (-12 (-4 *4 (-546)) (-4 *4 (-170)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-5 *2 (-758)) (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-673 *4 *5 *6)))) (-4256 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-554)) (-4 *3 (-170)) (-4 *5 (-368 *3)) (-4 *6 (-368 *3)) (-5 *1 (-674 *3 *5 *6 *2)) (-4 *2 (-673 *3 *5 *6)))) (-1935 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-554)) (-4 *3 (-170)) (-4 *5 (-368 *3)) (-4 *6 (-368 *3)) (-5 *1 (-674 *3 *5 *6 *2)) (-4 *2 (-673 *3 *5 *6)))) (-2893 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-554)) (-4 *4 (-170)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-5 *1 (-674 *4 *5 *6 *2)) (-4 *2 (-673 *4 *5 *6)))) (-2326 (*1 *2 *3) (-12 (-4 *4 (-368 *2)) (-4 *5 (-368 *2)) (-4 *2 (-170)) (-5 *1 (-674 *2 *4 *5 *3)) (-4 *3 (-673 *2 *4 *5)))) (-2870 (*1 *2 *3) (-12 (-4 *4 (-368 *2)) (-4 *5 (-368 *2)) (-4 *2 (-170)) (-5 *1 (-674 *2 *4 *5 *3)) (-4 *3 (-673 *2 *4 *5)))))
-(-10 -7 (-15 -2870 (|#1| |#4|)) (-15 -2326 (|#1| |#4|)) (-15 -2893 (|#4| |#4| (-554) (-554))) (-15 -1935 (|#4| |#4| |#1| (-554) (-554))) (-15 -4256 (|#4| |#4| |#1| (-554) (-554))) (IF (|has| |#1| (-546)) (PROGN (-15 -4186 ((-758) |#4|)) (-15 -4332 ((-758) |#4|)) (-15 -2412 ((-631 |#3|) |#4|)) (-15 -2891 (|#4| |#4|)) (-15 -3521 ((-3 |#4| "failed") |#4|)) (-15 -2968 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-302)) (PROGN (-15 -2775 (|#4| |#4|)) (-15 -1524 ((-2 (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-358)) (-15 -2843 ((-3 |#4| "failed") |#4|)) |%noBranch|))
-((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2275 (($ (-758) (-758)) 47)) (-1846 (($ $ $) NIL)) (-2757 (($ (-1241 |#1|)) NIL) (($ $) NIL)) (-1350 (((-112) $) NIL)) (-2416 (($ $ (-554) (-554)) 12)) (-3705 (($ $ (-554) (-554)) NIL)) (-1458 (($ $ (-554) (-554) (-554) (-554)) NIL)) (-3657 (($ $) NIL)) (-3795 (((-112) $) NIL)) (-3019 (((-112) $ (-758)) NIL)) (-4345 (($ $ (-554) (-554) $) NIL)) (-1501 ((|#1| $ (-554) (-554) |#1|) NIL) (($ $ (-631 (-554)) (-631 (-554)) $) NIL)) (-2557 (($ $ (-554) (-1241 |#1|)) NIL)) (-1464 (($ $ (-554) (-1241 |#1|)) NIL)) (-1475 (($ (-758) |#1|) 22)) (-4087 (($) NIL T CONST)) (-2775 (($ $) 31 (|has| |#1| (-302)))) (-3519 (((-1241 |#1|) $ (-554)) NIL)) (-4186 (((-758) $) 33 (|has| |#1| (-546)))) (-2862 ((|#1| $ (-554) (-554) |#1|) 51)) (-2796 ((|#1| $ (-554) (-554)) NIL)) (-2466 (((-631 |#1|) $) NIL)) (-4332 (((-758) $) 35 (|has| |#1| (-546)))) (-2412 (((-631 (-1241 |#1|)) $) 38 (|has| |#1| (-546)))) (-4130 (((-758) $) 20)) (-3180 (($ (-758) (-758) |#1|) 16)) (-4143 (((-758) $) 21)) (-2230 (((-112) $ (-758)) NIL)) (-2326 ((|#1| $) 29 (|has| |#1| (-6 (-4375 "*"))))) (-3985 (((-554) $) 9)) (-1817 (((-554) $) 10)) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2787 (((-554) $) 11)) (-4249 (((-554) $) 48)) (-1899 (($ (-631 (-631 |#1|))) NIL)) (-2849 (($ (-1 |#1| |#1|) $) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1679 (((-631 (-631 |#1|)) $) 60)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-2843 (((-3 $ "failed") $) 45 (|has| |#1| (-358)))) (-4041 (($ $ $) NIL)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-2441 (($ $ |#1|) NIL)) (-3919 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-546)))) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#1| $ (-554) (-554)) NIL) ((|#1| $ (-554) (-554) |#1|) NIL) (($ $ (-631 (-554)) (-631 (-554))) NIL)) (-3198 (($ (-631 |#1|)) NIL) (($ (-631 $)) NIL) (($ (-1241 |#1|)) 52)) (-2361 (((-112) $) NIL)) (-2870 ((|#1| $) 27 (|has| |#1| (-6 (-4375 "*"))))) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1521 (($ $) NIL)) (-2927 (((-530) $) 64 (|has| |#1| (-602 (-530))))) (-3259 (((-1241 |#1|) $ (-554)) NIL)) (-3075 (($ (-1241 |#1|)) NIL) (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-4299 (((-112) $) NIL)) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-1744 (($ $ $) NIL) (($ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-758)) 23) (($ $ (-554)) 46 (|has| |#1| (-358)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-554) $) NIL) (((-1241 |#1|) $ (-1241 |#1|)) NIL) (((-1241 |#1|) (-1241 |#1|) $) NIL)) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-675 |#1|) (-13 (-673 |#1| (-1241 |#1|) (-1241 |#1|)) (-10 -8 (-15 -3198 ($ (-1241 |#1|))) (IF (|has| |#1| (-602 (-530))) (-6 (-602 (-530))) |%noBranch|) (IF (|has| |#1| (-358)) (-15 -2843 ((-3 $ "failed") $)) |%noBranch|))) (-1034)) (T -675))
-((-2843 (*1 *1 *1) (|partial| -12 (-5 *1 (-675 *2)) (-4 *2 (-358)) (-4 *2 (-1034)))) (-3198 (*1 *1 *2) (-12 (-5 *2 (-1241 *3)) (-4 *3 (-1034)) (-5 *1 (-675 *3)))))
-(-13 (-673 |#1| (-1241 |#1|) (-1241 |#1|)) (-10 -8 (-15 -3198 ($ (-1241 |#1|))) (IF (|has| |#1| (-602 (-530))) (-6 (-602 (-530))) |%noBranch|) (IF (|has| |#1| (-358)) (-15 -2843 ((-3 $ "failed") $)) |%noBranch|)))
-((-4058 (((-675 |#1|) (-675 |#1|) (-675 |#1|) (-675 |#1|)) 25)) (-1280 (((-675 |#1|) (-675 |#1|) (-675 |#1|) |#1|) 21)) (-1829 (((-675 |#1|) (-675 |#1|) (-675 |#1|) (-675 |#1|) (-675 |#1|) (-758)) 26)) (-4349 (((-675 |#1|) (-675 |#1|) (-675 |#1|) (-675 |#1|)) 14)) (-2426 (((-675 |#1|) (-675 |#1|) (-675 |#1|) (-675 |#1|)) 18) (((-675 |#1|) (-675 |#1|) (-675 |#1|)) 16)) (-3149 (((-675 |#1|) (-675 |#1|) |#1| (-675 |#1|)) 20)) (-2137 (((-675 |#1|) (-675 |#1|) (-675 |#1|)) 12)) (** (((-675 |#1|) (-675 |#1|) (-758)) 30)))
-(((-676 |#1|) (-10 -7 (-15 -2137 ((-675 |#1|) (-675 |#1|) (-675 |#1|))) (-15 -4349 ((-675 |#1|) (-675 |#1|) (-675 |#1|) (-675 |#1|))) (-15 -2426 ((-675 |#1|) (-675 |#1|) (-675 |#1|))) (-15 -2426 ((-675 |#1|) (-675 |#1|) (-675 |#1|) (-675 |#1|))) (-15 -3149 ((-675 |#1|) (-675 |#1|) |#1| (-675 |#1|))) (-15 -1280 ((-675 |#1|) (-675 |#1|) (-675 |#1|) |#1|)) (-15 -4058 ((-675 |#1|) (-675 |#1|) (-675 |#1|) (-675 |#1|))) (-15 -1829 ((-675 |#1|) (-675 |#1|) (-675 |#1|) (-675 |#1|) (-675 |#1|) (-758))) (-15 ** ((-675 |#1|) (-675 |#1|) (-758)))) (-1034)) (T -676))
-((** (*1 *2 *2 *3) (-12 (-5 *2 (-675 *4)) (-5 *3 (-758)) (-4 *4 (-1034)) (-5 *1 (-676 *4)))) (-1829 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-675 *4)) (-5 *3 (-758)) (-4 *4 (-1034)) (-5 *1 (-676 *4)))) (-4058 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-675 *3)) (-4 *3 (-1034)) (-5 *1 (-676 *3)))) (-1280 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-675 *3)) (-4 *3 (-1034)) (-5 *1 (-676 *3)))) (-3149 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-675 *3)) (-4 *3 (-1034)) (-5 *1 (-676 *3)))) (-2426 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-675 *3)) (-4 *3 (-1034)) (-5 *1 (-676 *3)))) (-2426 (*1 *2 *2 *2) (-12 (-5 *2 (-675 *3)) (-4 *3 (-1034)) (-5 *1 (-676 *3)))) (-4349 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-675 *3)) (-4 *3 (-1034)) (-5 *1 (-676 *3)))) (-2137 (*1 *2 *2 *2) (-12 (-5 *2 (-675 *3)) (-4 *3 (-1034)) (-5 *1 (-676 *3)))))
-(-10 -7 (-15 -2137 ((-675 |#1|) (-675 |#1|) (-675 |#1|))) (-15 -4349 ((-675 |#1|) (-675 |#1|) (-675 |#1|) (-675 |#1|))) (-15 -2426 ((-675 |#1|) (-675 |#1|) (-675 |#1|))) (-15 -2426 ((-675 |#1|) (-675 |#1|) (-675 |#1|) (-675 |#1|))) (-15 -3149 ((-675 |#1|) (-675 |#1|) |#1| (-675 |#1|))) (-15 -1280 ((-675 |#1|) (-675 |#1|) (-675 |#1|) |#1|)) (-15 -4058 ((-675 |#1|) (-675 |#1|) (-675 |#1|) (-675 |#1|))) (-15 -1829 ((-675 |#1|) (-675 |#1|) (-675 |#1|) (-675 |#1|) (-675 |#1|) (-758))) (-15 ** ((-675 |#1|) (-675 |#1|) (-758))))
-((-3615 (($) 8 T CONST)) (-3075 (((-848) $) 21) (($ |#1|) 9) ((|#1| $) 10)) (-3182 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -3615)) 16)) (-1556 ((|#1| $) 11)))
-(((-677 |#1|) (-13 (-1236) (-601 (-848)) (-10 -8 (-15 -3182 ((-112) $ (|[\|\|]| |#1|))) (-15 -3182 ((-112) $ (|[\|\|]| -3615))) (-15 -3075 ($ |#1|)) (-15 -3075 (|#1| $)) (-15 -1556 (|#1| $)) (-15 -3615 ($) -2397))) (-601 (-848))) (T -677))
-((-3182 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-601 (-848))) (-5 *2 (-112)) (-5 *1 (-677 *4)))) (-3182 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3615)) (-5 *2 (-112)) (-5 *1 (-677 *4)) (-4 *4 (-601 (-848))))) (-3075 (*1 *1 *2) (-12 (-5 *1 (-677 *2)) (-4 *2 (-601 (-848))))) (-3075 (*1 *2 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-601 (-848))))) (-1556 (*1 *2 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-601 (-848))))) (-3615 (*1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-601 (-848))))))
-(-13 (-1236) (-601 (-848)) (-10 -8 (-15 -3182 ((-112) $ (|[\|\|]| |#1|))) (-15 -3182 ((-112) $ (|[\|\|]| -3615))) (-15 -3075 ($ |#1|)) (-15 -3075 (|#1| $)) (-15 -1556 (|#1| $)) (-15 -3615 ($) -2397)))
-((-3092 ((|#2| |#2| |#4|) 25)) (-2449 (((-675 |#2|) |#3| |#4|) 31)) (-4241 (((-675 |#2|) |#2| |#4|) 30)) (-1526 (((-1241 |#2|) |#2| |#4|) 16)) (-4075 ((|#2| |#3| |#4|) 24)) (-2881 (((-675 |#2|) |#3| |#4| (-758) (-758)) 38)) (-2894 (((-675 |#2|) |#2| |#4| (-758)) 37)))
-(((-678 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1526 ((-1241 |#2|) |#2| |#4|)) (-15 -4075 (|#2| |#3| |#4|)) (-15 -3092 (|#2| |#2| |#4|)) (-15 -4241 ((-675 |#2|) |#2| |#4|)) (-15 -2894 ((-675 |#2|) |#2| |#4| (-758))) (-15 -2449 ((-675 |#2|) |#3| |#4|)) (-15 -2881 ((-675 |#2|) |#3| |#4| (-758) (-758)))) (-1082) (-885 |#1|) (-368 |#2|) (-13 (-368 |#1|) (-10 -7 (-6 -4373)))) (T -678))
-((-2881 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-758)) (-4 *6 (-1082)) (-4 *7 (-885 *6)) (-5 *2 (-675 *7)) (-5 *1 (-678 *6 *7 *3 *4)) (-4 *3 (-368 *7)) (-4 *4 (-13 (-368 *6) (-10 -7 (-6 -4373)))))) (-2449 (*1 *2 *3 *4) (-12 (-4 *5 (-1082)) (-4 *6 (-885 *5)) (-5 *2 (-675 *6)) (-5 *1 (-678 *5 *6 *3 *4)) (-4 *3 (-368 *6)) (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4373)))))) (-2894 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-758)) (-4 *6 (-1082)) (-4 *3 (-885 *6)) (-5 *2 (-675 *3)) (-5 *1 (-678 *6 *3 *7 *4)) (-4 *7 (-368 *3)) (-4 *4 (-13 (-368 *6) (-10 -7 (-6 -4373)))))) (-4241 (*1 *2 *3 *4) (-12 (-4 *5 (-1082)) (-4 *3 (-885 *5)) (-5 *2 (-675 *3)) (-5 *1 (-678 *5 *3 *6 *4)) (-4 *6 (-368 *3)) (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4373)))))) (-3092 (*1 *2 *2 *3) (-12 (-4 *4 (-1082)) (-4 *2 (-885 *4)) (-5 *1 (-678 *4 *2 *5 *3)) (-4 *5 (-368 *2)) (-4 *3 (-13 (-368 *4) (-10 -7 (-6 -4373)))))) (-4075 (*1 *2 *3 *4) (-12 (-4 *5 (-1082)) (-4 *2 (-885 *5)) (-5 *1 (-678 *5 *2 *3 *4)) (-4 *3 (-368 *2)) (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4373)))))) (-1526 (*1 *2 *3 *4) (-12 (-4 *5 (-1082)) (-4 *3 (-885 *5)) (-5 *2 (-1241 *3)) (-5 *1 (-678 *5 *3 *6 *4)) (-4 *6 (-368 *3)) (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4373)))))))
-(-10 -7 (-15 -1526 ((-1241 |#2|) |#2| |#4|)) (-15 -4075 (|#2| |#3| |#4|)) (-15 -3092 (|#2| |#2| |#4|)) (-15 -4241 ((-675 |#2|) |#2| |#4|)) (-15 -2894 ((-675 |#2|) |#2| |#4| (-758))) (-15 -2449 ((-675 |#2|) |#3| |#4|)) (-15 -2881 ((-675 |#2|) |#3| |#4| (-758) (-758))))
-((-2037 (((-2 (|:| |num| (-675 |#1|)) (|:| |den| |#1|)) (-675 |#2|)) 20)) (-2715 ((|#1| (-675 |#2|)) 9)) (-1770 (((-675 |#1|) (-675 |#2|)) 18)))
-(((-679 |#1| |#2|) (-10 -7 (-15 -2715 (|#1| (-675 |#2|))) (-15 -1770 ((-675 |#1|) (-675 |#2|))) (-15 -2037 ((-2 (|:| |num| (-675 |#1|)) (|:| |den| |#1|)) (-675 |#2|)))) (-546) (-977 |#1|)) (T -679))
-((-2037 (*1 *2 *3) (-12 (-5 *3 (-675 *5)) (-4 *5 (-977 *4)) (-4 *4 (-546)) (-5 *2 (-2 (|:| |num| (-675 *4)) (|:| |den| *4))) (-5 *1 (-679 *4 *5)))) (-1770 (*1 *2 *3) (-12 (-5 *3 (-675 *5)) (-4 *5 (-977 *4)) (-4 *4 (-546)) (-5 *2 (-675 *4)) (-5 *1 (-679 *4 *5)))) (-2715 (*1 *2 *3) (-12 (-5 *3 (-675 *4)) (-4 *4 (-977 *2)) (-4 *2 (-546)) (-5 *1 (-679 *2 *4)))))
-(-10 -7 (-15 -2715 (|#1| (-675 |#2|))) (-15 -1770 ((-675 |#1|) (-675 |#2|))) (-15 -2037 ((-2 (|:| |num| (-675 |#1|)) (|:| |den| |#1|)) (-675 |#2|))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-1903 (((-675 (-685))) NIL) (((-675 (-685)) (-1241 $)) NIL)) (-1612 (((-685) $) NIL)) (-3023 (($ $) NIL (|has| (-685) (-1180)))) (-4200 (($ $) NIL (|has| (-685) (-1180)))) (-3205 (((-1168 (-906) (-758)) (-554)) NIL (|has| (-685) (-344)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (-12 (|has| (-685) (-302)) (|has| (-685) (-894))))) (-3278 (($ $) NIL (-3994 (-12 (|has| (-685) (-302)) (|has| (-685) (-894))) (|has| (-685) (-358))))) (-1565 (((-413 $) $) NIL (-3994 (-12 (|has| (-685) (-302)) (|has| (-685) (-894))) (|has| (-685) (-358))))) (-2282 (($ $) NIL (-12 (|has| (-685) (-987)) (|has| (-685) (-1180))))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (-12 (|has| (-685) (-302)) (|has| (-685) (-894))))) (-2286 (((-112) $ $) NIL (|has| (-685) (-302)))) (-1508 (((-758)) NIL (|has| (-685) (-363)))) (-3003 (($ $) NIL (|has| (-685) (-1180)))) (-4177 (($ $) NIL (|has| (-685) (-1180)))) (-3046 (($ $) NIL (|has| (-685) (-1180)))) (-2916 (($ $) NIL (|has| (-685) (-1180)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) NIL) (((-3 (-685) "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL (|has| (-685) (-1023 (-402 (-554)))))) (-1668 (((-554) $) NIL) (((-685) $) NIL) (((-402 (-554)) $) NIL (|has| (-685) (-1023 (-402 (-554)))))) (-1651 (($ (-1241 (-685))) NIL) (($ (-1241 (-685)) (-1241 $)) NIL)) (-2723 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-685) (-344)))) (-3964 (($ $ $) NIL (|has| (-685) (-302)))) (-3629 (((-675 (-685)) $) NIL) (((-675 (-685)) $ (-1241 $)) NIL)) (-3699 (((-675 (-685)) (-675 $)) NIL) (((-2 (|:| -2866 (-675 (-685))) (|:| |vec| (-1241 (-685)))) (-675 $) (-1241 $)) NIL) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| (-685) (-627 (-554)))) (((-675 (-554)) (-675 $)) NIL (|has| (-685) (-627 (-554))))) (-3676 (((-3 $ "failed") (-402 (-1154 (-685)))) NIL (|has| (-685) (-358))) (($ (-1154 (-685))) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2293 (((-685) $) 29)) (-1623 (((-3 (-402 (-554)) "failed") $) NIL (|has| (-685) (-539)))) (-2069 (((-112) $) NIL (|has| (-685) (-539)))) (-2197 (((-402 (-554)) $) NIL (|has| (-685) (-539)))) (-4186 (((-906)) NIL)) (-3353 (($) NIL (|has| (-685) (-363)))) (-3943 (($ $ $) NIL (|has| (-685) (-302)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL (|has| (-685) (-302)))) (-3157 (($) NIL (|has| (-685) (-344)))) (-2754 (((-112) $) NIL (|has| (-685) (-344)))) (-4122 (($ $) NIL (|has| (-685) (-344))) (($ $ (-758)) NIL (|has| (-685) (-344)))) (-3289 (((-112) $) NIL (-3994 (-12 (|has| (-685) (-302)) (|has| (-685) (-894))) (|has| (-685) (-358))))) (-2244 (((-2 (|:| |r| (-685)) (|:| |phi| (-685))) $) NIL (-12 (|has| (-685) (-1043)) (|has| (-685) (-1180))))) (-2844 (($) NIL (|has| (-685) (-1180)))) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (|has| (-685) (-871 (-374)))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (|has| (-685) (-871 (-554))))) (-2342 (((-820 (-906)) $) NIL (|has| (-685) (-344))) (((-906) $) NIL (|has| (-685) (-344)))) (-3248 (((-112) $) NIL)) (-3734 (($ $ (-554)) NIL (-12 (|has| (-685) (-987)) (|has| (-685) (-1180))))) (-3274 (((-685) $) NIL)) (-3339 (((-3 $ "failed") $) NIL (|has| (-685) (-344)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| (-685) (-302)))) (-3361 (((-1154 (-685)) $) NIL (|has| (-685) (-358)))) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-2879 (($ (-1 (-685) (-685)) $) NIL)) (-3830 (((-906) $) NIL (|has| (-685) (-363)))) (-2395 (($ $) NIL (|has| (-685) (-1180)))) (-3662 (((-1154 (-685)) $) NIL)) (-2475 (($ (-631 $)) NIL (|has| (-685) (-302))) (($ $ $) NIL (|has| (-685) (-302)))) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL (|has| (-685) (-358)))) (-3834 (($) NIL (|has| (-685) (-344)) CONST)) (-2717 (($ (-906)) NIL (|has| (-685) (-363)))) (-2659 (($) NIL)) (-2302 (((-685) $) 31)) (-2768 (((-1102) $) NIL)) (-4137 (($) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| (-685) (-302)))) (-2510 (($ (-631 $)) NIL (|has| (-685) (-302))) (($ $ $) NIL (|has| (-685) (-302)))) (-3725 (((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))) NIL (|has| (-685) (-344)))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (-12 (|has| (-685) (-302)) (|has| (-685) (-894))))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (-12 (|has| (-685) (-302)) (|has| (-685) (-894))))) (-2270 (((-413 $) $) NIL (-3994 (-12 (|has| (-685) (-302)) (|has| (-685) (-894))) (|has| (-685) (-358))))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-685) (-302))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| (-685) (-302)))) (-3919 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-685)) NIL (|has| (-685) (-546)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| (-685) (-302)))) (-1333 (($ $) NIL (|has| (-685) (-1180)))) (-2386 (($ $ (-1158) (-685)) NIL (|has| (-685) (-508 (-1158) (-685)))) (($ $ (-631 (-1158)) (-631 (-685))) NIL (|has| (-685) (-508 (-1158) (-685)))) (($ $ (-631 (-289 (-685)))) NIL (|has| (-685) (-304 (-685)))) (($ $ (-289 (-685))) NIL (|has| (-685) (-304 (-685)))) (($ $ (-685) (-685)) NIL (|has| (-685) (-304 (-685)))) (($ $ (-631 (-685)) (-631 (-685))) NIL (|has| (-685) (-304 (-685))))) (-2072 (((-758) $) NIL (|has| (-685) (-302)))) (-2064 (($ $ (-685)) NIL (|has| (-685) (-281 (-685) (-685))))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| (-685) (-302)))) (-1495 (((-685)) NIL) (((-685) (-1241 $)) NIL)) (-3316 (((-3 (-758) "failed") $ $) NIL (|has| (-685) (-344))) (((-758) $) NIL (|has| (-685) (-344)))) (-1553 (($ $ (-1 (-685) (-685))) NIL) (($ $ (-1 (-685) (-685)) (-758)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| (-685) (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| (-685) (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| (-685) (-885 (-1158)))) (($ $ (-1158)) NIL (|has| (-685) (-885 (-1158)))) (($ $ (-758)) NIL (|has| (-685) (-229))) (($ $) NIL (|has| (-685) (-229)))) (-2092 (((-675 (-685)) (-1241 $) (-1 (-685) (-685))) NIL (|has| (-685) (-358)))) (-4318 (((-1154 (-685))) NIL)) (-3057 (($ $) NIL (|has| (-685) (-1180)))) (-2926 (($ $) NIL (|has| (-685) (-1180)))) (-3944 (($) NIL (|has| (-685) (-344)))) (-3034 (($ $) NIL (|has| (-685) (-1180)))) (-4213 (($ $) NIL (|has| (-685) (-1180)))) (-3014 (($ $) NIL (|has| (-685) (-1180)))) (-4188 (($ $) NIL (|has| (-685) (-1180)))) (-3656 (((-675 (-685)) (-1241 $)) NIL) (((-1241 (-685)) $) NIL) (((-675 (-685)) (-1241 $) (-1241 $)) NIL) (((-1241 (-685)) $ (-1241 $)) NIL)) (-2927 (((-530) $) NIL (|has| (-685) (-602 (-530)))) (((-167 (-221)) $) NIL (|has| (-685) (-1007))) (((-167 (-374)) $) NIL (|has| (-685) (-1007))) (((-877 (-374)) $) NIL (|has| (-685) (-602 (-877 (-374))))) (((-877 (-554)) $) NIL (|has| (-685) (-602 (-877 (-554))))) (($ (-1154 (-685))) NIL) (((-1154 (-685)) $) NIL) (($ (-1241 (-685))) NIL) (((-1241 (-685)) $) NIL)) (-3992 (($ $) NIL)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-3994 (-12 (|has| (-685) (-302)) (|has| $ (-143)) (|has| (-685) (-894))) (|has| (-685) (-344))))) (-4344 (($ (-685) (-685)) 12)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL) (($ (-554)) NIL) (($ (-685)) NIL) (($ (-167 (-374))) 13) (($ (-167 (-554))) 19) (($ (-167 (-685))) 28) (($ (-167 (-687))) 25) (((-167 (-374)) $) 33) (($ (-402 (-554))) NIL (-3994 (|has| (-685) (-1023 (-402 (-554)))) (|has| (-685) (-358))))) (-2084 (($ $) NIL (|has| (-685) (-344))) (((-3 $ "failed") $) NIL (-3994 (-12 (|has| (-685) (-302)) (|has| $ (-143)) (|has| (-685) (-894))) (|has| (-685) (-143))))) (-3109 (((-1154 (-685)) $) NIL)) (-2261 (((-758)) NIL)) (-3782 (((-1241 $)) NIL)) (-3096 (($ $) NIL (|has| (-685) (-1180)))) (-2959 (($ $) NIL (|has| (-685) (-1180)))) (-1909 (((-112) $ $) NIL)) (-3069 (($ $) NIL (|has| (-685) (-1180)))) (-2938 (($ $) NIL (|has| (-685) (-1180)))) (-3120 (($ $) NIL (|has| (-685) (-1180)))) (-2981 (($ $) NIL (|has| (-685) (-1180)))) (-2592 (((-685) $) NIL (|has| (-685) (-1180)))) (-2908 (($ $) NIL (|has| (-685) (-1180)))) (-2991 (($ $) NIL (|has| (-685) (-1180)))) (-3108 (($ $) NIL (|has| (-685) (-1180)))) (-2969 (($ $) NIL (|has| (-685) (-1180)))) (-3083 (($ $) NIL (|has| (-685) (-1180)))) (-2948 (($ $) NIL (|has| (-685) (-1180)))) (-1700 (($ $) NIL (|has| (-685) (-1043)))) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $ (-1 (-685) (-685))) NIL) (($ $ (-1 (-685) (-685)) (-758)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| (-685) (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| (-685) (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| (-685) (-885 (-1158)))) (($ $ (-1158)) NIL (|has| (-685) (-885 (-1158)))) (($ $ (-758)) NIL (|has| (-685) (-229))) (($ $) NIL (|has| (-685) (-229)))) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) NIL)) (-1752 (($ $ $) NIL (|has| (-685) (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ $) NIL (|has| (-685) (-1180))) (($ $ (-402 (-554))) NIL (-12 (|has| (-685) (-987)) (|has| (-685) (-1180)))) (($ $ (-554)) NIL (|has| (-685) (-358)))) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ (-685) $) NIL) (($ $ (-685)) NIL) (($ (-402 (-554)) $) NIL (|has| (-685) (-358))) (($ $ (-402 (-554))) NIL (|has| (-685) (-358)))))
-(((-680) (-13 (-382) (-164 (-685)) (-10 -8 (-15 -3075 ($ (-167 (-374)))) (-15 -3075 ($ (-167 (-554)))) (-15 -3075 ($ (-167 (-685)))) (-15 -3075 ($ (-167 (-687)))) (-15 -3075 ((-167 (-374)) $))))) (T -680))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-167 (-374))) (-5 *1 (-680)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-167 (-554))) (-5 *1 (-680)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-167 (-685))) (-5 *1 (-680)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-167 (-687))) (-5 *1 (-680)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-167 (-374))) (-5 *1 (-680)))))
-(-13 (-382) (-164 (-685)) (-10 -8 (-15 -3075 ($ (-167 (-374)))) (-15 -3075 ($ (-167 (-554)))) (-15 -3075 ($ (-167 (-685)))) (-15 -3075 ($ (-167 (-687)))) (-15 -3075 ((-167 (-374)) $))))
-((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-3019 (((-112) $ (-758)) 8)) (-2220 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4373)))) (-4087 (($) 7 T CONST)) (-2593 (($ $) 62)) (-1571 (($ $) 58 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1884 (($ |#1| $) 47 (|has| $ (-6 -4373))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4373)))) (-2574 (($ |#1| $) 57 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4373)))) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) 9)) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35)) (-3731 (((-112) $ (-758)) 10)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-4150 ((|#1| $) 39)) (-2045 (($ |#1| $) 40) (($ |#1| $ (-758)) 63)) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2152 ((|#1| $) 41)) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2119 (((-631 (-2 (|:| -2701 |#1|) (|:| -2777 (-758)))) $) 61)) (-4310 (($) 49) (($ (-631 |#1|)) 48)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-2927 (((-530) $) 59 (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) 50)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-1591 (($ (-631 |#1|)) 42)) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373)))))
-(((-681 |#1|) (-138) (-1082)) (T -681))
-((-2045 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-758)) (-4 *1 (-681 *2)) (-4 *2 (-1082)))) (-2593 (*1 *1 *1) (-12 (-4 *1 (-681 *2)) (-4 *2 (-1082)))) (-2119 (*1 *2 *1) (-12 (-4 *1 (-681 *3)) (-4 *3 (-1082)) (-5 *2 (-631 (-2 (|:| -2701 *3) (|:| -2777 (-758))))))))
-(-13 (-231 |t#1|) (-10 -8 (-15 -2045 ($ |t#1| $ (-758))) (-15 -2593 ($ $)) (-15 -2119 ((-631 (-2 (|:| -2701 |t#1|) (|:| -2777 (-758)))) $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1082)) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-601 (-848)))) ((-149 |#1|) . T) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-231 |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-1082) |has| |#1| (-1082)) ((-1195) . T))
-((-3539 (((-631 |#1|) (-631 (-2 (|:| -2270 |#1|) (|:| -3308 (-554)))) (-554)) 47)) (-3620 ((|#1| |#1| (-554)) 46)) (-2510 ((|#1| |#1| |#1| (-554)) 36)) (-2270 (((-631 |#1|) |#1| (-554)) 39)) (-4028 ((|#1| |#1| (-554) |#1| (-554)) 32)) (-3156 (((-631 (-2 (|:| -2270 |#1|) (|:| -3308 (-554)))) |#1| (-554)) 45)))
-(((-682 |#1|) (-10 -7 (-15 -2510 (|#1| |#1| |#1| (-554))) (-15 -3620 (|#1| |#1| (-554))) (-15 -2270 ((-631 |#1|) |#1| (-554))) (-15 -3156 ((-631 (-2 (|:| -2270 |#1|) (|:| -3308 (-554)))) |#1| (-554))) (-15 -3539 ((-631 |#1|) (-631 (-2 (|:| -2270 |#1|) (|:| -3308 (-554)))) (-554))) (-15 -4028 (|#1| |#1| (-554) |#1| (-554)))) (-1217 (-554))) (T -682))
-((-4028 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-554)) (-5 *1 (-682 *2)) (-4 *2 (-1217 *3)))) (-3539 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-2 (|:| -2270 *5) (|:| -3308 (-554))))) (-5 *4 (-554)) (-4 *5 (-1217 *4)) (-5 *2 (-631 *5)) (-5 *1 (-682 *5)))) (-3156 (*1 *2 *3 *4) (-12 (-5 *4 (-554)) (-5 *2 (-631 (-2 (|:| -2270 *3) (|:| -3308 *4)))) (-5 *1 (-682 *3)) (-4 *3 (-1217 *4)))) (-2270 (*1 *2 *3 *4) (-12 (-5 *4 (-554)) (-5 *2 (-631 *3)) (-5 *1 (-682 *3)) (-4 *3 (-1217 *4)))) (-3620 (*1 *2 *2 *3) (-12 (-5 *3 (-554)) (-5 *1 (-682 *2)) (-4 *2 (-1217 *3)))) (-2510 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-554)) (-5 *1 (-682 *2)) (-4 *2 (-1217 *3)))))
-(-10 -7 (-15 -2510 (|#1| |#1| |#1| (-554))) (-15 -3620 (|#1| |#1| (-554))) (-15 -2270 ((-631 |#1|) |#1| (-554))) (-15 -3156 ((-631 (-2 (|:| -2270 |#1|) (|:| -3308 (-554)))) |#1| (-554))) (-15 -3539 ((-631 |#1|) (-631 (-2 (|:| -2270 |#1|) (|:| -3308 (-554)))) (-554))) (-15 -4028 (|#1| |#1| (-554) |#1| (-554))))
-((-2631 (((-1 (-928 (-221)) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221) (-221))) 17)) (-3743 (((-1115 (-221)) (-1115 (-221)) (-1 (-928 (-221)) (-221) (-221)) (-1076 (-221)) (-1076 (-221)) (-631 (-258))) 40) (((-1115 (-221)) (-1 (-928 (-221)) (-221) (-221)) (-1076 (-221)) (-1076 (-221)) (-631 (-258))) 42) (((-1115 (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-3 (-1 (-221) (-221) (-221) (-221)) "undefined") (-1076 (-221)) (-1076 (-221)) (-631 (-258))) 44)) (-4257 (((-1115 (-221)) (-311 (-554)) (-311 (-554)) (-311 (-554)) (-1 (-221) (-221)) (-1076 (-221)) (-631 (-258))) NIL)) (-2900 (((-1115 (-221)) (-1 (-221) (-221) (-221)) (-3 (-1 (-221) (-221) (-221) (-221)) "undefined") (-1076 (-221)) (-1076 (-221)) (-631 (-258))) 45)))
-(((-683) (-10 -7 (-15 -3743 ((-1115 (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-3 (-1 (-221) (-221) (-221) (-221)) "undefined") (-1076 (-221)) (-1076 (-221)) (-631 (-258)))) (-15 -3743 ((-1115 (-221)) (-1 (-928 (-221)) (-221) (-221)) (-1076 (-221)) (-1076 (-221)) (-631 (-258)))) (-15 -3743 ((-1115 (-221)) (-1115 (-221)) (-1 (-928 (-221)) (-221) (-221)) (-1076 (-221)) (-1076 (-221)) (-631 (-258)))) (-15 -2900 ((-1115 (-221)) (-1 (-221) (-221) (-221)) (-3 (-1 (-221) (-221) (-221) (-221)) "undefined") (-1076 (-221)) (-1076 (-221)) (-631 (-258)))) (-15 -4257 ((-1115 (-221)) (-311 (-554)) (-311 (-554)) (-311 (-554)) (-1 (-221) (-221)) (-1076 (-221)) (-631 (-258)))) (-15 -2631 ((-1 (-928 (-221)) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221) (-221)))))) (T -683))
-((-2631 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1 (-221) (-221) (-221) (-221))) (-5 *2 (-1 (-928 (-221)) (-221) (-221))) (-5 *1 (-683)))) (-4257 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-311 (-554))) (-5 *4 (-1 (-221) (-221))) (-5 *5 (-1076 (-221))) (-5 *6 (-631 (-258))) (-5 *2 (-1115 (-221))) (-5 *1 (-683)))) (-2900 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-3 (-1 (-221) (-221) (-221) (-221)) "undefined")) (-5 *5 (-1076 (-221))) (-5 *6 (-631 (-258))) (-5 *2 (-1115 (-221))) (-5 *1 (-683)))) (-3743 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1115 (-221))) (-5 *3 (-1 (-928 (-221)) (-221) (-221))) (-5 *4 (-1076 (-221))) (-5 *5 (-631 (-258))) (-5 *1 (-683)))) (-3743 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-928 (-221)) (-221) (-221))) (-5 *4 (-1076 (-221))) (-5 *5 (-631 (-258))) (-5 *2 (-1115 (-221))) (-5 *1 (-683)))) (-3743 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-3 (-1 (-221) (-221) (-221) (-221)) "undefined")) (-5 *5 (-1076 (-221))) (-5 *6 (-631 (-258))) (-5 *2 (-1115 (-221))) (-5 *1 (-683)))))
-(-10 -7 (-15 -3743 ((-1115 (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-3 (-1 (-221) (-221) (-221) (-221)) "undefined") (-1076 (-221)) (-1076 (-221)) (-631 (-258)))) (-15 -3743 ((-1115 (-221)) (-1 (-928 (-221)) (-221) (-221)) (-1076 (-221)) (-1076 (-221)) (-631 (-258)))) (-15 -3743 ((-1115 (-221)) (-1115 (-221)) (-1 (-928 (-221)) (-221) (-221)) (-1076 (-221)) (-1076 (-221)) (-631 (-258)))) (-15 -2900 ((-1115 (-221)) (-1 (-221) (-221) (-221)) (-3 (-1 (-221) (-221) (-221) (-221)) "undefined") (-1076 (-221)) (-1076 (-221)) (-631 (-258)))) (-15 -4257 ((-1115 (-221)) (-311 (-554)) (-311 (-554)) (-311 (-554)) (-1 (-221) (-221)) (-1076 (-221)) (-631 (-258)))) (-15 -2631 ((-1 (-928 (-221)) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221) (-221)))))
-((-2270 (((-413 (-1154 |#4|)) (-1154 |#4|)) 73) (((-413 |#4|) |#4|) 221)))
-(((-684 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2270 ((-413 |#4|) |#4|)) (-15 -2270 ((-413 (-1154 |#4|)) (-1154 |#4|)))) (-836) (-780) (-344) (-934 |#3| |#2| |#1|)) (T -684))
-((-2270 (*1 *2 *3) (-12 (-4 *4 (-836)) (-4 *5 (-780)) (-4 *6 (-344)) (-4 *7 (-934 *6 *5 *4)) (-5 *2 (-413 (-1154 *7))) (-5 *1 (-684 *4 *5 *6 *7)) (-5 *3 (-1154 *7)))) (-2270 (*1 *2 *3) (-12 (-4 *4 (-836)) (-4 *5 (-780)) (-4 *6 (-344)) (-5 *2 (-413 *3)) (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-934 *6 *5 *4)))))
-(-10 -7 (-15 -2270 ((-413 |#4|) |#4|)) (-15 -2270 ((-413 (-1154 |#4|)) (-1154 |#4|))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 84)) (-3831 (((-554) $) 30)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-1557 (($ $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2282 (($ $) NIL)) (-2286 (((-112) $ $) NIL)) (-4219 (((-554) $) NIL)) (-4087 (($) NIL T CONST)) (-2087 (($ $) NIL)) (-2784 (((-3 (-554) "failed") $) 73) (((-3 (-402 (-554)) "failed") $) 26) (((-3 (-374) "failed") $) 70)) (-1668 (((-554) $) 75) (((-402 (-554)) $) 67) (((-374) $) 68)) (-3964 (($ $ $) 96)) (-1320 (((-3 $ "failed") $) 87)) (-3943 (($ $ $) 95)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-2276 (((-906)) 77) (((-906) (-906)) 76)) (-2745 (((-112) $) NIL)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL)) (-2342 (((-554) $) NIL)) (-3248 (((-112) $) NIL)) (-3734 (($ $ (-554)) NIL)) (-3274 (($ $) NIL)) (-4304 (((-112) $) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-3564 (((-554) (-554)) 81) (((-554)) 82)) (-4223 (($ $ $) NIL) (($) NIL (-12 (-4081 (|has| $ (-6 -4356))) (-4081 (|has| $ (-6 -4364)))))) (-2726 (((-554) (-554)) 79) (((-554)) 80)) (-2706 (($ $ $) NIL) (($) NIL (-12 (-4081 (|has| $ (-6 -4356))) (-4081 (|has| $ (-6 -4364)))))) (-1837 (((-554) $) 16)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) 91)) (-3845 (((-906) (-554)) NIL (|has| $ (-6 -4364)))) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3722 (($ $) NIL)) (-4339 (($ $) NIL)) (-3302 (($ (-554) (-554)) NIL) (($ (-554) (-554) (-906)) NIL)) (-2270 (((-413 $) $) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) 92)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-1407 (((-554) $) 22)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 94)) (-1378 (((-906)) NIL) (((-906) (-906)) NIL (|has| $ (-6 -4364)))) (-4353 (((-906) (-554)) NIL (|has| $ (-6 -4364)))) (-2927 (((-374) $) NIL) (((-221) $) NIL) (((-877 (-374)) $) NIL)) (-3075 (((-848) $) 52) (($ (-554)) 63) (($ $) NIL) (($ (-402 (-554))) 66) (($ (-554)) 63) (($ (-402 (-554))) 66) (($ (-374)) 60) (((-374) $) 50) (($ (-687)) 55)) (-2261 (((-758)) 103)) (-1545 (($ (-554) (-554) (-906)) 44)) (-2755 (($ $) NIL)) (-3219 (((-906)) NIL) (((-906) (-906)) NIL (|has| $ (-6 -4364)))) (-3462 (((-906)) 35) (((-906) (-906)) 78)) (-1909 (((-112) $ $) NIL)) (-1700 (($ $) NIL)) (-2004 (($) 32 T CONST)) (-2014 (($) 17 T CONST)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 83)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 101)) (-1752 (($ $ $) 65)) (-1744 (($ $) 99) (($ $ $) 100)) (-1735 (($ $ $) 98)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL) (($ $ (-402 (-554))) 90)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 97) (($ $ $) 88) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL)))
-(((-685) (-13 (-399) (-382) (-358) (-1023 (-374)) (-1023 (-402 (-554))) (-145) (-10 -8 (-15 -2276 ((-906) (-906))) (-15 -2276 ((-906))) (-15 -3462 ((-906) (-906))) (-15 -2726 ((-554) (-554))) (-15 -2726 ((-554))) (-15 -3564 ((-554) (-554))) (-15 -3564 ((-554))) (-15 -3075 ((-374) $)) (-15 -3075 ($ (-687))) (-15 -1837 ((-554) $)) (-15 -1407 ((-554) $)) (-15 -1545 ($ (-554) (-554) (-906)))))) (T -685))
-((-1407 (*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-685)))) (-1837 (*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-685)))) (-2276 (*1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-685)))) (-2276 (*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-685)))) (-3462 (*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-685)))) (-2726 (*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-685)))) (-2726 (*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-685)))) (-3564 (*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-685)))) (-3564 (*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-685)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-374)) (-5 *1 (-685)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-685)))) (-1545 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-554)) (-5 *3 (-906)) (-5 *1 (-685)))))
-(-13 (-399) (-382) (-358) (-1023 (-374)) (-1023 (-402 (-554))) (-145) (-10 -8 (-15 -2276 ((-906) (-906))) (-15 -2276 ((-906))) (-15 -3462 ((-906) (-906))) (-15 -2726 ((-554) (-554))) (-15 -2726 ((-554))) (-15 -3564 ((-554) (-554))) (-15 -3564 ((-554))) (-15 -3075 ((-374) $)) (-15 -3075 ($ (-687))) (-15 -1837 ((-554) $)) (-15 -1407 ((-554) $)) (-15 -1545 ($ (-554) (-554) (-906)))))
-((-3373 (((-675 |#1|) (-675 |#1|) |#1| |#1|) 65)) (-2775 (((-675 |#1|) (-675 |#1|) |#1|) 48)) (-1339 (((-675 |#1|) (-675 |#1|) |#1|) 66)) (-1359 (((-675 |#1|) (-675 |#1|)) 49)) (-1524 (((-2 (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1|) 64)))
-(((-686 |#1|) (-10 -7 (-15 -1359 ((-675 |#1|) (-675 |#1|))) (-15 -2775 ((-675 |#1|) (-675 |#1|) |#1|)) (-15 -1339 ((-675 |#1|) (-675 |#1|) |#1|)) (-15 -3373 ((-675 |#1|) (-675 |#1|) |#1| |#1|)) (-15 -1524 ((-2 (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1|))) (-302)) (T -686))
-((-1524 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2325 *3) (|:| -2423 *3))) (-5 *1 (-686 *3)) (-4 *3 (-302)))) (-3373 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-675 *3)) (-4 *3 (-302)) (-5 *1 (-686 *3)))) (-1339 (*1 *2 *2 *3) (-12 (-5 *2 (-675 *3)) (-4 *3 (-302)) (-5 *1 (-686 *3)))) (-2775 (*1 *2 *2 *3) (-12 (-5 *2 (-675 *3)) (-4 *3 (-302)) (-5 *1 (-686 *3)))) (-1359 (*1 *2 *2) (-12 (-5 *2 (-675 *3)) (-4 *3 (-302)) (-5 *1 (-686 *3)))))
-(-10 -7 (-15 -1359 ((-675 |#1|) (-675 |#1|))) (-15 -2775 ((-675 |#1|) (-675 |#1|) |#1|)) (-15 -1339 ((-675 |#1|) (-675 |#1|) |#1|)) (-15 -3373 ((-675 |#1|) (-675 |#1|) |#1| |#1|)) (-15 -1524 ((-2 (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1|)))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-3575 (($ $ $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4278 (($ $ $ $) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2286 (((-112) $ $) NIL)) (-4219 (((-554) $) NIL)) (-1648 (($ $ $) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) 27)) (-1668 (((-554) $) 25)) (-3964 (($ $ $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-1623 (((-3 (-402 (-554)) "failed") $) NIL)) (-2069 (((-112) $) NIL)) (-2197 (((-402 (-554)) $) NIL)) (-3353 (($ $) NIL) (($) NIL)) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-2267 (($ $ $ $) NIL)) (-3773 (($ $ $) NIL)) (-2745 (((-112) $) NIL)) (-1295 (($ $ $) NIL)) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL)) (-3248 (((-112) $) NIL)) (-3273 (((-112) $) NIL)) (-3339 (((-3 $ "failed") $) NIL)) (-4304 (((-112) $) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2057 (($ $ $ $) NIL)) (-4223 (($ $ $) NIL)) (-3076 (((-906) (-906)) 10) (((-906)) 9)) (-2706 (($ $ $) NIL)) (-3882 (($ $) NIL)) (-2577 (($ $) NIL)) (-2475 (($ (-631 $)) NIL) (($ $ $) NIL)) (-1613 (((-1140) $) NIL)) (-3297 (($ $ $) NIL)) (-3834 (($) NIL T CONST)) (-1786 (($ $) NIL)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ (-631 $)) NIL) (($ $ $) NIL)) (-1582 (($ $) NIL)) (-2270 (((-413 $) $) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-1795 (((-112) $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-1553 (($ $) NIL) (($ $ (-758)) NIL)) (-3690 (($ $) NIL)) (-1521 (($ $) NIL)) (-2927 (((-221) $) NIL) (((-374) $) NIL) (((-877 (-554)) $) NIL) (((-530) $) NIL) (((-554) $) NIL)) (-3075 (((-848) $) NIL) (($ (-554)) 24) (($ $) NIL) (($ (-554)) 24) (((-311 $) (-311 (-554))) 18)) (-2261 (((-758)) NIL)) (-2134 (((-112) $ $) NIL)) (-1629 (($ $ $) NIL)) (-3462 (($) NIL)) (-1909 (((-112) $ $) NIL)) (-2225 (($ $ $ $) NIL)) (-1700 (($ $) NIL)) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $) NIL) (($ $ (-758)) NIL)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL)))
-(((-687) (-13 (-382) (-539) (-10 -8 (-15 -3076 ((-906) (-906))) (-15 -3076 ((-906))) (-15 -3075 ((-311 $) (-311 (-554))))))) (T -687))
-((-3076 (*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-687)))) (-3076 (*1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-687)))) (-3075 (*1 *2 *3) (-12 (-5 *3 (-311 (-554))) (-5 *2 (-311 (-687))) (-5 *1 (-687)))))
-(-13 (-382) (-539) (-10 -8 (-15 -3076 ((-906) (-906))) (-15 -3076 ((-906))) (-15 -3075 ((-311 $) (-311 (-554))))))
-((-1590 (((-1 |#4| |#2| |#3|) |#1| (-1158) (-1158)) 19)) (-3169 (((-1 |#4| |#2| |#3|) (-1158)) 12)))
-(((-688 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3169 ((-1 |#4| |#2| |#3|) (-1158))) (-15 -1590 ((-1 |#4| |#2| |#3|) |#1| (-1158) (-1158)))) (-602 (-530)) (-1195) (-1195) (-1195)) (T -688))
-((-1590 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1158)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-688 *3 *5 *6 *7)) (-4 *3 (-602 (-530))) (-4 *5 (-1195)) (-4 *6 (-1195)) (-4 *7 (-1195)))) (-3169 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-688 *4 *5 *6 *7)) (-4 *4 (-602 (-530))) (-4 *5 (-1195)) (-4 *6 (-1195)) (-4 *7 (-1195)))))
-(-10 -7 (-15 -3169 ((-1 |#4| |#2| |#3|) (-1158))) (-15 -1590 ((-1 |#4| |#2| |#3|) |#1| (-1158) (-1158))))
-((-3062 (((-112) $ $) NIL)) (-2886 (((-1246) $ (-758)) 14)) (-1484 (((-758) $) 12)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 18) (($ |#1|) 23) ((|#1| $) 15)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 25)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 24)))
-(((-689 |#1|) (-13 (-131) (-484 |#1|)) (-1082)) (T -689))
-NIL
-(-13 (-131) (-484 |#1|))
-((-1759 (((-1 (-221) (-221) (-221)) |#1| (-1158) (-1158)) 34) (((-1 (-221) (-221)) |#1| (-1158)) 39)))
-(((-690 |#1|) (-10 -7 (-15 -1759 ((-1 (-221) (-221)) |#1| (-1158))) (-15 -1759 ((-1 (-221) (-221) (-221)) |#1| (-1158) (-1158)))) (-602 (-530))) (T -690))
-((-1759 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1158)) (-5 *2 (-1 (-221) (-221) (-221))) (-5 *1 (-690 *3)) (-4 *3 (-602 (-530))))) (-1759 (*1 *2 *3 *4) (-12 (-5 *4 (-1158)) (-5 *2 (-1 (-221) (-221))) (-5 *1 (-690 *3)) (-4 *3 (-602 (-530))))))
-(-10 -7 (-15 -1759 ((-1 (-221) (-221)) |#1| (-1158))) (-15 -1759 ((-1 (-221) (-221) (-221)) |#1| (-1158) (-1158))))
-((-2367 (((-1158) |#1| (-1158) (-631 (-1158))) 9) (((-1158) |#1| (-1158) (-1158) (-1158)) 12) (((-1158) |#1| (-1158) (-1158)) 11) (((-1158) |#1| (-1158)) 10)))
-(((-691 |#1|) (-10 -7 (-15 -2367 ((-1158) |#1| (-1158))) (-15 -2367 ((-1158) |#1| (-1158) (-1158))) (-15 -2367 ((-1158) |#1| (-1158) (-1158) (-1158))) (-15 -2367 ((-1158) |#1| (-1158) (-631 (-1158))))) (-602 (-530))) (T -691))
-((-2367 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-631 (-1158))) (-5 *2 (-1158)) (-5 *1 (-691 *3)) (-4 *3 (-602 (-530))))) (-2367 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-691 *3)) (-4 *3 (-602 (-530))))) (-2367 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-691 *3)) (-4 *3 (-602 (-530))))) (-2367 (*1 *2 *3 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-691 *3)) (-4 *3 (-602 (-530))))))
-(-10 -7 (-15 -2367 ((-1158) |#1| (-1158))) (-15 -2367 ((-1158) |#1| (-1158) (-1158))) (-15 -2367 ((-1158) |#1| (-1158) (-1158) (-1158))) (-15 -2367 ((-1158) |#1| (-1158) (-631 (-1158)))))
-((-1936 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
-(((-692 |#1| |#2|) (-10 -7 (-15 -1936 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1195) (-1195)) (T -692))
-((-1936 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-692 *3 *4)) (-4 *3 (-1195)) (-4 *4 (-1195)))))
-(-10 -7 (-15 -1936 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
-((-2107 (((-1 |#3| |#2|) (-1158)) 11)) (-1590 (((-1 |#3| |#2|) |#1| (-1158)) 21)))
-(((-693 |#1| |#2| |#3|) (-10 -7 (-15 -2107 ((-1 |#3| |#2|) (-1158))) (-15 -1590 ((-1 |#3| |#2|) |#1| (-1158)))) (-602 (-530)) (-1195) (-1195)) (T -693))
-((-1590 (*1 *2 *3 *4) (-12 (-5 *4 (-1158)) (-5 *2 (-1 *6 *5)) (-5 *1 (-693 *3 *5 *6)) (-4 *3 (-602 (-530))) (-4 *5 (-1195)) (-4 *6 (-1195)))) (-2107 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1 *6 *5)) (-5 *1 (-693 *4 *5 *6)) (-4 *4 (-602 (-530))) (-4 *5 (-1195)) (-4 *6 (-1195)))))
-(-10 -7 (-15 -2107 ((-1 |#3| |#2|) (-1158))) (-15 -1590 ((-1 |#3| |#2|) |#1| (-1158))))
-((-3505 (((-3 (-631 (-1154 |#4|)) "failed") (-1154 |#4|) (-631 |#2|) (-631 (-1154 |#4|)) (-631 |#3|) (-631 |#4|) (-631 (-631 (-2 (|:| -2672 (-758)) (|:| |pcoef| |#4|)))) (-631 (-758)) (-1241 (-631 (-1154 |#3|))) |#3|) 62)) (-1883 (((-3 (-631 (-1154 |#4|)) "failed") (-1154 |#4|) (-631 |#2|) (-631 (-1154 |#3|)) (-631 |#3|) (-631 |#4|) (-631 (-758)) |#3|) 75)) (-4165 (((-3 (-631 (-1154 |#4|)) "failed") (-1154 |#4|) (-631 |#2|) (-631 |#3|) (-631 (-758)) (-631 (-1154 |#4|)) (-1241 (-631 (-1154 |#3|))) |#3|) 34)))
-(((-694 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4165 ((-3 (-631 (-1154 |#4|)) "failed") (-1154 |#4|) (-631 |#2|) (-631 |#3|) (-631 (-758)) (-631 (-1154 |#4|)) (-1241 (-631 (-1154 |#3|))) |#3|)) (-15 -1883 ((-3 (-631 (-1154 |#4|)) "failed") (-1154 |#4|) (-631 |#2|) (-631 (-1154 |#3|)) (-631 |#3|) (-631 |#4|) (-631 (-758)) |#3|)) (-15 -3505 ((-3 (-631 (-1154 |#4|)) "failed") (-1154 |#4|) (-631 |#2|) (-631 (-1154 |#4|)) (-631 |#3|) (-631 |#4|) (-631 (-631 (-2 (|:| -2672 (-758)) (|:| |pcoef| |#4|)))) (-631 (-758)) (-1241 (-631 (-1154 |#3|))) |#3|))) (-780) (-836) (-302) (-934 |#3| |#1| |#2|)) (T -694))
-((-3505 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-631 (-1154 *13))) (-5 *3 (-1154 *13)) (-5 *4 (-631 *12)) (-5 *5 (-631 *10)) (-5 *6 (-631 *13)) (-5 *7 (-631 (-631 (-2 (|:| -2672 (-758)) (|:| |pcoef| *13))))) (-5 *8 (-631 (-758))) (-5 *9 (-1241 (-631 (-1154 *10)))) (-4 *12 (-836)) (-4 *10 (-302)) (-4 *13 (-934 *10 *11 *12)) (-4 *11 (-780)) (-5 *1 (-694 *11 *12 *10 *13)))) (-1883 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-631 *11)) (-5 *5 (-631 (-1154 *9))) (-5 *6 (-631 *9)) (-5 *7 (-631 *12)) (-5 *8 (-631 (-758))) (-4 *11 (-836)) (-4 *9 (-302)) (-4 *12 (-934 *9 *10 *11)) (-4 *10 (-780)) (-5 *2 (-631 (-1154 *12))) (-5 *1 (-694 *10 *11 *9 *12)) (-5 *3 (-1154 *12)))) (-4165 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-631 (-1154 *11))) (-5 *3 (-1154 *11)) (-5 *4 (-631 *10)) (-5 *5 (-631 *8)) (-5 *6 (-631 (-758))) (-5 *7 (-1241 (-631 (-1154 *8)))) (-4 *10 (-836)) (-4 *8 (-302)) (-4 *11 (-934 *8 *9 *10)) (-4 *9 (-780)) (-5 *1 (-694 *9 *10 *8 *11)))))
-(-10 -7 (-15 -4165 ((-3 (-631 (-1154 |#4|)) "failed") (-1154 |#4|) (-631 |#2|) (-631 |#3|) (-631 (-758)) (-631 (-1154 |#4|)) (-1241 (-631 (-1154 |#3|))) |#3|)) (-15 -1883 ((-3 (-631 (-1154 |#4|)) "failed") (-1154 |#4|) (-631 |#2|) (-631 (-1154 |#3|)) (-631 |#3|) (-631 |#4|) (-631 (-758)) |#3|)) (-15 -3505 ((-3 (-631 (-1154 |#4|)) "failed") (-1154 |#4|) (-631 |#2|) (-631 (-1154 |#4|)) (-631 |#3|) (-631 |#4|) (-631 (-631 (-2 (|:| -2672 (-758)) (|:| |pcoef| |#4|)))) (-631 (-758)) (-1241 (-631 (-1154 |#3|))) |#3|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-2550 (($ $) 42)) (-1320 (((-3 $ "failed") $) 33)) (-3248 (((-112) $) 31)) (-2383 (($ |#1| (-758)) 40)) (-3893 (((-758) $) 44)) (-2530 ((|#1| $) 43)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3308 (((-758) $) 45)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ |#1|) 39 (|has| |#1| (-170)))) (-1779 ((|#1| $ (-758)) 41)) (-2261 (((-758)) 28)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ |#1|) 47) (($ |#1| $) 46)))
-(((-695 |#1|) (-138) (-1034)) (T -695))
-((-3308 (*1 *2 *1) (-12 (-4 *1 (-695 *3)) (-4 *3 (-1034)) (-5 *2 (-758)))) (-3893 (*1 *2 *1) (-12 (-4 *1 (-695 *3)) (-4 *3 (-1034)) (-5 *2 (-758)))) (-2530 (*1 *2 *1) (-12 (-4 *1 (-695 *2)) (-4 *2 (-1034)))) (-2550 (*1 *1 *1) (-12 (-4 *1 (-695 *2)) (-4 *2 (-1034)))) (-1779 (*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-4 *1 (-695 *2)) (-4 *2 (-1034)))) (-2383 (*1 *1 *2 *3) (-12 (-5 *3 (-758)) (-4 *1 (-695 *2)) (-4 *2 (-1034)))))
-(-13 (-1034) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3308 ((-758) $)) (-15 -3893 ((-758) $)) (-15 -2530 (|t#1| $)) (-15 -2550 ($ $)) (-15 -1779 (|t#1| $ (-758))) (-15 -2383 ($ |t#1| (-758)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-604 (-554)) . T) ((-604 |#1|) |has| |#1| (-170)) ((-601 (-848)) . T) ((-634 |#1|) . T) ((-634 $) . T) ((-704 |#1|) |has| |#1| (-170)) ((-713) . T) ((-1040 |#1|) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T))
-((-2879 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
-(((-696 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2879 (|#6| (-1 |#4| |#1|) |#3|))) (-546) (-1217 |#1|) (-1217 (-402 |#2|)) (-546) (-1217 |#4|) (-1217 (-402 |#5|))) (T -696))
-((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-546)) (-4 *7 (-546)) (-4 *6 (-1217 *5)) (-4 *2 (-1217 (-402 *8))) (-5 *1 (-696 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1217 (-402 *6))) (-4 *8 (-1217 *7)))))
-(-10 -7 (-15 -2879 (|#6| (-1 |#4| |#1|) |#3|)))
-((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2173 (((-1140) (-848)) 31)) (-2524 (((-1246) (-1140)) 28)) (-2056 (((-1140) (-848)) 24)) (-2710 (((-1140) (-848)) 25)) (-3075 (((-848) $) NIL) (((-1140) (-848)) 23)) (-1658 (((-112) $ $) NIL)))
-(((-697) (-13 (-1082) (-10 -7 (-15 -3075 ((-1140) (-848))) (-15 -2056 ((-1140) (-848))) (-15 -2710 ((-1140) (-848))) (-15 -2173 ((-1140) (-848))) (-15 -2524 ((-1246) (-1140)))))) (T -697))
-((-3075 (*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1140)) (-5 *1 (-697)))) (-2056 (*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1140)) (-5 *1 (-697)))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1140)) (-5 *1 (-697)))) (-2173 (*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1140)) (-5 *1 (-697)))) (-2524 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-697)))))
-(-13 (-1082) (-10 -7 (-15 -3075 ((-1140) (-848))) (-15 -2056 ((-1140) (-848))) (-15 -2710 ((-1140) (-848))) (-15 -2173 ((-1140) (-848))) (-15 -2524 ((-1246) (-1140)))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2286 (((-112) $ $) NIL)) (-4087 (($) NIL T CONST)) (-3964 (($ $ $) NIL)) (-3676 (($ |#1| |#2|) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-3248 (((-112) $) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2340 ((|#2| $) NIL)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-2270 (((-413 $) $) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2603 (((-3 $ "failed") $ $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL) (($ (-402 (-554))) NIL) ((|#1| $) NIL)) (-2261 (((-758)) NIL)) (-1909 (((-112) $ $) NIL)) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL)))
-(((-698 |#1| |#2| |#3| |#4| |#5|) (-13 (-358) (-10 -8 (-15 -2340 (|#2| $)) (-15 -3075 (|#1| $)) (-15 -3676 ($ |#1| |#2|)) (-15 -2603 ((-3 $ "failed") $ $)))) (-170) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -698))
-((-2340 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-698 *3 *2 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3075 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-698 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3676 (*1 *1 *2 *3) (-12 (-5 *1 (-698 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2603 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-698 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-358) (-10 -8 (-15 -2340 (|#2| $)) (-15 -3075 (|#1| $)) (-15 -3676 ($ |#1| |#2|)) (-15 -2603 ((-3 $ "failed") $ $))))
-((-3062 (((-112) $ $) 78)) (-1695 (((-112) $) 30)) (-2481 (((-1241 |#1|) $ (-758)) NIL)) (-2405 (((-631 (-1064)) $) NIL)) (-1991 (($ (-1154 |#1|)) NIL)) (-2237 (((-1154 $) $ (-1064)) NIL) (((-1154 |#1|) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-546)))) (-1976 (($ $) NIL (|has| |#1| (-546)))) (-1363 (((-112) $) NIL (|has| |#1| (-546)))) (-3785 (((-758) $) NIL) (((-758) $ (-631 (-1064))) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4286 (($ $ $) NIL (|has| |#1| (-546)))) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-3278 (($ $) NIL (|has| |#1| (-446)))) (-1565 (((-413 $) $) NIL (|has| |#1| (-446)))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-2286 (((-112) $ $) NIL (|has| |#1| (-358)))) (-1508 (((-758)) 47 (|has| |#1| (-363)))) (-1470 (($ $ (-758)) NIL)) (-3867 (($ $ (-758)) NIL)) (-3860 ((|#2| |#2|) 44)) (-4022 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-446)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 (-1064) "failed") $) NIL)) (-1668 ((|#1| $) NIL) (((-402 (-554)) $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-554) $) NIL (|has| |#1| (-1023 (-554)))) (((-1064) $) NIL)) (-2999 (($ $ $ (-1064)) NIL (|has| |#1| (-170))) ((|#1| $ $) NIL (|has| |#1| (-170)))) (-3964 (($ $ $) NIL (|has| |#1| (-358)))) (-2550 (($ $) 34)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) NIL) (((-675 |#1|) (-675 $)) NIL)) (-3676 (($ |#2|) 42)) (-1320 (((-3 $ "failed") $) 86)) (-3353 (($) 51 (|has| |#1| (-363)))) (-3943 (($ $ $) NIL (|has| |#1| (-358)))) (-3639 (($ $ $) NIL)) (-2489 (($ $ $) NIL (|has| |#1| (-546)))) (-1680 (((-2 (|:| -1490 |#1|) (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-546)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL (|has| |#1| (-358)))) (-2048 (($ $) NIL (|has| |#1| (-446))) (($ $ (-1064)) NIL (|has| |#1| (-446)))) (-2540 (((-631 $) $) NIL)) (-3289 (((-112) $) NIL (|has| |#1| (-894)))) (-4218 (((-943 $)) 80)) (-1344 (($ $ |#1| (-758) $) NIL)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (-12 (|has| (-1064) (-871 (-374))) (|has| |#1| (-871 (-374))))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (-12 (|has| (-1064) (-871 (-554))) (|has| |#1| (-871 (-554)))))) (-2342 (((-758) $ $) NIL (|has| |#1| (-546)))) (-3248 (((-112) $) NIL)) (-2122 (((-758) $) NIL)) (-3339 (((-3 $ "failed") $) NIL (|has| |#1| (-1133)))) (-2393 (($ (-1154 |#1|) (-1064)) NIL) (($ (-1154 $) (-1064)) NIL)) (-3333 (($ $ (-758)) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-3910 (((-631 $) $) NIL)) (-3580 (((-112) $) NIL)) (-2383 (($ |#1| (-758)) 77) (($ $ (-1064) (-758)) NIL) (($ $ (-631 (-1064)) (-631 (-758))) NIL)) (-4014 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $ (-1064)) NIL) (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-2340 ((|#2|) 45)) (-3893 (((-758) $) NIL) (((-758) $ (-1064)) NIL) (((-631 (-758)) $ (-631 (-1064))) NIL)) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2789 (($ (-1 (-758) (-758)) $) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-2964 (((-1154 |#1|) $) NIL)) (-3277 (((-3 (-1064) "failed") $) NIL)) (-3830 (((-906) $) NIL (|has| |#1| (-363)))) (-3662 ((|#2| $) 41)) (-2518 (($ $) NIL)) (-2530 ((|#1| $) 28)) (-2475 (($ (-631 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-1613 (((-1140) $) NIL)) (-2162 (((-2 (|:| -2325 $) (|:| -2423 $)) $ (-758)) NIL)) (-3778 (((-3 (-631 $) "failed") $) NIL)) (-2433 (((-3 (-631 $) "failed") $) NIL)) (-3160 (((-3 (-2 (|:| |var| (-1064)) (|:| -1407 (-758))) "failed") $) NIL)) (-2279 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3834 (($) NIL (|has| |#1| (-1133)) CONST)) (-2717 (($ (-906)) NIL (|has| |#1| (-363)))) (-2768 (((-1102) $) NIL)) (-2492 (((-112) $) NIL)) (-2505 ((|#1| $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#1| (-446)))) (-2510 (($ (-631 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-2125 (($ $) 79 (|has| |#1| (-344)))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-2270 (((-413 $) $) NIL (|has| |#1| (-894)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-358)))) (-3919 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-546))) (((-3 $ "failed") $ $) 85 (|has| |#1| (-546)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-2386 (($ $ (-631 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ (-1064) |#1|) NIL) (($ $ (-631 (-1064)) (-631 |#1|)) NIL) (($ $ (-1064) $) NIL) (($ $ (-631 (-1064)) (-631 $)) NIL)) (-2072 (((-758) $) NIL (|has| |#1| (-358)))) (-2064 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-402 $) (-402 $) (-402 $)) NIL (|has| |#1| (-546))) ((|#1| (-402 $) |#1|) NIL (|has| |#1| (-358))) (((-402 $) $ (-402 $)) NIL (|has| |#1| (-546)))) (-2734 (((-3 $ "failed") $ (-758)) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 87 (|has| |#1| (-358)))) (-1495 (($ $ (-1064)) NIL (|has| |#1| (-170))) ((|#1| $) NIL (|has| |#1| (-170)))) (-1553 (($ $ (-1064)) NIL) (($ $ (-631 (-1064))) NIL) (($ $ (-1064) (-758)) NIL) (($ $ (-631 (-1064)) (-631 (-758))) NIL) (($ $ (-758)) NIL) (($ $) NIL) (($ $ (-1158)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3308 (((-758) $) 32) (((-758) $ (-1064)) NIL) (((-631 (-758)) $ (-631 (-1064))) NIL)) (-2927 (((-877 (-374)) $) NIL (-12 (|has| (-1064) (-602 (-877 (-374)))) (|has| |#1| (-602 (-877 (-374)))))) (((-877 (-554)) $) NIL (-12 (|has| (-1064) (-602 (-877 (-554)))) (|has| |#1| (-602 (-877 (-554)))))) (((-530) $) NIL (-12 (|has| (-1064) (-602 (-530))) (|has| |#1| (-602 (-530)))))) (-3276 ((|#1| $) NIL (|has| |#1| (-446))) (($ $ (-1064)) NIL (|has| |#1| (-446)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-894))))) (-3804 (((-943 $)) 36)) (-2903 (((-3 $ "failed") $ $) NIL (|has| |#1| (-546))) (((-3 (-402 $) "failed") (-402 $) $) NIL (|has| |#1| (-546)))) (-3075 (((-848) $) 61) (($ (-554)) NIL) (($ |#1|) 58) (($ (-1064)) NIL) (($ |#2|) 68) (($ (-402 (-554))) NIL (-3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554)))))) (($ $) NIL (|has| |#1| (-546)))) (-1893 (((-631 |#1|) $) NIL)) (-1779 ((|#1| $ (-758)) 63) (($ $ (-1064) (-758)) NIL) (($ $ (-631 (-1064)) (-631 (-758))) NIL)) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| |#1| (-894))) (|has| |#1| (-143))))) (-2261 (((-758)) NIL)) (-2907 (($ $ $ (-758)) NIL (|has| |#1| (-170)))) (-1909 (((-112) $ $) NIL (|has| |#1| (-546)))) (-2004 (($) 20 T CONST)) (-2731 (((-1241 |#1|) $) 75)) (-3502 (($ (-1241 |#1|)) 50)) (-2014 (($) 8 T CONST)) (-1787 (($ $ (-1064)) NIL) (($ $ (-631 (-1064))) NIL) (($ $ (-1064) (-758)) NIL) (($ $ (-631 (-1064)) (-631 (-758))) NIL) (($ $ (-758)) NIL) (($ $) NIL) (($ $ (-1158)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3460 (((-1241 |#1|) $) NIL)) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) 69)) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-1744 (($ $) 72) (($ $ $) NIL)) (-1735 (($ $ $) 33)) (** (($ $ (-906)) NIL) (($ $ (-758)) 81)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 57) (($ $ $) 74) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ |#1| $) 55) (($ $ |#1|) NIL)))
-(((-699 |#1| |#2|) (-13 (-1217 |#1|) (-604 |#2|) (-10 -8 (-15 -3860 (|#2| |#2|)) (-15 -2340 (|#2|)) (-15 -3676 ($ |#2|)) (-15 -3662 (|#2| $)) (-15 -2731 ((-1241 |#1|) $)) (-15 -3502 ($ (-1241 |#1|))) (-15 -3460 ((-1241 |#1|) $)) (-15 -4218 ((-943 $))) (-15 -3804 ((-943 $))) (IF (|has| |#1| (-344)) (-15 -2125 ($ $)) |%noBranch|) (IF (|has| |#1| (-363)) (-6 (-363)) |%noBranch|))) (-1034) (-1217 |#1|)) (T -699))
-((-3860 (*1 *2 *2) (-12 (-4 *3 (-1034)) (-5 *1 (-699 *3 *2)) (-4 *2 (-1217 *3)))) (-2340 (*1 *2) (-12 (-4 *2 (-1217 *3)) (-5 *1 (-699 *3 *2)) (-4 *3 (-1034)))) (-3676 (*1 *1 *2) (-12 (-4 *3 (-1034)) (-5 *1 (-699 *3 *2)) (-4 *2 (-1217 *3)))) (-3662 (*1 *2 *1) (-12 (-4 *2 (-1217 *3)) (-5 *1 (-699 *3 *2)) (-4 *3 (-1034)))) (-2731 (*1 *2 *1) (-12 (-4 *3 (-1034)) (-5 *2 (-1241 *3)) (-5 *1 (-699 *3 *4)) (-4 *4 (-1217 *3)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-1241 *3)) (-4 *3 (-1034)) (-5 *1 (-699 *3 *4)) (-4 *4 (-1217 *3)))) (-3460 (*1 *2 *1) (-12 (-4 *3 (-1034)) (-5 *2 (-1241 *3)) (-5 *1 (-699 *3 *4)) (-4 *4 (-1217 *3)))) (-4218 (*1 *2) (-12 (-4 *3 (-1034)) (-5 *2 (-943 (-699 *3 *4))) (-5 *1 (-699 *3 *4)) (-4 *4 (-1217 *3)))) (-3804 (*1 *2) (-12 (-4 *3 (-1034)) (-5 *2 (-943 (-699 *3 *4))) (-5 *1 (-699 *3 *4)) (-4 *4 (-1217 *3)))) (-2125 (*1 *1 *1) (-12 (-4 *2 (-344)) (-4 *2 (-1034)) (-5 *1 (-699 *2 *3)) (-4 *3 (-1217 *2)))))
-(-13 (-1217 |#1|) (-604 |#2|) (-10 -8 (-15 -3860 (|#2| |#2|)) (-15 -2340 (|#2|)) (-15 -3676 ($ |#2|)) (-15 -3662 (|#2| $)) (-15 -2731 ((-1241 |#1|) $)) (-15 -3502 ($ (-1241 |#1|))) (-15 -3460 ((-1241 |#1|) $)) (-15 -4218 ((-943 $))) (-15 -3804 ((-943 $))) (IF (|has| |#1| (-344)) (-15 -2125 ($ $)) |%noBranch|) (IF (|has| |#1| (-363)) (-6 (-363)) |%noBranch|)))
-((-3062 (((-112) $ $) NIL)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2717 ((|#1| $) 13)) (-2768 (((-1102) $) NIL)) (-1407 ((|#2| $) 12)) (-3089 (($ |#1| |#2|) 16)) (-3075 (((-848) $) NIL) (($ (-2 (|:| -2717 |#1|) (|:| -1407 |#2|))) 15) (((-2 (|:| -2717 |#1|) (|:| -1407 |#2|)) $) 14)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 11)))
-(((-700 |#1| |#2| |#3|) (-13 (-836) (-484 (-2 (|:| -2717 |#1|) (|:| -1407 |#2|))) (-10 -8 (-15 -1407 (|#2| $)) (-15 -2717 (|#1| $)) (-15 -3089 ($ |#1| |#2|)))) (-836) (-1082) (-1 (-112) (-2 (|:| -2717 |#1|) (|:| -1407 |#2|)) (-2 (|:| -2717 |#1|) (|:| -1407 |#2|)))) (T -700))
-((-1407 (*1 *2 *1) (-12 (-4 *2 (-1082)) (-5 *1 (-700 *3 *2 *4)) (-4 *3 (-836)) (-14 *4 (-1 (-112) (-2 (|:| -2717 *3) (|:| -1407 *2)) (-2 (|:| -2717 *3) (|:| -1407 *2)))))) (-2717 (*1 *2 *1) (-12 (-4 *2 (-836)) (-5 *1 (-700 *2 *3 *4)) (-4 *3 (-1082)) (-14 *4 (-1 (-112) (-2 (|:| -2717 *2) (|:| -1407 *3)) (-2 (|:| -2717 *2) (|:| -1407 *3)))))) (-3089 (*1 *1 *2 *3) (-12 (-5 *1 (-700 *2 *3 *4)) (-4 *2 (-836)) (-4 *3 (-1082)) (-14 *4 (-1 (-112) (-2 (|:| -2717 *2) (|:| -1407 *3)) (-2 (|:| -2717 *2) (|:| -1407 *3)))))))
-(-13 (-836) (-484 (-2 (|:| -2717 |#1|) (|:| -1407 |#2|))) (-10 -8 (-15 -1407 (|#2| $)) (-15 -2717 (|#1| $)) (-15 -3089 ($ |#1| |#2|))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 59)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) 89) (((-3 (-114) "failed") $) 95)) (-1668 ((|#1| $) NIL) (((-114) $) 39)) (-1320 (((-3 $ "failed") $) 90)) (-1354 ((|#2| (-114) |#2|) 82)) (-3248 (((-112) $) NIL)) (-3927 (($ |#1| (-356 (-114))) 14)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2654 (($ $ (-1 |#2| |#2|)) 58)) (-3282 (($ $ (-1 |#2| |#2|)) 44)) (-2064 ((|#2| $ |#2|) 33)) (-2186 ((|#1| |#1|) 105 (|has| |#1| (-170)))) (-3075 (((-848) $) 66) (($ (-554)) 18) (($ |#1|) 17) (($ (-114)) 23)) (-2084 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2261 (((-758)) 37)) (-2968 (($ $) 99 (|has| |#1| (-170))) (($ $ $) 103 (|has| |#1| (-170)))) (-2004 (($) 21 T CONST)) (-2014 (($) 9 T CONST)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) 48) (($ $ $) NIL)) (-1735 (($ $ $) 73)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ (-114) (-554)) NIL) (($ $ (-554)) 57)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-170))) (($ $ |#1|) 97 (|has| |#1| (-170)))))
-(((-701 |#1| |#2|) (-13 (-1034) (-1023 |#1|) (-1023 (-114)) (-281 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -2968 ($ $)) (-15 -2968 ($ $ $)) (-15 -2186 (|#1| |#1|))) |%noBranch|) (-15 -3282 ($ $ (-1 |#2| |#2|))) (-15 -2654 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-554))) (-15 ** ($ $ (-554))) (-15 -1354 (|#2| (-114) |#2|)) (-15 -3927 ($ |#1| (-356 (-114)))))) (-1034) (-634 |#1|)) (T -701))
-((-2968 (*1 *1 *1) (-12 (-4 *2 (-170)) (-4 *2 (-1034)) (-5 *1 (-701 *2 *3)) (-4 *3 (-634 *2)))) (-2968 (*1 *1 *1 *1) (-12 (-4 *2 (-170)) (-4 *2 (-1034)) (-5 *1 (-701 *2 *3)) (-4 *3 (-634 *2)))) (-2186 (*1 *2 *2) (-12 (-4 *2 (-170)) (-4 *2 (-1034)) (-5 *1 (-701 *2 *3)) (-4 *3 (-634 *2)))) (-3282 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-634 *3)) (-4 *3 (-1034)) (-5 *1 (-701 *3 *4)))) (-2654 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-634 *3)) (-4 *3 (-1034)) (-5 *1 (-701 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-554)) (-4 *4 (-1034)) (-5 *1 (-701 *4 *5)) (-4 *5 (-634 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-4 *3 (-1034)) (-5 *1 (-701 *3 *4)) (-4 *4 (-634 *3)))) (-1354 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-4 *4 (-1034)) (-5 *1 (-701 *4 *2)) (-4 *2 (-634 *4)))) (-3927 (*1 *1 *2 *3) (-12 (-5 *3 (-356 (-114))) (-4 *2 (-1034)) (-5 *1 (-701 *2 *4)) (-4 *4 (-634 *2)))))
-(-13 (-1034) (-1023 |#1|) (-1023 (-114)) (-281 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -2968 ($ $)) (-15 -2968 ($ $ $)) (-15 -2186 (|#1| |#1|))) |%noBranch|) (-15 -3282 ($ $ (-1 |#2| |#2|))) (-15 -2654 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-554))) (-15 ** ($ $ (-554))) (-15 -1354 (|#2| (-114) |#2|)) (-15 -3927 ($ |#1| (-356 (-114))))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 33)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-3676 (($ |#1| |#2|) 25)) (-1320 (((-3 $ "failed") $) 48)) (-3248 (((-112) $) 35)) (-2340 ((|#2| $) 12)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) 49)) (-2768 (((-1102) $) NIL)) (-2603 (((-3 $ "failed") $ $) 47)) (-3075 (((-848) $) 24) (($ (-554)) 19) ((|#1| $) 13)) (-2261 (((-758)) 28)) (-2004 (($) 16 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 38)) (-1744 (($ $) 43) (($ $ $) 37)) (-1735 (($ $ $) 40)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 21) (($ $ $) 20)))
-(((-702 |#1| |#2| |#3| |#4| |#5|) (-13 (-1034) (-10 -8 (-15 -2340 (|#2| $)) (-15 -3075 (|#1| $)) (-15 -3676 ($ |#1| |#2|)) (-15 -2603 ((-3 $ "failed") $ $)) (-15 -1320 ((-3 $ "failed") $)) (-15 -2483 ($ $)))) (-170) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -702))
-((-1320 (*1 *1 *1) (|partial| -12 (-5 *1 (-702 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2340 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-702 *3 *2 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3075 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-702 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3676 (*1 *1 *2 *3) (-12 (-5 *1 (-702 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2603 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-702 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2483 (*1 *1 *1) (-12 (-5 *1 (-702 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-1034) (-10 -8 (-15 -2340 (|#2| $)) (-15 -3075 (|#1| $)) (-15 -3676 ($ |#1| |#2|)) (-15 -2603 ((-3 $ "failed") $ $)) (-15 -1320 ((-3 $ "failed") $)) (-15 -2483 ($ $))))
-((* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
-(((-703 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-554) |#1|)) (-15 * (|#1| (-758) |#1|)) (-15 * (|#1| (-906) |#1|))) (-704 |#2|) (-170)) (T -703))
-NIL
-(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-554) |#1|)) (-15 * (|#1| (-758) |#1|)) (-15 * (|#1| (-906) |#1|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-2004 (($) 18 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
-(((-704 |#1|) (-138) (-170)) (T -704))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) 15)) (-2089 (((-3 $ "failed") $ $) NIL)) (-1816 (($) NIL T CONST)) (-1874 ((|#1| $) 21)) (-3910 (($ $ $) NIL (|has| |#1| (-782)))) (-3542 (($ $ $) NIL (|has| |#1| (-782)))) (-4310 (((-1145) $) 46)) (-2975 (((-1107) $) NIL)) (-1885 ((|#3| $) 22)) (-3220 (((-853) $) 42)) (-2131 (($) 10 T CONST)) (-1747 (((-112) $ $) NIL (|has| |#1| (-782)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-782)))) (-1683 (((-112) $ $) 20)) (-1731 (((-112) $ $) NIL (|has| |#1| (-782)))) (-1705 (((-112) $ $) 24 (|has| |#1| (-782)))) (-1810 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-1798 (($ $) 17) (($ $ $) NIL)) (-1784 (($ $ $) 27)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL)))
+(((-652 |#1| |#2| |#3|) (-13 (-708 |#2|) (-10 -8 (IF (|has| |#1| (-782)) (-6 (-782)) |%noBranch|) (-15 -1810 ($ $ |#3|)) (-15 -1810 ($ |#1| |#3|)) (-15 -1874 (|#1| $)) (-15 -1885 (|#3| $)))) (-708 |#2|) (-171) (|SubsetCategory| (-717) |#2|)) (T -652))
+((-1810 (*1 *1 *1 *2) (-12 (-4 *4 (-171)) (-5 *1 (-652 *3 *4 *2)) (-4 *3 (-708 *4)) (-4 *2 (|SubsetCategory| (-717) *4)))) (-1810 (*1 *1 *2 *3) (-12 (-4 *4 (-171)) (-5 *1 (-652 *2 *4 *3)) (-4 *2 (-708 *4)) (-4 *3 (|SubsetCategory| (-717) *4)))) (-1874 (*1 *2 *1) (-12 (-4 *3 (-171)) (-4 *2 (-708 *3)) (-5 *1 (-652 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-717) *3)))) (-1885 (*1 *2 *1) (-12 (-4 *4 (-171)) (-4 *2 (|SubsetCategory| (-717) *4)) (-5 *1 (-652 *3 *4 *2)) (-4 *3 (-708 *4)))))
+(-13 (-708 |#2|) (-10 -8 (IF (|has| |#1| (-782)) (-6 (-782)) |%noBranch|) (-15 -1810 ($ $ |#3|)) (-15 -1810 ($ |#1| |#3|)) (-15 -1874 (|#1| $)) (-15 -1885 (|#3| $))))
+((-3398 (((-3 (-635 (-1159 |#1|)) "failed") (-635 (-1159 |#1|)) (-1159 |#1|)) 33)))
+(((-653 |#1|) (-10 -7 (-15 -3398 ((-3 (-635 (-1159 |#1|)) "failed") (-635 (-1159 |#1|)) (-1159 |#1|)))) (-899)) (T -653))
+((-3398 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-635 (-1159 *4))) (-5 *3 (-1159 *4)) (-4 *4 (-899)) (-5 *1 (-653 *4)))))
+(-10 -7 (-15 -3398 ((-3 (-635 (-1159 |#1|)) "failed") (-635 (-1159 |#1|)) (-1159 |#1|))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-3712 (((-635 |#1|) $) 82)) (-4311 (($ $ (-762)) 90)) (-2089 (((-3 $ "failed") $ $) NIL)) (-1816 (($) NIL T CONST)) (-4249 (((-1270 |#1| |#2|) (-1270 |#1| |#2|) $) 48)) (-3069 (((-3 (-662 |#1|) "failed") $) NIL)) (-1863 (((-662 |#1|) $) NIL)) (-2490 (($ $) 89)) (-2110 (((-762) $) NIL)) (-2536 (((-635 $) $) NIL)) (-4238 (((-112) $) NIL)) (-3918 (($ (-662 |#1|) |#2|) 68)) (-4227 (($ $) 86)) (-3167 (($ (-1 |#2| |#2|) $) NIL)) (-4260 (((-1270 |#1| |#2|) (-1270 |#1| |#2|) $) 47)) (-1703 (((-2 (|:| |k| (-662 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2451 (((-662 |#1|) $) NIL)) (-2463 ((|#2| $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-2554 (($ $ |#1| $) 30) (($ $ (-635 |#1|) (-635 $)) 32)) (-4323 (((-762) $) 88)) (-3233 (($ $ $) 20) (($ (-662 |#1|) (-662 |#1|)) 77) (($ (-662 |#1|) $) 75) (($ $ (-662 |#1|)) 76)) (-3220 (((-853) $) NIL) (($ |#1|) 74) (((-1261 |#1| |#2|) $) 58) (((-1270 |#1| |#2|) $) 41) (($ (-662 |#1|)) 25)) (-2583 (((-635 |#2|) $) NIL)) (-3736 ((|#2| $ (-662 |#1|)) NIL)) (-2023 ((|#2| (-1270 |#1| |#2|) $) 43)) (-2131 (($) 23 T CONST)) (-3475 (((-635 (-2 (|:| |k| (-662 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4299 (((-3 $ "failed") (-1261 |#1| |#2|)) 60)) (-1549 (($ (-662 |#1|)) 14)) (-1683 (((-112) $ $) 44)) (-1810 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1798 (($ $) 66) (($ $ $) NIL)) (-1784 (($ $ $) 29)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-662 |#1|)) NIL)))
+(((-654 |#1| |#2|) (-13 (-373 |#1| |#2|) (-381 |#2| (-662 |#1|)) (-10 -8 (-15 -4299 ((-3 $ "failed") (-1261 |#1| |#2|))) (-15 -3233 ($ (-662 |#1|) (-662 |#1|))) (-15 -3233 ($ (-662 |#1|) $)) (-15 -3233 ($ $ (-662 |#1|))))) (-841) (-171)) (T -654))
+((-4299 (*1 *1 *2) (|partial| -12 (-5 *2 (-1261 *3 *4)) (-4 *3 (-841)) (-4 *4 (-171)) (-5 *1 (-654 *3 *4)))) (-3233 (*1 *1 *2 *2) (-12 (-5 *2 (-662 *3)) (-4 *3 (-841)) (-5 *1 (-654 *3 *4)) (-4 *4 (-171)))) (-3233 (*1 *1 *2 *1) (-12 (-5 *2 (-662 *3)) (-4 *3 (-841)) (-5 *1 (-654 *3 *4)) (-4 *4 (-171)))) (-3233 (*1 *1 *1 *2) (-12 (-5 *2 (-662 *3)) (-4 *3 (-841)) (-5 *1 (-654 *3 *4)) (-4 *4 (-171)))))
+(-13 (-373 |#1| |#2|) (-381 |#2| (-662 |#1|)) (-10 -8 (-15 -4299 ((-3 $ "failed") (-1261 |#1| |#2|))) (-15 -3233 ($ (-662 |#1|) (-662 |#1|))) (-15 -3233 ($ (-662 |#1|) $)) (-15 -3233 ($ $ (-662 |#1|)))))
+((-1538 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 49)) (-2763 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-4207 (($ (-1 (-112) |#2|) $) 27)) (-3306 (($ $) 55)) (-2820 (($ $) 63)) (-3395 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 36)) (-3048 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52)) (-1517 (((-558) |#2| $ (-558)) 60) (((-558) |#2| $) NIL) (((-558) (-1 (-112) |#2|) $) 46)) (-3315 (($ (-762) |#2|) 53)) (-1645 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 29)) (-1677 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-3167 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 54)) (-2192 (($ |#2|) 15)) (-4328 (($ $ $ (-558)) 35) (($ |#2| $ (-558)) 33)) (-4307 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 45)) (-4218 (($ $ (-1213 (-558))) 43) (($ $ (-558)) 37)) (-2773 (($ $ $ (-558)) 59)) (-1553 (($ $) 57)) (-1705 (((-112) $ $) 65)))
+(((-655 |#1| |#2|) (-10 -8 (-15 -2192 (|#1| |#2|)) (-15 -4218 (|#1| |#1| (-558))) (-15 -4218 (|#1| |#1| (-1213 (-558)))) (-15 -3395 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4328 (|#1| |#2| |#1| (-558))) (-15 -4328 (|#1| |#1| |#1| (-558))) (-15 -1645 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4207 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3395 (|#1| |#2| |#1|)) (-15 -2820 (|#1| |#1|)) (-15 -1645 (|#1| |#1| |#1|)) (-15 -1677 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1538 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1517 ((-558) (-1 (-112) |#2|) |#1|)) (-15 -1517 ((-558) |#2| |#1|)) (-15 -1517 ((-558) |#2| |#1| (-558))) (-15 -1677 (|#1| |#1| |#1|)) (-15 -1538 ((-112) |#1|)) (-15 -2773 (|#1| |#1| |#1| (-558))) (-15 -3306 (|#1| |#1|)) (-15 -2763 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2763 (|#1| |#1|)) (-15 -1705 ((-112) |#1| |#1|)) (-15 -3048 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3048 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3048 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4307 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3315 (|#1| (-762) |#2|)) (-15 -3167 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3167 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1553 (|#1| |#1|))) (-656 |#2|) (-1200)) (T -655))
+NIL
+(-10 -8 (-15 -2192 (|#1| |#2|)) (-15 -4218 (|#1| |#1| (-558))) (-15 -4218 (|#1| |#1| (-1213 (-558)))) (-15 -3395 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4328 (|#1| |#2| |#1| (-558))) (-15 -4328 (|#1| |#1| |#1| (-558))) (-15 -1645 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4207 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3395 (|#1| |#2| |#1|)) (-15 -2820 (|#1| |#1|)) (-15 -1645 (|#1| |#1| |#1|)) (-15 -1677 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1538 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1517 ((-558) (-1 (-112) |#2|) |#1|)) (-15 -1517 ((-558) |#2| |#1|)) (-15 -1517 ((-558) |#2| |#1| (-558))) (-15 -1677 (|#1| |#1| |#1|)) (-15 -1538 ((-112) |#1|)) (-15 -2773 (|#1| |#1| |#1| (-558))) (-15 -3306 (|#1| |#1|)) (-15 -2763 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2763 (|#1| |#1|)) (-15 -1705 ((-112) |#1| |#1|)) (-15 -3048 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3048 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3048 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4307 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3315 (|#1| (-762) |#2|)) (-15 -3167 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3167 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1553 (|#1| |#1|)))
+((-3207 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-2925 ((|#1| $) 48)) (-3213 ((|#1| $) 65)) (-3436 (($ $) 67)) (-3869 (((-1251) $ (-558) (-558)) 97 (|has| $ (-6 -4383)))) (-2336 (($ $ (-558)) 52 (|has| $ (-6 -4383)))) (-1538 (((-112) $) 142 (|has| |#1| (-841))) (((-112) (-1 (-112) |#1| |#1|) $) 136)) (-2763 (($ $) 146 (-12 (|has| |#1| (-841)) (|has| $ (-6 -4383)))) (($ (-1 (-112) |#1| |#1|) $) 145 (|has| $ (-6 -4383)))) (-2376 (($ $) 141 (|has| |#1| (-841))) (($ (-1 (-112) |#1| |#1|) $) 135)) (-3026 (((-112) $ (-762)) 8)) (-3972 ((|#1| $ |#1|) 39 (|has| $ (-6 -4383)))) (-2359 (($ $ $) 56 (|has| $ (-6 -4383)))) (-2348 ((|#1| $ |#1|) 54 (|has| $ (-6 -4383)))) (-2369 ((|#1| $ |#1|) 58 (|has| $ (-6 -4383)))) (-1532 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4383))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4383))) (($ $ "rest" $) 55 (|has| $ (-6 -4383))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4383))) ((|#1| $ (-1213 (-558)) |#1|) 117 (|has| $ (-6 -4383))) ((|#1| $ (-558) |#1|) 86 (|has| $ (-6 -4383)))) (-3982 (($ $ (-635 $)) 41 (|has| $ (-6 -4383)))) (-4207 (($ (-1 (-112) |#1|) $) 129)) (-4329 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4382)))) (-3201 ((|#1| $) 66)) (-1816 (($) 7 T CONST)) (-3306 (($ $) 144 (|has| $ (-6 -4383)))) (-4127 (($ $) 134)) (-2315 (($ $) 73) (($ $ (-762)) 71)) (-2820 (($ $) 131 (|has| |#1| (-1087)))) (-2338 (($ $) 99 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-3395 (($ |#1| $) 130 (|has| |#1| (-1087))) (($ (-1 (-112) |#1|) $) 125)) (-1539 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4382))) (($ |#1| $) 100 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-3048 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4382))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4382))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1817 ((|#1| $ (-558) |#1|) 85 (|has| $ (-6 -4383)))) (-1746 ((|#1| $ (-558)) 87)) (-2435 (((-112) $) 83)) (-1517 (((-558) |#1| $ (-558)) 139 (|has| |#1| (-1087))) (((-558) |#1| $) 138 (|has| |#1| (-1087))) (((-558) (-1 (-112) |#1|) $) 137)) (-2240 (((-635 |#1|) $) 30 (|has| $ (-6 -4382)))) (-2870 (((-635 $) $) 50)) (-3993 (((-112) $ $) 42 (|has| |#1| (-1087)))) (-3315 (($ (-762) |#1|) 108)) (-2986 (((-112) $ (-762)) 9)) (-3889 (((-558) $) 95 (|has| (-558) (-841)))) (-3910 (($ $ $) 147 (|has| |#1| (-841)))) (-1645 (($ $ $) 132 (|has| |#1| (-841))) (($ (-1 (-112) |#1| |#1|) $ $) 128)) (-1677 (($ $ $) 140 (|has| |#1| (-841))) (($ (-1 (-112) |#1| |#1|) $ $) 133)) (-2122 (((-635 |#1|) $) 29 (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-3899 (((-558) $) 94 (|has| (-558) (-841)))) (-3542 (($ $ $) 148 (|has| |#1| (-841)))) (-1807 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2192 (($ |#1|) 122)) (-2953 (((-112) $ (-762)) 10)) (-1362 (((-635 |#1|) $) 45)) (-1790 (((-112) $) 49)) (-4310 (((-1145) $) 22 (|has| |#1| (-1087)))) (-1560 ((|#1| $) 70) (($ $ (-762)) 68)) (-4328 (($ $ $ (-558)) 127) (($ |#1| $ (-558)) 126)) (-1861 (($ $ $ (-558)) 116) (($ |#1| $ (-558)) 115)) (-3920 (((-635 (-558)) $) 92)) (-3929 (((-112) (-558) $) 91)) (-2975 (((-1107) $) 21 (|has| |#1| (-1087)))) (-2305 ((|#1| $) 76) (($ $ (-762)) 74)) (-4307 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-3880 (($ $ |#1|) 96 (|has| $ (-6 -4383)))) (-2445 (((-112) $) 84)) (-3266 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) 14)) (-3908 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3937 (((-635 |#1|) $) 90)) (-3375 (((-112) $) 11)) (-2083 (($) 12)) (-2195 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1213 (-558))) 112) ((|#1| $ (-558)) 89) ((|#1| $ (-558) |#1|) 88)) (-2860 (((-558) $ $) 44)) (-4218 (($ $ (-1213 (-558))) 124) (($ $ (-558)) 123)) (-4023 (($ $ (-1213 (-558))) 114) (($ $ (-558)) 113)) (-1487 (((-112) $) 46)) (-2405 (($ $) 62)) (-2380 (($ $) 59 (|has| $ (-6 -4383)))) (-2414 (((-762) $) 63)) (-2428 (($ $) 64)) (-2988 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4382))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-2773 (($ $ $ (-558)) 143 (|has| $ (-6 -4383)))) (-1553 (($ $) 13)) (-3224 (((-534) $) 98 (|has| |#1| (-606 (-534))))) (-3233 (($ (-635 |#1|)) 107)) (-2392 (($ $ $) 61) (($ $ |#1|) 60)) (-4341 (($ $ $) 78) (($ |#1| $) 77) (($ (-635 $)) 110) (($ $ |#1|) 109)) (-3220 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-1727 (((-635 $) $) 51)) (-4005 (((-112) $ $) 43 (|has| |#1| (-1087)))) (-3277 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4382)))) (-1747 (((-112) $ $) 150 (|has| |#1| (-841)))) (-1720 (((-112) $ $) 151 (|has| |#1| (-841)))) (-1683 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-1731 (((-112) $ $) 149 (|has| |#1| (-841)))) (-1705 (((-112) $ $) 152 (|has| |#1| (-841)))) (-2755 (((-762) $) 6 (|has| $ (-6 -4382)))))
+(((-656 |#1|) (-139) (-1200)) (T -656))
+((-2192 (*1 *1 *2) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1200)))))
+(-13 (-1136 |t#1|) (-372 |t#1|) (-281 |t#1|) (-10 -8 (-15 -2192 ($ |t#1|))))
+(((-34) . T) ((-102) -3998 (|has| |#1| (-1087)) (|has| |#1| (-841))) ((-605 (-853)) -3998 (|has| |#1| (-1087)) (|has| |#1| (-841)) (|has| |#1| (-605 (-853)))) ((-150 |#1|) . T) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-285 #0=(-558) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-281 |#1|) . T) ((-372 |#1|) . T) ((-487 |#1|) . T) ((-596 #0# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-641 |#1|) . T) ((-841) |has| |#1| (-841)) ((-1000 |#1|) . T) ((-1087) -3998 (|has| |#1| (-1087)) (|has| |#1| (-841))) ((-1136 |#1|) . T) ((-1200) . T) ((-1234 |#1|) . T))
+((-2153 (((-635 (-2 (|:| |particular| (-3 (-1246 |#1|) "failed")) (|:| -2660 (-635 (-1246 |#1|))))) (-635 (-635 |#1|)) (-635 (-1246 |#1|))) 22) (((-635 (-2 (|:| |particular| (-3 (-1246 |#1|) "failed")) (|:| -2660 (-635 (-1246 |#1|))))) (-679 |#1|) (-635 (-1246 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1246 |#1|) "failed")) (|:| -2660 (-635 (-1246 |#1|)))) (-635 (-635 |#1|)) (-1246 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1246 |#1|) "failed")) (|:| -2660 (-635 (-1246 |#1|)))) (-679 |#1|) (-1246 |#1|)) 14)) (-3833 (((-762) (-679 |#1|) (-1246 |#1|)) 30)) (-3936 (((-3 (-1246 |#1|) "failed") (-679 |#1|) (-1246 |#1|)) 24)) (-3409 (((-112) (-679 |#1|) (-1246 |#1|)) 27)))
+(((-657 |#1|) (-10 -7 (-15 -2153 ((-2 (|:| |particular| (-3 (-1246 |#1|) "failed")) (|:| -2660 (-635 (-1246 |#1|)))) (-679 |#1|) (-1246 |#1|))) (-15 -2153 ((-2 (|:| |particular| (-3 (-1246 |#1|) "failed")) (|:| -2660 (-635 (-1246 |#1|)))) (-635 (-635 |#1|)) (-1246 |#1|))) (-15 -2153 ((-635 (-2 (|:| |particular| (-3 (-1246 |#1|) "failed")) (|:| -2660 (-635 (-1246 |#1|))))) (-679 |#1|) (-635 (-1246 |#1|)))) (-15 -2153 ((-635 (-2 (|:| |particular| (-3 (-1246 |#1|) "failed")) (|:| -2660 (-635 (-1246 |#1|))))) (-635 (-635 |#1|)) (-635 (-1246 |#1|)))) (-15 -3936 ((-3 (-1246 |#1|) "failed") (-679 |#1|) (-1246 |#1|))) (-15 -3409 ((-112) (-679 |#1|) (-1246 |#1|))) (-15 -3833 ((-762) (-679 |#1|) (-1246 |#1|)))) (-362)) (T -657))
+((-3833 (*1 *2 *3 *4) (-12 (-5 *3 (-679 *5)) (-5 *4 (-1246 *5)) (-4 *5 (-362)) (-5 *2 (-762)) (-5 *1 (-657 *5)))) (-3409 (*1 *2 *3 *4) (-12 (-5 *3 (-679 *5)) (-5 *4 (-1246 *5)) (-4 *5 (-362)) (-5 *2 (-112)) (-5 *1 (-657 *5)))) (-3936 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1246 *4)) (-5 *3 (-679 *4)) (-4 *4 (-362)) (-5 *1 (-657 *4)))) (-2153 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-635 *5))) (-4 *5 (-362)) (-5 *2 (-635 (-2 (|:| |particular| (-3 (-1246 *5) "failed")) (|:| -2660 (-635 (-1246 *5)))))) (-5 *1 (-657 *5)) (-5 *4 (-635 (-1246 *5))))) (-2153 (*1 *2 *3 *4) (-12 (-5 *3 (-679 *5)) (-4 *5 (-362)) (-5 *2 (-635 (-2 (|:| |particular| (-3 (-1246 *5) "failed")) (|:| -2660 (-635 (-1246 *5)))))) (-5 *1 (-657 *5)) (-5 *4 (-635 (-1246 *5))))) (-2153 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-635 *5))) (-4 *5 (-362)) (-5 *2 (-2 (|:| |particular| (-3 (-1246 *5) "failed")) (|:| -2660 (-635 (-1246 *5))))) (-5 *1 (-657 *5)) (-5 *4 (-1246 *5)))) (-2153 (*1 *2 *3 *4) (-12 (-5 *3 (-679 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| |particular| (-3 (-1246 *5) "failed")) (|:| -2660 (-635 (-1246 *5))))) (-5 *1 (-657 *5)) (-5 *4 (-1246 *5)))))
+(-10 -7 (-15 -2153 ((-2 (|:| |particular| (-3 (-1246 |#1|) "failed")) (|:| -2660 (-635 (-1246 |#1|)))) (-679 |#1|) (-1246 |#1|))) (-15 -2153 ((-2 (|:| |particular| (-3 (-1246 |#1|) "failed")) (|:| -2660 (-635 (-1246 |#1|)))) (-635 (-635 |#1|)) (-1246 |#1|))) (-15 -2153 ((-635 (-2 (|:| |particular| (-3 (-1246 |#1|) "failed")) (|:| -2660 (-635 (-1246 |#1|))))) (-679 |#1|) (-635 (-1246 |#1|)))) (-15 -2153 ((-635 (-2 (|:| |particular| (-3 (-1246 |#1|) "failed")) (|:| -2660 (-635 (-1246 |#1|))))) (-635 (-635 |#1|)) (-635 (-1246 |#1|)))) (-15 -3936 ((-3 (-1246 |#1|) "failed") (-679 |#1|) (-1246 |#1|))) (-15 -3409 ((-112) (-679 |#1|) (-1246 |#1|))) (-15 -3833 ((-762) (-679 |#1|) (-1246 |#1|))))
+((-2153 (((-635 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2660 (-635 |#3|)))) |#4| (-635 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2660 (-635 |#3|))) |#4| |#3|) 45)) (-3833 (((-762) |#4| |#3|) 17)) (-3936 (((-3 |#3| "failed") |#4| |#3|) 20)) (-3409 (((-112) |#4| |#3|) 13)))
+(((-658 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2153 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2660 (-635 |#3|))) |#4| |#3|)) (-15 -2153 ((-635 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2660 (-635 |#3|)))) |#4| (-635 |#3|))) (-15 -3936 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3409 ((-112) |#4| |#3|)) (-15 -3833 ((-762) |#4| |#3|))) (-362) (-13 (-372 |#1|) (-10 -7 (-6 -4383))) (-13 (-372 |#1|) (-10 -7 (-6 -4383))) (-677 |#1| |#2| |#3|)) (T -658))
+((-3833 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4383)))) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4383)))) (-5 *2 (-762)) (-5 *1 (-658 *5 *6 *4 *3)) (-4 *3 (-677 *5 *6 *4)))) (-3409 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4383)))) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4383)))) (-5 *2 (-112)) (-5 *1 (-658 *5 *6 *4 *3)) (-4 *3 (-677 *5 *6 *4)))) (-3936 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-362)) (-4 *5 (-13 (-372 *4) (-10 -7 (-6 -4383)))) (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4383)))) (-5 *1 (-658 *4 *5 *2 *3)) (-4 *3 (-677 *4 *5 *2)))) (-2153 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4383)))) (-4 *7 (-13 (-372 *5) (-10 -7 (-6 -4383)))) (-5 *2 (-635 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2660 (-635 *7))))) (-5 *1 (-658 *5 *6 *7 *3)) (-5 *4 (-635 *7)) (-4 *3 (-677 *5 *6 *7)))) (-2153 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4383)))) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4383)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2660 (-635 *4)))) (-5 *1 (-658 *5 *6 *4 *3)) (-4 *3 (-677 *5 *6 *4)))))
+(-10 -7 (-15 -2153 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2660 (-635 |#3|))) |#4| |#3|)) (-15 -2153 ((-635 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2660 (-635 |#3|)))) |#4| (-635 |#3|))) (-15 -3936 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3409 ((-112) |#4| |#3|)) (-15 -3833 ((-762) |#4| |#3|)))
+((-3419 (((-2 (|:| |particular| (-3 (-1246 (-406 |#4|)) "failed")) (|:| -2660 (-635 (-1246 (-406 |#4|))))) (-635 |#4|) (-635 |#3|)) 45)))
+(((-659 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3419 ((-2 (|:| |particular| (-3 (-1246 (-406 |#4|)) "failed")) (|:| -2660 (-635 (-1246 (-406 |#4|))))) (-635 |#4|) (-635 |#3|)))) (-550) (-784) (-841) (-939 |#1| |#2| |#3|)) (T -659))
+((-3419 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 *7)) (-4 *7 (-841)) (-4 *8 (-939 *5 *6 *7)) (-4 *5 (-550)) (-4 *6 (-784)) (-5 *2 (-2 (|:| |particular| (-3 (-1246 (-406 *8)) "failed")) (|:| -2660 (-635 (-1246 (-406 *8)))))) (-5 *1 (-659 *5 *6 *7 *8)))))
+(-10 -7 (-15 -3419 ((-2 (|:| |particular| (-3 (-1246 (-406 |#4|)) "failed")) (|:| -2660 (-635 (-1246 (-406 |#4|))))) (-635 |#4|) (-635 |#3|))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-1960 (((-3 $ "failed")) NIL (|has| |#2| (-550)))) (-1635 ((|#2| $) NIL)) (-2500 (((-112) $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-4194 (((-1246 (-679 |#2|))) NIL) (((-1246 (-679 |#2|)) (-1246 $)) NIL)) (-2519 (((-112) $) NIL)) (-2751 (((-1246 $)) 37)) (-3026 (((-112) $ (-762)) NIL)) (-3867 (($ |#2|) NIL)) (-1816 (($) NIL T CONST)) (-2404 (($ $) NIL (|has| |#2| (-306)))) (-2427 (((-239 |#1| |#2|) $ (-558)) NIL)) (-2845 (((-3 (-2 (|:| |particular| $) (|:| -2660 (-635 $))) "failed")) NIL (|has| |#2| (-550)))) (-2458 (((-3 $ "failed")) NIL (|has| |#2| (-550)))) (-2121 (((-679 |#2|)) NIL) (((-679 |#2|) (-1246 $)) NIL)) (-2729 ((|#2| $) NIL)) (-2096 (((-679 |#2|) $) NIL) (((-679 |#2|) $ (-1246 $)) NIL)) (-1986 (((-3 $ "failed") $) NIL (|has| |#2| (-550)))) (-3933 (((-1159 (-942 |#2|))) NIL (|has| |#2| (-362)))) (-2015 (($ $ (-911)) NIL)) (-2708 ((|#2| $) NIL)) (-2484 (((-1159 |#2|) $) NIL (|has| |#2| (-550)))) (-2143 ((|#2|) NIL) ((|#2| (-1246 $)) NIL)) (-2685 (((-1159 |#2|) $) NIL)) (-2622 (((-112)) NIL)) (-3069 (((-3 (-558) "failed") $) NIL (|has| |#2| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#2| (-1028 (-406 (-558))))) (((-3 |#2| "failed") $) NIL)) (-1863 (((-558) $) NIL (|has| |#2| (-1028 (-558)))) (((-406 (-558)) $) NIL (|has| |#2| (-1028 (-406 (-558))))) ((|#2| $) NIL)) (-3997 (($ (-1246 |#2|)) NIL) (($ (-1246 |#2|) (-1246 $)) NIL)) (-3216 (((-679 (-558)) (-679 $)) NIL (|has| |#2| (-631 (-558)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| |#2| (-631 (-558)))) (((-2 (|:| -3683 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 $) (-1246 $)) NIL) (((-679 |#2|) (-679 $)) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-3833 (((-762) $) NIL (|has| |#2| (-550))) (((-911)) 38)) (-1746 ((|#2| $ (-558) (-558)) NIL)) (-2591 (((-112)) NIL)) (-4078 (($ $ (-911)) NIL)) (-2240 (((-635 |#2|) $) NIL (|has| $ (-6 -4382)))) (-2035 (((-112) $) NIL)) (-2391 (((-762) $) NIL (|has| |#2| (-550)))) (-2379 (((-635 (-239 |#1| |#2|)) $) NIL (|has| |#2| (-550)))) (-1967 (((-762) $) NIL)) (-2539 (((-112)) NIL)) (-1979 (((-762) $) NIL)) (-2986 (((-112) $ (-762)) NIL)) (-3815 ((|#2| $) NIL (|has| |#2| (-6 (-4384 "*"))))) (-2472 (((-558) $) NIL)) (-2448 (((-558) $) NIL)) (-2122 (((-635 |#2|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#2| (-1087))))) (-2460 (((-558) $) NIL)) (-2438 (((-558) $) NIL)) (-3181 (($ (-635 (-635 |#2|))) NIL)) (-1807 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-4178 (((-635 (-635 |#2|)) $) NIL)) (-2517 (((-112)) NIL)) (-2565 (((-112)) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-2854 (((-3 (-2 (|:| |particular| $) (|:| -2660 (-635 $))) "failed")) NIL (|has| |#2| (-550)))) (-2470 (((-3 $ "failed")) NIL (|has| |#2| (-550)))) (-2132 (((-679 |#2|)) NIL) (((-679 |#2|) (-1246 $)) NIL)) (-2740 ((|#2| $) NIL)) (-2109 (((-679 |#2|) $) NIL) (((-679 |#2|) $ (-1246 $)) NIL)) (-1995 (((-3 $ "failed") $) NIL (|has| |#2| (-550)))) (-2824 (((-1159 (-942 |#2|))) NIL (|has| |#2| (-362)))) (-2006 (($ $ (-911)) NIL)) (-2718 ((|#2| $) NIL)) (-2498 (((-1159 |#2|) $) NIL (|has| |#2| (-550)))) (-3985 ((|#2|) NIL) ((|#2| (-1246 $)) NIL)) (-2696 (((-1159 |#2|) $) NIL)) (-2632 (((-112)) NIL)) (-4310 (((-1145) $) NIL)) (-2527 (((-112)) NIL)) (-2551 (((-112)) NIL)) (-2580 (((-112)) NIL)) (-4141 (((-3 $ "failed") $) NIL (|has| |#2| (-362)))) (-2975 (((-1107) $) NIL)) (-2612 (((-112)) NIL)) (-3983 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-550)))) (-3266 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3375 (((-112) $) NIL)) (-2083 (($) NIL)) (-2195 ((|#2| $ (-558) (-558) |#2|) NIL) ((|#2| $ (-558) (-558)) 22) ((|#2| $ (-558)) NIL)) (-2829 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-762)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-1163)) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-762)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-3835 ((|#2| $) NIL)) (-3858 (($ (-635 |#2|)) NIL)) (-2509 (((-112) $) NIL)) (-3846 (((-239 |#1| |#2|) $) NIL)) (-3824 ((|#2| $) NIL (|has| |#2| (-6 (-4384 "*"))))) (-2988 (((-762) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4382))) (((-762) |#2| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#2| (-1087))))) (-1553 (($ $) NIL)) (-4205 (((-679 |#2|) (-1246 $)) NIL) (((-1246 |#2|) $) NIL) (((-679 |#2|) (-1246 $) (-1246 $)) NIL) (((-1246 |#2|) $ (-1246 $)) 25)) (-3224 (($ (-1246 |#2|)) NIL) (((-1246 |#2|) $) NIL)) (-3855 (((-635 (-942 |#2|))) NIL) (((-635 (-942 |#2|)) (-1246 $)) NIL)) (-3443 (($ $ $) NIL)) (-2676 (((-112)) NIL)) (-2415 (((-239 |#1| |#2|) $ (-558)) NIL)) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ (-406 (-558))) NIL (|has| |#2| (-1028 (-406 (-558))))) (($ |#2|) NIL) (((-679 |#2|) $) NIL)) (-2542 (((-762)) NIL)) (-2660 (((-1246 $)) 36)) (-2507 (((-635 (-1246 |#2|))) NIL (|has| |#2| (-550)))) (-3452 (($ $ $ $) NIL)) (-2654 (((-112)) NIL)) (-2258 (($ (-679 |#2|) $) NIL)) (-3277 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4382)))) (-2486 (((-112) $) NIL)) (-3433 (($ $ $) NIL)) (-2664 (((-112)) NIL)) (-2642 (((-112)) NIL)) (-2602 (((-112)) NIL)) (-2131 (($) NIL T CONST)) (-2142 (($) NIL T CONST)) (-1866 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-762)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-1163)) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-762)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-1683 (((-112) $ $) NIL)) (-1810 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL (|has| |#2| (-362)))) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-239 |#1| |#2|) $ (-239 |#1| |#2|)) NIL) (((-239 |#1| |#2|) (-239 |#1| |#2|) $) NIL)) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-660 |#1| |#2|) (-13 (-1110 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-605 (-679 |#2|)) (-416 |#2|)) (-911) (-171)) (T -660))
+NIL
+(-13 (-1110 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-605 (-679 |#2|)) (-416 |#2|))
+((-3207 (((-112) $ $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-4356 (((-635 (-1122)) $) 10)) (-3220 (((-853) $) 18) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1683 (((-112) $ $) NIL)))
+(((-661) (-13 (-1070) (-10 -8 (-15 -4356 ((-635 (-1122)) $))))) (T -661))
+((-4356 (*1 *2 *1) (-12 (-5 *2 (-635 (-1122))) (-5 *1 (-661)))))
+(-13 (-1070) (-10 -8 (-15 -4356 ((-635 (-1122)) $))))
+((-3207 (((-112) $ $) NIL)) (-3712 (((-635 |#1|) $) NIL)) (-3425 (($ $) 51)) (-3464 (((-112) $) NIL)) (-3069 (((-3 |#1| "failed") $) NIL)) (-1863 ((|#1| $) NIL)) (-3910 (($ $ $) NIL)) (-3542 (($ $ $) NIL)) (-3446 (((-3 $ "failed") (-810 |#1|)) 23)) (-2254 (((-112) (-810 |#1|)) 15)) (-2242 (($ (-810 |#1|)) 24)) (-1915 (((-112) $ $) 29)) (-2880 (((-911) $) 36)) (-3417 (($ $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-2522 (((-635 $) (-810 |#1|)) 17)) (-3220 (((-853) $) 42) (($ |#1|) 33) (((-810 |#1|) $) 38) (((-667 |#1|) $) 43)) (-3437 (((-59 (-635 $)) (-635 |#1|) (-911)) 56)) (-3427 (((-635 $) (-635 |#1|) (-911)) 59)) (-1747 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1683 (((-112) $ $) 52)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 37)))
+(((-662 |#1|) (-13 (-841) (-1028 |#1|) (-10 -8 (-15 -3464 ((-112) $)) (-15 -3417 ($ $)) (-15 -3425 ($ $)) (-15 -2880 ((-911) $)) (-15 -1915 ((-112) $ $)) (-15 -3220 ((-810 |#1|) $)) (-15 -3220 ((-667 |#1|) $)) (-15 -2522 ((-635 $) (-810 |#1|))) (-15 -2254 ((-112) (-810 |#1|))) (-15 -2242 ($ (-810 |#1|))) (-15 -3446 ((-3 $ "failed") (-810 |#1|))) (-15 -3712 ((-635 |#1|) $)) (-15 -3437 ((-59 (-635 $)) (-635 |#1|) (-911))) (-15 -3427 ((-635 $) (-635 |#1|) (-911))))) (-841)) (T -662))
+((-3464 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-662 *3)) (-4 *3 (-841)))) (-3417 (*1 *1 *1) (-12 (-5 *1 (-662 *2)) (-4 *2 (-841)))) (-3425 (*1 *1 *1) (-12 (-5 *1 (-662 *2)) (-4 *2 (-841)))) (-2880 (*1 *2 *1) (-12 (-5 *2 (-911)) (-5 *1 (-662 *3)) (-4 *3 (-841)))) (-1915 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-662 *3)) (-4 *3 (-841)))) (-3220 (*1 *2 *1) (-12 (-5 *2 (-810 *3)) (-5 *1 (-662 *3)) (-4 *3 (-841)))) (-3220 (*1 *2 *1) (-12 (-5 *2 (-667 *3)) (-5 *1 (-662 *3)) (-4 *3 (-841)))) (-2522 (*1 *2 *3) (-12 (-5 *3 (-810 *4)) (-4 *4 (-841)) (-5 *2 (-635 (-662 *4))) (-5 *1 (-662 *4)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-810 *4)) (-4 *4 (-841)) (-5 *2 (-112)) (-5 *1 (-662 *4)))) (-2242 (*1 *1 *2) (-12 (-5 *2 (-810 *3)) (-4 *3 (-841)) (-5 *1 (-662 *3)))) (-3446 (*1 *1 *2) (|partial| -12 (-5 *2 (-810 *3)) (-4 *3 (-841)) (-5 *1 (-662 *3)))) (-3712 (*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-662 *3)) (-4 *3 (-841)))) (-3437 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *5)) (-5 *4 (-911)) (-4 *5 (-841)) (-5 *2 (-59 (-635 (-662 *5)))) (-5 *1 (-662 *5)))) (-3427 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *5)) (-5 *4 (-911)) (-4 *5 (-841)) (-5 *2 (-635 (-662 *5))) (-5 *1 (-662 *5)))))
+(-13 (-841) (-1028 |#1|) (-10 -8 (-15 -3464 ((-112) $)) (-15 -3417 ($ $)) (-15 -3425 ($ $)) (-15 -2880 ((-911) $)) (-15 -1915 ((-112) $ $)) (-15 -3220 ((-810 |#1|) $)) (-15 -3220 ((-667 |#1|) $)) (-15 -2522 ((-635 $) (-810 |#1|))) (-15 -2254 ((-112) (-810 |#1|))) (-15 -2242 ($ (-810 |#1|))) (-15 -3446 ((-3 $ "failed") (-810 |#1|))) (-15 -3712 ((-635 |#1|) $)) (-15 -3437 ((-59 (-635 $)) (-635 |#1|) (-911))) (-15 -3427 ((-635 $) (-635 |#1|) (-911)))))
+((-2925 ((|#2| $) 76)) (-3436 (($ $) 96)) (-3026 (((-112) $ (-762)) 26)) (-2315 (($ $) 85) (($ $ (-762)) 88)) (-2435 (((-112) $) 97)) (-2870 (((-635 $) $) 72)) (-3993 (((-112) $ $) 71)) (-2986 (((-112) $ (-762)) 24)) (-3889 (((-558) $) 46)) (-3899 (((-558) $) 45)) (-2953 (((-112) $ (-762)) 22)) (-1790 (((-112) $) 74)) (-1560 ((|#2| $) 89) (($ $ (-762)) 92)) (-1861 (($ $ $ (-558)) 62) (($ |#2| $ (-558)) 61)) (-3920 (((-635 (-558)) $) 44)) (-3929 (((-112) (-558) $) 42)) (-2305 ((|#2| $) NIL) (($ $ (-762)) 84)) (-3430 (($ $ (-558)) 99)) (-2445 (((-112) $) 98)) (-3266 (((-112) (-1 (-112) |#2|) $) 32)) (-3937 (((-635 |#2|) $) 33)) (-2195 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1213 (-558))) 58) ((|#2| $ (-558)) 40) ((|#2| $ (-558) |#2|) 41)) (-2860 (((-558) $ $) 70)) (-4023 (($ $ (-1213 (-558))) 57) (($ $ (-558)) 51)) (-1487 (((-112) $) 66)) (-2405 (($ $) 81)) (-2414 (((-762) $) 80)) (-2428 (($ $) 79)) (-3233 (($ (-635 |#2|)) 37)) (-2011 (($ $) 100)) (-1727 (((-635 $) $) 69)) (-4005 (((-112) $ $) 68)) (-3277 (((-112) (-1 (-112) |#2|) $) 31)) (-1683 (((-112) $ $) 18)) (-2755 (((-762) $) 29)))
+(((-663 |#1| |#2|) (-10 -8 (-15 -2011 (|#1| |#1|)) (-15 -3430 (|#1| |#1| (-558))) (-15 -2435 ((-112) |#1|)) (-15 -2445 ((-112) |#1|)) (-15 -2195 (|#2| |#1| (-558) |#2|)) (-15 -2195 (|#2| |#1| (-558))) (-15 -3937 ((-635 |#2|) |#1|)) (-15 -3929 ((-112) (-558) |#1|)) (-15 -3920 ((-635 (-558)) |#1|)) (-15 -3899 ((-558) |#1|)) (-15 -3889 ((-558) |#1|)) (-15 -3233 (|#1| (-635 |#2|))) (-15 -2195 (|#1| |#1| (-1213 (-558)))) (-15 -4023 (|#1| |#1| (-558))) (-15 -4023 (|#1| |#1| (-1213 (-558)))) (-15 -1861 (|#1| |#2| |#1| (-558))) (-15 -1861 (|#1| |#1| |#1| (-558))) (-15 -2405 (|#1| |#1|)) (-15 -2414 ((-762) |#1|)) (-15 -2428 (|#1| |#1|)) (-15 -3436 (|#1| |#1|)) (-15 -1560 (|#1| |#1| (-762))) (-15 -2195 (|#2| |#1| "last")) (-15 -1560 (|#2| |#1|)) (-15 -2315 (|#1| |#1| (-762))) (-15 -2195 (|#1| |#1| "rest")) (-15 -2315 (|#1| |#1|)) (-15 -2305 (|#1| |#1| (-762))) (-15 -2195 (|#2| |#1| "first")) (-15 -2305 (|#2| |#1|)) (-15 -3993 ((-112) |#1| |#1|)) (-15 -4005 ((-112) |#1| |#1|)) (-15 -2860 ((-558) |#1| |#1|)) (-15 -1487 ((-112) |#1|)) (-15 -2195 (|#2| |#1| "value")) (-15 -2925 (|#2| |#1|)) (-15 -1790 ((-112) |#1|)) (-15 -2870 ((-635 |#1|) |#1|)) (-15 -1727 ((-635 |#1|) |#1|)) (-15 -1683 ((-112) |#1| |#1|)) (-15 -3266 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3277 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2755 ((-762) |#1|)) (-15 -3026 ((-112) |#1| (-762))) (-15 -2986 ((-112) |#1| (-762))) (-15 -2953 ((-112) |#1| (-762)))) (-664 |#2|) (-1200)) (T -663))
+NIL
+(-10 -8 (-15 -2011 (|#1| |#1|)) (-15 -3430 (|#1| |#1| (-558))) (-15 -2435 ((-112) |#1|)) (-15 -2445 ((-112) |#1|)) (-15 -2195 (|#2| |#1| (-558) |#2|)) (-15 -2195 (|#2| |#1| (-558))) (-15 -3937 ((-635 |#2|) |#1|)) (-15 -3929 ((-112) (-558) |#1|)) (-15 -3920 ((-635 (-558)) |#1|)) (-15 -3899 ((-558) |#1|)) (-15 -3889 ((-558) |#1|)) (-15 -3233 (|#1| (-635 |#2|))) (-15 -2195 (|#1| |#1| (-1213 (-558)))) (-15 -4023 (|#1| |#1| (-558))) (-15 -4023 (|#1| |#1| (-1213 (-558)))) (-15 -1861 (|#1| |#2| |#1| (-558))) (-15 -1861 (|#1| |#1| |#1| (-558))) (-15 -2405 (|#1| |#1|)) (-15 -2414 ((-762) |#1|)) (-15 -2428 (|#1| |#1|)) (-15 -3436 (|#1| |#1|)) (-15 -1560 (|#1| |#1| (-762))) (-15 -2195 (|#2| |#1| "last")) (-15 -1560 (|#2| |#1|)) (-15 -2315 (|#1| |#1| (-762))) (-15 -2195 (|#1| |#1| "rest")) (-15 -2315 (|#1| |#1|)) (-15 -2305 (|#1| |#1| (-762))) (-15 -2195 (|#2| |#1| "first")) (-15 -2305 (|#2| |#1|)) (-15 -3993 ((-112) |#1| |#1|)) (-15 -4005 ((-112) |#1| |#1|)) (-15 -2860 ((-558) |#1| |#1|)) (-15 -1487 ((-112) |#1|)) (-15 -2195 (|#2| |#1| "value")) (-15 -2925 (|#2| |#1|)) (-15 -1790 ((-112) |#1|)) (-15 -2870 ((-635 |#1|) |#1|)) (-15 -1727 ((-635 |#1|) |#1|)) (-15 -1683 ((-112) |#1| |#1|)) (-15 -3266 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3277 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2755 ((-762) |#1|)) (-15 -3026 ((-112) |#1| (-762))) (-15 -2986 ((-112) |#1| (-762))) (-15 -2953 ((-112) |#1| (-762))))
+((-3207 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-2925 ((|#1| $) 48)) (-3213 ((|#1| $) 65)) (-3436 (($ $) 67)) (-3869 (((-1251) $ (-558) (-558)) 97 (|has| $ (-6 -4383)))) (-2336 (($ $ (-558)) 52 (|has| $ (-6 -4383)))) (-3026 (((-112) $ (-762)) 8)) (-3972 ((|#1| $ |#1|) 39 (|has| $ (-6 -4383)))) (-2359 (($ $ $) 56 (|has| $ (-6 -4383)))) (-2348 ((|#1| $ |#1|) 54 (|has| $ (-6 -4383)))) (-2369 ((|#1| $ |#1|) 58 (|has| $ (-6 -4383)))) (-1532 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4383))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4383))) (($ $ "rest" $) 55 (|has| $ (-6 -4383))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4383))) ((|#1| $ (-1213 (-558)) |#1|) 117 (|has| $ (-6 -4383))) ((|#1| $ (-558) |#1|) 86 (|has| $ (-6 -4383)))) (-3982 (($ $ (-635 $)) 41 (|has| $ (-6 -4383)))) (-4329 (($ (-1 (-112) |#1|) $) 102)) (-3201 ((|#1| $) 66)) (-1816 (($) 7 T CONST)) (-2271 (($ $) 124)) (-2315 (($ $) 73) (($ $ (-762)) 71)) (-2338 (($ $) 99 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1539 (($ |#1| $) 100 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382)))) (($ (-1 (-112) |#1|) $) 103)) (-3048 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4382))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4382))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1817 ((|#1| $ (-558) |#1|) 85 (|has| $ (-6 -4383)))) (-1746 ((|#1| $ (-558)) 87)) (-2435 (((-112) $) 83)) (-2240 (((-635 |#1|) $) 30 (|has| $ (-6 -4382)))) (-2264 (((-762) $) 123)) (-2870 (((-635 $) $) 50)) (-3993 (((-112) $ $) 42 (|has| |#1| (-1087)))) (-3315 (($ (-762) |#1|) 108)) (-2986 (((-112) $ (-762)) 9)) (-3889 (((-558) $) 95 (|has| (-558) (-841)))) (-2122 (((-635 |#1|) $) 29 (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-3899 (((-558) $) 94 (|has| (-558) (-841)))) (-1807 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2953 (((-112) $ (-762)) 10)) (-1362 (((-635 |#1|) $) 45)) (-1790 (((-112) $) 49)) (-2292 (($ $) 126)) (-2302 (((-112) $) 127)) (-4310 (((-1145) $) 22 (|has| |#1| (-1087)))) (-1560 ((|#1| $) 70) (($ $ (-762)) 68)) (-1861 (($ $ $ (-558)) 116) (($ |#1| $ (-558)) 115)) (-3920 (((-635 (-558)) $) 92)) (-3929 (((-112) (-558) $) 91)) (-2975 (((-1107) $) 21 (|has| |#1| (-1087)))) (-2282 ((|#1| $) 125)) (-2305 ((|#1| $) 76) (($ $ (-762)) 74)) (-4307 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-3880 (($ $ |#1|) 96 (|has| $ (-6 -4383)))) (-3430 (($ $ (-558)) 122)) (-2445 (((-112) $) 84)) (-2311 (((-112) $) 128)) (-2321 (((-112) $) 129)) (-3266 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) 14)) (-3908 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3937 (((-635 |#1|) $) 90)) (-3375 (((-112) $) 11)) (-2083 (($) 12)) (-2195 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1213 (-558))) 112) ((|#1| $ (-558)) 89) ((|#1| $ (-558) |#1|) 88)) (-2860 (((-558) $ $) 44)) (-4023 (($ $ (-1213 (-558))) 114) (($ $ (-558)) 113)) (-1487 (((-112) $) 46)) (-2405 (($ $) 62)) (-2380 (($ $) 59 (|has| $ (-6 -4383)))) (-2414 (((-762) $) 63)) (-2428 (($ $) 64)) (-2988 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4382))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1553 (($ $) 13)) (-3224 (((-534) $) 98 (|has| |#1| (-606 (-534))))) (-3233 (($ (-635 |#1|)) 107)) (-2392 (($ $ $) 61 (|has| $ (-6 -4383))) (($ $ |#1|) 60 (|has| $ (-6 -4383)))) (-4341 (($ $ $) 78) (($ |#1| $) 77) (($ (-635 $)) 110) (($ $ |#1|) 109)) (-2011 (($ $) 121)) (-3220 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-1727 (((-635 $) $) 51)) (-4005 (((-112) $ $) 43 (|has| |#1| (-1087)))) (-3277 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-2755 (((-762) $) 6 (|has| $ (-6 -4382)))))
+(((-664 |#1|) (-139) (-1200)) (T -664))
+((-1539 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-664 *3)) (-4 *3 (-1200)))) (-4329 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-664 *3)) (-4 *3 (-1200)))) (-2321 (*1 *2 *1) (-12 (-4 *1 (-664 *3)) (-4 *3 (-1200)) (-5 *2 (-112)))) (-2311 (*1 *2 *1) (-12 (-4 *1 (-664 *3)) (-4 *3 (-1200)) (-5 *2 (-112)))) (-2302 (*1 *2 *1) (-12 (-4 *1 (-664 *3)) (-4 *3 (-1200)) (-5 *2 (-112)))) (-2292 (*1 *1 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1200)))) (-2282 (*1 *2 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1200)))) (-2271 (*1 *1 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1200)))) (-2264 (*1 *2 *1) (-12 (-4 *1 (-664 *3)) (-4 *3 (-1200)) (-5 *2 (-762)))) (-3430 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-664 *3)) (-4 *3 (-1200)))) (-2011 (*1 *1 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1200)))))
+(-13 (-1136 |t#1|) (-10 -8 (-15 -1539 ($ (-1 (-112) |t#1|) $)) (-15 -4329 ($ (-1 (-112) |t#1|) $)) (-15 -2321 ((-112) $)) (-15 -2311 ((-112) $)) (-15 -2302 ((-112) $)) (-15 -2292 ($ $)) (-15 -2282 (|t#1| $)) (-15 -2271 ($ $)) (-15 -2264 ((-762) $)) (-15 -3430 ($ $ (-558))) (-15 -2011 ($ $))))
+(((-34) . T) ((-102) |has| |#1| (-1087)) ((-605 (-853)) -3998 (|has| |#1| (-1087)) (|has| |#1| (-605 (-853)))) ((-150 |#1|) . T) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-285 #0=(-558) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-596 #0# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-641 |#1|) . T) ((-1000 |#1|) . T) ((-1087) |has| |#1| (-1087)) ((-1136 |#1|) . T) ((-1200) . T) ((-1234 |#1|) . T))
+((-3207 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2378 (($ (-762) (-762) (-762)) 33 (|has| |#1| (-1039)))) (-3026 (((-112) $ (-762)) NIL)) (-2356 ((|#1| $ (-762) (-762) (-762) |#1|) 27)) (-1816 (($) NIL T CONST)) (-3836 (($ $ $) 37 (|has| |#1| (-1039)))) (-2240 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-2986 (((-112) $ (-762)) NIL)) (-2122 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-2333 (((-1246 (-762)) $) 9)) (-2345 (($ (-1163) $ $) 22)) (-1807 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL (|has| |#1| (-1087)))) (-2367 (($ (-762)) 35 (|has| |#1| (-1039)))) (-2975 (((-1107) $) NIL (|has| |#1| (-1087)))) (-3266 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3375 (((-112) $) NIL)) (-2083 (($) NIL)) (-2195 ((|#1| $ (-762) (-762) (-762)) 25)) (-2988 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1553 (($ $) NIL)) (-3233 (($ (-635 (-635 (-635 |#1|)))) 44)) (-3220 (($ (-948 (-948 (-948 |#1|)))) 15) (((-948 (-948 (-948 |#1|))) $) 12) (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-3277 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-665 |#1|) (-13 (-487 |#1|) (-10 -8 (IF (|has| |#1| (-1039)) (PROGN (-15 -2378 ($ (-762) (-762) (-762))) (-15 -2367 ($ (-762))) (-15 -3836 ($ $ $))) |%noBranch|) (-15 -3233 ($ (-635 (-635 (-635 |#1|))))) (-15 -2195 (|#1| $ (-762) (-762) (-762))) (-15 -2356 (|#1| $ (-762) (-762) (-762) |#1|)) (-15 -3220 ($ (-948 (-948 (-948 |#1|))))) (-15 -3220 ((-948 (-948 (-948 |#1|))) $)) (-15 -2345 ($ (-1163) $ $)) (-15 -2333 ((-1246 (-762)) $)))) (-1087)) (T -665))
+((-2378 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-762)) (-5 *1 (-665 *3)) (-4 *3 (-1039)) (-4 *3 (-1087)))) (-2367 (*1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-665 *3)) (-4 *3 (-1039)) (-4 *3 (-1087)))) (-3836 (*1 *1 *1 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-1039)) (-4 *2 (-1087)))) (-3233 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 (-635 *3)))) (-4 *3 (-1087)) (-5 *1 (-665 *3)))) (-2195 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-762)) (-5 *1 (-665 *2)) (-4 *2 (-1087)))) (-2356 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-762)) (-5 *1 (-665 *2)) (-4 *2 (-1087)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-948 (-948 (-948 *3)))) (-4 *3 (-1087)) (-5 *1 (-665 *3)))) (-3220 (*1 *2 *1) (-12 (-5 *2 (-948 (-948 (-948 *3)))) (-5 *1 (-665 *3)) (-4 *3 (-1087)))) (-2345 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-665 *3)) (-4 *3 (-1087)))) (-2333 (*1 *2 *1) (-12 (-5 *2 (-1246 (-762))) (-5 *1 (-665 *3)) (-4 *3 (-1087)))))
+(-13 (-487 |#1|) (-10 -8 (IF (|has| |#1| (-1039)) (PROGN (-15 -2378 ($ (-762) (-762) (-762))) (-15 -2367 ($ (-762))) (-15 -3836 ($ $ $))) |%noBranch|) (-15 -3233 ($ (-635 (-635 (-635 |#1|))))) (-15 -2195 (|#1| $ (-762) (-762) (-762))) (-15 -2356 (|#1| $ (-762) (-762) (-762) |#1|)) (-15 -3220 ($ (-948 (-948 (-948 |#1|))))) (-15 -3220 ((-948 (-948 (-948 |#1|))) $)) (-15 -2345 ($ (-1163) $ $)) (-15 -2333 ((-1246 (-762)) $))))
+((-3207 (((-112) $ $) NIL)) (-4310 (((-1145) $) NIL)) (-1975 (((-481) $) 10)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 21) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1337 (((-1122) $) 12)) (-1683 (((-112) $ $) NIL)))
+(((-666) (-13 (-1070) (-10 -8 (-15 -1975 ((-481) $)) (-15 -1337 ((-1122) $))))) (T -666))
+((-1975 (*1 *2 *1) (-12 (-5 *2 (-481)) (-5 *1 (-666)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-666)))))
+(-13 (-1070) (-10 -8 (-15 -1975 ((-481) $)) (-15 -1337 ((-1122) $))))
+((-3207 (((-112) $ $) NIL)) (-3712 (((-635 |#1|) $) 14)) (-3425 (($ $) 18)) (-3464 (((-112) $) 19)) (-3069 (((-3 |#1| "failed") $) 22)) (-1863 ((|#1| $) 20)) (-2315 (($ $) 36)) (-4227 (($ $) 24)) (-3910 (($ $ $) NIL)) (-3542 (($ $ $) NIL)) (-1915 (((-112) $ $) 41)) (-2880 (((-911) $) 38)) (-3417 (($ $) 17)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-2305 ((|#1| $) 35)) (-3220 (((-853) $) 31) (($ |#1|) 23) (((-810 |#1|) $) 27)) (-1747 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1683 (((-112) $ $) 12)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 40)) (* (($ $ $) 34)))
+(((-667 |#1|) (-13 (-841) (-1028 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3220 ((-810 |#1|) $)) (-15 -2305 (|#1| $)) (-15 -3417 ($ $)) (-15 -2880 ((-911) $)) (-15 -1915 ((-112) $ $)) (-15 -4227 ($ $)) (-15 -2315 ($ $)) (-15 -3464 ((-112) $)) (-15 -3425 ($ $)) (-15 -3712 ((-635 |#1|) $)))) (-841)) (T -667))
+((* (*1 *1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-841)))) (-3220 (*1 *2 *1) (-12 (-5 *2 (-810 *3)) (-5 *1 (-667 *3)) (-4 *3 (-841)))) (-2305 (*1 *2 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-841)))) (-3417 (*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-841)))) (-2880 (*1 *2 *1) (-12 (-5 *2 (-911)) (-5 *1 (-667 *3)) (-4 *3 (-841)))) (-1915 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-667 *3)) (-4 *3 (-841)))) (-4227 (*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-841)))) (-2315 (*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-841)))) (-3464 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-667 *3)) (-4 *3 (-841)))) (-3425 (*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-841)))) (-3712 (*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-667 *3)) (-4 *3 (-841)))))
+(-13 (-841) (-1028 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3220 ((-810 |#1|) $)) (-15 -2305 (|#1| $)) (-15 -3417 ($ $)) (-15 -2880 ((-911) $)) (-15 -1915 ((-112) $ $)) (-15 -4227 ($ $)) (-15 -2315 ($ $)) (-15 -3464 ((-112) $)) (-15 -3425 ($ $)) (-15 -3712 ((-635 |#1|) $))))
+((-2426 ((|#1| (-1 |#1| (-762) |#1|) (-762) |#1|) 11)) (-2491 ((|#1| (-1 |#1| |#1|) (-762) |#1|) 9)))
+(((-668 |#1|) (-10 -7 (-15 -2491 (|#1| (-1 |#1| |#1|) (-762) |#1|)) (-15 -2426 (|#1| (-1 |#1| (-762) |#1|) (-762) |#1|))) (-1087)) (T -668))
+((-2426 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-762) *2)) (-5 *4 (-762)) (-4 *2 (-1087)) (-5 *1 (-668 *2)))) (-2491 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-762)) (-4 *2 (-1087)) (-5 *1 (-668 *2)))))
+(-10 -7 (-15 -2491 (|#1| (-1 |#1| |#1|) (-762) |#1|)) (-15 -2426 (|#1| (-1 |#1| (-762) |#1|) (-762) |#1|)))
+((-3955 ((|#2| |#1| |#2|) 9)) (-3942 ((|#1| |#1| |#2|) 8)))
+(((-669 |#1| |#2|) (-10 -7 (-15 -3942 (|#1| |#1| |#2|)) (-15 -3955 (|#2| |#1| |#2|))) (-1087) (-1087)) (T -669))
+((-3955 (*1 *2 *3 *2) (-12 (-5 *1 (-669 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-1087)))) (-3942 (*1 *2 *2 *3) (-12 (-5 *1 (-669 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-1087)))))
+(-10 -7 (-15 -3942 (|#1| |#1| |#2|)) (-15 -3955 (|#2| |#1| |#2|)))
+((-1525 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
+(((-670 |#1| |#2| |#3|) (-10 -7 (-15 -1525 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1087) (-1087) (-1087)) (T -670))
+((-1525 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *2 (-1087)) (-5 *1 (-670 *5 *6 *2)))))
+(-10 -7 (-15 -1525 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
+((-3207 (((-112) $ $) NIL)) (-1395 (((-1199) $) 20)) (-2590 (((-635 (-1199)) $) 18)) (-2389 (($ (-635 (-1199)) (-1199)) 13)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 29) (($ (-1168)) NIL) (((-1168) $) NIL) (((-1199) $) 21) (($ (-1105)) 10)) (-1683 (((-112) $ $) NIL)))
+(((-671) (-13 (-1070) (-605 (-1199)) (-10 -8 (-15 -3220 ($ (-1105))) (-15 -2389 ($ (-635 (-1199)) (-1199))) (-15 -2590 ((-635 (-1199)) $)) (-15 -1395 ((-1199) $))))) (T -671))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-1105)) (-5 *1 (-671)))) (-2389 (*1 *1 *2 *3) (-12 (-5 *2 (-635 (-1199))) (-5 *3 (-1199)) (-5 *1 (-671)))) (-2590 (*1 *2 *1) (-12 (-5 *2 (-635 (-1199))) (-5 *1 (-671)))) (-1395 (*1 *2 *1) (-12 (-5 *2 (-1199)) (-5 *1 (-671)))))
+(-13 (-1070) (-605 (-1199)) (-10 -8 (-15 -3220 ($ (-1105))) (-15 -2389 ($ (-635 (-1199)) (-1199))) (-15 -2590 ((-635 (-1199)) $)) (-15 -1395 ((-1199) $))))
+((-2426 (((-1 |#1| (-762) |#1|) (-1 |#1| (-762) |#1|)) 23)) (-2403 (((-1 |#1|) |#1|) 8)) (-3281 ((|#1| |#1|) 16)) (-2413 (((-635 |#1|) (-1 (-635 |#1|) (-635 |#1|)) (-558)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-3220 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-762)) 20)))
+(((-672 |#1|) (-10 -7 (-15 -2403 ((-1 |#1|) |#1|)) (-15 -3220 ((-1 |#1|) |#1|)) (-15 -2413 (|#1| (-1 |#1| |#1|))) (-15 -2413 ((-635 |#1|) (-1 (-635 |#1|) (-635 |#1|)) (-558))) (-15 -3281 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-762))) (-15 -2426 ((-1 |#1| (-762) |#1|) (-1 |#1| (-762) |#1|)))) (-1087)) (T -672))
+((-2426 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-762) *3)) (-4 *3 (-1087)) (-5 *1 (-672 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-762)) (-4 *4 (-1087)) (-5 *1 (-672 *4)))) (-3281 (*1 *2 *2) (-12 (-5 *1 (-672 *2)) (-4 *2 (-1087)))) (-2413 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-635 *5) (-635 *5))) (-5 *4 (-558)) (-5 *2 (-635 *5)) (-5 *1 (-672 *5)) (-4 *5 (-1087)))) (-2413 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-672 *2)) (-4 *2 (-1087)))) (-3220 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-672 *3)) (-4 *3 (-1087)))) (-2403 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-672 *3)) (-4 *3 (-1087)))))
+(-10 -7 (-15 -2403 ((-1 |#1|) |#1|)) (-15 -3220 ((-1 |#1|) |#1|)) (-15 -2413 (|#1| (-1 |#1| |#1|))) (-15 -2413 ((-635 |#1|) (-1 (-635 |#1|) (-635 |#1|)) (-558))) (-15 -3281 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-762))) (-15 -2426 ((-1 |#1| (-762) |#1|) (-1 |#1| (-762) |#1|))))
+((-2459 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2447 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-3707 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2437 (((-1 |#2| |#1|) |#2|) 11)))
+(((-673 |#1| |#2|) (-10 -7 (-15 -2437 ((-1 |#2| |#1|) |#2|)) (-15 -2447 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3707 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2459 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1087) (-1087)) (T -673))
+((-2459 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-5 *2 (-1 *5 *4)) (-5 *1 (-673 *4 *5)))) (-3707 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1087)) (-5 *2 (-1 *5 *4)) (-5 *1 (-673 *4 *5)) (-4 *4 (-1087)))) (-2447 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-5 *2 (-1 *5)) (-5 *1 (-673 *4 *5)))) (-2437 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-673 *4 *3)) (-4 *4 (-1087)) (-4 *3 (-1087)))))
+(-10 -7 (-15 -2437 ((-1 |#2| |#1|) |#2|)) (-15 -2447 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3707 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2459 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
+((-2518 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2471 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-2485 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-2499 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2508 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
+(((-674 |#1| |#2| |#3|) (-10 -7 (-15 -2471 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2485 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2499 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2508 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2518 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1087) (-1087) (-1087)) (T -674))
+((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-1 *7 *5)) (-5 *1 (-674 *5 *6 *7)))) (-2518 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-674 *4 *5 *6)))) (-2508 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-674 *4 *5 *6)) (-4 *4 (-1087)))) (-2499 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1087)) (-4 *6 (-1087)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-674 *4 *5 *6)) (-4 *5 (-1087)))) (-2485 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-5 *2 (-1 *6 *5)) (-5 *1 (-674 *4 *5 *6)))) (-2471 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1087)) (-4 *4 (-1087)) (-4 *6 (-1087)) (-5 *2 (-1 *6 *5)) (-5 *1 (-674 *5 *4 *6)))))
+(-10 -7 (-15 -2471 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2485 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2499 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2508 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2518 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
+((-3048 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-3167 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
+(((-675 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3167 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3167 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3048 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1039) (-372 |#1|) (-372 |#1|) (-677 |#1| |#2| |#3|) (-1039) (-372 |#5|) (-372 |#5|) (-677 |#5| |#6| |#7|)) (T -675))
+((-3048 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1039)) (-4 *2 (-1039)) (-4 *6 (-372 *5)) (-4 *7 (-372 *5)) (-4 *8 (-372 *2)) (-4 *9 (-372 *2)) (-5 *1 (-675 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-677 *5 *6 *7)) (-4 *10 (-677 *2 *8 *9)))) (-3167 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1039)) (-4 *8 (-1039)) (-4 *6 (-372 *5)) (-4 *7 (-372 *5)) (-4 *2 (-677 *8 *9 *10)) (-5 *1 (-675 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-677 *5 *6 *7)) (-4 *9 (-372 *8)) (-4 *10 (-372 *8)))) (-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1039)) (-4 *8 (-1039)) (-4 *6 (-372 *5)) (-4 *7 (-372 *5)) (-4 *2 (-677 *8 *9 *10)) (-5 *1 (-675 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-677 *5 *6 *7)) (-4 *9 (-372 *8)) (-4 *10 (-372 *8)))))
+(-10 -7 (-15 -3167 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3167 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3048 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
+((-2370 (($ (-762) (-762)) 33)) (-2581 (($ $ $) 56)) (-3453 (($ |#3|) 52) (($ $) 53)) (-2500 (((-112) $) 28)) (-2567 (($ $ (-558) (-558)) 58)) (-2552 (($ $ (-558) (-558)) 59)) (-2541 (($ $ (-558) (-558) (-558) (-558)) 63)) (-2603 (($ $) 54)) (-2519 (((-112) $) 14)) (-2528 (($ $ (-558) (-558) $) 64)) (-1532 ((|#2| $ (-558) (-558) |#2|) NIL) (($ $ (-635 (-558)) (-635 (-558)) $) 62)) (-3867 (($ (-762) |#2|) 39)) (-3181 (($ (-635 (-635 |#2|))) 37)) (-4178 (((-635 (-635 |#2|)) $) 57)) (-2593 (($ $ $) 55)) (-3983 (((-3 $ "failed") $ |#2|) 91)) (-2195 ((|#2| $ (-558) (-558)) NIL) ((|#2| $ (-558) (-558) |#2|) NIL) (($ $ (-635 (-558)) (-635 (-558))) 61)) (-3858 (($ (-635 |#2|)) 40) (($ (-635 $)) 42)) (-2509 (((-112) $) 24)) (-3220 (($ |#4|) 47) (((-853) $) NIL)) (-2486 (((-112) $) 30)) (-1810 (($ $ |#2|) 93)) (-1798 (($ $ $) 68) (($ $) 71)) (-1784 (($ $ $) 66)) (** (($ $ (-762)) 80) (($ $ (-558)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-558) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88)))
+(((-676 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3220 ((-853) |#1|)) (-15 ** (|#1| |#1| (-558))) (-15 -1810 (|#1| |#1| |#2|)) (-15 -3983 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-762))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1798 (|#1| |#1|)) (-15 -1798 (|#1| |#1| |#1|)) (-15 -1784 (|#1| |#1| |#1|)) (-15 -2528 (|#1| |#1| (-558) (-558) |#1|)) (-15 -2541 (|#1| |#1| (-558) (-558) (-558) (-558))) (-15 -2552 (|#1| |#1| (-558) (-558))) (-15 -2567 (|#1| |#1| (-558) (-558))) (-15 -1532 (|#1| |#1| (-635 (-558)) (-635 (-558)) |#1|)) (-15 -2195 (|#1| |#1| (-635 (-558)) (-635 (-558)))) (-15 -4178 ((-635 (-635 |#2|)) |#1|)) (-15 -2581 (|#1| |#1| |#1|)) (-15 -2593 (|#1| |#1| |#1|)) (-15 -2603 (|#1| |#1|)) (-15 -3453 (|#1| |#1|)) (-15 -3453 (|#1| |#3|)) (-15 -3220 (|#1| |#4|)) (-15 -3858 (|#1| (-635 |#1|))) (-15 -3858 (|#1| (-635 |#2|))) (-15 -3867 (|#1| (-762) |#2|)) (-15 -3181 (|#1| (-635 (-635 |#2|)))) (-15 -2370 (|#1| (-762) (-762))) (-15 -2486 ((-112) |#1|)) (-15 -2500 ((-112) |#1|)) (-15 -2509 ((-112) |#1|)) (-15 -2519 ((-112) |#1|)) (-15 -1532 (|#2| |#1| (-558) (-558) |#2|)) (-15 -2195 (|#2| |#1| (-558) (-558) |#2|)) (-15 -2195 (|#2| |#1| (-558) (-558)))) (-677 |#2| |#3| |#4|) (-1039) (-372 |#2|) (-372 |#2|)) (T -676))
+NIL
+(-10 -8 (-15 -3220 ((-853) |#1|)) (-15 ** (|#1| |#1| (-558))) (-15 -1810 (|#1| |#1| |#2|)) (-15 -3983 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-762))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1798 (|#1| |#1|)) (-15 -1798 (|#1| |#1| |#1|)) (-15 -1784 (|#1| |#1| |#1|)) (-15 -2528 (|#1| |#1| (-558) (-558) |#1|)) (-15 -2541 (|#1| |#1| (-558) (-558) (-558) (-558))) (-15 -2552 (|#1| |#1| (-558) (-558))) (-15 -2567 (|#1| |#1| (-558) (-558))) (-15 -1532 (|#1| |#1| (-635 (-558)) (-635 (-558)) |#1|)) (-15 -2195 (|#1| |#1| (-635 (-558)) (-635 (-558)))) (-15 -4178 ((-635 (-635 |#2|)) |#1|)) (-15 -2581 (|#1| |#1| |#1|)) (-15 -2593 (|#1| |#1| |#1|)) (-15 -2603 (|#1| |#1|)) (-15 -3453 (|#1| |#1|)) (-15 -3453 (|#1| |#3|)) (-15 -3220 (|#1| |#4|)) (-15 -3858 (|#1| (-635 |#1|))) (-15 -3858 (|#1| (-635 |#2|))) (-15 -3867 (|#1| (-762) |#2|)) (-15 -3181 (|#1| (-635 (-635 |#2|)))) (-15 -2370 (|#1| (-762) (-762))) (-15 -2486 ((-112) |#1|)) (-15 -2500 ((-112) |#1|)) (-15 -2509 ((-112) |#1|)) (-15 -2519 ((-112) |#1|)) (-15 -1532 (|#2| |#1| (-558) (-558) |#2|)) (-15 -2195 (|#2| |#1| (-558) (-558) |#2|)) (-15 -2195 (|#2| |#1| (-558) (-558))))
+((-3207 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-2370 (($ (-762) (-762)) 97)) (-2581 (($ $ $) 87)) (-3453 (($ |#2|) 91) (($ $) 90)) (-2500 (((-112) $) 99)) (-2567 (($ $ (-558) (-558)) 83)) (-2552 (($ $ (-558) (-558)) 82)) (-2541 (($ $ (-558) (-558) (-558) (-558)) 81)) (-2603 (($ $) 89)) (-2519 (((-112) $) 101)) (-3026 (((-112) $ (-762)) 8)) (-2528 (($ $ (-558) (-558) $) 80)) (-1532 ((|#1| $ (-558) (-558) |#1|) 44) (($ $ (-635 (-558)) (-635 (-558)) $) 84)) (-1671 (($ $ (-558) |#2|) 42)) (-1661 (($ $ (-558) |#3|) 41)) (-3867 (($ (-762) |#1|) 95)) (-1816 (($) 7 T CONST)) (-2404 (($ $) 67 (|has| |#1| (-306)))) (-2427 ((|#2| $ (-558)) 46)) (-3833 (((-762) $) 66 (|has| |#1| (-550)))) (-1817 ((|#1| $ (-558) (-558) |#1|) 43)) (-1746 ((|#1| $ (-558) (-558)) 48)) (-2240 (((-635 |#1|) $) 30)) (-2391 (((-762) $) 65 (|has| |#1| (-550)))) (-2379 (((-635 |#3|) $) 64 (|has| |#1| (-550)))) (-1967 (((-762) $) 51)) (-3315 (($ (-762) (-762) |#1|) 57)) (-1979 (((-762) $) 50)) (-2986 (((-112) $ (-762)) 9)) (-3815 ((|#1| $) 62 (|has| |#1| (-6 (-4384 "*"))))) (-2472 (((-558) $) 55)) (-2448 (((-558) $) 53)) (-2122 (((-635 |#1|) $) 29 (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-2460 (((-558) $) 54)) (-2438 (((-558) $) 52)) (-3181 (($ (-635 (-635 |#1|))) 96)) (-1807 (($ (-1 |#1| |#1|) $) 34)) (-3167 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-4178 (((-635 (-635 |#1|)) $) 86)) (-2953 (((-112) $ (-762)) 10)) (-4310 (((-1145) $) 22 (|has| |#1| (-1087)))) (-4141 (((-3 $ "failed") $) 61 (|has| |#1| (-362)))) (-2593 (($ $ $) 88)) (-2975 (((-1107) $) 21 (|has| |#1| (-1087)))) (-3880 (($ $ |#1|) 56)) (-3983 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-550)))) (-3266 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) 14)) (-3375 (((-112) $) 11)) (-2083 (($) 12)) (-2195 ((|#1| $ (-558) (-558)) 49) ((|#1| $ (-558) (-558) |#1|) 47) (($ $ (-635 (-558)) (-635 (-558))) 85)) (-3858 (($ (-635 |#1|)) 94) (($ (-635 $)) 93)) (-2509 (((-112) $) 100)) (-3824 ((|#1| $) 63 (|has| |#1| (-6 (-4384 "*"))))) (-2988 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4382))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1553 (($ $) 13)) (-2415 ((|#3| $ (-558)) 45)) (-3220 (($ |#3|) 92) (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-3277 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4382)))) (-2486 (((-112) $) 98)) (-1683 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-1810 (($ $ |#1|) 68 (|has| |#1| (-362)))) (-1798 (($ $ $) 78) (($ $) 77)) (-1784 (($ $ $) 79)) (** (($ $ (-762)) 70) (($ $ (-558)) 60 (|has| |#1| (-362)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-558) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-2755 (((-762) $) 6 (|has| $ (-6 -4382)))))
+(((-677 |#1| |#2| |#3|) (-139) (-1039) (-372 |t#1|) (-372 |t#1|)) (T -677))
+((-2519 (*1 *2 *1) (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-112)))) (-2509 (*1 *2 *1) (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-112)))) (-2500 (*1 *2 *1) (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-112)))) (-2486 (*1 *2 *1) (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-112)))) (-2370 (*1 *1 *2 *2) (-12 (-5 *2 (-762)) (-4 *3 (-1039)) (-4 *1 (-677 *3 *4 *5)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-3181 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1039)) (-4 *1 (-677 *3 *4 *5)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-3867 (*1 *1 *2 *3) (-12 (-5 *2 (-762)) (-4 *3 (-1039)) (-4 *1 (-677 *3 *4 *5)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-3858 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1039)) (-4 *1 (-677 *3 *4 *5)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-3858 (*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *3 (-1039)) (-4 *1 (-677 *3 *4 *5)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-3220 (*1 *1 *2) (-12 (-4 *3 (-1039)) (-4 *1 (-677 *3 *4 *2)) (-4 *4 (-372 *3)) (-4 *2 (-372 *3)))) (-3453 (*1 *1 *2) (-12 (-4 *3 (-1039)) (-4 *1 (-677 *3 *2 *4)) (-4 *2 (-372 *3)) (-4 *4 (-372 *3)))) (-3453 (*1 *1 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-2603 (*1 *1 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-2593 (*1 *1 *1 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-2581 (*1 *1 *1 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-4178 (*1 *2 *1) (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-635 (-635 *3))))) (-2195 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-635 (-558))) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-1532 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-635 (-558))) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-2567 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-558)) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-2552 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-558)) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-2541 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-558)) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-2528 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-558)) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-1784 (*1 *1 *1 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-1798 (*1 *1 *1 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-1798 (*1 *1 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-558)) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-677 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-372 *3)) (-4 *2 (-372 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-677 *3 *2 *4)) (-4 *3 (-1039)) (-4 *2 (-372 *3)) (-4 *4 (-372 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-3983 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (-4 *2 (-550)))) (-1810 (*1 *1 *1 *2) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (-4 *2 (-362)))) (-2404 (*1 *1 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (-4 *2 (-306)))) (-3833 (*1 *2 *1) (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-4 *3 (-550)) (-5 *2 (-762)))) (-2391 (*1 *2 *1) (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-4 *3 (-550)) (-5 *2 (-762)))) (-2379 (*1 *2 *1) (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-4 *3 (-550)) (-5 *2 (-635 *5)))) (-3824 (*1 *2 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (|has| *2 (-6 (-4384 "*"))) (-4 *2 (-1039)))) (-3815 (*1 *2 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (|has| *2 (-6 (-4384 "*"))) (-4 *2 (-1039)))) (-4141 (*1 *1 *1) (|partial| -12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (-4 *2 (-362)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-4 *3 (-362)))))
+(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4383) (-6 -4382) (-15 -2519 ((-112) $)) (-15 -2509 ((-112) $)) (-15 -2500 ((-112) $)) (-15 -2486 ((-112) $)) (-15 -2370 ($ (-762) (-762))) (-15 -3181 ($ (-635 (-635 |t#1|)))) (-15 -3867 ($ (-762) |t#1|)) (-15 -3858 ($ (-635 |t#1|))) (-15 -3858 ($ (-635 $))) (-15 -3220 ($ |t#3|)) (-15 -3453 ($ |t#2|)) (-15 -3453 ($ $)) (-15 -2603 ($ $)) (-15 -2593 ($ $ $)) (-15 -2581 ($ $ $)) (-15 -4178 ((-635 (-635 |t#1|)) $)) (-15 -2195 ($ $ (-635 (-558)) (-635 (-558)))) (-15 -1532 ($ $ (-635 (-558)) (-635 (-558)) $)) (-15 -2567 ($ $ (-558) (-558))) (-15 -2552 ($ $ (-558) (-558))) (-15 -2541 ($ $ (-558) (-558) (-558) (-558))) (-15 -2528 ($ $ (-558) (-558) $)) (-15 -1784 ($ $ $)) (-15 -1798 ($ $ $)) (-15 -1798 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-558) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-762))) (IF (|has| |t#1| (-550)) (-15 -3983 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-362)) (-15 -1810 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-306)) (-15 -2404 ($ $)) |%noBranch|) (IF (|has| |t#1| (-550)) (PROGN (-15 -3833 ((-762) $)) (-15 -2391 ((-762) $)) (-15 -2379 ((-635 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4384 "*"))) (PROGN (-15 -3824 (|t#1| $)) (-15 -3815 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-362)) (PROGN (-15 -4141 ((-3 $ "failed") $)) (-15 ** ($ $ (-558)))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1087)) ((-605 (-853)) -3998 (|has| |#1| (-1087)) (|has| |#1| (-605 (-853)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-1087) |has| |#1| (-1087)) ((-57 |#1| |#2| |#3|) . T) ((-1200) . T))
+((-2404 ((|#4| |#4|) 71 (|has| |#1| (-306)))) (-3833 (((-762) |#4|) 98 (|has| |#1| (-550)))) (-2391 (((-762) |#4|) 75 (|has| |#1| (-550)))) (-2379 (((-635 |#3|) |#4|) 82 (|has| |#1| (-550)))) (-1730 (((-2 (|:| -2306 |#1|) (|:| -2071 |#1|)) |#1| |#1|) 110 (|has| |#1| (-306)))) (-3815 ((|#1| |#4|) 34)) (-2655 (((-3 |#4| "failed") |#4|) 63 (|has| |#1| (-550)))) (-4141 (((-3 |#4| "failed") |#4|) 79 (|has| |#1| (-362)))) (-2643 ((|#4| |#4|) 67 (|has| |#1| (-550)))) (-2623 ((|#4| |#4| |#1| (-558) (-558)) 42)) (-2614 ((|#4| |#4| (-558) (-558)) 37)) (-2633 ((|#4| |#4| |#1| (-558) (-558)) 47)) (-3824 ((|#1| |#4|) 77)) (-1536 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 68 (|has| |#1| (-550)))))
+(((-678 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3824 (|#1| |#4|)) (-15 -3815 (|#1| |#4|)) (-15 -2614 (|#4| |#4| (-558) (-558))) (-15 -2623 (|#4| |#4| |#1| (-558) (-558))) (-15 -2633 (|#4| |#4| |#1| (-558) (-558))) (IF (|has| |#1| (-550)) (PROGN (-15 -3833 ((-762) |#4|)) (-15 -2391 ((-762) |#4|)) (-15 -2379 ((-635 |#3|) |#4|)) (-15 -2643 (|#4| |#4|)) (-15 -2655 ((-3 |#4| "failed") |#4|)) (-15 -1536 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-306)) (PROGN (-15 -2404 (|#4| |#4|)) (-15 -1730 ((-2 (|:| -2306 |#1|) (|:| -2071 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -4141 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-171) (-372 |#1|) (-372 |#1|) (-677 |#1| |#2| |#3|)) (T -678))
+((-4141 (*1 *2 *2) (|partial| -12 (-4 *3 (-362)) (-4 *3 (-171)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-678 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5)))) (-1730 (*1 *2 *3 *3) (-12 (-4 *3 (-306)) (-4 *3 (-171)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-2 (|:| -2306 *3) (|:| -2071 *3))) (-5 *1 (-678 *3 *4 *5 *6)) (-4 *6 (-677 *3 *4 *5)))) (-2404 (*1 *2 *2) (-12 (-4 *3 (-306)) (-4 *3 (-171)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-678 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5)))) (-1536 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *4 (-171)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-678 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6)))) (-2655 (*1 *2 *2) (|partial| -12 (-4 *3 (-550)) (-4 *3 (-171)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-678 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5)))) (-2643 (*1 *2 *2) (-12 (-4 *3 (-550)) (-4 *3 (-171)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-678 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5)))) (-2379 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *4 (-171)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-635 *6)) (-5 *1 (-678 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6)))) (-2391 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *4 (-171)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-762)) (-5 *1 (-678 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6)))) (-3833 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *4 (-171)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-762)) (-5 *1 (-678 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6)))) (-2633 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-558)) (-4 *3 (-171)) (-4 *5 (-372 *3)) (-4 *6 (-372 *3)) (-5 *1 (-678 *3 *5 *6 *2)) (-4 *2 (-677 *3 *5 *6)))) (-2623 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-558)) (-4 *3 (-171)) (-4 *5 (-372 *3)) (-4 *6 (-372 *3)) (-5 *1 (-678 *3 *5 *6 *2)) (-4 *2 (-677 *3 *5 *6)))) (-2614 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-558)) (-4 *4 (-171)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *1 (-678 *4 *5 *6 *2)) (-4 *2 (-677 *4 *5 *6)))) (-3815 (*1 *2 *3) (-12 (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-171)) (-5 *1 (-678 *2 *4 *5 *3)) (-4 *3 (-677 *2 *4 *5)))) (-3824 (*1 *2 *3) (-12 (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-171)) (-5 *1 (-678 *2 *4 *5 *3)) (-4 *3 (-677 *2 *4 *5)))))
+(-10 -7 (-15 -3824 (|#1| |#4|)) (-15 -3815 (|#1| |#4|)) (-15 -2614 (|#4| |#4| (-558) (-558))) (-15 -2623 (|#4| |#4| |#1| (-558) (-558))) (-15 -2633 (|#4| |#4| |#1| (-558) (-558))) (IF (|has| |#1| (-550)) (PROGN (-15 -3833 ((-762) |#4|)) (-15 -2391 ((-762) |#4|)) (-15 -2379 ((-635 |#3|) |#4|)) (-15 -2643 (|#4| |#4|)) (-15 -2655 ((-3 |#4| "failed") |#4|)) (-15 -1536 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-306)) (PROGN (-15 -2404 (|#4| |#4|)) (-15 -1730 ((-2 (|:| -2306 |#1|) (|:| -2071 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -4141 ((-3 |#4| "failed") |#4|)) |%noBranch|))
+((-3207 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2370 (($ (-762) (-762)) 47)) (-2581 (($ $ $) NIL)) (-3453 (($ (-1246 |#1|)) NIL) (($ $) NIL)) (-2500 (((-112) $) NIL)) (-2567 (($ $ (-558) (-558)) 12)) (-2552 (($ $ (-558) (-558)) NIL)) (-2541 (($ $ (-558) (-558) (-558) (-558)) NIL)) (-2603 (($ $) NIL)) (-2519 (((-112) $) NIL)) (-3026 (((-112) $ (-762)) NIL)) (-2528 (($ $ (-558) (-558) $) NIL)) (-1532 ((|#1| $ (-558) (-558) |#1|) NIL) (($ $ (-635 (-558)) (-635 (-558)) $) NIL)) (-1671 (($ $ (-558) (-1246 |#1|)) NIL)) (-1661 (($ $ (-558) (-1246 |#1|)) NIL)) (-3867 (($ (-762) |#1|) 22)) (-1816 (($) NIL T CONST)) (-2404 (($ $) 31 (|has| |#1| (-306)))) (-2427 (((-1246 |#1|) $ (-558)) NIL)) (-3833 (((-762) $) 33 (|has| |#1| (-550)))) (-1817 ((|#1| $ (-558) (-558) |#1|) 51)) (-1746 ((|#1| $ (-558) (-558)) NIL)) (-2240 (((-635 |#1|) $) NIL)) (-2391 (((-762) $) 35 (|has| |#1| (-550)))) (-2379 (((-635 (-1246 |#1|)) $) 38 (|has| |#1| (-550)))) (-1967 (((-762) $) 20)) (-3315 (($ (-762) (-762) |#1|) 16)) (-1979 (((-762) $) 21)) (-2986 (((-112) $ (-762)) NIL)) (-3815 ((|#1| $) 29 (|has| |#1| (-6 (-4384 "*"))))) (-2472 (((-558) $) 9)) (-2448 (((-558) $) 10)) (-2122 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-2460 (((-558) $) 11)) (-2438 (((-558) $) 48)) (-3181 (($ (-635 (-635 |#1|))) NIL)) (-1807 (($ (-1 |#1| |#1|) $) NIL)) (-3167 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4178 (((-635 (-635 |#1|)) $) 60)) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL (|has| |#1| (-1087)))) (-4141 (((-3 $ "failed") $) 45 (|has| |#1| (-362)))) (-2593 (($ $ $) NIL)) (-2975 (((-1107) $) NIL (|has| |#1| (-1087)))) (-3880 (($ $ |#1|) NIL)) (-3983 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550)))) (-3266 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3375 (((-112) $) NIL)) (-2083 (($) NIL)) (-2195 ((|#1| $ (-558) (-558)) NIL) ((|#1| $ (-558) (-558) |#1|) NIL) (($ $ (-635 (-558)) (-635 (-558))) NIL)) (-3858 (($ (-635 |#1|)) NIL) (($ (-635 $)) NIL) (($ (-1246 |#1|)) 52)) (-2509 (((-112) $) NIL)) (-3824 ((|#1| $) 27 (|has| |#1| (-6 (-4384 "*"))))) (-2988 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1553 (($ $) NIL)) (-3224 (((-534) $) 64 (|has| |#1| (-606 (-534))))) (-2415 (((-1246 |#1|) $ (-558)) NIL)) (-3220 (($ (-1246 |#1|)) NIL) (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-3277 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-2486 (((-112) $) NIL)) (-1683 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1810 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1798 (($ $ $) NIL) (($ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-762)) 23) (($ $ (-558)) 46 (|has| |#1| (-362)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-558) $) NIL) (((-1246 |#1|) $ (-1246 |#1|)) NIL) (((-1246 |#1|) (-1246 |#1|) $) NIL)) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-679 |#1|) (-13 (-677 |#1| (-1246 |#1|) (-1246 |#1|)) (-10 -8 (-15 -3858 ($ (-1246 |#1|))) (IF (|has| |#1| (-606 (-534))) (-6 (-606 (-534))) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -4141 ((-3 $ "failed") $)) |%noBranch|))) (-1039)) (T -679))
+((-4141 (*1 *1 *1) (|partial| -12 (-5 *1 (-679 *2)) (-4 *2 (-362)) (-4 *2 (-1039)))) (-3858 (*1 *1 *2) (-12 (-5 *2 (-1246 *3)) (-4 *3 (-1039)) (-5 *1 (-679 *3)))))
+(-13 (-677 |#1| (-1246 |#1|) (-1246 |#1|)) (-10 -8 (-15 -3858 ($ (-1246 |#1|))) (IF (|has| |#1| (-606 (-534))) (-6 (-606 (-534))) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -4141 ((-3 $ "failed") $)) |%noBranch|)))
+((-2719 (((-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|)) 25)) (-2710 (((-679 |#1|) (-679 |#1|) (-679 |#1|) |#1|) 21)) (-2730 (((-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|) (-762)) 26)) (-2677 (((-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|)) 14)) (-2687 (((-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|)) 18) (((-679 |#1|) (-679 |#1|) (-679 |#1|)) 16)) (-2697 (((-679 |#1|) (-679 |#1|) |#1| (-679 |#1|)) 20)) (-2666 (((-679 |#1|) (-679 |#1|) (-679 |#1|)) 12)) (** (((-679 |#1|) (-679 |#1|) (-762)) 30)))
+(((-680 |#1|) (-10 -7 (-15 -2666 ((-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -2677 ((-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -2687 ((-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -2687 ((-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -2697 ((-679 |#1|) (-679 |#1|) |#1| (-679 |#1|))) (-15 -2710 ((-679 |#1|) (-679 |#1|) (-679 |#1|) |#1|)) (-15 -2719 ((-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -2730 ((-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|) (-762))) (-15 ** ((-679 |#1|) (-679 |#1|) (-762)))) (-1039)) (T -680))
+((** (*1 *2 *2 *3) (-12 (-5 *2 (-679 *4)) (-5 *3 (-762)) (-4 *4 (-1039)) (-5 *1 (-680 *4)))) (-2730 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-679 *4)) (-5 *3 (-762)) (-4 *4 (-1039)) (-5 *1 (-680 *4)))) (-2719 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-1039)) (-5 *1 (-680 *3)))) (-2710 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-679 *3)) (-4 *3 (-1039)) (-5 *1 (-680 *3)))) (-2697 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-1039)) (-5 *1 (-680 *3)))) (-2687 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-1039)) (-5 *1 (-680 *3)))) (-2687 (*1 *2 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-1039)) (-5 *1 (-680 *3)))) (-2677 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-1039)) (-5 *1 (-680 *3)))) (-2666 (*1 *2 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-1039)) (-5 *1 (-680 *3)))))
+(-10 -7 (-15 -2666 ((-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -2677 ((-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -2687 ((-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -2687 ((-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -2697 ((-679 |#1|) (-679 |#1|) |#1| (-679 |#1|))) (-15 -2710 ((-679 |#1|) (-679 |#1|) (-679 |#1|) |#1|)) (-15 -2719 ((-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -2730 ((-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|) (-762))) (-15 ** ((-679 |#1|) (-679 |#1|) (-762))))
+((-3673 (($) 8 T CONST)) (-3220 (((-853) $) 21) (($ |#1|) 9) ((|#1| $) 10)) (-2120 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -3673)) 16)) (-1583 ((|#1| $) 11)))
+(((-681 |#1|) (-13 (-1241) (-605 (-853)) (-10 -8 (-15 -2120 ((-112) $ (|[\|\|]| |#1|))) (-15 -2120 ((-112) $ (|[\|\|]| -3673))) (-15 -3220 ($ |#1|)) (-15 -3220 (|#1| $)) (-15 -1583 (|#1| $)) (-15 -3673 ($) -3707))) (-605 (-853))) (T -681))
+((-2120 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-605 (-853))) (-5 *2 (-112)) (-5 *1 (-681 *4)))) (-2120 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3673)) (-5 *2 (-112)) (-5 *1 (-681 *4)) (-4 *4 (-605 (-853))))) (-3220 (*1 *1 *2) (-12 (-5 *1 (-681 *2)) (-4 *2 (-605 (-853))))) (-3220 (*1 *2 *1) (-12 (-5 *1 (-681 *2)) (-4 *2 (-605 (-853))))) (-1583 (*1 *2 *1) (-12 (-5 *1 (-681 *2)) (-4 *2 (-605 (-853))))) (-3673 (*1 *1) (-12 (-5 *1 (-681 *2)) (-4 *2 (-605 (-853))))))
+(-13 (-1241) (-605 (-853)) (-10 -8 (-15 -2120 ((-112) $ (|[\|\|]| |#1|))) (-15 -2120 ((-112) $ (|[\|\|]| -3673))) (-15 -3220 ($ |#1|)) (-15 -3220 (|#1| $)) (-15 -1583 (|#1| $)) (-15 -3673 ($) -3707)))
+((-2764 ((|#2| |#2| |#4|) 25)) (-2792 (((-679 |#2|) |#3| |#4|) 31)) (-2774 (((-679 |#2|) |#2| |#4|) 30)) (-2741 (((-1246 |#2|) |#2| |#4|) 16)) (-2752 ((|#2| |#3| |#4|) 24)) (-2801 (((-679 |#2|) |#3| |#4| (-762) (-762)) 38)) (-2783 (((-679 |#2|) |#2| |#4| (-762)) 37)))
+(((-682 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2741 ((-1246 |#2|) |#2| |#4|)) (-15 -2752 (|#2| |#3| |#4|)) (-15 -2764 (|#2| |#2| |#4|)) (-15 -2774 ((-679 |#2|) |#2| |#4|)) (-15 -2783 ((-679 |#2|) |#2| |#4| (-762))) (-15 -2792 ((-679 |#2|) |#3| |#4|)) (-15 -2801 ((-679 |#2|) |#3| |#4| (-762) (-762)))) (-1087) (-890 |#1|) (-372 |#2|) (-13 (-372 |#1|) (-10 -7 (-6 -4382)))) (T -682))
+((-2801 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-762)) (-4 *6 (-1087)) (-4 *7 (-890 *6)) (-5 *2 (-679 *7)) (-5 *1 (-682 *6 *7 *3 *4)) (-4 *3 (-372 *7)) (-4 *4 (-13 (-372 *6) (-10 -7 (-6 -4382)))))) (-2792 (*1 *2 *3 *4) (-12 (-4 *5 (-1087)) (-4 *6 (-890 *5)) (-5 *2 (-679 *6)) (-5 *1 (-682 *5 *6 *3 *4)) (-4 *3 (-372 *6)) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4382)))))) (-2783 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-762)) (-4 *6 (-1087)) (-4 *3 (-890 *6)) (-5 *2 (-679 *3)) (-5 *1 (-682 *6 *3 *7 *4)) (-4 *7 (-372 *3)) (-4 *4 (-13 (-372 *6) (-10 -7 (-6 -4382)))))) (-2774 (*1 *2 *3 *4) (-12 (-4 *5 (-1087)) (-4 *3 (-890 *5)) (-5 *2 (-679 *3)) (-5 *1 (-682 *5 *3 *6 *4)) (-4 *6 (-372 *3)) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4382)))))) (-2764 (*1 *2 *2 *3) (-12 (-4 *4 (-1087)) (-4 *2 (-890 *4)) (-5 *1 (-682 *4 *2 *5 *3)) (-4 *5 (-372 *2)) (-4 *3 (-13 (-372 *4) (-10 -7 (-6 -4382)))))) (-2752 (*1 *2 *3 *4) (-12 (-4 *5 (-1087)) (-4 *2 (-890 *5)) (-5 *1 (-682 *5 *2 *3 *4)) (-4 *3 (-372 *2)) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4382)))))) (-2741 (*1 *2 *3 *4) (-12 (-4 *5 (-1087)) (-4 *3 (-890 *5)) (-5 *2 (-1246 *3)) (-5 *1 (-682 *5 *3 *6 *4)) (-4 *6 (-372 *3)) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4382)))))))
+(-10 -7 (-15 -2741 ((-1246 |#2|) |#2| |#4|)) (-15 -2752 (|#2| |#3| |#4|)) (-15 -2764 (|#2| |#2| |#4|)) (-15 -2774 ((-679 |#2|) |#2| |#4|)) (-15 -2783 ((-679 |#2|) |#2| |#4| (-762))) (-15 -2792 ((-679 |#2|) |#3| |#4|)) (-15 -2801 ((-679 |#2|) |#3| |#4| (-762) (-762))))
+((-3152 (((-2 (|:| |num| (-679 |#1|)) (|:| |den| |#1|)) (-679 |#2|)) 20)) (-3132 ((|#1| (-679 |#2|)) 9)) (-3142 (((-679 |#1|) (-679 |#2|)) 18)))
+(((-683 |#1| |#2|) (-10 -7 (-15 -3132 (|#1| (-679 |#2|))) (-15 -3142 ((-679 |#1|) (-679 |#2|))) (-15 -3152 ((-2 (|:| |num| (-679 |#1|)) (|:| |den| |#1|)) (-679 |#2|)))) (-550) (-982 |#1|)) (T -683))
+((-3152 (*1 *2 *3) (-12 (-5 *3 (-679 *5)) (-4 *5 (-982 *4)) (-4 *4 (-550)) (-5 *2 (-2 (|:| |num| (-679 *4)) (|:| |den| *4))) (-5 *1 (-683 *4 *5)))) (-3142 (*1 *2 *3) (-12 (-5 *3 (-679 *5)) (-4 *5 (-982 *4)) (-4 *4 (-550)) (-5 *2 (-679 *4)) (-5 *1 (-683 *4 *5)))) (-3132 (*1 *2 *3) (-12 (-5 *3 (-679 *4)) (-4 *4 (-982 *2)) (-4 *2 (-550)) (-5 *1 (-683 *2 *4)))))
+(-10 -7 (-15 -3132 (|#1| (-679 |#2|))) (-15 -3142 ((-679 |#1|) (-679 |#2|))) (-15 -3152 ((-2 (|:| |num| (-679 |#1|)) (|:| |den| |#1|)) (-679 |#2|))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL)) (-1881 (($ $) NIL)) (-1857 (((-112) $) NIL)) (-2053 (((-679 (-689))) NIL) (((-679 (-689)) (-1246 $)) NIL)) (-1635 (((-689) $) NIL)) (-4088 (($ $) NIL (|has| (-689) (-1185)))) (-2135 (($ $) NIL (|has| (-689) (-1185)))) (-2163 (((-1173 (-911) (-762)) (-558)) NIL (|has| (-689) (-348)))) (-2089 (((-3 $ "failed") $ $) NIL)) (-3748 (((-417 (-1159 $)) (-1159 $)) NIL (-12 (|has| (-689) (-306)) (|has| (-689) (-899))))) (-3465 (($ $) NIL (-3998 (-12 (|has| (-689) (-306)) (|has| (-689) (-899))) (|has| (-689) (-362))))) (-1380 (((-417 $) $) NIL (-3998 (-12 (|has| (-689) (-306)) (|has| (-689) (-899))) (|has| (-689) (-362))))) (-2534 (($ $) NIL (-12 (|has| (-689) (-992)) (|has| (-689) (-1185))))) (-3719 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (-12 (|has| (-689) (-306)) (|has| (-689) (-899))))) (-3732 (((-112) $ $) NIL (|has| (-689) (-306)))) (-2276 (((-762)) NIL (|has| (-689) (-367)))) (-4070 (($ $) NIL (|has| (-689) (-1185)))) (-2112 (($ $) NIL (|has| (-689) (-1185)))) (-4113 (($ $) NIL (|has| (-689) (-1185)))) (-2156 (($ $) NIL (|has| (-689) (-1185)))) (-1816 (($) NIL T CONST)) (-3069 (((-3 (-558) "failed") $) NIL) (((-3 (-689) "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL (|has| (-689) (-1028 (-406 (-558)))))) (-1863 (((-558) $) NIL) (((-689) $) NIL) (((-406 (-558)) $) NIL (|has| (-689) (-1028 (-406 (-558)))))) (-3997 (($ (-1246 (-689))) NIL) (($ (-1246 (-689)) (-1246 $)) NIL)) (-3367 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-689) (-348)))) (-4025 (($ $ $) NIL (|has| (-689) (-306)))) (-2043 (((-679 (-689)) $) NIL) (((-679 (-689)) $ (-1246 $)) NIL)) (-3216 (((-679 (-689)) (-679 $)) NIL) (((-2 (|:| -3683 (-679 (-689))) (|:| |vec| (-1246 (-689)))) (-679 $) (-1246 $)) NIL) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| (-689) (-631 (-558)))) (((-679 (-558)) (-679 $)) NIL (|has| (-689) (-631 (-558))))) (-3048 (((-3 $ "failed") (-406 (-1159 (-689)))) NIL (|has| (-689) (-362))) (($ (-1159 (-689))) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-2546 (((-689) $) 29)) (-3962 (((-3 (-406 (-558)) "failed") $) NIL (|has| (-689) (-543)))) (-3951 (((-112) $) NIL (|has| (-689) (-543)))) (-3938 (((-406 (-558)) $) NIL (|has| (-689) (-543)))) (-3833 (((-911)) NIL)) (-2424 (($) NIL (|has| (-689) (-367)))) (-4004 (($ $ $) NIL (|has| (-689) (-306)))) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL (|has| (-689) (-306)))) (-2672 (($) NIL (|has| (-689) (-348)))) (-2219 (((-112) $) NIL (|has| (-689) (-348)))) (-1895 (($ $) NIL (|has| (-689) (-348))) (($ $ (-762)) NIL (|has| (-689) (-348)))) (-3031 (((-112) $) NIL (-3998 (-12 (|has| (-689) (-306)) (|has| (-689) (-899))) (|has| (-689) (-362))))) (-2757 (((-2 (|:| |r| (-689)) (|:| |phi| (-689))) $) NIL (-12 (|has| (-689) (-1048)) (|has| (-689) (-1185))))) (-1904 (($) NIL (|has| (-689) (-1185)))) (-2269 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (|has| (-689) (-876 (-378)))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (|has| (-689) (-876 (-558))))) (-3449 (((-824 (-911)) $) NIL (|has| (-689) (-348))) (((-911) $) NIL (|has| (-689) (-348)))) (-2035 (((-112) $) NIL)) (-3828 (($ $ (-558)) NIL (-12 (|has| (-689) (-992)) (|has| (-689) (-1185))))) (-2615 (((-689) $) NIL)) (-2457 (((-3 $ "failed") $) NIL (|has| (-689) (-348)))) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| (-689) (-306)))) (-2681 (((-1159 (-689)) $) NIL (|has| (-689) (-362)))) (-3910 (($ $ $) NIL)) (-3542 (($ $ $) NIL)) (-3167 (($ (-1 (-689) (-689)) $) NIL)) (-2637 (((-911) $) NIL (|has| (-689) (-367)))) (-2592 (($ $) NIL (|has| (-689) (-1185)))) (-3227 (((-1159 (-689)) $) NIL)) (-2665 (($ (-635 $)) NIL (|has| (-689) (-306))) (($ $ $) NIL (|has| (-689) (-306)))) (-4310 (((-1145) $) NIL)) (-2418 (($ $) NIL (|has| (-689) (-362)))) (-1796 (($) NIL (|has| (-689) (-348)) CONST)) (-2851 (($ (-911)) NIL (|has| (-689) (-367)))) (-2767 (($) NIL)) (-2557 (((-689) $) 31)) (-2975 (((-1107) $) NIL)) (-4098 (($) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| (-689) (-306)))) (-2699 (($ (-635 $)) NIL (|has| (-689) (-306))) (($ $ $) NIL (|has| (-689) (-306)))) (-2174 (((-635 (-2 (|:| -2522 (-558)) (|:| -1951 (-558))))) NIL (|has| (-689) (-348)))) (-3728 (((-417 (-1159 $)) (-1159 $)) NIL (-12 (|has| (-689) (-306)) (|has| (-689) (-899))))) (-3738 (((-417 (-1159 $)) (-1159 $)) NIL (-12 (|has| (-689) (-306)) (|has| (-689) (-899))))) (-2522 (((-417 $) $) NIL (-3998 (-12 (|has| (-689) (-306)) (|has| (-689) (-899))) (|has| (-689) (-362))))) (-3713 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-689) (-306))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL (|has| (-689) (-306)))) (-3983 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-689)) NIL (|has| (-689) (-550)))) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| (-689) (-306)))) (-2573 (($ $) NIL (|has| (-689) (-1185)))) (-2554 (($ $ (-1163) (-689)) NIL (|has| (-689) (-512 (-1163) (-689)))) (($ $ (-635 (-1163)) (-635 (-689))) NIL (|has| (-689) (-512 (-1163) (-689)))) (($ $ (-635 (-293 (-689)))) NIL (|has| (-689) (-308 (-689)))) (($ $ (-293 (-689))) NIL (|has| (-689) (-308 (-689)))) (($ $ (-689) (-689)) NIL (|has| (-689) (-308 (-689)))) (($ $ (-635 (-689)) (-635 (-689))) NIL (|has| (-689) (-308 (-689))))) (-3722 (((-762) $) NIL (|has| (-689) (-306)))) (-2195 (($ $ (-689)) NIL (|has| (-689) (-285 (-689) (-689))))) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL (|has| (-689) (-306)))) (-3331 (((-689)) NIL) (((-689) (-1246 $)) NIL)) (-1905 (((-3 (-762) "failed") $ $) NIL (|has| (-689) (-348))) (((-762) $) NIL (|has| (-689) (-348)))) (-2829 (($ $ (-1 (-689) (-689))) NIL) (($ $ (-1 (-689) (-689)) (-762)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| (-689) (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| (-689) (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| (-689) (-890 (-1163)))) (($ $ (-1163)) NIL (|has| (-689) (-890 (-1163)))) (($ $ (-762)) NIL (|has| (-689) (-232))) (($ $) NIL (|has| (-689) (-232)))) (-2026 (((-679 (-689)) (-1246 $) (-1 (-689) (-689))) NIL (|has| (-689) (-362)))) (-2036 (((-1159 (-689))) NIL)) (-4124 (($ $) NIL (|has| (-689) (-1185)))) (-2167 (($ $) NIL (|has| (-689) (-1185)))) (-3377 (($) NIL (|has| (-689) (-348)))) (-4102 (($ $) NIL (|has| (-689) (-1185)))) (-2146 (($ $) NIL (|has| (-689) (-1185)))) (-4080 (($ $) NIL (|has| (-689) (-1185)))) (-2124 (($ $) NIL (|has| (-689) (-1185)))) (-4205 (((-679 (-689)) (-1246 $)) NIL) (((-1246 (-689)) $) NIL) (((-679 (-689)) (-1246 $) (-1246 $)) NIL) (((-1246 (-689)) $ (-1246 $)) NIL)) (-3224 (((-534) $) NIL (|has| (-689) (-606 (-534)))) (((-168 (-224)) $) NIL (|has| (-689) (-1012))) (((-168 (-378)) $) NIL (|has| (-689) (-1012))) (((-882 (-378)) $) NIL (|has| (-689) (-606 (-882 (-378))))) (((-882 (-558)) $) NIL (|has| (-689) (-606 (-882 (-558))))) (($ (-1159 (-689))) NIL) (((-1159 (-689)) $) NIL) (($ (-1246 (-689))) NIL) (((-1246 (-689)) $) NIL)) (-3808 (($ $) NIL)) (-3709 (((-3 (-1246 $) "failed") (-679 $)) NIL (-3998 (-12 (|has| (-689) (-306)) (|has| $ (-144)) (|has| (-689) (-899))) (|has| (-689) (-348))))) (-1365 (($ (-689) (-689)) 12)) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL) (($ (-558)) NIL) (($ (-689)) NIL) (($ (-168 (-378))) 13) (($ (-168 (-558))) 19) (($ (-168 (-689))) 28) (($ (-168 (-691))) 25) (((-168 (-378)) $) 33) (($ (-406 (-558))) NIL (-3998 (|has| (-689) (-1028 (-406 (-558)))) (|has| (-689) (-362))))) (-3698 (($ $) NIL (|has| (-689) (-348))) (((-3 $ "failed") $) NIL (-3998 (-12 (|has| (-689) (-306)) (|has| $ (-144)) (|has| (-689) (-899))) (|has| (-689) (-144))))) (-2363 (((-1159 (-689)) $) NIL)) (-2542 (((-762)) NIL)) (-2660 (((-1246 $)) NIL)) (-4159 (($ $) NIL (|has| (-689) (-1185)))) (-2200 (($ $) NIL (|has| (-689) (-1185)))) (-1870 (((-112) $ $) NIL)) (-4135 (($ $) NIL (|has| (-689) (-1185)))) (-2178 (($ $) NIL (|has| (-689) (-1185)))) (-4184 (($ $) NIL (|has| (-689) (-1185)))) (-2222 (($ $) NIL (|has| (-689) (-1185)))) (-3971 (((-689) $) NIL (|has| (-689) (-1185)))) (-1878 (($ $) NIL (|has| (-689) (-1185)))) (-4060 (($ $) NIL (|has| (-689) (-1185)))) (-4171 (($ $) NIL (|has| (-689) (-1185)))) (-2211 (($ $) NIL (|has| (-689) (-1185)))) (-4147 (($ $) NIL (|has| (-689) (-1185)))) (-2189 (($ $) NIL (|has| (-689) (-1185)))) (-3190 (($ $) NIL (|has| (-689) (-1048)))) (-2131 (($) NIL T CONST)) (-2142 (($) NIL T CONST)) (-1866 (($ $ (-1 (-689) (-689))) NIL) (($ $ (-1 (-689) (-689)) (-762)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| (-689) (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| (-689) (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| (-689) (-890 (-1163)))) (($ $ (-1163)) NIL (|has| (-689) (-890 (-1163)))) (($ $ (-762)) NIL (|has| (-689) (-232))) (($ $) NIL (|has| (-689) (-232)))) (-1747 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1683 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1810 (($ $ $) NIL (|has| (-689) (-362)))) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ $) NIL (|has| (-689) (-1185))) (($ $ (-406 (-558))) NIL (-12 (|has| (-689) (-992)) (|has| (-689) (-1185)))) (($ $ (-558)) NIL (|has| (-689) (-362)))) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ (-689) $) NIL) (($ $ (-689)) NIL) (($ (-406 (-558)) $) NIL (|has| (-689) (-362))) (($ $ (-406 (-558))) NIL (|has| (-689) (-362)))))
+(((-684) (-13 (-386) (-165 (-689)) (-10 -8 (-15 -3220 ($ (-168 (-378)))) (-15 -3220 ($ (-168 (-558)))) (-15 -3220 ($ (-168 (-689)))) (-15 -3220 ($ (-168 (-691)))) (-15 -3220 ((-168 (-378)) $))))) (T -684))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-168 (-378))) (-5 *1 (-684)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-168 (-558))) (-5 *1 (-684)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-168 (-689))) (-5 *1 (-684)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-168 (-691))) (-5 *1 (-684)))) (-3220 (*1 *2 *1) (-12 (-5 *2 (-168 (-378))) (-5 *1 (-684)))))
+(-13 (-386) (-165 (-689)) (-10 -8 (-15 -3220 ($ (-168 (-378)))) (-15 -3220 ($ (-168 (-558)))) (-15 -3220 ($ (-168 (-689)))) (-15 -3220 ($ (-168 (-691)))) (-15 -3220 ((-168 (-378)) $))))
+((-3207 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-3026 (((-112) $ (-762)) 8)) (-4207 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4382)))) (-4329 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4382)))) (-1816 (($) 7 T CONST)) (-2820 (($ $) 62)) (-2338 (($ $) 58 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-3395 (($ |#1| $) 47 (|has| $ (-6 -4382))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4382)))) (-1539 (($ |#1| $) 57 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4382)))) (-3048 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4382))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4382)))) (-2240 (((-635 |#1|) $) 30 (|has| $ (-6 -4382)))) (-2986 (((-112) $ (-762)) 9)) (-2122 (((-635 |#1|) $) 29 (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1807 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) 35)) (-2953 (((-112) $ (-762)) 10)) (-4310 (((-1145) $) 22 (|has| |#1| (-1087)))) (-1722 ((|#1| $) 39)) (-4328 (($ |#1| $) 40) (($ |#1| $ (-762)) 63)) (-2975 (((-1107) $) 21 (|has| |#1| (-1087)))) (-4307 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3524 ((|#1| $) 41)) (-3266 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) 14)) (-3375 (((-112) $) 11)) (-2083 (($) 12)) (-2811 (((-635 (-2 (|:| -2981 |#1|) (|:| -2988 (-762)))) $) 61)) (-2571 (($) 49) (($ (-635 |#1|)) 48)) (-2988 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4382))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1553 (($ $) 13)) (-3224 (((-534) $) 59 (|has| |#1| (-606 (-534))))) (-3233 (($ (-635 |#1|)) 50)) (-3220 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-3534 (($ (-635 |#1|)) 42)) (-3277 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-2755 (((-762) $) 6 (|has| $ (-6 -4382)))))
+(((-685 |#1|) (-139) (-1087)) (T -685))
+((-4328 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-762)) (-4 *1 (-685 *2)) (-4 *2 (-1087)))) (-2820 (*1 *1 *1) (-12 (-4 *1 (-685 *2)) (-4 *2 (-1087)))) (-2811 (*1 *2 *1) (-12 (-4 *1 (-685 *3)) (-4 *3 (-1087)) (-5 *2 (-635 (-2 (|:| -2981 *3) (|:| -2988 (-762))))))))
+(-13 (-234 |t#1|) (-10 -8 (-15 -4328 ($ |t#1| $ (-762))) (-15 -2820 ($ $)) (-15 -2811 ((-635 (-2 (|:| -2981 |t#1|) (|:| -2988 (-762)))) $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1087)) ((-605 (-853)) -3998 (|has| |#1| (-1087)) (|has| |#1| (-605 (-853)))) ((-150 |#1|) . T) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-234 |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-1087) |has| |#1| (-1087)) ((-1200) . T))
+((-1610 (((-635 |#1|) (-635 (-2 (|:| -2522 |#1|) (|:| -4323 (-558)))) (-558)) 47)) (-2831 ((|#1| |#1| (-558)) 46)) (-2699 ((|#1| |#1| |#1| (-558)) 36)) (-2522 (((-635 |#1|) |#1| (-558)) 39)) (-1623 ((|#1| |#1| (-558) |#1| (-558)) 32)) (-2841 (((-635 (-2 (|:| -2522 |#1|) (|:| -4323 (-558)))) |#1| (-558)) 45)))
+(((-686 |#1|) (-10 -7 (-15 -2699 (|#1| |#1| |#1| (-558))) (-15 -2831 (|#1| |#1| (-558))) (-15 -2522 ((-635 |#1|) |#1| (-558))) (-15 -2841 ((-635 (-2 (|:| -2522 |#1|) (|:| -4323 (-558)))) |#1| (-558))) (-15 -1610 ((-635 |#1|) (-635 (-2 (|:| -2522 |#1|) (|:| -4323 (-558)))) (-558))) (-15 -1623 (|#1| |#1| (-558) |#1| (-558)))) (-1222 (-558))) (T -686))
+((-1623 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-686 *2)) (-4 *2 (-1222 *3)))) (-1610 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-2 (|:| -2522 *5) (|:| -4323 (-558))))) (-5 *4 (-558)) (-4 *5 (-1222 *4)) (-5 *2 (-635 *5)) (-5 *1 (-686 *5)))) (-2841 (*1 *2 *3 *4) (-12 (-5 *4 (-558)) (-5 *2 (-635 (-2 (|:| -2522 *3) (|:| -4323 *4)))) (-5 *1 (-686 *3)) (-4 *3 (-1222 *4)))) (-2522 (*1 *2 *3 *4) (-12 (-5 *4 (-558)) (-5 *2 (-635 *3)) (-5 *1 (-686 *3)) (-4 *3 (-1222 *4)))) (-2831 (*1 *2 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-686 *2)) (-4 *2 (-1222 *3)))) (-2699 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-686 *2)) (-4 *2 (-1222 *3)))))
+(-10 -7 (-15 -2699 (|#1| |#1| |#1| (-558))) (-15 -2831 (|#1| |#1| (-558))) (-15 -2522 ((-635 |#1|) |#1| (-558))) (-15 -2841 ((-635 (-2 (|:| -2522 |#1|) (|:| -4323 (-558)))) |#1| (-558))) (-15 -1610 ((-635 |#1|) (-635 (-2 (|:| -2522 |#1|) (|:| -4323 (-558)))) (-558))) (-15 -1623 (|#1| |#1| (-558) |#1| (-558))))
+((-1659 (((-1 (-933 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224) (-224))) 17)) (-1632 (((-1120 (-224)) (-1120 (-224)) (-1 (-933 (-224)) (-224) (-224)) (-1081 (-224)) (-1081 (-224)) (-635 (-262))) 40) (((-1120 (-224)) (-1 (-933 (-224)) (-224) (-224)) (-1081 (-224)) (-1081 (-224)) (-635 (-262))) 42) (((-1120 (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) "undefined") (-1081 (-224)) (-1081 (-224)) (-635 (-262))) 44)) (-1649 (((-1120 (-224)) (-315 (-558)) (-315 (-558)) (-315 (-558)) (-1 (-224) (-224)) (-1081 (-224)) (-635 (-262))) NIL)) (-1640 (((-1120 (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) "undefined") (-1081 (-224)) (-1081 (-224)) (-635 (-262))) 45)))
+(((-687) (-10 -7 (-15 -1632 ((-1120 (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) "undefined") (-1081 (-224)) (-1081 (-224)) (-635 (-262)))) (-15 -1632 ((-1120 (-224)) (-1 (-933 (-224)) (-224) (-224)) (-1081 (-224)) (-1081 (-224)) (-635 (-262)))) (-15 -1632 ((-1120 (-224)) (-1120 (-224)) (-1 (-933 (-224)) (-224) (-224)) (-1081 (-224)) (-1081 (-224)) (-635 (-262)))) (-15 -1640 ((-1120 (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) "undefined") (-1081 (-224)) (-1081 (-224)) (-635 (-262)))) (-15 -1649 ((-1120 (-224)) (-315 (-558)) (-315 (-558)) (-315 (-558)) (-1 (-224) (-224)) (-1081 (-224)) (-635 (-262)))) (-15 -1659 ((-1 (-933 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224) (-224)))))) (T -687))
+((-1659 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1 (-224) (-224) (-224) (-224))) (-5 *2 (-1 (-933 (-224)) (-224) (-224))) (-5 *1 (-687)))) (-1649 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-315 (-558))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1081 (-224))) (-5 *6 (-635 (-262))) (-5 *2 (-1120 (-224))) (-5 *1 (-687)))) (-1640 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-3 (-1 (-224) (-224) (-224) (-224)) "undefined")) (-5 *5 (-1081 (-224))) (-5 *6 (-635 (-262))) (-5 *2 (-1120 (-224))) (-5 *1 (-687)))) (-1632 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1120 (-224))) (-5 *3 (-1 (-933 (-224)) (-224) (-224))) (-5 *4 (-1081 (-224))) (-5 *5 (-635 (-262))) (-5 *1 (-687)))) (-1632 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-933 (-224)) (-224) (-224))) (-5 *4 (-1081 (-224))) (-5 *5 (-635 (-262))) (-5 *2 (-1120 (-224))) (-5 *1 (-687)))) (-1632 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-3 (-1 (-224) (-224) (-224) (-224)) "undefined")) (-5 *5 (-1081 (-224))) (-5 *6 (-635 (-262))) (-5 *2 (-1120 (-224))) (-5 *1 (-687)))))
+(-10 -7 (-15 -1632 ((-1120 (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) "undefined") (-1081 (-224)) (-1081 (-224)) (-635 (-262)))) (-15 -1632 ((-1120 (-224)) (-1 (-933 (-224)) (-224) (-224)) (-1081 (-224)) (-1081 (-224)) (-635 (-262)))) (-15 -1632 ((-1120 (-224)) (-1120 (-224)) (-1 (-933 (-224)) (-224) (-224)) (-1081 (-224)) (-1081 (-224)) (-635 (-262)))) (-15 -1640 ((-1120 (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) "undefined") (-1081 (-224)) (-1081 (-224)) (-635 (-262)))) (-15 -1649 ((-1120 (-224)) (-315 (-558)) (-315 (-558)) (-315 (-558)) (-1 (-224) (-224)) (-1081 (-224)) (-635 (-262)))) (-15 -1659 ((-1 (-933 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224) (-224)))))
+((-2522 (((-417 (-1159 |#4|)) (-1159 |#4|)) 73) (((-417 |#4|) |#4|) 220)))
+(((-688 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2522 ((-417 |#4|) |#4|)) (-15 -2522 ((-417 (-1159 |#4|)) (-1159 |#4|)))) (-841) (-784) (-348) (-939 |#3| |#2| |#1|)) (T -688))
+((-2522 (*1 *2 *3) (-12 (-4 *4 (-841)) (-4 *5 (-784)) (-4 *6 (-348)) (-4 *7 (-939 *6 *5 *4)) (-5 *2 (-417 (-1159 *7))) (-5 *1 (-688 *4 *5 *6 *7)) (-5 *3 (-1159 *7)))) (-2522 (*1 *2 *3) (-12 (-4 *4 (-841)) (-4 *5 (-784)) (-4 *6 (-348)) (-5 *2 (-417 *3)) (-5 *1 (-688 *4 *5 *6 *3)) (-4 *3 (-939 *6 *5 *4)))))
+(-10 -7 (-15 -2522 ((-417 |#4|) |#4|)) (-15 -2522 ((-417 (-1159 |#4|)) (-1159 |#4|))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) 84)) (-2582 (((-558) $) 30)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL)) (-1881 (($ $) NIL)) (-1857 (((-112) $) NIL)) (-3440 (($ $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-3465 (($ $) NIL)) (-1380 (((-417 $) $) NIL)) (-2534 (($ $) NIL)) (-3732 (((-112) $ $) NIL)) (-1397 (((-558) $) NIL)) (-1816 (($) NIL T CONST)) (-2553 (($ $) NIL)) (-3069 (((-3 (-558) "failed") $) 73) (((-3 (-406 (-558)) "failed") $) 26) (((-3 (-378) "failed") $) 70)) (-1863 (((-558) $) 75) (((-406 (-558)) $) 67) (((-378) $) 68)) (-4025 (($ $ $) 96)) (-2588 (((-3 $ "failed") $) 87)) (-4004 (($ $ $) 95)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL)) (-3031 (((-112) $) NIL)) (-2566 (((-911)) 77) (((-911) (-911)) 76)) (-2045 (((-112) $) NIL)) (-2269 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL)) (-3449 (((-558) $) NIL)) (-2035 (((-112) $) NIL)) (-3828 (($ $ (-558)) NIL)) (-2615 (($ $) NIL)) (-2055 (((-112) $) NIL)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1669 (((-558) (-558)) 81) (((-558)) 82)) (-3910 (($ $ $) NIL) (($) NIL (-12 (-3304 (|has| $ (-6 -4365))) (-3304 (|has| $ (-6 -4373)))))) (-1681 (((-558) (-558)) 79) (((-558)) 80)) (-3542 (($ $ $) NIL) (($) NIL (-12 (-3304 (|has| $ (-6 -4365))) (-3304 (|has| $ (-6 -4373)))))) (-1973 (((-558) $) 16)) (-2665 (($ $ $) NIL) (($ (-635 $)) NIL)) (-4310 (((-1145) $) NIL)) (-2418 (($ $) 91)) (-1929 (((-911) (-558)) NIL (|has| $ (-6 -4373)))) (-2975 (((-1107) $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-2699 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2568 (($ $) NIL)) (-2594 (($ $) NIL)) (-2244 (($ (-558) (-558)) NIL) (($ (-558) (-558) (-911)) NIL)) (-2522 (((-417 $) $) NIL)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3983 (((-3 $ "failed") $ $) 92)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1951 (((-558) $) 22)) (-3722 (((-762) $) NIL)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 94)) (-2997 (((-911)) NIL) (((-911) (-911)) NIL (|has| $ (-6 -4373)))) (-1918 (((-911) (-558)) NIL (|has| $ (-6 -4373)))) (-3224 (((-378) $) NIL) (((-224) $) NIL) (((-882 (-378)) $) NIL)) (-3220 (((-853) $) 52) (($ (-558)) 63) (($ $) NIL) (($ (-406 (-558))) 66) (($ (-558)) 63) (($ (-406 (-558))) 66) (($ (-378)) 60) (((-378) $) 50) (($ (-691)) 55)) (-2542 (((-762)) 103)) (-1311 (($ (-558) (-558) (-911)) 44)) (-2604 (($ $) NIL)) (-1939 (((-911)) NIL) (((-911) (-911)) NIL (|has| $ (-6 -4373)))) (-2579 (((-911)) 35) (((-911) (-911)) 78)) (-1870 (((-112) $ $) NIL)) (-3190 (($ $) NIL)) (-2131 (($) 32 T CONST)) (-2142 (($) 17 T CONST)) (-1747 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1683 (((-112) $ $) 83)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 101)) (-1810 (($ $ $) 65)) (-1798 (($ $) 99) (($ $ $) 100)) (-1784 (($ $ $) 98)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL) (($ $ (-406 (-558))) 90)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 97) (($ $ $) 88) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL)))
+(((-689) (-13 (-403) (-386) (-362) (-1028 (-378)) (-1028 (-406 (-558))) (-146) (-10 -8 (-15 -2566 ((-911) (-911))) (-15 -2566 ((-911))) (-15 -2579 ((-911) (-911))) (-15 -1681 ((-558) (-558))) (-15 -1681 ((-558))) (-15 -1669 ((-558) (-558))) (-15 -1669 ((-558))) (-15 -3220 ((-378) $)) (-15 -3220 ($ (-691))) (-15 -1973 ((-558) $)) (-15 -1951 ((-558) $)) (-15 -1311 ($ (-558) (-558) (-911)))))) (T -689))
+((-1951 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-689)))) (-1973 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-689)))) (-2566 (*1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-689)))) (-2566 (*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-689)))) (-2579 (*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-689)))) (-1681 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-689)))) (-1681 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-689)))) (-1669 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-689)))) (-1669 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-689)))) (-3220 (*1 *2 *1) (-12 (-5 *2 (-378)) (-5 *1 (-689)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-691)) (-5 *1 (-689)))) (-1311 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-558)) (-5 *3 (-911)) (-5 *1 (-689)))))
+(-13 (-403) (-386) (-362) (-1028 (-378)) (-1028 (-406 (-558))) (-146) (-10 -8 (-15 -2566 ((-911) (-911))) (-15 -2566 ((-911))) (-15 -2579 ((-911) (-911))) (-15 -1681 ((-558) (-558))) (-15 -1681 ((-558))) (-15 -1669 ((-558) (-558))) (-15 -1669 ((-558))) (-15 -3220 ((-378) $)) (-15 -3220 ($ (-691))) (-15 -1973 ((-558) $)) (-15 -1951 ((-558) $)) (-15 -1311 ($ (-558) (-558) (-911)))))
+((-1718 (((-679 |#1|) (-679 |#1|) |#1| |#1|) 65)) (-2404 (((-679 |#1|) (-679 |#1|) |#1|) 48)) (-1704 (((-679 |#1|) (-679 |#1|) |#1|) 66)) (-1692 (((-679 |#1|) (-679 |#1|)) 49)) (-1730 (((-2 (|:| -2306 |#1|) (|:| -2071 |#1|)) |#1| |#1|) 64)))
+(((-690 |#1|) (-10 -7 (-15 -1692 ((-679 |#1|) (-679 |#1|))) (-15 -2404 ((-679 |#1|) (-679 |#1|) |#1|)) (-15 -1704 ((-679 |#1|) (-679 |#1|) |#1|)) (-15 -1718 ((-679 |#1|) (-679 |#1|) |#1| |#1|)) (-15 -1730 ((-2 (|:| -2306 |#1|) (|:| -2071 |#1|)) |#1| |#1|))) (-306)) (T -690))
+((-1730 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2306 *3) (|:| -2071 *3))) (-5 *1 (-690 *3)) (-4 *3 (-306)))) (-1718 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-679 *3)) (-4 *3 (-306)) (-5 *1 (-690 *3)))) (-1704 (*1 *2 *2 *3) (-12 (-5 *2 (-679 *3)) (-4 *3 (-306)) (-5 *1 (-690 *3)))) (-2404 (*1 *2 *2 *3) (-12 (-5 *2 (-679 *3)) (-4 *3 (-306)) (-5 *1 (-690 *3)))) (-1692 (*1 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-306)) (-5 *1 (-690 *3)))))
+(-10 -7 (-15 -1692 ((-679 |#1|) (-679 |#1|))) (-15 -2404 ((-679 |#1|) (-679 |#1|) |#1|)) (-15 -1704 ((-679 |#1|) (-679 |#1|) |#1|)) (-15 -1718 ((-679 |#1|) (-679 |#1|) |#1| |#1|)) (-15 -1730 ((-2 (|:| -2306 |#1|) (|:| -2071 |#1|)) |#1| |#1|)))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL)) (-1881 (($ $) NIL)) (-1857 (((-112) $) NIL)) (-1686 (($ $ $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-1663 (($ $ $ $) NIL)) (-3465 (($ $) NIL)) (-1380 (((-417 $) $) NIL)) (-3732 (((-112) $ $) NIL)) (-1397 (((-558) $) NIL)) (-1672 (($ $ $) NIL)) (-1816 (($) NIL T CONST)) (-3069 (((-3 (-558) "failed") $) 27)) (-1863 (((-558) $) 25)) (-4025 (($ $ $) NIL)) (-3216 (((-679 (-558)) (-679 $)) NIL) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-3962 (((-3 (-406 (-558)) "failed") $) NIL)) (-3951 (((-112) $) NIL)) (-3938 (((-406 (-558)) $) NIL)) (-2424 (($ $) NIL) (($) NIL)) (-4004 (($ $ $) NIL)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL)) (-3031 (((-112) $) NIL)) (-1644 (($ $ $ $) NIL)) (-1697 (($ $ $) NIL)) (-2045 (((-112) $) NIL)) (-1387 (($ $ $) NIL)) (-2269 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL)) (-2035 (((-112) $) NIL)) (-3451 (((-112) $) NIL)) (-2457 (((-3 $ "failed") $) NIL)) (-2055 (((-112) $) NIL)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1654 (($ $ $ $) NIL)) (-3910 (($ $ $) NIL)) (-1744 (((-911) (-911)) 10) (((-911)) 9)) (-3542 (($ $ $) NIL)) (-1842 (($ $) NIL)) (-2880 (($ $) NIL)) (-2665 (($ (-635 $)) NIL) (($ $ $) NIL)) (-4310 (((-1145) $) NIL)) (-1637 (($ $ $) NIL)) (-1796 (($) NIL T CONST)) (-3276 (($ $) NIL)) (-2975 (((-1107) $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-2699 (($ (-635 $)) NIL) (($ $ $) NIL)) (-1364 (($ $) NIL)) (-2522 (((-417 $) $) NIL)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3983 (((-3 $ "failed") $ $) NIL)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3458 (((-112) $) NIL)) (-3722 (((-762) $) NIL)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL)) (-2829 (($ $) NIL) (($ $ (-762)) NIL)) (-3914 (($ $) NIL)) (-1553 (($ $) NIL)) (-3224 (((-224) $) NIL) (((-378) $) NIL) (((-882 (-558)) $) NIL) (((-534) $) NIL) (((-558) $) NIL)) (-3220 (((-853) $) NIL) (($ (-558)) 24) (($ $) NIL) (($ (-558)) 24) (((-315 $) (-315 (-558))) 18)) (-2542 (((-762)) NIL)) (-1712 (((-112) $ $) NIL)) (-2322 (($ $ $) NIL)) (-2579 (($) NIL)) (-1870 (((-112) $ $) NIL)) (-1674 (($ $ $ $) NIL)) (-3190 (($ $) NIL)) (-2131 (($) NIL T CONST)) (-2142 (($) NIL T CONST)) (-1866 (($ $) NIL) (($ $ (-762)) NIL)) (-1747 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1683 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL)))
+(((-691) (-13 (-386) (-543) (-10 -8 (-15 -1744 ((-911) (-911))) (-15 -1744 ((-911))) (-15 -3220 ((-315 $) (-315 (-558))))))) (T -691))
+((-1744 (*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-691)))) (-1744 (*1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-691)))) (-3220 (*1 *2 *3) (-12 (-5 *3 (-315 (-558))) (-5 *2 (-315 (-691))) (-5 *1 (-691)))))
+(-13 (-386) (-543) (-10 -8 (-15 -1744 ((-911) (-911))) (-15 -1744 ((-911))) (-15 -3220 ((-315 $) (-315 (-558))))))
+((-1794 (((-1 |#4| |#2| |#3|) |#1| (-1163) (-1163)) 19)) (-1757 (((-1 |#4| |#2| |#3|) (-1163)) 12)))
+(((-692 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1757 ((-1 |#4| |#2| |#3|) (-1163))) (-15 -1794 ((-1 |#4| |#2| |#3|) |#1| (-1163) (-1163)))) (-606 (-534)) (-1200) (-1200) (-1200)) (T -692))
+((-1794 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1163)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-692 *3 *5 *6 *7)) (-4 *3 (-606 (-534))) (-4 *5 (-1200)) (-4 *6 (-1200)) (-4 *7 (-1200)))) (-1757 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-692 *4 *5 *6 *7)) (-4 *4 (-606 (-534))) (-4 *5 (-1200)) (-4 *6 (-1200)) (-4 *7 (-1200)))))
+(-10 -7 (-15 -1757 ((-1 |#4| |#2| |#3|) (-1163))) (-15 -1794 ((-1 |#4| |#2| |#3|) |#1| (-1163) (-1163))))
+((-3207 (((-112) $ $) NIL)) (-2101 (((-1251) $ (-762)) 14)) (-1517 (((-762) $) 12)) (-3910 (($ $ $) NIL)) (-3542 (($ $ $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 18) (($ |#1|) 23) ((|#1| $) 15)) (-1747 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1683 (((-112) $ $) 25)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 24)))
+(((-693 |#1|) (-13 (-131) (-488 |#1|)) (-1087)) (T -693))
+NIL
+(-13 (-131) (-488 |#1|))
+((-1768 (((-1 (-224) (-224) (-224)) |#1| (-1163) (-1163)) 34) (((-1 (-224) (-224)) |#1| (-1163)) 39)))
+(((-694 |#1|) (-10 -7 (-15 -1768 ((-1 (-224) (-224)) |#1| (-1163))) (-15 -1768 ((-1 (-224) (-224) (-224)) |#1| (-1163) (-1163)))) (-606 (-534))) (T -694))
+((-1768 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1163)) (-5 *2 (-1 (-224) (-224) (-224))) (-5 *1 (-694 *3)) (-4 *3 (-606 (-534))))) (-1768 (*1 *2 *3 *4) (-12 (-5 *4 (-1163)) (-5 *2 (-1 (-224) (-224))) (-5 *1 (-694 *3)) (-4 *3 (-606 (-534))))))
+(-10 -7 (-15 -1768 ((-1 (-224) (-224)) |#1| (-1163))) (-15 -1768 ((-1 (-224) (-224) (-224)) |#1| (-1163) (-1163))))
+((-2529 (((-1163) |#1| (-1163) (-635 (-1163))) 9) (((-1163) |#1| (-1163) (-1163) (-1163)) 12) (((-1163) |#1| (-1163) (-1163)) 11) (((-1163) |#1| (-1163)) 10)))
+(((-695 |#1|) (-10 -7 (-15 -2529 ((-1163) |#1| (-1163))) (-15 -2529 ((-1163) |#1| (-1163) (-1163))) (-15 -2529 ((-1163) |#1| (-1163) (-1163) (-1163))) (-15 -2529 ((-1163) |#1| (-1163) (-635 (-1163))))) (-606 (-534))) (T -695))
+((-2529 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-635 (-1163))) (-5 *2 (-1163)) (-5 *1 (-695 *3)) (-4 *3 (-606 (-534))))) (-2529 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-695 *3)) (-4 *3 (-606 (-534))))) (-2529 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-695 *3)) (-4 *3 (-606 (-534))))) (-2529 (*1 *2 *3 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-695 *3)) (-4 *3 (-606 (-534))))))
+(-10 -7 (-15 -2529 ((-1163) |#1| (-1163))) (-15 -2529 ((-1163) |#1| (-1163) (-1163))) (-15 -2529 ((-1163) |#1| (-1163) (-1163) (-1163))) (-15 -2529 ((-1163) |#1| (-1163) (-635 (-1163)))))
+((-2778 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
+(((-696 |#1| |#2|) (-10 -7 (-15 -2778 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1200) (-1200)) (T -696))
+((-2778 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-696 *3 *4)) (-4 *3 (-1200)) (-4 *4 (-1200)))))
+(-10 -7 (-15 -2778 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
+((-1781 (((-1 |#3| |#2|) (-1163)) 11)) (-1794 (((-1 |#3| |#2|) |#1| (-1163)) 21)))
+(((-697 |#1| |#2| |#3|) (-10 -7 (-15 -1781 ((-1 |#3| |#2|) (-1163))) (-15 -1794 ((-1 |#3| |#2|) |#1| (-1163)))) (-606 (-534)) (-1200) (-1200)) (T -697))
+((-1794 (*1 *2 *3 *4) (-12 (-5 *4 (-1163)) (-5 *2 (-1 *6 *5)) (-5 *1 (-697 *3 *5 *6)) (-4 *3 (-606 (-534))) (-4 *5 (-1200)) (-4 *6 (-1200)))) (-1781 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1 *6 *5)) (-5 *1 (-697 *4 *5 *6)) (-4 *4 (-606 (-534))) (-4 *5 (-1200)) (-4 *6 (-1200)))))
+(-10 -7 (-15 -1781 ((-1 |#3| |#2|) (-1163))) (-15 -1794 ((-1 |#3| |#2|) |#1| (-1163))))
+((-1829 (((-3 (-635 (-1159 |#4|)) "failed") (-1159 |#4|) (-635 |#2|) (-635 (-1159 |#4|)) (-635 |#3|) (-635 |#4|) (-635 (-635 (-2 (|:| -3360 (-762)) (|:| |pcoef| |#4|)))) (-635 (-762)) (-1246 (-635 (-1159 |#3|))) |#3|) 61)) (-1819 (((-3 (-635 (-1159 |#4|)) "failed") (-1159 |#4|) (-635 |#2|) (-635 (-1159 |#3|)) (-635 |#3|) (-635 |#4|) (-635 (-762)) |#3|) 74)) (-1808 (((-3 (-635 (-1159 |#4|)) "failed") (-1159 |#4|) (-635 |#2|) (-635 |#3|) (-635 (-762)) (-635 (-1159 |#4|)) (-1246 (-635 (-1159 |#3|))) |#3|) 34)))
+(((-698 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1808 ((-3 (-635 (-1159 |#4|)) "failed") (-1159 |#4|) (-635 |#2|) (-635 |#3|) (-635 (-762)) (-635 (-1159 |#4|)) (-1246 (-635 (-1159 |#3|))) |#3|)) (-15 -1819 ((-3 (-635 (-1159 |#4|)) "failed") (-1159 |#4|) (-635 |#2|) (-635 (-1159 |#3|)) (-635 |#3|) (-635 |#4|) (-635 (-762)) |#3|)) (-15 -1829 ((-3 (-635 (-1159 |#4|)) "failed") (-1159 |#4|) (-635 |#2|) (-635 (-1159 |#4|)) (-635 |#3|) (-635 |#4|) (-635 (-635 (-2 (|:| -3360 (-762)) (|:| |pcoef| |#4|)))) (-635 (-762)) (-1246 (-635 (-1159 |#3|))) |#3|))) (-784) (-841) (-306) (-939 |#3| |#1| |#2|)) (T -698))
+((-1829 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-635 (-1159 *13))) (-5 *3 (-1159 *13)) (-5 *4 (-635 *12)) (-5 *5 (-635 *10)) (-5 *6 (-635 *13)) (-5 *7 (-635 (-635 (-2 (|:| -3360 (-762)) (|:| |pcoef| *13))))) (-5 *8 (-635 (-762))) (-5 *9 (-1246 (-635 (-1159 *10)))) (-4 *12 (-841)) (-4 *10 (-306)) (-4 *13 (-939 *10 *11 *12)) (-4 *11 (-784)) (-5 *1 (-698 *11 *12 *10 *13)))) (-1819 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-635 *11)) (-5 *5 (-635 (-1159 *9))) (-5 *6 (-635 *9)) (-5 *7 (-635 *12)) (-5 *8 (-635 (-762))) (-4 *11 (-841)) (-4 *9 (-306)) (-4 *12 (-939 *9 *10 *11)) (-4 *10 (-784)) (-5 *2 (-635 (-1159 *12))) (-5 *1 (-698 *10 *11 *9 *12)) (-5 *3 (-1159 *12)))) (-1808 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-635 (-1159 *11))) (-5 *3 (-1159 *11)) (-5 *4 (-635 *10)) (-5 *5 (-635 *8)) (-5 *6 (-635 (-762))) (-5 *7 (-1246 (-635 (-1159 *8)))) (-4 *10 (-841)) (-4 *8 (-306)) (-4 *11 (-939 *8 *9 *10)) (-4 *9 (-784)) (-5 *1 (-698 *9 *10 *8 *11)))))
+(-10 -7 (-15 -1808 ((-3 (-635 (-1159 |#4|)) "failed") (-1159 |#4|) (-635 |#2|) (-635 |#3|) (-635 (-762)) (-635 (-1159 |#4|)) (-1246 (-635 (-1159 |#3|))) |#3|)) (-15 -1819 ((-3 (-635 (-1159 |#4|)) "failed") (-1159 |#4|) (-635 |#2|) (-635 (-1159 |#3|)) (-635 |#3|) (-635 |#4|) (-635 (-762)) |#3|)) (-15 -1829 ((-3 (-635 (-1159 |#4|)) "failed") (-1159 |#4|) (-635 |#2|) (-635 (-1159 |#4|)) (-635 |#3|) (-635 |#4|) (-635 (-635 (-2 (|:| -3360 (-762)) (|:| |pcoef| |#4|)))) (-635 (-762)) (-1246 (-635 (-1159 |#3|))) |#3|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2089 (((-3 $ "failed") $ $) 19)) (-1816 (($) 17 T CONST)) (-2490 (($ $) 42)) (-2588 (((-3 $ "failed") $) 33)) (-2035 (((-112) $) 31)) (-2648 (($ |#1| (-762)) 40)) (-2524 (((-762) $) 44)) (-2463 ((|#1| $) 43)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-4323 (((-762) $) 45)) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ |#1|) 39 (|has| |#1| (-171)))) (-3736 ((|#1| $ (-762)) 41)) (-2542 (((-762)) 28)) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1683 (((-112) $ $) 6)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ |#1|) 47) (($ |#1| $) 46)))
+(((-699 |#1|) (-139) (-1039)) (T -699))
+((-4323 (*1 *2 *1) (-12 (-4 *1 (-699 *3)) (-4 *3 (-1039)) (-5 *2 (-762)))) (-2524 (*1 *2 *1) (-12 (-4 *1 (-699 *3)) (-4 *3 (-1039)) (-5 *2 (-762)))) (-2463 (*1 *2 *1) (-12 (-4 *1 (-699 *2)) (-4 *2 (-1039)))) (-2490 (*1 *1 *1) (-12 (-4 *1 (-699 *2)) (-4 *2 (-1039)))) (-3736 (*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-4 *1 (-699 *2)) (-4 *2 (-1039)))) (-2648 (*1 *1 *2 *3) (-12 (-5 *3 (-762)) (-4 *1 (-699 *2)) (-4 *2 (-1039)))))
+(-13 (-1039) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-171)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -4323 ((-762) $)) (-15 -2524 ((-762) $)) (-15 -2463 (|t#1| $)) (-15 -2490 ($ $)) (-15 -3736 (|t#1| $ (-762))) (-15 -2648 ($ |t#1| (-762)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-171)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-608 (-558)) . T) ((-608 |#1|) |has| |#1| (-171)) ((-605 (-853)) . T) ((-638 |#1|) . T) ((-638 $) . T) ((-708 |#1|) |has| |#1| (-171)) ((-717) . T) ((-1045 |#1|) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
+((-3167 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
+(((-700 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3167 (|#6| (-1 |#4| |#1|) |#3|))) (-550) (-1222 |#1|) (-1222 (-406 |#2|)) (-550) (-1222 |#4|) (-1222 (-406 |#5|))) (T -700))
+((-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-550)) (-4 *7 (-550)) (-4 *6 (-1222 *5)) (-4 *2 (-1222 (-406 *8))) (-5 *1 (-700 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1222 (-406 *6))) (-4 *8 (-1222 *7)))))
+(-10 -7 (-15 -3167 (|#6| (-1 |#4| |#1|) |#3|)))
+((-3207 (((-112) $ $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-1840 (((-1145) (-853)) 31)) (-2646 (((-1251) (-1145)) 28)) (-1864 (((-1145) (-853)) 24)) (-1852 (((-1145) (-853)) 25)) (-3220 (((-853) $) NIL) (((-1145) (-853)) 23)) (-1683 (((-112) $ $) NIL)))
+(((-701) (-13 (-1087) (-10 -7 (-15 -3220 ((-1145) (-853))) (-15 -1864 ((-1145) (-853))) (-15 -1852 ((-1145) (-853))) (-15 -1840 ((-1145) (-853))) (-15 -2646 ((-1251) (-1145)))))) (T -701))
+((-3220 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1145)) (-5 *1 (-701)))) (-1864 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1145)) (-5 *1 (-701)))) (-1852 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1145)) (-5 *1 (-701)))) (-1840 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1145)) (-5 *1 (-701)))) (-2646 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-701)))))
+(-13 (-1087) (-10 -7 (-15 -3220 ((-1145) (-853))) (-15 -1864 ((-1145) (-853))) (-15 -1852 ((-1145) (-853))) (-15 -1840 ((-1145) (-853))) (-15 -2646 ((-1251) (-1145)))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL)) (-1881 (($ $) NIL)) (-1857 (((-112) $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-3465 (($ $) NIL)) (-1380 (((-417 $) $) NIL)) (-3732 (((-112) $ $) NIL)) (-1816 (($) NIL T CONST)) (-4025 (($ $ $) NIL)) (-3048 (($ |#1| |#2|) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-4004 (($ $ $) NIL)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL)) (-3031 (((-112) $) NIL)) (-2035 (((-112) $) NIL)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2985 ((|#2| $) NIL)) (-2665 (($ $ $) NIL) (($ (-635 $)) NIL)) (-4310 (((-1145) $) NIL)) (-2418 (($ $) NIL)) (-2975 (((-1107) $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-2699 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2522 (((-417 $) $) NIL)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3983 (((-3 $ "failed") $ $) NIL)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1961 (((-3 $ "failed") $ $) NIL)) (-3722 (((-762) $) NIL)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL)) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL) (($ (-406 (-558))) NIL) ((|#1| $) NIL)) (-2542 (((-762)) NIL)) (-1870 (((-112) $ $) NIL)) (-2131 (($) NIL T CONST)) (-2142 (($) NIL T CONST)) (-1683 (((-112) $ $) NIL)) (-1810 (($ $ $) NIL)) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL)))
+(((-702 |#1| |#2| |#3| |#4| |#5|) (-13 (-362) (-10 -8 (-15 -2985 (|#2| $)) (-15 -3220 (|#1| $)) (-15 -3048 ($ |#1| |#2|)) (-15 -1961 ((-3 $ "failed") $ $)))) (-171) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -702))
+((-2985 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-702 *3 *2 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3220 (*1 *2 *1) (-12 (-4 *2 (-171)) (-5 *1 (-702 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3048 (*1 *1 *2 *3) (-12 (-5 *1 (-702 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1961 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-702 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-362) (-10 -8 (-15 -2985 (|#2| $)) (-15 -3220 (|#1| $)) (-15 -3048 ($ |#1| |#2|)) (-15 -1961 ((-3 $ "failed") $ $))))
+((-3207 (((-112) $ $) 77)) (-2067 (((-112) $) 30)) (-3422 (((-1246 |#1|) $ (-762)) NIL)) (-2671 (((-635 (-1069)) $) NIL)) (-3401 (($ (-1159 |#1|)) NIL)) (-2492 (((-1159 $) $ (-1069)) NIL) (((-1159 |#1|) $) NIL)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1881 (($ $) NIL (|has| |#1| (-550)))) (-1857 (((-112) $) NIL (|has| |#1| (-550)))) (-2513 (((-762) $) NIL) (((-762) $ (-635 (-1069))) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-3309 (($ $ $) NIL (|has| |#1| (-550)))) (-3748 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-3465 (($ $) NIL (|has| |#1| (-450)))) (-1380 (((-417 $) $) NIL (|has| |#1| (-450)))) (-3719 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-3732 (((-112) $ $) NIL (|has| |#1| (-362)))) (-2276 (((-762)) 46 (|has| |#1| (-367)))) (-3362 (($ $ (-762)) NIL)) (-3352 (($ $ (-762)) NIL)) (-1940 ((|#2| |#2|) 43)) (-3264 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-450)))) (-1816 (($) NIL T CONST)) (-3069 (((-3 |#1| "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 (-1069) "failed") $) NIL)) (-1863 ((|#1| $) NIL) (((-406 (-558)) $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-558) $) NIL (|has| |#1| (-1028 (-558)))) (((-1069) $) NIL)) (-3320 (($ $ $ (-1069)) NIL (|has| |#1| (-171))) ((|#1| $ $) NIL (|has| |#1| (-171)))) (-4025 (($ $ $) NIL (|has| |#1| (-362)))) (-2490 (($ $) 33)) (-3216 (((-679 (-558)) (-679 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3683 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) NIL) (((-679 |#1|) (-679 $)) NIL)) (-3048 (($ |#2|) 41)) (-2588 (((-3 $ "failed") $) 85)) (-2424 (($) 50 (|has| |#1| (-367)))) (-4004 (($ $ $) NIL (|has| |#1| (-362)))) (-3342 (($ $ $) NIL)) (-3286 (($ $ $) NIL (|has| |#1| (-550)))) (-3274 (((-2 (|:| -2023 |#1|) (|:| -2306 $) (|:| -2071 $)) $ $) NIL (|has| |#1| (-550)))) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-2782 (($ $) NIL (|has| |#1| (-450))) (($ $ (-1069)) NIL (|has| |#1| (-450)))) (-2476 (((-635 $) $) NIL)) (-3031 (((-112) $) NIL (|has| |#1| (-899)))) (-1896 (((-948 $)) 79)) (-3888 (($ $ |#1| (-762) $) NIL)) (-2269 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (-12 (|has| (-1069) (-876 (-378))) (|has| |#1| (-876 (-378))))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (-12 (|has| (-1069) (-876 (-558))) (|has| |#1| (-876 (-558)))))) (-3449 (((-762) $ $) NIL (|has| |#1| (-550)))) (-2035 (((-112) $) NIL)) (-2110 (((-762) $) NIL)) (-2457 (((-3 $ "failed") $) NIL (|has| |#1| (-1138)))) (-2659 (($ (-1159 |#1|) (-1069)) NIL) (($ (-1159 $) (-1069)) NIL)) (-3486 (($ $ (-762)) NIL)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-2536 (((-635 $) $) NIL)) (-4238 (((-112) $) NIL)) (-2648 (($ |#1| (-762)) 76) (($ $ (-1069) (-762)) NIL) (($ $ (-635 (-1069)) (-635 (-762))) NIL)) (-3381 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $ (-1069)) NIL) (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL)) (-2985 ((|#2|) 44)) (-2524 (((-762) $) NIL) (((-762) $ (-1069)) NIL) (((-635 (-762)) $ (-635 (-1069))) NIL)) (-3910 (($ $ $) NIL (|has| |#1| (-841)))) (-3542 (($ $ $) NIL (|has| |#1| (-841)))) (-3898 (($ (-1 (-762) (-762)) $) NIL)) (-3167 (($ (-1 |#1| |#1|) $) NIL)) (-3412 (((-1159 |#1|) $) NIL)) (-3399 (((-3 (-1069) "failed") $) NIL)) (-2637 (((-911) $) NIL (|has| |#1| (-367)))) (-3227 ((|#2| $) 40)) (-2451 (($ $) NIL)) (-2463 ((|#1| $) 28)) (-2665 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-4310 (((-1145) $) NIL)) (-3371 (((-2 (|:| -2306 $) (|:| -2071 $)) $ (-762)) NIL)) (-2560 (((-3 (-635 $) "failed") $) NIL)) (-2548 (((-3 (-635 $) "failed") $) NIL)) (-2575 (((-3 (-2 (|:| |var| (-1069)) (|:| -1951 (-762))) "failed") $) NIL)) (-2543 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1796 (($) NIL (|has| |#1| (-1138)) CONST)) (-2851 (($ (-911)) NIL (|has| |#1| (-367)))) (-2975 (((-1107) $) NIL)) (-2429 (((-112) $) NIL)) (-2440 ((|#1| $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#1| (-450)))) (-2699 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-1876 (($ $) 78 (|has| |#1| (-348)))) (-3728 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-3738 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-2522 (((-417 $) $) NIL (|has| |#1| (-899)))) (-3713 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL (|has| |#1| (-362)))) (-3983 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-550)))) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-2554 (($ $ (-635 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-1069) |#1|) NIL) (($ $ (-635 (-1069)) (-635 |#1|)) NIL) (($ $ (-1069) $) NIL) (($ $ (-635 (-1069)) (-635 $)) NIL)) (-3722 (((-762) $) NIL (|has| |#1| (-362)))) (-2195 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-406 $) (-406 $) (-406 $)) NIL (|has| |#1| (-550))) ((|#1| (-406 $) |#1|) NIL (|has| |#1| (-362))) (((-406 $) $ (-406 $)) NIL (|has| |#1| (-550)))) (-3391 (((-3 $ "failed") $ (-762)) NIL)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 86 (|has| |#1| (-362)))) (-3331 (($ $ (-1069)) NIL (|has| |#1| (-171))) ((|#1| $) NIL (|has| |#1| (-171)))) (-2829 (($ $ (-1069)) NIL) (($ $ (-635 (-1069))) NIL) (($ $ (-1069) (-762)) NIL) (($ $ (-635 (-1069)) (-635 (-762))) NIL) (($ $ (-762)) NIL) (($ $) NIL) (($ $ (-1163)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4323 (((-762) $) 31) (((-762) $ (-1069)) NIL) (((-635 (-762)) $ (-635 (-1069))) NIL)) (-3224 (((-882 (-378)) $) NIL (-12 (|has| (-1069) (-606 (-882 (-378)))) (|has| |#1| (-606 (-882 (-378)))))) (((-882 (-558)) $) NIL (-12 (|has| (-1069) (-606 (-882 (-558)))) (|has| |#1| (-606 (-882 (-558)))))) (((-534) $) NIL (-12 (|has| (-1069) (-606 (-534))) (|has| |#1| (-606 (-534)))))) (-2504 ((|#1| $) NIL (|has| |#1| (-450))) (($ $ (-1069)) NIL (|has| |#1| (-450)))) (-3709 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-899))))) (-1887 (((-948 $)) 35)) (-3297 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550))) (((-3 (-406 $) "failed") (-406 $) $) NIL (|has| |#1| (-550)))) (-3220 (((-853) $) 60) (($ (-558)) NIL) (($ |#1|) 57) (($ (-1069)) NIL) (($ |#2|) 67) (($ (-406 (-558))) NIL (-3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558)))))) (($ $) NIL (|has| |#1| (-550)))) (-2583 (((-635 |#1|) $) NIL)) (-3736 ((|#1| $ (-762)) 62) (($ $ (-1069) (-762)) NIL) (($ $ (-635 (-1069)) (-635 (-762))) NIL)) (-3698 (((-3 $ "failed") $) NIL (-3998 (-12 (|has| $ (-144)) (|has| |#1| (-899))) (|has| |#1| (-144))))) (-2542 (((-762)) NIL)) (-3879 (($ $ $ (-762)) NIL (|has| |#1| (-171)))) (-1870 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2131 (($) 20 T CONST)) (-1930 (((-1246 |#1|) $) 74)) (-1919 (($ (-1246 |#1|)) 49)) (-2142 (($) 8 T CONST)) (-1866 (($ $ (-1069)) NIL) (($ $ (-635 (-1069))) NIL) (($ $ (-1069) (-762)) NIL) (($ $ (-635 (-1069)) (-635 (-762))) NIL) (($ $ (-762)) NIL) (($ $) NIL) (($ $ (-1163)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1907 (((-1246 |#1|) $) NIL)) (-1747 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1683 (((-112) $ $) 68)) (-1731 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1810 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1798 (($ $) 71) (($ $ $) NIL)) (-1784 (($ $ $) 32)) (** (($ $ (-911)) NIL) (($ $ (-762)) 80)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 56) (($ $ $) 73) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558))))) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ |#1| $) 54) (($ $ |#1|) NIL)))
+(((-703 |#1| |#2|) (-13 (-1222 |#1|) (-608 |#2|) (-10 -8 (-15 -1940 (|#2| |#2|)) (-15 -2985 (|#2|)) (-15 -3048 ($ |#2|)) (-15 -3227 (|#2| $)) (-15 -1930 ((-1246 |#1|) $)) (-15 -1919 ($ (-1246 |#1|))) (-15 -1907 ((-1246 |#1|) $)) (-15 -1896 ((-948 $))) (-15 -1887 ((-948 $))) (IF (|has| |#1| (-348)) (-15 -1876 ($ $)) |%noBranch|) (IF (|has| |#1| (-367)) (-6 (-367)) |%noBranch|))) (-1039) (-1222 |#1|)) (T -703))
+((-1940 (*1 *2 *2) (-12 (-4 *3 (-1039)) (-5 *1 (-703 *3 *2)) (-4 *2 (-1222 *3)))) (-2985 (*1 *2) (-12 (-4 *2 (-1222 *3)) (-5 *1 (-703 *3 *2)) (-4 *3 (-1039)))) (-3048 (*1 *1 *2) (-12 (-4 *3 (-1039)) (-5 *1 (-703 *3 *2)) (-4 *2 (-1222 *3)))) (-3227 (*1 *2 *1) (-12 (-4 *2 (-1222 *3)) (-5 *1 (-703 *3 *2)) (-4 *3 (-1039)))) (-1930 (*1 *2 *1) (-12 (-4 *3 (-1039)) (-5 *2 (-1246 *3)) (-5 *1 (-703 *3 *4)) (-4 *4 (-1222 *3)))) (-1919 (*1 *1 *2) (-12 (-5 *2 (-1246 *3)) (-4 *3 (-1039)) (-5 *1 (-703 *3 *4)) (-4 *4 (-1222 *3)))) (-1907 (*1 *2 *1) (-12 (-4 *3 (-1039)) (-5 *2 (-1246 *3)) (-5 *1 (-703 *3 *4)) (-4 *4 (-1222 *3)))) (-1896 (*1 *2) (-12 (-4 *3 (-1039)) (-5 *2 (-948 (-703 *3 *4))) (-5 *1 (-703 *3 *4)) (-4 *4 (-1222 *3)))) (-1887 (*1 *2) (-12 (-4 *3 (-1039)) (-5 *2 (-948 (-703 *3 *4))) (-5 *1 (-703 *3 *4)) (-4 *4 (-1222 *3)))) (-1876 (*1 *1 *1) (-12 (-4 *2 (-348)) (-4 *2 (-1039)) (-5 *1 (-703 *2 *3)) (-4 *3 (-1222 *2)))))
+(-13 (-1222 |#1|) (-608 |#2|) (-10 -8 (-15 -1940 (|#2| |#2|)) (-15 -2985 (|#2|)) (-15 -3048 ($ |#2|)) (-15 -3227 (|#2| $)) (-15 -1930 ((-1246 |#1|) $)) (-15 -1919 ($ (-1246 |#1|))) (-15 -1907 ((-1246 |#1|) $)) (-15 -1896 ((-948 $))) (-15 -1887 ((-948 $))) (IF (|has| |#1| (-348)) (-15 -1876 ($ $)) |%noBranch|) (IF (|has| |#1| (-367)) (-6 (-367)) |%noBranch|)))
+((-3207 (((-112) $ $) NIL)) (-3910 (($ $ $) NIL)) (-3542 (($ $ $) NIL)) (-4310 (((-1145) $) NIL)) (-2851 ((|#1| $) 13)) (-2975 (((-1107) $) NIL)) (-1951 ((|#2| $) 12)) (-3233 (($ |#1| |#2|) 16)) (-3220 (((-853) $) NIL) (($ (-2 (|:| -2851 |#1|) (|:| -1951 |#2|))) 15) (((-2 (|:| -2851 |#1|) (|:| -1951 |#2|)) $) 14)) (-1747 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1683 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 11)))
+(((-704 |#1| |#2| |#3|) (-13 (-841) (-488 (-2 (|:| -2851 |#1|) (|:| -1951 |#2|))) (-10 -8 (-15 -1951 (|#2| $)) (-15 -2851 (|#1| $)) (-15 -3233 ($ |#1| |#2|)))) (-841) (-1087) (-1 (-112) (-2 (|:| -2851 |#1|) (|:| -1951 |#2|)) (-2 (|:| -2851 |#1|) (|:| -1951 |#2|)))) (T -704))
+((-1951 (*1 *2 *1) (-12 (-4 *2 (-1087)) (-5 *1 (-704 *3 *2 *4)) (-4 *3 (-841)) (-14 *4 (-1 (-112) (-2 (|:| -2851 *3) (|:| -1951 *2)) (-2 (|:| -2851 *3) (|:| -1951 *2)))))) (-2851 (*1 *2 *1) (-12 (-4 *2 (-841)) (-5 *1 (-704 *2 *3 *4)) (-4 *3 (-1087)) (-14 *4 (-1 (-112) (-2 (|:| -2851 *2) (|:| -1951 *3)) (-2 (|:| -2851 *2) (|:| -1951 *3)))))) (-3233 (*1 *1 *2 *3) (-12 (-5 *1 (-704 *2 *3 *4)) (-4 *2 (-841)) (-4 *3 (-1087)) (-14 *4 (-1 (-112) (-2 (|:| -2851 *2) (|:| -1951 *3)) (-2 (|:| -2851 *2) (|:| -1951 *3)))))))
+(-13 (-841) (-488 (-2 (|:| -2851 |#1|) (|:| -1951 |#2|))) (-10 -8 (-15 -1951 (|#2| $)) (-15 -2851 (|#1| $)) (-15 -3233 ($ |#1| |#2|))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) 59)) (-2089 (((-3 $ "failed") $ $) NIL)) (-1816 (($) NIL T CONST)) (-3069 (((-3 |#1| "failed") $) 89) (((-3 (-114) "failed") $) 95)) (-1863 ((|#1| $) NIL) (((-114) $) 39)) (-2588 (((-3 $ "failed") $) 90)) (-1494 ((|#2| (-114) |#2|) 82)) (-2035 (((-112) $) NIL)) (-1486 (($ |#1| (-360 (-114))) 14)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-1504 (($ $ (-1 |#2| |#2|)) 58)) (-1515 (($ $ (-1 |#2| |#2|)) 44)) (-2195 ((|#2| $ |#2|) 33)) (-1527 ((|#1| |#1|) 105 (|has| |#1| (-171)))) (-3220 (((-853) $) 66) (($ (-558)) 18) (($ |#1|) 17) (($ (-114)) 23)) (-3698 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2542 (((-762)) 37)) (-1536 (($ $) 99 (|has| |#1| (-171))) (($ $ $) 103 (|has| |#1| (-171)))) (-2131 (($) 21 T CONST)) (-2142 (($) 9 T CONST)) (-1683 (((-112) $ $) NIL)) (-1798 (($ $) 48) (($ $ $) NIL)) (-1784 (($ $ $) 73)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ (-114) (-558)) NIL) (($ $ (-558)) 57)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-171))) (($ $ |#1|) 97 (|has| |#1| (-171)))))
+(((-705 |#1| |#2|) (-13 (-1039) (-1028 |#1|) (-1028 (-114)) (-285 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-6 (-38 |#1|)) (-15 -1536 ($ $)) (-15 -1536 ($ $ $)) (-15 -1527 (|#1| |#1|))) |%noBranch|) (-15 -1515 ($ $ (-1 |#2| |#2|))) (-15 -1504 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-558))) (-15 ** ($ $ (-558))) (-15 -1494 (|#2| (-114) |#2|)) (-15 -1486 ($ |#1| (-360 (-114)))))) (-1039) (-638 |#1|)) (T -705))
+((-1536 (*1 *1 *1) (-12 (-4 *2 (-171)) (-4 *2 (-1039)) (-5 *1 (-705 *2 *3)) (-4 *3 (-638 *2)))) (-1536 (*1 *1 *1 *1) (-12 (-4 *2 (-171)) (-4 *2 (-1039)) (-5 *1 (-705 *2 *3)) (-4 *3 (-638 *2)))) (-1527 (*1 *2 *2) (-12 (-4 *2 (-171)) (-4 *2 (-1039)) (-5 *1 (-705 *2 *3)) (-4 *3 (-638 *2)))) (-1515 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-638 *3)) (-4 *3 (-1039)) (-5 *1 (-705 *3 *4)))) (-1504 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-638 *3)) (-4 *3 (-1039)) (-5 *1 (-705 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-558)) (-4 *4 (-1039)) (-5 *1 (-705 *4 *5)) (-4 *5 (-638 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *3 (-1039)) (-5 *1 (-705 *3 *4)) (-4 *4 (-638 *3)))) (-1494 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-4 *4 (-1039)) (-5 *1 (-705 *4 *2)) (-4 *2 (-638 *4)))) (-1486 (*1 *1 *2 *3) (-12 (-5 *3 (-360 (-114))) (-4 *2 (-1039)) (-5 *1 (-705 *2 *4)) (-4 *4 (-638 *2)))))
+(-13 (-1039) (-1028 |#1|) (-1028 (-114)) (-285 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-6 (-38 |#1|)) (-15 -1536 ($ $)) (-15 -1536 ($ $ $)) (-15 -1527 (|#1| |#1|))) |%noBranch|) (-15 -1515 ($ $ (-1 |#2| |#2|))) (-15 -1504 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-558))) (-15 ** ($ $ (-558))) (-15 -1494 (|#2| (-114) |#2|)) (-15 -1486 ($ |#1| (-360 (-114))))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) 33)) (-2089 (((-3 $ "failed") $ $) NIL)) (-1816 (($) NIL T CONST)) (-3048 (($ |#1| |#2|) 25)) (-2588 (((-3 $ "failed") $) 48)) (-2035 (((-112) $) 35)) (-2985 ((|#2| $) 12)) (-4310 (((-1145) $) NIL)) (-2418 (($ $) 49)) (-2975 (((-1107) $) NIL)) (-1961 (((-3 $ "failed") $ $) 47)) (-3220 (((-853) $) 24) (($ (-558)) 19) ((|#1| $) 13)) (-2542 (((-762)) 28)) (-2131 (($) 16 T CONST)) (-2142 (($) 30 T CONST)) (-1683 (((-112) $ $) 38)) (-1798 (($ $) 43) (($ $ $) 37)) (-1784 (($ $ $) 40)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 21) (($ $ $) 20)))
+(((-706 |#1| |#2| |#3| |#4| |#5|) (-13 (-1039) (-10 -8 (-15 -2985 (|#2| $)) (-15 -3220 (|#1| $)) (-15 -3048 ($ |#1| |#2|)) (-15 -1961 ((-3 $ "failed") $ $)) (-15 -2588 ((-3 $ "failed") $)) (-15 -2418 ($ $)))) (-171) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -706))
+((-2588 (*1 *1 *1) (|partial| -12 (-5 *1 (-706 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2985 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-706 *3 *2 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3220 (*1 *2 *1) (-12 (-4 *2 (-171)) (-5 *1 (-706 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3048 (*1 *1 *2 *3) (-12 (-5 *1 (-706 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1961 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-706 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2418 (*1 *1 *1) (-12 (-5 *1 (-706 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-1039) (-10 -8 (-15 -2985 (|#2| $)) (-15 -3220 (|#1| $)) (-15 -3048 ($ |#1| |#2|)) (-15 -1961 ((-3 $ "failed") $ $)) (-15 -2588 ((-3 $ "failed") $)) (-15 -2418 ($ $))))
+((* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
+(((-707 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-762) |#1|)) (-15 * (|#1| (-911) |#1|))) (-708 |#2|) (-171)) (T -707))
+NIL
+(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-762) |#1|)) (-15 * (|#1| (-911) |#1|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2089 (((-3 $ "failed") $ $) 19)) (-1816 (($) 17 T CONST)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11)) (-2131 (($) 18 T CONST)) (-1683 (((-112) $ $) 6)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+(((-708 |#1|) (-139) (-171)) (T -708))
NIL
(-13 (-111 |t#1| |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-601 (-848)) . T) ((-634 |#1|) . T) ((-1040 |#1|) . T) ((-1082) . T))
-((-3062 (((-112) $ $) NIL)) (-1648 (($ |#1|) 17) (($ $ |#1|) 20)) (-1585 (($ |#1|) 18) (($ $ |#1|) 21)) (-4087 (($) NIL T CONST)) (-1320 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-3248 (((-112) $) NIL)) (-3601 (($ |#1| |#1| |#1| |#1|) 8)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) 16)) (-2768 (((-1102) $) NIL)) (-2386 ((|#1| $ |#1|) 24) (((-820 |#1|) $ (-820 |#1|)) 32)) (-3992 (($ $ $) NIL)) (-1856 (($ $ $) NIL)) (-3075 (((-848) $) 39)) (-2014 (($) 9 T CONST)) (-1658 (((-112) $ $) 44)) (-1752 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL)) (* (($ $ $) 14)))
-(((-705 |#1|) (-13 (-467) (-10 -8 (-15 -3601 ($ |#1| |#1| |#1| |#1|)) (-15 -1648 ($ |#1|)) (-15 -1585 ($ |#1|)) (-15 -1320 ($)) (-15 -1648 ($ $ |#1|)) (-15 -1585 ($ $ |#1|)) (-15 -1320 ($ $)) (-15 -2386 (|#1| $ |#1|)) (-15 -2386 ((-820 |#1|) $ (-820 |#1|))))) (-358)) (T -705))
-((-3601 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-705 *2)) (-4 *2 (-358)))) (-1648 (*1 *1 *2) (-12 (-5 *1 (-705 *2)) (-4 *2 (-358)))) (-1585 (*1 *1 *2) (-12 (-5 *1 (-705 *2)) (-4 *2 (-358)))) (-1320 (*1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-358)))) (-1648 (*1 *1 *1 *2) (-12 (-5 *1 (-705 *2)) (-4 *2 (-358)))) (-1585 (*1 *1 *1 *2) (-12 (-5 *1 (-705 *2)) (-4 *2 (-358)))) (-1320 (*1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-358)))) (-2386 (*1 *2 *1 *2) (-12 (-5 *1 (-705 *2)) (-4 *2 (-358)))) (-2386 (*1 *2 *1 *2) (-12 (-5 *2 (-820 *3)) (-4 *3 (-358)) (-5 *1 (-705 *3)))))
-(-13 (-467) (-10 -8 (-15 -3601 ($ |#1| |#1| |#1| |#1|)) (-15 -1648 ($ |#1|)) (-15 -1585 ($ |#1|)) (-15 -1320 ($)) (-15 -1648 ($ $ |#1|)) (-15 -1585 ($ $ |#1|)) (-15 -1320 ($ $)) (-15 -2386 (|#1| $ |#1|)) (-15 -2386 ((-820 |#1|) $ (-820 |#1|)))))
-((-2080 (($ $ (-906)) 12)) (-1297 (($ $ (-906)) 13)) (** (($ $ (-906)) 10)))
-(((-706 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-906))) (-15 -1297 (|#1| |#1| (-906))) (-15 -2080 (|#1| |#1| (-906)))) (-707)) (T -706))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-906))) (-15 -1297 (|#1| |#1| (-906))) (-15 -2080 (|#1| |#1| (-906))))
-((-3062 (((-112) $ $) 7)) (-2080 (($ $ (-906)) 15)) (-1297 (($ $ (-906)) 14)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-1658 (((-112) $ $) 6)) (** (($ $ (-906)) 13)) (* (($ $ $) 16)))
-(((-707) (-138)) (T -707))
-((* (*1 *1 *1 *1) (-4 *1 (-707))) (-2080 (*1 *1 *1 *2) (-12 (-4 *1 (-707)) (-5 *2 (-906)))) (-1297 (*1 *1 *1 *2) (-12 (-4 *1 (-707)) (-5 *2 (-906)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-707)) (-5 *2 (-906)))))
-(-13 (-1082) (-10 -8 (-15 * ($ $ $)) (-15 -2080 ($ $ (-906))) (-15 -1297 ($ $ (-906))) (-15 ** ($ $ (-906)))))
-(((-102) . T) ((-601 (-848)) . T) ((-1082) . T))
-((-2080 (($ $ (-906)) NIL) (($ $ (-758)) 17)) (-3248 (((-112) $) 10)) (-1297 (($ $ (-906)) NIL) (($ $ (-758)) 18)) (** (($ $ (-906)) NIL) (($ $ (-758)) 15)))
-(((-708 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-758))) (-15 -1297 (|#1| |#1| (-758))) (-15 -2080 (|#1| |#1| (-758))) (-15 -3248 ((-112) |#1|)) (-15 ** (|#1| |#1| (-906))) (-15 -1297 (|#1| |#1| (-906))) (-15 -2080 (|#1| |#1| (-906)))) (-709)) (T -708))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-758))) (-15 -1297 (|#1| |#1| (-758))) (-15 -2080 (|#1| |#1| (-758))) (-15 -3248 ((-112) |#1|)) (-15 ** (|#1| |#1| (-906))) (-15 -1297 (|#1| |#1| (-906))) (-15 -2080 (|#1| |#1| (-906))))
-((-3062 (((-112) $ $) 7)) (-3754 (((-3 $ "failed") $) 17)) (-2080 (($ $ (-906)) 15) (($ $ (-758)) 22)) (-1320 (((-3 $ "failed") $) 19)) (-3248 (((-112) $) 23)) (-1605 (((-3 $ "failed") $) 18)) (-1297 (($ $ (-906)) 14) (($ $ (-758)) 21)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-2014 (($) 24 T CONST)) (-1658 (((-112) $ $) 6)) (** (($ $ (-906)) 13) (($ $ (-758)) 20)) (* (($ $ $) 16)))
-(((-709) (-138)) (T -709))
-((-2014 (*1 *1) (-4 *1 (-709))) (-3248 (*1 *2 *1) (-12 (-4 *1 (-709)) (-5 *2 (-112)))) (-2080 (*1 *1 *1 *2) (-12 (-4 *1 (-709)) (-5 *2 (-758)))) (-1297 (*1 *1 *1 *2) (-12 (-4 *1 (-709)) (-5 *2 (-758)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-709)) (-5 *2 (-758)))) (-1320 (*1 *1 *1) (|partial| -4 *1 (-709))) (-1605 (*1 *1 *1) (|partial| -4 *1 (-709))) (-3754 (*1 *1 *1) (|partial| -4 *1 (-709))))
-(-13 (-707) (-10 -8 (-15 (-2014) ($) -2397) (-15 -3248 ((-112) $)) (-15 -2080 ($ $ (-758))) (-15 -1297 ($ $ (-758))) (-15 ** ($ $ (-758))) (-15 -1320 ((-3 $ "failed") $)) (-15 -1605 ((-3 $ "failed") $)) (-15 -3754 ((-3 $ "failed") $))))
-(((-102) . T) ((-601 (-848)) . T) ((-707) . T) ((-1082) . T))
-((-1508 (((-758)) 35)) (-2784 (((-3 (-554) "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-1668 (((-554) $) NIL) (((-402 (-554)) $) NIL) ((|#2| $) 22)) (-3676 (($ |#3|) NIL) (((-3 $ "failed") (-402 |#3|)) 45)) (-1320 (((-3 $ "failed") $) 65)) (-3353 (($) 39)) (-3274 ((|#2| $) 20)) (-4137 (($) 17)) (-1553 (($ $ (-1 |#2| |#2|) (-758)) NIL) (($ $ (-1 |#2| |#2|)) 53) (($ $ (-631 (-1158)) (-631 (-758))) NIL) (($ $ (-1158) (-758)) NIL) (($ $ (-631 (-1158))) NIL) (($ $ (-1158)) NIL) (($ $ (-758)) NIL) (($ $) NIL)) (-2092 (((-675 |#2|) (-1241 $) (-1 |#2| |#2|)) 60)) (-2927 (((-1241 |#2|) $) NIL) (($ (-1241 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-3109 ((|#3| $) 32)) (-3782 (((-1241 $)) 29)))
-(((-710 |#1| |#2| |#3|) (-10 -8 (-15 -1553 (|#1| |#1|)) (-15 -1553 (|#1| |#1| (-758))) (-15 -1553 (|#1| |#1| (-1158))) (-15 -1553 (|#1| |#1| (-631 (-1158)))) (-15 -1553 (|#1| |#1| (-1158) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 -3353 (|#1|)) (-15 -1508 ((-758))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|) (-758))) (-15 -2092 ((-675 |#2|) (-1241 |#1|) (-1 |#2| |#2|))) (-15 -3676 ((-3 |#1| "failed") (-402 |#3|))) (-15 -2927 (|#1| |#3|)) (-15 -3676 (|#1| |#3|)) (-15 -4137 (|#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -1668 ((-554) |#1|)) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -2927 (|#3| |#1|)) (-15 -2927 (|#1| (-1241 |#2|))) (-15 -2927 ((-1241 |#2|) |#1|)) (-15 -3782 ((-1241 |#1|))) (-15 -3109 (|#3| |#1|)) (-15 -3274 (|#2| |#1|)) (-15 -1320 ((-3 |#1| "failed") |#1|))) (-711 |#2| |#3|) (-170) (-1217 |#2|)) (T -710))
-((-1508 (*1 *2) (-12 (-4 *4 (-170)) (-4 *5 (-1217 *4)) (-5 *2 (-758)) (-5 *1 (-710 *3 *4 *5)) (-4 *3 (-711 *4 *5)))))
-(-10 -8 (-15 -1553 (|#1| |#1|)) (-15 -1553 (|#1| |#1| (-758))) (-15 -1553 (|#1| |#1| (-1158))) (-15 -1553 (|#1| |#1| (-631 (-1158)))) (-15 -1553 (|#1| |#1| (-1158) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 -3353 (|#1|)) (-15 -1508 ((-758))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|) (-758))) (-15 -2092 ((-675 |#2|) (-1241 |#1|) (-1 |#2| |#2|))) (-15 -3676 ((-3 |#1| "failed") (-402 |#3|))) (-15 -2927 (|#1| |#3|)) (-15 -3676 (|#1| |#3|)) (-15 -4137 (|#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -1668 ((-554) |#1|)) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -2927 (|#3| |#1|)) (-15 -2927 (|#1| (-1241 |#2|))) (-15 -2927 ((-1241 |#2|) |#1|)) (-15 -3782 ((-1241 |#1|))) (-15 -3109 (|#3| |#1|)) (-15 -3274 (|#2| |#1|)) (-15 -1320 ((-3 |#1| "failed") |#1|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 93 (|has| |#1| (-358)))) (-1976 (($ $) 94 (|has| |#1| (-358)))) (-1363 (((-112) $) 96 (|has| |#1| (-358)))) (-1903 (((-675 |#1|) (-1241 $)) 47) (((-675 |#1|)) 62)) (-1612 ((|#1| $) 53)) (-3205 (((-1168 (-906) (-758)) (-554)) 146 (|has| |#1| (-344)))) (-2934 (((-3 $ "failed") $ $) 19)) (-3278 (($ $) 113 (|has| |#1| (-358)))) (-1565 (((-413 $) $) 114 (|has| |#1| (-358)))) (-2286 (((-112) $ $) 104 (|has| |#1| (-358)))) (-1508 (((-758)) 87 (|has| |#1| (-363)))) (-4087 (($) 17 T CONST)) (-2784 (((-3 (-554) "failed") $) 169 (|has| |#1| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) 167 (|has| |#1| (-1023 (-402 (-554))))) (((-3 |#1| "failed") $) 164)) (-1668 (((-554) $) 168 (|has| |#1| (-1023 (-554)))) (((-402 (-554)) $) 166 (|has| |#1| (-1023 (-402 (-554))))) ((|#1| $) 165)) (-1651 (($ (-1241 |#1|) (-1241 $)) 49) (($ (-1241 |#1|)) 65)) (-2723 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| |#1| (-344)))) (-3964 (($ $ $) 108 (|has| |#1| (-358)))) (-3629 (((-675 |#1|) $ (-1241 $)) 54) (((-675 |#1|) $) 60)) (-3699 (((-675 (-554)) (-675 $)) 163 (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) 162 (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) 161) (((-675 |#1|) (-675 $)) 160)) (-3676 (($ |#2|) 157) (((-3 $ "failed") (-402 |#2|)) 154 (|has| |#1| (-358)))) (-1320 (((-3 $ "failed") $) 33)) (-4186 (((-906)) 55)) (-3353 (($) 90 (|has| |#1| (-363)))) (-3943 (($ $ $) 107 (|has| |#1| (-358)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 102 (|has| |#1| (-358)))) (-3157 (($) 148 (|has| |#1| (-344)))) (-2754 (((-112) $) 149 (|has| |#1| (-344)))) (-4122 (($ $ (-758)) 140 (|has| |#1| (-344))) (($ $) 139 (|has| |#1| (-344)))) (-3289 (((-112) $) 115 (|has| |#1| (-358)))) (-2342 (((-906) $) 151 (|has| |#1| (-344))) (((-820 (-906)) $) 137 (|has| |#1| (-344)))) (-3248 (((-112) $) 31)) (-3274 ((|#1| $) 52)) (-3339 (((-3 $ "failed") $) 141 (|has| |#1| (-344)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 111 (|has| |#1| (-358)))) (-3361 ((|#2| $) 45 (|has| |#1| (-358)))) (-3830 (((-906) $) 89 (|has| |#1| (-363)))) (-3662 ((|#2| $) 155)) (-2475 (($ (-631 $)) 100 (|has| |#1| (-358))) (($ $ $) 99 (|has| |#1| (-358)))) (-1613 (((-1140) $) 9)) (-2483 (($ $) 116 (|has| |#1| (-358)))) (-3834 (($) 142 (|has| |#1| (-344)) CONST)) (-2717 (($ (-906)) 88 (|has| |#1| (-363)))) (-2768 (((-1102) $) 10)) (-4137 (($) 159)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 101 (|has| |#1| (-358)))) (-2510 (($ (-631 $)) 98 (|has| |#1| (-358))) (($ $ $) 97 (|has| |#1| (-358)))) (-3725 (((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))) 145 (|has| |#1| (-344)))) (-2270 (((-413 $) $) 112 (|has| |#1| (-358)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 109 (|has| |#1| (-358)))) (-3919 (((-3 $ "failed") $ $) 92 (|has| |#1| (-358)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 103 (|has| |#1| (-358)))) (-2072 (((-758) $) 105 (|has| |#1| (-358)))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 106 (|has| |#1| (-358)))) (-1495 ((|#1| (-1241 $)) 48) ((|#1|) 61)) (-3316 (((-758) $) 150 (|has| |#1| (-344))) (((-3 (-758) "failed") $ $) 138 (|has| |#1| (-344)))) (-1553 (($ $) 136 (-3994 (-3726 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-344)))) (($ $ (-758)) 134 (-3994 (-3726 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-344)))) (($ $ (-1158)) 132 (-3726 (|has| |#1| (-885 (-1158))) (|has| |#1| (-358)))) (($ $ (-631 (-1158))) 131 (-3726 (|has| |#1| (-885 (-1158))) (|has| |#1| (-358)))) (($ $ (-1158) (-758)) 130 (-3726 (|has| |#1| (-885 (-1158))) (|has| |#1| (-358)))) (($ $ (-631 (-1158)) (-631 (-758))) 129 (-3726 (|has| |#1| (-885 (-1158))) (|has| |#1| (-358)))) (($ $ (-1 |#1| |#1|) (-758)) 122 (|has| |#1| (-358))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-358)))) (-2092 (((-675 |#1|) (-1241 $) (-1 |#1| |#1|)) 153 (|has| |#1| (-358)))) (-4318 ((|#2|) 158)) (-3944 (($) 147 (|has| |#1| (-344)))) (-3656 (((-1241 |#1|) $ (-1241 $)) 51) (((-675 |#1|) (-1241 $) (-1241 $)) 50) (((-1241 |#1|) $) 67) (((-675 |#1|) (-1241 $)) 66)) (-2927 (((-1241 |#1|) $) 64) (($ (-1241 |#1|)) 63) ((|#2| $) 170) (($ |#2|) 156)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) 144 (|has| |#1| (-344)))) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ |#1|) 38) (($ $) 91 (|has| |#1| (-358))) (($ (-402 (-554))) 86 (-3994 (|has| |#1| (-358)) (|has| |#1| (-1023 (-402 (-554))))))) (-2084 (($ $) 143 (|has| |#1| (-344))) (((-3 $ "failed") $) 44 (|has| |#1| (-143)))) (-3109 ((|#2| $) 46)) (-2261 (((-758)) 28)) (-3782 (((-1241 $)) 68)) (-1909 (((-112) $ $) 95 (|has| |#1| (-358)))) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($ $) 135 (-3994 (-3726 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-344)))) (($ $ (-758)) 133 (-3994 (-3726 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-344)))) (($ $ (-1158)) 128 (-3726 (|has| |#1| (-885 (-1158))) (|has| |#1| (-358)))) (($ $ (-631 (-1158))) 127 (-3726 (|has| |#1| (-885 (-1158))) (|has| |#1| (-358)))) (($ $ (-1158) (-758)) 126 (-3726 (|has| |#1| (-885 (-1158))) (|has| |#1| (-358)))) (($ $ (-631 (-1158)) (-631 (-758))) 125 (-3726 (|has| |#1| (-885 (-1158))) (|has| |#1| (-358)))) (($ $ (-1 |#1| |#1|) (-758)) 124 (|has| |#1| (-358))) (($ $ (-1 |#1| |#1|)) 123 (|has| |#1| (-358)))) (-1658 (((-112) $ $) 6)) (-1752 (($ $ $) 120 (|has| |#1| (-358)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ (-554)) 117 (|has| |#1| (-358)))) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ (-402 (-554)) $) 119 (|has| |#1| (-358))) (($ $ (-402 (-554))) 118 (|has| |#1| (-358)))))
-(((-711 |#1| |#2|) (-138) (-170) (-1217 |t#1|)) (T -711))
-((-4137 (*1 *1) (-12 (-4 *2 (-170)) (-4 *1 (-711 *2 *3)) (-4 *3 (-1217 *2)))) (-4318 (*1 *2) (-12 (-4 *1 (-711 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1217 *3)))) (-3676 (*1 *1 *2) (-12 (-4 *3 (-170)) (-4 *1 (-711 *3 *2)) (-4 *2 (-1217 *3)))) (-2927 (*1 *1 *2) (-12 (-4 *3 (-170)) (-4 *1 (-711 *3 *2)) (-4 *2 (-1217 *3)))) (-3662 (*1 *2 *1) (-12 (-4 *1 (-711 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1217 *3)))) (-3676 (*1 *1 *2) (|partial| -12 (-5 *2 (-402 *4)) (-4 *4 (-1217 *3)) (-4 *3 (-358)) (-4 *3 (-170)) (-4 *1 (-711 *3 *4)))) (-2092 (*1 *2 *3 *4) (-12 (-5 *3 (-1241 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-358)) (-4 *1 (-711 *5 *6)) (-4 *5 (-170)) (-4 *6 (-1217 *5)) (-5 *2 (-675 *5)))))
-(-13 (-404 |t#1| |t#2|) (-170) (-602 |t#2|) (-406 |t#1|) (-372 |t#1|) (-10 -8 (-15 -4137 ($)) (-15 -4318 (|t#2|)) (-15 -3676 ($ |t#2|)) (-15 -2927 ($ |t#2|)) (-15 -3662 (|t#2| $)) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|) (IF (|has| |t#1| (-358)) (PROGN (-6 (-358)) (-6 (-227 |t#1|)) (-15 -3676 ((-3 $ "failed") (-402 |t#2|))) (-15 -2092 ((-675 |t#1|) (-1241 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-344)) (-6 (-344)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-554))) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-38 |#1|) . T) ((-38 $) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-102) . T) ((-111 #0# #0#) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -3994 (|has| |#1| (-344)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-604 #0#) -3994 (|has| |#1| (-1023 (-402 (-554)))) (|has| |#1| (-344)) (|has| |#1| (-358))) ((-604 (-554)) . T) ((-604 |#1|) . T) ((-604 $) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-601 (-848)) . T) ((-170) . T) ((-602 |#2|) . T) ((-227 |#1|) |has| |#1| (-358)) ((-229) -3994 (|has| |#1| (-344)) (-12 (|has| |#1| (-229)) (|has| |#1| (-358)))) ((-239) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-285) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-302) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-358) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-397) |has| |#1| (-344)) ((-363) -3994 (|has| |#1| (-363)) (|has| |#1| (-344))) ((-344) |has| |#1| (-344)) ((-365 |#1| |#2|) . T) ((-404 |#1| |#2|) . T) ((-372 |#1|) . T) ((-406 |#1|) . T) ((-446) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-546) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-634 #0#) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-634 |#1|) . T) ((-634 $) . T) ((-627 (-554)) |has| |#1| (-627 (-554))) ((-627 |#1|) . T) ((-704 #0#) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-704 |#1|) . T) ((-704 $) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-713) . T) ((-885 (-1158)) -12 (|has| |#1| (-358)) (|has| |#1| (-885 (-1158)))) ((-905) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-1023 (-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) ((-1023 (-554)) |has| |#1| (-1023 (-554))) ((-1023 |#1|) . T) ((-1040 #0#) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-1040 |#1|) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1133) |has| |#1| (-344)) ((-1199) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))))
-((-4087 (($) 11)) (-1320 (((-3 $ "failed") $) 13)) (-3248 (((-112) $) 10)) (** (($ $ (-906)) NIL) (($ $ (-758)) 18)))
-(((-712 |#1|) (-10 -8 (-15 -1320 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-758))) (-15 -3248 ((-112) |#1|)) (-15 -4087 (|#1|)) (-15 ** (|#1| |#1| (-906)))) (-713)) (T -712))
-NIL
-(-10 -8 (-15 -1320 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-758))) (-15 -3248 ((-112) |#1|)) (-15 -4087 (|#1|)) (-15 ** (|#1| |#1| (-906))))
-((-3062 (((-112) $ $) 7)) (-4087 (($) 18 T CONST)) (-1320 (((-3 $ "failed") $) 15)) (-3248 (((-112) $) 17)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-2014 (($) 19 T CONST)) (-1658 (((-112) $ $) 6)) (** (($ $ (-906)) 13) (($ $ (-758)) 16)) (* (($ $ $) 14)))
-(((-713) (-138)) (T -713))
-((-2014 (*1 *1) (-4 *1 (-713))) (-4087 (*1 *1) (-4 *1 (-713))) (-3248 (*1 *2 *1) (-12 (-4 *1 (-713)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-713)) (-5 *2 (-758)))) (-1320 (*1 *1 *1) (|partial| -4 *1 (-713))))
-(-13 (-1094) (-10 -8 (-15 (-2014) ($) -2397) (-15 -4087 ($) -2397) (-15 -3248 ((-112) $)) (-15 ** ($ $ (-758))) (-15 -1320 ((-3 $ "failed") $))))
-(((-102) . T) ((-601 (-848)) . T) ((-1094) . T) ((-1082) . T))
-((-4105 (((-2 (|:| -3312 (-413 |#2|)) (|:| |special| (-413 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-1515 (((-2 (|:| -3312 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-4095 ((|#2| (-402 |#2|) (-1 |#2| |#2|)) 13)) (-3678 (((-2 (|:| |poly| |#2|) (|:| -3312 (-402 |#2|)) (|:| |special| (-402 |#2|))) (-402 |#2|) (-1 |#2| |#2|)) 47)))
-(((-714 |#1| |#2|) (-10 -7 (-15 -1515 ((-2 (|:| -3312 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -4105 ((-2 (|:| -3312 (-413 |#2|)) (|:| |special| (-413 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -4095 (|#2| (-402 |#2|) (-1 |#2| |#2|))) (-15 -3678 ((-2 (|:| |poly| |#2|) (|:| -3312 (-402 |#2|)) (|:| |special| (-402 |#2|))) (-402 |#2|) (-1 |#2| |#2|)))) (-358) (-1217 |#1|)) (T -714))
-((-3678 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1217 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3312 (-402 *6)) (|:| |special| (-402 *6)))) (-5 *1 (-714 *5 *6)) (-5 *3 (-402 *6)))) (-4095 (*1 *2 *3 *4) (-12 (-5 *3 (-402 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1217 *5)) (-5 *1 (-714 *5 *2)) (-4 *5 (-358)))) (-4105 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1217 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| -3312 (-413 *3)) (|:| |special| (-413 *3)))) (-5 *1 (-714 *5 *3)))) (-1515 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1217 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| -3312 *3) (|:| |special| *3))) (-5 *1 (-714 *5 *3)))))
-(-10 -7 (-15 -1515 ((-2 (|:| -3312 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -4105 ((-2 (|:| -3312 (-413 |#2|)) (|:| |special| (-413 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -4095 (|#2| (-402 |#2|) (-1 |#2| |#2|))) (-15 -3678 ((-2 (|:| |poly| |#2|) (|:| -3312 (-402 |#2|)) (|:| |special| (-402 |#2|))) (-402 |#2|) (-1 |#2| |#2|))))
-((-2516 ((|#7| (-631 |#5|) |#6|) NIL)) (-2879 ((|#7| (-1 |#5| |#4|) |#6|) 26)))
-(((-715 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2879 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2516 (|#7| (-631 |#5|) |#6|))) (-836) (-780) (-780) (-1034) (-1034) (-934 |#4| |#2| |#1|) (-934 |#5| |#3| |#1|)) (T -715))
-((-2516 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *9)) (-4 *9 (-1034)) (-4 *5 (-836)) (-4 *6 (-780)) (-4 *8 (-1034)) (-4 *2 (-934 *9 *7 *5)) (-5 *1 (-715 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-780)) (-4 *4 (-934 *8 *6 *5)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1034)) (-4 *9 (-1034)) (-4 *5 (-836)) (-4 *6 (-780)) (-4 *2 (-934 *9 *7 *5)) (-5 *1 (-715 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-780)) (-4 *4 (-934 *8 *6 *5)))))
-(-10 -7 (-15 -2879 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2516 (|#7| (-631 |#5|) |#6|)))
-((-2879 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
-(((-716 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2879 (|#7| (-1 |#2| |#1|) |#6|))) (-836) (-836) (-780) (-780) (-1034) (-934 |#5| |#3| |#1|) (-934 |#5| |#4| |#2|)) (T -716))
-((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-836)) (-4 *6 (-836)) (-4 *7 (-780)) (-4 *9 (-1034)) (-4 *2 (-934 *9 *8 *6)) (-5 *1 (-716 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-780)) (-4 *4 (-934 *9 *7 *5)))))
-(-10 -7 (-15 -2879 (|#7| (-1 |#2| |#1|) |#6|)))
-((-2270 (((-413 |#4|) |#4|) 41)))
-(((-717 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2270 ((-413 |#4|) |#4|))) (-780) (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $)) (-15 -1576 ((-3 $ "failed") (-1158))))) (-302) (-934 (-937 |#3|) |#1| |#2|)) (T -717))
-((-2270 (*1 *2 *3) (-12 (-4 *4 (-780)) (-4 *5 (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $)) (-15 -1576 ((-3 $ "failed") (-1158)))))) (-4 *6 (-302)) (-5 *2 (-413 *3)) (-5 *1 (-717 *4 *5 *6 *3)) (-4 *3 (-934 (-937 *6) *4 *5)))))
-(-10 -7 (-15 -2270 ((-413 |#4|) |#4|)))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2405 (((-631 (-850 |#1|)) $) NIL)) (-2237 (((-1154 $) $ (-850 |#1|)) NIL) (((-1154 |#2|) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#2| (-546)))) (-1976 (($ $) NIL (|has| |#2| (-546)))) (-1363 (((-112) $) NIL (|has| |#2| (-546)))) (-3785 (((-758) $) NIL) (((-758) $ (-631 (-850 |#1|))) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-3278 (($ $) NIL (|has| |#2| (-446)))) (-1565 (((-413 $) $) NIL (|has| |#2| (-446)))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#2| "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#2| (-1023 (-402 (-554))))) (((-3 (-554) "failed") $) NIL (|has| |#2| (-1023 (-554)))) (((-3 (-850 |#1|) "failed") $) NIL)) (-1668 ((|#2| $) NIL) (((-402 (-554)) $) NIL (|has| |#2| (-1023 (-402 (-554))))) (((-554) $) NIL (|has| |#2| (-1023 (-554)))) (((-850 |#1|) $) NIL)) (-2999 (($ $ $ (-850 |#1|)) NIL (|has| |#2| (-170)))) (-2550 (($ $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| |#2| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| |#2| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 $) (-1241 $)) NIL) (((-675 |#2|) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2048 (($ $) NIL (|has| |#2| (-446))) (($ $ (-850 |#1|)) NIL (|has| |#2| (-446)))) (-2540 (((-631 $) $) NIL)) (-3289 (((-112) $) NIL (|has| |#2| (-894)))) (-1344 (($ $ |#2| (-525 (-850 |#1|)) $) NIL)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (-12 (|has| (-850 |#1|) (-871 (-374))) (|has| |#2| (-871 (-374))))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (-12 (|has| (-850 |#1|) (-871 (-554))) (|has| |#2| (-871 (-554)))))) (-3248 (((-112) $) NIL)) (-2122 (((-758) $) NIL)) (-2393 (($ (-1154 |#2|) (-850 |#1|)) NIL) (($ (-1154 $) (-850 |#1|)) NIL)) (-3910 (((-631 $) $) NIL)) (-3580 (((-112) $) NIL)) (-2383 (($ |#2| (-525 (-850 |#1|))) NIL) (($ $ (-850 |#1|) (-758)) NIL) (($ $ (-631 (-850 |#1|)) (-631 (-758))) NIL)) (-4014 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $ (-850 |#1|)) NIL)) (-3893 (((-525 (-850 |#1|)) $) NIL) (((-758) $ (-850 |#1|)) NIL) (((-631 (-758)) $ (-631 (-850 |#1|))) NIL)) (-4223 (($ $ $) NIL (|has| |#2| (-836)))) (-2706 (($ $ $) NIL (|has| |#2| (-836)))) (-2789 (($ (-1 (-525 (-850 |#1|)) (-525 (-850 |#1|))) $) NIL)) (-2879 (($ (-1 |#2| |#2|) $) NIL)) (-3277 (((-3 (-850 |#1|) "failed") $) NIL)) (-2518 (($ $) NIL)) (-2530 ((|#2| $) NIL)) (-2475 (($ (-631 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-1613 (((-1140) $) NIL)) (-3778 (((-3 (-631 $) "failed") $) NIL)) (-2433 (((-3 (-631 $) "failed") $) NIL)) (-3160 (((-3 (-2 (|:| |var| (-850 |#1|)) (|:| -1407 (-758))) "failed") $) NIL)) (-2768 (((-1102) $) NIL)) (-2492 (((-112) $) NIL)) (-2505 ((|#2| $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#2| (-446)))) (-2510 (($ (-631 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-2270 (((-413 $) $) NIL (|has| |#2| (-894)))) (-3919 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-546))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-546)))) (-2386 (($ $ (-631 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ (-850 |#1|) |#2|) NIL) (($ $ (-631 (-850 |#1|)) (-631 |#2|)) NIL) (($ $ (-850 |#1|) $) NIL) (($ $ (-631 (-850 |#1|)) (-631 $)) NIL)) (-1495 (($ $ (-850 |#1|)) NIL (|has| |#2| (-170)))) (-1553 (($ $ (-850 |#1|)) NIL) (($ $ (-631 (-850 |#1|))) NIL) (($ $ (-850 |#1|) (-758)) NIL) (($ $ (-631 (-850 |#1|)) (-631 (-758))) NIL)) (-3308 (((-525 (-850 |#1|)) $) NIL) (((-758) $ (-850 |#1|)) NIL) (((-631 (-758)) $ (-631 (-850 |#1|))) NIL)) (-2927 (((-877 (-374)) $) NIL (-12 (|has| (-850 |#1|) (-602 (-877 (-374)))) (|has| |#2| (-602 (-877 (-374)))))) (((-877 (-554)) $) NIL (-12 (|has| (-850 |#1|) (-602 (-877 (-554)))) (|has| |#2| (-602 (-877 (-554)))))) (((-530) $) NIL (-12 (|has| (-850 |#1|) (-602 (-530))) (|has| |#2| (-602 (-530)))))) (-3276 ((|#2| $) NIL (|has| |#2| (-446))) (($ $ (-850 |#1|)) NIL (|has| |#2| (-446)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-894))))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#2|) NIL) (($ (-850 |#1|)) NIL) (($ $) NIL (|has| |#2| (-546))) (($ (-402 (-554))) NIL (-3994 (|has| |#2| (-38 (-402 (-554)))) (|has| |#2| (-1023 (-402 (-554))))))) (-1893 (((-631 |#2|) $) NIL)) (-1779 ((|#2| $ (-525 (-850 |#1|))) NIL) (($ $ (-850 |#1|) (-758)) NIL) (($ $ (-631 (-850 |#1|)) (-631 (-758))) NIL)) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| |#2| (-894))) (|has| |#2| (-143))))) (-2261 (((-758)) NIL)) (-2907 (($ $ $ (-758)) NIL (|has| |#2| (-170)))) (-1909 (((-112) $ $) NIL (|has| |#2| (-546)))) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $ (-850 |#1|)) NIL) (($ $ (-631 (-850 |#1|))) NIL) (($ $ (-850 |#1|) (-758)) NIL) (($ $ (-631 (-850 |#1|)) (-631 (-758))) NIL)) (-1708 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1752 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL (|has| |#2| (-38 (-402 (-554))))) (($ (-402 (-554)) $) NIL (|has| |#2| (-38 (-402 (-554))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-718 |#1| |#2|) (-934 |#2| (-525 (-850 |#1|)) (-850 |#1|)) (-631 (-1158)) (-1034)) (T -718))
-NIL
-(-934 |#2| (-525 (-850 |#1|)) (-850 |#1|))
-((-2803 (((-2 (|:| -1349 (-937 |#3|)) (|:| -3703 (-937 |#3|))) |#4|) 14)) (-2380 ((|#4| |#4| |#2|) 33)) (-3664 ((|#4| (-402 (-937 |#3|)) |#2|) 64)) (-3516 ((|#4| (-1154 (-937 |#3|)) |#2|) 77)) (-3496 ((|#4| (-1154 |#4|) |#2|) 51)) (-1516 ((|#4| |#4| |#2|) 54)) (-2270 (((-413 |#4|) |#4|) 40)))
-(((-719 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2803 ((-2 (|:| -1349 (-937 |#3|)) (|:| -3703 (-937 |#3|))) |#4|)) (-15 -1516 (|#4| |#4| |#2|)) (-15 -3496 (|#4| (-1154 |#4|) |#2|)) (-15 -2380 (|#4| |#4| |#2|)) (-15 -3516 (|#4| (-1154 (-937 |#3|)) |#2|)) (-15 -3664 (|#4| (-402 (-937 |#3|)) |#2|)) (-15 -2270 ((-413 |#4|) |#4|))) (-780) (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $)))) (-546) (-934 (-402 (-937 |#3|)) |#1| |#2|)) (T -719))
-((-2270 (*1 *2 *3) (-12 (-4 *4 (-780)) (-4 *5 (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $))))) (-4 *6 (-546)) (-5 *2 (-413 *3)) (-5 *1 (-719 *4 *5 *6 *3)) (-4 *3 (-934 (-402 (-937 *6)) *4 *5)))) (-3664 (*1 *2 *3 *4) (-12 (-4 *6 (-546)) (-4 *2 (-934 *3 *5 *4)) (-5 *1 (-719 *5 *4 *6 *2)) (-5 *3 (-402 (-937 *6))) (-4 *5 (-780)) (-4 *4 (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $))))))) (-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1154 (-937 *6))) (-4 *6 (-546)) (-4 *2 (-934 (-402 (-937 *6)) *5 *4)) (-5 *1 (-719 *5 *4 *6 *2)) (-4 *5 (-780)) (-4 *4 (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $))))))) (-2380 (*1 *2 *2 *3) (-12 (-4 *4 (-780)) (-4 *3 (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $))))) (-4 *5 (-546)) (-5 *1 (-719 *4 *3 *5 *2)) (-4 *2 (-934 (-402 (-937 *5)) *4 *3)))) (-3496 (*1 *2 *3 *4) (-12 (-5 *3 (-1154 *2)) (-4 *2 (-934 (-402 (-937 *6)) *5 *4)) (-5 *1 (-719 *5 *4 *6 *2)) (-4 *5 (-780)) (-4 *4 (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $))))) (-4 *6 (-546)))) (-1516 (*1 *2 *2 *3) (-12 (-4 *4 (-780)) (-4 *3 (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $))))) (-4 *5 (-546)) (-5 *1 (-719 *4 *3 *5 *2)) (-4 *2 (-934 (-402 (-937 *5)) *4 *3)))) (-2803 (*1 *2 *3) (-12 (-4 *4 (-780)) (-4 *5 (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $))))) (-4 *6 (-546)) (-5 *2 (-2 (|:| -1349 (-937 *6)) (|:| -3703 (-937 *6)))) (-5 *1 (-719 *4 *5 *6 *3)) (-4 *3 (-934 (-402 (-937 *6)) *4 *5)))))
-(-10 -7 (-15 -2803 ((-2 (|:| -1349 (-937 |#3|)) (|:| -3703 (-937 |#3|))) |#4|)) (-15 -1516 (|#4| |#4| |#2|)) (-15 -3496 (|#4| (-1154 |#4|) |#2|)) (-15 -2380 (|#4| |#4| |#2|)) (-15 -3516 (|#4| (-1154 (-937 |#3|)) |#2|)) (-15 -3664 (|#4| (-402 (-937 |#3|)) |#2|)) (-15 -2270 ((-413 |#4|) |#4|)))
-((-2270 (((-413 |#4|) |#4|) 52)))
-(((-720 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2270 ((-413 |#4|) |#4|))) (-780) (-836) (-13 (-302) (-145)) (-934 (-402 |#3|) |#1| |#2|)) (T -720))
-((-2270 (*1 *2 *3) (-12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-13 (-302) (-145))) (-5 *2 (-413 *3)) (-5 *1 (-720 *4 *5 *6 *3)) (-4 *3 (-934 (-402 *6) *4 *5)))))
-(-10 -7 (-15 -2270 ((-413 |#4|) |#4|)))
-((-2879 (((-722 |#2| |#3|) (-1 |#2| |#1|) (-722 |#1| |#3|)) 18)))
-(((-721 |#1| |#2| |#3|) (-10 -7 (-15 -2879 ((-722 |#2| |#3|) (-1 |#2| |#1|) (-722 |#1| |#3|)))) (-1034) (-1034) (-713)) (T -721))
-((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-722 *5 *7)) (-4 *5 (-1034)) (-4 *6 (-1034)) (-4 *7 (-713)) (-5 *2 (-722 *6 *7)) (-5 *1 (-721 *5 *6 *7)))))
-(-10 -7 (-15 -2879 ((-722 |#2| |#3|) (-1 |#2| |#1|) (-722 |#1| |#3|))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 28)) (-3042 (((-631 (-2 (|:| -1490 |#1|) (|:| -3738 |#2|))) $) 29)) (-2934 (((-3 $ "failed") $ $) NIL)) (-1508 (((-758)) 20 (-12 (|has| |#2| (-363)) (|has| |#1| (-363))))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#2| "failed") $) 57) (((-3 |#1| "failed") $) 60)) (-1668 ((|#2| $) NIL) ((|#1| $) NIL)) (-2550 (($ $) 79 (|has| |#2| (-836)))) (-1320 (((-3 $ "failed") $) 65)) (-3353 (($) 35 (-12 (|has| |#2| (-363)) (|has| |#1| (-363))))) (-3248 (((-112) $) NIL)) (-2122 (((-758) $) 55)) (-3910 (((-631 $) $) 39)) (-3580 (((-112) $) NIL)) (-2383 (($ |#1| |#2|) 16)) (-2879 (($ (-1 |#1| |#1|) $) 54)) (-3830 (((-906) $) 32 (-12 (|has| |#2| (-363)) (|has| |#1| (-363))))) (-2518 ((|#2| $) 78 (|has| |#2| (-836)))) (-2530 ((|#1| $) 77 (|has| |#2| (-836)))) (-1613 (((-1140) $) NIL)) (-2717 (($ (-906)) 27 (-12 (|has| |#2| (-363)) (|has| |#1| (-363))))) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 76) (($ (-554)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-631 (-2 (|:| -1490 |#1|) (|:| -3738 |#2|)))) 11)) (-1893 (((-631 |#1|) $) 41)) (-1779 ((|#1| $ |#2|) 88)) (-2084 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2261 (((-758)) NIL)) (-2004 (($) 12 T CONST)) (-2014 (($) 33 T CONST)) (-1658 (((-112) $ $) 80)) (-1744 (($ $) 47) (($ $ $) NIL)) (-1735 (($ $ $) 26)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 52) (($ $ $) 90) (($ |#1| $) 49 (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170)))))
-(((-722 |#1| |#2|) (-13 (-1034) (-1023 |#2|) (-1023 |#1|) (-10 -8 (-15 -2383 ($ |#1| |#2|)) (-15 -1779 (|#1| $ |#2|)) (-15 -3075 ($ (-631 (-2 (|:| -1490 |#1|) (|:| -3738 |#2|))))) (-15 -3042 ((-631 (-2 (|:| -1490 |#1|) (|:| -3738 |#2|))) $)) (-15 -2879 ($ (-1 |#1| |#1|) $)) (-15 -3580 ((-112) $)) (-15 -1893 ((-631 |#1|) $)) (-15 -3910 ((-631 $) $)) (-15 -2122 ((-758) $)) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (IF (|has| |#2| (-363)) (-6 (-363)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-836)) (PROGN (-15 -2518 (|#2| $)) (-15 -2530 (|#1| $)) (-15 -2550 ($ $))) |%noBranch|))) (-1034) (-713)) (T -722))
-((-2383 (*1 *1 *2 *3) (-12 (-5 *1 (-722 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-713)))) (-1779 (*1 *2 *1 *3) (-12 (-4 *2 (-1034)) (-5 *1 (-722 *2 *3)) (-4 *3 (-713)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-631 (-2 (|:| -1490 *3) (|:| -3738 *4)))) (-4 *3 (-1034)) (-4 *4 (-713)) (-5 *1 (-722 *3 *4)))) (-3042 (*1 *2 *1) (-12 (-5 *2 (-631 (-2 (|:| -1490 *3) (|:| -3738 *4)))) (-5 *1 (-722 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-713)))) (-2879 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1034)) (-5 *1 (-722 *3 *4)) (-4 *4 (-713)))) (-3580 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-722 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-713)))) (-1893 (*1 *2 *1) (-12 (-5 *2 (-631 *3)) (-5 *1 (-722 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-713)))) (-3910 (*1 *2 *1) (-12 (-5 *2 (-631 (-722 *3 *4))) (-5 *1 (-722 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-713)))) (-2122 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-722 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-713)))) (-2518 (*1 *2 *1) (-12 (-4 *2 (-713)) (-4 *2 (-836)) (-5 *1 (-722 *3 *2)) (-4 *3 (-1034)))) (-2530 (*1 *2 *1) (-12 (-4 *2 (-1034)) (-5 *1 (-722 *2 *3)) (-4 *3 (-836)) (-4 *3 (-713)))) (-2550 (*1 *1 *1) (-12 (-5 *1 (-722 *2 *3)) (-4 *3 (-836)) (-4 *2 (-1034)) (-4 *3 (-713)))))
-(-13 (-1034) (-1023 |#2|) (-1023 |#1|) (-10 -8 (-15 -2383 ($ |#1| |#2|)) (-15 -1779 (|#1| $ |#2|)) (-15 -3075 ($ (-631 (-2 (|:| -1490 |#1|) (|:| -3738 |#2|))))) (-15 -3042 ((-631 (-2 (|:| -1490 |#1|) (|:| -3738 |#2|))) $)) (-15 -2879 ($ (-1 |#1| |#1|) $)) (-15 -3580 ((-112) $)) (-15 -1893 ((-631 |#1|) $)) (-15 -3910 ((-631 $) $)) (-15 -2122 ((-758) $)) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (IF (|has| |#2| (-363)) (-6 (-363)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-836)) (PROGN (-15 -2518 (|#2| $)) (-15 -2530 (|#1| $)) (-15 -2550 ($ $))) |%noBranch|)))
-((-3062 (((-112) $ $) 19)) (-3382 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3775 (($ $ $) 72)) (-2411 (((-112) $ $) 73)) (-3019 (((-112) $ (-758)) 8)) (-1489 (($ (-631 |#1|)) 68) (($) 67)) (-2220 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4373)))) (-4087 (($) 7 T CONST)) (-2593 (($ $) 62)) (-1571 (($ $) 58 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1884 (($ |#1| $) 47 (|has| $ (-6 -4373))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4373)))) (-2574 (($ |#1| $) 57 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4373)))) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-1334 (((-112) $ $) 64)) (-2230 (((-112) $ (-758)) 9)) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35)) (-3731 (((-112) $ (-758)) 10)) (-1613 (((-1140) $) 22)) (-3977 (($ $ $) 69)) (-4150 ((|#1| $) 39)) (-2045 (($ |#1| $) 40) (($ |#1| $ (-758)) 63)) (-2768 (((-1102) $) 21)) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2152 ((|#1| $) 41)) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2119 (((-631 (-2 (|:| -2701 |#1|) (|:| -2777 (-758)))) $) 61)) (-3372 (($ $ |#1|) 71) (($ $ $) 70)) (-4310 (($) 49) (($ (-631 |#1|)) 48)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-2927 (((-530) $) 59 (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) 50)) (-3075 (((-848) $) 18)) (-2332 (($ (-631 |#1|)) 66) (($) 65)) (-1591 (($ (-631 |#1|)) 42)) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20)) (-2563 (((-758) $) 6 (|has| $ (-6 -4373)))))
-(((-723 |#1|) (-138) (-1082)) (T -723))
-NIL
-(-13 (-681 |t#1|) (-1080 |t#1|))
-(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-601 (-848)) . T) ((-149 |#1|) . T) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-231 |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-681 |#1|) . T) ((-1080 |#1|) . T) ((-1082) . T) ((-1195) . T))
-((-3062 (((-112) $ $) NIL)) (-3382 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-3775 (($ $ $) 79)) (-2411 (((-112) $ $) 83)) (-3019 (((-112) $ (-758)) NIL)) (-1489 (($ (-631 |#1|)) 24) (($) 16)) (-2220 (($ (-1 (-112) |#1|) $) 70 (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-4087 (($) NIL T CONST)) (-2593 (($ $) 71)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1884 (($ |#1| $) 61 (|has| $ (-6 -4373))) (($ (-1 (-112) |#1|) $) 64 (|has| $ (-6 -4373))) (($ |#1| $ (-554)) 62) (($ (-1 (-112) |#1|) $ (-554)) 65)) (-2574 (($ |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (($ |#1| $ (-554)) 67) (($ (-1 (-112) |#1|) $ (-554)) 68)) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4373)))) (-2466 (((-631 |#1|) $) 32 (|has| $ (-6 -4373)))) (-1334 (((-112) $ $) 82)) (-3560 (($) 14) (($ |#1|) 26) (($ (-631 |#1|)) 21)) (-2230 (((-112) $ (-758)) NIL)) (-2379 (((-631 |#1|) $) 38)) (-3068 (((-112) |#1| $) 58 (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2849 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 75)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL)) (-3977 (($ $ $) 77)) (-4150 ((|#1| $) 55)) (-2045 (($ |#1| $) 56) (($ |#1| $ (-758)) 72)) (-2768 (((-1102) $) NIL)) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2152 ((|#1| $) 54)) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) 50)) (-4240 (($) 13)) (-2119 (((-631 (-2 (|:| -2701 |#1|) (|:| -2777 (-758)))) $) 48)) (-3372 (($ $ |#1|) NIL) (($ $ $) 78)) (-4310 (($) 15) (($ (-631 |#1|)) 23)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) 60 (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1521 (($ $) 66)) (-2927 (((-530) $) 36 (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) 20)) (-3075 (((-848) $) 44)) (-2332 (($ (-631 |#1|)) 25) (($) 17)) (-1591 (($ (-631 |#1|)) 22)) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 81)) (-2563 (((-758) $) 59 (|has| $ (-6 -4373)))))
-(((-724 |#1|) (-13 (-723 |#1|) (-10 -8 (-6 -4373) (-6 -4374) (-15 -3560 ($)) (-15 -3560 ($ |#1|)) (-15 -3560 ($ (-631 |#1|))) (-15 -2379 ((-631 |#1|) $)) (-15 -2574 ($ |#1| $ (-554))) (-15 -2574 ($ (-1 (-112) |#1|) $ (-554))) (-15 -1884 ($ |#1| $ (-554))) (-15 -1884 ($ (-1 (-112) |#1|) $ (-554))))) (-1082)) (T -724))
-((-3560 (*1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-1082)))) (-3560 (*1 *1 *2) (-12 (-5 *1 (-724 *2)) (-4 *2 (-1082)))) (-3560 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-5 *1 (-724 *3)))) (-2379 (*1 *2 *1) (-12 (-5 *2 (-631 *3)) (-5 *1 (-724 *3)) (-4 *3 (-1082)))) (-2574 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-554)) (-5 *1 (-724 *2)) (-4 *2 (-1082)))) (-2574 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-554)) (-4 *4 (-1082)) (-5 *1 (-724 *4)))) (-1884 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-554)) (-5 *1 (-724 *2)) (-4 *2 (-1082)))) (-1884 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-554)) (-4 *4 (-1082)) (-5 *1 (-724 *4)))))
-(-13 (-723 |#1|) (-10 -8 (-6 -4373) (-6 -4374) (-15 -3560 ($)) (-15 -3560 ($ |#1|)) (-15 -3560 ($ (-631 |#1|))) (-15 -2379 ((-631 |#1|) $)) (-15 -2574 ($ |#1| $ (-554))) (-15 -2574 ($ (-1 (-112) |#1|) $ (-554))) (-15 -1884 ($ |#1| $ (-554))) (-15 -1884 ($ (-1 (-112) |#1|) $ (-554)))))
-((-3272 (((-1246) (-1140)) 8)))
-(((-725) (-10 -7 (-15 -3272 ((-1246) (-1140))))) (T -725))
-((-3272 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-725)))))
-(-10 -7 (-15 -3272 ((-1246) (-1140))))
-((-2363 (((-631 |#1|) (-631 |#1|) (-631 |#1|)) 10)))
-(((-726 |#1|) (-10 -7 (-15 -2363 ((-631 |#1|) (-631 |#1|) (-631 |#1|)))) (-836)) (T -726))
-((-2363 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-836)) (-5 *1 (-726 *3)))))
-(-10 -7 (-15 -2363 ((-631 |#1|) (-631 |#1|) (-631 |#1|))))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2405 (((-631 |#2|) $) 139)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 132 (|has| |#1| (-546)))) (-1976 (($ $) 131 (|has| |#1| (-546)))) (-1363 (((-112) $) 129 (|has| |#1| (-546)))) (-3023 (($ $) 88 (|has| |#1| (-38 (-402 (-554)))))) (-4200 (($ $) 71 (|has| |#1| (-38 (-402 (-554)))))) (-2934 (((-3 $ "failed") $ $) 19)) (-2282 (($ $) 70 (|has| |#1| (-38 (-402 (-554)))))) (-3003 (($ $) 87 (|has| |#1| (-38 (-402 (-554)))))) (-4177 (($ $) 72 (|has| |#1| (-38 (-402 (-554)))))) (-3046 (($ $) 86 (|has| |#1| (-38 (-402 (-554)))))) (-2916 (($ $) 73 (|has| |#1| (-38 (-402 (-554)))))) (-4087 (($) 17 T CONST)) (-2550 (($ $) 123)) (-1320 (((-3 $ "failed") $) 33)) (-3497 (((-937 |#1|) $ (-758)) 101) (((-937 |#1|) $ (-758) (-758)) 100)) (-2051 (((-112) $) 140)) (-2844 (($) 98 (|has| |#1| (-38 (-402 (-554)))))) (-2342 (((-758) $ |#2|) 103) (((-758) $ |#2| (-758)) 102)) (-3248 (((-112) $) 31)) (-3734 (($ $ (-554)) 69 (|has| |#1| (-38 (-402 (-554)))))) (-3580 (((-112) $) 121)) (-2383 (($ $ (-631 |#2|) (-631 (-525 |#2|))) 138) (($ $ |#2| (-525 |#2|)) 137) (($ |#1| (-525 |#2|)) 122) (($ $ |#2| (-758)) 105) (($ $ (-631 |#2|) (-631 (-758))) 104)) (-2879 (($ (-1 |#1| |#1|) $) 120)) (-2395 (($ $) 95 (|has| |#1| (-38 (-402 (-554)))))) (-2518 (($ $) 118)) (-2530 ((|#1| $) 117)) (-1613 (((-1140) $) 9)) (-2279 (($ $ |#2|) 99 (|has| |#1| (-38 (-402 (-554)))))) (-2768 (((-1102) $) 10)) (-4282 (($ $ (-758)) 106)) (-3919 (((-3 $ "failed") $ $) 133 (|has| |#1| (-546)))) (-1333 (($ $) 96 (|has| |#1| (-38 (-402 (-554)))))) (-2386 (($ $ |#2| $) 114) (($ $ (-631 |#2|) (-631 $)) 113) (($ $ (-631 (-289 $))) 112) (($ $ (-289 $)) 111) (($ $ $ $) 110) (($ $ (-631 $) (-631 $)) 109)) (-1553 (($ $ |#2|) 42) (($ $ (-631 |#2|)) 41) (($ $ |#2| (-758)) 40) (($ $ (-631 |#2|) (-631 (-758))) 39)) (-3308 (((-525 |#2|) $) 119)) (-3057 (($ $) 85 (|has| |#1| (-38 (-402 (-554)))))) (-2926 (($ $) 74 (|has| |#1| (-38 (-402 (-554)))))) (-3034 (($ $) 84 (|has| |#1| (-38 (-402 (-554)))))) (-4213 (($ $) 75 (|has| |#1| (-38 (-402 (-554)))))) (-3014 (($ $) 83 (|has| |#1| (-38 (-402 (-554)))))) (-4188 (($ $) 76 (|has| |#1| (-38 (-402 (-554)))))) (-1300 (($ $) 141)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ |#1|) 136 (|has| |#1| (-170))) (($ $) 134 (|has| |#1| (-546))) (($ (-402 (-554))) 126 (|has| |#1| (-38 (-402 (-554)))))) (-1779 ((|#1| $ (-525 |#2|)) 124) (($ $ |#2| (-758)) 108) (($ $ (-631 |#2|) (-631 (-758))) 107)) (-2084 (((-3 $ "failed") $) 135 (|has| |#1| (-143)))) (-2261 (((-758)) 28)) (-3096 (($ $) 94 (|has| |#1| (-38 (-402 (-554)))))) (-2959 (($ $) 82 (|has| |#1| (-38 (-402 (-554)))))) (-1909 (((-112) $ $) 130 (|has| |#1| (-546)))) (-3069 (($ $) 93 (|has| |#1| (-38 (-402 (-554)))))) (-2938 (($ $) 81 (|has| |#1| (-38 (-402 (-554)))))) (-3120 (($ $) 92 (|has| |#1| (-38 (-402 (-554)))))) (-2981 (($ $) 80 (|has| |#1| (-38 (-402 (-554)))))) (-2908 (($ $) 91 (|has| |#1| (-38 (-402 (-554)))))) (-2991 (($ $) 79 (|has| |#1| (-38 (-402 (-554)))))) (-3108 (($ $) 90 (|has| |#1| (-38 (-402 (-554)))))) (-2969 (($ $) 78 (|has| |#1| (-38 (-402 (-554)))))) (-3083 (($ $) 89 (|has| |#1| (-38 (-402 (-554)))))) (-2948 (($ $) 77 (|has| |#1| (-38 (-402 (-554)))))) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($ $ |#2|) 38) (($ $ (-631 |#2|)) 37) (($ $ |#2| (-758)) 36) (($ $ (-631 |#2|) (-631 (-758))) 35)) (-1658 (((-112) $ $) 6)) (-1752 (($ $ |#1|) 125 (|has| |#1| (-358)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ $) 97 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) 68 (|has| |#1| (-38 (-402 (-554)))))) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ (-402 (-554))) 128 (|has| |#1| (-38 (-402 (-554))))) (($ (-402 (-554)) $) 127 (|has| |#1| (-38 (-402 (-554))))) (($ |#1| $) 116) (($ $ |#1|) 115)))
-(((-727 |#1| |#2|) (-138) (-1034) (-836)) (T -727))
-((-1779 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-758)) (-4 *1 (-727 *4 *2)) (-4 *4 (-1034)) (-4 *2 (-836)))) (-1779 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 *5)) (-5 *3 (-631 (-758))) (-4 *1 (-727 *4 *5)) (-4 *4 (-1034)) (-4 *5 (-836)))) (-4282 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *1 (-727 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-836)))) (-2383 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-758)) (-4 *1 (-727 *4 *2)) (-4 *4 (-1034)) (-4 *2 (-836)))) (-2383 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 *5)) (-5 *3 (-631 (-758))) (-4 *1 (-727 *4 *5)) (-4 *4 (-1034)) (-4 *5 (-836)))) (-2342 (*1 *2 *1 *3) (-12 (-4 *1 (-727 *4 *3)) (-4 *4 (-1034)) (-4 *3 (-836)) (-5 *2 (-758)))) (-2342 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-758)) (-4 *1 (-727 *4 *3)) (-4 *4 (-1034)) (-4 *3 (-836)))) (-3497 (*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-4 *1 (-727 *4 *5)) (-4 *4 (-1034)) (-4 *5 (-836)) (-5 *2 (-937 *4)))) (-3497 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-758)) (-4 *1 (-727 *4 *5)) (-4 *4 (-1034)) (-4 *5 (-836)) (-5 *2 (-937 *4)))) (-2279 (*1 *1 *1 *2) (-12 (-4 *1 (-727 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-836)) (-4 *3 (-38 (-402 (-554)))))))
-(-13 (-885 |t#2|) (-958 |t#1| (-525 |t#2|) |t#2|) (-508 |t#2| $) (-304 $) (-10 -8 (-15 -1779 ($ $ |t#2| (-758))) (-15 -1779 ($ $ (-631 |t#2|) (-631 (-758)))) (-15 -4282 ($ $ (-758))) (-15 -2383 ($ $ |t#2| (-758))) (-15 -2383 ($ $ (-631 |t#2|) (-631 (-758)))) (-15 -2342 ((-758) $ |t#2|)) (-15 -2342 ((-758) $ |t#2| (-758))) (-15 -3497 ((-937 |t#1|) $ (-758))) (-15 -3497 ((-937 |t#1|) $ (-758) (-758))) (IF (|has| |t#1| (-38 (-402 (-554)))) (PROGN (-15 -2279 ($ $ |t#2|)) (-6 (-987)) (-6 (-1180))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-525 |#2|)) . T) ((-25) . T) ((-38 #1=(-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-546)) ((-35) |has| |#1| (-38 (-402 (-554)))) ((-95) |has| |#1| (-38 (-402 (-554)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-402 (-554)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3994 (|has| |#1| (-546)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-604 #1#) |has| |#1| (-38 (-402 (-554)))) ((-604 (-554)) . T) ((-604 |#1|) |has| |#1| (-170)) ((-604 $) |has| |#1| (-546)) ((-601 (-848)) . T) ((-170) -3994 (|has| |#1| (-546)) (|has| |#1| (-170))) ((-279) |has| |#1| (-38 (-402 (-554)))) ((-285) |has| |#1| (-546)) ((-304 $) . T) ((-487) |has| |#1| (-38 (-402 (-554)))) ((-508 |#2| $) . T) ((-508 $ $) . T) ((-546) |has| |#1| (-546)) ((-634 #1#) |has| |#1| (-38 (-402 (-554)))) ((-634 |#1|) . T) ((-634 $) . T) ((-704 #1#) |has| |#1| (-38 (-402 (-554)))) ((-704 |#1|) |has| |#1| (-170)) ((-704 $) |has| |#1| (-546)) ((-713) . T) ((-885 |#2|) . T) ((-958 |#1| #0# |#2|) . T) ((-987) |has| |#1| (-38 (-402 (-554)))) ((-1040 #1#) |has| |#1| (-38 (-402 (-554)))) ((-1040 |#1|) . T) ((-1040 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-170))) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1180) |has| |#1| (-38 (-402 (-554)))) ((-1183) |has| |#1| (-38 (-402 (-554)))))
-((-2270 (((-413 (-1154 |#4|)) (-1154 |#4|)) 30) (((-413 |#4|) |#4|) 26)))
-(((-728 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2270 ((-413 |#4|) |#4|)) (-15 -2270 ((-413 (-1154 |#4|)) (-1154 |#4|)))) (-836) (-780) (-13 (-302) (-145)) (-934 |#3| |#2| |#1|)) (T -728))
-((-2270 (*1 *2 *3) (-12 (-4 *4 (-836)) (-4 *5 (-780)) (-4 *6 (-13 (-302) (-145))) (-4 *7 (-934 *6 *5 *4)) (-5 *2 (-413 (-1154 *7))) (-5 *1 (-728 *4 *5 *6 *7)) (-5 *3 (-1154 *7)))) (-2270 (*1 *2 *3) (-12 (-4 *4 (-836)) (-4 *5 (-780)) (-4 *6 (-13 (-302) (-145))) (-5 *2 (-413 *3)) (-5 *1 (-728 *4 *5 *6 *3)) (-4 *3 (-934 *6 *5 *4)))))
-(-10 -7 (-15 -2270 ((-413 |#4|) |#4|)) (-15 -2270 ((-413 (-1154 |#4|)) (-1154 |#4|))))
-((-3673 (((-413 |#4|) |#4| |#2|) 118)) (-1592 (((-413 |#4|) |#4|) NIL)) (-1565 (((-413 (-1154 |#4|)) (-1154 |#4|)) 109) (((-413 |#4|) |#4|) 40)) (-4236 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-631 (-2 (|:| -2270 (-1154 |#4|)) (|:| -1407 (-554)))))) (-1154 |#4|) (-631 |#2|) (-631 (-631 |#3|))) 68)) (-1685 (((-1154 |#3|) (-1154 |#3|) (-554)) 136)) (-2753 (((-631 (-758)) (-1154 |#4|) (-631 |#2|) (-758)) 60)) (-3662 (((-3 (-631 (-1154 |#4|)) "failed") (-1154 |#4|) (-1154 |#3|) (-1154 |#3|) |#4| (-631 |#2|) (-631 (-758)) (-631 |#3|)) 64)) (-3252 (((-2 (|:| |upol| (-1154 |#3|)) (|:| |Lval| (-631 |#3|)) (|:| |Lfact| (-631 (-2 (|:| -2270 (-1154 |#3|)) (|:| -1407 (-554))))) (|:| |ctpol| |#3|)) (-1154 |#4|) (-631 |#2|) (-631 (-631 |#3|))) 25)) (-1456 (((-2 (|:| -2598 (-1154 |#4|)) (|:| |polval| (-1154 |#3|))) (-1154 |#4|) (-1154 |#3|) (-554)) 56)) (-3926 (((-554) (-631 (-2 (|:| -2270 (-1154 |#3|)) (|:| -1407 (-554))))) 133)) (-2175 ((|#4| (-554) (-413 |#4|)) 57)) (-2989 (((-112) (-631 (-2 (|:| -2270 (-1154 |#3|)) (|:| -1407 (-554)))) (-631 (-2 (|:| -2270 (-1154 |#3|)) (|:| -1407 (-554))))) NIL)))
-(((-729 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1565 ((-413 |#4|) |#4|)) (-15 -1565 ((-413 (-1154 |#4|)) (-1154 |#4|))) (-15 -1592 ((-413 |#4|) |#4|)) (-15 -3926 ((-554) (-631 (-2 (|:| -2270 (-1154 |#3|)) (|:| -1407 (-554)))))) (-15 -3673 ((-413 |#4|) |#4| |#2|)) (-15 -1456 ((-2 (|:| -2598 (-1154 |#4|)) (|:| |polval| (-1154 |#3|))) (-1154 |#4|) (-1154 |#3|) (-554))) (-15 -4236 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-631 (-2 (|:| -2270 (-1154 |#4|)) (|:| -1407 (-554)))))) (-1154 |#4|) (-631 |#2|) (-631 (-631 |#3|)))) (-15 -3252 ((-2 (|:| |upol| (-1154 |#3|)) (|:| |Lval| (-631 |#3|)) (|:| |Lfact| (-631 (-2 (|:| -2270 (-1154 |#3|)) (|:| -1407 (-554))))) (|:| |ctpol| |#3|)) (-1154 |#4|) (-631 |#2|) (-631 (-631 |#3|)))) (-15 -2175 (|#4| (-554) (-413 |#4|))) (-15 -2989 ((-112) (-631 (-2 (|:| -2270 (-1154 |#3|)) (|:| -1407 (-554)))) (-631 (-2 (|:| -2270 (-1154 |#3|)) (|:| -1407 (-554)))))) (-15 -3662 ((-3 (-631 (-1154 |#4|)) "failed") (-1154 |#4|) (-1154 |#3|) (-1154 |#3|) |#4| (-631 |#2|) (-631 (-758)) (-631 |#3|))) (-15 -2753 ((-631 (-758)) (-1154 |#4|) (-631 |#2|) (-758))) (-15 -1685 ((-1154 |#3|) (-1154 |#3|) (-554)))) (-780) (-836) (-302) (-934 |#3| |#1| |#2|)) (T -729))
-((-1685 (*1 *2 *2 *3) (-12 (-5 *2 (-1154 *6)) (-5 *3 (-554)) (-4 *6 (-302)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-729 *4 *5 *6 *7)) (-4 *7 (-934 *6 *4 *5)))) (-2753 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1154 *9)) (-5 *4 (-631 *7)) (-4 *7 (-836)) (-4 *9 (-934 *8 *6 *7)) (-4 *6 (-780)) (-4 *8 (-302)) (-5 *2 (-631 (-758))) (-5 *1 (-729 *6 *7 *8 *9)) (-5 *5 (-758)))) (-3662 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1154 *11)) (-5 *6 (-631 *10)) (-5 *7 (-631 (-758))) (-5 *8 (-631 *11)) (-4 *10 (-836)) (-4 *11 (-302)) (-4 *9 (-780)) (-4 *5 (-934 *11 *9 *10)) (-5 *2 (-631 (-1154 *5))) (-5 *1 (-729 *9 *10 *11 *5)) (-5 *3 (-1154 *5)))) (-2989 (*1 *2 *3 *3) (-12 (-5 *3 (-631 (-2 (|:| -2270 (-1154 *6)) (|:| -1407 (-554))))) (-4 *6 (-302)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-112)) (-5 *1 (-729 *4 *5 *6 *7)) (-4 *7 (-934 *6 *4 *5)))) (-2175 (*1 *2 *3 *4) (-12 (-5 *3 (-554)) (-5 *4 (-413 *2)) (-4 *2 (-934 *7 *5 *6)) (-5 *1 (-729 *5 *6 *7 *2)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-302)))) (-3252 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1154 *9)) (-5 *4 (-631 *7)) (-5 *5 (-631 (-631 *8))) (-4 *7 (-836)) (-4 *8 (-302)) (-4 *9 (-934 *8 *6 *7)) (-4 *6 (-780)) (-5 *2 (-2 (|:| |upol| (-1154 *8)) (|:| |Lval| (-631 *8)) (|:| |Lfact| (-631 (-2 (|:| -2270 (-1154 *8)) (|:| -1407 (-554))))) (|:| |ctpol| *8))) (-5 *1 (-729 *6 *7 *8 *9)))) (-4236 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-631 *7)) (-5 *5 (-631 (-631 *8))) (-4 *7 (-836)) (-4 *8 (-302)) (-4 *6 (-780)) (-4 *9 (-934 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-631 (-2 (|:| -2270 (-1154 *9)) (|:| -1407 (-554))))))) (-5 *1 (-729 *6 *7 *8 *9)) (-5 *3 (-1154 *9)))) (-1456 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-554)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *8 (-302)) (-4 *9 (-934 *8 *6 *7)) (-5 *2 (-2 (|:| -2598 (-1154 *9)) (|:| |polval| (-1154 *8)))) (-5 *1 (-729 *6 *7 *8 *9)) (-5 *3 (-1154 *9)) (-5 *4 (-1154 *8)))) (-3673 (*1 *2 *3 *4) (-12 (-4 *5 (-780)) (-4 *4 (-836)) (-4 *6 (-302)) (-5 *2 (-413 *3)) (-5 *1 (-729 *5 *4 *6 *3)) (-4 *3 (-934 *6 *5 *4)))) (-3926 (*1 *2 *3) (-12 (-5 *3 (-631 (-2 (|:| -2270 (-1154 *6)) (|:| -1407 (-554))))) (-4 *6 (-302)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-554)) (-5 *1 (-729 *4 *5 *6 *7)) (-4 *7 (-934 *6 *4 *5)))) (-1592 (*1 *2 *3) (-12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-302)) (-5 *2 (-413 *3)) (-5 *1 (-729 *4 *5 *6 *3)) (-4 *3 (-934 *6 *4 *5)))) (-1565 (*1 *2 *3) (-12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-302)) (-4 *7 (-934 *6 *4 *5)) (-5 *2 (-413 (-1154 *7))) (-5 *1 (-729 *4 *5 *6 *7)) (-5 *3 (-1154 *7)))) (-1565 (*1 *2 *3) (-12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-302)) (-5 *2 (-413 *3)) (-5 *1 (-729 *4 *5 *6 *3)) (-4 *3 (-934 *6 *4 *5)))))
-(-10 -7 (-15 -1565 ((-413 |#4|) |#4|)) (-15 -1565 ((-413 (-1154 |#4|)) (-1154 |#4|))) (-15 -1592 ((-413 |#4|) |#4|)) (-15 -3926 ((-554) (-631 (-2 (|:| -2270 (-1154 |#3|)) (|:| -1407 (-554)))))) (-15 -3673 ((-413 |#4|) |#4| |#2|)) (-15 -1456 ((-2 (|:| -2598 (-1154 |#4|)) (|:| |polval| (-1154 |#3|))) (-1154 |#4|) (-1154 |#3|) (-554))) (-15 -4236 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-631 (-2 (|:| -2270 (-1154 |#4|)) (|:| -1407 (-554)))))) (-1154 |#4|) (-631 |#2|) (-631 (-631 |#3|)))) (-15 -3252 ((-2 (|:| |upol| (-1154 |#3|)) (|:| |Lval| (-631 |#3|)) (|:| |Lfact| (-631 (-2 (|:| -2270 (-1154 |#3|)) (|:| -1407 (-554))))) (|:| |ctpol| |#3|)) (-1154 |#4|) (-631 |#2|) (-631 (-631 |#3|)))) (-15 -2175 (|#4| (-554) (-413 |#4|))) (-15 -2989 ((-112) (-631 (-2 (|:| -2270 (-1154 |#3|)) (|:| -1407 (-554)))) (-631 (-2 (|:| -2270 (-1154 |#3|)) (|:| -1407 (-554)))))) (-15 -3662 ((-3 (-631 (-1154 |#4|)) "failed") (-1154 |#4|) (-1154 |#3|) (-1154 |#3|) |#4| (-631 |#2|) (-631 (-758)) (-631 |#3|))) (-15 -2753 ((-631 (-758)) (-1154 |#4|) (-631 |#2|) (-758))) (-15 -1685 ((-1154 |#3|) (-1154 |#3|) (-554))))
-((-4326 (($ $ (-906)) 12)))
-(((-730 |#1| |#2|) (-10 -8 (-15 -4326 (|#1| |#1| (-906)))) (-731 |#2|) (-170)) (T -730))
-NIL
-(-10 -8 (-15 -4326 (|#1| |#1| (-906))))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-2080 (($ $ (-906)) 28)) (-4326 (($ $ (-906)) 33)) (-1297 (($ $ (-906)) 29)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-1856 (($ $ $) 25)) (-3075 (((-848) $) 11)) (-3499 (($ $ $ $) 26)) (-1870 (($ $ $) 24)) (-2004 (($) 18 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 30)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
-(((-731 |#1|) (-138) (-170)) (T -731))
-((-4326 (*1 *1 *1 *2) (-12 (-5 *2 (-906)) (-4 *1 (-731 *3)) (-4 *3 (-170)))))
-(-13 (-748) (-704 |t#1|) (-10 -8 (-15 -4326 ($ $ (-906)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-601 (-848)) . T) ((-634 |#1|) . T) ((-704 |#1|) . T) ((-707) . T) ((-748) . T) ((-1040 |#1|) . T) ((-1082) . T))
-((-1628 (((-1020) (-675 (-221)) (-554) (-112) (-554)) 25)) (-4034 (((-1020) (-675 (-221)) (-554) (-112) (-554)) 24)))
-(((-732) (-10 -7 (-15 -4034 ((-1020) (-675 (-221)) (-554) (-112) (-554))) (-15 -1628 ((-1020) (-675 (-221)) (-554) (-112) (-554))))) (T -732))
-((-1628 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-675 (-221))) (-5 *4 (-554)) (-5 *5 (-112)) (-5 *2 (-1020)) (-5 *1 (-732)))) (-4034 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-675 (-221))) (-5 *4 (-554)) (-5 *5 (-112)) (-5 *2 (-1020)) (-5 *1 (-732)))))
-(-10 -7 (-15 -4034 ((-1020) (-675 (-221)) (-554) (-112) (-554))) (-15 -1628 ((-1020) (-675 (-221)) (-554) (-112) (-554))))
-((-4037 (((-1020) (-554) (-554) (-554) (-675 (-221)) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-74 FCN)))) 43)) (-4065 (((-1020) (-554) (-554) (-675 (-221)) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN)))) 39)) (-4140 (((-1020) (-221) (-221) (-221) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085)))) 32)))
-(((-733) (-10 -7 (-15 -4140 ((-1020) (-221) (-221) (-221) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085))))) (-15 -4065 ((-1020) (-554) (-554) (-675 (-221)) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN))))) (-15 -4037 ((-1020) (-554) (-554) (-554) (-675 (-221)) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-74 FCN))))))) (T -733))
-((-4037 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-221)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1020)) (-5 *1 (-733)))) (-4065 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-221)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1020)) (-5 *1 (-733)))) (-4140 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085)))) (-5 *2 (-1020)) (-5 *1 (-733)))))
-(-10 -7 (-15 -4140 ((-1020) (-221) (-221) (-221) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085))))) (-15 -4065 ((-1020) (-554) (-554) (-675 (-221)) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN))))) (-15 -4037 ((-1020) (-554) (-554) (-554) (-675 (-221)) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-74 FCN))))))
-((-3854 (((-1020) (-554) (-554) (-675 (-221)) (-554)) 34)) (-1371 (((-1020) (-554) (-554) (-675 (-221)) (-554)) 33)) (-3281 (((-1020) (-554) (-675 (-221)) (-554)) 32)) (-3788 (((-1020) (-554) (-675 (-221)) (-554)) 31)) (-4008 (((-1020) (-554) (-554) (-1140) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554)) 30)) (-3369 (((-1020) (-554) (-554) (-1140) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554)) 29)) (-3175 (((-1020) (-554) (-554) (-1140) (-675 (-221)) (-675 (-221)) (-554)) 28)) (-3768 (((-1020) (-554) (-554) (-1140) (-675 (-221)) (-675 (-221)) (-554)) 27)) (-3452 (((-1020) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554)) 24)) (-2022 (((-1020) (-554) (-675 (-221)) (-675 (-221)) (-554)) 23)) (-3833 (((-1020) (-554) (-675 (-221)) (-554)) 22)) (-2816 (((-1020) (-554) (-675 (-221)) (-554)) 21)))
-(((-734) (-10 -7 (-15 -2816 ((-1020) (-554) (-675 (-221)) (-554))) (-15 -3833 ((-1020) (-554) (-675 (-221)) (-554))) (-15 -2022 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3452 ((-1020) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3768 ((-1020) (-554) (-554) (-1140) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3175 ((-1020) (-554) (-554) (-1140) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3369 ((-1020) (-554) (-554) (-1140) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554))) (-15 -4008 ((-1020) (-554) (-554) (-1140) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3788 ((-1020) (-554) (-675 (-221)) (-554))) (-15 -3281 ((-1020) (-554) (-675 (-221)) (-554))) (-15 -1371 ((-1020) (-554) (-554) (-675 (-221)) (-554))) (-15 -3854 ((-1020) (-554) (-554) (-675 (-221)) (-554))))) (T -734))
-((-3854 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-734)))) (-1371 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-734)))) (-3281 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-734)))) (-3788 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-734)))) (-4008 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-554)) (-5 *4 (-1140)) (-5 *5 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-734)))) (-3369 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-554)) (-5 *4 (-1140)) (-5 *5 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-734)))) (-3175 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-554)) (-5 *4 (-1140)) (-5 *5 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-734)))) (-3768 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-554)) (-5 *4 (-1140)) (-5 *5 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-734)))) (-3452 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-734)))) (-2022 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-734)))) (-3833 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-734)))) (-2816 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-734)))))
-(-10 -7 (-15 -2816 ((-1020) (-554) (-675 (-221)) (-554))) (-15 -3833 ((-1020) (-554) (-675 (-221)) (-554))) (-15 -2022 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3452 ((-1020) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3768 ((-1020) (-554) (-554) (-1140) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3175 ((-1020) (-554) (-554) (-1140) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3369 ((-1020) (-554) (-554) (-1140) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554))) (-15 -4008 ((-1020) (-554) (-554) (-1140) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3788 ((-1020) (-554) (-675 (-221)) (-554))) (-15 -3281 ((-1020) (-554) (-675 (-221)) (-554))) (-15 -1371 ((-1020) (-554) (-554) (-675 (-221)) (-554))) (-15 -3854 ((-1020) (-554) (-554) (-675 (-221)) (-554))))
-((-3317 (((-1020) (-554) (-675 (-221)) (-675 (-221)) (-554) (-221) (-554) (-554) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-78 FUNCTN)))) 52)) (-3869 (((-1020) (-675 (-221)) (-675 (-221)) (-554) (-554)) 51)) (-1569 (((-1020) (-554) (-675 (-221)) (-675 (-221)) (-554) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-78 FUNCTN)))) 50)) (-3054 (((-1020) (-221) (-221) (-554) (-554) (-554) (-554)) 46)) (-1468 (((-1020) (-221) (-221) (-554) (-221) (-554) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 G)))) 45)) (-2138 (((-1020) (-221) (-221) (-221) (-221) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 G)))) 44)) (-1712 (((-1020) (-221) (-221) (-221) (-221) (-554) (-221) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 G)))) 43)) (-3784 (((-1020) (-221) (-221) (-221) (-554) (-221) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 G)))) 42)) (-3585 (((-1020) (-221) (-554) (-221) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085)))) 38)) (-3430 (((-1020) (-221) (-221) (-554) (-675 (-221)) (-221) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085)))) 37)) (-3897 (((-1020) (-221) (-221) (-221) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085)))) 33)) (-1348 (((-1020) (-221) (-221) (-221) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085)))) 32)))
-(((-735) (-10 -7 (-15 -1348 ((-1020) (-221) (-221) (-221) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085))))) (-15 -3897 ((-1020) (-221) (-221) (-221) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085))))) (-15 -3430 ((-1020) (-221) (-221) (-554) (-675 (-221)) (-221) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085))))) (-15 -3585 ((-1020) (-221) (-554) (-221) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085))))) (-15 -3784 ((-1020) (-221) (-221) (-221) (-554) (-221) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 G))))) (-15 -1712 ((-1020) (-221) (-221) (-221) (-221) (-554) (-221) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 G))))) (-15 -2138 ((-1020) (-221) (-221) (-221) (-221) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 G))))) (-15 -1468 ((-1020) (-221) (-221) (-554) (-221) (-554) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 G))))) (-15 -3054 ((-1020) (-221) (-221) (-554) (-554) (-554) (-554))) (-15 -1569 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-554) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-78 FUNCTN))))) (-15 -3869 ((-1020) (-675 (-221)) (-675 (-221)) (-554) (-554))) (-15 -3317 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-554) (-221) (-554) (-554) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-78 FUNCTN))))))) (T -735))
-((-3317 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-221)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1020)) (-5 *1 (-735)))) (-3869 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-675 (-221))) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-735)))) (-1569 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-221)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1020)) (-5 *1 (-735)))) (-3054 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-735)))) (-1468 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-64 G)))) (-5 *2 (-1020)) (-5 *1 (-735)))) (-2138 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-64 G)))) (-5 *2 (-1020)) (-5 *1 (-735)))) (-1712 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-64 G)))) (-5 *2 (-1020)) (-5 *1 (-735)))) (-3784 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-64 G)))) (-5 *2 (-1020)) (-5 *1 (-735)))) (-3585 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085)))) (-5 *2 (-1020)) (-5 *1 (-735)))) (-3430 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-554)) (-5 *5 (-675 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085)))) (-5 *3 (-221)) (-5 *2 (-1020)) (-5 *1 (-735)))) (-3897 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085)))) (-5 *2 (-1020)) (-5 *1 (-735)))) (-1348 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085)))) (-5 *2 (-1020)) (-5 *1 (-735)))))
-(-10 -7 (-15 -1348 ((-1020) (-221) (-221) (-221) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085))))) (-15 -3897 ((-1020) (-221) (-221) (-221) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085))))) (-15 -3430 ((-1020) (-221) (-221) (-554) (-675 (-221)) (-221) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085))))) (-15 -3585 ((-1020) (-221) (-554) (-221) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085))))) (-15 -3784 ((-1020) (-221) (-221) (-221) (-554) (-221) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 G))))) (-15 -1712 ((-1020) (-221) (-221) (-221) (-221) (-554) (-221) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 G))))) (-15 -2138 ((-1020) (-221) (-221) (-221) (-221) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 G))))) (-15 -1468 ((-1020) (-221) (-221) (-554) (-221) (-554) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 G))))) (-15 -3054 ((-1020) (-221) (-221) (-554) (-554) (-554) (-554))) (-15 -1569 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-554) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-78 FUNCTN))))) (-15 -3869 ((-1020) (-675 (-221)) (-675 (-221)) (-554) (-554))) (-15 -3317 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-554) (-221) (-554) (-554) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-78 FUNCTN))))))
-((-3674 (((-1020) (-554) (-554) (-554) (-554) (-221) (-554) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-383)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-1758 (((-1020) (-675 (-221)) (-554) (-554) (-221) (-554) (-554) (-221) (-221) (-675 (-221)) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-87 BDYVAL))) (-383) (-383)) 69) (((-1020) (-675 (-221)) (-554) (-554) (-221) (-554) (-554) (-221) (-221) (-675 (-221)) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-87 BDYVAL)))) 68)) (-1388 (((-1020) (-221) (-221) (-554) (-221) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCNG)))) 57)) (-1706 (((-1020) (-675 (-221)) (-675 (-221)) (-554) (-221) (-221) (-221) (-554) (-554) (-554) (-675 (-221)) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN)))) 50)) (-1910 (((-1020) (-221) (-554) (-554) (-1140) (-554) (-221) (-675 (-221)) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 OUTPUT)))) 49)) (-2551 (((-1020) (-221) (-554) (-554) (-221) (-1140) (-221) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 OUTPUT)))) 45)) (-1987 (((-1020) (-221) (-554) (-554) (-221) (-221) (-675 (-221)) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN)))) 42)) (-3704 (((-1020) (-221) (-554) (-554) (-554) (-221) (-675 (-221)) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 OUTPUT)))) 38)))
-(((-736) (-10 -7 (-15 -3704 ((-1020) (-221) (-554) (-554) (-554) (-221) (-675 (-221)) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 OUTPUT))))) (-15 -1987 ((-1020) (-221) (-554) (-554) (-221) (-221) (-675 (-221)) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN))))) (-15 -2551 ((-1020) (-221) (-554) (-554) (-221) (-1140) (-221) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 OUTPUT))))) (-15 -1910 ((-1020) (-221) (-554) (-554) (-1140) (-554) (-221) (-675 (-221)) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 OUTPUT))))) (-15 -1706 ((-1020) (-675 (-221)) (-675 (-221)) (-554) (-221) (-221) (-221) (-554) (-554) (-554) (-675 (-221)) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN))))) (-15 -1388 ((-1020) (-221) (-221) (-554) (-221) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCNG))))) (-15 -1758 ((-1020) (-675 (-221)) (-554) (-554) (-221) (-554) (-554) (-221) (-221) (-675 (-221)) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-87 BDYVAL))))) (-15 -1758 ((-1020) (-675 (-221)) (-554) (-554) (-221) (-554) (-554) (-221) (-221) (-675 (-221)) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-87 BDYVAL))) (-383) (-383))) (-15 -3674 ((-1020) (-554) (-554) (-554) (-554) (-221) (-554) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-383)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -736))
-((-3674 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-736)))) (-1758 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-675 (-221))) (-5 *4 (-554)) (-5 *5 (-221)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-383)) (-5 *2 (-1020)) (-5 *1 (-736)))) (-1758 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-675 (-221))) (-5 *4 (-554)) (-5 *5 (-221)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1020)) (-5 *1 (-736)))) (-1388 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-554)) (-5 *5 (-675 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-221)) (-5 *2 (-1020)) (-5 *1 (-736)))) (-1706 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-675 (-221))) (-5 *4 (-554)) (-5 *5 (-221)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1020)) (-5 *1 (-736)))) (-1910 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-554)) (-5 *5 (-1140)) (-5 *6 (-675 (-221))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-383)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-383)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-221)) (-5 *2 (-1020)) (-5 *1 (-736)))) (-2551 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-554)) (-5 *5 (-1140)) (-5 *6 (-675 (-221))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-383)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-221)) (-5 *2 (-1020)) (-5 *1 (-736)))) (-1987 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-554)) (-5 *5 (-675 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN)))) (-5 *3 (-221)) (-5 *2 (-1020)) (-5 *1 (-736)))) (-3704 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-554)) (-5 *5 (-675 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-221)) (-5 *2 (-1020)) (-5 *1 (-736)))))
-(-10 -7 (-15 -3704 ((-1020) (-221) (-554) (-554) (-554) (-221) (-675 (-221)) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 OUTPUT))))) (-15 -1987 ((-1020) (-221) (-554) (-554) (-221) (-221) (-675 (-221)) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN))))) (-15 -2551 ((-1020) (-221) (-554) (-554) (-221) (-1140) (-221) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 OUTPUT))))) (-15 -1910 ((-1020) (-221) (-554) (-554) (-1140) (-554) (-221) (-675 (-221)) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 OUTPUT))))) (-15 -1706 ((-1020) (-675 (-221)) (-675 (-221)) (-554) (-221) (-221) (-221) (-554) (-554) (-554) (-675 (-221)) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN))))) (-15 -1388 ((-1020) (-221) (-221) (-554) (-221) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCNG))))) (-15 -1758 ((-1020) (-675 (-221)) (-554) (-554) (-221) (-554) (-554) (-221) (-221) (-675 (-221)) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-87 BDYVAL))))) (-15 -1758 ((-1020) (-675 (-221)) (-554) (-554) (-221) (-554) (-554) (-221) (-221) (-675 (-221)) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-87 BDYVAL))) (-383) (-383))) (-15 -3674 ((-1020) (-554) (-554) (-554) (-554) (-221) (-554) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-383)) (|:| |fp| (-76 G JACOBG JACGEP))))))
-((-4216 (((-1020) (-221) (-221) (-554) (-554) (-675 (-221)) (-675 (-221)) (-221) (-221) (-554) (-554) (-675 (-221)) (-675 (-221)) (-221) (-221) (-554) (-554) (-675 (-221)) (-675 (-221)) (-221) (-554) (-554) (-554) (-661 (-221)) (-554)) 45)) (-1570 (((-1020) (-221) (-221) (-221) (-221) (-554) (-554) (-554) (-1140) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-383)) (|:| |fp| (-83 BNDY)))) 41)) (-4270 (((-1020) (-554) (-554) (-554) (-554) (-221) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554)) 23)))
-(((-737) (-10 -7 (-15 -4270 ((-1020) (-554) (-554) (-554) (-554) (-221) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554))) (-15 -1570 ((-1020) (-221) (-221) (-221) (-221) (-554) (-554) (-554) (-1140) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-383)) (|:| |fp| (-83 BNDY))))) (-15 -4216 ((-1020) (-221) (-221) (-554) (-554) (-675 (-221)) (-675 (-221)) (-221) (-221) (-554) (-554) (-675 (-221)) (-675 (-221)) (-221) (-221) (-554) (-554) (-675 (-221)) (-675 (-221)) (-221) (-554) (-554) (-554) (-661 (-221)) (-554))))) (T -737))
-((-4216 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-554)) (-5 *5 (-675 (-221))) (-5 *6 (-661 (-221))) (-5 *3 (-221)) (-5 *2 (-1020)) (-5 *1 (-737)))) (-1570 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *5 (-1140)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1020)) (-5 *1 (-737)))) (-4270 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221))) (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-737)))))
-(-10 -7 (-15 -4270 ((-1020) (-554) (-554) (-554) (-554) (-221) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554))) (-15 -1570 ((-1020) (-221) (-221) (-221) (-221) (-554) (-554) (-554) (-1140) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-383)) (|:| |fp| (-83 BNDY))))) (-15 -4216 ((-1020) (-221) (-221) (-554) (-554) (-675 (-221)) (-675 (-221)) (-221) (-221) (-554) (-554) (-675 (-221)) (-675 (-221)) (-221) (-221) (-554) (-554) (-675 (-221)) (-675 (-221)) (-221) (-554) (-554) (-554) (-661 (-221)) (-554))))
-((-2484 (((-1020) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-221) (-675 (-221)) (-221) (-221) (-554)) 35)) (-3682 (((-1020) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-554) (-221) (-221) (-554)) 34)) (-3393 (((-1020) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-554)) (-675 (-221)) (-221) (-221) (-554)) 33)) (-3138 (((-1020) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554)) 29)) (-4157 (((-1020) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554)) 28)) (-3758 (((-1020) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-221) (-221) (-554)) 27)) (-1776 (((-1020) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-675 (-221)) (-554)) 24)) (-3177 (((-1020) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-675 (-221)) (-554)) 23)) (-1890 (((-1020) (-554) (-675 (-221)) (-675 (-221)) (-554)) 22)) (-3531 (((-1020) (-554) (-675 (-221)) (-675 (-221)) (-554) (-554) (-554)) 21)))
-(((-738) (-10 -7 (-15 -3531 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-554) (-554) (-554))) (-15 -1890 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3177 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-675 (-221)) (-554))) (-15 -1776 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-675 (-221)) (-554))) (-15 -3758 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-221) (-221) (-554))) (-15 -4157 ((-1020) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3138 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3393 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-554)) (-675 (-221)) (-221) (-221) (-554))) (-15 -3682 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-554) (-221) (-221) (-554))) (-15 -2484 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-221) (-675 (-221)) (-221) (-221) (-554))))) (T -738))
-((-2484 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-221)) (-5 *2 (-1020)) (-5 *1 (-738)))) (-3682 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-221)) (-5 *2 (-1020)) (-5 *1 (-738)))) (-3393 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-675 (-221))) (-5 *5 (-675 (-554))) (-5 *6 (-221)) (-5 *3 (-554)) (-5 *2 (-1020)) (-5 *1 (-738)))) (-3138 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-738)))) (-4157 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-738)))) (-3758 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-221)) (-5 *2 (-1020)) (-5 *1 (-738)))) (-1776 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-738)))) (-3177 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-738)))) (-1890 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-738)))) (-3531 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-738)))))
-(-10 -7 (-15 -3531 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-554) (-554) (-554))) (-15 -1890 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3177 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-675 (-221)) (-554))) (-15 -1776 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-675 (-221)) (-554))) (-15 -3758 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-221) (-221) (-554))) (-15 -4157 ((-1020) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3138 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3393 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-554)) (-675 (-221)) (-221) (-221) (-554))) (-15 -3682 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-554) (-221) (-221) (-554))) (-15 -2484 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-221) (-675 (-221)) (-221) (-221) (-554))))
-((-3071 (((-1020) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554) (-675 (-221)) (-675 (-221)) (-554) (-554) (-554)) 45)) (-1995 (((-1020) (-554) (-554) (-554) (-221) (-675 (-221)) (-675 (-221)) (-554)) 44)) (-2086 (((-1020) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-554) (-554)) 43)) (-2601 (((-1020) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554)) 42)) (-2473 (((-1020) (-1140) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-221) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-675 (-221)) (-675 (-221)) (-554)) 41)) (-3797 (((-1020) (-1140) (-554) (-675 (-221)) (-554) (-675 (-221)) (-675 (-221)) (-221) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-675 (-221)) (-675 (-221)) (-675 (-554)) (-554)) 40)) (-3378 (((-1020) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-554)) (-554) (-554) (-554) (-221) (-675 (-221)) (-554)) 39)) (-2902 (((-1020) (-1140) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-221) (-554) (-554) (-554) (-675 (-221)) (-554) (-675 (-221)) (-675 (-554))) 38)) (-2228 (((-1020) (-554) (-675 (-221)) (-675 (-221)) (-554)) 35)) (-1469 (((-1020) (-554) (-675 (-221)) (-675 (-221)) (-221) (-554) (-554)) 34)) (-3139 (((-1020) (-554) (-675 (-221)) (-675 (-221)) (-221) (-554)) 33)) (-1419 (((-1020) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554)) 32)) (-2204 (((-1020) (-554) (-221) (-221) (-675 (-221)) (-554) (-554) (-221) (-554)) 31)) (-3865 (((-1020) (-554) (-221) (-221) (-675 (-221)) (-554) (-554) (-221) (-554) (-554) (-554)) 30)) (-4305 (((-1020) (-554) (-221) (-221) (-675 (-221)) (-554) (-554) (-554) (-554) (-554)) 29)) (-2790 (((-1020) (-554) (-554) (-554) (-221) (-221) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-675 (-221)) (-675 (-221)) (-554) (-675 (-554)) (-554) (-554) (-554)) 28)) (-3881 (((-1020) (-554) (-675 (-221)) (-221) (-554)) 24)) (-3728 (((-1020) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554)) 21)))
-(((-739) (-10 -7 (-15 -3728 ((-1020) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3881 ((-1020) (-554) (-675 (-221)) (-221) (-554))) (-15 -2790 ((-1020) (-554) (-554) (-554) (-221) (-221) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-675 (-221)) (-675 (-221)) (-554) (-675 (-554)) (-554) (-554) (-554))) (-15 -4305 ((-1020) (-554) (-221) (-221) (-675 (-221)) (-554) (-554) (-554) (-554) (-554))) (-15 -3865 ((-1020) (-554) (-221) (-221) (-675 (-221)) (-554) (-554) (-221) (-554) (-554) (-554))) (-15 -2204 ((-1020) (-554) (-221) (-221) (-675 (-221)) (-554) (-554) (-221) (-554))) (-15 -1419 ((-1020) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3139 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-221) (-554))) (-15 -1469 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-221) (-554) (-554))) (-15 -2228 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -2902 ((-1020) (-1140) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-221) (-554) (-554) (-554) (-675 (-221)) (-554) (-675 (-221)) (-675 (-554)))) (-15 -3378 ((-1020) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-554)) (-554) (-554) (-554) (-221) (-675 (-221)) (-554))) (-15 -3797 ((-1020) (-1140) (-554) (-675 (-221)) (-554) (-675 (-221)) (-675 (-221)) (-221) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-675 (-221)) (-675 (-221)) (-675 (-554)) (-554))) (-15 -2473 ((-1020) (-1140) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-221) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -2601 ((-1020) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554))) (-15 -2086 ((-1020) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-554) (-554))) (-15 -1995 ((-1020) (-554) (-554) (-554) (-221) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3071 ((-1020) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554) (-675 (-221)) (-675 (-221)) (-554) (-554) (-554))))) (T -739))
-((-3071 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-739)))) (-1995 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221))) (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-739)))) (-2086 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-739)))) (-2601 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-739)))) (-2473 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1140)) (-5 *4 (-554)) (-5 *5 (-675 (-221))) (-5 *6 (-221)) (-5 *2 (-1020)) (-5 *1 (-739)))) (-3797 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1140)) (-5 *5 (-675 (-221))) (-5 *6 (-221)) (-5 *7 (-675 (-554))) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-739)))) (-3378 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-675 (-221))) (-5 *5 (-675 (-554))) (-5 *6 (-221)) (-5 *3 (-554)) (-5 *2 (-1020)) (-5 *1 (-739)))) (-2902 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1140)) (-5 *5 (-675 (-221))) (-5 *6 (-221)) (-5 *7 (-675 (-554))) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-739)))) (-2228 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-739)))) (-1469 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-221)) (-5 *2 (-1020)) (-5 *1 (-739)))) (-3139 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-221)) (-5 *2 (-1020)) (-5 *1 (-739)))) (-1419 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-739)))) (-2204 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221))) (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-739)))) (-3865 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221))) (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-739)))) (-4305 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221))) (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-739)))) (-2790 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-675 (-221))) (-5 *6 (-675 (-554))) (-5 *3 (-554)) (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-739)))) (-3881 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-221)) (-5 *2 (-1020)) (-5 *1 (-739)))) (-3728 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-739)))))
-(-10 -7 (-15 -3728 ((-1020) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3881 ((-1020) (-554) (-675 (-221)) (-221) (-554))) (-15 -2790 ((-1020) (-554) (-554) (-554) (-221) (-221) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-675 (-221)) (-675 (-221)) (-554) (-675 (-554)) (-554) (-554) (-554))) (-15 -4305 ((-1020) (-554) (-221) (-221) (-675 (-221)) (-554) (-554) (-554) (-554) (-554))) (-15 -3865 ((-1020) (-554) (-221) (-221) (-675 (-221)) (-554) (-554) (-221) (-554) (-554) (-554))) (-15 -2204 ((-1020) (-554) (-221) (-221) (-675 (-221)) (-554) (-554) (-221) (-554))) (-15 -1419 ((-1020) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3139 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-221) (-554))) (-15 -1469 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-221) (-554) (-554))) (-15 -2228 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -2902 ((-1020) (-1140) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-221) (-554) (-554) (-554) (-675 (-221)) (-554) (-675 (-221)) (-675 (-554)))) (-15 -3378 ((-1020) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-554)) (-554) (-554) (-554) (-221) (-675 (-221)) (-554))) (-15 -3797 ((-1020) (-1140) (-554) (-675 (-221)) (-554) (-675 (-221)) (-675 (-221)) (-221) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-675 (-221)) (-675 (-221)) (-675 (-554)) (-554))) (-15 -2473 ((-1020) (-1140) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-221) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -2601 ((-1020) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554))) (-15 -2086 ((-1020) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-554) (-554))) (-15 -1995 ((-1020) (-554) (-554) (-554) (-221) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3071 ((-1020) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554) (-675 (-221)) (-675 (-221)) (-554) (-554) (-554))))
-((-4189 (((-1020) (-554) (-554) (-554) (-221) (-675 (-221)) (-554) (-675 (-221)) (-554)) 63)) (-3873 (((-1020) (-554) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-554) (-112) (-221) (-554) (-221) (-221) (-112) (-221) (-221) (-221) (-221) (-112) (-554) (-554) (-554) (-554) (-554) (-221) (-221) (-221) (-554) (-554) (-554) (-554) (-554) (-675 (-554)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-77 OBJFUN)))) 62)) (-4160 (((-1020) (-554) (-554) (-554) (-554) (-554) (-554) (-554) (-554) (-221) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-112) (-112) (-112) (-554) (-554) (-675 (-221)) (-675 (-554)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-65 QPHESS)))) 58)) (-1760 (((-1020) (-554) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-112) (-554) (-554) (-675 (-221)) (-554)) 51)) (-4039 (((-1020) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-66 FUNCT1)))) 50)) (-2029 (((-1020) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 LSFUN2)))) 46)) (-2623 (((-1020) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-79 LSFUN1)))) 42)) (-2741 (((-1020) (-554) (-221) (-221) (-554) (-221) (-112) (-221) (-221) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-77 OBJFUN)))) 38)))
-(((-740) (-10 -7 (-15 -2741 ((-1020) (-554) (-221) (-221) (-554) (-221) (-112) (-221) (-221) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-77 OBJFUN))))) (-15 -2623 ((-1020) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-79 LSFUN1))))) (-15 -2029 ((-1020) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 LSFUN2))))) (-15 -4039 ((-1020) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-66 FUNCT1))))) (-15 -1760 ((-1020) (-554) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-112) (-554) (-554) (-675 (-221)) (-554))) (-15 -4160 ((-1020) (-554) (-554) (-554) (-554) (-554) (-554) (-554) (-554) (-221) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-112) (-112) (-112) (-554) (-554) (-675 (-221)) (-675 (-554)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-65 QPHESS))))) (-15 -3873 ((-1020) (-554) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-554) (-112) (-221) (-554) (-221) (-221) (-112) (-221) (-221) (-221) (-221) (-112) (-554) (-554) (-554) (-554) (-554) (-221) (-221) (-221) (-554) (-554) (-554) (-554) (-554) (-675 (-554)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-77 OBJFUN))))) (-15 -4189 ((-1020) (-554) (-554) (-554) (-221) (-675 (-221)) (-554) (-675 (-221)) (-554))))) (T -740))
-((-4189 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221))) (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-740)))) (-3873 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-675 (-221))) (-5 *5 (-112)) (-5 *6 (-221)) (-5 *7 (-675 (-554))) (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-383)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-554)) (-5 *2 (-1020)) (-5 *1 (-740)))) (-4160 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-675 (-221))) (-5 *6 (-112)) (-5 *7 (-675 (-554))) (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-554)) (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-740)))) (-1760 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-112)) (-5 *2 (-1020)) (-5 *1 (-740)))) (-4039 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1020)) (-5 *1 (-740)))) (-2029 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1020)) (-5 *1 (-740)))) (-2623 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1020)) (-5 *1 (-740)))) (-2741 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-554)) (-5 *5 (-112)) (-5 *6 (-675 (-221))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-740)))))
-(-10 -7 (-15 -2741 ((-1020) (-554) (-221) (-221) (-554) (-221) (-112) (-221) (-221) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-77 OBJFUN))))) (-15 -2623 ((-1020) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-79 LSFUN1))))) (-15 -2029 ((-1020) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 LSFUN2))))) (-15 -4039 ((-1020) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-66 FUNCT1))))) (-15 -1760 ((-1020) (-554) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-112) (-554) (-554) (-675 (-221)) (-554))) (-15 -4160 ((-1020) (-554) (-554) (-554) (-554) (-554) (-554) (-554) (-554) (-221) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-112) (-112) (-112) (-554) (-554) (-675 (-221)) (-675 (-554)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-65 QPHESS))))) (-15 -3873 ((-1020) (-554) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-554) (-112) (-221) (-554) (-221) (-221) (-112) (-221) (-221) (-221) (-221) (-112) (-554) (-554) (-554) (-554) (-554) (-221) (-221) (-221) (-554) (-554) (-554) (-554) (-554) (-675 (-554)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-77 OBJFUN))))) (-15 -4189 ((-1020) (-554) (-554) (-554) (-221) (-675 (-221)) (-554) (-675 (-221)) (-554))))
-((-1981 (((-1020) (-1140) (-554) (-554) (-554) (-554) (-675 (-167 (-221))) (-675 (-167 (-221))) (-554)) 47)) (-3121 (((-1020) (-1140) (-1140) (-554) (-554) (-675 (-167 (-221))) (-554) (-675 (-167 (-221))) (-554) (-554) (-675 (-167 (-221))) (-554)) 46)) (-2424 (((-1020) (-554) (-554) (-554) (-675 (-167 (-221))) (-554)) 45)) (-1850 (((-1020) (-1140) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554)) 40)) (-3319 (((-1020) (-1140) (-1140) (-554) (-554) (-675 (-221)) (-554) (-675 (-221)) (-554) (-554) (-675 (-221)) (-554)) 39)) (-3488 (((-1020) (-554) (-554) (-554) (-675 (-221)) (-554)) 36)) (-1878 (((-1020) (-554) (-675 (-221)) (-554) (-675 (-554)) (-554)) 35)) (-3810 (((-1020) (-554) (-554) (-554) (-554) (-631 (-112)) (-675 (-221)) (-675 (-554)) (-675 (-554)) (-221) (-221) (-554)) 34)) (-4117 (((-1020) (-554) (-554) (-554) (-675 (-554)) (-675 (-554)) (-675 (-554)) (-675 (-554)) (-112) (-221) (-112) (-675 (-554)) (-675 (-221)) (-554)) 33)) (-2536 (((-1020) (-554) (-554) (-554) (-554) (-221) (-112) (-112) (-631 (-112)) (-675 (-221)) (-675 (-554)) (-675 (-554)) (-554)) 32)))
-(((-741) (-10 -7 (-15 -2536 ((-1020) (-554) (-554) (-554) (-554) (-221) (-112) (-112) (-631 (-112)) (-675 (-221)) (-675 (-554)) (-675 (-554)) (-554))) (-15 -4117 ((-1020) (-554) (-554) (-554) (-675 (-554)) (-675 (-554)) (-675 (-554)) (-675 (-554)) (-112) (-221) (-112) (-675 (-554)) (-675 (-221)) (-554))) (-15 -3810 ((-1020) (-554) (-554) (-554) (-554) (-631 (-112)) (-675 (-221)) (-675 (-554)) (-675 (-554)) (-221) (-221) (-554))) (-15 -1878 ((-1020) (-554) (-675 (-221)) (-554) (-675 (-554)) (-554))) (-15 -3488 ((-1020) (-554) (-554) (-554) (-675 (-221)) (-554))) (-15 -3319 ((-1020) (-1140) (-1140) (-554) (-554) (-675 (-221)) (-554) (-675 (-221)) (-554) (-554) (-675 (-221)) (-554))) (-15 -1850 ((-1020) (-1140) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -2424 ((-1020) (-554) (-554) (-554) (-675 (-167 (-221))) (-554))) (-15 -3121 ((-1020) (-1140) (-1140) (-554) (-554) (-675 (-167 (-221))) (-554) (-675 (-167 (-221))) (-554) (-554) (-675 (-167 (-221))) (-554))) (-15 -1981 ((-1020) (-1140) (-554) (-554) (-554) (-554) (-675 (-167 (-221))) (-675 (-167 (-221))) (-554))))) (T -741))
-((-1981 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1140)) (-5 *4 (-554)) (-5 *5 (-675 (-167 (-221)))) (-5 *2 (-1020)) (-5 *1 (-741)))) (-3121 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1140)) (-5 *4 (-554)) (-5 *5 (-675 (-167 (-221)))) (-5 *2 (-1020)) (-5 *1 (-741)))) (-2424 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-167 (-221)))) (-5 *2 (-1020)) (-5 *1 (-741)))) (-1850 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1140)) (-5 *4 (-554)) (-5 *5 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-741)))) (-3319 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1140)) (-5 *4 (-554)) (-5 *5 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-741)))) (-3488 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-741)))) (-1878 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-675 (-221))) (-5 *5 (-675 (-554))) (-5 *3 (-554)) (-5 *2 (-1020)) (-5 *1 (-741)))) (-3810 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-631 (-112))) (-5 *5 (-675 (-221))) (-5 *6 (-675 (-554))) (-5 *7 (-221)) (-5 *3 (-554)) (-5 *2 (-1020)) (-5 *1 (-741)))) (-4117 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-675 (-554))) (-5 *5 (-112)) (-5 *7 (-675 (-221))) (-5 *3 (-554)) (-5 *6 (-221)) (-5 *2 (-1020)) (-5 *1 (-741)))) (-2536 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-631 (-112))) (-5 *7 (-675 (-221))) (-5 *8 (-675 (-554))) (-5 *3 (-554)) (-5 *4 (-221)) (-5 *5 (-112)) (-5 *2 (-1020)) (-5 *1 (-741)))))
-(-10 -7 (-15 -2536 ((-1020) (-554) (-554) (-554) (-554) (-221) (-112) (-112) (-631 (-112)) (-675 (-221)) (-675 (-554)) (-675 (-554)) (-554))) (-15 -4117 ((-1020) (-554) (-554) (-554) (-675 (-554)) (-675 (-554)) (-675 (-554)) (-675 (-554)) (-112) (-221) (-112) (-675 (-554)) (-675 (-221)) (-554))) (-15 -3810 ((-1020) (-554) (-554) (-554) (-554) (-631 (-112)) (-675 (-221)) (-675 (-554)) (-675 (-554)) (-221) (-221) (-554))) (-15 -1878 ((-1020) (-554) (-675 (-221)) (-554) (-675 (-554)) (-554))) (-15 -3488 ((-1020) (-554) (-554) (-554) (-675 (-221)) (-554))) (-15 -3319 ((-1020) (-1140) (-1140) (-554) (-554) (-675 (-221)) (-554) (-675 (-221)) (-554) (-554) (-675 (-221)) (-554))) (-15 -1850 ((-1020) (-1140) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -2424 ((-1020) (-554) (-554) (-554) (-675 (-167 (-221))) (-554))) (-15 -3121 ((-1020) (-1140) (-1140) (-554) (-554) (-675 (-167 (-221))) (-554) (-675 (-167 (-221))) (-554) (-554) (-675 (-167 (-221))) (-554))) (-15 -1981 ((-1020) (-1140) (-554) (-554) (-554) (-554) (-675 (-167 (-221))) (-675 (-167 (-221))) (-554))))
-((-1722 (((-1020) (-554) (-554) (-554) (-554) (-554) (-112) (-554) (-112) (-554) (-675 (-167 (-221))) (-675 (-167 (-221))) (-554)) 65)) (-3270 (((-1020) (-554) (-554) (-554) (-554) (-554) (-112) (-554) (-112) (-554) (-675 (-221)) (-675 (-221)) (-554)) 60)) (-1414 (((-1020) (-554) (-554) (-221) (-554) (-554) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-383)) (|:| |fp| (-68 IMAGE))) (-383)) 56) (((-1020) (-554) (-554) (-221) (-554) (-554) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-383)) (|:| |fp| (-68 IMAGE)))) 55)) (-1632 (((-1020) (-554) (-554) (-554) (-221) (-112) (-554) (-675 (-221)) (-675 (-221)) (-554)) 37)) (-3366 (((-1020) (-554) (-554) (-221) (-221) (-554) (-554) (-675 (-221)) (-554)) 33)) (-3184 (((-1020) (-675 (-221)) (-554) (-675 (-221)) (-554) (-554) (-554) (-554) (-554)) 30)) (-1411 (((-1020) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554)) 29)) (-1352 (((-1020) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554)) 28)) (-3532 (((-1020) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554)) 27)) (-2003 (((-1020) (-554) (-554) (-554) (-554) (-675 (-221)) (-554)) 26)) (-3233 (((-1020) (-554) (-554) (-675 (-221)) (-554)) 25)) (-2864 (((-1020) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554)) 24)) (-1429 (((-1020) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554)) 23)) (-1769 (((-1020) (-675 (-221)) (-554) (-554) (-554) (-554)) 22)) (-2215 (((-1020) (-554) (-554) (-675 (-221)) (-554)) 21)))
-(((-742) (-10 -7 (-15 -2215 ((-1020) (-554) (-554) (-675 (-221)) (-554))) (-15 -1769 ((-1020) (-675 (-221)) (-554) (-554) (-554) (-554))) (-15 -1429 ((-1020) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -2864 ((-1020) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3233 ((-1020) (-554) (-554) (-675 (-221)) (-554))) (-15 -2003 ((-1020) (-554) (-554) (-554) (-554) (-675 (-221)) (-554))) (-15 -3532 ((-1020) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -1352 ((-1020) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -1411 ((-1020) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3184 ((-1020) (-675 (-221)) (-554) (-675 (-221)) (-554) (-554) (-554) (-554) (-554))) (-15 -3366 ((-1020) (-554) (-554) (-221) (-221) (-554) (-554) (-675 (-221)) (-554))) (-15 -1632 ((-1020) (-554) (-554) (-554) (-221) (-112) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -1414 ((-1020) (-554) (-554) (-221) (-554) (-554) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-383)) (|:| |fp| (-68 IMAGE))))) (-15 -1414 ((-1020) (-554) (-554) (-221) (-554) (-554) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-383)) (|:| |fp| (-68 IMAGE))) (-383))) (-15 -3270 ((-1020) (-554) (-554) (-554) (-554) (-554) (-112) (-554) (-112) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -1722 ((-1020) (-554) (-554) (-554) (-554) (-554) (-112) (-554) (-112) (-554) (-675 (-167 (-221))) (-675 (-167 (-221))) (-554))))) (T -742))
-((-1722 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-554)) (-5 *4 (-112)) (-5 *5 (-675 (-167 (-221)))) (-5 *2 (-1020)) (-5 *1 (-742)))) (-3270 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-554)) (-5 *4 (-112)) (-5 *5 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-742)))) (-1414 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-383)) (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-742)))) (-1414 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-742)))) (-1632 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-554)) (-5 *5 (-112)) (-5 *6 (-675 (-221))) (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-742)))) (-3366 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221))) (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-742)))) (-3184 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-675 (-221))) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-742)))) (-1411 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-742)))) (-1352 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-742)))) (-3532 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-742)))) (-2003 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-742)))) (-3233 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-742)))) (-2864 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-742)))) (-1429 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-742)))) (-1769 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-675 (-221))) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-742)))) (-2215 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-742)))))
-(-10 -7 (-15 -2215 ((-1020) (-554) (-554) (-675 (-221)) (-554))) (-15 -1769 ((-1020) (-675 (-221)) (-554) (-554) (-554) (-554))) (-15 -1429 ((-1020) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -2864 ((-1020) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3233 ((-1020) (-554) (-554) (-675 (-221)) (-554))) (-15 -2003 ((-1020) (-554) (-554) (-554) (-554) (-675 (-221)) (-554))) (-15 -3532 ((-1020) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -1352 ((-1020) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -1411 ((-1020) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3184 ((-1020) (-675 (-221)) (-554) (-675 (-221)) (-554) (-554) (-554) (-554) (-554))) (-15 -3366 ((-1020) (-554) (-554) (-221) (-221) (-554) (-554) (-675 (-221)) (-554))) (-15 -1632 ((-1020) (-554) (-554) (-554) (-221) (-112) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -1414 ((-1020) (-554) (-554) (-221) (-554) (-554) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-383)) (|:| |fp| (-68 IMAGE))))) (-15 -1414 ((-1020) (-554) (-554) (-221) (-554) (-554) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-383)) (|:| |fp| (-68 IMAGE))) (-383))) (-15 -3270 ((-1020) (-554) (-554) (-554) (-554) (-554) (-112) (-554) (-112) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -1722 ((-1020) (-554) (-554) (-554) (-554) (-554) (-112) (-554) (-112) (-554) (-675 (-167 (-221))) (-675 (-167 (-221))) (-554))))
-((-2408 (((-1020) (-554) (-554) (-221) (-221) (-221) (-221) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-70 APROD)))) 61)) (-1844 (((-1020) (-554) (-675 (-221)) (-554) (-675 (-221)) (-675 (-554)) (-554) (-675 (-221)) (-554) (-554) (-554) (-554)) 57)) (-3847 (((-1020) (-554) (-675 (-221)) (-112) (-221) (-554) (-554) (-554) (-554) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-383)) (|:| |fp| (-73 MSOLVE)))) 56)) (-3500 (((-1020) (-554) (-554) (-675 (-221)) (-554) (-675 (-554)) (-554) (-675 (-554)) (-675 (-221)) (-675 (-554)) (-675 (-554)) (-675 (-221)) (-675 (-221)) (-675 (-554)) (-554)) 37)) (-2665 (((-1020) (-554) (-554) (-554) (-221) (-554) (-675 (-221)) (-675 (-221)) (-554)) 36)) (-2076 (((-1020) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554)) 33)) (-2382 (((-1020) (-554) (-675 (-221)) (-554) (-675 (-554)) (-675 (-554)) (-554) (-675 (-554)) (-675 (-221))) 32)) (-3201 (((-1020) (-675 (-221)) (-554) (-675 (-221)) (-554) (-554) (-554)) 28)) (-3993 (((-1020) (-554) (-675 (-221)) (-554) (-675 (-221)) (-554)) 27)) (-3035 (((-1020) (-554) (-675 (-221)) (-554) (-675 (-221)) (-554)) 26)) (-3465 (((-1020) (-554) (-675 (-167 (-221))) (-554) (-554) (-554) (-554) (-675 (-167 (-221))) (-554)) 22)))
-(((-743) (-10 -7 (-15 -3465 ((-1020) (-554) (-675 (-167 (-221))) (-554) (-554) (-554) (-554) (-675 (-167 (-221))) (-554))) (-15 -3035 ((-1020) (-554) (-675 (-221)) (-554) (-675 (-221)) (-554))) (-15 -3993 ((-1020) (-554) (-675 (-221)) (-554) (-675 (-221)) (-554))) (-15 -3201 ((-1020) (-675 (-221)) (-554) (-675 (-221)) (-554) (-554) (-554))) (-15 -2382 ((-1020) (-554) (-675 (-221)) (-554) (-675 (-554)) (-675 (-554)) (-554) (-675 (-554)) (-675 (-221)))) (-15 -2076 ((-1020) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554))) (-15 -2665 ((-1020) (-554) (-554) (-554) (-221) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3500 ((-1020) (-554) (-554) (-675 (-221)) (-554) (-675 (-554)) (-554) (-675 (-554)) (-675 (-221)) (-675 (-554)) (-675 (-554)) (-675 (-221)) (-675 (-221)) (-675 (-554)) (-554))) (-15 -3847 ((-1020) (-554) (-675 (-221)) (-112) (-221) (-554) (-554) (-554) (-554) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-383)) (|:| |fp| (-73 MSOLVE))))) (-15 -1844 ((-1020) (-554) (-675 (-221)) (-554) (-675 (-221)) (-675 (-554)) (-554) (-675 (-221)) (-554) (-554) (-554) (-554))) (-15 -2408 ((-1020) (-554) (-554) (-221) (-221) (-221) (-221) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-70 APROD))))))) (T -743))
-((-2408 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-70 APROD)))) (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-743)))) (-1844 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-675 (-221))) (-5 *5 (-675 (-554))) (-5 *3 (-554)) (-5 *2 (-1020)) (-5 *1 (-743)))) (-3847 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-112)) (-5 *6 (-221)) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1020)) (-5 *1 (-743)))) (-3500 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-675 (-221))) (-5 *5 (-675 (-554))) (-5 *3 (-554)) (-5 *2 (-1020)) (-5 *1 (-743)))) (-2665 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221))) (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-743)))) (-2076 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-743)))) (-2382 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-675 (-221))) (-5 *5 (-675 (-554))) (-5 *3 (-554)) (-5 *2 (-1020)) (-5 *1 (-743)))) (-3201 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-675 (-221))) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-743)))) (-3993 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-743)))) (-3035 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-743)))) (-3465 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-167 (-221)))) (-5 *2 (-1020)) (-5 *1 (-743)))))
-(-10 -7 (-15 -3465 ((-1020) (-554) (-675 (-167 (-221))) (-554) (-554) (-554) (-554) (-675 (-167 (-221))) (-554))) (-15 -3035 ((-1020) (-554) (-675 (-221)) (-554) (-675 (-221)) (-554))) (-15 -3993 ((-1020) (-554) (-675 (-221)) (-554) (-675 (-221)) (-554))) (-15 -3201 ((-1020) (-675 (-221)) (-554) (-675 (-221)) (-554) (-554) (-554))) (-15 -2382 ((-1020) (-554) (-675 (-221)) (-554) (-675 (-554)) (-675 (-554)) (-554) (-675 (-554)) (-675 (-221)))) (-15 -2076 ((-1020) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554))) (-15 -2665 ((-1020) (-554) (-554) (-554) (-221) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3500 ((-1020) (-554) (-554) (-675 (-221)) (-554) (-675 (-554)) (-554) (-675 (-554)) (-675 (-221)) (-675 (-554)) (-675 (-554)) (-675 (-221)) (-675 (-221)) (-675 (-554)) (-554))) (-15 -3847 ((-1020) (-554) (-675 (-221)) (-112) (-221) (-554) (-554) (-554) (-554) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-383)) (|:| |fp| (-73 MSOLVE))))) (-15 -1844 ((-1020) (-554) (-675 (-221)) (-554) (-675 (-221)) (-675 (-554)) (-554) (-675 (-221)) (-554) (-554) (-554) (-554))) (-15 -2408 ((-1020) (-554) (-554) (-221) (-221) (-221) (-221) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-70 APROD))))))
-((-2458 (((-1020) (-1140) (-554) (-554) (-675 (-221)) (-554) (-554) (-675 (-221))) 29)) (-3851 (((-1020) (-1140) (-554) (-554) (-675 (-221))) 28)) (-1510 (((-1020) (-1140) (-554) (-554) (-675 (-221)) (-554) (-675 (-554)) (-554) (-675 (-221))) 27)) (-2835 (((-1020) (-554) (-554) (-554) (-675 (-221))) 21)))
-(((-744) (-10 -7 (-15 -2835 ((-1020) (-554) (-554) (-554) (-675 (-221)))) (-15 -1510 ((-1020) (-1140) (-554) (-554) (-675 (-221)) (-554) (-675 (-554)) (-554) (-675 (-221)))) (-15 -3851 ((-1020) (-1140) (-554) (-554) (-675 (-221)))) (-15 -2458 ((-1020) (-1140) (-554) (-554) (-675 (-221)) (-554) (-554) (-675 (-221)))))) (T -744))
-((-2458 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1140)) (-5 *4 (-554)) (-5 *5 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-744)))) (-3851 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1140)) (-5 *4 (-554)) (-5 *5 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-744)))) (-1510 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1140)) (-5 *5 (-675 (-221))) (-5 *6 (-675 (-554))) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-744)))) (-2835 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-744)))))
-(-10 -7 (-15 -2835 ((-1020) (-554) (-554) (-554) (-675 (-221)))) (-15 -1510 ((-1020) (-1140) (-554) (-554) (-675 (-221)) (-554) (-675 (-554)) (-554) (-675 (-221)))) (-15 -3851 ((-1020) (-1140) (-554) (-554) (-675 (-221)))) (-15 -2458 ((-1020) (-1140) (-554) (-554) (-675 (-221)) (-554) (-554) (-675 (-221)))))
-((-2218 (((-1020) (-221) (-221) (-221) (-221) (-554)) 62)) (-2770 (((-1020) (-221) (-221) (-221) (-554)) 61)) (-1812 (((-1020) (-221) (-221) (-221) (-554)) 60)) (-3545 (((-1020) (-221) (-221) (-554)) 59)) (-4056 (((-1020) (-221) (-554)) 58)) (-1848 (((-1020) (-221) (-554)) 57)) (-3371 (((-1020) (-221) (-554)) 56)) (-4275 (((-1020) (-221) (-554)) 55)) (-4040 (((-1020) (-221) (-554)) 54)) (-2985 (((-1020) (-221) (-554)) 53)) (-3512 (((-1020) (-221) (-167 (-221)) (-554) (-1140) (-554)) 52)) (-2528 (((-1020) (-221) (-167 (-221)) (-554) (-1140) (-554)) 51)) (-1675 (((-1020) (-221) (-554)) 50)) (-1792 (((-1020) (-221) (-554)) 49)) (-3875 (((-1020) (-221) (-554)) 48)) (-2435 (((-1020) (-221) (-554)) 47)) (-1504 (((-1020) (-554) (-221) (-167 (-221)) (-554) (-1140) (-554)) 46)) (-4009 (((-1020) (-1140) (-167 (-221)) (-1140) (-554)) 45)) (-2121 (((-1020) (-1140) (-167 (-221)) (-1140) (-554)) 44)) (-3595 (((-1020) (-221) (-167 (-221)) (-554) (-1140) (-554)) 43)) (-1967 (((-1020) (-221) (-167 (-221)) (-554) (-1140) (-554)) 42)) (-3236 (((-1020) (-221) (-554)) 39)) (-1633 (((-1020) (-221) (-554)) 38)) (-2955 (((-1020) (-221) (-554)) 37)) (-2460 (((-1020) (-221) (-554)) 36)) (-2702 (((-1020) (-221) (-554)) 35)) (-3624 (((-1020) (-221) (-554)) 34)) (-3892 (((-1020) (-221) (-554)) 33)) (-3739 (((-1020) (-221) (-554)) 32)) (-1461 (((-1020) (-221) (-554)) 31)) (-4169 (((-1020) (-221) (-554)) 30)) (-3692 (((-1020) (-221) (-221) (-221) (-554)) 29)) (-3947 (((-1020) (-221) (-554)) 28)) (-3680 (((-1020) (-221) (-554)) 27)) (-2919 (((-1020) (-221) (-554)) 26)) (-3103 (((-1020) (-221) (-554)) 25)) (-2176 (((-1020) (-221) (-554)) 24)) (-1509 (((-1020) (-167 (-221)) (-554)) 21)))
-(((-745) (-10 -7 (-15 -1509 ((-1020) (-167 (-221)) (-554))) (-15 -2176 ((-1020) (-221) (-554))) (-15 -3103 ((-1020) (-221) (-554))) (-15 -2919 ((-1020) (-221) (-554))) (-15 -3680 ((-1020) (-221) (-554))) (-15 -3947 ((-1020) (-221) (-554))) (-15 -3692 ((-1020) (-221) (-221) (-221) (-554))) (-15 -4169 ((-1020) (-221) (-554))) (-15 -1461 ((-1020) (-221) (-554))) (-15 -3739 ((-1020) (-221) (-554))) (-15 -3892 ((-1020) (-221) (-554))) (-15 -3624 ((-1020) (-221) (-554))) (-15 -2702 ((-1020) (-221) (-554))) (-15 -2460 ((-1020) (-221) (-554))) (-15 -2955 ((-1020) (-221) (-554))) (-15 -1633 ((-1020) (-221) (-554))) (-15 -3236 ((-1020) (-221) (-554))) (-15 -1967 ((-1020) (-221) (-167 (-221)) (-554) (-1140) (-554))) (-15 -3595 ((-1020) (-221) (-167 (-221)) (-554) (-1140) (-554))) (-15 -2121 ((-1020) (-1140) (-167 (-221)) (-1140) (-554))) (-15 -4009 ((-1020) (-1140) (-167 (-221)) (-1140) (-554))) (-15 -1504 ((-1020) (-554) (-221) (-167 (-221)) (-554) (-1140) (-554))) (-15 -2435 ((-1020) (-221) (-554))) (-15 -3875 ((-1020) (-221) (-554))) (-15 -1792 ((-1020) (-221) (-554))) (-15 -1675 ((-1020) (-221) (-554))) (-15 -2528 ((-1020) (-221) (-167 (-221)) (-554) (-1140) (-554))) (-15 -3512 ((-1020) (-221) (-167 (-221)) (-554) (-1140) (-554))) (-15 -2985 ((-1020) (-221) (-554))) (-15 -4040 ((-1020) (-221) (-554))) (-15 -4275 ((-1020) (-221) (-554))) (-15 -3371 ((-1020) (-221) (-554))) (-15 -1848 ((-1020) (-221) (-554))) (-15 -4056 ((-1020) (-221) (-554))) (-15 -3545 ((-1020) (-221) (-221) (-554))) (-15 -1812 ((-1020) (-221) (-221) (-221) (-554))) (-15 -2770 ((-1020) (-221) (-221) (-221) (-554))) (-15 -2218 ((-1020) (-221) (-221) (-221) (-221) (-554))))) (T -745))
-((-2218 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-2770 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-1812 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-3545 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-4056 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-1848 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-3371 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-4040 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-2985 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-3512 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-221))) (-5 *5 (-554)) (-5 *6 (-1140)) (-5 *3 (-221)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-2528 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-221))) (-5 *5 (-554)) (-5 *6 (-1140)) (-5 *3 (-221)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-1675 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-1792 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-3875 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-2435 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-1504 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-554)) (-5 *5 (-167 (-221))) (-5 *6 (-1140)) (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-4009 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1140)) (-5 *4 (-167 (-221))) (-5 *5 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-2121 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1140)) (-5 *4 (-167 (-221))) (-5 *5 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-3595 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-221))) (-5 *5 (-554)) (-5 *6 (-1140)) (-5 *3 (-221)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-1967 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-221))) (-5 *5 (-554)) (-5 *6 (-1140)) (-5 *3 (-221)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-3236 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-1633 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-2955 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-2460 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-2702 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-3624 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-3892 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-3739 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-1461 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-4169 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-3692 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-3947 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-3680 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-2919 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-3103 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-2176 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-1509 (*1 *2 *3 *4) (-12 (-5 *3 (-167 (-221))) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))))
-(-10 -7 (-15 -1509 ((-1020) (-167 (-221)) (-554))) (-15 -2176 ((-1020) (-221) (-554))) (-15 -3103 ((-1020) (-221) (-554))) (-15 -2919 ((-1020) (-221) (-554))) (-15 -3680 ((-1020) (-221) (-554))) (-15 -3947 ((-1020) (-221) (-554))) (-15 -3692 ((-1020) (-221) (-221) (-221) (-554))) (-15 -4169 ((-1020) (-221) (-554))) (-15 -1461 ((-1020) (-221) (-554))) (-15 -3739 ((-1020) (-221) (-554))) (-15 -3892 ((-1020) (-221) (-554))) (-15 -3624 ((-1020) (-221) (-554))) (-15 -2702 ((-1020) (-221) (-554))) (-15 -2460 ((-1020) (-221) (-554))) (-15 -2955 ((-1020) (-221) (-554))) (-15 -1633 ((-1020) (-221) (-554))) (-15 -3236 ((-1020) (-221) (-554))) (-15 -1967 ((-1020) (-221) (-167 (-221)) (-554) (-1140) (-554))) (-15 -3595 ((-1020) (-221) (-167 (-221)) (-554) (-1140) (-554))) (-15 -2121 ((-1020) (-1140) (-167 (-221)) (-1140) (-554))) (-15 -4009 ((-1020) (-1140) (-167 (-221)) (-1140) (-554))) (-15 -1504 ((-1020) (-554) (-221) (-167 (-221)) (-554) (-1140) (-554))) (-15 -2435 ((-1020) (-221) (-554))) (-15 -3875 ((-1020) (-221) (-554))) (-15 -1792 ((-1020) (-221) (-554))) (-15 -1675 ((-1020) (-221) (-554))) (-15 -2528 ((-1020) (-221) (-167 (-221)) (-554) (-1140) (-554))) (-15 -3512 ((-1020) (-221) (-167 (-221)) (-554) (-1140) (-554))) (-15 -2985 ((-1020) (-221) (-554))) (-15 -4040 ((-1020) (-221) (-554))) (-15 -4275 ((-1020) (-221) (-554))) (-15 -3371 ((-1020) (-221) (-554))) (-15 -1848 ((-1020) (-221) (-554))) (-15 -4056 ((-1020) (-221) (-554))) (-15 -3545 ((-1020) (-221) (-221) (-554))) (-15 -1812 ((-1020) (-221) (-221) (-221) (-554))) (-15 -2770 ((-1020) (-221) (-221) (-221) (-554))) (-15 -2218 ((-1020) (-221) (-221) (-221) (-221) (-554))))
-((-1288 (((-1246)) 18)) (-4338 (((-1140)) 22)) (-1725 (((-1140)) 21)) (-3525 (((-1086) (-1158) (-675 (-554))) 37) (((-1086) (-1158) (-675 (-221))) 32)) (-1957 (((-112)) 16)) (-3578 (((-1140) (-1140)) 25)))
-(((-746) (-10 -7 (-15 -1725 ((-1140))) (-15 -4338 ((-1140))) (-15 -3578 ((-1140) (-1140))) (-15 -3525 ((-1086) (-1158) (-675 (-221)))) (-15 -3525 ((-1086) (-1158) (-675 (-554)))) (-15 -1957 ((-112))) (-15 -1288 ((-1246))))) (T -746))
-((-1288 (*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-746)))) (-1957 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-746)))) (-3525 (*1 *2 *3 *4) (-12 (-5 *3 (-1158)) (-5 *4 (-675 (-554))) (-5 *2 (-1086)) (-5 *1 (-746)))) (-3525 (*1 *2 *3 *4) (-12 (-5 *3 (-1158)) (-5 *4 (-675 (-221))) (-5 *2 (-1086)) (-5 *1 (-746)))) (-3578 (*1 *2 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-746)))) (-4338 (*1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-746)))) (-1725 (*1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-746)))))
-(-10 -7 (-15 -1725 ((-1140))) (-15 -4338 ((-1140))) (-15 -3578 ((-1140) (-1140))) (-15 -3525 ((-1086) (-1158) (-675 (-221)))) (-15 -3525 ((-1086) (-1158) (-675 (-554)))) (-15 -1957 ((-112))) (-15 -1288 ((-1246))))
-((-1856 (($ $ $) 10)) (-3499 (($ $ $ $) 9)) (-1870 (($ $ $) 12)))
-(((-747 |#1|) (-10 -8 (-15 -1870 (|#1| |#1| |#1|)) (-15 -1856 (|#1| |#1| |#1|)) (-15 -3499 (|#1| |#1| |#1| |#1|))) (-748)) (T -747))
-NIL
-(-10 -8 (-15 -1870 (|#1| |#1| |#1|)) (-15 -1856 (|#1| |#1| |#1|)) (-15 -3499 (|#1| |#1| |#1| |#1|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-2080 (($ $ (-906)) 28)) (-1297 (($ $ (-906)) 29)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-1856 (($ $ $) 25)) (-3075 (((-848) $) 11)) (-3499 (($ $ $ $) 26)) (-1870 (($ $ $) 24)) (-2004 (($) 18 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 30)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 27)))
-(((-748) (-138)) (T -748))
-((-3499 (*1 *1 *1 *1 *1) (-4 *1 (-748))) (-1856 (*1 *1 *1 *1) (-4 *1 (-748))) (-1870 (*1 *1 *1 *1) (-4 *1 (-748))))
-(-13 (-21) (-707) (-10 -8 (-15 -3499 ($ $ $ $)) (-15 -1856 ($ $ $)) (-15 -1870 ($ $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-601 (-848)) . T) ((-707) . T) ((-1082) . T))
-((-3075 (((-848) $) NIL) (($ (-554)) 10)))
-(((-749 |#1|) (-10 -8 (-15 -3075 (|#1| (-554))) (-15 -3075 ((-848) |#1|))) (-750)) (T -749))
-NIL
-(-10 -8 (-15 -3075 (|#1| (-554))) (-15 -3075 ((-848) |#1|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-3754 (((-3 $ "failed") $) 40)) (-2080 (($ $ (-906)) 28) (($ $ (-758)) 35)) (-1320 (((-3 $ "failed") $) 38)) (-3248 (((-112) $) 34)) (-1605 (((-3 $ "failed") $) 39)) (-1297 (($ $ (-906)) 29) (($ $ (-758)) 36)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-1856 (($ $ $) 25)) (-3075 (((-848) $) 11) (($ (-554)) 31)) (-2261 (((-758)) 32)) (-3499 (($ $ $ $) 26)) (-1870 (($ $ $) 24)) (-2004 (($) 18 T CONST)) (-2014 (($) 33 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 30) (($ $ (-758)) 37)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 27)))
-(((-750) (-138)) (T -750))
-((-2261 (*1 *2) (-12 (-4 *1 (-750)) (-5 *2 (-758)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-554)) (-4 *1 (-750)))))
-(-13 (-748) (-709) (-10 -8 (-15 -2261 ((-758))) (-15 -3075 ($ (-554)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-601 (-848)) . T) ((-707) . T) ((-709) . T) ((-748) . T) ((-1082) . T))
-((-2883 (((-631 (-2 (|:| |outval| (-167 |#1|)) (|:| |outmult| (-554)) (|:| |outvect| (-631 (-675 (-167 |#1|)))))) (-675 (-167 (-402 (-554)))) |#1|) 33)) (-4180 (((-631 (-167 |#1|)) (-675 (-167 (-402 (-554)))) |#1|) 23)) (-3109 (((-937 (-167 (-402 (-554)))) (-675 (-167 (-402 (-554)))) (-1158)) 20) (((-937 (-167 (-402 (-554)))) (-675 (-167 (-402 (-554))))) 19)))
-(((-751 |#1|) (-10 -7 (-15 -3109 ((-937 (-167 (-402 (-554)))) (-675 (-167 (-402 (-554)))))) (-15 -3109 ((-937 (-167 (-402 (-554)))) (-675 (-167 (-402 (-554)))) (-1158))) (-15 -4180 ((-631 (-167 |#1|)) (-675 (-167 (-402 (-554)))) |#1|)) (-15 -2883 ((-631 (-2 (|:| |outval| (-167 |#1|)) (|:| |outmult| (-554)) (|:| |outvect| (-631 (-675 (-167 |#1|)))))) (-675 (-167 (-402 (-554)))) |#1|))) (-13 (-358) (-834))) (T -751))
-((-2883 (*1 *2 *3 *4) (-12 (-5 *3 (-675 (-167 (-402 (-554))))) (-5 *2 (-631 (-2 (|:| |outval| (-167 *4)) (|:| |outmult| (-554)) (|:| |outvect| (-631 (-675 (-167 *4))))))) (-5 *1 (-751 *4)) (-4 *4 (-13 (-358) (-834))))) (-4180 (*1 *2 *3 *4) (-12 (-5 *3 (-675 (-167 (-402 (-554))))) (-5 *2 (-631 (-167 *4))) (-5 *1 (-751 *4)) (-4 *4 (-13 (-358) (-834))))) (-3109 (*1 *2 *3 *4) (-12 (-5 *3 (-675 (-167 (-402 (-554))))) (-5 *4 (-1158)) (-5 *2 (-937 (-167 (-402 (-554))))) (-5 *1 (-751 *5)) (-4 *5 (-13 (-358) (-834))))) (-3109 (*1 *2 *3) (-12 (-5 *3 (-675 (-167 (-402 (-554))))) (-5 *2 (-937 (-167 (-402 (-554))))) (-5 *1 (-751 *4)) (-4 *4 (-13 (-358) (-834))))))
-(-10 -7 (-15 -3109 ((-937 (-167 (-402 (-554)))) (-675 (-167 (-402 (-554)))))) (-15 -3109 ((-937 (-167 (-402 (-554)))) (-675 (-167 (-402 (-554)))) (-1158))) (-15 -4180 ((-631 (-167 |#1|)) (-675 (-167 (-402 (-554)))) |#1|)) (-15 -2883 ((-631 (-2 (|:| |outval| (-167 |#1|)) (|:| |outmult| (-554)) (|:| |outvect| (-631 (-675 (-167 |#1|)))))) (-675 (-167 (-402 (-554)))) |#1|)))
-((-3691 (((-172 (-554)) |#1|) 25)))
-(((-752 |#1|) (-10 -7 (-15 -3691 ((-172 (-554)) |#1|))) (-399)) (T -752))
-((-3691 (*1 *2 *3) (-12 (-5 *2 (-172 (-554))) (-5 *1 (-752 *3)) (-4 *3 (-399)))))
-(-10 -7 (-15 -3691 ((-172 (-554)) |#1|)))
-((-1455 ((|#1| |#1| |#1|) 24)) (-4024 ((|#1| |#1| |#1|) 23)) (-2780 ((|#1| |#1| |#1|) 32)) (-1775 ((|#1| |#1| |#1|) 28)) (-1763 (((-3 |#1| "failed") |#1| |#1|) 27)) (-4032 (((-2 (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1|) 22)))
-(((-753 |#1| |#2|) (-10 -7 (-15 -4032 ((-2 (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -4024 (|#1| |#1| |#1|)) (-15 -1455 (|#1| |#1| |#1|)) (-15 -1763 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1775 (|#1| |#1| |#1|)) (-15 -2780 (|#1| |#1| |#1|))) (-695 |#2|) (-358)) (T -753))
-((-2780 (*1 *2 *2 *2) (-12 (-4 *3 (-358)) (-5 *1 (-753 *2 *3)) (-4 *2 (-695 *3)))) (-1775 (*1 *2 *2 *2) (-12 (-4 *3 (-358)) (-5 *1 (-753 *2 *3)) (-4 *2 (-695 *3)))) (-1763 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-358)) (-5 *1 (-753 *2 *3)) (-4 *2 (-695 *3)))) (-1455 (*1 *2 *2 *2) (-12 (-4 *3 (-358)) (-5 *1 (-753 *2 *3)) (-4 *2 (-695 *3)))) (-4024 (*1 *2 *2 *2) (-12 (-4 *3 (-358)) (-5 *1 (-753 *2 *3)) (-4 *2 (-695 *3)))) (-4032 (*1 *2 *3 *3) (-12 (-4 *4 (-358)) (-5 *2 (-2 (|:| -2325 *3) (|:| -2423 *3))) (-5 *1 (-753 *3 *4)) (-4 *3 (-695 *4)))))
-(-10 -7 (-15 -4032 ((-2 (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -4024 (|#1| |#1| |#1|)) (-15 -1455 (|#1| |#1| |#1|)) (-15 -1763 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1775 (|#1| |#1| |#1|)) (-15 -2780 (|#1| |#1| |#1|)))
-((-2077 (((-1102) $ (-128)) 12)) (-3451 (((-1102) $ (-129)) 11)) (-4120 (((-1102) $ (-128)) 7)) (-2614 (((-1102) $) 8)) (-4203 (((-112) $) 14)) (-3769 (((-3 $ "failed") |#1| (-939)) 15)) (-3745 (($ $) 6)))
-(((-754 |#1|) (-138) (-1082)) (T -754))
-((-3769 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-939)) (-4 *1 (-754 *2)) (-4 *2 (-1082)))) (-4203 (*1 *2 *1) (-12 (-4 *1 (-754 *3)) (-4 *3 (-1082)) (-5 *2 (-112)))))
-(-13 (-566) (-10 -8 (-15 -3769 ((-3 $ "failed") |t#1| (-939))) (-15 -4203 ((-112) $))))
-(((-171) . T) ((-521) . T) ((-566) . T) ((-846) . T))
-((-2062 (((-2 (|:| -3782 (-675 (-554))) (|:| |basisDen| (-554)) (|:| |basisInv| (-675 (-554)))) (-554)) 59)) (-3358 (((-2 (|:| -3782 (-675 (-554))) (|:| |basisDen| (-554)) (|:| |basisInv| (-675 (-554))))) 57)) (-1495 (((-554)) 70)))
-(((-755 |#1| |#2|) (-10 -7 (-15 -1495 ((-554))) (-15 -3358 ((-2 (|:| -3782 (-675 (-554))) (|:| |basisDen| (-554)) (|:| |basisInv| (-675 (-554)))))) (-15 -2062 ((-2 (|:| -3782 (-675 (-554))) (|:| |basisDen| (-554)) (|:| |basisInv| (-675 (-554)))) (-554)))) (-1217 (-554)) (-404 (-554) |#1|)) (T -755))
-((-2062 (*1 *2 *3) (-12 (-5 *3 (-554)) (-4 *4 (-1217 *3)) (-5 *2 (-2 (|:| -3782 (-675 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-675 *3)))) (-5 *1 (-755 *4 *5)) (-4 *5 (-404 *3 *4)))) (-3358 (*1 *2) (-12 (-4 *3 (-1217 (-554))) (-5 *2 (-2 (|:| -3782 (-675 (-554))) (|:| |basisDen| (-554)) (|:| |basisInv| (-675 (-554))))) (-5 *1 (-755 *3 *4)) (-4 *4 (-404 (-554) *3)))) (-1495 (*1 *2) (-12 (-4 *3 (-1217 *2)) (-5 *2 (-554)) (-5 *1 (-755 *3 *4)) (-4 *4 (-404 *2 *3)))))
-(-10 -7 (-15 -1495 ((-554))) (-15 -3358 ((-2 (|:| -3782 (-675 (-554))) (|:| |basisDen| (-554)) (|:| |basisInv| (-675 (-554)))))) (-15 -2062 ((-2 (|:| -3782 (-675 (-554))) (|:| |basisDen| (-554)) (|:| |basisInv| (-675 (-554)))) (-554))))
-((-3062 (((-112) $ $) NIL)) (-1668 (((-3 (|:| |nia| (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) $) 21)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 20) (($ (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 13) (($ (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))))) 18)) (-1658 (((-112) $ $) NIL)))
-(((-756) (-13 (-1082) (-10 -8 (-15 -3075 ($ (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -3075 ($ (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -3075 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))) (-15 -1668 ((-3 (|:| |nia| (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) $))))) (T -756))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *1 (-756)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *1 (-756)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))))) (-5 *1 (-756)))) (-1668 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))))) (-5 *1 (-756)))))
-(-13 (-1082) (-10 -8 (-15 -3075 ($ (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -3075 ($ (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -3075 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))) (-15 -1668 ((-3 (|:| |nia| (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) $))))
-((-2184 (((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-937 |#1|))) 18) (((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-937 |#1|)) (-631 (-1158))) 17)) (-1900 (((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-937 |#1|))) 20) (((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-937 |#1|)) (-631 (-1158))) 19)))
-(((-757 |#1|) (-10 -7 (-15 -2184 ((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-937 |#1|)) (-631 (-1158)))) (-15 -2184 ((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-937 |#1|)))) (-15 -1900 ((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-937 |#1|)) (-631 (-1158)))) (-15 -1900 ((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-937 |#1|))))) (-546)) (T -757))
-((-1900 (*1 *2 *3) (-12 (-5 *3 (-631 (-937 *4))) (-4 *4 (-546)) (-5 *2 (-631 (-631 (-289 (-402 (-937 *4)))))) (-5 *1 (-757 *4)))) (-1900 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-937 *5))) (-5 *4 (-631 (-1158))) (-4 *5 (-546)) (-5 *2 (-631 (-631 (-289 (-402 (-937 *5)))))) (-5 *1 (-757 *5)))) (-2184 (*1 *2 *3) (-12 (-5 *3 (-631 (-937 *4))) (-4 *4 (-546)) (-5 *2 (-631 (-631 (-289 (-402 (-937 *4)))))) (-5 *1 (-757 *4)))) (-2184 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-937 *5))) (-5 *4 (-631 (-1158))) (-4 *5 (-546)) (-5 *2 (-631 (-631 (-289 (-402 (-937 *5)))))) (-5 *1 (-757 *5)))))
-(-10 -7 (-15 -2184 ((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-937 |#1|)) (-631 (-1158)))) (-15 -2184 ((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-937 |#1|)))) (-15 -1900 ((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-937 |#1|)) (-631 (-1158)))) (-15 -1900 ((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-937 |#1|)))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1349 (($ $ $) 6)) (-2934 (((-3 $ "failed") $ $) 9)) (-1648 (($ $ (-554)) 7)) (-4087 (($) NIL T CONST)) (-3964 (($ $ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3353 (($ $) NIL)) (-3943 (($ $ $) NIL)) (-3248 (((-112) $) NIL)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2510 (($ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-3075 (((-848) $) NIL)) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-758)) NIL) (($ $ (-906)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ $ $) NIL)))
-(((-758) (-13 (-780) (-713) (-10 -8 (-15 -3943 ($ $ $)) (-15 -3964 ($ $ $)) (-15 -2510 ($ $ $)) (-15 -2259 ((-2 (|:| -2325 $) (|:| -2423 $)) $ $)) (-15 -3919 ((-3 $ "failed") $ $)) (-15 -1648 ($ $ (-554))) (-15 -3353 ($ $)) (-6 (-4375 "*"))))) (T -758))
-((-3943 (*1 *1 *1 *1) (-5 *1 (-758))) (-3964 (*1 *1 *1 *1) (-5 *1 (-758))) (-2510 (*1 *1 *1 *1) (-5 *1 (-758))) (-2259 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2325 (-758)) (|:| -2423 (-758)))) (-5 *1 (-758)))) (-3919 (*1 *1 *1 *1) (|partial| -5 *1 (-758))) (-1648 (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-758)))) (-3353 (*1 *1 *1) (-5 *1 (-758))))
-(-13 (-780) (-713) (-10 -8 (-15 -3943 ($ $ $)) (-15 -3964 ($ $ $)) (-15 -2510 ($ $ $)) (-15 -2259 ((-2 (|:| -2325 $) (|:| -2423 $)) $ $)) (-15 -3919 ((-3 $ "failed") $ $)) (-15 -1648 ($ $ (-554))) (-15 -3353 ($ $)) (-6 (-4375 "*"))))
-((-1900 (((-3 |#2| "failed") |#2| |#2| (-114) (-1158)) 35)))
-(((-759 |#1| |#2|) (-10 -7 (-15 -1900 ((-3 |#2| "failed") |#2| |#2| (-114) (-1158)))) (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145)) (-13 (-29 |#1|) (-1180) (-944))) (T -759))
-((-1900 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1158)) (-4 *5 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (-5 *1 (-759 *5 *2)) (-4 *2 (-13 (-29 *5) (-1180) (-944))))))
-(-10 -7 (-15 -1900 ((-3 |#2| "failed") |#2| |#2| (-114) (-1158))))
-((-3075 (((-761) |#1|) 8)))
-(((-760 |#1|) (-10 -7 (-15 -3075 ((-761) |#1|))) (-1195)) (T -760))
-((-3075 (*1 *2 *3) (-12 (-5 *2 (-761)) (-5 *1 (-760 *3)) (-4 *3 (-1195)))))
-(-10 -7 (-15 -3075 ((-761) |#1|)))
-((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 7)) (-1658 (((-112) $ $) 9)))
-(((-761) (-1082)) (T -761))
-NIL
-(-1082)
-((-3274 ((|#2| |#4|) 35)))
-(((-762 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3274 (|#2| |#4|))) (-446) (-1217 |#1|) (-711 |#1| |#2|) (-1217 |#3|)) (T -762))
-((-3274 (*1 *2 *3) (-12 (-4 *4 (-446)) (-4 *5 (-711 *4 *2)) (-4 *2 (-1217 *4)) (-5 *1 (-762 *4 *2 *5 *3)) (-4 *3 (-1217 *5)))))
-(-10 -7 (-15 -3274 (|#2| |#4|)))
-((-1320 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-3254 (((-1246) (-1140) (-1140) |#4| |#5|) 33)) (-4149 ((|#4| |#4| |#5|) 73)) (-4085 (((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#5|) 77)) (-2108 (((-631 (-2 (|:| |val| (-112)) (|:| -2143 |#5|))) |#4| |#5|) 16)))
-(((-763 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1320 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -4149 (|#4| |#4| |#5|)) (-15 -4085 ((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#5|)) (-15 -3254 ((-1246) (-1140) (-1140) |#4| |#5|)) (-15 -2108 ((-631 (-2 (|:| |val| (-112)) (|:| -2143 |#5|))) |#4| |#5|))) (-446) (-780) (-836) (-1048 |#1| |#2| |#3|) (-1054 |#1| |#2| |#3| |#4|)) (T -763))
-((-2108 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-631 (-2 (|:| |val| (-112)) (|:| -2143 *4)))) (-5 *1 (-763 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-3254 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1140)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836)) (-4 *4 (-1048 *6 *7 *8)) (-5 *2 (-1246)) (-5 *1 (-763 *6 *7 *8 *4 *5)) (-4 *5 (-1054 *6 *7 *8 *4)))) (-4085 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *4)))) (-5 *1 (-763 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-4149 (*1 *2 *2 *3) (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *2 (-1048 *4 *5 *6)) (-5 *1 (-763 *4 *5 *6 *2 *3)) (-4 *3 (-1054 *4 *5 *6 *2)))) (-1320 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-763 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))))
-(-10 -7 (-15 -1320 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -4149 (|#4| |#4| |#5|)) (-15 -4085 ((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#5|)) (-15 -3254 ((-1246) (-1140) (-1140) |#4| |#5|)) (-15 -2108 ((-631 (-2 (|:| |val| (-112)) (|:| -2143 |#5|))) |#4| |#5|)))
-((-2784 (((-3 (-1154 (-1154 |#1|)) "failed") |#4|) 43)) (-3342 (((-631 |#4|) |#4|) 15)) (-1811 ((|#4| |#4|) 11)))
-(((-764 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3342 ((-631 |#4|) |#4|)) (-15 -2784 ((-3 (-1154 (-1154 |#1|)) "failed") |#4|)) (-15 -1811 (|#4| |#4|))) (-344) (-324 |#1|) (-1217 |#2|) (-1217 |#3|) (-906)) (T -764))
-((-1811 (*1 *2 *2) (-12 (-4 *3 (-344)) (-4 *4 (-324 *3)) (-4 *5 (-1217 *4)) (-5 *1 (-764 *3 *4 *5 *2 *6)) (-4 *2 (-1217 *5)) (-14 *6 (-906)))) (-2784 (*1 *2 *3) (|partial| -12 (-4 *4 (-344)) (-4 *5 (-324 *4)) (-4 *6 (-1217 *5)) (-5 *2 (-1154 (-1154 *4))) (-5 *1 (-764 *4 *5 *6 *3 *7)) (-4 *3 (-1217 *6)) (-14 *7 (-906)))) (-3342 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *5 (-324 *4)) (-4 *6 (-1217 *5)) (-5 *2 (-631 *3)) (-5 *1 (-764 *4 *5 *6 *3 *7)) (-4 *3 (-1217 *6)) (-14 *7 (-906)))))
-(-10 -7 (-15 -3342 ((-631 |#4|) |#4|)) (-15 -2784 ((-3 (-1154 (-1154 |#1|)) "failed") |#4|)) (-15 -1811 (|#4| |#4|)))
-((-2657 (((-2 (|:| |deter| (-631 (-1154 |#5|))) (|:| |dterm| (-631 (-631 (-2 (|:| -2672 (-758)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-631 |#1|)) (|:| |nlead| (-631 |#5|))) (-1154 |#5|) (-631 |#1|) (-631 |#5|)) 54)) (-4215 (((-631 (-758)) |#1|) 13)))
-(((-765 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2657 ((-2 (|:| |deter| (-631 (-1154 |#5|))) (|:| |dterm| (-631 (-631 (-2 (|:| -2672 (-758)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-631 |#1|)) (|:| |nlead| (-631 |#5|))) (-1154 |#5|) (-631 |#1|) (-631 |#5|))) (-15 -4215 ((-631 (-758)) |#1|))) (-1217 |#4|) (-780) (-836) (-302) (-934 |#4| |#2| |#3|)) (T -765))
-((-4215 (*1 *2 *3) (-12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-302)) (-5 *2 (-631 (-758))) (-5 *1 (-765 *3 *4 *5 *6 *7)) (-4 *3 (-1217 *6)) (-4 *7 (-934 *6 *4 *5)))) (-2657 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1217 *9)) (-4 *7 (-780)) (-4 *8 (-836)) (-4 *9 (-302)) (-4 *10 (-934 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-631 (-1154 *10))) (|:| |dterm| (-631 (-631 (-2 (|:| -2672 (-758)) (|:| |pcoef| *10))))) (|:| |nfacts| (-631 *6)) (|:| |nlead| (-631 *10)))) (-5 *1 (-765 *6 *7 *8 *9 *10)) (-5 *3 (-1154 *10)) (-5 *4 (-631 *6)) (-5 *5 (-631 *10)))))
-(-10 -7 (-15 -2657 ((-2 (|:| |deter| (-631 (-1154 |#5|))) (|:| |dterm| (-631 (-631 (-2 (|:| -2672 (-758)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-631 |#1|)) (|:| |nlead| (-631 |#5|))) (-1154 |#5|) (-631 |#1|) (-631 |#5|))) (-15 -4215 ((-631 (-758)) |#1|)))
-((-2447 (((-631 (-2 (|:| |outval| |#1|) (|:| |outmult| (-554)) (|:| |outvect| (-631 (-675 |#1|))))) (-675 (-402 (-554))) |#1|) 31)) (-1717 (((-631 |#1|) (-675 (-402 (-554))) |#1|) 21)) (-3109 (((-937 (-402 (-554))) (-675 (-402 (-554))) (-1158)) 18) (((-937 (-402 (-554))) (-675 (-402 (-554)))) 17)))
-(((-766 |#1|) (-10 -7 (-15 -3109 ((-937 (-402 (-554))) (-675 (-402 (-554))))) (-15 -3109 ((-937 (-402 (-554))) (-675 (-402 (-554))) (-1158))) (-15 -1717 ((-631 |#1|) (-675 (-402 (-554))) |#1|)) (-15 -2447 ((-631 (-2 (|:| |outval| |#1|) (|:| |outmult| (-554)) (|:| |outvect| (-631 (-675 |#1|))))) (-675 (-402 (-554))) |#1|))) (-13 (-358) (-834))) (T -766))
-((-2447 (*1 *2 *3 *4) (-12 (-5 *3 (-675 (-402 (-554)))) (-5 *2 (-631 (-2 (|:| |outval| *4) (|:| |outmult| (-554)) (|:| |outvect| (-631 (-675 *4)))))) (-5 *1 (-766 *4)) (-4 *4 (-13 (-358) (-834))))) (-1717 (*1 *2 *3 *4) (-12 (-5 *3 (-675 (-402 (-554)))) (-5 *2 (-631 *4)) (-5 *1 (-766 *4)) (-4 *4 (-13 (-358) (-834))))) (-3109 (*1 *2 *3 *4) (-12 (-5 *3 (-675 (-402 (-554)))) (-5 *4 (-1158)) (-5 *2 (-937 (-402 (-554)))) (-5 *1 (-766 *5)) (-4 *5 (-13 (-358) (-834))))) (-3109 (*1 *2 *3) (-12 (-5 *3 (-675 (-402 (-554)))) (-5 *2 (-937 (-402 (-554)))) (-5 *1 (-766 *4)) (-4 *4 (-13 (-358) (-834))))))
-(-10 -7 (-15 -3109 ((-937 (-402 (-554))) (-675 (-402 (-554))))) (-15 -3109 ((-937 (-402 (-554))) (-675 (-402 (-554))) (-1158))) (-15 -1717 ((-631 |#1|) (-675 (-402 (-554))) |#1|)) (-15 -2447 ((-631 (-2 (|:| |outval| |#1|) (|:| |outmult| (-554)) (|:| |outvect| (-631 (-675 |#1|))))) (-675 (-402 (-554))) |#1|)))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 34)) (-2405 (((-631 |#2|) $) NIL)) (-2237 (((-1154 $) $ |#2|) NIL) (((-1154 |#1|) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-546)))) (-1976 (($ $) NIL (|has| |#1| (-546)))) (-1363 (((-112) $) NIL (|has| |#1| (-546)))) (-3785 (((-758) $) NIL) (((-758) $ (-631 |#2|)) NIL)) (-3387 (($ $) 28)) (-3079 (((-112) $ $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4286 (($ $ $) 93 (|has| |#1| (-546)))) (-1580 (((-631 $) $ $) 106 (|has| |#1| (-546)))) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-3278 (($ $) NIL (|has| |#1| (-446)))) (-1565 (((-413 $) $) NIL (|has| |#1| (-446)))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-937 (-402 (-554)))) NIL (-12 (|has| |#1| (-38 (-402 (-554)))) (|has| |#2| (-602 (-1158))))) (((-3 $ "failed") (-937 (-554))) NIL (-3994 (-12 (|has| |#1| (-38 (-554))) (|has| |#2| (-602 (-1158))) (-4081 (|has| |#1| (-38 (-402 (-554)))))) (-12 (|has| |#1| (-38 (-402 (-554)))) (|has| |#2| (-602 (-1158)))))) (((-3 $ "failed") (-937 |#1|)) NIL (-3994 (-12 (|has| |#2| (-602 (-1158))) (-4081 (|has| |#1| (-38 (-402 (-554))))) (-4081 (|has| |#1| (-38 (-554))))) (-12 (|has| |#1| (-38 (-554))) (|has| |#2| (-602 (-1158))) (-4081 (|has| |#1| (-38 (-402 (-554))))) (-4081 (|has| |#1| (-539)))) (-12 (|has| |#1| (-38 (-402 (-554)))) (|has| |#2| (-602 (-1158))) (-4081 (|has| |#1| (-977 (-554))))))) (((-3 (-1107 |#1| |#2|) "failed") $) 18)) (-1668 ((|#1| $) NIL) (((-402 (-554)) $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-554) $) NIL (|has| |#1| (-1023 (-554)))) ((|#2| $) NIL) (($ (-937 (-402 (-554)))) NIL (-12 (|has| |#1| (-38 (-402 (-554)))) (|has| |#2| (-602 (-1158))))) (($ (-937 (-554))) NIL (-3994 (-12 (|has| |#1| (-38 (-554))) (|has| |#2| (-602 (-1158))) (-4081 (|has| |#1| (-38 (-402 (-554)))))) (-12 (|has| |#1| (-38 (-402 (-554)))) (|has| |#2| (-602 (-1158)))))) (($ (-937 |#1|)) NIL (-3994 (-12 (|has| |#2| (-602 (-1158))) (-4081 (|has| |#1| (-38 (-402 (-554))))) (-4081 (|has| |#1| (-38 (-554))))) (-12 (|has| |#1| (-38 (-554))) (|has| |#2| (-602 (-1158))) (-4081 (|has| |#1| (-38 (-402 (-554))))) (-4081 (|has| |#1| (-539)))) (-12 (|has| |#1| (-38 (-402 (-554)))) (|has| |#2| (-602 (-1158))) (-4081 (|has| |#1| (-977 (-554))))))) (((-1107 |#1| |#2|) $) NIL)) (-2999 (($ $ $ |#2|) NIL (|has| |#1| (-170))) (($ $ $) 104 (|has| |#1| (-546)))) (-2550 (($ $) NIL) (($ $ |#2|) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) NIL) (((-675 |#1|) (-675 $)) NIL)) (-2857 (((-112) $ $) NIL) (((-112) $ (-631 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2661 (((-112) $) NIL)) (-1680 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 70)) (-4003 (($ $) 119 (|has| |#1| (-446)))) (-2048 (($ $) NIL (|has| |#1| (-446))) (($ $ |#2|) NIL (|has| |#1| (-446)))) (-2540 (((-631 $) $) NIL)) (-3289 (((-112) $) NIL (|has| |#1| (-894)))) (-2016 (($ $) NIL (|has| |#1| (-546)))) (-3605 (($ $) NIL (|has| |#1| (-546)))) (-4202 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-3039 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-1344 (($ $ |#1| (-525 |#2|) $) NIL)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (-12 (|has| |#1| (-871 (-374))) (|has| |#2| (-871 (-374))))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (-12 (|has| |#1| (-871 (-554))) (|has| |#2| (-871 (-554)))))) (-3248 (((-112) $) NIL)) (-2122 (((-758) $) NIL)) (-4253 (((-112) $ $) NIL) (((-112) $ (-631 $)) NIL)) (-3376 (($ $ $ $ $) 90 (|has| |#1| (-546)))) (-3954 ((|#2| $) 19)) (-2393 (($ (-1154 |#1|) |#2|) NIL) (($ (-1154 $) |#2|) NIL)) (-3910 (((-631 $) $) NIL)) (-3580 (((-112) $) NIL)) (-2383 (($ |#1| (-525 |#2|)) NIL) (($ $ |#2| (-758)) 36) (($ $ (-631 |#2|) (-631 (-758))) NIL)) (-1761 (($ $ $) 60)) (-4014 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $ |#2|) NIL)) (-2682 (((-112) $) NIL)) (-3893 (((-525 |#2|) $) NIL) (((-758) $ |#2|) NIL) (((-631 (-758)) $ (-631 |#2|)) NIL)) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-1299 (((-758) $) 20)) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2789 (($ (-1 (-525 |#2|) (-525 |#2|)) $) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-3277 (((-3 |#2| "failed") $) NIL)) (-2750 (($ $) NIL (|has| |#1| (-446)))) (-2385 (($ $) NIL (|has| |#1| (-446)))) (-2023 (((-631 $) $) NIL)) (-1785 (($ $) 37)) (-2278 (($ $) NIL (|has| |#1| (-446)))) (-1596 (((-631 $) $) 41)) (-3737 (($ $) 39)) (-2518 (($ $) NIL)) (-2530 ((|#1| $) NIL) (($ $ |#2|) 45)) (-2475 (($ (-631 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-1715 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2776 (-758))) $ $) 82)) (-2694 (((-2 (|:| -1490 $) (|:| |gap| (-758)) (|:| -2325 $) (|:| -2423 $)) $ $) 67) (((-2 (|:| -1490 $) (|:| |gap| (-758)) (|:| -2325 $) (|:| -2423 $)) $ $ |#2|) NIL)) (-3386 (((-2 (|:| -1490 $) (|:| |gap| (-758)) (|:| -2423 $)) $ $) NIL) (((-2 (|:| -1490 $) (|:| |gap| (-758)) (|:| -2423 $)) $ $ |#2|) NIL)) (-3752 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-2711 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-1613 (((-1140) $) NIL)) (-2543 (($ $ $) 108 (|has| |#1| (-546)))) (-1839 (((-631 $) $) 30)) (-3778 (((-3 (-631 $) "failed") $) NIL)) (-2433 (((-3 (-631 $) "failed") $) NIL)) (-3160 (((-3 (-2 (|:| |var| |#2|) (|:| -1407 (-758))) "failed") $) NIL)) (-3007 (((-112) $ $) NIL) (((-112) $ (-631 $)) NIL)) (-1536 (($ $ $) NIL)) (-3834 (($ $) 21)) (-2178 (((-112) $ $) NIL)) (-3518 (((-112) $ $) NIL) (((-112) $ (-631 $)) NIL)) (-3492 (($ $ $) NIL)) (-4133 (($ $) 23)) (-2768 (((-1102) $) NIL)) (-2695 (((-2 (|:| -2510 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-546)))) (-3446 (((-2 (|:| -2510 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-546)))) (-2492 (((-112) $) 52)) (-2505 ((|#1| $) 55)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#1| (-446)))) (-2510 ((|#1| |#1| $) 116 (|has| |#1| (-446))) (($ (-631 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-2270 (((-413 $) $) NIL (|has| |#1| (-894)))) (-2396 (((-2 (|:| -2510 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-546)))) (-3919 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-546))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-546)))) (-4343 (($ $ |#1|) 112 (|has| |#1| (-546))) (($ $ $) NIL (|has| |#1| (-546)))) (-3767 (($ $ |#1|) 111 (|has| |#1| (-546))) (($ $ $) NIL (|has| |#1| (-546)))) (-2386 (($ $ (-631 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-631 |#2|) (-631 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-631 |#2|) (-631 $)) NIL)) (-1495 (($ $ |#2|) NIL (|has| |#1| (-170)))) (-1553 (($ $ |#2|) NIL) (($ $ (-631 |#2|)) NIL) (($ $ |#2| (-758)) NIL) (($ $ (-631 |#2|) (-631 (-758))) NIL)) (-3308 (((-525 |#2|) $) NIL) (((-758) $ |#2|) 43) (((-631 (-758)) $ (-631 |#2|)) NIL)) (-1559 (($ $) NIL)) (-2013 (($ $) 33)) (-2927 (((-877 (-374)) $) NIL (-12 (|has| |#1| (-602 (-877 (-374)))) (|has| |#2| (-602 (-877 (-374)))))) (((-877 (-554)) $) NIL (-12 (|has| |#1| (-602 (-877 (-554)))) (|has| |#2| (-602 (-877 (-554)))))) (((-530) $) NIL (-12 (|has| |#1| (-602 (-530))) (|has| |#2| (-602 (-530))))) (($ (-937 (-402 (-554)))) NIL (-12 (|has| |#1| (-38 (-402 (-554)))) (|has| |#2| (-602 (-1158))))) (($ (-937 (-554))) NIL (-3994 (-12 (|has| |#1| (-38 (-554))) (|has| |#2| (-602 (-1158))) (-4081 (|has| |#1| (-38 (-402 (-554)))))) (-12 (|has| |#1| (-38 (-402 (-554)))) (|has| |#2| (-602 (-1158)))))) (($ (-937 |#1|)) NIL (|has| |#2| (-602 (-1158)))) (((-1140) $) NIL (-12 (|has| |#1| (-1023 (-554))) (|has| |#2| (-602 (-1158))))) (((-937 |#1|) $) NIL (|has| |#2| (-602 (-1158))))) (-3276 ((|#1| $) 115 (|has| |#1| (-446))) (($ $ |#2|) NIL (|has| |#1| (-446)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-894))))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-937 |#1|) $) NIL (|has| |#2| (-602 (-1158)))) (((-1107 |#1| |#2|) $) 15) (($ (-1107 |#1| |#2|)) 16) (($ (-402 (-554))) NIL (-3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554)))))) (($ $) NIL (|has| |#1| (-546)))) (-1893 (((-631 |#1|) $) NIL)) (-1779 ((|#1| $ (-525 |#2|)) NIL) (($ $ |#2| (-758)) 44) (($ $ (-631 |#2|) (-631 (-758))) NIL)) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| |#1| (-894))) (|has| |#1| (-143))))) (-2261 (((-758)) NIL)) (-2907 (($ $ $ (-758)) NIL (|has| |#1| (-170)))) (-1909 (((-112) $ $) NIL (|has| |#1| (-546)))) (-2004 (($) 13 T CONST)) (-2222 (((-3 (-112) "failed") $ $) NIL)) (-2014 (($) 35 T CONST)) (-2982 (($ $ $ $ (-758)) 88 (|has| |#1| (-546)))) (-3100 (($ $ $ (-758)) 87 (|has| |#1| (-546)))) (-1787 (($ $ |#2|) NIL) (($ $ (-631 |#2|)) NIL) (($ $ |#2| (-758)) NIL) (($ $ (-631 |#2|) (-631 (-758))) NIL)) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) 54)) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-1744 (($ $) NIL) (($ $ $) 64)) (-1735 (($ $ $) 74)) (** (($ $ (-906)) NIL) (($ $ (-758)) 61)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 59) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ |#1| $) 58) (($ $ |#1|) NIL)))
-(((-767 |#1| |#2|) (-13 (-1048 |#1| (-525 |#2|) |#2|) (-601 (-1107 |#1| |#2|)) (-1023 (-1107 |#1| |#2|))) (-1034) (-836)) (T -767))
-NIL
-(-13 (-1048 |#1| (-525 |#2|) |#2|) (-601 (-1107 |#1| |#2|)) (-1023 (-1107 |#1| |#2|)))
-((-2879 (((-769 |#2|) (-1 |#2| |#1|) (-769 |#1|)) 13)))
-(((-768 |#1| |#2|) (-10 -7 (-15 -2879 ((-769 |#2|) (-1 |#2| |#1|) (-769 |#1|)))) (-1034) (-1034)) (T -768))
-((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-769 *5)) (-4 *5 (-1034)) (-4 *6 (-1034)) (-5 *2 (-769 *6)) (-5 *1 (-768 *5 *6)))))
-(-10 -7 (-15 -2879 ((-769 |#2|) (-1 |#2| |#1|) (-769 |#1|))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 12)) (-2481 (((-1241 |#1|) $ (-758)) NIL)) (-2405 (((-631 (-1064)) $) NIL)) (-1991 (($ (-1154 |#1|)) NIL)) (-2237 (((-1154 $) $ (-1064)) NIL) (((-1154 |#1|) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-546)))) (-1976 (($ $) NIL (|has| |#1| (-546)))) (-1363 (((-112) $) NIL (|has| |#1| (-546)))) (-3785 (((-758) $) NIL) (((-758) $ (-631 (-1064))) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-2206 (((-631 $) $ $) 39 (|has| |#1| (-546)))) (-4286 (($ $ $) 35 (|has| |#1| (-546)))) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-3278 (($ $) NIL (|has| |#1| (-446)))) (-1565 (((-413 $) $) NIL (|has| |#1| (-446)))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-2286 (((-112) $ $) NIL (|has| |#1| (-358)))) (-1470 (($ $ (-758)) NIL)) (-3867 (($ $ (-758)) NIL)) (-4022 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-446)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 (-1064) "failed") $) NIL) (((-3 (-1154 |#1|) "failed") $) 10)) (-1668 ((|#1| $) NIL) (((-402 (-554)) $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-554) $) NIL (|has| |#1| (-1023 (-554)))) (((-1064) $) NIL) (((-1154 |#1|) $) NIL)) (-2999 (($ $ $ (-1064)) NIL (|has| |#1| (-170))) ((|#1| $ $) 43 (|has| |#1| (-170)))) (-3964 (($ $ $) NIL (|has| |#1| (-358)))) (-2550 (($ $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) NIL) (((-675 |#1|) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3943 (($ $ $) NIL (|has| |#1| (-358)))) (-3639 (($ $ $) NIL)) (-2489 (($ $ $) 71 (|has| |#1| (-546)))) (-1680 (((-2 (|:| -1490 |#1|) (|:| -2325 $) (|:| -2423 $)) $ $) 70 (|has| |#1| (-546)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL (|has| |#1| (-358)))) (-2048 (($ $) NIL (|has| |#1| (-446))) (($ $ (-1064)) NIL (|has| |#1| (-446)))) (-2540 (((-631 $) $) NIL)) (-3289 (((-112) $) NIL (|has| |#1| (-894)))) (-1344 (($ $ |#1| (-758) $) NIL)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (-12 (|has| (-1064) (-871 (-374))) (|has| |#1| (-871 (-374))))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (-12 (|has| (-1064) (-871 (-554))) (|has| |#1| (-871 (-554)))))) (-2342 (((-758) $ $) NIL (|has| |#1| (-546)))) (-3248 (((-112) $) NIL)) (-2122 (((-758) $) NIL)) (-3339 (((-3 $ "failed") $) NIL (|has| |#1| (-1133)))) (-2393 (($ (-1154 |#1|) (-1064)) NIL) (($ (-1154 $) (-1064)) NIL)) (-3333 (($ $ (-758)) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-3910 (((-631 $) $) NIL)) (-3580 (((-112) $) NIL)) (-2383 (($ |#1| (-758)) NIL) (($ $ (-1064) (-758)) NIL) (($ $ (-631 (-1064)) (-631 (-758))) NIL)) (-1761 (($ $ $) 20)) (-4014 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $ (-1064)) NIL) (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-3893 (((-758) $) NIL) (((-758) $ (-1064)) NIL) (((-631 (-758)) $ (-631 (-1064))) NIL)) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2789 (($ (-1 (-758) (-758)) $) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-2964 (((-1154 |#1|) $) NIL)) (-3277 (((-3 (-1064) "failed") $) NIL)) (-2518 (($ $) NIL)) (-2530 ((|#1| $) NIL)) (-2475 (($ (-631 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-1715 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2776 (-758))) $ $) 26)) (-3842 (($ $ $) 29)) (-3858 (($ $ $) 32)) (-2694 (((-2 (|:| -1490 |#1|) (|:| |gap| (-758)) (|:| -2325 $) (|:| -2423 $)) $ $) 31)) (-1613 (((-1140) $) NIL)) (-2543 (($ $ $) 41 (|has| |#1| (-546)))) (-2162 (((-2 (|:| -2325 $) (|:| -2423 $)) $ (-758)) NIL)) (-3778 (((-3 (-631 $) "failed") $) NIL)) (-2433 (((-3 (-631 $) "failed") $) NIL)) (-3160 (((-3 (-2 (|:| |var| (-1064)) (|:| -1407 (-758))) "failed") $) NIL)) (-2279 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3834 (($) NIL (|has| |#1| (-1133)) CONST)) (-2768 (((-1102) $) NIL)) (-2695 (((-2 (|:| -2510 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-546)))) (-3446 (((-2 (|:| -2510 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-546)))) (-3445 (((-2 (|:| -2999 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-546)))) (-3694 (((-2 (|:| -2999 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-546)))) (-2492 (((-112) $) 13)) (-2505 ((|#1| $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#1| (-446)))) (-2510 (($ (-631 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-2034 (($ $ (-758) |#1| $) 19)) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-2270 (((-413 $) $) NIL (|has| |#1| (-894)))) (-2396 (((-2 (|:| -2510 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-546)))) (-1425 (((-2 (|:| -2999 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-546)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-358)))) (-3919 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-546))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-546)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-2386 (($ $ (-631 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ (-1064) |#1|) NIL) (($ $ (-631 (-1064)) (-631 |#1|)) NIL) (($ $ (-1064) $) NIL) (($ $ (-631 (-1064)) (-631 $)) NIL)) (-2072 (((-758) $) NIL (|has| |#1| (-358)))) (-2064 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-402 $) (-402 $) (-402 $)) NIL (|has| |#1| (-546))) ((|#1| (-402 $) |#1|) NIL (|has| |#1| (-358))) (((-402 $) $ (-402 $)) NIL (|has| |#1| (-546)))) (-2734 (((-3 $ "failed") $ (-758)) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-358)))) (-1495 (($ $ (-1064)) NIL (|has| |#1| (-170))) ((|#1| $) NIL (|has| |#1| (-170)))) (-1553 (($ $ (-1064)) NIL) (($ $ (-631 (-1064))) NIL) (($ $ (-1064) (-758)) NIL) (($ $ (-631 (-1064)) (-631 (-758))) NIL) (($ $ (-758)) NIL) (($ $) NIL) (($ $ (-1158)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3308 (((-758) $) NIL) (((-758) $ (-1064)) NIL) (((-631 (-758)) $ (-631 (-1064))) NIL)) (-2927 (((-877 (-374)) $) NIL (-12 (|has| (-1064) (-602 (-877 (-374)))) (|has| |#1| (-602 (-877 (-374)))))) (((-877 (-554)) $) NIL (-12 (|has| (-1064) (-602 (-877 (-554)))) (|has| |#1| (-602 (-877 (-554)))))) (((-530) $) NIL (-12 (|has| (-1064) (-602 (-530))) (|has| |#1| (-602 (-530)))))) (-3276 ((|#1| $) NIL (|has| |#1| (-446))) (($ $ (-1064)) NIL (|has| |#1| (-446)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-894))))) (-2903 (((-3 $ "failed") $ $) NIL (|has| |#1| (-546))) (((-3 (-402 $) "failed") (-402 $) $) NIL (|has| |#1| (-546)))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#1|) NIL) (($ (-1064)) NIL) (((-1154 |#1|) $) 7) (($ (-1154 |#1|)) 8) (($ (-402 (-554))) NIL (-3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554)))))) (($ $) NIL (|has| |#1| (-546)))) (-1893 (((-631 |#1|) $) NIL)) (-1779 ((|#1| $ (-758)) NIL) (($ $ (-1064) (-758)) NIL) (($ $ (-631 (-1064)) (-631 (-758))) NIL)) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| |#1| (-894))) (|has| |#1| (-143))))) (-2261 (((-758)) NIL)) (-2907 (($ $ $ (-758)) NIL (|has| |#1| (-170)))) (-1909 (((-112) $ $) NIL (|has| |#1| (-546)))) (-2004 (($) 21 T CONST)) (-2014 (($) 24 T CONST)) (-1787 (($ $ (-1064)) NIL) (($ $ (-631 (-1064))) NIL) (($ $ (-1064) (-758)) NIL) (($ $ (-631 (-1064)) (-631 (-758))) NIL) (($ $ (-758)) NIL) (($ $) NIL) (($ $ (-1158)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-1744 (($ $) 28) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ |#1| $) 23) (($ $ |#1|) NIL)))
-(((-769 |#1|) (-13 (-1217 |#1|) (-601 (-1154 |#1|)) (-1023 (-1154 |#1|)) (-10 -8 (-15 -2034 ($ $ (-758) |#1| $)) (-15 -1761 ($ $ $)) (-15 -1715 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2776 (-758))) $ $)) (-15 -3842 ($ $ $)) (-15 -2694 ((-2 (|:| -1490 |#1|) (|:| |gap| (-758)) (|:| -2325 $) (|:| -2423 $)) $ $)) (-15 -3858 ($ $ $)) (IF (|has| |#1| (-546)) (PROGN (-15 -2206 ((-631 $) $ $)) (-15 -2543 ($ $ $)) (-15 -2396 ((-2 (|:| -2510 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3446 ((-2 (|:| -2510 $) (|:| |coef1| $)) $ $)) (-15 -2695 ((-2 (|:| -2510 $) (|:| |coef2| $)) $ $)) (-15 -1425 ((-2 (|:| -2999 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3694 ((-2 (|:| -2999 |#1|) (|:| |coef1| $)) $ $)) (-15 -3445 ((-2 (|:| -2999 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1034)) (T -769))
-((-2034 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-758)) (-5 *1 (-769 *3)) (-4 *3 (-1034)))) (-1761 (*1 *1 *1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-1034)))) (-1715 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-769 *3)) (|:| |polden| *3) (|:| -2776 (-758)))) (-5 *1 (-769 *3)) (-4 *3 (-1034)))) (-3842 (*1 *1 *1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-1034)))) (-2694 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1490 *3) (|:| |gap| (-758)) (|:| -2325 (-769 *3)) (|:| -2423 (-769 *3)))) (-5 *1 (-769 *3)) (-4 *3 (-1034)))) (-3858 (*1 *1 *1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-1034)))) (-2206 (*1 *2 *1 *1) (-12 (-5 *2 (-631 (-769 *3))) (-5 *1 (-769 *3)) (-4 *3 (-546)) (-4 *3 (-1034)))) (-2543 (*1 *1 *1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-546)) (-4 *2 (-1034)))) (-2396 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2510 (-769 *3)) (|:| |coef1| (-769 *3)) (|:| |coef2| (-769 *3)))) (-5 *1 (-769 *3)) (-4 *3 (-546)) (-4 *3 (-1034)))) (-3446 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2510 (-769 *3)) (|:| |coef1| (-769 *3)))) (-5 *1 (-769 *3)) (-4 *3 (-546)) (-4 *3 (-1034)))) (-2695 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2510 (-769 *3)) (|:| |coef2| (-769 *3)))) (-5 *1 (-769 *3)) (-4 *3 (-546)) (-4 *3 (-1034)))) (-1425 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2999 *3) (|:| |coef1| (-769 *3)) (|:| |coef2| (-769 *3)))) (-5 *1 (-769 *3)) (-4 *3 (-546)) (-4 *3 (-1034)))) (-3694 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2999 *3) (|:| |coef1| (-769 *3)))) (-5 *1 (-769 *3)) (-4 *3 (-546)) (-4 *3 (-1034)))) (-3445 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2999 *3) (|:| |coef2| (-769 *3)))) (-5 *1 (-769 *3)) (-4 *3 (-546)) (-4 *3 (-1034)))))
-(-13 (-1217 |#1|) (-601 (-1154 |#1|)) (-1023 (-1154 |#1|)) (-10 -8 (-15 -2034 ($ $ (-758) |#1| $)) (-15 -1761 ($ $ $)) (-15 -1715 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2776 (-758))) $ $)) (-15 -3842 ($ $ $)) (-15 -2694 ((-2 (|:| -1490 |#1|) (|:| |gap| (-758)) (|:| -2325 $) (|:| -2423 $)) $ $)) (-15 -3858 ($ $ $)) (IF (|has| |#1| (-546)) (PROGN (-15 -2206 ((-631 $) $ $)) (-15 -2543 ($ $ $)) (-15 -2396 ((-2 (|:| -2510 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3446 ((-2 (|:| -2510 $) (|:| |coef1| $)) $ $)) (-15 -2695 ((-2 (|:| -2510 $) (|:| |coef2| $)) $ $)) (-15 -1425 ((-2 (|:| -2999 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3694 ((-2 (|:| -2999 |#1|) (|:| |coef1| $)) $ $)) (-15 -3445 ((-2 (|:| -2999 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
-((-4258 ((|#1| (-758) |#1|) 32 (|has| |#1| (-38 (-402 (-554)))))) (-3506 ((|#1| (-758) |#1|) 22)) (-4114 ((|#1| (-758) |#1|) 34 (|has| |#1| (-38 (-402 (-554)))))))
-(((-770 |#1|) (-10 -7 (-15 -3506 (|#1| (-758) |#1|)) (IF (|has| |#1| (-38 (-402 (-554)))) (PROGN (-15 -4114 (|#1| (-758) |#1|)) (-15 -4258 (|#1| (-758) |#1|))) |%noBranch|)) (-170)) (T -770))
-((-4258 (*1 *2 *3 *2) (-12 (-5 *3 (-758)) (-5 *1 (-770 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-170)))) (-4114 (*1 *2 *3 *2) (-12 (-5 *3 (-758)) (-5 *1 (-770 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-170)))) (-3506 (*1 *2 *3 *2) (-12 (-5 *3 (-758)) (-5 *1 (-770 *2)) (-4 *2 (-170)))))
-(-10 -7 (-15 -3506 (|#1| (-758) |#1|)) (IF (|has| |#1| (-38 (-402 (-554)))) (PROGN (-15 -4114 (|#1| (-758) |#1|)) (-15 -4258 (|#1| (-758) |#1|))) |%noBranch|))
-((-3062 (((-112) $ $) 7)) (-3960 (((-631 (-2 (|:| -2498 $) (|:| -1303 (-631 |#4|)))) (-631 |#4|)) 85)) (-3176 (((-631 $) (-631 |#4|)) 86) (((-631 $) (-631 |#4|) (-112)) 111)) (-2405 (((-631 |#3|) $) 33)) (-1678 (((-112) $) 26)) (-3005 (((-112) $) 17 (|has| |#1| (-546)))) (-2630 (((-112) |#4| $) 101) (((-112) $) 97)) (-4057 ((|#4| |#4| $) 92)) (-3278 (((-631 (-2 (|:| |val| |#4|) (|:| -2143 $))) |#4| $) 126)) (-3303 (((-2 (|:| |under| $) (|:| -4339 $) (|:| |upper| $)) $ |#3|) 27)) (-3019 (((-112) $ (-758)) 44)) (-1871 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4373))) (((-3 |#4| "failed") $ |#3|) 79)) (-4087 (($) 45 T CONST)) (-1930 (((-112) $) 22 (|has| |#1| (-546)))) (-1404 (((-112) $ $) 24 (|has| |#1| (-546)))) (-3262 (((-112) $ $) 23 (|has| |#1| (-546)))) (-2713 (((-112) $) 25 (|has| |#1| (-546)))) (-2242 (((-631 |#4|) (-631 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1380 (((-631 |#4|) (-631 |#4|) $) 18 (|has| |#1| (-546)))) (-4204 (((-631 |#4|) (-631 |#4|) $) 19 (|has| |#1| (-546)))) (-2784 (((-3 $ "failed") (-631 |#4|)) 36)) (-1668 (($ (-631 |#4|)) 35)) (-1551 (((-3 $ "failed") $) 82)) (-2930 ((|#4| |#4| $) 89)) (-1571 (($ $) 68 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373))))) (-2574 (($ |#4| $) 67 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4373)))) (-2423 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-546)))) (-2857 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4210 ((|#4| |#4| $) 87)) (-3676 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4373))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4373))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1971 (((-2 (|:| -2498 (-631 |#4|)) (|:| -1303 (-631 |#4|))) $) 105)) (-4183 (((-112) |#4| $) 136)) (-4155 (((-112) |#4| $) 133)) (-2892 (((-112) |#4| $) 137) (((-112) $) 134)) (-2466 (((-631 |#4|) $) 52 (|has| $ (-6 -4373)))) (-4253 (((-112) |#4| $) 104) (((-112) $) 103)) (-3954 ((|#3| $) 34)) (-2230 (((-112) $ (-758)) 43)) (-2379 (((-631 |#4|) $) 53 (|has| $ (-6 -4373)))) (-3068 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#4| |#4|) $) 47)) (-2643 (((-631 |#3|) $) 32)) (-1400 (((-112) |#3| $) 31)) (-3731 (((-112) $ (-758)) 42)) (-1613 (((-1140) $) 9)) (-1343 (((-3 |#4| (-631 $)) |#4| |#4| $) 128)) (-2543 (((-631 (-2 (|:| |val| |#4|) (|:| -2143 $))) |#4| |#4| $) 127)) (-2597 (((-3 |#4| "failed") $) 83)) (-2953 (((-631 $) |#4| $) 129)) (-3841 (((-3 (-112) (-631 $)) |#4| $) 132)) (-3874 (((-631 (-2 (|:| |val| (-112)) (|:| -2143 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3977 (((-631 $) |#4| $) 125) (((-631 $) (-631 |#4|) $) 124) (((-631 $) (-631 |#4|) (-631 $)) 123) (((-631 $) |#4| (-631 $)) 122)) (-3479 (($ |#4| $) 117) (($ (-631 |#4|) $) 116)) (-2627 (((-631 |#4|) $) 107)) (-3007 (((-112) |#4| $) 99) (((-112) $) 95)) (-1536 ((|#4| |#4| $) 90)) (-2178 (((-112) $ $) 110)) (-3548 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-546)))) (-3518 (((-112) |#4| $) 100) (((-112) $) 96)) (-3492 ((|#4| |#4| $) 91)) (-2768 (((-1102) $) 10)) (-1539 (((-3 |#4| "failed") $) 84)) (-1652 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3948 (((-3 $ "failed") $ |#4|) 78)) (-4282 (($ $ |#4|) 77) (((-631 $) |#4| $) 115) (((-631 $) |#4| (-631 $)) 114) (((-631 $) (-631 |#4|) $) 113) (((-631 $) (-631 |#4|) (-631 $)) 112)) (-2845 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 |#4|) (-631 |#4|)) 59 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-289 |#4|)) 57 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-631 (-289 |#4|))) 56 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))))) (-2494 (((-112) $ $) 38)) (-3543 (((-112) $) 41)) (-4240 (($) 40)) (-3308 (((-758) $) 106)) (-2777 (((-758) |#4| $) 54 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373)))) (((-758) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4373)))) (-1521 (($ $) 39)) (-2927 (((-530) $) 69 (|has| |#4| (-602 (-530))))) (-3089 (($ (-631 |#4|)) 60)) (-2538 (($ $ |#3|) 28)) (-2384 (($ $ |#3|) 30)) (-2258 (($ $) 88)) (-2128 (($ $ |#3|) 29)) (-3075 (((-848) $) 11) (((-631 |#4|) $) 37)) (-2347 (((-758) $) 76 (|has| |#3| (-363)))) (-2792 (((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 |#4|))) "failed") (-631 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 |#4|))) "failed") (-631 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-3579 (((-112) $ (-1 (-112) |#4| (-631 |#4|))) 98)) (-3850 (((-631 $) |#4| $) 121) (((-631 $) |#4| (-631 $)) 120) (((-631 $) (-631 |#4|) $) 119) (((-631 $) (-631 |#4|) (-631 $)) 118)) (-2438 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4373)))) (-4267 (((-631 |#3|) $) 81)) (-4351 (((-112) |#4| $) 135)) (-3536 (((-112) |#3| $) 80)) (-1658 (((-112) $ $) 6)) (-2563 (((-758) $) 46 (|has| $ (-6 -4373)))))
-(((-771 |#1| |#2| |#3| |#4|) (-138) (-446) (-780) (-836) (-1048 |t#1| |t#2| |t#3|)) (T -771))
-NIL
-(-13 (-1054 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-102) . T) ((-601 (-631 |#4|)) . T) ((-601 (-848)) . T) ((-149 |#4|) . T) ((-602 (-530)) |has| |#4| (-602 (-530))) ((-304 |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))) ((-483 |#4|) . T) ((-508 |#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))) ((-961 |#1| |#2| |#3| |#4|) . T) ((-1054 |#1| |#2| |#3| |#4|) . T) ((-1082) . T) ((-1188 |#1| |#2| |#3| |#4|) . T) ((-1195) . T))
-((-2858 (((-3 (-374) "failed") (-311 |#1|) (-906)) 62 (-12 (|has| |#1| (-546)) (|has| |#1| (-836)))) (((-3 (-374) "failed") (-311 |#1|)) 54 (-12 (|has| |#1| (-546)) (|has| |#1| (-836)))) (((-3 (-374) "failed") (-402 (-937 |#1|)) (-906)) 41 (|has| |#1| (-546))) (((-3 (-374) "failed") (-402 (-937 |#1|))) 40 (|has| |#1| (-546))) (((-3 (-374) "failed") (-937 |#1|) (-906)) 31 (|has| |#1| (-1034))) (((-3 (-374) "failed") (-937 |#1|)) 30 (|has| |#1| (-1034)))) (-3666 (((-374) (-311 |#1|) (-906)) 99 (-12 (|has| |#1| (-546)) (|has| |#1| (-836)))) (((-374) (-311 |#1|)) 94 (-12 (|has| |#1| (-546)) (|has| |#1| (-836)))) (((-374) (-402 (-937 |#1|)) (-906)) 91 (|has| |#1| (-546))) (((-374) (-402 (-937 |#1|))) 90 (|has| |#1| (-546))) (((-374) (-937 |#1|) (-906)) 86 (|has| |#1| (-1034))) (((-374) (-937 |#1|)) 85 (|has| |#1| (-1034))) (((-374) |#1| (-906)) 76) (((-374) |#1|) 22)) (-2867 (((-3 (-167 (-374)) "failed") (-311 (-167 |#1|)) (-906)) 71 (-12 (|has| |#1| (-546)) (|has| |#1| (-836)))) (((-3 (-167 (-374)) "failed") (-311 (-167 |#1|))) 70 (-12 (|has| |#1| (-546)) (|has| |#1| (-836)))) (((-3 (-167 (-374)) "failed") (-311 |#1|) (-906)) 63 (-12 (|has| |#1| (-546)) (|has| |#1| (-836)))) (((-3 (-167 (-374)) "failed") (-311 |#1|)) 61 (-12 (|has| |#1| (-546)) (|has| |#1| (-836)))) (((-3 (-167 (-374)) "failed") (-402 (-937 (-167 |#1|))) (-906)) 46 (|has| |#1| (-546))) (((-3 (-167 (-374)) "failed") (-402 (-937 (-167 |#1|)))) 45 (|has| |#1| (-546))) (((-3 (-167 (-374)) "failed") (-402 (-937 |#1|)) (-906)) 39 (|has| |#1| (-546))) (((-3 (-167 (-374)) "failed") (-402 (-937 |#1|))) 38 (|has| |#1| (-546))) (((-3 (-167 (-374)) "failed") (-937 |#1|) (-906)) 28 (|has| |#1| (-1034))) (((-3 (-167 (-374)) "failed") (-937 |#1|)) 26 (|has| |#1| (-1034))) (((-3 (-167 (-374)) "failed") (-937 (-167 |#1|)) (-906)) 18 (|has| |#1| (-170))) (((-3 (-167 (-374)) "failed") (-937 (-167 |#1|))) 15 (|has| |#1| (-170)))) (-2202 (((-167 (-374)) (-311 (-167 |#1|)) (-906)) 102 (-12 (|has| |#1| (-546)) (|has| |#1| (-836)))) (((-167 (-374)) (-311 (-167 |#1|))) 101 (-12 (|has| |#1| (-546)) (|has| |#1| (-836)))) (((-167 (-374)) (-311 |#1|) (-906)) 100 (-12 (|has| |#1| (-546)) (|has| |#1| (-836)))) (((-167 (-374)) (-311 |#1|)) 98 (-12 (|has| |#1| (-546)) (|has| |#1| (-836)))) (((-167 (-374)) (-402 (-937 (-167 |#1|))) (-906)) 93 (|has| |#1| (-546))) (((-167 (-374)) (-402 (-937 (-167 |#1|)))) 92 (|has| |#1| (-546))) (((-167 (-374)) (-402 (-937 |#1|)) (-906)) 89 (|has| |#1| (-546))) (((-167 (-374)) (-402 (-937 |#1|))) 88 (|has| |#1| (-546))) (((-167 (-374)) (-937 |#1|) (-906)) 84 (|has| |#1| (-1034))) (((-167 (-374)) (-937 |#1|)) 83 (|has| |#1| (-1034))) (((-167 (-374)) (-937 (-167 |#1|)) (-906)) 78 (|has| |#1| (-170))) (((-167 (-374)) (-937 (-167 |#1|))) 77 (|has| |#1| (-170))) (((-167 (-374)) (-167 |#1|) (-906)) 80 (|has| |#1| (-170))) (((-167 (-374)) (-167 |#1|)) 79 (|has| |#1| (-170))) (((-167 (-374)) |#1| (-906)) 27) (((-167 (-374)) |#1|) 25)))
-(((-772 |#1|) (-10 -7 (-15 -3666 ((-374) |#1|)) (-15 -3666 ((-374) |#1| (-906))) (-15 -2202 ((-167 (-374)) |#1|)) (-15 -2202 ((-167 (-374)) |#1| (-906))) (IF (|has| |#1| (-170)) (PROGN (-15 -2202 ((-167 (-374)) (-167 |#1|))) (-15 -2202 ((-167 (-374)) (-167 |#1|) (-906))) (-15 -2202 ((-167 (-374)) (-937 (-167 |#1|)))) (-15 -2202 ((-167 (-374)) (-937 (-167 |#1|)) (-906)))) |%noBranch|) (IF (|has| |#1| (-1034)) (PROGN (-15 -3666 ((-374) (-937 |#1|))) (-15 -3666 ((-374) (-937 |#1|) (-906))) (-15 -2202 ((-167 (-374)) (-937 |#1|))) (-15 -2202 ((-167 (-374)) (-937 |#1|) (-906)))) |%noBranch|) (IF (|has| |#1| (-546)) (PROGN (-15 -3666 ((-374) (-402 (-937 |#1|)))) (-15 -3666 ((-374) (-402 (-937 |#1|)) (-906))) (-15 -2202 ((-167 (-374)) (-402 (-937 |#1|)))) (-15 -2202 ((-167 (-374)) (-402 (-937 |#1|)) (-906))) (-15 -2202 ((-167 (-374)) (-402 (-937 (-167 |#1|))))) (-15 -2202 ((-167 (-374)) (-402 (-937 (-167 |#1|))) (-906))) (IF (|has| |#1| (-836)) (PROGN (-15 -3666 ((-374) (-311 |#1|))) (-15 -3666 ((-374) (-311 |#1|) (-906))) (-15 -2202 ((-167 (-374)) (-311 |#1|))) (-15 -2202 ((-167 (-374)) (-311 |#1|) (-906))) (-15 -2202 ((-167 (-374)) (-311 (-167 |#1|)))) (-15 -2202 ((-167 (-374)) (-311 (-167 |#1|)) (-906)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-15 -2867 ((-3 (-167 (-374)) "failed") (-937 (-167 |#1|)))) (-15 -2867 ((-3 (-167 (-374)) "failed") (-937 (-167 |#1|)) (-906)))) |%noBranch|) (IF (|has| |#1| (-1034)) (PROGN (-15 -2858 ((-3 (-374) "failed") (-937 |#1|))) (-15 -2858 ((-3 (-374) "failed") (-937 |#1|) (-906))) (-15 -2867 ((-3 (-167 (-374)) "failed") (-937 |#1|))) (-15 -2867 ((-3 (-167 (-374)) "failed") (-937 |#1|) (-906)))) |%noBranch|) (IF (|has| |#1| (-546)) (PROGN (-15 -2858 ((-3 (-374) "failed") (-402 (-937 |#1|)))) (-15 -2858 ((-3 (-374) "failed") (-402 (-937 |#1|)) (-906))) (-15 -2867 ((-3 (-167 (-374)) "failed") (-402 (-937 |#1|)))) (-15 -2867 ((-3 (-167 (-374)) "failed") (-402 (-937 |#1|)) (-906))) (-15 -2867 ((-3 (-167 (-374)) "failed") (-402 (-937 (-167 |#1|))))) (-15 -2867 ((-3 (-167 (-374)) "failed") (-402 (-937 (-167 |#1|))) (-906))) (IF (|has| |#1| (-836)) (PROGN (-15 -2858 ((-3 (-374) "failed") (-311 |#1|))) (-15 -2858 ((-3 (-374) "failed") (-311 |#1|) (-906))) (-15 -2867 ((-3 (-167 (-374)) "failed") (-311 |#1|))) (-15 -2867 ((-3 (-167 (-374)) "failed") (-311 |#1|) (-906))) (-15 -2867 ((-3 (-167 (-374)) "failed") (-311 (-167 |#1|)))) (-15 -2867 ((-3 (-167 (-374)) "failed") (-311 (-167 |#1|)) (-906)))) |%noBranch|)) |%noBranch|)) (-602 (-374))) (T -772))
-((-2867 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-311 (-167 *5))) (-5 *4 (-906)) (-4 *5 (-546)) (-4 *5 (-836)) (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *5)))) (-2867 (*1 *2 *3) (|partial| -12 (-5 *3 (-311 (-167 *4))) (-4 *4 (-546)) (-4 *4 (-836)) (-4 *4 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *4)))) (-2867 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-311 *5)) (-5 *4 (-906)) (-4 *5 (-546)) (-4 *5 (-836)) (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *5)))) (-2867 (*1 *2 *3) (|partial| -12 (-5 *3 (-311 *4)) (-4 *4 (-546)) (-4 *4 (-836)) (-4 *4 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *4)))) (-2858 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-311 *5)) (-5 *4 (-906)) (-4 *5 (-546)) (-4 *5 (-836)) (-4 *5 (-602 *2)) (-5 *2 (-374)) (-5 *1 (-772 *5)))) (-2858 (*1 *2 *3) (|partial| -12 (-5 *3 (-311 *4)) (-4 *4 (-546)) (-4 *4 (-836)) (-4 *4 (-602 *2)) (-5 *2 (-374)) (-5 *1 (-772 *4)))) (-2867 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-402 (-937 (-167 *5)))) (-5 *4 (-906)) (-4 *5 (-546)) (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *5)))) (-2867 (*1 *2 *3) (|partial| -12 (-5 *3 (-402 (-937 (-167 *4)))) (-4 *4 (-546)) (-4 *4 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *4)))) (-2867 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-402 (-937 *5))) (-5 *4 (-906)) (-4 *5 (-546)) (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *5)))) (-2867 (*1 *2 *3) (|partial| -12 (-5 *3 (-402 (-937 *4))) (-4 *4 (-546)) (-4 *4 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *4)))) (-2858 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-402 (-937 *5))) (-5 *4 (-906)) (-4 *5 (-546)) (-4 *5 (-602 *2)) (-5 *2 (-374)) (-5 *1 (-772 *5)))) (-2858 (*1 *2 *3) (|partial| -12 (-5 *3 (-402 (-937 *4))) (-4 *4 (-546)) (-4 *4 (-602 *2)) (-5 *2 (-374)) (-5 *1 (-772 *4)))) (-2867 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-937 *5)) (-5 *4 (-906)) (-4 *5 (-1034)) (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *5)))) (-2867 (*1 *2 *3) (|partial| -12 (-5 *3 (-937 *4)) (-4 *4 (-1034)) (-4 *4 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *4)))) (-2858 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-937 *5)) (-5 *4 (-906)) (-4 *5 (-1034)) (-4 *5 (-602 *2)) (-5 *2 (-374)) (-5 *1 (-772 *5)))) (-2858 (*1 *2 *3) (|partial| -12 (-5 *3 (-937 *4)) (-4 *4 (-1034)) (-4 *4 (-602 *2)) (-5 *2 (-374)) (-5 *1 (-772 *4)))) (-2867 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-937 (-167 *5))) (-5 *4 (-906)) (-4 *5 (-170)) (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *5)))) (-2867 (*1 *2 *3) (|partial| -12 (-5 *3 (-937 (-167 *4))) (-4 *4 (-170)) (-4 *4 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *4)))) (-2202 (*1 *2 *3 *4) (-12 (-5 *3 (-311 (-167 *5))) (-5 *4 (-906)) (-4 *5 (-546)) (-4 *5 (-836)) (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *5)))) (-2202 (*1 *2 *3) (-12 (-5 *3 (-311 (-167 *4))) (-4 *4 (-546)) (-4 *4 (-836)) (-4 *4 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *4)))) (-2202 (*1 *2 *3 *4) (-12 (-5 *3 (-311 *5)) (-5 *4 (-906)) (-4 *5 (-546)) (-4 *5 (-836)) (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *5)))) (-2202 (*1 *2 *3) (-12 (-5 *3 (-311 *4)) (-4 *4 (-546)) (-4 *4 (-836)) (-4 *4 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *4)))) (-3666 (*1 *2 *3 *4) (-12 (-5 *3 (-311 *5)) (-5 *4 (-906)) (-4 *5 (-546)) (-4 *5 (-836)) (-4 *5 (-602 *2)) (-5 *2 (-374)) (-5 *1 (-772 *5)))) (-3666 (*1 *2 *3) (-12 (-5 *3 (-311 *4)) (-4 *4 (-546)) (-4 *4 (-836)) (-4 *4 (-602 *2)) (-5 *2 (-374)) (-5 *1 (-772 *4)))) (-2202 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-937 (-167 *5)))) (-5 *4 (-906)) (-4 *5 (-546)) (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *5)))) (-2202 (*1 *2 *3) (-12 (-5 *3 (-402 (-937 (-167 *4)))) (-4 *4 (-546)) (-4 *4 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *4)))) (-2202 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-937 *5))) (-5 *4 (-906)) (-4 *5 (-546)) (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *5)))) (-2202 (*1 *2 *3) (-12 (-5 *3 (-402 (-937 *4))) (-4 *4 (-546)) (-4 *4 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *4)))) (-3666 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-937 *5))) (-5 *4 (-906)) (-4 *5 (-546)) (-4 *5 (-602 *2)) (-5 *2 (-374)) (-5 *1 (-772 *5)))) (-3666 (*1 *2 *3) (-12 (-5 *3 (-402 (-937 *4))) (-4 *4 (-546)) (-4 *4 (-602 *2)) (-5 *2 (-374)) (-5 *1 (-772 *4)))) (-2202 (*1 *2 *3 *4) (-12 (-5 *3 (-937 *5)) (-5 *4 (-906)) (-4 *5 (-1034)) (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *5)))) (-2202 (*1 *2 *3) (-12 (-5 *3 (-937 *4)) (-4 *4 (-1034)) (-4 *4 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *4)))) (-3666 (*1 *2 *3 *4) (-12 (-5 *3 (-937 *5)) (-5 *4 (-906)) (-4 *5 (-1034)) (-4 *5 (-602 *2)) (-5 *2 (-374)) (-5 *1 (-772 *5)))) (-3666 (*1 *2 *3) (-12 (-5 *3 (-937 *4)) (-4 *4 (-1034)) (-4 *4 (-602 *2)) (-5 *2 (-374)) (-5 *1 (-772 *4)))) (-2202 (*1 *2 *3 *4) (-12 (-5 *3 (-937 (-167 *5))) (-5 *4 (-906)) (-4 *5 (-170)) (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *5)))) (-2202 (*1 *2 *3) (-12 (-5 *3 (-937 (-167 *4))) (-4 *4 (-170)) (-4 *4 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *4)))) (-2202 (*1 *2 *3 *4) (-12 (-5 *3 (-167 *5)) (-5 *4 (-906)) (-4 *5 (-170)) (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *5)))) (-2202 (*1 *2 *3) (-12 (-5 *3 (-167 *4)) (-4 *4 (-170)) (-4 *4 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *4)))) (-2202 (*1 *2 *3 *4) (-12 (-5 *4 (-906)) (-5 *2 (-167 (-374))) (-5 *1 (-772 *3)) (-4 *3 (-602 (-374))))) (-2202 (*1 *2 *3) (-12 (-5 *2 (-167 (-374))) (-5 *1 (-772 *3)) (-4 *3 (-602 (-374))))) (-3666 (*1 *2 *3 *4) (-12 (-5 *4 (-906)) (-5 *2 (-374)) (-5 *1 (-772 *3)) (-4 *3 (-602 *2)))) (-3666 (*1 *2 *3) (-12 (-5 *2 (-374)) (-5 *1 (-772 *3)) (-4 *3 (-602 *2)))))
-(-10 -7 (-15 -3666 ((-374) |#1|)) (-15 -3666 ((-374) |#1| (-906))) (-15 -2202 ((-167 (-374)) |#1|)) (-15 -2202 ((-167 (-374)) |#1| (-906))) (IF (|has| |#1| (-170)) (PROGN (-15 -2202 ((-167 (-374)) (-167 |#1|))) (-15 -2202 ((-167 (-374)) (-167 |#1|) (-906))) (-15 -2202 ((-167 (-374)) (-937 (-167 |#1|)))) (-15 -2202 ((-167 (-374)) (-937 (-167 |#1|)) (-906)))) |%noBranch|) (IF (|has| |#1| (-1034)) (PROGN (-15 -3666 ((-374) (-937 |#1|))) (-15 -3666 ((-374) (-937 |#1|) (-906))) (-15 -2202 ((-167 (-374)) (-937 |#1|))) (-15 -2202 ((-167 (-374)) (-937 |#1|) (-906)))) |%noBranch|) (IF (|has| |#1| (-546)) (PROGN (-15 -3666 ((-374) (-402 (-937 |#1|)))) (-15 -3666 ((-374) (-402 (-937 |#1|)) (-906))) (-15 -2202 ((-167 (-374)) (-402 (-937 |#1|)))) (-15 -2202 ((-167 (-374)) (-402 (-937 |#1|)) (-906))) (-15 -2202 ((-167 (-374)) (-402 (-937 (-167 |#1|))))) (-15 -2202 ((-167 (-374)) (-402 (-937 (-167 |#1|))) (-906))) (IF (|has| |#1| (-836)) (PROGN (-15 -3666 ((-374) (-311 |#1|))) (-15 -3666 ((-374) (-311 |#1|) (-906))) (-15 -2202 ((-167 (-374)) (-311 |#1|))) (-15 -2202 ((-167 (-374)) (-311 |#1|) (-906))) (-15 -2202 ((-167 (-374)) (-311 (-167 |#1|)))) (-15 -2202 ((-167 (-374)) (-311 (-167 |#1|)) (-906)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-15 -2867 ((-3 (-167 (-374)) "failed") (-937 (-167 |#1|)))) (-15 -2867 ((-3 (-167 (-374)) "failed") (-937 (-167 |#1|)) (-906)))) |%noBranch|) (IF (|has| |#1| (-1034)) (PROGN (-15 -2858 ((-3 (-374) "failed") (-937 |#1|))) (-15 -2858 ((-3 (-374) "failed") (-937 |#1|) (-906))) (-15 -2867 ((-3 (-167 (-374)) "failed") (-937 |#1|))) (-15 -2867 ((-3 (-167 (-374)) "failed") (-937 |#1|) (-906)))) |%noBranch|) (IF (|has| |#1| (-546)) (PROGN (-15 -2858 ((-3 (-374) "failed") (-402 (-937 |#1|)))) (-15 -2858 ((-3 (-374) "failed") (-402 (-937 |#1|)) (-906))) (-15 -2867 ((-3 (-167 (-374)) "failed") (-402 (-937 |#1|)))) (-15 -2867 ((-3 (-167 (-374)) "failed") (-402 (-937 |#1|)) (-906))) (-15 -2867 ((-3 (-167 (-374)) "failed") (-402 (-937 (-167 |#1|))))) (-15 -2867 ((-3 (-167 (-374)) "failed") (-402 (-937 (-167 |#1|))) (-906))) (IF (|has| |#1| (-836)) (PROGN (-15 -2858 ((-3 (-374) "failed") (-311 |#1|))) (-15 -2858 ((-3 (-374) "failed") (-311 |#1|) (-906))) (-15 -2867 ((-3 (-167 (-374)) "failed") (-311 |#1|))) (-15 -2867 ((-3 (-167 (-374)) "failed") (-311 |#1|) (-906))) (-15 -2867 ((-3 (-167 (-374)) "failed") (-311 (-167 |#1|)))) (-15 -2867 ((-3 (-167 (-374)) "failed") (-311 (-167 |#1|)) (-906)))) |%noBranch|)) |%noBranch|))
-((-1432 (((-906) (-1140)) 65)) (-1520 (((-3 (-374) "failed") (-1140)) 33)) (-4115 (((-374) (-1140)) 31)) (-2567 (((-906) (-1140)) 54)) (-3214 (((-1140) (-906)) 55)) (-3513 (((-1140) (-906)) 53)))
-(((-773) (-10 -7 (-15 -3513 ((-1140) (-906))) (-15 -2567 ((-906) (-1140))) (-15 -3214 ((-1140) (-906))) (-15 -1432 ((-906) (-1140))) (-15 -4115 ((-374) (-1140))) (-15 -1520 ((-3 (-374) "failed") (-1140))))) (T -773))
-((-1520 (*1 *2 *3) (|partial| -12 (-5 *3 (-1140)) (-5 *2 (-374)) (-5 *1 (-773)))) (-4115 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-374)) (-5 *1 (-773)))) (-1432 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-906)) (-5 *1 (-773)))) (-3214 (*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-1140)) (-5 *1 (-773)))) (-2567 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-906)) (-5 *1 (-773)))) (-3513 (*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-1140)) (-5 *1 (-773)))))
-(-10 -7 (-15 -3513 ((-1140) (-906))) (-15 -2567 ((-906) (-1140))) (-15 -3214 ((-1140) (-906))) (-15 -1432 ((-906) (-1140))) (-15 -4115 ((-374) (-1140))) (-15 -1520 ((-3 (-374) "failed") (-1140))))
-((-3062 (((-112) $ $) 7)) (-1734 (((-1020) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) 15) (((-1020) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) 13)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 16) (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 14)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-1658 (((-112) $ $) 6)))
-(((-774) (-138)) (T -774))
-((-3037 (*1 *2 *3 *4) (-12 (-4 *1 (-774)) (-5 *3 (-1046)) (-5 *4 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020)))))) (-1734 (*1 *2 *3 *2) (-12 (-4 *1 (-774)) (-5 *2 (-1020)) (-5 *3 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))))) (-3037 (*1 *2 *3 *4) (-12 (-4 *1 (-774)) (-5 *3 (-1046)) (-5 *4 (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020)))))) (-1734 (*1 *2 *3 *2) (-12 (-4 *1 (-774)) (-5 *2 (-1020)) (-5 *3 (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))))))
-(-13 (-1082) (-10 -7 (-15 -3037 ((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1734 ((-1020) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020))) (-15 -3037 ((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1734 ((-1020) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)))))
-(((-102) . T) ((-601 (-848)) . T) ((-1082) . T))
-((-4285 (((-1246) (-1241 (-374)) (-554) (-374) (-2 (|:| |try| (-374)) (|:| |did| (-374)) (|:| -1634 (-374))) (-374) (-1241 (-374)) (-1 (-1246) (-1241 (-374)) (-1241 (-374)) (-374)) (-1241 (-374)) (-1241 (-374)) (-1241 (-374)) (-1241 (-374)) (-1241 (-374)) (-1241 (-374)) (-1241 (-374))) 44) (((-1246) (-1241 (-374)) (-554) (-374) (-2 (|:| |try| (-374)) (|:| |did| (-374)) (|:| -1634 (-374))) (-374) (-1241 (-374)) (-1 (-1246) (-1241 (-374)) (-1241 (-374)) (-374))) 43)) (-3594 (((-1246) (-1241 (-374)) (-554) (-374) (-374) (-554) (-1 (-1246) (-1241 (-374)) (-1241 (-374)) (-374))) 50)) (-1389 (((-1246) (-1241 (-374)) (-554) (-374) (-374) (-374) (-374) (-554) (-1 (-1246) (-1241 (-374)) (-1241 (-374)) (-374))) 41)) (-3562 (((-1246) (-1241 (-374)) (-554) (-374) (-374) (-1 (-1246) (-1241 (-374)) (-1241 (-374)) (-374)) (-1241 (-374)) (-1241 (-374)) (-1241 (-374)) (-1241 (-374))) 52) (((-1246) (-1241 (-374)) (-554) (-374) (-374) (-1 (-1246) (-1241 (-374)) (-1241 (-374)) (-374))) 51)))
-(((-775) (-10 -7 (-15 -3562 ((-1246) (-1241 (-374)) (-554) (-374) (-374) (-1 (-1246) (-1241 (-374)) (-1241 (-374)) (-374)))) (-15 -3562 ((-1246) (-1241 (-374)) (-554) (-374) (-374) (-1 (-1246) (-1241 (-374)) (-1241 (-374)) (-374)) (-1241 (-374)) (-1241 (-374)) (-1241 (-374)) (-1241 (-374)))) (-15 -1389 ((-1246) (-1241 (-374)) (-554) (-374) (-374) (-374) (-374) (-554) (-1 (-1246) (-1241 (-374)) (-1241 (-374)) (-374)))) (-15 -4285 ((-1246) (-1241 (-374)) (-554) (-374) (-2 (|:| |try| (-374)) (|:| |did| (-374)) (|:| -1634 (-374))) (-374) (-1241 (-374)) (-1 (-1246) (-1241 (-374)) (-1241 (-374)) (-374)))) (-15 -4285 ((-1246) (-1241 (-374)) (-554) (-374) (-2 (|:| |try| (-374)) (|:| |did| (-374)) (|:| -1634 (-374))) (-374) (-1241 (-374)) (-1 (-1246) (-1241 (-374)) (-1241 (-374)) (-374)) (-1241 (-374)) (-1241 (-374)) (-1241 (-374)) (-1241 (-374)) (-1241 (-374)) (-1241 (-374)) (-1241 (-374)))) (-15 -3594 ((-1246) (-1241 (-374)) (-554) (-374) (-374) (-554) (-1 (-1246) (-1241 (-374)) (-1241 (-374)) (-374)))))) (T -775))
-((-3594 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-554)) (-5 *6 (-1 (-1246) (-1241 *5) (-1241 *5) (-374))) (-5 *3 (-1241 (-374))) (-5 *5 (-374)) (-5 *2 (-1246)) (-5 *1 (-775)))) (-4285 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-554)) (-5 *6 (-2 (|:| |try| (-374)) (|:| |did| (-374)) (|:| -1634 (-374)))) (-5 *7 (-1 (-1246) (-1241 *5) (-1241 *5) (-374))) (-5 *3 (-1241 (-374))) (-5 *5 (-374)) (-5 *2 (-1246)) (-5 *1 (-775)))) (-4285 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-554)) (-5 *6 (-2 (|:| |try| (-374)) (|:| |did| (-374)) (|:| -1634 (-374)))) (-5 *7 (-1 (-1246) (-1241 *5) (-1241 *5) (-374))) (-5 *3 (-1241 (-374))) (-5 *5 (-374)) (-5 *2 (-1246)) (-5 *1 (-775)))) (-1389 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-554)) (-5 *6 (-1 (-1246) (-1241 *5) (-1241 *5) (-374))) (-5 *3 (-1241 (-374))) (-5 *5 (-374)) (-5 *2 (-1246)) (-5 *1 (-775)))) (-3562 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-554)) (-5 *6 (-1 (-1246) (-1241 *5) (-1241 *5) (-374))) (-5 *3 (-1241 (-374))) (-5 *5 (-374)) (-5 *2 (-1246)) (-5 *1 (-775)))) (-3562 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-554)) (-5 *6 (-1 (-1246) (-1241 *5) (-1241 *5) (-374))) (-5 *3 (-1241 (-374))) (-5 *5 (-374)) (-5 *2 (-1246)) (-5 *1 (-775)))))
-(-10 -7 (-15 -3562 ((-1246) (-1241 (-374)) (-554) (-374) (-374) (-1 (-1246) (-1241 (-374)) (-1241 (-374)) (-374)))) (-15 -3562 ((-1246) (-1241 (-374)) (-554) (-374) (-374) (-1 (-1246) (-1241 (-374)) (-1241 (-374)) (-374)) (-1241 (-374)) (-1241 (-374)) (-1241 (-374)) (-1241 (-374)))) (-15 -1389 ((-1246) (-1241 (-374)) (-554) (-374) (-374) (-374) (-374) (-554) (-1 (-1246) (-1241 (-374)) (-1241 (-374)) (-374)))) (-15 -4285 ((-1246) (-1241 (-374)) (-554) (-374) (-2 (|:| |try| (-374)) (|:| |did| (-374)) (|:| -1634 (-374))) (-374) (-1241 (-374)) (-1 (-1246) (-1241 (-374)) (-1241 (-374)) (-374)))) (-15 -4285 ((-1246) (-1241 (-374)) (-554) (-374) (-2 (|:| |try| (-374)) (|:| |did| (-374)) (|:| -1634 (-374))) (-374) (-1241 (-374)) (-1 (-1246) (-1241 (-374)) (-1241 (-374)) (-374)) (-1241 (-374)) (-1241 (-374)) (-1241 (-374)) (-1241 (-374)) (-1241 (-374)) (-1241 (-374)) (-1241 (-374)))) (-15 -3594 ((-1246) (-1241 (-374)) (-554) (-374) (-374) (-554) (-1 (-1246) (-1241 (-374)) (-1241 (-374)) (-374)))))
-((-3191 (((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554)) 53)) (-1830 (((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554)) 31)) (-4054 (((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554)) 52)) (-1537 (((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554)) 29)) (-4086 (((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554)) 51)) (-1403 (((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554)) 19)) (-1687 (((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554) (-554)) 32)) (-1798 (((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554) (-554)) 30)) (-3706 (((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554) (-554)) 28)))
-(((-776) (-10 -7 (-15 -3706 ((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554) (-554))) (-15 -1798 ((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554) (-554))) (-15 -1687 ((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554) (-554))) (-15 -1403 ((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554))) (-15 -1537 ((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554))) (-15 -1830 ((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554))) (-15 -4086 ((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554))) (-15 -4054 ((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554))) (-15 -3191 ((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554))))) (T -776))
-((-3191 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) (-5 *2 (-2 (|:| -2794 *4) (|:| -1841 *4) (|:| |totalpts| (-554)) (|:| |success| (-112)))) (-5 *1 (-776)) (-5 *5 (-554)))) (-4054 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) (-5 *2 (-2 (|:| -2794 *4) (|:| -1841 *4) (|:| |totalpts| (-554)) (|:| |success| (-112)))) (-5 *1 (-776)) (-5 *5 (-554)))) (-4086 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) (-5 *2 (-2 (|:| -2794 *4) (|:| -1841 *4) (|:| |totalpts| (-554)) (|:| |success| (-112)))) (-5 *1 (-776)) (-5 *5 (-554)))) (-1830 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) (-5 *2 (-2 (|:| -2794 *4) (|:| -1841 *4) (|:| |totalpts| (-554)) (|:| |success| (-112)))) (-5 *1 (-776)) (-5 *5 (-554)))) (-1537 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) (-5 *2 (-2 (|:| -2794 *4) (|:| -1841 *4) (|:| |totalpts| (-554)) (|:| |success| (-112)))) (-5 *1 (-776)) (-5 *5 (-554)))) (-1403 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) (-5 *2 (-2 (|:| -2794 *4) (|:| -1841 *4) (|:| |totalpts| (-554)) (|:| |success| (-112)))) (-5 *1 (-776)) (-5 *5 (-554)))) (-1687 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) (-5 *2 (-2 (|:| -2794 *4) (|:| -1841 *4) (|:| |totalpts| (-554)) (|:| |success| (-112)))) (-5 *1 (-776)) (-5 *5 (-554)))) (-1798 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) (-5 *2 (-2 (|:| -2794 *4) (|:| -1841 *4) (|:| |totalpts| (-554)) (|:| |success| (-112)))) (-5 *1 (-776)) (-5 *5 (-554)))) (-3706 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) (-5 *2 (-2 (|:| -2794 *4) (|:| -1841 *4) (|:| |totalpts| (-554)) (|:| |success| (-112)))) (-5 *1 (-776)) (-5 *5 (-554)))))
-(-10 -7 (-15 -3706 ((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554) (-554))) (-15 -1798 ((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554) (-554))) (-15 -1687 ((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554) (-554))) (-15 -1403 ((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554))) (-15 -1537 ((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554))) (-15 -1830 ((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554))) (-15 -4086 ((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554))) (-15 -4054 ((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554))) (-15 -3191 ((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554))))
-((-2956 (((-1190 |#1|) |#1| (-221) (-554)) 46)))
-(((-777 |#1|) (-10 -7 (-15 -2956 ((-1190 |#1|) |#1| (-221) (-554)))) (-959)) (T -777))
-((-2956 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-221)) (-5 *5 (-554)) (-5 *2 (-1190 *3)) (-5 *1 (-777 *3)) (-4 *3 (-959)))))
-(-10 -7 (-15 -2956 ((-1190 |#1|) |#1| (-221) (-554))))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 24)) (-2934 (((-3 $ "failed") $ $) 26)) (-4087 (($) 23 T CONST)) (-4223 (($ $ $) 13)) (-2706 (($ $ $) 14)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-2004 (($) 22 T CONST)) (-1708 (((-112) $ $) 16)) (-1686 (((-112) $ $) 17)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 15)) (-1676 (((-112) $ $) 18)) (-1744 (($ $ $) 28) (($ $) 27)) (-1735 (($ $ $) 20)) (* (($ (-906) $) 21) (($ (-758) $) 25) (($ (-554) $) 29)))
-(((-778) (-138)) (T -778))
-NIL
-(-13 (-782) (-21))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-601 (-848)) . T) ((-779) . T) ((-781) . T) ((-782) . T) ((-836) . T) ((-1082) . T))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 24)) (-4087 (($) 23 T CONST)) (-4223 (($ $ $) 13)) (-2706 (($ $ $) 14)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-2004 (($) 22 T CONST)) (-1708 (((-112) $ $) 16)) (-1686 (((-112) $ $) 17)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 15)) (-1676 (((-112) $ $) 18)) (-1735 (($ $ $) 20)) (* (($ (-906) $) 21) (($ (-758) $) 25)))
-(((-779) (-138)) (T -779))
-NIL
-(-13 (-781) (-23))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-601 (-848)) . T) ((-781) . T) ((-836) . T) ((-1082) . T))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 24)) (-1349 (($ $ $) 27)) (-2934 (((-3 $ "failed") $ $) 26)) (-4087 (($) 23 T CONST)) (-4223 (($ $ $) 13)) (-2706 (($ $ $) 14)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-2004 (($) 22 T CONST)) (-1708 (((-112) $ $) 16)) (-1686 (((-112) $ $) 17)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 15)) (-1676 (((-112) $ $) 18)) (-1735 (($ $ $) 20)) (* (($ (-906) $) 21) (($ (-758) $) 25)))
-(((-780) (-138)) (T -780))
-((-1349 (*1 *1 *1 *1) (-4 *1 (-780))))
-(-13 (-782) (-10 -8 (-15 -1349 ($ $ $))))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-601 (-848)) . T) ((-779) . T) ((-781) . T) ((-782) . T) ((-836) . T) ((-1082) . T))
-((-3062 (((-112) $ $) 7)) (-4223 (($ $ $) 13)) (-2706 (($ $ $) 14)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-1708 (((-112) $ $) 16)) (-1686 (((-112) $ $) 17)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 15)) (-1676 (((-112) $ $) 18)) (-1735 (($ $ $) 20)) (* (($ (-906) $) 21)))
-(((-781) (-138)) (T -781))
-NIL
-(-13 (-836) (-25))
-(((-25) . T) ((-102) . T) ((-601 (-848)) . T) ((-836) . T) ((-1082) . T))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 24)) (-2934 (((-3 $ "failed") $ $) 26)) (-4087 (($) 23 T CONST)) (-4223 (($ $ $) 13)) (-2706 (($ $ $) 14)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-2004 (($) 22 T CONST)) (-1708 (((-112) $ $) 16)) (-1686 (((-112) $ $) 17)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 15)) (-1676 (((-112) $ $) 18)) (-1735 (($ $ $) 20)) (* (($ (-906) $) 21) (($ (-758) $) 25)))
-(((-782) (-138)) (T -782))
-NIL
-(-13 (-779) (-130))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-601 (-848)) . T) ((-779) . T) ((-781) . T) ((-836) . T) ((-1082) . T))
-((-1695 (((-112) $) 41)) (-2784 (((-3 (-554) "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-1668 (((-554) $) NIL) (((-402 (-554)) $) NIL) ((|#2| $) 42)) (-1623 (((-3 (-402 (-554)) "failed") $) 78)) (-2069 (((-112) $) 72)) (-2197 (((-402 (-554)) $) 76)) (-3274 ((|#2| $) 26)) (-2879 (($ (-1 |#2| |#2|) $) 23)) (-2483 (($ $) 61)) (-2927 (((-530) $) 67)) (-3992 (($ $) 21)) (-3075 (((-848) $) 56) (($ (-554)) 39) (($ |#2|) 37) (($ (-402 (-554))) NIL)) (-2261 (((-758)) 10)) (-1700 ((|#2| $) 71)) (-1658 (((-112) $ $) 29)) (-1676 (((-112) $ $) 69)) (-1744 (($ $) 31) (($ $ $) NIL)) (-1735 (($ $ $) 30)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32)))
-(((-783 |#1| |#2|) (-10 -8 (-15 -1676 ((-112) |#1| |#1|)) (-15 -2927 ((-530) |#1|)) (-15 -2483 (|#1| |#1|)) (-15 -1623 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -2197 ((-402 (-554)) |#1|)) (-15 -2069 ((-112) |#1|)) (-15 -1700 (|#2| |#1|)) (-15 -3274 (|#2| |#1|)) (-15 -3992 (|#1| |#1|)) (-15 -2879 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -3075 (|#1| (-402 (-554)))) (-15 -1668 ((-554) |#1|)) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -3075 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2261 ((-758))) (-15 -3075 (|#1| (-554))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-554) |#1|)) (-15 -1744 (|#1| |#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 * (|#1| (-758) |#1|)) (-15 -1695 ((-112) |#1|)) (-15 * (|#1| (-906) |#1|)) (-15 -1735 (|#1| |#1| |#1|)) (-15 -3075 ((-848) |#1|)) (-15 -1658 ((-112) |#1| |#1|))) (-784 |#2|) (-170)) (T -783))
-((-2261 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-758)) (-5 *1 (-783 *3 *4)) (-4 *3 (-784 *4)))))
-(-10 -8 (-15 -1676 ((-112) |#1| |#1|)) (-15 -2927 ((-530) |#1|)) (-15 -2483 (|#1| |#1|)) (-15 -1623 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -2197 ((-402 (-554)) |#1|)) (-15 -2069 ((-112) |#1|)) (-15 -1700 (|#2| |#1|)) (-15 -3274 (|#2| |#1|)) (-15 -3992 (|#1| |#1|)) (-15 -2879 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -3075 (|#1| (-402 (-554)))) (-15 -1668 ((-554) |#1|)) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -3075 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2261 ((-758))) (-15 -3075 (|#1| (-554))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-554) |#1|)) (-15 -1744 (|#1| |#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 * (|#1| (-758) |#1|)) (-15 -1695 ((-112) |#1|)) (-15 * (|#1| (-906) |#1|)) (-15 -1735 (|#1| |#1| |#1|)) (-15 -3075 ((-848) |#1|)) (-15 -1658 ((-112) |#1| |#1|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-1508 (((-758)) 52 (|has| |#1| (-363)))) (-4087 (($) 17 T CONST)) (-2784 (((-3 (-554) "failed") $) 94 (|has| |#1| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) 91 (|has| |#1| (-1023 (-402 (-554))))) (((-3 |#1| "failed") $) 88)) (-1668 (((-554) $) 93 (|has| |#1| (-1023 (-554)))) (((-402 (-554)) $) 90 (|has| |#1| (-1023 (-402 (-554))))) ((|#1| $) 89)) (-1320 (((-3 $ "failed") $) 33)) (-2293 ((|#1| $) 78)) (-1623 (((-3 (-402 (-554)) "failed") $) 65 (|has| |#1| (-539)))) (-2069 (((-112) $) 67 (|has| |#1| (-539)))) (-2197 (((-402 (-554)) $) 66 (|has| |#1| (-539)))) (-3353 (($) 55 (|has| |#1| (-363)))) (-3248 (((-112) $) 31)) (-3420 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 69)) (-3274 ((|#1| $) 70)) (-4223 (($ $ $) 61 (|has| |#1| (-836)))) (-2706 (($ $ $) 60 (|has| |#1| (-836)))) (-2879 (($ (-1 |#1| |#1|) $) 80)) (-3830 (((-906) $) 54 (|has| |#1| (-363)))) (-1613 (((-1140) $) 9)) (-2483 (($ $) 64 (|has| |#1| (-358)))) (-2717 (($ (-906)) 53 (|has| |#1| (-363)))) (-2520 ((|#1| $) 75)) (-4303 ((|#1| $) 76)) (-2419 ((|#1| $) 77)) (-1743 ((|#1| $) 71)) (-1548 ((|#1| $) 72)) (-2099 ((|#1| $) 73)) (-3127 ((|#1| $) 74)) (-2768 (((-1102) $) 10)) (-2386 (($ $ (-631 |#1|) (-631 |#1|)) 86 (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) 85 (|has| |#1| (-304 |#1|))) (($ $ (-289 |#1|)) 84 (|has| |#1| (-304 |#1|))) (($ $ (-631 (-289 |#1|))) 83 (|has| |#1| (-304 |#1|))) (($ $ (-631 (-1158)) (-631 |#1|)) 82 (|has| |#1| (-508 (-1158) |#1|))) (($ $ (-1158) |#1|) 81 (|has| |#1| (-508 (-1158) |#1|)))) (-2064 (($ $ |#1|) 87 (|has| |#1| (-281 |#1| |#1|)))) (-2927 (((-530) $) 62 (|has| |#1| (-602 (-530))))) (-3992 (($ $) 79)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ |#1|) 38) (($ (-402 (-554))) 92 (|has| |#1| (-1023 (-402 (-554)))))) (-2084 (((-3 $ "failed") $) 63 (|has| |#1| (-143)))) (-2261 (((-758)) 28)) (-1700 ((|#1| $) 68 (|has| |#1| (-1043)))) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1708 (((-112) $ $) 58 (|has| |#1| (-836)))) (-1686 (((-112) $ $) 57 (|has| |#1| (-836)))) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 59 (|has| |#1| (-836)))) (-1676 (((-112) $ $) 56 (|has| |#1| (-836)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
-(((-784 |#1|) (-138) (-170)) (T -784))
-((-3992 (*1 *1 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) (-2293 (*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) (-2419 (*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) (-4303 (*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) (-2520 (*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) (-3127 (*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) (-2099 (*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) (-1548 (*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) (-1743 (*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) (-3274 (*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) (-3420 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) (-1700 (*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)) (-4 *2 (-1043)))) (-2069 (*1 *2 *1) (-12 (-4 *1 (-784 *3)) (-4 *3 (-170)) (-4 *3 (-539)) (-5 *2 (-112)))) (-2197 (*1 *2 *1) (-12 (-4 *1 (-784 *3)) (-4 *3 (-170)) (-4 *3 (-539)) (-5 *2 (-402 (-554))))) (-1623 (*1 *2 *1) (|partial| -12 (-4 *1 (-784 *3)) (-4 *3 (-170)) (-4 *3 (-539)) (-5 *2 (-402 (-554))))) (-2483 (*1 *1 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)) (-4 *2 (-358)))))
-(-13 (-38 |t#1|) (-406 |t#1|) (-333 |t#1|) (-10 -8 (-15 -3992 ($ $)) (-15 -2293 (|t#1| $)) (-15 -2419 (|t#1| $)) (-15 -4303 (|t#1| $)) (-15 -2520 (|t#1| $)) (-15 -3127 (|t#1| $)) (-15 -2099 (|t#1| $)) (-15 -1548 (|t#1| $)) (-15 -1743 (|t#1| $)) (-15 -3274 (|t#1| $)) (-15 -3420 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|) (IF (|has| |t#1| (-836)) (-6 (-836)) |%noBranch|) (IF (|has| |t#1| (-602 (-530))) (-6 (-602 (-530))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1043)) (-15 -1700 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-539)) (PROGN (-15 -2069 ((-112) $)) (-15 -2197 ((-402 (-554)) $)) (-15 -1623 ((-3 (-402 (-554)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-358)) (-15 -2483 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-604 #0=(-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) ((-604 (-554)) . T) ((-604 |#1|) . T) ((-601 (-848)) . T) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-281 |#1| $) |has| |#1| (-281 |#1| |#1|)) ((-304 |#1|) |has| |#1| (-304 |#1|)) ((-363) |has| |#1| (-363)) ((-333 |#1|) . T) ((-406 |#1|) . T) ((-508 (-1158) |#1|) |has| |#1| (-508 (-1158) |#1|)) ((-508 |#1| |#1|) |has| |#1| (-304 |#1|)) ((-634 |#1|) . T) ((-634 $) . T) ((-704 |#1|) . T) ((-713) . T) ((-836) |has| |#1| (-836)) ((-1023 #0#) |has| |#1| (-1023 (-402 (-554)))) ((-1023 (-554)) |has| |#1| (-1023 (-554))) ((-1023 |#1|) . T) ((-1040 |#1|) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T))
-((-2879 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
-(((-785 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2879 (|#3| (-1 |#4| |#2|) |#1|))) (-784 |#2|) (-170) (-784 |#4|) (-170)) (T -785))
-((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-784 *6)) (-5 *1 (-785 *4 *5 *2 *6)) (-4 *4 (-784 *5)))))
-(-10 -7 (-15 -2879 (|#3| (-1 |#4| |#2|) |#1|)))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-1508 (((-758)) NIL (|has| |#1| (-363)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL) (((-3 (-984 |#1|) "failed") $) 35) (((-3 (-554) "failed") $) NIL (-3994 (|has| (-984 |#1|) (-1023 (-554))) (|has| |#1| (-1023 (-554))))) (((-3 (-402 (-554)) "failed") $) NIL (-3994 (|has| (-984 |#1|) (-1023 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554))))))) (-1668 ((|#1| $) NIL) (((-984 |#1|) $) 33) (((-554) $) NIL (-3994 (|has| (-984 |#1|) (-1023 (-554))) (|has| |#1| (-1023 (-554))))) (((-402 (-554)) $) NIL (-3994 (|has| (-984 |#1|) (-1023 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554))))))) (-1320 (((-3 $ "failed") $) NIL)) (-2293 ((|#1| $) 16)) (-1623 (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-539)))) (-2069 (((-112) $) NIL (|has| |#1| (-539)))) (-2197 (((-402 (-554)) $) NIL (|has| |#1| (-539)))) (-3353 (($) NIL (|has| |#1| (-363)))) (-3248 (((-112) $) NIL)) (-3420 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-984 |#1|) (-984 |#1|)) 29)) (-3274 ((|#1| $) NIL)) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-3830 (((-906) $) NIL (|has| |#1| (-363)))) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL (|has| |#1| (-358)))) (-2717 (($ (-906)) NIL (|has| |#1| (-363)))) (-2520 ((|#1| $) 22)) (-4303 ((|#1| $) 20)) (-2419 ((|#1| $) 18)) (-1743 ((|#1| $) 26)) (-1548 ((|#1| $) 25)) (-2099 ((|#1| $) 24)) (-3127 ((|#1| $) 23)) (-2768 (((-1102) $) NIL)) (-2386 (($ $ (-631 |#1|) (-631 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-304 |#1|))) (($ $ (-289 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ (-631 (-289 |#1|))) NIL (|has| |#1| (-304 |#1|))) (($ $ (-631 (-1158)) (-631 |#1|)) NIL (|has| |#1| (-508 (-1158) |#1|))) (($ $ (-1158) |#1|) NIL (|has| |#1| (-508 (-1158) |#1|)))) (-2064 (($ $ |#1|) NIL (|has| |#1| (-281 |#1| |#1|)))) (-2927 (((-530) $) NIL (|has| |#1| (-602 (-530))))) (-3992 (($ $) NIL)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#1|) NIL) (($ (-984 |#1|)) 30) (($ (-402 (-554))) NIL (-3994 (|has| (-984 |#1|) (-1023 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554))))))) (-2084 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2261 (((-758)) NIL)) (-1700 ((|#1| $) NIL (|has| |#1| (-1043)))) (-2004 (($) 8 T CONST)) (-2014 (($) 12 T CONST)) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-786 |#1|) (-13 (-784 |#1|) (-406 (-984 |#1|)) (-10 -8 (-15 -3420 ($ (-984 |#1|) (-984 |#1|))))) (-170)) (T -786))
-((-3420 (*1 *1 *2 *2) (-12 (-5 *2 (-984 *3)) (-4 *3 (-170)) (-5 *1 (-786 *3)))))
-(-13 (-784 |#1|) (-406 (-984 |#1|)) (-10 -8 (-15 -3420 ($ (-984 |#1|) (-984 |#1|)))))
-((-3062 (((-112) $ $) 7)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 14)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-2821 (((-1020) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 13)) (-1658 (((-112) $ $) 6)))
-(((-787) (-138)) (T -787))
-((-3037 (*1 *2 *3 *4) (-12 (-4 *1 (-787)) (-5 *3 (-1046)) (-5 *4 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)))))) (-2821 (*1 *2 *3) (-12 (-4 *1 (-787)) (-5 *3 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-1020)))))
-(-13 (-1082) (-10 -7 (-15 -3037 ((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2821 ((-1020) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))))))
-(((-102) . T) ((-601 (-848)) . T) ((-1082) . T))
-((-2914 (((-2 (|:| |particular| |#2|) (|:| -3782 (-631 |#2|))) |#3| |#2| (-1158)) 19)))
-(((-788 |#1| |#2| |#3|) (-10 -7 (-15 -2914 ((-2 (|:| |particular| |#2|) (|:| -3782 (-631 |#2|))) |#3| |#2| (-1158)))) (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145)) (-13 (-29 |#1|) (-1180) (-944)) (-642 |#2|)) (T -788))
-((-2914 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1158)) (-4 *6 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (-4 *4 (-13 (-29 *6) (-1180) (-944))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3782 (-631 *4)))) (-5 *1 (-788 *6 *4 *3)) (-4 *3 (-642 *4)))))
-(-10 -7 (-15 -2914 ((-2 (|:| |particular| |#2|) (|:| -3782 (-631 |#2|))) |#3| |#2| (-1158))))
-((-1900 (((-3 |#2| "failed") |#2| (-114) (-289 |#2|) (-631 |#2|)) 28) (((-3 |#2| "failed") (-289 |#2|) (-114) (-289 |#2|) (-631 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -3782 (-631 |#2|))) |#2| "failed") |#2| (-114) (-1158)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -3782 (-631 |#2|))) |#2| "failed") (-289 |#2|) (-114) (-1158)) 18) (((-3 (-2 (|:| |particular| (-1241 |#2|)) (|:| -3782 (-631 (-1241 |#2|)))) "failed") (-631 |#2|) (-631 (-114)) (-1158)) 24) (((-3 (-2 (|:| |particular| (-1241 |#2|)) (|:| -3782 (-631 (-1241 |#2|)))) "failed") (-631 (-289 |#2|)) (-631 (-114)) (-1158)) 26) (((-3 (-631 (-1241 |#2|)) "failed") (-675 |#2|) (-1158)) 37) (((-3 (-2 (|:| |particular| (-1241 |#2|)) (|:| -3782 (-631 (-1241 |#2|)))) "failed") (-675 |#2|) (-1241 |#2|) (-1158)) 35)))
-(((-789 |#1| |#2|) (-10 -7 (-15 -1900 ((-3 (-2 (|:| |particular| (-1241 |#2|)) (|:| -3782 (-631 (-1241 |#2|)))) "failed") (-675 |#2|) (-1241 |#2|) (-1158))) (-15 -1900 ((-3 (-631 (-1241 |#2|)) "failed") (-675 |#2|) (-1158))) (-15 -1900 ((-3 (-2 (|:| |particular| (-1241 |#2|)) (|:| -3782 (-631 (-1241 |#2|)))) "failed") (-631 (-289 |#2|)) (-631 (-114)) (-1158))) (-15 -1900 ((-3 (-2 (|:| |particular| (-1241 |#2|)) (|:| -3782 (-631 (-1241 |#2|)))) "failed") (-631 |#2|) (-631 (-114)) (-1158))) (-15 -1900 ((-3 (-2 (|:| |particular| |#2|) (|:| -3782 (-631 |#2|))) |#2| "failed") (-289 |#2|) (-114) (-1158))) (-15 -1900 ((-3 (-2 (|:| |particular| |#2|) (|:| -3782 (-631 |#2|))) |#2| "failed") |#2| (-114) (-1158))) (-15 -1900 ((-3 |#2| "failed") (-289 |#2|) (-114) (-289 |#2|) (-631 |#2|))) (-15 -1900 ((-3 |#2| "failed") |#2| (-114) (-289 |#2|) (-631 |#2|)))) (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145)) (-13 (-29 |#1|) (-1180) (-944))) (T -789))
-((-1900 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-289 *2)) (-5 *5 (-631 *2)) (-4 *2 (-13 (-29 *6) (-1180) (-944))) (-4 *6 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (-5 *1 (-789 *6 *2)))) (-1900 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-289 *2)) (-5 *4 (-114)) (-5 *5 (-631 *2)) (-4 *2 (-13 (-29 *6) (-1180) (-944))) (-5 *1 (-789 *6 *2)) (-4 *6 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))))) (-1900 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1158)) (-4 *6 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -3782 (-631 *3))) *3 "failed")) (-5 *1 (-789 *6 *3)) (-4 *3 (-13 (-29 *6) (-1180) (-944))))) (-1900 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-289 *7)) (-5 *4 (-114)) (-5 *5 (-1158)) (-4 *7 (-13 (-29 *6) (-1180) (-944))) (-4 *6 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -3782 (-631 *7))) *7 "failed")) (-5 *1 (-789 *6 *7)))) (-1900 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-631 *7)) (-5 *4 (-631 (-114))) (-5 *5 (-1158)) (-4 *7 (-13 (-29 *6) (-1180) (-944))) (-4 *6 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (-5 *2 (-2 (|:| |particular| (-1241 *7)) (|:| -3782 (-631 (-1241 *7))))) (-5 *1 (-789 *6 *7)))) (-1900 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-631 (-289 *7))) (-5 *4 (-631 (-114))) (-5 *5 (-1158)) (-4 *7 (-13 (-29 *6) (-1180) (-944))) (-4 *6 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (-5 *2 (-2 (|:| |particular| (-1241 *7)) (|:| -3782 (-631 (-1241 *7))))) (-5 *1 (-789 *6 *7)))) (-1900 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-675 *6)) (-5 *4 (-1158)) (-4 *6 (-13 (-29 *5) (-1180) (-944))) (-4 *5 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (-5 *2 (-631 (-1241 *6))) (-5 *1 (-789 *5 *6)))) (-1900 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-675 *7)) (-5 *5 (-1158)) (-4 *7 (-13 (-29 *6) (-1180) (-944))) (-4 *6 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (-5 *2 (-2 (|:| |particular| (-1241 *7)) (|:| -3782 (-631 (-1241 *7))))) (-5 *1 (-789 *6 *7)) (-5 *4 (-1241 *7)))))
-(-10 -7 (-15 -1900 ((-3 (-2 (|:| |particular| (-1241 |#2|)) (|:| -3782 (-631 (-1241 |#2|)))) "failed") (-675 |#2|) (-1241 |#2|) (-1158))) (-15 -1900 ((-3 (-631 (-1241 |#2|)) "failed") (-675 |#2|) (-1158))) (-15 -1900 ((-3 (-2 (|:| |particular| (-1241 |#2|)) (|:| -3782 (-631 (-1241 |#2|)))) "failed") (-631 (-289 |#2|)) (-631 (-114)) (-1158))) (-15 -1900 ((-3 (-2 (|:| |particular| (-1241 |#2|)) (|:| -3782 (-631 (-1241 |#2|)))) "failed") (-631 |#2|) (-631 (-114)) (-1158))) (-15 -1900 ((-3 (-2 (|:| |particular| |#2|) (|:| -3782 (-631 |#2|))) |#2| "failed") (-289 |#2|) (-114) (-1158))) (-15 -1900 ((-3 (-2 (|:| |particular| |#2|) (|:| -3782 (-631 |#2|))) |#2| "failed") |#2| (-114) (-1158))) (-15 -1900 ((-3 |#2| "failed") (-289 |#2|) (-114) (-289 |#2|) (-631 |#2|))) (-15 -1900 ((-3 |#2| "failed") |#2| (-114) (-289 |#2|) (-631 |#2|))))
-((-2098 (($) 9)) (-2946 (((-3 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374))) "failed") (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 31)) (-2944 (((-631 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) $) 28)) (-2045 (($ (-2 (|:| -2564 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2701 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374)))))) 25)) (-1437 (($ (-631 (-2 (|:| -2564 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2701 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374))))))) 23)) (-1891 (((-1246)) 12)))
-(((-790) (-10 -8 (-15 -2098 ($)) (-15 -1891 ((-1246))) (-15 -2944 ((-631 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) $)) (-15 -1437 ($ (-631 (-2 (|:| -2564 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2701 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374)))))))) (-15 -2045 ($ (-2 (|:| -2564 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2701 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374))))))) (-15 -2946 ((-3 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374))) "failed") (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))) (T -790))
-((-2946 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374)))) (-5 *1 (-790)))) (-2045 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2564 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2701 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374)))))) (-5 *1 (-790)))) (-1437 (*1 *1 *2) (-12 (-5 *2 (-631 (-2 (|:| -2564 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2701 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374))))))) (-5 *1 (-790)))) (-2944 (*1 *2 *1) (-12 (-5 *2 (-631 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-5 *1 (-790)))) (-1891 (*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-790)))) (-2098 (*1 *1) (-5 *1 (-790))))
-(-10 -8 (-15 -2098 ($)) (-15 -1891 ((-1246))) (-15 -2944 ((-631 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) $)) (-15 -1437 ($ (-631 (-2 (|:| -2564 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2701 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374)))))))) (-15 -2045 ($ (-2 (|:| -2564 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2701 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374))))))) (-15 -2946 ((-3 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374))) "failed") (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))
-((-1664 ((|#2| |#2| (-1158)) 16)) (-1777 ((|#2| |#2| (-1158)) 51)) (-1523 (((-1 |#2| |#2|) (-1158)) 11)))
-(((-791 |#1| |#2|) (-10 -7 (-15 -1664 (|#2| |#2| (-1158))) (-15 -1777 (|#2| |#2| (-1158))) (-15 -1523 ((-1 |#2| |#2|) (-1158)))) (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145)) (-13 (-29 |#1|) (-1180) (-944))) (T -791))
-((-1523 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (-5 *2 (-1 *5 *5)) (-5 *1 (-791 *4 *5)) (-4 *5 (-13 (-29 *4) (-1180) (-944))))) (-1777 (*1 *2 *2 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (-5 *1 (-791 *4 *2)) (-4 *2 (-13 (-29 *4) (-1180) (-944))))) (-1664 (*1 *2 *2 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (-5 *1 (-791 *4 *2)) (-4 *2 (-13 (-29 *4) (-1180) (-944))))))
-(-10 -7 (-15 -1664 (|#2| |#2| (-1158))) (-15 -1777 (|#2| |#2| (-1158))) (-15 -1523 ((-1 |#2| |#2|) (-1158))))
-((-1900 (((-1020) (-1241 (-311 (-374))) (-374) (-374) (-631 (-374)) (-311 (-374)) (-631 (-374)) (-374) (-374)) 116) (((-1020) (-1241 (-311 (-374))) (-374) (-374) (-631 (-374)) (-311 (-374)) (-631 (-374)) (-374)) 117) (((-1020) (-1241 (-311 (-374))) (-374) (-374) (-631 (-374)) (-631 (-374)) (-374)) 119) (((-1020) (-1241 (-311 (-374))) (-374) (-374) (-631 (-374)) (-311 (-374)) (-374)) 120) (((-1020) (-1241 (-311 (-374))) (-374) (-374) (-631 (-374)) (-374)) 121) (((-1020) (-1241 (-311 (-374))) (-374) (-374) (-631 (-374))) 122) (((-1020) (-795) (-1046)) 108) (((-1020) (-795)) 109)) (-3037 (((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140)))) (-795) (-1046)) 75) (((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140)))) (-795)) 77)))
-(((-792) (-10 -7 (-15 -1900 ((-1020) (-795))) (-15 -1900 ((-1020) (-795) (-1046))) (-15 -1900 ((-1020) (-1241 (-311 (-374))) (-374) (-374) (-631 (-374)))) (-15 -1900 ((-1020) (-1241 (-311 (-374))) (-374) (-374) (-631 (-374)) (-374))) (-15 -1900 ((-1020) (-1241 (-311 (-374))) (-374) (-374) (-631 (-374)) (-311 (-374)) (-374))) (-15 -1900 ((-1020) (-1241 (-311 (-374))) (-374) (-374) (-631 (-374)) (-631 (-374)) (-374))) (-15 -1900 ((-1020) (-1241 (-311 (-374))) (-374) (-374) (-631 (-374)) (-311 (-374)) (-631 (-374)) (-374))) (-15 -1900 ((-1020) (-1241 (-311 (-374))) (-374) (-374) (-631 (-374)) (-311 (-374)) (-631 (-374)) (-374) (-374))) (-15 -3037 ((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140)))) (-795))) (-15 -3037 ((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140)))) (-795) (-1046))))) (T -792))
-((-3037 (*1 *2 *3 *4) (-12 (-5 *3 (-795)) (-5 *4 (-1046)) (-5 *2 (-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140))))) (-5 *1 (-792)))) (-3037 (*1 *2 *3) (-12 (-5 *3 (-795)) (-5 *2 (-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140))))) (-5 *1 (-792)))) (-1900 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1241 (-311 *4))) (-5 *5 (-631 (-374))) (-5 *6 (-311 (-374))) (-5 *4 (-374)) (-5 *2 (-1020)) (-5 *1 (-792)))) (-1900 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1241 (-311 *4))) (-5 *5 (-631 (-374))) (-5 *6 (-311 (-374))) (-5 *4 (-374)) (-5 *2 (-1020)) (-5 *1 (-792)))) (-1900 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1241 (-311 (-374)))) (-5 *4 (-374)) (-5 *5 (-631 *4)) (-5 *2 (-1020)) (-5 *1 (-792)))) (-1900 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1241 (-311 *4))) (-5 *5 (-631 (-374))) (-5 *6 (-311 (-374))) (-5 *4 (-374)) (-5 *2 (-1020)) (-5 *1 (-792)))) (-1900 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1241 (-311 (-374)))) (-5 *4 (-374)) (-5 *5 (-631 *4)) (-5 *2 (-1020)) (-5 *1 (-792)))) (-1900 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1241 (-311 (-374)))) (-5 *4 (-374)) (-5 *5 (-631 *4)) (-5 *2 (-1020)) (-5 *1 (-792)))) (-1900 (*1 *2 *3 *4) (-12 (-5 *3 (-795)) (-5 *4 (-1046)) (-5 *2 (-1020)) (-5 *1 (-792)))) (-1900 (*1 *2 *3) (-12 (-5 *3 (-795)) (-5 *2 (-1020)) (-5 *1 (-792)))))
-(-10 -7 (-15 -1900 ((-1020) (-795))) (-15 -1900 ((-1020) (-795) (-1046))) (-15 -1900 ((-1020) (-1241 (-311 (-374))) (-374) (-374) (-631 (-374)))) (-15 -1900 ((-1020) (-1241 (-311 (-374))) (-374) (-374) (-631 (-374)) (-374))) (-15 -1900 ((-1020) (-1241 (-311 (-374))) (-374) (-374) (-631 (-374)) (-311 (-374)) (-374))) (-15 -1900 ((-1020) (-1241 (-311 (-374))) (-374) (-374) (-631 (-374)) (-631 (-374)) (-374))) (-15 -1900 ((-1020) (-1241 (-311 (-374))) (-374) (-374) (-631 (-374)) (-311 (-374)) (-631 (-374)) (-374))) (-15 -1900 ((-1020) (-1241 (-311 (-374))) (-374) (-374) (-631 (-374)) (-311 (-374)) (-631 (-374)) (-374) (-374))) (-15 -3037 ((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140)))) (-795))) (-15 -3037 ((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140)))) (-795) (-1046))))
-((-1739 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3782 (-631 |#4|))) (-639 |#4|) |#4|) 35)))
-(((-793 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1739 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3782 (-631 |#4|))) (-639 |#4|) |#4|))) (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554)))) (-1217 |#1|) (-1217 (-402 |#2|)) (-337 |#1| |#2| |#3|)) (T -793))
-((-1739 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *4)) (-4 *4 (-337 *5 *6 *7)) (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) (-4 *6 (-1217 *5)) (-4 *7 (-1217 (-402 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3782 (-631 *4)))) (-5 *1 (-793 *5 *6 *7 *4)))))
-(-10 -7 (-15 -1739 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3782 (-631 |#4|))) (-639 |#4|) |#4|)))
-((-2037 (((-2 (|:| -4329 |#3|) (|:| |rh| (-631 (-402 |#2|)))) |#4| (-631 (-402 |#2|))) 52)) (-3113 (((-631 (-2 (|:| -1608 |#2|) (|:| -1401 |#2|))) |#4| |#2|) 60) (((-631 (-2 (|:| -1608 |#2|) (|:| -1401 |#2|))) |#4|) 59) (((-631 (-2 (|:| -1608 |#2|) (|:| -1401 |#2|))) |#3| |#2|) 20) (((-631 (-2 (|:| -1608 |#2|) (|:| -1401 |#2|))) |#3|) 21)) (-3749 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-2646 ((|#2| |#3| (-631 (-402 |#2|))) 93) (((-3 |#2| "failed") |#3| (-402 |#2|)) 90)))
-(((-794 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2646 ((-3 |#2| "failed") |#3| (-402 |#2|))) (-15 -2646 (|#2| |#3| (-631 (-402 |#2|)))) (-15 -3113 ((-631 (-2 (|:| -1608 |#2|) (|:| -1401 |#2|))) |#3|)) (-15 -3113 ((-631 (-2 (|:| -1608 |#2|) (|:| -1401 |#2|))) |#3| |#2|)) (-15 -3749 (|#2| |#3| |#1|)) (-15 -3113 ((-631 (-2 (|:| -1608 |#2|) (|:| -1401 |#2|))) |#4|)) (-15 -3113 ((-631 (-2 (|:| -1608 |#2|) (|:| -1401 |#2|))) |#4| |#2|)) (-15 -3749 (|#2| |#4| |#1|)) (-15 -2037 ((-2 (|:| -4329 |#3|) (|:| |rh| (-631 (-402 |#2|)))) |#4| (-631 (-402 |#2|))))) (-13 (-358) (-145) (-1023 (-402 (-554)))) (-1217 |#1|) (-642 |#2|) (-642 (-402 |#2|))) (T -794))
-((-2037 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-4 *6 (-1217 *5)) (-5 *2 (-2 (|:| -4329 *7) (|:| |rh| (-631 (-402 *6))))) (-5 *1 (-794 *5 *6 *7 *3)) (-5 *4 (-631 (-402 *6))) (-4 *7 (-642 *6)) (-4 *3 (-642 (-402 *6))))) (-3749 (*1 *2 *3 *4) (-12 (-4 *2 (-1217 *4)) (-5 *1 (-794 *4 *2 *5 *3)) (-4 *4 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-4 *5 (-642 *2)) (-4 *3 (-642 (-402 *2))))) (-3113 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-4 *4 (-1217 *5)) (-5 *2 (-631 (-2 (|:| -1608 *4) (|:| -1401 *4)))) (-5 *1 (-794 *5 *4 *6 *3)) (-4 *6 (-642 *4)) (-4 *3 (-642 (-402 *4))))) (-3113 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-4 *5 (-1217 *4)) (-5 *2 (-631 (-2 (|:| -1608 *5) (|:| -1401 *5)))) (-5 *1 (-794 *4 *5 *6 *3)) (-4 *6 (-642 *5)) (-4 *3 (-642 (-402 *5))))) (-3749 (*1 *2 *3 *4) (-12 (-4 *2 (-1217 *4)) (-5 *1 (-794 *4 *2 *3 *5)) (-4 *4 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-4 *3 (-642 *2)) (-4 *5 (-642 (-402 *2))))) (-3113 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-4 *4 (-1217 *5)) (-5 *2 (-631 (-2 (|:| -1608 *4) (|:| -1401 *4)))) (-5 *1 (-794 *5 *4 *3 *6)) (-4 *3 (-642 *4)) (-4 *6 (-642 (-402 *4))))) (-3113 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-4 *5 (-1217 *4)) (-5 *2 (-631 (-2 (|:| -1608 *5) (|:| -1401 *5)))) (-5 *1 (-794 *4 *5 *3 *6)) (-4 *3 (-642 *5)) (-4 *6 (-642 (-402 *5))))) (-2646 (*1 *2 *3 *4) (-12 (-5 *4 (-631 (-402 *2))) (-4 *2 (-1217 *5)) (-5 *1 (-794 *5 *2 *3 *6)) (-4 *5 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-4 *3 (-642 *2)) (-4 *6 (-642 (-402 *2))))) (-2646 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-402 *2)) (-4 *2 (-1217 *5)) (-5 *1 (-794 *5 *2 *3 *6)) (-4 *5 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-4 *3 (-642 *2)) (-4 *6 (-642 *4)))))
-(-10 -7 (-15 -2646 ((-3 |#2| "failed") |#3| (-402 |#2|))) (-15 -2646 (|#2| |#3| (-631 (-402 |#2|)))) (-15 -3113 ((-631 (-2 (|:| -1608 |#2|) (|:| -1401 |#2|))) |#3|)) (-15 -3113 ((-631 (-2 (|:| -1608 |#2|) (|:| -1401 |#2|))) |#3| |#2|)) (-15 -3749 (|#2| |#3| |#1|)) (-15 -3113 ((-631 (-2 (|:| -1608 |#2|) (|:| -1401 |#2|))) |#4|)) (-15 -3113 ((-631 (-2 (|:| -1608 |#2|) (|:| -1401 |#2|))) |#4| |#2|)) (-15 -3749 (|#2| |#4| |#1|)) (-15 -2037 ((-2 (|:| -4329 |#3|) (|:| |rh| (-631 (-402 |#2|)))) |#4| (-631 (-402 |#2|)))))
-((-3062 (((-112) $ $) NIL)) (-1668 (((-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) $) 13)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 15) (($ (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 12)) (-1658 (((-112) $ $) NIL)))
-(((-795) (-13 (-1082) (-10 -8 (-15 -3075 ($ (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1668 ((-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) $))))) (T -795))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *1 (-795)))) (-1668 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *1 (-795)))))
-(-13 (-1082) (-10 -8 (-15 -3075 ($ (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1668 ((-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) $))))
-((-4107 (((-631 (-2 (|:| |frac| (-402 |#2|)) (|:| -4329 |#3|))) |#3| (-1 (-631 |#2|) |#2| (-1154 |#2|)) (-1 (-413 |#2|) |#2|)) 118)) (-3055 (((-631 (-2 (|:| |poly| |#2|) (|:| -4329 |#3|))) |#3| (-1 (-631 |#1|) |#2|)) 46)) (-1353 (((-631 (-2 (|:| |deg| (-758)) (|:| -4329 |#2|))) |#3|) 95)) (-3750 ((|#2| |#3|) 37)) (-1789 (((-631 (-2 (|:| -2397 |#1|) (|:| -4329 |#3|))) |#3| (-1 (-631 |#1|) |#2|)) 82)) (-3566 ((|#3| |#3| (-402 |#2|)) 63) ((|#3| |#3| |#2|) 79)))
-(((-796 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3750 (|#2| |#3|)) (-15 -1353 ((-631 (-2 (|:| |deg| (-758)) (|:| -4329 |#2|))) |#3|)) (-15 -1789 ((-631 (-2 (|:| -2397 |#1|) (|:| -4329 |#3|))) |#3| (-1 (-631 |#1|) |#2|))) (-15 -3055 ((-631 (-2 (|:| |poly| |#2|) (|:| -4329 |#3|))) |#3| (-1 (-631 |#1|) |#2|))) (-15 -4107 ((-631 (-2 (|:| |frac| (-402 |#2|)) (|:| -4329 |#3|))) |#3| (-1 (-631 |#2|) |#2| (-1154 |#2|)) (-1 (-413 |#2|) |#2|))) (-15 -3566 (|#3| |#3| |#2|)) (-15 -3566 (|#3| |#3| (-402 |#2|)))) (-13 (-358) (-145) (-1023 (-402 (-554)))) (-1217 |#1|) (-642 |#2|) (-642 (-402 |#2|))) (T -796))
-((-3566 (*1 *2 *2 *3) (-12 (-5 *3 (-402 *5)) (-4 *4 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-4 *5 (-1217 *4)) (-5 *1 (-796 *4 *5 *2 *6)) (-4 *2 (-642 *5)) (-4 *6 (-642 *3)))) (-3566 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-4 *3 (-1217 *4)) (-5 *1 (-796 *4 *3 *2 *5)) (-4 *2 (-642 *3)) (-4 *5 (-642 (-402 *3))))) (-4107 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-631 *7) *7 (-1154 *7))) (-5 *5 (-1 (-413 *7) *7)) (-4 *7 (-1217 *6)) (-4 *6 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-5 *2 (-631 (-2 (|:| |frac| (-402 *7)) (|:| -4329 *3)))) (-5 *1 (-796 *6 *7 *3 *8)) (-4 *3 (-642 *7)) (-4 *8 (-642 (-402 *7))))) (-3055 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-631 *5) *6)) (-4 *5 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-4 *6 (-1217 *5)) (-5 *2 (-631 (-2 (|:| |poly| *6) (|:| -4329 *3)))) (-5 *1 (-796 *5 *6 *3 *7)) (-4 *3 (-642 *6)) (-4 *7 (-642 (-402 *6))))) (-1789 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-631 *5) *6)) (-4 *5 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-4 *6 (-1217 *5)) (-5 *2 (-631 (-2 (|:| -2397 *5) (|:| -4329 *3)))) (-5 *1 (-796 *5 *6 *3 *7)) (-4 *3 (-642 *6)) (-4 *7 (-642 (-402 *6))))) (-1353 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-4 *5 (-1217 *4)) (-5 *2 (-631 (-2 (|:| |deg| (-758)) (|:| -4329 *5)))) (-5 *1 (-796 *4 *5 *3 *6)) (-4 *3 (-642 *5)) (-4 *6 (-642 (-402 *5))))) (-3750 (*1 *2 *3) (-12 (-4 *2 (-1217 *4)) (-5 *1 (-796 *4 *2 *3 *5)) (-4 *4 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-4 *3 (-642 *2)) (-4 *5 (-642 (-402 *2))))))
-(-10 -7 (-15 -3750 (|#2| |#3|)) (-15 -1353 ((-631 (-2 (|:| |deg| (-758)) (|:| -4329 |#2|))) |#3|)) (-15 -1789 ((-631 (-2 (|:| -2397 |#1|) (|:| -4329 |#3|))) |#3| (-1 (-631 |#1|) |#2|))) (-15 -3055 ((-631 (-2 (|:| |poly| |#2|) (|:| -4329 |#3|))) |#3| (-1 (-631 |#1|) |#2|))) (-15 -4107 ((-631 (-2 (|:| |frac| (-402 |#2|)) (|:| -4329 |#3|))) |#3| (-1 (-631 |#2|) |#2| (-1154 |#2|)) (-1 (-413 |#2|) |#2|))) (-15 -3566 (|#3| |#3| |#2|)) (-15 -3566 (|#3| |#3| (-402 |#2|))))
-((-1804 (((-2 (|:| -3782 (-631 (-402 |#2|))) (|:| -2866 (-675 |#1|))) (-640 |#2| (-402 |#2|)) (-631 (-402 |#2|))) 121) (((-2 (|:| |particular| (-3 (-402 |#2|) "failed")) (|:| -3782 (-631 (-402 |#2|)))) (-640 |#2| (-402 |#2|)) (-402 |#2|)) 120) (((-2 (|:| -3782 (-631 (-402 |#2|))) (|:| -2866 (-675 |#1|))) (-639 (-402 |#2|)) (-631 (-402 |#2|))) 115) (((-2 (|:| |particular| (-3 (-402 |#2|) "failed")) (|:| -3782 (-631 (-402 |#2|)))) (-639 (-402 |#2|)) (-402 |#2|)) 113)) (-3937 ((|#2| (-640 |#2| (-402 |#2|))) 80) ((|#2| (-639 (-402 |#2|))) 83)))
-(((-797 |#1| |#2|) (-10 -7 (-15 -1804 ((-2 (|:| |particular| (-3 (-402 |#2|) "failed")) (|:| -3782 (-631 (-402 |#2|)))) (-639 (-402 |#2|)) (-402 |#2|))) (-15 -1804 ((-2 (|:| -3782 (-631 (-402 |#2|))) (|:| -2866 (-675 |#1|))) (-639 (-402 |#2|)) (-631 (-402 |#2|)))) (-15 -1804 ((-2 (|:| |particular| (-3 (-402 |#2|) "failed")) (|:| -3782 (-631 (-402 |#2|)))) (-640 |#2| (-402 |#2|)) (-402 |#2|))) (-15 -1804 ((-2 (|:| -3782 (-631 (-402 |#2|))) (|:| -2866 (-675 |#1|))) (-640 |#2| (-402 |#2|)) (-631 (-402 |#2|)))) (-15 -3937 (|#2| (-639 (-402 |#2|)))) (-15 -3937 (|#2| (-640 |#2| (-402 |#2|))))) (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554)))) (-1217 |#1|)) (T -797))
-((-3937 (*1 *2 *3) (-12 (-5 *3 (-640 *2 (-402 *2))) (-4 *2 (-1217 *4)) (-5 *1 (-797 *4 *2)) (-4 *4 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))))) (-3937 (*1 *2 *3) (-12 (-5 *3 (-639 (-402 *2))) (-4 *2 (-1217 *4)) (-5 *1 (-797 *4 *2)) (-4 *4 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))))) (-1804 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *6 (-402 *6))) (-4 *6 (-1217 *5)) (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) (-5 *2 (-2 (|:| -3782 (-631 (-402 *6))) (|:| -2866 (-675 *5)))) (-5 *1 (-797 *5 *6)) (-5 *4 (-631 (-402 *6))))) (-1804 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *6 (-402 *6))) (-5 *4 (-402 *6)) (-4 *6 (-1217 *5)) (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3782 (-631 *4)))) (-5 *1 (-797 *5 *6)))) (-1804 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-402 *6))) (-4 *6 (-1217 *5)) (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) (-5 *2 (-2 (|:| -3782 (-631 (-402 *6))) (|:| -2866 (-675 *5)))) (-5 *1 (-797 *5 *6)) (-5 *4 (-631 (-402 *6))))) (-1804 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-402 *6))) (-5 *4 (-402 *6)) (-4 *6 (-1217 *5)) (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3782 (-631 *4)))) (-5 *1 (-797 *5 *6)))))
-(-10 -7 (-15 -1804 ((-2 (|:| |particular| (-3 (-402 |#2|) "failed")) (|:| -3782 (-631 (-402 |#2|)))) (-639 (-402 |#2|)) (-402 |#2|))) (-15 -1804 ((-2 (|:| -3782 (-631 (-402 |#2|))) (|:| -2866 (-675 |#1|))) (-639 (-402 |#2|)) (-631 (-402 |#2|)))) (-15 -1804 ((-2 (|:| |particular| (-3 (-402 |#2|) "failed")) (|:| -3782 (-631 (-402 |#2|)))) (-640 |#2| (-402 |#2|)) (-402 |#2|))) (-15 -1804 ((-2 (|:| -3782 (-631 (-402 |#2|))) (|:| -2866 (-675 |#1|))) (-640 |#2| (-402 |#2|)) (-631 (-402 |#2|)))) (-15 -3937 (|#2| (-639 (-402 |#2|)))) (-15 -3937 (|#2| (-640 |#2| (-402 |#2|)))))
-((-1720 (((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#1|))) |#5| |#4|) 48)))
-(((-798 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1720 ((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#1|))) |#5| |#4|))) (-358) (-642 |#1|) (-1217 |#1|) (-711 |#1| |#3|) (-642 |#4|)) (T -798))
-((-1720 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-4 *7 (-1217 *5)) (-4 *4 (-711 *5 *7)) (-5 *2 (-2 (|:| -2866 (-675 *6)) (|:| |vec| (-1241 *5)))) (-5 *1 (-798 *5 *6 *7 *4 *3)) (-4 *6 (-642 *5)) (-4 *3 (-642 *4)))))
-(-10 -7 (-15 -1720 ((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#1|))) |#5| |#4|)))
-((-4107 (((-631 (-2 (|:| |frac| (-402 |#2|)) (|:| -4329 (-640 |#2| (-402 |#2|))))) (-640 |#2| (-402 |#2|)) (-1 (-413 |#2|) |#2|)) 47)) (-3405 (((-631 (-402 |#2|)) (-640 |#2| (-402 |#2|)) (-1 (-413 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-631 (-402 |#2|)) (-640 |#2| (-402 |#2|))) 138 (|has| |#1| (-27))) (((-631 (-402 |#2|)) (-639 (-402 |#2|)) (-1 (-413 |#2|) |#2|)) 142 (|has| |#1| (-27))) (((-631 (-402 |#2|)) (-639 (-402 |#2|))) 140 (|has| |#1| (-27))) (((-631 (-402 |#2|)) (-640 |#2| (-402 |#2|)) (-1 (-631 |#1|) |#2|) (-1 (-413 |#2|) |#2|)) 38) (((-631 (-402 |#2|)) (-640 |#2| (-402 |#2|)) (-1 (-631 |#1|) |#2|)) 39) (((-631 (-402 |#2|)) (-639 (-402 |#2|)) (-1 (-631 |#1|) |#2|) (-1 (-413 |#2|) |#2|)) 36) (((-631 (-402 |#2|)) (-639 (-402 |#2|)) (-1 (-631 |#1|) |#2|)) 37)) (-3055 (((-631 (-2 (|:| |poly| |#2|) (|:| -4329 (-640 |#2| (-402 |#2|))))) (-640 |#2| (-402 |#2|)) (-1 (-631 |#1|) |#2|)) 83)))
-(((-799 |#1| |#2|) (-10 -7 (-15 -3405 ((-631 (-402 |#2|)) (-639 (-402 |#2|)) (-1 (-631 |#1|) |#2|))) (-15 -3405 ((-631 (-402 |#2|)) (-639 (-402 |#2|)) (-1 (-631 |#1|) |#2|) (-1 (-413 |#2|) |#2|))) (-15 -3405 ((-631 (-402 |#2|)) (-640 |#2| (-402 |#2|)) (-1 (-631 |#1|) |#2|))) (-15 -3405 ((-631 (-402 |#2|)) (-640 |#2| (-402 |#2|)) (-1 (-631 |#1|) |#2|) (-1 (-413 |#2|) |#2|))) (-15 -4107 ((-631 (-2 (|:| |frac| (-402 |#2|)) (|:| -4329 (-640 |#2| (-402 |#2|))))) (-640 |#2| (-402 |#2|)) (-1 (-413 |#2|) |#2|))) (-15 -3055 ((-631 (-2 (|:| |poly| |#2|) (|:| -4329 (-640 |#2| (-402 |#2|))))) (-640 |#2| (-402 |#2|)) (-1 (-631 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3405 ((-631 (-402 |#2|)) (-639 (-402 |#2|)))) (-15 -3405 ((-631 (-402 |#2|)) (-639 (-402 |#2|)) (-1 (-413 |#2|) |#2|))) (-15 -3405 ((-631 (-402 |#2|)) (-640 |#2| (-402 |#2|)))) (-15 -3405 ((-631 (-402 |#2|)) (-640 |#2| (-402 |#2|)) (-1 (-413 |#2|) |#2|)))) |%noBranch|)) (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554)))) (-1217 |#1|)) (T -799))
-((-3405 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *6 (-402 *6))) (-5 *4 (-1 (-413 *6) *6)) (-4 *6 (-1217 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) (-5 *2 (-631 (-402 *6))) (-5 *1 (-799 *5 *6)))) (-3405 (*1 *2 *3) (-12 (-5 *3 (-640 *5 (-402 *5))) (-4 *5 (-1217 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) (-5 *2 (-631 (-402 *5))) (-5 *1 (-799 *4 *5)))) (-3405 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-402 *6))) (-5 *4 (-1 (-413 *6) *6)) (-4 *6 (-1217 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) (-5 *2 (-631 (-402 *6))) (-5 *1 (-799 *5 *6)))) (-3405 (*1 *2 *3) (-12 (-5 *3 (-639 (-402 *5))) (-4 *5 (-1217 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) (-5 *2 (-631 (-402 *5))) (-5 *1 (-799 *4 *5)))) (-3055 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-631 *5) *6)) (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) (-4 *6 (-1217 *5)) (-5 *2 (-631 (-2 (|:| |poly| *6) (|:| -4329 (-640 *6 (-402 *6)))))) (-5 *1 (-799 *5 *6)) (-5 *3 (-640 *6 (-402 *6))))) (-4107 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-413 *6) *6)) (-4 *6 (-1217 *5)) (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) (-5 *2 (-631 (-2 (|:| |frac| (-402 *6)) (|:| -4329 (-640 *6 (-402 *6)))))) (-5 *1 (-799 *5 *6)) (-5 *3 (-640 *6 (-402 *6))))) (-3405 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-640 *7 (-402 *7))) (-5 *4 (-1 (-631 *6) *7)) (-5 *5 (-1 (-413 *7) *7)) (-4 *6 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) (-4 *7 (-1217 *6)) (-5 *2 (-631 (-402 *7))) (-5 *1 (-799 *6 *7)))) (-3405 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *6 (-402 *6))) (-5 *4 (-1 (-631 *5) *6)) (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) (-4 *6 (-1217 *5)) (-5 *2 (-631 (-402 *6))) (-5 *1 (-799 *5 *6)))) (-3405 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-639 (-402 *7))) (-5 *4 (-1 (-631 *6) *7)) (-5 *5 (-1 (-413 *7) *7)) (-4 *6 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) (-4 *7 (-1217 *6)) (-5 *2 (-631 (-402 *7))) (-5 *1 (-799 *6 *7)))) (-3405 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-402 *6))) (-5 *4 (-1 (-631 *5) *6)) (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) (-4 *6 (-1217 *5)) (-5 *2 (-631 (-402 *6))) (-5 *1 (-799 *5 *6)))))
-(-10 -7 (-15 -3405 ((-631 (-402 |#2|)) (-639 (-402 |#2|)) (-1 (-631 |#1|) |#2|))) (-15 -3405 ((-631 (-402 |#2|)) (-639 (-402 |#2|)) (-1 (-631 |#1|) |#2|) (-1 (-413 |#2|) |#2|))) (-15 -3405 ((-631 (-402 |#2|)) (-640 |#2| (-402 |#2|)) (-1 (-631 |#1|) |#2|))) (-15 -3405 ((-631 (-402 |#2|)) (-640 |#2| (-402 |#2|)) (-1 (-631 |#1|) |#2|) (-1 (-413 |#2|) |#2|))) (-15 -4107 ((-631 (-2 (|:| |frac| (-402 |#2|)) (|:| -4329 (-640 |#2| (-402 |#2|))))) (-640 |#2| (-402 |#2|)) (-1 (-413 |#2|) |#2|))) (-15 -3055 ((-631 (-2 (|:| |poly| |#2|) (|:| -4329 (-640 |#2| (-402 |#2|))))) (-640 |#2| (-402 |#2|)) (-1 (-631 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3405 ((-631 (-402 |#2|)) (-639 (-402 |#2|)))) (-15 -3405 ((-631 (-402 |#2|)) (-639 (-402 |#2|)) (-1 (-413 |#2|) |#2|))) (-15 -3405 ((-631 (-402 |#2|)) (-640 |#2| (-402 |#2|)))) (-15 -3405 ((-631 (-402 |#2|)) (-640 |#2| (-402 |#2|)) (-1 (-413 |#2|) |#2|)))) |%noBranch|))
-((-1498 (((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#1|))) (-675 |#2|) (-1241 |#1|)) 85) (((-2 (|:| A (-675 |#1|)) (|:| |eqs| (-631 (-2 (|:| C (-675 |#1|)) (|:| |g| (-1241 |#1|)) (|:| -4329 |#2|) (|:| |rh| |#1|))))) (-675 |#1|) (-1241 |#1|)) 15)) (-2184 (((-2 (|:| |particular| (-3 (-1241 |#1|) "failed")) (|:| -3782 (-631 (-1241 |#1|)))) (-675 |#2|) (-1241 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3782 (-631 |#1|))) |#2| |#1|)) 92)) (-1900 (((-3 (-2 (|:| |particular| (-1241 |#1|)) (|:| -3782 (-675 |#1|))) "failed") (-675 |#1|) (-1241 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3782 (-631 |#1|))) "failed") |#2| |#1|)) 43)))
-(((-800 |#1| |#2|) (-10 -7 (-15 -1498 ((-2 (|:| A (-675 |#1|)) (|:| |eqs| (-631 (-2 (|:| C (-675 |#1|)) (|:| |g| (-1241 |#1|)) (|:| -4329 |#2|) (|:| |rh| |#1|))))) (-675 |#1|) (-1241 |#1|))) (-15 -1498 ((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#1|))) (-675 |#2|) (-1241 |#1|))) (-15 -1900 ((-3 (-2 (|:| |particular| (-1241 |#1|)) (|:| -3782 (-675 |#1|))) "failed") (-675 |#1|) (-1241 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3782 (-631 |#1|))) "failed") |#2| |#1|))) (-15 -2184 ((-2 (|:| |particular| (-3 (-1241 |#1|) "failed")) (|:| -3782 (-631 (-1241 |#1|)))) (-675 |#2|) (-1241 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3782 (-631 |#1|))) |#2| |#1|)))) (-358) (-642 |#1|)) (T -800))
-((-2184 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-675 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3782 (-631 *6))) *7 *6)) (-4 *6 (-358)) (-4 *7 (-642 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1241 *6) "failed")) (|:| -3782 (-631 (-1241 *6))))) (-5 *1 (-800 *6 *7)) (-5 *4 (-1241 *6)))) (-1900 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -3782 (-631 *6))) "failed") *7 *6)) (-4 *6 (-358)) (-4 *7 (-642 *6)) (-5 *2 (-2 (|:| |particular| (-1241 *6)) (|:| -3782 (-675 *6)))) (-5 *1 (-800 *6 *7)) (-5 *3 (-675 *6)) (-5 *4 (-1241 *6)))) (-1498 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-4 *6 (-642 *5)) (-5 *2 (-2 (|:| -2866 (-675 *6)) (|:| |vec| (-1241 *5)))) (-5 *1 (-800 *5 *6)) (-5 *3 (-675 *6)) (-5 *4 (-1241 *5)))) (-1498 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-5 *2 (-2 (|:| A (-675 *5)) (|:| |eqs| (-631 (-2 (|:| C (-675 *5)) (|:| |g| (-1241 *5)) (|:| -4329 *6) (|:| |rh| *5)))))) (-5 *1 (-800 *5 *6)) (-5 *3 (-675 *5)) (-5 *4 (-1241 *5)) (-4 *6 (-642 *5)))))
-(-10 -7 (-15 -1498 ((-2 (|:| A (-675 |#1|)) (|:| |eqs| (-631 (-2 (|:| C (-675 |#1|)) (|:| |g| (-1241 |#1|)) (|:| -4329 |#2|) (|:| |rh| |#1|))))) (-675 |#1|) (-1241 |#1|))) (-15 -1498 ((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#1|))) (-675 |#2|) (-1241 |#1|))) (-15 -1900 ((-3 (-2 (|:| |particular| (-1241 |#1|)) (|:| -3782 (-675 |#1|))) "failed") (-675 |#1|) (-1241 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3782 (-631 |#1|))) "failed") |#2| |#1|))) (-15 -2184 ((-2 (|:| |particular| (-3 (-1241 |#1|) "failed")) (|:| -3782 (-631 (-1241 |#1|)))) (-675 |#2|) (-1241 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3782 (-631 |#1|))) |#2| |#1|))))
-((-2782 (((-675 |#1|) (-631 |#1|) (-758)) 13) (((-675 |#1|) (-631 |#1|)) 14)) (-3429 (((-3 (-1241 |#1|) "failed") |#2| |#1| (-631 |#1|)) 34)) (-1865 (((-3 |#1| "failed") |#2| |#1| (-631 |#1|) (-1 |#1| |#1|)) 42)))
-(((-801 |#1| |#2|) (-10 -7 (-15 -2782 ((-675 |#1|) (-631 |#1|))) (-15 -2782 ((-675 |#1|) (-631 |#1|) (-758))) (-15 -3429 ((-3 (-1241 |#1|) "failed") |#2| |#1| (-631 |#1|))) (-15 -1865 ((-3 |#1| "failed") |#2| |#1| (-631 |#1|) (-1 |#1| |#1|)))) (-358) (-642 |#1|)) (T -801))
-((-1865 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-631 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-358)) (-5 *1 (-801 *2 *3)) (-4 *3 (-642 *2)))) (-3429 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-631 *4)) (-4 *4 (-358)) (-5 *2 (-1241 *4)) (-5 *1 (-801 *4 *3)) (-4 *3 (-642 *4)))) (-2782 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *5)) (-5 *4 (-758)) (-4 *5 (-358)) (-5 *2 (-675 *5)) (-5 *1 (-801 *5 *6)) (-4 *6 (-642 *5)))) (-2782 (*1 *2 *3) (-12 (-5 *3 (-631 *4)) (-4 *4 (-358)) (-5 *2 (-675 *4)) (-5 *1 (-801 *4 *5)) (-4 *5 (-642 *4)))))
-(-10 -7 (-15 -2782 ((-675 |#1|) (-631 |#1|))) (-15 -2782 ((-675 |#1|) (-631 |#1|) (-758))) (-15 -3429 ((-3 (-1241 |#1|) "failed") |#2| |#1| (-631 |#1|))) (-15 -1865 ((-3 |#1| "failed") |#2| |#1| (-631 |#1|) (-1 |#1| |#1|))))
-((-3062 (((-112) $ $) NIL (|has| |#2| (-1082)))) (-1695 (((-112) $) NIL (|has| |#2| (-130)))) (-2327 (($ (-906)) NIL (|has| |#2| (-1034)))) (-4233 (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-1349 (($ $ $) NIL (|has| |#2| (-780)))) (-2934 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-3019 (((-112) $ (-758)) NIL)) (-1508 (((-758)) NIL (|has| |#2| (-363)))) (-4219 (((-554) $) NIL (|has| |#2| (-834)))) (-1501 ((|#2| $ (-554) |#2|) NIL (|has| $ (-6 -4374)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) NIL (-12 (|has| |#2| (-1023 (-554))) (|has| |#2| (-1082)))) (((-3 (-402 (-554)) "failed") $) NIL (-12 (|has| |#2| (-1023 (-402 (-554)))) (|has| |#2| (-1082)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1082)))) (-1668 (((-554) $) NIL (-12 (|has| |#2| (-1023 (-554))) (|has| |#2| (-1082)))) (((-402 (-554)) $) NIL (-12 (|has| |#2| (-1023 (-402 (-554)))) (|has| |#2| (-1082)))) ((|#2| $) NIL (|has| |#2| (-1082)))) (-3699 (((-675 (-554)) (-675 $)) NIL (-12 (|has| |#2| (-627 (-554))) (|has| |#2| (-1034)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (-12 (|has| |#2| (-627 (-554))) (|has| |#2| (-1034)))) (((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 $) (-1241 $)) NIL (|has| |#2| (-1034))) (((-675 |#2|) (-675 $)) NIL (|has| |#2| (-1034)))) (-1320 (((-3 $ "failed") $) NIL (|has| |#2| (-713)))) (-3353 (($) NIL (|has| |#2| (-363)))) (-2862 ((|#2| $ (-554) |#2|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#2| $ (-554)) NIL)) (-2745 (((-112) $) NIL (|has| |#2| (-834)))) (-2466 (((-631 |#2|) $) NIL (|has| $ (-6 -4373)))) (-3248 (((-112) $) NIL (|has| |#2| (-713)))) (-4304 (((-112) $) NIL (|has| |#2| (-834)))) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) NIL (|has| (-554) (-836)))) (-4223 (($ $ $) NIL (-3994 (|has| |#2| (-780)) (|has| |#2| (-834))))) (-2379 (((-631 |#2|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2256 (((-554) $) NIL (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (-3994 (|has| |#2| (-780)) (|has| |#2| (-834))))) (-2849 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#2| |#2|) $) NIL)) (-3830 (((-906) $) NIL (|has| |#2| (-363)))) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (|has| |#2| (-1082)))) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) NIL)) (-2717 (($ (-906)) NIL (|has| |#2| (-363)))) (-2768 (((-1102) $) NIL (|has| |#2| (-1082)))) (-1539 ((|#2| $) NIL (|has| (-554) (-836)))) (-2441 (($ $ |#2|) NIL (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-631 |#2|) (-631 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2625 (((-631 |#2|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#2| $ (-554) |#2|) NIL) ((|#2| $ (-554)) NIL)) (-3748 ((|#2| $ $) NIL (|has| |#2| (-1034)))) (-2313 (($ (-1241 |#2|)) NIL)) (-3330 (((-133)) NIL (|has| |#2| (-358)))) (-1553 (($ $) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1034)))) (($ $ (-758)) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1034)))) (($ $ (-1158)) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-1 |#2| |#2|) (-758)) NIL (|has| |#2| (-1034))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1034)))) (-2777 (((-758) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373))) (((-758) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-1521 (($ $) NIL)) (-3075 (((-1241 |#2|) $) NIL) (($ (-554)) NIL (-3994 (-12 (|has| |#2| (-1023 (-554))) (|has| |#2| (-1082))) (|has| |#2| (-1034)))) (($ (-402 (-554))) NIL (-12 (|has| |#2| (-1023 (-402 (-554)))) (|has| |#2| (-1082)))) (($ |#2|) NIL (|has| |#2| (-1082))) (((-848) $) NIL (|has| |#2| (-601 (-848))))) (-2261 (((-758)) NIL (|has| |#2| (-1034)))) (-2438 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-1700 (($ $) NIL (|has| |#2| (-834)))) (-2004 (($) NIL (|has| |#2| (-130)) CONST)) (-2014 (($) NIL (|has| |#2| (-713)) CONST)) (-1787 (($ $) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1034)))) (($ $ (-758)) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1034)))) (($ $ (-1158)) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-1 |#2| |#2|) (-758)) NIL (|has| |#2| (-1034))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1034)))) (-1708 (((-112) $ $) NIL (-3994 (|has| |#2| (-780)) (|has| |#2| (-834))))) (-1686 (((-112) $ $) NIL (-3994 (|has| |#2| (-780)) (|has| |#2| (-834))))) (-1658 (((-112) $ $) NIL (|has| |#2| (-1082)))) (-1697 (((-112) $ $) NIL (-3994 (|has| |#2| (-780)) (|has| |#2| (-834))))) (-1676 (((-112) $ $) 11 (-3994 (|has| |#2| (-780)) (|has| |#2| (-834))))) (-1752 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-1744 (($ $ $) NIL (|has| |#2| (-1034))) (($ $) NIL (|has| |#2| (-1034)))) (-1735 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-758)) NIL (|has| |#2| (-713))) (($ $ (-906)) NIL (|has| |#2| (-713)))) (* (($ (-554) $) NIL (|has| |#2| (-1034))) (($ $ $) NIL (|has| |#2| (-713))) (($ $ |#2|) NIL (|has| |#2| (-713))) (($ |#2| $) NIL (|has| |#2| (-713))) (($ (-758) $) NIL (|has| |#2| (-130))) (($ (-906) $) NIL (|has| |#2| (-25)))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-802 |#1| |#2| |#3|) (-234 |#1| |#2|) (-758) (-780) (-1 (-112) (-1241 |#2|) (-1241 |#2|))) (T -802))
-NIL
-(-234 |#1| |#2|)
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1386 (((-631 (-758)) $) NIL) (((-631 (-758)) $ (-1158)) NIL)) (-1316 (((-758) $) NIL) (((-758) $ (-1158)) NIL)) (-2405 (((-631 (-805 (-1158))) $) NIL)) (-2237 (((-1154 $) $ (-805 (-1158))) NIL) (((-1154 |#1|) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-546)))) (-1976 (($ $) NIL (|has| |#1| (-546)))) (-1363 (((-112) $) NIL (|has| |#1| (-546)))) (-3785 (((-758) $) NIL) (((-758) $ (-631 (-805 (-1158)))) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-3278 (($ $) NIL (|has| |#1| (-446)))) (-1565 (((-413 $) $) NIL (|has| |#1| (-446)))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-1698 (($ $) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 (-805 (-1158)) "failed") $) NIL) (((-3 (-1158) "failed") $) NIL) (((-3 (-1107 |#1| (-1158)) "failed") $) NIL)) (-1668 ((|#1| $) NIL) (((-402 (-554)) $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-554) $) NIL (|has| |#1| (-1023 (-554)))) (((-805 (-1158)) $) NIL) (((-1158) $) NIL) (((-1107 |#1| (-1158)) $) NIL)) (-2999 (($ $ $ (-805 (-1158))) NIL (|has| |#1| (-170)))) (-2550 (($ $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) NIL) (((-675 |#1|) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2048 (($ $) NIL (|has| |#1| (-446))) (($ $ (-805 (-1158))) NIL (|has| |#1| (-446)))) (-2540 (((-631 $) $) NIL)) (-3289 (((-112) $) NIL (|has| |#1| (-894)))) (-1344 (($ $ |#1| (-525 (-805 (-1158))) $) NIL)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (-12 (|has| (-805 (-1158)) (-871 (-374))) (|has| |#1| (-871 (-374))))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (-12 (|has| (-805 (-1158)) (-871 (-554))) (|has| |#1| (-871 (-554)))))) (-2342 (((-758) $ (-1158)) NIL) (((-758) $) NIL)) (-3248 (((-112) $) NIL)) (-2122 (((-758) $) NIL)) (-2393 (($ (-1154 |#1|) (-805 (-1158))) NIL) (($ (-1154 $) (-805 (-1158))) NIL)) (-3910 (((-631 $) $) NIL)) (-3580 (((-112) $) NIL)) (-2383 (($ |#1| (-525 (-805 (-1158)))) NIL) (($ $ (-805 (-1158)) (-758)) NIL) (($ $ (-631 (-805 (-1158))) (-631 (-758))) NIL)) (-4014 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $ (-805 (-1158))) NIL)) (-3893 (((-525 (-805 (-1158))) $) NIL) (((-758) $ (-805 (-1158))) NIL) (((-631 (-758)) $ (-631 (-805 (-1158)))) NIL)) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2789 (($ (-1 (-525 (-805 (-1158))) (-525 (-805 (-1158)))) $) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-3179 (((-1 $ (-758)) (-1158)) NIL) (((-1 $ (-758)) $) NIL (|has| |#1| (-229)))) (-3277 (((-3 (-805 (-1158)) "failed") $) NIL)) (-2518 (($ $) NIL)) (-2530 ((|#1| $) NIL)) (-1897 (((-805 (-1158)) $) NIL)) (-2475 (($ (-631 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-1613 (((-1140) $) NIL)) (-2081 (((-112) $) NIL)) (-3778 (((-3 (-631 $) "failed") $) NIL)) (-2433 (((-3 (-631 $) "failed") $) NIL)) (-3160 (((-3 (-2 (|:| |var| (-805 (-1158))) (|:| -1407 (-758))) "failed") $) NIL)) (-1502 (($ $) NIL)) (-2768 (((-1102) $) NIL)) (-2492 (((-112) $) NIL)) (-2505 ((|#1| $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#1| (-446)))) (-2510 (($ (-631 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-2270 (((-413 $) $) NIL (|has| |#1| (-894)))) (-3919 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-546))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-546)))) (-2386 (($ $ (-631 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ (-805 (-1158)) |#1|) NIL) (($ $ (-631 (-805 (-1158))) (-631 |#1|)) NIL) (($ $ (-805 (-1158)) $) NIL) (($ $ (-631 (-805 (-1158))) (-631 $)) NIL) (($ $ (-1158) $) NIL (|has| |#1| (-229))) (($ $ (-631 (-1158)) (-631 $)) NIL (|has| |#1| (-229))) (($ $ (-1158) |#1|) NIL (|has| |#1| (-229))) (($ $ (-631 (-1158)) (-631 |#1|)) NIL (|has| |#1| (-229)))) (-1495 (($ $ (-805 (-1158))) NIL (|has| |#1| (-170)))) (-1553 (($ $ (-805 (-1158))) NIL) (($ $ (-631 (-805 (-1158)))) NIL) (($ $ (-805 (-1158)) (-758)) NIL) (($ $ (-631 (-805 (-1158))) (-631 (-758))) NIL) (($ $) NIL (|has| |#1| (-229))) (($ $ (-758)) NIL (|has| |#1| (-229))) (($ $ (-1158)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3922 (((-631 (-1158)) $) NIL)) (-3308 (((-525 (-805 (-1158))) $) NIL) (((-758) $ (-805 (-1158))) NIL) (((-631 (-758)) $ (-631 (-805 (-1158)))) NIL) (((-758) $ (-1158)) NIL)) (-2927 (((-877 (-374)) $) NIL (-12 (|has| (-805 (-1158)) (-602 (-877 (-374)))) (|has| |#1| (-602 (-877 (-374)))))) (((-877 (-554)) $) NIL (-12 (|has| (-805 (-1158)) (-602 (-877 (-554)))) (|has| |#1| (-602 (-877 (-554)))))) (((-530) $) NIL (-12 (|has| (-805 (-1158)) (-602 (-530))) (|has| |#1| (-602 (-530)))))) (-3276 ((|#1| $) NIL (|has| |#1| (-446))) (($ $ (-805 (-1158))) NIL (|has| |#1| (-446)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-894))))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#1|) NIL) (($ (-805 (-1158))) NIL) (($ (-1158)) NIL) (($ (-1107 |#1| (-1158))) NIL) (($ (-402 (-554))) NIL (-3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554)))))) (($ $) NIL (|has| |#1| (-546)))) (-1893 (((-631 |#1|) $) NIL)) (-1779 ((|#1| $ (-525 (-805 (-1158)))) NIL) (($ $ (-805 (-1158)) (-758)) NIL) (($ $ (-631 (-805 (-1158))) (-631 (-758))) NIL)) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| |#1| (-894))) (|has| |#1| (-143))))) (-2261 (((-758)) NIL)) (-2907 (($ $ $ (-758)) NIL (|has| |#1| (-170)))) (-1909 (((-112) $ $) NIL (|has| |#1| (-546)))) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $ (-805 (-1158))) NIL) (($ $ (-631 (-805 (-1158)))) NIL) (($ $ (-805 (-1158)) (-758)) NIL) (($ $ (-631 (-805 (-1158))) (-631 (-758))) NIL) (($ $) NIL (|has| |#1| (-229))) (($ $ (-758)) NIL (|has| |#1| (-229))) (($ $ (-1158)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-803 |#1|) (-13 (-248 |#1| (-1158) (-805 (-1158)) (-525 (-805 (-1158)))) (-1023 (-1107 |#1| (-1158)))) (-1034)) (T -803))
-NIL
-(-13 (-248 |#1| (-1158) (-805 (-1158)) (-525 (-805 (-1158)))) (-1023 (-1107 |#1| (-1158))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#2| (-358)))) (-1976 (($ $) NIL (|has| |#2| (-358)))) (-1363 (((-112) $) NIL (|has| |#2| (-358)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL (|has| |#2| (-358)))) (-1565 (((-413 $) $) NIL (|has| |#2| (-358)))) (-2286 (((-112) $ $) NIL (|has| |#2| (-358)))) (-4087 (($) NIL T CONST)) (-3964 (($ $ $) NIL (|has| |#2| (-358)))) (-1320 (((-3 $ "failed") $) NIL)) (-3943 (($ $ $) NIL (|has| |#2| (-358)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL (|has| |#2| (-358)))) (-3289 (((-112) $) NIL (|has| |#2| (-358)))) (-3248 (((-112) $) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#2| (-358)))) (-2475 (($ (-631 $)) NIL (|has| |#2| (-358))) (($ $ $) NIL (|has| |#2| (-358)))) (-1613 (((-1140) $) NIL)) (-2483 (($ $) 20 (|has| |#2| (-358)))) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#2| (-358)))) (-2510 (($ (-631 $)) NIL (|has| |#2| (-358))) (($ $ $) NIL (|has| |#2| (-358)))) (-2270 (((-413 $) $) NIL (|has| |#2| (-358)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#2| (-358)))) (-3919 (((-3 $ "failed") $ $) NIL (|has| |#2| (-358)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#2| (-358)))) (-2072 (((-758) $) NIL (|has| |#2| (-358)))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#2| (-358)))) (-1553 (($ $ (-758)) NIL) (($ $) 13)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-402 (-554))) NIL (|has| |#2| (-358))) (($ $) NIL (|has| |#2| (-358)))) (-2261 (((-758)) NIL)) (-1909 (((-112) $ $) NIL (|has| |#2| (-358)))) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $ (-758)) NIL) (($ $) NIL)) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ $) 15 (|has| |#2| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-758)) NIL) (($ $ (-906)) NIL) (($ $ (-554)) 18 (|has| |#2| (-358)))) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-402 (-554)) $) NIL (|has| |#2| (-358))) (($ $ (-402 (-554))) NIL (|has| |#2| (-358)))))
-(((-804 |#1| |#2| |#3|) (-13 (-111 $ $) (-229) (-484 |#2|) (-10 -7 (IF (|has| |#2| (-358)) (-6 (-358)) |%noBranch|))) (-1082) (-885 |#1|) |#1|) (T -804))
-NIL
-(-13 (-111 $ $) (-229) (-484 |#2|) (-10 -7 (IF (|has| |#2| (-358)) (-6 (-358)) |%noBranch|)))
-((-3062 (((-112) $ $) NIL)) (-1316 (((-758) $) NIL)) (-1576 ((|#1| $) 10)) (-2784 (((-3 |#1| "failed") $) NIL)) (-1668 ((|#1| $) NIL)) (-2342 (((-758) $) 11)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-3179 (($ |#1| (-758)) 9)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-1553 (($ $) NIL) (($ $ (-758)) NIL)) (-3075 (((-848) $) NIL) (($ |#1|) NIL)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) NIL)))
-(((-805 |#1|) (-261 |#1|) (-836)) (T -805))
-NIL
-(-261 |#1|)
-((-3062 (((-112) $ $) NIL)) (-1654 (((-631 |#1|) $) 29)) (-1508 (((-758) $) NIL)) (-4087 (($) NIL T CONST)) (-3567 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-2784 (((-3 |#1| "failed") $) NIL)) (-1668 ((|#1| $) NIL)) (-1551 (($ $) 31)) (-1320 (((-3 $ "failed") $) NIL)) (-4146 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-3248 (((-112) $) NIL)) (-3195 ((|#1| $ (-554)) NIL)) (-2370 (((-758) $ (-554)) NIL)) (-3898 (($ $) 36)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-3637 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-2082 (((-112) $ $) 34)) (-2577 (((-758) $) 25)) (-1613 (((-1140) $) NIL)) (-1919 (($ $ $) NIL)) (-2129 (($ $ $) NIL)) (-2768 (((-1102) $) NIL)) (-1539 ((|#1| $) 30)) (-2316 (((-631 (-2 (|:| |gen| |#1|) (|:| -1333 (-758)))) $) NIL)) (-3931 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-3075 (((-848) $) NIL) (($ |#1|) NIL)) (-2014 (($) 15 T CONST)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 35)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ |#1| (-758)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-806 |#1|) (-13 (-832) (-1023 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-758))) (-15 -1539 (|#1| $)) (-15 -1551 ($ $)) (-15 -3898 ($ $)) (-15 -2082 ((-112) $ $)) (-15 -2129 ($ $ $)) (-15 -1919 ($ $ $)) (-15 -3637 ((-3 $ "failed") $ $)) (-15 -3567 ((-3 $ "failed") $ $)) (-15 -3637 ((-3 $ "failed") $ |#1|)) (-15 -3567 ((-3 $ "failed") $ |#1|)) (-15 -3931 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4146 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1508 ((-758) $)) (-15 -2370 ((-758) $ (-554))) (-15 -3195 (|#1| $ (-554))) (-15 -2316 ((-631 (-2 (|:| |gen| |#1|) (|:| -1333 (-758)))) $)) (-15 -2577 ((-758) $)) (-15 -1654 ((-631 |#1|) $)))) (-836)) (T -806))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-806 *2)) (-4 *2 (-836)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-806 *2)) (-4 *2 (-836)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-758)) (-5 *1 (-806 *2)) (-4 *2 (-836)))) (-1539 (*1 *2 *1) (-12 (-5 *1 (-806 *2)) (-4 *2 (-836)))) (-1551 (*1 *1 *1) (-12 (-5 *1 (-806 *2)) (-4 *2 (-836)))) (-3898 (*1 *1 *1) (-12 (-5 *1 (-806 *2)) (-4 *2 (-836)))) (-2082 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-806 *3)) (-4 *3 (-836)))) (-2129 (*1 *1 *1 *1) (-12 (-5 *1 (-806 *2)) (-4 *2 (-836)))) (-1919 (*1 *1 *1 *1) (-12 (-5 *1 (-806 *2)) (-4 *2 (-836)))) (-3637 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-806 *2)) (-4 *2 (-836)))) (-3567 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-806 *2)) (-4 *2 (-836)))) (-3637 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-806 *2)) (-4 *2 (-836)))) (-3567 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-806 *2)) (-4 *2 (-836)))) (-3931 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-806 *3)) (|:| |rm| (-806 *3)))) (-5 *1 (-806 *3)) (-4 *3 (-836)))) (-4146 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-806 *3)) (|:| |mm| (-806 *3)) (|:| |rm| (-806 *3)))) (-5 *1 (-806 *3)) (-4 *3 (-836)))) (-1508 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-806 *3)) (-4 *3 (-836)))) (-2370 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-5 *2 (-758)) (-5 *1 (-806 *4)) (-4 *4 (-836)))) (-3195 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-5 *1 (-806 *2)) (-4 *2 (-836)))) (-2316 (*1 *2 *1) (-12 (-5 *2 (-631 (-2 (|:| |gen| *3) (|:| -1333 (-758))))) (-5 *1 (-806 *3)) (-4 *3 (-836)))) (-2577 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-806 *3)) (-4 *3 (-836)))) (-1654 (*1 *2 *1) (-12 (-5 *2 (-631 *3)) (-5 *1 (-806 *3)) (-4 *3 (-836)))))
-(-13 (-832) (-1023 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-758))) (-15 -1539 (|#1| $)) (-15 -1551 ($ $)) (-15 -3898 ($ $)) (-15 -2082 ((-112) $ $)) (-15 -2129 ($ $ $)) (-15 -1919 ($ $ $)) (-15 -3637 ((-3 $ "failed") $ $)) (-15 -3567 ((-3 $ "failed") $ $)) (-15 -3637 ((-3 $ "failed") $ |#1|)) (-15 -3567 ((-3 $ "failed") $ |#1|)) (-15 -3931 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4146 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1508 ((-758) $)) (-15 -2370 ((-758) $ (-554))) (-15 -3195 (|#1| $ (-554))) (-15 -2316 ((-631 (-2 (|:| |gen| |#1|) (|:| -1333 (-758)))) $)) (-15 -2577 ((-758) $)) (-15 -1654 ((-631 |#1|) $))))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 42)) (-1976 (($ $) 41)) (-1363 (((-112) $) 39)) (-2934 (((-3 $ "failed") $ $) 19)) (-4219 (((-554) $) 54)) (-4087 (($) 17 T CONST)) (-1320 (((-3 $ "failed") $) 33)) (-2745 (((-112) $) 52)) (-3248 (((-112) $) 31)) (-4304 (((-112) $) 53)) (-4223 (($ $ $) 51)) (-2706 (($ $ $) 50)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3919 (((-3 $ "failed") $ $) 43)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ $) 44)) (-2261 (((-758)) 28)) (-1909 (((-112) $ $) 40)) (-1700 (($ $) 55)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1708 (((-112) $ $) 48)) (-1686 (((-112) $ $) 47)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 49)) (-1676 (((-112) $ $) 46)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24)))
-(((-807) (-138)) (T -807))
-NIL
-(-13 (-546) (-834))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-604 (-554)) . T) ((-604 $) . T) ((-601 (-848)) . T) ((-170) . T) ((-285) . T) ((-546) . T) ((-634 $) . T) ((-704 $) . T) ((-713) . T) ((-778) . T) ((-779) . T) ((-781) . T) ((-782) . T) ((-834) . T) ((-836) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T))
-((-4038 (($ (-1102)) 7)) (-3129 (((-112) $ (-1140) (-1102)) 15)) (-4151 (((-809) $) 12)) (-3099 (((-809) $) 11)) (-3912 (((-1246) $) 9)) (-2061 (((-112) $ (-1102)) 16)))
-(((-808) (-10 -8 (-15 -4038 ($ (-1102))) (-15 -3912 ((-1246) $)) (-15 -3099 ((-809) $)) (-15 -4151 ((-809) $)) (-15 -3129 ((-112) $ (-1140) (-1102))) (-15 -2061 ((-112) $ (-1102))))) (T -808))
-((-2061 (*1 *2 *1 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-112)) (-5 *1 (-808)))) (-3129 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1140)) (-5 *4 (-1102)) (-5 *2 (-112)) (-5 *1 (-808)))) (-4151 (*1 *2 *1) (-12 (-5 *2 (-809)) (-5 *1 (-808)))) (-3099 (*1 *2 *1) (-12 (-5 *2 (-809)) (-5 *1 (-808)))) (-3912 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-808)))) (-4038 (*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-808)))))
-(-10 -8 (-15 -4038 ($ (-1102))) (-15 -3912 ((-1246) $)) (-15 -3099 ((-809) $)) (-15 -4151 ((-809) $)) (-15 -3129 ((-112) $ (-1140) (-1102))) (-15 -2061 ((-112) $ (-1102))))
-((-2290 (((-1246) $ (-810)) 12)) (-3559 (((-1246) $ (-1158)) 32)) (-2806 (((-1246) $ (-1140) (-1140)) 34)) (-3426 (((-1246) $ (-1140)) 33)) (-3255 (((-1246) $) 19)) (-2836 (((-1246) $ (-554)) 28)) (-2739 (((-1246) $ (-221)) 30)) (-1293 (((-1246) $) 18)) (-3033 (((-1246) $) 26)) (-4147 (((-1246) $) 25)) (-2188 (((-1246) $) 23)) (-2499 (((-1246) $) 24)) (-1746 (((-1246) $) 22)) (-3453 (((-1246) $) 21)) (-2992 (((-1246) $) 20)) (-1748 (((-1246) $) 16)) (-1603 (((-1246) $) 17)) (-3550 (((-1246) $) 15)) (-2974 (((-1246) $) 14)) (-4161 (((-1246) $) 13)) (-1863 (($ (-1140) (-810)) 9)) (-3370 (($ (-1140) (-1140) (-810)) 8)) (-3064 (((-1158) $) 51)) (-2823 (((-1158) $) 55)) (-2575 (((-2 (|:| |cd| (-1140)) (|:| -4309 (-1140))) $) 54)) (-1641 (((-1140) $) 52)) (-3065 (((-1246) $) 41)) (-2783 (((-554) $) 49)) (-2467 (((-221) $) 50)) (-2368 (((-1246) $) 40)) (-2231 (((-1246) $) 48)) (-2772 (((-1246) $) 47)) (-4325 (((-1246) $) 45)) (-3413 (((-1246) $) 46)) (-4171 (((-1246) $) 44)) (-1801 (((-1246) $) 43)) (-3338 (((-1246) $) 42)) (-1479 (((-1246) $) 38)) (-4045 (((-1246) $) 39)) (-3577 (((-1246) $) 37)) (-2044 (((-1246) $) 36)) (-3751 (((-1246) $) 35)) (-3740 (((-1246) $) 11)))
-(((-809) (-10 -8 (-15 -3370 ($ (-1140) (-1140) (-810))) (-15 -1863 ($ (-1140) (-810))) (-15 -3740 ((-1246) $)) (-15 -2290 ((-1246) $ (-810))) (-15 -4161 ((-1246) $)) (-15 -2974 ((-1246) $)) (-15 -3550 ((-1246) $)) (-15 -1748 ((-1246) $)) (-15 -1603 ((-1246) $)) (-15 -1293 ((-1246) $)) (-15 -3255 ((-1246) $)) (-15 -2992 ((-1246) $)) (-15 -3453 ((-1246) $)) (-15 -1746 ((-1246) $)) (-15 -2188 ((-1246) $)) (-15 -2499 ((-1246) $)) (-15 -4147 ((-1246) $)) (-15 -3033 ((-1246) $)) (-15 -2836 ((-1246) $ (-554))) (-15 -2739 ((-1246) $ (-221))) (-15 -3559 ((-1246) $ (-1158))) (-15 -3426 ((-1246) $ (-1140))) (-15 -2806 ((-1246) $ (-1140) (-1140))) (-15 -3751 ((-1246) $)) (-15 -2044 ((-1246) $)) (-15 -3577 ((-1246) $)) (-15 -1479 ((-1246) $)) (-15 -4045 ((-1246) $)) (-15 -2368 ((-1246) $)) (-15 -3065 ((-1246) $)) (-15 -3338 ((-1246) $)) (-15 -1801 ((-1246) $)) (-15 -4171 ((-1246) $)) (-15 -4325 ((-1246) $)) (-15 -3413 ((-1246) $)) (-15 -2772 ((-1246) $)) (-15 -2231 ((-1246) $)) (-15 -2783 ((-554) $)) (-15 -2467 ((-221) $)) (-15 -3064 ((-1158) $)) (-15 -1641 ((-1140) $)) (-15 -2575 ((-2 (|:| |cd| (-1140)) (|:| -4309 (-1140))) $)) (-15 -2823 ((-1158) $)))) (T -809))
-((-2823 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-809)))) (-2575 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1140)) (|:| -4309 (-1140)))) (-5 *1 (-809)))) (-1641 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-809)))) (-3064 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-809)))) (-2467 (*1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-809)))) (-2783 (*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-809)))) (-2231 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-2772 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-3413 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-4325 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-4171 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-1801 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-3338 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-3065 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-2368 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-4045 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-1479 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-3577 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-2044 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-3751 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-2806 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-809)))) (-3426 (*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-809)))) (-3559 (*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1246)) (-5 *1 (-809)))) (-2739 (*1 *2 *1 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1246)) (-5 *1 (-809)))) (-2836 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-5 *2 (-1246)) (-5 *1 (-809)))) (-3033 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-4147 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-2499 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-1746 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-3453 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-2992 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-3255 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-1293 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-1603 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-1748 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-3550 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-2974 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-4161 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-2290 (*1 *2 *1 *3) (-12 (-5 *3 (-810)) (-5 *2 (-1246)) (-5 *1 (-809)))) (-3740 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-1863 (*1 *1 *2 *3) (-12 (-5 *2 (-1140)) (-5 *3 (-810)) (-5 *1 (-809)))) (-3370 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1140)) (-5 *3 (-810)) (-5 *1 (-809)))))
-(-10 -8 (-15 -3370 ($ (-1140) (-1140) (-810))) (-15 -1863 ($ (-1140) (-810))) (-15 -3740 ((-1246) $)) (-15 -2290 ((-1246) $ (-810))) (-15 -4161 ((-1246) $)) (-15 -2974 ((-1246) $)) (-15 -3550 ((-1246) $)) (-15 -1748 ((-1246) $)) (-15 -1603 ((-1246) $)) (-15 -1293 ((-1246) $)) (-15 -3255 ((-1246) $)) (-15 -2992 ((-1246) $)) (-15 -3453 ((-1246) $)) (-15 -1746 ((-1246) $)) (-15 -2188 ((-1246) $)) (-15 -2499 ((-1246) $)) (-15 -4147 ((-1246) $)) (-15 -3033 ((-1246) $)) (-15 -2836 ((-1246) $ (-554))) (-15 -2739 ((-1246) $ (-221))) (-15 -3559 ((-1246) $ (-1158))) (-15 -3426 ((-1246) $ (-1140))) (-15 -2806 ((-1246) $ (-1140) (-1140))) (-15 -3751 ((-1246) $)) (-15 -2044 ((-1246) $)) (-15 -3577 ((-1246) $)) (-15 -1479 ((-1246) $)) (-15 -4045 ((-1246) $)) (-15 -2368 ((-1246) $)) (-15 -3065 ((-1246) $)) (-15 -3338 ((-1246) $)) (-15 -1801 ((-1246) $)) (-15 -4171 ((-1246) $)) (-15 -4325 ((-1246) $)) (-15 -3413 ((-1246) $)) (-15 -2772 ((-1246) $)) (-15 -2231 ((-1246) $)) (-15 -2783 ((-554) $)) (-15 -2467 ((-221) $)) (-15 -3064 ((-1158) $)) (-15 -1641 ((-1140) $)) (-15 -2575 ((-2 (|:| |cd| (-1140)) (|:| -4309 (-1140))) $)) (-15 -2823 ((-1158) $)))
-((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 12)) (-3411 (($) 15)) (-3455 (($) 13)) (-1532 (($) 16)) (-2185 (($) 14)) (-1658 (((-112) $ $) 8)))
-(((-810) (-13 (-1082) (-10 -8 (-15 -3455 ($)) (-15 -3411 ($)) (-15 -1532 ($)) (-15 -2185 ($))))) (T -810))
-((-3455 (*1 *1) (-5 *1 (-810))) (-3411 (*1 *1) (-5 *1 (-810))) (-1532 (*1 *1) (-5 *1 (-810))) (-2185 (*1 *1) (-5 *1 (-810))))
-(-13 (-1082) (-10 -8 (-15 -3455 ($)) (-15 -3411 ($)) (-15 -1532 ($)) (-15 -2185 ($))))
-((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 21) (($ (-1158)) 17)) (-1833 (((-112) $) 10)) (-2983 (((-112) $) 9)) (-2324 (((-112) $) 11)) (-2490 (((-112) $) 8)) (-1658 (((-112) $ $) 19)))
-(((-811) (-13 (-1082) (-10 -8 (-15 -3075 ($ (-1158))) (-15 -2490 ((-112) $)) (-15 -2983 ((-112) $)) (-15 -1833 ((-112) $)) (-15 -2324 ((-112) $))))) (T -811))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-811)))) (-2490 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-811)))) (-2983 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-811)))) (-1833 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-811)))) (-2324 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-811)))))
-(-13 (-1082) (-10 -8 (-15 -3075 ($ (-1158))) (-15 -2490 ((-112) $)) (-15 -2983 ((-112) $)) (-15 -1833 ((-112) $)) (-15 -2324 ((-112) $))))
-((-3062 (((-112) $ $) NIL)) (-2356 (($ (-811) (-631 (-1158))) 24)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-1471 (((-811) $) 25)) (-2474 (((-631 (-1158)) $) 26)) (-3075 (((-848) $) 23)) (-1658 (((-112) $ $) NIL)))
-(((-812) (-13 (-1082) (-10 -8 (-15 -1471 ((-811) $)) (-15 -2474 ((-631 (-1158)) $)) (-15 -2356 ($ (-811) (-631 (-1158))))))) (T -812))
-((-1471 (*1 *2 *1) (-12 (-5 *2 (-811)) (-5 *1 (-812)))) (-2474 (*1 *2 *1) (-12 (-5 *2 (-631 (-1158))) (-5 *1 (-812)))) (-2356 (*1 *1 *2 *3) (-12 (-5 *2 (-811)) (-5 *3 (-631 (-1158))) (-5 *1 (-812)))))
-(-13 (-1082) (-10 -8 (-15 -1471 ((-811) $)) (-15 -2474 ((-631 (-1158)) $)) (-15 -2356 ($ (-811) (-631 (-1158))))))
-((-4048 (((-1246) (-809) (-311 |#1|) (-112)) 23) (((-1246) (-809) (-311 |#1|)) 79) (((-1140) (-311 |#1|) (-112)) 78) (((-1140) (-311 |#1|)) 77)))
-(((-813 |#1|) (-10 -7 (-15 -4048 ((-1140) (-311 |#1|))) (-15 -4048 ((-1140) (-311 |#1|) (-112))) (-15 -4048 ((-1246) (-809) (-311 |#1|))) (-15 -4048 ((-1246) (-809) (-311 |#1|) (-112)))) (-13 (-815) (-836) (-1034))) (T -813))
-((-4048 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-809)) (-5 *4 (-311 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-815) (-836) (-1034))) (-5 *2 (-1246)) (-5 *1 (-813 *6)))) (-4048 (*1 *2 *3 *4) (-12 (-5 *3 (-809)) (-5 *4 (-311 *5)) (-4 *5 (-13 (-815) (-836) (-1034))) (-5 *2 (-1246)) (-5 *1 (-813 *5)))) (-4048 (*1 *2 *3 *4) (-12 (-5 *3 (-311 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-815) (-836) (-1034))) (-5 *2 (-1140)) (-5 *1 (-813 *5)))) (-4048 (*1 *2 *3) (-12 (-5 *3 (-311 *4)) (-4 *4 (-13 (-815) (-836) (-1034))) (-5 *2 (-1140)) (-5 *1 (-813 *4)))))
-(-10 -7 (-15 -4048 ((-1140) (-311 |#1|))) (-15 -4048 ((-1140) (-311 |#1|) (-112))) (-15 -4048 ((-1246) (-809) (-311 |#1|))) (-15 -4048 ((-1246) (-809) (-311 |#1|) (-112))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-2550 (($ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2899 ((|#1| $) 10)) (-1482 (($ |#1|) 9)) (-3248 (((-112) $) NIL)) (-2383 (($ |#2| (-758)) NIL)) (-3893 (((-758) $) NIL)) (-2530 ((|#2| $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-1553 (($ $ (-758)) NIL (|has| |#1| (-229))) (($ $) NIL (|has| |#1| (-229)))) (-3308 (((-758) $) NIL)) (-3075 (((-848) $) 17) (($ (-554)) NIL) (($ |#2|) NIL (|has| |#2| (-170)))) (-1779 ((|#2| $ (-758)) NIL)) (-2261 (((-758)) NIL)) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $ (-758)) NIL (|has| |#1| (-229))) (($ $) NIL (|has| |#1| (-229)))) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-814 |#1| |#2|) (-13 (-695 |#2|) (-10 -8 (IF (|has| |#1| (-229)) (-6 (-229)) |%noBranch|) (-15 -1482 ($ |#1|)) (-15 -2899 (|#1| $)))) (-695 |#2|) (-1034)) (T -814))
-((-1482 (*1 *1 *2) (-12 (-4 *3 (-1034)) (-5 *1 (-814 *2 *3)) (-4 *2 (-695 *3)))) (-2899 (*1 *2 *1) (-12 (-4 *2 (-695 *3)) (-5 *1 (-814 *2 *3)) (-4 *3 (-1034)))))
-(-13 (-695 |#2|) (-10 -8 (IF (|has| |#1| (-229)) (-6 (-229)) |%noBranch|) (-15 -1482 ($ |#1|)) (-15 -2899 (|#1| $))))
-((-4048 (((-1246) (-809) $ (-112)) 9) (((-1246) (-809) $) 8) (((-1140) $ (-112)) 7) (((-1140) $) 6)))
-(((-815) (-138)) (T -815))
-((-4048 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-815)) (-5 *3 (-809)) (-5 *4 (-112)) (-5 *2 (-1246)))) (-4048 (*1 *2 *3 *1) (-12 (-4 *1 (-815)) (-5 *3 (-809)) (-5 *2 (-1246)))) (-4048 (*1 *2 *1 *3) (-12 (-4 *1 (-815)) (-5 *3 (-112)) (-5 *2 (-1140)))) (-4048 (*1 *2 *1) (-12 (-4 *1 (-815)) (-5 *2 (-1140)))))
-(-13 (-10 -8 (-15 -4048 ((-1140) $)) (-15 -4048 ((-1140) $ (-112))) (-15 -4048 ((-1246) (-809) $)) (-15 -4048 ((-1246) (-809) $ (-112)))))
-((-2439 (((-307) (-1140) (-1140)) 12)) (-3131 (((-112) (-1140) (-1140)) 34)) (-2615 (((-112) (-1140)) 33)) (-1886 (((-52) (-1140)) 25)) (-2254 (((-52) (-1140)) 23)) (-2652 (((-52) (-809)) 17)) (-3464 (((-631 (-1140)) (-1140)) 28)) (-3427 (((-631 (-1140))) 27)))
-(((-816) (-10 -7 (-15 -2652 ((-52) (-809))) (-15 -2254 ((-52) (-1140))) (-15 -1886 ((-52) (-1140))) (-15 -3427 ((-631 (-1140)))) (-15 -3464 ((-631 (-1140)) (-1140))) (-15 -2615 ((-112) (-1140))) (-15 -3131 ((-112) (-1140) (-1140))) (-15 -2439 ((-307) (-1140) (-1140))))) (T -816))
-((-2439 (*1 *2 *3 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-307)) (-5 *1 (-816)))) (-3131 (*1 *2 *3 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-112)) (-5 *1 (-816)))) (-2615 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-112)) (-5 *1 (-816)))) (-3464 (*1 *2 *3) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-816)) (-5 *3 (-1140)))) (-3427 (*1 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-816)))) (-1886 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-52)) (-5 *1 (-816)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-52)) (-5 *1 (-816)))) (-2652 (*1 *2 *3) (-12 (-5 *3 (-809)) (-5 *2 (-52)) (-5 *1 (-816)))))
-(-10 -7 (-15 -2652 ((-52) (-809))) (-15 -2254 ((-52) (-1140))) (-15 -1886 ((-52) (-1140))) (-15 -3427 ((-631 (-1140)))) (-15 -3464 ((-631 (-1140)) (-1140))) (-15 -2615 ((-112) (-1140))) (-15 -3131 ((-112) (-1140) (-1140))) (-15 -2439 ((-307) (-1140) (-1140))))
-((-3062 (((-112) $ $) 19)) (-3382 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3775 (($ $ $) 72)) (-2411 (((-112) $ $) 73)) (-3019 (((-112) $ (-758)) 8)) (-1489 (($ (-631 |#1|)) 68) (($) 67)) (-2220 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4373)))) (-4087 (($) 7 T CONST)) (-2593 (($ $) 62)) (-1571 (($ $) 58 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1884 (($ |#1| $) 47 (|has| $ (-6 -4373))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4373)))) (-2574 (($ |#1| $) 57 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4373)))) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-1334 (((-112) $ $) 64)) (-2230 (((-112) $ (-758)) 9)) (-4223 ((|#1| $) 78)) (-3606 (($ $ $) 81)) (-3717 (($ $ $) 80)) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2706 ((|#1| $) 79)) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35)) (-3731 (((-112) $ (-758)) 10)) (-1613 (((-1140) $) 22)) (-3977 (($ $ $) 69)) (-4150 ((|#1| $) 39)) (-2045 (($ |#1| $) 40) (($ |#1| $ (-758)) 63)) (-2768 (((-1102) $) 21)) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2152 ((|#1| $) 41)) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2119 (((-631 (-2 (|:| -2701 |#1|) (|:| -2777 (-758)))) $) 61)) (-3372 (($ $ |#1|) 71) (($ $ $) 70)) (-4310 (($) 49) (($ (-631 |#1|)) 48)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-2927 (((-530) $) 59 (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) 50)) (-3075 (((-848) $) 18)) (-2332 (($ (-631 |#1|)) 66) (($) 65)) (-1591 (($ (-631 |#1|)) 42)) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20)) (-2563 (((-758) $) 6 (|has| $ (-6 -4373)))))
-(((-817 |#1|) (-138) (-836)) (T -817))
-((-4223 (*1 *2 *1) (-12 (-4 *1 (-817 *2)) (-4 *2 (-836)))))
-(-13 (-723 |t#1|) (-953 |t#1|) (-10 -8 (-15 -4223 (|t#1| $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-601 (-848)) . T) ((-149 |#1|) . T) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-231 |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-681 |#1|) . T) ((-723 |#1|) . T) ((-953 |#1|) . T) ((-1080 |#1|) . T) ((-1082) . T) ((-1195) . T))
-((-2990 (((-1246) (-1102) (-1102)) 47)) (-3087 (((-1246) (-808) (-52)) 44)) (-2170 (((-52) (-808)) 16)))
-(((-818) (-10 -7 (-15 -2170 ((-52) (-808))) (-15 -3087 ((-1246) (-808) (-52))) (-15 -2990 ((-1246) (-1102) (-1102))))) (T -818))
-((-2990 (*1 *2 *3 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-1246)) (-5 *1 (-818)))) (-3087 (*1 *2 *3 *4) (-12 (-5 *3 (-808)) (-5 *4 (-52)) (-5 *2 (-1246)) (-5 *1 (-818)))) (-2170 (*1 *2 *3) (-12 (-5 *3 (-808)) (-5 *2 (-52)) (-5 *1 (-818)))))
-(-10 -7 (-15 -2170 ((-52) (-808))) (-15 -3087 ((-1246) (-808) (-52))) (-15 -2990 ((-1246) (-1102) (-1102))))
-((-2879 (((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|) (-820 |#2|)) 12) (((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|)) 13)))
-(((-819 |#1| |#2|) (-10 -7 (-15 -2879 ((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|))) (-15 -2879 ((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|) (-820 |#2|)))) (-1082) (-1082)) (T -819))
-((-2879 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-820 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-820 *5)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-5 *1 (-819 *5 *6)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-820 *5)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-5 *2 (-820 *6)) (-5 *1 (-819 *5 *6)))))
-(-10 -7 (-15 -2879 ((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|))) (-15 -2879 ((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|) (-820 |#2|))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL (|has| |#1| (-21)))) (-2934 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4219 (((-554) $) NIL (|has| |#1| (-834)))) (-4087 (($) NIL (|has| |#1| (-21)) CONST)) (-2784 (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-3 |#1| "failed") $) 15)) (-1668 (((-554) $) NIL (|has| |#1| (-1023 (-554)))) (((-402 (-554)) $) NIL (|has| |#1| (-1023 (-402 (-554))))) ((|#1| $) 9)) (-1320 (((-3 $ "failed") $) 40 (|has| |#1| (-834)))) (-1623 (((-3 (-402 (-554)) "failed") $) 49 (|has| |#1| (-539)))) (-2069 (((-112) $) 43 (|has| |#1| (-539)))) (-2197 (((-402 (-554)) $) 46 (|has| |#1| (-539)))) (-2745 (((-112) $) NIL (|has| |#1| (-834)))) (-3248 (((-112) $) NIL (|has| |#1| (-834)))) (-4304 (((-112) $) NIL (|has| |#1| (-834)))) (-4223 (($ $ $) NIL (|has| |#1| (-834)))) (-2706 (($ $ $) NIL (|has| |#1| (-834)))) (-1613 (((-1140) $) NIL)) (-2855 (($) 13)) (-2887 (((-112) $) 12)) (-2768 (((-1102) $) NIL)) (-2874 (((-112) $) 11)) (-3075 (((-848) $) 18) (($ (-402 (-554))) NIL (|has| |#1| (-1023 (-402 (-554))))) (($ |#1|) 8) (($ (-554)) NIL (-3994 (|has| |#1| (-834)) (|has| |#1| (-1023 (-554)))))) (-2261 (((-758)) 34 (|has| |#1| (-834)))) (-1700 (($ $) NIL (|has| |#1| (-834)))) (-2004 (($) 22 (|has| |#1| (-21)) CONST)) (-2014 (($) 31 (|has| |#1| (-834)) CONST)) (-1708 (((-112) $ $) NIL (|has| |#1| (-834)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-834)))) (-1658 (((-112) $ $) 20)) (-1697 (((-112) $ $) NIL (|has| |#1| (-834)))) (-1676 (((-112) $ $) 42 (|has| |#1| (-834)))) (-1744 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-1735 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-906)) NIL (|has| |#1| (-834))) (($ $ (-758)) NIL (|has| |#1| (-834)))) (* (($ $ $) 37 (|has| |#1| (-834))) (($ (-554) $) 25 (|has| |#1| (-21))) (($ (-758) $) NIL (|has| |#1| (-21))) (($ (-906) $) NIL (|has| |#1| (-21)))))
-(((-820 |#1|) (-13 (-1082) (-406 |#1|) (-10 -8 (-15 -2855 ($)) (-15 -2874 ((-112) $)) (-15 -2887 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-834)) (-6 (-834)) |%noBranch|) (IF (|has| |#1| (-539)) (PROGN (-15 -2069 ((-112) $)) (-15 -2197 ((-402 (-554)) $)) (-15 -1623 ((-3 (-402 (-554)) "failed") $))) |%noBranch|))) (-1082)) (T -820))
-((-2855 (*1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1082)))) (-2874 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820 *3)) (-4 *3 (-1082)))) (-2887 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820 *3)) (-4 *3 (-1082)))) (-2069 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820 *3)) (-4 *3 (-539)) (-4 *3 (-1082)))) (-2197 (*1 *2 *1) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-820 *3)) (-4 *3 (-539)) (-4 *3 (-1082)))) (-1623 (*1 *2 *1) (|partial| -12 (-5 *2 (-402 (-554))) (-5 *1 (-820 *3)) (-4 *3 (-539)) (-4 *3 (-1082)))))
-(-13 (-1082) (-406 |#1|) (-10 -8 (-15 -2855 ($)) (-15 -2874 ((-112) $)) (-15 -2887 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-834)) (-6 (-834)) |%noBranch|) (IF (|has| |#1| (-539)) (PROGN (-15 -2069 ((-112) $)) (-15 -2197 ((-402 (-554)) $)) (-15 -1623 ((-3 (-402 (-554)) "failed") $))) |%noBranch|)))
-((-3075 (((-848) $) 11)))
-(((-821 |#1| |#2|) (-10 -8 (-15 -3075 ((-848) |#1|))) (-822 |#2|) (-1082)) (T -821))
-NIL
-(-10 -8 (-15 -3075 ((-848) |#1|)))
-((-3062 (((-112) $ $) 7)) (-3086 (($ |#1|) 14) (($ |#1| (-758)) 13)) (-4309 ((|#1| $) 16)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-1937 ((-55 $) 15)) (-1658 (((-112) $ $) 6)))
-(((-822 |#1|) (-138) (-1082)) (T -822))
-((-4309 (*1 *2 *1) (-12 (-4 *1 (-822 *2)) (-4 *2 (-1082)))) (-1937 (*1 *2 *1) (-12 (-4 *1 (-822 *3)) (-4 *3 (-1082)) (-5 *2 -55))) (-3086 (*1 *1 *2) (-12 (-4 *1 (-822 *2)) (-4 *2 (-1082)))) (-3086 (*1 *1 *2 *3) (-12 (-5 *3 (-758)) (-4 *1 (-822 *2)) (-4 *2 (-1082)))))
-(-13 (-1082) (-10 -8 (-15 -4309 (|t#1| $)) (-15 -1937 (-55 $)) (-15 -3086 ($ |t#1|)) (-15 -3086 ($ |t#1| (-758)))))
-(((-102) . T) ((-601 (-848)) . T) ((-1082) . T))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL) (((-3 (-114) "failed") $) NIL)) (-1668 ((|#1| $) NIL) (((-114) $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-1354 ((|#1| (-114) |#1|) NIL)) (-3248 (((-112) $) NIL)) (-3927 (($ |#1| (-356 (-114))) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2654 (($ $ (-1 |#1| |#1|)) NIL)) (-3282 (($ $ (-1 |#1| |#1|)) NIL)) (-2064 ((|#1| $ |#1|) NIL)) (-2186 ((|#1| |#1|) NIL (|has| |#1| (-170)))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#1|) NIL) (($ (-114)) NIL)) (-2084 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2261 (((-758)) NIL)) (-2968 (($ $) NIL (|has| |#1| (-170))) (($ $ $) NIL (|has| |#1| (-170)))) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ (-114) (-554)) NIL) (($ $ (-554)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170)))))
-(((-823 |#1|) (-13 (-1034) (-1023 |#1|) (-1023 (-114)) (-281 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -2968 ($ $)) (-15 -2968 ($ $ $)) (-15 -2186 (|#1| |#1|))) |%noBranch|) (-15 -3282 ($ $ (-1 |#1| |#1|))) (-15 -2654 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-554))) (-15 ** ($ $ (-554))) (-15 -1354 (|#1| (-114) |#1|)) (-15 -3927 ($ |#1| (-356 (-114)))))) (-1034)) (T -823))
-((-2968 (*1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-170)) (-4 *2 (-1034)))) (-2968 (*1 *1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-170)) (-4 *2 (-1034)))) (-2186 (*1 *2 *2) (-12 (-5 *1 (-823 *2)) (-4 *2 (-170)) (-4 *2 (-1034)))) (-3282 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1034)) (-5 *1 (-823 *3)))) (-2654 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1034)) (-5 *1 (-823 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-554)) (-5 *1 (-823 *4)) (-4 *4 (-1034)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-823 *3)) (-4 *3 (-1034)))) (-1354 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-823 *2)) (-4 *2 (-1034)))) (-3927 (*1 *1 *2 *3) (-12 (-5 *3 (-356 (-114))) (-5 *1 (-823 *2)) (-4 *2 (-1034)))))
-(-13 (-1034) (-1023 |#1|) (-1023 (-114)) (-281 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -2968 ($ $)) (-15 -2968 ($ $ $)) (-15 -2186 (|#1| |#1|))) |%noBranch|) (-15 -3282 ($ $ (-1 |#1| |#1|))) (-15 -2654 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-554))) (-15 ** ($ $ (-554))) (-15 -1354 (|#1| (-114) |#1|)) (-15 -3927 ($ |#1| (-356 (-114))))))
-((-3839 (((-210 (-496)) (-1140)) 9)))
-(((-824) (-10 -7 (-15 -3839 ((-210 (-496)) (-1140))))) (T -824))
-((-3839 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-210 (-496))) (-5 *1 (-824)))))
-(-10 -7 (-15 -3839 ((-210 (-496)) (-1140))))
-((-3062 (((-112) $ $) 7)) (-2910 (((-1020) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) 14) (((-1020) (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) 13)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) 16) (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) 15)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-1658 (((-112) $ $) 6)))
-(((-825) (-138)) (T -825))
-((-3037 (*1 *2 *3 *4) (-12 (-4 *1 (-825)) (-5 *3 (-1046)) (-5 *4 (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) (-5 *2 (-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)))))) (-3037 (*1 *2 *3 *4) (-12 (-4 *1 (-825)) (-5 *3 (-1046)) (-5 *4 (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) (-5 *2 (-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)))))) (-2910 (*1 *2 *3) (-12 (-4 *1 (-825)) (-5 *3 (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) (-5 *2 (-1020)))) (-2910 (*1 *2 *3) (-12 (-4 *1 (-825)) (-5 *3 (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) (-5 *2 (-1020)))))
-(-13 (-1082) (-10 -7 (-15 -3037 ((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221))))))) (-15 -3037 ((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221)))))) (-15 -2910 ((-1020) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221)))))) (-15 -2910 ((-1020) (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))))))
-(((-102) . T) ((-601 (-848)) . T) ((-1082) . T))
-((-2736 (((-1020) (-631 (-311 (-374))) (-631 (-374))) 147) (((-1020) (-311 (-374)) (-631 (-374))) 145) (((-1020) (-311 (-374)) (-631 (-374)) (-631 (-829 (-374))) (-631 (-829 (-374)))) 144) (((-1020) (-311 (-374)) (-631 (-374)) (-631 (-829 (-374))) (-631 (-311 (-374))) (-631 (-829 (-374)))) 143) (((-1020) (-827)) 117) (((-1020) (-827) (-1046)) 116)) (-3037 (((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140)))) (-827) (-1046)) 82) (((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140)))) (-827)) 84)) (-2791 (((-1020) (-631 (-311 (-374))) (-631 (-374))) 148) (((-1020) (-827)) 133)))
-(((-826) (-10 -7 (-15 -3037 ((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140)))) (-827))) (-15 -3037 ((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140)))) (-827) (-1046))) (-15 -2736 ((-1020) (-827) (-1046))) (-15 -2736 ((-1020) (-827))) (-15 -2791 ((-1020) (-827))) (-15 -2736 ((-1020) (-311 (-374)) (-631 (-374)) (-631 (-829 (-374))) (-631 (-311 (-374))) (-631 (-829 (-374))))) (-15 -2736 ((-1020) (-311 (-374)) (-631 (-374)) (-631 (-829 (-374))) (-631 (-829 (-374))))) (-15 -2736 ((-1020) (-311 (-374)) (-631 (-374)))) (-15 -2736 ((-1020) (-631 (-311 (-374))) (-631 (-374)))) (-15 -2791 ((-1020) (-631 (-311 (-374))) (-631 (-374)))))) (T -826))
-((-2791 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-311 (-374)))) (-5 *4 (-631 (-374))) (-5 *2 (-1020)) (-5 *1 (-826)))) (-2736 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-311 (-374)))) (-5 *4 (-631 (-374))) (-5 *2 (-1020)) (-5 *1 (-826)))) (-2736 (*1 *2 *3 *4) (-12 (-5 *3 (-311 (-374))) (-5 *4 (-631 (-374))) (-5 *2 (-1020)) (-5 *1 (-826)))) (-2736 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-311 (-374))) (-5 *4 (-631 (-374))) (-5 *5 (-631 (-829 (-374)))) (-5 *2 (-1020)) (-5 *1 (-826)))) (-2736 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-631 (-374))) (-5 *5 (-631 (-829 (-374)))) (-5 *6 (-631 (-311 (-374)))) (-5 *3 (-311 (-374))) (-5 *2 (-1020)) (-5 *1 (-826)))) (-2791 (*1 *2 *3) (-12 (-5 *3 (-827)) (-5 *2 (-1020)) (-5 *1 (-826)))) (-2736 (*1 *2 *3) (-12 (-5 *3 (-827)) (-5 *2 (-1020)) (-5 *1 (-826)))) (-2736 (*1 *2 *3 *4) (-12 (-5 *3 (-827)) (-5 *4 (-1046)) (-5 *2 (-1020)) (-5 *1 (-826)))) (-3037 (*1 *2 *3 *4) (-12 (-5 *3 (-827)) (-5 *4 (-1046)) (-5 *2 (-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140))))) (-5 *1 (-826)))) (-3037 (*1 *2 *3) (-12 (-5 *3 (-827)) (-5 *2 (-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140))))) (-5 *1 (-826)))))
-(-10 -7 (-15 -3037 ((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140)))) (-827))) (-15 -3037 ((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140)))) (-827) (-1046))) (-15 -2736 ((-1020) (-827) (-1046))) (-15 -2736 ((-1020) (-827))) (-15 -2791 ((-1020) (-827))) (-15 -2736 ((-1020) (-311 (-374)) (-631 (-374)) (-631 (-829 (-374))) (-631 (-311 (-374))) (-631 (-829 (-374))))) (-15 -2736 ((-1020) (-311 (-374)) (-631 (-374)) (-631 (-829 (-374))) (-631 (-829 (-374))))) (-15 -2736 ((-1020) (-311 (-374)) (-631 (-374)))) (-15 -2736 ((-1020) (-631 (-311 (-374))) (-631 (-374)))) (-15 -2791 ((-1020) (-631 (-311 (-374))) (-631 (-374)))))
-((-3062 (((-112) $ $) NIL)) (-1668 (((-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221)))))) $) 21)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 20) (($ (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) 14) (($ (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))))) 18)) (-1658 (((-112) $ $) NIL)))
-(((-827) (-13 (-1082) (-10 -8 (-15 -3075 ($ (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221))))))) (-15 -3075 ($ (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221)))))) (-15 -3075 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221)))))))) (-15 -1668 ((-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221)))))) $))))) (T -827))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) (-5 *1 (-827)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) (-5 *1 (-827)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))))) (-5 *1 (-827)))) (-1668 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))))) (-5 *1 (-827)))))
-(-13 (-1082) (-10 -8 (-15 -3075 ($ (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221))))))) (-15 -3075 ($ (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221)))))) (-15 -3075 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221)))))))) (-15 -1668 ((-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221)))))) $))))
-((-2879 (((-829 |#2|) (-1 |#2| |#1|) (-829 |#1|) (-829 |#2|) (-829 |#2|)) 13) (((-829 |#2|) (-1 |#2| |#1|) (-829 |#1|)) 14)))
-(((-828 |#1| |#2|) (-10 -7 (-15 -2879 ((-829 |#2|) (-1 |#2| |#1|) (-829 |#1|))) (-15 -2879 ((-829 |#2|) (-1 |#2| |#1|) (-829 |#1|) (-829 |#2|) (-829 |#2|)))) (-1082) (-1082)) (T -828))
-((-2879 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-829 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-829 *5)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-5 *1 (-828 *5 *6)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-829 *5)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-5 *2 (-829 *6)) (-5 *1 (-828 *5 *6)))))
-(-10 -7 (-15 -2879 ((-829 |#2|) (-1 |#2| |#1|) (-829 |#1|))) (-15 -2879 ((-829 |#2|) (-1 |#2| |#1|) (-829 |#1|) (-829 |#2|) (-829 |#2|))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL (|has| |#1| (-21)))) (-4190 (((-1102) $) 24)) (-2934 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4219 (((-554) $) NIL (|has| |#1| (-834)))) (-4087 (($) NIL (|has| |#1| (-21)) CONST)) (-2784 (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-3 |#1| "failed") $) 16)) (-1668 (((-554) $) NIL (|has| |#1| (-1023 (-554)))) (((-402 (-554)) $) NIL (|has| |#1| (-1023 (-402 (-554))))) ((|#1| $) 9)) (-1320 (((-3 $ "failed") $) 47 (|has| |#1| (-834)))) (-1623 (((-3 (-402 (-554)) "failed") $) 54 (|has| |#1| (-539)))) (-2069 (((-112) $) 49 (|has| |#1| (-539)))) (-2197 (((-402 (-554)) $) 52 (|has| |#1| (-539)))) (-2745 (((-112) $) NIL (|has| |#1| (-834)))) (-1701 (($) 13)) (-3248 (((-112) $) NIL (|has| |#1| (-834)))) (-4304 (((-112) $) NIL (|has| |#1| (-834)))) (-1713 (($) 14)) (-4223 (($ $ $) NIL (|has| |#1| (-834)))) (-2706 (($ $ $) NIL (|has| |#1| (-834)))) (-1613 (((-1140) $) NIL)) (-2887 (((-112) $) 12)) (-2768 (((-1102) $) NIL)) (-2874 (((-112) $) 11)) (-3075 (((-848) $) 22) (($ (-402 (-554))) NIL (|has| |#1| (-1023 (-402 (-554))))) (($ |#1|) 8) (($ (-554)) NIL (-3994 (|has| |#1| (-834)) (|has| |#1| (-1023 (-554)))))) (-2261 (((-758)) 41 (|has| |#1| (-834)))) (-1700 (($ $) NIL (|has| |#1| (-834)))) (-2004 (($) 29 (|has| |#1| (-21)) CONST)) (-2014 (($) 38 (|has| |#1| (-834)) CONST)) (-1708 (((-112) $ $) NIL (|has| |#1| (-834)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-834)))) (-1658 (((-112) $ $) 27)) (-1697 (((-112) $ $) NIL (|has| |#1| (-834)))) (-1676 (((-112) $ $) 48 (|has| |#1| (-834)))) (-1744 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-1735 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-906)) NIL (|has| |#1| (-834))) (($ $ (-758)) NIL (|has| |#1| (-834)))) (* (($ $ $) 44 (|has| |#1| (-834))) (($ (-554) $) 32 (|has| |#1| (-21))) (($ (-758) $) NIL (|has| |#1| (-21))) (($ (-906) $) NIL (|has| |#1| (-21)))))
-(((-829 |#1|) (-13 (-1082) (-406 |#1|) (-10 -8 (-15 -1701 ($)) (-15 -1713 ($)) (-15 -2874 ((-112) $)) (-15 -2887 ((-112) $)) (-15 -4190 ((-1102) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-834)) (-6 (-834)) |%noBranch|) (IF (|has| |#1| (-539)) (PROGN (-15 -2069 ((-112) $)) (-15 -2197 ((-402 (-554)) $)) (-15 -1623 ((-3 (-402 (-554)) "failed") $))) |%noBranch|))) (-1082)) (T -829))
-((-1701 (*1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-1082)))) (-1713 (*1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-1082)))) (-2874 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-1082)))) (-2887 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-1082)))) (-4190 (*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-829 *3)) (-4 *3 (-1082)))) (-2069 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-539)) (-4 *3 (-1082)))) (-2197 (*1 *2 *1) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-829 *3)) (-4 *3 (-539)) (-4 *3 (-1082)))) (-1623 (*1 *2 *1) (|partial| -12 (-5 *2 (-402 (-554))) (-5 *1 (-829 *3)) (-4 *3 (-539)) (-4 *3 (-1082)))))
-(-13 (-1082) (-406 |#1|) (-10 -8 (-15 -1701 ($)) (-15 -1713 ($)) (-15 -2874 ((-112) $)) (-15 -2887 ((-112) $)) (-15 -4190 ((-1102) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-834)) (-6 (-834)) |%noBranch|) (IF (|has| |#1| (-539)) (PROGN (-15 -2069 ((-112) $)) (-15 -2197 ((-402 (-554)) $)) (-15 -1623 ((-3 (-402 (-554)) "failed") $))) |%noBranch|)))
-((-3062 (((-112) $ $) 7)) (-1508 (((-758)) 20)) (-3353 (($) 23)) (-4223 (($ $ $) 13)) (-2706 (($ $ $) 14)) (-3830 (((-906) $) 22)) (-1613 (((-1140) $) 9)) (-2717 (($ (-906)) 21)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-1708 (((-112) $ $) 16)) (-1686 (((-112) $ $) 17)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 15)) (-1676 (((-112) $ $) 18)))
-(((-830) (-138)) (T -830))
-NIL
-(-13 (-836) (-363))
-(((-102) . T) ((-601 (-848)) . T) ((-363) . T) ((-836) . T) ((-1082) . T))
-((-3649 (((-112) (-1241 |#2|) (-1241 |#2|)) 17)) (-3800 (((-112) (-1241 |#2|) (-1241 |#2|)) 18)) (-4247 (((-112) (-1241 |#2|) (-1241 |#2|)) 14)))
-(((-831 |#1| |#2|) (-10 -7 (-15 -4247 ((-112) (-1241 |#2|) (-1241 |#2|))) (-15 -3649 ((-112) (-1241 |#2|) (-1241 |#2|))) (-15 -3800 ((-112) (-1241 |#2|) (-1241 |#2|)))) (-758) (-779)) (T -831))
-((-3800 (*1 *2 *3 *3) (-12 (-5 *3 (-1241 *5)) (-4 *5 (-779)) (-5 *2 (-112)) (-5 *1 (-831 *4 *5)) (-14 *4 (-758)))) (-3649 (*1 *2 *3 *3) (-12 (-5 *3 (-1241 *5)) (-4 *5 (-779)) (-5 *2 (-112)) (-5 *1 (-831 *4 *5)) (-14 *4 (-758)))) (-4247 (*1 *2 *3 *3) (-12 (-5 *3 (-1241 *5)) (-4 *5 (-779)) (-5 *2 (-112)) (-5 *1 (-831 *4 *5)) (-14 *4 (-758)))))
-(-10 -7 (-15 -4247 ((-112) (-1241 |#2|) (-1241 |#2|))) (-15 -3649 ((-112) (-1241 |#2|) (-1241 |#2|))) (-15 -3800 ((-112) (-1241 |#2|) (-1241 |#2|))))
-((-3062 (((-112) $ $) 7)) (-4087 (($) 23 T CONST)) (-1320 (((-3 $ "failed") $) 26)) (-3248 (((-112) $) 24)) (-4223 (($ $ $) 13)) (-2706 (($ $ $) 14)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-2014 (($) 22 T CONST)) (-1708 (((-112) $ $) 16)) (-1686 (((-112) $ $) 17)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 15)) (-1676 (((-112) $ $) 18)) (** (($ $ (-906)) 21) (($ $ (-758)) 25)) (* (($ $ $) 20)))
-(((-832) (-138)) (T -832))
-NIL
-(-13 (-843) (-713))
-(((-102) . T) ((-601 (-848)) . T) ((-713) . T) ((-843) . T) ((-836) . T) ((-1094) . T) ((-1082) . T))
-((-4219 (((-554) $) 17)) (-2745 (((-112) $) 10)) (-4304 (((-112) $) 11)) (-1700 (($ $) 19)))
-(((-833 |#1|) (-10 -8 (-15 -1700 (|#1| |#1|)) (-15 -4219 ((-554) |#1|)) (-15 -4304 ((-112) |#1|)) (-15 -2745 ((-112) |#1|))) (-834)) (T -833))
-NIL
-(-10 -8 (-15 -1700 (|#1| |#1|)) (-15 -4219 ((-554) |#1|)) (-15 -4304 ((-112) |#1|)) (-15 -2745 ((-112) |#1|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 24)) (-2934 (((-3 $ "failed") $ $) 26)) (-4219 (((-554) $) 34)) (-4087 (($) 23 T CONST)) (-1320 (((-3 $ "failed") $) 39)) (-2745 (((-112) $) 36)) (-3248 (((-112) $) 41)) (-4304 (((-112) $) 35)) (-4223 (($ $ $) 13)) (-2706 (($ $ $) 14)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11) (($ (-554)) 43)) (-2261 (((-758)) 44)) (-1700 (($ $) 33)) (-2004 (($) 22 T CONST)) (-2014 (($) 42 T CONST)) (-1708 (((-112) $ $) 16)) (-1686 (((-112) $ $) 17)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 15)) (-1676 (((-112) $ $) 18)) (-1744 (($ $ $) 28) (($ $) 27)) (-1735 (($ $ $) 20)) (** (($ $ (-758)) 40) (($ $ (-906)) 37)) (* (($ (-906) $) 21) (($ (-758) $) 25) (($ (-554) $) 29) (($ $ $) 38)))
-(((-834) (-138)) (T -834))
-((-2745 (*1 *2 *1) (-12 (-4 *1 (-834)) (-5 *2 (-112)))) (-4304 (*1 *2 *1) (-12 (-4 *1 (-834)) (-5 *2 (-112)))) (-4219 (*1 *2 *1) (-12 (-4 *1 (-834)) (-5 *2 (-554)))) (-1700 (*1 *1 *1) (-4 *1 (-834))))
-(-13 (-778) (-1034) (-713) (-10 -8 (-15 -2745 ((-112) $)) (-15 -4304 ((-112) $)) (-15 -4219 ((-554) $)) (-15 -1700 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-604 (-554)) . T) ((-601 (-848)) . T) ((-634 $) . T) ((-713) . T) ((-778) . T) ((-779) . T) ((-781) . T) ((-782) . T) ((-836) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T))
-((-4223 (($ $ $) 10)) (-2706 (($ $ $) 9)) (-1708 (((-112) $ $) 13)) (-1686 (((-112) $ $) 11)) (-1697 (((-112) $ $) 14)))
-(((-835 |#1|) (-10 -8 (-15 -4223 (|#1| |#1| |#1|)) (-15 -2706 (|#1| |#1| |#1|)) (-15 -1697 ((-112) |#1| |#1|)) (-15 -1708 ((-112) |#1| |#1|)) (-15 -1686 ((-112) |#1| |#1|))) (-836)) (T -835))
-NIL
-(-10 -8 (-15 -4223 (|#1| |#1| |#1|)) (-15 -2706 (|#1| |#1| |#1|)) (-15 -1697 ((-112) |#1| |#1|)) (-15 -1708 ((-112) |#1| |#1|)) (-15 -1686 ((-112) |#1| |#1|)))
-((-3062 (((-112) $ $) 7)) (-4223 (($ $ $) 13)) (-2706 (($ $ $) 14)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-1708 (((-112) $ $) 16)) (-1686 (((-112) $ $) 17)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 15)) (-1676 (((-112) $ $) 18)))
-(((-836) (-138)) (T -836))
-((-1676 (*1 *2 *1 *1) (-12 (-4 *1 (-836)) (-5 *2 (-112)))) (-1686 (*1 *2 *1 *1) (-12 (-4 *1 (-836)) (-5 *2 (-112)))) (-1708 (*1 *2 *1 *1) (-12 (-4 *1 (-836)) (-5 *2 (-112)))) (-1697 (*1 *2 *1 *1) (-12 (-4 *1 (-836)) (-5 *2 (-112)))) (-2706 (*1 *1 *1 *1) (-4 *1 (-836))) (-4223 (*1 *1 *1 *1) (-4 *1 (-836))))
-(-13 (-1082) (-10 -8 (-15 -1676 ((-112) $ $)) (-15 -1686 ((-112) $ $)) (-15 -1708 ((-112) $ $)) (-15 -1697 ((-112) $ $)) (-15 -2706 ($ $ $)) (-15 -4223 ($ $ $))))
-(((-102) . T) ((-601 (-848)) . T) ((-1082) . T))
-((-2915 (($ $ $) 45)) (-2660 (($ $ $) 44)) (-1885 (($ $ $) 42)) (-3335 (($ $ $) 51)) (-3215 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 46)) (-2850 (((-3 $ "failed") $ $) 49)) (-2784 (((-3 (-554) "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-2048 (($ $) 35)) (-1455 (($ $ $) 39)) (-4024 (($ $ $) 38)) (-2780 (($ $ $) 47)) (-1775 (($ $ $) 53)) (-2765 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 41)) (-1763 (((-3 $ "failed") $ $) 48)) (-3919 (((-3 $ "failed") $ |#2|) 28)) (-3276 ((|#2| $) 32)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ (-402 (-554))) NIL) (($ |#2|) 12)) (-1893 (((-631 |#2|) $) 18)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22)))
-(((-837 |#1| |#2|) (-10 -8 (-15 -2780 (|#1| |#1| |#1|)) (-15 -3215 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4137 |#1|)) |#1| |#1|)) (-15 -3335 (|#1| |#1| |#1|)) (-15 -2850 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2915 (|#1| |#1| |#1|)) (-15 -2660 (|#1| |#1| |#1|)) (-15 -1885 (|#1| |#1| |#1|)) (-15 -2765 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4137 |#1|)) |#1| |#1|)) (-15 -1775 (|#1| |#1| |#1|)) (-15 -1763 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1455 (|#1| |#1| |#1|)) (-15 -4024 (|#1| |#1| |#1|)) (-15 -2048 (|#1| |#1|)) (-15 -3276 (|#2| |#1|)) (-15 -3919 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1893 ((-631 |#2|) |#1|)) (-15 -3075 (|#1| |#2|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -3075 (|#1| (-402 (-554)))) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3075 (|#1| (-554))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-554) |#1|)) (-15 * (|#1| (-758) |#1|)) (-15 * (|#1| (-906) |#1|)) (-15 -3075 ((-848) |#1|))) (-838 |#2|) (-1034)) (T -837))
-NIL
-(-10 -8 (-15 -2780 (|#1| |#1| |#1|)) (-15 -3215 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4137 |#1|)) |#1| |#1|)) (-15 -3335 (|#1| |#1| |#1|)) (-15 -2850 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2915 (|#1| |#1| |#1|)) (-15 -2660 (|#1| |#1| |#1|)) (-15 -1885 (|#1| |#1| |#1|)) (-15 -2765 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4137 |#1|)) |#1| |#1|)) (-15 -1775 (|#1| |#1| |#1|)) (-15 -1763 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1455 (|#1| |#1| |#1|)) (-15 -4024 (|#1| |#1| |#1|)) (-15 -2048 (|#1| |#1|)) (-15 -3276 (|#2| |#1|)) (-15 -3919 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1893 ((-631 |#2|) |#1|)) (-15 -3075 (|#1| |#2|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -3075 (|#1| (-402 (-554)))) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3075 (|#1| (-554))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-554) |#1|)) (-15 * (|#1| (-758) |#1|)) (-15 * (|#1| (-906) |#1|)) (-15 -3075 ((-848) |#1|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-2915 (($ $ $) 44 (|has| |#1| (-358)))) (-2660 (($ $ $) 45 (|has| |#1| (-358)))) (-1885 (($ $ $) 47 (|has| |#1| (-358)))) (-3335 (($ $ $) 42 (|has| |#1| (-358)))) (-3215 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 41 (|has| |#1| (-358)))) (-2850 (((-3 $ "failed") $ $) 43 (|has| |#1| (-358)))) (-2223 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 46 (|has| |#1| (-358)))) (-2784 (((-3 (-554) "failed") $) 74 (|has| |#1| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) 71 (|has| |#1| (-1023 (-402 (-554))))) (((-3 |#1| "failed") $) 68)) (-1668 (((-554) $) 73 (|has| |#1| (-1023 (-554)))) (((-402 (-554)) $) 70 (|has| |#1| (-1023 (-402 (-554))))) ((|#1| $) 69)) (-2550 (($ $) 63)) (-1320 (((-3 $ "failed") $) 33)) (-2048 (($ $) 54 (|has| |#1| (-446)))) (-3248 (((-112) $) 31)) (-2383 (($ |#1| (-758)) 61)) (-4272 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 56 (|has| |#1| (-546)))) (-3409 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 57 (|has| |#1| (-546)))) (-3893 (((-758) $) 65)) (-1455 (($ $ $) 51 (|has| |#1| (-358)))) (-4024 (($ $ $) 52 (|has| |#1| (-358)))) (-2780 (($ $ $) 40 (|has| |#1| (-358)))) (-1775 (($ $ $) 49 (|has| |#1| (-358)))) (-2765 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 48 (|has| |#1| (-358)))) (-1763 (((-3 $ "failed") $ $) 50 (|has| |#1| (-358)))) (-4032 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 53 (|has| |#1| (-358)))) (-2530 ((|#1| $) 64)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3919 (((-3 $ "failed") $ |#1|) 58 (|has| |#1| (-546)))) (-3308 (((-758) $) 66)) (-3276 ((|#1| $) 55 (|has| |#1| (-446)))) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ (-402 (-554))) 72 (|has| |#1| (-1023 (-402 (-554))))) (($ |#1|) 67)) (-1893 (((-631 |#1|) $) 60)) (-1779 ((|#1| $ (-758)) 62)) (-2261 (((-758)) 28)) (-1485 ((|#1| $ |#1| |#1|) 59)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ |#1|) 76) (($ |#1| $) 75)))
-(((-838 |#1|) (-138) (-1034)) (T -838))
-((-3308 (*1 *2 *1) (-12 (-4 *1 (-838 *3)) (-4 *3 (-1034)) (-5 *2 (-758)))) (-3893 (*1 *2 *1) (-12 (-4 *1 (-838 *3)) (-4 *3 (-1034)) (-5 *2 (-758)))) (-2530 (*1 *2 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)))) (-2550 (*1 *1 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)))) (-1779 (*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-4 *1 (-838 *2)) (-4 *2 (-1034)))) (-2383 (*1 *1 *2 *3) (-12 (-5 *3 (-758)) (-4 *1 (-838 *2)) (-4 *2 (-1034)))) (-1893 (*1 *2 *1) (-12 (-4 *1 (-838 *3)) (-4 *3 (-1034)) (-5 *2 (-631 *3)))) (-1485 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)))) (-3919 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-546)))) (-3409 (*1 *2 *1 *1) (-12 (-4 *3 (-546)) (-4 *3 (-1034)) (-5 *2 (-2 (|:| -2325 *1) (|:| -2423 *1))) (-4 *1 (-838 *3)))) (-4272 (*1 *2 *1 *1) (-12 (-4 *3 (-546)) (-4 *3 (-1034)) (-5 *2 (-2 (|:| -2325 *1) (|:| -2423 *1))) (-4 *1 (-838 *3)))) (-3276 (*1 *2 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-446)))) (-2048 (*1 *1 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-446)))) (-4032 (*1 *2 *1 *1) (-12 (-4 *3 (-358)) (-4 *3 (-1034)) (-5 *2 (-2 (|:| -2325 *1) (|:| -2423 *1))) (-4 *1 (-838 *3)))) (-4024 (*1 *1 *1 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-358)))) (-1455 (*1 *1 *1 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-358)))) (-1763 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-358)))) (-1775 (*1 *1 *1 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-358)))) (-2765 (*1 *2 *1 *1) (-12 (-4 *3 (-358)) (-4 *3 (-1034)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4137 *1))) (-4 *1 (-838 *3)))) (-1885 (*1 *1 *1 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-358)))) (-2223 (*1 *2 *1 *1) (-12 (-4 *3 (-358)) (-4 *3 (-1034)) (-5 *2 (-2 (|:| -2325 *1) (|:| -2423 *1))) (-4 *1 (-838 *3)))) (-2660 (*1 *1 *1 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-358)))) (-2915 (*1 *1 *1 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-358)))) (-2850 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-358)))) (-3335 (*1 *1 *1 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-358)))) (-3215 (*1 *2 *1 *1) (-12 (-4 *3 (-358)) (-4 *3 (-1034)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4137 *1))) (-4 *1 (-838 *3)))) (-2780 (*1 *1 *1 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-358)))))
-(-13 (-1034) (-111 |t#1| |t#1|) (-406 |t#1|) (-10 -8 (-15 -3308 ((-758) $)) (-15 -3893 ((-758) $)) (-15 -2530 (|t#1| $)) (-15 -2550 ($ $)) (-15 -1779 (|t#1| $ (-758))) (-15 -2383 ($ |t#1| (-758))) (-15 -1893 ((-631 |t#1|) $)) (-15 -1485 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-546)) (PROGN (-15 -3919 ((-3 $ "failed") $ |t#1|)) (-15 -3409 ((-2 (|:| -2325 $) (|:| -2423 $)) $ $)) (-15 -4272 ((-2 (|:| -2325 $) (|:| -2423 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-446)) (PROGN (-15 -3276 (|t#1| $)) (-15 -2048 ($ $))) |%noBranch|) (IF (|has| |t#1| (-358)) (PROGN (-15 -4032 ((-2 (|:| -2325 $) (|:| -2423 $)) $ $)) (-15 -4024 ($ $ $)) (-15 -1455 ($ $ $)) (-15 -1763 ((-3 $ "failed") $ $)) (-15 -1775 ($ $ $)) (-15 -2765 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $)) (-15 -1885 ($ $ $)) (-15 -2223 ((-2 (|:| -2325 $) (|:| -2423 $)) $ $)) (-15 -2660 ($ $ $)) (-15 -2915 ($ $ $)) (-15 -2850 ((-3 $ "failed") $ $)) (-15 -3335 ($ $ $)) (-15 -3215 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $)) (-15 -2780 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-604 #0=(-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) ((-604 (-554)) . T) ((-604 |#1|) . T) ((-601 (-848)) . T) ((-406 |#1|) . T) ((-634 |#1|) . T) ((-634 $) . T) ((-704 |#1|) |has| |#1| (-170)) ((-713) . T) ((-1023 #0#) |has| |#1| (-1023 (-402 (-554)))) ((-1023 (-554)) |has| |#1| (-1023 (-554))) ((-1023 |#1|) . T) ((-1040 |#1|) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T))
-((-3697 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-2223 (((-2 (|:| -2325 |#2|) (|:| -2423 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-358)))) (-4272 (((-2 (|:| -2325 |#2|) (|:| -2423 |#2|)) |#2| |#2| (-99 |#1|)) 40 (|has| |#1| (-546)))) (-3409 (((-2 (|:| -2325 |#2|) (|:| -2423 |#2|)) |#2| |#2| (-99 |#1|)) 39 (|has| |#1| (-546)))) (-4032 (((-2 (|:| -2325 |#2|) (|:| -2423 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-358)))) (-1485 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 31)))
-(((-839 |#1| |#2|) (-10 -7 (-15 -3697 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -1485 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-546)) (PROGN (-15 -3409 ((-2 (|:| -2325 |#2|) (|:| -2423 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -4272 ((-2 (|:| -2325 |#2|) (|:| -2423 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-15 -4032 ((-2 (|:| -2325 |#2|) (|:| -2423 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2223 ((-2 (|:| -2325 |#2|) (|:| -2423 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1034) (-838 |#1|)) (T -839))
-((-2223 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-358)) (-4 *5 (-1034)) (-5 *2 (-2 (|:| -2325 *3) (|:| -2423 *3))) (-5 *1 (-839 *5 *3)) (-4 *3 (-838 *5)))) (-4032 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-358)) (-4 *5 (-1034)) (-5 *2 (-2 (|:| -2325 *3) (|:| -2423 *3))) (-5 *1 (-839 *5 *3)) (-4 *3 (-838 *5)))) (-4272 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-546)) (-4 *5 (-1034)) (-5 *2 (-2 (|:| -2325 *3) (|:| -2423 *3))) (-5 *1 (-839 *5 *3)) (-4 *3 (-838 *5)))) (-3409 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-546)) (-4 *5 (-1034)) (-5 *2 (-2 (|:| -2325 *3) (|:| -2423 *3))) (-5 *1 (-839 *5 *3)) (-4 *3 (-838 *5)))) (-1485 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1034)) (-5 *1 (-839 *2 *3)) (-4 *3 (-838 *2)))) (-3697 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1034)) (-5 *1 (-839 *5 *2)) (-4 *2 (-838 *5)))))
-(-10 -7 (-15 -3697 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -1485 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-546)) (PROGN (-15 -3409 ((-2 (|:| -2325 |#2|) (|:| -2423 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -4272 ((-2 (|:| -2325 |#2|) (|:| -2423 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-15 -4032 ((-2 (|:| -2325 |#2|) (|:| -2423 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2223 ((-2 (|:| -2325 |#2|) (|:| -2423 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-2915 (($ $ $) NIL (|has| |#1| (-358)))) (-2660 (($ $ $) NIL (|has| |#1| (-358)))) (-1885 (($ $ $) NIL (|has| |#1| (-358)))) (-3335 (($ $ $) NIL (|has| |#1| (-358)))) (-3215 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-358)))) (-2850 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-2223 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 32 (|has| |#1| (-358)))) (-2784 (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-3 |#1| "failed") $) NIL)) (-1668 (((-554) $) NIL (|has| |#1| (-1023 (-554)))) (((-402 (-554)) $) NIL (|has| |#1| (-1023 (-402 (-554))))) ((|#1| $) NIL)) (-2550 (($ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2048 (($ $) NIL (|has| |#1| (-446)))) (-3701 (((-848) $ (-848)) NIL)) (-3248 (((-112) $) NIL)) (-2383 (($ |#1| (-758)) NIL)) (-4272 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 28 (|has| |#1| (-546)))) (-3409 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 26 (|has| |#1| (-546)))) (-3893 (((-758) $) NIL)) (-1455 (($ $ $) NIL (|has| |#1| (-358)))) (-4024 (($ $ $) NIL (|has| |#1| (-358)))) (-2780 (($ $ $) NIL (|has| |#1| (-358)))) (-1775 (($ $ $) NIL (|has| |#1| (-358)))) (-2765 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-358)))) (-1763 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-4032 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 30 (|has| |#1| (-358)))) (-2530 ((|#1| $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3919 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-546)))) (-3308 (((-758) $) NIL)) (-3276 ((|#1| $) NIL (|has| |#1| (-446)))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ (-402 (-554))) NIL (|has| |#1| (-1023 (-402 (-554))))) (($ |#1|) NIL)) (-1893 (((-631 |#1|) $) NIL)) (-1779 ((|#1| $ (-758)) NIL)) (-2261 (((-758)) NIL)) (-1485 ((|#1| $ |#1| |#1|) 15)) (-2004 (($) NIL T CONST)) (-2014 (($) 20 T CONST)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) 19) (($ $ (-758)) 22)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-840 |#1| |#2| |#3|) (-13 (-838 |#1|) (-10 -8 (-15 -3701 ((-848) $ (-848))))) (-1034) (-99 |#1|) (-1 |#1| |#1|)) (T -840))
-((-3701 (*1 *2 *1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-840 *3 *4 *5)) (-4 *3 (-1034)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))))
-(-13 (-838 |#1|) (-10 -8 (-15 -3701 ((-848) $ (-848)))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-2915 (($ $ $) NIL (|has| |#2| (-358)))) (-2660 (($ $ $) NIL (|has| |#2| (-358)))) (-1885 (($ $ $) NIL (|has| |#2| (-358)))) (-3335 (($ $ $) NIL (|has| |#2| (-358)))) (-3215 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#2| (-358)))) (-2850 (((-3 $ "failed") $ $) NIL (|has| |#2| (-358)))) (-2223 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#2| (-358)))) (-2784 (((-3 (-554) "failed") $) NIL (|has| |#2| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#2| (-1023 (-402 (-554))))) (((-3 |#2| "failed") $) NIL)) (-1668 (((-554) $) NIL (|has| |#2| (-1023 (-554)))) (((-402 (-554)) $) NIL (|has| |#2| (-1023 (-402 (-554))))) ((|#2| $) NIL)) (-2550 (($ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2048 (($ $) NIL (|has| |#2| (-446)))) (-3248 (((-112) $) NIL)) (-2383 (($ |#2| (-758)) 16)) (-4272 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#2| (-546)))) (-3409 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#2| (-546)))) (-3893 (((-758) $) NIL)) (-1455 (($ $ $) NIL (|has| |#2| (-358)))) (-4024 (($ $ $) NIL (|has| |#2| (-358)))) (-2780 (($ $ $) NIL (|has| |#2| (-358)))) (-1775 (($ $ $) NIL (|has| |#2| (-358)))) (-2765 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#2| (-358)))) (-1763 (((-3 $ "failed") $ $) NIL (|has| |#2| (-358)))) (-4032 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#2| (-358)))) (-2530 ((|#2| $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3919 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-546)))) (-3308 (((-758) $) NIL)) (-3276 ((|#2| $) NIL (|has| |#2| (-446)))) (-3075 (((-848) $) 23) (($ (-554)) NIL) (($ (-402 (-554))) NIL (|has| |#2| (-1023 (-402 (-554))))) (($ |#2|) NIL) (($ (-1237 |#1|)) 18)) (-1893 (((-631 |#2|) $) NIL)) (-1779 ((|#2| $ (-758)) NIL)) (-2261 (((-758)) NIL)) (-1485 ((|#2| $ |#2| |#2|) NIL)) (-2004 (($) NIL T CONST)) (-2014 (($) 13 T CONST)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-841 |#1| |#2| |#3| |#4|) (-13 (-838 |#2|) (-604 (-1237 |#1|))) (-1158) (-1034) (-99 |#2|) (-1 |#2| |#2|)) (T -841))
-NIL
-(-13 (-838 |#2|) (-604 (-1237 |#1|)))
-((-4330 ((|#1| (-758) |#1|) 35 (|has| |#1| (-38 (-402 (-554)))))) (-3542 ((|#1| (-758) (-758) |#1|) 27) ((|#1| (-758) |#1|) 20)) (-1274 ((|#1| (-758) |#1|) 31)) (-1398 ((|#1| (-758) |#1|) 29)) (-1492 ((|#1| (-758) |#1|) 28)))
-(((-842 |#1|) (-10 -7 (-15 -1492 (|#1| (-758) |#1|)) (-15 -1398 (|#1| (-758) |#1|)) (-15 -1274 (|#1| (-758) |#1|)) (-15 -3542 (|#1| (-758) |#1|)) (-15 -3542 (|#1| (-758) (-758) |#1|)) (IF (|has| |#1| (-38 (-402 (-554)))) (-15 -4330 (|#1| (-758) |#1|)) |%noBranch|)) (-170)) (T -842))
-((-4330 (*1 *2 *3 *2) (-12 (-5 *3 (-758)) (-5 *1 (-842 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-170)))) (-3542 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-758)) (-5 *1 (-842 *2)) (-4 *2 (-170)))) (-3542 (*1 *2 *3 *2) (-12 (-5 *3 (-758)) (-5 *1 (-842 *2)) (-4 *2 (-170)))) (-1274 (*1 *2 *3 *2) (-12 (-5 *3 (-758)) (-5 *1 (-842 *2)) (-4 *2 (-170)))) (-1398 (*1 *2 *3 *2) (-12 (-5 *3 (-758)) (-5 *1 (-842 *2)) (-4 *2 (-170)))) (-1492 (*1 *2 *3 *2) (-12 (-5 *3 (-758)) (-5 *1 (-842 *2)) (-4 *2 (-170)))))
-(-10 -7 (-15 -1492 (|#1| (-758) |#1|)) (-15 -1398 (|#1| (-758) |#1|)) (-15 -1274 (|#1| (-758) |#1|)) (-15 -3542 (|#1| (-758) |#1|)) (-15 -3542 (|#1| (-758) (-758) |#1|)) (IF (|has| |#1| (-38 (-402 (-554)))) (-15 -4330 (|#1| (-758) |#1|)) |%noBranch|))
-((-3062 (((-112) $ $) 7)) (-4223 (($ $ $) 13)) (-2706 (($ $ $) 14)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-1708 (((-112) $ $) 16)) (-1686 (((-112) $ $) 17)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 15)) (-1676 (((-112) $ $) 18)) (** (($ $ (-906)) 21)) (* (($ $ $) 20)))
-(((-843) (-138)) (T -843))
-NIL
-(-13 (-836) (-1094))
-(((-102) . T) ((-601 (-848)) . T) ((-836) . T) ((-1094) . T) ((-1082) . T))
-((-3062 (((-112) $ $) NIL)) (-2794 (((-554) $) 12)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 18) (($ (-554)) 11)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 8)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 9)))
-(((-844) (-13 (-836) (-10 -8 (-15 -3075 ($ (-554))) (-15 -2794 ((-554) $))))) (T -844))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-844)))) (-2794 (*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-844)))))
-(-13 (-836) (-10 -8 (-15 -3075 ($ (-554))) (-15 -2794 ((-554) $))))
-((-2077 (((-1102) $ (-128)) 17)))
-(((-845 |#1|) (-10 -8 (-15 -2077 ((-1102) |#1| (-128)))) (-846)) (T -845))
-NIL
-(-10 -8 (-15 -2077 ((-1102) |#1| (-128))))
-((-2077 (((-1102) $ (-128)) 7)) (-3451 (((-1102) $ (-129)) 8)) (-3745 (($ $) 6)))
-(((-846) (-138)) (T -846))
-((-3451 (*1 *2 *1 *3) (-12 (-4 *1 (-846)) (-5 *3 (-129)) (-5 *2 (-1102)))) (-2077 (*1 *2 *1 *3) (-12 (-4 *1 (-846)) (-5 *3 (-128)) (-5 *2 (-1102)))))
-(-13 (-171) (-10 -8 (-15 -3451 ((-1102) $ (-129))) (-15 -2077 ((-1102) $ (-128)))))
-(((-171) . T))
-((-2077 (((-1102) $ (-128)) NIL)) (-3451 (((-1102) $ (-129)) 22)) (-2145 (($ (-383)) 12) (($ (-1140)) 14)) (-2993 (((-112) $) 19)) (-3075 (((-848) $) 26)) (-3745 (($ $) 23)))
-(((-847) (-13 (-846) (-601 (-848)) (-10 -8 (-15 -2145 ($ (-383))) (-15 -2145 ($ (-1140))) (-15 -2993 ((-112) $))))) (T -847))
-((-2145 (*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-847)))) (-2145 (*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-847)))) (-2993 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-847)))))
-(-13 (-846) (-601 (-848)) (-10 -8 (-15 -2145 ($ (-383))) (-15 -2145 ($ (-1140))) (-15 -2993 ((-112) $))))
-((-3062 (((-112) $ $) NIL) (($ $ $) 77)) (-2116 (($ $ $) 114)) (-4026 (((-554) $) 31) (((-554)) 36)) (-3466 (($ (-554)) 45)) (-4089 (($ $ $) 46) (($ (-631 $)) 76)) (-1661 (($ $ (-631 $)) 74)) (-4187 (((-554) $) 34)) (-1968 (($ $ $) 65)) (-1688 (($ $) 127) (($ $ $) 128) (($ $ $ $) 129)) (-2878 (((-554) $) 33)) (-3999 (($ $ $) 64)) (-3942 (($ $) 104)) (-3571 (($ $ $) 118)) (-4011 (($ (-631 $)) 53)) (-2591 (($ $ (-631 $)) 71)) (-2135 (($ (-554) (-554)) 47)) (-2638 (($ $) 115) (($ $ $) 116)) (-3324 (($ $ (-554)) 41) (($ $) 44)) (-3964 (($ $ $) 89)) (-2085 (($ $ $) 121)) (-3402 (($ $) 105)) (-3943 (($ $ $) 90)) (-2436 (($ $) 130) (($ $ $) 131) (($ $ $ $) 132)) (-1869 (((-1246) $) 10)) (-3654 (($ $) 108) (($ $ (-758)) 111)) (-3526 (($ $ $) 67)) (-1426 (($ $ $) 66)) (-2997 (($ $ (-631 $)) 100)) (-1813 (($ $ $) 103)) (-1704 (($ (-631 $)) 51)) (-1342 (($ $) 62) (($ (-631 $)) 63)) (-3031 (($ $ $) 112)) (-4172 (($ $) 106)) (-4025 (($ $ $) 117)) (-3701 (($ (-554)) 21) (($ (-1158)) 23) (($ (-1140)) 30) (($ (-221)) 25)) (-3038 (($ $ $) 93)) (-4081 (($ $) 94)) (-1415 (((-1246) (-1140)) 15)) (-2360 (($ (-1140)) 14)) (-1899 (($ (-631 (-631 $))) 50)) (-3311 (($ $ (-554)) 40) (($ $) 43)) (-1613 (((-1140) $) NIL)) (-2068 (($ $ $) 120)) (-1664 (($ $) 133) (($ $ $) 134) (($ $ $ $) 135)) (-3870 (((-112) $) 98)) (-1631 (($ $ (-631 $)) 101) (($ $ $ $) 102)) (-3997 (($ (-554)) 37)) (-3323 (((-554) $) 32) (((-554)) 35)) (-2112 (($ $ $) 38) (($ (-631 $)) 75)) (-2768 (((-1102) $) NIL)) (-3919 (($ $ $) 91)) (-4240 (($) 13)) (-2064 (($ $ (-631 $)) 99)) (-2008 (((-1140) (-1140)) 8)) (-3748 (($ $) 107) (($ $ (-758)) 110)) (-3931 (($ $ $) 88)) (-1553 (($ $ (-758)) 126)) (-4262 (($ (-631 $)) 52)) (-3075 (((-848) $) 19)) (-1608 (($ $ (-554)) 39) (($ $) 42)) (-2205 (($ $) 60) (($ (-631 $)) 61)) (-2332 (($ $) 58) (($ (-631 $)) 59)) (-4125 (($ $) 113)) (-2943 (($ (-631 $)) 57)) (-1629 (($ $ $) 97)) (-2972 (($ $ $) 119)) (-3726 (($ $ $) 92)) (-4268 (($ $ $) 95) (($ $) 96)) (-1708 (($ $ $) 81)) (-1686 (($ $ $) 79)) (-1658 (((-112) $ $) 16) (($ $ $) 17)) (-1697 (($ $ $) 80)) (-1676 (($ $ $) 78)) (-1752 (($ $ $) 86)) (-1744 (($ $ $) 83) (($ $) 84)) (-1735 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85)))
-(((-848) (-13 (-1082) (-10 -8 (-15 -1869 ((-1246) $)) (-15 -2360 ($ (-1140))) (-15 -1415 ((-1246) (-1140))) (-15 -3701 ($ (-554))) (-15 -3701 ($ (-1158))) (-15 -3701 ($ (-1140))) (-15 -3701 ($ (-221))) (-15 -4240 ($)) (-15 -2008 ((-1140) (-1140))) (-15 -4026 ((-554) $)) (-15 -3323 ((-554) $)) (-15 -4026 ((-554))) (-15 -3323 ((-554))) (-15 -2878 ((-554) $)) (-15 -4187 ((-554) $)) (-15 -3997 ($ (-554))) (-15 -3466 ($ (-554))) (-15 -2135 ($ (-554) (-554))) (-15 -3311 ($ $ (-554))) (-15 -3324 ($ $ (-554))) (-15 -1608 ($ $ (-554))) (-15 -3311 ($ $)) (-15 -3324 ($ $)) (-15 -1608 ($ $)) (-15 -2112 ($ $ $)) (-15 -4089 ($ $ $)) (-15 -2112 ($ (-631 $))) (-15 -4089 ($ (-631 $))) (-15 -2997 ($ $ (-631 $))) (-15 -1631 ($ $ (-631 $))) (-15 -1631 ($ $ $ $)) (-15 -1813 ($ $ $)) (-15 -3870 ((-112) $)) (-15 -2064 ($ $ (-631 $))) (-15 -3942 ($ $)) (-15 -2068 ($ $ $)) (-15 -4125 ($ $)) (-15 -1899 ($ (-631 (-631 $)))) (-15 -2116 ($ $ $)) (-15 -2638 ($ $)) (-15 -2638 ($ $ $)) (-15 -4025 ($ $ $)) (-15 -3571 ($ $ $)) (-15 -2972 ($ $ $)) (-15 -2085 ($ $ $)) (-15 -1553 ($ $ (-758))) (-15 -1629 ($ $ $)) (-15 -3999 ($ $ $)) (-15 -1968 ($ $ $)) (-15 -1426 ($ $ $)) (-15 -3526 ($ $ $)) (-15 -2591 ($ $ (-631 $))) (-15 -1661 ($ $ (-631 $))) (-15 -3402 ($ $)) (-15 -3748 ($ $)) (-15 -3748 ($ $ (-758))) (-15 -3654 ($ $)) (-15 -3654 ($ $ (-758))) (-15 -4172 ($ $)) (-15 -3031 ($ $ $)) (-15 -1688 ($ $)) (-15 -1688 ($ $ $)) (-15 -1688 ($ $ $ $)) (-15 -2436 ($ $)) (-15 -2436 ($ $ $)) (-15 -2436 ($ $ $ $)) (-15 -1664 ($ $)) (-15 -1664 ($ $ $)) (-15 -1664 ($ $ $ $)) (-15 -2332 ($ $)) (-15 -2332 ($ (-631 $))) (-15 -2205 ($ $)) (-15 -2205 ($ (-631 $))) (-15 -1342 ($ $)) (-15 -1342 ($ (-631 $))) (-15 -1704 ($ (-631 $))) (-15 -4262 ($ (-631 $))) (-15 -4011 ($ (-631 $))) (-15 -2943 ($ (-631 $))) (-15 -1658 ($ $ $)) (-15 -3062 ($ $ $)) (-15 -1676 ($ $ $)) (-15 -1686 ($ $ $)) (-15 -1697 ($ $ $)) (-15 -1708 ($ $ $)) (-15 -1735 ($ $ $)) (-15 -1744 ($ $ $)) (-15 -1744 ($ $)) (-15 * ($ $ $)) (-15 -1752 ($ $ $)) (-15 ** ($ $ $)) (-15 -3931 ($ $ $)) (-15 -3964 ($ $ $)) (-15 -3943 ($ $ $)) (-15 -3919 ($ $ $)) (-15 -3726 ($ $ $)) (-15 -3038 ($ $ $)) (-15 -4081 ($ $)) (-15 -4268 ($ $ $)) (-15 -4268 ($ $))))) (T -848))
-((-1869 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-848)))) (-2360 (*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-848)))) (-1415 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-848)))) (-3701 (*1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-848)))) (-3701 (*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-848)))) (-3701 (*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-848)))) (-3701 (*1 *1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-848)))) (-4240 (*1 *1) (-5 *1 (-848))) (-2008 (*1 *2 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-848)))) (-4026 (*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-848)))) (-3323 (*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-848)))) (-4026 (*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-848)))) (-3323 (*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-848)))) (-2878 (*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-848)))) (-4187 (*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-848)))) (-3997 (*1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-848)))) (-3466 (*1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-848)))) (-2135 (*1 *1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-848)))) (-3311 (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-848)))) (-3324 (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-848)))) (-1608 (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-848)))) (-3311 (*1 *1 *1) (-5 *1 (-848))) (-3324 (*1 *1 *1) (-5 *1 (-848))) (-1608 (*1 *1 *1) (-5 *1 (-848))) (-2112 (*1 *1 *1 *1) (-5 *1 (-848))) (-4089 (*1 *1 *1 *1) (-5 *1 (-848))) (-2112 (*1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848)))) (-4089 (*1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848)))) (-2997 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848)))) (-1631 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848)))) (-1631 (*1 *1 *1 *1 *1) (-5 *1 (-848))) (-1813 (*1 *1 *1 *1) (-5 *1 (-848))) (-3870 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-848)))) (-2064 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848)))) (-3942 (*1 *1 *1) (-5 *1 (-848))) (-2068 (*1 *1 *1 *1) (-5 *1 (-848))) (-4125 (*1 *1 *1) (-5 *1 (-848))) (-1899 (*1 *1 *2) (-12 (-5 *2 (-631 (-631 (-848)))) (-5 *1 (-848)))) (-2116 (*1 *1 *1 *1) (-5 *1 (-848))) (-2638 (*1 *1 *1) (-5 *1 (-848))) (-2638 (*1 *1 *1 *1) (-5 *1 (-848))) (-4025 (*1 *1 *1 *1) (-5 *1 (-848))) (-3571 (*1 *1 *1 *1) (-5 *1 (-848))) (-2972 (*1 *1 *1 *1) (-5 *1 (-848))) (-2085 (*1 *1 *1 *1) (-5 *1 (-848))) (-1553 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-848)))) (-1629 (*1 *1 *1 *1) (-5 *1 (-848))) (-3999 (*1 *1 *1 *1) (-5 *1 (-848))) (-1968 (*1 *1 *1 *1) (-5 *1 (-848))) (-1426 (*1 *1 *1 *1) (-5 *1 (-848))) (-3526 (*1 *1 *1 *1) (-5 *1 (-848))) (-2591 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848)))) (-1661 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848)))) (-3402 (*1 *1 *1) (-5 *1 (-848))) (-3748 (*1 *1 *1) (-5 *1 (-848))) (-3748 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-848)))) (-3654 (*1 *1 *1) (-5 *1 (-848))) (-3654 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-848)))) (-4172 (*1 *1 *1) (-5 *1 (-848))) (-3031 (*1 *1 *1 *1) (-5 *1 (-848))) (-1688 (*1 *1 *1) (-5 *1 (-848))) (-1688 (*1 *1 *1 *1) (-5 *1 (-848))) (-1688 (*1 *1 *1 *1 *1) (-5 *1 (-848))) (-2436 (*1 *1 *1) (-5 *1 (-848))) (-2436 (*1 *1 *1 *1) (-5 *1 (-848))) (-2436 (*1 *1 *1 *1 *1) (-5 *1 (-848))) (-1664 (*1 *1 *1) (-5 *1 (-848))) (-1664 (*1 *1 *1 *1) (-5 *1 (-848))) (-1664 (*1 *1 *1 *1 *1) (-5 *1 (-848))) (-2332 (*1 *1 *1) (-5 *1 (-848))) (-2332 (*1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848)))) (-2205 (*1 *1 *1) (-5 *1 (-848))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848)))) (-1342 (*1 *1 *1) (-5 *1 (-848))) (-1342 (*1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848)))) (-1704 (*1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848)))) (-4262 (*1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848)))) (-4011 (*1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848)))) (-1658 (*1 *1 *1 *1) (-5 *1 (-848))) (-3062 (*1 *1 *1 *1) (-5 *1 (-848))) (-1676 (*1 *1 *1 *1) (-5 *1 (-848))) (-1686 (*1 *1 *1 *1) (-5 *1 (-848))) (-1697 (*1 *1 *1 *1) (-5 *1 (-848))) (-1708 (*1 *1 *1 *1) (-5 *1 (-848))) (-1735 (*1 *1 *1 *1) (-5 *1 (-848))) (-1744 (*1 *1 *1 *1) (-5 *1 (-848))) (-1744 (*1 *1 *1) (-5 *1 (-848))) (* (*1 *1 *1 *1) (-5 *1 (-848))) (-1752 (*1 *1 *1 *1) (-5 *1 (-848))) (** (*1 *1 *1 *1) (-5 *1 (-848))) (-3931 (*1 *1 *1 *1) (-5 *1 (-848))) (-3964 (*1 *1 *1 *1) (-5 *1 (-848))) (-3943 (*1 *1 *1 *1) (-5 *1 (-848))) (-3919 (*1 *1 *1 *1) (-5 *1 (-848))) (-3726 (*1 *1 *1 *1) (-5 *1 (-848))) (-3038 (*1 *1 *1 *1) (-5 *1 (-848))) (-4081 (*1 *1 *1) (-5 *1 (-848))) (-4268 (*1 *1 *1 *1) (-5 *1 (-848))) (-4268 (*1 *1 *1) (-5 *1 (-848))))
-(-13 (-1082) (-10 -8 (-15 -1869 ((-1246) $)) (-15 -2360 ($ (-1140))) (-15 -1415 ((-1246) (-1140))) (-15 -3701 ($ (-554))) (-15 -3701 ($ (-1158))) (-15 -3701 ($ (-1140))) (-15 -3701 ($ (-221))) (-15 -4240 ($)) (-15 -2008 ((-1140) (-1140))) (-15 -4026 ((-554) $)) (-15 -3323 ((-554) $)) (-15 -4026 ((-554))) (-15 -3323 ((-554))) (-15 -2878 ((-554) $)) (-15 -4187 ((-554) $)) (-15 -3997 ($ (-554))) (-15 -3466 ($ (-554))) (-15 -2135 ($ (-554) (-554))) (-15 -3311 ($ $ (-554))) (-15 -3324 ($ $ (-554))) (-15 -1608 ($ $ (-554))) (-15 -3311 ($ $)) (-15 -3324 ($ $)) (-15 -1608 ($ $)) (-15 -2112 ($ $ $)) (-15 -4089 ($ $ $)) (-15 -2112 ($ (-631 $))) (-15 -4089 ($ (-631 $))) (-15 -2997 ($ $ (-631 $))) (-15 -1631 ($ $ (-631 $))) (-15 -1631 ($ $ $ $)) (-15 -1813 ($ $ $)) (-15 -3870 ((-112) $)) (-15 -2064 ($ $ (-631 $))) (-15 -3942 ($ $)) (-15 -2068 ($ $ $)) (-15 -4125 ($ $)) (-15 -1899 ($ (-631 (-631 $)))) (-15 -2116 ($ $ $)) (-15 -2638 ($ $)) (-15 -2638 ($ $ $)) (-15 -4025 ($ $ $)) (-15 -3571 ($ $ $)) (-15 -2972 ($ $ $)) (-15 -2085 ($ $ $)) (-15 -1553 ($ $ (-758))) (-15 -1629 ($ $ $)) (-15 -3999 ($ $ $)) (-15 -1968 ($ $ $)) (-15 -1426 ($ $ $)) (-15 -3526 ($ $ $)) (-15 -2591 ($ $ (-631 $))) (-15 -1661 ($ $ (-631 $))) (-15 -3402 ($ $)) (-15 -3748 ($ $)) (-15 -3748 ($ $ (-758))) (-15 -3654 ($ $)) (-15 -3654 ($ $ (-758))) (-15 -4172 ($ $)) (-15 -3031 ($ $ $)) (-15 -1688 ($ $)) (-15 -1688 ($ $ $)) (-15 -1688 ($ $ $ $)) (-15 -2436 ($ $)) (-15 -2436 ($ $ $)) (-15 -2436 ($ $ $ $)) (-15 -1664 ($ $)) (-15 -1664 ($ $ $)) (-15 -1664 ($ $ $ $)) (-15 -2332 ($ $)) (-15 -2332 ($ (-631 $))) (-15 -2205 ($ $)) (-15 -2205 ($ (-631 $))) (-15 -1342 ($ $)) (-15 -1342 ($ (-631 $))) (-15 -1704 ($ (-631 $))) (-15 -4262 ($ (-631 $))) (-15 -4011 ($ (-631 $))) (-15 -2943 ($ (-631 $))) (-15 -1658 ($ $ $)) (-15 -3062 ($ $ $)) (-15 -1676 ($ $ $)) (-15 -1686 ($ $ $)) (-15 -1697 ($ $ $)) (-15 -1708 ($ $ $)) (-15 -1735 ($ $ $)) (-15 -1744 ($ $ $)) (-15 -1744 ($ $)) (-15 * ($ $ $)) (-15 -1752 ($ $ $)) (-15 ** ($ $ $)) (-15 -3931 ($ $ $)) (-15 -3964 ($ $ $)) (-15 -3943 ($ $ $)) (-15 -3919 ($ $ $)) (-15 -3726 ($ $ $)) (-15 -3038 ($ $ $)) (-15 -4081 ($ $)) (-15 -4268 ($ $ $)) (-15 -4268 ($ $))))
-((-1822 (((-1246) (-631 (-52))) 24)) (-2182 (((-1246) (-1140) (-848)) 14) (((-1246) (-848)) 9) (((-1246) (-1140)) 11)))
-(((-849) (-10 -7 (-15 -2182 ((-1246) (-1140))) (-15 -2182 ((-1246) (-848))) (-15 -2182 ((-1246) (-1140) (-848))) (-15 -1822 ((-1246) (-631 (-52)))))) (T -849))
-((-1822 (*1 *2 *3) (-12 (-5 *3 (-631 (-52))) (-5 *2 (-1246)) (-5 *1 (-849)))) (-2182 (*1 *2 *3 *4) (-12 (-5 *3 (-1140)) (-5 *4 (-848)) (-5 *2 (-1246)) (-5 *1 (-849)))) (-2182 (*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1246)) (-5 *1 (-849)))) (-2182 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-849)))))
-(-10 -7 (-15 -2182 ((-1246) (-1140))) (-15 -2182 ((-1246) (-848))) (-15 -2182 ((-1246) (-1140) (-848))) (-15 -1822 ((-1246) (-631 (-52)))))
-((-3062 (((-112) $ $) NIL)) (-1576 (((-3 $ "failed") (-1158)) 33)) (-1508 (((-758)) 31)) (-3353 (($) NIL)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-3830 (((-906) $) 29)) (-1613 (((-1140) $) 39)) (-2717 (($ (-906)) 28)) (-2768 (((-1102) $) NIL)) (-2927 (((-1158) $) 13) (((-530) $) 19) (((-877 (-374)) $) 26) (((-877 (-554)) $) 22)) (-3075 (((-848) $) 16)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 36)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 35)))
-(((-850 |#1|) (-13 (-830) (-602 (-1158)) (-602 (-530)) (-602 (-877 (-374))) (-602 (-877 (-554))) (-10 -8 (-15 -1576 ((-3 $ "failed") (-1158))))) (-631 (-1158))) (T -850))
-((-1576 (*1 *1 *2) (|partial| -12 (-5 *2 (-1158)) (-5 *1 (-850 *3)) (-14 *3 (-631 *2)))))
-(-13 (-830) (-602 (-1158)) (-602 (-530)) (-602 (-877 (-374))) (-602 (-877 (-554))) (-10 -8 (-15 -1576 ((-3 $ "failed") (-1158)))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-1320 (((-3 $ "failed") $) NIL)) (-3248 (((-112) $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ (-937 |#1|)) NIL) (((-937 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-170)))) (-2261 (((-758)) NIL)) (-1561 (((-1246) (-758)) NIL)) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1658 (((-112) $ $) NIL)) (-1752 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170)))))
-(((-851 |#1| |#2| |#3| |#4|) (-13 (-1034) (-484 (-937 |#1|)) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-358)) (-15 -1752 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1561 ((-1246) (-758))))) (-1034) (-631 (-1158)) (-631 (-758)) (-758)) (T -851))
-((-1752 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-851 *2 *3 *4 *5)) (-4 *2 (-358)) (-4 *2 (-1034)) (-14 *3 (-631 (-1158))) (-14 *4 (-631 (-758))) (-14 *5 (-758)))) (-1561 (*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1246)) (-5 *1 (-851 *4 *5 *6 *7)) (-4 *4 (-1034)) (-14 *5 (-631 (-1158))) (-14 *6 (-631 *3)) (-14 *7 *3))))
-(-13 (-1034) (-484 (-937 |#1|)) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-358)) (-15 -1752 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1561 ((-1246) (-758)))))
-((-2756 (((-3 (-172 |#3|) "failed") (-758) (-758) |#2| |#2|) 31)) (-3438 (((-3 (-402 |#3|) "failed") (-758) (-758) |#2| |#2|) 24)))
-(((-852 |#1| |#2| |#3|) (-10 -7 (-15 -3438 ((-3 (-402 |#3|) "failed") (-758) (-758) |#2| |#2|)) (-15 -2756 ((-3 (-172 |#3|) "failed") (-758) (-758) |#2| |#2|))) (-358) (-1232 |#1|) (-1217 |#1|)) (T -852))
-((-2756 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-758)) (-4 *5 (-358)) (-5 *2 (-172 *6)) (-5 *1 (-852 *5 *4 *6)) (-4 *4 (-1232 *5)) (-4 *6 (-1217 *5)))) (-3438 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-758)) (-4 *5 (-358)) (-5 *2 (-402 *6)) (-5 *1 (-852 *5 *4 *6)) (-4 *4 (-1232 *5)) (-4 *6 (-1217 *5)))))
-(-10 -7 (-15 -3438 ((-3 (-402 |#3|) "failed") (-758) (-758) |#2| |#2|)) (-15 -2756 ((-3 (-172 |#3|) "failed") (-758) (-758) |#2| |#2|)))
-((-3438 (((-3 (-402 (-1214 |#2| |#1|)) "failed") (-758) (-758) (-1233 |#1| |#2| |#3|)) 28) (((-3 (-402 (-1214 |#2| |#1|)) "failed") (-758) (-758) (-1233 |#1| |#2| |#3|) (-1233 |#1| |#2| |#3|)) 26)))
-(((-853 |#1| |#2| |#3|) (-10 -7 (-15 -3438 ((-3 (-402 (-1214 |#2| |#1|)) "failed") (-758) (-758) (-1233 |#1| |#2| |#3|) (-1233 |#1| |#2| |#3|))) (-15 -3438 ((-3 (-402 (-1214 |#2| |#1|)) "failed") (-758) (-758) (-1233 |#1| |#2| |#3|)))) (-358) (-1158) |#1|) (T -853))
-((-3438 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-758)) (-5 *4 (-1233 *5 *6 *7)) (-4 *5 (-358)) (-14 *6 (-1158)) (-14 *7 *5) (-5 *2 (-402 (-1214 *6 *5))) (-5 *1 (-853 *5 *6 *7)))) (-3438 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-758)) (-5 *4 (-1233 *5 *6 *7)) (-4 *5 (-358)) (-14 *6 (-1158)) (-14 *7 *5) (-5 *2 (-402 (-1214 *6 *5))) (-5 *1 (-853 *5 *6 *7)))))
-(-10 -7 (-15 -3438 ((-3 (-402 (-1214 |#2| |#1|)) "failed") (-758) (-758) (-1233 |#1| |#2| |#3|) (-1233 |#1| |#2| |#3|))) (-15 -3438 ((-3 (-402 (-1214 |#2| |#1|)) "failed") (-758) (-758) (-1233 |#1| |#2| |#3|))))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 42)) (-1976 (($ $) 41)) (-1363 (((-112) $) 39)) (-2934 (((-3 $ "failed") $ $) 19)) (-2282 (($ $ (-554)) 63)) (-2286 (((-112) $ $) 60)) (-4087 (($) 17 T CONST)) (-2638 (($ (-1154 (-554)) (-554)) 62)) (-3964 (($ $ $) 56)) (-1320 (((-3 $ "failed") $) 33)) (-2612 (($ $) 65)) (-3943 (($ $ $) 57)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 52)) (-2342 (((-758) $) 70)) (-3248 (((-112) $) 31)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 53)) (-2340 (((-554)) 67)) (-3859 (((-554) $) 66)) (-2475 (($ $ $) 47) (($ (-631 $)) 46)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 45)) (-2510 (($ $ $) 49) (($ (-631 $)) 48)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-4282 (($ $ (-554)) 69)) (-3919 (((-3 $ "failed") $ $) 43)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 51)) (-2072 (((-758) $) 59)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 58)) (-1378 (((-1138 (-554)) $) 71)) (-1300 (($ $) 68)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ $) 44)) (-2261 (((-758)) 28)) (-1909 (((-112) $ $) 40)) (-4333 (((-554) $ (-554)) 64)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24)))
-(((-854 |#1|) (-138) (-554)) (T -854))
-((-1378 (*1 *2 *1) (-12 (-4 *1 (-854 *3)) (-5 *2 (-1138 (-554))))) (-2342 (*1 *2 *1) (-12 (-4 *1 (-854 *3)) (-5 *2 (-758)))) (-4282 (*1 *1 *1 *2) (-12 (-4 *1 (-854 *3)) (-5 *2 (-554)))) (-1300 (*1 *1 *1) (-4 *1 (-854 *2))) (-2340 (*1 *2) (-12 (-4 *1 (-854 *3)) (-5 *2 (-554)))) (-3859 (*1 *2 *1) (-12 (-4 *1 (-854 *3)) (-5 *2 (-554)))) (-2612 (*1 *1 *1) (-4 *1 (-854 *2))) (-4333 (*1 *2 *1 *2) (-12 (-4 *1 (-854 *3)) (-5 *2 (-554)))) (-2282 (*1 *1 *1 *2) (-12 (-4 *1 (-854 *3)) (-5 *2 (-554)))) (-2638 (*1 *1 *2 *3) (-12 (-5 *2 (-1154 (-554))) (-5 *3 (-554)) (-4 *1 (-854 *4)))))
-(-13 (-302) (-145) (-10 -8 (-15 -1378 ((-1138 (-554)) $)) (-15 -2342 ((-758) $)) (-15 -4282 ($ $ (-554))) (-15 -1300 ($ $)) (-15 -2340 ((-554))) (-15 -3859 ((-554) $)) (-15 -2612 ($ $)) (-15 -4333 ((-554) $ (-554))) (-15 -2282 ($ $ (-554))) (-15 -2638 ($ (-1154 (-554)) (-554)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-604 (-554)) . T) ((-604 $) . T) ((-601 (-848)) . T) ((-170) . T) ((-285) . T) ((-302) . T) ((-446) . T) ((-546) . T) ((-634 $) . T) ((-704 $) . T) ((-713) . T) ((-905) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-2282 (($ $ (-554)) NIL)) (-2286 (((-112) $ $) NIL)) (-4087 (($) NIL T CONST)) (-2638 (($ (-1154 (-554)) (-554)) NIL)) (-3964 (($ $ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2612 (($ $) NIL)) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-2342 (((-758) $) NIL)) (-3248 (((-112) $) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2340 (((-554)) NIL)) (-3859 (((-554) $) NIL)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4282 (($ $ (-554)) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-1378 (((-1138 (-554)) $) NIL)) (-1300 (($ $) NIL)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL)) (-2261 (((-758)) NIL)) (-1909 (((-112) $ $) NIL)) (-4333 (((-554) $ (-554)) NIL)) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL)))
-(((-855 |#1|) (-854 |#1|) (-554)) (T -855))
-NIL
-(-854 |#1|)
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-3831 (((-855 |#1|) $) NIL (|has| (-855 |#1|) (-302)))) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (|has| (-855 |#1|) (-894)))) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (|has| (-855 |#1|) (-894)))) (-2286 (((-112) $ $) NIL)) (-4219 (((-554) $) NIL (|has| (-855 |#1|) (-807)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-855 |#1|) "failed") $) NIL) (((-3 (-1158) "failed") $) NIL (|has| (-855 |#1|) (-1023 (-1158)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| (-855 |#1|) (-1023 (-554)))) (((-3 (-554) "failed") $) NIL (|has| (-855 |#1|) (-1023 (-554))))) (-1668 (((-855 |#1|) $) NIL) (((-1158) $) NIL (|has| (-855 |#1|) (-1023 (-1158)))) (((-402 (-554)) $) NIL (|has| (-855 |#1|) (-1023 (-554)))) (((-554) $) NIL (|has| (-855 |#1|) (-1023 (-554))))) (-1749 (($ $) NIL) (($ (-554) $) NIL)) (-3964 (($ $ $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| (-855 |#1|) (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| (-855 |#1|) (-627 (-554)))) (((-2 (|:| -2866 (-675 (-855 |#1|))) (|:| |vec| (-1241 (-855 |#1|)))) (-675 $) (-1241 $)) NIL) (((-675 (-855 |#1|)) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3353 (($) NIL (|has| (-855 |#1|) (-539)))) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-2745 (((-112) $) NIL (|has| (-855 |#1|) (-807)))) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (|has| (-855 |#1|) (-871 (-554)))) (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (|has| (-855 |#1|) (-871 (-374))))) (-3248 (((-112) $) NIL)) (-3472 (($ $) NIL)) (-2810 (((-855 |#1|) $) NIL)) (-3339 (((-3 $ "failed") $) NIL (|has| (-855 |#1|) (-1133)))) (-4304 (((-112) $) NIL (|has| (-855 |#1|) (-807)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-4223 (($ $ $) NIL (|has| (-855 |#1|) (-836)))) (-2706 (($ $ $) NIL (|has| (-855 |#1|) (-836)))) (-2879 (($ (-1 (-855 |#1|) (-855 |#1|)) $) NIL)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-3834 (($) NIL (|has| (-855 |#1|) (-1133)) CONST)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3722 (($ $) NIL (|has| (-855 |#1|) (-302)))) (-4339 (((-855 |#1|) $) NIL (|has| (-855 |#1|) (-539)))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (|has| (-855 |#1|) (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (|has| (-855 |#1|) (-894)))) (-2270 (((-413 $) $) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2386 (($ $ (-631 (-855 |#1|)) (-631 (-855 |#1|))) NIL (|has| (-855 |#1|) (-304 (-855 |#1|)))) (($ $ (-855 |#1|) (-855 |#1|)) NIL (|has| (-855 |#1|) (-304 (-855 |#1|)))) (($ $ (-289 (-855 |#1|))) NIL (|has| (-855 |#1|) (-304 (-855 |#1|)))) (($ $ (-631 (-289 (-855 |#1|)))) NIL (|has| (-855 |#1|) (-304 (-855 |#1|)))) (($ $ (-631 (-1158)) (-631 (-855 |#1|))) NIL (|has| (-855 |#1|) (-508 (-1158) (-855 |#1|)))) (($ $ (-1158) (-855 |#1|)) NIL (|has| (-855 |#1|) (-508 (-1158) (-855 |#1|))))) (-2072 (((-758) $) NIL)) (-2064 (($ $ (-855 |#1|)) NIL (|has| (-855 |#1|) (-281 (-855 |#1|) (-855 |#1|))))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-1553 (($ $) NIL (|has| (-855 |#1|) (-229))) (($ $ (-758)) NIL (|has| (-855 |#1|) (-229))) (($ $ (-1158)) NIL (|has| (-855 |#1|) (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| (-855 |#1|) (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| (-855 |#1|) (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| (-855 |#1|) (-885 (-1158)))) (($ $ (-1 (-855 |#1|) (-855 |#1|)) (-758)) NIL) (($ $ (-1 (-855 |#1|) (-855 |#1|))) NIL)) (-3623 (($ $) NIL)) (-2822 (((-855 |#1|) $) NIL)) (-2927 (((-877 (-554)) $) NIL (|has| (-855 |#1|) (-602 (-877 (-554))))) (((-877 (-374)) $) NIL (|has| (-855 |#1|) (-602 (-877 (-374))))) (((-530) $) NIL (|has| (-855 |#1|) (-602 (-530)))) (((-374) $) NIL (|has| (-855 |#1|) (-1007))) (((-221) $) NIL (|has| (-855 |#1|) (-1007)))) (-3691 (((-172 (-402 (-554))) $) NIL)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| (-855 |#1|) (-894))))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL) (($ (-402 (-554))) NIL) (($ (-855 |#1|)) NIL) (($ (-1158)) NIL (|has| (-855 |#1|) (-1023 (-1158))))) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| (-855 |#1|) (-894))) (|has| (-855 |#1|) (-143))))) (-2261 (((-758)) NIL)) (-2755 (((-855 |#1|) $) NIL (|has| (-855 |#1|) (-539)))) (-1909 (((-112) $ $) NIL)) (-4333 (((-402 (-554)) $ (-554)) NIL)) (-1700 (($ $) NIL (|has| (-855 |#1|) (-807)))) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $) NIL (|has| (-855 |#1|) (-229))) (($ $ (-758)) NIL (|has| (-855 |#1|) (-229))) (($ $ (-1158)) NIL (|has| (-855 |#1|) (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| (-855 |#1|) (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| (-855 |#1|) (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| (-855 |#1|) (-885 (-1158)))) (($ $ (-1 (-855 |#1|) (-855 |#1|)) (-758)) NIL) (($ $ (-1 (-855 |#1|) (-855 |#1|))) NIL)) (-1708 (((-112) $ $) NIL (|has| (-855 |#1|) (-836)))) (-1686 (((-112) $ $) NIL (|has| (-855 |#1|) (-836)))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (|has| (-855 |#1|) (-836)))) (-1676 (((-112) $ $) NIL (|has| (-855 |#1|) (-836)))) (-1752 (($ $ $) NIL) (($ (-855 |#1|) (-855 |#1|)) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL) (($ (-855 |#1|) $) NIL) (($ $ (-855 |#1|)) NIL)))
-(((-856 |#1|) (-13 (-977 (-855 |#1|)) (-10 -8 (-15 -4333 ((-402 (-554)) $ (-554))) (-15 -3691 ((-172 (-402 (-554))) $)) (-15 -1749 ($ $)) (-15 -1749 ($ (-554) $)))) (-554)) (T -856))
-((-4333 (*1 *2 *1 *3) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-856 *4)) (-14 *4 *3) (-5 *3 (-554)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-172 (-402 (-554)))) (-5 *1 (-856 *3)) (-14 *3 (-554)))) (-1749 (*1 *1 *1) (-12 (-5 *1 (-856 *2)) (-14 *2 (-554)))) (-1749 (*1 *1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-856 *3)) (-14 *3 *2))))
-(-13 (-977 (-855 |#1|)) (-10 -8 (-15 -4333 ((-402 (-554)) $ (-554))) (-15 -3691 ((-172 (-402 (-554))) $)) (-15 -1749 ($ $)) (-15 -1749 ($ (-554) $))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-3831 ((|#2| $) NIL (|has| |#2| (-302)))) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-2286 (((-112) $ $) NIL)) (-4219 (((-554) $) NIL (|has| |#2| (-807)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#2| "failed") $) NIL) (((-3 (-1158) "failed") $) NIL (|has| |#2| (-1023 (-1158)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#2| (-1023 (-554)))) (((-3 (-554) "failed") $) NIL (|has| |#2| (-1023 (-554))))) (-1668 ((|#2| $) NIL) (((-1158) $) NIL (|has| |#2| (-1023 (-1158)))) (((-402 (-554)) $) NIL (|has| |#2| (-1023 (-554)))) (((-554) $) NIL (|has| |#2| (-1023 (-554))))) (-1749 (($ $) 31) (($ (-554) $) 32)) (-3964 (($ $ $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| |#2| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| |#2| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 $) (-1241 $)) NIL) (((-675 |#2|) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) 53)) (-3353 (($) NIL (|has| |#2| (-539)))) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-2745 (((-112) $) NIL (|has| |#2| (-807)))) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (|has| |#2| (-871 (-554)))) (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (|has| |#2| (-871 (-374))))) (-3248 (((-112) $) NIL)) (-3472 (($ $) NIL)) (-2810 ((|#2| $) NIL)) (-3339 (((-3 $ "failed") $) NIL (|has| |#2| (-1133)))) (-4304 (((-112) $) NIL (|has| |#2| (-807)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-4223 (($ $ $) NIL (|has| |#2| (-836)))) (-2706 (($ $ $) NIL (|has| |#2| (-836)))) (-2879 (($ (-1 |#2| |#2|) $) NIL)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) 49)) (-3834 (($) NIL (|has| |#2| (-1133)) CONST)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3722 (($ $) NIL (|has| |#2| (-302)))) (-4339 ((|#2| $) NIL (|has| |#2| (-539)))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-2270 (((-413 $) $) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2386 (($ $ (-631 |#2|) (-631 |#2|)) NIL (|has| |#2| (-304 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-304 |#2|))) (($ $ (-289 |#2|)) NIL (|has| |#2| (-304 |#2|))) (($ $ (-631 (-289 |#2|))) NIL (|has| |#2| (-304 |#2|))) (($ $ (-631 (-1158)) (-631 |#2|)) NIL (|has| |#2| (-508 (-1158) |#2|))) (($ $ (-1158) |#2|) NIL (|has| |#2| (-508 (-1158) |#2|)))) (-2072 (((-758) $) NIL)) (-2064 (($ $ |#2|) NIL (|has| |#2| (-281 |#2| |#2|)))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-1553 (($ $) NIL (|has| |#2| (-229))) (($ $ (-758)) NIL (|has| |#2| (-229))) (($ $ (-1158)) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-1 |#2| |#2|) (-758)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3623 (($ $) NIL)) (-2822 ((|#2| $) NIL)) (-2927 (((-877 (-554)) $) NIL (|has| |#2| (-602 (-877 (-554))))) (((-877 (-374)) $) NIL (|has| |#2| (-602 (-877 (-374))))) (((-530) $) NIL (|has| |#2| (-602 (-530)))) (((-374) $) NIL (|has| |#2| (-1007))) (((-221) $) NIL (|has| |#2| (-1007)))) (-3691 (((-172 (-402 (-554))) $) 68)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-894))))) (-3075 (((-848) $) 87) (($ (-554)) 19) (($ $) NIL) (($ (-402 (-554))) 24) (($ |#2|) 18) (($ (-1158)) NIL (|has| |#2| (-1023 (-1158))))) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| |#2| (-894))) (|has| |#2| (-143))))) (-2261 (((-758)) NIL)) (-2755 ((|#2| $) NIL (|has| |#2| (-539)))) (-1909 (((-112) $ $) NIL)) (-4333 (((-402 (-554)) $ (-554)) 60)) (-1700 (($ $) NIL (|has| |#2| (-807)))) (-2004 (($) 14 T CONST)) (-2014 (($) 16 T CONST)) (-1787 (($ $) NIL (|has| |#2| (-229))) (($ $ (-758)) NIL (|has| |#2| (-229))) (($ $ (-1158)) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-1 |#2| |#2|) (-758)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1708 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1658 (((-112) $ $) 35)) (-1697 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1752 (($ $ $) 23) (($ |#2| |#2|) 54)) (-1744 (($ $) 39) (($ $ $) 41)) (-1735 (($ $ $) 37)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) 50)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 42) (($ $ $) 44) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL)))
-(((-857 |#1| |#2|) (-13 (-977 |#2|) (-10 -8 (-15 -4333 ((-402 (-554)) $ (-554))) (-15 -3691 ((-172 (-402 (-554))) $)) (-15 -1749 ($ $)) (-15 -1749 ($ (-554) $)))) (-554) (-854 |#1|)) (T -857))
-((-4333 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-402 (-554))) (-5 *1 (-857 *4 *5)) (-5 *3 (-554)) (-4 *5 (-854 *4)))) (-3691 (*1 *2 *1) (-12 (-14 *3 (-554)) (-5 *2 (-172 (-402 (-554)))) (-5 *1 (-857 *3 *4)) (-4 *4 (-854 *3)))) (-1749 (*1 *1 *1) (-12 (-14 *2 (-554)) (-5 *1 (-857 *2 *3)) (-4 *3 (-854 *2)))) (-1749 (*1 *1 *2 *1) (-12 (-5 *2 (-554)) (-14 *3 *2) (-5 *1 (-857 *3 *4)) (-4 *4 (-854 *3)))))
-(-13 (-977 |#2|) (-10 -8 (-15 -4333 ((-402 (-554)) $ (-554))) (-15 -3691 ((-172 (-402 (-554))) $)) (-15 -1749 ($ $)) (-15 -1749 ($ (-554) $))))
-((-3062 (((-112) $ $) NIL (-12 (|has| |#1| (-1082)) (|has| |#2| (-1082))))) (-2337 ((|#2| $) 12)) (-2746 (($ |#1| |#2|) 9)) (-1613 (((-1140) $) NIL (-12 (|has| |#1| (-1082)) (|has| |#2| (-1082))))) (-2768 (((-1102) $) NIL (-12 (|has| |#1| (-1082)) (|has| |#2| (-1082))))) (-1539 ((|#1| $) 11)) (-3089 (($ |#1| |#2|) 10)) (-3075 (((-848) $) 18 (-3994 (-12 (|has| |#1| (-601 (-848))) (|has| |#2| (-601 (-848)))) (-12 (|has| |#1| (-1082)) (|has| |#2| (-1082)))))) (-1658 (((-112) $ $) 22 (-12 (|has| |#1| (-1082)) (|has| |#2| (-1082))))))
-(((-858 |#1| |#2|) (-13 (-1195) (-10 -8 (IF (|has| |#1| (-601 (-848))) (IF (|has| |#2| (-601 (-848))) (-6 (-601 (-848))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1082)) (IF (|has| |#2| (-1082)) (-6 (-1082)) |%noBranch|) |%noBranch|) (-15 -2746 ($ |#1| |#2|)) (-15 -3089 ($ |#1| |#2|)) (-15 -1539 (|#1| $)) (-15 -2337 (|#2| $)))) (-1195) (-1195)) (T -858))
-((-2746 (*1 *1 *2 *3) (-12 (-5 *1 (-858 *2 *3)) (-4 *2 (-1195)) (-4 *3 (-1195)))) (-3089 (*1 *1 *2 *3) (-12 (-5 *1 (-858 *2 *3)) (-4 *2 (-1195)) (-4 *3 (-1195)))) (-1539 (*1 *2 *1) (-12 (-4 *2 (-1195)) (-5 *1 (-858 *2 *3)) (-4 *3 (-1195)))) (-2337 (*1 *2 *1) (-12 (-4 *2 (-1195)) (-5 *1 (-858 *3 *2)) (-4 *3 (-1195)))))
-(-13 (-1195) (-10 -8 (IF (|has| |#1| (-601 (-848))) (IF (|has| |#2| (-601 (-848))) (-6 (-601 (-848))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1082)) (IF (|has| |#2| (-1082)) (-6 (-1082)) |%noBranch|) |%noBranch|) (-15 -2746 ($ |#1| |#2|)) (-15 -3089 ($ |#1| |#2|)) (-15 -1539 (|#1| $)) (-15 -2337 (|#2| $))))
-((-3062 (((-112) $ $) NIL)) (-2212 (((-554) $) 15)) (-3903 (($ (-155)) 11)) (-2604 (($ (-155)) 12)) (-1613 (((-1140) $) NIL)) (-3684 (((-155) $) 13)) (-2768 (((-1102) $) NIL)) (-4082 (($ (-155)) 9)) (-3695 (($ (-155)) 8)) (-3075 (((-848) $) 23) (($ (-155)) 16)) (-1951 (($ (-155)) 10)) (-1658 (((-112) $ $) NIL)))
-(((-859) (-13 (-1082) (-10 -8 (-15 -3695 ($ (-155))) (-15 -4082 ($ (-155))) (-15 -1951 ($ (-155))) (-15 -3903 ($ (-155))) (-15 -2604 ($ (-155))) (-15 -3684 ((-155) $)) (-15 -2212 ((-554) $)) (-15 -3075 ($ (-155)))))) (T -859))
-((-3695 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-859)))) (-4082 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-859)))) (-1951 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-859)))) (-3903 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-859)))) (-2604 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-859)))) (-3684 (*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-859)))) (-2212 (*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-859)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-859)))))
-(-13 (-1082) (-10 -8 (-15 -3695 ($ (-155))) (-15 -4082 ($ (-155))) (-15 -1951 ($ (-155))) (-15 -3903 ($ (-155))) (-15 -2604 ($ (-155))) (-15 -3684 ((-155) $)) (-15 -2212 ((-554) $)) (-15 -3075 ($ (-155)))))
-((-3075 (((-311 (-554)) (-402 (-937 (-48)))) 23) (((-311 (-554)) (-937 (-48))) 18)))
-(((-860) (-10 -7 (-15 -3075 ((-311 (-554)) (-937 (-48)))) (-15 -3075 ((-311 (-554)) (-402 (-937 (-48))))))) (T -860))
-((-3075 (*1 *2 *3) (-12 (-5 *3 (-402 (-937 (-48)))) (-5 *2 (-311 (-554))) (-5 *1 (-860)))) (-3075 (*1 *2 *3) (-12 (-5 *3 (-937 (-48))) (-5 *2 (-311 (-554))) (-5 *1 (-860)))))
-(-10 -7 (-15 -3075 ((-311 (-554)) (-937 (-48)))) (-15 -3075 ((-311 (-554)) (-402 (-937 (-48))))))
-((-2879 (((-862 |#2|) (-1 |#2| |#1|) (-862 |#1|)) 14)))
-(((-861 |#1| |#2|) (-10 -7 (-15 -2879 ((-862 |#2|) (-1 |#2| |#1|) (-862 |#1|)))) (-1195) (-1195)) (T -861))
-((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-862 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-862 *6)) (-5 *1 (-861 *5 *6)))))
-(-10 -7 (-15 -2879 ((-862 |#2|) (-1 |#2| |#1|) (-862 |#1|))))
-((-3365 (($ |#1| |#1|) 8)) (-3905 ((|#1| $ (-758)) 10)))
-(((-862 |#1|) (-10 -8 (-15 -3365 ($ |#1| |#1|)) (-15 -3905 (|#1| $ (-758)))) (-1195)) (T -862))
-((-3905 (*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-5 *1 (-862 *2)) (-4 *2 (-1195)))) (-3365 (*1 *1 *2 *2) (-12 (-5 *1 (-862 *2)) (-4 *2 (-1195)))))
-(-10 -8 (-15 -3365 ($ |#1| |#1|)) (-15 -3905 (|#1| $ (-758))))
-((-2879 (((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|)) 14)))
-(((-863 |#1| |#2|) (-10 -7 (-15 -2879 ((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|)))) (-1195) (-1195)) (T -863))
-((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-864 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-864 *6)) (-5 *1 (-863 *5 *6)))))
-(-10 -7 (-15 -2879 ((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|))))
-((-3365 (($ |#1| |#1| |#1|) 8)) (-3905 ((|#1| $ (-758)) 10)))
-(((-864 |#1|) (-10 -8 (-15 -3365 ($ |#1| |#1| |#1|)) (-15 -3905 (|#1| $ (-758)))) (-1195)) (T -864))
-((-3905 (*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-5 *1 (-864 *2)) (-4 *2 (-1195)))) (-3365 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1195)))))
-(-10 -8 (-15 -3365 ($ |#1| |#1| |#1|)) (-15 -3905 (|#1| $ (-758))))
-((-3838 (((-631 (-1163)) (-1140)) 9)))
-(((-865) (-10 -7 (-15 -3838 ((-631 (-1163)) (-1140))))) (T -865))
-((-3838 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-631 (-1163))) (-5 *1 (-865)))))
-(-10 -7 (-15 -3838 ((-631 (-1163)) (-1140))))
-((-2879 (((-867 |#2|) (-1 |#2| |#1|) (-867 |#1|)) 14)))
-(((-866 |#1| |#2|) (-10 -7 (-15 -2879 ((-867 |#2|) (-1 |#2| |#1|) (-867 |#1|)))) (-1195) (-1195)) (T -866))
-((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-867 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-867 *6)) (-5 *1 (-866 *5 *6)))))
-(-10 -7 (-15 -2879 ((-867 |#2|) (-1 |#2| |#1|) (-867 |#1|))))
-((-2666 (($ |#1| |#1| |#1|) 8)) (-3905 ((|#1| $ (-758)) 10)))
-(((-867 |#1|) (-10 -8 (-15 -2666 ($ |#1| |#1| |#1|)) (-15 -3905 (|#1| $ (-758)))) (-1195)) (T -867))
-((-3905 (*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-5 *1 (-867 *2)) (-4 *2 (-1195)))) (-2666 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-867 *2)) (-4 *2 (-1195)))))
-(-10 -8 (-15 -2666 ($ |#1| |#1| |#1|)) (-15 -3905 (|#1| $ (-758))))
-((-2264 (((-1138 (-631 (-554))) (-631 (-554)) (-1138 (-631 (-554)))) 32)) (-1774 (((-1138 (-631 (-554))) (-631 (-554)) (-631 (-554))) 28)) (-3853 (((-1138 (-631 (-554))) (-631 (-554))) 41) (((-1138 (-631 (-554))) (-631 (-554)) (-631 (-554))) 40)) (-2172 (((-1138 (-631 (-554))) (-554)) 42)) (-2904 (((-1138 (-631 (-554))) (-554) (-554)) 22) (((-1138 (-631 (-554))) (-554)) 16) (((-1138 (-631 (-554))) (-554) (-554) (-554)) 12)) (-1366 (((-1138 (-631 (-554))) (-1138 (-631 (-554)))) 26)) (-3992 (((-631 (-554)) (-631 (-554))) 25)))
-(((-868) (-10 -7 (-15 -2904 ((-1138 (-631 (-554))) (-554) (-554) (-554))) (-15 -2904 ((-1138 (-631 (-554))) (-554))) (-15 -2904 ((-1138 (-631 (-554))) (-554) (-554))) (-15 -3992 ((-631 (-554)) (-631 (-554)))) (-15 -1366 ((-1138 (-631 (-554))) (-1138 (-631 (-554))))) (-15 -1774 ((-1138 (-631 (-554))) (-631 (-554)) (-631 (-554)))) (-15 -2264 ((-1138 (-631 (-554))) (-631 (-554)) (-1138 (-631 (-554))))) (-15 -3853 ((-1138 (-631 (-554))) (-631 (-554)) (-631 (-554)))) (-15 -3853 ((-1138 (-631 (-554))) (-631 (-554)))) (-15 -2172 ((-1138 (-631 (-554))) (-554))))) (T -868))
-((-2172 (*1 *2 *3) (-12 (-5 *2 (-1138 (-631 (-554)))) (-5 *1 (-868)) (-5 *3 (-554)))) (-3853 (*1 *2 *3) (-12 (-5 *2 (-1138 (-631 (-554)))) (-5 *1 (-868)) (-5 *3 (-631 (-554))))) (-3853 (*1 *2 *3 *3) (-12 (-5 *2 (-1138 (-631 (-554)))) (-5 *1 (-868)) (-5 *3 (-631 (-554))))) (-2264 (*1 *2 *3 *2) (-12 (-5 *2 (-1138 (-631 (-554)))) (-5 *3 (-631 (-554))) (-5 *1 (-868)))) (-1774 (*1 *2 *3 *3) (-12 (-5 *2 (-1138 (-631 (-554)))) (-5 *1 (-868)) (-5 *3 (-631 (-554))))) (-1366 (*1 *2 *2) (-12 (-5 *2 (-1138 (-631 (-554)))) (-5 *1 (-868)))) (-3992 (*1 *2 *2) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-868)))) (-2904 (*1 *2 *3 *3) (-12 (-5 *2 (-1138 (-631 (-554)))) (-5 *1 (-868)) (-5 *3 (-554)))) (-2904 (*1 *2 *3) (-12 (-5 *2 (-1138 (-631 (-554)))) (-5 *1 (-868)) (-5 *3 (-554)))) (-2904 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1138 (-631 (-554)))) (-5 *1 (-868)) (-5 *3 (-554)))))
-(-10 -7 (-15 -2904 ((-1138 (-631 (-554))) (-554) (-554) (-554))) (-15 -2904 ((-1138 (-631 (-554))) (-554))) (-15 -2904 ((-1138 (-631 (-554))) (-554) (-554))) (-15 -3992 ((-631 (-554)) (-631 (-554)))) (-15 -1366 ((-1138 (-631 (-554))) (-1138 (-631 (-554))))) (-15 -1774 ((-1138 (-631 (-554))) (-631 (-554)) (-631 (-554)))) (-15 -2264 ((-1138 (-631 (-554))) (-631 (-554)) (-1138 (-631 (-554))))) (-15 -3853 ((-1138 (-631 (-554))) (-631 (-554)) (-631 (-554)))) (-15 -3853 ((-1138 (-631 (-554))) (-631 (-554)))) (-15 -2172 ((-1138 (-631 (-554))) (-554))))
-((-2927 (((-877 (-374)) $) 9 (|has| |#1| (-602 (-877 (-374))))) (((-877 (-554)) $) 8 (|has| |#1| (-602 (-877 (-554)))))))
-(((-869 |#1|) (-138) (-1195)) (T -869))
-NIL
-(-13 (-10 -7 (IF (|has| |t#1| (-602 (-877 (-554)))) (-6 (-602 (-877 (-554)))) |%noBranch|) (IF (|has| |t#1| (-602 (-877 (-374)))) (-6 (-602 (-877 (-374)))) |%noBranch|)))
-(((-602 (-877 (-374))) |has| |#1| (-602 (-877 (-374)))) ((-602 (-877 (-554))) |has| |#1| (-602 (-877 (-554)))))
-((-3062 (((-112) $ $) NIL)) (-3180 (($) 14)) (-2737 (($ (-874 |#1| |#2|) (-874 |#1| |#3|)) 27)) (-4252 (((-874 |#1| |#3|) $) 16)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2664 (((-112) $) 22)) (-4156 (($) 19)) (-3075 (((-848) $) 30)) (-3572 (((-874 |#1| |#2|) $) 15)) (-1658 (((-112) $ $) 25)))
-(((-870 |#1| |#2| |#3|) (-13 (-1082) (-10 -8 (-15 -2664 ((-112) $)) (-15 -4156 ($)) (-15 -3180 ($)) (-15 -2737 ($ (-874 |#1| |#2|) (-874 |#1| |#3|))) (-15 -3572 ((-874 |#1| |#2|) $)) (-15 -4252 ((-874 |#1| |#3|) $)))) (-1082) (-1082) (-652 |#2|)) (T -870))
-((-2664 (*1 *2 *1) (-12 (-4 *4 (-1082)) (-5 *2 (-112)) (-5 *1 (-870 *3 *4 *5)) (-4 *3 (-1082)) (-4 *5 (-652 *4)))) (-4156 (*1 *1) (-12 (-4 *3 (-1082)) (-5 *1 (-870 *2 *3 *4)) (-4 *2 (-1082)) (-4 *4 (-652 *3)))) (-3180 (*1 *1) (-12 (-4 *3 (-1082)) (-5 *1 (-870 *2 *3 *4)) (-4 *2 (-1082)) (-4 *4 (-652 *3)))) (-2737 (*1 *1 *2 *3) (-12 (-5 *2 (-874 *4 *5)) (-5 *3 (-874 *4 *6)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-652 *5)) (-5 *1 (-870 *4 *5 *6)))) (-3572 (*1 *2 *1) (-12 (-4 *4 (-1082)) (-5 *2 (-874 *3 *4)) (-5 *1 (-870 *3 *4 *5)) (-4 *3 (-1082)) (-4 *5 (-652 *4)))) (-4252 (*1 *2 *1) (-12 (-4 *4 (-1082)) (-5 *2 (-874 *3 *5)) (-5 *1 (-870 *3 *4 *5)) (-4 *3 (-1082)) (-4 *5 (-652 *4)))))
-(-13 (-1082) (-10 -8 (-15 -2664 ((-112) $)) (-15 -4156 ($)) (-15 -3180 ($)) (-15 -2737 ($ (-874 |#1| |#2|) (-874 |#1| |#3|))) (-15 -3572 ((-874 |#1| |#2|) $)) (-15 -4252 ((-874 |#1| |#3|) $))))
-((-3062 (((-112) $ $) 7)) (-1655 (((-874 |#1| $) $ (-877 |#1|) (-874 |#1| $)) 13)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-1658 (((-112) $ $) 6)))
-(((-871 |#1|) (-138) (-1082)) (T -871))
-((-1655 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-874 *4 *1)) (-5 *3 (-877 *4)) (-4 *1 (-871 *4)) (-4 *4 (-1082)))))
-(-13 (-1082) (-10 -8 (-15 -1655 ((-874 |t#1| $) $ (-877 |t#1|) (-874 |t#1| $)))))
-(((-102) . T) ((-601 (-848)) . T) ((-1082) . T))
-((-2640 (((-112) (-631 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-3966 (((-874 |#1| |#2|) |#2| |#3|) 43 (-12 (-4081 (|has| |#2| (-1023 (-1158)))) (-4081 (|has| |#2| (-1034))))) (((-631 (-289 (-937 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-1034)) (-4081 (|has| |#2| (-1023 (-1158)))))) (((-631 (-289 |#2|)) |#2| |#3|) 35 (|has| |#2| (-1023 (-1158)))) (((-870 |#1| |#2| (-631 |#2|)) (-631 |#2|) |#3|) 21)))
-(((-872 |#1| |#2| |#3|) (-10 -7 (-15 -2640 ((-112) |#2| |#3|)) (-15 -2640 ((-112) (-631 |#2|) |#3|)) (-15 -3966 ((-870 |#1| |#2| (-631 |#2|)) (-631 |#2|) |#3|)) (IF (|has| |#2| (-1023 (-1158))) (-15 -3966 ((-631 (-289 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1034)) (-15 -3966 ((-631 (-289 (-937 |#2|))) |#2| |#3|)) (-15 -3966 ((-874 |#1| |#2|) |#2| |#3|))))) (-1082) (-871 |#1|) (-602 (-877 |#1|))) (T -872))
-((-3966 (*1 *2 *3 *4) (-12 (-4 *5 (-1082)) (-5 *2 (-874 *5 *3)) (-5 *1 (-872 *5 *3 *4)) (-4081 (-4 *3 (-1023 (-1158)))) (-4081 (-4 *3 (-1034))) (-4 *3 (-871 *5)) (-4 *4 (-602 (-877 *5))))) (-3966 (*1 *2 *3 *4) (-12 (-4 *5 (-1082)) (-5 *2 (-631 (-289 (-937 *3)))) (-5 *1 (-872 *5 *3 *4)) (-4 *3 (-1034)) (-4081 (-4 *3 (-1023 (-1158)))) (-4 *3 (-871 *5)) (-4 *4 (-602 (-877 *5))))) (-3966 (*1 *2 *3 *4) (-12 (-4 *5 (-1082)) (-5 *2 (-631 (-289 *3))) (-5 *1 (-872 *5 *3 *4)) (-4 *3 (-1023 (-1158))) (-4 *3 (-871 *5)) (-4 *4 (-602 (-877 *5))))) (-3966 (*1 *2 *3 *4) (-12 (-4 *5 (-1082)) (-4 *6 (-871 *5)) (-5 *2 (-870 *5 *6 (-631 *6))) (-5 *1 (-872 *5 *6 *4)) (-5 *3 (-631 *6)) (-4 *4 (-602 (-877 *5))))) (-2640 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *6)) (-4 *6 (-871 *5)) (-4 *5 (-1082)) (-5 *2 (-112)) (-5 *1 (-872 *5 *6 *4)) (-4 *4 (-602 (-877 *5))))) (-2640 (*1 *2 *3 *4) (-12 (-4 *5 (-1082)) (-5 *2 (-112)) (-5 *1 (-872 *5 *3 *4)) (-4 *3 (-871 *5)) (-4 *4 (-602 (-877 *5))))))
-(-10 -7 (-15 -2640 ((-112) |#2| |#3|)) (-15 -2640 ((-112) (-631 |#2|) |#3|)) (-15 -3966 ((-870 |#1| |#2| (-631 |#2|)) (-631 |#2|) |#3|)) (IF (|has| |#2| (-1023 (-1158))) (-15 -3966 ((-631 (-289 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1034)) (-15 -3966 ((-631 (-289 (-937 |#2|))) |#2| |#3|)) (-15 -3966 ((-874 |#1| |#2|) |#2| |#3|)))))
-((-2879 (((-874 |#1| |#3|) (-1 |#3| |#2|) (-874 |#1| |#2|)) 22)))
-(((-873 |#1| |#2| |#3|) (-10 -7 (-15 -2879 ((-874 |#1| |#3|) (-1 |#3| |#2|) (-874 |#1| |#2|)))) (-1082) (-1082) (-1082)) (T -873))
-((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-874 *5 *6)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-874 *5 *7)) (-5 *1 (-873 *5 *6 *7)))))
-(-10 -7 (-15 -2879 ((-874 |#1| |#3|) (-1 |#3| |#2|) (-874 |#1| |#2|))))
-((-3062 (((-112) $ $) NIL)) (-3382 (($ $ $) 39)) (-1819 (((-3 (-112) "failed") $ (-877 |#1|)) 36)) (-3180 (($) 12)) (-1613 (((-1140) $) NIL)) (-1387 (($ (-877 |#1|) |#2| $) 20)) (-2768 (((-1102) $) NIL)) (-4176 (((-3 |#2| "failed") (-877 |#1|) $) 50)) (-2664 (((-112) $) 15)) (-4156 (($) 13)) (-2344 (((-631 (-2 (|:| -2564 (-1158)) (|:| -2701 |#2|))) $) 25)) (-3089 (($ (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 |#2|)))) 23)) (-3075 (((-848) $) 44)) (-2648 (($ (-877 |#1|) |#2| $ |#2|) 48)) (-2925 (($ (-877 |#1|) |#2| $) 47)) (-1658 (((-112) $ $) 41)))
-(((-874 |#1| |#2|) (-13 (-1082) (-10 -8 (-15 -2664 ((-112) $)) (-15 -4156 ($)) (-15 -3180 ($)) (-15 -3382 ($ $ $)) (-15 -4176 ((-3 |#2| "failed") (-877 |#1|) $)) (-15 -2925 ($ (-877 |#1|) |#2| $)) (-15 -1387 ($ (-877 |#1|) |#2| $)) (-15 -2648 ($ (-877 |#1|) |#2| $ |#2|)) (-15 -2344 ((-631 (-2 (|:| -2564 (-1158)) (|:| -2701 |#2|))) $)) (-15 -3089 ($ (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 |#2|))))) (-15 -1819 ((-3 (-112) "failed") $ (-877 |#1|))))) (-1082) (-1082)) (T -874))
-((-2664 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-874 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)))) (-4156 (*1 *1) (-12 (-5 *1 (-874 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082)))) (-3180 (*1 *1) (-12 (-5 *1 (-874 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082)))) (-3382 (*1 *1 *1 *1) (-12 (-5 *1 (-874 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082)))) (-4176 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-877 *4)) (-4 *4 (-1082)) (-4 *2 (-1082)) (-5 *1 (-874 *4 *2)))) (-2925 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-877 *4)) (-4 *4 (-1082)) (-5 *1 (-874 *4 *3)) (-4 *3 (-1082)))) (-1387 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-877 *4)) (-4 *4 (-1082)) (-5 *1 (-874 *4 *3)) (-4 *3 (-1082)))) (-2648 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-877 *4)) (-4 *4 (-1082)) (-5 *1 (-874 *4 *3)) (-4 *3 (-1082)))) (-2344 (*1 *2 *1) (-12 (-5 *2 (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 *4)))) (-5 *1 (-874 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)))) (-3089 (*1 *1 *2) (-12 (-5 *2 (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 *4)))) (-4 *4 (-1082)) (-5 *1 (-874 *3 *4)) (-4 *3 (-1082)))) (-1819 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-877 *4)) (-4 *4 (-1082)) (-5 *2 (-112)) (-5 *1 (-874 *4 *5)) (-4 *5 (-1082)))))
-(-13 (-1082) (-10 -8 (-15 -2664 ((-112) $)) (-15 -4156 ($)) (-15 -3180 ($)) (-15 -3382 ($ $ $)) (-15 -4176 ((-3 |#2| "failed") (-877 |#1|) $)) (-15 -2925 ($ (-877 |#1|) |#2| $)) (-15 -1387 ($ (-877 |#1|) |#2| $)) (-15 -2648 ($ (-877 |#1|) |#2| $ |#2|)) (-15 -2344 ((-631 (-2 (|:| -2564 (-1158)) (|:| -2701 |#2|))) $)) (-15 -3089 ($ (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 |#2|))))) (-15 -1819 ((-3 (-112) "failed") $ (-877 |#1|)))))
-((-3234 (((-877 |#1|) (-877 |#1|) (-631 (-1158)) (-1 (-112) (-631 |#2|))) 32) (((-877 |#1|) (-877 |#1|) (-631 (-1 (-112) |#2|))) 43) (((-877 |#1|) (-877 |#1|) (-1 (-112) |#2|)) 35)) (-1819 (((-112) (-631 |#2|) (-877 |#1|)) 40) (((-112) |#2| (-877 |#1|)) 36)) (-4322 (((-1 (-112) |#2|) (-877 |#1|)) 16)) (-2265 (((-631 |#2|) (-877 |#1|)) 24)) (-4228 (((-877 |#1|) (-877 |#1|) |#2|) 20)))
-(((-875 |#1| |#2|) (-10 -7 (-15 -3234 ((-877 |#1|) (-877 |#1|) (-1 (-112) |#2|))) (-15 -3234 ((-877 |#1|) (-877 |#1|) (-631 (-1 (-112) |#2|)))) (-15 -3234 ((-877 |#1|) (-877 |#1|) (-631 (-1158)) (-1 (-112) (-631 |#2|)))) (-15 -4322 ((-1 (-112) |#2|) (-877 |#1|))) (-15 -1819 ((-112) |#2| (-877 |#1|))) (-15 -1819 ((-112) (-631 |#2|) (-877 |#1|))) (-15 -4228 ((-877 |#1|) (-877 |#1|) |#2|)) (-15 -2265 ((-631 |#2|) (-877 |#1|)))) (-1082) (-1195)) (T -875))
-((-2265 (*1 *2 *3) (-12 (-5 *3 (-877 *4)) (-4 *4 (-1082)) (-5 *2 (-631 *5)) (-5 *1 (-875 *4 *5)) (-4 *5 (-1195)))) (-4228 (*1 *2 *2 *3) (-12 (-5 *2 (-877 *4)) (-4 *4 (-1082)) (-5 *1 (-875 *4 *3)) (-4 *3 (-1195)))) (-1819 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *6)) (-5 *4 (-877 *5)) (-4 *5 (-1082)) (-4 *6 (-1195)) (-5 *2 (-112)) (-5 *1 (-875 *5 *6)))) (-1819 (*1 *2 *3 *4) (-12 (-5 *4 (-877 *5)) (-4 *5 (-1082)) (-5 *2 (-112)) (-5 *1 (-875 *5 *3)) (-4 *3 (-1195)))) (-4322 (*1 *2 *3) (-12 (-5 *3 (-877 *4)) (-4 *4 (-1082)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-875 *4 *5)) (-4 *5 (-1195)))) (-3234 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-877 *5)) (-5 *3 (-631 (-1158))) (-5 *4 (-1 (-112) (-631 *6))) (-4 *5 (-1082)) (-4 *6 (-1195)) (-5 *1 (-875 *5 *6)))) (-3234 (*1 *2 *2 *3) (-12 (-5 *2 (-877 *4)) (-5 *3 (-631 (-1 (-112) *5))) (-4 *4 (-1082)) (-4 *5 (-1195)) (-5 *1 (-875 *4 *5)))) (-3234 (*1 *2 *2 *3) (-12 (-5 *2 (-877 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1082)) (-4 *5 (-1195)) (-5 *1 (-875 *4 *5)))))
-(-10 -7 (-15 -3234 ((-877 |#1|) (-877 |#1|) (-1 (-112) |#2|))) (-15 -3234 ((-877 |#1|) (-877 |#1|) (-631 (-1 (-112) |#2|)))) (-15 -3234 ((-877 |#1|) (-877 |#1|) (-631 (-1158)) (-1 (-112) (-631 |#2|)))) (-15 -4322 ((-1 (-112) |#2|) (-877 |#1|))) (-15 -1819 ((-112) |#2| (-877 |#1|))) (-15 -1819 ((-112) (-631 |#2|) (-877 |#1|))) (-15 -4228 ((-877 |#1|) (-877 |#1|) |#2|)) (-15 -2265 ((-631 |#2|) (-877 |#1|))))
-((-2879 (((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)) 19)))
-(((-876 |#1| |#2|) (-10 -7 (-15 -2879 ((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)))) (-1082) (-1082)) (T -876))
-((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-877 *5)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-5 *2 (-877 *6)) (-5 *1 (-876 *5 *6)))))
-(-10 -7 (-15 -2879 ((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|))))
-((-3062 (((-112) $ $) NIL)) (-1372 (($ $ (-631 (-52))) 64)) (-2405 (((-631 $) $) 118)) (-3028 (((-2 (|:| |var| (-631 (-1158))) (|:| |pred| (-52))) $) 24)) (-3237 (((-112) $) 30)) (-1747 (($ $ (-631 (-1158)) (-52)) 25)) (-3403 (($ $ (-631 (-52))) 63)) (-2784 (((-3 |#1| "failed") $) 61) (((-3 (-1158) "failed") $) 140)) (-1668 ((|#1| $) 58) (((-1158) $) NIL)) (-1887 (($ $) 108)) (-4314 (((-112) $) 47)) (-4242 (((-631 (-52)) $) 45)) (-3576 (($ (-1158) (-112) (-112) (-112)) 65)) (-4281 (((-3 (-631 $) "failed") (-631 $)) 72)) (-1606 (((-112) $) 50)) (-3253 (((-112) $) 49)) (-1613 (((-1140) $) NIL)) (-3778 (((-3 (-631 $) "failed") $) 36)) (-3258 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 43)) (-2920 (((-3 (-2 (|:| |val| $) (|:| -1407 $)) "failed") $) 83)) (-2433 (((-3 (-631 $) "failed") $) 33)) (-2001 (((-3 (-631 $) "failed") $ (-114)) 107) (((-3 (-2 (|:| -1482 (-114)) (|:| |arg| (-631 $))) "failed") $) 95)) (-3212 (((-3 (-631 $) "failed") $) 37)) (-3160 (((-3 (-2 (|:| |val| $) (|:| -1407 (-758))) "failed") $) 40)) (-2392 (((-112) $) 29)) (-2768 (((-1102) $) NIL)) (-3930 (((-112) $) 21)) (-1851 (((-112) $) 46)) (-2875 (((-631 (-52)) $) 111)) (-3320 (((-112) $) 48)) (-2064 (($ (-114) (-631 $)) 92)) (-2763 (((-758) $) 28)) (-1521 (($ $) 62)) (-2927 (($ (-631 $)) 59)) (-2798 (((-112) $) 26)) (-3075 (((-848) $) 53) (($ |#1|) 18) (($ (-1158)) 66)) (-4228 (($ $ (-52)) 110)) (-2004 (($) 91 T CONST)) (-2014 (($) 73 T CONST)) (-1658 (((-112) $ $) 79)) (-1752 (($ $ $) 100)) (-1735 (($ $ $) 104)) (** (($ $ (-758)) 99) (($ $ $) 54)) (* (($ $ $) 105)))
-(((-877 |#1|) (-13 (-1082) (-1023 |#1|) (-1023 (-1158)) (-10 -8 (-15 0 ($) -2397) (-15 1 ($) -2397) (-15 -2433 ((-3 (-631 $) "failed") $)) (-15 -3778 ((-3 (-631 $) "failed") $)) (-15 -2001 ((-3 (-631 $) "failed") $ (-114))) (-15 -2001 ((-3 (-2 (|:| -1482 (-114)) (|:| |arg| (-631 $))) "failed") $)) (-15 -3160 ((-3 (-2 (|:| |val| $) (|:| -1407 (-758))) "failed") $)) (-15 -3258 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3212 ((-3 (-631 $) "failed") $)) (-15 -2920 ((-3 (-2 (|:| |val| $) (|:| -1407 $)) "failed") $)) (-15 -2064 ($ (-114) (-631 $))) (-15 -1735 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-758))) (-15 ** ($ $ $)) (-15 -1752 ($ $ $)) (-15 -2763 ((-758) $)) (-15 -2927 ($ (-631 $))) (-15 -1521 ($ $)) (-15 -2392 ((-112) $)) (-15 -4314 ((-112) $)) (-15 -3237 ((-112) $)) (-15 -2798 ((-112) $)) (-15 -3320 ((-112) $)) (-15 -3253 ((-112) $)) (-15 -1606 ((-112) $)) (-15 -1851 ((-112) $)) (-15 -4242 ((-631 (-52)) $)) (-15 -3403 ($ $ (-631 (-52)))) (-15 -1372 ($ $ (-631 (-52)))) (-15 -3576 ($ (-1158) (-112) (-112) (-112))) (-15 -1747 ($ $ (-631 (-1158)) (-52))) (-15 -3028 ((-2 (|:| |var| (-631 (-1158))) (|:| |pred| (-52))) $)) (-15 -3930 ((-112) $)) (-15 -1887 ($ $)) (-15 -4228 ($ $ (-52))) (-15 -2875 ((-631 (-52)) $)) (-15 -2405 ((-631 $) $)) (-15 -4281 ((-3 (-631 $) "failed") (-631 $))))) (-1082)) (T -877))
-((-2004 (*1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1082)))) (-2014 (*1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1082)))) (-2433 (*1 *2 *1) (|partial| -12 (-5 *2 (-631 (-877 *3))) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-3778 (*1 *2 *1) (|partial| -12 (-5 *2 (-631 (-877 *3))) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-2001 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-631 (-877 *4))) (-5 *1 (-877 *4)) (-4 *4 (-1082)))) (-2001 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -1482 (-114)) (|:| |arg| (-631 (-877 *3))))) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-3160 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-877 *3)) (|:| -1407 (-758)))) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-3258 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-877 *3)) (|:| |den| (-877 *3)))) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-3212 (*1 *2 *1) (|partial| -12 (-5 *2 (-631 (-877 *3))) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-2920 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-877 *3)) (|:| -1407 (-877 *3)))) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-2064 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-631 (-877 *4))) (-5 *1 (-877 *4)) (-4 *4 (-1082)))) (-1735 (*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1082)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1082)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1082)))) (-1752 (*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1082)))) (-2763 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-2927 (*1 *1 *2) (-12 (-5 *2 (-631 (-877 *3))) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-1521 (*1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1082)))) (-2392 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-4314 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-3237 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-2798 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-3253 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-1606 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-1851 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-4242 (*1 *2 *1) (-12 (-5 *2 (-631 (-52))) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-3403 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-52))) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-1372 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-52))) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-3576 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-112)) (-5 *1 (-877 *4)) (-4 *4 (-1082)))) (-1747 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 (-1158))) (-5 *3 (-52)) (-5 *1 (-877 *4)) (-4 *4 (-1082)))) (-3028 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-631 (-1158))) (|:| |pred| (-52)))) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-1887 (*1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1082)))) (-4228 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-2875 (*1 *2 *1) (-12 (-5 *2 (-631 (-52))) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-2405 (*1 *2 *1) (-12 (-5 *2 (-631 (-877 *3))) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-4281 (*1 *2 *2) (|partial| -12 (-5 *2 (-631 (-877 *3))) (-5 *1 (-877 *3)) (-4 *3 (-1082)))))
-(-13 (-1082) (-1023 |#1|) (-1023 (-1158)) (-10 -8 (-15 (-2004) ($) -2397) (-15 (-2014) ($) -2397) (-15 -2433 ((-3 (-631 $) "failed") $)) (-15 -3778 ((-3 (-631 $) "failed") $)) (-15 -2001 ((-3 (-631 $) "failed") $ (-114))) (-15 -2001 ((-3 (-2 (|:| -1482 (-114)) (|:| |arg| (-631 $))) "failed") $)) (-15 -3160 ((-3 (-2 (|:| |val| $) (|:| -1407 (-758))) "failed") $)) (-15 -3258 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3212 ((-3 (-631 $) "failed") $)) (-15 -2920 ((-3 (-2 (|:| |val| $) (|:| -1407 $)) "failed") $)) (-15 -2064 ($ (-114) (-631 $))) (-15 -1735 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-758))) (-15 ** ($ $ $)) (-15 -1752 ($ $ $)) (-15 -2763 ((-758) $)) (-15 -2927 ($ (-631 $))) (-15 -1521 ($ $)) (-15 -2392 ((-112) $)) (-15 -4314 ((-112) $)) (-15 -3237 ((-112) $)) (-15 -2798 ((-112) $)) (-15 -3320 ((-112) $)) (-15 -3253 ((-112) $)) (-15 -1606 ((-112) $)) (-15 -1851 ((-112) $)) (-15 -4242 ((-631 (-52)) $)) (-15 -3403 ($ $ (-631 (-52)))) (-15 -1372 ($ $ (-631 (-52)))) (-15 -3576 ($ (-1158) (-112) (-112) (-112))) (-15 -1747 ($ $ (-631 (-1158)) (-52))) (-15 -3028 ((-2 (|:| |var| (-631 (-1158))) (|:| |pred| (-52))) $)) (-15 -3930 ((-112) $)) (-15 -1887 ($ $)) (-15 -4228 ($ $ (-52))) (-15 -2875 ((-631 (-52)) $)) (-15 -2405 ((-631 $) $)) (-15 -4281 ((-3 (-631 $) "failed") (-631 $)))))
-((-3062 (((-112) $ $) NIL)) (-1654 (((-631 |#1|) $) 16)) (-3051 (((-112) $) 38)) (-2784 (((-3 (-658 |#1|) "failed") $) 43)) (-1668 (((-658 |#1|) $) 41)) (-1551 (($ $) 18)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-2577 (((-758) $) 46)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-1539 (((-658 |#1|) $) 17)) (-3075 (((-848) $) 37) (($ (-658 |#1|)) 21) (((-806 |#1|) $) 27) (($ |#1|) 20)) (-2014 (($) 8 T CONST)) (-2407 (((-631 (-658 |#1|)) $) 23)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 11)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 49)))
-(((-878 |#1|) (-13 (-836) (-1023 (-658 |#1|)) (-10 -8 (-15 1 ($) -2397) (-15 -3075 ((-806 |#1|) $)) (-15 -3075 ($ |#1|)) (-15 -1539 ((-658 |#1|) $)) (-15 -2577 ((-758) $)) (-15 -2407 ((-631 (-658 |#1|)) $)) (-15 -1551 ($ $)) (-15 -3051 ((-112) $)) (-15 -1654 ((-631 |#1|) $)))) (-836)) (T -878))
-((-2014 (*1 *1) (-12 (-5 *1 (-878 *2)) (-4 *2 (-836)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-806 *3)) (-5 *1 (-878 *3)) (-4 *3 (-836)))) (-3075 (*1 *1 *2) (-12 (-5 *1 (-878 *2)) (-4 *2 (-836)))) (-1539 (*1 *2 *1) (-12 (-5 *2 (-658 *3)) (-5 *1 (-878 *3)) (-4 *3 (-836)))) (-2577 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-878 *3)) (-4 *3 (-836)))) (-2407 (*1 *2 *1) (-12 (-5 *2 (-631 (-658 *3))) (-5 *1 (-878 *3)) (-4 *3 (-836)))) (-1551 (*1 *1 *1) (-12 (-5 *1 (-878 *2)) (-4 *2 (-836)))) (-3051 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-878 *3)) (-4 *3 (-836)))) (-1654 (*1 *2 *1) (-12 (-5 *2 (-631 *3)) (-5 *1 (-878 *3)) (-4 *3 (-836)))))
-(-13 (-836) (-1023 (-658 |#1|)) (-10 -8 (-15 (-2014) ($) -2397) (-15 -3075 ((-806 |#1|) $)) (-15 -3075 ($ |#1|)) (-15 -1539 ((-658 |#1|) $)) (-15 -2577 ((-758) $)) (-15 -2407 ((-631 (-658 |#1|)) $)) (-15 -1551 ($ $)) (-15 -3051 ((-112) $)) (-15 -1654 ((-631 |#1|) $))))
-((-2748 ((|#1| |#1| |#1|) 19)))
-(((-879 |#1| |#2|) (-10 -7 (-15 -2748 (|#1| |#1| |#1|))) (-1217 |#2|) (-1034)) (T -879))
-((-2748 (*1 *2 *2 *2) (-12 (-4 *3 (-1034)) (-5 *1 (-879 *2 *3)) (-4 *2 (-1217 *3)))))
-(-10 -7 (-15 -2748 (|#1| |#1| |#1|)))
-((-3062 (((-112) $ $) 7)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| (-631 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-758)) (|:| |boundaryType| (-554)) (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) (|:| |tol| (-221)))) 14)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-1275 (((-1020) (-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| (-631 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-758)) (|:| |boundaryType| (-554)) (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) (|:| |tol| (-221)))) 13)) (-1658 (((-112) $ $) 6)))
-(((-880) (-138)) (T -880))
-((-3037 (*1 *2 *3 *4) (-12 (-4 *1 (-880)) (-5 *3 (-1046)) (-5 *4 (-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| (-631 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-758)) (|:| |boundaryType| (-554)) (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) (|:| |tol| (-221)))) (-5 *2 (-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)))))) (-1275 (*1 *2 *3) (-12 (-4 *1 (-880)) (-5 *3 (-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| (-631 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-758)) (|:| |boundaryType| (-554)) (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) (|:| |tol| (-221)))) (-5 *2 (-1020)))))
-(-13 (-1082) (-10 -7 (-15 -3037 ((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| (-631 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-758)) (|:| |boundaryType| (-554)) (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) (|:| |tol| (-221))))) (-15 -1275 ((-1020) (-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| (-631 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-758)) (|:| |boundaryType| (-554)) (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) (|:| |tol| (-221)))))))
-(((-102) . T) ((-601 (-848)) . T) ((-1082) . T))
-((-2109 ((|#1| |#1| (-758)) 24)) (-3829 (((-3 |#1| "failed") |#1| |#1|) 22)) (-3678 (((-3 (-2 (|:| -3311 |#1|) (|:| -3324 |#1|)) "failed") |#1| (-758) (-758)) 27) (((-631 |#1|) |#1|) 29)))
-(((-881 |#1| |#2|) (-10 -7 (-15 -3678 ((-631 |#1|) |#1|)) (-15 -3678 ((-3 (-2 (|:| -3311 |#1|) (|:| -3324 |#1|)) "failed") |#1| (-758) (-758))) (-15 -3829 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2109 (|#1| |#1| (-758)))) (-1217 |#2|) (-358)) (T -881))
-((-2109 (*1 *2 *2 *3) (-12 (-5 *3 (-758)) (-4 *4 (-358)) (-5 *1 (-881 *2 *4)) (-4 *2 (-1217 *4)))) (-3829 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-358)) (-5 *1 (-881 *2 *3)) (-4 *2 (-1217 *3)))) (-3678 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-758)) (-4 *5 (-358)) (-5 *2 (-2 (|:| -3311 *3) (|:| -3324 *3))) (-5 *1 (-881 *3 *5)) (-4 *3 (-1217 *5)))) (-3678 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-631 *3)) (-5 *1 (-881 *3 *4)) (-4 *3 (-1217 *4)))))
-(-10 -7 (-15 -3678 ((-631 |#1|) |#1|)) (-15 -3678 ((-3 (-2 (|:| -3311 |#1|) (|:| -3324 |#1|)) "failed") |#1| (-758) (-758))) (-15 -3829 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2109 (|#1| |#1| (-758))))
-((-1900 (((-1020) (-374) (-374) (-374) (-374) (-758) (-758) (-631 (-311 (-374))) (-631 (-631 (-311 (-374)))) (-1140)) 96) (((-1020) (-374) (-374) (-374) (-374) (-758) (-758) (-631 (-311 (-374))) (-631 (-631 (-311 (-374)))) (-1140) (-221)) 91) (((-1020) (-883) (-1046)) 83) (((-1020) (-883)) 84)) (-3037 (((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140)))) (-883) (-1046)) 59) (((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140)))) (-883)) 61)))
-(((-882) (-10 -7 (-15 -1900 ((-1020) (-883))) (-15 -1900 ((-1020) (-883) (-1046))) (-15 -1900 ((-1020) (-374) (-374) (-374) (-374) (-758) (-758) (-631 (-311 (-374))) (-631 (-631 (-311 (-374)))) (-1140) (-221))) (-15 -1900 ((-1020) (-374) (-374) (-374) (-374) (-758) (-758) (-631 (-311 (-374))) (-631 (-631 (-311 (-374)))) (-1140))) (-15 -3037 ((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140)))) (-883))) (-15 -3037 ((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140)))) (-883) (-1046))))) (T -882))
-((-3037 (*1 *2 *3 *4) (-12 (-5 *3 (-883)) (-5 *4 (-1046)) (-5 *2 (-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140))))) (-5 *1 (-882)))) (-3037 (*1 *2 *3) (-12 (-5 *3 (-883)) (-5 *2 (-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140))))) (-5 *1 (-882)))) (-1900 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-758)) (-5 *6 (-631 (-631 (-311 *3)))) (-5 *7 (-1140)) (-5 *5 (-631 (-311 (-374)))) (-5 *3 (-374)) (-5 *2 (-1020)) (-5 *1 (-882)))) (-1900 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-758)) (-5 *6 (-631 (-631 (-311 *3)))) (-5 *7 (-1140)) (-5 *8 (-221)) (-5 *5 (-631 (-311 (-374)))) (-5 *3 (-374)) (-5 *2 (-1020)) (-5 *1 (-882)))) (-1900 (*1 *2 *3 *4) (-12 (-5 *3 (-883)) (-5 *4 (-1046)) (-5 *2 (-1020)) (-5 *1 (-882)))) (-1900 (*1 *2 *3) (-12 (-5 *3 (-883)) (-5 *2 (-1020)) (-5 *1 (-882)))))
-(-10 -7 (-15 -1900 ((-1020) (-883))) (-15 -1900 ((-1020) (-883) (-1046))) (-15 -1900 ((-1020) (-374) (-374) (-374) (-374) (-758) (-758) (-631 (-311 (-374))) (-631 (-631 (-311 (-374)))) (-1140) (-221))) (-15 -1900 ((-1020) (-374) (-374) (-374) (-374) (-758) (-758) (-631 (-311 (-374))) (-631 (-631 (-311 (-374)))) (-1140))) (-15 -3037 ((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140)))) (-883))) (-15 -3037 ((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140)))) (-883) (-1046))))
-((-3062 (((-112) $ $) NIL)) (-1668 (((-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| (-631 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-758)) (|:| |boundaryType| (-554)) (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) (|:| |tol| (-221))) $) 19)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 21) (($ (-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| (-631 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-758)) (|:| |boundaryType| (-554)) (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) (|:| |tol| (-221)))) 18)) (-1658 (((-112) $ $) NIL)))
-(((-883) (-13 (-1082) (-10 -8 (-15 -3075 ($ (-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| (-631 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-758)) (|:| |boundaryType| (-554)) (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) (|:| |tol| (-221))))) (-15 -1668 ((-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| (-631 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-758)) (|:| |boundaryType| (-554)) (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) (|:| |tol| (-221))) $))))) (T -883))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| (-631 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-758)) (|:| |boundaryType| (-554)) (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) (|:| |tol| (-221)))) (-5 *1 (-883)))) (-1668 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| (-631 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-758)) (|:| |boundaryType| (-554)) (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) (|:| |tol| (-221)))) (-5 *1 (-883)))))
-(-13 (-1082) (-10 -8 (-15 -3075 ($ (-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| (-631 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-758)) (|:| |boundaryType| (-554)) (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) (|:| |tol| (-221))))) (-15 -1668 ((-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| (-631 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-758)) (|:| |boundaryType| (-554)) (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) (|:| |tol| (-221))) $))))
-((-1553 (($ $ |#2|) NIL) (($ $ (-631 |#2|)) 10) (($ $ |#2| (-758)) 12) (($ $ (-631 |#2|) (-631 (-758))) 15)) (-1787 (($ $ |#2|) 16) (($ $ (-631 |#2|)) 18) (($ $ |#2| (-758)) 19) (($ $ (-631 |#2|) (-631 (-758))) 21)))
-(((-884 |#1| |#2|) (-10 -8 (-15 -1787 (|#1| |#1| (-631 |#2|) (-631 (-758)))) (-15 -1787 (|#1| |#1| |#2| (-758))) (-15 -1787 (|#1| |#1| (-631 |#2|))) (-15 -1787 (|#1| |#1| |#2|)) (-15 -1553 (|#1| |#1| (-631 |#2|) (-631 (-758)))) (-15 -1553 (|#1| |#1| |#2| (-758))) (-15 -1553 (|#1| |#1| (-631 |#2|))) (-15 -1553 (|#1| |#1| |#2|))) (-885 |#2|) (-1082)) (T -884))
-NIL
-(-10 -8 (-15 -1787 (|#1| |#1| (-631 |#2|) (-631 (-758)))) (-15 -1787 (|#1| |#1| |#2| (-758))) (-15 -1787 (|#1| |#1| (-631 |#2|))) (-15 -1787 (|#1| |#1| |#2|)) (-15 -1553 (|#1| |#1| (-631 |#2|) (-631 (-758)))) (-15 -1553 (|#1| |#1| |#2| (-758))) (-15 -1553 (|#1| |#1| (-631 |#2|))) (-15 -1553 (|#1| |#1| |#2|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1320 (((-3 $ "failed") $) 33)) (-3248 (((-112) $) 31)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-1553 (($ $ |#1|) 42) (($ $ (-631 |#1|)) 41) (($ $ |#1| (-758)) 40) (($ $ (-631 |#1|) (-631 (-758))) 39)) (-3075 (((-848) $) 11) (($ (-554)) 29)) (-2261 (((-758)) 28)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($ $ |#1|) 38) (($ $ (-631 |#1|)) 37) (($ $ |#1| (-758)) 36) (($ $ (-631 |#1|) (-631 (-758))) 35)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24)))
-(((-885 |#1|) (-138) (-1082)) (T -885))
-((-1553 (*1 *1 *1 *2) (-12 (-4 *1 (-885 *2)) (-4 *2 (-1082)))) (-1553 (*1 *1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *1 (-885 *3)) (-4 *3 (-1082)))) (-1553 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-758)) (-4 *1 (-885 *2)) (-4 *2 (-1082)))) (-1553 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 *4)) (-5 *3 (-631 (-758))) (-4 *1 (-885 *4)) (-4 *4 (-1082)))) (-1787 (*1 *1 *1 *2) (-12 (-4 *1 (-885 *2)) (-4 *2 (-1082)))) (-1787 (*1 *1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *1 (-885 *3)) (-4 *3 (-1082)))) (-1787 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-758)) (-4 *1 (-885 *2)) (-4 *2 (-1082)))) (-1787 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 *4)) (-5 *3 (-631 (-758))) (-4 *1 (-885 *4)) (-4 *4 (-1082)))))
-(-13 (-1034) (-10 -8 (-15 -1553 ($ $ |t#1|)) (-15 -1553 ($ $ (-631 |t#1|))) (-15 -1553 ($ $ |t#1| (-758))) (-15 -1553 ($ $ (-631 |t#1|) (-631 (-758)))) (-15 -1787 ($ $ |t#1|)) (-15 -1787 ($ $ (-631 |t#1|))) (-15 -1787 ($ $ |t#1| (-758))) (-15 -1787 ($ $ (-631 |t#1|) (-631 (-758))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-604 (-554)) . T) ((-601 (-848)) . T) ((-634 $) . T) ((-713) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T))
-((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2794 ((|#1| $) 26)) (-3019 (((-112) $ (-758)) NIL)) (-2690 ((|#1| $ |#1|) NIL (|has| $ (-6 -4374)))) (-2336 (($ $ $) NIL (|has| $ (-6 -4374)))) (-2035 (($ $ $) NIL (|has| $ (-6 -4374)))) (-1501 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4374))) (($ $ "left" $) NIL (|has| $ (-6 -4374))) (($ $ "right" $) NIL (|has| $ (-6 -4374)))) (-2923 (($ $ (-631 $)) NIL (|has| $ (-6 -4374)))) (-4087 (($) NIL T CONST)) (-3324 (($ $) 25)) (-2584 (($ |#1|) 12) (($ $ $) 17)) (-2466 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3677 (((-631 $) $) NIL)) (-1990 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2230 (((-112) $ (-758)) NIL)) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2849 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-3311 (($ $) 23)) (-2306 (((-631 |#1|) $) NIL)) (-3216 (((-112) $) 20)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3250 (((-554) $ $) NIL)) (-3008 (((-112) $) NIL)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1521 (($ $) NIL)) (-3075 (((-1181 |#1|) $) 9) (((-848) $) 29 (|has| |#1| (-601 (-848))))) (-2461 (((-631 $) $) NIL)) (-1441 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 21 (|has| |#1| (-1082)))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-886 |#1|) (-13 (-119 |#1|) (-601 (-1181 |#1|)) (-10 -8 (-15 -2584 ($ |#1|)) (-15 -2584 ($ $ $)))) (-1082)) (T -886))
-((-2584 (*1 *1 *2) (-12 (-5 *1 (-886 *2)) (-4 *2 (-1082)))) (-2584 (*1 *1 *1 *1) (-12 (-5 *1 (-886 *2)) (-4 *2 (-1082)))))
-(-13 (-119 |#1|) (-601 (-1181 |#1|)) (-10 -8 (-15 -2584 ($ |#1|)) (-15 -2584 ($ $ $))))
-((-1946 ((|#2| (-1124 |#1| |#2|)) 41)))
-(((-887 |#1| |#2|) (-10 -7 (-15 -1946 (|#2| (-1124 |#1| |#2|)))) (-906) (-13 (-1034) (-10 -7 (-6 (-4375 "*"))))) (T -887))
-((-1946 (*1 *2 *3) (-12 (-5 *3 (-1124 *4 *2)) (-14 *4 (-906)) (-4 *2 (-13 (-1034) (-10 -7 (-6 (-4375 "*"))))) (-5 *1 (-887 *4 *2)))))
-(-10 -7 (-15 -1946 (|#2| (-1124 |#1| |#2|))))
-((-3062 (((-112) $ $) 7)) (-4087 (($) 18 T CONST)) (-1320 (((-3 $ "failed") $) 15)) (-3973 (((-1084 |#1|) $ |#1|) 32)) (-3248 (((-112) $) 17)) (-4223 (($ $ $) 30 (-3994 (|has| |#1| (-836)) (|has| |#1| (-363))))) (-2706 (($ $ $) 29 (-3994 (|has| |#1| (-836)) (|has| |#1| (-363))))) (-1613 (((-1140) $) 9)) (-2483 (($ $) 24)) (-2768 (((-1102) $) 10)) (-2386 ((|#1| $ |#1|) 34)) (-2064 ((|#1| $ |#1|) 33)) (-3374 (($ (-631 (-631 |#1|))) 35)) (-3461 (($ (-631 |#1|)) 36)) (-3992 (($ $ $) 21)) (-1856 (($ $ $) 20)) (-3075 (((-848) $) 11)) (-2014 (($) 19 T CONST)) (-1708 (((-112) $ $) 27 (-3994 (|has| |#1| (-836)) (|has| |#1| (-363))))) (-1686 (((-112) $ $) 26 (-3994 (|has| |#1| (-836)) (|has| |#1| (-363))))) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 28 (-3994 (|has| |#1| (-836)) (|has| |#1| (-363))))) (-1676 (((-112) $ $) 31)) (-1752 (($ $ $) 23)) (** (($ $ (-906)) 13) (($ $ (-758)) 16) (($ $ (-554)) 22)) (* (($ $ $) 14)))
-(((-888 |#1|) (-138) (-1082)) (T -888))
-((-3461 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-4 *1 (-888 *3)))) (-3374 (*1 *1 *2) (-12 (-5 *2 (-631 (-631 *3))) (-4 *3 (-1082)) (-4 *1 (-888 *3)))) (-2386 (*1 *2 *1 *2) (-12 (-4 *1 (-888 *2)) (-4 *2 (-1082)))) (-2064 (*1 *2 *1 *2) (-12 (-4 *1 (-888 *2)) (-4 *2 (-1082)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-888 *3)) (-4 *3 (-1082)) (-5 *2 (-1084 *3)))) (-1676 (*1 *2 *1 *1) (-12 (-4 *1 (-888 *3)) (-4 *3 (-1082)) (-5 *2 (-112)))))
-(-13 (-467) (-10 -8 (-15 -3461 ($ (-631 |t#1|))) (-15 -3374 ($ (-631 (-631 |t#1|)))) (-15 -2386 (|t#1| $ |t#1|)) (-15 -2064 (|t#1| $ |t#1|)) (-15 -3973 ((-1084 |t#1|) $ |t#1|)) (-15 -1676 ((-112) $ $)) (IF (|has| |t#1| (-836)) (-6 (-836)) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-836)) |%noBranch|)))
-(((-102) . T) ((-601 (-848)) . T) ((-467) . T) ((-713) . T) ((-836) -3994 (|has| |#1| (-836)) (|has| |#1| (-363))) ((-1094) . T) ((-1082) . T))
-((-3062 (((-112) $ $) NIL)) (-2613 (((-631 (-631 (-758))) $) 108)) (-3208 (((-631 (-758)) (-890 |#1|) $) 130)) (-1818 (((-631 (-758)) (-890 |#1|) $) 131)) (-1974 (((-631 (-890 |#1|)) $) 98)) (-3353 (((-890 |#1|) $ (-554)) 103) (((-890 |#1|) $) 104)) (-4306 (($ (-631 (-890 |#1|))) 110)) (-2342 (((-758) $) 105)) (-3946 (((-1084 (-1084 |#1|)) $) 128)) (-3973 (((-1084 |#1|) $ |#1|) 121) (((-1084 (-1084 |#1|)) $ (-1084 |#1|)) 139) (((-1084 (-631 |#1|)) $ (-631 |#1|)) 142)) (-2304 (((-1084 |#1|) $) 101)) (-3068 (((-112) (-890 |#1|) $) 92)) (-1613 (((-1140) $) NIL)) (-3883 (((-1246) $) 95) (((-1246) $ (-554) (-554)) 143)) (-2768 (((-1102) $) NIL)) (-2201 (((-631 (-890 |#1|)) $) 96)) (-2064 (((-890 |#1|) $ (-758)) 99)) (-3308 (((-758) $) 106)) (-3075 (((-848) $) 119) (((-631 (-890 |#1|)) $) 23) (($ (-631 (-890 |#1|))) 109)) (-3462 (((-631 |#1|) $) 107)) (-1658 (((-112) $ $) 136)) (-1697 (((-112) $ $) 134)) (-1676 (((-112) $ $) 133)))
-(((-889 |#1|) (-13 (-1082) (-10 -8 (-15 -3075 ((-631 (-890 |#1|)) $)) (-15 -2201 ((-631 (-890 |#1|)) $)) (-15 -2064 ((-890 |#1|) $ (-758))) (-15 -3353 ((-890 |#1|) $ (-554))) (-15 -3353 ((-890 |#1|) $)) (-15 -2342 ((-758) $)) (-15 -3308 ((-758) $)) (-15 -3462 ((-631 |#1|) $)) (-15 -1974 ((-631 (-890 |#1|)) $)) (-15 -2613 ((-631 (-631 (-758))) $)) (-15 -3075 ($ (-631 (-890 |#1|)))) (-15 -4306 ($ (-631 (-890 |#1|)))) (-15 -3973 ((-1084 |#1|) $ |#1|)) (-15 -3946 ((-1084 (-1084 |#1|)) $)) (-15 -3973 ((-1084 (-1084 |#1|)) $ (-1084 |#1|))) (-15 -3973 ((-1084 (-631 |#1|)) $ (-631 |#1|))) (-15 -3068 ((-112) (-890 |#1|) $)) (-15 -3208 ((-631 (-758)) (-890 |#1|) $)) (-15 -1818 ((-631 (-758)) (-890 |#1|) $)) (-15 -2304 ((-1084 |#1|) $)) (-15 -1676 ((-112) $ $)) (-15 -1697 ((-112) $ $)) (-15 -3883 ((-1246) $)) (-15 -3883 ((-1246) $ (-554) (-554))))) (-1082)) (T -889))
-((-3075 (*1 *2 *1) (-12 (-5 *2 (-631 (-890 *3))) (-5 *1 (-889 *3)) (-4 *3 (-1082)))) (-2201 (*1 *2 *1) (-12 (-5 *2 (-631 (-890 *3))) (-5 *1 (-889 *3)) (-4 *3 (-1082)))) (-2064 (*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-5 *2 (-890 *4)) (-5 *1 (-889 *4)) (-4 *4 (-1082)))) (-3353 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-5 *2 (-890 *4)) (-5 *1 (-889 *4)) (-4 *4 (-1082)))) (-3353 (*1 *2 *1) (-12 (-5 *2 (-890 *3)) (-5 *1 (-889 *3)) (-4 *3 (-1082)))) (-2342 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-889 *3)) (-4 *3 (-1082)))) (-3308 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-889 *3)) (-4 *3 (-1082)))) (-3462 (*1 *2 *1) (-12 (-5 *2 (-631 *3)) (-5 *1 (-889 *3)) (-4 *3 (-1082)))) (-1974 (*1 *2 *1) (-12 (-5 *2 (-631 (-890 *3))) (-5 *1 (-889 *3)) (-4 *3 (-1082)))) (-2613 (*1 *2 *1) (-12 (-5 *2 (-631 (-631 (-758)))) (-5 *1 (-889 *3)) (-4 *3 (-1082)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-631 (-890 *3))) (-4 *3 (-1082)) (-5 *1 (-889 *3)))) (-4306 (*1 *1 *2) (-12 (-5 *2 (-631 (-890 *3))) (-4 *3 (-1082)) (-5 *1 (-889 *3)))) (-3973 (*1 *2 *1 *3) (-12 (-5 *2 (-1084 *3)) (-5 *1 (-889 *3)) (-4 *3 (-1082)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-1084 (-1084 *3))) (-5 *1 (-889 *3)) (-4 *3 (-1082)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *4 (-1082)) (-5 *2 (-1084 (-1084 *4))) (-5 *1 (-889 *4)) (-5 *3 (-1084 *4)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *4 (-1082)) (-5 *2 (-1084 (-631 *4))) (-5 *1 (-889 *4)) (-5 *3 (-631 *4)))) (-3068 (*1 *2 *3 *1) (-12 (-5 *3 (-890 *4)) (-4 *4 (-1082)) (-5 *2 (-112)) (-5 *1 (-889 *4)))) (-3208 (*1 *2 *3 *1) (-12 (-5 *3 (-890 *4)) (-4 *4 (-1082)) (-5 *2 (-631 (-758))) (-5 *1 (-889 *4)))) (-1818 (*1 *2 *3 *1) (-12 (-5 *3 (-890 *4)) (-4 *4 (-1082)) (-5 *2 (-631 (-758))) (-5 *1 (-889 *4)))) (-2304 (*1 *2 *1) (-12 (-5 *2 (-1084 *3)) (-5 *1 (-889 *3)) (-4 *3 (-1082)))) (-1676 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1082)))) (-1697 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1082)))) (-3883 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-889 *3)) (-4 *3 (-1082)))) (-3883 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-554)) (-5 *2 (-1246)) (-5 *1 (-889 *4)) (-4 *4 (-1082)))))
-(-13 (-1082) (-10 -8 (-15 -3075 ((-631 (-890 |#1|)) $)) (-15 -2201 ((-631 (-890 |#1|)) $)) (-15 -2064 ((-890 |#1|) $ (-758))) (-15 -3353 ((-890 |#1|) $ (-554))) (-15 -3353 ((-890 |#1|) $)) (-15 -2342 ((-758) $)) (-15 -3308 ((-758) $)) (-15 -3462 ((-631 |#1|) $)) (-15 -1974 ((-631 (-890 |#1|)) $)) (-15 -2613 ((-631 (-631 (-758))) $)) (-15 -3075 ($ (-631 (-890 |#1|)))) (-15 -4306 ($ (-631 (-890 |#1|)))) (-15 -3973 ((-1084 |#1|) $ |#1|)) (-15 -3946 ((-1084 (-1084 |#1|)) $)) (-15 -3973 ((-1084 (-1084 |#1|)) $ (-1084 |#1|))) (-15 -3973 ((-1084 (-631 |#1|)) $ (-631 |#1|))) (-15 -3068 ((-112) (-890 |#1|) $)) (-15 -3208 ((-631 (-758)) (-890 |#1|) $)) (-15 -1818 ((-631 (-758)) (-890 |#1|) $)) (-15 -2304 ((-1084 |#1|) $)) (-15 -1676 ((-112) $ $)) (-15 -1697 ((-112) $ $)) (-15 -3883 ((-1246) $)) (-15 -3883 ((-1246) $ (-554) (-554)))))
-((-3062 (((-112) $ $) NIL)) (-3303 (((-631 $) (-631 $)) 77)) (-4219 (((-554) $) 60)) (-4087 (($) NIL T CONST)) (-1320 (((-3 $ "failed") $) NIL)) (-2342 (((-758) $) 58)) (-3973 (((-1084 |#1|) $ |#1|) 49)) (-3248 (((-112) $) NIL)) (-3273 (((-112) $) 63)) (-1617 (((-758) $) 61)) (-2304 (((-1084 |#1|) $) 42)) (-4223 (($ $ $) NIL (-3994 (|has| |#1| (-363)) (|has| |#1| (-836))))) (-2706 (($ $ $) NIL (-3994 (|has| |#1| (-363)) (|has| |#1| (-836))))) (-3510 (((-2 (|:| |preimage| (-631 |#1|)) (|:| |image| (-631 |#1|))) $) 37)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) 93)) (-2768 (((-1102) $) NIL)) (-4109 (((-1084 |#1|) $) 100 (|has| |#1| (-363)))) (-1795 (((-112) $) 59)) (-2386 ((|#1| $ |#1|) 47)) (-2064 ((|#1| $ |#1|) 94)) (-3308 (((-758) $) 44)) (-3374 (($ (-631 (-631 |#1|))) 85)) (-2831 (((-956) $) 53)) (-3461 (($ (-631 |#1|)) 21)) (-3992 (($ $ $) NIL)) (-1856 (($ $ $) NIL)) (-4265 (($ (-631 (-631 |#1|))) 39)) (-2391 (($ (-631 (-631 |#1|))) 88)) (-3045 (($ (-631 |#1|)) 96)) (-3075 (((-848) $) 84) (($ (-631 (-631 |#1|))) 66) (($ (-631 |#1|)) 67)) (-2014 (($) 16 T CONST)) (-1708 (((-112) $ $) NIL (-3994 (|has| |#1| (-363)) (|has| |#1| (-836))))) (-1686 (((-112) $ $) NIL (-3994 (|has| |#1| (-363)) (|has| |#1| (-836))))) (-1658 (((-112) $ $) 45)) (-1697 (((-112) $ $) NIL (-3994 (|has| |#1| (-363)) (|has| |#1| (-836))))) (-1676 (((-112) $ $) 65)) (-1752 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL)) (* (($ $ $) 22)))
-(((-890 |#1|) (-13 (-888 |#1|) (-10 -8 (-15 -3510 ((-2 (|:| |preimage| (-631 |#1|)) (|:| |image| (-631 |#1|))) $)) (-15 -4265 ($ (-631 (-631 |#1|)))) (-15 -3075 ($ (-631 (-631 |#1|)))) (-15 -3075 ($ (-631 |#1|))) (-15 -2391 ($ (-631 (-631 |#1|)))) (-15 -3308 ((-758) $)) (-15 -2304 ((-1084 |#1|) $)) (-15 -2831 ((-956) $)) (-15 -2342 ((-758) $)) (-15 -1617 ((-758) $)) (-15 -4219 ((-554) $)) (-15 -1795 ((-112) $)) (-15 -3273 ((-112) $)) (-15 -3303 ((-631 $) (-631 $))) (IF (|has| |#1| (-363)) (-15 -4109 ((-1084 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-539)) (-15 -3045 ($ (-631 |#1|))) (IF (|has| |#1| (-363)) (-15 -3045 ($ (-631 |#1|))) |%noBranch|)))) (-1082)) (T -890))
-((-3510 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-631 *3)) (|:| |image| (-631 *3)))) (-5 *1 (-890 *3)) (-4 *3 (-1082)))) (-4265 (*1 *1 *2) (-12 (-5 *2 (-631 (-631 *3))) (-4 *3 (-1082)) (-5 *1 (-890 *3)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-631 (-631 *3))) (-4 *3 (-1082)) (-5 *1 (-890 *3)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-5 *1 (-890 *3)))) (-2391 (*1 *1 *2) (-12 (-5 *2 (-631 (-631 *3))) (-4 *3 (-1082)) (-5 *1 (-890 *3)))) (-3308 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-890 *3)) (-4 *3 (-1082)))) (-2304 (*1 *2 *1) (-12 (-5 *2 (-1084 *3)) (-5 *1 (-890 *3)) (-4 *3 (-1082)))) (-2831 (*1 *2 *1) (-12 (-5 *2 (-956)) (-5 *1 (-890 *3)) (-4 *3 (-1082)))) (-2342 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-890 *3)) (-4 *3 (-1082)))) (-1617 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-890 *3)) (-4 *3 (-1082)))) (-4219 (*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-890 *3)) (-4 *3 (-1082)))) (-1795 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-1082)))) (-3273 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-1082)))) (-3303 (*1 *2 *2) (-12 (-5 *2 (-631 (-890 *3))) (-5 *1 (-890 *3)) (-4 *3 (-1082)))) (-4109 (*1 *2 *1) (-12 (-5 *2 (-1084 *3)) (-5 *1 (-890 *3)) (-4 *3 (-363)) (-4 *3 (-1082)))) (-3045 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-5 *1 (-890 *3)))))
-(-13 (-888 |#1|) (-10 -8 (-15 -3510 ((-2 (|:| |preimage| (-631 |#1|)) (|:| |image| (-631 |#1|))) $)) (-15 -4265 ($ (-631 (-631 |#1|)))) (-15 -3075 ($ (-631 (-631 |#1|)))) (-15 -3075 ($ (-631 |#1|))) (-15 -2391 ($ (-631 (-631 |#1|)))) (-15 -3308 ((-758) $)) (-15 -2304 ((-1084 |#1|) $)) (-15 -2831 ((-956) $)) (-15 -2342 ((-758) $)) (-15 -1617 ((-758) $)) (-15 -4219 ((-554) $)) (-15 -1795 ((-112) $)) (-15 -3273 ((-112) $)) (-15 -3303 ((-631 $) (-631 $))) (IF (|has| |#1| (-363)) (-15 -4109 ((-1084 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-539)) (-15 -3045 ($ (-631 |#1|))) (IF (|has| |#1| (-363)) (-15 -3045 ($ (-631 |#1|))) |%noBranch|))))
-((-4142 (((-3 (-631 (-1154 |#4|)) "failed") (-631 (-1154 |#4|)) (-1154 |#4|)) 128)) (-2774 ((|#1|) 77)) (-3963 (((-413 (-1154 |#4|)) (-1154 |#4|)) 137)) (-2174 (((-413 (-1154 |#4|)) (-631 |#3|) (-1154 |#4|)) 69)) (-3197 (((-413 (-1154 |#4|)) (-1154 |#4|)) 147)) (-3540 (((-3 (-631 (-1154 |#4|)) "failed") (-631 (-1154 |#4|)) (-1154 |#4|) |#3|) 92)))
-(((-891 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4142 ((-3 (-631 (-1154 |#4|)) "failed") (-631 (-1154 |#4|)) (-1154 |#4|))) (-15 -3197 ((-413 (-1154 |#4|)) (-1154 |#4|))) (-15 -3963 ((-413 (-1154 |#4|)) (-1154 |#4|))) (-15 -2774 (|#1|)) (-15 -3540 ((-3 (-631 (-1154 |#4|)) "failed") (-631 (-1154 |#4|)) (-1154 |#4|) |#3|)) (-15 -2174 ((-413 (-1154 |#4|)) (-631 |#3|) (-1154 |#4|)))) (-894) (-780) (-836) (-934 |#1| |#2| |#3|)) (T -891))
-((-2174 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *7)) (-4 *7 (-836)) (-4 *5 (-894)) (-4 *6 (-780)) (-4 *8 (-934 *5 *6 *7)) (-5 *2 (-413 (-1154 *8))) (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-1154 *8)))) (-3540 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-631 (-1154 *7))) (-5 *3 (-1154 *7)) (-4 *7 (-934 *5 *6 *4)) (-4 *5 (-894)) (-4 *6 (-780)) (-4 *4 (-836)) (-5 *1 (-891 *5 *6 *4 *7)))) (-2774 (*1 *2) (-12 (-4 *3 (-780)) (-4 *4 (-836)) (-4 *2 (-894)) (-5 *1 (-891 *2 *3 *4 *5)) (-4 *5 (-934 *2 *3 *4)))) (-3963 (*1 *2 *3) (-12 (-4 *4 (-894)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-934 *4 *5 *6)) (-5 *2 (-413 (-1154 *7))) (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-1154 *7)))) (-3197 (*1 *2 *3) (-12 (-4 *4 (-894)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-934 *4 *5 *6)) (-5 *2 (-413 (-1154 *7))) (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-1154 *7)))) (-4142 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-631 (-1154 *7))) (-5 *3 (-1154 *7)) (-4 *7 (-934 *4 *5 *6)) (-4 *4 (-894)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *1 (-891 *4 *5 *6 *7)))))
-(-10 -7 (-15 -4142 ((-3 (-631 (-1154 |#4|)) "failed") (-631 (-1154 |#4|)) (-1154 |#4|))) (-15 -3197 ((-413 (-1154 |#4|)) (-1154 |#4|))) (-15 -3963 ((-413 (-1154 |#4|)) (-1154 |#4|))) (-15 -2774 (|#1|)) (-15 -3540 ((-3 (-631 (-1154 |#4|)) "failed") (-631 (-1154 |#4|)) (-1154 |#4|) |#3|)) (-15 -2174 ((-413 (-1154 |#4|)) (-631 |#3|) (-1154 |#4|))))
-((-4142 (((-3 (-631 (-1154 |#2|)) "failed") (-631 (-1154 |#2|)) (-1154 |#2|)) 36)) (-2774 ((|#1|) 54)) (-3963 (((-413 (-1154 |#2|)) (-1154 |#2|)) 102)) (-2174 (((-413 (-1154 |#2|)) (-1154 |#2|)) 90)) (-3197 (((-413 (-1154 |#2|)) (-1154 |#2|)) 113)))
-(((-892 |#1| |#2|) (-10 -7 (-15 -4142 ((-3 (-631 (-1154 |#2|)) "failed") (-631 (-1154 |#2|)) (-1154 |#2|))) (-15 -3197 ((-413 (-1154 |#2|)) (-1154 |#2|))) (-15 -3963 ((-413 (-1154 |#2|)) (-1154 |#2|))) (-15 -2774 (|#1|)) (-15 -2174 ((-413 (-1154 |#2|)) (-1154 |#2|)))) (-894) (-1217 |#1|)) (T -892))
-((-2174 (*1 *2 *3) (-12 (-4 *4 (-894)) (-4 *5 (-1217 *4)) (-5 *2 (-413 (-1154 *5))) (-5 *1 (-892 *4 *5)) (-5 *3 (-1154 *5)))) (-2774 (*1 *2) (-12 (-4 *2 (-894)) (-5 *1 (-892 *2 *3)) (-4 *3 (-1217 *2)))) (-3963 (*1 *2 *3) (-12 (-4 *4 (-894)) (-4 *5 (-1217 *4)) (-5 *2 (-413 (-1154 *5))) (-5 *1 (-892 *4 *5)) (-5 *3 (-1154 *5)))) (-3197 (*1 *2 *3) (-12 (-4 *4 (-894)) (-4 *5 (-1217 *4)) (-5 *2 (-413 (-1154 *5))) (-5 *1 (-892 *4 *5)) (-5 *3 (-1154 *5)))) (-4142 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-631 (-1154 *5))) (-5 *3 (-1154 *5)) (-4 *5 (-1217 *4)) (-4 *4 (-894)) (-5 *1 (-892 *4 *5)))))
-(-10 -7 (-15 -4142 ((-3 (-631 (-1154 |#2|)) "failed") (-631 (-1154 |#2|)) (-1154 |#2|))) (-15 -3197 ((-413 (-1154 |#2|)) (-1154 |#2|))) (-15 -3963 ((-413 (-1154 |#2|)) (-1154 |#2|))) (-15 -2774 (|#1|)) (-15 -2174 ((-413 (-1154 |#2|)) (-1154 |#2|))))
-((-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) 41)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 18)) (-2084 (((-3 $ "failed") $) 35)))
-(((-893 |#1|) (-10 -8 (-15 -2084 ((-3 |#1| "failed") |#1|)) (-15 -1625 ((-3 (-631 (-1154 |#1|)) "failed") (-631 (-1154 |#1|)) (-1154 |#1|))) (-15 -3077 ((-1154 |#1|) (-1154 |#1|) (-1154 |#1|)))) (-894)) (T -893))
-NIL
-(-10 -8 (-15 -2084 ((-3 |#1| "failed") |#1|)) (-15 -1625 ((-3 (-631 (-1154 |#1|)) "failed") (-631 (-1154 |#1|)) (-1154 |#1|))) (-15 -3077 ((-1154 |#1|) (-1154 |#1|) (-1154 |#1|))))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 42)) (-1976 (($ $) 41)) (-1363 (((-112) $) 39)) (-2934 (((-3 $ "failed") $ $) 19)) (-4308 (((-413 (-1154 $)) (-1154 $)) 61)) (-3278 (($ $) 52)) (-1565 (((-413 $) $) 53)) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) 58)) (-4087 (($) 17 T CONST)) (-1320 (((-3 $ "failed") $) 33)) (-3289 (((-112) $) 54)) (-3248 (((-112) $) 31)) (-2475 (($ $ $) 47) (($ (-631 $)) 46)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 45)) (-2510 (($ $ $) 49) (($ (-631 $)) 48)) (-1290 (((-413 (-1154 $)) (-1154 $)) 59)) (-3082 (((-413 (-1154 $)) (-1154 $)) 60)) (-2270 (((-413 $) $) 51)) (-3919 (((-3 $ "failed") $ $) 43)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) 57 (|has| $ (-143)))) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ $) 44)) (-2084 (((-3 $ "failed") $) 56 (|has| $ (-143)))) (-2261 (((-758)) 28)) (-1909 (((-112) $ $) 40)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24)))
-(((-894) (-138)) (T -894))
-((-3077 (*1 *2 *2 *2) (-12 (-5 *2 (-1154 *1)) (-4 *1 (-894)))) (-4308 (*1 *2 *3) (-12 (-4 *1 (-894)) (-5 *2 (-413 (-1154 *1))) (-5 *3 (-1154 *1)))) (-3082 (*1 *2 *3) (-12 (-4 *1 (-894)) (-5 *2 (-413 (-1154 *1))) (-5 *3 (-1154 *1)))) (-1290 (*1 *2 *3) (-12 (-4 *1 (-894)) (-5 *2 (-413 (-1154 *1))) (-5 *3 (-1154 *1)))) (-1625 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-631 (-1154 *1))) (-5 *3 (-1154 *1)) (-4 *1 (-894)))) (-4158 (*1 *2 *3) (|partial| -12 (-5 *3 (-675 *1)) (-4 *1 (-143)) (-4 *1 (-894)) (-5 *2 (-1241 *1)))) (-2084 (*1 *1 *1) (|partial| -12 (-4 *1 (-143)) (-4 *1 (-894)))))
-(-13 (-1199) (-10 -8 (-15 -4308 ((-413 (-1154 $)) (-1154 $))) (-15 -3082 ((-413 (-1154 $)) (-1154 $))) (-15 -1290 ((-413 (-1154 $)) (-1154 $))) (-15 -3077 ((-1154 $) (-1154 $) (-1154 $))) (-15 -1625 ((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $))) (IF (|has| $ (-143)) (PROGN (-15 -4158 ((-3 (-1241 $) "failed") (-675 $))) (-15 -2084 ((-3 $ "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-604 (-554)) . T) ((-604 $) . T) ((-601 (-848)) . T) ((-170) . T) ((-285) . T) ((-446) . T) ((-546) . T) ((-634 $) . T) ((-704 $) . T) ((-713) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1199) . T))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-3718 (((-112) $) NIL)) (-1924 (((-758)) NIL)) (-1612 (($ $ (-906)) NIL (|has| $ (-363))) (($ $) NIL)) (-3205 (((-1168 (-906) (-758)) (-554)) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2286 (((-112) $ $) NIL)) (-1508 (((-758)) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 $ "failed") $) NIL)) (-1668 (($ $) NIL)) (-1651 (($ (-1241 $)) NIL)) (-2723 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-3964 (($ $ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3353 (($) NIL)) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3157 (($) NIL)) (-2754 (((-112) $) NIL)) (-4122 (($ $) NIL) (($ $ (-758)) NIL)) (-3289 (((-112) $) NIL)) (-2342 (((-820 (-906)) $) NIL) (((-906) $) NIL)) (-3248 (((-112) $) NIL)) (-3227 (($) NIL (|has| $ (-363)))) (-2693 (((-112) $) NIL (|has| $ (-363)))) (-3274 (($ $ (-906)) NIL (|has| $ (-363))) (($ $) NIL)) (-3339 (((-3 $ "failed") $) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-3361 (((-1154 $) $ (-906)) NIL (|has| $ (-363))) (((-1154 $) $) NIL)) (-3830 (((-906) $) NIL)) (-3933 (((-1154 $) $) NIL (|has| $ (-363)))) (-3025 (((-3 (-1154 $) "failed") $ $) NIL (|has| $ (-363))) (((-1154 $) $) NIL (|has| $ (-363)))) (-2300 (($ $ (-1154 $)) NIL (|has| $ (-363)))) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-3834 (($) NIL T CONST)) (-2717 (($ (-906)) NIL)) (-2070 (((-112) $) NIL)) (-2768 (((-1102) $) NIL)) (-4137 (($) NIL (|has| $ (-363)))) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3725 (((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))) NIL)) (-2270 (((-413 $) $) NIL)) (-2365 (((-906)) NIL) (((-820 (-906))) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-3316 (((-3 (-758) "failed") $ $) NIL) (((-758) $) NIL)) (-3330 (((-133)) NIL)) (-1553 (($ $ (-758)) NIL) (($ $) NIL)) (-3308 (((-906) $) NIL) (((-820 (-906)) $) NIL)) (-4318 (((-1154 $)) NIL)) (-3944 (($) NIL)) (-2288 (($) NIL (|has| $ (-363)))) (-3656 (((-675 $) (-1241 $)) NIL) (((-1241 $) $) NIL)) (-2927 (((-554) $) NIL)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL) (($ (-402 (-554))) NIL)) (-2084 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-2261 (((-758)) NIL)) (-3782 (((-1241 $) (-906)) NIL) (((-1241 $)) NIL)) (-1909 (((-112) $ $) NIL)) (-3536 (((-112) $) NIL)) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1811 (($ $ (-758)) NIL (|has| $ (-363))) (($ $) NIL (|has| $ (-363)))) (-1787 (($ $ (-758)) NIL) (($ $) NIL)) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL)))
-(((-895 |#1|) (-13 (-344) (-324 $) (-602 (-554))) (-906)) (T -895))
-NIL
-(-13 (-344) (-324 $) (-602 (-554)))
-((-1496 (((-3 (-2 (|:| -2342 (-758)) (|:| -2367 |#5|)) "failed") (-331 |#2| |#3| |#4| |#5|)) 79)) (-3877 (((-112) (-331 |#2| |#3| |#4| |#5|)) 17)) (-2342 (((-3 (-758) "failed") (-331 |#2| |#3| |#4| |#5|)) 15)))
-(((-896 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2342 ((-3 (-758) "failed") (-331 |#2| |#3| |#4| |#5|))) (-15 -3877 ((-112) (-331 |#2| |#3| |#4| |#5|))) (-15 -1496 ((-3 (-2 (|:| -2342 (-758)) (|:| -2367 |#5|)) "failed") (-331 |#2| |#3| |#4| |#5|)))) (-13 (-836) (-546) (-1023 (-554))) (-425 |#1|) (-1217 |#2|) (-1217 (-402 |#3|)) (-337 |#2| |#3| |#4|)) (T -896))
-((-1496 (*1 *2 *3) (|partial| -12 (-5 *3 (-331 *5 *6 *7 *8)) (-4 *5 (-425 *4)) (-4 *6 (-1217 *5)) (-4 *7 (-1217 (-402 *6))) (-4 *8 (-337 *5 *6 *7)) (-4 *4 (-13 (-836) (-546) (-1023 (-554)))) (-5 *2 (-2 (|:| -2342 (-758)) (|:| -2367 *8))) (-5 *1 (-896 *4 *5 *6 *7 *8)))) (-3877 (*1 *2 *3) (-12 (-5 *3 (-331 *5 *6 *7 *8)) (-4 *5 (-425 *4)) (-4 *6 (-1217 *5)) (-4 *7 (-1217 (-402 *6))) (-4 *8 (-337 *5 *6 *7)) (-4 *4 (-13 (-836) (-546) (-1023 (-554)))) (-5 *2 (-112)) (-5 *1 (-896 *4 *5 *6 *7 *8)))) (-2342 (*1 *2 *3) (|partial| -12 (-5 *3 (-331 *5 *6 *7 *8)) (-4 *5 (-425 *4)) (-4 *6 (-1217 *5)) (-4 *7 (-1217 (-402 *6))) (-4 *8 (-337 *5 *6 *7)) (-4 *4 (-13 (-836) (-546) (-1023 (-554)))) (-5 *2 (-758)) (-5 *1 (-896 *4 *5 *6 *7 *8)))))
-(-10 -7 (-15 -2342 ((-3 (-758) "failed") (-331 |#2| |#3| |#4| |#5|))) (-15 -3877 ((-112) (-331 |#2| |#3| |#4| |#5|))) (-15 -1496 ((-3 (-2 (|:| -2342 (-758)) (|:| -2367 |#5|)) "failed") (-331 |#2| |#3| |#4| |#5|))))
-((-1496 (((-3 (-2 (|:| -2342 (-758)) (|:| -2367 |#3|)) "failed") (-331 (-402 (-554)) |#1| |#2| |#3|)) 56)) (-3877 (((-112) (-331 (-402 (-554)) |#1| |#2| |#3|)) 16)) (-2342 (((-3 (-758) "failed") (-331 (-402 (-554)) |#1| |#2| |#3|)) 14)))
-(((-897 |#1| |#2| |#3|) (-10 -7 (-15 -2342 ((-3 (-758) "failed") (-331 (-402 (-554)) |#1| |#2| |#3|))) (-15 -3877 ((-112) (-331 (-402 (-554)) |#1| |#2| |#3|))) (-15 -1496 ((-3 (-2 (|:| -2342 (-758)) (|:| -2367 |#3|)) "failed") (-331 (-402 (-554)) |#1| |#2| |#3|)))) (-1217 (-402 (-554))) (-1217 (-402 |#1|)) (-337 (-402 (-554)) |#1| |#2|)) (T -897))
-((-1496 (*1 *2 *3) (|partial| -12 (-5 *3 (-331 (-402 (-554)) *4 *5 *6)) (-4 *4 (-1217 (-402 (-554)))) (-4 *5 (-1217 (-402 *4))) (-4 *6 (-337 (-402 (-554)) *4 *5)) (-5 *2 (-2 (|:| -2342 (-758)) (|:| -2367 *6))) (-5 *1 (-897 *4 *5 *6)))) (-3877 (*1 *2 *3) (-12 (-5 *3 (-331 (-402 (-554)) *4 *5 *6)) (-4 *4 (-1217 (-402 (-554)))) (-4 *5 (-1217 (-402 *4))) (-4 *6 (-337 (-402 (-554)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-897 *4 *5 *6)))) (-2342 (*1 *2 *3) (|partial| -12 (-5 *3 (-331 (-402 (-554)) *4 *5 *6)) (-4 *4 (-1217 (-402 (-554)))) (-4 *5 (-1217 (-402 *4))) (-4 *6 (-337 (-402 (-554)) *4 *5)) (-5 *2 (-758)) (-5 *1 (-897 *4 *5 *6)))))
-(-10 -7 (-15 -2342 ((-3 (-758) "failed") (-331 (-402 (-554)) |#1| |#2| |#3|))) (-15 -3877 ((-112) (-331 (-402 (-554)) |#1| |#2| |#3|))) (-15 -1496 ((-3 (-2 (|:| -2342 (-758)) (|:| -2367 |#3|)) "failed") (-331 (-402 (-554)) |#1| |#2| |#3|))))
-((-1312 ((|#2| |#2|) 26)) (-3199 (((-554) (-631 (-2 (|:| |den| (-554)) (|:| |gcdnum| (-554))))) 15)) (-2996 (((-906) (-554)) 35)) (-2095 (((-554) |#2|) 42)) (-3634 (((-554) |#2|) 21) (((-2 (|:| |den| (-554)) (|:| |gcdnum| (-554))) |#1|) 20)))
-(((-898 |#1| |#2|) (-10 -7 (-15 -2996 ((-906) (-554))) (-15 -3634 ((-2 (|:| |den| (-554)) (|:| |gcdnum| (-554))) |#1|)) (-15 -3634 ((-554) |#2|)) (-15 -3199 ((-554) (-631 (-2 (|:| |den| (-554)) (|:| |gcdnum| (-554)))))) (-15 -2095 ((-554) |#2|)) (-15 -1312 (|#2| |#2|))) (-1217 (-402 (-554))) (-1217 (-402 |#1|))) (T -898))
-((-1312 (*1 *2 *2) (-12 (-4 *3 (-1217 (-402 (-554)))) (-5 *1 (-898 *3 *2)) (-4 *2 (-1217 (-402 *3))))) (-2095 (*1 *2 *3) (-12 (-4 *4 (-1217 (-402 *2))) (-5 *2 (-554)) (-5 *1 (-898 *4 *3)) (-4 *3 (-1217 (-402 *4))))) (-3199 (*1 *2 *3) (-12 (-5 *3 (-631 (-2 (|:| |den| (-554)) (|:| |gcdnum| (-554))))) (-4 *4 (-1217 (-402 *2))) (-5 *2 (-554)) (-5 *1 (-898 *4 *5)) (-4 *5 (-1217 (-402 *4))))) (-3634 (*1 *2 *3) (-12 (-4 *4 (-1217 (-402 *2))) (-5 *2 (-554)) (-5 *1 (-898 *4 *3)) (-4 *3 (-1217 (-402 *4))))) (-3634 (*1 *2 *3) (-12 (-4 *3 (-1217 (-402 (-554)))) (-5 *2 (-2 (|:| |den| (-554)) (|:| |gcdnum| (-554)))) (-5 *1 (-898 *3 *4)) (-4 *4 (-1217 (-402 *3))))) (-2996 (*1 *2 *3) (-12 (-5 *3 (-554)) (-4 *4 (-1217 (-402 *3))) (-5 *2 (-906)) (-5 *1 (-898 *4 *5)) (-4 *5 (-1217 (-402 *4))))))
-(-10 -7 (-15 -2996 ((-906) (-554))) (-15 -3634 ((-2 (|:| |den| (-554)) (|:| |gcdnum| (-554))) |#1|)) (-15 -3634 ((-554) |#2|)) (-15 -3199 ((-554) (-631 (-2 (|:| |den| (-554)) (|:| |gcdnum| (-554)))))) (-15 -2095 ((-554) |#2|)) (-15 -1312 (|#2| |#2|)))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-3831 ((|#1| $) 81)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2286 (((-112) $ $) NIL)) (-4087 (($) NIL T CONST)) (-3964 (($ $ $) NIL)) (-1320 (((-3 $ "failed") $) 75)) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-2832 (($ |#1| (-413 |#1|)) 73)) (-1298 (((-1154 |#1|) |#1| |#1|) 41)) (-1802 (($ $) 49)) (-3248 (((-112) $) NIL)) (-2479 (((-554) $) 78)) (-3301 (($ $ (-554)) 80)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3261 ((|#1| $) 77)) (-4123 (((-413 |#1|) $) 76)) (-2270 (((-413 $) $) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) 74)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-3891 (($ $) 39)) (-3075 (((-848) $) 99) (($ (-554)) 54) (($ $) NIL) (($ (-402 (-554))) NIL) (($ |#1|) 31) (((-402 |#1|) $) 59) (($ (-402 (-413 |#1|))) 67)) (-2261 (((-758)) 52)) (-1909 (((-112) $ $) NIL)) (-2004 (($) 23 T CONST)) (-2014 (($) 12 T CONST)) (-1658 (((-112) $ $) 68)) (-1752 (($ $ $) NIL)) (-1744 (($ $) 88) (($ $ $) NIL)) (-1735 (($ $ $) 38)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 90) (($ $ $) 37) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL)))
-(((-899 |#1|) (-13 (-358) (-38 |#1|) (-10 -8 (-15 -3075 ((-402 |#1|) $)) (-15 -3075 ($ (-402 (-413 |#1|)))) (-15 -3891 ($ $)) (-15 -4123 ((-413 |#1|) $)) (-15 -3261 (|#1| $)) (-15 -3301 ($ $ (-554))) (-15 -2479 ((-554) $)) (-15 -1298 ((-1154 |#1|) |#1| |#1|)) (-15 -1802 ($ $)) (-15 -2832 ($ |#1| (-413 |#1|))) (-15 -3831 (|#1| $)))) (-302)) (T -899))
-((-3075 (*1 *2 *1) (-12 (-5 *2 (-402 *3)) (-5 *1 (-899 *3)) (-4 *3 (-302)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-402 (-413 *3))) (-4 *3 (-302)) (-5 *1 (-899 *3)))) (-3891 (*1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-302)))) (-4123 (*1 *2 *1) (-12 (-5 *2 (-413 *3)) (-5 *1 (-899 *3)) (-4 *3 (-302)))) (-3261 (*1 *2 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-302)))) (-3301 (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-899 *3)) (-4 *3 (-302)))) (-2479 (*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-899 *3)) (-4 *3 (-302)))) (-1298 (*1 *2 *3 *3) (-12 (-5 *2 (-1154 *3)) (-5 *1 (-899 *3)) (-4 *3 (-302)))) (-1802 (*1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-302)))) (-2832 (*1 *1 *2 *3) (-12 (-5 *3 (-413 *2)) (-4 *2 (-302)) (-5 *1 (-899 *2)))) (-3831 (*1 *2 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-302)))))
-(-13 (-358) (-38 |#1|) (-10 -8 (-15 -3075 ((-402 |#1|) $)) (-15 -3075 ($ (-402 (-413 |#1|)))) (-15 -3891 ($ $)) (-15 -4123 ((-413 |#1|) $)) (-15 -3261 (|#1| $)) (-15 -3301 ($ $ (-554))) (-15 -2479 ((-554) $)) (-15 -1298 ((-1154 |#1|) |#1| |#1|)) (-15 -1802 ($ $)) (-15 -2832 ($ |#1| (-413 |#1|))) (-15 -3831 (|#1| $))))
-((-2832 (((-52) (-937 |#1|) (-413 (-937 |#1|)) (-1158)) 17) (((-52) (-402 (-937 |#1|)) (-1158)) 18)))
-(((-900 |#1|) (-10 -7 (-15 -2832 ((-52) (-402 (-937 |#1|)) (-1158))) (-15 -2832 ((-52) (-937 |#1|) (-413 (-937 |#1|)) (-1158)))) (-13 (-302) (-145))) (T -900))
-((-2832 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-413 (-937 *6))) (-5 *5 (-1158)) (-5 *3 (-937 *6)) (-4 *6 (-13 (-302) (-145))) (-5 *2 (-52)) (-5 *1 (-900 *6)))) (-2832 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-937 *5))) (-5 *4 (-1158)) (-4 *5 (-13 (-302) (-145))) (-5 *2 (-52)) (-5 *1 (-900 *5)))))
-(-10 -7 (-15 -2832 ((-52) (-402 (-937 |#1|)) (-1158))) (-15 -2832 ((-52) (-937 |#1|) (-413 (-937 |#1|)) (-1158))))
-((-3843 ((|#4| (-631 |#4|)) 120) (((-1154 |#4|) (-1154 |#4|) (-1154 |#4|)) 66) ((|#4| |#4| |#4|) 119)) (-2510 (((-1154 |#4|) (-631 (-1154 |#4|))) 113) (((-1154 |#4|) (-1154 |#4|) (-1154 |#4|)) 49) ((|#4| (-631 |#4|)) 54) ((|#4| |#4| |#4|) 83)))
-(((-901 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2510 (|#4| |#4| |#4|)) (-15 -2510 (|#4| (-631 |#4|))) (-15 -2510 ((-1154 |#4|) (-1154 |#4|) (-1154 |#4|))) (-15 -2510 ((-1154 |#4|) (-631 (-1154 |#4|)))) (-15 -3843 (|#4| |#4| |#4|)) (-15 -3843 ((-1154 |#4|) (-1154 |#4|) (-1154 |#4|))) (-15 -3843 (|#4| (-631 |#4|)))) (-780) (-836) (-302) (-934 |#3| |#1| |#2|)) (T -901))
-((-3843 (*1 *2 *3) (-12 (-5 *3 (-631 *2)) (-4 *2 (-934 *6 *4 *5)) (-5 *1 (-901 *4 *5 *6 *2)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-302)))) (-3843 (*1 *2 *2 *2) (-12 (-5 *2 (-1154 *6)) (-4 *6 (-934 *5 *3 *4)) (-4 *3 (-780)) (-4 *4 (-836)) (-4 *5 (-302)) (-5 *1 (-901 *3 *4 *5 *6)))) (-3843 (*1 *2 *2 *2) (-12 (-4 *3 (-780)) (-4 *4 (-836)) (-4 *5 (-302)) (-5 *1 (-901 *3 *4 *5 *2)) (-4 *2 (-934 *5 *3 *4)))) (-2510 (*1 *2 *3) (-12 (-5 *3 (-631 (-1154 *7))) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-302)) (-5 *2 (-1154 *7)) (-5 *1 (-901 *4 *5 *6 *7)) (-4 *7 (-934 *6 *4 *5)))) (-2510 (*1 *2 *2 *2) (-12 (-5 *2 (-1154 *6)) (-4 *6 (-934 *5 *3 *4)) (-4 *3 (-780)) (-4 *4 (-836)) (-4 *5 (-302)) (-5 *1 (-901 *3 *4 *5 *6)))) (-2510 (*1 *2 *3) (-12 (-5 *3 (-631 *2)) (-4 *2 (-934 *6 *4 *5)) (-5 *1 (-901 *4 *5 *6 *2)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-302)))) (-2510 (*1 *2 *2 *2) (-12 (-4 *3 (-780)) (-4 *4 (-836)) (-4 *5 (-302)) (-5 *1 (-901 *3 *4 *5 *2)) (-4 *2 (-934 *5 *3 *4)))))
-(-10 -7 (-15 -2510 (|#4| |#4| |#4|)) (-15 -2510 (|#4| (-631 |#4|))) (-15 -2510 ((-1154 |#4|) (-1154 |#4|) (-1154 |#4|))) (-15 -2510 ((-1154 |#4|) (-631 (-1154 |#4|)))) (-15 -3843 (|#4| |#4| |#4|)) (-15 -3843 ((-1154 |#4|) (-1154 |#4|) (-1154 |#4|))) (-15 -3843 (|#4| (-631 |#4|))))
-((-2918 (((-889 (-554)) (-956)) 23) (((-889 (-554)) (-631 (-554))) 20)) (-1858 (((-889 (-554)) (-631 (-554))) 48) (((-889 (-554)) (-906)) 49)) (-1867 (((-889 (-554))) 24)) (-4207 (((-889 (-554))) 38) (((-889 (-554)) (-631 (-554))) 37)) (-3367 (((-889 (-554))) 36) (((-889 (-554)) (-631 (-554))) 35)) (-1730 (((-889 (-554))) 34) (((-889 (-554)) (-631 (-554))) 33)) (-2649 (((-889 (-554))) 32) (((-889 (-554)) (-631 (-554))) 31)) (-3522 (((-889 (-554))) 30) (((-889 (-554)) (-631 (-554))) 29)) (-1323 (((-889 (-554))) 40) (((-889 (-554)) (-631 (-554))) 39)) (-1815 (((-889 (-554)) (-631 (-554))) 52) (((-889 (-554)) (-906)) 53)) (-3693 (((-889 (-554)) (-631 (-554))) 50) (((-889 (-554)) (-906)) 51)) (-3229 (((-889 (-554)) (-631 (-554))) 46) (((-889 (-554)) (-906)) 47)) (-1595 (((-889 (-554)) (-631 (-906))) 43)))
-(((-902) (-10 -7 (-15 -1858 ((-889 (-554)) (-906))) (-15 -1858 ((-889 (-554)) (-631 (-554)))) (-15 -3229 ((-889 (-554)) (-906))) (-15 -3229 ((-889 (-554)) (-631 (-554)))) (-15 -1595 ((-889 (-554)) (-631 (-906)))) (-15 -3693 ((-889 (-554)) (-906))) (-15 -3693 ((-889 (-554)) (-631 (-554)))) (-15 -1815 ((-889 (-554)) (-906))) (-15 -1815 ((-889 (-554)) (-631 (-554)))) (-15 -3522 ((-889 (-554)) (-631 (-554)))) (-15 -3522 ((-889 (-554)))) (-15 -2649 ((-889 (-554)) (-631 (-554)))) (-15 -2649 ((-889 (-554)))) (-15 -1730 ((-889 (-554)) (-631 (-554)))) (-15 -1730 ((-889 (-554)))) (-15 -3367 ((-889 (-554)) (-631 (-554)))) (-15 -3367 ((-889 (-554)))) (-15 -4207 ((-889 (-554)) (-631 (-554)))) (-15 -4207 ((-889 (-554)))) (-15 -1323 ((-889 (-554)) (-631 (-554)))) (-15 -1323 ((-889 (-554)))) (-15 -1867 ((-889 (-554)))) (-15 -2918 ((-889 (-554)) (-631 (-554)))) (-15 -2918 ((-889 (-554)) (-956))))) (T -902))
-((-2918 (*1 *2 *3) (-12 (-5 *3 (-956)) (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-2918 (*1 *2 *3) (-12 (-5 *3 (-631 (-554))) (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-1867 (*1 *2) (-12 (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-1323 (*1 *2) (-12 (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-1323 (*1 *2 *3) (-12 (-5 *3 (-631 (-554))) (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-4207 (*1 *2) (-12 (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-4207 (*1 *2 *3) (-12 (-5 *3 (-631 (-554))) (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-3367 (*1 *2) (-12 (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-3367 (*1 *2 *3) (-12 (-5 *3 (-631 (-554))) (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-1730 (*1 *2) (-12 (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-1730 (*1 *2 *3) (-12 (-5 *3 (-631 (-554))) (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-2649 (*1 *2) (-12 (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-2649 (*1 *2 *3) (-12 (-5 *3 (-631 (-554))) (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-3522 (*1 *2) (-12 (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-3522 (*1 *2 *3) (-12 (-5 *3 (-631 (-554))) (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-1815 (*1 *2 *3) (-12 (-5 *3 (-631 (-554))) (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-1815 (*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-3693 (*1 *2 *3) (-12 (-5 *3 (-631 (-554))) (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-3693 (*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-1595 (*1 *2 *3) (-12 (-5 *3 (-631 (-906))) (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-3229 (*1 *2 *3) (-12 (-5 *3 (-631 (-554))) (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-3229 (*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-1858 (*1 *2 *3) (-12 (-5 *3 (-631 (-554))) (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-1858 (*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-889 (-554))) (-5 *1 (-902)))))
-(-10 -7 (-15 -1858 ((-889 (-554)) (-906))) (-15 -1858 ((-889 (-554)) (-631 (-554)))) (-15 -3229 ((-889 (-554)) (-906))) (-15 -3229 ((-889 (-554)) (-631 (-554)))) (-15 -1595 ((-889 (-554)) (-631 (-906)))) (-15 -3693 ((-889 (-554)) (-906))) (-15 -3693 ((-889 (-554)) (-631 (-554)))) (-15 -1815 ((-889 (-554)) (-906))) (-15 -1815 ((-889 (-554)) (-631 (-554)))) (-15 -3522 ((-889 (-554)) (-631 (-554)))) (-15 -3522 ((-889 (-554)))) (-15 -2649 ((-889 (-554)) (-631 (-554)))) (-15 -2649 ((-889 (-554)))) (-15 -1730 ((-889 (-554)) (-631 (-554)))) (-15 -1730 ((-889 (-554)))) (-15 -3367 ((-889 (-554)) (-631 (-554)))) (-15 -3367 ((-889 (-554)))) (-15 -4207 ((-889 (-554)) (-631 (-554)))) (-15 -4207 ((-889 (-554)))) (-15 -1323 ((-889 (-554)) (-631 (-554)))) (-15 -1323 ((-889 (-554)))) (-15 -1867 ((-889 (-554)))) (-15 -2918 ((-889 (-554)) (-631 (-554)))) (-15 -2918 ((-889 (-554)) (-956))))
-((-1834 (((-631 (-937 |#1|)) (-631 (-937 |#1|)) (-631 (-1158))) 12)) (-2824 (((-631 (-937 |#1|)) (-631 (-937 |#1|)) (-631 (-1158))) 11)))
-(((-903 |#1|) (-10 -7 (-15 -2824 ((-631 (-937 |#1|)) (-631 (-937 |#1|)) (-631 (-1158)))) (-15 -1834 ((-631 (-937 |#1|)) (-631 (-937 |#1|)) (-631 (-1158))))) (-446)) (T -903))
-((-1834 (*1 *2 *2 *3) (-12 (-5 *2 (-631 (-937 *4))) (-5 *3 (-631 (-1158))) (-4 *4 (-446)) (-5 *1 (-903 *4)))) (-2824 (*1 *2 *2 *3) (-12 (-5 *2 (-631 (-937 *4))) (-5 *3 (-631 (-1158))) (-4 *4 (-446)) (-5 *1 (-903 *4)))))
-(-10 -7 (-15 -2824 ((-631 (-937 |#1|)) (-631 (-937 |#1|)) (-631 (-1158)))) (-15 -1834 ((-631 (-937 |#1|)) (-631 (-937 |#1|)) (-631 (-1158)))))
-((-3075 (((-311 |#1|) (-471)) 16)))
-(((-904 |#1|) (-10 -7 (-15 -3075 ((-311 |#1|) (-471)))) (-13 (-836) (-546))) (T -904))
-((-3075 (*1 *2 *3) (-12 (-5 *3 (-471)) (-5 *2 (-311 *4)) (-5 *1 (-904 *4)) (-4 *4 (-13 (-836) (-546))))))
-(-10 -7 (-15 -3075 ((-311 |#1|) (-471))))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 42)) (-1976 (($ $) 41)) (-1363 (((-112) $) 39)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1320 (((-3 $ "failed") $) 33)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 52)) (-3248 (((-112) $) 31)) (-2475 (($ $ $) 47) (($ (-631 $)) 46)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 45)) (-2510 (($ $ $) 49) (($ (-631 $)) 48)) (-3919 (((-3 $ "failed") $ $) 43)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 51)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ $) 44)) (-2261 (((-758)) 28)) (-1909 (((-112) $ $) 40)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24)))
-(((-905) (-138)) (T -905))
-((-3148 (*1 *2 *3) (-12 (-4 *1 (-905)) (-5 *2 (-2 (|:| -1490 (-631 *1)) (|:| -4137 *1))) (-5 *3 (-631 *1)))) (-2431 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-631 *1)) (-4 *1 (-905)))))
-(-13 (-446) (-10 -8 (-15 -3148 ((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $))) (-15 -2431 ((-3 (-631 $) "failed") (-631 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-604 (-554)) . T) ((-604 $) . T) ((-601 (-848)) . T) ((-170) . T) ((-285) . T) ((-446) . T) ((-546) . T) ((-634 $) . T) ((-704 $) . T) ((-713) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T))
-((-3062 (((-112) $ $) NIL)) (-4087 (($) NIL T CONST)) (-1320 (((-3 $ "failed") $) NIL)) (-3248 (((-112) $) NIL)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2510 (($ $ $) NIL)) (-3075 (((-848) $) NIL)) (-2014 (($) NIL T CONST)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-758)) NIL) (($ $ (-906)) NIL)) (* (($ (-906) $) NIL) (($ $ $) NIL)))
-(((-906) (-13 (-781) (-713) (-10 -8 (-15 -2510 ($ $ $)) (-6 (-4375 "*"))))) (T -906))
-((-2510 (*1 *1 *1 *1) (-5 *1 (-906))))
-(-13 (-781) (-713) (-10 -8 (-15 -2510 ($ $ $)) (-6 (-4375 "*"))))
-((-1276 ((|#2| (-631 |#1|) (-631 |#1|)) 24)))
-(((-907 |#1| |#2|) (-10 -7 (-15 -1276 (|#2| (-631 |#1|) (-631 |#1|)))) (-358) (-1217 |#1|)) (T -907))
-((-1276 (*1 *2 *3 *3) (-12 (-5 *3 (-631 *4)) (-4 *4 (-358)) (-4 *2 (-1217 *4)) (-5 *1 (-907 *4 *2)))))
-(-10 -7 (-15 -1276 (|#2| (-631 |#1|) (-631 |#1|))))
-((-3523 (((-1154 |#2|) (-631 |#2|) (-631 |#2|)) 17) (((-1214 |#1| |#2|) (-1214 |#1| |#2|) (-631 |#2|) (-631 |#2|)) 13)))
-(((-908 |#1| |#2|) (-10 -7 (-15 -3523 ((-1214 |#1| |#2|) (-1214 |#1| |#2|) (-631 |#2|) (-631 |#2|))) (-15 -3523 ((-1154 |#2|) (-631 |#2|) (-631 |#2|)))) (-1158) (-358)) (T -908))
-((-3523 (*1 *2 *3 *3) (-12 (-5 *3 (-631 *5)) (-4 *5 (-358)) (-5 *2 (-1154 *5)) (-5 *1 (-908 *4 *5)) (-14 *4 (-1158)))) (-3523 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1214 *4 *5)) (-5 *3 (-631 *5)) (-14 *4 (-1158)) (-4 *5 (-358)) (-5 *1 (-908 *4 *5)))))
-(-10 -7 (-15 -3523 ((-1214 |#1| |#2|) (-1214 |#1| |#2|) (-631 |#2|) (-631 |#2|))) (-15 -3523 ((-1154 |#2|) (-631 |#2|) (-631 |#2|))))
-((-3423 (((-554) (-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-1140)) 139)) (-3066 ((|#4| |#4|) 155)) (-3299 (((-631 (-402 (-937 |#1|))) (-631 (-1158))) 118)) (-1457 (((-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554)))) (-675 |#4|) (-631 (-402 (-937 |#1|))) (-631 (-631 |#4|)) (-758) (-758) (-554)) 75)) (-2595 (((-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|)))))) (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|)))))) (-631 |#4|)) 59)) (-1948 (((-675 |#4|) (-675 |#4|) (-631 |#4|)) 55)) (-2724 (((-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-1140)) 151)) (-3791 (((-554) (-675 |#4|) (-906) (-1140)) 132) (((-554) (-675 |#4|) (-631 (-1158)) (-906) (-1140)) 131) (((-554) (-675 |#4|) (-631 |#4|) (-906) (-1140)) 130) (((-554) (-675 |#4|) (-1140)) 127) (((-554) (-675 |#4|) (-631 (-1158)) (-1140)) 126) (((-554) (-675 |#4|) (-631 |#4|) (-1140)) 125) (((-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-675 |#4|) (-906)) 124) (((-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-675 |#4|) (-631 (-1158)) (-906)) 123) (((-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-675 |#4|) (-631 |#4|) (-906)) 122) (((-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-675 |#4|)) 120) (((-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-675 |#4|) (-631 (-1158))) 119) (((-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-675 |#4|) (-631 |#4|)) 115)) (-4235 ((|#4| (-937 |#1|)) 68)) (-1567 (((-112) (-631 |#4|) (-631 (-631 |#4|))) 152)) (-4096 (((-631 (-631 (-554))) (-554) (-554)) 129)) (-2409 (((-631 (-631 |#4|)) (-631 (-631 |#4|))) 88)) (-1305 (((-758) (-631 (-2 (|:| -4186 (-758)) (|:| |eqns| (-631 (-2 (|:| |det| |#4|) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554)))))) (|:| |fgb| (-631 |#4|))))) 86)) (-3716 (((-758) (-631 (-2 (|:| -4186 (-758)) (|:| |eqns| (-631 (-2 (|:| |det| |#4|) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554)))))) (|:| |fgb| (-631 |#4|))))) 85)) (-2238 (((-112) (-631 (-937 |#1|))) 17) (((-112) (-631 |#4|)) 13)) (-2150 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-631 |#4|)) (|:| |n0| (-631 |#4|))) (-631 |#4|) (-631 |#4|)) 71)) (-1513 (((-631 |#4|) |#4|) 49)) (-3878 (((-631 (-402 (-937 |#1|))) (-631 |#4|)) 114) (((-675 (-402 (-937 |#1|))) (-675 |#4|)) 56) (((-402 (-937 |#1|)) |#4|) 111)) (-4337 (((-2 (|:| |rgl| (-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|)))))))))) (|:| |rgsz| (-554))) (-675 |#4|) (-631 (-402 (-937 |#1|))) (-758) (-1140) (-554)) 93)) (-2507 (((-631 (-2 (|:| -4186 (-758)) (|:| |eqns| (-631 (-2 (|:| |det| |#4|) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554)))))) (|:| |fgb| (-631 |#4|)))) (-675 |#4|) (-758)) 84)) (-1430 (((-631 (-2 (|:| |det| |#4|) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554))))) (-675 |#4|) (-758)) 101)) (-1391 (((-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|)))))) (-2 (|:| -2866 (-675 (-402 (-937 |#1|)))) (|:| |vec| (-631 (-402 (-937 |#1|)))) (|:| -4186 (-758)) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554))))) 48)))
-(((-909 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3791 ((-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-675 |#4|) (-631 |#4|))) (-15 -3791 ((-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-675 |#4|) (-631 (-1158)))) (-15 -3791 ((-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-675 |#4|))) (-15 -3791 ((-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-675 |#4|) (-631 |#4|) (-906))) (-15 -3791 ((-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-675 |#4|) (-631 (-1158)) (-906))) (-15 -3791 ((-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-675 |#4|) (-906))) (-15 -3791 ((-554) (-675 |#4|) (-631 |#4|) (-1140))) (-15 -3791 ((-554) (-675 |#4|) (-631 (-1158)) (-1140))) (-15 -3791 ((-554) (-675 |#4|) (-1140))) (-15 -3791 ((-554) (-675 |#4|) (-631 |#4|) (-906) (-1140))) (-15 -3791 ((-554) (-675 |#4|) (-631 (-1158)) (-906) (-1140))) (-15 -3791 ((-554) (-675 |#4|) (-906) (-1140))) (-15 -3423 ((-554) (-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-1140))) (-15 -2724 ((-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-1140))) (-15 -4337 ((-2 (|:| |rgl| (-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|)))))))))) (|:| |rgsz| (-554))) (-675 |#4|) (-631 (-402 (-937 |#1|))) (-758) (-1140) (-554))) (-15 -3878 ((-402 (-937 |#1|)) |#4|)) (-15 -3878 ((-675 (-402 (-937 |#1|))) (-675 |#4|))) (-15 -3878 ((-631 (-402 (-937 |#1|))) (-631 |#4|))) (-15 -3299 ((-631 (-402 (-937 |#1|))) (-631 (-1158)))) (-15 -4235 (|#4| (-937 |#1|))) (-15 -2150 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-631 |#4|)) (|:| |n0| (-631 |#4|))) (-631 |#4|) (-631 |#4|))) (-15 -2507 ((-631 (-2 (|:| -4186 (-758)) (|:| |eqns| (-631 (-2 (|:| |det| |#4|) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554)))))) (|:| |fgb| (-631 |#4|)))) (-675 |#4|) (-758))) (-15 -2595 ((-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|)))))) (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|)))))) (-631 |#4|))) (-15 -1391 ((-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|)))))) (-2 (|:| -2866 (-675 (-402 (-937 |#1|)))) (|:| |vec| (-631 (-402 (-937 |#1|)))) (|:| -4186 (-758)) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554)))))) (-15 -1513 ((-631 |#4|) |#4|)) (-15 -3716 ((-758) (-631 (-2 (|:| -4186 (-758)) (|:| |eqns| (-631 (-2 (|:| |det| |#4|) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554)))))) (|:| |fgb| (-631 |#4|)))))) (-15 -1305 ((-758) (-631 (-2 (|:| -4186 (-758)) (|:| |eqns| (-631 (-2 (|:| |det| |#4|) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554)))))) (|:| |fgb| (-631 |#4|)))))) (-15 -2409 ((-631 (-631 |#4|)) (-631 (-631 |#4|)))) (-15 -4096 ((-631 (-631 (-554))) (-554) (-554))) (-15 -1567 ((-112) (-631 |#4|) (-631 (-631 |#4|)))) (-15 -1430 ((-631 (-2 (|:| |det| |#4|) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554))))) (-675 |#4|) (-758))) (-15 -1948 ((-675 |#4|) (-675 |#4|) (-631 |#4|))) (-15 -1457 ((-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554)))) (-675 |#4|) (-631 (-402 (-937 |#1|))) (-631 (-631 |#4|)) (-758) (-758) (-554))) (-15 -3066 (|#4| |#4|)) (-15 -2238 ((-112) (-631 |#4|))) (-15 -2238 ((-112) (-631 (-937 |#1|))))) (-13 (-302) (-145)) (-13 (-836) (-602 (-1158))) (-780) (-934 |#1| |#3| |#2|)) (T -909))
-((-2238 (*1 *2 *3) (-12 (-5 *3 (-631 (-937 *4))) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780)) (-5 *2 (-112)) (-5 *1 (-909 *4 *5 *6 *7)) (-4 *7 (-934 *4 *6 *5)))) (-2238 (*1 *2 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-934 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780)) (-5 *2 (-112)) (-5 *1 (-909 *4 *5 *6 *7)))) (-3066 (*1 *2 *2) (-12 (-4 *3 (-13 (-302) (-145))) (-4 *4 (-13 (-836) (-602 (-1158)))) (-4 *5 (-780)) (-5 *1 (-909 *3 *4 *5 *2)) (-4 *2 (-934 *3 *5 *4)))) (-1457 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554))))) (-5 *4 (-675 *12)) (-5 *5 (-631 (-402 (-937 *9)))) (-5 *6 (-631 (-631 *12))) (-5 *7 (-758)) (-5 *8 (-554)) (-4 *9 (-13 (-302) (-145))) (-4 *12 (-934 *9 *11 *10)) (-4 *10 (-13 (-836) (-602 (-1158)))) (-4 *11 (-780)) (-5 *2 (-2 (|:| |eqzro| (-631 *12)) (|:| |neqzro| (-631 *12)) (|:| |wcond| (-631 (-937 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 *9)))) (|:| -3782 (-631 (-1241 (-402 (-937 *9))))))))) (-5 *1 (-909 *9 *10 *11 *12)))) (-1948 (*1 *2 *2 *3) (-12 (-5 *2 (-675 *7)) (-5 *3 (-631 *7)) (-4 *7 (-934 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780)) (-5 *1 (-909 *4 *5 *6 *7)))) (-1430 (*1 *2 *3 *4) (-12 (-5 *3 (-675 *8)) (-5 *4 (-758)) (-4 *8 (-934 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-836) (-602 (-1158)))) (-4 *7 (-780)) (-5 *2 (-631 (-2 (|:| |det| *8) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554)))))) (-5 *1 (-909 *5 *6 *7 *8)))) (-1567 (*1 *2 *3 *4) (-12 (-5 *4 (-631 (-631 *8))) (-5 *3 (-631 *8)) (-4 *8 (-934 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-836) (-602 (-1158)))) (-4 *7 (-780)) (-5 *2 (-112)) (-5 *1 (-909 *5 *6 *7 *8)))) (-4096 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780)) (-5 *2 (-631 (-631 (-554)))) (-5 *1 (-909 *4 *5 *6 *7)) (-5 *3 (-554)) (-4 *7 (-934 *4 *6 *5)))) (-2409 (*1 *2 *2) (-12 (-5 *2 (-631 (-631 *6))) (-4 *6 (-934 *3 *5 *4)) (-4 *3 (-13 (-302) (-145))) (-4 *4 (-13 (-836) (-602 (-1158)))) (-4 *5 (-780)) (-5 *1 (-909 *3 *4 *5 *6)))) (-1305 (*1 *2 *3) (-12 (-5 *3 (-631 (-2 (|:| -4186 (-758)) (|:| |eqns| (-631 (-2 (|:| |det| *7) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554)))))) (|:| |fgb| (-631 *7))))) (-4 *7 (-934 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780)) (-5 *2 (-758)) (-5 *1 (-909 *4 *5 *6 *7)))) (-3716 (*1 *2 *3) (-12 (-5 *3 (-631 (-2 (|:| -4186 (-758)) (|:| |eqns| (-631 (-2 (|:| |det| *7) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554)))))) (|:| |fgb| (-631 *7))))) (-4 *7 (-934 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780)) (-5 *2 (-758)) (-5 *1 (-909 *4 *5 *6 *7)))) (-1513 (*1 *2 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780)) (-5 *2 (-631 *3)) (-5 *1 (-909 *4 *5 *6 *3)) (-4 *3 (-934 *4 *6 *5)))) (-1391 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2866 (-675 (-402 (-937 *4)))) (|:| |vec| (-631 (-402 (-937 *4)))) (|:| -4186 (-758)) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554))))) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780)) (-5 *2 (-2 (|:| |partsol| (-1241 (-402 (-937 *4)))) (|:| -3782 (-631 (-1241 (-402 (-937 *4))))))) (-5 *1 (-909 *4 *5 *6 *7)) (-4 *7 (-934 *4 *6 *5)))) (-2595 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1241 (-402 (-937 *4)))) (|:| -3782 (-631 (-1241 (-402 (-937 *4))))))) (-5 *3 (-631 *7)) (-4 *4 (-13 (-302) (-145))) (-4 *7 (-934 *4 *6 *5)) (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780)) (-5 *1 (-909 *4 *5 *6 *7)))) (-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-675 *8)) (-4 *8 (-934 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-836) (-602 (-1158)))) (-4 *7 (-780)) (-5 *2 (-631 (-2 (|:| -4186 (-758)) (|:| |eqns| (-631 (-2 (|:| |det| *8) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554)))))) (|:| |fgb| (-631 *8))))) (-5 *1 (-909 *5 *6 *7 *8)) (-5 *4 (-758)))) (-2150 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780)) (-4 *7 (-934 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-631 *7)) (|:| |n0| (-631 *7)))) (-5 *1 (-909 *4 *5 *6 *7)) (-5 *3 (-631 *7)))) (-4235 (*1 *2 *3) (-12 (-5 *3 (-937 *4)) (-4 *4 (-13 (-302) (-145))) (-4 *2 (-934 *4 *6 *5)) (-5 *1 (-909 *4 *5 *6 *2)) (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780)))) (-3299 (*1 *2 *3) (-12 (-5 *3 (-631 (-1158))) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780)) (-5 *2 (-631 (-402 (-937 *4)))) (-5 *1 (-909 *4 *5 *6 *7)) (-4 *7 (-934 *4 *6 *5)))) (-3878 (*1 *2 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-934 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780)) (-5 *2 (-631 (-402 (-937 *4)))) (-5 *1 (-909 *4 *5 *6 *7)))) (-3878 (*1 *2 *3) (-12 (-5 *3 (-675 *7)) (-4 *7 (-934 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780)) (-5 *2 (-675 (-402 (-937 *4)))) (-5 *1 (-909 *4 *5 *6 *7)))) (-3878 (*1 *2 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780)) (-5 *2 (-402 (-937 *4))) (-5 *1 (-909 *4 *5 *6 *3)) (-4 *3 (-934 *4 *6 *5)))) (-4337 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-675 *11)) (-5 *4 (-631 (-402 (-937 *8)))) (-5 *5 (-758)) (-5 *6 (-1140)) (-4 *8 (-13 (-302) (-145))) (-4 *11 (-934 *8 *10 *9)) (-4 *9 (-13 (-836) (-602 (-1158)))) (-4 *10 (-780)) (-5 *2 (-2 (|:| |rgl| (-631 (-2 (|:| |eqzro| (-631 *11)) (|:| |neqzro| (-631 *11)) (|:| |wcond| (-631 (-937 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 *8)))) (|:| -3782 (-631 (-1241 (-402 (-937 *8)))))))))) (|:| |rgsz| (-554)))) (-5 *1 (-909 *8 *9 *10 *11)) (-5 *7 (-554)))) (-2724 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780)) (-5 *2 (-631 (-2 (|:| |eqzro| (-631 *7)) (|:| |neqzro| (-631 *7)) (|:| |wcond| (-631 (-937 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 *4)))) (|:| -3782 (-631 (-1241 (-402 (-937 *4)))))))))) (-5 *1 (-909 *4 *5 *6 *7)) (-4 *7 (-934 *4 *6 *5)))) (-3423 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-2 (|:| |eqzro| (-631 *8)) (|:| |neqzro| (-631 *8)) (|:| |wcond| (-631 (-937 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 *5)))) (|:| -3782 (-631 (-1241 (-402 (-937 *5)))))))))) (-5 *4 (-1140)) (-4 *5 (-13 (-302) (-145))) (-4 *8 (-934 *5 *7 *6)) (-4 *6 (-13 (-836) (-602 (-1158)))) (-4 *7 (-780)) (-5 *2 (-554)) (-5 *1 (-909 *5 *6 *7 *8)))) (-3791 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-675 *9)) (-5 *4 (-906)) (-5 *5 (-1140)) (-4 *9 (-934 *6 *8 *7)) (-4 *6 (-13 (-302) (-145))) (-4 *7 (-13 (-836) (-602 (-1158)))) (-4 *8 (-780)) (-5 *2 (-554)) (-5 *1 (-909 *6 *7 *8 *9)))) (-3791 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-675 *10)) (-5 *4 (-631 (-1158))) (-5 *5 (-906)) (-5 *6 (-1140)) (-4 *10 (-934 *7 *9 *8)) (-4 *7 (-13 (-302) (-145))) (-4 *8 (-13 (-836) (-602 (-1158)))) (-4 *9 (-780)) (-5 *2 (-554)) (-5 *1 (-909 *7 *8 *9 *10)))) (-3791 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-675 *10)) (-5 *4 (-631 *10)) (-5 *5 (-906)) (-5 *6 (-1140)) (-4 *10 (-934 *7 *9 *8)) (-4 *7 (-13 (-302) (-145))) (-4 *8 (-13 (-836) (-602 (-1158)))) (-4 *9 (-780)) (-5 *2 (-554)) (-5 *1 (-909 *7 *8 *9 *10)))) (-3791 (*1 *2 *3 *4) (-12 (-5 *3 (-675 *8)) (-5 *4 (-1140)) (-4 *8 (-934 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-836) (-602 (-1158)))) (-4 *7 (-780)) (-5 *2 (-554)) (-5 *1 (-909 *5 *6 *7 *8)))) (-3791 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-675 *9)) (-5 *4 (-631 (-1158))) (-5 *5 (-1140)) (-4 *9 (-934 *6 *8 *7)) (-4 *6 (-13 (-302) (-145))) (-4 *7 (-13 (-836) (-602 (-1158)))) (-4 *8 (-780)) (-5 *2 (-554)) (-5 *1 (-909 *6 *7 *8 *9)))) (-3791 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-675 *9)) (-5 *4 (-631 *9)) (-5 *5 (-1140)) (-4 *9 (-934 *6 *8 *7)) (-4 *6 (-13 (-302) (-145))) (-4 *7 (-13 (-836) (-602 (-1158)))) (-4 *8 (-780)) (-5 *2 (-554)) (-5 *1 (-909 *6 *7 *8 *9)))) (-3791 (*1 *2 *3 *4) (-12 (-5 *3 (-675 *8)) (-5 *4 (-906)) (-4 *8 (-934 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-836) (-602 (-1158)))) (-4 *7 (-780)) (-5 *2 (-631 (-2 (|:| |eqzro| (-631 *8)) (|:| |neqzro| (-631 *8)) (|:| |wcond| (-631 (-937 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 *5)))) (|:| -3782 (-631 (-1241 (-402 (-937 *5)))))))))) (-5 *1 (-909 *5 *6 *7 *8)))) (-3791 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-675 *9)) (-5 *4 (-631 (-1158))) (-5 *5 (-906)) (-4 *9 (-934 *6 *8 *7)) (-4 *6 (-13 (-302) (-145))) (-4 *7 (-13 (-836) (-602 (-1158)))) (-4 *8 (-780)) (-5 *2 (-631 (-2 (|:| |eqzro| (-631 *9)) (|:| |neqzro| (-631 *9)) (|:| |wcond| (-631 (-937 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 *6)))) (|:| -3782 (-631 (-1241 (-402 (-937 *6)))))))))) (-5 *1 (-909 *6 *7 *8 *9)))) (-3791 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-675 *9)) (-5 *5 (-906)) (-4 *9 (-934 *6 *8 *7)) (-4 *6 (-13 (-302) (-145))) (-4 *7 (-13 (-836) (-602 (-1158)))) (-4 *8 (-780)) (-5 *2 (-631 (-2 (|:| |eqzro| (-631 *9)) (|:| |neqzro| (-631 *9)) (|:| |wcond| (-631 (-937 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 *6)))) (|:| -3782 (-631 (-1241 (-402 (-937 *6)))))))))) (-5 *1 (-909 *6 *7 *8 *9)) (-5 *4 (-631 *9)))) (-3791 (*1 *2 *3) (-12 (-5 *3 (-675 *7)) (-4 *7 (-934 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780)) (-5 *2 (-631 (-2 (|:| |eqzro| (-631 *7)) (|:| |neqzro| (-631 *7)) (|:| |wcond| (-631 (-937 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 *4)))) (|:| -3782 (-631 (-1241 (-402 (-937 *4)))))))))) (-5 *1 (-909 *4 *5 *6 *7)))) (-3791 (*1 *2 *3 *4) (-12 (-5 *3 (-675 *8)) (-5 *4 (-631 (-1158))) (-4 *8 (-934 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-836) (-602 (-1158)))) (-4 *7 (-780)) (-5 *2 (-631 (-2 (|:| |eqzro| (-631 *8)) (|:| |neqzro| (-631 *8)) (|:| |wcond| (-631 (-937 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 *5)))) (|:| -3782 (-631 (-1241 (-402 (-937 *5)))))))))) (-5 *1 (-909 *5 *6 *7 *8)))) (-3791 (*1 *2 *3 *4) (-12 (-5 *3 (-675 *8)) (-4 *8 (-934 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-836) (-602 (-1158)))) (-4 *7 (-780)) (-5 *2 (-631 (-2 (|:| |eqzro| (-631 *8)) (|:| |neqzro| (-631 *8)) (|:| |wcond| (-631 (-937 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 *5)))) (|:| -3782 (-631 (-1241 (-402 (-937 *5)))))))))) (-5 *1 (-909 *5 *6 *7 *8)) (-5 *4 (-631 *8)))))
-(-10 -7 (-15 -3791 ((-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-675 |#4|) (-631 |#4|))) (-15 -3791 ((-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-675 |#4|) (-631 (-1158)))) (-15 -3791 ((-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-675 |#4|))) (-15 -3791 ((-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-675 |#4|) (-631 |#4|) (-906))) (-15 -3791 ((-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-675 |#4|) (-631 (-1158)) (-906))) (-15 -3791 ((-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-675 |#4|) (-906))) (-15 -3791 ((-554) (-675 |#4|) (-631 |#4|) (-1140))) (-15 -3791 ((-554) (-675 |#4|) (-631 (-1158)) (-1140))) (-15 -3791 ((-554) (-675 |#4|) (-1140))) (-15 -3791 ((-554) (-675 |#4|) (-631 |#4|) (-906) (-1140))) (-15 -3791 ((-554) (-675 |#4|) (-631 (-1158)) (-906) (-1140))) (-15 -3791 ((-554) (-675 |#4|) (-906) (-1140))) (-15 -3423 ((-554) (-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-1140))) (-15 -2724 ((-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-1140))) (-15 -4337 ((-2 (|:| |rgl| (-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|)))))))))) (|:| |rgsz| (-554))) (-675 |#4|) (-631 (-402 (-937 |#1|))) (-758) (-1140) (-554))) (-15 -3878 ((-402 (-937 |#1|)) |#4|)) (-15 -3878 ((-675 (-402 (-937 |#1|))) (-675 |#4|))) (-15 -3878 ((-631 (-402 (-937 |#1|))) (-631 |#4|))) (-15 -3299 ((-631 (-402 (-937 |#1|))) (-631 (-1158)))) (-15 -4235 (|#4| (-937 |#1|))) (-15 -2150 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-631 |#4|)) (|:| |n0| (-631 |#4|))) (-631 |#4|) (-631 |#4|))) (-15 -2507 ((-631 (-2 (|:| -4186 (-758)) (|:| |eqns| (-631 (-2 (|:| |det| |#4|) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554)))))) (|:| |fgb| (-631 |#4|)))) (-675 |#4|) (-758))) (-15 -2595 ((-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|)))))) (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|)))))) (-631 |#4|))) (-15 -1391 ((-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|)))))) (-2 (|:| -2866 (-675 (-402 (-937 |#1|)))) (|:| |vec| (-631 (-402 (-937 |#1|)))) (|:| -4186 (-758)) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554)))))) (-15 -1513 ((-631 |#4|) |#4|)) (-15 -3716 ((-758) (-631 (-2 (|:| -4186 (-758)) (|:| |eqns| (-631 (-2 (|:| |det| |#4|) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554)))))) (|:| |fgb| (-631 |#4|)))))) (-15 -1305 ((-758) (-631 (-2 (|:| -4186 (-758)) (|:| |eqns| (-631 (-2 (|:| |det| |#4|) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554)))))) (|:| |fgb| (-631 |#4|)))))) (-15 -2409 ((-631 (-631 |#4|)) (-631 (-631 |#4|)))) (-15 -4096 ((-631 (-631 (-554))) (-554) (-554))) (-15 -1567 ((-112) (-631 |#4|) (-631 (-631 |#4|)))) (-15 -1430 ((-631 (-2 (|:| |det| |#4|) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554))))) (-675 |#4|) (-758))) (-15 -1948 ((-675 |#4|) (-675 |#4|) (-631 |#4|))) (-15 -1457 ((-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554)))) (-675 |#4|) (-631 (-402 (-937 |#1|))) (-631 (-631 |#4|)) (-758) (-758) (-554))) (-15 -3066 (|#4| |#4|)) (-15 -2238 ((-112) (-631 |#4|))) (-15 -2238 ((-112) (-631 (-937 |#1|)))))
-((-1663 (((-912) |#1| (-1158)) 17) (((-912) |#1| (-1158) (-1076 (-221))) 21)) (-3650 (((-912) |#1| |#1| (-1158) (-1076 (-221))) 19) (((-912) |#1| (-1158) (-1076 (-221))) 15)))
-(((-910 |#1|) (-10 -7 (-15 -3650 ((-912) |#1| (-1158) (-1076 (-221)))) (-15 -3650 ((-912) |#1| |#1| (-1158) (-1076 (-221)))) (-15 -1663 ((-912) |#1| (-1158) (-1076 (-221)))) (-15 -1663 ((-912) |#1| (-1158)))) (-602 (-530))) (T -910))
-((-1663 (*1 *2 *3 *4) (-12 (-5 *4 (-1158)) (-5 *2 (-912)) (-5 *1 (-910 *3)) (-4 *3 (-602 (-530))))) (-1663 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1158)) (-5 *5 (-1076 (-221))) (-5 *2 (-912)) (-5 *1 (-910 *3)) (-4 *3 (-602 (-530))))) (-3650 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1158)) (-5 *5 (-1076 (-221))) (-5 *2 (-912)) (-5 *1 (-910 *3)) (-4 *3 (-602 (-530))))) (-3650 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1158)) (-5 *5 (-1076 (-221))) (-5 *2 (-912)) (-5 *1 (-910 *3)) (-4 *3 (-602 (-530))))))
-(-10 -7 (-15 -3650 ((-912) |#1| (-1158) (-1076 (-221)))) (-15 -3650 ((-912) |#1| |#1| (-1158) (-1076 (-221)))) (-15 -1663 ((-912) |#1| (-1158) (-1076 (-221)))) (-15 -1663 ((-912) |#1| (-1158))))
-((-2208 (($ $ (-1076 (-221)) (-1076 (-221)) (-1076 (-221))) 70)) (-2839 (((-1076 (-221)) $) 40)) (-2829 (((-1076 (-221)) $) 39)) (-2818 (((-1076 (-221)) $) 38)) (-1332 (((-631 (-631 (-221))) $) 43)) (-2374 (((-1076 (-221)) $) 41)) (-2815 (((-554) (-554)) 32)) (-1477 (((-554) (-554)) 28)) (-2139 (((-554) (-554)) 30)) (-1729 (((-112) (-112)) 35)) (-3073 (((-554)) 31)) (-3792 (($ $ (-1076 (-221))) 73) (($ $) 74)) (-3533 (($ (-1 (-928 (-221)) (-221)) (-1076 (-221))) 78) (($ (-1 (-928 (-221)) (-221)) (-1076 (-221)) (-1076 (-221)) (-1076 (-221)) (-1076 (-221))) 79)) (-3650 (($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1076 (-221))) 81) (($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1076 (-221)) (-1076 (-221)) (-1076 (-221)) (-1076 (-221))) 82) (($ $ (-1076 (-221))) 76)) (-2065 (((-554)) 36)) (-1321 (((-554)) 27)) (-1947 (((-554)) 29)) (-3787 (((-631 (-631 (-928 (-221)))) $) 94)) (-2735 (((-112) (-112)) 37)) (-3075 (((-848) $) 93)) (-1291 (((-112)) 34)))
-(((-911) (-13 (-959) (-10 -8 (-15 -3533 ($ (-1 (-928 (-221)) (-221)) (-1076 (-221)))) (-15 -3533 ($ (-1 (-928 (-221)) (-221)) (-1076 (-221)) (-1076 (-221)) (-1076 (-221)) (-1076 (-221)))) (-15 -3650 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1076 (-221)))) (-15 -3650 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1076 (-221)) (-1076 (-221)) (-1076 (-221)) (-1076 (-221)))) (-15 -3650 ($ $ (-1076 (-221)))) (-15 -2208 ($ $ (-1076 (-221)) (-1076 (-221)) (-1076 (-221)))) (-15 -3792 ($ $ (-1076 (-221)))) (-15 -3792 ($ $)) (-15 -2374 ((-1076 (-221)) $)) (-15 -1332 ((-631 (-631 (-221))) $)) (-15 -1321 ((-554))) (-15 -1477 ((-554) (-554))) (-15 -1947 ((-554))) (-15 -2139 ((-554) (-554))) (-15 -3073 ((-554))) (-15 -2815 ((-554) (-554))) (-15 -1291 ((-112))) (-15 -1729 ((-112) (-112))) (-15 -2065 ((-554))) (-15 -2735 ((-112) (-112)))))) (T -911))
-((-3533 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-928 (-221)) (-221))) (-5 *3 (-1076 (-221))) (-5 *1 (-911)))) (-3533 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-928 (-221)) (-221))) (-5 *3 (-1076 (-221))) (-5 *1 (-911)))) (-3650 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1076 (-221))) (-5 *1 (-911)))) (-3650 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1076 (-221))) (-5 *1 (-911)))) (-3650 (*1 *1 *1 *2) (-12 (-5 *2 (-1076 (-221))) (-5 *1 (-911)))) (-2208 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1076 (-221))) (-5 *1 (-911)))) (-3792 (*1 *1 *1 *2) (-12 (-5 *2 (-1076 (-221))) (-5 *1 (-911)))) (-3792 (*1 *1 *1) (-5 *1 (-911))) (-2374 (*1 *2 *1) (-12 (-5 *2 (-1076 (-221))) (-5 *1 (-911)))) (-1332 (*1 *2 *1) (-12 (-5 *2 (-631 (-631 (-221)))) (-5 *1 (-911)))) (-1321 (*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-911)))) (-1477 (*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-911)))) (-1947 (*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-911)))) (-2139 (*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-911)))) (-3073 (*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-911)))) (-2815 (*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-911)))) (-1291 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-911)))) (-1729 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-911)))) (-2065 (*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-911)))) (-2735 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-911)))))
-(-13 (-959) (-10 -8 (-15 -3533 ($ (-1 (-928 (-221)) (-221)) (-1076 (-221)))) (-15 -3533 ($ (-1 (-928 (-221)) (-221)) (-1076 (-221)) (-1076 (-221)) (-1076 (-221)) (-1076 (-221)))) (-15 -3650 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1076 (-221)))) (-15 -3650 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1076 (-221)) (-1076 (-221)) (-1076 (-221)) (-1076 (-221)))) (-15 -3650 ($ $ (-1076 (-221)))) (-15 -2208 ($ $ (-1076 (-221)) (-1076 (-221)) (-1076 (-221)))) (-15 -3792 ($ $ (-1076 (-221)))) (-15 -3792 ($ $)) (-15 -2374 ((-1076 (-221)) $)) (-15 -1332 ((-631 (-631 (-221))) $)) (-15 -1321 ((-554))) (-15 -1477 ((-554) (-554))) (-15 -1947 ((-554))) (-15 -2139 ((-554) (-554))) (-15 -3073 ((-554))) (-15 -2815 ((-554) (-554))) (-15 -1291 ((-112))) (-15 -1729 ((-112) (-112))) (-15 -2065 ((-554))) (-15 -2735 ((-112) (-112)))))
-((-2208 (($ $ (-1076 (-221))) 70) (($ $ (-1076 (-221)) (-1076 (-221))) 71)) (-2829 (((-1076 (-221)) $) 44)) (-2818 (((-1076 (-221)) $) 43)) (-2374 (((-1076 (-221)) $) 45)) (-3547 (((-554) (-554)) 37)) (-3379 (((-554) (-554)) 33)) (-3774 (((-554) (-554)) 35)) (-3604 (((-112) (-112)) 39)) (-3902 (((-554)) 36)) (-3792 (($ $ (-1076 (-221))) 74) (($ $) 75)) (-3533 (($ (-1 (-928 (-221)) (-221)) (-1076 (-221))) 84) (($ (-1 (-928 (-221)) (-221)) (-1076 (-221)) (-1076 (-221)) (-1076 (-221))) 85)) (-1663 (($ (-1 (-221) (-221)) (-1076 (-221))) 92) (($ (-1 (-221) (-221))) 95)) (-3650 (($ (-1 (-221) (-221)) (-1076 (-221))) 79) (($ (-1 (-221) (-221)) (-1076 (-221)) (-1076 (-221))) 80) (($ (-631 (-1 (-221) (-221))) (-1076 (-221))) 87) (($ (-631 (-1 (-221) (-221))) (-1076 (-221)) (-1076 (-221))) 88) (($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1076 (-221))) 81) (($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1076 (-221)) (-1076 (-221)) (-1076 (-221))) 82) (($ $ (-1076 (-221))) 76)) (-2387 (((-112) $) 40)) (-4331 (((-554)) 41)) (-2477 (((-554)) 32)) (-4179 (((-554)) 34)) (-3787 (((-631 (-631 (-928 (-221)))) $) 23)) (-1778 (((-112) (-112)) 42)) (-3075 (((-848) $) 106)) (-3036 (((-112)) 38)))
-(((-912) (-13 (-940) (-10 -8 (-15 -3650 ($ (-1 (-221) (-221)) (-1076 (-221)))) (-15 -3650 ($ (-1 (-221) (-221)) (-1076 (-221)) (-1076 (-221)))) (-15 -3650 ($ (-631 (-1 (-221) (-221))) (-1076 (-221)))) (-15 -3650 ($ (-631 (-1 (-221) (-221))) (-1076 (-221)) (-1076 (-221)))) (-15 -3650 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1076 (-221)))) (-15 -3650 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1076 (-221)) (-1076 (-221)) (-1076 (-221)))) (-15 -3533 ($ (-1 (-928 (-221)) (-221)) (-1076 (-221)))) (-15 -3533 ($ (-1 (-928 (-221)) (-221)) (-1076 (-221)) (-1076 (-221)) (-1076 (-221)))) (-15 -1663 ($ (-1 (-221) (-221)) (-1076 (-221)))) (-15 -1663 ($ (-1 (-221) (-221)))) (-15 -3650 ($ $ (-1076 (-221)))) (-15 -2387 ((-112) $)) (-15 -2208 ($ $ (-1076 (-221)))) (-15 -2208 ($ $ (-1076 (-221)) (-1076 (-221)))) (-15 -3792 ($ $ (-1076 (-221)))) (-15 -3792 ($ $)) (-15 -2374 ((-1076 (-221)) $)) (-15 -2477 ((-554))) (-15 -3379 ((-554) (-554))) (-15 -4179 ((-554))) (-15 -3774 ((-554) (-554))) (-15 -3902 ((-554))) (-15 -3547 ((-554) (-554))) (-15 -3036 ((-112))) (-15 -3604 ((-112) (-112))) (-15 -4331 ((-554))) (-15 -1778 ((-112) (-112)))))) (T -912))
-((-3650 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1076 (-221))) (-5 *1 (-912)))) (-3650 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1076 (-221))) (-5 *1 (-912)))) (-3650 (*1 *1 *2 *3) (-12 (-5 *2 (-631 (-1 (-221) (-221)))) (-5 *3 (-1076 (-221))) (-5 *1 (-912)))) (-3650 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-631 (-1 (-221) (-221)))) (-5 *3 (-1076 (-221))) (-5 *1 (-912)))) (-3650 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1076 (-221))) (-5 *1 (-912)))) (-3650 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1076 (-221))) (-5 *1 (-912)))) (-3533 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-928 (-221)) (-221))) (-5 *3 (-1076 (-221))) (-5 *1 (-912)))) (-3533 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-928 (-221)) (-221))) (-5 *3 (-1076 (-221))) (-5 *1 (-912)))) (-1663 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1076 (-221))) (-5 *1 (-912)))) (-1663 (*1 *1 *2) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *1 (-912)))) (-3650 (*1 *1 *1 *2) (-12 (-5 *2 (-1076 (-221))) (-5 *1 (-912)))) (-2387 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-912)))) (-2208 (*1 *1 *1 *2) (-12 (-5 *2 (-1076 (-221))) (-5 *1 (-912)))) (-2208 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1076 (-221))) (-5 *1 (-912)))) (-3792 (*1 *1 *1 *2) (-12 (-5 *2 (-1076 (-221))) (-5 *1 (-912)))) (-3792 (*1 *1 *1) (-5 *1 (-912))) (-2374 (*1 *2 *1) (-12 (-5 *2 (-1076 (-221))) (-5 *1 (-912)))) (-2477 (*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-912)))) (-3379 (*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-912)))) (-4179 (*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-912)))) (-3774 (*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-912)))) (-3902 (*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-912)))) (-3547 (*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-912)))) (-3036 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-912)))) (-3604 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-912)))) (-4331 (*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-912)))) (-1778 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-912)))))
-(-13 (-940) (-10 -8 (-15 -3650 ($ (-1 (-221) (-221)) (-1076 (-221)))) (-15 -3650 ($ (-1 (-221) (-221)) (-1076 (-221)) (-1076 (-221)))) (-15 -3650 ($ (-631 (-1 (-221) (-221))) (-1076 (-221)))) (-15 -3650 ($ (-631 (-1 (-221) (-221))) (-1076 (-221)) (-1076 (-221)))) (-15 -3650 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1076 (-221)))) (-15 -3650 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1076 (-221)) (-1076 (-221)) (-1076 (-221)))) (-15 -3533 ($ (-1 (-928 (-221)) (-221)) (-1076 (-221)))) (-15 -3533 ($ (-1 (-928 (-221)) (-221)) (-1076 (-221)) (-1076 (-221)) (-1076 (-221)))) (-15 -1663 ($ (-1 (-221) (-221)) (-1076 (-221)))) (-15 -1663 ($ (-1 (-221) (-221)))) (-15 -3650 ($ $ (-1076 (-221)))) (-15 -2387 ((-112) $)) (-15 -2208 ($ $ (-1076 (-221)))) (-15 -2208 ($ $ (-1076 (-221)) (-1076 (-221)))) (-15 -3792 ($ $ (-1076 (-221)))) (-15 -3792 ($ $)) (-15 -2374 ((-1076 (-221)) $)) (-15 -2477 ((-554))) (-15 -3379 ((-554) (-554))) (-15 -4179 ((-554))) (-15 -3774 ((-554) (-554))) (-15 -3902 ((-554))) (-15 -3547 ((-554) (-554))) (-15 -3036 ((-112))) (-15 -3604 ((-112) (-112))) (-15 -4331 ((-554))) (-15 -1778 ((-112) (-112)))))
-((-3204 (((-631 (-1076 (-221))) (-631 (-631 (-928 (-221))))) 24)))
-(((-913) (-10 -7 (-15 -3204 ((-631 (-1076 (-221))) (-631 (-631 (-928 (-221)))))))) (T -913))
-((-3204 (*1 *2 *3) (-12 (-5 *3 (-631 (-631 (-928 (-221))))) (-5 *2 (-631 (-1076 (-221)))) (-5 *1 (-913)))))
-(-10 -7 (-15 -3204 ((-631 (-1076 (-221))) (-631 (-631 (-928 (-221)))))))
-((-4106 ((|#2| |#2|) 26)) (-3143 ((|#2| |#2|) 27)) (-2397 ((|#2| |#2|) 25)) (-1849 ((|#2| |#2| (-1140)) 24)))
-(((-914 |#1| |#2|) (-10 -7 (-15 -1849 (|#2| |#2| (-1140))) (-15 -2397 (|#2| |#2|)) (-15 -4106 (|#2| |#2|)) (-15 -3143 (|#2| |#2|))) (-836) (-425 |#1|)) (T -914))
-((-3143 (*1 *2 *2) (-12 (-4 *3 (-836)) (-5 *1 (-914 *3 *2)) (-4 *2 (-425 *3)))) (-4106 (*1 *2 *2) (-12 (-4 *3 (-836)) (-5 *1 (-914 *3 *2)) (-4 *2 (-425 *3)))) (-2397 (*1 *2 *2) (-12 (-4 *3 (-836)) (-5 *1 (-914 *3 *2)) (-4 *2 (-425 *3)))) (-1849 (*1 *2 *2 *3) (-12 (-5 *3 (-1140)) (-4 *4 (-836)) (-5 *1 (-914 *4 *2)) (-4 *2 (-425 *4)))))
-(-10 -7 (-15 -1849 (|#2| |#2| (-1140))) (-15 -2397 (|#2| |#2|)) (-15 -4106 (|#2| |#2|)) (-15 -3143 (|#2| |#2|)))
-((-4106 (((-311 (-554)) (-1158)) 16)) (-3143 (((-311 (-554)) (-1158)) 14)) (-2397 (((-311 (-554)) (-1158)) 12)) (-1849 (((-311 (-554)) (-1158) (-1140)) 19)))
-(((-915) (-10 -7 (-15 -1849 ((-311 (-554)) (-1158) (-1140))) (-15 -2397 ((-311 (-554)) (-1158))) (-15 -4106 ((-311 (-554)) (-1158))) (-15 -3143 ((-311 (-554)) (-1158))))) (T -915))
-((-3143 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-311 (-554))) (-5 *1 (-915)))) (-4106 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-311 (-554))) (-5 *1 (-915)))) (-2397 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-311 (-554))) (-5 *1 (-915)))) (-1849 (*1 *2 *3 *4) (-12 (-5 *3 (-1158)) (-5 *4 (-1140)) (-5 *2 (-311 (-554))) (-5 *1 (-915)))))
-(-10 -7 (-15 -1849 ((-311 (-554)) (-1158) (-1140))) (-15 -2397 ((-311 (-554)) (-1158))) (-15 -4106 ((-311 (-554)) (-1158))) (-15 -3143 ((-311 (-554)) (-1158))))
-((-1655 (((-874 |#1| |#3|) |#2| (-877 |#1|) (-874 |#1| |#3|)) 25)) (-2962 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13)))
-(((-916 |#1| |#2| |#3|) (-10 -7 (-15 -2962 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -1655 ((-874 |#1| |#3|) |#2| (-877 |#1|) (-874 |#1| |#3|)))) (-1082) (-871 |#1|) (-13 (-1082) (-1023 |#2|))) (T -916))
-((-1655 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-874 *5 *6)) (-5 *4 (-877 *5)) (-4 *5 (-1082)) (-4 *6 (-13 (-1082) (-1023 *3))) (-4 *3 (-871 *5)) (-5 *1 (-916 *5 *3 *6)))) (-2962 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1082) (-1023 *5))) (-4 *5 (-871 *4)) (-4 *4 (-1082)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-916 *4 *5 *6)))))
-(-10 -7 (-15 -2962 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -1655 ((-874 |#1| |#3|) |#2| (-877 |#1|) (-874 |#1| |#3|))))
-((-1655 (((-874 |#1| |#3|) |#3| (-877 |#1|) (-874 |#1| |#3|)) 30)))
-(((-917 |#1| |#2| |#3|) (-10 -7 (-15 -1655 ((-874 |#1| |#3|) |#3| (-877 |#1|) (-874 |#1| |#3|)))) (-1082) (-13 (-546) (-836) (-871 |#1|)) (-13 (-425 |#2|) (-602 (-877 |#1|)) (-871 |#1|) (-1023 (-600 $)))) (T -917))
-((-1655 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-874 *5 *3)) (-4 *5 (-1082)) (-4 *3 (-13 (-425 *6) (-602 *4) (-871 *5) (-1023 (-600 $)))) (-5 *4 (-877 *5)) (-4 *6 (-13 (-546) (-836) (-871 *5))) (-5 *1 (-917 *5 *6 *3)))))
-(-10 -7 (-15 -1655 ((-874 |#1| |#3|) |#3| (-877 |#1|) (-874 |#1| |#3|))))
-((-1655 (((-874 (-554) |#1|) |#1| (-877 (-554)) (-874 (-554) |#1|)) 13)))
-(((-918 |#1|) (-10 -7 (-15 -1655 ((-874 (-554) |#1|) |#1| (-877 (-554)) (-874 (-554) |#1|)))) (-539)) (T -918))
-((-1655 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-874 (-554) *3)) (-5 *4 (-877 (-554))) (-4 *3 (-539)) (-5 *1 (-918 *3)))))
-(-10 -7 (-15 -1655 ((-874 (-554) |#1|) |#1| (-877 (-554)) (-874 (-554) |#1|))))
-((-1655 (((-874 |#1| |#2|) (-600 |#2|) (-877 |#1|) (-874 |#1| |#2|)) 54)))
-(((-919 |#1| |#2|) (-10 -7 (-15 -1655 ((-874 |#1| |#2|) (-600 |#2|) (-877 |#1|) (-874 |#1| |#2|)))) (-1082) (-13 (-836) (-1023 (-600 $)) (-602 (-877 |#1|)) (-871 |#1|))) (T -919))
-((-1655 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-874 *5 *6)) (-5 *3 (-600 *6)) (-4 *5 (-1082)) (-4 *6 (-13 (-836) (-1023 (-600 $)) (-602 *4) (-871 *5))) (-5 *4 (-877 *5)) (-5 *1 (-919 *5 *6)))))
-(-10 -7 (-15 -1655 ((-874 |#1| |#2|) (-600 |#2|) (-877 |#1|) (-874 |#1| |#2|))))
-((-1655 (((-870 |#1| |#2| |#3|) |#3| (-877 |#1|) (-870 |#1| |#2| |#3|)) 15)))
-(((-920 |#1| |#2| |#3|) (-10 -7 (-15 -1655 ((-870 |#1| |#2| |#3|) |#3| (-877 |#1|) (-870 |#1| |#2| |#3|)))) (-1082) (-871 |#1|) (-652 |#2|)) (T -920))
-((-1655 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-870 *5 *6 *3)) (-5 *4 (-877 *5)) (-4 *5 (-1082)) (-4 *6 (-871 *5)) (-4 *3 (-652 *6)) (-5 *1 (-920 *5 *6 *3)))))
-(-10 -7 (-15 -1655 ((-870 |#1| |#2| |#3|) |#3| (-877 |#1|) (-870 |#1| |#2| |#3|))))
-((-1655 (((-874 |#1| |#5|) |#5| (-877 |#1|) (-874 |#1| |#5|)) 17 (|has| |#3| (-871 |#1|))) (((-874 |#1| |#5|) |#5| (-877 |#1|) (-874 |#1| |#5|) (-1 (-874 |#1| |#5|) |#3| (-877 |#1|) (-874 |#1| |#5|))) 16)))
-(((-921 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1655 ((-874 |#1| |#5|) |#5| (-877 |#1|) (-874 |#1| |#5|) (-1 (-874 |#1| |#5|) |#3| (-877 |#1|) (-874 |#1| |#5|)))) (IF (|has| |#3| (-871 |#1|)) (-15 -1655 ((-874 |#1| |#5|) |#5| (-877 |#1|) (-874 |#1| |#5|))) |%noBranch|)) (-1082) (-780) (-836) (-13 (-1034) (-836) (-871 |#1|)) (-13 (-934 |#4| |#2| |#3|) (-602 (-877 |#1|)))) (T -921))
-((-1655 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-874 *5 *3)) (-4 *5 (-1082)) (-4 *3 (-13 (-934 *8 *6 *7) (-602 *4))) (-5 *4 (-877 *5)) (-4 *7 (-871 *5)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *8 (-13 (-1034) (-836) (-871 *5))) (-5 *1 (-921 *5 *6 *7 *8 *3)))) (-1655 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-874 *6 *3) *8 (-877 *6) (-874 *6 *3))) (-4 *8 (-836)) (-5 *2 (-874 *6 *3)) (-5 *4 (-877 *6)) (-4 *6 (-1082)) (-4 *3 (-13 (-934 *9 *7 *8) (-602 *4))) (-4 *7 (-780)) (-4 *9 (-13 (-1034) (-836) (-871 *6))) (-5 *1 (-921 *6 *7 *8 *9 *3)))))
-(-10 -7 (-15 -1655 ((-874 |#1| |#5|) |#5| (-877 |#1|) (-874 |#1| |#5|) (-1 (-874 |#1| |#5|) |#3| (-877 |#1|) (-874 |#1| |#5|)))) (IF (|has| |#3| (-871 |#1|)) (-15 -1655 ((-874 |#1| |#5|) |#5| (-877 |#1|) (-874 |#1| |#5|))) |%noBranch|))
-((-3234 ((|#2| |#2| (-631 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13)))
-(((-922 |#1| |#2| |#3|) (-10 -7 (-15 -3234 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3234 (|#2| |#2| (-631 (-1 (-112) |#3|))))) (-836) (-425 |#1|) (-1195)) (T -922))
-((-3234 (*1 *2 *2 *3) (-12 (-5 *3 (-631 (-1 (-112) *5))) (-4 *5 (-1195)) (-4 *4 (-836)) (-5 *1 (-922 *4 *2 *5)) (-4 *2 (-425 *4)))) (-3234 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1195)) (-4 *4 (-836)) (-5 *1 (-922 *4 *2 *5)) (-4 *2 (-425 *4)))))
-(-10 -7 (-15 -3234 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3234 (|#2| |#2| (-631 (-1 (-112) |#3|)))))
-((-3234 (((-311 (-554)) (-1158) (-631 (-1 (-112) |#1|))) 18) (((-311 (-554)) (-1158) (-1 (-112) |#1|)) 15)))
-(((-923 |#1|) (-10 -7 (-15 -3234 ((-311 (-554)) (-1158) (-1 (-112) |#1|))) (-15 -3234 ((-311 (-554)) (-1158) (-631 (-1 (-112) |#1|))))) (-1195)) (T -923))
-((-3234 (*1 *2 *3 *4) (-12 (-5 *3 (-1158)) (-5 *4 (-631 (-1 (-112) *5))) (-4 *5 (-1195)) (-5 *2 (-311 (-554))) (-5 *1 (-923 *5)))) (-3234 (*1 *2 *3 *4) (-12 (-5 *3 (-1158)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1195)) (-5 *2 (-311 (-554))) (-5 *1 (-923 *5)))))
-(-10 -7 (-15 -3234 ((-311 (-554)) (-1158) (-1 (-112) |#1|))) (-15 -3234 ((-311 (-554)) (-1158) (-631 (-1 (-112) |#1|)))))
-((-1655 (((-874 |#1| |#3|) |#3| (-877 |#1|) (-874 |#1| |#3|)) 25)))
-(((-924 |#1| |#2| |#3|) (-10 -7 (-15 -1655 ((-874 |#1| |#3|) |#3| (-877 |#1|) (-874 |#1| |#3|)))) (-1082) (-13 (-546) (-871 |#1|) (-602 (-877 |#1|))) (-977 |#2|)) (T -924))
-((-1655 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-874 *5 *3)) (-4 *5 (-1082)) (-4 *3 (-977 *6)) (-4 *6 (-13 (-546) (-871 *5) (-602 *4))) (-5 *4 (-877 *5)) (-5 *1 (-924 *5 *6 *3)))))
-(-10 -7 (-15 -1655 ((-874 |#1| |#3|) |#3| (-877 |#1|) (-874 |#1| |#3|))))
-((-1655 (((-874 |#1| (-1158)) (-1158) (-877 |#1|) (-874 |#1| (-1158))) 17)))
-(((-925 |#1|) (-10 -7 (-15 -1655 ((-874 |#1| (-1158)) (-1158) (-877 |#1|) (-874 |#1| (-1158))))) (-1082)) (T -925))
-((-1655 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-874 *5 (-1158))) (-5 *3 (-1158)) (-5 *4 (-877 *5)) (-4 *5 (-1082)) (-5 *1 (-925 *5)))))
-(-10 -7 (-15 -1655 ((-874 |#1| (-1158)) (-1158) (-877 |#1|) (-874 |#1| (-1158)))))
-((-4269 (((-874 |#1| |#3|) (-631 |#3|) (-631 (-877 |#1|)) (-874 |#1| |#3|) (-1 (-874 |#1| |#3|) |#3| (-877 |#1|) (-874 |#1| |#3|))) 33)) (-1655 (((-874 |#1| |#3|) (-631 |#3|) (-631 (-877 |#1|)) (-1 |#3| (-631 |#3|)) (-874 |#1| |#3|) (-1 (-874 |#1| |#3|) |#3| (-877 |#1|) (-874 |#1| |#3|))) 32)))
-(((-926 |#1| |#2| |#3|) (-10 -7 (-15 -1655 ((-874 |#1| |#3|) (-631 |#3|) (-631 (-877 |#1|)) (-1 |#3| (-631 |#3|)) (-874 |#1| |#3|) (-1 (-874 |#1| |#3|) |#3| (-877 |#1|) (-874 |#1| |#3|)))) (-15 -4269 ((-874 |#1| |#3|) (-631 |#3|) (-631 (-877 |#1|)) (-874 |#1| |#3|) (-1 (-874 |#1| |#3|) |#3| (-877 |#1|) (-874 |#1| |#3|))))) (-1082) (-13 (-1034) (-836)) (-13 (-1034) (-602 (-877 |#1|)) (-1023 |#2|))) (T -926))
-((-4269 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-631 *8)) (-5 *4 (-631 (-877 *6))) (-5 *5 (-1 (-874 *6 *8) *8 (-877 *6) (-874 *6 *8))) (-4 *6 (-1082)) (-4 *8 (-13 (-1034) (-602 (-877 *6)) (-1023 *7))) (-5 *2 (-874 *6 *8)) (-4 *7 (-13 (-1034) (-836))) (-5 *1 (-926 *6 *7 *8)))) (-1655 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-631 (-877 *7))) (-5 *5 (-1 *9 (-631 *9))) (-5 *6 (-1 (-874 *7 *9) *9 (-877 *7) (-874 *7 *9))) (-4 *7 (-1082)) (-4 *9 (-13 (-1034) (-602 (-877 *7)) (-1023 *8))) (-5 *2 (-874 *7 *9)) (-5 *3 (-631 *9)) (-4 *8 (-13 (-1034) (-836))) (-5 *1 (-926 *7 *8 *9)))))
-(-10 -7 (-15 -1655 ((-874 |#1| |#3|) (-631 |#3|) (-631 (-877 |#1|)) (-1 |#3| (-631 |#3|)) (-874 |#1| |#3|) (-1 (-874 |#1| |#3|) |#3| (-877 |#1|) (-874 |#1| |#3|)))) (-15 -4269 ((-874 |#1| |#3|) (-631 |#3|) (-631 (-877 |#1|)) (-874 |#1| |#3|) (-1 (-874 |#1| |#3|) |#3| (-877 |#1|) (-874 |#1| |#3|)))))
-((-1926 (((-1154 (-402 (-554))) (-554)) 63)) (-3923 (((-1154 (-554)) (-554)) 66)) (-4131 (((-1154 (-554)) (-554)) 60)) (-2074 (((-554) (-1154 (-554))) 55)) (-2285 (((-1154 (-402 (-554))) (-554)) 49)) (-3506 (((-1154 (-554)) (-554)) 38)) (-1398 (((-1154 (-554)) (-554)) 68)) (-1492 (((-1154 (-554)) (-554)) 67)) (-1880 (((-1154 (-402 (-554))) (-554)) 51)))
-(((-927) (-10 -7 (-15 -1880 ((-1154 (-402 (-554))) (-554))) (-15 -1492 ((-1154 (-554)) (-554))) (-15 -1398 ((-1154 (-554)) (-554))) (-15 -3506 ((-1154 (-554)) (-554))) (-15 -2285 ((-1154 (-402 (-554))) (-554))) (-15 -2074 ((-554) (-1154 (-554)))) (-15 -4131 ((-1154 (-554)) (-554))) (-15 -3923 ((-1154 (-554)) (-554))) (-15 -1926 ((-1154 (-402 (-554))) (-554))))) (T -927))
-((-1926 (*1 *2 *3) (-12 (-5 *2 (-1154 (-402 (-554)))) (-5 *1 (-927)) (-5 *3 (-554)))) (-3923 (*1 *2 *3) (-12 (-5 *2 (-1154 (-554))) (-5 *1 (-927)) (-5 *3 (-554)))) (-4131 (*1 *2 *3) (-12 (-5 *2 (-1154 (-554))) (-5 *1 (-927)) (-5 *3 (-554)))) (-2074 (*1 *2 *3) (-12 (-5 *3 (-1154 (-554))) (-5 *2 (-554)) (-5 *1 (-927)))) (-2285 (*1 *2 *3) (-12 (-5 *2 (-1154 (-402 (-554)))) (-5 *1 (-927)) (-5 *3 (-554)))) (-3506 (*1 *2 *3) (-12 (-5 *2 (-1154 (-554))) (-5 *1 (-927)) (-5 *3 (-554)))) (-1398 (*1 *2 *3) (-12 (-5 *2 (-1154 (-554))) (-5 *1 (-927)) (-5 *3 (-554)))) (-1492 (*1 *2 *3) (-12 (-5 *2 (-1154 (-554))) (-5 *1 (-927)) (-5 *3 (-554)))) (-1880 (*1 *2 *3) (-12 (-5 *2 (-1154 (-402 (-554)))) (-5 *1 (-927)) (-5 *3 (-554)))))
-(-10 -7 (-15 -1880 ((-1154 (-402 (-554))) (-554))) (-15 -1492 ((-1154 (-554)) (-554))) (-15 -1398 ((-1154 (-554)) (-554))) (-15 -3506 ((-1154 (-554)) (-554))) (-15 -2285 ((-1154 (-402 (-554))) (-554))) (-15 -2074 ((-554) (-1154 (-554)))) (-15 -4131 ((-1154 (-554)) (-554))) (-15 -3923 ((-1154 (-554)) (-554))) (-15 -1926 ((-1154 (-402 (-554))) (-554))))
-((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2275 (($ (-758)) NIL (|has| |#1| (-23)))) (-4233 (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-4015 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-836)))) (-2576 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4374))) (($ $) NIL (-12 (|has| $ (-6 -4374)) (|has| |#1| (-836))))) (-3303 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-836)))) (-3019 (((-112) $ (-758)) NIL)) (-1501 ((|#1| $ (-554) |#1|) 11 (|has| $ (-6 -4374))) ((|#1| $ (-1208 (-554)) |#1|) NIL (|has| $ (-6 -4374)))) (-1871 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-4087 (($) NIL T CONST)) (-3920 (($ $) NIL (|has| $ (-6 -4374)))) (-3799 (($ $) NIL)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2574 (($ |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4373)))) (-2862 ((|#1| $ (-554) |#1|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-554)) NIL)) (-1484 (((-554) (-1 (-112) |#1|) $) NIL) (((-554) |#1| $) NIL (|has| |#1| (-1082))) (((-554) |#1| $ (-554)) NIL (|has| |#1| (-1082)))) (-4136 (($ (-631 |#1|)) 13)) (-2466 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-2355 (((-675 |#1|) $ $) NIL (|has| |#1| (-1034)))) (-3180 (($ (-758) |#1|) 8)) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) 10 (|has| (-554) (-836)))) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-3717 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-836)))) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2256 (((-554) $) NIL (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2849 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2579 ((|#1| $) NIL (-12 (|has| |#1| (-987)) (|has| |#1| (-1034))))) (-3731 (((-112) $ (-758)) NIL)) (-2577 ((|#1| $) NIL (-12 (|has| |#1| (-987)) (|has| |#1| (-1034))))) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-1782 (($ |#1| $ (-554)) NIL) (($ $ $ (-554)) NIL)) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) NIL)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-1539 ((|#1| $) NIL (|has| (-554) (-836)))) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2441 (($ $ |#1|) NIL (|has| $ (-6 -4374)))) (-4282 (($ $ (-631 |#1|)) 26)) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#1| $ (-554) |#1|) NIL) ((|#1| $ (-554)) 20) (($ $ (-1208 (-554))) NIL)) (-3748 ((|#1| $ $) NIL (|has| |#1| (-1034)))) (-3330 (((-906) $) 16)) (-2021 (($ $ (-554)) NIL) (($ $ (-1208 (-554))) NIL)) (-3574 (($ $ $) 24)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-3553 (($ $ $ (-554)) NIL (|has| $ (-6 -4374)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| |#1| (-602 (-530)))) (($ (-631 |#1|)) 17)) (-3089 (($ (-631 |#1|)) NIL)) (-4323 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-631 $)) NIL)) (-3075 (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1744 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1735 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-554) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-713))) (($ $ |#1|) NIL (|has| |#1| (-713)))) (-2563 (((-758) $) 14 (|has| $ (-6 -4373)))))
-(((-928 |#1|) (-965 |#1|) (-1034)) (T -928))
-NIL
-(-965 |#1|)
-((-2912 (((-475 |#1| |#2|) (-937 |#2|)) 20)) (-1554 (((-243 |#1| |#2|) (-937 |#2|)) 33)) (-2743 (((-937 |#2|) (-475 |#1| |#2|)) 25)) (-3884 (((-243 |#1| |#2|) (-475 |#1| |#2|)) 55)) (-2508 (((-937 |#2|) (-243 |#1| |#2|)) 30)) (-4182 (((-475 |#1| |#2|) (-243 |#1| |#2|)) 46)))
-(((-929 |#1| |#2|) (-10 -7 (-15 -4182 ((-475 |#1| |#2|) (-243 |#1| |#2|))) (-15 -3884 ((-243 |#1| |#2|) (-475 |#1| |#2|))) (-15 -2912 ((-475 |#1| |#2|) (-937 |#2|))) (-15 -2743 ((-937 |#2|) (-475 |#1| |#2|))) (-15 -2508 ((-937 |#2|) (-243 |#1| |#2|))) (-15 -1554 ((-243 |#1| |#2|) (-937 |#2|)))) (-631 (-1158)) (-1034)) (T -929))
-((-1554 (*1 *2 *3) (-12 (-5 *3 (-937 *5)) (-4 *5 (-1034)) (-5 *2 (-243 *4 *5)) (-5 *1 (-929 *4 *5)) (-14 *4 (-631 (-1158))))) (-2508 (*1 *2 *3) (-12 (-5 *3 (-243 *4 *5)) (-14 *4 (-631 (-1158))) (-4 *5 (-1034)) (-5 *2 (-937 *5)) (-5 *1 (-929 *4 *5)))) (-2743 (*1 *2 *3) (-12 (-5 *3 (-475 *4 *5)) (-14 *4 (-631 (-1158))) (-4 *5 (-1034)) (-5 *2 (-937 *5)) (-5 *1 (-929 *4 *5)))) (-2912 (*1 *2 *3) (-12 (-5 *3 (-937 *5)) (-4 *5 (-1034)) (-5 *2 (-475 *4 *5)) (-5 *1 (-929 *4 *5)) (-14 *4 (-631 (-1158))))) (-3884 (*1 *2 *3) (-12 (-5 *3 (-475 *4 *5)) (-14 *4 (-631 (-1158))) (-4 *5 (-1034)) (-5 *2 (-243 *4 *5)) (-5 *1 (-929 *4 *5)))) (-4182 (*1 *2 *3) (-12 (-5 *3 (-243 *4 *5)) (-14 *4 (-631 (-1158))) (-4 *5 (-1034)) (-5 *2 (-475 *4 *5)) (-5 *1 (-929 *4 *5)))))
-(-10 -7 (-15 -4182 ((-475 |#1| |#2|) (-243 |#1| |#2|))) (-15 -3884 ((-243 |#1| |#2|) (-475 |#1| |#2|))) (-15 -2912 ((-475 |#1| |#2|) (-937 |#2|))) (-15 -2743 ((-937 |#2|) (-475 |#1| |#2|))) (-15 -2508 ((-937 |#2|) (-243 |#1| |#2|))) (-15 -1554 ((-243 |#1| |#2|) (-937 |#2|))))
-((-3535 (((-631 |#2|) |#2| |#2|) 10)) (-3344 (((-758) (-631 |#1|)) 37 (|has| |#1| (-834)))) (-1511 (((-631 |#2|) |#2|) 11)) (-2369 (((-758) (-631 |#1|) (-554) (-554)) 39 (|has| |#1| (-834)))) (-2310 ((|#1| |#2|) 32 (|has| |#1| (-834)))))
-(((-930 |#1| |#2|) (-10 -7 (-15 -3535 ((-631 |#2|) |#2| |#2|)) (-15 -1511 ((-631 |#2|) |#2|)) (IF (|has| |#1| (-834)) (PROGN (-15 -2310 (|#1| |#2|)) (-15 -3344 ((-758) (-631 |#1|))) (-15 -2369 ((-758) (-631 |#1|) (-554) (-554)))) |%noBranch|)) (-358) (-1217 |#1|)) (T -930))
-((-2369 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-631 *5)) (-5 *4 (-554)) (-4 *5 (-834)) (-4 *5 (-358)) (-5 *2 (-758)) (-5 *1 (-930 *5 *6)) (-4 *6 (-1217 *5)))) (-3344 (*1 *2 *3) (-12 (-5 *3 (-631 *4)) (-4 *4 (-834)) (-4 *4 (-358)) (-5 *2 (-758)) (-5 *1 (-930 *4 *5)) (-4 *5 (-1217 *4)))) (-2310 (*1 *2 *3) (-12 (-4 *2 (-358)) (-4 *2 (-834)) (-5 *1 (-930 *2 *3)) (-4 *3 (-1217 *2)))) (-1511 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-631 *3)) (-5 *1 (-930 *4 *3)) (-4 *3 (-1217 *4)))) (-3535 (*1 *2 *3 *3) (-12 (-4 *4 (-358)) (-5 *2 (-631 *3)) (-5 *1 (-930 *4 *3)) (-4 *3 (-1217 *4)))))
-(-10 -7 (-15 -3535 ((-631 |#2|) |#2| |#2|)) (-15 -1511 ((-631 |#2|) |#2|)) (IF (|has| |#1| (-834)) (PROGN (-15 -2310 (|#1| |#2|)) (-15 -3344 ((-758) (-631 |#1|))) (-15 -2369 ((-758) (-631 |#1|) (-554) (-554)))) |%noBranch|))
-((-2879 (((-937 |#2|) (-1 |#2| |#1|) (-937 |#1|)) 19)))
-(((-931 |#1| |#2|) (-10 -7 (-15 -2879 ((-937 |#2|) (-1 |#2| |#1|) (-937 |#1|)))) (-1034) (-1034)) (T -931))
-((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-937 *5)) (-4 *5 (-1034)) (-4 *6 (-1034)) (-5 *2 (-937 *6)) (-5 *1 (-931 *5 *6)))))
-(-10 -7 (-15 -2879 ((-937 |#2|) (-1 |#2| |#1|) (-937 |#1|))))
-((-2237 (((-1214 |#1| (-937 |#2|)) (-937 |#2|) (-1237 |#1|)) 18)))
-(((-932 |#1| |#2|) (-10 -7 (-15 -2237 ((-1214 |#1| (-937 |#2|)) (-937 |#2|) (-1237 |#1|)))) (-1158) (-1034)) (T -932))
-((-2237 (*1 *2 *3 *4) (-12 (-5 *4 (-1237 *5)) (-14 *5 (-1158)) (-4 *6 (-1034)) (-5 *2 (-1214 *5 (-937 *6))) (-5 *1 (-932 *5 *6)) (-5 *3 (-937 *6)))))
-(-10 -7 (-15 -2237 ((-1214 |#1| (-937 |#2|)) (-937 |#2|) (-1237 |#1|))))
-((-3785 (((-758) $) 71) (((-758) $ (-631 |#4|)) 74)) (-3278 (($ $) 173)) (-1565 (((-413 $) $) 165)) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) 116)) (-2784 (((-3 |#2| "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL) (((-3 (-554) "failed") $) NIL) (((-3 |#4| "failed") $) 60)) (-1668 ((|#2| $) NIL) (((-402 (-554)) $) NIL) (((-554) $) NIL) ((|#4| $) 59)) (-2999 (($ $ $ |#4|) 76)) (-3699 (((-675 (-554)) (-675 $)) NIL) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL) (((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 $) (-1241 $)) 106) (((-675 |#2|) (-675 $)) 99)) (-2048 (($ $) 180) (($ $ |#4|) 183)) (-2540 (((-631 $) $) 63)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) 199) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) 192)) (-3910 (((-631 $) $) 28)) (-2383 (($ |#2| |#3|) NIL) (($ $ |#4| (-758)) NIL) (($ $ (-631 |#4|) (-631 (-758))) 57)) (-4014 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $ |#4|) 162)) (-3778 (((-3 (-631 $) "failed") $) 42)) (-2433 (((-3 (-631 $) "failed") $) 31)) (-3160 (((-3 (-2 (|:| |var| |#4|) (|:| -1407 (-758))) "failed") $) 47)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 109)) (-1290 (((-413 (-1154 $)) (-1154 $)) 122)) (-3082 (((-413 (-1154 $)) (-1154 $)) 120)) (-2270 (((-413 $) $) 140)) (-2386 (($ $ (-631 (-289 $))) 21) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-631 |#4|) (-631 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-631 |#4|) (-631 $)) NIL)) (-1495 (($ $ |#4|) 78)) (-2927 (((-877 (-374)) $) 213) (((-877 (-554)) $) 206) (((-530) $) 221)) (-3276 ((|#2| $) NIL) (($ $ |#4|) 175)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) 154)) (-1779 ((|#2| $ |#3|) NIL) (($ $ |#4| (-758)) 52) (($ $ (-631 |#4|) (-631 (-758))) 55)) (-2084 (((-3 $ "failed") $) 156)) (-1676 (((-112) $ $) 186)))
-(((-933 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3077 ((-1154 |#1|) (-1154 |#1|) (-1154 |#1|))) (-15 -1565 ((-413 |#1|) |#1|)) (-15 -3278 (|#1| |#1|)) (-15 -2084 ((-3 |#1| "failed") |#1|)) (-15 -1676 ((-112) |#1| |#1|)) (-15 -2927 ((-530) |#1|)) (-15 -2927 ((-877 (-554)) |#1|)) (-15 -2927 ((-877 (-374)) |#1|)) (-15 -1655 ((-874 (-554) |#1|) |#1| (-877 (-554)) (-874 (-554) |#1|))) (-15 -1655 ((-874 (-374) |#1|) |#1| (-877 (-374)) (-874 (-374) |#1|))) (-15 -2270 ((-413 |#1|) |#1|)) (-15 -3082 ((-413 (-1154 |#1|)) (-1154 |#1|))) (-15 -1290 ((-413 (-1154 |#1|)) (-1154 |#1|))) (-15 -1625 ((-3 (-631 (-1154 |#1|)) "failed") (-631 (-1154 |#1|)) (-1154 |#1|))) (-15 -4158 ((-3 (-1241 |#1|) "failed") (-675 |#1|))) (-15 -2048 (|#1| |#1| |#4|)) (-15 -3276 (|#1| |#1| |#4|)) (-15 -1495 (|#1| |#1| |#4|)) (-15 -2999 (|#1| |#1| |#1| |#4|)) (-15 -2540 ((-631 |#1|) |#1|)) (-15 -3785 ((-758) |#1| (-631 |#4|))) (-15 -3785 ((-758) |#1|)) (-15 -3160 ((-3 (-2 (|:| |var| |#4|) (|:| -1407 (-758))) "failed") |#1|)) (-15 -3778 ((-3 (-631 |#1|) "failed") |#1|)) (-15 -2433 ((-3 (-631 |#1|) "failed") |#1|)) (-15 -2383 (|#1| |#1| (-631 |#4|) (-631 (-758)))) (-15 -2383 (|#1| |#1| |#4| (-758))) (-15 -4014 ((-2 (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1| |#4|)) (-15 -3910 ((-631 |#1|) |#1|)) (-15 -1779 (|#1| |#1| (-631 |#4|) (-631 (-758)))) (-15 -1779 (|#1| |#1| |#4| (-758))) (-15 -3699 ((-675 |#2|) (-675 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 |#1|) (-1241 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 |#1|) (-1241 |#1|))) (-15 -3699 ((-675 (-554)) (-675 |#1|))) (-15 -2784 ((-3 |#4| "failed") |#1|)) (-15 -1668 (|#4| |#1|)) (-15 -2386 (|#1| |#1| (-631 |#4|) (-631 |#1|))) (-15 -2386 (|#1| |#1| |#4| |#1|)) (-15 -2386 (|#1| |#1| (-631 |#4|) (-631 |#2|))) (-15 -2386 (|#1| |#1| |#4| |#2|)) (-15 -2386 (|#1| |#1| (-631 |#1|) (-631 |#1|))) (-15 -2386 (|#1| |#1| |#1| |#1|)) (-15 -2386 (|#1| |#1| (-289 |#1|))) (-15 -2386 (|#1| |#1| (-631 (-289 |#1|)))) (-15 -2383 (|#1| |#2| |#3|)) (-15 -1779 (|#2| |#1| |#3|)) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -1668 ((-554) |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -3276 (|#2| |#1|)) (-15 -2048 (|#1| |#1|))) (-934 |#2| |#3| |#4|) (-1034) (-780) (-836)) (T -933))
-NIL
-(-10 -8 (-15 -3077 ((-1154 |#1|) (-1154 |#1|) (-1154 |#1|))) (-15 -1565 ((-413 |#1|) |#1|)) (-15 -3278 (|#1| |#1|)) (-15 -2084 ((-3 |#1| "failed") |#1|)) (-15 -1676 ((-112) |#1| |#1|)) (-15 -2927 ((-530) |#1|)) (-15 -2927 ((-877 (-554)) |#1|)) (-15 -2927 ((-877 (-374)) |#1|)) (-15 -1655 ((-874 (-554) |#1|) |#1| (-877 (-554)) (-874 (-554) |#1|))) (-15 -1655 ((-874 (-374) |#1|) |#1| (-877 (-374)) (-874 (-374) |#1|))) (-15 -2270 ((-413 |#1|) |#1|)) (-15 -3082 ((-413 (-1154 |#1|)) (-1154 |#1|))) (-15 -1290 ((-413 (-1154 |#1|)) (-1154 |#1|))) (-15 -1625 ((-3 (-631 (-1154 |#1|)) "failed") (-631 (-1154 |#1|)) (-1154 |#1|))) (-15 -4158 ((-3 (-1241 |#1|) "failed") (-675 |#1|))) (-15 -2048 (|#1| |#1| |#4|)) (-15 -3276 (|#1| |#1| |#4|)) (-15 -1495 (|#1| |#1| |#4|)) (-15 -2999 (|#1| |#1| |#1| |#4|)) (-15 -2540 ((-631 |#1|) |#1|)) (-15 -3785 ((-758) |#1| (-631 |#4|))) (-15 -3785 ((-758) |#1|)) (-15 -3160 ((-3 (-2 (|:| |var| |#4|) (|:| -1407 (-758))) "failed") |#1|)) (-15 -3778 ((-3 (-631 |#1|) "failed") |#1|)) (-15 -2433 ((-3 (-631 |#1|) "failed") |#1|)) (-15 -2383 (|#1| |#1| (-631 |#4|) (-631 (-758)))) (-15 -2383 (|#1| |#1| |#4| (-758))) (-15 -4014 ((-2 (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1| |#4|)) (-15 -3910 ((-631 |#1|) |#1|)) (-15 -1779 (|#1| |#1| (-631 |#4|) (-631 (-758)))) (-15 -1779 (|#1| |#1| |#4| (-758))) (-15 -3699 ((-675 |#2|) (-675 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 |#1|) (-1241 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 |#1|) (-1241 |#1|))) (-15 -3699 ((-675 (-554)) (-675 |#1|))) (-15 -2784 ((-3 |#4| "failed") |#1|)) (-15 -1668 (|#4| |#1|)) (-15 -2386 (|#1| |#1| (-631 |#4|) (-631 |#1|))) (-15 -2386 (|#1| |#1| |#4| |#1|)) (-15 -2386 (|#1| |#1| (-631 |#4|) (-631 |#2|))) (-15 -2386 (|#1| |#1| |#4| |#2|)) (-15 -2386 (|#1| |#1| (-631 |#1|) (-631 |#1|))) (-15 -2386 (|#1| |#1| |#1| |#1|)) (-15 -2386 (|#1| |#1| (-289 |#1|))) (-15 -2386 (|#1| |#1| (-631 (-289 |#1|)))) (-15 -2383 (|#1| |#2| |#3|)) (-15 -1779 (|#2| |#1| |#3|)) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -1668 ((-554) |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -3276 (|#2| |#1|)) (-15 -2048 (|#1| |#1|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2405 (((-631 |#3|) $) 110)) (-2237 (((-1154 $) $ |#3|) 125) (((-1154 |#1|) $) 124)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 87 (|has| |#1| (-546)))) (-1976 (($ $) 88 (|has| |#1| (-546)))) (-1363 (((-112) $) 90 (|has| |#1| (-546)))) (-3785 (((-758) $) 112) (((-758) $ (-631 |#3|)) 111)) (-2934 (((-3 $ "failed") $ $) 19)) (-4308 (((-413 (-1154 $)) (-1154 $)) 100 (|has| |#1| (-894)))) (-3278 (($ $) 98 (|has| |#1| (-446)))) (-1565 (((-413 $) $) 97 (|has| |#1| (-446)))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) 103 (|has| |#1| (-894)))) (-4087 (($) 17 T CONST)) (-2784 (((-3 |#1| "failed") $) 164) (((-3 (-402 (-554)) "failed") $) 161 (|has| |#1| (-1023 (-402 (-554))))) (((-3 (-554) "failed") $) 159 (|has| |#1| (-1023 (-554)))) (((-3 |#3| "failed") $) 136)) (-1668 ((|#1| $) 163) (((-402 (-554)) $) 162 (|has| |#1| (-1023 (-402 (-554))))) (((-554) $) 160 (|has| |#1| (-1023 (-554)))) ((|#3| $) 137)) (-2999 (($ $ $ |#3|) 108 (|has| |#1| (-170)))) (-2550 (($ $) 154)) (-3699 (((-675 (-554)) (-675 $)) 134 (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) 133 (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) 132) (((-675 |#1|) (-675 $)) 131)) (-1320 (((-3 $ "failed") $) 33)) (-2048 (($ $) 176 (|has| |#1| (-446))) (($ $ |#3|) 105 (|has| |#1| (-446)))) (-2540 (((-631 $) $) 109)) (-3289 (((-112) $) 96 (|has| |#1| (-894)))) (-1344 (($ $ |#1| |#2| $) 172)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) 84 (-12 (|has| |#3| (-871 (-374))) (|has| |#1| (-871 (-374))))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) 83 (-12 (|has| |#3| (-871 (-554))) (|has| |#1| (-871 (-554)))))) (-3248 (((-112) $) 31)) (-2122 (((-758) $) 169)) (-2393 (($ (-1154 |#1|) |#3|) 117) (($ (-1154 $) |#3|) 116)) (-3910 (((-631 $) $) 126)) (-3580 (((-112) $) 152)) (-2383 (($ |#1| |#2|) 153) (($ $ |#3| (-758)) 119) (($ $ (-631 |#3|) (-631 (-758))) 118)) (-4014 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $ |#3|) 120)) (-3893 ((|#2| $) 170) (((-758) $ |#3|) 122) (((-631 (-758)) $ (-631 |#3|)) 121)) (-4223 (($ $ $) 79 (|has| |#1| (-836)))) (-2706 (($ $ $) 78 (|has| |#1| (-836)))) (-2789 (($ (-1 |#2| |#2|) $) 171)) (-2879 (($ (-1 |#1| |#1|) $) 151)) (-3277 (((-3 |#3| "failed") $) 123)) (-2518 (($ $) 149)) (-2530 ((|#1| $) 148)) (-2475 (($ (-631 $)) 94 (|has| |#1| (-446))) (($ $ $) 93 (|has| |#1| (-446)))) (-1613 (((-1140) $) 9)) (-3778 (((-3 (-631 $) "failed") $) 114)) (-2433 (((-3 (-631 $) "failed") $) 115)) (-3160 (((-3 (-2 (|:| |var| |#3|) (|:| -1407 (-758))) "failed") $) 113)) (-2768 (((-1102) $) 10)) (-2492 (((-112) $) 166)) (-2505 ((|#1| $) 167)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 95 (|has| |#1| (-446)))) (-2510 (($ (-631 $)) 92 (|has| |#1| (-446))) (($ $ $) 91 (|has| |#1| (-446)))) (-1290 (((-413 (-1154 $)) (-1154 $)) 102 (|has| |#1| (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) 101 (|has| |#1| (-894)))) (-2270 (((-413 $) $) 99 (|has| |#1| (-894)))) (-3919 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-546))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-546)))) (-2386 (($ $ (-631 (-289 $))) 145) (($ $ (-289 $)) 144) (($ $ $ $) 143) (($ $ (-631 $) (-631 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-631 |#3|) (-631 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-631 |#3|) (-631 $)) 138)) (-1495 (($ $ |#3|) 107 (|has| |#1| (-170)))) (-1553 (($ $ |#3|) 42) (($ $ (-631 |#3|)) 41) (($ $ |#3| (-758)) 40) (($ $ (-631 |#3|) (-631 (-758))) 39)) (-3308 ((|#2| $) 150) (((-758) $ |#3|) 130) (((-631 (-758)) $ (-631 |#3|)) 129)) (-2927 (((-877 (-374)) $) 82 (-12 (|has| |#3| (-602 (-877 (-374)))) (|has| |#1| (-602 (-877 (-374)))))) (((-877 (-554)) $) 81 (-12 (|has| |#3| (-602 (-877 (-554)))) (|has| |#1| (-602 (-877 (-554)))))) (((-530) $) 80 (-12 (|has| |#3| (-602 (-530))) (|has| |#1| (-602 (-530)))))) (-3276 ((|#1| $) 175 (|has| |#1| (-446))) (($ $ |#3|) 106 (|has| |#1| (-446)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) 104 (-3726 (|has| $ (-143)) (|has| |#1| (-894))))) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ |#1|) 165) (($ |#3|) 135) (($ $) 85 (|has| |#1| (-546))) (($ (-402 (-554))) 72 (-3994 (|has| |#1| (-1023 (-402 (-554)))) (|has| |#1| (-38 (-402 (-554))))))) (-1893 (((-631 |#1|) $) 168)) (-1779 ((|#1| $ |#2|) 155) (($ $ |#3| (-758)) 128) (($ $ (-631 |#3|) (-631 (-758))) 127)) (-2084 (((-3 $ "failed") $) 73 (-3994 (-3726 (|has| $ (-143)) (|has| |#1| (-894))) (|has| |#1| (-143))))) (-2261 (((-758)) 28)) (-2907 (($ $ $ (-758)) 173 (|has| |#1| (-170)))) (-1909 (((-112) $ $) 89 (|has| |#1| (-546)))) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($ $ |#3|) 38) (($ $ (-631 |#3|)) 37) (($ $ |#3| (-758)) 36) (($ $ (-631 |#3|) (-631 (-758))) 35)) (-1708 (((-112) $ $) 76 (|has| |#1| (-836)))) (-1686 (((-112) $ $) 75 (|has| |#1| (-836)))) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 77 (|has| |#1| (-836)))) (-1676 (((-112) $ $) 74 (|has| |#1| (-836)))) (-1752 (($ $ |#1|) 156 (|has| |#1| (-358)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ (-402 (-554))) 158 (|has| |#1| (-38 (-402 (-554))))) (($ (-402 (-554)) $) 157 (|has| |#1| (-38 (-402 (-554))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
-(((-934 |#1| |#2| |#3|) (-138) (-1034) (-780) (-836)) (T -934))
-((-2048 (*1 *1 *1) (-12 (-4 *1 (-934 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)) (-4 *2 (-446)))) (-3308 (*1 *2 *1 *3) (-12 (-4 *1 (-934 *4 *5 *3)) (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *3 (-836)) (-5 *2 (-758)))) (-3308 (*1 *2 *1 *3) (-12 (-5 *3 (-631 *6)) (-4 *1 (-934 *4 *5 *6)) (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-631 (-758))))) (-1779 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-758)) (-4 *1 (-934 *4 *5 *2)) (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *2 (-836)))) (-1779 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 *6)) (-5 *3 (-631 (-758))) (-4 *1 (-934 *4 *5 *6)) (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *6 (-836)))) (-3910 (*1 *2 *1) (-12 (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-631 *1)) (-4 *1 (-934 *3 *4 *5)))) (-2237 (*1 *2 *1 *3) (-12 (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *3 (-836)) (-5 *2 (-1154 *1)) (-4 *1 (-934 *4 *5 *3)))) (-2237 (*1 *2 *1) (-12 (-4 *1 (-934 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-1154 *3)))) (-3277 (*1 *2 *1) (|partial| -12 (-4 *1 (-934 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *2 (-836)))) (-3893 (*1 *2 *1 *3) (-12 (-4 *1 (-934 *4 *5 *3)) (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *3 (-836)) (-5 *2 (-758)))) (-3893 (*1 *2 *1 *3) (-12 (-5 *3 (-631 *6)) (-4 *1 (-934 *4 *5 *6)) (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-631 (-758))))) (-4014 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *3 (-836)) (-5 *2 (-2 (|:| -2325 *1) (|:| -2423 *1))) (-4 *1 (-934 *4 *5 *3)))) (-2383 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-758)) (-4 *1 (-934 *4 *5 *2)) (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *2 (-836)))) (-2383 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 *6)) (-5 *3 (-631 (-758))) (-4 *1 (-934 *4 *5 *6)) (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *6 (-836)))) (-2393 (*1 *1 *2 *3) (-12 (-5 *2 (-1154 *4)) (-4 *4 (-1034)) (-4 *1 (-934 *4 *5 *3)) (-4 *5 (-780)) (-4 *3 (-836)))) (-2393 (*1 *1 *2 *3) (-12 (-5 *2 (-1154 *1)) (-4 *1 (-934 *4 *5 *3)) (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *3 (-836)))) (-2433 (*1 *2 *1) (|partial| -12 (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-631 *1)) (-4 *1 (-934 *3 *4 *5)))) (-3778 (*1 *2 *1) (|partial| -12 (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-631 *1)) (-4 *1 (-934 *3 *4 *5)))) (-3160 (*1 *2 *1) (|partial| -12 (-4 *1 (-934 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-2 (|:| |var| *5) (|:| -1407 (-758)))))) (-3785 (*1 *2 *1) (-12 (-4 *1 (-934 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-758)))) (-3785 (*1 *2 *1 *3) (-12 (-5 *3 (-631 *6)) (-4 *1 (-934 *4 *5 *6)) (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-758)))) (-2405 (*1 *2 *1) (-12 (-4 *1 (-934 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-631 *5)))) (-2540 (*1 *2 *1) (-12 (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-631 *1)) (-4 *1 (-934 *3 *4 *5)))) (-2999 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-934 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *2 (-836)) (-4 *3 (-170)))) (-1495 (*1 *1 *1 *2) (-12 (-4 *1 (-934 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *2 (-836)) (-4 *3 (-170)))) (-3276 (*1 *1 *1 *2) (-12 (-4 *1 (-934 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *2 (-836)) (-4 *3 (-446)))) (-2048 (*1 *1 *1 *2) (-12 (-4 *1 (-934 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *2 (-836)) (-4 *3 (-446)))) (-3278 (*1 *1 *1) (-12 (-4 *1 (-934 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)) (-4 *2 (-446)))) (-1565 (*1 *2 *1) (-12 (-4 *3 (-446)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-413 *1)) (-4 *1 (-934 *3 *4 *5)))))
-(-13 (-885 |t#3|) (-321 |t#1| |t#2|) (-304 $) (-508 |t#3| |t#1|) (-508 |t#3| $) (-1023 |t#3|) (-372 |t#1|) (-10 -8 (-15 -3308 ((-758) $ |t#3|)) (-15 -3308 ((-631 (-758)) $ (-631 |t#3|))) (-15 -1779 ($ $ |t#3| (-758))) (-15 -1779 ($ $ (-631 |t#3|) (-631 (-758)))) (-15 -3910 ((-631 $) $)) (-15 -2237 ((-1154 $) $ |t#3|)) (-15 -2237 ((-1154 |t#1|) $)) (-15 -3277 ((-3 |t#3| "failed") $)) (-15 -3893 ((-758) $ |t#3|)) (-15 -3893 ((-631 (-758)) $ (-631 |t#3|))) (-15 -4014 ((-2 (|:| -2325 $) (|:| -2423 $)) $ $ |t#3|)) (-15 -2383 ($ $ |t#3| (-758))) (-15 -2383 ($ $ (-631 |t#3|) (-631 (-758)))) (-15 -2393 ($ (-1154 |t#1|) |t#3|)) (-15 -2393 ($ (-1154 $) |t#3|)) (-15 -2433 ((-3 (-631 $) "failed") $)) (-15 -3778 ((-3 (-631 $) "failed") $)) (-15 -3160 ((-3 (-2 (|:| |var| |t#3|) (|:| -1407 (-758))) "failed") $)) (-15 -3785 ((-758) $)) (-15 -3785 ((-758) $ (-631 |t#3|))) (-15 -2405 ((-631 |t#3|) $)) (-15 -2540 ((-631 $) $)) (IF (|has| |t#1| (-836)) (-6 (-836)) |%noBranch|) (IF (|has| |t#1| (-602 (-530))) (IF (|has| |t#3| (-602 (-530))) (-6 (-602 (-530))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-602 (-877 (-554)))) (IF (|has| |t#3| (-602 (-877 (-554)))) (-6 (-602 (-877 (-554)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-602 (-877 (-374)))) (IF (|has| |t#3| (-602 (-877 (-374)))) (-6 (-602 (-877 (-374)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-871 (-554))) (IF (|has| |t#3| (-871 (-554))) (-6 (-871 (-554))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-871 (-374))) (IF (|has| |t#3| (-871 (-374))) (-6 (-871 (-374))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-15 -2999 ($ $ $ |t#3|)) (-15 -1495 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-446)) (PROGN (-6 (-446)) (-15 -3276 ($ $ |t#3|)) (-15 -2048 ($ $)) (-15 -2048 ($ $ |t#3|)) (-15 -1565 ((-413 $) $)) (-15 -3278 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4371)) (-6 -4371) |%noBranch|) (IF (|has| |t#1| (-894)) (-6 (-894)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-402 (-554)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-604 #0#) -3994 (|has| |#1| (-1023 (-402 (-554)))) (|has| |#1| (-38 (-402 (-554))))) ((-604 (-554)) . T) ((-604 |#1|) . T) ((-604 |#3|) . T) ((-604 $) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446))) ((-601 (-848)) . T) ((-170) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-602 (-530)) -12 (|has| |#1| (-602 (-530))) (|has| |#3| (-602 (-530)))) ((-602 (-877 (-374))) -12 (|has| |#1| (-602 (-877 (-374)))) (|has| |#3| (-602 (-877 (-374))))) ((-602 (-877 (-554))) -12 (|has| |#1| (-602 (-877 (-554)))) (|has| |#3| (-602 (-877 (-554))))) ((-285) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446))) ((-304 $) . T) ((-321 |#1| |#2|) . T) ((-372 |#1|) . T) ((-406 |#1|) . T) ((-446) -3994 (|has| |#1| (-894)) (|has| |#1| (-446))) ((-508 |#3| |#1|) . T) ((-508 |#3| $) . T) ((-508 $ $) . T) ((-546) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446))) ((-634 #0#) |has| |#1| (-38 (-402 (-554)))) ((-634 |#1|) . T) ((-634 $) . T) ((-627 (-554)) |has| |#1| (-627 (-554))) ((-627 |#1|) . T) ((-704 #0#) |has| |#1| (-38 (-402 (-554)))) ((-704 |#1|) |has| |#1| (-170)) ((-704 $) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446))) ((-713) . T) ((-836) |has| |#1| (-836)) ((-885 |#3|) . T) ((-871 (-374)) -12 (|has| |#1| (-871 (-374))) (|has| |#3| (-871 (-374)))) ((-871 (-554)) -12 (|has| |#1| (-871 (-554))) (|has| |#3| (-871 (-554)))) ((-894) |has| |#1| (-894)) ((-1023 (-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) ((-1023 (-554)) |has| |#1| (-1023 (-554))) ((-1023 |#1|) . T) ((-1023 |#3|) . T) ((-1040 #0#) |has| |#1| (-38 (-402 (-554)))) ((-1040 |#1|) . T) ((-1040 $) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1199) |has| |#1| (-894)))
-((-2405 (((-631 |#2|) |#5|) 36)) (-2237 (((-1154 |#5|) |#5| |#2| (-1154 |#5|)) 23) (((-402 (-1154 |#5|)) |#5| |#2|) 16)) (-2393 ((|#5| (-402 (-1154 |#5|)) |#2|) 30)) (-3277 (((-3 |#2| "failed") |#5|) 65)) (-3778 (((-3 (-631 |#5|) "failed") |#5|) 59)) (-2920 (((-3 (-2 (|:| |val| |#5|) (|:| -1407 (-554))) "failed") |#5|) 47)) (-2433 (((-3 (-631 |#5|) "failed") |#5|) 61)) (-3160 (((-3 (-2 (|:| |var| |#2|) (|:| -1407 (-554))) "failed") |#5|) 51)))
-(((-935 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2405 ((-631 |#2|) |#5|)) (-15 -3277 ((-3 |#2| "failed") |#5|)) (-15 -2237 ((-402 (-1154 |#5|)) |#5| |#2|)) (-15 -2393 (|#5| (-402 (-1154 |#5|)) |#2|)) (-15 -2237 ((-1154 |#5|) |#5| |#2| (-1154 |#5|))) (-15 -2433 ((-3 (-631 |#5|) "failed") |#5|)) (-15 -3778 ((-3 (-631 |#5|) "failed") |#5|)) (-15 -3160 ((-3 (-2 (|:| |var| |#2|) (|:| -1407 (-554))) "failed") |#5|)) (-15 -2920 ((-3 (-2 (|:| |val| |#5|) (|:| -1407 (-554))) "failed") |#5|))) (-780) (-836) (-1034) (-934 |#3| |#1| |#2|) (-13 (-358) (-10 -8 (-15 -3075 ($ |#4|)) (-15 -2810 (|#4| $)) (-15 -2822 (|#4| $))))) (T -935))
-((-2920 (*1 *2 *3) (|partial| -12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1034)) (-4 *7 (-934 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -1407 (-554)))) (-5 *1 (-935 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -3075 ($ *7)) (-15 -2810 (*7 $)) (-15 -2822 (*7 $))))))) (-3160 (*1 *2 *3) (|partial| -12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1034)) (-4 *7 (-934 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -1407 (-554)))) (-5 *1 (-935 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -3075 ($ *7)) (-15 -2810 (*7 $)) (-15 -2822 (*7 $))))))) (-3778 (*1 *2 *3) (|partial| -12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1034)) (-4 *7 (-934 *6 *4 *5)) (-5 *2 (-631 *3)) (-5 *1 (-935 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -3075 ($ *7)) (-15 -2810 (*7 $)) (-15 -2822 (*7 $))))))) (-2433 (*1 *2 *3) (|partial| -12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1034)) (-4 *7 (-934 *6 *4 *5)) (-5 *2 (-631 *3)) (-5 *1 (-935 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -3075 ($ *7)) (-15 -2810 (*7 $)) (-15 -2822 (*7 $))))))) (-2237 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -3075 ($ *7)) (-15 -2810 (*7 $)) (-15 -2822 (*7 $))))) (-4 *7 (-934 *6 *5 *4)) (-4 *5 (-780)) (-4 *4 (-836)) (-4 *6 (-1034)) (-5 *1 (-935 *5 *4 *6 *7 *3)))) (-2393 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-1154 *2))) (-4 *5 (-780)) (-4 *4 (-836)) (-4 *6 (-1034)) (-4 *2 (-13 (-358) (-10 -8 (-15 -3075 ($ *7)) (-15 -2810 (*7 $)) (-15 -2822 (*7 $))))) (-5 *1 (-935 *5 *4 *6 *7 *2)) (-4 *7 (-934 *6 *5 *4)))) (-2237 (*1 *2 *3 *4) (-12 (-4 *5 (-780)) (-4 *4 (-836)) (-4 *6 (-1034)) (-4 *7 (-934 *6 *5 *4)) (-5 *2 (-402 (-1154 *3))) (-5 *1 (-935 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -3075 ($ *7)) (-15 -2810 (*7 $)) (-15 -2822 (*7 $))))))) (-3277 (*1 *2 *3) (|partial| -12 (-4 *4 (-780)) (-4 *5 (-1034)) (-4 *6 (-934 *5 *4 *2)) (-4 *2 (-836)) (-5 *1 (-935 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -3075 ($ *6)) (-15 -2810 (*6 $)) (-15 -2822 (*6 $))))))) (-2405 (*1 *2 *3) (-12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1034)) (-4 *7 (-934 *6 *4 *5)) (-5 *2 (-631 *5)) (-5 *1 (-935 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -3075 ($ *7)) (-15 -2810 (*7 $)) (-15 -2822 (*7 $))))))))
-(-10 -7 (-15 -2405 ((-631 |#2|) |#5|)) (-15 -3277 ((-3 |#2| "failed") |#5|)) (-15 -2237 ((-402 (-1154 |#5|)) |#5| |#2|)) (-15 -2393 (|#5| (-402 (-1154 |#5|)) |#2|)) (-15 -2237 ((-1154 |#5|) |#5| |#2| (-1154 |#5|))) (-15 -2433 ((-3 (-631 |#5|) "failed") |#5|)) (-15 -3778 ((-3 (-631 |#5|) "failed") |#5|)) (-15 -3160 ((-3 (-2 (|:| |var| |#2|) (|:| -1407 (-554))) "failed") |#5|)) (-15 -2920 ((-3 (-2 (|:| |val| |#5|) (|:| -1407 (-554))) "failed") |#5|)))
-((-2879 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24)))
-(((-936 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2879 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-780) (-836) (-1034) (-934 |#3| |#1| |#2|) (-13 (-1082) (-10 -8 (-15 -1735 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-758)))))) (T -936))
-((-2879 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-836)) (-4 *8 (-1034)) (-4 *6 (-780)) (-4 *2 (-13 (-1082) (-10 -8 (-15 -1735 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-758)))))) (-5 *1 (-936 *6 *7 *8 *5 *2)) (-4 *5 (-934 *8 *6 *7)))))
-(-10 -7 (-15 -2879 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2405 (((-631 (-1158)) $) 16)) (-2237 (((-1154 $) $ (-1158)) 21) (((-1154 |#1|) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-546)))) (-1976 (($ $) NIL (|has| |#1| (-546)))) (-1363 (((-112) $) NIL (|has| |#1| (-546)))) (-3785 (((-758) $) NIL) (((-758) $ (-631 (-1158))) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-3278 (($ $) NIL (|has| |#1| (-446)))) (-1565 (((-413 $) $) NIL (|has| |#1| (-446)))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) 8) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 (-1158) "failed") $) NIL)) (-1668 ((|#1| $) NIL) (((-402 (-554)) $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-554) $) NIL (|has| |#1| (-1023 (-554)))) (((-1158) $) NIL)) (-2999 (($ $ $ (-1158)) NIL (|has| |#1| (-170)))) (-2550 (($ $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) NIL) (((-675 |#1|) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2048 (($ $) NIL (|has| |#1| (-446))) (($ $ (-1158)) NIL (|has| |#1| (-446)))) (-2540 (((-631 $) $) NIL)) (-3289 (((-112) $) NIL (|has| |#1| (-894)))) (-1344 (($ $ |#1| (-525 (-1158)) $) NIL)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (-12 (|has| (-1158) (-871 (-374))) (|has| |#1| (-871 (-374))))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (-12 (|has| (-1158) (-871 (-554))) (|has| |#1| (-871 (-554)))))) (-3248 (((-112) $) NIL)) (-2122 (((-758) $) NIL)) (-2393 (($ (-1154 |#1|) (-1158)) NIL) (($ (-1154 $) (-1158)) NIL)) (-3910 (((-631 $) $) NIL)) (-3580 (((-112) $) NIL)) (-2383 (($ |#1| (-525 (-1158))) NIL) (($ $ (-1158) (-758)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL)) (-4014 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $ (-1158)) NIL)) (-3893 (((-525 (-1158)) $) NIL) (((-758) $ (-1158)) NIL) (((-631 (-758)) $ (-631 (-1158))) NIL)) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2789 (($ (-1 (-525 (-1158)) (-525 (-1158))) $) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-3277 (((-3 (-1158) "failed") $) 19)) (-2518 (($ $) NIL)) (-2530 ((|#1| $) NIL)) (-2475 (($ (-631 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-1613 (((-1140) $) NIL)) (-3778 (((-3 (-631 $) "failed") $) NIL)) (-2433 (((-3 (-631 $) "failed") $) NIL)) (-3160 (((-3 (-2 (|:| |var| (-1158)) (|:| -1407 (-758))) "failed") $) NIL)) (-2279 (($ $ (-1158)) 29 (|has| |#1| (-38 (-402 (-554)))))) (-2768 (((-1102) $) NIL)) (-2492 (((-112) $) NIL)) (-2505 ((|#1| $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#1| (-446)))) (-2510 (($ (-631 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-2270 (((-413 $) $) NIL (|has| |#1| (-894)))) (-3919 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-546))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-546)))) (-2386 (($ $ (-631 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ (-1158) |#1|) NIL) (($ $ (-631 (-1158)) (-631 |#1|)) NIL) (($ $ (-1158) $) NIL) (($ $ (-631 (-1158)) (-631 $)) NIL)) (-1495 (($ $ (-1158)) NIL (|has| |#1| (-170)))) (-1553 (($ $ (-1158)) NIL) (($ $ (-631 (-1158))) NIL) (($ $ (-1158) (-758)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL)) (-3308 (((-525 (-1158)) $) NIL) (((-758) $ (-1158)) NIL) (((-631 (-758)) $ (-631 (-1158))) NIL)) (-2927 (((-877 (-374)) $) NIL (-12 (|has| (-1158) (-602 (-877 (-374)))) (|has| |#1| (-602 (-877 (-374)))))) (((-877 (-554)) $) NIL (-12 (|has| (-1158) (-602 (-877 (-554)))) (|has| |#1| (-602 (-877 (-554)))))) (((-530) $) NIL (-12 (|has| (-1158) (-602 (-530))) (|has| |#1| (-602 (-530)))))) (-3276 ((|#1| $) NIL (|has| |#1| (-446))) (($ $ (-1158)) NIL (|has| |#1| (-446)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-894))))) (-3075 (((-848) $) 25) (($ (-554)) NIL) (($ |#1|) NIL) (($ (-1158)) 27) (($ (-402 (-554))) NIL (-3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554)))))) (($ $) NIL (|has| |#1| (-546)))) (-1893 (((-631 |#1|) $) NIL)) (-1779 ((|#1| $ (-525 (-1158))) NIL) (($ $ (-1158) (-758)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL)) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| |#1| (-894))) (|has| |#1| (-143))))) (-2261 (((-758)) NIL)) (-2907 (($ $ $ (-758)) NIL (|has| |#1| (-170)))) (-1909 (((-112) $ $) NIL (|has| |#1| (-546)))) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $ (-1158)) NIL) (($ $ (-631 (-1158))) NIL) (($ $ (-1158) (-758)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL)) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-937 |#1|) (-13 (-934 |#1| (-525 (-1158)) (-1158)) (-10 -8 (IF (|has| |#1| (-38 (-402 (-554)))) (-15 -2279 ($ $ (-1158))) |%noBranch|))) (-1034)) (T -937))
-((-2279 (*1 *1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-937 *3)) (-4 *3 (-38 (-402 (-554)))) (-4 *3 (-1034)))))
-(-13 (-934 |#1| (-525 (-1158)) (-1158)) (-10 -8 (IF (|has| |#1| (-38 (-402 (-554)))) (-15 -2279 ($ $ (-1158))) |%noBranch|)))
-((-3951 (((-2 (|:| -1407 (-758)) (|:| -1490 |#5|) (|:| |radicand| |#5|)) |#3| (-758)) 38)) (-1294 (((-2 (|:| -1407 (-758)) (|:| -1490 |#5|) (|:| |radicand| |#5|)) (-402 (-554)) (-758)) 34)) (-3940 (((-2 (|:| -1407 (-758)) (|:| -1490 |#4|) (|:| |radicand| (-631 |#4|))) |#4| (-758)) 54)) (-3736 (((-2 (|:| -1407 (-758)) (|:| -1490 |#5|) (|:| |radicand| |#5|)) |#5| (-758)) 64 (|has| |#3| (-446)))))
-(((-938 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3951 ((-2 (|:| -1407 (-758)) (|:| -1490 |#5|) (|:| |radicand| |#5|)) |#3| (-758))) (-15 -1294 ((-2 (|:| -1407 (-758)) (|:| -1490 |#5|) (|:| |radicand| |#5|)) (-402 (-554)) (-758))) (IF (|has| |#3| (-446)) (-15 -3736 ((-2 (|:| -1407 (-758)) (|:| -1490 |#5|) (|:| |radicand| |#5|)) |#5| (-758))) |%noBranch|) (-15 -3940 ((-2 (|:| -1407 (-758)) (|:| -1490 |#4|) (|:| |radicand| (-631 |#4|))) |#4| (-758)))) (-780) (-836) (-546) (-934 |#3| |#1| |#2|) (-13 (-358) (-10 -8 (-15 -3075 ($ |#4|)) (-15 -2810 (|#4| $)) (-15 -2822 (|#4| $))))) (T -938))
-((-3940 (*1 *2 *3 *4) (-12 (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-546)) (-4 *3 (-934 *7 *5 *6)) (-5 *2 (-2 (|:| -1407 (-758)) (|:| -1490 *3) (|:| |radicand| (-631 *3)))) (-5 *1 (-938 *5 *6 *7 *3 *8)) (-5 *4 (-758)) (-4 *8 (-13 (-358) (-10 -8 (-15 -3075 ($ *3)) (-15 -2810 (*3 $)) (-15 -2822 (*3 $))))))) (-3736 (*1 *2 *3 *4) (-12 (-4 *7 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-546)) (-4 *8 (-934 *7 *5 *6)) (-5 *2 (-2 (|:| -1407 (-758)) (|:| -1490 *3) (|:| |radicand| *3))) (-5 *1 (-938 *5 *6 *7 *8 *3)) (-5 *4 (-758)) (-4 *3 (-13 (-358) (-10 -8 (-15 -3075 ($ *8)) (-15 -2810 (*8 $)) (-15 -2822 (*8 $))))))) (-1294 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-554))) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-546)) (-4 *8 (-934 *7 *5 *6)) (-5 *2 (-2 (|:| -1407 (-758)) (|:| -1490 *9) (|:| |radicand| *9))) (-5 *1 (-938 *5 *6 *7 *8 *9)) (-5 *4 (-758)) (-4 *9 (-13 (-358) (-10 -8 (-15 -3075 ($ *8)) (-15 -2810 (*8 $)) (-15 -2822 (*8 $))))))) (-3951 (*1 *2 *3 *4) (-12 (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-546)) (-4 *7 (-934 *3 *5 *6)) (-5 *2 (-2 (|:| -1407 (-758)) (|:| -1490 *8) (|:| |radicand| *8))) (-5 *1 (-938 *5 *6 *3 *7 *8)) (-5 *4 (-758)) (-4 *8 (-13 (-358) (-10 -8 (-15 -3075 ($ *7)) (-15 -2810 (*7 $)) (-15 -2822 (*7 $))))))))
-(-10 -7 (-15 -3951 ((-2 (|:| -1407 (-758)) (|:| -1490 |#5|) (|:| |radicand| |#5|)) |#3| (-758))) (-15 -1294 ((-2 (|:| -1407 (-758)) (|:| -1490 |#5|) (|:| |radicand| |#5|)) (-402 (-554)) (-758))) (IF (|has| |#3| (-446)) (-15 -3736 ((-2 (|:| -1407 (-758)) (|:| -1490 |#5|) (|:| |radicand| |#5|)) |#5| (-758))) |%noBranch|) (-15 -3940 ((-2 (|:| -1407 (-758)) (|:| -1490 |#4|) (|:| |radicand| (-631 |#4|))) |#4| (-758))))
-((-3062 (((-112) $ $) NIL)) (-4208 (($ (-1102)) 8)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 14) (((-1102) $) 11)) (-1658 (((-112) $ $) 10)))
-(((-939) (-13 (-1082) (-601 (-1102)) (-10 -8 (-15 -4208 ($ (-1102)))))) (T -939))
-((-4208 (*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-939)))))
-(-13 (-1082) (-601 (-1102)) (-10 -8 (-15 -4208 ($ (-1102)))))
-((-2829 (((-1076 (-221)) $) 8)) (-2818 (((-1076 (-221)) $) 9)) (-3787 (((-631 (-631 (-928 (-221)))) $) 10)) (-3075 (((-848) $) 6)))
-(((-940) (-138)) (T -940))
-((-3787 (*1 *2 *1) (-12 (-4 *1 (-940)) (-5 *2 (-631 (-631 (-928 (-221))))))) (-2818 (*1 *2 *1) (-12 (-4 *1 (-940)) (-5 *2 (-1076 (-221))))) (-2829 (*1 *2 *1) (-12 (-4 *1 (-940)) (-5 *2 (-1076 (-221))))))
-(-13 (-601 (-848)) (-10 -8 (-15 -3787 ((-631 (-631 (-928 (-221)))) $)) (-15 -2818 ((-1076 (-221)) $)) (-15 -2829 ((-1076 (-221)) $))))
-(((-601 (-848)) . T))
-((-1757 (((-3 (-675 |#1|) "failed") |#2| (-906)) 15)))
-(((-941 |#1| |#2|) (-10 -7 (-15 -1757 ((-3 (-675 |#1|) "failed") |#2| (-906)))) (-546) (-642 |#1|)) (T -941))
-((-1757 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-906)) (-4 *5 (-546)) (-5 *2 (-675 *5)) (-5 *1 (-941 *5 *3)) (-4 *3 (-642 *5)))))
-(-10 -7 (-15 -1757 ((-3 (-675 |#1|) "failed") |#2| (-906))))
-((-4159 (((-943 |#2|) (-1 |#2| |#1| |#2|) (-943 |#1|) |#2|) 16)) (-3676 ((|#2| (-1 |#2| |#1| |#2|) (-943 |#1|) |#2|) 18)) (-2879 (((-943 |#2|) (-1 |#2| |#1|) (-943 |#1|)) 13)))
-(((-942 |#1| |#2|) (-10 -7 (-15 -4159 ((-943 |#2|) (-1 |#2| |#1| |#2|) (-943 |#1|) |#2|)) (-15 -3676 (|#2| (-1 |#2| |#1| |#2|) (-943 |#1|) |#2|)) (-15 -2879 ((-943 |#2|) (-1 |#2| |#1|) (-943 |#1|)))) (-1195) (-1195)) (T -942))
-((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-943 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-943 *6)) (-5 *1 (-942 *5 *6)))) (-3676 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-943 *5)) (-4 *5 (-1195)) (-4 *2 (-1195)) (-5 *1 (-942 *5 *2)))) (-4159 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-943 *6)) (-4 *6 (-1195)) (-4 *5 (-1195)) (-5 *2 (-943 *5)) (-5 *1 (-942 *6 *5)))))
-(-10 -7 (-15 -4159 ((-943 |#2|) (-1 |#2| |#1| |#2|) (-943 |#1|) |#2|)) (-15 -3676 (|#2| (-1 |#2| |#1| |#2|) (-943 |#1|) |#2|)) (-15 -2879 ((-943 |#2|) (-1 |#2| |#1|) (-943 |#1|))))
-((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-4233 (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-4015 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-836)))) (-2576 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4374))) (($ $) NIL (-12 (|has| $ (-6 -4374)) (|has| |#1| (-836))))) (-3303 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-836)))) (-3019 (((-112) $ (-758)) NIL)) (-1501 ((|#1| $ (-554) |#1|) 16 (|has| $ (-6 -4374))) ((|#1| $ (-1208 (-554)) |#1|) NIL (|has| $ (-6 -4374)))) (-1871 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-4087 (($) NIL T CONST)) (-3920 (($ $) NIL (|has| $ (-6 -4374)))) (-3799 (($ $) NIL)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2574 (($ |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4373)))) (-2862 ((|#1| $ (-554) |#1|) 15 (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-554)) 13)) (-1484 (((-554) (-1 (-112) |#1|) $) NIL) (((-554) |#1| $) NIL (|has| |#1| (-1082))) (((-554) |#1| $ (-554)) NIL (|has| |#1| (-1082)))) (-2466 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3180 (($ (-758) |#1|) 12)) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) 10 (|has| (-554) (-836)))) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-3717 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-836)))) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2256 (((-554) $) NIL (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2849 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-1782 (($ |#1| $ (-554)) NIL) (($ $ $ (-554)) NIL)) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) NIL)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-1539 ((|#1| $) NIL (|has| (-554) (-836)))) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2441 (($ $ |#1|) 17 (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) 11)) (-2064 ((|#1| $ (-554) |#1|) NIL) ((|#1| $ (-554)) 14) (($ $ (-1208 (-554))) NIL)) (-2021 (($ $ (-554)) NIL) (($ $ (-1208 (-554))) NIL)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-3553 (($ $ $ (-554)) NIL (|has| $ (-6 -4374)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) NIL)) (-4323 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-631 $)) NIL)) (-3075 (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-2563 (((-758) $) 8 (|has| $ (-6 -4373)))))
-(((-943 |#1|) (-19 |#1|) (-1195)) (T -943))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-605 (-853)) . T) ((-638 |#1|) . T) ((-1045 |#1|) . T) ((-1087) . T))
+((-3207 (((-112) $ $) NIL)) (-1672 (($ |#1|) 17) (($ $ |#1|) 20)) (-2785 (($ |#1|) 18) (($ $ |#1|) 21)) (-1816 (($) NIL T CONST)) (-2588 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2035 (((-112) $) NIL)) (-1974 (($ |#1| |#1| |#1| |#1|) 8)) (-4310 (((-1145) $) NIL)) (-2418 (($ $) 16)) (-2975 (((-1107) $) NIL)) (-2554 ((|#1| $ |#1|) 24) (((-824 |#1|) $ (-824 |#1|)) 32)) (-3808 (($ $ $) NIL)) (-3443 (($ $ $) NIL)) (-3220 (((-853) $) 39)) (-2142 (($) 9 T CONST)) (-1683 (((-112) $ $) 44)) (-1810 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL)) (* (($ $ $) 14)))
+(((-709 |#1|) (-13 (-471) (-10 -8 (-15 -1974 ($ |#1| |#1| |#1| |#1|)) (-15 -1672 ($ |#1|)) (-15 -2785 ($ |#1|)) (-15 -2588 ($)) (-15 -1672 ($ $ |#1|)) (-15 -2785 ($ $ |#1|)) (-15 -2588 ($ $)) (-15 -2554 (|#1| $ |#1|)) (-15 -2554 ((-824 |#1|) $ (-824 |#1|))))) (-362)) (T -709))
+((-1974 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-709 *2)) (-4 *2 (-362)))) (-1672 (*1 *1 *2) (-12 (-5 *1 (-709 *2)) (-4 *2 (-362)))) (-2785 (*1 *1 *2) (-12 (-5 *1 (-709 *2)) (-4 *2 (-362)))) (-2588 (*1 *1) (-12 (-5 *1 (-709 *2)) (-4 *2 (-362)))) (-1672 (*1 *1 *1 *2) (-12 (-5 *1 (-709 *2)) (-4 *2 (-362)))) (-2785 (*1 *1 *1 *2) (-12 (-5 *1 (-709 *2)) (-4 *2 (-362)))) (-2588 (*1 *1 *1) (-12 (-5 *1 (-709 *2)) (-4 *2 (-362)))) (-2554 (*1 *2 *1 *2) (-12 (-5 *1 (-709 *2)) (-4 *2 (-362)))) (-2554 (*1 *2 *1 *2) (-12 (-5 *2 (-824 *3)) (-4 *3 (-362)) (-5 *1 (-709 *3)))))
+(-13 (-471) (-10 -8 (-15 -1974 ($ |#1| |#1| |#1| |#1|)) (-15 -1672 ($ |#1|)) (-15 -2785 ($ |#1|)) (-15 -2588 ($)) (-15 -1672 ($ $ |#1|)) (-15 -2785 ($ $ |#1|)) (-15 -2588 ($ $)) (-15 -2554 (|#1| $ |#1|)) (-15 -2554 ((-824 |#1|) $ (-824 |#1|)))))
+((-2015 (($ $ (-911)) 12)) (-2006 (($ $ (-911)) 13)) (** (($ $ (-911)) 10)))
+(((-710 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-911))) (-15 -2006 (|#1| |#1| (-911))) (-15 -2015 (|#1| |#1| (-911)))) (-711)) (T -710))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-911))) (-15 -2006 (|#1| |#1| (-911))) (-15 -2015 (|#1| |#1| (-911))))
+((-3207 (((-112) $ $) 7)) (-2015 (($ $ (-911)) 15)) (-2006 (($ $ (-911)) 14)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11)) (-1683 (((-112) $ $) 6)) (** (($ $ (-911)) 13)) (* (($ $ $) 16)))
+(((-711) (-139)) (T -711))
+((* (*1 *1 *1 *1) (-4 *1 (-711))) (-2015 (*1 *1 *1 *2) (-12 (-4 *1 (-711)) (-5 *2 (-911)))) (-2006 (*1 *1 *1 *2) (-12 (-4 *1 (-711)) (-5 *2 (-911)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-711)) (-5 *2 (-911)))))
+(-13 (-1087) (-10 -8 (-15 * ($ $ $)) (-15 -2015 ($ $ (-911))) (-15 -2006 ($ $ (-911))) (-15 ** ($ $ (-911)))))
+(((-102) . T) ((-605 (-853)) . T) ((-1087) . T))
+((-2015 (($ $ (-911)) NIL) (($ $ (-762)) 17)) (-2035 (((-112) $) 10)) (-2006 (($ $ (-911)) NIL) (($ $ (-762)) 18)) (** (($ $ (-911)) NIL) (($ $ (-762)) 15)))
+(((-712 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-762))) (-15 -2006 (|#1| |#1| (-762))) (-15 -2015 (|#1| |#1| (-762))) (-15 -2035 ((-112) |#1|)) (-15 ** (|#1| |#1| (-911))) (-15 -2006 (|#1| |#1| (-911))) (-15 -2015 (|#1| |#1| (-911)))) (-713)) (T -712))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-762))) (-15 -2006 (|#1| |#1| (-762))) (-15 -2015 (|#1| |#1| (-762))) (-15 -2035 ((-112) |#1|)) (-15 ** (|#1| |#1| (-911))) (-15 -2006 (|#1| |#1| (-911))) (-15 -2015 (|#1| |#1| (-911))))
+((-3207 (((-112) $ $) 7)) (-1986 (((-3 $ "failed") $) 17)) (-2015 (($ $ (-911)) 15) (($ $ (-762)) 22)) (-2588 (((-3 $ "failed") $) 19)) (-2035 (((-112) $) 23)) (-1995 (((-3 $ "failed") $) 18)) (-2006 (($ $ (-911)) 14) (($ $ (-762)) 21)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11)) (-2142 (($) 24 T CONST)) (-1683 (((-112) $ $) 6)) (** (($ $ (-911)) 13) (($ $ (-762)) 20)) (* (($ $ $) 16)))
+(((-713) (-139)) (T -713))
+((-2142 (*1 *1) (-4 *1 (-713))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-713)) (-5 *2 (-112)))) (-2015 (*1 *1 *1 *2) (-12 (-4 *1 (-713)) (-5 *2 (-762)))) (-2006 (*1 *1 *1 *2) (-12 (-4 *1 (-713)) (-5 *2 (-762)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-713)) (-5 *2 (-762)))) (-2588 (*1 *1 *1) (|partial| -4 *1 (-713))) (-1995 (*1 *1 *1) (|partial| -4 *1 (-713))) (-1986 (*1 *1 *1) (|partial| -4 *1 (-713))))
+(-13 (-711) (-10 -8 (-15 (-2142) ($) -3707) (-15 -2035 ((-112) $)) (-15 -2015 ($ $ (-762))) (-15 -2006 ($ $ (-762))) (-15 ** ($ $ (-762))) (-15 -2588 ((-3 $ "failed") $)) (-15 -1995 ((-3 $ "failed") $)) (-15 -1986 ((-3 $ "failed") $))))
+(((-102) . T) ((-605 (-853)) . T) ((-711) . T) ((-1087) . T))
+((-2276 (((-762)) 35)) (-3069 (((-3 (-558) "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-1863 (((-558) $) NIL) (((-406 (-558)) $) NIL) ((|#2| $) 22)) (-3048 (($ |#3|) NIL) (((-3 $ "failed") (-406 |#3|)) 45)) (-2588 (((-3 $ "failed") $) 65)) (-2424 (($) 39)) (-2615 ((|#2| $) 20)) (-4098 (($) 17)) (-2829 (($ $ (-1 |#2| |#2|) (-762)) NIL) (($ $ (-1 |#2| |#2|)) 53) (($ $ (-635 (-1163)) (-635 (-762))) NIL) (($ $ (-1163) (-762)) NIL) (($ $ (-635 (-1163))) NIL) (($ $ (-1163)) NIL) (($ $ (-762)) NIL) (($ $) NIL)) (-2026 (((-679 |#2|) (-1246 $) (-1 |#2| |#2|)) 60)) (-3224 (((-1246 |#2|) $) NIL) (($ (-1246 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2363 ((|#3| $) 32)) (-2660 (((-1246 $)) 29)))
+(((-714 |#1| |#2| |#3|) (-10 -8 (-15 -2829 (|#1| |#1|)) (-15 -2829 (|#1| |#1| (-762))) (-15 -2829 (|#1| |#1| (-1163))) (-15 -2829 (|#1| |#1| (-635 (-1163)))) (-15 -2829 (|#1| |#1| (-1163) (-762))) (-15 -2829 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 -2424 (|#1|)) (-15 -2276 ((-762))) (-15 -2829 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2829 (|#1| |#1| (-1 |#2| |#2|) (-762))) (-15 -2026 ((-679 |#2|) (-1246 |#1|) (-1 |#2| |#2|))) (-15 -3048 ((-3 |#1| "failed") (-406 |#3|))) (-15 -3224 (|#1| |#3|)) (-15 -3048 (|#1| |#3|)) (-15 -4098 (|#1|)) (-15 -3069 ((-3 |#2| "failed") |#1|)) (-15 -1863 (|#2| |#1|)) (-15 -1863 ((-406 (-558)) |#1|)) (-15 -3069 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -1863 ((-558) |#1|)) (-15 -3069 ((-3 (-558) "failed") |#1|)) (-15 -3224 (|#3| |#1|)) (-15 -3224 (|#1| (-1246 |#2|))) (-15 -3224 ((-1246 |#2|) |#1|)) (-15 -2660 ((-1246 |#1|))) (-15 -2363 (|#3| |#1|)) (-15 -2615 (|#2| |#1|)) (-15 -2588 ((-3 |#1| "failed") |#1|))) (-715 |#2| |#3|) (-171) (-1222 |#2|)) (T -714))
+((-2276 (*1 *2) (-12 (-4 *4 (-171)) (-4 *5 (-1222 *4)) (-5 *2 (-762)) (-5 *1 (-714 *3 *4 *5)) (-4 *3 (-715 *4 *5)))))
+(-10 -8 (-15 -2829 (|#1| |#1|)) (-15 -2829 (|#1| |#1| (-762))) (-15 -2829 (|#1| |#1| (-1163))) (-15 -2829 (|#1| |#1| (-635 (-1163)))) (-15 -2829 (|#1| |#1| (-1163) (-762))) (-15 -2829 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 -2424 (|#1|)) (-15 -2276 ((-762))) (-15 -2829 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2829 (|#1| |#1| (-1 |#2| |#2|) (-762))) (-15 -2026 ((-679 |#2|) (-1246 |#1|) (-1 |#2| |#2|))) (-15 -3048 ((-3 |#1| "failed") (-406 |#3|))) (-15 -3224 (|#1| |#3|)) (-15 -3048 (|#1| |#3|)) (-15 -4098 (|#1|)) (-15 -3069 ((-3 |#2| "failed") |#1|)) (-15 -1863 (|#2| |#1|)) (-15 -1863 ((-406 (-558)) |#1|)) (-15 -3069 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -1863 ((-558) |#1|)) (-15 -3069 ((-3 (-558) "failed") |#1|)) (-15 -3224 (|#3| |#1|)) (-15 -3224 (|#1| (-1246 |#2|))) (-15 -3224 ((-1246 |#2|) |#1|)) (-15 -2660 ((-1246 |#1|))) (-15 -2363 (|#3| |#1|)) (-15 -2615 (|#2| |#1|)) (-15 -2588 ((-3 |#1| "failed") |#1|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 93 (|has| |#1| (-362)))) (-1881 (($ $) 94 (|has| |#1| (-362)))) (-1857 (((-112) $) 96 (|has| |#1| (-362)))) (-2053 (((-679 |#1|) (-1246 $)) 47) (((-679 |#1|)) 62)) (-1635 ((|#1| $) 53)) (-2163 (((-1173 (-911) (-762)) (-558)) 146 (|has| |#1| (-348)))) (-2089 (((-3 $ "failed") $ $) 19)) (-3465 (($ $) 113 (|has| |#1| (-362)))) (-1380 (((-417 $) $) 114 (|has| |#1| (-362)))) (-3732 (((-112) $ $) 104 (|has| |#1| (-362)))) (-2276 (((-762)) 87 (|has| |#1| (-367)))) (-1816 (($) 17 T CONST)) (-3069 (((-3 (-558) "failed") $) 169 (|has| |#1| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) 167 (|has| |#1| (-1028 (-406 (-558))))) (((-3 |#1| "failed") $) 164)) (-1863 (((-558) $) 168 (|has| |#1| (-1028 (-558)))) (((-406 (-558)) $) 166 (|has| |#1| (-1028 (-406 (-558))))) ((|#1| $) 165)) (-3997 (($ (-1246 |#1|) (-1246 $)) 49) (($ (-1246 |#1|)) 65)) (-3367 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| |#1| (-348)))) (-4025 (($ $ $) 108 (|has| |#1| (-362)))) (-2043 (((-679 |#1|) $ (-1246 $)) 54) (((-679 |#1|) $) 60)) (-3216 (((-679 (-558)) (-679 $)) 163 (|has| |#1| (-631 (-558)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) 162 (|has| |#1| (-631 (-558)))) (((-2 (|:| -3683 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) 161) (((-679 |#1|) (-679 $)) 160)) (-3048 (($ |#2|) 157) (((-3 $ "failed") (-406 |#2|)) 154 (|has| |#1| (-362)))) (-2588 (((-3 $ "failed") $) 33)) (-3833 (((-911)) 55)) (-2424 (($) 90 (|has| |#1| (-367)))) (-4004 (($ $ $) 107 (|has| |#1| (-362)))) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) 102 (|has| |#1| (-362)))) (-2672 (($) 148 (|has| |#1| (-348)))) (-2219 (((-112) $) 149 (|has| |#1| (-348)))) (-1895 (($ $ (-762)) 140 (|has| |#1| (-348))) (($ $) 139 (|has| |#1| (-348)))) (-3031 (((-112) $) 115 (|has| |#1| (-362)))) (-3449 (((-911) $) 151 (|has| |#1| (-348))) (((-824 (-911)) $) 137 (|has| |#1| (-348)))) (-2035 (((-112) $) 31)) (-2615 ((|#1| $) 52)) (-2457 (((-3 $ "failed") $) 141 (|has| |#1| (-348)))) (-3701 (((-3 (-635 $) "failed") (-635 $) $) 111 (|has| |#1| (-362)))) (-2681 ((|#2| $) 45 (|has| |#1| (-362)))) (-2637 (((-911) $) 89 (|has| |#1| (-367)))) (-3227 ((|#2| $) 155)) (-2665 (($ (-635 $)) 100 (|has| |#1| (-362))) (($ $ $) 99 (|has| |#1| (-362)))) (-4310 (((-1145) $) 9)) (-2418 (($ $) 116 (|has| |#1| (-362)))) (-1796 (($) 142 (|has| |#1| (-348)) CONST)) (-2851 (($ (-911)) 88 (|has| |#1| (-367)))) (-2975 (((-1107) $) 10)) (-4098 (($) 159)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) 101 (|has| |#1| (-362)))) (-2699 (($ (-635 $)) 98 (|has| |#1| (-362))) (($ $ $) 97 (|has| |#1| (-362)))) (-2174 (((-635 (-2 (|:| -2522 (-558)) (|:| -1951 (-558))))) 145 (|has| |#1| (-348)))) (-2522 (((-417 $) $) 112 (|has| |#1| (-362)))) (-3713 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) 109 (|has| |#1| (-362)))) (-3983 (((-3 $ "failed") $ $) 92 (|has| |#1| (-362)))) (-2922 (((-3 (-635 $) "failed") (-635 $) $) 103 (|has| |#1| (-362)))) (-3722 (((-762) $) 105 (|has| |#1| (-362)))) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 106 (|has| |#1| (-362)))) (-3331 ((|#1| (-1246 $)) 48) ((|#1|) 61)) (-1905 (((-762) $) 150 (|has| |#1| (-348))) (((-3 (-762) "failed") $ $) 138 (|has| |#1| (-348)))) (-2829 (($ $) 136 (-3998 (-2084 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-762)) 134 (-3998 (-2084 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-1163)) 132 (-2084 (|has| |#1| (-890 (-1163))) (|has| |#1| (-362)))) (($ $ (-635 (-1163))) 131 (-2084 (|has| |#1| (-890 (-1163))) (|has| |#1| (-362)))) (($ $ (-1163) (-762)) 130 (-2084 (|has| |#1| (-890 (-1163))) (|has| |#1| (-362)))) (($ $ (-635 (-1163)) (-635 (-762))) 129 (-2084 (|has| |#1| (-890 (-1163))) (|has| |#1| (-362)))) (($ $ (-1 |#1| |#1|) (-762)) 122 (|has| |#1| (-362))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-362)))) (-2026 (((-679 |#1|) (-1246 $) (-1 |#1| |#1|)) 153 (|has| |#1| (-362)))) (-2036 ((|#2|) 158)) (-3377 (($) 147 (|has| |#1| (-348)))) (-4205 (((-1246 |#1|) $ (-1246 $)) 51) (((-679 |#1|) (-1246 $) (-1246 $)) 50) (((-1246 |#1|) $) 67) (((-679 |#1|) (-1246 $)) 66)) (-3224 (((-1246 |#1|) $) 64) (($ (-1246 |#1|)) 63) ((|#2| $) 170) (($ |#2|) 156)) (-3709 (((-3 (-1246 $) "failed") (-679 $)) 144 (|has| |#1| (-348)))) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ |#1|) 38) (($ $) 91 (|has| |#1| (-362))) (($ (-406 (-558))) 86 (-3998 (|has| |#1| (-362)) (|has| |#1| (-1028 (-406 (-558))))))) (-3698 (($ $) 143 (|has| |#1| (-348))) (((-3 $ "failed") $) 44 (|has| |#1| (-144)))) (-2363 ((|#2| $) 46)) (-2542 (((-762)) 28)) (-2660 (((-1246 $)) 68)) (-1870 (((-112) $ $) 95 (|has| |#1| (-362)))) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1866 (($ $) 135 (-3998 (-2084 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-762)) 133 (-3998 (-2084 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-1163)) 128 (-2084 (|has| |#1| (-890 (-1163))) (|has| |#1| (-362)))) (($ $ (-635 (-1163))) 127 (-2084 (|has| |#1| (-890 (-1163))) (|has| |#1| (-362)))) (($ $ (-1163) (-762)) 126 (-2084 (|has| |#1| (-890 (-1163))) (|has| |#1| (-362)))) (($ $ (-635 (-1163)) (-635 (-762))) 125 (-2084 (|has| |#1| (-890 (-1163))) (|has| |#1| (-362)))) (($ $ (-1 |#1| |#1|) (-762)) 124 (|has| |#1| (-362))) (($ $ (-1 |#1| |#1|)) 123 (|has| |#1| (-362)))) (-1683 (((-112) $ $) 6)) (-1810 (($ $ $) 120 (|has| |#1| (-362)))) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ (-558)) 117 (|has| |#1| (-362)))) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ (-406 (-558)) $) 119 (|has| |#1| (-362))) (($ $ (-406 (-558))) 118 (|has| |#1| (-362)))))
+(((-715 |#1| |#2|) (-139) (-171) (-1222 |t#1|)) (T -715))
+((-4098 (*1 *1) (-12 (-4 *2 (-171)) (-4 *1 (-715 *2 *3)) (-4 *3 (-1222 *2)))) (-2036 (*1 *2) (-12 (-4 *1 (-715 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1222 *3)))) (-3048 (*1 *1 *2) (-12 (-4 *3 (-171)) (-4 *1 (-715 *3 *2)) (-4 *2 (-1222 *3)))) (-3224 (*1 *1 *2) (-12 (-4 *3 (-171)) (-4 *1 (-715 *3 *2)) (-4 *2 (-1222 *3)))) (-3227 (*1 *2 *1) (-12 (-4 *1 (-715 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1222 *3)))) (-3048 (*1 *1 *2) (|partial| -12 (-5 *2 (-406 *4)) (-4 *4 (-1222 *3)) (-4 *3 (-362)) (-4 *3 (-171)) (-4 *1 (-715 *3 *4)))) (-2026 (*1 *2 *3 *4) (-12 (-5 *3 (-1246 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-362)) (-4 *1 (-715 *5 *6)) (-4 *5 (-171)) (-4 *6 (-1222 *5)) (-5 *2 (-679 *5)))))
+(-13 (-408 |t#1| |t#2|) (-171) (-606 |t#2|) (-410 |t#1|) (-376 |t#1|) (-10 -8 (-15 -4098 ($)) (-15 -2036 (|t#2|)) (-15 -3048 ($ |t#2|)) (-15 -3224 ($ |t#2|)) (-15 -3227 (|t#2| $)) (IF (|has| |t#1| (-367)) (-6 (-367)) |%noBranch|) (IF (|has| |t#1| (-362)) (PROGN (-6 (-362)) (-6 (-230 |t#1|)) (-15 -3048 ((-3 $ "failed") (-406 |t#2|))) (-15 -2026 ((-679 |t#1|) (-1246 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-348)) (-6 (-348)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-558))) -3998 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-38 |#1|) . T) ((-38 $) -3998 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-102) . T) ((-111 #0# #0#) -3998 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-144) -3998 (|has| |#1| (-348)) (|has| |#1| (-144))) ((-146) |has| |#1| (-146)) ((-608 #0#) -3998 (|has| |#1| (-1028 (-406 (-558)))) (|has| |#1| (-348)) (|has| |#1| (-362))) ((-608 (-558)) . T) ((-608 |#1|) . T) ((-608 $) -3998 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-605 (-853)) . T) ((-171) . T) ((-606 |#2|) . T) ((-230 |#1|) |has| |#1| (-362)) ((-232) -3998 (|has| |#1| (-348)) (-12 (|has| |#1| (-232)) (|has| |#1| (-362)))) ((-242) -3998 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-289) -3998 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-306) -3998 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-362) -3998 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-401) |has| |#1| (-348)) ((-367) -3998 (|has| |#1| (-367)) (|has| |#1| (-348))) ((-348) |has| |#1| (-348)) ((-369 |#1| |#2|) . T) ((-408 |#1| |#2|) . T) ((-376 |#1|) . T) ((-410 |#1|) . T) ((-450) -3998 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-550) -3998 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-638 #0#) -3998 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-638 |#1|) . T) ((-638 $) . T) ((-631 (-558)) |has| |#1| (-631 (-558))) ((-631 |#1|) . T) ((-708 #0#) -3998 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-708 |#1|) . T) ((-708 $) -3998 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-717) . T) ((-890 (-1163)) -12 (|has| |#1| (-362)) (|has| |#1| (-890 (-1163)))) ((-910) -3998 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-1028 (-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) ((-1028 (-558)) |has| |#1| (-1028 (-558))) ((-1028 |#1|) . T) ((-1045 #0#) -3998 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-1045 |#1|) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1138) |has| |#1| (-348)) ((-1204) -3998 (|has| |#1| (-348)) (|has| |#1| (-362))))
+((-1816 (($) 11)) (-2588 (((-3 $ "failed") $) 13)) (-2035 (((-112) $) 10)) (** (($ $ (-911)) NIL) (($ $ (-762)) 18)))
+(((-716 |#1|) (-10 -8 (-15 -2588 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-762))) (-15 -2035 ((-112) |#1|)) (-15 -1816 (|#1|)) (-15 ** (|#1| |#1| (-911)))) (-717)) (T -716))
+NIL
+(-10 -8 (-15 -2588 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-762))) (-15 -2035 ((-112) |#1|)) (-15 -1816 (|#1|)) (-15 ** (|#1| |#1| (-911))))
+((-3207 (((-112) $ $) 7)) (-1816 (($) 18 T CONST)) (-2588 (((-3 $ "failed") $) 15)) (-2035 (((-112) $) 17)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11)) (-2142 (($) 19 T CONST)) (-1683 (((-112) $ $) 6)) (** (($ $ (-911)) 13) (($ $ (-762)) 16)) (* (($ $ $) 14)))
+(((-717) (-139)) (T -717))
+((-2142 (*1 *1) (-4 *1 (-717))) (-1816 (*1 *1) (-4 *1 (-717))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-717)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-717)) (-5 *2 (-762)))) (-2588 (*1 *1 *1) (|partial| -4 *1 (-717))))
+(-13 (-1099) (-10 -8 (-15 (-2142) ($) -3707) (-15 -1816 ($) -3707) (-15 -2035 ((-112) $)) (-15 ** ($ $ (-762))) (-15 -2588 ((-3 $ "failed") $))))
+(((-102) . T) ((-605 (-853)) . T) ((-1099) . T) ((-1087) . T))
+((-2044 (((-2 (|:| -1499 (-417 |#2|)) (|:| |special| (-417 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-3469 (((-2 (|:| -1499 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2054 ((|#2| (-406 |#2|) (-1 |#2| |#2|)) 13)) (-2375 (((-2 (|:| |poly| |#2|) (|:| -1499 (-406 |#2|)) (|:| |special| (-406 |#2|))) (-406 |#2|) (-1 |#2| |#2|)) 47)))
+(((-718 |#1| |#2|) (-10 -7 (-15 -3469 ((-2 (|:| -1499 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2044 ((-2 (|:| -1499 (-417 |#2|)) (|:| |special| (-417 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2054 (|#2| (-406 |#2|) (-1 |#2| |#2|))) (-15 -2375 ((-2 (|:| |poly| |#2|) (|:| -1499 (-406 |#2|)) (|:| |special| (-406 |#2|))) (-406 |#2|) (-1 |#2| |#2|)))) (-362) (-1222 |#1|)) (T -718))
+((-2375 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1222 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| |poly| *6) (|:| -1499 (-406 *6)) (|:| |special| (-406 *6)))) (-5 *1 (-718 *5 *6)) (-5 *3 (-406 *6)))) (-2054 (*1 *2 *3 *4) (-12 (-5 *3 (-406 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1222 *5)) (-5 *1 (-718 *5 *2)) (-4 *5 (-362)))) (-2044 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1222 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| -1499 (-417 *3)) (|:| |special| (-417 *3)))) (-5 *1 (-718 *5 *3)))) (-3469 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1222 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| -1499 *3) (|:| |special| *3))) (-5 *1 (-718 *5 *3)))))
+(-10 -7 (-15 -3469 ((-2 (|:| -1499 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2044 ((-2 (|:| -1499 (-417 |#2|)) (|:| |special| (-417 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2054 (|#2| (-406 |#2|) (-1 |#2| |#2|))) (-15 -2375 ((-2 (|:| |poly| |#2|) (|:| -1499 (-406 |#2|)) (|:| |special| (-406 |#2|))) (-406 |#2|) (-1 |#2| |#2|))))
+((-2653 ((|#7| (-635 |#5|) |#6|) NIL)) (-3167 ((|#7| (-1 |#5| |#4|) |#6|) 26)))
+(((-719 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3167 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2653 (|#7| (-635 |#5|) |#6|))) (-841) (-784) (-784) (-1039) (-1039) (-939 |#4| |#2| |#1|) (-939 |#5| |#3| |#1|)) (T -719))
+((-2653 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *9)) (-4 *9 (-1039)) (-4 *5 (-841)) (-4 *6 (-784)) (-4 *8 (-1039)) (-4 *2 (-939 *9 *7 *5)) (-5 *1 (-719 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-784)) (-4 *4 (-939 *8 *6 *5)))) (-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1039)) (-4 *9 (-1039)) (-4 *5 (-841)) (-4 *6 (-784)) (-4 *2 (-939 *9 *7 *5)) (-5 *1 (-719 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-784)) (-4 *4 (-939 *8 *6 *5)))))
+(-10 -7 (-15 -3167 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2653 (|#7| (-635 |#5|) |#6|)))
+((-3167 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
+(((-720 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3167 (|#7| (-1 |#2| |#1|) |#6|))) (-841) (-841) (-784) (-784) (-1039) (-939 |#5| |#3| |#1|) (-939 |#5| |#4| |#2|)) (T -720))
+((-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-841)) (-4 *6 (-841)) (-4 *7 (-784)) (-4 *9 (-1039)) (-4 *2 (-939 *9 *8 *6)) (-5 *1 (-720 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-784)) (-4 *4 (-939 *9 *7 *5)))))
+(-10 -7 (-15 -3167 (|#7| (-1 |#2| |#1|) |#6|)))
+((-2522 (((-417 |#4|) |#4|) 41)))
+(((-721 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2522 ((-417 |#4|) |#4|))) (-784) (-13 (-841) (-10 -8 (-15 -3224 ((-1163) $)) (-15 -1602 ((-3 $ "failed") (-1163))))) (-306) (-939 (-942 |#3|) |#1| |#2|)) (T -721))
+((-2522 (*1 *2 *3) (-12 (-4 *4 (-784)) (-4 *5 (-13 (-841) (-10 -8 (-15 -3224 ((-1163) $)) (-15 -1602 ((-3 $ "failed") (-1163)))))) (-4 *6 (-306)) (-5 *2 (-417 *3)) (-5 *1 (-721 *4 *5 *6 *3)) (-4 *3 (-939 (-942 *6) *4 *5)))))
+(-10 -7 (-15 -2522 ((-417 |#4|) |#4|)))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2671 (((-635 (-855 |#1|)) $) NIL)) (-2492 (((-1159 $) $ (-855 |#1|)) NIL) (((-1159 |#2|) $) NIL)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL (|has| |#2| (-550)))) (-1881 (($ $) NIL (|has| |#2| (-550)))) (-1857 (((-112) $) NIL (|has| |#2| (-550)))) (-2513 (((-762) $) NIL) (((-762) $ (-635 (-855 |#1|))) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-3748 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-3465 (($ $) NIL (|has| |#2| (-450)))) (-1380 (((-417 $) $) NIL (|has| |#2| (-450)))) (-3719 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-1816 (($) NIL T CONST)) (-3069 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#2| (-1028 (-406 (-558))))) (((-3 (-558) "failed") $) NIL (|has| |#2| (-1028 (-558)))) (((-3 (-855 |#1|) "failed") $) NIL)) (-1863 ((|#2| $) NIL) (((-406 (-558)) $) NIL (|has| |#2| (-1028 (-406 (-558))))) (((-558) $) NIL (|has| |#2| (-1028 (-558)))) (((-855 |#1|) $) NIL)) (-3320 (($ $ $ (-855 |#1|)) NIL (|has| |#2| (-171)))) (-2490 (($ $) NIL)) (-3216 (((-679 (-558)) (-679 $)) NIL (|has| |#2| (-631 (-558)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| |#2| (-631 (-558)))) (((-2 (|:| -3683 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 $) (-1246 $)) NIL) (((-679 |#2|) (-679 $)) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-2782 (($ $) NIL (|has| |#2| (-450))) (($ $ (-855 |#1|)) NIL (|has| |#2| (-450)))) (-2476 (((-635 $) $) NIL)) (-3031 (((-112) $) NIL (|has| |#2| (-899)))) (-3888 (($ $ |#2| (-529 (-855 |#1|)) $) NIL)) (-2269 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (-12 (|has| (-855 |#1|) (-876 (-378))) (|has| |#2| (-876 (-378))))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (-12 (|has| (-855 |#1|) (-876 (-558))) (|has| |#2| (-876 (-558)))))) (-2035 (((-112) $) NIL)) (-2110 (((-762) $) NIL)) (-2659 (($ (-1159 |#2|) (-855 |#1|)) NIL) (($ (-1159 $) (-855 |#1|)) NIL)) (-2536 (((-635 $) $) NIL)) (-4238 (((-112) $) NIL)) (-2648 (($ |#2| (-529 (-855 |#1|))) NIL) (($ $ (-855 |#1|) (-762)) NIL) (($ $ (-635 (-855 |#1|)) (-635 (-762))) NIL)) (-3381 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $ (-855 |#1|)) NIL)) (-2524 (((-529 (-855 |#1|)) $) NIL) (((-762) $ (-855 |#1|)) NIL) (((-635 (-762)) $ (-635 (-855 |#1|))) NIL)) (-3910 (($ $ $) NIL (|has| |#2| (-841)))) (-3542 (($ $ $) NIL (|has| |#2| (-841)))) (-3898 (($ (-1 (-529 (-855 |#1|)) (-529 (-855 |#1|))) $) NIL)) (-3167 (($ (-1 |#2| |#2|) $) NIL)) (-3399 (((-3 (-855 |#1|) "failed") $) NIL)) (-2451 (($ $) NIL)) (-2463 ((|#2| $) NIL)) (-2665 (($ (-635 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-4310 (((-1145) $) NIL)) (-2560 (((-3 (-635 $) "failed") $) NIL)) (-2548 (((-3 (-635 $) "failed") $) NIL)) (-2575 (((-3 (-2 (|:| |var| (-855 |#1|)) (|:| -1951 (-762))) "failed") $) NIL)) (-2975 (((-1107) $) NIL)) (-2429 (((-112) $) NIL)) (-2440 ((|#2| $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#2| (-450)))) (-2699 (($ (-635 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-3728 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-3738 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-2522 (((-417 $) $) NIL (|has| |#2| (-899)))) (-3983 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-550))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-550)))) (-2554 (($ $ (-635 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-855 |#1|) |#2|) NIL) (($ $ (-635 (-855 |#1|)) (-635 |#2|)) NIL) (($ $ (-855 |#1|) $) NIL) (($ $ (-635 (-855 |#1|)) (-635 $)) NIL)) (-3331 (($ $ (-855 |#1|)) NIL (|has| |#2| (-171)))) (-2829 (($ $ (-855 |#1|)) NIL) (($ $ (-635 (-855 |#1|))) NIL) (($ $ (-855 |#1|) (-762)) NIL) (($ $ (-635 (-855 |#1|)) (-635 (-762))) NIL)) (-4323 (((-529 (-855 |#1|)) $) NIL) (((-762) $ (-855 |#1|)) NIL) (((-635 (-762)) $ (-635 (-855 |#1|))) NIL)) (-3224 (((-882 (-378)) $) NIL (-12 (|has| (-855 |#1|) (-606 (-882 (-378)))) (|has| |#2| (-606 (-882 (-378)))))) (((-882 (-558)) $) NIL (-12 (|has| (-855 |#1|) (-606 (-882 (-558)))) (|has| |#2| (-606 (-882 (-558)))))) (((-534) $) NIL (-12 (|has| (-855 |#1|) (-606 (-534))) (|has| |#2| (-606 (-534)))))) (-2504 ((|#2| $) NIL (|has| |#2| (-450))) (($ $ (-855 |#1|)) NIL (|has| |#2| (-450)))) (-3709 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-899))))) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ |#2|) NIL) (($ (-855 |#1|)) NIL) (($ $) NIL (|has| |#2| (-550))) (($ (-406 (-558))) NIL (-3998 (|has| |#2| (-38 (-406 (-558)))) (|has| |#2| (-1028 (-406 (-558))))))) (-2583 (((-635 |#2|) $) NIL)) (-3736 ((|#2| $ (-529 (-855 |#1|))) NIL) (($ $ (-855 |#1|) (-762)) NIL) (($ $ (-635 (-855 |#1|)) (-635 (-762))) NIL)) (-3698 (((-3 $ "failed") $) NIL (-3998 (-12 (|has| $ (-144)) (|has| |#2| (-899))) (|has| |#2| (-144))))) (-2542 (((-762)) NIL)) (-3879 (($ $ $ (-762)) NIL (|has| |#2| (-171)))) (-1870 (((-112) $ $) NIL (|has| |#2| (-550)))) (-2131 (($) NIL T CONST)) (-2142 (($) NIL T CONST)) (-1866 (($ $ (-855 |#1|)) NIL) (($ $ (-635 (-855 |#1|))) NIL) (($ $ (-855 |#1|) (-762)) NIL) (($ $ (-635 (-855 |#1|)) (-635 (-762))) NIL)) (-1747 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1720 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1683 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1705 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1810 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL (|has| |#2| (-38 (-406 (-558))))) (($ (-406 (-558)) $) NIL (|has| |#2| (-38 (-406 (-558))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-722 |#1| |#2|) (-939 |#2| (-529 (-855 |#1|)) (-855 |#1|)) (-635 (-1163)) (-1039)) (T -722))
+NIL
+(-939 |#2| (-529 (-855 |#1|)) (-855 |#1|))
+((-2066 (((-2 (|:| -2738 (-942 |#3|)) (|:| -1824 (-942 |#3|))) |#4|) 14)) (-3618 ((|#4| |#4| |#2|) 33)) (-2098 ((|#4| (-406 (-942 |#3|)) |#2|) 64)) (-2086 ((|#4| (-1159 (-942 |#3|)) |#2|) 77)) (-2075 ((|#4| (-1159 |#4|) |#2|) 51)) (-3608 ((|#4| |#4| |#2|) 54)) (-2522 (((-417 |#4|) |#4|) 40)))
+(((-723 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2066 ((-2 (|:| -2738 (-942 |#3|)) (|:| -1824 (-942 |#3|))) |#4|)) (-15 -3608 (|#4| |#4| |#2|)) (-15 -2075 (|#4| (-1159 |#4|) |#2|)) (-15 -3618 (|#4| |#4| |#2|)) (-15 -2086 (|#4| (-1159 (-942 |#3|)) |#2|)) (-15 -2098 (|#4| (-406 (-942 |#3|)) |#2|)) (-15 -2522 ((-417 |#4|) |#4|))) (-784) (-13 (-841) (-10 -8 (-15 -3224 ((-1163) $)))) (-550) (-939 (-406 (-942 |#3|)) |#1| |#2|)) (T -723))
+((-2522 (*1 *2 *3) (-12 (-4 *4 (-784)) (-4 *5 (-13 (-841) (-10 -8 (-15 -3224 ((-1163) $))))) (-4 *6 (-550)) (-5 *2 (-417 *3)) (-5 *1 (-723 *4 *5 *6 *3)) (-4 *3 (-939 (-406 (-942 *6)) *4 *5)))) (-2098 (*1 *2 *3 *4) (-12 (-4 *6 (-550)) (-4 *2 (-939 *3 *5 *4)) (-5 *1 (-723 *5 *4 *6 *2)) (-5 *3 (-406 (-942 *6))) (-4 *5 (-784)) (-4 *4 (-13 (-841) (-10 -8 (-15 -3224 ((-1163) $))))))) (-2086 (*1 *2 *3 *4) (-12 (-5 *3 (-1159 (-942 *6))) (-4 *6 (-550)) (-4 *2 (-939 (-406 (-942 *6)) *5 *4)) (-5 *1 (-723 *5 *4 *6 *2)) (-4 *5 (-784)) (-4 *4 (-13 (-841) (-10 -8 (-15 -3224 ((-1163) $))))))) (-3618 (*1 *2 *2 *3) (-12 (-4 *4 (-784)) (-4 *3 (-13 (-841) (-10 -8 (-15 -3224 ((-1163) $))))) (-4 *5 (-550)) (-5 *1 (-723 *4 *3 *5 *2)) (-4 *2 (-939 (-406 (-942 *5)) *4 *3)))) (-2075 (*1 *2 *3 *4) (-12 (-5 *3 (-1159 *2)) (-4 *2 (-939 (-406 (-942 *6)) *5 *4)) (-5 *1 (-723 *5 *4 *6 *2)) (-4 *5 (-784)) (-4 *4 (-13 (-841) (-10 -8 (-15 -3224 ((-1163) $))))) (-4 *6 (-550)))) (-3608 (*1 *2 *2 *3) (-12 (-4 *4 (-784)) (-4 *3 (-13 (-841) (-10 -8 (-15 -3224 ((-1163) $))))) (-4 *5 (-550)) (-5 *1 (-723 *4 *3 *5 *2)) (-4 *2 (-939 (-406 (-942 *5)) *4 *3)))) (-2066 (*1 *2 *3) (-12 (-4 *4 (-784)) (-4 *5 (-13 (-841) (-10 -8 (-15 -3224 ((-1163) $))))) (-4 *6 (-550)) (-5 *2 (-2 (|:| -2738 (-942 *6)) (|:| -1824 (-942 *6)))) (-5 *1 (-723 *4 *5 *6 *3)) (-4 *3 (-939 (-406 (-942 *6)) *4 *5)))))
+(-10 -7 (-15 -2066 ((-2 (|:| -2738 (-942 |#3|)) (|:| -1824 (-942 |#3|))) |#4|)) (-15 -3608 (|#4| |#4| |#2|)) (-15 -2075 (|#4| (-1159 |#4|) |#2|)) (-15 -3618 (|#4| |#4| |#2|)) (-15 -2086 (|#4| (-1159 (-942 |#3|)) |#2|)) (-15 -2098 (|#4| (-406 (-942 |#3|)) |#2|)) (-15 -2522 ((-417 |#4|) |#4|)))
+((-2522 (((-417 |#4|) |#4|) 52)))
+(((-724 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2522 ((-417 |#4|) |#4|))) (-784) (-841) (-13 (-306) (-146)) (-939 (-406 |#3|) |#1| |#2|)) (T -724))
+((-2522 (*1 *2 *3) (-12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-13 (-306) (-146))) (-5 *2 (-417 *3)) (-5 *1 (-724 *4 *5 *6 *3)) (-4 *3 (-939 (-406 *6) *4 *5)))))
+(-10 -7 (-15 -2522 ((-417 |#4|) |#4|)))
+((-3167 (((-726 |#2| |#3|) (-1 |#2| |#1|) (-726 |#1| |#3|)) 18)))
+(((-725 |#1| |#2| |#3|) (-10 -7 (-15 -3167 ((-726 |#2| |#3|) (-1 |#2| |#1|) (-726 |#1| |#3|)))) (-1039) (-1039) (-717)) (T -725))
+((-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-726 *5 *7)) (-4 *5 (-1039)) (-4 *6 (-1039)) (-4 *7 (-717)) (-5 *2 (-726 *6 *7)) (-5 *1 (-725 *5 *6 *7)))))
+(-10 -7 (-15 -3167 ((-726 |#2| |#3|) (-1 |#2| |#1|) (-726 |#1| |#3|))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) 28)) (-3456 (((-635 (-2 (|:| -2023 |#1|) (|:| -3918 |#2|))) $) 29)) (-2089 (((-3 $ "failed") $ $) NIL)) (-2276 (((-762)) 20 (-12 (|has| |#2| (-367)) (|has| |#1| (-367))))) (-1816 (($) NIL T CONST)) (-3069 (((-3 |#2| "failed") $) 57) (((-3 |#1| "failed") $) 60)) (-1863 ((|#2| $) NIL) ((|#1| $) NIL)) (-2490 (($ $) 79 (|has| |#2| (-841)))) (-2588 (((-3 $ "failed") $) 65)) (-2424 (($) 35 (-12 (|has| |#2| (-367)) (|has| |#1| (-367))))) (-2035 (((-112) $) NIL)) (-2110 (((-762) $) 55)) (-2536 (((-635 $) $) 39)) (-4238 (((-112) $) NIL)) (-2648 (($ |#1| |#2|) 16)) (-3167 (($ (-1 |#1| |#1|) $) 54)) (-2637 (((-911) $) 32 (-12 (|has| |#2| (-367)) (|has| |#1| (-367))))) (-2451 ((|#2| $) 78 (|has| |#2| (-841)))) (-2463 ((|#1| $) 77 (|has| |#2| (-841)))) (-4310 (((-1145) $) NIL)) (-2851 (($ (-911)) 27 (-12 (|has| |#2| (-367)) (|has| |#1| (-367))))) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 76) (($ (-558)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-635 (-2 (|:| -2023 |#1|) (|:| -3918 |#2|)))) 11)) (-2583 (((-635 |#1|) $) 41)) (-3736 ((|#1| $ |#2|) 87)) (-3698 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2542 (((-762)) NIL)) (-2131 (($) 12 T CONST)) (-2142 (($) 33 T CONST)) (-1683 (((-112) $ $) 80)) (-1798 (($ $) 47) (($ $ $) NIL)) (-1784 (($ $ $) 26)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 52) (($ $ $) 89) (($ |#1| $) 49 (|has| |#1| (-171))) (($ $ |#1|) NIL (|has| |#1| (-171)))))
+(((-726 |#1| |#2|) (-13 (-1039) (-1028 |#2|) (-1028 |#1|) (-10 -8 (-15 -2648 ($ |#1| |#2|)) (-15 -3736 (|#1| $ |#2|)) (-15 -3220 ($ (-635 (-2 (|:| -2023 |#1|) (|:| -3918 |#2|))))) (-15 -3456 ((-635 (-2 (|:| -2023 |#1|) (|:| -3918 |#2|))) $)) (-15 -3167 ($ (-1 |#1| |#1|) $)) (-15 -4238 ((-112) $)) (-15 -2583 ((-635 |#1|) $)) (-15 -2536 ((-635 $) $)) (-15 -2110 ((-762) $)) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-367)) (IF (|has| |#2| (-367)) (-6 (-367)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-841)) (PROGN (-15 -2451 (|#2| $)) (-15 -2463 (|#1| $)) (-15 -2490 ($ $))) |%noBranch|))) (-1039) (-717)) (T -726))
+((-2648 (*1 *1 *2 *3) (-12 (-5 *1 (-726 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-717)))) (-3736 (*1 *2 *1 *3) (-12 (-4 *2 (-1039)) (-5 *1 (-726 *2 *3)) (-4 *3 (-717)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-635 (-2 (|:| -2023 *3) (|:| -3918 *4)))) (-4 *3 (-1039)) (-4 *4 (-717)) (-5 *1 (-726 *3 *4)))) (-3456 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| -2023 *3) (|:| -3918 *4)))) (-5 *1 (-726 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-717)))) (-3167 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1039)) (-5 *1 (-726 *3 *4)) (-4 *4 (-717)))) (-4238 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-726 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-717)))) (-2583 (*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-726 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-717)))) (-2536 (*1 *2 *1) (-12 (-5 *2 (-635 (-726 *3 *4))) (-5 *1 (-726 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-717)))) (-2110 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-726 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-717)))) (-2451 (*1 *2 *1) (-12 (-4 *2 (-717)) (-4 *2 (-841)) (-5 *1 (-726 *3 *2)) (-4 *3 (-1039)))) (-2463 (*1 *2 *1) (-12 (-4 *2 (-1039)) (-5 *1 (-726 *2 *3)) (-4 *3 (-841)) (-4 *3 (-717)))) (-2490 (*1 *1 *1) (-12 (-5 *1 (-726 *2 *3)) (-4 *3 (-841)) (-4 *2 (-1039)) (-4 *3 (-717)))))
+(-13 (-1039) (-1028 |#2|) (-1028 |#1|) (-10 -8 (-15 -2648 ($ |#1| |#2|)) (-15 -3736 (|#1| $ |#2|)) (-15 -3220 ($ (-635 (-2 (|:| -2023 |#1|) (|:| -3918 |#2|))))) (-15 -3456 ((-635 (-2 (|:| -2023 |#1|) (|:| -3918 |#2|))) $)) (-15 -3167 ($ (-1 |#1| |#1|) $)) (-15 -4238 ((-112) $)) (-15 -2583 ((-635 |#1|) $)) (-15 -2536 ((-635 $) $)) (-15 -2110 ((-762) $)) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-367)) (IF (|has| |#2| (-367)) (-6 (-367)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-841)) (PROGN (-15 -2451 (|#2| $)) (-15 -2463 (|#1| $)) (-15 -2490 ($ $))) |%noBranch|)))
+((-3207 (((-112) $ $) 19)) (-3539 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-4259 (($ $ $) 72)) (-4248 (((-112) $ $) 73)) (-3026 (((-112) $ (-762)) 8)) (-1511 (($ (-635 |#1|)) 68) (($) 67)) (-4207 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4382)))) (-4329 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4382)))) (-1816 (($) 7 T CONST)) (-2820 (($ $) 62)) (-2338 (($ $) 58 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-3395 (($ |#1| $) 47 (|has| $ (-6 -4382))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4382)))) (-1539 (($ |#1| $) 57 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4382)))) (-3048 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4382))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4382)))) (-2240 (((-635 |#1|) $) 30 (|has| $ (-6 -4382)))) (-4298 (((-112) $ $) 64)) (-2986 (((-112) $ (-762)) 9)) (-2122 (((-635 |#1|) $) 29 (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1807 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) 35)) (-2953 (((-112) $ (-762)) 10)) (-4310 (((-1145) $) 22)) (-4286 (($ $ $) 69)) (-1722 ((|#1| $) 39)) (-4328 (($ |#1| $) 40) (($ |#1| $ (-762)) 63)) (-2975 (((-1107) $) 21)) (-4307 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3524 ((|#1| $) 41)) (-3266 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) 14)) (-3375 (((-112) $) 11)) (-2083 (($) 12)) (-2811 (((-635 (-2 (|:| -2981 |#1|) (|:| -2988 (-762)))) $) 61)) (-4271 (($ $ |#1|) 71) (($ $ $) 70)) (-2571 (($) 49) (($ (-635 |#1|)) 48)) (-2988 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4382))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1553 (($ $) 13)) (-3224 (((-534) $) 59 (|has| |#1| (-606 (-534))))) (-3233 (($ (-635 |#1|)) 50)) (-3220 (((-853) $) 18)) (-2597 (($ (-635 |#1|)) 66) (($) 65)) (-3534 (($ (-635 |#1|)) 42)) (-3277 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) 20)) (-2755 (((-762) $) 6 (|has| $ (-6 -4382)))))
+(((-727 |#1|) (-139) (-1087)) (T -727))
+NIL
+(-13 (-685 |t#1|) (-1085 |t#1|))
+(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-605 (-853)) . T) ((-150 |#1|) . T) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-234 |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-685 |#1|) . T) ((-1085 |#1|) . T) ((-1087) . T) ((-1200) . T))
+((-3207 (((-112) $ $) NIL)) (-3539 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 75)) (-4259 (($ $ $) 78)) (-4248 (((-112) $ $) 82)) (-3026 (((-112) $ (-762)) NIL)) (-1511 (($ (-635 |#1|)) 24) (($) 16)) (-4207 (($ (-1 (-112) |#1|) $) 69 (|has| $ (-6 -4382)))) (-4329 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-1816 (($) NIL T CONST)) (-2820 (($ $) 70)) (-2338 (($ $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3395 (($ |#1| $) 61 (|has| $ (-6 -4382))) (($ (-1 (-112) |#1|) $) 64 (|has| $ (-6 -4382))) (($ |#1| $ (-558)) 62) (($ (-1 (-112) |#1|) $ (-558)) 65)) (-1539 (($ |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382))) (($ |#1| $ (-558)) 67) (($ (-1 (-112) |#1|) $ (-558)) 68)) (-3048 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4382))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4382)))) (-2240 (((-635 |#1|) $) 32 (|has| $ (-6 -4382)))) (-4298 (((-112) $ $) 81)) (-2133 (($) 14) (($ |#1|) 26) (($ (-635 |#1|)) 21)) (-2986 (((-112) $ (-762)) NIL)) (-2122 (((-635 |#1|) $) 38)) (-4322 (((-112) |#1| $) 58 (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1807 (($ (-1 |#1| |#1|) $) 73 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) 74)) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL)) (-4286 (($ $ $) 76)) (-1722 ((|#1| $) 55)) (-4328 (($ |#1| $) 56) (($ |#1| $ (-762)) 71)) (-2975 (((-1107) $) NIL)) (-4307 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3524 ((|#1| $) 54)) (-3266 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3375 (((-112) $) 50)) (-2083 (($) 13)) (-2811 (((-635 (-2 (|:| -2981 |#1|) (|:| -2988 (-762)))) $) 48)) (-4271 (($ $ |#1|) NIL) (($ $ $) 77)) (-2571 (($) 15) (($ (-635 |#1|)) 23)) (-2988 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382))) (((-762) |#1| $) 60 (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1553 (($ $) 66)) (-3224 (((-534) $) 36 (|has| |#1| (-606 (-534))))) (-3233 (($ (-635 |#1|)) 20)) (-3220 (((-853) $) 44)) (-2597 (($ (-635 |#1|)) 25) (($) 17)) (-3534 (($ (-635 |#1|)) 22)) (-3277 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) 80)) (-2755 (((-762) $) 59 (|has| $ (-6 -4382)))))
+(((-728 |#1|) (-13 (-727 |#1|) (-10 -8 (-6 -4382) (-6 -4383) (-15 -2133 ($)) (-15 -2133 ($ |#1|)) (-15 -2133 ($ (-635 |#1|))) (-15 -2122 ((-635 |#1|) $)) (-15 -1539 ($ |#1| $ (-558))) (-15 -1539 ($ (-1 (-112) |#1|) $ (-558))) (-15 -3395 ($ |#1| $ (-558))) (-15 -3395 ($ (-1 (-112) |#1|) $ (-558))))) (-1087)) (T -728))
+((-2133 (*1 *1) (-12 (-5 *1 (-728 *2)) (-4 *2 (-1087)))) (-2133 (*1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-1087)))) (-2133 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-5 *1 (-728 *3)))) (-2122 (*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-728 *3)) (-4 *3 (-1087)))) (-1539 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *1 (-728 *2)) (-4 *2 (-1087)))) (-1539 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-558)) (-4 *4 (-1087)) (-5 *1 (-728 *4)))) (-3395 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *1 (-728 *2)) (-4 *2 (-1087)))) (-3395 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-558)) (-4 *4 (-1087)) (-5 *1 (-728 *4)))))
+(-13 (-727 |#1|) (-10 -8 (-6 -4382) (-6 -4383) (-15 -2133 ($)) (-15 -2133 ($ |#1|)) (-15 -2133 ($ (-635 |#1|))) (-15 -2122 ((-635 |#1|) $)) (-15 -1539 ($ |#1| $ (-558))) (-15 -1539 ($ (-1 (-112) |#1|) $ (-558))) (-15 -3395 ($ |#1| $ (-558))) (-15 -3395 ($ (-1 (-112) |#1|) $ (-558)))))
+((-1469 (((-1251) (-1145)) 8)))
+(((-729) (-10 -7 (-15 -1469 ((-1251) (-1145))))) (T -729))
+((-1469 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-729)))))
+(-10 -7 (-15 -1469 ((-1251) (-1145))))
+((-2144 (((-635 |#1|) (-635 |#1|) (-635 |#1|)) 10)))
+(((-730 |#1|) (-10 -7 (-15 -2144 ((-635 |#1|) (-635 |#1|) (-635 |#1|)))) (-841)) (T -730))
+((-2144 (*1 *2 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-841)) (-5 *1 (-730 *3)))))
+(-10 -7 (-15 -2144 ((-635 |#1|) (-635 |#1|) (-635 |#1|))))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2671 (((-635 |#2|) $) 139)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 132 (|has| |#1| (-550)))) (-1881 (($ $) 131 (|has| |#1| (-550)))) (-1857 (((-112) $) 129 (|has| |#1| (-550)))) (-4088 (($ $) 88 (|has| |#1| (-38 (-406 (-558)))))) (-2135 (($ $) 71 (|has| |#1| (-38 (-406 (-558)))))) (-2089 (((-3 $ "failed") $ $) 19)) (-2534 (($ $) 70 (|has| |#1| (-38 (-406 (-558)))))) (-4070 (($ $) 87 (|has| |#1| (-38 (-406 (-558)))))) (-2112 (($ $) 72 (|has| |#1| (-38 (-406 (-558)))))) (-4113 (($ $) 86 (|has| |#1| (-38 (-406 (-558)))))) (-2156 (($ $) 73 (|has| |#1| (-38 (-406 (-558)))))) (-1816 (($) 17 T CONST)) (-2490 (($ $) 123)) (-2588 (((-3 $ "failed") $) 33)) (-4330 (((-942 |#1|) $ (-762)) 101) (((-942 |#1|) $ (-762) (-762)) 100)) (-2020 (((-112) $) 140)) (-1904 (($) 98 (|has| |#1| (-38 (-406 (-558)))))) (-3449 (((-762) $ |#2|) 103) (((-762) $ |#2| (-762)) 102)) (-2035 (((-112) $) 31)) (-3828 (($ $ (-558)) 69 (|has| |#1| (-38 (-406 (-558)))))) (-4238 (((-112) $) 121)) (-2648 (($ $ (-635 |#2|) (-635 (-529 |#2|))) 138) (($ $ |#2| (-529 |#2|)) 137) (($ |#1| (-529 |#2|)) 122) (($ $ |#2| (-762)) 105) (($ $ (-635 |#2|) (-635 (-762))) 104)) (-3167 (($ (-1 |#1| |#1|) $) 120)) (-2592 (($ $) 95 (|has| |#1| (-38 (-406 (-558)))))) (-2451 (($ $) 118)) (-2463 ((|#1| $) 117)) (-4310 (((-1145) $) 9)) (-2543 (($ $ |#2|) 99 (|has| |#1| (-38 (-406 (-558)))))) (-2975 (((-1107) $) 10)) (-3430 (($ $ (-762)) 106)) (-3983 (((-3 $ "failed") $ $) 133 (|has| |#1| (-550)))) (-2573 (($ $) 96 (|has| |#1| (-38 (-406 (-558)))))) (-2554 (($ $ |#2| $) 114) (($ $ (-635 |#2|) (-635 $)) 113) (($ $ (-635 (-293 $))) 112) (($ $ (-293 $)) 111) (($ $ $ $) 110) (($ $ (-635 $) (-635 $)) 109)) (-2829 (($ $ |#2|) 42) (($ $ (-635 |#2|)) 41) (($ $ |#2| (-762)) 40) (($ $ (-635 |#2|) (-635 (-762))) 39)) (-4323 (((-529 |#2|) $) 119)) (-4124 (($ $) 85 (|has| |#1| (-38 (-406 (-558)))))) (-2167 (($ $) 74 (|has| |#1| (-38 (-406 (-558)))))) (-4102 (($ $) 84 (|has| |#1| (-38 (-406 (-558)))))) (-2146 (($ $) 75 (|has| |#1| (-38 (-406 (-558)))))) (-4080 (($ $) 83 (|has| |#1| (-38 (-406 (-558)))))) (-2124 (($ $) 76 (|has| |#1| (-38 (-406 (-558)))))) (-2011 (($ $) 141)) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ |#1|) 136 (|has| |#1| (-171))) (($ $) 134 (|has| |#1| (-550))) (($ (-406 (-558))) 126 (|has| |#1| (-38 (-406 (-558)))))) (-3736 ((|#1| $ (-529 |#2|)) 124) (($ $ |#2| (-762)) 108) (($ $ (-635 |#2|) (-635 (-762))) 107)) (-3698 (((-3 $ "failed") $) 135 (|has| |#1| (-144)))) (-2542 (((-762)) 28)) (-4159 (($ $) 94 (|has| |#1| (-38 (-406 (-558)))))) (-2200 (($ $) 82 (|has| |#1| (-38 (-406 (-558)))))) (-1870 (((-112) $ $) 130 (|has| |#1| (-550)))) (-4135 (($ $) 93 (|has| |#1| (-38 (-406 (-558)))))) (-2178 (($ $) 81 (|has| |#1| (-38 (-406 (-558)))))) (-4184 (($ $) 92 (|has| |#1| (-38 (-406 (-558)))))) (-2222 (($ $) 80 (|has| |#1| (-38 (-406 (-558)))))) (-1878 (($ $) 91 (|has| |#1| (-38 (-406 (-558)))))) (-4060 (($ $) 79 (|has| |#1| (-38 (-406 (-558)))))) (-4171 (($ $) 90 (|has| |#1| (-38 (-406 (-558)))))) (-2211 (($ $) 78 (|has| |#1| (-38 (-406 (-558)))))) (-4147 (($ $) 89 (|has| |#1| (-38 (-406 (-558)))))) (-2189 (($ $) 77 (|has| |#1| (-38 (-406 (-558)))))) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1866 (($ $ |#2|) 38) (($ $ (-635 |#2|)) 37) (($ $ |#2| (-762)) 36) (($ $ (-635 |#2|) (-635 (-762))) 35)) (-1683 (((-112) $ $) 6)) (-1810 (($ $ |#1|) 125 (|has| |#1| (-362)))) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ $) 97 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) 68 (|has| |#1| (-38 (-406 (-558)))))) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ (-406 (-558))) 128 (|has| |#1| (-38 (-406 (-558))))) (($ (-406 (-558)) $) 127 (|has| |#1| (-38 (-406 (-558))))) (($ |#1| $) 116) (($ $ |#1|) 115)))
+(((-731 |#1| |#2|) (-139) (-1039) (-841)) (T -731))
+((-3736 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-762)) (-4 *1 (-731 *4 *2)) (-4 *4 (-1039)) (-4 *2 (-841)))) (-3736 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 *5)) (-5 *3 (-635 (-762))) (-4 *1 (-731 *4 *5)) (-4 *4 (-1039)) (-4 *5 (-841)))) (-3430 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *1 (-731 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-841)))) (-2648 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-762)) (-4 *1 (-731 *4 *2)) (-4 *4 (-1039)) (-4 *2 (-841)))) (-2648 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 *5)) (-5 *3 (-635 (-762))) (-4 *1 (-731 *4 *5)) (-4 *4 (-1039)) (-4 *5 (-841)))) (-3449 (*1 *2 *1 *3) (-12 (-4 *1 (-731 *4 *3)) (-4 *4 (-1039)) (-4 *3 (-841)) (-5 *2 (-762)))) (-3449 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-762)) (-4 *1 (-731 *4 *3)) (-4 *4 (-1039)) (-4 *3 (-841)))) (-4330 (*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-4 *1 (-731 *4 *5)) (-4 *4 (-1039)) (-4 *5 (-841)) (-5 *2 (-942 *4)))) (-4330 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-762)) (-4 *1 (-731 *4 *5)) (-4 *4 (-1039)) (-4 *5 (-841)) (-5 *2 (-942 *4)))) (-2543 (*1 *1 *1 *2) (-12 (-4 *1 (-731 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-841)) (-4 *3 (-38 (-406 (-558)))))))
+(-13 (-890 |t#2|) (-963 |t#1| (-529 |t#2|) |t#2|) (-512 |t#2| $) (-308 $) (-10 -8 (-15 -3736 ($ $ |t#2| (-762))) (-15 -3736 ($ $ (-635 |t#2|) (-635 (-762)))) (-15 -3430 ($ $ (-762))) (-15 -2648 ($ $ |t#2| (-762))) (-15 -2648 ($ $ (-635 |t#2|) (-635 (-762)))) (-15 -3449 ((-762) $ |t#2|)) (-15 -3449 ((-762) $ |t#2| (-762))) (-15 -4330 ((-942 |t#1|) $ (-762))) (-15 -4330 ((-942 |t#1|) $ (-762) (-762))) (IF (|has| |t#1| (-38 (-406 (-558)))) (PROGN (-15 -2543 ($ $ |t#2|)) (-6 (-992)) (-6 (-1185))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-529 |#2|)) . T) ((-25) . T) ((-38 #1=(-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-550)) ((-35) |has| |#1| (-38 (-406 (-558)))) ((-95) |has| |#1| (-38 (-406 (-558)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-406 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3998 (|has| |#1| (-550)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-608 #1#) |has| |#1| (-38 (-406 (-558)))) ((-608 (-558)) . T) ((-608 |#1|) |has| |#1| (-171)) ((-608 $) |has| |#1| (-550)) ((-605 (-853)) . T) ((-171) -3998 (|has| |#1| (-550)) (|has| |#1| (-171))) ((-283) |has| |#1| (-38 (-406 (-558)))) ((-289) |has| |#1| (-550)) ((-308 $) . T) ((-491) |has| |#1| (-38 (-406 (-558)))) ((-512 |#2| $) . T) ((-512 $ $) . T) ((-550) |has| |#1| (-550)) ((-638 #1#) |has| |#1| (-38 (-406 (-558)))) ((-638 |#1|) . T) ((-638 $) . T) ((-708 #1#) |has| |#1| (-38 (-406 (-558)))) ((-708 |#1|) |has| |#1| (-171)) ((-708 $) |has| |#1| (-550)) ((-717) . T) ((-890 |#2|) . T) ((-963 |#1| #0# |#2|) . T) ((-992) |has| |#1| (-38 (-406 (-558)))) ((-1045 #1#) |has| |#1| (-38 (-406 (-558)))) ((-1045 |#1|) . T) ((-1045 $) -3998 (|has| |#1| (-550)) (|has| |#1| (-171))) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1185) |has| |#1| (-38 (-406 (-558)))) ((-1188) |has| |#1| (-38 (-406 (-558)))))
+((-2522 (((-417 (-1159 |#4|)) (-1159 |#4|)) 30) (((-417 |#4|) |#4|) 26)))
+(((-732 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2522 ((-417 |#4|) |#4|)) (-15 -2522 ((-417 (-1159 |#4|)) (-1159 |#4|)))) (-841) (-784) (-13 (-306) (-146)) (-939 |#3| |#2| |#1|)) (T -732))
+((-2522 (*1 *2 *3) (-12 (-4 *4 (-841)) (-4 *5 (-784)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-939 *6 *5 *4)) (-5 *2 (-417 (-1159 *7))) (-5 *1 (-732 *4 *5 *6 *7)) (-5 *3 (-1159 *7)))) (-2522 (*1 *2 *3) (-12 (-4 *4 (-841)) (-4 *5 (-784)) (-4 *6 (-13 (-306) (-146))) (-5 *2 (-417 *3)) (-5 *1 (-732 *4 *5 *6 *3)) (-4 *3 (-939 *6 *5 *4)))))
+(-10 -7 (-15 -2522 ((-417 |#4|) |#4|)) (-15 -2522 ((-417 (-1159 |#4|)) (-1159 |#4|))))
+((-2175 (((-417 |#4|) |#4| |#2|) 118)) (-2154 (((-417 |#4|) |#4|) NIL)) (-1380 (((-417 (-1159 |#4|)) (-1159 |#4|)) 109) (((-417 |#4|) |#4|) 40)) (-2198 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-635 (-2 (|:| -2522 (-1159 |#4|)) (|:| -1951 (-558)))))) (-1159 |#4|) (-635 |#2|) (-635 (-635 |#3|))) 68)) (-4068 (((-1159 |#3|) (-1159 |#3|) (-558)) 136)) (-4058 (((-635 (-762)) (-1159 |#4|) (-635 |#2|) (-762)) 60)) (-3227 (((-3 (-635 (-1159 |#4|)) "failed") (-1159 |#4|) (-1159 |#3|) (-1159 |#3|) |#4| (-635 |#2|) (-635 (-762)) (-635 |#3|)) 64)) (-2209 (((-2 (|:| |upol| (-1159 |#3|)) (|:| |Lval| (-635 |#3|)) (|:| |Lfact| (-635 (-2 (|:| -2522 (-1159 |#3|)) (|:| -1951 (-558))))) (|:| |ctpol| |#3|)) (-1159 |#4|) (-635 |#2|) (-635 (-635 |#3|))) 25)) (-2187 (((-2 (|:| -2574 (-1159 |#4|)) (|:| |polval| (-1159 |#3|))) (-1159 |#4|) (-1159 |#3|) (-558)) 56)) (-2164 (((-558) (-635 (-2 (|:| -2522 (-1159 |#3|)) (|:| -1951 (-558))))) 133)) (-2220 ((|#4| (-558) (-417 |#4|)) 57)) (-2947 (((-112) (-635 (-2 (|:| -2522 (-1159 |#3|)) (|:| -1951 (-558)))) (-635 (-2 (|:| -2522 (-1159 |#3|)) (|:| -1951 (-558))))) NIL)))
+(((-733 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1380 ((-417 |#4|) |#4|)) (-15 -1380 ((-417 (-1159 |#4|)) (-1159 |#4|))) (-15 -2154 ((-417 |#4|) |#4|)) (-15 -2164 ((-558) (-635 (-2 (|:| -2522 (-1159 |#3|)) (|:| -1951 (-558)))))) (-15 -2175 ((-417 |#4|) |#4| |#2|)) (-15 -2187 ((-2 (|:| -2574 (-1159 |#4|)) (|:| |polval| (-1159 |#3|))) (-1159 |#4|) (-1159 |#3|) (-558))) (-15 -2198 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-635 (-2 (|:| -2522 (-1159 |#4|)) (|:| -1951 (-558)))))) (-1159 |#4|) (-635 |#2|) (-635 (-635 |#3|)))) (-15 -2209 ((-2 (|:| |upol| (-1159 |#3|)) (|:| |Lval| (-635 |#3|)) (|:| |Lfact| (-635 (-2 (|:| -2522 (-1159 |#3|)) (|:| -1951 (-558))))) (|:| |ctpol| |#3|)) (-1159 |#4|) (-635 |#2|) (-635 (-635 |#3|)))) (-15 -2220 (|#4| (-558) (-417 |#4|))) (-15 -2947 ((-112) (-635 (-2 (|:| -2522 (-1159 |#3|)) (|:| -1951 (-558)))) (-635 (-2 (|:| -2522 (-1159 |#3|)) (|:| -1951 (-558)))))) (-15 -3227 ((-3 (-635 (-1159 |#4|)) "failed") (-1159 |#4|) (-1159 |#3|) (-1159 |#3|) |#4| (-635 |#2|) (-635 (-762)) (-635 |#3|))) (-15 -4058 ((-635 (-762)) (-1159 |#4|) (-635 |#2|) (-762))) (-15 -4068 ((-1159 |#3|) (-1159 |#3|) (-558)))) (-784) (-841) (-306) (-939 |#3| |#1| |#2|)) (T -733))
+((-4068 (*1 *2 *2 *3) (-12 (-5 *2 (-1159 *6)) (-5 *3 (-558)) (-4 *6 (-306)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-733 *4 *5 *6 *7)) (-4 *7 (-939 *6 *4 *5)))) (-4058 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1159 *9)) (-5 *4 (-635 *7)) (-4 *7 (-841)) (-4 *9 (-939 *8 *6 *7)) (-4 *6 (-784)) (-4 *8 (-306)) (-5 *2 (-635 (-762))) (-5 *1 (-733 *6 *7 *8 *9)) (-5 *5 (-762)))) (-3227 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1159 *11)) (-5 *6 (-635 *10)) (-5 *7 (-635 (-762))) (-5 *8 (-635 *11)) (-4 *10 (-841)) (-4 *11 (-306)) (-4 *9 (-784)) (-4 *5 (-939 *11 *9 *10)) (-5 *2 (-635 (-1159 *5))) (-5 *1 (-733 *9 *10 *11 *5)) (-5 *3 (-1159 *5)))) (-2947 (*1 *2 *3 *3) (-12 (-5 *3 (-635 (-2 (|:| -2522 (-1159 *6)) (|:| -1951 (-558))))) (-4 *6 (-306)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-112)) (-5 *1 (-733 *4 *5 *6 *7)) (-4 *7 (-939 *6 *4 *5)))) (-2220 (*1 *2 *3 *4) (-12 (-5 *3 (-558)) (-5 *4 (-417 *2)) (-4 *2 (-939 *7 *5 *6)) (-5 *1 (-733 *5 *6 *7 *2)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-306)))) (-2209 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1159 *9)) (-5 *4 (-635 *7)) (-5 *5 (-635 (-635 *8))) (-4 *7 (-841)) (-4 *8 (-306)) (-4 *9 (-939 *8 *6 *7)) (-4 *6 (-784)) (-5 *2 (-2 (|:| |upol| (-1159 *8)) (|:| |Lval| (-635 *8)) (|:| |Lfact| (-635 (-2 (|:| -2522 (-1159 *8)) (|:| -1951 (-558))))) (|:| |ctpol| *8))) (-5 *1 (-733 *6 *7 *8 *9)))) (-2198 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-635 *7)) (-5 *5 (-635 (-635 *8))) (-4 *7 (-841)) (-4 *8 (-306)) (-4 *6 (-784)) (-4 *9 (-939 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-635 (-2 (|:| -2522 (-1159 *9)) (|:| -1951 (-558))))))) (-5 *1 (-733 *6 *7 *8 *9)) (-5 *3 (-1159 *9)))) (-2187 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-558)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *8 (-306)) (-4 *9 (-939 *8 *6 *7)) (-5 *2 (-2 (|:| -2574 (-1159 *9)) (|:| |polval| (-1159 *8)))) (-5 *1 (-733 *6 *7 *8 *9)) (-5 *3 (-1159 *9)) (-5 *4 (-1159 *8)))) (-2175 (*1 *2 *3 *4) (-12 (-4 *5 (-784)) (-4 *4 (-841)) (-4 *6 (-306)) (-5 *2 (-417 *3)) (-5 *1 (-733 *5 *4 *6 *3)) (-4 *3 (-939 *6 *5 *4)))) (-2164 (*1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| -2522 (-1159 *6)) (|:| -1951 (-558))))) (-4 *6 (-306)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-558)) (-5 *1 (-733 *4 *5 *6 *7)) (-4 *7 (-939 *6 *4 *5)))) (-2154 (*1 *2 *3) (-12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-306)) (-5 *2 (-417 *3)) (-5 *1 (-733 *4 *5 *6 *3)) (-4 *3 (-939 *6 *4 *5)))) (-1380 (*1 *2 *3) (-12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-306)) (-4 *7 (-939 *6 *4 *5)) (-5 *2 (-417 (-1159 *7))) (-5 *1 (-733 *4 *5 *6 *7)) (-5 *3 (-1159 *7)))) (-1380 (*1 *2 *3) (-12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-306)) (-5 *2 (-417 *3)) (-5 *1 (-733 *4 *5 *6 *3)) (-4 *3 (-939 *6 *4 *5)))))
+(-10 -7 (-15 -1380 ((-417 |#4|) |#4|)) (-15 -1380 ((-417 (-1159 |#4|)) (-1159 |#4|))) (-15 -2154 ((-417 |#4|) |#4|)) (-15 -2164 ((-558) (-635 (-2 (|:| -2522 (-1159 |#3|)) (|:| -1951 (-558)))))) (-15 -2175 ((-417 |#4|) |#4| |#2|)) (-15 -2187 ((-2 (|:| -2574 (-1159 |#4|)) (|:| |polval| (-1159 |#3|))) (-1159 |#4|) (-1159 |#3|) (-558))) (-15 -2198 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-635 (-2 (|:| -2522 (-1159 |#4|)) (|:| -1951 (-558)))))) (-1159 |#4|) (-635 |#2|) (-635 (-635 |#3|)))) (-15 -2209 ((-2 (|:| |upol| (-1159 |#3|)) (|:| |Lval| (-635 |#3|)) (|:| |Lfact| (-635 (-2 (|:| -2522 (-1159 |#3|)) (|:| -1951 (-558))))) (|:| |ctpol| |#3|)) (-1159 |#4|) (-635 |#2|) (-635 (-635 |#3|)))) (-15 -2220 (|#4| (-558) (-417 |#4|))) (-15 -2947 ((-112) (-635 (-2 (|:| -2522 (-1159 |#3|)) (|:| -1951 (-558)))) (-635 (-2 (|:| -2522 (-1159 |#3|)) (|:| -1951 (-558)))))) (-15 -3227 ((-3 (-635 (-1159 |#4|)) "failed") (-1159 |#4|) (-1159 |#3|) (-1159 |#3|) |#4| (-635 |#2|) (-635 (-762)) (-635 |#3|))) (-15 -4058 ((-635 (-762)) (-1159 |#4|) (-635 |#2|) (-762))) (-15 -4068 ((-1159 |#3|) (-1159 |#3|) (-558))))
+((-4078 (($ $ (-911)) 12)))
+(((-734 |#1| |#2|) (-10 -8 (-15 -4078 (|#1| |#1| (-911)))) (-735 |#2|) (-171)) (T -734))
+NIL
+(-10 -8 (-15 -4078 (|#1| |#1| (-911))))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2089 (((-3 $ "failed") $ $) 19)) (-1816 (($) 17 T CONST)) (-2015 (($ $ (-911)) 28)) (-4078 (($ $ (-911)) 33)) (-2006 (($ $ (-911)) 29)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3443 (($ $ $) 25)) (-3220 (((-853) $) 11)) (-3452 (($ $ $ $) 26)) (-3433 (($ $ $) 24)) (-2131 (($) 18 T CONST)) (-1683 (((-112) $ $) 6)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 30)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+(((-735 |#1|) (-139) (-171)) (T -735))
+((-4078 (*1 *1 *1 *2) (-12 (-5 *2 (-911)) (-4 *1 (-735 *3)) (-4 *3 (-171)))))
+(-13 (-752) (-708 |t#1|) (-10 -8 (-15 -4078 ($ $ (-911)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-605 (-853)) . T) ((-638 |#1|) . T) ((-708 |#1|) . T) ((-711) . T) ((-752) . T) ((-1045 |#1|) . T) ((-1087) . T))
+((-4099 (((-1025) (-679 (-224)) (-558) (-112) (-558)) 25)) (-4086 (((-1025) (-679 (-224)) (-558) (-112) (-558)) 24)))
+(((-736) (-10 -7 (-15 -4086 ((-1025) (-679 (-224)) (-558) (-112) (-558))) (-15 -4099 ((-1025) (-679 (-224)) (-558) (-112) (-558))))) (T -736))
+((-4099 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-679 (-224))) (-5 *4 (-558)) (-5 *5 (-112)) (-5 *2 (-1025)) (-5 *1 (-736)))) (-4086 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-679 (-224))) (-5 *4 (-558)) (-5 *5 (-112)) (-5 *2 (-1025)) (-5 *1 (-736)))))
+(-10 -7 (-15 -4086 ((-1025) (-679 (-224)) (-558) (-112) (-558))) (-15 -4099 ((-1025) (-679 (-224)) (-558) (-112) (-558))))
+((-4133 (((-1025) (-558) (-558) (-558) (-679 (-224)) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-74 FCN)))) 43)) (-4122 (((-1025) (-558) (-558) (-679 (-224)) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-81 FCN)))) 39)) (-4111 (((-1025) (-224) (-224) (-224) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3215)))) 32)))
+(((-737) (-10 -7 (-15 -4111 ((-1025) (-224) (-224) (-224) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3215))))) (-15 -4122 ((-1025) (-558) (-558) (-679 (-224)) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-81 FCN))))) (-15 -4133 ((-1025) (-558) (-558) (-558) (-679 (-224)) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-74 FCN))))))) (T -737))
+((-4133 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1025)) (-5 *1 (-737)))) (-4122 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1025)) (-5 *1 (-737)))) (-4111 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3215)))) (-5 *2 (-1025)) (-5 *1 (-737)))))
+(-10 -7 (-15 -4111 ((-1025) (-224) (-224) (-224) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3215))))) (-15 -4122 ((-1025) (-558) (-558) (-679 (-224)) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-81 FCN))))) (-15 -4133 ((-1025) (-558) (-558) (-558) (-679 (-224)) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-74 FCN))))))
+((-4270 (((-1025) (-558) (-558) (-679 (-224)) (-558)) 34)) (-4258 (((-1025) (-558) (-558) (-679 (-224)) (-558)) 33)) (-4246 (((-1025) (-558) (-679 (-224)) (-558)) 32)) (-4236 (((-1025) (-558) (-679 (-224)) (-558)) 31)) (-4225 (((-1025) (-558) (-558) (-1145) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558)) 30)) (-4215 (((-1025) (-558) (-558) (-1145) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558)) 29)) (-4203 (((-1025) (-558) (-558) (-1145) (-679 (-224)) (-679 (-224)) (-558)) 28)) (-4193 (((-1025) (-558) (-558) (-1145) (-679 (-224)) (-679 (-224)) (-558)) 27)) (-4182 (((-1025) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558)) 24)) (-4169 (((-1025) (-558) (-679 (-224)) (-679 (-224)) (-558)) 23)) (-4157 (((-1025) (-558) (-679 (-224)) (-558)) 22)) (-4145 (((-1025) (-558) (-679 (-224)) (-558)) 21)))
+(((-738) (-10 -7 (-15 -4145 ((-1025) (-558) (-679 (-224)) (-558))) (-15 -4157 ((-1025) (-558) (-679 (-224)) (-558))) (-15 -4169 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -4182 ((-1025) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -4193 ((-1025) (-558) (-558) (-1145) (-679 (-224)) (-679 (-224)) (-558))) (-15 -4203 ((-1025) (-558) (-558) (-1145) (-679 (-224)) (-679 (-224)) (-558))) (-15 -4215 ((-1025) (-558) (-558) (-1145) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558))) (-15 -4225 ((-1025) (-558) (-558) (-1145) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558))) (-15 -4236 ((-1025) (-558) (-679 (-224)) (-558))) (-15 -4246 ((-1025) (-558) (-679 (-224)) (-558))) (-15 -4258 ((-1025) (-558) (-558) (-679 (-224)) (-558))) (-15 -4270 ((-1025) (-558) (-558) (-679 (-224)) (-558))))) (T -738))
+((-4270 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-738)))) (-4258 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-738)))) (-4246 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-738)))) (-4236 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-738)))) (-4225 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-1145)) (-5 *5 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-738)))) (-4215 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-1145)) (-5 *5 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-738)))) (-4203 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-1145)) (-5 *5 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-738)))) (-4193 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-1145)) (-5 *5 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-738)))) (-4182 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-738)))) (-4169 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-738)))) (-4157 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-738)))) (-4145 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-738)))))
+(-10 -7 (-15 -4145 ((-1025) (-558) (-679 (-224)) (-558))) (-15 -4157 ((-1025) (-558) (-679 (-224)) (-558))) (-15 -4169 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -4182 ((-1025) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -4193 ((-1025) (-558) (-558) (-1145) (-679 (-224)) (-679 (-224)) (-558))) (-15 -4203 ((-1025) (-558) (-558) (-1145) (-679 (-224)) (-679 (-224)) (-558))) (-15 -4215 ((-1025) (-558) (-558) (-1145) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558))) (-15 -4225 ((-1025) (-558) (-558) (-1145) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558))) (-15 -4236 ((-1025) (-558) (-679 (-224)) (-558))) (-15 -4246 ((-1025) (-558) (-679 (-224)) (-558))) (-15 -4258 ((-1025) (-558) (-558) (-679 (-224)) (-558))) (-15 -4270 ((-1025) (-558) (-558) (-679 (-224)) (-558))))
+((-1330 (((-1025) (-558) (-679 (-224)) (-679 (-224)) (-558) (-224) (-558) (-558) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN)))) 52)) (-1317 (((-1025) (-679 (-224)) (-679 (-224)) (-558) (-558)) 51)) (-1305 (((-1025) (-558) (-679 (-224)) (-679 (-224)) (-558) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN)))) 50)) (-1293 (((-1025) (-224) (-224) (-558) (-558) (-558) (-558)) 46)) (-1282 (((-1025) (-224) (-224) (-558) (-224) (-558) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) 45)) (-4355 (((-1025) (-224) (-224) (-224) (-224) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) 44)) (-4345 (((-1025) (-224) (-224) (-224) (-224) (-558) (-224) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) 43)) (-4333 (((-1025) (-224) (-224) (-224) (-558) (-224) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) 42)) (-4321 (((-1025) (-224) (-558) (-224) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3215)))) 38)) (-4309 (((-1025) (-224) (-224) (-558) (-679 (-224)) (-224) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3215)))) 37)) (-4297 (((-1025) (-224) (-224) (-224) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3215)))) 33)) (-4284 (((-1025) (-224) (-224) (-224) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3215)))) 32)))
+(((-739) (-10 -7 (-15 -4284 ((-1025) (-224) (-224) (-224) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3215))))) (-15 -4297 ((-1025) (-224) (-224) (-224) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3215))))) (-15 -4309 ((-1025) (-224) (-224) (-558) (-679 (-224)) (-224) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3215))))) (-15 -4321 ((-1025) (-224) (-558) (-224) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3215))))) (-15 -4333 ((-1025) (-224) (-224) (-224) (-558) (-224) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -4345 ((-1025) (-224) (-224) (-224) (-224) (-558) (-224) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -4355 ((-1025) (-224) (-224) (-224) (-224) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -1282 ((-1025) (-224) (-224) (-558) (-224) (-558) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -1293 ((-1025) (-224) (-224) (-558) (-558) (-558) (-558))) (-15 -1305 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-558) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN))))) (-15 -1317 ((-1025) (-679 (-224)) (-679 (-224)) (-558) (-558))) (-15 -1330 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-558) (-224) (-558) (-558) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN))))))) (T -739))
+((-1330 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1025)) (-5 *1 (-739)))) (-1317 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-679 (-224))) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-739)))) (-1305 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1025)) (-5 *1 (-739)))) (-1293 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-739)))) (-1282 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1025)) (-5 *1 (-739)))) (-4355 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1025)) (-5 *1 (-739)))) (-4345 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1025)) (-5 *1 (-739)))) (-4333 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1025)) (-5 *1 (-739)))) (-4321 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3215)))) (-5 *2 (-1025)) (-5 *1 (-739)))) (-4309 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-558)) (-5 *5 (-679 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3215)))) (-5 *3 (-224)) (-5 *2 (-1025)) (-5 *1 (-739)))) (-4297 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3215)))) (-5 *2 (-1025)) (-5 *1 (-739)))) (-4284 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3215)))) (-5 *2 (-1025)) (-5 *1 (-739)))))
+(-10 -7 (-15 -4284 ((-1025) (-224) (-224) (-224) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3215))))) (-15 -4297 ((-1025) (-224) (-224) (-224) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3215))))) (-15 -4309 ((-1025) (-224) (-224) (-558) (-679 (-224)) (-224) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3215))))) (-15 -4321 ((-1025) (-224) (-558) (-224) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3215))))) (-15 -4333 ((-1025) (-224) (-224) (-224) (-558) (-224) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -4345 ((-1025) (-224) (-224) (-224) (-224) (-558) (-224) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -4355 ((-1025) (-224) (-224) (-224) (-224) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -1282 ((-1025) (-224) (-224) (-558) (-224) (-558) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -1293 ((-1025) (-224) (-224) (-558) (-558) (-558) (-558))) (-15 -1305 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-558) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN))))) (-15 -1317 ((-1025) (-679 (-224)) (-679 (-224)) (-558) (-558))) (-15 -1330 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-558) (-224) (-558) (-558) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN))))))
+((-1424 (((-1025) (-558) (-558) (-558) (-558) (-224) (-558) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-387)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-1413 (((-1025) (-679 (-224)) (-558) (-558) (-224) (-558) (-558) (-224) (-224) (-679 (-224)) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL))) (-387) (-387)) 69) (((-1025) (-679 (-224)) (-558) (-558) (-224) (-558) (-558) (-224) (-224) (-679 (-224)) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL)))) 68)) (-1401 (((-1025) (-224) (-224) (-558) (-224) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-85 FCNG)))) 57)) (-1389 (((-1025) (-679 (-224)) (-679 (-224)) (-558) (-224) (-224) (-224) (-558) (-558) (-558) (-679 (-224)) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) 50)) (-1378 (((-1025) (-224) (-558) (-558) (-1145) (-558) (-224) (-679 (-224)) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT)))) 49)) (-1367 (((-1025) (-224) (-558) (-558) (-224) (-1145) (-224) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT)))) 45)) (-1354 (((-1025) (-224) (-558) (-558) (-224) (-224) (-679 (-224)) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) 42)) (-1342 (((-1025) (-224) (-558) (-558) (-558) (-224) (-679 (-224)) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT)))) 38)))
+(((-740) (-10 -7 (-15 -1342 ((-1025) (-224) (-558) (-558) (-558) (-224) (-679 (-224)) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))) (-15 -1354 ((-1025) (-224) (-558) (-558) (-224) (-224) (-679 (-224)) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))))) (-15 -1367 ((-1025) (-224) (-558) (-558) (-224) (-1145) (-224) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))) (-15 -1378 ((-1025) (-224) (-558) (-558) (-1145) (-558) (-224) (-679 (-224)) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))) (-15 -1389 ((-1025) (-679 (-224)) (-679 (-224)) (-558) (-224) (-224) (-224) (-558) (-558) (-558) (-679 (-224)) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))))) (-15 -1401 ((-1025) (-224) (-224) (-558) (-224) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-85 FCNG))))) (-15 -1413 ((-1025) (-679 (-224)) (-558) (-558) (-224) (-558) (-558) (-224) (-224) (-679 (-224)) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL))))) (-15 -1413 ((-1025) (-679 (-224)) (-558) (-558) (-224) (-558) (-558) (-224) (-224) (-679 (-224)) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL))) (-387) (-387))) (-15 -1424 ((-1025) (-558) (-558) (-558) (-558) (-224) (-558) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-387)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -740))
+((-1424 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-740)))) (-1413 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-679 (-224))) (-5 *4 (-558)) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-387)) (-5 *2 (-1025)) (-5 *1 (-740)))) (-1413 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-679 (-224))) (-5 *4 (-558)) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1025)) (-5 *1 (-740)))) (-1401 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-558)) (-5 *5 (-679 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-224)) (-5 *2 (-1025)) (-5 *1 (-740)))) (-1389 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-679 (-224))) (-5 *4 (-558)) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1025)) (-5 *1 (-740)))) (-1378 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-558)) (-5 *5 (-1145)) (-5 *6 (-679 (-224))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-224)) (-5 *2 (-1025)) (-5 *1 (-740)))) (-1367 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-558)) (-5 *5 (-1145)) (-5 *6 (-679 (-224))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-224)) (-5 *2 (-1025)) (-5 *1 (-740)))) (-1354 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-558)) (-5 *5 (-679 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) (-5 *3 (-224)) (-5 *2 (-1025)) (-5 *1 (-740)))) (-1342 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-558)) (-5 *5 (-679 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-224)) (-5 *2 (-1025)) (-5 *1 (-740)))))
+(-10 -7 (-15 -1342 ((-1025) (-224) (-558) (-558) (-558) (-224) (-679 (-224)) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))) (-15 -1354 ((-1025) (-224) (-558) (-558) (-224) (-224) (-679 (-224)) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))))) (-15 -1367 ((-1025) (-224) (-558) (-558) (-224) (-1145) (-224) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))) (-15 -1378 ((-1025) (-224) (-558) (-558) (-1145) (-558) (-224) (-679 (-224)) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))) (-15 -1389 ((-1025) (-679 (-224)) (-679 (-224)) (-558) (-224) (-224) (-224) (-558) (-558) (-558) (-679 (-224)) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))))) (-15 -1401 ((-1025) (-224) (-224) (-558) (-224) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-85 FCNG))))) (-15 -1413 ((-1025) (-679 (-224)) (-558) (-558) (-224) (-558) (-558) (-224) (-224) (-679 (-224)) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL))))) (-15 -1413 ((-1025) (-679 (-224)) (-558) (-558) (-224) (-558) (-558) (-224) (-224) (-679 (-224)) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL))) (-387) (-387))) (-15 -1424 ((-1025) (-558) (-558) (-558) (-558) (-224) (-558) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-387)) (|:| |fp| (-76 G JACOBG JACGEP))))))
+((-1458 (((-1025) (-224) (-224) (-558) (-558) (-679 (-224)) (-679 (-224)) (-224) (-224) (-558) (-558) (-679 (-224)) (-679 (-224)) (-224) (-224) (-558) (-558) (-679 (-224)) (-679 (-224)) (-224) (-558) (-558) (-558) (-665 (-224)) (-558)) 45)) (-1447 (((-1025) (-224) (-224) (-224) (-224) (-558) (-558) (-558) (-1145) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-83 BNDY)))) 41)) (-1435 (((-1025) (-558) (-558) (-558) (-558) (-224) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558)) 23)))
+(((-741) (-10 -7 (-15 -1435 ((-1025) (-558) (-558) (-558) (-558) (-224) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558))) (-15 -1447 ((-1025) (-224) (-224) (-224) (-224) (-558) (-558) (-558) (-1145) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-83 BNDY))))) (-15 -1458 ((-1025) (-224) (-224) (-558) (-558) (-679 (-224)) (-679 (-224)) (-224) (-224) (-558) (-558) (-679 (-224)) (-679 (-224)) (-224) (-224) (-558) (-558) (-679 (-224)) (-679 (-224)) (-224) (-558) (-558) (-558) (-665 (-224)) (-558))))) (T -741))
+((-1458 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-558)) (-5 *5 (-679 (-224))) (-5 *6 (-665 (-224))) (-5 *3 (-224)) (-5 *2 (-1025)) (-5 *1 (-741)))) (-1447 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *5 (-1145)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1025)) (-5 *1 (-741)))) (-1435 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224))) (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-741)))))
+(-10 -7 (-15 -1435 ((-1025) (-558) (-558) (-558) (-558) (-224) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558))) (-15 -1447 ((-1025) (-224) (-224) (-224) (-224) (-558) (-558) (-558) (-1145) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-83 BNDY))))) (-15 -1458 ((-1025) (-224) (-224) (-558) (-558) (-679 (-224)) (-679 (-224)) (-224) (-224) (-558) (-558) (-679 (-224)) (-679 (-224)) (-224) (-224) (-558) (-558) (-679 (-224)) (-679 (-224)) (-224) (-558) (-558) (-558) (-665 (-224)) (-558))))
+((-1562 (((-1025) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-224) (-679 (-224)) (-224) (-224) (-558)) 35)) (-1551 (((-1025) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-558) (-224) (-224) (-558)) 34)) (-1541 (((-1025) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-558)) (-679 (-224)) (-224) (-224) (-558)) 33)) (-1530 (((-1025) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558)) 29)) (-1521 (((-1025) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558)) 28)) (-1509 (((-1025) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-224) (-224) (-558)) 27)) (-1498 (((-1025) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-679 (-224)) (-558)) 24)) (-1490 (((-1025) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-679 (-224)) (-558)) 23)) (-1481 (((-1025) (-558) (-679 (-224)) (-679 (-224)) (-558)) 22)) (-1470 (((-1025) (-558) (-679 (-224)) (-679 (-224)) (-558) (-558) (-558)) 21)))
+(((-742) (-10 -7 (-15 -1470 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-558) (-558) (-558))) (-15 -1481 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -1490 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-679 (-224)) (-558))) (-15 -1498 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-679 (-224)) (-558))) (-15 -1509 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-224) (-224) (-558))) (-15 -1521 ((-1025) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558))) (-15 -1530 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558))) (-15 -1541 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-558)) (-679 (-224)) (-224) (-224) (-558))) (-15 -1551 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-558) (-224) (-224) (-558))) (-15 -1562 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-224) (-679 (-224)) (-224) (-224) (-558))))) (T -742))
+((-1562 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-224)) (-5 *2 (-1025)) (-5 *1 (-742)))) (-1551 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-224)) (-5 *2 (-1025)) (-5 *1 (-742)))) (-1541 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-679 (-224))) (-5 *5 (-679 (-558))) (-5 *6 (-224)) (-5 *3 (-558)) (-5 *2 (-1025)) (-5 *1 (-742)))) (-1530 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-742)))) (-1521 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-742)))) (-1509 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-224)) (-5 *2 (-1025)) (-5 *1 (-742)))) (-1498 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-742)))) (-1490 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-742)))) (-1481 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-742)))) (-1470 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-742)))))
+(-10 -7 (-15 -1470 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-558) (-558) (-558))) (-15 -1481 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -1490 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-679 (-224)) (-558))) (-15 -1498 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-679 (-224)) (-558))) (-15 -1509 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-224) (-224) (-558))) (-15 -1521 ((-1025) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558))) (-15 -1530 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558))) (-15 -1541 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-558)) (-679 (-224)) (-224) (-224) (-558))) (-15 -1551 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-558) (-224) (-224) (-558))) (-15 -1562 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-224) (-679 (-224)) (-224) (-224) (-558))))
+((-3632 (((-1025) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558) (-679 (-224)) (-679 (-224)) (-558) (-558) (-558)) 45)) (-3623 (((-1025) (-558) (-558) (-558) (-224) (-679 (-224)) (-679 (-224)) (-558)) 44)) (-3614 (((-1025) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-558) (-558)) 43)) (-3604 (((-1025) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558)) 42)) (-3594 (((-1025) (-1145) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-224) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-679 (-224)) (-679 (-224)) (-558)) 41)) (-3585 (((-1025) (-1145) (-558) (-679 (-224)) (-558) (-679 (-224)) (-679 (-224)) (-224) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-679 (-224)) (-679 (-224)) (-679 (-558)) (-558)) 40)) (-3576 (((-1025) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-558)) (-558) (-558) (-558) (-224) (-679 (-224)) (-558)) 39)) (-3566 (((-1025) (-1145) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-224) (-558) (-558) (-558) (-679 (-224)) (-558) (-679 (-224)) (-679 (-558))) 38)) (-3557 (((-1025) (-558) (-679 (-224)) (-679 (-224)) (-558)) 35)) (-3546 (((-1025) (-558) (-679 (-224)) (-679 (-224)) (-224) (-558) (-558)) 34)) (-3532 (((-1025) (-558) (-679 (-224)) (-679 (-224)) (-224) (-558)) 33)) (-3521 (((-1025) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558)) 32)) (-3514 (((-1025) (-558) (-224) (-224) (-679 (-224)) (-558) (-558) (-224) (-558)) 31)) (-3505 (((-1025) (-558) (-224) (-224) (-679 (-224)) (-558) (-558) (-224) (-558) (-558) (-558)) 30)) (-3496 (((-1025) (-558) (-224) (-224) (-679 (-224)) (-558) (-558) (-558) (-558) (-558)) 29)) (-1592 (((-1025) (-558) (-558) (-558) (-224) (-224) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-679 (-224)) (-679 (-224)) (-558) (-679 (-558)) (-558) (-558) (-558)) 28)) (-1581 (((-1025) (-558) (-679 (-224)) (-224) (-558)) 24)) (-1571 (((-1025) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558)) 21)))
+(((-743) (-10 -7 (-15 -1571 ((-1025) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558))) (-15 -1581 ((-1025) (-558) (-679 (-224)) (-224) (-558))) (-15 -1592 ((-1025) (-558) (-558) (-558) (-224) (-224) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-679 (-224)) (-679 (-224)) (-558) (-679 (-558)) (-558) (-558) (-558))) (-15 -3496 ((-1025) (-558) (-224) (-224) (-679 (-224)) (-558) (-558) (-558) (-558) (-558))) (-15 -3505 ((-1025) (-558) (-224) (-224) (-679 (-224)) (-558) (-558) (-224) (-558) (-558) (-558))) (-15 -3514 ((-1025) (-558) (-224) (-224) (-679 (-224)) (-558) (-558) (-224) (-558))) (-15 -3521 ((-1025) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3532 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-224) (-558))) (-15 -3546 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-224) (-558) (-558))) (-15 -3557 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3566 ((-1025) (-1145) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-224) (-558) (-558) (-558) (-679 (-224)) (-558) (-679 (-224)) (-679 (-558)))) (-15 -3576 ((-1025) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-558)) (-558) (-558) (-558) (-224) (-679 (-224)) (-558))) (-15 -3585 ((-1025) (-1145) (-558) (-679 (-224)) (-558) (-679 (-224)) (-679 (-224)) (-224) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-679 (-224)) (-679 (-224)) (-679 (-558)) (-558))) (-15 -3594 ((-1025) (-1145) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-224) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3604 ((-1025) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3614 ((-1025) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-558) (-558))) (-15 -3623 ((-1025) (-558) (-558) (-558) (-224) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3632 ((-1025) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558) (-679 (-224)) (-679 (-224)) (-558) (-558) (-558))))) (T -743))
+((-3632 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-743)))) (-3623 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224))) (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-743)))) (-3614 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-743)))) (-3604 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-743)))) (-3594 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1145)) (-5 *4 (-558)) (-5 *5 (-679 (-224))) (-5 *6 (-224)) (-5 *2 (-1025)) (-5 *1 (-743)))) (-3585 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1145)) (-5 *5 (-679 (-224))) (-5 *6 (-224)) (-5 *7 (-679 (-558))) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-743)))) (-3576 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-679 (-224))) (-5 *5 (-679 (-558))) (-5 *6 (-224)) (-5 *3 (-558)) (-5 *2 (-1025)) (-5 *1 (-743)))) (-3566 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1145)) (-5 *5 (-679 (-224))) (-5 *6 (-224)) (-5 *7 (-679 (-558))) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-743)))) (-3557 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-743)))) (-3546 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-224)) (-5 *2 (-1025)) (-5 *1 (-743)))) (-3532 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-224)) (-5 *2 (-1025)) (-5 *1 (-743)))) (-3521 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-743)))) (-3514 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224))) (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-743)))) (-3505 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224))) (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-743)))) (-3496 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224))) (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-743)))) (-1592 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-679 (-224))) (-5 *6 (-679 (-558))) (-5 *3 (-558)) (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-743)))) (-1581 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-224)) (-5 *2 (-1025)) (-5 *1 (-743)))) (-1571 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-743)))))
+(-10 -7 (-15 -1571 ((-1025) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558))) (-15 -1581 ((-1025) (-558) (-679 (-224)) (-224) (-558))) (-15 -1592 ((-1025) (-558) (-558) (-558) (-224) (-224) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-679 (-224)) (-679 (-224)) (-558) (-679 (-558)) (-558) (-558) (-558))) (-15 -3496 ((-1025) (-558) (-224) (-224) (-679 (-224)) (-558) (-558) (-558) (-558) (-558))) (-15 -3505 ((-1025) (-558) (-224) (-224) (-679 (-224)) (-558) (-558) (-224) (-558) (-558) (-558))) (-15 -3514 ((-1025) (-558) (-224) (-224) (-679 (-224)) (-558) (-558) (-224) (-558))) (-15 -3521 ((-1025) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3532 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-224) (-558))) (-15 -3546 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-224) (-558) (-558))) (-15 -3557 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3566 ((-1025) (-1145) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-224) (-558) (-558) (-558) (-679 (-224)) (-558) (-679 (-224)) (-679 (-558)))) (-15 -3576 ((-1025) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-558)) (-558) (-558) (-558) (-224) (-679 (-224)) (-558))) (-15 -3585 ((-1025) (-1145) (-558) (-679 (-224)) (-558) (-679 (-224)) (-679 (-224)) (-224) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-679 (-224)) (-679 (-224)) (-679 (-558)) (-558))) (-15 -3594 ((-1025) (-1145) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-224) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3604 ((-1025) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3614 ((-1025) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-558) (-558))) (-15 -3623 ((-1025) (-558) (-558) (-558) (-224) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3632 ((-1025) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558) (-679 (-224)) (-679 (-224)) (-558) (-558) (-558))))
+((-3710 (((-1025) (-558) (-558) (-558) (-224) (-679 (-224)) (-558) (-679 (-224)) (-558)) 63)) (-3699 (((-1025) (-558) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-558) (-112) (-224) (-558) (-224) (-224) (-112) (-224) (-224) (-224) (-224) (-112) (-558) (-558) (-558) (-558) (-558) (-224) (-224) (-224) (-558) (-558) (-558) (-558) (-558) (-679 (-558)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN)))) 62)) (-3690 (((-1025) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-224) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-112) (-112) (-112) (-558) (-558) (-679 (-224)) (-679 (-558)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-65 QPHESS)))) 58)) (-3681 (((-1025) (-558) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-112) (-558) (-558) (-679 (-224)) (-558)) 51)) (-3671 (((-1025) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-66 FUNCT1)))) 50)) (-3661 (((-1025) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-63 LSFUN2)))) 46)) (-3650 (((-1025) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-79 LSFUN1)))) 42)) (-3641 (((-1025) (-558) (-224) (-224) (-558) (-224) (-112) (-224) (-224) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN)))) 38)))
+(((-744) (-10 -7 (-15 -3641 ((-1025) (-558) (-224) (-224) (-558) (-224) (-112) (-224) (-224) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN))))) (-15 -3650 ((-1025) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-79 LSFUN1))))) (-15 -3661 ((-1025) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-63 LSFUN2))))) (-15 -3671 ((-1025) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-66 FUNCT1))))) (-15 -3681 ((-1025) (-558) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-112) (-558) (-558) (-679 (-224)) (-558))) (-15 -3690 ((-1025) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-224) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-112) (-112) (-112) (-558) (-558) (-679 (-224)) (-679 (-558)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-65 QPHESS))))) (-15 -3699 ((-1025) (-558) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-558) (-112) (-224) (-558) (-224) (-224) (-112) (-224) (-224) (-224) (-224) (-112) (-558) (-558) (-558) (-558) (-558) (-224) (-224) (-224) (-558) (-558) (-558) (-558) (-558) (-679 (-558)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN))))) (-15 -3710 ((-1025) (-558) (-558) (-558) (-224) (-679 (-224)) (-558) (-679 (-224)) (-558))))) (T -744))
+((-3710 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224))) (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-744)))) (-3699 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-679 (-224))) (-5 *5 (-112)) (-5 *6 (-224)) (-5 *7 (-679 (-558))) (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-558)) (-5 *2 (-1025)) (-5 *1 (-744)))) (-3690 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-679 (-224))) (-5 *6 (-112)) (-5 *7 (-679 (-558))) (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-558)) (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-744)))) (-3681 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-112)) (-5 *2 (-1025)) (-5 *1 (-744)))) (-3671 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1025)) (-5 *1 (-744)))) (-3661 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1025)) (-5 *1 (-744)))) (-3650 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1025)) (-5 *1 (-744)))) (-3641 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-558)) (-5 *5 (-112)) (-5 *6 (-679 (-224))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-744)))))
+(-10 -7 (-15 -3641 ((-1025) (-558) (-224) (-224) (-558) (-224) (-112) (-224) (-224) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN))))) (-15 -3650 ((-1025) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-79 LSFUN1))))) (-15 -3661 ((-1025) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-63 LSFUN2))))) (-15 -3671 ((-1025) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-66 FUNCT1))))) (-15 -3681 ((-1025) (-558) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-112) (-558) (-558) (-679 (-224)) (-558))) (-15 -3690 ((-1025) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-224) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-112) (-112) (-112) (-558) (-558) (-679 (-224)) (-679 (-558)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-65 QPHESS))))) (-15 -3699 ((-1025) (-558) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-558) (-112) (-224) (-558) (-224) (-224) (-112) (-224) (-224) (-224) (-224) (-112) (-558) (-558) (-558) (-558) (-558) (-224) (-224) (-224) (-558) (-558) (-558) (-558) (-558) (-679 (-558)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN))))) (-15 -3710 ((-1025) (-558) (-558) (-558) (-224) (-679 (-224)) (-558) (-679 (-224)) (-558))))
+((-3804 (((-1025) (-1145) (-558) (-558) (-558) (-558) (-679 (-168 (-224))) (-679 (-168 (-224))) (-558)) 47)) (-3795 (((-1025) (-1145) (-1145) (-558) (-558) (-679 (-168 (-224))) (-558) (-679 (-168 (-224))) (-558) (-558) (-679 (-168 (-224))) (-558)) 46)) (-3786 (((-1025) (-558) (-558) (-558) (-679 (-168 (-224))) (-558)) 45)) (-3776 (((-1025) (-1145) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558)) 40)) (-3767 (((-1025) (-1145) (-1145) (-558) (-558) (-679 (-224)) (-558) (-679 (-224)) (-558) (-558) (-679 (-224)) (-558)) 39)) (-3758 (((-1025) (-558) (-558) (-558) (-679 (-224)) (-558)) 36)) (-3749 (((-1025) (-558) (-679 (-224)) (-558) (-679 (-558)) (-558)) 35)) (-3739 (((-1025) (-558) (-558) (-558) (-558) (-635 (-112)) (-679 (-224)) (-679 (-558)) (-679 (-558)) (-224) (-224) (-558)) 34)) (-3729 (((-1025) (-558) (-558) (-558) (-679 (-558)) (-679 (-558)) (-679 (-558)) (-679 (-558)) (-112) (-224) (-112) (-679 (-558)) (-679 (-224)) (-558)) 33)) (-3720 (((-1025) (-558) (-558) (-558) (-558) (-224) (-112) (-112) (-635 (-112)) (-679 (-224)) (-679 (-558)) (-679 (-558)) (-558)) 32)))
+(((-745) (-10 -7 (-15 -3720 ((-1025) (-558) (-558) (-558) (-558) (-224) (-112) (-112) (-635 (-112)) (-679 (-224)) (-679 (-558)) (-679 (-558)) (-558))) (-15 -3729 ((-1025) (-558) (-558) (-558) (-679 (-558)) (-679 (-558)) (-679 (-558)) (-679 (-558)) (-112) (-224) (-112) (-679 (-558)) (-679 (-224)) (-558))) (-15 -3739 ((-1025) (-558) (-558) (-558) (-558) (-635 (-112)) (-679 (-224)) (-679 (-558)) (-679 (-558)) (-224) (-224) (-558))) (-15 -3749 ((-1025) (-558) (-679 (-224)) (-558) (-679 (-558)) (-558))) (-15 -3758 ((-1025) (-558) (-558) (-558) (-679 (-224)) (-558))) (-15 -3767 ((-1025) (-1145) (-1145) (-558) (-558) (-679 (-224)) (-558) (-679 (-224)) (-558) (-558) (-679 (-224)) (-558))) (-15 -3776 ((-1025) (-1145) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3786 ((-1025) (-558) (-558) (-558) (-679 (-168 (-224))) (-558))) (-15 -3795 ((-1025) (-1145) (-1145) (-558) (-558) (-679 (-168 (-224))) (-558) (-679 (-168 (-224))) (-558) (-558) (-679 (-168 (-224))) (-558))) (-15 -3804 ((-1025) (-1145) (-558) (-558) (-558) (-558) (-679 (-168 (-224))) (-679 (-168 (-224))) (-558))))) (T -745))
+((-3804 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1145)) (-5 *4 (-558)) (-5 *5 (-679 (-168 (-224)))) (-5 *2 (-1025)) (-5 *1 (-745)))) (-3795 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1145)) (-5 *4 (-558)) (-5 *5 (-679 (-168 (-224)))) (-5 *2 (-1025)) (-5 *1 (-745)))) (-3786 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-168 (-224)))) (-5 *2 (-1025)) (-5 *1 (-745)))) (-3776 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1145)) (-5 *4 (-558)) (-5 *5 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-745)))) (-3767 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1145)) (-5 *4 (-558)) (-5 *5 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-745)))) (-3758 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-745)))) (-3749 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-679 (-224))) (-5 *5 (-679 (-558))) (-5 *3 (-558)) (-5 *2 (-1025)) (-5 *1 (-745)))) (-3739 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-635 (-112))) (-5 *5 (-679 (-224))) (-5 *6 (-679 (-558))) (-5 *7 (-224)) (-5 *3 (-558)) (-5 *2 (-1025)) (-5 *1 (-745)))) (-3729 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-679 (-558))) (-5 *5 (-112)) (-5 *7 (-679 (-224))) (-5 *3 (-558)) (-5 *6 (-224)) (-5 *2 (-1025)) (-5 *1 (-745)))) (-3720 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-635 (-112))) (-5 *7 (-679 (-224))) (-5 *8 (-679 (-558))) (-5 *3 (-558)) (-5 *4 (-224)) (-5 *5 (-112)) (-5 *2 (-1025)) (-5 *1 (-745)))))
+(-10 -7 (-15 -3720 ((-1025) (-558) (-558) (-558) (-558) (-224) (-112) (-112) (-635 (-112)) (-679 (-224)) (-679 (-558)) (-679 (-558)) (-558))) (-15 -3729 ((-1025) (-558) (-558) (-558) (-679 (-558)) (-679 (-558)) (-679 (-558)) (-679 (-558)) (-112) (-224) (-112) (-679 (-558)) (-679 (-224)) (-558))) (-15 -3739 ((-1025) (-558) (-558) (-558) (-558) (-635 (-112)) (-679 (-224)) (-679 (-558)) (-679 (-558)) (-224) (-224) (-558))) (-15 -3749 ((-1025) (-558) (-679 (-224)) (-558) (-679 (-558)) (-558))) (-15 -3758 ((-1025) (-558) (-558) (-558) (-679 (-224)) (-558))) (-15 -3767 ((-1025) (-1145) (-1145) (-558) (-558) (-679 (-224)) (-558) (-679 (-224)) (-558) (-558) (-679 (-224)) (-558))) (-15 -3776 ((-1025) (-1145) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3786 ((-1025) (-558) (-558) (-558) (-679 (-168 (-224))) (-558))) (-15 -3795 ((-1025) (-1145) (-1145) (-558) (-558) (-679 (-168 (-224))) (-558) (-679 (-168 (-224))) (-558) (-558) (-679 (-168 (-224))) (-558))) (-15 -3804 ((-1025) (-1145) (-558) (-558) (-558) (-558) (-679 (-168 (-224))) (-679 (-168 (-224))) (-558))))
+((-3957 (((-1025) (-558) (-558) (-558) (-558) (-558) (-112) (-558) (-112) (-558) (-679 (-168 (-224))) (-679 (-168 (-224))) (-558)) 65)) (-3944 (((-1025) (-558) (-558) (-558) (-558) (-558) (-112) (-558) (-112) (-558) (-679 (-224)) (-679 (-224)) (-558)) 60)) (-3935 (((-1025) (-558) (-558) (-224) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE))) (-387)) 56) (((-1025) (-558) (-558) (-224) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE)))) 55)) (-3926 (((-1025) (-558) (-558) (-558) (-224) (-112) (-558) (-679 (-224)) (-679 (-224)) (-558)) 37)) (-3916 (((-1025) (-558) (-558) (-224) (-224) (-558) (-558) (-679 (-224)) (-558)) 33)) (-3905 (((-1025) (-679 (-224)) (-558) (-679 (-224)) (-558) (-558) (-558) (-558) (-558)) 30)) (-3896 (((-1025) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558)) 29)) (-3886 (((-1025) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558)) 28)) (-3876 (((-1025) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558)) 27)) (-3866 (((-1025) (-558) (-558) (-558) (-558) (-679 (-224)) (-558)) 26)) (-3857 (((-1025) (-558) (-558) (-679 (-224)) (-558)) 25)) (-3845 (((-1025) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558)) 24)) (-3834 (((-1025) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558)) 23)) (-3823 (((-1025) (-679 (-224)) (-558) (-558) (-558) (-558)) 22)) (-3814 (((-1025) (-558) (-558) (-679 (-224)) (-558)) 21)))
+(((-746) (-10 -7 (-15 -3814 ((-1025) (-558) (-558) (-679 (-224)) (-558))) (-15 -3823 ((-1025) (-679 (-224)) (-558) (-558) (-558) (-558))) (-15 -3834 ((-1025) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3845 ((-1025) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3857 ((-1025) (-558) (-558) (-679 (-224)) (-558))) (-15 -3866 ((-1025) (-558) (-558) (-558) (-558) (-679 (-224)) (-558))) (-15 -3876 ((-1025) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3886 ((-1025) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3896 ((-1025) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3905 ((-1025) (-679 (-224)) (-558) (-679 (-224)) (-558) (-558) (-558) (-558) (-558))) (-15 -3916 ((-1025) (-558) (-558) (-224) (-224) (-558) (-558) (-679 (-224)) (-558))) (-15 -3926 ((-1025) (-558) (-558) (-558) (-224) (-112) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3935 ((-1025) (-558) (-558) (-224) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE))))) (-15 -3935 ((-1025) (-558) (-558) (-224) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE))) (-387))) (-15 -3944 ((-1025) (-558) (-558) (-558) (-558) (-558) (-112) (-558) (-112) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3957 ((-1025) (-558) (-558) (-558) (-558) (-558) (-112) (-558) (-112) (-558) (-679 (-168 (-224))) (-679 (-168 (-224))) (-558))))) (T -746))
+((-3957 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-112)) (-5 *5 (-679 (-168 (-224)))) (-5 *2 (-1025)) (-5 *1 (-746)))) (-3944 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-112)) (-5 *5 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-746)))) (-3935 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-387)) (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-746)))) (-3935 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-746)))) (-3926 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-558)) (-5 *5 (-112)) (-5 *6 (-679 (-224))) (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-746)))) (-3916 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224))) (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-746)))) (-3905 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-679 (-224))) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-746)))) (-3896 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-746)))) (-3886 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-746)))) (-3876 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-746)))) (-3866 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-746)))) (-3857 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-746)))) (-3845 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-746)))) (-3834 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-746)))) (-3823 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-679 (-224))) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-746)))) (-3814 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-746)))))
+(-10 -7 (-15 -3814 ((-1025) (-558) (-558) (-679 (-224)) (-558))) (-15 -3823 ((-1025) (-679 (-224)) (-558) (-558) (-558) (-558))) (-15 -3834 ((-1025) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3845 ((-1025) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3857 ((-1025) (-558) (-558) (-679 (-224)) (-558))) (-15 -3866 ((-1025) (-558) (-558) (-558) (-558) (-679 (-224)) (-558))) (-15 -3876 ((-1025) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3886 ((-1025) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3896 ((-1025) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3905 ((-1025) (-679 (-224)) (-558) (-679 (-224)) (-558) (-558) (-558) (-558) (-558))) (-15 -3916 ((-1025) (-558) (-558) (-224) (-224) (-558) (-558) (-679 (-224)) (-558))) (-15 -3926 ((-1025) (-558) (-558) (-558) (-224) (-112) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3935 ((-1025) (-558) (-558) (-224) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE))))) (-15 -3935 ((-1025) (-558) (-558) (-224) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE))) (-387))) (-15 -3944 ((-1025) (-558) (-558) (-558) (-558) (-558) (-112) (-558) (-112) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3957 ((-1025) (-558) (-558) (-558) (-558) (-558) (-112) (-558) (-112) (-558) (-679 (-168 (-224))) (-679 (-168 (-224))) (-558))))
+((-2915 (((-1025) (-558) (-558) (-224) (-224) (-224) (-224) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-70 APROD)))) 61)) (-2905 (((-1025) (-558) (-679 (-224)) (-558) (-679 (-224)) (-679 (-558)) (-558) (-679 (-224)) (-558) (-558) (-558) (-558)) 57)) (-2894 (((-1025) (-558) (-679 (-224)) (-112) (-224) (-558) (-558) (-558) (-558) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-387)) (|:| |fp| (-73 MSOLVE)))) 56)) (-4042 (((-1025) (-558) (-558) (-679 (-224)) (-558) (-679 (-558)) (-558) (-679 (-558)) (-679 (-224)) (-679 (-558)) (-679 (-558)) (-679 (-224)) (-679 (-224)) (-679 (-558)) (-558)) 37)) (-4030 (((-1025) (-558) (-558) (-558) (-224) (-558) (-679 (-224)) (-679 (-224)) (-558)) 36)) (-4019 (((-1025) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558)) 33)) (-4011 (((-1025) (-558) (-679 (-224)) (-558) (-679 (-558)) (-679 (-558)) (-558) (-679 (-558)) (-679 (-224))) 32)) (-3999 (((-1025) (-679 (-224)) (-558) (-679 (-224)) (-558) (-558) (-558)) 28)) (-3988 (((-1025) (-558) (-679 (-224)) (-558) (-679 (-224)) (-558)) 27)) (-3977 (((-1025) (-558) (-679 (-224)) (-558) (-679 (-224)) (-558)) 26)) (-3968 (((-1025) (-558) (-679 (-168 (-224))) (-558) (-558) (-558) (-558) (-679 (-168 (-224))) (-558)) 22)))
+(((-747) (-10 -7 (-15 -3968 ((-1025) (-558) (-679 (-168 (-224))) (-558) (-558) (-558) (-558) (-679 (-168 (-224))) (-558))) (-15 -3977 ((-1025) (-558) (-679 (-224)) (-558) (-679 (-224)) (-558))) (-15 -3988 ((-1025) (-558) (-679 (-224)) (-558) (-679 (-224)) (-558))) (-15 -3999 ((-1025) (-679 (-224)) (-558) (-679 (-224)) (-558) (-558) (-558))) (-15 -4011 ((-1025) (-558) (-679 (-224)) (-558) (-679 (-558)) (-679 (-558)) (-558) (-679 (-558)) (-679 (-224)))) (-15 -4019 ((-1025) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558))) (-15 -4030 ((-1025) (-558) (-558) (-558) (-224) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -4042 ((-1025) (-558) (-558) (-679 (-224)) (-558) (-679 (-558)) (-558) (-679 (-558)) (-679 (-224)) (-679 (-558)) (-679 (-558)) (-679 (-224)) (-679 (-224)) (-679 (-558)) (-558))) (-15 -2894 ((-1025) (-558) (-679 (-224)) (-112) (-224) (-558) (-558) (-558) (-558) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-387)) (|:| |fp| (-73 MSOLVE))))) (-15 -2905 ((-1025) (-558) (-679 (-224)) (-558) (-679 (-224)) (-679 (-558)) (-558) (-679 (-224)) (-558) (-558) (-558) (-558))) (-15 -2915 ((-1025) (-558) (-558) (-224) (-224) (-224) (-224) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-70 APROD))))))) (T -747))
+((-2915 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-70 APROD)))) (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-747)))) (-2905 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-679 (-224))) (-5 *5 (-679 (-558))) (-5 *3 (-558)) (-5 *2 (-1025)) (-5 *1 (-747)))) (-2894 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-112)) (-5 *6 (-224)) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1025)) (-5 *1 (-747)))) (-4042 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-679 (-224))) (-5 *5 (-679 (-558))) (-5 *3 (-558)) (-5 *2 (-1025)) (-5 *1 (-747)))) (-4030 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224))) (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-747)))) (-4019 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-747)))) (-4011 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-679 (-224))) (-5 *5 (-679 (-558))) (-5 *3 (-558)) (-5 *2 (-1025)) (-5 *1 (-747)))) (-3999 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-679 (-224))) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-747)))) (-3988 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-747)))) (-3977 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-747)))) (-3968 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-168 (-224)))) (-5 *2 (-1025)) (-5 *1 (-747)))))
+(-10 -7 (-15 -3968 ((-1025) (-558) (-679 (-168 (-224))) (-558) (-558) (-558) (-558) (-679 (-168 (-224))) (-558))) (-15 -3977 ((-1025) (-558) (-679 (-224)) (-558) (-679 (-224)) (-558))) (-15 -3988 ((-1025) (-558) (-679 (-224)) (-558) (-679 (-224)) (-558))) (-15 -3999 ((-1025) (-679 (-224)) (-558) (-679 (-224)) (-558) (-558) (-558))) (-15 -4011 ((-1025) (-558) (-679 (-224)) (-558) (-679 (-558)) (-679 (-558)) (-558) (-679 (-558)) (-679 (-224)))) (-15 -4019 ((-1025) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558))) (-15 -4030 ((-1025) (-558) (-558) (-558) (-224) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -4042 ((-1025) (-558) (-558) (-679 (-224)) (-558) (-679 (-558)) (-558) (-679 (-558)) (-679 (-224)) (-679 (-558)) (-679 (-558)) (-679 (-224)) (-679 (-224)) (-679 (-558)) (-558))) (-15 -2894 ((-1025) (-558) (-679 (-224)) (-112) (-224) (-558) (-558) (-558) (-558) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-387)) (|:| |fp| (-73 MSOLVE))))) (-15 -2905 ((-1025) (-558) (-679 (-224)) (-558) (-679 (-224)) (-679 (-558)) (-558) (-679 (-224)) (-558) (-558) (-558) (-558))) (-15 -2915 ((-1025) (-558) (-558) (-224) (-224) (-224) (-224) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-70 APROD))))))
+((-2957 (((-1025) (-1145) (-558) (-558) (-679 (-224)) (-558) (-558) (-679 (-224))) 29)) (-2946 (((-1025) (-1145) (-558) (-558) (-679 (-224))) 28)) (-2935 (((-1025) (-1145) (-558) (-558) (-679 (-224)) (-558) (-679 (-558)) (-558) (-679 (-224))) 27)) (-2923 (((-1025) (-558) (-558) (-558) (-679 (-224))) 21)))
+(((-748) (-10 -7 (-15 -2923 ((-1025) (-558) (-558) (-558) (-679 (-224)))) (-15 -2935 ((-1025) (-1145) (-558) (-558) (-679 (-224)) (-558) (-679 (-558)) (-558) (-679 (-224)))) (-15 -2946 ((-1025) (-1145) (-558) (-558) (-679 (-224)))) (-15 -2957 ((-1025) (-1145) (-558) (-558) (-679 (-224)) (-558) (-558) (-679 (-224)))))) (T -748))
+((-2957 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1145)) (-5 *4 (-558)) (-5 *5 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-748)))) (-2946 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1145)) (-5 *4 (-558)) (-5 *5 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-748)))) (-2935 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1145)) (-5 *5 (-679 (-224))) (-5 *6 (-679 (-558))) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-748)))) (-2923 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-748)))))
+(-10 -7 (-15 -2923 ((-1025) (-558) (-558) (-558) (-679 (-224)))) (-15 -2935 ((-1025) (-1145) (-558) (-558) (-679 (-224)) (-558) (-679 (-558)) (-558) (-679 (-224)))) (-15 -2946 ((-1025) (-1145) (-558) (-558) (-679 (-224)))) (-15 -2957 ((-1025) (-1145) (-558) (-558) (-679 (-224)) (-558) (-558) (-679 (-224)))))
+((-3373 (((-1025) (-224) (-224) (-224) (-224) (-558)) 62)) (-3365 (((-1025) (-224) (-224) (-224) (-558)) 61)) (-3356 (((-1025) (-224) (-224) (-224) (-558)) 60)) (-3346 (((-1025) (-224) (-224) (-558)) 59)) (-3336 (((-1025) (-224) (-558)) 58)) (-3324 (((-1025) (-224) (-558)) 57)) (-3313 (((-1025) (-224) (-558)) 56)) (-3301 (((-1025) (-224) (-558)) 55)) (-3290 (((-1025) (-224) (-558)) 54)) (-3279 (((-1025) (-224) (-558)) 53)) (-3268 (((-1025) (-224) (-168 (-224)) (-558) (-1145) (-558)) 52)) (-3258 (((-1025) (-224) (-168 (-224)) (-558) (-1145) (-558)) 51)) (-3248 (((-1025) (-224) (-558)) 50)) (-3238 (((-1025) (-224) (-558)) 49)) (-3225 (((-1025) (-224) (-558)) 48)) (-3211 (((-1025) (-224) (-558)) 47)) (-3199 (((-1025) (-558) (-224) (-168 (-224)) (-558) (-1145) (-558)) 46)) (-3189 (((-1025) (-1145) (-168 (-224)) (-1145) (-558)) 45)) (-3178 (((-1025) (-1145) (-168 (-224)) (-1145) (-558)) 44)) (-3168 (((-1025) (-224) (-168 (-224)) (-558) (-1145) (-558)) 43)) (-3156 (((-1025) (-224) (-168 (-224)) (-558) (-1145) (-558)) 42)) (-3146 (((-1025) (-224) (-558)) 39)) (-3136 (((-1025) (-224) (-558)) 38)) (-3124 (((-1025) (-224) (-558)) 37)) (-3112 (((-1025) (-224) (-558)) 36)) (-3103 (((-1025) (-224) (-558)) 35)) (-3093 (((-1025) (-224) (-558)) 34)) (-3081 (((-1025) (-224) (-558)) 33)) (-3070 (((-1025) (-224) (-558)) 32)) (-3058 (((-1025) (-224) (-558)) 31)) (-3045 (((-1025) (-224) (-558)) 30)) (-3035 (((-1025) (-224) (-224) (-224) (-558)) 29)) (-3024 (((-1025) (-224) (-558)) 28)) (-3013 (((-1025) (-224) (-558)) 27)) (-3002 (((-1025) (-224) (-558)) 26)) (-2991 (((-1025) (-224) (-558)) 25)) (-2978 (((-1025) (-224) (-558)) 24)) (-2967 (((-1025) (-168 (-224)) (-558)) 21)))
+(((-749) (-10 -7 (-15 -2967 ((-1025) (-168 (-224)) (-558))) (-15 -2978 ((-1025) (-224) (-558))) (-15 -2991 ((-1025) (-224) (-558))) (-15 -3002 ((-1025) (-224) (-558))) (-15 -3013 ((-1025) (-224) (-558))) (-15 -3024 ((-1025) (-224) (-558))) (-15 -3035 ((-1025) (-224) (-224) (-224) (-558))) (-15 -3045 ((-1025) (-224) (-558))) (-15 -3058 ((-1025) (-224) (-558))) (-15 -3070 ((-1025) (-224) (-558))) (-15 -3081 ((-1025) (-224) (-558))) (-15 -3093 ((-1025) (-224) (-558))) (-15 -3103 ((-1025) (-224) (-558))) (-15 -3112 ((-1025) (-224) (-558))) (-15 -3124 ((-1025) (-224) (-558))) (-15 -3136 ((-1025) (-224) (-558))) (-15 -3146 ((-1025) (-224) (-558))) (-15 -3156 ((-1025) (-224) (-168 (-224)) (-558) (-1145) (-558))) (-15 -3168 ((-1025) (-224) (-168 (-224)) (-558) (-1145) (-558))) (-15 -3178 ((-1025) (-1145) (-168 (-224)) (-1145) (-558))) (-15 -3189 ((-1025) (-1145) (-168 (-224)) (-1145) (-558))) (-15 -3199 ((-1025) (-558) (-224) (-168 (-224)) (-558) (-1145) (-558))) (-15 -3211 ((-1025) (-224) (-558))) (-15 -3225 ((-1025) (-224) (-558))) (-15 -3238 ((-1025) (-224) (-558))) (-15 -3248 ((-1025) (-224) (-558))) (-15 -3258 ((-1025) (-224) (-168 (-224)) (-558) (-1145) (-558))) (-15 -3268 ((-1025) (-224) (-168 (-224)) (-558) (-1145) (-558))) (-15 -3279 ((-1025) (-224) (-558))) (-15 -3290 ((-1025) (-224) (-558))) (-15 -3301 ((-1025) (-224) (-558))) (-15 -3313 ((-1025) (-224) (-558))) (-15 -3324 ((-1025) (-224) (-558))) (-15 -3336 ((-1025) (-224) (-558))) (-15 -3346 ((-1025) (-224) (-224) (-558))) (-15 -3356 ((-1025) (-224) (-224) (-224) (-558))) (-15 -3365 ((-1025) (-224) (-224) (-224) (-558))) (-15 -3373 ((-1025) (-224) (-224) (-224) (-224) (-558))))) (T -749))
+((-3373 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-3365 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-3356 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-3346 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-3336 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-3324 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-3313 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-3301 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-3290 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-3279 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-3268 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-168 (-224))) (-5 *5 (-558)) (-5 *6 (-1145)) (-5 *3 (-224)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-3258 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-168 (-224))) (-5 *5 (-558)) (-5 *6 (-1145)) (-5 *3 (-224)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-3248 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-3238 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-3225 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-3211 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-3199 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-558)) (-5 *5 (-168 (-224))) (-5 *6 (-1145)) (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-3189 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1145)) (-5 *4 (-168 (-224))) (-5 *5 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-3178 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1145)) (-5 *4 (-168 (-224))) (-5 *5 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-3168 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-168 (-224))) (-5 *5 (-558)) (-5 *6 (-1145)) (-5 *3 (-224)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-3156 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-168 (-224))) (-5 *5 (-558)) (-5 *6 (-1145)) (-5 *3 (-224)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-3146 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-3136 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-3124 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-3112 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-3103 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-3093 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-3081 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-3070 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-3058 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-3045 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-3035 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-3024 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-3013 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-3002 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-2991 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-2978 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-2967 (*1 *2 *3 *4) (-12 (-5 *3 (-168 (-224))) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
+(-10 -7 (-15 -2967 ((-1025) (-168 (-224)) (-558))) (-15 -2978 ((-1025) (-224) (-558))) (-15 -2991 ((-1025) (-224) (-558))) (-15 -3002 ((-1025) (-224) (-558))) (-15 -3013 ((-1025) (-224) (-558))) (-15 -3024 ((-1025) (-224) (-558))) (-15 -3035 ((-1025) (-224) (-224) (-224) (-558))) (-15 -3045 ((-1025) (-224) (-558))) (-15 -3058 ((-1025) (-224) (-558))) (-15 -3070 ((-1025) (-224) (-558))) (-15 -3081 ((-1025) (-224) (-558))) (-15 -3093 ((-1025) (-224) (-558))) (-15 -3103 ((-1025) (-224) (-558))) (-15 -3112 ((-1025) (-224) (-558))) (-15 -3124 ((-1025) (-224) (-558))) (-15 -3136 ((-1025) (-224) (-558))) (-15 -3146 ((-1025) (-224) (-558))) (-15 -3156 ((-1025) (-224) (-168 (-224)) (-558) (-1145) (-558))) (-15 -3168 ((-1025) (-224) (-168 (-224)) (-558) (-1145) (-558))) (-15 -3178 ((-1025) (-1145) (-168 (-224)) (-1145) (-558))) (-15 -3189 ((-1025) (-1145) (-168 (-224)) (-1145) (-558))) (-15 -3199 ((-1025) (-558) (-224) (-168 (-224)) (-558) (-1145) (-558))) (-15 -3211 ((-1025) (-224) (-558))) (-15 -3225 ((-1025) (-224) (-558))) (-15 -3238 ((-1025) (-224) (-558))) (-15 -3248 ((-1025) (-224) (-558))) (-15 -3258 ((-1025) (-224) (-168 (-224)) (-558) (-1145) (-558))) (-15 -3268 ((-1025) (-224) (-168 (-224)) (-558) (-1145) (-558))) (-15 -3279 ((-1025) (-224) (-558))) (-15 -3290 ((-1025) (-224) (-558))) (-15 -3301 ((-1025) (-224) (-558))) (-15 -3313 ((-1025) (-224) (-558))) (-15 -3324 ((-1025) (-224) (-558))) (-15 -3336 ((-1025) (-224) (-558))) (-15 -3346 ((-1025) (-224) (-224) (-558))) (-15 -3356 ((-1025) (-224) (-224) (-224) (-558))) (-15 -3365 ((-1025) (-224) (-224) (-224) (-558))) (-15 -3373 ((-1025) (-224) (-224) (-224) (-224) (-558))))
+((-3423 (((-1251)) 18)) (-3394 (((-1145)) 22)) (-3385 (((-1145)) 21)) (-3415 (((-1091) (-1163) (-679 (-558))) 37) (((-1091) (-1163) (-679 (-224))) 32)) (-3050 (((-112)) 16)) (-3404 (((-1145) (-1145)) 25)))
+(((-750) (-10 -7 (-15 -3385 ((-1145))) (-15 -3394 ((-1145))) (-15 -3404 ((-1145) (-1145))) (-15 -3415 ((-1091) (-1163) (-679 (-224)))) (-15 -3415 ((-1091) (-1163) (-679 (-558)))) (-15 -3050 ((-112))) (-15 -3423 ((-1251))))) (T -750))
+((-3423 (*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-750)))) (-3050 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-750)))) (-3415 (*1 *2 *3 *4) (-12 (-5 *3 (-1163)) (-5 *4 (-679 (-558))) (-5 *2 (-1091)) (-5 *1 (-750)))) (-3415 (*1 *2 *3 *4) (-12 (-5 *3 (-1163)) (-5 *4 (-679 (-224))) (-5 *2 (-1091)) (-5 *1 (-750)))) (-3404 (*1 *2 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-750)))) (-3394 (*1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-750)))) (-3385 (*1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-750)))))
+(-10 -7 (-15 -3385 ((-1145))) (-15 -3394 ((-1145))) (-15 -3404 ((-1145) (-1145))) (-15 -3415 ((-1091) (-1163) (-679 (-224)))) (-15 -3415 ((-1091) (-1163) (-679 (-558)))) (-15 -3050 ((-112))) (-15 -3423 ((-1251))))
+((-3443 (($ $ $) 10)) (-3452 (($ $ $ $) 9)) (-3433 (($ $ $) 12)))
+(((-751 |#1|) (-10 -8 (-15 -3433 (|#1| |#1| |#1|)) (-15 -3443 (|#1| |#1| |#1|)) (-15 -3452 (|#1| |#1| |#1| |#1|))) (-752)) (T -751))
+NIL
+(-10 -8 (-15 -3433 (|#1| |#1| |#1|)) (-15 -3443 (|#1| |#1| |#1|)) (-15 -3452 (|#1| |#1| |#1| |#1|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2089 (((-3 $ "failed") $ $) 19)) (-1816 (($) 17 T CONST)) (-2015 (($ $ (-911)) 28)) (-2006 (($ $ (-911)) 29)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3443 (($ $ $) 25)) (-3220 (((-853) $) 11)) (-3452 (($ $ $ $) 26)) (-3433 (($ $ $) 24)) (-2131 (($) 18 T CONST)) (-1683 (((-112) $ $) 6)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 30)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 27)))
+(((-752) (-139)) (T -752))
+((-3452 (*1 *1 *1 *1 *1) (-4 *1 (-752))) (-3443 (*1 *1 *1 *1) (-4 *1 (-752))) (-3433 (*1 *1 *1 *1) (-4 *1 (-752))))
+(-13 (-21) (-711) (-10 -8 (-15 -3452 ($ $ $ $)) (-15 -3443 ($ $ $)) (-15 -3433 ($ $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-605 (-853)) . T) ((-711) . T) ((-1087) . T))
+((-3220 (((-853) $) NIL) (($ (-558)) 10)))
+(((-753 |#1|) (-10 -8 (-15 -3220 (|#1| (-558))) (-15 -3220 ((-853) |#1|))) (-754)) (T -753))
+NIL
+(-10 -8 (-15 -3220 (|#1| (-558))) (-15 -3220 ((-853) |#1|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2089 (((-3 $ "failed") $ $) 19)) (-1816 (($) 17 T CONST)) (-1986 (((-3 $ "failed") $) 40)) (-2015 (($ $ (-911)) 28) (($ $ (-762)) 35)) (-2588 (((-3 $ "failed") $) 38)) (-2035 (((-112) $) 34)) (-1995 (((-3 $ "failed") $) 39)) (-2006 (($ $ (-911)) 29) (($ $ (-762)) 36)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3443 (($ $ $) 25)) (-3220 (((-853) $) 11) (($ (-558)) 31)) (-2542 (((-762)) 32)) (-3452 (($ $ $ $) 26)) (-3433 (($ $ $) 24)) (-2131 (($) 18 T CONST)) (-2142 (($) 33 T CONST)) (-1683 (((-112) $ $) 6)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 30) (($ $ (-762)) 37)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 27)))
+(((-754) (-139)) (T -754))
+((-2542 (*1 *2) (-12 (-4 *1 (-754)) (-5 *2 (-762)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-754)))))
+(-13 (-752) (-713) (-10 -8 (-15 -2542 ((-762))) (-15 -3220 ($ (-558)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-605 (-853)) . T) ((-711) . T) ((-713) . T) ((-752) . T) ((-1087) . T))
+((-3468 (((-635 (-2 (|:| |outval| (-168 |#1|)) (|:| |outmult| (-558)) (|:| |outvect| (-635 (-679 (-168 |#1|)))))) (-679 (-168 (-406 (-558)))) |#1|) 33)) (-3459 (((-635 (-168 |#1|)) (-679 (-168 (-406 (-558)))) |#1|) 23)) (-2363 (((-942 (-168 (-406 (-558)))) (-679 (-168 (-406 (-558)))) (-1163)) 20) (((-942 (-168 (-406 (-558)))) (-679 (-168 (-406 (-558))))) 19)))
+(((-755 |#1|) (-10 -7 (-15 -2363 ((-942 (-168 (-406 (-558)))) (-679 (-168 (-406 (-558)))))) (-15 -2363 ((-942 (-168 (-406 (-558)))) (-679 (-168 (-406 (-558)))) (-1163))) (-15 -3459 ((-635 (-168 |#1|)) (-679 (-168 (-406 (-558)))) |#1|)) (-15 -3468 ((-635 (-2 (|:| |outval| (-168 |#1|)) (|:| |outmult| (-558)) (|:| |outvect| (-635 (-679 (-168 |#1|)))))) (-679 (-168 (-406 (-558)))) |#1|))) (-13 (-362) (-839))) (T -755))
+((-3468 (*1 *2 *3 *4) (-12 (-5 *3 (-679 (-168 (-406 (-558))))) (-5 *2 (-635 (-2 (|:| |outval| (-168 *4)) (|:| |outmult| (-558)) (|:| |outvect| (-635 (-679 (-168 *4))))))) (-5 *1 (-755 *4)) (-4 *4 (-13 (-362) (-839))))) (-3459 (*1 *2 *3 *4) (-12 (-5 *3 (-679 (-168 (-406 (-558))))) (-5 *2 (-635 (-168 *4))) (-5 *1 (-755 *4)) (-4 *4 (-13 (-362) (-839))))) (-2363 (*1 *2 *3 *4) (-12 (-5 *3 (-679 (-168 (-406 (-558))))) (-5 *4 (-1163)) (-5 *2 (-942 (-168 (-406 (-558))))) (-5 *1 (-755 *5)) (-4 *5 (-13 (-362) (-839))))) (-2363 (*1 *2 *3) (-12 (-5 *3 (-679 (-168 (-406 (-558))))) (-5 *2 (-942 (-168 (-406 (-558))))) (-5 *1 (-755 *4)) (-4 *4 (-13 (-362) (-839))))))
+(-10 -7 (-15 -2363 ((-942 (-168 (-406 (-558)))) (-679 (-168 (-406 (-558)))))) (-15 -2363 ((-942 (-168 (-406 (-558)))) (-679 (-168 (-406 (-558)))) (-1163))) (-15 -3459 ((-635 (-168 |#1|)) (-679 (-168 (-406 (-558)))) |#1|)) (-15 -3468 ((-635 (-2 (|:| |outval| (-168 |#1|)) (|:| |outmult| (-558)) (|:| |outvect| (-635 (-679 (-168 |#1|)))))) (-679 (-168 (-406 (-558)))) |#1|)))
+((-3008 (((-173 (-558)) |#1|) 25)))
+(((-756 |#1|) (-10 -7 (-15 -3008 ((-173 (-558)) |#1|))) (-403)) (T -756))
+((-3008 (*1 *2 *3) (-12 (-5 *2 (-173 (-558))) (-5 *1 (-756 *3)) (-4 *3 (-403)))))
+(-10 -7 (-15 -3008 ((-173 (-558)) |#1|)))
+((-3637 ((|#1| |#1| |#1|) 24)) (-3646 ((|#1| |#1| |#1|) 23)) (-3540 ((|#1| |#1| |#1|) 32)) (-3619 ((|#1| |#1| |#1|) 28)) (-3628 (((-3 |#1| "failed") |#1| |#1|) 27)) (-3677 (((-2 (|:| -2306 |#1|) (|:| -2071 |#1|)) |#1| |#1|) 22)))
+(((-757 |#1| |#2|) (-10 -7 (-15 -3677 ((-2 (|:| -2306 |#1|) (|:| -2071 |#1|)) |#1| |#1|)) (-15 -3646 (|#1| |#1| |#1|)) (-15 -3637 (|#1| |#1| |#1|)) (-15 -3628 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3619 (|#1| |#1| |#1|)) (-15 -3540 (|#1| |#1| |#1|))) (-699 |#2|) (-362)) (T -757))
+((-3540 (*1 *2 *2 *2) (-12 (-4 *3 (-362)) (-5 *1 (-757 *2 *3)) (-4 *2 (-699 *3)))) (-3619 (*1 *2 *2 *2) (-12 (-4 *3 (-362)) (-5 *1 (-757 *2 *3)) (-4 *2 (-699 *3)))) (-3628 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-362)) (-5 *1 (-757 *2 *3)) (-4 *2 (-699 *3)))) (-3637 (*1 *2 *2 *2) (-12 (-4 *3 (-362)) (-5 *1 (-757 *2 *3)) (-4 *2 (-699 *3)))) (-3646 (*1 *2 *2 *2) (-12 (-4 *3 (-362)) (-5 *1 (-757 *2 *3)) (-4 *2 (-699 *3)))) (-3677 (*1 *2 *3 *3) (-12 (-4 *4 (-362)) (-5 *2 (-2 (|:| -2306 *3) (|:| -2071 *3))) (-5 *1 (-757 *3 *4)) (-4 *3 (-699 *4)))))
+(-10 -7 (-15 -3677 ((-2 (|:| -2306 |#1|) (|:| -2071 |#1|)) |#1| |#1|)) (-15 -3646 (|#1| |#1| |#1|)) (-15 -3637 (|#1| |#1| |#1|)) (-15 -3628 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3619 (|#1| |#1| |#1|)) (-15 -3540 (|#1| |#1| |#1|)))
+((-3725 (((-1107) $ (-128)) 12)) (-3735 (((-1107) $ (-129)) 11)) (-2535 (((-1107) $ (-128)) 7)) (-2547 (((-1107) $) 8)) (-3479 (((-112) $) 14)) (-2279 (((-3 $ "failed") |#1| (-944)) 15)) (-2436 (($ $) 6)))
+(((-758 |#1|) (-139) (-1087)) (T -758))
+((-2279 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-944)) (-4 *1 (-758 *2)) (-4 *2 (-1087)))) (-3479 (*1 *2 *1) (-12 (-4 *1 (-758 *3)) (-4 *3 (-1087)) (-5 *2 (-112)))))
+(-13 (-570) (-10 -8 (-15 -2279 ((-3 $ "failed") |t#1| (-944))) (-15 -3479 ((-112) $))))
+(((-172) . T) ((-525) . T) ((-570) . T) ((-851) . T))
+((-2233 (((-2 (|:| -2660 (-679 (-558))) (|:| |basisDen| (-558)) (|:| |basisInv| (-679 (-558)))) (-558)) 59)) (-2224 (((-2 (|:| -2660 (-679 (-558))) (|:| |basisDen| (-558)) (|:| |basisInv| (-679 (-558))))) 57)) (-3331 (((-558)) 70)))
+(((-759 |#1| |#2|) (-10 -7 (-15 -3331 ((-558))) (-15 -2224 ((-2 (|:| -2660 (-679 (-558))) (|:| |basisDen| (-558)) (|:| |basisInv| (-679 (-558)))))) (-15 -2233 ((-2 (|:| -2660 (-679 (-558))) (|:| |basisDen| (-558)) (|:| |basisInv| (-679 (-558)))) (-558)))) (-1222 (-558)) (-408 (-558) |#1|)) (T -759))
+((-2233 (*1 *2 *3) (-12 (-5 *3 (-558)) (-4 *4 (-1222 *3)) (-5 *2 (-2 (|:| -2660 (-679 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-679 *3)))) (-5 *1 (-759 *4 *5)) (-4 *5 (-408 *3 *4)))) (-2224 (*1 *2) (-12 (-4 *3 (-1222 (-558))) (-5 *2 (-2 (|:| -2660 (-679 (-558))) (|:| |basisDen| (-558)) (|:| |basisInv| (-679 (-558))))) (-5 *1 (-759 *3 *4)) (-4 *4 (-408 (-558) *3)))) (-3331 (*1 *2) (-12 (-4 *3 (-1222 *2)) (-5 *2 (-558)) (-5 *1 (-759 *3 *4)) (-4 *4 (-408 *2 *3)))))
+(-10 -7 (-15 -3331 ((-558))) (-15 -2224 ((-2 (|:| -2660 (-679 (-558))) (|:| |basisDen| (-558)) (|:| |basisInv| (-679 (-558)))))) (-15 -2233 ((-2 (|:| -2660 (-679 (-558))) (|:| |basisDen| (-558)) (|:| |basisInv| (-679 (-558)))) (-558))))
+((-3207 (((-112) $ $) NIL)) (-1863 (((-3 (|:| |nia| (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -1626 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) $) 21)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 20) (($ (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 13) (($ (-2 (|:| |fn| (-315 (-224))) (|:| -1626 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -1626 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) 18)) (-1683 (((-112) $ $) NIL)))
+(((-760) (-13 (-1087) (-10 -8 (-15 -3220 ($ (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3220 ($ (-2 (|:| |fn| (-315 (-224))) (|:| -1626 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3220 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -1626 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (-15 -1863 ((-3 (|:| |nia| (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -1626 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) $))))) (T -760))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *1 (-760)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-315 (-224))) (|:| -1626 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *1 (-760)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -1626 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) (-5 *1 (-760)))) (-1863 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -1626 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) (-5 *1 (-760)))))
+(-13 (-1087) (-10 -8 (-15 -3220 ($ (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3220 ($ (-2 (|:| |fn| (-315 (-224))) (|:| -1626 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3220 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -1626 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (-15 -1863 ((-3 (|:| |nia| (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -1626 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) $))))
+((-1815 (((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-942 |#1|))) 18) (((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-942 |#1|)) (-635 (-1163))) 17)) (-2153 (((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-942 |#1|))) 20) (((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-942 |#1|)) (-635 (-1163))) 19)))
+(((-761 |#1|) (-10 -7 (-15 -1815 ((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-942 |#1|)) (-635 (-1163)))) (-15 -1815 ((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-942 |#1|)))) (-15 -2153 ((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-942 |#1|)) (-635 (-1163)))) (-15 -2153 ((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-942 |#1|))))) (-550)) (T -761))
+((-2153 (*1 *2 *3) (-12 (-5 *3 (-635 (-942 *4))) (-4 *4 (-550)) (-5 *2 (-635 (-635 (-293 (-406 (-942 *4)))))) (-5 *1 (-761 *4)))) (-2153 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-942 *5))) (-5 *4 (-635 (-1163))) (-4 *5 (-550)) (-5 *2 (-635 (-635 (-293 (-406 (-942 *5)))))) (-5 *1 (-761 *5)))) (-1815 (*1 *2 *3) (-12 (-5 *3 (-635 (-942 *4))) (-4 *4 (-550)) (-5 *2 (-635 (-635 (-293 (-406 (-942 *4)))))) (-5 *1 (-761 *4)))) (-1815 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-942 *5))) (-5 *4 (-635 (-1163))) (-4 *5 (-550)) (-5 *2 (-635 (-635 (-293 (-406 (-942 *5)))))) (-5 *1 (-761 *5)))))
+(-10 -7 (-15 -1815 ((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-942 |#1|)) (-635 (-1163)))) (-15 -1815 ((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-942 |#1|)))) (-15 -2153 ((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-942 |#1|)) (-635 (-1163)))) (-15 -2153 ((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-942 |#1|)))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2738 (($ $ $) 6)) (-2089 (((-3 $ "failed") $ $) 9)) (-1672 (($ $ (-558)) 7)) (-1816 (($) NIL T CONST)) (-4025 (($ $ $) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-2424 (($ $) NIL)) (-4004 (($ $ $) NIL)) (-2035 (((-112) $) NIL)) (-3910 (($ $ $) NIL)) (-3542 (($ $ $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-2699 (($ $ $) NIL)) (-3983 (((-3 $ "failed") $ $) NIL)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL)) (-3220 (((-853) $) NIL)) (-2131 (($) NIL T CONST)) (-2142 (($) NIL T CONST)) (-1747 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1683 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-762)) NIL) (($ $ (-911)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ $ $) NIL)))
+(((-762) (-13 (-784) (-717) (-10 -8 (-15 -4004 ($ $ $)) (-15 -4025 ($ $ $)) (-15 -2699 ($ $ $)) (-15 -1901 ((-2 (|:| -2306 $) (|:| -2071 $)) $ $)) (-15 -3983 ((-3 $ "failed") $ $)) (-15 -1672 ($ $ (-558))) (-15 -2424 ($ $)) (-6 (-4384 "*"))))) (T -762))
+((-4004 (*1 *1 *1 *1) (-5 *1 (-762))) (-4025 (*1 *1 *1 *1) (-5 *1 (-762))) (-2699 (*1 *1 *1 *1) (-5 *1 (-762))) (-1901 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2306 (-762)) (|:| -2071 (-762)))) (-5 *1 (-762)))) (-3983 (*1 *1 *1 *1) (|partial| -5 *1 (-762))) (-1672 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-762)))) (-2424 (*1 *1 *1) (-5 *1 (-762))))
+(-13 (-784) (-717) (-10 -8 (-15 -4004 ($ $ $)) (-15 -4025 ($ $ $)) (-15 -2699 ($ $ $)) (-15 -1901 ((-2 (|:| -2306 $) (|:| -2071 $)) $ $)) (-15 -3983 ((-3 $ "failed") $ $)) (-15 -1672 ($ $ (-558))) (-15 -2424 ($ $)) (-6 (-4384 "*"))))
+((-2153 (((-3 |#2| "failed") |#2| |#2| (-114) (-1163)) 35)))
+(((-763 |#1| |#2|) (-10 -7 (-15 -2153 ((-3 |#2| "failed") |#2| |#2| (-114) (-1163)))) (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)) (-13 (-29 |#1|) (-1185) (-949))) (T -763))
+((-2153 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1163)) (-4 *5 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146))) (-5 *1 (-763 *5 *2)) (-4 *2 (-13 (-29 *5) (-1185) (-949))))))
+(-10 -7 (-15 -2153 ((-3 |#2| "failed") |#2| |#2| (-114) (-1163))))
+((-3220 (((-765) |#1|) 8)))
+(((-764 |#1|) (-10 -7 (-15 -3220 ((-765) |#1|))) (-1200)) (T -764))
+((-3220 (*1 *2 *3) (-12 (-5 *2 (-765)) (-5 *1 (-764 *3)) (-4 *3 (-1200)))))
+(-10 -7 (-15 -3220 ((-765) |#1|)))
+((-3207 (((-112) $ $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 7)) (-1683 (((-112) $ $) 9)))
+(((-765) (-1087)) (T -765))
+NIL
+(-1087)
+((-2615 ((|#2| |#4|) 35)))
+(((-766 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2615 (|#2| |#4|))) (-450) (-1222 |#1|) (-715 |#1| |#2|) (-1222 |#3|)) (T -766))
+((-2615 (*1 *2 *3) (-12 (-4 *4 (-450)) (-4 *5 (-715 *4 *2)) (-4 *2 (-1222 *4)) (-5 *1 (-766 *4 *2 *5 *3)) (-4 *3 (-1222 *5)))))
+(-10 -7 (-15 -2615 (|#2| |#4|)))
+((-2588 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-2308 (((-1251) (-1145) (-1145) |#4| |#5|) 33)) (-2288 ((|#4| |#4| |#5|) 72)) (-2298 (((-635 (-2 (|:| |val| |#4|) (|:| -2396 |#5|))) |#4| |#5|) 76)) (-2318 (((-635 (-2 (|:| |val| (-112)) (|:| -2396 |#5|))) |#4| |#5|) 16)))
+(((-767 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2588 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2288 (|#4| |#4| |#5|)) (-15 -2298 ((-635 (-2 (|:| |val| |#4|) (|:| -2396 |#5|))) |#4| |#5|)) (-15 -2308 ((-1251) (-1145) (-1145) |#4| |#5|)) (-15 -2318 ((-635 (-2 (|:| |val| (-112)) (|:| -2396 |#5|))) |#4| |#5|))) (-450) (-784) (-841) (-1053 |#1| |#2| |#3|) (-1059 |#1| |#2| |#3| |#4|)) (T -767))
+((-2318 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -2396 *4)))) (-5 *1 (-767 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))) (-2308 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1145)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841)) (-4 *4 (-1053 *6 *7 *8)) (-5 *2 (-1251)) (-5 *1 (-767 *6 *7 *8 *4 *5)) (-4 *5 (-1059 *6 *7 *8 *4)))) (-2298 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -2396 *4)))) (-5 *1 (-767 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))) (-2288 (*1 *2 *2 *3) (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *2 (-1053 *4 *5 *6)) (-5 *1 (-767 *4 *5 *6 *2 *3)) (-4 *3 (-1059 *4 *5 *6 *2)))) (-2588 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-767 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))))
+(-10 -7 (-15 -2588 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2288 (|#4| |#4| |#5|)) (-15 -2298 ((-635 (-2 (|:| |val| |#4|) (|:| -2396 |#5|))) |#4| |#5|)) (-15 -2308 ((-1251) (-1145) (-1145) |#4| |#5|)) (-15 -2318 ((-635 (-2 (|:| |val| (-112)) (|:| -2396 |#5|))) |#4| |#5|)))
+((-3069 (((-3 (-1159 (-1159 |#1|)) "failed") |#4|) 43)) (-2330 (((-635 |#4|) |#4|) 15)) (-4148 ((|#4| |#4|) 11)))
+(((-768 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2330 ((-635 |#4|) |#4|)) (-15 -3069 ((-3 (-1159 (-1159 |#1|)) "failed") |#4|)) (-15 -4148 (|#4| |#4|))) (-348) (-328 |#1|) (-1222 |#2|) (-1222 |#3|) (-911)) (T -768))
+((-4148 (*1 *2 *2) (-12 (-4 *3 (-348)) (-4 *4 (-328 *3)) (-4 *5 (-1222 *4)) (-5 *1 (-768 *3 *4 *5 *2 *6)) (-4 *2 (-1222 *5)) (-14 *6 (-911)))) (-3069 (*1 *2 *3) (|partial| -12 (-4 *4 (-348)) (-4 *5 (-328 *4)) (-4 *6 (-1222 *5)) (-5 *2 (-1159 (-1159 *4))) (-5 *1 (-768 *4 *5 *6 *3 *7)) (-4 *3 (-1222 *6)) (-14 *7 (-911)))) (-2330 (*1 *2 *3) (-12 (-4 *4 (-348)) (-4 *5 (-328 *4)) (-4 *6 (-1222 *5)) (-5 *2 (-635 *3)) (-5 *1 (-768 *4 *5 *6 *3 *7)) (-4 *3 (-1222 *6)) (-14 *7 (-911)))))
+(-10 -7 (-15 -2330 ((-635 |#4|) |#4|)) (-15 -3069 ((-3 (-1159 (-1159 |#1|)) "failed") |#4|)) (-15 -4148 (|#4| |#4|)))
+((-2342 (((-2 (|:| |deter| (-635 (-1159 |#5|))) (|:| |dterm| (-635 (-635 (-2 (|:| -3360 (-762)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-635 |#1|)) (|:| |nlead| (-635 |#5|))) (-1159 |#5|) (-635 |#1|) (-635 |#5|)) 53)) (-2352 (((-635 (-762)) |#1|) 13)))
+(((-769 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2342 ((-2 (|:| |deter| (-635 (-1159 |#5|))) (|:| |dterm| (-635 (-635 (-2 (|:| -3360 (-762)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-635 |#1|)) (|:| |nlead| (-635 |#5|))) (-1159 |#5|) (-635 |#1|) (-635 |#5|))) (-15 -2352 ((-635 (-762)) |#1|))) (-1222 |#4|) (-784) (-841) (-306) (-939 |#4| |#2| |#3|)) (T -769))
+((-2352 (*1 *2 *3) (-12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-306)) (-5 *2 (-635 (-762))) (-5 *1 (-769 *3 *4 *5 *6 *7)) (-4 *3 (-1222 *6)) (-4 *7 (-939 *6 *4 *5)))) (-2342 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1222 *9)) (-4 *7 (-784)) (-4 *8 (-841)) (-4 *9 (-306)) (-4 *10 (-939 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-635 (-1159 *10))) (|:| |dterm| (-635 (-635 (-2 (|:| -3360 (-762)) (|:| |pcoef| *10))))) (|:| |nfacts| (-635 *6)) (|:| |nlead| (-635 *10)))) (-5 *1 (-769 *6 *7 *8 *9 *10)) (-5 *3 (-1159 *10)) (-5 *4 (-635 *6)) (-5 *5 (-635 *10)))))
+(-10 -7 (-15 -2342 ((-2 (|:| |deter| (-635 (-1159 |#5|))) (|:| |dterm| (-635 (-635 (-2 (|:| -3360 (-762)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-635 |#1|)) (|:| |nlead| (-635 |#5|))) (-1159 |#5|) (-635 |#1|) (-635 |#5|))) (-15 -2352 ((-635 (-762)) |#1|)))
+((-2385 (((-635 (-2 (|:| |outval| |#1|) (|:| |outmult| (-558)) (|:| |outvect| (-635 (-679 |#1|))))) (-679 (-406 (-558))) |#1|) 31)) (-2374 (((-635 |#1|) (-679 (-406 (-558))) |#1|) 21)) (-2363 (((-942 (-406 (-558))) (-679 (-406 (-558))) (-1163)) 18) (((-942 (-406 (-558))) (-679 (-406 (-558)))) 17)))
+(((-770 |#1|) (-10 -7 (-15 -2363 ((-942 (-406 (-558))) (-679 (-406 (-558))))) (-15 -2363 ((-942 (-406 (-558))) (-679 (-406 (-558))) (-1163))) (-15 -2374 ((-635 |#1|) (-679 (-406 (-558))) |#1|)) (-15 -2385 ((-635 (-2 (|:| |outval| |#1|) (|:| |outmult| (-558)) (|:| |outvect| (-635 (-679 |#1|))))) (-679 (-406 (-558))) |#1|))) (-13 (-362) (-839))) (T -770))
+((-2385 (*1 *2 *3 *4) (-12 (-5 *3 (-679 (-406 (-558)))) (-5 *2 (-635 (-2 (|:| |outval| *4) (|:| |outmult| (-558)) (|:| |outvect| (-635 (-679 *4)))))) (-5 *1 (-770 *4)) (-4 *4 (-13 (-362) (-839))))) (-2374 (*1 *2 *3 *4) (-12 (-5 *3 (-679 (-406 (-558)))) (-5 *2 (-635 *4)) (-5 *1 (-770 *4)) (-4 *4 (-13 (-362) (-839))))) (-2363 (*1 *2 *3 *4) (-12 (-5 *3 (-679 (-406 (-558)))) (-5 *4 (-1163)) (-5 *2 (-942 (-406 (-558)))) (-5 *1 (-770 *5)) (-4 *5 (-13 (-362) (-839))))) (-2363 (*1 *2 *3) (-12 (-5 *3 (-679 (-406 (-558)))) (-5 *2 (-942 (-406 (-558)))) (-5 *1 (-770 *4)) (-4 *4 (-13 (-362) (-839))))))
+(-10 -7 (-15 -2363 ((-942 (-406 (-558))) (-679 (-406 (-558))))) (-15 -2363 ((-942 (-406 (-558))) (-679 (-406 (-558))) (-1163))) (-15 -2374 ((-635 |#1|) (-679 (-406 (-558))) |#1|)) (-15 -2385 ((-635 (-2 (|:| |outval| |#1|) (|:| |outmult| (-558)) (|:| |outvect| (-635 (-679 |#1|))))) (-679 (-406 (-558))) |#1|)))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) 34)) (-2671 (((-635 |#2|) $) NIL)) (-2492 (((-1159 $) $ |#2|) NIL) (((-1159 |#1|) $) NIL)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1881 (($ $) NIL (|has| |#1| (-550)))) (-1857 (((-112) $) NIL (|has| |#1| (-550)))) (-2513 (((-762) $) NIL) (((-762) $ (-635 |#2|)) NIL)) (-3436 (($ $) 28)) (-1853 (((-112) $ $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-3309 (($ $ $) 92 (|has| |#1| (-550)))) (-1660 (((-635 $) $ $) 105 (|has| |#1| (-550)))) (-3748 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-3465 (($ $) NIL (|has| |#1| (-450)))) (-1380 (((-417 $) $) NIL (|has| |#1| (-450)))) (-3719 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-1816 (($) NIL T CONST)) (-3069 (((-3 |#1| "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-942 (-406 (-558)))) NIL (-12 (|has| |#1| (-38 (-406 (-558)))) (|has| |#2| (-606 (-1163))))) (((-3 $ "failed") (-942 (-558))) NIL (-3998 (-12 (|has| |#1| (-38 (-558))) (|has| |#2| (-606 (-1163))) (-3304 (|has| |#1| (-38 (-406 (-558)))))) (-12 (|has| |#1| (-38 (-406 (-558)))) (|has| |#2| (-606 (-1163)))))) (((-3 $ "failed") (-942 |#1|)) NIL (-3998 (-12 (|has| |#2| (-606 (-1163))) (-3304 (|has| |#1| (-38 (-406 (-558))))) (-3304 (|has| |#1| (-38 (-558))))) (-12 (|has| |#1| (-38 (-558))) (|has| |#2| (-606 (-1163))) (-3304 (|has| |#1| (-38 (-406 (-558))))) (-3304 (|has| |#1| (-543)))) (-12 (|has| |#1| (-38 (-406 (-558)))) (|has| |#2| (-606 (-1163))) (-3304 (|has| |#1| (-982 (-558))))))) (((-3 (-1112 |#1| |#2|) "failed") $) 18)) (-1863 ((|#1| $) NIL) (((-406 (-558)) $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-558) $) NIL (|has| |#1| (-1028 (-558)))) ((|#2| $) NIL) (($ (-942 (-406 (-558)))) NIL (-12 (|has| |#1| (-38 (-406 (-558)))) (|has| |#2| (-606 (-1163))))) (($ (-942 (-558))) NIL (-3998 (-12 (|has| |#1| (-38 (-558))) (|has| |#2| (-606 (-1163))) (-3304 (|has| |#1| (-38 (-406 (-558)))))) (-12 (|has| |#1| (-38 (-406 (-558)))) (|has| |#2| (-606 (-1163)))))) (($ (-942 |#1|)) NIL (-3998 (-12 (|has| |#2| (-606 (-1163))) (-3304 (|has| |#1| (-38 (-406 (-558))))) (-3304 (|has| |#1| (-38 (-558))))) (-12 (|has| |#1| (-38 (-558))) (|has| |#2| (-606 (-1163))) (-3304 (|has| |#1| (-38 (-406 (-558))))) (-3304 (|has| |#1| (-543)))) (-12 (|has| |#1| (-38 (-406 (-558)))) (|has| |#2| (-606 (-1163))) (-3304 (|has| |#1| (-982 (-558))))))) (((-1112 |#1| |#2|) $) NIL)) (-3320 (($ $ $ |#2|) NIL (|has| |#1| (-171))) (($ $ $) 103 (|has| |#1| (-550)))) (-2490 (($ $) NIL) (($ $ |#2|) NIL)) (-3216 (((-679 (-558)) (-679 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3683 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) NIL) (((-679 |#1|) (-679 $)) NIL)) (-3902 (((-112) $ $) NIL) (((-112) $ (-635 $)) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-1920 (((-112) $) NIL)) (-3274 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 69)) (-1624 (($ $) 118 (|has| |#1| (-450)))) (-2782 (($ $) NIL (|has| |#1| (-450))) (($ $ |#2|) NIL (|has| |#1| (-450)))) (-2476 (((-635 $) $) NIL)) (-3031 (((-112) $) NIL (|has| |#1| (-899)))) (-1732 (($ $) NIL (|has| |#1| (-550)))) (-1745 (($ $) NIL (|has| |#1| (-550)))) (-1841 (($ $ $) 64) (($ $ $ |#2|) NIL)) (-1830 (($ $ $) 67) (($ $ $ |#2|) NIL)) (-3888 (($ $ |#1| (-529 |#2|) $) NIL)) (-2269 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (-12 (|has| |#1| (-876 (-378))) (|has| |#2| (-876 (-378))))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (-12 (|has| |#1| (-876 (-558))) (|has| |#2| (-876 (-558)))))) (-2035 (((-112) $) NIL)) (-2110 (((-762) $) NIL)) (-3912 (((-112) $ $) NIL) (((-112) $ (-635 $)) NIL)) (-1633 (($ $ $ $ $) 89 (|has| |#1| (-550)))) (-1997 ((|#2| $) 19)) (-2659 (($ (-1159 |#1|) |#2|) NIL) (($ (-1159 $) |#2|) NIL)) (-2536 (((-635 $) $) NIL)) (-4238 (((-112) $) NIL)) (-2648 (($ |#1| (-529 |#2|)) NIL) (($ $ |#2| (-762)) 36) (($ $ (-635 |#2|) (-635 (-762))) NIL)) (-1769 (($ $ $) 60)) (-3381 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $ |#2|) NIL)) (-1931 (((-112) $) NIL)) (-2524 (((-529 |#2|) $) NIL) (((-762) $ |#2|) NIL) (((-635 (-762)) $ (-635 |#2|)) NIL)) (-3910 (($ $ $) NIL (|has| |#1| (-841)))) (-1987 (((-762) $) 20)) (-3542 (($ $ $) NIL (|has| |#1| (-841)))) (-3898 (($ (-1 (-529 |#2|) (-529 |#2|)) $) NIL)) (-3167 (($ (-1 |#1| |#1|) $) NIL)) (-3399 (((-3 |#2| "failed") $) NIL)) (-2832 (($ $) NIL (|has| |#1| (-450)))) (-2842 (($ $) NIL (|has| |#1| (-450)))) (-1877 (((-635 $) $) NIL)) (-1908 (($ $) 37)) (-1611 (($ $) NIL (|has| |#1| (-450)))) (-1888 (((-635 $) $) 41)) (-1897 (($ $) 39)) (-2451 (($ $) NIL)) (-2463 ((|#1| $) NIL) (($ $ |#2|) 45)) (-2665 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-1758 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2739 (-762))) $ $) 81)) (-1782 (((-2 (|:| -2023 $) (|:| |gap| (-762)) (|:| -2306 $) (|:| -2071 $)) $ $) 66) (((-2 (|:| -2023 $) (|:| |gap| (-762)) (|:| -2306 $) (|:| -2071 $)) $ $ |#2|) NIL)) (-1795 (((-2 (|:| -2023 $) (|:| |gap| (-762)) (|:| -2071 $)) $ $) NIL) (((-2 (|:| -2023 $) (|:| |gap| (-762)) (|:| -2071 $)) $ $ |#2|) NIL)) (-1820 (($ $ $) 71) (($ $ $ |#2|) NIL)) (-1809 (($ $ $) 74) (($ $ $ |#2|) NIL)) (-4310 (((-1145) $) NIL)) (-2087 (($ $ $) 107 (|has| |#1| (-550)))) (-1952 (((-635 $) $) 30)) (-2560 (((-3 (-635 $) "failed") $) NIL)) (-2548 (((-3 (-635 $) "failed") $) NIL)) (-2575 (((-3 (-2 (|:| |var| |#2|) (|:| -1951 (-762))) "failed") $) NIL)) (-3873 (((-112) $ $) NIL) (((-112) $ (-635 $)) NIL)) (-3820 (($ $ $) NIL)) (-1796 (($ $) 21)) (-3953 (((-112) $ $) NIL)) (-3883 (((-112) $ $) NIL) (((-112) $ (-635 $)) NIL)) (-3830 (($ $ $) NIL)) (-1975 (($ $) 23)) (-2975 (((-1107) $) NIL)) (-1670 (((-2 (|:| -2699 $) (|:| |coef2| $)) $ $) 98 (|has| |#1| (-550)))) (-1682 (((-2 (|:| -2699 $) (|:| |coef1| $)) $ $) 95 (|has| |#1| (-550)))) (-2429 (((-112) $) 52)) (-2440 ((|#1| $) 55)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#1| (-450)))) (-2699 ((|#1| |#1| $) 115 (|has| |#1| (-450))) (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3728 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-3738 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-2522 (((-417 $) $) NIL (|has| |#1| (-899)))) (-1693 (((-2 (|:| -2699 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 101 (|has| |#1| (-550)))) (-3983 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550))) (((-3 $ "failed") $ $) 83 (|has| |#1| (-550)))) (-1706 (($ $ |#1|) 111 (|has| |#1| (-550))) (($ $ $) NIL (|has| |#1| (-550)))) (-1719 (($ $ |#1|) 110 (|has| |#1| (-550))) (($ $ $) NIL (|has| |#1| (-550)))) (-2554 (($ $ (-635 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-635 |#2|) (-635 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-635 |#2|) (-635 $)) NIL)) (-3331 (($ $ |#2|) NIL (|has| |#1| (-171)))) (-2829 (($ $ |#2|) NIL) (($ $ (-635 |#2|)) NIL) (($ $ |#2| (-762)) NIL) (($ $ (-635 |#2|) (-635 (-762))) NIL)) (-4323 (((-529 |#2|) $) NIL) (((-762) $ |#2|) 43) (((-635 (-762)) $ (-635 |#2|)) NIL)) (-1962 (($ $) NIL)) (-1941 (($ $) 33)) (-3224 (((-882 (-378)) $) NIL (-12 (|has| |#1| (-606 (-882 (-378)))) (|has| |#2| (-606 (-882 (-378)))))) (((-882 (-558)) $) NIL (-12 (|has| |#1| (-606 (-882 (-558)))) (|has| |#2| (-606 (-882 (-558)))))) (((-534) $) NIL (-12 (|has| |#1| (-606 (-534))) (|has| |#2| (-606 (-534))))) (($ (-942 (-406 (-558)))) NIL (-12 (|has| |#1| (-38 (-406 (-558)))) (|has| |#2| (-606 (-1163))))) (($ (-942 (-558))) NIL (-3998 (-12 (|has| |#1| (-38 (-558))) (|has| |#2| (-606 (-1163))) (-3304 (|has| |#1| (-38 (-406 (-558)))))) (-12 (|has| |#1| (-38 (-406 (-558)))) (|has| |#2| (-606 (-1163)))))) (($ (-942 |#1|)) NIL (|has| |#2| (-606 (-1163)))) (((-1145) $) NIL (-12 (|has| |#1| (-1028 (-558))) (|has| |#2| (-606 (-1163))))) (((-942 |#1|) $) NIL (|has| |#2| (-606 (-1163))))) (-2504 ((|#1| $) 114 (|has| |#1| (-450))) (($ $ |#2|) NIL (|has| |#1| (-450)))) (-3709 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-899))))) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-942 |#1|) $) NIL (|has| |#2| (-606 (-1163)))) (((-1112 |#1| |#2|) $) 15) (($ (-1112 |#1| |#2|)) 16) (($ (-406 (-558))) NIL (-3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558)))))) (($ $) NIL (|has| |#1| (-550)))) (-2583 (((-635 |#1|) $) NIL)) (-3736 ((|#1| $ (-529 |#2|)) NIL) (($ $ |#2| (-762)) 44) (($ $ (-635 |#2|) (-635 (-762))) NIL)) (-3698 (((-3 $ "failed") $) NIL (-3998 (-12 (|has| $ (-144)) (|has| |#1| (-899))) (|has| |#1| (-144))))) (-2542 (((-762)) NIL)) (-3879 (($ $ $ (-762)) NIL (|has| |#1| (-171)))) (-1870 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2131 (($) 13 T CONST)) (-1865 (((-3 (-112) "failed") $ $) NIL)) (-2142 (($) 35 T CONST)) (-1641 (($ $ $ $ (-762)) 87 (|has| |#1| (-550)))) (-1650 (($ $ $ (-762)) 86 (|has| |#1| (-550)))) (-1866 (($ $ |#2|) NIL) (($ $ (-635 |#2|)) NIL) (($ $ |#2| (-762)) NIL) (($ $ (-635 |#2|) (-635 (-762))) NIL)) (-1747 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1683 (((-112) $ $) 54)) (-1731 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1810 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1798 (($ $) NIL) (($ $ $) 63)) (-1784 (($ $ $) 73)) (** (($ $ (-911)) NIL) (($ $ (-762)) 61)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 59) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558))))) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ |#1| $) 58) (($ $ |#1|) NIL)))
+(((-771 |#1| |#2|) (-13 (-1053 |#1| (-529 |#2|) |#2|) (-605 (-1112 |#1| |#2|)) (-1028 (-1112 |#1| |#2|))) (-1039) (-841)) (T -771))
+NIL
+(-13 (-1053 |#1| (-529 |#2|) |#2|) (-605 (-1112 |#1| |#2|)) (-1028 (-1112 |#1| |#2|)))
+((-3167 (((-773 |#2|) (-1 |#2| |#1|) (-773 |#1|)) 13)))
+(((-772 |#1| |#2|) (-10 -7 (-15 -3167 ((-773 |#2|) (-1 |#2| |#1|) (-773 |#1|)))) (-1039) (-1039)) (T -772))
+((-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-773 *5)) (-4 *5 (-1039)) (-4 *6 (-1039)) (-5 *2 (-773 *6)) (-5 *1 (-772 *5 *6)))))
+(-10 -7 (-15 -3167 ((-773 |#2|) (-1 |#2| |#1|) (-773 |#1|))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) 12)) (-3422 (((-1246 |#1|) $ (-762)) NIL)) (-2671 (((-635 (-1069)) $) NIL)) (-3401 (($ (-1159 |#1|)) NIL)) (-2492 (((-1159 $) $ (-1069)) NIL) (((-1159 |#1|) $) NIL)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1881 (($ $) NIL (|has| |#1| (-550)))) (-1857 (((-112) $) NIL (|has| |#1| (-550)))) (-2513 (((-762) $) NIL) (((-762) $ (-635 (-1069))) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-2434 (((-635 $) $ $) 39 (|has| |#1| (-550)))) (-3309 (($ $ $) 35 (|has| |#1| (-550)))) (-3748 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-3465 (($ $) NIL (|has| |#1| (-450)))) (-1380 (((-417 $) $) NIL (|has| |#1| (-450)))) (-3719 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-3732 (((-112) $ $) NIL (|has| |#1| (-362)))) (-3362 (($ $ (-762)) NIL)) (-3352 (($ $ (-762)) NIL)) (-3264 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-450)))) (-1816 (($) NIL T CONST)) (-3069 (((-3 |#1| "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 (-1069) "failed") $) NIL) (((-3 (-1159 |#1|) "failed") $) 10)) (-1863 ((|#1| $) NIL) (((-406 (-558)) $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-558) $) NIL (|has| |#1| (-1028 (-558)))) (((-1069) $) NIL) (((-1159 |#1|) $) NIL)) (-3320 (($ $ $ (-1069)) NIL (|has| |#1| (-171))) ((|#1| $ $) 43 (|has| |#1| (-171)))) (-4025 (($ $ $) NIL (|has| |#1| (-362)))) (-2490 (($ $) NIL)) (-3216 (((-679 (-558)) (-679 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3683 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) NIL) (((-679 |#1|) (-679 $)) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-4004 (($ $ $) NIL (|has| |#1| (-362)))) (-3342 (($ $ $) NIL)) (-3286 (($ $ $) 71 (|has| |#1| (-550)))) (-3274 (((-2 (|:| -2023 |#1|) (|:| -2306 $) (|:| -2071 $)) $ $) 70 (|has| |#1| (-550)))) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-2782 (($ $) NIL (|has| |#1| (-450))) (($ $ (-1069)) NIL (|has| |#1| (-450)))) (-2476 (((-635 $) $) NIL)) (-3031 (((-112) $) NIL (|has| |#1| (-899)))) (-3888 (($ $ |#1| (-762) $) NIL)) (-2269 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (-12 (|has| (-1069) (-876 (-378))) (|has| |#1| (-876 (-378))))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (-12 (|has| (-1069) (-876 (-558))) (|has| |#1| (-876 (-558)))))) (-3449 (((-762) $ $) NIL (|has| |#1| (-550)))) (-2035 (((-112) $) NIL)) (-2110 (((-762) $) NIL)) (-2457 (((-3 $ "failed") $) NIL (|has| |#1| (-1138)))) (-2659 (($ (-1159 |#1|) (-1069)) NIL) (($ (-1159 $) (-1069)) NIL)) (-3486 (($ $ (-762)) NIL)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-2536 (((-635 $) $) NIL)) (-4238 (((-112) $) NIL)) (-2648 (($ |#1| (-762)) NIL) (($ $ (-1069) (-762)) NIL) (($ $ (-635 (-1069)) (-635 (-762))) NIL)) (-1769 (($ $ $) 20)) (-3381 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $ (-1069)) NIL) (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL)) (-2524 (((-762) $) NIL) (((-762) $ (-1069)) NIL) (((-635 (-762)) $ (-635 (-1069))) NIL)) (-3910 (($ $ $) NIL (|has| |#1| (-841)))) (-3542 (($ $ $) NIL (|has| |#1| (-841)))) (-3898 (($ (-1 (-762) (-762)) $) NIL)) (-3167 (($ (-1 |#1| |#1|) $) NIL)) (-3412 (((-1159 |#1|) $) NIL)) (-3399 (((-3 (-1069) "failed") $) NIL)) (-2451 (($ $) NIL)) (-2463 ((|#1| $) NIL)) (-2665 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-1758 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2739 (-762))) $ $) 26)) (-2456 (($ $ $) 29)) (-2444 (($ $ $) 32)) (-1782 (((-2 (|:| -2023 |#1|) (|:| |gap| (-762)) (|:| -2306 $) (|:| -2071 $)) $ $) 31)) (-4310 (((-1145) $) NIL)) (-2087 (($ $ $) 41 (|has| |#1| (-550)))) (-3371 (((-2 (|:| -2306 $) (|:| -2071 $)) $ (-762)) NIL)) (-2560 (((-3 (-635 $) "failed") $) NIL)) (-2548 (((-3 (-635 $) "failed") $) NIL)) (-2575 (((-3 (-2 (|:| |var| (-1069)) (|:| -1951 (-762))) "failed") $) NIL)) (-2543 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1796 (($) NIL (|has| |#1| (-1138)) CONST)) (-2975 (((-1107) $) NIL)) (-1670 (((-2 (|:| -2699 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-550)))) (-1682 (((-2 (|:| -2699 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-550)))) (-2400 (((-2 (|:| -3320 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-550)))) (-2410 (((-2 (|:| -3320 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-550)))) (-2429 (((-112) $) 13)) (-2440 ((|#1| $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#1| (-450)))) (-2699 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3120 (($ $ (-762) |#1| $) 19)) (-3728 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-3738 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-2522 (((-417 $) $) NIL (|has| |#1| (-899)))) (-1693 (((-2 (|:| -2699 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-550)))) (-2422 (((-2 (|:| -3320 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-550)))) (-3713 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL (|has| |#1| (-362)))) (-3983 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-2554 (($ $ (-635 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-1069) |#1|) NIL) (($ $ (-635 (-1069)) (-635 |#1|)) NIL) (($ $ (-1069) $) NIL) (($ $ (-635 (-1069)) (-635 $)) NIL)) (-3722 (((-762) $) NIL (|has| |#1| (-362)))) (-2195 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-406 $) (-406 $) (-406 $)) NIL (|has| |#1| (-550))) ((|#1| (-406 $) |#1|) NIL (|has| |#1| (-362))) (((-406 $) $ (-406 $)) NIL (|has| |#1| (-550)))) (-3391 (((-3 $ "failed") $ (-762)) NIL)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL (|has| |#1| (-362)))) (-3331 (($ $ (-1069)) NIL (|has| |#1| (-171))) ((|#1| $) NIL (|has| |#1| (-171)))) (-2829 (($ $ (-1069)) NIL) (($ $ (-635 (-1069))) NIL) (($ $ (-1069) (-762)) NIL) (($ $ (-635 (-1069)) (-635 (-762))) NIL) (($ $ (-762)) NIL) (($ $) NIL) (($ $ (-1163)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4323 (((-762) $) NIL) (((-762) $ (-1069)) NIL) (((-635 (-762)) $ (-635 (-1069))) NIL)) (-3224 (((-882 (-378)) $) NIL (-12 (|has| (-1069) (-606 (-882 (-378)))) (|has| |#1| (-606 (-882 (-378)))))) (((-882 (-558)) $) NIL (-12 (|has| (-1069) (-606 (-882 (-558)))) (|has| |#1| (-606 (-882 (-558)))))) (((-534) $) NIL (-12 (|has| (-1069) (-606 (-534))) (|has| |#1| (-606 (-534)))))) (-2504 ((|#1| $) NIL (|has| |#1| (-450))) (($ $ (-1069)) NIL (|has| |#1| (-450)))) (-3709 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-899))))) (-3297 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550))) (((-3 (-406 $) "failed") (-406 $) $) NIL (|has| |#1| (-550)))) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ |#1|) NIL) (($ (-1069)) NIL) (((-1159 |#1|) $) 7) (($ (-1159 |#1|)) 8) (($ (-406 (-558))) NIL (-3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558)))))) (($ $) NIL (|has| |#1| (-550)))) (-2583 (((-635 |#1|) $) NIL)) (-3736 ((|#1| $ (-762)) NIL) (($ $ (-1069) (-762)) NIL) (($ $ (-635 (-1069)) (-635 (-762))) NIL)) (-3698 (((-3 $ "failed") $) NIL (-3998 (-12 (|has| $ (-144)) (|has| |#1| (-899))) (|has| |#1| (-144))))) (-2542 (((-762)) NIL)) (-3879 (($ $ $ (-762)) NIL (|has| |#1| (-171)))) (-1870 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2131 (($) 21 T CONST)) (-2142 (($) 24 T CONST)) (-1866 (($ $ (-1069)) NIL) (($ $ (-635 (-1069))) NIL) (($ $ (-1069) (-762)) NIL) (($ $ (-635 (-1069)) (-635 (-762))) NIL) (($ $ (-762)) NIL) (($ $) NIL) (($ $ (-1163)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1747 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1683 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1810 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1798 (($ $) 28) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558))))) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ |#1| $) 23) (($ $ |#1|) NIL)))
+(((-773 |#1|) (-13 (-1222 |#1|) (-605 (-1159 |#1|)) (-1028 (-1159 |#1|)) (-10 -8 (-15 -3120 ($ $ (-762) |#1| $)) (-15 -1769 ($ $ $)) (-15 -1758 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2739 (-762))) $ $)) (-15 -2456 ($ $ $)) (-15 -1782 ((-2 (|:| -2023 |#1|) (|:| |gap| (-762)) (|:| -2306 $) (|:| -2071 $)) $ $)) (-15 -2444 ($ $ $)) (IF (|has| |#1| (-550)) (PROGN (-15 -2434 ((-635 $) $ $)) (-15 -2087 ($ $ $)) (-15 -1693 ((-2 (|:| -2699 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1682 ((-2 (|:| -2699 $) (|:| |coef1| $)) $ $)) (-15 -1670 ((-2 (|:| -2699 $) (|:| |coef2| $)) $ $)) (-15 -2422 ((-2 (|:| -3320 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2410 ((-2 (|:| -3320 |#1|) (|:| |coef1| $)) $ $)) (-15 -2400 ((-2 (|:| -3320 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1039)) (T -773))
+((-3120 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-762)) (-5 *1 (-773 *3)) (-4 *3 (-1039)))) (-1769 (*1 *1 *1 *1) (-12 (-5 *1 (-773 *2)) (-4 *2 (-1039)))) (-1758 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-773 *3)) (|:| |polden| *3) (|:| -2739 (-762)))) (-5 *1 (-773 *3)) (-4 *3 (-1039)))) (-2456 (*1 *1 *1 *1) (-12 (-5 *1 (-773 *2)) (-4 *2 (-1039)))) (-1782 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2023 *3) (|:| |gap| (-762)) (|:| -2306 (-773 *3)) (|:| -2071 (-773 *3)))) (-5 *1 (-773 *3)) (-4 *3 (-1039)))) (-2444 (*1 *1 *1 *1) (-12 (-5 *1 (-773 *2)) (-4 *2 (-1039)))) (-2434 (*1 *2 *1 *1) (-12 (-5 *2 (-635 (-773 *3))) (-5 *1 (-773 *3)) (-4 *3 (-550)) (-4 *3 (-1039)))) (-2087 (*1 *1 *1 *1) (-12 (-5 *1 (-773 *2)) (-4 *2 (-550)) (-4 *2 (-1039)))) (-1693 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2699 (-773 *3)) (|:| |coef1| (-773 *3)) (|:| |coef2| (-773 *3)))) (-5 *1 (-773 *3)) (-4 *3 (-550)) (-4 *3 (-1039)))) (-1682 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2699 (-773 *3)) (|:| |coef1| (-773 *3)))) (-5 *1 (-773 *3)) (-4 *3 (-550)) (-4 *3 (-1039)))) (-1670 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2699 (-773 *3)) (|:| |coef2| (-773 *3)))) (-5 *1 (-773 *3)) (-4 *3 (-550)) (-4 *3 (-1039)))) (-2422 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3320 *3) (|:| |coef1| (-773 *3)) (|:| |coef2| (-773 *3)))) (-5 *1 (-773 *3)) (-4 *3 (-550)) (-4 *3 (-1039)))) (-2410 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3320 *3) (|:| |coef1| (-773 *3)))) (-5 *1 (-773 *3)) (-4 *3 (-550)) (-4 *3 (-1039)))) (-2400 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3320 *3) (|:| |coef2| (-773 *3)))) (-5 *1 (-773 *3)) (-4 *3 (-550)) (-4 *3 (-1039)))))
+(-13 (-1222 |#1|) (-605 (-1159 |#1|)) (-1028 (-1159 |#1|)) (-10 -8 (-15 -3120 ($ $ (-762) |#1| $)) (-15 -1769 ($ $ $)) (-15 -1758 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2739 (-762))) $ $)) (-15 -2456 ($ $ $)) (-15 -1782 ((-2 (|:| -2023 |#1|) (|:| |gap| (-762)) (|:| -2306 $) (|:| -2071 $)) $ $)) (-15 -2444 ($ $ $)) (IF (|has| |#1| (-550)) (PROGN (-15 -2434 ((-635 $) $ $)) (-15 -2087 ($ $ $)) (-15 -1693 ((-2 (|:| -2699 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1682 ((-2 (|:| -2699 $) (|:| |coef1| $)) $ $)) (-15 -1670 ((-2 (|:| -2699 $) (|:| |coef2| $)) $ $)) (-15 -2422 ((-2 (|:| -3320 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2410 ((-2 (|:| -3320 |#1|) (|:| |coef1| $)) $ $)) (-15 -2400 ((-2 (|:| -3320 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
+((-2481 ((|#1| (-762) |#1|) 32 (|has| |#1| (-38 (-406 (-558)))))) (-2317 ((|#1| (-762) |#1|) 22)) (-2468 ((|#1| (-762) |#1|) 34 (|has| |#1| (-38 (-406 (-558)))))))
+(((-774 |#1|) (-10 -7 (-15 -2317 (|#1| (-762) |#1|)) (IF (|has| |#1| (-38 (-406 (-558)))) (PROGN (-15 -2468 (|#1| (-762) |#1|)) (-15 -2481 (|#1| (-762) |#1|))) |%noBranch|)) (-171)) (T -774))
+((-2481 (*1 *2 *3 *2) (-12 (-5 *3 (-762)) (-5 *1 (-774 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-171)))) (-2468 (*1 *2 *3 *2) (-12 (-5 *3 (-762)) (-5 *1 (-774 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-171)))) (-2317 (*1 *2 *3 *2) (-12 (-5 *3 (-762)) (-5 *1 (-774 *2)) (-4 *2 (-171)))))
+(-10 -7 (-15 -2317 (|#1| (-762) |#1|)) (IF (|has| |#1| (-38 (-406 (-558)))) (PROGN (-15 -2468 (|#1| (-762) |#1|)) (-15 -2481 (|#1| (-762) |#1|))) |%noBranch|))
+((-3207 (((-112) $ $) 7)) (-3773 (((-635 (-2 (|:| -2626 $) (|:| -1328 (-635 |#4|)))) (-635 |#4|)) 85)) (-3782 (((-635 $) (-635 |#4|)) 86) (((-635 $) (-635 |#4|) (-112)) 111)) (-2671 (((-635 |#3|) $) 33)) (-2139 (((-112) $) 26)) (-2040 (((-112) $) 17 (|has| |#1| (-550)))) (-3892 (((-112) |#4| $) 101) (((-112) $) 97)) (-3842 ((|#4| |#4| $) 92)) (-3465 (((-635 (-2 (|:| |val| |#4|) (|:| -2396 $))) |#4| $) 126)) (-2376 (((-2 (|:| |under| $) (|:| -2594 $) (|:| |upper| $)) $ |#3|) 27)) (-3026 (((-112) $ (-762)) 44)) (-4329 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4382))) (((-3 |#4| "failed") $ |#3|) 79)) (-1816 (($) 45 T CONST)) (-2092 (((-112) $) 22 (|has| |#1| (-550)))) (-2116 (((-112) $ $) 24 (|has| |#1| (-550)))) (-2104 (((-112) $ $) 23 (|has| |#1| (-550)))) (-2128 (((-112) $) 25 (|has| |#1| (-550)))) (-3853 (((-635 |#4|) (-635 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-2050 (((-635 |#4|) (-635 |#4|) $) 18 (|has| |#1| (-550)))) (-2061 (((-635 |#4|) (-635 |#4|) $) 19 (|has| |#1| (-550)))) (-3069 (((-3 $ "failed") (-635 |#4|)) 36)) (-1863 (($ (-635 |#4|)) 35)) (-2315 (((-3 $ "failed") $) 82)) (-3810 ((|#4| |#4| $) 89)) (-2338 (($ $) 68 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4382))))) (-1539 (($ |#4| $) 67 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4382)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4382)))) (-2071 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-550)))) (-3902 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3792 ((|#4| |#4| $) 87)) (-3048 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4382)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4382))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4382))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3923 (((-2 (|:| -2626 (-635 |#4|)) (|:| -1328 (-635 |#4|))) $) 105)) (-2166 (((-112) |#4| $) 136)) (-2145 (((-112) |#4| $) 133)) (-2177 (((-112) |#4| $) 137) (((-112) $) 134)) (-2240 (((-635 |#4|) $) 52 (|has| $ (-6 -4382)))) (-3912 (((-112) |#4| $) 104) (((-112) $) 103)) (-1997 ((|#3| $) 34)) (-2986 (((-112) $ (-762)) 43)) (-2122 (((-635 |#4|) $) 53 (|has| $ (-6 -4382)))) (-4322 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4382))))) (-1807 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#4| |#4|) $) 47)) (-4024 (((-635 |#3|) $) 32)) (-2183 (((-112) |#3| $) 31)) (-2953 (((-112) $ (-762)) 42)) (-4310 (((-1145) $) 9)) (-2099 (((-3 |#4| (-635 $)) |#4| |#4| $) 128)) (-2087 (((-635 (-2 (|:| |val| |#4|) (|:| -2396 $))) |#4| |#4| $) 127)) (-1560 (((-3 |#4| "failed") $) 83)) (-2111 (((-635 $) |#4| $) 129)) (-2134 (((-3 (-112) (-635 $)) |#4| $) 132)) (-2123 (((-635 (-2 (|:| |val| (-112)) (|:| -2396 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-4286 (((-635 $) |#4| $) 125) (((-635 $) (-635 |#4|) $) 124) (((-635 $) (-635 |#4|) (-635 $)) 123) (((-635 $) |#4| (-635 $)) 122)) (-2423 (($ |#4| $) 117) (($ (-635 |#4|) $) 116)) (-3932 (((-635 |#4|) $) 107)) (-3873 (((-112) |#4| $) 99) (((-112) $) 95)) (-3820 ((|#4| |#4| $) 90)) (-3953 (((-112) $ $) 110)) (-2081 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-550)))) (-3883 (((-112) |#4| $) 100) (((-112) $) 96)) (-3830 ((|#4| |#4| $) 91)) (-2975 (((-1107) $) 10)) (-2305 (((-3 |#4| "failed") $) 84)) (-4307 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3755 (((-3 $ "failed") $ |#4|) 78)) (-3430 (($ $ |#4|) 77) (((-635 $) |#4| $) 115) (((-635 $) |#4| (-635 $)) 114) (((-635 $) (-635 |#4|) $) 113) (((-635 $) (-635 |#4|) (-635 $)) 112)) (-3266 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 |#4|) (-635 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-293 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-635 (-293 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))) (-2381 (((-112) $ $) 38)) (-3375 (((-112) $) 41)) (-2083 (($) 40)) (-4323 (((-762) $) 106)) (-2988 (((-762) |#4| $) 54 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4382)))) (((-762) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4382)))) (-1553 (($ $) 39)) (-3224 (((-534) $) 69 (|has| |#4| (-606 (-534))))) (-3233 (($ (-635 |#4|)) 60)) (-2151 (($ $ |#3|) 28)) (-2171 (($ $ |#3|) 30)) (-3801 (($ $) 88)) (-2160 (($ $ |#3|) 29)) (-3220 (((-853) $) 11) (((-635 |#4|) $) 37)) (-3745 (((-762) $) 76 (|has| |#3| (-367)))) (-3940 (((-3 (-2 (|:| |bas| $) (|:| -3072 (-635 |#4|))) "failed") (-635 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3072 (-635 |#4|))) "failed") (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-3863 (((-112) $ (-1 (-112) |#4| (-635 |#4|))) 98)) (-2076 (((-635 $) |#4| $) 121) (((-635 $) |#4| (-635 $)) 120) (((-635 $) (-635 |#4|) $) 119) (((-635 $) (-635 |#4|) (-635 $)) 118)) (-3277 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4382)))) (-3764 (((-635 |#3|) $) 81)) (-2155 (((-112) |#4| $) 135)) (-4206 (((-112) |#3| $) 80)) (-1683 (((-112) $ $) 6)) (-2755 (((-762) $) 46 (|has| $ (-6 -4382)))))
+(((-775 |#1| |#2| |#3| |#4|) (-139) (-450) (-784) (-841) (-1053 |t#1| |t#2| |t#3|)) (T -775))
+NIL
+(-13 (-1059 |t#1| |t#2| |t#3| |t#4|))
+(((-34) . T) ((-102) . T) ((-605 (-635 |#4|)) . T) ((-605 (-853)) . T) ((-150 |#4|) . T) ((-606 (-534)) |has| |#4| (-606 (-534))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))) ((-487 |#4|) . T) ((-512 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))) ((-966 |#1| |#2| |#3| |#4|) . T) ((-1059 |#1| |#2| |#3| |#4|) . T) ((-1087) . T) ((-1193 |#1| |#2| |#3| |#4|) . T) ((-1200) . T))
+((-2495 (((-3 (-378) "failed") (-315 |#1|) (-911)) 62 (-12 (|has| |#1| (-550)) (|has| |#1| (-841)))) (((-3 (-378) "failed") (-315 |#1|)) 54 (-12 (|has| |#1| (-550)) (|has| |#1| (-841)))) (((-3 (-378) "failed") (-406 (-942 |#1|)) (-911)) 41 (|has| |#1| (-550))) (((-3 (-378) "failed") (-406 (-942 |#1|))) 40 (|has| |#1| (-550))) (((-3 (-378) "failed") (-942 |#1|) (-911)) 31 (|has| |#1| (-1039))) (((-3 (-378) "failed") (-942 |#1|)) 30 (|has| |#1| (-1039)))) (-2803 (((-378) (-315 |#1|) (-911)) 99 (-12 (|has| |#1| (-550)) (|has| |#1| (-841)))) (((-378) (-315 |#1|)) 94 (-12 (|has| |#1| (-550)) (|has| |#1| (-841)))) (((-378) (-406 (-942 |#1|)) (-911)) 91 (|has| |#1| (-550))) (((-378) (-406 (-942 |#1|))) 90 (|has| |#1| (-550))) (((-378) (-942 |#1|) (-911)) 86 (|has| |#1| (-1039))) (((-378) (-942 |#1|)) 85 (|has| |#1| (-1039))) (((-378) |#1| (-911)) 76) (((-378) |#1|) 22)) (-2505 (((-3 (-168 (-378)) "failed") (-315 (-168 |#1|)) (-911)) 71 (-12 (|has| |#1| (-550)) (|has| |#1| (-841)))) (((-3 (-168 (-378)) "failed") (-315 (-168 |#1|))) 70 (-12 (|has| |#1| (-550)) (|has| |#1| (-841)))) (((-3 (-168 (-378)) "failed") (-315 |#1|) (-911)) 63 (-12 (|has| |#1| (-550)) (|has| |#1| (-841)))) (((-3 (-168 (-378)) "failed") (-315 |#1|)) 61 (-12 (|has| |#1| (-550)) (|has| |#1| (-841)))) (((-3 (-168 (-378)) "failed") (-406 (-942 (-168 |#1|))) (-911)) 46 (|has| |#1| (-550))) (((-3 (-168 (-378)) "failed") (-406 (-942 (-168 |#1|)))) 45 (|has| |#1| (-550))) (((-3 (-168 (-378)) "failed") (-406 (-942 |#1|)) (-911)) 39 (|has| |#1| (-550))) (((-3 (-168 (-378)) "failed") (-406 (-942 |#1|))) 38 (|has| |#1| (-550))) (((-3 (-168 (-378)) "failed") (-942 |#1|) (-911)) 28 (|has| |#1| (-1039))) (((-3 (-168 (-378)) "failed") (-942 |#1|)) 26 (|has| |#1| (-1039))) (((-3 (-168 (-378)) "failed") (-942 (-168 |#1|)) (-911)) 18 (|has| |#1| (-171))) (((-3 (-168 (-378)) "failed") (-942 (-168 |#1|))) 15 (|has| |#1| (-171)))) (-2453 (((-168 (-378)) (-315 (-168 |#1|)) (-911)) 102 (-12 (|has| |#1| (-550)) (|has| |#1| (-841)))) (((-168 (-378)) (-315 (-168 |#1|))) 101 (-12 (|has| |#1| (-550)) (|has| |#1| (-841)))) (((-168 (-378)) (-315 |#1|) (-911)) 100 (-12 (|has| |#1| (-550)) (|has| |#1| (-841)))) (((-168 (-378)) (-315 |#1|)) 98 (-12 (|has| |#1| (-550)) (|has| |#1| (-841)))) (((-168 (-378)) (-406 (-942 (-168 |#1|))) (-911)) 93 (|has| |#1| (-550))) (((-168 (-378)) (-406 (-942 (-168 |#1|)))) 92 (|has| |#1| (-550))) (((-168 (-378)) (-406 (-942 |#1|)) (-911)) 89 (|has| |#1| (-550))) (((-168 (-378)) (-406 (-942 |#1|))) 88 (|has| |#1| (-550))) (((-168 (-378)) (-942 |#1|) (-911)) 84 (|has| |#1| (-1039))) (((-168 (-378)) (-942 |#1|)) 83 (|has| |#1| (-1039))) (((-168 (-378)) (-942 (-168 |#1|)) (-911)) 78 (|has| |#1| (-171))) (((-168 (-378)) (-942 (-168 |#1|))) 77 (|has| |#1| (-171))) (((-168 (-378)) (-168 |#1|) (-911)) 80 (|has| |#1| (-171))) (((-168 (-378)) (-168 |#1|)) 79 (|has| |#1| (-171))) (((-168 (-378)) |#1| (-911)) 27) (((-168 (-378)) |#1|) 25)))
+(((-776 |#1|) (-10 -7 (-15 -2803 ((-378) |#1|)) (-15 -2803 ((-378) |#1| (-911))) (-15 -2453 ((-168 (-378)) |#1|)) (-15 -2453 ((-168 (-378)) |#1| (-911))) (IF (|has| |#1| (-171)) (PROGN (-15 -2453 ((-168 (-378)) (-168 |#1|))) (-15 -2453 ((-168 (-378)) (-168 |#1|) (-911))) (-15 -2453 ((-168 (-378)) (-942 (-168 |#1|)))) (-15 -2453 ((-168 (-378)) (-942 (-168 |#1|)) (-911)))) |%noBranch|) (IF (|has| |#1| (-1039)) (PROGN (-15 -2803 ((-378) (-942 |#1|))) (-15 -2803 ((-378) (-942 |#1|) (-911))) (-15 -2453 ((-168 (-378)) (-942 |#1|))) (-15 -2453 ((-168 (-378)) (-942 |#1|) (-911)))) |%noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -2803 ((-378) (-406 (-942 |#1|)))) (-15 -2803 ((-378) (-406 (-942 |#1|)) (-911))) (-15 -2453 ((-168 (-378)) (-406 (-942 |#1|)))) (-15 -2453 ((-168 (-378)) (-406 (-942 |#1|)) (-911))) (-15 -2453 ((-168 (-378)) (-406 (-942 (-168 |#1|))))) (-15 -2453 ((-168 (-378)) (-406 (-942 (-168 |#1|))) (-911))) (IF (|has| |#1| (-841)) (PROGN (-15 -2803 ((-378) (-315 |#1|))) (-15 -2803 ((-378) (-315 |#1|) (-911))) (-15 -2453 ((-168 (-378)) (-315 |#1|))) (-15 -2453 ((-168 (-378)) (-315 |#1|) (-911))) (-15 -2453 ((-168 (-378)) (-315 (-168 |#1|)))) (-15 -2453 ((-168 (-378)) (-315 (-168 |#1|)) (-911)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-15 -2505 ((-3 (-168 (-378)) "failed") (-942 (-168 |#1|)))) (-15 -2505 ((-3 (-168 (-378)) "failed") (-942 (-168 |#1|)) (-911)))) |%noBranch|) (IF (|has| |#1| (-1039)) (PROGN (-15 -2495 ((-3 (-378) "failed") (-942 |#1|))) (-15 -2495 ((-3 (-378) "failed") (-942 |#1|) (-911))) (-15 -2505 ((-3 (-168 (-378)) "failed") (-942 |#1|))) (-15 -2505 ((-3 (-168 (-378)) "failed") (-942 |#1|) (-911)))) |%noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -2495 ((-3 (-378) "failed") (-406 (-942 |#1|)))) (-15 -2495 ((-3 (-378) "failed") (-406 (-942 |#1|)) (-911))) (-15 -2505 ((-3 (-168 (-378)) "failed") (-406 (-942 |#1|)))) (-15 -2505 ((-3 (-168 (-378)) "failed") (-406 (-942 |#1|)) (-911))) (-15 -2505 ((-3 (-168 (-378)) "failed") (-406 (-942 (-168 |#1|))))) (-15 -2505 ((-3 (-168 (-378)) "failed") (-406 (-942 (-168 |#1|))) (-911))) (IF (|has| |#1| (-841)) (PROGN (-15 -2495 ((-3 (-378) "failed") (-315 |#1|))) (-15 -2495 ((-3 (-378) "failed") (-315 |#1|) (-911))) (-15 -2505 ((-3 (-168 (-378)) "failed") (-315 |#1|))) (-15 -2505 ((-3 (-168 (-378)) "failed") (-315 |#1|) (-911))) (-15 -2505 ((-3 (-168 (-378)) "failed") (-315 (-168 |#1|)))) (-15 -2505 ((-3 (-168 (-378)) "failed") (-315 (-168 |#1|)) (-911)))) |%noBranch|)) |%noBranch|)) (-606 (-378))) (T -776))
+((-2505 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-315 (-168 *5))) (-5 *4 (-911)) (-4 *5 (-550)) (-4 *5 (-841)) (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *5)))) (-2505 (*1 *2 *3) (|partial| -12 (-5 *3 (-315 (-168 *4))) (-4 *4 (-550)) (-4 *4 (-841)) (-4 *4 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *4)))) (-2505 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-315 *5)) (-5 *4 (-911)) (-4 *5 (-550)) (-4 *5 (-841)) (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *5)))) (-2505 (*1 *2 *3) (|partial| -12 (-5 *3 (-315 *4)) (-4 *4 (-550)) (-4 *4 (-841)) (-4 *4 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *4)))) (-2495 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-315 *5)) (-5 *4 (-911)) (-4 *5 (-550)) (-4 *5 (-841)) (-4 *5 (-606 *2)) (-5 *2 (-378)) (-5 *1 (-776 *5)))) (-2495 (*1 *2 *3) (|partial| -12 (-5 *3 (-315 *4)) (-4 *4 (-550)) (-4 *4 (-841)) (-4 *4 (-606 *2)) (-5 *2 (-378)) (-5 *1 (-776 *4)))) (-2505 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-406 (-942 (-168 *5)))) (-5 *4 (-911)) (-4 *5 (-550)) (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *5)))) (-2505 (*1 *2 *3) (|partial| -12 (-5 *3 (-406 (-942 (-168 *4)))) (-4 *4 (-550)) (-4 *4 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *4)))) (-2505 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-406 (-942 *5))) (-5 *4 (-911)) (-4 *5 (-550)) (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *5)))) (-2505 (*1 *2 *3) (|partial| -12 (-5 *3 (-406 (-942 *4))) (-4 *4 (-550)) (-4 *4 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *4)))) (-2495 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-406 (-942 *5))) (-5 *4 (-911)) (-4 *5 (-550)) (-4 *5 (-606 *2)) (-5 *2 (-378)) (-5 *1 (-776 *5)))) (-2495 (*1 *2 *3) (|partial| -12 (-5 *3 (-406 (-942 *4))) (-4 *4 (-550)) (-4 *4 (-606 *2)) (-5 *2 (-378)) (-5 *1 (-776 *4)))) (-2505 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-942 *5)) (-5 *4 (-911)) (-4 *5 (-1039)) (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *5)))) (-2505 (*1 *2 *3) (|partial| -12 (-5 *3 (-942 *4)) (-4 *4 (-1039)) (-4 *4 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *4)))) (-2495 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-942 *5)) (-5 *4 (-911)) (-4 *5 (-1039)) (-4 *5 (-606 *2)) (-5 *2 (-378)) (-5 *1 (-776 *5)))) (-2495 (*1 *2 *3) (|partial| -12 (-5 *3 (-942 *4)) (-4 *4 (-1039)) (-4 *4 (-606 *2)) (-5 *2 (-378)) (-5 *1 (-776 *4)))) (-2505 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-942 (-168 *5))) (-5 *4 (-911)) (-4 *5 (-171)) (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *5)))) (-2505 (*1 *2 *3) (|partial| -12 (-5 *3 (-942 (-168 *4))) (-4 *4 (-171)) (-4 *4 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *4)))) (-2453 (*1 *2 *3 *4) (-12 (-5 *3 (-315 (-168 *5))) (-5 *4 (-911)) (-4 *5 (-550)) (-4 *5 (-841)) (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *5)))) (-2453 (*1 *2 *3) (-12 (-5 *3 (-315 (-168 *4))) (-4 *4 (-550)) (-4 *4 (-841)) (-4 *4 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *4)))) (-2453 (*1 *2 *3 *4) (-12 (-5 *3 (-315 *5)) (-5 *4 (-911)) (-4 *5 (-550)) (-4 *5 (-841)) (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *5)))) (-2453 (*1 *2 *3) (-12 (-5 *3 (-315 *4)) (-4 *4 (-550)) (-4 *4 (-841)) (-4 *4 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *4)))) (-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-315 *5)) (-5 *4 (-911)) (-4 *5 (-550)) (-4 *5 (-841)) (-4 *5 (-606 *2)) (-5 *2 (-378)) (-5 *1 (-776 *5)))) (-2803 (*1 *2 *3) (-12 (-5 *3 (-315 *4)) (-4 *4 (-550)) (-4 *4 (-841)) (-4 *4 (-606 *2)) (-5 *2 (-378)) (-5 *1 (-776 *4)))) (-2453 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-942 (-168 *5)))) (-5 *4 (-911)) (-4 *5 (-550)) (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *5)))) (-2453 (*1 *2 *3) (-12 (-5 *3 (-406 (-942 (-168 *4)))) (-4 *4 (-550)) (-4 *4 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *4)))) (-2453 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-942 *5))) (-5 *4 (-911)) (-4 *5 (-550)) (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *5)))) (-2453 (*1 *2 *3) (-12 (-5 *3 (-406 (-942 *4))) (-4 *4 (-550)) (-4 *4 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *4)))) (-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-942 *5))) (-5 *4 (-911)) (-4 *5 (-550)) (-4 *5 (-606 *2)) (-5 *2 (-378)) (-5 *1 (-776 *5)))) (-2803 (*1 *2 *3) (-12 (-5 *3 (-406 (-942 *4))) (-4 *4 (-550)) (-4 *4 (-606 *2)) (-5 *2 (-378)) (-5 *1 (-776 *4)))) (-2453 (*1 *2 *3 *4) (-12 (-5 *3 (-942 *5)) (-5 *4 (-911)) (-4 *5 (-1039)) (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *5)))) (-2453 (*1 *2 *3) (-12 (-5 *3 (-942 *4)) (-4 *4 (-1039)) (-4 *4 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *4)))) (-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-942 *5)) (-5 *4 (-911)) (-4 *5 (-1039)) (-4 *5 (-606 *2)) (-5 *2 (-378)) (-5 *1 (-776 *5)))) (-2803 (*1 *2 *3) (-12 (-5 *3 (-942 *4)) (-4 *4 (-1039)) (-4 *4 (-606 *2)) (-5 *2 (-378)) (-5 *1 (-776 *4)))) (-2453 (*1 *2 *3 *4) (-12 (-5 *3 (-942 (-168 *5))) (-5 *4 (-911)) (-4 *5 (-171)) (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *5)))) (-2453 (*1 *2 *3) (-12 (-5 *3 (-942 (-168 *4))) (-4 *4 (-171)) (-4 *4 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *4)))) (-2453 (*1 *2 *3 *4) (-12 (-5 *3 (-168 *5)) (-5 *4 (-911)) (-4 *5 (-171)) (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *5)))) (-2453 (*1 *2 *3) (-12 (-5 *3 (-168 *4)) (-4 *4 (-171)) (-4 *4 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *4)))) (-2453 (*1 *2 *3 *4) (-12 (-5 *4 (-911)) (-5 *2 (-168 (-378))) (-5 *1 (-776 *3)) (-4 *3 (-606 (-378))))) (-2453 (*1 *2 *3) (-12 (-5 *2 (-168 (-378))) (-5 *1 (-776 *3)) (-4 *3 (-606 (-378))))) (-2803 (*1 *2 *3 *4) (-12 (-5 *4 (-911)) (-5 *2 (-378)) (-5 *1 (-776 *3)) (-4 *3 (-606 *2)))) (-2803 (*1 *2 *3) (-12 (-5 *2 (-378)) (-5 *1 (-776 *3)) (-4 *3 (-606 *2)))))
+(-10 -7 (-15 -2803 ((-378) |#1|)) (-15 -2803 ((-378) |#1| (-911))) (-15 -2453 ((-168 (-378)) |#1|)) (-15 -2453 ((-168 (-378)) |#1| (-911))) (IF (|has| |#1| (-171)) (PROGN (-15 -2453 ((-168 (-378)) (-168 |#1|))) (-15 -2453 ((-168 (-378)) (-168 |#1|) (-911))) (-15 -2453 ((-168 (-378)) (-942 (-168 |#1|)))) (-15 -2453 ((-168 (-378)) (-942 (-168 |#1|)) (-911)))) |%noBranch|) (IF (|has| |#1| (-1039)) (PROGN (-15 -2803 ((-378) (-942 |#1|))) (-15 -2803 ((-378) (-942 |#1|) (-911))) (-15 -2453 ((-168 (-378)) (-942 |#1|))) (-15 -2453 ((-168 (-378)) (-942 |#1|) (-911)))) |%noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -2803 ((-378) (-406 (-942 |#1|)))) (-15 -2803 ((-378) (-406 (-942 |#1|)) (-911))) (-15 -2453 ((-168 (-378)) (-406 (-942 |#1|)))) (-15 -2453 ((-168 (-378)) (-406 (-942 |#1|)) (-911))) (-15 -2453 ((-168 (-378)) (-406 (-942 (-168 |#1|))))) (-15 -2453 ((-168 (-378)) (-406 (-942 (-168 |#1|))) (-911))) (IF (|has| |#1| (-841)) (PROGN (-15 -2803 ((-378) (-315 |#1|))) (-15 -2803 ((-378) (-315 |#1|) (-911))) (-15 -2453 ((-168 (-378)) (-315 |#1|))) (-15 -2453 ((-168 (-378)) (-315 |#1|) (-911))) (-15 -2453 ((-168 (-378)) (-315 (-168 |#1|)))) (-15 -2453 ((-168 (-378)) (-315 (-168 |#1|)) (-911)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-15 -2505 ((-3 (-168 (-378)) "failed") (-942 (-168 |#1|)))) (-15 -2505 ((-3 (-168 (-378)) "failed") (-942 (-168 |#1|)) (-911)))) |%noBranch|) (IF (|has| |#1| (-1039)) (PROGN (-15 -2495 ((-3 (-378) "failed") (-942 |#1|))) (-15 -2495 ((-3 (-378) "failed") (-942 |#1|) (-911))) (-15 -2505 ((-3 (-168 (-378)) "failed") (-942 |#1|))) (-15 -2505 ((-3 (-168 (-378)) "failed") (-942 |#1|) (-911)))) |%noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -2495 ((-3 (-378) "failed") (-406 (-942 |#1|)))) (-15 -2495 ((-3 (-378) "failed") (-406 (-942 |#1|)) (-911))) (-15 -2505 ((-3 (-168 (-378)) "failed") (-406 (-942 |#1|)))) (-15 -2505 ((-3 (-168 (-378)) "failed") (-406 (-942 |#1|)) (-911))) (-15 -2505 ((-3 (-168 (-378)) "failed") (-406 (-942 (-168 |#1|))))) (-15 -2505 ((-3 (-168 (-378)) "failed") (-406 (-942 (-168 |#1|))) (-911))) (IF (|has| |#1| (-841)) (PROGN (-15 -2495 ((-3 (-378) "failed") (-315 |#1|))) (-15 -2495 ((-3 (-378) "failed") (-315 |#1|) (-911))) (-15 -2505 ((-3 (-168 (-378)) "failed") (-315 |#1|))) (-15 -2505 ((-3 (-168 (-378)) "failed") (-315 |#1|) (-911))) (-15 -2505 ((-3 (-168 (-378)) "failed") (-315 (-168 |#1|)))) (-15 -2505 ((-3 (-168 (-378)) "failed") (-315 (-168 |#1|)) (-911)))) |%noBranch|)) |%noBranch|))
+((-2549 (((-911) (-1145)) 64)) (-2576 (((-3 (-378) "failed") (-1145)) 32)) (-2561 (((-378) (-1145)) 30)) (-2525 (((-911) (-1145)) 53)) (-2537 (((-1145) (-911)) 54)) (-2514 (((-1145) (-911)) 52)))
+(((-777) (-10 -7 (-15 -2514 ((-1145) (-911))) (-15 -2525 ((-911) (-1145))) (-15 -2537 ((-1145) (-911))) (-15 -2549 ((-911) (-1145))) (-15 -2561 ((-378) (-1145))) (-15 -2576 ((-3 (-378) "failed") (-1145))))) (T -777))
+((-2576 (*1 *2 *3) (|partial| -12 (-5 *3 (-1145)) (-5 *2 (-378)) (-5 *1 (-777)))) (-2561 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-378)) (-5 *1 (-777)))) (-2549 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-911)) (-5 *1 (-777)))) (-2537 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1145)) (-5 *1 (-777)))) (-2525 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-911)) (-5 *1 (-777)))) (-2514 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1145)) (-5 *1 (-777)))))
+(-10 -7 (-15 -2514 ((-1145) (-911))) (-15 -2525 ((-911) (-1145))) (-15 -2537 ((-1145) (-911))) (-15 -2549 ((-911) (-1145))) (-15 -2561 ((-378) (-1145))) (-15 -2576 ((-3 (-378) "failed") (-1145))))
+((-3207 (((-112) $ $) 7)) (-2587 (((-1025) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) 15) (((-1025) (-2 (|:| |fn| (-315 (-224))) (|:| -1626 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) 13)) (-3510 (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 16) (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |fn| (-315 (-224))) (|:| -1626 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 14)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11)) (-1683 (((-112) $ $) 6)))
+(((-778) (-139)) (T -778))
+((-3510 (*1 *2 *3 *4) (-12 (-4 *1 (-778)) (-5 *3 (-1051)) (-5 *4 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| -3510 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025)))))) (-2587 (*1 *2 *3 *2) (-12 (-4 *1 (-778)) (-5 *2 (-1025)) (-5 *3 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) (-3510 (*1 *2 *3 *4) (-12 (-4 *1 (-778)) (-5 *3 (-1051)) (-5 *4 (-2 (|:| |fn| (-315 (-224))) (|:| -1626 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| -3510 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025)))))) (-2587 (*1 *2 *3 *2) (-12 (-4 *1 (-778)) (-5 *2 (-1025)) (-5 *3 (-2 (|:| |fn| (-315 (-224))) (|:| -1626 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))))
+(-13 (-1087) (-10 -7 (-15 -3510 ((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2587 ((-1025) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025))) (-15 -3510 ((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |fn| (-315 (-224))) (|:| -1626 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2587 ((-1025) (-2 (|:| |fn| (-315 (-224))) (|:| -1626 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)))))
+(((-102) . T) ((-605 (-853)) . T) ((-1087) . T))
+((-2620 (((-1251) (-1246 (-378)) (-558) (-378) (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -1667 (-378))) (-378) (-1246 (-378)) (-1 (-1251) (-1246 (-378)) (-1246 (-378)) (-378)) (-1246 (-378)) (-1246 (-378)) (-1246 (-378)) (-1246 (-378)) (-1246 (-378)) (-1246 (-378)) (-1246 (-378))) 44) (((-1251) (-1246 (-378)) (-558) (-378) (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -1667 (-378))) (-378) (-1246 (-378)) (-1 (-1251) (-1246 (-378)) (-1246 (-378)) (-378))) 43)) (-2630 (((-1251) (-1246 (-378)) (-558) (-378) (-378) (-558) (-1 (-1251) (-1246 (-378)) (-1246 (-378)) (-378))) 50)) (-2610 (((-1251) (-1246 (-378)) (-558) (-378) (-378) (-378) (-378) (-558) (-1 (-1251) (-1246 (-378)) (-1246 (-378)) (-378))) 41)) (-2600 (((-1251) (-1246 (-378)) (-558) (-378) (-378) (-1 (-1251) (-1246 (-378)) (-1246 (-378)) (-378)) (-1246 (-378)) (-1246 (-378)) (-1246 (-378)) (-1246 (-378))) 52) (((-1251) (-1246 (-378)) (-558) (-378) (-378) (-1 (-1251) (-1246 (-378)) (-1246 (-378)) (-378))) 51)))
+(((-779) (-10 -7 (-15 -2600 ((-1251) (-1246 (-378)) (-558) (-378) (-378) (-1 (-1251) (-1246 (-378)) (-1246 (-378)) (-378)))) (-15 -2600 ((-1251) (-1246 (-378)) (-558) (-378) (-378) (-1 (-1251) (-1246 (-378)) (-1246 (-378)) (-378)) (-1246 (-378)) (-1246 (-378)) (-1246 (-378)) (-1246 (-378)))) (-15 -2610 ((-1251) (-1246 (-378)) (-558) (-378) (-378) (-378) (-378) (-558) (-1 (-1251) (-1246 (-378)) (-1246 (-378)) (-378)))) (-15 -2620 ((-1251) (-1246 (-378)) (-558) (-378) (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -1667 (-378))) (-378) (-1246 (-378)) (-1 (-1251) (-1246 (-378)) (-1246 (-378)) (-378)))) (-15 -2620 ((-1251) (-1246 (-378)) (-558) (-378) (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -1667 (-378))) (-378) (-1246 (-378)) (-1 (-1251) (-1246 (-378)) (-1246 (-378)) (-378)) (-1246 (-378)) (-1246 (-378)) (-1246 (-378)) (-1246 (-378)) (-1246 (-378)) (-1246 (-378)) (-1246 (-378)))) (-15 -2630 ((-1251) (-1246 (-378)) (-558) (-378) (-378) (-558) (-1 (-1251) (-1246 (-378)) (-1246 (-378)) (-378)))))) (T -779))
+((-2630 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-558)) (-5 *6 (-1 (-1251) (-1246 *5) (-1246 *5) (-378))) (-5 *3 (-1246 (-378))) (-5 *5 (-378)) (-5 *2 (-1251)) (-5 *1 (-779)))) (-2620 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-558)) (-5 *6 (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -1667 (-378)))) (-5 *7 (-1 (-1251) (-1246 *5) (-1246 *5) (-378))) (-5 *3 (-1246 (-378))) (-5 *5 (-378)) (-5 *2 (-1251)) (-5 *1 (-779)))) (-2620 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-558)) (-5 *6 (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -1667 (-378)))) (-5 *7 (-1 (-1251) (-1246 *5) (-1246 *5) (-378))) (-5 *3 (-1246 (-378))) (-5 *5 (-378)) (-5 *2 (-1251)) (-5 *1 (-779)))) (-2610 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-558)) (-5 *6 (-1 (-1251) (-1246 *5) (-1246 *5) (-378))) (-5 *3 (-1246 (-378))) (-5 *5 (-378)) (-5 *2 (-1251)) (-5 *1 (-779)))) (-2600 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-558)) (-5 *6 (-1 (-1251) (-1246 *5) (-1246 *5) (-378))) (-5 *3 (-1246 (-378))) (-5 *5 (-378)) (-5 *2 (-1251)) (-5 *1 (-779)))) (-2600 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-558)) (-5 *6 (-1 (-1251) (-1246 *5) (-1246 *5) (-378))) (-5 *3 (-1246 (-378))) (-5 *5 (-378)) (-5 *2 (-1251)) (-5 *1 (-779)))))
+(-10 -7 (-15 -2600 ((-1251) (-1246 (-378)) (-558) (-378) (-378) (-1 (-1251) (-1246 (-378)) (-1246 (-378)) (-378)))) (-15 -2600 ((-1251) (-1246 (-378)) (-558) (-378) (-378) (-1 (-1251) (-1246 (-378)) (-1246 (-378)) (-378)) (-1246 (-378)) (-1246 (-378)) (-1246 (-378)) (-1246 (-378)))) (-15 -2610 ((-1251) (-1246 (-378)) (-558) (-378) (-378) (-378) (-378) (-558) (-1 (-1251) (-1246 (-378)) (-1246 (-378)) (-378)))) (-15 -2620 ((-1251) (-1246 (-378)) (-558) (-378) (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -1667 (-378))) (-378) (-1246 (-378)) (-1 (-1251) (-1246 (-378)) (-1246 (-378)) (-378)))) (-15 -2620 ((-1251) (-1246 (-378)) (-558) (-378) (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -1667 (-378))) (-378) (-1246 (-378)) (-1 (-1251) (-1246 (-378)) (-1246 (-378)) (-378)) (-1246 (-378)) (-1246 (-378)) (-1246 (-378)) (-1246 (-378)) (-1246 (-378)) (-1246 (-378)) (-1246 (-378)))) (-15 -2630 ((-1251) (-1246 (-378)) (-558) (-378) (-378) (-558) (-1 (-1251) (-1246 (-378)) (-1246 (-378)) (-378)))))
+((-2727 (((-2 (|:| -2925 (-378)) (|:| -1984 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558)) 53)) (-2693 (((-2 (|:| -2925 (-378)) (|:| -1984 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558)) 31)) (-2716 (((-2 (|:| -2925 (-378)) (|:| -1984 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558)) 52)) (-2683 (((-2 (|:| -2925 (-378)) (|:| -1984 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558)) 29)) (-2705 (((-2 (|:| -2925 (-378)) (|:| -1984 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558)) 51)) (-2674 (((-2 (|:| -2925 (-378)) (|:| -1984 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558)) 19)) (-2662 (((-2 (|:| -2925 (-378)) (|:| -1984 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558) (-558)) 32)) (-2651 (((-2 (|:| -2925 (-378)) (|:| -1984 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558) (-558)) 30)) (-2639 (((-2 (|:| -2925 (-378)) (|:| -1984 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558) (-558)) 28)))
+(((-780) (-10 -7 (-15 -2639 ((-2 (|:| -2925 (-378)) (|:| -1984 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558) (-558))) (-15 -2651 ((-2 (|:| -2925 (-378)) (|:| -1984 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558) (-558))) (-15 -2662 ((-2 (|:| -2925 (-378)) (|:| -1984 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558) (-558))) (-15 -2674 ((-2 (|:| -2925 (-378)) (|:| -1984 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558))) (-15 -2683 ((-2 (|:| -2925 (-378)) (|:| -1984 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558))) (-15 -2693 ((-2 (|:| -2925 (-378)) (|:| -1984 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558))) (-15 -2705 ((-2 (|:| -2925 (-378)) (|:| -1984 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558))) (-15 -2716 ((-2 (|:| -2925 (-378)) (|:| -1984 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558))) (-15 -2727 ((-2 (|:| -2925 (-378)) (|:| -1984 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558))))) (T -780))
+((-2727 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2925 *4) (|:| -1984 *4) (|:| |totalpts| (-558)) (|:| |success| (-112)))) (-5 *1 (-780)) (-5 *5 (-558)))) (-2716 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2925 *4) (|:| -1984 *4) (|:| |totalpts| (-558)) (|:| |success| (-112)))) (-5 *1 (-780)) (-5 *5 (-558)))) (-2705 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2925 *4) (|:| -1984 *4) (|:| |totalpts| (-558)) (|:| |success| (-112)))) (-5 *1 (-780)) (-5 *5 (-558)))) (-2693 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2925 *4) (|:| -1984 *4) (|:| |totalpts| (-558)) (|:| |success| (-112)))) (-5 *1 (-780)) (-5 *5 (-558)))) (-2683 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2925 *4) (|:| -1984 *4) (|:| |totalpts| (-558)) (|:| |success| (-112)))) (-5 *1 (-780)) (-5 *5 (-558)))) (-2674 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2925 *4) (|:| -1984 *4) (|:| |totalpts| (-558)) (|:| |success| (-112)))) (-5 *1 (-780)) (-5 *5 (-558)))) (-2662 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2925 *4) (|:| -1984 *4) (|:| |totalpts| (-558)) (|:| |success| (-112)))) (-5 *1 (-780)) (-5 *5 (-558)))) (-2651 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2925 *4) (|:| -1984 *4) (|:| |totalpts| (-558)) (|:| |success| (-112)))) (-5 *1 (-780)) (-5 *5 (-558)))) (-2639 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2925 *4) (|:| -1984 *4) (|:| |totalpts| (-558)) (|:| |success| (-112)))) (-5 *1 (-780)) (-5 *5 (-558)))))
+(-10 -7 (-15 -2639 ((-2 (|:| -2925 (-378)) (|:| -1984 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558) (-558))) (-15 -2651 ((-2 (|:| -2925 (-378)) (|:| -1984 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558) (-558))) (-15 -2662 ((-2 (|:| -2925 (-378)) (|:| -1984 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558) (-558))) (-15 -2674 ((-2 (|:| -2925 (-378)) (|:| -1984 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558))) (-15 -2683 ((-2 (|:| -2925 (-378)) (|:| -1984 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558))) (-15 -2693 ((-2 (|:| -2925 (-378)) (|:| -1984 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558))) (-15 -2705 ((-2 (|:| -2925 (-378)) (|:| -1984 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558))) (-15 -2716 ((-2 (|:| -2925 (-378)) (|:| -1984 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558))) (-15 -2727 ((-2 (|:| -2925 (-378)) (|:| -1984 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558))))
+((-4015 (((-1195 |#1|) |#1| (-224) (-558)) 46)))
+(((-781 |#1|) (-10 -7 (-15 -4015 ((-1195 |#1|) |#1| (-224) (-558)))) (-964)) (T -781))
+((-4015 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-224)) (-5 *5 (-558)) (-5 *2 (-1195 *3)) (-5 *1 (-781 *3)) (-4 *3 (-964)))))
+(-10 -7 (-15 -4015 ((-1195 |#1|) |#1| (-224) (-558))))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 24)) (-2089 (((-3 $ "failed") $ $) 26)) (-1816 (($) 23 T CONST)) (-3910 (($ $ $) 13)) (-3542 (($ $ $) 14)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11)) (-2131 (($) 22 T CONST)) (-1747 (((-112) $ $) 16)) (-1720 (((-112) $ $) 17)) (-1683 (((-112) $ $) 6)) (-1731 (((-112) $ $) 15)) (-1705 (((-112) $ $) 18)) (-1798 (($ $ $) 28) (($ $) 27)) (-1784 (($ $ $) 20)) (* (($ (-911) $) 21) (($ (-762) $) 25) (($ (-558) $) 29)))
+(((-782) (-139)) (T -782))
+NIL
+(-13 (-786) (-21))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-605 (-853)) . T) ((-783) . T) ((-785) . T) ((-786) . T) ((-841) . T) ((-1087) . T))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 24)) (-1816 (($) 23 T CONST)) (-3910 (($ $ $) 13)) (-3542 (($ $ $) 14)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11)) (-2131 (($) 22 T CONST)) (-1747 (((-112) $ $) 16)) (-1720 (((-112) $ $) 17)) (-1683 (((-112) $ $) 6)) (-1731 (((-112) $ $) 15)) (-1705 (((-112) $ $) 18)) (-1784 (($ $ $) 20)) (* (($ (-911) $) 21) (($ (-762) $) 25)))
+(((-783) (-139)) (T -783))
+NIL
+(-13 (-785) (-23))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-605 (-853)) . T) ((-785) . T) ((-841) . T) ((-1087) . T))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 24)) (-2738 (($ $ $) 27)) (-2089 (((-3 $ "failed") $ $) 26)) (-1816 (($) 23 T CONST)) (-3910 (($ $ $) 13)) (-3542 (($ $ $) 14)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11)) (-2131 (($) 22 T CONST)) (-1747 (((-112) $ $) 16)) (-1720 (((-112) $ $) 17)) (-1683 (((-112) $ $) 6)) (-1731 (((-112) $ $) 15)) (-1705 (((-112) $ $) 18)) (-1784 (($ $ $) 20)) (* (($ (-911) $) 21) (($ (-762) $) 25)))
+(((-784) (-139)) (T -784))
+((-2738 (*1 *1 *1 *1) (-4 *1 (-784))))
+(-13 (-786) (-10 -8 (-15 -2738 ($ $ $))))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-605 (-853)) . T) ((-783) . T) ((-785) . T) ((-786) . T) ((-841) . T) ((-1087) . T))
+((-3207 (((-112) $ $) 7)) (-3910 (($ $ $) 13)) (-3542 (($ $ $) 14)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11)) (-1747 (((-112) $ $) 16)) (-1720 (((-112) $ $) 17)) (-1683 (((-112) $ $) 6)) (-1731 (((-112) $ $) 15)) (-1705 (((-112) $ $) 18)) (-1784 (($ $ $) 20)) (* (($ (-911) $) 21)))
+(((-785) (-139)) (T -785))
+NIL
+(-13 (-841) (-25))
+(((-25) . T) ((-102) . T) ((-605 (-853)) . T) ((-841) . T) ((-1087) . T))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 24)) (-2089 (((-3 $ "failed") $ $) 26)) (-1816 (($) 23 T CONST)) (-3910 (($ $ $) 13)) (-3542 (($ $ $) 14)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11)) (-2131 (($) 22 T CONST)) (-1747 (((-112) $ $) 16)) (-1720 (((-112) $ $) 17)) (-1683 (((-112) $ $) 6)) (-1731 (((-112) $ $) 15)) (-1705 (((-112) $ $) 18)) (-1784 (($ $ $) 20)) (* (($ (-911) $) 21) (($ (-762) $) 25)))
+(((-786) (-139)) (T -786))
+NIL
+(-13 (-783) (-130))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-605 (-853)) . T) ((-783) . T) ((-785) . T) ((-841) . T) ((-1087) . T))
+((-2067 (((-112) $) 41)) (-3069 (((-3 (-558) "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-1863 (((-558) $) NIL) (((-406 (-558)) $) NIL) ((|#2| $) 42)) (-3962 (((-3 (-406 (-558)) "failed") $) 78)) (-3951 (((-112) $) 72)) (-3938 (((-406 (-558)) $) 76)) (-2615 ((|#2| $) 26)) (-3167 (($ (-1 |#2| |#2|) $) 23)) (-2418 (($ $) 61)) (-3224 (((-534) $) 67)) (-3808 (($ $) 21)) (-3220 (((-853) $) 56) (($ (-558)) 39) (($ |#2|) 37) (($ (-406 (-558))) NIL)) (-2542 (((-762)) 10)) (-3190 ((|#2| $) 71)) (-1683 (((-112) $ $) 29)) (-1705 (((-112) $ $) 69)) (-1798 (($ $) 31) (($ $ $) NIL)) (-1784 (($ $ $) 30)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32)))
+(((-787 |#1| |#2|) (-10 -8 (-15 -1705 ((-112) |#1| |#1|)) (-15 -3224 ((-534) |#1|)) (-15 -2418 (|#1| |#1|)) (-15 -3962 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -3938 ((-406 (-558)) |#1|)) (-15 -3951 ((-112) |#1|)) (-15 -3190 (|#2| |#1|)) (-15 -2615 (|#2| |#1|)) (-15 -3808 (|#1| |#1|)) (-15 -3167 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3069 ((-3 |#2| "failed") |#1|)) (-15 -1863 (|#2| |#1|)) (-15 -1863 ((-406 (-558)) |#1|)) (-15 -3069 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -3220 (|#1| (-406 (-558)))) (-15 -1863 ((-558) |#1|)) (-15 -3069 ((-3 (-558) "failed") |#1|)) (-15 -3220 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2542 ((-762))) (-15 -3220 (|#1| (-558))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 -1798 (|#1| |#1| |#1|)) (-15 -1798 (|#1| |#1|)) (-15 * (|#1| (-762) |#1|)) (-15 -2067 ((-112) |#1|)) (-15 * (|#1| (-911) |#1|)) (-15 -1784 (|#1| |#1| |#1|)) (-15 -3220 ((-853) |#1|)) (-15 -1683 ((-112) |#1| |#1|))) (-788 |#2|) (-171)) (T -787))
+((-2542 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-762)) (-5 *1 (-787 *3 *4)) (-4 *3 (-788 *4)))))
+(-10 -8 (-15 -1705 ((-112) |#1| |#1|)) (-15 -3224 ((-534) |#1|)) (-15 -2418 (|#1| |#1|)) (-15 -3962 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -3938 ((-406 (-558)) |#1|)) (-15 -3951 ((-112) |#1|)) (-15 -3190 (|#2| |#1|)) (-15 -2615 (|#2| |#1|)) (-15 -3808 (|#1| |#1|)) (-15 -3167 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3069 ((-3 |#2| "failed") |#1|)) (-15 -1863 (|#2| |#1|)) (-15 -1863 ((-406 (-558)) |#1|)) (-15 -3069 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -3220 (|#1| (-406 (-558)))) (-15 -1863 ((-558) |#1|)) (-15 -3069 ((-3 (-558) "failed") |#1|)) (-15 -3220 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2542 ((-762))) (-15 -3220 (|#1| (-558))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 -1798 (|#1| |#1| |#1|)) (-15 -1798 (|#1| |#1|)) (-15 * (|#1| (-762) |#1|)) (-15 -2067 ((-112) |#1|)) (-15 * (|#1| (-911) |#1|)) (-15 -1784 (|#1| |#1| |#1|)) (-15 -3220 ((-853) |#1|)) (-15 -1683 ((-112) |#1| |#1|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2089 (((-3 $ "failed") $ $) 19)) (-2276 (((-762)) 52 (|has| |#1| (-367)))) (-1816 (($) 17 T CONST)) (-3069 (((-3 (-558) "failed") $) 94 (|has| |#1| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) 91 (|has| |#1| (-1028 (-406 (-558))))) (((-3 |#1| "failed") $) 88)) (-1863 (((-558) $) 93 (|has| |#1| (-1028 (-558)))) (((-406 (-558)) $) 90 (|has| |#1| (-1028 (-406 (-558))))) ((|#1| $) 89)) (-2588 (((-3 $ "failed") $) 33)) (-2546 ((|#1| $) 78)) (-3962 (((-3 (-406 (-558)) "failed") $) 65 (|has| |#1| (-543)))) (-3951 (((-112) $) 67 (|has| |#1| (-543)))) (-3938 (((-406 (-558)) $) 66 (|has| |#1| (-543)))) (-2424 (($) 55 (|has| |#1| (-367)))) (-2035 (((-112) $) 31)) (-2789 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 69)) (-2615 ((|#1| $) 70)) (-3910 (($ $ $) 61 (|has| |#1| (-841)))) (-3542 (($ $ $) 60 (|has| |#1| (-841)))) (-3167 (($ (-1 |#1| |#1|) $) 80)) (-2637 (((-911) $) 54 (|has| |#1| (-367)))) (-4310 (((-1145) $) 9)) (-2418 (($ $) 64 (|has| |#1| (-362)))) (-2851 (($ (-911)) 53 (|has| |#1| (-367)))) (-2760 ((|#1| $) 75)) (-2770 ((|#1| $) 76)) (-2781 ((|#1| $) 77)) (-3780 ((|#1| $) 71)) (-3790 ((|#1| $) 72)) (-3799 ((|#1| $) 73)) (-2747 ((|#1| $) 74)) (-2975 (((-1107) $) 10)) (-2554 (($ $ (-635 |#1|) (-635 |#1|)) 86 (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) 85 (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) 84 (|has| |#1| (-308 |#1|))) (($ $ (-635 (-293 |#1|))) 83 (|has| |#1| (-308 |#1|))) (($ $ (-635 (-1163)) (-635 |#1|)) 82 (|has| |#1| (-512 (-1163) |#1|))) (($ $ (-1163) |#1|) 81 (|has| |#1| (-512 (-1163) |#1|)))) (-2195 (($ $ |#1|) 87 (|has| |#1| (-285 |#1| |#1|)))) (-3224 (((-534) $) 62 (|has| |#1| (-606 (-534))))) (-3808 (($ $) 79)) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ |#1|) 38) (($ (-406 (-558))) 92 (|has| |#1| (-1028 (-406 (-558)))))) (-3698 (((-3 $ "failed") $) 63 (|has| |#1| (-144)))) (-2542 (((-762)) 28)) (-3190 ((|#1| $) 68 (|has| |#1| (-1048)))) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1747 (((-112) $ $) 58 (|has| |#1| (-841)))) (-1720 (((-112) $ $) 57 (|has| |#1| (-841)))) (-1683 (((-112) $ $) 6)) (-1731 (((-112) $ $) 59 (|has| |#1| (-841)))) (-1705 (((-112) $ $) 56 (|has| |#1| (-841)))) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
+(((-788 |#1|) (-139) (-171)) (T -788))
+((-3808 (*1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171)))) (-2546 (*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171)))) (-2781 (*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171)))) (-2770 (*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171)))) (-2760 (*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171)))) (-2747 (*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171)))) (-3799 (*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171)))) (-3790 (*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171)))) (-3780 (*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171)))) (-2615 (*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171)))) (-2789 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171)))) (-3190 (*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171)) (-4 *2 (-1048)))) (-3951 (*1 *2 *1) (-12 (-4 *1 (-788 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-112)))) (-3938 (*1 *2 *1) (-12 (-4 *1 (-788 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-406 (-558))))) (-3962 (*1 *2 *1) (|partial| -12 (-4 *1 (-788 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-406 (-558))))) (-2418 (*1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171)) (-4 *2 (-362)))))
+(-13 (-38 |t#1|) (-410 |t#1|) (-337 |t#1|) (-10 -8 (-15 -3808 ($ $)) (-15 -2546 (|t#1| $)) (-15 -2781 (|t#1| $)) (-15 -2770 (|t#1| $)) (-15 -2760 (|t#1| $)) (-15 -2747 (|t#1| $)) (-15 -3799 (|t#1| $)) (-15 -3790 (|t#1| $)) (-15 -3780 (|t#1| $)) (-15 -2615 (|t#1| $)) (-15 -2789 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-367)) (-6 (-367)) |%noBranch|) (IF (|has| |t#1| (-841)) (-6 (-841)) |%noBranch|) (IF (|has| |t#1| (-606 (-534))) (-6 (-606 (-534))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-1048)) (-15 -3190 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-543)) (PROGN (-15 -3951 ((-112) $)) (-15 -3938 ((-406 (-558)) $)) (-15 -3962 ((-3 (-406 (-558)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-362)) (-15 -2418 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-608 #0=(-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) ((-608 (-558)) . T) ((-608 |#1|) . T) ((-605 (-853)) . T) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-285 |#1| $) |has| |#1| (-285 |#1| |#1|)) ((-308 |#1|) |has| |#1| (-308 |#1|)) ((-367) |has| |#1| (-367)) ((-337 |#1|) . T) ((-410 |#1|) . T) ((-512 (-1163) |#1|) |has| |#1| (-512 (-1163) |#1|)) ((-512 |#1| |#1|) |has| |#1| (-308 |#1|)) ((-638 |#1|) . T) ((-638 $) . T) ((-708 |#1|) . T) ((-717) . T) ((-841) |has| |#1| (-841)) ((-1028 #0#) |has| |#1| (-1028 (-406 (-558)))) ((-1028 (-558)) |has| |#1| (-1028 (-558))) ((-1028 |#1|) . T) ((-1045 |#1|) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
+((-3167 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
+(((-789 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3167 (|#3| (-1 |#4| |#2|) |#1|))) (-788 |#2|) (-171) (-788 |#4|) (-171)) (T -789))
+((-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171)) (-4 *2 (-788 *6)) (-5 *1 (-789 *4 *5 *2 *6)) (-4 *4 (-788 *5)))))
+(-10 -7 (-15 -3167 (|#3| (-1 |#4| |#2|) |#1|)))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-2276 (((-762)) NIL (|has| |#1| (-367)))) (-1816 (($) NIL T CONST)) (-3069 (((-3 |#1| "failed") $) NIL) (((-3 (-989 |#1|) "failed") $) 35) (((-3 (-558) "failed") $) NIL (-3998 (|has| (-989 |#1|) (-1028 (-558))) (|has| |#1| (-1028 (-558))))) (((-3 (-406 (-558)) "failed") $) NIL (-3998 (|has| (-989 |#1|) (-1028 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558))))))) (-1863 ((|#1| $) NIL) (((-989 |#1|) $) 33) (((-558) $) NIL (-3998 (|has| (-989 |#1|) (-1028 (-558))) (|has| |#1| (-1028 (-558))))) (((-406 (-558)) $) NIL (-3998 (|has| (-989 |#1|) (-1028 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558))))))) (-2588 (((-3 $ "failed") $) NIL)) (-2546 ((|#1| $) 16)) (-3962 (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-543)))) (-3951 (((-112) $) NIL (|has| |#1| (-543)))) (-3938 (((-406 (-558)) $) NIL (|has| |#1| (-543)))) (-2424 (($) NIL (|has| |#1| (-367)))) (-2035 (((-112) $) NIL)) (-2789 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-989 |#1|) (-989 |#1|)) 29)) (-2615 ((|#1| $) NIL)) (-3910 (($ $ $) NIL (|has| |#1| (-841)))) (-3542 (($ $ $) NIL (|has| |#1| (-841)))) (-3167 (($ (-1 |#1| |#1|) $) NIL)) (-2637 (((-911) $) NIL (|has| |#1| (-367)))) (-4310 (((-1145) $) NIL)) (-2418 (($ $) NIL (|has| |#1| (-362)))) (-2851 (($ (-911)) NIL (|has| |#1| (-367)))) (-2760 ((|#1| $) 22)) (-2770 ((|#1| $) 20)) (-2781 ((|#1| $) 18)) (-3780 ((|#1| $) 26)) (-3790 ((|#1| $) 25)) (-3799 ((|#1| $) 24)) (-2747 ((|#1| $) 23)) (-2975 (((-1107) $) NIL)) (-2554 (($ $ (-635 |#1|) (-635 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ (-635 (-293 |#1|))) NIL (|has| |#1| (-308 |#1|))) (($ $ (-635 (-1163)) (-635 |#1|)) NIL (|has| |#1| (-512 (-1163) |#1|))) (($ $ (-1163) |#1|) NIL (|has| |#1| (-512 (-1163) |#1|)))) (-2195 (($ $ |#1|) NIL (|has| |#1| (-285 |#1| |#1|)))) (-3224 (((-534) $) NIL (|has| |#1| (-606 (-534))))) (-3808 (($ $) NIL)) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ |#1|) NIL) (($ (-989 |#1|)) 30) (($ (-406 (-558))) NIL (-3998 (|has| (-989 |#1|) (-1028 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558))))))) (-3698 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2542 (((-762)) NIL)) (-3190 ((|#1| $) NIL (|has| |#1| (-1048)))) (-2131 (($) 8 T CONST)) (-2142 (($) 12 T CONST)) (-1747 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1683 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-790 |#1|) (-13 (-788 |#1|) (-410 (-989 |#1|)) (-10 -8 (-15 -2789 ($ (-989 |#1|) (-989 |#1|))))) (-171)) (T -790))
+((-2789 (*1 *1 *2 *2) (-12 (-5 *2 (-989 *3)) (-4 *3 (-171)) (-5 *1 (-790 *3)))))
+(-13 (-788 |#1|) (-410 (-989 |#1|)) (-10 -8 (-15 -2789 ($ (-989 |#1|) (-989 |#1|)))))
+((-3207 (((-112) $ $) 7)) (-3510 (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 14)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11)) (-2798 (((-1025) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 13)) (-1683 (((-112) $ $) 6)))
+(((-791) (-139)) (T -791))
+((-3510 (*1 *2 *3 *4) (-12 (-4 *1 (-791)) (-5 *3 (-1051)) (-5 *4 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| -3510 (-378)) (|:| |explanations| (-1145)))))) (-2798 (*1 *2 *3) (-12 (-4 *1 (-791)) (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-1025)))))
+(-13 (-1087) (-10 -7 (-15 -3510 ((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2798 ((-1025) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))))
+(((-102) . T) ((-605 (-853)) . T) ((-1087) . T))
+((-2808 (((-2 (|:| |particular| |#2|) (|:| -2660 (-635 |#2|))) |#3| |#2| (-1163)) 19)))
+(((-792 |#1| |#2| |#3|) (-10 -7 (-15 -2808 ((-2 (|:| |particular| |#2|) (|:| -2660 (-635 |#2|))) |#3| |#2| (-1163)))) (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)) (-13 (-29 |#1|) (-1185) (-949)) (-646 |#2|)) (T -792))
+((-2808 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1163)) (-4 *6 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146))) (-4 *4 (-13 (-29 *6) (-1185) (-949))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2660 (-635 *4)))) (-5 *1 (-792 *6 *4 *3)) (-4 *3 (-646 *4)))))
+(-10 -7 (-15 -2808 ((-2 (|:| |particular| |#2|) (|:| -2660 (-635 |#2|))) |#3| |#2| (-1163))))
+((-2153 (((-3 |#2| "failed") |#2| (-114) (-293 |#2|) (-635 |#2|)) 28) (((-3 |#2| "failed") (-293 |#2|) (-114) (-293 |#2|) (-635 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2660 (-635 |#2|))) |#2| "failed") |#2| (-114) (-1163)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2660 (-635 |#2|))) |#2| "failed") (-293 |#2|) (-114) (-1163)) 18) (((-3 (-2 (|:| |particular| (-1246 |#2|)) (|:| -2660 (-635 (-1246 |#2|)))) "failed") (-635 |#2|) (-635 (-114)) (-1163)) 24) (((-3 (-2 (|:| |particular| (-1246 |#2|)) (|:| -2660 (-635 (-1246 |#2|)))) "failed") (-635 (-293 |#2|)) (-635 (-114)) (-1163)) 26) (((-3 (-635 (-1246 |#2|)) "failed") (-679 |#2|) (-1163)) 37) (((-3 (-2 (|:| |particular| (-1246 |#2|)) (|:| -2660 (-635 (-1246 |#2|)))) "failed") (-679 |#2|) (-1246 |#2|) (-1163)) 35)))
+(((-793 |#1| |#2|) (-10 -7 (-15 -2153 ((-3 (-2 (|:| |particular| (-1246 |#2|)) (|:| -2660 (-635 (-1246 |#2|)))) "failed") (-679 |#2|) (-1246 |#2|) (-1163))) (-15 -2153 ((-3 (-635 (-1246 |#2|)) "failed") (-679 |#2|) (-1163))) (-15 -2153 ((-3 (-2 (|:| |particular| (-1246 |#2|)) (|:| -2660 (-635 (-1246 |#2|)))) "failed") (-635 (-293 |#2|)) (-635 (-114)) (-1163))) (-15 -2153 ((-3 (-2 (|:| |particular| (-1246 |#2|)) (|:| -2660 (-635 (-1246 |#2|)))) "failed") (-635 |#2|) (-635 (-114)) (-1163))) (-15 -2153 ((-3 (-2 (|:| |particular| |#2|) (|:| -2660 (-635 |#2|))) |#2| "failed") (-293 |#2|) (-114) (-1163))) (-15 -2153 ((-3 (-2 (|:| |particular| |#2|) (|:| -2660 (-635 |#2|))) |#2| "failed") |#2| (-114) (-1163))) (-15 -2153 ((-3 |#2| "failed") (-293 |#2|) (-114) (-293 |#2|) (-635 |#2|))) (-15 -2153 ((-3 |#2| "failed") |#2| (-114) (-293 |#2|) (-635 |#2|)))) (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)) (-13 (-29 |#1|) (-1185) (-949))) (T -793))
+((-2153 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-293 *2)) (-5 *5 (-635 *2)) (-4 *2 (-13 (-29 *6) (-1185) (-949))) (-4 *6 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146))) (-5 *1 (-793 *6 *2)))) (-2153 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-293 *2)) (-5 *4 (-114)) (-5 *5 (-635 *2)) (-4 *2 (-13 (-29 *6) (-1185) (-949))) (-5 *1 (-793 *6 *2)) (-4 *6 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146))))) (-2153 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1163)) (-4 *6 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2660 (-635 *3))) *3 "failed")) (-5 *1 (-793 *6 *3)) (-4 *3 (-13 (-29 *6) (-1185) (-949))))) (-2153 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-293 *7)) (-5 *4 (-114)) (-5 *5 (-1163)) (-4 *7 (-13 (-29 *6) (-1185) (-949))) (-4 *6 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2660 (-635 *7))) *7 "failed")) (-5 *1 (-793 *6 *7)))) (-2153 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-635 *7)) (-5 *4 (-635 (-114))) (-5 *5 (-1163)) (-4 *7 (-13 (-29 *6) (-1185) (-949))) (-4 *6 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146))) (-5 *2 (-2 (|:| |particular| (-1246 *7)) (|:| -2660 (-635 (-1246 *7))))) (-5 *1 (-793 *6 *7)))) (-2153 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-635 (-293 *7))) (-5 *4 (-635 (-114))) (-5 *5 (-1163)) (-4 *7 (-13 (-29 *6) (-1185) (-949))) (-4 *6 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146))) (-5 *2 (-2 (|:| |particular| (-1246 *7)) (|:| -2660 (-635 (-1246 *7))))) (-5 *1 (-793 *6 *7)))) (-2153 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-679 *6)) (-5 *4 (-1163)) (-4 *6 (-13 (-29 *5) (-1185) (-949))) (-4 *5 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146))) (-5 *2 (-635 (-1246 *6))) (-5 *1 (-793 *5 *6)))) (-2153 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-679 *7)) (-5 *5 (-1163)) (-4 *7 (-13 (-29 *6) (-1185) (-949))) (-4 *6 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146))) (-5 *2 (-2 (|:| |particular| (-1246 *7)) (|:| -2660 (-635 (-1246 *7))))) (-5 *1 (-793 *6 *7)) (-5 *4 (-1246 *7)))))
+(-10 -7 (-15 -2153 ((-3 (-2 (|:| |particular| (-1246 |#2|)) (|:| -2660 (-635 (-1246 |#2|)))) "failed") (-679 |#2|) (-1246 |#2|) (-1163))) (-15 -2153 ((-3 (-635 (-1246 |#2|)) "failed") (-679 |#2|) (-1163))) (-15 -2153 ((-3 (-2 (|:| |particular| (-1246 |#2|)) (|:| -2660 (-635 (-1246 |#2|)))) "failed") (-635 (-293 |#2|)) (-635 (-114)) (-1163))) (-15 -2153 ((-3 (-2 (|:| |particular| (-1246 |#2|)) (|:| -2660 (-635 (-1246 |#2|)))) "failed") (-635 |#2|) (-635 (-114)) (-1163))) (-15 -2153 ((-3 (-2 (|:| |particular| |#2|) (|:| -2660 (-635 |#2|))) |#2| "failed") (-293 |#2|) (-114) (-1163))) (-15 -2153 ((-3 (-2 (|:| |particular| |#2|) (|:| -2660 (-635 |#2|))) |#2| "failed") |#2| (-114) (-1163))) (-15 -2153 ((-3 |#2| "failed") (-293 |#2|) (-114) (-293 |#2|) (-635 |#2|))) (-15 -2153 ((-3 |#2| "failed") |#2| (-114) (-293 |#2|) (-635 |#2|))))
+((-2816 (($) 9)) (-2847 (((-3 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))) "failed") (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 31)) (-3848 (((-635 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $) 28)) (-4328 (($ (-2 (|:| -2700 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2981 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))))) 25)) (-2838 (($ (-635 (-2 (|:| -2700 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2981 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))))))) 23)) (-2827 (((-1251)) 12)))
+(((-794) (-10 -8 (-15 -2816 ($)) (-15 -2827 ((-1251))) (-15 -3848 ((-635 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $)) (-15 -2838 ($ (-635 (-2 (|:| -2700 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2981 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))))))) (-15 -4328 ($ (-2 (|:| -2700 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2981 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))))))) (-15 -2847 ((-3 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))) "failed") (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (T -794))
+((-2847 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))) (-5 *1 (-794)))) (-4328 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2700 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2981 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))))) (-5 *1 (-794)))) (-2838 (*1 *1 *2) (-12 (-5 *2 (-635 (-2 (|:| -2700 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2981 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))))))) (-5 *1 (-794)))) (-3848 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-5 *1 (-794)))) (-2827 (*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-794)))) (-2816 (*1 *1) (-5 *1 (-794))))
+(-10 -8 (-15 -2816 ($)) (-15 -2827 ((-1251))) (-15 -3848 ((-635 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $)) (-15 -2838 ($ (-635 (-2 (|:| -2700 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2981 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))))))) (-15 -4328 ($ (-2 (|:| -2700 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2981 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))))))) (-15 -2847 ((-3 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))) "failed") (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))
+((-2621 ((|#2| |#2| (-1163)) 16)) (-2856 ((|#2| |#2| (-1163)) 51)) (-2866 (((-1 |#2| |#2|) (-1163)) 11)))
+(((-795 |#1| |#2|) (-10 -7 (-15 -2621 (|#2| |#2| (-1163))) (-15 -2856 (|#2| |#2| (-1163))) (-15 -2866 ((-1 |#2| |#2|) (-1163)))) (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)) (-13 (-29 |#1|) (-1185) (-949))) (T -795))
+((-2866 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146))) (-5 *2 (-1 *5 *5)) (-5 *1 (-795 *4 *5)) (-4 *5 (-13 (-29 *4) (-1185) (-949))))) (-2856 (*1 *2 *2 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146))) (-5 *1 (-795 *4 *2)) (-4 *2 (-13 (-29 *4) (-1185) (-949))))) (-2621 (*1 *2 *2 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146))) (-5 *1 (-795 *4 *2)) (-4 *2 (-13 (-29 *4) (-1185) (-949))))))
+(-10 -7 (-15 -2621 (|#2| |#2| (-1163))) (-15 -2856 (|#2| |#2| (-1163))) (-15 -2866 ((-1 |#2| |#2|) (-1163))))
+((-2153 (((-1025) (-1246 (-315 (-378))) (-378) (-378) (-635 (-378)) (-315 (-378)) (-635 (-378)) (-378) (-378)) 116) (((-1025) (-1246 (-315 (-378))) (-378) (-378) (-635 (-378)) (-315 (-378)) (-635 (-378)) (-378)) 117) (((-1025) (-1246 (-315 (-378))) (-378) (-378) (-635 (-378)) (-635 (-378)) (-378)) 119) (((-1025) (-1246 (-315 (-378))) (-378) (-378) (-635 (-378)) (-315 (-378)) (-378)) 120) (((-1025) (-1246 (-315 (-378))) (-378) (-378) (-635 (-378)) (-378)) 121) (((-1025) (-1246 (-315 (-378))) (-378) (-378) (-635 (-378))) 122) (((-1025) (-799) (-1051)) 108) (((-1025) (-799)) 109)) (-3510 (((-2 (|:| -3510 (-378)) (|:| -1323 (-1145)) (|:| |explanations| (-635 (-1145)))) (-799) (-1051)) 75) (((-2 (|:| -3510 (-378)) (|:| -1323 (-1145)) (|:| |explanations| (-635 (-1145)))) (-799)) 77)))
+(((-796) (-10 -7 (-15 -2153 ((-1025) (-799))) (-15 -2153 ((-1025) (-799) (-1051))) (-15 -2153 ((-1025) (-1246 (-315 (-378))) (-378) (-378) (-635 (-378)))) (-15 -2153 ((-1025) (-1246 (-315 (-378))) (-378) (-378) (-635 (-378)) (-378))) (-15 -2153 ((-1025) (-1246 (-315 (-378))) (-378) (-378) (-635 (-378)) (-315 (-378)) (-378))) (-15 -2153 ((-1025) (-1246 (-315 (-378))) (-378) (-378) (-635 (-378)) (-635 (-378)) (-378))) (-15 -2153 ((-1025) (-1246 (-315 (-378))) (-378) (-378) (-635 (-378)) (-315 (-378)) (-635 (-378)) (-378))) (-15 -2153 ((-1025) (-1246 (-315 (-378))) (-378) (-378) (-635 (-378)) (-315 (-378)) (-635 (-378)) (-378) (-378))) (-15 -3510 ((-2 (|:| -3510 (-378)) (|:| -1323 (-1145)) (|:| |explanations| (-635 (-1145)))) (-799))) (-15 -3510 ((-2 (|:| -3510 (-378)) (|:| -1323 (-1145)) (|:| |explanations| (-635 (-1145)))) (-799) (-1051))))) (T -796))
+((-3510 (*1 *2 *3 *4) (-12 (-5 *3 (-799)) (-5 *4 (-1051)) (-5 *2 (-2 (|:| -3510 (-378)) (|:| -1323 (-1145)) (|:| |explanations| (-635 (-1145))))) (-5 *1 (-796)))) (-3510 (*1 *2 *3) (-12 (-5 *3 (-799)) (-5 *2 (-2 (|:| -3510 (-378)) (|:| -1323 (-1145)) (|:| |explanations| (-635 (-1145))))) (-5 *1 (-796)))) (-2153 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1246 (-315 *4))) (-5 *5 (-635 (-378))) (-5 *6 (-315 (-378))) (-5 *4 (-378)) (-5 *2 (-1025)) (-5 *1 (-796)))) (-2153 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1246 (-315 *4))) (-5 *5 (-635 (-378))) (-5 *6 (-315 (-378))) (-5 *4 (-378)) (-5 *2 (-1025)) (-5 *1 (-796)))) (-2153 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1246 (-315 (-378)))) (-5 *4 (-378)) (-5 *5 (-635 *4)) (-5 *2 (-1025)) (-5 *1 (-796)))) (-2153 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1246 (-315 *4))) (-5 *5 (-635 (-378))) (-5 *6 (-315 (-378))) (-5 *4 (-378)) (-5 *2 (-1025)) (-5 *1 (-796)))) (-2153 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1246 (-315 (-378)))) (-5 *4 (-378)) (-5 *5 (-635 *4)) (-5 *2 (-1025)) (-5 *1 (-796)))) (-2153 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1246 (-315 (-378)))) (-5 *4 (-378)) (-5 *5 (-635 *4)) (-5 *2 (-1025)) (-5 *1 (-796)))) (-2153 (*1 *2 *3 *4) (-12 (-5 *3 (-799)) (-5 *4 (-1051)) (-5 *2 (-1025)) (-5 *1 (-796)))) (-2153 (*1 *2 *3) (-12 (-5 *3 (-799)) (-5 *2 (-1025)) (-5 *1 (-796)))))
+(-10 -7 (-15 -2153 ((-1025) (-799))) (-15 -2153 ((-1025) (-799) (-1051))) (-15 -2153 ((-1025) (-1246 (-315 (-378))) (-378) (-378) (-635 (-378)))) (-15 -2153 ((-1025) (-1246 (-315 (-378))) (-378) (-378) (-635 (-378)) (-378))) (-15 -2153 ((-1025) (-1246 (-315 (-378))) (-378) (-378) (-635 (-378)) (-315 (-378)) (-378))) (-15 -2153 ((-1025) (-1246 (-315 (-378))) (-378) (-378) (-635 (-378)) (-635 (-378)) (-378))) (-15 -2153 ((-1025) (-1246 (-315 (-378))) (-378) (-378) (-635 (-378)) (-315 (-378)) (-635 (-378)) (-378))) (-15 -2153 ((-1025) (-1246 (-315 (-378))) (-378) (-378) (-635 (-378)) (-315 (-378)) (-635 (-378)) (-378) (-378))) (-15 -3510 ((-2 (|:| -3510 (-378)) (|:| -1323 (-1145)) (|:| |explanations| (-635 (-1145)))) (-799))) (-15 -3510 ((-2 (|:| -3510 (-378)) (|:| -1323 (-1145)) (|:| |explanations| (-635 (-1145)))) (-799) (-1051))))
+((-2875 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2660 (-635 |#4|))) (-643 |#4|) |#4|) 35)))
+(((-797 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2875 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2660 (-635 |#4|))) (-643 |#4|) |#4|))) (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))) (-1222 |#1|) (-1222 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -797))
+((-2875 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *4)) (-4 *4 (-341 *5 *6 *7)) (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))))) (-4 *6 (-1222 *5)) (-4 *7 (-1222 (-406 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2660 (-635 *4)))) (-5 *1 (-797 *5 *6 *7 *4)))))
+(-10 -7 (-15 -2875 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2660 (-635 |#4|))) (-643 |#4|) |#4|)))
+((-3152 (((-2 (|:| -2477 |#3|) (|:| |rh| (-635 (-406 |#2|)))) |#4| (-635 (-406 |#2|))) 52)) (-1656 (((-635 (-2 (|:| -2673 |#2|) (|:| -2176 |#2|))) |#4| |#2|) 60) (((-635 (-2 (|:| -2673 |#2|) (|:| -2176 |#2|))) |#4|) 59) (((-635 (-2 (|:| -2673 |#2|) (|:| -2176 |#2|))) |#3| |#2|) 20) (((-635 (-2 (|:| -2673 |#2|) (|:| -2176 |#2|))) |#3|) 21)) (-1665 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-1646 ((|#2| |#3| (-635 (-406 |#2|))) 93) (((-3 |#2| "failed") |#3| (-406 |#2|)) 90)))
+(((-798 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1646 ((-3 |#2| "failed") |#3| (-406 |#2|))) (-15 -1646 (|#2| |#3| (-635 (-406 |#2|)))) (-15 -1656 ((-635 (-2 (|:| -2673 |#2|) (|:| -2176 |#2|))) |#3|)) (-15 -1656 ((-635 (-2 (|:| -2673 |#2|) (|:| -2176 |#2|))) |#3| |#2|)) (-15 -1665 (|#2| |#3| |#1|)) (-15 -1656 ((-635 (-2 (|:| -2673 |#2|) (|:| -2176 |#2|))) |#4|)) (-15 -1656 ((-635 (-2 (|:| -2673 |#2|) (|:| -2176 |#2|))) |#4| |#2|)) (-15 -1665 (|#2| |#4| |#1|)) (-15 -3152 ((-2 (|:| -2477 |#3|) (|:| |rh| (-635 (-406 |#2|)))) |#4| (-635 (-406 |#2|))))) (-13 (-362) (-146) (-1028 (-406 (-558)))) (-1222 |#1|) (-646 |#2|) (-646 (-406 |#2|))) (T -798))
+((-3152 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-4 *6 (-1222 *5)) (-5 *2 (-2 (|:| -2477 *7) (|:| |rh| (-635 (-406 *6))))) (-5 *1 (-798 *5 *6 *7 *3)) (-5 *4 (-635 (-406 *6))) (-4 *7 (-646 *6)) (-4 *3 (-646 (-406 *6))))) (-1665 (*1 *2 *3 *4) (-12 (-4 *2 (-1222 *4)) (-5 *1 (-798 *4 *2 *5 *3)) (-4 *4 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-4 *5 (-646 *2)) (-4 *3 (-646 (-406 *2))))) (-1656 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-4 *4 (-1222 *5)) (-5 *2 (-635 (-2 (|:| -2673 *4) (|:| -2176 *4)))) (-5 *1 (-798 *5 *4 *6 *3)) (-4 *6 (-646 *4)) (-4 *3 (-646 (-406 *4))))) (-1656 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-4 *5 (-1222 *4)) (-5 *2 (-635 (-2 (|:| -2673 *5) (|:| -2176 *5)))) (-5 *1 (-798 *4 *5 *6 *3)) (-4 *6 (-646 *5)) (-4 *3 (-646 (-406 *5))))) (-1665 (*1 *2 *3 *4) (-12 (-4 *2 (-1222 *4)) (-5 *1 (-798 *4 *2 *3 *5)) (-4 *4 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-4 *3 (-646 *2)) (-4 *5 (-646 (-406 *2))))) (-1656 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-4 *4 (-1222 *5)) (-5 *2 (-635 (-2 (|:| -2673 *4) (|:| -2176 *4)))) (-5 *1 (-798 *5 *4 *3 *6)) (-4 *3 (-646 *4)) (-4 *6 (-646 (-406 *4))))) (-1656 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-4 *5 (-1222 *4)) (-5 *2 (-635 (-2 (|:| -2673 *5) (|:| -2176 *5)))) (-5 *1 (-798 *4 *5 *3 *6)) (-4 *3 (-646 *5)) (-4 *6 (-646 (-406 *5))))) (-1646 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-406 *2))) (-4 *2 (-1222 *5)) (-5 *1 (-798 *5 *2 *3 *6)) (-4 *5 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-4 *3 (-646 *2)) (-4 *6 (-646 (-406 *2))))) (-1646 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-406 *2)) (-4 *2 (-1222 *5)) (-5 *1 (-798 *5 *2 *3 *6)) (-4 *5 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-4 *3 (-646 *2)) (-4 *6 (-646 *4)))))
+(-10 -7 (-15 -1646 ((-3 |#2| "failed") |#3| (-406 |#2|))) (-15 -1646 (|#2| |#3| (-635 (-406 |#2|)))) (-15 -1656 ((-635 (-2 (|:| -2673 |#2|) (|:| -2176 |#2|))) |#3|)) (-15 -1656 ((-635 (-2 (|:| -2673 |#2|) (|:| -2176 |#2|))) |#3| |#2|)) (-15 -1665 (|#2| |#3| |#1|)) (-15 -1656 ((-635 (-2 (|:| -2673 |#2|) (|:| -2176 |#2|))) |#4|)) (-15 -1656 ((-635 (-2 (|:| -2673 |#2|) (|:| -2176 |#2|))) |#4| |#2|)) (-15 -1665 (|#2| |#4| |#1|)) (-15 -3152 ((-2 (|:| -2477 |#3|) (|:| |rh| (-635 (-406 |#2|)))) |#4| (-635 (-406 |#2|)))))
+((-3207 (((-112) $ $) NIL)) (-1863 (((-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) $) 13)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 15) (($ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 12)) (-1683 (((-112) $ $) NIL)))
+(((-799) (-13 (-1087) (-10 -8 (-15 -3220 ($ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1863 ((-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) $))))) (T -799))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *1 (-799)))) (-1863 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *1 (-799)))))
+(-13 (-1087) (-10 -8 (-15 -3220 ($ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1863 ((-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) $))))
+((-1764 (((-635 (-2 (|:| |frac| (-406 |#2|)) (|:| -2477 |#3|))) |#3| (-1 (-635 |#2|) |#2| (-1159 |#2|)) (-1 (-417 |#2|) |#2|)) 117)) (-1776 (((-635 (-2 (|:| |poly| |#2|) (|:| -2477 |#3|))) |#3| (-1 (-635 |#1|) |#2|)) 46)) (-1688 (((-635 (-2 (|:| |deg| (-762)) (|:| -2477 |#2|))) |#3|) 94)) (-1676 ((|#2| |#3|) 37)) (-1699 (((-635 (-2 (|:| -3707 |#1|) (|:| -2477 |#3|))) |#3| (-1 (-635 |#1|) |#2|)) 81)) (-1714 ((|#3| |#3| (-406 |#2|)) 62) ((|#3| |#3| |#2|) 78)))
+(((-800 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1676 (|#2| |#3|)) (-15 -1688 ((-635 (-2 (|:| |deg| (-762)) (|:| -2477 |#2|))) |#3|)) (-15 -1699 ((-635 (-2 (|:| -3707 |#1|) (|:| -2477 |#3|))) |#3| (-1 (-635 |#1|) |#2|))) (-15 -1776 ((-635 (-2 (|:| |poly| |#2|) (|:| -2477 |#3|))) |#3| (-1 (-635 |#1|) |#2|))) (-15 -1764 ((-635 (-2 (|:| |frac| (-406 |#2|)) (|:| -2477 |#3|))) |#3| (-1 (-635 |#2|) |#2| (-1159 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -1714 (|#3| |#3| |#2|)) (-15 -1714 (|#3| |#3| (-406 |#2|)))) (-13 (-362) (-146) (-1028 (-406 (-558)))) (-1222 |#1|) (-646 |#2|) (-646 (-406 |#2|))) (T -800))
+((-1714 (*1 *2 *2 *3) (-12 (-5 *3 (-406 *5)) (-4 *4 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-4 *5 (-1222 *4)) (-5 *1 (-800 *4 *5 *2 *6)) (-4 *2 (-646 *5)) (-4 *6 (-646 *3)))) (-1714 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-4 *3 (-1222 *4)) (-5 *1 (-800 *4 *3 *2 *5)) (-4 *2 (-646 *3)) (-4 *5 (-646 (-406 *3))))) (-1764 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-635 *7) *7 (-1159 *7))) (-5 *5 (-1 (-417 *7) *7)) (-4 *7 (-1222 *6)) (-4 *6 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-5 *2 (-635 (-2 (|:| |frac| (-406 *7)) (|:| -2477 *3)))) (-5 *1 (-800 *6 *7 *3 *8)) (-4 *3 (-646 *7)) (-4 *8 (-646 (-406 *7))))) (-1776 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-635 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-4 *6 (-1222 *5)) (-5 *2 (-635 (-2 (|:| |poly| *6) (|:| -2477 *3)))) (-5 *1 (-800 *5 *6 *3 *7)) (-4 *3 (-646 *6)) (-4 *7 (-646 (-406 *6))))) (-1699 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-635 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-4 *6 (-1222 *5)) (-5 *2 (-635 (-2 (|:| -3707 *5) (|:| -2477 *3)))) (-5 *1 (-800 *5 *6 *3 *7)) (-4 *3 (-646 *6)) (-4 *7 (-646 (-406 *6))))) (-1688 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-4 *5 (-1222 *4)) (-5 *2 (-635 (-2 (|:| |deg| (-762)) (|:| -2477 *5)))) (-5 *1 (-800 *4 *5 *3 *6)) (-4 *3 (-646 *5)) (-4 *6 (-646 (-406 *5))))) (-1676 (*1 *2 *3) (-12 (-4 *2 (-1222 *4)) (-5 *1 (-800 *4 *2 *3 *5)) (-4 *4 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-4 *3 (-646 *2)) (-4 *5 (-646 (-406 *2))))))
+(-10 -7 (-15 -1676 (|#2| |#3|)) (-15 -1688 ((-635 (-2 (|:| |deg| (-762)) (|:| -2477 |#2|))) |#3|)) (-15 -1699 ((-635 (-2 (|:| -3707 |#1|) (|:| -2477 |#3|))) |#3| (-1 (-635 |#1|) |#2|))) (-15 -1776 ((-635 (-2 (|:| |poly| |#2|) (|:| -2477 |#3|))) |#3| (-1 (-635 |#1|) |#2|))) (-15 -1764 ((-635 (-2 (|:| |frac| (-406 |#2|)) (|:| -2477 |#3|))) |#3| (-1 (-635 |#2|) |#2| (-1159 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -1714 (|#3| |#3| |#2|)) (-15 -1714 (|#3| |#3| (-406 |#2|))))
+((-1726 (((-2 (|:| -2660 (-635 (-406 |#2|))) (|:| -3683 (-679 |#1|))) (-644 |#2| (-406 |#2|)) (-635 (-406 |#2|))) 121) (((-2 (|:| |particular| (-3 (-406 |#2|) "failed")) (|:| -2660 (-635 (-406 |#2|)))) (-644 |#2| (-406 |#2|)) (-406 |#2|)) 120) (((-2 (|:| -2660 (-635 (-406 |#2|))) (|:| -3683 (-679 |#1|))) (-643 (-406 |#2|)) (-635 (-406 |#2|))) 115) (((-2 (|:| |particular| (-3 (-406 |#2|) "failed")) (|:| -2660 (-635 (-406 |#2|)))) (-643 (-406 |#2|)) (-406 |#2|)) 113)) (-1739 ((|#2| (-644 |#2| (-406 |#2|))) 80) ((|#2| (-643 (-406 |#2|))) 83)))
+(((-801 |#1| |#2|) (-10 -7 (-15 -1726 ((-2 (|:| |particular| (-3 (-406 |#2|) "failed")) (|:| -2660 (-635 (-406 |#2|)))) (-643 (-406 |#2|)) (-406 |#2|))) (-15 -1726 ((-2 (|:| -2660 (-635 (-406 |#2|))) (|:| -3683 (-679 |#1|))) (-643 (-406 |#2|)) (-635 (-406 |#2|)))) (-15 -1726 ((-2 (|:| |particular| (-3 (-406 |#2|) "failed")) (|:| -2660 (-635 (-406 |#2|)))) (-644 |#2| (-406 |#2|)) (-406 |#2|))) (-15 -1726 ((-2 (|:| -2660 (-635 (-406 |#2|))) (|:| -3683 (-679 |#1|))) (-644 |#2| (-406 |#2|)) (-635 (-406 |#2|)))) (-15 -1739 (|#2| (-643 (-406 |#2|)))) (-15 -1739 (|#2| (-644 |#2| (-406 |#2|))))) (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))) (-1222 |#1|)) (T -801))
+((-1739 (*1 *2 *3) (-12 (-5 *3 (-644 *2 (-406 *2))) (-4 *2 (-1222 *4)) (-5 *1 (-801 *4 *2)) (-4 *4 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))))))) (-1739 (*1 *2 *3) (-12 (-5 *3 (-643 (-406 *2))) (-4 *2 (-1222 *4)) (-5 *1 (-801 *4 *2)) (-4 *4 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))))))) (-1726 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *6 (-406 *6))) (-4 *6 (-1222 *5)) (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))))) (-5 *2 (-2 (|:| -2660 (-635 (-406 *6))) (|:| -3683 (-679 *5)))) (-5 *1 (-801 *5 *6)) (-5 *4 (-635 (-406 *6))))) (-1726 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *6 (-406 *6))) (-5 *4 (-406 *6)) (-4 *6 (-1222 *5)) (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2660 (-635 *4)))) (-5 *1 (-801 *5 *6)))) (-1726 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-406 *6))) (-4 *6 (-1222 *5)) (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))))) (-5 *2 (-2 (|:| -2660 (-635 (-406 *6))) (|:| -3683 (-679 *5)))) (-5 *1 (-801 *5 *6)) (-5 *4 (-635 (-406 *6))))) (-1726 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-406 *6))) (-5 *4 (-406 *6)) (-4 *6 (-1222 *5)) (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2660 (-635 *4)))) (-5 *1 (-801 *5 *6)))))
+(-10 -7 (-15 -1726 ((-2 (|:| |particular| (-3 (-406 |#2|) "failed")) (|:| -2660 (-635 (-406 |#2|)))) (-643 (-406 |#2|)) (-406 |#2|))) (-15 -1726 ((-2 (|:| -2660 (-635 (-406 |#2|))) (|:| -3683 (-679 |#1|))) (-643 (-406 |#2|)) (-635 (-406 |#2|)))) (-15 -1726 ((-2 (|:| |particular| (-3 (-406 |#2|) "failed")) (|:| -2660 (-635 (-406 |#2|)))) (-644 |#2| (-406 |#2|)) (-406 |#2|))) (-15 -1726 ((-2 (|:| -2660 (-635 (-406 |#2|))) (|:| -3683 (-679 |#1|))) (-644 |#2| (-406 |#2|)) (-635 (-406 |#2|)))) (-15 -1739 (|#2| (-643 (-406 |#2|)))) (-15 -1739 (|#2| (-644 |#2| (-406 |#2|)))))
+((-1752 (((-2 (|:| -3683 (-679 |#2|)) (|:| |vec| (-1246 |#1|))) |#5| |#4|) 48)))
+(((-802 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1752 ((-2 (|:| -3683 (-679 |#2|)) (|:| |vec| (-1246 |#1|))) |#5| |#4|))) (-362) (-646 |#1|) (-1222 |#1|) (-715 |#1| |#3|) (-646 |#4|)) (T -802))
+((-1752 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *7 (-1222 *5)) (-4 *4 (-715 *5 *7)) (-5 *2 (-2 (|:| -3683 (-679 *6)) (|:| |vec| (-1246 *5)))) (-5 *1 (-802 *5 *6 *7 *4 *3)) (-4 *6 (-646 *5)) (-4 *3 (-646 *4)))))
+(-10 -7 (-15 -1752 ((-2 (|:| -3683 (-679 |#2|)) (|:| |vec| (-1246 |#1|))) |#5| |#4|)))
+((-1764 (((-635 (-2 (|:| |frac| (-406 |#2|)) (|:| -2477 (-644 |#2| (-406 |#2|))))) (-644 |#2| (-406 |#2|)) (-1 (-417 |#2|) |#2|)) 47)) (-1788 (((-635 (-406 |#2|)) (-644 |#2| (-406 |#2|)) (-1 (-417 |#2|) |#2|)) 140 (|has| |#1| (-27))) (((-635 (-406 |#2|)) (-644 |#2| (-406 |#2|))) 137 (|has| |#1| (-27))) (((-635 (-406 |#2|)) (-643 (-406 |#2|)) (-1 (-417 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-635 (-406 |#2|)) (-643 (-406 |#2|))) 139 (|has| |#1| (-27))) (((-635 (-406 |#2|)) (-644 |#2| (-406 |#2|)) (-1 (-635 |#1|) |#2|) (-1 (-417 |#2|) |#2|)) 38) (((-635 (-406 |#2|)) (-644 |#2| (-406 |#2|)) (-1 (-635 |#1|) |#2|)) 39) (((-635 (-406 |#2|)) (-643 (-406 |#2|)) (-1 (-635 |#1|) |#2|) (-1 (-417 |#2|) |#2|)) 36) (((-635 (-406 |#2|)) (-643 (-406 |#2|)) (-1 (-635 |#1|) |#2|)) 37)) (-1776 (((-635 (-2 (|:| |poly| |#2|) (|:| -2477 (-644 |#2| (-406 |#2|))))) (-644 |#2| (-406 |#2|)) (-1 (-635 |#1|) |#2|)) 83)))
+(((-803 |#1| |#2|) (-10 -7 (-15 -1788 ((-635 (-406 |#2|)) (-643 (-406 |#2|)) (-1 (-635 |#1|) |#2|))) (-15 -1788 ((-635 (-406 |#2|)) (-643 (-406 |#2|)) (-1 (-635 |#1|) |#2|) (-1 (-417 |#2|) |#2|))) (-15 -1788 ((-635 (-406 |#2|)) (-644 |#2| (-406 |#2|)) (-1 (-635 |#1|) |#2|))) (-15 -1788 ((-635 (-406 |#2|)) (-644 |#2| (-406 |#2|)) (-1 (-635 |#1|) |#2|) (-1 (-417 |#2|) |#2|))) (-15 -1764 ((-635 (-2 (|:| |frac| (-406 |#2|)) (|:| -2477 (-644 |#2| (-406 |#2|))))) (-644 |#2| (-406 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -1776 ((-635 (-2 (|:| |poly| |#2|) (|:| -2477 (-644 |#2| (-406 |#2|))))) (-644 |#2| (-406 |#2|)) (-1 (-635 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1788 ((-635 (-406 |#2|)) (-643 (-406 |#2|)))) (-15 -1788 ((-635 (-406 |#2|)) (-643 (-406 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -1788 ((-635 (-406 |#2|)) (-644 |#2| (-406 |#2|)))) (-15 -1788 ((-635 (-406 |#2|)) (-644 |#2| (-406 |#2|)) (-1 (-417 |#2|) |#2|)))) |%noBranch|)) (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))) (-1222 |#1|)) (T -803))
+((-1788 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *6 (-406 *6))) (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1222 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))))) (-5 *2 (-635 (-406 *6))) (-5 *1 (-803 *5 *6)))) (-1788 (*1 *2 *3) (-12 (-5 *3 (-644 *5 (-406 *5))) (-4 *5 (-1222 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))))) (-5 *2 (-635 (-406 *5))) (-5 *1 (-803 *4 *5)))) (-1788 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-406 *6))) (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1222 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))))) (-5 *2 (-635 (-406 *6))) (-5 *1 (-803 *5 *6)))) (-1788 (*1 *2 *3) (-12 (-5 *3 (-643 (-406 *5))) (-4 *5 (-1222 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))))) (-5 *2 (-635 (-406 *5))) (-5 *1 (-803 *4 *5)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-635 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))))) (-4 *6 (-1222 *5)) (-5 *2 (-635 (-2 (|:| |poly| *6) (|:| -2477 (-644 *6 (-406 *6)))))) (-5 *1 (-803 *5 *6)) (-5 *3 (-644 *6 (-406 *6))))) (-1764 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1222 *5)) (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))))) (-5 *2 (-635 (-2 (|:| |frac| (-406 *6)) (|:| -2477 (-644 *6 (-406 *6)))))) (-5 *1 (-803 *5 *6)) (-5 *3 (-644 *6 (-406 *6))))) (-1788 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 *7 (-406 *7))) (-5 *4 (-1 (-635 *6) *7)) (-5 *5 (-1 (-417 *7) *7)) (-4 *6 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))))) (-4 *7 (-1222 *6)) (-5 *2 (-635 (-406 *7))) (-5 *1 (-803 *6 *7)))) (-1788 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *6 (-406 *6))) (-5 *4 (-1 (-635 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))))) (-4 *6 (-1222 *5)) (-5 *2 (-635 (-406 *6))) (-5 *1 (-803 *5 *6)))) (-1788 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-643 (-406 *7))) (-5 *4 (-1 (-635 *6) *7)) (-5 *5 (-1 (-417 *7) *7)) (-4 *6 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))))) (-4 *7 (-1222 *6)) (-5 *2 (-635 (-406 *7))) (-5 *1 (-803 *6 *7)))) (-1788 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-406 *6))) (-5 *4 (-1 (-635 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))))) (-4 *6 (-1222 *5)) (-5 *2 (-635 (-406 *6))) (-5 *1 (-803 *5 *6)))))
+(-10 -7 (-15 -1788 ((-635 (-406 |#2|)) (-643 (-406 |#2|)) (-1 (-635 |#1|) |#2|))) (-15 -1788 ((-635 (-406 |#2|)) (-643 (-406 |#2|)) (-1 (-635 |#1|) |#2|) (-1 (-417 |#2|) |#2|))) (-15 -1788 ((-635 (-406 |#2|)) (-644 |#2| (-406 |#2|)) (-1 (-635 |#1|) |#2|))) (-15 -1788 ((-635 (-406 |#2|)) (-644 |#2| (-406 |#2|)) (-1 (-635 |#1|) |#2|) (-1 (-417 |#2|) |#2|))) (-15 -1764 ((-635 (-2 (|:| |frac| (-406 |#2|)) (|:| -2477 (-644 |#2| (-406 |#2|))))) (-644 |#2| (-406 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -1776 ((-635 (-2 (|:| |poly| |#2|) (|:| -2477 (-644 |#2| (-406 |#2|))))) (-644 |#2| (-406 |#2|)) (-1 (-635 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1788 ((-635 (-406 |#2|)) (-643 (-406 |#2|)))) (-15 -1788 ((-635 (-406 |#2|)) (-643 (-406 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -1788 ((-635 (-406 |#2|)) (-644 |#2| (-406 |#2|)))) (-15 -1788 ((-635 (-406 |#2|)) (-644 |#2| (-406 |#2|)) (-1 (-417 |#2|) |#2|)))) |%noBranch|))
+((-1803 (((-2 (|:| -3683 (-679 |#2|)) (|:| |vec| (-1246 |#1|))) (-679 |#2|) (-1246 |#1|)) 85) (((-2 (|:| A (-679 |#1|)) (|:| |eqs| (-635 (-2 (|:| C (-679 |#1|)) (|:| |g| (-1246 |#1|)) (|:| -2477 |#2|) (|:| |rh| |#1|))))) (-679 |#1|) (-1246 |#1|)) 15)) (-1815 (((-2 (|:| |particular| (-3 (-1246 |#1|) "failed")) (|:| -2660 (-635 (-1246 |#1|)))) (-679 |#2|) (-1246 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2660 (-635 |#1|))) |#2| |#1|)) 92)) (-2153 (((-3 (-2 (|:| |particular| (-1246 |#1|)) (|:| -2660 (-679 |#1|))) "failed") (-679 |#1|) (-1246 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2660 (-635 |#1|))) "failed") |#2| |#1|)) 43)))
+(((-804 |#1| |#2|) (-10 -7 (-15 -1803 ((-2 (|:| A (-679 |#1|)) (|:| |eqs| (-635 (-2 (|:| C (-679 |#1|)) (|:| |g| (-1246 |#1|)) (|:| -2477 |#2|) (|:| |rh| |#1|))))) (-679 |#1|) (-1246 |#1|))) (-15 -1803 ((-2 (|:| -3683 (-679 |#2|)) (|:| |vec| (-1246 |#1|))) (-679 |#2|) (-1246 |#1|))) (-15 -2153 ((-3 (-2 (|:| |particular| (-1246 |#1|)) (|:| -2660 (-679 |#1|))) "failed") (-679 |#1|) (-1246 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2660 (-635 |#1|))) "failed") |#2| |#1|))) (-15 -1815 ((-2 (|:| |particular| (-3 (-1246 |#1|) "failed")) (|:| -2660 (-635 (-1246 |#1|)))) (-679 |#2|) (-1246 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2660 (-635 |#1|))) |#2| |#1|)))) (-362) (-646 |#1|)) (T -804))
+((-1815 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-679 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2660 (-635 *6))) *7 *6)) (-4 *6 (-362)) (-4 *7 (-646 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1246 *6) "failed")) (|:| -2660 (-635 (-1246 *6))))) (-5 *1 (-804 *6 *7)) (-5 *4 (-1246 *6)))) (-2153 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2660 (-635 *6))) "failed") *7 *6)) (-4 *6 (-362)) (-4 *7 (-646 *6)) (-5 *2 (-2 (|:| |particular| (-1246 *6)) (|:| -2660 (-679 *6)))) (-5 *1 (-804 *6 *7)) (-5 *3 (-679 *6)) (-5 *4 (-1246 *6)))) (-1803 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *6 (-646 *5)) (-5 *2 (-2 (|:| -3683 (-679 *6)) (|:| |vec| (-1246 *5)))) (-5 *1 (-804 *5 *6)) (-5 *3 (-679 *6)) (-5 *4 (-1246 *5)))) (-1803 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-5 *2 (-2 (|:| A (-679 *5)) (|:| |eqs| (-635 (-2 (|:| C (-679 *5)) (|:| |g| (-1246 *5)) (|:| -2477 *6) (|:| |rh| *5)))))) (-5 *1 (-804 *5 *6)) (-5 *3 (-679 *5)) (-5 *4 (-1246 *5)) (-4 *6 (-646 *5)))))
+(-10 -7 (-15 -1803 ((-2 (|:| A (-679 |#1|)) (|:| |eqs| (-635 (-2 (|:| C (-679 |#1|)) (|:| |g| (-1246 |#1|)) (|:| -2477 |#2|) (|:| |rh| |#1|))))) (-679 |#1|) (-1246 |#1|))) (-15 -1803 ((-2 (|:| -3683 (-679 |#2|)) (|:| |vec| (-1246 |#1|))) (-679 |#2|) (-1246 |#1|))) (-15 -2153 ((-3 (-2 (|:| |particular| (-1246 |#1|)) (|:| -2660 (-679 |#1|))) "failed") (-679 |#1|) (-1246 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2660 (-635 |#1|))) "failed") |#2| |#1|))) (-15 -1815 ((-2 (|:| |particular| (-3 (-1246 |#1|) "failed")) (|:| -2660 (-635 (-1246 |#1|)))) (-679 |#2|) (-1246 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2660 (-635 |#1|))) |#2| |#1|))))
+((-1826 (((-679 |#1|) (-635 |#1|) (-762)) 13) (((-679 |#1|) (-635 |#1|)) 14)) (-1837 (((-3 (-1246 |#1|) "failed") |#2| |#1| (-635 |#1|)) 34)) (-3936 (((-3 |#1| "failed") |#2| |#1| (-635 |#1|) (-1 |#1| |#1|)) 42)))
+(((-805 |#1| |#2|) (-10 -7 (-15 -1826 ((-679 |#1|) (-635 |#1|))) (-15 -1826 ((-679 |#1|) (-635 |#1|) (-762))) (-15 -1837 ((-3 (-1246 |#1|) "failed") |#2| |#1| (-635 |#1|))) (-15 -3936 ((-3 |#1| "failed") |#2| |#1| (-635 |#1|) (-1 |#1| |#1|)))) (-362) (-646 |#1|)) (T -805))
+((-3936 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-635 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-362)) (-5 *1 (-805 *2 *3)) (-4 *3 (-646 *2)))) (-1837 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-635 *4)) (-4 *4 (-362)) (-5 *2 (-1246 *4)) (-5 *1 (-805 *4 *3)) (-4 *3 (-646 *4)))) (-1826 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *5)) (-5 *4 (-762)) (-4 *5 (-362)) (-5 *2 (-679 *5)) (-5 *1 (-805 *5 *6)) (-4 *6 (-646 *5)))) (-1826 (*1 *2 *3) (-12 (-5 *3 (-635 *4)) (-4 *4 (-362)) (-5 *2 (-679 *4)) (-5 *1 (-805 *4 *5)) (-4 *5 (-646 *4)))))
+(-10 -7 (-15 -1826 ((-679 |#1|) (-635 |#1|))) (-15 -1826 ((-679 |#1|) (-635 |#1|) (-762))) (-15 -1837 ((-3 (-1246 |#1|) "failed") |#2| |#1| (-635 |#1|))) (-15 -3936 ((-3 |#1| "failed") |#2| |#1| (-635 |#1|) (-1 |#1| |#1|))))
+((-3207 (((-112) $ $) NIL (|has| |#2| (-1087)))) (-2067 (((-112) $) NIL (|has| |#2| (-130)))) (-4027 (($ (-911)) NIL (|has| |#2| (-1039)))) (-3869 (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4383)))) (-2738 (($ $ $) NIL (|has| |#2| (-784)))) (-2089 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-3026 (((-112) $ (-762)) NIL)) (-2276 (((-762)) NIL (|has| |#2| (-367)))) (-1397 (((-558) $) NIL (|has| |#2| (-839)))) (-1532 ((|#2| $ (-558) |#2|) NIL (|has| $ (-6 -4383)))) (-1816 (($) NIL T CONST)) (-3069 (((-3 (-558) "failed") $) NIL (-12 (|has| |#2| (-1028 (-558))) (|has| |#2| (-1087)))) (((-3 (-406 (-558)) "failed") $) NIL (-12 (|has| |#2| (-1028 (-406 (-558)))) (|has| |#2| (-1087)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1087)))) (-1863 (((-558) $) NIL (-12 (|has| |#2| (-1028 (-558))) (|has| |#2| (-1087)))) (((-406 (-558)) $) NIL (-12 (|has| |#2| (-1028 (-406 (-558)))) (|has| |#2| (-1087)))) ((|#2| $) NIL (|has| |#2| (-1087)))) (-3216 (((-679 (-558)) (-679 $)) NIL (-12 (|has| |#2| (-631 (-558))) (|has| |#2| (-1039)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (-12 (|has| |#2| (-631 (-558))) (|has| |#2| (-1039)))) (((-2 (|:| -3683 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 $) (-1246 $)) NIL (|has| |#2| (-1039))) (((-679 |#2|) (-679 $)) NIL (|has| |#2| (-1039)))) (-2588 (((-3 $ "failed") $) NIL (|has| |#2| (-717)))) (-2424 (($) NIL (|has| |#2| (-367)))) (-1817 ((|#2| $ (-558) |#2|) NIL (|has| $ (-6 -4383)))) (-1746 ((|#2| $ (-558)) NIL)) (-2045 (((-112) $) NIL (|has| |#2| (-839)))) (-2240 (((-635 |#2|) $) NIL (|has| $ (-6 -4382)))) (-2035 (((-112) $) NIL (|has| |#2| (-717)))) (-2055 (((-112) $) NIL (|has| |#2| (-839)))) (-2986 (((-112) $ (-762)) NIL)) (-3889 (((-558) $) NIL (|has| (-558) (-841)))) (-3910 (($ $ $) NIL (-3998 (|has| |#2| (-784)) (|has| |#2| (-839))))) (-2122 (((-635 |#2|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#2| (-1087))))) (-3899 (((-558) $) NIL (|has| (-558) (-841)))) (-3542 (($ $ $) NIL (-3998 (|has| |#2| (-784)) (|has| |#2| (-839))))) (-1807 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#2| |#2|) $) NIL)) (-2637 (((-911) $) NIL (|has| |#2| (-367)))) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL (|has| |#2| (-1087)))) (-3920 (((-635 (-558)) $) NIL)) (-3929 (((-112) (-558) $) NIL)) (-2851 (($ (-911)) NIL (|has| |#2| (-367)))) (-2975 (((-1107) $) NIL (|has| |#2| (-1087)))) (-2305 ((|#2| $) NIL (|has| (-558) (-841)))) (-3880 (($ $ |#2|) NIL (|has| $ (-6 -4383)))) (-3266 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3908 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#2| (-1087))))) (-3937 (((-635 |#2|) $) NIL)) (-3375 (((-112) $) NIL)) (-2083 (($) NIL)) (-2195 ((|#2| $ (-558) |#2|) NIL) ((|#2| $ (-558)) NIL)) (-2744 ((|#2| $ $) NIL (|has| |#2| (-1039)))) (-2572 (($ (-1246 |#2|)) NIL)) (-2148 (((-133)) NIL (|has| |#2| (-362)))) (-2829 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1039)))) (($ $ (-762)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1039)))) (($ $ (-1163)) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-1 |#2| |#2|) (-762)) NIL (|has| |#2| (-1039))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1039)))) (-2988 (((-762) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4382))) (((-762) |#2| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#2| (-1087))))) (-1553 (($ $) NIL)) (-3220 (((-1246 |#2|) $) NIL) (($ (-558)) NIL (-3998 (-12 (|has| |#2| (-1028 (-558))) (|has| |#2| (-1087))) (|has| |#2| (-1039)))) (($ (-406 (-558))) NIL (-12 (|has| |#2| (-1028 (-406 (-558)))) (|has| |#2| (-1087)))) (($ |#2|) NIL (|has| |#2| (-1087))) (((-853) $) NIL (|has| |#2| (-605 (-853))))) (-2542 (((-762)) NIL (|has| |#2| (-1039)))) (-3277 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4382)))) (-3190 (($ $) NIL (|has| |#2| (-839)))) (-2131 (($) NIL (|has| |#2| (-130)) CONST)) (-2142 (($) NIL (|has| |#2| (-717)) CONST)) (-1866 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1039)))) (($ $ (-762)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1039)))) (($ $ (-1163)) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-1 |#2| |#2|) (-762)) NIL (|has| |#2| (-1039))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1039)))) (-1747 (((-112) $ $) NIL (-3998 (|has| |#2| (-784)) (|has| |#2| (-839))))) (-1720 (((-112) $ $) NIL (-3998 (|has| |#2| (-784)) (|has| |#2| (-839))))) (-1683 (((-112) $ $) NIL (|has| |#2| (-1087)))) (-1731 (((-112) $ $) NIL (-3998 (|has| |#2| (-784)) (|has| |#2| (-839))))) (-1705 (((-112) $ $) 11 (-3998 (|has| |#2| (-784)) (|has| |#2| (-839))))) (-1810 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1798 (($ $ $) NIL (|has| |#2| (-1039))) (($ $) NIL (|has| |#2| (-1039)))) (-1784 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-762)) NIL (|has| |#2| (-717))) (($ $ (-911)) NIL (|has| |#2| (-717)))) (* (($ (-558) $) NIL (|has| |#2| (-1039))) (($ $ $) NIL (|has| |#2| (-717))) (($ $ |#2|) NIL (|has| |#2| (-717))) (($ |#2| $) NIL (|has| |#2| (-717))) (($ (-762) $) NIL (|has| |#2| (-130))) (($ (-911) $) NIL (|has| |#2| (-25)))) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-806 |#1| |#2| |#3|) (-237 |#1| |#2|) (-762) (-784) (-1 (-112) (-1246 |#2|) (-1246 |#2|))) (T -806))
+NIL
+(-237 |#1| |#2|)
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2702 (((-635 (-762)) $) NIL) (((-635 (-762)) $ (-1163)) NIL)) (-1800 (((-762) $) NIL) (((-762) $ (-1163)) NIL)) (-2671 (((-635 (-809 (-1163))) $) NIL)) (-2492 (((-1159 $) $ (-809 (-1163))) NIL) (((-1159 |#1|) $) NIL)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1881 (($ $) NIL (|has| |#1| (-550)))) (-1857 (((-112) $) NIL (|has| |#1| (-550)))) (-2513 (((-762) $) NIL) (((-762) $ (-635 (-809 (-1163)))) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-3748 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-3465 (($ $) NIL (|has| |#1| (-450)))) (-1380 (((-417 $) $) NIL (|has| |#1| (-450)))) (-3719 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-2680 (($ $) NIL)) (-1816 (($) NIL T CONST)) (-3069 (((-3 |#1| "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 (-809 (-1163)) "failed") $) NIL) (((-3 (-1163) "failed") $) NIL) (((-3 (-1112 |#1| (-1163)) "failed") $) NIL)) (-1863 ((|#1| $) NIL) (((-406 (-558)) $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-558) $) NIL (|has| |#1| (-1028 (-558)))) (((-809 (-1163)) $) NIL) (((-1163) $) NIL) (((-1112 |#1| (-1163)) $) NIL)) (-3320 (($ $ $ (-809 (-1163))) NIL (|has| |#1| (-171)))) (-2490 (($ $) NIL)) (-3216 (((-679 (-558)) (-679 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3683 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) NIL) (((-679 |#1|) (-679 $)) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-2782 (($ $) NIL (|has| |#1| (-450))) (($ $ (-809 (-1163))) NIL (|has| |#1| (-450)))) (-2476 (((-635 $) $) NIL)) (-3031 (((-112) $) NIL (|has| |#1| (-899)))) (-3888 (($ $ |#1| (-529 (-809 (-1163))) $) NIL)) (-2269 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (-12 (|has| (-809 (-1163)) (-876 (-378))) (|has| |#1| (-876 (-378))))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (-12 (|has| (-809 (-1163)) (-876 (-558))) (|has| |#1| (-876 (-558)))))) (-3449 (((-762) $ (-1163)) NIL) (((-762) $) NIL)) (-2035 (((-112) $) NIL)) (-2110 (((-762) $) NIL)) (-2659 (($ (-1159 |#1|) (-809 (-1163))) NIL) (($ (-1159 $) (-809 (-1163))) NIL)) (-2536 (((-635 $) $) NIL)) (-4238 (((-112) $) NIL)) (-2648 (($ |#1| (-529 (-809 (-1163)))) NIL) (($ $ (-809 (-1163)) (-762)) NIL) (($ $ (-635 (-809 (-1163))) (-635 (-762))) NIL)) (-3381 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $ (-809 (-1163))) NIL)) (-2524 (((-529 (-809 (-1163))) $) NIL) (((-762) $ (-809 (-1163))) NIL) (((-635 (-762)) $ (-635 (-809 (-1163)))) NIL)) (-3910 (($ $ $) NIL (|has| |#1| (-841)))) (-3542 (($ $ $) NIL (|has| |#1| (-841)))) (-3898 (($ (-1 (-529 (-809 (-1163))) (-529 (-809 (-1163)))) $) NIL)) (-3167 (($ (-1 |#1| |#1|) $) NIL)) (-1812 (((-1 $ (-762)) (-1163)) NIL) (((-1 $ (-762)) $) NIL (|has| |#1| (-232)))) (-3399 (((-3 (-809 (-1163)) "failed") $) NIL)) (-2451 (($ $) NIL)) (-2463 ((|#1| $) NIL)) (-4096 (((-809 (-1163)) $) NIL)) (-2665 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-4310 (((-1145) $) NIL)) (-2690 (((-112) $) NIL)) (-2560 (((-3 (-635 $) "failed") $) NIL)) (-2548 (((-3 (-635 $) "failed") $) NIL)) (-2575 (((-3 (-2 (|:| |var| (-809 (-1163))) (|:| -1951 (-762))) "failed") $) NIL)) (-2750 (($ $) NIL)) (-2975 (((-1107) $) NIL)) (-2429 (((-112) $) NIL)) (-2440 ((|#1| $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#1| (-450)))) (-2699 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3728 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-3738 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-2522 (((-417 $) $) NIL (|has| |#1| (-899)))) (-3983 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-2554 (($ $ (-635 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-809 (-1163)) |#1|) NIL) (($ $ (-635 (-809 (-1163))) (-635 |#1|)) NIL) (($ $ (-809 (-1163)) $) NIL) (($ $ (-635 (-809 (-1163))) (-635 $)) NIL) (($ $ (-1163) $) NIL (|has| |#1| (-232))) (($ $ (-635 (-1163)) (-635 $)) NIL (|has| |#1| (-232))) (($ $ (-1163) |#1|) NIL (|has| |#1| (-232))) (($ $ (-635 (-1163)) (-635 |#1|)) NIL (|has| |#1| (-232)))) (-3331 (($ $ (-809 (-1163))) NIL (|has| |#1| (-171)))) (-2829 (($ $ (-809 (-1163))) NIL) (($ $ (-635 (-809 (-1163)))) NIL) (($ $ (-809 (-1163)) (-762)) NIL) (($ $ (-635 (-809 (-1163))) (-635 (-762))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-762)) NIL (|has| |#1| (-232))) (($ $ (-1163)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2713 (((-635 (-1163)) $) NIL)) (-4323 (((-529 (-809 (-1163))) $) NIL) (((-762) $ (-809 (-1163))) NIL) (((-635 (-762)) $ (-635 (-809 (-1163)))) NIL) (((-762) $ (-1163)) NIL)) (-3224 (((-882 (-378)) $) NIL (-12 (|has| (-809 (-1163)) (-606 (-882 (-378)))) (|has| |#1| (-606 (-882 (-378)))))) (((-882 (-558)) $) NIL (-12 (|has| (-809 (-1163)) (-606 (-882 (-558)))) (|has| |#1| (-606 (-882 (-558)))))) (((-534) $) NIL (-12 (|has| (-809 (-1163)) (-606 (-534))) (|has| |#1| (-606 (-534)))))) (-2504 ((|#1| $) NIL (|has| |#1| (-450))) (($ $ (-809 (-1163))) NIL (|has| |#1| (-450)))) (-3709 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-899))))) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ |#1|) NIL) (($ (-809 (-1163))) NIL) (($ (-1163)) NIL) (($ (-1112 |#1| (-1163))) NIL) (($ (-406 (-558))) NIL (-3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558)))))) (($ $) NIL (|has| |#1| (-550)))) (-2583 (((-635 |#1|) $) NIL)) (-3736 ((|#1| $ (-529 (-809 (-1163)))) NIL) (($ $ (-809 (-1163)) (-762)) NIL) (($ $ (-635 (-809 (-1163))) (-635 (-762))) NIL)) (-3698 (((-3 $ "failed") $) NIL (-3998 (-12 (|has| $ (-144)) (|has| |#1| (-899))) (|has| |#1| (-144))))) (-2542 (((-762)) NIL)) (-3879 (($ $ $ (-762)) NIL (|has| |#1| (-171)))) (-1870 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2131 (($) NIL T CONST)) (-2142 (($) NIL T CONST)) (-1866 (($ $ (-809 (-1163))) NIL) (($ $ (-635 (-809 (-1163)))) NIL) (($ $ (-809 (-1163)) (-762)) NIL) (($ $ (-635 (-809 (-1163))) (-635 (-762))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-762)) NIL (|has| |#1| (-232))) (($ $ (-1163)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1747 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1683 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1810 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558))))) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-807 |#1|) (-13 (-252 |#1| (-1163) (-809 (-1163)) (-529 (-809 (-1163)))) (-1028 (-1112 |#1| (-1163)))) (-1039)) (T -807))
+NIL
+(-13 (-252 |#1| (-1163) (-809 (-1163)) (-529 (-809 (-1163)))) (-1028 (-1112 |#1| (-1163))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL (|has| |#2| (-362)))) (-1881 (($ $) NIL (|has| |#2| (-362)))) (-1857 (((-112) $) NIL (|has| |#2| (-362)))) (-2089 (((-3 $ "failed") $ $) NIL)) (-3465 (($ $) NIL (|has| |#2| (-362)))) (-1380 (((-417 $) $) NIL (|has| |#2| (-362)))) (-3732 (((-112) $ $) NIL (|has| |#2| (-362)))) (-1816 (($) NIL T CONST)) (-4025 (($ $ $) NIL (|has| |#2| (-362)))) (-2588 (((-3 $ "failed") $) NIL)) (-4004 (($ $ $) NIL (|has| |#2| (-362)))) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL (|has| |#2| (-362)))) (-3031 (((-112) $) NIL (|has| |#2| (-362)))) (-2035 (((-112) $) NIL)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#2| (-362)))) (-2665 (($ (-635 $)) NIL (|has| |#2| (-362))) (($ $ $) NIL (|has| |#2| (-362)))) (-4310 (((-1145) $) NIL)) (-2418 (($ $) 20 (|has| |#2| (-362)))) (-2975 (((-1107) $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#2| (-362)))) (-2699 (($ (-635 $)) NIL (|has| |#2| (-362))) (($ $ $) NIL (|has| |#2| (-362)))) (-2522 (((-417 $) $) NIL (|has| |#2| (-362)))) (-3713 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL (|has| |#2| (-362)))) (-3983 (((-3 $ "failed") $ $) NIL (|has| |#2| (-362)))) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#2| (-362)))) (-3722 (((-762) $) NIL (|has| |#2| (-362)))) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL (|has| |#2| (-362)))) (-2829 (($ $ (-762)) NIL) (($ $) 13)) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-406 (-558))) NIL (|has| |#2| (-362))) (($ $) NIL (|has| |#2| (-362)))) (-2542 (((-762)) NIL)) (-1870 (((-112) $ $) NIL (|has| |#2| (-362)))) (-2131 (($) NIL T CONST)) (-2142 (($) NIL T CONST)) (-1866 (($ $ (-762)) NIL) (($ $) NIL)) (-1683 (((-112) $ $) NIL)) (-1810 (($ $ $) 15 (|has| |#2| (-362)))) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-762)) NIL) (($ $ (-911)) NIL) (($ $ (-558)) 18 (|has| |#2| (-362)))) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-406 (-558)) $) NIL (|has| |#2| (-362))) (($ $ (-406 (-558))) NIL (|has| |#2| (-362)))))
+(((-808 |#1| |#2| |#3|) (-13 (-111 $ $) (-232) (-488 |#2|) (-10 -7 (IF (|has| |#2| (-362)) (-6 (-362)) |%noBranch|))) (-1087) (-890 |#1|) |#1|) (T -808))
+NIL
+(-13 (-111 $ $) (-232) (-488 |#2|) (-10 -7 (IF (|has| |#2| (-362)) (-6 (-362)) |%noBranch|)))
+((-3207 (((-112) $ $) NIL)) (-1800 (((-762) $) NIL)) (-1602 ((|#1| $) 10)) (-3069 (((-3 |#1| "failed") $) NIL)) (-1863 ((|#1| $) NIL)) (-3449 (((-762) $) 11)) (-3910 (($ $ $) NIL)) (-3542 (($ $ $) NIL)) (-1812 (($ |#1| (-762)) 9)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-2829 (($ $) NIL) (($ $ (-762)) NIL)) (-3220 (((-853) $) NIL) (($ |#1|) NIL)) (-1747 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1683 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)))
+(((-809 |#1|) (-265 |#1|) (-841)) (T -809))
+NIL
+(-265 |#1|)
+((-3207 (((-112) $ $) NIL)) (-3712 (((-635 |#1|) $) 29)) (-2276 (((-762) $) NIL)) (-1816 (($) NIL T CONST)) (-4249 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-3069 (((-3 |#1| "failed") $) NIL)) (-1863 ((|#1| $) NIL)) (-2315 (($ $) 31)) (-2588 (((-3 $ "failed") $) NIL)) (-1883 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2035 (((-112) $) NIL)) (-1859 ((|#1| $ (-558)) NIL)) (-1872 (((-762) $ (-558)) NIL)) (-4227 (($ $) 35)) (-3910 (($ $ $) NIL)) (-3542 (($ $ $) NIL)) (-4260 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-1915 (((-112) $ $) 33)) (-2880 (((-762) $) 25)) (-4310 (((-1145) $) NIL)) (-1893 (($ $ $) NIL)) (-1902 (($ $ $) NIL)) (-2975 (((-1107) $) NIL)) (-2305 ((|#1| $) 30)) (-1849 (((-635 (-2 (|:| |gen| |#1|) (|:| -2573 (-762)))) $) NIL)) (-3992 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-3220 (((-853) $) NIL) (($ |#1|) NIL)) (-2142 (($) 15 T CONST)) (-1747 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1683 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 34)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ |#1| (-762)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-810 |#1|) (-13 (-837) (-1028 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-762))) (-15 -2305 (|#1| $)) (-15 -2315 ($ $)) (-15 -4227 ($ $)) (-15 -1915 ((-112) $ $)) (-15 -1902 ($ $ $)) (-15 -1893 ($ $ $)) (-15 -4260 ((-3 $ "failed") $ $)) (-15 -4249 ((-3 $ "failed") $ $)) (-15 -4260 ((-3 $ "failed") $ |#1|)) (-15 -4249 ((-3 $ "failed") $ |#1|)) (-15 -3992 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1883 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2276 ((-762) $)) (-15 -1872 ((-762) $ (-558))) (-15 -1859 (|#1| $ (-558))) (-15 -1849 ((-635 (-2 (|:| |gen| |#1|) (|:| -2573 (-762)))) $)) (-15 -2880 ((-762) $)) (-15 -3712 ((-635 |#1|) $)))) (-841)) (T -810))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-841)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-810 *2)) (-4 *2 (-841)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-762)) (-5 *1 (-810 *2)) (-4 *2 (-841)))) (-2305 (*1 *2 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-841)))) (-2315 (*1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-841)))) (-4227 (*1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-841)))) (-1915 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-810 *3)) (-4 *3 (-841)))) (-1902 (*1 *1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-841)))) (-1893 (*1 *1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-841)))) (-4260 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-810 *2)) (-4 *2 (-841)))) (-4249 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-810 *2)) (-4 *2 (-841)))) (-4260 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-810 *2)) (-4 *2 (-841)))) (-4249 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-810 *2)) (-4 *2 (-841)))) (-3992 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-810 *3)) (|:| |rm| (-810 *3)))) (-5 *1 (-810 *3)) (-4 *3 (-841)))) (-1883 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-810 *3)) (|:| |mm| (-810 *3)) (|:| |rm| (-810 *3)))) (-5 *1 (-810 *3)) (-4 *3 (-841)))) (-2276 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-810 *3)) (-4 *3 (-841)))) (-1872 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *2 (-762)) (-5 *1 (-810 *4)) (-4 *4 (-841)))) (-1859 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *1 (-810 *2)) (-4 *2 (-841)))) (-1849 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -2573 (-762))))) (-5 *1 (-810 *3)) (-4 *3 (-841)))) (-2880 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-810 *3)) (-4 *3 (-841)))) (-3712 (*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-810 *3)) (-4 *3 (-841)))))
+(-13 (-837) (-1028 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-762))) (-15 -2305 (|#1| $)) (-15 -2315 ($ $)) (-15 -4227 ($ $)) (-15 -1915 ((-112) $ $)) (-15 -1902 ($ $ $)) (-15 -1893 ($ $ $)) (-15 -4260 ((-3 $ "failed") $ $)) (-15 -4249 ((-3 $ "failed") $ $)) (-15 -4260 ((-3 $ "failed") $ |#1|)) (-15 -4249 ((-3 $ "failed") $ |#1|)) (-15 -3992 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1883 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2276 ((-762) $)) (-15 -1872 ((-762) $ (-558))) (-15 -1859 (|#1| $ (-558))) (-15 -1849 ((-635 (-2 (|:| |gen| |#1|) (|:| -2573 (-762)))) $)) (-15 -2880 ((-762) $)) (-15 -3712 ((-635 |#1|) $))))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 42)) (-1881 (($ $) 41)) (-1857 (((-112) $) 39)) (-2089 (((-3 $ "failed") $ $) 19)) (-1397 (((-558) $) 54)) (-1816 (($) 17 T CONST)) (-2588 (((-3 $ "failed") $) 33)) (-2045 (((-112) $) 52)) (-2035 (((-112) $) 31)) (-2055 (((-112) $) 53)) (-3910 (($ $ $) 51)) (-3542 (($ $ $) 50)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3983 (((-3 $ "failed") $ $) 43)) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ $) 44)) (-2542 (((-762)) 28)) (-1870 (((-112) $ $) 40)) (-3190 (($ $) 55)) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1747 (((-112) $ $) 48)) (-1720 (((-112) $ $) 47)) (-1683 (((-112) $ $) 6)) (-1731 (((-112) $ $) 49)) (-1705 (((-112) $ $) 46)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24)))
+(((-811) (-139)) (T -811))
+NIL
+(-13 (-550) (-839))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-608 (-558)) . T) ((-608 $) . T) ((-605 (-853)) . T) ((-171) . T) ((-289) . T) ((-550) . T) ((-638 $) . T) ((-708 $) . T) ((-717) . T) ((-782) . T) ((-783) . T) ((-785) . T) ((-786) . T) ((-839) . T) ((-841) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
+((-1927 (($ (-1107)) 7)) (-1970 (((-112) $ (-1145) (-1107)) 15)) (-1957 (((-813) $) 12)) (-1946 (((-813) $) 11)) (-1936 (((-1251) $) 9)) (-1982 (((-112) $ (-1107)) 16)))
+(((-812) (-10 -8 (-15 -1927 ($ (-1107))) (-15 -1936 ((-1251) $)) (-15 -1946 ((-813) $)) (-15 -1957 ((-813) $)) (-15 -1970 ((-112) $ (-1145) (-1107))) (-15 -1982 ((-112) $ (-1107))))) (T -812))
+((-1982 (*1 *2 *1 *3) (-12 (-5 *3 (-1107)) (-5 *2 (-112)) (-5 *1 (-812)))) (-1970 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1145)) (-5 *4 (-1107)) (-5 *2 (-112)) (-5 *1 (-812)))) (-1957 (*1 *2 *1) (-12 (-5 *2 (-813)) (-5 *1 (-812)))) (-1946 (*1 *2 *1) (-12 (-5 *2 (-813)) (-5 *1 (-812)))) (-1936 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-812)))) (-1927 (*1 *1 *2) (-12 (-5 *2 (-1107)) (-5 *1 (-812)))))
+(-10 -8 (-15 -1927 ($ (-1107))) (-15 -1936 ((-1251) $)) (-15 -1946 ((-813) $)) (-15 -1957 ((-813) $)) (-15 -1970 ((-112) $ (-1145) (-1107))) (-15 -1982 ((-112) $ (-1107))))
+((-2021 (((-1251) $ (-814)) 12)) (-2206 (((-1251) $ (-1163)) 32)) (-2229 (((-1251) $ (-1145) (-1145)) 34)) (-2217 (((-1251) $ (-1145)) 33)) (-2093 (((-1251) $) 19)) (-2184 (((-1251) $ (-558)) 28)) (-2193 (((-1251) $ (-224)) 30)) (-2082 (((-1251) $) 18)) (-2172 (((-1251) $) 26)) (-2161 (((-1251) $) 25)) (-2140 (((-1251) $) 23)) (-2152 (((-1251) $) 24)) (-2129 (((-1251) $) 22)) (-2117 (((-1251) $) 21)) (-2105 (((-1251) $) 20)) (-2062 (((-1251) $) 16)) (-2072 (((-1251) $) 17)) (-2051 (((-1251) $) 15)) (-2041 (((-1251) $) 14)) (-2032 (((-1251) $) 13)) (-2002 (($ (-1145) (-814)) 9)) (-1992 (($ (-1145) (-1145) (-814)) 8)) (-4242 (((-1163) $) 51)) (-4279 (((-1163) $) 55)) (-4265 (((-2 (|:| |cd| (-1145)) (|:| -1323 (-1145))) $) 54)) (-4253 (((-1145) $) 52)) (-4129 (((-1251) $) 41)) (-4221 (((-558) $) 49)) (-4231 (((-224) $) 50)) (-4118 (((-1251) $) 40)) (-4210 (((-1251) $) 48)) (-4199 (((-1251) $) 47)) (-4177 (((-1251) $) 45)) (-4189 (((-1251) $) 46)) (-4165 (((-1251) $) 44)) (-4153 (((-1251) $) 43)) (-4140 (((-1251) $) 42)) (-4093 (((-1251) $) 38)) (-4106 (((-1251) $) 39)) (-2261 (((-1251) $) 37)) (-2251 (((-1251) $) 36)) (-2238 (((-1251) $) 35)) (-2012 (((-1251) $) 11)))
+(((-813) (-10 -8 (-15 -1992 ($ (-1145) (-1145) (-814))) (-15 -2002 ($ (-1145) (-814))) (-15 -2012 ((-1251) $)) (-15 -2021 ((-1251) $ (-814))) (-15 -2032 ((-1251) $)) (-15 -2041 ((-1251) $)) (-15 -2051 ((-1251) $)) (-15 -2062 ((-1251) $)) (-15 -2072 ((-1251) $)) (-15 -2082 ((-1251) $)) (-15 -2093 ((-1251) $)) (-15 -2105 ((-1251) $)) (-15 -2117 ((-1251) $)) (-15 -2129 ((-1251) $)) (-15 -2140 ((-1251) $)) (-15 -2152 ((-1251) $)) (-15 -2161 ((-1251) $)) (-15 -2172 ((-1251) $)) (-15 -2184 ((-1251) $ (-558))) (-15 -2193 ((-1251) $ (-224))) (-15 -2206 ((-1251) $ (-1163))) (-15 -2217 ((-1251) $ (-1145))) (-15 -2229 ((-1251) $ (-1145) (-1145))) (-15 -2238 ((-1251) $)) (-15 -2251 ((-1251) $)) (-15 -2261 ((-1251) $)) (-15 -4093 ((-1251) $)) (-15 -4106 ((-1251) $)) (-15 -4118 ((-1251) $)) (-15 -4129 ((-1251) $)) (-15 -4140 ((-1251) $)) (-15 -4153 ((-1251) $)) (-15 -4165 ((-1251) $)) (-15 -4177 ((-1251) $)) (-15 -4189 ((-1251) $)) (-15 -4199 ((-1251) $)) (-15 -4210 ((-1251) $)) (-15 -4221 ((-558) $)) (-15 -4231 ((-224) $)) (-15 -4242 ((-1163) $)) (-15 -4253 ((-1145) $)) (-15 -4265 ((-2 (|:| |cd| (-1145)) (|:| -1323 (-1145))) $)) (-15 -4279 ((-1163) $)))) (T -813))
+((-4279 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-813)))) (-4265 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1145)) (|:| -1323 (-1145)))) (-5 *1 (-813)))) (-4253 (*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-813)))) (-4242 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-813)))) (-4231 (*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-813)))) (-4221 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-813)))) (-4210 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-4199 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-4189 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-4177 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-4165 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-4153 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-4140 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-4129 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-4118 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-4106 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-4093 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-2261 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-2251 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-2238 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-2229 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-813)))) (-2217 (*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-813)))) (-2206 (*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1251)) (-5 *1 (-813)))) (-2193 (*1 *2 *1 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1251)) (-5 *1 (-813)))) (-2184 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *2 (-1251)) (-5 *1 (-813)))) (-2172 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-2161 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-2152 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-2140 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-2129 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-2117 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-2105 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-2093 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-2082 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-2072 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-2062 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-2051 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-2041 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-2032 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-2021 (*1 *2 *1 *3) (-12 (-5 *3 (-814)) (-5 *2 (-1251)) (-5 *1 (-813)))) (-2012 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-2002 (*1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-814)) (-5 *1 (-813)))) (-1992 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-814)) (-5 *1 (-813)))))
+(-10 -8 (-15 -1992 ($ (-1145) (-1145) (-814))) (-15 -2002 ($ (-1145) (-814))) (-15 -2012 ((-1251) $)) (-15 -2021 ((-1251) $ (-814))) (-15 -2032 ((-1251) $)) (-15 -2041 ((-1251) $)) (-15 -2051 ((-1251) $)) (-15 -2062 ((-1251) $)) (-15 -2072 ((-1251) $)) (-15 -2082 ((-1251) $)) (-15 -2093 ((-1251) $)) (-15 -2105 ((-1251) $)) (-15 -2117 ((-1251) $)) (-15 -2129 ((-1251) $)) (-15 -2140 ((-1251) $)) (-15 -2152 ((-1251) $)) (-15 -2161 ((-1251) $)) (-15 -2172 ((-1251) $)) (-15 -2184 ((-1251) $ (-558))) (-15 -2193 ((-1251) $ (-224))) (-15 -2206 ((-1251) $ (-1163))) (-15 -2217 ((-1251) $ (-1145))) (-15 -2229 ((-1251) $ (-1145) (-1145))) (-15 -2238 ((-1251) $)) (-15 -2251 ((-1251) $)) (-15 -2261 ((-1251) $)) (-15 -4093 ((-1251) $)) (-15 -4106 ((-1251) $)) (-15 -4118 ((-1251) $)) (-15 -4129 ((-1251) $)) (-15 -4140 ((-1251) $)) (-15 -4153 ((-1251) $)) (-15 -4165 ((-1251) $)) (-15 -4177 ((-1251) $)) (-15 -4189 ((-1251) $)) (-15 -4199 ((-1251) $)) (-15 -4210 ((-1251) $)) (-15 -4221 ((-558) $)) (-15 -4231 ((-224) $)) (-15 -4242 ((-1163) $)) (-15 -4253 ((-1145) $)) (-15 -4265 ((-2 (|:| |cd| (-1145)) (|:| -1323 (-1145))) $)) (-15 -4279 ((-1163) $)))
+((-3207 (((-112) $ $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 12)) (-4315 (($) 15)) (-4327 (($) 13)) (-4303 (($) 16)) (-4291 (($) 14)) (-1683 (((-112) $ $) 8)))
+(((-814) (-13 (-1087) (-10 -8 (-15 -4327 ($)) (-15 -4315 ($)) (-15 -4303 ($)) (-15 -4291 ($))))) (T -814))
+((-4327 (*1 *1) (-5 *1 (-814))) (-4315 (*1 *1) (-5 *1 (-814))) (-4303 (*1 *1) (-5 *1 (-814))) (-4291 (*1 *1) (-5 *1 (-814))))
+(-13 (-1087) (-10 -8 (-15 -4327 ($)) (-15 -4315 ($)) (-15 -4303 ($)) (-15 -4291 ($))))
+((-3207 (((-112) $ $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 21) (($ (-1163)) 17)) (-1300 (((-112) $) 10)) (-1312 (((-112) $) 9)) (-1288 (((-112) $) 11)) (-1324 (((-112) $) 8)) (-1683 (((-112) $ $) 19)))
+(((-815) (-13 (-1087) (-10 -8 (-15 -3220 ($ (-1163))) (-15 -1324 ((-112) $)) (-15 -1312 ((-112) $)) (-15 -1300 ((-112) $)) (-15 -1288 ((-112) $))))) (T -815))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-815)))) (-1324 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-815)))) (-1312 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-815)))) (-1300 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-815)))) (-1288 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-815)))))
+(-13 (-1087) (-10 -8 (-15 -3220 ($ (-1163))) (-15 -1324 ((-112) $)) (-15 -1312 ((-112) $)) (-15 -1300 ((-112) $)) (-15 -1288 ((-112) $))))
+((-3207 (((-112) $ $) NIL)) (-4339 (($ (-815) (-635 (-1163))) 24)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-4361 (((-815) $) 25)) (-4351 (((-635 (-1163)) $) 26)) (-3220 (((-853) $) 23)) (-1683 (((-112) $ $) NIL)))
+(((-816) (-13 (-1087) (-10 -8 (-15 -4361 ((-815) $)) (-15 -4351 ((-635 (-1163)) $)) (-15 -4339 ($ (-815) (-635 (-1163))))))) (T -816))
+((-4361 (*1 *2 *1) (-12 (-5 *2 (-815)) (-5 *1 (-816)))) (-4351 (*1 *2 *1) (-12 (-5 *2 (-635 (-1163))) (-5 *1 (-816)))) (-4339 (*1 *1 *2 *3) (-12 (-5 *2 (-815)) (-5 *3 (-635 (-1163))) (-5 *1 (-816)))))
+(-13 (-1087) (-10 -8 (-15 -4361 ((-815) $)) (-15 -4351 ((-635 (-1163)) $)) (-15 -4339 ($ (-815) (-635 (-1163))))))
+((-1338 (((-1251) (-813) (-315 |#1|) (-112)) 23) (((-1251) (-813) (-315 |#1|)) 79) (((-1145) (-315 |#1|) (-112)) 78) (((-1145) (-315 |#1|)) 77)))
+(((-817 |#1|) (-10 -7 (-15 -1338 ((-1145) (-315 |#1|))) (-15 -1338 ((-1145) (-315 |#1|) (-112))) (-15 -1338 ((-1251) (-813) (-315 |#1|))) (-15 -1338 ((-1251) (-813) (-315 |#1|) (-112)))) (-13 (-819) (-841) (-1039))) (T -817))
+((-1338 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-813)) (-5 *4 (-315 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-819) (-841) (-1039))) (-5 *2 (-1251)) (-5 *1 (-817 *6)))) (-1338 (*1 *2 *3 *4) (-12 (-5 *3 (-813)) (-5 *4 (-315 *5)) (-4 *5 (-13 (-819) (-841) (-1039))) (-5 *2 (-1251)) (-5 *1 (-817 *5)))) (-1338 (*1 *2 *3 *4) (-12 (-5 *3 (-315 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-819) (-841) (-1039))) (-5 *2 (-1145)) (-5 *1 (-817 *5)))) (-1338 (*1 *2 *3) (-12 (-5 *3 (-315 *4)) (-4 *4 (-13 (-819) (-841) (-1039))) (-5 *2 (-1145)) (-5 *1 (-817 *4)))))
+(-10 -7 (-15 -1338 ((-1145) (-315 |#1|))) (-15 -1338 ((-1145) (-315 |#1|) (-112))) (-15 -1338 ((-1251) (-813) (-315 |#1|))) (-15 -1338 ((-1251) (-813) (-315 |#1|) (-112))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-1816 (($) NIL T CONST)) (-2490 (($ $) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-1349 ((|#1| $) 10)) (-3483 (($ |#1|) 9)) (-2035 (((-112) $) NIL)) (-2648 (($ |#2| (-762)) NIL)) (-2524 (((-762) $) NIL)) (-2463 ((|#2| $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-2829 (($ $ (-762)) NIL (|has| |#1| (-232))) (($ $) NIL (|has| |#1| (-232)))) (-4323 (((-762) $) NIL)) (-3220 (((-853) $) 17) (($ (-558)) NIL) (($ |#2|) NIL (|has| |#2| (-171)))) (-3736 ((|#2| $ (-762)) NIL)) (-2542 (((-762)) NIL)) (-2131 (($) NIL T CONST)) (-2142 (($) NIL T CONST)) (-1866 (($ $ (-762)) NIL (|has| |#1| (-232))) (($ $) NIL (|has| |#1| (-232)))) (-1683 (((-112) $ $) NIL)) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-818 |#1| |#2|) (-13 (-699 |#2|) (-10 -8 (IF (|has| |#1| (-232)) (-6 (-232)) |%noBranch|) (-15 -3483 ($ |#1|)) (-15 -1349 (|#1| $)))) (-699 |#2|) (-1039)) (T -818))
+((-3483 (*1 *1 *2) (-12 (-4 *3 (-1039)) (-5 *1 (-818 *2 *3)) (-4 *2 (-699 *3)))) (-1349 (*1 *2 *1) (-12 (-4 *2 (-699 *3)) (-5 *1 (-818 *2 *3)) (-4 *3 (-1039)))))
+(-13 (-699 |#2|) (-10 -8 (IF (|has| |#1| (-232)) (-6 (-232)) |%noBranch|) (-15 -3483 ($ |#1|)) (-15 -1349 (|#1| $))))
+((-1338 (((-1251) (-813) $ (-112)) 9) (((-1251) (-813) $) 8) (((-1145) $ (-112)) 7) (((-1145) $) 6)))
+(((-819) (-139)) (T -819))
+((-1338 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-819)) (-5 *3 (-813)) (-5 *4 (-112)) (-5 *2 (-1251)))) (-1338 (*1 *2 *3 *1) (-12 (-4 *1 (-819)) (-5 *3 (-813)) (-5 *2 (-1251)))) (-1338 (*1 *2 *1 *3) (-12 (-4 *1 (-819)) (-5 *3 (-112)) (-5 *2 (-1145)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-819)) (-5 *2 (-1145)))))
+(-13 (-10 -8 (-15 -1338 ((-1145) $)) (-15 -1338 ((-1145) $ (-112))) (-15 -1338 ((-1251) (-813) $)) (-15 -1338 ((-1251) (-813) $ (-112)))))
+((-1442 (((-311) (-1145) (-1145)) 12)) (-1429 (((-112) (-1145) (-1145)) 33)) (-1419 (((-112) (-1145)) 32)) (-1384 (((-52) (-1145)) 25)) (-1373 (((-52) (-1145)) 23)) (-1361 (((-52) (-813)) 17)) (-1408 (((-635 (-1145)) (-1145)) 28)) (-1396 (((-635 (-1145))) 27)))
+(((-820) (-10 -7 (-15 -1361 ((-52) (-813))) (-15 -1373 ((-52) (-1145))) (-15 -1384 ((-52) (-1145))) (-15 -1396 ((-635 (-1145)))) (-15 -1408 ((-635 (-1145)) (-1145))) (-15 -1419 ((-112) (-1145))) (-15 -1429 ((-112) (-1145) (-1145))) (-15 -1442 ((-311) (-1145) (-1145))))) (T -820))
+((-1442 (*1 *2 *3 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-311)) (-5 *1 (-820)))) (-1429 (*1 *2 *3 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-112)) (-5 *1 (-820)))) (-1419 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-112)) (-5 *1 (-820)))) (-1408 (*1 *2 *3) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-820)) (-5 *3 (-1145)))) (-1396 (*1 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-820)))) (-1384 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-52)) (-5 *1 (-820)))) (-1373 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-52)) (-5 *1 (-820)))) (-1361 (*1 *2 *3) (-12 (-5 *3 (-813)) (-5 *2 (-52)) (-5 *1 (-820)))))
+(-10 -7 (-15 -1361 ((-52) (-813))) (-15 -1373 ((-52) (-1145))) (-15 -1384 ((-52) (-1145))) (-15 -1396 ((-635 (-1145)))) (-15 -1408 ((-635 (-1145)) (-1145))) (-15 -1419 ((-112) (-1145))) (-15 -1429 ((-112) (-1145) (-1145))) (-15 -1442 ((-311) (-1145) (-1145))))
+((-3207 (((-112) $ $) 19)) (-3539 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-4259 (($ $ $) 72)) (-4248 (((-112) $ $) 73)) (-3026 (((-112) $ (-762)) 8)) (-1511 (($ (-635 |#1|)) 68) (($) 67)) (-4207 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4382)))) (-4329 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4382)))) (-1816 (($) 7 T CONST)) (-2820 (($ $) 62)) (-2338 (($ $) 58 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-3395 (($ |#1| $) 47 (|has| $ (-6 -4382))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4382)))) (-1539 (($ |#1| $) 57 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4382)))) (-3048 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4382))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4382)))) (-2240 (((-635 |#1|) $) 30 (|has| $ (-6 -4382)))) (-4298 (((-112) $ $) 64)) (-2986 (((-112) $ (-762)) 9)) (-3910 ((|#1| $) 78)) (-1645 (($ $ $) 81)) (-1677 (($ $ $) 80)) (-2122 (((-635 |#1|) $) 29 (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-3542 ((|#1| $) 79)) (-1807 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) 35)) (-2953 (((-112) $ (-762)) 10)) (-4310 (((-1145) $) 22)) (-4286 (($ $ $) 69)) (-1722 ((|#1| $) 39)) (-4328 (($ |#1| $) 40) (($ |#1| $ (-762)) 63)) (-2975 (((-1107) $) 21)) (-4307 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3524 ((|#1| $) 41)) (-3266 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) 14)) (-3375 (((-112) $) 11)) (-2083 (($) 12)) (-2811 (((-635 (-2 (|:| -2981 |#1|) (|:| -2988 (-762)))) $) 61)) (-4271 (($ $ |#1|) 71) (($ $ $) 70)) (-2571 (($) 49) (($ (-635 |#1|)) 48)) (-2988 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4382))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1553 (($ $) 13)) (-3224 (((-534) $) 59 (|has| |#1| (-606 (-534))))) (-3233 (($ (-635 |#1|)) 50)) (-3220 (((-853) $) 18)) (-2597 (($ (-635 |#1|)) 66) (($) 65)) (-3534 (($ (-635 |#1|)) 42)) (-3277 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) 20)) (-2755 (((-762) $) 6 (|has| $ (-6 -4382)))))
+(((-821 |#1|) (-139) (-841)) (T -821))
+((-3910 (*1 *2 *1) (-12 (-4 *1 (-821 *2)) (-4 *2 (-841)))))
+(-13 (-727 |t#1|) (-958 |t#1|) (-10 -8 (-15 -3910 (|t#1| $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-605 (-853)) . T) ((-150 |#1|) . T) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-234 |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-685 |#1|) . T) ((-727 |#1|) . T) ((-958 |#1|) . T) ((-1085 |#1|) . T) ((-1087) . T) ((-1200) . T))
+((-1477 (((-1251) (-1107) (-1107)) 47)) (-1464 (((-1251) (-812) (-52)) 44)) (-1454 (((-52) (-812)) 16)))
+(((-822) (-10 -7 (-15 -1454 ((-52) (-812))) (-15 -1464 ((-1251) (-812) (-52))) (-15 -1477 ((-1251) (-1107) (-1107))))) (T -822))
+((-1477 (*1 *2 *3 *3) (-12 (-5 *3 (-1107)) (-5 *2 (-1251)) (-5 *1 (-822)))) (-1464 (*1 *2 *3 *4) (-12 (-5 *3 (-812)) (-5 *4 (-52)) (-5 *2 (-1251)) (-5 *1 (-822)))) (-1454 (*1 *2 *3) (-12 (-5 *3 (-812)) (-5 *2 (-52)) (-5 *1 (-822)))))
+(-10 -7 (-15 -1454 ((-52) (-812))) (-15 -1464 ((-1251) (-812) (-52))) (-15 -1477 ((-1251) (-1107) (-1107))))
+((-3167 (((-824 |#2|) (-1 |#2| |#1|) (-824 |#1|) (-824 |#2|)) 12) (((-824 |#2|) (-1 |#2| |#1|) (-824 |#1|)) 13)))
+(((-823 |#1| |#2|) (-10 -7 (-15 -3167 ((-824 |#2|) (-1 |#2| |#1|) (-824 |#1|))) (-15 -3167 ((-824 |#2|) (-1 |#2| |#1|) (-824 |#1|) (-824 |#2|)))) (-1087) (-1087)) (T -823))
+((-3167 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-824 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-824 *5)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-5 *1 (-823 *5 *6)))) (-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-824 *5)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-5 *2 (-824 *6)) (-5 *1 (-823 *5 *6)))))
+(-10 -7 (-15 -3167 ((-824 |#2|) (-1 |#2| |#1|) (-824 |#1|))) (-15 -3167 ((-824 |#2|) (-1 |#2| |#1|) (-824 |#1|) (-824 |#2|))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL (|has| |#1| (-21)))) (-2089 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1397 (((-558) $) NIL (|has| |#1| (-839)))) (-1816 (($) NIL (|has| |#1| (-21)) CONST)) (-3069 (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-3 |#1| "failed") $) 15)) (-1863 (((-558) $) NIL (|has| |#1| (-1028 (-558)))) (((-406 (-558)) $) NIL (|has| |#1| (-1028 (-406 (-558))))) ((|#1| $) 9)) (-2588 (((-3 $ "failed") $) 40 (|has| |#1| (-839)))) (-3962 (((-3 (-406 (-558)) "failed") $) 49 (|has| |#1| (-543)))) (-3951 (((-112) $) 43 (|has| |#1| (-543)))) (-3938 (((-406 (-558)) $) 46 (|has| |#1| (-543)))) (-2045 (((-112) $) NIL (|has| |#1| (-839)))) (-2035 (((-112) $) NIL (|has| |#1| (-839)))) (-2055 (((-112) $) NIL (|has| |#1| (-839)))) (-3910 (($ $ $) NIL (|has| |#1| (-839)))) (-3542 (($ $ $) NIL (|has| |#1| (-839)))) (-4310 (((-1145) $) NIL)) (-1917 (($) 13)) (-1597 (((-112) $) 12)) (-2975 (((-1107) $) NIL)) (-1606 (((-112) $) 11)) (-3220 (((-853) $) 18) (($ (-406 (-558))) NIL (|has| |#1| (-1028 (-406 (-558))))) (($ |#1|) 8) (($ (-558)) NIL (-3998 (|has| |#1| (-839)) (|has| |#1| (-1028 (-558)))))) (-2542 (((-762)) 34 (|has| |#1| (-839)))) (-3190 (($ $) NIL (|has| |#1| (-839)))) (-2131 (($) 22 (|has| |#1| (-21)) CONST)) (-2142 (($) 31 (|has| |#1| (-839)) CONST)) (-1747 (((-112) $ $) NIL (|has| |#1| (-839)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-839)))) (-1683 (((-112) $ $) 20)) (-1731 (((-112) $ $) NIL (|has| |#1| (-839)))) (-1705 (((-112) $ $) 42 (|has| |#1| (-839)))) (-1798 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-1784 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-911)) NIL (|has| |#1| (-839))) (($ $ (-762)) NIL (|has| |#1| (-839)))) (* (($ $ $) 37 (|has| |#1| (-839))) (($ (-558) $) 25 (|has| |#1| (-21))) (($ (-762) $) NIL (|has| |#1| (-21))) (($ (-911) $) NIL (|has| |#1| (-21)))))
+(((-824 |#1|) (-13 (-1087) (-410 |#1|) (-10 -8 (-15 -1917 ($)) (-15 -1606 ((-112) $)) (-15 -1597 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-839)) (-6 (-839)) |%noBranch|) (IF (|has| |#1| (-543)) (PROGN (-15 -3951 ((-112) $)) (-15 -3938 ((-406 (-558)) $)) (-15 -3962 ((-3 (-406 (-558)) "failed") $))) |%noBranch|))) (-1087)) (T -824))
+((-1917 (*1 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-1087)))) (-1606 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824 *3)) (-4 *3 (-1087)))) (-1597 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824 *3)) (-4 *3 (-1087)))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824 *3)) (-4 *3 (-543)) (-4 *3 (-1087)))) (-3938 (*1 *2 *1) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-824 *3)) (-4 *3 (-543)) (-4 *3 (-1087)))) (-3962 (*1 *2 *1) (|partial| -12 (-5 *2 (-406 (-558))) (-5 *1 (-824 *3)) (-4 *3 (-543)) (-4 *3 (-1087)))))
+(-13 (-1087) (-410 |#1|) (-10 -8 (-15 -1917 ($)) (-15 -1606 ((-112) $)) (-15 -1597 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-839)) (-6 (-839)) |%noBranch|) (IF (|has| |#1| (-543)) (PROGN (-15 -3951 ((-112) $)) (-15 -3938 ((-406 (-558)) $)) (-15 -3962 ((-3 (-406 (-558)) "failed") $))) |%noBranch|)))
+((-3220 (((-853) $) 11)))
+(((-825 |#1| |#2|) (-10 -8 (-15 -3220 ((-853) |#1|))) (-826 |#2|) (-1087)) (T -825))
+NIL
+(-10 -8 (-15 -3220 ((-853) |#1|)))
+((-3207 (((-112) $ $) 7)) (-1323 ((|#1| $) 14)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11)) (-1546 (((-55) $) 13)) (-1683 (((-112) $ $) 6)))
+(((-826 |#1|) (-139) (-1087)) (T -826))
+((-1323 (*1 *2 *1) (-12 (-4 *1 (-826 *2)) (-4 *2 (-1087)))) (-1546 (*1 *2 *1) (-12 (-4 *1 (-826 *3)) (-4 *3 (-1087)) (-5 *2 (-55)))))
+(-13 (-1087) (-10 -8 (-15 -1323 (|t#1| $)) (-15 -1546 ((-55) $))))
+(((-102) . T) ((-605 (-853)) . T) ((-1087) . T))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-1816 (($) NIL T CONST)) (-3069 (((-3 |#1| "failed") $) NIL) (((-3 (-114) "failed") $) NIL)) (-1863 ((|#1| $) NIL) (((-114) $) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-1494 ((|#1| (-114) |#1|) NIL)) (-2035 (((-112) $) NIL)) (-1486 (($ |#1| (-360 (-114))) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-1504 (($ $ (-1 |#1| |#1|)) NIL)) (-1515 (($ $ (-1 |#1| |#1|)) NIL)) (-2195 ((|#1| $ |#1|) NIL)) (-1527 ((|#1| |#1|) NIL (|has| |#1| (-171)))) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ |#1|) NIL) (($ (-114)) NIL)) (-3698 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2542 (((-762)) NIL)) (-1536 (($ $) NIL (|has| |#1| (-171))) (($ $ $) NIL (|has| |#1| (-171)))) (-2131 (($) NIL T CONST)) (-2142 (($) NIL T CONST)) (-1683 (((-112) $ $) NIL)) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ (-114) (-558)) NIL) (($ $ (-558)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-171))) (($ $ |#1|) NIL (|has| |#1| (-171)))))
+(((-827 |#1|) (-13 (-1039) (-1028 |#1|) (-1028 (-114)) (-285 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-6 (-38 |#1|)) (-15 -1536 ($ $)) (-15 -1536 ($ $ $)) (-15 -1527 (|#1| |#1|))) |%noBranch|) (-15 -1515 ($ $ (-1 |#1| |#1|))) (-15 -1504 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-558))) (-15 ** ($ $ (-558))) (-15 -1494 (|#1| (-114) |#1|)) (-15 -1486 ($ |#1| (-360 (-114)))))) (-1039)) (T -827))
+((-1536 (*1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-171)) (-4 *2 (-1039)))) (-1536 (*1 *1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-171)) (-4 *2 (-1039)))) (-1527 (*1 *2 *2) (-12 (-5 *1 (-827 *2)) (-4 *2 (-171)) (-4 *2 (-1039)))) (-1515 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1039)) (-5 *1 (-827 *3)))) (-1504 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1039)) (-5 *1 (-827 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-558)) (-5 *1 (-827 *4)) (-4 *4 (-1039)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-827 *3)) (-4 *3 (-1039)))) (-1494 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-827 *2)) (-4 *2 (-1039)))) (-1486 (*1 *1 *2 *3) (-12 (-5 *3 (-360 (-114))) (-5 *1 (-827 *2)) (-4 *2 (-1039)))))
+(-13 (-1039) (-1028 |#1|) (-1028 (-114)) (-285 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-6 (-38 |#1|)) (-15 -1536 ($ $)) (-15 -1536 ($ $ $)) (-15 -1527 (|#1| |#1|))) |%noBranch|) (-15 -1515 ($ $ (-1 |#1| |#1|))) (-15 -1504 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-558))) (-15 ** ($ $ (-558))) (-15 -1494 (|#1| (-114) |#1|)) (-15 -1486 ($ |#1| (-360 (-114))))))
+((-1557 (((-213 (-500)) (-1145)) 9)))
+(((-828) (-10 -7 (-15 -1557 ((-213 (-500)) (-1145))))) (T -828))
+((-1557 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-213 (-500))) (-5 *1 (-828)))))
+(-10 -7 (-15 -1557 ((-213 (-500)) (-1145))))
+((-3207 (((-112) $ $) NIL)) (-3973 (((-1105) $) 10)) (-1323 (((-504) $) 9)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3233 (($ (-504) (-1105)) 8)) (-3220 (((-853) $) 26)) (-1546 (((-55) $) 19)) (-1683 (((-112) $ $) 12)))
+(((-829) (-13 (-826 (-504)) (-10 -8 (-15 -3973 ((-1105) $)) (-15 -3233 ($ (-504) (-1105)))))) (T -829))
+((-3973 (*1 *2 *1) (-12 (-5 *2 (-1105)) (-5 *1 (-829)))) (-3233 (*1 *1 *2 *3) (-12 (-5 *2 (-504)) (-5 *3 (-1105)) (-5 *1 (-829)))))
+(-13 (-826 (-504)) (-10 -8 (-15 -3973 ((-1105) $)) (-15 -3233 ($ (-504) (-1105)))))
+((-3207 (((-112) $ $) 7)) (-1566 (((-1025) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224))))) 14) (((-1025) (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) 13)) (-3510 (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) 16) (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224))))) 15)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11)) (-1683 (((-112) $ $) 6)))
+(((-830) (-139)) (T -830))
+((-3510 (*1 *2 *3 *4) (-12 (-4 *1 (-830)) (-5 *3 (-1051)) (-5 *4 (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) (-5 *2 (-2 (|:| -3510 (-378)) (|:| |explanations| (-1145)))))) (-3510 (*1 *2 *3 *4) (-12 (-4 *1 (-830)) (-5 *3 (-1051)) (-5 *4 (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224))))) (-5 *2 (-2 (|:| -3510 (-378)) (|:| |explanations| (-1145)))))) (-1566 (*1 *2 *3) (-12 (-4 *1 (-830)) (-5 *3 (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224))))) (-5 *2 (-1025)))) (-1566 (*1 *2 *3) (-12 (-4 *1 (-830)) (-5 *3 (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) (-5 *2 (-1025)))))
+(-13 (-1087) (-10 -7 (-15 -3510 ((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224))))))) (-15 -3510 ((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224)))))) (-15 -1566 ((-1025) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224)))))) (-15 -1566 ((-1025) (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))))))
+(((-102) . T) ((-605 (-853)) . T) ((-1087) . T))
+((-2861 (((-1025) (-635 (-315 (-378))) (-635 (-378))) 147) (((-1025) (-315 (-378)) (-635 (-378))) 145) (((-1025) (-315 (-378)) (-635 (-378)) (-635 (-834 (-378))) (-635 (-834 (-378)))) 144) (((-1025) (-315 (-378)) (-635 (-378)) (-635 (-834 (-378))) (-635 (-315 (-378))) (-635 (-834 (-378)))) 143) (((-1025) (-832)) 117) (((-1025) (-832) (-1051)) 116)) (-3510 (((-2 (|:| -3510 (-378)) (|:| -1323 (-1145)) (|:| |explanations| (-635 (-1145)))) (-832) (-1051)) 82) (((-2 (|:| -3510 (-378)) (|:| -1323 (-1145)) (|:| |explanations| (-635 (-1145)))) (-832)) 84)) (-1577 (((-1025) (-635 (-315 (-378))) (-635 (-378))) 148) (((-1025) (-832)) 133)))
+(((-831) (-10 -7 (-15 -3510 ((-2 (|:| -3510 (-378)) (|:| -1323 (-1145)) (|:| |explanations| (-635 (-1145)))) (-832))) (-15 -3510 ((-2 (|:| -3510 (-378)) (|:| -1323 (-1145)) (|:| |explanations| (-635 (-1145)))) (-832) (-1051))) (-15 -2861 ((-1025) (-832) (-1051))) (-15 -2861 ((-1025) (-832))) (-15 -1577 ((-1025) (-832))) (-15 -2861 ((-1025) (-315 (-378)) (-635 (-378)) (-635 (-834 (-378))) (-635 (-315 (-378))) (-635 (-834 (-378))))) (-15 -2861 ((-1025) (-315 (-378)) (-635 (-378)) (-635 (-834 (-378))) (-635 (-834 (-378))))) (-15 -2861 ((-1025) (-315 (-378)) (-635 (-378)))) (-15 -2861 ((-1025) (-635 (-315 (-378))) (-635 (-378)))) (-15 -1577 ((-1025) (-635 (-315 (-378))) (-635 (-378)))))) (T -831))
+((-1577 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-315 (-378)))) (-5 *4 (-635 (-378))) (-5 *2 (-1025)) (-5 *1 (-831)))) (-2861 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-315 (-378)))) (-5 *4 (-635 (-378))) (-5 *2 (-1025)) (-5 *1 (-831)))) (-2861 (*1 *2 *3 *4) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-635 (-378))) (-5 *2 (-1025)) (-5 *1 (-831)))) (-2861 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-635 (-378))) (-5 *5 (-635 (-834 (-378)))) (-5 *2 (-1025)) (-5 *1 (-831)))) (-2861 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-635 (-378))) (-5 *5 (-635 (-834 (-378)))) (-5 *6 (-635 (-315 (-378)))) (-5 *3 (-315 (-378))) (-5 *2 (-1025)) (-5 *1 (-831)))) (-1577 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1025)) (-5 *1 (-831)))) (-2861 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1025)) (-5 *1 (-831)))) (-2861 (*1 *2 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-1051)) (-5 *2 (-1025)) (-5 *1 (-831)))) (-3510 (*1 *2 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-1051)) (-5 *2 (-2 (|:| -3510 (-378)) (|:| -1323 (-1145)) (|:| |explanations| (-635 (-1145))))) (-5 *1 (-831)))) (-3510 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-2 (|:| -3510 (-378)) (|:| -1323 (-1145)) (|:| |explanations| (-635 (-1145))))) (-5 *1 (-831)))))
+(-10 -7 (-15 -3510 ((-2 (|:| -3510 (-378)) (|:| -1323 (-1145)) (|:| |explanations| (-635 (-1145)))) (-832))) (-15 -3510 ((-2 (|:| -3510 (-378)) (|:| -1323 (-1145)) (|:| |explanations| (-635 (-1145)))) (-832) (-1051))) (-15 -2861 ((-1025) (-832) (-1051))) (-15 -2861 ((-1025) (-832))) (-15 -1577 ((-1025) (-832))) (-15 -2861 ((-1025) (-315 (-378)) (-635 (-378)) (-635 (-834 (-378))) (-635 (-315 (-378))) (-635 (-834 (-378))))) (-15 -2861 ((-1025) (-315 (-378)) (-635 (-378)) (-635 (-834 (-378))) (-635 (-834 (-378))))) (-15 -2861 ((-1025) (-315 (-378)) (-635 (-378)))) (-15 -2861 ((-1025) (-635 (-315 (-378))) (-635 (-378)))) (-15 -1577 ((-1025) (-635 (-315 (-378))) (-635 (-378)))))
+((-3207 (((-112) $ $) NIL)) (-1863 (((-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224)))))) $) 21)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 20) (($ (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) 14) (($ (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224))))))) 18)) (-1683 (((-112) $ $) NIL)))
+(((-832) (-13 (-1087) (-10 -8 (-15 -3220 ($ (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224))))))) (-15 -3220 ($ (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224)))))) (-15 -3220 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224)))))))) (-15 -1863 ((-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224)))))) $))))) (T -832))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) (-5 *1 (-832)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224))))) (-5 *1 (-832)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224))))))) (-5 *1 (-832)))) (-1863 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224))))))) (-5 *1 (-832)))))
+(-13 (-1087) (-10 -8 (-15 -3220 ($ (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224))))))) (-15 -3220 ($ (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224)))))) (-15 -3220 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224)))))))) (-15 -1863 ((-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224)))))) $))))
+((-3167 (((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|) (-834 |#2|) (-834 |#2|)) 13) (((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|)) 14)))
+(((-833 |#1| |#2|) (-10 -7 (-15 -3167 ((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|))) (-15 -3167 ((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|) (-834 |#2|) (-834 |#2|)))) (-1087) (-1087)) (T -833))
+((-3167 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-834 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-834 *5)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-5 *1 (-833 *5 *6)))) (-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-834 *5)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-5 *2 (-834 *6)) (-5 *1 (-833 *5 *6)))))
+(-10 -7 (-15 -3167 ((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|))) (-15 -3167 ((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|) (-834 |#2|) (-834 |#2|))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL (|has| |#1| (-21)))) (-1587 (((-1107) $) 24)) (-2089 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1397 (((-558) $) NIL (|has| |#1| (-839)))) (-1816 (($) NIL (|has| |#1| (-21)) CONST)) (-3069 (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-3 |#1| "failed") $) 16)) (-1863 (((-558) $) NIL (|has| |#1| (-1028 (-558)))) (((-406 (-558)) $) NIL (|has| |#1| (-1028 (-406 (-558))))) ((|#1| $) 9)) (-2588 (((-3 $ "failed") $) 47 (|has| |#1| (-839)))) (-3962 (((-3 (-406 (-558)) "failed") $) 54 (|has| |#1| (-543)))) (-3951 (((-112) $) 49 (|has| |#1| (-543)))) (-3938 (((-406 (-558)) $) 52 (|has| |#1| (-543)))) (-2045 (((-112) $) NIL (|has| |#1| (-839)))) (-1835 (($) 13)) (-2035 (((-112) $) NIL (|has| |#1| (-839)))) (-2055 (((-112) $) NIL (|has| |#1| (-839)))) (-1847 (($) 14)) (-3910 (($ $ $) NIL (|has| |#1| (-839)))) (-3542 (($ $ $) NIL (|has| |#1| (-839)))) (-4310 (((-1145) $) NIL)) (-1597 (((-112) $) 12)) (-2975 (((-1107) $) NIL)) (-1606 (((-112) $) 11)) (-3220 (((-853) $) 22) (($ (-406 (-558))) NIL (|has| |#1| (-1028 (-406 (-558))))) (($ |#1|) 8) (($ (-558)) NIL (-3998 (|has| |#1| (-839)) (|has| |#1| (-1028 (-558)))))) (-2542 (((-762)) 41 (|has| |#1| (-839)))) (-3190 (($ $) NIL (|has| |#1| (-839)))) (-2131 (($) 29 (|has| |#1| (-21)) CONST)) (-2142 (($) 38 (|has| |#1| (-839)) CONST)) (-1747 (((-112) $ $) NIL (|has| |#1| (-839)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-839)))) (-1683 (((-112) $ $) 27)) (-1731 (((-112) $ $) NIL (|has| |#1| (-839)))) (-1705 (((-112) $ $) 48 (|has| |#1| (-839)))) (-1798 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-1784 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-911)) NIL (|has| |#1| (-839))) (($ $ (-762)) NIL (|has| |#1| (-839)))) (* (($ $ $) 44 (|has| |#1| (-839))) (($ (-558) $) 32 (|has| |#1| (-21))) (($ (-762) $) NIL (|has| |#1| (-21))) (($ (-911) $) NIL (|has| |#1| (-21)))))
+(((-834 |#1|) (-13 (-1087) (-410 |#1|) (-10 -8 (-15 -1835 ($)) (-15 -1847 ($)) (-15 -1606 ((-112) $)) (-15 -1597 ((-112) $)) (-15 -1587 ((-1107) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-839)) (-6 (-839)) |%noBranch|) (IF (|has| |#1| (-543)) (PROGN (-15 -3951 ((-112) $)) (-15 -3938 ((-406 (-558)) $)) (-15 -3962 ((-3 (-406 (-558)) "failed") $))) |%noBranch|))) (-1087)) (T -834))
+((-1835 (*1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-1087)))) (-1847 (*1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-1087)))) (-1606 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-1087)))) (-1597 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-1087)))) (-1587 (*1 *2 *1) (-12 (-5 *2 (-1107)) (-5 *1 (-834 *3)) (-4 *3 (-1087)))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-543)) (-4 *3 (-1087)))) (-3938 (*1 *2 *1) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-834 *3)) (-4 *3 (-543)) (-4 *3 (-1087)))) (-3962 (*1 *2 *1) (|partial| -12 (-5 *2 (-406 (-558))) (-5 *1 (-834 *3)) (-4 *3 (-543)) (-4 *3 (-1087)))))
+(-13 (-1087) (-410 |#1|) (-10 -8 (-15 -1835 ($)) (-15 -1847 ($)) (-15 -1606 ((-112) $)) (-15 -1597 ((-112) $)) (-15 -1587 ((-1107) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-839)) (-6 (-839)) |%noBranch|) (IF (|has| |#1| (-543)) (PROGN (-15 -3951 ((-112) $)) (-15 -3938 ((-406 (-558)) $)) (-15 -3962 ((-3 (-406 (-558)) "failed") $))) |%noBranch|)))
+((-3207 (((-112) $ $) 7)) (-2276 (((-762)) 20)) (-2424 (($) 23)) (-3910 (($ $ $) 13)) (-3542 (($ $ $) 14)) (-2637 (((-911) $) 22)) (-4310 (((-1145) $) 9)) (-2851 (($ (-911)) 21)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11)) (-1747 (((-112) $ $) 16)) (-1720 (((-112) $ $) 17)) (-1683 (((-112) $ $) 6)) (-1731 (((-112) $ $) 15)) (-1705 (((-112) $ $) 18)))
+(((-835) (-139)) (T -835))
+NIL
+(-13 (-841) (-367))
+(((-102) . T) ((-605 (-853)) . T) ((-367) . T) ((-841) . T) ((-1087) . T))
+((-1629 (((-112) (-1246 |#2|) (-1246 |#2|)) 17)) (-3528 (((-112) (-1246 |#2|) (-1246 |#2|)) 18)) (-1619 (((-112) (-1246 |#2|) (-1246 |#2|)) 14)))
+(((-836 |#1| |#2|) (-10 -7 (-15 -1619 ((-112) (-1246 |#2|) (-1246 |#2|))) (-15 -1629 ((-112) (-1246 |#2|) (-1246 |#2|))) (-15 -3528 ((-112) (-1246 |#2|) (-1246 |#2|)))) (-762) (-783)) (T -836))
+((-3528 (*1 *2 *3 *3) (-12 (-5 *3 (-1246 *5)) (-4 *5 (-783)) (-5 *2 (-112)) (-5 *1 (-836 *4 *5)) (-14 *4 (-762)))) (-1629 (*1 *2 *3 *3) (-12 (-5 *3 (-1246 *5)) (-4 *5 (-783)) (-5 *2 (-112)) (-5 *1 (-836 *4 *5)) (-14 *4 (-762)))) (-1619 (*1 *2 *3 *3) (-12 (-5 *3 (-1246 *5)) (-4 *5 (-783)) (-5 *2 (-112)) (-5 *1 (-836 *4 *5)) (-14 *4 (-762)))))
+(-10 -7 (-15 -1619 ((-112) (-1246 |#2|) (-1246 |#2|))) (-15 -1629 ((-112) (-1246 |#2|) (-1246 |#2|))) (-15 -3528 ((-112) (-1246 |#2|) (-1246 |#2|))))
+((-3207 (((-112) $ $) 7)) (-1816 (($) 23 T CONST)) (-2588 (((-3 $ "failed") $) 26)) (-2035 (((-112) $) 24)) (-3910 (($ $ $) 13)) (-3542 (($ $ $) 14)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11)) (-2142 (($) 22 T CONST)) (-1747 (((-112) $ $) 16)) (-1720 (((-112) $ $) 17)) (-1683 (((-112) $ $) 6)) (-1731 (((-112) $ $) 15)) (-1705 (((-112) $ $) 18)) (** (($ $ (-911)) 21) (($ $ (-762)) 25)) (* (($ $ $) 20)))
+(((-837) (-139)) (T -837))
+NIL
+(-13 (-848) (-717))
+(((-102) . T) ((-605 (-853)) . T) ((-717) . T) ((-848) . T) ((-841) . T) ((-1099) . T) ((-1087) . T))
+((-1397 (((-558) $) 17)) (-2045 (((-112) $) 10)) (-2055 (((-112) $) 11)) (-3190 (($ $) 19)))
+(((-838 |#1|) (-10 -8 (-15 -3190 (|#1| |#1|)) (-15 -1397 ((-558) |#1|)) (-15 -2055 ((-112) |#1|)) (-15 -2045 ((-112) |#1|))) (-839)) (T -838))
+NIL
+(-10 -8 (-15 -3190 (|#1| |#1|)) (-15 -1397 ((-558) |#1|)) (-15 -2055 ((-112) |#1|)) (-15 -2045 ((-112) |#1|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 24)) (-2089 (((-3 $ "failed") $ $) 26)) (-1397 (((-558) $) 34)) (-1816 (($) 23 T CONST)) (-2588 (((-3 $ "failed") $) 39)) (-2045 (((-112) $) 36)) (-2035 (((-112) $) 41)) (-2055 (((-112) $) 35)) (-3910 (($ $ $) 13)) (-3542 (($ $ $) 14)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11) (($ (-558)) 43)) (-2542 (((-762)) 44)) (-3190 (($ $) 33)) (-2131 (($) 22 T CONST)) (-2142 (($) 42 T CONST)) (-1747 (((-112) $ $) 16)) (-1720 (((-112) $ $) 17)) (-1683 (((-112) $ $) 6)) (-1731 (((-112) $ $) 15)) (-1705 (((-112) $ $) 18)) (-1798 (($ $ $) 28) (($ $) 27)) (-1784 (($ $ $) 20)) (** (($ $ (-762)) 40) (($ $ (-911)) 37)) (* (($ (-911) $) 21) (($ (-762) $) 25) (($ (-558) $) 29) (($ $ $) 38)))
+(((-839) (-139)) (T -839))
+((-2045 (*1 *2 *1) (-12 (-4 *1 (-839)) (-5 *2 (-112)))) (-2055 (*1 *2 *1) (-12 (-4 *1 (-839)) (-5 *2 (-112)))) (-1397 (*1 *2 *1) (-12 (-4 *1 (-839)) (-5 *2 (-558)))) (-3190 (*1 *1 *1) (-4 *1 (-839))))
+(-13 (-782) (-1039) (-717) (-10 -8 (-15 -2045 ((-112) $)) (-15 -2055 ((-112) $)) (-15 -1397 ((-558) $)) (-15 -3190 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-558)) . T) ((-605 (-853)) . T) ((-638 $) . T) ((-717) . T) ((-782) . T) ((-783) . T) ((-785) . T) ((-786) . T) ((-841) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
+((-3910 (($ $ $) 10)) (-3542 (($ $ $) 9)) (-1747 (((-112) $ $) 12)) (-1720 (((-112) $ $) 11)) (-1731 (((-112) $ $) 13)))
+(((-840 |#1|) (-10 -8 (-15 -3910 (|#1| |#1| |#1|)) (-15 -3542 (|#1| |#1| |#1|)) (-15 -1731 ((-112) |#1| |#1|)) (-15 -1747 ((-112) |#1| |#1|)) (-15 -1720 ((-112) |#1| |#1|))) (-841)) (T -840))
+NIL
+(-10 -8 (-15 -3910 (|#1| |#1| |#1|)) (-15 -3542 (|#1| |#1| |#1|)) (-15 -1731 ((-112) |#1| |#1|)) (-15 -1747 ((-112) |#1| |#1|)) (-15 -1720 ((-112) |#1| |#1|)))
+((-3207 (((-112) $ $) 7)) (-3910 (($ $ $) 13)) (-3542 (($ $ $) 14)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11)) (-1747 (((-112) $ $) 16)) (-1720 (((-112) $ $) 17)) (-1683 (((-112) $ $) 6)) (-1731 (((-112) $ $) 15)) (-1705 (((-112) $ $) 18)))
+(((-841) (-139)) (T -841))
+((-1705 (*1 *2 *1 *1) (-12 (-4 *1 (-841)) (-5 *2 (-112)))) (-1720 (*1 *2 *1 *1) (-12 (-4 *1 (-841)) (-5 *2 (-112)))) (-1747 (*1 *2 *1 *1) (-12 (-4 *1 (-841)) (-5 *2 (-112)))) (-1731 (*1 *2 *1 *1) (-12 (-4 *1 (-841)) (-5 *2 (-112)))) (-3542 (*1 *1 *1 *1) (-4 *1 (-841))) (-3910 (*1 *1 *1 *1) (-4 *1 (-841))))
+(-13 (-1087) (-10 -8 (-15 -1705 ((-112) $ $)) (-15 -1720 ((-112) $ $)) (-15 -1747 ((-112) $ $)) (-15 -1731 ((-112) $ $)) (-15 -3542 ($ $ $)) (-15 -3910 ($ $ $))))
+(((-102) . T) ((-605 (-853)) . T) ((-1087) . T))
+((-3581 (($ $ $) 45)) (-3590 (($ $ $) 44)) (-3599 (($ $ $) 42)) (-3562 (($ $ $) 51)) (-3552 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) 46)) (-3570 (((-3 $ "failed") $ $) 49)) (-3069 (((-3 (-558) "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-2782 (($ $) 35)) (-3637 (($ $ $) 39)) (-3646 (($ $ $) 38)) (-3540 (($ $ $) 47)) (-3619 (($ $ $) 53)) (-3609 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) 41)) (-3628 (((-3 $ "failed") $ $) 48)) (-3983 (((-3 $ "failed") $ |#2|) 28)) (-2504 ((|#2| $) 32)) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ (-406 (-558))) NIL) (($ |#2|) 12)) (-2583 (((-635 |#2|) $) 18)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22)))
+(((-842 |#1| |#2|) (-10 -8 (-15 -3540 (|#1| |#1| |#1|)) (-15 -3552 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4098 |#1|)) |#1| |#1|)) (-15 -3562 (|#1| |#1| |#1|)) (-15 -3570 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3581 (|#1| |#1| |#1|)) (-15 -3590 (|#1| |#1| |#1|)) (-15 -3599 (|#1| |#1| |#1|)) (-15 -3609 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4098 |#1|)) |#1| |#1|)) (-15 -3619 (|#1| |#1| |#1|)) (-15 -3628 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3637 (|#1| |#1| |#1|)) (-15 -3646 (|#1| |#1| |#1|)) (-15 -2782 (|#1| |#1|)) (-15 -2504 (|#2| |#1|)) (-15 -3983 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2583 ((-635 |#2|) |#1|)) (-15 -3220 (|#1| |#2|)) (-15 -3069 ((-3 |#2| "failed") |#1|)) (-15 -3069 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -3220 (|#1| (-406 (-558)))) (-15 -3069 ((-3 (-558) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3220 (|#1| (-558))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-762) |#1|)) (-15 * (|#1| (-911) |#1|)) (-15 -3220 ((-853) |#1|))) (-843 |#2|) (-1039)) (T -842))
+NIL
+(-10 -8 (-15 -3540 (|#1| |#1| |#1|)) (-15 -3552 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4098 |#1|)) |#1| |#1|)) (-15 -3562 (|#1| |#1| |#1|)) (-15 -3570 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3581 (|#1| |#1| |#1|)) (-15 -3590 (|#1| |#1| |#1|)) (-15 -3599 (|#1| |#1| |#1|)) (-15 -3609 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4098 |#1|)) |#1| |#1|)) (-15 -3619 (|#1| |#1| |#1|)) (-15 -3628 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3637 (|#1| |#1| |#1|)) (-15 -3646 (|#1| |#1| |#1|)) (-15 -2782 (|#1| |#1|)) (-15 -2504 (|#2| |#1|)) (-15 -3983 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2583 ((-635 |#2|) |#1|)) (-15 -3220 (|#1| |#2|)) (-15 -3069 ((-3 |#2| "failed") |#1|)) (-15 -3069 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -3220 (|#1| (-406 (-558)))) (-15 -3069 ((-3 (-558) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3220 (|#1| (-558))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-762) |#1|)) (-15 * (|#1| (-911) |#1|)) (-15 -3220 ((-853) |#1|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2089 (((-3 $ "failed") $ $) 19)) (-1816 (($) 17 T CONST)) (-3581 (($ $ $) 44 (|has| |#1| (-362)))) (-3590 (($ $ $) 45 (|has| |#1| (-362)))) (-3599 (($ $ $) 47 (|has| |#1| (-362)))) (-3562 (($ $ $) 42 (|has| |#1| (-362)))) (-3552 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) 41 (|has| |#1| (-362)))) (-3570 (((-3 $ "failed") $ $) 43 (|has| |#1| (-362)))) (-3686 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 46 (|has| |#1| (-362)))) (-3069 (((-3 (-558) "failed") $) 74 (|has| |#1| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) 71 (|has| |#1| (-1028 (-406 (-558))))) (((-3 |#1| "failed") $) 68)) (-1863 (((-558) $) 73 (|has| |#1| (-1028 (-558)))) (((-406 (-558)) $) 70 (|has| |#1| (-1028 (-406 (-558))))) ((|#1| $) 69)) (-2490 (($ $) 63)) (-2588 (((-3 $ "failed") $) 33)) (-2782 (($ $) 54 (|has| |#1| (-450)))) (-2035 (((-112) $) 31)) (-2648 (($ |#1| (-762)) 61)) (-3667 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 56 (|has| |#1| (-550)))) (-3657 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 57 (|has| |#1| (-550)))) (-2524 (((-762) $) 65)) (-3637 (($ $ $) 51 (|has| |#1| (-362)))) (-3646 (($ $ $) 52 (|has| |#1| (-362)))) (-3540 (($ $ $) 40 (|has| |#1| (-362)))) (-3619 (($ $ $) 49 (|has| |#1| (-362)))) (-3609 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) 48 (|has| |#1| (-362)))) (-3628 (((-3 $ "failed") $ $) 50 (|has| |#1| (-362)))) (-3677 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 53 (|has| |#1| (-362)))) (-2463 ((|#1| $) 64)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3983 (((-3 $ "failed") $ |#1|) 58 (|has| |#1| (-550)))) (-4323 (((-762) $) 66)) (-2504 ((|#1| $) 55 (|has| |#1| (-450)))) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ (-406 (-558))) 72 (|has| |#1| (-1028 (-406 (-558))))) (($ |#1|) 67)) (-2583 (((-635 |#1|) $) 60)) (-3736 ((|#1| $ (-762)) 62)) (-2542 (((-762)) 28)) (-2258 ((|#1| $ |#1| |#1|) 59)) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1683 (((-112) $ $) 6)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ |#1|) 76) (($ |#1| $) 75)))
+(((-843 |#1|) (-139) (-1039)) (T -843))
+((-4323 (*1 *2 *1) (-12 (-4 *1 (-843 *3)) (-4 *3 (-1039)) (-5 *2 (-762)))) (-2524 (*1 *2 *1) (-12 (-4 *1 (-843 *3)) (-4 *3 (-1039)) (-5 *2 (-762)))) (-2463 (*1 *2 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)))) (-2490 (*1 *1 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)))) (-3736 (*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-4 *1 (-843 *2)) (-4 *2 (-1039)))) (-2648 (*1 *1 *2 *3) (-12 (-5 *3 (-762)) (-4 *1 (-843 *2)) (-4 *2 (-1039)))) (-2583 (*1 *2 *1) (-12 (-4 *1 (-843 *3)) (-4 *3 (-1039)) (-5 *2 (-635 *3)))) (-2258 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)))) (-3983 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-550)))) (-3657 (*1 *2 *1 *1) (-12 (-4 *3 (-550)) (-4 *3 (-1039)) (-5 *2 (-2 (|:| -2306 *1) (|:| -2071 *1))) (-4 *1 (-843 *3)))) (-3667 (*1 *2 *1 *1) (-12 (-4 *3 (-550)) (-4 *3 (-1039)) (-5 *2 (-2 (|:| -2306 *1) (|:| -2071 *1))) (-4 *1 (-843 *3)))) (-2504 (*1 *2 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-450)))) (-2782 (*1 *1 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-450)))) (-3677 (*1 *2 *1 *1) (-12 (-4 *3 (-362)) (-4 *3 (-1039)) (-5 *2 (-2 (|:| -2306 *1) (|:| -2071 *1))) (-4 *1 (-843 *3)))) (-3646 (*1 *1 *1 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))) (-3637 (*1 *1 *1 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))) (-3628 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))) (-3619 (*1 *1 *1 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))) (-3609 (*1 *2 *1 *1) (-12 (-4 *3 (-362)) (-4 *3 (-1039)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4098 *1))) (-4 *1 (-843 *3)))) (-3599 (*1 *1 *1 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))) (-3686 (*1 *2 *1 *1) (-12 (-4 *3 (-362)) (-4 *3 (-1039)) (-5 *2 (-2 (|:| -2306 *1) (|:| -2071 *1))) (-4 *1 (-843 *3)))) (-3590 (*1 *1 *1 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))) (-3581 (*1 *1 *1 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))) (-3570 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))) (-3562 (*1 *1 *1 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))) (-3552 (*1 *2 *1 *1) (-12 (-4 *3 (-362)) (-4 *3 (-1039)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4098 *1))) (-4 *1 (-843 *3)))) (-3540 (*1 *1 *1 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))))
+(-13 (-1039) (-111 |t#1| |t#1|) (-410 |t#1|) (-10 -8 (-15 -4323 ((-762) $)) (-15 -2524 ((-762) $)) (-15 -2463 (|t#1| $)) (-15 -2490 ($ $)) (-15 -3736 (|t#1| $ (-762))) (-15 -2648 ($ |t#1| (-762))) (-15 -2583 ((-635 |t#1|) $)) (-15 -2258 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-171)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-550)) (PROGN (-15 -3983 ((-3 $ "failed") $ |t#1|)) (-15 -3657 ((-2 (|:| -2306 $) (|:| -2071 $)) $ $)) (-15 -3667 ((-2 (|:| -2306 $) (|:| -2071 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-450)) (PROGN (-15 -2504 (|t#1| $)) (-15 -2782 ($ $))) |%noBranch|) (IF (|has| |t#1| (-362)) (PROGN (-15 -3677 ((-2 (|:| -2306 $) (|:| -2071 $)) $ $)) (-15 -3646 ($ $ $)) (-15 -3637 ($ $ $)) (-15 -3628 ((-3 $ "failed") $ $)) (-15 -3619 ($ $ $)) (-15 -3609 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $)) (-15 -3599 ($ $ $)) (-15 -3686 ((-2 (|:| -2306 $) (|:| -2071 $)) $ $)) (-15 -3590 ($ $ $)) (-15 -3581 ($ $ $)) (-15 -3570 ((-3 $ "failed") $ $)) (-15 -3562 ($ $ $)) (-15 -3552 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $)) (-15 -3540 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-171)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-608 #0=(-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) ((-608 (-558)) . T) ((-608 |#1|) . T) ((-605 (-853)) . T) ((-410 |#1|) . T) ((-638 |#1|) . T) ((-638 $) . T) ((-708 |#1|) |has| |#1| (-171)) ((-717) . T) ((-1028 #0#) |has| |#1| (-1028 (-406 (-558)))) ((-1028 (-558)) |has| |#1| (-1028 (-558))) ((-1028 |#1|) . T) ((-1045 |#1|) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
+((-3878 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-3686 (((-2 (|:| -2306 |#2|) (|:| -2071 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-362)))) (-3667 (((-2 (|:| -2306 |#2|) (|:| -2071 |#2|)) |#2| |#2| (-99 |#1|)) 40 (|has| |#1| (-550)))) (-3657 (((-2 (|:| -2306 |#2|) (|:| -2071 |#2|)) |#2| |#2| (-99 |#1|)) 39 (|has| |#1| (-550)))) (-3677 (((-2 (|:| -2306 |#2|) (|:| -2071 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-362)))) (-2258 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 31)))
+(((-844 |#1| |#2|) (-10 -7 (-15 -3878 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2258 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-550)) (PROGN (-15 -3657 ((-2 (|:| -2306 |#2|) (|:| -2071 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3667 ((-2 (|:| -2306 |#2|) (|:| -2071 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -3677 ((-2 (|:| -2306 |#2|) (|:| -2071 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3686 ((-2 (|:| -2306 |#2|) (|:| -2071 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1039) (-843 |#1|)) (T -844))
+((-3686 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-362)) (-4 *5 (-1039)) (-5 *2 (-2 (|:| -2306 *3) (|:| -2071 *3))) (-5 *1 (-844 *5 *3)) (-4 *3 (-843 *5)))) (-3677 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-362)) (-4 *5 (-1039)) (-5 *2 (-2 (|:| -2306 *3) (|:| -2071 *3))) (-5 *1 (-844 *5 *3)) (-4 *3 (-843 *5)))) (-3667 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-550)) (-4 *5 (-1039)) (-5 *2 (-2 (|:| -2306 *3) (|:| -2071 *3))) (-5 *1 (-844 *5 *3)) (-4 *3 (-843 *5)))) (-3657 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-550)) (-4 *5 (-1039)) (-5 *2 (-2 (|:| -2306 *3) (|:| -2071 *3))) (-5 *1 (-844 *5 *3)) (-4 *3 (-843 *5)))) (-2258 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1039)) (-5 *1 (-844 *2 *3)) (-4 *3 (-843 *2)))) (-3878 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1039)) (-5 *1 (-844 *5 *2)) (-4 *2 (-843 *5)))))
+(-10 -7 (-15 -3878 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2258 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-550)) (PROGN (-15 -3657 ((-2 (|:| -2306 |#2|) (|:| -2071 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3667 ((-2 (|:| -2306 |#2|) (|:| -2071 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -3677 ((-2 (|:| -2306 |#2|) (|:| -2071 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3686 ((-2 (|:| -2306 |#2|) (|:| -2071 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-1816 (($) NIL T CONST)) (-3581 (($ $ $) NIL (|has| |#1| (-362)))) (-3590 (($ $ $) NIL (|has| |#1| (-362)))) (-3599 (($ $ $) NIL (|has| |#1| (-362)))) (-3562 (($ $ $) NIL (|has| |#1| (-362)))) (-3552 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL (|has| |#1| (-362)))) (-3570 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-3686 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 32 (|has| |#1| (-362)))) (-3069 (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-3 |#1| "failed") $) NIL)) (-1863 (((-558) $) NIL (|has| |#1| (-1028 (-558)))) (((-406 (-558)) $) NIL (|has| |#1| (-1028 (-406 (-558))))) ((|#1| $) NIL)) (-2490 (($ $) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-2782 (($ $) NIL (|has| |#1| (-450)))) (-1804 (((-853) $ (-853)) NIL)) (-2035 (((-112) $) NIL)) (-2648 (($ |#1| (-762)) NIL)) (-3667 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 28 (|has| |#1| (-550)))) (-3657 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 26 (|has| |#1| (-550)))) (-2524 (((-762) $) NIL)) (-3637 (($ $ $) NIL (|has| |#1| (-362)))) (-3646 (($ $ $) NIL (|has| |#1| (-362)))) (-3540 (($ $ $) NIL (|has| |#1| (-362)))) (-3619 (($ $ $) NIL (|has| |#1| (-362)))) (-3609 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL (|has| |#1| (-362)))) (-3628 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-3677 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 30 (|has| |#1| (-362)))) (-2463 ((|#1| $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3983 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550)))) (-4323 (((-762) $) NIL)) (-2504 ((|#1| $) NIL (|has| |#1| (-450)))) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ (-406 (-558))) NIL (|has| |#1| (-1028 (-406 (-558))))) (($ |#1|) NIL)) (-2583 (((-635 |#1|) $) NIL)) (-3736 ((|#1| $ (-762)) NIL)) (-2542 (((-762)) NIL)) (-2258 ((|#1| $ |#1| |#1|) 15)) (-2131 (($) NIL T CONST)) (-2142 (($) 20 T CONST)) (-1683 (((-112) $ $) NIL)) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) 19) (($ $ (-762)) 22)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-845 |#1| |#2| |#3|) (-13 (-843 |#1|) (-10 -8 (-15 -1804 ((-853) $ (-853))))) (-1039) (-99 |#1|) (-1 |#1| |#1|)) (T -845))
+((-1804 (*1 *2 *1 *2) (-12 (-5 *2 (-853)) (-5 *1 (-845 *3 *4 *5)) (-4 *3 (-1039)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))))
+(-13 (-843 |#1|) (-10 -8 (-15 -1804 ((-853) $ (-853)))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-1816 (($) NIL T CONST)) (-3581 (($ $ $) NIL (|has| |#2| (-362)))) (-3590 (($ $ $) NIL (|has| |#2| (-362)))) (-3599 (($ $ $) NIL (|has| |#2| (-362)))) (-3562 (($ $ $) NIL (|has| |#2| (-362)))) (-3552 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL (|has| |#2| (-362)))) (-3570 (((-3 $ "failed") $ $) NIL (|has| |#2| (-362)))) (-3686 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL (|has| |#2| (-362)))) (-3069 (((-3 (-558) "failed") $) NIL (|has| |#2| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#2| (-1028 (-406 (-558))))) (((-3 |#2| "failed") $) NIL)) (-1863 (((-558) $) NIL (|has| |#2| (-1028 (-558)))) (((-406 (-558)) $) NIL (|has| |#2| (-1028 (-406 (-558))))) ((|#2| $) NIL)) (-2490 (($ $) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-2782 (($ $) NIL (|has| |#2| (-450)))) (-2035 (((-112) $) NIL)) (-2648 (($ |#2| (-762)) 16)) (-3667 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL (|has| |#2| (-550)))) (-3657 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL (|has| |#2| (-550)))) (-2524 (((-762) $) NIL)) (-3637 (($ $ $) NIL (|has| |#2| (-362)))) (-3646 (($ $ $) NIL (|has| |#2| (-362)))) (-3540 (($ $ $) NIL (|has| |#2| (-362)))) (-3619 (($ $ $) NIL (|has| |#2| (-362)))) (-3609 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL (|has| |#2| (-362)))) (-3628 (((-3 $ "failed") $ $) NIL (|has| |#2| (-362)))) (-3677 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL (|has| |#2| (-362)))) (-2463 ((|#2| $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3983 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-550)))) (-4323 (((-762) $) NIL)) (-2504 ((|#2| $) NIL (|has| |#2| (-450)))) (-3220 (((-853) $) 23) (($ (-558)) NIL) (($ (-406 (-558))) NIL (|has| |#2| (-1028 (-406 (-558))))) (($ |#2|) NIL) (($ (-1242 |#1|)) 18)) (-2583 (((-635 |#2|) $) NIL)) (-3736 ((|#2| $ (-762)) NIL)) (-2542 (((-762)) NIL)) (-2258 ((|#2| $ |#2| |#2|) NIL)) (-2131 (($) NIL T CONST)) (-2142 (($) 13 T CONST)) (-1683 (((-112) $ $) NIL)) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-846 |#1| |#2| |#3| |#4|) (-13 (-843 |#2|) (-608 (-1242 |#1|))) (-1163) (-1039) (-99 |#2|) (-1 |#2| |#2|)) (T -846))
+NIL
+(-13 (-843 |#2|) (-608 (-1242 |#1|)))
+((-3716 ((|#1| (-762) |#1|) 35 (|has| |#1| (-38 (-406 (-558)))))) (-3705 ((|#1| (-762) (-762) |#1|) 27) ((|#1| (-762) |#1|) 20)) (-3695 ((|#1| (-762) |#1|) 31)) (-2307 ((|#1| (-762) |#1|) 29)) (-2297 ((|#1| (-762) |#1|) 28)))
+(((-847 |#1|) (-10 -7 (-15 -2297 (|#1| (-762) |#1|)) (-15 -2307 (|#1| (-762) |#1|)) (-15 -3695 (|#1| (-762) |#1|)) (-15 -3705 (|#1| (-762) |#1|)) (-15 -3705 (|#1| (-762) (-762) |#1|)) (IF (|has| |#1| (-38 (-406 (-558)))) (-15 -3716 (|#1| (-762) |#1|)) |%noBranch|)) (-171)) (T -847))
+((-3716 (*1 *2 *3 *2) (-12 (-5 *3 (-762)) (-5 *1 (-847 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-171)))) (-3705 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-762)) (-5 *1 (-847 *2)) (-4 *2 (-171)))) (-3705 (*1 *2 *3 *2) (-12 (-5 *3 (-762)) (-5 *1 (-847 *2)) (-4 *2 (-171)))) (-3695 (*1 *2 *3 *2) (-12 (-5 *3 (-762)) (-5 *1 (-847 *2)) (-4 *2 (-171)))) (-2307 (*1 *2 *3 *2) (-12 (-5 *3 (-762)) (-5 *1 (-847 *2)) (-4 *2 (-171)))) (-2297 (*1 *2 *3 *2) (-12 (-5 *3 (-762)) (-5 *1 (-847 *2)) (-4 *2 (-171)))))
+(-10 -7 (-15 -2297 (|#1| (-762) |#1|)) (-15 -2307 (|#1| (-762) |#1|)) (-15 -3695 (|#1| (-762) |#1|)) (-15 -3705 (|#1| (-762) |#1|)) (-15 -3705 (|#1| (-762) (-762) |#1|)) (IF (|has| |#1| (-38 (-406 (-558)))) (-15 -3716 (|#1| (-762) |#1|)) |%noBranch|))
+((-3207 (((-112) $ $) 7)) (-3910 (($ $ $) 13)) (-3542 (($ $ $) 14)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11)) (-1747 (((-112) $ $) 16)) (-1720 (((-112) $ $) 17)) (-1683 (((-112) $ $) 6)) (-1731 (((-112) $ $) 15)) (-1705 (((-112) $ $) 18)) (** (($ $ (-911)) 21)) (* (($ $ $) 20)))
+(((-848) (-139)) (T -848))
+NIL
+(-13 (-841) (-1099))
+(((-102) . T) ((-605 (-853)) . T) ((-841) . T) ((-1099) . T) ((-1087) . T))
+((-3207 (((-112) $ $) NIL)) (-2925 (((-558) $) 12)) (-3910 (($ $ $) NIL)) (-3542 (($ $ $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 18) (($ (-558)) 11)) (-1747 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1683 (((-112) $ $) 8)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 9)))
+(((-849) (-13 (-841) (-10 -8 (-15 -3220 ($ (-558))) (-15 -2925 ((-558) $))))) (T -849))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-849)))) (-2925 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-849)))))
+(-13 (-841) (-10 -8 (-15 -3220 ($ (-558))) (-15 -2925 ((-558) $))))
+((-3725 (((-1107) $ (-128)) 15)))
+(((-850 |#1|) (-10 -8 (-15 -3725 ((-1107) |#1| (-128)))) (-851)) (T -850))
+NIL
+(-10 -8 (-15 -3725 ((-1107) |#1| (-128))))
+((-3725 (((-1107) $ (-128)) 7)) (-3735 (((-1107) $ (-129)) 8)) (-2436 (($ $) 6)))
+(((-851) (-139)) (T -851))
+((-3735 (*1 *2 *1 *3) (-12 (-4 *1 (-851)) (-5 *3 (-129)) (-5 *2 (-1107)))) (-3725 (*1 *2 *1 *3) (-12 (-4 *1 (-851)) (-5 *3 (-128)) (-5 *2 (-1107)))))
+(-13 (-172) (-10 -8 (-15 -3735 ((-1107) $ (-129))) (-15 -3725 ((-1107) $ (-128)))))
+(((-172) . T))
+((-3725 (((-1107) $ (-128)) NIL)) (-3735 (((-1107) $ (-129)) 21)) (-3754 (($ (-387)) 12) (($ (-1145)) 14)) (-3744 (((-112) $) 18)) (-3220 (((-853) $) 25)) (-2436 (($ $) 22)))
+(((-852) (-13 (-851) (-605 (-853)) (-10 -8 (-15 -3754 ($ (-387))) (-15 -3754 ($ (-1145))) (-15 -3744 ((-112) $))))) (T -852))
+((-3754 (*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-852)))) (-3754 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-852)))) (-3744 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-852)))))
+(-13 (-851) (-605 (-853)) (-10 -8 (-15 -3754 ($ (-387))) (-15 -3754 ($ (-1145))) (-15 -3744 ((-112) $))))
+((-3207 (((-112) $ $) NIL) (($ $ $) 77)) (-3964 (($ $ $) 114)) (-4039 (((-558) $) 31) (((-558)) 36)) (-4026 (($ (-558)) 45)) (-3995 (($ $ $) 46) (($ (-635 $)) 76)) (-3872 (($ $ (-635 $)) 74)) (-4047 (((-558) $) 34)) (-3901 (($ $ $) 65)) (-2754 (($ $) 127) (($ $ $) 128) (($ $ $ $) 129)) (-4054 (((-558) $) 33)) (-3911 (($ $ $) 64)) (-3994 (($ $) 104)) (-3939 (($ $ $) 118)) (-3772 (($ (-635 $)) 53)) (-2889 (($ $ (-635 $)) 71)) (-4014 (($ (-558) (-558)) 47)) (-2952 (($ $) 115) (($ $ $) 116)) (-3425 (($ $ (-558)) 41) (($ $) 44)) (-4025 (($ $ $) 89)) (-3922 (($ $ $) 121)) (-3862 (($ $) 105)) (-4004 (($ $ $) 90)) (-3819 (($ $) 130) (($ $ $) 131) (($ $ $ $) 132)) (-1963 (((-1251) $) 10)) (-3852 (($ $) 108) (($ $ (-762)) 111)) (-3882 (($ $ $) 67)) (-3891 (($ $ $) 66)) (-4280 (($ $ (-635 $)) 100)) (-3974 (($ $ $) 103)) (-3791 (($ (-635 $)) 51)) (-3800 (($ $) 62) (($ (-635 $)) 63)) (-3829 (($ $ $) 112)) (-3841 (($ $) 106)) (-3952 (($ $ $) 117)) (-1804 (($ (-558)) 21) (($ (-1163)) 23) (($ (-1145)) 30) (($ (-224)) 25)) (-2095 (($ $ $) 93)) (-3304 (($ $) 94)) (-4074 (((-1251) (-1145)) 15)) (-2462 (($ (-1145)) 14)) (-3181 (($ (-635 (-635 $))) 50)) (-3417 (($ $ (-558)) 40) (($ $) 43)) (-4310 (((-1145) $) NIL)) (-2165 (($ $ $) 120)) (-2621 (($ $) 133) (($ $ $) 134) (($ $ $ $) 135)) (-1831 (((-112) $) 98)) (-3981 (($ $ (-635 $)) 101) (($ $ $ $) 102)) (-4036 (($ (-558)) 37)) (-3382 (((-558) $) 32) (((-558)) 35)) (-4006 (($ $ $) 38) (($ (-635 $)) 75)) (-2975 (((-1107) $) NIL)) (-3983 (($ $ $) 91)) (-2083 (($) 13)) (-2195 (($ $ (-635 $)) 99)) (-4064 (((-1145) (-1145)) 8)) (-2744 (($ $) 107) (($ $ (-762)) 110)) (-3992 (($ $ $) 88)) (-2829 (($ $ (-762)) 126)) (-3781 (($ (-635 $)) 52)) (-3220 (((-853) $) 19)) (-2673 (($ $ (-558)) 39) (($ $) 42)) (-3809 (($ $) 60) (($ (-635 $)) 61)) (-2597 (($ $) 58) (($ (-635 $)) 59)) (-2540 (($ $) 113)) (-3763 (($ (-635 $)) 57)) (-2322 (($ $ $) 97)) (-3931 (($ $ $) 119)) (-2084 (($ $ $) 92)) (-4275 (($ $ $) 95) (($ $) 96)) (-1747 (($ $ $) 81)) (-1720 (($ $ $) 79)) (-1683 (((-112) $ $) 16) (($ $ $) 17)) (-1731 (($ $ $) 80)) (-1705 (($ $ $) 78)) (-1810 (($ $ $) 86)) (-1798 (($ $ $) 83) (($ $) 84)) (-1784 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85)))
+(((-853) (-13 (-1087) (-10 -8 (-15 -1963 ((-1251) $)) (-15 -2462 ($ (-1145))) (-15 -4074 ((-1251) (-1145))) (-15 -1804 ($ (-558))) (-15 -1804 ($ (-1163))) (-15 -1804 ($ (-1145))) (-15 -1804 ($ (-224))) (-15 -2083 ($)) (-15 -4064 ((-1145) (-1145))) (-15 -4039 ((-558) $)) (-15 -3382 ((-558) $)) (-15 -4039 ((-558))) (-15 -3382 ((-558))) (-15 -4054 ((-558) $)) (-15 -4047 ((-558) $)) (-15 -4036 ($ (-558))) (-15 -4026 ($ (-558))) (-15 -4014 ($ (-558) (-558))) (-15 -3417 ($ $ (-558))) (-15 -3425 ($ $ (-558))) (-15 -2673 ($ $ (-558))) (-15 -3417 ($ $)) (-15 -3425 ($ $)) (-15 -2673 ($ $)) (-15 -4006 ($ $ $)) (-15 -3995 ($ $ $)) (-15 -4006 ($ (-635 $))) (-15 -3995 ($ (-635 $))) (-15 -4280 ($ $ (-635 $))) (-15 -3981 ($ $ (-635 $))) (-15 -3981 ($ $ $ $)) (-15 -3974 ($ $ $)) (-15 -1831 ((-112) $)) (-15 -2195 ($ $ (-635 $))) (-15 -3994 ($ $)) (-15 -2165 ($ $ $)) (-15 -2540 ($ $)) (-15 -3181 ($ (-635 (-635 $)))) (-15 -3964 ($ $ $)) (-15 -2952 ($ $)) (-15 -2952 ($ $ $)) (-15 -3952 ($ $ $)) (-15 -3939 ($ $ $)) (-15 -3931 ($ $ $)) (-15 -3922 ($ $ $)) (-15 -2829 ($ $ (-762))) (-15 -2322 ($ $ $)) (-15 -3911 ($ $ $)) (-15 -3901 ($ $ $)) (-15 -3891 ($ $ $)) (-15 -3882 ($ $ $)) (-15 -2889 ($ $ (-635 $))) (-15 -3872 ($ $ (-635 $))) (-15 -3862 ($ $)) (-15 -2744 ($ $)) (-15 -2744 ($ $ (-762))) (-15 -3852 ($ $)) (-15 -3852 ($ $ (-762))) (-15 -3841 ($ $)) (-15 -3829 ($ $ $)) (-15 -2754 ($ $)) (-15 -2754 ($ $ $)) (-15 -2754 ($ $ $ $)) (-15 -3819 ($ $)) (-15 -3819 ($ $ $)) (-15 -3819 ($ $ $ $)) (-15 -2621 ($ $)) (-15 -2621 ($ $ $)) (-15 -2621 ($ $ $ $)) (-15 -2597 ($ $)) (-15 -2597 ($ (-635 $))) (-15 -3809 ($ $)) (-15 -3809 ($ (-635 $))) (-15 -3800 ($ $)) (-15 -3800 ($ (-635 $))) (-15 -3791 ($ (-635 $))) (-15 -3781 ($ (-635 $))) (-15 -3772 ($ (-635 $))) (-15 -3763 ($ (-635 $))) (-15 -1683 ($ $ $)) (-15 -3207 ($ $ $)) (-15 -1705 ($ $ $)) (-15 -1720 ($ $ $)) (-15 -1731 ($ $ $)) (-15 -1747 ($ $ $)) (-15 -1784 ($ $ $)) (-15 -1798 ($ $ $)) (-15 -1798 ($ $)) (-15 * ($ $ $)) (-15 -1810 ($ $ $)) (-15 ** ($ $ $)) (-15 -3992 ($ $ $)) (-15 -4025 ($ $ $)) (-15 -4004 ($ $ $)) (-15 -3983 ($ $ $)) (-15 -2084 ($ $ $)) (-15 -2095 ($ $ $)) (-15 -3304 ($ $)) (-15 -4275 ($ $ $)) (-15 -4275 ($ $))))) (T -853))
+((-1963 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-853)))) (-2462 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-853)))) (-4074 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-853)))) (-1804 (*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-853)))) (-1804 (*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-853)))) (-1804 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-853)))) (-1804 (*1 *1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-853)))) (-2083 (*1 *1) (-5 *1 (-853))) (-4064 (*1 *2 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-853)))) (-4039 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-853)))) (-3382 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-853)))) (-4039 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-853)))) (-3382 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-853)))) (-4054 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-853)))) (-4047 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-853)))) (-4036 (*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-853)))) (-4026 (*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-853)))) (-4014 (*1 *1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-853)))) (-3417 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-853)))) (-3425 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-853)))) (-2673 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-853)))) (-3417 (*1 *1 *1) (-5 *1 (-853))) (-3425 (*1 *1 *1) (-5 *1 (-853))) (-2673 (*1 *1 *1) (-5 *1 (-853))) (-4006 (*1 *1 *1 *1) (-5 *1 (-853))) (-3995 (*1 *1 *1 *1) (-5 *1 (-853))) (-4006 (*1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853)))) (-3995 (*1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853)))) (-4280 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853)))) (-3981 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853)))) (-3981 (*1 *1 *1 *1 *1) (-5 *1 (-853))) (-3974 (*1 *1 *1 *1) (-5 *1 (-853))) (-1831 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-853)))) (-2195 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853)))) (-3994 (*1 *1 *1) (-5 *1 (-853))) (-2165 (*1 *1 *1 *1) (-5 *1 (-853))) (-2540 (*1 *1 *1) (-5 *1 (-853))) (-3181 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 (-853)))) (-5 *1 (-853)))) (-3964 (*1 *1 *1 *1) (-5 *1 (-853))) (-2952 (*1 *1 *1) (-5 *1 (-853))) (-2952 (*1 *1 *1 *1) (-5 *1 (-853))) (-3952 (*1 *1 *1 *1) (-5 *1 (-853))) (-3939 (*1 *1 *1 *1) (-5 *1 (-853))) (-3931 (*1 *1 *1 *1) (-5 *1 (-853))) (-3922 (*1 *1 *1 *1) (-5 *1 (-853))) (-2829 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-853)))) (-2322 (*1 *1 *1 *1) (-5 *1 (-853))) (-3911 (*1 *1 *1 *1) (-5 *1 (-853))) (-3901 (*1 *1 *1 *1) (-5 *1 (-853))) (-3891 (*1 *1 *1 *1) (-5 *1 (-853))) (-3882 (*1 *1 *1 *1) (-5 *1 (-853))) (-2889 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853)))) (-3872 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853)))) (-3862 (*1 *1 *1) (-5 *1 (-853))) (-2744 (*1 *1 *1) (-5 *1 (-853))) (-2744 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-853)))) (-3852 (*1 *1 *1) (-5 *1 (-853))) (-3852 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-853)))) (-3841 (*1 *1 *1) (-5 *1 (-853))) (-3829 (*1 *1 *1 *1) (-5 *1 (-853))) (-2754 (*1 *1 *1) (-5 *1 (-853))) (-2754 (*1 *1 *1 *1) (-5 *1 (-853))) (-2754 (*1 *1 *1 *1 *1) (-5 *1 (-853))) (-3819 (*1 *1 *1) (-5 *1 (-853))) (-3819 (*1 *1 *1 *1) (-5 *1 (-853))) (-3819 (*1 *1 *1 *1 *1) (-5 *1 (-853))) (-2621 (*1 *1 *1) (-5 *1 (-853))) (-2621 (*1 *1 *1 *1) (-5 *1 (-853))) (-2621 (*1 *1 *1 *1 *1) (-5 *1 (-853))) (-2597 (*1 *1 *1) (-5 *1 (-853))) (-2597 (*1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853)))) (-3809 (*1 *1 *1) (-5 *1 (-853))) (-3809 (*1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853)))) (-3800 (*1 *1 *1) (-5 *1 (-853))) (-3800 (*1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853)))) (-3791 (*1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853)))) (-3781 (*1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853)))) (-3772 (*1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853)))) (-3763 (*1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853)))) (-1683 (*1 *1 *1 *1) (-5 *1 (-853))) (-3207 (*1 *1 *1 *1) (-5 *1 (-853))) (-1705 (*1 *1 *1 *1) (-5 *1 (-853))) (-1720 (*1 *1 *1 *1) (-5 *1 (-853))) (-1731 (*1 *1 *1 *1) (-5 *1 (-853))) (-1747 (*1 *1 *1 *1) (-5 *1 (-853))) (-1784 (*1 *1 *1 *1) (-5 *1 (-853))) (-1798 (*1 *1 *1 *1) (-5 *1 (-853))) (-1798 (*1 *1 *1) (-5 *1 (-853))) (* (*1 *1 *1 *1) (-5 *1 (-853))) (-1810 (*1 *1 *1 *1) (-5 *1 (-853))) (** (*1 *1 *1 *1) (-5 *1 (-853))) (-3992 (*1 *1 *1 *1) (-5 *1 (-853))) (-4025 (*1 *1 *1 *1) (-5 *1 (-853))) (-4004 (*1 *1 *1 *1) (-5 *1 (-853))) (-3983 (*1 *1 *1 *1) (-5 *1 (-853))) (-2084 (*1 *1 *1 *1) (-5 *1 (-853))) (-2095 (*1 *1 *1 *1) (-5 *1 (-853))) (-3304 (*1 *1 *1) (-5 *1 (-853))) (-4275 (*1 *1 *1 *1) (-5 *1 (-853))) (-4275 (*1 *1 *1) (-5 *1 (-853))))
+(-13 (-1087) (-10 -8 (-15 -1963 ((-1251) $)) (-15 -2462 ($ (-1145))) (-15 -4074 ((-1251) (-1145))) (-15 -1804 ($ (-558))) (-15 -1804 ($ (-1163))) (-15 -1804 ($ (-1145))) (-15 -1804 ($ (-224))) (-15 -2083 ($)) (-15 -4064 ((-1145) (-1145))) (-15 -4039 ((-558) $)) (-15 -3382 ((-558) $)) (-15 -4039 ((-558))) (-15 -3382 ((-558))) (-15 -4054 ((-558) $)) (-15 -4047 ((-558) $)) (-15 -4036 ($ (-558))) (-15 -4026 ($ (-558))) (-15 -4014 ($ (-558) (-558))) (-15 -3417 ($ $ (-558))) (-15 -3425 ($ $ (-558))) (-15 -2673 ($ $ (-558))) (-15 -3417 ($ $)) (-15 -3425 ($ $)) (-15 -2673 ($ $)) (-15 -4006 ($ $ $)) (-15 -3995 ($ $ $)) (-15 -4006 ($ (-635 $))) (-15 -3995 ($ (-635 $))) (-15 -4280 ($ $ (-635 $))) (-15 -3981 ($ $ (-635 $))) (-15 -3981 ($ $ $ $)) (-15 -3974 ($ $ $)) (-15 -1831 ((-112) $)) (-15 -2195 ($ $ (-635 $))) (-15 -3994 ($ $)) (-15 -2165 ($ $ $)) (-15 -2540 ($ $)) (-15 -3181 ($ (-635 (-635 $)))) (-15 -3964 ($ $ $)) (-15 -2952 ($ $)) (-15 -2952 ($ $ $)) (-15 -3952 ($ $ $)) (-15 -3939 ($ $ $)) (-15 -3931 ($ $ $)) (-15 -3922 ($ $ $)) (-15 -2829 ($ $ (-762))) (-15 -2322 ($ $ $)) (-15 -3911 ($ $ $)) (-15 -3901 ($ $ $)) (-15 -3891 ($ $ $)) (-15 -3882 ($ $ $)) (-15 -2889 ($ $ (-635 $))) (-15 -3872 ($ $ (-635 $))) (-15 -3862 ($ $)) (-15 -2744 ($ $)) (-15 -2744 ($ $ (-762))) (-15 -3852 ($ $)) (-15 -3852 ($ $ (-762))) (-15 -3841 ($ $)) (-15 -3829 ($ $ $)) (-15 -2754 ($ $)) (-15 -2754 ($ $ $)) (-15 -2754 ($ $ $ $)) (-15 -3819 ($ $)) (-15 -3819 ($ $ $)) (-15 -3819 ($ $ $ $)) (-15 -2621 ($ $)) (-15 -2621 ($ $ $)) (-15 -2621 ($ $ $ $)) (-15 -2597 ($ $)) (-15 -2597 ($ (-635 $))) (-15 -3809 ($ $)) (-15 -3809 ($ (-635 $))) (-15 -3800 ($ $)) (-15 -3800 ($ (-635 $))) (-15 -3791 ($ (-635 $))) (-15 -3781 ($ (-635 $))) (-15 -3772 ($ (-635 $))) (-15 -3763 ($ (-635 $))) (-15 -1683 ($ $ $)) (-15 -3207 ($ $ $)) (-15 -1705 ($ $ $)) (-15 -1720 ($ $ $)) (-15 -1731 ($ $ $)) (-15 -1747 ($ $ $)) (-15 -1784 ($ $ $)) (-15 -1798 ($ $ $)) (-15 -1798 ($ $)) (-15 * ($ $ $)) (-15 -1810 ($ $ $)) (-15 ** ($ $ $)) (-15 -3992 ($ $ $)) (-15 -4025 ($ $ $)) (-15 -4004 ($ $ $)) (-15 -3983 ($ $ $)) (-15 -2084 ($ $ $)) (-15 -2095 ($ $ $)) (-15 -3304 ($ $)) (-15 -4275 ($ $ $)) (-15 -4275 ($ $))))
+((-2898 (((-1251) (-635 (-52))) 24)) (-3746 (((-1251) (-1145) (-853)) 14) (((-1251) (-853)) 9) (((-1251) (-1145)) 11)))
+(((-854) (-10 -7 (-15 -3746 ((-1251) (-1145))) (-15 -3746 ((-1251) (-853))) (-15 -3746 ((-1251) (-1145) (-853))) (-15 -2898 ((-1251) (-635 (-52)))))) (T -854))
+((-2898 (*1 *2 *3) (-12 (-5 *3 (-635 (-52))) (-5 *2 (-1251)) (-5 *1 (-854)))) (-3746 (*1 *2 *3 *4) (-12 (-5 *3 (-1145)) (-5 *4 (-853)) (-5 *2 (-1251)) (-5 *1 (-854)))) (-3746 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1251)) (-5 *1 (-854)))) (-3746 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-854)))))
+(-10 -7 (-15 -3746 ((-1251) (-1145))) (-15 -3746 ((-1251) (-853))) (-15 -3746 ((-1251) (-1145) (-853))) (-15 -2898 ((-1251) (-635 (-52)))))
+((-3207 (((-112) $ $) NIL)) (-1602 (((-3 $ "failed") (-1163)) 33)) (-2276 (((-762)) 31)) (-2424 (($) NIL)) (-3910 (($ $ $) NIL)) (-3542 (($ $ $) NIL)) (-2637 (((-911) $) 29)) (-4310 (((-1145) $) 39)) (-2851 (($ (-911)) 28)) (-2975 (((-1107) $) NIL)) (-3224 (((-1163) $) 13) (((-534) $) 19) (((-882 (-378)) $) 26) (((-882 (-558)) $) 22)) (-3220 (((-853) $) 16)) (-1747 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1683 (((-112) $ $) 36)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 35)))
+(((-855 |#1|) (-13 (-835) (-606 (-1163)) (-606 (-534)) (-606 (-882 (-378))) (-606 (-882 (-558))) (-10 -8 (-15 -1602 ((-3 $ "failed") (-1163))))) (-635 (-1163))) (T -855))
+((-1602 (*1 *1 *2) (|partial| -12 (-5 *2 (-1163)) (-5 *1 (-855 *3)) (-14 *3 (-635 *2)))))
+(-13 (-835) (-606 (-1163)) (-606 (-534)) (-606 (-882 (-378))) (-606 (-882 (-558))) (-10 -8 (-15 -1602 ((-3 $ "failed") (-1163)))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-1816 (($) NIL T CONST)) (-2588 (((-3 $ "failed") $) NIL)) (-2035 (((-112) $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ (-942 |#1|)) NIL) (((-942 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-171)))) (-2542 (((-762)) NIL)) (-2266 (((-1251) (-762)) NIL)) (-2131 (($) NIL T CONST)) (-2142 (($) NIL T CONST)) (-1683 (((-112) $ $) NIL)) (-1810 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-171))) (($ $ |#1|) NIL (|has| |#1| (-171)))))
+(((-856 |#1| |#2| |#3| |#4|) (-13 (-1039) (-488 (-942 |#1|)) (-10 -8 (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -1810 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2266 ((-1251) (-762))))) (-1039) (-635 (-1163)) (-635 (-762)) (-762)) (T -856))
+((-1810 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-856 *2 *3 *4 *5)) (-4 *2 (-362)) (-4 *2 (-1039)) (-14 *3 (-635 (-1163))) (-14 *4 (-635 (-762))) (-14 *5 (-762)))) (-2266 (*1 *2 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1251)) (-5 *1 (-856 *4 *5 *6 *7)) (-4 *4 (-1039)) (-14 *5 (-635 (-1163))) (-14 *6 (-635 *3)) (-14 *7 *3))))
+(-13 (-1039) (-488 (-942 |#1|)) (-10 -8 (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -1810 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2266 ((-1251) (-762)))))
+((-2930 (((-3 (-173 |#3|) "failed") (-762) (-762) |#2| |#2|) 31)) (-2941 (((-3 (-406 |#3|) "failed") (-762) (-762) |#2| |#2|) 24)))
+(((-857 |#1| |#2| |#3|) (-10 -7 (-15 -2941 ((-3 (-406 |#3|) "failed") (-762) (-762) |#2| |#2|)) (-15 -2930 ((-3 (-173 |#3|) "failed") (-762) (-762) |#2| |#2|))) (-362) (-1237 |#1|) (-1222 |#1|)) (T -857))
+((-2930 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-762)) (-4 *5 (-362)) (-5 *2 (-173 *6)) (-5 *1 (-857 *5 *4 *6)) (-4 *4 (-1237 *5)) (-4 *6 (-1222 *5)))) (-2941 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-762)) (-4 *5 (-362)) (-5 *2 (-406 *6)) (-5 *1 (-857 *5 *4 *6)) (-4 *4 (-1237 *5)) (-4 *6 (-1222 *5)))))
+(-10 -7 (-15 -2941 ((-3 (-406 |#3|) "failed") (-762) (-762) |#2| |#2|)) (-15 -2930 ((-3 (-173 |#3|) "failed") (-762) (-762) |#2| |#2|)))
+((-2941 (((-3 (-406 (-1219 |#2| |#1|)) "failed") (-762) (-762) (-1238 |#1| |#2| |#3|)) 28) (((-3 (-406 (-1219 |#2| |#1|)) "failed") (-762) (-762) (-1238 |#1| |#2| |#3|) (-1238 |#1| |#2| |#3|)) 26)))
+(((-858 |#1| |#2| |#3|) (-10 -7 (-15 -2941 ((-3 (-406 (-1219 |#2| |#1|)) "failed") (-762) (-762) (-1238 |#1| |#2| |#3|) (-1238 |#1| |#2| |#3|))) (-15 -2941 ((-3 (-406 (-1219 |#2| |#1|)) "failed") (-762) (-762) (-1238 |#1| |#2| |#3|)))) (-362) (-1163) |#1|) (T -858))
+((-2941 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-762)) (-5 *4 (-1238 *5 *6 *7)) (-4 *5 (-362)) (-14 *6 (-1163)) (-14 *7 *5) (-5 *2 (-406 (-1219 *6 *5))) (-5 *1 (-858 *5 *6 *7)))) (-2941 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-762)) (-5 *4 (-1238 *5 *6 *7)) (-4 *5 (-362)) (-14 *6 (-1163)) (-14 *7 *5) (-5 *2 (-406 (-1219 *6 *5))) (-5 *1 (-858 *5 *6 *7)))))
+(-10 -7 (-15 -2941 ((-3 (-406 (-1219 |#2| |#1|)) "failed") (-762) (-762) (-1238 |#1| |#2| |#3|) (-1238 |#1| |#2| |#3|))) (-15 -2941 ((-3 (-406 (-1219 |#2| |#1|)) "failed") (-762) (-762) (-1238 |#1| |#2| |#3|))))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 42)) (-1881 (($ $) 41)) (-1857 (((-112) $) 39)) (-2089 (((-3 $ "failed") $ $) 19)) (-2534 (($ $ (-558)) 63)) (-3732 (((-112) $ $) 60)) (-1816 (($) 17 T CONST)) (-2952 (($ (-1159 (-558)) (-558)) 62)) (-4025 (($ $ $) 56)) (-2588 (((-3 $ "failed") $) 33)) (-2962 (($ $) 65)) (-4004 (($ $ $) 57)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) 52)) (-3449 (((-762) $) 70)) (-2035 (((-112) $) 31)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) 53)) (-2985 (((-558)) 67)) (-2972 (((-558) $) 66)) (-2665 (($ $ $) 47) (($ (-635 $)) 46)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) 45)) (-2699 (($ $ $) 49) (($ (-635 $)) 48)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3430 (($ $ (-558)) 69)) (-3983 (((-3 $ "failed") $ $) 43)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-3722 (((-762) $) 59)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 58)) (-2997 (((-1143 (-558)) $) 71)) (-2011 (($ $) 68)) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ $) 44)) (-2542 (((-762)) 28)) (-1870 (((-112) $ $) 40)) (-1352 (((-558) $ (-558)) 64)) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1683 (((-112) $ $) 6)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24)))
+(((-859 |#1|) (-139) (-558)) (T -859))
+((-2997 (*1 *2 *1) (-12 (-4 *1 (-859 *3)) (-5 *2 (-1143 (-558))))) (-3449 (*1 *2 *1) (-12 (-4 *1 (-859 *3)) (-5 *2 (-762)))) (-3430 (*1 *1 *1 *2) (-12 (-4 *1 (-859 *3)) (-5 *2 (-558)))) (-2011 (*1 *1 *1) (-4 *1 (-859 *2))) (-2985 (*1 *2) (-12 (-4 *1 (-859 *3)) (-5 *2 (-558)))) (-2972 (*1 *2 *1) (-12 (-4 *1 (-859 *3)) (-5 *2 (-558)))) (-2962 (*1 *1 *1) (-4 *1 (-859 *2))) (-1352 (*1 *2 *1 *2) (-12 (-4 *1 (-859 *3)) (-5 *2 (-558)))) (-2534 (*1 *1 *1 *2) (-12 (-4 *1 (-859 *3)) (-5 *2 (-558)))) (-2952 (*1 *1 *2 *3) (-12 (-5 *2 (-1159 (-558))) (-5 *3 (-558)) (-4 *1 (-859 *4)))))
+(-13 (-306) (-146) (-10 -8 (-15 -2997 ((-1143 (-558)) $)) (-15 -3449 ((-762) $)) (-15 -3430 ($ $ (-558))) (-15 -2011 ($ $)) (-15 -2985 ((-558))) (-15 -2972 ((-558) $)) (-15 -2962 ($ $)) (-15 -1352 ((-558) $ (-558))) (-15 -2534 ($ $ (-558))) (-15 -2952 ($ (-1159 (-558)) (-558)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-146) . T) ((-608 (-558)) . T) ((-608 $) . T) ((-605 (-853)) . T) ((-171) . T) ((-289) . T) ((-306) . T) ((-450) . T) ((-550) . T) ((-638 $) . T) ((-708 $) . T) ((-717) . T) ((-910) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL)) (-1881 (($ $) NIL)) (-1857 (((-112) $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-2534 (($ $ (-558)) NIL)) (-3732 (((-112) $ $) NIL)) (-1816 (($) NIL T CONST)) (-2952 (($ (-1159 (-558)) (-558)) NIL)) (-4025 (($ $ $) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-2962 (($ $) NIL)) (-4004 (($ $ $) NIL)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL)) (-3449 (((-762) $) NIL)) (-2035 (((-112) $) NIL)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2985 (((-558)) NIL)) (-2972 (((-558) $) NIL)) (-2665 (($ $ $) NIL) (($ (-635 $)) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-2699 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3430 (($ $ (-558)) NIL)) (-3983 (((-3 $ "failed") $ $) NIL)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3722 (((-762) $) NIL)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL)) (-2997 (((-1143 (-558)) $) NIL)) (-2011 (($ $) NIL)) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL)) (-2542 (((-762)) NIL)) (-1870 (((-112) $ $) NIL)) (-1352 (((-558) $ (-558)) NIL)) (-2131 (($) NIL T CONST)) (-2142 (($) NIL T CONST)) (-1683 (((-112) $ $) NIL)) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL)))
+(((-860 |#1|) (-859 |#1|) (-558)) (T -860))
+NIL
+(-859 |#1|)
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2582 (((-860 |#1|) $) NIL (|has| (-860 |#1|) (-306)))) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL)) (-1881 (($ $) NIL)) (-1857 (((-112) $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-3748 (((-417 (-1159 $)) (-1159 $)) NIL (|has| (-860 |#1|) (-899)))) (-3465 (($ $) NIL)) (-1380 (((-417 $) $) NIL)) (-3719 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (|has| (-860 |#1|) (-899)))) (-3732 (((-112) $ $) NIL)) (-1397 (((-558) $) NIL (|has| (-860 |#1|) (-811)))) (-1816 (($) NIL T CONST)) (-3069 (((-3 (-860 |#1|) "failed") $) NIL) (((-3 (-1163) "failed") $) NIL (|has| (-860 |#1|) (-1028 (-1163)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| (-860 |#1|) (-1028 (-558)))) (((-3 (-558) "failed") $) NIL (|has| (-860 |#1|) (-1028 (-558))))) (-1863 (((-860 |#1|) $) NIL) (((-1163) $) NIL (|has| (-860 |#1|) (-1028 (-1163)))) (((-406 (-558)) $) NIL (|has| (-860 |#1|) (-1028 (-558)))) (((-558) $) NIL (|has| (-860 |#1|) (-1028 (-558))))) (-3065 (($ $) NIL) (($ (-558) $) NIL)) (-4025 (($ $ $) NIL)) (-3216 (((-679 (-558)) (-679 $)) NIL (|has| (-860 |#1|) (-631 (-558)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| (-860 |#1|) (-631 (-558)))) (((-2 (|:| -3683 (-679 (-860 |#1|))) (|:| |vec| (-1246 (-860 |#1|)))) (-679 $) (-1246 $)) NIL) (((-679 (-860 |#1|)) (-679 $)) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-2424 (($) NIL (|has| (-860 |#1|) (-543)))) (-4004 (($ $ $) NIL)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL)) (-3031 (((-112) $) NIL)) (-2045 (((-112) $) NIL (|has| (-860 |#1|) (-811)))) (-2269 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (|has| (-860 |#1|) (-876 (-558)))) (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (|has| (-860 |#1|) (-876 (-378))))) (-2035 (((-112) $) NIL)) (-3704 (($ $) NIL)) (-1874 (((-860 |#1|) $) NIL)) (-2457 (((-3 $ "failed") $) NIL (|has| (-860 |#1|) (-1138)))) (-2055 (((-112) $) NIL (|has| (-860 |#1|) (-811)))) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3910 (($ $ $) NIL (|has| (-860 |#1|) (-841)))) (-3542 (($ $ $) NIL (|has| (-860 |#1|) (-841)))) (-3167 (($ (-1 (-860 |#1|) (-860 |#1|)) $) NIL)) (-2665 (($ $ $) NIL) (($ (-635 $)) NIL)) (-4310 (((-1145) $) NIL)) (-2418 (($ $) NIL)) (-1796 (($) NIL (|has| (-860 |#1|) (-1138)) CONST)) (-2975 (((-1107) $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-2699 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2568 (($ $) NIL (|has| (-860 |#1|) (-306)))) (-2594 (((-860 |#1|) $) NIL (|has| (-860 |#1|) (-543)))) (-3728 (((-417 (-1159 $)) (-1159 $)) NIL (|has| (-860 |#1|) (-899)))) (-3738 (((-417 (-1159 $)) (-1159 $)) NIL (|has| (-860 |#1|) (-899)))) (-2522 (((-417 $) $) NIL)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3983 (((-3 $ "failed") $ $) NIL)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2554 (($ $ (-635 (-860 |#1|)) (-635 (-860 |#1|))) NIL (|has| (-860 |#1|) (-308 (-860 |#1|)))) (($ $ (-860 |#1|) (-860 |#1|)) NIL (|has| (-860 |#1|) (-308 (-860 |#1|)))) (($ $ (-293 (-860 |#1|))) NIL (|has| (-860 |#1|) (-308 (-860 |#1|)))) (($ $ (-635 (-293 (-860 |#1|)))) NIL (|has| (-860 |#1|) (-308 (-860 |#1|)))) (($ $ (-635 (-1163)) (-635 (-860 |#1|))) NIL (|has| (-860 |#1|) (-512 (-1163) (-860 |#1|)))) (($ $ (-1163) (-860 |#1|)) NIL (|has| (-860 |#1|) (-512 (-1163) (-860 |#1|))))) (-3722 (((-762) $) NIL)) (-2195 (($ $ (-860 |#1|)) NIL (|has| (-860 |#1|) (-285 (-860 |#1|) (-860 |#1|))))) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL)) (-2829 (($ $) NIL (|has| (-860 |#1|) (-232))) (($ $ (-762)) NIL (|has| (-860 |#1|) (-232))) (($ $ (-1163)) NIL (|has| (-860 |#1|) (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| (-860 |#1|) (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| (-860 |#1|) (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| (-860 |#1|) (-890 (-1163)))) (($ $ (-1 (-860 |#1|) (-860 |#1|)) (-762)) NIL) (($ $ (-1 (-860 |#1|) (-860 |#1|))) NIL)) (-3694 (($ $) NIL)) (-1885 (((-860 |#1|) $) NIL)) (-3224 (((-882 (-558)) $) NIL (|has| (-860 |#1|) (-606 (-882 (-558))))) (((-882 (-378)) $) NIL (|has| (-860 |#1|) (-606 (-882 (-378))))) (((-534) $) NIL (|has| (-860 |#1|) (-606 (-534)))) (((-378) $) NIL (|has| (-860 |#1|) (-1012))) (((-224) $) NIL (|has| (-860 |#1|) (-1012)))) (-3008 (((-173 (-406 (-558))) $) NIL)) (-3709 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| (-860 |#1|) (-899))))) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL) (($ (-406 (-558))) NIL) (($ (-860 |#1|)) NIL) (($ (-1163)) NIL (|has| (-860 |#1|) (-1028 (-1163))))) (-3698 (((-3 $ "failed") $) NIL (-3998 (-12 (|has| $ (-144)) (|has| (-860 |#1|) (-899))) (|has| (-860 |#1|) (-144))))) (-2542 (((-762)) NIL)) (-2604 (((-860 |#1|) $) NIL (|has| (-860 |#1|) (-543)))) (-1870 (((-112) $ $) NIL)) (-1352 (((-406 (-558)) $ (-558)) NIL)) (-3190 (($ $) NIL (|has| (-860 |#1|) (-811)))) (-2131 (($) NIL T CONST)) (-2142 (($) NIL T CONST)) (-1866 (($ $) NIL (|has| (-860 |#1|) (-232))) (($ $ (-762)) NIL (|has| (-860 |#1|) (-232))) (($ $ (-1163)) NIL (|has| (-860 |#1|) (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| (-860 |#1|) (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| (-860 |#1|) (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| (-860 |#1|) (-890 (-1163)))) (($ $ (-1 (-860 |#1|) (-860 |#1|)) (-762)) NIL) (($ $ (-1 (-860 |#1|) (-860 |#1|))) NIL)) (-1747 (((-112) $ $) NIL (|has| (-860 |#1|) (-841)))) (-1720 (((-112) $ $) NIL (|has| (-860 |#1|) (-841)))) (-1683 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL (|has| (-860 |#1|) (-841)))) (-1705 (((-112) $ $) NIL (|has| (-860 |#1|) (-841)))) (-1810 (($ $ $) NIL) (($ (-860 |#1|) (-860 |#1|)) NIL)) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL) (($ (-860 |#1|) $) NIL) (($ $ (-860 |#1|)) NIL)))
+(((-861 |#1|) (-13 (-982 (-860 |#1|)) (-10 -8 (-15 -1352 ((-406 (-558)) $ (-558))) (-15 -3008 ((-173 (-406 (-558))) $)) (-15 -3065 ($ $)) (-15 -3065 ($ (-558) $)))) (-558)) (T -861))
+((-1352 (*1 *2 *1 *3) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-861 *4)) (-14 *4 *3) (-5 *3 (-558)))) (-3008 (*1 *2 *1) (-12 (-5 *2 (-173 (-406 (-558)))) (-5 *1 (-861 *3)) (-14 *3 (-558)))) (-3065 (*1 *1 *1) (-12 (-5 *1 (-861 *2)) (-14 *2 (-558)))) (-3065 (*1 *1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-861 *3)) (-14 *3 *2))))
+(-13 (-982 (-860 |#1|)) (-10 -8 (-15 -1352 ((-406 (-558)) $ (-558))) (-15 -3008 ((-173 (-406 (-558))) $)) (-15 -3065 ($ $)) (-15 -3065 ($ (-558) $))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2582 ((|#2| $) NIL (|has| |#2| (-306)))) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL)) (-1881 (($ $) NIL)) (-1857 (((-112) $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-3748 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-3465 (($ $) NIL)) (-1380 (((-417 $) $) NIL)) (-3719 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-3732 (((-112) $ $) NIL)) (-1397 (((-558) $) NIL (|has| |#2| (-811)))) (-1816 (($) NIL T CONST)) (-3069 (((-3 |#2| "failed") $) NIL) (((-3 (-1163) "failed") $) NIL (|has| |#2| (-1028 (-1163)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#2| (-1028 (-558)))) (((-3 (-558) "failed") $) NIL (|has| |#2| (-1028 (-558))))) (-1863 ((|#2| $) NIL) (((-1163) $) NIL (|has| |#2| (-1028 (-1163)))) (((-406 (-558)) $) NIL (|has| |#2| (-1028 (-558)))) (((-558) $) NIL (|has| |#2| (-1028 (-558))))) (-3065 (($ $) 31) (($ (-558) $) 32)) (-4025 (($ $ $) NIL)) (-3216 (((-679 (-558)) (-679 $)) NIL (|has| |#2| (-631 (-558)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| |#2| (-631 (-558)))) (((-2 (|:| -3683 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 $) (-1246 $)) NIL) (((-679 |#2|) (-679 $)) NIL)) (-2588 (((-3 $ "failed") $) 53)) (-2424 (($) NIL (|has| |#2| (-543)))) (-4004 (($ $ $) NIL)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL)) (-3031 (((-112) $) NIL)) (-2045 (((-112) $) NIL (|has| |#2| (-811)))) (-2269 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (|has| |#2| (-876 (-558)))) (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (|has| |#2| (-876 (-378))))) (-2035 (((-112) $) NIL)) (-3704 (($ $) NIL)) (-1874 ((|#2| $) NIL)) (-2457 (((-3 $ "failed") $) NIL (|has| |#2| (-1138)))) (-2055 (((-112) $) NIL (|has| |#2| (-811)))) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3910 (($ $ $) NIL (|has| |#2| (-841)))) (-3542 (($ $ $) NIL (|has| |#2| (-841)))) (-3167 (($ (-1 |#2| |#2|) $) NIL)) (-2665 (($ $ $) NIL) (($ (-635 $)) NIL)) (-4310 (((-1145) $) NIL)) (-2418 (($ $) 49)) (-1796 (($) NIL (|has| |#2| (-1138)) CONST)) (-2975 (((-1107) $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-2699 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2568 (($ $) NIL (|has| |#2| (-306)))) (-2594 ((|#2| $) NIL (|has| |#2| (-543)))) (-3728 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-3738 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-2522 (((-417 $) $) NIL)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3983 (((-3 $ "failed") $ $) NIL)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2554 (($ $ (-635 |#2|) (-635 |#2|)) NIL (|has| |#2| (-308 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-308 |#2|))) (($ $ (-293 |#2|)) NIL (|has| |#2| (-308 |#2|))) (($ $ (-635 (-293 |#2|))) NIL (|has| |#2| (-308 |#2|))) (($ $ (-635 (-1163)) (-635 |#2|)) NIL (|has| |#2| (-512 (-1163) |#2|))) (($ $ (-1163) |#2|) NIL (|has| |#2| (-512 (-1163) |#2|)))) (-3722 (((-762) $) NIL)) (-2195 (($ $ |#2|) NIL (|has| |#2| (-285 |#2| |#2|)))) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL)) (-2829 (($ $) NIL (|has| |#2| (-232))) (($ $ (-762)) NIL (|has| |#2| (-232))) (($ $ (-1163)) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-1 |#2| |#2|) (-762)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3694 (($ $) NIL)) (-1885 ((|#2| $) NIL)) (-3224 (((-882 (-558)) $) NIL (|has| |#2| (-606 (-882 (-558))))) (((-882 (-378)) $) NIL (|has| |#2| (-606 (-882 (-378))))) (((-534) $) NIL (|has| |#2| (-606 (-534)))) (((-378) $) NIL (|has| |#2| (-1012))) (((-224) $) NIL (|has| |#2| (-1012)))) (-3008 (((-173 (-406 (-558))) $) 68)) (-3709 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-899))))) (-3220 (((-853) $) 86) (($ (-558)) 19) (($ $) NIL) (($ (-406 (-558))) 24) (($ |#2|) 18) (($ (-1163)) NIL (|has| |#2| (-1028 (-1163))))) (-3698 (((-3 $ "failed") $) NIL (-3998 (-12 (|has| $ (-144)) (|has| |#2| (-899))) (|has| |#2| (-144))))) (-2542 (((-762)) NIL)) (-2604 ((|#2| $) NIL (|has| |#2| (-543)))) (-1870 (((-112) $ $) NIL)) (-1352 (((-406 (-558)) $ (-558)) 60)) (-3190 (($ $) NIL (|has| |#2| (-811)))) (-2131 (($) 14 T CONST)) (-2142 (($) 16 T CONST)) (-1866 (($ $) NIL (|has| |#2| (-232))) (($ $ (-762)) NIL (|has| |#2| (-232))) (($ $ (-1163)) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-1 |#2| |#2|) (-762)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1747 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1720 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1683 (((-112) $ $) 35)) (-1731 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1705 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1810 (($ $ $) 23) (($ |#2| |#2|) 54)) (-1798 (($ $) 39) (($ $ $) 41)) (-1784 (($ $ $) 37)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) 50)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 42) (($ $ $) 44) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL)))
+(((-862 |#1| |#2|) (-13 (-982 |#2|) (-10 -8 (-15 -1352 ((-406 (-558)) $ (-558))) (-15 -3008 ((-173 (-406 (-558))) $)) (-15 -3065 ($ $)) (-15 -3065 ($ (-558) $)))) (-558) (-859 |#1|)) (T -862))
+((-1352 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-406 (-558))) (-5 *1 (-862 *4 *5)) (-5 *3 (-558)) (-4 *5 (-859 *4)))) (-3008 (*1 *2 *1) (-12 (-14 *3 (-558)) (-5 *2 (-173 (-406 (-558)))) (-5 *1 (-862 *3 *4)) (-4 *4 (-859 *3)))) (-3065 (*1 *1 *1) (-12 (-14 *2 (-558)) (-5 *1 (-862 *2 *3)) (-4 *3 (-859 *2)))) (-3065 (*1 *1 *2 *1) (-12 (-5 *2 (-558)) (-14 *3 *2) (-5 *1 (-862 *3 *4)) (-4 *4 (-859 *3)))))
+(-13 (-982 |#2|) (-10 -8 (-15 -1352 ((-406 (-558)) $ (-558))) (-15 -3008 ((-173 (-406 (-558))) $)) (-15 -3065 ($ $)) (-15 -3065 ($ (-558) $))))
+((-3207 (((-112) $ $) NIL (-12 (|has| |#1| (-1087)) (|has| |#2| (-1087))))) (-3201 ((|#2| $) 12)) (-2881 (($ |#1| |#2|) 9)) (-4310 (((-1145) $) NIL (-12 (|has| |#1| (-1087)) (|has| |#2| (-1087))))) (-2975 (((-1107) $) NIL (-12 (|has| |#1| (-1087)) (|has| |#2| (-1087))))) (-2305 ((|#1| $) 11)) (-3233 (($ |#1| |#2|) 10)) (-3220 (((-853) $) 18 (-3998 (-12 (|has| |#1| (-605 (-853))) (|has| |#2| (-605 (-853)))) (-12 (|has| |#1| (-1087)) (|has| |#2| (-1087)))))) (-1683 (((-112) $ $) 22 (-12 (|has| |#1| (-1087)) (|has| |#2| (-1087))))))
+(((-863 |#1| |#2|) (-13 (-1200) (-10 -8 (IF (|has| |#1| (-605 (-853))) (IF (|has| |#2| (-605 (-853))) (-6 (-605 (-853))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1087)) (IF (|has| |#2| (-1087)) (-6 (-1087)) |%noBranch|) |%noBranch|) (-15 -2881 ($ |#1| |#2|)) (-15 -3233 ($ |#1| |#2|)) (-15 -2305 (|#1| $)) (-15 -3201 (|#2| $)))) (-1200) (-1200)) (T -863))
+((-2881 (*1 *1 *2 *3) (-12 (-5 *1 (-863 *2 *3)) (-4 *2 (-1200)) (-4 *3 (-1200)))) (-3233 (*1 *1 *2 *3) (-12 (-5 *1 (-863 *2 *3)) (-4 *2 (-1200)) (-4 *3 (-1200)))) (-2305 (*1 *2 *1) (-12 (-4 *2 (-1200)) (-5 *1 (-863 *2 *3)) (-4 *3 (-1200)))) (-3201 (*1 *2 *1) (-12 (-4 *2 (-1200)) (-5 *1 (-863 *3 *2)) (-4 *3 (-1200)))))
+(-13 (-1200) (-10 -8 (IF (|has| |#1| (-605 (-853))) (IF (|has| |#2| (-605 (-853))) (-6 (-605 (-853))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1087)) (IF (|has| |#2| (-1087)) (-6 (-1087)) |%noBranch|) |%noBranch|) (-15 -2881 ($ |#1| |#2|)) (-15 -3233 ($ |#1| |#2|)) (-15 -2305 (|#1| $)) (-15 -3201 (|#2| $))))
+((-3207 (((-112) $ $) NIL)) (-1428 (((-558) $) 15)) (-3030 (($ (-156)) 11)) (-3019 (($ (-156)) 12)) (-4310 (((-1145) $) NIL)) (-1418 (((-156) $) 13)) (-2975 (((-1107) $) NIL)) (-3084 (($ (-156)) 9)) (-3040 (($ (-156)) 8)) (-3220 (((-853) $) 23) (($ (-156)) 16)) (-2115 (($ (-156)) 10)) (-1683 (((-112) $ $) NIL)))
+(((-864) (-13 (-1087) (-10 -8 (-15 -3040 ($ (-156))) (-15 -3084 ($ (-156))) (-15 -2115 ($ (-156))) (-15 -3030 ($ (-156))) (-15 -3019 ($ (-156))) (-15 -1418 ((-156) $)) (-15 -1428 ((-558) $)) (-15 -3220 ($ (-156)))))) (T -864))
+((-3040 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-864)))) (-3084 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-864)))) (-2115 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-864)))) (-3030 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-864)))) (-3019 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-864)))) (-1418 (*1 *2 *1) (-12 (-5 *2 (-156)) (-5 *1 (-864)))) (-1428 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-864)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-864)))))
+(-13 (-1087) (-10 -8 (-15 -3040 ($ (-156))) (-15 -3084 ($ (-156))) (-15 -2115 ($ (-156))) (-15 -3030 ($ (-156))) (-15 -3019 ($ (-156))) (-15 -1418 ((-156) $)) (-15 -1428 ((-558) $)) (-15 -3220 ($ (-156)))))
+((-3220 (((-315 (-558)) (-406 (-942 (-48)))) 23) (((-315 (-558)) (-942 (-48))) 18)))
+(((-865) (-10 -7 (-15 -3220 ((-315 (-558)) (-942 (-48)))) (-15 -3220 ((-315 (-558)) (-406 (-942 (-48))))))) (T -865))
+((-3220 (*1 *2 *3) (-12 (-5 *3 (-406 (-942 (-48)))) (-5 *2 (-315 (-558))) (-5 *1 (-865)))) (-3220 (*1 *2 *3) (-12 (-5 *3 (-942 (-48))) (-5 *2 (-315 (-558))) (-5 *1 (-865)))))
+(-10 -7 (-15 -3220 ((-315 (-558)) (-942 (-48)))) (-15 -3220 ((-315 (-558)) (-406 (-942 (-48))))))
+((-3167 (((-867 |#2|) (-1 |#2| |#1|) (-867 |#1|)) 14)))
+(((-866 |#1| |#2|) (-10 -7 (-15 -3167 ((-867 |#2|) (-1 |#2| |#1|) (-867 |#1|)))) (-1200) (-1200)) (T -866))
+((-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-867 *5)) (-4 *5 (-1200)) (-4 *6 (-1200)) (-5 *2 (-867 *6)) (-5 *1 (-866 *5 *6)))))
+(-10 -7 (-15 -3167 ((-867 |#2|) (-1 |#2| |#1|) (-867 |#1|))))
+((-3082 (($ |#1| |#1|) 8)) (-3076 ((|#1| $ (-762)) 10)))
+(((-867 |#1|) (-10 -8 (-15 -3082 ($ |#1| |#1|)) (-15 -3076 (|#1| $ (-762)))) (-1200)) (T -867))
+((-3076 (*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-5 *1 (-867 *2)) (-4 *2 (-1200)))) (-3082 (*1 *1 *2 *2) (-12 (-5 *1 (-867 *2)) (-4 *2 (-1200)))))
+(-10 -8 (-15 -3082 ($ |#1| |#1|)) (-15 -3076 (|#1| $ (-762))))
+((-3167 (((-869 |#2|) (-1 |#2| |#1|) (-869 |#1|)) 14)))
+(((-868 |#1| |#2|) (-10 -7 (-15 -3167 ((-869 |#2|) (-1 |#2| |#1|) (-869 |#1|)))) (-1200) (-1200)) (T -868))
+((-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-869 *5)) (-4 *5 (-1200)) (-4 *6 (-1200)) (-5 *2 (-869 *6)) (-5 *1 (-868 *5 *6)))))
+(-10 -7 (-15 -3167 ((-869 |#2|) (-1 |#2| |#1|) (-869 |#1|))))
+((-3082 (($ |#1| |#1| |#1|) 8)) (-3076 ((|#1| $ (-762)) 10)))
+(((-869 |#1|) (-10 -8 (-15 -3082 ($ |#1| |#1| |#1|)) (-15 -3076 (|#1| $ (-762)))) (-1200)) (T -869))
+((-3076 (*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-5 *1 (-869 *2)) (-4 *2 (-1200)))) (-3082 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-869 *2)) (-4 *2 (-1200)))))
+(-10 -8 (-15 -3082 ($ |#1| |#1| |#1|)) (-15 -3076 (|#1| $ (-762))))
+((-3053 (((-635 (-1168)) (-1145)) 9)))
+(((-870) (-10 -7 (-15 -3053 ((-635 (-1168)) (-1145))))) (T -870))
+((-3053 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-635 (-1168))) (-5 *1 (-870)))))
+(-10 -7 (-15 -3053 ((-635 (-1168)) (-1145))))
+((-3167 (((-872 |#2|) (-1 |#2| |#1|) (-872 |#1|)) 14)))
+(((-871 |#1| |#2|) (-10 -7 (-15 -3167 ((-872 |#2|) (-1 |#2| |#1|) (-872 |#1|)))) (-1200) (-1200)) (T -871))
+((-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-872 *5)) (-4 *5 (-1200)) (-4 *6 (-1200)) (-5 *2 (-872 *6)) (-5 *1 (-871 *5 *6)))))
+(-10 -7 (-15 -3167 ((-872 |#2|) (-1 |#2| |#1|) (-872 |#1|))))
+((-3064 (($ |#1| |#1| |#1|) 8)) (-3076 ((|#1| $ (-762)) 10)))
+(((-872 |#1|) (-10 -8 (-15 -3064 ($ |#1| |#1| |#1|)) (-15 -3076 (|#1| $ (-762)))) (-1200)) (T -872))
+((-3076 (*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-5 *1 (-872 *2)) (-4 *2 (-1200)))) (-3064 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-872 *2)) (-4 *2 (-1200)))))
+(-10 -8 (-15 -3064 ($ |#1| |#1| |#1|)) (-15 -3076 (|#1| $ (-762))))
+((-3119 (((-1143 (-635 (-558))) (-635 (-558)) (-1143 (-635 (-558)))) 30)) (-3108 (((-1143 (-635 (-558))) (-635 (-558)) (-635 (-558))) 26)) (-3131 (((-1143 (-635 (-558))) (-635 (-558))) 39) (((-1143 (-635 (-558))) (-635 (-558)) (-635 (-558))) 38)) (-3141 (((-1143 (-635 (-558))) (-558)) 40)) (-3088 (((-1143 (-635 (-558))) (-558) (-558)) 22) (((-1143 (-635 (-558))) (-558)) 16) (((-1143 (-635 (-558))) (-558) (-558) (-558)) 12)) (-3098 (((-1143 (-635 (-558))) (-1143 (-635 (-558)))) 24)) (-3808 (((-635 (-558)) (-635 (-558))) 23)))
+(((-873) (-10 -7 (-15 -3088 ((-1143 (-635 (-558))) (-558) (-558) (-558))) (-15 -3088 ((-1143 (-635 (-558))) (-558))) (-15 -3088 ((-1143 (-635 (-558))) (-558) (-558))) (-15 -3808 ((-635 (-558)) (-635 (-558)))) (-15 -3098 ((-1143 (-635 (-558))) (-1143 (-635 (-558))))) (-15 -3108 ((-1143 (-635 (-558))) (-635 (-558)) (-635 (-558)))) (-15 -3119 ((-1143 (-635 (-558))) (-635 (-558)) (-1143 (-635 (-558))))) (-15 -3131 ((-1143 (-635 (-558))) (-635 (-558)) (-635 (-558)))) (-15 -3131 ((-1143 (-635 (-558))) (-635 (-558)))) (-15 -3141 ((-1143 (-635 (-558))) (-558))))) (T -873))
+((-3141 (*1 *2 *3) (-12 (-5 *2 (-1143 (-635 (-558)))) (-5 *1 (-873)) (-5 *3 (-558)))) (-3131 (*1 *2 *3) (-12 (-5 *2 (-1143 (-635 (-558)))) (-5 *1 (-873)) (-5 *3 (-635 (-558))))) (-3131 (*1 *2 *3 *3) (-12 (-5 *2 (-1143 (-635 (-558)))) (-5 *1 (-873)) (-5 *3 (-635 (-558))))) (-3119 (*1 *2 *3 *2) (-12 (-5 *2 (-1143 (-635 (-558)))) (-5 *3 (-635 (-558))) (-5 *1 (-873)))) (-3108 (*1 *2 *3 *3) (-12 (-5 *2 (-1143 (-635 (-558)))) (-5 *1 (-873)) (-5 *3 (-635 (-558))))) (-3098 (*1 *2 *2) (-12 (-5 *2 (-1143 (-635 (-558)))) (-5 *1 (-873)))) (-3808 (*1 *2 *2) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-873)))) (-3088 (*1 *2 *3 *3) (-12 (-5 *2 (-1143 (-635 (-558)))) (-5 *1 (-873)) (-5 *3 (-558)))) (-3088 (*1 *2 *3) (-12 (-5 *2 (-1143 (-635 (-558)))) (-5 *1 (-873)) (-5 *3 (-558)))) (-3088 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1143 (-635 (-558)))) (-5 *1 (-873)) (-5 *3 (-558)))))
+(-10 -7 (-15 -3088 ((-1143 (-635 (-558))) (-558) (-558) (-558))) (-15 -3088 ((-1143 (-635 (-558))) (-558))) (-15 -3088 ((-1143 (-635 (-558))) (-558) (-558))) (-15 -3808 ((-635 (-558)) (-635 (-558)))) (-15 -3098 ((-1143 (-635 (-558))) (-1143 (-635 (-558))))) (-15 -3108 ((-1143 (-635 (-558))) (-635 (-558)) (-635 (-558)))) (-15 -3119 ((-1143 (-635 (-558))) (-635 (-558)) (-1143 (-635 (-558))))) (-15 -3131 ((-1143 (-635 (-558))) (-635 (-558)) (-635 (-558)))) (-15 -3131 ((-1143 (-635 (-558))) (-635 (-558)))) (-15 -3141 ((-1143 (-635 (-558))) (-558))))
+((-3224 (((-882 (-378)) $) 9 (|has| |#1| (-606 (-882 (-378))))) (((-882 (-558)) $) 8 (|has| |#1| (-606 (-882 (-558)))))))
+(((-874 |#1|) (-139) (-1200)) (T -874))
+NIL
+(-13 (-10 -7 (IF (|has| |t#1| (-606 (-882 (-558)))) (-6 (-606 (-882 (-558)))) |%noBranch|) (IF (|has| |t#1| (-606 (-882 (-378)))) (-6 (-606 (-882 (-378)))) |%noBranch|)))
+(((-606 (-882 (-378))) |has| |#1| (-606 (-882 (-378)))) ((-606 (-882 (-558))) |has| |#1| (-606 (-882 (-558)))))
+((-3207 (((-112) $ $) NIL)) (-3315 (($) 14)) (-3162 (($ (-879 |#1| |#2|) (-879 |#1| |#3|)) 27)) (-3894 (((-879 |#1| |#3|) $) 16)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3243 (((-112) $) 22)) (-4142 (($) 19)) (-3220 (((-853) $) 30)) (-3151 (((-879 |#1| |#2|) $) 15)) (-1683 (((-112) $ $) 25)))
+(((-875 |#1| |#2| |#3|) (-13 (-1087) (-10 -8 (-15 -3243 ((-112) $)) (-15 -4142 ($)) (-15 -3315 ($)) (-15 -3162 ($ (-879 |#1| |#2|) (-879 |#1| |#3|))) (-15 -3151 ((-879 |#1| |#2|) $)) (-15 -3894 ((-879 |#1| |#3|) $)))) (-1087) (-1087) (-656 |#2|)) (T -875))
+((-3243 (*1 *2 *1) (-12 (-4 *4 (-1087)) (-5 *2 (-112)) (-5 *1 (-875 *3 *4 *5)) (-4 *3 (-1087)) (-4 *5 (-656 *4)))) (-4142 (*1 *1) (-12 (-4 *3 (-1087)) (-5 *1 (-875 *2 *3 *4)) (-4 *2 (-1087)) (-4 *4 (-656 *3)))) (-3315 (*1 *1) (-12 (-4 *3 (-1087)) (-5 *1 (-875 *2 *3 *4)) (-4 *2 (-1087)) (-4 *4 (-656 *3)))) (-3162 (*1 *1 *2 *3) (-12 (-5 *2 (-879 *4 *5)) (-5 *3 (-879 *4 *6)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-656 *5)) (-5 *1 (-875 *4 *5 *6)))) (-3151 (*1 *2 *1) (-12 (-4 *4 (-1087)) (-5 *2 (-879 *3 *4)) (-5 *1 (-875 *3 *4 *5)) (-4 *3 (-1087)) (-4 *5 (-656 *4)))) (-3894 (*1 *2 *1) (-12 (-4 *4 (-1087)) (-5 *2 (-879 *3 *5)) (-5 *1 (-875 *3 *4 *5)) (-4 *3 (-1087)) (-4 *5 (-656 *4)))))
+(-13 (-1087) (-10 -8 (-15 -3243 ((-112) $)) (-15 -4142 ($)) (-15 -3315 ($)) (-15 -3162 ($ (-879 |#1| |#2|) (-879 |#1| |#3|))) (-15 -3151 ((-879 |#1| |#2|) $)) (-15 -3894 ((-879 |#1| |#3|) $))))
+((-3207 (((-112) $ $) 7)) (-2269 (((-879 |#1| $) $ (-882 |#1|) (-879 |#1| $)) 13)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11)) (-1683 (((-112) $ $) 6)))
+(((-876 |#1|) (-139) (-1087)) (T -876))
+((-2269 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-879 *4 *1)) (-5 *3 (-882 *4)) (-4 *1 (-876 *4)) (-4 *4 (-1087)))))
+(-13 (-1087) (-10 -8 (-15 -2269 ((-879 |t#1| $) $ (-882 |t#1|) (-879 |t#1| $)))))
+(((-102) . T) ((-605 (-853)) . T) ((-1087) . T))
+((-3173 (((-112) (-635 |#2|) |#3|) 22) (((-112) |#2| |#3|) 17)) (-3184 (((-879 |#1| |#2|) |#2| |#3|) 42 (-12 (-3304 (|has| |#2| (-1028 (-1163)))) (-3304 (|has| |#2| (-1039))))) (((-635 (-293 (-942 |#2|))) |#2| |#3|) 41 (-12 (|has| |#2| (-1039)) (-3304 (|has| |#2| (-1028 (-1163)))))) (((-635 (-293 |#2|)) |#2| |#3|) 34 (|has| |#2| (-1028 (-1163)))) (((-875 |#1| |#2| (-635 |#2|)) (-635 |#2|) |#3|) 20)))
+(((-877 |#1| |#2| |#3|) (-10 -7 (-15 -3173 ((-112) |#2| |#3|)) (-15 -3173 ((-112) (-635 |#2|) |#3|)) (-15 -3184 ((-875 |#1| |#2| (-635 |#2|)) (-635 |#2|) |#3|)) (IF (|has| |#2| (-1028 (-1163))) (-15 -3184 ((-635 (-293 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1039)) (-15 -3184 ((-635 (-293 (-942 |#2|))) |#2| |#3|)) (-15 -3184 ((-879 |#1| |#2|) |#2| |#3|))))) (-1087) (-876 |#1|) (-606 (-882 |#1|))) (T -877))
+((-3184 (*1 *2 *3 *4) (-12 (-4 *5 (-1087)) (-5 *2 (-879 *5 *3)) (-5 *1 (-877 *5 *3 *4)) (-3304 (-4 *3 (-1028 (-1163)))) (-3304 (-4 *3 (-1039))) (-4 *3 (-876 *5)) (-4 *4 (-606 (-882 *5))))) (-3184 (*1 *2 *3 *4) (-12 (-4 *5 (-1087)) (-5 *2 (-635 (-293 (-942 *3)))) (-5 *1 (-877 *5 *3 *4)) (-4 *3 (-1039)) (-3304 (-4 *3 (-1028 (-1163)))) (-4 *3 (-876 *5)) (-4 *4 (-606 (-882 *5))))) (-3184 (*1 *2 *3 *4) (-12 (-4 *5 (-1087)) (-5 *2 (-635 (-293 *3))) (-5 *1 (-877 *5 *3 *4)) (-4 *3 (-1028 (-1163))) (-4 *3 (-876 *5)) (-4 *4 (-606 (-882 *5))))) (-3184 (*1 *2 *3 *4) (-12 (-4 *5 (-1087)) (-4 *6 (-876 *5)) (-5 *2 (-875 *5 *6 (-635 *6))) (-5 *1 (-877 *5 *6 *4)) (-5 *3 (-635 *6)) (-4 *4 (-606 (-882 *5))))) (-3173 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *6)) (-4 *6 (-876 *5)) (-4 *5 (-1087)) (-5 *2 (-112)) (-5 *1 (-877 *5 *6 *4)) (-4 *4 (-606 (-882 *5))))) (-3173 (*1 *2 *3 *4) (-12 (-4 *5 (-1087)) (-5 *2 (-112)) (-5 *1 (-877 *5 *3 *4)) (-4 *3 (-876 *5)) (-4 *4 (-606 (-882 *5))))))
+(-10 -7 (-15 -3173 ((-112) |#2| |#3|)) (-15 -3173 ((-112) (-635 |#2|) |#3|)) (-15 -3184 ((-875 |#1| |#2| (-635 |#2|)) (-635 |#2|) |#3|)) (IF (|has| |#2| (-1028 (-1163))) (-15 -3184 ((-635 (-293 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1039)) (-15 -3184 ((-635 (-293 (-942 |#2|))) |#2| |#3|)) (-15 -3184 ((-879 |#1| |#2|) |#2| |#3|)))))
+((-3167 (((-879 |#1| |#3|) (-1 |#3| |#2|) (-879 |#1| |#2|)) 22)))
+(((-878 |#1| |#2| |#3|) (-10 -7 (-15 -3167 ((-879 |#1| |#3|) (-1 |#3| |#2|) (-879 |#1| |#2|)))) (-1087) (-1087) (-1087)) (T -878))
+((-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-879 *5 *6)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-879 *5 *7)) (-5 *1 (-878 *5 *6 *7)))))
+(-10 -7 (-15 -3167 ((-879 |#1| |#3|) (-1 |#3| |#2|) (-879 |#1| |#2|))))
+((-3207 (((-112) $ $) NIL)) (-3539 (($ $ $) 39)) (-3439 (((-3 (-112) "failed") $ (-882 |#1|)) 36)) (-3315 (($) 12)) (-4310 (((-1145) $) NIL)) (-3205 (($ (-882 |#1|) |#2| $) 20)) (-2975 (((-1107) $) NIL)) (-3231 (((-3 |#2| "failed") (-882 |#1|) $) 50)) (-3243 (((-112) $) 15)) (-4142 (($) 13)) (-2607 (((-635 (-2 (|:| -2700 (-1163)) (|:| -2981 |#2|))) $) 25)) (-3233 (($ (-635 (-2 (|:| -2700 (-1163)) (|:| -2981 |#2|)))) 23)) (-3220 (((-853) $) 44)) (-3194 (($ (-882 |#1|) |#2| $ |#2|) 48)) (-3218 (($ (-882 |#1|) |#2| $) 47)) (-1683 (((-112) $ $) 41)))
+(((-879 |#1| |#2|) (-13 (-1087) (-10 -8 (-15 -3243 ((-112) $)) (-15 -4142 ($)) (-15 -3315 ($)) (-15 -3539 ($ $ $)) (-15 -3231 ((-3 |#2| "failed") (-882 |#1|) $)) (-15 -3218 ($ (-882 |#1|) |#2| $)) (-15 -3205 ($ (-882 |#1|) |#2| $)) (-15 -3194 ($ (-882 |#1|) |#2| $ |#2|)) (-15 -2607 ((-635 (-2 (|:| -2700 (-1163)) (|:| -2981 |#2|))) $)) (-15 -3233 ($ (-635 (-2 (|:| -2700 (-1163)) (|:| -2981 |#2|))))) (-15 -3439 ((-3 (-112) "failed") $ (-882 |#1|))))) (-1087) (-1087)) (T -879))
+((-3243 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-879 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1087)))) (-4142 (*1 *1) (-12 (-5 *1 (-879 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-1087)))) (-3315 (*1 *1) (-12 (-5 *1 (-879 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-1087)))) (-3539 (*1 *1 *1 *1) (-12 (-5 *1 (-879 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-1087)))) (-3231 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-882 *4)) (-4 *4 (-1087)) (-4 *2 (-1087)) (-5 *1 (-879 *4 *2)))) (-3218 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-882 *4)) (-4 *4 (-1087)) (-5 *1 (-879 *4 *3)) (-4 *3 (-1087)))) (-3205 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-882 *4)) (-4 *4 (-1087)) (-5 *1 (-879 *4 *3)) (-4 *3 (-1087)))) (-3194 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-882 *4)) (-4 *4 (-1087)) (-5 *1 (-879 *4 *3)) (-4 *3 (-1087)))) (-2607 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| -2700 (-1163)) (|:| -2981 *4)))) (-5 *1 (-879 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1087)))) (-3233 (*1 *1 *2) (-12 (-5 *2 (-635 (-2 (|:| -2700 (-1163)) (|:| -2981 *4)))) (-4 *4 (-1087)) (-5 *1 (-879 *3 *4)) (-4 *3 (-1087)))) (-3439 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-882 *4)) (-4 *4 (-1087)) (-5 *2 (-112)) (-5 *1 (-879 *4 *5)) (-4 *5 (-1087)))))
+(-13 (-1087) (-10 -8 (-15 -3243 ((-112) $)) (-15 -4142 ($)) (-15 -3315 ($)) (-15 -3539 ($ $ $)) (-15 -3231 ((-3 |#2| "failed") (-882 |#1|) $)) (-15 -3218 ($ (-882 |#1|) |#2| $)) (-15 -3205 ($ (-882 |#1|) |#2| $)) (-15 -3194 ($ (-882 |#1|) |#2| $ |#2|)) (-15 -2607 ((-635 (-2 (|:| -2700 (-1163)) (|:| -2981 |#2|))) $)) (-15 -3233 ($ (-635 (-2 (|:| -2700 (-1163)) (|:| -2981 |#2|))))) (-15 -3439 ((-3 (-112) "failed") $ (-882 |#1|)))))
+((-4285 (((-882 |#1|) (-882 |#1|) (-635 (-1163)) (-1 (-112) (-635 |#2|))) 32) (((-882 |#1|) (-882 |#1|) (-635 (-1 (-112) |#2|))) 43) (((-882 |#1|) (-882 |#1|) (-1 (-112) |#2|)) 35)) (-3439 (((-112) (-635 |#2|) (-882 |#1|)) 40) (((-112) |#2| (-882 |#1|)) 36)) (-2896 (((-1 (-112) |#2|) (-882 |#1|)) 16)) (-3455 (((-635 |#2|) (-882 |#1|)) 24)) (-3448 (((-882 |#1|) (-882 |#1|) |#2|) 20)))
+(((-880 |#1| |#2|) (-10 -7 (-15 -4285 ((-882 |#1|) (-882 |#1|) (-1 (-112) |#2|))) (-15 -4285 ((-882 |#1|) (-882 |#1|) (-635 (-1 (-112) |#2|)))) (-15 -4285 ((-882 |#1|) (-882 |#1|) (-635 (-1163)) (-1 (-112) (-635 |#2|)))) (-15 -2896 ((-1 (-112) |#2|) (-882 |#1|))) (-15 -3439 ((-112) |#2| (-882 |#1|))) (-15 -3439 ((-112) (-635 |#2|) (-882 |#1|))) (-15 -3448 ((-882 |#1|) (-882 |#1|) |#2|)) (-15 -3455 ((-635 |#2|) (-882 |#1|)))) (-1087) (-1200)) (T -880))
+((-3455 (*1 *2 *3) (-12 (-5 *3 (-882 *4)) (-4 *4 (-1087)) (-5 *2 (-635 *5)) (-5 *1 (-880 *4 *5)) (-4 *5 (-1200)))) (-3448 (*1 *2 *2 *3) (-12 (-5 *2 (-882 *4)) (-4 *4 (-1087)) (-5 *1 (-880 *4 *3)) (-4 *3 (-1200)))) (-3439 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *6)) (-5 *4 (-882 *5)) (-4 *5 (-1087)) (-4 *6 (-1200)) (-5 *2 (-112)) (-5 *1 (-880 *5 *6)))) (-3439 (*1 *2 *3 *4) (-12 (-5 *4 (-882 *5)) (-4 *5 (-1087)) (-5 *2 (-112)) (-5 *1 (-880 *5 *3)) (-4 *3 (-1200)))) (-2896 (*1 *2 *3) (-12 (-5 *3 (-882 *4)) (-4 *4 (-1087)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-880 *4 *5)) (-4 *5 (-1200)))) (-4285 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-882 *5)) (-5 *3 (-635 (-1163))) (-5 *4 (-1 (-112) (-635 *6))) (-4 *5 (-1087)) (-4 *6 (-1200)) (-5 *1 (-880 *5 *6)))) (-4285 (*1 *2 *2 *3) (-12 (-5 *2 (-882 *4)) (-5 *3 (-635 (-1 (-112) *5))) (-4 *4 (-1087)) (-4 *5 (-1200)) (-5 *1 (-880 *4 *5)))) (-4285 (*1 *2 *2 *3) (-12 (-5 *2 (-882 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1087)) (-4 *5 (-1200)) (-5 *1 (-880 *4 *5)))))
+(-10 -7 (-15 -4285 ((-882 |#1|) (-882 |#1|) (-1 (-112) |#2|))) (-15 -4285 ((-882 |#1|) (-882 |#1|) (-635 (-1 (-112) |#2|)))) (-15 -4285 ((-882 |#1|) (-882 |#1|) (-635 (-1163)) (-1 (-112) (-635 |#2|)))) (-15 -2896 ((-1 (-112) |#2|) (-882 |#1|))) (-15 -3439 ((-112) |#2| (-882 |#1|))) (-15 -3439 ((-112) (-635 |#2|) (-882 |#1|))) (-15 -3448 ((-882 |#1|) (-882 |#1|) |#2|)) (-15 -3455 ((-635 |#2|) (-882 |#1|))))
+((-3167 (((-882 |#2|) (-1 |#2| |#1|) (-882 |#1|)) 19)))
+(((-881 |#1| |#2|) (-10 -7 (-15 -3167 ((-882 |#2|) (-1 |#2| |#1|) (-882 |#1|)))) (-1087) (-1087)) (T -881))
+((-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-882 *5)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-5 *2 (-882 *6)) (-5 *1 (-881 *5 *6)))))
+(-10 -7 (-15 -3167 ((-882 |#2|) (-1 |#2| |#1|) (-882 |#1|))))
+((-3207 (((-112) $ $) NIL)) (-3330 (($ $ (-635 (-52))) 63)) (-2671 (((-635 $) $) 117)) (-3296 (((-2 (|:| |var| (-635 (-1163))) (|:| |pred| (-52))) $) 23)) (-1331 (((-112) $) 29)) (-3308 (($ $ (-635 (-1163)) (-52)) 24)) (-3341 (($ $ (-635 (-52))) 62)) (-3069 (((-3 |#1| "failed") $) 60) (((-3 (-1163) "failed") $) 139)) (-1863 ((|#1| $) 57) (((-1163) $) NIL)) (-3273 (($ $) 107)) (-3400 (((-112) $) 46)) (-3351 (((-635 (-52)) $) 44)) (-3319 (($ (-1163) (-112) (-112) (-112)) 64)) (-3253 (((-3 (-635 $) "failed") (-635 $)) 71)) (-3370 (((-112) $) 49)) (-3380 (((-112) $) 48)) (-4310 (((-1145) $) NIL)) (-2560 (((-3 (-635 $) "failed") $) 35)) (-3333 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 42)) (-2586 (((-3 (-2 (|:| |val| $) (|:| -1951 $)) "failed") $) 82)) (-2548 (((-3 (-635 $) "failed") $) 32)) (-3429 (((-3 (-635 $) "failed") $ (-114)) 106) (((-3 (-2 (|:| -3483 (-114)) (|:| |arg| (-635 $))) "failed") $) 94)) (-3421 (((-3 (-635 $) "failed") $) 36)) (-2575 (((-3 (-2 (|:| |val| $) (|:| -1951 (-762))) "failed") $) 39)) (-3411 (((-112) $) 28)) (-2975 (((-1107) $) NIL)) (-3285 (((-112) $) 20)) (-3361 (((-112) $) 45)) (-3263 (((-635 (-52)) $) 110)) (-3390 (((-112) $) 47)) (-2195 (($ (-114) (-635 $)) 91)) (-2494 (((-762) $) 27)) (-1553 (($ $) 61)) (-3224 (($ (-635 $)) 58)) (-4357 (((-112) $) 25)) (-3220 (((-853) $) 52) (($ |#1|) 18) (($ (-1163)) 65)) (-3448 (($ $ (-52)) 109)) (-2131 (($) 90 T CONST)) (-2142 (($) 72 T CONST)) (-1683 (((-112) $ $) 78)) (-1810 (($ $ $) 99)) (-1784 (($ $ $) 103)) (** (($ $ (-762)) 98) (($ $ $) 53)) (* (($ $ $) 104)))
+(((-882 |#1|) (-13 (-1087) (-1028 |#1|) (-1028 (-1163)) (-10 -8 (-15 0 ($) -3707) (-15 1 ($) -3707) (-15 -2548 ((-3 (-635 $) "failed") $)) (-15 -2560 ((-3 (-635 $) "failed") $)) (-15 -3429 ((-3 (-635 $) "failed") $ (-114))) (-15 -3429 ((-3 (-2 (|:| -3483 (-114)) (|:| |arg| (-635 $))) "failed") $)) (-15 -2575 ((-3 (-2 (|:| |val| $) (|:| -1951 (-762))) "failed") $)) (-15 -3333 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3421 ((-3 (-635 $) "failed") $)) (-15 -2586 ((-3 (-2 (|:| |val| $) (|:| -1951 $)) "failed") $)) (-15 -2195 ($ (-114) (-635 $))) (-15 -1784 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-762))) (-15 ** ($ $ $)) (-15 -1810 ($ $ $)) (-15 -2494 ((-762) $)) (-15 -3224 ($ (-635 $))) (-15 -1553 ($ $)) (-15 -3411 ((-112) $)) (-15 -3400 ((-112) $)) (-15 -1331 ((-112) $)) (-15 -4357 ((-112) $)) (-15 -3390 ((-112) $)) (-15 -3380 ((-112) $)) (-15 -3370 ((-112) $)) (-15 -3361 ((-112) $)) (-15 -3351 ((-635 (-52)) $)) (-15 -3341 ($ $ (-635 (-52)))) (-15 -3330 ($ $ (-635 (-52)))) (-15 -3319 ($ (-1163) (-112) (-112) (-112))) (-15 -3308 ($ $ (-635 (-1163)) (-52))) (-15 -3296 ((-2 (|:| |var| (-635 (-1163))) (|:| |pred| (-52))) $)) (-15 -3285 ((-112) $)) (-15 -3273 ($ $)) (-15 -3448 ($ $ (-52))) (-15 -3263 ((-635 (-52)) $)) (-15 -2671 ((-635 $) $)) (-15 -3253 ((-3 (-635 $) "failed") (-635 $))))) (-1087)) (T -882))
+((-2131 (*1 *1) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1087)))) (-2142 (*1 *1) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1087)))) (-2548 (*1 *2 *1) (|partial| -12 (-5 *2 (-635 (-882 *3))) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-2560 (*1 *2 *1) (|partial| -12 (-5 *2 (-635 (-882 *3))) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-3429 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-635 (-882 *4))) (-5 *1 (-882 *4)) (-4 *4 (-1087)))) (-3429 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -3483 (-114)) (|:| |arg| (-635 (-882 *3))))) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-2575 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-882 *3)) (|:| -1951 (-762)))) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-3333 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-882 *3)) (|:| |den| (-882 *3)))) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-3421 (*1 *2 *1) (|partial| -12 (-5 *2 (-635 (-882 *3))) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-2586 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-882 *3)) (|:| -1951 (-882 *3)))) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-2195 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-635 (-882 *4))) (-5 *1 (-882 *4)) (-4 *4 (-1087)))) (-1784 (*1 *1 *1 *1) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1087)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1087)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1087)))) (-1810 (*1 *1 *1 *1) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1087)))) (-2494 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-3224 (*1 *1 *2) (-12 (-5 *2 (-635 (-882 *3))) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-1553 (*1 *1 *1) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1087)))) (-3411 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-3400 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-4357 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-3390 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-3380 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-3370 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-3361 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-3351 (*1 *2 *1) (-12 (-5 *2 (-635 (-52))) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-3341 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-52))) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-3330 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-52))) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-3319 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-112)) (-5 *1 (-882 *4)) (-4 *4 (-1087)))) (-3308 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-1163))) (-5 *3 (-52)) (-5 *1 (-882 *4)) (-4 *4 (-1087)))) (-3296 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-635 (-1163))) (|:| |pred| (-52)))) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-3285 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-3273 (*1 *1 *1) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1087)))) (-3448 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-3263 (*1 *2 *1) (-12 (-5 *2 (-635 (-52))) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-2671 (*1 *2 *1) (-12 (-5 *2 (-635 (-882 *3))) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-3253 (*1 *2 *2) (|partial| -12 (-5 *2 (-635 (-882 *3))) (-5 *1 (-882 *3)) (-4 *3 (-1087)))))
+(-13 (-1087) (-1028 |#1|) (-1028 (-1163)) (-10 -8 (-15 (-2131) ($) -3707) (-15 (-2142) ($) -3707) (-15 -2548 ((-3 (-635 $) "failed") $)) (-15 -2560 ((-3 (-635 $) "failed") $)) (-15 -3429 ((-3 (-635 $) "failed") $ (-114))) (-15 -3429 ((-3 (-2 (|:| -3483 (-114)) (|:| |arg| (-635 $))) "failed") $)) (-15 -2575 ((-3 (-2 (|:| |val| $) (|:| -1951 (-762))) "failed") $)) (-15 -3333 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3421 ((-3 (-635 $) "failed") $)) (-15 -2586 ((-3 (-2 (|:| |val| $) (|:| -1951 $)) "failed") $)) (-15 -2195 ($ (-114) (-635 $))) (-15 -1784 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-762))) (-15 ** ($ $ $)) (-15 -1810 ($ $ $)) (-15 -2494 ((-762) $)) (-15 -3224 ($ (-635 $))) (-15 -1553 ($ $)) (-15 -3411 ((-112) $)) (-15 -3400 ((-112) $)) (-15 -1331 ((-112) $)) (-15 -4357 ((-112) $)) (-15 -3390 ((-112) $)) (-15 -3380 ((-112) $)) (-15 -3370 ((-112) $)) (-15 -3361 ((-112) $)) (-15 -3351 ((-635 (-52)) $)) (-15 -3341 ($ $ (-635 (-52)))) (-15 -3330 ($ $ (-635 (-52)))) (-15 -3319 ($ (-1163) (-112) (-112) (-112))) (-15 -3308 ($ $ (-635 (-1163)) (-52))) (-15 -3296 ((-2 (|:| |var| (-635 (-1163))) (|:| |pred| (-52))) $)) (-15 -3285 ((-112) $)) (-15 -3273 ($ $)) (-15 -3448 ($ $ (-52))) (-15 -3263 ((-635 (-52)) $)) (-15 -2671 ((-635 $) $)) (-15 -3253 ((-3 (-635 $) "failed") (-635 $)))))
+((-3207 (((-112) $ $) NIL)) (-3712 (((-635 |#1|) $) 16)) (-3464 (((-112) $) 38)) (-3069 (((-3 (-662 |#1|) "failed") $) 43)) (-1863 (((-662 |#1|) $) 41)) (-2315 (($ $) 18)) (-3910 (($ $ $) NIL)) (-3542 (($ $ $) NIL)) (-2880 (((-762) $) 46)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-2305 (((-662 |#1|) $) 17)) (-3220 (((-853) $) 37) (($ (-662 |#1|)) 21) (((-810 |#1|) $) 27) (($ |#1|) 20)) (-2142 (($) 8 T CONST)) (-3475 (((-635 (-662 |#1|)) $) 23)) (-1747 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1683 (((-112) $ $) 11)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 49)))
+(((-883 |#1|) (-13 (-841) (-1028 (-662 |#1|)) (-10 -8 (-15 1 ($) -3707) (-15 -3220 ((-810 |#1|) $)) (-15 -3220 ($ |#1|)) (-15 -2305 ((-662 |#1|) $)) (-15 -2880 ((-762) $)) (-15 -3475 ((-635 (-662 |#1|)) $)) (-15 -2315 ($ $)) (-15 -3464 ((-112) $)) (-15 -3712 ((-635 |#1|) $)))) (-841)) (T -883))
+((-2142 (*1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-841)))) (-3220 (*1 *2 *1) (-12 (-5 *2 (-810 *3)) (-5 *1 (-883 *3)) (-4 *3 (-841)))) (-3220 (*1 *1 *2) (-12 (-5 *1 (-883 *2)) (-4 *2 (-841)))) (-2305 (*1 *2 *1) (-12 (-5 *2 (-662 *3)) (-5 *1 (-883 *3)) (-4 *3 (-841)))) (-2880 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-883 *3)) (-4 *3 (-841)))) (-3475 (*1 *2 *1) (-12 (-5 *2 (-635 (-662 *3))) (-5 *1 (-883 *3)) (-4 *3 (-841)))) (-2315 (*1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-841)))) (-3464 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-883 *3)) (-4 *3 (-841)))) (-3712 (*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-883 *3)) (-4 *3 (-841)))))
+(-13 (-841) (-1028 (-662 |#1|)) (-10 -8 (-15 (-2142) ($) -3707) (-15 -3220 ((-810 |#1|) $)) (-15 -3220 ($ |#1|)) (-15 -2305 ((-662 |#1|) $)) (-15 -2880 ((-762) $)) (-15 -3475 ((-635 (-662 |#1|)) $)) (-15 -2315 ($ $)) (-15 -3464 ((-112) $)) (-15 -3712 ((-635 |#1|) $))))
+((-2663 ((|#1| |#1| |#1|) 19)))
+(((-884 |#1| |#2|) (-10 -7 (-15 -2663 (|#1| |#1| |#1|))) (-1222 |#2|) (-1039)) (T -884))
+((-2663 (*1 *2 *2 *2) (-12 (-4 *3 (-1039)) (-5 *1 (-884 *2 *3)) (-4 *2 (-1222 *3)))))
+(-10 -7 (-15 -2663 (|#1| |#1| |#1|)))
+((-3207 (((-112) $ $) 7)) (-3510 (((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |pde| (-635 (-315 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-762)) (|:| |boundaryType| (-558)) (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224)))))) (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145)) (|:| |tol| (-224)))) 14)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11)) (-3485 (((-1025) (-2 (|:| |pde| (-635 (-315 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-762)) (|:| |boundaryType| (-558)) (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224)))))) (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145)) (|:| |tol| (-224)))) 13)) (-1683 (((-112) $ $) 6)))
+(((-885) (-139)) (T -885))
+((-3510 (*1 *2 *3 *4) (-12 (-4 *1 (-885)) (-5 *3 (-1051)) (-5 *4 (-2 (|:| |pde| (-635 (-315 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-762)) (|:| |boundaryType| (-558)) (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224)))))) (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145)) (|:| |tol| (-224)))) (-5 *2 (-2 (|:| -3510 (-378)) (|:| |explanations| (-1145)))))) (-3485 (*1 *2 *3) (-12 (-4 *1 (-885)) (-5 *3 (-2 (|:| |pde| (-635 (-315 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-762)) (|:| |boundaryType| (-558)) (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224)))))) (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145)) (|:| |tol| (-224)))) (-5 *2 (-1025)))))
+(-13 (-1087) (-10 -7 (-15 -3510 ((-2 (|:| -3510 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |pde| (-635 (-315 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-762)) (|:| |boundaryType| (-558)) (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224)))))) (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145)) (|:| |tol| (-224))))) (-15 -3485 ((-1025) (-2 (|:| |pde| (-635 (-315 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-762)) (|:| |boundaryType| (-558)) (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224)))))) (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145)) (|:| |tol| (-224)))))))
+(((-102) . T) ((-605 (-853)) . T) ((-1087) . T))
+((-3501 ((|#1| |#1| (-762)) 24)) (-3492 (((-3 |#1| "failed") |#1| |#1|) 22)) (-2375 (((-3 (-2 (|:| -3417 |#1|) (|:| -3425 |#1|)) "failed") |#1| (-762) (-762)) 27) (((-635 |#1|) |#1|) 29)))
+(((-886 |#1| |#2|) (-10 -7 (-15 -2375 ((-635 |#1|) |#1|)) (-15 -2375 ((-3 (-2 (|:| -3417 |#1|) (|:| -3425 |#1|)) "failed") |#1| (-762) (-762))) (-15 -3492 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3501 (|#1| |#1| (-762)))) (-1222 |#2|) (-362)) (T -886))
+((-3501 (*1 *2 *2 *3) (-12 (-5 *3 (-762)) (-4 *4 (-362)) (-5 *1 (-886 *2 *4)) (-4 *2 (-1222 *4)))) (-3492 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-362)) (-5 *1 (-886 *2 *3)) (-4 *2 (-1222 *3)))) (-2375 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-762)) (-4 *5 (-362)) (-5 *2 (-2 (|:| -3417 *3) (|:| -3425 *3))) (-5 *1 (-886 *3 *5)) (-4 *3 (-1222 *5)))) (-2375 (*1 *2 *3) (-12 (-4 *4 (-362)) (-5 *2 (-635 *3)) (-5 *1 (-886 *3 *4)) (-4 *3 (-1222 *4)))))
+(-10 -7 (-15 -2375 ((-635 |#1|) |#1|)) (-15 -2375 ((-3 (-2 (|:| -3417 |#1|) (|:| -3425 |#1|)) "failed") |#1| (-762) (-762))) (-15 -3492 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3501 (|#1| |#1| (-762))))
+((-2153 (((-1025) (-378) (-378) (-378) (-378) (-762) (-762) (-635 (-315 (-378))) (-635 (-635 (-315 (-378)))) (-1145)) 96) (((-1025) (-378) (-378) (-378) (-378) (-762) (-762) (-635 (-315 (-378))) (-635 (-635 (-315 (-378)))) (-1145) (-224)) 91) (((-1025) (-888) (-1051)) 83) (((-1025) (-888)) 84)) (-3510 (((-2 (|:| -3510 (-378)) (|:| -1323 (-1145)) (|:| |explanations| (-635 (-1145)))) (-888) (-1051)) 59) (((-2 (|:| -3510 (-378)) (|:| -1323 (-1145)) (|:| |explanations| (-635 (-1145)))) (-888)) 61)))
+(((-887) (-10 -7 (-15 -2153 ((-1025) (-888))) (-15 -2153 ((-1025) (-888) (-1051))) (-15 -2153 ((-1025) (-378) (-378) (-378) (-378) (-762) (-762) (-635 (-315 (-378))) (-635 (-635 (-315 (-378)))) (-1145) (-224))) (-15 -2153 ((-1025) (-378) (-378) (-378) (-378) (-762) (-762) (-635 (-315 (-378))) (-635 (-635 (-315 (-378)))) (-1145))) (-15 -3510 ((-2 (|:| -3510 (-378)) (|:| -1323 (-1145)) (|:| |explanations| (-635 (-1145)))) (-888))) (-15 -3510 ((-2 (|:| -3510 (-378)) (|:| -1323 (-1145)) (|:| |explanations| (-635 (-1145)))) (-888) (-1051))))) (T -887))
+((-3510 (*1 *2 *3 *4) (-12 (-5 *3 (-888)) (-5 *4 (-1051)) (-5 *2 (-2 (|:| -3510 (-378)) (|:| -1323 (-1145)) (|:| |explanations| (-635 (-1145))))) (-5 *1 (-887)))) (-3510 (*1 *2 *3) (-12 (-5 *3 (-888)) (-5 *2 (-2 (|:| -3510 (-378)) (|:| -1323 (-1145)) (|:| |explanations| (-635 (-1145))))) (-5 *1 (-887)))) (-2153 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-762)) (-5 *6 (-635 (-635 (-315 *3)))) (-5 *7 (-1145)) (-5 *5 (-635 (-315 (-378)))) (-5 *3 (-378)) (-5 *2 (-1025)) (-5 *1 (-887)))) (-2153 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-762)) (-5 *6 (-635 (-635 (-315 *3)))) (-5 *7 (-1145)) (-5 *8 (-224)) (-5 *5 (-635 (-315 (-378)))) (-5 *3 (-378)) (-5 *2 (-1025)) (-5 *1 (-887)))) (-2153 (*1 *2 *3 *4) (-12 (-5 *3 (-888)) (-5 *4 (-1051)) (-5 *2 (-1025)) (-5 *1 (-887)))) (-2153 (*1 *2 *3) (-12 (-5 *3 (-888)) (-5 *2 (-1025)) (-5 *1 (-887)))))
+(-10 -7 (-15 -2153 ((-1025) (-888))) (-15 -2153 ((-1025) (-888) (-1051))) (-15 -2153 ((-1025) (-378) (-378) (-378) (-378) (-762) (-762) (-635 (-315 (-378))) (-635 (-635 (-315 (-378)))) (-1145) (-224))) (-15 -2153 ((-1025) (-378) (-378) (-378) (-378) (-762) (-762) (-635 (-315 (-378))) (-635 (-635 (-315 (-378)))) (-1145))) (-15 -3510 ((-2 (|:| -3510 (-378)) (|:| -1323 (-1145)) (|:| |explanations| (-635 (-1145)))) (-888))) (-15 -3510 ((-2 (|:| -3510 (-378)) (|:| -1323 (-1145)) (|:| |explanations| (-635 (-1145)))) (-888) (-1051))))
+((-3207 (((-112) $ $) NIL)) (-1863 (((-2 (|:| |pde| (-635 (-315 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-762)) (|:| |boundaryType| (-558)) (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224)))))) (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145)) (|:| |tol| (-224))) $) 19)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 21) (($ (-2 (|:| |pde| (-635 (-315 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-762)) (|:| |boundaryType| (-558)) (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224)))))) (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145)) (|:| |tol| (-224)))) 18)) (-1683 (((-112) $ $) NIL)))
+(((-888) (-13 (-1087) (-10 -8 (-15 -3220 ($ (-2 (|:| |pde| (-635 (-315 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-762)) (|:| |boundaryType| (-558)) (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224)))))) (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145)) (|:| |tol| (-224))))) (-15 -1863 ((-2 (|:| |pde| (-635 (-315 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-762)) (|:| |boundaryType| (-558)) (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224)))))) (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145)) (|:| |tol| (-224))) $))))) (T -888))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-635 (-315 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-762)) (|:| |boundaryType| (-558)) (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224)))))) (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145)) (|:| |tol| (-224)))) (-5 *1 (-888)))) (-1863 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-635 (-315 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-762)) (|:| |boundaryType| (-558)) (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224)))))) (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145)) (|:| |tol| (-224)))) (-5 *1 (-888)))))
+(-13 (-1087) (-10 -8 (-15 -3220 ($ (-2 (|:| |pde| (-635 (-315 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-762)) (|:| |boundaryType| (-558)) (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224)))))) (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145)) (|:| |tol| (-224))))) (-15 -1863 ((-2 (|:| |pde| (-635 (-315 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-762)) (|:| |boundaryType| (-558)) (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224)))))) (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145)) (|:| |tol| (-224))) $))))
+((-2829 (($ $ |#2|) NIL) (($ $ (-635 |#2|)) 10) (($ $ |#2| (-762)) 12) (($ $ (-635 |#2|) (-635 (-762))) 15)) (-1866 (($ $ |#2|) 16) (($ $ (-635 |#2|)) 18) (($ $ |#2| (-762)) 19) (($ $ (-635 |#2|) (-635 (-762))) 21)))
+(((-889 |#1| |#2|) (-10 -8 (-15 -1866 (|#1| |#1| (-635 |#2|) (-635 (-762)))) (-15 -1866 (|#1| |#1| |#2| (-762))) (-15 -1866 (|#1| |#1| (-635 |#2|))) (-15 -1866 (|#1| |#1| |#2|)) (-15 -2829 (|#1| |#1| (-635 |#2|) (-635 (-762)))) (-15 -2829 (|#1| |#1| |#2| (-762))) (-15 -2829 (|#1| |#1| (-635 |#2|))) (-15 -2829 (|#1| |#1| |#2|))) (-890 |#2|) (-1087)) (T -889))
+NIL
+(-10 -8 (-15 -1866 (|#1| |#1| (-635 |#2|) (-635 (-762)))) (-15 -1866 (|#1| |#1| |#2| (-762))) (-15 -1866 (|#1| |#1| (-635 |#2|))) (-15 -1866 (|#1| |#1| |#2|)) (-15 -2829 (|#1| |#1| (-635 |#2|) (-635 (-762)))) (-15 -2829 (|#1| |#1| |#2| (-762))) (-15 -2829 (|#1| |#1| (-635 |#2|))) (-15 -2829 (|#1| |#1| |#2|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2089 (((-3 $ "failed") $ $) 19)) (-1816 (($) 17 T CONST)) (-2588 (((-3 $ "failed") $) 33)) (-2035 (((-112) $) 31)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-2829 (($ $ |#1|) 42) (($ $ (-635 |#1|)) 41) (($ $ |#1| (-762)) 40) (($ $ (-635 |#1|) (-635 (-762))) 39)) (-3220 (((-853) $) 11) (($ (-558)) 29)) (-2542 (((-762)) 28)) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1866 (($ $ |#1|) 38) (($ $ (-635 |#1|)) 37) (($ $ |#1| (-762)) 36) (($ $ (-635 |#1|) (-635 (-762))) 35)) (-1683 (((-112) $ $) 6)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24)))
+(((-890 |#1|) (-139) (-1087)) (T -890))
+((-2829 (*1 *1 *1 *2) (-12 (-4 *1 (-890 *2)) (-4 *2 (-1087)))) (-2829 (*1 *1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *1 (-890 *3)) (-4 *3 (-1087)))) (-2829 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-762)) (-4 *1 (-890 *2)) (-4 *2 (-1087)))) (-2829 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 *4)) (-5 *3 (-635 (-762))) (-4 *1 (-890 *4)) (-4 *4 (-1087)))) (-1866 (*1 *1 *1 *2) (-12 (-4 *1 (-890 *2)) (-4 *2 (-1087)))) (-1866 (*1 *1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *1 (-890 *3)) (-4 *3 (-1087)))) (-1866 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-762)) (-4 *1 (-890 *2)) (-4 *2 (-1087)))) (-1866 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 *4)) (-5 *3 (-635 (-762))) (-4 *1 (-890 *4)) (-4 *4 (-1087)))))
+(-13 (-1039) (-10 -8 (-15 -2829 ($ $ |t#1|)) (-15 -2829 ($ $ (-635 |t#1|))) (-15 -2829 ($ $ |t#1| (-762))) (-15 -2829 ($ $ (-635 |t#1|) (-635 (-762)))) (-15 -1866 ($ $ |t#1|)) (-15 -1866 ($ $ (-635 |t#1|))) (-15 -1866 ($ $ |t#1| (-762))) (-15 -1866 ($ $ (-635 |t#1|) (-635 (-762))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-558)) . T) ((-605 (-853)) . T) ((-638 $) . T) ((-717) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
+((-3207 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2925 ((|#1| $) 26)) (-3026 (((-112) $ (-762)) NIL)) (-3972 ((|#1| $ |#1|) NIL (|has| $ (-6 -4383)))) (-2749 (($ $ $) NIL (|has| $ (-6 -4383)))) (-2762 (($ $ $) NIL (|has| $ (-6 -4383)))) (-1532 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4383))) (($ $ "left" $) NIL (|has| $ (-6 -4383))) (($ $ "right" $) NIL (|has| $ (-6 -4383)))) (-3982 (($ $ (-635 $)) NIL (|has| $ (-6 -4383)))) (-1816 (($) NIL T CONST)) (-3425 (($ $) 25)) (-3847 (($ |#1|) 12) (($ $ $) 17)) (-2240 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-2870 (((-635 $) $) NIL)) (-3993 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2986 (((-112) $ (-762)) NIL)) (-2122 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1807 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-3417 (($ $) 23)) (-1362 (((-635 |#1|) $) NIL)) (-1790 (((-112) $) 20)) (-4310 (((-1145) $) NIL (|has| |#1| (-1087)))) (-2975 (((-1107) $) NIL (|has| |#1| (-1087)))) (-3266 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3375 (((-112) $) NIL)) (-2083 (($) NIL)) (-2195 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2860 (((-558) $ $) NIL)) (-1487 (((-112) $) NIL)) (-2988 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1553 (($ $) NIL)) (-3220 (((-1186 |#1|) $) 9) (((-853) $) 29 (|has| |#1| (-605 (-853))))) (-1727 (((-635 $) $) NIL)) (-4005 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-3277 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) 21 (|has| |#1| (-1087)))) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-891 |#1|) (-13 (-119 |#1|) (-605 (-1186 |#1|)) (-10 -8 (-15 -3847 ($ |#1|)) (-15 -3847 ($ $ $)))) (-1087)) (T -891))
+((-3847 (*1 *1 *2) (-12 (-5 *1 (-891 *2)) (-4 *2 (-1087)))) (-3847 (*1 *1 *1 *1) (-12 (-5 *1 (-891 *2)) (-4 *2 (-1087)))))
+(-13 (-119 |#1|) (-605 (-1186 |#1|)) (-10 -8 (-15 -3847 ($ |#1|)) (-15 -3847 ($ $ $))))
+((-3513 ((|#2| (-1129 |#1| |#2|)) 41)))
+(((-892 |#1| |#2|) (-10 -7 (-15 -3513 (|#2| (-1129 |#1| |#2|)))) (-911) (-13 (-1039) (-10 -7 (-6 (-4384 "*"))))) (T -892))
+((-3513 (*1 *2 *3) (-12 (-5 *3 (-1129 *4 *2)) (-14 *4 (-911)) (-4 *2 (-13 (-1039) (-10 -7 (-6 (-4384 "*"))))) (-5 *1 (-892 *4 *2)))))
+(-10 -7 (-15 -3513 (|#2| (-1129 |#1| |#2|))))
+((-3207 (((-112) $ $) 7)) (-1816 (($) 18 T CONST)) (-2588 (((-3 $ "failed") $) 15)) (-3593 (((-1089 |#1|) $ |#1|) 32)) (-2035 (((-112) $) 17)) (-3910 (($ $ $) 30 (-3998 (|has| |#1| (-841)) (|has| |#1| (-367))))) (-3542 (($ $ $) 29 (-3998 (|has| |#1| (-841)) (|has| |#1| (-367))))) (-4310 (((-1145) $) 9)) (-2418 (($ $) 24)) (-2975 (((-1107) $) 10)) (-2554 ((|#1| $ |#1|) 34)) (-2195 ((|#1| $ |#1|) 33)) (-3520 (($ (-635 (-635 |#1|))) 35)) (-3531 (($ (-635 |#1|)) 36)) (-3808 (($ $ $) 21)) (-3443 (($ $ $) 20)) (-3220 (((-853) $) 11)) (-2142 (($) 19 T CONST)) (-1747 (((-112) $ $) 27 (-3998 (|has| |#1| (-841)) (|has| |#1| (-367))))) (-1720 (((-112) $ $) 26 (-3998 (|has| |#1| (-841)) (|has| |#1| (-367))))) (-1683 (((-112) $ $) 6)) (-1731 (((-112) $ $) 28 (-3998 (|has| |#1| (-841)) (|has| |#1| (-367))))) (-1705 (((-112) $ $) 31)) (-1810 (($ $ $) 23)) (** (($ $ (-911)) 13) (($ $ (-762)) 16) (($ $ (-558)) 22)) (* (($ $ $) 14)))
+(((-893 |#1|) (-139) (-1087)) (T -893))
+((-3531 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-4 *1 (-893 *3)))) (-3520 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1087)) (-4 *1 (-893 *3)))) (-2554 (*1 *2 *1 *2) (-12 (-4 *1 (-893 *2)) (-4 *2 (-1087)))) (-2195 (*1 *2 *1 *2) (-12 (-4 *1 (-893 *2)) (-4 *2 (-1087)))) (-3593 (*1 *2 *1 *3) (-12 (-4 *1 (-893 *3)) (-4 *3 (-1087)) (-5 *2 (-1089 *3)))) (-1705 (*1 *2 *1 *1) (-12 (-4 *1 (-893 *3)) (-4 *3 (-1087)) (-5 *2 (-112)))))
+(-13 (-471) (-10 -8 (-15 -3531 ($ (-635 |t#1|))) (-15 -3520 ($ (-635 (-635 |t#1|)))) (-15 -2554 (|t#1| $ |t#1|)) (-15 -2195 (|t#1| $ |t#1|)) (-15 -3593 ((-1089 |t#1|) $ |t#1|)) (-15 -1705 ((-112) $ $)) (IF (|has| |t#1| (-841)) (-6 (-841)) |%noBranch|) (IF (|has| |t#1| (-367)) (-6 (-841)) |%noBranch|)))
+(((-102) . T) ((-605 (-853)) . T) ((-471) . T) ((-717) . T) ((-841) -3998 (|has| |#1| (-841)) (|has| |#1| (-367))) ((-1099) . T) ((-1087) . T))
+((-3207 (((-112) $ $) NIL)) (-3613 (((-635 (-635 (-762))) $) 107)) (-3575 (((-635 (-762)) (-895 |#1|) $) 129)) (-3565 (((-635 (-762)) (-895 |#1|) $) 130)) (-3622 (((-635 (-895 |#1|)) $) 97)) (-2424 (((-895 |#1|) $ (-558)) 102) (((-895 |#1|) $) 103)) (-3603 (($ (-635 (-895 |#1|))) 109)) (-3449 (((-762) $) 104)) (-3584 (((-1089 (-1089 |#1|)) $) 127)) (-3593 (((-1089 |#1|) $ |#1|) 120) (((-1089 (-1089 |#1|)) $ (-1089 |#1|)) 138) (((-1089 (-635 |#1|)) $ (-635 |#1|)) 141)) (-3556 (((-1089 |#1|) $) 100)) (-4322 (((-112) (-895 |#1|) $) 91)) (-4310 (((-1145) $) NIL)) (-3545 (((-1251) $) 94) (((-1251) $ (-558) (-558)) 142)) (-2975 (((-1107) $) NIL)) (-3631 (((-635 (-895 |#1|)) $) 95)) (-2195 (((-895 |#1|) $ (-762)) 98)) (-4323 (((-762) $) 105)) (-3220 (((-853) $) 118) (((-635 (-895 |#1|)) $) 23) (($ (-635 (-895 |#1|))) 108)) (-2579 (((-635 |#1|) $) 106)) (-1683 (((-112) $ $) 135)) (-1731 (((-112) $ $) 133)) (-1705 (((-112) $ $) 132)))
+(((-894 |#1|) (-13 (-1087) (-10 -8 (-15 -3220 ((-635 (-895 |#1|)) $)) (-15 -3631 ((-635 (-895 |#1|)) $)) (-15 -2195 ((-895 |#1|) $ (-762))) (-15 -2424 ((-895 |#1|) $ (-558))) (-15 -2424 ((-895 |#1|) $)) (-15 -3449 ((-762) $)) (-15 -4323 ((-762) $)) (-15 -2579 ((-635 |#1|) $)) (-15 -3622 ((-635 (-895 |#1|)) $)) (-15 -3613 ((-635 (-635 (-762))) $)) (-15 -3220 ($ (-635 (-895 |#1|)))) (-15 -3603 ($ (-635 (-895 |#1|)))) (-15 -3593 ((-1089 |#1|) $ |#1|)) (-15 -3584 ((-1089 (-1089 |#1|)) $)) (-15 -3593 ((-1089 (-1089 |#1|)) $ (-1089 |#1|))) (-15 -3593 ((-1089 (-635 |#1|)) $ (-635 |#1|))) (-15 -4322 ((-112) (-895 |#1|) $)) (-15 -3575 ((-635 (-762)) (-895 |#1|) $)) (-15 -3565 ((-635 (-762)) (-895 |#1|) $)) (-15 -3556 ((-1089 |#1|) $)) (-15 -1705 ((-112) $ $)) (-15 -1731 ((-112) $ $)) (-15 -3545 ((-1251) $)) (-15 -3545 ((-1251) $ (-558) (-558))))) (-1087)) (T -894))
+((-3220 (*1 *2 *1) (-12 (-5 *2 (-635 (-895 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1087)))) (-3631 (*1 *2 *1) (-12 (-5 *2 (-635 (-895 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1087)))) (-2195 (*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-5 *2 (-895 *4)) (-5 *1 (-894 *4)) (-4 *4 (-1087)))) (-2424 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *2 (-895 *4)) (-5 *1 (-894 *4)) (-4 *4 (-1087)))) (-2424 (*1 *2 *1) (-12 (-5 *2 (-895 *3)) (-5 *1 (-894 *3)) (-4 *3 (-1087)))) (-3449 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-894 *3)) (-4 *3 (-1087)))) (-4323 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-894 *3)) (-4 *3 (-1087)))) (-2579 (*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-894 *3)) (-4 *3 (-1087)))) (-3622 (*1 *2 *1) (-12 (-5 *2 (-635 (-895 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1087)))) (-3613 (*1 *2 *1) (-12 (-5 *2 (-635 (-635 (-762)))) (-5 *1 (-894 *3)) (-4 *3 (-1087)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-635 (-895 *3))) (-4 *3 (-1087)) (-5 *1 (-894 *3)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-635 (-895 *3))) (-4 *3 (-1087)) (-5 *1 (-894 *3)))) (-3593 (*1 *2 *1 *3) (-12 (-5 *2 (-1089 *3)) (-5 *1 (-894 *3)) (-4 *3 (-1087)))) (-3584 (*1 *2 *1) (-12 (-5 *2 (-1089 (-1089 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1087)))) (-3593 (*1 *2 *1 *3) (-12 (-4 *4 (-1087)) (-5 *2 (-1089 (-1089 *4))) (-5 *1 (-894 *4)) (-5 *3 (-1089 *4)))) (-3593 (*1 *2 *1 *3) (-12 (-4 *4 (-1087)) (-5 *2 (-1089 (-635 *4))) (-5 *1 (-894 *4)) (-5 *3 (-635 *4)))) (-4322 (*1 *2 *3 *1) (-12 (-5 *3 (-895 *4)) (-4 *4 (-1087)) (-5 *2 (-112)) (-5 *1 (-894 *4)))) (-3575 (*1 *2 *3 *1) (-12 (-5 *3 (-895 *4)) (-4 *4 (-1087)) (-5 *2 (-635 (-762))) (-5 *1 (-894 *4)))) (-3565 (*1 *2 *3 *1) (-12 (-5 *3 (-895 *4)) (-4 *4 (-1087)) (-5 *2 (-635 (-762))) (-5 *1 (-894 *4)))) (-3556 (*1 *2 *1) (-12 (-5 *2 (-1089 *3)) (-5 *1 (-894 *3)) (-4 *3 (-1087)))) (-1705 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1087)))) (-1731 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1087)))) (-3545 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-894 *3)) (-4 *3 (-1087)))) (-3545 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-5 *2 (-1251)) (-5 *1 (-894 *4)) (-4 *4 (-1087)))))
+(-13 (-1087) (-10 -8 (-15 -3220 ((-635 (-895 |#1|)) $)) (-15 -3631 ((-635 (-895 |#1|)) $)) (-15 -2195 ((-895 |#1|) $ (-762))) (-15 -2424 ((-895 |#1|) $ (-558))) (-15 -2424 ((-895 |#1|) $)) (-15 -3449 ((-762) $)) (-15 -4323 ((-762) $)) (-15 -2579 ((-635 |#1|) $)) (-15 -3622 ((-635 (-895 |#1|)) $)) (-15 -3613 ((-635 (-635 (-762))) $)) (-15 -3220 ($ (-635 (-895 |#1|)))) (-15 -3603 ($ (-635 (-895 |#1|)))) (-15 -3593 ((-1089 |#1|) $ |#1|)) (-15 -3584 ((-1089 (-1089 |#1|)) $)) (-15 -3593 ((-1089 (-1089 |#1|)) $ (-1089 |#1|))) (-15 -3593 ((-1089 (-635 |#1|)) $ (-635 |#1|))) (-15 -4322 ((-112) (-895 |#1|) $)) (-15 -3575 ((-635 (-762)) (-895 |#1|) $)) (-15 -3565 ((-635 (-762)) (-895 |#1|) $)) (-15 -3556 ((-1089 |#1|) $)) (-15 -1705 ((-112) $ $)) (-15 -1731 ((-112) $ $)) (-15 -3545 ((-1251) $)) (-15 -3545 ((-1251) $ (-558) (-558)))))
+((-3207 (((-112) $ $) NIL)) (-2376 (((-635 $) (-635 $)) 76)) (-1397 (((-558) $) 59)) (-1816 (($) NIL T CONST)) (-2588 (((-3 $ "failed") $) NIL)) (-3449 (((-762) $) 57)) (-3593 (((-1089 |#1|) $ |#1|) 48)) (-2035 (((-112) $) NIL)) (-3451 (((-112) $) 62)) (-3467 (((-762) $) 60)) (-3556 (((-1089 |#1|) $) 41)) (-3910 (($ $ $) NIL (-3998 (|has| |#1| (-367)) (|has| |#1| (-841))))) (-3542 (($ $ $) NIL (-3998 (|has| |#1| (-367)) (|has| |#1| (-841))))) (-3504 (((-2 (|:| |preimage| (-635 |#1|)) (|:| |image| (-635 |#1|))) $) 36)) (-4310 (((-1145) $) NIL)) (-2418 (($ $) 92)) (-2975 (((-1107) $) NIL)) (-3442 (((-1089 |#1|) $) 99 (|has| |#1| (-367)))) (-3458 (((-112) $) 58)) (-2554 ((|#1| $ |#1|) 46)) (-2195 ((|#1| $ |#1|) 93)) (-4323 (((-762) $) 43)) (-3520 (($ (-635 (-635 |#1|))) 84)) (-3478 (((-961) $) 52)) (-3531 (($ (-635 |#1|)) 21)) (-3808 (($ $ $) NIL)) (-3443 (($ $ $) NIL)) (-3495 (($ (-635 (-635 |#1|))) 38)) (-3488 (($ (-635 (-635 |#1|))) 87)) (-3432 (($ (-635 |#1|)) 95)) (-3220 (((-853) $) 83) (($ (-635 (-635 |#1|))) 65) (($ (-635 |#1|)) 66)) (-2142 (($) 16 T CONST)) (-1747 (((-112) $ $) NIL (-3998 (|has| |#1| (-367)) (|has| |#1| (-841))))) (-1720 (((-112) $ $) NIL (-3998 (|has| |#1| (-367)) (|has| |#1| (-841))))) (-1683 (((-112) $ $) 44)) (-1731 (((-112) $ $) NIL (-3998 (|has| |#1| (-367)) (|has| |#1| (-841))))) (-1705 (((-112) $ $) 64)) (-1810 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL)) (* (($ $ $) 22)))
+(((-895 |#1|) (-13 (-893 |#1|) (-10 -8 (-15 -3504 ((-2 (|:| |preimage| (-635 |#1|)) (|:| |image| (-635 |#1|))) $)) (-15 -3495 ($ (-635 (-635 |#1|)))) (-15 -3220 ($ (-635 (-635 |#1|)))) (-15 -3220 ($ (-635 |#1|))) (-15 -3488 ($ (-635 (-635 |#1|)))) (-15 -4323 ((-762) $)) (-15 -3556 ((-1089 |#1|) $)) (-15 -3478 ((-961) $)) (-15 -3449 ((-762) $)) (-15 -3467 ((-762) $)) (-15 -1397 ((-558) $)) (-15 -3458 ((-112) $)) (-15 -3451 ((-112) $)) (-15 -2376 ((-635 $) (-635 $))) (IF (|has| |#1| (-367)) (-15 -3442 ((-1089 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-543)) (-15 -3432 ($ (-635 |#1|))) (IF (|has| |#1| (-367)) (-15 -3432 ($ (-635 |#1|))) |%noBranch|)))) (-1087)) (T -895))
+((-3504 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-635 *3)) (|:| |image| (-635 *3)))) (-5 *1 (-895 *3)) (-4 *3 (-1087)))) (-3495 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1087)) (-5 *1 (-895 *3)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1087)) (-5 *1 (-895 *3)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-5 *1 (-895 *3)))) (-3488 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1087)) (-5 *1 (-895 *3)))) (-4323 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-895 *3)) (-4 *3 (-1087)))) (-3556 (*1 *2 *1) (-12 (-5 *2 (-1089 *3)) (-5 *1 (-895 *3)) (-4 *3 (-1087)))) (-3478 (*1 *2 *1) (-12 (-5 *2 (-961)) (-5 *1 (-895 *3)) (-4 *3 (-1087)))) (-3449 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-895 *3)) (-4 *3 (-1087)))) (-3467 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-895 *3)) (-4 *3 (-1087)))) (-1397 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-895 *3)) (-4 *3 (-1087)))) (-3458 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-895 *3)) (-4 *3 (-1087)))) (-3451 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-895 *3)) (-4 *3 (-1087)))) (-2376 (*1 *2 *2) (-12 (-5 *2 (-635 (-895 *3))) (-5 *1 (-895 *3)) (-4 *3 (-1087)))) (-3442 (*1 *2 *1) (-12 (-5 *2 (-1089 *3)) (-5 *1 (-895 *3)) (-4 *3 (-367)) (-4 *3 (-1087)))) (-3432 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-5 *1 (-895 *3)))))
+(-13 (-893 |#1|) (-10 -8 (-15 -3504 ((-2 (|:| |preimage| (-635 |#1|)) (|:| |image| (-635 |#1|))) $)) (-15 -3495 ($ (-635 (-635 |#1|)))) (-15 -3220 ($ (-635 (-635 |#1|)))) (-15 -3220 ($ (-635 |#1|))) (-15 -3488 ($ (-635 (-635 |#1|)))) (-15 -4323 ((-762) $)) (-15 -3556 ((-1089 |#1|) $)) (-15 -3478 ((-961) $)) (-15 -3449 ((-762) $)) (-15 -3467 ((-762) $)) (-15 -1397 ((-558) $)) (-15 -3458 ((-112) $)) (-15 -3451 ((-112) $)) (-15 -2376 ((-635 $) (-635 $))) (IF (|has| |#1| (-367)) (-15 -3442 ((-1089 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-543)) (-15 -3432 ($ (-635 |#1|))) (IF (|has| |#1| (-367)) (-15 -3432 ($ (-635 |#1|))) |%noBranch|))))
+((-3649 (((-3 (-635 (-1159 |#4|)) "failed") (-635 (-1159 |#4|)) (-1159 |#4|)) 127)) (-3680 ((|#1|) 76)) (-3670 (((-417 (-1159 |#4|)) (-1159 |#4|)) 136)) (-3689 (((-417 (-1159 |#4|)) (-635 |#3|) (-1159 |#4|)) 68)) (-3660 (((-417 (-1159 |#4|)) (-1159 |#4|)) 146)) (-3640 (((-3 (-635 (-1159 |#4|)) "failed") (-635 (-1159 |#4|)) (-1159 |#4|) |#3|) 91)))
+(((-896 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3649 ((-3 (-635 (-1159 |#4|)) "failed") (-635 (-1159 |#4|)) (-1159 |#4|))) (-15 -3660 ((-417 (-1159 |#4|)) (-1159 |#4|))) (-15 -3670 ((-417 (-1159 |#4|)) (-1159 |#4|))) (-15 -3680 (|#1|)) (-15 -3640 ((-3 (-635 (-1159 |#4|)) "failed") (-635 (-1159 |#4|)) (-1159 |#4|) |#3|)) (-15 -3689 ((-417 (-1159 |#4|)) (-635 |#3|) (-1159 |#4|)))) (-899) (-784) (-841) (-939 |#1| |#2| |#3|)) (T -896))
+((-3689 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *7)) (-4 *7 (-841)) (-4 *5 (-899)) (-4 *6 (-784)) (-4 *8 (-939 *5 *6 *7)) (-5 *2 (-417 (-1159 *8))) (-5 *1 (-896 *5 *6 *7 *8)) (-5 *4 (-1159 *8)))) (-3640 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-635 (-1159 *7))) (-5 *3 (-1159 *7)) (-4 *7 (-939 *5 *6 *4)) (-4 *5 (-899)) (-4 *6 (-784)) (-4 *4 (-841)) (-5 *1 (-896 *5 *6 *4 *7)))) (-3680 (*1 *2) (-12 (-4 *3 (-784)) (-4 *4 (-841)) (-4 *2 (-899)) (-5 *1 (-896 *2 *3 *4 *5)) (-4 *5 (-939 *2 *3 *4)))) (-3670 (*1 *2 *3) (-12 (-4 *4 (-899)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-939 *4 *5 *6)) (-5 *2 (-417 (-1159 *7))) (-5 *1 (-896 *4 *5 *6 *7)) (-5 *3 (-1159 *7)))) (-3660 (*1 *2 *3) (-12 (-4 *4 (-899)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-939 *4 *5 *6)) (-5 *2 (-417 (-1159 *7))) (-5 *1 (-896 *4 *5 *6 *7)) (-5 *3 (-1159 *7)))) (-3649 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-635 (-1159 *7))) (-5 *3 (-1159 *7)) (-4 *7 (-939 *4 *5 *6)) (-4 *4 (-899)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *1 (-896 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3649 ((-3 (-635 (-1159 |#4|)) "failed") (-635 (-1159 |#4|)) (-1159 |#4|))) (-15 -3660 ((-417 (-1159 |#4|)) (-1159 |#4|))) (-15 -3670 ((-417 (-1159 |#4|)) (-1159 |#4|))) (-15 -3680 (|#1|)) (-15 -3640 ((-3 (-635 (-1159 |#4|)) "failed") (-635 (-1159 |#4|)) (-1159 |#4|) |#3|)) (-15 -3689 ((-417 (-1159 |#4|)) (-635 |#3|) (-1159 |#4|))))
+((-3649 (((-3 (-635 (-1159 |#2|)) "failed") (-635 (-1159 |#2|)) (-1159 |#2|)) 36)) (-3680 ((|#1|) 53)) (-3670 (((-417 (-1159 |#2|)) (-1159 |#2|)) 101)) (-3689 (((-417 (-1159 |#2|)) (-1159 |#2|)) 89)) (-3660 (((-417 (-1159 |#2|)) (-1159 |#2|)) 112)))
+(((-897 |#1| |#2|) (-10 -7 (-15 -3649 ((-3 (-635 (-1159 |#2|)) "failed") (-635 (-1159 |#2|)) (-1159 |#2|))) (-15 -3660 ((-417 (-1159 |#2|)) (-1159 |#2|))) (-15 -3670 ((-417 (-1159 |#2|)) (-1159 |#2|))) (-15 -3680 (|#1|)) (-15 -3689 ((-417 (-1159 |#2|)) (-1159 |#2|)))) (-899) (-1222 |#1|)) (T -897))
+((-3689 (*1 *2 *3) (-12 (-4 *4 (-899)) (-4 *5 (-1222 *4)) (-5 *2 (-417 (-1159 *5))) (-5 *1 (-897 *4 *5)) (-5 *3 (-1159 *5)))) (-3680 (*1 *2) (-12 (-4 *2 (-899)) (-5 *1 (-897 *2 *3)) (-4 *3 (-1222 *2)))) (-3670 (*1 *2 *3) (-12 (-4 *4 (-899)) (-4 *5 (-1222 *4)) (-5 *2 (-417 (-1159 *5))) (-5 *1 (-897 *4 *5)) (-5 *3 (-1159 *5)))) (-3660 (*1 *2 *3) (-12 (-4 *4 (-899)) (-4 *5 (-1222 *4)) (-5 *2 (-417 (-1159 *5))) (-5 *1 (-897 *4 *5)) (-5 *3 (-1159 *5)))) (-3649 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-635 (-1159 *5))) (-5 *3 (-1159 *5)) (-4 *5 (-1222 *4)) (-4 *4 (-899)) (-5 *1 (-897 *4 *5)))))
+(-10 -7 (-15 -3649 ((-3 (-635 (-1159 |#2|)) "failed") (-635 (-1159 |#2|)) (-1159 |#2|))) (-15 -3660 ((-417 (-1159 |#2|)) (-1159 |#2|))) (-15 -3670 ((-417 (-1159 |#2|)) (-1159 |#2|))) (-15 -3680 (|#1|)) (-15 -3689 ((-417 (-1159 |#2|)) (-1159 |#2|))))
+((-3719 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) 41)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) 18)) (-3698 (((-3 $ "failed") $) 35)))
+(((-898 |#1|) (-10 -8 (-15 -3698 ((-3 |#1| "failed") |#1|)) (-15 -3719 ((-3 (-635 (-1159 |#1|)) "failed") (-635 (-1159 |#1|)) (-1159 |#1|))) (-15 -3757 ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|)))) (-899)) (T -898))
+NIL
+(-10 -8 (-15 -3698 ((-3 |#1| "failed") |#1|)) (-15 -3719 ((-3 (-635 (-1159 |#1|)) "failed") (-635 (-1159 |#1|)) (-1159 |#1|))) (-15 -3757 ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 42)) (-1881 (($ $) 41)) (-1857 (((-112) $) 39)) (-2089 (((-3 $ "failed") $ $) 19)) (-3748 (((-417 (-1159 $)) (-1159 $)) 61)) (-3465 (($ $) 52)) (-1380 (((-417 $) $) 53)) (-3719 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) 58)) (-1816 (($) 17 T CONST)) (-2588 (((-3 $ "failed") $) 33)) (-3031 (((-112) $) 54)) (-2035 (((-112) $) 31)) (-2665 (($ $ $) 47) (($ (-635 $)) 46)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) 45)) (-2699 (($ $ $) 49) (($ (-635 $)) 48)) (-3728 (((-417 (-1159 $)) (-1159 $)) 59)) (-3738 (((-417 (-1159 $)) (-1159 $)) 60)) (-2522 (((-417 $) $) 51)) (-3983 (((-3 $ "failed") $ $) 43)) (-3709 (((-3 (-1246 $) "failed") (-679 $)) 57 (|has| $ (-144)))) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ $) 44)) (-3698 (((-3 $ "failed") $) 56 (|has| $ (-144)))) (-2542 (((-762)) 28)) (-1870 (((-112) $ $) 40)) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1683 (((-112) $ $) 6)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24)))
+(((-899) (-139)) (T -899))
+((-3757 (*1 *2 *2 *2) (-12 (-5 *2 (-1159 *1)) (-4 *1 (-899)))) (-3748 (*1 *2 *3) (-12 (-4 *1 (-899)) (-5 *2 (-417 (-1159 *1))) (-5 *3 (-1159 *1)))) (-3738 (*1 *2 *3) (-12 (-4 *1 (-899)) (-5 *2 (-417 (-1159 *1))) (-5 *3 (-1159 *1)))) (-3728 (*1 *2 *3) (-12 (-4 *1 (-899)) (-5 *2 (-417 (-1159 *1))) (-5 *3 (-1159 *1)))) (-3719 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-635 (-1159 *1))) (-5 *3 (-1159 *1)) (-4 *1 (-899)))) (-3709 (*1 *2 *3) (|partial| -12 (-5 *3 (-679 *1)) (-4 *1 (-144)) (-4 *1 (-899)) (-5 *2 (-1246 *1)))) (-3698 (*1 *1 *1) (|partial| -12 (-4 *1 (-144)) (-4 *1 (-899)))))
+(-13 (-1204) (-10 -8 (-15 -3748 ((-417 (-1159 $)) (-1159 $))) (-15 -3738 ((-417 (-1159 $)) (-1159 $))) (-15 -3728 ((-417 (-1159 $)) (-1159 $))) (-15 -3757 ((-1159 $) (-1159 $) (-1159 $))) (-15 -3719 ((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $))) (IF (|has| $ (-144)) (PROGN (-15 -3709 ((-3 (-1246 $) "failed") (-679 $))) (-15 -3698 ((-3 $ "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-608 (-558)) . T) ((-608 $) . T) ((-605 (-853)) . T) ((-171) . T) ((-289) . T) ((-450) . T) ((-550) . T) ((-638 $) . T) ((-708 $) . T) ((-717) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1204) . T))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL)) (-1881 (($ $) NIL)) (-1857 (((-112) $) NIL)) (-4195 (((-112) $) NIL)) (-4160 (((-762)) NIL)) (-1635 (($ $ (-911)) NIL (|has| $ (-367))) (($ $) NIL)) (-2163 (((-1173 (-911) (-762)) (-558)) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-3465 (($ $) NIL)) (-1380 (((-417 $) $) NIL)) (-3732 (((-112) $ $) NIL)) (-2276 (((-762)) NIL)) (-1816 (($) NIL T CONST)) (-3069 (((-3 $ "failed") $) NIL)) (-1863 (($ $) NIL)) (-3997 (($ (-1246 $)) NIL)) (-3367 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-4025 (($ $ $) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-2424 (($) NIL)) (-4004 (($ $ $) NIL)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL)) (-2672 (($) NIL)) (-2219 (((-112) $) NIL)) (-1895 (($ $) NIL) (($ $ (-762)) NIL)) (-3031 (((-112) $) NIL)) (-3449 (((-824 (-911)) $) NIL) (((-911) $) NIL)) (-2035 (((-112) $) NIL)) (-2670 (($) NIL (|has| $ (-367)))) (-2649 (((-112) $) NIL (|has| $ (-367)))) (-2615 (($ $ (-911)) NIL (|has| $ (-367))) (($ $) NIL)) (-2457 (((-3 $ "failed") $) NIL)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2681 (((-1159 $) $ (-911)) NIL (|has| $ (-367))) (((-1159 $) $) NIL)) (-2637 (((-911) $) NIL)) (-3919 (((-1159 $) $) NIL (|has| $ (-367)))) (-3907 (((-3 (-1159 $) "failed") $ $) NIL (|has| $ (-367))) (((-1159 $) $) NIL (|has| $ (-367)))) (-3928 (($ $ (-1159 $)) NIL (|has| $ (-367)))) (-2665 (($ $ $) NIL) (($ (-635 $)) NIL)) (-4310 (((-1145) $) NIL)) (-2418 (($ $) NIL)) (-1796 (($) NIL T CONST)) (-2851 (($ (-911)) NIL)) (-4185 (((-112) $) NIL)) (-2975 (((-1107) $) NIL)) (-4098 (($) NIL (|has| $ (-367)))) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-2699 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2174 (((-635 (-2 (|:| -2522 (-558)) (|:| -1951 (-558))))) NIL)) (-2522 (((-417 $) $) NIL)) (-4172 (((-911)) NIL) (((-824 (-911))) NIL)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3983 (((-3 $ "failed") $ $) NIL)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3722 (((-762) $) NIL)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL)) (-1905 (((-3 (-762) "failed") $ $) NIL) (((-762) $) NIL)) (-2148 (((-133)) NIL)) (-2829 (($ $ (-762)) NIL) (($ $) NIL)) (-4323 (((-911) $) NIL) (((-824 (-911)) $) NIL)) (-2036 (((-1159 $)) NIL)) (-3377 (($) NIL)) (-2791 (($) NIL (|has| $ (-367)))) (-4205 (((-679 $) (-1246 $)) NIL) (((-1246 $) $) NIL)) (-3224 (((-558) $) NIL)) (-3709 (((-3 (-1246 $) "failed") (-679 $)) NIL)) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL) (($ (-406 (-558))) NIL)) (-3698 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-2542 (((-762)) NIL)) (-2660 (((-1246 $) (-911)) NIL) (((-1246 $)) NIL)) (-1870 (((-112) $ $) NIL)) (-4206 (((-112) $) NIL)) (-2131 (($) NIL T CONST)) (-2142 (($) NIL T CONST)) (-4148 (($ $ (-762)) NIL (|has| $ (-367))) (($ $) NIL (|has| $ (-367)))) (-1866 (($ $ (-762)) NIL) (($ $) NIL)) (-1683 (((-112) $ $) NIL)) (-1810 (($ $ $) NIL)) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL)))
+(((-900 |#1|) (-13 (-348) (-328 $) (-606 (-558))) (-911)) (T -900))
+NIL
+(-13 (-348) (-328 $) (-606 (-558)))
+((-3775 (((-3 (-2 (|:| -3449 (-762)) (|:| -2529 |#5|)) "failed") (-335 |#2| |#3| |#4| |#5|)) 79)) (-3766 (((-112) (-335 |#2| |#3| |#4| |#5|)) 17)) (-3449 (((-3 (-762) "failed") (-335 |#2| |#3| |#4| |#5|)) 15)))
+(((-901 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3449 ((-3 (-762) "failed") (-335 |#2| |#3| |#4| |#5|))) (-15 -3766 ((-112) (-335 |#2| |#3| |#4| |#5|))) (-15 -3775 ((-3 (-2 (|:| -3449 (-762)) (|:| -2529 |#5|)) "failed") (-335 |#2| |#3| |#4| |#5|)))) (-13 (-841) (-550) (-1028 (-558))) (-429 |#1|) (-1222 |#2|) (-1222 (-406 |#3|)) (-341 |#2| |#3| |#4|)) (T -901))
+((-3775 (*1 *2 *3) (|partial| -12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-429 *4)) (-4 *6 (-1222 *5)) (-4 *7 (-1222 (-406 *6))) (-4 *8 (-341 *5 *6 *7)) (-4 *4 (-13 (-841) (-550) (-1028 (-558)))) (-5 *2 (-2 (|:| -3449 (-762)) (|:| -2529 *8))) (-5 *1 (-901 *4 *5 *6 *7 *8)))) (-3766 (*1 *2 *3) (-12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-429 *4)) (-4 *6 (-1222 *5)) (-4 *7 (-1222 (-406 *6))) (-4 *8 (-341 *5 *6 *7)) (-4 *4 (-13 (-841) (-550) (-1028 (-558)))) (-5 *2 (-112)) (-5 *1 (-901 *4 *5 *6 *7 *8)))) (-3449 (*1 *2 *3) (|partial| -12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-429 *4)) (-4 *6 (-1222 *5)) (-4 *7 (-1222 (-406 *6))) (-4 *8 (-341 *5 *6 *7)) (-4 *4 (-13 (-841) (-550) (-1028 (-558)))) (-5 *2 (-762)) (-5 *1 (-901 *4 *5 *6 *7 *8)))))
+(-10 -7 (-15 -3449 ((-3 (-762) "failed") (-335 |#2| |#3| |#4| |#5|))) (-15 -3766 ((-112) (-335 |#2| |#3| |#4| |#5|))) (-15 -3775 ((-3 (-2 (|:| -3449 (-762)) (|:| -2529 |#5|)) "failed") (-335 |#2| |#3| |#4| |#5|))))
+((-3775 (((-3 (-2 (|:| -3449 (-762)) (|:| -2529 |#3|)) "failed") (-335 (-406 (-558)) |#1| |#2| |#3|)) 56)) (-3766 (((-112) (-335 (-406 (-558)) |#1| |#2| |#3|)) 16)) (-3449 (((-3 (-762) "failed") (-335 (-406 (-558)) |#1| |#2| |#3|)) 14)))
+(((-902 |#1| |#2| |#3|) (-10 -7 (-15 -3449 ((-3 (-762) "failed") (-335 (-406 (-558)) |#1| |#2| |#3|))) (-15 -3766 ((-112) (-335 (-406 (-558)) |#1| |#2| |#3|))) (-15 -3775 ((-3 (-2 (|:| -3449 (-762)) (|:| -2529 |#3|)) "failed") (-335 (-406 (-558)) |#1| |#2| |#3|)))) (-1222 (-406 (-558))) (-1222 (-406 |#1|)) (-341 (-406 (-558)) |#1| |#2|)) (T -902))
+((-3775 (*1 *2 *3) (|partial| -12 (-5 *3 (-335 (-406 (-558)) *4 *5 *6)) (-4 *4 (-1222 (-406 (-558)))) (-4 *5 (-1222 (-406 *4))) (-4 *6 (-341 (-406 (-558)) *4 *5)) (-5 *2 (-2 (|:| -3449 (-762)) (|:| -2529 *6))) (-5 *1 (-902 *4 *5 *6)))) (-3766 (*1 *2 *3) (-12 (-5 *3 (-335 (-406 (-558)) *4 *5 *6)) (-4 *4 (-1222 (-406 (-558)))) (-4 *5 (-1222 (-406 *4))) (-4 *6 (-341 (-406 (-558)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-902 *4 *5 *6)))) (-3449 (*1 *2 *3) (|partial| -12 (-5 *3 (-335 (-406 (-558)) *4 *5 *6)) (-4 *4 (-1222 (-406 (-558)))) (-4 *5 (-1222 (-406 *4))) (-4 *6 (-341 (-406 (-558)) *4 *5)) (-5 *2 (-762)) (-5 *1 (-902 *4 *5 *6)))))
+(-10 -7 (-15 -3449 ((-3 (-762) "failed") (-335 (-406 (-558)) |#1| |#2| |#3|))) (-15 -3766 ((-112) (-335 (-406 (-558)) |#1| |#2| |#3|))) (-15 -3775 ((-3 (-2 (|:| -3449 (-762)) (|:| -2529 |#3|)) "failed") (-335 (-406 (-558)) |#1| |#2| |#3|))))
+((-3822 ((|#2| |#2|) 26)) (-3803 (((-558) (-635 (-2 (|:| |den| (-558)) (|:| |gcdnum| (-558))))) 15)) (-3785 (((-911) (-558)) 35)) (-3813 (((-558) |#2|) 42)) (-3794 (((-558) |#2|) 21) (((-2 (|:| |den| (-558)) (|:| |gcdnum| (-558))) |#1|) 20)))
+(((-903 |#1| |#2|) (-10 -7 (-15 -3785 ((-911) (-558))) (-15 -3794 ((-2 (|:| |den| (-558)) (|:| |gcdnum| (-558))) |#1|)) (-15 -3794 ((-558) |#2|)) (-15 -3803 ((-558) (-635 (-2 (|:| |den| (-558)) (|:| |gcdnum| (-558)))))) (-15 -3813 ((-558) |#2|)) (-15 -3822 (|#2| |#2|))) (-1222 (-406 (-558))) (-1222 (-406 |#1|))) (T -903))
+((-3822 (*1 *2 *2) (-12 (-4 *3 (-1222 (-406 (-558)))) (-5 *1 (-903 *3 *2)) (-4 *2 (-1222 (-406 *3))))) (-3813 (*1 *2 *3) (-12 (-4 *4 (-1222 (-406 *2))) (-5 *2 (-558)) (-5 *1 (-903 *4 *3)) (-4 *3 (-1222 (-406 *4))))) (-3803 (*1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| |den| (-558)) (|:| |gcdnum| (-558))))) (-4 *4 (-1222 (-406 *2))) (-5 *2 (-558)) (-5 *1 (-903 *4 *5)) (-4 *5 (-1222 (-406 *4))))) (-3794 (*1 *2 *3) (-12 (-4 *4 (-1222 (-406 *2))) (-5 *2 (-558)) (-5 *1 (-903 *4 *3)) (-4 *3 (-1222 (-406 *4))))) (-3794 (*1 *2 *3) (-12 (-4 *3 (-1222 (-406 (-558)))) (-5 *2 (-2 (|:| |den| (-558)) (|:| |gcdnum| (-558)))) (-5 *1 (-903 *3 *4)) (-4 *4 (-1222 (-406 *3))))) (-3785 (*1 *2 *3) (-12 (-5 *3 (-558)) (-4 *4 (-1222 (-406 *3))) (-5 *2 (-911)) (-5 *1 (-903 *4 *5)) (-4 *5 (-1222 (-406 *4))))))
+(-10 -7 (-15 -3785 ((-911) (-558))) (-15 -3794 ((-2 (|:| |den| (-558)) (|:| |gcdnum| (-558))) |#1|)) (-15 -3794 ((-558) |#2|)) (-15 -3803 ((-558) (-635 (-2 (|:| |den| (-558)) (|:| |gcdnum| (-558)))))) (-15 -3813 ((-558) |#2|)) (-15 -3822 (|#2| |#2|)))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2582 ((|#1| $) 81)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL)) (-1881 (($ $) NIL)) (-1857 (((-112) $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-3465 (($ $) NIL)) (-1380 (((-417 $) $) NIL)) (-3732 (((-112) $ $) NIL)) (-1816 (($) NIL T CONST)) (-4025 (($ $ $) NIL)) (-2588 (((-3 $ "failed") $) 75)) (-4004 (($ $ $) NIL)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL)) (-3031 (((-112) $) NIL)) (-3904 (($ |#1| (-417 |#1|)) 73)) (-3844 (((-1159 |#1|) |#1| |#1|) 41)) (-3832 (($ $) 49)) (-2035 (((-112) $) NIL)) (-3856 (((-558) $) 78)) (-3865 (($ $ (-558)) 80)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2665 (($ $ $) NIL) (($ (-635 $)) NIL)) (-4310 (((-1145) $) NIL)) (-2418 (($ $) NIL)) (-2975 (((-1107) $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-2699 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3875 ((|#1| $) 77)) (-3885 (((-417 |#1|) $) 76)) (-2522 (((-417 $) $) NIL)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3983 (((-3 $ "failed") $ $) 74)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3722 (((-762) $) NIL)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL)) (-3895 (($ $) 39)) (-3220 (((-853) $) 99) (($ (-558)) 54) (($ $) NIL) (($ (-406 (-558))) NIL) (($ |#1|) 31) (((-406 |#1|) $) 59) (($ (-406 (-417 |#1|))) 67)) (-2542 (((-762)) 52)) (-1870 (((-112) $ $) NIL)) (-2131 (($) 23 T CONST)) (-2142 (($) 12 T CONST)) (-1683 (((-112) $ $) 68)) (-1810 (($ $ $) NIL)) (-1798 (($ $) 88) (($ $ $) NIL)) (-1784 (($ $ $) 38)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 90) (($ $ $) 37) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL)))
+(((-904 |#1|) (-13 (-362) (-38 |#1|) (-10 -8 (-15 -3220 ((-406 |#1|) $)) (-15 -3220 ($ (-406 (-417 |#1|)))) (-15 -3895 ($ $)) (-15 -3885 ((-417 |#1|) $)) (-15 -3875 (|#1| $)) (-15 -3865 ($ $ (-558))) (-15 -3856 ((-558) $)) (-15 -3844 ((-1159 |#1|) |#1| |#1|)) (-15 -3832 ($ $)) (-15 -3904 ($ |#1| (-417 |#1|))) (-15 -2582 (|#1| $)))) (-306)) (T -904))
+((-3220 (*1 *2 *1) (-12 (-5 *2 (-406 *3)) (-5 *1 (-904 *3)) (-4 *3 (-306)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-406 (-417 *3))) (-4 *3 (-306)) (-5 *1 (-904 *3)))) (-3895 (*1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-306)))) (-3885 (*1 *2 *1) (-12 (-5 *2 (-417 *3)) (-5 *1 (-904 *3)) (-4 *3 (-306)))) (-3875 (*1 *2 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-306)))) (-3865 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-904 *3)) (-4 *3 (-306)))) (-3856 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-904 *3)) (-4 *3 (-306)))) (-3844 (*1 *2 *3 *3) (-12 (-5 *2 (-1159 *3)) (-5 *1 (-904 *3)) (-4 *3 (-306)))) (-3832 (*1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-306)))) (-3904 (*1 *1 *2 *3) (-12 (-5 *3 (-417 *2)) (-4 *2 (-306)) (-5 *1 (-904 *2)))) (-2582 (*1 *2 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-306)))))
+(-13 (-362) (-38 |#1|) (-10 -8 (-15 -3220 ((-406 |#1|) $)) (-15 -3220 ($ (-406 (-417 |#1|)))) (-15 -3895 ($ $)) (-15 -3885 ((-417 |#1|) $)) (-15 -3875 (|#1| $)) (-15 -3865 ($ $ (-558))) (-15 -3856 ((-558) $)) (-15 -3844 ((-1159 |#1|) |#1| |#1|)) (-15 -3832 ($ $)) (-15 -3904 ($ |#1| (-417 |#1|))) (-15 -2582 (|#1| $))))
+((-3904 (((-52) (-942 |#1|) (-417 (-942 |#1|)) (-1163)) 17) (((-52) (-406 (-942 |#1|)) (-1163)) 18)))
+(((-905 |#1|) (-10 -7 (-15 -3904 ((-52) (-406 (-942 |#1|)) (-1163))) (-15 -3904 ((-52) (-942 |#1|) (-417 (-942 |#1|)) (-1163)))) (-13 (-306) (-146))) (T -905))
+((-3904 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-417 (-942 *6))) (-5 *5 (-1163)) (-5 *3 (-942 *6)) (-4 *6 (-13 (-306) (-146))) (-5 *2 (-52)) (-5 *1 (-905 *6)))) (-3904 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-942 *5))) (-5 *4 (-1163)) (-4 *5 (-13 (-306) (-146))) (-5 *2 (-52)) (-5 *1 (-905 *5)))))
+(-10 -7 (-15 -3904 ((-52) (-406 (-942 |#1|)) (-1163))) (-15 -3904 ((-52) (-942 |#1|) (-417 (-942 |#1|)) (-1163))))
+((-3915 ((|#4| (-635 |#4|)) 120) (((-1159 |#4|) (-1159 |#4|) (-1159 |#4|)) 66) ((|#4| |#4| |#4|) 119)) (-2699 (((-1159 |#4|) (-635 (-1159 |#4|))) 113) (((-1159 |#4|) (-1159 |#4|) (-1159 |#4|)) 49) ((|#4| (-635 |#4|)) 54) ((|#4| |#4| |#4|) 83)))
+(((-906 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2699 (|#4| |#4| |#4|)) (-15 -2699 (|#4| (-635 |#4|))) (-15 -2699 ((-1159 |#4|) (-1159 |#4|) (-1159 |#4|))) (-15 -2699 ((-1159 |#4|) (-635 (-1159 |#4|)))) (-15 -3915 (|#4| |#4| |#4|)) (-15 -3915 ((-1159 |#4|) (-1159 |#4|) (-1159 |#4|))) (-15 -3915 (|#4| (-635 |#4|)))) (-784) (-841) (-306) (-939 |#3| |#1| |#2|)) (T -906))
+((-3915 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-939 *6 *4 *5)) (-5 *1 (-906 *4 *5 *6 *2)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-306)))) (-3915 (*1 *2 *2 *2) (-12 (-5 *2 (-1159 *6)) (-4 *6 (-939 *5 *3 *4)) (-4 *3 (-784)) (-4 *4 (-841)) (-4 *5 (-306)) (-5 *1 (-906 *3 *4 *5 *6)))) (-3915 (*1 *2 *2 *2) (-12 (-4 *3 (-784)) (-4 *4 (-841)) (-4 *5 (-306)) (-5 *1 (-906 *3 *4 *5 *2)) (-4 *2 (-939 *5 *3 *4)))) (-2699 (*1 *2 *3) (-12 (-5 *3 (-635 (-1159 *7))) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-306)) (-5 *2 (-1159 *7)) (-5 *1 (-906 *4 *5 *6 *7)) (-4 *7 (-939 *6 *4 *5)))) (-2699 (*1 *2 *2 *2) (-12 (-5 *2 (-1159 *6)) (-4 *6 (-939 *5 *3 *4)) (-4 *3 (-784)) (-4 *4 (-841)) (-4 *5 (-306)) (-5 *1 (-906 *3 *4 *5 *6)))) (-2699 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-939 *6 *4 *5)) (-5 *1 (-906 *4 *5 *6 *2)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-306)))) (-2699 (*1 *2 *2 *2) (-12 (-4 *3 (-784)) (-4 *4 (-841)) (-4 *5 (-306)) (-5 *1 (-906 *3 *4 *5 *2)) (-4 *2 (-939 *5 *3 *4)))))
+(-10 -7 (-15 -2699 (|#4| |#4| |#4|)) (-15 -2699 (|#4| (-635 |#4|))) (-15 -2699 ((-1159 |#4|) (-1159 |#4|) (-1159 |#4|))) (-15 -2699 ((-1159 |#4|) (-635 (-1159 |#4|)))) (-15 -3915 (|#4| |#4| |#4|)) (-15 -3915 ((-1159 |#4|) (-1159 |#4|) (-1159 |#4|))) (-15 -3915 (|#4| (-635 |#4|))))
+((-2893 (((-894 (-558)) (-961)) 23) (((-894 (-558)) (-635 (-558))) 20)) (-3925 (((-894 (-558)) (-635 (-558))) 48) (((-894 (-558)) (-911)) 49)) (-2885 (((-894 (-558))) 24)) (-2865 (((-894 (-558))) 38) (((-894 (-558)) (-635 (-558))) 37)) (-2855 (((-894 (-558))) 36) (((-894 (-558)) (-635 (-558))) 35)) (-2846 (((-894 (-558))) 34) (((-894 (-558)) (-635 (-558))) 33)) (-2836 (((-894 (-558))) 32) (((-894 (-558)) (-635 (-558))) 31)) (-2825 (((-894 (-558))) 30) (((-894 (-558)) (-635 (-558))) 29)) (-2874 (((-894 (-558))) 40) (((-894 (-558)) (-635 (-558))) 39)) (-3967 (((-894 (-558)) (-635 (-558))) 52) (((-894 (-558)) (-911)) 53)) (-3956 (((-894 (-558)) (-635 (-558))) 50) (((-894 (-558)) (-911)) 51)) (-3934 (((-894 (-558)) (-635 (-558))) 46) (((-894 (-558)) (-911)) 47)) (-3943 (((-894 (-558)) (-635 (-911))) 43)))
+(((-907) (-10 -7 (-15 -3925 ((-894 (-558)) (-911))) (-15 -3925 ((-894 (-558)) (-635 (-558)))) (-15 -3934 ((-894 (-558)) (-911))) (-15 -3934 ((-894 (-558)) (-635 (-558)))) (-15 -3943 ((-894 (-558)) (-635 (-911)))) (-15 -3956 ((-894 (-558)) (-911))) (-15 -3956 ((-894 (-558)) (-635 (-558)))) (-15 -3967 ((-894 (-558)) (-911))) (-15 -3967 ((-894 (-558)) (-635 (-558)))) (-15 -2825 ((-894 (-558)) (-635 (-558)))) (-15 -2825 ((-894 (-558)))) (-15 -2836 ((-894 (-558)) (-635 (-558)))) (-15 -2836 ((-894 (-558)))) (-15 -2846 ((-894 (-558)) (-635 (-558)))) (-15 -2846 ((-894 (-558)))) (-15 -2855 ((-894 (-558)) (-635 (-558)))) (-15 -2855 ((-894 (-558)))) (-15 -2865 ((-894 (-558)) (-635 (-558)))) (-15 -2865 ((-894 (-558)))) (-15 -2874 ((-894 (-558)) (-635 (-558)))) (-15 -2874 ((-894 (-558)))) (-15 -2885 ((-894 (-558)))) (-15 -2893 ((-894 (-558)) (-635 (-558)))) (-15 -2893 ((-894 (-558)) (-961))))) (T -907))
+((-2893 (*1 *2 *3) (-12 (-5 *3 (-961)) (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-2893 (*1 *2 *3) (-12 (-5 *3 (-635 (-558))) (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-2885 (*1 *2) (-12 (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-2874 (*1 *2) (-12 (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-2874 (*1 *2 *3) (-12 (-5 *3 (-635 (-558))) (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-2865 (*1 *2) (-12 (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-2865 (*1 *2 *3) (-12 (-5 *3 (-635 (-558))) (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-2855 (*1 *2) (-12 (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-2855 (*1 *2 *3) (-12 (-5 *3 (-635 (-558))) (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-2846 (*1 *2) (-12 (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-2846 (*1 *2 *3) (-12 (-5 *3 (-635 (-558))) (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-2836 (*1 *2) (-12 (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-2836 (*1 *2 *3) (-12 (-5 *3 (-635 (-558))) (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-2825 (*1 *2) (-12 (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-2825 (*1 *2 *3) (-12 (-5 *3 (-635 (-558))) (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-3967 (*1 *2 *3) (-12 (-5 *3 (-635 (-558))) (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-3967 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-3956 (*1 *2 *3) (-12 (-5 *3 (-635 (-558))) (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-3956 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-3943 (*1 *2 *3) (-12 (-5 *3 (-635 (-911))) (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-3934 (*1 *2 *3) (-12 (-5 *3 (-635 (-558))) (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-3934 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-3925 (*1 *2 *3) (-12 (-5 *3 (-635 (-558))) (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-3925 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-894 (-558))) (-5 *1 (-907)))))
+(-10 -7 (-15 -3925 ((-894 (-558)) (-911))) (-15 -3925 ((-894 (-558)) (-635 (-558)))) (-15 -3934 ((-894 (-558)) (-911))) (-15 -3934 ((-894 (-558)) (-635 (-558)))) (-15 -3943 ((-894 (-558)) (-635 (-911)))) (-15 -3956 ((-894 (-558)) (-911))) (-15 -3956 ((-894 (-558)) (-635 (-558)))) (-15 -3967 ((-894 (-558)) (-911))) (-15 -3967 ((-894 (-558)) (-635 (-558)))) (-15 -2825 ((-894 (-558)) (-635 (-558)))) (-15 -2825 ((-894 (-558)))) (-15 -2836 ((-894 (-558)) (-635 (-558)))) (-15 -2836 ((-894 (-558)))) (-15 -2846 ((-894 (-558)) (-635 (-558)))) (-15 -2846 ((-894 (-558)))) (-15 -2855 ((-894 (-558)) (-635 (-558)))) (-15 -2855 ((-894 (-558)))) (-15 -2865 ((-894 (-558)) (-635 (-558)))) (-15 -2865 ((-894 (-558)))) (-15 -2874 ((-894 (-558)) (-635 (-558)))) (-15 -2874 ((-894 (-558)))) (-15 -2885 ((-894 (-558)))) (-15 -2893 ((-894 (-558)) (-635 (-558)))) (-15 -2893 ((-894 (-558)) (-961))))
+((-2914 (((-635 (-942 |#1|)) (-635 (-942 |#1|)) (-635 (-1163))) 12)) (-2904 (((-635 (-942 |#1|)) (-635 (-942 |#1|)) (-635 (-1163))) 11)))
+(((-908 |#1|) (-10 -7 (-15 -2904 ((-635 (-942 |#1|)) (-635 (-942 |#1|)) (-635 (-1163)))) (-15 -2914 ((-635 (-942 |#1|)) (-635 (-942 |#1|)) (-635 (-1163))))) (-450)) (T -908))
+((-2914 (*1 *2 *2 *3) (-12 (-5 *2 (-635 (-942 *4))) (-5 *3 (-635 (-1163))) (-4 *4 (-450)) (-5 *1 (-908 *4)))) (-2904 (*1 *2 *2 *3) (-12 (-5 *2 (-635 (-942 *4))) (-5 *3 (-635 (-1163))) (-4 *4 (-450)) (-5 *1 (-908 *4)))))
+(-10 -7 (-15 -2904 ((-635 (-942 |#1|)) (-635 (-942 |#1|)) (-635 (-1163)))) (-15 -2914 ((-635 (-942 |#1|)) (-635 (-942 |#1|)) (-635 (-1163)))))
+((-3220 (((-315 |#1|) (-475)) 16)))
+(((-909 |#1|) (-10 -7 (-15 -3220 ((-315 |#1|) (-475)))) (-13 (-841) (-550))) (T -909))
+((-3220 (*1 *2 *3) (-12 (-5 *3 (-475)) (-5 *2 (-315 *4)) (-5 *1 (-909 *4)) (-4 *4 (-13 (-841) (-550))))))
+(-10 -7 (-15 -3220 ((-315 |#1|) (-475))))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 42)) (-1881 (($ $) 41)) (-1857 (((-112) $) 39)) (-2089 (((-3 $ "failed") $ $) 19)) (-1816 (($) 17 T CONST)) (-2588 (((-3 $ "failed") $) 33)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) 52)) (-2035 (((-112) $) 31)) (-2665 (($ $ $) 47) (($ (-635 $)) 46)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) 45)) (-2699 (($ $ $) 49) (($ (-635 $)) 48)) (-3983 (((-3 $ "failed") $ $) 43)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ $) 44)) (-2542 (((-762)) 28)) (-1870 (((-112) $ $) 40)) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1683 (((-112) $ $) 6)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24)))
+(((-910) (-139)) (T -910))
+((-2934 (*1 *2 *3) (-12 (-4 *1 (-910)) (-5 *2 (-2 (|:| -2023 (-635 *1)) (|:| -4098 *1))) (-5 *3 (-635 *1)))) (-2922 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-635 *1)) (-4 *1 (-910)))))
+(-13 (-450) (-10 -8 (-15 -2934 ((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $))) (-15 -2922 ((-3 (-635 $) "failed") (-635 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-608 (-558)) . T) ((-608 $) . T) ((-605 (-853)) . T) ((-171) . T) ((-289) . T) ((-450) . T) ((-550) . T) ((-638 $) . T) ((-708 $) . T) ((-717) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
+((-3207 (((-112) $ $) NIL)) (-1816 (($) NIL T CONST)) (-2588 (((-3 $ "failed") $) NIL)) (-2035 (((-112) $) NIL)) (-3910 (($ $ $) NIL)) (-3542 (($ $ $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-2699 (($ $ $) NIL)) (-3220 (((-853) $) NIL)) (-2142 (($) NIL T CONST)) (-1747 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1683 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-762)) NIL) (($ $ (-911)) NIL)) (* (($ (-911) $) NIL) (($ $ $) NIL)))
+(((-911) (-13 (-785) (-717) (-10 -8 (-15 -2699 ($ $ $)) (-6 (-4384 "*"))))) (T -911))
+((-2699 (*1 *1 *1 *1) (-5 *1 (-911))))
+(-13 (-785) (-717) (-10 -8 (-15 -2699 ($ $ $)) (-6 (-4384 "*"))))
+((-2945 ((|#2| (-635 |#1|) (-635 |#1|)) 24)))
+(((-912 |#1| |#2|) (-10 -7 (-15 -2945 (|#2| (-635 |#1|) (-635 |#1|)))) (-362) (-1222 |#1|)) (T -912))
+((-2945 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *4)) (-4 *4 (-362)) (-4 *2 (-1222 *4)) (-5 *1 (-912 *4 *2)))))
+(-10 -7 (-15 -2945 (|#2| (-635 |#1|) (-635 |#1|))))
+((-2368 (((-1159 |#2|) (-635 |#2|) (-635 |#2|)) 17) (((-1219 |#1| |#2|) (-1219 |#1| |#2|) (-635 |#2|) (-635 |#2|)) 13)))
+(((-913 |#1| |#2|) (-10 -7 (-15 -2368 ((-1219 |#1| |#2|) (-1219 |#1| |#2|) (-635 |#2|) (-635 |#2|))) (-15 -2368 ((-1159 |#2|) (-635 |#2|) (-635 |#2|)))) (-1163) (-362)) (T -913))
+((-2368 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *5)) (-4 *5 (-362)) (-5 *2 (-1159 *5)) (-5 *1 (-913 *4 *5)) (-14 *4 (-1163)))) (-2368 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1219 *4 *5)) (-5 *3 (-635 *5)) (-14 *4 (-1163)) (-4 *5 (-362)) (-5 *1 (-913 *4 *5)))))
+(-10 -7 (-15 -2368 ((-1219 |#1| |#2|) (-1219 |#1| |#2|) (-635 |#2|) (-635 |#2|))) (-15 -2368 ((-1159 |#2|) (-635 |#2|) (-635 |#2|))))
+((-2966 (((-558) (-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2660 (-635 (-1246 (-406 (-942 |#1|))))))))) (-1145)) 138)) (-3177 ((|#4| |#4|) 154)) (-3012 (((-635 (-406 (-942 |#1|))) (-635 (-1163))) 118)) (-3166 (((-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2660 (-635 (-1246 (-406 (-942 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558)))) (-679 |#4|) (-635 (-406 (-942 |#1|))) (-635 (-635 |#4|)) (-762) (-762) (-558)) 75)) (-3057 (((-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2660 (-635 (-1246 (-406 (-942 |#1|)))))) (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2660 (-635 (-1246 (-406 (-942 |#1|)))))) (-635 |#4|)) 59)) (-3155 (((-679 |#4|) (-679 |#4|) (-635 |#4|)) 55)) (-2977 (((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2660 (-635 (-1246 (-406 (-942 |#1|))))))))) (-1145)) 150)) (-2956 (((-558) (-679 |#4|) (-911) (-1145)) 132) (((-558) (-679 |#4|) (-635 (-1163)) (-911) (-1145)) 131) (((-558) (-679 |#4|) (-635 |#4|) (-911) (-1145)) 130) (((-558) (-679 |#4|) (-1145)) 127) (((-558) (-679 |#4|) (-635 (-1163)) (-1145)) 126) (((-558) (-679 |#4|) (-635 |#4|) (-1145)) 125) (((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2660 (-635 (-1246 (-406 (-942 |#1|))))))))) (-679 |#4|) (-911)) 124) (((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2660 (-635 (-1246 (-406 (-942 |#1|))))))))) (-679 |#4|) (-635 (-1163)) (-911)) 123) (((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2660 (-635 (-1246 (-406 (-942 |#1|))))))))) (-679 |#4|) (-635 |#4|) (-911)) 122) (((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2660 (-635 (-1246 (-406 (-942 |#1|))))))))) (-679 |#4|)) 120) (((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2660 (-635 (-1246 (-406 (-942 |#1|))))))))) (-679 |#4|) (-635 (-1163))) 119) (((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2660 (-635 (-1246 (-406 (-942 |#1|))))))))) (-679 |#4|) (-635 |#4|)) 115)) (-3023 ((|#4| (-942 |#1|)) 68)) (-3135 (((-112) (-635 |#4|) (-635 (-635 |#4|))) 151)) (-3125 (((-635 (-635 (-558))) (-558) (-558)) 129)) (-3113 (((-635 (-635 |#4|)) (-635 (-635 |#4|))) 88)) (-3102 (((-762) (-635 (-2 (|:| -3833 (-762)) (|:| |eqns| (-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558)))))) (|:| |fgb| (-635 |#4|))))) 86)) (-3092 (((-762) (-635 (-2 (|:| -3833 (-762)) (|:| |eqns| (-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558)))))) (|:| |fgb| (-635 |#4|))))) 85)) (-3188 (((-112) (-635 (-942 |#1|))) 17) (((-112) (-635 |#4|)) 13)) (-3034 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-635 |#4|)) (|:| |n0| (-635 |#4|))) (-635 |#4|) (-635 |#4|)) 71)) (-3080 (((-635 |#4|) |#4|) 49)) (-3001 (((-635 (-406 (-942 |#1|))) (-635 |#4|)) 114) (((-679 (-406 (-942 |#1|))) (-679 |#4|)) 56) (((-406 (-942 |#1|)) |#4|) 111)) (-2990 (((-2 (|:| |rgl| (-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2660 (-635 (-1246 (-406 (-942 |#1|)))))))))) (|:| |rgsz| (-558))) (-679 |#4|) (-635 (-406 (-942 |#1|))) (-762) (-1145) (-558)) 93)) (-3044 (((-635 (-2 (|:| -3833 (-762)) (|:| |eqns| (-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558)))))) (|:| |fgb| (-635 |#4|)))) (-679 |#4|) (-762)) 84)) (-3145 (((-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558))))) (-679 |#4|) (-762)) 101)) (-3068 (((-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2660 (-635 (-1246 (-406 (-942 |#1|)))))) (-2 (|:| -3683 (-679 (-406 (-942 |#1|)))) (|:| |vec| (-635 (-406 (-942 |#1|)))) (|:| -3833 (-762)) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558))))) 48)))
+(((-914 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2956 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2660 (-635 (-1246 (-406 (-942 |#1|))))))))) (-679 |#4|) (-635 |#4|))) (-15 -2956 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2660 (-635 (-1246 (-406 (-942 |#1|))))))))) (-679 |#4|) (-635 (-1163)))) (-15 -2956 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2660 (-635 (-1246 (-406 (-942 |#1|))))))))) (-679 |#4|))) (-15 -2956 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2660 (-635 (-1246 (-406 (-942 |#1|))))))))) (-679 |#4|) (-635 |#4|) (-911))) (-15 -2956 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2660 (-635 (-1246 (-406 (-942 |#1|))))))))) (-679 |#4|) (-635 (-1163)) (-911))) (-15 -2956 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2660 (-635 (-1246 (-406 (-942 |#1|))))))))) (-679 |#4|) (-911))) (-15 -2956 ((-558) (-679 |#4|) (-635 |#4|) (-1145))) (-15 -2956 ((-558) (-679 |#4|) (-635 (-1163)) (-1145))) (-15 -2956 ((-558) (-679 |#4|) (-1145))) (-15 -2956 ((-558) (-679 |#4|) (-635 |#4|) (-911) (-1145))) (-15 -2956 ((-558) (-679 |#4|) (-635 (-1163)) (-911) (-1145))) (-15 -2956 ((-558) (-679 |#4|) (-911) (-1145))) (-15 -2966 ((-558) (-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2660 (-635 (-1246 (-406 (-942 |#1|))))))))) (-1145))) (-15 -2977 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2660 (-635 (-1246 (-406 (-942 |#1|))))))))) (-1145))) (-15 -2990 ((-2 (|:| |rgl| (-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2660 (-635 (-1246 (-406 (-942 |#1|)))))))))) (|:| |rgsz| (-558))) (-679 |#4|) (-635 (-406 (-942 |#1|))) (-762) (-1145) (-558))) (-15 -3001 ((-406 (-942 |#1|)) |#4|)) (-15 -3001 ((-679 (-406 (-942 |#1|))) (-679 |#4|))) (-15 -3001 ((-635 (-406 (-942 |#1|))) (-635 |#4|))) (-15 -3012 ((-635 (-406 (-942 |#1|))) (-635 (-1163)))) (-15 -3023 (|#4| (-942 |#1|))) (-15 -3034 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-635 |#4|)) (|:| |n0| (-635 |#4|))) (-635 |#4|) (-635 |#4|))) (-15 -3044 ((-635 (-2 (|:| -3833 (-762)) (|:| |eqns| (-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558)))))) (|:| |fgb| (-635 |#4|)))) (-679 |#4|) (-762))) (-15 -3057 ((-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2660 (-635 (-1246 (-406 (-942 |#1|)))))) (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2660 (-635 (-1246 (-406 (-942 |#1|)))))) (-635 |#4|))) (-15 -3068 ((-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2660 (-635 (-1246 (-406 (-942 |#1|)))))) (-2 (|:| -3683 (-679 (-406 (-942 |#1|)))) (|:| |vec| (-635 (-406 (-942 |#1|)))) (|:| -3833 (-762)) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558)))))) (-15 -3080 ((-635 |#4|) |#4|)) (-15 -3092 ((-762) (-635 (-2 (|:| -3833 (-762)) (|:| |eqns| (-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558)))))) (|:| |fgb| (-635 |#4|)))))) (-15 -3102 ((-762) (-635 (-2 (|:| -3833 (-762)) (|:| |eqns| (-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558)))))) (|:| |fgb| (-635 |#4|)))))) (-15 -3113 ((-635 (-635 |#4|)) (-635 (-635 |#4|)))) (-15 -3125 ((-635 (-635 (-558))) (-558) (-558))) (-15 -3135 ((-112) (-635 |#4|) (-635 (-635 |#4|)))) (-15 -3145 ((-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558))))) (-679 |#4|) (-762))) (-15 -3155 ((-679 |#4|) (-679 |#4|) (-635 |#4|))) (-15 -3166 ((-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2660 (-635 (-1246 (-406 (-942 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558)))) (-679 |#4|) (-635 (-406 (-942 |#1|))) (-635 (-635 |#4|)) (-762) (-762) (-558))) (-15 -3177 (|#4| |#4|)) (-15 -3188 ((-112) (-635 |#4|))) (-15 -3188 ((-112) (-635 (-942 |#1|))))) (-13 (-306) (-146)) (-13 (-841) (-606 (-1163))) (-784) (-939 |#1| |#3| |#2|)) (T -914))
+((-3188 (*1 *2 *3) (-12 (-5 *3 (-635 (-942 *4))) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784)) (-5 *2 (-112)) (-5 *1 (-914 *4 *5 *6 *7)) (-4 *7 (-939 *4 *6 *5)))) (-3188 (*1 *2 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-939 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784)) (-5 *2 (-112)) (-5 *1 (-914 *4 *5 *6 *7)))) (-3177 (*1 *2 *2) (-12 (-4 *3 (-13 (-306) (-146))) (-4 *4 (-13 (-841) (-606 (-1163)))) (-4 *5 (-784)) (-5 *1 (-914 *3 *4 *5 *2)) (-4 *2 (-939 *3 *5 *4)))) (-3166 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558))))) (-5 *4 (-679 *12)) (-5 *5 (-635 (-406 (-942 *9)))) (-5 *6 (-635 (-635 *12))) (-5 *7 (-762)) (-5 *8 (-558)) (-4 *9 (-13 (-306) (-146))) (-4 *12 (-939 *9 *11 *10)) (-4 *10 (-13 (-841) (-606 (-1163)))) (-4 *11 (-784)) (-5 *2 (-2 (|:| |eqzro| (-635 *12)) (|:| |neqzro| (-635 *12)) (|:| |wcond| (-635 (-942 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 *9)))) (|:| -2660 (-635 (-1246 (-406 (-942 *9))))))))) (-5 *1 (-914 *9 *10 *11 *12)))) (-3155 (*1 *2 *2 *3) (-12 (-5 *2 (-679 *7)) (-5 *3 (-635 *7)) (-4 *7 (-939 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784)) (-5 *1 (-914 *4 *5 *6 *7)))) (-3145 (*1 *2 *3 *4) (-12 (-5 *3 (-679 *8)) (-5 *4 (-762)) (-4 *8 (-939 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-841) (-606 (-1163)))) (-4 *7 (-784)) (-5 *2 (-635 (-2 (|:| |det| *8) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558)))))) (-5 *1 (-914 *5 *6 *7 *8)))) (-3135 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-635 *8))) (-5 *3 (-635 *8)) (-4 *8 (-939 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-841) (-606 (-1163)))) (-4 *7 (-784)) (-5 *2 (-112)) (-5 *1 (-914 *5 *6 *7 *8)))) (-3125 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784)) (-5 *2 (-635 (-635 (-558)))) (-5 *1 (-914 *4 *5 *6 *7)) (-5 *3 (-558)) (-4 *7 (-939 *4 *6 *5)))) (-3113 (*1 *2 *2) (-12 (-5 *2 (-635 (-635 *6))) (-4 *6 (-939 *3 *5 *4)) (-4 *3 (-13 (-306) (-146))) (-4 *4 (-13 (-841) (-606 (-1163)))) (-4 *5 (-784)) (-5 *1 (-914 *3 *4 *5 *6)))) (-3102 (*1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| -3833 (-762)) (|:| |eqns| (-635 (-2 (|:| |det| *7) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558)))))) (|:| |fgb| (-635 *7))))) (-4 *7 (-939 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784)) (-5 *2 (-762)) (-5 *1 (-914 *4 *5 *6 *7)))) (-3092 (*1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| -3833 (-762)) (|:| |eqns| (-635 (-2 (|:| |det| *7) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558)))))) (|:| |fgb| (-635 *7))))) (-4 *7 (-939 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784)) (-5 *2 (-762)) (-5 *1 (-914 *4 *5 *6 *7)))) (-3080 (*1 *2 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784)) (-5 *2 (-635 *3)) (-5 *1 (-914 *4 *5 *6 *3)) (-4 *3 (-939 *4 *6 *5)))) (-3068 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3683 (-679 (-406 (-942 *4)))) (|:| |vec| (-635 (-406 (-942 *4)))) (|:| -3833 (-762)) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558))))) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784)) (-5 *2 (-2 (|:| |partsol| (-1246 (-406 (-942 *4)))) (|:| -2660 (-635 (-1246 (-406 (-942 *4))))))) (-5 *1 (-914 *4 *5 *6 *7)) (-4 *7 (-939 *4 *6 *5)))) (-3057 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1246 (-406 (-942 *4)))) (|:| -2660 (-635 (-1246 (-406 (-942 *4))))))) (-5 *3 (-635 *7)) (-4 *4 (-13 (-306) (-146))) (-4 *7 (-939 *4 *6 *5)) (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784)) (-5 *1 (-914 *4 *5 *6 *7)))) (-3044 (*1 *2 *3 *4) (-12 (-5 *3 (-679 *8)) (-4 *8 (-939 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-841) (-606 (-1163)))) (-4 *7 (-784)) (-5 *2 (-635 (-2 (|:| -3833 (-762)) (|:| |eqns| (-635 (-2 (|:| |det| *8) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558)))))) (|:| |fgb| (-635 *8))))) (-5 *1 (-914 *5 *6 *7 *8)) (-5 *4 (-762)))) (-3034 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784)) (-4 *7 (-939 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-635 *7)) (|:| |n0| (-635 *7)))) (-5 *1 (-914 *4 *5 *6 *7)) (-5 *3 (-635 *7)))) (-3023 (*1 *2 *3) (-12 (-5 *3 (-942 *4)) (-4 *4 (-13 (-306) (-146))) (-4 *2 (-939 *4 *6 *5)) (-5 *1 (-914 *4 *5 *6 *2)) (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784)))) (-3012 (*1 *2 *3) (-12 (-5 *3 (-635 (-1163))) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784)) (-5 *2 (-635 (-406 (-942 *4)))) (-5 *1 (-914 *4 *5 *6 *7)) (-4 *7 (-939 *4 *6 *5)))) (-3001 (*1 *2 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-939 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784)) (-5 *2 (-635 (-406 (-942 *4)))) (-5 *1 (-914 *4 *5 *6 *7)))) (-3001 (*1 *2 *3) (-12 (-5 *3 (-679 *7)) (-4 *7 (-939 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784)) (-5 *2 (-679 (-406 (-942 *4)))) (-5 *1 (-914 *4 *5 *6 *7)))) (-3001 (*1 *2 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784)) (-5 *2 (-406 (-942 *4))) (-5 *1 (-914 *4 *5 *6 *3)) (-4 *3 (-939 *4 *6 *5)))) (-2990 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-679 *11)) (-5 *4 (-635 (-406 (-942 *8)))) (-5 *5 (-762)) (-5 *6 (-1145)) (-4 *8 (-13 (-306) (-146))) (-4 *11 (-939 *8 *10 *9)) (-4 *9 (-13 (-841) (-606 (-1163)))) (-4 *10 (-784)) (-5 *2 (-2 (|:| |rgl| (-635 (-2 (|:| |eqzro| (-635 *11)) (|:| |neqzro| (-635 *11)) (|:| |wcond| (-635 (-942 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 *8)))) (|:| -2660 (-635 (-1246 (-406 (-942 *8)))))))))) (|:| |rgsz| (-558)))) (-5 *1 (-914 *8 *9 *10 *11)) (-5 *7 (-558)))) (-2977 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784)) (-5 *2 (-635 (-2 (|:| |eqzro| (-635 *7)) (|:| |neqzro| (-635 *7)) (|:| |wcond| (-635 (-942 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 *4)))) (|:| -2660 (-635 (-1246 (-406 (-942 *4)))))))))) (-5 *1 (-914 *4 *5 *6 *7)) (-4 *7 (-939 *4 *6 *5)))) (-2966 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-2 (|:| |eqzro| (-635 *8)) (|:| |neqzro| (-635 *8)) (|:| |wcond| (-635 (-942 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 *5)))) (|:| -2660 (-635 (-1246 (-406 (-942 *5)))))))))) (-5 *4 (-1145)) (-4 *5 (-13 (-306) (-146))) (-4 *8 (-939 *5 *7 *6)) (-4 *6 (-13 (-841) (-606 (-1163)))) (-4 *7 (-784)) (-5 *2 (-558)) (-5 *1 (-914 *5 *6 *7 *8)))) (-2956 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-679 *9)) (-5 *4 (-911)) (-5 *5 (-1145)) (-4 *9 (-939 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-841) (-606 (-1163)))) (-4 *8 (-784)) (-5 *2 (-558)) (-5 *1 (-914 *6 *7 *8 *9)))) (-2956 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-679 *10)) (-5 *4 (-635 (-1163))) (-5 *5 (-911)) (-5 *6 (-1145)) (-4 *10 (-939 *7 *9 *8)) (-4 *7 (-13 (-306) (-146))) (-4 *8 (-13 (-841) (-606 (-1163)))) (-4 *9 (-784)) (-5 *2 (-558)) (-5 *1 (-914 *7 *8 *9 *10)))) (-2956 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-679 *10)) (-5 *4 (-635 *10)) (-5 *5 (-911)) (-5 *6 (-1145)) (-4 *10 (-939 *7 *9 *8)) (-4 *7 (-13 (-306) (-146))) (-4 *8 (-13 (-841) (-606 (-1163)))) (-4 *9 (-784)) (-5 *2 (-558)) (-5 *1 (-914 *7 *8 *9 *10)))) (-2956 (*1 *2 *3 *4) (-12 (-5 *3 (-679 *8)) (-5 *4 (-1145)) (-4 *8 (-939 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-841) (-606 (-1163)))) (-4 *7 (-784)) (-5 *2 (-558)) (-5 *1 (-914 *5 *6 *7 *8)))) (-2956 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-679 *9)) (-5 *4 (-635 (-1163))) (-5 *5 (-1145)) (-4 *9 (-939 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-841) (-606 (-1163)))) (-4 *8 (-784)) (-5 *2 (-558)) (-5 *1 (-914 *6 *7 *8 *9)))) (-2956 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-679 *9)) (-5 *4 (-635 *9)) (-5 *5 (-1145)) (-4 *9 (-939 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-841) (-606 (-1163)))) (-4 *8 (-784)) (-5 *2 (-558)) (-5 *1 (-914 *6 *7 *8 *9)))) (-2956 (*1 *2 *3 *4) (-12 (-5 *3 (-679 *8)) (-5 *4 (-911)) (-4 *8 (-939 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-841) (-606 (-1163)))) (-4 *7 (-784)) (-5 *2 (-635 (-2 (|:| |eqzro| (-635 *8)) (|:| |neqzro| (-635 *8)) (|:| |wcond| (-635 (-942 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 *5)))) (|:| -2660 (-635 (-1246 (-406 (-942 *5)))))))))) (-5 *1 (-914 *5 *6 *7 *8)))) (-2956 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-679 *9)) (-5 *4 (-635 (-1163))) (-5 *5 (-911)) (-4 *9 (-939 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-841) (-606 (-1163)))) (-4 *8 (-784)) (-5 *2 (-635 (-2 (|:| |eqzro| (-635 *9)) (|:| |neqzro| (-635 *9)) (|:| |wcond| (-635 (-942 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 *6)))) (|:| -2660 (-635 (-1246 (-406 (-942 *6)))))))))) (-5 *1 (-914 *6 *7 *8 *9)))) (-2956 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-679 *9)) (-5 *5 (-911)) (-4 *9 (-939 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-841) (-606 (-1163)))) (-4 *8 (-784)) (-5 *2 (-635 (-2 (|:| |eqzro| (-635 *9)) (|:| |neqzro| (-635 *9)) (|:| |wcond| (-635 (-942 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 *6)))) (|:| -2660 (-635 (-1246 (-406 (-942 *6)))))))))) (-5 *1 (-914 *6 *7 *8 *9)) (-5 *4 (-635 *9)))) (-2956 (*1 *2 *3) (-12 (-5 *3 (-679 *7)) (-4 *7 (-939 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784)) (-5 *2 (-635 (-2 (|:| |eqzro| (-635 *7)) (|:| |neqzro| (-635 *7)) (|:| |wcond| (-635 (-942 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 *4)))) (|:| -2660 (-635 (-1246 (-406 (-942 *4)))))))))) (-5 *1 (-914 *4 *5 *6 *7)))) (-2956 (*1 *2 *3 *4) (-12 (-5 *3 (-679 *8)) (-5 *4 (-635 (-1163))) (-4 *8 (-939 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-841) (-606 (-1163)))) (-4 *7 (-784)) (-5 *2 (-635 (-2 (|:| |eqzro| (-635 *8)) (|:| |neqzro| (-635 *8)) (|:| |wcond| (-635 (-942 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 *5)))) (|:| -2660 (-635 (-1246 (-406 (-942 *5)))))))))) (-5 *1 (-914 *5 *6 *7 *8)))) (-2956 (*1 *2 *3 *4) (-12 (-5 *3 (-679 *8)) (-4 *8 (-939 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-841) (-606 (-1163)))) (-4 *7 (-784)) (-5 *2 (-635 (-2 (|:| |eqzro| (-635 *8)) (|:| |neqzro| (-635 *8)) (|:| |wcond| (-635 (-942 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 *5)))) (|:| -2660 (-635 (-1246 (-406 (-942 *5)))))))))) (-5 *1 (-914 *5 *6 *7 *8)) (-5 *4 (-635 *8)))))
+(-10 -7 (-15 -2956 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2660 (-635 (-1246 (-406 (-942 |#1|))))))))) (-679 |#4|) (-635 |#4|))) (-15 -2956 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2660 (-635 (-1246 (-406 (-942 |#1|))))))))) (-679 |#4|) (-635 (-1163)))) (-15 -2956 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2660 (-635 (-1246 (-406 (-942 |#1|))))))))) (-679 |#4|))) (-15 -2956 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2660 (-635 (-1246 (-406 (-942 |#1|))))))))) (-679 |#4|) (-635 |#4|) (-911))) (-15 -2956 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2660 (-635 (-1246 (-406 (-942 |#1|))))))))) (-679 |#4|) (-635 (-1163)) (-911))) (-15 -2956 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2660 (-635 (-1246 (-406 (-942 |#1|))))))))) (-679 |#4|) (-911))) (-15 -2956 ((-558) (-679 |#4|) (-635 |#4|) (-1145))) (-15 -2956 ((-558) (-679 |#4|) (-635 (-1163)) (-1145))) (-15 -2956 ((-558) (-679 |#4|) (-1145))) (-15 -2956 ((-558) (-679 |#4|) (-635 |#4|) (-911) (-1145))) (-15 -2956 ((-558) (-679 |#4|) (-635 (-1163)) (-911) (-1145))) (-15 -2956 ((-558) (-679 |#4|) (-911) (-1145))) (-15 -2966 ((-558) (-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2660 (-635 (-1246 (-406 (-942 |#1|))))))))) (-1145))) (-15 -2977 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2660 (-635 (-1246 (-406 (-942 |#1|))))))))) (-1145))) (-15 -2990 ((-2 (|:| |rgl| (-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2660 (-635 (-1246 (-406 (-942 |#1|)))))))))) (|:| |rgsz| (-558))) (-679 |#4|) (-635 (-406 (-942 |#1|))) (-762) (-1145) (-558))) (-15 -3001 ((-406 (-942 |#1|)) |#4|)) (-15 -3001 ((-679 (-406 (-942 |#1|))) (-679 |#4|))) (-15 -3001 ((-635 (-406 (-942 |#1|))) (-635 |#4|))) (-15 -3012 ((-635 (-406 (-942 |#1|))) (-635 (-1163)))) (-15 -3023 (|#4| (-942 |#1|))) (-15 -3034 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-635 |#4|)) (|:| |n0| (-635 |#4|))) (-635 |#4|) (-635 |#4|))) (-15 -3044 ((-635 (-2 (|:| -3833 (-762)) (|:| |eqns| (-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558)))))) (|:| |fgb| (-635 |#4|)))) (-679 |#4|) (-762))) (-15 -3057 ((-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2660 (-635 (-1246 (-406 (-942 |#1|)))))) (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2660 (-635 (-1246 (-406 (-942 |#1|)))))) (-635 |#4|))) (-15 -3068 ((-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2660 (-635 (-1246 (-406 (-942 |#1|)))))) (-2 (|:| -3683 (-679 (-406 (-942 |#1|)))) (|:| |vec| (-635 (-406 (-942 |#1|)))) (|:| -3833 (-762)) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558)))))) (-15 -3080 ((-635 |#4|) |#4|)) (-15 -3092 ((-762) (-635 (-2 (|:| -3833 (-762)) (|:| |eqns| (-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558)))))) (|:| |fgb| (-635 |#4|)))))) (-15 -3102 ((-762) (-635 (-2 (|:| -3833 (-762)) (|:| |eqns| (-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558)))))) (|:| |fgb| (-635 |#4|)))))) (-15 -3113 ((-635 (-635 |#4|)) (-635 (-635 |#4|)))) (-15 -3125 ((-635 (-635 (-558))) (-558) (-558))) (-15 -3135 ((-112) (-635 |#4|) (-635 (-635 |#4|)))) (-15 -3145 ((-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558))))) (-679 |#4|) (-762))) (-15 -3155 ((-679 |#4|) (-679 |#4|) (-635 |#4|))) (-15 -3166 ((-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2660 (-635 (-1246 (-406 (-942 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558)))) (-679 |#4|) (-635 (-406 (-942 |#1|))) (-635 (-635 |#4|)) (-762) (-762) (-558))) (-15 -3177 (|#4| |#4|)) (-15 -3188 ((-112) (-635 |#4|))) (-15 -3188 ((-112) (-635 (-942 |#1|)))))
+((-3312 (((-917) |#1| (-1163)) 17) (((-917) |#1| (-1163) (-1081 (-224))) 21)) (-2228 (((-917) |#1| |#1| (-1163) (-1081 (-224))) 19) (((-917) |#1| (-1163) (-1081 (-224))) 15)))
+(((-915 |#1|) (-10 -7 (-15 -2228 ((-917) |#1| (-1163) (-1081 (-224)))) (-15 -2228 ((-917) |#1| |#1| (-1163) (-1081 (-224)))) (-15 -3312 ((-917) |#1| (-1163) (-1081 (-224)))) (-15 -3312 ((-917) |#1| (-1163)))) (-606 (-534))) (T -915))
+((-3312 (*1 *2 *3 *4) (-12 (-5 *4 (-1163)) (-5 *2 (-917)) (-5 *1 (-915 *3)) (-4 *3 (-606 (-534))))) (-3312 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1163)) (-5 *5 (-1081 (-224))) (-5 *2 (-917)) (-5 *1 (-915 *3)) (-4 *3 (-606 (-534))))) (-2228 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1163)) (-5 *5 (-1081 (-224))) (-5 *2 (-917)) (-5 *1 (-915 *3)) (-4 *3 (-606 (-534))))) (-2228 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1163)) (-5 *5 (-1081 (-224))) (-5 *2 (-917)) (-5 *1 (-915 *3)) (-4 *3 (-606 (-534))))))
+(-10 -7 (-15 -2228 ((-917) |#1| (-1163) (-1081 (-224)))) (-15 -2228 ((-917) |#1| |#1| (-1163) (-1081 (-224)))) (-15 -3312 ((-917) |#1| (-1163) (-1081 (-224)))) (-15 -3312 ((-917) |#1| (-1163))))
+((-1772 (($ $ (-1081 (-224)) (-1081 (-224)) (-1081 (-224))) 69)) (-1797 (((-1081 (-224)) $) 40)) (-1783 (((-1081 (-224)) $) 39)) (-1770 (((-1081 (-224)) $) 38)) (-2205 (((-635 (-635 (-224))) $) 43)) (-2216 (((-1081 (-224)) $) 41)) (-3364 (((-558) (-558)) 32)) (-3403 (((-558) (-558)) 28)) (-3384 (((-558) (-558)) 30)) (-3345 (((-112) (-112)) 35)) (-3374 (((-558)) 31)) (-2634 (($ $ (-1081 (-224))) 72) (($ $) 73)) (-2237 (($ (-1 (-933 (-224)) (-224)) (-1081 (-224))) 77) (($ (-1 (-933 (-224)) (-224)) (-1081 (-224)) (-1081 (-224)) (-1081 (-224)) (-1081 (-224))) 78)) (-2228 (($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1081 (-224))) 80) (($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1081 (-224)) (-1081 (-224)) (-1081 (-224)) (-1081 (-224))) 81) (($ $ (-1081 (-224))) 75)) (-3335 (((-558)) 36)) (-3414 (((-558)) 27)) (-3393 (((-558)) 29)) (-2031 (((-635 (-635 (-933 (-224)))) $) 93)) (-3323 (((-112) (-112)) 37)) (-3220 (((-853) $) 92)) (-3355 (((-112)) 34)))
+(((-916) (-13 (-964) (-10 -8 (-15 -2237 ($ (-1 (-933 (-224)) (-224)) (-1081 (-224)))) (-15 -2237 ($ (-1 (-933 (-224)) (-224)) (-1081 (-224)) (-1081 (-224)) (-1081 (-224)) (-1081 (-224)))) (-15 -2228 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1081 (-224)))) (-15 -2228 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1081 (-224)) (-1081 (-224)) (-1081 (-224)) (-1081 (-224)))) (-15 -2228 ($ $ (-1081 (-224)))) (-15 -1772 ($ $ (-1081 (-224)) (-1081 (-224)) (-1081 (-224)))) (-15 -2634 ($ $ (-1081 (-224)))) (-15 -2634 ($ $)) (-15 -2216 ((-1081 (-224)) $)) (-15 -2205 ((-635 (-635 (-224))) $)) (-15 -3414 ((-558))) (-15 -3403 ((-558) (-558))) (-15 -3393 ((-558))) (-15 -3384 ((-558) (-558))) (-15 -3374 ((-558))) (-15 -3364 ((-558) (-558))) (-15 -3355 ((-112))) (-15 -3345 ((-112) (-112))) (-15 -3335 ((-558))) (-15 -3323 ((-112) (-112)))))) (T -916))
+((-2237 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-933 (-224)) (-224))) (-5 *3 (-1081 (-224))) (-5 *1 (-916)))) (-2237 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-933 (-224)) (-224))) (-5 *3 (-1081 (-224))) (-5 *1 (-916)))) (-2228 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1081 (-224))) (-5 *1 (-916)))) (-2228 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1081 (-224))) (-5 *1 (-916)))) (-2228 (*1 *1 *1 *2) (-12 (-5 *2 (-1081 (-224))) (-5 *1 (-916)))) (-1772 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1081 (-224))) (-5 *1 (-916)))) (-2634 (*1 *1 *1 *2) (-12 (-5 *2 (-1081 (-224))) (-5 *1 (-916)))) (-2634 (*1 *1 *1) (-5 *1 (-916))) (-2216 (*1 *2 *1) (-12 (-5 *2 (-1081 (-224))) (-5 *1 (-916)))) (-2205 (*1 *2 *1) (-12 (-5 *2 (-635 (-635 (-224)))) (-5 *1 (-916)))) (-3414 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-916)))) (-3403 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-916)))) (-3393 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-916)))) (-3384 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-916)))) (-3374 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-916)))) (-3364 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-916)))) (-3355 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-916)))) (-3345 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-916)))) (-3335 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-916)))) (-3323 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-916)))))
+(-13 (-964) (-10 -8 (-15 -2237 ($ (-1 (-933 (-224)) (-224)) (-1081 (-224)))) (-15 -2237 ($ (-1 (-933 (-224)) (-224)) (-1081 (-224)) (-1081 (-224)) (-1081 (-224)) (-1081 (-224)))) (-15 -2228 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1081 (-224)))) (-15 -2228 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1081 (-224)) (-1081 (-224)) (-1081 (-224)) (-1081 (-224)))) (-15 -2228 ($ $ (-1081 (-224)))) (-15 -1772 ($ $ (-1081 (-224)) (-1081 (-224)) (-1081 (-224)))) (-15 -2634 ($ $ (-1081 (-224)))) (-15 -2634 ($ $)) (-15 -2216 ((-1081 (-224)) $)) (-15 -2205 ((-635 (-635 (-224))) $)) (-15 -3414 ((-558))) (-15 -3403 ((-558) (-558))) (-15 -3393 ((-558))) (-15 -3384 ((-558) (-558))) (-15 -3374 ((-558))) (-15 -3364 ((-558) (-558))) (-15 -3355 ((-112))) (-15 -3345 ((-112) (-112))) (-15 -3335 ((-558))) (-15 -3323 ((-112) (-112)))))
+((-1772 (($ $ (-1081 (-224))) 69) (($ $ (-1081 (-224)) (-1081 (-224))) 70)) (-1783 (((-1081 (-224)) $) 44)) (-1770 (((-1081 (-224)) $) 43)) (-2216 (((-1081 (-224)) $) 45)) (-3237 (((-558) (-558)) 37)) (-3278 (((-558) (-558)) 33)) (-3257 (((-558) (-558)) 35)) (-3210 (((-112) (-112)) 39)) (-3247 (((-558)) 36)) (-2634 (($ $ (-1081 (-224))) 73) (($ $) 74)) (-2237 (($ (-1 (-933 (-224)) (-224)) (-1081 (-224))) 83) (($ (-1 (-933 (-224)) (-224)) (-1081 (-224)) (-1081 (-224)) (-1081 (-224))) 84)) (-3312 (($ (-1 (-224) (-224)) (-1081 (-224))) 91) (($ (-1 (-224) (-224))) 94)) (-2228 (($ (-1 (-224) (-224)) (-1081 (-224))) 78) (($ (-1 (-224) (-224)) (-1081 (-224)) (-1081 (-224))) 79) (($ (-635 (-1 (-224) (-224))) (-1081 (-224))) 86) (($ (-635 (-1 (-224) (-224))) (-1081 (-224)) (-1081 (-224))) 87) (($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1081 (-224))) 80) (($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1081 (-224)) (-1081 (-224)) (-1081 (-224))) 81) (($ $ (-1081 (-224))) 75)) (-3300 (((-112) $) 40)) (-3198 (((-558)) 41)) (-3289 (((-558)) 32)) (-3267 (((-558)) 34)) (-2031 (((-635 (-635 (-933 (-224)))) $) 23)) (-1854 (((-112) (-112)) 42)) (-3220 (((-853) $) 105)) (-3223 (((-112)) 38)))
+(((-917) (-13 (-945) (-10 -8 (-15 -2228 ($ (-1 (-224) (-224)) (-1081 (-224)))) (-15 -2228 ($ (-1 (-224) (-224)) (-1081 (-224)) (-1081 (-224)))) (-15 -2228 ($ (-635 (-1 (-224) (-224))) (-1081 (-224)))) (-15 -2228 ($ (-635 (-1 (-224) (-224))) (-1081 (-224)) (-1081 (-224)))) (-15 -2228 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1081 (-224)))) (-15 -2228 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1081 (-224)) (-1081 (-224)) (-1081 (-224)))) (-15 -2237 ($ (-1 (-933 (-224)) (-224)) (-1081 (-224)))) (-15 -2237 ($ (-1 (-933 (-224)) (-224)) (-1081 (-224)) (-1081 (-224)) (-1081 (-224)))) (-15 -3312 ($ (-1 (-224) (-224)) (-1081 (-224)))) (-15 -3312 ($ (-1 (-224) (-224)))) (-15 -2228 ($ $ (-1081 (-224)))) (-15 -3300 ((-112) $)) (-15 -1772 ($ $ (-1081 (-224)))) (-15 -1772 ($ $ (-1081 (-224)) (-1081 (-224)))) (-15 -2634 ($ $ (-1081 (-224)))) (-15 -2634 ($ $)) (-15 -2216 ((-1081 (-224)) $)) (-15 -3289 ((-558))) (-15 -3278 ((-558) (-558))) (-15 -3267 ((-558))) (-15 -3257 ((-558) (-558))) (-15 -3247 ((-558))) (-15 -3237 ((-558) (-558))) (-15 -3223 ((-112))) (-15 -3210 ((-112) (-112))) (-15 -3198 ((-558))) (-15 -1854 ((-112) (-112)))))) (T -917))
+((-2228 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1081 (-224))) (-5 *1 (-917)))) (-2228 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1081 (-224))) (-5 *1 (-917)))) (-2228 (*1 *1 *2 *3) (-12 (-5 *2 (-635 (-1 (-224) (-224)))) (-5 *3 (-1081 (-224))) (-5 *1 (-917)))) (-2228 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-635 (-1 (-224) (-224)))) (-5 *3 (-1081 (-224))) (-5 *1 (-917)))) (-2228 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1081 (-224))) (-5 *1 (-917)))) (-2228 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1081 (-224))) (-5 *1 (-917)))) (-2237 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-933 (-224)) (-224))) (-5 *3 (-1081 (-224))) (-5 *1 (-917)))) (-2237 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-933 (-224)) (-224))) (-5 *3 (-1081 (-224))) (-5 *1 (-917)))) (-3312 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1081 (-224))) (-5 *1 (-917)))) (-3312 (*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-917)))) (-2228 (*1 *1 *1 *2) (-12 (-5 *2 (-1081 (-224))) (-5 *1 (-917)))) (-3300 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-917)))) (-1772 (*1 *1 *1 *2) (-12 (-5 *2 (-1081 (-224))) (-5 *1 (-917)))) (-1772 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1081 (-224))) (-5 *1 (-917)))) (-2634 (*1 *1 *1 *2) (-12 (-5 *2 (-1081 (-224))) (-5 *1 (-917)))) (-2634 (*1 *1 *1) (-5 *1 (-917))) (-2216 (*1 *2 *1) (-12 (-5 *2 (-1081 (-224))) (-5 *1 (-917)))) (-3289 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-917)))) (-3278 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-917)))) (-3267 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-917)))) (-3257 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-917)))) (-3247 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-917)))) (-3237 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-917)))) (-3223 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-917)))) (-3210 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-917)))) (-3198 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-917)))) (-1854 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-917)))))
+(-13 (-945) (-10 -8 (-15 -2228 ($ (-1 (-224) (-224)) (-1081 (-224)))) (-15 -2228 ($ (-1 (-224) (-224)) (-1081 (-224)) (-1081 (-224)))) (-15 -2228 ($ (-635 (-1 (-224) (-224))) (-1081 (-224)))) (-15 -2228 ($ (-635 (-1 (-224) (-224))) (-1081 (-224)) (-1081 (-224)))) (-15 -2228 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1081 (-224)))) (-15 -2228 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1081 (-224)) (-1081 (-224)) (-1081 (-224)))) (-15 -2237 ($ (-1 (-933 (-224)) (-224)) (-1081 (-224)))) (-15 -2237 ($ (-1 (-933 (-224)) (-224)) (-1081 (-224)) (-1081 (-224)) (-1081 (-224)))) (-15 -3312 ($ (-1 (-224) (-224)) (-1081 (-224)))) (-15 -3312 ($ (-1 (-224) (-224)))) (-15 -2228 ($ $ (-1081 (-224)))) (-15 -3300 ((-112) $)) (-15 -1772 ($ $ (-1081 (-224)))) (-15 -1772 ($ $ (-1081 (-224)) (-1081 (-224)))) (-15 -2634 ($ $ (-1081 (-224)))) (-15 -2634 ($ $)) (-15 -2216 ((-1081 (-224)) $)) (-15 -3289 ((-558))) (-15 -3278 ((-558) (-558))) (-15 -3267 ((-558))) (-15 -3257 ((-558) (-558))) (-15 -3247 ((-558))) (-15 -3237 ((-558) (-558))) (-15 -3223 ((-112))) (-15 -3210 ((-112) (-112))) (-15 -3198 ((-558))) (-15 -1854 ((-112) (-112)))))
+((-2249 (((-635 (-1081 (-224))) (-635 (-635 (-933 (-224))))) 24)))
+(((-918) (-10 -7 (-15 -2249 ((-635 (-1081 (-224))) (-635 (-635 (-933 (-224)))))))) (T -918))
+((-2249 (*1 *2 *3) (-12 (-5 *3 (-635 (-635 (-933 (-224))))) (-5 *2 (-635 (-1081 (-224)))) (-5 *1 (-918)))))
+(-10 -7 (-15 -2249 ((-635 (-1081 (-224))) (-635 (-635 (-933 (-224)))))))
+((-4109 ((|#2| |#2|) 26)) (-4204 ((|#2| |#2|) 27)) (-3707 ((|#2| |#2|) 25)) (-1996 ((|#2| |#2| (-1145)) 24)))
+(((-919 |#1| |#2|) (-10 -7 (-15 -1996 (|#2| |#2| (-1145))) (-15 -3707 (|#2| |#2|)) (-15 -4109 (|#2| |#2|)) (-15 -4204 (|#2| |#2|))) (-841) (-429 |#1|)) (T -919))
+((-4204 (*1 *2 *2) (-12 (-4 *3 (-841)) (-5 *1 (-919 *3 *2)) (-4 *2 (-429 *3)))) (-4109 (*1 *2 *2) (-12 (-4 *3 (-841)) (-5 *1 (-919 *3 *2)) (-4 *2 (-429 *3)))) (-3707 (*1 *2 *2) (-12 (-4 *3 (-841)) (-5 *1 (-919 *3 *2)) (-4 *2 (-429 *3)))) (-1996 (*1 *2 *2 *3) (-12 (-5 *3 (-1145)) (-4 *4 (-841)) (-5 *1 (-919 *4 *2)) (-4 *2 (-429 *4)))))
+(-10 -7 (-15 -1996 (|#2| |#2| (-1145))) (-15 -3707 (|#2| |#2|)) (-15 -4109 (|#2| |#2|)) (-15 -4204 (|#2| |#2|)))
+((-4109 (((-315 (-558)) (-1163)) 16)) (-4204 (((-315 (-558)) (-1163)) 14)) (-3707 (((-315 (-558)) (-1163)) 12)) (-1996 (((-315 (-558)) (-1163) (-1145)) 19)))
+(((-920) (-10 -7 (-15 -1996 ((-315 (-558)) (-1163) (-1145))) (-15 -3707 ((-315 (-558)) (-1163))) (-15 -4109 ((-315 (-558)) (-1163))) (-15 -4204 ((-315 (-558)) (-1163))))) (T -920))
+((-4204 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-315 (-558))) (-5 *1 (-920)))) (-4109 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-315 (-558))) (-5 *1 (-920)))) (-3707 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-315 (-558))) (-5 *1 (-920)))) (-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1163)) (-5 *4 (-1145)) (-5 *2 (-315 (-558))) (-5 *1 (-920)))))
+(-10 -7 (-15 -1996 ((-315 (-558)) (-1163) (-1145))) (-15 -3707 ((-315 (-558)) (-1163))) (-15 -4109 ((-315 (-558)) (-1163))) (-15 -4204 ((-315 (-558)) (-1163))))
+((-2269 (((-879 |#1| |#3|) |#2| (-882 |#1|) (-879 |#1| |#3|)) 25)) (-2260 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13)))
+(((-921 |#1| |#2| |#3|) (-10 -7 (-15 -2260 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -2269 ((-879 |#1| |#3|) |#2| (-882 |#1|) (-879 |#1| |#3|)))) (-1087) (-876 |#1|) (-13 (-1087) (-1028 |#2|))) (T -921))
+((-2269 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-879 *5 *6)) (-5 *4 (-882 *5)) (-4 *5 (-1087)) (-4 *6 (-13 (-1087) (-1028 *3))) (-4 *3 (-876 *5)) (-5 *1 (-921 *5 *3 *6)))) (-2260 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1087) (-1028 *5))) (-4 *5 (-876 *4)) (-4 *4 (-1087)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-921 *4 *5 *6)))))
+(-10 -7 (-15 -2260 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -2269 ((-879 |#1| |#3|) |#2| (-882 |#1|) (-879 |#1| |#3|))))
+((-2269 (((-879 |#1| |#3|) |#3| (-882 |#1|) (-879 |#1| |#3|)) 30)))
+(((-922 |#1| |#2| |#3|) (-10 -7 (-15 -2269 ((-879 |#1| |#3|) |#3| (-882 |#1|) (-879 |#1| |#3|)))) (-1087) (-13 (-550) (-841) (-876 |#1|)) (-13 (-429 |#2|) (-606 (-882 |#1|)) (-876 |#1|) (-1028 (-604 $)))) (T -922))
+((-2269 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-879 *5 *3)) (-4 *5 (-1087)) (-4 *3 (-13 (-429 *6) (-606 *4) (-876 *5) (-1028 (-604 $)))) (-5 *4 (-882 *5)) (-4 *6 (-13 (-550) (-841) (-876 *5))) (-5 *1 (-922 *5 *6 *3)))))
+(-10 -7 (-15 -2269 ((-879 |#1| |#3|) |#3| (-882 |#1|) (-879 |#1| |#3|))))
+((-2269 (((-879 (-558) |#1|) |#1| (-882 (-558)) (-879 (-558) |#1|)) 13)))
+(((-923 |#1|) (-10 -7 (-15 -2269 ((-879 (-558) |#1|) |#1| (-882 (-558)) (-879 (-558) |#1|)))) (-543)) (T -923))
+((-2269 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-879 (-558) *3)) (-5 *4 (-882 (-558))) (-4 *3 (-543)) (-5 *1 (-923 *3)))))
+(-10 -7 (-15 -2269 ((-879 (-558) |#1|) |#1| (-882 (-558)) (-879 (-558) |#1|))))
+((-2269 (((-879 |#1| |#2|) (-604 |#2|) (-882 |#1|) (-879 |#1| |#2|)) 54)))
+(((-924 |#1| |#2|) (-10 -7 (-15 -2269 ((-879 |#1| |#2|) (-604 |#2|) (-882 |#1|) (-879 |#1| |#2|)))) (-1087) (-13 (-841) (-1028 (-604 $)) (-606 (-882 |#1|)) (-876 |#1|))) (T -924))
+((-2269 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-879 *5 *6)) (-5 *3 (-604 *6)) (-4 *5 (-1087)) (-4 *6 (-13 (-841) (-1028 (-604 $)) (-606 *4) (-876 *5))) (-5 *4 (-882 *5)) (-5 *1 (-924 *5 *6)))))
+(-10 -7 (-15 -2269 ((-879 |#1| |#2|) (-604 |#2|) (-882 |#1|) (-879 |#1| |#2|))))
+((-2269 (((-875 |#1| |#2| |#3|) |#3| (-882 |#1|) (-875 |#1| |#2| |#3|)) 15)))
+(((-925 |#1| |#2| |#3|) (-10 -7 (-15 -2269 ((-875 |#1| |#2| |#3|) |#3| (-882 |#1|) (-875 |#1| |#2| |#3|)))) (-1087) (-876 |#1|) (-656 |#2|)) (T -925))
+((-2269 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-875 *5 *6 *3)) (-5 *4 (-882 *5)) (-4 *5 (-1087)) (-4 *6 (-876 *5)) (-4 *3 (-656 *6)) (-5 *1 (-925 *5 *6 *3)))))
+(-10 -7 (-15 -2269 ((-875 |#1| |#2| |#3|) |#3| (-882 |#1|) (-875 |#1| |#2| |#3|))))
+((-2269 (((-879 |#1| |#5|) |#5| (-882 |#1|) (-879 |#1| |#5|)) 17 (|has| |#3| (-876 |#1|))) (((-879 |#1| |#5|) |#5| (-882 |#1|) (-879 |#1| |#5|) (-1 (-879 |#1| |#5|) |#3| (-882 |#1|) (-879 |#1| |#5|))) 16)))
+(((-926 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2269 ((-879 |#1| |#5|) |#5| (-882 |#1|) (-879 |#1| |#5|) (-1 (-879 |#1| |#5|) |#3| (-882 |#1|) (-879 |#1| |#5|)))) (IF (|has| |#3| (-876 |#1|)) (-15 -2269 ((-879 |#1| |#5|) |#5| (-882 |#1|) (-879 |#1| |#5|))) |%noBranch|)) (-1087) (-784) (-841) (-13 (-1039) (-841) (-876 |#1|)) (-13 (-939 |#4| |#2| |#3|) (-606 (-882 |#1|)))) (T -926))
+((-2269 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-879 *5 *3)) (-4 *5 (-1087)) (-4 *3 (-13 (-939 *8 *6 *7) (-606 *4))) (-5 *4 (-882 *5)) (-4 *7 (-876 *5)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *8 (-13 (-1039) (-841) (-876 *5))) (-5 *1 (-926 *5 *6 *7 *8 *3)))) (-2269 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-879 *6 *3) *8 (-882 *6) (-879 *6 *3))) (-4 *8 (-841)) (-5 *2 (-879 *6 *3)) (-5 *4 (-882 *6)) (-4 *6 (-1087)) (-4 *3 (-13 (-939 *9 *7 *8) (-606 *4))) (-4 *7 (-784)) (-4 *9 (-13 (-1039) (-841) (-876 *6))) (-5 *1 (-926 *6 *7 *8 *9 *3)))))
+(-10 -7 (-15 -2269 ((-879 |#1| |#5|) |#5| (-882 |#1|) (-879 |#1| |#5|) (-1 (-879 |#1| |#5|) |#3| (-882 |#1|) (-879 |#1| |#5|)))) (IF (|has| |#3| (-876 |#1|)) (-15 -2269 ((-879 |#1| |#5|) |#5| (-882 |#1|) (-879 |#1| |#5|))) |%noBranch|))
+((-4285 ((|#2| |#2| (-635 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13)))
+(((-927 |#1| |#2| |#3|) (-10 -7 (-15 -4285 (|#2| |#2| (-1 (-112) |#3|))) (-15 -4285 (|#2| |#2| (-635 (-1 (-112) |#3|))))) (-841) (-429 |#1|) (-1200)) (T -927))
+((-4285 (*1 *2 *2 *3) (-12 (-5 *3 (-635 (-1 (-112) *5))) (-4 *5 (-1200)) (-4 *4 (-841)) (-5 *1 (-927 *4 *2 *5)) (-4 *2 (-429 *4)))) (-4285 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1200)) (-4 *4 (-841)) (-5 *1 (-927 *4 *2 *5)) (-4 *2 (-429 *4)))))
+(-10 -7 (-15 -4285 (|#2| |#2| (-1 (-112) |#3|))) (-15 -4285 (|#2| |#2| (-635 (-1 (-112) |#3|)))))
+((-4285 (((-315 (-558)) (-1163) (-635 (-1 (-112) |#1|))) 18) (((-315 (-558)) (-1163) (-1 (-112) |#1|)) 15)))
+(((-928 |#1|) (-10 -7 (-15 -4285 ((-315 (-558)) (-1163) (-1 (-112) |#1|))) (-15 -4285 ((-315 (-558)) (-1163) (-635 (-1 (-112) |#1|))))) (-1200)) (T -928))
+((-4285 (*1 *2 *3 *4) (-12 (-5 *3 (-1163)) (-5 *4 (-635 (-1 (-112) *5))) (-4 *5 (-1200)) (-5 *2 (-315 (-558))) (-5 *1 (-928 *5)))) (-4285 (*1 *2 *3 *4) (-12 (-5 *3 (-1163)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1200)) (-5 *2 (-315 (-558))) (-5 *1 (-928 *5)))))
+(-10 -7 (-15 -4285 ((-315 (-558)) (-1163) (-1 (-112) |#1|))) (-15 -4285 ((-315 (-558)) (-1163) (-635 (-1 (-112) |#1|)))))
+((-2269 (((-879 |#1| |#3|) |#3| (-882 |#1|) (-879 |#1| |#3|)) 25)))
+(((-929 |#1| |#2| |#3|) (-10 -7 (-15 -2269 ((-879 |#1| |#3|) |#3| (-882 |#1|) (-879 |#1| |#3|)))) (-1087) (-13 (-550) (-876 |#1|) (-606 (-882 |#1|))) (-982 |#2|)) (T -929))
+((-2269 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-879 *5 *3)) (-4 *5 (-1087)) (-4 *3 (-982 *6)) (-4 *6 (-13 (-550) (-876 *5) (-606 *4))) (-5 *4 (-882 *5)) (-5 *1 (-929 *5 *6 *3)))))
+(-10 -7 (-15 -2269 ((-879 |#1| |#3|) |#3| (-882 |#1|) (-879 |#1| |#3|))))
+((-2269 (((-879 |#1| (-1163)) (-1163) (-882 |#1|) (-879 |#1| (-1163))) 17)))
+(((-930 |#1|) (-10 -7 (-15 -2269 ((-879 |#1| (-1163)) (-1163) (-882 |#1|) (-879 |#1| (-1163))))) (-1087)) (T -930))
+((-2269 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-879 *5 (-1163))) (-5 *3 (-1163)) (-5 *4 (-882 *5)) (-4 *5 (-1087)) (-5 *1 (-930 *5)))))
+(-10 -7 (-15 -2269 ((-879 |#1| (-1163)) (-1163) (-882 |#1|) (-879 |#1| (-1163)))))
+((-2278 (((-879 |#1| |#3|) (-635 |#3|) (-635 (-882 |#1|)) (-879 |#1| |#3|) (-1 (-879 |#1| |#3|) |#3| (-882 |#1|) (-879 |#1| |#3|))) 33)) (-2269 (((-879 |#1| |#3|) (-635 |#3|) (-635 (-882 |#1|)) (-1 |#3| (-635 |#3|)) (-879 |#1| |#3|) (-1 (-879 |#1| |#3|) |#3| (-882 |#1|) (-879 |#1| |#3|))) 32)))
+(((-931 |#1| |#2| |#3|) (-10 -7 (-15 -2269 ((-879 |#1| |#3|) (-635 |#3|) (-635 (-882 |#1|)) (-1 |#3| (-635 |#3|)) (-879 |#1| |#3|) (-1 (-879 |#1| |#3|) |#3| (-882 |#1|) (-879 |#1| |#3|)))) (-15 -2278 ((-879 |#1| |#3|) (-635 |#3|) (-635 (-882 |#1|)) (-879 |#1| |#3|) (-1 (-879 |#1| |#3|) |#3| (-882 |#1|) (-879 |#1| |#3|))))) (-1087) (-13 (-1039) (-841)) (-13 (-1039) (-606 (-882 |#1|)) (-1028 |#2|))) (T -931))
+((-2278 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 (-882 *6))) (-5 *5 (-1 (-879 *6 *8) *8 (-882 *6) (-879 *6 *8))) (-4 *6 (-1087)) (-4 *8 (-13 (-1039) (-606 (-882 *6)) (-1028 *7))) (-5 *2 (-879 *6 *8)) (-4 *7 (-13 (-1039) (-841))) (-5 *1 (-931 *6 *7 *8)))) (-2269 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-635 (-882 *7))) (-5 *5 (-1 *9 (-635 *9))) (-5 *6 (-1 (-879 *7 *9) *9 (-882 *7) (-879 *7 *9))) (-4 *7 (-1087)) (-4 *9 (-13 (-1039) (-606 (-882 *7)) (-1028 *8))) (-5 *2 (-879 *7 *9)) (-5 *3 (-635 *9)) (-4 *8 (-13 (-1039) (-841))) (-5 *1 (-931 *7 *8 *9)))))
+(-10 -7 (-15 -2269 ((-879 |#1| |#3|) (-635 |#3|) (-635 (-882 |#1|)) (-1 |#3| (-635 |#3|)) (-879 |#1| |#3|) (-1 (-879 |#1| |#3|) |#3| (-882 |#1|) (-879 |#1| |#3|)))) (-15 -2278 ((-879 |#1| |#3|) (-635 |#3|) (-635 (-882 |#1|)) (-879 |#1| |#3|) (-1 (-879 |#1| |#3|) |#3| (-882 |#1|) (-879 |#1| |#3|)))))
+((-2362 (((-1159 (-406 (-558))) (-558)) 62)) (-2351 (((-1159 (-558)) (-558)) 65)) (-3877 (((-1159 (-558)) (-558)) 59)) (-2341 (((-558) (-1159 (-558))) 54)) (-2329 (((-1159 (-406 (-558))) (-558)) 48)) (-2317 (((-1159 (-558)) (-558)) 37)) (-2307 (((-1159 (-558)) (-558)) 67)) (-2297 (((-1159 (-558)) (-558)) 66)) (-2287 (((-1159 (-406 (-558))) (-558)) 50)))
+(((-932) (-10 -7 (-15 -2287 ((-1159 (-406 (-558))) (-558))) (-15 -2297 ((-1159 (-558)) (-558))) (-15 -2307 ((-1159 (-558)) (-558))) (-15 -2317 ((-1159 (-558)) (-558))) (-15 -2329 ((-1159 (-406 (-558))) (-558))) (-15 -2341 ((-558) (-1159 (-558)))) (-15 -3877 ((-1159 (-558)) (-558))) (-15 -2351 ((-1159 (-558)) (-558))) (-15 -2362 ((-1159 (-406 (-558))) (-558))))) (T -932))
+((-2362 (*1 *2 *3) (-12 (-5 *2 (-1159 (-406 (-558)))) (-5 *1 (-932)) (-5 *3 (-558)))) (-2351 (*1 *2 *3) (-12 (-5 *2 (-1159 (-558))) (-5 *1 (-932)) (-5 *3 (-558)))) (-3877 (*1 *2 *3) (-12 (-5 *2 (-1159 (-558))) (-5 *1 (-932)) (-5 *3 (-558)))) (-2341 (*1 *2 *3) (-12 (-5 *3 (-1159 (-558))) (-5 *2 (-558)) (-5 *1 (-932)))) (-2329 (*1 *2 *3) (-12 (-5 *2 (-1159 (-406 (-558)))) (-5 *1 (-932)) (-5 *3 (-558)))) (-2317 (*1 *2 *3) (-12 (-5 *2 (-1159 (-558))) (-5 *1 (-932)) (-5 *3 (-558)))) (-2307 (*1 *2 *3) (-12 (-5 *2 (-1159 (-558))) (-5 *1 (-932)) (-5 *3 (-558)))) (-2297 (*1 *2 *3) (-12 (-5 *2 (-1159 (-558))) (-5 *1 (-932)) (-5 *3 (-558)))) (-2287 (*1 *2 *3) (-12 (-5 *2 (-1159 (-406 (-558)))) (-5 *1 (-932)) (-5 *3 (-558)))))
+(-10 -7 (-15 -2287 ((-1159 (-406 (-558))) (-558))) (-15 -2297 ((-1159 (-558)) (-558))) (-15 -2307 ((-1159 (-558)) (-558))) (-15 -2317 ((-1159 (-558)) (-558))) (-15 -2329 ((-1159 (-406 (-558))) (-558))) (-15 -2341 ((-558) (-1159 (-558)))) (-15 -3877 ((-1159 (-558)) (-558))) (-15 -2351 ((-1159 (-558)) (-558))) (-15 -2362 ((-1159 (-406 (-558))) (-558))))
+((-3207 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2370 (($ (-762)) NIL (|has| |#1| (-23)))) (-3869 (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4383)))) (-1538 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-841)))) (-2763 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4383))) (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-841))))) (-2376 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-841)))) (-3026 (((-112) $ (-762)) NIL)) (-1532 ((|#1| $ (-558) |#1|) 11 (|has| $ (-6 -4383))) ((|#1| $ (-1213 (-558)) |#1|) NIL (|has| $ (-6 -4383)))) (-4329 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-1816 (($) NIL T CONST)) (-3306 (($ $) NIL (|has| $ (-6 -4383)))) (-4127 (($ $) NIL)) (-2338 (($ $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1539 (($ |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-3048 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4382))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4382)))) (-1817 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4383)))) (-1746 ((|#1| $ (-558)) NIL)) (-1517 (((-558) (-1 (-112) |#1|) $) NIL) (((-558) |#1| $) NIL (|has| |#1| (-1087))) (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1087)))) (-3840 (($ (-635 |#1|)) 13)) (-2240 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-1965 (((-679 |#1|) $ $) NIL (|has| |#1| (-1039)))) (-3315 (($ (-762) |#1|) 8)) (-2986 (((-112) $ (-762)) NIL)) (-3889 (((-558) $) 10 (|has| (-558) (-841)))) (-3910 (($ $ $) NIL (|has| |#1| (-841)))) (-1677 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-841)))) (-2122 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3899 (((-558) $) NIL (|has| (-558) (-841)))) (-3542 (($ $ $) NIL (|has| |#1| (-841)))) (-1807 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2722 ((|#1| $) NIL (-12 (|has| |#1| (-992)) (|has| |#1| (-1039))))) (-2953 (((-112) $ (-762)) NIL)) (-2880 ((|#1| $) NIL (-12 (|has| |#1| (-992)) (|has| |#1| (-1039))))) (-4310 (((-1145) $) NIL (|has| |#1| (-1087)))) (-1861 (($ |#1| $ (-558)) NIL) (($ $ $ (-558)) NIL)) (-3920 (((-635 (-558)) $) NIL)) (-3929 (((-112) (-558) $) NIL)) (-2975 (((-1107) $) NIL (|has| |#1| (-1087)))) (-2305 ((|#1| $) NIL (|has| (-558) (-841)))) (-4307 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3880 (($ $ |#1|) NIL (|has| $ (-6 -4383)))) (-3430 (($ $ (-635 |#1|)) 26)) (-3266 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3908 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3937 (((-635 |#1|) $) NIL)) (-3375 (((-112) $) NIL)) (-2083 (($) NIL)) (-2195 ((|#1| $ (-558) |#1|) NIL) ((|#1| $ (-558)) 20) (($ $ (-1213 (-558))) NIL)) (-2744 ((|#1| $ $) NIL (|has| |#1| (-1039)))) (-2148 (((-911) $) 16)) (-4023 (($ $ (-558)) NIL) (($ $ (-1213 (-558))) NIL)) (-2733 (($ $ $) 24)) (-2988 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-2773 (($ $ $ (-558)) NIL (|has| $ (-6 -4383)))) (-1553 (($ $) NIL)) (-3224 (((-534) $) NIL (|has| |#1| (-606 (-534)))) (($ (-635 |#1|)) 17)) (-3233 (($ (-635 |#1|)) NIL)) (-4341 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-635 $)) NIL)) (-3220 (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-3277 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-1747 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1683 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1798 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1784 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-558) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-717))) (($ $ |#1|) NIL (|has| |#1| (-717)))) (-2755 (((-762) $) 14 (|has| $ (-6 -4382)))))
+(((-933 |#1|) (-970 |#1|) (-1039)) (T -933))
+NIL
+(-970 |#1|)
+((-2399 (((-479 |#1| |#2|) (-942 |#2|)) 20)) (-2432 (((-246 |#1| |#2|) (-942 |#2|)) 33)) (-2409 (((-942 |#2|) (-479 |#1| |#2|)) 25)) (-2384 (((-246 |#1| |#2|) (-479 |#1| |#2|)) 55)) (-2421 (((-942 |#2|) (-246 |#1| |#2|)) 30)) (-2373 (((-479 |#1| |#2|) (-246 |#1| |#2|)) 46)))
+(((-934 |#1| |#2|) (-10 -7 (-15 -2373 ((-479 |#1| |#2|) (-246 |#1| |#2|))) (-15 -2384 ((-246 |#1| |#2|) (-479 |#1| |#2|))) (-15 -2399 ((-479 |#1| |#2|) (-942 |#2|))) (-15 -2409 ((-942 |#2|) (-479 |#1| |#2|))) (-15 -2421 ((-942 |#2|) (-246 |#1| |#2|))) (-15 -2432 ((-246 |#1| |#2|) (-942 |#2|)))) (-635 (-1163)) (-1039)) (T -934))
+((-2432 (*1 *2 *3) (-12 (-5 *3 (-942 *5)) (-4 *5 (-1039)) (-5 *2 (-246 *4 *5)) (-5 *1 (-934 *4 *5)) (-14 *4 (-635 (-1163))))) (-2421 (*1 *2 *3) (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-635 (-1163))) (-4 *5 (-1039)) (-5 *2 (-942 *5)) (-5 *1 (-934 *4 *5)))) (-2409 (*1 *2 *3) (-12 (-5 *3 (-479 *4 *5)) (-14 *4 (-635 (-1163))) (-4 *5 (-1039)) (-5 *2 (-942 *5)) (-5 *1 (-934 *4 *5)))) (-2399 (*1 *2 *3) (-12 (-5 *3 (-942 *5)) (-4 *5 (-1039)) (-5 *2 (-479 *4 *5)) (-5 *1 (-934 *4 *5)) (-14 *4 (-635 (-1163))))) (-2384 (*1 *2 *3) (-12 (-5 *3 (-479 *4 *5)) (-14 *4 (-635 (-1163))) (-4 *5 (-1039)) (-5 *2 (-246 *4 *5)) (-5 *1 (-934 *4 *5)))) (-2373 (*1 *2 *3) (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-635 (-1163))) (-4 *5 (-1039)) (-5 *2 (-479 *4 *5)) (-5 *1 (-934 *4 *5)))))
+(-10 -7 (-15 -2373 ((-479 |#1| |#2|) (-246 |#1| |#2|))) (-15 -2384 ((-246 |#1| |#2|) (-479 |#1| |#2|))) (-15 -2399 ((-479 |#1| |#2|) (-942 |#2|))) (-15 -2409 ((-942 |#2|) (-479 |#1| |#2|))) (-15 -2421 ((-942 |#2|) (-246 |#1| |#2|))) (-15 -2432 ((-246 |#1| |#2|) (-942 |#2|))))
+((-2443 (((-635 |#2|) |#2| |#2|) 10)) (-2480 (((-762) (-635 |#1|)) 37 (|has| |#1| (-839)))) (-2455 (((-635 |#2|) |#2|) 11)) (-2493 (((-762) (-635 |#1|) (-558) (-558)) 39 (|has| |#1| (-839)))) (-2467 ((|#1| |#2|) 32 (|has| |#1| (-839)))))
+(((-935 |#1| |#2|) (-10 -7 (-15 -2443 ((-635 |#2|) |#2| |#2|)) (-15 -2455 ((-635 |#2|) |#2|)) (IF (|has| |#1| (-839)) (PROGN (-15 -2467 (|#1| |#2|)) (-15 -2480 ((-762) (-635 |#1|))) (-15 -2493 ((-762) (-635 |#1|) (-558) (-558)))) |%noBranch|)) (-362) (-1222 |#1|)) (T -935))
+((-2493 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-635 *5)) (-5 *4 (-558)) (-4 *5 (-839)) (-4 *5 (-362)) (-5 *2 (-762)) (-5 *1 (-935 *5 *6)) (-4 *6 (-1222 *5)))) (-2480 (*1 *2 *3) (-12 (-5 *3 (-635 *4)) (-4 *4 (-839)) (-4 *4 (-362)) (-5 *2 (-762)) (-5 *1 (-935 *4 *5)) (-4 *5 (-1222 *4)))) (-2467 (*1 *2 *3) (-12 (-4 *2 (-362)) (-4 *2 (-839)) (-5 *1 (-935 *2 *3)) (-4 *3 (-1222 *2)))) (-2455 (*1 *2 *3) (-12 (-4 *4 (-362)) (-5 *2 (-635 *3)) (-5 *1 (-935 *4 *3)) (-4 *3 (-1222 *4)))) (-2443 (*1 *2 *3 *3) (-12 (-4 *4 (-362)) (-5 *2 (-635 *3)) (-5 *1 (-935 *4 *3)) (-4 *3 (-1222 *4)))))
+(-10 -7 (-15 -2443 ((-635 |#2|) |#2| |#2|)) (-15 -2455 ((-635 |#2|) |#2|)) (IF (|has| |#1| (-839)) (PROGN (-15 -2467 (|#1| |#2|)) (-15 -2480 ((-762) (-635 |#1|))) (-15 -2493 ((-762) (-635 |#1|) (-558) (-558)))) |%noBranch|))
+((-3167 (((-942 |#2|) (-1 |#2| |#1|) (-942 |#1|)) 19)))
+(((-936 |#1| |#2|) (-10 -7 (-15 -3167 ((-942 |#2|) (-1 |#2| |#1|) (-942 |#1|)))) (-1039) (-1039)) (T -936))
+((-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-942 *5)) (-4 *5 (-1039)) (-4 *6 (-1039)) (-5 *2 (-942 *6)) (-5 *1 (-936 *5 *6)))))
+(-10 -7 (-15 -3167 ((-942 |#2|) (-1 |#2| |#1|) (-942 |#1|))))
+((-2492 (((-1219 |#1| (-942 |#2|)) (-942 |#2|) (-1242 |#1|)) 18)))
+(((-937 |#1| |#2|) (-10 -7 (-15 -2492 ((-1219 |#1| (-942 |#2|)) (-942 |#2|) (-1242 |#1|)))) (-1163) (-1039)) (T -937))
+((-2492 (*1 *2 *3 *4) (-12 (-5 *4 (-1242 *5)) (-14 *5 (-1163)) (-4 *6 (-1039)) (-5 *2 (-1219 *5 (-942 *6))) (-5 *1 (-937 *5 *6)) (-5 *3 (-942 *6)))))
+(-10 -7 (-15 -2492 ((-1219 |#1| (-942 |#2|)) (-942 |#2|) (-1242 |#1|))))
+((-2513 (((-762) $) 71) (((-762) $ (-635 |#4|)) 74)) (-3465 (($ $) 172)) (-1380 (((-417 $) $) 164)) (-3719 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) 115)) (-3069 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL) (((-3 (-558) "failed") $) NIL) (((-3 |#4| "failed") $) 60)) (-1863 ((|#2| $) NIL) (((-406 (-558)) $) NIL) (((-558) $) NIL) ((|#4| $) 59)) (-3320 (($ $ $ |#4|) 76)) (-3216 (((-679 (-558)) (-679 $)) NIL) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL) (((-2 (|:| -3683 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 $) (-1246 $)) 105) (((-679 |#2|) (-679 $)) 98)) (-2782 (($ $) 179) (($ $ |#4|) 182)) (-2476 (((-635 $) $) 63)) (-2269 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) 198) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) 191)) (-2536 (((-635 $) $) 28)) (-2648 (($ |#2| |#3|) NIL) (($ $ |#4| (-762)) NIL) (($ $ (-635 |#4|) (-635 (-762))) 57)) (-3381 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $ |#4|) 161)) (-2560 (((-3 (-635 $) "failed") $) 42)) (-2548 (((-3 (-635 $) "failed") $) 31)) (-2575 (((-3 (-2 (|:| |var| |#4|) (|:| -1951 (-762))) "failed") $) 47)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) 108)) (-3728 (((-417 (-1159 $)) (-1159 $)) 121)) (-3738 (((-417 (-1159 $)) (-1159 $)) 119)) (-2522 (((-417 $) $) 139)) (-2554 (($ $ (-635 (-293 $))) 21) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-635 |#4|) (-635 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-635 |#4|) (-635 $)) NIL)) (-3331 (($ $ |#4|) 78)) (-3224 (((-882 (-378)) $) 212) (((-882 (-558)) $) 205) (((-534) $) 220)) (-2504 ((|#2| $) NIL) (($ $ |#4|) 174)) (-3709 (((-3 (-1246 $) "failed") (-679 $)) 153)) (-3736 ((|#2| $ |#3|) NIL) (($ $ |#4| (-762)) 52) (($ $ (-635 |#4|) (-635 (-762))) 55)) (-3698 (((-3 $ "failed") $) 155)) (-1705 (((-112) $ $) 185)))
+(((-938 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3757 ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 -1380 ((-417 |#1|) |#1|)) (-15 -3465 (|#1| |#1|)) (-15 -3698 ((-3 |#1| "failed") |#1|)) (-15 -1705 ((-112) |#1| |#1|)) (-15 -3224 ((-534) |#1|)) (-15 -3224 ((-882 (-558)) |#1|)) (-15 -3224 ((-882 (-378)) |#1|)) (-15 -2269 ((-879 (-558) |#1|) |#1| (-882 (-558)) (-879 (-558) |#1|))) (-15 -2269 ((-879 (-378) |#1|) |#1| (-882 (-378)) (-879 (-378) |#1|))) (-15 -2522 ((-417 |#1|) |#1|)) (-15 -3738 ((-417 (-1159 |#1|)) (-1159 |#1|))) (-15 -3728 ((-417 (-1159 |#1|)) (-1159 |#1|))) (-15 -3719 ((-3 (-635 (-1159 |#1|)) "failed") (-635 (-1159 |#1|)) (-1159 |#1|))) (-15 -3709 ((-3 (-1246 |#1|) "failed") (-679 |#1|))) (-15 -2782 (|#1| |#1| |#4|)) (-15 -2504 (|#1| |#1| |#4|)) (-15 -3331 (|#1| |#1| |#4|)) (-15 -3320 (|#1| |#1| |#1| |#4|)) (-15 -2476 ((-635 |#1|) |#1|)) (-15 -2513 ((-762) |#1| (-635 |#4|))) (-15 -2513 ((-762) |#1|)) (-15 -2575 ((-3 (-2 (|:| |var| |#4|) (|:| -1951 (-762))) "failed") |#1|)) (-15 -2560 ((-3 (-635 |#1|) "failed") |#1|)) (-15 -2548 ((-3 (-635 |#1|) "failed") |#1|)) (-15 -2648 (|#1| |#1| (-635 |#4|) (-635 (-762)))) (-15 -2648 (|#1| |#1| |#4| (-762))) (-15 -3381 ((-2 (|:| -2306 |#1|) (|:| -2071 |#1|)) |#1| |#1| |#4|)) (-15 -2536 ((-635 |#1|) |#1|)) (-15 -3736 (|#1| |#1| (-635 |#4|) (-635 (-762)))) (-15 -3736 (|#1| |#1| |#4| (-762))) (-15 -3216 ((-679 |#2|) (-679 |#1|))) (-15 -3216 ((-2 (|:| -3683 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 |#1|) (-1246 |#1|))) (-15 -3216 ((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 |#1|) (-1246 |#1|))) (-15 -3216 ((-679 (-558)) (-679 |#1|))) (-15 -3069 ((-3 |#4| "failed") |#1|)) (-15 -1863 (|#4| |#1|)) (-15 -2554 (|#1| |#1| (-635 |#4|) (-635 |#1|))) (-15 -2554 (|#1| |#1| |#4| |#1|)) (-15 -2554 (|#1| |#1| (-635 |#4|) (-635 |#2|))) (-15 -2554 (|#1| |#1| |#4| |#2|)) (-15 -2554 (|#1| |#1| (-635 |#1|) (-635 |#1|))) (-15 -2554 (|#1| |#1| |#1| |#1|)) (-15 -2554 (|#1| |#1| (-293 |#1|))) (-15 -2554 (|#1| |#1| (-635 (-293 |#1|)))) (-15 -2648 (|#1| |#2| |#3|)) (-15 -3736 (|#2| |#1| |#3|)) (-15 -3069 ((-3 (-558) "failed") |#1|)) (-15 -1863 ((-558) |#1|)) (-15 -3069 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -1863 ((-406 (-558)) |#1|)) (-15 -1863 (|#2| |#1|)) (-15 -3069 ((-3 |#2| "failed") |#1|)) (-15 -2504 (|#2| |#1|)) (-15 -2782 (|#1| |#1|))) (-939 |#2| |#3| |#4|) (-1039) (-784) (-841)) (T -938))
+NIL
+(-10 -8 (-15 -3757 ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 -1380 ((-417 |#1|) |#1|)) (-15 -3465 (|#1| |#1|)) (-15 -3698 ((-3 |#1| "failed") |#1|)) (-15 -1705 ((-112) |#1| |#1|)) (-15 -3224 ((-534) |#1|)) (-15 -3224 ((-882 (-558)) |#1|)) (-15 -3224 ((-882 (-378)) |#1|)) (-15 -2269 ((-879 (-558) |#1|) |#1| (-882 (-558)) (-879 (-558) |#1|))) (-15 -2269 ((-879 (-378) |#1|) |#1| (-882 (-378)) (-879 (-378) |#1|))) (-15 -2522 ((-417 |#1|) |#1|)) (-15 -3738 ((-417 (-1159 |#1|)) (-1159 |#1|))) (-15 -3728 ((-417 (-1159 |#1|)) (-1159 |#1|))) (-15 -3719 ((-3 (-635 (-1159 |#1|)) "failed") (-635 (-1159 |#1|)) (-1159 |#1|))) (-15 -3709 ((-3 (-1246 |#1|) "failed") (-679 |#1|))) (-15 -2782 (|#1| |#1| |#4|)) (-15 -2504 (|#1| |#1| |#4|)) (-15 -3331 (|#1| |#1| |#4|)) (-15 -3320 (|#1| |#1| |#1| |#4|)) (-15 -2476 ((-635 |#1|) |#1|)) (-15 -2513 ((-762) |#1| (-635 |#4|))) (-15 -2513 ((-762) |#1|)) (-15 -2575 ((-3 (-2 (|:| |var| |#4|) (|:| -1951 (-762))) "failed") |#1|)) (-15 -2560 ((-3 (-635 |#1|) "failed") |#1|)) (-15 -2548 ((-3 (-635 |#1|) "failed") |#1|)) (-15 -2648 (|#1| |#1| (-635 |#4|) (-635 (-762)))) (-15 -2648 (|#1| |#1| |#4| (-762))) (-15 -3381 ((-2 (|:| -2306 |#1|) (|:| -2071 |#1|)) |#1| |#1| |#4|)) (-15 -2536 ((-635 |#1|) |#1|)) (-15 -3736 (|#1| |#1| (-635 |#4|) (-635 (-762)))) (-15 -3736 (|#1| |#1| |#4| (-762))) (-15 -3216 ((-679 |#2|) (-679 |#1|))) (-15 -3216 ((-2 (|:| -3683 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 |#1|) (-1246 |#1|))) (-15 -3216 ((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 |#1|) (-1246 |#1|))) (-15 -3216 ((-679 (-558)) (-679 |#1|))) (-15 -3069 ((-3 |#4| "failed") |#1|)) (-15 -1863 (|#4| |#1|)) (-15 -2554 (|#1| |#1| (-635 |#4|) (-635 |#1|))) (-15 -2554 (|#1| |#1| |#4| |#1|)) (-15 -2554 (|#1| |#1| (-635 |#4|) (-635 |#2|))) (-15 -2554 (|#1| |#1| |#4| |#2|)) (-15 -2554 (|#1| |#1| (-635 |#1|) (-635 |#1|))) (-15 -2554 (|#1| |#1| |#1| |#1|)) (-15 -2554 (|#1| |#1| (-293 |#1|))) (-15 -2554 (|#1| |#1| (-635 (-293 |#1|)))) (-15 -2648 (|#1| |#2| |#3|)) (-15 -3736 (|#2| |#1| |#3|)) (-15 -3069 ((-3 (-558) "failed") |#1|)) (-15 -1863 ((-558) |#1|)) (-15 -3069 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -1863 ((-406 (-558)) |#1|)) (-15 -1863 (|#2| |#1|)) (-15 -3069 ((-3 |#2| "failed") |#1|)) (-15 -2504 (|#2| |#1|)) (-15 -2782 (|#1| |#1|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2671 (((-635 |#3|) $) 110)) (-2492 (((-1159 $) $ |#3|) 125) (((-1159 |#1|) $) 124)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 87 (|has| |#1| (-550)))) (-1881 (($ $) 88 (|has| |#1| (-550)))) (-1857 (((-112) $) 90 (|has| |#1| (-550)))) (-2513 (((-762) $) 112) (((-762) $ (-635 |#3|)) 111)) (-2089 (((-3 $ "failed") $ $) 19)) (-3748 (((-417 (-1159 $)) (-1159 $)) 100 (|has| |#1| (-899)))) (-3465 (($ $) 98 (|has| |#1| (-450)))) (-1380 (((-417 $) $) 97 (|has| |#1| (-450)))) (-3719 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) 103 (|has| |#1| (-899)))) (-1816 (($) 17 T CONST)) (-3069 (((-3 |#1| "failed") $) 164) (((-3 (-406 (-558)) "failed") $) 161 (|has| |#1| (-1028 (-406 (-558))))) (((-3 (-558) "failed") $) 159 (|has| |#1| (-1028 (-558)))) (((-3 |#3| "failed") $) 136)) (-1863 ((|#1| $) 163) (((-406 (-558)) $) 162 (|has| |#1| (-1028 (-406 (-558))))) (((-558) $) 160 (|has| |#1| (-1028 (-558)))) ((|#3| $) 137)) (-3320 (($ $ $ |#3|) 108 (|has| |#1| (-171)))) (-2490 (($ $) 154)) (-3216 (((-679 (-558)) (-679 $)) 134 (|has| |#1| (-631 (-558)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) 133 (|has| |#1| (-631 (-558)))) (((-2 (|:| -3683 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) 132) (((-679 |#1|) (-679 $)) 131)) (-2588 (((-3 $ "failed") $) 33)) (-2782 (($ $) 176 (|has| |#1| (-450))) (($ $ |#3|) 105 (|has| |#1| (-450)))) (-2476 (((-635 $) $) 109)) (-3031 (((-112) $) 96 (|has| |#1| (-899)))) (-3888 (($ $ |#1| |#2| $) 172)) (-2269 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) 84 (-12 (|has| |#3| (-876 (-378))) (|has| |#1| (-876 (-378))))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) 83 (-12 (|has| |#3| (-876 (-558))) (|has| |#1| (-876 (-558)))))) (-2035 (((-112) $) 31)) (-2110 (((-762) $) 169)) (-2659 (($ (-1159 |#1|) |#3|) 117) (($ (-1159 $) |#3|) 116)) (-2536 (((-635 $) $) 126)) (-4238 (((-112) $) 152)) (-2648 (($ |#1| |#2|) 153) (($ $ |#3| (-762)) 119) (($ $ (-635 |#3|) (-635 (-762))) 118)) (-3381 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $ |#3|) 120)) (-2524 ((|#2| $) 170) (((-762) $ |#3|) 122) (((-635 (-762)) $ (-635 |#3|)) 121)) (-3910 (($ $ $) 79 (|has| |#1| (-841)))) (-3542 (($ $ $) 78 (|has| |#1| (-841)))) (-3898 (($ (-1 |#2| |#2|) $) 171)) (-3167 (($ (-1 |#1| |#1|) $) 151)) (-3399 (((-3 |#3| "failed") $) 123)) (-2451 (($ $) 149)) (-2463 ((|#1| $) 148)) (-2665 (($ (-635 $)) 94 (|has| |#1| (-450))) (($ $ $) 93 (|has| |#1| (-450)))) (-4310 (((-1145) $) 9)) (-2560 (((-3 (-635 $) "failed") $) 114)) (-2548 (((-3 (-635 $) "failed") $) 115)) (-2575 (((-3 (-2 (|:| |var| |#3|) (|:| -1951 (-762))) "failed") $) 113)) (-2975 (((-1107) $) 10)) (-2429 (((-112) $) 166)) (-2440 ((|#1| $) 167)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) 95 (|has| |#1| (-450)))) (-2699 (($ (-635 $)) 92 (|has| |#1| (-450))) (($ $ $) 91 (|has| |#1| (-450)))) (-3728 (((-417 (-1159 $)) (-1159 $)) 102 (|has| |#1| (-899)))) (-3738 (((-417 (-1159 $)) (-1159 $)) 101 (|has| |#1| (-899)))) (-2522 (((-417 $) $) 99 (|has| |#1| (-899)))) (-3983 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-550))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-550)))) (-2554 (($ $ (-635 (-293 $))) 145) (($ $ (-293 $)) 144) (($ $ $ $) 143) (($ $ (-635 $) (-635 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-635 |#3|) (-635 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-635 |#3|) (-635 $)) 138)) (-3331 (($ $ |#3|) 107 (|has| |#1| (-171)))) (-2829 (($ $ |#3|) 42) (($ $ (-635 |#3|)) 41) (($ $ |#3| (-762)) 40) (($ $ (-635 |#3|) (-635 (-762))) 39)) (-4323 ((|#2| $) 150) (((-762) $ |#3|) 130) (((-635 (-762)) $ (-635 |#3|)) 129)) (-3224 (((-882 (-378)) $) 82 (-12 (|has| |#3| (-606 (-882 (-378)))) (|has| |#1| (-606 (-882 (-378)))))) (((-882 (-558)) $) 81 (-12 (|has| |#3| (-606 (-882 (-558)))) (|has| |#1| (-606 (-882 (-558)))))) (((-534) $) 80 (-12 (|has| |#3| (-606 (-534))) (|has| |#1| (-606 (-534)))))) (-2504 ((|#1| $) 175 (|has| |#1| (-450))) (($ $ |#3|) 106 (|has| |#1| (-450)))) (-3709 (((-3 (-1246 $) "failed") (-679 $)) 104 (-2084 (|has| $ (-144)) (|has| |#1| (-899))))) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ |#1|) 165) (($ |#3|) 135) (($ $) 85 (|has| |#1| (-550))) (($ (-406 (-558))) 72 (-3998 (|has| |#1| (-1028 (-406 (-558)))) (|has| |#1| (-38 (-406 (-558))))))) (-2583 (((-635 |#1|) $) 168)) (-3736 ((|#1| $ |#2|) 155) (($ $ |#3| (-762)) 128) (($ $ (-635 |#3|) (-635 (-762))) 127)) (-3698 (((-3 $ "failed") $) 73 (-3998 (-2084 (|has| $ (-144)) (|has| |#1| (-899))) (|has| |#1| (-144))))) (-2542 (((-762)) 28)) (-3879 (($ $ $ (-762)) 173 (|has| |#1| (-171)))) (-1870 (((-112) $ $) 89 (|has| |#1| (-550)))) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1866 (($ $ |#3|) 38) (($ $ (-635 |#3|)) 37) (($ $ |#3| (-762)) 36) (($ $ (-635 |#3|) (-635 (-762))) 35)) (-1747 (((-112) $ $) 76 (|has| |#1| (-841)))) (-1720 (((-112) $ $) 75 (|has| |#1| (-841)))) (-1683 (((-112) $ $) 6)) (-1731 (((-112) $ $) 77 (|has| |#1| (-841)))) (-1705 (((-112) $ $) 74 (|has| |#1| (-841)))) (-1810 (($ $ |#1|) 156 (|has| |#1| (-362)))) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ (-406 (-558))) 158 (|has| |#1| (-38 (-406 (-558))))) (($ (-406 (-558)) $) 157 (|has| |#1| (-38 (-406 (-558))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(((-939 |#1| |#2| |#3|) (-139) (-1039) (-784) (-841)) (T -939))
+((-2782 (*1 *1 *1) (-12 (-4 *1 (-939 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)) (-4 *2 (-450)))) (-4323 (*1 *2 *1 *3) (-12 (-4 *1 (-939 *4 *5 *3)) (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *3 (-841)) (-5 *2 (-762)))) (-4323 (*1 *2 *1 *3) (-12 (-5 *3 (-635 *6)) (-4 *1 (-939 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-635 (-762))))) (-3736 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-762)) (-4 *1 (-939 *4 *5 *2)) (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *2 (-841)))) (-3736 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 *6)) (-5 *3 (-635 (-762))) (-4 *1 (-939 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *6 (-841)))) (-2536 (*1 *2 *1) (-12 (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-635 *1)) (-4 *1 (-939 *3 *4 *5)))) (-2492 (*1 *2 *1 *3) (-12 (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *3 (-841)) (-5 *2 (-1159 *1)) (-4 *1 (-939 *4 *5 *3)))) (-2492 (*1 *2 *1) (-12 (-4 *1 (-939 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-1159 *3)))) (-3399 (*1 *2 *1) (|partial| -12 (-4 *1 (-939 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *2 (-841)))) (-2524 (*1 *2 *1 *3) (-12 (-4 *1 (-939 *4 *5 *3)) (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *3 (-841)) (-5 *2 (-762)))) (-2524 (*1 *2 *1 *3) (-12 (-5 *3 (-635 *6)) (-4 *1 (-939 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-635 (-762))))) (-3381 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *3 (-841)) (-5 *2 (-2 (|:| -2306 *1) (|:| -2071 *1))) (-4 *1 (-939 *4 *5 *3)))) (-2648 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-762)) (-4 *1 (-939 *4 *5 *2)) (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *2 (-841)))) (-2648 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 *6)) (-5 *3 (-635 (-762))) (-4 *1 (-939 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *6 (-841)))) (-2659 (*1 *1 *2 *3) (-12 (-5 *2 (-1159 *4)) (-4 *4 (-1039)) (-4 *1 (-939 *4 *5 *3)) (-4 *5 (-784)) (-4 *3 (-841)))) (-2659 (*1 *1 *2 *3) (-12 (-5 *2 (-1159 *1)) (-4 *1 (-939 *4 *5 *3)) (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *3 (-841)))) (-2548 (*1 *2 *1) (|partial| -12 (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-635 *1)) (-4 *1 (-939 *3 *4 *5)))) (-2560 (*1 *2 *1) (|partial| -12 (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-635 *1)) (-4 *1 (-939 *3 *4 *5)))) (-2575 (*1 *2 *1) (|partial| -12 (-4 *1 (-939 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-2 (|:| |var| *5) (|:| -1951 (-762)))))) (-2513 (*1 *2 *1) (-12 (-4 *1 (-939 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-762)))) (-2513 (*1 *2 *1 *3) (-12 (-5 *3 (-635 *6)) (-4 *1 (-939 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-762)))) (-2671 (*1 *2 *1) (-12 (-4 *1 (-939 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-635 *5)))) (-2476 (*1 *2 *1) (-12 (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-635 *1)) (-4 *1 (-939 *3 *4 *5)))) (-3320 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-939 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *2 (-841)) (-4 *3 (-171)))) (-3331 (*1 *1 *1 *2) (-12 (-4 *1 (-939 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *2 (-841)) (-4 *3 (-171)))) (-2504 (*1 *1 *1 *2) (-12 (-4 *1 (-939 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *2 (-841)) (-4 *3 (-450)))) (-2782 (*1 *1 *1 *2) (-12 (-4 *1 (-939 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *2 (-841)) (-4 *3 (-450)))) (-3465 (*1 *1 *1) (-12 (-4 *1 (-939 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)) (-4 *2 (-450)))) (-1380 (*1 *2 *1) (-12 (-4 *3 (-450)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-417 *1)) (-4 *1 (-939 *3 *4 *5)))))
+(-13 (-890 |t#3|) (-325 |t#1| |t#2|) (-308 $) (-512 |t#3| |t#1|) (-512 |t#3| $) (-1028 |t#3|) (-376 |t#1|) (-10 -8 (-15 -4323 ((-762) $ |t#3|)) (-15 -4323 ((-635 (-762)) $ (-635 |t#3|))) (-15 -3736 ($ $ |t#3| (-762))) (-15 -3736 ($ $ (-635 |t#3|) (-635 (-762)))) (-15 -2536 ((-635 $) $)) (-15 -2492 ((-1159 $) $ |t#3|)) (-15 -2492 ((-1159 |t#1|) $)) (-15 -3399 ((-3 |t#3| "failed") $)) (-15 -2524 ((-762) $ |t#3|)) (-15 -2524 ((-635 (-762)) $ (-635 |t#3|))) (-15 -3381 ((-2 (|:| -2306 $) (|:| -2071 $)) $ $ |t#3|)) (-15 -2648 ($ $ |t#3| (-762))) (-15 -2648 ($ $ (-635 |t#3|) (-635 (-762)))) (-15 -2659 ($ (-1159 |t#1|) |t#3|)) (-15 -2659 ($ (-1159 $) |t#3|)) (-15 -2548 ((-3 (-635 $) "failed") $)) (-15 -2560 ((-3 (-635 $) "failed") $)) (-15 -2575 ((-3 (-2 (|:| |var| |t#3|) (|:| -1951 (-762))) "failed") $)) (-15 -2513 ((-762) $)) (-15 -2513 ((-762) $ (-635 |t#3|))) (-15 -2671 ((-635 |t#3|) $)) (-15 -2476 ((-635 $) $)) (IF (|has| |t#1| (-841)) (-6 (-841)) |%noBranch|) (IF (|has| |t#1| (-606 (-534))) (IF (|has| |t#3| (-606 (-534))) (-6 (-606 (-534))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-606 (-882 (-558)))) (IF (|has| |t#3| (-606 (-882 (-558)))) (-6 (-606 (-882 (-558)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-606 (-882 (-378)))) (IF (|has| |t#3| (-606 (-882 (-378)))) (-6 (-606 (-882 (-378)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-876 (-558))) (IF (|has| |t#3| (-876 (-558))) (-6 (-876 (-558))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-876 (-378))) (IF (|has| |t#3| (-876 (-378))) (-6 (-876 (-378))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-171)) (PROGN (-15 -3320 ($ $ $ |t#3|)) (-15 -3331 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-450)) (PROGN (-6 (-450)) (-15 -2504 ($ $ |t#3|)) (-15 -2782 ($ $)) (-15 -2782 ($ $ |t#3|)) (-15 -1380 ((-417 $) $)) (-15 -3465 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4380)) (-6 -4380) |%noBranch|) (IF (|has| |t#1| (-899)) (-6 (-899)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -3998 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-406 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3998 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-608 #0#) -3998 (|has| |#1| (-1028 (-406 (-558)))) (|has| |#1| (-38 (-406 (-558))))) ((-608 (-558)) . T) ((-608 |#1|) . T) ((-608 |#3|) . T) ((-608 $) -3998 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450))) ((-605 (-853)) . T) ((-171) -3998 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-606 (-534)) -12 (|has| |#1| (-606 (-534))) (|has| |#3| (-606 (-534)))) ((-606 (-882 (-378))) -12 (|has| |#1| (-606 (-882 (-378)))) (|has| |#3| (-606 (-882 (-378))))) ((-606 (-882 (-558))) -12 (|has| |#1| (-606 (-882 (-558)))) (|has| |#3| (-606 (-882 (-558))))) ((-289) -3998 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450))) ((-308 $) . T) ((-325 |#1| |#2|) . T) ((-376 |#1|) . T) ((-410 |#1|) . T) ((-450) -3998 (|has| |#1| (-899)) (|has| |#1| (-450))) ((-512 |#3| |#1|) . T) ((-512 |#3| $) . T) ((-512 $ $) . T) ((-550) -3998 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450))) ((-638 #0#) |has| |#1| (-38 (-406 (-558)))) ((-638 |#1|) . T) ((-638 $) . T) ((-631 (-558)) |has| |#1| (-631 (-558))) ((-631 |#1|) . T) ((-708 #0#) |has| |#1| (-38 (-406 (-558)))) ((-708 |#1|) |has| |#1| (-171)) ((-708 $) -3998 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450))) ((-717) . T) ((-841) |has| |#1| (-841)) ((-890 |#3|) . T) ((-876 (-378)) -12 (|has| |#1| (-876 (-378))) (|has| |#3| (-876 (-378)))) ((-876 (-558)) -12 (|has| |#1| (-876 (-558))) (|has| |#3| (-876 (-558)))) ((-899) |has| |#1| (-899)) ((-1028 (-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) ((-1028 (-558)) |has| |#1| (-1028 (-558))) ((-1028 |#1|) . T) ((-1028 |#3|) . T) ((-1045 #0#) |has| |#1| (-38 (-406 (-558)))) ((-1045 |#1|) . T) ((-1045 $) -3998 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1204) |has| |#1| (-899)))
+((-2671 (((-635 |#2|) |#5|) 36)) (-2492 (((-1159 |#5|) |#5| |#2| (-1159 |#5|)) 23) (((-406 (-1159 |#5|)) |#5| |#2|) 16)) (-2659 ((|#5| (-406 (-1159 |#5|)) |#2|) 30)) (-3399 (((-3 |#2| "failed") |#5|) 65)) (-2560 (((-3 (-635 |#5|) "failed") |#5|) 59)) (-2586 (((-3 (-2 (|:| |val| |#5|) (|:| -1951 (-558))) "failed") |#5|) 47)) (-2548 (((-3 (-635 |#5|) "failed") |#5|) 61)) (-2575 (((-3 (-2 (|:| |var| |#2|) (|:| -1951 (-558))) "failed") |#5|) 51)))
+(((-940 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2671 ((-635 |#2|) |#5|)) (-15 -3399 ((-3 |#2| "failed") |#5|)) (-15 -2492 ((-406 (-1159 |#5|)) |#5| |#2|)) (-15 -2659 (|#5| (-406 (-1159 |#5|)) |#2|)) (-15 -2492 ((-1159 |#5|) |#5| |#2| (-1159 |#5|))) (-15 -2548 ((-3 (-635 |#5|) "failed") |#5|)) (-15 -2560 ((-3 (-635 |#5|) "failed") |#5|)) (-15 -2575 ((-3 (-2 (|:| |var| |#2|) (|:| -1951 (-558))) "failed") |#5|)) (-15 -2586 ((-3 (-2 (|:| |val| |#5|) (|:| -1951 (-558))) "failed") |#5|))) (-784) (-841) (-1039) (-939 |#3| |#1| |#2|) (-13 (-362) (-10 -8 (-15 -3220 ($ |#4|)) (-15 -1874 (|#4| $)) (-15 -1885 (|#4| $))))) (T -940))
+((-2586 (*1 *2 *3) (|partial| -12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1039)) (-4 *7 (-939 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -1951 (-558)))) (-5 *1 (-940 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -3220 ($ *7)) (-15 -1874 (*7 $)) (-15 -1885 (*7 $))))))) (-2575 (*1 *2 *3) (|partial| -12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1039)) (-4 *7 (-939 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -1951 (-558)))) (-5 *1 (-940 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -3220 ($ *7)) (-15 -1874 (*7 $)) (-15 -1885 (*7 $))))))) (-2560 (*1 *2 *3) (|partial| -12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1039)) (-4 *7 (-939 *6 *4 *5)) (-5 *2 (-635 *3)) (-5 *1 (-940 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -3220 ($ *7)) (-15 -1874 (*7 $)) (-15 -1885 (*7 $))))))) (-2548 (*1 *2 *3) (|partial| -12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1039)) (-4 *7 (-939 *6 *4 *5)) (-5 *2 (-635 *3)) (-5 *1 (-940 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -3220 ($ *7)) (-15 -1874 (*7 $)) (-15 -1885 (*7 $))))))) (-2492 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -3220 ($ *7)) (-15 -1874 (*7 $)) (-15 -1885 (*7 $))))) (-4 *7 (-939 *6 *5 *4)) (-4 *5 (-784)) (-4 *4 (-841)) (-4 *6 (-1039)) (-5 *1 (-940 *5 *4 *6 *7 *3)))) (-2659 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-1159 *2))) (-4 *5 (-784)) (-4 *4 (-841)) (-4 *6 (-1039)) (-4 *2 (-13 (-362) (-10 -8 (-15 -3220 ($ *7)) (-15 -1874 (*7 $)) (-15 -1885 (*7 $))))) (-5 *1 (-940 *5 *4 *6 *7 *2)) (-4 *7 (-939 *6 *5 *4)))) (-2492 (*1 *2 *3 *4) (-12 (-4 *5 (-784)) (-4 *4 (-841)) (-4 *6 (-1039)) (-4 *7 (-939 *6 *5 *4)) (-5 *2 (-406 (-1159 *3))) (-5 *1 (-940 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -3220 ($ *7)) (-15 -1874 (*7 $)) (-15 -1885 (*7 $))))))) (-3399 (*1 *2 *3) (|partial| -12 (-4 *4 (-784)) (-4 *5 (-1039)) (-4 *6 (-939 *5 *4 *2)) (-4 *2 (-841)) (-5 *1 (-940 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -3220 ($ *6)) (-15 -1874 (*6 $)) (-15 -1885 (*6 $))))))) (-2671 (*1 *2 *3) (-12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1039)) (-4 *7 (-939 *6 *4 *5)) (-5 *2 (-635 *5)) (-5 *1 (-940 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -3220 ($ *7)) (-15 -1874 (*7 $)) (-15 -1885 (*7 $))))))))
+(-10 -7 (-15 -2671 ((-635 |#2|) |#5|)) (-15 -3399 ((-3 |#2| "failed") |#5|)) (-15 -2492 ((-406 (-1159 |#5|)) |#5| |#2|)) (-15 -2659 (|#5| (-406 (-1159 |#5|)) |#2|)) (-15 -2492 ((-1159 |#5|) |#5| |#2| (-1159 |#5|))) (-15 -2548 ((-3 (-635 |#5|) "failed") |#5|)) (-15 -2560 ((-3 (-635 |#5|) "failed") |#5|)) (-15 -2575 ((-3 (-2 (|:| |var| |#2|) (|:| -1951 (-558))) "failed") |#5|)) (-15 -2586 ((-3 (-2 (|:| |val| |#5|) (|:| -1951 (-558))) "failed") |#5|)))
+((-3167 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 23)))
+(((-941 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3167 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-784) (-841) (-1039) (-939 |#3| |#1| |#2|) (-13 (-1087) (-10 -8 (-15 -1784 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-762)))))) (T -941))
+((-3167 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-841)) (-4 *8 (-1039)) (-4 *6 (-784)) (-4 *2 (-13 (-1087) (-10 -8 (-15 -1784 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-762)))))) (-5 *1 (-941 *6 *7 *8 *5 *2)) (-4 *5 (-939 *8 *6 *7)))))
+(-10 -7 (-15 -3167 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2671 (((-635 (-1163)) $) 16)) (-2492 (((-1159 $) $ (-1163)) 21) (((-1159 |#1|) $) NIL)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1881 (($ $) NIL (|has| |#1| (-550)))) (-1857 (((-112) $) NIL (|has| |#1| (-550)))) (-2513 (((-762) $) NIL) (((-762) $ (-635 (-1163))) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-3748 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-3465 (($ $) NIL (|has| |#1| (-450)))) (-1380 (((-417 $) $) NIL (|has| |#1| (-450)))) (-3719 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-1816 (($) NIL T CONST)) (-3069 (((-3 |#1| "failed") $) 8) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 (-1163) "failed") $) NIL)) (-1863 ((|#1| $) NIL) (((-406 (-558)) $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-558) $) NIL (|has| |#1| (-1028 (-558)))) (((-1163) $) NIL)) (-3320 (($ $ $ (-1163)) NIL (|has| |#1| (-171)))) (-2490 (($ $) NIL)) (-3216 (((-679 (-558)) (-679 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3683 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) NIL) (((-679 |#1|) (-679 $)) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-2782 (($ $) NIL (|has| |#1| (-450))) (($ $ (-1163)) NIL (|has| |#1| (-450)))) (-2476 (((-635 $) $) NIL)) (-3031 (((-112) $) NIL (|has| |#1| (-899)))) (-3888 (($ $ |#1| (-529 (-1163)) $) NIL)) (-2269 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (-12 (|has| (-1163) (-876 (-378))) (|has| |#1| (-876 (-378))))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (-12 (|has| (-1163) (-876 (-558))) (|has| |#1| (-876 (-558)))))) (-2035 (((-112) $) NIL)) (-2110 (((-762) $) NIL)) (-2659 (($ (-1159 |#1|) (-1163)) NIL) (($ (-1159 $) (-1163)) NIL)) (-2536 (((-635 $) $) NIL)) (-4238 (((-112) $) NIL)) (-2648 (($ |#1| (-529 (-1163))) NIL) (($ $ (-1163) (-762)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL)) (-3381 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $ (-1163)) NIL)) (-2524 (((-529 (-1163)) $) NIL) (((-762) $ (-1163)) NIL) (((-635 (-762)) $ (-635 (-1163))) NIL)) (-3910 (($ $ $) NIL (|has| |#1| (-841)))) (-3542 (($ $ $) NIL (|has| |#1| (-841)))) (-3898 (($ (-1 (-529 (-1163)) (-529 (-1163))) $) NIL)) (-3167 (($ (-1 |#1| |#1|) $) NIL)) (-3399 (((-3 (-1163) "failed") $) 19)) (-2451 (($ $) NIL)) (-2463 ((|#1| $) NIL)) (-2665 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-4310 (((-1145) $) NIL)) (-2560 (((-3 (-635 $) "failed") $) NIL)) (-2548 (((-3 (-635 $) "failed") $) NIL)) (-2575 (((-3 (-2 (|:| |var| (-1163)) (|:| -1951 (-762))) "failed") $) NIL)) (-2543 (($ $ (-1163)) 29 (|has| |#1| (-38 (-406 (-558)))))) (-2975 (((-1107) $) NIL)) (-2429 (((-112) $) NIL)) (-2440 ((|#1| $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#1| (-450)))) (-2699 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3728 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-3738 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-2522 (((-417 $) $) NIL (|has| |#1| (-899)))) (-3983 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-2554 (($ $ (-635 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-1163) |#1|) NIL) (($ $ (-635 (-1163)) (-635 |#1|)) NIL) (($ $ (-1163) $) NIL) (($ $ (-635 (-1163)) (-635 $)) NIL)) (-3331 (($ $ (-1163)) NIL (|has| |#1| (-171)))) (-2829 (($ $ (-1163)) NIL) (($ $ (-635 (-1163))) NIL) (($ $ (-1163) (-762)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL)) (-4323 (((-529 (-1163)) $) NIL) (((-762) $ (-1163)) NIL) (((-635 (-762)) $ (-635 (-1163))) NIL)) (-3224 (((-882 (-378)) $) NIL (-12 (|has| (-1163) (-606 (-882 (-378)))) (|has| |#1| (-606 (-882 (-378)))))) (((-882 (-558)) $) NIL (-12 (|has| (-1163) (-606 (-882 (-558)))) (|has| |#1| (-606 (-882 (-558)))))) (((-534) $) NIL (-12 (|has| (-1163) (-606 (-534))) (|has| |#1| (-606 (-534)))))) (-2504 ((|#1| $) NIL (|has| |#1| (-450))) (($ $ (-1163)) NIL (|has| |#1| (-450)))) (-3709 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-899))))) (-3220 (((-853) $) 25) (($ (-558)) NIL) (($ |#1|) NIL) (($ (-1163)) 27) (($ (-406 (-558))) NIL (-3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558)))))) (($ $) NIL (|has| |#1| (-550)))) (-2583 (((-635 |#1|) $) NIL)) (-3736 ((|#1| $ (-529 (-1163))) NIL) (($ $ (-1163) (-762)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL)) (-3698 (((-3 $ "failed") $) NIL (-3998 (-12 (|has| $ (-144)) (|has| |#1| (-899))) (|has| |#1| (-144))))) (-2542 (((-762)) NIL)) (-3879 (($ $ $ (-762)) NIL (|has| |#1| (-171)))) (-1870 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2131 (($) NIL T CONST)) (-2142 (($) NIL T CONST)) (-1866 (($ $ (-1163)) NIL) (($ $ (-635 (-1163))) NIL) (($ $ (-1163) (-762)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL)) (-1747 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1683 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1810 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558))))) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-942 |#1|) (-13 (-939 |#1| (-529 (-1163)) (-1163)) (-10 -8 (IF (|has| |#1| (-38 (-406 (-558)))) (-15 -2543 ($ $ (-1163))) |%noBranch|))) (-1039)) (T -942))
+((-2543 (*1 *1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-942 *3)) (-4 *3 (-38 (-406 (-558)))) (-4 *3 (-1039)))))
+(-13 (-939 |#1| (-529 (-1163)) (-1163)) (-10 -8 (IF (|has| |#1| (-38 (-406 (-558)))) (-15 -2543 ($ $ (-1163))) |%noBranch|)))
+((-2599 (((-2 (|:| -1951 (-762)) (|:| -2023 |#5|) (|:| |radicand| |#5|)) |#3| (-762)) 38)) (-2609 (((-2 (|:| -1951 (-762)) (|:| -2023 |#5|) (|:| |radicand| |#5|)) (-406 (-558)) (-762)) 34)) (-2629 (((-2 (|:| -1951 (-762)) (|:| -2023 |#4|) (|:| |radicand| (-635 |#4|))) |#4| (-762)) 54)) (-2619 (((-2 (|:| -1951 (-762)) (|:| -2023 |#5|) (|:| |radicand| |#5|)) |#5| (-762)) 64 (|has| |#3| (-450)))))
+(((-943 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2599 ((-2 (|:| -1951 (-762)) (|:| -2023 |#5|) (|:| |radicand| |#5|)) |#3| (-762))) (-15 -2609 ((-2 (|:| -1951 (-762)) (|:| -2023 |#5|) (|:| |radicand| |#5|)) (-406 (-558)) (-762))) (IF (|has| |#3| (-450)) (-15 -2619 ((-2 (|:| -1951 (-762)) (|:| -2023 |#5|) (|:| |radicand| |#5|)) |#5| (-762))) |%noBranch|) (-15 -2629 ((-2 (|:| -1951 (-762)) (|:| -2023 |#4|) (|:| |radicand| (-635 |#4|))) |#4| (-762)))) (-784) (-841) (-550) (-939 |#3| |#1| |#2|) (-13 (-362) (-10 -8 (-15 -3220 ($ |#4|)) (-15 -1874 (|#4| $)) (-15 -1885 (|#4| $))))) (T -943))
+((-2629 (*1 *2 *3 *4) (-12 (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-550)) (-4 *3 (-939 *7 *5 *6)) (-5 *2 (-2 (|:| -1951 (-762)) (|:| -2023 *3) (|:| |radicand| (-635 *3)))) (-5 *1 (-943 *5 *6 *7 *3 *8)) (-5 *4 (-762)) (-4 *8 (-13 (-362) (-10 -8 (-15 -3220 ($ *3)) (-15 -1874 (*3 $)) (-15 -1885 (*3 $))))))) (-2619 (*1 *2 *3 *4) (-12 (-4 *7 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-550)) (-4 *8 (-939 *7 *5 *6)) (-5 *2 (-2 (|:| -1951 (-762)) (|:| -2023 *3) (|:| |radicand| *3))) (-5 *1 (-943 *5 *6 *7 *8 *3)) (-5 *4 (-762)) (-4 *3 (-13 (-362) (-10 -8 (-15 -3220 ($ *8)) (-15 -1874 (*8 $)) (-15 -1885 (*8 $))))))) (-2609 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-558))) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-550)) (-4 *8 (-939 *7 *5 *6)) (-5 *2 (-2 (|:| -1951 (-762)) (|:| -2023 *9) (|:| |radicand| *9))) (-5 *1 (-943 *5 *6 *7 *8 *9)) (-5 *4 (-762)) (-4 *9 (-13 (-362) (-10 -8 (-15 -3220 ($ *8)) (-15 -1874 (*8 $)) (-15 -1885 (*8 $))))))) (-2599 (*1 *2 *3 *4) (-12 (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-550)) (-4 *7 (-939 *3 *5 *6)) (-5 *2 (-2 (|:| -1951 (-762)) (|:| -2023 *8) (|:| |radicand| *8))) (-5 *1 (-943 *5 *6 *3 *7 *8)) (-5 *4 (-762)) (-4 *8 (-13 (-362) (-10 -8 (-15 -3220 ($ *7)) (-15 -1874 (*7 $)) (-15 -1885 (*7 $))))))))
+(-10 -7 (-15 -2599 ((-2 (|:| -1951 (-762)) (|:| -2023 |#5|) (|:| |radicand| |#5|)) |#3| (-762))) (-15 -2609 ((-2 (|:| -1951 (-762)) (|:| -2023 |#5|) (|:| |radicand| |#5|)) (-406 (-558)) (-762))) (IF (|has| |#3| (-450)) (-15 -2619 ((-2 (|:| -1951 (-762)) (|:| -2023 |#5|) (|:| |radicand| |#5|)) |#5| (-762))) |%noBranch|) (-15 -2629 ((-2 (|:| -1951 (-762)) (|:| -2023 |#4|) (|:| |radicand| (-635 |#4|))) |#4| (-762))))
+((-3207 (((-112) $ $) NIL)) (-2638 (($ (-1107)) 8)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 14) (((-1107) $) 11)) (-1683 (((-112) $ $) 10)))
+(((-944) (-13 (-1087) (-605 (-1107)) (-10 -8 (-15 -2638 ($ (-1107)))))) (T -944))
+((-2638 (*1 *1 *2) (-12 (-5 *2 (-1107)) (-5 *1 (-944)))))
+(-13 (-1087) (-605 (-1107)) (-10 -8 (-15 -2638 ($ (-1107)))))
+((-1783 (((-1081 (-224)) $) 8)) (-1770 (((-1081 (-224)) $) 9)) (-2031 (((-635 (-635 (-933 (-224)))) $) 10)) (-3220 (((-853) $) 6)))
+(((-945) (-139)) (T -945))
+((-2031 (*1 *2 *1) (-12 (-4 *1 (-945)) (-5 *2 (-635 (-635 (-933 (-224))))))) (-1770 (*1 *2 *1) (-12 (-4 *1 (-945)) (-5 *2 (-1081 (-224))))) (-1783 (*1 *2 *1) (-12 (-4 *1 (-945)) (-5 *2 (-1081 (-224))))))
+(-13 (-605 (-853)) (-10 -8 (-15 -2031 ((-635 (-635 (-933 (-224)))) $)) (-15 -1770 ((-1081 (-224)) $)) (-15 -1783 ((-1081 (-224)) $))))
+(((-605 (-853)) . T))
+((-2650 (((-3 (-679 |#1|) "failed") |#2| (-911)) 15)))
+(((-946 |#1| |#2|) (-10 -7 (-15 -2650 ((-3 (-679 |#1|) "failed") |#2| (-911)))) (-550) (-646 |#1|)) (T -946))
+((-2650 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-911)) (-4 *5 (-550)) (-5 *2 (-679 *5)) (-5 *1 (-946 *5 *3)) (-4 *3 (-646 *5)))))
+(-10 -7 (-15 -2650 ((-3 (-679 |#1|) "failed") |#2| (-911))))
+((-2756 (((-948 |#2|) (-1 |#2| |#1| |#2|) (-948 |#1|) |#2|) 16)) (-3048 ((|#2| (-1 |#2| |#1| |#2|) (-948 |#1|) |#2|) 18)) (-3167 (((-948 |#2|) (-1 |#2| |#1|) (-948 |#1|)) 13)))
+(((-947 |#1| |#2|) (-10 -7 (-15 -2756 ((-948 |#2|) (-1 |#2| |#1| |#2|) (-948 |#1|) |#2|)) (-15 -3048 (|#2| (-1 |#2| |#1| |#2|) (-948 |#1|) |#2|)) (-15 -3167 ((-948 |#2|) (-1 |#2| |#1|) (-948 |#1|)))) (-1200) (-1200)) (T -947))
+((-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-948 *5)) (-4 *5 (-1200)) (-4 *6 (-1200)) (-5 *2 (-948 *6)) (-5 *1 (-947 *5 *6)))) (-3048 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-948 *5)) (-4 *5 (-1200)) (-4 *2 (-1200)) (-5 *1 (-947 *5 *2)))) (-2756 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-948 *6)) (-4 *6 (-1200)) (-4 *5 (-1200)) (-5 *2 (-948 *5)) (-5 *1 (-947 *6 *5)))))
+(-10 -7 (-15 -2756 ((-948 |#2|) (-1 |#2| |#1| |#2|) (-948 |#1|) |#2|)) (-15 -3048 (|#2| (-1 |#2| |#1| |#2|) (-948 |#1|) |#2|)) (-15 -3167 ((-948 |#2|) (-1 |#2| |#1|) (-948 |#1|))))
+((-3207 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-3869 (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4383)))) (-1538 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-841)))) (-2763 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4383))) (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-841))))) (-2376 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-841)))) (-3026 (((-112) $ (-762)) NIL)) (-1532 ((|#1| $ (-558) |#1|) 16 (|has| $ (-6 -4383))) ((|#1| $ (-1213 (-558)) |#1|) NIL (|has| $ (-6 -4383)))) (-4329 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-1816 (($) NIL T CONST)) (-3306 (($ $) NIL (|has| $ (-6 -4383)))) (-4127 (($ $) NIL)) (-2338 (($ $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1539 (($ |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-3048 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4382))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4382)))) (-1817 ((|#1| $ (-558) |#1|) 15 (|has| $ (-6 -4383)))) (-1746 ((|#1| $ (-558)) 13)) (-1517 (((-558) (-1 (-112) |#1|) $) NIL) (((-558) |#1| $) NIL (|has| |#1| (-1087))) (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1087)))) (-2240 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-3315 (($ (-762) |#1|) 12)) (-2986 (((-112) $ (-762)) NIL)) (-3889 (((-558) $) 10 (|has| (-558) (-841)))) (-3910 (($ $ $) NIL (|has| |#1| (-841)))) (-1677 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-841)))) (-2122 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3899 (((-558) $) NIL (|has| (-558) (-841)))) (-3542 (($ $ $) NIL (|has| |#1| (-841)))) (-1807 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL (|has| |#1| (-1087)))) (-1861 (($ |#1| $ (-558)) NIL) (($ $ $ (-558)) NIL)) (-3920 (((-635 (-558)) $) NIL)) (-3929 (((-112) (-558) $) NIL)) (-2975 (((-1107) $) NIL (|has| |#1| (-1087)))) (-2305 ((|#1| $) NIL (|has| (-558) (-841)))) (-4307 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3880 (($ $ |#1|) 17 (|has| $ (-6 -4383)))) (-3266 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3908 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3937 (((-635 |#1|) $) NIL)) (-3375 (((-112) $) NIL)) (-2083 (($) 11)) (-2195 ((|#1| $ (-558) |#1|) NIL) ((|#1| $ (-558)) 14) (($ $ (-1213 (-558))) NIL)) (-4023 (($ $ (-558)) NIL) (($ $ (-1213 (-558))) NIL)) (-2988 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-2773 (($ $ $ (-558)) NIL (|has| $ (-6 -4383)))) (-1553 (($ $) NIL)) (-3224 (((-534) $) NIL (|has| |#1| (-606 (-534))))) (-3233 (($ (-635 |#1|)) NIL)) (-4341 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-635 $)) NIL)) (-3220 (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-3277 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-1747 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1683 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-841)))) (-2755 (((-762) $) 8 (|has| $ (-6 -4382)))))
+(((-948 |#1|) (-19 |#1|) (-1200)) (T -948))
NIL
(-19 |#1|)
-((-3546 (($ $ (-1074 $)) 7) (($ $ (-1158)) 6)))
-(((-944) (-138)) (T -944))
-((-3546 (*1 *1 *1 *2) (-12 (-5 *2 (-1074 *1)) (-4 *1 (-944)))) (-3546 (*1 *1 *1 *2) (-12 (-4 *1 (-944)) (-5 *2 (-1158)))))
-(-13 (-10 -8 (-15 -3546 ($ $ (-1158))) (-15 -3546 ($ $ (-1074 $)))))
-((-3157 (((-2 (|:| -1490 (-631 (-554))) (|:| |poly| (-631 (-1154 |#1|))) (|:| |prim| (-1154 |#1|))) (-631 (-937 |#1|)) (-631 (-1158)) (-1158)) 25) (((-2 (|:| -1490 (-631 (-554))) (|:| |poly| (-631 (-1154 |#1|))) (|:| |prim| (-1154 |#1|))) (-631 (-937 |#1|)) (-631 (-1158))) 26) (((-2 (|:| |coef1| (-554)) (|:| |coef2| (-554)) (|:| |prim| (-1154 |#1|))) (-937 |#1|) (-1158) (-937 |#1|) (-1158)) 43)))
-(((-945 |#1|) (-10 -7 (-15 -3157 ((-2 (|:| |coef1| (-554)) (|:| |coef2| (-554)) (|:| |prim| (-1154 |#1|))) (-937 |#1|) (-1158) (-937 |#1|) (-1158))) (-15 -3157 ((-2 (|:| -1490 (-631 (-554))) (|:| |poly| (-631 (-1154 |#1|))) (|:| |prim| (-1154 |#1|))) (-631 (-937 |#1|)) (-631 (-1158)))) (-15 -3157 ((-2 (|:| -1490 (-631 (-554))) (|:| |poly| (-631 (-1154 |#1|))) (|:| |prim| (-1154 |#1|))) (-631 (-937 |#1|)) (-631 (-1158)) (-1158)))) (-13 (-358) (-145))) (T -945))
-((-3157 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 (-937 *6))) (-5 *4 (-631 (-1158))) (-5 *5 (-1158)) (-4 *6 (-13 (-358) (-145))) (-5 *2 (-2 (|:| -1490 (-631 (-554))) (|:| |poly| (-631 (-1154 *6))) (|:| |prim| (-1154 *6)))) (-5 *1 (-945 *6)))) (-3157 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-937 *5))) (-5 *4 (-631 (-1158))) (-4 *5 (-13 (-358) (-145))) (-5 *2 (-2 (|:| -1490 (-631 (-554))) (|:| |poly| (-631 (-1154 *5))) (|:| |prim| (-1154 *5)))) (-5 *1 (-945 *5)))) (-3157 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-937 *5)) (-5 *4 (-1158)) (-4 *5 (-13 (-358) (-145))) (-5 *2 (-2 (|:| |coef1| (-554)) (|:| |coef2| (-554)) (|:| |prim| (-1154 *5)))) (-5 *1 (-945 *5)))))
-(-10 -7 (-15 -3157 ((-2 (|:| |coef1| (-554)) (|:| |coef2| (-554)) (|:| |prim| (-1154 |#1|))) (-937 |#1|) (-1158) (-937 |#1|) (-1158))) (-15 -3157 ((-2 (|:| -1490 (-631 (-554))) (|:| |poly| (-631 (-1154 |#1|))) (|:| |prim| (-1154 |#1|))) (-631 (-937 |#1|)) (-631 (-1158)))) (-15 -3157 ((-2 (|:| -1490 (-631 (-554))) (|:| |poly| (-631 (-1154 |#1|))) (|:| |prim| (-1154 |#1|))) (-631 (-937 |#1|)) (-631 (-1158)) (-1158))))
-((-3431 (((-631 |#1|) |#1| |#1|) 42)) (-3289 (((-112) |#1|) 39)) (-4002 ((|#1| |#1|) 65)) (-2801 ((|#1| |#1|) 64)))
-(((-946 |#1|) (-10 -7 (-15 -3289 ((-112) |#1|)) (-15 -2801 (|#1| |#1|)) (-15 -4002 (|#1| |#1|)) (-15 -3431 ((-631 |#1|) |#1| |#1|))) (-539)) (T -946))
-((-3431 (*1 *2 *3 *3) (-12 (-5 *2 (-631 *3)) (-5 *1 (-946 *3)) (-4 *3 (-539)))) (-4002 (*1 *2 *2) (-12 (-5 *1 (-946 *2)) (-4 *2 (-539)))) (-2801 (*1 *2 *2) (-12 (-5 *1 (-946 *2)) (-4 *2 (-539)))) (-3289 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-946 *3)) (-4 *3 (-539)))))
-(-10 -7 (-15 -3289 ((-112) |#1|)) (-15 -2801 (|#1| |#1|)) (-15 -4002 (|#1| |#1|)) (-15 -3431 ((-631 |#1|) |#1| |#1|)))
-((-1869 (((-1246) (-848)) 9)))
-(((-947) (-10 -7 (-15 -1869 ((-1246) (-848))))) (T -947))
-((-1869 (*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1246)) (-5 *1 (-947)))))
-(-10 -7 (-15 -1869 ((-1246) (-848))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 61 (|has| |#1| (-546)))) (-1976 (($ $) 62 (|has| |#1| (-546)))) (-1363 (((-112) $) NIL (|has| |#1| (-546)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-3 |#1| "failed") $) 28)) (-1668 (((-554) $) NIL (|has| |#1| (-1023 (-554)))) (((-402 (-554)) $) NIL (|has| |#1| (-1023 (-402 (-554))))) ((|#1| $) NIL)) (-2550 (($ $) 24)) (-1320 (((-3 $ "failed") $) 35)) (-2048 (($ $) NIL (|has| |#1| (-446)))) (-1344 (($ $ |#1| |#2| $) 48)) (-3248 (((-112) $) NIL)) (-2122 (((-758) $) 16)) (-3580 (((-112) $) NIL)) (-2383 (($ |#1| |#2|) NIL)) (-3893 ((|#2| $) 19)) (-2789 (($ (-1 |#2| |#2|) $) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-2518 (($ $) 23)) (-2530 ((|#1| $) 21)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2492 (((-112) $) 40)) (-2505 ((|#1| $) NIL)) (-2034 (($ $ |#2| |#1| $) 73 (-12 (|has| |#2| (-130)) (|has| |#1| (-546))))) (-3919 (((-3 $ "failed") $ $) 74 (|has| |#1| (-546))) (((-3 $ "failed") $ |#1|) 68 (|has| |#1| (-546)))) (-3308 ((|#2| $) 17)) (-3276 ((|#1| $) NIL (|has| |#1| (-446)))) (-3075 (((-848) $) NIL) (($ (-554)) 39) (($ $) NIL (|has| |#1| (-546))) (($ |#1|) 34) (($ (-402 (-554))) NIL (-3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554))))))) (-1893 (((-631 |#1|) $) NIL)) (-1779 ((|#1| $ |#2|) 31)) (-2084 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2261 (((-758)) 15)) (-2907 (($ $ $ (-758)) 57 (|has| |#1| (-170)))) (-1909 (((-112) $ $) 67 (|has| |#1| (-546)))) (-2004 (($) 22 T CONST)) (-2014 (($) 12 T CONST)) (-1658 (((-112) $ $) 66)) (-1752 (($ $ |#1|) 75 (|has| |#1| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) 54) (($ $ (-758)) 52)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554)))))))
-(((-948 |#1| |#2|) (-13 (-321 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-546)) (IF (|has| |#2| (-130)) (-15 -2034 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4371)) (-6 -4371) |%noBranch|))) (-1034) (-779)) (T -948))
-((-2034 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-948 *3 *2)) (-4 *2 (-130)) (-4 *3 (-546)) (-4 *3 (-1034)) (-4 *2 (-779)))))
-(-13 (-321 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-546)) (IF (|has| |#2| (-130)) (-15 -2034 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4371)) (-6 -4371) |%noBranch|)))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL (-3994 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-780)) (|has| |#2| (-780)))))) (-1349 (($ $ $) 63 (-12 (|has| |#1| (-780)) (|has| |#2| (-780))))) (-2934 (((-3 $ "failed") $ $) 50 (-3994 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-780)) (|has| |#2| (-780)))))) (-1508 (((-758)) 34 (-12 (|has| |#1| (-363)) (|has| |#2| (-363))))) (-3200 ((|#2| $) 21)) (-4340 ((|#1| $) 20)) (-4087 (($) NIL (-3994 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-713)) (|has| |#2| (-713))) (-12 (|has| |#1| (-780)) (|has| |#2| (-780)))) CONST)) (-1320 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-713)) (|has| |#2| (-713)))))) (-3353 (($) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-363))))) (-3248 (((-112) $) NIL (-3994 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-713)) (|has| |#2| (-713)))))) (-4223 (($ $ $) NIL (-3994 (-12 (|has| |#1| (-780)) (|has| |#2| (-780))) (-12 (|has| |#1| (-836)) (|has| |#2| (-836)))))) (-2706 (($ $ $) NIL (-3994 (-12 (|has| |#1| (-780)) (|has| |#2| (-780))) (-12 (|has| |#1| (-836)) (|has| |#2| (-836)))))) (-3287 (($ |#1| |#2|) 19)) (-3830 (((-906) $) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-363))))) (-1613 (((-1140) $) NIL)) (-2483 (($ $) 37 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))))) (-2717 (($ (-906)) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-363))))) (-2768 (((-1102) $) NIL)) (-3992 (($ $ $) NIL (-12 (|has| |#1| (-467)) (|has| |#2| (-467))))) (-1856 (($ $ $) NIL (-12 (|has| |#1| (-467)) (|has| |#2| (-467))))) (-3075 (((-848) $) 14)) (-2004 (($) 40 (-3994 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-780)) (|has| |#2| (-780)))) CONST)) (-2014 (($) 24 (-3994 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-713)) (|has| |#2| (-713)))) CONST)) (-1708 (((-112) $ $) NIL (-3994 (-12 (|has| |#1| (-780)) (|has| |#2| (-780))) (-12 (|has| |#1| (-836)) (|has| |#2| (-836)))))) (-1686 (((-112) $ $) NIL (-3994 (-12 (|has| |#1| (-780)) (|has| |#2| (-780))) (-12 (|has| |#1| (-836)) (|has| |#2| (-836)))))) (-1658 (((-112) $ $) 18)) (-1697 (((-112) $ $) NIL (-3994 (-12 (|has| |#1| (-780)) (|has| |#2| (-780))) (-12 (|has| |#1| (-836)) (|has| |#2| (-836)))))) (-1676 (((-112) $ $) 66 (-3994 (-12 (|has| |#1| (-780)) (|has| |#2| (-780))) (-12 (|has| |#1| (-836)) (|has| |#2| (-836)))))) (-1752 (($ $ $) NIL (-12 (|has| |#1| (-467)) (|has| |#2| (-467))))) (-1744 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-1735 (($ $ $) 43 (-3994 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-780)) (|has| |#2| (-780)))))) (** (($ $ (-554)) NIL (-12 (|has| |#1| (-467)) (|has| |#2| (-467)))) (($ $ (-758)) 31 (-3994 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-713)) (|has| |#2| (-713))))) (($ $ (-906)) NIL (-3994 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-713)) (|has| |#2| (-713)))))) (* (($ (-554) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-758) $) 46 (-3994 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-780)) (|has| |#2| (-780))))) (($ (-906) $) NIL (-3994 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-780)) (|has| |#2| (-780))))) (($ $ $) 27 (-3994 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-713)) (|has| |#2| (-713)))))))
-(((-949 |#1| |#2|) (-13 (-1082) (-10 -8 (IF (|has| |#1| (-363)) (IF (|has| |#2| (-363)) (-6 (-363)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-713)) (IF (|has| |#2| (-713)) (-6 (-713)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-467)) (IF (|has| |#2| (-467)) (-6 (-467)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-780)) (IF (|has| |#2| (-780)) (-6 (-780)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-836)) (IF (|has| |#2| (-836)) (-6 (-836)) |%noBranch|) |%noBranch|) (-15 -3287 ($ |#1| |#2|)) (-15 -4340 (|#1| $)) (-15 -3200 (|#2| $)))) (-1082) (-1082)) (T -949))
-((-3287 (*1 *1 *2 *3) (-12 (-5 *1 (-949 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082)))) (-4340 (*1 *2 *1) (-12 (-4 *2 (-1082)) (-5 *1 (-949 *2 *3)) (-4 *3 (-1082)))) (-3200 (*1 *2 *1) (-12 (-4 *2 (-1082)) (-5 *1 (-949 *3 *2)) (-4 *3 (-1082)))))
-(-13 (-1082) (-10 -8 (IF (|has| |#1| (-363)) (IF (|has| |#2| (-363)) (-6 (-363)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-713)) (IF (|has| |#2| (-713)) (-6 (-713)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-467)) (IF (|has| |#2| (-467)) (-6 (-467)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-780)) (IF (|has| |#2| (-780)) (-6 (-780)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-836)) (IF (|has| |#2| (-836)) (-6 (-836)) |%noBranch|) |%noBranch|) (-15 -3287 ($ |#1| |#2|)) (-15 -4340 (|#1| $)) (-15 -3200 (|#2| $))))
-((-2794 (((-1086) $) 12)) (-2047 (($ (-1158) (-1086)) 13)) (-4309 (((-1158) $) 10)) (-3075 (((-848) $) 22)))
-(((-950) (-13 (-601 (-848)) (-10 -8 (-15 -4309 ((-1158) $)) (-15 -2794 ((-1086) $)) (-15 -2047 ($ (-1158) (-1086)))))) (T -950))
-((-4309 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-950)))) (-2794 (*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-950)))) (-2047 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-1086)) (-5 *1 (-950)))))
-(-13 (-601 (-848)) (-10 -8 (-15 -4309 ((-1158) $)) (-15 -2794 ((-1086) $)) (-15 -2047 ($ (-1158) (-1086)))))
-((-3062 (((-112) $ $) NIL)) (-2405 (((-1084 (-1158)) $) 19)) (-1440 (((-112) $) 26)) (-1576 (((-1158) $) 27)) (-3433 (((-112) $) 24)) (-3090 ((|#1| $) 25)) (-1560 (((-858 $ $) $) 34)) (-2011 (((-112) $) 33)) (-3038 (($ $ $) 12)) (-2861 (($ $) 29)) (-2599 (((-112) $) 28)) (-4081 (($ $) 10)) (-1613 (((-1140) $) NIL)) (-3421 (((-858 $ $) $) 36)) (-3711 (((-112) $) 35)) (-3771 (($ $ $) 13)) (-2768 (((-1102) $) NIL)) (-1518 (((-858 $ $) $) 38)) (-1906 (((-112) $) 37)) (-2455 (($ $ $) 14)) (-3075 (((-848) $) 40) (($ |#1|) 7) (($ (-1158)) 9)) (-3268 (((-858 $ $) $) 32)) (-2758 (((-112) $) 30)) (-3726 (($ $ $) 11)) (-1658 (((-112) $ $) NIL)))
-(((-951 |#1|) (-13 (-952) (-10 -8 (-15 -3075 ($ |#1|)) (-15 -3075 ($ (-1158))) (-15 -2405 ((-1084 (-1158)) $)) (-15 -3433 ((-112) $)) (-15 -3090 (|#1| $)) (-15 -1440 ((-112) $)) (-15 -1576 ((-1158) $)) (-15 -2599 ((-112) $)) (-15 -2861 ($ $)) (-15 -2758 ((-112) $)) (-15 -3268 ((-858 $ $) $)) (-15 -2011 ((-112) $)) (-15 -1560 ((-858 $ $) $)) (-15 -3711 ((-112) $)) (-15 -3421 ((-858 $ $) $)) (-15 -1906 ((-112) $)) (-15 -1518 ((-858 $ $) $)))) (-952)) (T -951))
-((-3075 (*1 *1 *2) (-12 (-5 *1 (-951 *2)) (-4 *2 (-952)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-951 *3)) (-4 *3 (-952)))) (-2405 (*1 *2 *1) (-12 (-5 *2 (-1084 (-1158))) (-5 *1 (-951 *3)) (-4 *3 (-952)))) (-3433 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-951 *3)) (-4 *3 (-952)))) (-3090 (*1 *2 *1) (-12 (-5 *1 (-951 *2)) (-4 *2 (-952)))) (-1440 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-951 *3)) (-4 *3 (-952)))) (-1576 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-951 *3)) (-4 *3 (-952)))) (-2599 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-951 *3)) (-4 *3 (-952)))) (-2861 (*1 *1 *1) (-12 (-5 *1 (-951 *2)) (-4 *2 (-952)))) (-2758 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-951 *3)) (-4 *3 (-952)))) (-3268 (*1 *2 *1) (-12 (-5 *2 (-858 (-951 *3) (-951 *3))) (-5 *1 (-951 *3)) (-4 *3 (-952)))) (-2011 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-951 *3)) (-4 *3 (-952)))) (-1560 (*1 *2 *1) (-12 (-5 *2 (-858 (-951 *3) (-951 *3))) (-5 *1 (-951 *3)) (-4 *3 (-952)))) (-3711 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-951 *3)) (-4 *3 (-952)))) (-3421 (*1 *2 *1) (-12 (-5 *2 (-858 (-951 *3) (-951 *3))) (-5 *1 (-951 *3)) (-4 *3 (-952)))) (-1906 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-951 *3)) (-4 *3 (-952)))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-858 (-951 *3) (-951 *3))) (-5 *1 (-951 *3)) (-4 *3 (-952)))))
-(-13 (-952) (-10 -8 (-15 -3075 ($ |#1|)) (-15 -3075 ($ (-1158))) (-15 -2405 ((-1084 (-1158)) $)) (-15 -3433 ((-112) $)) (-15 -3090 (|#1| $)) (-15 -1440 ((-112) $)) (-15 -1576 ((-1158) $)) (-15 -2599 ((-112) $)) (-15 -2861 ($ $)) (-15 -2758 ((-112) $)) (-15 -3268 ((-858 $ $) $)) (-15 -2011 ((-112) $)) (-15 -1560 ((-858 $ $) $)) (-15 -3711 ((-112) $)) (-15 -3421 ((-858 $ $) $)) (-15 -1906 ((-112) $)) (-15 -1518 ((-858 $ $) $))))
-((-3062 (((-112) $ $) 7)) (-3038 (($ $ $) 15)) (-4081 (($ $) 17)) (-1613 (((-1140) $) 9)) (-3771 (($ $ $) 14)) (-2768 (((-1102) $) 10)) (-2455 (($ $ $) 13)) (-3075 (((-848) $) 11)) (-3726 (($ $ $) 16)) (-1658 (((-112) $ $) 6)))
-(((-952) (-138)) (T -952))
-((-4081 (*1 *1 *1) (-4 *1 (-952))) (-3726 (*1 *1 *1 *1) (-4 *1 (-952))) (-3038 (*1 *1 *1 *1) (-4 *1 (-952))) (-3771 (*1 *1 *1 *1) (-4 *1 (-952))) (-2455 (*1 *1 *1 *1) (-4 *1 (-952))))
-(-13 (-1082) (-10 -8 (-15 -4081 ($ $)) (-15 -3726 ($ $ $)) (-15 -3038 ($ $ $)) (-15 -3771 ($ $ $)) (-15 -2455 ($ $ $))))
-(((-102) . T) ((-601 (-848)) . T) ((-1082) . T))
-((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-3019 (((-112) $ (-758)) 8)) (-4087 (($) 7 T CONST)) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) 9)) (-3606 (($ $ $) 43)) (-3717 (($ $ $) 44)) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2706 ((|#1| $) 45)) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35)) (-3731 (((-112) $ (-758)) 10)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-4150 ((|#1| $) 39)) (-2045 (($ |#1| $) 40)) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-2152 ((|#1| $) 41)) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-1591 (($ (-631 |#1|)) 42)) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373)))))
-(((-953 |#1|) (-138) (-836)) (T -953))
-((-2706 (*1 *2 *1) (-12 (-4 *1 (-953 *2)) (-4 *2 (-836)))) (-3717 (*1 *1 *1 *1) (-12 (-4 *1 (-953 *2)) (-4 *2 (-836)))) (-3606 (*1 *1 *1 *1) (-12 (-4 *1 (-953 *2)) (-4 *2 (-836)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4373) (-15 -2706 (|t#1| $)) (-15 -3717 ($ $ $)) (-15 -3606 ($ $ $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1082)) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-601 (-848)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-1082) |has| |#1| (-1082)) ((-1195) . T))
-((-2427 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2510 |#2|)) |#2| |#2|) 85)) (-4286 ((|#2| |#2| |#2|) 83)) (-3761 (((-2 (|:| |coef2| |#2|) (|:| -2510 |#2|)) |#2| |#2|) 87)) (-1281 (((-2 (|:| |coef1| |#2|) (|:| -2510 |#2|)) |#2| |#2|) 89)) (-2359 (((-2 (|:| |coef2| |#2|) (|:| -1942 |#1|)) |#2| |#2|) 107 (|has| |#1| (-446)))) (-2602 (((-2 (|:| |coef2| |#2|) (|:| -2999 |#1|)) |#2| |#2|) 46)) (-1872 (((-2 (|:| |coef2| |#2|) (|:| -2999 |#1|)) |#2| |#2|) 64)) (-2434 (((-2 (|:| |coef1| |#2|) (|:| -2999 |#1|)) |#2| |#2|) 66)) (-2951 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-2305 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-758)) 71)) (-2617 (((-2 (|:| |coef2| |#2|) (|:| -1495 |#1|)) |#2|) 97)) (-4090 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-758)) 74)) (-2585 (((-631 (-758)) |#2| |#2|) 82)) (-2607 ((|#1| |#2| |#2|) 42)) (-2876 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1942 |#1|)) |#2| |#2|) 105 (|has| |#1| (-446)))) (-1942 ((|#1| |#2| |#2|) 103 (|has| |#1| (-446)))) (-3383 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2999 |#1|)) |#2| |#2|) 44)) (-3886 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2999 |#1|)) |#2| |#2|) 63)) (-2999 ((|#1| |#2| |#2|) 61)) (-1680 (((-2 (|:| -1490 |#1|) (|:| -2325 |#2|) (|:| -2423 |#2|)) |#2| |#2|) 35)) (-2676 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-3362 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-2543 ((|#2| |#2| |#2|) 75)) (-3228 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-758)) 69)) (-2678 ((|#2| |#2| |#2| (-758)) 67)) (-2510 ((|#2| |#2| |#2|) 111 (|has| |#1| (-446)))) (-3919 (((-1241 |#2|) (-1241 |#2|) |#1|) 21)) (-2259 (((-2 (|:| -2325 |#2|) (|:| -2423 |#2|)) |#2| |#2|) 39)) (-3700 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1495 |#1|)) |#2|) 95)) (-1495 ((|#1| |#2|) 92)) (-2942 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-758)) 73)) (-4033 ((|#2| |#2| |#2| (-758)) 72)) (-4342 (((-631 |#2|) |#2| |#2|) 80)) (-2503 ((|#2| |#2| |#1| |#1| (-758)) 50)) (-3551 ((|#1| |#1| |#1| (-758)) 49)) (* (((-1241 |#2|) |#1| (-1241 |#2|)) 16)))
-(((-954 |#1| |#2|) (-10 -7 (-15 -2999 (|#1| |#2| |#2|)) (-15 -3886 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2999 |#1|)) |#2| |#2|)) (-15 -1872 ((-2 (|:| |coef2| |#2|) (|:| -2999 |#1|)) |#2| |#2|)) (-15 -2434 ((-2 (|:| |coef1| |#2|) (|:| -2999 |#1|)) |#2| |#2|)) (-15 -2678 (|#2| |#2| |#2| (-758))) (-15 -3228 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-758))) (-15 -2305 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-758))) (-15 -4033 (|#2| |#2| |#2| (-758))) (-15 -2942 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-758))) (-15 -4090 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-758))) (-15 -2543 (|#2| |#2| |#2|)) (-15 -3362 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2951 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4286 (|#2| |#2| |#2|)) (-15 -2427 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2510 |#2|)) |#2| |#2|)) (-15 -3761 ((-2 (|:| |coef2| |#2|) (|:| -2510 |#2|)) |#2| |#2|)) (-15 -1281 ((-2 (|:| |coef1| |#2|) (|:| -2510 |#2|)) |#2| |#2|)) (-15 -1495 (|#1| |#2|)) (-15 -3700 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1495 |#1|)) |#2|)) (-15 -2617 ((-2 (|:| |coef2| |#2|) (|:| -1495 |#1|)) |#2|)) (-15 -4342 ((-631 |#2|) |#2| |#2|)) (-15 -2585 ((-631 (-758)) |#2| |#2|)) (IF (|has| |#1| (-446)) (PROGN (-15 -1942 (|#1| |#2| |#2|)) (-15 -2876 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1942 |#1|)) |#2| |#2|)) (-15 -2359 ((-2 (|:| |coef2| |#2|) (|:| -1942 |#1|)) |#2| |#2|)) (-15 -2510 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1241 |#2|) |#1| (-1241 |#2|))) (-15 -3919 ((-1241 |#2|) (-1241 |#2|) |#1|)) (-15 -1680 ((-2 (|:| -1490 |#1|) (|:| -2325 |#2|) (|:| -2423 |#2|)) |#2| |#2|)) (-15 -2259 ((-2 (|:| -2325 |#2|) (|:| -2423 |#2|)) |#2| |#2|)) (-15 -3551 (|#1| |#1| |#1| (-758))) (-15 -2503 (|#2| |#2| |#1| |#1| (-758))) (-15 -2676 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2607 (|#1| |#2| |#2|)) (-15 -3383 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2999 |#1|)) |#2| |#2|)) (-15 -2602 ((-2 (|:| |coef2| |#2|) (|:| -2999 |#1|)) |#2| |#2|))) (-546) (-1217 |#1|)) (T -954))
-((-2602 (*1 *2 *3 *3) (-12 (-4 *4 (-546)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2999 *4))) (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))) (-3383 (*1 *2 *3 *3) (-12 (-4 *4 (-546)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2999 *4))) (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))) (-2607 (*1 *2 *3 *3) (-12 (-4 *2 (-546)) (-5 *1 (-954 *2 *3)) (-4 *3 (-1217 *2)))) (-2676 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-546)) (-5 *1 (-954 *3 *2)) (-4 *2 (-1217 *3)))) (-2503 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-758)) (-4 *3 (-546)) (-5 *1 (-954 *3 *2)) (-4 *2 (-1217 *3)))) (-3551 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-758)) (-4 *2 (-546)) (-5 *1 (-954 *2 *4)) (-4 *4 (-1217 *2)))) (-2259 (*1 *2 *3 *3) (-12 (-4 *4 (-546)) (-5 *2 (-2 (|:| -2325 *3) (|:| -2423 *3))) (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))) (-1680 (*1 *2 *3 *3) (-12 (-4 *4 (-546)) (-5 *2 (-2 (|:| -1490 *4) (|:| -2325 *3) (|:| -2423 *3))) (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))) (-3919 (*1 *2 *2 *3) (-12 (-5 *2 (-1241 *4)) (-4 *4 (-1217 *3)) (-4 *3 (-546)) (-5 *1 (-954 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1241 *4)) (-4 *4 (-1217 *3)) (-4 *3 (-546)) (-5 *1 (-954 *3 *4)))) (-2510 (*1 *2 *2 *2) (-12 (-4 *3 (-446)) (-4 *3 (-546)) (-5 *1 (-954 *3 *2)) (-4 *2 (-1217 *3)))) (-2359 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *4 (-546)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1942 *4))) (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))) (-2876 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *4 (-546)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1942 *4))) (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))) (-1942 (*1 *2 *3 *3) (-12 (-4 *2 (-546)) (-4 *2 (-446)) (-5 *1 (-954 *2 *3)) (-4 *3 (-1217 *2)))) (-2585 (*1 *2 *3 *3) (-12 (-4 *4 (-546)) (-5 *2 (-631 (-758))) (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))) (-4342 (*1 *2 *3 *3) (-12 (-4 *4 (-546)) (-5 *2 (-631 *3)) (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))) (-2617 (*1 *2 *3) (-12 (-4 *4 (-546)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1495 *4))) (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))) (-3700 (*1 *2 *3) (-12 (-4 *4 (-546)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1495 *4))) (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))) (-1495 (*1 *2 *3) (-12 (-4 *2 (-546)) (-5 *1 (-954 *2 *3)) (-4 *3 (-1217 *2)))) (-1281 (*1 *2 *3 *3) (-12 (-4 *4 (-546)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2510 *3))) (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))) (-3761 (*1 *2 *3 *3) (-12 (-4 *4 (-546)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2510 *3))) (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))) (-2427 (*1 *2 *3 *3) (-12 (-4 *4 (-546)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2510 *3))) (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))) (-4286 (*1 *2 *2 *2) (-12 (-4 *3 (-546)) (-5 *1 (-954 *3 *2)) (-4 *2 (-1217 *3)))) (-2951 (*1 *2 *3 *3) (-12 (-4 *4 (-546)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))) (-3362 (*1 *2 *3 *3) (-12 (-4 *4 (-546)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))) (-2543 (*1 *2 *2 *2) (-12 (-4 *3 (-546)) (-5 *1 (-954 *3 *2)) (-4 *2 (-1217 *3)))) (-4090 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-758)) (-4 *5 (-546)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-954 *5 *3)) (-4 *3 (-1217 *5)))) (-2942 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-758)) (-4 *5 (-546)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-954 *5 *3)) (-4 *3 (-1217 *5)))) (-4033 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-758)) (-4 *4 (-546)) (-5 *1 (-954 *4 *2)) (-4 *2 (-1217 *4)))) (-2305 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-758)) (-4 *5 (-546)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-954 *5 *3)) (-4 *3 (-1217 *5)))) (-3228 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-758)) (-4 *5 (-546)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-954 *5 *3)) (-4 *3 (-1217 *5)))) (-2678 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-758)) (-4 *4 (-546)) (-5 *1 (-954 *4 *2)) (-4 *2 (-1217 *4)))) (-2434 (*1 *2 *3 *3) (-12 (-4 *4 (-546)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2999 *4))) (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))) (-1872 (*1 *2 *3 *3) (-12 (-4 *4 (-546)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2999 *4))) (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))) (-3886 (*1 *2 *3 *3) (-12 (-4 *4 (-546)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2999 *4))) (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))) (-2999 (*1 *2 *3 *3) (-12 (-4 *2 (-546)) (-5 *1 (-954 *2 *3)) (-4 *3 (-1217 *2)))))
-(-10 -7 (-15 -2999 (|#1| |#2| |#2|)) (-15 -3886 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2999 |#1|)) |#2| |#2|)) (-15 -1872 ((-2 (|:| |coef2| |#2|) (|:| -2999 |#1|)) |#2| |#2|)) (-15 -2434 ((-2 (|:| |coef1| |#2|) (|:| -2999 |#1|)) |#2| |#2|)) (-15 -2678 (|#2| |#2| |#2| (-758))) (-15 -3228 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-758))) (-15 -2305 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-758))) (-15 -4033 (|#2| |#2| |#2| (-758))) (-15 -2942 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-758))) (-15 -4090 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-758))) (-15 -2543 (|#2| |#2| |#2|)) (-15 -3362 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2951 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4286 (|#2| |#2| |#2|)) (-15 -2427 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2510 |#2|)) |#2| |#2|)) (-15 -3761 ((-2 (|:| |coef2| |#2|) (|:| -2510 |#2|)) |#2| |#2|)) (-15 -1281 ((-2 (|:| |coef1| |#2|) (|:| -2510 |#2|)) |#2| |#2|)) (-15 -1495 (|#1| |#2|)) (-15 -3700 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1495 |#1|)) |#2|)) (-15 -2617 ((-2 (|:| |coef2| |#2|) (|:| -1495 |#1|)) |#2|)) (-15 -4342 ((-631 |#2|) |#2| |#2|)) (-15 -2585 ((-631 (-758)) |#2| |#2|)) (IF (|has| |#1| (-446)) (PROGN (-15 -1942 (|#1| |#2| |#2|)) (-15 -2876 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1942 |#1|)) |#2| |#2|)) (-15 -2359 ((-2 (|:| |coef2| |#2|) (|:| -1942 |#1|)) |#2| |#2|)) (-15 -2510 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1241 |#2|) |#1| (-1241 |#2|))) (-15 -3919 ((-1241 |#2|) (-1241 |#2|) |#1|)) (-15 -1680 ((-2 (|:| -1490 |#1|) (|:| -2325 |#2|) (|:| -2423 |#2|)) |#2| |#2|)) (-15 -2259 ((-2 (|:| -2325 |#2|) (|:| -2423 |#2|)) |#2| |#2|)) (-15 -3551 (|#1| |#1| |#1| (-758))) (-15 -2503 (|#2| |#2| |#1| |#1| (-758))) (-15 -2676 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2607 (|#1| |#2| |#2|)) (-15 -3383 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2999 |#1|)) |#2| |#2|)) (-15 -2602 ((-2 (|:| |coef2| |#2|) (|:| -2999 |#1|)) |#2| |#2|)))
-((-3062 (((-112) $ $) NIL)) (-1362 (((-1194) $) 13)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3463 (((-1117) $) 10)) (-3075 (((-848) $) 22) (($ (-1163)) NIL) (((-1163) $) NIL)) (-1658 (((-112) $ $) NIL)))
-(((-955) (-13 (-1065) (-10 -8 (-15 -3463 ((-1117) $)) (-15 -1362 ((-1194) $))))) (T -955))
-((-3463 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-955)))) (-1362 (*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-955)))))
-(-13 (-1065) (-10 -8 (-15 -3463 ((-1117) $)) (-15 -1362 ((-1194) $))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) 27)) (-4087 (($) NIL T CONST)) (-2859 (((-631 (-631 (-554))) (-631 (-554))) 29)) (-3224 (((-554) $) 45)) (-3941 (($ (-631 (-554))) 17)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2927 (((-631 (-554)) $) 12)) (-3992 (($ $) 32)) (-3075 (((-848) $) 43) (((-631 (-554)) $) 10)) (-2004 (($) 7 T CONST)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 20)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 19)) (-1735 (($ $ $) 21)) (* (($ (-906) $) NIL) (($ (-758) $) 25)))
-(((-956) (-13 (-782) (-602 (-631 (-554))) (-601 (-631 (-554))) (-10 -8 (-15 -3941 ($ (-631 (-554)))) (-15 -2859 ((-631 (-631 (-554))) (-631 (-554)))) (-15 -3224 ((-554) $)) (-15 -3992 ($ $))))) (T -956))
-((-3941 (*1 *1 *2) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-956)))) (-2859 (*1 *2 *3) (-12 (-5 *2 (-631 (-631 (-554)))) (-5 *1 (-956)) (-5 *3 (-631 (-554))))) (-3224 (*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-956)))) (-3992 (*1 *1 *1) (-5 *1 (-956))))
-(-13 (-782) (-602 (-631 (-554))) (-601 (-631 (-554))) (-10 -8 (-15 -3941 ($ (-631 (-554)))) (-15 -2859 ((-631 (-631 (-554))) (-631 (-554)))) (-15 -3224 ((-554) $)) (-15 -3992 ($ $))))
-((-1752 (($ $ |#2|) 30)) (-1744 (($ $) 22) (($ $ $) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-402 (-554)) $) 26) (($ $ (-402 (-554))) 28)))
-(((-957 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-402 (-554)))) (-15 * (|#1| (-402 (-554)) |#1|)) (-15 -1752 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-554) |#1|)) (-15 -1744 (|#1| |#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 * (|#1| (-758) |#1|)) (-15 * (|#1| (-906) |#1|))) (-958 |#2| |#3| |#4|) (-1034) (-779) (-836)) (T -957))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-402 (-554)))) (-15 * (|#1| (-402 (-554)) |#1|)) (-15 -1752 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-554) |#1|)) (-15 -1744 (|#1| |#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 * (|#1| (-758) |#1|)) (-15 * (|#1| (-906) |#1|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2405 (((-631 |#3|) $) 77)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 54 (|has| |#1| (-546)))) (-1976 (($ $) 55 (|has| |#1| (-546)))) (-1363 (((-112) $) 57 (|has| |#1| (-546)))) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-2550 (($ $) 63)) (-1320 (((-3 $ "failed") $) 33)) (-2051 (((-112) $) 76)) (-3248 (((-112) $) 31)) (-3580 (((-112) $) 65)) (-2383 (($ |#1| |#2|) 64) (($ $ |#3| |#2|) 79) (($ $ (-631 |#3|) (-631 |#2|)) 78)) (-2879 (($ (-1 |#1| |#1|) $) 66)) (-2518 (($ $) 68)) (-2530 ((|#1| $) 69)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3919 (((-3 $ "failed") $ $) 53 (|has| |#1| (-546)))) (-3308 ((|#2| $) 67)) (-1300 (($ $) 75)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ (-402 (-554))) 60 (|has| |#1| (-38 (-402 (-554))))) (($ $) 52 (|has| |#1| (-546))) (($ |#1|) 50 (|has| |#1| (-170)))) (-1779 ((|#1| $ |#2|) 62)) (-2084 (((-3 $ "failed") $) 51 (|has| |#1| (-143)))) (-2261 (((-758)) 28)) (-1909 (((-112) $ $) 56 (|has| |#1| (-546)))) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1752 (($ $ |#1|) 61 (|has| |#1| (-358)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-402 (-554)) $) 59 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) 58 (|has| |#1| (-38 (-402 (-554)))))))
-(((-958 |#1| |#2| |#3|) (-138) (-1034) (-779) (-836)) (T -958))
-((-2530 (*1 *2 *1) (-12 (-4 *1 (-958 *2 *3 *4)) (-4 *3 (-779)) (-4 *4 (-836)) (-4 *2 (-1034)))) (-2518 (*1 *1 *1) (-12 (-4 *1 (-958 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-779)) (-4 *4 (-836)))) (-3308 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *2 *4)) (-4 *3 (-1034)) (-4 *4 (-836)) (-4 *2 (-779)))) (-2383 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-958 *4 *3 *2)) (-4 *4 (-1034)) (-4 *3 (-779)) (-4 *2 (-836)))) (-2383 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 *6)) (-5 *3 (-631 *5)) (-4 *1 (-958 *4 *5 *6)) (-4 *4 (-1034)) (-4 *5 (-779)) (-4 *6 (-836)))) (-2405 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-779)) (-4 *5 (-836)) (-5 *2 (-631 *5)))) (-2051 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-779)) (-4 *5 (-836)) (-5 *2 (-112)))) (-1300 (*1 *1 *1) (-12 (-4 *1 (-958 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-779)) (-4 *4 (-836)))))
-(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2383 ($ $ |t#3| |t#2|)) (-15 -2383 ($ $ (-631 |t#3|) (-631 |t#2|))) (-15 -2518 ($ $)) (-15 -2530 (|t#1| $)) (-15 -3308 (|t#2| $)) (-15 -2405 ((-631 |t#3|) $)) (-15 -2051 ((-112) $)) (-15 -1300 ($ $))))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-546)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-402 (-554)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3994 (|has| |#1| (-546)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-604 #0#) |has| |#1| (-38 (-402 (-554)))) ((-604 (-554)) . T) ((-604 |#1|) |has| |#1| (-170)) ((-604 $) |has| |#1| (-546)) ((-601 (-848)) . T) ((-170) -3994 (|has| |#1| (-546)) (|has| |#1| (-170))) ((-285) |has| |#1| (-546)) ((-546) |has| |#1| (-546)) ((-634 #0#) |has| |#1| (-38 (-402 (-554)))) ((-634 |#1|) . T) ((-634 $) . T) ((-704 #0#) |has| |#1| (-38 (-402 (-554)))) ((-704 |#1|) |has| |#1| (-170)) ((-704 $) |has| |#1| (-546)) ((-713) . T) ((-1040 #0#) |has| |#1| (-38 (-402 (-554)))) ((-1040 |#1|) . T) ((-1040 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-170))) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T))
-((-2839 (((-1076 (-221)) $) 8)) (-2829 (((-1076 (-221)) $) 9)) (-2818 (((-1076 (-221)) $) 10)) (-3787 (((-631 (-631 (-928 (-221)))) $) 11)) (-3075 (((-848) $) 6)))
-(((-959) (-138)) (T -959))
-((-3787 (*1 *2 *1) (-12 (-4 *1 (-959)) (-5 *2 (-631 (-631 (-928 (-221))))))) (-2818 (*1 *2 *1) (-12 (-4 *1 (-959)) (-5 *2 (-1076 (-221))))) (-2829 (*1 *2 *1) (-12 (-4 *1 (-959)) (-5 *2 (-1076 (-221))))) (-2839 (*1 *2 *1) (-12 (-4 *1 (-959)) (-5 *2 (-1076 (-221))))))
-(-13 (-601 (-848)) (-10 -8 (-15 -3787 ((-631 (-631 (-928 (-221)))) $)) (-15 -2818 ((-1076 (-221)) $)) (-15 -2829 ((-1076 (-221)) $)) (-15 -2839 ((-1076 (-221)) $))))
-(((-601 (-848)) . T))
-((-2405 (((-631 |#4|) $) 23)) (-1678 (((-112) $) 48)) (-3005 (((-112) $) 47)) (-3303 (((-2 (|:| |under| $) (|:| -4339 $) (|:| |upper| $)) $ |#4|) 36)) (-1930 (((-112) $) 49)) (-1404 (((-112) $ $) 55)) (-3262 (((-112) $ $) 58)) (-2713 (((-112) $) 53)) (-1380 (((-631 |#5|) (-631 |#5|) $) 90)) (-4204 (((-631 |#5|) (-631 |#5|) $) 87)) (-2423 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-2643 (((-631 |#4|) $) 27)) (-1400 (((-112) |#4| $) 30)) (-3548 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-2538 (($ $ |#4|) 33)) (-2384 (($ $ |#4|) 32)) (-2128 (($ $ |#4|) 34)) (-1658 (((-112) $ $) 40)))
-(((-960 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3005 ((-112) |#1|)) (-15 -1380 ((-631 |#5|) (-631 |#5|) |#1|)) (-15 -4204 ((-631 |#5|) (-631 |#5|) |#1|)) (-15 -2423 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3548 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1930 ((-112) |#1|)) (-15 -3262 ((-112) |#1| |#1|)) (-15 -1404 ((-112) |#1| |#1|)) (-15 -2713 ((-112) |#1|)) (-15 -1678 ((-112) |#1|)) (-15 -3303 ((-2 (|:| |under| |#1|) (|:| -4339 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2538 (|#1| |#1| |#4|)) (-15 -2128 (|#1| |#1| |#4|)) (-15 -2384 (|#1| |#1| |#4|)) (-15 -1400 ((-112) |#4| |#1|)) (-15 -2643 ((-631 |#4|) |#1|)) (-15 -2405 ((-631 |#4|) |#1|)) (-15 -1658 ((-112) |#1| |#1|))) (-961 |#2| |#3| |#4| |#5|) (-1034) (-780) (-836) (-1048 |#2| |#3| |#4|)) (T -960))
-NIL
-(-10 -8 (-15 -3005 ((-112) |#1|)) (-15 -1380 ((-631 |#5|) (-631 |#5|) |#1|)) (-15 -4204 ((-631 |#5|) (-631 |#5|) |#1|)) (-15 -2423 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3548 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1930 ((-112) |#1|)) (-15 -3262 ((-112) |#1| |#1|)) (-15 -1404 ((-112) |#1| |#1|)) (-15 -2713 ((-112) |#1|)) (-15 -1678 ((-112) |#1|)) (-15 -3303 ((-2 (|:| |under| |#1|) (|:| -4339 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2538 (|#1| |#1| |#4|)) (-15 -2128 (|#1| |#1| |#4|)) (-15 -2384 (|#1| |#1| |#4|)) (-15 -1400 ((-112) |#4| |#1|)) (-15 -2643 ((-631 |#4|) |#1|)) (-15 -2405 ((-631 |#4|) |#1|)) (-15 -1658 ((-112) |#1| |#1|)))
-((-3062 (((-112) $ $) 7)) (-2405 (((-631 |#3|) $) 33)) (-1678 (((-112) $) 26)) (-3005 (((-112) $) 17 (|has| |#1| (-546)))) (-3303 (((-2 (|:| |under| $) (|:| -4339 $) (|:| |upper| $)) $ |#3|) 27)) (-3019 (((-112) $ (-758)) 44)) (-1871 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4373)))) (-4087 (($) 45 T CONST)) (-1930 (((-112) $) 22 (|has| |#1| (-546)))) (-1404 (((-112) $ $) 24 (|has| |#1| (-546)))) (-3262 (((-112) $ $) 23 (|has| |#1| (-546)))) (-2713 (((-112) $) 25 (|has| |#1| (-546)))) (-1380 (((-631 |#4|) (-631 |#4|) $) 18 (|has| |#1| (-546)))) (-4204 (((-631 |#4|) (-631 |#4|) $) 19 (|has| |#1| (-546)))) (-2784 (((-3 $ "failed") (-631 |#4|)) 36)) (-1668 (($ (-631 |#4|)) 35)) (-1571 (($ $) 68 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373))))) (-2574 (($ |#4| $) 67 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4373)))) (-2423 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-546)))) (-3676 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4373))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4373)))) (-2466 (((-631 |#4|) $) 52 (|has| $ (-6 -4373)))) (-3954 ((|#3| $) 34)) (-2230 (((-112) $ (-758)) 43)) (-2379 (((-631 |#4|) $) 53 (|has| $ (-6 -4373)))) (-3068 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#4| |#4|) $) 47)) (-2643 (((-631 |#3|) $) 32)) (-1400 (((-112) |#3| $) 31)) (-3731 (((-112) $ (-758)) 42)) (-1613 (((-1140) $) 9)) (-3548 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-546)))) (-2768 (((-1102) $) 10)) (-1652 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2845 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 |#4|) (-631 |#4|)) 59 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-289 |#4|)) 57 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-631 (-289 |#4|))) 56 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))))) (-2494 (((-112) $ $) 38)) (-3543 (((-112) $) 41)) (-4240 (($) 40)) (-2777 (((-758) |#4| $) 54 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373)))) (((-758) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4373)))) (-1521 (($ $) 39)) (-2927 (((-530) $) 69 (|has| |#4| (-602 (-530))))) (-3089 (($ (-631 |#4|)) 60)) (-2538 (($ $ |#3|) 28)) (-2384 (($ $ |#3|) 30)) (-2128 (($ $ |#3|) 29)) (-3075 (((-848) $) 11) (((-631 |#4|) $) 37)) (-2438 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 6)) (-2563 (((-758) $) 46 (|has| $ (-6 -4373)))))
-(((-961 |#1| |#2| |#3| |#4|) (-138) (-1034) (-780) (-836) (-1048 |t#1| |t#2| |t#3|)) (T -961))
-((-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *1 (-961 *3 *4 *5 *6)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *1 (-961 *3 *4 *5 *6)))) (-3954 (*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *2 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-1048 *3 *4 *2)) (-4 *2 (-836)))) (-2405 (*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-631 *5)))) (-2643 (*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-631 *5)))) (-1400 (*1 *2 *3 *1) (-12 (-4 *1 (-961 *4 *5 *3 *6)) (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *3 (-836)) (-4 *6 (-1048 *4 *5 *3)) (-5 *2 (-112)))) (-2384 (*1 *1 *1 *2) (-12 (-4 *1 (-961 *3 *4 *2 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *2 (-836)) (-4 *5 (-1048 *3 *4 *2)))) (-2128 (*1 *1 *1 *2) (-12 (-4 *1 (-961 *3 *4 *2 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *2 (-836)) (-4 *5 (-1048 *3 *4 *2)))) (-2538 (*1 *1 *1 *2) (-12 (-4 *1 (-961 *3 *4 *2 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *2 (-836)) (-4 *5 (-1048 *3 *4 *2)))) (-3303 (*1 *2 *1 *3) (-12 (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *3 (-836)) (-4 *6 (-1048 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -4339 *1) (|:| |upper| *1))) (-4 *1 (-961 *4 *5 *3 *6)))) (-1678 (*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-112)))) (-2713 (*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546)) (-5 *2 (-112)))) (-1404 (*1 *2 *1 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546)) (-5 *2 (-112)))) (-3262 (*1 *2 *1 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546)) (-5 *2 (-112)))) (-1930 (*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546)) (-5 *2 (-112)))) (-3548 (*1 *2 *3 *1) (-12 (-4 *1 (-961 *4 *5 *6 *3)) (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-4 *4 (-546)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2423 (*1 *2 *3 *1) (-12 (-4 *1 (-961 *4 *5 *6 *3)) (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-4 *4 (-546)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-4204 (*1 *2 *2 *1) (-12 (-5 *2 (-631 *6)) (-4 *1 (-961 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546)))) (-1380 (*1 *2 *2 *1) (-12 (-5 *2 (-631 *6)) (-4 *1 (-961 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546)))) (-3005 (*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546)) (-5 *2 (-112)))))
-(-13 (-1082) (-149 |t#4|) (-601 (-631 |t#4|)) (-10 -8 (-6 -4373) (-15 -2784 ((-3 $ "failed") (-631 |t#4|))) (-15 -1668 ($ (-631 |t#4|))) (-15 -3954 (|t#3| $)) (-15 -2405 ((-631 |t#3|) $)) (-15 -2643 ((-631 |t#3|) $)) (-15 -1400 ((-112) |t#3| $)) (-15 -2384 ($ $ |t#3|)) (-15 -2128 ($ $ |t#3|)) (-15 -2538 ($ $ |t#3|)) (-15 -3303 ((-2 (|:| |under| $) (|:| -4339 $) (|:| |upper| $)) $ |t#3|)) (-15 -1678 ((-112) $)) (IF (|has| |t#1| (-546)) (PROGN (-15 -2713 ((-112) $)) (-15 -1404 ((-112) $ $)) (-15 -3262 ((-112) $ $)) (-15 -1930 ((-112) $)) (-15 -3548 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2423 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -4204 ((-631 |t#4|) (-631 |t#4|) $)) (-15 -1380 ((-631 |t#4|) (-631 |t#4|) $)) (-15 -3005 ((-112) $))) |%noBranch|)))
-(((-34) . T) ((-102) . T) ((-601 (-631 |#4|)) . T) ((-601 (-848)) . T) ((-149 |#4|) . T) ((-602 (-530)) |has| |#4| (-602 (-530))) ((-304 |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))) ((-483 |#4|) . T) ((-508 |#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))) ((-1082) . T) ((-1195) . T))
-((-1905 (((-631 |#4|) |#4| |#4|) 118)) (-2291 (((-631 |#4|) (-631 |#4|) (-112)) 107 (|has| |#1| (-446))) (((-631 |#4|) (-631 |#4|)) 108 (|has| |#1| (-446)))) (-2430 (((-2 (|:| |goodPols| (-631 |#4|)) (|:| |badPols| (-631 |#4|))) (-631 |#4|)) 35)) (-2971 (((-112) |#4|) 34)) (-3444 (((-631 |#4|) |#4|) 103 (|has| |#1| (-446)))) (-3291 (((-2 (|:| |goodPols| (-631 |#4|)) (|:| |badPols| (-631 |#4|))) (-1 (-112) |#4|) (-631 |#4|)) 20)) (-2123 (((-2 (|:| |goodPols| (-631 |#4|)) (|:| |badPols| (-631 |#4|))) (-631 (-1 (-112) |#4|)) (-631 |#4|)) 22)) (-4327 (((-2 (|:| |goodPols| (-631 |#4|)) (|:| |badPols| (-631 |#4|))) (-631 (-1 (-112) |#4|)) (-631 |#4|)) 23)) (-3672 (((-3 (-2 (|:| |bas| (-470 |#1| |#2| |#3| |#4|)) (|:| -2292 (-631 |#4|))) "failed") (-631 |#4|)) 73)) (-3223 (((-631 |#4|) (-631 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-3611 (((-631 |#4|) (-631 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 111)) (-2250 (((-631 |#4|) (-631 |#4|)) 110)) (-1615 (((-631 |#4|) (-631 |#4|) (-631 |#4|) (-112)) 48) (((-631 |#4|) (-631 |#4|) (-631 |#4|)) 50)) (-2117 ((|#4| |#4| (-631 |#4|)) 49)) (-3665 (((-631 |#4|) (-631 |#4|) (-631 |#4|)) 114 (|has| |#1| (-446)))) (-4201 (((-631 |#4|) (-631 |#4|) (-631 |#4|)) 117 (|has| |#1| (-446)))) (-2277 (((-631 |#4|) (-631 |#4|) (-631 |#4|)) 116 (|has| |#1| (-446)))) (-3835 (((-631 |#4|) (-631 |#4|) (-631 |#4|) (-1 (-631 |#4|) (-631 |#4|))) 87) (((-631 |#4|) (-631 |#4|) (-631 |#4|)) 89) (((-631 |#4|) (-631 |#4|) |#4|) 121) (((-631 |#4|) |#4| |#4|) 119) (((-631 |#4|) (-631 |#4|)) 88)) (-2101 (((-631 |#4|) (-631 |#4|) (-631 |#4|)) 100 (-12 (|has| |#1| (-145)) (|has| |#1| (-302))))) (-3887 (((-2 (|:| |goodPols| (-631 |#4|)) (|:| |badPols| (-631 |#4|))) (-631 |#4|)) 41)) (-2472 (((-112) (-631 |#4|)) 62)) (-1889 (((-112) (-631 |#4|) (-631 (-631 |#4|))) 53)) (-1970 (((-2 (|:| |goodPols| (-631 |#4|)) (|:| |badPols| (-631 |#4|))) (-631 |#4|)) 29)) (-1478 (((-112) |#4|) 28)) (-4277 (((-631 |#4|) (-631 |#4|)) 98 (-12 (|has| |#1| (-145)) (|has| |#1| (-302))))) (-2358 (((-631 |#4|) (-631 |#4|)) 99 (-12 (|has| |#1| (-145)) (|has| |#1| (-302))))) (-4029 (((-631 |#4|) (-631 |#4|)) 66)) (-3928 (((-631 |#4|) (-631 |#4|)) 79)) (-1494 (((-112) (-631 |#4|) (-631 |#4|)) 51)) (-3709 (((-2 (|:| |goodPols| (-631 |#4|)) (|:| |badPols| (-631 |#4|))) (-631 |#4|)) 39)) (-2896 (((-112) |#4|) 36)))
-(((-962 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3835 ((-631 |#4|) (-631 |#4|))) (-15 -3835 ((-631 |#4|) |#4| |#4|)) (-15 -2250 ((-631 |#4|) (-631 |#4|))) (-15 -1905 ((-631 |#4|) |#4| |#4|)) (-15 -3835 ((-631 |#4|) (-631 |#4|) |#4|)) (-15 -3835 ((-631 |#4|) (-631 |#4|) (-631 |#4|))) (-15 -3835 ((-631 |#4|) (-631 |#4|) (-631 |#4|) (-1 (-631 |#4|) (-631 |#4|)))) (-15 -1494 ((-112) (-631 |#4|) (-631 |#4|))) (-15 -1889 ((-112) (-631 |#4|) (-631 (-631 |#4|)))) (-15 -2472 ((-112) (-631 |#4|))) (-15 -3291 ((-2 (|:| |goodPols| (-631 |#4|)) (|:| |badPols| (-631 |#4|))) (-1 (-112) |#4|) (-631 |#4|))) (-15 -2123 ((-2 (|:| |goodPols| (-631 |#4|)) (|:| |badPols| (-631 |#4|))) (-631 (-1 (-112) |#4|)) (-631 |#4|))) (-15 -4327 ((-2 (|:| |goodPols| (-631 |#4|)) (|:| |badPols| (-631 |#4|))) (-631 (-1 (-112) |#4|)) (-631 |#4|))) (-15 -3887 ((-2 (|:| |goodPols| (-631 |#4|)) (|:| |badPols| (-631 |#4|))) (-631 |#4|))) (-15 -2971 ((-112) |#4|)) (-15 -2430 ((-2 (|:| |goodPols| (-631 |#4|)) (|:| |badPols| (-631 |#4|))) (-631 |#4|))) (-15 -1478 ((-112) |#4|)) (-15 -1970 ((-2 (|:| |goodPols| (-631 |#4|)) (|:| |badPols| (-631 |#4|))) (-631 |#4|))) (-15 -2896 ((-112) |#4|)) (-15 -3709 ((-2 (|:| |goodPols| (-631 |#4|)) (|:| |badPols| (-631 |#4|))) (-631 |#4|))) (-15 -1615 ((-631 |#4|) (-631 |#4|) (-631 |#4|))) (-15 -1615 ((-631 |#4|) (-631 |#4|) (-631 |#4|) (-112))) (-15 -2117 (|#4| |#4| (-631 |#4|))) (-15 -4029 ((-631 |#4|) (-631 |#4|))) (-15 -3672 ((-3 (-2 (|:| |bas| (-470 |#1| |#2| |#3| |#4|)) (|:| -2292 (-631 |#4|))) "failed") (-631 |#4|))) (-15 -3928 ((-631 |#4|) (-631 |#4|))) (-15 -3223 ((-631 |#4|) (-631 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3611 ((-631 |#4|) (-631 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-446)) (PROGN (-15 -3444 ((-631 |#4|) |#4|)) (-15 -2291 ((-631 |#4|) (-631 |#4|))) (-15 -2291 ((-631 |#4|) (-631 |#4|) (-112))) (-15 -3665 ((-631 |#4|) (-631 |#4|) (-631 |#4|))) (-15 -2277 ((-631 |#4|) (-631 |#4|) (-631 |#4|))) (-15 -4201 ((-631 |#4|) (-631 |#4|) (-631 |#4|)))) |%noBranch|) (IF (|has| |#1| (-302)) (IF (|has| |#1| (-145)) (PROGN (-15 -2358 ((-631 |#4|) (-631 |#4|))) (-15 -4277 ((-631 |#4|) (-631 |#4|))) (-15 -2101 ((-631 |#4|) (-631 |#4|) (-631 |#4|)))) |%noBranch|) |%noBranch|)) (-546) (-780) (-836) (-1048 |#1| |#2| |#3|)) (T -962))
-((-2101 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-302)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-962 *3 *4 *5 *6)))) (-4277 (*1 *2 *2) (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-302)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-962 *3 *4 *5 *6)))) (-2358 (*1 *2 *2) (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-302)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-962 *3 *4 *5 *6)))) (-4201 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-446)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-962 *3 *4 *5 *6)))) (-2277 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-446)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-962 *3 *4 *5 *6)))) (-3665 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-446)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-962 *3 *4 *5 *6)))) (-2291 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *7)) (-5 *3 (-112)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446)) (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *1 (-962 *4 *5 *6 *7)))) (-2291 (*1 *2 *2) (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-446)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-962 *3 *4 *5 *6)))) (-3444 (*1 *2 *3) (-12 (-4 *4 (-446)) (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-631 *3)) (-5 *1 (-962 *4 *5 *6 *3)) (-4 *3 (-1048 *4 *5 *6)))) (-3611 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-631 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1048 *5 *6 *7)) (-4 *5 (-546)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *1 (-962 *5 *6 *7 *8)))) (-3223 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-631 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1048 *6 *7 *8)) (-4 *6 (-546)) (-4 *7 (-780)) (-4 *8 (-836)) (-5 *1 (-962 *6 *7 *8 *9)))) (-3928 (*1 *2 *2) (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-962 *3 *4 *5 *6)))) (-3672 (*1 *2 *3) (|partial| -12 (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-470 *4 *5 *6 *7)) (|:| -2292 (-631 *7)))) (-5 *1 (-962 *4 *5 *6 *7)) (-5 *3 (-631 *7)))) (-4029 (*1 *2 *2) (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-962 *3 *4 *5 *6)))) (-2117 (*1 *2 *2 *3) (-12 (-5 *3 (-631 *2)) (-4 *2 (-1048 *4 *5 *6)) (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *1 (-962 *4 *5 *6 *2)))) (-1615 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-631 *7)) (-5 *3 (-112)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *1 (-962 *4 *5 *6 *7)))) (-1615 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-962 *3 *4 *5 *6)))) (-3709 (*1 *2 *3) (-12 (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-631 *7)) (|:| |badPols| (-631 *7)))) (-5 *1 (-962 *4 *5 *6 *7)) (-5 *3 (-631 *7)))) (-2896 (*1 *2 *3) (-12 (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *3)) (-4 *3 (-1048 *4 *5 *6)))) (-1970 (*1 *2 *3) (-12 (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-631 *7)) (|:| |badPols| (-631 *7)))) (-5 *1 (-962 *4 *5 *6 *7)) (-5 *3 (-631 *7)))) (-1478 (*1 *2 *3) (-12 (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *3)) (-4 *3 (-1048 *4 *5 *6)))) (-2430 (*1 *2 *3) (-12 (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-631 *7)) (|:| |badPols| (-631 *7)))) (-5 *1 (-962 *4 *5 *6 *7)) (-5 *3 (-631 *7)))) (-2971 (*1 *2 *3) (-12 (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *3)) (-4 *3 (-1048 *4 *5 *6)))) (-3887 (*1 *2 *3) (-12 (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-631 *7)) (|:| |badPols| (-631 *7)))) (-5 *1 (-962 *4 *5 *6 *7)) (-5 *3 (-631 *7)))) (-4327 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-1 (-112) *8))) (-4 *8 (-1048 *5 *6 *7)) (-4 *5 (-546)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-2 (|:| |goodPols| (-631 *8)) (|:| |badPols| (-631 *8)))) (-5 *1 (-962 *5 *6 *7 *8)) (-5 *4 (-631 *8)))) (-2123 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-1 (-112) *8))) (-4 *8 (-1048 *5 *6 *7)) (-4 *5 (-546)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-2 (|:| |goodPols| (-631 *8)) (|:| |badPols| (-631 *8)))) (-5 *1 (-962 *5 *6 *7 *8)) (-5 *4 (-631 *8)))) (-3291 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1048 *5 *6 *7)) (-4 *5 (-546)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-2 (|:| |goodPols| (-631 *8)) (|:| |badPols| (-631 *8)))) (-5 *1 (-962 *5 *6 *7 *8)) (-5 *4 (-631 *8)))) (-2472 (*1 *2 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7)))) (-1889 (*1 *2 *3 *4) (-12 (-5 *4 (-631 (-631 *8))) (-5 *3 (-631 *8)) (-4 *8 (-1048 *5 *6 *7)) (-4 *5 (-546)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-112)) (-5 *1 (-962 *5 *6 *7 *8)))) (-1494 (*1 *2 *3 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7)))) (-3835 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-631 *7) (-631 *7))) (-5 *2 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *1 (-962 *4 *5 *6 *7)))) (-3835 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-962 *3 *4 *5 *6)))) (-3835 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1048 *4 *5 *6)) (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *1 (-962 *4 *5 *6 *3)))) (-1905 (*1 *2 *3 *3) (-12 (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-631 *3)) (-5 *1 (-962 *4 *5 *6 *3)) (-4 *3 (-1048 *4 *5 *6)))) (-2250 (*1 *2 *2) (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-962 *3 *4 *5 *6)))) (-3835 (*1 *2 *3 *3) (-12 (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-631 *3)) (-5 *1 (-962 *4 *5 *6 *3)) (-4 *3 (-1048 *4 *5 *6)))) (-3835 (*1 *2 *2) (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-962 *3 *4 *5 *6)))))
-(-10 -7 (-15 -3835 ((-631 |#4|) (-631 |#4|))) (-15 -3835 ((-631 |#4|) |#4| |#4|)) (-15 -2250 ((-631 |#4|) (-631 |#4|))) (-15 -1905 ((-631 |#4|) |#4| |#4|)) (-15 -3835 ((-631 |#4|) (-631 |#4|) |#4|)) (-15 -3835 ((-631 |#4|) (-631 |#4|) (-631 |#4|))) (-15 -3835 ((-631 |#4|) (-631 |#4|) (-631 |#4|) (-1 (-631 |#4|) (-631 |#4|)))) (-15 -1494 ((-112) (-631 |#4|) (-631 |#4|))) (-15 -1889 ((-112) (-631 |#4|) (-631 (-631 |#4|)))) (-15 -2472 ((-112) (-631 |#4|))) (-15 -3291 ((-2 (|:| |goodPols| (-631 |#4|)) (|:| |badPols| (-631 |#4|))) (-1 (-112) |#4|) (-631 |#4|))) (-15 -2123 ((-2 (|:| |goodPols| (-631 |#4|)) (|:| |badPols| (-631 |#4|))) (-631 (-1 (-112) |#4|)) (-631 |#4|))) (-15 -4327 ((-2 (|:| |goodPols| (-631 |#4|)) (|:| |badPols| (-631 |#4|))) (-631 (-1 (-112) |#4|)) (-631 |#4|))) (-15 -3887 ((-2 (|:| |goodPols| (-631 |#4|)) (|:| |badPols| (-631 |#4|))) (-631 |#4|))) (-15 -2971 ((-112) |#4|)) (-15 -2430 ((-2 (|:| |goodPols| (-631 |#4|)) (|:| |badPols| (-631 |#4|))) (-631 |#4|))) (-15 -1478 ((-112) |#4|)) (-15 -1970 ((-2 (|:| |goodPols| (-631 |#4|)) (|:| |badPols| (-631 |#4|))) (-631 |#4|))) (-15 -2896 ((-112) |#4|)) (-15 -3709 ((-2 (|:| |goodPols| (-631 |#4|)) (|:| |badPols| (-631 |#4|))) (-631 |#4|))) (-15 -1615 ((-631 |#4|) (-631 |#4|) (-631 |#4|))) (-15 -1615 ((-631 |#4|) (-631 |#4|) (-631 |#4|) (-112))) (-15 -2117 (|#4| |#4| (-631 |#4|))) (-15 -4029 ((-631 |#4|) (-631 |#4|))) (-15 -3672 ((-3 (-2 (|:| |bas| (-470 |#1| |#2| |#3| |#4|)) (|:| -2292 (-631 |#4|))) "failed") (-631 |#4|))) (-15 -3928 ((-631 |#4|) (-631 |#4|))) (-15 -3223 ((-631 |#4|) (-631 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3611 ((-631 |#4|) (-631 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-446)) (PROGN (-15 -3444 ((-631 |#4|) |#4|)) (-15 -2291 ((-631 |#4|) (-631 |#4|))) (-15 -2291 ((-631 |#4|) (-631 |#4|) (-112))) (-15 -3665 ((-631 |#4|) (-631 |#4|) (-631 |#4|))) (-15 -2277 ((-631 |#4|) (-631 |#4|) (-631 |#4|))) (-15 -4201 ((-631 |#4|) (-631 |#4|) (-631 |#4|)))) |%noBranch|) (IF (|has| |#1| (-302)) (IF (|has| |#1| (-145)) (PROGN (-15 -2358 ((-631 |#4|) (-631 |#4|))) (-15 -4277 ((-631 |#4|) (-631 |#4|))) (-15 -2101 ((-631 |#4|) (-631 |#4|) (-631 |#4|)))) |%noBranch|) |%noBranch|))
-((-2246 (((-2 (|:| R (-675 |#1|)) (|:| A (-675 |#1|)) (|:| |Ainv| (-675 |#1|))) (-675 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-3528 (((-631 (-2 (|:| C (-675 |#1|)) (|:| |g| (-1241 |#1|)))) (-675 |#1|) (-1241 |#1|)) 36)) (-1545 (((-675 |#1|) (-675 |#1|) (-675 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16)))
-(((-963 |#1|) (-10 -7 (-15 -2246 ((-2 (|:| R (-675 |#1|)) (|:| A (-675 |#1|)) (|:| |Ainv| (-675 |#1|))) (-675 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1545 ((-675 |#1|) (-675 |#1|) (-675 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3528 ((-631 (-2 (|:| C (-675 |#1|)) (|:| |g| (-1241 |#1|)))) (-675 |#1|) (-1241 |#1|)))) (-358)) (T -963))
-((-3528 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-5 *2 (-631 (-2 (|:| C (-675 *5)) (|:| |g| (-1241 *5))))) (-5 *1 (-963 *5)) (-5 *3 (-675 *5)) (-5 *4 (-1241 *5)))) (-1545 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-675 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-358)) (-5 *1 (-963 *5)))) (-2246 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-358)) (-5 *2 (-2 (|:| R (-675 *6)) (|:| A (-675 *6)) (|:| |Ainv| (-675 *6)))) (-5 *1 (-963 *6)) (-5 *3 (-675 *6)))))
-(-10 -7 (-15 -2246 ((-2 (|:| R (-675 |#1|)) (|:| A (-675 |#1|)) (|:| |Ainv| (-675 |#1|))) (-675 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1545 ((-675 |#1|) (-675 |#1|) (-675 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3528 ((-631 (-2 (|:| C (-675 |#1|)) (|:| |g| (-1241 |#1|)))) (-675 |#1|) (-1241 |#1|))))
-((-1565 (((-413 |#4|) |#4|) 48)))
-(((-964 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1565 ((-413 |#4|) |#4|))) (-836) (-780) (-446) (-934 |#3| |#2| |#1|)) (T -964))
-((-1565 (*1 *2 *3) (-12 (-4 *4 (-836)) (-4 *5 (-780)) (-4 *6 (-446)) (-5 *2 (-413 *3)) (-5 *1 (-964 *4 *5 *6 *3)) (-4 *3 (-934 *6 *5 *4)))))
-(-10 -7 (-15 -1565 ((-413 |#4|) |#4|)))
-((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-2275 (($ (-758)) 112 (|has| |#1| (-23)))) (-4233 (((-1246) $ (-554) (-554)) 40 (|has| $ (-6 -4374)))) (-4015 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-836)))) (-2576 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4374))) (($ $) 88 (-12 (|has| |#1| (-836)) (|has| $ (-6 -4374))))) (-3303 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-836)))) (-3019 (((-112) $ (-758)) 8)) (-1501 ((|#1| $ (-554) |#1|) 52 (|has| $ (-6 -4374))) ((|#1| $ (-1208 (-554)) |#1|) 58 (|has| $ (-6 -4374)))) (-1871 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4373)))) (-4087 (($) 7 T CONST)) (-3920 (($ $) 90 (|has| $ (-6 -4374)))) (-3799 (($ $) 100)) (-1571 (($ $) 78 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2574 (($ |#1| $) 77 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4373)))) (-2862 ((|#1| $ (-554) |#1|) 53 (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-554)) 51)) (-1484 (((-554) (-1 (-112) |#1|) $) 97) (((-554) |#1| $) 96 (|has| |#1| (-1082))) (((-554) |#1| $ (-554)) 95 (|has| |#1| (-1082)))) (-4136 (($ (-631 |#1|)) 118)) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-2355 (((-675 |#1|) $ $) 105 (|has| |#1| (-1034)))) (-3180 (($ (-758) |#1|) 69)) (-2230 (((-112) $ (-758)) 9)) (-3044 (((-554) $) 43 (|has| (-554) (-836)))) (-4223 (($ $ $) 87 (|has| |#1| (-836)))) (-3717 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-836)))) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2256 (((-554) $) 44 (|has| (-554) (-836)))) (-2706 (($ $ $) 86 (|has| |#1| (-836)))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2579 ((|#1| $) 102 (-12 (|has| |#1| (-1034)) (|has| |#1| (-987))))) (-3731 (((-112) $ (-758)) 10)) (-2577 ((|#1| $) 103 (-12 (|has| |#1| (-1034)) (|has| |#1| (-987))))) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-1782 (($ |#1| $ (-554)) 60) (($ $ $ (-554)) 59)) (-2529 (((-631 (-554)) $) 46)) (-3618 (((-112) (-554) $) 47)) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-1539 ((|#1| $) 42 (|has| (-554) (-836)))) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2441 (($ $ |#1|) 41 (|has| $ (-6 -4374)))) (-4282 (($ $ (-631 |#1|)) 116)) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-1609 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) 48)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2064 ((|#1| $ (-554) |#1|) 50) ((|#1| $ (-554)) 49) (($ $ (-1208 (-554))) 63)) (-3748 ((|#1| $ $) 106 (|has| |#1| (-1034)))) (-3330 (((-906) $) 117)) (-2021 (($ $ (-554)) 62) (($ $ (-1208 (-554))) 61)) (-3574 (($ $ $) 104)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-3553 (($ $ $ (-554)) 91 (|has| $ (-6 -4374)))) (-1521 (($ $) 13)) (-2927 (((-530) $) 79 (|has| |#1| (-602 (-530)))) (($ (-631 |#1|)) 119)) (-3089 (($ (-631 |#1|)) 70)) (-4323 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-631 $)) 65)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1708 (((-112) $ $) 84 (|has| |#1| (-836)))) (-1686 (((-112) $ $) 83 (|has| |#1| (-836)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-1697 (((-112) $ $) 85 (|has| |#1| (-836)))) (-1676 (((-112) $ $) 82 (|has| |#1| (-836)))) (-1744 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1735 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-554) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-713))) (($ $ |#1|) 107 (|has| |#1| (-713)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373)))))
-(((-965 |#1|) (-138) (-1034)) (T -965))
-((-4136 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1034)) (-4 *1 (-965 *3)))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-965 *3)) (-4 *3 (-1034)) (-5 *2 (-906)))) (-3574 (*1 *1 *1 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-1034)))) (-4282 (*1 *1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *1 (-965 *3)) (-4 *3 (-1034)))))
-(-13 (-1239 |t#1|) (-606 (-631 |t#1|)) (-10 -8 (-15 -4136 ($ (-631 |t#1|))) (-15 -3330 ((-906) $)) (-15 -3574 ($ $ $)) (-15 -4282 ($ $ (-631 |t#1|)))))
-(((-34) . T) ((-102) -3994 (|has| |#1| (-1082)) (|has| |#1| (-836))) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-836)) (|has| |#1| (-601 (-848)))) ((-149 |#1|) . T) ((-606 (-631 |#1|)) . T) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-281 #0=(-554) |#1|) . T) ((-283 #0# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-368 |#1|) . T) ((-483 |#1|) . T) ((-592 #0# |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-637 |#1|) . T) ((-19 |#1|) . T) ((-836) |has| |#1| (-836)) ((-1082) -3994 (|has| |#1| (-1082)) (|has| |#1| (-836))) ((-1195) . T) ((-1239 |#1|) . T))
-((-2879 (((-928 |#2|) (-1 |#2| |#1|) (-928 |#1|)) 17)))
-(((-966 |#1| |#2|) (-10 -7 (-15 -2879 ((-928 |#2|) (-1 |#2| |#1|) (-928 |#1|)))) (-1034) (-1034)) (T -966))
-((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-928 *5)) (-4 *5 (-1034)) (-4 *6 (-1034)) (-5 *2 (-928 *6)) (-5 *1 (-966 *5 *6)))))
-(-10 -7 (-15 -2879 ((-928 |#2|) (-1 |#2| |#1|) (-928 |#1|))))
-((-3849 ((|#1| (-928 |#1|)) 13)) (-2767 ((|#1| (-928 |#1|)) 12)) (-2104 ((|#1| (-928 |#1|)) 11)) (-4166 ((|#1| (-928 |#1|)) 15)) (-2212 ((|#1| (-928 |#1|)) 21)) (-3026 ((|#1| (-928 |#1|)) 14)) (-2804 ((|#1| (-928 |#1|)) 16)) (-3684 ((|#1| (-928 |#1|)) 20)) (-2301 ((|#1| (-928 |#1|)) 19)))
-(((-967 |#1|) (-10 -7 (-15 -2104 (|#1| (-928 |#1|))) (-15 -2767 (|#1| (-928 |#1|))) (-15 -3849 (|#1| (-928 |#1|))) (-15 -3026 (|#1| (-928 |#1|))) (-15 -4166 (|#1| (-928 |#1|))) (-15 -2804 (|#1| (-928 |#1|))) (-15 -2301 (|#1| (-928 |#1|))) (-15 -3684 (|#1| (-928 |#1|))) (-15 -2212 (|#1| (-928 |#1|)))) (-1034)) (T -967))
-((-2212 (*1 *2 *3) (-12 (-5 *3 (-928 *2)) (-5 *1 (-967 *2)) (-4 *2 (-1034)))) (-3684 (*1 *2 *3) (-12 (-5 *3 (-928 *2)) (-5 *1 (-967 *2)) (-4 *2 (-1034)))) (-2301 (*1 *2 *3) (-12 (-5 *3 (-928 *2)) (-5 *1 (-967 *2)) (-4 *2 (-1034)))) (-2804 (*1 *2 *3) (-12 (-5 *3 (-928 *2)) (-5 *1 (-967 *2)) (-4 *2 (-1034)))) (-4166 (*1 *2 *3) (-12 (-5 *3 (-928 *2)) (-5 *1 (-967 *2)) (-4 *2 (-1034)))) (-3026 (*1 *2 *3) (-12 (-5 *3 (-928 *2)) (-5 *1 (-967 *2)) (-4 *2 (-1034)))) (-3849 (*1 *2 *3) (-12 (-5 *3 (-928 *2)) (-5 *1 (-967 *2)) (-4 *2 (-1034)))) (-2767 (*1 *2 *3) (-12 (-5 *3 (-928 *2)) (-5 *1 (-967 *2)) (-4 *2 (-1034)))) (-2104 (*1 *2 *3) (-12 (-5 *3 (-928 *2)) (-5 *1 (-967 *2)) (-4 *2 (-1034)))))
-(-10 -7 (-15 -2104 (|#1| (-928 |#1|))) (-15 -2767 (|#1| (-928 |#1|))) (-15 -3849 (|#1| (-928 |#1|))) (-15 -3026 (|#1| (-928 |#1|))) (-15 -4166 (|#1| (-928 |#1|))) (-15 -2804 (|#1| (-928 |#1|))) (-15 -2301 (|#1| (-928 |#1|))) (-15 -3684 (|#1| (-928 |#1|))) (-15 -2212 (|#1| (-928 |#1|))))
-((-4060 (((-3 |#1| "failed") |#1|) 18)) (-3346 (((-3 |#1| "failed") |#1|) 6)) (-3855 (((-3 |#1| "failed") |#1|) 16)) (-3685 (((-3 |#1| "failed") |#1|) 4)) (-3153 (((-3 |#1| "failed") |#1|) 20)) (-1996 (((-3 |#1| "failed") |#1|) 8)) (-2685 (((-3 |#1| "failed") |#1| (-758)) 1)) (-2097 (((-3 |#1| "failed") |#1|) 3)) (-3765 (((-3 |#1| "failed") |#1|) 2)) (-4288 (((-3 |#1| "failed") |#1|) 21)) (-3158 (((-3 |#1| "failed") |#1|) 9)) (-2785 (((-3 |#1| "failed") |#1|) 19)) (-3136 (((-3 |#1| "failed") |#1|) 7)) (-2622 (((-3 |#1| "failed") |#1|) 17)) (-3660 (((-3 |#1| "failed") |#1|) 5)) (-4181 (((-3 |#1| "failed") |#1|) 24)) (-1950 (((-3 |#1| "failed") |#1|) 12)) (-1980 (((-3 |#1| "failed") |#1|) 22)) (-1767 (((-3 |#1| "failed") |#1|) 10)) (-3729 (((-3 |#1| "failed") |#1|) 26)) (-1568 (((-3 |#1| "failed") |#1|) 14)) (-2296 (((-3 |#1| "failed") |#1|) 27)) (-4031 (((-3 |#1| "failed") |#1|) 15)) (-3041 (((-3 |#1| "failed") |#1|) 25)) (-4297 (((-3 |#1| "failed") |#1|) 13)) (-2402 (((-3 |#1| "failed") |#1|) 23)) (-1357 (((-3 |#1| "failed") |#1|) 11)))
-(((-968 |#1|) (-138) (-1180)) (T -968))
-((-2296 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-3729 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-3041 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-4181 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-2402 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-1980 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-4288 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-3153 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-2785 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-4060 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-2622 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-3855 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-4031 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-1568 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-4297 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-1950 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-1357 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-1767 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-3158 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-1996 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-3136 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-3346 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-3660 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-3685 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-2097 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-3765 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-2685 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-758)) (-4 *1 (-968 *2)) (-4 *2 (-1180)))))
-(-13 (-10 -7 (-15 -2685 ((-3 |t#1| "failed") |t#1| (-758))) (-15 -3765 ((-3 |t#1| "failed") |t#1|)) (-15 -2097 ((-3 |t#1| "failed") |t#1|)) (-15 -3685 ((-3 |t#1| "failed") |t#1|)) (-15 -3660 ((-3 |t#1| "failed") |t#1|)) (-15 -3346 ((-3 |t#1| "failed") |t#1|)) (-15 -3136 ((-3 |t#1| "failed") |t#1|)) (-15 -1996 ((-3 |t#1| "failed") |t#1|)) (-15 -3158 ((-3 |t#1| "failed") |t#1|)) (-15 -1767 ((-3 |t#1| "failed") |t#1|)) (-15 -1357 ((-3 |t#1| "failed") |t#1|)) (-15 -1950 ((-3 |t#1| "failed") |t#1|)) (-15 -4297 ((-3 |t#1| "failed") |t#1|)) (-15 -1568 ((-3 |t#1| "failed") |t#1|)) (-15 -4031 ((-3 |t#1| "failed") |t#1|)) (-15 -3855 ((-3 |t#1| "failed") |t#1|)) (-15 -2622 ((-3 |t#1| "failed") |t#1|)) (-15 -4060 ((-3 |t#1| "failed") |t#1|)) (-15 -2785 ((-3 |t#1| "failed") |t#1|)) (-15 -3153 ((-3 |t#1| "failed") |t#1|)) (-15 -4288 ((-3 |t#1| "failed") |t#1|)) (-15 -1980 ((-3 |t#1| "failed") |t#1|)) (-15 -2402 ((-3 |t#1| "failed") |t#1|)) (-15 -4181 ((-3 |t#1| "failed") |t#1|)) (-15 -3041 ((-3 |t#1| "failed") |t#1|)) (-15 -3729 ((-3 |t#1| "failed") |t#1|)) (-15 -2296 ((-3 |t#1| "failed") |t#1|))))
-((-2380 ((|#4| |#4| (-631 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-1516 ((|#4| |#4| (-631 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-2879 ((|#4| (-1 |#4| (-937 |#1|)) |#4|) 30)))
-(((-969 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1516 (|#4| |#4| |#3|)) (-15 -1516 (|#4| |#4| (-631 |#3|))) (-15 -2380 (|#4| |#4| |#3|)) (-15 -2380 (|#4| |#4| (-631 |#3|))) (-15 -2879 (|#4| (-1 |#4| (-937 |#1|)) |#4|))) (-1034) (-780) (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $)) (-15 -1576 ((-3 $ "failed") (-1158))))) (-934 (-937 |#1|) |#2| |#3|)) (T -969))
-((-2879 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-937 *4))) (-4 *4 (-1034)) (-4 *2 (-934 (-937 *4) *5 *6)) (-4 *5 (-780)) (-4 *6 (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $)) (-15 -1576 ((-3 $ "failed") (-1158)))))) (-5 *1 (-969 *4 *5 *6 *2)))) (-2380 (*1 *2 *2 *3) (-12 (-5 *3 (-631 *6)) (-4 *6 (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $)) (-15 -1576 ((-3 $ "failed") (-1158)))))) (-4 *4 (-1034)) (-4 *5 (-780)) (-5 *1 (-969 *4 *5 *6 *2)) (-4 *2 (-934 (-937 *4) *5 *6)))) (-2380 (*1 *2 *2 *3) (-12 (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *3 (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $)) (-15 -1576 ((-3 $ "failed") (-1158)))))) (-5 *1 (-969 *4 *5 *3 *2)) (-4 *2 (-934 (-937 *4) *5 *3)))) (-1516 (*1 *2 *2 *3) (-12 (-5 *3 (-631 *6)) (-4 *6 (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $)) (-15 -1576 ((-3 $ "failed") (-1158)))))) (-4 *4 (-1034)) (-4 *5 (-780)) (-5 *1 (-969 *4 *5 *6 *2)) (-4 *2 (-934 (-937 *4) *5 *6)))) (-1516 (*1 *2 *2 *3) (-12 (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *3 (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $)) (-15 -1576 ((-3 $ "failed") (-1158)))))) (-5 *1 (-969 *4 *5 *3 *2)) (-4 *2 (-934 (-937 *4) *5 *3)))))
-(-10 -7 (-15 -1516 (|#4| |#4| |#3|)) (-15 -1516 (|#4| |#4| (-631 |#3|))) (-15 -2380 (|#4| |#4| |#3|)) (-15 -2380 (|#4| |#4| (-631 |#3|))) (-15 -2879 (|#4| (-1 |#4| (-937 |#1|)) |#4|)))
-((-4052 ((|#2| |#3|) 35)) (-2062 (((-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|))) |#2|) 73)) (-3358 (((-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|)))) 89)))
-(((-970 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3358 ((-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|))))) (-15 -2062 ((-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|))) |#2|)) (-15 -4052 (|#2| |#3|))) (-344) (-1217 |#1|) (-1217 |#2|) (-711 |#2| |#3|)) (T -970))
-((-4052 (*1 *2 *3) (-12 (-4 *3 (-1217 *2)) (-4 *2 (-1217 *4)) (-5 *1 (-970 *4 *2 *3 *5)) (-4 *4 (-344)) (-4 *5 (-711 *2 *3)))) (-2062 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *3 (-1217 *4)) (-4 *5 (-1217 *3)) (-5 *2 (-2 (|:| -3782 (-675 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-675 *3)))) (-5 *1 (-970 *4 *3 *5 *6)) (-4 *6 (-711 *3 *5)))) (-3358 (*1 *2) (-12 (-4 *3 (-344)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 *4)) (-5 *2 (-2 (|:| -3782 (-675 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-675 *4)))) (-5 *1 (-970 *3 *4 *5 *6)) (-4 *6 (-711 *4 *5)))))
-(-10 -7 (-15 -3358 ((-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|))))) (-15 -2062 ((-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|))) |#2|)) (-15 -4052 (|#2| |#3|)))
-((-1525 (((-972 (-402 (-554)) (-850 |#1|) (-236 |#2| (-758)) (-243 |#1| (-402 (-554)))) (-972 (-402 (-554)) (-850 |#1|) (-236 |#2| (-758)) (-243 |#1| (-402 (-554))))) 69)))
-(((-971 |#1| |#2|) (-10 -7 (-15 -1525 ((-972 (-402 (-554)) (-850 |#1|) (-236 |#2| (-758)) (-243 |#1| (-402 (-554)))) (-972 (-402 (-554)) (-850 |#1|) (-236 |#2| (-758)) (-243 |#1| (-402 (-554))))))) (-631 (-1158)) (-758)) (T -971))
-((-1525 (*1 *2 *2) (-12 (-5 *2 (-972 (-402 (-554)) (-850 *3) (-236 *4 (-758)) (-243 *3 (-402 (-554))))) (-14 *3 (-631 (-1158))) (-14 *4 (-758)) (-5 *1 (-971 *3 *4)))))
-(-10 -7 (-15 -1525 ((-972 (-402 (-554)) (-850 |#1|) (-236 |#2| (-758)) (-243 |#1| (-402 (-554)))) (-972 (-402 (-554)) (-850 |#1|) (-236 |#2| (-758)) (-243 |#1| (-402 (-554)))))))
-((-3062 (((-112) $ $) NIL)) (-3422 (((-3 (-112) "failed") $) 69)) (-1336 (($ $) 36 (-12 (|has| |#1| (-145)) (|has| |#1| (-302))))) (-3914 (($ $ (-3 (-112) "failed")) 70)) (-3061 (($ (-631 |#4|) |#4|) 25)) (-1613 (((-1140) $) NIL)) (-4227 (($ $) 67)) (-2768 (((-1102) $) NIL)) (-3543 (((-112) $) 68)) (-4240 (($) 30)) (-4073 ((|#4| $) 72)) (-1783 (((-631 |#4|) $) 71)) (-3075 (((-848) $) 66)) (-1658 (((-112) $ $) NIL)))
-(((-972 |#1| |#2| |#3| |#4|) (-13 (-1082) (-601 (-848)) (-10 -8 (-15 -4240 ($)) (-15 -3061 ($ (-631 |#4|) |#4|)) (-15 -3422 ((-3 (-112) "failed") $)) (-15 -3914 ($ $ (-3 (-112) "failed"))) (-15 -3543 ((-112) $)) (-15 -1783 ((-631 |#4|) $)) (-15 -4073 (|#4| $)) (-15 -4227 ($ $)) (IF (|has| |#1| (-302)) (IF (|has| |#1| (-145)) (-15 -1336 ($ $)) |%noBranch|) |%noBranch|))) (-446) (-836) (-780) (-934 |#1| |#3| |#2|)) (T -972))
-((-4240 (*1 *1) (-12 (-4 *2 (-446)) (-4 *3 (-836)) (-4 *4 (-780)) (-5 *1 (-972 *2 *3 *4 *5)) (-4 *5 (-934 *2 *4 *3)))) (-3061 (*1 *1 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-934 *4 *6 *5)) (-4 *4 (-446)) (-4 *5 (-836)) (-4 *6 (-780)) (-5 *1 (-972 *4 *5 *6 *3)))) (-3422 (*1 *2 *1) (|partial| -12 (-4 *3 (-446)) (-4 *4 (-836)) (-4 *5 (-780)) (-5 *2 (-112)) (-5 *1 (-972 *3 *4 *5 *6)) (-4 *6 (-934 *3 *5 *4)))) (-3914 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-446)) (-4 *4 (-836)) (-4 *5 (-780)) (-5 *1 (-972 *3 *4 *5 *6)) (-4 *6 (-934 *3 *5 *4)))) (-3543 (*1 *2 *1) (-12 (-4 *3 (-446)) (-4 *4 (-836)) (-4 *5 (-780)) (-5 *2 (-112)) (-5 *1 (-972 *3 *4 *5 *6)) (-4 *6 (-934 *3 *5 *4)))) (-1783 (*1 *2 *1) (-12 (-4 *3 (-446)) (-4 *4 (-836)) (-4 *5 (-780)) (-5 *2 (-631 *6)) (-5 *1 (-972 *3 *4 *5 *6)) (-4 *6 (-934 *3 *5 *4)))) (-4073 (*1 *2 *1) (-12 (-4 *2 (-934 *3 *5 *4)) (-5 *1 (-972 *3 *4 *5 *2)) (-4 *3 (-446)) (-4 *4 (-836)) (-4 *5 (-780)))) (-4227 (*1 *1 *1) (-12 (-4 *2 (-446)) (-4 *3 (-836)) (-4 *4 (-780)) (-5 *1 (-972 *2 *3 *4 *5)) (-4 *5 (-934 *2 *4 *3)))) (-1336 (*1 *1 *1) (-12 (-4 *2 (-145)) (-4 *2 (-302)) (-4 *2 (-446)) (-4 *3 (-836)) (-4 *4 (-780)) (-5 *1 (-972 *2 *3 *4 *5)) (-4 *5 (-934 *2 *4 *3)))))
-(-13 (-1082) (-601 (-848)) (-10 -8 (-15 -4240 ($)) (-15 -3061 ($ (-631 |#4|) |#4|)) (-15 -3422 ((-3 (-112) "failed") $)) (-15 -3914 ($ $ (-3 (-112) "failed"))) (-15 -3543 ((-112) $)) (-15 -1783 ((-631 |#4|) $)) (-15 -4073 (|#4| $)) (-15 -4227 ($ $)) (IF (|has| |#1| (-302)) (IF (|has| |#1| (-145)) (-15 -1336 ($ $)) |%noBranch|) |%noBranch|)))
-((-3621 (((-112) |#5| |#5|) 38)) (-3000 (((-112) |#5| |#5|) 52)) (-1459 (((-112) |#5| (-631 |#5|)) 74) (((-112) |#5| |#5|) 61)) (-3170 (((-112) (-631 |#4|) (-631 |#4|)) 58)) (-3406 (((-112) (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|)) (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) 63)) (-1351 (((-1246)) 33)) (-3059 (((-1246) (-1140) (-1140) (-1140)) 29)) (-1481 (((-631 |#5|) (-631 |#5|)) 81)) (-3350 (((-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|)))) 79)) (-2704 (((-631 (-2 (|:| -4329 (-631 |#4|)) (|:| -2143 |#5|) (|:| |ineq| (-631 |#4|)))) (-631 |#4|) (-631 |#5|) (-112) (-112)) 101)) (-3723 (((-112) |#5| |#5|) 47)) (-1840 (((-3 (-112) "failed") |#5| |#5|) 71)) (-1453 (((-112) (-631 |#4|) (-631 |#4|)) 57)) (-3050 (((-112) (-631 |#4|) (-631 |#4|)) 59)) (-2178 (((-112) (-631 |#4|) (-631 |#4|)) 60)) (-1370 (((-3 (-2 (|:| -4329 (-631 |#4|)) (|:| -2143 |#5|) (|:| |ineq| (-631 |#4|))) "failed") (-631 |#4|) |#5| (-631 |#4|) (-112) (-112) (-112) (-112) (-112)) 97)) (-3549 (((-631 |#5|) (-631 |#5|)) 43)))
-(((-973 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3059 ((-1246) (-1140) (-1140) (-1140))) (-15 -1351 ((-1246))) (-15 -3621 ((-112) |#5| |#5|)) (-15 -3549 ((-631 |#5|) (-631 |#5|))) (-15 -3723 ((-112) |#5| |#5|)) (-15 -3000 ((-112) |#5| |#5|)) (-15 -3170 ((-112) (-631 |#4|) (-631 |#4|))) (-15 -1453 ((-112) (-631 |#4|) (-631 |#4|))) (-15 -3050 ((-112) (-631 |#4|) (-631 |#4|))) (-15 -2178 ((-112) (-631 |#4|) (-631 |#4|))) (-15 -1840 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1459 ((-112) |#5| |#5|)) (-15 -1459 ((-112) |#5| (-631 |#5|))) (-15 -1481 ((-631 |#5|) (-631 |#5|))) (-15 -3406 ((-112) (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|)) (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|)))) (-15 -3350 ((-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) (-15 -2704 ((-631 (-2 (|:| -4329 (-631 |#4|)) (|:| -2143 |#5|) (|:| |ineq| (-631 |#4|)))) (-631 |#4|) (-631 |#5|) (-112) (-112))) (-15 -1370 ((-3 (-2 (|:| -4329 (-631 |#4|)) (|:| -2143 |#5|) (|:| |ineq| (-631 |#4|))) "failed") (-631 |#4|) |#5| (-631 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-446) (-780) (-836) (-1048 |#1| |#2| |#3|) (-1054 |#1| |#2| |#3| |#4|)) (T -973))
-((-1370 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836)) (-4 *9 (-1048 *6 *7 *8)) (-5 *2 (-2 (|:| -4329 (-631 *9)) (|:| -2143 *4) (|:| |ineq| (-631 *9)))) (-5 *1 (-973 *6 *7 *8 *9 *4)) (-5 *3 (-631 *9)) (-4 *4 (-1054 *6 *7 *8 *9)))) (-2704 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-631 *10)) (-5 *5 (-112)) (-4 *10 (-1054 *6 *7 *8 *9)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836)) (-4 *9 (-1048 *6 *7 *8)) (-5 *2 (-631 (-2 (|:| -4329 (-631 *9)) (|:| -2143 *10) (|:| |ineq| (-631 *9))))) (-5 *1 (-973 *6 *7 *8 *9 *10)) (-5 *3 (-631 *9)))) (-3350 (*1 *2 *2) (-12 (-5 *2 (-631 (-2 (|:| |val| (-631 *6)) (|:| -2143 *7)))) (-4 *6 (-1048 *3 *4 *5)) (-4 *7 (-1054 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-973 *3 *4 *5 *6 *7)))) (-3406 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-631 *7)) (|:| -2143 *8))) (-4 *7 (-1048 *4 *5 *6)) (-4 *8 (-1054 *4 *5 *6 *7)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *7 *8)))) (-1481 (*1 *2 *2) (-12 (-5 *2 (-631 *7)) (-4 *7 (-1054 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *1 (-973 *3 *4 *5 *6 *7)))) (-1459 (*1 *2 *3 *4) (-12 (-5 *4 (-631 *3)) (-4 *3 (-1054 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *8 (-1048 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-973 *5 *6 *7 *8 *3)))) (-1459 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *7 *3)) (-4 *3 (-1054 *4 *5 *6 *7)))) (-1840 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *7 *3)) (-4 *3 (-1054 *4 *5 *6 *7)))) (-2178 (*1 *2 *3 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7)))) (-3050 (*1 *2 *3 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7)))) (-1453 (*1 *2 *3 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7)))) (-3170 (*1 *2 *3 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7)))) (-3000 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *7 *3)) (-4 *3 (-1054 *4 *5 *6 *7)))) (-3723 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *7 *3)) (-4 *3 (-1054 *4 *5 *6 *7)))) (-3549 (*1 *2 *2) (-12 (-5 *2 (-631 *7)) (-4 *7 (-1054 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *1 (-973 *3 *4 *5 *6 *7)))) (-3621 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *7 *3)) (-4 *3 (-1054 *4 *5 *6 *7)))) (-1351 (*1 *2) (-12 (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-1246)) (-5 *1 (-973 *3 *4 *5 *6 *7)) (-4 *7 (-1054 *3 *4 *5 *6)))) (-3059 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1140)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-1246)) (-5 *1 (-973 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3059 ((-1246) (-1140) (-1140) (-1140))) (-15 -1351 ((-1246))) (-15 -3621 ((-112) |#5| |#5|)) (-15 -3549 ((-631 |#5|) (-631 |#5|))) (-15 -3723 ((-112) |#5| |#5|)) (-15 -3000 ((-112) |#5| |#5|)) (-15 -3170 ((-112) (-631 |#4|) (-631 |#4|))) (-15 -1453 ((-112) (-631 |#4|) (-631 |#4|))) (-15 -3050 ((-112) (-631 |#4|) (-631 |#4|))) (-15 -2178 ((-112) (-631 |#4|) (-631 |#4|))) (-15 -1840 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1459 ((-112) |#5| |#5|)) (-15 -1459 ((-112) |#5| (-631 |#5|))) (-15 -1481 ((-631 |#5|) (-631 |#5|))) (-15 -3406 ((-112) (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|)) (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|)))) (-15 -3350 ((-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) (-15 -2704 ((-631 (-2 (|:| -4329 (-631 |#4|)) (|:| -2143 |#5|) (|:| |ineq| (-631 |#4|)))) (-631 |#4|) (-631 |#5|) (-112) (-112))) (-15 -1370 ((-3 (-2 (|:| -4329 (-631 |#4|)) (|:| -2143 |#5|) (|:| |ineq| (-631 |#4|))) "failed") (-631 |#4|) |#5| (-631 |#4|) (-112) (-112) (-112) (-112) (-112))))
-((-1576 (((-1158) $) 15)) (-2794 (((-1140) $) 16)) (-1401 (($ (-1158) (-1140)) 14)) (-3075 (((-848) $) 13)))
-(((-974) (-13 (-601 (-848)) (-10 -8 (-15 -1401 ($ (-1158) (-1140))) (-15 -1576 ((-1158) $)) (-15 -2794 ((-1140) $))))) (T -974))
-((-1401 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-1140)) (-5 *1 (-974)))) (-1576 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-974)))) (-2794 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-974)))))
-(-13 (-601 (-848)) (-10 -8 (-15 -1401 ($ (-1158) (-1140))) (-15 -1576 ((-1158) $)) (-15 -2794 ((-1140) $))))
-((-2879 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
-(((-975 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2879 (|#4| (-1 |#2| |#1|) |#3|))) (-546) (-546) (-977 |#1|) (-977 |#2|)) (T -975))
-((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-546)) (-4 *6 (-546)) (-4 *2 (-977 *6)) (-5 *1 (-975 *5 *6 *4 *2)) (-4 *4 (-977 *5)))))
-(-10 -7 (-15 -2879 (|#4| (-1 |#2| |#1|) |#3|)))
-((-2784 (((-3 |#2| "failed") $) NIL) (((-3 (-1158) "failed") $) 65) (((-3 (-402 (-554)) "failed") $) NIL) (((-3 (-554) "failed") $) 95)) (-1668 ((|#2| $) NIL) (((-1158) $) 60) (((-402 (-554)) $) NIL) (((-554) $) 92)) (-3699 (((-675 (-554)) (-675 $)) NIL) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL) (((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 $) (-1241 $)) 112) (((-675 |#2|) (-675 $)) 28)) (-3353 (($) 98)) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) 75) (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) 84)) (-3472 (($ $) 10)) (-3339 (((-3 $ "failed") $) 20)) (-2879 (($ (-1 |#2| |#2|) $) 22)) (-3834 (($) 16)) (-3722 (($ $) 54)) (-1553 (($ $) NIL) (($ $ (-758)) NIL) (($ $ (-1158)) NIL) (($ $ (-631 (-1158))) NIL) (($ $ (-1158) (-758)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL) (($ $ (-1 |#2| |#2|) (-758)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-3623 (($ $) 12)) (-2927 (((-877 (-554)) $) 70) (((-877 (-374)) $) 79) (((-530) $) 40) (((-374) $) 44) (((-221) $) 47)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL) (($ (-402 (-554))) 90) (($ |#2|) NIL) (($ (-1158)) 57)) (-2261 (((-758)) 31)) (-1676 (((-112) $ $) 50)))
-(((-976 |#1| |#2|) (-10 -8 (-15 -1676 ((-112) |#1| |#1|)) (-15 -3834 (|#1|)) (-15 -3339 ((-3 |#1| "failed") |#1|)) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -1668 ((-554) |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -2927 ((-221) |#1|)) (-15 -2927 ((-374) |#1|)) (-15 -2927 ((-530) |#1|)) (-15 -3075 (|#1| (-1158))) (-15 -2784 ((-3 (-1158) "failed") |#1|)) (-15 -1668 ((-1158) |#1|)) (-15 -3353 (|#1|)) (-15 -3722 (|#1| |#1|)) (-15 -3623 (|#1| |#1|)) (-15 -3472 (|#1| |#1|)) (-15 -1655 ((-874 (-374) |#1|) |#1| (-877 (-374)) (-874 (-374) |#1|))) (-15 -1655 ((-874 (-554) |#1|) |#1| (-877 (-554)) (-874 (-554) |#1|))) (-15 -2927 ((-877 (-374)) |#1|)) (-15 -2927 ((-877 (-554)) |#1|)) (-15 -3699 ((-675 |#2|) (-675 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 |#1|) (-1241 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 |#1|) (-1241 |#1|))) (-15 -3699 ((-675 (-554)) (-675 |#1|))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 -1553 (|#1| |#1| (-1158) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)))) (-15 -1553 (|#1| |#1| (-1158))) (-15 -1553 (|#1| |#1| (-758))) (-15 -1553 (|#1| |#1|)) (-15 -2879 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -3075 (|#1| |#2|)) (-15 -3075 (|#1| (-402 (-554)))) (-15 -3075 (|#1| |#1|)) (-15 -2261 ((-758))) (-15 -3075 (|#1| (-554))) (-15 -3075 ((-848) |#1|))) (-977 |#2|) (-546)) (T -976))
-((-2261 (*1 *2) (-12 (-4 *4 (-546)) (-5 *2 (-758)) (-5 *1 (-976 *3 *4)) (-4 *3 (-977 *4)))))
-(-10 -8 (-15 -1676 ((-112) |#1| |#1|)) (-15 -3834 (|#1|)) (-15 -3339 ((-3 |#1| "failed") |#1|)) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -1668 ((-554) |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -2927 ((-221) |#1|)) (-15 -2927 ((-374) |#1|)) (-15 -2927 ((-530) |#1|)) (-15 -3075 (|#1| (-1158))) (-15 -2784 ((-3 (-1158) "failed") |#1|)) (-15 -1668 ((-1158) |#1|)) (-15 -3353 (|#1|)) (-15 -3722 (|#1| |#1|)) (-15 -3623 (|#1| |#1|)) (-15 -3472 (|#1| |#1|)) (-15 -1655 ((-874 (-374) |#1|) |#1| (-877 (-374)) (-874 (-374) |#1|))) (-15 -1655 ((-874 (-554) |#1|) |#1| (-877 (-554)) (-874 (-554) |#1|))) (-15 -2927 ((-877 (-374)) |#1|)) (-15 -2927 ((-877 (-554)) |#1|)) (-15 -3699 ((-675 |#2|) (-675 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 |#1|) (-1241 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 |#1|) (-1241 |#1|))) (-15 -3699 ((-675 (-554)) (-675 |#1|))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 -1553 (|#1| |#1| (-1158) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)))) (-15 -1553 (|#1| |#1| (-1158))) (-15 -1553 (|#1| |#1| (-758))) (-15 -1553 (|#1| |#1|)) (-15 -2879 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -3075 (|#1| |#2|)) (-15 -3075 (|#1| (-402 (-554)))) (-15 -3075 (|#1| |#1|)) (-15 -2261 ((-758))) (-15 -3075 (|#1| (-554))) (-15 -3075 ((-848) |#1|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-3831 ((|#1| $) 138 (|has| |#1| (-302)))) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 42)) (-1976 (($ $) 41)) (-1363 (((-112) $) 39)) (-2934 (((-3 $ "failed") $ $) 19)) (-4308 (((-413 (-1154 $)) (-1154 $)) 129 (|has| |#1| (-894)))) (-3278 (($ $) 74)) (-1565 (((-413 $) $) 73)) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) 132 (|has| |#1| (-894)))) (-2286 (((-112) $ $) 60)) (-4219 (((-554) $) 119 (|has| |#1| (-807)))) (-4087 (($) 17 T CONST)) (-2784 (((-3 |#1| "failed") $) 176) (((-3 (-1158) "failed") $) 127 (|has| |#1| (-1023 (-1158)))) (((-3 (-402 (-554)) "failed") $) 110 (|has| |#1| (-1023 (-554)))) (((-3 (-554) "failed") $) 108 (|has| |#1| (-1023 (-554))))) (-1668 ((|#1| $) 177) (((-1158) $) 128 (|has| |#1| (-1023 (-1158)))) (((-402 (-554)) $) 111 (|has| |#1| (-1023 (-554)))) (((-554) $) 109 (|has| |#1| (-1023 (-554))))) (-3964 (($ $ $) 56)) (-3699 (((-675 (-554)) (-675 $)) 151 (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) 150 (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) 149) (((-675 |#1|) (-675 $)) 148)) (-1320 (((-3 $ "failed") $) 33)) (-3353 (($) 136 (|has| |#1| (-539)))) (-3943 (($ $ $) 57)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 52)) (-3289 (((-112) $) 72)) (-2745 (((-112) $) 121 (|has| |#1| (-807)))) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) 145 (|has| |#1| (-871 (-554)))) (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) 144 (|has| |#1| (-871 (-374))))) (-3248 (((-112) $) 31)) (-3472 (($ $) 140)) (-2810 ((|#1| $) 142)) (-3339 (((-3 $ "failed") $) 107 (|has| |#1| (-1133)))) (-4304 (((-112) $) 120 (|has| |#1| (-807)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 53)) (-4223 (($ $ $) 117 (|has| |#1| (-836)))) (-2706 (($ $ $) 116 (|has| |#1| (-836)))) (-2879 (($ (-1 |#1| |#1|) $) 168)) (-2475 (($ $ $) 47) (($ (-631 $)) 46)) (-1613 (((-1140) $) 9)) (-2483 (($ $) 71)) (-3834 (($) 106 (|has| |#1| (-1133)) CONST)) (-2768 (((-1102) $) 10)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 45)) (-2510 (($ $ $) 49) (($ (-631 $)) 48)) (-3722 (($ $) 137 (|has| |#1| (-302)))) (-4339 ((|#1| $) 134 (|has| |#1| (-539)))) (-1290 (((-413 (-1154 $)) (-1154 $)) 131 (|has| |#1| (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) 130 (|has| |#1| (-894)))) (-2270 (((-413 $) $) 75)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3919 (((-3 $ "failed") $ $) 43)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 51)) (-2386 (($ $ (-631 |#1|) (-631 |#1|)) 174 (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) 173 (|has| |#1| (-304 |#1|))) (($ $ (-289 |#1|)) 172 (|has| |#1| (-304 |#1|))) (($ $ (-631 (-289 |#1|))) 171 (|has| |#1| (-304 |#1|))) (($ $ (-631 (-1158)) (-631 |#1|)) 170 (|has| |#1| (-508 (-1158) |#1|))) (($ $ (-1158) |#1|) 169 (|has| |#1| (-508 (-1158) |#1|)))) (-2072 (((-758) $) 59)) (-2064 (($ $ |#1|) 175 (|has| |#1| (-281 |#1| |#1|)))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 58)) (-1553 (($ $) 167 (|has| |#1| (-229))) (($ $ (-758)) 165 (|has| |#1| (-229))) (($ $ (-1158)) 163 (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) 162 (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) 161 (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) 160 (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-3623 (($ $) 139)) (-2822 ((|#1| $) 141)) (-2927 (((-877 (-554)) $) 147 (|has| |#1| (-602 (-877 (-554))))) (((-877 (-374)) $) 146 (|has| |#1| (-602 (-877 (-374))))) (((-530) $) 124 (|has| |#1| (-602 (-530)))) (((-374) $) 123 (|has| |#1| (-1007))) (((-221) $) 122 (|has| |#1| (-1007)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) 133 (-3726 (|has| $ (-143)) (|has| |#1| (-894))))) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ $) 44) (($ (-402 (-554))) 67) (($ |#1|) 180) (($ (-1158)) 126 (|has| |#1| (-1023 (-1158))))) (-2084 (((-3 $ "failed") $) 125 (-3994 (|has| |#1| (-143)) (-3726 (|has| $ (-143)) (|has| |#1| (-894)))))) (-2261 (((-758)) 28)) (-2755 ((|#1| $) 135 (|has| |#1| (-539)))) (-1909 (((-112) $ $) 40)) (-1700 (($ $) 118 (|has| |#1| (-807)))) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($ $) 166 (|has| |#1| (-229))) (($ $ (-758)) 164 (|has| |#1| (-229))) (($ $ (-1158)) 159 (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) 158 (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) 157 (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) 156 (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) 155) (($ $ (-1 |#1| |#1|)) 154)) (-1708 (((-112) $ $) 114 (|has| |#1| (-836)))) (-1686 (((-112) $ $) 113 (|has| |#1| (-836)))) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 115 (|has| |#1| (-836)))) (-1676 (((-112) $ $) 112 (|has| |#1| (-836)))) (-1752 (($ $ $) 66) (($ |#1| |#1|) 143)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ (-554)) 70)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ (-402 (-554))) 69) (($ (-402 (-554)) $) 68) (($ |#1| $) 179) (($ $ |#1|) 178)))
-(((-977 |#1|) (-138) (-546)) (T -977))
-((-1752 (*1 *1 *2 *2) (-12 (-4 *1 (-977 *2)) (-4 *2 (-546)))) (-2810 (*1 *2 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-546)))) (-2822 (*1 *2 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-546)))) (-3472 (*1 *1 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-546)))) (-3623 (*1 *1 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-546)))) (-3831 (*1 *2 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-546)) (-4 *2 (-302)))) (-3722 (*1 *1 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-546)) (-4 *2 (-302)))) (-3353 (*1 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-539)) (-4 *2 (-546)))) (-2755 (*1 *2 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-546)) (-4 *2 (-539)))) (-4339 (*1 *2 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-546)) (-4 *2 (-539)))))
-(-13 (-358) (-38 |t#1|) (-1023 |t#1|) (-333 |t#1|) (-227 |t#1|) (-372 |t#1|) (-869 |t#1|) (-395 |t#1|) (-10 -8 (-15 -1752 ($ |t#1| |t#1|)) (-15 -2810 (|t#1| $)) (-15 -2822 (|t#1| $)) (-15 -3472 ($ $)) (-15 -3623 ($ $)) (IF (|has| |t#1| (-1133)) (-6 (-1133)) |%noBranch|) (IF (|has| |t#1| (-1023 (-554))) (PROGN (-6 (-1023 (-554))) (-6 (-1023 (-402 (-554))))) |%noBranch|) (IF (|has| |t#1| (-836)) (-6 (-836)) |%noBranch|) (IF (|has| |t#1| (-807)) (-6 (-807)) |%noBranch|) (IF (|has| |t#1| (-1007)) (-6 (-1007)) |%noBranch|) (IF (|has| |t#1| (-602 (-530))) (-6 (-602 (-530))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1023 (-1158))) (-6 (-1023 (-1158))) |%noBranch|) (IF (|has| |t#1| (-302)) (PROGN (-15 -3831 (|t#1| $)) (-15 -3722 ($ $))) |%noBranch|) (IF (|has| |t#1| (-539)) (PROGN (-15 -3353 ($)) (-15 -2755 (|t#1| $)) (-15 -4339 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-894)) (-6 (-894)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-554))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-604 #0#) . T) ((-604 (-554)) . T) ((-604 #1=(-1158)) |has| |#1| (-1023 (-1158))) ((-604 |#1|) . T) ((-604 $) . T) ((-601 (-848)) . T) ((-170) . T) ((-602 (-221)) |has| |#1| (-1007)) ((-602 (-374)) |has| |#1| (-1007)) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-602 (-877 (-374))) |has| |#1| (-602 (-877 (-374)))) ((-602 (-877 (-554))) |has| |#1| (-602 (-877 (-554)))) ((-227 |#1|) . T) ((-229) |has| |#1| (-229)) ((-239) . T) ((-281 |#1| $) |has| |#1| (-281 |#1| |#1|)) ((-285) . T) ((-302) . T) ((-304 |#1|) |has| |#1| (-304 |#1|)) ((-358) . T) ((-333 |#1|) . T) ((-372 |#1|) . T) ((-395 |#1|) . T) ((-446) . T) ((-508 (-1158) |#1|) |has| |#1| (-508 (-1158) |#1|)) ((-508 |#1| |#1|) |has| |#1| (-304 |#1|)) ((-546) . T) ((-634 #0#) . T) ((-634 |#1|) . T) ((-634 $) . T) ((-627 (-554)) |has| |#1| (-627 (-554))) ((-627 |#1|) . T) ((-704 #0#) . T) ((-704 |#1|) . T) ((-704 $) . T) ((-713) . T) ((-778) |has| |#1| (-807)) ((-779) |has| |#1| (-807)) ((-781) |has| |#1| (-807)) ((-782) |has| |#1| (-807)) ((-807) |has| |#1| (-807)) ((-834) |has| |#1| (-807)) ((-836) -3994 (|has| |#1| (-836)) (|has| |#1| (-807))) ((-885 (-1158)) |has| |#1| (-885 (-1158))) ((-871 (-374)) |has| |#1| (-871 (-374))) ((-871 (-554)) |has| |#1| (-871 (-554))) ((-869 |#1|) . T) ((-894) |has| |#1| (-894)) ((-905) . T) ((-1007) |has| |#1| (-1007)) ((-1023 (-402 (-554))) |has| |#1| (-1023 (-554))) ((-1023 (-554)) |has| |#1| (-1023 (-554))) ((-1023 #1#) |has| |#1| (-1023 (-1158))) ((-1023 |#1|) . T) ((-1040 #0#) . T) ((-1040 |#1|) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1133) |has| |#1| (-1133)) ((-1195) . T) ((-1199) . T))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-1301 (($ (-1124 |#1| |#2|)) 11)) (-1899 (((-1124 |#1| |#2|) $) 12)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2064 ((|#2| $ (-236 |#1| |#2|)) 16)) (-3075 (((-848) $) NIL)) (-2004 (($) NIL T CONST)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL)))
-(((-978 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -1301 ($ (-1124 |#1| |#2|))) (-15 -1899 ((-1124 |#1| |#2|) $)) (-15 -2064 (|#2| $ (-236 |#1| |#2|))))) (-906) (-358)) (T -978))
-((-1301 (*1 *1 *2) (-12 (-5 *2 (-1124 *3 *4)) (-14 *3 (-906)) (-4 *4 (-358)) (-5 *1 (-978 *3 *4)))) (-1899 (*1 *2 *1) (-12 (-5 *2 (-1124 *3 *4)) (-5 *1 (-978 *3 *4)) (-14 *3 (-906)) (-4 *4 (-358)))) (-2064 (*1 *2 *1 *3) (-12 (-5 *3 (-236 *4 *2)) (-14 *4 (-906)) (-4 *2 (-358)) (-5 *1 (-978 *4 *2)))))
-(-13 (-21) (-10 -8 (-15 -1301 ($ (-1124 |#1| |#2|))) (-15 -1899 ((-1124 |#1| |#2|) $)) (-15 -2064 (|#2| $ (-236 |#1| |#2|)))))
-((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3463 (((-1117) $) 9)) (-3075 (((-848) $) 17) (($ (-1163)) NIL) (((-1163) $) NIL)) (-1658 (((-112) $ $) NIL)))
-(((-979) (-13 (-1065) (-10 -8 (-15 -3463 ((-1117) $))))) (T -979))
-((-3463 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-979)))))
-(-13 (-1065) (-10 -8 (-15 -3463 ((-1117) $))))
-((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-3019 (((-112) $ (-758)) 8)) (-4087 (($) 7 T CONST)) (-4289 (($ $) 46)) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) 9)) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35)) (-3731 (((-112) $ (-758)) 10)) (-2577 (((-758) $) 45)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-4150 ((|#1| $) 39)) (-2045 (($ |#1| $) 40)) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-2312 ((|#1| $) 44)) (-2152 ((|#1| $) 41)) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-2515 ((|#1| |#1| $) 48)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-3817 ((|#1| $) 47)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-1591 (($ (-631 |#1|)) 42)) (-1325 ((|#1| $) 43)) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373)))))
-(((-980 |#1|) (-138) (-1195)) (T -980))
-((-2515 (*1 *2 *2 *1) (-12 (-4 *1 (-980 *2)) (-4 *2 (-1195)))) (-3817 (*1 *2 *1) (-12 (-4 *1 (-980 *2)) (-4 *2 (-1195)))) (-4289 (*1 *1 *1) (-12 (-4 *1 (-980 *2)) (-4 *2 (-1195)))) (-2577 (*1 *2 *1) (-12 (-4 *1 (-980 *3)) (-4 *3 (-1195)) (-5 *2 (-758)))) (-2312 (*1 *2 *1) (-12 (-4 *1 (-980 *2)) (-4 *2 (-1195)))) (-1325 (*1 *2 *1) (-12 (-4 *1 (-980 *2)) (-4 *2 (-1195)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4373) (-15 -2515 (|t#1| |t#1| $)) (-15 -3817 (|t#1| $)) (-15 -4289 ($ $)) (-15 -2577 ((-758) $)) (-15 -2312 (|t#1| $)) (-15 -1325 (|t#1| $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1082)) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-601 (-848)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-1082) |has| |#1| (-1082)) ((-1195) . T))
-((-1695 (((-112) $) 42)) (-2784 (((-3 (-554) "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-1668 (((-554) $) NIL) (((-402 (-554)) $) NIL) ((|#2| $) 43)) (-1623 (((-3 (-402 (-554)) "failed") $) 78)) (-2069 (((-112) $) 72)) (-2197 (((-402 (-554)) $) 76)) (-3248 (((-112) $) 41)) (-3274 ((|#2| $) 22)) (-2879 (($ (-1 |#2| |#2|) $) 19)) (-2483 (($ $) 61)) (-1553 (($ $) NIL) (($ $ (-758)) NIL) (($ $ (-1158)) NIL) (($ $ (-631 (-1158))) NIL) (($ $ (-1158) (-758)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL) (($ $ (-1 |#2| |#2|) (-758)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-2927 (((-530) $) 67)) (-3992 (($ $) 17)) (-3075 (((-848) $) 56) (($ (-554)) 38) (($ |#2|) 36) (($ (-402 (-554))) NIL)) (-2261 (((-758)) 10)) (-1700 ((|#2| $) 71)) (-1658 (((-112) $ $) 25)) (-1676 (((-112) $ $) 69)) (-1744 (($ $) 29) (($ $ $) 28)) (-1735 (($ $ $) 26)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL)))
-(((-981 |#1| |#2|) (-10 -8 (-15 -3075 (|#1| (-402 (-554)))) (-15 -1676 ((-112) |#1| |#1|)) (-15 * (|#1| (-402 (-554)) |#1|)) (-15 * (|#1| |#1| (-402 (-554)))) (-15 -2483 (|#1| |#1|)) (-15 -2927 ((-530) |#1|)) (-15 -1623 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -2197 ((-402 (-554)) |#1|)) (-15 -2069 ((-112) |#1|)) (-15 -1700 (|#2| |#1|)) (-15 -3274 (|#2| |#1|)) (-15 -3992 (|#1| |#1|)) (-15 -2879 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 -1553 (|#1| |#1| (-1158) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)))) (-15 -1553 (|#1| |#1| (-1158))) (-15 -1553 (|#1| |#1| (-758))) (-15 -1553 (|#1| |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -1668 ((-554) |#1|)) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -3075 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2261 ((-758))) (-15 -3075 (|#1| (-554))) (-15 -3248 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-554) |#1|)) (-15 -1744 (|#1| |#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 * (|#1| (-758) |#1|)) (-15 -1695 ((-112) |#1|)) (-15 * (|#1| (-906) |#1|)) (-15 -1735 (|#1| |#1| |#1|)) (-15 -3075 ((-848) |#1|)) (-15 -1658 ((-112) |#1| |#1|))) (-982 |#2|) (-170)) (T -981))
-((-2261 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-758)) (-5 *1 (-981 *3 *4)) (-4 *3 (-982 *4)))))
-(-10 -8 (-15 -3075 (|#1| (-402 (-554)))) (-15 -1676 ((-112) |#1| |#1|)) (-15 * (|#1| (-402 (-554)) |#1|)) (-15 * (|#1| |#1| (-402 (-554)))) (-15 -2483 (|#1| |#1|)) (-15 -2927 ((-530) |#1|)) (-15 -1623 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -2197 ((-402 (-554)) |#1|)) (-15 -2069 ((-112) |#1|)) (-15 -1700 (|#2| |#1|)) (-15 -3274 (|#2| |#1|)) (-15 -3992 (|#1| |#1|)) (-15 -2879 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 -1553 (|#1| |#1| (-1158) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)))) (-15 -1553 (|#1| |#1| (-1158))) (-15 -1553 (|#1| |#1| (-758))) (-15 -1553 (|#1| |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -1668 ((-554) |#1|)) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -3075 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2261 ((-758))) (-15 -3075 (|#1| (-554))) (-15 -3248 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-554) |#1|)) (-15 -1744 (|#1| |#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 * (|#1| (-758) |#1|)) (-15 -1695 ((-112) |#1|)) (-15 * (|#1| (-906) |#1|)) (-15 -1735 (|#1| |#1| |#1|)) (-15 -3075 ((-848) |#1|)) (-15 -1658 ((-112) |#1| |#1|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-2784 (((-3 (-554) "failed") $) 118 (|has| |#1| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) 116 (|has| |#1| (-1023 (-402 (-554))))) (((-3 |#1| "failed") $) 113)) (-1668 (((-554) $) 117 (|has| |#1| (-1023 (-554)))) (((-402 (-554)) $) 115 (|has| |#1| (-1023 (-402 (-554))))) ((|#1| $) 114)) (-3699 (((-675 (-554)) (-675 $)) 88 (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) 87 (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) 86) (((-675 |#1|) (-675 $)) 85)) (-1320 (((-3 $ "failed") $) 33)) (-2293 ((|#1| $) 78)) (-1623 (((-3 (-402 (-554)) "failed") $) 74 (|has| |#1| (-539)))) (-2069 (((-112) $) 76 (|has| |#1| (-539)))) (-2197 (((-402 (-554)) $) 75 (|has| |#1| (-539)))) (-1799 (($ |#1| |#1| |#1| |#1|) 79)) (-3248 (((-112) $) 31)) (-3274 ((|#1| $) 80)) (-4223 (($ $ $) 67 (|has| |#1| (-836)))) (-2706 (($ $ $) 66 (|has| |#1| (-836)))) (-2879 (($ (-1 |#1| |#1|) $) 89)) (-1613 (((-1140) $) 9)) (-2483 (($ $) 71 (|has| |#1| (-358)))) (-1743 ((|#1| $) 81)) (-1548 ((|#1| $) 82)) (-2099 ((|#1| $) 83)) (-2768 (((-1102) $) 10)) (-2386 (($ $ (-631 |#1|) (-631 |#1|)) 95 (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) 94 (|has| |#1| (-304 |#1|))) (($ $ (-289 |#1|)) 93 (|has| |#1| (-304 |#1|))) (($ $ (-631 (-289 |#1|))) 92 (|has| |#1| (-304 |#1|))) (($ $ (-631 (-1158)) (-631 |#1|)) 91 (|has| |#1| (-508 (-1158) |#1|))) (($ $ (-1158) |#1|) 90 (|has| |#1| (-508 (-1158) |#1|)))) (-2064 (($ $ |#1|) 96 (|has| |#1| (-281 |#1| |#1|)))) (-1553 (($ $) 112 (|has| |#1| (-229))) (($ $ (-758)) 110 (|has| |#1| (-229))) (($ $ (-1158)) 108 (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) 107 (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) 106 (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) 105 (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) 98) (($ $ (-1 |#1| |#1|)) 97)) (-2927 (((-530) $) 72 (|has| |#1| (-602 (-530))))) (-3992 (($ $) 84)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ |#1|) 38) (($ (-402 (-554))) 61 (-3994 (|has| |#1| (-358)) (|has| |#1| (-1023 (-402 (-554))))))) (-2084 (((-3 $ "failed") $) 73 (|has| |#1| (-143)))) (-2261 (((-758)) 28)) (-1700 ((|#1| $) 77 (|has| |#1| (-1043)))) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($ $) 111 (|has| |#1| (-229))) (($ $ (-758)) 109 (|has| |#1| (-229))) (($ $ (-1158)) 104 (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) 103 (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) 102 (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) 101 (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-1708 (((-112) $ $) 64 (|has| |#1| (-836)))) (-1686 (((-112) $ $) 63 (|has| |#1| (-836)))) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 65 (|has| |#1| (-836)))) (-1676 (((-112) $ $) 62 (|has| |#1| (-836)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ (-554)) 70 (|has| |#1| (-358)))) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-402 (-554))) 69 (|has| |#1| (-358))) (($ (-402 (-554)) $) 68 (|has| |#1| (-358)))))
-(((-982 |#1|) (-138) (-170)) (T -982))
-((-3992 (*1 *1 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-170)))) (-2099 (*1 *2 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-170)))) (-1548 (*1 *2 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-170)))) (-1743 (*1 *2 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-170)))) (-3274 (*1 *2 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-170)))) (-1799 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-982 *2)) (-4 *2 (-170)))) (-2293 (*1 *2 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-170)))) (-1700 (*1 *2 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-170)) (-4 *2 (-1043)))) (-2069 (*1 *2 *1) (-12 (-4 *1 (-982 *3)) (-4 *3 (-170)) (-4 *3 (-539)) (-5 *2 (-112)))) (-2197 (*1 *2 *1) (-12 (-4 *1 (-982 *3)) (-4 *3 (-170)) (-4 *3 (-539)) (-5 *2 (-402 (-554))))) (-1623 (*1 *2 *1) (|partial| -12 (-4 *1 (-982 *3)) (-4 *3 (-170)) (-4 *3 (-539)) (-5 *2 (-402 (-554))))))
-(-13 (-38 |t#1|) (-406 |t#1|) (-227 |t#1|) (-333 |t#1|) (-372 |t#1|) (-10 -8 (-15 -3992 ($ $)) (-15 -2099 (|t#1| $)) (-15 -1548 (|t#1| $)) (-15 -1743 (|t#1| $)) (-15 -3274 (|t#1| $)) (-15 -1799 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -2293 (|t#1| $)) (IF (|has| |t#1| (-285)) (-6 (-285)) |%noBranch|) (IF (|has| |t#1| (-836)) (-6 (-836)) |%noBranch|) (IF (|has| |t#1| (-358)) (-6 (-239)) |%noBranch|) (IF (|has| |t#1| (-602 (-530))) (-6 (-602 (-530))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1043)) (-15 -1700 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-539)) (PROGN (-15 -2069 ((-112) $)) (-15 -2197 ((-402 (-554)) $)) (-15 -1623 ((-3 (-402 (-554)) "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-554))) |has| |#1| (-358)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-358)) ((-111 |#1| |#1|) . T) ((-111 $ $) -3994 (|has| |#1| (-358)) (|has| |#1| (-285))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-604 #0#) -3994 (|has| |#1| (-1023 (-402 (-554)))) (|has| |#1| (-358))) ((-604 (-554)) . T) ((-604 |#1|) . T) ((-601 (-848)) . T) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-227 |#1|) . T) ((-229) |has| |#1| (-229)) ((-239) |has| |#1| (-358)) ((-281 |#1| $) |has| |#1| (-281 |#1| |#1|)) ((-285) -3994 (|has| |#1| (-358)) (|has| |#1| (-285))) ((-304 |#1|) |has| |#1| (-304 |#1|)) ((-333 |#1|) . T) ((-372 |#1|) . T) ((-406 |#1|) . T) ((-508 (-1158) |#1|) |has| |#1| (-508 (-1158) |#1|)) ((-508 |#1| |#1|) |has| |#1| (-304 |#1|)) ((-634 #0#) |has| |#1| (-358)) ((-634 |#1|) . T) ((-634 $) . T) ((-627 (-554)) |has| |#1| (-627 (-554))) ((-627 |#1|) . T) ((-704 #0#) |has| |#1| (-358)) ((-704 |#1|) . T) ((-713) . T) ((-836) |has| |#1| (-836)) ((-885 (-1158)) |has| |#1| (-885 (-1158))) ((-1023 (-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) ((-1023 (-554)) |has| |#1| (-1023 (-554))) ((-1023 |#1|) . T) ((-1040 #0#) |has| |#1| (-358)) ((-1040 |#1|) . T) ((-1040 $) -3994 (|has| |#1| (-358)) (|has| |#1| (-285))) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T))
-((-2879 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
-(((-983 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2879 (|#3| (-1 |#4| |#2|) |#1|))) (-982 |#2|) (-170) (-982 |#4|) (-170)) (T -983))
-((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-982 *6)) (-5 *1 (-983 *4 *5 *2 *6)) (-4 *4 (-982 *5)))))
-(-10 -7 (-15 -2879 (|#3| (-1 |#4| |#2|) |#1|)))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-3 |#1| "failed") $) NIL)) (-1668 (((-554) $) NIL (|has| |#1| (-1023 (-554)))) (((-402 (-554)) $) NIL (|has| |#1| (-1023 (-402 (-554))))) ((|#1| $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) NIL) (((-675 |#1|) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2293 ((|#1| $) 12)) (-1623 (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-539)))) (-2069 (((-112) $) NIL (|has| |#1| (-539)))) (-2197 (((-402 (-554)) $) NIL (|has| |#1| (-539)))) (-1799 (($ |#1| |#1| |#1| |#1|) 16)) (-3248 (((-112) $) NIL)) (-3274 ((|#1| $) NIL)) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL (|has| |#1| (-358)))) (-1743 ((|#1| $) 15)) (-1548 ((|#1| $) 14)) (-2099 ((|#1| $) 13)) (-2768 (((-1102) $) NIL)) (-2386 (($ $ (-631 |#1|) (-631 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-304 |#1|))) (($ $ (-289 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ (-631 (-289 |#1|))) NIL (|has| |#1| (-304 |#1|))) (($ $ (-631 (-1158)) (-631 |#1|)) NIL (|has| |#1| (-508 (-1158) |#1|))) (($ $ (-1158) |#1|) NIL (|has| |#1| (-508 (-1158) |#1|)))) (-2064 (($ $ |#1|) NIL (|has| |#1| (-281 |#1| |#1|)))) (-1553 (($ $) NIL (|has| |#1| (-229))) (($ $ (-758)) NIL (|has| |#1| (-229))) (($ $ (-1158)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2927 (((-530) $) NIL (|has| |#1| (-602 (-530))))) (-3992 (($ $) NIL)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#1|) NIL) (($ (-402 (-554))) NIL (-3994 (|has| |#1| (-358)) (|has| |#1| (-1023 (-402 (-554))))))) (-2084 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2261 (((-758)) NIL)) (-1700 ((|#1| $) NIL (|has| |#1| (-1043)))) (-2004 (($) 8 T CONST)) (-2014 (($) 10 T CONST)) (-1787 (($ $) NIL (|has| |#1| (-229))) (($ $ (-758)) NIL (|has| |#1| (-229))) (($ $ (-1158)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL (|has| |#1| (-358)))) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-402 (-554))) NIL (|has| |#1| (-358))) (($ (-402 (-554)) $) NIL (|has| |#1| (-358)))))
-(((-984 |#1|) (-982 |#1|) (-170)) (T -984))
-NIL
-(-982 |#1|)
-((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-3019 (((-112) $ (-758)) NIL)) (-4087 (($) NIL T CONST)) (-4289 (($ $) 20)) (-2211 (($ (-631 |#1|)) 29)) (-2466 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) NIL)) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2849 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-2577 (((-758) $) 22)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-4150 ((|#1| $) 24)) (-2045 (($ |#1| $) 15)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-2312 ((|#1| $) 23)) (-2152 ((|#1| $) 19)) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-2515 ((|#1| |#1| $) 14)) (-3543 (((-112) $) 17)) (-4240 (($) NIL)) (-3817 ((|#1| $) 18)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1521 (($ $) NIL)) (-3075 (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-1591 (($ (-631 |#1|)) NIL)) (-1325 ((|#1| $) 26)) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-985 |#1|) (-13 (-980 |#1|) (-10 -8 (-15 -2211 ($ (-631 |#1|))))) (-1082)) (T -985))
-((-2211 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-5 *1 (-985 *3)))))
-(-13 (-980 |#1|) (-10 -8 (-15 -2211 ($ (-631 |#1|)))))
-((-2282 (($ $) 12)) (-3734 (($ $ (-554)) 13)))
-(((-986 |#1|) (-10 -8 (-15 -2282 (|#1| |#1|)) (-15 -3734 (|#1| |#1| (-554)))) (-987)) (T -986))
-NIL
-(-10 -8 (-15 -2282 (|#1| |#1|)) (-15 -3734 (|#1| |#1| (-554))))
-((-2282 (($ $) 6)) (-3734 (($ $ (-554)) 7)) (** (($ $ (-402 (-554))) 8)))
-(((-987) (-138)) (T -987))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-987)) (-5 *2 (-402 (-554))))) (-3734 (*1 *1 *1 *2) (-12 (-4 *1 (-987)) (-5 *2 (-554)))) (-2282 (*1 *1 *1) (-4 *1 (-987))))
-(-13 (-10 -8 (-15 -2282 ($ $)) (-15 -3734 ($ $ (-554))) (-15 ** ($ $ (-402 (-554))))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-3293 (((-2 (|:| |num| (-1241 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| (-402 |#2|) (-358)))) (-1976 (($ $) NIL (|has| (-402 |#2|) (-358)))) (-1363 (((-112) $) NIL (|has| (-402 |#2|) (-358)))) (-1903 (((-675 (-402 |#2|)) (-1241 $)) NIL) (((-675 (-402 |#2|))) NIL)) (-1612 (((-402 |#2|) $) NIL)) (-3205 (((-1168 (-906) (-758)) (-554)) NIL (|has| (-402 |#2|) (-344)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL (|has| (-402 |#2|) (-358)))) (-1565 (((-413 $) $) NIL (|has| (-402 |#2|) (-358)))) (-2286 (((-112) $ $) NIL (|has| (-402 |#2|) (-358)))) (-1508 (((-758)) NIL (|has| (-402 |#2|) (-363)))) (-3626 (((-112)) NIL)) (-2120 (((-112) |#1|) 148) (((-112) |#2|) 153)) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) NIL (|has| (-402 |#2|) (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| (-402 |#2|) (-1023 (-402 (-554))))) (((-3 (-402 |#2|) "failed") $) NIL)) (-1668 (((-554) $) NIL (|has| (-402 |#2|) (-1023 (-554)))) (((-402 (-554)) $) NIL (|has| (-402 |#2|) (-1023 (-402 (-554))))) (((-402 |#2|) $) NIL)) (-1651 (($ (-1241 (-402 |#2|)) (-1241 $)) NIL) (($ (-1241 (-402 |#2|))) 70) (($ (-1241 |#2|) |#2|) NIL)) (-2723 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-402 |#2|) (-344)))) (-3964 (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-3629 (((-675 (-402 |#2|)) $ (-1241 $)) NIL) (((-675 (-402 |#2|)) $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| (-402 |#2|) (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| (-402 |#2|) (-627 (-554)))) (((-2 (|:| -2866 (-675 (-402 |#2|))) (|:| |vec| (-1241 (-402 |#2|)))) (-675 $) (-1241 $)) NIL) (((-675 (-402 |#2|)) (-675 $)) NIL)) (-2501 (((-1241 $) (-1241 $)) NIL)) (-3676 (($ |#3|) 65) (((-3 $ "failed") (-402 |#3|)) NIL (|has| (-402 |#2|) (-358)))) (-1320 (((-3 $ "failed") $) NIL)) (-4092 (((-631 (-631 |#1|))) NIL (|has| |#1| (-363)))) (-2895 (((-112) |#1| |#1|) NIL)) (-4186 (((-906)) NIL)) (-3353 (($) NIL (|has| (-402 |#2|) (-363)))) (-2568 (((-112)) NIL)) (-1993 (((-112) |#1|) 56) (((-112) |#2|) 150)) (-3943 (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL (|has| (-402 |#2|) (-358)))) (-2048 (($ $) NIL)) (-3157 (($) NIL (|has| (-402 |#2|) (-344)))) (-2754 (((-112) $) NIL (|has| (-402 |#2|) (-344)))) (-4122 (($ $ (-758)) NIL (|has| (-402 |#2|) (-344))) (($ $) NIL (|has| (-402 |#2|) (-344)))) (-3289 (((-112) $) NIL (|has| (-402 |#2|) (-358)))) (-2342 (((-906) $) NIL (|has| (-402 |#2|) (-344))) (((-820 (-906)) $) NIL (|has| (-402 |#2|) (-344)))) (-3248 (((-112) $) NIL)) (-4324 (((-758)) NIL)) (-3600 (((-1241 $) (-1241 $)) NIL)) (-3274 (((-402 |#2|) $) NIL)) (-2214 (((-631 (-937 |#1|)) (-1158)) NIL (|has| |#1| (-358)))) (-3339 (((-3 $ "failed") $) NIL (|has| (-402 |#2|) (-344)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| (-402 |#2|) (-358)))) (-3361 ((|#3| $) NIL (|has| (-402 |#2|) (-358)))) (-3830 (((-906) $) NIL (|has| (-402 |#2|) (-363)))) (-3662 ((|#3| $) NIL)) (-2475 (($ (-631 $)) NIL (|has| (-402 |#2|) (-358))) (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-1613 (((-1140) $) NIL)) (-4132 (((-675 (-402 |#2|))) 52)) (-2519 (((-675 (-402 |#2|))) 51)) (-2483 (($ $) NIL (|has| (-402 |#2|) (-358)))) (-2488 (($ (-1241 |#2|) |#2|) 71)) (-1835 (((-675 (-402 |#2|))) 50)) (-3470 (((-675 (-402 |#2|))) 49)) (-3368 (((-2 (|:| |num| (-675 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-1579 (((-2 (|:| |num| (-1241 |#2|)) (|:| |den| |#2|)) $) 77)) (-1279 (((-1241 $)) 46)) (-3358 (((-1241 $)) 45)) (-2141 (((-112) $) NIL)) (-4099 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3834 (($) NIL (|has| (-402 |#2|) (-344)) CONST)) (-2717 (($ (-906)) NIL (|has| (-402 |#2|) (-363)))) (-4261 (((-3 |#2| "failed")) 63)) (-2768 (((-1102) $) NIL)) (-3271 (((-758)) NIL)) (-4137 (($) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| (-402 |#2|) (-358)))) (-2510 (($ (-631 $)) NIL (|has| (-402 |#2|) (-358))) (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-3725 (((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))) NIL (|has| (-402 |#2|) (-344)))) (-2270 (((-413 $) $) NIL (|has| (-402 |#2|) (-358)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-402 |#2|) (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| (-402 |#2|) (-358)))) (-3919 (((-3 $ "failed") $ $) NIL (|has| (-402 |#2|) (-358)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| (-402 |#2|) (-358)))) (-2072 (((-758) $) NIL (|has| (-402 |#2|) (-358)))) (-2064 ((|#1| $ |#1| |#1|) NIL)) (-2535 (((-3 |#2| "failed")) 62)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| (-402 |#2|) (-358)))) (-1495 (((-402 |#2|) (-1241 $)) NIL) (((-402 |#2|)) 42)) (-3316 (((-758) $) NIL (|has| (-402 |#2|) (-344))) (((-3 (-758) "failed") $ $) NIL (|has| (-402 |#2|) (-344)))) (-1553 (($ $ (-1 (-402 |#2|) (-402 |#2|)) (-758)) NIL (|has| (-402 |#2|) (-358))) (($ $ (-1 (-402 |#2|) (-402 |#2|))) NIL (|has| (-402 |#2|) (-358))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158))))) (($ $ (-1158) (-758)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158))))) (($ $ (-631 (-1158))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158))))) (($ $ (-1158)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158))))) (($ $ (-758)) NIL (-3994 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344)))) (($ $) NIL (-3994 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344))))) (-2092 (((-675 (-402 |#2|)) (-1241 $) (-1 (-402 |#2|) (-402 |#2|))) NIL (|has| (-402 |#2|) (-358)))) (-4318 ((|#3|) 53)) (-3944 (($) NIL (|has| (-402 |#2|) (-344)))) (-3656 (((-1241 (-402 |#2|)) $ (-1241 $)) NIL) (((-675 (-402 |#2|)) (-1241 $) (-1241 $)) NIL) (((-1241 (-402 |#2|)) $) 72) (((-675 (-402 |#2|)) (-1241 $)) NIL)) (-2927 (((-1241 (-402 |#2|)) $) NIL) (($ (-1241 (-402 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (|has| (-402 |#2|) (-344)))) (-2239 (((-1241 $) (-1241 $)) NIL)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ (-402 |#2|)) NIL) (($ (-402 (-554))) NIL (-3994 (|has| (-402 |#2|) (-1023 (-402 (-554)))) (|has| (-402 |#2|) (-358)))) (($ $) NIL (|has| (-402 |#2|) (-358)))) (-2084 (($ $) NIL (|has| (-402 |#2|) (-344))) (((-3 $ "failed") $) NIL (|has| (-402 |#2|) (-143)))) (-3109 ((|#3| $) NIL)) (-2261 (((-758)) NIL)) (-3809 (((-112)) 60)) (-2394 (((-112) |#1|) 154) (((-112) |#2|) 155)) (-3782 (((-1241 $)) 125)) (-1909 (((-112) $ $) NIL (|has| (-402 |#2|) (-358)))) (-3889 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2102 (((-112)) NIL)) (-2004 (($) 94 T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $ (-1 (-402 |#2|) (-402 |#2|)) (-758)) NIL (|has| (-402 |#2|) (-358))) (($ $ (-1 (-402 |#2|) (-402 |#2|))) NIL (|has| (-402 |#2|) (-358))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158))))) (($ $ (-1158) (-758)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158))))) (($ $ (-631 (-1158))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158))))) (($ $ (-1158)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158))))) (($ $ (-758)) NIL (-3994 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344)))) (($ $) NIL (-3994 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344))))) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL (|has| (-402 |#2|) (-358)))) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 |#2|)) NIL) (($ (-402 |#2|) $) NIL) (($ (-402 (-554)) $) NIL (|has| (-402 |#2|) (-358))) (($ $ (-402 (-554))) NIL (|has| (-402 |#2|) (-358)))))
-(((-988 |#1| |#2| |#3| |#4| |#5|) (-337 |#1| |#2| |#3|) (-1199) (-1217 |#1|) (-1217 (-402 |#2|)) (-402 |#2|) (-758)) (T -988))
-NIL
-(-337 |#1| |#2| |#3|)
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-4271 (((-631 (-554)) $) 54)) (-4350 (($ (-631 (-554))) 62)) (-3831 (((-554) $) 40 (|has| (-554) (-302)))) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (|has| (-554) (-894)))) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (|has| (-554) (-894)))) (-2286 (((-112) $ $) NIL)) (-4219 (((-554) $) NIL (|has| (-554) (-807)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) 49) (((-3 (-1158) "failed") $) NIL (|has| (-554) (-1023 (-1158)))) (((-3 (-402 (-554)) "failed") $) 47 (|has| (-554) (-1023 (-554)))) (((-3 (-554) "failed") $) 49 (|has| (-554) (-1023 (-554))))) (-1668 (((-554) $) NIL) (((-1158) $) NIL (|has| (-554) (-1023 (-1158)))) (((-402 (-554)) $) NIL (|has| (-554) (-1023 (-554)))) (((-554) $) NIL (|has| (-554) (-1023 (-554))))) (-3964 (($ $ $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| (-554) (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| (-554) (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL) (((-675 (-554)) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3353 (($) NIL (|has| (-554) (-539)))) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-2847 (((-631 (-554)) $) 60)) (-2745 (((-112) $) NIL (|has| (-554) (-807)))) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (|has| (-554) (-871 (-554)))) (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (|has| (-554) (-871 (-374))))) (-3248 (((-112) $) NIL)) (-3472 (($ $) NIL)) (-2810 (((-554) $) 37)) (-3339 (((-3 $ "failed") $) NIL (|has| (-554) (-1133)))) (-4304 (((-112) $) NIL (|has| (-554) (-807)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-4223 (($ $ $) NIL (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (|has| (-554) (-836)))) (-2879 (($ (-1 (-554) (-554)) $) NIL)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-3834 (($) NIL (|has| (-554) (-1133)) CONST)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3722 (($ $) NIL (|has| (-554) (-302))) (((-402 (-554)) $) 42)) (-1369 (((-1138 (-554)) $) 59)) (-4154 (($ (-631 (-554)) (-631 (-554))) 63)) (-4339 (((-554) $) 53 (|has| (-554) (-539)))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (|has| (-554) (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (|has| (-554) (-894)))) (-2270 (((-413 $) $) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2386 (($ $ (-631 (-554)) (-631 (-554))) NIL (|has| (-554) (-304 (-554)))) (($ $ (-554) (-554)) NIL (|has| (-554) (-304 (-554)))) (($ $ (-289 (-554))) NIL (|has| (-554) (-304 (-554)))) (($ $ (-631 (-289 (-554)))) NIL (|has| (-554) (-304 (-554)))) (($ $ (-631 (-1158)) (-631 (-554))) NIL (|has| (-554) (-508 (-1158) (-554)))) (($ $ (-1158) (-554)) NIL (|has| (-554) (-508 (-1158) (-554))))) (-2072 (((-758) $) NIL)) (-2064 (($ $ (-554)) NIL (|has| (-554) (-281 (-554) (-554))))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-1553 (($ $) 11 (|has| (-554) (-229))) (($ $ (-758)) NIL (|has| (-554) (-229))) (($ $ (-1158)) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-1 (-554) (-554)) (-758)) NIL) (($ $ (-1 (-554) (-554))) NIL)) (-3623 (($ $) NIL)) (-2822 (((-554) $) 39)) (-2686 (((-631 (-554)) $) 61)) (-2927 (((-877 (-554)) $) NIL (|has| (-554) (-602 (-877 (-554))))) (((-877 (-374)) $) NIL (|has| (-554) (-602 (-877 (-374))))) (((-530) $) NIL (|has| (-554) (-602 (-530)))) (((-374) $) NIL (|has| (-554) (-1007))) (((-221) $) NIL (|has| (-554) (-1007)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| (-554) (-894))))) (-3075 (((-848) $) 77) (($ (-554)) 43) (($ $) NIL) (($ (-402 (-554))) 20) (($ (-554)) 43) (($ (-1158)) NIL (|has| (-554) (-1023 (-1158)))) (((-402 (-554)) $) 18)) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| (-554) (-894))) (|has| (-554) (-143))))) (-2261 (((-758)) 9)) (-2755 (((-554) $) 51 (|has| (-554) (-539)))) (-1909 (((-112) $ $) NIL)) (-1700 (($ $) NIL (|has| (-554) (-807)))) (-2004 (($) 10 T CONST)) (-2014 (($) 12 T CONST)) (-1787 (($ $) NIL (|has| (-554) (-229))) (($ $ (-758)) NIL (|has| (-554) (-229))) (($ $ (-1158)) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-1 (-554) (-554)) (-758)) NIL) (($ $ (-1 (-554) (-554))) NIL)) (-1708 (((-112) $ $) NIL (|has| (-554) (-836)))) (-1686 (((-112) $ $) NIL (|has| (-554) (-836)))) (-1658 (((-112) $ $) 14)) (-1697 (((-112) $ $) NIL (|has| (-554) (-836)))) (-1676 (((-112) $ $) 33 (|has| (-554) (-836)))) (-1752 (($ $ $) 29) (($ (-554) (-554)) 31)) (-1744 (($ $) 15) (($ $ $) 23)) (-1735 (($ $ $) 21)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 25) (($ $ $) 27) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL) (($ (-554) $) 25) (($ $ (-554)) NIL)))
-(((-989 |#1|) (-13 (-977 (-554)) (-601 (-402 (-554))) (-10 -8 (-15 -3722 ((-402 (-554)) $)) (-15 -4271 ((-631 (-554)) $)) (-15 -1369 ((-1138 (-554)) $)) (-15 -2847 ((-631 (-554)) $)) (-15 -2686 ((-631 (-554)) $)) (-15 -4350 ($ (-631 (-554)))) (-15 -4154 ($ (-631 (-554)) (-631 (-554)))))) (-554)) (T -989))
-((-3722 (*1 *2 *1) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-989 *3)) (-14 *3 (-554)))) (-4271 (*1 *2 *1) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-989 *3)) (-14 *3 (-554)))) (-1369 (*1 *2 *1) (-12 (-5 *2 (-1138 (-554))) (-5 *1 (-989 *3)) (-14 *3 (-554)))) (-2847 (*1 *2 *1) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-989 *3)) (-14 *3 (-554)))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-989 *3)) (-14 *3 (-554)))) (-4350 (*1 *1 *2) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-989 *3)) (-14 *3 (-554)))) (-4154 (*1 *1 *2 *2) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-989 *3)) (-14 *3 (-554)))))
-(-13 (-977 (-554)) (-601 (-402 (-554))) (-10 -8 (-15 -3722 ((-402 (-554)) $)) (-15 -4271 ((-631 (-554)) $)) (-15 -1369 ((-1138 (-554)) $)) (-15 -2847 ((-631 (-554)) $)) (-15 -2686 ((-631 (-554)) $)) (-15 -4350 ($ (-631 (-554)))) (-15 -4154 ($ (-631 (-554)) (-631 (-554))))))
-((-4170 (((-52) (-402 (-554)) (-554)) 9)))
-(((-990) (-10 -7 (-15 -4170 ((-52) (-402 (-554)) (-554))))) (T -990))
-((-4170 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-554))) (-5 *4 (-554)) (-5 *2 (-52)) (-5 *1 (-990)))))
-(-10 -7 (-15 -4170 ((-52) (-402 (-554)) (-554))))
-((-1508 (((-554)) 13)) (-3487 (((-554)) 16)) (-1555 (((-1246) (-554)) 15)) (-3408 (((-554) (-554)) 17) (((-554)) 12)))
-(((-991) (-10 -7 (-15 -3408 ((-554))) (-15 -1508 ((-554))) (-15 -3408 ((-554) (-554))) (-15 -1555 ((-1246) (-554))) (-15 -3487 ((-554))))) (T -991))
-((-3487 (*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-991)))) (-1555 (*1 *2 *3) (-12 (-5 *3 (-554)) (-5 *2 (-1246)) (-5 *1 (-991)))) (-3408 (*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-991)))) (-1508 (*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-991)))) (-3408 (*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-991)))))
-(-10 -7 (-15 -3408 ((-554))) (-15 -1508 ((-554))) (-15 -3408 ((-554) (-554))) (-15 -1555 ((-1246) (-554))) (-15 -3487 ((-554))))
-((-4091 (((-413 |#1|) |#1|) 41)) (-2270 (((-413 |#1|) |#1|) 40)))
-(((-992 |#1|) (-10 -7 (-15 -2270 ((-413 |#1|) |#1|)) (-15 -4091 ((-413 |#1|) |#1|))) (-1217 (-402 (-554)))) (T -992))
-((-4091 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-992 *3)) (-4 *3 (-1217 (-402 (-554)))))) (-2270 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-992 *3)) (-4 *3 (-1217 (-402 (-554)))))))
-(-10 -7 (-15 -2270 ((-413 |#1|) |#1|)) (-15 -4091 ((-413 |#1|) |#1|)))
-((-1623 (((-3 (-402 (-554)) "failed") |#1|) 15)) (-2069 (((-112) |#1|) 14)) (-2197 (((-402 (-554)) |#1|) 10)))
-(((-993 |#1|) (-10 -7 (-15 -2197 ((-402 (-554)) |#1|)) (-15 -2069 ((-112) |#1|)) (-15 -1623 ((-3 (-402 (-554)) "failed") |#1|))) (-1023 (-402 (-554)))) (T -993))
-((-1623 (*1 *2 *3) (|partial| -12 (-5 *2 (-402 (-554))) (-5 *1 (-993 *3)) (-4 *3 (-1023 *2)))) (-2069 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-993 *3)) (-4 *3 (-1023 (-402 (-554)))))) (-2197 (*1 *2 *3) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-993 *3)) (-4 *3 (-1023 *2)))))
-(-10 -7 (-15 -2197 ((-402 (-554)) |#1|)) (-15 -2069 ((-112) |#1|)) (-15 -1623 ((-3 (-402 (-554)) "failed") |#1|)))
-((-1501 ((|#2| $ "value" |#2|) 12)) (-2064 ((|#2| $ "value") 10)) (-1441 (((-112) $ $) 18)))
-(((-994 |#1| |#2|) (-10 -8 (-15 -1501 (|#2| |#1| "value" |#2|)) (-15 -1441 ((-112) |#1| |#1|)) (-15 -2064 (|#2| |#1| "value"))) (-995 |#2|) (-1195)) (T -994))
-NIL
-(-10 -8 (-15 -1501 (|#2| |#1| "value" |#2|)) (-15 -1441 ((-112) |#1| |#1|)) (-15 -2064 (|#2| |#1| "value")))
-((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-2794 ((|#1| $) 48)) (-3019 (((-112) $ (-758)) 8)) (-2690 ((|#1| $ |#1|) 39 (|has| $ (-6 -4374)))) (-1501 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4374)))) (-2923 (($ $ (-631 $)) 41 (|has| $ (-6 -4374)))) (-4087 (($) 7 T CONST)) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-3677 (((-631 $) $) 50)) (-1990 (((-112) $ $) 42 (|has| |#1| (-1082)))) (-2230 (((-112) $ (-758)) 9)) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35)) (-3731 (((-112) $ (-758)) 10)) (-2306 (((-631 |#1|) $) 45)) (-3216 (((-112) $) 49)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2064 ((|#1| $ "value") 47)) (-3250 (((-554) $ $) 44)) (-3008 (((-112) $) 46)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-2461 (((-631 $) $) 51)) (-1441 (((-112) $ $) 43 (|has| |#1| (-1082)))) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373)))))
-(((-995 |#1|) (-138) (-1195)) (T -995))
-((-2461 (*1 *2 *1) (-12 (-4 *3 (-1195)) (-5 *2 (-631 *1)) (-4 *1 (-995 *3)))) (-3677 (*1 *2 *1) (-12 (-4 *3 (-1195)) (-5 *2 (-631 *1)) (-4 *1 (-995 *3)))) (-3216 (*1 *2 *1) (-12 (-4 *1 (-995 *3)) (-4 *3 (-1195)) (-5 *2 (-112)))) (-2794 (*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1195)))) (-2064 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-995 *2)) (-4 *2 (-1195)))) (-3008 (*1 *2 *1) (-12 (-4 *1 (-995 *3)) (-4 *3 (-1195)) (-5 *2 (-112)))) (-2306 (*1 *2 *1) (-12 (-4 *1 (-995 *3)) (-4 *3 (-1195)) (-5 *2 (-631 *3)))) (-3250 (*1 *2 *1 *1) (-12 (-4 *1 (-995 *3)) (-4 *3 (-1195)) (-5 *2 (-554)))) (-1441 (*1 *2 *1 *1) (-12 (-4 *1 (-995 *3)) (-4 *3 (-1195)) (-4 *3 (-1082)) (-5 *2 (-112)))) (-1990 (*1 *2 *1 *1) (-12 (-4 *1 (-995 *3)) (-4 *3 (-1195)) (-4 *3 (-1082)) (-5 *2 (-112)))) (-2923 (*1 *1 *1 *2) (-12 (-5 *2 (-631 *1)) (|has| *1 (-6 -4374)) (-4 *1 (-995 *3)) (-4 *3 (-1195)))) (-1501 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4374)) (-4 *1 (-995 *2)) (-4 *2 (-1195)))) (-2690 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4374)) (-4 *1 (-995 *2)) (-4 *2 (-1195)))))
-(-13 (-483 |t#1|) (-10 -8 (-15 -2461 ((-631 $) $)) (-15 -3677 ((-631 $) $)) (-15 -3216 ((-112) $)) (-15 -2794 (|t#1| $)) (-15 -2064 (|t#1| $ "value")) (-15 -3008 ((-112) $)) (-15 -2306 ((-631 |t#1|) $)) (-15 -3250 ((-554) $ $)) (IF (|has| |t#1| (-1082)) (PROGN (-15 -1441 ((-112) $ $)) (-15 -1990 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4374)) (PROGN (-15 -2923 ($ $ (-631 $))) (-15 -1501 (|t#1| $ "value" |t#1|)) (-15 -2690 (|t#1| $ |t#1|))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1082)) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-601 (-848)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-1082) |has| |#1| (-1082)) ((-1195) . T))
-((-2282 (($ $) 9) (($ $ (-906)) 43) (($ (-402 (-554))) 13) (($ (-554)) 15)) (-3625 (((-3 $ "failed") (-1154 $) (-906) (-848)) 23) (((-3 $ "failed") (-1154 $) (-906)) 28)) (-3734 (($ $ (-554)) 49)) (-2261 (((-758)) 17)) (-2299 (((-631 $) (-1154 $)) NIL) (((-631 $) (-1154 (-402 (-554)))) 54) (((-631 $) (-1154 (-554))) 59) (((-631 $) (-937 $)) 63) (((-631 $) (-937 (-402 (-554)))) 67) (((-631 $) (-937 (-554))) 71)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL) (($ $ (-402 (-554))) 47)))
-(((-996 |#1|) (-10 -8 (-15 -2282 (|#1| (-554))) (-15 -2282 (|#1| (-402 (-554)))) (-15 -2282 (|#1| |#1| (-906))) (-15 -2299 ((-631 |#1|) (-937 (-554)))) (-15 -2299 ((-631 |#1|) (-937 (-402 (-554))))) (-15 -2299 ((-631 |#1|) (-937 |#1|))) (-15 -2299 ((-631 |#1|) (-1154 (-554)))) (-15 -2299 ((-631 |#1|) (-1154 (-402 (-554))))) (-15 -2299 ((-631 |#1|) (-1154 |#1|))) (-15 -3625 ((-3 |#1| "failed") (-1154 |#1|) (-906))) (-15 -3625 ((-3 |#1| "failed") (-1154 |#1|) (-906) (-848))) (-15 ** (|#1| |#1| (-402 (-554)))) (-15 -3734 (|#1| |#1| (-554))) (-15 -2282 (|#1| |#1|)) (-15 ** (|#1| |#1| (-554))) (-15 -2261 ((-758))) (-15 ** (|#1| |#1| (-758))) (-15 ** (|#1| |#1| (-906)))) (-997)) (T -996))
-((-2261 (*1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-996 *3)) (-4 *3 (-997)))))
-(-10 -8 (-15 -2282 (|#1| (-554))) (-15 -2282 (|#1| (-402 (-554)))) (-15 -2282 (|#1| |#1| (-906))) (-15 -2299 ((-631 |#1|) (-937 (-554)))) (-15 -2299 ((-631 |#1|) (-937 (-402 (-554))))) (-15 -2299 ((-631 |#1|) (-937 |#1|))) (-15 -2299 ((-631 |#1|) (-1154 (-554)))) (-15 -2299 ((-631 |#1|) (-1154 (-402 (-554))))) (-15 -2299 ((-631 |#1|) (-1154 |#1|))) (-15 -3625 ((-3 |#1| "failed") (-1154 |#1|) (-906))) (-15 -3625 ((-3 |#1| "failed") (-1154 |#1|) (-906) (-848))) (-15 ** (|#1| |#1| (-402 (-554)))) (-15 -3734 (|#1| |#1| (-554))) (-15 -2282 (|#1| |#1|)) (-15 ** (|#1| |#1| (-554))) (-15 -2261 ((-758))) (-15 ** (|#1| |#1| (-758))) (-15 ** (|#1| |#1| (-906))))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 91)) (-1976 (($ $) 92)) (-1363 (((-112) $) 94)) (-2934 (((-3 $ "failed") $ $) 19)) (-3278 (($ $) 111)) (-1565 (((-413 $) $) 112)) (-2282 (($ $) 75) (($ $ (-906)) 61) (($ (-402 (-554))) 60) (($ (-554)) 59)) (-2286 (((-112) $ $) 102)) (-4219 (((-554) $) 128)) (-4087 (($) 17 T CONST)) (-3625 (((-3 $ "failed") (-1154 $) (-906) (-848)) 69) (((-3 $ "failed") (-1154 $) (-906)) 68)) (-2784 (((-3 (-554) "failed") $) 88 (|has| (-402 (-554)) (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) 86 (|has| (-402 (-554)) (-1023 (-402 (-554))))) (((-3 (-402 (-554)) "failed") $) 83)) (-1668 (((-554) $) 87 (|has| (-402 (-554)) (-1023 (-554)))) (((-402 (-554)) $) 85 (|has| (-402 (-554)) (-1023 (-402 (-554))))) (((-402 (-554)) $) 84)) (-3163 (($ $ (-848)) 58)) (-3686 (($ $ (-848)) 57)) (-3964 (($ $ $) 106)) (-1320 (((-3 $ "failed") $) 33)) (-3943 (($ $ $) 105)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 100)) (-3289 (((-112) $) 113)) (-2745 (((-112) $) 126)) (-3248 (((-112) $) 31)) (-3734 (($ $ (-554)) 74)) (-4304 (((-112) $) 127)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 109)) (-4223 (($ $ $) 125)) (-2706 (($ $ $) 124)) (-2142 (((-3 (-1154 $) "failed") $) 70)) (-3467 (((-3 (-848) "failed") $) 72)) (-2106 (((-3 (-1154 $) "failed") $) 71)) (-2475 (($ (-631 $)) 98) (($ $ $) 97)) (-1613 (((-1140) $) 9)) (-2483 (($ $) 114)) (-2768 (((-1102) $) 10)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 99)) (-2510 (($ (-631 $)) 96) (($ $ $) 95)) (-2270 (((-413 $) $) 110)) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 107)) (-3919 (((-3 $ "failed") $ $) 90)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 101)) (-2072 (((-758) $) 103)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 104)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ (-402 (-554))) 118) (($ $) 89) (($ (-402 (-554))) 82) (($ (-554)) 81) (($ (-402 (-554))) 78)) (-2261 (((-758)) 28)) (-1909 (((-112) $ $) 93)) (-4333 (((-402 (-554)) $ $) 56)) (-2299 (((-631 $) (-1154 $)) 67) (((-631 $) (-1154 (-402 (-554)))) 66) (((-631 $) (-1154 (-554))) 65) (((-631 $) (-937 $)) 64) (((-631 $) (-937 (-402 (-554)))) 63) (((-631 $) (-937 (-554))) 62)) (-1700 (($ $) 129)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1708 (((-112) $ $) 122)) (-1686 (((-112) $ $) 121)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 123)) (-1676 (((-112) $ $) 120)) (-1752 (($ $ $) 119)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ (-554)) 115) (($ $ (-402 (-554))) 73)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ (-402 (-554)) $) 117) (($ $ (-402 (-554))) 116) (($ (-554) $) 80) (($ $ (-554)) 79) (($ (-402 (-554)) $) 77) (($ $ (-402 (-554))) 76)))
-(((-997) (-138)) (T -997))
-((-2282 (*1 *1 *1) (-4 *1 (-997))) (-3467 (*1 *2 *1) (|partial| -12 (-4 *1 (-997)) (-5 *2 (-848)))) (-2106 (*1 *2 *1) (|partial| -12 (-5 *2 (-1154 *1)) (-4 *1 (-997)))) (-2142 (*1 *2 *1) (|partial| -12 (-5 *2 (-1154 *1)) (-4 *1 (-997)))) (-3625 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1154 *1)) (-5 *3 (-906)) (-5 *4 (-848)) (-4 *1 (-997)))) (-3625 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1154 *1)) (-5 *3 (-906)) (-4 *1 (-997)))) (-2299 (*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-997)) (-5 *2 (-631 *1)))) (-2299 (*1 *2 *3) (-12 (-5 *3 (-1154 (-402 (-554)))) (-5 *2 (-631 *1)) (-4 *1 (-997)))) (-2299 (*1 *2 *3) (-12 (-5 *3 (-1154 (-554))) (-5 *2 (-631 *1)) (-4 *1 (-997)))) (-2299 (*1 *2 *3) (-12 (-5 *3 (-937 *1)) (-4 *1 (-997)) (-5 *2 (-631 *1)))) (-2299 (*1 *2 *3) (-12 (-5 *3 (-937 (-402 (-554)))) (-5 *2 (-631 *1)) (-4 *1 (-997)))) (-2299 (*1 *2 *3) (-12 (-5 *3 (-937 (-554))) (-5 *2 (-631 *1)) (-4 *1 (-997)))) (-2282 (*1 *1 *1 *2) (-12 (-4 *1 (-997)) (-5 *2 (-906)))) (-2282 (*1 *1 *2) (-12 (-5 *2 (-402 (-554))) (-4 *1 (-997)))) (-2282 (*1 *1 *2) (-12 (-5 *2 (-554)) (-4 *1 (-997)))) (-3163 (*1 *1 *1 *2) (-12 (-4 *1 (-997)) (-5 *2 (-848)))) (-3686 (*1 *1 *1 *2) (-12 (-4 *1 (-997)) (-5 *2 (-848)))) (-4333 (*1 *2 *1 *1) (-12 (-4 *1 (-997)) (-5 *2 (-402 (-554))))))
-(-13 (-145) (-834) (-170) (-358) (-406 (-402 (-554))) (-38 (-554)) (-38 (-402 (-554))) (-987) (-10 -8 (-15 -3467 ((-3 (-848) "failed") $)) (-15 -2106 ((-3 (-1154 $) "failed") $)) (-15 -2142 ((-3 (-1154 $) "failed") $)) (-15 -3625 ((-3 $ "failed") (-1154 $) (-906) (-848))) (-15 -3625 ((-3 $ "failed") (-1154 $) (-906))) (-15 -2299 ((-631 $) (-1154 $))) (-15 -2299 ((-631 $) (-1154 (-402 (-554))))) (-15 -2299 ((-631 $) (-1154 (-554)))) (-15 -2299 ((-631 $) (-937 $))) (-15 -2299 ((-631 $) (-937 (-402 (-554))))) (-15 -2299 ((-631 $) (-937 (-554)))) (-15 -2282 ($ $ (-906))) (-15 -2282 ($ $)) (-15 -2282 ($ (-402 (-554)))) (-15 -2282 ($ (-554))) (-15 -3163 ($ $ (-848))) (-15 -3686 ($ $ (-848))) (-15 -4333 ((-402 (-554)) $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-554))) . T) ((-38 #1=(-554)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-604 #0#) . T) ((-604 (-554)) . T) ((-604 $) . T) ((-601 (-848)) . T) ((-170) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-358) . T) ((-406 (-402 (-554))) . T) ((-446) . T) ((-546) . T) ((-634 #0#) . T) ((-634 #1#) . T) ((-634 $) . T) ((-704 #0#) . T) ((-704 #1#) . T) ((-704 $) . T) ((-713) . T) ((-778) . T) ((-779) . T) ((-781) . T) ((-782) . T) ((-834) . T) ((-836) . T) ((-905) . T) ((-987) . T) ((-1023 (-402 (-554))) . T) ((-1023 (-554)) |has| (-402 (-554)) (-1023 (-554))) ((-1040 #0#) . T) ((-1040 #1#) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1199) . T))
-((-2410 (((-2 (|:| |ans| |#2|) (|:| -3324 |#2|) (|:| |sol?| (-112))) (-554) |#2| |#2| (-1158) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-631 |#2|)) (-1 (-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 66)))
-(((-998 |#1| |#2|) (-10 -7 (-15 -2410 ((-2 (|:| |ans| |#2|) (|:| -3324 |#2|) (|:| |sol?| (-112))) (-554) |#2| |#2| (-1158) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-631 |#2|)) (-1 (-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-446) (-836) (-145) (-1023 (-554)) (-627 (-554))) (-13 (-1180) (-27) (-425 |#1|))) (T -998))
-((-2410 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1158)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-631 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1709 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1180) (-27) (-425 *8))) (-4 *8 (-13 (-446) (-836) (-145) (-1023 *3) (-627 *3))) (-5 *3 (-554)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3324 *4) (|:| |sol?| (-112)))) (-5 *1 (-998 *8 *4)))))
-(-10 -7 (-15 -2410 ((-2 (|:| |ans| |#2|) (|:| -3324 |#2|) (|:| |sol?| (-112))) (-554) |#2| |#2| (-1158) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-631 |#2|)) (-1 (-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-3958 (((-3 (-631 |#2|) "failed") (-554) |#2| |#2| |#2| (-1158) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-631 |#2|)) (-1 (-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53)))
-(((-999 |#1| |#2|) (-10 -7 (-15 -3958 ((-3 (-631 |#2|) "failed") (-554) |#2| |#2| |#2| (-1158) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-631 |#2|)) (-1 (-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-446) (-836) (-145) (-1023 (-554)) (-627 (-554))) (-13 (-1180) (-27) (-425 |#1|))) (T -999))
-((-3958 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1158)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-631 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1709 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1180) (-27) (-425 *8))) (-4 *8 (-13 (-446) (-836) (-145) (-1023 *3) (-627 *3))) (-5 *3 (-554)) (-5 *2 (-631 *4)) (-5 *1 (-999 *8 *4)))))
-(-10 -7 (-15 -3958 ((-3 (-631 |#2|) "failed") (-554) |#2| |#2| |#2| (-1158) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-631 |#2|)) (-1 (-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-3915 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4329 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-554)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-554) (-1 |#2| |#2|)) 30)) (-3876 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-402 |#2|)) (|:| |c| (-402 |#2|)) (|:| -4341 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-1 |#2| |#2|)) 58)) (-2468 (((-2 (|:| |ans| (-402 |#2|)) (|:| |nosol| (-112))) (-402 |#2|) (-402 |#2|)) 63)))
-(((-1000 |#1| |#2|) (-10 -7 (-15 -3876 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-402 |#2|)) (|:| |c| (-402 |#2|)) (|:| -4341 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-1 |#2| |#2|))) (-15 -2468 ((-2 (|:| |ans| (-402 |#2|)) (|:| |nosol| (-112))) (-402 |#2|) (-402 |#2|))) (-15 -3915 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4329 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-554)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-554) (-1 |#2| |#2|)))) (-13 (-358) (-145) (-1023 (-554))) (-1217 |#1|)) (T -1000))
-((-3915 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1217 *6)) (-4 *6 (-13 (-358) (-145) (-1023 *4))) (-5 *4 (-554)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -4329 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1000 *6 *3)))) (-2468 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-358) (-145) (-1023 (-554)))) (-4 *5 (-1217 *4)) (-5 *2 (-2 (|:| |ans| (-402 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1000 *4 *5)) (-5 *3 (-402 *5)))) (-3876 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1217 *5)) (-4 *5 (-13 (-358) (-145) (-1023 (-554)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-402 *6)) (|:| |c| (-402 *6)) (|:| -4341 *6))) (-5 *1 (-1000 *5 *6)) (-5 *3 (-402 *6)))))
-(-10 -7 (-15 -3876 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-402 |#2|)) (|:| |c| (-402 |#2|)) (|:| -4341 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-1 |#2| |#2|))) (-15 -2468 ((-2 (|:| |ans| (-402 |#2|)) (|:| |nosol| (-112))) (-402 |#2|) (-402 |#2|))) (-15 -3915 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4329 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-554)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-554) (-1 |#2| |#2|))))
-((-3095 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-402 |#2|)) (|:| |h| |#2|) (|:| |c1| (-402 |#2|)) (|:| |c2| (-402 |#2|)) (|:| -4341 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|) (-1 |#2| |#2|)) 22)) (-3058 (((-3 (-631 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|)) 33)))
-(((-1001 |#1| |#2|) (-10 -7 (-15 -3095 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-402 |#2|)) (|:| |h| |#2|) (|:| |c1| (-402 |#2|)) (|:| |c2| (-402 |#2|)) (|:| -4341 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|) (-1 |#2| |#2|))) (-15 -3058 ((-3 (-631 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|)))) (-13 (-358) (-145) (-1023 (-554))) (-1217 |#1|)) (T -1001))
-((-3058 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-358) (-145) (-1023 (-554)))) (-4 *5 (-1217 *4)) (-5 *2 (-631 (-402 *5))) (-5 *1 (-1001 *4 *5)) (-5 *3 (-402 *5)))) (-3095 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1217 *5)) (-4 *5 (-13 (-358) (-145) (-1023 (-554)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-402 *6)) (|:| |h| *6) (|:| |c1| (-402 *6)) (|:| |c2| (-402 *6)) (|:| -4341 *6))) (-5 *1 (-1001 *5 *6)) (-5 *3 (-402 *6)))))
-(-10 -7 (-15 -3095 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-402 |#2|)) (|:| |h| |#2|) (|:| |c1| (-402 |#2|)) (|:| |c2| (-402 |#2|)) (|:| -4341 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|) (-1 |#2| |#2|))) (-15 -3058 ((-3 (-631 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|))))
-((-1726 (((-1 |#1|) (-631 (-2 (|:| -2794 |#1|) (|:| -1316 (-554))))) 37)) (-1671 (((-1 |#1|) (-1084 |#1|)) 45)) (-3328 (((-1 |#1|) (-1241 |#1|) (-1241 (-554)) (-554)) 34)))
-(((-1002 |#1|) (-10 -7 (-15 -1671 ((-1 |#1|) (-1084 |#1|))) (-15 -1726 ((-1 |#1|) (-631 (-2 (|:| -2794 |#1|) (|:| -1316 (-554)))))) (-15 -3328 ((-1 |#1|) (-1241 |#1|) (-1241 (-554)) (-554)))) (-1082)) (T -1002))
-((-3328 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1241 *6)) (-5 *4 (-1241 (-554))) (-5 *5 (-554)) (-4 *6 (-1082)) (-5 *2 (-1 *6)) (-5 *1 (-1002 *6)))) (-1726 (*1 *2 *3) (-12 (-5 *3 (-631 (-2 (|:| -2794 *4) (|:| -1316 (-554))))) (-4 *4 (-1082)) (-5 *2 (-1 *4)) (-5 *1 (-1002 *4)))) (-1671 (*1 *2 *3) (-12 (-5 *3 (-1084 *4)) (-4 *4 (-1082)) (-5 *2 (-1 *4)) (-5 *1 (-1002 *4)))))
-(-10 -7 (-15 -1671 ((-1 |#1|) (-1084 |#1|))) (-15 -1726 ((-1 |#1|) (-631 (-2 (|:| -2794 |#1|) (|:| -1316 (-554)))))) (-15 -3328 ((-1 |#1|) (-1241 |#1|) (-1241 (-554)) (-554))))
-((-2342 (((-758) (-331 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
-(((-1003 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2342 ((-758) (-331 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-358) (-1217 |#1|) (-1217 (-402 |#2|)) (-337 |#1| |#2| |#3|) (-13 (-363) (-358))) (T -1003))
-((-2342 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-331 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-358)) (-4 *7 (-1217 *6)) (-4 *4 (-1217 (-402 *7))) (-4 *8 (-337 *6 *7 *4)) (-4 *9 (-13 (-363) (-358))) (-5 *2 (-758)) (-5 *1 (-1003 *6 *7 *4 *8 *9)))))
-(-10 -7 (-15 -2342 ((-758) (-331 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
-((-3062 (((-112) $ $) NIL)) (-3086 (((-1117) $) 9)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL) (($ (-1163)) NIL) (((-1163) $) NIL)) (-4319 (((-1117) $) 11)) (-1658 (((-112) $ $) NIL)))
-(((-1004) (-13 (-1065) (-10 -8 (-15 -3086 ((-1117) $)) (-15 -4319 ((-1117) $))))) (T -1004))
-((-3086 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1004)))) (-4319 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1004)))))
-(-13 (-1065) (-10 -8 (-15 -3086 ((-1117) $)) (-15 -4319 ((-1117) $))))
-((-3792 (((-3 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) "failed") |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) 31) (((-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) (-402 (-554))) 28)) (-3388 (((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) (-402 (-554))) 33) (((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1| (-402 (-554))) 29) (((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) 32) (((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1|) 27)) (-3974 (((-631 (-402 (-554))) (-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))) 19)) (-3381 (((-402 (-554)) (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) 16)))
-(((-1005 |#1|) (-10 -7 (-15 -3388 ((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1|)) (-15 -3388 ((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))) (-15 -3388 ((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1| (-402 (-554)))) (-15 -3388 ((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) (-402 (-554)))) (-15 -3792 ((-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) (-402 (-554)))) (-15 -3792 ((-3 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) "failed") |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))) (-15 -3381 ((-402 (-554)) (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))) (-15 -3974 ((-631 (-402 (-554))) (-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))))) (-1217 (-554))) (T -1005))
-((-3974 (*1 *2 *3) (-12 (-5 *3 (-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))) (-5 *2 (-631 (-402 (-554)))) (-5 *1 (-1005 *4)) (-4 *4 (-1217 (-554))))) (-3381 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) (-5 *2 (-402 (-554))) (-5 *1 (-1005 *4)) (-4 *4 (-1217 (-554))))) (-3792 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) (-5 *1 (-1005 *3)) (-4 *3 (-1217 (-554))))) (-3792 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) (-5 *4 (-402 (-554))) (-5 *1 (-1005 *3)) (-4 *3 (-1217 (-554))))) (-3388 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-402 (-554))) (-5 *2 (-631 (-2 (|:| -3311 *5) (|:| -3324 *5)))) (-5 *1 (-1005 *3)) (-4 *3 (-1217 (-554))) (-5 *4 (-2 (|:| -3311 *5) (|:| -3324 *5))))) (-3388 (*1 *2 *3 *4) (-12 (-5 *2 (-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))) (-5 *1 (-1005 *3)) (-4 *3 (-1217 (-554))) (-5 *4 (-402 (-554))))) (-3388 (*1 *2 *3 *4) (-12 (-5 *2 (-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))) (-5 *1 (-1005 *3)) (-4 *3 (-1217 (-554))) (-5 *4 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))))) (-3388 (*1 *2 *3) (-12 (-5 *2 (-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))) (-5 *1 (-1005 *3)) (-4 *3 (-1217 (-554))))))
-(-10 -7 (-15 -3388 ((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1|)) (-15 -3388 ((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))) (-15 -3388 ((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1| (-402 (-554)))) (-15 -3388 ((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) (-402 (-554)))) (-15 -3792 ((-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) (-402 (-554)))) (-15 -3792 ((-3 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) "failed") |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))) (-15 -3381 ((-402 (-554)) (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))) (-15 -3974 ((-631 (-402 (-554))) (-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))))))
-((-3792 (((-3 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) "failed") |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) 35) (((-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) (-402 (-554))) 32)) (-3388 (((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) (-402 (-554))) 30) (((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1| (-402 (-554))) 26) (((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) 28) (((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1|) 24)))
-(((-1006 |#1|) (-10 -7 (-15 -3388 ((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1|)) (-15 -3388 ((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))) (-15 -3388 ((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1| (-402 (-554)))) (-15 -3388 ((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) (-402 (-554)))) (-15 -3792 ((-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) (-402 (-554)))) (-15 -3792 ((-3 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) "failed") |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))))) (-1217 (-402 (-554)))) (T -1006))
-((-3792 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) (-5 *1 (-1006 *3)) (-4 *3 (-1217 (-402 (-554)))))) (-3792 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) (-5 *4 (-402 (-554))) (-5 *1 (-1006 *3)) (-4 *3 (-1217 *4)))) (-3388 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-402 (-554))) (-5 *2 (-631 (-2 (|:| -3311 *5) (|:| -3324 *5)))) (-5 *1 (-1006 *3)) (-4 *3 (-1217 *5)) (-5 *4 (-2 (|:| -3311 *5) (|:| -3324 *5))))) (-3388 (*1 *2 *3 *4) (-12 (-5 *4 (-402 (-554))) (-5 *2 (-631 (-2 (|:| -3311 *4) (|:| -3324 *4)))) (-5 *1 (-1006 *3)) (-4 *3 (-1217 *4)))) (-3388 (*1 *2 *3 *4) (-12 (-5 *2 (-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))) (-5 *1 (-1006 *3)) (-4 *3 (-1217 (-402 (-554)))) (-5 *4 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))))) (-3388 (*1 *2 *3) (-12 (-5 *2 (-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))) (-5 *1 (-1006 *3)) (-4 *3 (-1217 (-402 (-554)))))))
-(-10 -7 (-15 -3388 ((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1|)) (-15 -3388 ((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))) (-15 -3388 ((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1| (-402 (-554)))) (-15 -3388 ((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) (-402 (-554)))) (-15 -3792 ((-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) (-402 (-554)))) (-15 -3792 ((-3 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) "failed") |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))))
-((-2927 (((-221) $) 6) (((-374) $) 9)))
-(((-1007) (-138)) (T -1007))
-NIL
-(-13 (-602 (-221)) (-602 (-374)))
-(((-602 (-221)) . T) ((-602 (-374)) . T))
-((-1900 (((-631 (-374)) (-937 (-554)) (-374)) 28) (((-631 (-374)) (-937 (-402 (-554))) (-374)) 27)) (-3481 (((-631 (-631 (-374))) (-631 (-937 (-554))) (-631 (-1158)) (-374)) 37)))
-(((-1008) (-10 -7 (-15 -1900 ((-631 (-374)) (-937 (-402 (-554))) (-374))) (-15 -1900 ((-631 (-374)) (-937 (-554)) (-374))) (-15 -3481 ((-631 (-631 (-374))) (-631 (-937 (-554))) (-631 (-1158)) (-374))))) (T -1008))
-((-3481 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 (-937 (-554)))) (-5 *4 (-631 (-1158))) (-5 *2 (-631 (-631 (-374)))) (-5 *1 (-1008)) (-5 *5 (-374)))) (-1900 (*1 *2 *3 *4) (-12 (-5 *3 (-937 (-554))) (-5 *2 (-631 (-374))) (-5 *1 (-1008)) (-5 *4 (-374)))) (-1900 (*1 *2 *3 *4) (-12 (-5 *3 (-937 (-402 (-554)))) (-5 *2 (-631 (-374))) (-5 *1 (-1008)) (-5 *4 (-374)))))
-(-10 -7 (-15 -1900 ((-631 (-374)) (-937 (-402 (-554))) (-374))) (-15 -1900 ((-631 (-374)) (-937 (-554)) (-374))) (-15 -3481 ((-631 (-631 (-374))) (-631 (-937 (-554))) (-631 (-1158)) (-374))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 70)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2282 (($ $) NIL) (($ $ (-906)) NIL) (($ (-402 (-554))) NIL) (($ (-554)) NIL)) (-2286 (((-112) $ $) NIL)) (-4219 (((-554) $) 65)) (-4087 (($) NIL T CONST)) (-3625 (((-3 $ "failed") (-1154 $) (-906) (-848)) NIL) (((-3 $ "failed") (-1154 $) (-906)) 50)) (-2784 (((-3 (-402 (-554)) "failed") $) NIL (|has| (-402 (-554)) (-1023 (-402 (-554))))) (((-3 (-402 (-554)) "failed") $) NIL) (((-3 |#1| "failed") $) 107) (((-3 (-554) "failed") $) NIL (-3994 (|has| (-402 (-554)) (-1023 (-554))) (|has| |#1| (-1023 (-554)))))) (-1668 (((-402 (-554)) $) 15 (|has| (-402 (-554)) (-1023 (-402 (-554))))) (((-402 (-554)) $) 15) ((|#1| $) 108) (((-554) $) NIL (-3994 (|has| (-402 (-554)) (-1023 (-554))) (|has| |#1| (-1023 (-554)))))) (-3163 (($ $ (-848)) 42)) (-3686 (($ $ (-848)) 43)) (-3964 (($ $ $) NIL)) (-2513 (((-402 (-554)) $ $) 19)) (-1320 (((-3 $ "failed") $) 83)) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-2745 (((-112) $) 61)) (-3248 (((-112) $) NIL)) (-3734 (($ $ (-554)) NIL)) (-4304 (((-112) $) 64)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-2142 (((-3 (-1154 $) "failed") $) 78)) (-3467 (((-3 (-848) "failed") $) 77)) (-2106 (((-3 (-1154 $) "failed") $) 75)) (-2136 (((-3 (-1044 $ (-1154 $)) "failed") $) 73)) (-2475 (($ (-631 $)) NIL) (($ $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) 84)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ (-631 $)) NIL) (($ $ $) NIL)) (-2270 (((-413 $) $) NIL)) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-3075 (((-848) $) 82) (($ (-554)) NIL) (($ (-402 (-554))) NIL) (($ $) 58) (($ (-402 (-554))) NIL) (($ (-554)) NIL) (($ (-402 (-554))) NIL) (($ |#1|) 110)) (-2261 (((-758)) NIL)) (-1909 (((-112) $ $) NIL)) (-4333 (((-402 (-554)) $ $) 25)) (-2299 (((-631 $) (-1154 $)) 56) (((-631 $) (-1154 (-402 (-554)))) NIL) (((-631 $) (-1154 (-554))) NIL) (((-631 $) (-937 $)) NIL) (((-631 $) (-937 (-402 (-554)))) NIL) (((-631 $) (-937 (-554))) NIL)) (-2033 (($ (-1044 $ (-1154 $)) (-848)) 41)) (-1700 (($ $) 20)) (-2004 (($) 29 T CONST)) (-2014 (($) 35 T CONST)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 71)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 22)) (-1752 (($ $ $) 33)) (-1744 (($ $) 34) (($ $ $) 69)) (-1735 (($ $ $) 103)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL) (($ $ (-402 (-554))) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 91) (($ $ $) 96) (($ (-402 (-554)) $) NIL) (($ $ (-402 (-554))) NIL) (($ (-554) $) 91) (($ $ (-554)) NIL) (($ (-402 (-554)) $) NIL) (($ $ (-402 (-554))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL)))
-(((-1009 |#1|) (-13 (-997) (-406 |#1|) (-38 |#1|) (-10 -8 (-15 -2033 ($ (-1044 $ (-1154 $)) (-848))) (-15 -2136 ((-3 (-1044 $ (-1154 $)) "failed") $)) (-15 -2513 ((-402 (-554)) $ $)))) (-13 (-834) (-358) (-1007))) (T -1009))
-((-2033 (*1 *1 *2 *3) (-12 (-5 *2 (-1044 (-1009 *4) (-1154 (-1009 *4)))) (-5 *3 (-848)) (-5 *1 (-1009 *4)) (-4 *4 (-13 (-834) (-358) (-1007))))) (-2136 (*1 *2 *1) (|partial| -12 (-5 *2 (-1044 (-1009 *3) (-1154 (-1009 *3)))) (-5 *1 (-1009 *3)) (-4 *3 (-13 (-834) (-358) (-1007))))) (-2513 (*1 *2 *1 *1) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-1009 *3)) (-4 *3 (-13 (-834) (-358) (-1007))))))
-(-13 (-997) (-406 |#1|) (-38 |#1|) (-10 -8 (-15 -2033 ($ (-1044 $ (-1154 $)) (-848))) (-15 -2136 ((-3 (-1044 $ (-1154 $)) "failed") $)) (-15 -2513 ((-402 (-554)) $ $))))
-((-2581 (((-2 (|:| -4329 |#2|) (|:| -1482 (-631 |#1|))) |#2| (-631 |#1|)) 20) ((|#2| |#2| |#1|) 15)))
-(((-1010 |#1| |#2|) (-10 -7 (-15 -2581 (|#2| |#2| |#1|)) (-15 -2581 ((-2 (|:| -4329 |#2|) (|:| -1482 (-631 |#1|))) |#2| (-631 |#1|)))) (-358) (-642 |#1|)) (T -1010))
-((-2581 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-5 *2 (-2 (|:| -4329 *3) (|:| -1482 (-631 *5)))) (-5 *1 (-1010 *5 *3)) (-5 *4 (-631 *5)) (-4 *3 (-642 *5)))) (-2581 (*1 *2 *2 *3) (-12 (-4 *3 (-358)) (-5 *1 (-1010 *3 *2)) (-4 *2 (-642 *3)))))
-(-10 -7 (-15 -2581 (|#2| |#2| |#1|)) (-15 -2581 ((-2 (|:| -4329 |#2|) (|:| -1482 (-631 |#1|))) |#2| (-631 |#1|))))
-((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-4225 ((|#1| $ |#1|) 14)) (-1501 ((|#1| $ |#1|) 12)) (-3636 (($ |#1|) 10)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-2064 ((|#1| $) 11)) (-3534 ((|#1| $) 13)) (-3075 (((-848) $) 21 (|has| |#1| (-1082)))) (-1658 (((-112) $ $) 9)))
-(((-1011 |#1|) (-13 (-1195) (-10 -8 (-15 -3636 ($ |#1|)) (-15 -2064 (|#1| $)) (-15 -1501 (|#1| $ |#1|)) (-15 -3534 (|#1| $)) (-15 -4225 (|#1| $ |#1|)) (-15 -1658 ((-112) $ $)) (IF (|has| |#1| (-1082)) (-6 (-1082)) |%noBranch|))) (-1195)) (T -1011))
-((-3636 (*1 *1 *2) (-12 (-5 *1 (-1011 *2)) (-4 *2 (-1195)))) (-2064 (*1 *2 *1) (-12 (-5 *1 (-1011 *2)) (-4 *2 (-1195)))) (-1501 (*1 *2 *1 *2) (-12 (-5 *1 (-1011 *2)) (-4 *2 (-1195)))) (-3534 (*1 *2 *1) (-12 (-5 *1 (-1011 *2)) (-4 *2 (-1195)))) (-4225 (*1 *2 *1 *2) (-12 (-5 *1 (-1011 *2)) (-4 *2 (-1195)))) (-1658 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1011 *3)) (-4 *3 (-1195)))))
-(-13 (-1195) (-10 -8 (-15 -3636 ($ |#1|)) (-15 -2064 (|#1| $)) (-15 -1501 (|#1| $ |#1|)) (-15 -3534 (|#1| $)) (-15 -4225 (|#1| $ |#1|)) (-15 -1658 ((-112) $ $)) (IF (|has| |#1| (-1082)) (-6 (-1082)) |%noBranch|)))
-((-3062 (((-112) $ $) NIL)) (-3960 (((-631 (-2 (|:| -2498 $) (|:| -1303 (-631 |#4|)))) (-631 |#4|)) NIL)) (-3176 (((-631 $) (-631 |#4|)) 105) (((-631 $) (-631 |#4|) (-112)) 106) (((-631 $) (-631 |#4|) (-112) (-112)) 104) (((-631 $) (-631 |#4|) (-112) (-112) (-112) (-112)) 107)) (-2405 (((-631 |#3|) $) NIL)) (-1678 (((-112) $) NIL)) (-3005 (((-112) $) NIL (|has| |#1| (-546)))) (-2630 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4057 ((|#4| |#4| $) NIL)) (-3278 (((-631 (-2 (|:| |val| |#4|) (|:| -2143 $))) |#4| $) 99)) (-3303 (((-2 (|:| |under| $) (|:| -4339 $) (|:| |upper| $)) $ |#3|) NIL)) (-3019 (((-112) $ (-758)) NIL)) (-1871 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373))) (((-3 |#4| "failed") $ |#3|) 54)) (-4087 (($) NIL T CONST)) (-1930 (((-112) $) 26 (|has| |#1| (-546)))) (-1404 (((-112) $ $) NIL (|has| |#1| (-546)))) (-3262 (((-112) $ $) NIL (|has| |#1| (-546)))) (-2713 (((-112) $) NIL (|has| |#1| (-546)))) (-2242 (((-631 |#4|) (-631 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1380 (((-631 |#4|) (-631 |#4|) $) NIL (|has| |#1| (-546)))) (-4204 (((-631 |#4|) (-631 |#4|) $) NIL (|has| |#1| (-546)))) (-2784 (((-3 $ "failed") (-631 |#4|)) NIL)) (-1668 (($ (-631 |#4|)) NIL)) (-1551 (((-3 $ "failed") $) 39)) (-2930 ((|#4| |#4| $) 57)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082))))) (-2574 (($ |#4| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-2423 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-546)))) (-2857 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4210 ((|#4| |#4| $) NIL)) (-3676 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4373))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4373))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1971 (((-2 (|:| -2498 (-631 |#4|)) (|:| -1303 (-631 |#4|))) $) NIL)) (-4183 (((-112) |#4| $) NIL)) (-4155 (((-112) |#4| $) NIL)) (-2892 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3975 (((-2 (|:| |val| (-631 |#4|)) (|:| |towers| (-631 $))) (-631 |#4|) (-112) (-112)) 119)) (-2466 (((-631 |#4|) $) 16 (|has| $ (-6 -4373)))) (-4253 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3954 ((|#3| $) 33)) (-2230 (((-112) $ (-758)) NIL)) (-2379 (((-631 |#4|) $) 17 (|has| $ (-6 -4373)))) (-3068 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082))))) (-2849 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#4| |#4|) $) 21)) (-2643 (((-631 |#3|) $) NIL)) (-1400 (((-112) |#3| $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL)) (-1343 (((-3 |#4| (-631 $)) |#4| |#4| $) NIL)) (-2543 (((-631 (-2 (|:| |val| |#4|) (|:| -2143 $))) |#4| |#4| $) 97)) (-2597 (((-3 |#4| "failed") $) 37)) (-2953 (((-631 $) |#4| $) 80)) (-3841 (((-3 (-112) (-631 $)) |#4| $) NIL)) (-3874 (((-631 (-2 (|:| |val| (-112)) (|:| -2143 $))) |#4| $) 90) (((-112) |#4| $) 52)) (-3977 (((-631 $) |#4| $) 102) (((-631 $) (-631 |#4|) $) NIL) (((-631 $) (-631 |#4|) (-631 $)) 103) (((-631 $) |#4| (-631 $)) NIL)) (-2031 (((-631 $) (-631 |#4|) (-112) (-112) (-112)) 114)) (-3479 (($ |#4| $) 70) (($ (-631 |#4|) $) 71) (((-631 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 67)) (-2627 (((-631 |#4|) $) NIL)) (-3007 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1536 ((|#4| |#4| $) NIL)) (-2178 (((-112) $ $) NIL)) (-3548 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-546)))) (-3518 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3492 ((|#4| |#4| $) NIL)) (-2768 (((-1102) $) NIL)) (-1539 (((-3 |#4| "failed") $) 35)) (-1652 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3948 (((-3 $ "failed") $ |#4|) 48)) (-4282 (($ $ |#4|) NIL) (((-631 $) |#4| $) 82) (((-631 $) |#4| (-631 $)) NIL) (((-631 $) (-631 |#4|) $) NIL) (((-631 $) (-631 |#4|) (-631 $)) 77)) (-2845 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 |#4|) (-631 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-289 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-631 (-289 |#4|))) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) 15)) (-4240 (($) 13)) (-3308 (((-758) $) NIL)) (-2777 (((-758) |#4| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082)))) (((-758) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-1521 (($ $) 12)) (-2927 (((-530) $) NIL (|has| |#4| (-602 (-530))))) (-3089 (($ (-631 |#4|)) 20)) (-2538 (($ $ |#3|) 42)) (-2384 (($ $ |#3|) 44)) (-2258 (($ $) NIL)) (-2128 (($ $ |#3|) NIL)) (-3075 (((-848) $) 31) (((-631 |#4|) $) 40)) (-2347 (((-758) $) NIL (|has| |#3| (-363)))) (-2792 (((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 |#4|))) "failed") (-631 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 |#4|))) "failed") (-631 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3579 (((-112) $ (-1 (-112) |#4| (-631 |#4|))) NIL)) (-3850 (((-631 $) |#4| $) 79) (((-631 $) |#4| (-631 $)) NIL) (((-631 $) (-631 |#4|) $) NIL) (((-631 $) (-631 |#4|) (-631 $)) NIL)) (-2438 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-4267 (((-631 |#3|) $) NIL)) (-4351 (((-112) |#4| $) NIL)) (-3536 (((-112) |#3| $) 53)) (-1658 (((-112) $ $) NIL)) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-1012 |#1| |#2| |#3| |#4|) (-13 (-1054 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3479 ((-631 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3176 ((-631 $) (-631 |#4|) (-112) (-112))) (-15 -3176 ((-631 $) (-631 |#4|) (-112) (-112) (-112) (-112))) (-15 -2031 ((-631 $) (-631 |#4|) (-112) (-112) (-112))) (-15 -3975 ((-2 (|:| |val| (-631 |#4|)) (|:| |towers| (-631 $))) (-631 |#4|) (-112) (-112))))) (-446) (-780) (-836) (-1048 |#1| |#2| |#3|)) (T -1012))
-((-3479 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-631 (-1012 *5 *6 *7 *3))) (-5 *1 (-1012 *5 *6 *7 *3)) (-4 *3 (-1048 *5 *6 *7)))) (-3176 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-112)) (-4 *8 (-1048 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-631 (-1012 *5 *6 *7 *8))) (-5 *1 (-1012 *5 *6 *7 *8)))) (-3176 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-112)) (-4 *8 (-1048 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-631 (-1012 *5 *6 *7 *8))) (-5 *1 (-1012 *5 *6 *7 *8)))) (-2031 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-112)) (-4 *8 (-1048 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-631 (-1012 *5 *6 *7 *8))) (-5 *1 (-1012 *5 *6 *7 *8)))) (-3975 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *8 (-1048 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-631 *8)) (|:| |towers| (-631 (-1012 *5 *6 *7 *8))))) (-5 *1 (-1012 *5 *6 *7 *8)) (-5 *3 (-631 *8)))))
-(-13 (-1054 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3479 ((-631 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3176 ((-631 $) (-631 |#4|) (-112) (-112))) (-15 -3176 ((-631 $) (-631 |#4|) (-112) (-112) (-112) (-112))) (-15 -2031 ((-631 $) (-631 |#4|) (-112) (-112) (-112))) (-15 -3975 ((-2 (|:| |val| (-631 |#4|)) (|:| |towers| (-631 $))) (-631 |#4|) (-112) (-112)))))
-((-3552 (((-631 (-675 |#1|)) (-631 (-675 |#1|))) 58) (((-675 |#1|) (-675 |#1|)) 57) (((-631 (-675 |#1|)) (-631 (-675 |#1|)) (-631 (-675 |#1|))) 56) (((-675 |#1|) (-675 |#1|) (-675 |#1|)) 53)) (-3354 (((-631 (-675 |#1|)) (-631 (-675 |#1|)) (-906)) 52) (((-675 |#1|) (-675 |#1|) (-906)) 51)) (-1916 (((-631 (-675 (-554))) (-631 (-631 (-554)))) 68) (((-631 (-675 (-554))) (-631 (-890 (-554))) (-554)) 67) (((-675 (-554)) (-631 (-554))) 64) (((-675 (-554)) (-890 (-554)) (-554)) 63)) (-2093 (((-675 (-937 |#1|)) (-758)) 81)) (-3186 (((-631 (-675 |#1|)) (-631 (-675 |#1|)) (-906)) 37 (|has| |#1| (-6 (-4375 "*")))) (((-675 |#1|) (-675 |#1|) (-906)) 35 (|has| |#1| (-6 (-4375 "*"))))))
-(((-1013 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4375 "*"))) (-15 -3186 ((-675 |#1|) (-675 |#1|) (-906))) |%noBranch|) (IF (|has| |#1| (-6 (-4375 "*"))) (-15 -3186 ((-631 (-675 |#1|)) (-631 (-675 |#1|)) (-906))) |%noBranch|) (-15 -2093 ((-675 (-937 |#1|)) (-758))) (-15 -3354 ((-675 |#1|) (-675 |#1|) (-906))) (-15 -3354 ((-631 (-675 |#1|)) (-631 (-675 |#1|)) (-906))) (-15 -3552 ((-675 |#1|) (-675 |#1|) (-675 |#1|))) (-15 -3552 ((-631 (-675 |#1|)) (-631 (-675 |#1|)) (-631 (-675 |#1|)))) (-15 -3552 ((-675 |#1|) (-675 |#1|))) (-15 -3552 ((-631 (-675 |#1|)) (-631 (-675 |#1|)))) (-15 -1916 ((-675 (-554)) (-890 (-554)) (-554))) (-15 -1916 ((-675 (-554)) (-631 (-554)))) (-15 -1916 ((-631 (-675 (-554))) (-631 (-890 (-554))) (-554))) (-15 -1916 ((-631 (-675 (-554))) (-631 (-631 (-554)))))) (-1034)) (T -1013))
-((-1916 (*1 *2 *3) (-12 (-5 *3 (-631 (-631 (-554)))) (-5 *2 (-631 (-675 (-554)))) (-5 *1 (-1013 *4)) (-4 *4 (-1034)))) (-1916 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-890 (-554)))) (-5 *4 (-554)) (-5 *2 (-631 (-675 *4))) (-5 *1 (-1013 *5)) (-4 *5 (-1034)))) (-1916 (*1 *2 *3) (-12 (-5 *3 (-631 (-554))) (-5 *2 (-675 (-554))) (-5 *1 (-1013 *4)) (-4 *4 (-1034)))) (-1916 (*1 *2 *3 *4) (-12 (-5 *3 (-890 (-554))) (-5 *4 (-554)) (-5 *2 (-675 *4)) (-5 *1 (-1013 *5)) (-4 *5 (-1034)))) (-3552 (*1 *2 *2) (-12 (-5 *2 (-631 (-675 *3))) (-4 *3 (-1034)) (-5 *1 (-1013 *3)))) (-3552 (*1 *2 *2) (-12 (-5 *2 (-675 *3)) (-4 *3 (-1034)) (-5 *1 (-1013 *3)))) (-3552 (*1 *2 *2 *2) (-12 (-5 *2 (-631 (-675 *3))) (-4 *3 (-1034)) (-5 *1 (-1013 *3)))) (-3552 (*1 *2 *2 *2) (-12 (-5 *2 (-675 *3)) (-4 *3 (-1034)) (-5 *1 (-1013 *3)))) (-3354 (*1 *2 *2 *3) (-12 (-5 *2 (-631 (-675 *4))) (-5 *3 (-906)) (-4 *4 (-1034)) (-5 *1 (-1013 *4)))) (-3354 (*1 *2 *2 *3) (-12 (-5 *2 (-675 *4)) (-5 *3 (-906)) (-4 *4 (-1034)) (-5 *1 (-1013 *4)))) (-2093 (*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-675 (-937 *4))) (-5 *1 (-1013 *4)) (-4 *4 (-1034)))) (-3186 (*1 *2 *2 *3) (-12 (-5 *2 (-631 (-675 *4))) (-5 *3 (-906)) (|has| *4 (-6 (-4375 "*"))) (-4 *4 (-1034)) (-5 *1 (-1013 *4)))) (-3186 (*1 *2 *2 *3) (-12 (-5 *2 (-675 *4)) (-5 *3 (-906)) (|has| *4 (-6 (-4375 "*"))) (-4 *4 (-1034)) (-5 *1 (-1013 *4)))))
-(-10 -7 (IF (|has| |#1| (-6 (-4375 "*"))) (-15 -3186 ((-675 |#1|) (-675 |#1|) (-906))) |%noBranch|) (IF (|has| |#1| (-6 (-4375 "*"))) (-15 -3186 ((-631 (-675 |#1|)) (-631 (-675 |#1|)) (-906))) |%noBranch|) (-15 -2093 ((-675 (-937 |#1|)) (-758))) (-15 -3354 ((-675 |#1|) (-675 |#1|) (-906))) (-15 -3354 ((-631 (-675 |#1|)) (-631 (-675 |#1|)) (-906))) (-15 -3552 ((-675 |#1|) (-675 |#1|) (-675 |#1|))) (-15 -3552 ((-631 (-675 |#1|)) (-631 (-675 |#1|)) (-631 (-675 |#1|)))) (-15 -3552 ((-675 |#1|) (-675 |#1|))) (-15 -3552 ((-631 (-675 |#1|)) (-631 (-675 |#1|)))) (-15 -1916 ((-675 (-554)) (-890 (-554)) (-554))) (-15 -1916 ((-675 (-554)) (-631 (-554)))) (-15 -1916 ((-631 (-675 (-554))) (-631 (-890 (-554))) (-554))) (-15 -1916 ((-631 (-675 (-554))) (-631 (-631 (-554))))))
-((-2819 (((-675 |#1|) (-631 (-675 |#1|)) (-1241 |#1|)) 50 (|has| |#1| (-302)))) (-1515 (((-631 (-631 (-675 |#1|))) (-631 (-675 |#1|)) (-1241 (-1241 |#1|))) 76 (|has| |#1| (-358))) (((-631 (-631 (-675 |#1|))) (-631 (-675 |#1|)) (-1241 |#1|)) 79 (|has| |#1| (-358)))) (-3122 (((-1241 |#1|) (-631 (-1241 |#1|)) (-554)) 93 (-12 (|has| |#1| (-358)) (|has| |#1| (-363))))) (-4334 (((-631 (-631 (-675 |#1|))) (-631 (-675 |#1|)) (-906)) 85 (-12 (|has| |#1| (-358)) (|has| |#1| (-363)))) (((-631 (-631 (-675 |#1|))) (-631 (-675 |#1|)) (-112)) 83 (-12 (|has| |#1| (-358)) (|has| |#1| (-363)))) (((-631 (-631 (-675 |#1|))) (-631 (-675 |#1|))) 82 (-12 (|has| |#1| (-358)) (|has| |#1| (-363)))) (((-631 (-631 (-675 |#1|))) (-631 (-675 |#1|)) (-112) (-554) (-554)) 81 (-12 (|has| |#1| (-358)) (|has| |#1| (-363))))) (-2257 (((-112) (-631 (-675 |#1|))) 71 (|has| |#1| (-358))) (((-112) (-631 (-675 |#1|)) (-554)) 73 (|has| |#1| (-358)))) (-1529 (((-1241 (-1241 |#1|)) (-631 (-675 |#1|)) (-1241 |#1|)) 48 (|has| |#1| (-302)))) (-3091 (((-675 |#1|) (-631 (-675 |#1|)) (-675 |#1|)) 34)) (-1766 (((-675 |#1|) (-1241 (-1241 |#1|))) 31)) (-2600 (((-675 |#1|) (-631 (-675 |#1|)) (-631 (-675 |#1|)) (-554)) 65 (|has| |#1| (-358))) (((-675 |#1|) (-631 (-675 |#1|)) (-631 (-675 |#1|))) 64 (|has| |#1| (-358))) (((-675 |#1|) (-631 (-675 |#1|)) (-631 (-675 |#1|)) (-112) (-554)) 69 (|has| |#1| (-358)))))
-(((-1014 |#1|) (-10 -7 (-15 -1766 ((-675 |#1|) (-1241 (-1241 |#1|)))) (-15 -3091 ((-675 |#1|) (-631 (-675 |#1|)) (-675 |#1|))) (IF (|has| |#1| (-302)) (PROGN (-15 -1529 ((-1241 (-1241 |#1|)) (-631 (-675 |#1|)) (-1241 |#1|))) (-15 -2819 ((-675 |#1|) (-631 (-675 |#1|)) (-1241 |#1|)))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-15 -2600 ((-675 |#1|) (-631 (-675 |#1|)) (-631 (-675 |#1|)) (-112) (-554))) (-15 -2600 ((-675 |#1|) (-631 (-675 |#1|)) (-631 (-675 |#1|)))) (-15 -2600 ((-675 |#1|) (-631 (-675 |#1|)) (-631 (-675 |#1|)) (-554))) (-15 -2257 ((-112) (-631 (-675 |#1|)) (-554))) (-15 -2257 ((-112) (-631 (-675 |#1|)))) (-15 -1515 ((-631 (-631 (-675 |#1|))) (-631 (-675 |#1|)) (-1241 |#1|))) (-15 -1515 ((-631 (-631 (-675 |#1|))) (-631 (-675 |#1|)) (-1241 (-1241 |#1|))))) |%noBranch|) (IF (|has| |#1| (-363)) (IF (|has| |#1| (-358)) (PROGN (-15 -4334 ((-631 (-631 (-675 |#1|))) (-631 (-675 |#1|)) (-112) (-554) (-554))) (-15 -4334 ((-631 (-631 (-675 |#1|))) (-631 (-675 |#1|)))) (-15 -4334 ((-631 (-631 (-675 |#1|))) (-631 (-675 |#1|)) (-112))) (-15 -4334 ((-631 (-631 (-675 |#1|))) (-631 (-675 |#1|)) (-906))) (-15 -3122 ((-1241 |#1|) (-631 (-1241 |#1|)) (-554)))) |%noBranch|) |%noBranch|)) (-1034)) (T -1014))
-((-3122 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-1241 *5))) (-5 *4 (-554)) (-5 *2 (-1241 *5)) (-5 *1 (-1014 *5)) (-4 *5 (-358)) (-4 *5 (-363)) (-4 *5 (-1034)))) (-4334 (*1 *2 *3 *4) (-12 (-5 *4 (-906)) (-4 *5 (-358)) (-4 *5 (-363)) (-4 *5 (-1034)) (-5 *2 (-631 (-631 (-675 *5)))) (-5 *1 (-1014 *5)) (-5 *3 (-631 (-675 *5))))) (-4334 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-358)) (-4 *5 (-363)) (-4 *5 (-1034)) (-5 *2 (-631 (-631 (-675 *5)))) (-5 *1 (-1014 *5)) (-5 *3 (-631 (-675 *5))))) (-4334 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *4 (-363)) (-4 *4 (-1034)) (-5 *2 (-631 (-631 (-675 *4)))) (-5 *1 (-1014 *4)) (-5 *3 (-631 (-675 *4))))) (-4334 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-554)) (-4 *6 (-358)) (-4 *6 (-363)) (-4 *6 (-1034)) (-5 *2 (-631 (-631 (-675 *6)))) (-5 *1 (-1014 *6)) (-5 *3 (-631 (-675 *6))))) (-1515 (*1 *2 *3 *4) (-12 (-5 *4 (-1241 (-1241 *5))) (-4 *5 (-358)) (-4 *5 (-1034)) (-5 *2 (-631 (-631 (-675 *5)))) (-5 *1 (-1014 *5)) (-5 *3 (-631 (-675 *5))))) (-1515 (*1 *2 *3 *4) (-12 (-5 *4 (-1241 *5)) (-4 *5 (-358)) (-4 *5 (-1034)) (-5 *2 (-631 (-631 (-675 *5)))) (-5 *1 (-1014 *5)) (-5 *3 (-631 (-675 *5))))) (-2257 (*1 *2 *3) (-12 (-5 *3 (-631 (-675 *4))) (-4 *4 (-358)) (-4 *4 (-1034)) (-5 *2 (-112)) (-5 *1 (-1014 *4)))) (-2257 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-675 *5))) (-5 *4 (-554)) (-4 *5 (-358)) (-4 *5 (-1034)) (-5 *2 (-112)) (-5 *1 (-1014 *5)))) (-2600 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-631 (-675 *5))) (-5 *4 (-554)) (-5 *2 (-675 *5)) (-5 *1 (-1014 *5)) (-4 *5 (-358)) (-4 *5 (-1034)))) (-2600 (*1 *2 *3 *3) (-12 (-5 *3 (-631 (-675 *4))) (-5 *2 (-675 *4)) (-5 *1 (-1014 *4)) (-4 *4 (-358)) (-4 *4 (-1034)))) (-2600 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-631 (-675 *6))) (-5 *4 (-112)) (-5 *5 (-554)) (-5 *2 (-675 *6)) (-5 *1 (-1014 *6)) (-4 *6 (-358)) (-4 *6 (-1034)))) (-2819 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-675 *5))) (-5 *4 (-1241 *5)) (-4 *5 (-302)) (-4 *5 (-1034)) (-5 *2 (-675 *5)) (-5 *1 (-1014 *5)))) (-1529 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-675 *5))) (-4 *5 (-302)) (-4 *5 (-1034)) (-5 *2 (-1241 (-1241 *5))) (-5 *1 (-1014 *5)) (-5 *4 (-1241 *5)))) (-3091 (*1 *2 *3 *2) (-12 (-5 *3 (-631 (-675 *4))) (-5 *2 (-675 *4)) (-4 *4 (-1034)) (-5 *1 (-1014 *4)))) (-1766 (*1 *2 *3) (-12 (-5 *3 (-1241 (-1241 *4))) (-4 *4 (-1034)) (-5 *2 (-675 *4)) (-5 *1 (-1014 *4)))))
-(-10 -7 (-15 -1766 ((-675 |#1|) (-1241 (-1241 |#1|)))) (-15 -3091 ((-675 |#1|) (-631 (-675 |#1|)) (-675 |#1|))) (IF (|has| |#1| (-302)) (PROGN (-15 -1529 ((-1241 (-1241 |#1|)) (-631 (-675 |#1|)) (-1241 |#1|))) (-15 -2819 ((-675 |#1|) (-631 (-675 |#1|)) (-1241 |#1|)))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-15 -2600 ((-675 |#1|) (-631 (-675 |#1|)) (-631 (-675 |#1|)) (-112) (-554))) (-15 -2600 ((-675 |#1|) (-631 (-675 |#1|)) (-631 (-675 |#1|)))) (-15 -2600 ((-675 |#1|) (-631 (-675 |#1|)) (-631 (-675 |#1|)) (-554))) (-15 -2257 ((-112) (-631 (-675 |#1|)) (-554))) (-15 -2257 ((-112) (-631 (-675 |#1|)))) (-15 -1515 ((-631 (-631 (-675 |#1|))) (-631 (-675 |#1|)) (-1241 |#1|))) (-15 -1515 ((-631 (-631 (-675 |#1|))) (-631 (-675 |#1|)) (-1241 (-1241 |#1|))))) |%noBranch|) (IF (|has| |#1| (-363)) (IF (|has| |#1| (-358)) (PROGN (-15 -4334 ((-631 (-631 (-675 |#1|))) (-631 (-675 |#1|)) (-112) (-554) (-554))) (-15 -4334 ((-631 (-631 (-675 |#1|))) (-631 (-675 |#1|)))) (-15 -4334 ((-631 (-631 (-675 |#1|))) (-631 (-675 |#1|)) (-112))) (-15 -4334 ((-631 (-631 (-675 |#1|))) (-631 (-675 |#1|)) (-906))) (-15 -3122 ((-1241 |#1|) (-631 (-1241 |#1|)) (-554)))) |%noBranch|) |%noBranch|))
-((-1914 ((|#1| (-906) |#1|) 9)))
-(((-1015 |#1|) (-10 -7 (-15 -1914 (|#1| (-906) |#1|))) (-13 (-1082) (-10 -8 (-15 -1735 ($ $ $))))) (T -1015))
-((-1914 (*1 *2 *3 *2) (-12 (-5 *3 (-906)) (-5 *1 (-1015 *2)) (-4 *2 (-13 (-1082) (-10 -8 (-15 -1735 ($ $ $))))))))
-(-10 -7 (-15 -1914 (|#1| (-906) |#1|)))
-((-2632 (((-631 (-2 (|:| |radval| (-311 (-554))) (|:| |radmult| (-554)) (|:| |radvect| (-631 (-675 (-311 (-554))))))) (-675 (-402 (-937 (-554))))) 59)) (-1690 (((-631 (-675 (-311 (-554)))) (-311 (-554)) (-675 (-402 (-937 (-554))))) 48)) (-3412 (((-631 (-311 (-554))) (-675 (-402 (-937 (-554))))) 41)) (-2417 (((-631 (-675 (-311 (-554)))) (-675 (-402 (-937 (-554))))) 68)) (-1904 (((-675 (-311 (-554))) (-675 (-311 (-554)))) 34)) (-2744 (((-631 (-675 (-311 (-554)))) (-631 (-675 (-311 (-554))))) 62)) (-3225 (((-3 (-675 (-311 (-554))) "failed") (-675 (-402 (-937 (-554))))) 66)))
-(((-1016) (-10 -7 (-15 -2632 ((-631 (-2 (|:| |radval| (-311 (-554))) (|:| |radmult| (-554)) (|:| |radvect| (-631 (-675 (-311 (-554))))))) (-675 (-402 (-937 (-554)))))) (-15 -1690 ((-631 (-675 (-311 (-554)))) (-311 (-554)) (-675 (-402 (-937 (-554)))))) (-15 -3412 ((-631 (-311 (-554))) (-675 (-402 (-937 (-554)))))) (-15 -3225 ((-3 (-675 (-311 (-554))) "failed") (-675 (-402 (-937 (-554)))))) (-15 -1904 ((-675 (-311 (-554))) (-675 (-311 (-554))))) (-15 -2744 ((-631 (-675 (-311 (-554)))) (-631 (-675 (-311 (-554)))))) (-15 -2417 ((-631 (-675 (-311 (-554)))) (-675 (-402 (-937 (-554)))))))) (T -1016))
-((-2417 (*1 *2 *3) (-12 (-5 *3 (-675 (-402 (-937 (-554))))) (-5 *2 (-631 (-675 (-311 (-554))))) (-5 *1 (-1016)))) (-2744 (*1 *2 *2) (-12 (-5 *2 (-631 (-675 (-311 (-554))))) (-5 *1 (-1016)))) (-1904 (*1 *2 *2) (-12 (-5 *2 (-675 (-311 (-554)))) (-5 *1 (-1016)))) (-3225 (*1 *2 *3) (|partial| -12 (-5 *3 (-675 (-402 (-937 (-554))))) (-5 *2 (-675 (-311 (-554)))) (-5 *1 (-1016)))) (-3412 (*1 *2 *3) (-12 (-5 *3 (-675 (-402 (-937 (-554))))) (-5 *2 (-631 (-311 (-554)))) (-5 *1 (-1016)))) (-1690 (*1 *2 *3 *4) (-12 (-5 *4 (-675 (-402 (-937 (-554))))) (-5 *2 (-631 (-675 (-311 (-554))))) (-5 *1 (-1016)) (-5 *3 (-311 (-554))))) (-2632 (*1 *2 *3) (-12 (-5 *3 (-675 (-402 (-937 (-554))))) (-5 *2 (-631 (-2 (|:| |radval| (-311 (-554))) (|:| |radmult| (-554)) (|:| |radvect| (-631 (-675 (-311 (-554)))))))) (-5 *1 (-1016)))))
-(-10 -7 (-15 -2632 ((-631 (-2 (|:| |radval| (-311 (-554))) (|:| |radmult| (-554)) (|:| |radvect| (-631 (-675 (-311 (-554))))))) (-675 (-402 (-937 (-554)))))) (-15 -1690 ((-631 (-675 (-311 (-554)))) (-311 (-554)) (-675 (-402 (-937 (-554)))))) (-15 -3412 ((-631 (-311 (-554))) (-675 (-402 (-937 (-554)))))) (-15 -3225 ((-3 (-675 (-311 (-554))) "failed") (-675 (-402 (-937 (-554)))))) (-15 -1904 ((-675 (-311 (-554))) (-675 (-311 (-554))))) (-15 -2744 ((-631 (-675 (-311 (-554)))) (-631 (-675 (-311 (-554)))))) (-15 -2417 ((-631 (-675 (-311 (-554)))) (-675 (-402 (-937 (-554)))))))
-((-2672 ((|#1| |#1| (-906)) 9)))
-(((-1017 |#1|) (-10 -7 (-15 -2672 (|#1| |#1| (-906)))) (-13 (-1082) (-10 -8 (-15 * ($ $ $))))) (T -1017))
-((-2672 (*1 *2 *2 *3) (-12 (-5 *3 (-906)) (-5 *1 (-1017 *2)) (-4 *2 (-13 (-1082) (-10 -8 (-15 * ($ $ $))))))))
-(-10 -7 (-15 -2672 (|#1| |#1| (-906))))
-((-3075 ((|#1| (-307)) 11) (((-1246) |#1|) 9)))
-(((-1018 |#1|) (-10 -7 (-15 -3075 ((-1246) |#1|)) (-15 -3075 (|#1| (-307)))) (-1195)) (T -1018))
-((-3075 (*1 *2 *3) (-12 (-5 *3 (-307)) (-5 *1 (-1018 *2)) (-4 *2 (-1195)))) (-3075 (*1 *2 *3) (-12 (-5 *2 (-1246)) (-5 *1 (-1018 *3)) (-4 *3 (-1195)))))
-(-10 -7 (-15 -3075 ((-1246) |#1|)) (-15 -3075 (|#1| (-307))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-3676 (($ |#4|) 25)) (-1320 (((-3 $ "failed") $) NIL)) (-3248 (((-112) $) NIL)) (-3662 ((|#4| $) 27)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 46) (($ (-554)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-2261 (((-758)) 43)) (-2004 (($) 21 T CONST)) (-2014 (($) 23 T CONST)) (-1658 (((-112) $ $) 40)) (-1744 (($ $) 31) (($ $ $) NIL)) (-1735 (($ $ $) 29)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
-(((-1019 |#1| |#2| |#3| |#4| |#5|) (-13 (-170) (-38 |#1|) (-10 -8 (-15 -3676 ($ |#4|)) (-15 -3075 ($ |#4|)) (-15 -3662 (|#4| $)))) (-358) (-780) (-836) (-934 |#1| |#2| |#3|) (-631 |#4|)) (T -1019))
-((-3676 (*1 *1 *2) (-12 (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-1019 *3 *4 *5 *2 *6)) (-4 *2 (-934 *3 *4 *5)) (-14 *6 (-631 *2)))) (-3075 (*1 *1 *2) (-12 (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-1019 *3 *4 *5 *2 *6)) (-4 *2 (-934 *3 *4 *5)) (-14 *6 (-631 *2)))) (-3662 (*1 *2 *1) (-12 (-4 *2 (-934 *3 *4 *5)) (-5 *1 (-1019 *3 *4 *5 *2 *6)) (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-14 *6 (-631 *2)))))
-(-13 (-170) (-38 |#1|) (-10 -8 (-15 -3676 ($ |#4|)) (-15 -3075 ($ |#4|)) (-15 -3662 (|#4| $))))
-((-3062 (((-112) $ $) NIL (-3994 (|has| (-52) (-1082)) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082))))) (-3167 (($) NIL) (($ (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))))) NIL)) (-4233 (((-1246) $ (-1158) (-1158)) NIL (|has| $ (-6 -4374)))) (-3019 (((-112) $ (-758)) NIL)) (-1643 (((-112) (-112)) 39)) (-2670 (((-112) (-112)) 38)) (-1501 (((-52) $ (-1158) (-52)) NIL)) (-2220 (($ (-1 (-112) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373)))) (-2937 (((-3 (-52) "failed") (-1158) $) NIL)) (-4087 (($) NIL T CONST)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082))))) (-1884 (($ (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) $) NIL (|has| $ (-6 -4373))) (($ (-1 (-112) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373))) (((-3 (-52) "failed") (-1158) $) NIL)) (-2574 (($ (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082)))) (($ (-1 (-112) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373)))) (-3676 (((-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $ (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082)))) (((-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $ (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) NIL (|has| $ (-6 -4373))) (((-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373)))) (-2862 (((-52) $ (-1158) (-52)) NIL (|has| $ (-6 -4374)))) (-2796 (((-52) $ (-1158)) NIL)) (-2466 (((-631 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373))) (((-631 (-52)) $) NIL (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-1158) $) NIL (|has| (-1158) (-836)))) (-2379 (((-631 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373))) (((-631 (-52)) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-52) (-1082))))) (-2256 (((-1158) $) NIL (|has| (-1158) (-836)))) (-2849 (($ (-1 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4374))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (-3994 (|has| (-52) (-1082)) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082))))) (-2944 (((-631 (-1158)) $) 34)) (-2415 (((-112) (-1158) $) NIL)) (-4150 (((-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) $) NIL)) (-2045 (($ (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) $) NIL)) (-2529 (((-631 (-1158)) $) NIL)) (-3618 (((-112) (-1158) $) NIL)) (-2768 (((-1102) $) NIL (-3994 (|has| (-52) (-1082)) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082))))) (-1539 (((-52) $) NIL (|has| (-1158) (-836)))) (-1652 (((-3 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) "failed") (-1 (-112) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL)) (-2441 (($ $ (-52)) NIL (|has| $ (-6 -4374)))) (-2152 (((-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) $) NIL)) (-2845 (((-112) (-1 (-112) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))))) NIL (-12 (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-304 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))))) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082)))) (($ $ (-289 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))))) NIL (-12 (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-304 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))))) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082)))) (($ $ (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) NIL (-12 (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-304 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))))) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082)))) (($ $ (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))))) NIL (-12 (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-304 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))))) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082)))) (($ $ (-631 (-52)) (-631 (-52))) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1082)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1082)))) (($ $ (-289 (-52))) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1082)))) (($ $ (-631 (-289 (-52)))) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-52) (-1082))))) (-2625 (((-631 (-52)) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 (((-52) $ (-1158)) 35) (((-52) $ (-1158) (-52)) NIL)) (-4310 (($) NIL) (($ (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))))) NIL)) (-2777 (((-758) (-1 (-112) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373))) (((-758) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082)))) (((-758) (-52) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-52) (-1082)))) (((-758) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4373)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-602 (-530))))) (-3089 (($ (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))))) NIL)) (-3075 (((-848) $) 37 (-3994 (|has| (-52) (-601 (-848))) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-601 (-848)))))) (-1591 (($ (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))))) NIL)) (-2438 (((-112) (-1 (-112) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) NIL (-3994 (|has| (-52) (-1082)) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082))))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-1020) (-13 (-1171 (-1158) (-52)) (-10 -7 (-15 -1643 ((-112) (-112))) (-15 -2670 ((-112) (-112))) (-6 -4373)))) (T -1020))
-((-1643 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1020)))) (-2670 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1020)))))
-(-13 (-1171 (-1158) (-52)) (-10 -7 (-15 -1643 ((-112) (-112))) (-15 -2670 ((-112) (-112))) (-6 -4373)))
-((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3463 (((-1117) $) 9)) (-3075 (((-848) $) 17) (($ (-1163)) NIL) (((-1163) $) NIL)) (-1658 (((-112) $ $) NIL)))
-(((-1021) (-13 (-1065) (-10 -8 (-15 -3463 ((-1117) $))))) (T -1021))
-((-3463 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1021)))))
-(-13 (-1065) (-10 -8 (-15 -3463 ((-1117) $))))
-((-1668 ((|#2| $) 10)))
-(((-1022 |#1| |#2|) (-10 -8 (-15 -1668 (|#2| |#1|))) (-1023 |#2|) (-1195)) (T -1022))
-NIL
-(-10 -8 (-15 -1668 (|#2| |#1|)))
-((-2784 (((-3 |#1| "failed") $) 9)) (-1668 ((|#1| $) 8)) (-3075 (($ |#1|) 6)))
-(((-1023 |#1|) (-138) (-1195)) (T -1023))
-((-2784 (*1 *2 *1) (|partial| -12 (-4 *1 (-1023 *2)) (-4 *2 (-1195)))) (-1668 (*1 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-1195)))))
-(-13 (-604 |t#1|) (-10 -8 (-15 -2784 ((-3 |t#1| "failed") $)) (-15 -1668 (|t#1| $))))
-(((-604 |#1|) . T))
-((-3475 (((-631 (-631 (-289 (-402 (-937 |#2|))))) (-631 (-937 |#2|)) (-631 (-1158))) 38)))
-(((-1024 |#1| |#2|) (-10 -7 (-15 -3475 ((-631 (-631 (-289 (-402 (-937 |#2|))))) (-631 (-937 |#2|)) (-631 (-1158))))) (-546) (-13 (-546) (-1023 |#1|))) (T -1024))
-((-3475 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-937 *6))) (-5 *4 (-631 (-1158))) (-4 *6 (-13 (-546) (-1023 *5))) (-4 *5 (-546)) (-5 *2 (-631 (-631 (-289 (-402 (-937 *6)))))) (-5 *1 (-1024 *5 *6)))))
-(-10 -7 (-15 -3475 ((-631 (-631 (-289 (-402 (-937 |#2|))))) (-631 (-937 |#2|)) (-631 (-1158)))))
-((-2522 (((-374)) 15)) (-1671 (((-1 (-374)) (-374) (-374)) 20)) (-4341 (((-1 (-374)) (-758)) 43)) (-2219 (((-374)) 34)) (-3312 (((-1 (-374)) (-374) (-374)) 35)) (-2552 (((-374)) 26)) (-3581 (((-1 (-374)) (-374)) 27)) (-3337 (((-374) (-758)) 38)) (-2352 (((-1 (-374)) (-758)) 39)) (-3085 (((-1 (-374)) (-758) (-758)) 42)) (-4280 (((-1 (-374)) (-758) (-758)) 40)))
-(((-1025) (-10 -7 (-15 -2522 ((-374))) (-15 -2219 ((-374))) (-15 -2552 ((-374))) (-15 -3337 ((-374) (-758))) (-15 -1671 ((-1 (-374)) (-374) (-374))) (-15 -3312 ((-1 (-374)) (-374) (-374))) (-15 -3581 ((-1 (-374)) (-374))) (-15 -2352 ((-1 (-374)) (-758))) (-15 -4280 ((-1 (-374)) (-758) (-758))) (-15 -3085 ((-1 (-374)) (-758) (-758))) (-15 -4341 ((-1 (-374)) (-758))))) (T -1025))
-((-4341 (*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1 (-374))) (-5 *1 (-1025)))) (-3085 (*1 *2 *3 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1 (-374))) (-5 *1 (-1025)))) (-4280 (*1 *2 *3 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1 (-374))) (-5 *1 (-1025)))) (-2352 (*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1 (-374))) (-5 *1 (-1025)))) (-3581 (*1 *2 *3) (-12 (-5 *2 (-1 (-374))) (-5 *1 (-1025)) (-5 *3 (-374)))) (-3312 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-374))) (-5 *1 (-1025)) (-5 *3 (-374)))) (-1671 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-374))) (-5 *1 (-1025)) (-5 *3 (-374)))) (-3337 (*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-374)) (-5 *1 (-1025)))) (-2552 (*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1025)))) (-2219 (*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1025)))) (-2522 (*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1025)))))
-(-10 -7 (-15 -2522 ((-374))) (-15 -2219 ((-374))) (-15 -2552 ((-374))) (-15 -3337 ((-374) (-758))) (-15 -1671 ((-1 (-374)) (-374) (-374))) (-15 -3312 ((-1 (-374)) (-374) (-374))) (-15 -3581 ((-1 (-374)) (-374))) (-15 -2352 ((-1 (-374)) (-758))) (-15 -4280 ((-1 (-374)) (-758) (-758))) (-15 -3085 ((-1 (-374)) (-758) (-758))) (-15 -4341 ((-1 (-374)) (-758))))
-((-2270 (((-413 |#1|) |#1|) 33)))
-(((-1026 |#1|) (-10 -7 (-15 -2270 ((-413 |#1|) |#1|))) (-1217 (-402 (-937 (-554))))) (T -1026))
-((-2270 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-1026 *3)) (-4 *3 (-1217 (-402 (-937 (-554))))))))
-(-10 -7 (-15 -2270 ((-413 |#1|) |#1|)))
-((-2641 (((-402 (-413 (-937 |#1|))) (-402 (-937 |#1|))) 14)))
-(((-1027 |#1|) (-10 -7 (-15 -2641 ((-402 (-413 (-937 |#1|))) (-402 (-937 |#1|))))) (-302)) (T -1027))
-((-2641 (*1 *2 *3) (-12 (-5 *3 (-402 (-937 *4))) (-4 *4 (-302)) (-5 *2 (-402 (-413 (-937 *4)))) (-5 *1 (-1027 *4)))))
-(-10 -7 (-15 -2641 ((-402 (-413 (-937 |#1|))) (-402 (-937 |#1|)))))
-((-2405 (((-631 (-1158)) (-402 (-937 |#1|))) 17)) (-2237 (((-402 (-1154 (-402 (-937 |#1|)))) (-402 (-937 |#1|)) (-1158)) 24)) (-2393 (((-402 (-937 |#1|)) (-402 (-1154 (-402 (-937 |#1|)))) (-1158)) 26)) (-3277 (((-3 (-1158) "failed") (-402 (-937 |#1|))) 20)) (-2386 (((-402 (-937 |#1|)) (-402 (-937 |#1|)) (-631 (-289 (-402 (-937 |#1|))))) 32) (((-402 (-937 |#1|)) (-402 (-937 |#1|)) (-289 (-402 (-937 |#1|)))) 33) (((-402 (-937 |#1|)) (-402 (-937 |#1|)) (-631 (-1158)) (-631 (-402 (-937 |#1|)))) 28) (((-402 (-937 |#1|)) (-402 (-937 |#1|)) (-1158) (-402 (-937 |#1|))) 29)) (-3075 (((-402 (-937 |#1|)) |#1|) 11)))
-(((-1028 |#1|) (-10 -7 (-15 -2405 ((-631 (-1158)) (-402 (-937 |#1|)))) (-15 -3277 ((-3 (-1158) "failed") (-402 (-937 |#1|)))) (-15 -2237 ((-402 (-1154 (-402 (-937 |#1|)))) (-402 (-937 |#1|)) (-1158))) (-15 -2393 ((-402 (-937 |#1|)) (-402 (-1154 (-402 (-937 |#1|)))) (-1158))) (-15 -2386 ((-402 (-937 |#1|)) (-402 (-937 |#1|)) (-1158) (-402 (-937 |#1|)))) (-15 -2386 ((-402 (-937 |#1|)) (-402 (-937 |#1|)) (-631 (-1158)) (-631 (-402 (-937 |#1|))))) (-15 -2386 ((-402 (-937 |#1|)) (-402 (-937 |#1|)) (-289 (-402 (-937 |#1|))))) (-15 -2386 ((-402 (-937 |#1|)) (-402 (-937 |#1|)) (-631 (-289 (-402 (-937 |#1|)))))) (-15 -3075 ((-402 (-937 |#1|)) |#1|))) (-546)) (T -1028))
-((-3075 (*1 *2 *3) (-12 (-5 *2 (-402 (-937 *3))) (-5 *1 (-1028 *3)) (-4 *3 (-546)))) (-2386 (*1 *2 *2 *3) (-12 (-5 *3 (-631 (-289 (-402 (-937 *4))))) (-5 *2 (-402 (-937 *4))) (-4 *4 (-546)) (-5 *1 (-1028 *4)))) (-2386 (*1 *2 *2 *3) (-12 (-5 *3 (-289 (-402 (-937 *4)))) (-5 *2 (-402 (-937 *4))) (-4 *4 (-546)) (-5 *1 (-1028 *4)))) (-2386 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-631 (-1158))) (-5 *4 (-631 (-402 (-937 *5)))) (-5 *2 (-402 (-937 *5))) (-4 *5 (-546)) (-5 *1 (-1028 *5)))) (-2386 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-402 (-937 *4))) (-5 *3 (-1158)) (-4 *4 (-546)) (-5 *1 (-1028 *4)))) (-2393 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-1154 (-402 (-937 *5))))) (-5 *4 (-1158)) (-5 *2 (-402 (-937 *5))) (-5 *1 (-1028 *5)) (-4 *5 (-546)))) (-2237 (*1 *2 *3 *4) (-12 (-5 *4 (-1158)) (-4 *5 (-546)) (-5 *2 (-402 (-1154 (-402 (-937 *5))))) (-5 *1 (-1028 *5)) (-5 *3 (-402 (-937 *5))))) (-3277 (*1 *2 *3) (|partial| -12 (-5 *3 (-402 (-937 *4))) (-4 *4 (-546)) (-5 *2 (-1158)) (-5 *1 (-1028 *4)))) (-2405 (*1 *2 *3) (-12 (-5 *3 (-402 (-937 *4))) (-4 *4 (-546)) (-5 *2 (-631 (-1158))) (-5 *1 (-1028 *4)))))
-(-10 -7 (-15 -2405 ((-631 (-1158)) (-402 (-937 |#1|)))) (-15 -3277 ((-3 (-1158) "failed") (-402 (-937 |#1|)))) (-15 -2237 ((-402 (-1154 (-402 (-937 |#1|)))) (-402 (-937 |#1|)) (-1158))) (-15 -2393 ((-402 (-937 |#1|)) (-402 (-1154 (-402 (-937 |#1|)))) (-1158))) (-15 -2386 ((-402 (-937 |#1|)) (-402 (-937 |#1|)) (-1158) (-402 (-937 |#1|)))) (-15 -2386 ((-402 (-937 |#1|)) (-402 (-937 |#1|)) (-631 (-1158)) (-631 (-402 (-937 |#1|))))) (-15 -2386 ((-402 (-937 |#1|)) (-402 (-937 |#1|)) (-289 (-402 (-937 |#1|))))) (-15 -2386 ((-402 (-937 |#1|)) (-402 (-937 |#1|)) (-631 (-289 (-402 (-937 |#1|)))))) (-15 -3075 ((-402 (-937 |#1|)) |#1|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-4087 (($) 17 T CONST)) (-2323 ((|#1| $) 22)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-4006 ((|#1| $) 21)) (-2958 ((|#1|) 19 T CONST)) (-3075 (((-848) $) 11)) (-4312 ((|#1| $) 20)) (-2004 (($) 18 T CONST)) (-1658 (((-112) $ $) 6)) (-1735 (($ $ $) 14)) (* (($ (-906) $) 13) (($ (-758) $) 15)))
-(((-1029 |#1|) (-138) (-23)) (T -1029))
-((-2323 (*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-23)))) (-4006 (*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-23)))) (-4312 (*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-23)))) (-2958 (*1 *2) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-23)))))
-(-13 (-23) (-10 -8 (-15 -2323 (|t#1| $)) (-15 -4006 (|t#1| $)) (-15 -4312 (|t#1| $)) (-15 -2958 (|t#1|) -2397)))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-601 (-848)) . T) ((-1082) . T))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-3434 (($) 24 T CONST)) (-4087 (($) 17 T CONST)) (-2323 ((|#1| $) 22)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-4006 ((|#1| $) 21)) (-2958 ((|#1|) 19 T CONST)) (-3075 (((-848) $) 11)) (-4312 ((|#1| $) 20)) (-2004 (($) 18 T CONST)) (-1658 (((-112) $ $) 6)) (-1735 (($ $ $) 14)) (* (($ (-906) $) 13) (($ (-758) $) 15)))
-(((-1030 |#1|) (-138) (-23)) (T -1030))
-((-3434 (*1 *1) (-12 (-4 *1 (-1030 *2)) (-4 *2 (-23)))))
-(-13 (-1029 |t#1|) (-10 -8 (-15 -3434 ($) -2397)))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-601 (-848)) . T) ((-1029 |#1|) . T) ((-1082) . T))
-((-3062 (((-112) $ $) NIL)) (-3960 (((-631 (-2 (|:| -2498 $) (|:| -1303 (-631 (-767 |#1| (-850 |#2|)))))) (-631 (-767 |#1| (-850 |#2|)))) NIL)) (-3176 (((-631 $) (-631 (-767 |#1| (-850 |#2|)))) NIL) (((-631 $) (-631 (-767 |#1| (-850 |#2|))) (-112)) NIL) (((-631 $) (-631 (-767 |#1| (-850 |#2|))) (-112) (-112)) NIL)) (-2405 (((-631 (-850 |#2|)) $) NIL)) (-1678 (((-112) $) NIL)) (-3005 (((-112) $) NIL (|has| |#1| (-546)))) (-2630 (((-112) (-767 |#1| (-850 |#2|)) $) NIL) (((-112) $) NIL)) (-4057 (((-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|)) $) NIL)) (-3278 (((-631 (-2 (|:| |val| (-767 |#1| (-850 |#2|))) (|:| -2143 $))) (-767 |#1| (-850 |#2|)) $) NIL)) (-3303 (((-2 (|:| |under| $) (|:| -4339 $) (|:| |upper| $)) $ (-850 |#2|)) NIL)) (-3019 (((-112) $ (-758)) NIL)) (-1871 (($ (-1 (-112) (-767 |#1| (-850 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-3 (-767 |#1| (-850 |#2|)) "failed") $ (-850 |#2|)) NIL)) (-4087 (($) NIL T CONST)) (-1930 (((-112) $) NIL (|has| |#1| (-546)))) (-1404 (((-112) $ $) NIL (|has| |#1| (-546)))) (-3262 (((-112) $ $) NIL (|has| |#1| (-546)))) (-2713 (((-112) $) NIL (|has| |#1| (-546)))) (-2242 (((-631 (-767 |#1| (-850 |#2|))) (-631 (-767 |#1| (-850 |#2|))) $ (-1 (-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|))) (-1 (-112) (-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|)))) NIL)) (-1380 (((-631 (-767 |#1| (-850 |#2|))) (-631 (-767 |#1| (-850 |#2|))) $) NIL (|has| |#1| (-546)))) (-4204 (((-631 (-767 |#1| (-850 |#2|))) (-631 (-767 |#1| (-850 |#2|))) $) NIL (|has| |#1| (-546)))) (-2784 (((-3 $ "failed") (-631 (-767 |#1| (-850 |#2|)))) NIL)) (-1668 (($ (-631 (-767 |#1| (-850 |#2|)))) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-2930 (((-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|)) $) NIL)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-767 |#1| (-850 |#2|)) (-1082))))) (-2574 (($ (-767 |#1| (-850 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-767 |#1| (-850 |#2|)) (-1082)))) (($ (-1 (-112) (-767 |#1| (-850 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-2423 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-767 |#1| (-850 |#2|))) (|:| |den| |#1|)) (-767 |#1| (-850 |#2|)) $) NIL (|has| |#1| (-546)))) (-2857 (((-112) (-767 |#1| (-850 |#2|)) $ (-1 (-112) (-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|)))) NIL)) (-4210 (((-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|)) $) NIL)) (-3676 (((-767 |#1| (-850 |#2|)) (-1 (-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|))) $ (-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|))) NIL (-12 (|has| $ (-6 -4373)) (|has| (-767 |#1| (-850 |#2|)) (-1082)))) (((-767 |#1| (-850 |#2|)) (-1 (-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|))) $ (-767 |#1| (-850 |#2|))) NIL (|has| $ (-6 -4373))) (((-767 |#1| (-850 |#2|)) (-1 (-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|)) $ (-1 (-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|))) (-1 (-112) (-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|)))) NIL)) (-1971 (((-2 (|:| -2498 (-631 (-767 |#1| (-850 |#2|)))) (|:| -1303 (-631 (-767 |#1| (-850 |#2|))))) $) NIL)) (-4183 (((-112) (-767 |#1| (-850 |#2|)) $) NIL)) (-4155 (((-112) (-767 |#1| (-850 |#2|)) $) NIL)) (-2892 (((-112) (-767 |#1| (-850 |#2|)) $) NIL) (((-112) $) NIL)) (-2466 (((-631 (-767 |#1| (-850 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-4253 (((-112) (-767 |#1| (-850 |#2|)) $) NIL) (((-112) $) NIL)) (-3954 (((-850 |#2|) $) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-2379 (((-631 (-767 |#1| (-850 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) (-767 |#1| (-850 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-767 |#1| (-850 |#2|)) (-1082))))) (-2849 (($ (-1 (-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|))) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|))) $) NIL)) (-2643 (((-631 (-850 |#2|)) $) NIL)) (-1400 (((-112) (-850 |#2|) $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL)) (-1343 (((-3 (-767 |#1| (-850 |#2|)) (-631 $)) (-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|)) $) NIL)) (-2543 (((-631 (-2 (|:| |val| (-767 |#1| (-850 |#2|))) (|:| -2143 $))) (-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|)) $) NIL)) (-2597 (((-3 (-767 |#1| (-850 |#2|)) "failed") $) NIL)) (-2953 (((-631 $) (-767 |#1| (-850 |#2|)) $) NIL)) (-3841 (((-3 (-112) (-631 $)) (-767 |#1| (-850 |#2|)) $) NIL)) (-3874 (((-631 (-2 (|:| |val| (-112)) (|:| -2143 $))) (-767 |#1| (-850 |#2|)) $) NIL) (((-112) (-767 |#1| (-850 |#2|)) $) NIL)) (-3977 (((-631 $) (-767 |#1| (-850 |#2|)) $) NIL) (((-631 $) (-631 (-767 |#1| (-850 |#2|))) $) NIL) (((-631 $) (-631 (-767 |#1| (-850 |#2|))) (-631 $)) NIL) (((-631 $) (-767 |#1| (-850 |#2|)) (-631 $)) NIL)) (-3479 (($ (-767 |#1| (-850 |#2|)) $) NIL) (($ (-631 (-767 |#1| (-850 |#2|))) $) NIL)) (-2627 (((-631 (-767 |#1| (-850 |#2|))) $) NIL)) (-3007 (((-112) (-767 |#1| (-850 |#2|)) $) NIL) (((-112) $) NIL)) (-1536 (((-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|)) $) NIL)) (-2178 (((-112) $ $) NIL)) (-3548 (((-2 (|:| |num| (-767 |#1| (-850 |#2|))) (|:| |den| |#1|)) (-767 |#1| (-850 |#2|)) $) NIL (|has| |#1| (-546)))) (-3518 (((-112) (-767 |#1| (-850 |#2|)) $) NIL) (((-112) $) NIL)) (-3492 (((-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|)) $) NIL)) (-2768 (((-1102) $) NIL)) (-1539 (((-3 (-767 |#1| (-850 |#2|)) "failed") $) NIL)) (-1652 (((-3 (-767 |#1| (-850 |#2|)) "failed") (-1 (-112) (-767 |#1| (-850 |#2|))) $) NIL)) (-3948 (((-3 $ "failed") $ (-767 |#1| (-850 |#2|))) NIL)) (-4282 (($ $ (-767 |#1| (-850 |#2|))) NIL) (((-631 $) (-767 |#1| (-850 |#2|)) $) NIL) (((-631 $) (-767 |#1| (-850 |#2|)) (-631 $)) NIL) (((-631 $) (-631 (-767 |#1| (-850 |#2|))) $) NIL) (((-631 $) (-631 (-767 |#1| (-850 |#2|))) (-631 $)) NIL)) (-2845 (((-112) (-1 (-112) (-767 |#1| (-850 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-767 |#1| (-850 |#2|))) (-631 (-767 |#1| (-850 |#2|)))) NIL (-12 (|has| (-767 |#1| (-850 |#2|)) (-304 (-767 |#1| (-850 |#2|)))) (|has| (-767 |#1| (-850 |#2|)) (-1082)))) (($ $ (-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|))) NIL (-12 (|has| (-767 |#1| (-850 |#2|)) (-304 (-767 |#1| (-850 |#2|)))) (|has| (-767 |#1| (-850 |#2|)) (-1082)))) (($ $ (-289 (-767 |#1| (-850 |#2|)))) NIL (-12 (|has| (-767 |#1| (-850 |#2|)) (-304 (-767 |#1| (-850 |#2|)))) (|has| (-767 |#1| (-850 |#2|)) (-1082)))) (($ $ (-631 (-289 (-767 |#1| (-850 |#2|))))) NIL (-12 (|has| (-767 |#1| (-850 |#2|)) (-304 (-767 |#1| (-850 |#2|)))) (|has| (-767 |#1| (-850 |#2|)) (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-3308 (((-758) $) NIL)) (-2777 (((-758) (-767 |#1| (-850 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-767 |#1| (-850 |#2|)) (-1082)))) (((-758) (-1 (-112) (-767 |#1| (-850 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| (-767 |#1| (-850 |#2|)) (-602 (-530))))) (-3089 (($ (-631 (-767 |#1| (-850 |#2|)))) NIL)) (-2538 (($ $ (-850 |#2|)) NIL)) (-2384 (($ $ (-850 |#2|)) NIL)) (-2258 (($ $) NIL)) (-2128 (($ $ (-850 |#2|)) NIL)) (-3075 (((-848) $) NIL) (((-631 (-767 |#1| (-850 |#2|))) $) NIL)) (-2347 (((-758) $) NIL (|has| (-850 |#2|) (-363)))) (-2792 (((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 (-767 |#1| (-850 |#2|))))) "failed") (-631 (-767 |#1| (-850 |#2|))) (-1 (-112) (-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 (-767 |#1| (-850 |#2|))))) "failed") (-631 (-767 |#1| (-850 |#2|))) (-1 (-112) (-767 |#1| (-850 |#2|))) (-1 (-112) (-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|)))) NIL)) (-3579 (((-112) $ (-1 (-112) (-767 |#1| (-850 |#2|)) (-631 (-767 |#1| (-850 |#2|))))) NIL)) (-3850 (((-631 $) (-767 |#1| (-850 |#2|)) $) NIL) (((-631 $) (-767 |#1| (-850 |#2|)) (-631 $)) NIL) (((-631 $) (-631 (-767 |#1| (-850 |#2|))) $) NIL) (((-631 $) (-631 (-767 |#1| (-850 |#2|))) (-631 $)) NIL)) (-2438 (((-112) (-1 (-112) (-767 |#1| (-850 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-4267 (((-631 (-850 |#2|)) $) NIL)) (-4351 (((-112) (-767 |#1| (-850 |#2|)) $) NIL)) (-3536 (((-112) (-850 |#2|) $) NIL)) (-1658 (((-112) $ $) NIL)) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-1031 |#1| |#2|) (-13 (-1054 |#1| (-525 (-850 |#2|)) (-850 |#2|) (-767 |#1| (-850 |#2|))) (-10 -8 (-15 -3176 ((-631 $) (-631 (-767 |#1| (-850 |#2|))) (-112) (-112))))) (-446) (-631 (-1158))) (T -1031))
-((-3176 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-631 (-767 *5 (-850 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) (-14 *6 (-631 (-1158))) (-5 *2 (-631 (-1031 *5 *6))) (-5 *1 (-1031 *5 *6)))))
-(-13 (-1054 |#1| (-525 (-850 |#2|)) (-850 |#2|) (-767 |#1| (-850 |#2|))) (-10 -8 (-15 -3176 ((-631 $) (-631 (-767 |#1| (-850 |#2|))) (-112) (-112)))))
-((-1671 (((-1 (-554)) (-1076 (-554))) 33)) (-2482 (((-554) (-554) (-554) (-554) (-554)) 30)) (-1653 (((-1 (-554)) |RationalNumber|) NIL)) (-4168 (((-1 (-554)) |RationalNumber|) NIL)) (-1629 (((-1 (-554)) (-554) |RationalNumber|) NIL)))
-(((-1032) (-10 -7 (-15 -1671 ((-1 (-554)) (-1076 (-554)))) (-15 -1629 ((-1 (-554)) (-554) |RationalNumber|)) (-15 -1653 ((-1 (-554)) |RationalNumber|)) (-15 -4168 ((-1 (-554)) |RationalNumber|)) (-15 -2482 ((-554) (-554) (-554) (-554) (-554))))) (T -1032))
-((-2482 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-1032)))) (-4168 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-554))) (-5 *1 (-1032)))) (-1653 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-554))) (-5 *1 (-1032)))) (-1629 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-554))) (-5 *1 (-1032)) (-5 *3 (-554)))) (-1671 (*1 *2 *3) (-12 (-5 *3 (-1076 (-554))) (-5 *2 (-1 (-554))) (-5 *1 (-1032)))))
-(-10 -7 (-15 -1671 ((-1 (-554)) (-1076 (-554)))) (-15 -1629 ((-1 (-554)) (-554) |RationalNumber|)) (-15 -1653 ((-1 (-554)) |RationalNumber|)) (-15 -4168 ((-1 (-554)) |RationalNumber|)) (-15 -2482 ((-554) (-554) (-554) (-554) (-554))))
-((-3075 (((-848) $) NIL) (($ (-554)) 10)))
-(((-1033 |#1|) (-10 -8 (-15 -3075 (|#1| (-554))) (-15 -3075 ((-848) |#1|))) (-1034)) (T -1033))
-NIL
-(-10 -8 (-15 -3075 (|#1| (-554))) (-15 -3075 ((-848) |#1|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1320 (((-3 $ "failed") $) 33)) (-3248 (((-112) $) 31)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11) (($ (-554)) 29)) (-2261 (((-758)) 28)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24)))
-(((-1034) (-138)) (T -1034))
-((-2261 (*1 *2) (-12 (-4 *1 (-1034)) (-5 *2 (-758)))))
-(-13 (-1041) (-713) (-634 $) (-604 (-554)) (-10 -7 (-15 -2261 ((-758))) (-6 -4370)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-604 (-554)) . T) ((-601 (-848)) . T) ((-634 $) . T) ((-713) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T))
-((-3523 (((-402 (-937 |#2|)) (-631 |#2|) (-631 |#2|) (-758) (-758)) 45)))
-(((-1035 |#1| |#2|) (-10 -7 (-15 -3523 ((-402 (-937 |#2|)) (-631 |#2|) (-631 |#2|) (-758) (-758)))) (-1158) (-358)) (T -1035))
-((-3523 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-631 *6)) (-5 *4 (-758)) (-4 *6 (-358)) (-5 *2 (-402 (-937 *6))) (-5 *1 (-1035 *5 *6)) (-14 *5 (-1158)))))
-(-10 -7 (-15 -3523 ((-402 (-937 |#2|)) (-631 |#2|) (-631 |#2|) (-758) (-758))))
-((-1350 (((-112) $) 29)) (-3795 (((-112) $) 16)) (-4130 (((-758) $) 13)) (-4143 (((-758) $) 14)) (-2361 (((-112) $) 26)) (-4299 (((-112) $) 31)))
-(((-1036 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -4143 ((-758) |#1|)) (-15 -4130 ((-758) |#1|)) (-15 -4299 ((-112) |#1|)) (-15 -1350 ((-112) |#1|)) (-15 -2361 ((-112) |#1|)) (-15 -3795 ((-112) |#1|))) (-1037 |#2| |#3| |#4| |#5| |#6|) (-758) (-758) (-1034) (-234 |#3| |#4|) (-234 |#2| |#4|)) (T -1036))
-NIL
-(-10 -8 (-15 -4143 ((-758) |#1|)) (-15 -4130 ((-758) |#1|)) (-15 -4299 ((-112) |#1|)) (-15 -1350 ((-112) |#1|)) (-15 -2361 ((-112) |#1|)) (-15 -3795 ((-112) |#1|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1350 (((-112) $) 51)) (-2934 (((-3 $ "failed") $ $) 19)) (-3795 (((-112) $) 53)) (-3019 (((-112) $ (-758)) 61)) (-4087 (($) 17 T CONST)) (-2775 (($ $) 34 (|has| |#3| (-302)))) (-3519 ((|#4| $ (-554)) 39)) (-4186 (((-758) $) 33 (|has| |#3| (-546)))) (-2796 ((|#3| $ (-554) (-554)) 41)) (-2466 (((-631 |#3|) $) 68 (|has| $ (-6 -4373)))) (-4332 (((-758) $) 32 (|has| |#3| (-546)))) (-2412 (((-631 |#5|) $) 31 (|has| |#3| (-546)))) (-4130 (((-758) $) 45)) (-4143 (((-758) $) 44)) (-2230 (((-112) $ (-758)) 60)) (-3985 (((-554) $) 49)) (-1817 (((-554) $) 47)) (-2379 (((-631 |#3|) $) 69 (|has| $ (-6 -4373)))) (-3068 (((-112) |#3| $) 71 (-12 (|has| |#3| (-1082)) (|has| $ (-6 -4373))))) (-2787 (((-554) $) 48)) (-4249 (((-554) $) 46)) (-1899 (($ (-631 (-631 |#3|))) 54)) (-2849 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-1679 (((-631 (-631 |#3|)) $) 43)) (-3731 (((-112) $ (-758)) 59)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3919 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-546)))) (-2845 (((-112) (-1 (-112) |#3|) $) 66 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 |#3|) (-631 |#3|)) 75 (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082)))) (($ $ (-289 |#3|)) 73 (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082)))) (($ $ (-631 (-289 |#3|))) 72 (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082))))) (-2494 (((-112) $ $) 55)) (-3543 (((-112) $) 58)) (-4240 (($) 57)) (-2064 ((|#3| $ (-554) (-554)) 42) ((|#3| $ (-554) (-554) |#3|) 40)) (-2361 (((-112) $) 52)) (-2777 (((-758) |#3| $) 70 (-12 (|has| |#3| (-1082)) (|has| $ (-6 -4373)))) (((-758) (-1 (-112) |#3|) $) 67 (|has| $ (-6 -4373)))) (-1521 (($ $) 56)) (-3259 ((|#5| $ (-554)) 38)) (-3075 (((-848) $) 11)) (-2438 (((-112) (-1 (-112) |#3|) $) 65 (|has| $ (-6 -4373)))) (-4299 (((-112) $) 50)) (-2004 (($) 18 T CONST)) (-1658 (((-112) $ $) 6)) (-1752 (($ $ |#3|) 35 (|has| |#3| (-358)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-2563 (((-758) $) 62 (|has| $ (-6 -4373)))))
-(((-1037 |#1| |#2| |#3| |#4| |#5|) (-138) (-758) (-758) (-1034) (-234 |t#2| |t#3|) (-234 |t#1| |t#3|)) (T -1037))
-((-2879 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)))) (-1899 (*1 *1 *2) (-12 (-5 *2 (-631 (-631 *5))) (-4 *5 (-1034)) (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)))) (-3795 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-112)))) (-2361 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-112)))) (-1350 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-112)))) (-4299 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-112)))) (-3985 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-554)))) (-2787 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-554)))) (-1817 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-554)))) (-4249 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-554)))) (-4130 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-758)))) (-4143 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-758)))) (-1679 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-631 (-631 *5))))) (-2064 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-554)) (-4 *1 (-1037 *4 *5 *2 *6 *7)) (-4 *6 (-234 *5 *2)) (-4 *7 (-234 *4 *2)) (-4 *2 (-1034)))) (-2796 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-554)) (-4 *1 (-1037 *4 *5 *2 *6 *7)) (-4 *6 (-234 *5 *2)) (-4 *7 (-234 *4 *2)) (-4 *2 (-1034)))) (-2064 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-554)) (-4 *1 (-1037 *4 *5 *2 *6 *7)) (-4 *2 (-1034)) (-4 *6 (-234 *5 *2)) (-4 *7 (-234 *4 *2)))) (-3519 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-4 *1 (-1037 *4 *5 *6 *2 *7)) (-4 *6 (-1034)) (-4 *7 (-234 *4 *6)) (-4 *2 (-234 *5 *6)))) (-3259 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-4 *1 (-1037 *4 *5 *6 *7 *2)) (-4 *6 (-1034)) (-4 *7 (-234 *5 *6)) (-4 *2 (-234 *4 *6)))) (-2879 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)))) (-3919 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1037 *3 *4 *2 *5 *6)) (-4 *2 (-1034)) (-4 *5 (-234 *4 *2)) (-4 *6 (-234 *3 *2)) (-4 *2 (-546)))) (-1752 (*1 *1 *1 *2) (-12 (-4 *1 (-1037 *3 *4 *2 *5 *6)) (-4 *2 (-1034)) (-4 *5 (-234 *4 *2)) (-4 *6 (-234 *3 *2)) (-4 *2 (-358)))) (-2775 (*1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4 *5 *6)) (-4 *4 (-1034)) (-4 *5 (-234 *3 *4)) (-4 *6 (-234 *2 *4)) (-4 *4 (-302)))) (-4186 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-4 *5 (-546)) (-5 *2 (-758)))) (-4332 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-4 *5 (-546)) (-5 *2 (-758)))) (-2412 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-4 *5 (-546)) (-5 *2 (-631 *7)))))
-(-13 (-111 |t#3| |t#3|) (-483 |t#3|) (-10 -8 (-6 -4373) (IF (|has| |t#3| (-170)) (-6 (-704 |t#3|)) |%noBranch|) (-15 -1899 ($ (-631 (-631 |t#3|)))) (-15 -3795 ((-112) $)) (-15 -2361 ((-112) $)) (-15 -1350 ((-112) $)) (-15 -4299 ((-112) $)) (-15 -3985 ((-554) $)) (-15 -2787 ((-554) $)) (-15 -1817 ((-554) $)) (-15 -4249 ((-554) $)) (-15 -4130 ((-758) $)) (-15 -4143 ((-758) $)) (-15 -1679 ((-631 (-631 |t#3|)) $)) (-15 -2064 (|t#3| $ (-554) (-554))) (-15 -2796 (|t#3| $ (-554) (-554))) (-15 -2064 (|t#3| $ (-554) (-554) |t#3|)) (-15 -3519 (|t#4| $ (-554))) (-15 -3259 (|t#5| $ (-554))) (-15 -2879 ($ (-1 |t#3| |t#3|) $)) (-15 -2879 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-546)) (-15 -3919 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-358)) (-15 -1752 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-302)) (-15 -2775 ($ $)) |%noBranch|) (IF (|has| |t#3| (-546)) (PROGN (-15 -4186 ((-758) $)) (-15 -4332 ((-758) $)) (-15 -2412 ((-631 |t#5|) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-130) . T) ((-601 (-848)) . T) ((-304 |#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082))) ((-483 |#3|) . T) ((-508 |#3| |#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082))) ((-634 |#3|) . T) ((-704 |#3|) |has| |#3| (-170)) ((-1040 |#3|) . T) ((-1082) . T) ((-1195) . T))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1350 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-3795 (((-112) $) NIL)) (-3019 (((-112) $ (-758)) NIL)) (-4087 (($) NIL T CONST)) (-2775 (($ $) 43 (|has| |#3| (-302)))) (-3519 (((-236 |#2| |#3|) $ (-554)) 32)) (-3265 (($ (-675 |#3|)) 41)) (-4186 (((-758) $) 45 (|has| |#3| (-546)))) (-2796 ((|#3| $ (-554) (-554)) NIL)) (-2466 (((-631 |#3|) $) NIL (|has| $ (-6 -4373)))) (-4332 (((-758) $) 47 (|has| |#3| (-546)))) (-2412 (((-631 (-236 |#1| |#3|)) $) 51 (|has| |#3| (-546)))) (-4130 (((-758) $) NIL)) (-4143 (((-758) $) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-3985 (((-554) $) NIL)) (-1817 (((-554) $) NIL)) (-2379 (((-631 |#3|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#3| (-1082))))) (-2787 (((-554) $) NIL)) (-4249 (((-554) $) NIL)) (-1899 (($ (-631 (-631 |#3|))) 27)) (-2849 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-1679 (((-631 (-631 |#3|)) $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3919 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-546)))) (-2845 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 |#3|) (-631 |#3|)) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082)))) (($ $ (-289 |#3|)) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082)))) (($ $ (-631 (-289 |#3|))) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#3| $ (-554) (-554)) NIL) ((|#3| $ (-554) (-554) |#3|) NIL)) (-3330 (((-133)) 54 (|has| |#3| (-358)))) (-2361 (((-112) $) NIL)) (-2777 (((-758) |#3| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#3| (-1082)))) (((-758) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4373)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) 63 (|has| |#3| (-602 (-530))))) (-3259 (((-236 |#1| |#3|) $ (-554)) 36)) (-3075 (((-848) $) 16) (((-675 |#3|) $) 38)) (-2438 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4373)))) (-4299 (((-112) $) NIL)) (-2004 (($) 13 T CONST)) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ |#3|) NIL (|has| |#3| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-1038 |#1| |#2| |#3|) (-13 (-1037 |#1| |#2| |#3| (-236 |#2| |#3|) (-236 |#1| |#3|)) (-601 (-675 |#3|)) (-10 -8 (IF (|has| |#3| (-358)) (-6 (-1248 |#3|)) |%noBranch|) (IF (|has| |#3| (-602 (-530))) (-6 (-602 (-530))) |%noBranch|) (-15 -3265 ($ (-675 |#3|))))) (-758) (-758) (-1034)) (T -1038))
-((-3265 (*1 *1 *2) (-12 (-5 *2 (-675 *5)) (-4 *5 (-1034)) (-5 *1 (-1038 *3 *4 *5)) (-14 *3 (-758)) (-14 *4 (-758)))))
-(-13 (-1037 |#1| |#2| |#3| (-236 |#2| |#3|) (-236 |#1| |#3|)) (-601 (-675 |#3|)) (-10 -8 (IF (|has| |#3| (-358)) (-6 (-1248 |#3|)) |%noBranch|) (IF (|has| |#3| (-602 (-530))) (-6 (-602 (-530))) |%noBranch|) (-15 -3265 ($ (-675 |#3|)))))
-((-3676 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-2879 ((|#10| (-1 |#7| |#3|) |#6|) 32)))
-(((-1039 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -2879 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3676 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-758) (-758) (-1034) (-234 |#2| |#3|) (-234 |#1| |#3|) (-1037 |#1| |#2| |#3| |#4| |#5|) (-1034) (-234 |#2| |#7|) (-234 |#1| |#7|) (-1037 |#1| |#2| |#7| |#8| |#9|)) (T -1039))
-((-3676 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1034)) (-4 *2 (-1034)) (-14 *5 (-758)) (-14 *6 (-758)) (-4 *8 (-234 *6 *7)) (-4 *9 (-234 *5 *7)) (-4 *10 (-234 *6 *2)) (-4 *11 (-234 *5 *2)) (-5 *1 (-1039 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1037 *5 *6 *7 *8 *9)) (-4 *12 (-1037 *5 *6 *2 *10 *11)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1034)) (-4 *10 (-1034)) (-14 *5 (-758)) (-14 *6 (-758)) (-4 *8 (-234 *6 *7)) (-4 *9 (-234 *5 *7)) (-4 *2 (-1037 *5 *6 *10 *11 *12)) (-5 *1 (-1039 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1037 *5 *6 *7 *8 *9)) (-4 *11 (-234 *6 *10)) (-4 *12 (-234 *5 *10)))))
-(-10 -7 (-15 -2879 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3676 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-2004 (($) 18 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ |#1|) 23)))
-(((-1040 |#1|) (-138) (-1041)) (T -1040))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-1041)))))
+((-2661 (($ $ (-1079 $)) 7) (($ $ (-1163)) 6)))
+(((-949) (-139)) (T -949))
+((-2661 (*1 *1 *1 *2) (-12 (-5 *2 (-1079 *1)) (-4 *1 (-949)))) (-2661 (*1 *1 *1 *2) (-12 (-4 *1 (-949)) (-5 *2 (-1163)))))
+(-13 (-10 -8 (-15 -2661 ($ $ (-1163))) (-15 -2661 ($ $ (-1079 $)))))
+((-2672 (((-2 (|:| -2023 (-635 (-558))) (|:| |poly| (-635 (-1159 |#1|))) (|:| |prim| (-1159 |#1|))) (-635 (-942 |#1|)) (-635 (-1163)) (-1163)) 25) (((-2 (|:| -2023 (-635 (-558))) (|:| |poly| (-635 (-1159 |#1|))) (|:| |prim| (-1159 |#1|))) (-635 (-942 |#1|)) (-635 (-1163))) 26) (((-2 (|:| |coef1| (-558)) (|:| |coef2| (-558)) (|:| |prim| (-1159 |#1|))) (-942 |#1|) (-1163) (-942 |#1|) (-1163)) 43)))
+(((-950 |#1|) (-10 -7 (-15 -2672 ((-2 (|:| |coef1| (-558)) (|:| |coef2| (-558)) (|:| |prim| (-1159 |#1|))) (-942 |#1|) (-1163) (-942 |#1|) (-1163))) (-15 -2672 ((-2 (|:| -2023 (-635 (-558))) (|:| |poly| (-635 (-1159 |#1|))) (|:| |prim| (-1159 |#1|))) (-635 (-942 |#1|)) (-635 (-1163)))) (-15 -2672 ((-2 (|:| -2023 (-635 (-558))) (|:| |poly| (-635 (-1159 |#1|))) (|:| |prim| (-1159 |#1|))) (-635 (-942 |#1|)) (-635 (-1163)) (-1163)))) (-13 (-362) (-146))) (T -950))
+((-2672 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 (-942 *6))) (-5 *4 (-635 (-1163))) (-5 *5 (-1163)) (-4 *6 (-13 (-362) (-146))) (-5 *2 (-2 (|:| -2023 (-635 (-558))) (|:| |poly| (-635 (-1159 *6))) (|:| |prim| (-1159 *6)))) (-5 *1 (-950 *6)))) (-2672 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-942 *5))) (-5 *4 (-635 (-1163))) (-4 *5 (-13 (-362) (-146))) (-5 *2 (-2 (|:| -2023 (-635 (-558))) (|:| |poly| (-635 (-1159 *5))) (|:| |prim| (-1159 *5)))) (-5 *1 (-950 *5)))) (-2672 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-942 *5)) (-5 *4 (-1163)) (-4 *5 (-13 (-362) (-146))) (-5 *2 (-2 (|:| |coef1| (-558)) (|:| |coef2| (-558)) (|:| |prim| (-1159 *5)))) (-5 *1 (-950 *5)))))
+(-10 -7 (-15 -2672 ((-2 (|:| |coef1| (-558)) (|:| |coef2| (-558)) (|:| |prim| (-1159 |#1|))) (-942 |#1|) (-1163) (-942 |#1|) (-1163))) (-15 -2672 ((-2 (|:| -2023 (-635 (-558))) (|:| |poly| (-635 (-1159 |#1|))) (|:| |prim| (-1159 |#1|))) (-635 (-942 |#1|)) (-635 (-1163)))) (-15 -2672 ((-2 (|:| -2023 (-635 (-558))) (|:| |poly| (-635 (-1159 |#1|))) (|:| |prim| (-1159 |#1|))) (-635 (-942 |#1|)) (-635 (-1163)) (-1163))))
+((-2704 (((-635 |#1|) |#1| |#1|) 42)) (-3031 (((-112) |#1|) 39)) (-2692 ((|#1| |#1|) 64)) (-2682 ((|#1| |#1|) 63)))
+(((-951 |#1|) (-10 -7 (-15 -3031 ((-112) |#1|)) (-15 -2682 (|#1| |#1|)) (-15 -2692 (|#1| |#1|)) (-15 -2704 ((-635 |#1|) |#1| |#1|))) (-543)) (T -951))
+((-2704 (*1 *2 *3 *3) (-12 (-5 *2 (-635 *3)) (-5 *1 (-951 *3)) (-4 *3 (-543)))) (-2692 (*1 *2 *2) (-12 (-5 *1 (-951 *2)) (-4 *2 (-543)))) (-2682 (*1 *2 *2) (-12 (-5 *1 (-951 *2)) (-4 *2 (-543)))) (-3031 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-951 *3)) (-4 *3 (-543)))))
+(-10 -7 (-15 -3031 ((-112) |#1|)) (-15 -2682 (|#1| |#1|)) (-15 -2692 (|#1| |#1|)) (-15 -2704 ((-635 |#1|) |#1| |#1|)))
+((-1963 (((-1251) (-853)) 9)))
+(((-952) (-10 -7 (-15 -1963 ((-1251) (-853))))) (T -952))
+((-1963 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1251)) (-5 *1 (-952)))))
+(-10 -7 (-15 -1963 ((-1251) (-853))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 60 (|has| |#1| (-550)))) (-1881 (($ $) 61 (|has| |#1| (-550)))) (-1857 (((-112) $) NIL (|has| |#1| (-550)))) (-2089 (((-3 $ "failed") $ $) NIL)) (-1816 (($) NIL T CONST)) (-3069 (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-3 |#1| "failed") $) 28)) (-1863 (((-558) $) NIL (|has| |#1| (-1028 (-558)))) (((-406 (-558)) $) NIL (|has| |#1| (-1028 (-406 (-558))))) ((|#1| $) NIL)) (-2490 (($ $) 24)) (-2588 (((-3 $ "failed") $) 35)) (-2782 (($ $) NIL (|has| |#1| (-450)))) (-3888 (($ $ |#1| |#2| $) 47)) (-2035 (((-112) $) NIL)) (-2110 (((-762) $) 16)) (-4238 (((-112) $) NIL)) (-2648 (($ |#1| |#2|) NIL)) (-2524 ((|#2| $) 19)) (-3898 (($ (-1 |#2| |#2|) $) NIL)) (-3167 (($ (-1 |#1| |#1|) $) NIL)) (-2451 (($ $) 23)) (-2463 ((|#1| $) 21)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-2429 (((-112) $) 40)) (-2440 ((|#1| $) NIL)) (-3120 (($ $ |#2| |#1| $) 72 (-12 (|has| |#2| (-130)) (|has| |#1| (-550))))) (-3983 (((-3 $ "failed") $ $) 73 (|has| |#1| (-550))) (((-3 $ "failed") $ |#1|) 67 (|has| |#1| (-550)))) (-4323 ((|#2| $) 17)) (-2504 ((|#1| $) NIL (|has| |#1| (-450)))) (-3220 (((-853) $) NIL) (($ (-558)) 39) (($ $) NIL (|has| |#1| (-550))) (($ |#1|) 34) (($ (-406 (-558))) NIL (-3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558))))))) (-2583 (((-635 |#1|) $) NIL)) (-3736 ((|#1| $ |#2|) 31)) (-3698 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2542 (((-762)) 15)) (-3879 (($ $ $ (-762)) 56 (|has| |#1| (-171)))) (-1870 (((-112) $ $) 66 (|has| |#1| (-550)))) (-2131 (($) 22 T CONST)) (-2142 (($) 12 T CONST)) (-1683 (((-112) $ $) 65)) (-1810 (($ $ |#1|) 74 (|has| |#1| (-362)))) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) 53) (($ $ (-762)) 51)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 50) (($ $ |#1|) 49) (($ |#1| $) 48) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558)))))))
+(((-953 |#1| |#2|) (-13 (-325 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-550)) (IF (|has| |#2| (-130)) (-15 -3120 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4380)) (-6 -4380) |%noBranch|))) (-1039) (-783)) (T -953))
+((-3120 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-953 *3 *2)) (-4 *2 (-130)) (-4 *3 (-550)) (-4 *3 (-1039)) (-4 *2 (-783)))))
+(-13 (-325 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-550)) (IF (|has| |#2| (-130)) (-15 -3120 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4380)) (-6 -4380) |%noBranch|)))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL (-3998 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-784)) (|has| |#2| (-784)))))) (-2738 (($ $ $) 63 (-12 (|has| |#1| (-784)) (|has| |#2| (-784))))) (-2089 (((-3 $ "failed") $ $) 50 (-3998 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-784)) (|has| |#2| (-784)))))) (-2276 (((-762)) 34 (-12 (|has| |#1| (-367)) (|has| |#2| (-367))))) (-2715 ((|#2| $) 21)) (-2726 ((|#1| $) 20)) (-1816 (($) NIL (-3998 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-784)) (|has| |#2| (-784)))) CONST)) (-2588 (((-3 $ "failed") $) NIL (-3998 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))))) (-2424 (($) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-367))))) (-2035 (((-112) $) NIL (-3998 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))))) (-3910 (($ $ $) NIL (-3998 (-12 (|has| |#1| (-784)) (|has| |#2| (-784))) (-12 (|has| |#1| (-841)) (|has| |#2| (-841)))))) (-3542 (($ $ $) NIL (-3998 (-12 (|has| |#1| (-784)) (|has| |#2| (-784))) (-12 (|has| |#1| (-841)) (|has| |#2| (-841)))))) (-2737 (($ |#1| |#2|) 19)) (-2637 (((-911) $) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-367))))) (-4310 (((-1145) $) NIL)) (-2418 (($ $) 37 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))))) (-2851 (($ (-911)) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-367))))) (-2975 (((-1107) $) NIL)) (-3808 (($ $ $) NIL (-12 (|has| |#1| (-471)) (|has| |#2| (-471))))) (-3443 (($ $ $) NIL (-12 (|has| |#1| (-471)) (|has| |#2| (-471))))) (-3220 (((-853) $) 14)) (-2131 (($) 40 (-3998 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-784)) (|has| |#2| (-784)))) CONST)) (-2142 (($) 24 (-3998 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) CONST)) (-1747 (((-112) $ $) NIL (-3998 (-12 (|has| |#1| (-784)) (|has| |#2| (-784))) (-12 (|has| |#1| (-841)) (|has| |#2| (-841)))))) (-1720 (((-112) $ $) NIL (-3998 (-12 (|has| |#1| (-784)) (|has| |#2| (-784))) (-12 (|has| |#1| (-841)) (|has| |#2| (-841)))))) (-1683 (((-112) $ $) 18)) (-1731 (((-112) $ $) NIL (-3998 (-12 (|has| |#1| (-784)) (|has| |#2| (-784))) (-12 (|has| |#1| (-841)) (|has| |#2| (-841)))))) (-1705 (((-112) $ $) 66 (-3998 (-12 (|has| |#1| (-784)) (|has| |#2| (-784))) (-12 (|has| |#1| (-841)) (|has| |#2| (-841)))))) (-1810 (($ $ $) NIL (-12 (|has| |#1| (-471)) (|has| |#2| (-471))))) (-1798 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-1784 (($ $ $) 43 (-3998 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-784)) (|has| |#2| (-784)))))) (** (($ $ (-558)) NIL (-12 (|has| |#1| (-471)) (|has| |#2| (-471)))) (($ $ (-762)) 31 (-3998 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717))))) (($ $ (-911)) NIL (-3998 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))))) (* (($ (-558) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-762) $) 46 (-3998 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-784)) (|has| |#2| (-784))))) (($ (-911) $) NIL (-3998 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-784)) (|has| |#2| (-784))))) (($ $ $) 27 (-3998 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))))))
+(((-954 |#1| |#2|) (-13 (-1087) (-10 -8 (IF (|has| |#1| (-367)) (IF (|has| |#2| (-367)) (-6 (-367)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-717)) (IF (|has| |#2| (-717)) (-6 (-717)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-471)) (IF (|has| |#2| (-471)) (-6 (-471)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-784)) (IF (|has| |#2| (-784)) (-6 (-784)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-841)) (IF (|has| |#2| (-841)) (-6 (-841)) |%noBranch|) |%noBranch|) (-15 -2737 ($ |#1| |#2|)) (-15 -2726 (|#1| $)) (-15 -2715 (|#2| $)))) (-1087) (-1087)) (T -954))
+((-2737 (*1 *1 *2 *3) (-12 (-5 *1 (-954 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-1087)))) (-2726 (*1 *2 *1) (-12 (-4 *2 (-1087)) (-5 *1 (-954 *2 *3)) (-4 *3 (-1087)))) (-2715 (*1 *2 *1) (-12 (-4 *2 (-1087)) (-5 *1 (-954 *3 *2)) (-4 *3 (-1087)))))
+(-13 (-1087) (-10 -8 (IF (|has| |#1| (-367)) (IF (|has| |#2| (-367)) (-6 (-367)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-717)) (IF (|has| |#2| (-717)) (-6 (-717)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-471)) (IF (|has| |#2| (-471)) (-6 (-471)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-784)) (IF (|has| |#2| (-784)) (-6 (-784)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-841)) (IF (|has| |#2| (-841)) (-6 (-841)) |%noBranch|) |%noBranch|) (-15 -2737 ($ |#1| |#2|)) (-15 -2726 (|#1| $)) (-15 -2715 (|#2| $))))
+((-2925 (((-1091) $) 12)) (-2147 (($ (-1163) (-1091)) 13)) (-1323 (((-1163) $) 10)) (-3220 (((-853) $) 22)))
+(((-955) (-13 (-605 (-853)) (-10 -8 (-15 -1323 ((-1163) $)) (-15 -2925 ((-1091) $)) (-15 -2147 ($ (-1163) (-1091)))))) (T -955))
+((-1323 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-955)))) (-2925 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-955)))) (-2147 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-1091)) (-5 *1 (-955)))))
+(-13 (-605 (-853)) (-10 -8 (-15 -1323 ((-1163) $)) (-15 -2925 ((-1091) $)) (-15 -2147 ($ (-1163) (-1091)))))
+((-3207 (((-112) $ $) NIL)) (-2671 (((-1089 (-1163)) $) 19)) (-1596 (((-112) $) 26)) (-1602 (((-1163) $) 27)) (-1617 (((-112) $) 24)) (-1604 ((|#1| $) 25)) (-2788 (((-863 $ $) $) 34)) (-2797 (((-112) $) 33)) (-2095 (($ $ $) 12)) (-1586 (($ $) 29)) (-2732 (((-112) $) 28)) (-3304 (($ $) 10)) (-4310 (((-1145) $) NIL)) (-2769 (((-863 $ $) $) 36)) (-2780 (((-112) $) 35)) (-1638 (($ $ $) 13)) (-2975 (((-1107) $) NIL)) (-2746 (((-863 $ $) $) 38)) (-2759 (((-112) $) 37)) (-1628 (($ $ $) 14)) (-3220 (((-853) $) 40) (($ |#1|) 7) (($ (-1163)) 9)) (-2807 (((-863 $ $) $) 32)) (-1575 (((-112) $) 30)) (-2084 (($ $ $) 11)) (-1683 (((-112) $ $) NIL)))
+(((-956 |#1|) (-13 (-957) (-10 -8 (-15 -3220 ($ |#1|)) (-15 -3220 ($ (-1163))) (-15 -2671 ((-1089 (-1163)) $)) (-15 -1617 ((-112) $)) (-15 -1604 (|#1| $)) (-15 -1596 ((-112) $)) (-15 -1602 ((-1163) $)) (-15 -2732 ((-112) $)) (-15 -1586 ($ $)) (-15 -1575 ((-112) $)) (-15 -2807 ((-863 $ $) $)) (-15 -2797 ((-112) $)) (-15 -2788 ((-863 $ $) $)) (-15 -2780 ((-112) $)) (-15 -2769 ((-863 $ $) $)) (-15 -2759 ((-112) $)) (-15 -2746 ((-863 $ $) $)))) (-957)) (T -956))
+((-3220 (*1 *1 *2) (-12 (-5 *1 (-956 *2)) (-4 *2 (-957)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-956 *3)) (-4 *3 (-957)))) (-2671 (*1 *2 *1) (-12 (-5 *2 (-1089 (-1163))) (-5 *1 (-956 *3)) (-4 *3 (-957)))) (-1617 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-956 *3)) (-4 *3 (-957)))) (-1604 (*1 *2 *1) (-12 (-5 *1 (-956 *2)) (-4 *2 (-957)))) (-1596 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-956 *3)) (-4 *3 (-957)))) (-1602 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-956 *3)) (-4 *3 (-957)))) (-2732 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-956 *3)) (-4 *3 (-957)))) (-1586 (*1 *1 *1) (-12 (-5 *1 (-956 *2)) (-4 *2 (-957)))) (-1575 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-956 *3)) (-4 *3 (-957)))) (-2807 (*1 *2 *1) (-12 (-5 *2 (-863 (-956 *3) (-956 *3))) (-5 *1 (-956 *3)) (-4 *3 (-957)))) (-2797 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-956 *3)) (-4 *3 (-957)))) (-2788 (*1 *2 *1) (-12 (-5 *2 (-863 (-956 *3) (-956 *3))) (-5 *1 (-956 *3)) (-4 *3 (-957)))) (-2780 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-956 *3)) (-4 *3 (-957)))) (-2769 (*1 *2 *1) (-12 (-5 *2 (-863 (-956 *3) (-956 *3))) (-5 *1 (-956 *3)) (-4 *3 (-957)))) (-2759 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-956 *3)) (-4 *3 (-957)))) (-2746 (*1 *2 *1) (-12 (-5 *2 (-863 (-956 *3) (-956 *3))) (-5 *1 (-956 *3)) (-4 *3 (-957)))))
+(-13 (-957) (-10 -8 (-15 -3220 ($ |#1|)) (-15 -3220 ($ (-1163))) (-15 -2671 ((-1089 (-1163)) $)) (-15 -1617 ((-112) $)) (-15 -1604 (|#1| $)) (-15 -1596 ((-112) $)) (-15 -1602 ((-1163) $)) (-15 -2732 ((-112) $)) (-15 -1586 ($ $)) (-15 -1575 ((-112) $)) (-15 -2807 ((-863 $ $) $)) (-15 -2797 ((-112) $)) (-15 -2788 ((-863 $ $) $)) (-15 -2780 ((-112) $)) (-15 -2769 ((-863 $ $) $)) (-15 -2759 ((-112) $)) (-15 -2746 ((-863 $ $) $))))
+((-3207 (((-112) $ $) 7)) (-2095 (($ $ $) 15)) (-3304 (($ $) 17)) (-4310 (((-1145) $) 9)) (-1638 (($ $ $) 14)) (-2975 (((-1107) $) 10)) (-1628 (($ $ $) 13)) (-3220 (((-853) $) 11)) (-2084 (($ $ $) 16)) (-1683 (((-112) $ $) 6)))
+(((-957) (-139)) (T -957))
+((-3304 (*1 *1 *1) (-4 *1 (-957))) (-2084 (*1 *1 *1 *1) (-4 *1 (-957))) (-2095 (*1 *1 *1 *1) (-4 *1 (-957))) (-1638 (*1 *1 *1 *1) (-4 *1 (-957))) (-1628 (*1 *1 *1 *1) (-4 *1 (-957))))
+(-13 (-1087) (-10 -8 (-15 -3304 ($ $)) (-15 -2084 ($ $ $)) (-15 -2095 ($ $ $)) (-15 -1638 ($ $ $)) (-15 -1628 ($ $ $))))
+(((-102) . T) ((-605 (-853)) . T) ((-1087) . T))
+((-3207 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-3026 (((-112) $ (-762)) 8)) (-1816 (($) 7 T CONST)) (-2240 (((-635 |#1|) $) 30 (|has| $ (-6 -4382)))) (-2986 (((-112) $ (-762)) 9)) (-1645 (($ $ $) 43)) (-1677 (($ $ $) 44)) (-2122 (((-635 |#1|) $) 29 (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-3542 ((|#1| $) 45)) (-1807 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) 35)) (-2953 (((-112) $ (-762)) 10)) (-4310 (((-1145) $) 22 (|has| |#1| (-1087)))) (-1722 ((|#1| $) 39)) (-4328 (($ |#1| $) 40)) (-2975 (((-1107) $) 21 (|has| |#1| (-1087)))) (-3524 ((|#1| $) 41)) (-3266 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) 14)) (-3375 (((-112) $) 11)) (-2083 (($) 12)) (-2988 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4382))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1553 (($ $) 13)) (-3220 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-3534 (($ (-635 |#1|)) 42)) (-3277 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-2755 (((-762) $) 6 (|has| $ (-6 -4382)))))
+(((-958 |#1|) (-139) (-841)) (T -958))
+((-3542 (*1 *2 *1) (-12 (-4 *1 (-958 *2)) (-4 *2 (-841)))) (-1677 (*1 *1 *1 *1) (-12 (-4 *1 (-958 *2)) (-4 *2 (-841)))) (-1645 (*1 *1 *1 *1) (-12 (-4 *1 (-958 *2)) (-4 *2 (-841)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4382) (-15 -3542 (|t#1| $)) (-15 -1677 ($ $ $)) (-15 -1645 ($ $ $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1087)) ((-605 (-853)) -3998 (|has| |#1| (-1087)) (|has| |#1| (-605 (-853)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-1087) |has| |#1| (-1087)) ((-1200) . T))
+((-1789 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2699 |#2|)) |#2| |#2|) 84)) (-3309 ((|#2| |#2| |#2|) 82)) (-1802 (((-2 (|:| |coef2| |#2|) (|:| -2699 |#2|)) |#2| |#2|) 86)) (-1814 (((-2 (|:| |coef1| |#2|) (|:| -2699 |#2|)) |#2| |#2|) 88)) (-1892 (((-2 (|:| |coef2| |#2|) (|:| -1871 |#1|)) |#2| |#2|) 106 (|has| |#1| (-450)))) (-1969 (((-2 (|:| |coef2| |#2|) (|:| -3320 |#1|)) |#2| |#2|) 45)) (-1664 (((-2 (|:| |coef2| |#2|) (|:| -3320 |#1|)) |#2| |#2|) 63)) (-1675 (((-2 (|:| |coef1| |#2|) (|:| -3320 |#1|)) |#2| |#2|) 65)) (-1775 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 77)) (-1713 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-762)) 70)) (-1836 (((-2 (|:| |coef2| |#2|) (|:| -3331 |#1|)) |#2|) 96)) (-1751 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-762)) 73)) (-1858 (((-635 (-762)) |#2| |#2|) 81)) (-1945 ((|#1| |#2| |#2|) 41)) (-1882 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1871 |#1|)) |#2| |#2|) 104 (|has| |#1| (-450)))) (-1871 ((|#1| |#2| |#2|) 102 (|has| |#1| (-450)))) (-1956 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3320 |#1|)) |#2| |#2|) 43)) (-1655 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3320 |#1|)) |#2| |#2|) 62)) (-3320 ((|#1| |#2| |#2|) 60)) (-3274 (((-2 (|:| -2023 |#1|) (|:| -2306 |#2|) (|:| -2071 |#2|)) |#2| |#2|) 34)) (-1935 ((|#2| |#2| |#2| |#2| |#1|) 52)) (-1763 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 75)) (-2087 ((|#2| |#2| |#2|) 74)) (-1698 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-762)) 68)) (-1687 ((|#2| |#2| |#2| (-762)) 66)) (-2699 ((|#2| |#2| |#2|) 110 (|has| |#1| (-450)))) (-3983 (((-1246 |#2|) (-1246 |#2|) |#1|) 21)) (-1901 (((-2 (|:| -2306 |#2|) (|:| -2071 |#2|)) |#2| |#2|) 38)) (-1825 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3331 |#1|)) |#2|) 94)) (-3331 ((|#1| |#2|) 91)) (-1738 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-762)) 72)) (-1725 ((|#2| |#2| |#2| (-762)) 71)) (-1848 (((-635 |#2|) |#2| |#2|) 79)) (-1926 ((|#2| |#2| |#1| |#1| (-762)) 49)) (-1914 ((|#1| |#1| |#1| (-762)) 48)) (* (((-1246 |#2|) |#1| (-1246 |#2|)) 16)))
+(((-959 |#1| |#2|) (-10 -7 (-15 -3320 (|#1| |#2| |#2|)) (-15 -1655 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3320 |#1|)) |#2| |#2|)) (-15 -1664 ((-2 (|:| |coef2| |#2|) (|:| -3320 |#1|)) |#2| |#2|)) (-15 -1675 ((-2 (|:| |coef1| |#2|) (|:| -3320 |#1|)) |#2| |#2|)) (-15 -1687 (|#2| |#2| |#2| (-762))) (-15 -1698 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-762))) (-15 -1713 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-762))) (-15 -1725 (|#2| |#2| |#2| (-762))) (-15 -1738 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-762))) (-15 -1751 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-762))) (-15 -2087 (|#2| |#2| |#2|)) (-15 -1763 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1775 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3309 (|#2| |#2| |#2|)) (-15 -1789 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2699 |#2|)) |#2| |#2|)) (-15 -1802 ((-2 (|:| |coef2| |#2|) (|:| -2699 |#2|)) |#2| |#2|)) (-15 -1814 ((-2 (|:| |coef1| |#2|) (|:| -2699 |#2|)) |#2| |#2|)) (-15 -3331 (|#1| |#2|)) (-15 -1825 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3331 |#1|)) |#2|)) (-15 -1836 ((-2 (|:| |coef2| |#2|) (|:| -3331 |#1|)) |#2|)) (-15 -1848 ((-635 |#2|) |#2| |#2|)) (-15 -1858 ((-635 (-762)) |#2| |#2|)) (IF (|has| |#1| (-450)) (PROGN (-15 -1871 (|#1| |#2| |#2|)) (-15 -1882 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1871 |#1|)) |#2| |#2|)) (-15 -1892 ((-2 (|:| |coef2| |#2|) (|:| -1871 |#1|)) |#2| |#2|)) (-15 -2699 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1246 |#2|) |#1| (-1246 |#2|))) (-15 -3983 ((-1246 |#2|) (-1246 |#2|) |#1|)) (-15 -3274 ((-2 (|:| -2023 |#1|) (|:| -2306 |#2|) (|:| -2071 |#2|)) |#2| |#2|)) (-15 -1901 ((-2 (|:| -2306 |#2|) (|:| -2071 |#2|)) |#2| |#2|)) (-15 -1914 (|#1| |#1| |#1| (-762))) (-15 -1926 (|#2| |#2| |#1| |#1| (-762))) (-15 -1935 (|#2| |#2| |#2| |#2| |#1|)) (-15 -1945 (|#1| |#2| |#2|)) (-15 -1956 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3320 |#1|)) |#2| |#2|)) (-15 -1969 ((-2 (|:| |coef2| |#2|) (|:| -3320 |#1|)) |#2| |#2|))) (-550) (-1222 |#1|)) (T -959))
+((-1969 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3320 *4))) (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))) (-1956 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3320 *4))) (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))) (-1945 (*1 *2 *3 *3) (-12 (-4 *2 (-550)) (-5 *1 (-959 *2 *3)) (-4 *3 (-1222 *2)))) (-1935 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-550)) (-5 *1 (-959 *3 *2)) (-4 *2 (-1222 *3)))) (-1926 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-762)) (-4 *3 (-550)) (-5 *1 (-959 *3 *2)) (-4 *2 (-1222 *3)))) (-1914 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-762)) (-4 *2 (-550)) (-5 *1 (-959 *2 *4)) (-4 *4 (-1222 *2)))) (-1901 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| -2306 *3) (|:| -2071 *3))) (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))) (-3274 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| -2023 *4) (|:| -2306 *3) (|:| -2071 *3))) (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))) (-3983 (*1 *2 *2 *3) (-12 (-5 *2 (-1246 *4)) (-4 *4 (-1222 *3)) (-4 *3 (-550)) (-5 *1 (-959 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1246 *4)) (-4 *4 (-1222 *3)) (-4 *3 (-550)) (-5 *1 (-959 *3 *4)))) (-2699 (*1 *2 *2 *2) (-12 (-4 *3 (-450)) (-4 *3 (-550)) (-5 *1 (-959 *3 *2)) (-4 *2 (-1222 *3)))) (-1892 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1871 *4))) (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))) (-1882 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1871 *4))) (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))) (-1871 (*1 *2 *3 *3) (-12 (-4 *2 (-550)) (-4 *2 (-450)) (-5 *1 (-959 *2 *3)) (-4 *3 (-1222 *2)))) (-1858 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-635 (-762))) (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))) (-1848 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-635 *3)) (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))) (-1836 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3331 *4))) (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))) (-1825 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3331 *4))) (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))) (-3331 (*1 *2 *3) (-12 (-4 *2 (-550)) (-5 *1 (-959 *2 *3)) (-4 *3 (-1222 *2)))) (-1814 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2699 *3))) (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))) (-1802 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2699 *3))) (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))) (-1789 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2699 *3))) (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))) (-3309 (*1 *2 *2 *2) (-12 (-4 *3 (-550)) (-5 *1 (-959 *3 *2)) (-4 *2 (-1222 *3)))) (-1775 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))) (-1763 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))) (-2087 (*1 *2 *2 *2) (-12 (-4 *3 (-550)) (-5 *1 (-959 *3 *2)) (-4 *2 (-1222 *3)))) (-1751 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-762)) (-4 *5 (-550)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-959 *5 *3)) (-4 *3 (-1222 *5)))) (-1738 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-762)) (-4 *5 (-550)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-959 *5 *3)) (-4 *3 (-1222 *5)))) (-1725 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-762)) (-4 *4 (-550)) (-5 *1 (-959 *4 *2)) (-4 *2 (-1222 *4)))) (-1713 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-762)) (-4 *5 (-550)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-959 *5 *3)) (-4 *3 (-1222 *5)))) (-1698 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-762)) (-4 *5 (-550)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-959 *5 *3)) (-4 *3 (-1222 *5)))) (-1687 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-762)) (-4 *4 (-550)) (-5 *1 (-959 *4 *2)) (-4 *2 (-1222 *4)))) (-1675 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3320 *4))) (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))) (-1664 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3320 *4))) (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))) (-1655 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3320 *4))) (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))) (-3320 (*1 *2 *3 *3) (-12 (-4 *2 (-550)) (-5 *1 (-959 *2 *3)) (-4 *3 (-1222 *2)))))
+(-10 -7 (-15 -3320 (|#1| |#2| |#2|)) (-15 -1655 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3320 |#1|)) |#2| |#2|)) (-15 -1664 ((-2 (|:| |coef2| |#2|) (|:| -3320 |#1|)) |#2| |#2|)) (-15 -1675 ((-2 (|:| |coef1| |#2|) (|:| -3320 |#1|)) |#2| |#2|)) (-15 -1687 (|#2| |#2| |#2| (-762))) (-15 -1698 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-762))) (-15 -1713 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-762))) (-15 -1725 (|#2| |#2| |#2| (-762))) (-15 -1738 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-762))) (-15 -1751 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-762))) (-15 -2087 (|#2| |#2| |#2|)) (-15 -1763 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1775 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3309 (|#2| |#2| |#2|)) (-15 -1789 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2699 |#2|)) |#2| |#2|)) (-15 -1802 ((-2 (|:| |coef2| |#2|) (|:| -2699 |#2|)) |#2| |#2|)) (-15 -1814 ((-2 (|:| |coef1| |#2|) (|:| -2699 |#2|)) |#2| |#2|)) (-15 -3331 (|#1| |#2|)) (-15 -1825 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3331 |#1|)) |#2|)) (-15 -1836 ((-2 (|:| |coef2| |#2|) (|:| -3331 |#1|)) |#2|)) (-15 -1848 ((-635 |#2|) |#2| |#2|)) (-15 -1858 ((-635 (-762)) |#2| |#2|)) (IF (|has| |#1| (-450)) (PROGN (-15 -1871 (|#1| |#2| |#2|)) (-15 -1882 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1871 |#1|)) |#2| |#2|)) (-15 -1892 ((-2 (|:| |coef2| |#2|) (|:| -1871 |#1|)) |#2| |#2|)) (-15 -2699 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1246 |#2|) |#1| (-1246 |#2|))) (-15 -3983 ((-1246 |#2|) (-1246 |#2|) |#1|)) (-15 -3274 ((-2 (|:| -2023 |#1|) (|:| -2306 |#2|) (|:| -2071 |#2|)) |#2| |#2|)) (-15 -1901 ((-2 (|:| -2306 |#2|) (|:| -2071 |#2|)) |#2| |#2|)) (-15 -1914 (|#1| |#1| |#1| (-762))) (-15 -1926 (|#2| |#2| |#1| |#1| (-762))) (-15 -1935 (|#2| |#2| |#2| |#2| |#1|)) (-15 -1945 (|#1| |#2| |#2|)) (-15 -1956 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3320 |#1|)) |#2| |#2|)) (-15 -1969 ((-2 (|:| |coef2| |#2|) (|:| -3320 |#1|)) |#2| |#2|)))
+((-3207 (((-112) $ $) NIL)) (-1395 (((-1199) $) 13)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3535 (((-1122) $) 10)) (-3220 (((-853) $) 22) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1683 (((-112) $ $) NIL)))
+(((-960) (-13 (-1070) (-10 -8 (-15 -3535 ((-1122) $)) (-15 -1395 ((-1199) $))))) (T -960))
+((-3535 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-960)))) (-1395 (*1 *2 *1) (-12 (-5 *2 (-1199)) (-5 *1 (-960)))))
+(-13 (-1070) (-10 -8 (-15 -3535 ((-1122) $)) (-15 -1395 ((-1199) $))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2089 (((-3 $ "failed") $ $) 26)) (-1816 (($) NIL T CONST)) (-1991 (((-635 (-635 (-558))) (-635 (-558))) 28)) (-1981 (((-558) $) 44)) (-2001 (($ (-635 (-558))) 17)) (-3910 (($ $ $) NIL)) (-3542 (($ $ $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3224 (((-635 (-558)) $) 12)) (-3808 (($ $) 31)) (-3220 (((-853) $) 42) (((-635 (-558)) $) 10)) (-2131 (($) 7 T CONST)) (-1747 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1683 (((-112) $ $) 19)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 18)) (-1784 (($ $ $) 20)) (* (($ (-911) $) NIL) (($ (-762) $) 24)))
+(((-961) (-13 (-786) (-606 (-635 (-558))) (-605 (-635 (-558))) (-10 -8 (-15 -2001 ($ (-635 (-558)))) (-15 -1991 ((-635 (-635 (-558))) (-635 (-558)))) (-15 -1981 ((-558) $)) (-15 -3808 ($ $))))) (T -961))
+((-2001 (*1 *1 *2) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-961)))) (-1991 (*1 *2 *3) (-12 (-5 *2 (-635 (-635 (-558)))) (-5 *1 (-961)) (-5 *3 (-635 (-558))))) (-1981 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-961)))) (-3808 (*1 *1 *1) (-5 *1 (-961))))
+(-13 (-786) (-606 (-635 (-558))) (-605 (-635 (-558))) (-10 -8 (-15 -2001 ($ (-635 (-558)))) (-15 -1991 ((-635 (-635 (-558))) (-635 (-558)))) (-15 -1981 ((-558) $)) (-15 -3808 ($ $))))
+((-1810 (($ $ |#2|) 30)) (-1798 (($ $) 22) (($ $ $) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-406 (-558)) $) 26) (($ $ (-406 (-558))) 28)))
+(((-962 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-406 (-558)))) (-15 * (|#1| (-406 (-558)) |#1|)) (-15 -1810 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 -1798 (|#1| |#1| |#1|)) (-15 -1798 (|#1| |#1|)) (-15 * (|#1| (-762) |#1|)) (-15 * (|#1| (-911) |#1|))) (-963 |#2| |#3| |#4|) (-1039) (-783) (-841)) (T -962))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-406 (-558)))) (-15 * (|#1| (-406 (-558)) |#1|)) (-15 -1810 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 -1798 (|#1| |#1| |#1|)) (-15 -1798 (|#1| |#1|)) (-15 * (|#1| (-762) |#1|)) (-15 * (|#1| (-911) |#1|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2671 (((-635 |#3|) $) 77)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 54 (|has| |#1| (-550)))) (-1881 (($ $) 55 (|has| |#1| (-550)))) (-1857 (((-112) $) 57 (|has| |#1| (-550)))) (-2089 (((-3 $ "failed") $ $) 19)) (-1816 (($) 17 T CONST)) (-2490 (($ $) 63)) (-2588 (((-3 $ "failed") $) 33)) (-2020 (((-112) $) 76)) (-2035 (((-112) $) 31)) (-4238 (((-112) $) 65)) (-2648 (($ |#1| |#2|) 64) (($ $ |#3| |#2|) 79) (($ $ (-635 |#3|) (-635 |#2|)) 78)) (-3167 (($ (-1 |#1| |#1|) $) 66)) (-2451 (($ $) 68)) (-2463 ((|#1| $) 69)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3983 (((-3 $ "failed") $ $) 53 (|has| |#1| (-550)))) (-4323 ((|#2| $) 67)) (-2011 (($ $) 75)) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ (-406 (-558))) 60 (|has| |#1| (-38 (-406 (-558))))) (($ $) 52 (|has| |#1| (-550))) (($ |#1|) 50 (|has| |#1| (-171)))) (-3736 ((|#1| $ |#2|) 62)) (-3698 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-2542 (((-762)) 28)) (-1870 (((-112) $ $) 56 (|has| |#1| (-550)))) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1683 (((-112) $ $) 6)) (-1810 (($ $ |#1|) 61 (|has| |#1| (-362)))) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-558)) $) 59 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) 58 (|has| |#1| (-38 (-406 (-558)))))))
+(((-963 |#1| |#2| |#3|) (-139) (-1039) (-783) (-841)) (T -963))
+((-2463 (*1 *2 *1) (-12 (-4 *1 (-963 *2 *3 *4)) (-4 *3 (-783)) (-4 *4 (-841)) (-4 *2 (-1039)))) (-2451 (*1 *1 *1) (-12 (-4 *1 (-963 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-783)) (-4 *4 (-841)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-963 *3 *2 *4)) (-4 *3 (-1039)) (-4 *4 (-841)) (-4 *2 (-783)))) (-2648 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-963 *4 *3 *2)) (-4 *4 (-1039)) (-4 *3 (-783)) (-4 *2 (-841)))) (-2648 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 *6)) (-5 *3 (-635 *5)) (-4 *1 (-963 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-783)) (-4 *6 (-841)))) (-2671 (*1 *2 *1) (-12 (-4 *1 (-963 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-783)) (-4 *5 (-841)) (-5 *2 (-635 *5)))) (-2020 (*1 *2 *1) (-12 (-4 *1 (-963 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-783)) (-4 *5 (-841)) (-5 *2 (-112)))) (-2011 (*1 *1 *1) (-12 (-4 *1 (-963 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-783)) (-4 *4 (-841)))))
+(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2648 ($ $ |t#3| |t#2|)) (-15 -2648 ($ $ (-635 |t#3|) (-635 |t#2|))) (-15 -2451 ($ $)) (-15 -2463 (|t#1| $)) (-15 -4323 (|t#2| $)) (-15 -2671 ((-635 |t#3|) $)) (-15 -2020 ((-112) $)) (-15 -2011 ($ $))))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-550)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-406 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3998 (|has| |#1| (-550)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-608 #0#) |has| |#1| (-38 (-406 (-558)))) ((-608 (-558)) . T) ((-608 |#1|) |has| |#1| (-171)) ((-608 $) |has| |#1| (-550)) ((-605 (-853)) . T) ((-171) -3998 (|has| |#1| (-550)) (|has| |#1| (-171))) ((-289) |has| |#1| (-550)) ((-550) |has| |#1| (-550)) ((-638 #0#) |has| |#1| (-38 (-406 (-558)))) ((-638 |#1|) . T) ((-638 $) . T) ((-708 #0#) |has| |#1| (-38 (-406 (-558)))) ((-708 |#1|) |has| |#1| (-171)) ((-708 $) |has| |#1| (-550)) ((-717) . T) ((-1045 #0#) |has| |#1| (-38 (-406 (-558)))) ((-1045 |#1|) . T) ((-1045 $) -3998 (|has| |#1| (-550)) (|has| |#1| (-171))) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
+((-1797 (((-1081 (-224)) $) 8)) (-1783 (((-1081 (-224)) $) 9)) (-1770 (((-1081 (-224)) $) 10)) (-2031 (((-635 (-635 (-933 (-224)))) $) 11)) (-3220 (((-853) $) 6)))
+(((-964) (-139)) (T -964))
+((-2031 (*1 *2 *1) (-12 (-4 *1 (-964)) (-5 *2 (-635 (-635 (-933 (-224))))))) (-1770 (*1 *2 *1) (-12 (-4 *1 (-964)) (-5 *2 (-1081 (-224))))) (-1783 (*1 *2 *1) (-12 (-4 *1 (-964)) (-5 *2 (-1081 (-224))))) (-1797 (*1 *2 *1) (-12 (-4 *1 (-964)) (-5 *2 (-1081 (-224))))))
+(-13 (-605 (-853)) (-10 -8 (-15 -2031 ((-635 (-635 (-933 (-224)))) $)) (-15 -1770 ((-1081 (-224)) $)) (-15 -1783 ((-1081 (-224)) $)) (-15 -1797 ((-1081 (-224)) $))))
+(((-605 (-853)) . T))
+((-2671 (((-635 |#4|) $) 23)) (-2139 (((-112) $) 47)) (-2040 (((-112) $) 46)) (-2376 (((-2 (|:| |under| $) (|:| -2594 $) (|:| |upper| $)) $ |#4|) 35)) (-2092 (((-112) $) 48)) (-2116 (((-112) $ $) 54)) (-2104 (((-112) $ $) 57)) (-2128 (((-112) $) 52)) (-2050 (((-635 |#5|) (-635 |#5|) $) 89)) (-2061 (((-635 |#5|) (-635 |#5|) $) 86)) (-2071 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 80)) (-4024 (((-635 |#4|) $) 27)) (-2183 (((-112) |#4| $) 29)) (-2081 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 72)) (-2151 (($ $ |#4|) 32)) (-2171 (($ $ |#4|) 31)) (-2160 (($ $ |#4|) 33)) (-1683 (((-112) $ $) 39)))
+(((-965 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2040 ((-112) |#1|)) (-15 -2050 ((-635 |#5|) (-635 |#5|) |#1|)) (-15 -2061 ((-635 |#5|) (-635 |#5|) |#1|)) (-15 -2071 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2081 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2092 ((-112) |#1|)) (-15 -2104 ((-112) |#1| |#1|)) (-15 -2116 ((-112) |#1| |#1|)) (-15 -2128 ((-112) |#1|)) (-15 -2139 ((-112) |#1|)) (-15 -2376 ((-2 (|:| |under| |#1|) (|:| -2594 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2151 (|#1| |#1| |#4|)) (-15 -2160 (|#1| |#1| |#4|)) (-15 -2171 (|#1| |#1| |#4|)) (-15 -2183 ((-112) |#4| |#1|)) (-15 -4024 ((-635 |#4|) |#1|)) (-15 -2671 ((-635 |#4|) |#1|)) (-15 -1683 ((-112) |#1| |#1|))) (-966 |#2| |#3| |#4| |#5|) (-1039) (-784) (-841) (-1053 |#2| |#3| |#4|)) (T -965))
+NIL
+(-10 -8 (-15 -2040 ((-112) |#1|)) (-15 -2050 ((-635 |#5|) (-635 |#5|) |#1|)) (-15 -2061 ((-635 |#5|) (-635 |#5|) |#1|)) (-15 -2071 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2081 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2092 ((-112) |#1|)) (-15 -2104 ((-112) |#1| |#1|)) (-15 -2116 ((-112) |#1| |#1|)) (-15 -2128 ((-112) |#1|)) (-15 -2139 ((-112) |#1|)) (-15 -2376 ((-2 (|:| |under| |#1|) (|:| -2594 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2151 (|#1| |#1| |#4|)) (-15 -2160 (|#1| |#1| |#4|)) (-15 -2171 (|#1| |#1| |#4|)) (-15 -2183 ((-112) |#4| |#1|)) (-15 -4024 ((-635 |#4|) |#1|)) (-15 -2671 ((-635 |#4|) |#1|)) (-15 -1683 ((-112) |#1| |#1|)))
+((-3207 (((-112) $ $) 7)) (-2671 (((-635 |#3|) $) 33)) (-2139 (((-112) $) 26)) (-2040 (((-112) $) 17 (|has| |#1| (-550)))) (-2376 (((-2 (|:| |under| $) (|:| -2594 $) (|:| |upper| $)) $ |#3|) 27)) (-3026 (((-112) $ (-762)) 44)) (-4329 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4382)))) (-1816 (($) 45 T CONST)) (-2092 (((-112) $) 22 (|has| |#1| (-550)))) (-2116 (((-112) $ $) 24 (|has| |#1| (-550)))) (-2104 (((-112) $ $) 23 (|has| |#1| (-550)))) (-2128 (((-112) $) 25 (|has| |#1| (-550)))) (-2050 (((-635 |#4|) (-635 |#4|) $) 18 (|has| |#1| (-550)))) (-2061 (((-635 |#4|) (-635 |#4|) $) 19 (|has| |#1| (-550)))) (-3069 (((-3 $ "failed") (-635 |#4|)) 36)) (-1863 (($ (-635 |#4|)) 35)) (-2338 (($ $) 68 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4382))))) (-1539 (($ |#4| $) 67 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4382)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4382)))) (-2071 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-550)))) (-3048 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4382)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4382))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4382)))) (-2240 (((-635 |#4|) $) 52 (|has| $ (-6 -4382)))) (-1997 ((|#3| $) 34)) (-2986 (((-112) $ (-762)) 43)) (-2122 (((-635 |#4|) $) 53 (|has| $ (-6 -4382)))) (-4322 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4382))))) (-1807 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#4| |#4|) $) 47)) (-4024 (((-635 |#3|) $) 32)) (-2183 (((-112) |#3| $) 31)) (-2953 (((-112) $ (-762)) 42)) (-4310 (((-1145) $) 9)) (-2081 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-550)))) (-2975 (((-1107) $) 10)) (-4307 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3266 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 |#4|) (-635 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-293 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-635 (-293 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))) (-2381 (((-112) $ $) 38)) (-3375 (((-112) $) 41)) (-2083 (($) 40)) (-2988 (((-762) |#4| $) 54 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4382)))) (((-762) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4382)))) (-1553 (($ $) 39)) (-3224 (((-534) $) 69 (|has| |#4| (-606 (-534))))) (-3233 (($ (-635 |#4|)) 60)) (-2151 (($ $ |#3|) 28)) (-2171 (($ $ |#3|) 30)) (-2160 (($ $ |#3|) 29)) (-3220 (((-853) $) 11) (((-635 |#4|) $) 37)) (-3277 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) 6)) (-2755 (((-762) $) 46 (|has| $ (-6 -4382)))))
+(((-966 |#1| |#2| |#3| |#4|) (-139) (-1039) (-784) (-841) (-1053 |t#1| |t#2| |t#3|)) (T -966))
+((-3069 (*1 *1 *2) (|partial| -12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *1 (-966 *3 *4 *5 *6)))) (-1863 (*1 *1 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *1 (-966 *3 *4 *5 *6)))) (-1997 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *2 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-1053 *3 *4 *2)) (-4 *2 (-841)))) (-2671 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-635 *5)))) (-4024 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-635 *5)))) (-2183 (*1 *2 *3 *1) (-12 (-4 *1 (-966 *4 *5 *3 *6)) (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *3 (-841)) (-4 *6 (-1053 *4 *5 *3)) (-5 *2 (-112)))) (-2171 (*1 *1 *1 *2) (-12 (-4 *1 (-966 *3 *4 *2 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *2 (-841)) (-4 *5 (-1053 *3 *4 *2)))) (-2160 (*1 *1 *1 *2) (-12 (-4 *1 (-966 *3 *4 *2 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *2 (-841)) (-4 *5 (-1053 *3 *4 *2)))) (-2151 (*1 *1 *1 *2) (-12 (-4 *1 (-966 *3 *4 *2 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *2 (-841)) (-4 *5 (-1053 *3 *4 *2)))) (-2376 (*1 *2 *1 *3) (-12 (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *3 (-841)) (-4 *6 (-1053 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2594 *1) (|:| |upper| *1))) (-4 *1 (-966 *4 *5 *3 *6)))) (-2139 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-112)))) (-2128 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-5 *2 (-112)))) (-2116 (*1 *2 *1 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-5 *2 (-112)))) (-2104 (*1 *2 *1 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-5 *2 (-112)))) (-2092 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-5 *2 (-112)))) (-2081 (*1 *2 *3 *1) (-12 (-4 *1 (-966 *4 *5 *6 *3)) (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-4 *4 (-550)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2071 (*1 *2 *3 *1) (-12 (-4 *1 (-966 *4 *5 *6 *3)) (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-4 *4 (-550)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2061 (*1 *2 *2 *1) (-12 (-5 *2 (-635 *6)) (-4 *1 (-966 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)))) (-2050 (*1 *2 *2 *1) (-12 (-5 *2 (-635 *6)) (-4 *1 (-966 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)))) (-2040 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-5 *2 (-112)))))
+(-13 (-1087) (-150 |t#4|) (-605 (-635 |t#4|)) (-10 -8 (-6 -4382) (-15 -3069 ((-3 $ "failed") (-635 |t#4|))) (-15 -1863 ($ (-635 |t#4|))) (-15 -1997 (|t#3| $)) (-15 -2671 ((-635 |t#3|) $)) (-15 -4024 ((-635 |t#3|) $)) (-15 -2183 ((-112) |t#3| $)) (-15 -2171 ($ $ |t#3|)) (-15 -2160 ($ $ |t#3|)) (-15 -2151 ($ $ |t#3|)) (-15 -2376 ((-2 (|:| |under| $) (|:| -2594 $) (|:| |upper| $)) $ |t#3|)) (-15 -2139 ((-112) $)) (IF (|has| |t#1| (-550)) (PROGN (-15 -2128 ((-112) $)) (-15 -2116 ((-112) $ $)) (-15 -2104 ((-112) $ $)) (-15 -2092 ((-112) $)) (-15 -2081 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2071 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2061 ((-635 |t#4|) (-635 |t#4|) $)) (-15 -2050 ((-635 |t#4|) (-635 |t#4|) $)) (-15 -2040 ((-112) $))) |%noBranch|)))
+(((-34) . T) ((-102) . T) ((-605 (-635 |#4|)) . T) ((-605 (-853)) . T) ((-150 |#4|) . T) ((-606 (-534)) |has| |#4| (-606 (-534))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))) ((-487 |#4|) . T) ((-512 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))) ((-1087) . T) ((-1200) . T))
+((-4046 (((-635 |#4|) |#4| |#4|) 117)) (-4302 (((-635 |#4|) (-635 |#4|) (-112)) 106 (|has| |#1| (-450))) (((-635 |#4|) (-635 |#4|)) 107 (|has| |#1| (-450)))) (-4152 (((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|)) 34)) (-4139 (((-112) |#4|) 33)) (-4290 (((-635 |#4|) |#4|) 102 (|has| |#1| (-450)))) (-4092 (((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-1 (-112) |#4|) (-635 |#4|)) 19)) (-4105 (((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 (-1 (-112) |#4|)) (-635 |#4|)) 21)) (-4117 (((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 (-1 (-112) |#4|)) (-635 |#4|)) 22)) (-4241 (((-3 (-2 (|:| |bas| (-474 |#1| |#2| |#3| |#4|)) (|:| -3072 (-635 |#4|))) "failed") (-635 |#4|)) 72)) (-4264 (((-635 |#4|) (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 84)) (-4278 (((-635 |#4|) (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 110)) (-4035 (((-635 |#4|) (-635 |#4|)) 109)) (-4209 (((-635 |#4|) (-635 |#4|) (-635 |#4|) (-112)) 47) (((-635 |#4|) (-635 |#4|) (-635 |#4|)) 49)) (-4220 ((|#4| |#4| (-635 |#4|)) 48)) (-4314 (((-635 |#4|) (-635 |#4|) (-635 |#4|)) 113 (|has| |#1| (-450)))) (-4338 (((-635 |#4|) (-635 |#4|) (-635 |#4|)) 116 (|has| |#1| (-450)))) (-4326 (((-635 |#4|) (-635 |#4|) (-635 |#4|)) 115 (|has| |#1| (-450)))) (-4053 (((-635 |#4|) (-635 |#4|) (-635 |#4|) (-1 (-635 |#4|) (-635 |#4|))) 86) (((-635 |#4|) (-635 |#4|) (-635 |#4|)) 88) (((-635 |#4|) (-635 |#4|) |#4|) 120) (((-635 |#4|) |#4| |#4|) 118) (((-635 |#4|) (-635 |#4|)) 87)) (-1287 (((-635 |#4|) (-635 |#4|) (-635 |#4|)) 99 (-12 (|has| |#1| (-146)) (|has| |#1| (-306))))) (-4128 (((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|)) 40)) (-4083 (((-112) (-635 |#4|)) 61)) (-4073 (((-112) (-635 |#4|) (-635 (-635 |#4|))) 52)) (-4176 (((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|)) 28)) (-4164 (((-112) |#4|) 27)) (-4360 (((-635 |#4|) (-635 |#4|)) 97 (-12 (|has| |#1| (-146)) (|has| |#1| (-306))))) (-4350 (((-635 |#4|) (-635 |#4|)) 98 (-12 (|has| |#1| (-146)) (|has| |#1| (-306))))) (-4230 (((-635 |#4|) (-635 |#4|)) 65)) (-4252 (((-635 |#4|) (-635 |#4|)) 78)) (-4063 (((-112) (-635 |#4|) (-635 |#4|)) 50)) (-4198 (((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|)) 38)) (-4188 (((-112) |#4|) 35)))
+(((-967 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4053 ((-635 |#4|) (-635 |#4|))) (-15 -4053 ((-635 |#4|) |#4| |#4|)) (-15 -4035 ((-635 |#4|) (-635 |#4|))) (-15 -4046 ((-635 |#4|) |#4| |#4|)) (-15 -4053 ((-635 |#4|) (-635 |#4|) |#4|)) (-15 -4053 ((-635 |#4|) (-635 |#4|) (-635 |#4|))) (-15 -4053 ((-635 |#4|) (-635 |#4|) (-635 |#4|) (-1 (-635 |#4|) (-635 |#4|)))) (-15 -4063 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -4073 ((-112) (-635 |#4|) (-635 (-635 |#4|)))) (-15 -4083 ((-112) (-635 |#4|))) (-15 -4092 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-1 (-112) |#4|) (-635 |#4|))) (-15 -4105 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 (-1 (-112) |#4|)) (-635 |#4|))) (-15 -4117 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 (-1 (-112) |#4|)) (-635 |#4|))) (-15 -4128 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|))) (-15 -4139 ((-112) |#4|)) (-15 -4152 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|))) (-15 -4164 ((-112) |#4|)) (-15 -4176 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|))) (-15 -4188 ((-112) |#4|)) (-15 -4198 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|))) (-15 -4209 ((-635 |#4|) (-635 |#4|) (-635 |#4|))) (-15 -4209 ((-635 |#4|) (-635 |#4|) (-635 |#4|) (-112))) (-15 -4220 (|#4| |#4| (-635 |#4|))) (-15 -4230 ((-635 |#4|) (-635 |#4|))) (-15 -4241 ((-3 (-2 (|:| |bas| (-474 |#1| |#2| |#3| |#4|)) (|:| -3072 (-635 |#4|))) "failed") (-635 |#4|))) (-15 -4252 ((-635 |#4|) (-635 |#4|))) (-15 -4264 ((-635 |#4|) (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4278 ((-635 |#4|) (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-450)) (PROGN (-15 -4290 ((-635 |#4|) |#4|)) (-15 -4302 ((-635 |#4|) (-635 |#4|))) (-15 -4302 ((-635 |#4|) (-635 |#4|) (-112))) (-15 -4314 ((-635 |#4|) (-635 |#4|) (-635 |#4|))) (-15 -4326 ((-635 |#4|) (-635 |#4|) (-635 |#4|))) (-15 -4338 ((-635 |#4|) (-635 |#4|) (-635 |#4|)))) |%noBranch|) (IF (|has| |#1| (-306)) (IF (|has| |#1| (-146)) (PROGN (-15 -4350 ((-635 |#4|) (-635 |#4|))) (-15 -4360 ((-635 |#4|) (-635 |#4|))) (-15 -1287 ((-635 |#4|) (-635 |#4|) (-635 |#4|)))) |%noBranch|) |%noBranch|)) (-550) (-784) (-841) (-1053 |#1| |#2| |#3|)) (T -967))
+((-1287 (*1 *2 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-146)) (-4 *3 (-306)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-967 *3 *4 *5 *6)))) (-4360 (*1 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-146)) (-4 *3 (-306)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-967 *3 *4 *5 *6)))) (-4350 (*1 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-146)) (-4 *3 (-306)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-967 *3 *4 *5 *6)))) (-4338 (*1 *2 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-450)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-967 *3 *4 *5 *6)))) (-4326 (*1 *2 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-450)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-967 *3 *4 *5 *6)))) (-4314 (*1 *2 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-450)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-967 *3 *4 *5 *6)))) (-4302 (*1 *2 *2 *3) (-12 (-5 *2 (-635 *7)) (-5 *3 (-112)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450)) (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *1 (-967 *4 *5 *6 *7)))) (-4302 (*1 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-450)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-967 *3 *4 *5 *6)))) (-4290 (*1 *2 *3) (-12 (-4 *4 (-450)) (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-635 *3)) (-5 *1 (-967 *4 *5 *6 *3)) (-4 *3 (-1053 *4 *5 *6)))) (-4278 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-635 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-550)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *1 (-967 *5 *6 *7 *8)))) (-4264 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-635 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1053 *6 *7 *8)) (-4 *6 (-550)) (-4 *7 (-784)) (-4 *8 (-841)) (-5 *1 (-967 *6 *7 *8 *9)))) (-4252 (*1 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-967 *3 *4 *5 *6)))) (-4241 (*1 *2 *3) (|partial| -12 (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-474 *4 *5 *6 *7)) (|:| -3072 (-635 *7)))) (-5 *1 (-967 *4 *5 *6 *7)) (-5 *3 (-635 *7)))) (-4230 (*1 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-967 *3 *4 *5 *6)))) (-4220 (*1 *2 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-1053 *4 *5 *6)) (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *1 (-967 *4 *5 *6 *2)))) (-4209 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-635 *7)) (-5 *3 (-112)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *1 (-967 *4 *5 *6 *7)))) (-4209 (*1 *2 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-967 *3 *4 *5 *6)))) (-4198 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-635 *7)) (|:| |badPols| (-635 *7)))) (-5 *1 (-967 *4 *5 *6 *7)) (-5 *3 (-635 *7)))) (-4188 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112)) (-5 *1 (-967 *4 *5 *6 *3)) (-4 *3 (-1053 *4 *5 *6)))) (-4176 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-635 *7)) (|:| |badPols| (-635 *7)))) (-5 *1 (-967 *4 *5 *6 *7)) (-5 *3 (-635 *7)))) (-4164 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112)) (-5 *1 (-967 *4 *5 *6 *3)) (-4 *3 (-1053 *4 *5 *6)))) (-4152 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-635 *7)) (|:| |badPols| (-635 *7)))) (-5 *1 (-967 *4 *5 *6 *7)) (-5 *3 (-635 *7)))) (-4139 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112)) (-5 *1 (-967 *4 *5 *6 *3)) (-4 *3 (-1053 *4 *5 *6)))) (-4128 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-635 *7)) (|:| |badPols| (-635 *7)))) (-5 *1 (-967 *4 *5 *6 *7)) (-5 *3 (-635 *7)))) (-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-1 (-112) *8))) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-550)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-2 (|:| |goodPols| (-635 *8)) (|:| |badPols| (-635 *8)))) (-5 *1 (-967 *5 *6 *7 *8)) (-5 *4 (-635 *8)))) (-4105 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-1 (-112) *8))) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-550)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-2 (|:| |goodPols| (-635 *8)) (|:| |badPols| (-635 *8)))) (-5 *1 (-967 *5 *6 *7 *8)) (-5 *4 (-635 *8)))) (-4092 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-550)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-2 (|:| |goodPols| (-635 *8)) (|:| |badPols| (-635 *8)))) (-5 *1 (-967 *5 *6 *7 *8)) (-5 *4 (-635 *8)))) (-4083 (*1 *2 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112)) (-5 *1 (-967 *4 *5 *6 *7)))) (-4073 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-635 *8))) (-5 *3 (-635 *8)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-550)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-112)) (-5 *1 (-967 *5 *6 *7 *8)))) (-4063 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112)) (-5 *1 (-967 *4 *5 *6 *7)))) (-4053 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-635 *7) (-635 *7))) (-5 *2 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *1 (-967 *4 *5 *6 *7)))) (-4053 (*1 *2 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-967 *3 *4 *5 *6)))) (-4053 (*1 *2 *2 *3) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1053 *4 *5 *6)) (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *1 (-967 *4 *5 *6 *3)))) (-4046 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-635 *3)) (-5 *1 (-967 *4 *5 *6 *3)) (-4 *3 (-1053 *4 *5 *6)))) (-4035 (*1 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-967 *3 *4 *5 *6)))) (-4053 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-635 *3)) (-5 *1 (-967 *4 *5 *6 *3)) (-4 *3 (-1053 *4 *5 *6)))) (-4053 (*1 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-967 *3 *4 *5 *6)))))
+(-10 -7 (-15 -4053 ((-635 |#4|) (-635 |#4|))) (-15 -4053 ((-635 |#4|) |#4| |#4|)) (-15 -4035 ((-635 |#4|) (-635 |#4|))) (-15 -4046 ((-635 |#4|) |#4| |#4|)) (-15 -4053 ((-635 |#4|) (-635 |#4|) |#4|)) (-15 -4053 ((-635 |#4|) (-635 |#4|) (-635 |#4|))) (-15 -4053 ((-635 |#4|) (-635 |#4|) (-635 |#4|) (-1 (-635 |#4|) (-635 |#4|)))) (-15 -4063 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -4073 ((-112) (-635 |#4|) (-635 (-635 |#4|)))) (-15 -4083 ((-112) (-635 |#4|))) (-15 -4092 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-1 (-112) |#4|) (-635 |#4|))) (-15 -4105 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 (-1 (-112) |#4|)) (-635 |#4|))) (-15 -4117 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 (-1 (-112) |#4|)) (-635 |#4|))) (-15 -4128 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|))) (-15 -4139 ((-112) |#4|)) (-15 -4152 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|))) (-15 -4164 ((-112) |#4|)) (-15 -4176 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|))) (-15 -4188 ((-112) |#4|)) (-15 -4198 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|))) (-15 -4209 ((-635 |#4|) (-635 |#4|) (-635 |#4|))) (-15 -4209 ((-635 |#4|) (-635 |#4|) (-635 |#4|) (-112))) (-15 -4220 (|#4| |#4| (-635 |#4|))) (-15 -4230 ((-635 |#4|) (-635 |#4|))) (-15 -4241 ((-3 (-2 (|:| |bas| (-474 |#1| |#2| |#3| |#4|)) (|:| -3072 (-635 |#4|))) "failed") (-635 |#4|))) (-15 -4252 ((-635 |#4|) (-635 |#4|))) (-15 -4264 ((-635 |#4|) (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4278 ((-635 |#4|) (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-450)) (PROGN (-15 -4290 ((-635 |#4|) |#4|)) (-15 -4302 ((-635 |#4|) (-635 |#4|))) (-15 -4302 ((-635 |#4|) (-635 |#4|) (-112))) (-15 -4314 ((-635 |#4|) (-635 |#4|) (-635 |#4|))) (-15 -4326 ((-635 |#4|) (-635 |#4|) (-635 |#4|))) (-15 -4338 ((-635 |#4|) (-635 |#4|) (-635 |#4|)))) |%noBranch|) (IF (|has| |#1| (-306)) (IF (|has| |#1| (-146)) (PROGN (-15 -4350 ((-635 |#4|) (-635 |#4|))) (-15 -4360 ((-635 |#4|) (-635 |#4|))) (-15 -1287 ((-635 |#4|) (-635 |#4|) (-635 |#4|)))) |%noBranch|) |%noBranch|))
+((-1299 (((-2 (|:| R (-679 |#1|)) (|:| A (-679 |#1|)) (|:| |Ainv| (-679 |#1|))) (-679 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-1322 (((-635 (-2 (|:| C (-679 |#1|)) (|:| |g| (-1246 |#1|)))) (-679 |#1|) (-1246 |#1|)) 35)) (-1311 (((-679 |#1|) (-679 |#1|) (-679 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16)))
+(((-968 |#1|) (-10 -7 (-15 -1299 ((-2 (|:| R (-679 |#1|)) (|:| A (-679 |#1|)) (|:| |Ainv| (-679 |#1|))) (-679 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1311 ((-679 |#1|) (-679 |#1|) (-679 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1322 ((-635 (-2 (|:| C (-679 |#1|)) (|:| |g| (-1246 |#1|)))) (-679 |#1|) (-1246 |#1|)))) (-362)) (T -968))
+((-1322 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-5 *2 (-635 (-2 (|:| C (-679 *5)) (|:| |g| (-1246 *5))))) (-5 *1 (-968 *5)) (-5 *3 (-679 *5)) (-5 *4 (-1246 *5)))) (-1311 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-679 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-362)) (-5 *1 (-968 *5)))) (-1299 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-362)) (-5 *2 (-2 (|:| R (-679 *6)) (|:| A (-679 *6)) (|:| |Ainv| (-679 *6)))) (-5 *1 (-968 *6)) (-5 *3 (-679 *6)))))
+(-10 -7 (-15 -1299 ((-2 (|:| R (-679 |#1|)) (|:| A (-679 |#1|)) (|:| |Ainv| (-679 |#1|))) (-679 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1311 ((-679 |#1|) (-679 |#1|) (-679 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1322 ((-635 (-2 (|:| C (-679 |#1|)) (|:| |g| (-1246 |#1|)))) (-679 |#1|) (-1246 |#1|))))
+((-1380 (((-417 |#4|) |#4|) 48)))
+(((-969 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1380 ((-417 |#4|) |#4|))) (-841) (-784) (-450) (-939 |#3| |#2| |#1|)) (T -969))
+((-1380 (*1 *2 *3) (-12 (-4 *4 (-841)) (-4 *5 (-784)) (-4 *6 (-450)) (-5 *2 (-417 *3)) (-5 *1 (-969 *4 *5 *6 *3)) (-4 *3 (-939 *6 *5 *4)))))
+(-10 -7 (-15 -1380 ((-417 |#4|) |#4|)))
+((-3207 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-2370 (($ (-762)) 112 (|has| |#1| (-23)))) (-3869 (((-1251) $ (-558) (-558)) 40 (|has| $ (-6 -4383)))) (-1538 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-841)))) (-2763 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4383))) (($ $) 88 (-12 (|has| |#1| (-841)) (|has| $ (-6 -4383))))) (-2376 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-841)))) (-3026 (((-112) $ (-762)) 8)) (-1532 ((|#1| $ (-558) |#1|) 52 (|has| $ (-6 -4383))) ((|#1| $ (-1213 (-558)) |#1|) 58 (|has| $ (-6 -4383)))) (-4329 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4382)))) (-1816 (($) 7 T CONST)) (-3306 (($ $) 90 (|has| $ (-6 -4383)))) (-4127 (($ $) 100)) (-2338 (($ $) 78 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1539 (($ |#1| $) 77 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4382)))) (-3048 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4382))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4382)))) (-1817 ((|#1| $ (-558) |#1|) 53 (|has| $ (-6 -4383)))) (-1746 ((|#1| $ (-558)) 51)) (-1517 (((-558) (-1 (-112) |#1|) $) 97) (((-558) |#1| $) 96 (|has| |#1| (-1087))) (((-558) |#1| $ (-558)) 95 (|has| |#1| (-1087)))) (-3840 (($ (-635 |#1|)) 118)) (-2240 (((-635 |#1|) $) 30 (|has| $ (-6 -4382)))) (-1965 (((-679 |#1|) $ $) 105 (|has| |#1| (-1039)))) (-3315 (($ (-762) |#1|) 69)) (-2986 (((-112) $ (-762)) 9)) (-3889 (((-558) $) 43 (|has| (-558) (-841)))) (-3910 (($ $ $) 87 (|has| |#1| (-841)))) (-1677 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-841)))) (-2122 (((-635 |#1|) $) 29 (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-3899 (((-558) $) 44 (|has| (-558) (-841)))) (-3542 (($ $ $) 86 (|has| |#1| (-841)))) (-1807 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2722 ((|#1| $) 102 (-12 (|has| |#1| (-1039)) (|has| |#1| (-992))))) (-2953 (((-112) $ (-762)) 10)) (-2880 ((|#1| $) 103 (-12 (|has| |#1| (-1039)) (|has| |#1| (-992))))) (-4310 (((-1145) $) 22 (|has| |#1| (-1087)))) (-1861 (($ |#1| $ (-558)) 60) (($ $ $ (-558)) 59)) (-3920 (((-635 (-558)) $) 46)) (-3929 (((-112) (-558) $) 47)) (-2975 (((-1107) $) 21 (|has| |#1| (-1087)))) (-2305 ((|#1| $) 42 (|has| (-558) (-841)))) (-4307 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3880 (($ $ |#1|) 41 (|has| $ (-6 -4383)))) (-3430 (($ $ (-635 |#1|)) 116)) (-3266 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) 14)) (-3908 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3937 (((-635 |#1|) $) 48)) (-3375 (((-112) $) 11)) (-2083 (($) 12)) (-2195 ((|#1| $ (-558) |#1|) 50) ((|#1| $ (-558)) 49) (($ $ (-1213 (-558))) 63)) (-2744 ((|#1| $ $) 106 (|has| |#1| (-1039)))) (-2148 (((-911) $) 117)) (-4023 (($ $ (-558)) 62) (($ $ (-1213 (-558))) 61)) (-2733 (($ $ $) 104)) (-2988 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4382))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-2773 (($ $ $ (-558)) 91 (|has| $ (-6 -4383)))) (-1553 (($ $) 13)) (-3224 (((-534) $) 79 (|has| |#1| (-606 (-534)))) (($ (-635 |#1|)) 119)) (-3233 (($ (-635 |#1|)) 70)) (-4341 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-635 $)) 65)) (-3220 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-3277 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4382)))) (-1747 (((-112) $ $) 84 (|has| |#1| (-841)))) (-1720 (((-112) $ $) 83 (|has| |#1| (-841)))) (-1683 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-1731 (((-112) $ $) 85 (|has| |#1| (-841)))) (-1705 (((-112) $ $) 82 (|has| |#1| (-841)))) (-1798 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1784 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-558) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-717))) (($ $ |#1|) 107 (|has| |#1| (-717)))) (-2755 (((-762) $) 6 (|has| $ (-6 -4382)))))
+(((-970 |#1|) (-139) (-1039)) (T -970))
+((-3840 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1039)) (-4 *1 (-970 *3)))) (-2148 (*1 *2 *1) (-12 (-4 *1 (-970 *3)) (-4 *3 (-1039)) (-5 *2 (-911)))) (-2733 (*1 *1 *1 *1) (-12 (-4 *1 (-970 *2)) (-4 *2 (-1039)))) (-3430 (*1 *1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *1 (-970 *3)) (-4 *3 (-1039)))))
+(-13 (-1244 |t#1|) (-610 (-635 |t#1|)) (-10 -8 (-15 -3840 ($ (-635 |t#1|))) (-15 -2148 ((-911) $)) (-15 -2733 ($ $ $)) (-15 -3430 ($ $ (-635 |t#1|)))))
+(((-34) . T) ((-102) -3998 (|has| |#1| (-1087)) (|has| |#1| (-841))) ((-605 (-853)) -3998 (|has| |#1| (-1087)) (|has| |#1| (-841)) (|has| |#1| (-605 (-853)))) ((-150 |#1|) . T) ((-610 (-635 |#1|)) . T) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-285 #0=(-558) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-372 |#1|) . T) ((-487 |#1|) . T) ((-596 #0# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-641 |#1|) . T) ((-19 |#1|) . T) ((-841) |has| |#1| (-841)) ((-1087) -3998 (|has| |#1| (-1087)) (|has| |#1| (-841))) ((-1200) . T) ((-1244 |#1|) . T))
+((-3167 (((-933 |#2|) (-1 |#2| |#1|) (-933 |#1|)) 17)))
+(((-971 |#1| |#2|) (-10 -7 (-15 -3167 ((-933 |#2|) (-1 |#2| |#1|) (-933 |#1|)))) (-1039) (-1039)) (T -971))
+((-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-933 *5)) (-4 *5 (-1039)) (-4 *6 (-1039)) (-5 *2 (-933 *6)) (-5 *1 (-971 *5 *6)))))
+(-10 -7 (-15 -3167 ((-933 |#2|) (-1 |#2| |#1|) (-933 |#1|))))
+((-1359 ((|#1| (-933 |#1|)) 13)) (-1348 ((|#1| (-933 |#1|)) 12)) (-1336 ((|#1| (-933 |#1|)) 11)) (-1383 ((|#1| (-933 |#1|)) 15)) (-1428 ((|#1| (-933 |#1|)) 21)) (-1372 ((|#1| (-933 |#1|)) 14)) (-1394 ((|#1| (-933 |#1|)) 16)) (-1418 ((|#1| (-933 |#1|)) 20)) (-1407 ((|#1| (-933 |#1|)) 19)))
+(((-972 |#1|) (-10 -7 (-15 -1336 (|#1| (-933 |#1|))) (-15 -1348 (|#1| (-933 |#1|))) (-15 -1359 (|#1| (-933 |#1|))) (-15 -1372 (|#1| (-933 |#1|))) (-15 -1383 (|#1| (-933 |#1|))) (-15 -1394 (|#1| (-933 |#1|))) (-15 -1407 (|#1| (-933 |#1|))) (-15 -1418 (|#1| (-933 |#1|))) (-15 -1428 (|#1| (-933 |#1|)))) (-1039)) (T -972))
+((-1428 (*1 *2 *3) (-12 (-5 *3 (-933 *2)) (-5 *1 (-972 *2)) (-4 *2 (-1039)))) (-1418 (*1 *2 *3) (-12 (-5 *3 (-933 *2)) (-5 *1 (-972 *2)) (-4 *2 (-1039)))) (-1407 (*1 *2 *3) (-12 (-5 *3 (-933 *2)) (-5 *1 (-972 *2)) (-4 *2 (-1039)))) (-1394 (*1 *2 *3) (-12 (-5 *3 (-933 *2)) (-5 *1 (-972 *2)) (-4 *2 (-1039)))) (-1383 (*1 *2 *3) (-12 (-5 *3 (-933 *2)) (-5 *1 (-972 *2)) (-4 *2 (-1039)))) (-1372 (*1 *2 *3) (-12 (-5 *3 (-933 *2)) (-5 *1 (-972 *2)) (-4 *2 (-1039)))) (-1359 (*1 *2 *3) (-12 (-5 *3 (-933 *2)) (-5 *1 (-972 *2)) (-4 *2 (-1039)))) (-1348 (*1 *2 *3) (-12 (-5 *3 (-933 *2)) (-5 *1 (-972 *2)) (-4 *2 (-1039)))) (-1336 (*1 *2 *3) (-12 (-5 *3 (-933 *2)) (-5 *1 (-972 *2)) (-4 *2 (-1039)))))
+(-10 -7 (-15 -1336 (|#1| (-933 |#1|))) (-15 -1348 (|#1| (-933 |#1|))) (-15 -1359 (|#1| (-933 |#1|))) (-15 -1372 (|#1| (-933 |#1|))) (-15 -1383 (|#1| (-933 |#1|))) (-15 -1394 (|#1| (-933 |#1|))) (-15 -1407 (|#1| (-933 |#1|))) (-15 -1418 (|#1| (-933 |#1|))) (-15 -1428 (|#1| (-933 |#1|))))
+((-3509 (((-3 |#1| "failed") |#1|) 18)) (-1493 (((-3 |#1| "failed") |#1|) 6)) (-3491 (((-3 |#1| "failed") |#1|) 16)) (-1476 (((-3 |#1| "failed") |#1|) 4)) (-3527 (((-3 |#1| "failed") |#1|) 20)) (-1514 (((-3 |#1| "failed") |#1|) 8)) (-1441 (((-3 |#1| "failed") |#1| (-762)) 1)) (-1463 (((-3 |#1| "failed") |#1|) 3)) (-1453 (((-3 |#1| "failed") |#1|) 2)) (-3538 (((-3 |#1| "failed") |#1|) 21)) (-1526 (((-3 |#1| "failed") |#1|) 9)) (-3518 (((-3 |#1| "failed") |#1|) 19)) (-1503 (((-3 |#1| "failed") |#1|) 7)) (-3500 (((-3 |#1| "failed") |#1|) 17)) (-1485 (((-3 |#1| "failed") |#1|) 5)) (-3571 (((-3 |#1| "failed") |#1|) 24)) (-1556 (((-3 |#1| "failed") |#1|) 12)) (-3551 (((-3 |#1| "failed") |#1|) 22)) (-1535 (((-3 |#1| "failed") |#1|) 10)) (-3589 (((-3 |#1| "failed") |#1|) 26)) (-3474 (((-3 |#1| "failed") |#1|) 14)) (-3598 (((-3 |#1| "failed") |#1|) 27)) (-3484 (((-3 |#1| "failed") |#1|) 15)) (-3580 (((-3 |#1| "failed") |#1|) 25)) (-3463 (((-3 |#1| "failed") |#1|) 13)) (-3561 (((-3 |#1| "failed") |#1|) 23)) (-1545 (((-3 |#1| "failed") |#1|) 11)))
+(((-973 |#1|) (-139) (-1185)) (T -973))
+((-3598 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-3589 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-3580 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-3571 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-3561 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-3551 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-3538 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-3527 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-3518 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-3509 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-3500 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-3491 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-3484 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-3474 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-3463 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-1556 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-1545 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-1535 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-1526 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-1514 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-1503 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-1493 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-1485 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-1476 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-1463 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-1453 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-1441 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-762)) (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
+(-13 (-10 -7 (-15 -1441 ((-3 |t#1| "failed") |t#1| (-762))) (-15 -1453 ((-3 |t#1| "failed") |t#1|)) (-15 -1463 ((-3 |t#1| "failed") |t#1|)) (-15 -1476 ((-3 |t#1| "failed") |t#1|)) (-15 -1485 ((-3 |t#1| "failed") |t#1|)) (-15 -1493 ((-3 |t#1| "failed") |t#1|)) (-15 -1503 ((-3 |t#1| "failed") |t#1|)) (-15 -1514 ((-3 |t#1| "failed") |t#1|)) (-15 -1526 ((-3 |t#1| "failed") |t#1|)) (-15 -1535 ((-3 |t#1| "failed") |t#1|)) (-15 -1545 ((-3 |t#1| "failed") |t#1|)) (-15 -1556 ((-3 |t#1| "failed") |t#1|)) (-15 -3463 ((-3 |t#1| "failed") |t#1|)) (-15 -3474 ((-3 |t#1| "failed") |t#1|)) (-15 -3484 ((-3 |t#1| "failed") |t#1|)) (-15 -3491 ((-3 |t#1| "failed") |t#1|)) (-15 -3500 ((-3 |t#1| "failed") |t#1|)) (-15 -3509 ((-3 |t#1| "failed") |t#1|)) (-15 -3518 ((-3 |t#1| "failed") |t#1|)) (-15 -3527 ((-3 |t#1| "failed") |t#1|)) (-15 -3538 ((-3 |t#1| "failed") |t#1|)) (-15 -3551 ((-3 |t#1| "failed") |t#1|)) (-15 -3561 ((-3 |t#1| "failed") |t#1|)) (-15 -3571 ((-3 |t#1| "failed") |t#1|)) (-15 -3580 ((-3 |t#1| "failed") |t#1|)) (-15 -3589 ((-3 |t#1| "failed") |t#1|)) (-15 -3598 ((-3 |t#1| "failed") |t#1|))))
+((-3618 ((|#4| |#4| (-635 |#3|)) 55) ((|#4| |#4| |#3|) 54)) (-3608 ((|#4| |#4| (-635 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-3167 ((|#4| (-1 |#4| (-942 |#1|)) |#4|) 30)))
+(((-974 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3608 (|#4| |#4| |#3|)) (-15 -3608 (|#4| |#4| (-635 |#3|))) (-15 -3618 (|#4| |#4| |#3|)) (-15 -3618 (|#4| |#4| (-635 |#3|))) (-15 -3167 (|#4| (-1 |#4| (-942 |#1|)) |#4|))) (-1039) (-784) (-13 (-841) (-10 -8 (-15 -3224 ((-1163) $)) (-15 -1602 ((-3 $ "failed") (-1163))))) (-939 (-942 |#1|) |#2| |#3|)) (T -974))
+((-3167 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-942 *4))) (-4 *4 (-1039)) (-4 *2 (-939 (-942 *4) *5 *6)) (-4 *5 (-784)) (-4 *6 (-13 (-841) (-10 -8 (-15 -3224 ((-1163) $)) (-15 -1602 ((-3 $ "failed") (-1163)))))) (-5 *1 (-974 *4 *5 *6 *2)))) (-3618 (*1 *2 *2 *3) (-12 (-5 *3 (-635 *6)) (-4 *6 (-13 (-841) (-10 -8 (-15 -3224 ((-1163) $)) (-15 -1602 ((-3 $ "failed") (-1163)))))) (-4 *4 (-1039)) (-4 *5 (-784)) (-5 *1 (-974 *4 *5 *6 *2)) (-4 *2 (-939 (-942 *4) *5 *6)))) (-3618 (*1 *2 *2 *3) (-12 (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *3 (-13 (-841) (-10 -8 (-15 -3224 ((-1163) $)) (-15 -1602 ((-3 $ "failed") (-1163)))))) (-5 *1 (-974 *4 *5 *3 *2)) (-4 *2 (-939 (-942 *4) *5 *3)))) (-3608 (*1 *2 *2 *3) (-12 (-5 *3 (-635 *6)) (-4 *6 (-13 (-841) (-10 -8 (-15 -3224 ((-1163) $)) (-15 -1602 ((-3 $ "failed") (-1163)))))) (-4 *4 (-1039)) (-4 *5 (-784)) (-5 *1 (-974 *4 *5 *6 *2)) (-4 *2 (-939 (-942 *4) *5 *6)))) (-3608 (*1 *2 *2 *3) (-12 (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *3 (-13 (-841) (-10 -8 (-15 -3224 ((-1163) $)) (-15 -1602 ((-3 $ "failed") (-1163)))))) (-5 *1 (-974 *4 *5 *3 *2)) (-4 *2 (-939 (-942 *4) *5 *3)))))
+(-10 -7 (-15 -3608 (|#4| |#4| |#3|)) (-15 -3608 (|#4| |#4| (-635 |#3|))) (-15 -3618 (|#4| |#4| |#3|)) (-15 -3618 (|#4| |#4| (-635 |#3|))) (-15 -3167 (|#4| (-1 |#4| (-942 |#1|)) |#4|)))
+((-3627 ((|#2| |#3|) 35)) (-2233 (((-2 (|:| -2660 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))) |#2|) 73)) (-2224 (((-2 (|:| -2660 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|)))) 89)))
+(((-975 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2224 ((-2 (|:| -2660 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))))) (-15 -2233 ((-2 (|:| -2660 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))) |#2|)) (-15 -3627 (|#2| |#3|))) (-348) (-1222 |#1|) (-1222 |#2|) (-715 |#2| |#3|)) (T -975))
+((-3627 (*1 *2 *3) (-12 (-4 *3 (-1222 *2)) (-4 *2 (-1222 *4)) (-5 *1 (-975 *4 *2 *3 *5)) (-4 *4 (-348)) (-4 *5 (-715 *2 *3)))) (-2233 (*1 *2 *3) (-12 (-4 *4 (-348)) (-4 *3 (-1222 *4)) (-4 *5 (-1222 *3)) (-5 *2 (-2 (|:| -2660 (-679 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-679 *3)))) (-5 *1 (-975 *4 *3 *5 *6)) (-4 *6 (-715 *3 *5)))) (-2224 (*1 *2) (-12 (-4 *3 (-348)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 *4)) (-5 *2 (-2 (|:| -2660 (-679 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-679 *4)))) (-5 *1 (-975 *3 *4 *5 *6)) (-4 *6 (-715 *4 *5)))))
+(-10 -7 (-15 -2224 ((-2 (|:| -2660 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))))) (-15 -2233 ((-2 (|:| -2660 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))) |#2|)) (-15 -3627 (|#2| |#3|)))
+((-3685 (((-977 (-406 (-558)) (-855 |#1|) (-239 |#2| (-762)) (-246 |#1| (-406 (-558)))) (-977 (-406 (-558)) (-855 |#1|) (-239 |#2| (-762)) (-246 |#1| (-406 (-558))))) 68)))
+(((-976 |#1| |#2|) (-10 -7 (-15 -3685 ((-977 (-406 (-558)) (-855 |#1|) (-239 |#2| (-762)) (-246 |#1| (-406 (-558)))) (-977 (-406 (-558)) (-855 |#1|) (-239 |#2| (-762)) (-246 |#1| (-406 (-558))))))) (-635 (-1163)) (-762)) (T -976))
+((-3685 (*1 *2 *2) (-12 (-5 *2 (-977 (-406 (-558)) (-855 *3) (-239 *4 (-762)) (-246 *3 (-406 (-558))))) (-14 *3 (-635 (-1163))) (-14 *4 (-762)) (-5 *1 (-976 *3 *4)))))
+(-10 -7 (-15 -3685 ((-977 (-406 (-558)) (-855 |#1|) (-239 |#2| (-762)) (-246 |#1| (-406 (-558)))) (-977 (-406 (-558)) (-855 |#1|) (-239 |#2| (-762)) (-246 |#1| (-406 (-558)))))))
+((-3207 (((-112) $ $) NIL)) (-1385 (((-3 (-112) "failed") $) 69)) (-1567 (($ $) 36 (-12 (|has| |#1| (-146)) (|has| |#1| (-306))))) (-3665 (($ $ (-3 (-112) "failed")) 70)) (-3676 (($ (-635 |#4|) |#4|) 25)) (-4310 (((-1145) $) NIL)) (-3636 (($ $) 67)) (-2975 (((-1107) $) NIL)) (-3375 (((-112) $) 68)) (-2083 (($) 30)) (-3645 ((|#4| $) 72)) (-3656 (((-635 |#4|) $) 71)) (-3220 (((-853) $) 66)) (-1683 (((-112) $ $) NIL)))
+(((-977 |#1| |#2| |#3| |#4|) (-13 (-1087) (-605 (-853)) (-10 -8 (-15 -2083 ($)) (-15 -3676 ($ (-635 |#4|) |#4|)) (-15 -1385 ((-3 (-112) "failed") $)) (-15 -3665 ($ $ (-3 (-112) "failed"))) (-15 -3375 ((-112) $)) (-15 -3656 ((-635 |#4|) $)) (-15 -3645 (|#4| $)) (-15 -3636 ($ $)) (IF (|has| |#1| (-306)) (IF (|has| |#1| (-146)) (-15 -1567 ($ $)) |%noBranch|) |%noBranch|))) (-450) (-841) (-784) (-939 |#1| |#3| |#2|)) (T -977))
+((-2083 (*1 *1) (-12 (-4 *2 (-450)) (-4 *3 (-841)) (-4 *4 (-784)) (-5 *1 (-977 *2 *3 *4 *5)) (-4 *5 (-939 *2 *4 *3)))) (-3676 (*1 *1 *2 *3) (-12 (-5 *2 (-635 *3)) (-4 *3 (-939 *4 *6 *5)) (-4 *4 (-450)) (-4 *5 (-841)) (-4 *6 (-784)) (-5 *1 (-977 *4 *5 *6 *3)))) (-1385 (*1 *2 *1) (|partial| -12 (-4 *3 (-450)) (-4 *4 (-841)) (-4 *5 (-784)) (-5 *2 (-112)) (-5 *1 (-977 *3 *4 *5 *6)) (-4 *6 (-939 *3 *5 *4)))) (-3665 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-450)) (-4 *4 (-841)) (-4 *5 (-784)) (-5 *1 (-977 *3 *4 *5 *6)) (-4 *6 (-939 *3 *5 *4)))) (-3375 (*1 *2 *1) (-12 (-4 *3 (-450)) (-4 *4 (-841)) (-4 *5 (-784)) (-5 *2 (-112)) (-5 *1 (-977 *3 *4 *5 *6)) (-4 *6 (-939 *3 *5 *4)))) (-3656 (*1 *2 *1) (-12 (-4 *3 (-450)) (-4 *4 (-841)) (-4 *5 (-784)) (-5 *2 (-635 *6)) (-5 *1 (-977 *3 *4 *5 *6)) (-4 *6 (-939 *3 *5 *4)))) (-3645 (*1 *2 *1) (-12 (-4 *2 (-939 *3 *5 *4)) (-5 *1 (-977 *3 *4 *5 *2)) (-4 *3 (-450)) (-4 *4 (-841)) (-4 *5 (-784)))) (-3636 (*1 *1 *1) (-12 (-4 *2 (-450)) (-4 *3 (-841)) (-4 *4 (-784)) (-5 *1 (-977 *2 *3 *4 *5)) (-4 *5 (-939 *2 *4 *3)))) (-1567 (*1 *1 *1) (-12 (-4 *2 (-146)) (-4 *2 (-306)) (-4 *2 (-450)) (-4 *3 (-841)) (-4 *4 (-784)) (-5 *1 (-977 *2 *3 *4 *5)) (-4 *5 (-939 *2 *4 *3)))))
+(-13 (-1087) (-605 (-853)) (-10 -8 (-15 -2083 ($)) (-15 -3676 ($ (-635 |#4|) |#4|)) (-15 -1385 ((-3 (-112) "failed") $)) (-15 -3665 ($ $ (-3 (-112) "failed"))) (-15 -3375 ((-112) $)) (-15 -3656 ((-635 |#4|) $)) (-15 -3645 (|#4| $)) (-15 -3636 ($ $)) (IF (|has| |#1| (-306)) (IF (|has| |#1| (-146)) (-15 -1567 ($ $)) |%noBranch|) |%noBranch|)))
+((-1425 (((-112) |#5| |#5|) 37)) (-1459 (((-112) |#5| |#5|) 51)) (-1510 (((-112) |#5| (-635 |#5|)) 73) (((-112) |#5| |#5|) 60)) (-1471 (((-112) (-635 |#4|) (-635 |#4|)) 57)) (-1531 (((-112) (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|)) (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))) 62)) (-1414 (((-1251)) 33)) (-1402 (((-1251) (-1145) (-1145) (-1145)) 29)) (-1522 (((-635 |#5|) (-635 |#5|)) 80)) (-1542 (((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|)))) 78)) (-1552 (((-635 (-2 (|:| -2477 (-635 |#4|)) (|:| -2396 |#5|) (|:| |ineq| (-635 |#4|)))) (-635 |#4|) (-635 |#5|) (-112) (-112)) 100)) (-1448 (((-112) |#5| |#5|) 46)) (-1500 (((-3 (-112) "failed") |#5| |#5|) 70)) (-1482 (((-112) (-635 |#4|) (-635 |#4|)) 56)) (-1491 (((-112) (-635 |#4|) (-635 |#4|)) 58)) (-3953 (((-112) (-635 |#4|) (-635 |#4|)) 59)) (-1563 (((-3 (-2 (|:| -2477 (-635 |#4|)) (|:| -2396 |#5|) (|:| |ineq| (-635 |#4|))) "failed") (-635 |#4|) |#5| (-635 |#4|) (-112) (-112) (-112) (-112) (-112)) 96)) (-1436 (((-635 |#5|) (-635 |#5|)) 42)))
+(((-978 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1402 ((-1251) (-1145) (-1145) (-1145))) (-15 -1414 ((-1251))) (-15 -1425 ((-112) |#5| |#5|)) (-15 -1436 ((-635 |#5|) (-635 |#5|))) (-15 -1448 ((-112) |#5| |#5|)) (-15 -1459 ((-112) |#5| |#5|)) (-15 -1471 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -1482 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -1491 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -3953 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -1500 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1510 ((-112) |#5| |#5|)) (-15 -1510 ((-112) |#5| (-635 |#5|))) (-15 -1522 ((-635 |#5|) (-635 |#5|))) (-15 -1531 ((-112) (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|)) (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|)))) (-15 -1542 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) (-15 -1552 ((-635 (-2 (|:| -2477 (-635 |#4|)) (|:| -2396 |#5|) (|:| |ineq| (-635 |#4|)))) (-635 |#4|) (-635 |#5|) (-112) (-112))) (-15 -1563 ((-3 (-2 (|:| -2477 (-635 |#4|)) (|:| -2396 |#5|) (|:| |ineq| (-635 |#4|))) "failed") (-635 |#4|) |#5| (-635 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-450) (-784) (-841) (-1053 |#1| |#2| |#3|) (-1059 |#1| |#2| |#3| |#4|)) (T -978))
+((-1563 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841)) (-4 *9 (-1053 *6 *7 *8)) (-5 *2 (-2 (|:| -2477 (-635 *9)) (|:| -2396 *4) (|:| |ineq| (-635 *9)))) (-5 *1 (-978 *6 *7 *8 *9 *4)) (-5 *3 (-635 *9)) (-4 *4 (-1059 *6 *7 *8 *9)))) (-1552 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-635 *10)) (-5 *5 (-112)) (-4 *10 (-1059 *6 *7 *8 *9)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841)) (-4 *9 (-1053 *6 *7 *8)) (-5 *2 (-635 (-2 (|:| -2477 (-635 *9)) (|:| -2396 *10) (|:| |ineq| (-635 *9))))) (-5 *1 (-978 *6 *7 *8 *9 *10)) (-5 *3 (-635 *9)))) (-1542 (*1 *2 *2) (-12 (-5 *2 (-635 (-2 (|:| |val| (-635 *6)) (|:| -2396 *7)))) (-4 *6 (-1053 *3 *4 *5)) (-4 *7 (-1059 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-978 *3 *4 *5 *6 *7)))) (-1531 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-635 *7)) (|:| -2396 *8))) (-4 *7 (-1053 *4 *5 *6)) (-4 *8 (-1059 *4 *5 *6 *7)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112)) (-5 *1 (-978 *4 *5 *6 *7 *8)))) (-1522 (*1 *2 *2) (-12 (-5 *2 (-635 *7)) (-4 *7 (-1059 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *1 (-978 *3 *4 *5 *6 *7)))) (-1510 (*1 *2 *3 *4) (-12 (-5 *4 (-635 *3)) (-4 *3 (-1059 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *8 (-1053 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-978 *5 *6 *7 *8 *3)))) (-1510 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-978 *4 *5 *6 *7 *3)) (-4 *3 (-1059 *4 *5 *6 *7)))) (-1500 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-978 *4 *5 *6 *7 *3)) (-4 *3 (-1059 *4 *5 *6 *7)))) (-3953 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112)) (-5 *1 (-978 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7)))) (-1491 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112)) (-5 *1 (-978 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7)))) (-1482 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112)) (-5 *1 (-978 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7)))) (-1471 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112)) (-5 *1 (-978 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7)))) (-1459 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-978 *4 *5 *6 *7 *3)) (-4 *3 (-1059 *4 *5 *6 *7)))) (-1448 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-978 *4 *5 *6 *7 *3)) (-4 *3 (-1059 *4 *5 *6 *7)))) (-1436 (*1 *2 *2) (-12 (-5 *2 (-635 *7)) (-4 *7 (-1059 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *1 (-978 *3 *4 *5 *6 *7)))) (-1425 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-978 *4 *5 *6 *7 *3)) (-4 *3 (-1059 *4 *5 *6 *7)))) (-1414 (*1 *2) (-12 (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-1251)) (-5 *1 (-978 *3 *4 *5 *6 *7)) (-4 *7 (-1059 *3 *4 *5 *6)))) (-1402 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1145)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-1251)) (-5 *1 (-978 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7)))))
+(-10 -7 (-15 -1402 ((-1251) (-1145) (-1145) (-1145))) (-15 -1414 ((-1251))) (-15 -1425 ((-112) |#5| |#5|)) (-15 -1436 ((-635 |#5|) (-635 |#5|))) (-15 -1448 ((-112) |#5| |#5|)) (-15 -1459 ((-112) |#5| |#5|)) (-15 -1471 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -1482 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -1491 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -3953 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -1500 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1510 ((-112) |#5| |#5|)) (-15 -1510 ((-112) |#5| (-635 |#5|))) (-15 -1522 ((-635 |#5|) (-635 |#5|))) (-15 -1531 ((-112) (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|)) (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|)))) (-15 -1542 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) (-15 -1552 ((-635 (-2 (|:| -2477 (-635 |#4|)) (|:| -2396 |#5|) (|:| |ineq| (-635 |#4|)))) (-635 |#4|) (-635 |#5|) (-112) (-112))) (-15 -1563 ((-3 (-2 (|:| -2477 (-635 |#4|)) (|:| -2396 |#5|) (|:| |ineq| (-635 |#4|))) "failed") (-635 |#4|) |#5| (-635 |#4|) (-112) (-112) (-112) (-112) (-112))))
+((-1602 (((-1163) $) 15)) (-2925 (((-1145) $) 16)) (-2176 (($ (-1163) (-1145)) 14)) (-3220 (((-853) $) 13)))
+(((-979) (-13 (-605 (-853)) (-10 -8 (-15 -2176 ($ (-1163) (-1145))) (-15 -1602 ((-1163) $)) (-15 -2925 ((-1145) $))))) (T -979))
+((-2176 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-1145)) (-5 *1 (-979)))) (-1602 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-979)))) (-2925 (*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-979)))))
+(-13 (-605 (-853)) (-10 -8 (-15 -2176 ($ (-1163) (-1145))) (-15 -1602 ((-1163) $)) (-15 -2925 ((-1145) $))))
+((-3167 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
+(((-980 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3167 (|#4| (-1 |#2| |#1|) |#3|))) (-550) (-550) (-982 |#1|) (-982 |#2|)) (T -980))
+((-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-550)) (-4 *6 (-550)) (-4 *2 (-982 *6)) (-5 *1 (-980 *5 *6 *4 *2)) (-4 *4 (-982 *5)))))
+(-10 -7 (-15 -3167 (|#4| (-1 |#2| |#1|) |#3|)))
+((-3069 (((-3 |#2| "failed") $) NIL) (((-3 (-1163) "failed") $) 65) (((-3 (-406 (-558)) "failed") $) NIL) (((-3 (-558) "failed") $) 95)) (-1863 ((|#2| $) NIL) (((-1163) $) 60) (((-406 (-558)) $) NIL) (((-558) $) 92)) (-3216 (((-679 (-558)) (-679 $)) NIL) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL) (((-2 (|:| -3683 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 $) (-1246 $)) 112) (((-679 |#2|) (-679 $)) 28)) (-2424 (($) 98)) (-2269 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) 75) (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) 84)) (-3704 (($ $) 10)) (-2457 (((-3 $ "failed") $) 20)) (-3167 (($ (-1 |#2| |#2|) $) 22)) (-1796 (($) 16)) (-2568 (($ $) 54)) (-2829 (($ $) NIL) (($ $ (-762)) NIL) (($ $ (-1163)) NIL) (($ $ (-635 (-1163))) NIL) (($ $ (-1163) (-762)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL) (($ $ (-1 |#2| |#2|) (-762)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-3694 (($ $) 12)) (-3224 (((-882 (-558)) $) 70) (((-882 (-378)) $) 79) (((-534) $) 40) (((-378) $) 44) (((-224) $) 47)) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL) (($ (-406 (-558))) 90) (($ |#2|) NIL) (($ (-1163)) 57)) (-2542 (((-762)) 31)) (-1705 (((-112) $ $) 50)))
+(((-981 |#1| |#2|) (-10 -8 (-15 -1705 ((-112) |#1| |#1|)) (-15 -1796 (|#1|)) (-15 -2457 ((-3 |#1| "failed") |#1|)) (-15 -3069 ((-3 (-558) "failed") |#1|)) (-15 -1863 ((-558) |#1|)) (-15 -3069 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -1863 ((-406 (-558)) |#1|)) (-15 -3224 ((-224) |#1|)) (-15 -3224 ((-378) |#1|)) (-15 -3224 ((-534) |#1|)) (-15 -3220 (|#1| (-1163))) (-15 -3069 ((-3 (-1163) "failed") |#1|)) (-15 -1863 ((-1163) |#1|)) (-15 -2424 (|#1|)) (-15 -2568 (|#1| |#1|)) (-15 -3694 (|#1| |#1|)) (-15 -3704 (|#1| |#1|)) (-15 -2269 ((-879 (-378) |#1|) |#1| (-882 (-378)) (-879 (-378) |#1|))) (-15 -2269 ((-879 (-558) |#1|) |#1| (-882 (-558)) (-879 (-558) |#1|))) (-15 -3224 ((-882 (-378)) |#1|)) (-15 -3224 ((-882 (-558)) |#1|)) (-15 -3216 ((-679 |#2|) (-679 |#1|))) (-15 -3216 ((-2 (|:| -3683 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 |#1|) (-1246 |#1|))) (-15 -3216 ((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 |#1|) (-1246 |#1|))) (-15 -3216 ((-679 (-558)) (-679 |#1|))) (-15 -2829 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2829 (|#1| |#1| (-1 |#2| |#2|) (-762))) (-15 -2829 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 -2829 (|#1| |#1| (-1163) (-762))) (-15 -2829 (|#1| |#1| (-635 (-1163)))) (-15 -2829 (|#1| |#1| (-1163))) (-15 -2829 (|#1| |#1| (-762))) (-15 -2829 (|#1| |#1|)) (-15 -3167 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3069 ((-3 |#2| "failed") |#1|)) (-15 -1863 (|#2| |#1|)) (-15 -3220 (|#1| |#2|)) (-15 -3220 (|#1| (-406 (-558)))) (-15 -3220 (|#1| |#1|)) (-15 -2542 ((-762))) (-15 -3220 (|#1| (-558))) (-15 -3220 ((-853) |#1|))) (-982 |#2|) (-550)) (T -981))
+((-2542 (*1 *2) (-12 (-4 *4 (-550)) (-5 *2 (-762)) (-5 *1 (-981 *3 *4)) (-4 *3 (-982 *4)))))
+(-10 -8 (-15 -1705 ((-112) |#1| |#1|)) (-15 -1796 (|#1|)) (-15 -2457 ((-3 |#1| "failed") |#1|)) (-15 -3069 ((-3 (-558) "failed") |#1|)) (-15 -1863 ((-558) |#1|)) (-15 -3069 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -1863 ((-406 (-558)) |#1|)) (-15 -3224 ((-224) |#1|)) (-15 -3224 ((-378) |#1|)) (-15 -3224 ((-534) |#1|)) (-15 -3220 (|#1| (-1163))) (-15 -3069 ((-3 (-1163) "failed") |#1|)) (-15 -1863 ((-1163) |#1|)) (-15 -2424 (|#1|)) (-15 -2568 (|#1| |#1|)) (-15 -3694 (|#1| |#1|)) (-15 -3704 (|#1| |#1|)) (-15 -2269 ((-879 (-378) |#1|) |#1| (-882 (-378)) (-879 (-378) |#1|))) (-15 -2269 ((-879 (-558) |#1|) |#1| (-882 (-558)) (-879 (-558) |#1|))) (-15 -3224 ((-882 (-378)) |#1|)) (-15 -3224 ((-882 (-558)) |#1|)) (-15 -3216 ((-679 |#2|) (-679 |#1|))) (-15 -3216 ((-2 (|:| -3683 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 |#1|) (-1246 |#1|))) (-15 -3216 ((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 |#1|) (-1246 |#1|))) (-15 -3216 ((-679 (-558)) (-679 |#1|))) (-15 -2829 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2829 (|#1| |#1| (-1 |#2| |#2|) (-762))) (-15 -2829 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 -2829 (|#1| |#1| (-1163) (-762))) (-15 -2829 (|#1| |#1| (-635 (-1163)))) (-15 -2829 (|#1| |#1| (-1163))) (-15 -2829 (|#1| |#1| (-762))) (-15 -2829 (|#1| |#1|)) (-15 -3167 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3069 ((-3 |#2| "failed") |#1|)) (-15 -1863 (|#2| |#1|)) (-15 -3220 (|#1| |#2|)) (-15 -3220 (|#1| (-406 (-558)))) (-15 -3220 (|#1| |#1|)) (-15 -2542 ((-762))) (-15 -3220 (|#1| (-558))) (-15 -3220 ((-853) |#1|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2582 ((|#1| $) 138 (|has| |#1| (-306)))) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 42)) (-1881 (($ $) 41)) (-1857 (((-112) $) 39)) (-2089 (((-3 $ "failed") $ $) 19)) (-3748 (((-417 (-1159 $)) (-1159 $)) 129 (|has| |#1| (-899)))) (-3465 (($ $) 74)) (-1380 (((-417 $) $) 73)) (-3719 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) 132 (|has| |#1| (-899)))) (-3732 (((-112) $ $) 60)) (-1397 (((-558) $) 119 (|has| |#1| (-811)))) (-1816 (($) 17 T CONST)) (-3069 (((-3 |#1| "failed") $) 176) (((-3 (-1163) "failed") $) 127 (|has| |#1| (-1028 (-1163)))) (((-3 (-406 (-558)) "failed") $) 110 (|has| |#1| (-1028 (-558)))) (((-3 (-558) "failed") $) 108 (|has| |#1| (-1028 (-558))))) (-1863 ((|#1| $) 177) (((-1163) $) 128 (|has| |#1| (-1028 (-1163)))) (((-406 (-558)) $) 111 (|has| |#1| (-1028 (-558)))) (((-558) $) 109 (|has| |#1| (-1028 (-558))))) (-4025 (($ $ $) 56)) (-3216 (((-679 (-558)) (-679 $)) 151 (|has| |#1| (-631 (-558)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) 150 (|has| |#1| (-631 (-558)))) (((-2 (|:| -3683 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) 149) (((-679 |#1|) (-679 $)) 148)) (-2588 (((-3 $ "failed") $) 33)) (-2424 (($) 136 (|has| |#1| (-543)))) (-4004 (($ $ $) 57)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) 52)) (-3031 (((-112) $) 72)) (-2045 (((-112) $) 121 (|has| |#1| (-811)))) (-2269 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) 145 (|has| |#1| (-876 (-558)))) (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) 144 (|has| |#1| (-876 (-378))))) (-2035 (((-112) $) 31)) (-3704 (($ $) 140)) (-1874 ((|#1| $) 142)) (-2457 (((-3 $ "failed") $) 107 (|has| |#1| (-1138)))) (-2055 (((-112) $) 120 (|has| |#1| (-811)))) (-3701 (((-3 (-635 $) "failed") (-635 $) $) 53)) (-3910 (($ $ $) 117 (|has| |#1| (-841)))) (-3542 (($ $ $) 116 (|has| |#1| (-841)))) (-3167 (($ (-1 |#1| |#1|) $) 168)) (-2665 (($ $ $) 47) (($ (-635 $)) 46)) (-4310 (((-1145) $) 9)) (-2418 (($ $) 71)) (-1796 (($) 106 (|has| |#1| (-1138)) CONST)) (-2975 (((-1107) $) 10)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) 45)) (-2699 (($ $ $) 49) (($ (-635 $)) 48)) (-2568 (($ $) 137 (|has| |#1| (-306)))) (-2594 ((|#1| $) 134 (|has| |#1| (-543)))) (-3728 (((-417 (-1159 $)) (-1159 $)) 131 (|has| |#1| (-899)))) (-3738 (((-417 (-1159 $)) (-1159 $)) 130 (|has| |#1| (-899)))) (-2522 (((-417 $) $) 75)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3983 (((-3 $ "failed") $ $) 43)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-2554 (($ $ (-635 |#1|) (-635 |#1|)) 174 (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) 173 (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) 172 (|has| |#1| (-308 |#1|))) (($ $ (-635 (-293 |#1|))) 171 (|has| |#1| (-308 |#1|))) (($ $ (-635 (-1163)) (-635 |#1|)) 170 (|has| |#1| (-512 (-1163) |#1|))) (($ $ (-1163) |#1|) 169 (|has| |#1| (-512 (-1163) |#1|)))) (-3722 (((-762) $) 59)) (-2195 (($ $ |#1|) 175 (|has| |#1| (-285 |#1| |#1|)))) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 58)) (-2829 (($ $) 167 (|has| |#1| (-232))) (($ $ (-762)) 165 (|has| |#1| (-232))) (($ $ (-1163)) 163 (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) 162 (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) 161 (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) 160 (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-3694 (($ $) 139)) (-1885 ((|#1| $) 141)) (-3224 (((-882 (-558)) $) 147 (|has| |#1| (-606 (-882 (-558))))) (((-882 (-378)) $) 146 (|has| |#1| (-606 (-882 (-378))))) (((-534) $) 124 (|has| |#1| (-606 (-534)))) (((-378) $) 123 (|has| |#1| (-1012))) (((-224) $) 122 (|has| |#1| (-1012)))) (-3709 (((-3 (-1246 $) "failed") (-679 $)) 133 (-2084 (|has| $ (-144)) (|has| |#1| (-899))))) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ $) 44) (($ (-406 (-558))) 67) (($ |#1|) 180) (($ (-1163)) 126 (|has| |#1| (-1028 (-1163))))) (-3698 (((-3 $ "failed") $) 125 (-3998 (|has| |#1| (-144)) (-2084 (|has| $ (-144)) (|has| |#1| (-899)))))) (-2542 (((-762)) 28)) (-2604 ((|#1| $) 135 (|has| |#1| (-543)))) (-1870 (((-112) $ $) 40)) (-3190 (($ $) 118 (|has| |#1| (-811)))) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1866 (($ $) 166 (|has| |#1| (-232))) (($ $ (-762)) 164 (|has| |#1| (-232))) (($ $ (-1163)) 159 (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) 158 (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) 157 (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) 156 (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) 155) (($ $ (-1 |#1| |#1|)) 154)) (-1747 (((-112) $ $) 114 (|has| |#1| (-841)))) (-1720 (((-112) $ $) 113 (|has| |#1| (-841)))) (-1683 (((-112) $ $) 6)) (-1731 (((-112) $ $) 115 (|has| |#1| (-841)))) (-1705 (((-112) $ $) 112 (|has| |#1| (-841)))) (-1810 (($ $ $) 66) (($ |#1| |#1|) 143)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ (-558)) 70)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ (-406 (-558))) 69) (($ (-406 (-558)) $) 68) (($ |#1| $) 179) (($ $ |#1|) 178)))
+(((-982 |#1|) (-139) (-550)) (T -982))
+((-1810 (*1 *1 *2 *2) (-12 (-4 *1 (-982 *2)) (-4 *2 (-550)))) (-1874 (*1 *2 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-550)))) (-1885 (*1 *2 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-550)))) (-3704 (*1 *1 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-550)))) (-3694 (*1 *1 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-550)))) (-2582 (*1 *2 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-550)) (-4 *2 (-306)))) (-2568 (*1 *1 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-550)) (-4 *2 (-306)))) (-2424 (*1 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-543)) (-4 *2 (-550)))) (-2604 (*1 *2 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-550)) (-4 *2 (-543)))) (-2594 (*1 *2 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-550)) (-4 *2 (-543)))))
+(-13 (-362) (-38 |t#1|) (-1028 |t#1|) (-337 |t#1|) (-230 |t#1|) (-376 |t#1|) (-874 |t#1|) (-399 |t#1|) (-10 -8 (-15 -1810 ($ |t#1| |t#1|)) (-15 -1874 (|t#1| $)) (-15 -1885 (|t#1| $)) (-15 -3704 ($ $)) (-15 -3694 ($ $)) (IF (|has| |t#1| (-1138)) (-6 (-1138)) |%noBranch|) (IF (|has| |t#1| (-1028 (-558))) (PROGN (-6 (-1028 (-558))) (-6 (-1028 (-406 (-558))))) |%noBranch|) (IF (|has| |t#1| (-841)) (-6 (-841)) |%noBranch|) (IF (|has| |t#1| (-811)) (-6 (-811)) |%noBranch|) (IF (|has| |t#1| (-1012)) (-6 (-1012)) |%noBranch|) (IF (|has| |t#1| (-606 (-534))) (-6 (-606 (-534))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-1028 (-1163))) (-6 (-1028 (-1163))) |%noBranch|) (IF (|has| |t#1| (-306)) (PROGN (-15 -2582 (|t#1| $)) (-15 -2568 ($ $))) |%noBranch|) (IF (|has| |t#1| (-543)) (PROGN (-15 -2424 ($)) (-15 -2604 (|t#1| $)) (-15 -2594 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-899)) (-6 (-899)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-558))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-608 #0#) . T) ((-608 (-558)) . T) ((-608 #1=(-1163)) |has| |#1| (-1028 (-1163))) ((-608 |#1|) . T) ((-608 $) . T) ((-605 (-853)) . T) ((-171) . T) ((-606 (-224)) |has| |#1| (-1012)) ((-606 (-378)) |has| |#1| (-1012)) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-606 (-882 (-378))) |has| |#1| (-606 (-882 (-378)))) ((-606 (-882 (-558))) |has| |#1| (-606 (-882 (-558)))) ((-230 |#1|) . T) ((-232) |has| |#1| (-232)) ((-242) . T) ((-285 |#1| $) |has| |#1| (-285 |#1| |#1|)) ((-289) . T) ((-306) . T) ((-308 |#1|) |has| |#1| (-308 |#1|)) ((-362) . T) ((-337 |#1|) . T) ((-376 |#1|) . T) ((-399 |#1|) . T) ((-450) . T) ((-512 (-1163) |#1|) |has| |#1| (-512 (-1163) |#1|)) ((-512 |#1| |#1|) |has| |#1| (-308 |#1|)) ((-550) . T) ((-638 #0#) . T) ((-638 |#1|) . T) ((-638 $) . T) ((-631 (-558)) |has| |#1| (-631 (-558))) ((-631 |#1|) . T) ((-708 #0#) . T) ((-708 |#1|) . T) ((-708 $) . T) ((-717) . T) ((-782) |has| |#1| (-811)) ((-783) |has| |#1| (-811)) ((-785) |has| |#1| (-811)) ((-786) |has| |#1| (-811)) ((-811) |has| |#1| (-811)) ((-839) |has| |#1| (-811)) ((-841) -3998 (|has| |#1| (-841)) (|has| |#1| (-811))) ((-890 (-1163)) |has| |#1| (-890 (-1163))) ((-876 (-378)) |has| |#1| (-876 (-378))) ((-876 (-558)) |has| |#1| (-876 (-558))) ((-874 |#1|) . T) ((-899) |has| |#1| (-899)) ((-910) . T) ((-1012) |has| |#1| (-1012)) ((-1028 (-406 (-558))) |has| |#1| (-1028 (-558))) ((-1028 (-558)) |has| |#1| (-1028 (-558))) ((-1028 #1#) |has| |#1| (-1028 (-1163))) ((-1028 |#1|) . T) ((-1045 #0#) . T) ((-1045 |#1|) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1138) |has| |#1| (-1138)) ((-1200) . T) ((-1204) . T))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-1816 (($) NIL T CONST)) (-3715 (($ (-1129 |#1| |#2|)) 11)) (-3181 (((-1129 |#1| |#2|) $) 12)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-2195 ((|#2| $ (-239 |#1| |#2|)) 16)) (-3220 (((-853) $) NIL)) (-2131 (($) NIL T CONST)) (-1683 (((-112) $ $) NIL)) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL)))
+(((-983 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -3715 ($ (-1129 |#1| |#2|))) (-15 -3181 ((-1129 |#1| |#2|) $)) (-15 -2195 (|#2| $ (-239 |#1| |#2|))))) (-911) (-362)) (T -983))
+((-3715 (*1 *1 *2) (-12 (-5 *2 (-1129 *3 *4)) (-14 *3 (-911)) (-4 *4 (-362)) (-5 *1 (-983 *3 *4)))) (-3181 (*1 *2 *1) (-12 (-5 *2 (-1129 *3 *4)) (-5 *1 (-983 *3 *4)) (-14 *3 (-911)) (-4 *4 (-362)))) (-2195 (*1 *2 *1 *3) (-12 (-5 *3 (-239 *4 *2)) (-14 *4 (-911)) (-4 *2 (-362)) (-5 *1 (-983 *4 *2)))))
+(-13 (-21) (-10 -8 (-15 -3715 ($ (-1129 |#1| |#2|))) (-15 -3181 ((-1129 |#1| |#2|) $)) (-15 -2195 (|#2| $ (-239 |#1| |#2|)))))
+((-3207 (((-112) $ $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3535 (((-1122) $) 9)) (-3220 (((-853) $) 17) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1683 (((-112) $ $) NIL)))
+(((-984) (-13 (-1070) (-10 -8 (-15 -3535 ((-1122) $))))) (T -984))
+((-3535 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-984)))))
+(-13 (-1070) (-10 -8 (-15 -3535 ((-1122) $))))
+((-3207 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-3026 (((-112) $ (-762)) 8)) (-1816 (($) 7 T CONST)) (-3743 (($ $) 46)) (-2240 (((-635 |#1|) $) 30 (|has| $ (-6 -4382)))) (-2986 (((-112) $ (-762)) 9)) (-2122 (((-635 |#1|) $) 29 (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1807 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) 35)) (-2953 (((-112) $ (-762)) 10)) (-2880 (((-762) $) 45)) (-4310 (((-1145) $) 22 (|has| |#1| (-1087)))) (-1722 ((|#1| $) 39)) (-4328 (($ |#1| $) 40)) (-2975 (((-1107) $) 21 (|has| |#1| (-1087)))) (-3734 ((|#1| $) 44)) (-3524 ((|#1| $) 41)) (-3266 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) 14)) (-3762 ((|#1| |#1| $) 48)) (-3375 (((-112) $) 11)) (-2083 (($) 12)) (-3753 ((|#1| $) 47)) (-2988 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4382))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1553 (($ $) 13)) (-3220 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-3534 (($ (-635 |#1|)) 42)) (-3724 ((|#1| $) 43)) (-3277 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-2755 (((-762) $) 6 (|has| $ (-6 -4382)))))
+(((-985 |#1|) (-139) (-1200)) (T -985))
+((-3762 (*1 *2 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-1200)))) (-3753 (*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-1200)))) (-3743 (*1 *1 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-1200)))) (-2880 (*1 *2 *1) (-12 (-4 *1 (-985 *3)) (-4 *3 (-1200)) (-5 *2 (-762)))) (-3734 (*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-1200)))) (-3724 (*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-1200)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4382) (-15 -3762 (|t#1| |t#1| $)) (-15 -3753 (|t#1| $)) (-15 -3743 ($ $)) (-15 -2880 ((-762) $)) (-15 -3734 (|t#1| $)) (-15 -3724 (|t#1| $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1087)) ((-605 (-853)) -3998 (|has| |#1| (-1087)) (|has| |#1| (-605 (-853)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-1087) |has| |#1| (-1087)) ((-1200) . T))
+((-2067 (((-112) $) 42)) (-3069 (((-3 (-558) "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-1863 (((-558) $) NIL) (((-406 (-558)) $) NIL) ((|#2| $) 43)) (-3962 (((-3 (-406 (-558)) "failed") $) 78)) (-3951 (((-112) $) 72)) (-3938 (((-406 (-558)) $) 76)) (-2035 (((-112) $) 41)) (-2615 ((|#2| $) 22)) (-3167 (($ (-1 |#2| |#2|) $) 19)) (-2418 (($ $) 61)) (-2829 (($ $) NIL) (($ $ (-762)) NIL) (($ $ (-1163)) NIL) (($ $ (-635 (-1163))) NIL) (($ $ (-1163) (-762)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL) (($ $ (-1 |#2| |#2|) (-762)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-3224 (((-534) $) 67)) (-3808 (($ $) 17)) (-3220 (((-853) $) 56) (($ (-558)) 38) (($ |#2|) 36) (($ (-406 (-558))) NIL)) (-2542 (((-762)) 10)) (-3190 ((|#2| $) 71)) (-1683 (((-112) $ $) 25)) (-1705 (((-112) $ $) 69)) (-1798 (($ $) 29) (($ $ $) 28)) (-1784 (($ $ $) 26)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL)))
+(((-986 |#1| |#2|) (-10 -8 (-15 -3220 (|#1| (-406 (-558)))) (-15 -1705 ((-112) |#1| |#1|)) (-15 * (|#1| (-406 (-558)) |#1|)) (-15 * (|#1| |#1| (-406 (-558)))) (-15 -2418 (|#1| |#1|)) (-15 -3224 ((-534) |#1|)) (-15 -3962 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -3938 ((-406 (-558)) |#1|)) (-15 -3951 ((-112) |#1|)) (-15 -3190 (|#2| |#1|)) (-15 -2615 (|#2| |#1|)) (-15 -3808 (|#1| |#1|)) (-15 -3167 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2829 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2829 (|#1| |#1| (-1 |#2| |#2|) (-762))) (-15 -2829 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 -2829 (|#1| |#1| (-1163) (-762))) (-15 -2829 (|#1| |#1| (-635 (-1163)))) (-15 -2829 (|#1| |#1| (-1163))) (-15 -2829 (|#1| |#1| (-762))) (-15 -2829 (|#1| |#1|)) (-15 -3069 ((-3 |#2| "failed") |#1|)) (-15 -1863 (|#2| |#1|)) (-15 -1863 ((-406 (-558)) |#1|)) (-15 -3069 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -1863 ((-558) |#1|)) (-15 -3069 ((-3 (-558) "failed") |#1|)) (-15 -3220 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2542 ((-762))) (-15 -3220 (|#1| (-558))) (-15 -2035 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 -1798 (|#1| |#1| |#1|)) (-15 -1798 (|#1| |#1|)) (-15 * (|#1| (-762) |#1|)) (-15 -2067 ((-112) |#1|)) (-15 * (|#1| (-911) |#1|)) (-15 -1784 (|#1| |#1| |#1|)) (-15 -3220 ((-853) |#1|)) (-15 -1683 ((-112) |#1| |#1|))) (-987 |#2|) (-171)) (T -986))
+((-2542 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-762)) (-5 *1 (-986 *3 *4)) (-4 *3 (-987 *4)))))
+(-10 -8 (-15 -3220 (|#1| (-406 (-558)))) (-15 -1705 ((-112) |#1| |#1|)) (-15 * (|#1| (-406 (-558)) |#1|)) (-15 * (|#1| |#1| (-406 (-558)))) (-15 -2418 (|#1| |#1|)) (-15 -3224 ((-534) |#1|)) (-15 -3962 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -3938 ((-406 (-558)) |#1|)) (-15 -3951 ((-112) |#1|)) (-15 -3190 (|#2| |#1|)) (-15 -2615 (|#2| |#1|)) (-15 -3808 (|#1| |#1|)) (-15 -3167 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2829 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2829 (|#1| |#1| (-1 |#2| |#2|) (-762))) (-15 -2829 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 -2829 (|#1| |#1| (-1163) (-762))) (-15 -2829 (|#1| |#1| (-635 (-1163)))) (-15 -2829 (|#1| |#1| (-1163))) (-15 -2829 (|#1| |#1| (-762))) (-15 -2829 (|#1| |#1|)) (-15 -3069 ((-3 |#2| "failed") |#1|)) (-15 -1863 (|#2| |#1|)) (-15 -1863 ((-406 (-558)) |#1|)) (-15 -3069 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -1863 ((-558) |#1|)) (-15 -3069 ((-3 (-558) "failed") |#1|)) (-15 -3220 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2542 ((-762))) (-15 -3220 (|#1| (-558))) (-15 -2035 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 -1798 (|#1| |#1| |#1|)) (-15 -1798 (|#1| |#1|)) (-15 * (|#1| (-762) |#1|)) (-15 -2067 ((-112) |#1|)) (-15 * (|#1| (-911) |#1|)) (-15 -1784 (|#1| |#1| |#1|)) (-15 -3220 ((-853) |#1|)) (-15 -1683 ((-112) |#1| |#1|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2089 (((-3 $ "failed") $ $) 19)) (-1816 (($) 17 T CONST)) (-3069 (((-3 (-558) "failed") $) 118 (|has| |#1| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) 116 (|has| |#1| (-1028 (-406 (-558))))) (((-3 |#1| "failed") $) 113)) (-1863 (((-558) $) 117 (|has| |#1| (-1028 (-558)))) (((-406 (-558)) $) 115 (|has| |#1| (-1028 (-406 (-558))))) ((|#1| $) 114)) (-3216 (((-679 (-558)) (-679 $)) 88 (|has| |#1| (-631 (-558)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) 87 (|has| |#1| (-631 (-558)))) (((-2 (|:| -3683 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) 86) (((-679 |#1|) (-679 $)) 85)) (-2588 (((-3 $ "failed") $) 33)) (-2546 ((|#1| $) 78)) (-3962 (((-3 (-406 (-558)) "failed") $) 74 (|has| |#1| (-543)))) (-3951 (((-112) $) 76 (|has| |#1| (-543)))) (-3938 (((-406 (-558)) $) 75 (|has| |#1| (-543)))) (-3771 (($ |#1| |#1| |#1| |#1|) 79)) (-2035 (((-112) $) 31)) (-2615 ((|#1| $) 80)) (-3910 (($ $ $) 67 (|has| |#1| (-841)))) (-3542 (($ $ $) 66 (|has| |#1| (-841)))) (-3167 (($ (-1 |#1| |#1|) $) 89)) (-4310 (((-1145) $) 9)) (-2418 (($ $) 71 (|has| |#1| (-362)))) (-3780 ((|#1| $) 81)) (-3790 ((|#1| $) 82)) (-3799 ((|#1| $) 83)) (-2975 (((-1107) $) 10)) (-2554 (($ $ (-635 |#1|) (-635 |#1|)) 95 (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) 94 (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) 93 (|has| |#1| (-308 |#1|))) (($ $ (-635 (-293 |#1|))) 92 (|has| |#1| (-308 |#1|))) (($ $ (-635 (-1163)) (-635 |#1|)) 91 (|has| |#1| (-512 (-1163) |#1|))) (($ $ (-1163) |#1|) 90 (|has| |#1| (-512 (-1163) |#1|)))) (-2195 (($ $ |#1|) 96 (|has| |#1| (-285 |#1| |#1|)))) (-2829 (($ $) 112 (|has| |#1| (-232))) (($ $ (-762)) 110 (|has| |#1| (-232))) (($ $ (-1163)) 108 (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) 107 (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) 106 (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) 105 (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) 98) (($ $ (-1 |#1| |#1|)) 97)) (-3224 (((-534) $) 72 (|has| |#1| (-606 (-534))))) (-3808 (($ $) 84)) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ |#1|) 38) (($ (-406 (-558))) 61 (-3998 (|has| |#1| (-362)) (|has| |#1| (-1028 (-406 (-558))))))) (-3698 (((-3 $ "failed") $) 73 (|has| |#1| (-144)))) (-2542 (((-762)) 28)) (-3190 ((|#1| $) 77 (|has| |#1| (-1048)))) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1866 (($ $) 111 (|has| |#1| (-232))) (($ $ (-762)) 109 (|has| |#1| (-232))) (($ $ (-1163)) 104 (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) 103 (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) 102 (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) 101 (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-1747 (((-112) $ $) 64 (|has| |#1| (-841)))) (-1720 (((-112) $ $) 63 (|has| |#1| (-841)))) (-1683 (((-112) $ $) 6)) (-1731 (((-112) $ $) 65 (|has| |#1| (-841)))) (-1705 (((-112) $ $) 62 (|has| |#1| (-841)))) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ (-558)) 70 (|has| |#1| (-362)))) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-406 (-558))) 69 (|has| |#1| (-362))) (($ (-406 (-558)) $) 68 (|has| |#1| (-362)))))
+(((-987 |#1|) (-139) (-171)) (T -987))
+((-3808 (*1 *1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-171)))) (-3799 (*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-171)))) (-3790 (*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-171)))) (-3780 (*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-171)))) (-2615 (*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-171)))) (-3771 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-987 *2)) (-4 *2 (-171)))) (-2546 (*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-171)))) (-3190 (*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-171)) (-4 *2 (-1048)))) (-3951 (*1 *2 *1) (-12 (-4 *1 (-987 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-112)))) (-3938 (*1 *2 *1) (-12 (-4 *1 (-987 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-406 (-558))))) (-3962 (*1 *2 *1) (|partial| -12 (-4 *1 (-987 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-406 (-558))))))
+(-13 (-38 |t#1|) (-410 |t#1|) (-230 |t#1|) (-337 |t#1|) (-376 |t#1|) (-10 -8 (-15 -3808 ($ $)) (-15 -3799 (|t#1| $)) (-15 -3790 (|t#1| $)) (-15 -3780 (|t#1| $)) (-15 -2615 (|t#1| $)) (-15 -3771 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -2546 (|t#1| $)) (IF (|has| |t#1| (-289)) (-6 (-289)) |%noBranch|) (IF (|has| |t#1| (-841)) (-6 (-841)) |%noBranch|) (IF (|has| |t#1| (-362)) (-6 (-242)) |%noBranch|) (IF (|has| |t#1| (-606 (-534))) (-6 (-606 (-534))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-1048)) (-15 -3190 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-543)) (PROGN (-15 -3951 ((-112) $)) (-15 -3938 ((-406 (-558)) $)) (-15 -3962 ((-3 (-406 (-558)) "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-558))) |has| |#1| (-362)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-362)) ((-111 |#1| |#1|) . T) ((-111 $ $) -3998 (|has| |#1| (-362)) (|has| |#1| (-289))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-608 #0#) -3998 (|has| |#1| (-1028 (-406 (-558)))) (|has| |#1| (-362))) ((-608 (-558)) . T) ((-608 |#1|) . T) ((-605 (-853)) . T) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-230 |#1|) . T) ((-232) |has| |#1| (-232)) ((-242) |has| |#1| (-362)) ((-285 |#1| $) |has| |#1| (-285 |#1| |#1|)) ((-289) -3998 (|has| |#1| (-362)) (|has| |#1| (-289))) ((-308 |#1|) |has| |#1| (-308 |#1|)) ((-337 |#1|) . T) ((-376 |#1|) . T) ((-410 |#1|) . T) ((-512 (-1163) |#1|) |has| |#1| (-512 (-1163) |#1|)) ((-512 |#1| |#1|) |has| |#1| (-308 |#1|)) ((-638 #0#) |has| |#1| (-362)) ((-638 |#1|) . T) ((-638 $) . T) ((-631 (-558)) |has| |#1| (-631 (-558))) ((-631 |#1|) . T) ((-708 #0#) |has| |#1| (-362)) ((-708 |#1|) . T) ((-717) . T) ((-841) |has| |#1| (-841)) ((-890 (-1163)) |has| |#1| (-890 (-1163))) ((-1028 (-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) ((-1028 (-558)) |has| |#1| (-1028 (-558))) ((-1028 |#1|) . T) ((-1045 #0#) |has| |#1| (-362)) ((-1045 |#1|) . T) ((-1045 $) -3998 (|has| |#1| (-362)) (|has| |#1| (-289))) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
+((-3167 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
+(((-988 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3167 (|#3| (-1 |#4| |#2|) |#1|))) (-987 |#2|) (-171) (-987 |#4|) (-171)) (T -988))
+((-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171)) (-4 *2 (-987 *6)) (-5 *1 (-988 *4 *5 *2 *6)) (-4 *4 (-987 *5)))))
+(-10 -7 (-15 -3167 (|#3| (-1 |#4| |#2|) |#1|)))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-1816 (($) NIL T CONST)) (-3069 (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-3 |#1| "failed") $) NIL)) (-1863 (((-558) $) NIL (|has| |#1| (-1028 (-558)))) (((-406 (-558)) $) NIL (|has| |#1| (-1028 (-406 (-558))))) ((|#1| $) NIL)) (-3216 (((-679 (-558)) (-679 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3683 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) NIL) (((-679 |#1|) (-679 $)) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-2546 ((|#1| $) 12)) (-3962 (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-543)))) (-3951 (((-112) $) NIL (|has| |#1| (-543)))) (-3938 (((-406 (-558)) $) NIL (|has| |#1| (-543)))) (-3771 (($ |#1| |#1| |#1| |#1|) 16)) (-2035 (((-112) $) NIL)) (-2615 ((|#1| $) NIL)) (-3910 (($ $ $) NIL (|has| |#1| (-841)))) (-3542 (($ $ $) NIL (|has| |#1| (-841)))) (-3167 (($ (-1 |#1| |#1|) $) NIL)) (-4310 (((-1145) $) NIL)) (-2418 (($ $) NIL (|has| |#1| (-362)))) (-3780 ((|#1| $) 15)) (-3790 ((|#1| $) 14)) (-3799 ((|#1| $) 13)) (-2975 (((-1107) $) NIL)) (-2554 (($ $ (-635 |#1|) (-635 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ (-635 (-293 |#1|))) NIL (|has| |#1| (-308 |#1|))) (($ $ (-635 (-1163)) (-635 |#1|)) NIL (|has| |#1| (-512 (-1163) |#1|))) (($ $ (-1163) |#1|) NIL (|has| |#1| (-512 (-1163) |#1|)))) (-2195 (($ $ |#1|) NIL (|has| |#1| (-285 |#1| |#1|)))) (-2829 (($ $) NIL (|has| |#1| (-232))) (($ $ (-762)) NIL (|has| |#1| (-232))) (($ $ (-1163)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3224 (((-534) $) NIL (|has| |#1| (-606 (-534))))) (-3808 (($ $) NIL)) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ |#1|) NIL) (($ (-406 (-558))) NIL (-3998 (|has| |#1| (-362)) (|has| |#1| (-1028 (-406 (-558))))))) (-3698 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2542 (((-762)) NIL)) (-3190 ((|#1| $) NIL (|has| |#1| (-1048)))) (-2131 (($) 8 T CONST)) (-2142 (($) 10 T CONST)) (-1866 (($ $) NIL (|has| |#1| (-232))) (($ $ (-762)) NIL (|has| |#1| (-232))) (($ $ (-1163)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1747 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1683 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL (|has| |#1| (-362)))) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-406 (-558))) NIL (|has| |#1| (-362))) (($ (-406 (-558)) $) NIL (|has| |#1| (-362)))))
+(((-989 |#1|) (-987 |#1|) (-171)) (T -989))
+NIL
+(-987 |#1|)
+((-3207 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-3026 (((-112) $ (-762)) NIL)) (-1816 (($) NIL T CONST)) (-3743 (($ $) 20)) (-3818 (($ (-635 |#1|)) 29)) (-2240 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-2986 (((-112) $ (-762)) NIL)) (-2122 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1807 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-2880 (((-762) $) 22)) (-4310 (((-1145) $) NIL (|has| |#1| (-1087)))) (-1722 ((|#1| $) 24)) (-4328 (($ |#1| $) 15)) (-2975 (((-1107) $) NIL (|has| |#1| (-1087)))) (-3734 ((|#1| $) 23)) (-3524 ((|#1| $) 19)) (-3266 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3762 ((|#1| |#1| $) 14)) (-3375 (((-112) $) 17)) (-2083 (($) NIL)) (-3753 ((|#1| $) 18)) (-2988 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1553 (($ $) NIL)) (-3220 (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-3534 (($ (-635 |#1|)) NIL)) (-3724 ((|#1| $) 26)) (-3277 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-990 |#1|) (-13 (-985 |#1|) (-10 -8 (-15 -3818 ($ (-635 |#1|))))) (-1087)) (T -990))
+((-3818 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-5 *1 (-990 *3)))))
+(-13 (-985 |#1|) (-10 -8 (-15 -3818 ($ (-635 |#1|)))))
+((-2534 (($ $) 12)) (-3828 (($ $ (-558)) 13)))
+(((-991 |#1|) (-10 -8 (-15 -2534 (|#1| |#1|)) (-15 -3828 (|#1| |#1| (-558)))) (-992)) (T -991))
+NIL
+(-10 -8 (-15 -2534 (|#1| |#1|)) (-15 -3828 (|#1| |#1| (-558))))
+((-2534 (($ $) 6)) (-3828 (($ $ (-558)) 7)) (** (($ $ (-406 (-558))) 8)))
+(((-992) (-139)) (T -992))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-992)) (-5 *2 (-406 (-558))))) (-3828 (*1 *1 *1 *2) (-12 (-4 *1 (-992)) (-5 *2 (-558)))) (-2534 (*1 *1 *1) (-4 *1 (-992))))
+(-13 (-10 -8 (-15 -2534 ($ $)) (-15 -3828 ($ $ (-558))) (-15 ** ($ $ (-406 (-558))))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-3085 (((-2 (|:| |num| (-1246 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL (|has| (-406 |#2|) (-362)))) (-1881 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-1857 (((-112) $) NIL (|has| (-406 |#2|) (-362)))) (-2053 (((-679 (-406 |#2|)) (-1246 $)) NIL) (((-679 (-406 |#2|))) NIL)) (-1635 (((-406 |#2|) $) NIL)) (-2163 (((-1173 (-911) (-762)) (-558)) NIL (|has| (-406 |#2|) (-348)))) (-2089 (((-3 $ "failed") $ $) NIL)) (-3465 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-1380 (((-417 $) $) NIL (|has| (-406 |#2|) (-362)))) (-3732 (((-112) $ $) NIL (|has| (-406 |#2|) (-362)))) (-2276 (((-762)) NIL (|has| (-406 |#2|) (-367)))) (-3240 (((-112)) NIL)) (-3228 (((-112) |#1|) 148) (((-112) |#2|) 153)) (-1816 (($) NIL T CONST)) (-3069 (((-3 (-558) "failed") $) NIL (|has| (-406 |#2|) (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| (-406 |#2|) (-1028 (-406 (-558))))) (((-3 (-406 |#2|) "failed") $) NIL)) (-1863 (((-558) $) NIL (|has| (-406 |#2|) (-1028 (-558)))) (((-406 (-558)) $) NIL (|has| (-406 |#2|) (-1028 (-406 (-558))))) (((-406 |#2|) $) NIL)) (-3997 (($ (-1246 (-406 |#2|)) (-1246 $)) NIL) (($ (-1246 (-406 |#2|))) 70) (($ (-1246 |#2|) |#2|) NIL)) (-3367 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-406 |#2|) (-348)))) (-4025 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-2043 (((-679 (-406 |#2|)) $ (-1246 $)) NIL) (((-679 (-406 |#2|)) $) NIL)) (-3216 (((-679 (-558)) (-679 $)) NIL (|has| (-406 |#2|) (-631 (-558)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| (-406 |#2|) (-631 (-558)))) (((-2 (|:| -3683 (-679 (-406 |#2|))) (|:| |vec| (-1246 (-406 |#2|)))) (-679 $) (-1246 $)) NIL) (((-679 (-406 |#2|)) (-679 $)) NIL)) (-3138 (((-1246 $) (-1246 $)) NIL)) (-3048 (($ |#3|) 65) (((-3 $ "failed") (-406 |#3|)) NIL (|has| (-406 |#2|) (-362)))) (-2588 (((-3 $ "failed") $) NIL)) (-2994 (((-635 (-635 |#1|))) NIL (|has| |#1| (-367)))) (-3270 (((-112) |#1| |#1|) NIL)) (-3833 (((-911)) NIL)) (-2424 (($) NIL (|has| (-406 |#2|) (-367)))) (-3214 (((-112)) NIL)) (-3202 (((-112) |#1|) 56) (((-112) |#2|) 150)) (-4004 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL (|has| (-406 |#2|) (-362)))) (-2782 (($ $) NIL)) (-2672 (($) NIL (|has| (-406 |#2|) (-348)))) (-2219 (((-112) $) NIL (|has| (-406 |#2|) (-348)))) (-1895 (($ $ (-762)) NIL (|has| (-406 |#2|) (-348))) (($ $) NIL (|has| (-406 |#2|) (-348)))) (-3031 (((-112) $) NIL (|has| (-406 |#2|) (-362)))) (-3449 (((-911) $) NIL (|has| (-406 |#2|) (-348))) (((-824 (-911)) $) NIL (|has| (-406 |#2|) (-348)))) (-2035 (((-112) $) NIL)) (-3147 (((-762)) NIL)) (-3148 (((-1246 $) (-1246 $)) NIL)) (-2615 (((-406 |#2|) $) NIL)) (-3005 (((-635 (-942 |#1|)) (-1163)) NIL (|has| |#1| (-362)))) (-2457 (((-3 $ "failed") $) NIL (|has| (-406 |#2|) (-348)))) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| (-406 |#2|) (-362)))) (-2681 ((|#3| $) NIL (|has| (-406 |#2|) (-362)))) (-2637 (((-911) $) NIL (|has| (-406 |#2|) (-367)))) (-3227 ((|#3| $) NIL)) (-2665 (($ (-635 $)) NIL (|has| (-406 |#2|) (-362))) (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-4310 (((-1145) $) NIL)) (-3095 (((-679 (-406 |#2|))) 52)) (-3116 (((-679 (-406 |#2|))) 51)) (-2418 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-3061 (($ (-1246 |#2|) |#2|) 71)) (-3105 (((-679 (-406 |#2|))) 50)) (-3128 (((-679 (-406 |#2|))) 49)) (-3049 (((-2 (|:| |num| (-679 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-3073 (((-2 (|:| |num| (-1246 |#2|)) (|:| |den| |#2|)) $) 77)) (-3191 (((-1246 $)) 46)) (-2224 (((-1246 $)) 45)) (-3180 (((-112) $) NIL)) (-3170 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-1796 (($) NIL (|has| (-406 |#2|) (-348)) CONST)) (-2851 (($ (-911)) NIL (|has| (-406 |#2|) (-367)))) (-3027 (((-3 |#2| "failed")) 63)) (-2975 (((-1107) $) NIL)) (-3293 (((-762)) NIL)) (-4098 (($) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| (-406 |#2|) (-362)))) (-2699 (($ (-635 $)) NIL (|has| (-406 |#2|) (-362))) (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-2174 (((-635 (-2 (|:| -2522 (-558)) (|:| -1951 (-558))))) NIL (|has| (-406 |#2|) (-348)))) (-2522 (((-417 $) $) NIL (|has| (-406 |#2|) (-362)))) (-3713 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-406 |#2|) (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL (|has| (-406 |#2|) (-362)))) (-3983 (((-3 $ "failed") $ $) NIL (|has| (-406 |#2|) (-362)))) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| (-406 |#2|) (-362)))) (-3722 (((-762) $) NIL (|has| (-406 |#2|) (-362)))) (-2195 ((|#1| $ |#1| |#1|) NIL)) (-3037 (((-3 |#2| "failed")) 62)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL (|has| (-406 |#2|) (-362)))) (-3331 (((-406 |#2|) (-1246 $)) NIL) (((-406 |#2|)) 42)) (-1905 (((-762) $) NIL (|has| (-406 |#2|) (-348))) (((-3 (-762) "failed") $ $) NIL (|has| (-406 |#2|) (-348)))) (-2829 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-762)) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163))))) (($ $ (-1163) (-762)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163))))) (($ $ (-635 (-1163))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163))))) (($ $ (-1163)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163))))) (($ $ (-762)) NIL (-3998 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348)))) (($ $) NIL (-3998 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348))))) (-2026 (((-679 (-406 |#2|)) (-1246 $) (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362)))) (-2036 ((|#3|) 53)) (-3377 (($) NIL (|has| (-406 |#2|) (-348)))) (-4205 (((-1246 (-406 |#2|)) $ (-1246 $)) NIL) (((-679 (-406 |#2|)) (-1246 $) (-1246 $)) NIL) (((-1246 (-406 |#2|)) $) 72) (((-679 (-406 |#2|)) (-1246 $)) NIL)) (-3224 (((-1246 (-406 |#2|)) $) NIL) (($ (-1246 (-406 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3709 (((-3 (-1246 $) "failed") (-679 $)) NIL (|has| (-406 |#2|) (-348)))) (-3158 (((-1246 $) (-1246 $)) NIL)) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ (-406 |#2|)) NIL) (($ (-406 (-558))) NIL (-3998 (|has| (-406 |#2|) (-1028 (-406 (-558)))) (|has| (-406 |#2|) (-362)))) (($ $) NIL (|has| (-406 |#2|) (-362)))) (-3698 (($ $) NIL (|has| (-406 |#2|) (-348))) (((-3 $ "failed") $) NIL (|has| (-406 |#2|) (-144)))) (-2363 ((|#3| $) NIL)) (-2542 (((-762)) NIL)) (-3260 (((-112)) 60)) (-3250 (((-112) |#1|) 154) (((-112) |#2|) 155)) (-2660 (((-1246 $)) 125)) (-1870 (((-112) $ $) NIL (|has| (-406 |#2|) (-362)))) (-3016 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3282 (((-112)) NIL)) (-2131 (($) 94 T CONST)) (-2142 (($) NIL T CONST)) (-1866 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-762)) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163))))) (($ $ (-1163) (-762)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163))))) (($ $ (-635 (-1163))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163))))) (($ $ (-1163)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163))))) (($ $ (-762)) NIL (-3998 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348)))) (($ $) NIL (-3998 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348))))) (-1683 (((-112) $ $) NIL)) (-1810 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL (|has| (-406 |#2|) (-362)))) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 |#2|)) NIL) (($ (-406 |#2|) $) NIL) (($ (-406 (-558)) $) NIL (|has| (-406 |#2|) (-362))) (($ $ (-406 (-558))) NIL (|has| (-406 |#2|) (-362)))))
+(((-993 |#1| |#2| |#3| |#4| |#5|) (-341 |#1| |#2| |#3|) (-1204) (-1222 |#1|) (-1222 (-406 |#2|)) (-406 |#2|) (-762)) (T -993))
+NIL
+(-341 |#1| |#2| |#3|)
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-3890 (((-635 (-558)) $) 54)) (-3851 (($ (-635 (-558))) 62)) (-2582 (((-558) $) 40 (|has| (-558) (-306)))) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL)) (-1881 (($ $) NIL)) (-1857 (((-112) $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-3748 (((-417 (-1159 $)) (-1159 $)) NIL (|has| (-558) (-899)))) (-3465 (($ $) NIL)) (-1380 (((-417 $) $) NIL)) (-3719 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (|has| (-558) (-899)))) (-3732 (((-112) $ $) NIL)) (-1397 (((-558) $) NIL (|has| (-558) (-811)))) (-1816 (($) NIL T CONST)) (-3069 (((-3 (-558) "failed") $) 49) (((-3 (-1163) "failed") $) NIL (|has| (-558) (-1028 (-1163)))) (((-3 (-406 (-558)) "failed") $) 47 (|has| (-558) (-1028 (-558)))) (((-3 (-558) "failed") $) 49 (|has| (-558) (-1028 (-558))))) (-1863 (((-558) $) NIL) (((-1163) $) NIL (|has| (-558) (-1028 (-1163)))) (((-406 (-558)) $) NIL (|has| (-558) (-1028 (-558)))) (((-558) $) NIL (|has| (-558) (-1028 (-558))))) (-4025 (($ $ $) NIL)) (-3216 (((-679 (-558)) (-679 $)) NIL (|has| (-558) (-631 (-558)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| (-558) (-631 (-558)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL) (((-679 (-558)) (-679 $)) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-2424 (($) NIL (|has| (-558) (-543)))) (-4004 (($ $ $) NIL)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL)) (-3031 (((-112) $) NIL)) (-3870 (((-635 (-558)) $) 60)) (-2045 (((-112) $) NIL (|has| (-558) (-811)))) (-2269 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (|has| (-558) (-876 (-558)))) (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (|has| (-558) (-876 (-378))))) (-2035 (((-112) $) NIL)) (-3704 (($ $) NIL)) (-1874 (((-558) $) 37)) (-2457 (((-3 $ "failed") $) NIL (|has| (-558) (-1138)))) (-2055 (((-112) $) NIL (|has| (-558) (-811)))) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3910 (($ $ $) NIL (|has| (-558) (-841)))) (-3542 (($ $ $) NIL (|has| (-558) (-841)))) (-3167 (($ (-1 (-558) (-558)) $) NIL)) (-2665 (($ $ $) NIL) (($ (-635 $)) NIL)) (-4310 (((-1145) $) NIL)) (-2418 (($ $) NIL)) (-1796 (($) NIL (|has| (-558) (-1138)) CONST)) (-2975 (((-1107) $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-2699 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2568 (($ $) NIL (|has| (-558) (-306))) (((-406 (-558)) $) 42)) (-3881 (((-1143 (-558)) $) 59)) (-3839 (($ (-635 (-558)) (-635 (-558))) 63)) (-2594 (((-558) $) 53 (|has| (-558) (-543)))) (-3728 (((-417 (-1159 $)) (-1159 $)) NIL (|has| (-558) (-899)))) (-3738 (((-417 (-1159 $)) (-1159 $)) NIL (|has| (-558) (-899)))) (-2522 (((-417 $) $) NIL)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3983 (((-3 $ "failed") $ $) NIL)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2554 (($ $ (-635 (-558)) (-635 (-558))) NIL (|has| (-558) (-308 (-558)))) (($ $ (-558) (-558)) NIL (|has| (-558) (-308 (-558)))) (($ $ (-293 (-558))) NIL (|has| (-558) (-308 (-558)))) (($ $ (-635 (-293 (-558)))) NIL (|has| (-558) (-308 (-558)))) (($ $ (-635 (-1163)) (-635 (-558))) NIL (|has| (-558) (-512 (-1163) (-558)))) (($ $ (-1163) (-558)) NIL (|has| (-558) (-512 (-1163) (-558))))) (-3722 (((-762) $) NIL)) (-2195 (($ $ (-558)) NIL (|has| (-558) (-285 (-558) (-558))))) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL)) (-2829 (($ $) 11 (|has| (-558) (-232))) (($ $ (-762)) NIL (|has| (-558) (-232))) (($ $ (-1163)) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-1 (-558) (-558)) (-762)) NIL) (($ $ (-1 (-558) (-558))) NIL)) (-3694 (($ $) NIL)) (-1885 (((-558) $) 39)) (-3861 (((-635 (-558)) $) 61)) (-3224 (((-882 (-558)) $) NIL (|has| (-558) (-606 (-882 (-558))))) (((-882 (-378)) $) NIL (|has| (-558) (-606 (-882 (-378))))) (((-534) $) NIL (|has| (-558) (-606 (-534)))) (((-378) $) NIL (|has| (-558) (-1012))) (((-224) $) NIL (|has| (-558) (-1012)))) (-3709 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| (-558) (-899))))) (-3220 (((-853) $) 77) (($ (-558)) 43) (($ $) NIL) (($ (-406 (-558))) 20) (($ (-558)) 43) (($ (-1163)) NIL (|has| (-558) (-1028 (-1163)))) (((-406 (-558)) $) 18)) (-3698 (((-3 $ "failed") $) NIL (-3998 (-12 (|has| $ (-144)) (|has| (-558) (-899))) (|has| (-558) (-144))))) (-2542 (((-762)) 9)) (-2604 (((-558) $) 51 (|has| (-558) (-543)))) (-1870 (((-112) $ $) NIL)) (-3190 (($ $) NIL (|has| (-558) (-811)))) (-2131 (($) 10 T CONST)) (-2142 (($) 12 T CONST)) (-1866 (($ $) NIL (|has| (-558) (-232))) (($ $ (-762)) NIL (|has| (-558) (-232))) (($ $ (-1163)) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-1 (-558) (-558)) (-762)) NIL) (($ $ (-1 (-558) (-558))) NIL)) (-1747 (((-112) $ $) NIL (|has| (-558) (-841)))) (-1720 (((-112) $ $) NIL (|has| (-558) (-841)))) (-1683 (((-112) $ $) 14)) (-1731 (((-112) $ $) NIL (|has| (-558) (-841)))) (-1705 (((-112) $ $) 33 (|has| (-558) (-841)))) (-1810 (($ $ $) 29) (($ (-558) (-558)) 31)) (-1798 (($ $) 15) (($ $ $) 23)) (-1784 (($ $ $) 21)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 25) (($ $ $) 27) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL) (($ (-558) $) 25) (($ $ (-558)) NIL)))
+(((-994 |#1|) (-13 (-982 (-558)) (-605 (-406 (-558))) (-10 -8 (-15 -2568 ((-406 (-558)) $)) (-15 -3890 ((-635 (-558)) $)) (-15 -3881 ((-1143 (-558)) $)) (-15 -3870 ((-635 (-558)) $)) (-15 -3861 ((-635 (-558)) $)) (-15 -3851 ($ (-635 (-558)))) (-15 -3839 ($ (-635 (-558)) (-635 (-558)))))) (-558)) (T -994))
+((-2568 (*1 *2 *1) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-994 *3)) (-14 *3 (-558)))) (-3890 (*1 *2 *1) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-994 *3)) (-14 *3 (-558)))) (-3881 (*1 *2 *1) (-12 (-5 *2 (-1143 (-558))) (-5 *1 (-994 *3)) (-14 *3 (-558)))) (-3870 (*1 *2 *1) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-994 *3)) (-14 *3 (-558)))) (-3861 (*1 *2 *1) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-994 *3)) (-14 *3 (-558)))) (-3851 (*1 *1 *2) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-994 *3)) (-14 *3 (-558)))) (-3839 (*1 *1 *2 *2) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-994 *3)) (-14 *3 (-558)))))
+(-13 (-982 (-558)) (-605 (-406 (-558))) (-10 -8 (-15 -2568 ((-406 (-558)) $)) (-15 -3890 ((-635 (-558)) $)) (-15 -3881 ((-1143 (-558)) $)) (-15 -3870 ((-635 (-558)) $)) (-15 -3861 ((-635 (-558)) $)) (-15 -3851 ($ (-635 (-558)))) (-15 -3839 ($ (-635 (-558)) (-635 (-558))))))
+((-3900 (((-52) (-406 (-558)) (-558)) 9)))
+(((-995) (-10 -7 (-15 -3900 ((-52) (-406 (-558)) (-558))))) (T -995))
+((-3900 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-558))) (-5 *4 (-558)) (-5 *2 (-52)) (-5 *1 (-995)))))
+(-10 -7 (-15 -3900 ((-52) (-406 (-558)) (-558))))
+((-2276 (((-558)) 13)) (-3930 (((-558)) 16)) (-3921 (((-1251) (-558)) 15)) (-3909 (((-558) (-558)) 17) (((-558)) 12)))
+(((-996) (-10 -7 (-15 -3909 ((-558))) (-15 -2276 ((-558))) (-15 -3909 ((-558) (-558))) (-15 -3921 ((-1251) (-558))) (-15 -3930 ((-558))))) (T -996))
+((-3930 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-996)))) (-3921 (*1 *2 *3) (-12 (-5 *3 (-558)) (-5 *2 (-1251)) (-5 *1 (-996)))) (-3909 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-996)))) (-2276 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-996)))) (-3909 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-996)))))
+(-10 -7 (-15 -3909 ((-558))) (-15 -2276 ((-558))) (-15 -3909 ((-558) (-558))) (-15 -3921 ((-1251) (-558))) (-15 -3930 ((-558))))
+((-3089 (((-417 |#1|) |#1|) 41)) (-2522 (((-417 |#1|) |#1|) 40)))
+(((-997 |#1|) (-10 -7 (-15 -2522 ((-417 |#1|) |#1|)) (-15 -3089 ((-417 |#1|) |#1|))) (-1222 (-406 (-558)))) (T -997))
+((-3089 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-997 *3)) (-4 *3 (-1222 (-406 (-558)))))) (-2522 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-997 *3)) (-4 *3 (-1222 (-406 (-558)))))))
+(-10 -7 (-15 -2522 ((-417 |#1|) |#1|)) (-15 -3089 ((-417 |#1|) |#1|)))
+((-3962 (((-3 (-406 (-558)) "failed") |#1|) 15)) (-3951 (((-112) |#1|) 14)) (-3938 (((-406 (-558)) |#1|) 10)))
+(((-998 |#1|) (-10 -7 (-15 -3938 ((-406 (-558)) |#1|)) (-15 -3951 ((-112) |#1|)) (-15 -3962 ((-3 (-406 (-558)) "failed") |#1|))) (-1028 (-406 (-558)))) (T -998))
+((-3962 (*1 *2 *3) (|partial| -12 (-5 *2 (-406 (-558))) (-5 *1 (-998 *3)) (-4 *3 (-1028 *2)))) (-3951 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-998 *3)) (-4 *3 (-1028 (-406 (-558)))))) (-3938 (*1 *2 *3) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-998 *3)) (-4 *3 (-1028 *2)))))
+(-10 -7 (-15 -3938 ((-406 (-558)) |#1|)) (-15 -3951 ((-112) |#1|)) (-15 -3962 ((-3 (-406 (-558)) "failed") |#1|)))
+((-1532 ((|#2| $ "value" |#2|) 12)) (-2195 ((|#2| $ "value") 10)) (-4005 (((-112) $ $) 18)))
+(((-999 |#1| |#2|) (-10 -8 (-15 -1532 (|#2| |#1| "value" |#2|)) (-15 -4005 ((-112) |#1| |#1|)) (-15 -2195 (|#2| |#1| "value"))) (-1000 |#2|) (-1200)) (T -999))
+NIL
+(-10 -8 (-15 -1532 (|#2| |#1| "value" |#2|)) (-15 -4005 ((-112) |#1| |#1|)) (-15 -2195 (|#2| |#1| "value")))
+((-3207 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-2925 ((|#1| $) 48)) (-3026 (((-112) $ (-762)) 8)) (-3972 ((|#1| $ |#1|) 39 (|has| $ (-6 -4383)))) (-1532 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4383)))) (-3982 (($ $ (-635 $)) 41 (|has| $ (-6 -4383)))) (-1816 (($) 7 T CONST)) (-2240 (((-635 |#1|) $) 30 (|has| $ (-6 -4382)))) (-2870 (((-635 $) $) 50)) (-3993 (((-112) $ $) 42 (|has| |#1| (-1087)))) (-2986 (((-112) $ (-762)) 9)) (-2122 (((-635 |#1|) $) 29 (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1807 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) 35)) (-2953 (((-112) $ (-762)) 10)) (-1362 (((-635 |#1|) $) 45)) (-1790 (((-112) $) 49)) (-4310 (((-1145) $) 22 (|has| |#1| (-1087)))) (-2975 (((-1107) $) 21 (|has| |#1| (-1087)))) (-3266 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) 14)) (-3375 (((-112) $) 11)) (-2083 (($) 12)) (-2195 ((|#1| $ "value") 47)) (-2860 (((-558) $ $) 44)) (-1487 (((-112) $) 46)) (-2988 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4382))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1553 (($ $) 13)) (-3220 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-1727 (((-635 $) $) 51)) (-4005 (((-112) $ $) 43 (|has| |#1| (-1087)))) (-3277 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-2755 (((-762) $) 6 (|has| $ (-6 -4382)))))
+(((-1000 |#1|) (-139) (-1200)) (T -1000))
+((-1727 (*1 *2 *1) (-12 (-4 *3 (-1200)) (-5 *2 (-635 *1)) (-4 *1 (-1000 *3)))) (-2870 (*1 *2 *1) (-12 (-4 *3 (-1200)) (-5 *2 (-635 *1)) (-4 *1 (-1000 *3)))) (-1790 (*1 *2 *1) (-12 (-4 *1 (-1000 *3)) (-4 *3 (-1200)) (-5 *2 (-112)))) (-2925 (*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1200)))) (-2195 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1000 *2)) (-4 *2 (-1200)))) (-1487 (*1 *2 *1) (-12 (-4 *1 (-1000 *3)) (-4 *3 (-1200)) (-5 *2 (-112)))) (-1362 (*1 *2 *1) (-12 (-4 *1 (-1000 *3)) (-4 *3 (-1200)) (-5 *2 (-635 *3)))) (-2860 (*1 *2 *1 *1) (-12 (-4 *1 (-1000 *3)) (-4 *3 (-1200)) (-5 *2 (-558)))) (-4005 (*1 *2 *1 *1) (-12 (-4 *1 (-1000 *3)) (-4 *3 (-1200)) (-4 *3 (-1087)) (-5 *2 (-112)))) (-3993 (*1 *2 *1 *1) (-12 (-4 *1 (-1000 *3)) (-4 *3 (-1200)) (-4 *3 (-1087)) (-5 *2 (-112)))) (-3982 (*1 *1 *1 *2) (-12 (-5 *2 (-635 *1)) (|has| *1 (-6 -4383)) (-4 *1 (-1000 *3)) (-4 *3 (-1200)))) (-1532 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4383)) (-4 *1 (-1000 *2)) (-4 *2 (-1200)))) (-3972 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4383)) (-4 *1 (-1000 *2)) (-4 *2 (-1200)))))
+(-13 (-487 |t#1|) (-10 -8 (-15 -1727 ((-635 $) $)) (-15 -2870 ((-635 $) $)) (-15 -1790 ((-112) $)) (-15 -2925 (|t#1| $)) (-15 -2195 (|t#1| $ "value")) (-15 -1487 ((-112) $)) (-15 -1362 ((-635 |t#1|) $)) (-15 -2860 ((-558) $ $)) (IF (|has| |t#1| (-1087)) (PROGN (-15 -4005 ((-112) $ $)) (-15 -3993 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4383)) (PROGN (-15 -3982 ($ $ (-635 $))) (-15 -1532 (|t#1| $ "value" |t#1|)) (-15 -3972 (|t#1| $ |t#1|))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1087)) ((-605 (-853)) -3998 (|has| |#1| (-1087)) (|has| |#1| (-605 (-853)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-1087) |has| |#1| (-1087)) ((-1200) . T))
+((-2534 (($ $) 9) (($ $ (-911)) 43) (($ (-406 (-558))) 13) (($ (-558)) 15)) (-2016 (((-3 $ "failed") (-1159 $) (-911) (-853)) 23) (((-3 $ "failed") (-1159 $) (-911)) 28)) (-3828 (($ $ (-558)) 49)) (-2542 (((-762)) 17)) (-2027 (((-635 $) (-1159 $)) NIL) (((-635 $) (-1159 (-406 (-558)))) 54) (((-635 $) (-1159 (-558))) 59) (((-635 $) (-942 $)) 63) (((-635 $) (-942 (-406 (-558)))) 67) (((-635 $) (-942 (-558))) 71)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL) (($ $ (-406 (-558))) 47)))
+(((-1001 |#1|) (-10 -8 (-15 -2534 (|#1| (-558))) (-15 -2534 (|#1| (-406 (-558)))) (-15 -2534 (|#1| |#1| (-911))) (-15 -2027 ((-635 |#1|) (-942 (-558)))) (-15 -2027 ((-635 |#1|) (-942 (-406 (-558))))) (-15 -2027 ((-635 |#1|) (-942 |#1|))) (-15 -2027 ((-635 |#1|) (-1159 (-558)))) (-15 -2027 ((-635 |#1|) (-1159 (-406 (-558))))) (-15 -2027 ((-635 |#1|) (-1159 |#1|))) (-15 -2016 ((-3 |#1| "failed") (-1159 |#1|) (-911))) (-15 -2016 ((-3 |#1| "failed") (-1159 |#1|) (-911) (-853))) (-15 ** (|#1| |#1| (-406 (-558)))) (-15 -3828 (|#1| |#1| (-558))) (-15 -2534 (|#1| |#1|)) (-15 ** (|#1| |#1| (-558))) (-15 -2542 ((-762))) (-15 ** (|#1| |#1| (-762))) (-15 ** (|#1| |#1| (-911)))) (-1002)) (T -1001))
+((-2542 (*1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-1001 *3)) (-4 *3 (-1002)))))
+(-10 -8 (-15 -2534 (|#1| (-558))) (-15 -2534 (|#1| (-406 (-558)))) (-15 -2534 (|#1| |#1| (-911))) (-15 -2027 ((-635 |#1|) (-942 (-558)))) (-15 -2027 ((-635 |#1|) (-942 (-406 (-558))))) (-15 -2027 ((-635 |#1|) (-942 |#1|))) (-15 -2027 ((-635 |#1|) (-1159 (-558)))) (-15 -2027 ((-635 |#1|) (-1159 (-406 (-558))))) (-15 -2027 ((-635 |#1|) (-1159 |#1|))) (-15 -2016 ((-3 |#1| "failed") (-1159 |#1|) (-911))) (-15 -2016 ((-3 |#1| "failed") (-1159 |#1|) (-911) (-853))) (-15 ** (|#1| |#1| (-406 (-558)))) (-15 -3828 (|#1| |#1| (-558))) (-15 -2534 (|#1| |#1|)) (-15 ** (|#1| |#1| (-558))) (-15 -2542 ((-762))) (-15 ** (|#1| |#1| (-762))) (-15 ** (|#1| |#1| (-911))))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 91)) (-1881 (($ $) 92)) (-1857 (((-112) $) 94)) (-2089 (((-3 $ "failed") $ $) 19)) (-3465 (($ $) 111)) (-1380 (((-417 $) $) 112)) (-2534 (($ $) 75) (($ $ (-911)) 61) (($ (-406 (-558))) 60) (($ (-558)) 59)) (-3732 (((-112) $ $) 102)) (-1397 (((-558) $) 128)) (-1816 (($) 17 T CONST)) (-2016 (((-3 $ "failed") (-1159 $) (-911) (-853)) 69) (((-3 $ "failed") (-1159 $) (-911)) 68)) (-3069 (((-3 (-558) "failed") $) 88 (|has| (-406 (-558)) (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) 86 (|has| (-406 (-558)) (-1028 (-406 (-558))))) (((-3 (-406 (-558)) "failed") $) 83)) (-1863 (((-558) $) 87 (|has| (-406 (-558)) (-1028 (-558)))) (((-406 (-558)) $) 85 (|has| (-406 (-558)) (-1028 (-406 (-558))))) (((-406 (-558)) $) 84)) (-2888 (($ $ (-853)) 58)) (-2879 (($ $ (-853)) 57)) (-4025 (($ $ $) 106)) (-2588 (((-3 $ "failed") $) 33)) (-4004 (($ $ $) 105)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) 100)) (-3031 (((-112) $) 113)) (-2045 (((-112) $) 126)) (-2035 (((-112) $) 31)) (-3828 (($ $ (-558)) 74)) (-2055 (((-112) $) 127)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) 109)) (-3910 (($ $ $) 125)) (-3542 (($ $ $) 124)) (-2900 (((-3 (-1159 $) "failed") $) 70)) (-2919 (((-3 (-853) "failed") $) 72)) (-2909 (((-3 (-1159 $) "failed") $) 71)) (-2665 (($ (-635 $)) 98) (($ $ $) 97)) (-4310 (((-1145) $) 9)) (-2418 (($ $) 114)) (-2975 (((-1107) $) 10)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) 99)) (-2699 (($ (-635 $)) 96) (($ $ $) 95)) (-2522 (((-417 $) $) 110)) (-3713 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) 107)) (-3983 (((-3 $ "failed") $ $) 90)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) 101)) (-3722 (((-762) $) 103)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 104)) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ (-406 (-558))) 118) (($ $) 89) (($ (-406 (-558))) 82) (($ (-558)) 81) (($ (-406 (-558))) 78)) (-2542 (((-762)) 28)) (-1870 (((-112) $ $) 93)) (-1352 (((-406 (-558)) $ $) 56)) (-2027 (((-635 $) (-1159 $)) 67) (((-635 $) (-1159 (-406 (-558)))) 66) (((-635 $) (-1159 (-558))) 65) (((-635 $) (-942 $)) 64) (((-635 $) (-942 (-406 (-558)))) 63) (((-635 $) (-942 (-558))) 62)) (-3190 (($ $) 129)) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1747 (((-112) $ $) 122)) (-1720 (((-112) $ $) 121)) (-1683 (((-112) $ $) 6)) (-1731 (((-112) $ $) 123)) (-1705 (((-112) $ $) 120)) (-1810 (($ $ $) 119)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ (-558)) 115) (($ $ (-406 (-558))) 73)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ (-406 (-558)) $) 117) (($ $ (-406 (-558))) 116) (($ (-558) $) 80) (($ $ (-558)) 79) (($ (-406 (-558)) $) 77) (($ $ (-406 (-558))) 76)))
+(((-1002) (-139)) (T -1002))
+((-2534 (*1 *1 *1) (-4 *1 (-1002))) (-2919 (*1 *2 *1) (|partial| -12 (-4 *1 (-1002)) (-5 *2 (-853)))) (-2909 (*1 *2 *1) (|partial| -12 (-5 *2 (-1159 *1)) (-4 *1 (-1002)))) (-2900 (*1 *2 *1) (|partial| -12 (-5 *2 (-1159 *1)) (-4 *1 (-1002)))) (-2016 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1159 *1)) (-5 *3 (-911)) (-5 *4 (-853)) (-4 *1 (-1002)))) (-2016 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1159 *1)) (-5 *3 (-911)) (-4 *1 (-1002)))) (-2027 (*1 *2 *3) (-12 (-5 *3 (-1159 *1)) (-4 *1 (-1002)) (-5 *2 (-635 *1)))) (-2027 (*1 *2 *3) (-12 (-5 *3 (-1159 (-406 (-558)))) (-5 *2 (-635 *1)) (-4 *1 (-1002)))) (-2027 (*1 *2 *3) (-12 (-5 *3 (-1159 (-558))) (-5 *2 (-635 *1)) (-4 *1 (-1002)))) (-2027 (*1 *2 *3) (-12 (-5 *3 (-942 *1)) (-4 *1 (-1002)) (-5 *2 (-635 *1)))) (-2027 (*1 *2 *3) (-12 (-5 *3 (-942 (-406 (-558)))) (-5 *2 (-635 *1)) (-4 *1 (-1002)))) (-2027 (*1 *2 *3) (-12 (-5 *3 (-942 (-558))) (-5 *2 (-635 *1)) (-4 *1 (-1002)))) (-2534 (*1 *1 *1 *2) (-12 (-4 *1 (-1002)) (-5 *2 (-911)))) (-2534 (*1 *1 *2) (-12 (-5 *2 (-406 (-558))) (-4 *1 (-1002)))) (-2534 (*1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-1002)))) (-2888 (*1 *1 *1 *2) (-12 (-4 *1 (-1002)) (-5 *2 (-853)))) (-2879 (*1 *1 *1 *2) (-12 (-4 *1 (-1002)) (-5 *2 (-853)))) (-1352 (*1 *2 *1 *1) (-12 (-4 *1 (-1002)) (-5 *2 (-406 (-558))))))
+(-13 (-146) (-839) (-171) (-362) (-410 (-406 (-558))) (-38 (-558)) (-38 (-406 (-558))) (-992) (-10 -8 (-15 -2919 ((-3 (-853) "failed") $)) (-15 -2909 ((-3 (-1159 $) "failed") $)) (-15 -2900 ((-3 (-1159 $) "failed") $)) (-15 -2016 ((-3 $ "failed") (-1159 $) (-911) (-853))) (-15 -2016 ((-3 $ "failed") (-1159 $) (-911))) (-15 -2027 ((-635 $) (-1159 $))) (-15 -2027 ((-635 $) (-1159 (-406 (-558))))) (-15 -2027 ((-635 $) (-1159 (-558)))) (-15 -2027 ((-635 $) (-942 $))) (-15 -2027 ((-635 $) (-942 (-406 (-558))))) (-15 -2027 ((-635 $) (-942 (-558)))) (-15 -2534 ($ $ (-911))) (-15 -2534 ($ $)) (-15 -2534 ($ (-406 (-558)))) (-15 -2534 ($ (-558))) (-15 -2888 ($ $ (-853))) (-15 -2879 ($ $ (-853))) (-15 -1352 ((-406 (-558)) $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-558))) . T) ((-38 #1=(-558)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-146) . T) ((-608 #0#) . T) ((-608 (-558)) . T) ((-608 $) . T) ((-605 (-853)) . T) ((-171) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-410 (-406 (-558))) . T) ((-450) . T) ((-550) . T) ((-638 #0#) . T) ((-638 #1#) . T) ((-638 $) . T) ((-708 #0#) . T) ((-708 #1#) . T) ((-708 $) . T) ((-717) . T) ((-782) . T) ((-783) . T) ((-785) . T) ((-786) . T) ((-839) . T) ((-841) . T) ((-910) . T) ((-992) . T) ((-1028 (-406 (-558))) . T) ((-1028 (-558)) |has| (-406 (-558)) (-1028 (-558))) ((-1045 #0#) . T) ((-1045 #1#) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1204) . T))
+((-2929 (((-2 (|:| |ans| |#2|) (|:| -3425 |#2|) (|:| |sol?| (-112))) (-558) |#2| |#2| (-1163) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-635 |#2|)) (-1 (-3 (-2 (|:| -1440 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 65)))
+(((-1003 |#1| |#2|) (-10 -7 (-15 -2929 ((-2 (|:| |ans| |#2|) (|:| -3425 |#2|) (|:| |sol?| (-112))) (-558) |#2| |#2| (-1163) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-635 |#2|)) (-1 (-3 (-2 (|:| -1440 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-450) (-841) (-146) (-1028 (-558)) (-631 (-558))) (-13 (-1185) (-27) (-429 |#1|))) (T -1003))
+((-2929 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1163)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-635 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1440 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1185) (-27) (-429 *8))) (-4 *8 (-13 (-450) (-841) (-146) (-1028 *3) (-631 *3))) (-5 *3 (-558)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3425 *4) (|:| |sol?| (-112)))) (-5 *1 (-1003 *8 *4)))))
+(-10 -7 (-15 -2929 ((-2 (|:| |ans| |#2|) (|:| -3425 |#2|) (|:| |sol?| (-112))) (-558) |#2| |#2| (-1163) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-635 |#2|)) (-1 (-3 (-2 (|:| -1440 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-2940 (((-3 (-635 |#2|) "failed") (-558) |#2| |#2| |#2| (-1163) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-635 |#2|)) (-1 (-3 (-2 (|:| -1440 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53)))
+(((-1004 |#1| |#2|) (-10 -7 (-15 -2940 ((-3 (-635 |#2|) "failed") (-558) |#2| |#2| |#2| (-1163) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-635 |#2|)) (-1 (-3 (-2 (|:| -1440 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-450) (-841) (-146) (-1028 (-558)) (-631 (-558))) (-13 (-1185) (-27) (-429 |#1|))) (T -1004))
+((-2940 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1163)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-635 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1440 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1185) (-27) (-429 *8))) (-4 *8 (-13 (-450) (-841) (-146) (-1028 *3) (-631 *3))) (-5 *3 (-558)) (-5 *2 (-635 *4)) (-5 *1 (-1004 *8 *4)))))
+(-10 -7 (-15 -2940 ((-3 (-635 |#2|) "failed") (-558) |#2| |#2| |#2| (-1163) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-635 |#2|)) (-1 (-3 (-2 (|:| -1440 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-2971 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2477 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-558)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-558) (-1 |#2| |#2|)) 30)) (-2950 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |c| (-406 |#2|)) (|:| -1360 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|)) 58)) (-2961 (((-2 (|:| |ans| (-406 |#2|)) (|:| |nosol| (-112))) (-406 |#2|) (-406 |#2|)) 63)))
+(((-1005 |#1| |#2|) (-10 -7 (-15 -2950 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |c| (-406 |#2|)) (|:| -1360 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|))) (-15 -2961 ((-2 (|:| |ans| (-406 |#2|)) (|:| |nosol| (-112))) (-406 |#2|) (-406 |#2|))) (-15 -2971 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2477 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-558)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-558) (-1 |#2| |#2|)))) (-13 (-362) (-146) (-1028 (-558))) (-1222 |#1|)) (T -1005))
+((-2971 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1222 *6)) (-4 *6 (-13 (-362) (-146) (-1028 *4))) (-5 *4 (-558)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -2477 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1005 *6 *3)))) (-2961 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1028 (-558)))) (-4 *5 (-1222 *4)) (-5 *2 (-2 (|:| |ans| (-406 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1005 *4 *5)) (-5 *3 (-406 *5)))) (-2950 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1222 *5)) (-4 *5 (-13 (-362) (-146) (-1028 (-558)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-406 *6)) (|:| |c| (-406 *6)) (|:| -1360 *6))) (-5 *1 (-1005 *5 *6)) (-5 *3 (-406 *6)))))
+(-10 -7 (-15 -2950 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |c| (-406 |#2|)) (|:| -1360 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|))) (-15 -2961 ((-2 (|:| |ans| (-406 |#2|)) (|:| |nosol| (-112))) (-406 |#2|) (-406 |#2|))) (-15 -2971 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2477 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-558)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-558) (-1 |#2| |#2|))))
+((-2984 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |h| |#2|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| -1360 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|)) 22)) (-2996 (((-3 (-635 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|)) 33)))
+(((-1006 |#1| |#2|) (-10 -7 (-15 -2984 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |h| |#2|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| -1360 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|))) (-15 -2996 ((-3 (-635 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|)))) (-13 (-362) (-146) (-1028 (-558))) (-1222 |#1|)) (T -1006))
+((-2996 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-362) (-146) (-1028 (-558)))) (-4 *5 (-1222 *4)) (-5 *2 (-635 (-406 *5))) (-5 *1 (-1006 *4 *5)) (-5 *3 (-406 *5)))) (-2984 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1222 *5)) (-4 *5 (-13 (-362) (-146) (-1028 (-558)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-406 *6)) (|:| |h| *6) (|:| |c1| (-406 *6)) (|:| |c2| (-406 *6)) (|:| -1360 *6))) (-5 *1 (-1006 *5 *6)) (-5 *3 (-406 *6)))))
+(-10 -7 (-15 -2984 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |h| |#2|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| -1360 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|))) (-15 -2996 ((-3 (-635 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|))))
+((-3007 (((-1 |#1|) (-635 (-2 (|:| -2925 |#1|) (|:| -1800 (-558))))) 37)) (-2312 (((-1 |#1|) (-1089 |#1|)) 45)) (-3018 (((-1 |#1|) (-1246 |#1|) (-1246 (-558)) (-558)) 34)))
+(((-1007 |#1|) (-10 -7 (-15 -2312 ((-1 |#1|) (-1089 |#1|))) (-15 -3007 ((-1 |#1|) (-635 (-2 (|:| -2925 |#1|) (|:| -1800 (-558)))))) (-15 -3018 ((-1 |#1|) (-1246 |#1|) (-1246 (-558)) (-558)))) (-1087)) (T -1007))
+((-3018 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1246 *6)) (-5 *4 (-1246 (-558))) (-5 *5 (-558)) (-4 *6 (-1087)) (-5 *2 (-1 *6)) (-5 *1 (-1007 *6)))) (-3007 (*1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| -2925 *4) (|:| -1800 (-558))))) (-4 *4 (-1087)) (-5 *2 (-1 *4)) (-5 *1 (-1007 *4)))) (-2312 (*1 *2 *3) (-12 (-5 *3 (-1089 *4)) (-4 *4 (-1087)) (-5 *2 (-1 *4)) (-5 *1 (-1007 *4)))))
+(-10 -7 (-15 -2312 ((-1 |#1|) (-1089 |#1|))) (-15 -3007 ((-1 |#1|) (-635 (-2 (|:| -2925 |#1|) (|:| -1800 (-558)))))) (-15 -3018 ((-1 |#1|) (-1246 |#1|) (-1246 (-558)) (-558))))
+((-3449 (((-762) (-335 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
+(((-1008 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3449 ((-762) (-335 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-362) (-1222 |#1|) (-1222 (-406 |#2|)) (-341 |#1| |#2| |#3|) (-13 (-367) (-362))) (T -1008))
+((-3449 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-335 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-362)) (-4 *7 (-1222 *6)) (-4 *4 (-1222 (-406 *7))) (-4 *8 (-341 *6 *7 *4)) (-4 *9 (-13 (-367) (-362))) (-5 *2 (-762)) (-5 *1 (-1008 *6 *7 *4 *8 *9)))))
+(-10 -7 (-15 -3449 ((-762) (-335 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
+((-3207 (((-112) $ $) NIL)) (-3029 (((-1122) $) 9)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) NIL) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1337 (((-1122) $) 11)) (-1683 (((-112) $ $) NIL)))
+(((-1009) (-13 (-1070) (-10 -8 (-15 -3029 ((-1122) $)) (-15 -1337 ((-1122) $))))) (T -1009))
+((-3029 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1009)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1009)))))
+(-13 (-1070) (-10 -8 (-15 -3029 ((-1122) $)) (-15 -1337 ((-1122) $))))
+((-2634 (((-3 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))) "failed") |#1| (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))) (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))) 31) (((-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))) |#1| (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))) (-406 (-558))) 28)) (-3063 (((-635 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))) |#1| (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))) (-406 (-558))) 33) (((-635 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))) |#1| (-406 (-558))) 29) (((-635 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))) |#1| (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))) 32) (((-635 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))) |#1|) 27)) (-3052 (((-635 (-406 (-558))) (-635 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))))) 19)) (-3039 (((-406 (-558)) (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))) 16)))
+(((-1010 |#1|) (-10 -7 (-15 -3063 ((-635 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))) |#1|)) (-15 -3063 ((-635 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))) |#1| (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))))) (-15 -3063 ((-635 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))) |#1| (-406 (-558)))) (-15 -3063 ((-635 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))) |#1| (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))) (-406 (-558)))) (-15 -2634 ((-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))) |#1| (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))) (-406 (-558)))) (-15 -2634 ((-3 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))) "failed") |#1| (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))) (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))))) (-15 -3039 ((-406 (-558)) (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))))) (-15 -3052 ((-635 (-406 (-558))) (-635 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))))))) (-1222 (-558))) (T -1010))
+((-3052 (*1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))))) (-5 *2 (-635 (-406 (-558)))) (-5 *1 (-1010 *4)) (-4 *4 (-1222 (-558))))) (-3039 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))) (-5 *2 (-406 (-558))) (-5 *1 (-1010 *4)) (-4 *4 (-1222 (-558))))) (-2634 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))) (-5 *1 (-1010 *3)) (-4 *3 (-1222 (-558))))) (-2634 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))) (-5 *4 (-406 (-558))) (-5 *1 (-1010 *3)) (-4 *3 (-1222 (-558))))) (-3063 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-406 (-558))) (-5 *2 (-635 (-2 (|:| -3417 *5) (|:| -3425 *5)))) (-5 *1 (-1010 *3)) (-4 *3 (-1222 (-558))) (-5 *4 (-2 (|:| -3417 *5) (|:| -3425 *5))))) (-3063 (*1 *2 *3 *4) (-12 (-5 *2 (-635 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))))) (-5 *1 (-1010 *3)) (-4 *3 (-1222 (-558))) (-5 *4 (-406 (-558))))) (-3063 (*1 *2 *3 *4) (-12 (-5 *2 (-635 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))))) (-5 *1 (-1010 *3)) (-4 *3 (-1222 (-558))) (-5 *4 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))))) (-3063 (*1 *2 *3) (-12 (-5 *2 (-635 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))))) (-5 *1 (-1010 *3)) (-4 *3 (-1222 (-558))))))
+(-10 -7 (-15 -3063 ((-635 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))) |#1|)) (-15 -3063 ((-635 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))) |#1| (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))))) (-15 -3063 ((-635 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))) |#1| (-406 (-558)))) (-15 -3063 ((-635 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))) |#1| (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))) (-406 (-558)))) (-15 -2634 ((-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))) |#1| (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))) (-406 (-558)))) (-15 -2634 ((-3 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))) "failed") |#1| (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))) (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))))) (-15 -3039 ((-406 (-558)) (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))))) (-15 -3052 ((-635 (-406 (-558))) (-635 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))))))
+((-2634 (((-3 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))) "failed") |#1| (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))) (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))) 35) (((-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))) |#1| (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))) (-406 (-558))) 32)) (-3063 (((-635 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))) |#1| (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))) (-406 (-558))) 30) (((-635 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))) |#1| (-406 (-558))) 26) (((-635 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))) |#1| (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))) 28) (((-635 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))) |#1|) 24)))
+(((-1011 |#1|) (-10 -7 (-15 -3063 ((-635 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))) |#1|)) (-15 -3063 ((-635 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))) |#1| (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))))) (-15 -3063 ((-635 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))) |#1| (-406 (-558)))) (-15 -3063 ((-635 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))) |#1| (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))) (-406 (-558)))) (-15 -2634 ((-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))) |#1| (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))) (-406 (-558)))) (-15 -2634 ((-3 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))) "failed") |#1| (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))) (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))))) (-1222 (-406 (-558)))) (T -1011))
+((-2634 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))) (-5 *1 (-1011 *3)) (-4 *3 (-1222 (-406 (-558)))))) (-2634 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))) (-5 *4 (-406 (-558))) (-5 *1 (-1011 *3)) (-4 *3 (-1222 *4)))) (-3063 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-406 (-558))) (-5 *2 (-635 (-2 (|:| -3417 *5) (|:| -3425 *5)))) (-5 *1 (-1011 *3)) (-4 *3 (-1222 *5)) (-5 *4 (-2 (|:| -3417 *5) (|:| -3425 *5))))) (-3063 (*1 *2 *3 *4) (-12 (-5 *4 (-406 (-558))) (-5 *2 (-635 (-2 (|:| -3417 *4) (|:| -3425 *4)))) (-5 *1 (-1011 *3)) (-4 *3 (-1222 *4)))) (-3063 (*1 *2 *3 *4) (-12 (-5 *2 (-635 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))))) (-5 *1 (-1011 *3)) (-4 *3 (-1222 (-406 (-558)))) (-5 *4 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))))) (-3063 (*1 *2 *3) (-12 (-5 *2 (-635 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))))) (-5 *1 (-1011 *3)) (-4 *3 (-1222 (-406 (-558)))))))
+(-10 -7 (-15 -3063 ((-635 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))) |#1|)) (-15 -3063 ((-635 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))) |#1| (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))))) (-15 -3063 ((-635 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))) |#1| (-406 (-558)))) (-15 -3063 ((-635 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))) |#1| (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))) (-406 (-558)))) (-15 -2634 ((-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))) |#1| (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))) (-406 (-558)))) (-15 -2634 ((-3 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))) "failed") |#1| (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))) (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))))))
+((-3224 (((-224) $) 6) (((-378) $) 9)))
+(((-1012) (-139)) (T -1012))
+NIL
+(-13 (-606 (-224)) (-606 (-378)))
+(((-606 (-224)) . T) ((-606 (-378)) . T))
+((-2153 (((-635 (-378)) (-942 (-558)) (-378)) 28) (((-635 (-378)) (-942 (-406 (-558))) (-378)) 27)) (-1356 (((-635 (-635 (-378))) (-635 (-942 (-558))) (-635 (-1163)) (-378)) 37)))
+(((-1013) (-10 -7 (-15 -2153 ((-635 (-378)) (-942 (-406 (-558))) (-378))) (-15 -2153 ((-635 (-378)) (-942 (-558)) (-378))) (-15 -1356 ((-635 (-635 (-378))) (-635 (-942 (-558))) (-635 (-1163)) (-378))))) (T -1013))
+((-1356 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 (-942 (-558)))) (-5 *4 (-635 (-1163))) (-5 *2 (-635 (-635 (-378)))) (-5 *1 (-1013)) (-5 *5 (-378)))) (-2153 (*1 *2 *3 *4) (-12 (-5 *3 (-942 (-558))) (-5 *2 (-635 (-378))) (-5 *1 (-1013)) (-5 *4 (-378)))) (-2153 (*1 *2 *3 *4) (-12 (-5 *3 (-942 (-406 (-558)))) (-5 *2 (-635 (-378))) (-5 *1 (-1013)) (-5 *4 (-378)))))
+(-10 -7 (-15 -2153 ((-635 (-378)) (-942 (-406 (-558))) (-378))) (-15 -2153 ((-635 (-378)) (-942 (-558)) (-378))) (-15 -1356 ((-635 (-635 (-378))) (-635 (-942 (-558))) (-635 (-1163)) (-378))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) 70)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL)) (-1881 (($ $) NIL)) (-1857 (((-112) $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-3465 (($ $) NIL)) (-1380 (((-417 $) $) NIL)) (-2534 (($ $) NIL) (($ $ (-911)) NIL) (($ (-406 (-558))) NIL) (($ (-558)) NIL)) (-3732 (((-112) $ $) NIL)) (-1397 (((-558) $) 65)) (-1816 (($) NIL T CONST)) (-2016 (((-3 $ "failed") (-1159 $) (-911) (-853)) NIL) (((-3 $ "failed") (-1159 $) (-911)) 50)) (-3069 (((-3 (-406 (-558)) "failed") $) NIL (|has| (-406 (-558)) (-1028 (-406 (-558))))) (((-3 (-406 (-558)) "failed") $) NIL) (((-3 |#1| "failed") $) 107) (((-3 (-558) "failed") $) NIL (-3998 (|has| (-406 (-558)) (-1028 (-558))) (|has| |#1| (-1028 (-558)))))) (-1863 (((-406 (-558)) $) 15 (|has| (-406 (-558)) (-1028 (-406 (-558))))) (((-406 (-558)) $) 15) ((|#1| $) 108) (((-558) $) NIL (-3998 (|has| (-406 (-558)) (-1028 (-558))) (|has| |#1| (-1028 (-558)))))) (-2888 (($ $ (-853)) 42)) (-2879 (($ $ (-853)) 43)) (-4025 (($ $ $) NIL)) (-2007 (((-406 (-558)) $ $) 19)) (-2588 (((-3 $ "failed") $) 83)) (-4004 (($ $ $) NIL)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL)) (-3031 (((-112) $) NIL)) (-2045 (((-112) $) 61)) (-2035 (((-112) $) NIL)) (-3828 (($ $ (-558)) NIL)) (-2055 (((-112) $) 64)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3910 (($ $ $) NIL)) (-3542 (($ $ $) NIL)) (-2900 (((-3 (-1159 $) "failed") $) 78)) (-2919 (((-3 (-853) "failed") $) 77)) (-2909 (((-3 (-1159 $) "failed") $) 75)) (-3075 (((-3 (-1049 $ (-1159 $)) "failed") $) 73)) (-2665 (($ (-635 $)) NIL) (($ $ $) NIL)) (-4310 (((-1145) $) NIL)) (-2418 (($ $) 84)) (-2975 (((-1107) $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-2699 (($ (-635 $)) NIL) (($ $ $) NIL)) (-2522 (((-417 $) $) NIL)) (-3713 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL)) (-3983 (((-3 $ "failed") $ $) NIL)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3722 (((-762) $) NIL)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL)) (-3220 (((-853) $) 82) (($ (-558)) NIL) (($ (-406 (-558))) NIL) (($ $) 58) (($ (-406 (-558))) NIL) (($ (-558)) NIL) (($ (-406 (-558))) NIL) (($ |#1|) 110)) (-2542 (((-762)) NIL)) (-1870 (((-112) $ $) NIL)) (-1352 (((-406 (-558)) $ $) 25)) (-2027 (((-635 $) (-1159 $)) 56) (((-635 $) (-1159 (-406 (-558)))) NIL) (((-635 $) (-1159 (-558))) NIL) (((-635 $) (-942 $)) NIL) (((-635 $) (-942 (-406 (-558)))) NIL) (((-635 $) (-942 (-558))) NIL)) (-3087 (($ (-1049 $ (-1159 $)) (-853)) 41)) (-3190 (($ $) 20)) (-2131 (($) 29 T CONST)) (-2142 (($) 35 T CONST)) (-1747 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1683 (((-112) $ $) 71)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 22)) (-1810 (($ $ $) 33)) (-1798 (($ $) 34) (($ $ $) 69)) (-1784 (($ $ $) 103)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL) (($ $ (-406 (-558))) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 91) (($ $ $) 96) (($ (-406 (-558)) $) NIL) (($ $ (-406 (-558))) NIL) (($ (-558) $) 91) (($ $ (-558)) NIL) (($ (-406 (-558)) $) NIL) (($ $ (-406 (-558))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL)))
+(((-1014 |#1|) (-13 (-1002) (-410 |#1|) (-38 |#1|) (-10 -8 (-15 -3087 ($ (-1049 $ (-1159 $)) (-853))) (-15 -3075 ((-3 (-1049 $ (-1159 $)) "failed") $)) (-15 -2007 ((-406 (-558)) $ $)))) (-13 (-839) (-362) (-1012))) (T -1014))
+((-3087 (*1 *1 *2 *3) (-12 (-5 *2 (-1049 (-1014 *4) (-1159 (-1014 *4)))) (-5 *3 (-853)) (-5 *1 (-1014 *4)) (-4 *4 (-13 (-839) (-362) (-1012))))) (-3075 (*1 *2 *1) (|partial| -12 (-5 *2 (-1049 (-1014 *3) (-1159 (-1014 *3)))) (-5 *1 (-1014 *3)) (-4 *3 (-13 (-839) (-362) (-1012))))) (-2007 (*1 *2 *1 *1) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-1014 *3)) (-4 *3 (-13 (-839) (-362) (-1012))))))
+(-13 (-1002) (-410 |#1|) (-38 |#1|) (-10 -8 (-15 -3087 ($ (-1049 $ (-1159 $)) (-853))) (-15 -3075 ((-3 (-1049 $ (-1159 $)) "failed") $)) (-15 -2007 ((-406 (-558)) $ $))))
+((-3097 (((-2 (|:| -2477 |#2|) (|:| -3483 (-635 |#1|))) |#2| (-635 |#1|)) 20) ((|#2| |#2| |#1|) 15)))
+(((-1015 |#1| |#2|) (-10 -7 (-15 -3097 (|#2| |#2| |#1|)) (-15 -3097 ((-2 (|:| -2477 |#2|) (|:| -3483 (-635 |#1|))) |#2| (-635 |#1|)))) (-362) (-646 |#1|)) (T -1015))
+((-3097 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-5 *2 (-2 (|:| -2477 *3) (|:| -3483 (-635 *5)))) (-5 *1 (-1015 *5 *3)) (-5 *4 (-635 *5)) (-4 *3 (-646 *5)))) (-3097 (*1 *2 *2 *3) (-12 (-4 *3 (-362)) (-5 *1 (-1015 *3 *2)) (-4 *2 (-646 *3)))))
+(-10 -7 (-15 -3097 (|#2| |#2| |#1|)) (-15 -3097 ((-2 (|:| -2477 |#2|) (|:| -3483 (-635 |#1|))) |#2| (-635 |#1|))))
+((-3207 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-3107 ((|#1| $ |#1|) 14)) (-1532 ((|#1| $ |#1|) 12)) (-3130 (($ |#1|) 10)) (-4310 (((-1145) $) NIL (|has| |#1| (-1087)))) (-2975 (((-1107) $) NIL (|has| |#1| (-1087)))) (-2195 ((|#1| $) 11)) (-3118 ((|#1| $) 13)) (-3220 (((-853) $) 21 (|has| |#1| (-1087)))) (-1683 (((-112) $ $) 9)))
+(((-1016 |#1|) (-13 (-1200) (-10 -8 (-15 -3130 ($ |#1|)) (-15 -2195 (|#1| $)) (-15 -1532 (|#1| $ |#1|)) (-15 -3118 (|#1| $)) (-15 -3107 (|#1| $ |#1|)) (-15 -1683 ((-112) $ $)) (IF (|has| |#1| (-1087)) (-6 (-1087)) |%noBranch|))) (-1200)) (T -1016))
+((-3130 (*1 *1 *2) (-12 (-5 *1 (-1016 *2)) (-4 *2 (-1200)))) (-2195 (*1 *2 *1) (-12 (-5 *1 (-1016 *2)) (-4 *2 (-1200)))) (-1532 (*1 *2 *1 *2) (-12 (-5 *1 (-1016 *2)) (-4 *2 (-1200)))) (-3118 (*1 *2 *1) (-12 (-5 *1 (-1016 *2)) (-4 *2 (-1200)))) (-3107 (*1 *2 *1 *2) (-12 (-5 *1 (-1016 *2)) (-4 *2 (-1200)))) (-1683 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1016 *3)) (-4 *3 (-1200)))))
+(-13 (-1200) (-10 -8 (-15 -3130 ($ |#1|)) (-15 -2195 (|#1| $)) (-15 -1532 (|#1| $ |#1|)) (-15 -3118 (|#1| $)) (-15 -3107 (|#1| $ |#1|)) (-15 -1683 ((-112) $ $)) (IF (|has| |#1| (-1087)) (-6 (-1087)) |%noBranch|)))
+((-3207 (((-112) $ $) NIL)) (-3773 (((-635 (-2 (|:| -2626 $) (|:| -1328 (-635 |#4|)))) (-635 |#4|)) NIL)) (-3782 (((-635 $) (-635 |#4|)) 105) (((-635 $) (-635 |#4|) (-112)) 106) (((-635 $) (-635 |#4|) (-112) (-112)) 104) (((-635 $) (-635 |#4|) (-112) (-112) (-112) (-112)) 107)) (-2671 (((-635 |#3|) $) NIL)) (-2139 (((-112) $) NIL)) (-2040 (((-112) $) NIL (|has| |#1| (-550)))) (-3892 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3842 ((|#4| |#4| $) NIL)) (-3465 (((-635 (-2 (|:| |val| |#4|) (|:| -2396 $))) |#4| $) 99)) (-2376 (((-2 (|:| |under| $) (|:| -2594 $) (|:| |upper| $)) $ |#3|) NIL)) (-3026 (((-112) $ (-762)) NIL)) (-4329 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4382))) (((-3 |#4| "failed") $ |#3|) 54)) (-1816 (($) NIL T CONST)) (-2092 (((-112) $) 27 (|has| |#1| (-550)))) (-2116 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2104 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2128 (((-112) $) NIL (|has| |#1| (-550)))) (-3853 (((-635 |#4|) (-635 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2050 (((-635 |#4|) (-635 |#4|) $) NIL (|has| |#1| (-550)))) (-2061 (((-635 |#4|) (-635 |#4|) $) NIL (|has| |#1| (-550)))) (-3069 (((-3 $ "failed") (-635 |#4|)) NIL)) (-1863 (($ (-635 |#4|)) NIL)) (-2315 (((-3 $ "failed") $) 40)) (-3810 ((|#4| |#4| $) 57)) (-2338 (($ $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#4| (-1087))))) (-1539 (($ |#4| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#4| (-1087)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4382)))) (-2071 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-550)))) (-3902 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3792 ((|#4| |#4| $) NIL)) (-3048 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4382)) (|has| |#4| (-1087)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4382))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4382))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3923 (((-2 (|:| -2626 (-635 |#4|)) (|:| -1328 (-635 |#4|))) $) NIL)) (-2166 (((-112) |#4| $) NIL)) (-2145 (((-112) |#4| $) NIL)) (-2177 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2401 (((-2 (|:| |val| (-635 |#4|)) (|:| |towers| (-635 $))) (-635 |#4|) (-112) (-112)) 119)) (-2240 (((-635 |#4|) $) 17 (|has| $ (-6 -4382)))) (-3912 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1997 ((|#3| $) 34)) (-2986 (((-112) $ (-762)) NIL)) (-2122 (((-635 |#4|) $) 18 (|has| $ (-6 -4382)))) (-4322 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4382)) (|has| |#4| (-1087))))) (-1807 (($ (-1 |#4| |#4|) $) 24 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#4| |#4|) $) 22)) (-4024 (((-635 |#3|) $) NIL)) (-2183 (((-112) |#3| $) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL)) (-2099 (((-3 |#4| (-635 $)) |#4| |#4| $) NIL)) (-2087 (((-635 (-2 (|:| |val| |#4|) (|:| -2396 $))) |#4| |#4| $) 97)) (-1560 (((-3 |#4| "failed") $) 38)) (-2111 (((-635 $) |#4| $) 80)) (-2134 (((-3 (-112) (-635 $)) |#4| $) NIL)) (-2123 (((-635 (-2 (|:| |val| (-112)) (|:| -2396 $))) |#4| $) 90) (((-112) |#4| $) 52)) (-4286 (((-635 $) |#4| $) 102) (((-635 $) (-635 |#4|) $) NIL) (((-635 $) (-635 |#4|) (-635 $)) 103) (((-635 $) |#4| (-635 $)) NIL)) (-2411 (((-635 $) (-635 |#4|) (-112) (-112) (-112)) 114)) (-2423 (($ |#4| $) 70) (($ (-635 |#4|) $) 71) (((-635 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 67)) (-3932 (((-635 |#4|) $) NIL)) (-3873 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3820 ((|#4| |#4| $) NIL)) (-3953 (((-112) $ $) NIL)) (-2081 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-550)))) (-3883 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3830 ((|#4| |#4| $) NIL)) (-2975 (((-1107) $) NIL)) (-2305 (((-3 |#4| "failed") $) 36)) (-4307 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3755 (((-3 $ "failed") $ |#4|) 48)) (-3430 (($ $ |#4|) NIL) (((-635 $) |#4| $) 82) (((-635 $) |#4| (-635 $)) NIL) (((-635 $) (-635 |#4|) $) NIL) (((-635 $) (-635 |#4|) (-635 $)) 77)) (-3266 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 |#4|) (-635 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-293 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-635 (-293 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3375 (((-112) $) 16)) (-2083 (($) 14)) (-4323 (((-762) $) NIL)) (-2988 (((-762) |#4| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#4| (-1087)))) (((-762) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4382)))) (-1553 (($ $) 13)) (-3224 (((-534) $) NIL (|has| |#4| (-606 (-534))))) (-3233 (($ (-635 |#4|)) 21)) (-2151 (($ $ |#3|) 43)) (-2171 (($ $ |#3|) 44)) (-3801 (($ $) NIL)) (-2160 (($ $ |#3|) NIL)) (-3220 (((-853) $) 32) (((-635 |#4|) $) 41)) (-3745 (((-762) $) NIL (|has| |#3| (-367)))) (-3940 (((-3 (-2 (|:| |bas| $) (|:| -3072 (-635 |#4|))) "failed") (-635 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3072 (-635 |#4|))) "failed") (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3863 (((-112) $ (-1 (-112) |#4| (-635 |#4|))) NIL)) (-2076 (((-635 $) |#4| $) 79) (((-635 $) |#4| (-635 $)) NIL) (((-635 $) (-635 |#4|) $) NIL) (((-635 $) (-635 |#4|) (-635 $)) NIL)) (-3277 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4382)))) (-3764 (((-635 |#3|) $) NIL)) (-2155 (((-112) |#4| $) NIL)) (-4206 (((-112) |#3| $) 53)) (-1683 (((-112) $ $) NIL)) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-1017 |#1| |#2| |#3| |#4|) (-13 (-1059 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2423 ((-635 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3782 ((-635 $) (-635 |#4|) (-112) (-112))) (-15 -3782 ((-635 $) (-635 |#4|) (-112) (-112) (-112) (-112))) (-15 -2411 ((-635 $) (-635 |#4|) (-112) (-112) (-112))) (-15 -2401 ((-2 (|:| |val| (-635 |#4|)) (|:| |towers| (-635 $))) (-635 |#4|) (-112) (-112))))) (-450) (-784) (-841) (-1053 |#1| |#2| |#3|)) (T -1017))
+((-2423 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-635 (-1017 *5 *6 *7 *3))) (-5 *1 (-1017 *5 *6 *7 *3)) (-4 *3 (-1053 *5 *6 *7)))) (-3782 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-635 (-1017 *5 *6 *7 *8))) (-5 *1 (-1017 *5 *6 *7 *8)))) (-3782 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-635 (-1017 *5 *6 *7 *8))) (-5 *1 (-1017 *5 *6 *7 *8)))) (-2411 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-635 (-1017 *5 *6 *7 *8))) (-5 *1 (-1017 *5 *6 *7 *8)))) (-2401 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *8 (-1053 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-635 *8)) (|:| |towers| (-635 (-1017 *5 *6 *7 *8))))) (-5 *1 (-1017 *5 *6 *7 *8)) (-5 *3 (-635 *8)))))
+(-13 (-1059 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2423 ((-635 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3782 ((-635 $) (-635 |#4|) (-112) (-112))) (-15 -3782 ((-635 $) (-635 |#4|) (-112) (-112) (-112) (-112))) (-15 -2411 ((-635 $) (-635 |#4|) (-112) (-112) (-112))) (-15 -2401 ((-2 (|:| |val| (-635 |#4|)) (|:| |towers| (-635 $))) (-635 |#4|) (-112) (-112)))))
+((-3252 (((-635 (-679 |#1|)) (-635 (-679 |#1|))) 58) (((-679 |#1|) (-679 |#1|)) 57) (((-635 (-679 |#1|)) (-635 (-679 |#1|)) (-635 (-679 |#1|))) 56) (((-679 |#1|) (-679 |#1|) (-679 |#1|)) 53)) (-3242 (((-635 (-679 |#1|)) (-635 (-679 |#1|)) (-911)) 52) (((-679 |#1|) (-679 |#1|) (-911)) 51)) (-3262 (((-635 (-679 (-558))) (-635 (-635 (-558)))) 68) (((-635 (-679 (-558))) (-635 (-895 (-558))) (-558)) 67) (((-679 (-558)) (-635 (-558))) 64) (((-679 (-558)) (-895 (-558)) (-558)) 63)) (-3230 (((-679 (-942 |#1|)) (-762)) 81)) (-3217 (((-635 (-679 |#1|)) (-635 (-679 |#1|)) (-911)) 37 (|has| |#1| (-6 (-4384 "*")))) (((-679 |#1|) (-679 |#1|) (-911)) 35 (|has| |#1| (-6 (-4384 "*"))))))
+(((-1018 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4384 "*"))) (-15 -3217 ((-679 |#1|) (-679 |#1|) (-911))) |%noBranch|) (IF (|has| |#1| (-6 (-4384 "*"))) (-15 -3217 ((-635 (-679 |#1|)) (-635 (-679 |#1|)) (-911))) |%noBranch|) (-15 -3230 ((-679 (-942 |#1|)) (-762))) (-15 -3242 ((-679 |#1|) (-679 |#1|) (-911))) (-15 -3242 ((-635 (-679 |#1|)) (-635 (-679 |#1|)) (-911))) (-15 -3252 ((-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -3252 ((-635 (-679 |#1|)) (-635 (-679 |#1|)) (-635 (-679 |#1|)))) (-15 -3252 ((-679 |#1|) (-679 |#1|))) (-15 -3252 ((-635 (-679 |#1|)) (-635 (-679 |#1|)))) (-15 -3262 ((-679 (-558)) (-895 (-558)) (-558))) (-15 -3262 ((-679 (-558)) (-635 (-558)))) (-15 -3262 ((-635 (-679 (-558))) (-635 (-895 (-558))) (-558))) (-15 -3262 ((-635 (-679 (-558))) (-635 (-635 (-558)))))) (-1039)) (T -1018))
+((-3262 (*1 *2 *3) (-12 (-5 *3 (-635 (-635 (-558)))) (-5 *2 (-635 (-679 (-558)))) (-5 *1 (-1018 *4)) (-4 *4 (-1039)))) (-3262 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-895 (-558)))) (-5 *4 (-558)) (-5 *2 (-635 (-679 *4))) (-5 *1 (-1018 *5)) (-4 *5 (-1039)))) (-3262 (*1 *2 *3) (-12 (-5 *3 (-635 (-558))) (-5 *2 (-679 (-558))) (-5 *1 (-1018 *4)) (-4 *4 (-1039)))) (-3262 (*1 *2 *3 *4) (-12 (-5 *3 (-895 (-558))) (-5 *4 (-558)) (-5 *2 (-679 *4)) (-5 *1 (-1018 *5)) (-4 *5 (-1039)))) (-3252 (*1 *2 *2) (-12 (-5 *2 (-635 (-679 *3))) (-4 *3 (-1039)) (-5 *1 (-1018 *3)))) (-3252 (*1 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-1039)) (-5 *1 (-1018 *3)))) (-3252 (*1 *2 *2 *2) (-12 (-5 *2 (-635 (-679 *3))) (-4 *3 (-1039)) (-5 *1 (-1018 *3)))) (-3252 (*1 *2 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-1039)) (-5 *1 (-1018 *3)))) (-3242 (*1 *2 *2 *3) (-12 (-5 *2 (-635 (-679 *4))) (-5 *3 (-911)) (-4 *4 (-1039)) (-5 *1 (-1018 *4)))) (-3242 (*1 *2 *2 *3) (-12 (-5 *2 (-679 *4)) (-5 *3 (-911)) (-4 *4 (-1039)) (-5 *1 (-1018 *4)))) (-3230 (*1 *2 *3) (-12 (-5 *3 (-762)) (-5 *2 (-679 (-942 *4))) (-5 *1 (-1018 *4)) (-4 *4 (-1039)))) (-3217 (*1 *2 *2 *3) (-12 (-5 *2 (-635 (-679 *4))) (-5 *3 (-911)) (|has| *4 (-6 (-4384 "*"))) (-4 *4 (-1039)) (-5 *1 (-1018 *4)))) (-3217 (*1 *2 *2 *3) (-12 (-5 *2 (-679 *4)) (-5 *3 (-911)) (|has| *4 (-6 (-4384 "*"))) (-4 *4 (-1039)) (-5 *1 (-1018 *4)))))
+(-10 -7 (IF (|has| |#1| (-6 (-4384 "*"))) (-15 -3217 ((-679 |#1|) (-679 |#1|) (-911))) |%noBranch|) (IF (|has| |#1| (-6 (-4384 "*"))) (-15 -3217 ((-635 (-679 |#1|)) (-635 (-679 |#1|)) (-911))) |%noBranch|) (-15 -3230 ((-679 (-942 |#1|)) (-762))) (-15 -3242 ((-679 |#1|) (-679 |#1|) (-911))) (-15 -3242 ((-635 (-679 |#1|)) (-635 (-679 |#1|)) (-911))) (-15 -3252 ((-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -3252 ((-635 (-679 |#1|)) (-635 (-679 |#1|)) (-635 (-679 |#1|)))) (-15 -3252 ((-679 |#1|) (-679 |#1|))) (-15 -3252 ((-635 (-679 |#1|)) (-635 (-679 |#1|)))) (-15 -3262 ((-679 (-558)) (-895 (-558)) (-558))) (-15 -3262 ((-679 (-558)) (-635 (-558)))) (-15 -3262 ((-635 (-679 (-558))) (-635 (-895 (-558))) (-558))) (-15 -3262 ((-635 (-679 (-558))) (-635 (-635 (-558))))))
+((-3307 (((-679 |#1|) (-635 (-679 |#1|)) (-1246 |#1|)) 49 (|has| |#1| (-306)))) (-3469 (((-635 (-635 (-679 |#1|))) (-635 (-679 |#1|)) (-1246 (-1246 |#1|))) 75 (|has| |#1| (-362))) (((-635 (-635 (-679 |#1|))) (-635 (-679 |#1|)) (-1246 |#1|)) 78 (|has| |#1| (-362)))) (-3350 (((-1246 |#1|) (-635 (-1246 |#1|)) (-558)) 92 (-12 (|has| |#1| (-362)) (|has| |#1| (-367))))) (-3340 (((-635 (-635 (-679 |#1|))) (-635 (-679 |#1|)) (-911)) 84 (-12 (|has| |#1| (-362)) (|has| |#1| (-367)))) (((-635 (-635 (-679 |#1|))) (-635 (-679 |#1|)) (-112)) 82 (-12 (|has| |#1| (-362)) (|has| |#1| (-367)))) (((-635 (-635 (-679 |#1|))) (-635 (-679 |#1|))) 81 (-12 (|has| |#1| (-362)) (|has| |#1| (-367)))) (((-635 (-635 (-679 |#1|))) (-635 (-679 |#1|)) (-112) (-558) (-558)) 80 (-12 (|has| |#1| (-362)) (|has| |#1| (-367))))) (-3329 (((-112) (-635 (-679 |#1|))) 70 (|has| |#1| (-362))) (((-112) (-635 (-679 |#1|)) (-558)) 72 (|has| |#1| (-362)))) (-3295 (((-1246 (-1246 |#1|)) (-635 (-679 |#1|)) (-1246 |#1|)) 47 (|has| |#1| (-306)))) (-3284 (((-679 |#1|) (-635 (-679 |#1|)) (-679 |#1|)) 33)) (-3272 (((-679 |#1|) (-1246 (-1246 |#1|))) 30)) (-3318 (((-679 |#1|) (-635 (-679 |#1|)) (-635 (-679 |#1|)) (-558)) 64 (|has| |#1| (-362))) (((-679 |#1|) (-635 (-679 |#1|)) (-635 (-679 |#1|))) 63 (|has| |#1| (-362))) (((-679 |#1|) (-635 (-679 |#1|)) (-635 (-679 |#1|)) (-112) (-558)) 68 (|has| |#1| (-362)))))
+(((-1019 |#1|) (-10 -7 (-15 -3272 ((-679 |#1|) (-1246 (-1246 |#1|)))) (-15 -3284 ((-679 |#1|) (-635 (-679 |#1|)) (-679 |#1|))) (IF (|has| |#1| (-306)) (PROGN (-15 -3295 ((-1246 (-1246 |#1|)) (-635 (-679 |#1|)) (-1246 |#1|))) (-15 -3307 ((-679 |#1|) (-635 (-679 |#1|)) (-1246 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -3318 ((-679 |#1|) (-635 (-679 |#1|)) (-635 (-679 |#1|)) (-112) (-558))) (-15 -3318 ((-679 |#1|) (-635 (-679 |#1|)) (-635 (-679 |#1|)))) (-15 -3318 ((-679 |#1|) (-635 (-679 |#1|)) (-635 (-679 |#1|)) (-558))) (-15 -3329 ((-112) (-635 (-679 |#1|)) (-558))) (-15 -3329 ((-112) (-635 (-679 |#1|)))) (-15 -3469 ((-635 (-635 (-679 |#1|))) (-635 (-679 |#1|)) (-1246 |#1|))) (-15 -3469 ((-635 (-635 (-679 |#1|))) (-635 (-679 |#1|)) (-1246 (-1246 |#1|))))) |%noBranch|) (IF (|has| |#1| (-367)) (IF (|has| |#1| (-362)) (PROGN (-15 -3340 ((-635 (-635 (-679 |#1|))) (-635 (-679 |#1|)) (-112) (-558) (-558))) (-15 -3340 ((-635 (-635 (-679 |#1|))) (-635 (-679 |#1|)))) (-15 -3340 ((-635 (-635 (-679 |#1|))) (-635 (-679 |#1|)) (-112))) (-15 -3340 ((-635 (-635 (-679 |#1|))) (-635 (-679 |#1|)) (-911))) (-15 -3350 ((-1246 |#1|) (-635 (-1246 |#1|)) (-558)))) |%noBranch|) |%noBranch|)) (-1039)) (T -1019))
+((-3350 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-1246 *5))) (-5 *4 (-558)) (-5 *2 (-1246 *5)) (-5 *1 (-1019 *5)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1039)))) (-3340 (*1 *2 *3 *4) (-12 (-5 *4 (-911)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1039)) (-5 *2 (-635 (-635 (-679 *5)))) (-5 *1 (-1019 *5)) (-5 *3 (-635 (-679 *5))))) (-3340 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1039)) (-5 *2 (-635 (-635 (-679 *5)))) (-5 *1 (-1019 *5)) (-5 *3 (-635 (-679 *5))))) (-3340 (*1 *2 *3) (-12 (-4 *4 (-362)) (-4 *4 (-367)) (-4 *4 (-1039)) (-5 *2 (-635 (-635 (-679 *4)))) (-5 *1 (-1019 *4)) (-5 *3 (-635 (-679 *4))))) (-3340 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-558)) (-4 *6 (-362)) (-4 *6 (-367)) (-4 *6 (-1039)) (-5 *2 (-635 (-635 (-679 *6)))) (-5 *1 (-1019 *6)) (-5 *3 (-635 (-679 *6))))) (-3469 (*1 *2 *3 *4) (-12 (-5 *4 (-1246 (-1246 *5))) (-4 *5 (-362)) (-4 *5 (-1039)) (-5 *2 (-635 (-635 (-679 *5)))) (-5 *1 (-1019 *5)) (-5 *3 (-635 (-679 *5))))) (-3469 (*1 *2 *3 *4) (-12 (-5 *4 (-1246 *5)) (-4 *5 (-362)) (-4 *5 (-1039)) (-5 *2 (-635 (-635 (-679 *5)))) (-5 *1 (-1019 *5)) (-5 *3 (-635 (-679 *5))))) (-3329 (*1 *2 *3) (-12 (-5 *3 (-635 (-679 *4))) (-4 *4 (-362)) (-4 *4 (-1039)) (-5 *2 (-112)) (-5 *1 (-1019 *4)))) (-3329 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-679 *5))) (-5 *4 (-558)) (-4 *5 (-362)) (-4 *5 (-1039)) (-5 *2 (-112)) (-5 *1 (-1019 *5)))) (-3318 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-635 (-679 *5))) (-5 *4 (-558)) (-5 *2 (-679 *5)) (-5 *1 (-1019 *5)) (-4 *5 (-362)) (-4 *5 (-1039)))) (-3318 (*1 *2 *3 *3) (-12 (-5 *3 (-635 (-679 *4))) (-5 *2 (-679 *4)) (-5 *1 (-1019 *4)) (-4 *4 (-362)) (-4 *4 (-1039)))) (-3318 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-635 (-679 *6))) (-5 *4 (-112)) (-5 *5 (-558)) (-5 *2 (-679 *6)) (-5 *1 (-1019 *6)) (-4 *6 (-362)) (-4 *6 (-1039)))) (-3307 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-679 *5))) (-5 *4 (-1246 *5)) (-4 *5 (-306)) (-4 *5 (-1039)) (-5 *2 (-679 *5)) (-5 *1 (-1019 *5)))) (-3295 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-679 *5))) (-4 *5 (-306)) (-4 *5 (-1039)) (-5 *2 (-1246 (-1246 *5))) (-5 *1 (-1019 *5)) (-5 *4 (-1246 *5)))) (-3284 (*1 *2 *3 *2) (-12 (-5 *3 (-635 (-679 *4))) (-5 *2 (-679 *4)) (-4 *4 (-1039)) (-5 *1 (-1019 *4)))) (-3272 (*1 *2 *3) (-12 (-5 *3 (-1246 (-1246 *4))) (-4 *4 (-1039)) (-5 *2 (-679 *4)) (-5 *1 (-1019 *4)))))
+(-10 -7 (-15 -3272 ((-679 |#1|) (-1246 (-1246 |#1|)))) (-15 -3284 ((-679 |#1|) (-635 (-679 |#1|)) (-679 |#1|))) (IF (|has| |#1| (-306)) (PROGN (-15 -3295 ((-1246 (-1246 |#1|)) (-635 (-679 |#1|)) (-1246 |#1|))) (-15 -3307 ((-679 |#1|) (-635 (-679 |#1|)) (-1246 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -3318 ((-679 |#1|) (-635 (-679 |#1|)) (-635 (-679 |#1|)) (-112) (-558))) (-15 -3318 ((-679 |#1|) (-635 (-679 |#1|)) (-635 (-679 |#1|)))) (-15 -3318 ((-679 |#1|) (-635 (-679 |#1|)) (-635 (-679 |#1|)) (-558))) (-15 -3329 ((-112) (-635 (-679 |#1|)) (-558))) (-15 -3329 ((-112) (-635 (-679 |#1|)))) (-15 -3469 ((-635 (-635 (-679 |#1|))) (-635 (-679 |#1|)) (-1246 |#1|))) (-15 -3469 ((-635 (-635 (-679 |#1|))) (-635 (-679 |#1|)) (-1246 (-1246 |#1|))))) |%noBranch|) (IF (|has| |#1| (-367)) (IF (|has| |#1| (-362)) (PROGN (-15 -3340 ((-635 (-635 (-679 |#1|))) (-635 (-679 |#1|)) (-112) (-558) (-558))) (-15 -3340 ((-635 (-635 (-679 |#1|))) (-635 (-679 |#1|)))) (-15 -3340 ((-635 (-635 (-679 |#1|))) (-635 (-679 |#1|)) (-112))) (-15 -3340 ((-635 (-635 (-679 |#1|))) (-635 (-679 |#1|)) (-911))) (-15 -3350 ((-1246 |#1|) (-635 (-1246 |#1|)) (-558)))) |%noBranch|) |%noBranch|))
+((-2397 ((|#1| (-911) |#1|) 9)))
+(((-1020 |#1|) (-10 -7 (-15 -2397 (|#1| (-911) |#1|))) (-13 (-1087) (-10 -8 (-15 -1784 ($ $ $))))) (T -1020))
+((-2397 (*1 *2 *3 *2) (-12 (-5 *3 (-911)) (-5 *1 (-1020 *2)) (-4 *2 (-13 (-1087) (-10 -8 (-15 -1784 ($ $ $))))))))
+(-10 -7 (-15 -2397 (|#1| (-911) |#1|)))
+((-3140 (((-635 (-2 (|:| |radval| (-315 (-558))) (|:| |radmult| (-558)) (|:| |radvect| (-635 (-679 (-315 (-558))))))) (-679 (-406 (-942 (-558))))) 59)) (-3150 (((-635 (-679 (-315 (-558)))) (-315 (-558)) (-679 (-406 (-942 (-558))))) 48)) (-3161 (((-635 (-315 (-558))) (-679 (-406 (-942 (-558))))) 41)) (-3204 (((-635 (-679 (-315 (-558)))) (-679 (-406 (-942 (-558))))) 68)) (-3183 (((-679 (-315 (-558))) (-679 (-315 (-558)))) 34)) (-3193 (((-635 (-679 (-315 (-558)))) (-635 (-679 (-315 (-558))))) 62)) (-3172 (((-3 (-679 (-315 (-558))) "failed") (-679 (-406 (-942 (-558))))) 66)))
+(((-1021) (-10 -7 (-15 -3140 ((-635 (-2 (|:| |radval| (-315 (-558))) (|:| |radmult| (-558)) (|:| |radvect| (-635 (-679 (-315 (-558))))))) (-679 (-406 (-942 (-558)))))) (-15 -3150 ((-635 (-679 (-315 (-558)))) (-315 (-558)) (-679 (-406 (-942 (-558)))))) (-15 -3161 ((-635 (-315 (-558))) (-679 (-406 (-942 (-558)))))) (-15 -3172 ((-3 (-679 (-315 (-558))) "failed") (-679 (-406 (-942 (-558)))))) (-15 -3183 ((-679 (-315 (-558))) (-679 (-315 (-558))))) (-15 -3193 ((-635 (-679 (-315 (-558)))) (-635 (-679 (-315 (-558)))))) (-15 -3204 ((-635 (-679 (-315 (-558)))) (-679 (-406 (-942 (-558)))))))) (T -1021))
+((-3204 (*1 *2 *3) (-12 (-5 *3 (-679 (-406 (-942 (-558))))) (-5 *2 (-635 (-679 (-315 (-558))))) (-5 *1 (-1021)))) (-3193 (*1 *2 *2) (-12 (-5 *2 (-635 (-679 (-315 (-558))))) (-5 *1 (-1021)))) (-3183 (*1 *2 *2) (-12 (-5 *2 (-679 (-315 (-558)))) (-5 *1 (-1021)))) (-3172 (*1 *2 *3) (|partial| -12 (-5 *3 (-679 (-406 (-942 (-558))))) (-5 *2 (-679 (-315 (-558)))) (-5 *1 (-1021)))) (-3161 (*1 *2 *3) (-12 (-5 *3 (-679 (-406 (-942 (-558))))) (-5 *2 (-635 (-315 (-558)))) (-5 *1 (-1021)))) (-3150 (*1 *2 *3 *4) (-12 (-5 *4 (-679 (-406 (-942 (-558))))) (-5 *2 (-635 (-679 (-315 (-558))))) (-5 *1 (-1021)) (-5 *3 (-315 (-558))))) (-3140 (*1 *2 *3) (-12 (-5 *3 (-679 (-406 (-942 (-558))))) (-5 *2 (-635 (-2 (|:| |radval| (-315 (-558))) (|:| |radmult| (-558)) (|:| |radvect| (-635 (-679 (-315 (-558)))))))) (-5 *1 (-1021)))))
+(-10 -7 (-15 -3140 ((-635 (-2 (|:| |radval| (-315 (-558))) (|:| |radmult| (-558)) (|:| |radvect| (-635 (-679 (-315 (-558))))))) (-679 (-406 (-942 (-558)))))) (-15 -3150 ((-635 (-679 (-315 (-558)))) (-315 (-558)) (-679 (-406 (-942 (-558)))))) (-15 -3161 ((-635 (-315 (-558))) (-679 (-406 (-942 (-558)))))) (-15 -3172 ((-3 (-679 (-315 (-558))) "failed") (-679 (-406 (-942 (-558)))))) (-15 -3183 ((-679 (-315 (-558))) (-679 (-315 (-558))))) (-15 -3193 ((-635 (-679 (-315 (-558)))) (-635 (-679 (-315 (-558)))))) (-15 -3204 ((-635 (-679 (-315 (-558)))) (-679 (-406 (-942 (-558)))))))
+((-3360 ((|#1| |#1| (-911)) 9)))
+(((-1022 |#1|) (-10 -7 (-15 -3360 (|#1| |#1| (-911)))) (-13 (-1087) (-10 -8 (-15 * ($ $ $))))) (T -1022))
+((-3360 (*1 *2 *2 *3) (-12 (-5 *3 (-911)) (-5 *1 (-1022 *2)) (-4 *2 (-13 (-1087) (-10 -8 (-15 * ($ $ $))))))))
+(-10 -7 (-15 -3360 (|#1| |#1| (-911))))
+((-3220 ((|#1| (-311)) 11) (((-1251) |#1|) 9)))
+(((-1023 |#1|) (-10 -7 (-15 -3220 ((-1251) |#1|)) (-15 -3220 (|#1| (-311)))) (-1200)) (T -1023))
+((-3220 (*1 *2 *3) (-12 (-5 *3 (-311)) (-5 *1 (-1023 *2)) (-4 *2 (-1200)))) (-3220 (*1 *2 *3) (-12 (-5 *2 (-1251)) (-5 *1 (-1023 *3)) (-4 *3 (-1200)))))
+(-10 -7 (-15 -3220 ((-1251) |#1|)) (-15 -3220 (|#1| (-311))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-1816 (($) NIL T CONST)) (-3048 (($ |#4|) 25)) (-2588 (((-3 $ "failed") $) NIL)) (-2035 (((-112) $) NIL)) (-3227 ((|#4| $) 27)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 46) (($ (-558)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-2542 (((-762)) 43)) (-2131 (($) 21 T CONST)) (-2142 (($) 23 T CONST)) (-1683 (((-112) $ $) 40)) (-1798 (($ $) 31) (($ $ $) NIL)) (-1784 (($ $ $) 29)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
+(((-1024 |#1| |#2| |#3| |#4| |#5|) (-13 (-171) (-38 |#1|) (-10 -8 (-15 -3048 ($ |#4|)) (-15 -3220 ($ |#4|)) (-15 -3227 (|#4| $)))) (-362) (-784) (-841) (-939 |#1| |#2| |#3|) (-635 |#4|)) (T -1024))
+((-3048 (*1 *1 *2) (-12 (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-1024 *3 *4 *5 *2 *6)) (-4 *2 (-939 *3 *4 *5)) (-14 *6 (-635 *2)))) (-3220 (*1 *1 *2) (-12 (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-1024 *3 *4 *5 *2 *6)) (-4 *2 (-939 *3 *4 *5)) (-14 *6 (-635 *2)))) (-3227 (*1 *2 *1) (-12 (-4 *2 (-939 *3 *4 *5)) (-5 *1 (-1024 *3 *4 *5 *2 *6)) (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-14 *6 (-635 *2)))))
+(-13 (-171) (-38 |#1|) (-10 -8 (-15 -3048 ($ |#4|)) (-15 -3220 ($ |#4|)) (-15 -3227 (|#4| $))))
+((-3207 (((-112) $ $) NIL (-3998 (|has| (-52) (-1087)) (|has| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-1087))))) (-3303 (($) NIL) (($ (-635 (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))))) NIL)) (-3869 (((-1251) $ (-1163) (-1163)) NIL (|has| $ (-6 -4383)))) (-3026 (((-112) $ (-762)) NIL)) (-3379 (((-112) (-112)) 39)) (-3369 (((-112) (-112)) 38)) (-1532 (((-52) $ (-1163) (-52)) NIL)) (-4207 (($ (-1 (-112) (-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) $) NIL (|has| $ (-6 -4382)))) (-4329 (($ (-1 (-112) (-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) $) NIL (|has| $ (-6 -4382)))) (-3083 (((-3 (-52) "failed") (-1163) $) NIL)) (-1816 (($) NIL T CONST)) (-2338 (($ $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-1087))))) (-3395 (($ (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) $) NIL (|has| $ (-6 -4382))) (($ (-1 (-112) (-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) $) NIL (|has| $ (-6 -4382))) (((-3 (-52) "failed") (-1163) $) NIL)) (-1539 (($ (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-1087)))) (($ (-1 (-112) (-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) $) NIL (|has| $ (-6 -4382)))) (-3048 (((-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-1 (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) $ (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-1087)))) (((-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-1 (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) $ (-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) NIL (|has| $ (-6 -4382))) (((-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-1 (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) $) NIL (|has| $ (-6 -4382)))) (-1817 (((-52) $ (-1163) (-52)) NIL (|has| $ (-6 -4383)))) (-1746 (((-52) $ (-1163)) NIL)) (-2240 (((-635 (-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) $) NIL (|has| $ (-6 -4382))) (((-635 (-52)) $) NIL (|has| $ (-6 -4382)))) (-2986 (((-112) $ (-762)) NIL)) (-3889 (((-1163) $) NIL (|has| (-1163) (-841)))) (-2122 (((-635 (-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) $) NIL (|has| $ (-6 -4382))) (((-635 (-52)) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-1087)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-52) (-1087))))) (-3899 (((-1163) $) NIL (|has| (-1163) (-841)))) (-1807 (($ (-1 (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) $) NIL (|has| $ (-6 -4383))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL (-3998 (|has| (-52) (-1087)) (|has| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-1087))))) (-3848 (((-635 (-1163)) $) 34)) (-3950 (((-112) (-1163) $) NIL)) (-1722 (((-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) $) NIL)) (-4328 (($ (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) $) NIL)) (-3920 (((-635 (-1163)) $) NIL)) (-3929 (((-112) (-1163) $) NIL)) (-2975 (((-1107) $) NIL (-3998 (|has| (-52) (-1087)) (|has| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-1087))))) (-2305 (((-52) $) NIL (|has| (-1163) (-841)))) (-4307 (((-3 (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) "failed") (-1 (-112) (-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) $) NIL)) (-3880 (($ $ (-52)) NIL (|has| $ (-6 -4383)))) (-3524 (((-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) $) NIL)) (-3266 (((-112) (-1 (-112) (-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) $) NIL (|has| $ (-6 -4382))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 (-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))))) NIL (-12 (|has| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-308 (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))))) (|has| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-1087)))) (($ $ (-293 (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))))) NIL (-12 (|has| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-308 (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))))) (|has| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-1087)))) (($ $ (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) NIL (-12 (|has| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-308 (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))))) (|has| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-1087)))) (($ $ (-635 (-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) (-635 (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))))) NIL (-12 (|has| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-308 (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))))) (|has| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-1087)))) (($ $ (-635 (-52)) (-635 (-52))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1087)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1087)))) (($ $ (-293 (-52))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1087)))) (($ $ (-635 (-293 (-52)))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1087))))) (-2381 (((-112) $ $) NIL)) (-3908 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-52) (-1087))))) (-3937 (((-635 (-52)) $) NIL)) (-3375 (((-112) $) NIL)) (-2083 (($) NIL)) (-2195 (((-52) $ (-1163)) 35) (((-52) $ (-1163) (-52)) NIL)) (-2571 (($) NIL) (($ (-635 (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))))) NIL)) (-2988 (((-762) (-1 (-112) (-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) $) NIL (|has| $ (-6 -4382))) (((-762) (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-1087)))) (((-762) (-52) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-52) (-1087)))) (((-762) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4382)))) (-1553 (($ $) NIL)) (-3224 (((-534) $) NIL (|has| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-606 (-534))))) (-3233 (($ (-635 (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))))) NIL)) (-3220 (((-853) $) 37 (-3998 (|has| (-52) (-605 (-853))) (|has| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-605 (-853)))))) (-3534 (($ (-635 (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))))) NIL)) (-3277 (((-112) (-1 (-112) (-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) $) NIL (|has| $ (-6 -4382))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) NIL (-3998 (|has| (-52) (-1087)) (|has| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-1087))))) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-1025) (-13 (-1176 (-1163) (-52)) (-10 -7 (-15 -3379 ((-112) (-112))) (-15 -3369 ((-112) (-112))) (-6 -4382)))) (T -1025))
+((-3379 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1025)))) (-3369 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1025)))))
+(-13 (-1176 (-1163) (-52)) (-10 -7 (-15 -3379 ((-112) (-112))) (-15 -3369 ((-112) (-112))) (-6 -4382)))
+((-3207 (((-112) $ $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3535 (((-1122) $) 9)) (-3220 (((-853) $) 17) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1683 (((-112) $ $) NIL)))
+(((-1026) (-13 (-1070) (-10 -8 (-15 -3535 ((-1122) $))))) (T -1026))
+((-3535 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1026)))))
+(-13 (-1070) (-10 -8 (-15 -3535 ((-1122) $))))
+((-1863 ((|#2| $) 10)))
+(((-1027 |#1| |#2|) (-10 -8 (-15 -1863 (|#2| |#1|))) (-1028 |#2|) (-1200)) (T -1027))
+NIL
+(-10 -8 (-15 -1863 (|#2| |#1|)))
+((-3069 (((-3 |#1| "failed") $) 9)) (-1863 ((|#1| $) 8)) (-3220 (($ |#1|) 6)))
+(((-1028 |#1|) (-139) (-1200)) (T -1028))
+((-3069 (*1 *2 *1) (|partial| -12 (-4 *1 (-1028 *2)) (-4 *2 (-1200)))) (-1863 (*1 *2 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-1200)))))
+(-13 (-608 |t#1|) (-10 -8 (-15 -3069 ((-3 |t#1| "failed") $)) (-15 -1863 (|t#1| $))))
+(((-608 |#1|) . T))
+((-3389 (((-635 (-635 (-293 (-406 (-942 |#2|))))) (-635 (-942 |#2|)) (-635 (-1163))) 38)))
+(((-1029 |#1| |#2|) (-10 -7 (-15 -3389 ((-635 (-635 (-293 (-406 (-942 |#2|))))) (-635 (-942 |#2|)) (-635 (-1163))))) (-550) (-13 (-550) (-1028 |#1|))) (T -1029))
+((-3389 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-942 *6))) (-5 *4 (-635 (-1163))) (-4 *6 (-13 (-550) (-1028 *5))) (-4 *5 (-550)) (-5 *2 (-635 (-635 (-293 (-406 (-942 *6)))))) (-5 *1 (-1029 *5 *6)))))
+(-10 -7 (-15 -3389 ((-635 (-635 (-293 (-406 (-942 |#2|))))) (-635 (-942 |#2|)) (-635 (-1163)))))
+((-3410 (((-378)) 15)) (-2312 (((-1 (-378)) (-378) (-378)) 20)) (-1360 (((-1 (-378)) (-762)) 42)) (-3420 (((-378)) 33)) (-1499 (((-1 (-378)) (-378) (-378)) 34)) (-3428 (((-378)) 26)) (-3447 (((-1 (-378)) (-378)) 27)) (-3438 (((-378) (-762)) 37)) (-2243 (((-1 (-378)) (-762)) 38)) (-3215 (((-1 (-378)) (-762) (-762)) 41)) (-3200 (((-1 (-378)) (-762) (-762)) 39)))
+(((-1030) (-10 -7 (-15 -3410 ((-378))) (-15 -3420 ((-378))) (-15 -3428 ((-378))) (-15 -3438 ((-378) (-762))) (-15 -2312 ((-1 (-378)) (-378) (-378))) (-15 -1499 ((-1 (-378)) (-378) (-378))) (-15 -3447 ((-1 (-378)) (-378))) (-15 -2243 ((-1 (-378)) (-762))) (-15 -3200 ((-1 (-378)) (-762) (-762))) (-15 -3215 ((-1 (-378)) (-762) (-762))) (-15 -1360 ((-1 (-378)) (-762))))) (T -1030))
+((-1360 (*1 *2 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1 (-378))) (-5 *1 (-1030)))) (-3215 (*1 *2 *3 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1 (-378))) (-5 *1 (-1030)))) (-3200 (*1 *2 *3 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1 (-378))) (-5 *1 (-1030)))) (-2243 (*1 *2 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1 (-378))) (-5 *1 (-1030)))) (-3447 (*1 *2 *3) (-12 (-5 *2 (-1 (-378))) (-5 *1 (-1030)) (-5 *3 (-378)))) (-1499 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-378))) (-5 *1 (-1030)) (-5 *3 (-378)))) (-2312 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-378))) (-5 *1 (-1030)) (-5 *3 (-378)))) (-3438 (*1 *2 *3) (-12 (-5 *3 (-762)) (-5 *2 (-378)) (-5 *1 (-1030)))) (-3428 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1030)))) (-3420 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1030)))) (-3410 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1030)))))
+(-10 -7 (-15 -3410 ((-378))) (-15 -3420 ((-378))) (-15 -3428 ((-378))) (-15 -3438 ((-378) (-762))) (-15 -2312 ((-1 (-378)) (-378) (-378))) (-15 -1499 ((-1 (-378)) (-378) (-378))) (-15 -3447 ((-1 (-378)) (-378))) (-15 -2243 ((-1 (-378)) (-762))) (-15 -3200 ((-1 (-378)) (-762) (-762))) (-15 -3215 ((-1 (-378)) (-762) (-762))) (-15 -1360 ((-1 (-378)) (-762))))
+((-2522 (((-417 |#1|) |#1|) 33)))
+(((-1031 |#1|) (-10 -7 (-15 -2522 ((-417 |#1|) |#1|))) (-1222 (-406 (-942 (-558))))) (T -1031))
+((-2522 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1031 *3)) (-4 *3 (-1222 (-406 (-942 (-558))))))))
+(-10 -7 (-15 -2522 ((-417 |#1|) |#1|)))
+((-2255 (((-406 (-417 (-942 |#1|))) (-406 (-942 |#1|))) 14)))
+(((-1032 |#1|) (-10 -7 (-15 -2255 ((-406 (-417 (-942 |#1|))) (-406 (-942 |#1|))))) (-306)) (T -1032))
+((-2255 (*1 *2 *3) (-12 (-5 *3 (-406 (-942 *4))) (-4 *4 (-306)) (-5 *2 (-406 (-417 (-942 *4)))) (-5 *1 (-1032 *4)))))
+(-10 -7 (-15 -2255 ((-406 (-417 (-942 |#1|))) (-406 (-942 |#1|)))))
+((-2671 (((-635 (-1163)) (-406 (-942 |#1|))) 17)) (-2492 (((-406 (-1159 (-406 (-942 |#1|)))) (-406 (-942 |#1|)) (-1163)) 24)) (-2659 (((-406 (-942 |#1|)) (-406 (-1159 (-406 (-942 |#1|)))) (-1163)) 26)) (-3399 (((-3 (-1163) "failed") (-406 (-942 |#1|))) 20)) (-2554 (((-406 (-942 |#1|)) (-406 (-942 |#1|)) (-635 (-293 (-406 (-942 |#1|))))) 32) (((-406 (-942 |#1|)) (-406 (-942 |#1|)) (-293 (-406 (-942 |#1|)))) 33) (((-406 (-942 |#1|)) (-406 (-942 |#1|)) (-635 (-1163)) (-635 (-406 (-942 |#1|)))) 28) (((-406 (-942 |#1|)) (-406 (-942 |#1|)) (-1163) (-406 (-942 |#1|))) 29)) (-3220 (((-406 (-942 |#1|)) |#1|) 11)))
+(((-1033 |#1|) (-10 -7 (-15 -2671 ((-635 (-1163)) (-406 (-942 |#1|)))) (-15 -3399 ((-3 (-1163) "failed") (-406 (-942 |#1|)))) (-15 -2492 ((-406 (-1159 (-406 (-942 |#1|)))) (-406 (-942 |#1|)) (-1163))) (-15 -2659 ((-406 (-942 |#1|)) (-406 (-1159 (-406 (-942 |#1|)))) (-1163))) (-15 -2554 ((-406 (-942 |#1|)) (-406 (-942 |#1|)) (-1163) (-406 (-942 |#1|)))) (-15 -2554 ((-406 (-942 |#1|)) (-406 (-942 |#1|)) (-635 (-1163)) (-635 (-406 (-942 |#1|))))) (-15 -2554 ((-406 (-942 |#1|)) (-406 (-942 |#1|)) (-293 (-406 (-942 |#1|))))) (-15 -2554 ((-406 (-942 |#1|)) (-406 (-942 |#1|)) (-635 (-293 (-406 (-942 |#1|)))))) (-15 -3220 ((-406 (-942 |#1|)) |#1|))) (-550)) (T -1033))
+((-3220 (*1 *2 *3) (-12 (-5 *2 (-406 (-942 *3))) (-5 *1 (-1033 *3)) (-4 *3 (-550)))) (-2554 (*1 *2 *2 *3) (-12 (-5 *3 (-635 (-293 (-406 (-942 *4))))) (-5 *2 (-406 (-942 *4))) (-4 *4 (-550)) (-5 *1 (-1033 *4)))) (-2554 (*1 *2 *2 *3) (-12 (-5 *3 (-293 (-406 (-942 *4)))) (-5 *2 (-406 (-942 *4))) (-4 *4 (-550)) (-5 *1 (-1033 *4)))) (-2554 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-635 (-1163))) (-5 *4 (-635 (-406 (-942 *5)))) (-5 *2 (-406 (-942 *5))) (-4 *5 (-550)) (-5 *1 (-1033 *5)))) (-2554 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-406 (-942 *4))) (-5 *3 (-1163)) (-4 *4 (-550)) (-5 *1 (-1033 *4)))) (-2659 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-1159 (-406 (-942 *5))))) (-5 *4 (-1163)) (-5 *2 (-406 (-942 *5))) (-5 *1 (-1033 *5)) (-4 *5 (-550)))) (-2492 (*1 *2 *3 *4) (-12 (-5 *4 (-1163)) (-4 *5 (-550)) (-5 *2 (-406 (-1159 (-406 (-942 *5))))) (-5 *1 (-1033 *5)) (-5 *3 (-406 (-942 *5))))) (-3399 (*1 *2 *3) (|partial| -12 (-5 *3 (-406 (-942 *4))) (-4 *4 (-550)) (-5 *2 (-1163)) (-5 *1 (-1033 *4)))) (-2671 (*1 *2 *3) (-12 (-5 *3 (-406 (-942 *4))) (-4 *4 (-550)) (-5 *2 (-635 (-1163))) (-5 *1 (-1033 *4)))))
+(-10 -7 (-15 -2671 ((-635 (-1163)) (-406 (-942 |#1|)))) (-15 -3399 ((-3 (-1163) "failed") (-406 (-942 |#1|)))) (-15 -2492 ((-406 (-1159 (-406 (-942 |#1|)))) (-406 (-942 |#1|)) (-1163))) (-15 -2659 ((-406 (-942 |#1|)) (-406 (-1159 (-406 (-942 |#1|)))) (-1163))) (-15 -2554 ((-406 (-942 |#1|)) (-406 (-942 |#1|)) (-1163) (-406 (-942 |#1|)))) (-15 -2554 ((-406 (-942 |#1|)) (-406 (-942 |#1|)) (-635 (-1163)) (-635 (-406 (-942 |#1|))))) (-15 -2554 ((-406 (-942 |#1|)) (-406 (-942 |#1|)) (-293 (-406 (-942 |#1|))))) (-15 -2554 ((-406 (-942 |#1|)) (-406 (-942 |#1|)) (-635 (-293 (-406 (-942 |#1|)))))) (-15 -3220 ((-406 (-942 |#1|)) |#1|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-1816 (($) 17 T CONST)) (-2293 ((|#1| $) 22)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-2283 ((|#1| $) 21)) (-2265 ((|#1|) 19 T CONST)) (-3220 (((-853) $) 11)) (-2272 ((|#1| $) 20)) (-2131 (($) 18 T CONST)) (-1683 (((-112) $ $) 6)) (-1784 (($ $ $) 14)) (* (($ (-911) $) 13) (($ (-762) $) 15)))
+(((-1034 |#1|) (-139) (-23)) (T -1034))
+((-2293 (*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-23)))) (-2283 (*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-23)))) (-2272 (*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-23)))) (-2265 (*1 *2) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-23)))))
+(-13 (-23) (-10 -8 (-15 -2293 (|t#1| $)) (-15 -2283 (|t#1| $)) (-15 -2272 (|t#1| $)) (-15 -2265 (|t#1|) -3707)))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-605 (-853)) . T) ((-1087) . T))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2303 (($) 24 T CONST)) (-1816 (($) 17 T CONST)) (-2293 ((|#1| $) 22)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-2283 ((|#1| $) 21)) (-2265 ((|#1|) 19 T CONST)) (-3220 (((-853) $) 11)) (-2272 ((|#1| $) 20)) (-2131 (($) 18 T CONST)) (-1683 (((-112) $ $) 6)) (-1784 (($ $ $) 14)) (* (($ (-911) $) 13) (($ (-762) $) 15)))
+(((-1035 |#1|) (-139) (-23)) (T -1035))
+((-2303 (*1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-23)))))
+(-13 (-1034 |t#1|) (-10 -8 (-15 -2303 ($) -3707)))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-605 (-853)) . T) ((-1034 |#1|) . T) ((-1087) . T))
+((-3207 (((-112) $ $) NIL)) (-3773 (((-635 (-2 (|:| -2626 $) (|:| -1328 (-635 (-771 |#1| (-855 |#2|)))))) (-635 (-771 |#1| (-855 |#2|)))) NIL)) (-3782 (((-635 $) (-635 (-771 |#1| (-855 |#2|)))) NIL) (((-635 $) (-635 (-771 |#1| (-855 |#2|))) (-112)) NIL) (((-635 $) (-635 (-771 |#1| (-855 |#2|))) (-112) (-112)) NIL)) (-2671 (((-635 (-855 |#2|)) $) NIL)) (-2139 (((-112) $) NIL)) (-2040 (((-112) $) NIL (|has| |#1| (-550)))) (-3892 (((-112) (-771 |#1| (-855 |#2|)) $) NIL) (((-112) $) NIL)) (-3842 (((-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|)) $) NIL)) (-3465 (((-635 (-2 (|:| |val| (-771 |#1| (-855 |#2|))) (|:| -2396 $))) (-771 |#1| (-855 |#2|)) $) NIL)) (-2376 (((-2 (|:| |under| $) (|:| -2594 $) (|:| |upper| $)) $ (-855 |#2|)) NIL)) (-3026 (((-112) $ (-762)) NIL)) (-4329 (($ (-1 (-112) (-771 |#1| (-855 |#2|))) $) NIL (|has| $ (-6 -4382))) (((-3 (-771 |#1| (-855 |#2|)) "failed") $ (-855 |#2|)) NIL)) (-1816 (($) NIL T CONST)) (-2092 (((-112) $) NIL (|has| |#1| (-550)))) (-2116 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2104 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2128 (((-112) $) NIL (|has| |#1| (-550)))) (-3853 (((-635 (-771 |#1| (-855 |#2|))) (-635 (-771 |#1| (-855 |#2|))) $ (-1 (-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|))) (-1 (-112) (-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|)))) NIL)) (-2050 (((-635 (-771 |#1| (-855 |#2|))) (-635 (-771 |#1| (-855 |#2|))) $) NIL (|has| |#1| (-550)))) (-2061 (((-635 (-771 |#1| (-855 |#2|))) (-635 (-771 |#1| (-855 |#2|))) $) NIL (|has| |#1| (-550)))) (-3069 (((-3 $ "failed") (-635 (-771 |#1| (-855 |#2|)))) NIL)) (-1863 (($ (-635 (-771 |#1| (-855 |#2|)))) NIL)) (-2315 (((-3 $ "failed") $) NIL)) (-3810 (((-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|)) $) NIL)) (-2338 (($ $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-771 |#1| (-855 |#2|)) (-1087))))) (-1539 (($ (-771 |#1| (-855 |#2|)) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-771 |#1| (-855 |#2|)) (-1087)))) (($ (-1 (-112) (-771 |#1| (-855 |#2|))) $) NIL (|has| $ (-6 -4382)))) (-2071 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-771 |#1| (-855 |#2|))) (|:| |den| |#1|)) (-771 |#1| (-855 |#2|)) $) NIL (|has| |#1| (-550)))) (-3902 (((-112) (-771 |#1| (-855 |#2|)) $ (-1 (-112) (-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|)))) NIL)) (-3792 (((-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|)) $) NIL)) (-3048 (((-771 |#1| (-855 |#2|)) (-1 (-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|))) $ (-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|))) NIL (-12 (|has| $ (-6 -4382)) (|has| (-771 |#1| (-855 |#2|)) (-1087)))) (((-771 |#1| (-855 |#2|)) (-1 (-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|))) $ (-771 |#1| (-855 |#2|))) NIL (|has| $ (-6 -4382))) (((-771 |#1| (-855 |#2|)) (-1 (-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|))) $) NIL (|has| $ (-6 -4382))) (((-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|)) $ (-1 (-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|))) (-1 (-112) (-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|)))) NIL)) (-3923 (((-2 (|:| -2626 (-635 (-771 |#1| (-855 |#2|)))) (|:| -1328 (-635 (-771 |#1| (-855 |#2|))))) $) NIL)) (-2166 (((-112) (-771 |#1| (-855 |#2|)) $) NIL)) (-2145 (((-112) (-771 |#1| (-855 |#2|)) $) NIL)) (-2177 (((-112) (-771 |#1| (-855 |#2|)) $) NIL) (((-112) $) NIL)) (-2240 (((-635 (-771 |#1| (-855 |#2|))) $) NIL (|has| $ (-6 -4382)))) (-3912 (((-112) (-771 |#1| (-855 |#2|)) $) NIL) (((-112) $) NIL)) (-1997 (((-855 |#2|) $) NIL)) (-2986 (((-112) $ (-762)) NIL)) (-2122 (((-635 (-771 |#1| (-855 |#2|))) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) (-771 |#1| (-855 |#2|)) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-771 |#1| (-855 |#2|)) (-1087))))) (-1807 (($ (-1 (-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|))) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 (-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|))) $) NIL)) (-4024 (((-635 (-855 |#2|)) $) NIL)) (-2183 (((-112) (-855 |#2|) $) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL)) (-2099 (((-3 (-771 |#1| (-855 |#2|)) (-635 $)) (-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|)) $) NIL)) (-2087 (((-635 (-2 (|:| |val| (-771 |#1| (-855 |#2|))) (|:| -2396 $))) (-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|)) $) NIL)) (-1560 (((-3 (-771 |#1| (-855 |#2|)) "failed") $) NIL)) (-2111 (((-635 $) (-771 |#1| (-855 |#2|)) $) NIL)) (-2134 (((-3 (-112) (-635 $)) (-771 |#1| (-855 |#2|)) $) NIL)) (-2123 (((-635 (-2 (|:| |val| (-112)) (|:| -2396 $))) (-771 |#1| (-855 |#2|)) $) NIL) (((-112) (-771 |#1| (-855 |#2|)) $) NIL)) (-4286 (((-635 $) (-771 |#1| (-855 |#2|)) $) NIL) (((-635 $) (-635 (-771 |#1| (-855 |#2|))) $) NIL) (((-635 $) (-635 (-771 |#1| (-855 |#2|))) (-635 $)) NIL) (((-635 $) (-771 |#1| (-855 |#2|)) (-635 $)) NIL)) (-2423 (($ (-771 |#1| (-855 |#2|)) $) NIL) (($ (-635 (-771 |#1| (-855 |#2|))) $) NIL)) (-3932 (((-635 (-771 |#1| (-855 |#2|))) $) NIL)) (-3873 (((-112) (-771 |#1| (-855 |#2|)) $) NIL) (((-112) $) NIL)) (-3820 (((-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|)) $) NIL)) (-3953 (((-112) $ $) NIL)) (-2081 (((-2 (|:| |num| (-771 |#1| (-855 |#2|))) (|:| |den| |#1|)) (-771 |#1| (-855 |#2|)) $) NIL (|has| |#1| (-550)))) (-3883 (((-112) (-771 |#1| (-855 |#2|)) $) NIL) (((-112) $) NIL)) (-3830 (((-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|)) $) NIL)) (-2975 (((-1107) $) NIL)) (-2305 (((-3 (-771 |#1| (-855 |#2|)) "failed") $) NIL)) (-4307 (((-3 (-771 |#1| (-855 |#2|)) "failed") (-1 (-112) (-771 |#1| (-855 |#2|))) $) NIL)) (-3755 (((-3 $ "failed") $ (-771 |#1| (-855 |#2|))) NIL)) (-3430 (($ $ (-771 |#1| (-855 |#2|))) NIL) (((-635 $) (-771 |#1| (-855 |#2|)) $) NIL) (((-635 $) (-771 |#1| (-855 |#2|)) (-635 $)) NIL) (((-635 $) (-635 (-771 |#1| (-855 |#2|))) $) NIL) (((-635 $) (-635 (-771 |#1| (-855 |#2|))) (-635 $)) NIL)) (-3266 (((-112) (-1 (-112) (-771 |#1| (-855 |#2|))) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-771 |#1| (-855 |#2|))) (-635 (-771 |#1| (-855 |#2|)))) NIL (-12 (|has| (-771 |#1| (-855 |#2|)) (-308 (-771 |#1| (-855 |#2|)))) (|has| (-771 |#1| (-855 |#2|)) (-1087)))) (($ $ (-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|))) NIL (-12 (|has| (-771 |#1| (-855 |#2|)) (-308 (-771 |#1| (-855 |#2|)))) (|has| (-771 |#1| (-855 |#2|)) (-1087)))) (($ $ (-293 (-771 |#1| (-855 |#2|)))) NIL (-12 (|has| (-771 |#1| (-855 |#2|)) (-308 (-771 |#1| (-855 |#2|)))) (|has| (-771 |#1| (-855 |#2|)) (-1087)))) (($ $ (-635 (-293 (-771 |#1| (-855 |#2|))))) NIL (-12 (|has| (-771 |#1| (-855 |#2|)) (-308 (-771 |#1| (-855 |#2|)))) (|has| (-771 |#1| (-855 |#2|)) (-1087))))) (-2381 (((-112) $ $) NIL)) (-3375 (((-112) $) NIL)) (-2083 (($) NIL)) (-4323 (((-762) $) NIL)) (-2988 (((-762) (-771 |#1| (-855 |#2|)) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-771 |#1| (-855 |#2|)) (-1087)))) (((-762) (-1 (-112) (-771 |#1| (-855 |#2|))) $) NIL (|has| $ (-6 -4382)))) (-1553 (($ $) NIL)) (-3224 (((-534) $) NIL (|has| (-771 |#1| (-855 |#2|)) (-606 (-534))))) (-3233 (($ (-635 (-771 |#1| (-855 |#2|)))) NIL)) (-2151 (($ $ (-855 |#2|)) NIL)) (-2171 (($ $ (-855 |#2|)) NIL)) (-3801 (($ $) NIL)) (-2160 (($ $ (-855 |#2|)) NIL)) (-3220 (((-853) $) NIL) (((-635 (-771 |#1| (-855 |#2|))) $) NIL)) (-3745 (((-762) $) NIL (|has| (-855 |#2|) (-367)))) (-3940 (((-3 (-2 (|:| |bas| $) (|:| -3072 (-635 (-771 |#1| (-855 |#2|))))) "failed") (-635 (-771 |#1| (-855 |#2|))) (-1 (-112) (-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3072 (-635 (-771 |#1| (-855 |#2|))))) "failed") (-635 (-771 |#1| (-855 |#2|))) (-1 (-112) (-771 |#1| (-855 |#2|))) (-1 (-112) (-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|)))) NIL)) (-3863 (((-112) $ (-1 (-112) (-771 |#1| (-855 |#2|)) (-635 (-771 |#1| (-855 |#2|))))) NIL)) (-2076 (((-635 $) (-771 |#1| (-855 |#2|)) $) NIL) (((-635 $) (-771 |#1| (-855 |#2|)) (-635 $)) NIL) (((-635 $) (-635 (-771 |#1| (-855 |#2|))) $) NIL) (((-635 $) (-635 (-771 |#1| (-855 |#2|))) (-635 $)) NIL)) (-3277 (((-112) (-1 (-112) (-771 |#1| (-855 |#2|))) $) NIL (|has| $ (-6 -4382)))) (-3764 (((-635 (-855 |#2|)) $) NIL)) (-2155 (((-112) (-771 |#1| (-855 |#2|)) $) NIL)) (-4206 (((-112) (-855 |#2|) $) NIL)) (-1683 (((-112) $ $) NIL)) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-1036 |#1| |#2|) (-13 (-1059 |#1| (-529 (-855 |#2|)) (-855 |#2|) (-771 |#1| (-855 |#2|))) (-10 -8 (-15 -3782 ((-635 $) (-635 (-771 |#1| (-855 |#2|))) (-112) (-112))))) (-450) (-635 (-1163))) (T -1036))
+((-3782 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-635 (-771 *5 (-855 *6)))) (-5 *4 (-112)) (-4 *5 (-450)) (-14 *6 (-635 (-1163))) (-5 *2 (-635 (-1036 *5 *6))) (-5 *1 (-1036 *5 *6)))))
+(-13 (-1059 |#1| (-529 (-855 |#2|)) (-855 |#2|) (-771 |#1| (-855 |#2|))) (-10 -8 (-15 -3782 ((-635 $) (-635 (-771 |#1| (-855 |#2|))) (-112) (-112)))))
+((-2312 (((-1 (-558)) (-1081 (-558))) 33)) (-2357 (((-558) (-558) (-558) (-558) (-558)) 30)) (-2334 (((-1 (-558)) |RationalNumber|) NIL)) (-2346 (((-1 (-558)) |RationalNumber|) NIL)) (-2322 (((-1 (-558)) (-558) |RationalNumber|) NIL)))
+(((-1037) (-10 -7 (-15 -2312 ((-1 (-558)) (-1081 (-558)))) (-15 -2322 ((-1 (-558)) (-558) |RationalNumber|)) (-15 -2334 ((-1 (-558)) |RationalNumber|)) (-15 -2346 ((-1 (-558)) |RationalNumber|)) (-15 -2357 ((-558) (-558) (-558) (-558) (-558))))) (T -1037))
+((-2357 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1037)))) (-2346 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-558))) (-5 *1 (-1037)))) (-2334 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-558))) (-5 *1 (-1037)))) (-2322 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-558))) (-5 *1 (-1037)) (-5 *3 (-558)))) (-2312 (*1 *2 *3) (-12 (-5 *3 (-1081 (-558))) (-5 *2 (-1 (-558))) (-5 *1 (-1037)))))
+(-10 -7 (-15 -2312 ((-1 (-558)) (-1081 (-558)))) (-15 -2322 ((-1 (-558)) (-558) |RationalNumber|)) (-15 -2334 ((-1 (-558)) |RationalNumber|)) (-15 -2346 ((-1 (-558)) |RationalNumber|)) (-15 -2357 ((-558) (-558) (-558) (-558) (-558))))
+((-3220 (((-853) $) NIL) (($ (-558)) 10)))
+(((-1038 |#1|) (-10 -8 (-15 -3220 (|#1| (-558))) (-15 -3220 ((-853) |#1|))) (-1039)) (T -1038))
+NIL
+(-10 -8 (-15 -3220 (|#1| (-558))) (-15 -3220 ((-853) |#1|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2089 (((-3 $ "failed") $ $) 19)) (-1816 (($) 17 T CONST)) (-2588 (((-3 $ "failed") $) 33)) (-2035 (((-112) $) 31)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11) (($ (-558)) 29)) (-2542 (((-762)) 28)) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1683 (((-112) $ $) 6)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24)))
+(((-1039) (-139)) (T -1039))
+((-2542 (*1 *2) (-12 (-4 *1 (-1039)) (-5 *2 (-762)))))
+(-13 (-1046) (-717) (-638 $) (-608 (-558)) (-10 -7 (-15 -2542 ((-762))) (-6 -4379)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-558)) . T) ((-605 (-853)) . T) ((-638 $) . T) ((-717) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
+((-2368 (((-406 (-942 |#2|)) (-635 |#2|) (-635 |#2|) (-762) (-762)) 45)))
+(((-1040 |#1| |#2|) (-10 -7 (-15 -2368 ((-406 (-942 |#2|)) (-635 |#2|) (-635 |#2|) (-762) (-762)))) (-1163) (-362)) (T -1040))
+((-2368 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-635 *6)) (-5 *4 (-762)) (-4 *6 (-362)) (-5 *2 (-406 (-942 *6))) (-5 *1 (-1040 *5 *6)) (-14 *5 (-1163)))))
+(-10 -7 (-15 -2368 ((-406 (-942 |#2|)) (-635 |#2|) (-635 |#2|) (-762) (-762))))
+((-2500 (((-112) $) 29)) (-2519 (((-112) $) 16)) (-1967 (((-762) $) 13)) (-1979 (((-762) $) 14)) (-2509 (((-112) $) 26)) (-2486 (((-112) $) 31)))
+(((-1041 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -1979 ((-762) |#1|)) (-15 -1967 ((-762) |#1|)) (-15 -2486 ((-112) |#1|)) (-15 -2500 ((-112) |#1|)) (-15 -2509 ((-112) |#1|)) (-15 -2519 ((-112) |#1|))) (-1042 |#2| |#3| |#4| |#5| |#6|) (-762) (-762) (-1039) (-237 |#3| |#4|) (-237 |#2| |#4|)) (T -1041))
+NIL
+(-10 -8 (-15 -1979 ((-762) |#1|)) (-15 -1967 ((-762) |#1|)) (-15 -2486 ((-112) |#1|)) (-15 -2500 ((-112) |#1|)) (-15 -2509 ((-112) |#1|)) (-15 -2519 ((-112) |#1|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2500 (((-112) $) 51)) (-2089 (((-3 $ "failed") $ $) 19)) (-2519 (((-112) $) 53)) (-3026 (((-112) $ (-762)) 61)) (-1816 (($) 17 T CONST)) (-2404 (($ $) 34 (|has| |#3| (-306)))) (-2427 ((|#4| $ (-558)) 39)) (-3833 (((-762) $) 33 (|has| |#3| (-550)))) (-1746 ((|#3| $ (-558) (-558)) 41)) (-2240 (((-635 |#3|) $) 68 (|has| $ (-6 -4382)))) (-2391 (((-762) $) 32 (|has| |#3| (-550)))) (-2379 (((-635 |#5|) $) 31 (|has| |#3| (-550)))) (-1967 (((-762) $) 45)) (-1979 (((-762) $) 44)) (-2986 (((-112) $ (-762)) 60)) (-2472 (((-558) $) 49)) (-2448 (((-558) $) 47)) (-2122 (((-635 |#3|) $) 69 (|has| $ (-6 -4382)))) (-4322 (((-112) |#3| $) 71 (-12 (|has| |#3| (-1087)) (|has| $ (-6 -4382))))) (-2460 (((-558) $) 48)) (-2438 (((-558) $) 46)) (-3181 (($ (-635 (-635 |#3|))) 54)) (-1807 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-4178 (((-635 (-635 |#3|)) $) 43)) (-2953 (((-112) $ (-762)) 59)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3983 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-550)))) (-3266 (((-112) (-1 (-112) |#3|) $) 66 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 |#3|) (-635 |#3|)) 75 (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087)))) (($ $ (-293 |#3|)) 73 (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087)))) (($ $ (-635 (-293 |#3|))) 72 (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087))))) (-2381 (((-112) $ $) 55)) (-3375 (((-112) $) 58)) (-2083 (($) 57)) (-2195 ((|#3| $ (-558) (-558)) 42) ((|#3| $ (-558) (-558) |#3|) 40)) (-2509 (((-112) $) 52)) (-2988 (((-762) |#3| $) 70 (-12 (|has| |#3| (-1087)) (|has| $ (-6 -4382)))) (((-762) (-1 (-112) |#3|) $) 67 (|has| $ (-6 -4382)))) (-1553 (($ $) 56)) (-2415 ((|#5| $ (-558)) 38)) (-3220 (((-853) $) 11)) (-3277 (((-112) (-1 (-112) |#3|) $) 65 (|has| $ (-6 -4382)))) (-2486 (((-112) $) 50)) (-2131 (($) 18 T CONST)) (-1683 (((-112) $ $) 6)) (-1810 (($ $ |#3|) 35 (|has| |#3| (-362)))) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-2755 (((-762) $) 62 (|has| $ (-6 -4382)))))
+(((-1042 |#1| |#2| |#3| |#4| |#5|) (-139) (-762) (-762) (-1039) (-237 |t#2| |t#3|) (-237 |t#1| |t#3|)) (T -1042))
+((-3167 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)))) (-3181 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 *5))) (-4 *5 (-1039)) (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)))) (-2519 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))) (-2509 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))) (-2500 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))) (-2486 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))) (-2472 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-558)))) (-2460 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-558)))) (-2448 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-558)))) (-2438 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-558)))) (-1967 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-762)))) (-1979 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-762)))) (-4178 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-635 (-635 *5))))) (-2195 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-4 *1 (-1042 *4 *5 *2 *6 *7)) (-4 *6 (-237 *5 *2)) (-4 *7 (-237 *4 *2)) (-4 *2 (-1039)))) (-1746 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-4 *1 (-1042 *4 *5 *2 *6 *7)) (-4 *6 (-237 *5 *2)) (-4 *7 (-237 *4 *2)) (-4 *2 (-1039)))) (-2195 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-558)) (-4 *1 (-1042 *4 *5 *2 *6 *7)) (-4 *2 (-1039)) (-4 *6 (-237 *5 *2)) (-4 *7 (-237 *4 *2)))) (-2427 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-1042 *4 *5 *6 *2 *7)) (-4 *6 (-1039)) (-4 *7 (-237 *4 *6)) (-4 *2 (-237 *5 *6)))) (-2415 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-1042 *4 *5 *6 *7 *2)) (-4 *6 (-1039)) (-4 *7 (-237 *5 *6)) (-4 *2 (-237 *4 *6)))) (-3167 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)))) (-3983 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1042 *3 *4 *2 *5 *6)) (-4 *2 (-1039)) (-4 *5 (-237 *4 *2)) (-4 *6 (-237 *3 *2)) (-4 *2 (-550)))) (-1810 (*1 *1 *1 *2) (-12 (-4 *1 (-1042 *3 *4 *2 *5 *6)) (-4 *2 (-1039)) (-4 *5 (-237 *4 *2)) (-4 *6 (-237 *3 *2)) (-4 *2 (-362)))) (-2404 (*1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-237 *3 *4)) (-4 *6 (-237 *2 *4)) (-4 *4 (-306)))) (-3833 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-4 *5 (-550)) (-5 *2 (-762)))) (-2391 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-4 *5 (-550)) (-5 *2 (-762)))) (-2379 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-4 *5 (-550)) (-5 *2 (-635 *7)))))
+(-13 (-111 |t#3| |t#3|) (-487 |t#3|) (-10 -8 (-6 -4382) (IF (|has| |t#3| (-171)) (-6 (-708 |t#3|)) |%noBranch|) (-15 -3181 ($ (-635 (-635 |t#3|)))) (-15 -2519 ((-112) $)) (-15 -2509 ((-112) $)) (-15 -2500 ((-112) $)) (-15 -2486 ((-112) $)) (-15 -2472 ((-558) $)) (-15 -2460 ((-558) $)) (-15 -2448 ((-558) $)) (-15 -2438 ((-558) $)) (-15 -1967 ((-762) $)) (-15 -1979 ((-762) $)) (-15 -4178 ((-635 (-635 |t#3|)) $)) (-15 -2195 (|t#3| $ (-558) (-558))) (-15 -1746 (|t#3| $ (-558) (-558))) (-15 -2195 (|t#3| $ (-558) (-558) |t#3|)) (-15 -2427 (|t#4| $ (-558))) (-15 -2415 (|t#5| $ (-558))) (-15 -3167 ($ (-1 |t#3| |t#3|) $)) (-15 -3167 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-550)) (-15 -3983 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-362)) (-15 -1810 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-306)) (-15 -2404 ($ $)) |%noBranch|) (IF (|has| |t#3| (-550)) (PROGN (-15 -3833 ((-762) $)) (-15 -2391 ((-762) $)) (-15 -2379 ((-635 |t#5|) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-130) . T) ((-605 (-853)) . T) ((-308 |#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087))) ((-487 |#3|) . T) ((-512 |#3| |#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087))) ((-638 |#3|) . T) ((-708 |#3|) |has| |#3| (-171)) ((-1045 |#3|) . T) ((-1087) . T) ((-1200) . T))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2500 (((-112) $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-2519 (((-112) $) NIL)) (-3026 (((-112) $ (-762)) NIL)) (-1816 (($) NIL T CONST)) (-2404 (($ $) 43 (|has| |#3| (-306)))) (-2427 (((-239 |#2| |#3|) $ (-558)) 32)) (-2530 (($ (-679 |#3|)) 41)) (-3833 (((-762) $) 45 (|has| |#3| (-550)))) (-1746 ((|#3| $ (-558) (-558)) NIL)) (-2240 (((-635 |#3|) $) NIL (|has| $ (-6 -4382)))) (-2391 (((-762) $) 47 (|has| |#3| (-550)))) (-2379 (((-635 (-239 |#1| |#3|)) $) 51 (|has| |#3| (-550)))) (-1967 (((-762) $) NIL)) (-1979 (((-762) $) NIL)) (-2986 (((-112) $ (-762)) NIL)) (-2472 (((-558) $) NIL)) (-2448 (((-558) $) NIL)) (-2122 (((-635 |#3|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#3| (-1087))))) (-2460 (((-558) $) NIL)) (-2438 (((-558) $) NIL)) (-3181 (($ (-635 (-635 |#3|))) 27)) (-1807 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-4178 (((-635 (-635 |#3|)) $) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3983 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-550)))) (-3266 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 |#3|) (-635 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087)))) (($ $ (-293 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087)))) (($ $ (-635 (-293 |#3|))) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3375 (((-112) $) NIL)) (-2083 (($) NIL)) (-2195 ((|#3| $ (-558) (-558)) NIL) ((|#3| $ (-558) (-558) |#3|) NIL)) (-2148 (((-133)) 54 (|has| |#3| (-362)))) (-2509 (((-112) $) NIL)) (-2988 (((-762) |#3| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#3| (-1087)))) (((-762) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4382)))) (-1553 (($ $) NIL)) (-3224 (((-534) $) 63 (|has| |#3| (-606 (-534))))) (-2415 (((-239 |#1| |#3|) $ (-558)) 36)) (-3220 (((-853) $) 16) (((-679 |#3|) $) 38)) (-3277 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4382)))) (-2486 (((-112) $) NIL)) (-2131 (($) 13 T CONST)) (-1683 (((-112) $ $) NIL)) (-1810 (($ $ |#3|) NIL (|has| |#3| (-362)))) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-1043 |#1| |#2| |#3|) (-13 (-1042 |#1| |#2| |#3| (-239 |#2| |#3|) (-239 |#1| |#3|)) (-605 (-679 |#3|)) (-10 -8 (IF (|has| |#3| (-362)) (-6 (-1253 |#3|)) |%noBranch|) (IF (|has| |#3| (-606 (-534))) (-6 (-606 (-534))) |%noBranch|) (-15 -2530 ($ (-679 |#3|))))) (-762) (-762) (-1039)) (T -1043))
+((-2530 (*1 *1 *2) (-12 (-5 *2 (-679 *5)) (-4 *5 (-1039)) (-5 *1 (-1043 *3 *4 *5)) (-14 *3 (-762)) (-14 *4 (-762)))))
+(-13 (-1042 |#1| |#2| |#3| (-239 |#2| |#3|) (-239 |#1| |#3|)) (-605 (-679 |#3|)) (-10 -8 (IF (|has| |#3| (-362)) (-6 (-1253 |#3|)) |%noBranch|) (IF (|has| |#3| (-606 (-534))) (-6 (-606 (-534))) |%noBranch|) (-15 -2530 ($ (-679 |#3|)))))
+((-3048 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-3167 ((|#10| (-1 |#7| |#3|) |#6|) 32)))
+(((-1044 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3167 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3048 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-762) (-762) (-1039) (-237 |#2| |#3|) (-237 |#1| |#3|) (-1042 |#1| |#2| |#3| |#4| |#5|) (-1039) (-237 |#2| |#7|) (-237 |#1| |#7|) (-1042 |#1| |#2| |#7| |#8| |#9|)) (T -1044))
+((-3048 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1039)) (-4 *2 (-1039)) (-14 *5 (-762)) (-14 *6 (-762)) (-4 *8 (-237 *6 *7)) (-4 *9 (-237 *5 *7)) (-4 *10 (-237 *6 *2)) (-4 *11 (-237 *5 *2)) (-5 *1 (-1044 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1042 *5 *6 *7 *8 *9)) (-4 *12 (-1042 *5 *6 *2 *10 *11)))) (-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1039)) (-4 *10 (-1039)) (-14 *5 (-762)) (-14 *6 (-762)) (-4 *8 (-237 *6 *7)) (-4 *9 (-237 *5 *7)) (-4 *2 (-1042 *5 *6 *10 *11 *12)) (-5 *1 (-1044 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1042 *5 *6 *7 *8 *9)) (-4 *11 (-237 *6 *10)) (-4 *12 (-237 *5 *10)))))
+(-10 -7 (-15 -3167 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3048 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2089 (((-3 $ "failed") $ $) 19)) (-1816 (($) 17 T CONST)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11)) (-2131 (($) 18 T CONST)) (-1683 (((-112) $ $) 6)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ |#1|) 23)))
+(((-1045 |#1|) (-139) (-1046)) (T -1045))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-1046)))))
(-13 (-21) (-10 -8 (-15 * ($ $ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-601 (-848)) . T) ((-1082) . T))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-2004 (($) 18 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24)))
-(((-1041) (-138)) (T -1041))
-NIL
-(-13 (-21) (-1094))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-601 (-848)) . T) ((-1094) . T) ((-1082) . T))
-((-1557 (($ $) 16)) (-2087 (($ $) 22)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) 49)) (-3274 (($ $) 24)) (-3722 (($ $) 11)) (-4339 (($ $) 38)) (-2927 (((-374) $) NIL) (((-221) $) NIL) (((-877 (-374)) $) 33)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL) (($ (-402 (-554))) 28) (($ (-554)) NIL) (($ (-402 (-554))) 28)) (-2261 (((-758)) 8)) (-2755 (($ $) 39)))
-(((-1042 |#1|) (-10 -8 (-15 -2087 (|#1| |#1|)) (-15 -1557 (|#1| |#1|)) (-15 -3722 (|#1| |#1|)) (-15 -4339 (|#1| |#1|)) (-15 -2755 (|#1| |#1|)) (-15 -3274 (|#1| |#1|)) (-15 -1655 ((-874 (-374) |#1|) |#1| (-877 (-374)) (-874 (-374) |#1|))) (-15 -2927 ((-877 (-374)) |#1|)) (-15 -3075 (|#1| (-402 (-554)))) (-15 -3075 (|#1| (-554))) (-15 -2927 ((-221) |#1|)) (-15 -2927 ((-374) |#1|)) (-15 -3075 (|#1| (-402 (-554)))) (-15 -3075 (|#1| |#1|)) (-15 -2261 ((-758))) (-15 -3075 (|#1| (-554))) (-15 -3075 ((-848) |#1|))) (-1043)) (T -1042))
-((-2261 (*1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-1042 *3)) (-4 *3 (-1043)))))
-(-10 -8 (-15 -2087 (|#1| |#1|)) (-15 -1557 (|#1| |#1|)) (-15 -3722 (|#1| |#1|)) (-15 -4339 (|#1| |#1|)) (-15 -2755 (|#1| |#1|)) (-15 -3274 (|#1| |#1|)) (-15 -1655 ((-874 (-374) |#1|) |#1| (-877 (-374)) (-874 (-374) |#1|))) (-15 -2927 ((-877 (-374)) |#1|)) (-15 -3075 (|#1| (-402 (-554)))) (-15 -3075 (|#1| (-554))) (-15 -2927 ((-221) |#1|)) (-15 -2927 ((-374) |#1|)) (-15 -3075 (|#1| (-402 (-554)))) (-15 -3075 (|#1| |#1|)) (-15 -2261 ((-758))) (-15 -3075 (|#1| (-554))) (-15 -3075 ((-848) |#1|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-3831 (((-554) $) 90)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 42)) (-1976 (($ $) 41)) (-1363 (((-112) $) 39)) (-1557 (($ $) 88)) (-2934 (((-3 $ "failed") $ $) 19)) (-3278 (($ $) 74)) (-1565 (((-413 $) $) 73)) (-2282 (($ $) 98)) (-2286 (((-112) $ $) 60)) (-4219 (((-554) $) 115)) (-4087 (($) 17 T CONST)) (-2087 (($ $) 87)) (-2784 (((-3 (-554) "failed") $) 103) (((-3 (-402 (-554)) "failed") $) 100)) (-1668 (((-554) $) 104) (((-402 (-554)) $) 101)) (-3964 (($ $ $) 56)) (-1320 (((-3 $ "failed") $) 33)) (-3943 (($ $ $) 57)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 52)) (-3289 (((-112) $) 72)) (-2745 (((-112) $) 113)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) 94)) (-3248 (((-112) $) 31)) (-3734 (($ $ (-554)) 97)) (-3274 (($ $) 93)) (-4304 (((-112) $) 114)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 53)) (-4223 (($ $ $) 112)) (-2706 (($ $ $) 111)) (-2475 (($ $ $) 47) (($ (-631 $)) 46)) (-1613 (((-1140) $) 9)) (-2483 (($ $) 71)) (-2768 (((-1102) $) 10)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 45)) (-2510 (($ $ $) 49) (($ (-631 $)) 48)) (-3722 (($ $) 89)) (-4339 (($ $) 91)) (-2270 (((-413 $) $) 75)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3919 (((-3 $ "failed") $ $) 43)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 51)) (-2072 (((-758) $) 59)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 58)) (-2927 (((-374) $) 106) (((-221) $) 105) (((-877 (-374)) $) 95)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ $) 44) (($ (-402 (-554))) 67) (($ (-554)) 102) (($ (-402 (-554))) 99)) (-2261 (((-758)) 28)) (-2755 (($ $) 92)) (-1909 (((-112) $ $) 40)) (-1700 (($ $) 116)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1708 (((-112) $ $) 109)) (-1686 (((-112) $ $) 108)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 110)) (-1676 (((-112) $ $) 107)) (-1752 (($ $ $) 66)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ (-554)) 70) (($ $ (-402 (-554))) 96)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ (-402 (-554))) 69) (($ (-402 (-554)) $) 68)))
-(((-1043) (-138)) (T -1043))
-((-1700 (*1 *1 *1) (-4 *1 (-1043))) (-3274 (*1 *1 *1) (-4 *1 (-1043))) (-2755 (*1 *1 *1) (-4 *1 (-1043))) (-4339 (*1 *1 *1) (-4 *1 (-1043))) (-3831 (*1 *2 *1) (-12 (-4 *1 (-1043)) (-5 *2 (-554)))) (-3722 (*1 *1 *1) (-4 *1 (-1043))) (-1557 (*1 *1 *1) (-4 *1 (-1043))) (-2087 (*1 *1 *1) (-4 *1 (-1043))))
-(-13 (-358) (-834) (-1007) (-1023 (-554)) (-1023 (-402 (-554))) (-987) (-602 (-877 (-374))) (-871 (-374)) (-145) (-10 -8 (-15 -3274 ($ $)) (-15 -2755 ($ $)) (-15 -4339 ($ $)) (-15 -3831 ((-554) $)) (-15 -3722 ($ $)) (-15 -1557 ($ $)) (-15 -2087 ($ $)) (-15 -1700 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-554))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-604 #0#) . T) ((-604 (-554)) . T) ((-604 $) . T) ((-601 (-848)) . T) ((-170) . T) ((-602 (-221)) . T) ((-602 (-374)) . T) ((-602 (-877 (-374))) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-358) . T) ((-446) . T) ((-546) . T) ((-634 #0#) . T) ((-634 $) . T) ((-704 #0#) . T) ((-704 $) . T) ((-713) . T) ((-778) . T) ((-779) . T) ((-781) . T) ((-782) . T) ((-834) . T) ((-836) . T) ((-871 (-374)) . T) ((-905) . T) ((-987) . T) ((-1007) . T) ((-1023 (-402 (-554))) . T) ((-1023 (-554)) . T) ((-1040 #0#) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1199) . T))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) |#2| $) 23)) (-1508 ((|#1| $) 10)) (-4219 (((-554) |#2| $) 88)) (-3625 (((-3 $ "failed") |#2| (-906)) 57)) (-3324 ((|#1| $) 28)) (-2513 ((|#1| |#2| $ |#1|) 37)) (-3792 (($ $) 25)) (-1320 (((-3 |#2| "failed") |#2| $) 87)) (-2745 (((-112) |#2| $) NIL)) (-4304 (((-112) |#2| $) NIL)) (-3857 (((-112) |#2| $) 24)) (-2647 ((|#1| $) 89)) (-3311 ((|#1| $) 27)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-4318 ((|#2| $) 79)) (-3075 (((-848) $) 70)) (-4333 ((|#1| |#2| $ |#1|) 38)) (-2299 (((-631 $) |#2|) 59)) (-1658 (((-112) $ $) 74)))
-(((-1044 |#1| |#2|) (-13 (-1051 |#1| |#2|) (-10 -8 (-15 -3311 (|#1| $)) (-15 -3324 (|#1| $)) (-15 -1508 (|#1| $)) (-15 -2647 (|#1| $)) (-15 -3792 ($ $)) (-15 -3857 ((-112) |#2| $)) (-15 -2513 (|#1| |#2| $ |#1|)))) (-13 (-834) (-358)) (-1217 |#1|)) (T -1044))
-((-2513 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-834) (-358))) (-5 *1 (-1044 *2 *3)) (-4 *3 (-1217 *2)))) (-3311 (*1 *2 *1) (-12 (-4 *2 (-13 (-834) (-358))) (-5 *1 (-1044 *2 *3)) (-4 *3 (-1217 *2)))) (-3324 (*1 *2 *1) (-12 (-4 *2 (-13 (-834) (-358))) (-5 *1 (-1044 *2 *3)) (-4 *3 (-1217 *2)))) (-1508 (*1 *2 *1) (-12 (-4 *2 (-13 (-834) (-358))) (-5 *1 (-1044 *2 *3)) (-4 *3 (-1217 *2)))) (-2647 (*1 *2 *1) (-12 (-4 *2 (-13 (-834) (-358))) (-5 *1 (-1044 *2 *3)) (-4 *3 (-1217 *2)))) (-3792 (*1 *1 *1) (-12 (-4 *2 (-13 (-834) (-358))) (-5 *1 (-1044 *2 *3)) (-4 *3 (-1217 *2)))) (-3857 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-834) (-358))) (-5 *2 (-112)) (-5 *1 (-1044 *4 *3)) (-4 *3 (-1217 *4)))))
-(-13 (-1051 |#1| |#2|) (-10 -8 (-15 -3311 (|#1| $)) (-15 -3324 (|#1| $)) (-15 -1508 (|#1| $)) (-15 -2647 (|#1| $)) (-15 -3792 ($ $)) (-15 -3857 ((-112) |#2| $)) (-15 -2513 (|#1| |#2| $ |#1|))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-3575 (($ $ $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4278 (($ $ $ $) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2286 (((-112) $ $) NIL)) (-4219 (((-554) $) NIL)) (-1648 (($ $ $) NIL)) (-4087 (($) NIL T CONST)) (-4237 (($ (-1158)) 10) (($ (-554)) 7)) (-2784 (((-3 (-554) "failed") $) NIL)) (-1668 (((-554) $) NIL)) (-3964 (($ $ $) NIL)) (-3699 (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL) (((-675 (-554)) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-1623 (((-3 (-402 (-554)) "failed") $) NIL)) (-2069 (((-112) $) NIL)) (-2197 (((-402 (-554)) $) NIL)) (-3353 (($) NIL) (($ $) NIL)) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-2267 (($ $ $ $) NIL)) (-3773 (($ $ $) NIL)) (-2745 (((-112) $) NIL)) (-1295 (($ $ $) NIL)) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL)) (-3248 (((-112) $) NIL)) (-3273 (((-112) $) NIL)) (-3339 (((-3 $ "failed") $) NIL)) (-4304 (((-112) $) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2057 (($ $ $ $) NIL)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-3882 (($ $) NIL)) (-2577 (($ $) NIL)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-3297 (($ $ $) NIL)) (-3834 (($) NIL T CONST)) (-1786 (($ $) NIL)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1582 (($ $) NIL)) (-2270 (((-413 $) $) NIL)) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-1795 (((-112) $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-1553 (($ $ (-758)) NIL) (($ $) NIL)) (-3690 (($ $) NIL)) (-1521 (($ $) NIL)) (-2927 (((-554) $) 16) (((-530) $) NIL) (((-877 (-554)) $) NIL) (((-374) $) NIL) (((-221) $) NIL) (($ (-1158)) 9)) (-3075 (((-848) $) 20) (($ (-554)) 6) (($ $) NIL) (($ (-554)) 6)) (-2261 (((-758)) NIL)) (-2134 (((-112) $ $) NIL)) (-1629 (($ $ $) NIL)) (-3462 (($) NIL)) (-1909 (((-112) $ $) NIL)) (-2225 (($ $ $ $) NIL)) (-1700 (($ $) NIL)) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $ (-758)) NIL) (($ $) NIL)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) NIL)) (-1744 (($ $) 19) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL)))
-(((-1045) (-13 (-539) (-606 (-1158)) (-10 -8 (-6 -4360) (-6 -4365) (-6 -4361) (-15 -4237 ($ (-1158))) (-15 -4237 ($ (-554)))))) (T -1045))
-((-4237 (*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1045)))) (-4237 (*1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-1045)))))
-(-13 (-539) (-606 (-1158)) (-10 -8 (-6 -4360) (-6 -4365) (-6 -4361) (-15 -4237 ($ (-1158))) (-15 -4237 ($ (-554)))))
-((-3062 (((-112) $ $) NIL (-3994 (|has| (-52) (-1082)) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082))))) (-3167 (($) NIL) (($ (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))))) NIL)) (-4233 (((-1246) $ (-1158) (-1158)) NIL (|has| $ (-6 -4374)))) (-3019 (((-112) $ (-758)) NIL)) (-1873 (($) 9)) (-1501 (((-52) $ (-1158) (-52)) NIL)) (-1308 (($ $) 30)) (-2067 (($ $) 28)) (-3307 (($ $) 27)) (-2869 (($ $) 29)) (-2509 (($ $) 32)) (-2716 (($ $) 33)) (-1702 (($ $) 26)) (-4083 (($ $) 31)) (-2220 (($ (-1 (-112) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) 25 (|has| $ (-6 -4373)))) (-2937 (((-3 (-52) "failed") (-1158) $) 40)) (-4087 (($) NIL T CONST)) (-3275 (($) 7)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082))))) (-1884 (($ (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) $) 50 (|has| $ (-6 -4373))) (($ (-1 (-112) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373))) (((-3 (-52) "failed") (-1158) $) NIL)) (-2574 (($ (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082)))) (($ (-1 (-112) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373)))) (-3676 (((-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $ (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082)))) (((-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $ (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) NIL (|has| $ (-6 -4373))) (((-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373)))) (-2624 (((-3 (-1140) "failed") $ (-1140) (-554)) 59)) (-2862 (((-52) $ (-1158) (-52)) NIL (|has| $ (-6 -4374)))) (-2796 (((-52) $ (-1158)) NIL)) (-2466 (((-631 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373))) (((-631 (-52)) $) NIL (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-1158) $) NIL (|has| (-1158) (-836)))) (-2379 (((-631 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) 35 (|has| $ (-6 -4373))) (((-631 (-52)) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-52) (-1082))))) (-2256 (((-1158) $) NIL (|has| (-1158) (-836)))) (-2849 (($ (-1 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4374))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (-3994 (|has| (-52) (-1082)) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082))))) (-2944 (((-631 (-1158)) $) NIL)) (-2415 (((-112) (-1158) $) NIL)) (-4150 (((-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) $) NIL)) (-2045 (($ (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) $) 43)) (-2529 (((-631 (-1158)) $) NIL)) (-3618 (((-112) (-1158) $) NIL)) (-2768 (((-1102) $) NIL (-3994 (|has| (-52) (-1082)) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082))))) (-3644 (((-374) $ (-1158)) 49)) (-3468 (((-631 (-1140)) $ (-1140)) 60)) (-1539 (((-52) $) NIL (|has| (-1158) (-836)))) (-1652 (((-3 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) "failed") (-1 (-112) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL)) (-2441 (($ $ (-52)) NIL (|has| $ (-6 -4374)))) (-2152 (((-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) $) NIL)) (-2845 (((-112) (-1 (-112) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))))) NIL (-12 (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-304 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))))) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082)))) (($ $ (-289 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))))) NIL (-12 (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-304 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))))) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082)))) (($ $ (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) NIL (-12 (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-304 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))))) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082)))) (($ $ (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))))) NIL (-12 (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-304 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))))) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082)))) (($ $ (-631 (-52)) (-631 (-52))) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1082)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1082)))) (($ $ (-289 (-52))) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1082)))) (($ $ (-631 (-289 (-52)))) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-52) (-1082))))) (-2625 (((-631 (-52)) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 (((-52) $ (-1158)) NIL) (((-52) $ (-1158) (-52)) NIL)) (-4310 (($) NIL) (($ (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))))) NIL)) (-3146 (($ $ (-1158)) 51)) (-2777 (((-758) (-1 (-112) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373))) (((-758) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082)))) (((-758) (-52) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-52) (-1082)))) (((-758) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4373)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-602 (-530))))) (-3089 (($ (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))))) 37)) (-4323 (($ $ $) 38)) (-3075 (((-848) $) NIL (-3994 (|has| (-52) (-601 (-848))) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-601 (-848)))))) (-3861 (($ $ (-1158) (-374)) 47)) (-3714 (($ $ (-1158) (-374)) 48)) (-1591 (($ (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))))) NIL)) (-2438 (((-112) (-1 (-112) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) NIL (-3994 (|has| (-52) (-1082)) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082))))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-1046) (-13 (-1171 (-1158) (-52)) (-10 -8 (-15 -4323 ($ $ $)) (-15 -3275 ($)) (-15 -1702 ($ $)) (-15 -3307 ($ $)) (-15 -2067 ($ $)) (-15 -2869 ($ $)) (-15 -4083 ($ $)) (-15 -1308 ($ $)) (-15 -2509 ($ $)) (-15 -2716 ($ $)) (-15 -3861 ($ $ (-1158) (-374))) (-15 -3714 ($ $ (-1158) (-374))) (-15 -3644 ((-374) $ (-1158))) (-15 -3468 ((-631 (-1140)) $ (-1140))) (-15 -3146 ($ $ (-1158))) (-15 -1873 ($)) (-15 -2624 ((-3 (-1140) "failed") $ (-1140) (-554))) (-6 -4373)))) (T -1046))
-((-4323 (*1 *1 *1 *1) (-5 *1 (-1046))) (-3275 (*1 *1) (-5 *1 (-1046))) (-1702 (*1 *1 *1) (-5 *1 (-1046))) (-3307 (*1 *1 *1) (-5 *1 (-1046))) (-2067 (*1 *1 *1) (-5 *1 (-1046))) (-2869 (*1 *1 *1) (-5 *1 (-1046))) (-4083 (*1 *1 *1) (-5 *1 (-1046))) (-1308 (*1 *1 *1) (-5 *1 (-1046))) (-2509 (*1 *1 *1) (-5 *1 (-1046))) (-2716 (*1 *1 *1) (-5 *1 (-1046))) (-3861 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-374)) (-5 *1 (-1046)))) (-3714 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-374)) (-5 *1 (-1046)))) (-3644 (*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-374)) (-5 *1 (-1046)))) (-3468 (*1 *2 *1 *3) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-1046)) (-5 *3 (-1140)))) (-3146 (*1 *1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1046)))) (-1873 (*1 *1) (-5 *1 (-1046))) (-2624 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1140)) (-5 *3 (-554)) (-5 *1 (-1046)))))
-(-13 (-1171 (-1158) (-52)) (-10 -8 (-15 -4323 ($ $ $)) (-15 -3275 ($)) (-15 -1702 ($ $)) (-15 -3307 ($ $)) (-15 -2067 ($ $)) (-15 -2869 ($ $)) (-15 -4083 ($ $)) (-15 -1308 ($ $)) (-15 -2509 ($ $)) (-15 -2716 ($ $)) (-15 -3861 ($ $ (-1158) (-374))) (-15 -3714 ($ $ (-1158) (-374))) (-15 -3644 ((-374) $ (-1158))) (-15 -3468 ((-631 (-1140)) $ (-1140))) (-15 -3146 ($ $ (-1158))) (-15 -1873 ($)) (-15 -2624 ((-3 (-1140) "failed") $ (-1140) (-554))) (-6 -4373)))
-((-3387 (($ $) 45)) (-3079 (((-112) $ $) 74)) (-2784 (((-3 |#2| "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL) (((-3 (-554) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-937 (-402 (-554)))) 227) (((-3 $ "failed") (-937 (-554))) 226) (((-3 $ "failed") (-937 |#2|)) 229)) (-1668 ((|#2| $) NIL) (((-402 (-554)) $) NIL) (((-554) $) NIL) ((|#4| $) NIL) (($ (-937 (-402 (-554)))) 215) (($ (-937 (-554))) 211) (($ (-937 |#2|)) 231)) (-2550 (($ $) NIL) (($ $ |#4|) 43)) (-2857 (((-112) $ $) 112) (((-112) $ (-631 $)) 113)) (-2661 (((-112) $) 56)) (-1680 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 107)) (-4003 (($ $) 138)) (-2016 (($ $) 134)) (-3605 (($ $) 133)) (-4202 (($ $ $) 79) (($ $ $ |#4|) 84)) (-3039 (($ $ $) 82) (($ $ $ |#4|) 86)) (-4253 (((-112) $ $) 121) (((-112) $ (-631 $)) 122)) (-3954 ((|#4| $) 33)) (-1761 (($ $ $) 110)) (-2682 (((-112) $) 55)) (-1299 (((-758) $) 35)) (-2750 (($ $) 152)) (-2385 (($ $) 149)) (-2023 (((-631 $) $) 68)) (-1785 (($ $) 57)) (-2278 (($ $) 145)) (-1596 (((-631 $) $) 65)) (-3737 (($ $) 59)) (-2530 ((|#2| $) NIL) (($ $ |#4|) 38)) (-1715 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2776 (-758))) $ $) 111)) (-2694 (((-2 (|:| -1490 $) (|:| |gap| (-758)) (|:| -2325 $) (|:| -2423 $)) $ $) 108) (((-2 (|:| -1490 $) (|:| |gap| (-758)) (|:| -2325 $) (|:| -2423 $)) $ $ |#4|) 109)) (-3386 (((-2 (|:| -1490 $) (|:| |gap| (-758)) (|:| -2423 $)) $ $) 104) (((-2 (|:| -1490 $) (|:| |gap| (-758)) (|:| -2423 $)) $ $ |#4|) 105)) (-3752 (($ $ $) 89) (($ $ $ |#4|) 95)) (-2711 (($ $ $) 90) (($ $ $ |#4|) 96)) (-1839 (((-631 $) $) 51)) (-3007 (((-112) $ $) 118) (((-112) $ (-631 $)) 119)) (-1536 (($ $ $) 103)) (-3834 (($ $) 37)) (-2178 (((-112) $ $) 72)) (-3518 (((-112) $ $) 114) (((-112) $ (-631 $)) 116)) (-3492 (($ $ $) 101)) (-4133 (($ $) 40)) (-2510 ((|#2| |#2| $) 142) (($ (-631 $)) NIL) (($ $ $) NIL)) (-4343 (($ $ |#2|) NIL) (($ $ $) 131)) (-3767 (($ $ |#2|) 126) (($ $ $) 129)) (-1559 (($ $) 48)) (-2013 (($ $) 52)) (-2927 (((-877 (-374)) $) NIL) (((-877 (-554)) $) NIL) (((-530) $) NIL) (($ (-937 (-402 (-554)))) 217) (($ (-937 (-554))) 213) (($ (-937 |#2|)) 228) (((-1140) $) 250) (((-937 |#2|) $) 162)) (-3075 (((-848) $) 30) (($ (-554)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-937 |#2|) $) 163) (($ (-402 (-554))) NIL) (($ $) NIL)) (-2222 (((-3 (-112) "failed") $ $) 71)))
-(((-1047 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3075 (|#1| |#1|)) (-15 -2510 (|#1| |#1| |#1|)) (-15 -2510 (|#1| (-631 |#1|))) (-15 -3075 (|#1| (-402 (-554)))) (-15 -3075 ((-937 |#2|) |#1|)) (-15 -2927 ((-937 |#2|) |#1|)) (-15 -2927 ((-1140) |#1|)) (-15 -2750 (|#1| |#1|)) (-15 -2385 (|#1| |#1|)) (-15 -2278 (|#1| |#1|)) (-15 -4003 (|#1| |#1|)) (-15 -2510 (|#2| |#2| |#1|)) (-15 -4343 (|#1| |#1| |#1|)) (-15 -3767 (|#1| |#1| |#1|)) (-15 -4343 (|#1| |#1| |#2|)) (-15 -3767 (|#1| |#1| |#2|)) (-15 -2016 (|#1| |#1|)) (-15 -3605 (|#1| |#1|)) (-15 -2927 (|#1| (-937 |#2|))) (-15 -1668 (|#1| (-937 |#2|))) (-15 -2784 ((-3 |#1| "failed") (-937 |#2|))) (-15 -2927 (|#1| (-937 (-554)))) (-15 -1668 (|#1| (-937 (-554)))) (-15 -2784 ((-3 |#1| "failed") (-937 (-554)))) (-15 -2927 (|#1| (-937 (-402 (-554))))) (-15 -1668 (|#1| (-937 (-402 (-554))))) (-15 -2784 ((-3 |#1| "failed") (-937 (-402 (-554))))) (-15 -1536 (|#1| |#1| |#1|)) (-15 -3492 (|#1| |#1| |#1|)) (-15 -1715 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2776 (-758))) |#1| |#1|)) (-15 -1761 (|#1| |#1| |#1|)) (-15 -1680 ((-2 (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -2694 ((-2 (|:| -1490 |#1|) (|:| |gap| (-758)) (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1| |#4|)) (-15 -2694 ((-2 (|:| -1490 |#1|) (|:| |gap| (-758)) (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -3386 ((-2 (|:| -1490 |#1|) (|:| |gap| (-758)) (|:| -2423 |#1|)) |#1| |#1| |#4|)) (-15 -3386 ((-2 (|:| -1490 |#1|) (|:| |gap| (-758)) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -2711 (|#1| |#1| |#1| |#4|)) (-15 -3752 (|#1| |#1| |#1| |#4|)) (-15 -2711 (|#1| |#1| |#1|)) (-15 -3752 (|#1| |#1| |#1|)) (-15 -3039 (|#1| |#1| |#1| |#4|)) (-15 -4202 (|#1| |#1| |#1| |#4|)) (-15 -3039 (|#1| |#1| |#1|)) (-15 -4202 (|#1| |#1| |#1|)) (-15 -4253 ((-112) |#1| (-631 |#1|))) (-15 -4253 ((-112) |#1| |#1|)) (-15 -3007 ((-112) |#1| (-631 |#1|))) (-15 -3007 ((-112) |#1| |#1|)) (-15 -3518 ((-112) |#1| (-631 |#1|))) (-15 -3518 ((-112) |#1| |#1|)) (-15 -2857 ((-112) |#1| (-631 |#1|))) (-15 -2857 ((-112) |#1| |#1|)) (-15 -3079 ((-112) |#1| |#1|)) (-15 -2178 ((-112) |#1| |#1|)) (-15 -2222 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2023 ((-631 |#1|) |#1|)) (-15 -1596 ((-631 |#1|) |#1|)) (-15 -3737 (|#1| |#1|)) (-15 -1785 (|#1| |#1|)) (-15 -2661 ((-112) |#1|)) (-15 -2682 ((-112) |#1|)) (-15 -2550 (|#1| |#1| |#4|)) (-15 -2530 (|#1| |#1| |#4|)) (-15 -2013 (|#1| |#1|)) (-15 -1839 ((-631 |#1|) |#1|)) (-15 -1559 (|#1| |#1|)) (-15 -3387 (|#1| |#1|)) (-15 -4133 (|#1| |#1|)) (-15 -3834 (|#1| |#1|)) (-15 -1299 ((-758) |#1|)) (-15 -3954 (|#4| |#1|)) (-15 -2927 ((-530) |#1|)) (-15 -2927 ((-877 (-554)) |#1|)) (-15 -2927 ((-877 (-374)) |#1|)) (-15 -3075 (|#1| |#4|)) (-15 -2784 ((-3 |#4| "failed") |#1|)) (-15 -1668 (|#4| |#1|)) (-15 -2530 (|#2| |#1|)) (-15 -2550 (|#1| |#1|)) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -1668 ((-554) |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -3075 (|#1| |#2|)) (-15 -3075 (|#1| (-554))) (-15 -3075 ((-848) |#1|))) (-1048 |#2| |#3| |#4|) (-1034) (-780) (-836)) (T -1047))
-NIL
-(-10 -8 (-15 -3075 (|#1| |#1|)) (-15 -2510 (|#1| |#1| |#1|)) (-15 -2510 (|#1| (-631 |#1|))) (-15 -3075 (|#1| (-402 (-554)))) (-15 -3075 ((-937 |#2|) |#1|)) (-15 -2927 ((-937 |#2|) |#1|)) (-15 -2927 ((-1140) |#1|)) (-15 -2750 (|#1| |#1|)) (-15 -2385 (|#1| |#1|)) (-15 -2278 (|#1| |#1|)) (-15 -4003 (|#1| |#1|)) (-15 -2510 (|#2| |#2| |#1|)) (-15 -4343 (|#1| |#1| |#1|)) (-15 -3767 (|#1| |#1| |#1|)) (-15 -4343 (|#1| |#1| |#2|)) (-15 -3767 (|#1| |#1| |#2|)) (-15 -2016 (|#1| |#1|)) (-15 -3605 (|#1| |#1|)) (-15 -2927 (|#1| (-937 |#2|))) (-15 -1668 (|#1| (-937 |#2|))) (-15 -2784 ((-3 |#1| "failed") (-937 |#2|))) (-15 -2927 (|#1| (-937 (-554)))) (-15 -1668 (|#1| (-937 (-554)))) (-15 -2784 ((-3 |#1| "failed") (-937 (-554)))) (-15 -2927 (|#1| (-937 (-402 (-554))))) (-15 -1668 (|#1| (-937 (-402 (-554))))) (-15 -2784 ((-3 |#1| "failed") (-937 (-402 (-554))))) (-15 -1536 (|#1| |#1| |#1|)) (-15 -3492 (|#1| |#1| |#1|)) (-15 -1715 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2776 (-758))) |#1| |#1|)) (-15 -1761 (|#1| |#1| |#1|)) (-15 -1680 ((-2 (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -2694 ((-2 (|:| -1490 |#1|) (|:| |gap| (-758)) (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1| |#4|)) (-15 -2694 ((-2 (|:| -1490 |#1|) (|:| |gap| (-758)) (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -3386 ((-2 (|:| -1490 |#1|) (|:| |gap| (-758)) (|:| -2423 |#1|)) |#1| |#1| |#4|)) (-15 -3386 ((-2 (|:| -1490 |#1|) (|:| |gap| (-758)) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -2711 (|#1| |#1| |#1| |#4|)) (-15 -3752 (|#1| |#1| |#1| |#4|)) (-15 -2711 (|#1| |#1| |#1|)) (-15 -3752 (|#1| |#1| |#1|)) (-15 -3039 (|#1| |#1| |#1| |#4|)) (-15 -4202 (|#1| |#1| |#1| |#4|)) (-15 -3039 (|#1| |#1| |#1|)) (-15 -4202 (|#1| |#1| |#1|)) (-15 -4253 ((-112) |#1| (-631 |#1|))) (-15 -4253 ((-112) |#1| |#1|)) (-15 -3007 ((-112) |#1| (-631 |#1|))) (-15 -3007 ((-112) |#1| |#1|)) (-15 -3518 ((-112) |#1| (-631 |#1|))) (-15 -3518 ((-112) |#1| |#1|)) (-15 -2857 ((-112) |#1| (-631 |#1|))) (-15 -2857 ((-112) |#1| |#1|)) (-15 -3079 ((-112) |#1| |#1|)) (-15 -2178 ((-112) |#1| |#1|)) (-15 -2222 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2023 ((-631 |#1|) |#1|)) (-15 -1596 ((-631 |#1|) |#1|)) (-15 -3737 (|#1| |#1|)) (-15 -1785 (|#1| |#1|)) (-15 -2661 ((-112) |#1|)) (-15 -2682 ((-112) |#1|)) (-15 -2550 (|#1| |#1| |#4|)) (-15 -2530 (|#1| |#1| |#4|)) (-15 -2013 (|#1| |#1|)) (-15 -1839 ((-631 |#1|) |#1|)) (-15 -1559 (|#1| |#1|)) (-15 -3387 (|#1| |#1|)) (-15 -4133 (|#1| |#1|)) (-15 -3834 (|#1| |#1|)) (-15 -1299 ((-758) |#1|)) (-15 -3954 (|#4| |#1|)) (-15 -2927 ((-530) |#1|)) (-15 -2927 ((-877 (-554)) |#1|)) (-15 -2927 ((-877 (-374)) |#1|)) (-15 -3075 (|#1| |#4|)) (-15 -2784 ((-3 |#4| "failed") |#1|)) (-15 -1668 (|#4| |#1|)) (-15 -2530 (|#2| |#1|)) (-15 -2550 (|#1| |#1|)) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -1668 ((-554) |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -3075 (|#1| |#2|)) (-15 -3075 (|#1| (-554))) (-15 -3075 ((-848) |#1|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2405 (((-631 |#3|) $) 110)) (-2237 (((-1154 $) $ |#3|) 125) (((-1154 |#1|) $) 124)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 87 (|has| |#1| (-546)))) (-1976 (($ $) 88 (|has| |#1| (-546)))) (-1363 (((-112) $) 90 (|has| |#1| (-546)))) (-3785 (((-758) $) 112) (((-758) $ (-631 |#3|)) 111)) (-3387 (($ $) 271)) (-3079 (((-112) $ $) 257)) (-2934 (((-3 $ "failed") $ $) 19)) (-4286 (($ $ $) 216 (|has| |#1| (-546)))) (-1580 (((-631 $) $ $) 211 (|has| |#1| (-546)))) (-4308 (((-413 (-1154 $)) (-1154 $)) 100 (|has| |#1| (-894)))) (-3278 (($ $) 98 (|has| |#1| (-446)))) (-1565 (((-413 $) $) 97 (|has| |#1| (-446)))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) 103 (|has| |#1| (-894)))) (-4087 (($) 17 T CONST)) (-2784 (((-3 |#1| "failed") $) 164) (((-3 (-402 (-554)) "failed") $) 161 (|has| |#1| (-1023 (-402 (-554))))) (((-3 (-554) "failed") $) 159 (|has| |#1| (-1023 (-554)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-937 (-402 (-554)))) 231 (-12 (|has| |#1| (-38 (-402 (-554)))) (|has| |#3| (-602 (-1158))))) (((-3 $ "failed") (-937 (-554))) 228 (-3994 (-12 (-4081 (|has| |#1| (-38 (-402 (-554))))) (|has| |#1| (-38 (-554))) (|has| |#3| (-602 (-1158)))) (-12 (|has| |#1| (-38 (-402 (-554)))) (|has| |#3| (-602 (-1158)))))) (((-3 $ "failed") (-937 |#1|)) 225 (-3994 (-12 (-4081 (|has| |#1| (-38 (-402 (-554))))) (-4081 (|has| |#1| (-38 (-554)))) (|has| |#3| (-602 (-1158)))) (-12 (-4081 (|has| |#1| (-539))) (-4081 (|has| |#1| (-38 (-402 (-554))))) (|has| |#1| (-38 (-554))) (|has| |#3| (-602 (-1158)))) (-12 (-4081 (|has| |#1| (-977 (-554)))) (|has| |#1| (-38 (-402 (-554)))) (|has| |#3| (-602 (-1158))))))) (-1668 ((|#1| $) 163) (((-402 (-554)) $) 162 (|has| |#1| (-1023 (-402 (-554))))) (((-554) $) 160 (|has| |#1| (-1023 (-554)))) ((|#3| $) 137) (($ (-937 (-402 (-554)))) 230 (-12 (|has| |#1| (-38 (-402 (-554)))) (|has| |#3| (-602 (-1158))))) (($ (-937 (-554))) 227 (-3994 (-12 (-4081 (|has| |#1| (-38 (-402 (-554))))) (|has| |#1| (-38 (-554))) (|has| |#3| (-602 (-1158)))) (-12 (|has| |#1| (-38 (-402 (-554)))) (|has| |#3| (-602 (-1158)))))) (($ (-937 |#1|)) 224 (-3994 (-12 (-4081 (|has| |#1| (-38 (-402 (-554))))) (-4081 (|has| |#1| (-38 (-554)))) (|has| |#3| (-602 (-1158)))) (-12 (-4081 (|has| |#1| (-539))) (-4081 (|has| |#1| (-38 (-402 (-554))))) (|has| |#1| (-38 (-554))) (|has| |#3| (-602 (-1158)))) (-12 (-4081 (|has| |#1| (-977 (-554)))) (|has| |#1| (-38 (-402 (-554)))) (|has| |#3| (-602 (-1158))))))) (-2999 (($ $ $ |#3|) 108 (|has| |#1| (-170))) (($ $ $) 212 (|has| |#1| (-546)))) (-2550 (($ $) 154) (($ $ |#3|) 266)) (-3699 (((-675 (-554)) (-675 $)) 134 (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) 133 (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) 132) (((-675 |#1|) (-675 $)) 131)) (-2857 (((-112) $ $) 256) (((-112) $ (-631 $)) 255)) (-1320 (((-3 $ "failed") $) 33)) (-2661 (((-112) $) 264)) (-1680 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 236)) (-4003 (($ $) 205 (|has| |#1| (-446)))) (-2048 (($ $) 176 (|has| |#1| (-446))) (($ $ |#3|) 105 (|has| |#1| (-446)))) (-2540 (((-631 $) $) 109)) (-3289 (((-112) $) 96 (|has| |#1| (-894)))) (-2016 (($ $) 221 (|has| |#1| (-546)))) (-3605 (($ $) 222 (|has| |#1| (-546)))) (-4202 (($ $ $) 248) (($ $ $ |#3|) 246)) (-3039 (($ $ $) 247) (($ $ $ |#3|) 245)) (-1344 (($ $ |#1| |#2| $) 172)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) 84 (-12 (|has| |#3| (-871 (-374))) (|has| |#1| (-871 (-374))))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) 83 (-12 (|has| |#3| (-871 (-554))) (|has| |#1| (-871 (-554)))))) (-3248 (((-112) $) 31)) (-2122 (((-758) $) 169)) (-4253 (((-112) $ $) 250) (((-112) $ (-631 $)) 249)) (-3376 (($ $ $ $ $) 207 (|has| |#1| (-546)))) (-3954 ((|#3| $) 275)) (-2393 (($ (-1154 |#1|) |#3|) 117) (($ (-1154 $) |#3|) 116)) (-3910 (((-631 $) $) 126)) (-3580 (((-112) $) 152)) (-2383 (($ |#1| |#2|) 153) (($ $ |#3| (-758)) 119) (($ $ (-631 |#3|) (-631 (-758))) 118)) (-1761 (($ $ $) 235)) (-4014 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $ |#3|) 120)) (-2682 (((-112) $) 265)) (-3893 ((|#2| $) 170) (((-758) $ |#3|) 122) (((-631 (-758)) $ (-631 |#3|)) 121)) (-4223 (($ $ $) 79 (|has| |#1| (-836)))) (-1299 (((-758) $) 274)) (-2706 (($ $ $) 78 (|has| |#1| (-836)))) (-2789 (($ (-1 |#2| |#2|) $) 171)) (-2879 (($ (-1 |#1| |#1|) $) 151)) (-3277 (((-3 |#3| "failed") $) 123)) (-2750 (($ $) 202 (|has| |#1| (-446)))) (-2385 (($ $) 203 (|has| |#1| (-446)))) (-2023 (((-631 $) $) 260)) (-1785 (($ $) 263)) (-2278 (($ $) 204 (|has| |#1| (-446)))) (-1596 (((-631 $) $) 261)) (-3737 (($ $) 262)) (-2518 (($ $) 149)) (-2530 ((|#1| $) 148) (($ $ |#3|) 267)) (-2475 (($ (-631 $)) 94 (|has| |#1| (-446))) (($ $ $) 93 (|has| |#1| (-446)))) (-1715 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2776 (-758))) $ $) 234)) (-2694 (((-2 (|:| -1490 $) (|:| |gap| (-758)) (|:| -2325 $) (|:| -2423 $)) $ $) 238) (((-2 (|:| -1490 $) (|:| |gap| (-758)) (|:| -2325 $) (|:| -2423 $)) $ $ |#3|) 237)) (-3386 (((-2 (|:| -1490 $) (|:| |gap| (-758)) (|:| -2423 $)) $ $) 240) (((-2 (|:| -1490 $) (|:| |gap| (-758)) (|:| -2423 $)) $ $ |#3|) 239)) (-3752 (($ $ $) 244) (($ $ $ |#3|) 242)) (-2711 (($ $ $) 243) (($ $ $ |#3|) 241)) (-1613 (((-1140) $) 9)) (-2543 (($ $ $) 210 (|has| |#1| (-546)))) (-1839 (((-631 $) $) 269)) (-3778 (((-3 (-631 $) "failed") $) 114)) (-2433 (((-3 (-631 $) "failed") $) 115)) (-3160 (((-3 (-2 (|:| |var| |#3|) (|:| -1407 (-758))) "failed") $) 113)) (-3007 (((-112) $ $) 252) (((-112) $ (-631 $)) 251)) (-1536 (($ $ $) 232)) (-3834 (($ $) 273)) (-2178 (((-112) $ $) 258)) (-3518 (((-112) $ $) 254) (((-112) $ (-631 $)) 253)) (-3492 (($ $ $) 233)) (-4133 (($ $) 272)) (-2768 (((-1102) $) 10)) (-2695 (((-2 (|:| -2510 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-546)))) (-3446 (((-2 (|:| -2510 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-546)))) (-2492 (((-112) $) 166)) (-2505 ((|#1| $) 167)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 95 (|has| |#1| (-446)))) (-2510 ((|#1| |#1| $) 206 (|has| |#1| (-446))) (($ (-631 $)) 92 (|has| |#1| (-446))) (($ $ $) 91 (|has| |#1| (-446)))) (-1290 (((-413 (-1154 $)) (-1154 $)) 102 (|has| |#1| (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) 101 (|has| |#1| (-894)))) (-2270 (((-413 $) $) 99 (|has| |#1| (-894)))) (-2396 (((-2 (|:| -2510 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-546)))) (-3919 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-546))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-546)))) (-4343 (($ $ |#1|) 219 (|has| |#1| (-546))) (($ $ $) 217 (|has| |#1| (-546)))) (-3767 (($ $ |#1|) 220 (|has| |#1| (-546))) (($ $ $) 218 (|has| |#1| (-546)))) (-2386 (($ $ (-631 (-289 $))) 145) (($ $ (-289 $)) 144) (($ $ $ $) 143) (($ $ (-631 $) (-631 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-631 |#3|) (-631 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-631 |#3|) (-631 $)) 138)) (-1495 (($ $ |#3|) 107 (|has| |#1| (-170)))) (-1553 (($ $ |#3|) 42) (($ $ (-631 |#3|)) 41) (($ $ |#3| (-758)) 40) (($ $ (-631 |#3|) (-631 (-758))) 39)) (-3308 ((|#2| $) 150) (((-758) $ |#3|) 130) (((-631 (-758)) $ (-631 |#3|)) 129)) (-1559 (($ $) 270)) (-2013 (($ $) 268)) (-2927 (((-877 (-374)) $) 82 (-12 (|has| |#3| (-602 (-877 (-374)))) (|has| |#1| (-602 (-877 (-374)))))) (((-877 (-554)) $) 81 (-12 (|has| |#3| (-602 (-877 (-554)))) (|has| |#1| (-602 (-877 (-554)))))) (((-530) $) 80 (-12 (|has| |#3| (-602 (-530))) (|has| |#1| (-602 (-530))))) (($ (-937 (-402 (-554)))) 229 (-12 (|has| |#1| (-38 (-402 (-554)))) (|has| |#3| (-602 (-1158))))) (($ (-937 (-554))) 226 (-3994 (-12 (-4081 (|has| |#1| (-38 (-402 (-554))))) (|has| |#1| (-38 (-554))) (|has| |#3| (-602 (-1158)))) (-12 (|has| |#1| (-38 (-402 (-554)))) (|has| |#3| (-602 (-1158)))))) (($ (-937 |#1|)) 223 (|has| |#3| (-602 (-1158)))) (((-1140) $) 201 (-12 (|has| |#1| (-1023 (-554))) (|has| |#3| (-602 (-1158))))) (((-937 |#1|) $) 200 (|has| |#3| (-602 (-1158))))) (-3276 ((|#1| $) 175 (|has| |#1| (-446))) (($ $ |#3|) 106 (|has| |#1| (-446)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) 104 (-3726 (|has| $ (-143)) (|has| |#1| (-894))))) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ |#1|) 165) (($ |#3|) 135) (((-937 |#1|) $) 199 (|has| |#3| (-602 (-1158)))) (($ (-402 (-554))) 72 (-3994 (|has| |#1| (-1023 (-402 (-554)))) (|has| |#1| (-38 (-402 (-554)))))) (($ $) 85 (|has| |#1| (-546)))) (-1893 (((-631 |#1|) $) 168)) (-1779 ((|#1| $ |#2|) 155) (($ $ |#3| (-758)) 128) (($ $ (-631 |#3|) (-631 (-758))) 127)) (-2084 (((-3 $ "failed") $) 73 (-3994 (-3726 (|has| $ (-143)) (|has| |#1| (-894))) (|has| |#1| (-143))))) (-2261 (((-758)) 28)) (-2907 (($ $ $ (-758)) 173 (|has| |#1| (-170)))) (-1909 (((-112) $ $) 89 (|has| |#1| (-546)))) (-2004 (($) 18 T CONST)) (-2222 (((-3 (-112) "failed") $ $) 259)) (-2014 (($) 30 T CONST)) (-2982 (($ $ $ $ (-758)) 208 (|has| |#1| (-546)))) (-3100 (($ $ $ (-758)) 209 (|has| |#1| (-546)))) (-1787 (($ $ |#3|) 38) (($ $ (-631 |#3|)) 37) (($ $ |#3| (-758)) 36) (($ $ (-631 |#3|) (-631 (-758))) 35)) (-1708 (((-112) $ $) 76 (|has| |#1| (-836)))) (-1686 (((-112) $ $) 75 (|has| |#1| (-836)))) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 77 (|has| |#1| (-836)))) (-1676 (((-112) $ $) 74 (|has| |#1| (-836)))) (-1752 (($ $ |#1|) 156 (|has| |#1| (-358)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ (-402 (-554))) 158 (|has| |#1| (-38 (-402 (-554))))) (($ (-402 (-554)) $) 157 (|has| |#1| (-38 (-402 (-554))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
-(((-1048 |#1| |#2| |#3|) (-138) (-1034) (-780) (-836)) (T -1048))
-((-3954 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *2 (-836)))) (-1299 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-758)))) (-3834 (*1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)))) (-4133 (*1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)))) (-3387 (*1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)))) (-1559 (*1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)))) (-1839 (*1 *2 *1) (-12 (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-631 *1)) (-4 *1 (-1048 *3 *4 *5)))) (-2013 (*1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)))) (-2530 (*1 *1 *1 *2) (-12 (-4 *1 (-1048 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *2 (-836)))) (-2550 (*1 *1 *1 *2) (-12 (-4 *1 (-1048 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *2 (-836)))) (-2682 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-112)))) (-2661 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-112)))) (-1785 (*1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)))) (-3737 (*1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)))) (-1596 (*1 *2 *1) (-12 (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-631 *1)) (-4 *1 (-1048 *3 *4 *5)))) (-2023 (*1 *2 *1) (-12 (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-631 *1)) (-4 *1 (-1048 *3 *4 *5)))) (-2222 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-112)))) (-2178 (*1 *2 *1 *1) (-12 (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-112)))) (-3079 (*1 *2 *1 *1) (-12 (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-112)))) (-2857 (*1 *2 *1 *1) (-12 (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-112)))) (-2857 (*1 *2 *1 *3) (-12 (-5 *3 (-631 *1)) (-4 *1 (-1048 *4 *5 *6)) (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)))) (-3518 (*1 *2 *1 *1) (-12 (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-112)))) (-3518 (*1 *2 *1 *3) (-12 (-5 *3 (-631 *1)) (-4 *1 (-1048 *4 *5 *6)) (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)))) (-3007 (*1 *2 *1 *1) (-12 (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-112)))) (-3007 (*1 *2 *1 *3) (-12 (-5 *3 (-631 *1)) (-4 *1 (-1048 *4 *5 *6)) (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)))) (-4253 (*1 *2 *1 *1) (-12 (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-112)))) (-4253 (*1 *2 *1 *3) (-12 (-5 *3 (-631 *1)) (-4 *1 (-1048 *4 *5 *6)) (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)))) (-4202 (*1 *1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)))) (-3039 (*1 *1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)))) (-4202 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1048 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *2 (-836)))) (-3039 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1048 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *2 (-836)))) (-3752 (*1 *1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)))) (-2711 (*1 *1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)))) (-3752 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1048 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *2 (-836)))) (-2711 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1048 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *2 (-836)))) (-3386 (*1 *2 *1 *1) (-12 (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-2 (|:| -1490 *1) (|:| |gap| (-758)) (|:| -2423 *1))) (-4 *1 (-1048 *3 *4 *5)))) (-3386 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *3 (-836)) (-5 *2 (-2 (|:| -1490 *1) (|:| |gap| (-758)) (|:| -2423 *1))) (-4 *1 (-1048 *4 *5 *3)))) (-2694 (*1 *2 *1 *1) (-12 (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-2 (|:| -1490 *1) (|:| |gap| (-758)) (|:| -2325 *1) (|:| -2423 *1))) (-4 *1 (-1048 *3 *4 *5)))) (-2694 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *3 (-836)) (-5 *2 (-2 (|:| -1490 *1) (|:| |gap| (-758)) (|:| -2325 *1) (|:| -2423 *1))) (-4 *1 (-1048 *4 *5 *3)))) (-1680 (*1 *2 *1 *1) (-12 (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-2 (|:| -2325 *1) (|:| -2423 *1))) (-4 *1 (-1048 *3 *4 *5)))) (-1761 (*1 *1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)))) (-1715 (*1 *2 *1 *1) (-12 (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2776 (-758)))) (-4 *1 (-1048 *3 *4 *5)))) (-3492 (*1 *1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)))) (-1536 (*1 *1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-937 (-402 (-554)))) (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-38 (-402 (-554)))) (-4 *5 (-602 (-1158))) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-937 (-402 (-554)))) (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-38 (-402 (-554)))) (-4 *5 (-602 (-1158))) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)))) (-2927 (*1 *1 *2) (-12 (-5 *2 (-937 (-402 (-554)))) (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-38 (-402 (-554)))) (-4 *5 (-602 (-1158))) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)))) (-2784 (*1 *1 *2) (|partial| -3994 (-12 (-5 *2 (-937 (-554))) (-4 *1 (-1048 *3 *4 *5)) (-12 (-4081 (-4 *3 (-38 (-402 (-554))))) (-4 *3 (-38 (-554))) (-4 *5 (-602 (-1158)))) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836))) (-12 (-5 *2 (-937 (-554))) (-4 *1 (-1048 *3 *4 *5)) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *5 (-602 (-1158)))) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836))))) (-1668 (*1 *1 *2) (-3994 (-12 (-5 *2 (-937 (-554))) (-4 *1 (-1048 *3 *4 *5)) (-12 (-4081 (-4 *3 (-38 (-402 (-554))))) (-4 *3 (-38 (-554))) (-4 *5 (-602 (-1158)))) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836))) (-12 (-5 *2 (-937 (-554))) (-4 *1 (-1048 *3 *4 *5)) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *5 (-602 (-1158)))) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836))))) (-2927 (*1 *1 *2) (-3994 (-12 (-5 *2 (-937 (-554))) (-4 *1 (-1048 *3 *4 *5)) (-12 (-4081 (-4 *3 (-38 (-402 (-554))))) (-4 *3 (-38 (-554))) (-4 *5 (-602 (-1158)))) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836))) (-12 (-5 *2 (-937 (-554))) (-4 *1 (-1048 *3 *4 *5)) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *5 (-602 (-1158)))) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836))))) (-2784 (*1 *1 *2) (|partial| -3994 (-12 (-5 *2 (-937 *3)) (-12 (-4081 (-4 *3 (-38 (-402 (-554))))) (-4081 (-4 *3 (-38 (-554)))) (-4 *5 (-602 (-1158)))) (-4 *3 (-1034)) (-4 *1 (-1048 *3 *4 *5)) (-4 *4 (-780)) (-4 *5 (-836))) (-12 (-5 *2 (-937 *3)) (-12 (-4081 (-4 *3 (-539))) (-4081 (-4 *3 (-38 (-402 (-554))))) (-4 *3 (-38 (-554))) (-4 *5 (-602 (-1158)))) (-4 *3 (-1034)) (-4 *1 (-1048 *3 *4 *5)) (-4 *4 (-780)) (-4 *5 (-836))) (-12 (-5 *2 (-937 *3)) (-12 (-4081 (-4 *3 (-977 (-554)))) (-4 *3 (-38 (-402 (-554)))) (-4 *5 (-602 (-1158)))) (-4 *3 (-1034)) (-4 *1 (-1048 *3 *4 *5)) (-4 *4 (-780)) (-4 *5 (-836))))) (-1668 (*1 *1 *2) (-3994 (-12 (-5 *2 (-937 *3)) (-12 (-4081 (-4 *3 (-38 (-402 (-554))))) (-4081 (-4 *3 (-38 (-554)))) (-4 *5 (-602 (-1158)))) (-4 *3 (-1034)) (-4 *1 (-1048 *3 *4 *5)) (-4 *4 (-780)) (-4 *5 (-836))) (-12 (-5 *2 (-937 *3)) (-12 (-4081 (-4 *3 (-539))) (-4081 (-4 *3 (-38 (-402 (-554))))) (-4 *3 (-38 (-554))) (-4 *5 (-602 (-1158)))) (-4 *3 (-1034)) (-4 *1 (-1048 *3 *4 *5)) (-4 *4 (-780)) (-4 *5 (-836))) (-12 (-5 *2 (-937 *3)) (-12 (-4081 (-4 *3 (-977 (-554)))) (-4 *3 (-38 (-402 (-554)))) (-4 *5 (-602 (-1158)))) (-4 *3 (-1034)) (-4 *1 (-1048 *3 *4 *5)) (-4 *4 (-780)) (-4 *5 (-836))))) (-2927 (*1 *1 *2) (-12 (-5 *2 (-937 *3)) (-4 *3 (-1034)) (-4 *1 (-1048 *3 *4 *5)) (-4 *5 (-602 (-1158))) (-4 *4 (-780)) (-4 *5 (-836)))) (-3605 (*1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)) (-4 *2 (-546)))) (-2016 (*1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)) (-4 *2 (-546)))) (-3767 (*1 *1 *1 *2) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)) (-4 *2 (-546)))) (-4343 (*1 *1 *1 *2) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)) (-4 *2 (-546)))) (-3767 (*1 *1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)) (-4 *2 (-546)))) (-4343 (*1 *1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)) (-4 *2 (-546)))) (-4286 (*1 *1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)) (-4 *2 (-546)))) (-2396 (*1 *2 *1 *1) (-12 (-4 *3 (-546)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-2 (|:| -2510 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1048 *3 *4 *5)))) (-3446 (*1 *2 *1 *1) (-12 (-4 *3 (-546)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-2 (|:| -2510 *1) (|:| |coef1| *1))) (-4 *1 (-1048 *3 *4 *5)))) (-2695 (*1 *2 *1 *1) (-12 (-4 *3 (-546)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-2 (|:| -2510 *1) (|:| |coef2| *1))) (-4 *1 (-1048 *3 *4 *5)))) (-2999 (*1 *1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)) (-4 *2 (-546)))) (-1580 (*1 *2 *1 *1) (-12 (-4 *3 (-546)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-631 *1)) (-4 *1 (-1048 *3 *4 *5)))) (-2543 (*1 *1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)) (-4 *2 (-546)))) (-3100 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *3 (-546)))) (-2982 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *3 (-546)))) (-3376 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)) (-4 *2 (-546)))) (-2510 (*1 *2 *2 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)) (-4 *2 (-446)))) (-4003 (*1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)) (-4 *2 (-446)))) (-2278 (*1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)) (-4 *2 (-446)))) (-2385 (*1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)) (-4 *2 (-446)))) (-2750 (*1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)) (-4 *2 (-446)))))
-(-13 (-934 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3954 (|t#3| $)) (-15 -1299 ((-758) $)) (-15 -3834 ($ $)) (-15 -4133 ($ $)) (-15 -3387 ($ $)) (-15 -1559 ($ $)) (-15 -1839 ((-631 $) $)) (-15 -2013 ($ $)) (-15 -2530 ($ $ |t#3|)) (-15 -2550 ($ $ |t#3|)) (-15 -2682 ((-112) $)) (-15 -2661 ((-112) $)) (-15 -1785 ($ $)) (-15 -3737 ($ $)) (-15 -1596 ((-631 $) $)) (-15 -2023 ((-631 $) $)) (-15 -2222 ((-3 (-112) "failed") $ $)) (-15 -2178 ((-112) $ $)) (-15 -3079 ((-112) $ $)) (-15 -2857 ((-112) $ $)) (-15 -2857 ((-112) $ (-631 $))) (-15 -3518 ((-112) $ $)) (-15 -3518 ((-112) $ (-631 $))) (-15 -3007 ((-112) $ $)) (-15 -3007 ((-112) $ (-631 $))) (-15 -4253 ((-112) $ $)) (-15 -4253 ((-112) $ (-631 $))) (-15 -4202 ($ $ $)) (-15 -3039 ($ $ $)) (-15 -4202 ($ $ $ |t#3|)) (-15 -3039 ($ $ $ |t#3|)) (-15 -3752 ($ $ $)) (-15 -2711 ($ $ $)) (-15 -3752 ($ $ $ |t#3|)) (-15 -2711 ($ $ $ |t#3|)) (-15 -3386 ((-2 (|:| -1490 $) (|:| |gap| (-758)) (|:| -2423 $)) $ $)) (-15 -3386 ((-2 (|:| -1490 $) (|:| |gap| (-758)) (|:| -2423 $)) $ $ |t#3|)) (-15 -2694 ((-2 (|:| -1490 $) (|:| |gap| (-758)) (|:| -2325 $) (|:| -2423 $)) $ $)) (-15 -2694 ((-2 (|:| -1490 $) (|:| |gap| (-758)) (|:| -2325 $) (|:| -2423 $)) $ $ |t#3|)) (-15 -1680 ((-2 (|:| -2325 $) (|:| -2423 $)) $ $)) (-15 -1761 ($ $ $)) (-15 -1715 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2776 (-758))) $ $)) (-15 -3492 ($ $ $)) (-15 -1536 ($ $ $)) (IF (|has| |t#3| (-602 (-1158))) (PROGN (-6 (-601 (-937 |t#1|))) (-6 (-602 (-937 |t#1|))) (IF (|has| |t#1| (-38 (-402 (-554)))) (PROGN (-15 -2784 ((-3 $ "failed") (-937 (-402 (-554))))) (-15 -1668 ($ (-937 (-402 (-554))))) (-15 -2927 ($ (-937 (-402 (-554))))) (-15 -2784 ((-3 $ "failed") (-937 (-554)))) (-15 -1668 ($ (-937 (-554)))) (-15 -2927 ($ (-937 (-554)))) (IF (|has| |t#1| (-977 (-554))) |%noBranch| (PROGN (-15 -2784 ((-3 $ "failed") (-937 |t#1|))) (-15 -1668 ($ (-937 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-554))) (IF (|has| |t#1| (-38 (-402 (-554)))) |%noBranch| (PROGN (-15 -2784 ((-3 $ "failed") (-937 (-554)))) (-15 -1668 ($ (-937 (-554)))) (-15 -2927 ($ (-937 (-554)))) (IF (|has| |t#1| (-539)) |%noBranch| (PROGN (-15 -2784 ((-3 $ "failed") (-937 |t#1|))) (-15 -1668 ($ (-937 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-554))) |%noBranch| (IF (|has| |t#1| (-38 (-402 (-554)))) |%noBranch| (PROGN (-15 -2784 ((-3 $ "failed") (-937 |t#1|))) (-15 -1668 ($ (-937 |t#1|)))))) (-15 -2927 ($ (-937 |t#1|))) (IF (|has| |t#1| (-1023 (-554))) (-6 (-602 (-1140))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-546)) (PROGN (-15 -3605 ($ $)) (-15 -2016 ($ $)) (-15 -3767 ($ $ |t#1|)) (-15 -4343 ($ $ |t#1|)) (-15 -3767 ($ $ $)) (-15 -4343 ($ $ $)) (-15 -4286 ($ $ $)) (-15 -2396 ((-2 (|:| -2510 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3446 ((-2 (|:| -2510 $) (|:| |coef1| $)) $ $)) (-15 -2695 ((-2 (|:| -2510 $) (|:| |coef2| $)) $ $)) (-15 -2999 ($ $ $)) (-15 -1580 ((-631 $) $ $)) (-15 -2543 ($ $ $)) (-15 -3100 ($ $ $ (-758))) (-15 -2982 ($ $ $ $ (-758))) (-15 -3376 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-446)) (PROGN (-15 -2510 (|t#1| |t#1| $)) (-15 -4003 ($ $)) (-15 -2278 ($ $)) (-15 -2385 ($ $)) (-15 -2750 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-402 (-554)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-604 #0#) -3994 (|has| |#1| (-1023 (-402 (-554)))) (|has| |#1| (-38 (-402 (-554))))) ((-604 (-554)) . T) ((-604 |#1|) . T) ((-604 |#3|) . T) ((-604 $) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446))) ((-601 (-848)) . T) ((-601 (-937 |#1|)) |has| |#3| (-602 (-1158))) ((-170) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-602 (-530)) -12 (|has| |#1| (-602 (-530))) (|has| |#3| (-602 (-530)))) ((-602 (-877 (-374))) -12 (|has| |#1| (-602 (-877 (-374)))) (|has| |#3| (-602 (-877 (-374))))) ((-602 (-877 (-554))) -12 (|has| |#1| (-602 (-877 (-554)))) (|has| |#3| (-602 (-877 (-554))))) ((-602 (-937 |#1|)) |has| |#3| (-602 (-1158))) ((-602 (-1140)) -12 (|has| |#1| (-1023 (-554))) (|has| |#3| (-602 (-1158)))) ((-285) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446))) ((-304 $) . T) ((-321 |#1| |#2|) . T) ((-372 |#1|) . T) ((-406 |#1|) . T) ((-446) -3994 (|has| |#1| (-894)) (|has| |#1| (-446))) ((-508 |#3| |#1|) . T) ((-508 |#3| $) . T) ((-508 $ $) . T) ((-546) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446))) ((-634 #0#) |has| |#1| (-38 (-402 (-554)))) ((-634 |#1|) . T) ((-634 $) . T) ((-627 (-554)) |has| |#1| (-627 (-554))) ((-627 |#1|) . T) ((-704 #0#) |has| |#1| (-38 (-402 (-554)))) ((-704 |#1|) |has| |#1| (-170)) ((-704 $) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446))) ((-713) . T) ((-836) |has| |#1| (-836)) ((-885 |#3|) . T) ((-871 (-374)) -12 (|has| |#1| (-871 (-374))) (|has| |#3| (-871 (-374)))) ((-871 (-554)) -12 (|has| |#1| (-871 (-554))) (|has| |#3| (-871 (-554)))) ((-934 |#1| |#2| |#3|) . T) ((-894) |has| |#1| (-894)) ((-1023 (-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) ((-1023 (-554)) |has| |#1| (-1023 (-554))) ((-1023 |#1|) . T) ((-1023 |#3|) . T) ((-1040 #0#) |has| |#1| (-38 (-402 (-554)))) ((-1040 |#1|) . T) ((-1040 $) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1199) |has| |#1| (-894)))
-((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-1584 (((-631 (-1117)) $) 13)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 24) (($ (-1163)) NIL) (((-1163) $) NIL)) (-4319 (((-1117) $) 15)) (-1658 (((-112) $ $) NIL)))
-(((-1049) (-13 (-1065) (-10 -8 (-15 -1584 ((-631 (-1117)) $)) (-15 -4319 ((-1117) $))))) (T -1049))
-((-1584 (*1 *2 *1) (-12 (-5 *2 (-631 (-1117))) (-5 *1 (-1049)))) (-4319 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1049)))))
-(-13 (-1065) (-10 -8 (-15 -1584 ((-631 (-1117)) $)) (-15 -4319 ((-1117) $))))
-((-1695 (((-112) |#3| $) 13)) (-3625 (((-3 $ "failed") |#3| (-906)) 23)) (-1320 (((-3 |#3| "failed") |#3| $) 38)) (-2745 (((-112) |#3| $) 16)) (-4304 (((-112) |#3| $) 14)))
-(((-1050 |#1| |#2| |#3|) (-10 -8 (-15 -3625 ((-3 |#1| "failed") |#3| (-906))) (-15 -1320 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2745 ((-112) |#3| |#1|)) (-15 -4304 ((-112) |#3| |#1|)) (-15 -1695 ((-112) |#3| |#1|))) (-1051 |#2| |#3|) (-13 (-834) (-358)) (-1217 |#2|)) (T -1050))
-NIL
-(-10 -8 (-15 -3625 ((-3 |#1| "failed") |#3| (-906))) (-15 -1320 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2745 ((-112) |#3| |#1|)) (-15 -4304 ((-112) |#3| |#1|)) (-15 -1695 ((-112) |#3| |#1|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) |#2| $) 21)) (-4219 (((-554) |#2| $) 22)) (-3625 (((-3 $ "failed") |#2| (-906)) 15)) (-2513 ((|#1| |#2| $ |#1|) 13)) (-1320 (((-3 |#2| "failed") |#2| $) 18)) (-2745 (((-112) |#2| $) 19)) (-4304 (((-112) |#2| $) 20)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-4318 ((|#2| $) 17)) (-3075 (((-848) $) 11)) (-4333 ((|#1| |#2| $ |#1|) 14)) (-2299 (((-631 $) |#2|) 16)) (-1658 (((-112) $ $) 6)))
-(((-1051 |#1| |#2|) (-138) (-13 (-834) (-358)) (-1217 |t#1|)) (T -1051))
-((-4219 (*1 *2 *3 *1) (-12 (-4 *1 (-1051 *4 *3)) (-4 *4 (-13 (-834) (-358))) (-4 *3 (-1217 *4)) (-5 *2 (-554)))) (-1695 (*1 *2 *3 *1) (-12 (-4 *1 (-1051 *4 *3)) (-4 *4 (-13 (-834) (-358))) (-4 *3 (-1217 *4)) (-5 *2 (-112)))) (-4304 (*1 *2 *3 *1) (-12 (-4 *1 (-1051 *4 *3)) (-4 *4 (-13 (-834) (-358))) (-4 *3 (-1217 *4)) (-5 *2 (-112)))) (-2745 (*1 *2 *3 *1) (-12 (-4 *1 (-1051 *4 *3)) (-4 *4 (-13 (-834) (-358))) (-4 *3 (-1217 *4)) (-5 *2 (-112)))) (-1320 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1051 *3 *2)) (-4 *3 (-13 (-834) (-358))) (-4 *2 (-1217 *3)))) (-4318 (*1 *2 *1) (-12 (-4 *1 (-1051 *3 *2)) (-4 *3 (-13 (-834) (-358))) (-4 *2 (-1217 *3)))) (-2299 (*1 *2 *3) (-12 (-4 *4 (-13 (-834) (-358))) (-4 *3 (-1217 *4)) (-5 *2 (-631 *1)) (-4 *1 (-1051 *4 *3)))) (-3625 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-906)) (-4 *4 (-13 (-834) (-358))) (-4 *1 (-1051 *4 *2)) (-4 *2 (-1217 *4)))) (-4333 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1051 *2 *3)) (-4 *2 (-13 (-834) (-358))) (-4 *3 (-1217 *2)))) (-2513 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1051 *2 *3)) (-4 *2 (-13 (-834) (-358))) (-4 *3 (-1217 *2)))))
-(-13 (-1082) (-10 -8 (-15 -4219 ((-554) |t#2| $)) (-15 -1695 ((-112) |t#2| $)) (-15 -4304 ((-112) |t#2| $)) (-15 -2745 ((-112) |t#2| $)) (-15 -1320 ((-3 |t#2| "failed") |t#2| $)) (-15 -4318 (|t#2| $)) (-15 -2299 ((-631 $) |t#2|)) (-15 -3625 ((-3 $ "failed") |t#2| (-906))) (-15 -4333 (|t#1| |t#2| $ |t#1|)) (-15 -2513 (|t#1| |t#2| $ |t#1|))))
-(((-102) . T) ((-601 (-848)) . T) ((-1082) . T))
-((-3202 (((-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-631 |#4|) (-631 |#5|) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) (-758)) 96)) (-1540 (((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5| (-758)) 56)) (-2446 (((-1246) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-758)) 87)) (-2877 (((-758) (-631 |#4|) (-631 |#5|)) 27)) (-1645 (((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5| (-758)) 58) (((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5| (-758) (-112)) 60)) (-3678 (((-631 |#5|) (-631 |#4|) (-631 |#5|) (-112) (-112) (-112) (-112) (-112)) 78) (((-631 |#5|) (-631 |#4|) (-631 |#5|) (-112) (-112)) 79)) (-2927 (((-1140) (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) 82)) (-3511 (((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5| (-112)) 55)) (-4198 (((-758) (-631 |#4|) (-631 |#5|)) 19)))
-(((-1052 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4198 ((-758) (-631 |#4|) (-631 |#5|))) (-15 -2877 ((-758) (-631 |#4|) (-631 |#5|))) (-15 -3511 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5| (-112))) (-15 -1540 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5| (-758))) (-15 -1540 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5|)) (-15 -1645 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5| (-758) (-112))) (-15 -1645 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5| (-758))) (-15 -1645 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5|)) (-15 -3678 ((-631 |#5|) (-631 |#4|) (-631 |#5|) (-112) (-112))) (-15 -3678 ((-631 |#5|) (-631 |#4|) (-631 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3202 ((-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-631 |#4|) (-631 |#5|) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) (-758))) (-15 -2927 ((-1140) (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|)))) (-15 -2446 ((-1246) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-758)))) (-446) (-780) (-836) (-1048 |#1| |#2| |#3|) (-1054 |#1| |#2| |#3| |#4|)) (T -1052))
-((-2446 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-2 (|:| |val| (-631 *8)) (|:| -2143 *9)))) (-5 *4 (-758)) (-4 *8 (-1048 *5 *6 *7)) (-4 *9 (-1054 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-1246)) (-5 *1 (-1052 *5 *6 *7 *8 *9)))) (-2927 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-631 *7)) (|:| -2143 *8))) (-4 *7 (-1048 *4 *5 *6)) (-4 *8 (-1054 *4 *5 *6 *7)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-1140)) (-5 *1 (-1052 *4 *5 *6 *7 *8)))) (-3202 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-631 *11)) (|:| |todo| (-631 (-2 (|:| |val| *3) (|:| -2143 *11)))))) (-5 *6 (-758)) (-5 *2 (-631 (-2 (|:| |val| (-631 *10)) (|:| -2143 *11)))) (-5 *3 (-631 *10)) (-5 *4 (-631 *11)) (-4 *10 (-1048 *7 *8 *9)) (-4 *11 (-1054 *7 *8 *9 *10)) (-4 *7 (-446)) (-4 *8 (-780)) (-4 *9 (-836)) (-5 *1 (-1052 *7 *8 *9 *10 *11)))) (-3678 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-631 *9)) (-5 *3 (-631 *8)) (-5 *4 (-112)) (-4 *8 (-1048 *5 *6 *7)) (-4 *9 (-1054 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *1 (-1052 *5 *6 *7 *8 *9)))) (-3678 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-631 *9)) (-5 *3 (-631 *8)) (-5 *4 (-112)) (-4 *8 (-1048 *5 *6 *7)) (-4 *9 (-1054 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *1 (-1052 *5 *6 *7 *8 *9)))) (-1645 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-631 *4)) (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4)))))) (-5 *1 (-1052 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-1645 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-758)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836)) (-4 *3 (-1048 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-631 *4)) (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4)))))) (-5 *1 (-1052 *6 *7 *8 *3 *4)) (-4 *4 (-1054 *6 *7 *8 *3)))) (-1645 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-758)) (-5 *6 (-112)) (-4 *7 (-446)) (-4 *8 (-780)) (-4 *9 (-836)) (-4 *3 (-1048 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-631 *4)) (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4)))))) (-5 *1 (-1052 *7 *8 *9 *3 *4)) (-4 *4 (-1054 *7 *8 *9 *3)))) (-1540 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-631 *4)) (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4)))))) (-5 *1 (-1052 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-1540 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-758)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836)) (-4 *3 (-1048 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-631 *4)) (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4)))))) (-5 *1 (-1052 *6 *7 *8 *3 *4)) (-4 *4 (-1054 *6 *7 *8 *3)))) (-3511 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836)) (-4 *3 (-1048 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-631 *4)) (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4)))))) (-5 *1 (-1052 *6 *7 *8 *3 *4)) (-4 *4 (-1054 *6 *7 *8 *3)))) (-2877 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-631 *9)) (-4 *8 (-1048 *5 *6 *7)) (-4 *9 (-1054 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-758)) (-5 *1 (-1052 *5 *6 *7 *8 *9)))) (-4198 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-631 *9)) (-4 *8 (-1048 *5 *6 *7)) (-4 *9 (-1054 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-758)) (-5 *1 (-1052 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -4198 ((-758) (-631 |#4|) (-631 |#5|))) (-15 -2877 ((-758) (-631 |#4|) (-631 |#5|))) (-15 -3511 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5| (-112))) (-15 -1540 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5| (-758))) (-15 -1540 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5|)) (-15 -1645 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5| (-758) (-112))) (-15 -1645 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5| (-758))) (-15 -1645 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5|)) (-15 -3678 ((-631 |#5|) (-631 |#4|) (-631 |#5|) (-112) (-112))) (-15 -3678 ((-631 |#5|) (-631 |#4|) (-631 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3202 ((-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-631 |#4|) (-631 |#5|) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) (-758))) (-15 -2927 ((-1140) (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|)))) (-15 -2446 ((-1246) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-758))))
-((-4183 (((-112) |#5| $) 21)) (-4155 (((-112) |#5| $) 24)) (-2892 (((-112) |#5| $) 16) (((-112) $) 45)) (-3977 (((-631 $) |#5| $) NIL) (((-631 $) (-631 |#5|) $) 77) (((-631 $) (-631 |#5|) (-631 $)) 75) (((-631 $) |#5| (-631 $)) 78)) (-4282 (($ $ |#5|) NIL) (((-631 $) |#5| $) NIL) (((-631 $) |#5| (-631 $)) 60) (((-631 $) (-631 |#5|) $) 62) (((-631 $) (-631 |#5|) (-631 $)) 64)) (-3850 (((-631 $) |#5| $) NIL) (((-631 $) |#5| (-631 $)) 54) (((-631 $) (-631 |#5|) $) 56) (((-631 $) (-631 |#5|) (-631 $)) 58)) (-4351 (((-112) |#5| $) 27)))
-(((-1053 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4282 ((-631 |#1|) (-631 |#5|) (-631 |#1|))) (-15 -4282 ((-631 |#1|) (-631 |#5|) |#1|)) (-15 -4282 ((-631 |#1|) |#5| (-631 |#1|))) (-15 -4282 ((-631 |#1|) |#5| |#1|)) (-15 -3850 ((-631 |#1|) (-631 |#5|) (-631 |#1|))) (-15 -3850 ((-631 |#1|) (-631 |#5|) |#1|)) (-15 -3850 ((-631 |#1|) |#5| (-631 |#1|))) (-15 -3850 ((-631 |#1|) |#5| |#1|)) (-15 -3977 ((-631 |#1|) |#5| (-631 |#1|))) (-15 -3977 ((-631 |#1|) (-631 |#5|) (-631 |#1|))) (-15 -3977 ((-631 |#1|) (-631 |#5|) |#1|)) (-15 -3977 ((-631 |#1|) |#5| |#1|)) (-15 -4155 ((-112) |#5| |#1|)) (-15 -2892 ((-112) |#1|)) (-15 -4351 ((-112) |#5| |#1|)) (-15 -4183 ((-112) |#5| |#1|)) (-15 -2892 ((-112) |#5| |#1|)) (-15 -4282 (|#1| |#1| |#5|))) (-1054 |#2| |#3| |#4| |#5|) (-446) (-780) (-836) (-1048 |#2| |#3| |#4|)) (T -1053))
-NIL
-(-10 -8 (-15 -4282 ((-631 |#1|) (-631 |#5|) (-631 |#1|))) (-15 -4282 ((-631 |#1|) (-631 |#5|) |#1|)) (-15 -4282 ((-631 |#1|) |#5| (-631 |#1|))) (-15 -4282 ((-631 |#1|) |#5| |#1|)) (-15 -3850 ((-631 |#1|) (-631 |#5|) (-631 |#1|))) (-15 -3850 ((-631 |#1|) (-631 |#5|) |#1|)) (-15 -3850 ((-631 |#1|) |#5| (-631 |#1|))) (-15 -3850 ((-631 |#1|) |#5| |#1|)) (-15 -3977 ((-631 |#1|) |#5| (-631 |#1|))) (-15 -3977 ((-631 |#1|) (-631 |#5|) (-631 |#1|))) (-15 -3977 ((-631 |#1|) (-631 |#5|) |#1|)) (-15 -3977 ((-631 |#1|) |#5| |#1|)) (-15 -4155 ((-112) |#5| |#1|)) (-15 -2892 ((-112) |#1|)) (-15 -4351 ((-112) |#5| |#1|)) (-15 -4183 ((-112) |#5| |#1|)) (-15 -2892 ((-112) |#5| |#1|)) (-15 -4282 (|#1| |#1| |#5|)))
-((-3062 (((-112) $ $) 7)) (-3960 (((-631 (-2 (|:| -2498 $) (|:| -1303 (-631 |#4|)))) (-631 |#4|)) 85)) (-3176 (((-631 $) (-631 |#4|)) 86) (((-631 $) (-631 |#4|) (-112)) 111)) (-2405 (((-631 |#3|) $) 33)) (-1678 (((-112) $) 26)) (-3005 (((-112) $) 17 (|has| |#1| (-546)))) (-2630 (((-112) |#4| $) 101) (((-112) $) 97)) (-4057 ((|#4| |#4| $) 92)) (-3278 (((-631 (-2 (|:| |val| |#4|) (|:| -2143 $))) |#4| $) 126)) (-3303 (((-2 (|:| |under| $) (|:| -4339 $) (|:| |upper| $)) $ |#3|) 27)) (-3019 (((-112) $ (-758)) 44)) (-1871 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4373))) (((-3 |#4| "failed") $ |#3|) 79)) (-4087 (($) 45 T CONST)) (-1930 (((-112) $) 22 (|has| |#1| (-546)))) (-1404 (((-112) $ $) 24 (|has| |#1| (-546)))) (-3262 (((-112) $ $) 23 (|has| |#1| (-546)))) (-2713 (((-112) $) 25 (|has| |#1| (-546)))) (-2242 (((-631 |#4|) (-631 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1380 (((-631 |#4|) (-631 |#4|) $) 18 (|has| |#1| (-546)))) (-4204 (((-631 |#4|) (-631 |#4|) $) 19 (|has| |#1| (-546)))) (-2784 (((-3 $ "failed") (-631 |#4|)) 36)) (-1668 (($ (-631 |#4|)) 35)) (-1551 (((-3 $ "failed") $) 82)) (-2930 ((|#4| |#4| $) 89)) (-1571 (($ $) 68 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373))))) (-2574 (($ |#4| $) 67 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4373)))) (-2423 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-546)))) (-2857 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4210 ((|#4| |#4| $) 87)) (-3676 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4373))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4373))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1971 (((-2 (|:| -2498 (-631 |#4|)) (|:| -1303 (-631 |#4|))) $) 105)) (-4183 (((-112) |#4| $) 136)) (-4155 (((-112) |#4| $) 133)) (-2892 (((-112) |#4| $) 137) (((-112) $) 134)) (-2466 (((-631 |#4|) $) 52 (|has| $ (-6 -4373)))) (-4253 (((-112) |#4| $) 104) (((-112) $) 103)) (-3954 ((|#3| $) 34)) (-2230 (((-112) $ (-758)) 43)) (-2379 (((-631 |#4|) $) 53 (|has| $ (-6 -4373)))) (-3068 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#4| |#4|) $) 47)) (-2643 (((-631 |#3|) $) 32)) (-1400 (((-112) |#3| $) 31)) (-3731 (((-112) $ (-758)) 42)) (-1613 (((-1140) $) 9)) (-1343 (((-3 |#4| (-631 $)) |#4| |#4| $) 128)) (-2543 (((-631 (-2 (|:| |val| |#4|) (|:| -2143 $))) |#4| |#4| $) 127)) (-2597 (((-3 |#4| "failed") $) 83)) (-2953 (((-631 $) |#4| $) 129)) (-3841 (((-3 (-112) (-631 $)) |#4| $) 132)) (-3874 (((-631 (-2 (|:| |val| (-112)) (|:| -2143 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3977 (((-631 $) |#4| $) 125) (((-631 $) (-631 |#4|) $) 124) (((-631 $) (-631 |#4|) (-631 $)) 123) (((-631 $) |#4| (-631 $)) 122)) (-3479 (($ |#4| $) 117) (($ (-631 |#4|) $) 116)) (-2627 (((-631 |#4|) $) 107)) (-3007 (((-112) |#4| $) 99) (((-112) $) 95)) (-1536 ((|#4| |#4| $) 90)) (-2178 (((-112) $ $) 110)) (-3548 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-546)))) (-3518 (((-112) |#4| $) 100) (((-112) $) 96)) (-3492 ((|#4| |#4| $) 91)) (-2768 (((-1102) $) 10)) (-1539 (((-3 |#4| "failed") $) 84)) (-1652 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3948 (((-3 $ "failed") $ |#4|) 78)) (-4282 (($ $ |#4|) 77) (((-631 $) |#4| $) 115) (((-631 $) |#4| (-631 $)) 114) (((-631 $) (-631 |#4|) $) 113) (((-631 $) (-631 |#4|) (-631 $)) 112)) (-2845 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 |#4|) (-631 |#4|)) 59 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-289 |#4|)) 57 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-631 (-289 |#4|))) 56 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))))) (-2494 (((-112) $ $) 38)) (-3543 (((-112) $) 41)) (-4240 (($) 40)) (-3308 (((-758) $) 106)) (-2777 (((-758) |#4| $) 54 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373)))) (((-758) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4373)))) (-1521 (($ $) 39)) (-2927 (((-530) $) 69 (|has| |#4| (-602 (-530))))) (-3089 (($ (-631 |#4|)) 60)) (-2538 (($ $ |#3|) 28)) (-2384 (($ $ |#3|) 30)) (-2258 (($ $) 88)) (-2128 (($ $ |#3|) 29)) (-3075 (((-848) $) 11) (((-631 |#4|) $) 37)) (-2347 (((-758) $) 76 (|has| |#3| (-363)))) (-2792 (((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 |#4|))) "failed") (-631 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 |#4|))) "failed") (-631 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-3579 (((-112) $ (-1 (-112) |#4| (-631 |#4|))) 98)) (-3850 (((-631 $) |#4| $) 121) (((-631 $) |#4| (-631 $)) 120) (((-631 $) (-631 |#4|) $) 119) (((-631 $) (-631 |#4|) (-631 $)) 118)) (-2438 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4373)))) (-4267 (((-631 |#3|) $) 81)) (-4351 (((-112) |#4| $) 135)) (-3536 (((-112) |#3| $) 80)) (-1658 (((-112) $ $) 6)) (-2563 (((-758) $) 46 (|has| $ (-6 -4373)))))
-(((-1054 |#1| |#2| |#3| |#4|) (-138) (-446) (-780) (-836) (-1048 |t#1| |t#2| |t#3|)) (T -1054))
-((-2892 (*1 *2 *3 *1) (-12 (-4 *1 (-1054 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-112)))) (-4183 (*1 *2 *3 *1) (-12 (-4 *1 (-1054 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-112)))) (-4351 (*1 *2 *3 *1) (-12 (-4 *1 (-1054 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-112)))) (-2892 (*1 *2 *1) (-12 (-4 *1 (-1054 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-112)))) (-4155 (*1 *2 *3 *1) (-12 (-4 *1 (-1054 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-112)))) (-3841 (*1 *2 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-3 (-112) (-631 *1))) (-4 *1 (-1054 *4 *5 *6 *3)))) (-3874 (*1 *2 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-631 (-2 (|:| |val| (-112)) (|:| -2143 *1)))) (-4 *1 (-1054 *4 *5 *6 *3)))) (-3874 (*1 *2 *3 *1) (-12 (-4 *1 (-1054 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-112)))) (-2953 (*1 *2 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-631 *1)) (-4 *1 (-1054 *4 *5 *6 *3)))) (-1343 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-3 *3 (-631 *1))) (-4 *1 (-1054 *4 *5 *6 *3)))) (-2543 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *1)))) (-4 *1 (-1054 *4 *5 *6 *3)))) (-3278 (*1 *2 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *1)))) (-4 *1 (-1054 *4 *5 *6 *3)))) (-3977 (*1 *2 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-631 *1)) (-4 *1 (-1054 *4 *5 *6 *3)))) (-3977 (*1 *2 *3 *1) (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-631 *1)) (-4 *1 (-1054 *4 *5 *6 *7)))) (-3977 (*1 *2 *3 *2) (-12 (-5 *2 (-631 *1)) (-5 *3 (-631 *7)) (-4 *1 (-1054 *4 *5 *6 *7)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)))) (-3977 (*1 *2 *3 *2) (-12 (-5 *2 (-631 *1)) (-4 *1 (-1054 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)))) (-3850 (*1 *2 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-631 *1)) (-4 *1 (-1054 *4 *5 *6 *3)))) (-3850 (*1 *2 *3 *2) (-12 (-5 *2 (-631 *1)) (-4 *1 (-1054 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)))) (-3850 (*1 *2 *3 *1) (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-631 *1)) (-4 *1 (-1054 *4 *5 *6 *7)))) (-3850 (*1 *2 *3 *2) (-12 (-5 *2 (-631 *1)) (-5 *3 (-631 *7)) (-4 *1 (-1054 *4 *5 *6 *7)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)))) (-3479 (*1 *1 *2 *1) (-12 (-4 *1 (-1054 *3 *4 *5 *2)) (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *2 (-1048 *3 *4 *5)))) (-3479 (*1 *1 *2 *1) (-12 (-5 *2 (-631 *6)) (-4 *1 (-1054 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)))) (-4282 (*1 *2 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-631 *1)) (-4 *1 (-1054 *4 *5 *6 *3)))) (-4282 (*1 *2 *3 *2) (-12 (-5 *2 (-631 *1)) (-4 *1 (-1054 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)))) (-4282 (*1 *2 *3 *1) (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-631 *1)) (-4 *1 (-1054 *4 *5 *6 *7)))) (-4282 (*1 *2 *3 *2) (-12 (-5 *2 (-631 *1)) (-5 *3 (-631 *7)) (-4 *1 (-1054 *4 *5 *6 *7)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)))) (-3176 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-112)) (-4 *8 (-1048 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-631 *1)) (-4 *1 (-1054 *5 *6 *7 *8)))))
-(-13 (-1188 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2892 ((-112) |t#4| $)) (-15 -4183 ((-112) |t#4| $)) (-15 -4351 ((-112) |t#4| $)) (-15 -2892 ((-112) $)) (-15 -4155 ((-112) |t#4| $)) (-15 -3841 ((-3 (-112) (-631 $)) |t#4| $)) (-15 -3874 ((-631 (-2 (|:| |val| (-112)) (|:| -2143 $))) |t#4| $)) (-15 -3874 ((-112) |t#4| $)) (-15 -2953 ((-631 $) |t#4| $)) (-15 -1343 ((-3 |t#4| (-631 $)) |t#4| |t#4| $)) (-15 -2543 ((-631 (-2 (|:| |val| |t#4|) (|:| -2143 $))) |t#4| |t#4| $)) (-15 -3278 ((-631 (-2 (|:| |val| |t#4|) (|:| -2143 $))) |t#4| $)) (-15 -3977 ((-631 $) |t#4| $)) (-15 -3977 ((-631 $) (-631 |t#4|) $)) (-15 -3977 ((-631 $) (-631 |t#4|) (-631 $))) (-15 -3977 ((-631 $) |t#4| (-631 $))) (-15 -3850 ((-631 $) |t#4| $)) (-15 -3850 ((-631 $) |t#4| (-631 $))) (-15 -3850 ((-631 $) (-631 |t#4|) $)) (-15 -3850 ((-631 $) (-631 |t#4|) (-631 $))) (-15 -3479 ($ |t#4| $)) (-15 -3479 ($ (-631 |t#4|) $)) (-15 -4282 ((-631 $) |t#4| $)) (-15 -4282 ((-631 $) |t#4| (-631 $))) (-15 -4282 ((-631 $) (-631 |t#4|) $)) (-15 -4282 ((-631 $) (-631 |t#4|) (-631 $))) (-15 -3176 ((-631 $) (-631 |t#4|) (-112)))))
-(((-34) . T) ((-102) . T) ((-601 (-631 |#4|)) . T) ((-601 (-848)) . T) ((-149 |#4|) . T) ((-602 (-530)) |has| |#4| (-602 (-530))) ((-304 |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))) ((-483 |#4|) . T) ((-508 |#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))) ((-961 |#1| |#2| |#3| |#4|) . T) ((-1082) . T) ((-1188 |#1| |#2| |#3| |#4|) . T) ((-1195) . T))
-((-1474 (((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#5|) 81)) (-1911 (((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#4| |#5|) 113)) (-2578 (((-631 |#5|) |#4| |#5|) 70)) (-3030 (((-631 (-2 (|:| |val| (-112)) (|:| -2143 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-2924 (((-1246)) 37)) (-3888 (((-1246)) 26)) (-3959 (((-1246) (-1140) (-1140) (-1140)) 33)) (-4239 (((-1246) (-1140) (-1140) (-1140)) 22)) (-1435 (((-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) |#4| |#4| |#5|) 96)) (-3210 (((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) |#3| (-112)) 107) (((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-3908 (((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#4| |#5|) 102)))
-(((-1055 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4239 ((-1246) (-1140) (-1140) (-1140))) (-15 -3888 ((-1246))) (-15 -3959 ((-1246) (-1140) (-1140) (-1140))) (-15 -2924 ((-1246))) (-15 -1435 ((-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) |#4| |#4| |#5|)) (-15 -3210 ((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3210 ((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) |#3| (-112))) (-15 -3908 ((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#4| |#5|)) (-15 -1911 ((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#4| |#5|)) (-15 -3030 ((-112) |#4| |#5|)) (-15 -3030 ((-631 (-2 (|:| |val| (-112)) (|:| -2143 |#5|))) |#4| |#5|)) (-15 -2578 ((-631 |#5|) |#4| |#5|)) (-15 -1474 ((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#5|))) (-446) (-780) (-836) (-1048 |#1| |#2| |#3|) (-1054 |#1| |#2| |#3| |#4|)) (T -1055))
-((-1474 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *4)))) (-5 *1 (-1055 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-2578 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-631 *4)) (-5 *1 (-1055 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-3030 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-631 (-2 (|:| |val| (-112)) (|:| -2143 *4)))) (-5 *1 (-1055 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-3030 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1055 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-1911 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *4)))) (-5 *1 (-1055 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-3908 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *4)))) (-5 *1 (-1055 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-3210 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 (-2 (|:| |val| (-631 *8)) (|:| -2143 *9)))) (-5 *5 (-112)) (-4 *8 (-1048 *6 *7 *4)) (-4 *9 (-1054 *6 *7 *4 *8)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *4 (-836)) (-5 *2 (-631 (-2 (|:| |val| *8) (|:| -2143 *9)))) (-5 *1 (-1055 *6 *7 *4 *8 *9)))) (-3210 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836)) (-4 *3 (-1048 *6 *7 *8)) (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *4)))) (-5 *1 (-1055 *6 *7 *8 *3 *4)) (-4 *4 (-1054 *6 *7 *8 *3)))) (-1435 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4)))) (-5 *1 (-1055 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-2924 (*1 *2) (-12 (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-1246)) (-5 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *7 (-1054 *3 *4 *5 *6)))) (-3959 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1140)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-1246)) (-5 *1 (-1055 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7)))) (-3888 (*1 *2) (-12 (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-1246)) (-5 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *7 (-1054 *3 *4 *5 *6)))) (-4239 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1140)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-1246)) (-5 *1 (-1055 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7)))))
-(-10 -7 (-15 -4239 ((-1246) (-1140) (-1140) (-1140))) (-15 -3888 ((-1246))) (-15 -3959 ((-1246) (-1140) (-1140) (-1140))) (-15 -2924 ((-1246))) (-15 -1435 ((-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) |#4| |#4| |#5|)) (-15 -3210 ((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3210 ((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) |#3| (-112))) (-15 -3908 ((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#4| |#5|)) (-15 -1911 ((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#4| |#5|)) (-15 -3030 ((-112) |#4| |#5|)) (-15 -3030 ((-631 (-2 (|:| |val| (-112)) (|:| -2143 |#5|))) |#4| |#5|)) (-15 -2578 ((-631 |#5|) |#4| |#5|)) (-15 -1474 ((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#5|)))
-((-3062 (((-112) $ $) NIL)) (-1362 (((-1194) $) 13)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3463 (((-1117) $) 10)) (-3075 (((-848) $) 22) (($ (-1163)) NIL) (((-1163) $) NIL)) (-1658 (((-112) $ $) NIL)))
-(((-1056) (-13 (-1065) (-10 -8 (-15 -3463 ((-1117) $)) (-15 -1362 ((-1194) $))))) (T -1056))
-((-3463 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1056)))) (-1362 (*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-1056)))))
-(-13 (-1065) (-10 -8 (-15 -3463 ((-1117) $)) (-15 -1362 ((-1194) $))))
-((-3062 (((-112) $ $) NIL)) (-4309 (((-1158) $) 8)) (-1613 (((-1140) $) 16)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 11)) (-1658 (((-112) $ $) 13)))
-(((-1057 |#1|) (-13 (-1082) (-10 -8 (-15 -4309 ((-1158) $)))) (-1158)) (T -1057))
-((-4309 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1057 *3)) (-14 *3 *2))))
-(-13 (-1082) (-10 -8 (-15 -4309 ((-1158) $))))
-((-3062 (((-112) $ $) NIL)) (-3234 (($ $ (-631 (-1158)) (-1 (-112) (-631 |#3|))) 33)) (-2747 (($ |#3| |#3|) 22) (($ |#3| |#3| (-631 (-1158))) 20)) (-3848 ((|#3| $) 13)) (-2784 (((-3 (-289 |#3|) "failed") $) 58)) (-1668 (((-289 |#3|) $) NIL)) (-3932 (((-631 (-1158)) $) 16)) (-2317 (((-877 |#1|) $) 11)) (-3836 ((|#3| $) 12)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2064 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-906)) 39)) (-3075 (((-848) $) 86) (($ (-289 |#3|)) 21)) (-1658 (((-112) $ $) 36)))
-(((-1058 |#1| |#2| |#3|) (-13 (-1082) (-281 |#3| |#3|) (-1023 (-289 |#3|)) (-10 -8 (-15 -2747 ($ |#3| |#3|)) (-15 -2747 ($ |#3| |#3| (-631 (-1158)))) (-15 -3234 ($ $ (-631 (-1158)) (-1 (-112) (-631 |#3|)))) (-15 -2317 ((-877 |#1|) $)) (-15 -3836 (|#3| $)) (-15 -3848 (|#3| $)) (-15 -2064 (|#3| $ |#3| (-906))) (-15 -3932 ((-631 (-1158)) $)))) (-1082) (-13 (-1034) (-871 |#1|) (-836) (-602 (-877 |#1|))) (-13 (-425 |#2|) (-871 |#1|) (-602 (-877 |#1|)))) (T -1058))
-((-2747 (*1 *1 *2 *2) (-12 (-4 *3 (-1082)) (-4 *4 (-13 (-1034) (-871 *3) (-836) (-602 (-877 *3)))) (-5 *1 (-1058 *3 *4 *2)) (-4 *2 (-13 (-425 *4) (-871 *3) (-602 (-877 *3)))))) (-2747 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-631 (-1158))) (-4 *4 (-1082)) (-4 *5 (-13 (-1034) (-871 *4) (-836) (-602 (-877 *4)))) (-5 *1 (-1058 *4 *5 *2)) (-4 *2 (-13 (-425 *5) (-871 *4) (-602 (-877 *4)))))) (-3234 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 (-1158))) (-5 *3 (-1 (-112) (-631 *6))) (-4 *6 (-13 (-425 *5) (-871 *4) (-602 (-877 *4)))) (-4 *4 (-1082)) (-4 *5 (-13 (-1034) (-871 *4) (-836) (-602 (-877 *4)))) (-5 *1 (-1058 *4 *5 *6)))) (-2317 (*1 *2 *1) (-12 (-4 *3 (-1082)) (-4 *4 (-13 (-1034) (-871 *3) (-836) (-602 *2))) (-5 *2 (-877 *3)) (-5 *1 (-1058 *3 *4 *5)) (-4 *5 (-13 (-425 *4) (-871 *3) (-602 *2))))) (-3836 (*1 *2 *1) (-12 (-4 *3 (-1082)) (-4 *2 (-13 (-425 *4) (-871 *3) (-602 (-877 *3)))) (-5 *1 (-1058 *3 *4 *2)) (-4 *4 (-13 (-1034) (-871 *3) (-836) (-602 (-877 *3)))))) (-3848 (*1 *2 *1) (-12 (-4 *3 (-1082)) (-4 *2 (-13 (-425 *4) (-871 *3) (-602 (-877 *3)))) (-5 *1 (-1058 *3 *4 *2)) (-4 *4 (-13 (-1034) (-871 *3) (-836) (-602 (-877 *3)))))) (-2064 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-906)) (-4 *4 (-1082)) (-4 *5 (-13 (-1034) (-871 *4) (-836) (-602 (-877 *4)))) (-5 *1 (-1058 *4 *5 *2)) (-4 *2 (-13 (-425 *5) (-871 *4) (-602 (-877 *4)))))) (-3932 (*1 *2 *1) (-12 (-4 *3 (-1082)) (-4 *4 (-13 (-1034) (-871 *3) (-836) (-602 (-877 *3)))) (-5 *2 (-631 (-1158))) (-5 *1 (-1058 *3 *4 *5)) (-4 *5 (-13 (-425 *4) (-871 *3) (-602 (-877 *3)))))))
-(-13 (-1082) (-281 |#3| |#3|) (-1023 (-289 |#3|)) (-10 -8 (-15 -2747 ($ |#3| |#3|)) (-15 -2747 ($ |#3| |#3| (-631 (-1158)))) (-15 -3234 ($ $ (-631 (-1158)) (-1 (-112) (-631 |#3|)))) (-15 -2317 ((-877 |#1|) $)) (-15 -3836 (|#3| $)) (-15 -3848 (|#3| $)) (-15 -2064 (|#3| $ |#3| (-906))) (-15 -3932 ((-631 (-1158)) $))))
-((-3062 (((-112) $ $) NIL)) (-3194 (($ (-631 (-1058 |#1| |#2| |#3|))) 13)) (-1644 (((-631 (-1058 |#1| |#2| |#3|)) $) 20)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2064 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-906)) 26)) (-3075 (((-848) $) 16)) (-1658 (((-112) $ $) 19)))
-(((-1059 |#1| |#2| |#3|) (-13 (-1082) (-281 |#3| |#3|) (-10 -8 (-15 -3194 ($ (-631 (-1058 |#1| |#2| |#3|)))) (-15 -1644 ((-631 (-1058 |#1| |#2| |#3|)) $)) (-15 -2064 (|#3| $ |#3| (-906))))) (-1082) (-13 (-1034) (-871 |#1|) (-836) (-602 (-877 |#1|))) (-13 (-425 |#2|) (-871 |#1|) (-602 (-877 |#1|)))) (T -1059))
-((-3194 (*1 *1 *2) (-12 (-5 *2 (-631 (-1058 *3 *4 *5))) (-4 *3 (-1082)) (-4 *4 (-13 (-1034) (-871 *3) (-836) (-602 (-877 *3)))) (-4 *5 (-13 (-425 *4) (-871 *3) (-602 (-877 *3)))) (-5 *1 (-1059 *3 *4 *5)))) (-1644 (*1 *2 *1) (-12 (-4 *3 (-1082)) (-4 *4 (-13 (-1034) (-871 *3) (-836) (-602 (-877 *3)))) (-5 *2 (-631 (-1058 *3 *4 *5))) (-5 *1 (-1059 *3 *4 *5)) (-4 *5 (-13 (-425 *4) (-871 *3) (-602 (-877 *3)))))) (-2064 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-906)) (-4 *4 (-1082)) (-4 *5 (-13 (-1034) (-871 *4) (-836) (-602 (-877 *4)))) (-5 *1 (-1059 *4 *5 *2)) (-4 *2 (-13 (-425 *5) (-871 *4) (-602 (-877 *4)))))))
-(-13 (-1082) (-281 |#3| |#3|) (-10 -8 (-15 -3194 ($ (-631 (-1058 |#1| |#2| |#3|)))) (-15 -1644 ((-631 (-1058 |#1| |#2| |#3|)) $)) (-15 -2064 (|#3| $ |#3| (-906)))))
-((-3032 (((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-631 (-937 |#1|)) (-112) (-112)) 75) (((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-631 (-937 |#1|))) 77) (((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-631 (-937 |#1|)) (-112)) 76)))
-(((-1060 |#1| |#2|) (-10 -7 (-15 -3032 ((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-631 (-937 |#1|)) (-112))) (-15 -3032 ((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-631 (-937 |#1|)))) (-15 -3032 ((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-631 (-937 |#1|)) (-112) (-112)))) (-13 (-302) (-145)) (-631 (-1158))) (T -1060))
-((-3032 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-5 *2 (-631 (-2 (|:| -3900 (-1154 *5)) (|:| -3656 (-631 (-937 *5)))))) (-5 *1 (-1060 *5 *6)) (-5 *3 (-631 (-937 *5))) (-14 *6 (-631 (-1158))))) (-3032 (*1 *2 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-5 *2 (-631 (-2 (|:| -3900 (-1154 *4)) (|:| -3656 (-631 (-937 *4)))))) (-5 *1 (-1060 *4 *5)) (-5 *3 (-631 (-937 *4))) (-14 *5 (-631 (-1158))))) (-3032 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-5 *2 (-631 (-2 (|:| -3900 (-1154 *5)) (|:| -3656 (-631 (-937 *5)))))) (-5 *1 (-1060 *5 *6)) (-5 *3 (-631 (-937 *5))) (-14 *6 (-631 (-1158))))))
-(-10 -7 (-15 -3032 ((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-631 (-937 |#1|)) (-112))) (-15 -3032 ((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-631 (-937 |#1|)))) (-15 -3032 ((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-631 (-937 |#1|)) (-112) (-112))))
-((-2270 (((-413 |#3|) |#3|) 18)))
-(((-1061 |#1| |#2| |#3|) (-10 -7 (-15 -2270 ((-413 |#3|) |#3|))) (-1217 (-402 (-554))) (-13 (-358) (-145) (-711 (-402 (-554)) |#1|)) (-1217 |#2|)) (T -1061))
-((-2270 (*1 *2 *3) (-12 (-4 *4 (-1217 (-402 (-554)))) (-4 *5 (-13 (-358) (-145) (-711 (-402 (-554)) *4))) (-5 *2 (-413 *3)) (-5 *1 (-1061 *4 *5 *3)) (-4 *3 (-1217 *5)))))
-(-10 -7 (-15 -2270 ((-413 |#3|) |#3|)))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 126)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-358)))) (-1976 (($ $) NIL (|has| |#1| (-358)))) (-1363 (((-112) $) NIL (|has| |#1| (-358)))) (-1903 (((-675 |#1|) (-1241 $)) NIL) (((-675 |#1|)) 115)) (-1612 ((|#1| $) 119)) (-3205 (((-1168 (-906) (-758)) (-554)) NIL (|has| |#1| (-344)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL (|has| |#1| (-358)))) (-1565 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2286 (((-112) $ $) NIL (|has| |#1| (-358)))) (-1508 (((-758)) 40 (|has| |#1| (-363)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-3 |#1| "failed") $) NIL)) (-1668 (((-554) $) NIL (|has| |#1| (-1023 (-554)))) (((-402 (-554)) $) NIL (|has| |#1| (-1023 (-402 (-554))))) ((|#1| $) NIL)) (-1651 (($ (-1241 |#1|) (-1241 $)) NIL) (($ (-1241 |#1|)) 43)) (-2723 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-344)))) (-3964 (($ $ $) NIL (|has| |#1| (-358)))) (-3629 (((-675 |#1|) $ (-1241 $)) NIL) (((-675 |#1|) $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) 106) (((-675 |#1|) (-675 $)) 101)) (-3676 (($ |#2|) 61) (((-3 $ "failed") (-402 |#2|)) NIL (|has| |#1| (-358)))) (-1320 (((-3 $ "failed") $) NIL)) (-4186 (((-906)) 77)) (-3353 (($) 44 (|has| |#1| (-363)))) (-3943 (($ $ $) NIL (|has| |#1| (-358)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL (|has| |#1| (-358)))) (-3157 (($) NIL (|has| |#1| (-344)))) (-2754 (((-112) $) NIL (|has| |#1| (-344)))) (-4122 (($ $ (-758)) NIL (|has| |#1| (-344))) (($ $) NIL (|has| |#1| (-344)))) (-3289 (((-112) $) NIL (|has| |#1| (-358)))) (-2342 (((-906) $) NIL (|has| |#1| (-344))) (((-820 (-906)) $) NIL (|has| |#1| (-344)))) (-3248 (((-112) $) NIL)) (-3274 ((|#1| $) NIL)) (-3339 (((-3 $ "failed") $) NIL (|has| |#1| (-344)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-3361 ((|#2| $) 84 (|has| |#1| (-358)))) (-3830 (((-906) $) 131 (|has| |#1| (-363)))) (-3662 ((|#2| $) 58)) (-2475 (($ (-631 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL (|has| |#1| (-358)))) (-3834 (($) NIL (|has| |#1| (-344)) CONST)) (-2717 (($ (-906)) 125 (|has| |#1| (-363)))) (-2768 (((-1102) $) NIL)) (-4137 (($) 121)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#1| (-358)))) (-2510 (($ (-631 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-3725 (((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))) NIL (|has| |#1| (-344)))) (-2270 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-358)))) (-3919 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-2072 (((-758) $) NIL (|has| |#1| (-358)))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-358)))) (-1495 ((|#1| (-1241 $)) NIL) ((|#1|) 109)) (-3316 (((-758) $) NIL (|has| |#1| (-344))) (((-3 (-758) "failed") $ $) NIL (|has| |#1| (-344)))) (-1553 (($ $) NIL (-3994 (-12 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-344)))) (($ $ (-758)) NIL (-3994 (-12 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-344)))) (($ $ (-1158)) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-885 (-1158))))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-885 (-1158))))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-885 (-1158))))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-885 (-1158))))) (($ $ (-1 |#1| |#1|) (-758)) NIL (|has| |#1| (-358))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-358)))) (-2092 (((-675 |#1|) (-1241 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-358)))) (-4318 ((|#2|) 73)) (-3944 (($) NIL (|has| |#1| (-344)))) (-3656 (((-1241 |#1|) $ (-1241 $)) 89) (((-675 |#1|) (-1241 $) (-1241 $)) NIL) (((-1241 |#1|) $) 71) (((-675 |#1|) (-1241 $)) 85)) (-2927 (((-1241 |#1|) $) NIL) (($ (-1241 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (|has| |#1| (-344)))) (-3075 (((-848) $) 57) (($ (-554)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-358))) (($ (-402 (-554))) NIL (-3994 (|has| |#1| (-358)) (|has| |#1| (-1023 (-402 (-554))))))) (-2084 (($ $) NIL (|has| |#1| (-344))) (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3109 ((|#2| $) 82)) (-2261 (((-758)) 75)) (-3782 (((-1241 $)) 81)) (-1909 (((-112) $ $) NIL (|has| |#1| (-358)))) (-2004 (($) 30 T CONST)) (-2014 (($) 19 T CONST)) (-1787 (($ $) NIL (-3994 (-12 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-344)))) (($ $ (-758)) NIL (-3994 (-12 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-344)))) (($ $ (-1158)) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-885 (-1158))))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-885 (-1158))))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-885 (-1158))))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-885 (-1158))))) (($ $ (-1 |#1| |#1|) (-758)) NIL (|has| |#1| (-358))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-358)))) (-1658 (((-112) $ $) 63)) (-1752 (($ $ $) NIL (|has| |#1| (-358)))) (-1744 (($ $) 67) (($ $ $) NIL)) (-1735 (($ $ $) 65)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL (|has| |#1| (-358)))) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-402 (-554)) $) NIL (|has| |#1| (-358))) (($ $ (-402 (-554))) NIL (|has| |#1| (-358)))))
-(((-1062 |#1| |#2| |#3|) (-711 |#1| |#2|) (-170) (-1217 |#1|) |#2|) (T -1062))
-NIL
-(-711 |#1| |#2|)
-((-2270 (((-413 |#3|) |#3|) 19)))
-(((-1063 |#1| |#2| |#3|) (-10 -7 (-15 -2270 ((-413 |#3|) |#3|))) (-1217 (-402 (-937 (-554)))) (-13 (-358) (-145) (-711 (-402 (-937 (-554))) |#1|)) (-1217 |#2|)) (T -1063))
-((-2270 (*1 *2 *3) (-12 (-4 *4 (-1217 (-402 (-937 (-554))))) (-4 *5 (-13 (-358) (-145) (-711 (-402 (-937 (-554))) *4))) (-5 *2 (-413 *3)) (-5 *1 (-1063 *4 *5 *3)) (-4 *3 (-1217 *5)))))
-(-10 -7 (-15 -2270 ((-413 |#3|) |#3|)))
-((-3062 (((-112) $ $) NIL)) (-4223 (($ $ $) 14)) (-2706 (($ $ $) 15)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3655 (($) 6)) (-2927 (((-1158) $) 18)) (-3075 (((-848) $) 12)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 13)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 8)))
-(((-1064) (-13 (-836) (-602 (-1158)) (-10 -8 (-15 -3655 ($))))) (T -1064))
-((-3655 (*1 *1) (-5 *1 (-1064))))
-(-13 (-836) (-602 (-1158)) (-10 -8 (-15 -3655 ($))))
-((-3062 (((-112) $ $) 7)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11) (($ (-1163)) 16) (((-1163) $) 15)) (-1658 (((-112) $ $) 6)))
-(((-1065) (-138)) (T -1065))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-605 (-853)) . T) ((-1087) . T))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2089 (((-3 $ "failed") $ $) 19)) (-1816 (($) 17 T CONST)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11)) (-2131 (($) 18 T CONST)) (-1683 (((-112) $ $) 6)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24)))
+(((-1046) (-139)) (T -1046))
+NIL
+(-13 (-21) (-1099))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-605 (-853)) . T) ((-1099) . T) ((-1087) . T))
+((-3440 (($ $) 16)) (-2553 (($ $) 22)) (-2269 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) 49)) (-2615 (($ $) 24)) (-2568 (($ $) 11)) (-2594 (($ $) 38)) (-3224 (((-378) $) NIL) (((-224) $) NIL) (((-882 (-378)) $) 33)) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL) (($ (-406 (-558))) 28) (($ (-558)) NIL) (($ (-406 (-558))) 28)) (-2542 (((-762)) 8)) (-2604 (($ $) 39)))
+(((-1047 |#1|) (-10 -8 (-15 -2553 (|#1| |#1|)) (-15 -3440 (|#1| |#1|)) (-15 -2568 (|#1| |#1|)) (-15 -2594 (|#1| |#1|)) (-15 -2604 (|#1| |#1|)) (-15 -2615 (|#1| |#1|)) (-15 -2269 ((-879 (-378) |#1|) |#1| (-882 (-378)) (-879 (-378) |#1|))) (-15 -3224 ((-882 (-378)) |#1|)) (-15 -3220 (|#1| (-406 (-558)))) (-15 -3220 (|#1| (-558))) (-15 -3224 ((-224) |#1|)) (-15 -3224 ((-378) |#1|)) (-15 -3220 (|#1| (-406 (-558)))) (-15 -3220 (|#1| |#1|)) (-15 -2542 ((-762))) (-15 -3220 (|#1| (-558))) (-15 -3220 ((-853) |#1|))) (-1048)) (T -1047))
+((-2542 (*1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-1047 *3)) (-4 *3 (-1048)))))
+(-10 -8 (-15 -2553 (|#1| |#1|)) (-15 -3440 (|#1| |#1|)) (-15 -2568 (|#1| |#1|)) (-15 -2594 (|#1| |#1|)) (-15 -2604 (|#1| |#1|)) (-15 -2615 (|#1| |#1|)) (-15 -2269 ((-879 (-378) |#1|) |#1| (-882 (-378)) (-879 (-378) |#1|))) (-15 -3224 ((-882 (-378)) |#1|)) (-15 -3220 (|#1| (-406 (-558)))) (-15 -3220 (|#1| (-558))) (-15 -3224 ((-224) |#1|)) (-15 -3224 ((-378) |#1|)) (-15 -3220 (|#1| (-406 (-558)))) (-15 -3220 (|#1| |#1|)) (-15 -2542 ((-762))) (-15 -3220 (|#1| (-558))) (-15 -3220 ((-853) |#1|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2582 (((-558) $) 90)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 42)) (-1881 (($ $) 41)) (-1857 (((-112) $) 39)) (-3440 (($ $) 88)) (-2089 (((-3 $ "failed") $ $) 19)) (-3465 (($ $) 74)) (-1380 (((-417 $) $) 73)) (-2534 (($ $) 98)) (-3732 (((-112) $ $) 60)) (-1397 (((-558) $) 115)) (-1816 (($) 17 T CONST)) (-2553 (($ $) 87)) (-3069 (((-3 (-558) "failed") $) 103) (((-3 (-406 (-558)) "failed") $) 100)) (-1863 (((-558) $) 104) (((-406 (-558)) $) 101)) (-4025 (($ $ $) 56)) (-2588 (((-3 $ "failed") $) 33)) (-4004 (($ $ $) 57)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) 52)) (-3031 (((-112) $) 72)) (-2045 (((-112) $) 113)) (-2269 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) 94)) (-2035 (((-112) $) 31)) (-3828 (($ $ (-558)) 97)) (-2615 (($ $) 93)) (-2055 (((-112) $) 114)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) 53)) (-3910 (($ $ $) 112)) (-3542 (($ $ $) 111)) (-2665 (($ $ $) 47) (($ (-635 $)) 46)) (-4310 (((-1145) $) 9)) (-2418 (($ $) 71)) (-2975 (((-1107) $) 10)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) 45)) (-2699 (($ $ $) 49) (($ (-635 $)) 48)) (-2568 (($ $) 89)) (-2594 (($ $) 91)) (-2522 (((-417 $) $) 75)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3983 (((-3 $ "failed") $ $) 43)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-3722 (((-762) $) 59)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 58)) (-3224 (((-378) $) 106) (((-224) $) 105) (((-882 (-378)) $) 95)) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ $) 44) (($ (-406 (-558))) 67) (($ (-558)) 102) (($ (-406 (-558))) 99)) (-2542 (((-762)) 28)) (-2604 (($ $) 92)) (-1870 (((-112) $ $) 40)) (-3190 (($ $) 116)) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1747 (((-112) $ $) 109)) (-1720 (((-112) $ $) 108)) (-1683 (((-112) $ $) 6)) (-1731 (((-112) $ $) 110)) (-1705 (((-112) $ $) 107)) (-1810 (($ $ $) 66)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ (-558)) 70) (($ $ (-406 (-558))) 96)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ (-406 (-558))) 69) (($ (-406 (-558)) $) 68)))
+(((-1048) (-139)) (T -1048))
+((-3190 (*1 *1 *1) (-4 *1 (-1048))) (-2615 (*1 *1 *1) (-4 *1 (-1048))) (-2604 (*1 *1 *1) (-4 *1 (-1048))) (-2594 (*1 *1 *1) (-4 *1 (-1048))) (-2582 (*1 *2 *1) (-12 (-4 *1 (-1048)) (-5 *2 (-558)))) (-2568 (*1 *1 *1) (-4 *1 (-1048))) (-3440 (*1 *1 *1) (-4 *1 (-1048))) (-2553 (*1 *1 *1) (-4 *1 (-1048))))
+(-13 (-362) (-839) (-1012) (-1028 (-558)) (-1028 (-406 (-558))) (-992) (-606 (-882 (-378))) (-876 (-378)) (-146) (-10 -8 (-15 -2615 ($ $)) (-15 -2604 ($ $)) (-15 -2594 ($ $)) (-15 -2582 ((-558) $)) (-15 -2568 ($ $)) (-15 -3440 ($ $)) (-15 -2553 ($ $)) (-15 -3190 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-558))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-146) . T) ((-608 #0#) . T) ((-608 (-558)) . T) ((-608 $) . T) ((-605 (-853)) . T) ((-171) . T) ((-606 (-224)) . T) ((-606 (-378)) . T) ((-606 (-882 (-378))) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-450) . T) ((-550) . T) ((-638 #0#) . T) ((-638 $) . T) ((-708 #0#) . T) ((-708 $) . T) ((-717) . T) ((-782) . T) ((-783) . T) ((-785) . T) ((-786) . T) ((-839) . T) ((-841) . T) ((-876 (-378)) . T) ((-910) . T) ((-992) . T) ((-1012) . T) ((-1028 (-406 (-558))) . T) ((-1028 (-558)) . T) ((-1045 #0#) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1204) . T))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) |#2| $) 23)) (-2276 ((|#1| $) 10)) (-1397 (((-558) |#2| $) 87)) (-2016 (((-3 $ "failed") |#2| (-911)) 57)) (-3425 ((|#1| $) 28)) (-2007 ((|#1| |#2| $ |#1|) 37)) (-2634 (($ $) 25)) (-2588 (((-3 |#2| "failed") |#2| $) 86)) (-2045 (((-112) |#2| $) NIL)) (-2055 (((-112) |#2| $) NIL)) (-2624 (((-112) |#2| $) 24)) (-2644 ((|#1| $) 88)) (-3417 ((|#1| $) 27)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-2036 ((|#2| $) 78)) (-3220 (((-853) $) 70)) (-1352 ((|#1| |#2| $ |#1|) 38)) (-2027 (((-635 $) |#2|) 59)) (-1683 (((-112) $ $) 73)))
+(((-1049 |#1| |#2|) (-13 (-1056 |#1| |#2|) (-10 -8 (-15 -3417 (|#1| $)) (-15 -3425 (|#1| $)) (-15 -2276 (|#1| $)) (-15 -2644 (|#1| $)) (-15 -2634 ($ $)) (-15 -2624 ((-112) |#2| $)) (-15 -2007 (|#1| |#2| $ |#1|)))) (-13 (-839) (-362)) (-1222 |#1|)) (T -1049))
+((-2007 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-839) (-362))) (-5 *1 (-1049 *2 *3)) (-4 *3 (-1222 *2)))) (-3417 (*1 *2 *1) (-12 (-4 *2 (-13 (-839) (-362))) (-5 *1 (-1049 *2 *3)) (-4 *3 (-1222 *2)))) (-3425 (*1 *2 *1) (-12 (-4 *2 (-13 (-839) (-362))) (-5 *1 (-1049 *2 *3)) (-4 *3 (-1222 *2)))) (-2276 (*1 *2 *1) (-12 (-4 *2 (-13 (-839) (-362))) (-5 *1 (-1049 *2 *3)) (-4 *3 (-1222 *2)))) (-2644 (*1 *2 *1) (-12 (-4 *2 (-13 (-839) (-362))) (-5 *1 (-1049 *2 *3)) (-4 *3 (-1222 *2)))) (-2634 (*1 *1 *1) (-12 (-4 *2 (-13 (-839) (-362))) (-5 *1 (-1049 *2 *3)) (-4 *3 (-1222 *2)))) (-2624 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-839) (-362))) (-5 *2 (-112)) (-5 *1 (-1049 *4 *3)) (-4 *3 (-1222 *4)))))
+(-13 (-1056 |#1| |#2|) (-10 -8 (-15 -3417 (|#1| $)) (-15 -3425 (|#1| $)) (-15 -2276 (|#1| $)) (-15 -2644 (|#1| $)) (-15 -2634 ($ $)) (-15 -2624 ((-112) |#2| $)) (-15 -2007 (|#1| |#2| $ |#1|))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL)) (-1881 (($ $) NIL)) (-1857 (((-112) $) NIL)) (-1686 (($ $ $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-1663 (($ $ $ $) NIL)) (-3465 (($ $) NIL)) (-1380 (((-417 $) $) NIL)) (-3732 (((-112) $ $) NIL)) (-1397 (((-558) $) NIL)) (-1672 (($ $ $) NIL)) (-1816 (($) NIL T CONST)) (-2656 (($ (-1163)) 10) (($ (-558)) 7)) (-3069 (((-3 (-558) "failed") $) NIL)) (-1863 (((-558) $) NIL)) (-4025 (($ $ $) NIL)) (-3216 (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL) (((-679 (-558)) (-679 $)) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-3962 (((-3 (-406 (-558)) "failed") $) NIL)) (-3951 (((-112) $) NIL)) (-3938 (((-406 (-558)) $) NIL)) (-2424 (($) NIL) (($ $) NIL)) (-4004 (($ $ $) NIL)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL)) (-3031 (((-112) $) NIL)) (-1644 (($ $ $ $) NIL)) (-1697 (($ $ $) NIL)) (-2045 (((-112) $) NIL)) (-1387 (($ $ $) NIL)) (-2269 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL)) (-2035 (((-112) $) NIL)) (-3451 (((-112) $) NIL)) (-2457 (((-3 $ "failed") $) NIL)) (-2055 (((-112) $) NIL)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1654 (($ $ $ $) NIL)) (-3910 (($ $ $) NIL)) (-3542 (($ $ $) NIL)) (-1842 (($ $) NIL)) (-2880 (($ $) NIL)) (-2665 (($ $ $) NIL) (($ (-635 $)) NIL)) (-4310 (((-1145) $) NIL)) (-1637 (($ $ $) NIL)) (-1796 (($) NIL T CONST)) (-3276 (($ $) NIL)) (-2975 (((-1107) $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-2699 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1364 (($ $) NIL)) (-2522 (((-417 $) $) NIL)) (-3713 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL)) (-3983 (((-3 $ "failed") $ $) NIL)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3458 (((-112) $) NIL)) (-3722 (((-762) $) NIL)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL)) (-2829 (($ $ (-762)) NIL) (($ $) NIL)) (-3914 (($ $) NIL)) (-1553 (($ $) NIL)) (-3224 (((-558) $) 16) (((-534) $) NIL) (((-882 (-558)) $) NIL) (((-378) $) NIL) (((-224) $) NIL) (($ (-1163)) 9)) (-3220 (((-853) $) 20) (($ (-558)) 6) (($ $) NIL) (($ (-558)) 6)) (-2542 (((-762)) NIL)) (-1712 (((-112) $ $) NIL)) (-2322 (($ $ $) NIL)) (-2579 (($) NIL)) (-1870 (((-112) $ $) NIL)) (-1674 (($ $ $ $) NIL)) (-3190 (($ $) NIL)) (-2131 (($) NIL T CONST)) (-2142 (($) NIL T CONST)) (-1866 (($ $ (-762)) NIL) (($ $) NIL)) (-1747 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1683 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1798 (($ $) 19) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL)))
+(((-1050) (-13 (-543) (-610 (-1163)) (-10 -8 (-6 -4369) (-6 -4374) (-6 -4370) (-15 -2656 ($ (-1163))) (-15 -2656 ($ (-558)))))) (T -1050))
+((-2656 (*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1050)))) (-2656 (*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1050)))))
+(-13 (-543) (-610 (-1163)) (-10 -8 (-6 -4369) (-6 -4374) (-6 -4370) (-15 -2656 ($ (-1163))) (-15 -2656 ($ (-558)))))
+((-3207 (((-112) $ $) NIL (-3998 (|has| (-52) (-1087)) (|has| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-1087))))) (-3303 (($) NIL) (($ (-635 (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))))) NIL)) (-3869 (((-1251) $ (-1163) (-1163)) NIL (|has| $ (-6 -4383)))) (-3026 (((-112) $ (-762)) NIL)) (-2678 (($) 9)) (-1532 (((-52) $ (-1163) (-52)) NIL)) (-2765 (($ $) 30)) (-2793 (($ $) 28)) (-2802 (($ $) 27)) (-2784 (($ $) 29)) (-2753 (($ $) 32)) (-2742 (($ $) 33)) (-2812 (($ $) 26)) (-2775 (($ $) 31)) (-4207 (($ (-1 (-112) (-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) $) NIL (|has| $ (-6 -4382)))) (-4329 (($ (-1 (-112) (-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) $) 25 (|has| $ (-6 -4382)))) (-3083 (((-3 (-52) "failed") (-1163) $) 40)) (-1816 (($) NIL T CONST)) (-2821 (($) 7)) (-2338 (($ $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-1087))))) (-3395 (($ (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) $) 50 (|has| $ (-6 -4382))) (($ (-1 (-112) (-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) $) NIL (|has| $ (-6 -4382))) (((-3 (-52) "failed") (-1163) $) NIL)) (-1539 (($ (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-1087)))) (($ (-1 (-112) (-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) $) NIL (|has| $ (-6 -4382)))) (-3048 (((-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-1 (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) $ (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-1087)))) (((-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-1 (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) $ (-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) NIL (|has| $ (-6 -4382))) (((-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-1 (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) $) NIL (|has| $ (-6 -4382)))) (-2667 (((-3 (-1145) "failed") $ (-1145) (-558)) 59)) (-1817 (((-52) $ (-1163) (-52)) NIL (|has| $ (-6 -4383)))) (-1746 (((-52) $ (-1163)) NIL)) (-2240 (((-635 (-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) $) NIL (|has| $ (-6 -4382))) (((-635 (-52)) $) NIL (|has| $ (-6 -4382)))) (-2986 (((-112) $ (-762)) NIL)) (-3889 (((-1163) $) NIL (|has| (-1163) (-841)))) (-2122 (((-635 (-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) $) 35 (|has| $ (-6 -4382))) (((-635 (-52)) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-1087)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-52) (-1087))))) (-3899 (((-1163) $) NIL (|has| (-1163) (-841)))) (-1807 (($ (-1 (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) $) NIL (|has| $ (-6 -4383))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL (-3998 (|has| (-52) (-1087)) (|has| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-1087))))) (-3848 (((-635 (-1163)) $) NIL)) (-3950 (((-112) (-1163) $) NIL)) (-1722 (((-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) $) NIL)) (-4328 (($ (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) $) 43)) (-3920 (((-635 (-1163)) $) NIL)) (-3929 (((-112) (-1163) $) NIL)) (-2975 (((-1107) $) NIL (-3998 (|has| (-52) (-1087)) (|has| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-1087))))) (-2711 (((-378) $ (-1163)) 49)) (-2698 (((-635 (-1145)) $ (-1145)) 60)) (-2305 (((-52) $) NIL (|has| (-1163) (-841)))) (-4307 (((-3 (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) "failed") (-1 (-112) (-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) $) NIL)) (-3880 (($ $ (-52)) NIL (|has| $ (-6 -4383)))) (-3524 (((-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) $) NIL)) (-3266 (((-112) (-1 (-112) (-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) $) NIL (|has| $ (-6 -4382))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 (-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))))) NIL (-12 (|has| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-308 (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))))) (|has| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-1087)))) (($ $ (-293 (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))))) NIL (-12 (|has| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-308 (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))))) (|has| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-1087)))) (($ $ (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) NIL (-12 (|has| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-308 (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))))) (|has| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-1087)))) (($ $ (-635 (-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) (-635 (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))))) NIL (-12 (|has| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-308 (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))))) (|has| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-1087)))) (($ $ (-635 (-52)) (-635 (-52))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1087)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1087)))) (($ $ (-293 (-52))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1087)))) (($ $ (-635 (-293 (-52)))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1087))))) (-2381 (((-112) $ $) NIL)) (-3908 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-52) (-1087))))) (-3937 (((-635 (-52)) $) NIL)) (-3375 (((-112) $) NIL)) (-2083 (($) NIL)) (-2195 (((-52) $ (-1163)) NIL) (((-52) $ (-1163) (-52)) NIL)) (-2571 (($) NIL) (($ (-635 (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))))) NIL)) (-2688 (($ $ (-1163)) 51)) (-2988 (((-762) (-1 (-112) (-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) $) NIL (|has| $ (-6 -4382))) (((-762) (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-1087)))) (((-762) (-52) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-52) (-1087)))) (((-762) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4382)))) (-1553 (($ $) NIL)) (-3224 (((-534) $) NIL (|has| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-606 (-534))))) (-3233 (($ (-635 (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))))) 37)) (-4341 (($ $ $) 38)) (-3220 (((-853) $) NIL (-3998 (|has| (-52) (-605 (-853))) (|has| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-605 (-853)))))) (-2731 (($ $ (-1163) (-378)) 47)) (-2720 (($ $ (-1163) (-378)) 48)) (-3534 (($ (-635 (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))))) NIL)) (-3277 (((-112) (-1 (-112) (-2 (|:| -2700 (-1163)) (|:| -2981 (-52)))) $) NIL (|has| $ (-6 -4382))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) NIL (-3998 (|has| (-52) (-1087)) (|has| (-2 (|:| -2700 (-1163)) (|:| -2981 (-52))) (-1087))))) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-1051) (-13 (-1176 (-1163) (-52)) (-10 -8 (-15 -4341 ($ $ $)) (-15 -2821 ($)) (-15 -2812 ($ $)) (-15 -2802 ($ $)) (-15 -2793 ($ $)) (-15 -2784 ($ $)) (-15 -2775 ($ $)) (-15 -2765 ($ $)) (-15 -2753 ($ $)) (-15 -2742 ($ $)) (-15 -2731 ($ $ (-1163) (-378))) (-15 -2720 ($ $ (-1163) (-378))) (-15 -2711 ((-378) $ (-1163))) (-15 -2698 ((-635 (-1145)) $ (-1145))) (-15 -2688 ($ $ (-1163))) (-15 -2678 ($)) (-15 -2667 ((-3 (-1145) "failed") $ (-1145) (-558))) (-6 -4382)))) (T -1051))
+((-4341 (*1 *1 *1 *1) (-5 *1 (-1051))) (-2821 (*1 *1) (-5 *1 (-1051))) (-2812 (*1 *1 *1) (-5 *1 (-1051))) (-2802 (*1 *1 *1) (-5 *1 (-1051))) (-2793 (*1 *1 *1) (-5 *1 (-1051))) (-2784 (*1 *1 *1) (-5 *1 (-1051))) (-2775 (*1 *1 *1) (-5 *1 (-1051))) (-2765 (*1 *1 *1) (-5 *1 (-1051))) (-2753 (*1 *1 *1) (-5 *1 (-1051))) (-2742 (*1 *1 *1) (-5 *1 (-1051))) (-2731 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-378)) (-5 *1 (-1051)))) (-2720 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-378)) (-5 *1 (-1051)))) (-2711 (*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-378)) (-5 *1 (-1051)))) (-2698 (*1 *2 *1 *3) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-1051)) (-5 *3 (-1145)))) (-2688 (*1 *1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1051)))) (-2678 (*1 *1) (-5 *1 (-1051))) (-2667 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1145)) (-5 *3 (-558)) (-5 *1 (-1051)))))
+(-13 (-1176 (-1163) (-52)) (-10 -8 (-15 -4341 ($ $ $)) (-15 -2821 ($)) (-15 -2812 ($ $)) (-15 -2802 ($ $)) (-15 -2793 ($ $)) (-15 -2784 ($ $)) (-15 -2775 ($ $)) (-15 -2765 ($ $)) (-15 -2753 ($ $)) (-15 -2742 ($ $)) (-15 -2731 ($ $ (-1163) (-378))) (-15 -2720 ($ $ (-1163) (-378))) (-15 -2711 ((-378) $ (-1163))) (-15 -2698 ((-635 (-1145)) $ (-1145))) (-15 -2688 ($ $ (-1163))) (-15 -2678 ($)) (-15 -2667 ((-3 (-1145) "failed") $ (-1145) (-558))) (-6 -4382)))
+((-3436 (($ $) 45)) (-1853 (((-112) $ $) 74)) (-3069 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL) (((-3 (-558) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-942 (-406 (-558)))) 226) (((-3 $ "failed") (-942 (-558))) 225) (((-3 $ "failed") (-942 |#2|)) 228)) (-1863 ((|#2| $) NIL) (((-406 (-558)) $) NIL) (((-558) $) NIL) ((|#4| $) NIL) (($ (-942 (-406 (-558)))) 214) (($ (-942 (-558))) 210) (($ (-942 |#2|)) 230)) (-2490 (($ $) NIL) (($ $ |#4|) 43)) (-3902 (((-112) $ $) 111) (((-112) $ (-635 $)) 112)) (-1920 (((-112) $) 56)) (-3274 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 106)) (-1624 (($ $) 137)) (-1732 (($ $) 133)) (-1745 (($ $) 132)) (-1841 (($ $ $) 79) (($ $ $ |#4|) 84)) (-1830 (($ $ $) 82) (($ $ $ |#4|) 86)) (-3912 (((-112) $ $) 120) (((-112) $ (-635 $)) 121)) (-1997 ((|#4| $) 33)) (-1769 (($ $ $) 109)) (-1931 (((-112) $) 55)) (-1987 (((-762) $) 35)) (-2832 (($ $) 151)) (-2842 (($ $) 148)) (-1877 (((-635 $) $) 68)) (-1908 (($ $) 57)) (-1611 (($ $) 144)) (-1888 (((-635 $) $) 65)) (-1897 (($ $) 59)) (-2463 ((|#2| $) NIL) (($ $ |#4|) 38)) (-1758 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2739 (-762))) $ $) 110)) (-1782 (((-2 (|:| -2023 $) (|:| |gap| (-762)) (|:| -2306 $) (|:| -2071 $)) $ $) 107) (((-2 (|:| -2023 $) (|:| |gap| (-762)) (|:| -2306 $) (|:| -2071 $)) $ $ |#4|) 108)) (-1795 (((-2 (|:| -2023 $) (|:| |gap| (-762)) (|:| -2071 $)) $ $) 103) (((-2 (|:| -2023 $) (|:| |gap| (-762)) (|:| -2071 $)) $ $ |#4|) 104)) (-1820 (($ $ $) 89) (($ $ $ |#4|) 94)) (-1809 (($ $ $) 90) (($ $ $ |#4|) 95)) (-1952 (((-635 $) $) 51)) (-3873 (((-112) $ $) 117) (((-112) $ (-635 $)) 118)) (-3820 (($ $ $) 102)) (-1796 (($ $) 37)) (-3953 (((-112) $ $) 72)) (-3883 (((-112) $ $) 113) (((-112) $ (-635 $)) 115)) (-3830 (($ $ $) 100)) (-1975 (($ $) 40)) (-2699 ((|#2| |#2| $) 141) (($ (-635 $)) NIL) (($ $ $) NIL)) (-1706 (($ $ |#2|) NIL) (($ $ $) 130)) (-1719 (($ $ |#2|) 125) (($ $ $) 128)) (-1962 (($ $) 48)) (-1941 (($ $) 52)) (-3224 (((-882 (-378)) $) NIL) (((-882 (-558)) $) NIL) (((-534) $) NIL) (($ (-942 (-406 (-558)))) 216) (($ (-942 (-558))) 212) (($ (-942 |#2|)) 227) (((-1145) $) 249) (((-942 |#2|) $) 161)) (-3220 (((-853) $) 30) (($ (-558)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-942 |#2|) $) 162) (($ (-406 (-558))) NIL) (($ $) NIL)) (-1865 (((-3 (-112) "failed") $ $) 71)))
+(((-1052 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3220 (|#1| |#1|)) (-15 -2699 (|#1| |#1| |#1|)) (-15 -2699 (|#1| (-635 |#1|))) (-15 -3220 (|#1| (-406 (-558)))) (-15 -3220 ((-942 |#2|) |#1|)) (-15 -3224 ((-942 |#2|) |#1|)) (-15 -3224 ((-1145) |#1|)) (-15 -2832 (|#1| |#1|)) (-15 -2842 (|#1| |#1|)) (-15 -1611 (|#1| |#1|)) (-15 -1624 (|#1| |#1|)) (-15 -2699 (|#2| |#2| |#1|)) (-15 -1706 (|#1| |#1| |#1|)) (-15 -1719 (|#1| |#1| |#1|)) (-15 -1706 (|#1| |#1| |#2|)) (-15 -1719 (|#1| |#1| |#2|)) (-15 -1732 (|#1| |#1|)) (-15 -1745 (|#1| |#1|)) (-15 -3224 (|#1| (-942 |#2|))) (-15 -1863 (|#1| (-942 |#2|))) (-15 -3069 ((-3 |#1| "failed") (-942 |#2|))) (-15 -3224 (|#1| (-942 (-558)))) (-15 -1863 (|#1| (-942 (-558)))) (-15 -3069 ((-3 |#1| "failed") (-942 (-558)))) (-15 -3224 (|#1| (-942 (-406 (-558))))) (-15 -1863 (|#1| (-942 (-406 (-558))))) (-15 -3069 ((-3 |#1| "failed") (-942 (-406 (-558))))) (-15 -3820 (|#1| |#1| |#1|)) (-15 -3830 (|#1| |#1| |#1|)) (-15 -1758 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2739 (-762))) |#1| |#1|)) (-15 -1769 (|#1| |#1| |#1|)) (-15 -3274 ((-2 (|:| -2306 |#1|) (|:| -2071 |#1|)) |#1| |#1|)) (-15 -1782 ((-2 (|:| -2023 |#1|) (|:| |gap| (-762)) (|:| -2306 |#1|) (|:| -2071 |#1|)) |#1| |#1| |#4|)) (-15 -1782 ((-2 (|:| -2023 |#1|) (|:| |gap| (-762)) (|:| -2306 |#1|) (|:| -2071 |#1|)) |#1| |#1|)) (-15 -1795 ((-2 (|:| -2023 |#1|) (|:| |gap| (-762)) (|:| -2071 |#1|)) |#1| |#1| |#4|)) (-15 -1795 ((-2 (|:| -2023 |#1|) (|:| |gap| (-762)) (|:| -2071 |#1|)) |#1| |#1|)) (-15 -1809 (|#1| |#1| |#1| |#4|)) (-15 -1820 (|#1| |#1| |#1| |#4|)) (-15 -1809 (|#1| |#1| |#1|)) (-15 -1820 (|#1| |#1| |#1|)) (-15 -1830 (|#1| |#1| |#1| |#4|)) (-15 -1841 (|#1| |#1| |#1| |#4|)) (-15 -1830 (|#1| |#1| |#1|)) (-15 -1841 (|#1| |#1| |#1|)) (-15 -3912 ((-112) |#1| (-635 |#1|))) (-15 -3912 ((-112) |#1| |#1|)) (-15 -3873 ((-112) |#1| (-635 |#1|))) (-15 -3873 ((-112) |#1| |#1|)) (-15 -3883 ((-112) |#1| (-635 |#1|))) (-15 -3883 ((-112) |#1| |#1|)) (-15 -3902 ((-112) |#1| (-635 |#1|))) (-15 -3902 ((-112) |#1| |#1|)) (-15 -1853 ((-112) |#1| |#1|)) (-15 -3953 ((-112) |#1| |#1|)) (-15 -1865 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1877 ((-635 |#1|) |#1|)) (-15 -1888 ((-635 |#1|) |#1|)) (-15 -1897 (|#1| |#1|)) (-15 -1908 (|#1| |#1|)) (-15 -1920 ((-112) |#1|)) (-15 -1931 ((-112) |#1|)) (-15 -2490 (|#1| |#1| |#4|)) (-15 -2463 (|#1| |#1| |#4|)) (-15 -1941 (|#1| |#1|)) (-15 -1952 ((-635 |#1|) |#1|)) (-15 -1962 (|#1| |#1|)) (-15 -3436 (|#1| |#1|)) (-15 -1975 (|#1| |#1|)) (-15 -1796 (|#1| |#1|)) (-15 -1987 ((-762) |#1|)) (-15 -1997 (|#4| |#1|)) (-15 -3224 ((-534) |#1|)) (-15 -3224 ((-882 (-558)) |#1|)) (-15 -3224 ((-882 (-378)) |#1|)) (-15 -3220 (|#1| |#4|)) (-15 -3069 ((-3 |#4| "failed") |#1|)) (-15 -1863 (|#4| |#1|)) (-15 -2463 (|#2| |#1|)) (-15 -2490 (|#1| |#1|)) (-15 -3069 ((-3 (-558) "failed") |#1|)) (-15 -1863 ((-558) |#1|)) (-15 -3069 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -1863 ((-406 (-558)) |#1|)) (-15 -1863 (|#2| |#1|)) (-15 -3069 ((-3 |#2| "failed") |#1|)) (-15 -3220 (|#1| |#2|)) (-15 -3220 (|#1| (-558))) (-15 -3220 ((-853) |#1|))) (-1053 |#2| |#3| |#4|) (-1039) (-784) (-841)) (T -1052))
+NIL
+(-10 -8 (-15 -3220 (|#1| |#1|)) (-15 -2699 (|#1| |#1| |#1|)) (-15 -2699 (|#1| (-635 |#1|))) (-15 -3220 (|#1| (-406 (-558)))) (-15 -3220 ((-942 |#2|) |#1|)) (-15 -3224 ((-942 |#2|) |#1|)) (-15 -3224 ((-1145) |#1|)) (-15 -2832 (|#1| |#1|)) (-15 -2842 (|#1| |#1|)) (-15 -1611 (|#1| |#1|)) (-15 -1624 (|#1| |#1|)) (-15 -2699 (|#2| |#2| |#1|)) (-15 -1706 (|#1| |#1| |#1|)) (-15 -1719 (|#1| |#1| |#1|)) (-15 -1706 (|#1| |#1| |#2|)) (-15 -1719 (|#1| |#1| |#2|)) (-15 -1732 (|#1| |#1|)) (-15 -1745 (|#1| |#1|)) (-15 -3224 (|#1| (-942 |#2|))) (-15 -1863 (|#1| (-942 |#2|))) (-15 -3069 ((-3 |#1| "failed") (-942 |#2|))) (-15 -3224 (|#1| (-942 (-558)))) (-15 -1863 (|#1| (-942 (-558)))) (-15 -3069 ((-3 |#1| "failed") (-942 (-558)))) (-15 -3224 (|#1| (-942 (-406 (-558))))) (-15 -1863 (|#1| (-942 (-406 (-558))))) (-15 -3069 ((-3 |#1| "failed") (-942 (-406 (-558))))) (-15 -3820 (|#1| |#1| |#1|)) (-15 -3830 (|#1| |#1| |#1|)) (-15 -1758 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2739 (-762))) |#1| |#1|)) (-15 -1769 (|#1| |#1| |#1|)) (-15 -3274 ((-2 (|:| -2306 |#1|) (|:| -2071 |#1|)) |#1| |#1|)) (-15 -1782 ((-2 (|:| -2023 |#1|) (|:| |gap| (-762)) (|:| -2306 |#1|) (|:| -2071 |#1|)) |#1| |#1| |#4|)) (-15 -1782 ((-2 (|:| -2023 |#1|) (|:| |gap| (-762)) (|:| -2306 |#1|) (|:| -2071 |#1|)) |#1| |#1|)) (-15 -1795 ((-2 (|:| -2023 |#1|) (|:| |gap| (-762)) (|:| -2071 |#1|)) |#1| |#1| |#4|)) (-15 -1795 ((-2 (|:| -2023 |#1|) (|:| |gap| (-762)) (|:| -2071 |#1|)) |#1| |#1|)) (-15 -1809 (|#1| |#1| |#1| |#4|)) (-15 -1820 (|#1| |#1| |#1| |#4|)) (-15 -1809 (|#1| |#1| |#1|)) (-15 -1820 (|#1| |#1| |#1|)) (-15 -1830 (|#1| |#1| |#1| |#4|)) (-15 -1841 (|#1| |#1| |#1| |#4|)) (-15 -1830 (|#1| |#1| |#1|)) (-15 -1841 (|#1| |#1| |#1|)) (-15 -3912 ((-112) |#1| (-635 |#1|))) (-15 -3912 ((-112) |#1| |#1|)) (-15 -3873 ((-112) |#1| (-635 |#1|))) (-15 -3873 ((-112) |#1| |#1|)) (-15 -3883 ((-112) |#1| (-635 |#1|))) (-15 -3883 ((-112) |#1| |#1|)) (-15 -3902 ((-112) |#1| (-635 |#1|))) (-15 -3902 ((-112) |#1| |#1|)) (-15 -1853 ((-112) |#1| |#1|)) (-15 -3953 ((-112) |#1| |#1|)) (-15 -1865 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1877 ((-635 |#1|) |#1|)) (-15 -1888 ((-635 |#1|) |#1|)) (-15 -1897 (|#1| |#1|)) (-15 -1908 (|#1| |#1|)) (-15 -1920 ((-112) |#1|)) (-15 -1931 ((-112) |#1|)) (-15 -2490 (|#1| |#1| |#4|)) (-15 -2463 (|#1| |#1| |#4|)) (-15 -1941 (|#1| |#1|)) (-15 -1952 ((-635 |#1|) |#1|)) (-15 -1962 (|#1| |#1|)) (-15 -3436 (|#1| |#1|)) (-15 -1975 (|#1| |#1|)) (-15 -1796 (|#1| |#1|)) (-15 -1987 ((-762) |#1|)) (-15 -1997 (|#4| |#1|)) (-15 -3224 ((-534) |#1|)) (-15 -3224 ((-882 (-558)) |#1|)) (-15 -3224 ((-882 (-378)) |#1|)) (-15 -3220 (|#1| |#4|)) (-15 -3069 ((-3 |#4| "failed") |#1|)) (-15 -1863 (|#4| |#1|)) (-15 -2463 (|#2| |#1|)) (-15 -2490 (|#1| |#1|)) (-15 -3069 ((-3 (-558) "failed") |#1|)) (-15 -1863 ((-558) |#1|)) (-15 -3069 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -1863 ((-406 (-558)) |#1|)) (-15 -1863 (|#2| |#1|)) (-15 -3069 ((-3 |#2| "failed") |#1|)) (-15 -3220 (|#1| |#2|)) (-15 -3220 (|#1| (-558))) (-15 -3220 ((-853) |#1|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2671 (((-635 |#3|) $) 110)) (-2492 (((-1159 $) $ |#3|) 125) (((-1159 |#1|) $) 124)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 87 (|has| |#1| (-550)))) (-1881 (($ $) 88 (|has| |#1| (-550)))) (-1857 (((-112) $) 90 (|has| |#1| (-550)))) (-2513 (((-762) $) 112) (((-762) $ (-635 |#3|)) 111)) (-3436 (($ $) 271)) (-1853 (((-112) $ $) 257)) (-2089 (((-3 $ "failed") $ $) 19)) (-3309 (($ $ $) 216 (|has| |#1| (-550)))) (-1660 (((-635 $) $ $) 211 (|has| |#1| (-550)))) (-3748 (((-417 (-1159 $)) (-1159 $)) 100 (|has| |#1| (-899)))) (-3465 (($ $) 98 (|has| |#1| (-450)))) (-1380 (((-417 $) $) 97 (|has| |#1| (-450)))) (-3719 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) 103 (|has| |#1| (-899)))) (-1816 (($) 17 T CONST)) (-3069 (((-3 |#1| "failed") $) 164) (((-3 (-406 (-558)) "failed") $) 161 (|has| |#1| (-1028 (-406 (-558))))) (((-3 (-558) "failed") $) 159 (|has| |#1| (-1028 (-558)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-942 (-406 (-558)))) 231 (-12 (|has| |#1| (-38 (-406 (-558)))) (|has| |#3| (-606 (-1163))))) (((-3 $ "failed") (-942 (-558))) 228 (-3998 (-12 (-3304 (|has| |#1| (-38 (-406 (-558))))) (|has| |#1| (-38 (-558))) (|has| |#3| (-606 (-1163)))) (-12 (|has| |#1| (-38 (-406 (-558)))) (|has| |#3| (-606 (-1163)))))) (((-3 $ "failed") (-942 |#1|)) 225 (-3998 (-12 (-3304 (|has| |#1| (-38 (-406 (-558))))) (-3304 (|has| |#1| (-38 (-558)))) (|has| |#3| (-606 (-1163)))) (-12 (-3304 (|has| |#1| (-543))) (-3304 (|has| |#1| (-38 (-406 (-558))))) (|has| |#1| (-38 (-558))) (|has| |#3| (-606 (-1163)))) (-12 (-3304 (|has| |#1| (-982 (-558)))) (|has| |#1| (-38 (-406 (-558)))) (|has| |#3| (-606 (-1163))))))) (-1863 ((|#1| $) 163) (((-406 (-558)) $) 162 (|has| |#1| (-1028 (-406 (-558))))) (((-558) $) 160 (|has| |#1| (-1028 (-558)))) ((|#3| $) 137) (($ (-942 (-406 (-558)))) 230 (-12 (|has| |#1| (-38 (-406 (-558)))) (|has| |#3| (-606 (-1163))))) (($ (-942 (-558))) 227 (-3998 (-12 (-3304 (|has| |#1| (-38 (-406 (-558))))) (|has| |#1| (-38 (-558))) (|has| |#3| (-606 (-1163)))) (-12 (|has| |#1| (-38 (-406 (-558)))) (|has| |#3| (-606 (-1163)))))) (($ (-942 |#1|)) 224 (-3998 (-12 (-3304 (|has| |#1| (-38 (-406 (-558))))) (-3304 (|has| |#1| (-38 (-558)))) (|has| |#3| (-606 (-1163)))) (-12 (-3304 (|has| |#1| (-543))) (-3304 (|has| |#1| (-38 (-406 (-558))))) (|has| |#1| (-38 (-558))) (|has| |#3| (-606 (-1163)))) (-12 (-3304 (|has| |#1| (-982 (-558)))) (|has| |#1| (-38 (-406 (-558)))) (|has| |#3| (-606 (-1163))))))) (-3320 (($ $ $ |#3|) 108 (|has| |#1| (-171))) (($ $ $) 212 (|has| |#1| (-550)))) (-2490 (($ $) 154) (($ $ |#3|) 266)) (-3216 (((-679 (-558)) (-679 $)) 134 (|has| |#1| (-631 (-558)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) 133 (|has| |#1| (-631 (-558)))) (((-2 (|:| -3683 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) 132) (((-679 |#1|) (-679 $)) 131)) (-3902 (((-112) $ $) 256) (((-112) $ (-635 $)) 255)) (-2588 (((-3 $ "failed") $) 33)) (-1920 (((-112) $) 264)) (-3274 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 236)) (-1624 (($ $) 205 (|has| |#1| (-450)))) (-2782 (($ $) 176 (|has| |#1| (-450))) (($ $ |#3|) 105 (|has| |#1| (-450)))) (-2476 (((-635 $) $) 109)) (-3031 (((-112) $) 96 (|has| |#1| (-899)))) (-1732 (($ $) 221 (|has| |#1| (-550)))) (-1745 (($ $) 222 (|has| |#1| (-550)))) (-1841 (($ $ $) 248) (($ $ $ |#3|) 246)) (-1830 (($ $ $) 247) (($ $ $ |#3|) 245)) (-3888 (($ $ |#1| |#2| $) 172)) (-2269 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) 84 (-12 (|has| |#3| (-876 (-378))) (|has| |#1| (-876 (-378))))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) 83 (-12 (|has| |#3| (-876 (-558))) (|has| |#1| (-876 (-558)))))) (-2035 (((-112) $) 31)) (-2110 (((-762) $) 169)) (-3912 (((-112) $ $) 250) (((-112) $ (-635 $)) 249)) (-1633 (($ $ $ $ $) 207 (|has| |#1| (-550)))) (-1997 ((|#3| $) 275)) (-2659 (($ (-1159 |#1|) |#3|) 117) (($ (-1159 $) |#3|) 116)) (-2536 (((-635 $) $) 126)) (-4238 (((-112) $) 152)) (-2648 (($ |#1| |#2|) 153) (($ $ |#3| (-762)) 119) (($ $ (-635 |#3|) (-635 (-762))) 118)) (-1769 (($ $ $) 235)) (-3381 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $ |#3|) 120)) (-1931 (((-112) $) 265)) (-2524 ((|#2| $) 170) (((-762) $ |#3|) 122) (((-635 (-762)) $ (-635 |#3|)) 121)) (-3910 (($ $ $) 79 (|has| |#1| (-841)))) (-1987 (((-762) $) 274)) (-3542 (($ $ $) 78 (|has| |#1| (-841)))) (-3898 (($ (-1 |#2| |#2|) $) 171)) (-3167 (($ (-1 |#1| |#1|) $) 151)) (-3399 (((-3 |#3| "failed") $) 123)) (-2832 (($ $) 202 (|has| |#1| (-450)))) (-2842 (($ $) 203 (|has| |#1| (-450)))) (-1877 (((-635 $) $) 260)) (-1908 (($ $) 263)) (-1611 (($ $) 204 (|has| |#1| (-450)))) (-1888 (((-635 $) $) 261)) (-1897 (($ $) 262)) (-2451 (($ $) 149)) (-2463 ((|#1| $) 148) (($ $ |#3|) 267)) (-2665 (($ (-635 $)) 94 (|has| |#1| (-450))) (($ $ $) 93 (|has| |#1| (-450)))) (-1758 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2739 (-762))) $ $) 234)) (-1782 (((-2 (|:| -2023 $) (|:| |gap| (-762)) (|:| -2306 $) (|:| -2071 $)) $ $) 238) (((-2 (|:| -2023 $) (|:| |gap| (-762)) (|:| -2306 $) (|:| -2071 $)) $ $ |#3|) 237)) (-1795 (((-2 (|:| -2023 $) (|:| |gap| (-762)) (|:| -2071 $)) $ $) 240) (((-2 (|:| -2023 $) (|:| |gap| (-762)) (|:| -2071 $)) $ $ |#3|) 239)) (-1820 (($ $ $) 244) (($ $ $ |#3|) 242)) (-1809 (($ $ $) 243) (($ $ $ |#3|) 241)) (-4310 (((-1145) $) 9)) (-2087 (($ $ $) 210 (|has| |#1| (-550)))) (-1952 (((-635 $) $) 269)) (-2560 (((-3 (-635 $) "failed") $) 114)) (-2548 (((-3 (-635 $) "failed") $) 115)) (-2575 (((-3 (-2 (|:| |var| |#3|) (|:| -1951 (-762))) "failed") $) 113)) (-3873 (((-112) $ $) 252) (((-112) $ (-635 $)) 251)) (-3820 (($ $ $) 232)) (-1796 (($ $) 273)) (-3953 (((-112) $ $) 258)) (-3883 (((-112) $ $) 254) (((-112) $ (-635 $)) 253)) (-3830 (($ $ $) 233)) (-1975 (($ $) 272)) (-2975 (((-1107) $) 10)) (-1670 (((-2 (|:| -2699 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-550)))) (-1682 (((-2 (|:| -2699 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-550)))) (-2429 (((-112) $) 166)) (-2440 ((|#1| $) 167)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) 95 (|has| |#1| (-450)))) (-2699 ((|#1| |#1| $) 206 (|has| |#1| (-450))) (($ (-635 $)) 92 (|has| |#1| (-450))) (($ $ $) 91 (|has| |#1| (-450)))) (-3728 (((-417 (-1159 $)) (-1159 $)) 102 (|has| |#1| (-899)))) (-3738 (((-417 (-1159 $)) (-1159 $)) 101 (|has| |#1| (-899)))) (-2522 (((-417 $) $) 99 (|has| |#1| (-899)))) (-1693 (((-2 (|:| -2699 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-550)))) (-3983 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-550))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-550)))) (-1706 (($ $ |#1|) 219 (|has| |#1| (-550))) (($ $ $) 217 (|has| |#1| (-550)))) (-1719 (($ $ |#1|) 220 (|has| |#1| (-550))) (($ $ $) 218 (|has| |#1| (-550)))) (-2554 (($ $ (-635 (-293 $))) 145) (($ $ (-293 $)) 144) (($ $ $ $) 143) (($ $ (-635 $) (-635 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-635 |#3|) (-635 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-635 |#3|) (-635 $)) 138)) (-3331 (($ $ |#3|) 107 (|has| |#1| (-171)))) (-2829 (($ $ |#3|) 42) (($ $ (-635 |#3|)) 41) (($ $ |#3| (-762)) 40) (($ $ (-635 |#3|) (-635 (-762))) 39)) (-4323 ((|#2| $) 150) (((-762) $ |#3|) 130) (((-635 (-762)) $ (-635 |#3|)) 129)) (-1962 (($ $) 270)) (-1941 (($ $) 268)) (-3224 (((-882 (-378)) $) 82 (-12 (|has| |#3| (-606 (-882 (-378)))) (|has| |#1| (-606 (-882 (-378)))))) (((-882 (-558)) $) 81 (-12 (|has| |#3| (-606 (-882 (-558)))) (|has| |#1| (-606 (-882 (-558)))))) (((-534) $) 80 (-12 (|has| |#3| (-606 (-534))) (|has| |#1| (-606 (-534))))) (($ (-942 (-406 (-558)))) 229 (-12 (|has| |#1| (-38 (-406 (-558)))) (|has| |#3| (-606 (-1163))))) (($ (-942 (-558))) 226 (-3998 (-12 (-3304 (|has| |#1| (-38 (-406 (-558))))) (|has| |#1| (-38 (-558))) (|has| |#3| (-606 (-1163)))) (-12 (|has| |#1| (-38 (-406 (-558)))) (|has| |#3| (-606 (-1163)))))) (($ (-942 |#1|)) 223 (|has| |#3| (-606 (-1163)))) (((-1145) $) 201 (-12 (|has| |#1| (-1028 (-558))) (|has| |#3| (-606 (-1163))))) (((-942 |#1|) $) 200 (|has| |#3| (-606 (-1163))))) (-2504 ((|#1| $) 175 (|has| |#1| (-450))) (($ $ |#3|) 106 (|has| |#1| (-450)))) (-3709 (((-3 (-1246 $) "failed") (-679 $)) 104 (-2084 (|has| $ (-144)) (|has| |#1| (-899))))) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ |#1|) 165) (($ |#3|) 135) (((-942 |#1|) $) 199 (|has| |#3| (-606 (-1163)))) (($ (-406 (-558))) 72 (-3998 (|has| |#1| (-1028 (-406 (-558)))) (|has| |#1| (-38 (-406 (-558)))))) (($ $) 85 (|has| |#1| (-550)))) (-2583 (((-635 |#1|) $) 168)) (-3736 ((|#1| $ |#2|) 155) (($ $ |#3| (-762)) 128) (($ $ (-635 |#3|) (-635 (-762))) 127)) (-3698 (((-3 $ "failed") $) 73 (-3998 (-2084 (|has| $ (-144)) (|has| |#1| (-899))) (|has| |#1| (-144))))) (-2542 (((-762)) 28)) (-3879 (($ $ $ (-762)) 173 (|has| |#1| (-171)))) (-1870 (((-112) $ $) 89 (|has| |#1| (-550)))) (-2131 (($) 18 T CONST)) (-1865 (((-3 (-112) "failed") $ $) 259)) (-2142 (($) 30 T CONST)) (-1641 (($ $ $ $ (-762)) 208 (|has| |#1| (-550)))) (-1650 (($ $ $ (-762)) 209 (|has| |#1| (-550)))) (-1866 (($ $ |#3|) 38) (($ $ (-635 |#3|)) 37) (($ $ |#3| (-762)) 36) (($ $ (-635 |#3|) (-635 (-762))) 35)) (-1747 (((-112) $ $) 76 (|has| |#1| (-841)))) (-1720 (((-112) $ $) 75 (|has| |#1| (-841)))) (-1683 (((-112) $ $) 6)) (-1731 (((-112) $ $) 77 (|has| |#1| (-841)))) (-1705 (((-112) $ $) 74 (|has| |#1| (-841)))) (-1810 (($ $ |#1|) 156 (|has| |#1| (-362)))) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ (-406 (-558))) 158 (|has| |#1| (-38 (-406 (-558))))) (($ (-406 (-558)) $) 157 (|has| |#1| (-38 (-406 (-558))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(((-1053 |#1| |#2| |#3|) (-139) (-1039) (-784) (-841)) (T -1053))
+((-1997 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *2 (-841)))) (-1987 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-762)))) (-1796 (*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)))) (-1975 (*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)))) (-3436 (*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)))) (-1962 (*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)))) (-1952 (*1 *2 *1) (-12 (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-635 *1)) (-4 *1 (-1053 *3 *4 *5)))) (-1941 (*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)))) (-2463 (*1 *1 *1 *2) (-12 (-4 *1 (-1053 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *2 (-841)))) (-2490 (*1 *1 *1 *2) (-12 (-4 *1 (-1053 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *2 (-841)))) (-1931 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-112)))) (-1920 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-112)))) (-1908 (*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)))) (-1897 (*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)))) (-1888 (*1 *2 *1) (-12 (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-635 *1)) (-4 *1 (-1053 *3 *4 *5)))) (-1877 (*1 *2 *1) (-12 (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-635 *1)) (-4 *1 (-1053 *3 *4 *5)))) (-1865 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-112)))) (-3953 (*1 *2 *1 *1) (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-112)))) (-1853 (*1 *2 *1 *1) (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-112)))) (-3902 (*1 *2 *1 *1) (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-112)))) (-3902 (*1 *2 *1 *3) (-12 (-5 *3 (-635 *1)) (-4 *1 (-1053 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112)))) (-3883 (*1 *2 *1 *1) (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-112)))) (-3883 (*1 *2 *1 *3) (-12 (-5 *3 (-635 *1)) (-4 *1 (-1053 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112)))) (-3873 (*1 *2 *1 *1) (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-112)))) (-3873 (*1 *2 *1 *3) (-12 (-5 *3 (-635 *1)) (-4 *1 (-1053 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112)))) (-3912 (*1 *2 *1 *1) (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-112)))) (-3912 (*1 *2 *1 *3) (-12 (-5 *3 (-635 *1)) (-4 *1 (-1053 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112)))) (-1841 (*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)))) (-1830 (*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)))) (-1841 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1053 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *2 (-841)))) (-1830 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1053 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *2 (-841)))) (-1820 (*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)))) (-1809 (*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)))) (-1820 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1053 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *2 (-841)))) (-1809 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1053 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *2 (-841)))) (-1795 (*1 *2 *1 *1) (-12 (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-2 (|:| -2023 *1) (|:| |gap| (-762)) (|:| -2071 *1))) (-4 *1 (-1053 *3 *4 *5)))) (-1795 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *3 (-841)) (-5 *2 (-2 (|:| -2023 *1) (|:| |gap| (-762)) (|:| -2071 *1))) (-4 *1 (-1053 *4 *5 *3)))) (-1782 (*1 *2 *1 *1) (-12 (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-2 (|:| -2023 *1) (|:| |gap| (-762)) (|:| -2306 *1) (|:| -2071 *1))) (-4 *1 (-1053 *3 *4 *5)))) (-1782 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *3 (-841)) (-5 *2 (-2 (|:| -2023 *1) (|:| |gap| (-762)) (|:| -2306 *1) (|:| -2071 *1))) (-4 *1 (-1053 *4 *5 *3)))) (-3274 (*1 *2 *1 *1) (-12 (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-2 (|:| -2306 *1) (|:| -2071 *1))) (-4 *1 (-1053 *3 *4 *5)))) (-1769 (*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)))) (-1758 (*1 *2 *1 *1) (-12 (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2739 (-762)))) (-4 *1 (-1053 *3 *4 *5)))) (-3830 (*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)))) (-3820 (*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)))) (-3069 (*1 *1 *2) (|partial| -12 (-5 *2 (-942 (-406 (-558)))) (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-38 (-406 (-558)))) (-4 *5 (-606 (-1163))) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)))) (-1863 (*1 *1 *2) (-12 (-5 *2 (-942 (-406 (-558)))) (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-38 (-406 (-558)))) (-4 *5 (-606 (-1163))) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)))) (-3224 (*1 *1 *2) (-12 (-5 *2 (-942 (-406 (-558)))) (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-38 (-406 (-558)))) (-4 *5 (-606 (-1163))) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)))) (-3069 (*1 *1 *2) (|partial| -3998 (-12 (-5 *2 (-942 (-558))) (-4 *1 (-1053 *3 *4 *5)) (-12 (-3304 (-4 *3 (-38 (-406 (-558))))) (-4 *3 (-38 (-558))) (-4 *5 (-606 (-1163)))) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841))) (-12 (-5 *2 (-942 (-558))) (-4 *1 (-1053 *3 *4 *5)) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *5 (-606 (-1163)))) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841))))) (-1863 (*1 *1 *2) (-3998 (-12 (-5 *2 (-942 (-558))) (-4 *1 (-1053 *3 *4 *5)) (-12 (-3304 (-4 *3 (-38 (-406 (-558))))) (-4 *3 (-38 (-558))) (-4 *5 (-606 (-1163)))) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841))) (-12 (-5 *2 (-942 (-558))) (-4 *1 (-1053 *3 *4 *5)) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *5 (-606 (-1163)))) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841))))) (-3224 (*1 *1 *2) (-3998 (-12 (-5 *2 (-942 (-558))) (-4 *1 (-1053 *3 *4 *5)) (-12 (-3304 (-4 *3 (-38 (-406 (-558))))) (-4 *3 (-38 (-558))) (-4 *5 (-606 (-1163)))) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841))) (-12 (-5 *2 (-942 (-558))) (-4 *1 (-1053 *3 *4 *5)) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *5 (-606 (-1163)))) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841))))) (-3069 (*1 *1 *2) (|partial| -3998 (-12 (-5 *2 (-942 *3)) (-12 (-3304 (-4 *3 (-38 (-406 (-558))))) (-3304 (-4 *3 (-38 (-558)))) (-4 *5 (-606 (-1163)))) (-4 *3 (-1039)) (-4 *1 (-1053 *3 *4 *5)) (-4 *4 (-784)) (-4 *5 (-841))) (-12 (-5 *2 (-942 *3)) (-12 (-3304 (-4 *3 (-543))) (-3304 (-4 *3 (-38 (-406 (-558))))) (-4 *3 (-38 (-558))) (-4 *5 (-606 (-1163)))) (-4 *3 (-1039)) (-4 *1 (-1053 *3 *4 *5)) (-4 *4 (-784)) (-4 *5 (-841))) (-12 (-5 *2 (-942 *3)) (-12 (-3304 (-4 *3 (-982 (-558)))) (-4 *3 (-38 (-406 (-558)))) (-4 *5 (-606 (-1163)))) (-4 *3 (-1039)) (-4 *1 (-1053 *3 *4 *5)) (-4 *4 (-784)) (-4 *5 (-841))))) (-1863 (*1 *1 *2) (-3998 (-12 (-5 *2 (-942 *3)) (-12 (-3304 (-4 *3 (-38 (-406 (-558))))) (-3304 (-4 *3 (-38 (-558)))) (-4 *5 (-606 (-1163)))) (-4 *3 (-1039)) (-4 *1 (-1053 *3 *4 *5)) (-4 *4 (-784)) (-4 *5 (-841))) (-12 (-5 *2 (-942 *3)) (-12 (-3304 (-4 *3 (-543))) (-3304 (-4 *3 (-38 (-406 (-558))))) (-4 *3 (-38 (-558))) (-4 *5 (-606 (-1163)))) (-4 *3 (-1039)) (-4 *1 (-1053 *3 *4 *5)) (-4 *4 (-784)) (-4 *5 (-841))) (-12 (-5 *2 (-942 *3)) (-12 (-3304 (-4 *3 (-982 (-558)))) (-4 *3 (-38 (-406 (-558)))) (-4 *5 (-606 (-1163)))) (-4 *3 (-1039)) (-4 *1 (-1053 *3 *4 *5)) (-4 *4 (-784)) (-4 *5 (-841))))) (-3224 (*1 *1 *2) (-12 (-5 *2 (-942 *3)) (-4 *3 (-1039)) (-4 *1 (-1053 *3 *4 *5)) (-4 *5 (-606 (-1163))) (-4 *4 (-784)) (-4 *5 (-841)))) (-1745 (*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)) (-4 *2 (-550)))) (-1732 (*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)) (-4 *2 (-550)))) (-1719 (*1 *1 *1 *2) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)) (-4 *2 (-550)))) (-1706 (*1 *1 *1 *2) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)) (-4 *2 (-550)))) (-1719 (*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)) (-4 *2 (-550)))) (-1706 (*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)) (-4 *2 (-550)))) (-3309 (*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)) (-4 *2 (-550)))) (-1693 (*1 *2 *1 *1) (-12 (-4 *3 (-550)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-2 (|:| -2699 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1053 *3 *4 *5)))) (-1682 (*1 *2 *1 *1) (-12 (-4 *3 (-550)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-2 (|:| -2699 *1) (|:| |coef1| *1))) (-4 *1 (-1053 *3 *4 *5)))) (-1670 (*1 *2 *1 *1) (-12 (-4 *3 (-550)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-2 (|:| -2699 *1) (|:| |coef2| *1))) (-4 *1 (-1053 *3 *4 *5)))) (-3320 (*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)) (-4 *2 (-550)))) (-1660 (*1 *2 *1 *1) (-12 (-4 *3 (-550)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-635 *1)) (-4 *1 (-1053 *3 *4 *5)))) (-2087 (*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)) (-4 *2 (-550)))) (-1650 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *3 (-550)))) (-1641 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *3 (-550)))) (-1633 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)) (-4 *2 (-550)))) (-2699 (*1 *2 *2 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)) (-4 *2 (-450)))) (-1624 (*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)) (-4 *2 (-450)))) (-1611 (*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)) (-4 *2 (-450)))) (-2842 (*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)) (-4 *2 (-450)))) (-2832 (*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)) (-4 *2 (-450)))))
+(-13 (-939 |t#1| |t#2| |t#3|) (-10 -8 (-15 -1997 (|t#3| $)) (-15 -1987 ((-762) $)) (-15 -1796 ($ $)) (-15 -1975 ($ $)) (-15 -3436 ($ $)) (-15 -1962 ($ $)) (-15 -1952 ((-635 $) $)) (-15 -1941 ($ $)) (-15 -2463 ($ $ |t#3|)) (-15 -2490 ($ $ |t#3|)) (-15 -1931 ((-112) $)) (-15 -1920 ((-112) $)) (-15 -1908 ($ $)) (-15 -1897 ($ $)) (-15 -1888 ((-635 $) $)) (-15 -1877 ((-635 $) $)) (-15 -1865 ((-3 (-112) "failed") $ $)) (-15 -3953 ((-112) $ $)) (-15 -1853 ((-112) $ $)) (-15 -3902 ((-112) $ $)) (-15 -3902 ((-112) $ (-635 $))) (-15 -3883 ((-112) $ $)) (-15 -3883 ((-112) $ (-635 $))) (-15 -3873 ((-112) $ $)) (-15 -3873 ((-112) $ (-635 $))) (-15 -3912 ((-112) $ $)) (-15 -3912 ((-112) $ (-635 $))) (-15 -1841 ($ $ $)) (-15 -1830 ($ $ $)) (-15 -1841 ($ $ $ |t#3|)) (-15 -1830 ($ $ $ |t#3|)) (-15 -1820 ($ $ $)) (-15 -1809 ($ $ $)) (-15 -1820 ($ $ $ |t#3|)) (-15 -1809 ($ $ $ |t#3|)) (-15 -1795 ((-2 (|:| -2023 $) (|:| |gap| (-762)) (|:| -2071 $)) $ $)) (-15 -1795 ((-2 (|:| -2023 $) (|:| |gap| (-762)) (|:| -2071 $)) $ $ |t#3|)) (-15 -1782 ((-2 (|:| -2023 $) (|:| |gap| (-762)) (|:| -2306 $) (|:| -2071 $)) $ $)) (-15 -1782 ((-2 (|:| -2023 $) (|:| |gap| (-762)) (|:| -2306 $) (|:| -2071 $)) $ $ |t#3|)) (-15 -3274 ((-2 (|:| -2306 $) (|:| -2071 $)) $ $)) (-15 -1769 ($ $ $)) (-15 -1758 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2739 (-762))) $ $)) (-15 -3830 ($ $ $)) (-15 -3820 ($ $ $)) (IF (|has| |t#3| (-606 (-1163))) (PROGN (-6 (-605 (-942 |t#1|))) (-6 (-606 (-942 |t#1|))) (IF (|has| |t#1| (-38 (-406 (-558)))) (PROGN (-15 -3069 ((-3 $ "failed") (-942 (-406 (-558))))) (-15 -1863 ($ (-942 (-406 (-558))))) (-15 -3224 ($ (-942 (-406 (-558))))) (-15 -3069 ((-3 $ "failed") (-942 (-558)))) (-15 -1863 ($ (-942 (-558)))) (-15 -3224 ($ (-942 (-558)))) (IF (|has| |t#1| (-982 (-558))) |%noBranch| (PROGN (-15 -3069 ((-3 $ "failed") (-942 |t#1|))) (-15 -1863 ($ (-942 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-558))) (IF (|has| |t#1| (-38 (-406 (-558)))) |%noBranch| (PROGN (-15 -3069 ((-3 $ "failed") (-942 (-558)))) (-15 -1863 ($ (-942 (-558)))) (-15 -3224 ($ (-942 (-558)))) (IF (|has| |t#1| (-543)) |%noBranch| (PROGN (-15 -3069 ((-3 $ "failed") (-942 |t#1|))) (-15 -1863 ($ (-942 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-558))) |%noBranch| (IF (|has| |t#1| (-38 (-406 (-558)))) |%noBranch| (PROGN (-15 -3069 ((-3 $ "failed") (-942 |t#1|))) (-15 -1863 ($ (-942 |t#1|)))))) (-15 -3224 ($ (-942 |t#1|))) (IF (|has| |t#1| (-1028 (-558))) (-6 (-606 (-1145))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-550)) (PROGN (-15 -1745 ($ $)) (-15 -1732 ($ $)) (-15 -1719 ($ $ |t#1|)) (-15 -1706 ($ $ |t#1|)) (-15 -1719 ($ $ $)) (-15 -1706 ($ $ $)) (-15 -3309 ($ $ $)) (-15 -1693 ((-2 (|:| -2699 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1682 ((-2 (|:| -2699 $) (|:| |coef1| $)) $ $)) (-15 -1670 ((-2 (|:| -2699 $) (|:| |coef2| $)) $ $)) (-15 -3320 ($ $ $)) (-15 -1660 ((-635 $) $ $)) (-15 -2087 ($ $ $)) (-15 -1650 ($ $ $ (-762))) (-15 -1641 ($ $ $ $ (-762))) (-15 -1633 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-450)) (PROGN (-15 -2699 (|t#1| |t#1| $)) (-15 -1624 ($ $)) (-15 -1611 ($ $)) (-15 -2842 ($ $)) (-15 -2832 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -3998 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-406 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3998 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-608 #0#) -3998 (|has| |#1| (-1028 (-406 (-558)))) (|has| |#1| (-38 (-406 (-558))))) ((-608 (-558)) . T) ((-608 |#1|) . T) ((-608 |#3|) . T) ((-608 $) -3998 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450))) ((-605 (-853)) . T) ((-605 (-942 |#1|)) |has| |#3| (-606 (-1163))) ((-171) -3998 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-606 (-534)) -12 (|has| |#1| (-606 (-534))) (|has| |#3| (-606 (-534)))) ((-606 (-882 (-378))) -12 (|has| |#1| (-606 (-882 (-378)))) (|has| |#3| (-606 (-882 (-378))))) ((-606 (-882 (-558))) -12 (|has| |#1| (-606 (-882 (-558)))) (|has| |#3| (-606 (-882 (-558))))) ((-606 (-942 |#1|)) |has| |#3| (-606 (-1163))) ((-606 (-1145)) -12 (|has| |#1| (-1028 (-558))) (|has| |#3| (-606 (-1163)))) ((-289) -3998 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450))) ((-308 $) . T) ((-325 |#1| |#2|) . T) ((-376 |#1|) . T) ((-410 |#1|) . T) ((-450) -3998 (|has| |#1| (-899)) (|has| |#1| (-450))) ((-512 |#3| |#1|) . T) ((-512 |#3| $) . T) ((-512 $ $) . T) ((-550) -3998 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450))) ((-638 #0#) |has| |#1| (-38 (-406 (-558)))) ((-638 |#1|) . T) ((-638 $) . T) ((-631 (-558)) |has| |#1| (-631 (-558))) ((-631 |#1|) . T) ((-708 #0#) |has| |#1| (-38 (-406 (-558)))) ((-708 |#1|) |has| |#1| (-171)) ((-708 $) -3998 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450))) ((-717) . T) ((-841) |has| |#1| (-841)) ((-890 |#3|) . T) ((-876 (-378)) -12 (|has| |#1| (-876 (-378))) (|has| |#3| (-876 (-378)))) ((-876 (-558)) -12 (|has| |#1| (-876 (-558))) (|has| |#3| (-876 (-558)))) ((-939 |#1| |#2| |#3|) . T) ((-899) |has| |#1| (-899)) ((-1028 (-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) ((-1028 (-558)) |has| |#1| (-1028 (-558))) ((-1028 |#1|) . T) ((-1028 |#3|) . T) ((-1045 #0#) |has| |#1| (-38 (-406 (-558)))) ((-1045 |#1|) . T) ((-1045 $) -3998 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1204) |has| |#1| (-899)))
+((-3207 (((-112) $ $) NIL)) (-4310 (((-1145) $) NIL)) (-1615 (((-635 (-1122)) $) 13)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 24) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1337 (((-1122) $) 15)) (-1683 (((-112) $ $) NIL)))
+(((-1054) (-13 (-1070) (-10 -8 (-15 -1615 ((-635 (-1122)) $)) (-15 -1337 ((-1122) $))))) (T -1054))
+((-1615 (*1 *2 *1) (-12 (-5 *2 (-635 (-1122))) (-5 *1 (-1054)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1054)))))
+(-13 (-1070) (-10 -8 (-15 -1615 ((-635 (-1122)) $)) (-15 -1337 ((-1122) $))))
+((-2067 (((-112) |#3| $) 13)) (-2016 (((-3 $ "failed") |#3| (-911)) 23)) (-2588 (((-3 |#3| "failed") |#3| $) 38)) (-2045 (((-112) |#3| $) 16)) (-2055 (((-112) |#3| $) 14)))
+(((-1055 |#1| |#2| |#3|) (-10 -8 (-15 -2016 ((-3 |#1| "failed") |#3| (-911))) (-15 -2588 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2045 ((-112) |#3| |#1|)) (-15 -2055 ((-112) |#3| |#1|)) (-15 -2067 ((-112) |#3| |#1|))) (-1056 |#2| |#3|) (-13 (-839) (-362)) (-1222 |#2|)) (T -1055))
+NIL
+(-10 -8 (-15 -2016 ((-3 |#1| "failed") |#3| (-911))) (-15 -2588 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2045 ((-112) |#3| |#1|)) (-15 -2055 ((-112) |#3| |#1|)) (-15 -2067 ((-112) |#3| |#1|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) |#2| $) 21)) (-1397 (((-558) |#2| $) 22)) (-2016 (((-3 $ "failed") |#2| (-911)) 15)) (-2007 ((|#1| |#2| $ |#1|) 13)) (-2588 (((-3 |#2| "failed") |#2| $) 18)) (-2045 (((-112) |#2| $) 19)) (-2055 (((-112) |#2| $) 20)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-2036 ((|#2| $) 17)) (-3220 (((-853) $) 11)) (-1352 ((|#1| |#2| $ |#1|) 14)) (-2027 (((-635 $) |#2|) 16)) (-1683 (((-112) $ $) 6)))
+(((-1056 |#1| |#2|) (-139) (-13 (-839) (-362)) (-1222 |t#1|)) (T -1056))
+((-1397 (*1 *2 *3 *1) (-12 (-4 *1 (-1056 *4 *3)) (-4 *4 (-13 (-839) (-362))) (-4 *3 (-1222 *4)) (-5 *2 (-558)))) (-2067 (*1 *2 *3 *1) (-12 (-4 *1 (-1056 *4 *3)) (-4 *4 (-13 (-839) (-362))) (-4 *3 (-1222 *4)) (-5 *2 (-112)))) (-2055 (*1 *2 *3 *1) (-12 (-4 *1 (-1056 *4 *3)) (-4 *4 (-13 (-839) (-362))) (-4 *3 (-1222 *4)) (-5 *2 (-112)))) (-2045 (*1 *2 *3 *1) (-12 (-4 *1 (-1056 *4 *3)) (-4 *4 (-13 (-839) (-362))) (-4 *3 (-1222 *4)) (-5 *2 (-112)))) (-2588 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1056 *3 *2)) (-4 *3 (-13 (-839) (-362))) (-4 *2 (-1222 *3)))) (-2036 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *2)) (-4 *3 (-13 (-839) (-362))) (-4 *2 (-1222 *3)))) (-2027 (*1 *2 *3) (-12 (-4 *4 (-13 (-839) (-362))) (-4 *3 (-1222 *4)) (-5 *2 (-635 *1)) (-4 *1 (-1056 *4 *3)))) (-2016 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-911)) (-4 *4 (-13 (-839) (-362))) (-4 *1 (-1056 *4 *2)) (-4 *2 (-1222 *4)))) (-1352 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1056 *2 *3)) (-4 *2 (-13 (-839) (-362))) (-4 *3 (-1222 *2)))) (-2007 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1056 *2 *3)) (-4 *2 (-13 (-839) (-362))) (-4 *3 (-1222 *2)))))
+(-13 (-1087) (-10 -8 (-15 -1397 ((-558) |t#2| $)) (-15 -2067 ((-112) |t#2| $)) (-15 -2055 ((-112) |t#2| $)) (-15 -2045 ((-112) |t#2| $)) (-15 -2588 ((-3 |t#2| "failed") |t#2| $)) (-15 -2036 (|t#2| $)) (-15 -2027 ((-635 $) |t#2|)) (-15 -2016 ((-3 $ "failed") |t#2| (-911))) (-15 -1352 (|t#1| |t#2| $ |t#1|)) (-15 -2007 (|t#1| |t#2| $ |t#1|))))
+(((-102) . T) ((-605 (-853)) . T) ((-1087) . T))
+((-2386 (((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))) (-635 |#4|) (-635 |#5|) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))) (-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) (-762)) 95)) (-2353 (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) |#4| |#5| (-762)) 56)) (-3376 (((-1251) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))) (-762)) 87)) (-2331 (((-762) (-635 |#4|) (-635 |#5|)) 27)) (-2364 (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) |#4| |#5| (-762)) 58) (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) |#4| |#5| (-762) (-112)) 60)) (-2375 (((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112) (-112) (-112) (-112)) 78) (((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112)) 79)) (-3224 (((-1145) (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))) 82)) (-2343 (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) |#4| |#5| (-112)) 55)) (-2319 (((-762) (-635 |#4|) (-635 |#5|)) 19)))
+(((-1057 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2319 ((-762) (-635 |#4|) (-635 |#5|))) (-15 -2331 ((-762) (-635 |#4|) (-635 |#5|))) (-15 -2343 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) |#4| |#5| (-112))) (-15 -2353 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) |#4| |#5| (-762))) (-15 -2353 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) |#4| |#5|)) (-15 -2364 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) |#4| |#5| (-762) (-112))) (-15 -2364 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) |#4| |#5| (-762))) (-15 -2364 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) |#4| |#5|)) (-15 -2375 ((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112))) (-15 -2375 ((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2386 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))) (-635 |#4|) (-635 |#5|) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))) (-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) (-762))) (-15 -3224 ((-1145) (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|)))) (-15 -3376 ((-1251) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))) (-762)))) (-450) (-784) (-841) (-1053 |#1| |#2| |#3|) (-1059 |#1| |#2| |#3| |#4|)) (T -1057))
+((-3376 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-2 (|:| |val| (-635 *8)) (|:| -2396 *9)))) (-5 *4 (-762)) (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1059 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-1251)) (-5 *1 (-1057 *5 *6 *7 *8 *9)))) (-3224 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-635 *7)) (|:| -2396 *8))) (-4 *7 (-1053 *4 *5 *6)) (-4 *8 (-1059 *4 *5 *6 *7)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-1145)) (-5 *1 (-1057 *4 *5 *6 *7 *8)))) (-2386 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-635 *11)) (|:| |todo| (-635 (-2 (|:| |val| *3) (|:| -2396 *11)))))) (-5 *6 (-762)) (-5 *2 (-635 (-2 (|:| |val| (-635 *10)) (|:| -2396 *11)))) (-5 *3 (-635 *10)) (-5 *4 (-635 *11)) (-4 *10 (-1053 *7 *8 *9)) (-4 *11 (-1059 *7 *8 *9 *10)) (-4 *7 (-450)) (-4 *8 (-784)) (-4 *9 (-841)) (-5 *1 (-1057 *7 *8 *9 *10 *11)))) (-2375 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-635 *9)) (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1059 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *1 (-1057 *5 *6 *7 *8 *9)))) (-2375 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-635 *9)) (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1059 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *1 (-1057 *5 *6 *7 *8 *9)))) (-2364 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -2396 *4)))))) (-5 *1 (-1057 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))) (-2364 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-762)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841)) (-4 *3 (-1053 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -2396 *4)))))) (-5 *1 (-1057 *6 *7 *8 *3 *4)) (-4 *4 (-1059 *6 *7 *8 *3)))) (-2364 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-762)) (-5 *6 (-112)) (-4 *7 (-450)) (-4 *8 (-784)) (-4 *9 (-841)) (-4 *3 (-1053 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -2396 *4)))))) (-5 *1 (-1057 *7 *8 *9 *3 *4)) (-4 *4 (-1059 *7 *8 *9 *3)))) (-2353 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -2396 *4)))))) (-5 *1 (-1057 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))) (-2353 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-762)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841)) (-4 *3 (-1053 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -2396 *4)))))) (-5 *1 (-1057 *6 *7 *8 *3 *4)) (-4 *4 (-1059 *6 *7 *8 *3)))) (-2343 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841)) (-4 *3 (-1053 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -2396 *4)))))) (-5 *1 (-1057 *6 *7 *8 *3 *4)) (-4 *4 (-1059 *6 *7 *8 *3)))) (-2331 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 *9)) (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1059 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-762)) (-5 *1 (-1057 *5 *6 *7 *8 *9)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 *9)) (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1059 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-762)) (-5 *1 (-1057 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -2319 ((-762) (-635 |#4|) (-635 |#5|))) (-15 -2331 ((-762) (-635 |#4|) (-635 |#5|))) (-15 -2343 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) |#4| |#5| (-112))) (-15 -2353 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) |#4| |#5| (-762))) (-15 -2353 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) |#4| |#5|)) (-15 -2364 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) |#4| |#5| (-762) (-112))) (-15 -2364 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) |#4| |#5| (-762))) (-15 -2364 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) |#4| |#5|)) (-15 -2375 ((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112))) (-15 -2375 ((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2386 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))) (-635 |#4|) (-635 |#5|) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))) (-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) (-762))) (-15 -3224 ((-1145) (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|)))) (-15 -3376 ((-1251) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))) (-762))))
+((-2166 (((-112) |#5| $) 20)) (-2145 (((-112) |#5| $) 23)) (-2177 (((-112) |#5| $) 16) (((-112) $) 44)) (-4286 (((-635 $) |#5| $) NIL) (((-635 $) (-635 |#5|) $) 76) (((-635 $) (-635 |#5|) (-635 $)) 74) (((-635 $) |#5| (-635 $)) 77)) (-3430 (($ $ |#5|) NIL) (((-635 $) |#5| $) NIL) (((-635 $) |#5| (-635 $)) 59) (((-635 $) (-635 |#5|) $) 61) (((-635 $) (-635 |#5|) (-635 $)) 63)) (-2076 (((-635 $) |#5| $) NIL) (((-635 $) |#5| (-635 $)) 53) (((-635 $) (-635 |#5|) $) 55) (((-635 $) (-635 |#5|) (-635 $)) 57)) (-2155 (((-112) |#5| $) 26)))
+(((-1058 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3430 ((-635 |#1|) (-635 |#5|) (-635 |#1|))) (-15 -3430 ((-635 |#1|) (-635 |#5|) |#1|)) (-15 -3430 ((-635 |#1|) |#5| (-635 |#1|))) (-15 -3430 ((-635 |#1|) |#5| |#1|)) (-15 -2076 ((-635 |#1|) (-635 |#5|) (-635 |#1|))) (-15 -2076 ((-635 |#1|) (-635 |#5|) |#1|)) (-15 -2076 ((-635 |#1|) |#5| (-635 |#1|))) (-15 -2076 ((-635 |#1|) |#5| |#1|)) (-15 -4286 ((-635 |#1|) |#5| (-635 |#1|))) (-15 -4286 ((-635 |#1|) (-635 |#5|) (-635 |#1|))) (-15 -4286 ((-635 |#1|) (-635 |#5|) |#1|)) (-15 -4286 ((-635 |#1|) |#5| |#1|)) (-15 -2145 ((-112) |#5| |#1|)) (-15 -2177 ((-112) |#1|)) (-15 -2155 ((-112) |#5| |#1|)) (-15 -2166 ((-112) |#5| |#1|)) (-15 -2177 ((-112) |#5| |#1|)) (-15 -3430 (|#1| |#1| |#5|))) (-1059 |#2| |#3| |#4| |#5|) (-450) (-784) (-841) (-1053 |#2| |#3| |#4|)) (T -1058))
+NIL
+(-10 -8 (-15 -3430 ((-635 |#1|) (-635 |#5|) (-635 |#1|))) (-15 -3430 ((-635 |#1|) (-635 |#5|) |#1|)) (-15 -3430 ((-635 |#1|) |#5| (-635 |#1|))) (-15 -3430 ((-635 |#1|) |#5| |#1|)) (-15 -2076 ((-635 |#1|) (-635 |#5|) (-635 |#1|))) (-15 -2076 ((-635 |#1|) (-635 |#5|) |#1|)) (-15 -2076 ((-635 |#1|) |#5| (-635 |#1|))) (-15 -2076 ((-635 |#1|) |#5| |#1|)) (-15 -4286 ((-635 |#1|) |#5| (-635 |#1|))) (-15 -4286 ((-635 |#1|) (-635 |#5|) (-635 |#1|))) (-15 -4286 ((-635 |#1|) (-635 |#5|) |#1|)) (-15 -4286 ((-635 |#1|) |#5| |#1|)) (-15 -2145 ((-112) |#5| |#1|)) (-15 -2177 ((-112) |#1|)) (-15 -2155 ((-112) |#5| |#1|)) (-15 -2166 ((-112) |#5| |#1|)) (-15 -2177 ((-112) |#5| |#1|)) (-15 -3430 (|#1| |#1| |#5|)))
+((-3207 (((-112) $ $) 7)) (-3773 (((-635 (-2 (|:| -2626 $) (|:| -1328 (-635 |#4|)))) (-635 |#4|)) 85)) (-3782 (((-635 $) (-635 |#4|)) 86) (((-635 $) (-635 |#4|) (-112)) 111)) (-2671 (((-635 |#3|) $) 33)) (-2139 (((-112) $) 26)) (-2040 (((-112) $) 17 (|has| |#1| (-550)))) (-3892 (((-112) |#4| $) 101) (((-112) $) 97)) (-3842 ((|#4| |#4| $) 92)) (-3465 (((-635 (-2 (|:| |val| |#4|) (|:| -2396 $))) |#4| $) 126)) (-2376 (((-2 (|:| |under| $) (|:| -2594 $) (|:| |upper| $)) $ |#3|) 27)) (-3026 (((-112) $ (-762)) 44)) (-4329 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4382))) (((-3 |#4| "failed") $ |#3|) 79)) (-1816 (($) 45 T CONST)) (-2092 (((-112) $) 22 (|has| |#1| (-550)))) (-2116 (((-112) $ $) 24 (|has| |#1| (-550)))) (-2104 (((-112) $ $) 23 (|has| |#1| (-550)))) (-2128 (((-112) $) 25 (|has| |#1| (-550)))) (-3853 (((-635 |#4|) (-635 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-2050 (((-635 |#4|) (-635 |#4|) $) 18 (|has| |#1| (-550)))) (-2061 (((-635 |#4|) (-635 |#4|) $) 19 (|has| |#1| (-550)))) (-3069 (((-3 $ "failed") (-635 |#4|)) 36)) (-1863 (($ (-635 |#4|)) 35)) (-2315 (((-3 $ "failed") $) 82)) (-3810 ((|#4| |#4| $) 89)) (-2338 (($ $) 68 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4382))))) (-1539 (($ |#4| $) 67 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4382)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4382)))) (-2071 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-550)))) (-3902 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3792 ((|#4| |#4| $) 87)) (-3048 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4382)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4382))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4382))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3923 (((-2 (|:| -2626 (-635 |#4|)) (|:| -1328 (-635 |#4|))) $) 105)) (-2166 (((-112) |#4| $) 136)) (-2145 (((-112) |#4| $) 133)) (-2177 (((-112) |#4| $) 137) (((-112) $) 134)) (-2240 (((-635 |#4|) $) 52 (|has| $ (-6 -4382)))) (-3912 (((-112) |#4| $) 104) (((-112) $) 103)) (-1997 ((|#3| $) 34)) (-2986 (((-112) $ (-762)) 43)) (-2122 (((-635 |#4|) $) 53 (|has| $ (-6 -4382)))) (-4322 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4382))))) (-1807 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#4| |#4|) $) 47)) (-4024 (((-635 |#3|) $) 32)) (-2183 (((-112) |#3| $) 31)) (-2953 (((-112) $ (-762)) 42)) (-4310 (((-1145) $) 9)) (-2099 (((-3 |#4| (-635 $)) |#4| |#4| $) 128)) (-2087 (((-635 (-2 (|:| |val| |#4|) (|:| -2396 $))) |#4| |#4| $) 127)) (-1560 (((-3 |#4| "failed") $) 83)) (-2111 (((-635 $) |#4| $) 129)) (-2134 (((-3 (-112) (-635 $)) |#4| $) 132)) (-2123 (((-635 (-2 (|:| |val| (-112)) (|:| -2396 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-4286 (((-635 $) |#4| $) 125) (((-635 $) (-635 |#4|) $) 124) (((-635 $) (-635 |#4|) (-635 $)) 123) (((-635 $) |#4| (-635 $)) 122)) (-2423 (($ |#4| $) 117) (($ (-635 |#4|) $) 116)) (-3932 (((-635 |#4|) $) 107)) (-3873 (((-112) |#4| $) 99) (((-112) $) 95)) (-3820 ((|#4| |#4| $) 90)) (-3953 (((-112) $ $) 110)) (-2081 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-550)))) (-3883 (((-112) |#4| $) 100) (((-112) $) 96)) (-3830 ((|#4| |#4| $) 91)) (-2975 (((-1107) $) 10)) (-2305 (((-3 |#4| "failed") $) 84)) (-4307 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3755 (((-3 $ "failed") $ |#4|) 78)) (-3430 (($ $ |#4|) 77) (((-635 $) |#4| $) 115) (((-635 $) |#4| (-635 $)) 114) (((-635 $) (-635 |#4|) $) 113) (((-635 $) (-635 |#4|) (-635 $)) 112)) (-3266 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 |#4|) (-635 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-293 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-635 (-293 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))) (-2381 (((-112) $ $) 38)) (-3375 (((-112) $) 41)) (-2083 (($) 40)) (-4323 (((-762) $) 106)) (-2988 (((-762) |#4| $) 54 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4382)))) (((-762) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4382)))) (-1553 (($ $) 39)) (-3224 (((-534) $) 69 (|has| |#4| (-606 (-534))))) (-3233 (($ (-635 |#4|)) 60)) (-2151 (($ $ |#3|) 28)) (-2171 (($ $ |#3|) 30)) (-3801 (($ $) 88)) (-2160 (($ $ |#3|) 29)) (-3220 (((-853) $) 11) (((-635 |#4|) $) 37)) (-3745 (((-762) $) 76 (|has| |#3| (-367)))) (-3940 (((-3 (-2 (|:| |bas| $) (|:| -3072 (-635 |#4|))) "failed") (-635 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3072 (-635 |#4|))) "failed") (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-3863 (((-112) $ (-1 (-112) |#4| (-635 |#4|))) 98)) (-2076 (((-635 $) |#4| $) 121) (((-635 $) |#4| (-635 $)) 120) (((-635 $) (-635 |#4|) $) 119) (((-635 $) (-635 |#4|) (-635 $)) 118)) (-3277 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4382)))) (-3764 (((-635 |#3|) $) 81)) (-2155 (((-112) |#4| $) 135)) (-4206 (((-112) |#3| $) 80)) (-1683 (((-112) $ $) 6)) (-2755 (((-762) $) 46 (|has| $ (-6 -4382)))))
+(((-1059 |#1| |#2| |#3| |#4|) (-139) (-450) (-784) (-841) (-1053 |t#1| |t#2| |t#3|)) (T -1059))
+((-2177 (*1 *2 *3 *1) (-12 (-4 *1 (-1059 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-112)))) (-2166 (*1 *2 *3 *1) (-12 (-4 *1 (-1059 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-112)))) (-2155 (*1 *2 *3 *1) (-12 (-4 *1 (-1059 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-112)))) (-2177 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-112)))) (-2145 (*1 *2 *3 *1) (-12 (-4 *1 (-1059 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-112)))) (-2134 (*1 *2 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-3 (-112) (-635 *1))) (-4 *1 (-1059 *4 *5 *6 *3)))) (-2123 (*1 *2 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -2396 *1)))) (-4 *1 (-1059 *4 *5 *6 *3)))) (-2123 (*1 *2 *3 *1) (-12 (-4 *1 (-1059 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-112)))) (-2111 (*1 *2 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-635 *1)) (-4 *1 (-1059 *4 *5 *6 *3)))) (-2099 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-3 *3 (-635 *1))) (-4 *1 (-1059 *4 *5 *6 *3)))) (-2087 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -2396 *1)))) (-4 *1 (-1059 *4 *5 *6 *3)))) (-3465 (*1 *2 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -2396 *1)))) (-4 *1 (-1059 *4 *5 *6 *3)))) (-4286 (*1 *2 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-635 *1)) (-4 *1 (-1059 *4 *5 *6 *3)))) (-4286 (*1 *2 *3 *1) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-635 *1)) (-4 *1 (-1059 *4 *5 *6 *7)))) (-4286 (*1 *2 *3 *2) (-12 (-5 *2 (-635 *1)) (-5 *3 (-635 *7)) (-4 *1 (-1059 *4 *5 *6 *7)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)))) (-4286 (*1 *2 *3 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-1059 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)))) (-2076 (*1 *2 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-635 *1)) (-4 *1 (-1059 *4 *5 *6 *3)))) (-2076 (*1 *2 *3 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-1059 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)))) (-2076 (*1 *2 *3 *1) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-635 *1)) (-4 *1 (-1059 *4 *5 *6 *7)))) (-2076 (*1 *2 *3 *2) (-12 (-5 *2 (-635 *1)) (-5 *3 (-635 *7)) (-4 *1 (-1059 *4 *5 *6 *7)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)))) (-2423 (*1 *1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *2)) (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *2 (-1053 *3 *4 *5)))) (-2423 (*1 *1 *2 *1) (-12 (-5 *2 (-635 *6)) (-4 *1 (-1059 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)))) (-3430 (*1 *2 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-635 *1)) (-4 *1 (-1059 *4 *5 *6 *3)))) (-3430 (*1 *2 *3 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-1059 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)))) (-3430 (*1 *2 *3 *1) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-635 *1)) (-4 *1 (-1059 *4 *5 *6 *7)))) (-3430 (*1 *2 *3 *2) (-12 (-5 *2 (-635 *1)) (-5 *3 (-635 *7)) (-4 *1 (-1059 *4 *5 *6 *7)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)))) (-3782 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-635 *1)) (-4 *1 (-1059 *5 *6 *7 *8)))))
+(-13 (-1193 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2177 ((-112) |t#4| $)) (-15 -2166 ((-112) |t#4| $)) (-15 -2155 ((-112) |t#4| $)) (-15 -2177 ((-112) $)) (-15 -2145 ((-112) |t#4| $)) (-15 -2134 ((-3 (-112) (-635 $)) |t#4| $)) (-15 -2123 ((-635 (-2 (|:| |val| (-112)) (|:| -2396 $))) |t#4| $)) (-15 -2123 ((-112) |t#4| $)) (-15 -2111 ((-635 $) |t#4| $)) (-15 -2099 ((-3 |t#4| (-635 $)) |t#4| |t#4| $)) (-15 -2087 ((-635 (-2 (|:| |val| |t#4|) (|:| -2396 $))) |t#4| |t#4| $)) (-15 -3465 ((-635 (-2 (|:| |val| |t#4|) (|:| -2396 $))) |t#4| $)) (-15 -4286 ((-635 $) |t#4| $)) (-15 -4286 ((-635 $) (-635 |t#4|) $)) (-15 -4286 ((-635 $) (-635 |t#4|) (-635 $))) (-15 -4286 ((-635 $) |t#4| (-635 $))) (-15 -2076 ((-635 $) |t#4| $)) (-15 -2076 ((-635 $) |t#4| (-635 $))) (-15 -2076 ((-635 $) (-635 |t#4|) $)) (-15 -2076 ((-635 $) (-635 |t#4|) (-635 $))) (-15 -2423 ($ |t#4| $)) (-15 -2423 ($ (-635 |t#4|) $)) (-15 -3430 ((-635 $) |t#4| $)) (-15 -3430 ((-635 $) |t#4| (-635 $))) (-15 -3430 ((-635 $) (-635 |t#4|) $)) (-15 -3430 ((-635 $) (-635 |t#4|) (-635 $))) (-15 -3782 ((-635 $) (-635 |t#4|) (-112)))))
+(((-34) . T) ((-102) . T) ((-605 (-635 |#4|)) . T) ((-605 (-853)) . T) ((-150 |#4|) . T) ((-606 (-534)) |has| |#4| (-606 (-534))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))) ((-487 |#4|) . T) ((-512 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))) ((-966 |#1| |#2| |#3| |#4|) . T) ((-1087) . T) ((-1193 |#1| |#2| |#3| |#4|) . T) ((-1200) . T))
+((-4079 (((-635 (-2 (|:| |val| |#4|) (|:| -2396 |#5|))) |#4| |#5|) 81)) (-2221 (((-635 (-2 (|:| |val| |#4|) (|:| -2396 |#5|))) |#4| |#4| |#5|) 112)) (-4069 (((-635 |#5|) |#4| |#5|) 70)) (-4059 (((-635 (-2 (|:| |val| (-112)) (|:| -2396 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-3497 (((-1251)) 37)) (-1582 (((-1251)) 26)) (-1593 (((-1251) (-1145) (-1145) (-1145)) 33)) (-1572 (((-1251) (-1145) (-1145) (-1145)) 22)) (-2188 (((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))) |#4| |#4| |#5|) 95)) (-2199 (((-635 (-2 (|:| |val| |#4|) (|:| -2396 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))) |#3| (-112)) 106) (((-635 (-2 (|:| |val| |#4|) (|:| -2396 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-2210 (((-635 (-2 (|:| |val| |#4|) (|:| -2396 |#5|))) |#4| |#4| |#5|) 101)))
+(((-1060 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1572 ((-1251) (-1145) (-1145) (-1145))) (-15 -1582 ((-1251))) (-15 -1593 ((-1251) (-1145) (-1145) (-1145))) (-15 -3497 ((-1251))) (-15 -2188 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))) |#4| |#4| |#5|)) (-15 -2199 ((-635 (-2 (|:| |val| |#4|) (|:| -2396 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2199 ((-635 (-2 (|:| |val| |#4|) (|:| -2396 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))) |#3| (-112))) (-15 -2210 ((-635 (-2 (|:| |val| |#4|) (|:| -2396 |#5|))) |#4| |#4| |#5|)) (-15 -2221 ((-635 (-2 (|:| |val| |#4|) (|:| -2396 |#5|))) |#4| |#4| |#5|)) (-15 -4059 ((-112) |#4| |#5|)) (-15 -4059 ((-635 (-2 (|:| |val| (-112)) (|:| -2396 |#5|))) |#4| |#5|)) (-15 -4069 ((-635 |#5|) |#4| |#5|)) (-15 -4079 ((-635 (-2 (|:| |val| |#4|) (|:| -2396 |#5|))) |#4| |#5|))) (-450) (-784) (-841) (-1053 |#1| |#2| |#3|) (-1059 |#1| |#2| |#3| |#4|)) (T -1060))
+((-4079 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -2396 *4)))) (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))) (-4069 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-635 *4)) (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))) (-4059 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -2396 *4)))) (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))) (-4059 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))) (-2221 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -2396 *4)))) (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))) (-2210 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -2396 *4)))) (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))) (-2199 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 (-2 (|:| |val| (-635 *8)) (|:| -2396 *9)))) (-5 *5 (-112)) (-4 *8 (-1053 *6 *7 *4)) (-4 *9 (-1059 *6 *7 *4 *8)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *4 (-841)) (-5 *2 (-635 (-2 (|:| |val| *8) (|:| -2396 *9)))) (-5 *1 (-1060 *6 *7 *4 *8 *9)))) (-2199 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841)) (-4 *3 (-1053 *6 *7 *8)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -2396 *4)))) (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1059 *6 *7 *8 *3)))) (-2188 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| (-635 *3)) (|:| -2396 *4)))) (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))) (-3497 (*1 *2) (-12 (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-1251)) (-5 *1 (-1060 *3 *4 *5 *6 *7)) (-4 *7 (-1059 *3 *4 *5 *6)))) (-1593 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1145)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-1251)) (-5 *1 (-1060 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7)))) (-1582 (*1 *2) (-12 (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-1251)) (-5 *1 (-1060 *3 *4 *5 *6 *7)) (-4 *7 (-1059 *3 *4 *5 *6)))) (-1572 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1145)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-1251)) (-5 *1 (-1060 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7)))))
+(-10 -7 (-15 -1572 ((-1251) (-1145) (-1145) (-1145))) (-15 -1582 ((-1251))) (-15 -1593 ((-1251) (-1145) (-1145) (-1145))) (-15 -3497 ((-1251))) (-15 -2188 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))) |#4| |#4| |#5|)) (-15 -2199 ((-635 (-2 (|:| |val| |#4|) (|:| -2396 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2199 ((-635 (-2 (|:| |val| |#4|) (|:| -2396 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))) |#3| (-112))) (-15 -2210 ((-635 (-2 (|:| |val| |#4|) (|:| -2396 |#5|))) |#4| |#4| |#5|)) (-15 -2221 ((-635 (-2 (|:| |val| |#4|) (|:| -2396 |#5|))) |#4| |#4| |#5|)) (-15 -4059 ((-112) |#4| |#5|)) (-15 -4059 ((-635 (-2 (|:| |val| (-112)) (|:| -2396 |#5|))) |#4| |#5|)) (-15 -4069 ((-635 |#5|) |#4| |#5|)) (-15 -4079 ((-635 (-2 (|:| |val| |#4|) (|:| -2396 |#5|))) |#4| |#5|)))
+((-3207 (((-112) $ $) NIL)) (-1395 (((-1199) $) 13)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3535 (((-1122) $) 10)) (-3220 (((-853) $) 22) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1683 (((-112) $ $) NIL)))
+(((-1061) (-13 (-1070) (-10 -8 (-15 -3535 ((-1122) $)) (-15 -1395 ((-1199) $))))) (T -1061))
+((-3535 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1061)))) (-1395 (*1 *2 *1) (-12 (-5 *2 (-1199)) (-5 *1 (-1061)))))
+(-13 (-1070) (-10 -8 (-15 -3535 ((-1122) $)) (-15 -1395 ((-1199) $))))
+((-3207 (((-112) $ $) NIL)) (-1323 (((-1163) $) 8)) (-4310 (((-1145) $) 16)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 11)) (-1683 (((-112) $ $) 13)))
+(((-1062 |#1|) (-13 (-1087) (-10 -8 (-15 -1323 ((-1163) $)))) (-1163)) (T -1062))
+((-1323 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1062 *3)) (-14 *3 *2))))
+(-13 (-1087) (-10 -8 (-15 -1323 ((-1163) $))))
+((-3207 (((-112) $ $) NIL)) (-4285 (($ $ (-635 (-1163)) (-1 (-112) (-635 |#3|))) 33)) (-2850 (($ |#3| |#3|) 22) (($ |#3| |#3| (-635 (-1163))) 20)) (-3986 ((|#3| $) 13)) (-3069 (((-3 (-293 |#3|) "failed") $) 58)) (-1863 (((-293 |#3|) $) NIL)) (-4087 (((-635 (-1163)) $) 16)) (-2416 (((-882 |#1|) $) 11)) (-3976 ((|#3| $) 12)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-2195 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-911)) 39)) (-3220 (((-853) $) 86) (($ (-293 |#3|)) 21)) (-1683 (((-112) $ $) 36)))
+(((-1063 |#1| |#2| |#3|) (-13 (-1087) (-285 |#3| |#3|) (-1028 (-293 |#3|)) (-10 -8 (-15 -2850 ($ |#3| |#3|)) (-15 -2850 ($ |#3| |#3| (-635 (-1163)))) (-15 -4285 ($ $ (-635 (-1163)) (-1 (-112) (-635 |#3|)))) (-15 -2416 ((-882 |#1|) $)) (-15 -3976 (|#3| $)) (-15 -3986 (|#3| $)) (-15 -2195 (|#3| $ |#3| (-911))) (-15 -4087 ((-635 (-1163)) $)))) (-1087) (-13 (-1039) (-876 |#1|) (-841) (-606 (-882 |#1|))) (-13 (-429 |#2|) (-876 |#1|) (-606 (-882 |#1|)))) (T -1063))
+((-2850 (*1 *1 *2 *2) (-12 (-4 *3 (-1087)) (-4 *4 (-13 (-1039) (-876 *3) (-841) (-606 (-882 *3)))) (-5 *1 (-1063 *3 *4 *2)) (-4 *2 (-13 (-429 *4) (-876 *3) (-606 (-882 *3)))))) (-2850 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-635 (-1163))) (-4 *4 (-1087)) (-4 *5 (-13 (-1039) (-876 *4) (-841) (-606 (-882 *4)))) (-5 *1 (-1063 *4 *5 *2)) (-4 *2 (-13 (-429 *5) (-876 *4) (-606 (-882 *4)))))) (-4285 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-1163))) (-5 *3 (-1 (-112) (-635 *6))) (-4 *6 (-13 (-429 *5) (-876 *4) (-606 (-882 *4)))) (-4 *4 (-1087)) (-4 *5 (-13 (-1039) (-876 *4) (-841) (-606 (-882 *4)))) (-5 *1 (-1063 *4 *5 *6)))) (-2416 (*1 *2 *1) (-12 (-4 *3 (-1087)) (-4 *4 (-13 (-1039) (-876 *3) (-841) (-606 *2))) (-5 *2 (-882 *3)) (-5 *1 (-1063 *3 *4 *5)) (-4 *5 (-13 (-429 *4) (-876 *3) (-606 *2))))) (-3976 (*1 *2 *1) (-12 (-4 *3 (-1087)) (-4 *2 (-13 (-429 *4) (-876 *3) (-606 (-882 *3)))) (-5 *1 (-1063 *3 *4 *2)) (-4 *4 (-13 (-1039) (-876 *3) (-841) (-606 (-882 *3)))))) (-3986 (*1 *2 *1) (-12 (-4 *3 (-1087)) (-4 *2 (-13 (-429 *4) (-876 *3) (-606 (-882 *3)))) (-5 *1 (-1063 *3 *4 *2)) (-4 *4 (-13 (-1039) (-876 *3) (-841) (-606 (-882 *3)))))) (-2195 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-911)) (-4 *4 (-1087)) (-4 *5 (-13 (-1039) (-876 *4) (-841) (-606 (-882 *4)))) (-5 *1 (-1063 *4 *5 *2)) (-4 *2 (-13 (-429 *5) (-876 *4) (-606 (-882 *4)))))) (-4087 (*1 *2 *1) (-12 (-4 *3 (-1087)) (-4 *4 (-13 (-1039) (-876 *3) (-841) (-606 (-882 *3)))) (-5 *2 (-635 (-1163))) (-5 *1 (-1063 *3 *4 *5)) (-4 *5 (-13 (-429 *4) (-876 *3) (-606 (-882 *3)))))))
+(-13 (-1087) (-285 |#3| |#3|) (-1028 (-293 |#3|)) (-10 -8 (-15 -2850 ($ |#3| |#3|)) (-15 -2850 ($ |#3| |#3| (-635 (-1163)))) (-15 -4285 ($ $ (-635 (-1163)) (-1 (-112) (-635 |#3|)))) (-15 -2416 ((-882 |#1|) $)) (-15 -3976 (|#3| $)) (-15 -3986 (|#3| $)) (-15 -2195 (|#3| $ |#3| (-911))) (-15 -4087 ((-635 (-1163)) $))))
+((-3207 (((-112) $ $) NIL)) (-4247 (($ (-635 (-1063 |#1| |#2| |#3|))) 13)) (-1846 (((-635 (-1063 |#1| |#2| |#3|)) $) 20)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-2195 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-911)) 26)) (-3220 (((-853) $) 16)) (-1683 (((-112) $ $) 19)))
+(((-1064 |#1| |#2| |#3|) (-13 (-1087) (-285 |#3| |#3|) (-10 -8 (-15 -4247 ($ (-635 (-1063 |#1| |#2| |#3|)))) (-15 -1846 ((-635 (-1063 |#1| |#2| |#3|)) $)) (-15 -2195 (|#3| $ |#3| (-911))))) (-1087) (-13 (-1039) (-876 |#1|) (-841) (-606 (-882 |#1|))) (-13 (-429 |#2|) (-876 |#1|) (-606 (-882 |#1|)))) (T -1064))
+((-4247 (*1 *1 *2) (-12 (-5 *2 (-635 (-1063 *3 *4 *5))) (-4 *3 (-1087)) (-4 *4 (-13 (-1039) (-876 *3) (-841) (-606 (-882 *3)))) (-4 *5 (-13 (-429 *4) (-876 *3) (-606 (-882 *3)))) (-5 *1 (-1064 *3 *4 *5)))) (-1846 (*1 *2 *1) (-12 (-4 *3 (-1087)) (-4 *4 (-13 (-1039) (-876 *3) (-841) (-606 (-882 *3)))) (-5 *2 (-635 (-1063 *3 *4 *5))) (-5 *1 (-1064 *3 *4 *5)) (-4 *5 (-13 (-429 *4) (-876 *3) (-606 (-882 *3)))))) (-2195 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-911)) (-4 *4 (-1087)) (-4 *5 (-13 (-1039) (-876 *4) (-841) (-606 (-882 *4)))) (-5 *1 (-1064 *4 *5 *2)) (-4 *2 (-13 (-429 *5) (-876 *4) (-606 (-882 *4)))))))
+(-13 (-1087) (-285 |#3| |#3|) (-10 -8 (-15 -4247 ($ (-635 (-1063 |#1| |#2| |#3|)))) (-15 -1846 ((-635 (-1063 |#1| |#2| |#3|)) $)) (-15 -2195 (|#3| $ |#3| (-911)))))
+((-4101 (((-635 (-2 (|:| -1680 (-1159 |#1|)) (|:| -4205 (-635 (-942 |#1|))))) (-635 (-942 |#1|)) (-112) (-112)) 74) (((-635 (-2 (|:| -1680 (-1159 |#1|)) (|:| -4205 (-635 (-942 |#1|))))) (-635 (-942 |#1|))) 76) (((-635 (-2 (|:| -1680 (-1159 |#1|)) (|:| -4205 (-635 (-942 |#1|))))) (-635 (-942 |#1|)) (-112)) 75)))
+(((-1065 |#1| |#2|) (-10 -7 (-15 -4101 ((-635 (-2 (|:| -1680 (-1159 |#1|)) (|:| -4205 (-635 (-942 |#1|))))) (-635 (-942 |#1|)) (-112))) (-15 -4101 ((-635 (-2 (|:| -1680 (-1159 |#1|)) (|:| -4205 (-635 (-942 |#1|))))) (-635 (-942 |#1|)))) (-15 -4101 ((-635 (-2 (|:| -1680 (-1159 |#1|)) (|:| -4205 (-635 (-942 |#1|))))) (-635 (-942 |#1|)) (-112) (-112)))) (-13 (-306) (-146)) (-635 (-1163))) (T -1065))
+((-4101 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-5 *2 (-635 (-2 (|:| -1680 (-1159 *5)) (|:| -4205 (-635 (-942 *5)))))) (-5 *1 (-1065 *5 *6)) (-5 *3 (-635 (-942 *5))) (-14 *6 (-635 (-1163))))) (-4101 (*1 *2 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-5 *2 (-635 (-2 (|:| -1680 (-1159 *4)) (|:| -4205 (-635 (-942 *4)))))) (-5 *1 (-1065 *4 *5)) (-5 *3 (-635 (-942 *4))) (-14 *5 (-635 (-1163))))) (-4101 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-5 *2 (-635 (-2 (|:| -1680 (-1159 *5)) (|:| -4205 (-635 (-942 *5)))))) (-5 *1 (-1065 *5 *6)) (-5 *3 (-635 (-942 *5))) (-14 *6 (-635 (-1163))))))
+(-10 -7 (-15 -4101 ((-635 (-2 (|:| -1680 (-1159 |#1|)) (|:| -4205 (-635 (-942 |#1|))))) (-635 (-942 |#1|)) (-112))) (-15 -4101 ((-635 (-2 (|:| -1680 (-1159 |#1|)) (|:| -4205 (-635 (-942 |#1|))))) (-635 (-942 |#1|)))) (-15 -4101 ((-635 (-2 (|:| -1680 (-1159 |#1|)) (|:| -4205 (-635 (-942 |#1|))))) (-635 (-942 |#1|)) (-112) (-112))))
+((-2522 (((-417 |#3|) |#3|) 18)))
+(((-1066 |#1| |#2| |#3|) (-10 -7 (-15 -2522 ((-417 |#3|) |#3|))) (-1222 (-406 (-558))) (-13 (-362) (-146) (-715 (-406 (-558)) |#1|)) (-1222 |#2|)) (T -1066))
+((-2522 (*1 *2 *3) (-12 (-4 *4 (-1222 (-406 (-558)))) (-4 *5 (-13 (-362) (-146) (-715 (-406 (-558)) *4))) (-5 *2 (-417 *3)) (-5 *1 (-1066 *4 *5 *3)) (-4 *3 (-1222 *5)))))
+(-10 -7 (-15 -2522 ((-417 |#3|) |#3|)))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) 126)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL (|has| |#1| (-362)))) (-1881 (($ $) NIL (|has| |#1| (-362)))) (-1857 (((-112) $) NIL (|has| |#1| (-362)))) (-2053 (((-679 |#1|) (-1246 $)) NIL) (((-679 |#1|)) 115)) (-1635 ((|#1| $) 119)) (-2163 (((-1173 (-911) (-762)) (-558)) NIL (|has| |#1| (-348)))) (-2089 (((-3 $ "failed") $ $) NIL)) (-3465 (($ $) NIL (|has| |#1| (-362)))) (-1380 (((-417 $) $) NIL (|has| |#1| (-362)))) (-3732 (((-112) $ $) NIL (|has| |#1| (-362)))) (-2276 (((-762)) 40 (|has| |#1| (-367)))) (-1816 (($) NIL T CONST)) (-3069 (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-3 |#1| "failed") $) NIL)) (-1863 (((-558) $) NIL (|has| |#1| (-1028 (-558)))) (((-406 (-558)) $) NIL (|has| |#1| (-1028 (-406 (-558))))) ((|#1| $) NIL)) (-3997 (($ (-1246 |#1|) (-1246 $)) NIL) (($ (-1246 |#1|)) 43)) (-3367 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-348)))) (-4025 (($ $ $) NIL (|has| |#1| (-362)))) (-2043 (((-679 |#1|) $ (-1246 $)) NIL) (((-679 |#1|) $) NIL)) (-3216 (((-679 (-558)) (-679 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3683 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) 106) (((-679 |#1|) (-679 $)) 101)) (-3048 (($ |#2|) 61) (((-3 $ "failed") (-406 |#2|)) NIL (|has| |#1| (-362)))) (-2588 (((-3 $ "failed") $) NIL)) (-3833 (((-911)) 77)) (-2424 (($) 44 (|has| |#1| (-367)))) (-4004 (($ $ $) NIL (|has| |#1| (-362)))) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-2672 (($) NIL (|has| |#1| (-348)))) (-2219 (((-112) $) NIL (|has| |#1| (-348)))) (-1895 (($ $ (-762)) NIL (|has| |#1| (-348))) (($ $) NIL (|has| |#1| (-348)))) (-3031 (((-112) $) NIL (|has| |#1| (-362)))) (-3449 (((-911) $) NIL (|has| |#1| (-348))) (((-824 (-911)) $) NIL (|has| |#1| (-348)))) (-2035 (((-112) $) NIL)) (-2615 ((|#1| $) NIL)) (-2457 (((-3 $ "failed") $) NIL (|has| |#1| (-348)))) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-2681 ((|#2| $) 84 (|has| |#1| (-362)))) (-2637 (((-911) $) 130 (|has| |#1| (-367)))) (-3227 ((|#2| $) 58)) (-2665 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-4310 (((-1145) $) NIL)) (-2418 (($ $) NIL (|has| |#1| (-362)))) (-1796 (($) NIL (|has| |#1| (-348)) CONST)) (-2851 (($ (-911)) 125 (|has| |#1| (-367)))) (-2975 (((-1107) $) NIL)) (-4098 (($) 121)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#1| (-362)))) (-2699 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-2174 (((-635 (-2 (|:| -2522 (-558)) (|:| -1951 (-558))))) NIL (|has| |#1| (-348)))) (-2522 (((-417 $) $) NIL (|has| |#1| (-362)))) (-3713 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL (|has| |#1| (-362)))) (-3983 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-3722 (((-762) $) NIL (|has| |#1| (-362)))) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL (|has| |#1| (-362)))) (-3331 ((|#1| (-1246 $)) NIL) ((|#1|) 109)) (-1905 (((-762) $) NIL (|has| |#1| (-348))) (((-3 (-762) "failed") $ $) NIL (|has| |#1| (-348)))) (-2829 (($ $) NIL (-3998 (-12 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-762)) NIL (-3998 (-12 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-1163)) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-890 (-1163))))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-890 (-1163))))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-890 (-1163))))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-890 (-1163))))) (($ $ (-1 |#1| |#1|) (-762)) NIL (|has| |#1| (-362))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-362)))) (-2026 (((-679 |#1|) (-1246 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-362)))) (-2036 ((|#2|) 73)) (-3377 (($) NIL (|has| |#1| (-348)))) (-4205 (((-1246 |#1|) $ (-1246 $)) 89) (((-679 |#1|) (-1246 $) (-1246 $)) NIL) (((-1246 |#1|) $) 71) (((-679 |#1|) (-1246 $)) 85)) (-3224 (((-1246 |#1|) $) NIL) (($ (-1246 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3709 (((-3 (-1246 $) "failed") (-679 $)) NIL (|has| |#1| (-348)))) (-3220 (((-853) $) 57) (($ (-558)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-362))) (($ (-406 (-558))) NIL (-3998 (|has| |#1| (-362)) (|has| |#1| (-1028 (-406 (-558))))))) (-3698 (($ $) NIL (|has| |#1| (-348))) (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2363 ((|#2| $) 82)) (-2542 (((-762)) 75)) (-2660 (((-1246 $)) 81)) (-1870 (((-112) $ $) NIL (|has| |#1| (-362)))) (-2131 (($) 30 T CONST)) (-2142 (($) 19 T CONST)) (-1866 (($ $) NIL (-3998 (-12 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-762)) NIL (-3998 (-12 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-1163)) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-890 (-1163))))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-890 (-1163))))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-890 (-1163))))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-890 (-1163))))) (($ $ (-1 |#1| |#1|) (-762)) NIL (|has| |#1| (-362))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-362)))) (-1683 (((-112) $ $) 63)) (-1810 (($ $ $) NIL (|has| |#1| (-362)))) (-1798 (($ $) 67) (($ $ $) NIL)) (-1784 (($ $ $) 65)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL (|has| |#1| (-362)))) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-406 (-558)) $) NIL (|has| |#1| (-362))) (($ $ (-406 (-558))) NIL (|has| |#1| (-362)))))
+(((-1067 |#1| |#2| |#3|) (-715 |#1| |#2|) (-171) (-1222 |#1|) |#2|) (T -1067))
+NIL
+(-715 |#1| |#2|)
+((-2522 (((-417 |#3|) |#3|) 19)))
+(((-1068 |#1| |#2| |#3|) (-10 -7 (-15 -2522 ((-417 |#3|) |#3|))) (-1222 (-406 (-942 (-558)))) (-13 (-362) (-146) (-715 (-406 (-942 (-558))) |#1|)) (-1222 |#2|)) (T -1068))
+((-2522 (*1 *2 *3) (-12 (-4 *4 (-1222 (-406 (-942 (-558))))) (-4 *5 (-13 (-362) (-146) (-715 (-406 (-942 (-558))) *4))) (-5 *2 (-417 *3)) (-5 *1 (-1068 *4 *5 *3)) (-4 *3 (-1222 *5)))))
+(-10 -7 (-15 -2522 ((-417 |#3|) |#3|)))
+((-3207 (((-112) $ $) NIL)) (-3910 (($ $ $) 14)) (-3542 (($ $ $) 15)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-4112 (($) 6)) (-3224 (((-1163) $) 18)) (-3220 (((-853) $) 12)) (-1747 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1683 (((-112) $ $) 13)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 8)))
+(((-1069) (-13 (-841) (-606 (-1163)) (-10 -8 (-15 -4112 ($))))) (T -1069))
+((-4112 (*1 *1) (-5 *1 (-1069))))
+(-13 (-841) (-606 (-1163)) (-10 -8 (-15 -4112 ($))))
+((-3207 (((-112) $ $) 7)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11) (($ (-1168)) 16) (((-1168) $) 15)) (-1683 (((-112) $ $) 6)))
+(((-1070) (-139)) (T -1070))
NIL
(-13 (-93))
-(((-93) . T) ((-102) . T) ((-604 #0=(-1163)) . T) ((-601 (-848)) . T) ((-601 #0#) . T) ((-484 #0#) . T) ((-1082) . T))
-((-2151 ((|#1| |#1| (-1 (-554) |#1| |#1|)) 24) ((|#1| |#1| (-1 (-112) |#1|)) 20)) (-1731 (((-1246)) 15)) (-3609 (((-631 |#1|)) 9)))
-(((-1066 |#1|) (-10 -7 (-15 -1731 ((-1246))) (-15 -3609 ((-631 |#1|))) (-15 -2151 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2151 (|#1| |#1| (-1 (-554) |#1| |#1|)))) (-131)) (T -1066))
-((-2151 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-554) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1066 *2)))) (-2151 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1066 *2)))) (-3609 (*1 *2) (-12 (-5 *2 (-631 *3)) (-5 *1 (-1066 *3)) (-4 *3 (-131)))) (-1731 (*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-1066 *3)) (-4 *3 (-131)))))
-(-10 -7 (-15 -1731 ((-1246))) (-15 -3609 ((-631 |#1|))) (-15 -2151 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2151 (|#1| |#1| (-1 (-554) |#1| |#1|))))
-((-4018 (($ (-109) $) 16)) (-2559 (((-3 (-109) "failed") (-1158) $) 15)) (-4240 (($) 7)) (-3230 (($) 17)) (-3140 (($) 18)) (-2147 (((-631 (-173)) $) 10)) (-3075 (((-848) $) 21)))
-(((-1067) (-13 (-601 (-848)) (-10 -8 (-15 -4240 ($)) (-15 -2147 ((-631 (-173)) $)) (-15 -2559 ((-3 (-109) "failed") (-1158) $)) (-15 -4018 ($ (-109) $)) (-15 -3230 ($)) (-15 -3140 ($))))) (T -1067))
-((-4240 (*1 *1) (-5 *1 (-1067))) (-2147 (*1 *2 *1) (-12 (-5 *2 (-631 (-173))) (-5 *1 (-1067)))) (-2559 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1158)) (-5 *2 (-109)) (-5 *1 (-1067)))) (-4018 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1067)))) (-3230 (*1 *1) (-5 *1 (-1067))) (-3140 (*1 *1) (-5 *1 (-1067))))
-(-13 (-601 (-848)) (-10 -8 (-15 -4240 ($)) (-15 -2147 ((-631 (-173)) $)) (-15 -2559 ((-3 (-109) "failed") (-1158) $)) (-15 -4018 ($ (-109) $)) (-15 -3230 ($)) (-15 -3140 ($))))
-((-4251 (((-1241 (-675 |#1|)) (-631 (-675 |#1|))) 42) (((-1241 (-675 (-937 |#1|))) (-631 (-1158)) (-675 (-937 |#1|))) 63) (((-1241 (-675 (-402 (-937 |#1|)))) (-631 (-1158)) (-675 (-402 (-937 |#1|)))) 79)) (-3656 (((-1241 |#1|) (-675 |#1|) (-631 (-675 |#1|))) 36)))
-(((-1068 |#1|) (-10 -7 (-15 -4251 ((-1241 (-675 (-402 (-937 |#1|)))) (-631 (-1158)) (-675 (-402 (-937 |#1|))))) (-15 -4251 ((-1241 (-675 (-937 |#1|))) (-631 (-1158)) (-675 (-937 |#1|)))) (-15 -4251 ((-1241 (-675 |#1|)) (-631 (-675 |#1|)))) (-15 -3656 ((-1241 |#1|) (-675 |#1|) (-631 (-675 |#1|))))) (-358)) (T -1068))
-((-3656 (*1 *2 *3 *4) (-12 (-5 *4 (-631 (-675 *5))) (-5 *3 (-675 *5)) (-4 *5 (-358)) (-5 *2 (-1241 *5)) (-5 *1 (-1068 *5)))) (-4251 (*1 *2 *3) (-12 (-5 *3 (-631 (-675 *4))) (-4 *4 (-358)) (-5 *2 (-1241 (-675 *4))) (-5 *1 (-1068 *4)))) (-4251 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-1158))) (-4 *5 (-358)) (-5 *2 (-1241 (-675 (-937 *5)))) (-5 *1 (-1068 *5)) (-5 *4 (-675 (-937 *5))))) (-4251 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-1158))) (-4 *5 (-358)) (-5 *2 (-1241 (-675 (-402 (-937 *5))))) (-5 *1 (-1068 *5)) (-5 *4 (-675 (-402 (-937 *5)))))))
-(-10 -7 (-15 -4251 ((-1241 (-675 (-402 (-937 |#1|)))) (-631 (-1158)) (-675 (-402 (-937 |#1|))))) (-15 -4251 ((-1241 (-675 (-937 |#1|))) (-631 (-1158)) (-675 (-937 |#1|)))) (-15 -4251 ((-1241 (-675 |#1|)) (-631 (-675 |#1|)))) (-15 -3656 ((-1241 |#1|) (-675 |#1|) (-631 (-675 |#1|)))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1386 (((-631 (-758)) $) NIL) (((-631 (-758)) $ (-1158)) NIL)) (-1316 (((-758) $) NIL) (((-758) $ (-1158)) NIL)) (-2405 (((-631 (-1070 (-1158))) $) NIL)) (-2237 (((-1154 $) $ (-1070 (-1158))) NIL) (((-1154 |#1|) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-546)))) (-1976 (($ $) NIL (|has| |#1| (-546)))) (-1363 (((-112) $) NIL (|has| |#1| (-546)))) (-3785 (((-758) $) NIL) (((-758) $ (-631 (-1070 (-1158)))) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-3278 (($ $) NIL (|has| |#1| (-446)))) (-1565 (((-413 $) $) NIL (|has| |#1| (-446)))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-1698 (($ $) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 (-1070 (-1158)) "failed") $) NIL) (((-3 (-1158) "failed") $) NIL) (((-3 (-1107 |#1| (-1158)) "failed") $) NIL)) (-1668 ((|#1| $) NIL) (((-402 (-554)) $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-554) $) NIL (|has| |#1| (-1023 (-554)))) (((-1070 (-1158)) $) NIL) (((-1158) $) NIL) (((-1107 |#1| (-1158)) $) NIL)) (-2999 (($ $ $ (-1070 (-1158))) NIL (|has| |#1| (-170)))) (-2550 (($ $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) NIL) (((-675 |#1|) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2048 (($ $) NIL (|has| |#1| (-446))) (($ $ (-1070 (-1158))) NIL (|has| |#1| (-446)))) (-2540 (((-631 $) $) NIL)) (-3289 (((-112) $) NIL (|has| |#1| (-894)))) (-1344 (($ $ |#1| (-525 (-1070 (-1158))) $) NIL)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (-12 (|has| (-1070 (-1158)) (-871 (-374))) (|has| |#1| (-871 (-374))))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (-12 (|has| (-1070 (-1158)) (-871 (-554))) (|has| |#1| (-871 (-554)))))) (-2342 (((-758) $ (-1158)) NIL) (((-758) $) NIL)) (-3248 (((-112) $) NIL)) (-2122 (((-758) $) NIL)) (-2393 (($ (-1154 |#1|) (-1070 (-1158))) NIL) (($ (-1154 $) (-1070 (-1158))) NIL)) (-3910 (((-631 $) $) NIL)) (-3580 (((-112) $) NIL)) (-2383 (($ |#1| (-525 (-1070 (-1158)))) NIL) (($ $ (-1070 (-1158)) (-758)) NIL) (($ $ (-631 (-1070 (-1158))) (-631 (-758))) NIL)) (-4014 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $ (-1070 (-1158))) NIL)) (-3893 (((-525 (-1070 (-1158))) $) NIL) (((-758) $ (-1070 (-1158))) NIL) (((-631 (-758)) $ (-631 (-1070 (-1158)))) NIL)) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2789 (($ (-1 (-525 (-1070 (-1158))) (-525 (-1070 (-1158)))) $) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-3179 (((-1 $ (-758)) (-1158)) NIL) (((-1 $ (-758)) $) NIL (|has| |#1| (-229)))) (-3277 (((-3 (-1070 (-1158)) "failed") $) NIL)) (-2518 (($ $) NIL)) (-2530 ((|#1| $) NIL)) (-1897 (((-1070 (-1158)) $) NIL)) (-2475 (($ (-631 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-1613 (((-1140) $) NIL)) (-2081 (((-112) $) NIL)) (-3778 (((-3 (-631 $) "failed") $) NIL)) (-2433 (((-3 (-631 $) "failed") $) NIL)) (-3160 (((-3 (-2 (|:| |var| (-1070 (-1158))) (|:| -1407 (-758))) "failed") $) NIL)) (-1502 (($ $) NIL)) (-2768 (((-1102) $) NIL)) (-2492 (((-112) $) NIL)) (-2505 ((|#1| $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#1| (-446)))) (-2510 (($ (-631 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-2270 (((-413 $) $) NIL (|has| |#1| (-894)))) (-3919 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-546))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-546)))) (-2386 (($ $ (-631 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ (-1070 (-1158)) |#1|) NIL) (($ $ (-631 (-1070 (-1158))) (-631 |#1|)) NIL) (($ $ (-1070 (-1158)) $) NIL) (($ $ (-631 (-1070 (-1158))) (-631 $)) NIL) (($ $ (-1158) $) NIL (|has| |#1| (-229))) (($ $ (-631 (-1158)) (-631 $)) NIL (|has| |#1| (-229))) (($ $ (-1158) |#1|) NIL (|has| |#1| (-229))) (($ $ (-631 (-1158)) (-631 |#1|)) NIL (|has| |#1| (-229)))) (-1495 (($ $ (-1070 (-1158))) NIL (|has| |#1| (-170)))) (-1553 (($ $ (-1070 (-1158))) NIL) (($ $ (-631 (-1070 (-1158)))) NIL) (($ $ (-1070 (-1158)) (-758)) NIL) (($ $ (-631 (-1070 (-1158))) (-631 (-758))) NIL) (($ $) NIL (|has| |#1| (-229))) (($ $ (-758)) NIL (|has| |#1| (-229))) (($ $ (-1158)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3922 (((-631 (-1158)) $) NIL)) (-3308 (((-525 (-1070 (-1158))) $) NIL) (((-758) $ (-1070 (-1158))) NIL) (((-631 (-758)) $ (-631 (-1070 (-1158)))) NIL) (((-758) $ (-1158)) NIL)) (-2927 (((-877 (-374)) $) NIL (-12 (|has| (-1070 (-1158)) (-602 (-877 (-374)))) (|has| |#1| (-602 (-877 (-374)))))) (((-877 (-554)) $) NIL (-12 (|has| (-1070 (-1158)) (-602 (-877 (-554)))) (|has| |#1| (-602 (-877 (-554)))))) (((-530) $) NIL (-12 (|has| (-1070 (-1158)) (-602 (-530))) (|has| |#1| (-602 (-530)))))) (-3276 ((|#1| $) NIL (|has| |#1| (-446))) (($ $ (-1070 (-1158))) NIL (|has| |#1| (-446)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-894))))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#1|) NIL) (($ (-1070 (-1158))) NIL) (($ (-1158)) NIL) (($ (-1107 |#1| (-1158))) NIL) (($ (-402 (-554))) NIL (-3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554)))))) (($ $) NIL (|has| |#1| (-546)))) (-1893 (((-631 |#1|) $) NIL)) (-1779 ((|#1| $ (-525 (-1070 (-1158)))) NIL) (($ $ (-1070 (-1158)) (-758)) NIL) (($ $ (-631 (-1070 (-1158))) (-631 (-758))) NIL)) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| |#1| (-894))) (|has| |#1| (-143))))) (-2261 (((-758)) NIL)) (-2907 (($ $ $ (-758)) NIL (|has| |#1| (-170)))) (-1909 (((-112) $ $) NIL (|has| |#1| (-546)))) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $ (-1070 (-1158))) NIL) (($ $ (-631 (-1070 (-1158)))) NIL) (($ $ (-1070 (-1158)) (-758)) NIL) (($ $ (-631 (-1070 (-1158))) (-631 (-758))) NIL) (($ $) NIL (|has| |#1| (-229))) (($ $ (-758)) NIL (|has| |#1| (-229))) (($ $ (-1158)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-1069 |#1|) (-13 (-248 |#1| (-1158) (-1070 (-1158)) (-525 (-1070 (-1158)))) (-1023 (-1107 |#1| (-1158)))) (-1034)) (T -1069))
-NIL
-(-13 (-248 |#1| (-1158) (-1070 (-1158)) (-525 (-1070 (-1158)))) (-1023 (-1107 |#1| (-1158))))
-((-3062 (((-112) $ $) NIL)) (-1316 (((-758) $) NIL)) (-1576 ((|#1| $) 10)) (-2784 (((-3 |#1| "failed") $) NIL)) (-1668 ((|#1| $) NIL)) (-2342 (((-758) $) 11)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-3179 (($ |#1| (-758)) 9)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-1553 (($ $) NIL) (($ $ (-758)) NIL)) (-3075 (((-848) $) NIL) (($ |#1|) NIL)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 15)))
-(((-1070 |#1|) (-261 |#1|) (-836)) (T -1070))
-NIL
-(-261 |#1|)
-((-2879 (((-631 |#2|) (-1 |#2| |#1|) (-1076 |#1|)) 24 (|has| |#1| (-834))) (((-1076 |#2|) (-1 |#2| |#1|) (-1076 |#1|)) 14)))
-(((-1071 |#1| |#2|) (-10 -7 (-15 -2879 ((-1076 |#2|) (-1 |#2| |#1|) (-1076 |#1|))) (IF (|has| |#1| (-834)) (-15 -2879 ((-631 |#2|) (-1 |#2| |#1|) (-1076 |#1|))) |%noBranch|)) (-1195) (-1195)) (T -1071))
-((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1076 *5)) (-4 *5 (-834)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-631 *6)) (-5 *1 (-1071 *5 *6)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1076 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-1076 *6)) (-5 *1 (-1071 *5 *6)))))
-(-10 -7 (-15 -2879 ((-1076 |#2|) (-1 |#2| |#1|) (-1076 |#1|))) (IF (|has| |#1| (-834)) (-15 -2879 ((-631 |#2|) (-1 |#2| |#1|) (-1076 |#1|))) |%noBranch|))
-((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 17) (($ (-1163)) NIL) (((-1163) $) NIL)) (-2453 (((-631 (-1117)) $) 9)) (-1658 (((-112) $ $) NIL)))
-(((-1072) (-13 (-1065) (-10 -8 (-15 -2453 ((-631 (-1117)) $))))) (T -1072))
-((-2453 (*1 *2 *1) (-12 (-5 *2 (-631 (-1117))) (-5 *1 (-1072)))))
-(-13 (-1065) (-10 -8 (-15 -2453 ((-631 (-1117)) $))))
-((-2879 (((-1074 |#2|) (-1 |#2| |#1|) (-1074 |#1|)) 19)))
-(((-1073 |#1| |#2|) (-10 -7 (-15 -2879 ((-1074 |#2|) (-1 |#2| |#1|) (-1074 |#1|)))) (-1195) (-1195)) (T -1073))
-((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1074 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-1074 *6)) (-5 *1 (-1073 *5 *6)))))
-(-10 -7 (-15 -2879 ((-1074 |#2|) (-1 |#2| |#1|) (-1074 |#1|))))
-((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-1576 (((-1158) $) 11)) (-2063 (((-1076 |#1|) $) 12)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-1401 (($ (-1158) (-1076 |#1|)) 10)) (-3075 (((-848) $) 20 (|has| |#1| (-1082)))) (-1658 (((-112) $ $) 15 (|has| |#1| (-1082)))))
-(((-1074 |#1|) (-13 (-1195) (-10 -8 (-15 -1401 ($ (-1158) (-1076 |#1|))) (-15 -1576 ((-1158) $)) (-15 -2063 ((-1076 |#1|) $)) (IF (|has| |#1| (-1082)) (-6 (-1082)) |%noBranch|))) (-1195)) (T -1074))
-((-1401 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-1076 *4)) (-4 *4 (-1195)) (-5 *1 (-1074 *4)))) (-1576 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1074 *3)) (-4 *3 (-1195)))) (-2063 (*1 *2 *1) (-12 (-5 *2 (-1076 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-1195)))))
-(-13 (-1195) (-10 -8 (-15 -1401 ($ (-1158) (-1076 |#1|))) (-15 -1576 ((-1158) $)) (-15 -2063 ((-1076 |#1|) $)) (IF (|has| |#1| (-1082)) (-6 (-1082)) |%noBranch|)))
-((-2063 (($ |#1| |#1|) 8)) (-3633 ((|#1| $) 11)) (-4173 ((|#1| $) 13)) (-4196 (((-554) $) 9)) (-2786 ((|#1| $) 10)) (-4209 ((|#1| $) 12)) (-2927 (($ |#1|) 6)) (-4268 (($ |#1| |#1|) 15)) (-1447 (($ $ (-554)) 14)))
-(((-1075 |#1|) (-138) (-1195)) (T -1075))
-((-4268 (*1 *1 *2 *2) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-1195)))) (-1447 (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-4 *1 (-1075 *3)) (-4 *3 (-1195)))) (-4173 (*1 *2 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-1195)))) (-4209 (*1 *2 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-1195)))) (-3633 (*1 *2 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-1195)))) (-2786 (*1 *2 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-1195)))) (-4196 (*1 *2 *1) (-12 (-4 *1 (-1075 *3)) (-4 *3 (-1195)) (-5 *2 (-554)))) (-2063 (*1 *1 *2 *2) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-1195)))))
-(-13 (-606 |t#1|) (-10 -8 (-15 -4268 ($ |t#1| |t#1|)) (-15 -1447 ($ $ (-554))) (-15 -4173 (|t#1| $)) (-15 -4209 (|t#1| $)) (-15 -3633 (|t#1| $)) (-15 -2786 (|t#1| $)) (-15 -4196 ((-554) $)) (-15 -2063 ($ |t#1| |t#1|))))
-(((-606 |#1|) . T))
-((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2063 (($ |#1| |#1|) 15)) (-2879 (((-631 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-834)))) (-3633 ((|#1| $) 10)) (-4173 ((|#1| $) 9)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-4196 (((-554) $) 14)) (-2786 ((|#1| $) 12)) (-4209 ((|#1| $) 11)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-1845 (((-631 |#1|) $) 36 (|has| |#1| (-834))) (((-631 |#1|) (-631 $)) 35 (|has| |#1| (-834)))) (-2927 (($ |#1|) 26)) (-3075 (((-848) $) 25 (|has| |#1| (-1082)))) (-4268 (($ |#1| |#1|) 8)) (-1447 (($ $ (-554)) 16)) (-1658 (((-112) $ $) 19 (|has| |#1| (-1082)))))
-(((-1076 |#1|) (-13 (-1075 |#1|) (-10 -7 (IF (|has| |#1| (-1082)) (-6 (-1082)) |%noBranch|) (IF (|has| |#1| (-834)) (-6 (-1077 |#1| (-631 |#1|))) |%noBranch|))) (-1195)) (T -1076))
-NIL
-(-13 (-1075 |#1|) (-10 -7 (IF (|has| |#1| (-1082)) (-6 (-1082)) |%noBranch|) (IF (|has| |#1| (-834)) (-6 (-1077 |#1| (-631 |#1|))) |%noBranch|)))
-((-2063 (($ |#1| |#1|) 8)) (-2879 ((|#2| (-1 |#1| |#1|) $) 16)) (-3633 ((|#1| $) 11)) (-4173 ((|#1| $) 13)) (-4196 (((-554) $) 9)) (-2786 ((|#1| $) 10)) (-4209 ((|#1| $) 12)) (-1845 ((|#2| (-631 $)) 18) ((|#2| $) 17)) (-2927 (($ |#1|) 6)) (-4268 (($ |#1| |#1|) 15)) (-1447 (($ $ (-554)) 14)))
-(((-1077 |#1| |#2|) (-138) (-834) (-1131 |t#1|)) (T -1077))
-((-1845 (*1 *2 *3) (-12 (-5 *3 (-631 *1)) (-4 *1 (-1077 *4 *2)) (-4 *4 (-834)) (-4 *2 (-1131 *4)))) (-1845 (*1 *2 *1) (-12 (-4 *1 (-1077 *3 *2)) (-4 *3 (-834)) (-4 *2 (-1131 *3)))) (-2879 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1077 *4 *2)) (-4 *4 (-834)) (-4 *2 (-1131 *4)))))
-(-13 (-1075 |t#1|) (-10 -8 (-15 -1845 (|t#2| (-631 $))) (-15 -1845 (|t#2| $)) (-15 -2879 (|t#2| (-1 |t#1| |t#1|) $))))
-(((-606 |#1|) . T) ((-1075 |#1|) . T))
-((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2597 (((-1117) $) 12)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 20) (($ (-1163)) NIL) (((-1163) $) NIL)) (-4319 (((-631 (-1117)) $) 10)) (-1658 (((-112) $ $) NIL)))
-(((-1078) (-13 (-1065) (-10 -8 (-15 -4319 ((-631 (-1117)) $)) (-15 -2597 ((-1117) $))))) (T -1078))
-((-4319 (*1 *2 *1) (-12 (-5 *2 (-631 (-1117))) (-5 *1 (-1078)))) (-2597 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1078)))))
-(-13 (-1065) (-10 -8 (-15 -4319 ((-631 (-1117)) $)) (-15 -2597 ((-1117) $))))
-((-3382 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3775 (($ $ $) 10)) (-3372 (($ $ $) NIL) (($ $ |#2|) 15)))
-(((-1079 |#1| |#2|) (-10 -8 (-15 -3382 (|#1| |#2| |#1|)) (-15 -3382 (|#1| |#1| |#2|)) (-15 -3382 (|#1| |#1| |#1|)) (-15 -3775 (|#1| |#1| |#1|)) (-15 -3372 (|#1| |#1| |#2|)) (-15 -3372 (|#1| |#1| |#1|))) (-1080 |#2|) (-1082)) (T -1079))
-NIL
-(-10 -8 (-15 -3382 (|#1| |#2| |#1|)) (-15 -3382 (|#1| |#1| |#2|)) (-15 -3382 (|#1| |#1| |#1|)) (-15 -3775 (|#1| |#1| |#1|)) (-15 -3372 (|#1| |#1| |#2|)) (-15 -3372 (|#1| |#1| |#1|)))
-((-3062 (((-112) $ $) 7)) (-3382 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-3775 (($ $ $) 20)) (-2411 (((-112) $ $) 19)) (-3019 (((-112) $ (-758)) 35)) (-1489 (($) 25) (($ (-631 |#1|)) 24)) (-1871 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4373)))) (-4087 (($) 36 T CONST)) (-1571 (($ $) 59 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2574 (($ |#1| $) 58 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4373)))) (-2466 (((-631 |#1|) $) 43 (|has| $ (-6 -4373)))) (-1334 (((-112) $ $) 28)) (-2230 (((-112) $ (-758)) 34)) (-2379 (((-631 |#1|) $) 44 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 46 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 38)) (-3731 (((-112) $ (-758)) 33)) (-1613 (((-1140) $) 9)) (-3977 (($ $ $) 23)) (-2768 (((-1102) $) 10)) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2845 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 |#1|) (-631 |#1|)) 50 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 48 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 (-289 |#1|))) 47 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 29)) (-3543 (((-112) $) 32)) (-4240 (($) 31)) (-3372 (($ $ $) 22) (($ $ |#1|) 21)) (-2777 (((-758) |#1| $) 45 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) (((-758) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4373)))) (-1521 (($ $) 30)) (-2927 (((-530) $) 60 (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) 51)) (-3075 (((-848) $) 11)) (-2332 (($) 27) (($ (-631 |#1|)) 26)) (-2438 (((-112) (-1 (-112) |#1|) $) 40 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 6)) (-2563 (((-758) $) 37 (|has| $ (-6 -4373)))))
-(((-1080 |#1|) (-138) (-1082)) (T -1080))
-((-1334 (*1 *2 *1 *1) (-12 (-4 *1 (-1080 *3)) (-4 *3 (-1082)) (-5 *2 (-112)))) (-2332 (*1 *1) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1082)))) (-2332 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-4 *1 (-1080 *3)))) (-1489 (*1 *1) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1082)))) (-1489 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-4 *1 (-1080 *3)))) (-3977 (*1 *1 *1 *1) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1082)))) (-3372 (*1 *1 *1 *1) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1082)))) (-3372 (*1 *1 *1 *2) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1082)))) (-3775 (*1 *1 *1 *1) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1082)))) (-2411 (*1 *2 *1 *1) (-12 (-4 *1 (-1080 *3)) (-4 *3 (-1082)) (-5 *2 (-112)))) (-3382 (*1 *1 *1 *1) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1082)))) (-3382 (*1 *1 *1 *2) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1082)))) (-3382 (*1 *1 *2 *1) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1082)))))
-(-13 (-1082) (-149 |t#1|) (-10 -8 (-6 -4363) (-15 -1334 ((-112) $ $)) (-15 -2332 ($)) (-15 -2332 ($ (-631 |t#1|))) (-15 -1489 ($)) (-15 -1489 ($ (-631 |t#1|))) (-15 -3977 ($ $ $)) (-15 -3372 ($ $ $)) (-15 -3372 ($ $ |t#1|)) (-15 -3775 ($ $ $)) (-15 -2411 ((-112) $ $)) (-15 -3382 ($ $ $)) (-15 -3382 ($ $ |t#1|)) (-15 -3382 ($ |t#1| $))))
-(((-34) . T) ((-102) . T) ((-601 (-848)) . T) ((-149 |#1|) . T) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-1082) . T) ((-1195) . T))
-((-1613 (((-1140) $) 10)) (-2768 (((-1102) $) 8)))
-(((-1081 |#1|) (-10 -8 (-15 -1613 ((-1140) |#1|)) (-15 -2768 ((-1102) |#1|))) (-1082)) (T -1081))
-NIL
-(-10 -8 (-15 -1613 ((-1140) |#1|)) (-15 -2768 ((-1102) |#1|)))
-((-3062 (((-112) $ $) 7)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-1658 (((-112) $ $) 6)))
-(((-1082) (-138)) (T -1082))
-((-2768 (*1 *2 *1) (-12 (-4 *1 (-1082)) (-5 *2 (-1102)))) (-1613 (*1 *2 *1) (-12 (-4 *1 (-1082)) (-5 *2 (-1140)))))
-(-13 (-102) (-601 (-848)) (-10 -8 (-15 -2768 ((-1102) $)) (-15 -1613 ((-1140) $))))
-(((-102) . T) ((-601 (-848)) . T))
-((-3062 (((-112) $ $) NIL)) (-1508 (((-758)) 30)) (-2017 (($ (-631 (-906))) 52)) (-1345 (((-3 $ "failed") $ (-906) (-906)) 58)) (-3353 (($) 32)) (-3068 (((-112) (-906) $) 35)) (-3830 (((-906) $) 50)) (-1613 (((-1140) $) NIL)) (-2717 (($ (-906)) 31)) (-1572 (((-3 $ "failed") $ (-906)) 55)) (-2768 (((-1102) $) NIL)) (-1604 (((-1241 $)) 40)) (-1820 (((-631 (-906)) $) 24)) (-1538 (((-758) $ (-906) (-906)) 56)) (-3075 (((-848) $) 29)) (-1658 (((-112) $ $) 21)))
-(((-1083 |#1| |#2|) (-13 (-363) (-10 -8 (-15 -1572 ((-3 $ "failed") $ (-906))) (-15 -1345 ((-3 $ "failed") $ (-906) (-906))) (-15 -1820 ((-631 (-906)) $)) (-15 -2017 ($ (-631 (-906)))) (-15 -1604 ((-1241 $))) (-15 -3068 ((-112) (-906) $)) (-15 -1538 ((-758) $ (-906) (-906))))) (-906) (-906)) (T -1083))
-((-1572 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-906)) (-5 *1 (-1083 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1345 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-906)) (-5 *1 (-1083 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1820 (*1 *2 *1) (-12 (-5 *2 (-631 (-906))) (-5 *1 (-1083 *3 *4)) (-14 *3 (-906)) (-14 *4 (-906)))) (-2017 (*1 *1 *2) (-12 (-5 *2 (-631 (-906))) (-5 *1 (-1083 *3 *4)) (-14 *3 (-906)) (-14 *4 (-906)))) (-1604 (*1 *2) (-12 (-5 *2 (-1241 (-1083 *3 *4))) (-5 *1 (-1083 *3 *4)) (-14 *3 (-906)) (-14 *4 (-906)))) (-3068 (*1 *2 *3 *1) (-12 (-5 *3 (-906)) (-5 *2 (-112)) (-5 *1 (-1083 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-1538 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-906)) (-5 *2 (-758)) (-5 *1 (-1083 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-13 (-363) (-10 -8 (-15 -1572 ((-3 $ "failed") $ (-906))) (-15 -1345 ((-3 $ "failed") $ (-906) (-906))) (-15 -1820 ((-631 (-906)) $)) (-15 -2017 ($ (-631 (-906)))) (-15 -1604 ((-1241 $))) (-15 -3068 ((-112) (-906) $)) (-15 -1538 ((-758) $ (-906) (-906)))))
-((-3062 (((-112) $ $) NIL)) (-3509 (($) NIL (|has| |#1| (-363)))) (-3382 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-3775 (($ $ $) 72)) (-2411 (((-112) $ $) 73)) (-3019 (((-112) $ (-758)) NIL)) (-1508 (((-758)) NIL (|has| |#1| (-363)))) (-1489 (($ (-631 |#1|)) NIL) (($) 13)) (-2220 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-4087 (($) NIL T CONST)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1884 (($ |#1| $) 67 (|has| $ (-6 -4373))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2574 (($ |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4373)))) (-3353 (($) NIL (|has| |#1| (-363)))) (-2466 (((-631 |#1|) $) 19 (|has| $ (-6 -4373)))) (-1334 (((-112) $ $) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-4223 ((|#1| $) 57 (|has| |#1| (-836)))) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 66 (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2706 ((|#1| $) 55 (|has| |#1| (-836)))) (-2849 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 34)) (-3830 (((-906) $) NIL (|has| |#1| (-363)))) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL)) (-3977 (($ $ $) 70)) (-4150 ((|#1| $) 25)) (-2045 (($ |#1| $) 65)) (-2717 (($ (-906)) NIL (|has| |#1| (-363)))) (-2768 (((-1102) $) NIL)) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-2152 ((|#1| $) 27)) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) 21)) (-4240 (($) 11)) (-3372 (($ $ |#1|) NIL) (($ $ $) 71)) (-4310 (($) NIL) (($ (-631 |#1|)) NIL)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1521 (($ $) 16)) (-2927 (((-530) $) 52 (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) 61)) (-3043 (($ $) NIL (|has| |#1| (-363)))) (-3075 (((-848) $) NIL)) (-3813 (((-758) $) NIL)) (-2332 (($ (-631 |#1|)) NIL) (($) 12)) (-1591 (($ (-631 |#1|)) NIL)) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 54)) (-2563 (((-758) $) 10 (|has| $ (-6 -4373)))))
-(((-1084 |#1|) (-420 |#1|) (-1082)) (T -1084))
-NIL
-(-420 |#1|)
-((-3062 (((-112) $ $) 7)) (-3237 (((-112) $) 32)) (-3450 ((|#2| $) 27)) (-3117 (((-112) $) 33)) (-3942 ((|#1| $) 28)) (-3072 (((-112) $) 35)) (-1703 (((-112) $) 37)) (-3207 (((-112) $) 34)) (-1613 (((-1140) $) 9)) (-1289 (((-112) $) 31)) (-3476 ((|#3| $) 26)) (-2768 (((-1102) $) 10)) (-2947 (((-112) $) 30)) (-3302 ((|#4| $) 25)) (-1533 ((|#5| $) 24)) (-4329 (((-112) $ $) 38)) (-2064 (($ $ (-554)) 20) (($ $ (-631 (-554))) 19)) (-2344 (((-631 $) $) 29)) (-2927 (($ |#1|) 44) (($ |#2|) 43) (($ |#3|) 42) (($ |#4|) 41) (($ |#5|) 40) (($ (-631 $)) 39)) (-3075 (((-848) $) 11)) (-1438 (($ $) 22)) (-1427 (($ $) 23)) (-3967 (((-112) $) 36)) (-1658 (((-112) $ $) 6)) (-2563 (((-554) $) 21)))
-(((-1085 |#1| |#2| |#3| |#4| |#5|) (-138) (-1082) (-1082) (-1082) (-1082) (-1082)) (T -1085))
-((-4329 (*1 *2 *1 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-112)))) (-1703 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-112)))) (-3967 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-112)))) (-3072 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-112)))) (-3207 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-112)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-112)))) (-3237 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-112)))) (-1289 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-112)))) (-2947 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-112)))) (-2344 (*1 *2 *1) (-12 (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-631 *1)) (-4 *1 (-1085 *3 *4 *5 *6 *7)))) (-3942 (*1 *2 *1) (-12 (-4 *1 (-1085 *2 *3 *4 *5 *6)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *2 (-1082)))) (-3450 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *2 *4 *5 *6)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *2 (-1082)))) (-3476 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *2 *5 *6)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *2 (-1082)))) (-3302 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *2 *6)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *2 (-1082)))) (-1533 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *2)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *2 (-1082)))) (-1427 (*1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4 *5 *6)) (-4 *2 (-1082)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)))) (-1438 (*1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4 *5 *6)) (-4 *2 (-1082)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)))) (-2563 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-554)))) (-2064 (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)))) (-2064 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-554))) (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)))))
-(-13 (-1082) (-606 |t#1|) (-606 |t#2|) (-606 |t#3|) (-606 |t#4|) (-606 |t#4|) (-606 |t#5|) (-606 (-631 $)) (-10 -8 (-15 -4329 ((-112) $ $)) (-15 -1703 ((-112) $)) (-15 -3967 ((-112) $)) (-15 -3072 ((-112) $)) (-15 -3207 ((-112) $)) (-15 -3117 ((-112) $)) (-15 -3237 ((-112) $)) (-15 -1289 ((-112) $)) (-15 -2947 ((-112) $)) (-15 -2344 ((-631 $) $)) (-15 -3942 (|t#1| $)) (-15 -3450 (|t#2| $)) (-15 -3476 (|t#3| $)) (-15 -3302 (|t#4| $)) (-15 -1533 (|t#5| $)) (-15 -1427 ($ $)) (-15 -1438 ($ $)) (-15 -2563 ((-554) $)) (-15 -2064 ($ $ (-554))) (-15 -2064 ($ $ (-631 (-554))))))
-(((-102) . T) ((-601 (-848)) . T) ((-606 (-631 $)) . T) ((-606 |#1|) . T) ((-606 |#2|) . T) ((-606 |#3|) . T) ((-606 |#4|) . T) ((-606 |#5|) . T) ((-1082) . T))
-((-3062 (((-112) $ $) NIL)) (-3237 (((-112) $) NIL)) (-3450 (((-1158) $) NIL)) (-3117 (((-112) $) NIL)) (-3942 (((-1140) $) NIL)) (-3072 (((-112) $) NIL)) (-1703 (((-112) $) NIL)) (-3207 (((-112) $) NIL)) (-1613 (((-1140) $) NIL)) (-1289 (((-112) $) NIL)) (-3476 (((-554) $) NIL)) (-2768 (((-1102) $) NIL)) (-2947 (((-112) $) NIL)) (-3302 (((-221) $) NIL)) (-1533 (((-848) $) NIL)) (-4329 (((-112) $ $) NIL)) (-2064 (($ $ (-554)) NIL) (($ $ (-631 (-554))) NIL)) (-2344 (((-631 $) $) NIL)) (-2927 (($ (-1140)) NIL) (($ (-1158)) NIL) (($ (-554)) NIL) (($ (-221)) NIL) (($ (-848)) NIL) (($ (-631 $)) NIL)) (-3075 (((-848) $) NIL)) (-1438 (($ $) NIL)) (-1427 (($ $) NIL)) (-3967 (((-112) $) NIL)) (-1658 (((-112) $ $) NIL)) (-2563 (((-554) $) NIL)))
-(((-1086) (-1085 (-1140) (-1158) (-554) (-221) (-848))) (T -1086))
-NIL
-(-1085 (-1140) (-1158) (-554) (-221) (-848))
-((-3062 (((-112) $ $) NIL)) (-3237 (((-112) $) 40)) (-3450 ((|#2| $) 43)) (-3117 (((-112) $) 18)) (-3942 ((|#1| $) 19)) (-3072 (((-112) $) 38)) (-1703 (((-112) $) 14)) (-3207 (((-112) $) 39)) (-1613 (((-1140) $) NIL)) (-1289 (((-112) $) 41)) (-3476 ((|#3| $) 45)) (-2768 (((-1102) $) NIL)) (-2947 (((-112) $) 42)) (-3302 ((|#4| $) 44)) (-1533 ((|#5| $) 46)) (-4329 (((-112) $ $) 37)) (-2064 (($ $ (-554)) 57) (($ $ (-631 (-554))) 59)) (-2344 (((-631 $) $) 25)) (-2927 (($ |#1|) 48) (($ |#2|) 49) (($ |#3|) 50) (($ |#4|) 51) (($ |#5|) 52) (($ (-631 $)) 47)) (-3075 (((-848) $) 26)) (-1438 (($ $) 24)) (-1427 (($ $) 53)) (-3967 (((-112) $) 21)) (-1658 (((-112) $ $) 36)) (-2563 (((-554) $) 55)))
-(((-1087 |#1| |#2| |#3| |#4| |#5|) (-1085 |#1| |#2| |#3| |#4| |#5|) (-1082) (-1082) (-1082) (-1082) (-1082)) (T -1087))
-NIL
-(-1085 |#1| |#2| |#3| |#4| |#5|)
-((-1405 (((-1246) $) 23)) (-2094 (($ (-1158) (-429) |#2|) 11)) (-3075 (((-848) $) 16)))
-(((-1088 |#1| |#2|) (-13 (-390) (-10 -8 (-15 -2094 ($ (-1158) (-429) |#2|)))) (-836) (-425 |#1|)) (T -1088))
-((-2094 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1158)) (-5 *3 (-429)) (-4 *5 (-836)) (-5 *1 (-1088 *5 *4)) (-4 *4 (-425 *5)))))
-(-13 (-390) (-10 -8 (-15 -2094 ($ (-1158) (-429) |#2|))))
-((-3621 (((-112) |#5| |#5|) 38)) (-3000 (((-112) |#5| |#5|) 52)) (-1459 (((-112) |#5| (-631 |#5|)) 75) (((-112) |#5| |#5|) 61)) (-3170 (((-112) (-631 |#4|) (-631 |#4|)) 58)) (-3406 (((-112) (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|)) (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) 63)) (-1351 (((-1246)) 33)) (-3059 (((-1246) (-1140) (-1140) (-1140)) 29)) (-1481 (((-631 |#5|) (-631 |#5|)) 82)) (-3350 (((-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|)))) 80)) (-2704 (((-631 (-2 (|:| -4329 (-631 |#4|)) (|:| -2143 |#5|) (|:| |ineq| (-631 |#4|)))) (-631 |#4|) (-631 |#5|) (-112) (-112)) 102)) (-3723 (((-112) |#5| |#5|) 47)) (-1840 (((-3 (-112) "failed") |#5| |#5|) 71)) (-1453 (((-112) (-631 |#4|) (-631 |#4|)) 57)) (-3050 (((-112) (-631 |#4|) (-631 |#4|)) 59)) (-2178 (((-112) (-631 |#4|) (-631 |#4|)) 60)) (-1370 (((-3 (-2 (|:| -4329 (-631 |#4|)) (|:| -2143 |#5|) (|:| |ineq| (-631 |#4|))) "failed") (-631 |#4|) |#5| (-631 |#4|) (-112) (-112) (-112) (-112) (-112)) 98)) (-3549 (((-631 |#5|) (-631 |#5|)) 43)))
-(((-1089 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3059 ((-1246) (-1140) (-1140) (-1140))) (-15 -1351 ((-1246))) (-15 -3621 ((-112) |#5| |#5|)) (-15 -3549 ((-631 |#5|) (-631 |#5|))) (-15 -3723 ((-112) |#5| |#5|)) (-15 -3000 ((-112) |#5| |#5|)) (-15 -3170 ((-112) (-631 |#4|) (-631 |#4|))) (-15 -1453 ((-112) (-631 |#4|) (-631 |#4|))) (-15 -3050 ((-112) (-631 |#4|) (-631 |#4|))) (-15 -2178 ((-112) (-631 |#4|) (-631 |#4|))) (-15 -1840 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1459 ((-112) |#5| |#5|)) (-15 -1459 ((-112) |#5| (-631 |#5|))) (-15 -1481 ((-631 |#5|) (-631 |#5|))) (-15 -3406 ((-112) (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|)) (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|)))) (-15 -3350 ((-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) (-15 -2704 ((-631 (-2 (|:| -4329 (-631 |#4|)) (|:| -2143 |#5|) (|:| |ineq| (-631 |#4|)))) (-631 |#4|) (-631 |#5|) (-112) (-112))) (-15 -1370 ((-3 (-2 (|:| -4329 (-631 |#4|)) (|:| -2143 |#5|) (|:| |ineq| (-631 |#4|))) "failed") (-631 |#4|) |#5| (-631 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-446) (-780) (-836) (-1048 |#1| |#2| |#3|) (-1054 |#1| |#2| |#3| |#4|)) (T -1089))
-((-1370 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836)) (-4 *9 (-1048 *6 *7 *8)) (-5 *2 (-2 (|:| -4329 (-631 *9)) (|:| -2143 *4) (|:| |ineq| (-631 *9)))) (-5 *1 (-1089 *6 *7 *8 *9 *4)) (-5 *3 (-631 *9)) (-4 *4 (-1054 *6 *7 *8 *9)))) (-2704 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-631 *10)) (-5 *5 (-112)) (-4 *10 (-1054 *6 *7 *8 *9)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836)) (-4 *9 (-1048 *6 *7 *8)) (-5 *2 (-631 (-2 (|:| -4329 (-631 *9)) (|:| -2143 *10) (|:| |ineq| (-631 *9))))) (-5 *1 (-1089 *6 *7 *8 *9 *10)) (-5 *3 (-631 *9)))) (-3350 (*1 *2 *2) (-12 (-5 *2 (-631 (-2 (|:| |val| (-631 *6)) (|:| -2143 *7)))) (-4 *6 (-1048 *3 *4 *5)) (-4 *7 (-1054 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-1089 *3 *4 *5 *6 *7)))) (-3406 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-631 *7)) (|:| -2143 *8))) (-4 *7 (-1048 *4 *5 *6)) (-4 *8 (-1054 *4 *5 *6 *7)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) (-5 *1 (-1089 *4 *5 *6 *7 *8)))) (-1481 (*1 *2 *2) (-12 (-5 *2 (-631 *7)) (-4 *7 (-1054 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *1 (-1089 *3 *4 *5 *6 *7)))) (-1459 (*1 *2 *3 *4) (-12 (-5 *4 (-631 *3)) (-4 *3 (-1054 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *8 (-1048 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1089 *5 *6 *7 *8 *3)))) (-1459 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1089 *4 *5 *6 *7 *3)) (-4 *3 (-1054 *4 *5 *6 *7)))) (-1840 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1089 *4 *5 *6 *7 *3)) (-4 *3 (-1054 *4 *5 *6 *7)))) (-2178 (*1 *2 *3 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) (-5 *1 (-1089 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7)))) (-3050 (*1 *2 *3 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) (-5 *1 (-1089 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7)))) (-1453 (*1 *2 *3 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) (-5 *1 (-1089 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7)))) (-3170 (*1 *2 *3 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) (-5 *1 (-1089 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7)))) (-3000 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1089 *4 *5 *6 *7 *3)) (-4 *3 (-1054 *4 *5 *6 *7)))) (-3723 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1089 *4 *5 *6 *7 *3)) (-4 *3 (-1054 *4 *5 *6 *7)))) (-3549 (*1 *2 *2) (-12 (-5 *2 (-631 *7)) (-4 *7 (-1054 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *1 (-1089 *3 *4 *5 *6 *7)))) (-3621 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1089 *4 *5 *6 *7 *3)) (-4 *3 (-1054 *4 *5 *6 *7)))) (-1351 (*1 *2) (-12 (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-1246)) (-5 *1 (-1089 *3 *4 *5 *6 *7)) (-4 *7 (-1054 *3 *4 *5 *6)))) (-3059 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1140)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-1246)) (-5 *1 (-1089 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3059 ((-1246) (-1140) (-1140) (-1140))) (-15 -1351 ((-1246))) (-15 -3621 ((-112) |#5| |#5|)) (-15 -3549 ((-631 |#5|) (-631 |#5|))) (-15 -3723 ((-112) |#5| |#5|)) (-15 -3000 ((-112) |#5| |#5|)) (-15 -3170 ((-112) (-631 |#4|) (-631 |#4|))) (-15 -1453 ((-112) (-631 |#4|) (-631 |#4|))) (-15 -3050 ((-112) (-631 |#4|) (-631 |#4|))) (-15 -2178 ((-112) (-631 |#4|) (-631 |#4|))) (-15 -1840 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1459 ((-112) |#5| |#5|)) (-15 -1459 ((-112) |#5| (-631 |#5|))) (-15 -1481 ((-631 |#5|) (-631 |#5|))) (-15 -3406 ((-112) (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|)) (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|)))) (-15 -3350 ((-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) (-15 -2704 ((-631 (-2 (|:| -4329 (-631 |#4|)) (|:| -2143 |#5|) (|:| |ineq| (-631 |#4|)))) (-631 |#4|) (-631 |#5|) (-112) (-112))) (-15 -1370 ((-3 (-2 (|:| -4329 (-631 |#4|)) (|:| -2143 |#5|) (|:| |ineq| (-631 |#4|))) "failed") (-631 |#4|) |#5| (-631 |#4|) (-112) (-112) (-112) (-112) (-112))))
-((-2480 (((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#5|) 96)) (-1422 (((-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) |#4| |#4| |#5|) 72)) (-3520 (((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#4| |#5|) 90)) (-2619 (((-631 |#5|) |#4| |#5|) 110)) (-1284 (((-631 |#5|) |#4| |#5|) 117)) (-1694 (((-631 |#5|) |#4| |#5|) 118)) (-1941 (((-631 (-2 (|:| |val| (-112)) (|:| -2143 |#5|))) |#4| |#5|) 97)) (-2692 (((-631 (-2 (|:| |val| (-112)) (|:| -2143 |#5|))) |#4| |#5|) 116)) (-4049 (((-631 (-2 (|:| |val| (-112)) (|:| -2143 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-3658 (((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) |#3| (-112)) 84) (((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-2929 (((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#4| |#5|) 79)) (-2924 (((-1246)) 37)) (-3888 (((-1246)) 26)) (-3959 (((-1246) (-1140) (-1140) (-1140)) 33)) (-4239 (((-1246) (-1140) (-1140) (-1140)) 22)))
-(((-1090 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4239 ((-1246) (-1140) (-1140) (-1140))) (-15 -3888 ((-1246))) (-15 -3959 ((-1246) (-1140) (-1140) (-1140))) (-15 -2924 ((-1246))) (-15 -1422 ((-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) |#4| |#4| |#5|)) (-15 -3658 ((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3658 ((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) |#3| (-112))) (-15 -2929 ((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#4| |#5|)) (-15 -3520 ((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#4| |#5|)) (-15 -4049 ((-112) |#4| |#5|)) (-15 -1941 ((-631 (-2 (|:| |val| (-112)) (|:| -2143 |#5|))) |#4| |#5|)) (-15 -2619 ((-631 |#5|) |#4| |#5|)) (-15 -2692 ((-631 (-2 (|:| |val| (-112)) (|:| -2143 |#5|))) |#4| |#5|)) (-15 -1284 ((-631 |#5|) |#4| |#5|)) (-15 -4049 ((-631 (-2 (|:| |val| (-112)) (|:| -2143 |#5|))) |#4| |#5|)) (-15 -1694 ((-631 |#5|) |#4| |#5|)) (-15 -2480 ((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#5|))) (-446) (-780) (-836) (-1048 |#1| |#2| |#3|) (-1054 |#1| |#2| |#3| |#4|)) (T -1090))
-((-2480 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *4)))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-1694 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-631 *4)) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-4049 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-631 (-2 (|:| |val| (-112)) (|:| -2143 *4)))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-1284 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-631 *4)) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-2692 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-631 (-2 (|:| |val| (-112)) (|:| -2143 *4)))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-2619 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-631 *4)) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-1941 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-631 (-2 (|:| |val| (-112)) (|:| -2143 *4)))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-4049 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-3520 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *4)))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-2929 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *4)))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-3658 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 (-2 (|:| |val| (-631 *8)) (|:| -2143 *9)))) (-5 *5 (-112)) (-4 *8 (-1048 *6 *7 *4)) (-4 *9 (-1054 *6 *7 *4 *8)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *4 (-836)) (-5 *2 (-631 (-2 (|:| |val| *8) (|:| -2143 *9)))) (-5 *1 (-1090 *6 *7 *4 *8 *9)))) (-3658 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836)) (-4 *3 (-1048 *6 *7 *8)) (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *4)))) (-5 *1 (-1090 *6 *7 *8 *3 *4)) (-4 *4 (-1054 *6 *7 *8 *3)))) (-1422 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4)))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-2924 (*1 *2) (-12 (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-1246)) (-5 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *7 (-1054 *3 *4 *5 *6)))) (-3959 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1140)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-1246)) (-5 *1 (-1090 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7)))) (-3888 (*1 *2) (-12 (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-1246)) (-5 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *7 (-1054 *3 *4 *5 *6)))) (-4239 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1140)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-1246)) (-5 *1 (-1090 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7)))))
-(-10 -7 (-15 -4239 ((-1246) (-1140) (-1140) (-1140))) (-15 -3888 ((-1246))) (-15 -3959 ((-1246) (-1140) (-1140) (-1140))) (-15 -2924 ((-1246))) (-15 -1422 ((-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) |#4| |#4| |#5|)) (-15 -3658 ((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3658 ((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) |#3| (-112))) (-15 -2929 ((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#4| |#5|)) (-15 -3520 ((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#4| |#5|)) (-15 -4049 ((-112) |#4| |#5|)) (-15 -1941 ((-631 (-2 (|:| |val| (-112)) (|:| -2143 |#5|))) |#4| |#5|)) (-15 -2619 ((-631 |#5|) |#4| |#5|)) (-15 -2692 ((-631 (-2 (|:| |val| (-112)) (|:| -2143 |#5|))) |#4| |#5|)) (-15 -1284 ((-631 |#5|) |#4| |#5|)) (-15 -4049 ((-631 (-2 (|:| |val| (-112)) (|:| -2143 |#5|))) |#4| |#5|)) (-15 -1694 ((-631 |#5|) |#4| |#5|)) (-15 -2480 ((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#5|)))
-((-3062 (((-112) $ $) 7)) (-3960 (((-631 (-2 (|:| -2498 $) (|:| -1303 (-631 |#4|)))) (-631 |#4|)) 85)) (-3176 (((-631 $) (-631 |#4|)) 86) (((-631 $) (-631 |#4|) (-112)) 111)) (-2405 (((-631 |#3|) $) 33)) (-1678 (((-112) $) 26)) (-3005 (((-112) $) 17 (|has| |#1| (-546)))) (-2630 (((-112) |#4| $) 101) (((-112) $) 97)) (-4057 ((|#4| |#4| $) 92)) (-3278 (((-631 (-2 (|:| |val| |#4|) (|:| -2143 $))) |#4| $) 126)) (-3303 (((-2 (|:| |under| $) (|:| -4339 $) (|:| |upper| $)) $ |#3|) 27)) (-3019 (((-112) $ (-758)) 44)) (-1871 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4373))) (((-3 |#4| "failed") $ |#3|) 79)) (-4087 (($) 45 T CONST)) (-1930 (((-112) $) 22 (|has| |#1| (-546)))) (-1404 (((-112) $ $) 24 (|has| |#1| (-546)))) (-3262 (((-112) $ $) 23 (|has| |#1| (-546)))) (-2713 (((-112) $) 25 (|has| |#1| (-546)))) (-2242 (((-631 |#4|) (-631 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1380 (((-631 |#4|) (-631 |#4|) $) 18 (|has| |#1| (-546)))) (-4204 (((-631 |#4|) (-631 |#4|) $) 19 (|has| |#1| (-546)))) (-2784 (((-3 $ "failed") (-631 |#4|)) 36)) (-1668 (($ (-631 |#4|)) 35)) (-1551 (((-3 $ "failed") $) 82)) (-2930 ((|#4| |#4| $) 89)) (-1571 (($ $) 68 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373))))) (-2574 (($ |#4| $) 67 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4373)))) (-2423 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-546)))) (-2857 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4210 ((|#4| |#4| $) 87)) (-3676 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4373))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4373))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1971 (((-2 (|:| -2498 (-631 |#4|)) (|:| -1303 (-631 |#4|))) $) 105)) (-4183 (((-112) |#4| $) 136)) (-4155 (((-112) |#4| $) 133)) (-2892 (((-112) |#4| $) 137) (((-112) $) 134)) (-2466 (((-631 |#4|) $) 52 (|has| $ (-6 -4373)))) (-4253 (((-112) |#4| $) 104) (((-112) $) 103)) (-3954 ((|#3| $) 34)) (-2230 (((-112) $ (-758)) 43)) (-2379 (((-631 |#4|) $) 53 (|has| $ (-6 -4373)))) (-3068 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#4| |#4|) $) 47)) (-2643 (((-631 |#3|) $) 32)) (-1400 (((-112) |#3| $) 31)) (-3731 (((-112) $ (-758)) 42)) (-1613 (((-1140) $) 9)) (-1343 (((-3 |#4| (-631 $)) |#4| |#4| $) 128)) (-2543 (((-631 (-2 (|:| |val| |#4|) (|:| -2143 $))) |#4| |#4| $) 127)) (-2597 (((-3 |#4| "failed") $) 83)) (-2953 (((-631 $) |#4| $) 129)) (-3841 (((-3 (-112) (-631 $)) |#4| $) 132)) (-3874 (((-631 (-2 (|:| |val| (-112)) (|:| -2143 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3977 (((-631 $) |#4| $) 125) (((-631 $) (-631 |#4|) $) 124) (((-631 $) (-631 |#4|) (-631 $)) 123) (((-631 $) |#4| (-631 $)) 122)) (-3479 (($ |#4| $) 117) (($ (-631 |#4|) $) 116)) (-2627 (((-631 |#4|) $) 107)) (-3007 (((-112) |#4| $) 99) (((-112) $) 95)) (-1536 ((|#4| |#4| $) 90)) (-2178 (((-112) $ $) 110)) (-3548 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-546)))) (-3518 (((-112) |#4| $) 100) (((-112) $) 96)) (-3492 ((|#4| |#4| $) 91)) (-2768 (((-1102) $) 10)) (-1539 (((-3 |#4| "failed") $) 84)) (-1652 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3948 (((-3 $ "failed") $ |#4|) 78)) (-4282 (($ $ |#4|) 77) (((-631 $) |#4| $) 115) (((-631 $) |#4| (-631 $)) 114) (((-631 $) (-631 |#4|) $) 113) (((-631 $) (-631 |#4|) (-631 $)) 112)) (-2845 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 |#4|) (-631 |#4|)) 59 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-289 |#4|)) 57 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-631 (-289 |#4|))) 56 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))))) (-2494 (((-112) $ $) 38)) (-3543 (((-112) $) 41)) (-4240 (($) 40)) (-3308 (((-758) $) 106)) (-2777 (((-758) |#4| $) 54 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373)))) (((-758) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4373)))) (-1521 (($ $) 39)) (-2927 (((-530) $) 69 (|has| |#4| (-602 (-530))))) (-3089 (($ (-631 |#4|)) 60)) (-2538 (($ $ |#3|) 28)) (-2384 (($ $ |#3|) 30)) (-2258 (($ $) 88)) (-2128 (($ $ |#3|) 29)) (-3075 (((-848) $) 11) (((-631 |#4|) $) 37)) (-2347 (((-758) $) 76 (|has| |#3| (-363)))) (-2792 (((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 |#4|))) "failed") (-631 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 |#4|))) "failed") (-631 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-3579 (((-112) $ (-1 (-112) |#4| (-631 |#4|))) 98)) (-3850 (((-631 $) |#4| $) 121) (((-631 $) |#4| (-631 $)) 120) (((-631 $) (-631 |#4|) $) 119) (((-631 $) (-631 |#4|) (-631 $)) 118)) (-2438 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4373)))) (-4267 (((-631 |#3|) $) 81)) (-4351 (((-112) |#4| $) 135)) (-3536 (((-112) |#3| $) 80)) (-1658 (((-112) $ $) 6)) (-2563 (((-758) $) 46 (|has| $ (-6 -4373)))))
-(((-1091 |#1| |#2| |#3| |#4|) (-138) (-446) (-780) (-836) (-1048 |t#1| |t#2| |t#3|)) (T -1091))
-NIL
-(-13 (-1054 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-102) . T) ((-601 (-631 |#4|)) . T) ((-601 (-848)) . T) ((-149 |#4|) . T) ((-602 (-530)) |has| |#4| (-602 (-530))) ((-304 |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))) ((-483 |#4|) . T) ((-508 |#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))) ((-961 |#1| |#2| |#3| |#4|) . T) ((-1054 |#1| |#2| |#3| |#4|) . T) ((-1082) . T) ((-1188 |#1| |#2| |#3| |#4|) . T) ((-1195) . T))
-((-2009 (((-631 (-554)) (-554) (-554) (-554)) 22)) (-2851 (((-631 (-554)) (-554) (-554) (-554)) 12)) (-3397 (((-631 (-554)) (-554) (-554) (-554)) 18)) (-2762 (((-554) (-554) (-554)) 9)) (-2721 (((-1241 (-554)) (-631 (-554)) (-1241 (-554)) (-554)) 46) (((-1241 (-554)) (-1241 (-554)) (-1241 (-554)) (-554)) 41)) (-2166 (((-631 (-554)) (-631 (-554)) (-631 (-554)) (-112)) 28)) (-4138 (((-675 (-554)) (-631 (-554)) (-631 (-554)) (-675 (-554))) 45)) (-3329 (((-675 (-554)) (-631 (-554)) (-631 (-554))) 33)) (-2897 (((-631 (-675 (-554))) (-631 (-554))) 35)) (-2506 (((-631 (-554)) (-631 (-554)) (-631 (-554)) (-675 (-554))) 49)) (-3477 (((-675 (-554)) (-631 (-554)) (-631 (-554)) (-631 (-554))) 57)))
-(((-1092) (-10 -7 (-15 -3477 ((-675 (-554)) (-631 (-554)) (-631 (-554)) (-631 (-554)))) (-15 -2506 ((-631 (-554)) (-631 (-554)) (-631 (-554)) (-675 (-554)))) (-15 -2897 ((-631 (-675 (-554))) (-631 (-554)))) (-15 -3329 ((-675 (-554)) (-631 (-554)) (-631 (-554)))) (-15 -4138 ((-675 (-554)) (-631 (-554)) (-631 (-554)) (-675 (-554)))) (-15 -2166 ((-631 (-554)) (-631 (-554)) (-631 (-554)) (-112))) (-15 -2721 ((-1241 (-554)) (-1241 (-554)) (-1241 (-554)) (-554))) (-15 -2721 ((-1241 (-554)) (-631 (-554)) (-1241 (-554)) (-554))) (-15 -2762 ((-554) (-554) (-554))) (-15 -3397 ((-631 (-554)) (-554) (-554) (-554))) (-15 -2851 ((-631 (-554)) (-554) (-554) (-554))) (-15 -2009 ((-631 (-554)) (-554) (-554) (-554))))) (T -1092))
-((-2009 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-1092)) (-5 *3 (-554)))) (-2851 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-1092)) (-5 *3 (-554)))) (-3397 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-1092)) (-5 *3 (-554)))) (-2762 (*1 *2 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-1092)))) (-2721 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1241 (-554))) (-5 *3 (-631 (-554))) (-5 *4 (-554)) (-5 *1 (-1092)))) (-2721 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1241 (-554))) (-5 *3 (-554)) (-5 *1 (-1092)))) (-2166 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-631 (-554))) (-5 *3 (-112)) (-5 *1 (-1092)))) (-4138 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-675 (-554))) (-5 *3 (-631 (-554))) (-5 *1 (-1092)))) (-3329 (*1 *2 *3 *3) (-12 (-5 *3 (-631 (-554))) (-5 *2 (-675 (-554))) (-5 *1 (-1092)))) (-2897 (*1 *2 *3) (-12 (-5 *3 (-631 (-554))) (-5 *2 (-631 (-675 (-554)))) (-5 *1 (-1092)))) (-2506 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-631 (-554))) (-5 *3 (-675 (-554))) (-5 *1 (-1092)))) (-3477 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-631 (-554))) (-5 *2 (-675 (-554))) (-5 *1 (-1092)))))
-(-10 -7 (-15 -3477 ((-675 (-554)) (-631 (-554)) (-631 (-554)) (-631 (-554)))) (-15 -2506 ((-631 (-554)) (-631 (-554)) (-631 (-554)) (-675 (-554)))) (-15 -2897 ((-631 (-675 (-554))) (-631 (-554)))) (-15 -3329 ((-675 (-554)) (-631 (-554)) (-631 (-554)))) (-15 -4138 ((-675 (-554)) (-631 (-554)) (-631 (-554)) (-675 (-554)))) (-15 -2166 ((-631 (-554)) (-631 (-554)) (-631 (-554)) (-112))) (-15 -2721 ((-1241 (-554)) (-1241 (-554)) (-1241 (-554)) (-554))) (-15 -2721 ((-1241 (-554)) (-631 (-554)) (-1241 (-554)) (-554))) (-15 -2762 ((-554) (-554) (-554))) (-15 -3397 ((-631 (-554)) (-554) (-554) (-554))) (-15 -2851 ((-631 (-554)) (-554) (-554) (-554))) (-15 -2009 ((-631 (-554)) (-554) (-554) (-554))))
-((** (($ $ (-906)) 10)))
-(((-1093 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-906)))) (-1094)) (T -1093))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-906))))
-((-3062 (((-112) $ $) 7)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-1658 (((-112) $ $) 6)) (** (($ $ (-906)) 13)) (* (($ $ $) 14)))
-(((-1094) (-138)) (T -1094))
-((* (*1 *1 *1 *1) (-4 *1 (-1094))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1094)) (-5 *2 (-906)))))
-(-13 (-1082) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-906)))))
-(((-102) . T) ((-601 (-848)) . T) ((-1082) . T))
-((-3062 (((-112) $ $) NIL (|has| |#3| (-1082)))) (-1695 (((-112) $) NIL (|has| |#3| (-130)))) (-2327 (($ (-906)) NIL (|has| |#3| (-1034)))) (-4233 (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-1349 (($ $ $) NIL (|has| |#3| (-780)))) (-2934 (((-3 $ "failed") $ $) NIL (|has| |#3| (-130)))) (-3019 (((-112) $ (-758)) NIL)) (-1508 (((-758)) NIL (|has| |#3| (-363)))) (-4219 (((-554) $) NIL (|has| |#3| (-834)))) (-1501 ((|#3| $ (-554) |#3|) NIL (|has| $ (-6 -4374)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) NIL (-12 (|has| |#3| (-1023 (-554))) (|has| |#3| (-1082)))) (((-3 (-402 (-554)) "failed") $) NIL (-12 (|has| |#3| (-1023 (-402 (-554)))) (|has| |#3| (-1082)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1082)))) (-1668 (((-554) $) NIL (-12 (|has| |#3| (-1023 (-554))) (|has| |#3| (-1082)))) (((-402 (-554)) $) NIL (-12 (|has| |#3| (-1023 (-402 (-554)))) (|has| |#3| (-1082)))) ((|#3| $) NIL (|has| |#3| (-1082)))) (-3699 (((-675 (-554)) (-675 $)) NIL (-12 (|has| |#3| (-627 (-554))) (|has| |#3| (-1034)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (-12 (|has| |#3| (-627 (-554))) (|has| |#3| (-1034)))) (((-2 (|:| -2866 (-675 |#3|)) (|:| |vec| (-1241 |#3|))) (-675 $) (-1241 $)) NIL (|has| |#3| (-1034))) (((-675 |#3|) (-675 $)) NIL (|has| |#3| (-1034)))) (-1320 (((-3 $ "failed") $) NIL (|has| |#3| (-713)))) (-3353 (($) NIL (|has| |#3| (-363)))) (-2862 ((|#3| $ (-554) |#3|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#3| $ (-554)) 12)) (-2745 (((-112) $) NIL (|has| |#3| (-834)))) (-2466 (((-631 |#3|) $) NIL (|has| $ (-6 -4373)))) (-3248 (((-112) $) NIL (|has| |#3| (-713)))) (-4304 (((-112) $) NIL (|has| |#3| (-834)))) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) NIL (|has| (-554) (-836)))) (-4223 (($ $ $) NIL (-3994 (|has| |#3| (-780)) (|has| |#3| (-834))))) (-2379 (((-631 |#3|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#3| (-1082))))) (-2256 (((-554) $) NIL (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (-3994 (|has| |#3| (-780)) (|has| |#3| (-834))))) (-2849 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#3| |#3|) $) NIL)) (-3830 (((-906) $) NIL (|has| |#3| (-363)))) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (|has| |#3| (-1082)))) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) NIL)) (-2717 (($ (-906)) NIL (|has| |#3| (-363)))) (-2768 (((-1102) $) NIL (|has| |#3| (-1082)))) (-1539 ((|#3| $) NIL (|has| (-554) (-836)))) (-2441 (($ $ |#3|) NIL (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#3|))) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082)))) (($ $ (-289 |#3|)) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082)))) (($ $ (-631 |#3|) (-631 |#3|)) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#3| (-1082))))) (-2625 (((-631 |#3|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#3| $ (-554) |#3|) NIL) ((|#3| $ (-554)) NIL)) (-3748 ((|#3| $ $) NIL (|has| |#3| (-1034)))) (-2313 (($ (-1241 |#3|)) NIL)) (-3330 (((-133)) NIL (|has| |#3| (-358)))) (-1553 (($ $) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1034)))) (($ $ (-758)) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1034)))) (($ $ (-1158)) NIL (-12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034)))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034)))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034)))) (($ $ (-1 |#3| |#3|) (-758)) NIL (|has| |#3| (-1034))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1034)))) (-2777 (((-758) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4373))) (((-758) |#3| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#3| (-1082))))) (-1521 (($ $) NIL)) (-3075 (((-1241 |#3|) $) NIL) (($ (-554)) NIL (-3994 (-12 (|has| |#3| (-1023 (-554))) (|has| |#3| (-1082))) (|has| |#3| (-1034)))) (($ (-402 (-554))) NIL (-12 (|has| |#3| (-1023 (-402 (-554)))) (|has| |#3| (-1082)))) (($ |#3|) NIL (|has| |#3| (-1082))) (((-848) $) NIL (|has| |#3| (-601 (-848))))) (-2261 (((-758)) NIL (|has| |#3| (-1034)))) (-2438 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4373)))) (-1700 (($ $) NIL (|has| |#3| (-834)))) (-2004 (($) NIL (|has| |#3| (-130)) CONST)) (-2014 (($) NIL (|has| |#3| (-713)) CONST)) (-1787 (($ $) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1034)))) (($ $ (-758)) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1034)))) (($ $ (-1158)) NIL (-12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034)))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034)))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034)))) (($ $ (-1 |#3| |#3|) (-758)) NIL (|has| |#3| (-1034))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1034)))) (-1708 (((-112) $ $) NIL (-3994 (|has| |#3| (-780)) (|has| |#3| (-834))))) (-1686 (((-112) $ $) NIL (-3994 (|has| |#3| (-780)) (|has| |#3| (-834))))) (-1658 (((-112) $ $) NIL (|has| |#3| (-1082)))) (-1697 (((-112) $ $) NIL (-3994 (|has| |#3| (-780)) (|has| |#3| (-834))))) (-1676 (((-112) $ $) 17 (-3994 (|has| |#3| (-780)) (|has| |#3| (-834))))) (-1752 (($ $ |#3|) NIL (|has| |#3| (-358)))) (-1744 (($ $ $) NIL (|has| |#3| (-1034))) (($ $) NIL (|has| |#3| (-1034)))) (-1735 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-758)) NIL (|has| |#3| (-713))) (($ $ (-906)) NIL (|has| |#3| (-713)))) (* (($ (-554) $) NIL (|has| |#3| (-1034))) (($ $ $) NIL (|has| |#3| (-713))) (($ $ |#3|) NIL (|has| |#3| (-713))) (($ |#3| $) NIL (|has| |#3| (-713))) (($ (-758) $) NIL (|has| |#3| (-130))) (($ (-906) $) NIL (|has| |#3| (-25)))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-1095 |#1| |#2| |#3|) (-234 |#1| |#3|) (-758) (-758) (-780)) (T -1095))
-NIL
-(-234 |#1| |#3|)
-((-3053 (((-631 (-1214 |#2| |#1|)) (-1214 |#2| |#1|) (-1214 |#2| |#1|)) 37)) (-1808 (((-554) (-1214 |#2| |#1|)) 69 (|has| |#1| (-446)))) (-3668 (((-554) (-1214 |#2| |#1|)) 54)) (-2954 (((-631 (-1214 |#2| |#1|)) (-1214 |#2| |#1|) (-1214 |#2| |#1|)) 45)) (-2950 (((-554) (-1214 |#2| |#1|) (-1214 |#2| |#1|)) 68 (|has| |#1| (-446)))) (-3384 (((-631 |#1|) (-1214 |#2| |#1|) (-1214 |#2| |#1|)) 48)) (-3441 (((-554) (-1214 |#2| |#1|) (-1214 |#2| |#1|)) 53)))
-(((-1096 |#1| |#2|) (-10 -7 (-15 -3053 ((-631 (-1214 |#2| |#1|)) (-1214 |#2| |#1|) (-1214 |#2| |#1|))) (-15 -2954 ((-631 (-1214 |#2| |#1|)) (-1214 |#2| |#1|) (-1214 |#2| |#1|))) (-15 -3384 ((-631 |#1|) (-1214 |#2| |#1|) (-1214 |#2| |#1|))) (-15 -3441 ((-554) (-1214 |#2| |#1|) (-1214 |#2| |#1|))) (-15 -3668 ((-554) (-1214 |#2| |#1|))) (IF (|has| |#1| (-446)) (PROGN (-15 -2950 ((-554) (-1214 |#2| |#1|) (-1214 |#2| |#1|))) (-15 -1808 ((-554) (-1214 |#2| |#1|)))) |%noBranch|)) (-807) (-1158)) (T -1096))
-((-1808 (*1 *2 *3) (-12 (-5 *3 (-1214 *5 *4)) (-4 *4 (-446)) (-4 *4 (-807)) (-14 *5 (-1158)) (-5 *2 (-554)) (-5 *1 (-1096 *4 *5)))) (-2950 (*1 *2 *3 *3) (-12 (-5 *3 (-1214 *5 *4)) (-4 *4 (-446)) (-4 *4 (-807)) (-14 *5 (-1158)) (-5 *2 (-554)) (-5 *1 (-1096 *4 *5)))) (-3668 (*1 *2 *3) (-12 (-5 *3 (-1214 *5 *4)) (-4 *4 (-807)) (-14 *5 (-1158)) (-5 *2 (-554)) (-5 *1 (-1096 *4 *5)))) (-3441 (*1 *2 *3 *3) (-12 (-5 *3 (-1214 *5 *4)) (-4 *4 (-807)) (-14 *5 (-1158)) (-5 *2 (-554)) (-5 *1 (-1096 *4 *5)))) (-3384 (*1 *2 *3 *3) (-12 (-5 *3 (-1214 *5 *4)) (-4 *4 (-807)) (-14 *5 (-1158)) (-5 *2 (-631 *4)) (-5 *1 (-1096 *4 *5)))) (-2954 (*1 *2 *3 *3) (-12 (-4 *4 (-807)) (-14 *5 (-1158)) (-5 *2 (-631 (-1214 *5 *4))) (-5 *1 (-1096 *4 *5)) (-5 *3 (-1214 *5 *4)))) (-3053 (*1 *2 *3 *3) (-12 (-4 *4 (-807)) (-14 *5 (-1158)) (-5 *2 (-631 (-1214 *5 *4))) (-5 *1 (-1096 *4 *5)) (-5 *3 (-1214 *5 *4)))))
-(-10 -7 (-15 -3053 ((-631 (-1214 |#2| |#1|)) (-1214 |#2| |#1|) (-1214 |#2| |#1|))) (-15 -2954 ((-631 (-1214 |#2| |#1|)) (-1214 |#2| |#1|) (-1214 |#2| |#1|))) (-15 -3384 ((-631 |#1|) (-1214 |#2| |#1|) (-1214 |#2| |#1|))) (-15 -3441 ((-554) (-1214 |#2| |#1|) (-1214 |#2| |#1|))) (-15 -3668 ((-554) (-1214 |#2| |#1|))) (IF (|has| |#1| (-446)) (PROGN (-15 -2950 ((-554) (-1214 |#2| |#1|) (-1214 |#2| |#1|))) (-15 -1808 ((-554) (-1214 |#2| |#1|)))) |%noBranch|))
-((-3062 (((-112) $ $) NIL)) (-4050 (($ (-500) (-1100)) 14)) (-3885 (((-1100) $) 20)) (-4309 (((-500) $) 17)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 28) (($ (-1163)) NIL) (((-1163) $) NIL)) (-1658 (((-112) $ $) NIL)))
-(((-1097) (-13 (-1065) (-10 -8 (-15 -4050 ($ (-500) (-1100))) (-15 -4309 ((-500) $)) (-15 -3885 ((-1100) $))))) (T -1097))
-((-4050 (*1 *1 *2 *3) (-12 (-5 *2 (-500)) (-5 *3 (-1100)) (-5 *1 (-1097)))) (-4309 (*1 *2 *1) (-12 (-5 *2 (-500)) (-5 *1 (-1097)))) (-3885 (*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-1097)))))
-(-13 (-1065) (-10 -8 (-15 -4050 ($ (-500) (-1100))) (-15 -4309 ((-500) $)) (-15 -3885 ((-1100) $))))
-((-4219 (((-3 (-554) "failed") |#2| (-1158) |#2| (-1140)) 17) (((-3 (-554) "failed") |#2| (-1158) (-829 |#2|)) 15) (((-3 (-554) "failed") |#2|) 54)))
-(((-1098 |#1| |#2|) (-10 -7 (-15 -4219 ((-3 (-554) "failed") |#2|)) (-15 -4219 ((-3 (-554) "failed") |#2| (-1158) (-829 |#2|))) (-15 -4219 ((-3 (-554) "failed") |#2| (-1158) |#2| (-1140)))) (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)) (-446)) (-13 (-27) (-1180) (-425 |#1|))) (T -1098))
-((-4219 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1158)) (-5 *5 (-1140)) (-4 *6 (-13 (-546) (-836) (-1023 *2) (-627 *2) (-446))) (-5 *2 (-554)) (-5 *1 (-1098 *6 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *6))))) (-4219 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1158)) (-5 *5 (-829 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *6))) (-4 *6 (-13 (-546) (-836) (-1023 *2) (-627 *2) (-446))) (-5 *2 (-554)) (-5 *1 (-1098 *6 *3)))) (-4219 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-546) (-836) (-1023 *2) (-627 *2) (-446))) (-5 *2 (-554)) (-5 *1 (-1098 *4 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *4))))))
-(-10 -7 (-15 -4219 ((-3 (-554) "failed") |#2|)) (-15 -4219 ((-3 (-554) "failed") |#2| (-1158) (-829 |#2|))) (-15 -4219 ((-3 (-554) "failed") |#2| (-1158) |#2| (-1140))))
-((-4219 (((-3 (-554) "failed") (-402 (-937 |#1|)) (-1158) (-402 (-937 |#1|)) (-1140)) 35) (((-3 (-554) "failed") (-402 (-937 |#1|)) (-1158) (-829 (-402 (-937 |#1|)))) 30) (((-3 (-554) "failed") (-402 (-937 |#1|))) 13)))
-(((-1099 |#1|) (-10 -7 (-15 -4219 ((-3 (-554) "failed") (-402 (-937 |#1|)))) (-15 -4219 ((-3 (-554) "failed") (-402 (-937 |#1|)) (-1158) (-829 (-402 (-937 |#1|))))) (-15 -4219 ((-3 (-554) "failed") (-402 (-937 |#1|)) (-1158) (-402 (-937 |#1|)) (-1140)))) (-446)) (T -1099))
-((-4219 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-402 (-937 *6))) (-5 *4 (-1158)) (-5 *5 (-1140)) (-4 *6 (-446)) (-5 *2 (-554)) (-5 *1 (-1099 *6)))) (-4219 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1158)) (-5 *5 (-829 (-402 (-937 *6)))) (-5 *3 (-402 (-937 *6))) (-4 *6 (-446)) (-5 *2 (-554)) (-5 *1 (-1099 *6)))) (-4219 (*1 *2 *3) (|partial| -12 (-5 *3 (-402 (-937 *4))) (-4 *4 (-446)) (-5 *2 (-554)) (-5 *1 (-1099 *4)))))
-(-10 -7 (-15 -4219 ((-3 (-554) "failed") (-402 (-937 |#1|)))) (-15 -4219 ((-3 (-554) "failed") (-402 (-937 |#1|)) (-1158) (-829 (-402 (-937 |#1|))))) (-15 -4219 ((-3 (-554) "failed") (-402 (-937 |#1|)) (-1158) (-402 (-937 |#1|)) (-1140))))
-((-3062 (((-112) $ $) NIL)) (-1362 (((-1163) $) 10)) (-2452 (((-631 (-1163)) $) 11)) (-3885 (($ (-631 (-1163)) (-1163)) 9)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 20)) (-1658 (((-112) $ $) 14)))
-(((-1100) (-13 (-1082) (-10 -8 (-15 -3885 ($ (-631 (-1163)) (-1163))) (-15 -1362 ((-1163) $)) (-15 -2452 ((-631 (-1163)) $))))) (T -1100))
-((-3885 (*1 *1 *2 *3) (-12 (-5 *2 (-631 (-1163))) (-5 *3 (-1163)) (-5 *1 (-1100)))) (-1362 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1100)))) (-2452 (*1 *2 *1) (-12 (-5 *2 (-631 (-1163))) (-5 *1 (-1100)))))
-(-13 (-1082) (-10 -8 (-15 -3885 ($ (-631 (-1163)) (-1163))) (-15 -1362 ((-1163) $)) (-15 -2452 ((-631 (-1163)) $))))
-((-1336 (((-311 (-554)) (-48)) 12)))
-(((-1101) (-10 -7 (-15 -1336 ((-311 (-554)) (-48))))) (T -1101))
-((-1336 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-311 (-554))) (-5 *1 (-1101)))))
-(-10 -7 (-15 -1336 ((-311 (-554)) (-48))))
-((-3062 (((-112) $ $) NIL)) (-1285 (($ $) 41)) (-1695 (((-112) $) 65)) (-4066 (($ $ $) 48)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 86)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-3575 (($ $ $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4278 (($ $ $ $) 75)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2286 (((-112) $ $) NIL)) (-4219 (((-554) $) NIL)) (-1648 (($ $ $) 72)) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) NIL)) (-1668 (((-554) $) NIL)) (-3964 (($ $ $) 59)) (-3699 (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) 80) (((-675 (-554)) (-675 $)) 28)) (-1320 (((-3 $ "failed") $) NIL)) (-1623 (((-3 (-402 (-554)) "failed") $) NIL)) (-2069 (((-112) $) NIL)) (-2197 (((-402 (-554)) $) NIL)) (-3353 (($) 83) (($ $) 84)) (-3943 (($ $ $) 58)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-2267 (($ $ $ $) NIL)) (-3773 (($ $ $) 81)) (-2745 (((-112) $) NIL)) (-1295 (($ $ $) NIL)) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL)) (-3248 (((-112) $) 66)) (-3273 (((-112) $) 64)) (-4081 (($ $) 42)) (-3339 (((-3 $ "failed") $) NIL)) (-4304 (((-112) $) 76)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2057 (($ $ $ $) 73)) (-4223 (($ $ $) 68) (($) 39)) (-2706 (($ $ $) 67) (($) 38)) (-3882 (($ $) NIL)) (-2577 (($ $) 71)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-3297 (($ $ $) NIL)) (-3834 (($) NIL T CONST)) (-1786 (($ $) 50)) (-2768 (((-1102) $) 70)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) 62) (($ (-631 $)) NIL)) (-1582 (($ $) NIL)) (-2270 (((-413 $) $) NIL)) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-1795 (((-112) $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 61)) (-1553 (($ $ (-758)) NIL) (($ $) NIL)) (-3690 (($ $) 51)) (-1521 (($ $) NIL)) (-2927 (((-554) $) 32) (((-530) $) NIL) (((-877 (-554)) $) NIL) (((-374) $) NIL) (((-221) $) NIL)) (-3075 (((-848) $) 31) (($ (-554)) 82) (($ $) NIL) (($ (-554)) 82)) (-2261 (((-758)) NIL)) (-2134 (((-112) $ $) NIL)) (-1629 (($ $ $) NIL)) (-3462 (($) 37)) (-1909 (((-112) $ $) NIL)) (-2225 (($ $ $ $) 74)) (-1700 (($ $) 63)) (-2140 (($ $ $) 44)) (-2004 (($) 35 T CONST)) (-2307 (($ $ $) 47)) (-2014 (($) 36 T CONST)) (-4048 (((-1140) $) 21) (((-1140) $ (-112)) 23) (((-1246) (-809) $) 24) (((-1246) (-809) $ (-112)) 25)) (-2318 (($ $) 45)) (-1787 (($ $ (-758)) NIL) (($ $) NIL)) (-2297 (($ $ $) 46)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 40)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 49)) (-2130 (($ $ $) 43)) (-1744 (($ $) 52) (($ $ $) 54)) (-1735 (($ $ $) 53)) (** (($ $ (-906)) NIL) (($ $ (-758)) 57)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 34) (($ $ $) 55)))
-(((-1102) (-13 (-539) (-647) (-815) (-10 -8 (-6 -4360) (-6 -4365) (-6 -4361) (-15 -2706 ($)) (-15 -4223 ($)) (-15 -4081 ($ $)) (-15 -1285 ($ $)) (-15 -2130 ($ $ $)) (-15 -2140 ($ $ $)) (-15 -4066 ($ $ $)) (-15 -2318 ($ $)) (-15 -2297 ($ $ $)) (-15 -2307 ($ $ $))))) (T -1102))
-((-2140 (*1 *1 *1 *1) (-5 *1 (-1102))) (-2130 (*1 *1 *1 *1) (-5 *1 (-1102))) (-1285 (*1 *1 *1) (-5 *1 (-1102))) (-2706 (*1 *1) (-5 *1 (-1102))) (-4223 (*1 *1) (-5 *1 (-1102))) (-4081 (*1 *1 *1) (-5 *1 (-1102))) (-4066 (*1 *1 *1 *1) (-5 *1 (-1102))) (-2318 (*1 *1 *1) (-5 *1 (-1102))) (-2297 (*1 *1 *1 *1) (-5 *1 (-1102))) (-2307 (*1 *1 *1 *1) (-5 *1 (-1102))))
-(-13 (-539) (-647) (-815) (-10 -8 (-6 -4360) (-6 -4365) (-6 -4361) (-15 -2706 ($)) (-15 -4223 ($)) (-15 -4081 ($ $)) (-15 -1285 ($ $)) (-15 -2130 ($ $ $)) (-15 -2140 ($ $ $)) (-15 -4066 ($ $ $)) (-15 -2318 ($ $)) (-15 -2297 ($ $ $)) (-15 -2307 ($ $ $))))
-((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-2292 ((|#1| $) 44)) (-3019 (((-112) $ (-758)) 8)) (-4087 (($) 7 T CONST)) (-1790 ((|#1| |#1| $) 46)) (-3956 ((|#1| $) 45)) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) 9)) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35)) (-3731 (((-112) $ (-758)) 10)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-4150 ((|#1| $) 39)) (-2045 (($ |#1| $) 40)) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-2152 ((|#1| $) 41)) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2763 (((-758) $) 43)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-1591 (($ (-631 |#1|)) 42)) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373)))))
-(((-1103 |#1|) (-138) (-1195)) (T -1103))
-((-1790 (*1 *2 *2 *1) (-12 (-4 *1 (-1103 *2)) (-4 *2 (-1195)))) (-3956 (*1 *2 *1) (-12 (-4 *1 (-1103 *2)) (-4 *2 (-1195)))) (-2292 (*1 *2 *1) (-12 (-4 *1 (-1103 *2)) (-4 *2 (-1195)))) (-2763 (*1 *2 *1) (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1195)) (-5 *2 (-758)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4373) (-15 -1790 (|t#1| |t#1| $)) (-15 -3956 (|t#1| $)) (-15 -2292 (|t#1| $)) (-15 -2763 ((-758) $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1082)) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-601 (-848)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-1082) |has| |#1| (-1082)) ((-1195) . T))
-((-1612 ((|#3| $) 76)) (-2784 (((-3 (-554) "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-1668 (((-554) $) NIL) (((-402 (-554)) $) NIL) ((|#3| $) 37)) (-3699 (((-675 (-554)) (-675 $)) NIL) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL) (((-2 (|:| -2866 (-675 |#3|)) (|:| |vec| (-1241 |#3|))) (-675 $) (-1241 $)) 73) (((-675 |#3|) (-675 $)) 65)) (-1553 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-758)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL) (($ $ (-1158) (-758)) NIL) (($ $ (-631 (-1158))) NIL) (($ $ (-1158)) NIL) (($ $ (-758)) NIL) (($ $) NIL)) (-3238 ((|#3| $) 78)) (-3871 ((|#4| $) 32)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ (-402 (-554))) NIL) (($ |#3|) 16)) (** (($ $ (-906)) NIL) (($ $ (-758)) 15) (($ $ (-554)) 82)))
-(((-1104 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-554))) (-15 -3238 (|#3| |#1|)) (-15 -1612 (|#3| |#1|)) (-15 -3871 (|#4| |#1|)) (-15 -3699 ((-675 |#3|) (-675 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 |#3|)) (|:| |vec| (-1241 |#3|))) (-675 |#1|) (-1241 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 |#1|) (-1241 |#1|))) (-15 -3699 ((-675 (-554)) (-675 |#1|))) (-15 -3075 (|#1| |#3|)) (-15 -2784 ((-3 |#3| "failed") |#1|)) (-15 -1668 (|#3| |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -3075 (|#1| (-402 (-554)))) (-15 -1668 ((-554) |#1|)) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -1553 (|#1| |#1|)) (-15 -1553 (|#1| |#1| (-758))) (-15 -1553 (|#1| |#1| (-1158))) (-15 -1553 (|#1| |#1| (-631 (-1158)))) (-15 -1553 (|#1| |#1| (-1158) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 -1553 (|#1| |#1| (-1 |#3| |#3|) (-758))) (-15 -1553 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3075 (|#1| (-554))) (-15 ** (|#1| |#1| (-758))) (-15 ** (|#1| |#1| (-906))) (-15 -3075 ((-848) |#1|))) (-1105 |#2| |#3| |#4| |#5|) (-758) (-1034) (-234 |#2| |#3|) (-234 |#2| |#3|)) (T -1104))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-554))) (-15 -3238 (|#3| |#1|)) (-15 -1612 (|#3| |#1|)) (-15 -3871 (|#4| |#1|)) (-15 -3699 ((-675 |#3|) (-675 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 |#3|)) (|:| |vec| (-1241 |#3|))) (-675 |#1|) (-1241 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 |#1|) (-1241 |#1|))) (-15 -3699 ((-675 (-554)) (-675 |#1|))) (-15 -3075 (|#1| |#3|)) (-15 -2784 ((-3 |#3| "failed") |#1|)) (-15 -1668 (|#3| |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -3075 (|#1| (-402 (-554)))) (-15 -1668 ((-554) |#1|)) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -1553 (|#1| |#1|)) (-15 -1553 (|#1| |#1| (-758))) (-15 -1553 (|#1| |#1| (-1158))) (-15 -1553 (|#1| |#1| (-631 (-1158)))) (-15 -1553 (|#1| |#1| (-1158) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 -1553 (|#1| |#1| (-1 |#3| |#3|) (-758))) (-15 -1553 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3075 (|#1| (-554))) (-15 ** (|#1| |#1| (-758))) (-15 ** (|#1| |#1| (-906))) (-15 -3075 ((-848) |#1|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1612 ((|#2| $) 71)) (-1350 (((-112) $) 111)) (-2934 (((-3 $ "failed") $ $) 19)) (-3795 (((-112) $) 109)) (-3019 (((-112) $ (-758)) 101)) (-1475 (($ |#2|) 74)) (-4087 (($) 17 T CONST)) (-2775 (($ $) 128 (|has| |#2| (-302)))) (-3519 ((|#3| $ (-554)) 123)) (-2784 (((-3 (-554) "failed") $) 86 (|has| |#2| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) 83 (|has| |#2| (-1023 (-402 (-554))))) (((-3 |#2| "failed") $) 80)) (-1668 (((-554) $) 85 (|has| |#2| (-1023 (-554)))) (((-402 (-554)) $) 82 (|has| |#2| (-1023 (-402 (-554))))) ((|#2| $) 81)) (-3699 (((-675 (-554)) (-675 $)) 78 (|has| |#2| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) 77 (|has| |#2| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 $) (-1241 $)) 76) (((-675 |#2|) (-675 $)) 75)) (-1320 (((-3 $ "failed") $) 33)) (-4186 (((-758) $) 129 (|has| |#2| (-546)))) (-2796 ((|#2| $ (-554) (-554)) 121)) (-2466 (((-631 |#2|) $) 94 (|has| $ (-6 -4373)))) (-3248 (((-112) $) 31)) (-4332 (((-758) $) 130 (|has| |#2| (-546)))) (-2412 (((-631 |#4|) $) 131 (|has| |#2| (-546)))) (-4130 (((-758) $) 117)) (-4143 (((-758) $) 118)) (-2230 (((-112) $ (-758)) 102)) (-2326 ((|#2| $) 66 (|has| |#2| (-6 (-4375 "*"))))) (-3985 (((-554) $) 113)) (-1817 (((-554) $) 115)) (-2379 (((-631 |#2|) $) 93 (|has| $ (-6 -4373)))) (-3068 (((-112) |#2| $) 91 (-12 (|has| |#2| (-1082)) (|has| $ (-6 -4373))))) (-2787 (((-554) $) 114)) (-4249 (((-554) $) 116)) (-1899 (($ (-631 (-631 |#2|))) 108)) (-2849 (($ (-1 |#2| |#2|) $) 98 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#2| |#2| |#2|) $ $) 125) (($ (-1 |#2| |#2|) $) 99)) (-1679 (((-631 (-631 |#2|)) $) 119)) (-3731 (((-112) $ (-758)) 103)) (-1613 (((-1140) $) 9)) (-2843 (((-3 $ "failed") $) 65 (|has| |#2| (-358)))) (-2768 (((-1102) $) 10)) (-3919 (((-3 $ "failed") $ |#2|) 126 (|has| |#2| (-546)))) (-2845 (((-112) (-1 (-112) |#2|) $) 96 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#2|))) 90 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-289 |#2|)) 89 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) 88 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-631 |#2|) (-631 |#2|)) 87 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))))) (-2494 (((-112) $ $) 107)) (-3543 (((-112) $) 104)) (-4240 (($) 105)) (-2064 ((|#2| $ (-554) (-554) |#2|) 122) ((|#2| $ (-554) (-554)) 120)) (-1553 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-758)) 51) (($ $ (-631 (-1158)) (-631 (-758))) 44 (|has| |#2| (-885 (-1158)))) (($ $ (-1158) (-758)) 43 (|has| |#2| (-885 (-1158)))) (($ $ (-631 (-1158))) 42 (|has| |#2| (-885 (-1158)))) (($ $ (-1158)) 41 (|has| |#2| (-885 (-1158)))) (($ $ (-758)) 39 (|has| |#2| (-229))) (($ $) 37 (|has| |#2| (-229)))) (-3238 ((|#2| $) 70)) (-3198 (($ (-631 |#2|)) 73)) (-2361 (((-112) $) 110)) (-3871 ((|#3| $) 72)) (-2870 ((|#2| $) 67 (|has| |#2| (-6 (-4375 "*"))))) (-2777 (((-758) (-1 (-112) |#2|) $) 95 (|has| $ (-6 -4373))) (((-758) |#2| $) 92 (-12 (|has| |#2| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 106)) (-3259 ((|#4| $ (-554)) 124)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ (-402 (-554))) 84 (|has| |#2| (-1023 (-402 (-554))))) (($ |#2|) 79)) (-2261 (((-758)) 28)) (-2438 (((-112) (-1 (-112) |#2|) $) 97 (|has| $ (-6 -4373)))) (-4299 (((-112) $) 112)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-758)) 49) (($ $ (-631 (-1158)) (-631 (-758))) 48 (|has| |#2| (-885 (-1158)))) (($ $ (-1158) (-758)) 47 (|has| |#2| (-885 (-1158)))) (($ $ (-631 (-1158))) 46 (|has| |#2| (-885 (-1158)))) (($ $ (-1158)) 45 (|has| |#2| (-885 (-1158)))) (($ $ (-758)) 40 (|has| |#2| (-229))) (($ $) 38 (|has| |#2| (-229)))) (-1658 (((-112) $ $) 6)) (-1752 (($ $ |#2|) 127 (|has| |#2| (-358)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ (-554)) 64 (|has| |#2| (-358)))) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ |#2|) 133) (($ |#2| $) 132) ((|#4| $ |#4|) 69) ((|#3| |#3| $) 68)) (-2563 (((-758) $) 100 (|has| $ (-6 -4373)))))
-(((-1105 |#1| |#2| |#3| |#4|) (-138) (-758) (-1034) (-234 |t#1| |t#2|) (-234 |t#1| |t#2|)) (T -1105))
-((-1475 (*1 *1 *2) (-12 (-4 *2 (-1034)) (-4 *1 (-1105 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) (-4 *5 (-234 *3 *2)))) (-3198 (*1 *1 *2) (-12 (-5 *2 (-631 *4)) (-4 *4 (-1034)) (-4 *1 (-1105 *3 *4 *5 *6)) (-4 *5 (-234 *3 *4)) (-4 *6 (-234 *3 *4)))) (-3871 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *2 *5)) (-4 *4 (-1034)) (-4 *5 (-234 *3 *4)) (-4 *2 (-234 *3 *4)))) (-1612 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) (-4 *5 (-234 *3 *2)) (-4 *2 (-1034)))) (-3238 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) (-4 *5 (-234 *3 *2)) (-4 *2 (-1034)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1105 *3 *4 *5 *2)) (-4 *4 (-1034)) (-4 *5 (-234 *3 *4)) (-4 *2 (-234 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *2 *5)) (-4 *4 (-1034)) (-4 *2 (-234 *3 *4)) (-4 *5 (-234 *3 *4)))) (-2870 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) (-4 *5 (-234 *3 *2)) (|has| *2 (-6 (-4375 "*"))) (-4 *2 (-1034)))) (-2326 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) (-4 *5 (-234 *3 *2)) (|has| *2 (-6 (-4375 "*"))) (-4 *2 (-1034)))) (-2843 (*1 *1 *1) (|partial| -12 (-4 *1 (-1105 *2 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-234 *2 *3)) (-4 *5 (-234 *2 *3)) (-4 *3 (-358)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-4 *1 (-1105 *3 *4 *5 *6)) (-4 *4 (-1034)) (-4 *5 (-234 *3 *4)) (-4 *6 (-234 *3 *4)) (-4 *4 (-358)))))
-(-13 (-227 |t#2|) (-111 |t#2| |t#2|) (-1037 |t#1| |t#1| |t#2| |t#3| |t#4|) (-406 |t#2|) (-372 |t#2|) (-10 -8 (IF (|has| |t#2| (-170)) (-6 (-704 |t#2|)) |%noBranch|) (-15 -1475 ($ |t#2|)) (-15 -3198 ($ (-631 |t#2|))) (-15 -3871 (|t#3| $)) (-15 -1612 (|t#2| $)) (-15 -3238 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4375 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -2870 (|t#2| $)) (-15 -2326 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-358)) (PROGN (-15 -2843 ((-3 $ "failed") $)) (-15 ** ($ $ (-554)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4375 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-604 #0=(-402 (-554))) |has| |#2| (-1023 (-402 (-554)))) ((-604 (-554)) . T) ((-604 |#2|) . T) ((-601 (-848)) . T) ((-227 |#2|) . T) ((-229) |has| |#2| (-229)) ((-304 |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))) ((-372 |#2|) . T) ((-406 |#2|) . T) ((-483 |#2|) . T) ((-508 |#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))) ((-634 |#2|) . T) ((-634 $) . T) ((-627 (-554)) |has| |#2| (-627 (-554))) ((-627 |#2|) . T) ((-704 |#2|) -3994 (|has| |#2| (-170)) (|has| |#2| (-6 (-4375 "*")))) ((-713) . T) ((-885 (-1158)) |has| |#2| (-885 (-1158))) ((-1037 |#1| |#1| |#2| |#3| |#4|) . T) ((-1023 #0#) |has| |#2| (-1023 (-402 (-554)))) ((-1023 (-554)) |has| |#2| (-1023 (-554))) ((-1023 |#2|) . T) ((-1040 |#2|) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1195) . T))
-((-3569 ((|#4| |#4|) 70)) (-4131 ((|#4| |#4|) 65)) (-4135 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3782 (-631 |#3|))) |#4| |#3|) 78)) (-3048 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-1827 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67)))
-(((-1106 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4131 (|#4| |#4|)) (-15 -1827 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3569 (|#4| |#4|)) (-15 -3048 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -4135 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3782 (-631 |#3|))) |#4| |#3|))) (-302) (-368 |#1|) (-368 |#1|) (-673 |#1| |#2| |#3|)) (T -1106))
-((-4135 (*1 *2 *3 *4) (-12 (-4 *5 (-302)) (-4 *6 (-368 *5)) (-4 *4 (-368 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3782 (-631 *4)))) (-5 *1 (-1106 *5 *6 *4 *3)) (-4 *3 (-673 *5 *6 *4)))) (-3048 (*1 *2 *3) (-12 (-4 *4 (-302)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1106 *4 *5 *6 *3)) (-4 *3 (-673 *4 *5 *6)))) (-3569 (*1 *2 *2) (-12 (-4 *3 (-302)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *1 (-1106 *3 *4 *5 *2)) (-4 *2 (-673 *3 *4 *5)))) (-1827 (*1 *2 *3) (-12 (-4 *4 (-302)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1106 *4 *5 *6 *3)) (-4 *3 (-673 *4 *5 *6)))) (-4131 (*1 *2 *2) (-12 (-4 *3 (-302)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *1 (-1106 *3 *4 *5 *2)) (-4 *2 (-673 *3 *4 *5)))))
-(-10 -7 (-15 -4131 (|#4| |#4|)) (-15 -1827 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3569 (|#4| |#4|)) (-15 -3048 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -4135 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3782 (-631 |#3|))) |#4| |#3|)))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 17)) (-2405 (((-631 |#2|) $) 159)) (-2237 (((-1154 $) $ |#2|) 54) (((-1154 |#1|) $) 43)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 108 (|has| |#1| (-546)))) (-1976 (($ $) 110 (|has| |#1| (-546)))) (-1363 (((-112) $) 112 (|has| |#1| (-546)))) (-3785 (((-758) $) NIL) (((-758) $ (-631 |#2|)) 192)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-3278 (($ $) NIL (|has| |#1| (-446)))) (-1565 (((-413 $) $) NIL (|has| |#1| (-446)))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) 156) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 |#2| "failed") $) NIL)) (-1668 ((|#1| $) 154) (((-402 (-554)) $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-554) $) NIL (|has| |#1| (-1023 (-554)))) ((|#2| $) NIL)) (-2999 (($ $ $ |#2|) NIL (|has| |#1| (-170)))) (-2550 (($ $) 196)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) NIL) (((-675 |#1|) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) 82)) (-2048 (($ $) NIL (|has| |#1| (-446))) (($ $ |#2|) NIL (|has| |#1| (-446)))) (-2540 (((-631 $) $) NIL)) (-3289 (((-112) $) NIL (|has| |#1| (-894)))) (-1344 (($ $ |#1| (-525 |#2|) $) NIL)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (-12 (|has| |#1| (-871 (-374))) (|has| |#2| (-871 (-374))))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (-12 (|has| |#1| (-871 (-554))) (|has| |#2| (-871 (-554)))))) (-3248 (((-112) $) 19)) (-2122 (((-758) $) 26)) (-2393 (($ (-1154 |#1|) |#2|) 48) (($ (-1154 $) |#2|) 64)) (-3910 (((-631 $) $) NIL)) (-3580 (((-112) $) 32)) (-2383 (($ |#1| (-525 |#2|)) 71) (($ $ |#2| (-758)) 52) (($ $ (-631 |#2|) (-631 (-758))) NIL)) (-4014 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $ |#2|) NIL)) (-3893 (((-525 |#2|) $) 186) (((-758) $ |#2|) 187) (((-631 (-758)) $ (-631 |#2|)) 188)) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2789 (($ (-1 (-525 |#2|) (-525 |#2|)) $) NIL)) (-2879 (($ (-1 |#1| |#1|) $) 120)) (-3277 (((-3 |#2| "failed") $) 161)) (-2518 (($ $) 195)) (-2530 ((|#1| $) 37)) (-2475 (($ (-631 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-1613 (((-1140) $) NIL)) (-3778 (((-3 (-631 $) "failed") $) NIL)) (-2433 (((-3 (-631 $) "failed") $) NIL)) (-3160 (((-3 (-2 (|:| |var| |#2|) (|:| -1407 (-758))) "failed") $) NIL)) (-2768 (((-1102) $) NIL)) (-2492 (((-112) $) 33)) (-2505 ((|#1| $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 138 (|has| |#1| (-446)))) (-2510 (($ (-631 $)) 143 (|has| |#1| (-446))) (($ $ $) 130 (|has| |#1| (-446)))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-2270 (((-413 $) $) NIL (|has| |#1| (-894)))) (-3919 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-546))) (((-3 $ "failed") $ $) 118 (|has| |#1| (-546)))) (-2386 (($ $ (-631 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ |#2| |#1|) 164) (($ $ (-631 |#2|) (-631 |#1|)) 177) (($ $ |#2| $) 163) (($ $ (-631 |#2|) (-631 $)) 176)) (-1495 (($ $ |#2|) NIL (|has| |#1| (-170)))) (-1553 (($ $ |#2|) 194) (($ $ (-631 |#2|)) NIL) (($ $ |#2| (-758)) NIL) (($ $ (-631 |#2|) (-631 (-758))) NIL)) (-3308 (((-525 |#2|) $) 182) (((-758) $ |#2|) 178) (((-631 (-758)) $ (-631 |#2|)) 180)) (-2927 (((-877 (-374)) $) NIL (-12 (|has| |#1| (-602 (-877 (-374)))) (|has| |#2| (-602 (-877 (-374)))))) (((-877 (-554)) $) NIL (-12 (|has| |#1| (-602 (-877 (-554)))) (|has| |#2| (-602 (-877 (-554)))))) (((-530) $) NIL (-12 (|has| |#1| (-602 (-530))) (|has| |#2| (-602 (-530)))))) (-3276 ((|#1| $) 126 (|has| |#1| (-446))) (($ $ |#2|) 129 (|has| |#1| (-446)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-894))))) (-3075 (((-848) $) 149) (($ (-554)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-546))) (($ (-402 (-554))) NIL (-3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554))))))) (-1893 (((-631 |#1|) $) 152)) (-1779 ((|#1| $ (-525 |#2|)) 73) (($ $ |#2| (-758)) NIL) (($ $ (-631 |#2|) (-631 (-758))) NIL)) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| |#1| (-894))) (|has| |#1| (-143))))) (-2261 (((-758)) 79)) (-2907 (($ $ $ (-758)) NIL (|has| |#1| (-170)))) (-1909 (((-112) $ $) 115 (|has| |#1| (-546)))) (-2004 (($) 12 T CONST)) (-2014 (($) 14 T CONST)) (-1787 (($ $ |#2|) NIL) (($ $ (-631 |#2|)) NIL) (($ $ |#2| (-758)) NIL) (($ $ (-631 |#2|) (-631 (-758))) NIL)) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) 97)) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1752 (($ $ |#1|) 124 (|has| |#1| (-358)))) (-1744 (($ $) 85) (($ $ $) 95)) (-1735 (($ $ $) 49)) (** (($ $ (-906)) 102) (($ $ (-758)) 100)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 88) (($ $ $) 65) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ |#1| $) 90) (($ $ |#1|) NIL)))
-(((-1107 |#1| |#2|) (-934 |#1| (-525 |#2|) |#2|) (-1034) (-836)) (T -1107))
-NIL
-(-934 |#1| (-525 |#2|) |#2|)
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2405 (((-631 |#2|) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-546)))) (-1976 (($ $) NIL (|has| |#1| (-546)))) (-1363 (((-112) $) NIL (|has| |#1| (-546)))) (-3023 (($ $) 141 (|has| |#1| (-38 (-402 (-554)))))) (-4200 (($ $) 117 (|has| |#1| (-38 (-402 (-554)))))) (-2934 (((-3 $ "failed") $ $) NIL)) (-2282 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3003 (($ $) 137 (|has| |#1| (-38 (-402 (-554)))))) (-4177 (($ $) 113 (|has| |#1| (-38 (-402 (-554)))))) (-3046 (($ $) 145 (|has| |#1| (-38 (-402 (-554)))))) (-2916 (($ $) 121 (|has| |#1| (-38 (-402 (-554)))))) (-4087 (($) NIL T CONST)) (-2550 (($ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3497 (((-937 |#1|) $ (-758)) NIL) (((-937 |#1|) $ (-758) (-758)) NIL)) (-2051 (((-112) $) NIL)) (-2844 (($) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2342 (((-758) $ |#2|) NIL) (((-758) $ |#2| (-758)) NIL)) (-3248 (((-112) $) NIL)) (-3734 (($ $ (-554)) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3580 (((-112) $) NIL)) (-2383 (($ $ (-631 |#2|) (-631 (-525 |#2|))) NIL) (($ $ |#2| (-525 |#2|)) NIL) (($ |#1| (-525 |#2|)) NIL) (($ $ |#2| (-758)) 56) (($ $ (-631 |#2|) (-631 (-758))) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-2395 (($ $) 111 (|has| |#1| (-38 (-402 (-554)))))) (-2518 (($ $) NIL)) (-2530 ((|#1| $) NIL)) (-1613 (((-1140) $) NIL)) (-2279 (($ $ |#2|) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ |#2| |#1|) 164 (|has| |#1| (-38 (-402 (-554)))))) (-2768 (((-1102) $) NIL)) (-2199 (($ (-1 $) |#2| |#1|) 163 (|has| |#1| (-38 (-402 (-554)))))) (-4282 (($ $ (-758)) 13)) (-3919 (((-3 $ "failed") $ $) NIL (|has| |#1| (-546)))) (-1333 (($ $) 109 (|has| |#1| (-38 (-402 (-554)))))) (-2386 (($ $ |#2| $) 95) (($ $ (-631 |#2|) (-631 $)) 88) (($ $ (-631 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL)) (-1553 (($ $ |#2|) 98) (($ $ (-631 |#2|)) NIL) (($ $ |#2| (-758)) NIL) (($ $ (-631 |#2|) (-631 (-758))) NIL)) (-3308 (((-525 |#2|) $) NIL)) (-2813 (((-1 (-1138 |#3|) |#3|) (-631 |#2|) (-631 (-1138 |#3|))) 77)) (-3057 (($ $) 147 (|has| |#1| (-38 (-402 (-554)))))) (-2926 (($ $) 123 (|has| |#1| (-38 (-402 (-554)))))) (-3034 (($ $) 143 (|has| |#1| (-38 (-402 (-554)))))) (-4213 (($ $) 119 (|has| |#1| (-38 (-402 (-554)))))) (-3014 (($ $) 139 (|has| |#1| (-38 (-402 (-554)))))) (-4188 (($ $) 115 (|has| |#1| (-38 (-402 (-554)))))) (-1300 (($ $) 15)) (-3075 (((-848) $) 180) (($ (-554)) NIL) (($ |#1|) 40 (|has| |#1| (-170))) (($ $) NIL (|has| |#1| (-546))) (($ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))) (($ |#2|) 63) (($ |#3|) 61)) (-1779 ((|#1| $ (-525 |#2|)) NIL) (($ $ |#2| (-758)) NIL) (($ $ (-631 |#2|) (-631 (-758))) NIL) ((|#3| $ (-758)) 38)) (-2084 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2261 (((-758)) NIL)) (-3096 (($ $) 153 (|has| |#1| (-38 (-402 (-554)))))) (-2959 (($ $) 129 (|has| |#1| (-38 (-402 (-554)))))) (-1909 (((-112) $ $) NIL (|has| |#1| (-546)))) (-3069 (($ $) 149 (|has| |#1| (-38 (-402 (-554)))))) (-2938 (($ $) 125 (|has| |#1| (-38 (-402 (-554)))))) (-3120 (($ $) 157 (|has| |#1| (-38 (-402 (-554)))))) (-2981 (($ $) 133 (|has| |#1| (-38 (-402 (-554)))))) (-2908 (($ $) 159 (|has| |#1| (-38 (-402 (-554)))))) (-2991 (($ $) 135 (|has| |#1| (-38 (-402 (-554)))))) (-3108 (($ $) 155 (|has| |#1| (-38 (-402 (-554)))))) (-2969 (($ $) 131 (|has| |#1| (-38 (-402 (-554)))))) (-3083 (($ $) 151 (|has| |#1| (-38 (-402 (-554)))))) (-2948 (($ $) 127 (|has| |#1| (-38 (-402 (-554)))))) (-2004 (($) 47 T CONST)) (-2014 (($) 55 T CONST)) (-1787 (($ $ |#2|) NIL) (($ $ (-631 |#2|)) NIL) (($ $ |#2| (-758)) NIL) (($ $ (-631 |#2|) (-631 (-758))) NIL)) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ |#1|) 182 (|has| |#1| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) 59)) (** (($ $ (-906)) NIL) (($ $ (-758)) 68) (($ $ $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) 101 (|has| |#1| (-38 (-402 (-554)))))) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 58) (($ $ (-402 (-554))) 106 (|has| |#1| (-38 (-402 (-554))))) (($ (-402 (-554)) $) 104 (|has| |#1| (-38 (-402 (-554))))) (($ |#1| $) 43) (($ $ |#1|) 44) (($ |#3| $) 42)))
-(((-1108 |#1| |#2| |#3|) (-13 (-727 |#1| |#2|) (-10 -8 (-15 -1779 (|#3| $ (-758))) (-15 -3075 ($ |#2|)) (-15 -3075 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2813 ((-1 (-1138 |#3|) |#3|) (-631 |#2|) (-631 (-1138 |#3|)))) (IF (|has| |#1| (-38 (-402 (-554)))) (PROGN (-15 -2279 ($ $ |#2| |#1|)) (-15 -2199 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1034) (-836) (-934 |#1| (-525 |#2|) |#2|)) (T -1108))
-((-1779 (*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-4 *2 (-934 *4 (-525 *5) *5)) (-5 *1 (-1108 *4 *5 *2)) (-4 *4 (-1034)) (-4 *5 (-836)))) (-3075 (*1 *1 *2) (-12 (-4 *3 (-1034)) (-4 *2 (-836)) (-5 *1 (-1108 *3 *2 *4)) (-4 *4 (-934 *3 (-525 *2) *2)))) (-3075 (*1 *1 *2) (-12 (-4 *3 (-1034)) (-4 *4 (-836)) (-5 *1 (-1108 *3 *4 *2)) (-4 *2 (-934 *3 (-525 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1034)) (-4 *4 (-836)) (-5 *1 (-1108 *3 *4 *2)) (-4 *2 (-934 *3 (-525 *4) *4)))) (-2813 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *6)) (-5 *4 (-631 (-1138 *7))) (-4 *6 (-836)) (-4 *7 (-934 *5 (-525 *6) *6)) (-4 *5 (-1034)) (-5 *2 (-1 (-1138 *7) *7)) (-5 *1 (-1108 *5 *6 *7)))) (-2279 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *3 (-1034)) (-4 *2 (-836)) (-5 *1 (-1108 *3 *2 *4)) (-4 *4 (-934 *3 (-525 *2) *2)))) (-2199 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1108 *4 *3 *5))) (-4 *4 (-38 (-402 (-554)))) (-4 *4 (-1034)) (-4 *3 (-836)) (-5 *1 (-1108 *4 *3 *5)) (-4 *5 (-934 *4 (-525 *3) *3)))))
-(-13 (-727 |#1| |#2|) (-10 -8 (-15 -1779 (|#3| $ (-758))) (-15 -3075 ($ |#2|)) (-15 -3075 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2813 ((-1 (-1138 |#3|) |#3|) (-631 |#2|) (-631 (-1138 |#3|)))) (IF (|has| |#1| (-38 (-402 (-554)))) (PROGN (-15 -2279 ($ $ |#2| |#1|)) (-15 -2199 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
-((-3062 (((-112) $ $) 7)) (-3960 (((-631 (-2 (|:| -2498 $) (|:| -1303 (-631 |#4|)))) (-631 |#4|)) 85)) (-3176 (((-631 $) (-631 |#4|)) 86) (((-631 $) (-631 |#4|) (-112)) 111)) (-2405 (((-631 |#3|) $) 33)) (-1678 (((-112) $) 26)) (-3005 (((-112) $) 17 (|has| |#1| (-546)))) (-2630 (((-112) |#4| $) 101) (((-112) $) 97)) (-4057 ((|#4| |#4| $) 92)) (-3278 (((-631 (-2 (|:| |val| |#4|) (|:| -2143 $))) |#4| $) 126)) (-3303 (((-2 (|:| |under| $) (|:| -4339 $) (|:| |upper| $)) $ |#3|) 27)) (-3019 (((-112) $ (-758)) 44)) (-1871 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4373))) (((-3 |#4| "failed") $ |#3|) 79)) (-4087 (($) 45 T CONST)) (-1930 (((-112) $) 22 (|has| |#1| (-546)))) (-1404 (((-112) $ $) 24 (|has| |#1| (-546)))) (-3262 (((-112) $ $) 23 (|has| |#1| (-546)))) (-2713 (((-112) $) 25 (|has| |#1| (-546)))) (-2242 (((-631 |#4|) (-631 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1380 (((-631 |#4|) (-631 |#4|) $) 18 (|has| |#1| (-546)))) (-4204 (((-631 |#4|) (-631 |#4|) $) 19 (|has| |#1| (-546)))) (-2784 (((-3 $ "failed") (-631 |#4|)) 36)) (-1668 (($ (-631 |#4|)) 35)) (-1551 (((-3 $ "failed") $) 82)) (-2930 ((|#4| |#4| $) 89)) (-1571 (($ $) 68 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373))))) (-2574 (($ |#4| $) 67 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4373)))) (-2423 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-546)))) (-2857 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4210 ((|#4| |#4| $) 87)) (-3676 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4373))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4373))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1971 (((-2 (|:| -2498 (-631 |#4|)) (|:| -1303 (-631 |#4|))) $) 105)) (-4183 (((-112) |#4| $) 136)) (-4155 (((-112) |#4| $) 133)) (-2892 (((-112) |#4| $) 137) (((-112) $) 134)) (-2466 (((-631 |#4|) $) 52 (|has| $ (-6 -4373)))) (-4253 (((-112) |#4| $) 104) (((-112) $) 103)) (-3954 ((|#3| $) 34)) (-2230 (((-112) $ (-758)) 43)) (-2379 (((-631 |#4|) $) 53 (|has| $ (-6 -4373)))) (-3068 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#4| |#4|) $) 47)) (-2643 (((-631 |#3|) $) 32)) (-1400 (((-112) |#3| $) 31)) (-3731 (((-112) $ (-758)) 42)) (-1613 (((-1140) $) 9)) (-1343 (((-3 |#4| (-631 $)) |#4| |#4| $) 128)) (-2543 (((-631 (-2 (|:| |val| |#4|) (|:| -2143 $))) |#4| |#4| $) 127)) (-2597 (((-3 |#4| "failed") $) 83)) (-2953 (((-631 $) |#4| $) 129)) (-3841 (((-3 (-112) (-631 $)) |#4| $) 132)) (-3874 (((-631 (-2 (|:| |val| (-112)) (|:| -2143 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3977 (((-631 $) |#4| $) 125) (((-631 $) (-631 |#4|) $) 124) (((-631 $) (-631 |#4|) (-631 $)) 123) (((-631 $) |#4| (-631 $)) 122)) (-3479 (($ |#4| $) 117) (($ (-631 |#4|) $) 116)) (-2627 (((-631 |#4|) $) 107)) (-3007 (((-112) |#4| $) 99) (((-112) $) 95)) (-1536 ((|#4| |#4| $) 90)) (-2178 (((-112) $ $) 110)) (-3548 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-546)))) (-3518 (((-112) |#4| $) 100) (((-112) $) 96)) (-3492 ((|#4| |#4| $) 91)) (-2768 (((-1102) $) 10)) (-1539 (((-3 |#4| "failed") $) 84)) (-1652 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3948 (((-3 $ "failed") $ |#4|) 78)) (-4282 (($ $ |#4|) 77) (((-631 $) |#4| $) 115) (((-631 $) |#4| (-631 $)) 114) (((-631 $) (-631 |#4|) $) 113) (((-631 $) (-631 |#4|) (-631 $)) 112)) (-2845 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 |#4|) (-631 |#4|)) 59 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-289 |#4|)) 57 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-631 (-289 |#4|))) 56 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))))) (-2494 (((-112) $ $) 38)) (-3543 (((-112) $) 41)) (-4240 (($) 40)) (-3308 (((-758) $) 106)) (-2777 (((-758) |#4| $) 54 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373)))) (((-758) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4373)))) (-1521 (($ $) 39)) (-2927 (((-530) $) 69 (|has| |#4| (-602 (-530))))) (-3089 (($ (-631 |#4|)) 60)) (-2538 (($ $ |#3|) 28)) (-2384 (($ $ |#3|) 30)) (-2258 (($ $) 88)) (-2128 (($ $ |#3|) 29)) (-3075 (((-848) $) 11) (((-631 |#4|) $) 37)) (-2347 (((-758) $) 76 (|has| |#3| (-363)))) (-2792 (((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 |#4|))) "failed") (-631 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 |#4|))) "failed") (-631 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-3579 (((-112) $ (-1 (-112) |#4| (-631 |#4|))) 98)) (-3850 (((-631 $) |#4| $) 121) (((-631 $) |#4| (-631 $)) 120) (((-631 $) (-631 |#4|) $) 119) (((-631 $) (-631 |#4|) (-631 $)) 118)) (-2438 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4373)))) (-4267 (((-631 |#3|) $) 81)) (-4351 (((-112) |#4| $) 135)) (-3536 (((-112) |#3| $) 80)) (-1658 (((-112) $ $) 6)) (-2563 (((-758) $) 46 (|has| $ (-6 -4373)))))
-(((-1109 |#1| |#2| |#3| |#4|) (-138) (-446) (-780) (-836) (-1048 |t#1| |t#2| |t#3|)) (T -1109))
-NIL
-(-13 (-1091 |t#1| |t#2| |t#3| |t#4|) (-771 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-102) . T) ((-601 (-631 |#4|)) . T) ((-601 (-848)) . T) ((-149 |#4|) . T) ((-602 (-530)) |has| |#4| (-602 (-530))) ((-304 |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))) ((-483 |#4|) . T) ((-508 |#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))) ((-771 |#1| |#2| |#3| |#4|) . T) ((-961 |#1| |#2| |#3| |#4|) . T) ((-1054 |#1| |#2| |#3| |#4|) . T) ((-1082) . T) ((-1091 |#1| |#2| |#3| |#4|) . T) ((-1188 |#1| |#2| |#3| |#4|) . T) ((-1195) . T))
-((-1900 (((-631 |#2|) |#1|) 12)) (-1330 (((-631 |#2|) |#2| |#2| |#2| |#2| |#2|) 38) (((-631 |#2|) |#1|) 49)) (-1601 (((-631 |#2|) |#2| |#2| |#2|) 36) (((-631 |#2|) |#1|) 47)) (-1865 ((|#2| |#1|) 43)) (-2168 (((-2 (|:| |solns| (-631 |#2|)) (|:| |maps| (-631 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-3473 (((-631 |#2|) |#2| |#2|) 35) (((-631 |#2|) |#1|) 46)) (-1732 (((-631 |#2|) |#2| |#2| |#2| |#2|) 37) (((-631 |#2|) |#1|) 48)) (-4199 ((|#2| |#2| |#2| |#2| |#2| |#2|) 42)) (-3557 ((|#2| |#2| |#2| |#2|) 40)) (-3322 ((|#2| |#2| |#2|) 39)) (-2961 ((|#2| |#2| |#2| |#2| |#2|) 41)))
-(((-1110 |#1| |#2|) (-10 -7 (-15 -1900 ((-631 |#2|) |#1|)) (-15 -1865 (|#2| |#1|)) (-15 -2168 ((-2 (|:| |solns| (-631 |#2|)) (|:| |maps| (-631 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3473 ((-631 |#2|) |#1|)) (-15 -1601 ((-631 |#2|) |#1|)) (-15 -1732 ((-631 |#2|) |#1|)) (-15 -1330 ((-631 |#2|) |#1|)) (-15 -3473 ((-631 |#2|) |#2| |#2|)) (-15 -1601 ((-631 |#2|) |#2| |#2| |#2|)) (-15 -1732 ((-631 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1330 ((-631 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3322 (|#2| |#2| |#2|)) (-15 -3557 (|#2| |#2| |#2| |#2|)) (-15 -2961 (|#2| |#2| |#2| |#2| |#2|)) (-15 -4199 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1217 |#2|) (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) (T -1110))
-((-4199 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) (-5 *1 (-1110 *3 *2)) (-4 *3 (-1217 *2)))) (-2961 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) (-5 *1 (-1110 *3 *2)) (-4 *3 (-1217 *2)))) (-3557 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) (-5 *1 (-1110 *3 *2)) (-4 *3 (-1217 *2)))) (-3322 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) (-5 *1 (-1110 *3 *2)) (-4 *3 (-1217 *2)))) (-1330 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) (-5 *2 (-631 *3)) (-5 *1 (-1110 *4 *3)) (-4 *4 (-1217 *3)))) (-1732 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) (-5 *2 (-631 *3)) (-5 *1 (-1110 *4 *3)) (-4 *4 (-1217 *3)))) (-1601 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) (-5 *2 (-631 *3)) (-5 *1 (-1110 *4 *3)) (-4 *4 (-1217 *3)))) (-3473 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) (-5 *2 (-631 *3)) (-5 *1 (-1110 *4 *3)) (-4 *4 (-1217 *3)))) (-1330 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) (-5 *2 (-631 *4)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1217 *4)))) (-1732 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) (-5 *2 (-631 *4)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1217 *4)))) (-1601 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) (-5 *2 (-631 *4)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1217 *4)))) (-3473 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) (-5 *2 (-631 *4)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1217 *4)))) (-2168 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) (-5 *2 (-2 (|:| |solns| (-631 *5)) (|:| |maps| (-631 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1110 *3 *5)) (-4 *3 (-1217 *5)))) (-1865 (*1 *2 *3) (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) (-5 *1 (-1110 *3 *2)) (-4 *3 (-1217 *2)))) (-1900 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) (-5 *2 (-631 *4)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1217 *4)))))
-(-10 -7 (-15 -1900 ((-631 |#2|) |#1|)) (-15 -1865 (|#2| |#1|)) (-15 -2168 ((-2 (|:| |solns| (-631 |#2|)) (|:| |maps| (-631 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3473 ((-631 |#2|) |#1|)) (-15 -1601 ((-631 |#2|) |#1|)) (-15 -1732 ((-631 |#2|) |#1|)) (-15 -1330 ((-631 |#2|) |#1|)) (-15 -3473 ((-631 |#2|) |#2| |#2|)) (-15 -1601 ((-631 |#2|) |#2| |#2| |#2|)) (-15 -1732 ((-631 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1330 ((-631 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3322 (|#2| |#2| |#2|)) (-15 -3557 (|#2| |#2| |#2| |#2|)) (-15 -2961 (|#2| |#2| |#2| |#2| |#2|)) (-15 -4199 (|#2| |#2| |#2| |#2| |#2| |#2|)))
-((-1534 (((-631 (-631 (-289 (-311 |#1|)))) (-631 (-289 (-402 (-937 |#1|))))) 95) (((-631 (-631 (-289 (-311 |#1|)))) (-631 (-289 (-402 (-937 |#1|)))) (-631 (-1158))) 94) (((-631 (-631 (-289 (-311 |#1|)))) (-631 (-402 (-937 |#1|)))) 92) (((-631 (-631 (-289 (-311 |#1|)))) (-631 (-402 (-937 |#1|))) (-631 (-1158))) 90) (((-631 (-289 (-311 |#1|))) (-289 (-402 (-937 |#1|)))) 75) (((-631 (-289 (-311 |#1|))) (-289 (-402 (-937 |#1|))) (-1158)) 76) (((-631 (-289 (-311 |#1|))) (-402 (-937 |#1|))) 70) (((-631 (-289 (-311 |#1|))) (-402 (-937 |#1|)) (-1158)) 59)) (-1577 (((-631 (-631 (-311 |#1|))) (-631 (-402 (-937 |#1|))) (-631 (-1158))) 88) (((-631 (-311 |#1|)) (-402 (-937 |#1|)) (-1158)) 43)) (-2343 (((-1147 (-631 (-311 |#1|)) (-631 (-289 (-311 |#1|)))) (-402 (-937 |#1|)) (-1158)) 98) (((-1147 (-631 (-311 |#1|)) (-631 (-289 (-311 |#1|)))) (-289 (-402 (-937 |#1|))) (-1158)) 97)))
-(((-1111 |#1|) (-10 -7 (-15 -1534 ((-631 (-289 (-311 |#1|))) (-402 (-937 |#1|)) (-1158))) (-15 -1534 ((-631 (-289 (-311 |#1|))) (-402 (-937 |#1|)))) (-15 -1534 ((-631 (-289 (-311 |#1|))) (-289 (-402 (-937 |#1|))) (-1158))) (-15 -1534 ((-631 (-289 (-311 |#1|))) (-289 (-402 (-937 |#1|))))) (-15 -1534 ((-631 (-631 (-289 (-311 |#1|)))) (-631 (-402 (-937 |#1|))) (-631 (-1158)))) (-15 -1534 ((-631 (-631 (-289 (-311 |#1|)))) (-631 (-402 (-937 |#1|))))) (-15 -1534 ((-631 (-631 (-289 (-311 |#1|)))) (-631 (-289 (-402 (-937 |#1|)))) (-631 (-1158)))) (-15 -1534 ((-631 (-631 (-289 (-311 |#1|)))) (-631 (-289 (-402 (-937 |#1|)))))) (-15 -1577 ((-631 (-311 |#1|)) (-402 (-937 |#1|)) (-1158))) (-15 -1577 ((-631 (-631 (-311 |#1|))) (-631 (-402 (-937 |#1|))) (-631 (-1158)))) (-15 -2343 ((-1147 (-631 (-311 |#1|)) (-631 (-289 (-311 |#1|)))) (-289 (-402 (-937 |#1|))) (-1158))) (-15 -2343 ((-1147 (-631 (-311 |#1|)) (-631 (-289 (-311 |#1|)))) (-402 (-937 |#1|)) (-1158)))) (-13 (-302) (-836) (-145))) (T -1111))
-((-2343 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-937 *5))) (-5 *4 (-1158)) (-4 *5 (-13 (-302) (-836) (-145))) (-5 *2 (-1147 (-631 (-311 *5)) (-631 (-289 (-311 *5))))) (-5 *1 (-1111 *5)))) (-2343 (*1 *2 *3 *4) (-12 (-5 *3 (-289 (-402 (-937 *5)))) (-5 *4 (-1158)) (-4 *5 (-13 (-302) (-836) (-145))) (-5 *2 (-1147 (-631 (-311 *5)) (-631 (-289 (-311 *5))))) (-5 *1 (-1111 *5)))) (-1577 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-402 (-937 *5)))) (-5 *4 (-631 (-1158))) (-4 *5 (-13 (-302) (-836) (-145))) (-5 *2 (-631 (-631 (-311 *5)))) (-5 *1 (-1111 *5)))) (-1577 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-937 *5))) (-5 *4 (-1158)) (-4 *5 (-13 (-302) (-836) (-145))) (-5 *2 (-631 (-311 *5))) (-5 *1 (-1111 *5)))) (-1534 (*1 *2 *3) (-12 (-5 *3 (-631 (-289 (-402 (-937 *4))))) (-4 *4 (-13 (-302) (-836) (-145))) (-5 *2 (-631 (-631 (-289 (-311 *4))))) (-5 *1 (-1111 *4)))) (-1534 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-289 (-402 (-937 *5))))) (-5 *4 (-631 (-1158))) (-4 *5 (-13 (-302) (-836) (-145))) (-5 *2 (-631 (-631 (-289 (-311 *5))))) (-5 *1 (-1111 *5)))) (-1534 (*1 *2 *3) (-12 (-5 *3 (-631 (-402 (-937 *4)))) (-4 *4 (-13 (-302) (-836) (-145))) (-5 *2 (-631 (-631 (-289 (-311 *4))))) (-5 *1 (-1111 *4)))) (-1534 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-402 (-937 *5)))) (-5 *4 (-631 (-1158))) (-4 *5 (-13 (-302) (-836) (-145))) (-5 *2 (-631 (-631 (-289 (-311 *5))))) (-5 *1 (-1111 *5)))) (-1534 (*1 *2 *3) (-12 (-5 *3 (-289 (-402 (-937 *4)))) (-4 *4 (-13 (-302) (-836) (-145))) (-5 *2 (-631 (-289 (-311 *4)))) (-5 *1 (-1111 *4)))) (-1534 (*1 *2 *3 *4) (-12 (-5 *3 (-289 (-402 (-937 *5)))) (-5 *4 (-1158)) (-4 *5 (-13 (-302) (-836) (-145))) (-5 *2 (-631 (-289 (-311 *5)))) (-5 *1 (-1111 *5)))) (-1534 (*1 *2 *3) (-12 (-5 *3 (-402 (-937 *4))) (-4 *4 (-13 (-302) (-836) (-145))) (-5 *2 (-631 (-289 (-311 *4)))) (-5 *1 (-1111 *4)))) (-1534 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-937 *5))) (-5 *4 (-1158)) (-4 *5 (-13 (-302) (-836) (-145))) (-5 *2 (-631 (-289 (-311 *5)))) (-5 *1 (-1111 *5)))))
-(-10 -7 (-15 -1534 ((-631 (-289 (-311 |#1|))) (-402 (-937 |#1|)) (-1158))) (-15 -1534 ((-631 (-289 (-311 |#1|))) (-402 (-937 |#1|)))) (-15 -1534 ((-631 (-289 (-311 |#1|))) (-289 (-402 (-937 |#1|))) (-1158))) (-15 -1534 ((-631 (-289 (-311 |#1|))) (-289 (-402 (-937 |#1|))))) (-15 -1534 ((-631 (-631 (-289 (-311 |#1|)))) (-631 (-402 (-937 |#1|))) (-631 (-1158)))) (-15 -1534 ((-631 (-631 (-289 (-311 |#1|)))) (-631 (-402 (-937 |#1|))))) (-15 -1534 ((-631 (-631 (-289 (-311 |#1|)))) (-631 (-289 (-402 (-937 |#1|)))) (-631 (-1158)))) (-15 -1534 ((-631 (-631 (-289 (-311 |#1|)))) (-631 (-289 (-402 (-937 |#1|)))))) (-15 -1577 ((-631 (-311 |#1|)) (-402 (-937 |#1|)) (-1158))) (-15 -1577 ((-631 (-631 (-311 |#1|))) (-631 (-402 (-937 |#1|))) (-631 (-1158)))) (-15 -2343 ((-1147 (-631 (-311 |#1|)) (-631 (-289 (-311 |#1|)))) (-289 (-402 (-937 |#1|))) (-1158))) (-15 -2343 ((-1147 (-631 (-311 |#1|)) (-631 (-289 (-311 |#1|)))) (-402 (-937 |#1|)) (-1158))))
-((-3364 (((-402 (-1154 (-311 |#1|))) (-1241 (-311 |#1|)) (-402 (-1154 (-311 |#1|))) (-554)) 29)) (-3021 (((-402 (-1154 (-311 |#1|))) (-402 (-1154 (-311 |#1|))) (-402 (-1154 (-311 |#1|))) (-402 (-1154 (-311 |#1|)))) 40)))
-(((-1112 |#1|) (-10 -7 (-15 -3021 ((-402 (-1154 (-311 |#1|))) (-402 (-1154 (-311 |#1|))) (-402 (-1154 (-311 |#1|))) (-402 (-1154 (-311 |#1|))))) (-15 -3364 ((-402 (-1154 (-311 |#1|))) (-1241 (-311 |#1|)) (-402 (-1154 (-311 |#1|))) (-554)))) (-13 (-546) (-836))) (T -1112))
-((-3364 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-402 (-1154 (-311 *5)))) (-5 *3 (-1241 (-311 *5))) (-5 *4 (-554)) (-4 *5 (-13 (-546) (-836))) (-5 *1 (-1112 *5)))) (-3021 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-402 (-1154 (-311 *3)))) (-4 *3 (-13 (-546) (-836))) (-5 *1 (-1112 *3)))))
-(-10 -7 (-15 -3021 ((-402 (-1154 (-311 |#1|))) (-402 (-1154 (-311 |#1|))) (-402 (-1154 (-311 |#1|))) (-402 (-1154 (-311 |#1|))))) (-15 -3364 ((-402 (-1154 (-311 |#1|))) (-1241 (-311 |#1|)) (-402 (-1154 (-311 |#1|))) (-554))))
-((-1900 (((-631 (-631 (-289 (-311 |#1|)))) (-631 (-289 (-311 |#1|))) (-631 (-1158))) 222) (((-631 (-289 (-311 |#1|))) (-311 |#1|) (-1158)) 20) (((-631 (-289 (-311 |#1|))) (-289 (-311 |#1|)) (-1158)) 26) (((-631 (-289 (-311 |#1|))) (-289 (-311 |#1|))) 25) (((-631 (-289 (-311 |#1|))) (-311 |#1|)) 21)))
-(((-1113 |#1|) (-10 -7 (-15 -1900 ((-631 (-289 (-311 |#1|))) (-311 |#1|))) (-15 -1900 ((-631 (-289 (-311 |#1|))) (-289 (-311 |#1|)))) (-15 -1900 ((-631 (-289 (-311 |#1|))) (-289 (-311 |#1|)) (-1158))) (-15 -1900 ((-631 (-289 (-311 |#1|))) (-311 |#1|) (-1158))) (-15 -1900 ((-631 (-631 (-289 (-311 |#1|)))) (-631 (-289 (-311 |#1|))) (-631 (-1158))))) (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (T -1113))
-((-1900 (*1 *2 *3 *4) (-12 (-5 *4 (-631 (-1158))) (-4 *5 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (-5 *2 (-631 (-631 (-289 (-311 *5))))) (-5 *1 (-1113 *5)) (-5 *3 (-631 (-289 (-311 *5)))))) (-1900 (*1 *2 *3 *4) (-12 (-5 *4 (-1158)) (-4 *5 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (-5 *2 (-631 (-289 (-311 *5)))) (-5 *1 (-1113 *5)) (-5 *3 (-311 *5)))) (-1900 (*1 *2 *3 *4) (-12 (-5 *4 (-1158)) (-4 *5 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (-5 *2 (-631 (-289 (-311 *5)))) (-5 *1 (-1113 *5)) (-5 *3 (-289 (-311 *5))))) (-1900 (*1 *2 *3) (-12 (-4 *4 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (-5 *2 (-631 (-289 (-311 *4)))) (-5 *1 (-1113 *4)) (-5 *3 (-289 (-311 *4))))) (-1900 (*1 *2 *3) (-12 (-4 *4 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (-5 *2 (-631 (-289 (-311 *4)))) (-5 *1 (-1113 *4)) (-5 *3 (-311 *4)))))
-(-10 -7 (-15 -1900 ((-631 (-289 (-311 |#1|))) (-311 |#1|))) (-15 -1900 ((-631 (-289 (-311 |#1|))) (-289 (-311 |#1|)))) (-15 -1900 ((-631 (-289 (-311 |#1|))) (-289 (-311 |#1|)) (-1158))) (-15 -1900 ((-631 (-289 (-311 |#1|))) (-311 |#1|) (-1158))) (-15 -1900 ((-631 (-631 (-289 (-311 |#1|)))) (-631 (-289 (-311 |#1|))) (-631 (-1158)))))
-((-1439 ((|#2| |#2|) 20 (|has| |#1| (-836))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 17)) (-1780 ((|#2| |#2|) 19 (|has| |#1| (-836))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 16)))
-(((-1114 |#1| |#2|) (-10 -7 (-15 -1780 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -1439 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-836)) (PROGN (-15 -1780 (|#2| |#2|)) (-15 -1439 (|#2| |#2|))) |%noBranch|)) (-1195) (-13 (-592 (-554) |#1|) (-10 -7 (-6 -4373) (-6 -4374)))) (T -1114))
-((-1439 (*1 *2 *2) (-12 (-4 *3 (-836)) (-4 *3 (-1195)) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-592 (-554) *3) (-10 -7 (-6 -4373) (-6 -4374)))))) (-1780 (*1 *2 *2) (-12 (-4 *3 (-836)) (-4 *3 (-1195)) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-592 (-554) *3) (-10 -7 (-6 -4373) (-6 -4374)))))) (-1439 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1195)) (-5 *1 (-1114 *4 *2)) (-4 *2 (-13 (-592 (-554) *4) (-10 -7 (-6 -4373) (-6 -4374)))))) (-1780 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1195)) (-5 *1 (-1114 *4 *2)) (-4 *2 (-13 (-592 (-554) *4) (-10 -7 (-6 -4373) (-6 -4374)))))))
-(-10 -7 (-15 -1780 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -1439 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-836)) (PROGN (-15 -1780 (|#2| |#2|)) (-15 -1439 (|#2| |#2|))) |%noBranch|))
-((-3062 (((-112) $ $) NIL)) (-3504 (((-1146 3 |#1|) $) 107)) (-3352 (((-112) $) 72)) (-3561 (($ $ (-631 (-928 |#1|))) 20) (($ $ (-631 (-631 |#1|))) 75) (($ (-631 (-928 |#1|))) 74) (((-631 (-928 |#1|)) $) 73)) (-2680 (((-112) $) 41)) (-4136 (($ $ (-928 |#1|)) 46) (($ $ (-631 |#1|)) 51) (($ $ (-758)) 53) (($ (-928 |#1|)) 47) (((-928 |#1|) $) 45)) (-3449 (((-2 (|:| -1707 (-758)) (|:| |curves| (-758)) (|:| |polygons| (-758)) (|:| |constructs| (-758))) $) 105)) (-1317 (((-758) $) 26)) (-4324 (((-758) $) 25)) (-2532 (($ $ (-758) (-928 |#1|)) 39)) (-3808 (((-112) $) 82)) (-3896 (($ $ (-631 (-631 (-928 |#1|))) (-631 (-169)) (-169)) 89) (($ $ (-631 (-631 (-631 |#1|))) (-631 (-169)) (-169)) 91) (($ $ (-631 (-631 (-928 |#1|))) (-112) (-112)) 85) (($ $ (-631 (-631 (-631 |#1|))) (-112) (-112)) 93) (($ (-631 (-631 (-928 |#1|)))) 86) (($ (-631 (-631 (-928 |#1|))) (-112) (-112)) 87) (((-631 (-631 (-928 |#1|))) $) 84)) (-3717 (($ (-631 $)) 28) (($ $ $) 29)) (-2425 (((-631 (-169)) $) 102)) (-1705 (((-631 (-928 |#1|)) $) 96)) (-2830 (((-631 (-631 (-169))) $) 101)) (-2252 (((-631 (-631 (-631 (-928 |#1|)))) $) NIL)) (-3123 (((-631 (-631 (-631 (-758)))) $) 99)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2456 (((-758) $ (-631 (-928 |#1|))) 37)) (-3659 (((-112) $) 54)) (-3365 (($ $ (-631 (-928 |#1|))) 56) (($ $ (-631 (-631 |#1|))) 62) (($ (-631 (-928 |#1|))) 57) (((-631 (-928 |#1|)) $) 55)) (-1923 (($) 23) (($ (-1146 3 |#1|)) 24)) (-1521 (($ $) 35)) (-3171 (((-631 $) $) 34)) (-2903 (($ (-631 $)) 31)) (-2308 (((-631 $) $) 33)) (-3075 (((-848) $) 111)) (-2271 (((-112) $) 64)) (-4296 (($ $ (-631 (-928 |#1|))) 66) (($ $ (-631 (-631 |#1|))) 69) (($ (-631 (-928 |#1|))) 67) (((-631 (-928 |#1|)) $) 65)) (-2989 (($ $) 106)) (-1658 (((-112) $ $) NIL)))
-(((-1115 |#1|) (-1116 |#1|) (-1034)) (T -1115))
-NIL
-(-1116 |#1|)
-((-3062 (((-112) $ $) 7)) (-3504 (((-1146 3 |#1|) $) 13)) (-3352 (((-112) $) 29)) (-3561 (($ $ (-631 (-928 |#1|))) 33) (($ $ (-631 (-631 |#1|))) 32) (($ (-631 (-928 |#1|))) 31) (((-631 (-928 |#1|)) $) 30)) (-2680 (((-112) $) 44)) (-4136 (($ $ (-928 |#1|)) 49) (($ $ (-631 |#1|)) 48) (($ $ (-758)) 47) (($ (-928 |#1|)) 46) (((-928 |#1|) $) 45)) (-3449 (((-2 (|:| -1707 (-758)) (|:| |curves| (-758)) (|:| |polygons| (-758)) (|:| |constructs| (-758))) $) 15)) (-1317 (((-758) $) 58)) (-4324 (((-758) $) 59)) (-2532 (($ $ (-758) (-928 |#1|)) 50)) (-3808 (((-112) $) 21)) (-3896 (($ $ (-631 (-631 (-928 |#1|))) (-631 (-169)) (-169)) 28) (($ $ (-631 (-631 (-631 |#1|))) (-631 (-169)) (-169)) 27) (($ $ (-631 (-631 (-928 |#1|))) (-112) (-112)) 26) (($ $ (-631 (-631 (-631 |#1|))) (-112) (-112)) 25) (($ (-631 (-631 (-928 |#1|)))) 24) (($ (-631 (-631 (-928 |#1|))) (-112) (-112)) 23) (((-631 (-631 (-928 |#1|))) $) 22)) (-3717 (($ (-631 $)) 57) (($ $ $) 56)) (-2425 (((-631 (-169)) $) 16)) (-1705 (((-631 (-928 |#1|)) $) 20)) (-2830 (((-631 (-631 (-169))) $) 17)) (-2252 (((-631 (-631 (-631 (-928 |#1|)))) $) 18)) (-3123 (((-631 (-631 (-631 (-758)))) $) 19)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-2456 (((-758) $ (-631 (-928 |#1|))) 51)) (-3659 (((-112) $) 39)) (-3365 (($ $ (-631 (-928 |#1|))) 43) (($ $ (-631 (-631 |#1|))) 42) (($ (-631 (-928 |#1|))) 41) (((-631 (-928 |#1|)) $) 40)) (-1923 (($) 61) (($ (-1146 3 |#1|)) 60)) (-1521 (($ $) 52)) (-3171 (((-631 $) $) 53)) (-2903 (($ (-631 $)) 55)) (-2308 (((-631 $) $) 54)) (-3075 (((-848) $) 11)) (-2271 (((-112) $) 34)) (-4296 (($ $ (-631 (-928 |#1|))) 38) (($ $ (-631 (-631 |#1|))) 37) (($ (-631 (-928 |#1|))) 36) (((-631 (-928 |#1|)) $) 35)) (-2989 (($ $) 14)) (-1658 (((-112) $ $) 6)))
-(((-1116 |#1|) (-138) (-1034)) (T -1116))
-((-3075 (*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-848)))) (-1923 (*1 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1034)))) (-1923 (*1 *1 *2) (-12 (-5 *2 (-1146 3 *3)) (-4 *3 (-1034)) (-4 *1 (-1116 *3)))) (-4324 (*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-758)))) (-1317 (*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-758)))) (-3717 (*1 *1 *2) (-12 (-5 *2 (-631 *1)) (-4 *1 (-1116 *3)) (-4 *3 (-1034)))) (-3717 (*1 *1 *1 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1034)))) (-2903 (*1 *1 *2) (-12 (-5 *2 (-631 *1)) (-4 *1 (-1116 *3)) (-4 *3 (-1034)))) (-2308 (*1 *2 *1) (-12 (-4 *3 (-1034)) (-5 *2 (-631 *1)) (-4 *1 (-1116 *3)))) (-3171 (*1 *2 *1) (-12 (-4 *3 (-1034)) (-5 *2 (-631 *1)) (-4 *1 (-1116 *3)))) (-1521 (*1 *1 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1034)))) (-2456 (*1 *2 *1 *3) (-12 (-5 *3 (-631 (-928 *4))) (-4 *1 (-1116 *4)) (-4 *4 (-1034)) (-5 *2 (-758)))) (-2532 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-758)) (-5 *3 (-928 *4)) (-4 *1 (-1116 *4)) (-4 *4 (-1034)))) (-4136 (*1 *1 *1 *2) (-12 (-5 *2 (-928 *3)) (-4 *1 (-1116 *3)) (-4 *3 (-1034)))) (-4136 (*1 *1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *1 (-1116 *3)) (-4 *3 (-1034)))) (-4136 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *1 (-1116 *3)) (-4 *3 (-1034)))) (-4136 (*1 *1 *2) (-12 (-5 *2 (-928 *3)) (-4 *3 (-1034)) (-4 *1 (-1116 *3)))) (-4136 (*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-928 *3)))) (-2680 (*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-112)))) (-3365 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-928 *3))) (-4 *1 (-1116 *3)) (-4 *3 (-1034)))) (-3365 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-631 *3))) (-4 *1 (-1116 *3)) (-4 *3 (-1034)))) (-3365 (*1 *1 *2) (-12 (-5 *2 (-631 (-928 *3))) (-4 *3 (-1034)) (-4 *1 (-1116 *3)))) (-3365 (*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-631 (-928 *3))))) (-3659 (*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-112)))) (-4296 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-928 *3))) (-4 *1 (-1116 *3)) (-4 *3 (-1034)))) (-4296 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-631 *3))) (-4 *1 (-1116 *3)) (-4 *3 (-1034)))) (-4296 (*1 *1 *2) (-12 (-5 *2 (-631 (-928 *3))) (-4 *3 (-1034)) (-4 *1 (-1116 *3)))) (-4296 (*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-631 (-928 *3))))) (-2271 (*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-112)))) (-3561 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-928 *3))) (-4 *1 (-1116 *3)) (-4 *3 (-1034)))) (-3561 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-631 *3))) (-4 *1 (-1116 *3)) (-4 *3 (-1034)))) (-3561 (*1 *1 *2) (-12 (-5 *2 (-631 (-928 *3))) (-4 *3 (-1034)) (-4 *1 (-1116 *3)))) (-3561 (*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-631 (-928 *3))))) (-3352 (*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-112)))) (-3896 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-631 (-631 (-928 *5)))) (-5 *3 (-631 (-169))) (-5 *4 (-169)) (-4 *1 (-1116 *5)) (-4 *5 (-1034)))) (-3896 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-631 (-631 (-631 *5)))) (-5 *3 (-631 (-169))) (-5 *4 (-169)) (-4 *1 (-1116 *5)) (-4 *5 (-1034)))) (-3896 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-631 (-631 (-928 *4)))) (-5 *3 (-112)) (-4 *1 (-1116 *4)) (-4 *4 (-1034)))) (-3896 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-631 (-631 (-631 *4)))) (-5 *3 (-112)) (-4 *1 (-1116 *4)) (-4 *4 (-1034)))) (-3896 (*1 *1 *2) (-12 (-5 *2 (-631 (-631 (-928 *3)))) (-4 *3 (-1034)) (-4 *1 (-1116 *3)))) (-3896 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-631 (-631 (-928 *4)))) (-5 *3 (-112)) (-4 *4 (-1034)) (-4 *1 (-1116 *4)))) (-3896 (*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-631 (-631 (-928 *3)))))) (-3808 (*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-112)))) (-1705 (*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-631 (-928 *3))))) (-3123 (*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-631 (-631 (-631 (-758))))))) (-2252 (*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-631 (-631 (-631 (-928 *3))))))) (-2830 (*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-631 (-631 (-169)))))) (-2425 (*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-631 (-169))))) (-3449 (*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-2 (|:| -1707 (-758)) (|:| |curves| (-758)) (|:| |polygons| (-758)) (|:| |constructs| (-758)))))) (-2989 (*1 *1 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1034)))) (-3504 (*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-1146 3 *3)))))
-(-13 (-1082) (-10 -8 (-15 -1923 ($)) (-15 -1923 ($ (-1146 3 |t#1|))) (-15 -4324 ((-758) $)) (-15 -1317 ((-758) $)) (-15 -3717 ($ (-631 $))) (-15 -3717 ($ $ $)) (-15 -2903 ($ (-631 $))) (-15 -2308 ((-631 $) $)) (-15 -3171 ((-631 $) $)) (-15 -1521 ($ $)) (-15 -2456 ((-758) $ (-631 (-928 |t#1|)))) (-15 -2532 ($ $ (-758) (-928 |t#1|))) (-15 -4136 ($ $ (-928 |t#1|))) (-15 -4136 ($ $ (-631 |t#1|))) (-15 -4136 ($ $ (-758))) (-15 -4136 ($ (-928 |t#1|))) (-15 -4136 ((-928 |t#1|) $)) (-15 -2680 ((-112) $)) (-15 -3365 ($ $ (-631 (-928 |t#1|)))) (-15 -3365 ($ $ (-631 (-631 |t#1|)))) (-15 -3365 ($ (-631 (-928 |t#1|)))) (-15 -3365 ((-631 (-928 |t#1|)) $)) (-15 -3659 ((-112) $)) (-15 -4296 ($ $ (-631 (-928 |t#1|)))) (-15 -4296 ($ $ (-631 (-631 |t#1|)))) (-15 -4296 ($ (-631 (-928 |t#1|)))) (-15 -4296 ((-631 (-928 |t#1|)) $)) (-15 -2271 ((-112) $)) (-15 -3561 ($ $ (-631 (-928 |t#1|)))) (-15 -3561 ($ $ (-631 (-631 |t#1|)))) (-15 -3561 ($ (-631 (-928 |t#1|)))) (-15 -3561 ((-631 (-928 |t#1|)) $)) (-15 -3352 ((-112) $)) (-15 -3896 ($ $ (-631 (-631 (-928 |t#1|))) (-631 (-169)) (-169))) (-15 -3896 ($ $ (-631 (-631 (-631 |t#1|))) (-631 (-169)) (-169))) (-15 -3896 ($ $ (-631 (-631 (-928 |t#1|))) (-112) (-112))) (-15 -3896 ($ $ (-631 (-631 (-631 |t#1|))) (-112) (-112))) (-15 -3896 ($ (-631 (-631 (-928 |t#1|))))) (-15 -3896 ($ (-631 (-631 (-928 |t#1|))) (-112) (-112))) (-15 -3896 ((-631 (-631 (-928 |t#1|))) $)) (-15 -3808 ((-112) $)) (-15 -1705 ((-631 (-928 |t#1|)) $)) (-15 -3123 ((-631 (-631 (-631 (-758)))) $)) (-15 -2252 ((-631 (-631 (-631 (-928 |t#1|)))) $)) (-15 -2830 ((-631 (-631 (-169))) $)) (-15 -2425 ((-631 (-169)) $)) (-15 -3449 ((-2 (|:| -1707 (-758)) (|:| |curves| (-758)) (|:| |polygons| (-758)) (|:| |constructs| (-758))) $)) (-15 -2989 ($ $)) (-15 -3504 ((-1146 3 |t#1|) $)) (-15 -3075 ((-848) $))))
-(((-102) . T) ((-601 (-848)) . T) ((-1082) . T))
-((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 176) (($ (-1163)) NIL) (((-1163) $) 7)) (-3182 (((-112) $ (|[\|\|]| (-518))) 17) (((-112) $ (|[\|\|]| (-214))) 21) (((-112) $ (|[\|\|]| (-662))) 25) (((-112) $ (|[\|\|]| (-1251))) 29) (((-112) $ (|[\|\|]| (-137))) 33) (((-112) $ (|[\|\|]| (-132))) 37) (((-112) $ (|[\|\|]| (-1097))) 41) (((-112) $ (|[\|\|]| (-96))) 45) (((-112) $ (|[\|\|]| (-667))) 49) (((-112) $ (|[\|\|]| (-511))) 53) (((-112) $ (|[\|\|]| (-1049))) 57) (((-112) $ (|[\|\|]| (-1252))) 61) (((-112) $ (|[\|\|]| (-519))) 65) (((-112) $ (|[\|\|]| (-152))) 69) (((-112) $ (|[\|\|]| (-657))) 73) (((-112) $ (|[\|\|]| (-306))) 77) (((-112) $ (|[\|\|]| (-1021))) 81) (((-112) $ (|[\|\|]| (-178))) 85) (((-112) $ (|[\|\|]| (-955))) 89) (((-112) $ (|[\|\|]| (-1056))) 93) (((-112) $ (|[\|\|]| (-1072))) 97) (((-112) $ (|[\|\|]| (-1078))) 101) (((-112) $ (|[\|\|]| (-614))) 105) (((-112) $ (|[\|\|]| (-1148))) 109) (((-112) $ (|[\|\|]| (-154))) 113) (((-112) $ (|[\|\|]| (-136))) 117) (((-112) $ (|[\|\|]| (-472))) 121) (((-112) $ (|[\|\|]| (-581))) 125) (((-112) $ (|[\|\|]| (-500))) 131) (((-112) $ (|[\|\|]| (-1140))) 135) (((-112) $ (|[\|\|]| (-554))) 139)) (-1556 (((-518) $) 18) (((-214) $) 22) (((-662) $) 26) (((-1251) $) 30) (((-137) $) 34) (((-132) $) 38) (((-1097) $) 42) (((-96) $) 46) (((-667) $) 50) (((-511) $) 54) (((-1049) $) 58) (((-1252) $) 62) (((-519) $) 66) (((-152) $) 70) (((-657) $) 74) (((-306) $) 78) (((-1021) $) 82) (((-178) $) 86) (((-955) $) 90) (((-1056) $) 94) (((-1072) $) 98) (((-1078) $) 102) (((-614) $) 106) (((-1148) $) 110) (((-154) $) 114) (((-136) $) 118) (((-472) $) 122) (((-581) $) 126) (((-500) $) 132) (((-1140) $) 136) (((-554) $) 140)) (-1658 (((-112) $ $) NIL)))
-(((-1117) (-1119)) (T -1117))
-NIL
-(-1119)
-((-2610 (((-631 (-1163)) (-1140)) 9)))
-(((-1118) (-10 -7 (-15 -2610 ((-631 (-1163)) (-1140))))) (T -1118))
-((-2610 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-631 (-1163))) (-5 *1 (-1118)))))
-(-10 -7 (-15 -2610 ((-631 (-1163)) (-1140))))
-((-3062 (((-112) $ $) 7)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11) (($ (-1163)) 16) (((-1163) $) 15)) (-3182 (((-112) $ (|[\|\|]| (-518))) 80) (((-112) $ (|[\|\|]| (-214))) 78) (((-112) $ (|[\|\|]| (-662))) 76) (((-112) $ (|[\|\|]| (-1251))) 74) (((-112) $ (|[\|\|]| (-137))) 72) (((-112) $ (|[\|\|]| (-132))) 70) (((-112) $ (|[\|\|]| (-1097))) 68) (((-112) $ (|[\|\|]| (-96))) 66) (((-112) $ (|[\|\|]| (-667))) 64) (((-112) $ (|[\|\|]| (-511))) 62) (((-112) $ (|[\|\|]| (-1049))) 60) (((-112) $ (|[\|\|]| (-1252))) 58) (((-112) $ (|[\|\|]| (-519))) 56) (((-112) $ (|[\|\|]| (-152))) 54) (((-112) $ (|[\|\|]| (-657))) 52) (((-112) $ (|[\|\|]| (-306))) 50) (((-112) $ (|[\|\|]| (-1021))) 48) (((-112) $ (|[\|\|]| (-178))) 46) (((-112) $ (|[\|\|]| (-955))) 44) (((-112) $ (|[\|\|]| (-1056))) 42) (((-112) $ (|[\|\|]| (-1072))) 40) (((-112) $ (|[\|\|]| (-1078))) 38) (((-112) $ (|[\|\|]| (-614))) 36) (((-112) $ (|[\|\|]| (-1148))) 34) (((-112) $ (|[\|\|]| (-154))) 32) (((-112) $ (|[\|\|]| (-136))) 30) (((-112) $ (|[\|\|]| (-472))) 28) (((-112) $ (|[\|\|]| (-581))) 26) (((-112) $ (|[\|\|]| (-500))) 24) (((-112) $ (|[\|\|]| (-1140))) 22) (((-112) $ (|[\|\|]| (-554))) 20)) (-1556 (((-518) $) 79) (((-214) $) 77) (((-662) $) 75) (((-1251) $) 73) (((-137) $) 71) (((-132) $) 69) (((-1097) $) 67) (((-96) $) 65) (((-667) $) 63) (((-511) $) 61) (((-1049) $) 59) (((-1252) $) 57) (((-519) $) 55) (((-152) $) 53) (((-657) $) 51) (((-306) $) 49) (((-1021) $) 47) (((-178) $) 45) (((-955) $) 43) (((-1056) $) 41) (((-1072) $) 39) (((-1078) $) 37) (((-614) $) 35) (((-1148) $) 33) (((-154) $) 31) (((-136) $) 29) (((-472) $) 27) (((-581) $) 25) (((-500) $) 23) (((-1140) $) 21) (((-554) $) 19)) (-1658 (((-112) $ $) 6)))
-(((-1119) (-138)) (T -1119))
-((-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-518)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-214))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-214)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-662))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-662)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-1251))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1251)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-137)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-132))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-132)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-1097))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1097)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-96)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-667))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-667)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-511))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-511)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-1049))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1049)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-1252))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1252)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-519))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-519)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-152))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-152)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-657))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-657)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-306))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-306)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-1021))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1021)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-178))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-178)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-955))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-955)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-1056))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1056)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1072)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-1078))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1078)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-614))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-614)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-1148))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1148)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-154)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-136)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-472))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-472)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-581))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-581)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-500))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-500)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-1140))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1140)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-554))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-554)))))
-(-13 (-1065) (-1236) (-10 -8 (-15 -3182 ((-112) $ (|[\|\|]| (-518)))) (-15 -1556 ((-518) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-214)))) (-15 -1556 ((-214) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-662)))) (-15 -1556 ((-662) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-1251)))) (-15 -1556 ((-1251) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-137)))) (-15 -1556 ((-137) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-132)))) (-15 -1556 ((-132) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-1097)))) (-15 -1556 ((-1097) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-96)))) (-15 -1556 ((-96) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-667)))) (-15 -1556 ((-667) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-511)))) (-15 -1556 ((-511) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-1049)))) (-15 -1556 ((-1049) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-1252)))) (-15 -1556 ((-1252) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-519)))) (-15 -1556 ((-519) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-152)))) (-15 -1556 ((-152) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-657)))) (-15 -1556 ((-657) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-306)))) (-15 -1556 ((-306) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-1021)))) (-15 -1556 ((-1021) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-178)))) (-15 -1556 ((-178) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-955)))) (-15 -1556 ((-955) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-1056)))) (-15 -1556 ((-1056) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-1072)))) (-15 -1556 ((-1072) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-1078)))) (-15 -1556 ((-1078) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-614)))) (-15 -1556 ((-614) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-1148)))) (-15 -1556 ((-1148) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-154)))) (-15 -1556 ((-154) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-136)))) (-15 -1556 ((-136) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-472)))) (-15 -1556 ((-472) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-581)))) (-15 -1556 ((-581) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-500)))) (-15 -1556 ((-500) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-1140)))) (-15 -1556 ((-1140) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-554)))) (-15 -1556 ((-554) $))))
-(((-93) . T) ((-102) . T) ((-604 #0=(-1163)) . T) ((-601 (-848)) . T) ((-601 #0#) . T) ((-484 #0#) . T) ((-1082) . T) ((-1065) . T) ((-1236) . T))
-((-3040 (((-1246) (-631 (-848))) 23) (((-1246) (-848)) 22)) (-3235 (((-1246) (-631 (-848))) 21) (((-1246) (-848)) 20)) (-1405 (((-1246) (-631 (-848))) 19) (((-1246) (-848)) 11) (((-1246) (-1140) (-848)) 17)))
-(((-1120) (-10 -7 (-15 -1405 ((-1246) (-1140) (-848))) (-15 -1405 ((-1246) (-848))) (-15 -3235 ((-1246) (-848))) (-15 -3040 ((-1246) (-848))) (-15 -1405 ((-1246) (-631 (-848)))) (-15 -3235 ((-1246) (-631 (-848)))) (-15 -3040 ((-1246) (-631 (-848)))))) (T -1120))
-((-3040 (*1 *2 *3) (-12 (-5 *3 (-631 (-848))) (-5 *2 (-1246)) (-5 *1 (-1120)))) (-3235 (*1 *2 *3) (-12 (-5 *3 (-631 (-848))) (-5 *2 (-1246)) (-5 *1 (-1120)))) (-1405 (*1 *2 *3) (-12 (-5 *3 (-631 (-848))) (-5 *2 (-1246)) (-5 *1 (-1120)))) (-3040 (*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1246)) (-5 *1 (-1120)))) (-3235 (*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1246)) (-5 *1 (-1120)))) (-1405 (*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1246)) (-5 *1 (-1120)))) (-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1140)) (-5 *4 (-848)) (-5 *2 (-1246)) (-5 *1 (-1120)))))
-(-10 -7 (-15 -1405 ((-1246) (-1140) (-848))) (-15 -1405 ((-1246) (-848))) (-15 -3235 ((-1246) (-848))) (-15 -3040 ((-1246) (-848))) (-15 -1405 ((-1246) (-631 (-848)))) (-15 -3235 ((-1246) (-631 (-848)))) (-15 -3040 ((-1246) (-631 (-848)))))
-((-1738 (($ $ $) 10)) (-2696 (($ $) 9)) (-1943 (($ $ $) 13)) (-1952 (($ $ $) 15)) (-3586 (($ $ $) 12)) (-3746 (($ $ $) 14)) (-2973 (($ $) 17)) (-1959 (($ $) 16)) (-1700 (($ $) 6)) (-3628 (($ $ $) 11) (($ $) 7)) (-4280 (($ $ $) 8)))
-(((-1121) (-138)) (T -1121))
-((-2973 (*1 *1 *1) (-4 *1 (-1121))) (-1959 (*1 *1 *1) (-4 *1 (-1121))) (-1952 (*1 *1 *1 *1) (-4 *1 (-1121))) (-3746 (*1 *1 *1 *1) (-4 *1 (-1121))) (-1943 (*1 *1 *1 *1) (-4 *1 (-1121))) (-3586 (*1 *1 *1 *1) (-4 *1 (-1121))) (-3628 (*1 *1 *1 *1) (-4 *1 (-1121))) (-1738 (*1 *1 *1 *1) (-4 *1 (-1121))) (-2696 (*1 *1 *1) (-4 *1 (-1121))) (-4280 (*1 *1 *1 *1) (-4 *1 (-1121))) (-3628 (*1 *1 *1) (-4 *1 (-1121))) (-1700 (*1 *1 *1) (-4 *1 (-1121))))
-(-13 (-10 -8 (-15 -1700 ($ $)) (-15 -3628 ($ $)) (-15 -4280 ($ $ $)) (-15 -2696 ($ $)) (-15 -1738 ($ $ $)) (-15 -3628 ($ $ $)) (-15 -3586 ($ $ $)) (-15 -1943 ($ $ $)) (-15 -3746 ($ $ $)) (-15 -1952 ($ $ $)) (-15 -1959 ($ $)) (-15 -2973 ($ $))))
-((-3062 (((-112) $ $) 41)) (-2794 ((|#1| $) 15)) (-4042 (((-112) $ $ (-1 (-112) |#2| |#2|)) 36)) (-3422 (((-112) $) 17)) (-2050 (($ $ |#1|) 28)) (-4195 (($ $ (-112)) 30)) (-3866 (($ $) 31)) (-1649 (($ $ |#2|) 29)) (-1613 (((-1140) $) NIL)) (-4197 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 35)) (-2768 (((-1102) $) NIL)) (-3543 (((-112) $) 14)) (-4240 (($) 10)) (-1521 (($ $) 27)) (-3089 (($ |#1| |#2| (-112)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -2143 |#2|))) 21) (((-631 $) (-631 (-2 (|:| |val| |#1|) (|:| -2143 |#2|)))) 24) (((-631 $) |#1| (-631 |#2|)) 26)) (-4294 ((|#2| $) 16)) (-3075 (((-848) $) 50)) (-1658 (((-112) $ $) 39)))
-(((-1122 |#1| |#2|) (-13 (-1082) (-10 -8 (-15 -4240 ($)) (-15 -3543 ((-112) $)) (-15 -2794 (|#1| $)) (-15 -4294 (|#2| $)) (-15 -3422 ((-112) $)) (-15 -3089 ($ |#1| |#2| (-112))) (-15 -3089 ($ |#1| |#2|)) (-15 -3089 ($ (-2 (|:| |val| |#1|) (|:| -2143 |#2|)))) (-15 -3089 ((-631 $) (-631 (-2 (|:| |val| |#1|) (|:| -2143 |#2|))))) (-15 -3089 ((-631 $) |#1| (-631 |#2|))) (-15 -1521 ($ $)) (-15 -2050 ($ $ |#1|)) (-15 -1649 ($ $ |#2|)) (-15 -4195 ($ $ (-112))) (-15 -3866 ($ $)) (-15 -4197 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -4042 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1082) (-34)) (-13 (-1082) (-34))) (T -1122))
-((-4240 (*1 *1) (-12 (-5 *1 (-1122 *2 *3)) (-4 *2 (-13 (-1082) (-34))) (-4 *3 (-13 (-1082) (-34))))) (-3543 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-13 (-1082) (-34))) (-4 *4 (-13 (-1082) (-34))))) (-2794 (*1 *2 *1) (-12 (-4 *2 (-13 (-1082) (-34))) (-5 *1 (-1122 *2 *3)) (-4 *3 (-13 (-1082) (-34))))) (-4294 (*1 *2 *1) (-12 (-4 *2 (-13 (-1082) (-34))) (-5 *1 (-1122 *3 *2)) (-4 *3 (-13 (-1082) (-34))))) (-3422 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-13 (-1082) (-34))) (-4 *4 (-13 (-1082) (-34))))) (-3089 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1122 *2 *3)) (-4 *2 (-13 (-1082) (-34))) (-4 *3 (-13 (-1082) (-34))))) (-3089 (*1 *1 *2 *3) (-12 (-5 *1 (-1122 *2 *3)) (-4 *2 (-13 (-1082) (-34))) (-4 *3 (-13 (-1082) (-34))))) (-3089 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2143 *4))) (-4 *3 (-13 (-1082) (-34))) (-4 *4 (-13 (-1082) (-34))) (-5 *1 (-1122 *3 *4)))) (-3089 (*1 *2 *3) (-12 (-5 *3 (-631 (-2 (|:| |val| *4) (|:| -2143 *5)))) (-4 *4 (-13 (-1082) (-34))) (-4 *5 (-13 (-1082) (-34))) (-5 *2 (-631 (-1122 *4 *5))) (-5 *1 (-1122 *4 *5)))) (-3089 (*1 *2 *3 *4) (-12 (-5 *4 (-631 *5)) (-4 *5 (-13 (-1082) (-34))) (-5 *2 (-631 (-1122 *3 *5))) (-5 *1 (-1122 *3 *5)) (-4 *3 (-13 (-1082) (-34))))) (-1521 (*1 *1 *1) (-12 (-5 *1 (-1122 *2 *3)) (-4 *2 (-13 (-1082) (-34))) (-4 *3 (-13 (-1082) (-34))))) (-2050 (*1 *1 *1 *2) (-12 (-5 *1 (-1122 *2 *3)) (-4 *2 (-13 (-1082) (-34))) (-4 *3 (-13 (-1082) (-34))))) (-1649 (*1 *1 *1 *2) (-12 (-5 *1 (-1122 *3 *2)) (-4 *3 (-13 (-1082) (-34))) (-4 *2 (-13 (-1082) (-34))))) (-4195 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-13 (-1082) (-34))) (-4 *4 (-13 (-1082) (-34))))) (-3866 (*1 *1 *1) (-12 (-5 *1 (-1122 *2 *3)) (-4 *2 (-13 (-1082) (-34))) (-4 *3 (-13 (-1082) (-34))))) (-4197 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1082) (-34))) (-4 *6 (-13 (-1082) (-34))) (-5 *2 (-112)) (-5 *1 (-1122 *5 *6)))) (-4042 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1082) (-34))) (-5 *2 (-112)) (-5 *1 (-1122 *4 *5)) (-4 *4 (-13 (-1082) (-34))))))
-(-13 (-1082) (-10 -8 (-15 -4240 ($)) (-15 -3543 ((-112) $)) (-15 -2794 (|#1| $)) (-15 -4294 (|#2| $)) (-15 -3422 ((-112) $)) (-15 -3089 ($ |#1| |#2| (-112))) (-15 -3089 ($ |#1| |#2|)) (-15 -3089 ($ (-2 (|:| |val| |#1|) (|:| -2143 |#2|)))) (-15 -3089 ((-631 $) (-631 (-2 (|:| |val| |#1|) (|:| -2143 |#2|))))) (-15 -3089 ((-631 $) |#1| (-631 |#2|))) (-15 -1521 ($ $)) (-15 -2050 ($ $ |#1|)) (-15 -1649 ($ $ |#2|)) (-15 -4195 ($ $ (-112))) (-15 -3866 ($ $)) (-15 -4197 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -4042 ((-112) $ $ (-1 (-112) |#2| |#2|)))))
-((-3062 (((-112) $ $) NIL (|has| (-1122 |#1| |#2|) (-1082)))) (-2794 (((-1122 |#1| |#2|) $) 25)) (-3939 (($ $) 76)) (-3377 (((-112) (-1122 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 85)) (-2802 (($ $ $ (-631 (-1122 |#1| |#2|))) 90) (($ $ $ (-631 (-1122 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 91)) (-3019 (((-112) $ (-758)) NIL)) (-2690 (((-1122 |#1| |#2|) $ (-1122 |#1| |#2|)) 43 (|has| $ (-6 -4374)))) (-1501 (((-1122 |#1| |#2|) $ "value" (-1122 |#1| |#2|)) NIL (|has| $ (-6 -4374)))) (-2923 (($ $ (-631 $)) 41 (|has| $ (-6 -4374)))) (-4087 (($) NIL T CONST)) (-1677 (((-631 (-2 (|:| |val| |#1|) (|:| -2143 |#2|))) $) 80)) (-1884 (($ (-1122 |#1| |#2|) $) 39)) (-2574 (($ (-1122 |#1| |#2|) $) 31)) (-2466 (((-631 (-1122 |#1| |#2|)) $) NIL (|has| $ (-6 -4373)))) (-3677 (((-631 $) $) 51)) (-4217 (((-112) (-1122 |#1| |#2|) $) 82)) (-1990 (((-112) $ $) NIL (|has| (-1122 |#1| |#2|) (-1082)))) (-2230 (((-112) $ (-758)) NIL)) (-2379 (((-631 (-1122 |#1| |#2|)) $) 55 (|has| $ (-6 -4373)))) (-3068 (((-112) (-1122 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-1122 |#1| |#2|) (-1082))))) (-2849 (($ (-1 (-1122 |#1| |#2|) (-1122 |#1| |#2|)) $) 47 (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-1122 |#1| |#2|) (-1122 |#1| |#2|)) $) 46)) (-3731 (((-112) $ (-758)) NIL)) (-2306 (((-631 (-1122 |#1| |#2|)) $) 53)) (-3216 (((-112) $) 42)) (-1613 (((-1140) $) NIL (|has| (-1122 |#1| |#2|) (-1082)))) (-2768 (((-1102) $) NIL (|has| (-1122 |#1| |#2|) (-1082)))) (-2729 (((-3 $ "failed") $) 75)) (-2845 (((-112) (-1 (-112) (-1122 |#1| |#2|)) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 (-1122 |#1| |#2|)))) NIL (-12 (|has| (-1122 |#1| |#2|) (-304 (-1122 |#1| |#2|))) (|has| (-1122 |#1| |#2|) (-1082)))) (($ $ (-289 (-1122 |#1| |#2|))) NIL (-12 (|has| (-1122 |#1| |#2|) (-304 (-1122 |#1| |#2|))) (|has| (-1122 |#1| |#2|) (-1082)))) (($ $ (-1122 |#1| |#2|) (-1122 |#1| |#2|)) NIL (-12 (|has| (-1122 |#1| |#2|) (-304 (-1122 |#1| |#2|))) (|has| (-1122 |#1| |#2|) (-1082)))) (($ $ (-631 (-1122 |#1| |#2|)) (-631 (-1122 |#1| |#2|))) NIL (-12 (|has| (-1122 |#1| |#2|) (-304 (-1122 |#1| |#2|))) (|has| (-1122 |#1| |#2|) (-1082))))) (-2494 (((-112) $ $) 50)) (-3543 (((-112) $) 22)) (-4240 (($) 24)) (-2064 (((-1122 |#1| |#2|) $ "value") NIL)) (-3250 (((-554) $ $) NIL)) (-3008 (((-112) $) 44)) (-2777 (((-758) (-1 (-112) (-1122 |#1| |#2|)) $) NIL (|has| $ (-6 -4373))) (((-758) (-1122 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-1122 |#1| |#2|) (-1082))))) (-1521 (($ $) 49)) (-3089 (($ (-1122 |#1| |#2|)) 9) (($ |#1| |#2| (-631 $)) 12) (($ |#1| |#2| (-631 (-1122 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-631 |#2|)) 17)) (-3803 (((-631 |#2|) $) 81)) (-3075 (((-848) $) 73 (|has| (-1122 |#1| |#2|) (-601 (-848))))) (-2461 (((-631 $) $) 28)) (-1441 (((-112) $ $) NIL (|has| (-1122 |#1| |#2|) (-1082)))) (-2438 (((-112) (-1 (-112) (-1122 |#1| |#2|)) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 64 (|has| (-1122 |#1| |#2|) (-1082)))) (-2563 (((-758) $) 58 (|has| $ (-6 -4373)))))
-(((-1123 |#1| |#2|) (-13 (-995 (-1122 |#1| |#2|)) (-10 -8 (-6 -4374) (-6 -4373) (-15 -2729 ((-3 $ "failed") $)) (-15 -3939 ($ $)) (-15 -3089 ($ (-1122 |#1| |#2|))) (-15 -3089 ($ |#1| |#2| (-631 $))) (-15 -3089 ($ |#1| |#2| (-631 (-1122 |#1| |#2|)))) (-15 -3089 ($ |#1| |#2| |#1| (-631 |#2|))) (-15 -3803 ((-631 |#2|) $)) (-15 -1677 ((-631 (-2 (|:| |val| |#1|) (|:| -2143 |#2|))) $)) (-15 -4217 ((-112) (-1122 |#1| |#2|) $)) (-15 -3377 ((-112) (-1122 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -2574 ($ (-1122 |#1| |#2|) $)) (-15 -1884 ($ (-1122 |#1| |#2|) $)) (-15 -2802 ($ $ $ (-631 (-1122 |#1| |#2|)))) (-15 -2802 ($ $ $ (-631 (-1122 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1082) (-34)) (-13 (-1082) (-34))) (T -1123))
-((-2729 (*1 *1 *1) (|partial| -12 (-5 *1 (-1123 *2 *3)) (-4 *2 (-13 (-1082) (-34))) (-4 *3 (-13 (-1082) (-34))))) (-3939 (*1 *1 *1) (-12 (-5 *1 (-1123 *2 *3)) (-4 *2 (-13 (-1082) (-34))) (-4 *3 (-13 (-1082) (-34))))) (-3089 (*1 *1 *2) (-12 (-5 *2 (-1122 *3 *4)) (-4 *3 (-13 (-1082) (-34))) (-4 *4 (-13 (-1082) (-34))) (-5 *1 (-1123 *3 *4)))) (-3089 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-631 (-1123 *2 *3))) (-5 *1 (-1123 *2 *3)) (-4 *2 (-13 (-1082) (-34))) (-4 *3 (-13 (-1082) (-34))))) (-3089 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-631 (-1122 *2 *3))) (-4 *2 (-13 (-1082) (-34))) (-4 *3 (-13 (-1082) (-34))) (-5 *1 (-1123 *2 *3)))) (-3089 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-631 *3)) (-4 *3 (-13 (-1082) (-34))) (-5 *1 (-1123 *2 *3)) (-4 *2 (-13 (-1082) (-34))))) (-3803 (*1 *2 *1) (-12 (-5 *2 (-631 *4)) (-5 *1 (-1123 *3 *4)) (-4 *3 (-13 (-1082) (-34))) (-4 *4 (-13 (-1082) (-34))))) (-1677 (*1 *2 *1) (-12 (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *4)))) (-5 *1 (-1123 *3 *4)) (-4 *3 (-13 (-1082) (-34))) (-4 *4 (-13 (-1082) (-34))))) (-4217 (*1 *2 *3 *1) (-12 (-5 *3 (-1122 *4 *5)) (-4 *4 (-13 (-1082) (-34))) (-4 *5 (-13 (-1082) (-34))) (-5 *2 (-112)) (-5 *1 (-1123 *4 *5)))) (-3377 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1122 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1082) (-34))) (-4 *6 (-13 (-1082) (-34))) (-5 *2 (-112)) (-5 *1 (-1123 *5 *6)))) (-2574 (*1 *1 *2 *1) (-12 (-5 *2 (-1122 *3 *4)) (-4 *3 (-13 (-1082) (-34))) (-4 *4 (-13 (-1082) (-34))) (-5 *1 (-1123 *3 *4)))) (-1884 (*1 *1 *2 *1) (-12 (-5 *2 (-1122 *3 *4)) (-4 *3 (-13 (-1082) (-34))) (-4 *4 (-13 (-1082) (-34))) (-5 *1 (-1123 *3 *4)))) (-2802 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-631 (-1122 *3 *4))) (-4 *3 (-13 (-1082) (-34))) (-4 *4 (-13 (-1082) (-34))) (-5 *1 (-1123 *3 *4)))) (-2802 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-631 (-1122 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1082) (-34))) (-4 *5 (-13 (-1082) (-34))) (-5 *1 (-1123 *4 *5)))))
-(-13 (-995 (-1122 |#1| |#2|)) (-10 -8 (-6 -4374) (-6 -4373) (-15 -2729 ((-3 $ "failed") $)) (-15 -3939 ($ $)) (-15 -3089 ($ (-1122 |#1| |#2|))) (-15 -3089 ($ |#1| |#2| (-631 $))) (-15 -3089 ($ |#1| |#2| (-631 (-1122 |#1| |#2|)))) (-15 -3089 ($ |#1| |#2| |#1| (-631 |#2|))) (-15 -3803 ((-631 |#2|) $)) (-15 -1677 ((-631 (-2 (|:| |val| |#1|) (|:| -2143 |#2|))) $)) (-15 -4217 ((-112) (-1122 |#1| |#2|) $)) (-15 -3377 ((-112) (-1122 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -2574 ($ (-1122 |#1| |#2|) $)) (-15 -1884 ($ (-1122 |#1| |#2|) $)) (-15 -2802 ($ $ $ (-631 (-1122 |#1| |#2|)))) (-15 -2802 ($ $ $ (-631 (-1122 |#1| |#2|)) (-1 (-112) |#2| |#2|)))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2757 (($ $) NIL)) (-1612 ((|#2| $) NIL)) (-1350 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-2321 (($ (-675 |#2|)) 50)) (-3795 (((-112) $) NIL)) (-3019 (((-112) $ (-758)) NIL)) (-1475 (($ |#2|) 10)) (-4087 (($) NIL T CONST)) (-2775 (($ $) 63 (|has| |#2| (-302)))) (-3519 (((-236 |#1| |#2|) $ (-554)) 36)) (-2784 (((-3 (-554) "failed") $) NIL (|has| |#2| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#2| (-1023 (-402 (-554))))) (((-3 |#2| "failed") $) NIL)) (-1668 (((-554) $) NIL (|has| |#2| (-1023 (-554)))) (((-402 (-554)) $) NIL (|has| |#2| (-1023 (-402 (-554))))) ((|#2| $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| |#2| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| |#2| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 $) (-1241 $)) NIL) (((-675 |#2|) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) 77)) (-4186 (((-758) $) 65 (|has| |#2| (-546)))) (-2796 ((|#2| $ (-554) (-554)) NIL)) (-2466 (((-631 |#2|) $) NIL (|has| $ (-6 -4373)))) (-3248 (((-112) $) NIL)) (-4332 (((-758) $) 67 (|has| |#2| (-546)))) (-2412 (((-631 (-236 |#1| |#2|)) $) 71 (|has| |#2| (-546)))) (-4130 (((-758) $) NIL)) (-3180 (($ |#2|) 20)) (-4143 (((-758) $) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-2326 ((|#2| $) 61 (|has| |#2| (-6 (-4375 "*"))))) (-3985 (((-554) $) NIL)) (-1817 (((-554) $) NIL)) (-2379 (((-631 |#2|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2787 (((-554) $) NIL)) (-4249 (((-554) $) NIL)) (-1899 (($ (-631 (-631 |#2|))) 31)) (-2849 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-1679 (((-631 (-631 |#2|)) $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL)) (-2843 (((-3 $ "failed") $) 74 (|has| |#2| (-358)))) (-2768 (((-1102) $) NIL)) (-3919 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-546)))) (-2845 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-631 |#2|) (-631 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#2| $ (-554) (-554) |#2|) NIL) ((|#2| $ (-554) (-554)) NIL)) (-1553 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-758)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-1158)) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-758)) NIL (|has| |#2| (-229))) (($ $) NIL (|has| |#2| (-229)))) (-3238 ((|#2| $) NIL)) (-3198 (($ (-631 |#2|)) 44)) (-2361 (((-112) $) NIL)) (-3871 (((-236 |#1| |#2|) $) NIL)) (-2870 ((|#2| $) 59 (|has| |#2| (-6 (-4375 "*"))))) (-2777 (((-758) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373))) (((-758) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-1521 (($ $) NIL)) (-2927 (((-530) $) 86 (|has| |#2| (-602 (-530))))) (-3259 (((-236 |#1| |#2|) $ (-554)) 38)) (-3075 (((-848) $) 41) (($ (-554)) NIL) (($ (-402 (-554))) NIL (|has| |#2| (-1023 (-402 (-554))))) (($ |#2|) NIL) (((-675 |#2|) $) 46)) (-2261 (((-758)) 18)) (-2438 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-4299 (((-112) $) NIL)) (-2004 (($) 12 T CONST)) (-2014 (($) 15 T CONST)) (-1787 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-758)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-1158)) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-758)) NIL (|has| |#2| (-229))) (($ $) NIL (|has| |#2| (-229)))) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) 57) (($ $ (-554)) 76 (|has| |#2| (-358)))) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-236 |#1| |#2|) $ (-236 |#1| |#2|)) 53) (((-236 |#1| |#2|) (-236 |#1| |#2|) $) 55)) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-1124 |#1| |#2|) (-13 (-1105 |#1| |#2| (-236 |#1| |#2|) (-236 |#1| |#2|)) (-601 (-675 |#2|)) (-10 -8 (-15 -3180 ($ |#2|)) (-15 -2757 ($ $)) (-15 -2321 ($ (-675 |#2|))) (IF (|has| |#2| (-6 (-4375 "*"))) (-6 -4362) |%noBranch|) (IF (|has| |#2| (-6 (-4375 "*"))) (IF (|has| |#2| (-6 -4370)) (-6 -4370) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-602 (-530))) (-6 (-602 (-530))) |%noBranch|))) (-758) (-1034)) (T -1124))
-((-3180 (*1 *1 *2) (-12 (-5 *1 (-1124 *3 *2)) (-14 *3 (-758)) (-4 *2 (-1034)))) (-2757 (*1 *1 *1) (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-758)) (-4 *3 (-1034)))) (-2321 (*1 *1 *2) (-12 (-5 *2 (-675 *4)) (-4 *4 (-1034)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-758)))))
-(-13 (-1105 |#1| |#2| (-236 |#1| |#2|) (-236 |#1| |#2|)) (-601 (-675 |#2|)) (-10 -8 (-15 -3180 ($ |#2|)) (-15 -2757 ($ $)) (-15 -2321 ($ (-675 |#2|))) (IF (|has| |#2| (-6 (-4375 "*"))) (-6 -4362) |%noBranch|) (IF (|has| |#2| (-6 (-4375 "*"))) (IF (|has| |#2| (-6 -4370)) (-6 -4370) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-602 (-530))) (-6 (-602 (-530))) |%noBranch|)))
-((-2451 (($ $) 19)) (-4274 (($ $ (-142)) 10) (($ $ (-139)) 14)) (-3802 (((-112) $ $) 24)) (-1913 (($ $) 17)) (-2064 (((-142) $ (-554) (-142)) NIL) (((-142) $ (-554)) NIL) (($ $ (-1208 (-554))) NIL) (($ $ $) 29)) (-3075 (($ (-142)) 27) (((-848) $) NIL)))
-(((-1125 |#1|) (-10 -8 (-15 -3075 ((-848) |#1|)) (-15 -2064 (|#1| |#1| |#1|)) (-15 -4274 (|#1| |#1| (-139))) (-15 -4274 (|#1| |#1| (-142))) (-15 -3075 (|#1| (-142))) (-15 -3802 ((-112) |#1| |#1|)) (-15 -2451 (|#1| |#1|)) (-15 -1913 (|#1| |#1|)) (-15 -2064 (|#1| |#1| (-1208 (-554)))) (-15 -2064 ((-142) |#1| (-554))) (-15 -2064 ((-142) |#1| (-554) (-142)))) (-1126)) (T -1125))
-NIL
-(-10 -8 (-15 -3075 ((-848) |#1|)) (-15 -2064 (|#1| |#1| |#1|)) (-15 -4274 (|#1| |#1| (-139))) (-15 -4274 (|#1| |#1| (-142))) (-15 -3075 (|#1| (-142))) (-15 -3802 ((-112) |#1| |#1|)) (-15 -2451 (|#1| |#1|)) (-15 -1913 (|#1| |#1|)) (-15 -2064 (|#1| |#1| (-1208 (-554)))) (-15 -2064 ((-142) |#1| (-554))) (-15 -2064 ((-142) |#1| (-554) (-142))))
-((-3062 (((-112) $ $) 19 (|has| (-142) (-1082)))) (-2905 (($ $) 120)) (-2451 (($ $) 121)) (-4274 (($ $ (-142)) 108) (($ $ (-139)) 107)) (-4233 (((-1246) $ (-554) (-554)) 40 (|has| $ (-6 -4374)))) (-3779 (((-112) $ $) 118)) (-3756 (((-112) $ $ (-554)) 117)) (-1515 (((-631 $) $ (-142)) 110) (((-631 $) $ (-139)) 109)) (-4015 (((-112) (-1 (-112) (-142) (-142)) $) 98) (((-112) $) 92 (|has| (-142) (-836)))) (-2576 (($ (-1 (-112) (-142) (-142)) $) 89 (|has| $ (-6 -4374))) (($ $) 88 (-12 (|has| (-142) (-836)) (|has| $ (-6 -4374))))) (-3303 (($ (-1 (-112) (-142) (-142)) $) 99) (($ $) 93 (|has| (-142) (-836)))) (-3019 (((-112) $ (-758)) 8)) (-1501 (((-142) $ (-554) (-142)) 52 (|has| $ (-6 -4374))) (((-142) $ (-1208 (-554)) (-142)) 58 (|has| $ (-6 -4374)))) (-1871 (($ (-1 (-112) (-142)) $) 75 (|has| $ (-6 -4373)))) (-4087 (($) 7 T CONST)) (-2190 (($ $ (-142)) 104) (($ $ (-139)) 103)) (-3920 (($ $) 90 (|has| $ (-6 -4374)))) (-3799 (($ $) 100)) (-1395 (($ $ (-1208 (-554)) $) 114)) (-1571 (($ $) 78 (-12 (|has| (-142) (-1082)) (|has| $ (-6 -4373))))) (-2574 (($ (-142) $) 77 (-12 (|has| (-142) (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) (-142)) $) 74 (|has| $ (-6 -4373)))) (-3676 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) 76 (-12 (|has| (-142) (-1082)) (|has| $ (-6 -4373)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) 73 (|has| $ (-6 -4373))) (((-142) (-1 (-142) (-142) (-142)) $) 72 (|has| $ (-6 -4373)))) (-2862 (((-142) $ (-554) (-142)) 53 (|has| $ (-6 -4374)))) (-2796 (((-142) $ (-554)) 51)) (-3802 (((-112) $ $) 119)) (-1484 (((-554) (-1 (-112) (-142)) $) 97) (((-554) (-142) $) 96 (|has| (-142) (-1082))) (((-554) (-142) $ (-554)) 95 (|has| (-142) (-1082))) (((-554) $ $ (-554)) 113) (((-554) (-139) $ (-554)) 112)) (-2466 (((-631 (-142)) $) 30 (|has| $ (-6 -4373)))) (-3180 (($ (-758) (-142)) 69)) (-2230 (((-112) $ (-758)) 9)) (-3044 (((-554) $) 43 (|has| (-554) (-836)))) (-4223 (($ $ $) 87 (|has| (-142) (-836)))) (-3717 (($ (-1 (-112) (-142) (-142)) $ $) 101) (($ $ $) 94 (|has| (-142) (-836)))) (-2379 (((-631 (-142)) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) (-142) $) 27 (-12 (|has| (-142) (-1082)) (|has| $ (-6 -4373))))) (-2256 (((-554) $) 44 (|has| (-554) (-836)))) (-2706 (($ $ $) 86 (|has| (-142) (-836)))) (-1550 (((-112) $ $ (-142)) 115)) (-3814 (((-758) $ $ (-142)) 116)) (-2849 (($ (-1 (-142) (-142)) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-142) (-142)) $) 35) (($ (-1 (-142) (-142) (-142)) $ $) 64)) (-3110 (($ $) 122)) (-1913 (($ $) 123)) (-3731 (((-112) $ (-758)) 10)) (-2203 (($ $ (-142)) 106) (($ $ (-139)) 105)) (-1613 (((-1140) $) 22 (|has| (-142) (-1082)))) (-1782 (($ (-142) $ (-554)) 60) (($ $ $ (-554)) 59)) (-2529 (((-631 (-554)) $) 46)) (-3618 (((-112) (-554) $) 47)) (-2768 (((-1102) $) 21 (|has| (-142) (-1082)))) (-1539 (((-142) $) 42 (|has| (-554) (-836)))) (-1652 (((-3 (-142) "failed") (-1 (-112) (-142)) $) 71)) (-2441 (($ $ (-142)) 41 (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) (-142)) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 (-142)))) 26 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082)))) (($ $ (-289 (-142))) 25 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082)))) (($ $ (-142) (-142)) 24 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082)))) (($ $ (-631 (-142)) (-631 (-142))) 23 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082))))) (-2494 (((-112) $ $) 14)) (-1609 (((-112) (-142) $) 45 (-12 (|has| $ (-6 -4373)) (|has| (-142) (-1082))))) (-2625 (((-631 (-142)) $) 48)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2064 (((-142) $ (-554) (-142)) 50) (((-142) $ (-554)) 49) (($ $ (-1208 (-554))) 63) (($ $ $) 102)) (-2021 (($ $ (-554)) 62) (($ $ (-1208 (-554))) 61)) (-2777 (((-758) (-1 (-112) (-142)) $) 31 (|has| $ (-6 -4373))) (((-758) (-142) $) 28 (-12 (|has| (-142) (-1082)) (|has| $ (-6 -4373))))) (-3553 (($ $ $ (-554)) 91 (|has| $ (-6 -4374)))) (-1521 (($ $) 13)) (-2927 (((-530) $) 79 (|has| (-142) (-602 (-530))))) (-3089 (($ (-631 (-142))) 70)) (-4323 (($ $ (-142)) 68) (($ (-142) $) 67) (($ $ $) 66) (($ (-631 $)) 65)) (-3075 (($ (-142)) 111) (((-848) $) 18 (|has| (-142) (-601 (-848))))) (-2438 (((-112) (-1 (-112) (-142)) $) 33 (|has| $ (-6 -4373)))) (-1708 (((-112) $ $) 84 (|has| (-142) (-836)))) (-1686 (((-112) $ $) 83 (|has| (-142) (-836)))) (-1658 (((-112) $ $) 20 (|has| (-142) (-1082)))) (-1697 (((-112) $ $) 85 (|has| (-142) (-836)))) (-1676 (((-112) $ $) 82 (|has| (-142) (-836)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373)))))
-(((-1126) (-138)) (T -1126))
-((-1913 (*1 *1 *1) (-4 *1 (-1126))) (-3110 (*1 *1 *1) (-4 *1 (-1126))) (-2451 (*1 *1 *1) (-4 *1 (-1126))) (-2905 (*1 *1 *1) (-4 *1 (-1126))) (-3802 (*1 *2 *1 *1) (-12 (-4 *1 (-1126)) (-5 *2 (-112)))) (-3779 (*1 *2 *1 *1) (-12 (-4 *1 (-1126)) (-5 *2 (-112)))) (-3756 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1126)) (-5 *3 (-554)) (-5 *2 (-112)))) (-3814 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1126)) (-5 *3 (-142)) (-5 *2 (-758)))) (-1550 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1126)) (-5 *3 (-142)) (-5 *2 (-112)))) (-1395 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1126)) (-5 *2 (-1208 (-554))))) (-1484 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1126)) (-5 *2 (-554)))) (-1484 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1126)) (-5 *2 (-554)) (-5 *3 (-139)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-142)) (-4 *1 (-1126)))) (-1515 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-631 *1)) (-4 *1 (-1126)))) (-1515 (*1 *2 *1 *3) (-12 (-5 *3 (-139)) (-5 *2 (-631 *1)) (-4 *1 (-1126)))) (-4274 (*1 *1 *1 *2) (-12 (-4 *1 (-1126)) (-5 *2 (-142)))) (-4274 (*1 *1 *1 *2) (-12 (-4 *1 (-1126)) (-5 *2 (-139)))) (-2203 (*1 *1 *1 *2) (-12 (-4 *1 (-1126)) (-5 *2 (-142)))) (-2203 (*1 *1 *1 *2) (-12 (-4 *1 (-1126)) (-5 *2 (-139)))) (-2190 (*1 *1 *1 *2) (-12 (-4 *1 (-1126)) (-5 *2 (-142)))) (-2190 (*1 *1 *1 *2) (-12 (-4 *1 (-1126)) (-5 *2 (-139)))) (-2064 (*1 *1 *1 *1) (-4 *1 (-1126))))
-(-13 (-19 (-142)) (-10 -8 (-15 -1913 ($ $)) (-15 -3110 ($ $)) (-15 -2451 ($ $)) (-15 -2905 ($ $)) (-15 -3802 ((-112) $ $)) (-15 -3779 ((-112) $ $)) (-15 -3756 ((-112) $ $ (-554))) (-15 -3814 ((-758) $ $ (-142))) (-15 -1550 ((-112) $ $ (-142))) (-15 -1395 ($ $ (-1208 (-554)) $)) (-15 -1484 ((-554) $ $ (-554))) (-15 -1484 ((-554) (-139) $ (-554))) (-15 -3075 ($ (-142))) (-15 -1515 ((-631 $) $ (-142))) (-15 -1515 ((-631 $) $ (-139))) (-15 -4274 ($ $ (-142))) (-15 -4274 ($ $ (-139))) (-15 -2203 ($ $ (-142))) (-15 -2203 ($ $ (-139))) (-15 -2190 ($ $ (-142))) (-15 -2190 ($ $ (-139))) (-15 -2064 ($ $ $))))
-(((-34) . T) ((-102) -3994 (|has| (-142) (-1082)) (|has| (-142) (-836))) ((-601 (-848)) -3994 (|has| (-142) (-1082)) (|has| (-142) (-836)) (|has| (-142) (-601 (-848)))) ((-149 #0=(-142)) . T) ((-602 (-530)) |has| (-142) (-602 (-530))) ((-281 #1=(-554) #0#) . T) ((-283 #1# #0#) . T) ((-304 #0#) -12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082))) ((-368 #0#) . T) ((-483 #0#) . T) ((-592 #1# #0#) . T) ((-508 #0# #0#) -12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082))) ((-637 #0#) . T) ((-19 #0#) . T) ((-836) |has| (-142) (-836)) ((-1082) -3994 (|has| (-142) (-1082)) (|has| (-142) (-836))) ((-1195) . T))
-((-3202 (((-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-631 |#4|) (-631 |#5|) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) (-758)) 94)) (-1540 (((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5| (-758)) 54)) (-2446 (((-1246) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-758)) 85)) (-2877 (((-758) (-631 |#4|) (-631 |#5|)) 27)) (-1645 (((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5| (-758)) 56) (((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5| (-758) (-112)) 58)) (-3678 (((-631 |#5|) (-631 |#4|) (-631 |#5|) (-112) (-112) (-112) (-112) (-112)) 76) (((-631 |#5|) (-631 |#4|) (-631 |#5|) (-112) (-112)) 77)) (-2927 (((-1140) (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) 80)) (-3511 (((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5|) 53)) (-4198 (((-758) (-631 |#4|) (-631 |#5|)) 19)))
-(((-1127 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4198 ((-758) (-631 |#4|) (-631 |#5|))) (-15 -2877 ((-758) (-631 |#4|) (-631 |#5|))) (-15 -3511 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5|)) (-15 -1540 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5| (-758))) (-15 -1540 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5|)) (-15 -1645 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5| (-758) (-112))) (-15 -1645 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5| (-758))) (-15 -1645 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5|)) (-15 -3678 ((-631 |#5|) (-631 |#4|) (-631 |#5|) (-112) (-112))) (-15 -3678 ((-631 |#5|) (-631 |#4|) (-631 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3202 ((-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-631 |#4|) (-631 |#5|) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) (-758))) (-15 -2927 ((-1140) (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|)))) (-15 -2446 ((-1246) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-758)))) (-446) (-780) (-836) (-1048 |#1| |#2| |#3|) (-1091 |#1| |#2| |#3| |#4|)) (T -1127))
-((-2446 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-2 (|:| |val| (-631 *8)) (|:| -2143 *9)))) (-5 *4 (-758)) (-4 *8 (-1048 *5 *6 *7)) (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-1246)) (-5 *1 (-1127 *5 *6 *7 *8 *9)))) (-2927 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-631 *7)) (|:| -2143 *8))) (-4 *7 (-1048 *4 *5 *6)) (-4 *8 (-1091 *4 *5 *6 *7)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-1140)) (-5 *1 (-1127 *4 *5 *6 *7 *8)))) (-3202 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-631 *11)) (|:| |todo| (-631 (-2 (|:| |val| *3) (|:| -2143 *11)))))) (-5 *6 (-758)) (-5 *2 (-631 (-2 (|:| |val| (-631 *10)) (|:| -2143 *11)))) (-5 *3 (-631 *10)) (-5 *4 (-631 *11)) (-4 *10 (-1048 *7 *8 *9)) (-4 *11 (-1091 *7 *8 *9 *10)) (-4 *7 (-446)) (-4 *8 (-780)) (-4 *9 (-836)) (-5 *1 (-1127 *7 *8 *9 *10 *11)))) (-3678 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-631 *9)) (-5 *3 (-631 *8)) (-5 *4 (-112)) (-4 *8 (-1048 *5 *6 *7)) (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *1 (-1127 *5 *6 *7 *8 *9)))) (-3678 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-631 *9)) (-5 *3 (-631 *8)) (-5 *4 (-112)) (-4 *8 (-1048 *5 *6 *7)) (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *1 (-1127 *5 *6 *7 *8 *9)))) (-1645 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-631 *4)) (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4)))))) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-1645 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-758)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836)) (-4 *3 (-1048 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-631 *4)) (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4)))))) (-5 *1 (-1127 *6 *7 *8 *3 *4)) (-4 *4 (-1091 *6 *7 *8 *3)))) (-1645 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-758)) (-5 *6 (-112)) (-4 *7 (-446)) (-4 *8 (-780)) (-4 *9 (-836)) (-4 *3 (-1048 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-631 *4)) (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4)))))) (-5 *1 (-1127 *7 *8 *9 *3 *4)) (-4 *4 (-1091 *7 *8 *9 *3)))) (-1540 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-631 *4)) (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4)))))) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-1540 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-758)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836)) (-4 *3 (-1048 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-631 *4)) (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4)))))) (-5 *1 (-1127 *6 *7 *8 *3 *4)) (-4 *4 (-1091 *6 *7 *8 *3)))) (-3511 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-631 *4)) (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4)))))) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-2877 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-631 *9)) (-4 *8 (-1048 *5 *6 *7)) (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-758)) (-5 *1 (-1127 *5 *6 *7 *8 *9)))) (-4198 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-631 *9)) (-4 *8 (-1048 *5 *6 *7)) (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-758)) (-5 *1 (-1127 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -4198 ((-758) (-631 |#4|) (-631 |#5|))) (-15 -2877 ((-758) (-631 |#4|) (-631 |#5|))) (-15 -3511 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5|)) (-15 -1540 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5| (-758))) (-15 -1540 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5|)) (-15 -1645 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5| (-758) (-112))) (-15 -1645 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5| (-758))) (-15 -1645 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5|)) (-15 -3678 ((-631 |#5|) (-631 |#4|) (-631 |#5|) (-112) (-112))) (-15 -3678 ((-631 |#5|) (-631 |#4|) (-631 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3202 ((-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-631 |#4|) (-631 |#5|) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) (-758))) (-15 -2927 ((-1140) (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|)))) (-15 -2446 ((-1246) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-758))))
-((-3062 (((-112) $ $) NIL)) (-3960 (((-631 (-2 (|:| -2498 $) (|:| -1303 (-631 |#4|)))) (-631 |#4|)) NIL)) (-3176 (((-631 $) (-631 |#4|)) 110) (((-631 $) (-631 |#4|) (-112)) 111) (((-631 $) (-631 |#4|) (-112) (-112)) 109) (((-631 $) (-631 |#4|) (-112) (-112) (-112) (-112)) 112)) (-2405 (((-631 |#3|) $) NIL)) (-1678 (((-112) $) NIL)) (-3005 (((-112) $) NIL (|has| |#1| (-546)))) (-2630 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4057 ((|#4| |#4| $) NIL)) (-3278 (((-631 (-2 (|:| |val| |#4|) (|:| -2143 $))) |#4| $) 84)) (-3303 (((-2 (|:| |under| $) (|:| -4339 $) (|:| |upper| $)) $ |#3|) NIL)) (-3019 (((-112) $ (-758)) NIL)) (-1871 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373))) (((-3 |#4| "failed") $ |#3|) 62)) (-4087 (($) NIL T CONST)) (-1930 (((-112) $) 26 (|has| |#1| (-546)))) (-1404 (((-112) $ $) NIL (|has| |#1| (-546)))) (-3262 (((-112) $ $) NIL (|has| |#1| (-546)))) (-2713 (((-112) $) NIL (|has| |#1| (-546)))) (-2242 (((-631 |#4|) (-631 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1380 (((-631 |#4|) (-631 |#4|) $) NIL (|has| |#1| (-546)))) (-4204 (((-631 |#4|) (-631 |#4|) $) NIL (|has| |#1| (-546)))) (-2784 (((-3 $ "failed") (-631 |#4|)) NIL)) (-1668 (($ (-631 |#4|)) NIL)) (-1551 (((-3 $ "failed") $) 39)) (-2930 ((|#4| |#4| $) 65)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082))))) (-2574 (($ |#4| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-2423 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-546)))) (-2857 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4210 ((|#4| |#4| $) NIL)) (-3676 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4373))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4373))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1971 (((-2 (|:| -2498 (-631 |#4|)) (|:| -1303 (-631 |#4|))) $) NIL)) (-4183 (((-112) |#4| $) NIL)) (-4155 (((-112) |#4| $) NIL)) (-2892 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3975 (((-2 (|:| |val| (-631 |#4|)) (|:| |towers| (-631 $))) (-631 |#4|) (-112) (-112)) 124)) (-2466 (((-631 |#4|) $) 16 (|has| $ (-6 -4373)))) (-4253 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3954 ((|#3| $) 33)) (-2230 (((-112) $ (-758)) NIL)) (-2379 (((-631 |#4|) $) 17 (|has| $ (-6 -4373)))) (-3068 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082))))) (-2849 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#4| |#4|) $) 21)) (-2643 (((-631 |#3|) $) NIL)) (-1400 (((-112) |#3| $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL)) (-1343 (((-3 |#4| (-631 $)) |#4| |#4| $) NIL)) (-2543 (((-631 (-2 (|:| |val| |#4|) (|:| -2143 $))) |#4| |#4| $) 103)) (-2597 (((-3 |#4| "failed") $) 37)) (-2953 (((-631 $) |#4| $) 88)) (-3841 (((-3 (-112) (-631 $)) |#4| $) NIL)) (-3874 (((-631 (-2 (|:| |val| (-112)) (|:| -2143 $))) |#4| $) 98) (((-112) |#4| $) 53)) (-3977 (((-631 $) |#4| $) 107) (((-631 $) (-631 |#4|) $) NIL) (((-631 $) (-631 |#4|) (-631 $)) 108) (((-631 $) |#4| (-631 $)) NIL)) (-2031 (((-631 $) (-631 |#4|) (-112) (-112) (-112)) 119)) (-3479 (($ |#4| $) 75) (($ (-631 |#4|) $) 76) (((-631 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 74)) (-2627 (((-631 |#4|) $) NIL)) (-3007 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1536 ((|#4| |#4| $) NIL)) (-2178 (((-112) $ $) NIL)) (-3548 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-546)))) (-3518 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3492 ((|#4| |#4| $) NIL)) (-2768 (((-1102) $) NIL)) (-1539 (((-3 |#4| "failed") $) 35)) (-1652 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3948 (((-3 $ "failed") $ |#4|) 48)) (-4282 (($ $ |#4|) NIL) (((-631 $) |#4| $) 90) (((-631 $) |#4| (-631 $)) NIL) (((-631 $) (-631 |#4|) $) NIL) (((-631 $) (-631 |#4|) (-631 $)) 86)) (-2845 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 |#4|) (-631 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-289 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-631 (-289 |#4|))) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) 15)) (-4240 (($) 13)) (-3308 (((-758) $) NIL)) (-2777 (((-758) |#4| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082)))) (((-758) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-1521 (($ $) 12)) (-2927 (((-530) $) NIL (|has| |#4| (-602 (-530))))) (-3089 (($ (-631 |#4|)) 20)) (-2538 (($ $ |#3|) 42)) (-2384 (($ $ |#3|) 44)) (-2258 (($ $) NIL)) (-2128 (($ $ |#3|) NIL)) (-3075 (((-848) $) 31) (((-631 |#4|) $) 40)) (-2347 (((-758) $) NIL (|has| |#3| (-363)))) (-2792 (((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 |#4|))) "failed") (-631 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 |#4|))) "failed") (-631 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3579 (((-112) $ (-1 (-112) |#4| (-631 |#4|))) NIL)) (-3850 (((-631 $) |#4| $) 54) (((-631 $) |#4| (-631 $)) NIL) (((-631 $) (-631 |#4|) $) NIL) (((-631 $) (-631 |#4|) (-631 $)) NIL)) (-2438 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-4267 (((-631 |#3|) $) NIL)) (-4351 (((-112) |#4| $) NIL)) (-3536 (((-112) |#3| $) 61)) (-1658 (((-112) $ $) NIL)) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-1128 |#1| |#2| |#3| |#4|) (-13 (-1091 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3479 ((-631 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3176 ((-631 $) (-631 |#4|) (-112) (-112))) (-15 -3176 ((-631 $) (-631 |#4|) (-112) (-112) (-112) (-112))) (-15 -2031 ((-631 $) (-631 |#4|) (-112) (-112) (-112))) (-15 -3975 ((-2 (|:| |val| (-631 |#4|)) (|:| |towers| (-631 $))) (-631 |#4|) (-112) (-112))))) (-446) (-780) (-836) (-1048 |#1| |#2| |#3|)) (T -1128))
-((-3479 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-631 (-1128 *5 *6 *7 *3))) (-5 *1 (-1128 *5 *6 *7 *3)) (-4 *3 (-1048 *5 *6 *7)))) (-3176 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-112)) (-4 *8 (-1048 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-631 (-1128 *5 *6 *7 *8))) (-5 *1 (-1128 *5 *6 *7 *8)))) (-3176 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-112)) (-4 *8 (-1048 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-631 (-1128 *5 *6 *7 *8))) (-5 *1 (-1128 *5 *6 *7 *8)))) (-2031 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-112)) (-4 *8 (-1048 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-631 (-1128 *5 *6 *7 *8))) (-5 *1 (-1128 *5 *6 *7 *8)))) (-3975 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *8 (-1048 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-631 *8)) (|:| |towers| (-631 (-1128 *5 *6 *7 *8))))) (-5 *1 (-1128 *5 *6 *7 *8)) (-5 *3 (-631 *8)))))
-(-13 (-1091 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3479 ((-631 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3176 ((-631 $) (-631 |#4|) (-112) (-112))) (-15 -3176 ((-631 $) (-631 |#4|) (-112) (-112) (-112) (-112))) (-15 -2031 ((-631 $) (-631 |#4|) (-112) (-112) (-112))) (-15 -3975 ((-2 (|:| |val| (-631 |#4|)) (|:| |towers| (-631 $))) (-631 |#4|) (-112) (-112)))))
-((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2292 ((|#1| $) 34)) (-3670 (($ (-631 |#1|)) 39)) (-3019 (((-112) $ (-758)) NIL)) (-4087 (($) NIL T CONST)) (-1790 ((|#1| |#1| $) 36)) (-3956 ((|#1| $) 32)) (-2466 (((-631 |#1|) $) 18 (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) NIL)) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2849 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 22)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-4150 ((|#1| $) 35)) (-2045 (($ |#1| $) 37)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-2152 ((|#1| $) 33)) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) 31)) (-4240 (($) 38)) (-2763 (((-758) $) 29)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1521 (($ $) 27)) (-3075 (((-848) $) 14 (|has| |#1| (-601 (-848))))) (-1591 (($ (-631 |#1|)) NIL)) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 17 (|has| |#1| (-1082)))) (-2563 (((-758) $) 30 (|has| $ (-6 -4373)))))
-(((-1129 |#1|) (-13 (-1103 |#1|) (-10 -8 (-15 -3670 ($ (-631 |#1|))))) (-1195)) (T -1129))
-((-3670 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1195)) (-5 *1 (-1129 *3)))))
-(-13 (-1103 |#1|) (-10 -8 (-15 -3670 ($ (-631 |#1|)))))
-((-1501 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1208 (-554)) |#2|) 44) ((|#2| $ (-554) |#2|) 41)) (-3556 (((-112) $) 12)) (-2849 (($ (-1 |#2| |#2|) $) 39)) (-1539 ((|#2| $) NIL) (($ $ (-758)) 17)) (-2441 (($ $ |#2|) 40)) (-1381 (((-112) $) 11)) (-2064 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1208 (-554))) 31) ((|#2| $ (-554)) 23) ((|#2| $ (-554) |#2|) NIL)) (-1853 (($ $ $) 47) (($ $ |#2|) NIL)) (-4323 (($ $ $) 33) (($ |#2| $) NIL) (($ (-631 $)) 36) (($ $ |#2|) NIL)))
-(((-1130 |#1| |#2|) (-10 -8 (-15 -3556 ((-112) |#1|)) (-15 -1381 ((-112) |#1|)) (-15 -1501 (|#2| |#1| (-554) |#2|)) (-15 -2064 (|#2| |#1| (-554) |#2|)) (-15 -2064 (|#2| |#1| (-554))) (-15 -2441 (|#1| |#1| |#2|)) (-15 -4323 (|#1| |#1| |#2|)) (-15 -4323 (|#1| (-631 |#1|))) (-15 -2064 (|#1| |#1| (-1208 (-554)))) (-15 -1501 (|#2| |#1| (-1208 (-554)) |#2|)) (-15 -1501 (|#2| |#1| "last" |#2|)) (-15 -1501 (|#1| |#1| "rest" |#1|)) (-15 -1501 (|#2| |#1| "first" |#2|)) (-15 -1853 (|#1| |#1| |#2|)) (-15 -1853 (|#1| |#1| |#1|)) (-15 -2064 (|#2| |#1| "last")) (-15 -2064 (|#1| |#1| "rest")) (-15 -1539 (|#1| |#1| (-758))) (-15 -2064 (|#2| |#1| "first")) (-15 -1539 (|#2| |#1|)) (-15 -4323 (|#1| |#2| |#1|)) (-15 -4323 (|#1| |#1| |#1|)) (-15 -1501 (|#2| |#1| "value" |#2|)) (-15 -2064 (|#2| |#1| "value")) (-15 -2849 (|#1| (-1 |#2| |#2|) |#1|))) (-1131 |#2|) (-1195)) (T -1130))
-NIL
-(-10 -8 (-15 -3556 ((-112) |#1|)) (-15 -1381 ((-112) |#1|)) (-15 -1501 (|#2| |#1| (-554) |#2|)) (-15 -2064 (|#2| |#1| (-554) |#2|)) (-15 -2064 (|#2| |#1| (-554))) (-15 -2441 (|#1| |#1| |#2|)) (-15 -4323 (|#1| |#1| |#2|)) (-15 -4323 (|#1| (-631 |#1|))) (-15 -2064 (|#1| |#1| (-1208 (-554)))) (-15 -1501 (|#2| |#1| (-1208 (-554)) |#2|)) (-15 -1501 (|#2| |#1| "last" |#2|)) (-15 -1501 (|#1| |#1| "rest" |#1|)) (-15 -1501 (|#2| |#1| "first" |#2|)) (-15 -1853 (|#1| |#1| |#2|)) (-15 -1853 (|#1| |#1| |#1|)) (-15 -2064 (|#2| |#1| "last")) (-15 -2064 (|#1| |#1| "rest")) (-15 -1539 (|#1| |#1| (-758))) (-15 -2064 (|#2| |#1| "first")) (-15 -1539 (|#2| |#1|)) (-15 -4323 (|#1| |#2| |#1|)) (-15 -4323 (|#1| |#1| |#1|)) (-15 -1501 (|#2| |#1| "value" |#2|)) (-15 -2064 (|#2| |#1| "value")) (-15 -2849 (|#1| (-1 |#2| |#2|) |#1|)))
-((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-2794 ((|#1| $) 48)) (-2350 ((|#1| $) 65)) (-3387 (($ $) 67)) (-4233 (((-1246) $ (-554) (-554)) 97 (|has| $ (-6 -4374)))) (-2722 (($ $ (-554)) 52 (|has| $ (-6 -4374)))) (-3019 (((-112) $ (-758)) 8)) (-2690 ((|#1| $ |#1|) 39 (|has| $ (-6 -4374)))) (-2234 (($ $ $) 56 (|has| $ (-6 -4374)))) (-1825 ((|#1| $ |#1|) 54 (|has| $ (-6 -4374)))) (-3105 ((|#1| $ |#1|) 58 (|has| $ (-6 -4374)))) (-1501 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4374))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4374))) (($ $ "rest" $) 55 (|has| $ (-6 -4374))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4374))) ((|#1| $ (-1208 (-554)) |#1|) 117 (|has| $ (-6 -4374))) ((|#1| $ (-554) |#1|) 86 (|has| $ (-6 -4374)))) (-2923 (($ $ (-631 $)) 41 (|has| $ (-6 -4374)))) (-1871 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4373)))) (-2337 ((|#1| $) 66)) (-4087 (($) 7 T CONST)) (-1551 (($ $) 73) (($ $ (-758)) 71)) (-1571 (($ $) 99 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2574 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4373))) (($ |#1| $) 100 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2862 ((|#1| $ (-554) |#1|) 85 (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-554)) 87)) (-3556 (((-112) $) 83)) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-3677 (((-631 $) $) 50)) (-1990 (((-112) $ $) 42 (|has| |#1| (-1082)))) (-3180 (($ (-758) |#1|) 108)) (-2230 (((-112) $ (-758)) 9)) (-3044 (((-554) $) 95 (|has| (-554) (-836)))) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2256 (((-554) $) 94 (|has| (-554) (-836)))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3731 (((-112) $ (-758)) 10)) (-2306 (((-631 |#1|) $) 45)) (-3216 (((-112) $) 49)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-2597 ((|#1| $) 70) (($ $ (-758)) 68)) (-1782 (($ $ $ (-554)) 116) (($ |#1| $ (-554)) 115)) (-2529 (((-631 (-554)) $) 92)) (-3618 (((-112) (-554) $) 91)) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-1539 ((|#1| $) 76) (($ $ (-758)) 74)) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2441 (($ $ |#1|) 96 (|has| $ (-6 -4374)))) (-1381 (((-112) $) 84)) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-1609 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) 90)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2064 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1208 (-554))) 112) ((|#1| $ (-554)) 89) ((|#1| $ (-554) |#1|) 88)) (-3250 (((-554) $ $) 44)) (-2021 (($ $ (-1208 (-554))) 114) (($ $ (-554)) 113)) (-3008 (((-112) $) 46)) (-1670 (($ $) 62)) (-2377 (($ $) 59 (|has| $ (-6 -4374)))) (-2797 (((-758) $) 63)) (-2046 (($ $) 64)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-2927 (((-530) $) 98 (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) 107)) (-1853 (($ $ $) 61 (|has| $ (-6 -4374))) (($ $ |#1|) 60 (|has| $ (-6 -4374)))) (-4323 (($ $ $) 78) (($ |#1| $) 77) (($ (-631 $)) 110) (($ $ |#1|) 109)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-2461 (((-631 $) $) 51)) (-1441 (((-112) $ $) 43 (|has| |#1| (-1082)))) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373)))))
-(((-1131 |#1|) (-138) (-1195)) (T -1131))
-((-1381 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1195)) (-5 *2 (-112)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1195)) (-5 *2 (-112)))))
-(-13 (-1229 |t#1|) (-637 |t#1|) (-10 -8 (-15 -1381 ((-112) $)) (-15 -3556 ((-112) $))))
-(((-34) . T) ((-102) |has| |#1| (-1082)) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-601 (-848)))) ((-149 |#1|) . T) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-281 #0=(-554) |#1|) . T) ((-283 #0# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-592 #0# |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-637 |#1|) . T) ((-995 |#1|) . T) ((-1082) |has| |#1| (-1082)) ((-1195) . T) ((-1229 |#1|) . T))
-((-3062 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-3167 (($) NIL) (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-4233 (((-1246) $ |#1| |#1|) NIL (|has| $ (-6 -4374)))) (-3019 (((-112) $ (-758)) NIL)) (-1501 ((|#2| $ |#1| |#2|) NIL)) (-2220 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-2937 (((-3 |#2| "failed") |#1| $) NIL)) (-4087 (($) NIL T CONST)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))))) (-1884 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (|has| $ (-6 -4373))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-3 |#2| "failed") |#1| $) NIL)) (-2574 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-3676 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (|has| $ (-6 -4373))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-2862 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#2| $ |#1|) NIL)) (-2466 (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-631 |#2|) $) NIL (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) NIL)) (-3044 ((|#1| $) NIL (|has| |#1| (-836)))) (-2379 (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-631 |#2|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2256 ((|#1| $) NIL (|has| |#1| (-836)))) (-2849 (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4374))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-2944 (((-631 |#1|) $) NIL)) (-2415 (((-112) |#1| $) NIL)) (-4150 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-2045 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-2529 (((-631 |#1|) $) NIL)) (-3618 (((-112) |#1| $) NIL)) (-2768 (((-1102) $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-1539 ((|#2| $) NIL (|has| |#1| (-836)))) (-1652 (((-3 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) "failed") (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL)) (-2441 (($ $ |#2|) NIL (|has| $ (-6 -4374)))) (-2152 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-2845 (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-631 |#2|) (-631 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-631 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2625 (((-631 |#2|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4310 (($) NIL) (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-2777 (((-758) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-758) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-758) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082)))) (((-758) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-602 (-530))))) (-3089 (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-3075 (((-848) $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-601 (-848))) (|has| |#2| (-601 (-848)))))) (-1591 (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-2438 (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-1132 |#1| |#2| |#3|) (-1171 |#1| |#2|) (-1082) (-1082) |#2|) (T -1132))
-NIL
-(-1171 |#1| |#2|)
-((-3062 (((-112) $ $) 7)) (-3339 (((-3 $ "failed") $) 13)) (-1613 (((-1140) $) 9)) (-3834 (($) 14 T CONST)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-1658 (((-112) $ $) 6)))
-(((-1133) (-138)) (T -1133))
-((-3834 (*1 *1) (-4 *1 (-1133))) (-3339 (*1 *1 *1) (|partial| -4 *1 (-1133))))
-(-13 (-1082) (-10 -8 (-15 -3834 ($) -2397) (-15 -3339 ((-3 $ "failed") $))))
-(((-102) . T) ((-601 (-848)) . T) ((-1082) . T))
-((-3292 (((-1138 |#1|) (-1138 |#1|)) 17)) (-4260 (((-1138 |#1|) (-1138 |#1|)) 13)) (-4263 (((-1138 |#1|) (-1138 |#1|) (-554) (-554)) 20)) (-2539 (((-1138 |#1|) (-1138 |#1|)) 15)))
-(((-1134 |#1|) (-10 -7 (-15 -4260 ((-1138 |#1|) (-1138 |#1|))) (-15 -2539 ((-1138 |#1|) (-1138 |#1|))) (-15 -3292 ((-1138 |#1|) (-1138 |#1|))) (-15 -4263 ((-1138 |#1|) (-1138 |#1|) (-554) (-554)))) (-13 (-546) (-145))) (T -1134))
-((-4263 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1138 *4)) (-5 *3 (-554)) (-4 *4 (-13 (-546) (-145))) (-5 *1 (-1134 *4)))) (-3292 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-13 (-546) (-145))) (-5 *1 (-1134 *3)))) (-2539 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-13 (-546) (-145))) (-5 *1 (-1134 *3)))) (-4260 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-13 (-546) (-145))) (-5 *1 (-1134 *3)))))
-(-10 -7 (-15 -4260 ((-1138 |#1|) (-1138 |#1|))) (-15 -2539 ((-1138 |#1|) (-1138 |#1|))) (-15 -3292 ((-1138 |#1|) (-1138 |#1|))) (-15 -4263 ((-1138 |#1|) (-1138 |#1|) (-554) (-554))))
-((-4323 (((-1138 |#1|) (-1138 (-1138 |#1|))) 15)))
-(((-1135 |#1|) (-10 -7 (-15 -4323 ((-1138 |#1|) (-1138 (-1138 |#1|))))) (-1195)) (T -1135))
-((-4323 (*1 *2 *3) (-12 (-5 *3 (-1138 (-1138 *4))) (-5 *2 (-1138 *4)) (-5 *1 (-1135 *4)) (-4 *4 (-1195)))))
-(-10 -7 (-15 -4323 ((-1138 |#1|) (-1138 (-1138 |#1|)))))
-((-4159 (((-1138 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1138 |#1|)) 25)) (-3676 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1138 |#1|)) 26)) (-2879 (((-1138 |#2|) (-1 |#2| |#1|) (-1138 |#1|)) 16)))
-(((-1136 |#1| |#2|) (-10 -7 (-15 -2879 ((-1138 |#2|) (-1 |#2| |#1|) (-1138 |#1|))) (-15 -4159 ((-1138 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1138 |#1|))) (-15 -3676 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1138 |#1|)))) (-1195) (-1195)) (T -1136))
-((-3676 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1138 *5)) (-4 *5 (-1195)) (-4 *2 (-1195)) (-5 *1 (-1136 *5 *2)))) (-4159 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1138 *6)) (-4 *6 (-1195)) (-4 *3 (-1195)) (-5 *2 (-1138 *3)) (-5 *1 (-1136 *6 *3)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1138 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-1138 *6)) (-5 *1 (-1136 *5 *6)))))
-(-10 -7 (-15 -2879 ((-1138 |#2|) (-1 |#2| |#1|) (-1138 |#1|))) (-15 -4159 ((-1138 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1138 |#1|))) (-15 -3676 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1138 |#1|))))
-((-2879 (((-1138 |#3|) (-1 |#3| |#1| |#2|) (-1138 |#1|) (-1138 |#2|)) 21)))
-(((-1137 |#1| |#2| |#3|) (-10 -7 (-15 -2879 ((-1138 |#3|) (-1 |#3| |#1| |#2|) (-1138 |#1|) (-1138 |#2|)))) (-1195) (-1195) (-1195)) (T -1137))
-((-2879 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1138 *6)) (-5 *5 (-1138 *7)) (-4 *6 (-1195)) (-4 *7 (-1195)) (-4 *8 (-1195)) (-5 *2 (-1138 *8)) (-5 *1 (-1137 *6 *7 *8)))))
-(-10 -7 (-15 -2879 ((-1138 |#3|) (-1 |#3| |#1| |#2|) (-1138 |#1|) (-1138 |#2|))))
-((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2794 ((|#1| $) NIL)) (-2350 ((|#1| $) NIL)) (-3387 (($ $) 52)) (-4233 (((-1246) $ (-554) (-554)) 77 (|has| $ (-6 -4374)))) (-2722 (($ $ (-554)) 111 (|has| $ (-6 -4374)))) (-3019 (((-112) $ (-758)) NIL)) (-1718 (((-848) $) 41 (|has| |#1| (-1082)))) (-3517 (((-112)) 40 (|has| |#1| (-1082)))) (-2690 ((|#1| $ |#1|) NIL (|has| $ (-6 -4374)))) (-2234 (($ $ $) 99 (|has| $ (-6 -4374))) (($ $ (-554) $) 123)) (-1825 ((|#1| $ |#1|) 108 (|has| $ (-6 -4374)))) (-3105 ((|#1| $ |#1|) 103 (|has| $ (-6 -4374)))) (-1501 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4374))) ((|#1| $ "first" |#1|) 105 (|has| $ (-6 -4374))) (($ $ "rest" $) 107 (|has| $ (-6 -4374))) ((|#1| $ "last" |#1|) 110 (|has| $ (-6 -4374))) ((|#1| $ (-1208 (-554)) |#1|) 90 (|has| $ (-6 -4374))) ((|#1| $ (-554) |#1|) 56 (|has| $ (-6 -4374)))) (-2923 (($ $ (-631 $)) NIL (|has| $ (-6 -4374)))) (-1871 (($ (-1 (-112) |#1|) $) 59)) (-2337 ((|#1| $) NIL)) (-4087 (($) NIL T CONST)) (-2486 (($ $) 14)) (-1551 (($ $) 29) (($ $ (-758)) 89)) (-3348 (((-112) (-631 |#1|) $) 117 (|has| |#1| (-1082)))) (-3306 (($ (-631 |#1|)) 113)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2574 (($ |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) (($ (-1 (-112) |#1|) $) 58)) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2862 ((|#1| $ (-554) |#1|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-554)) NIL)) (-3556 (((-112) $) NIL)) (-2466 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-2182 (((-1246) (-554) $) 122 (|has| |#1| (-1082)))) (-2911 (((-758) $) 119)) (-3677 (((-631 $) $) NIL)) (-1990 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-3180 (($ (-758) |#1|) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) NIL (|has| (-554) (-836)))) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2256 (((-554) $) NIL (|has| (-554) (-836)))) (-2849 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 64) (($ (-1 |#1| |#1| |#1|) $ $) 68)) (-3731 (((-112) $ (-758)) NIL)) (-2306 (((-631 |#1|) $) NIL)) (-3216 (((-112) $) NIL)) (-4104 (($ $) 91)) (-3150 (((-112) $) 13)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-2597 ((|#1| $) NIL) (($ $ (-758)) NIL)) (-1782 (($ $ $ (-554)) NIL) (($ |#1| $ (-554)) NIL)) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) 75)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-1814 (($ (-1 |#1|)) 125) (($ (-1 |#1| |#1|) |#1|) 126)) (-1491 ((|#1| $) 10)) (-1539 ((|#1| $) 28) (($ $ (-758)) 50)) (-3790 (((-2 (|:| |cycle?| (-112)) (|:| -2997 (-758)) (|:| |period| (-758))) (-758) $) 25)) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1852 (($ (-1 (-112) |#1|) $) 127)) (-1862 (($ (-1 (-112) |#1|) $) 128)) (-2441 (($ $ |#1|) 69 (|has| $ (-6 -4374)))) (-4282 (($ $ (-554)) 32)) (-1381 (((-112) $) 73)) (-2322 (((-112) $) 12)) (-1826 (((-112) $) 118)) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 20)) (-1609 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) NIL)) (-3543 (((-112) $) 15)) (-4240 (($) 45)) (-2064 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1208 (-554))) NIL) ((|#1| $ (-554)) 55) ((|#1| $ (-554) |#1|) NIL)) (-3250 (((-554) $ $) 49)) (-2021 (($ $ (-1208 (-554))) NIL) (($ $ (-554)) NIL)) (-2653 (($ (-1 $)) 48)) (-3008 (((-112) $) 70)) (-1670 (($ $) 71)) (-2377 (($ $) 100 (|has| $ (-6 -4374)))) (-2797 (((-758) $) NIL)) (-2046 (($ $) NIL)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1521 (($ $) 44)) (-2927 (((-530) $) NIL (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) 54)) (-2403 (($ |#1| $) 98)) (-1853 (($ $ $) 101 (|has| $ (-6 -4374))) (($ $ |#1|) 102 (|has| $ (-6 -4374)))) (-4323 (($ $ $) 79) (($ |#1| $) 46) (($ (-631 $)) 84) (($ $ |#1|) 78)) (-1300 (($ $) 51)) (-3075 (($ (-631 |#1|)) 112) (((-848) $) 42 (|has| |#1| (-601 (-848))))) (-2461 (((-631 $) $) NIL)) (-1441 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 115 (|has| |#1| (-1082)))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-1138 |#1|) (-13 (-660 |#1|) (-604 (-631 |#1|)) (-10 -8 (-6 -4374) (-15 -3306 ($ (-631 |#1|))) (IF (|has| |#1| (-1082)) (-15 -3348 ((-112) (-631 |#1|) $)) |%noBranch|) (-15 -3790 ((-2 (|:| |cycle?| (-112)) (|:| -2997 (-758)) (|:| |period| (-758))) (-758) $)) (-15 -2653 ($ (-1 $))) (-15 -2403 ($ |#1| $)) (IF (|has| |#1| (-1082)) (PROGN (-15 -2182 ((-1246) (-554) $)) (-15 -1718 ((-848) $)) (-15 -3517 ((-112)))) |%noBranch|) (-15 -2234 ($ $ (-554) $)) (-15 -1814 ($ (-1 |#1|))) (-15 -1814 ($ (-1 |#1| |#1|) |#1|)) (-15 -1852 ($ (-1 (-112) |#1|) $)) (-15 -1862 ($ (-1 (-112) |#1|) $)))) (-1195)) (T -1138))
-((-3306 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1195)) (-5 *1 (-1138 *3)))) (-3348 (*1 *2 *3 *1) (-12 (-5 *3 (-631 *4)) (-4 *4 (-1082)) (-4 *4 (-1195)) (-5 *2 (-112)) (-5 *1 (-1138 *4)))) (-3790 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -2997 (-758)) (|:| |period| (-758)))) (-5 *1 (-1138 *4)) (-4 *4 (-1195)) (-5 *3 (-758)))) (-2653 (*1 *1 *2) (-12 (-5 *2 (-1 (-1138 *3))) (-5 *1 (-1138 *3)) (-4 *3 (-1195)))) (-2403 (*1 *1 *2 *1) (-12 (-5 *1 (-1138 *2)) (-4 *2 (-1195)))) (-2182 (*1 *2 *3 *1) (-12 (-5 *3 (-554)) (-5 *2 (-1246)) (-5 *1 (-1138 *4)) (-4 *4 (-1082)) (-4 *4 (-1195)))) (-1718 (*1 *2 *1) (-12 (-5 *2 (-848)) (-5 *1 (-1138 *3)) (-4 *3 (-1082)) (-4 *3 (-1195)))) (-3517 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1138 *3)) (-4 *3 (-1082)) (-4 *3 (-1195)))) (-2234 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-1138 *3)) (-4 *3 (-1195)))) (-1814 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1195)) (-5 *1 (-1138 *3)))) (-1814 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1195)) (-5 *1 (-1138 *3)))) (-1852 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1195)) (-5 *1 (-1138 *3)))) (-1862 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1195)) (-5 *1 (-1138 *3)))))
-(-13 (-660 |#1|) (-604 (-631 |#1|)) (-10 -8 (-6 -4374) (-15 -3306 ($ (-631 |#1|))) (IF (|has| |#1| (-1082)) (-15 -3348 ((-112) (-631 |#1|) $)) |%noBranch|) (-15 -3790 ((-2 (|:| |cycle?| (-112)) (|:| -2997 (-758)) (|:| |period| (-758))) (-758) $)) (-15 -2653 ($ (-1 $))) (-15 -2403 ($ |#1| $)) (IF (|has| |#1| (-1082)) (PROGN (-15 -2182 ((-1246) (-554) $)) (-15 -1718 ((-848) $)) (-15 -3517 ((-112)))) |%noBranch|) (-15 -2234 ($ $ (-554) $)) (-15 -1814 ($ (-1 |#1|))) (-15 -1814 ($ (-1 |#1| |#1|) |#1|)) (-15 -1852 ($ (-1 (-112) |#1|) $)) (-15 -1862 ($ (-1 (-112) |#1|) $))))
-((-3062 (((-112) $ $) 19)) (-2905 (($ $) 120)) (-2451 (($ $) 121)) (-4274 (($ $ (-142)) 108) (($ $ (-139)) 107)) (-4233 (((-1246) $ (-554) (-554)) 40 (|has| $ (-6 -4374)))) (-3779 (((-112) $ $) 118)) (-3756 (((-112) $ $ (-554)) 117)) (-3942 (($ (-554)) 127)) (-1515 (((-631 $) $ (-142)) 110) (((-631 $) $ (-139)) 109)) (-4015 (((-112) (-1 (-112) (-142) (-142)) $) 98) (((-112) $) 92 (|has| (-142) (-836)))) (-2576 (($ (-1 (-112) (-142) (-142)) $) 89 (|has| $ (-6 -4374))) (($ $) 88 (-12 (|has| (-142) (-836)) (|has| $ (-6 -4374))))) (-3303 (($ (-1 (-112) (-142) (-142)) $) 99) (($ $) 93 (|has| (-142) (-836)))) (-3019 (((-112) $ (-758)) 8)) (-1501 (((-142) $ (-554) (-142)) 52 (|has| $ (-6 -4374))) (((-142) $ (-1208 (-554)) (-142)) 58 (|has| $ (-6 -4374)))) (-1871 (($ (-1 (-112) (-142)) $) 75 (|has| $ (-6 -4373)))) (-4087 (($) 7 T CONST)) (-2190 (($ $ (-142)) 104) (($ $ (-139)) 103)) (-3920 (($ $) 90 (|has| $ (-6 -4374)))) (-3799 (($ $) 100)) (-1395 (($ $ (-1208 (-554)) $) 114)) (-1571 (($ $) 78 (-12 (|has| (-142) (-1082)) (|has| $ (-6 -4373))))) (-2574 (($ (-142) $) 77 (-12 (|has| (-142) (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) (-142)) $) 74 (|has| $ (-6 -4373)))) (-3676 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) 76 (-12 (|has| (-142) (-1082)) (|has| $ (-6 -4373)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) 73 (|has| $ (-6 -4373))) (((-142) (-1 (-142) (-142) (-142)) $) 72 (|has| $ (-6 -4373)))) (-2862 (((-142) $ (-554) (-142)) 53 (|has| $ (-6 -4374)))) (-2796 (((-142) $ (-554)) 51)) (-3802 (((-112) $ $) 119)) (-1484 (((-554) (-1 (-112) (-142)) $) 97) (((-554) (-142) $) 96 (|has| (-142) (-1082))) (((-554) (-142) $ (-554)) 95 (|has| (-142) (-1082))) (((-554) $ $ (-554)) 113) (((-554) (-139) $ (-554)) 112)) (-2466 (((-631 (-142)) $) 30 (|has| $ (-6 -4373)))) (-3180 (($ (-758) (-142)) 69)) (-2230 (((-112) $ (-758)) 9)) (-3044 (((-554) $) 43 (|has| (-554) (-836)))) (-4223 (($ $ $) 87 (|has| (-142) (-836)))) (-3717 (($ (-1 (-112) (-142) (-142)) $ $) 101) (($ $ $) 94 (|has| (-142) (-836)))) (-2379 (((-631 (-142)) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) (-142) $) 27 (-12 (|has| (-142) (-1082)) (|has| $ (-6 -4373))))) (-2256 (((-554) $) 44 (|has| (-554) (-836)))) (-2706 (($ $ $) 86 (|has| (-142) (-836)))) (-1550 (((-112) $ $ (-142)) 115)) (-3814 (((-758) $ $ (-142)) 116)) (-2849 (($ (-1 (-142) (-142)) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-142) (-142)) $) 35) (($ (-1 (-142) (-142) (-142)) $ $) 64)) (-3110 (($ $) 122)) (-1913 (($ $) 123)) (-3731 (((-112) $ (-758)) 10)) (-2203 (($ $ (-142)) 106) (($ $ (-139)) 105)) (-1613 (((-1140) $) 22)) (-1782 (($ (-142) $ (-554)) 60) (($ $ $ (-554)) 59)) (-2529 (((-631 (-554)) $) 46)) (-3618 (((-112) (-554) $) 47)) (-2768 (((-1102) $) 21)) (-1539 (((-142) $) 42 (|has| (-554) (-836)))) (-1652 (((-3 (-142) "failed") (-1 (-112) (-142)) $) 71)) (-2441 (($ $ (-142)) 41 (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) (-142)) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 (-142)))) 26 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082)))) (($ $ (-289 (-142))) 25 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082)))) (($ $ (-142) (-142)) 24 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082)))) (($ $ (-631 (-142)) (-631 (-142))) 23 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082))))) (-2494 (((-112) $ $) 14)) (-1609 (((-112) (-142) $) 45 (-12 (|has| $ (-6 -4373)) (|has| (-142) (-1082))))) (-2625 (((-631 (-142)) $) 48)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2064 (((-142) $ (-554) (-142)) 50) (((-142) $ (-554)) 49) (($ $ (-1208 (-554))) 63) (($ $ $) 102)) (-2021 (($ $ (-554)) 62) (($ $ (-1208 (-554))) 61)) (-2777 (((-758) (-1 (-112) (-142)) $) 31 (|has| $ (-6 -4373))) (((-758) (-142) $) 28 (-12 (|has| (-142) (-1082)) (|has| $ (-6 -4373))))) (-3553 (($ $ $ (-554)) 91 (|has| $ (-6 -4374)))) (-1521 (($ $) 13)) (-2927 (((-530) $) 79 (|has| (-142) (-602 (-530))))) (-3089 (($ (-631 (-142))) 70)) (-4323 (($ $ (-142)) 68) (($ (-142) $) 67) (($ $ $) 66) (($ (-631 $)) 65)) (-3075 (($ (-142)) 111) (((-848) $) 18)) (-2438 (((-112) (-1 (-112) (-142)) $) 33 (|has| $ (-6 -4373)))) (-4048 (((-1140) $) 131) (((-1140) $ (-112)) 130) (((-1246) (-809) $) 129) (((-1246) (-809) $ (-112)) 128)) (-1708 (((-112) $ $) 84 (|has| (-142) (-836)))) (-1686 (((-112) $ $) 83 (|has| (-142) (-836)))) (-1658 (((-112) $ $) 20)) (-1697 (((-112) $ $) 85 (|has| (-142) (-836)))) (-1676 (((-112) $ $) 82 (|has| (-142) (-836)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373)))))
-(((-1139) (-138)) (T -1139))
-((-3942 (*1 *1 *2) (-12 (-5 *2 (-554)) (-4 *1 (-1139)))))
-(-13 (-1126) (-1082) (-815) (-10 -8 (-15 -3942 ($ (-554)))))
-(((-34) . T) ((-102) . T) ((-601 (-848)) . T) ((-149 #0=(-142)) . T) ((-602 (-530)) |has| (-142) (-602 (-530))) ((-281 #1=(-554) #0#) . T) ((-283 #1# #0#) . T) ((-304 #0#) -12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082))) ((-368 #0#) . T) ((-483 #0#) . T) ((-592 #1# #0#) . T) ((-508 #0# #0#) -12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082))) ((-637 #0#) . T) ((-19 #0#) . T) ((-815) . T) ((-836) |has| (-142) (-836)) ((-1082) . T) ((-1126) . T) ((-1195) . T))
-((-3062 (((-112) $ $) NIL)) (-2905 (($ $) NIL)) (-2451 (($ $) NIL)) (-4274 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-4233 (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-3779 (((-112) $ $) NIL)) (-3756 (((-112) $ $ (-554)) NIL)) (-3942 (($ (-554)) 7)) (-1515 (((-631 $) $ (-142)) NIL) (((-631 $) $ (-139)) NIL)) (-4015 (((-112) (-1 (-112) (-142) (-142)) $) NIL) (((-112) $) NIL (|has| (-142) (-836)))) (-2576 (($ (-1 (-112) (-142) (-142)) $) NIL (|has| $ (-6 -4374))) (($ $) NIL (-12 (|has| $ (-6 -4374)) (|has| (-142) (-836))))) (-3303 (($ (-1 (-112) (-142) (-142)) $) NIL) (($ $) NIL (|has| (-142) (-836)))) (-3019 (((-112) $ (-758)) NIL)) (-1501 (((-142) $ (-554) (-142)) NIL (|has| $ (-6 -4374))) (((-142) $ (-1208 (-554)) (-142)) NIL (|has| $ (-6 -4374)))) (-1871 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4373)))) (-4087 (($) NIL T CONST)) (-2190 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-3920 (($ $) NIL (|has| $ (-6 -4374)))) (-3799 (($ $) NIL)) (-1395 (($ $ (-1208 (-554)) $) NIL)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-142) (-1082))))) (-2574 (($ (-142) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-142) (-1082)))) (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4373)))) (-3676 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4373)) (|has| (-142) (-1082)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4373))) (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4373)))) (-2862 (((-142) $ (-554) (-142)) NIL (|has| $ (-6 -4374)))) (-2796 (((-142) $ (-554)) NIL)) (-3802 (((-112) $ $) NIL)) (-1484 (((-554) (-1 (-112) (-142)) $) NIL) (((-554) (-142) $) NIL (|has| (-142) (-1082))) (((-554) (-142) $ (-554)) NIL (|has| (-142) (-1082))) (((-554) $ $ (-554)) NIL) (((-554) (-139) $ (-554)) NIL)) (-2466 (((-631 (-142)) $) NIL (|has| $ (-6 -4373)))) (-3180 (($ (-758) (-142)) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) NIL (|has| (-554) (-836)))) (-4223 (($ $ $) NIL (|has| (-142) (-836)))) (-3717 (($ (-1 (-112) (-142) (-142)) $ $) NIL) (($ $ $) NIL (|has| (-142) (-836)))) (-2379 (((-631 (-142)) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-142) (-1082))))) (-2256 (((-554) $) NIL (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (|has| (-142) (-836)))) (-1550 (((-112) $ $ (-142)) NIL)) (-3814 (((-758) $ $ (-142)) NIL)) (-2849 (($ (-1 (-142) (-142)) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-142) (-142)) $) NIL) (($ (-1 (-142) (-142) (-142)) $ $) NIL)) (-3110 (($ $) NIL)) (-1913 (($ $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-2203 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-1613 (((-1140) $) NIL)) (-1782 (($ (-142) $ (-554)) NIL) (($ $ $ (-554)) NIL)) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) NIL)) (-2768 (((-1102) $) NIL)) (-1539 (((-142) $) NIL (|has| (-554) (-836)))) (-1652 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-2441 (($ $ (-142)) NIL (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 (-142)))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082)))) (($ $ (-289 (-142))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082)))) (($ $ (-631 (-142)) (-631 (-142))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-142) (-1082))))) (-2625 (((-631 (-142)) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 (((-142) $ (-554) (-142)) NIL) (((-142) $ (-554)) NIL) (($ $ (-1208 (-554))) NIL) (($ $ $) NIL)) (-2021 (($ $ (-554)) NIL) (($ $ (-1208 (-554))) NIL)) (-2777 (((-758) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4373))) (((-758) (-142) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-142) (-1082))))) (-3553 (($ $ $ (-554)) NIL (|has| $ (-6 -4374)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| (-142) (-602 (-530))))) (-3089 (($ (-631 (-142))) NIL)) (-4323 (($ $ (-142)) NIL) (($ (-142) $) NIL) (($ $ $) NIL) (($ (-631 $)) NIL)) (-3075 (($ (-142)) NIL) (((-848) $) NIL)) (-2438 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4373)))) (-4048 (((-1140) $) 18) (((-1140) $ (-112)) 20) (((-1246) (-809) $) 21) (((-1246) (-809) $ (-112)) 22)) (-1708 (((-112) $ $) NIL (|has| (-142) (-836)))) (-1686 (((-112) $ $) NIL (|has| (-142) (-836)))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (|has| (-142) (-836)))) (-1676 (((-112) $ $) NIL (|has| (-142) (-836)))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-1140) (-1139)) (T -1140))
-NIL
-(-1139)
-((-3062 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1082)) (|has| |#1| (-1082))))) (-3167 (($) NIL) (($ (-631 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)))) NIL)) (-4233 (((-1246) $ (-1140) (-1140)) NIL (|has| $ (-6 -4374)))) (-3019 (((-112) $ (-758)) NIL)) (-1501 ((|#1| $ (-1140) |#1|) NIL)) (-2220 (($ (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL (|has| $ (-6 -4373)))) (-2937 (((-3 |#1| "failed") (-1140) $) NIL)) (-4087 (($) NIL T CONST)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1082))))) (-1884 (($ (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) $) NIL (|has| $ (-6 -4373))) (($ (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL (|has| $ (-6 -4373))) (((-3 |#1| "failed") (-1140) $) NIL)) (-2574 (($ (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1082)))) (($ (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL (|has| $ (-6 -4373)))) (-3676 (((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $ (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1082)))) (((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $ (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) NIL (|has| $ (-6 -4373))) (((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL (|has| $ (-6 -4373)))) (-2862 ((|#1| $ (-1140) |#1|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-1140)) NIL)) (-2466 (((-631 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL (|has| $ (-6 -4373))) (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-1140) $) NIL (|has| (-1140) (-836)))) (-2379 (((-631 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL (|has| $ (-6 -4373))) (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1082)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2256 (((-1140) $) NIL (|has| (-1140) (-836)))) (-2849 (($ (-1 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL (|has| $ (-6 -4374))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (-3994 (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1082)) (|has| |#1| (-1082))))) (-2944 (((-631 (-1140)) $) NIL)) (-2415 (((-112) (-1140) $) NIL)) (-4150 (((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) $) NIL)) (-2045 (($ (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) $) NIL)) (-2529 (((-631 (-1140)) $) NIL)) (-3618 (((-112) (-1140) $) NIL)) (-2768 (((-1102) $) NIL (-3994 (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1082)) (|has| |#1| (-1082))))) (-1539 ((|#1| $) NIL (|has| (-1140) (-836)))) (-1652 (((-3 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) "failed") (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL)) (-2441 (($ $ |#1|) NIL (|has| $ (-6 -4374)))) (-2152 (((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) $) NIL)) (-2845 (((-112) (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))))) NIL (-12 (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-304 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)))) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1082)))) (($ $ (-289 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)))) NIL (-12 (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-304 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)))) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1082)))) (($ $ (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) NIL (-12 (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-304 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)))) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1082)))) (($ $ (-631 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) (-631 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)))) NIL (-12 (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-304 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)))) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#1| $ (-1140)) NIL) ((|#1| $ (-1140) |#1|) NIL)) (-4310 (($) NIL) (($ (-631 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)))) NIL)) (-2777 (((-758) (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL (|has| $ (-6 -4373))) (((-758) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1082)))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-602 (-530))))) (-3089 (($ (-631 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)))) NIL)) (-3075 (((-848) $) NIL (-3994 (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-601 (-848))) (|has| |#1| (-601 (-848)))))) (-1591 (($ (-631 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)))) NIL)) (-2438 (((-112) (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1082)) (|has| |#1| (-1082))))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-1141 |#1|) (-13 (-1171 (-1140) |#1|) (-10 -7 (-6 -4373))) (-1082)) (T -1141))
-NIL
-(-13 (-1171 (-1140) |#1|) (-10 -7 (-6 -4373)))
-((-3587 (((-1138 |#1|) (-1138 |#1|)) 77)) (-1320 (((-3 (-1138 |#1|) "failed") (-1138 |#1|)) 37)) (-1488 (((-1138 |#1|) (-402 (-554)) (-1138 |#1|)) 121 (|has| |#1| (-38 (-402 (-554)))))) (-2776 (((-1138 |#1|) |#1| (-1138 |#1|)) 127 (|has| |#1| (-358)))) (-3598 (((-1138 |#1|) (-1138 |#1|)) 90)) (-3124 (((-1138 (-554)) (-554)) 57)) (-2043 (((-1138 |#1|) (-1138 (-1138 |#1|))) 109 (|has| |#1| (-38 (-402 (-554)))))) (-3712 (((-1138 |#1|) (-554) (-554) (-1138 |#1|)) 95)) (-3738 (((-1138 |#1|) |#1| (-554)) 45)) (-3631 (((-1138 |#1|) (-1138 |#1|) (-1138 |#1|)) 60)) (-4108 (((-1138 |#1|) (-1138 |#1|) (-1138 |#1|)) 124 (|has| |#1| (-358)))) (-3185 (((-1138 |#1|) |#1| (-1 (-1138 |#1|))) 108 (|has| |#1| (-38 (-402 (-554)))))) (-3819 (((-1138 |#1|) (-1 |#1| (-554)) |#1| (-1 (-1138 |#1|))) 125 (|has| |#1| (-358)))) (-2618 (((-1138 |#1|) (-1138 |#1|)) 89)) (-4335 (((-1138 |#1|) (-1138 |#1|)) 76)) (-2691 (((-1138 |#1|) (-554) (-554) (-1138 |#1|)) 96)) (-2279 (((-1138 |#1|) |#1| (-1138 |#1|)) 105 (|has| |#1| (-38 (-402 (-554)))))) (-2571 (((-1138 (-554)) (-554)) 56)) (-1664 (((-1138 |#1|) |#1|) 59)) (-4043 (((-1138 |#1|) (-1138 |#1|) (-554) (-554)) 92)) (-3012 (((-1138 |#1|) (-1 |#1| (-554)) (-1138 |#1|)) 66)) (-3919 (((-3 (-1138 |#1|) "failed") (-1138 |#1|) (-1138 |#1|)) 35)) (-4162 (((-1138 |#1|) (-1138 |#1|)) 91)) (-2386 (((-1138 |#1|) (-1138 |#1|) |#1|) 71)) (-2329 (((-1138 |#1|) (-1138 |#1|)) 62)) (-2748 (((-1138 |#1|) (-1138 |#1|) (-1138 |#1|)) 72)) (-3075 (((-1138 |#1|) |#1|) 67)) (-1535 (((-1138 |#1|) (-1138 (-1138 |#1|))) 82)) (-1752 (((-1138 |#1|) (-1138 |#1|) (-1138 |#1|)) 36)) (-1744 (((-1138 |#1|) (-1138 |#1|)) 21) (((-1138 |#1|) (-1138 |#1|) (-1138 |#1|)) 23)) (-1735 (((-1138 |#1|) (-1138 |#1|) (-1138 |#1|)) 17)) (* (((-1138 |#1|) (-1138 |#1|) |#1|) 29) (((-1138 |#1|) |#1| (-1138 |#1|)) 26) (((-1138 |#1|) (-1138 |#1|) (-1138 |#1|)) 27)))
-(((-1142 |#1|) (-10 -7 (-15 -1735 ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|))) (-15 -1744 ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|))) (-15 -1744 ((-1138 |#1|) (-1138 |#1|))) (-15 * ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|))) (-15 * ((-1138 |#1|) |#1| (-1138 |#1|))) (-15 * ((-1138 |#1|) (-1138 |#1|) |#1|)) (-15 -3919 ((-3 (-1138 |#1|) "failed") (-1138 |#1|) (-1138 |#1|))) (-15 -1752 ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|))) (-15 -1320 ((-3 (-1138 |#1|) "failed") (-1138 |#1|))) (-15 -3738 ((-1138 |#1|) |#1| (-554))) (-15 -2571 ((-1138 (-554)) (-554))) (-15 -3124 ((-1138 (-554)) (-554))) (-15 -1664 ((-1138 |#1|) |#1|)) (-15 -3631 ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|))) (-15 -2329 ((-1138 |#1|) (-1138 |#1|))) (-15 -3012 ((-1138 |#1|) (-1 |#1| (-554)) (-1138 |#1|))) (-15 -3075 ((-1138 |#1|) |#1|)) (-15 -2386 ((-1138 |#1|) (-1138 |#1|) |#1|)) (-15 -2748 ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|))) (-15 -4335 ((-1138 |#1|) (-1138 |#1|))) (-15 -3587 ((-1138 |#1|) (-1138 |#1|))) (-15 -1535 ((-1138 |#1|) (-1138 (-1138 |#1|)))) (-15 -2618 ((-1138 |#1|) (-1138 |#1|))) (-15 -3598 ((-1138 |#1|) (-1138 |#1|))) (-15 -4162 ((-1138 |#1|) (-1138 |#1|))) (-15 -4043 ((-1138 |#1|) (-1138 |#1|) (-554) (-554))) (-15 -3712 ((-1138 |#1|) (-554) (-554) (-1138 |#1|))) (-15 -2691 ((-1138 |#1|) (-554) (-554) (-1138 |#1|))) (IF (|has| |#1| (-38 (-402 (-554)))) (PROGN (-15 -2279 ((-1138 |#1|) |#1| (-1138 |#1|))) (-15 -3185 ((-1138 |#1|) |#1| (-1 (-1138 |#1|)))) (-15 -2043 ((-1138 |#1|) (-1138 (-1138 |#1|)))) (-15 -1488 ((-1138 |#1|) (-402 (-554)) (-1138 |#1|)))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-15 -4108 ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|))) (-15 -3819 ((-1138 |#1|) (-1 |#1| (-554)) |#1| (-1 (-1138 |#1|)))) (-15 -2776 ((-1138 |#1|) |#1| (-1138 |#1|)))) |%noBranch|)) (-1034)) (T -1142))
-((-2776 (*1 *2 *3 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-358)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) (-3819 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-554))) (-5 *5 (-1 (-1138 *4))) (-4 *4 (-358)) (-4 *4 (-1034)) (-5 *2 (-1138 *4)) (-5 *1 (-1142 *4)))) (-4108 (*1 *2 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-358)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) (-1488 (*1 *2 *3 *2) (-12 (-5 *2 (-1138 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1034)) (-5 *3 (-402 (-554))) (-5 *1 (-1142 *4)))) (-2043 (*1 *2 *3) (-12 (-5 *3 (-1138 (-1138 *4))) (-5 *2 (-1138 *4)) (-5 *1 (-1142 *4)) (-4 *4 (-38 (-402 (-554)))) (-4 *4 (-1034)))) (-3185 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1138 *3))) (-5 *2 (-1138 *3)) (-5 *1 (-1142 *3)) (-4 *3 (-38 (-402 (-554)))) (-4 *3 (-1034)))) (-2279 (*1 *2 *3 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) (-2691 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1138 *4)) (-5 *3 (-554)) (-4 *4 (-1034)) (-5 *1 (-1142 *4)))) (-3712 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1138 *4)) (-5 *3 (-554)) (-4 *4 (-1034)) (-5 *1 (-1142 *4)))) (-4043 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1138 *4)) (-5 *3 (-554)) (-4 *4 (-1034)) (-5 *1 (-1142 *4)))) (-4162 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) (-3598 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) (-2618 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) (-1535 (*1 *2 *3) (-12 (-5 *3 (-1138 (-1138 *4))) (-5 *2 (-1138 *4)) (-5 *1 (-1142 *4)) (-4 *4 (-1034)))) (-3587 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) (-4335 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) (-2748 (*1 *2 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) (-2386 (*1 *2 *2 *3) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) (-3075 (*1 *2 *3) (-12 (-5 *2 (-1138 *3)) (-5 *1 (-1142 *3)) (-4 *3 (-1034)))) (-3012 (*1 *2 *3 *2) (-12 (-5 *2 (-1138 *4)) (-5 *3 (-1 *4 (-554))) (-4 *4 (-1034)) (-5 *1 (-1142 *4)))) (-2329 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) (-3631 (*1 *2 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) (-1664 (*1 *2 *3) (-12 (-5 *2 (-1138 *3)) (-5 *1 (-1142 *3)) (-4 *3 (-1034)))) (-3124 (*1 *2 *3) (-12 (-5 *2 (-1138 (-554))) (-5 *1 (-1142 *4)) (-4 *4 (-1034)) (-5 *3 (-554)))) (-2571 (*1 *2 *3) (-12 (-5 *2 (-1138 (-554))) (-5 *1 (-1142 *4)) (-4 *4 (-1034)) (-5 *3 (-554)))) (-3738 (*1 *2 *3 *4) (-12 (-5 *4 (-554)) (-5 *2 (-1138 *3)) (-5 *1 (-1142 *3)) (-4 *3 (-1034)))) (-1320 (*1 *2 *2) (|partial| -12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) (-1752 (*1 *2 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) (-3919 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) (-1744 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) (-1744 (*1 *2 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) (-1735 (*1 *2 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))))
-(-10 -7 (-15 -1735 ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|))) (-15 -1744 ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|))) (-15 -1744 ((-1138 |#1|) (-1138 |#1|))) (-15 * ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|))) (-15 * ((-1138 |#1|) |#1| (-1138 |#1|))) (-15 * ((-1138 |#1|) (-1138 |#1|) |#1|)) (-15 -3919 ((-3 (-1138 |#1|) "failed") (-1138 |#1|) (-1138 |#1|))) (-15 -1752 ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|))) (-15 -1320 ((-3 (-1138 |#1|) "failed") (-1138 |#1|))) (-15 -3738 ((-1138 |#1|) |#1| (-554))) (-15 -2571 ((-1138 (-554)) (-554))) (-15 -3124 ((-1138 (-554)) (-554))) (-15 -1664 ((-1138 |#1|) |#1|)) (-15 -3631 ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|))) (-15 -2329 ((-1138 |#1|) (-1138 |#1|))) (-15 -3012 ((-1138 |#1|) (-1 |#1| (-554)) (-1138 |#1|))) (-15 -3075 ((-1138 |#1|) |#1|)) (-15 -2386 ((-1138 |#1|) (-1138 |#1|) |#1|)) (-15 -2748 ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|))) (-15 -4335 ((-1138 |#1|) (-1138 |#1|))) (-15 -3587 ((-1138 |#1|) (-1138 |#1|))) (-15 -1535 ((-1138 |#1|) (-1138 (-1138 |#1|)))) (-15 -2618 ((-1138 |#1|) (-1138 |#1|))) (-15 -3598 ((-1138 |#1|) (-1138 |#1|))) (-15 -4162 ((-1138 |#1|) (-1138 |#1|))) (-15 -4043 ((-1138 |#1|) (-1138 |#1|) (-554) (-554))) (-15 -3712 ((-1138 |#1|) (-554) (-554) (-1138 |#1|))) (-15 -2691 ((-1138 |#1|) (-554) (-554) (-1138 |#1|))) (IF (|has| |#1| (-38 (-402 (-554)))) (PROGN (-15 -2279 ((-1138 |#1|) |#1| (-1138 |#1|))) (-15 -3185 ((-1138 |#1|) |#1| (-1 (-1138 |#1|)))) (-15 -2043 ((-1138 |#1|) (-1138 (-1138 |#1|)))) (-15 -1488 ((-1138 |#1|) (-402 (-554)) (-1138 |#1|)))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-15 -4108 ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|))) (-15 -3819 ((-1138 |#1|) (-1 |#1| (-554)) |#1| (-1 (-1138 |#1|)))) (-15 -2776 ((-1138 |#1|) |#1| (-1138 |#1|)))) |%noBranch|))
-((-3023 (((-1138 |#1|) (-1138 |#1|)) 57)) (-4200 (((-1138 |#1|) (-1138 |#1|)) 39)) (-3003 (((-1138 |#1|) (-1138 |#1|)) 53)) (-4177 (((-1138 |#1|) (-1138 |#1|)) 35)) (-3046 (((-1138 |#1|) (-1138 |#1|)) 60)) (-2916 (((-1138 |#1|) (-1138 |#1|)) 42)) (-2395 (((-1138 |#1|) (-1138 |#1|)) 31)) (-1333 (((-1138 |#1|) (-1138 |#1|)) 27)) (-3057 (((-1138 |#1|) (-1138 |#1|)) 61)) (-2926 (((-1138 |#1|) (-1138 |#1|)) 43)) (-3034 (((-1138 |#1|) (-1138 |#1|)) 58)) (-4213 (((-1138 |#1|) (-1138 |#1|)) 40)) (-3014 (((-1138 |#1|) (-1138 |#1|)) 55)) (-4188 (((-1138 |#1|) (-1138 |#1|)) 37)) (-3096 (((-1138 |#1|) (-1138 |#1|)) 65)) (-2959 (((-1138 |#1|) (-1138 |#1|)) 47)) (-3069 (((-1138 |#1|) (-1138 |#1|)) 63)) (-2938 (((-1138 |#1|) (-1138 |#1|)) 45)) (-3120 (((-1138 |#1|) (-1138 |#1|)) 68)) (-2981 (((-1138 |#1|) (-1138 |#1|)) 50)) (-2908 (((-1138 |#1|) (-1138 |#1|)) 69)) (-2991 (((-1138 |#1|) (-1138 |#1|)) 51)) (-3108 (((-1138 |#1|) (-1138 |#1|)) 67)) (-2969 (((-1138 |#1|) (-1138 |#1|)) 49)) (-3083 (((-1138 |#1|) (-1138 |#1|)) 66)) (-2948 (((-1138 |#1|) (-1138 |#1|)) 48)) (** (((-1138 |#1|) (-1138 |#1|) (-1138 |#1|)) 33)))
-(((-1143 |#1|) (-10 -7 (-15 -1333 ((-1138 |#1|) (-1138 |#1|))) (-15 -2395 ((-1138 |#1|) (-1138 |#1|))) (-15 ** ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|))) (-15 -4177 ((-1138 |#1|) (-1138 |#1|))) (-15 -4188 ((-1138 |#1|) (-1138 |#1|))) (-15 -4200 ((-1138 |#1|) (-1138 |#1|))) (-15 -4213 ((-1138 |#1|) (-1138 |#1|))) (-15 -2916 ((-1138 |#1|) (-1138 |#1|))) (-15 -2926 ((-1138 |#1|) (-1138 |#1|))) (-15 -2938 ((-1138 |#1|) (-1138 |#1|))) (-15 -2948 ((-1138 |#1|) (-1138 |#1|))) (-15 -2959 ((-1138 |#1|) (-1138 |#1|))) (-15 -2969 ((-1138 |#1|) (-1138 |#1|))) (-15 -2981 ((-1138 |#1|) (-1138 |#1|))) (-15 -2991 ((-1138 |#1|) (-1138 |#1|))) (-15 -3003 ((-1138 |#1|) (-1138 |#1|))) (-15 -3014 ((-1138 |#1|) (-1138 |#1|))) (-15 -3023 ((-1138 |#1|) (-1138 |#1|))) (-15 -3034 ((-1138 |#1|) (-1138 |#1|))) (-15 -3046 ((-1138 |#1|) (-1138 |#1|))) (-15 -3057 ((-1138 |#1|) (-1138 |#1|))) (-15 -3069 ((-1138 |#1|) (-1138 |#1|))) (-15 -3083 ((-1138 |#1|) (-1138 |#1|))) (-15 -3096 ((-1138 |#1|) (-1138 |#1|))) (-15 -3108 ((-1138 |#1|) (-1138 |#1|))) (-15 -3120 ((-1138 |#1|) (-1138 |#1|))) (-15 -2908 ((-1138 |#1|) (-1138 |#1|)))) (-38 (-402 (-554)))) (T -1143))
-((-2908 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-3120 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-3108 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-3096 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-3083 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-3069 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-3057 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-3046 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-3034 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-3023 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-3014 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-3003 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-2991 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-2981 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-2969 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-2959 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-2948 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-2938 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-2926 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-2916 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-4213 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-4200 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-4188 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-4177 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-2395 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-1333 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))))
-(-10 -7 (-15 -1333 ((-1138 |#1|) (-1138 |#1|))) (-15 -2395 ((-1138 |#1|) (-1138 |#1|))) (-15 ** ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|))) (-15 -4177 ((-1138 |#1|) (-1138 |#1|))) (-15 -4188 ((-1138 |#1|) (-1138 |#1|))) (-15 -4200 ((-1138 |#1|) (-1138 |#1|))) (-15 -4213 ((-1138 |#1|) (-1138 |#1|))) (-15 -2916 ((-1138 |#1|) (-1138 |#1|))) (-15 -2926 ((-1138 |#1|) (-1138 |#1|))) (-15 -2938 ((-1138 |#1|) (-1138 |#1|))) (-15 -2948 ((-1138 |#1|) (-1138 |#1|))) (-15 -2959 ((-1138 |#1|) (-1138 |#1|))) (-15 -2969 ((-1138 |#1|) (-1138 |#1|))) (-15 -2981 ((-1138 |#1|) (-1138 |#1|))) (-15 -2991 ((-1138 |#1|) (-1138 |#1|))) (-15 -3003 ((-1138 |#1|) (-1138 |#1|))) (-15 -3014 ((-1138 |#1|) (-1138 |#1|))) (-15 -3023 ((-1138 |#1|) (-1138 |#1|))) (-15 -3034 ((-1138 |#1|) (-1138 |#1|))) (-15 -3046 ((-1138 |#1|) (-1138 |#1|))) (-15 -3057 ((-1138 |#1|) (-1138 |#1|))) (-15 -3069 ((-1138 |#1|) (-1138 |#1|))) (-15 -3083 ((-1138 |#1|) (-1138 |#1|))) (-15 -3096 ((-1138 |#1|) (-1138 |#1|))) (-15 -3108 ((-1138 |#1|) (-1138 |#1|))) (-15 -3120 ((-1138 |#1|) (-1138 |#1|))) (-15 -2908 ((-1138 |#1|) (-1138 |#1|))))
-((-3023 (((-1138 |#1|) (-1138 |#1|)) 100)) (-4200 (((-1138 |#1|) (-1138 |#1|)) 64)) (-3435 (((-2 (|:| -3003 (-1138 |#1|)) (|:| -3014 (-1138 |#1|))) (-1138 |#1|)) 96)) (-3003 (((-1138 |#1|) (-1138 |#1|)) 97)) (-1696 (((-2 (|:| -4177 (-1138 |#1|)) (|:| -4188 (-1138 |#1|))) (-1138 |#1|)) 53)) (-4177 (((-1138 |#1|) (-1138 |#1|)) 54)) (-3046 (((-1138 |#1|) (-1138 |#1|)) 102)) (-2916 (((-1138 |#1|) (-1138 |#1|)) 71)) (-2395 (((-1138 |#1|) (-1138 |#1|)) 39)) (-1333 (((-1138 |#1|) (-1138 |#1|)) 36)) (-3057 (((-1138 |#1|) (-1138 |#1|)) 103)) (-2926 (((-1138 |#1|) (-1138 |#1|)) 72)) (-3034 (((-1138 |#1|) (-1138 |#1|)) 101)) (-4213 (((-1138 |#1|) (-1138 |#1|)) 67)) (-3014 (((-1138 |#1|) (-1138 |#1|)) 98)) (-4188 (((-1138 |#1|) (-1138 |#1|)) 55)) (-3096 (((-1138 |#1|) (-1138 |#1|)) 111)) (-2959 (((-1138 |#1|) (-1138 |#1|)) 86)) (-3069 (((-1138 |#1|) (-1138 |#1|)) 105)) (-2938 (((-1138 |#1|) (-1138 |#1|)) 82)) (-3120 (((-1138 |#1|) (-1138 |#1|)) 115)) (-2981 (((-1138 |#1|) (-1138 |#1|)) 90)) (-2908 (((-1138 |#1|) (-1138 |#1|)) 117)) (-2991 (((-1138 |#1|) (-1138 |#1|)) 92)) (-3108 (((-1138 |#1|) (-1138 |#1|)) 113)) (-2969 (((-1138 |#1|) (-1138 |#1|)) 88)) (-3083 (((-1138 |#1|) (-1138 |#1|)) 107)) (-2948 (((-1138 |#1|) (-1138 |#1|)) 84)) (** (((-1138 |#1|) (-1138 |#1|) (-1138 |#1|)) 40)))
-(((-1144 |#1|) (-10 -7 (-15 -1333 ((-1138 |#1|) (-1138 |#1|))) (-15 -2395 ((-1138 |#1|) (-1138 |#1|))) (-15 ** ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|))) (-15 -1696 ((-2 (|:| -4177 (-1138 |#1|)) (|:| -4188 (-1138 |#1|))) (-1138 |#1|))) (-15 -4177 ((-1138 |#1|) (-1138 |#1|))) (-15 -4188 ((-1138 |#1|) (-1138 |#1|))) (-15 -4200 ((-1138 |#1|) (-1138 |#1|))) (-15 -4213 ((-1138 |#1|) (-1138 |#1|))) (-15 -2916 ((-1138 |#1|) (-1138 |#1|))) (-15 -2926 ((-1138 |#1|) (-1138 |#1|))) (-15 -2938 ((-1138 |#1|) (-1138 |#1|))) (-15 -2948 ((-1138 |#1|) (-1138 |#1|))) (-15 -2959 ((-1138 |#1|) (-1138 |#1|))) (-15 -2969 ((-1138 |#1|) (-1138 |#1|))) (-15 -2981 ((-1138 |#1|) (-1138 |#1|))) (-15 -2991 ((-1138 |#1|) (-1138 |#1|))) (-15 -3435 ((-2 (|:| -3003 (-1138 |#1|)) (|:| -3014 (-1138 |#1|))) (-1138 |#1|))) (-15 -3003 ((-1138 |#1|) (-1138 |#1|))) (-15 -3014 ((-1138 |#1|) (-1138 |#1|))) (-15 -3023 ((-1138 |#1|) (-1138 |#1|))) (-15 -3034 ((-1138 |#1|) (-1138 |#1|))) (-15 -3046 ((-1138 |#1|) (-1138 |#1|))) (-15 -3057 ((-1138 |#1|) (-1138 |#1|))) (-15 -3069 ((-1138 |#1|) (-1138 |#1|))) (-15 -3083 ((-1138 |#1|) (-1138 |#1|))) (-15 -3096 ((-1138 |#1|) (-1138 |#1|))) (-15 -3108 ((-1138 |#1|) (-1138 |#1|))) (-15 -3120 ((-1138 |#1|) (-1138 |#1|))) (-15 -2908 ((-1138 |#1|) (-1138 |#1|)))) (-38 (-402 (-554)))) (T -1144))
-((-2908 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-3120 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-3108 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-3096 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-3083 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-3069 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-3057 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-3046 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-3034 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-3023 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-3014 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-3003 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-3435 (*1 *2 *3) (-12 (-4 *4 (-38 (-402 (-554)))) (-5 *2 (-2 (|:| -3003 (-1138 *4)) (|:| -3014 (-1138 *4)))) (-5 *1 (-1144 *4)) (-5 *3 (-1138 *4)))) (-2991 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-2981 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-2969 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-2959 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-2948 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-2938 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-2926 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-2916 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-4213 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-4200 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-4188 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-4177 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-1696 (*1 *2 *3) (-12 (-4 *4 (-38 (-402 (-554)))) (-5 *2 (-2 (|:| -4177 (-1138 *4)) (|:| -4188 (-1138 *4)))) (-5 *1 (-1144 *4)) (-5 *3 (-1138 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-2395 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-1333 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))))
-(-10 -7 (-15 -1333 ((-1138 |#1|) (-1138 |#1|))) (-15 -2395 ((-1138 |#1|) (-1138 |#1|))) (-15 ** ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|))) (-15 -1696 ((-2 (|:| -4177 (-1138 |#1|)) (|:| -4188 (-1138 |#1|))) (-1138 |#1|))) (-15 -4177 ((-1138 |#1|) (-1138 |#1|))) (-15 -4188 ((-1138 |#1|) (-1138 |#1|))) (-15 -4200 ((-1138 |#1|) (-1138 |#1|))) (-15 -4213 ((-1138 |#1|) (-1138 |#1|))) (-15 -2916 ((-1138 |#1|) (-1138 |#1|))) (-15 -2926 ((-1138 |#1|) (-1138 |#1|))) (-15 -2938 ((-1138 |#1|) (-1138 |#1|))) (-15 -2948 ((-1138 |#1|) (-1138 |#1|))) (-15 -2959 ((-1138 |#1|) (-1138 |#1|))) (-15 -2969 ((-1138 |#1|) (-1138 |#1|))) (-15 -2981 ((-1138 |#1|) (-1138 |#1|))) (-15 -2991 ((-1138 |#1|) (-1138 |#1|))) (-15 -3435 ((-2 (|:| -3003 (-1138 |#1|)) (|:| -3014 (-1138 |#1|))) (-1138 |#1|))) (-15 -3003 ((-1138 |#1|) (-1138 |#1|))) (-15 -3014 ((-1138 |#1|) (-1138 |#1|))) (-15 -3023 ((-1138 |#1|) (-1138 |#1|))) (-15 -3034 ((-1138 |#1|) (-1138 |#1|))) (-15 -3046 ((-1138 |#1|) (-1138 |#1|))) (-15 -3057 ((-1138 |#1|) (-1138 |#1|))) (-15 -3069 ((-1138 |#1|) (-1138 |#1|))) (-15 -3083 ((-1138 |#1|) (-1138 |#1|))) (-15 -3096 ((-1138 |#1|) (-1138 |#1|))) (-15 -3108 ((-1138 |#1|) (-1138 |#1|))) (-15 -3120 ((-1138 |#1|) (-1138 |#1|))) (-15 -2908 ((-1138 |#1|) (-1138 |#1|))))
-((-3544 (((-943 |#2|) |#2| |#2|) 35)) (-2048 ((|#2| |#2| |#1|) 19 (|has| |#1| (-302)))))
-(((-1145 |#1| |#2|) (-10 -7 (-15 -3544 ((-943 |#2|) |#2| |#2|)) (IF (|has| |#1| (-302)) (-15 -2048 (|#2| |#2| |#1|)) |%noBranch|)) (-546) (-1217 |#1|)) (T -1145))
-((-2048 (*1 *2 *2 *3) (-12 (-4 *3 (-302)) (-4 *3 (-546)) (-5 *1 (-1145 *3 *2)) (-4 *2 (-1217 *3)))) (-3544 (*1 *2 *3 *3) (-12 (-4 *4 (-546)) (-5 *2 (-943 *3)) (-5 *1 (-1145 *4 *3)) (-4 *3 (-1217 *4)))))
-(-10 -7 (-15 -3544 ((-943 |#2|) |#2| |#2|)) (IF (|has| |#1| (-302)) (-15 -2048 (|#2| |#2| |#1|)) |%noBranch|))
-((-3062 (((-112) $ $) NIL)) (-2998 (($ $ (-631 (-758))) 67)) (-3504 (($) 26)) (-3986 (($ $) 42)) (-4022 (((-631 $) $) 51)) (-3663 (((-112) $) 16)) (-3196 (((-631 (-928 |#2|)) $) 74)) (-3687 (($ $) 68)) (-3006 (((-758) $) 37)) (-3180 (($) 25)) (-2040 (($ $ (-631 (-758)) (-928 |#2|)) 60) (($ $ (-631 (-758)) (-758)) 61) (($ $ (-758) (-928 |#2|)) 63)) (-3717 (($ $ $) 48) (($ (-631 $)) 50)) (-2848 (((-758) $) 75)) (-3216 (((-112) $) 15)) (-1613 (((-1140) $) NIL)) (-4068 (((-112) $) 18)) (-2768 (((-1102) $) NIL)) (-1672 (((-169) $) 73)) (-3968 (((-928 |#2|) $) 69)) (-1626 (((-758) $) 70)) (-2194 (((-112) $) 72)) (-2800 (($ $ (-631 (-758)) (-169)) 66)) (-1528 (($ $) 43)) (-3075 (((-848) $) 86)) (-3661 (($ $ (-631 (-758)) (-112)) 65)) (-2461 (((-631 $) $) 11)) (-4059 (($ $ (-758)) 36)) (-1331 (($ $) 32)) (-1505 (($ $ $ (-928 |#2|) (-758)) 56)) (-2187 (($ $ (-928 |#2|)) 55)) (-4221 (($ $ (-631 (-758)) (-928 |#2|)) 54) (($ $ (-631 (-758)) (-758)) 58) (((-758) $ (-928 |#2|)) 59)) (-1658 (((-112) $ $) 80)))
-(((-1146 |#1| |#2|) (-13 (-1082) (-10 -8 (-15 -3216 ((-112) $)) (-15 -3663 ((-112) $)) (-15 -4068 ((-112) $)) (-15 -3180 ($)) (-15 -3504 ($)) (-15 -1331 ($ $)) (-15 -4059 ($ $ (-758))) (-15 -2461 ((-631 $) $)) (-15 -3006 ((-758) $)) (-15 -3986 ($ $)) (-15 -1528 ($ $)) (-15 -3717 ($ $ $)) (-15 -3717 ($ (-631 $))) (-15 -4022 ((-631 $) $)) (-15 -4221 ($ $ (-631 (-758)) (-928 |#2|))) (-15 -2187 ($ $ (-928 |#2|))) (-15 -1505 ($ $ $ (-928 |#2|) (-758))) (-15 -2040 ($ $ (-631 (-758)) (-928 |#2|))) (-15 -4221 ($ $ (-631 (-758)) (-758))) (-15 -2040 ($ $ (-631 (-758)) (-758))) (-15 -4221 ((-758) $ (-928 |#2|))) (-15 -2040 ($ $ (-758) (-928 |#2|))) (-15 -3661 ($ $ (-631 (-758)) (-112))) (-15 -2800 ($ $ (-631 (-758)) (-169))) (-15 -2998 ($ $ (-631 (-758)))) (-15 -3968 ((-928 |#2|) $)) (-15 -1626 ((-758) $)) (-15 -2194 ((-112) $)) (-15 -1672 ((-169) $)) (-15 -2848 ((-758) $)) (-15 -3687 ($ $)) (-15 -3196 ((-631 (-928 |#2|)) $)))) (-906) (-1034)) (T -1146))
-((-3216 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906)) (-4 *4 (-1034)))) (-3663 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906)) (-4 *4 (-1034)))) (-4068 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906)) (-4 *4 (-1034)))) (-3180 (*1 *1) (-12 (-5 *1 (-1146 *2 *3)) (-14 *2 (-906)) (-4 *3 (-1034)))) (-3504 (*1 *1) (-12 (-5 *1 (-1146 *2 *3)) (-14 *2 (-906)) (-4 *3 (-1034)))) (-1331 (*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3)) (-14 *2 (-906)) (-4 *3 (-1034)))) (-4059 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906)) (-4 *4 (-1034)))) (-2461 (*1 *2 *1) (-12 (-5 *2 (-631 (-1146 *3 *4))) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906)) (-4 *4 (-1034)))) (-3006 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906)) (-4 *4 (-1034)))) (-3986 (*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3)) (-14 *2 (-906)) (-4 *3 (-1034)))) (-1528 (*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3)) (-14 *2 (-906)) (-4 *3 (-1034)))) (-3717 (*1 *1 *1 *1) (-12 (-5 *1 (-1146 *2 *3)) (-14 *2 (-906)) (-4 *3 (-1034)))) (-3717 (*1 *1 *2) (-12 (-5 *2 (-631 (-1146 *3 *4))) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906)) (-4 *4 (-1034)))) (-4022 (*1 *2 *1) (-12 (-5 *2 (-631 (-1146 *3 *4))) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906)) (-4 *4 (-1034)))) (-4221 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 (-758))) (-5 *3 (-928 *5)) (-4 *5 (-1034)) (-5 *1 (-1146 *4 *5)) (-14 *4 (-906)))) (-2187 (*1 *1 *1 *2) (-12 (-5 *2 (-928 *4)) (-4 *4 (-1034)) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906)))) (-1505 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-928 *5)) (-5 *3 (-758)) (-4 *5 (-1034)) (-5 *1 (-1146 *4 *5)) (-14 *4 (-906)))) (-2040 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 (-758))) (-5 *3 (-928 *5)) (-4 *5 (-1034)) (-5 *1 (-1146 *4 *5)) (-14 *4 (-906)))) (-4221 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 (-758))) (-5 *3 (-758)) (-5 *1 (-1146 *4 *5)) (-14 *4 (-906)) (-4 *5 (-1034)))) (-2040 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 (-758))) (-5 *3 (-758)) (-5 *1 (-1146 *4 *5)) (-14 *4 (-906)) (-4 *5 (-1034)))) (-4221 (*1 *2 *1 *3) (-12 (-5 *3 (-928 *5)) (-4 *5 (-1034)) (-5 *2 (-758)) (-5 *1 (-1146 *4 *5)) (-14 *4 (-906)))) (-2040 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-758)) (-5 *3 (-928 *5)) (-4 *5 (-1034)) (-5 *1 (-1146 *4 *5)) (-14 *4 (-906)))) (-3661 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 (-758))) (-5 *3 (-112)) (-5 *1 (-1146 *4 *5)) (-14 *4 (-906)) (-4 *5 (-1034)))) (-2800 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 (-758))) (-5 *3 (-169)) (-5 *1 (-1146 *4 *5)) (-14 *4 (-906)) (-4 *5 (-1034)))) (-2998 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-758))) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906)) (-4 *4 (-1034)))) (-3968 (*1 *2 *1) (-12 (-5 *2 (-928 *4)) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906)) (-4 *4 (-1034)))) (-1626 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906)) (-4 *4 (-1034)))) (-2194 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906)) (-4 *4 (-1034)))) (-1672 (*1 *2 *1) (-12 (-5 *2 (-169)) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906)) (-4 *4 (-1034)))) (-2848 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906)) (-4 *4 (-1034)))) (-3687 (*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3)) (-14 *2 (-906)) (-4 *3 (-1034)))) (-3196 (*1 *2 *1) (-12 (-5 *2 (-631 (-928 *4))) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906)) (-4 *4 (-1034)))))
-(-13 (-1082) (-10 -8 (-15 -3216 ((-112) $)) (-15 -3663 ((-112) $)) (-15 -4068 ((-112) $)) (-15 -3180 ($)) (-15 -3504 ($)) (-15 -1331 ($ $)) (-15 -4059 ($ $ (-758))) (-15 -2461 ((-631 $) $)) (-15 -3006 ((-758) $)) (-15 -3986 ($ $)) (-15 -1528 ($ $)) (-15 -3717 ($ $ $)) (-15 -3717 ($ (-631 $))) (-15 -4022 ((-631 $) $)) (-15 -4221 ($ $ (-631 (-758)) (-928 |#2|))) (-15 -2187 ($ $ (-928 |#2|))) (-15 -1505 ($ $ $ (-928 |#2|) (-758))) (-15 -2040 ($ $ (-631 (-758)) (-928 |#2|))) (-15 -4221 ($ $ (-631 (-758)) (-758))) (-15 -2040 ($ $ (-631 (-758)) (-758))) (-15 -4221 ((-758) $ (-928 |#2|))) (-15 -2040 ($ $ (-758) (-928 |#2|))) (-15 -3661 ($ $ (-631 (-758)) (-112))) (-15 -2800 ($ $ (-631 (-758)) (-169))) (-15 -2998 ($ $ (-631 (-758)))) (-15 -3968 ((-928 |#2|) $)) (-15 -1626 ((-758) $)) (-15 -2194 ((-112) $)) (-15 -1672 ((-169) $)) (-15 -2848 ((-758) $)) (-15 -3687 ($ $)) (-15 -3196 ((-631 (-928 |#2|)) $))))
-((-3062 (((-112) $ $) NIL)) (-3848 ((|#2| $) 11)) (-3836 ((|#1| $) 10)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3089 (($ |#1| |#2|) 9)) (-3075 (((-848) $) 16)) (-1658 (((-112) $ $) NIL)))
-(((-1147 |#1| |#2|) (-13 (-1082) (-10 -8 (-15 -3089 ($ |#1| |#2|)) (-15 -3836 (|#1| $)) (-15 -3848 (|#2| $)))) (-1082) (-1082)) (T -1147))
-((-3089 (*1 *1 *2 *3) (-12 (-5 *1 (-1147 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082)))) (-3836 (*1 *2 *1) (-12 (-4 *2 (-1082)) (-5 *1 (-1147 *2 *3)) (-4 *3 (-1082)))) (-3848 (*1 *2 *1) (-12 (-4 *2 (-1082)) (-5 *1 (-1147 *3 *2)) (-4 *3 (-1082)))))
-(-13 (-1082) (-10 -8 (-15 -3089 ($ |#1| |#2|)) (-15 -3836 (|#1| $)) (-15 -3848 (|#2| $))))
-((-3062 (((-112) $ $) NIL)) (-4322 (((-1117) $) 9)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 17) (($ (-1163)) NIL) (((-1163) $) NIL)) (-1658 (((-112) $ $) NIL)))
-(((-1148) (-13 (-1065) (-10 -8 (-15 -4322 ((-1117) $))))) (T -1148))
-((-4322 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1148)))))
-(-13 (-1065) (-10 -8 (-15 -4322 ((-1117) $))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-3831 (((-1156 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-302)) (|has| |#1| (-358))))) (-2405 (((-631 (-1064)) $) NIL)) (-1576 (((-1158) $) 11)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1156 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))) (|has| |#1| (-546))))) (-1976 (($ $) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1156 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))) (|has| |#1| (-546))))) (-1363 (((-112) $) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1156 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))) (|has| |#1| (-546))))) (-1557 (($ $ (-554)) NIL) (($ $ (-554) (-554)) 66)) (-3042 (((-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|))) $) NIL)) (-2216 (((-1156 |#1| |#2| |#3|) $) 36)) (-1949 (((-3 (-1156 |#1| |#2| |#3|) "failed") $) 29)) (-2444 (((-1156 |#1| |#2| |#3|) $) 30)) (-3023 (($ $) 107 (|has| |#1| (-38 (-402 (-554)))))) (-4200 (($ $) 83 (|has| |#1| (-38 (-402 (-554)))))) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))))) (-3278 (($ $) NIL (|has| |#1| (-358)))) (-1565 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2282 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))))) (-2286 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3003 (($ $) 103 (|has| |#1| (-38 (-402 (-554)))))) (-4177 (($ $) 79 (|has| |#1| (-38 (-402 (-554)))))) (-4219 (((-554) $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))))) (-4175 (($ (-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|)))) NIL)) (-3046 (($ $) 111 (|has| |#1| (-38 (-402 (-554)))))) (-2916 (($ $) 87 (|has| |#1| (-38 (-402 (-554)))))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-1156 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1158) "failed") $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-1023 (-1158))) (|has| |#1| (-358)))) (((-3 (-402 (-554)) "failed") $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-1023 (-554))) (|has| |#1| (-358)))) (((-3 (-554) "failed") $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-1023 (-554))) (|has| |#1| (-358))))) (-1668 (((-1156 |#1| |#2| |#3|) $) 131) (((-1158) $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-1023 (-1158))) (|has| |#1| (-358)))) (((-402 (-554)) $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-1023 (-554))) (|has| |#1| (-358)))) (((-554) $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-1023 (-554))) (|has| |#1| (-358))))) (-1749 (($ $) 34) (($ (-554) $) 35)) (-3964 (($ $ $) NIL (|has| |#1| (-358)))) (-2550 (($ $) NIL)) (-3699 (((-675 (-1156 |#1| |#2| |#3|)) (-675 $)) NIL (|has| |#1| (-358))) (((-2 (|:| -2866 (-675 (-1156 |#1| |#2| |#3|))) (|:| |vec| (-1241 (-1156 |#1| |#2| |#3|)))) (-675 $) (-1241 $)) NIL (|has| |#1| (-358))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-627 (-554))) (|has| |#1| (-358)))) (((-675 (-554)) (-675 $)) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-627 (-554))) (|has| |#1| (-358))))) (-1320 (((-3 $ "failed") $) 48)) (-3016 (((-402 (-937 |#1|)) $ (-554)) 65 (|has| |#1| (-546))) (((-402 (-937 |#1|)) $ (-554) (-554)) 67 (|has| |#1| (-546)))) (-3353 (($) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-539)) (|has| |#1| (-358))))) (-3943 (($ $ $) NIL (|has| |#1| (-358)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL (|has| |#1| (-358)))) (-3289 (((-112) $) NIL (|has| |#1| (-358)))) (-2745 (((-112) $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))))) (-2051 (((-112) $) 25)) (-2844 (($) NIL (|has| |#1| (-38 (-402 (-554)))))) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-871 (-374))) (|has| |#1| (-358)))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-871 (-554))) (|has| |#1| (-358))))) (-2342 (((-554) $) NIL) (((-554) $ (-554)) 24)) (-3248 (((-112) $) NIL)) (-3472 (($ $) NIL (|has| |#1| (-358)))) (-2810 (((-1156 |#1| |#2| |#3|) $) 38 (|has| |#1| (-358)))) (-3734 (($ $ (-554)) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3339 (((-3 $ "failed") $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-1133)) (|has| |#1| (-358))))) (-4304 (((-112) $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))))) (-3333 (($ $ (-906)) NIL)) (-1310 (($ (-1 |#1| (-554)) $) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-3580 (((-112) $) NIL)) (-2383 (($ |#1| (-554)) 18) (($ $ (-1064) (-554)) NIL) (($ $ (-631 (-1064)) (-631 (-554))) NIL)) (-4223 (($ $ $) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1156 |#1| |#2| |#3|) (-836)) (|has| |#1| (-358)))))) (-2706 (($ $ $) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1156 |#1| |#2| |#3|) (-836)) (|has| |#1| (-358)))))) (-2879 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1156 |#1| |#2| |#3|) (-1156 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-358)))) (-2395 (($ $) 72 (|has| |#1| (-38 (-402 (-554)))))) (-2518 (($ $) NIL)) (-2530 ((|#1| $) NIL)) (-2475 (($ (-631 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-2454 (($ (-554) (-1156 |#1| |#2| |#3|)) 33)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL (|has| |#1| (-358)))) (-2279 (($ $) 70 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-1158)) NIL (-3994 (-12 (|has| |#1| (-15 -2279 (|#1| |#1| (-1158)))) (|has| |#1| (-15 -2405 ((-631 (-1158)) |#1|))) (|has| |#1| (-38 (-402 (-554))))) (-12 (|has| |#1| (-29 (-554))) (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-944)) (|has| |#1| (-1180))))) (($ $ (-1237 |#2|)) 71 (|has| |#1| (-38 (-402 (-554)))))) (-3834 (($) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-1133)) (|has| |#1| (-358))) CONST)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#1| (-358)))) (-2510 (($ (-631 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-3722 (($ $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-302)) (|has| |#1| (-358))))) (-4339 (((-1156 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-539)) (|has| |#1| (-358))))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))))) (-2270 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-358)))) (-4282 (($ $ (-554)) 145)) (-3919 (((-3 $ "failed") $ $) 49 (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1156 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))) (|has| |#1| (-546))))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-1333 (($ $) 73 (|has| |#1| (-38 (-402 (-554)))))) (-2386 (((-1138 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-554))))) (($ $ (-1158) (-1156 |#1| |#2| |#3|)) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-508 (-1158) (-1156 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-631 (-1158)) (-631 (-1156 |#1| |#2| |#3|))) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-508 (-1158) (-1156 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-631 (-289 (-1156 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-304 (-1156 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-289 (-1156 |#1| |#2| |#3|))) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-304 (-1156 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-1156 |#1| |#2| |#3|) (-1156 |#1| |#2| |#3|)) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-304 (-1156 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-631 (-1156 |#1| |#2| |#3|)) (-631 (-1156 |#1| |#2| |#3|))) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-304 (-1156 |#1| |#2| |#3|))) (|has| |#1| (-358))))) (-2072 (((-758) $) NIL (|has| |#1| (-358)))) (-2064 ((|#1| $ (-554)) NIL) (($ $ $) 54 (|has| (-554) (-1094))) (($ $ (-1156 |#1| |#2| |#3|)) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-281 (-1156 |#1| |#2| |#3|) (-1156 |#1| |#2| |#3|))) (|has| |#1| (-358))))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-358)))) (-1553 (($ $ (-1 (-1156 |#1| |#2| |#3|) (-1156 |#1| |#2| |#3|))) NIL (|has| |#1| (-358))) (($ $ (-1 (-1156 |#1| |#2| |#3|) (-1156 |#1| |#2| |#3|)) (-758)) NIL (|has| |#1| (-358))) (($ $ (-1237 |#2|)) 51) (($ $ (-758)) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $) 50 (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158)))))) (($ $ (-1158) (-758)) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158)))))) (($ $ (-631 (-1158))) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158)))))) (($ $ (-1158)) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158))))))) (-3623 (($ $) NIL (|has| |#1| (-358)))) (-2822 (((-1156 |#1| |#2| |#3|) $) 41 (|has| |#1| (-358)))) (-3308 (((-554) $) 37)) (-3057 (($ $) 113 (|has| |#1| (-38 (-402 (-554)))))) (-2926 (($ $) 89 (|has| |#1| (-38 (-402 (-554)))))) (-3034 (($ $) 109 (|has| |#1| (-38 (-402 (-554)))))) (-4213 (($ $) 85 (|has| |#1| (-38 (-402 (-554)))))) (-3014 (($ $) 105 (|has| |#1| (-38 (-402 (-554)))))) (-4188 (($ $) 81 (|has| |#1| (-38 (-402 (-554)))))) (-2927 (((-530) $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-602 (-530))) (|has| |#1| (-358)))) (((-374) $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-1007)) (|has| |#1| (-358)))) (((-221) $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-1007)) (|has| |#1| (-358)))) (((-877 (-374)) $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-602 (-877 (-374)))) (|has| |#1| (-358)))) (((-877 (-554)) $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-602 (-877 (-554)))) (|has| |#1| (-358))))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| (-1156 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))))) (-1300 (($ $) NIL)) (-3075 (((-848) $) 149) (($ (-554)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1156 |#1| |#2| |#3|)) 27) (($ (-1237 |#2|)) 23) (($ (-1158)) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-1023 (-1158))) (|has| |#1| (-358)))) (($ $) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1156 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))) (|has| |#1| (-546)))) (($ (-402 (-554))) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-1023 (-554))) (|has| |#1| (-358))) (|has| |#1| (-38 (-402 (-554))))))) (-1779 ((|#1| $ (-554)) 68)) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| (-1156 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))) (-12 (|has| (-1156 |#1| |#2| |#3|) (-143)) (|has| |#1| (-358))) (|has| |#1| (-143))))) (-2261 (((-758)) NIL)) (-1608 ((|#1| $) 12)) (-2755 (((-1156 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-539)) (|has| |#1| (-358))))) (-3096 (($ $) 119 (|has| |#1| (-38 (-402 (-554)))))) (-2959 (($ $) 95 (|has| |#1| (-38 (-402 (-554)))))) (-1909 (((-112) $ $) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1156 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))) (|has| |#1| (-546))))) (-3069 (($ $) 115 (|has| |#1| (-38 (-402 (-554)))))) (-2938 (($ $) 91 (|has| |#1| (-38 (-402 (-554)))))) (-3120 (($ $) 123 (|has| |#1| (-38 (-402 (-554)))))) (-2981 (($ $) 99 (|has| |#1| (-38 (-402 (-554)))))) (-4333 ((|#1| $ (-554)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-554)))) (|has| |#1| (-15 -3075 (|#1| (-1158))))))) (-2908 (($ $) 125 (|has| |#1| (-38 (-402 (-554)))))) (-2991 (($ $) 101 (|has| |#1| (-38 (-402 (-554)))))) (-3108 (($ $) 121 (|has| |#1| (-38 (-402 (-554)))))) (-2969 (($ $) 97 (|has| |#1| (-38 (-402 (-554)))))) (-3083 (($ $) 117 (|has| |#1| (-38 (-402 (-554)))))) (-2948 (($ $) 93 (|has| |#1| (-38 (-402 (-554)))))) (-1700 (($ $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))))) (-2004 (($) 20 T CONST)) (-2014 (($) 16 T CONST)) (-1787 (($ $ (-1 (-1156 |#1| |#2| |#3|) (-1156 |#1| |#2| |#3|))) NIL (|has| |#1| (-358))) (($ $ (-1 (-1156 |#1| |#2| |#3|) (-1156 |#1| |#2| |#3|)) (-758)) NIL (|has| |#1| (-358))) (($ $ (-758)) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158)))))) (($ $ (-1158) (-758)) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158)))))) (($ $ (-631 (-1158))) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158)))))) (($ $ (-1158)) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158))))))) (-1708 (((-112) $ $) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1156 |#1| |#2| |#3|) (-836)) (|has| |#1| (-358)))))) (-1686 (((-112) $ $) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1156 |#1| |#2| |#3|) (-836)) (|has| |#1| (-358)))))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1156 |#1| |#2| |#3|) (-836)) (|has| |#1| (-358)))))) (-1676 (((-112) $ $) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1156 |#1| |#2| |#3|) (-836)) (|has| |#1| (-358)))))) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) 44 (|has| |#1| (-358))) (($ (-1156 |#1| |#2| |#3|) (-1156 |#1| |#2| |#3|)) 45 (|has| |#1| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) 21)) (** (($ $ (-906)) NIL) (($ $ (-758)) 53) (($ $ (-554)) NIL (|has| |#1| (-358))) (($ $ $) 74 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) 128 (|has| |#1| (-38 (-402 (-554)))))) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1156 |#1| |#2| |#3|)) 43 (|has| |#1| (-358))) (($ (-1156 |#1| |#2| |#3|) $) 42 (|has| |#1| (-358))) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554)))))))
-(((-1149 |#1| |#2| |#3|) (-13 (-1203 |#1| (-1156 |#1| |#2| |#3|)) (-10 -8 (-15 -3075 ($ (-1237 |#2|))) (-15 -1553 ($ $ (-1237 |#2|))) (IF (|has| |#1| (-38 (-402 (-554)))) (-15 -2279 ($ $ (-1237 |#2|))) |%noBranch|))) (-1034) (-1158) |#1|) (T -1149))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1149 *3 *4 *5)) (-4 *3 (-1034)) (-14 *5 *3))) (-1553 (*1 *1 *1 *2) (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1149 *3 *4 *5)) (-4 *3 (-1034)) (-14 *5 *3))) (-2279 (*1 *1 *1 *2) (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1149 *3 *4 *5)) (-4 *3 (-38 (-402 (-554)))) (-4 *3 (-1034)) (-14 *5 *3))))
-(-13 (-1203 |#1| (-1156 |#1| |#2| |#3|)) (-10 -8 (-15 -3075 ($ (-1237 |#2|))) (-15 -1553 ($ $ (-1237 |#2|))) (IF (|has| |#1| (-38 (-402 (-554)))) (-15 -2279 ($ $ (-1237 |#2|))) |%noBranch|)))
-((-1688 ((|#2| |#2| (-1074 |#2|)) 26) ((|#2| |#2| (-1158)) 28)))
-(((-1150 |#1| |#2|) (-10 -7 (-15 -1688 (|#2| |#2| (-1158))) (-15 -1688 (|#2| |#2| (-1074 |#2|)))) (-13 (-546) (-836) (-1023 (-554)) (-627 (-554))) (-13 (-425 |#1|) (-158) (-27) (-1180))) (T -1150))
-((-1688 (*1 *2 *2 *3) (-12 (-5 *3 (-1074 *2)) (-4 *2 (-13 (-425 *4) (-158) (-27) (-1180))) (-4 *4 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-1150 *4 *2)))) (-1688 (*1 *2 *2 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-1150 *4 *2)) (-4 *2 (-13 (-425 *4) (-158) (-27) (-1180))))))
-(-10 -7 (-15 -1688 (|#2| |#2| (-1158))) (-15 -1688 (|#2| |#2| (-1074 |#2|))))
-((-1688 (((-3 (-402 (-937 |#1|)) (-311 |#1|)) (-402 (-937 |#1|)) (-1074 (-402 (-937 |#1|)))) 31) (((-402 (-937 |#1|)) (-937 |#1|) (-1074 (-937 |#1|))) 44) (((-3 (-402 (-937 |#1|)) (-311 |#1|)) (-402 (-937 |#1|)) (-1158)) 33) (((-402 (-937 |#1|)) (-937 |#1|) (-1158)) 36)))
-(((-1151 |#1|) (-10 -7 (-15 -1688 ((-402 (-937 |#1|)) (-937 |#1|) (-1158))) (-15 -1688 ((-3 (-402 (-937 |#1|)) (-311 |#1|)) (-402 (-937 |#1|)) (-1158))) (-15 -1688 ((-402 (-937 |#1|)) (-937 |#1|) (-1074 (-937 |#1|)))) (-15 -1688 ((-3 (-402 (-937 |#1|)) (-311 |#1|)) (-402 (-937 |#1|)) (-1074 (-402 (-937 |#1|)))))) (-13 (-546) (-836) (-1023 (-554)))) (T -1151))
-((-1688 (*1 *2 *3 *4) (-12 (-5 *4 (-1074 (-402 (-937 *5)))) (-5 *3 (-402 (-937 *5))) (-4 *5 (-13 (-546) (-836) (-1023 (-554)))) (-5 *2 (-3 *3 (-311 *5))) (-5 *1 (-1151 *5)))) (-1688 (*1 *2 *3 *4) (-12 (-5 *4 (-1074 (-937 *5))) (-5 *3 (-937 *5)) (-4 *5 (-13 (-546) (-836) (-1023 (-554)))) (-5 *2 (-402 *3)) (-5 *1 (-1151 *5)))) (-1688 (*1 *2 *3 *4) (-12 (-5 *4 (-1158)) (-4 *5 (-13 (-546) (-836) (-1023 (-554)))) (-5 *2 (-3 (-402 (-937 *5)) (-311 *5))) (-5 *1 (-1151 *5)) (-5 *3 (-402 (-937 *5))))) (-1688 (*1 *2 *3 *4) (-12 (-5 *4 (-1158)) (-4 *5 (-13 (-546) (-836) (-1023 (-554)))) (-5 *2 (-402 (-937 *5))) (-5 *1 (-1151 *5)) (-5 *3 (-937 *5)))))
-(-10 -7 (-15 -1688 ((-402 (-937 |#1|)) (-937 |#1|) (-1158))) (-15 -1688 ((-3 (-402 (-937 |#1|)) (-311 |#1|)) (-402 (-937 |#1|)) (-1158))) (-15 -1688 ((-402 (-937 |#1|)) (-937 |#1|) (-1074 (-937 |#1|)))) (-15 -1688 ((-3 (-402 (-937 |#1|)) (-311 |#1|)) (-402 (-937 |#1|)) (-1074 (-402 (-937 |#1|))))))
-((-2879 (((-1154 |#2|) (-1 |#2| |#1|) (-1154 |#1|)) 13)))
-(((-1152 |#1| |#2|) (-10 -7 (-15 -2879 ((-1154 |#2|) (-1 |#2| |#1|) (-1154 |#1|)))) (-1034) (-1034)) (T -1152))
-((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1154 *5)) (-4 *5 (-1034)) (-4 *6 (-1034)) (-5 *2 (-1154 *6)) (-5 *1 (-1152 *5 *6)))))
-(-10 -7 (-15 -2879 ((-1154 |#2|) (-1 |#2| |#1|) (-1154 |#1|))))
-((-1565 (((-413 (-1154 (-402 |#4|))) (-1154 (-402 |#4|))) 51)) (-2270 (((-413 (-1154 (-402 |#4|))) (-1154 (-402 |#4|))) 52)))
-(((-1153 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2270 ((-413 (-1154 (-402 |#4|))) (-1154 (-402 |#4|)))) (-15 -1565 ((-413 (-1154 (-402 |#4|))) (-1154 (-402 |#4|))))) (-780) (-836) (-446) (-934 |#3| |#1| |#2|)) (T -1153))
-((-1565 (*1 *2 *3) (-12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-446)) (-4 *7 (-934 *6 *4 *5)) (-5 *2 (-413 (-1154 (-402 *7)))) (-5 *1 (-1153 *4 *5 *6 *7)) (-5 *3 (-1154 (-402 *7))))) (-2270 (*1 *2 *3) (-12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-446)) (-4 *7 (-934 *6 *4 *5)) (-5 *2 (-413 (-1154 (-402 *7)))) (-5 *1 (-1153 *4 *5 *6 *7)) (-5 *3 (-1154 (-402 *7))))))
-(-10 -7 (-15 -2270 ((-413 (-1154 (-402 |#4|))) (-1154 (-402 |#4|)))) (-15 -1565 ((-413 (-1154 (-402 |#4|))) (-1154 (-402 |#4|)))))
-((-3062 (((-112) $ $) 137)) (-1695 (((-112) $) 27)) (-2481 (((-1241 |#1|) $ (-758)) NIL)) (-2405 (((-631 (-1064)) $) NIL)) (-1991 (($ (-1154 |#1|)) NIL)) (-2237 (((-1154 $) $ (-1064)) 58) (((-1154 |#1|) $) 47)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-546)))) (-1976 (($ $) 132 (|has| |#1| (-546)))) (-1363 (((-112) $) NIL (|has| |#1| (-546)))) (-3785 (((-758) $) NIL) (((-758) $ (-631 (-1064))) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4286 (($ $ $) 126 (|has| |#1| (-546)))) (-4308 (((-413 (-1154 $)) (-1154 $)) 71 (|has| |#1| (-894)))) (-3278 (($ $) NIL (|has| |#1| (-446)))) (-1565 (((-413 $) $) NIL (|has| |#1| (-446)))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) 91 (|has| |#1| (-894)))) (-2286 (((-112) $ $) NIL (|has| |#1| (-358)))) (-1470 (($ $ (-758)) 39)) (-3867 (($ $ (-758)) 40)) (-4022 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-446)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 (-1064) "failed") $) NIL)) (-1668 ((|#1| $) NIL) (((-402 (-554)) $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-554) $) NIL (|has| |#1| (-1023 (-554)))) (((-1064) $) NIL)) (-2999 (($ $ $ (-1064)) NIL (|has| |#1| (-170))) ((|#1| $ $) 128 (|has| |#1| (-170)))) (-3964 (($ $ $) NIL (|has| |#1| (-358)))) (-2550 (($ $) 56)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) NIL) (((-675 |#1|) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3943 (($ $ $) NIL (|has| |#1| (-358)))) (-3639 (($ $ $) 104)) (-2489 (($ $ $) NIL (|has| |#1| (-546)))) (-1680 (((-2 (|:| -1490 |#1|) (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-546)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL (|has| |#1| (-358)))) (-2048 (($ $) 133 (|has| |#1| (-446))) (($ $ (-1064)) NIL (|has| |#1| (-446)))) (-2540 (((-631 $) $) NIL)) (-3289 (((-112) $) NIL (|has| |#1| (-894)))) (-1344 (($ $ |#1| (-758) $) 45)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (-12 (|has| (-1064) (-871 (-374))) (|has| |#1| (-871 (-374))))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (-12 (|has| (-1064) (-871 (-554))) (|has| |#1| (-871 (-554)))))) (-3701 (((-848) $ (-848)) 117)) (-2342 (((-758) $ $) NIL (|has| |#1| (-546)))) (-3248 (((-112) $) 30)) (-2122 (((-758) $) NIL)) (-3339 (((-3 $ "failed") $) NIL (|has| |#1| (-1133)))) (-2393 (($ (-1154 |#1|) (-1064)) 49) (($ (-1154 $) (-1064)) 65)) (-3333 (($ $ (-758)) 32)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-3910 (((-631 $) $) NIL)) (-3580 (((-112) $) NIL)) (-2383 (($ |#1| (-758)) 63) (($ $ (-1064) (-758)) NIL) (($ $ (-631 (-1064)) (-631 (-758))) NIL)) (-4014 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $ (-1064)) NIL) (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 121)) (-3893 (((-758) $) NIL) (((-758) $ (-1064)) NIL) (((-631 (-758)) $ (-631 (-1064))) NIL)) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2789 (($ (-1 (-758) (-758)) $) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-2964 (((-1154 |#1|) $) NIL)) (-3277 (((-3 (-1064) "failed") $) NIL)) (-2518 (($ $) NIL)) (-2530 ((|#1| $) 52)) (-2475 (($ (-631 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-1613 (((-1140) $) NIL)) (-2162 (((-2 (|:| -2325 $) (|:| -2423 $)) $ (-758)) 38)) (-3778 (((-3 (-631 $) "failed") $) NIL)) (-2433 (((-3 (-631 $) "failed") $) NIL)) (-3160 (((-3 (-2 (|:| |var| (-1064)) (|:| -1407 (-758))) "failed") $) NIL)) (-2279 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3834 (($) NIL (|has| |#1| (-1133)) CONST)) (-2768 (((-1102) $) NIL)) (-2492 (((-112) $) 31)) (-2505 ((|#1| $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 79 (|has| |#1| (-446)))) (-2510 (($ (-631 $)) NIL (|has| |#1| (-446))) (($ $ $) 135 (|has| |#1| (-446)))) (-2034 (($ $ (-758) |#1| $) 99)) (-1290 (((-413 (-1154 $)) (-1154 $)) 77 (|has| |#1| (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) 76 (|has| |#1| (-894)))) (-2270 (((-413 $) $) 84 (|has| |#1| (-894)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-358)))) (-3919 (((-3 $ "failed") $ |#1|) 131 (|has| |#1| (-546))) (((-3 $ "failed") $ $) 100 (|has| |#1| (-546)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-2386 (($ $ (-631 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ (-1064) |#1|) NIL) (($ $ (-631 (-1064)) (-631 |#1|)) NIL) (($ $ (-1064) $) NIL) (($ $ (-631 (-1064)) (-631 $)) NIL)) (-2072 (((-758) $) NIL (|has| |#1| (-358)))) (-2064 ((|#1| $ |#1|) 119) (($ $ $) 120) (((-402 $) (-402 $) (-402 $)) NIL (|has| |#1| (-546))) ((|#1| (-402 $) |#1|) NIL (|has| |#1| (-358))) (((-402 $) $ (-402 $)) NIL (|has| |#1| (-546)))) (-2734 (((-3 $ "failed") $ (-758)) 35)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 138 (|has| |#1| (-358)))) (-1495 (($ $ (-1064)) NIL (|has| |#1| (-170))) ((|#1| $) 124 (|has| |#1| (-170)))) (-1553 (($ $ (-1064)) NIL) (($ $ (-631 (-1064))) NIL) (($ $ (-1064) (-758)) NIL) (($ $ (-631 (-1064)) (-631 (-758))) NIL) (($ $ (-758)) NIL) (($ $) NIL) (($ $ (-1158)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3308 (((-758) $) 54) (((-758) $ (-1064)) NIL) (((-631 (-758)) $ (-631 (-1064))) NIL)) (-2927 (((-877 (-374)) $) NIL (-12 (|has| (-1064) (-602 (-877 (-374)))) (|has| |#1| (-602 (-877 (-374)))))) (((-877 (-554)) $) NIL (-12 (|has| (-1064) (-602 (-877 (-554)))) (|has| |#1| (-602 (-877 (-554)))))) (((-530) $) NIL (-12 (|has| (-1064) (-602 (-530))) (|has| |#1| (-602 (-530)))))) (-3276 ((|#1| $) 130 (|has| |#1| (-446))) (($ $ (-1064)) NIL (|has| |#1| (-446)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-894))))) (-2903 (((-3 $ "failed") $ $) NIL (|has| |#1| (-546))) (((-3 (-402 $) "failed") (-402 $) $) NIL (|has| |#1| (-546)))) (-3075 (((-848) $) 118) (($ (-554)) NIL) (($ |#1|) 53) (($ (-1064)) NIL) (($ (-402 (-554))) NIL (-3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554)))))) (($ $) NIL (|has| |#1| (-546)))) (-1893 (((-631 |#1|) $) NIL)) (-1779 ((|#1| $ (-758)) NIL) (($ $ (-1064) (-758)) NIL) (($ $ (-631 (-1064)) (-631 (-758))) NIL)) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| |#1| (-894))) (|has| |#1| (-143))))) (-2261 (((-758)) NIL)) (-2907 (($ $ $ (-758)) 25 (|has| |#1| (-170)))) (-1909 (((-112) $ $) NIL (|has| |#1| (-546)))) (-2004 (($) 15 T CONST)) (-2014 (($) 16 T CONST)) (-1787 (($ $ (-1064)) NIL) (($ $ (-631 (-1064))) NIL) (($ $ (-1064) (-758)) NIL) (($ $ (-631 (-1064)) (-631 (-758))) NIL) (($ $ (-758)) NIL) (($ $) NIL) (($ $ (-1158)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) 96)) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1752 (($ $ |#1|) 139 (|has| |#1| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) 66)) (** (($ $ (-906)) 14) (($ $ (-758)) 12)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 24) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ |#1| $) 102) (($ $ |#1|) NIL)))
-(((-1154 |#1|) (-13 (-1217 |#1|) (-10 -8 (-15 -3701 ((-848) $ (-848))) (-15 -2034 ($ $ (-758) |#1| $)))) (-1034)) (T -1154))
-((-3701 (*1 *2 *1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1154 *3)) (-4 *3 (-1034)))) (-2034 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-758)) (-5 *1 (-1154 *3)) (-4 *3 (-1034)))))
-(-13 (-1217 |#1|) (-10 -8 (-15 -3701 ((-848) $ (-848))) (-15 -2034 ($ $ (-758) |#1| $))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2405 (((-631 (-1064)) $) NIL)) (-1576 (((-1158) $) 11)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-546)))) (-1976 (($ $) NIL (|has| |#1| (-546)))) (-1363 (((-112) $) NIL (|has| |#1| (-546)))) (-1557 (($ $ (-402 (-554))) NIL) (($ $ (-402 (-554)) (-402 (-554))) NIL)) (-3042 (((-1138 (-2 (|:| |k| (-402 (-554))) (|:| |c| |#1|))) $) NIL)) (-3023 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4200 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL (|has| |#1| (-358)))) (-1565 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2282 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2286 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3003 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4177 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4175 (($ (-758) (-1138 (-2 (|:| |k| (-402 (-554))) (|:| |c| |#1|)))) NIL)) (-3046 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2916 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-1149 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1156 |#1| |#2| |#3|) "failed") $) 36)) (-1668 (((-1149 |#1| |#2| |#3|) $) NIL) (((-1156 |#1| |#2| |#3|) $) NIL)) (-3964 (($ $ $) NIL (|has| |#1| (-358)))) (-2550 (($ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2811 (((-402 (-554)) $) 55)) (-3943 (($ $ $) NIL (|has| |#1| (-358)))) (-2463 (($ (-402 (-554)) (-1149 |#1| |#2| |#3|)) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL (|has| |#1| (-358)))) (-3289 (((-112) $) NIL (|has| |#1| (-358)))) (-2051 (((-112) $) NIL)) (-2844 (($) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2342 (((-402 (-554)) $) NIL) (((-402 (-554)) $ (-402 (-554))) NIL)) (-3248 (((-112) $) NIL)) (-3734 (($ $ (-554)) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3333 (($ $ (-906)) NIL) (($ $ (-402 (-554))) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-3580 (((-112) $) NIL)) (-2383 (($ |#1| (-402 (-554))) 20) (($ $ (-1064) (-402 (-554))) NIL) (($ $ (-631 (-1064)) (-631 (-402 (-554)))) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-2395 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2518 (($ $) NIL)) (-2530 ((|#1| $) NIL)) (-2475 (($ (-631 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-2058 (((-1149 |#1| |#2| |#3|) $) 41)) (-1602 (((-3 (-1149 |#1| |#2| |#3|) "failed") $) NIL)) (-2454 (((-1149 |#1| |#2| |#3|) $) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL (|has| |#1| (-358)))) (-2279 (($ $) 39 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-1158)) NIL (-3994 (-12 (|has| |#1| (-15 -2279 (|#1| |#1| (-1158)))) (|has| |#1| (-15 -2405 ((-631 (-1158)) |#1|))) (|has| |#1| (-38 (-402 (-554))))) (-12 (|has| |#1| (-29 (-554))) (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-944)) (|has| |#1| (-1180))))) (($ $ (-1237 |#2|)) 40 (|has| |#1| (-38 (-402 (-554)))))) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#1| (-358)))) (-2510 (($ (-631 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-2270 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-358)))) (-4282 (($ $ (-402 (-554))) NIL)) (-3919 (((-3 $ "failed") $ $) NIL (|has| |#1| (-546)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-1333 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2386 (((-1138 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-402 (-554))))))) (-2072 (((-758) $) NIL (|has| |#1| (-358)))) (-2064 ((|#1| $ (-402 (-554))) NIL) (($ $ $) NIL (|has| (-402 (-554)) (-1094)))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-358)))) (-1553 (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-758)) NIL (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|)))) (($ $ (-1237 |#2|)) 38)) (-3308 (((-402 (-554)) $) NIL)) (-3057 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2926 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3034 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4213 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3014 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4188 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-1300 (($ $) NIL)) (-3075 (((-848) $) 58) (($ (-554)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1149 |#1| |#2| |#3|)) 30) (($ (-1156 |#1| |#2| |#3|)) 31) (($ (-1237 |#2|)) 26) (($ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $) NIL (|has| |#1| (-546)))) (-1779 ((|#1| $ (-402 (-554))) NIL)) (-2084 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2261 (((-758)) NIL)) (-1608 ((|#1| $) 12)) (-3096 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2959 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-1909 (((-112) $ $) NIL (|has| |#1| (-546)))) (-3069 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2938 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3120 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2981 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4333 ((|#1| $ (-402 (-554))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-554))))) (|has| |#1| (-15 -3075 (|#1| (-1158))))))) (-2908 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2991 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3108 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2969 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3083 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2948 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2004 (($) 22 T CONST)) (-2014 (($) 16 T CONST)) (-1787 (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-758)) NIL (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) 24)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554)))))) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554)))))))
-(((-1155 |#1| |#2| |#3|) (-13 (-1224 |#1| (-1149 |#1| |#2| |#3|)) (-1023 (-1156 |#1| |#2| |#3|)) (-604 (-1237 |#2|)) (-10 -8 (-15 -1553 ($ $ (-1237 |#2|))) (IF (|has| |#1| (-38 (-402 (-554)))) (-15 -2279 ($ $ (-1237 |#2|))) |%noBranch|))) (-1034) (-1158) |#1|) (T -1155))
-((-1553 (*1 *1 *1 *2) (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1155 *3 *4 *5)) (-4 *3 (-1034)) (-14 *5 *3))) (-2279 (*1 *1 *1 *2) (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1155 *3 *4 *5)) (-4 *3 (-38 (-402 (-554)))) (-4 *3 (-1034)) (-14 *5 *3))))
-(-13 (-1224 |#1| (-1149 |#1| |#2| |#3|)) (-1023 (-1156 |#1| |#2| |#3|)) (-604 (-1237 |#2|)) (-10 -8 (-15 -1553 ($ $ (-1237 |#2|))) (IF (|has| |#1| (-38 (-402 (-554)))) (-15 -2279 ($ $ (-1237 |#2|))) |%noBranch|)))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 125)) (-2405 (((-631 (-1064)) $) NIL)) (-1576 (((-1158) $) 116)) (-1530 (((-1214 |#2| |#1|) $ (-758)) 63)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-546)))) (-1976 (($ $) NIL (|has| |#1| (-546)))) (-1363 (((-112) $) NIL (|has| |#1| (-546)))) (-1557 (($ $ (-758)) 79) (($ $ (-758) (-758)) 76)) (-3042 (((-1138 (-2 (|:| |k| (-758)) (|:| |c| |#1|))) $) 102)) (-3023 (($ $) 169 (|has| |#1| (-38 (-402 (-554)))))) (-4200 (($ $) 145 (|has| |#1| (-38 (-402 (-554)))))) (-2934 (((-3 $ "failed") $ $) NIL)) (-2282 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3003 (($ $) 165 (|has| |#1| (-38 (-402 (-554)))))) (-4177 (($ $) 141 (|has| |#1| (-38 (-402 (-554)))))) (-4175 (($ (-1138 (-2 (|:| |k| (-758)) (|:| |c| |#1|)))) 115) (($ (-1138 |#1|)) 110)) (-3046 (($ $) 173 (|has| |#1| (-38 (-402 (-554)))))) (-2916 (($ $) 149 (|has| |#1| (-38 (-402 (-554)))))) (-4087 (($) NIL T CONST)) (-2550 (($ $) NIL)) (-1320 (((-3 $ "failed") $) 23)) (-3356 (($ $) 26)) (-3497 (((-937 |#1|) $ (-758)) 75) (((-937 |#1|) $ (-758) (-758)) 77)) (-2051 (((-112) $) 120)) (-2844 (($) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2342 (((-758) $) 122) (((-758) $ (-758)) 124)) (-3248 (((-112) $) NIL)) (-3734 (($ $ (-554)) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3333 (($ $ (-906)) NIL)) (-1310 (($ (-1 |#1| (-554)) $) NIL)) (-3580 (((-112) $) NIL)) (-2383 (($ |#1| (-758)) 13) (($ $ (-1064) (-758)) NIL) (($ $ (-631 (-1064)) (-631 (-758))) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-2395 (($ $) 131 (|has| |#1| (-38 (-402 (-554)))))) (-2518 (($ $) NIL)) (-2530 ((|#1| $) NIL)) (-1613 (((-1140) $) NIL)) (-2279 (($ $) 129 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-1158)) NIL (-3994 (-12 (|has| |#1| (-15 -2279 (|#1| |#1| (-1158)))) (|has| |#1| (-15 -2405 ((-631 (-1158)) |#1|))) (|has| |#1| (-38 (-402 (-554))))) (-12 (|has| |#1| (-29 (-554))) (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-944)) (|has| |#1| (-1180))))) (($ $ (-1237 |#2|)) 130 (|has| |#1| (-38 (-402 (-554)))))) (-2768 (((-1102) $) NIL)) (-4282 (($ $ (-758)) 15)) (-3919 (((-3 $ "failed") $ $) 24 (|has| |#1| (-546)))) (-1333 (($ $) 133 (|has| |#1| (-38 (-402 (-554)))))) (-2386 (((-1138 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-758)))))) (-2064 ((|#1| $ (-758)) 119) (($ $ $) 128 (|has| (-758) (-1094)))) (-1553 (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#1| (-15 * (|#1| (-758) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#1| (-15 * (|#1| (-758) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#1| (-15 * (|#1| (-758) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158)) NIL (-12 (|has| |#1| (-15 * (|#1| (-758) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-758)) NIL (|has| |#1| (-15 * (|#1| (-758) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-758) |#1|)))) (($ $ (-1237 |#2|)) 29)) (-3308 (((-758) $) NIL)) (-3057 (($ $) 175 (|has| |#1| (-38 (-402 (-554)))))) (-2926 (($ $) 151 (|has| |#1| (-38 (-402 (-554)))))) (-3034 (($ $) 171 (|has| |#1| (-38 (-402 (-554)))))) (-4213 (($ $) 147 (|has| |#1| (-38 (-402 (-554)))))) (-3014 (($ $) 167 (|has| |#1| (-38 (-402 (-554)))))) (-4188 (($ $) 143 (|has| |#1| (-38 (-402 (-554)))))) (-1300 (($ $) NIL)) (-3075 (((-848) $) 201) (($ (-554)) NIL) (($ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $) NIL (|has| |#1| (-546))) (($ |#1|) 126 (|has| |#1| (-170))) (($ (-1214 |#2| |#1|)) 51) (($ (-1237 |#2|)) 32)) (-1893 (((-1138 |#1|) $) 98)) (-1779 ((|#1| $ (-758)) 118)) (-2084 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2261 (((-758)) NIL)) (-1608 ((|#1| $) 54)) (-3096 (($ $) 181 (|has| |#1| (-38 (-402 (-554)))))) (-2959 (($ $) 157 (|has| |#1| (-38 (-402 (-554)))))) (-1909 (((-112) $ $) NIL (|has| |#1| (-546)))) (-3069 (($ $) 177 (|has| |#1| (-38 (-402 (-554)))))) (-2938 (($ $) 153 (|has| |#1| (-38 (-402 (-554)))))) (-3120 (($ $) 185 (|has| |#1| (-38 (-402 (-554)))))) (-2981 (($ $) 161 (|has| |#1| (-38 (-402 (-554)))))) (-4333 ((|#1| $ (-758)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-758)))) (|has| |#1| (-15 -3075 (|#1| (-1158))))))) (-2908 (($ $) 187 (|has| |#1| (-38 (-402 (-554)))))) (-2991 (($ $) 163 (|has| |#1| (-38 (-402 (-554)))))) (-3108 (($ $) 183 (|has| |#1| (-38 (-402 (-554)))))) (-2969 (($ $) 159 (|has| |#1| (-38 (-402 (-554)))))) (-3083 (($ $) 179 (|has| |#1| (-38 (-402 (-554)))))) (-2948 (($ $) 155 (|has| |#1| (-38 (-402 (-554)))))) (-2004 (($) 17 T CONST)) (-2014 (($) 19 T CONST)) (-1787 (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#1| (-15 * (|#1| (-758) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#1| (-15 * (|#1| (-758) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#1| (-15 * (|#1| (-758) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158)) NIL (-12 (|has| |#1| (-15 * (|#1| (-758) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-758)) NIL (|has| |#1| (-15 * (|#1| (-758) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-758) |#1|))))) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-1744 (($ $) NIL) (($ $ $) 194)) (-1735 (($ $ $) 31)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ |#1|) 198 (|has| |#1| (-358))) (($ $ $) 134 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) 137 (|has| |#1| (-38 (-402 (-554)))))) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554)))))))
-(((-1156 |#1| |#2| |#3|) (-13 (-1232 |#1|) (-10 -8 (-15 -3075 ($ (-1214 |#2| |#1|))) (-15 -1530 ((-1214 |#2| |#1|) $ (-758))) (-15 -3075 ($ (-1237 |#2|))) (-15 -1553 ($ $ (-1237 |#2|))) (IF (|has| |#1| (-38 (-402 (-554)))) (-15 -2279 ($ $ (-1237 |#2|))) |%noBranch|))) (-1034) (-1158) |#1|) (T -1156))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-1214 *4 *3)) (-4 *3 (-1034)) (-14 *4 (-1158)) (-14 *5 *3) (-5 *1 (-1156 *3 *4 *5)))) (-1530 (*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1214 *5 *4)) (-5 *1 (-1156 *4 *5 *6)) (-4 *4 (-1034)) (-14 *5 (-1158)) (-14 *6 *4))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1156 *3 *4 *5)) (-4 *3 (-1034)) (-14 *5 *3))) (-1553 (*1 *1 *1 *2) (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1156 *3 *4 *5)) (-4 *3 (-1034)) (-14 *5 *3))) (-2279 (*1 *1 *1 *2) (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1156 *3 *4 *5)) (-4 *3 (-38 (-402 (-554)))) (-4 *3 (-1034)) (-14 *5 *3))))
-(-13 (-1232 |#1|) (-10 -8 (-15 -3075 ($ (-1214 |#2| |#1|))) (-15 -1530 ((-1214 |#2| |#1|) $ (-758))) (-15 -3075 ($ (-1237 |#2|))) (-15 -1553 ($ $ (-1237 |#2|))) (IF (|has| |#1| (-38 (-402 (-554)))) (-15 -2279 ($ $ (-1237 |#2|))) |%noBranch|)))
-((-3075 (((-848) $) 27) (($ (-1158)) 29)) (-3994 (($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $))) 40)) (-3981 (($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $))) 33) (($ $) 34)) (-2207 (($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $))) 35)) (-2193 (($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $))) 37)) (-2180 (($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $))) 36)) (-2167 (($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $))) 38)) (-3245 (($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $))) 39)))
-(((-1157) (-13 (-601 (-848)) (-10 -8 (-15 -3075 ($ (-1158))) (-15 -2207 ($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -2180 ($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -2193 ($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -2167 ($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -3994 ($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -3245 ($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -3981 ($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -3981 ($ $))))) (T -1157))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1157)))) (-2207 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1157)))) (-5 *1 (-1157)))) (-2180 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1157)))) (-5 *1 (-1157)))) (-2193 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1157)))) (-5 *1 (-1157)))) (-2167 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1157)))) (-5 *1 (-1157)))) (-3994 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1157)))) (-5 *1 (-1157)))) (-3245 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1157)))) (-5 *1 (-1157)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1157)))) (-5 *1 (-1157)))) (-3981 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1157)))) (-5 *1 (-1157)))) (-3981 (*1 *1 *1) (-5 *1 (-1157))))
-(-13 (-601 (-848)) (-10 -8 (-15 -3075 ($ (-1158))) (-15 -2207 ($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -2180 ($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -2193 ($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -2167 ($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -3994 ($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -3245 ($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -3981 ($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -3981 ($ $))))
-((-3062 (((-112) $ $) NIL)) (-2224 (($ $ (-631 (-848))) 59)) (-2853 (($ $ (-631 (-848))) 57)) (-3942 (((-1140) $) 84)) (-2591 (((-2 (|:| -3999 (-631 (-848))) (|:| -1349 (-631 (-848))) (|:| |presup| (-631 (-848))) (|:| -1426 (-631 (-848))) (|:| |args| (-631 (-848)))) $) 87)) (-3001 (((-112) $) 22)) (-2226 (($ $ (-631 (-631 (-848)))) 56) (($ $ (-2 (|:| -3999 (-631 (-848))) (|:| -1349 (-631 (-848))) (|:| |presup| (-631 (-848))) (|:| -1426 (-631 (-848))) (|:| |args| (-631 (-848))))) 82)) (-4087 (($) 124 T CONST)) (-3538 (((-1246)) 106)) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) 66) (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) 73)) (-3180 (($) 95) (($ $) 101)) (-4309 (($ $) 83)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-1416 (((-631 $) $) 107)) (-1613 (((-1140) $) 90)) (-2768 (((-1102) $) NIL)) (-2064 (($ $ (-631 (-848))) 58)) (-2927 (((-530) $) 46) (((-1158) $) 47) (((-877 (-554)) $) 77) (((-877 (-374)) $) 75)) (-3075 (((-848) $) 53) (($ (-1140)) 48)) (-2213 (($ $ (-631 (-848))) 60)) (-4048 (((-1140) $) 33) (((-1140) $ (-112)) 34) (((-1246) (-809) $) 35) (((-1246) (-809) $ (-112)) 36)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 49)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 50)))
-(((-1158) (-13 (-836) (-602 (-530)) (-815) (-602 (-1158)) (-604 (-1140)) (-602 (-877 (-554))) (-602 (-877 (-374))) (-871 (-554)) (-871 (-374)) (-10 -8 (-15 -3180 ($)) (-15 -3180 ($ $)) (-15 -3538 ((-1246))) (-15 -4309 ($ $)) (-15 -3001 ((-112) $)) (-15 -2591 ((-2 (|:| -3999 (-631 (-848))) (|:| -1349 (-631 (-848))) (|:| |presup| (-631 (-848))) (|:| -1426 (-631 (-848))) (|:| |args| (-631 (-848)))) $)) (-15 -2226 ($ $ (-631 (-631 (-848))))) (-15 -2226 ($ $ (-2 (|:| -3999 (-631 (-848))) (|:| -1349 (-631 (-848))) (|:| |presup| (-631 (-848))) (|:| -1426 (-631 (-848))) (|:| |args| (-631 (-848)))))) (-15 -2853 ($ $ (-631 (-848)))) (-15 -2224 ($ $ (-631 (-848)))) (-15 -2213 ($ $ (-631 (-848)))) (-15 -2064 ($ $ (-631 (-848)))) (-15 -3942 ((-1140) $)) (-15 -1416 ((-631 $) $)) (-15 -4087 ($) -2397)))) (T -1158))
-((-3180 (*1 *1) (-5 *1 (-1158))) (-3180 (*1 *1 *1) (-5 *1 (-1158))) (-3538 (*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-1158)))) (-4309 (*1 *1 *1) (-5 *1 (-1158))) (-3001 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1158)))) (-2591 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3999 (-631 (-848))) (|:| -1349 (-631 (-848))) (|:| |presup| (-631 (-848))) (|:| -1426 (-631 (-848))) (|:| |args| (-631 (-848))))) (-5 *1 (-1158)))) (-2226 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-631 (-848)))) (-5 *1 (-1158)))) (-2226 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3999 (-631 (-848))) (|:| -1349 (-631 (-848))) (|:| |presup| (-631 (-848))) (|:| -1426 (-631 (-848))) (|:| |args| (-631 (-848))))) (-5 *1 (-1158)))) (-2853 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-1158)))) (-2224 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-1158)))) (-2213 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-1158)))) (-2064 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-1158)))) (-3942 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1158)))) (-1416 (*1 *2 *1) (-12 (-5 *2 (-631 (-1158))) (-5 *1 (-1158)))) (-4087 (*1 *1) (-5 *1 (-1158))))
-(-13 (-836) (-602 (-530)) (-815) (-602 (-1158)) (-604 (-1140)) (-602 (-877 (-554))) (-602 (-877 (-374))) (-871 (-554)) (-871 (-374)) (-10 -8 (-15 -3180 ($)) (-15 -3180 ($ $)) (-15 -3538 ((-1246))) (-15 -4309 ($ $)) (-15 -3001 ((-112) $)) (-15 -2591 ((-2 (|:| -3999 (-631 (-848))) (|:| -1349 (-631 (-848))) (|:| |presup| (-631 (-848))) (|:| -1426 (-631 (-848))) (|:| |args| (-631 (-848)))) $)) (-15 -2226 ($ $ (-631 (-631 (-848))))) (-15 -2226 ($ $ (-2 (|:| -3999 (-631 (-848))) (|:| -1349 (-631 (-848))) (|:| |presup| (-631 (-848))) (|:| -1426 (-631 (-848))) (|:| |args| (-631 (-848)))))) (-15 -2853 ($ $ (-631 (-848)))) (-15 -2224 ($ $ (-631 (-848)))) (-15 -2213 ($ $ (-631 (-848)))) (-15 -2064 ($ $ (-631 (-848)))) (-15 -3942 ((-1140) $)) (-15 -1416 ((-631 $) $)) (-15 -4087 ($) -2397)))
-((-4007 (((-1241 |#1|) |#1| (-906)) 16) (((-1241 |#1|) (-631 |#1|)) 20)))
-(((-1159 |#1|) (-10 -7 (-15 -4007 ((-1241 |#1|) (-631 |#1|))) (-15 -4007 ((-1241 |#1|) |#1| (-906)))) (-1034)) (T -1159))
-((-4007 (*1 *2 *3 *4) (-12 (-5 *4 (-906)) (-5 *2 (-1241 *3)) (-5 *1 (-1159 *3)) (-4 *3 (-1034)))) (-4007 (*1 *2 *3) (-12 (-5 *3 (-631 *4)) (-4 *4 (-1034)) (-5 *2 (-1241 *4)) (-5 *1 (-1159 *4)))))
-(-10 -7 (-15 -4007 ((-1241 |#1|) (-631 |#1|))) (-15 -4007 ((-1241 |#1|) |#1| (-906))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-546)))) (-1976 (($ $) NIL (|has| |#1| (-546)))) (-1363 (((-112) $) NIL (|has| |#1| (-546)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-3 |#1| "failed") $) NIL)) (-1668 (((-554) $) NIL (|has| |#1| (-1023 (-554)))) (((-402 (-554)) $) NIL (|has| |#1| (-1023 (-402 (-554))))) ((|#1| $) NIL)) (-2550 (($ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2048 (($ $) NIL (|has| |#1| (-446)))) (-1344 (($ $ |#1| (-956) $) NIL)) (-3248 (((-112) $) NIL)) (-2122 (((-758) $) NIL)) (-3580 (((-112) $) NIL)) (-2383 (($ |#1| (-956)) NIL)) (-3893 (((-956) $) NIL)) (-2789 (($ (-1 (-956) (-956)) $) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-2518 (($ $) NIL)) (-2530 ((|#1| $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2492 (((-112) $) NIL)) (-2505 ((|#1| $) NIL)) (-2034 (($ $ (-956) |#1| $) NIL (-12 (|has| (-956) (-130)) (|has| |#1| (-546))))) (-3919 (((-3 $ "failed") $ $) NIL (|has| |#1| (-546))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-546)))) (-3308 (((-956) $) NIL)) (-3276 ((|#1| $) NIL (|has| |#1| (-446)))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL (|has| |#1| (-546))) (($ |#1|) NIL) (($ (-402 (-554))) NIL (-3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554))))))) (-1893 (((-631 |#1|) $) NIL)) (-1779 ((|#1| $ (-956)) NIL)) (-2084 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2261 (((-758)) NIL)) (-2907 (($ $ $ (-758)) NIL (|has| |#1| (-170)))) (-1909 (((-112) $ $) NIL (|has| |#1| (-546)))) (-2004 (($) 9 T CONST)) (-2014 (($) 14 T CONST)) (-1658 (((-112) $ $) 16)) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) 19)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554)))))))
-(((-1160 |#1|) (-13 (-321 |#1| (-956)) (-10 -8 (IF (|has| |#1| (-546)) (IF (|has| (-956) (-130)) (-15 -2034 ($ $ (-956) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4371)) (-6 -4371) |%noBranch|))) (-1034)) (T -1160))
-((-2034 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-956)) (-4 *2 (-130)) (-5 *1 (-1160 *3)) (-4 *3 (-546)) (-4 *3 (-1034)))))
-(-13 (-321 |#1| (-956)) (-10 -8 (IF (|has| |#1| (-546)) (IF (|has| (-956) (-130)) (-15 -2034 ($ $ (-956) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4371)) (-6 -4371) |%noBranch|)))
-((-1434 (((-1162) (-1158) $) 25)) (-2759 (($) 29)) (-3493 (((-3 (|:| |fst| (-429)) (|:| -2053 "void")) (-1158) $) 22)) (-3432 (((-1246) (-1158) (-3 (|:| |fst| (-429)) (|:| -2053 "void")) $) 41) (((-1246) (-1158) (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) 42) (((-1246) (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) 43)) (-3904 (((-1246) (-1158)) 58)) (-2673 (((-1246) (-1158) $) 55) (((-1246) (-1158)) 56) (((-1246)) 57)) (-1283 (((-1246) (-1158)) 37)) (-4230 (((-1158)) 36)) (-4240 (($) 34)) (-1994 (((-432) (-1158) (-432) (-1158) $) 45) (((-432) (-631 (-1158)) (-432) (-1158) $) 49) (((-432) (-1158) (-432)) 46) (((-432) (-1158) (-432) (-1158)) 50)) (-1965 (((-1158)) 35)) (-3075 (((-848) $) 28)) (-2042 (((-1246)) 30) (((-1246) (-1158)) 33)) (-3924 (((-631 (-1158)) (-1158) $) 24)) (-2727 (((-1246) (-1158) (-631 (-1158)) $) 38) (((-1246) (-1158) (-631 (-1158))) 39) (((-1246) (-631 (-1158))) 40)))
-(((-1161) (-13 (-601 (-848)) (-10 -8 (-15 -2759 ($)) (-15 -2042 ((-1246))) (-15 -2042 ((-1246) (-1158))) (-15 -1994 ((-432) (-1158) (-432) (-1158) $)) (-15 -1994 ((-432) (-631 (-1158)) (-432) (-1158) $)) (-15 -1994 ((-432) (-1158) (-432))) (-15 -1994 ((-432) (-1158) (-432) (-1158))) (-15 -1283 ((-1246) (-1158))) (-15 -1965 ((-1158))) (-15 -4230 ((-1158))) (-15 -2727 ((-1246) (-1158) (-631 (-1158)) $)) (-15 -2727 ((-1246) (-1158) (-631 (-1158)))) (-15 -2727 ((-1246) (-631 (-1158)))) (-15 -3432 ((-1246) (-1158) (-3 (|:| |fst| (-429)) (|:| -2053 "void")) $)) (-15 -3432 ((-1246) (-1158) (-3 (|:| |fst| (-429)) (|:| -2053 "void")))) (-15 -3432 ((-1246) (-3 (|:| |fst| (-429)) (|:| -2053 "void")))) (-15 -2673 ((-1246) (-1158) $)) (-15 -2673 ((-1246) (-1158))) (-15 -2673 ((-1246))) (-15 -3904 ((-1246) (-1158))) (-15 -4240 ($)) (-15 -3493 ((-3 (|:| |fst| (-429)) (|:| -2053 "void")) (-1158) $)) (-15 -3924 ((-631 (-1158)) (-1158) $)) (-15 -1434 ((-1162) (-1158) $))))) (T -1161))
-((-2759 (*1 *1) (-5 *1 (-1161))) (-2042 (*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-1161)))) (-2042 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1246)) (-5 *1 (-1161)))) (-1994 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-432)) (-5 *3 (-1158)) (-5 *1 (-1161)))) (-1994 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-432)) (-5 *3 (-631 (-1158))) (-5 *4 (-1158)) (-5 *1 (-1161)))) (-1994 (*1 *2 *3 *2) (-12 (-5 *2 (-432)) (-5 *3 (-1158)) (-5 *1 (-1161)))) (-1994 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-432)) (-5 *3 (-1158)) (-5 *1 (-1161)))) (-1283 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1246)) (-5 *1 (-1161)))) (-1965 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1161)))) (-4230 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1161)))) (-2727 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-631 (-1158))) (-5 *3 (-1158)) (-5 *2 (-1246)) (-5 *1 (-1161)))) (-2727 (*1 *2 *3 *4) (-12 (-5 *4 (-631 (-1158))) (-5 *3 (-1158)) (-5 *2 (-1246)) (-5 *1 (-1161)))) (-2727 (*1 *2 *3) (-12 (-5 *3 (-631 (-1158))) (-5 *2 (-1246)) (-5 *1 (-1161)))) (-3432 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1158)) (-5 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-5 *2 (-1246)) (-5 *1 (-1161)))) (-3432 (*1 *2 *3 *4) (-12 (-5 *3 (-1158)) (-5 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-5 *2 (-1246)) (-5 *1 (-1161)))) (-3432 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-5 *2 (-1246)) (-5 *1 (-1161)))) (-2673 (*1 *2 *3 *1) (-12 (-5 *3 (-1158)) (-5 *2 (-1246)) (-5 *1 (-1161)))) (-2673 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1246)) (-5 *1 (-1161)))) (-2673 (*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-1161)))) (-3904 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1246)) (-5 *1 (-1161)))) (-4240 (*1 *1) (-5 *1 (-1161))) (-3493 (*1 *2 *3 *1) (-12 (-5 *3 (-1158)) (-5 *2 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-5 *1 (-1161)))) (-3924 (*1 *2 *3 *1) (-12 (-5 *2 (-631 (-1158))) (-5 *1 (-1161)) (-5 *3 (-1158)))) (-1434 (*1 *2 *3 *1) (-12 (-5 *3 (-1158)) (-5 *2 (-1162)) (-5 *1 (-1161)))))
-(-13 (-601 (-848)) (-10 -8 (-15 -2759 ($)) (-15 -2042 ((-1246))) (-15 -2042 ((-1246) (-1158))) (-15 -1994 ((-432) (-1158) (-432) (-1158) $)) (-15 -1994 ((-432) (-631 (-1158)) (-432) (-1158) $)) (-15 -1994 ((-432) (-1158) (-432))) (-15 -1994 ((-432) (-1158) (-432) (-1158))) (-15 -1283 ((-1246) (-1158))) (-15 -1965 ((-1158))) (-15 -4230 ((-1158))) (-15 -2727 ((-1246) (-1158) (-631 (-1158)) $)) (-15 -2727 ((-1246) (-1158) (-631 (-1158)))) (-15 -2727 ((-1246) (-631 (-1158)))) (-15 -3432 ((-1246) (-1158) (-3 (|:| |fst| (-429)) (|:| -2053 "void")) $)) (-15 -3432 ((-1246) (-1158) (-3 (|:| |fst| (-429)) (|:| -2053 "void")))) (-15 -3432 ((-1246) (-3 (|:| |fst| (-429)) (|:| -2053 "void")))) (-15 -2673 ((-1246) (-1158) $)) (-15 -2673 ((-1246) (-1158))) (-15 -2673 ((-1246))) (-15 -3904 ((-1246) (-1158))) (-15 -4240 ($)) (-15 -3493 ((-3 (|:| |fst| (-429)) (|:| -2053 "void")) (-1158) $)) (-15 -3924 ((-631 (-1158)) (-1158) $)) (-15 -1434 ((-1162) (-1158) $))))
-((-2517 (((-631 (-631 (-3 (|:| -4309 (-1158)) (|:| -2453 (-631 (-3 (|:| S (-1158)) (|:| P (-937 (-554))))))))) $) 59)) (-1412 (((-631 (-3 (|:| -4309 (-1158)) (|:| -2453 (-631 (-3 (|:| S (-1158)) (|:| P (-937 (-554)))))))) (-429) $) 43)) (-1364 (($ (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 (-432))))) 17)) (-3904 (((-1246) $) 67)) (-2381 (((-631 (-1158)) $) 22)) (-4273 (((-1086) $) 55)) (-2240 (((-432) (-1158) $) 27)) (-1997 (((-631 (-1158)) $) 30)) (-4240 (($) 19)) (-1994 (((-432) (-631 (-1158)) (-432) $) 25) (((-432) (-1158) (-432) $) 24)) (-3075 (((-848) $) 9) (((-1168 (-1158) (-432)) $) 13)))
-(((-1162) (-13 (-601 (-848)) (-10 -8 (-15 -3075 ((-1168 (-1158) (-432)) $)) (-15 -4240 ($)) (-15 -1994 ((-432) (-631 (-1158)) (-432) $)) (-15 -1994 ((-432) (-1158) (-432) $)) (-15 -2240 ((-432) (-1158) $)) (-15 -2381 ((-631 (-1158)) $)) (-15 -1412 ((-631 (-3 (|:| -4309 (-1158)) (|:| -2453 (-631 (-3 (|:| S (-1158)) (|:| P (-937 (-554)))))))) (-429) $)) (-15 -1997 ((-631 (-1158)) $)) (-15 -2517 ((-631 (-631 (-3 (|:| -4309 (-1158)) (|:| -2453 (-631 (-3 (|:| S (-1158)) (|:| P (-937 (-554))))))))) $)) (-15 -4273 ((-1086) $)) (-15 -3904 ((-1246) $)) (-15 -1364 ($ (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 (-432))))))))) (T -1162))
-((-3075 (*1 *2 *1) (-12 (-5 *2 (-1168 (-1158) (-432))) (-5 *1 (-1162)))) (-4240 (*1 *1) (-5 *1 (-1162))) (-1994 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-432)) (-5 *3 (-631 (-1158))) (-5 *1 (-1162)))) (-1994 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-432)) (-5 *3 (-1158)) (-5 *1 (-1162)))) (-2240 (*1 *2 *3 *1) (-12 (-5 *3 (-1158)) (-5 *2 (-432)) (-5 *1 (-1162)))) (-2381 (*1 *2 *1) (-12 (-5 *2 (-631 (-1158))) (-5 *1 (-1162)))) (-1412 (*1 *2 *3 *1) (-12 (-5 *3 (-429)) (-5 *2 (-631 (-3 (|:| -4309 (-1158)) (|:| -2453 (-631 (-3 (|:| S (-1158)) (|:| P (-937 (-554))))))))) (-5 *1 (-1162)))) (-1997 (*1 *2 *1) (-12 (-5 *2 (-631 (-1158))) (-5 *1 (-1162)))) (-2517 (*1 *2 *1) (-12 (-5 *2 (-631 (-631 (-3 (|:| -4309 (-1158)) (|:| -2453 (-631 (-3 (|:| S (-1158)) (|:| P (-937 (-554)))))))))) (-5 *1 (-1162)))) (-4273 (*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-1162)))) (-3904 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-1162)))) (-1364 (*1 *1 *2) (-12 (-5 *2 (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 (-432))))) (-5 *1 (-1162)))))
-(-13 (-601 (-848)) (-10 -8 (-15 -3075 ((-1168 (-1158) (-432)) $)) (-15 -4240 ($)) (-15 -1994 ((-432) (-631 (-1158)) (-432) $)) (-15 -1994 ((-432) (-1158) (-432) $)) (-15 -2240 ((-432) (-1158) $)) (-15 -2381 ((-631 (-1158)) $)) (-15 -1412 ((-631 (-3 (|:| -4309 (-1158)) (|:| -2453 (-631 (-3 (|:| S (-1158)) (|:| P (-937 (-554)))))))) (-429) $)) (-15 -1997 ((-631 (-1158)) $)) (-15 -2517 ((-631 (-631 (-3 (|:| -4309 (-1158)) (|:| -2453 (-631 (-3 (|:| S (-1158)) (|:| P (-937 (-554))))))))) $)) (-15 -4273 ((-1086) $)) (-15 -3904 ((-1246) $)) (-15 -1364 ($ (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 (-432))))))))
-((-3062 (((-112) $ $) NIL)) (-2784 (((-3 (-554) "failed") $) 29) (((-3 (-221) "failed") $) 35) (((-3 (-1158) "failed") $) 41) (((-3 (-1140) "failed") $) 47)) (-1668 (((-554) $) 30) (((-221) $) 36) (((-1158) $) 42) (((-1140) $) 48)) (-3313 (((-112) $) 53)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-1499 (((-3 (-554) (-221) (-1158) (-1140) $) $) 55)) (-3894 (((-631 $) $) 57)) (-2927 (((-1086) $) 24) (($ (-1086)) 25)) (-2153 (((-112) $) 56)) (-3075 (((-848) $) 23) (($ (-554)) 26) (($ (-221)) 32) (($ (-1158)) 38) (($ (-1140)) 44) (((-554) $) 31) (((-221) $) 37) (((-1158) $) 43) (((-1140) $) 49)) (-3182 (((-112) $ (|[\|\|]| (-554))) 10) (((-112) $ (|[\|\|]| (-221))) 13) (((-112) $ (|[\|\|]| (-1158))) 19) (((-112) $ (|[\|\|]| (-1140))) 16)) (-1666 (($ (-1158) (-631 $)) 51) (($ $ (-631 $)) 52)) (-1556 (((-554) $) 27) (((-221) $) 33) (((-1158) $) 39) (((-1140) $) 45)) (-1658 (((-112) $ $) 7)))
-(((-1163) (-13 (-1236) (-1082) (-1023 (-554)) (-1023 (-221)) (-1023 (-1158)) (-1023 (-1140)) (-10 -8 (-15 -2927 ((-1086) $)) (-15 -2927 ($ (-1086))) (-15 -3075 ((-554) $)) (-15 -1556 ((-554) $)) (-15 -3075 ((-221) $)) (-15 -1556 ((-221) $)) (-15 -3075 ((-1158) $)) (-15 -1556 ((-1158) $)) (-15 -3075 ((-1140) $)) (-15 -1556 ((-1140) $)) (-15 -1666 ($ (-1158) (-631 $))) (-15 -1666 ($ $ (-631 $))) (-15 -3313 ((-112) $)) (-15 -1499 ((-3 (-554) (-221) (-1158) (-1140) $) $)) (-15 -3894 ((-631 $) $)) (-15 -2153 ((-112) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-554)))) (-15 -3182 ((-112) $ (|[\|\|]| (-221)))) (-15 -3182 ((-112) $ (|[\|\|]| (-1158)))) (-15 -3182 ((-112) $ (|[\|\|]| (-1140))))))) (T -1163))
-((-2927 (*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-1163)))) (-2927 (*1 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-1163)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-1163)))) (-1556 (*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-1163)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-1163)))) (-1556 (*1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-1163)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1163)))) (-1556 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1163)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1163)))) (-1556 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1163)))) (-1666 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-631 (-1163))) (-5 *1 (-1163)))) (-1666 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-1163))) (-5 *1 (-1163)))) (-3313 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1163)))) (-1499 (*1 *2 *1) (-12 (-5 *2 (-3 (-554) (-221) (-1158) (-1140) (-1163))) (-5 *1 (-1163)))) (-3894 (*1 *2 *1) (-12 (-5 *2 (-631 (-1163))) (-5 *1 (-1163)))) (-2153 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1163)))) (-3182 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-554))) (-5 *2 (-112)) (-5 *1 (-1163)))) (-3182 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-221))) (-5 *2 (-112)) (-5 *1 (-1163)))) (-3182 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1158))) (-5 *2 (-112)) (-5 *1 (-1163)))) (-3182 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1140))) (-5 *2 (-112)) (-5 *1 (-1163)))))
-(-13 (-1236) (-1082) (-1023 (-554)) (-1023 (-221)) (-1023 (-1158)) (-1023 (-1140)) (-10 -8 (-15 -2927 ((-1086) $)) (-15 -2927 ($ (-1086))) (-15 -3075 ((-554) $)) (-15 -1556 ((-554) $)) (-15 -3075 ((-221) $)) (-15 -1556 ((-221) $)) (-15 -3075 ((-1158) $)) (-15 -1556 ((-1158) $)) (-15 -3075 ((-1140) $)) (-15 -1556 ((-1140) $)) (-15 -1666 ($ (-1158) (-631 $))) (-15 -1666 ($ $ (-631 $))) (-15 -3313 ((-112) $)) (-15 -1499 ((-3 (-554) (-221) (-1158) (-1140) $) $)) (-15 -3894 ((-631 $) $)) (-15 -2153 ((-112) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-554)))) (-15 -3182 ((-112) $ (|[\|\|]| (-221)))) (-15 -3182 ((-112) $ (|[\|\|]| (-1158)))) (-15 -3182 ((-112) $ (|[\|\|]| (-1140))))))
-((-3263 (((-631 (-631 (-937 |#1|))) (-631 (-402 (-937 |#1|))) (-631 (-1158))) 57)) (-1900 (((-631 (-289 (-402 (-937 |#1|)))) (-289 (-402 (-937 |#1|)))) 69) (((-631 (-289 (-402 (-937 |#1|)))) (-402 (-937 |#1|))) 65) (((-631 (-289 (-402 (-937 |#1|)))) (-289 (-402 (-937 |#1|))) (-1158)) 70) (((-631 (-289 (-402 (-937 |#1|)))) (-402 (-937 |#1|)) (-1158)) 64) (((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-289 (-402 (-937 |#1|))))) 93) (((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-402 (-937 |#1|)))) 92) (((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-289 (-402 (-937 |#1|)))) (-631 (-1158))) 94) (((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-402 (-937 |#1|))) (-631 (-1158))) 91)))
-(((-1164 |#1|) (-10 -7 (-15 -1900 ((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-402 (-937 |#1|))) (-631 (-1158)))) (-15 -1900 ((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-289 (-402 (-937 |#1|)))) (-631 (-1158)))) (-15 -1900 ((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-402 (-937 |#1|))))) (-15 -1900 ((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-289 (-402 (-937 |#1|)))))) (-15 -1900 ((-631 (-289 (-402 (-937 |#1|)))) (-402 (-937 |#1|)) (-1158))) (-15 -1900 ((-631 (-289 (-402 (-937 |#1|)))) (-289 (-402 (-937 |#1|))) (-1158))) (-15 -1900 ((-631 (-289 (-402 (-937 |#1|)))) (-402 (-937 |#1|)))) (-15 -1900 ((-631 (-289 (-402 (-937 |#1|)))) (-289 (-402 (-937 |#1|))))) (-15 -3263 ((-631 (-631 (-937 |#1|))) (-631 (-402 (-937 |#1|))) (-631 (-1158))))) (-546)) (T -1164))
-((-3263 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-402 (-937 *5)))) (-5 *4 (-631 (-1158))) (-4 *5 (-546)) (-5 *2 (-631 (-631 (-937 *5)))) (-5 *1 (-1164 *5)))) (-1900 (*1 *2 *3) (-12 (-4 *4 (-546)) (-5 *2 (-631 (-289 (-402 (-937 *4))))) (-5 *1 (-1164 *4)) (-5 *3 (-289 (-402 (-937 *4)))))) (-1900 (*1 *2 *3) (-12 (-4 *4 (-546)) (-5 *2 (-631 (-289 (-402 (-937 *4))))) (-5 *1 (-1164 *4)) (-5 *3 (-402 (-937 *4))))) (-1900 (*1 *2 *3 *4) (-12 (-5 *4 (-1158)) (-4 *5 (-546)) (-5 *2 (-631 (-289 (-402 (-937 *5))))) (-5 *1 (-1164 *5)) (-5 *3 (-289 (-402 (-937 *5)))))) (-1900 (*1 *2 *3 *4) (-12 (-5 *4 (-1158)) (-4 *5 (-546)) (-5 *2 (-631 (-289 (-402 (-937 *5))))) (-5 *1 (-1164 *5)) (-5 *3 (-402 (-937 *5))))) (-1900 (*1 *2 *3) (-12 (-4 *4 (-546)) (-5 *2 (-631 (-631 (-289 (-402 (-937 *4)))))) (-5 *1 (-1164 *4)) (-5 *3 (-631 (-289 (-402 (-937 *4))))))) (-1900 (*1 *2 *3) (-12 (-5 *3 (-631 (-402 (-937 *4)))) (-4 *4 (-546)) (-5 *2 (-631 (-631 (-289 (-402 (-937 *4)))))) (-5 *1 (-1164 *4)))) (-1900 (*1 *2 *3 *4) (-12 (-5 *4 (-631 (-1158))) (-4 *5 (-546)) (-5 *2 (-631 (-631 (-289 (-402 (-937 *5)))))) (-5 *1 (-1164 *5)) (-5 *3 (-631 (-289 (-402 (-937 *5))))))) (-1900 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-402 (-937 *5)))) (-5 *4 (-631 (-1158))) (-4 *5 (-546)) (-5 *2 (-631 (-631 (-289 (-402 (-937 *5)))))) (-5 *1 (-1164 *5)))))
-(-10 -7 (-15 -1900 ((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-402 (-937 |#1|))) (-631 (-1158)))) (-15 -1900 ((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-289 (-402 (-937 |#1|)))) (-631 (-1158)))) (-15 -1900 ((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-402 (-937 |#1|))))) (-15 -1900 ((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-289 (-402 (-937 |#1|)))))) (-15 -1900 ((-631 (-289 (-402 (-937 |#1|)))) (-402 (-937 |#1|)) (-1158))) (-15 -1900 ((-631 (-289 (-402 (-937 |#1|)))) (-289 (-402 (-937 |#1|))) (-1158))) (-15 -1900 ((-631 (-289 (-402 (-937 |#1|)))) (-402 (-937 |#1|)))) (-15 -1900 ((-631 (-289 (-402 (-937 |#1|)))) (-289 (-402 (-937 |#1|))))) (-15 -3263 ((-631 (-631 (-937 |#1|))) (-631 (-402 (-937 |#1|))) (-631 (-1158)))))
-((-1611 (((-1140)) 7)) (-1527 (((-1140)) 9)) (-2339 (((-1246) (-1140)) 11)) (-3390 (((-1140)) 8)))
-(((-1165) (-10 -7 (-15 -1611 ((-1140))) (-15 -3390 ((-1140))) (-15 -1527 ((-1140))) (-15 -2339 ((-1246) (-1140))))) (T -1165))
-((-2339 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1165)))) (-1527 (*1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-1165)))) (-3390 (*1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-1165)))) (-1611 (*1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-1165)))))
-(-10 -7 (-15 -1611 ((-1140))) (-15 -3390 ((-1140))) (-15 -1527 ((-1140))) (-15 -2339 ((-1246) (-1140))))
-((-3144 (((-631 (-631 |#1|)) (-631 (-631 |#1|)) (-631 (-631 (-631 |#1|)))) 38)) (-2263 (((-631 (-631 (-631 |#1|))) (-631 (-631 |#1|))) 24)) (-4192 (((-1167 (-631 |#1|)) (-631 |#1|)) 34)) (-1838 (((-631 (-631 |#1|)) (-631 |#1|)) 30)) (-1821 (((-2 (|:| |f1| (-631 |#1|)) (|:| |f2| (-631 (-631 (-631 |#1|)))) (|:| |f3| (-631 (-631 |#1|))) (|:| |f4| (-631 (-631 (-631 |#1|))))) (-631 (-631 (-631 |#1|)))) 37)) (-3638 (((-2 (|:| |f1| (-631 |#1|)) (|:| |f2| (-631 (-631 (-631 |#1|)))) (|:| |f3| (-631 (-631 |#1|))) (|:| |f4| (-631 (-631 (-631 |#1|))))) (-631 |#1|) (-631 (-631 (-631 |#1|))) (-631 (-631 |#1|)) (-631 (-631 (-631 |#1|))) (-631 (-631 (-631 |#1|))) (-631 (-631 (-631 |#1|)))) 36)) (-3211 (((-631 (-631 |#1|)) (-631 (-631 |#1|))) 28)) (-2843 (((-631 |#1|) (-631 |#1|)) 31)) (-1340 (((-631 (-631 (-631 |#1|))) (-631 |#1|) (-631 (-631 (-631 |#1|)))) 18)) (-2054 (((-631 (-631 (-631 |#1|))) (-1 (-112) |#1| |#1|) (-631 |#1|) (-631 (-631 (-631 |#1|)))) 16)) (-2146 (((-2 (|:| |fs| (-112)) (|:| |sd| (-631 |#1|)) (|:| |td| (-631 (-631 |#1|)))) (-1 (-112) |#1| |#1|) (-631 |#1|) (-631 (-631 |#1|))) 14)) (-2939 (((-631 (-631 |#1|)) (-631 (-631 (-631 |#1|)))) 39)) (-2247 (((-631 (-631 |#1|)) (-1167 (-631 |#1|))) 41)))
-(((-1166 |#1|) (-10 -7 (-15 -2146 ((-2 (|:| |fs| (-112)) (|:| |sd| (-631 |#1|)) (|:| |td| (-631 (-631 |#1|)))) (-1 (-112) |#1| |#1|) (-631 |#1|) (-631 (-631 |#1|)))) (-15 -2054 ((-631 (-631 (-631 |#1|))) (-1 (-112) |#1| |#1|) (-631 |#1|) (-631 (-631 (-631 |#1|))))) (-15 -1340 ((-631 (-631 (-631 |#1|))) (-631 |#1|) (-631 (-631 (-631 |#1|))))) (-15 -3144 ((-631 (-631 |#1|)) (-631 (-631 |#1|)) (-631 (-631 (-631 |#1|))))) (-15 -2939 ((-631 (-631 |#1|)) (-631 (-631 (-631 |#1|))))) (-15 -2247 ((-631 (-631 |#1|)) (-1167 (-631 |#1|)))) (-15 -2263 ((-631 (-631 (-631 |#1|))) (-631 (-631 |#1|)))) (-15 -4192 ((-1167 (-631 |#1|)) (-631 |#1|))) (-15 -3211 ((-631 (-631 |#1|)) (-631 (-631 |#1|)))) (-15 -1838 ((-631 (-631 |#1|)) (-631 |#1|))) (-15 -2843 ((-631 |#1|) (-631 |#1|))) (-15 -3638 ((-2 (|:| |f1| (-631 |#1|)) (|:| |f2| (-631 (-631 (-631 |#1|)))) (|:| |f3| (-631 (-631 |#1|))) (|:| |f4| (-631 (-631 (-631 |#1|))))) (-631 |#1|) (-631 (-631 (-631 |#1|))) (-631 (-631 |#1|)) (-631 (-631 (-631 |#1|))) (-631 (-631 (-631 |#1|))) (-631 (-631 (-631 |#1|))))) (-15 -1821 ((-2 (|:| |f1| (-631 |#1|)) (|:| |f2| (-631 (-631 (-631 |#1|)))) (|:| |f3| (-631 (-631 |#1|))) (|:| |f4| (-631 (-631 (-631 |#1|))))) (-631 (-631 (-631 |#1|)))))) (-836)) (T -1166))
-((-1821 (*1 *2 *3) (-12 (-4 *4 (-836)) (-5 *2 (-2 (|:| |f1| (-631 *4)) (|:| |f2| (-631 (-631 (-631 *4)))) (|:| |f3| (-631 (-631 *4))) (|:| |f4| (-631 (-631 (-631 *4)))))) (-5 *1 (-1166 *4)) (-5 *3 (-631 (-631 (-631 *4)))))) (-3638 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-836)) (-5 *3 (-631 *6)) (-5 *5 (-631 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-631 *5)) (|:| |f3| *5) (|:| |f4| (-631 *5)))) (-5 *1 (-1166 *6)) (-5 *4 (-631 *5)))) (-2843 (*1 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-836)) (-5 *1 (-1166 *3)))) (-1838 (*1 *2 *3) (-12 (-4 *4 (-836)) (-5 *2 (-631 (-631 *4))) (-5 *1 (-1166 *4)) (-5 *3 (-631 *4)))) (-3211 (*1 *2 *2) (-12 (-5 *2 (-631 (-631 *3))) (-4 *3 (-836)) (-5 *1 (-1166 *3)))) (-4192 (*1 *2 *3) (-12 (-4 *4 (-836)) (-5 *2 (-1167 (-631 *4))) (-5 *1 (-1166 *4)) (-5 *3 (-631 *4)))) (-2263 (*1 *2 *3) (-12 (-4 *4 (-836)) (-5 *2 (-631 (-631 (-631 *4)))) (-5 *1 (-1166 *4)) (-5 *3 (-631 (-631 *4))))) (-2247 (*1 *2 *3) (-12 (-5 *3 (-1167 (-631 *4))) (-4 *4 (-836)) (-5 *2 (-631 (-631 *4))) (-5 *1 (-1166 *4)))) (-2939 (*1 *2 *3) (-12 (-5 *3 (-631 (-631 (-631 *4)))) (-5 *2 (-631 (-631 *4))) (-5 *1 (-1166 *4)) (-4 *4 (-836)))) (-3144 (*1 *2 *2 *3) (-12 (-5 *3 (-631 (-631 (-631 *4)))) (-5 *2 (-631 (-631 *4))) (-4 *4 (-836)) (-5 *1 (-1166 *4)))) (-1340 (*1 *2 *3 *2) (-12 (-5 *2 (-631 (-631 (-631 *4)))) (-5 *3 (-631 *4)) (-4 *4 (-836)) (-5 *1 (-1166 *4)))) (-2054 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-631 (-631 (-631 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-631 *5)) (-4 *5 (-836)) (-5 *1 (-1166 *5)))) (-2146 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-836)) (-5 *4 (-631 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-631 *4)))) (-5 *1 (-1166 *6)) (-5 *5 (-631 *4)))))
-(-10 -7 (-15 -2146 ((-2 (|:| |fs| (-112)) (|:| |sd| (-631 |#1|)) (|:| |td| (-631 (-631 |#1|)))) (-1 (-112) |#1| |#1|) (-631 |#1|) (-631 (-631 |#1|)))) (-15 -2054 ((-631 (-631 (-631 |#1|))) (-1 (-112) |#1| |#1|) (-631 |#1|) (-631 (-631 (-631 |#1|))))) (-15 -1340 ((-631 (-631 (-631 |#1|))) (-631 |#1|) (-631 (-631 (-631 |#1|))))) (-15 -3144 ((-631 (-631 |#1|)) (-631 (-631 |#1|)) (-631 (-631 (-631 |#1|))))) (-15 -2939 ((-631 (-631 |#1|)) (-631 (-631 (-631 |#1|))))) (-15 -2247 ((-631 (-631 |#1|)) (-1167 (-631 |#1|)))) (-15 -2263 ((-631 (-631 (-631 |#1|))) (-631 (-631 |#1|)))) (-15 -4192 ((-1167 (-631 |#1|)) (-631 |#1|))) (-15 -3211 ((-631 (-631 |#1|)) (-631 (-631 |#1|)))) (-15 -1838 ((-631 (-631 |#1|)) (-631 |#1|))) (-15 -2843 ((-631 |#1|) (-631 |#1|))) (-15 -3638 ((-2 (|:| |f1| (-631 |#1|)) (|:| |f2| (-631 (-631 (-631 |#1|)))) (|:| |f3| (-631 (-631 |#1|))) (|:| |f4| (-631 (-631 (-631 |#1|))))) (-631 |#1|) (-631 (-631 (-631 |#1|))) (-631 (-631 |#1|)) (-631 (-631 (-631 |#1|))) (-631 (-631 (-631 |#1|))) (-631 (-631 (-631 |#1|))))) (-15 -1821 ((-2 (|:| |f1| (-631 |#1|)) (|:| |f2| (-631 (-631 (-631 |#1|)))) (|:| |f3| (-631 (-631 |#1|))) (|:| |f4| (-631 (-631 (-631 |#1|))))) (-631 (-631 (-631 |#1|))))))
-((-1693 (($ (-631 (-631 |#1|))) 10)) (-1679 (((-631 (-631 |#1|)) $) 11)) (-3075 (((-848) $) 26)))
-(((-1167 |#1|) (-10 -8 (-15 -1693 ($ (-631 (-631 |#1|)))) (-15 -1679 ((-631 (-631 |#1|)) $)) (-15 -3075 ((-848) $))) (-1082)) (T -1167))
-((-3075 (*1 *2 *1) (-12 (-5 *2 (-848)) (-5 *1 (-1167 *3)) (-4 *3 (-1082)))) (-1679 (*1 *2 *1) (-12 (-5 *2 (-631 (-631 *3))) (-5 *1 (-1167 *3)) (-4 *3 (-1082)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-631 (-631 *3))) (-4 *3 (-1082)) (-5 *1 (-1167 *3)))))
-(-10 -8 (-15 -1693 ($ (-631 (-631 |#1|)))) (-15 -1679 ((-631 (-631 |#1|)) $)) (-15 -3075 ((-848) $)))
-((-3062 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-3167 (($) NIL) (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-4233 (((-1246) $ |#1| |#1|) NIL (|has| $ (-6 -4374)))) (-3019 (((-112) $ (-758)) NIL)) (-1501 ((|#2| $ |#1| |#2|) NIL)) (-2220 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-2937 (((-3 |#2| "failed") |#1| $) NIL)) (-4087 (($) NIL T CONST)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))))) (-1884 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (|has| $ (-6 -4373))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-3 |#2| "failed") |#1| $) NIL)) (-2574 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-3676 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (|has| $ (-6 -4373))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-2862 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#2| $ |#1|) NIL)) (-2466 (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-631 |#2|) $) NIL (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) NIL)) (-3044 ((|#1| $) NIL (|has| |#1| (-836)))) (-2379 (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-631 |#2|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2256 ((|#1| $) NIL (|has| |#1| (-836)))) (-2849 (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4374))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-2944 (((-631 |#1|) $) NIL)) (-2415 (((-112) |#1| $) NIL)) (-4150 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-2045 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-2529 (((-631 |#1|) $) NIL)) (-3618 (((-112) |#1| $) NIL)) (-2768 (((-1102) $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-1539 ((|#2| $) NIL (|has| |#1| (-836)))) (-1652 (((-3 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) "failed") (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL)) (-2441 (($ $ |#2|) NIL (|has| $ (-6 -4374)))) (-2152 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-2845 (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-631 |#2|) (-631 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-631 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2625 (((-631 |#2|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4310 (($) NIL) (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-2777 (((-758) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-758) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-758) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082)))) (((-758) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-602 (-530))))) (-3089 (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-3075 (((-848) $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-601 (-848))) (|has| |#2| (-601 (-848)))))) (-1591 (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-2438 (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-1168 |#1| |#2|) (-13 (-1171 |#1| |#2|) (-10 -7 (-6 -4373))) (-1082) (-1082)) (T -1168))
-NIL
-(-13 (-1171 |#1| |#2|) (-10 -7 (-6 -4373)))
-((-4174 ((|#1| (-631 |#1|)) 32)) (-1480 ((|#1| |#1| (-554)) 18)) (-2773 (((-1154 |#1|) |#1| (-906)) 15)))
-(((-1169 |#1|) (-10 -7 (-15 -4174 (|#1| (-631 |#1|))) (-15 -2773 ((-1154 |#1|) |#1| (-906))) (-15 -1480 (|#1| |#1| (-554)))) (-358)) (T -1169))
-((-1480 (*1 *2 *2 *3) (-12 (-5 *3 (-554)) (-5 *1 (-1169 *2)) (-4 *2 (-358)))) (-2773 (*1 *2 *3 *4) (-12 (-5 *4 (-906)) (-5 *2 (-1154 *3)) (-5 *1 (-1169 *3)) (-4 *3 (-358)))) (-4174 (*1 *2 *3) (-12 (-5 *3 (-631 *2)) (-5 *1 (-1169 *2)) (-4 *2 (-358)))))
-(-10 -7 (-15 -4174 (|#1| (-631 |#1|))) (-15 -2773 ((-1154 |#1|) |#1| (-906))) (-15 -1480 (|#1| |#1| (-554))))
-((-3167 (($) 10) (($ (-631 (-2 (|:| -2564 |#2|) (|:| -2701 |#3|)))) 14)) (-1884 (($ (-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) $) 61) (($ (-1 (-112) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2466 (((-631 (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) $) 39) (((-631 |#3|) $) 41)) (-2849 (($ (-1 (-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-2879 (($ (-1 (-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-4150 (((-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) $) 54)) (-2045 (($ (-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) $) 16)) (-2529 (((-631 |#2|) $) 19)) (-3618 (((-112) |#2| $) 59)) (-1652 (((-3 (-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) "failed") (-1 (-112) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) $) 58)) (-2152 (((-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) $) 63)) (-2845 (((-112) (-1 (-112) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 67)) (-2625 (((-631 |#3|) $) 43)) (-2064 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-2777 (((-758) (-1 (-112) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) $) NIL) (((-758) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) $) NIL) (((-758) |#3| $) NIL) (((-758) (-1 (-112) |#3|) $) 68)) (-3075 (((-848) $) 27)) (-2438 (((-112) (-1 (-112) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 65)) (-1658 (((-112) $ $) 49)))
-(((-1170 |#1| |#2| |#3|) (-10 -8 (-15 -1658 ((-112) |#1| |#1|)) (-15 -3075 ((-848) |#1|)) (-15 -2879 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3167 (|#1| (-631 (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))))) (-15 -3167 (|#1|)) (-15 -2879 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2849 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2438 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2845 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2777 ((-758) (-1 (-112) |#3|) |#1|)) (-15 -2466 ((-631 |#3|) |#1|)) (-15 -2777 ((-758) |#3| |#1|)) (-15 -2064 (|#3| |#1| |#2| |#3|)) (-15 -2064 (|#3| |#1| |#2|)) (-15 -2625 ((-631 |#3|) |#1|)) (-15 -3618 ((-112) |#2| |#1|)) (-15 -2529 ((-631 |#2|) |#1|)) (-15 -1884 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1884 (|#1| (-1 (-112) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) |#1|)) (-15 -1884 (|#1| (-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) |#1|)) (-15 -1652 ((-3 (-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) "failed") (-1 (-112) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) |#1|)) (-15 -4150 ((-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) |#1|)) (-15 -2045 (|#1| (-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) |#1|)) (-15 -2152 ((-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) |#1|)) (-15 -2777 ((-758) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) |#1|)) (-15 -2466 ((-631 (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) |#1|)) (-15 -2777 ((-758) (-1 (-112) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) |#1|)) (-15 -2845 ((-112) (-1 (-112) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) |#1|)) (-15 -2438 ((-112) (-1 (-112) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) |#1|)) (-15 -2849 (|#1| (-1 (-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) |#1|)) (-15 -2879 (|#1| (-1 (-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) |#1|))) (-1171 |#2| |#3|) (-1082) (-1082)) (T -1170))
-NIL
-(-10 -8 (-15 -1658 ((-112) |#1| |#1|)) (-15 -3075 ((-848) |#1|)) (-15 -2879 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3167 (|#1| (-631 (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))))) (-15 -3167 (|#1|)) (-15 -2879 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2849 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2438 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2845 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2777 ((-758) (-1 (-112) |#3|) |#1|)) (-15 -2466 ((-631 |#3|) |#1|)) (-15 -2777 ((-758) |#3| |#1|)) (-15 -2064 (|#3| |#1| |#2| |#3|)) (-15 -2064 (|#3| |#1| |#2|)) (-15 -2625 ((-631 |#3|) |#1|)) (-15 -3618 ((-112) |#2| |#1|)) (-15 -2529 ((-631 |#2|) |#1|)) (-15 -1884 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1884 (|#1| (-1 (-112) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) |#1|)) (-15 -1884 (|#1| (-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) |#1|)) (-15 -1652 ((-3 (-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) "failed") (-1 (-112) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) |#1|)) (-15 -4150 ((-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) |#1|)) (-15 -2045 (|#1| (-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) |#1|)) (-15 -2152 ((-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) |#1|)) (-15 -2777 ((-758) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) |#1|)) (-15 -2466 ((-631 (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) |#1|)) (-15 -2777 ((-758) (-1 (-112) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) |#1|)) (-15 -2845 ((-112) (-1 (-112) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) |#1|)) (-15 -2438 ((-112) (-1 (-112) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) |#1|)) (-15 -2849 (|#1| (-1 (-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) |#1|)) (-15 -2879 (|#1| (-1 (-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) |#1|)))
-((-3062 (((-112) $ $) 19 (-3994 (|has| |#2| (-1082)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))))) (-3167 (($) 72) (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) 71)) (-4233 (((-1246) $ |#1| |#1|) 99 (|has| $ (-6 -4374)))) (-3019 (((-112) $ (-758)) 8)) (-1501 ((|#2| $ |#1| |#2|) 73)) (-2220 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 45 (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 55 (|has| $ (-6 -4373)))) (-2937 (((-3 |#2| "failed") |#1| $) 61)) (-4087 (($) 7 T CONST)) (-1571 (($ $) 58 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| $ (-6 -4373))))) (-1884 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 47 (|has| $ (-6 -4373))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 46 (|has| $ (-6 -4373))) (((-3 |#2| "failed") |#1| $) 62)) (-2574 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 54 (|has| $ (-6 -4373)))) (-3676 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 56 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| $ (-6 -4373)))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 53 (|has| $ (-6 -4373))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 52 (|has| $ (-6 -4373)))) (-2862 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4374)))) (-2796 ((|#2| $ |#1|) 88)) (-2466 (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 30 (|has| $ (-6 -4373))) (((-631 |#2|) $) 79 (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) 9)) (-3044 ((|#1| $) 96 (|has| |#1| (-836)))) (-2379 (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 29 (|has| $ (-6 -4373))) (((-631 |#2|) $) 80 (|has| $ (-6 -4373)))) (-3068 (((-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| $ (-6 -4373)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1082)) (|has| $ (-6 -4373))))) (-2256 ((|#1| $) 95 (|has| |#1| (-836)))) (-2849 (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 34 (|has| $ (-6 -4374))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-3731 (((-112) $ (-758)) 10)) (-1613 (((-1140) $) 22 (-3994 (|has| |#2| (-1082)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))))) (-2944 (((-631 |#1|) $) 63)) (-2415 (((-112) |#1| $) 64)) (-4150 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 39)) (-2045 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 40)) (-2529 (((-631 |#1|) $) 93)) (-3618 (((-112) |#1| $) 92)) (-2768 (((-1102) $) 21 (-3994 (|has| |#2| (-1082)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))))) (-1539 ((|#2| $) 97 (|has| |#1| (-836)))) (-1652 (((-3 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) "failed") (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 51)) (-2441 (($ $ |#2|) 98 (|has| $ (-6 -4374)))) (-2152 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 41)) (-2845 (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 32 (|has| $ (-6 -4373))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))))) 26 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) 25 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 24 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) 23 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-631 |#2|) (-631 |#2|)) 86 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-289 |#2|)) 84 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-631 (-289 |#2|))) 83 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))))) (-2494 (((-112) $ $) 14)) (-1609 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2625 (((-631 |#2|) $) 91)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2064 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-4310 (($) 49) (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) 48)) (-2777 (((-758) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 31 (|has| $ (-6 -4373))) (((-758) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| $ (-6 -4373)))) (((-758) |#2| $) 81 (-12 (|has| |#2| (-1082)) (|has| $ (-6 -4373)))) (((-758) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4373)))) (-1521 (($ $) 13)) (-2927 (((-530) $) 59 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-602 (-530))))) (-3089 (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) 50)) (-3075 (((-848) $) 18 (-3994 (|has| |#2| (-601 (-848))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-601 (-848)))))) (-1591 (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) 42)) (-2438 (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 33 (|has| $ (-6 -4373))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (-3994 (|has| |#2| (-1082)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373)))))
-(((-1171 |#1| |#2|) (-138) (-1082) (-1082)) (T -1171))
-((-1501 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1171 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1082)))) (-3167 (*1 *1) (-12 (-4 *1 (-1171 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082)))) (-3167 (*1 *1 *2) (-12 (-5 *2 (-631 (-2 (|:| -2564 *3) (|:| -2701 *4)))) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *1 (-1171 *3 *4)))) (-2879 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1171 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)))))
-(-13 (-598 |t#1| |t#2|) (-592 |t#1| |t#2|) (-10 -8 (-15 -1501 (|t#2| $ |t#1| |t#2|)) (-15 -3167 ($)) (-15 -3167 ($ (-631 (-2 (|:| -2564 |t#1|) (|:| -2701 |t#2|))))) (-15 -2879 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
-(((-34) . T) ((-107 #0=(-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T) ((-102) -3994 (|has| |#2| (-1082)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))) ((-601 (-848)) -3994 (|has| |#2| (-1082)) (|has| |#2| (-601 (-848))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-601 (-848)))) ((-149 #0#) . T) ((-602 (-530)) |has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-602 (-530))) ((-225 #0#) . T) ((-231 #0#) . T) ((-281 |#1| |#2|) . T) ((-283 |#1| |#2|) . T) ((-304 #0#) -12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))) ((-304 |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))) ((-483 #0#) . T) ((-483 |#2|) . T) ((-592 |#1| |#2|) . T) ((-508 #0# #0#) -12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))) ((-508 |#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))) ((-598 |#1| |#2|) . T) ((-1082) -3994 (|has| |#2| (-1082)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))) ((-1195) . T))
-((-2645 (((-112)) 24)) (-2400 (((-1246) (-1140)) 26)) (-2471 (((-112)) 36)) (-2414 (((-1246)) 34)) (-2596 (((-1246) (-1140) (-1140)) 25)) (-3178 (((-112)) 37)) (-2045 (((-1246) |#1| |#2|) 44)) (-1961 (((-1246)) 20)) (-3972 (((-3 |#2| "failed") |#1|) 42)) (-3702 (((-1246)) 35)))
-(((-1172 |#1| |#2|) (-10 -7 (-15 -1961 ((-1246))) (-15 -2596 ((-1246) (-1140) (-1140))) (-15 -2400 ((-1246) (-1140))) (-15 -2414 ((-1246))) (-15 -3702 ((-1246))) (-15 -2645 ((-112))) (-15 -2471 ((-112))) (-15 -3178 ((-112))) (-15 -3972 ((-3 |#2| "failed") |#1|)) (-15 -2045 ((-1246) |#1| |#2|))) (-1082) (-1082)) (T -1172))
-((-2045 (*1 *2 *3 *4) (-12 (-5 *2 (-1246)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)))) (-3972 (*1 *2 *3) (|partial| -12 (-4 *2 (-1082)) (-5 *1 (-1172 *3 *2)) (-4 *3 (-1082)))) (-3178 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)))) (-2471 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)))) (-2645 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)))) (-3702 (*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)))) (-2414 (*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)))) (-2400 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1172 *4 *5)) (-4 *4 (-1082)) (-4 *5 (-1082)))) (-2596 (*1 *2 *3 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1172 *4 *5)) (-4 *4 (-1082)) (-4 *5 (-1082)))) (-1961 (*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)))))
-(-10 -7 (-15 -1961 ((-1246))) (-15 -2596 ((-1246) (-1140) (-1140))) (-15 -2400 ((-1246) (-1140))) (-15 -2414 ((-1246))) (-15 -3702 ((-1246))) (-15 -2645 ((-112))) (-15 -2471 ((-112))) (-15 -3178 ((-112))) (-15 -3972 ((-3 |#2| "failed") |#1|)) (-15 -2045 ((-1246) |#1| |#2|)))
-((-3635 (((-1140) (-1140)) 18)) (-1506 (((-52) (-1140)) 21)))
-(((-1173) (-10 -7 (-15 -1506 ((-52) (-1140))) (-15 -3635 ((-1140) (-1140))))) (T -1173))
-((-3635 (*1 *2 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-1173)))) (-1506 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-52)) (-5 *1 (-1173)))))
-(-10 -7 (-15 -1506 ((-52) (-1140))) (-15 -3635 ((-1140) (-1140))))
-((-3075 (((-1175) |#1|) 11)))
-(((-1174 |#1|) (-10 -7 (-15 -3075 ((-1175) |#1|))) (-1082)) (T -1174))
-((-3075 (*1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *1 (-1174 *3)) (-4 *3 (-1082)))))
-(-10 -7 (-15 -3075 ((-1175) |#1|)))
-((-3062 (((-112) $ $) NIL)) (-2260 (((-631 (-1140)) $) 34)) (-1682 (((-631 (-1140)) $ (-631 (-1140))) 37)) (-3917 (((-631 (-1140)) $ (-631 (-1140))) 36)) (-3570 (((-631 (-1140)) $ (-631 (-1140))) 38)) (-3298 (((-631 (-1140)) $) 33)) (-3180 (($) 22)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-1741 (((-631 (-1140)) $) 35)) (-2524 (((-1246) $ (-554)) 29) (((-1246) $) 30)) (-2927 (($ (-848) (-554)) 26) (($ (-848) (-554) (-848)) NIL)) (-3075 (((-848) $) 40) (($ (-848)) 24)) (-1658 (((-112) $ $) NIL)))
-(((-1175) (-13 (-1082) (-604 (-848)) (-10 -8 (-15 -2927 ($ (-848) (-554))) (-15 -2927 ($ (-848) (-554) (-848))) (-15 -2524 ((-1246) $ (-554))) (-15 -2524 ((-1246) $)) (-15 -1741 ((-631 (-1140)) $)) (-15 -2260 ((-631 (-1140)) $)) (-15 -3180 ($)) (-15 -3298 ((-631 (-1140)) $)) (-15 -3570 ((-631 (-1140)) $ (-631 (-1140)))) (-15 -1682 ((-631 (-1140)) $ (-631 (-1140)))) (-15 -3917 ((-631 (-1140)) $ (-631 (-1140))))))) (T -1175))
-((-2927 (*1 *1 *2 *3) (-12 (-5 *2 (-848)) (-5 *3 (-554)) (-5 *1 (-1175)))) (-2927 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-848)) (-5 *3 (-554)) (-5 *1 (-1175)))) (-2524 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-5 *2 (-1246)) (-5 *1 (-1175)))) (-2524 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-1175)))) (-1741 (*1 *2 *1) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-1175)))) (-2260 (*1 *2 *1) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-1175)))) (-3180 (*1 *1) (-5 *1 (-1175))) (-3298 (*1 *2 *1) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-1175)))) (-3570 (*1 *2 *1 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-1175)))) (-1682 (*1 *2 *1 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-1175)))) (-3917 (*1 *2 *1 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-1175)))))
-(-13 (-1082) (-604 (-848)) (-10 -8 (-15 -2927 ($ (-848) (-554))) (-15 -2927 ($ (-848) (-554) (-848))) (-15 -2524 ((-1246) $ (-554))) (-15 -2524 ((-1246) $)) (-15 -1741 ((-631 (-1140)) $)) (-15 -2260 ((-631 (-1140)) $)) (-15 -3180 ($)) (-15 -3298 ((-631 (-1140)) $)) (-15 -3570 ((-631 (-1140)) $ (-631 (-1140)))) (-15 -1682 ((-631 (-1140)) $ (-631 (-1140)))) (-15 -3917 ((-631 (-1140)) $ (-631 (-1140))))))
-((-3062 (((-112) $ $) NIL)) (-2548 (((-1140) $ (-1140)) 17) (((-1140) $) 16)) (-3719 (((-1140) $ (-1140)) 15)) (-1875 (($ $ (-1140)) NIL)) (-2354 (((-3 (-1140) "failed") $) 11)) (-3895 (((-1140) $) 8)) (-4266 (((-3 (-1140) "failed") $) 12)) (-3416 (((-1140) $) 9)) (-1303 (($ (-383)) NIL) (($ (-383) (-1140)) NIL)) (-4309 (((-383) $) NIL)) (-1613 (((-1140) $) NIL)) (-1597 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-4093 (((-112) $) 18)) (-3075 (((-848) $) NIL)) (-3745 (($ $) NIL)) (-1658 (((-112) $ $) NIL)))
-(((-1176) (-13 (-359 (-383) (-1140)) (-10 -8 (-15 -2548 ((-1140) $ (-1140))) (-15 -2548 ((-1140) $)) (-15 -3895 ((-1140) $)) (-15 -2354 ((-3 (-1140) "failed") $)) (-15 -4266 ((-3 (-1140) "failed") $)) (-15 -4093 ((-112) $))))) (T -1176))
-((-2548 (*1 *2 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-1176)))) (-2548 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1176)))) (-3895 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1176)))) (-2354 (*1 *2 *1) (|partial| -12 (-5 *2 (-1140)) (-5 *1 (-1176)))) (-4266 (*1 *2 *1) (|partial| -12 (-5 *2 (-1140)) (-5 *1 (-1176)))) (-4093 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1176)))))
-(-13 (-359 (-383) (-1140)) (-10 -8 (-15 -2548 ((-1140) $ (-1140))) (-15 -2548 ((-1140) $)) (-15 -3895 ((-1140) $)) (-15 -2354 ((-3 (-1140) "failed") $)) (-15 -4266 ((-3 (-1140) "failed") $)) (-15 -4093 ((-112) $))))
-((-4219 (((-3 (-554) "failed") |#1|) 19)) (-1410 (((-3 (-554) "failed") |#1|) 14)) (-1473 (((-554) (-1140)) 28)))
-(((-1177 |#1|) (-10 -7 (-15 -4219 ((-3 (-554) "failed") |#1|)) (-15 -1410 ((-3 (-554) "failed") |#1|)) (-15 -1473 ((-554) (-1140)))) (-1034)) (T -1177))
-((-1473 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-554)) (-5 *1 (-1177 *4)) (-4 *4 (-1034)))) (-1410 (*1 *2 *3) (|partial| -12 (-5 *2 (-554)) (-5 *1 (-1177 *3)) (-4 *3 (-1034)))) (-4219 (*1 *2 *3) (|partial| -12 (-5 *2 (-554)) (-5 *1 (-1177 *3)) (-4 *3 (-1034)))))
-(-10 -7 (-15 -4219 ((-3 (-554) "failed") |#1|)) (-15 -1410 ((-3 (-554) "failed") |#1|)) (-15 -1473 ((-554) (-1140))))
-((-3181 (((-1115 (-221))) 9)))
-(((-1178) (-10 -7 (-15 -3181 ((-1115 (-221)))))) (T -1178))
-((-3181 (*1 *2) (-12 (-5 *2 (-1115 (-221))) (-5 *1 (-1178)))))
-(-10 -7 (-15 -3181 ((-1115 (-221)))))
-((-2844 (($) 11)) (-3096 (($ $) 35)) (-3069 (($ $) 33)) (-2938 (($ $) 25)) (-3120 (($ $) 17)) (-2908 (($ $) 15)) (-3108 (($ $) 19)) (-2969 (($ $) 30)) (-3083 (($ $) 34)) (-2948 (($ $) 29)))
-(((-1179 |#1|) (-10 -8 (-15 -2844 (|#1|)) (-15 -3096 (|#1| |#1|)) (-15 -3069 (|#1| |#1|)) (-15 -3120 (|#1| |#1|)) (-15 -2908 (|#1| |#1|)) (-15 -3108 (|#1| |#1|)) (-15 -3083 (|#1| |#1|)) (-15 -2938 (|#1| |#1|)) (-15 -2969 (|#1| |#1|)) (-15 -2948 (|#1| |#1|))) (-1180)) (T -1179))
-NIL
-(-10 -8 (-15 -2844 (|#1|)) (-15 -3096 (|#1| |#1|)) (-15 -3069 (|#1| |#1|)) (-15 -3120 (|#1| |#1|)) (-15 -2908 (|#1| |#1|)) (-15 -3108 (|#1| |#1|)) (-15 -3083 (|#1| |#1|)) (-15 -2938 (|#1| |#1|)) (-15 -2969 (|#1| |#1|)) (-15 -2948 (|#1| |#1|)))
-((-3023 (($ $) 26)) (-4200 (($ $) 11)) (-3003 (($ $) 27)) (-4177 (($ $) 10)) (-3046 (($ $) 28)) (-2916 (($ $) 9)) (-2844 (($) 16)) (-2395 (($ $) 19)) (-1333 (($ $) 18)) (-3057 (($ $) 29)) (-2926 (($ $) 8)) (-3034 (($ $) 30)) (-4213 (($ $) 7)) (-3014 (($ $) 31)) (-4188 (($ $) 6)) (-3096 (($ $) 20)) (-2959 (($ $) 32)) (-3069 (($ $) 21)) (-2938 (($ $) 33)) (-3120 (($ $) 22)) (-2981 (($ $) 34)) (-2908 (($ $) 23)) (-2991 (($ $) 35)) (-3108 (($ $) 24)) (-2969 (($ $) 36)) (-3083 (($ $) 25)) (-2948 (($ $) 37)) (** (($ $ $) 17)))
-(((-1180) (-138)) (T -1180))
-((-2844 (*1 *1) (-4 *1 (-1180))))
-(-13 (-1183) (-95) (-487) (-35) (-279) (-10 -8 (-15 -2844 ($))))
-(((-35) . T) ((-95) . T) ((-279) . T) ((-487) . T) ((-1183) . T))
-((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2794 ((|#1| $) 17)) (-1972 (($ |#1| (-631 $)) 23) (($ (-631 |#1|)) 27) (($ |#1|) 25)) (-3019 (((-112) $ (-758)) 48)) (-2690 ((|#1| $ |#1|) 14 (|has| $ (-6 -4374)))) (-1501 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4374)))) (-2923 (($ $ (-631 $)) 13 (|has| $ (-6 -4374)))) (-4087 (($) NIL T CONST)) (-2466 (((-631 |#1|) $) 52 (|has| $ (-6 -4373)))) (-3677 (((-631 $) $) 43)) (-1990 (((-112) $ $) 33 (|has| |#1| (-1082)))) (-2230 (((-112) $ (-758)) 41)) (-2379 (((-631 |#1|) $) 53 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 51 (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2849 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 22)) (-3731 (((-112) $ (-758)) 40)) (-2306 (((-631 |#1|) $) 37)) (-3216 (((-112) $) 36)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-2845 (((-112) (-1 (-112) |#1|) $) 50 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 74)) (-3543 (((-112) $) 9)) (-4240 (($) 10)) (-2064 ((|#1| $ "value") NIL)) (-3250 (((-554) $ $) 32)) (-1864 (((-631 $) $) 59)) (-3417 (((-112) $ $) 77)) (-2283 (((-631 $) $) 72)) (-1740 (($ $) 73)) (-3008 (((-112) $) 56)) (-2777 (((-758) (-1 (-112) |#1|) $) 20 (|has| $ (-6 -4373))) (((-758) |#1| $) 16 (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1521 (($ $) 58)) (-3075 (((-848) $) 61 (|has| |#1| (-601 (-848))))) (-2461 (((-631 $) $) 12)) (-1441 (((-112) $ $) 29 (|has| |#1| (-1082)))) (-2438 (((-112) (-1 (-112) |#1|) $) 49 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 28 (|has| |#1| (-1082)))) (-2563 (((-758) $) 39 (|has| $ (-6 -4373)))))
-(((-1181 |#1|) (-13 (-995 |#1|) (-10 -8 (-6 -4373) (-6 -4374) (-15 -1972 ($ |#1| (-631 $))) (-15 -1972 ($ (-631 |#1|))) (-15 -1972 ($ |#1|)) (-15 -3008 ((-112) $)) (-15 -1740 ($ $)) (-15 -2283 ((-631 $) $)) (-15 -3417 ((-112) $ $)) (-15 -1864 ((-631 $) $)))) (-1082)) (T -1181))
-((-3008 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3)) (-4 *3 (-1082)))) (-1972 (*1 *1 *2 *3) (-12 (-5 *3 (-631 (-1181 *2))) (-5 *1 (-1181 *2)) (-4 *2 (-1082)))) (-1972 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-5 *1 (-1181 *3)))) (-1972 (*1 *1 *2) (-12 (-5 *1 (-1181 *2)) (-4 *2 (-1082)))) (-1740 (*1 *1 *1) (-12 (-5 *1 (-1181 *2)) (-4 *2 (-1082)))) (-2283 (*1 *2 *1) (-12 (-5 *2 (-631 (-1181 *3))) (-5 *1 (-1181 *3)) (-4 *3 (-1082)))) (-3417 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3)) (-4 *3 (-1082)))) (-1864 (*1 *2 *1) (-12 (-5 *2 (-631 (-1181 *3))) (-5 *1 (-1181 *3)) (-4 *3 (-1082)))))
-(-13 (-995 |#1|) (-10 -8 (-6 -4373) (-6 -4374) (-15 -1972 ($ |#1| (-631 $))) (-15 -1972 ($ (-631 |#1|))) (-15 -1972 ($ |#1|)) (-15 -3008 ((-112) $)) (-15 -1740 ($ $)) (-15 -2283 ((-631 $) $)) (-15 -3417 ((-112) $ $)) (-15 -1864 ((-631 $) $))))
-((-4200 (($ $) 15)) (-2916 (($ $) 12)) (-2926 (($ $) 10)) (-4213 (($ $) 17)))
-(((-1182 |#1|) (-10 -8 (-15 -4213 (|#1| |#1|)) (-15 -2926 (|#1| |#1|)) (-15 -2916 (|#1| |#1|)) (-15 -4200 (|#1| |#1|))) (-1183)) (T -1182))
-NIL
-(-10 -8 (-15 -4213 (|#1| |#1|)) (-15 -2926 (|#1| |#1|)) (-15 -2916 (|#1| |#1|)) (-15 -4200 (|#1| |#1|)))
-((-4200 (($ $) 11)) (-4177 (($ $) 10)) (-2916 (($ $) 9)) (-2926 (($ $) 8)) (-4213 (($ $) 7)) (-4188 (($ $) 6)))
-(((-1183) (-138)) (T -1183))
-((-4200 (*1 *1 *1) (-4 *1 (-1183))) (-4177 (*1 *1 *1) (-4 *1 (-1183))) (-2916 (*1 *1 *1) (-4 *1 (-1183))) (-2926 (*1 *1 *1) (-4 *1 (-1183))) (-4213 (*1 *1 *1) (-4 *1 (-1183))) (-4188 (*1 *1 *1) (-4 *1 (-1183))))
-(-13 (-10 -8 (-15 -4188 ($ $)) (-15 -4213 ($ $)) (-15 -2926 ($ $)) (-15 -2916 ($ $)) (-15 -4177 ($ $)) (-15 -4200 ($ $))))
-((-3400 ((|#2| |#2|) 88)) (-1809 (((-112) |#2|) 26)) (-2293 ((|#2| |#2|) 30)) (-2302 ((|#2| |#2|) 32)) (-2232 ((|#2| |#2| (-1158)) 83) ((|#2| |#2|) 84)) (-1436 (((-167 |#2|) |#2|) 28)) (-2110 ((|#2| |#2| (-1158)) 85) ((|#2| |#2|) 86)))
-(((-1184 |#1| |#2|) (-10 -7 (-15 -2232 (|#2| |#2|)) (-15 -2232 (|#2| |#2| (-1158))) (-15 -2110 (|#2| |#2|)) (-15 -2110 (|#2| |#2| (-1158))) (-15 -3400 (|#2| |#2|)) (-15 -2293 (|#2| |#2|)) (-15 -2302 (|#2| |#2|)) (-15 -1809 ((-112) |#2|)) (-15 -1436 ((-167 |#2|) |#2|))) (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))) (-13 (-27) (-1180) (-425 |#1|))) (T -1184))
-((-1436 (*1 *2 *3) (-12 (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-167 *3)) (-5 *1 (-1184 *4 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *4))))) (-1809 (*1 *2 *3) (-12 (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-112)) (-5 *1 (-1184 *4 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *4))))) (-2302 (*1 *2 *2) (-12 (-4 *3 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-1184 *3 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *3))))) (-2293 (*1 *2 *2) (-12 (-4 *3 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-1184 *3 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *3))))) (-3400 (*1 *2 *2) (-12 (-4 *3 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-1184 *3 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *3))))) (-2110 (*1 *2 *2 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-1184 *4 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *4))))) (-2110 (*1 *2 *2) (-12 (-4 *3 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-1184 *3 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *3))))) (-2232 (*1 *2 *2 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-1184 *4 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *4))))) (-2232 (*1 *2 *2) (-12 (-4 *3 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-1184 *3 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *3))))))
-(-10 -7 (-15 -2232 (|#2| |#2|)) (-15 -2232 (|#2| |#2| (-1158))) (-15 -2110 (|#2| |#2|)) (-15 -2110 (|#2| |#2| (-1158))) (-15 -3400 (|#2| |#2|)) (-15 -2293 (|#2| |#2|)) (-15 -2302 (|#2| |#2|)) (-15 -1809 ((-112) |#2|)) (-15 -1436 ((-167 |#2|) |#2|)))
-((-3806 ((|#4| |#4| |#1|) 27)) (-1745 ((|#4| |#4| |#1|) 28)))
-(((-1185 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3806 (|#4| |#4| |#1|)) (-15 -1745 (|#4| |#4| |#1|))) (-546) (-368 |#1|) (-368 |#1|) (-673 |#1| |#2| |#3|)) (T -1185))
-((-1745 (*1 *2 *2 *3) (-12 (-4 *3 (-546)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *1 (-1185 *3 *4 *5 *2)) (-4 *2 (-673 *3 *4 *5)))) (-3806 (*1 *2 *2 *3) (-12 (-4 *3 (-546)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *1 (-1185 *3 *4 *5 *2)) (-4 *2 (-673 *3 *4 *5)))))
-(-10 -7 (-15 -3806 (|#4| |#4| |#1|)) (-15 -1745 (|#4| |#4| |#1|)))
-((-2161 ((|#2| |#2|) 133)) (-2683 ((|#2| |#2|) 130)) (-2060 ((|#2| |#2|) 121)) (-4232 ((|#2| |#2|) 118)) (-1589 ((|#2| |#2|) 126)) (-1313 ((|#2| |#2|) 114)) (-2799 ((|#2| |#2|) 43)) (-3448 ((|#2| |#2|) 94)) (-1336 ((|#2| |#2|) 74)) (-1385 ((|#2| |#2|) 128)) (-1985 ((|#2| |#2|) 116)) (-1793 ((|#2| |#2|) 138)) (-3304 ((|#2| |#2|) 136)) (-1939 ((|#2| |#2|) 137)) (-3173 ((|#2| |#2|) 135)) (-4348 ((|#2| |#2|) 148)) (-3392 ((|#2| |#2|) 30 (-12 (|has| |#2| (-602 (-877 |#1|))) (|has| |#2| (-871 |#1|)) (|has| |#1| (-602 (-877 |#1|))) (|has| |#1| (-871 |#1|))))) (-1507 ((|#2| |#2|) 75)) (-3630 ((|#2| |#2|) 139)) (-1845 ((|#2| |#2|) 140)) (-4259 ((|#2| |#2|) 127)) (-3357 ((|#2| |#2|) 115)) (-2725 ((|#2| |#2|) 134)) (-1361 ((|#2| |#2|) 132)) (-4061 ((|#2| |#2|) 122)) (-2124 ((|#2| |#2|) 120)) (-3239 ((|#2| |#2|) 124)) (-1669 ((|#2| |#2|) 112)))
-(((-1186 |#1| |#2|) (-10 -7 (-15 -1845 (|#2| |#2|)) (-15 -1336 (|#2| |#2|)) (-15 -4348 (|#2| |#2|)) (-15 -3448 (|#2| |#2|)) (-15 -2799 (|#2| |#2|)) (-15 -1507 (|#2| |#2|)) (-15 -3630 (|#2| |#2|)) (-15 -1669 (|#2| |#2|)) (-15 -3239 (|#2| |#2|)) (-15 -4061 (|#2| |#2|)) (-15 -2725 (|#2| |#2|)) (-15 -3357 (|#2| |#2|)) (-15 -4259 (|#2| |#2|)) (-15 -1985 (|#2| |#2|)) (-15 -1385 (|#2| |#2|)) (-15 -1313 (|#2| |#2|)) (-15 -1589 (|#2| |#2|)) (-15 -2060 (|#2| |#2|)) (-15 -2161 (|#2| |#2|)) (-15 -4232 (|#2| |#2|)) (-15 -2683 (|#2| |#2|)) (-15 -2124 (|#2| |#2|)) (-15 -1361 (|#2| |#2|)) (-15 -3173 (|#2| |#2|)) (-15 -3304 (|#2| |#2|)) (-15 -1939 (|#2| |#2|)) (-15 -1793 (|#2| |#2|)) (IF (|has| |#1| (-871 |#1|)) (IF (|has| |#1| (-602 (-877 |#1|))) (IF (|has| |#2| (-602 (-877 |#1|))) (IF (|has| |#2| (-871 |#1|)) (-15 -3392 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-836) (-446)) (-13 (-425 |#1|) (-1180))) (T -1186))
-((-3392 (*1 *2 *2) (-12 (-4 *3 (-602 (-877 *3))) (-4 *3 (-871 *3)) (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-602 (-877 *3))) (-4 *2 (-871 *3)) (-4 *2 (-13 (-425 *3) (-1180))))) (-1793 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-1939 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-3304 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-3173 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-1361 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-2124 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-2683 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-4232 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-2161 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-2060 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-1589 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-1313 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-1385 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-1985 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-4259 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-3357 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-2725 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-4061 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-3239 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-1669 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-3630 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-1507 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-2799 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-3448 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-4348 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-1336 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-1845 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))))
-(-10 -7 (-15 -1845 (|#2| |#2|)) (-15 -1336 (|#2| |#2|)) (-15 -4348 (|#2| |#2|)) (-15 -3448 (|#2| |#2|)) (-15 -2799 (|#2| |#2|)) (-15 -1507 (|#2| |#2|)) (-15 -3630 (|#2| |#2|)) (-15 -1669 (|#2| |#2|)) (-15 -3239 (|#2| |#2|)) (-15 -4061 (|#2| |#2|)) (-15 -2725 (|#2| |#2|)) (-15 -3357 (|#2| |#2|)) (-15 -4259 (|#2| |#2|)) (-15 -1985 (|#2| |#2|)) (-15 -1385 (|#2| |#2|)) (-15 -1313 (|#2| |#2|)) (-15 -1589 (|#2| |#2|)) (-15 -2060 (|#2| |#2|)) (-15 -2161 (|#2| |#2|)) (-15 -4232 (|#2| |#2|)) (-15 -2683 (|#2| |#2|)) (-15 -2124 (|#2| |#2|)) (-15 -1361 (|#2| |#2|)) (-15 -3173 (|#2| |#2|)) (-15 -3304 (|#2| |#2|)) (-15 -1939 (|#2| |#2|)) (-15 -1793 (|#2| |#2|)) (IF (|has| |#1| (-871 |#1|)) (IF (|has| |#1| (-602 (-877 |#1|))) (IF (|has| |#2| (-602 (-877 |#1|))) (IF (|has| |#2| (-871 |#1|)) (-15 -3392 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
-((-2630 (((-112) |#5| $) 60) (((-112) $) 102)) (-4057 ((|#5| |#5| $) 75)) (-1871 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-2242 (((-631 |#5|) (-631 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 73)) (-2784 (((-3 $ "failed") (-631 |#5|)) 126)) (-1551 (((-3 $ "failed") $) 112)) (-2930 ((|#5| |#5| $) 94)) (-2857 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 31)) (-4210 ((|#5| |#5| $) 98)) (-3676 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 69)) (-1971 (((-2 (|:| -2498 (-631 |#5|)) (|:| -1303 (-631 |#5|))) $) 55)) (-4253 (((-112) |#5| $) 58) (((-112) $) 103)) (-3954 ((|#4| $) 108)) (-2597 (((-3 |#5| "failed") $) 110)) (-2627 (((-631 |#5|) $) 49)) (-3007 (((-112) |#5| $) 67) (((-112) $) 107)) (-1536 ((|#5| |#5| $) 81)) (-2178 (((-112) $ $) 27)) (-3518 (((-112) |#5| $) 63) (((-112) $) 105)) (-3492 ((|#5| |#5| $) 78)) (-1539 (((-3 |#5| "failed") $) 109)) (-4282 (($ $ |#5|) 127)) (-3308 (((-758) $) 52)) (-3089 (($ (-631 |#5|)) 124)) (-2538 (($ $ |#4|) 122)) (-2384 (($ $ |#4|) 121)) (-2258 (($ $) 120)) (-3075 (((-848) $) NIL) (((-631 |#5|) $) 113)) (-2347 (((-758) $) 130)) (-2792 (((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 |#5|))) "failed") (-631 |#5|) (-1 (-112) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 |#5|))) "failed") (-631 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 45)) (-3579 (((-112) $ (-1 (-112) |#5| (-631 |#5|))) 100)) (-4267 (((-631 |#4|) $) 115)) (-3536 (((-112) |#4| $) 118)) (-1658 (((-112) $ $) 19)))
-(((-1187 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2347 ((-758) |#1|)) (-15 -4282 (|#1| |#1| |#5|)) (-15 -1871 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3536 ((-112) |#4| |#1|)) (-15 -4267 ((-631 |#4|) |#1|)) (-15 -1551 ((-3 |#1| "failed") |#1|)) (-15 -2597 ((-3 |#5| "failed") |#1|)) (-15 -1539 ((-3 |#5| "failed") |#1|)) (-15 -4210 (|#5| |#5| |#1|)) (-15 -2258 (|#1| |#1|)) (-15 -2930 (|#5| |#5| |#1|)) (-15 -1536 (|#5| |#5| |#1|)) (-15 -3492 (|#5| |#5| |#1|)) (-15 -4057 (|#5| |#5| |#1|)) (-15 -2242 ((-631 |#5|) (-631 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3676 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3007 ((-112) |#1|)) (-15 -3518 ((-112) |#1|)) (-15 -2630 ((-112) |#1|)) (-15 -3579 ((-112) |#1| (-1 (-112) |#5| (-631 |#5|)))) (-15 -3007 ((-112) |#5| |#1|)) (-15 -3518 ((-112) |#5| |#1|)) (-15 -2630 ((-112) |#5| |#1|)) (-15 -2857 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4253 ((-112) |#1|)) (-15 -4253 ((-112) |#5| |#1|)) (-15 -1971 ((-2 (|:| -2498 (-631 |#5|)) (|:| -1303 (-631 |#5|))) |#1|)) (-15 -3308 ((-758) |#1|)) (-15 -2627 ((-631 |#5|) |#1|)) (-15 -2792 ((-3 (-2 (|:| |bas| |#1|) (|:| -2292 (-631 |#5|))) "failed") (-631 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2792 ((-3 (-2 (|:| |bas| |#1|) (|:| -2292 (-631 |#5|))) "failed") (-631 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2178 ((-112) |#1| |#1|)) (-15 -2538 (|#1| |#1| |#4|)) (-15 -2384 (|#1| |#1| |#4|)) (-15 -3954 (|#4| |#1|)) (-15 -2784 ((-3 |#1| "failed") (-631 |#5|))) (-15 -3075 ((-631 |#5|) |#1|)) (-15 -3089 (|#1| (-631 |#5|))) (-15 -3676 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3676 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1871 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -3676 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3075 ((-848) |#1|)) (-15 -1658 ((-112) |#1| |#1|))) (-1188 |#2| |#3| |#4| |#5|) (-546) (-780) (-836) (-1048 |#2| |#3| |#4|)) (T -1187))
-NIL
-(-10 -8 (-15 -2347 ((-758) |#1|)) (-15 -4282 (|#1| |#1| |#5|)) (-15 -1871 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3536 ((-112) |#4| |#1|)) (-15 -4267 ((-631 |#4|) |#1|)) (-15 -1551 ((-3 |#1| "failed") |#1|)) (-15 -2597 ((-3 |#5| "failed") |#1|)) (-15 -1539 ((-3 |#5| "failed") |#1|)) (-15 -4210 (|#5| |#5| |#1|)) (-15 -2258 (|#1| |#1|)) (-15 -2930 (|#5| |#5| |#1|)) (-15 -1536 (|#5| |#5| |#1|)) (-15 -3492 (|#5| |#5| |#1|)) (-15 -4057 (|#5| |#5| |#1|)) (-15 -2242 ((-631 |#5|) (-631 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3676 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3007 ((-112) |#1|)) (-15 -3518 ((-112) |#1|)) (-15 -2630 ((-112) |#1|)) (-15 -3579 ((-112) |#1| (-1 (-112) |#5| (-631 |#5|)))) (-15 -3007 ((-112) |#5| |#1|)) (-15 -3518 ((-112) |#5| |#1|)) (-15 -2630 ((-112) |#5| |#1|)) (-15 -2857 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4253 ((-112) |#1|)) (-15 -4253 ((-112) |#5| |#1|)) (-15 -1971 ((-2 (|:| -2498 (-631 |#5|)) (|:| -1303 (-631 |#5|))) |#1|)) (-15 -3308 ((-758) |#1|)) (-15 -2627 ((-631 |#5|) |#1|)) (-15 -2792 ((-3 (-2 (|:| |bas| |#1|) (|:| -2292 (-631 |#5|))) "failed") (-631 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2792 ((-3 (-2 (|:| |bas| |#1|) (|:| -2292 (-631 |#5|))) "failed") (-631 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2178 ((-112) |#1| |#1|)) (-15 -2538 (|#1| |#1| |#4|)) (-15 -2384 (|#1| |#1| |#4|)) (-15 -3954 (|#4| |#1|)) (-15 -2784 ((-3 |#1| "failed") (-631 |#5|))) (-15 -3075 ((-631 |#5|) |#1|)) (-15 -3089 (|#1| (-631 |#5|))) (-15 -3676 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3676 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1871 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -3676 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3075 ((-848) |#1|)) (-15 -1658 ((-112) |#1| |#1|)))
-((-3062 (((-112) $ $) 7)) (-3960 (((-631 (-2 (|:| -2498 $) (|:| -1303 (-631 |#4|)))) (-631 |#4|)) 85)) (-3176 (((-631 $) (-631 |#4|)) 86)) (-2405 (((-631 |#3|) $) 33)) (-1678 (((-112) $) 26)) (-3005 (((-112) $) 17 (|has| |#1| (-546)))) (-2630 (((-112) |#4| $) 101) (((-112) $) 97)) (-4057 ((|#4| |#4| $) 92)) (-3303 (((-2 (|:| |under| $) (|:| -4339 $) (|:| |upper| $)) $ |#3|) 27)) (-3019 (((-112) $ (-758)) 44)) (-1871 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4373))) (((-3 |#4| "failed") $ |#3|) 79)) (-4087 (($) 45 T CONST)) (-1930 (((-112) $) 22 (|has| |#1| (-546)))) (-1404 (((-112) $ $) 24 (|has| |#1| (-546)))) (-3262 (((-112) $ $) 23 (|has| |#1| (-546)))) (-2713 (((-112) $) 25 (|has| |#1| (-546)))) (-2242 (((-631 |#4|) (-631 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1380 (((-631 |#4|) (-631 |#4|) $) 18 (|has| |#1| (-546)))) (-4204 (((-631 |#4|) (-631 |#4|) $) 19 (|has| |#1| (-546)))) (-2784 (((-3 $ "failed") (-631 |#4|)) 36)) (-1668 (($ (-631 |#4|)) 35)) (-1551 (((-3 $ "failed") $) 82)) (-2930 ((|#4| |#4| $) 89)) (-1571 (($ $) 68 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373))))) (-2574 (($ |#4| $) 67 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4373)))) (-2423 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-546)))) (-2857 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4210 ((|#4| |#4| $) 87)) (-3676 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4373))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4373))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1971 (((-2 (|:| -2498 (-631 |#4|)) (|:| -1303 (-631 |#4|))) $) 105)) (-2466 (((-631 |#4|) $) 52 (|has| $ (-6 -4373)))) (-4253 (((-112) |#4| $) 104) (((-112) $) 103)) (-3954 ((|#3| $) 34)) (-2230 (((-112) $ (-758)) 43)) (-2379 (((-631 |#4|) $) 53 (|has| $ (-6 -4373)))) (-3068 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#4| |#4|) $) 47)) (-2643 (((-631 |#3|) $) 32)) (-1400 (((-112) |#3| $) 31)) (-3731 (((-112) $ (-758)) 42)) (-1613 (((-1140) $) 9)) (-2597 (((-3 |#4| "failed") $) 83)) (-2627 (((-631 |#4|) $) 107)) (-3007 (((-112) |#4| $) 99) (((-112) $) 95)) (-1536 ((|#4| |#4| $) 90)) (-2178 (((-112) $ $) 110)) (-3548 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-546)))) (-3518 (((-112) |#4| $) 100) (((-112) $) 96)) (-3492 ((|#4| |#4| $) 91)) (-2768 (((-1102) $) 10)) (-1539 (((-3 |#4| "failed") $) 84)) (-1652 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3948 (((-3 $ "failed") $ |#4|) 78)) (-4282 (($ $ |#4|) 77)) (-2845 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 |#4|) (-631 |#4|)) 59 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-289 |#4|)) 57 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-631 (-289 |#4|))) 56 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))))) (-2494 (((-112) $ $) 38)) (-3543 (((-112) $) 41)) (-4240 (($) 40)) (-3308 (((-758) $) 106)) (-2777 (((-758) |#4| $) 54 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373)))) (((-758) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4373)))) (-1521 (($ $) 39)) (-2927 (((-530) $) 69 (|has| |#4| (-602 (-530))))) (-3089 (($ (-631 |#4|)) 60)) (-2538 (($ $ |#3|) 28)) (-2384 (($ $ |#3|) 30)) (-2258 (($ $) 88)) (-2128 (($ $ |#3|) 29)) (-3075 (((-848) $) 11) (((-631 |#4|) $) 37)) (-2347 (((-758) $) 76 (|has| |#3| (-363)))) (-2792 (((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 |#4|))) "failed") (-631 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 |#4|))) "failed") (-631 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-3579 (((-112) $ (-1 (-112) |#4| (-631 |#4|))) 98)) (-2438 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4373)))) (-4267 (((-631 |#3|) $) 81)) (-3536 (((-112) |#3| $) 80)) (-1658 (((-112) $ $) 6)) (-2563 (((-758) $) 46 (|has| $ (-6 -4373)))))
-(((-1188 |#1| |#2| |#3| |#4|) (-138) (-546) (-780) (-836) (-1048 |t#1| |t#2| |t#3|)) (T -1188))
-((-2178 (*1 *2 *1 *1) (-12 (-4 *1 (-1188 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-112)))) (-2792 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1048 *5 *6 *7)) (-4 *5 (-546)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2292 (-631 *8)))) (-5 *3 (-631 *8)) (-4 *1 (-1188 *5 *6 *7 *8)))) (-2792 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1048 *6 *7 *8)) (-4 *6 (-546)) (-4 *7 (-780)) (-4 *8 (-836)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2292 (-631 *9)))) (-5 *3 (-631 *9)) (-4 *1 (-1188 *6 *7 *8 *9)))) (-2627 (*1 *2 *1) (-12 (-4 *1 (-1188 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-631 *6)))) (-3308 (*1 *2 *1) (-12 (-4 *1 (-1188 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-758)))) (-1971 (*1 *2 *1) (-12 (-4 *1 (-1188 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-2 (|:| -2498 (-631 *6)) (|:| -1303 (-631 *6)))))) (-4253 (*1 *2 *3 *1) (-12 (-4 *1 (-1188 *4 *5 *6 *3)) (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-112)))) (-4253 (*1 *2 *1) (-12 (-4 *1 (-1188 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-112)))) (-2857 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1188 *5 *6 *7 *3)) (-4 *5 (-546)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-112)))) (-2630 (*1 *2 *3 *1) (-12 (-4 *1 (-1188 *4 *5 *6 *3)) (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-112)))) (-3518 (*1 *2 *3 *1) (-12 (-4 *1 (-1188 *4 *5 *6 *3)) (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-112)))) (-3007 (*1 *2 *3 *1) (-12 (-4 *1 (-1188 *4 *5 *6 *3)) (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-112)))) (-3579 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-631 *7))) (-4 *1 (-1188 *4 *5 *6 *7)) (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-112)))) (-2630 (*1 *2 *1) (-12 (-4 *1 (-1188 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-112)))) (-3518 (*1 *2 *1) (-12 (-4 *1 (-1188 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-112)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1188 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-112)))) (-3676 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1188 *5 *6 *7 *2)) (-4 *5 (-546)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *2 (-1048 *5 *6 *7)))) (-2242 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-631 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1188 *5 *6 *7 *8)) (-4 *5 (-546)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *8 (-1048 *5 *6 *7)))) (-4057 (*1 *2 *2 *1) (-12 (-4 *1 (-1188 *3 *4 *5 *2)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *2 (-1048 *3 *4 *5)))) (-3492 (*1 *2 *2 *1) (-12 (-4 *1 (-1188 *3 *4 *5 *2)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *2 (-1048 *3 *4 *5)))) (-1536 (*1 *2 *2 *1) (-12 (-4 *1 (-1188 *3 *4 *5 *2)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *2 (-1048 *3 *4 *5)))) (-2930 (*1 *2 *2 *1) (-12 (-4 *1 (-1188 *3 *4 *5 *2)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *2 (-1048 *3 *4 *5)))) (-2258 (*1 *1 *1) (-12 (-4 *1 (-1188 *2 *3 *4 *5)) (-4 *2 (-546)) (-4 *3 (-780)) (-4 *4 (-836)) (-4 *5 (-1048 *2 *3 *4)))) (-4210 (*1 *2 *2 *1) (-12 (-4 *1 (-1188 *3 *4 *5 *2)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *2 (-1048 *3 *4 *5)))) (-3176 (*1 *2 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-631 *1)) (-4 *1 (-1188 *4 *5 *6 *7)))) (-3960 (*1 *2 *3) (-12 (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-631 (-2 (|:| -2498 *1) (|:| -1303 (-631 *7))))) (-5 *3 (-631 *7)) (-4 *1 (-1188 *4 *5 *6 *7)))) (-1539 (*1 *2 *1) (|partial| -12 (-4 *1 (-1188 *3 *4 *5 *2)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *2 (-1048 *3 *4 *5)))) (-2597 (*1 *2 *1) (|partial| -12 (-4 *1 (-1188 *3 *4 *5 *2)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *2 (-1048 *3 *4 *5)))) (-1551 (*1 *1 *1) (|partial| -12 (-4 *1 (-1188 *2 *3 *4 *5)) (-4 *2 (-546)) (-4 *3 (-780)) (-4 *4 (-836)) (-4 *5 (-1048 *2 *3 *4)))) (-4267 (*1 *2 *1) (-12 (-4 *1 (-1188 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-631 *5)))) (-3536 (*1 *2 *3 *1) (-12 (-4 *1 (-1188 *4 *5 *3 *6)) (-4 *4 (-546)) (-4 *5 (-780)) (-4 *3 (-836)) (-4 *6 (-1048 *4 *5 *3)) (-5 *2 (-112)))) (-1871 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1188 *4 *5 *3 *2)) (-4 *4 (-546)) (-4 *5 (-780)) (-4 *3 (-836)) (-4 *2 (-1048 *4 *5 *3)))) (-3948 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1188 *3 *4 *5 *2)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *2 (-1048 *3 *4 *5)))) (-4282 (*1 *1 *1 *2) (-12 (-4 *1 (-1188 *3 *4 *5 *2)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *2 (-1048 *3 *4 *5)))) (-2347 (*1 *2 *1) (-12 (-4 *1 (-1188 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-4 *5 (-363)) (-5 *2 (-758)))))
-(-13 (-961 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4373) (-6 -4374) (-15 -2178 ((-112) $ $)) (-15 -2792 ((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 |t#4|))) "failed") (-631 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2792 ((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 |t#4|))) "failed") (-631 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2627 ((-631 |t#4|) $)) (-15 -3308 ((-758) $)) (-15 -1971 ((-2 (|:| -2498 (-631 |t#4|)) (|:| -1303 (-631 |t#4|))) $)) (-15 -4253 ((-112) |t#4| $)) (-15 -4253 ((-112) $)) (-15 -2857 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -2630 ((-112) |t#4| $)) (-15 -3518 ((-112) |t#4| $)) (-15 -3007 ((-112) |t#4| $)) (-15 -3579 ((-112) $ (-1 (-112) |t#4| (-631 |t#4|)))) (-15 -2630 ((-112) $)) (-15 -3518 ((-112) $)) (-15 -3007 ((-112) $)) (-15 -3676 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2242 ((-631 |t#4|) (-631 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4057 (|t#4| |t#4| $)) (-15 -3492 (|t#4| |t#4| $)) (-15 -1536 (|t#4| |t#4| $)) (-15 -2930 (|t#4| |t#4| $)) (-15 -2258 ($ $)) (-15 -4210 (|t#4| |t#4| $)) (-15 -3176 ((-631 $) (-631 |t#4|))) (-15 -3960 ((-631 (-2 (|:| -2498 $) (|:| -1303 (-631 |t#4|)))) (-631 |t#4|))) (-15 -1539 ((-3 |t#4| "failed") $)) (-15 -2597 ((-3 |t#4| "failed") $)) (-15 -1551 ((-3 $ "failed") $)) (-15 -4267 ((-631 |t#3|) $)) (-15 -3536 ((-112) |t#3| $)) (-15 -1871 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3948 ((-3 $ "failed") $ |t#4|)) (-15 -4282 ($ $ |t#4|)) (IF (|has| |t#3| (-363)) (-15 -2347 ((-758) $)) |%noBranch|)))
-(((-34) . T) ((-102) . T) ((-601 (-631 |#4|)) . T) ((-601 (-848)) . T) ((-149 |#4|) . T) ((-602 (-530)) |has| |#4| (-602 (-530))) ((-304 |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))) ((-483 |#4|) . T) ((-508 |#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))) ((-961 |#1| |#2| |#3| |#4|) . T) ((-1082) . T) ((-1195) . T))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2405 (((-631 (-1158)) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-546)))) (-1976 (($ $) NIL (|has| |#1| (-546)))) (-1363 (((-112) $) NIL (|has| |#1| (-546)))) (-3023 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4200 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2934 (((-3 $ "failed") $ $) NIL)) (-2282 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3003 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4177 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3046 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2916 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4087 (($) NIL T CONST)) (-2550 (($ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3497 (((-937 |#1|) $ (-758)) 17) (((-937 |#1|) $ (-758) (-758)) NIL)) (-2051 (((-112) $) NIL)) (-2844 (($) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2342 (((-758) $ (-1158)) NIL) (((-758) $ (-1158) (-758)) NIL)) (-3248 (((-112) $) NIL)) (-3734 (($ $ (-554)) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3580 (((-112) $) NIL)) (-2383 (($ $ (-631 (-1158)) (-631 (-525 (-1158)))) NIL) (($ $ (-1158) (-525 (-1158))) NIL) (($ |#1| (-525 (-1158))) NIL) (($ $ (-1158) (-758)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-2395 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2518 (($ $) NIL)) (-2530 ((|#1| $) NIL)) (-1613 (((-1140) $) NIL)) (-2279 (($ $ (-1158)) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-1158) |#1|) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2768 (((-1102) $) NIL)) (-2199 (($ (-1 $) (-1158) |#1|) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4282 (($ $ (-758)) NIL)) (-3919 (((-3 $ "failed") $ $) NIL (|has| |#1| (-546)))) (-1333 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2386 (($ $ (-1158) $) NIL) (($ $ (-631 (-1158)) (-631 $)) NIL) (($ $ (-631 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL)) (-1553 (($ $ (-1158)) NIL) (($ $ (-631 (-1158))) NIL) (($ $ (-1158) (-758)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL)) (-3308 (((-525 (-1158)) $) NIL)) (-3057 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2926 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3034 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4213 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3014 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4188 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-1300 (($ $) NIL)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ $) NIL (|has| |#1| (-546))) (($ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))) (($ (-1158)) NIL) (($ (-937 |#1|)) NIL)) (-1779 ((|#1| $ (-525 (-1158))) NIL) (($ $ (-1158) (-758)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL) (((-937 |#1|) $ (-758)) NIL)) (-2084 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2261 (((-758)) NIL)) (-3096 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2959 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-1909 (((-112) $ $) NIL (|has| |#1| (-546)))) (-3069 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2938 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3120 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2981 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2908 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2991 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3108 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2969 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3083 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2948 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $ (-1158)) NIL) (($ $ (-631 (-1158))) NIL) (($ $ (-1158) (-758)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL)) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554)))))) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-1189 |#1|) (-13 (-727 |#1| (-1158)) (-10 -8 (-15 -1779 ((-937 |#1|) $ (-758))) (-15 -3075 ($ (-1158))) (-15 -3075 ($ (-937 |#1|))) (IF (|has| |#1| (-38 (-402 (-554)))) (PROGN (-15 -2279 ($ $ (-1158) |#1|)) (-15 -2199 ($ (-1 $) (-1158) |#1|))) |%noBranch|))) (-1034)) (T -1189))
-((-1779 (*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-5 *2 (-937 *4)) (-5 *1 (-1189 *4)) (-4 *4 (-1034)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1189 *3)) (-4 *3 (-1034)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-937 *3)) (-4 *3 (-1034)) (-5 *1 (-1189 *3)))) (-2279 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *1 (-1189 *3)) (-4 *3 (-38 (-402 (-554)))) (-4 *3 (-1034)))) (-2199 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1189 *4))) (-5 *3 (-1158)) (-5 *1 (-1189 *4)) (-4 *4 (-38 (-402 (-554)))) (-4 *4 (-1034)))))
-(-13 (-727 |#1| (-1158)) (-10 -8 (-15 -1779 ((-937 |#1|) $ (-758))) (-15 -3075 ($ (-1158))) (-15 -3075 ($ (-937 |#1|))) (IF (|has| |#1| (-38 (-402 (-554)))) (PROGN (-15 -2279 ($ $ (-1158) |#1|)) (-15 -2199 ($ (-1 $) (-1158) |#1|))) |%noBranch|)))
-((-2956 (($ |#1| (-631 (-631 (-928 (-221)))) (-112)) 19)) (-3573 (((-112) $ (-112)) 18)) (-1915 (((-112) $) 17)) (-2556 (((-631 (-631 (-928 (-221)))) $) 13)) (-2742 ((|#1| $) 8)) (-3088 (((-112) $) 15)))
-(((-1190 |#1|) (-10 -8 (-15 -2742 (|#1| $)) (-15 -2556 ((-631 (-631 (-928 (-221)))) $)) (-15 -3088 ((-112) $)) (-15 -1915 ((-112) $)) (-15 -3573 ((-112) $ (-112))) (-15 -2956 ($ |#1| (-631 (-631 (-928 (-221)))) (-112)))) (-959)) (T -1190))
-((-2956 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-631 (-631 (-928 (-221))))) (-5 *4 (-112)) (-5 *1 (-1190 *2)) (-4 *2 (-959)))) (-3573 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1190 *3)) (-4 *3 (-959)))) (-1915 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1190 *3)) (-4 *3 (-959)))) (-3088 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1190 *3)) (-4 *3 (-959)))) (-2556 (*1 *2 *1) (-12 (-5 *2 (-631 (-631 (-928 (-221))))) (-5 *1 (-1190 *3)) (-4 *3 (-959)))) (-2742 (*1 *2 *1) (-12 (-5 *1 (-1190 *2)) (-4 *2 (-959)))))
-(-10 -8 (-15 -2742 (|#1| $)) (-15 -2556 ((-631 (-631 (-928 (-221)))) $)) (-15 -3088 ((-112) $)) (-15 -1915 ((-112) $)) (-15 -3573 ((-112) $ (-112))) (-15 -2956 ($ |#1| (-631 (-631 (-928 (-221)))) (-112))))
-((-2327 (((-928 (-221)) (-928 (-221))) 25)) (-4136 (((-928 (-221)) (-221) (-221) (-221) (-221)) 10)) (-1764 (((-631 (-928 (-221))) (-928 (-221)) (-928 (-221)) (-928 (-221)) (-221) (-631 (-631 (-221)))) 37)) (-3748 (((-221) (-928 (-221)) (-928 (-221))) 21)) (-3574 (((-928 (-221)) (-928 (-221)) (-928 (-221))) 22)) (-1895 (((-631 (-631 (-221))) (-554)) 31)) (-1744 (((-928 (-221)) (-928 (-221)) (-928 (-221))) 20)) (-1735 (((-928 (-221)) (-928 (-221)) (-928 (-221))) 19)) (* (((-928 (-221)) (-221) (-928 (-221))) 18)))
-(((-1191) (-10 -7 (-15 -4136 ((-928 (-221)) (-221) (-221) (-221) (-221))) (-15 * ((-928 (-221)) (-221) (-928 (-221)))) (-15 -1735 ((-928 (-221)) (-928 (-221)) (-928 (-221)))) (-15 -1744 ((-928 (-221)) (-928 (-221)) (-928 (-221)))) (-15 -3748 ((-221) (-928 (-221)) (-928 (-221)))) (-15 -3574 ((-928 (-221)) (-928 (-221)) (-928 (-221)))) (-15 -2327 ((-928 (-221)) (-928 (-221)))) (-15 -1895 ((-631 (-631 (-221))) (-554))) (-15 -1764 ((-631 (-928 (-221))) (-928 (-221)) (-928 (-221)) (-928 (-221)) (-221) (-631 (-631 (-221))))))) (T -1191))
-((-1764 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-631 (-631 (-221)))) (-5 *4 (-221)) (-5 *2 (-631 (-928 *4))) (-5 *1 (-1191)) (-5 *3 (-928 *4)))) (-1895 (*1 *2 *3) (-12 (-5 *3 (-554)) (-5 *2 (-631 (-631 (-221)))) (-5 *1 (-1191)))) (-2327 (*1 *2 *2) (-12 (-5 *2 (-928 (-221))) (-5 *1 (-1191)))) (-3574 (*1 *2 *2 *2) (-12 (-5 *2 (-928 (-221))) (-5 *1 (-1191)))) (-3748 (*1 *2 *3 *3) (-12 (-5 *3 (-928 (-221))) (-5 *2 (-221)) (-5 *1 (-1191)))) (-1744 (*1 *2 *2 *2) (-12 (-5 *2 (-928 (-221))) (-5 *1 (-1191)))) (-1735 (*1 *2 *2 *2) (-12 (-5 *2 (-928 (-221))) (-5 *1 (-1191)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-928 (-221))) (-5 *3 (-221)) (-5 *1 (-1191)))) (-4136 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-928 (-221))) (-5 *1 (-1191)) (-5 *3 (-221)))))
-(-10 -7 (-15 -4136 ((-928 (-221)) (-221) (-221) (-221) (-221))) (-15 * ((-928 (-221)) (-221) (-928 (-221)))) (-15 -1735 ((-928 (-221)) (-928 (-221)) (-928 (-221)))) (-15 -1744 ((-928 (-221)) (-928 (-221)) (-928 (-221)))) (-15 -3748 ((-221) (-928 (-221)) (-928 (-221)))) (-15 -3574 ((-928 (-221)) (-928 (-221)) (-928 (-221)))) (-15 -2327 ((-928 (-221)) (-928 (-221)))) (-15 -1895 ((-631 (-631 (-221))) (-554))) (-15 -1764 ((-631 (-928 (-221))) (-928 (-221)) (-928 (-221)) (-928 (-221)) (-221) (-631 (-631 (-221))))))
-((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-1871 ((|#1| $ (-758)) 13)) (-2577 (((-758) $) 12)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-3075 (((-943 |#1|) $) 10) (($ (-943 |#1|)) 9) (((-848) $) 23 (|has| |#1| (-601 (-848))))) (-1658 (((-112) $ $) 16 (|has| |#1| (-1082)))))
-(((-1192 |#1|) (-13 (-484 (-943 |#1|)) (-10 -8 (-15 -1871 (|#1| $ (-758))) (-15 -2577 ((-758) $)) (IF (|has| |#1| (-601 (-848))) (-6 (-601 (-848))) |%noBranch|) (IF (|has| |#1| (-1082)) (-6 (-1082)) |%noBranch|))) (-1195)) (T -1192))
-((-1871 (*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-5 *1 (-1192 *2)) (-4 *2 (-1195)))) (-2577 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-1192 *3)) (-4 *3 (-1195)))))
-(-13 (-484 (-943 |#1|)) (-10 -8 (-15 -1871 (|#1| $ (-758))) (-15 -2577 ((-758) $)) (IF (|has| |#1| (-601 (-848))) (-6 (-601 (-848))) |%noBranch|) (IF (|has| |#1| (-1082)) (-6 (-1082)) |%noBranch|)))
-((-3424 (((-413 (-1154 (-1154 |#1|))) (-1154 (-1154 |#1|)) (-554)) 80)) (-1896 (((-413 (-1154 (-1154 |#1|))) (-1154 (-1154 |#1|))) 74)) (-1922 (((-413 (-1154 (-1154 |#1|))) (-1154 (-1154 |#1|))) 59)))
-(((-1193 |#1|) (-10 -7 (-15 -1896 ((-413 (-1154 (-1154 |#1|))) (-1154 (-1154 |#1|)))) (-15 -1922 ((-413 (-1154 (-1154 |#1|))) (-1154 (-1154 |#1|)))) (-15 -3424 ((-413 (-1154 (-1154 |#1|))) (-1154 (-1154 |#1|)) (-554)))) (-344)) (T -1193))
-((-3424 (*1 *2 *3 *4) (-12 (-5 *4 (-554)) (-4 *5 (-344)) (-5 *2 (-413 (-1154 (-1154 *5)))) (-5 *1 (-1193 *5)) (-5 *3 (-1154 (-1154 *5))))) (-1922 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-413 (-1154 (-1154 *4)))) (-5 *1 (-1193 *4)) (-5 *3 (-1154 (-1154 *4))))) (-1896 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-413 (-1154 (-1154 *4)))) (-5 *1 (-1193 *4)) (-5 *3 (-1154 (-1154 *4))))))
-(-10 -7 (-15 -1896 ((-413 (-1154 (-1154 |#1|))) (-1154 (-1154 |#1|)))) (-15 -1922 ((-413 (-1154 (-1154 |#1|))) (-1154 (-1154 |#1|)))) (-15 -3424 ((-413 (-1154 (-1154 |#1|))) (-1154 (-1154 |#1|)) (-554))))
-((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 9) (($ (-1163)) NIL) (((-1163) $) NIL)) (-1658 (((-112) $ $) NIL)))
-(((-1194) (-1065)) (T -1194))
-NIL
-(-1065)
-NIL
-(((-1195) (-138)) (T -1195))
-NIL
-(-13 (-10 -7 (-6 -4301)))
-((-1402 (((-112)) 15)) (-3730 (((-1246) (-631 |#1|) (-631 |#1|)) 19) (((-1246) (-631 |#1|)) 20)) (-2230 (((-112) |#1| |#1|) 32 (|has| |#1| (-836)))) (-3731 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 27) (((-3 (-112) "failed") |#1| |#1|) 25)) (-3979 ((|#1| (-631 |#1|)) 33 (|has| |#1| (-836))) ((|#1| (-631 |#1|) (-1 (-112) |#1| |#1|)) 28)) (-1982 (((-2 (|:| -3633 (-631 |#1|)) (|:| -2786 (-631 |#1|)))) 17)))
-(((-1196 |#1|) (-10 -7 (-15 -3730 ((-1246) (-631 |#1|))) (-15 -3730 ((-1246) (-631 |#1|) (-631 |#1|))) (-15 -1982 ((-2 (|:| -3633 (-631 |#1|)) (|:| -2786 (-631 |#1|))))) (-15 -3731 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3731 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3979 (|#1| (-631 |#1|) (-1 (-112) |#1| |#1|))) (-15 -1402 ((-112))) (IF (|has| |#1| (-836)) (PROGN (-15 -3979 (|#1| (-631 |#1|))) (-15 -2230 ((-112) |#1| |#1|))) |%noBranch|)) (-1082)) (T -1196))
-((-2230 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1196 *3)) (-4 *3 (-836)) (-4 *3 (-1082)))) (-3979 (*1 *2 *3) (-12 (-5 *3 (-631 *2)) (-4 *2 (-1082)) (-4 *2 (-836)) (-5 *1 (-1196 *2)))) (-1402 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1196 *3)) (-4 *3 (-1082)))) (-3979 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1196 *2)) (-4 *2 (-1082)))) (-3731 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1082)) (-5 *2 (-112)) (-5 *1 (-1196 *3)))) (-3731 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1196 *3)) (-4 *3 (-1082)))) (-1982 (*1 *2) (-12 (-5 *2 (-2 (|:| -3633 (-631 *3)) (|:| -2786 (-631 *3)))) (-5 *1 (-1196 *3)) (-4 *3 (-1082)))) (-3730 (*1 *2 *3 *3) (-12 (-5 *3 (-631 *4)) (-4 *4 (-1082)) (-5 *2 (-1246)) (-5 *1 (-1196 *4)))) (-3730 (*1 *2 *3) (-12 (-5 *3 (-631 *4)) (-4 *4 (-1082)) (-5 *2 (-1246)) (-5 *1 (-1196 *4)))))
-(-10 -7 (-15 -3730 ((-1246) (-631 |#1|))) (-15 -3730 ((-1246) (-631 |#1|) (-631 |#1|))) (-15 -1982 ((-2 (|:| -3633 (-631 |#1|)) (|:| -2786 (-631 |#1|))))) (-15 -3731 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3731 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3979 (|#1| (-631 |#1|) (-1 (-112) |#1| |#1|))) (-15 -1402 ((-112))) (IF (|has| |#1| (-836)) (PROGN (-15 -3979 (|#1| (-631 |#1|))) (-15 -2230 ((-112) |#1| |#1|))) |%noBranch|))
-((-2459 (((-1246) (-631 (-1158)) (-631 (-1158))) 13) (((-1246) (-631 (-1158))) 11)) (-3582 (((-1246)) 14)) (-3165 (((-2 (|:| -2786 (-631 (-1158))) (|:| -3633 (-631 (-1158))))) 18)))
-(((-1197) (-10 -7 (-15 -2459 ((-1246) (-631 (-1158)))) (-15 -2459 ((-1246) (-631 (-1158)) (-631 (-1158)))) (-15 -3165 ((-2 (|:| -2786 (-631 (-1158))) (|:| -3633 (-631 (-1158)))))) (-15 -3582 ((-1246))))) (T -1197))
-((-3582 (*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-1197)))) (-3165 (*1 *2) (-12 (-5 *2 (-2 (|:| -2786 (-631 (-1158))) (|:| -3633 (-631 (-1158))))) (-5 *1 (-1197)))) (-2459 (*1 *2 *3 *3) (-12 (-5 *3 (-631 (-1158))) (-5 *2 (-1246)) (-5 *1 (-1197)))) (-2459 (*1 *2 *3) (-12 (-5 *3 (-631 (-1158))) (-5 *2 (-1246)) (-5 *1 (-1197)))))
-(-10 -7 (-15 -2459 ((-1246) (-631 (-1158)))) (-15 -2459 ((-1246) (-631 (-1158)) (-631 (-1158)))) (-15 -3165 ((-2 (|:| -2786 (-631 (-1158))) (|:| -3633 (-631 (-1158)))))) (-15 -3582 ((-1246))))
-((-3278 (($ $) 17)) (-3289 (((-112) $) 24)))
-(((-1198 |#1|) (-10 -8 (-15 -3278 (|#1| |#1|)) (-15 -3289 ((-112) |#1|))) (-1199)) (T -1198))
-NIL
-(-10 -8 (-15 -3278 (|#1| |#1|)) (-15 -3289 ((-112) |#1|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 42)) (-1976 (($ $) 41)) (-1363 (((-112) $) 39)) (-2934 (((-3 $ "failed") $ $) 19)) (-3278 (($ $) 52)) (-1565 (((-413 $) $) 53)) (-4087 (($) 17 T CONST)) (-1320 (((-3 $ "failed") $) 33)) (-3289 (((-112) $) 54)) (-3248 (((-112) $) 31)) (-2475 (($ $ $) 47) (($ (-631 $)) 46)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 45)) (-2510 (($ $ $) 49) (($ (-631 $)) 48)) (-2270 (((-413 $) $) 51)) (-3919 (((-3 $ "failed") $ $) 43)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ $) 44)) (-2261 (((-758)) 28)) (-1909 (((-112) $ $) 40)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24)))
-(((-1199) (-138)) (T -1199))
-((-3289 (*1 *2 *1) (-12 (-4 *1 (-1199)) (-5 *2 (-112)))) (-1565 (*1 *2 *1) (-12 (-5 *2 (-413 *1)) (-4 *1 (-1199)))) (-3278 (*1 *1 *1) (-4 *1 (-1199))) (-2270 (*1 *2 *1) (-12 (-5 *2 (-413 *1)) (-4 *1 (-1199)))))
-(-13 (-446) (-10 -8 (-15 -3289 ((-112) $)) (-15 -1565 ((-413 $) $)) (-15 -3278 ($ $)) (-15 -2270 ((-413 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-604 (-554)) . T) ((-604 $) . T) ((-601 (-848)) . T) ((-170) . T) ((-285) . T) ((-446) . T) ((-546) . T) ((-634 $) . T) ((-704 $) . T) ((-713) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T))
-((-2879 (((-1205 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1205 |#1| |#3| |#5|)) 23)))
-(((-1200 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2879 ((-1205 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1205 |#1| |#3| |#5|)))) (-1034) (-1034) (-1158) (-1158) |#1| |#2|) (T -1200))
-((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1205 *5 *7 *9)) (-4 *5 (-1034)) (-4 *6 (-1034)) (-14 *7 (-1158)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1205 *6 *8 *10)) (-5 *1 (-1200 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1158)))))
-(-10 -7 (-15 -2879 ((-1205 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1205 |#1| |#3| |#5|))))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2405 (((-631 (-1064)) $) 77)) (-1576 (((-1158) $) 106)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 54 (|has| |#1| (-546)))) (-1976 (($ $) 55 (|has| |#1| (-546)))) (-1363 (((-112) $) 57 (|has| |#1| (-546)))) (-1557 (($ $ (-554)) 101) (($ $ (-554) (-554)) 100)) (-3042 (((-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|))) $) 108)) (-3023 (($ $) 138 (|has| |#1| (-38 (-402 (-554)))))) (-4200 (($ $) 121 (|has| |#1| (-38 (-402 (-554)))))) (-2934 (((-3 $ "failed") $ $) 19)) (-3278 (($ $) 165 (|has| |#1| (-358)))) (-1565 (((-413 $) $) 166 (|has| |#1| (-358)))) (-2282 (($ $) 120 (|has| |#1| (-38 (-402 (-554)))))) (-2286 (((-112) $ $) 156 (|has| |#1| (-358)))) (-3003 (($ $) 137 (|has| |#1| (-38 (-402 (-554)))))) (-4177 (($ $) 122 (|has| |#1| (-38 (-402 (-554)))))) (-4175 (($ (-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|)))) 176)) (-3046 (($ $) 136 (|has| |#1| (-38 (-402 (-554)))))) (-2916 (($ $) 123 (|has| |#1| (-38 (-402 (-554)))))) (-4087 (($) 17 T CONST)) (-3964 (($ $ $) 160 (|has| |#1| (-358)))) (-2550 (($ $) 63)) (-1320 (((-3 $ "failed") $) 33)) (-3016 (((-402 (-937 |#1|)) $ (-554)) 174 (|has| |#1| (-546))) (((-402 (-937 |#1|)) $ (-554) (-554)) 173 (|has| |#1| (-546)))) (-3943 (($ $ $) 159 (|has| |#1| (-358)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 154 (|has| |#1| (-358)))) (-3289 (((-112) $) 167 (|has| |#1| (-358)))) (-2051 (((-112) $) 76)) (-2844 (($) 148 (|has| |#1| (-38 (-402 (-554)))))) (-2342 (((-554) $) 103) (((-554) $ (-554)) 102)) (-3248 (((-112) $) 31)) (-3734 (($ $ (-554)) 119 (|has| |#1| (-38 (-402 (-554)))))) (-3333 (($ $ (-906)) 104)) (-1310 (($ (-1 |#1| (-554)) $) 175)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 163 (|has| |#1| (-358)))) (-3580 (((-112) $) 65)) (-2383 (($ |#1| (-554)) 64) (($ $ (-1064) (-554)) 79) (($ $ (-631 (-1064)) (-631 (-554))) 78)) (-2879 (($ (-1 |#1| |#1|) $) 66)) (-2395 (($ $) 145 (|has| |#1| (-38 (-402 (-554)))))) (-2518 (($ $) 68)) (-2530 ((|#1| $) 69)) (-2475 (($ (-631 $)) 152 (|has| |#1| (-358))) (($ $ $) 151 (|has| |#1| (-358)))) (-1613 (((-1140) $) 9)) (-2483 (($ $) 168 (|has| |#1| (-358)))) (-2279 (($ $) 172 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-1158)) 171 (-3994 (-12 (|has| |#1| (-29 (-554))) (|has| |#1| (-944)) (|has| |#1| (-1180)) (|has| |#1| (-38 (-402 (-554))))) (-12 (|has| |#1| (-15 -2405 ((-631 (-1158)) |#1|))) (|has| |#1| (-15 -2279 (|#1| |#1| (-1158)))) (|has| |#1| (-38 (-402 (-554)))))))) (-2768 (((-1102) $) 10)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 153 (|has| |#1| (-358)))) (-2510 (($ (-631 $)) 150 (|has| |#1| (-358))) (($ $ $) 149 (|has| |#1| (-358)))) (-2270 (((-413 $) $) 164 (|has| |#1| (-358)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 161 (|has| |#1| (-358)))) (-4282 (($ $ (-554)) 98)) (-3919 (((-3 $ "failed") $ $) 53 (|has| |#1| (-546)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 155 (|has| |#1| (-358)))) (-1333 (($ $) 146 (|has| |#1| (-38 (-402 (-554)))))) (-2386 (((-1138 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-554)))))) (-2072 (((-758) $) 157 (|has| |#1| (-358)))) (-2064 ((|#1| $ (-554)) 107) (($ $ $) 84 (|has| (-554) (-1094)))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 158 (|has| |#1| (-358)))) (-1553 (($ $ (-631 (-1158)) (-631 (-758))) 92 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $ (-1158) (-758)) 91 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $ (-631 (-1158))) 90 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $ (-1158)) 89 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $ (-758)) 87 (|has| |#1| (-15 * (|#1| (-554) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (-3308 (((-554) $) 67)) (-3057 (($ $) 135 (|has| |#1| (-38 (-402 (-554)))))) (-2926 (($ $) 124 (|has| |#1| (-38 (-402 (-554)))))) (-3034 (($ $) 134 (|has| |#1| (-38 (-402 (-554)))))) (-4213 (($ $) 125 (|has| |#1| (-38 (-402 (-554)))))) (-3014 (($ $) 133 (|has| |#1| (-38 (-402 (-554)))))) (-4188 (($ $) 126 (|has| |#1| (-38 (-402 (-554)))))) (-1300 (($ $) 75)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ |#1|) 50 (|has| |#1| (-170))) (($ (-402 (-554))) 60 (|has| |#1| (-38 (-402 (-554))))) (($ $) 52 (|has| |#1| (-546)))) (-1779 ((|#1| $ (-554)) 62)) (-2084 (((-3 $ "failed") $) 51 (|has| |#1| (-143)))) (-2261 (((-758)) 28)) (-1608 ((|#1| $) 105)) (-3096 (($ $) 144 (|has| |#1| (-38 (-402 (-554)))))) (-2959 (($ $) 132 (|has| |#1| (-38 (-402 (-554)))))) (-1909 (((-112) $ $) 56 (|has| |#1| (-546)))) (-3069 (($ $) 143 (|has| |#1| (-38 (-402 (-554)))))) (-2938 (($ $) 131 (|has| |#1| (-38 (-402 (-554)))))) (-3120 (($ $) 142 (|has| |#1| (-38 (-402 (-554)))))) (-2981 (($ $) 130 (|has| |#1| (-38 (-402 (-554)))))) (-4333 ((|#1| $ (-554)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-554)))) (|has| |#1| (-15 -3075 (|#1| (-1158))))))) (-2908 (($ $) 141 (|has| |#1| (-38 (-402 (-554)))))) (-2991 (($ $) 129 (|has| |#1| (-38 (-402 (-554)))))) (-3108 (($ $) 140 (|has| |#1| (-38 (-402 (-554)))))) (-2969 (($ $) 128 (|has| |#1| (-38 (-402 (-554)))))) (-3083 (($ $) 139 (|has| |#1| (-38 (-402 (-554)))))) (-2948 (($ $) 127 (|has| |#1| (-38 (-402 (-554)))))) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($ $ (-631 (-1158)) (-631 (-758))) 96 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $ (-1158) (-758)) 95 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $ (-631 (-1158))) 94 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $ (-1158)) 93 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $ (-758)) 88 (|has| |#1| (-15 * (|#1| (-554) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (-1658 (((-112) $ $) 6)) (-1752 (($ $ |#1|) 61 (|has| |#1| (-358))) (($ $ $) 170 (|has| |#1| (-358)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ (-554)) 169 (|has| |#1| (-358))) (($ $ $) 147 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) 118 (|has| |#1| (-38 (-402 (-554)))))) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-402 (-554)) $) 59 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) 58 (|has| |#1| (-38 (-402 (-554)))))))
-(((-1201 |#1|) (-138) (-1034)) (T -1201))
-((-4175 (*1 *1 *2) (-12 (-5 *2 (-1138 (-2 (|:| |k| (-554)) (|:| |c| *3)))) (-4 *3 (-1034)) (-4 *1 (-1201 *3)))) (-1310 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-554))) (-4 *1 (-1201 *3)) (-4 *3 (-1034)))) (-3016 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-4 *1 (-1201 *4)) (-4 *4 (-1034)) (-4 *4 (-546)) (-5 *2 (-402 (-937 *4))))) (-3016 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-554)) (-4 *1 (-1201 *4)) (-4 *4 (-1034)) (-4 *4 (-546)) (-5 *2 (-402 (-937 *4))))) (-2279 (*1 *1 *1) (-12 (-4 *1 (-1201 *2)) (-4 *2 (-1034)) (-4 *2 (-38 (-402 (-554)))))) (-2279 (*1 *1 *1 *2) (-3994 (-12 (-5 *2 (-1158)) (-4 *1 (-1201 *3)) (-4 *3 (-1034)) (-12 (-4 *3 (-29 (-554))) (-4 *3 (-944)) (-4 *3 (-1180)) (-4 *3 (-38 (-402 (-554)))))) (-12 (-5 *2 (-1158)) (-4 *1 (-1201 *3)) (-4 *3 (-1034)) (-12 (|has| *3 (-15 -2405 ((-631 *2) *3))) (|has| *3 (-15 -2279 (*3 *3 *2))) (-4 *3 (-38 (-402 (-554)))))))))
-(-13 (-1219 |t#1| (-554)) (-10 -8 (-15 -4175 ($ (-1138 (-2 (|:| |k| (-554)) (|:| |c| |t#1|))))) (-15 -1310 ($ (-1 |t#1| (-554)) $)) (IF (|has| |t#1| (-546)) (PROGN (-15 -3016 ((-402 (-937 |t#1|)) $ (-554))) (-15 -3016 ((-402 (-937 |t#1|)) $ (-554) (-554)))) |%noBranch|) (IF (|has| |t#1| (-38 (-402 (-554)))) (PROGN (-15 -2279 ($ $)) (IF (|has| |t#1| (-15 -2279 (|t#1| |t#1| (-1158)))) (IF (|has| |t#1| (-15 -2405 ((-631 (-1158)) |t#1|))) (-15 -2279 ($ $ (-1158))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1180)) (IF (|has| |t#1| (-944)) (IF (|has| |t#1| (-29 (-554))) (-15 -2279 ($ $ (-1158))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-987)) (-6 (-1180))) |%noBranch|) (IF (|has| |t#1| (-358)) (-6 (-358)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-554)) . T) ((-25) . T) ((-38 #1=(-402 (-554))) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-358))) ((-35) |has| |#1| (-38 (-402 (-554)))) ((-95) |has| |#1| (-38 (-402 (-554)))) ((-102) . T) ((-111 #1# #1#) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3994 (|has| |#1| (-546)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-604 #1#) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-604 (-554)) . T) ((-604 |#1|) |has| |#1| (-170)) ((-604 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-358))) ((-601 (-848)) . T) ((-170) -3994 (|has| |#1| (-546)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-229) |has| |#1| (-15 * (|#1| (-554) |#1|))) ((-239) |has| |#1| (-358)) ((-279) |has| |#1| (-38 (-402 (-554)))) ((-281 $ $) |has| (-554) (-1094)) ((-285) -3994 (|has| |#1| (-546)) (|has| |#1| (-358))) ((-302) |has| |#1| (-358)) ((-358) |has| |#1| (-358)) ((-446) |has| |#1| (-358)) ((-487) |has| |#1| (-38 (-402 (-554)))) ((-546) -3994 (|has| |#1| (-546)) (|has| |#1| (-358))) ((-634 #1#) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-634 |#1|) . T) ((-634 $) . T) ((-704 #1#) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-704 |#1|) |has| |#1| (-170)) ((-704 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-358))) ((-713) . T) ((-885 (-1158)) -12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158)))) ((-958 |#1| #0# (-1064)) . T) ((-905) |has| |#1| (-358)) ((-987) |has| |#1| (-38 (-402 (-554)))) ((-1040 #1#) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-1040 |#1|) . T) ((-1040 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1180) |has| |#1| (-38 (-402 (-554)))) ((-1183) |has| |#1| (-38 (-402 (-554)))) ((-1199) |has| |#1| (-358)) ((-1219 |#1| #0#) . T))
-((-1695 (((-112) $) 12)) (-2784 (((-3 |#3| "failed") $) 17) (((-3 (-1158) "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL) (((-3 (-554) "failed") $) NIL)) (-1668 ((|#3| $) 14) (((-1158) $) NIL) (((-402 (-554)) $) NIL) (((-554) $) NIL)))
-(((-1202 |#1| |#2| |#3|) (-10 -8 (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -1668 ((-554) |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -2784 ((-3 (-1158) "failed") |#1|)) (-15 -1668 ((-1158) |#1|)) (-15 -2784 ((-3 |#3| "failed") |#1|)) (-15 -1668 (|#3| |#1|)) (-15 -1695 ((-112) |#1|))) (-1203 |#2| |#3|) (-1034) (-1232 |#2|)) (T -1202))
-NIL
-(-10 -8 (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -1668 ((-554) |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -2784 ((-3 (-1158) "failed") |#1|)) (-15 -1668 ((-1158) |#1|)) (-15 -2784 ((-3 |#3| "failed") |#1|)) (-15 -1668 (|#3| |#1|)) (-15 -1695 ((-112) |#1|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-3831 ((|#2| $) 231 (-3726 (|has| |#2| (-302)) (|has| |#1| (-358))))) (-2405 (((-631 (-1064)) $) 77)) (-1576 (((-1158) $) 106)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 54 (|has| |#1| (-546)))) (-1976 (($ $) 55 (|has| |#1| (-546)))) (-1363 (((-112) $) 57 (|has| |#1| (-546)))) (-1557 (($ $ (-554)) 101) (($ $ (-554) (-554)) 100)) (-3042 (((-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|))) $) 108)) (-2216 ((|#2| $) 267)) (-1949 (((-3 |#2| "failed") $) 263)) (-2444 ((|#2| $) 264)) (-3023 (($ $) 138 (|has| |#1| (-38 (-402 (-554)))))) (-4200 (($ $) 121 (|has| |#1| (-38 (-402 (-554)))))) (-2934 (((-3 $ "failed") $ $) 19)) (-4308 (((-413 (-1154 $)) (-1154 $)) 240 (-3726 (|has| |#2| (-894)) (|has| |#1| (-358))))) (-3278 (($ $) 165 (|has| |#1| (-358)))) (-1565 (((-413 $) $) 166 (|has| |#1| (-358)))) (-2282 (($ $) 120 (|has| |#1| (-38 (-402 (-554)))))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) 237 (-3726 (|has| |#2| (-894)) (|has| |#1| (-358))))) (-2286 (((-112) $ $) 156 (|has| |#1| (-358)))) (-3003 (($ $) 137 (|has| |#1| (-38 (-402 (-554)))))) (-4177 (($ $) 122 (|has| |#1| (-38 (-402 (-554)))))) (-4219 (((-554) $) 249 (-3726 (|has| |#2| (-807)) (|has| |#1| (-358))))) (-4175 (($ (-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|)))) 176)) (-3046 (($ $) 136 (|has| |#1| (-38 (-402 (-554)))))) (-2916 (($ $) 123 (|has| |#1| (-38 (-402 (-554)))))) (-4087 (($) 17 T CONST)) (-2784 (((-3 |#2| "failed") $) 270) (((-3 (-554) "failed") $) 260 (-3726 (|has| |#2| (-1023 (-554))) (|has| |#1| (-358)))) (((-3 (-402 (-554)) "failed") $) 258 (-3726 (|has| |#2| (-1023 (-554))) (|has| |#1| (-358)))) (((-3 (-1158) "failed") $) 242 (-3726 (|has| |#2| (-1023 (-1158))) (|has| |#1| (-358))))) (-1668 ((|#2| $) 271) (((-554) $) 259 (-3726 (|has| |#2| (-1023 (-554))) (|has| |#1| (-358)))) (((-402 (-554)) $) 257 (-3726 (|has| |#2| (-1023 (-554))) (|has| |#1| (-358)))) (((-1158) $) 241 (-3726 (|has| |#2| (-1023 (-1158))) (|has| |#1| (-358))))) (-1749 (($ $) 266) (($ (-554) $) 265)) (-3964 (($ $ $) 160 (|has| |#1| (-358)))) (-2550 (($ $) 63)) (-3699 (((-675 |#2|) (-675 $)) 221 (|has| |#1| (-358))) (((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 $) (-1241 $)) 220 (|has| |#1| (-358))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) 219 (-3726 (|has| |#2| (-627 (-554))) (|has| |#1| (-358)))) (((-675 (-554)) (-675 $)) 218 (-3726 (|has| |#2| (-627 (-554))) (|has| |#1| (-358))))) (-1320 (((-3 $ "failed") $) 33)) (-3016 (((-402 (-937 |#1|)) $ (-554)) 174 (|has| |#1| (-546))) (((-402 (-937 |#1|)) $ (-554) (-554)) 173 (|has| |#1| (-546)))) (-3353 (($) 233 (-3726 (|has| |#2| (-539)) (|has| |#1| (-358))))) (-3943 (($ $ $) 159 (|has| |#1| (-358)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 154 (|has| |#1| (-358)))) (-3289 (((-112) $) 167 (|has| |#1| (-358)))) (-2745 (((-112) $) 247 (-3726 (|has| |#2| (-807)) (|has| |#1| (-358))))) (-2051 (((-112) $) 76)) (-2844 (($) 148 (|has| |#1| (-38 (-402 (-554)))))) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) 225 (-3726 (|has| |#2| (-871 (-374))) (|has| |#1| (-358)))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) 224 (-3726 (|has| |#2| (-871 (-554))) (|has| |#1| (-358))))) (-2342 (((-554) $) 103) (((-554) $ (-554)) 102)) (-3248 (((-112) $) 31)) (-3472 (($ $) 229 (|has| |#1| (-358)))) (-2810 ((|#2| $) 227 (|has| |#1| (-358)))) (-3734 (($ $ (-554)) 119 (|has| |#1| (-38 (-402 (-554)))))) (-3339 (((-3 $ "failed") $) 261 (-3726 (|has| |#2| (-1133)) (|has| |#1| (-358))))) (-4304 (((-112) $) 248 (-3726 (|has| |#2| (-807)) (|has| |#1| (-358))))) (-3333 (($ $ (-906)) 104)) (-1310 (($ (-1 |#1| (-554)) $) 175)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 163 (|has| |#1| (-358)))) (-3580 (((-112) $) 65)) (-2383 (($ |#1| (-554)) 64) (($ $ (-1064) (-554)) 79) (($ $ (-631 (-1064)) (-631 (-554))) 78)) (-4223 (($ $ $) 251 (-3726 (|has| |#2| (-836)) (|has| |#1| (-358))))) (-2706 (($ $ $) 252 (-3726 (|has| |#2| (-836)) (|has| |#1| (-358))))) (-2879 (($ (-1 |#1| |#1|) $) 66) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-358)))) (-2395 (($ $) 145 (|has| |#1| (-38 (-402 (-554)))))) (-2518 (($ $) 68)) (-2530 ((|#1| $) 69)) (-2475 (($ (-631 $)) 152 (|has| |#1| (-358))) (($ $ $) 151 (|has| |#1| (-358)))) (-2454 (($ (-554) |#2|) 268)) (-1613 (((-1140) $) 9)) (-2483 (($ $) 168 (|has| |#1| (-358)))) (-2279 (($ $) 172 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-1158)) 171 (-3994 (-12 (|has| |#1| (-29 (-554))) (|has| |#1| (-944)) (|has| |#1| (-1180)) (|has| |#1| (-38 (-402 (-554))))) (-12 (|has| |#1| (-15 -2405 ((-631 (-1158)) |#1|))) (|has| |#1| (-15 -2279 (|#1| |#1| (-1158)))) (|has| |#1| (-38 (-402 (-554)))))))) (-3834 (($) 262 (-3726 (|has| |#2| (-1133)) (|has| |#1| (-358))) CONST)) (-2768 (((-1102) $) 10)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 153 (|has| |#1| (-358)))) (-2510 (($ (-631 $)) 150 (|has| |#1| (-358))) (($ $ $) 149 (|has| |#1| (-358)))) (-3722 (($ $) 232 (-3726 (|has| |#2| (-302)) (|has| |#1| (-358))))) (-4339 ((|#2| $) 235 (-3726 (|has| |#2| (-539)) (|has| |#1| (-358))))) (-1290 (((-413 (-1154 $)) (-1154 $)) 238 (-3726 (|has| |#2| (-894)) (|has| |#1| (-358))))) (-3082 (((-413 (-1154 $)) (-1154 $)) 239 (-3726 (|has| |#2| (-894)) (|has| |#1| (-358))))) (-2270 (((-413 $) $) 164 (|has| |#1| (-358)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 161 (|has| |#1| (-358)))) (-4282 (($ $ (-554)) 98)) (-3919 (((-3 $ "failed") $ $) 53 (|has| |#1| (-546)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 155 (|has| |#1| (-358)))) (-1333 (($ $) 146 (|has| |#1| (-38 (-402 (-554)))))) (-2386 (((-1138 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-554))))) (($ $ (-1158) |#2|) 212 (-3726 (|has| |#2| (-508 (-1158) |#2|)) (|has| |#1| (-358)))) (($ $ (-631 (-1158)) (-631 |#2|)) 211 (-3726 (|has| |#2| (-508 (-1158) |#2|)) (|has| |#1| (-358)))) (($ $ (-631 (-289 |#2|))) 210 (-3726 (|has| |#2| (-304 |#2|)) (|has| |#1| (-358)))) (($ $ (-289 |#2|)) 209 (-3726 (|has| |#2| (-304 |#2|)) (|has| |#1| (-358)))) (($ $ |#2| |#2|) 208 (-3726 (|has| |#2| (-304 |#2|)) (|has| |#1| (-358)))) (($ $ (-631 |#2|) (-631 |#2|)) 207 (-3726 (|has| |#2| (-304 |#2|)) (|has| |#1| (-358))))) (-2072 (((-758) $) 157 (|has| |#1| (-358)))) (-2064 ((|#1| $ (-554)) 107) (($ $ $) 84 (|has| (-554) (-1094))) (($ $ |#2|) 206 (-3726 (|has| |#2| (-281 |#2| |#2|)) (|has| |#1| (-358))))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 158 (|has| |#1| (-358)))) (-1553 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-358))) (($ $ (-1 |#2| |#2|) (-758)) 216 (|has| |#1| (-358))) (($ $ (-758)) 87 (-3994 (-3726 (|has| |#2| (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $) 85 (-3994 (-3726 (|has| |#2| (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $ (-631 (-1158)) (-631 (-758))) 92 (-3994 (-3726 (|has| |#2| (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-554) |#1|)))))) (($ $ (-1158) (-758)) 91 (-3994 (-3726 (|has| |#2| (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-554) |#1|)))))) (($ $ (-631 (-1158))) 90 (-3994 (-3726 (|has| |#2| (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-554) |#1|)))))) (($ $ (-1158)) 89 (-3994 (-3726 (|has| |#2| (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))))) (-3623 (($ $) 230 (|has| |#1| (-358)))) (-2822 ((|#2| $) 228 (|has| |#1| (-358)))) (-3308 (((-554) $) 67)) (-3057 (($ $) 135 (|has| |#1| (-38 (-402 (-554)))))) (-2926 (($ $) 124 (|has| |#1| (-38 (-402 (-554)))))) (-3034 (($ $) 134 (|has| |#1| (-38 (-402 (-554)))))) (-4213 (($ $) 125 (|has| |#1| (-38 (-402 (-554)))))) (-3014 (($ $) 133 (|has| |#1| (-38 (-402 (-554)))))) (-4188 (($ $) 126 (|has| |#1| (-38 (-402 (-554)))))) (-2927 (((-221) $) 246 (-3726 (|has| |#2| (-1007)) (|has| |#1| (-358)))) (((-374) $) 245 (-3726 (|has| |#2| (-1007)) (|has| |#1| (-358)))) (((-530) $) 244 (-3726 (|has| |#2| (-602 (-530))) (|has| |#1| (-358)))) (((-877 (-374)) $) 223 (-3726 (|has| |#2| (-602 (-877 (-374)))) (|has| |#1| (-358)))) (((-877 (-554)) $) 222 (-3726 (|has| |#2| (-602 (-877 (-554)))) (|has| |#1| (-358))))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) 236 (-3726 (-3726 (|has| $ (-143)) (|has| |#2| (-894))) (|has| |#1| (-358))))) (-1300 (($ $) 75)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ |#1|) 50 (|has| |#1| (-170))) (($ |#2|) 269) (($ (-1158)) 243 (-3726 (|has| |#2| (-1023 (-1158))) (|has| |#1| (-358)))) (($ (-402 (-554))) 60 (|has| |#1| (-38 (-402 (-554))))) (($ $) 52 (|has| |#1| (-546)))) (-1779 ((|#1| $ (-554)) 62)) (-2084 (((-3 $ "failed") $) 51 (-3994 (-3726 (-3994 (|has| |#2| (-143)) (-3726 (|has| $ (-143)) (|has| |#2| (-894)))) (|has| |#1| (-358))) (|has| |#1| (-143))))) (-2261 (((-758)) 28)) (-1608 ((|#1| $) 105)) (-2755 ((|#2| $) 234 (-3726 (|has| |#2| (-539)) (|has| |#1| (-358))))) (-3096 (($ $) 144 (|has| |#1| (-38 (-402 (-554)))))) (-2959 (($ $) 132 (|has| |#1| (-38 (-402 (-554)))))) (-1909 (((-112) $ $) 56 (|has| |#1| (-546)))) (-3069 (($ $) 143 (|has| |#1| (-38 (-402 (-554)))))) (-2938 (($ $) 131 (|has| |#1| (-38 (-402 (-554)))))) (-3120 (($ $) 142 (|has| |#1| (-38 (-402 (-554)))))) (-2981 (($ $) 130 (|has| |#1| (-38 (-402 (-554)))))) (-4333 ((|#1| $ (-554)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-554)))) (|has| |#1| (-15 -3075 (|#1| (-1158))))))) (-2908 (($ $) 141 (|has| |#1| (-38 (-402 (-554)))))) (-2991 (($ $) 129 (|has| |#1| (-38 (-402 (-554)))))) (-3108 (($ $) 140 (|has| |#1| (-38 (-402 (-554)))))) (-2969 (($ $) 128 (|has| |#1| (-38 (-402 (-554)))))) (-3083 (($ $) 139 (|has| |#1| (-38 (-402 (-554)))))) (-2948 (($ $) 127 (|has| |#1| (-38 (-402 (-554)))))) (-1700 (($ $) 250 (-3726 (|has| |#2| (-807)) (|has| |#1| (-358))))) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-358))) (($ $ (-1 |#2| |#2|) (-758)) 214 (|has| |#1| (-358))) (($ $ (-758)) 88 (-3994 (-3726 (|has| |#2| (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $) 86 (-3994 (-3726 (|has| |#2| (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $ (-631 (-1158)) (-631 (-758))) 96 (-3994 (-3726 (|has| |#2| (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-554) |#1|)))))) (($ $ (-1158) (-758)) 95 (-3994 (-3726 (|has| |#2| (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-554) |#1|)))))) (($ $ (-631 (-1158))) 94 (-3994 (-3726 (|has| |#2| (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-554) |#1|)))))) (($ $ (-1158)) 93 (-3994 (-3726 (|has| |#2| (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))))) (-1708 (((-112) $ $) 254 (-3726 (|has| |#2| (-836)) (|has| |#1| (-358))))) (-1686 (((-112) $ $) 255 (-3726 (|has| |#2| (-836)) (|has| |#1| (-358))))) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 253 (-3726 (|has| |#2| (-836)) (|has| |#1| (-358))))) (-1676 (((-112) $ $) 256 (-3726 (|has| |#2| (-836)) (|has| |#1| (-358))))) (-1752 (($ $ |#1|) 61 (|has| |#1| (-358))) (($ $ $) 170 (|has| |#1| (-358))) (($ |#2| |#2|) 226 (|has| |#1| (-358)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ (-554)) 169 (|has| |#1| (-358))) (($ $ $) 147 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) 118 (|has| |#1| (-38 (-402 (-554)))))) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ $ |#2|) 205 (|has| |#1| (-358))) (($ |#2| $) 204 (|has| |#1| (-358))) (($ (-402 (-554)) $) 59 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) 58 (|has| |#1| (-38 (-402 (-554)))))))
-(((-1203 |#1| |#2|) (-138) (-1034) (-1232 |t#1|)) (T -1203))
-((-3308 (*1 *2 *1) (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-1232 *3)) (-5 *2 (-554)))) (-2454 (*1 *1 *2 *3) (-12 (-5 *2 (-554)) (-4 *4 (-1034)) (-4 *1 (-1203 *4 *3)) (-4 *3 (-1232 *4)))) (-2216 (*1 *2 *1) (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-1232 *3)))) (-1749 (*1 *1 *1) (-12 (-4 *1 (-1203 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-1232 *2)))) (-1749 (*1 *1 *2 *1) (-12 (-5 *2 (-554)) (-4 *1 (-1203 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-1232 *3)))) (-2444 (*1 *2 *1) (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-1232 *3)))) (-1949 (*1 *2 *1) (|partial| -12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-1232 *3)))))
-(-13 (-1201 |t#1|) (-1023 |t#2|) (-604 |t#2|) (-10 -8 (-15 -2454 ($ (-554) |t#2|)) (-15 -3308 ((-554) $)) (-15 -2216 (|t#2| $)) (-15 -1749 ($ $)) (-15 -1749 ($ (-554) $)) (-15 -2444 (|t#2| $)) (-15 -1949 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-358)) (-6 (-977 |t#2|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-554)) . T) ((-25) . T) ((-38 #1=(-402 (-554))) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 |#2|) |has| |#1| (-358)) ((-38 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-358))) ((-35) |has| |#1| (-38 (-402 (-554)))) ((-95) |has| |#1| (-38 (-402 (-554)))) ((-102) . T) ((-111 #1# #1#) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-358)) ((-111 $ $) -3994 (|has| |#1| (-546)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-130) . T) ((-143) -3994 (-12 (|has| |#1| (-358)) (|has| |#2| (-143))) (|has| |#1| (-143))) ((-145) -3994 (-12 (|has| |#1| (-358)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-604 #1#) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-604 (-554)) . T) ((-604 #2=(-1158)) -12 (|has| |#1| (-358)) (|has| |#2| (-1023 (-1158)))) ((-604 |#1|) |has| |#1| (-170)) ((-604 |#2|) . T) ((-604 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-358))) ((-601 (-848)) . T) ((-170) -3994 (|has| |#1| (-546)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-602 (-221)) -12 (|has| |#1| (-358)) (|has| |#2| (-1007))) ((-602 (-374)) -12 (|has| |#1| (-358)) (|has| |#2| (-1007))) ((-602 (-530)) -12 (|has| |#1| (-358)) (|has| |#2| (-602 (-530)))) ((-602 (-877 (-374))) -12 (|has| |#1| (-358)) (|has| |#2| (-602 (-877 (-374))))) ((-602 (-877 (-554))) -12 (|has| |#1| (-358)) (|has| |#2| (-602 (-877 (-554))))) ((-227 |#2|) |has| |#1| (-358)) ((-229) -3994 (-12 (|has| |#1| (-358)) (|has| |#2| (-229))) (|has| |#1| (-15 * (|#1| (-554) |#1|)))) ((-239) |has| |#1| (-358)) ((-279) |has| |#1| (-38 (-402 (-554)))) ((-281 |#2| $) -12 (|has| |#1| (-358)) (|has| |#2| (-281 |#2| |#2|))) ((-281 $ $) |has| (-554) (-1094)) ((-285) -3994 (|has| |#1| (-546)) (|has| |#1| (-358))) ((-302) |has| |#1| (-358)) ((-304 |#2|) -12 (|has| |#1| (-358)) (|has| |#2| (-304 |#2|))) ((-358) |has| |#1| (-358)) ((-333 |#2|) |has| |#1| (-358)) ((-372 |#2|) |has| |#1| (-358)) ((-395 |#2|) |has| |#1| (-358)) ((-446) |has| |#1| (-358)) ((-487) |has| |#1| (-38 (-402 (-554)))) ((-508 (-1158) |#2|) -12 (|has| |#1| (-358)) (|has| |#2| (-508 (-1158) |#2|))) ((-508 |#2| |#2|) -12 (|has| |#1| (-358)) (|has| |#2| (-304 |#2|))) ((-546) -3994 (|has| |#1| (-546)) (|has| |#1| (-358))) ((-634 #1#) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-634 |#1|) . T) ((-634 |#2|) |has| |#1| (-358)) ((-634 $) . T) ((-627 (-554)) -12 (|has| |#1| (-358)) (|has| |#2| (-627 (-554)))) ((-627 |#2|) |has| |#1| (-358)) ((-704 #1#) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-704 |#1|) |has| |#1| (-170)) ((-704 |#2|) |has| |#1| (-358)) ((-704 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-358))) ((-713) . T) ((-778) -12 (|has| |#1| (-358)) (|has| |#2| (-807))) ((-779) -12 (|has| |#1| (-358)) (|has| |#2| (-807))) ((-781) -12 (|has| |#1| (-358)) (|has| |#2| (-807))) ((-782) -12 (|has| |#1| (-358)) (|has| |#2| (-807))) ((-807) -12 (|has| |#1| (-358)) (|has| |#2| (-807))) ((-834) -12 (|has| |#1| (-358)) (|has| |#2| (-807))) ((-836) -3994 (-12 (|has| |#1| (-358)) (|has| |#2| (-836))) (-12 (|has| |#1| (-358)) (|has| |#2| (-807)))) ((-885 (-1158)) -3994 (-12 (|has| |#1| (-358)) (|has| |#2| (-885 (-1158)))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158))))) ((-871 (-374)) -12 (|has| |#1| (-358)) (|has| |#2| (-871 (-374)))) ((-871 (-554)) -12 (|has| |#1| (-358)) (|has| |#2| (-871 (-554)))) ((-869 |#2|) |has| |#1| (-358)) ((-894) -12 (|has| |#1| (-358)) (|has| |#2| (-894))) ((-958 |#1| #0# (-1064)) . T) ((-905) |has| |#1| (-358)) ((-977 |#2|) |has| |#1| (-358)) ((-987) |has| |#1| (-38 (-402 (-554)))) ((-1007) -12 (|has| |#1| (-358)) (|has| |#2| (-1007))) ((-1023 (-402 (-554))) -12 (|has| |#1| (-358)) (|has| |#2| (-1023 (-554)))) ((-1023 (-554)) -12 (|has| |#1| (-358)) (|has| |#2| (-1023 (-554)))) ((-1023 #2#) -12 (|has| |#1| (-358)) (|has| |#2| (-1023 (-1158)))) ((-1023 |#2|) . T) ((-1040 #1#) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-1040 |#1|) . T) ((-1040 |#2|) |has| |#1| (-358)) ((-1040 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1133) -12 (|has| |#1| (-358)) (|has| |#2| (-1133))) ((-1180) |has| |#1| (-38 (-402 (-554)))) ((-1183) |has| |#1| (-38 (-402 (-554)))) ((-1195) |has| |#1| (-358)) ((-1199) |has| |#1| (-358)) ((-1201 |#1|) . T) ((-1219 |#1| #0#) . T))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 70)) (-3831 ((|#2| $) NIL (-12 (|has| |#2| (-302)) (|has| |#1| (-358))))) (-2405 (((-631 (-1064)) $) NIL)) (-1576 (((-1158) $) 88)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-546)))) (-1976 (($ $) NIL (|has| |#1| (-546)))) (-1363 (((-112) $) NIL (|has| |#1| (-546)))) (-1557 (($ $ (-554)) 97) (($ $ (-554) (-554)) 99)) (-3042 (((-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|))) $) 47)) (-2216 ((|#2| $) 11)) (-1949 (((-3 |#2| "failed") $) 30)) (-2444 ((|#2| $) 31)) (-3023 (($ $) 192 (|has| |#1| (-38 (-402 (-554)))))) (-4200 (($ $) 168 (|has| |#1| (-38 (-402 (-554)))))) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (-12 (|has| |#2| (-894)) (|has| |#1| (-358))))) (-3278 (($ $) NIL (|has| |#1| (-358)))) (-1565 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2282 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (-12 (|has| |#2| (-894)) (|has| |#1| (-358))))) (-2286 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3003 (($ $) 188 (|has| |#1| (-38 (-402 (-554)))))) (-4177 (($ $) 164 (|has| |#1| (-38 (-402 (-554)))))) (-4219 (((-554) $) NIL (-12 (|has| |#2| (-807)) (|has| |#1| (-358))))) (-4175 (($ (-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|)))) 57)) (-3046 (($ $) 196 (|has| |#1| (-38 (-402 (-554)))))) (-2916 (($ $) 172 (|has| |#1| (-38 (-402 (-554)))))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#2| "failed") $) 144) (((-3 (-554) "failed") $) NIL (-12 (|has| |#2| (-1023 (-554))) (|has| |#1| (-358)))) (((-3 (-402 (-554)) "failed") $) NIL (-12 (|has| |#2| (-1023 (-554))) (|has| |#1| (-358)))) (((-3 (-1158) "failed") $) NIL (-12 (|has| |#2| (-1023 (-1158))) (|has| |#1| (-358))))) (-1668 ((|#2| $) 143) (((-554) $) NIL (-12 (|has| |#2| (-1023 (-554))) (|has| |#1| (-358)))) (((-402 (-554)) $) NIL (-12 (|has| |#2| (-1023 (-554))) (|has| |#1| (-358)))) (((-1158) $) NIL (-12 (|has| |#2| (-1023 (-1158))) (|has| |#1| (-358))))) (-1749 (($ $) 61) (($ (-554) $) 24)) (-3964 (($ $ $) NIL (|has| |#1| (-358)))) (-2550 (($ $) NIL)) (-3699 (((-675 |#2|) (-675 $)) NIL (|has| |#1| (-358))) (((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 $) (-1241 $)) NIL (|has| |#1| (-358))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (-12 (|has| |#2| (-627 (-554))) (|has| |#1| (-358)))) (((-675 (-554)) (-675 $)) NIL (-12 (|has| |#2| (-627 (-554))) (|has| |#1| (-358))))) (-1320 (((-3 $ "failed") $) 77)) (-3016 (((-402 (-937 |#1|)) $ (-554)) 112 (|has| |#1| (-546))) (((-402 (-937 |#1|)) $ (-554) (-554)) 114 (|has| |#1| (-546)))) (-3353 (($) NIL (-12 (|has| |#2| (-539)) (|has| |#1| (-358))))) (-3943 (($ $ $) NIL (|has| |#1| (-358)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL (|has| |#1| (-358)))) (-3289 (((-112) $) NIL (|has| |#1| (-358)))) (-2745 (((-112) $) NIL (-12 (|has| |#2| (-807)) (|has| |#1| (-358))))) (-2051 (((-112) $) 64)) (-2844 (($) NIL (|has| |#1| (-38 (-402 (-554)))))) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (-12 (|has| |#2| (-871 (-374))) (|has| |#1| (-358)))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (-12 (|has| |#2| (-871 (-554))) (|has| |#1| (-358))))) (-2342 (((-554) $) 93) (((-554) $ (-554)) 95)) (-3248 (((-112) $) NIL)) (-3472 (($ $) NIL (|has| |#1| (-358)))) (-2810 ((|#2| $) 151 (|has| |#1| (-358)))) (-3734 (($ $ (-554)) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3339 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1133)) (|has| |#1| (-358))))) (-4304 (((-112) $) NIL (-12 (|has| |#2| (-807)) (|has| |#1| (-358))))) (-3333 (($ $ (-906)) 136)) (-1310 (($ (-1 |#1| (-554)) $) 132)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-3580 (((-112) $) NIL)) (-2383 (($ |#1| (-554)) 19) (($ $ (-1064) (-554)) NIL) (($ $ (-631 (-1064)) (-631 (-554))) NIL)) (-4223 (($ $ $) NIL (-12 (|has| |#2| (-836)) (|has| |#1| (-358))))) (-2706 (($ $ $) NIL (-12 (|has| |#2| (-836)) (|has| |#1| (-358))))) (-2879 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-358)))) (-2395 (($ $) 162 (|has| |#1| (-38 (-402 (-554)))))) (-2518 (($ $) NIL)) (-2530 ((|#1| $) NIL)) (-2475 (($ (-631 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-2454 (($ (-554) |#2|) 10)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) 145 (|has| |#1| (-358)))) (-2279 (($ $) 214 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-1158)) 219 (-3994 (-12 (|has| |#1| (-15 -2279 (|#1| |#1| (-1158)))) (|has| |#1| (-15 -2405 ((-631 (-1158)) |#1|))) (|has| |#1| (-38 (-402 (-554))))) (-12 (|has| |#1| (-29 (-554))) (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-944)) (|has| |#1| (-1180)))))) (-3834 (($) NIL (-12 (|has| |#2| (-1133)) (|has| |#1| (-358))) CONST)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#1| (-358)))) (-2510 (($ (-631 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-3722 (($ $) NIL (-12 (|has| |#2| (-302)) (|has| |#1| (-358))))) (-4339 ((|#2| $) NIL (-12 (|has| |#2| (-539)) (|has| |#1| (-358))))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (-12 (|has| |#2| (-894)) (|has| |#1| (-358))))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (-12 (|has| |#2| (-894)) (|has| |#1| (-358))))) (-2270 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-358)))) (-4282 (($ $ (-554)) 126)) (-3919 (((-3 $ "failed") $ $) 116 (|has| |#1| (-546)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-1333 (($ $) 160 (|has| |#1| (-38 (-402 (-554)))))) (-2386 (((-1138 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-554))))) (($ $ (-1158) |#2|) NIL (-12 (|has| |#2| (-508 (-1158) |#2|)) (|has| |#1| (-358)))) (($ $ (-631 (-1158)) (-631 |#2|)) NIL (-12 (|has| |#2| (-508 (-1158) |#2|)) (|has| |#1| (-358)))) (($ $ (-631 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#1| (-358)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#1| (-358)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#1| (-358)))) (($ $ (-631 |#2|) (-631 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#1| (-358))))) (-2072 (((-758) $) NIL (|has| |#1| (-358)))) (-2064 ((|#1| $ (-554)) 91) (($ $ $) 79 (|has| (-554) (-1094))) (($ $ |#2|) NIL (-12 (|has| |#2| (-281 |#2| |#2|)) (|has| |#1| (-358))))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-358)))) (-1553 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-358))) (($ $ (-1 |#2| |#2|) (-758)) NIL (|has| |#1| (-358))) (($ $ (-758)) NIL (-3994 (-12 (|has| |#2| (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $) 137 (-3994 (-12 (|has| |#2| (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-3994 (-12 (|has| |#2| (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158)))))) (($ $ (-1158) (-758)) NIL (-3994 (-12 (|has| |#2| (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158)))))) (($ $ (-631 (-1158))) NIL (-3994 (-12 (|has| |#2| (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158)))))) (($ $ (-1158)) 140 (-3994 (-12 (|has| |#2| (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158))))))) (-3623 (($ $) NIL (|has| |#1| (-358)))) (-2822 ((|#2| $) 152 (|has| |#1| (-358)))) (-3308 (((-554) $) 12)) (-3057 (($ $) 198 (|has| |#1| (-38 (-402 (-554)))))) (-2926 (($ $) 174 (|has| |#1| (-38 (-402 (-554)))))) (-3034 (($ $) 194 (|has| |#1| (-38 (-402 (-554)))))) (-4213 (($ $) 170 (|has| |#1| (-38 (-402 (-554)))))) (-3014 (($ $) 190 (|has| |#1| (-38 (-402 (-554)))))) (-4188 (($ $) 166 (|has| |#1| (-38 (-402 (-554)))))) (-2927 (((-221) $) NIL (-12 (|has| |#2| (-1007)) (|has| |#1| (-358)))) (((-374) $) NIL (-12 (|has| |#2| (-1007)) (|has| |#1| (-358)))) (((-530) $) NIL (-12 (|has| |#2| (-602 (-530))) (|has| |#1| (-358)))) (((-877 (-374)) $) NIL (-12 (|has| |#2| (-602 (-877 (-374)))) (|has| |#1| (-358)))) (((-877 (-554)) $) NIL (-12 (|has| |#2| (-602 (-877 (-554)))) (|has| |#1| (-358))))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-894)) (|has| |#1| (-358))))) (-1300 (($ $) 124)) (-3075 (((-848) $) 245) (($ (-554)) 23) (($ |#1|) 21 (|has| |#1| (-170))) (($ |#2|) 20) (($ (-1158)) NIL (-12 (|has| |#2| (-1023 (-1158))) (|has| |#1| (-358)))) (($ (-402 (-554))) 155 (|has| |#1| (-38 (-402 (-554))))) (($ $) NIL (|has| |#1| (-546)))) (-1779 ((|#1| $ (-554)) 74)) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| |#2| (-894)) (|has| |#1| (-358))) (-12 (|has| |#2| (-143)) (|has| |#1| (-358))) (|has| |#1| (-143))))) (-2261 (((-758)) 142)) (-1608 ((|#1| $) 90)) (-2755 ((|#2| $) NIL (-12 (|has| |#2| (-539)) (|has| |#1| (-358))))) (-3096 (($ $) 204 (|has| |#1| (-38 (-402 (-554)))))) (-2959 (($ $) 180 (|has| |#1| (-38 (-402 (-554)))))) (-1909 (((-112) $ $) NIL (|has| |#1| (-546)))) (-3069 (($ $) 200 (|has| |#1| (-38 (-402 (-554)))))) (-2938 (($ $) 176 (|has| |#1| (-38 (-402 (-554)))))) (-3120 (($ $) 208 (|has| |#1| (-38 (-402 (-554)))))) (-2981 (($ $) 184 (|has| |#1| (-38 (-402 (-554)))))) (-4333 ((|#1| $ (-554)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-554)))) (|has| |#1| (-15 -3075 (|#1| (-1158))))))) (-2908 (($ $) 210 (|has| |#1| (-38 (-402 (-554)))))) (-2991 (($ $) 186 (|has| |#1| (-38 (-402 (-554)))))) (-3108 (($ $) 206 (|has| |#1| (-38 (-402 (-554)))))) (-2969 (($ $) 182 (|has| |#1| (-38 (-402 (-554)))))) (-3083 (($ $) 202 (|has| |#1| (-38 (-402 (-554)))))) (-2948 (($ $) 178 (|has| |#1| (-38 (-402 (-554)))))) (-1700 (($ $) NIL (-12 (|has| |#2| (-807)) (|has| |#1| (-358))))) (-2004 (($) 13 T CONST)) (-2014 (($) 17 T CONST)) (-1787 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-358))) (($ $ (-1 |#2| |#2|) (-758)) NIL (|has| |#1| (-358))) (($ $ (-758)) NIL (-3994 (-12 (|has| |#2| (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $) NIL (-3994 (-12 (|has| |#2| (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-3994 (-12 (|has| |#2| (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158)))))) (($ $ (-1158) (-758)) NIL (-3994 (-12 (|has| |#2| (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158)))))) (($ $ (-631 (-1158))) NIL (-3994 (-12 (|has| |#2| (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158)))))) (($ $ (-1158)) NIL (-3994 (-12 (|has| |#2| (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158))))))) (-1708 (((-112) $ $) NIL (-12 (|has| |#2| (-836)) (|has| |#1| (-358))))) (-1686 (((-112) $ $) NIL (-12 (|has| |#2| (-836)) (|has| |#1| (-358))))) (-1658 (((-112) $ $) 63)) (-1697 (((-112) $ $) NIL (-12 (|has| |#2| (-836)) (|has| |#1| (-358))))) (-1676 (((-112) $ $) NIL (-12 (|has| |#2| (-836)) (|has| |#1| (-358))))) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) 149 (|has| |#1| (-358))) (($ |#2| |#2|) 150 (|has| |#1| (-358)))) (-1744 (($ $) 213) (($ $ $) 68)) (-1735 (($ $ $) 66)) (** (($ $ (-906)) NIL) (($ $ (-758)) 73) (($ $ (-554)) 146 (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) 158 (|has| |#1| (-38 (-402 (-554)))))) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-358))) (($ |#2| $) 147 (|has| |#1| (-358))) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554)))))))
-(((-1204 |#1| |#2|) (-1203 |#1| |#2|) (-1034) (-1232 |#1|)) (T -1204))
-NIL
-(-1203 |#1| |#2|)
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-3831 (((-1233 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-302)) (|has| |#1| (-358))))) (-2405 (((-631 (-1064)) $) NIL)) (-1576 (((-1158) $) 10)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1233 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))) (|has| |#1| (-546))))) (-1976 (($ $) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1233 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))) (|has| |#1| (-546))))) (-1363 (((-112) $) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1233 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))) (|has| |#1| (-546))))) (-1557 (($ $ (-554)) NIL) (($ $ (-554) (-554)) NIL)) (-3042 (((-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|))) $) NIL)) (-2216 (((-1233 |#1| |#2| |#3|) $) NIL)) (-1949 (((-3 (-1233 |#1| |#2| |#3|) "failed") $) NIL)) (-2444 (((-1233 |#1| |#2| |#3|) $) NIL)) (-3023 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4200 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))))) (-3278 (($ $) NIL (|has| |#1| (-358)))) (-1565 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2282 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))))) (-2286 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3003 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4177 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4219 (((-554) $) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))))) (-4175 (($ (-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|)))) NIL)) (-3046 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2916 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-1233 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1158) "failed") $) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-1023 (-1158))) (|has| |#1| (-358)))) (((-3 (-402 (-554)) "failed") $) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-1023 (-554))) (|has| |#1| (-358)))) (((-3 (-554) "failed") $) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-1023 (-554))) (|has| |#1| (-358))))) (-1668 (((-1233 |#1| |#2| |#3|) $) NIL) (((-1158) $) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-1023 (-1158))) (|has| |#1| (-358)))) (((-402 (-554)) $) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-1023 (-554))) (|has| |#1| (-358)))) (((-554) $) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-1023 (-554))) (|has| |#1| (-358))))) (-1749 (($ $) NIL) (($ (-554) $) NIL)) (-3964 (($ $ $) NIL (|has| |#1| (-358)))) (-2550 (($ $) NIL)) (-3699 (((-675 (-1233 |#1| |#2| |#3|)) (-675 $)) NIL (|has| |#1| (-358))) (((-2 (|:| -2866 (-675 (-1233 |#1| |#2| |#3|))) (|:| |vec| (-1241 (-1233 |#1| |#2| |#3|)))) (-675 $) (-1241 $)) NIL (|has| |#1| (-358))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-627 (-554))) (|has| |#1| (-358)))) (((-675 (-554)) (-675 $)) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-627 (-554))) (|has| |#1| (-358))))) (-1320 (((-3 $ "failed") $) NIL)) (-3016 (((-402 (-937 |#1|)) $ (-554)) NIL (|has| |#1| (-546))) (((-402 (-937 |#1|)) $ (-554) (-554)) NIL (|has| |#1| (-546)))) (-3353 (($) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-539)) (|has| |#1| (-358))))) (-3943 (($ $ $) NIL (|has| |#1| (-358)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL (|has| |#1| (-358)))) (-3289 (((-112) $) NIL (|has| |#1| (-358)))) (-2745 (((-112) $) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))))) (-2051 (((-112) $) NIL)) (-2844 (($) NIL (|has| |#1| (-38 (-402 (-554)))))) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-871 (-374))) (|has| |#1| (-358)))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-871 (-554))) (|has| |#1| (-358))))) (-2342 (((-554) $) NIL) (((-554) $ (-554)) NIL)) (-3248 (((-112) $) NIL)) (-3472 (($ $) NIL (|has| |#1| (-358)))) (-2810 (((-1233 |#1| |#2| |#3|) $) NIL (|has| |#1| (-358)))) (-3734 (($ $ (-554)) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3339 (((-3 $ "failed") $) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-1133)) (|has| |#1| (-358))))) (-4304 (((-112) $) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))))) (-3333 (($ $ (-906)) NIL)) (-1310 (($ (-1 |#1| (-554)) $) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-3580 (((-112) $) NIL)) (-2383 (($ |#1| (-554)) 17) (($ $ (-1064) (-554)) NIL) (($ $ (-631 (-1064)) (-631 (-554))) NIL)) (-4223 (($ $ $) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1233 |#1| |#2| |#3|) (-836)) (|has| |#1| (-358)))))) (-2706 (($ $ $) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1233 |#1| |#2| |#3|) (-836)) (|has| |#1| (-358)))))) (-2879 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1233 |#1| |#2| |#3|) (-1233 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-358)))) (-2395 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2518 (($ $) NIL)) (-2530 ((|#1| $) NIL)) (-2475 (($ (-631 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-2454 (($ (-554) (-1233 |#1| |#2| |#3|)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL (|has| |#1| (-358)))) (-2279 (($ $) 25 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-1158)) NIL (-3994 (-12 (|has| |#1| (-15 -2279 (|#1| |#1| (-1158)))) (|has| |#1| (-15 -2405 ((-631 (-1158)) |#1|))) (|has| |#1| (-38 (-402 (-554))))) (-12 (|has| |#1| (-29 (-554))) (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-944)) (|has| |#1| (-1180))))) (($ $ (-1237 |#2|)) 26 (|has| |#1| (-38 (-402 (-554)))))) (-3834 (($) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-1133)) (|has| |#1| (-358))) CONST)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#1| (-358)))) (-2510 (($ (-631 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-3722 (($ $) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-302)) (|has| |#1| (-358))))) (-4339 (((-1233 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-539)) (|has| |#1| (-358))))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))))) (-2270 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-358)))) (-4282 (($ $ (-554)) NIL)) (-3919 (((-3 $ "failed") $ $) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1233 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))) (|has| |#1| (-546))))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-1333 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2386 (((-1138 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-554))))) (($ $ (-1158) (-1233 |#1| |#2| |#3|)) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-508 (-1158) (-1233 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-631 (-1158)) (-631 (-1233 |#1| |#2| |#3|))) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-508 (-1158) (-1233 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-631 (-289 (-1233 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-304 (-1233 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-289 (-1233 |#1| |#2| |#3|))) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-304 (-1233 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-1233 |#1| |#2| |#3|) (-1233 |#1| |#2| |#3|)) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-304 (-1233 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-631 (-1233 |#1| |#2| |#3|)) (-631 (-1233 |#1| |#2| |#3|))) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-304 (-1233 |#1| |#2| |#3|))) (|has| |#1| (-358))))) (-2072 (((-758) $) NIL (|has| |#1| (-358)))) (-2064 ((|#1| $ (-554)) NIL) (($ $ $) NIL (|has| (-554) (-1094))) (($ $ (-1233 |#1| |#2| |#3|)) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-281 (-1233 |#1| |#2| |#3|) (-1233 |#1| |#2| |#3|))) (|has| |#1| (-358))))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-358)))) (-1553 (($ $ (-1 (-1233 |#1| |#2| |#3|) (-1233 |#1| |#2| |#3|))) NIL (|has| |#1| (-358))) (($ $ (-1 (-1233 |#1| |#2| |#3|) (-1233 |#1| |#2| |#3|)) (-758)) NIL (|has| |#1| (-358))) (($ $ (-1237 |#2|)) 24) (($ $ (-758)) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $) 23 (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158)))))) (($ $ (-1158) (-758)) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158)))))) (($ $ (-631 (-1158))) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158)))))) (($ $ (-1158)) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158))))))) (-3623 (($ $) NIL (|has| |#1| (-358)))) (-2822 (((-1233 |#1| |#2| |#3|) $) NIL (|has| |#1| (-358)))) (-3308 (((-554) $) NIL)) (-3057 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2926 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3034 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4213 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3014 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4188 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2927 (((-530) $) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-602 (-530))) (|has| |#1| (-358)))) (((-374) $) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-1007)) (|has| |#1| (-358)))) (((-221) $) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-1007)) (|has| |#1| (-358)))) (((-877 (-374)) $) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-602 (-877 (-374)))) (|has| |#1| (-358)))) (((-877 (-554)) $) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-602 (-877 (-554)))) (|has| |#1| (-358))))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| (-1233 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))))) (-1300 (($ $) NIL)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1233 |#1| |#2| |#3|)) NIL) (($ (-1237 |#2|)) 22) (($ (-1158)) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-1023 (-1158))) (|has| |#1| (-358)))) (($ $) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1233 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))) (|has| |#1| (-546)))) (($ (-402 (-554))) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-1023 (-554))) (|has| |#1| (-358))) (|has| |#1| (-38 (-402 (-554))))))) (-1779 ((|#1| $ (-554)) NIL)) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| (-1233 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))) (-12 (|has| (-1233 |#1| |#2| |#3|) (-143)) (|has| |#1| (-358))) (|has| |#1| (-143))))) (-2261 (((-758)) NIL)) (-1608 ((|#1| $) 11)) (-2755 (((-1233 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-539)) (|has| |#1| (-358))))) (-3096 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2959 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-1909 (((-112) $ $) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1233 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))) (|has| |#1| (-546))))) (-3069 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2938 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3120 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2981 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4333 ((|#1| $ (-554)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-554)))) (|has| |#1| (-15 -3075 (|#1| (-1158))))))) (-2908 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2991 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3108 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2969 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3083 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2948 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-1700 (($ $) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))))) (-2004 (($) 19 T CONST)) (-2014 (($) 15 T CONST)) (-1787 (($ $ (-1 (-1233 |#1| |#2| |#3|) (-1233 |#1| |#2| |#3|))) NIL (|has| |#1| (-358))) (($ $ (-1 (-1233 |#1| |#2| |#3|) (-1233 |#1| |#2| |#3|)) (-758)) NIL (|has| |#1| (-358))) (($ $ (-758)) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158)))))) (($ $ (-1158) (-758)) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158)))))) (($ $ (-631 (-1158))) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158)))))) (($ $ (-1158)) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158))))))) (-1708 (((-112) $ $) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1233 |#1| |#2| |#3|) (-836)) (|has| |#1| (-358)))))) (-1686 (((-112) $ $) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1233 |#1| |#2| |#3|) (-836)) (|has| |#1| (-358)))))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1233 |#1| |#2| |#3|) (-836)) (|has| |#1| (-358)))))) (-1676 (((-112) $ $) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1233 |#1| |#2| |#3|) (-836)) (|has| |#1| (-358)))))) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358))) (($ (-1233 |#1| |#2| |#3|) (-1233 |#1| |#2| |#3|)) NIL (|has| |#1| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) 20)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554)))))) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1233 |#1| |#2| |#3|)) NIL (|has| |#1| (-358))) (($ (-1233 |#1| |#2| |#3|) $) NIL (|has| |#1| (-358))) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554)))))))
-(((-1205 |#1| |#2| |#3|) (-13 (-1203 |#1| (-1233 |#1| |#2| |#3|)) (-10 -8 (-15 -3075 ($ (-1237 |#2|))) (-15 -1553 ($ $ (-1237 |#2|))) (IF (|has| |#1| (-38 (-402 (-554)))) (-15 -2279 ($ $ (-1237 |#2|))) |%noBranch|))) (-1034) (-1158) |#1|) (T -1205))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1205 *3 *4 *5)) (-4 *3 (-1034)) (-14 *5 *3))) (-1553 (*1 *1 *1 *2) (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1205 *3 *4 *5)) (-4 *3 (-1034)) (-14 *5 *3))) (-2279 (*1 *1 *1 *2) (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1205 *3 *4 *5)) (-4 *3 (-38 (-402 (-554)))) (-4 *3 (-1034)) (-14 *5 *3))))
-(-13 (-1203 |#1| (-1233 |#1| |#2| |#3|)) (-10 -8 (-15 -3075 ($ (-1237 |#2|))) (-15 -1553 ($ $ (-1237 |#2|))) (IF (|has| |#1| (-38 (-402 (-554)))) (-15 -2279 ($ $ (-1237 |#2|))) |%noBranch|)))
-((-3938 (((-2 (|:| |contp| (-554)) (|:| -2316 (-631 (-2 (|:| |irr| |#1|) (|:| -4218 (-554)))))) |#1| (-112)) 12)) (-4091 (((-413 |#1|) |#1|) 22)) (-2270 (((-413 |#1|) |#1|) 21)))
-(((-1206 |#1|) (-10 -7 (-15 -2270 ((-413 |#1|) |#1|)) (-15 -4091 ((-413 |#1|) |#1|)) (-15 -3938 ((-2 (|:| |contp| (-554)) (|:| -2316 (-631 (-2 (|:| |irr| |#1|) (|:| -4218 (-554)))))) |#1| (-112)))) (-1217 (-554))) (T -1206))
-((-3938 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-554)) (|:| -2316 (-631 (-2 (|:| |irr| *3) (|:| -4218 (-554))))))) (-5 *1 (-1206 *3)) (-4 *3 (-1217 (-554))))) (-4091 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-1206 *3)) (-4 *3 (-1217 (-554))))) (-2270 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-1206 *3)) (-4 *3 (-1217 (-554))))))
-(-10 -7 (-15 -2270 ((-413 |#1|) |#1|)) (-15 -4091 ((-413 |#1|) |#1|)) (-15 -3938 ((-2 (|:| |contp| (-554)) (|:| -2316 (-631 (-2 (|:| |irr| |#1|) (|:| -4218 (-554)))))) |#1| (-112))))
-((-2879 (((-1138 |#2|) (-1 |#2| |#1|) (-1208 |#1|)) 23 (|has| |#1| (-834))) (((-1208 |#2|) (-1 |#2| |#1|) (-1208 |#1|)) 17)))
-(((-1207 |#1| |#2|) (-10 -7 (-15 -2879 ((-1208 |#2|) (-1 |#2| |#1|) (-1208 |#1|))) (IF (|has| |#1| (-834)) (-15 -2879 ((-1138 |#2|) (-1 |#2| |#1|) (-1208 |#1|))) |%noBranch|)) (-1195) (-1195)) (T -1207))
-((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1208 *5)) (-4 *5 (-834)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-1138 *6)) (-5 *1 (-1207 *5 *6)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1208 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-1208 *6)) (-5 *1 (-1207 *5 *6)))))
-(-10 -7 (-15 -2879 ((-1208 |#2|) (-1 |#2| |#1|) (-1208 |#1|))) (IF (|has| |#1| (-834)) (-15 -2879 ((-1138 |#2|) (-1 |#2| |#1|) (-1208 |#1|))) |%noBranch|))
-((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2063 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-2879 (((-1138 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-834)))) (-3633 ((|#1| $) 14)) (-4173 ((|#1| $) 10)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-4196 (((-554) $) 18)) (-2786 ((|#1| $) 17)) (-4209 ((|#1| $) 11)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-3780 (((-112) $) 16)) (-1845 (((-1138 |#1|) $) 38 (|has| |#1| (-834))) (((-1138 |#1|) (-631 $)) 37 (|has| |#1| (-834)))) (-2927 (($ |#1|) 25)) (-3075 (($ (-1076 |#1|)) 24) (((-848) $) 34 (|has| |#1| (-1082)))) (-4268 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-1447 (($ $ (-554)) 13)) (-1658 (((-112) $ $) 27 (|has| |#1| (-1082)))))
-(((-1208 |#1|) (-13 (-1075 |#1|) (-10 -8 (-15 -4268 ($ |#1|)) (-15 -2063 ($ |#1|)) (-15 -3075 ($ (-1076 |#1|))) (-15 -3780 ((-112) $)) (IF (|has| |#1| (-1082)) (-6 (-1082)) |%noBranch|) (IF (|has| |#1| (-834)) (-6 (-1077 |#1| (-1138 |#1|))) |%noBranch|))) (-1195)) (T -1208))
-((-4268 (*1 *1 *2) (-12 (-5 *1 (-1208 *2)) (-4 *2 (-1195)))) (-2063 (*1 *1 *2) (-12 (-5 *1 (-1208 *2)) (-4 *2 (-1195)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-1195)) (-5 *1 (-1208 *3)))) (-3780 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1208 *3)) (-4 *3 (-1195)))))
-(-13 (-1075 |#1|) (-10 -8 (-15 -4268 ($ |#1|)) (-15 -2063 ($ |#1|)) (-15 -3075 ($ (-1076 |#1|))) (-15 -3780 ((-112) $)) (IF (|has| |#1| (-1082)) (-6 (-1082)) |%noBranch|) (IF (|has| |#1| (-834)) (-6 (-1077 |#1| (-1138 |#1|))) |%noBranch|)))
-((-2879 (((-1214 |#3| |#4|) (-1 |#4| |#2|) (-1214 |#1| |#2|)) 15)))
-(((-1209 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2879 ((-1214 |#3| |#4|) (-1 |#4| |#2|) (-1214 |#1| |#2|)))) (-1158) (-1034) (-1158) (-1034)) (T -1209))
-((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1214 *5 *6)) (-14 *5 (-1158)) (-4 *6 (-1034)) (-4 *8 (-1034)) (-5 *2 (-1214 *7 *8)) (-5 *1 (-1209 *5 *6 *7 *8)) (-14 *7 (-1158)))))
-(-10 -7 (-15 -2879 ((-1214 |#3| |#4|) (-1 |#4| |#2|) (-1214 |#1| |#2|))))
-((-2037 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-2715 ((|#1| |#3|) 13)) (-1770 ((|#3| |#3|) 19)))
-(((-1210 |#1| |#2| |#3|) (-10 -7 (-15 -2715 (|#1| |#3|)) (-15 -1770 (|#3| |#3|)) (-15 -2037 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-546) (-977 |#1|) (-1217 |#2|)) (T -1210))
-((-2037 (*1 *2 *3) (-12 (-4 *4 (-546)) (-4 *5 (-977 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1210 *4 *5 *3)) (-4 *3 (-1217 *5)))) (-1770 (*1 *2 *2) (-12 (-4 *3 (-546)) (-4 *4 (-977 *3)) (-5 *1 (-1210 *3 *4 *2)) (-4 *2 (-1217 *4)))) (-2715 (*1 *2 *3) (-12 (-4 *4 (-977 *2)) (-4 *2 (-546)) (-5 *1 (-1210 *2 *4 *3)) (-4 *3 (-1217 *4)))))
-(-10 -7 (-15 -2715 (|#1| |#3|)) (-15 -1770 (|#3| |#3|)) (-15 -2037 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-2634 (((-3 |#2| "failed") |#2| (-758) |#1|) 29)) (-1379 (((-3 |#2| "failed") |#2| (-758)) 30)) (-2651 (((-3 (-2 (|:| -3311 |#2|) (|:| -3324 |#2|)) "failed") |#2|) 43)) (-3436 (((-631 |#2|) |#2|) 45)) (-1517 (((-3 |#2| "failed") |#2| |#2|) 40)))
-(((-1211 |#1| |#2|) (-10 -7 (-15 -1379 ((-3 |#2| "failed") |#2| (-758))) (-15 -2634 ((-3 |#2| "failed") |#2| (-758) |#1|)) (-15 -1517 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2651 ((-3 (-2 (|:| -3311 |#2|) (|:| -3324 |#2|)) "failed") |#2|)) (-15 -3436 ((-631 |#2|) |#2|))) (-13 (-546) (-145)) (-1217 |#1|)) (T -1211))
-((-3436 (*1 *2 *3) (-12 (-4 *4 (-13 (-546) (-145))) (-5 *2 (-631 *3)) (-5 *1 (-1211 *4 *3)) (-4 *3 (-1217 *4)))) (-2651 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-546) (-145))) (-5 *2 (-2 (|:| -3311 *3) (|:| -3324 *3))) (-5 *1 (-1211 *4 *3)) (-4 *3 (-1217 *4)))) (-1517 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-546) (-145))) (-5 *1 (-1211 *3 *2)) (-4 *2 (-1217 *3)))) (-2634 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-758)) (-4 *4 (-13 (-546) (-145))) (-5 *1 (-1211 *4 *2)) (-4 *2 (-1217 *4)))) (-1379 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-758)) (-4 *4 (-13 (-546) (-145))) (-5 *1 (-1211 *4 *2)) (-4 *2 (-1217 *4)))))
-(-10 -7 (-15 -1379 ((-3 |#2| "failed") |#2| (-758))) (-15 -2634 ((-3 |#2| "failed") |#2| (-758) |#1|)) (-15 -1517 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2651 ((-3 (-2 (|:| -3311 |#2|) (|:| -3324 |#2|)) "failed") |#2|)) (-15 -3436 ((-631 |#2|) |#2|)))
-((-2491 (((-3 (-2 (|:| -2325 |#2|) (|:| -2423 |#2|)) "failed") |#2| |#2|) 32)))
-(((-1212 |#1| |#2|) (-10 -7 (-15 -2491 ((-3 (-2 (|:| -2325 |#2|) (|:| -2423 |#2|)) "failed") |#2| |#2|))) (-546) (-1217 |#1|)) (T -1212))
-((-2491 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-546)) (-5 *2 (-2 (|:| -2325 *3) (|:| -2423 *3))) (-5 *1 (-1212 *4 *3)) (-4 *3 (-1217 *4)))))
-(-10 -7 (-15 -2491 ((-3 (-2 (|:| -2325 |#2|) (|:| -2423 |#2|)) "failed") |#2| |#2|)))
-((-3266 ((|#2| |#2| |#2|) 19)) (-3592 ((|#2| |#2| |#2|) 30)) (-2965 ((|#2| |#2| |#2| (-758) (-758)) 36)))
-(((-1213 |#1| |#2|) (-10 -7 (-15 -3266 (|#2| |#2| |#2|)) (-15 -3592 (|#2| |#2| |#2|)) (-15 -2965 (|#2| |#2| |#2| (-758) (-758)))) (-1034) (-1217 |#1|)) (T -1213))
-((-2965 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-758)) (-4 *4 (-1034)) (-5 *1 (-1213 *4 *2)) (-4 *2 (-1217 *4)))) (-3592 (*1 *2 *2 *2) (-12 (-4 *3 (-1034)) (-5 *1 (-1213 *3 *2)) (-4 *2 (-1217 *3)))) (-3266 (*1 *2 *2 *2) (-12 (-4 *3 (-1034)) (-5 *1 (-1213 *3 *2)) (-4 *2 (-1217 *3)))))
-(-10 -7 (-15 -3266 (|#2| |#2| |#2|)) (-15 -3592 (|#2| |#2| |#2|)) (-15 -2965 (|#2| |#2| |#2| (-758) (-758))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2481 (((-1241 |#2|) $ (-758)) NIL)) (-2405 (((-631 (-1064)) $) NIL)) (-1991 (($ (-1154 |#2|)) NIL)) (-2237 (((-1154 $) $ (-1064)) NIL) (((-1154 |#2|) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#2| (-546)))) (-1976 (($ $) NIL (|has| |#2| (-546)))) (-1363 (((-112) $) NIL (|has| |#2| (-546)))) (-3785 (((-758) $) NIL) (((-758) $ (-631 (-1064))) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4286 (($ $ $) NIL (|has| |#2| (-546)))) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-3278 (($ $) NIL (|has| |#2| (-446)))) (-1565 (((-413 $) $) NIL (|has| |#2| (-446)))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-2286 (((-112) $ $) NIL (|has| |#2| (-358)))) (-1470 (($ $ (-758)) NIL)) (-3867 (($ $ (-758)) NIL)) (-4022 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-446)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#2| "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#2| (-1023 (-402 (-554))))) (((-3 (-554) "failed") $) NIL (|has| |#2| (-1023 (-554)))) (((-3 (-1064) "failed") $) NIL)) (-1668 ((|#2| $) NIL) (((-402 (-554)) $) NIL (|has| |#2| (-1023 (-402 (-554))))) (((-554) $) NIL (|has| |#2| (-1023 (-554)))) (((-1064) $) NIL)) (-2999 (($ $ $ (-1064)) NIL (|has| |#2| (-170))) ((|#2| $ $) NIL (|has| |#2| (-170)))) (-3964 (($ $ $) NIL (|has| |#2| (-358)))) (-2550 (($ $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| |#2| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| |#2| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 $) (-1241 $)) NIL) (((-675 |#2|) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3943 (($ $ $) NIL (|has| |#2| (-358)))) (-3639 (($ $ $) NIL)) (-2489 (($ $ $) NIL (|has| |#2| (-546)))) (-1680 (((-2 (|:| -1490 |#2|) (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#2| (-546)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL (|has| |#2| (-358)))) (-2048 (($ $) NIL (|has| |#2| (-446))) (($ $ (-1064)) NIL (|has| |#2| (-446)))) (-2540 (((-631 $) $) NIL)) (-3289 (((-112) $) NIL (|has| |#2| (-894)))) (-1344 (($ $ |#2| (-758) $) NIL)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (-12 (|has| (-1064) (-871 (-374))) (|has| |#2| (-871 (-374))))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (-12 (|has| (-1064) (-871 (-554))) (|has| |#2| (-871 (-554)))))) (-2342 (((-758) $ $) NIL (|has| |#2| (-546)))) (-3248 (((-112) $) NIL)) (-2122 (((-758) $) NIL)) (-3339 (((-3 $ "failed") $) NIL (|has| |#2| (-1133)))) (-2393 (($ (-1154 |#2|) (-1064)) NIL) (($ (-1154 $) (-1064)) NIL)) (-3333 (($ $ (-758)) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#2| (-358)))) (-3910 (((-631 $) $) NIL)) (-3580 (((-112) $) NIL)) (-2383 (($ |#2| (-758)) 17) (($ $ (-1064) (-758)) NIL) (($ $ (-631 (-1064)) (-631 (-758))) NIL)) (-4014 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $ (-1064)) NIL) (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-3893 (((-758) $) NIL) (((-758) $ (-1064)) NIL) (((-631 (-758)) $ (-631 (-1064))) NIL)) (-4223 (($ $ $) NIL (|has| |#2| (-836)))) (-2706 (($ $ $) NIL (|has| |#2| (-836)))) (-2789 (($ (-1 (-758) (-758)) $) NIL)) (-2879 (($ (-1 |#2| |#2|) $) NIL)) (-2964 (((-1154 |#2|) $) NIL)) (-3277 (((-3 (-1064) "failed") $) NIL)) (-2518 (($ $) NIL)) (-2530 ((|#2| $) NIL)) (-2475 (($ (-631 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-1613 (((-1140) $) NIL)) (-2162 (((-2 (|:| -2325 $) (|:| -2423 $)) $ (-758)) NIL)) (-3778 (((-3 (-631 $) "failed") $) NIL)) (-2433 (((-3 (-631 $) "failed") $) NIL)) (-3160 (((-3 (-2 (|:| |var| (-1064)) (|:| -1407 (-758))) "failed") $) NIL)) (-2279 (($ $) NIL (|has| |#2| (-38 (-402 (-554)))))) (-3834 (($) NIL (|has| |#2| (-1133)) CONST)) (-2768 (((-1102) $) NIL)) (-2492 (((-112) $) NIL)) (-2505 ((|#2| $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#2| (-446)))) (-2510 (($ (-631 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-2034 (($ $ (-758) |#2| $) NIL)) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-2270 (((-413 $) $) NIL (|has| |#2| (-894)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#2| (-358)))) (-3919 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-546))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-546)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#2| (-358)))) (-2386 (($ $ (-631 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ (-1064) |#2|) NIL) (($ $ (-631 (-1064)) (-631 |#2|)) NIL) (($ $ (-1064) $) NIL) (($ $ (-631 (-1064)) (-631 $)) NIL)) (-2072 (((-758) $) NIL (|has| |#2| (-358)))) (-2064 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-402 $) (-402 $) (-402 $)) NIL (|has| |#2| (-546))) ((|#2| (-402 $) |#2|) NIL (|has| |#2| (-358))) (((-402 $) $ (-402 $)) NIL (|has| |#2| (-546)))) (-2734 (((-3 $ "failed") $ (-758)) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#2| (-358)))) (-1495 (($ $ (-1064)) NIL (|has| |#2| (-170))) ((|#2| $) NIL (|has| |#2| (-170)))) (-1553 (($ $ (-1064)) NIL) (($ $ (-631 (-1064))) NIL) (($ $ (-1064) (-758)) NIL) (($ $ (-631 (-1064)) (-631 (-758))) NIL) (($ $ (-758)) NIL) (($ $) NIL) (($ $ (-1158)) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-1 |#2| |#2|) (-758)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-3308 (((-758) $) NIL) (((-758) $ (-1064)) NIL) (((-631 (-758)) $ (-631 (-1064))) NIL)) (-2927 (((-877 (-374)) $) NIL (-12 (|has| (-1064) (-602 (-877 (-374)))) (|has| |#2| (-602 (-877 (-374)))))) (((-877 (-554)) $) NIL (-12 (|has| (-1064) (-602 (-877 (-554)))) (|has| |#2| (-602 (-877 (-554)))))) (((-530) $) NIL (-12 (|has| (-1064) (-602 (-530))) (|has| |#2| (-602 (-530)))))) (-3276 ((|#2| $) NIL (|has| |#2| (-446))) (($ $ (-1064)) NIL (|has| |#2| (-446)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-894))))) (-2903 (((-3 $ "failed") $ $) NIL (|has| |#2| (-546))) (((-3 (-402 $) "failed") (-402 $) $) NIL (|has| |#2| (-546)))) (-3075 (((-848) $) 13) (($ (-554)) NIL) (($ |#2|) NIL) (($ (-1064)) NIL) (($ (-1237 |#1|)) 19) (($ (-402 (-554))) NIL (-3994 (|has| |#2| (-38 (-402 (-554)))) (|has| |#2| (-1023 (-402 (-554)))))) (($ $) NIL (|has| |#2| (-546)))) (-1893 (((-631 |#2|) $) NIL)) (-1779 ((|#2| $ (-758)) NIL) (($ $ (-1064) (-758)) NIL) (($ $ (-631 (-1064)) (-631 (-758))) NIL)) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| |#2| (-894))) (|has| |#2| (-143))))) (-2261 (((-758)) NIL)) (-2907 (($ $ $ (-758)) NIL (|has| |#2| (-170)))) (-1909 (((-112) $ $) NIL (|has| |#2| (-546)))) (-2004 (($) NIL T CONST)) (-2014 (($) 14 T CONST)) (-1787 (($ $ (-1064)) NIL) (($ $ (-631 (-1064))) NIL) (($ $ (-1064) (-758)) NIL) (($ $ (-631 (-1064)) (-631 (-758))) NIL) (($ $ (-758)) NIL) (($ $) NIL) (($ $ (-1158)) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-1 |#2| |#2|) (-758)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1708 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1752 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL (|has| |#2| (-38 (-402 (-554))))) (($ (-402 (-554)) $) NIL (|has| |#2| (-38 (-402 (-554))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-1214 |#1| |#2|) (-13 (-1217 |#2|) (-604 (-1237 |#1|)) (-10 -8 (-15 -2034 ($ $ (-758) |#2| $)))) (-1158) (-1034)) (T -1214))
-((-2034 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-758)) (-5 *1 (-1214 *4 *3)) (-14 *4 (-1158)) (-4 *3 (-1034)))))
-(-13 (-1217 |#2|) (-604 (-1237 |#1|)) (-10 -8 (-15 -2034 ($ $ (-758) |#2| $))))
-((-2879 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
-(((-1215 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2879 (|#4| (-1 |#3| |#1|) |#2|))) (-1034) (-1217 |#1|) (-1034) (-1217 |#3|)) (T -1215))
-((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1034)) (-4 *6 (-1034)) (-4 *2 (-1217 *6)) (-5 *1 (-1215 *5 *4 *6 *2)) (-4 *4 (-1217 *5)))))
-(-10 -7 (-15 -2879 (|#4| (-1 |#3| |#1|) |#2|)))
-((-2481 (((-1241 |#2|) $ (-758)) 114)) (-2405 (((-631 (-1064)) $) 15)) (-1991 (($ (-1154 |#2|)) 67)) (-3785 (((-758) $) NIL) (((-758) $ (-631 (-1064))) 18)) (-4308 (((-413 (-1154 $)) (-1154 $)) 185)) (-3278 (($ $) 175)) (-1565 (((-413 $) $) 173)) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) 82)) (-1470 (($ $ (-758)) 71)) (-3867 (($ $ (-758)) 73)) (-4022 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-2784 (((-3 |#2| "failed") $) 117) (((-3 (-402 (-554)) "failed") $) NIL) (((-3 (-554) "failed") $) NIL) (((-3 (-1064) "failed") $) NIL)) (-1668 ((|#2| $) 115) (((-402 (-554)) $) NIL) (((-554) $) NIL) (((-1064) $) NIL)) (-2489 (($ $ $) 151)) (-1680 (((-2 (|:| -1490 |#2|) (|:| -2325 $) (|:| -2423 $)) $ $) 153)) (-2342 (((-758) $ $) 170)) (-3339 (((-3 $ "failed") $) 123)) (-2383 (($ |#2| (-758)) NIL) (($ $ (-1064) (-758)) 47) (($ $ (-631 (-1064)) (-631 (-758))) NIL)) (-3893 (((-758) $) NIL) (((-758) $ (-1064)) 42) (((-631 (-758)) $ (-631 (-1064))) 43)) (-2964 (((-1154 |#2|) $) 59)) (-3277 (((-3 (-1064) "failed") $) 40)) (-2162 (((-2 (|:| -2325 $) (|:| -2423 $)) $ (-758)) 70)) (-2279 (($ $) 197)) (-3834 (($) 119)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 182)) (-1290 (((-413 (-1154 $)) (-1154 $)) 88)) (-3082 (((-413 (-1154 $)) (-1154 $)) 86)) (-2270 (((-413 $) $) 107)) (-2386 (($ $ (-631 (-289 $))) 39) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ (-1064) |#2|) 31) (($ $ (-631 (-1064)) (-631 |#2|)) 28) (($ $ (-1064) $) 25) (($ $ (-631 (-1064)) (-631 $)) 23)) (-2072 (((-758) $) 188)) (-2064 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-402 $) (-402 $) (-402 $)) 147) ((|#2| (-402 $) |#2|) 187) (((-402 $) $ (-402 $)) 169)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 191)) (-1553 (($ $ (-1064)) 140) (($ $ (-631 (-1064))) NIL) (($ $ (-1064) (-758)) NIL) (($ $ (-631 (-1064)) (-631 (-758))) NIL) (($ $ (-758)) NIL) (($ $) 138) (($ $ (-1158)) NIL) (($ $ (-631 (-1158))) NIL) (($ $ (-1158) (-758)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL) (($ $ (-1 |#2| |#2|) (-758)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-3308 (((-758) $) NIL) (((-758) $ (-1064)) 16) (((-631 (-758)) $ (-631 (-1064))) 20)) (-3276 ((|#2| $) NIL) (($ $ (-1064)) 125)) (-2903 (((-3 $ "failed") $ $) 161) (((-3 (-402 $) "failed") (-402 $) $) 157)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#2|) NIL) (($ (-1064)) 51) (($ (-402 (-554))) NIL) (($ $) NIL)))
-(((-1216 |#1| |#2|) (-10 -8 (-15 -3075 (|#1| |#1|)) (-15 -3077 ((-1154 |#1|) (-1154 |#1|) (-1154 |#1|))) (-15 -1565 ((-413 |#1|) |#1|)) (-15 -3278 (|#1| |#1|)) (-15 -3075 (|#1| (-402 (-554)))) (-15 -3834 (|#1|)) (-15 -3339 ((-3 |#1| "failed") |#1|)) (-15 -2064 ((-402 |#1|) |#1| (-402 |#1|))) (-15 -2072 ((-758) |#1|)) (-15 -2259 ((-2 (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -2279 (|#1| |#1|)) (-15 -2064 (|#2| (-402 |#1|) |#2|)) (-15 -4022 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1680 ((-2 (|:| -1490 |#2|) (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -2489 (|#1| |#1| |#1|)) (-15 -2903 ((-3 (-402 |#1|) "failed") (-402 |#1|) |#1|)) (-15 -2903 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2342 ((-758) |#1| |#1|)) (-15 -2064 ((-402 |#1|) (-402 |#1|) (-402 |#1|))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3867 (|#1| |#1| (-758))) (-15 -1470 (|#1| |#1| (-758))) (-15 -2162 ((-2 (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| (-758))) (-15 -1991 (|#1| (-1154 |#2|))) (-15 -2964 ((-1154 |#2|) |#1|)) (-15 -2481 ((-1241 |#2|) |#1| (-758))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 -1553 (|#1| |#1| (-1158) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)))) (-15 -1553 (|#1| |#1| (-1158))) (-15 -1553 (|#1| |#1|)) (-15 -1553 (|#1| |#1| (-758))) (-15 -2064 (|#1| |#1| |#1|)) (-15 -2064 (|#2| |#1| |#2|)) (-15 -2270 ((-413 |#1|) |#1|)) (-15 -4308 ((-413 (-1154 |#1|)) (-1154 |#1|))) (-15 -3082 ((-413 (-1154 |#1|)) (-1154 |#1|))) (-15 -1290 ((-413 (-1154 |#1|)) (-1154 |#1|))) (-15 -1625 ((-3 (-631 (-1154 |#1|)) "failed") (-631 (-1154 |#1|)) (-1154 |#1|))) (-15 -3276 (|#1| |#1| (-1064))) (-15 -2405 ((-631 (-1064)) |#1|)) (-15 -3785 ((-758) |#1| (-631 (-1064)))) (-15 -3785 ((-758) |#1|)) (-15 -2383 (|#1| |#1| (-631 (-1064)) (-631 (-758)))) (-15 -2383 (|#1| |#1| (-1064) (-758))) (-15 -3893 ((-631 (-758)) |#1| (-631 (-1064)))) (-15 -3893 ((-758) |#1| (-1064))) (-15 -3277 ((-3 (-1064) "failed") |#1|)) (-15 -3308 ((-631 (-758)) |#1| (-631 (-1064)))) (-15 -3308 ((-758) |#1| (-1064))) (-15 -3075 (|#1| (-1064))) (-15 -2784 ((-3 (-1064) "failed") |#1|)) (-15 -1668 ((-1064) |#1|)) (-15 -2386 (|#1| |#1| (-631 (-1064)) (-631 |#1|))) (-15 -2386 (|#1| |#1| (-1064) |#1|)) (-15 -2386 (|#1| |#1| (-631 (-1064)) (-631 |#2|))) (-15 -2386 (|#1| |#1| (-1064) |#2|)) (-15 -2386 (|#1| |#1| (-631 |#1|) (-631 |#1|))) (-15 -2386 (|#1| |#1| |#1| |#1|)) (-15 -2386 (|#1| |#1| (-289 |#1|))) (-15 -2386 (|#1| |#1| (-631 (-289 |#1|)))) (-15 -3308 ((-758) |#1|)) (-15 -2383 (|#1| |#2| (-758))) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -1668 ((-554) |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -3075 (|#1| |#2|)) (-15 -3893 ((-758) |#1|)) (-15 -3276 (|#2| |#1|)) (-15 -1553 (|#1| |#1| (-631 (-1064)) (-631 (-758)))) (-15 -1553 (|#1| |#1| (-1064) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1064)))) (-15 -1553 (|#1| |#1| (-1064))) (-15 -3075 (|#1| (-554))) (-15 -3075 ((-848) |#1|))) (-1217 |#2|) (-1034)) (T -1216))
-NIL
-(-10 -8 (-15 -3075 (|#1| |#1|)) (-15 -3077 ((-1154 |#1|) (-1154 |#1|) (-1154 |#1|))) (-15 -1565 ((-413 |#1|) |#1|)) (-15 -3278 (|#1| |#1|)) (-15 -3075 (|#1| (-402 (-554)))) (-15 -3834 (|#1|)) (-15 -3339 ((-3 |#1| "failed") |#1|)) (-15 -2064 ((-402 |#1|) |#1| (-402 |#1|))) (-15 -2072 ((-758) |#1|)) (-15 -2259 ((-2 (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -2279 (|#1| |#1|)) (-15 -2064 (|#2| (-402 |#1|) |#2|)) (-15 -4022 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1680 ((-2 (|:| -1490 |#2|) (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -2489 (|#1| |#1| |#1|)) (-15 -2903 ((-3 (-402 |#1|) "failed") (-402 |#1|) |#1|)) (-15 -2903 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2342 ((-758) |#1| |#1|)) (-15 -2064 ((-402 |#1|) (-402 |#1|) (-402 |#1|))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3867 (|#1| |#1| (-758))) (-15 -1470 (|#1| |#1| (-758))) (-15 -2162 ((-2 (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| (-758))) (-15 -1991 (|#1| (-1154 |#2|))) (-15 -2964 ((-1154 |#2|) |#1|)) (-15 -2481 ((-1241 |#2|) |#1| (-758))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 -1553 (|#1| |#1| (-1158) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)))) (-15 -1553 (|#1| |#1| (-1158))) (-15 -1553 (|#1| |#1|)) (-15 -1553 (|#1| |#1| (-758))) (-15 -2064 (|#1| |#1| |#1|)) (-15 -2064 (|#2| |#1| |#2|)) (-15 -2270 ((-413 |#1|) |#1|)) (-15 -4308 ((-413 (-1154 |#1|)) (-1154 |#1|))) (-15 -3082 ((-413 (-1154 |#1|)) (-1154 |#1|))) (-15 -1290 ((-413 (-1154 |#1|)) (-1154 |#1|))) (-15 -1625 ((-3 (-631 (-1154 |#1|)) "failed") (-631 (-1154 |#1|)) (-1154 |#1|))) (-15 -3276 (|#1| |#1| (-1064))) (-15 -2405 ((-631 (-1064)) |#1|)) (-15 -3785 ((-758) |#1| (-631 (-1064)))) (-15 -3785 ((-758) |#1|)) (-15 -2383 (|#1| |#1| (-631 (-1064)) (-631 (-758)))) (-15 -2383 (|#1| |#1| (-1064) (-758))) (-15 -3893 ((-631 (-758)) |#1| (-631 (-1064)))) (-15 -3893 ((-758) |#1| (-1064))) (-15 -3277 ((-3 (-1064) "failed") |#1|)) (-15 -3308 ((-631 (-758)) |#1| (-631 (-1064)))) (-15 -3308 ((-758) |#1| (-1064))) (-15 -3075 (|#1| (-1064))) (-15 -2784 ((-3 (-1064) "failed") |#1|)) (-15 -1668 ((-1064) |#1|)) (-15 -2386 (|#1| |#1| (-631 (-1064)) (-631 |#1|))) (-15 -2386 (|#1| |#1| (-1064) |#1|)) (-15 -2386 (|#1| |#1| (-631 (-1064)) (-631 |#2|))) (-15 -2386 (|#1| |#1| (-1064) |#2|)) (-15 -2386 (|#1| |#1| (-631 |#1|) (-631 |#1|))) (-15 -2386 (|#1| |#1| |#1| |#1|)) (-15 -2386 (|#1| |#1| (-289 |#1|))) (-15 -2386 (|#1| |#1| (-631 (-289 |#1|)))) (-15 -3308 ((-758) |#1|)) (-15 -2383 (|#1| |#2| (-758))) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -1668 ((-554) |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -3075 (|#1| |#2|)) (-15 -3893 ((-758) |#1|)) (-15 -3276 (|#2| |#1|)) (-15 -1553 (|#1| |#1| (-631 (-1064)) (-631 (-758)))) (-15 -1553 (|#1| |#1| (-1064) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1064)))) (-15 -1553 (|#1| |#1| (-1064))) (-15 -3075 (|#1| (-554))) (-15 -3075 ((-848) |#1|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2481 (((-1241 |#1|) $ (-758)) 238)) (-2405 (((-631 (-1064)) $) 110)) (-1991 (($ (-1154 |#1|)) 236)) (-2237 (((-1154 $) $ (-1064)) 125) (((-1154 |#1|) $) 124)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 87 (|has| |#1| (-546)))) (-1976 (($ $) 88 (|has| |#1| (-546)))) (-1363 (((-112) $) 90 (|has| |#1| (-546)))) (-3785 (((-758) $) 112) (((-758) $ (-631 (-1064))) 111)) (-2934 (((-3 $ "failed") $ $) 19)) (-4286 (($ $ $) 223 (|has| |#1| (-546)))) (-4308 (((-413 (-1154 $)) (-1154 $)) 100 (|has| |#1| (-894)))) (-3278 (($ $) 98 (|has| |#1| (-446)))) (-1565 (((-413 $) $) 97 (|has| |#1| (-446)))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) 103 (|has| |#1| (-894)))) (-2286 (((-112) $ $) 208 (|has| |#1| (-358)))) (-1470 (($ $ (-758)) 231)) (-3867 (($ $ (-758)) 230)) (-4022 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-446)))) (-4087 (($) 17 T CONST)) (-2784 (((-3 |#1| "failed") $) 164) (((-3 (-402 (-554)) "failed") $) 161 (|has| |#1| (-1023 (-402 (-554))))) (((-3 (-554) "failed") $) 159 (|has| |#1| (-1023 (-554)))) (((-3 (-1064) "failed") $) 136)) (-1668 ((|#1| $) 163) (((-402 (-554)) $) 162 (|has| |#1| (-1023 (-402 (-554))))) (((-554) $) 160 (|has| |#1| (-1023 (-554)))) (((-1064) $) 137)) (-2999 (($ $ $ (-1064)) 108 (|has| |#1| (-170))) ((|#1| $ $) 226 (|has| |#1| (-170)))) (-3964 (($ $ $) 212 (|has| |#1| (-358)))) (-2550 (($ $) 154)) (-3699 (((-675 (-554)) (-675 $)) 134 (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) 133 (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) 132) (((-675 |#1|) (-675 $)) 131)) (-1320 (((-3 $ "failed") $) 33)) (-3943 (($ $ $) 211 (|has| |#1| (-358)))) (-3639 (($ $ $) 229)) (-2489 (($ $ $) 220 (|has| |#1| (-546)))) (-1680 (((-2 (|:| -1490 |#1|) (|:| -2325 $) (|:| -2423 $)) $ $) 219 (|has| |#1| (-546)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 206 (|has| |#1| (-358)))) (-2048 (($ $) 176 (|has| |#1| (-446))) (($ $ (-1064)) 105 (|has| |#1| (-446)))) (-2540 (((-631 $) $) 109)) (-3289 (((-112) $) 96 (|has| |#1| (-894)))) (-1344 (($ $ |#1| (-758) $) 172)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) 84 (-12 (|has| (-1064) (-871 (-374))) (|has| |#1| (-871 (-374))))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) 83 (-12 (|has| (-1064) (-871 (-554))) (|has| |#1| (-871 (-554)))))) (-2342 (((-758) $ $) 224 (|has| |#1| (-546)))) (-3248 (((-112) $) 31)) (-2122 (((-758) $) 169)) (-3339 (((-3 $ "failed") $) 204 (|has| |#1| (-1133)))) (-2393 (($ (-1154 |#1|) (-1064)) 117) (($ (-1154 $) (-1064)) 116)) (-3333 (($ $ (-758)) 235)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 215 (|has| |#1| (-358)))) (-3910 (((-631 $) $) 126)) (-3580 (((-112) $) 152)) (-2383 (($ |#1| (-758)) 153) (($ $ (-1064) (-758)) 119) (($ $ (-631 (-1064)) (-631 (-758))) 118)) (-4014 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $ (-1064)) 120) (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 233)) (-3893 (((-758) $) 170) (((-758) $ (-1064)) 122) (((-631 (-758)) $ (-631 (-1064))) 121)) (-4223 (($ $ $) 79 (|has| |#1| (-836)))) (-2706 (($ $ $) 78 (|has| |#1| (-836)))) (-2789 (($ (-1 (-758) (-758)) $) 171)) (-2879 (($ (-1 |#1| |#1|) $) 151)) (-2964 (((-1154 |#1|) $) 237)) (-3277 (((-3 (-1064) "failed") $) 123)) (-2518 (($ $) 149)) (-2530 ((|#1| $) 148)) (-2475 (($ (-631 $)) 94 (|has| |#1| (-446))) (($ $ $) 93 (|has| |#1| (-446)))) (-1613 (((-1140) $) 9)) (-2162 (((-2 (|:| -2325 $) (|:| -2423 $)) $ (-758)) 232)) (-3778 (((-3 (-631 $) "failed") $) 114)) (-2433 (((-3 (-631 $) "failed") $) 115)) (-3160 (((-3 (-2 (|:| |var| (-1064)) (|:| -1407 (-758))) "failed") $) 113)) (-2279 (($ $) 216 (|has| |#1| (-38 (-402 (-554)))))) (-3834 (($) 203 (|has| |#1| (-1133)) CONST)) (-2768 (((-1102) $) 10)) (-2492 (((-112) $) 166)) (-2505 ((|#1| $) 167)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 95 (|has| |#1| (-446)))) (-2510 (($ (-631 $)) 92 (|has| |#1| (-446))) (($ $ $) 91 (|has| |#1| (-446)))) (-1290 (((-413 (-1154 $)) (-1154 $)) 102 (|has| |#1| (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) 101 (|has| |#1| (-894)))) (-2270 (((-413 $) $) 99 (|has| |#1| (-894)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 213 (|has| |#1| (-358)))) (-3919 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-546))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-546)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 207 (|has| |#1| (-358)))) (-2386 (($ $ (-631 (-289 $))) 145) (($ $ (-289 $)) 144) (($ $ $ $) 143) (($ $ (-631 $) (-631 $)) 142) (($ $ (-1064) |#1|) 141) (($ $ (-631 (-1064)) (-631 |#1|)) 140) (($ $ (-1064) $) 139) (($ $ (-631 (-1064)) (-631 $)) 138)) (-2072 (((-758) $) 209 (|has| |#1| (-358)))) (-2064 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-402 $) (-402 $) (-402 $)) 225 (|has| |#1| (-546))) ((|#1| (-402 $) |#1|) 217 (|has| |#1| (-358))) (((-402 $) $ (-402 $)) 205 (|has| |#1| (-546)))) (-2734 (((-3 $ "failed") $ (-758)) 234)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 210 (|has| |#1| (-358)))) (-1495 (($ $ (-1064)) 107 (|has| |#1| (-170))) ((|#1| $) 227 (|has| |#1| (-170)))) (-1553 (($ $ (-1064)) 42) (($ $ (-631 (-1064))) 41) (($ $ (-1064) (-758)) 40) (($ $ (-631 (-1064)) (-631 (-758))) 39) (($ $ (-758)) 253) (($ $) 251) (($ $ (-1158)) 250 (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) 249 (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) 248 (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) 247 (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-3308 (((-758) $) 150) (((-758) $ (-1064)) 130) (((-631 (-758)) $ (-631 (-1064))) 129)) (-2927 (((-877 (-374)) $) 82 (-12 (|has| (-1064) (-602 (-877 (-374)))) (|has| |#1| (-602 (-877 (-374)))))) (((-877 (-554)) $) 81 (-12 (|has| (-1064) (-602 (-877 (-554)))) (|has| |#1| (-602 (-877 (-554)))))) (((-530) $) 80 (-12 (|has| (-1064) (-602 (-530))) (|has| |#1| (-602 (-530)))))) (-3276 ((|#1| $) 175 (|has| |#1| (-446))) (($ $ (-1064)) 106 (|has| |#1| (-446)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) 104 (-3726 (|has| $ (-143)) (|has| |#1| (-894))))) (-2903 (((-3 $ "failed") $ $) 222 (|has| |#1| (-546))) (((-3 (-402 $) "failed") (-402 $) $) 221 (|has| |#1| (-546)))) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ |#1|) 165) (($ (-1064)) 135) (($ (-402 (-554))) 72 (-3994 (|has| |#1| (-1023 (-402 (-554)))) (|has| |#1| (-38 (-402 (-554)))))) (($ $) 85 (|has| |#1| (-546)))) (-1893 (((-631 |#1|) $) 168)) (-1779 ((|#1| $ (-758)) 155) (($ $ (-1064) (-758)) 128) (($ $ (-631 (-1064)) (-631 (-758))) 127)) (-2084 (((-3 $ "failed") $) 73 (-3994 (-3726 (|has| $ (-143)) (|has| |#1| (-894))) (|has| |#1| (-143))))) (-2261 (((-758)) 28)) (-2907 (($ $ $ (-758)) 173 (|has| |#1| (-170)))) (-1909 (((-112) $ $) 89 (|has| |#1| (-546)))) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($ $ (-1064)) 38) (($ $ (-631 (-1064))) 37) (($ $ (-1064) (-758)) 36) (($ $ (-631 (-1064)) (-631 (-758))) 35) (($ $ (-758)) 254) (($ $) 252) (($ $ (-1158)) 246 (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) 245 (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) 244 (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) 243 (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-1708 (((-112) $ $) 76 (|has| |#1| (-836)))) (-1686 (((-112) $ $) 75 (|has| |#1| (-836)))) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 77 (|has| |#1| (-836)))) (-1676 (((-112) $ $) 74 (|has| |#1| (-836)))) (-1752 (($ $ |#1|) 156 (|has| |#1| (-358)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ (-402 (-554))) 158 (|has| |#1| (-38 (-402 (-554))))) (($ (-402 (-554)) $) 157 (|has| |#1| (-38 (-402 (-554))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
-(((-1217 |#1|) (-138) (-1034)) (T -1217))
-((-2481 (*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-4 *1 (-1217 *4)) (-4 *4 (-1034)) (-5 *2 (-1241 *4)))) (-2964 (*1 *2 *1) (-12 (-4 *1 (-1217 *3)) (-4 *3 (-1034)) (-5 *2 (-1154 *3)))) (-1991 (*1 *1 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-1034)) (-4 *1 (-1217 *3)))) (-3333 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *1 (-1217 *3)) (-4 *3 (-1034)))) (-2734 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-758)) (-4 *1 (-1217 *3)) (-4 *3 (-1034)))) (-4014 (*1 *2 *1 *1) (-12 (-4 *3 (-1034)) (-5 *2 (-2 (|:| -2325 *1) (|:| -2423 *1))) (-4 *1 (-1217 *3)))) (-2162 (*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-4 *4 (-1034)) (-5 *2 (-2 (|:| -2325 *1) (|:| -2423 *1))) (-4 *1 (-1217 *4)))) (-1470 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *1 (-1217 *3)) (-4 *3 (-1034)))) (-3867 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *1 (-1217 *3)) (-4 *3 (-1034)))) (-3639 (*1 *1 *1 *1) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1034)))) (-1553 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1217 *3)) (-4 *3 (-1034)))) (-1495 (*1 *2 *1) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1034)) (-4 *2 (-170)))) (-2999 (*1 *2 *1 *1) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1034)) (-4 *2 (-170)))) (-2064 (*1 *2 *2 *2) (-12 (-5 *2 (-402 *1)) (-4 *1 (-1217 *3)) (-4 *3 (-1034)) (-4 *3 (-546)))) (-2342 (*1 *2 *1 *1) (-12 (-4 *1 (-1217 *3)) (-4 *3 (-1034)) (-4 *3 (-546)) (-5 *2 (-758)))) (-4286 (*1 *1 *1 *1) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1034)) (-4 *2 (-546)))) (-2903 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1217 *2)) (-4 *2 (-1034)) (-4 *2 (-546)))) (-2903 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-402 *1)) (-4 *1 (-1217 *3)) (-4 *3 (-1034)) (-4 *3 (-546)))) (-2489 (*1 *1 *1 *1) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1034)) (-4 *2 (-546)))) (-1680 (*1 *2 *1 *1) (-12 (-4 *3 (-546)) (-4 *3 (-1034)) (-5 *2 (-2 (|:| -1490 *3) (|:| -2325 *1) (|:| -2423 *1))) (-4 *1 (-1217 *3)))) (-4022 (*1 *2 *1 *1) (-12 (-4 *3 (-446)) (-4 *3 (-1034)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1217 *3)))) (-2064 (*1 *2 *3 *2) (-12 (-5 *3 (-402 *1)) (-4 *1 (-1217 *2)) (-4 *2 (-1034)) (-4 *2 (-358)))) (-2279 (*1 *1 *1) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1034)) (-4 *2 (-38 (-402 (-554)))))))
-(-13 (-934 |t#1| (-758) (-1064)) (-281 |t#1| |t#1|) (-281 $ $) (-229) (-227 |t#1|) (-10 -8 (-15 -2481 ((-1241 |t#1|) $ (-758))) (-15 -2964 ((-1154 |t#1|) $)) (-15 -1991 ($ (-1154 |t#1|))) (-15 -3333 ($ $ (-758))) (-15 -2734 ((-3 $ "failed") $ (-758))) (-15 -4014 ((-2 (|:| -2325 $) (|:| -2423 $)) $ $)) (-15 -2162 ((-2 (|:| -2325 $) (|:| -2423 $)) $ (-758))) (-15 -1470 ($ $ (-758))) (-15 -3867 ($ $ (-758))) (-15 -3639 ($ $ $)) (-15 -1553 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1133)) (-6 (-1133)) |%noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-15 -1495 (|t#1| $)) (-15 -2999 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-546)) (PROGN (-6 (-281 (-402 $) (-402 $))) (-15 -2064 ((-402 $) (-402 $) (-402 $))) (-15 -2342 ((-758) $ $)) (-15 -4286 ($ $ $)) (-15 -2903 ((-3 $ "failed") $ $)) (-15 -2903 ((-3 (-402 $) "failed") (-402 $) $)) (-15 -2489 ($ $ $)) (-15 -1680 ((-2 (|:| -1490 |t#1|) (|:| -2325 $) (|:| -2423 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-446)) (-15 -4022 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-358)) (PROGN (-6 (-302)) (-6 -4369) (-15 -2064 (|t#1| (-402 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-402 (-554)))) (-15 -2279 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-758)) . T) ((-25) . T) ((-38 #1=(-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446)) (|has| |#1| (-358))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-402 (-554)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-604 #1#) -3994 (|has| |#1| (-1023 (-402 (-554)))) (|has| |#1| (-38 (-402 (-554))))) ((-604 (-554)) . T) ((-604 #2=(-1064)) . T) ((-604 |#1|) . T) ((-604 $) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446)) (|has| |#1| (-358))) ((-601 (-848)) . T) ((-170) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-602 (-530)) -12 (|has| (-1064) (-602 (-530))) (|has| |#1| (-602 (-530)))) ((-602 (-877 (-374))) -12 (|has| (-1064) (-602 (-877 (-374)))) (|has| |#1| (-602 (-877 (-374))))) ((-602 (-877 (-554))) -12 (|has| (-1064) (-602 (-877 (-554)))) (|has| |#1| (-602 (-877 (-554))))) ((-227 |#1|) . T) ((-229) . T) ((-281 (-402 $) (-402 $)) |has| |#1| (-546)) ((-281 |#1| |#1|) . T) ((-281 $ $) . T) ((-285) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446)) (|has| |#1| (-358))) ((-302) |has| |#1| (-358)) ((-304 $) . T) ((-321 |#1| #0#) . T) ((-372 |#1|) . T) ((-406 |#1|) . T) ((-446) -3994 (|has| |#1| (-894)) (|has| |#1| (-446)) (|has| |#1| (-358))) ((-508 #2# |#1|) . T) ((-508 #2# $) . T) ((-508 $ $) . T) ((-546) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446)) (|has| |#1| (-358))) ((-634 #1#) |has| |#1| (-38 (-402 (-554)))) ((-634 |#1|) . T) ((-634 $) . T) ((-627 (-554)) |has| |#1| (-627 (-554))) ((-627 |#1|) . T) ((-704 #1#) |has| |#1| (-38 (-402 (-554)))) ((-704 |#1|) |has| |#1| (-170)) ((-704 $) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446)) (|has| |#1| (-358))) ((-713) . T) ((-836) |has| |#1| (-836)) ((-885 #2#) . T) ((-885 (-1158)) |has| |#1| (-885 (-1158))) ((-871 (-374)) -12 (|has| (-1064) (-871 (-374))) (|has| |#1| (-871 (-374)))) ((-871 (-554)) -12 (|has| (-1064) (-871 (-554))) (|has| |#1| (-871 (-554)))) ((-934 |#1| #0# #2#) . T) ((-894) |has| |#1| (-894)) ((-905) |has| |#1| (-358)) ((-1023 (-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) ((-1023 (-554)) |has| |#1| (-1023 (-554))) ((-1023 #2#) . T) ((-1023 |#1|) . T) ((-1040 #1#) |has| |#1| (-38 (-402 (-554)))) ((-1040 |#1|) . T) ((-1040 $) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1133) |has| |#1| (-1133)) ((-1199) |has| |#1| (-894)))
-((-2405 (((-631 (-1064)) $) 28)) (-2550 (($ $) 25)) (-2383 (($ |#2| |#3|) NIL) (($ $ (-1064) |#3|) 22) (($ $ (-631 (-1064)) (-631 |#3|)) 21)) (-2518 (($ $) 14)) (-2530 ((|#2| $) 12)) (-3308 ((|#3| $) 10)))
-(((-1218 |#1| |#2| |#3|) (-10 -8 (-15 -2405 ((-631 (-1064)) |#1|)) (-15 -2383 (|#1| |#1| (-631 (-1064)) (-631 |#3|))) (-15 -2383 (|#1| |#1| (-1064) |#3|)) (-15 -2550 (|#1| |#1|)) (-15 -2383 (|#1| |#2| |#3|)) (-15 -3308 (|#3| |#1|)) (-15 -2518 (|#1| |#1|)) (-15 -2530 (|#2| |#1|))) (-1219 |#2| |#3|) (-1034) (-779)) (T -1218))
-NIL
-(-10 -8 (-15 -2405 ((-631 (-1064)) |#1|)) (-15 -2383 (|#1| |#1| (-631 (-1064)) (-631 |#3|))) (-15 -2383 (|#1| |#1| (-1064) |#3|)) (-15 -2550 (|#1| |#1|)) (-15 -2383 (|#1| |#2| |#3|)) (-15 -3308 (|#3| |#1|)) (-15 -2518 (|#1| |#1|)) (-15 -2530 (|#2| |#1|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2405 (((-631 (-1064)) $) 77)) (-1576 (((-1158) $) 106)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 54 (|has| |#1| (-546)))) (-1976 (($ $) 55 (|has| |#1| (-546)))) (-1363 (((-112) $) 57 (|has| |#1| (-546)))) (-1557 (($ $ |#2|) 101) (($ $ |#2| |#2|) 100)) (-3042 (((-1138 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 108)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-2550 (($ $) 63)) (-1320 (((-3 $ "failed") $) 33)) (-2051 (((-112) $) 76)) (-2342 ((|#2| $) 103) ((|#2| $ |#2|) 102)) (-3248 (((-112) $) 31)) (-3333 (($ $ (-906)) 104)) (-3580 (((-112) $) 65)) (-2383 (($ |#1| |#2|) 64) (($ $ (-1064) |#2|) 79) (($ $ (-631 (-1064)) (-631 |#2|)) 78)) (-2879 (($ (-1 |#1| |#1|) $) 66)) (-2518 (($ $) 68)) (-2530 ((|#1| $) 69)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-4282 (($ $ |#2|) 98)) (-3919 (((-3 $ "failed") $ $) 53 (|has| |#1| (-546)))) (-2386 (((-1138 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2064 ((|#1| $ |#2|) 107) (($ $ $) 84 (|has| |#2| (-1094)))) (-1553 (($ $ (-631 (-1158)) (-631 (-758))) 92 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1158) (-758)) 91 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-631 (-1158))) 90 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1158)) 89 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-758)) 87 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3308 ((|#2| $) 67)) (-1300 (($ $) 75)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ (-402 (-554))) 60 (|has| |#1| (-38 (-402 (-554))))) (($ $) 52 (|has| |#1| (-546))) (($ |#1|) 50 (|has| |#1| (-170)))) (-1779 ((|#1| $ |#2|) 62)) (-2084 (((-3 $ "failed") $) 51 (|has| |#1| (-143)))) (-2261 (((-758)) 28)) (-1608 ((|#1| $) 105)) (-1909 (((-112) $ $) 56 (|has| |#1| (-546)))) (-4333 ((|#1| $ |#2|) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3075 (|#1| (-1158))))))) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($ $ (-631 (-1158)) (-631 (-758))) 96 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1158) (-758)) 95 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-631 (-1158))) 94 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1158)) 93 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-758)) 88 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1658 (((-112) $ $) 6)) (-1752 (($ $ |#1|) 61 (|has| |#1| (-358)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-402 (-554)) $) 59 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) 58 (|has| |#1| (-38 (-402 (-554)))))))
-(((-1219 |#1| |#2|) (-138) (-1034) (-779)) (T -1219))
-((-3042 (*1 *2 *1) (-12 (-4 *1 (-1219 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-779)) (-5 *2 (-1138 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2064 (*1 *2 *1 *3) (-12 (-4 *1 (-1219 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1034)))) (-1576 (*1 *2 *1) (-12 (-4 *1 (-1219 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-779)) (-5 *2 (-1158)))) (-1608 (*1 *2 *1) (-12 (-4 *1 (-1219 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1034)))) (-3333 (*1 *1 *1 *2) (-12 (-5 *2 (-906)) (-4 *1 (-1219 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-779)))) (-2342 (*1 *2 *1) (-12 (-4 *1 (-1219 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-779)))) (-2342 (*1 *2 *1 *2) (-12 (-4 *1 (-1219 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-779)))) (-1557 (*1 *1 *1 *2) (-12 (-4 *1 (-1219 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-779)))) (-1557 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1219 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-779)))) (-4333 (*1 *2 *1 *3) (-12 (-4 *1 (-1219 *2 *3)) (-4 *3 (-779)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3075 (*2 (-1158)))) (-4 *2 (-1034)))) (-4282 (*1 *1 *1 *2) (-12 (-4 *1 (-1219 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-779)))) (-2386 (*1 *2 *1 *3) (-12 (-4 *1 (-1219 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-779)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1138 *3)))))
-(-13 (-958 |t#1| |t#2| (-1064)) (-10 -8 (-15 -3042 ((-1138 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2064 (|t#1| $ |t#2|)) (-15 -1576 ((-1158) $)) (-15 -1608 (|t#1| $)) (-15 -3333 ($ $ (-906))) (-15 -2342 (|t#2| $)) (-15 -2342 (|t#2| $ |t#2|)) (-15 -1557 ($ $ |t#2|)) (-15 -1557 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3075 (|t#1| (-1158)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4333 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -4282 ($ $ |t#2|)) (IF (|has| |t#2| (-1094)) (-6 (-281 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-229)) (IF (|has| |t#1| (-885 (-1158))) (-6 (-885 (-1158))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2386 ((-1138 |t#1|) $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-546)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-402 (-554)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3994 (|has| |#1| (-546)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-604 #0#) |has| |#1| (-38 (-402 (-554)))) ((-604 (-554)) . T) ((-604 |#1|) |has| |#1| (-170)) ((-604 $) |has| |#1| (-546)) ((-601 (-848)) . T) ((-170) -3994 (|has| |#1| (-546)) (|has| |#1| (-170))) ((-229) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-281 $ $) |has| |#2| (-1094)) ((-285) |has| |#1| (-546)) ((-546) |has| |#1| (-546)) ((-634 #0#) |has| |#1| (-38 (-402 (-554)))) ((-634 |#1|) . T) ((-634 $) . T) ((-704 #0#) |has| |#1| (-38 (-402 (-554)))) ((-704 |#1|) |has| |#1| (-170)) ((-704 $) |has| |#1| (-546)) ((-713) . T) ((-885 (-1158)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-885 (-1158)))) ((-958 |#1| |#2| (-1064)) . T) ((-1040 #0#) |has| |#1| (-38 (-402 (-554)))) ((-1040 |#1|) . T) ((-1040 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-170))) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T))
-((-3278 ((|#2| |#2|) 12)) (-1565 (((-413 |#2|) |#2|) 14)) (-3375 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-554))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-554)))) 30)))
-(((-1220 |#1| |#2|) (-10 -7 (-15 -1565 ((-413 |#2|) |#2|)) (-15 -3278 (|#2| |#2|)) (-15 -3375 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-554))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-554)))))) (-546) (-13 (-1217 |#1|) (-546) (-10 -8 (-15 -2510 ($ $ $))))) (T -1220))
-((-3375 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-554)))) (-4 *4 (-13 (-1217 *3) (-546) (-10 -8 (-15 -2510 ($ $ $))))) (-4 *3 (-546)) (-5 *1 (-1220 *3 *4)))) (-3278 (*1 *2 *2) (-12 (-4 *3 (-546)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-1217 *3) (-546) (-10 -8 (-15 -2510 ($ $ $))))))) (-1565 (*1 *2 *3) (-12 (-4 *4 (-546)) (-5 *2 (-413 *3)) (-5 *1 (-1220 *4 *3)) (-4 *3 (-13 (-1217 *4) (-546) (-10 -8 (-15 -2510 ($ $ $))))))))
-(-10 -7 (-15 -1565 ((-413 |#2|) |#2|)) (-15 -3278 (|#2| |#2|)) (-15 -3375 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-554))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-554))))))
-((-2879 (((-1226 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1226 |#1| |#3| |#5|)) 24)))
-(((-1221 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2879 ((-1226 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1226 |#1| |#3| |#5|)))) (-1034) (-1034) (-1158) (-1158) |#1| |#2|) (T -1221))
-((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1226 *5 *7 *9)) (-4 *5 (-1034)) (-4 *6 (-1034)) (-14 *7 (-1158)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1226 *6 *8 *10)) (-5 *1 (-1221 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1158)))))
-(-10 -7 (-15 -2879 ((-1226 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1226 |#1| |#3| |#5|))))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2405 (((-631 (-1064)) $) 77)) (-1576 (((-1158) $) 106)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 54 (|has| |#1| (-546)))) (-1976 (($ $) 55 (|has| |#1| (-546)))) (-1363 (((-112) $) 57 (|has| |#1| (-546)))) (-1557 (($ $ (-402 (-554))) 101) (($ $ (-402 (-554)) (-402 (-554))) 100)) (-3042 (((-1138 (-2 (|:| |k| (-402 (-554))) (|:| |c| |#1|))) $) 108)) (-3023 (($ $) 138 (|has| |#1| (-38 (-402 (-554)))))) (-4200 (($ $) 121 (|has| |#1| (-38 (-402 (-554)))))) (-2934 (((-3 $ "failed") $ $) 19)) (-3278 (($ $) 165 (|has| |#1| (-358)))) (-1565 (((-413 $) $) 166 (|has| |#1| (-358)))) (-2282 (($ $) 120 (|has| |#1| (-38 (-402 (-554)))))) (-2286 (((-112) $ $) 156 (|has| |#1| (-358)))) (-3003 (($ $) 137 (|has| |#1| (-38 (-402 (-554)))))) (-4177 (($ $) 122 (|has| |#1| (-38 (-402 (-554)))))) (-4175 (($ (-758) (-1138 (-2 (|:| |k| (-402 (-554))) (|:| |c| |#1|)))) 174)) (-3046 (($ $) 136 (|has| |#1| (-38 (-402 (-554)))))) (-2916 (($ $) 123 (|has| |#1| (-38 (-402 (-554)))))) (-4087 (($) 17 T CONST)) (-3964 (($ $ $) 160 (|has| |#1| (-358)))) (-2550 (($ $) 63)) (-1320 (((-3 $ "failed") $) 33)) (-3943 (($ $ $) 159 (|has| |#1| (-358)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 154 (|has| |#1| (-358)))) (-3289 (((-112) $) 167 (|has| |#1| (-358)))) (-2051 (((-112) $) 76)) (-2844 (($) 148 (|has| |#1| (-38 (-402 (-554)))))) (-2342 (((-402 (-554)) $) 103) (((-402 (-554)) $ (-402 (-554))) 102)) (-3248 (((-112) $) 31)) (-3734 (($ $ (-554)) 119 (|has| |#1| (-38 (-402 (-554)))))) (-3333 (($ $ (-906)) 104) (($ $ (-402 (-554))) 173)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 163 (|has| |#1| (-358)))) (-3580 (((-112) $) 65)) (-2383 (($ |#1| (-402 (-554))) 64) (($ $ (-1064) (-402 (-554))) 79) (($ $ (-631 (-1064)) (-631 (-402 (-554)))) 78)) (-2879 (($ (-1 |#1| |#1|) $) 66)) (-2395 (($ $) 145 (|has| |#1| (-38 (-402 (-554)))))) (-2518 (($ $) 68)) (-2530 ((|#1| $) 69)) (-2475 (($ (-631 $)) 152 (|has| |#1| (-358))) (($ $ $) 151 (|has| |#1| (-358)))) (-1613 (((-1140) $) 9)) (-2483 (($ $) 168 (|has| |#1| (-358)))) (-2279 (($ $) 172 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-1158)) 171 (-3994 (-12 (|has| |#1| (-29 (-554))) (|has| |#1| (-944)) (|has| |#1| (-1180)) (|has| |#1| (-38 (-402 (-554))))) (-12 (|has| |#1| (-15 -2405 ((-631 (-1158)) |#1|))) (|has| |#1| (-15 -2279 (|#1| |#1| (-1158)))) (|has| |#1| (-38 (-402 (-554)))))))) (-2768 (((-1102) $) 10)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 153 (|has| |#1| (-358)))) (-2510 (($ (-631 $)) 150 (|has| |#1| (-358))) (($ $ $) 149 (|has| |#1| (-358)))) (-2270 (((-413 $) $) 164 (|has| |#1| (-358)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 161 (|has| |#1| (-358)))) (-4282 (($ $ (-402 (-554))) 98)) (-3919 (((-3 $ "failed") $ $) 53 (|has| |#1| (-546)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 155 (|has| |#1| (-358)))) (-1333 (($ $) 146 (|has| |#1| (-38 (-402 (-554)))))) (-2386 (((-1138 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-554))))))) (-2072 (((-758) $) 157 (|has| |#1| (-358)))) (-2064 ((|#1| $ (-402 (-554))) 107) (($ $ $) 84 (|has| (-402 (-554)) (-1094)))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 158 (|has| |#1| (-358)))) (-1553 (($ $ (-631 (-1158)) (-631 (-758))) 92 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (($ $ (-1158) (-758)) 91 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (($ $ (-631 (-1158))) 90 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (($ $ (-1158)) 89 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (($ $ (-758)) 87 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (-3308 (((-402 (-554)) $) 67)) (-3057 (($ $) 135 (|has| |#1| (-38 (-402 (-554)))))) (-2926 (($ $) 124 (|has| |#1| (-38 (-402 (-554)))))) (-3034 (($ $) 134 (|has| |#1| (-38 (-402 (-554)))))) (-4213 (($ $) 125 (|has| |#1| (-38 (-402 (-554)))))) (-3014 (($ $) 133 (|has| |#1| (-38 (-402 (-554)))))) (-4188 (($ $) 126 (|has| |#1| (-38 (-402 (-554)))))) (-1300 (($ $) 75)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ |#1|) 50 (|has| |#1| (-170))) (($ (-402 (-554))) 60 (|has| |#1| (-38 (-402 (-554))))) (($ $) 52 (|has| |#1| (-546)))) (-1779 ((|#1| $ (-402 (-554))) 62)) (-2084 (((-3 $ "failed") $) 51 (|has| |#1| (-143)))) (-2261 (((-758)) 28)) (-1608 ((|#1| $) 105)) (-3096 (($ $) 144 (|has| |#1| (-38 (-402 (-554)))))) (-2959 (($ $) 132 (|has| |#1| (-38 (-402 (-554)))))) (-1909 (((-112) $ $) 56 (|has| |#1| (-546)))) (-3069 (($ $) 143 (|has| |#1| (-38 (-402 (-554)))))) (-2938 (($ $) 131 (|has| |#1| (-38 (-402 (-554)))))) (-3120 (($ $) 142 (|has| |#1| (-38 (-402 (-554)))))) (-2981 (($ $) 130 (|has| |#1| (-38 (-402 (-554)))))) (-4333 ((|#1| $ (-402 (-554))) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-554))))) (|has| |#1| (-15 -3075 (|#1| (-1158))))))) (-2908 (($ $) 141 (|has| |#1| (-38 (-402 (-554)))))) (-2991 (($ $) 129 (|has| |#1| (-38 (-402 (-554)))))) (-3108 (($ $) 140 (|has| |#1| (-38 (-402 (-554)))))) (-2969 (($ $) 128 (|has| |#1| (-38 (-402 (-554)))))) (-3083 (($ $) 139 (|has| |#1| (-38 (-402 (-554)))))) (-2948 (($ $) 127 (|has| |#1| (-38 (-402 (-554)))))) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($ $ (-631 (-1158)) (-631 (-758))) 96 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (($ $ (-1158) (-758)) 95 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (($ $ (-631 (-1158))) 94 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (($ $ (-1158)) 93 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (($ $ (-758)) 88 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (-1658 (((-112) $ $) 6)) (-1752 (($ $ |#1|) 61 (|has| |#1| (-358))) (($ $ $) 170 (|has| |#1| (-358)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ (-554)) 169 (|has| |#1| (-358))) (($ $ $) 147 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) 118 (|has| |#1| (-38 (-402 (-554)))))) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-402 (-554)) $) 59 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) 58 (|has| |#1| (-38 (-402 (-554)))))))
-(((-1222 |#1|) (-138) (-1034)) (T -1222))
-((-4175 (*1 *1 *2 *3) (-12 (-5 *2 (-758)) (-5 *3 (-1138 (-2 (|:| |k| (-402 (-554))) (|:| |c| *4)))) (-4 *4 (-1034)) (-4 *1 (-1222 *4)))) (-3333 (*1 *1 *1 *2) (-12 (-5 *2 (-402 (-554))) (-4 *1 (-1222 *3)) (-4 *3 (-1034)))) (-2279 (*1 *1 *1) (-12 (-4 *1 (-1222 *2)) (-4 *2 (-1034)) (-4 *2 (-38 (-402 (-554)))))) (-2279 (*1 *1 *1 *2) (-3994 (-12 (-5 *2 (-1158)) (-4 *1 (-1222 *3)) (-4 *3 (-1034)) (-12 (-4 *3 (-29 (-554))) (-4 *3 (-944)) (-4 *3 (-1180)) (-4 *3 (-38 (-402 (-554)))))) (-12 (-5 *2 (-1158)) (-4 *1 (-1222 *3)) (-4 *3 (-1034)) (-12 (|has| *3 (-15 -2405 ((-631 *2) *3))) (|has| *3 (-15 -2279 (*3 *3 *2))) (-4 *3 (-38 (-402 (-554)))))))))
-(-13 (-1219 |t#1| (-402 (-554))) (-10 -8 (-15 -4175 ($ (-758) (-1138 (-2 (|:| |k| (-402 (-554))) (|:| |c| |t#1|))))) (-15 -3333 ($ $ (-402 (-554)))) (IF (|has| |t#1| (-38 (-402 (-554)))) (PROGN (-15 -2279 ($ $)) (IF (|has| |t#1| (-15 -2279 (|t#1| |t#1| (-1158)))) (IF (|has| |t#1| (-15 -2405 ((-631 (-1158)) |t#1|))) (-15 -2279 ($ $ (-1158))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1180)) (IF (|has| |t#1| (-944)) (IF (|has| |t#1| (-29 (-554))) (-15 -2279 ($ $ (-1158))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-987)) (-6 (-1180))) |%noBranch|) (IF (|has| |t#1| (-358)) (-6 (-358)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-402 (-554))) . T) ((-25) . T) ((-38 #1=(-402 (-554))) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-358))) ((-35) |has| |#1| (-38 (-402 (-554)))) ((-95) |has| |#1| (-38 (-402 (-554)))) ((-102) . T) ((-111 #1# #1#) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3994 (|has| |#1| (-546)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-604 #1#) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-604 (-554)) . T) ((-604 |#1|) |has| |#1| (-170)) ((-604 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-358))) ((-601 (-848)) . T) ((-170) -3994 (|has| |#1| (-546)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-229) |has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) ((-239) |has| |#1| (-358)) ((-279) |has| |#1| (-38 (-402 (-554)))) ((-281 $ $) |has| (-402 (-554)) (-1094)) ((-285) -3994 (|has| |#1| (-546)) (|has| |#1| (-358))) ((-302) |has| |#1| (-358)) ((-358) |has| |#1| (-358)) ((-446) |has| |#1| (-358)) ((-487) |has| |#1| (-38 (-402 (-554)))) ((-546) -3994 (|has| |#1| (-546)) (|has| |#1| (-358))) ((-634 #1#) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-634 |#1|) . T) ((-634 $) . T) ((-704 #1#) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-704 |#1|) |has| |#1| (-170)) ((-704 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-358))) ((-713) . T) ((-885 (-1158)) -12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158)))) ((-958 |#1| #0# (-1064)) . T) ((-905) |has| |#1| (-358)) ((-987) |has| |#1| (-38 (-402 (-554)))) ((-1040 #1#) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-1040 |#1|) . T) ((-1040 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1180) |has| |#1| (-38 (-402 (-554)))) ((-1183) |has| |#1| (-38 (-402 (-554)))) ((-1199) |has| |#1| (-358)) ((-1219 |#1| #0#) . T))
-((-1695 (((-112) $) 12)) (-2784 (((-3 |#3| "failed") $) 17)) (-1668 ((|#3| $) 14)))
-(((-1223 |#1| |#2| |#3|) (-10 -8 (-15 -2784 ((-3 |#3| "failed") |#1|)) (-15 -1668 (|#3| |#1|)) (-15 -1695 ((-112) |#1|))) (-1224 |#2| |#3|) (-1034) (-1201 |#2|)) (T -1223))
-NIL
-(-10 -8 (-15 -2784 ((-3 |#3| "failed") |#1|)) (-15 -1668 (|#3| |#1|)) (-15 -1695 ((-112) |#1|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2405 (((-631 (-1064)) $) 77)) (-1576 (((-1158) $) 106)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 54 (|has| |#1| (-546)))) (-1976 (($ $) 55 (|has| |#1| (-546)))) (-1363 (((-112) $) 57 (|has| |#1| (-546)))) (-1557 (($ $ (-402 (-554))) 101) (($ $ (-402 (-554)) (-402 (-554))) 100)) (-3042 (((-1138 (-2 (|:| |k| (-402 (-554))) (|:| |c| |#1|))) $) 108)) (-3023 (($ $) 138 (|has| |#1| (-38 (-402 (-554)))))) (-4200 (($ $) 121 (|has| |#1| (-38 (-402 (-554)))))) (-2934 (((-3 $ "failed") $ $) 19)) (-3278 (($ $) 165 (|has| |#1| (-358)))) (-1565 (((-413 $) $) 166 (|has| |#1| (-358)))) (-2282 (($ $) 120 (|has| |#1| (-38 (-402 (-554)))))) (-2286 (((-112) $ $) 156 (|has| |#1| (-358)))) (-3003 (($ $) 137 (|has| |#1| (-38 (-402 (-554)))))) (-4177 (($ $) 122 (|has| |#1| (-38 (-402 (-554)))))) (-4175 (($ (-758) (-1138 (-2 (|:| |k| (-402 (-554))) (|:| |c| |#1|)))) 174)) (-3046 (($ $) 136 (|has| |#1| (-38 (-402 (-554)))))) (-2916 (($ $) 123 (|has| |#1| (-38 (-402 (-554)))))) (-4087 (($) 17 T CONST)) (-2784 (((-3 |#2| "failed") $) 185)) (-1668 ((|#2| $) 186)) (-3964 (($ $ $) 160 (|has| |#1| (-358)))) (-2550 (($ $) 63)) (-1320 (((-3 $ "failed") $) 33)) (-2811 (((-402 (-554)) $) 182)) (-3943 (($ $ $) 159 (|has| |#1| (-358)))) (-2463 (($ (-402 (-554)) |#2|) 183)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 154 (|has| |#1| (-358)))) (-3289 (((-112) $) 167 (|has| |#1| (-358)))) (-2051 (((-112) $) 76)) (-2844 (($) 148 (|has| |#1| (-38 (-402 (-554)))))) (-2342 (((-402 (-554)) $) 103) (((-402 (-554)) $ (-402 (-554))) 102)) (-3248 (((-112) $) 31)) (-3734 (($ $ (-554)) 119 (|has| |#1| (-38 (-402 (-554)))))) (-3333 (($ $ (-906)) 104) (($ $ (-402 (-554))) 173)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 163 (|has| |#1| (-358)))) (-3580 (((-112) $) 65)) (-2383 (($ |#1| (-402 (-554))) 64) (($ $ (-1064) (-402 (-554))) 79) (($ $ (-631 (-1064)) (-631 (-402 (-554)))) 78)) (-2879 (($ (-1 |#1| |#1|) $) 66)) (-2395 (($ $) 145 (|has| |#1| (-38 (-402 (-554)))))) (-2518 (($ $) 68)) (-2530 ((|#1| $) 69)) (-2475 (($ (-631 $)) 152 (|has| |#1| (-358))) (($ $ $) 151 (|has| |#1| (-358)))) (-2058 ((|#2| $) 181)) (-1602 (((-3 |#2| "failed") $) 179)) (-2454 ((|#2| $) 180)) (-1613 (((-1140) $) 9)) (-2483 (($ $) 168 (|has| |#1| (-358)))) (-2279 (($ $) 172 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-1158)) 171 (-3994 (-12 (|has| |#1| (-29 (-554))) (|has| |#1| (-944)) (|has| |#1| (-1180)) (|has| |#1| (-38 (-402 (-554))))) (-12 (|has| |#1| (-15 -2405 ((-631 (-1158)) |#1|))) (|has| |#1| (-15 -2279 (|#1| |#1| (-1158)))) (|has| |#1| (-38 (-402 (-554)))))))) (-2768 (((-1102) $) 10)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 153 (|has| |#1| (-358)))) (-2510 (($ (-631 $)) 150 (|has| |#1| (-358))) (($ $ $) 149 (|has| |#1| (-358)))) (-2270 (((-413 $) $) 164 (|has| |#1| (-358)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 161 (|has| |#1| (-358)))) (-4282 (($ $ (-402 (-554))) 98)) (-3919 (((-3 $ "failed") $ $) 53 (|has| |#1| (-546)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 155 (|has| |#1| (-358)))) (-1333 (($ $) 146 (|has| |#1| (-38 (-402 (-554)))))) (-2386 (((-1138 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-554))))))) (-2072 (((-758) $) 157 (|has| |#1| (-358)))) (-2064 ((|#1| $ (-402 (-554))) 107) (($ $ $) 84 (|has| (-402 (-554)) (-1094)))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 158 (|has| |#1| (-358)))) (-1553 (($ $ (-631 (-1158)) (-631 (-758))) 92 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (($ $ (-1158) (-758)) 91 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (($ $ (-631 (-1158))) 90 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (($ $ (-1158)) 89 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (($ $ (-758)) 87 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (-3308 (((-402 (-554)) $) 67)) (-3057 (($ $) 135 (|has| |#1| (-38 (-402 (-554)))))) (-2926 (($ $) 124 (|has| |#1| (-38 (-402 (-554)))))) (-3034 (($ $) 134 (|has| |#1| (-38 (-402 (-554)))))) (-4213 (($ $) 125 (|has| |#1| (-38 (-402 (-554)))))) (-3014 (($ $) 133 (|has| |#1| (-38 (-402 (-554)))))) (-4188 (($ $) 126 (|has| |#1| (-38 (-402 (-554)))))) (-1300 (($ $) 75)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ |#1|) 50 (|has| |#1| (-170))) (($ |#2|) 184) (($ (-402 (-554))) 60 (|has| |#1| (-38 (-402 (-554))))) (($ $) 52 (|has| |#1| (-546)))) (-1779 ((|#1| $ (-402 (-554))) 62)) (-2084 (((-3 $ "failed") $) 51 (|has| |#1| (-143)))) (-2261 (((-758)) 28)) (-1608 ((|#1| $) 105)) (-3096 (($ $) 144 (|has| |#1| (-38 (-402 (-554)))))) (-2959 (($ $) 132 (|has| |#1| (-38 (-402 (-554)))))) (-1909 (((-112) $ $) 56 (|has| |#1| (-546)))) (-3069 (($ $) 143 (|has| |#1| (-38 (-402 (-554)))))) (-2938 (($ $) 131 (|has| |#1| (-38 (-402 (-554)))))) (-3120 (($ $) 142 (|has| |#1| (-38 (-402 (-554)))))) (-2981 (($ $) 130 (|has| |#1| (-38 (-402 (-554)))))) (-4333 ((|#1| $ (-402 (-554))) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-554))))) (|has| |#1| (-15 -3075 (|#1| (-1158))))))) (-2908 (($ $) 141 (|has| |#1| (-38 (-402 (-554)))))) (-2991 (($ $) 129 (|has| |#1| (-38 (-402 (-554)))))) (-3108 (($ $) 140 (|has| |#1| (-38 (-402 (-554)))))) (-2969 (($ $) 128 (|has| |#1| (-38 (-402 (-554)))))) (-3083 (($ $) 139 (|has| |#1| (-38 (-402 (-554)))))) (-2948 (($ $) 127 (|has| |#1| (-38 (-402 (-554)))))) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($ $ (-631 (-1158)) (-631 (-758))) 96 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (($ $ (-1158) (-758)) 95 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (($ $ (-631 (-1158))) 94 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (($ $ (-1158)) 93 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (($ $ (-758)) 88 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (-1658 (((-112) $ $) 6)) (-1752 (($ $ |#1|) 61 (|has| |#1| (-358))) (($ $ $) 170 (|has| |#1| (-358)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ (-554)) 169 (|has| |#1| (-358))) (($ $ $) 147 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) 118 (|has| |#1| (-38 (-402 (-554)))))) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-402 (-554)) $) 59 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) 58 (|has| |#1| (-38 (-402 (-554)))))))
-(((-1224 |#1| |#2|) (-138) (-1034) (-1201 |t#1|)) (T -1224))
-((-3308 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-1201 *3)) (-5 *2 (-402 (-554))))) (-2463 (*1 *1 *2 *3) (-12 (-5 *2 (-402 (-554))) (-4 *4 (-1034)) (-4 *1 (-1224 *4 *3)) (-4 *3 (-1201 *4)))) (-2811 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-1201 *3)) (-5 *2 (-402 (-554))))) (-2058 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-1201 *3)))) (-2454 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-1201 *3)))) (-1602 (*1 *2 *1) (|partial| -12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-1201 *3)))))
-(-13 (-1222 |t#1|) (-1023 |t#2|) (-604 |t#2|) (-10 -8 (-15 -2463 ($ (-402 (-554)) |t#2|)) (-15 -2811 ((-402 (-554)) $)) (-15 -2058 (|t#2| $)) (-15 -3308 ((-402 (-554)) $)) (-15 -2454 (|t#2| $)) (-15 -1602 ((-3 |t#2| "failed") $))))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-402 (-554))) . T) ((-25) . T) ((-38 #1=(-402 (-554))) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-358))) ((-35) |has| |#1| (-38 (-402 (-554)))) ((-95) |has| |#1| (-38 (-402 (-554)))) ((-102) . T) ((-111 #1# #1#) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3994 (|has| |#1| (-546)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-604 #1#) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-604 (-554)) . T) ((-604 |#1|) |has| |#1| (-170)) ((-604 |#2|) . T) ((-604 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-358))) ((-601 (-848)) . T) ((-170) -3994 (|has| |#1| (-546)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-229) |has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) ((-239) |has| |#1| (-358)) ((-279) |has| |#1| (-38 (-402 (-554)))) ((-281 $ $) |has| (-402 (-554)) (-1094)) ((-285) -3994 (|has| |#1| (-546)) (|has| |#1| (-358))) ((-302) |has| |#1| (-358)) ((-358) |has| |#1| (-358)) ((-446) |has| |#1| (-358)) ((-487) |has| |#1| (-38 (-402 (-554)))) ((-546) -3994 (|has| |#1| (-546)) (|has| |#1| (-358))) ((-634 #1#) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-634 |#1|) . T) ((-634 $) . T) ((-704 #1#) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-704 |#1|) |has| |#1| (-170)) ((-704 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-358))) ((-713) . T) ((-885 (-1158)) -12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158)))) ((-958 |#1| #0# (-1064)) . T) ((-905) |has| |#1| (-358)) ((-987) |has| |#1| (-38 (-402 (-554)))) ((-1023 |#2|) . T) ((-1040 #1#) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-1040 |#1|) . T) ((-1040 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1180) |has| |#1| (-38 (-402 (-554)))) ((-1183) |has| |#1| (-38 (-402 (-554)))) ((-1199) |has| |#1| (-358)) ((-1219 |#1| #0#) . T) ((-1222 |#1|) . T))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2405 (((-631 (-1064)) $) NIL)) (-1576 (((-1158) $) 96)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-546)))) (-1976 (($ $) NIL (|has| |#1| (-546)))) (-1363 (((-112) $) NIL (|has| |#1| (-546)))) (-1557 (($ $ (-402 (-554))) 106) (($ $ (-402 (-554)) (-402 (-554))) 108)) (-3042 (((-1138 (-2 (|:| |k| (-402 (-554))) (|:| |c| |#1|))) $) 51)) (-3023 (($ $) 180 (|has| |#1| (-38 (-402 (-554)))))) (-4200 (($ $) 156 (|has| |#1| (-38 (-402 (-554)))))) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL (|has| |#1| (-358)))) (-1565 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2282 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2286 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3003 (($ $) 176 (|has| |#1| (-38 (-402 (-554)))))) (-4177 (($ $) 152 (|has| |#1| (-38 (-402 (-554)))))) (-4175 (($ (-758) (-1138 (-2 (|:| |k| (-402 (-554))) (|:| |c| |#1|)))) 61)) (-3046 (($ $) 184 (|has| |#1| (-38 (-402 (-554)))))) (-2916 (($ $) 160 (|has| |#1| (-38 (-402 (-554)))))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#2| "failed") $) NIL)) (-1668 ((|#2| $) NIL)) (-3964 (($ $ $) NIL (|has| |#1| (-358)))) (-2550 (($ $) NIL)) (-1320 (((-3 $ "failed") $) 79)) (-2811 (((-402 (-554)) $) 13)) (-3943 (($ $ $) NIL (|has| |#1| (-358)))) (-2463 (($ (-402 (-554)) |#2|) 11)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL (|has| |#1| (-358)))) (-3289 (((-112) $) NIL (|has| |#1| (-358)))) (-2051 (((-112) $) 68)) (-2844 (($) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2342 (((-402 (-554)) $) 103) (((-402 (-554)) $ (-402 (-554))) 104)) (-3248 (((-112) $) NIL)) (-3734 (($ $ (-554)) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3333 (($ $ (-906)) 120) (($ $ (-402 (-554))) 118)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-3580 (((-112) $) NIL)) (-2383 (($ |#1| (-402 (-554))) 31) (($ $ (-1064) (-402 (-554))) NIL) (($ $ (-631 (-1064)) (-631 (-402 (-554)))) NIL)) (-2879 (($ (-1 |#1| |#1|) $) 115)) (-2395 (($ $) 150 (|has| |#1| (-38 (-402 (-554)))))) (-2518 (($ $) NIL)) (-2530 ((|#1| $) NIL)) (-2475 (($ (-631 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-2058 ((|#2| $) 12)) (-1602 (((-3 |#2| "failed") $) 41)) (-2454 ((|#2| $) 42)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) 93 (|has| |#1| (-358)))) (-2279 (($ $) 135 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-1158)) 140 (-3994 (-12 (|has| |#1| (-15 -2279 (|#1| |#1| (-1158)))) (|has| |#1| (-15 -2405 ((-631 (-1158)) |#1|))) (|has| |#1| (-38 (-402 (-554))))) (-12 (|has| |#1| (-29 (-554))) (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-944)) (|has| |#1| (-1180)))))) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#1| (-358)))) (-2510 (($ (-631 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-2270 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-358)))) (-4282 (($ $ (-402 (-554))) 112)) (-3919 (((-3 $ "failed") $ $) NIL (|has| |#1| (-546)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-1333 (($ $) 148 (|has| |#1| (-38 (-402 (-554)))))) (-2386 (((-1138 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-554))))))) (-2072 (((-758) $) NIL (|has| |#1| (-358)))) (-2064 ((|#1| $ (-402 (-554))) 100) (($ $ $) 86 (|has| (-402 (-554)) (-1094)))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-358)))) (-1553 (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158)) 127 (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-758)) NIL (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (-3308 (((-402 (-554)) $) 16)) (-3057 (($ $) 186 (|has| |#1| (-38 (-402 (-554)))))) (-2926 (($ $) 162 (|has| |#1| (-38 (-402 (-554)))))) (-3034 (($ $) 182 (|has| |#1| (-38 (-402 (-554)))))) (-4213 (($ $) 158 (|has| |#1| (-38 (-402 (-554)))))) (-3014 (($ $) 178 (|has| |#1| (-38 (-402 (-554)))))) (-4188 (($ $) 154 (|has| |#1| (-38 (-402 (-554)))))) (-1300 (($ $) 110)) (-3075 (((-848) $) NIL) (($ (-554)) 35) (($ |#1|) 27 (|has| |#1| (-170))) (($ |#2|) 32) (($ (-402 (-554))) 128 (|has| |#1| (-38 (-402 (-554))))) (($ $) NIL (|has| |#1| (-546)))) (-1779 ((|#1| $ (-402 (-554))) 99)) (-2084 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2261 (((-758)) 117)) (-1608 ((|#1| $) 98)) (-3096 (($ $) 192 (|has| |#1| (-38 (-402 (-554)))))) (-2959 (($ $) 168 (|has| |#1| (-38 (-402 (-554)))))) (-1909 (((-112) $ $) NIL (|has| |#1| (-546)))) (-3069 (($ $) 188 (|has| |#1| (-38 (-402 (-554)))))) (-2938 (($ $) 164 (|has| |#1| (-38 (-402 (-554)))))) (-3120 (($ $) 196 (|has| |#1| (-38 (-402 (-554)))))) (-2981 (($ $) 172 (|has| |#1| (-38 (-402 (-554)))))) (-4333 ((|#1| $ (-402 (-554))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-554))))) (|has| |#1| (-15 -3075 (|#1| (-1158))))))) (-2908 (($ $) 198 (|has| |#1| (-38 (-402 (-554)))))) (-2991 (($ $) 174 (|has| |#1| (-38 (-402 (-554)))))) (-3108 (($ $) 194 (|has| |#1| (-38 (-402 (-554)))))) (-2969 (($ $) 170 (|has| |#1| (-38 (-402 (-554)))))) (-3083 (($ $) 190 (|has| |#1| (-38 (-402 (-554)))))) (-2948 (($ $) 166 (|has| |#1| (-38 (-402 (-554)))))) (-2004 (($) 21 T CONST)) (-2014 (($) 17 T CONST)) (-1787 (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-758)) NIL (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (-1658 (((-112) $ $) 66)) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) 92 (|has| |#1| (-358)))) (-1744 (($ $) 131) (($ $ $) 72)) (-1735 (($ $ $) 70)) (** (($ $ (-906)) NIL) (($ $ (-758)) 76) (($ $ (-554)) 145 (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) 146 (|has| |#1| (-38 (-402 (-554)))))) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554)))))))
-(((-1225 |#1| |#2|) (-1224 |#1| |#2|) (-1034) (-1201 |#1|)) (T -1225))
-NIL
-(-1224 |#1| |#2|)
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2405 (((-631 (-1064)) $) NIL)) (-1576 (((-1158) $) 11)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-546)))) (-1976 (($ $) NIL (|has| |#1| (-546)))) (-1363 (((-112) $) NIL (|has| |#1| (-546)))) (-1557 (($ $ (-402 (-554))) NIL) (($ $ (-402 (-554)) (-402 (-554))) NIL)) (-3042 (((-1138 (-2 (|:| |k| (-402 (-554))) (|:| |c| |#1|))) $) NIL)) (-3023 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4200 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL (|has| |#1| (-358)))) (-1565 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2282 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2286 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3003 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4177 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4175 (($ (-758) (-1138 (-2 (|:| |k| (-402 (-554))) (|:| |c| |#1|)))) NIL)) (-3046 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2916 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-1205 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1233 |#1| |#2| |#3|) "failed") $) 22)) (-1668 (((-1205 |#1| |#2| |#3|) $) NIL) (((-1233 |#1| |#2| |#3|) $) NIL)) (-3964 (($ $ $) NIL (|has| |#1| (-358)))) (-2550 (($ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2811 (((-402 (-554)) $) 57)) (-3943 (($ $ $) NIL (|has| |#1| (-358)))) (-2463 (($ (-402 (-554)) (-1205 |#1| |#2| |#3|)) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL (|has| |#1| (-358)))) (-3289 (((-112) $) NIL (|has| |#1| (-358)))) (-2051 (((-112) $) NIL)) (-2844 (($) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2342 (((-402 (-554)) $) NIL) (((-402 (-554)) $ (-402 (-554))) NIL)) (-3248 (((-112) $) NIL)) (-3734 (($ $ (-554)) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3333 (($ $ (-906)) NIL) (($ $ (-402 (-554))) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-3580 (((-112) $) NIL)) (-2383 (($ |#1| (-402 (-554))) 30) (($ $ (-1064) (-402 (-554))) NIL) (($ $ (-631 (-1064)) (-631 (-402 (-554)))) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-2395 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2518 (($ $) NIL)) (-2530 ((|#1| $) NIL)) (-2475 (($ (-631 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-2058 (((-1205 |#1| |#2| |#3|) $) 60)) (-1602 (((-3 (-1205 |#1| |#2| |#3|) "failed") $) NIL)) (-2454 (((-1205 |#1| |#2| |#3|) $) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL (|has| |#1| (-358)))) (-2279 (($ $) 39 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-1158)) NIL (-3994 (-12 (|has| |#1| (-15 -2279 (|#1| |#1| (-1158)))) (|has| |#1| (-15 -2405 ((-631 (-1158)) |#1|))) (|has| |#1| (-38 (-402 (-554))))) (-12 (|has| |#1| (-29 (-554))) (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-944)) (|has| |#1| (-1180))))) (($ $ (-1237 |#2|)) 40 (|has| |#1| (-38 (-402 (-554)))))) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#1| (-358)))) (-2510 (($ (-631 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-2270 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-358)))) (-4282 (($ $ (-402 (-554))) NIL)) (-3919 (((-3 $ "failed") $ $) NIL (|has| |#1| (-546)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-1333 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2386 (((-1138 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-402 (-554))))))) (-2072 (((-758) $) NIL (|has| |#1| (-358)))) (-2064 ((|#1| $ (-402 (-554))) NIL) (($ $ $) NIL (|has| (-402 (-554)) (-1094)))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-358)))) (-1553 (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-758)) NIL (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|)))) (($ $ (-1237 |#2|)) 38)) (-3308 (((-402 (-554)) $) NIL)) (-3057 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2926 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3034 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4213 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3014 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4188 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-1300 (($ $) NIL)) (-3075 (((-848) $) 89) (($ (-554)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1205 |#1| |#2| |#3|)) 16) (($ (-1233 |#1| |#2| |#3|)) 17) (($ (-1237 |#2|)) 36) (($ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $) NIL (|has| |#1| (-546)))) (-1779 ((|#1| $ (-402 (-554))) NIL)) (-2084 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2261 (((-758)) NIL)) (-1608 ((|#1| $) 12)) (-3096 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2959 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-1909 (((-112) $ $) NIL (|has| |#1| (-546)))) (-3069 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2938 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3120 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2981 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4333 ((|#1| $ (-402 (-554))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-554))))) (|has| |#1| (-15 -3075 (|#1| (-1158))))))) (-2908 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2991 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3108 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2969 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3083 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2948 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2004 (($) 32 T CONST)) (-2014 (($) 26 T CONST)) (-1787 (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-758)) NIL (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) 34)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554)))))) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554)))))))
-(((-1226 |#1| |#2| |#3|) (-13 (-1224 |#1| (-1205 |#1| |#2| |#3|)) (-1023 (-1233 |#1| |#2| |#3|)) (-604 (-1237 |#2|)) (-10 -8 (-15 -1553 ($ $ (-1237 |#2|))) (IF (|has| |#1| (-38 (-402 (-554)))) (-15 -2279 ($ $ (-1237 |#2|))) |%noBranch|))) (-1034) (-1158) |#1|) (T -1226))
-((-1553 (*1 *1 *1 *2) (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1226 *3 *4 *5)) (-4 *3 (-1034)) (-14 *5 *3))) (-2279 (*1 *1 *1 *2) (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1226 *3 *4 *5)) (-4 *3 (-38 (-402 (-554)))) (-4 *3 (-1034)) (-14 *5 *3))))
-(-13 (-1224 |#1| (-1205 |#1| |#2| |#3|)) (-1023 (-1233 |#1| |#2| |#3|)) (-604 (-1237 |#2|)) (-10 -8 (-15 -1553 ($ $ (-1237 |#2|))) (IF (|has| |#1| (-38 (-402 (-554)))) (-15 -2279 ($ $ (-1237 |#2|))) |%noBranch|)))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 34)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) NIL (|has| (-1226 |#2| |#3| |#4|) (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| (-1226 |#2| |#3| |#4|) (-1023 (-402 (-554))))) (((-3 (-1226 |#2| |#3| |#4|) "failed") $) 20)) (-1668 (((-554) $) NIL (|has| (-1226 |#2| |#3| |#4|) (-1023 (-554)))) (((-402 (-554)) $) NIL (|has| (-1226 |#2| |#3| |#4|) (-1023 (-402 (-554))))) (((-1226 |#2| |#3| |#4|) $) NIL)) (-2550 (($ $) 35)) (-1320 (((-3 $ "failed") $) 25)) (-2048 (($ $) NIL (|has| (-1226 |#2| |#3| |#4|) (-446)))) (-1344 (($ $ (-1226 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|) $) NIL)) (-3248 (((-112) $) NIL)) (-2122 (((-758) $) 11)) (-3580 (((-112) $) NIL)) (-2383 (($ (-1226 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|)) 23)) (-3893 (((-314 |#2| |#3| |#4|) $) NIL)) (-2789 (($ (-1 (-314 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|)) $) NIL)) (-2879 (($ (-1 (-1226 |#2| |#3| |#4|) (-1226 |#2| |#3| |#4|)) $) NIL)) (-2608 (((-3 (-829 |#2|) "failed") $) 75)) (-2518 (($ $) NIL)) (-2530 (((-1226 |#2| |#3| |#4|) $) 18)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2492 (((-112) $) NIL)) (-2505 (((-1226 |#2| |#3| |#4|) $) NIL)) (-3919 (((-3 $ "failed") $ (-1226 |#2| |#3| |#4|)) NIL (|has| (-1226 |#2| |#3| |#4|) (-546))) (((-3 $ "failed") $ $) NIL)) (-2149 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1226 |#2| |#3| |#4|)) (|:| |%expon| (-314 |#2| |#3| |#4|)) (|:| |%expTerms| (-631 (-2 (|:| |k| (-402 (-554))) (|:| |c| |#2|)))))) (|:| |%type| (-1140))) "failed") $) 58)) (-3308 (((-314 |#2| |#3| |#4|) $) 14)) (-3276 (((-1226 |#2| |#3| |#4|) $) NIL (|has| (-1226 |#2| |#3| |#4|) (-446)))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ (-1226 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-402 (-554))) NIL (-3994 (|has| (-1226 |#2| |#3| |#4|) (-38 (-402 (-554)))) (|has| (-1226 |#2| |#3| |#4|) (-1023 (-402 (-554))))))) (-1893 (((-631 (-1226 |#2| |#3| |#4|)) $) NIL)) (-1779 (((-1226 |#2| |#3| |#4|) $ (-314 |#2| |#3| |#4|)) NIL)) (-2084 (((-3 $ "failed") $) NIL (|has| (-1226 |#2| |#3| |#4|) (-143)))) (-2261 (((-758)) NIL)) (-2907 (($ $ $ (-758)) NIL (|has| (-1226 |#2| |#3| |#4|) (-170)))) (-1909 (((-112) $ $) NIL)) (-2004 (($) 63 T CONST)) (-2014 (($) NIL T CONST)) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ (-1226 |#2| |#3| |#4|)) NIL (|has| (-1226 |#2| |#3| |#4|) (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-1226 |#2| |#3| |#4|)) NIL) (($ (-1226 |#2| |#3| |#4|) $) NIL) (($ (-402 (-554)) $) NIL (|has| (-1226 |#2| |#3| |#4|) (-38 (-402 (-554))))) (($ $ (-402 (-554))) NIL (|has| (-1226 |#2| |#3| |#4|) (-38 (-402 (-554)))))))
-(((-1227 |#1| |#2| |#3| |#4|) (-13 (-321 (-1226 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|)) (-546) (-10 -8 (-15 -2608 ((-3 (-829 |#2|) "failed") $)) (-15 -2149 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1226 |#2| |#3| |#4|)) (|:| |%expon| (-314 |#2| |#3| |#4|)) (|:| |%expTerms| (-631 (-2 (|:| |k| (-402 (-554))) (|:| |c| |#2|)))))) (|:| |%type| (-1140))) "failed") $)))) (-13 (-836) (-1023 (-554)) (-627 (-554)) (-446)) (-13 (-27) (-1180) (-425 |#1|)) (-1158) |#2|) (T -1227))
-((-2608 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-836) (-1023 (-554)) (-627 (-554)) (-446))) (-5 *2 (-829 *4)) (-5 *1 (-1227 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1180) (-425 *3))) (-14 *5 (-1158)) (-14 *6 *4))) (-2149 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-836) (-1023 (-554)) (-627 (-554)) (-446))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1226 *4 *5 *6)) (|:| |%expon| (-314 *4 *5 *6)) (|:| |%expTerms| (-631 (-2 (|:| |k| (-402 (-554))) (|:| |c| *4)))))) (|:| |%type| (-1140)))) (-5 *1 (-1227 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1180) (-425 *3))) (-14 *5 (-1158)) (-14 *6 *4))))
-(-13 (-321 (-1226 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|)) (-546) (-10 -8 (-15 -2608 ((-3 (-829 |#2|) "failed") $)) (-15 -2149 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1226 |#2| |#3| |#4|)) (|:| |%expon| (-314 |#2| |#3| |#4|)) (|:| |%expTerms| (-631 (-2 (|:| |k| (-402 (-554))) (|:| |c| |#2|)))))) (|:| |%type| (-1140))) "failed") $))))
-((-2794 ((|#2| $) 29)) (-2350 ((|#2| $) 18)) (-3387 (($ $) 36)) (-2722 (($ $ (-554)) 64)) (-3019 (((-112) $ (-758)) 33)) (-2690 ((|#2| $ |#2|) 61)) (-1825 ((|#2| $ |#2|) 59)) (-1501 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-2923 (($ $ (-631 $)) 60)) (-2337 ((|#2| $) 17)) (-1551 (($ $) NIL) (($ $ (-758)) 42)) (-3677 (((-631 $) $) 26)) (-1990 (((-112) $ $) 50)) (-2230 (((-112) $ (-758)) 32)) (-3731 (((-112) $ (-758)) 31)) (-3216 (((-112) $) 28)) (-2597 ((|#2| $) 24) (($ $ (-758)) 46)) (-2064 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3008 (((-112) $) 22)) (-1670 (($ $) 39)) (-2377 (($ $) 65)) (-2797 (((-758) $) 41)) (-2046 (($ $) 40)) (-4323 (($ $ $) 58) (($ |#2| $) NIL)) (-2461 (((-631 $) $) 27)) (-1658 (((-112) $ $) 48)) (-2563 (((-758) $) 35)))
-(((-1228 |#1| |#2|) (-10 -8 (-15 -2722 (|#1| |#1| (-554))) (-15 -1501 (|#2| |#1| "last" |#2|)) (-15 -1825 (|#2| |#1| |#2|)) (-15 -1501 (|#1| |#1| "rest" |#1|)) (-15 -1501 (|#2| |#1| "first" |#2|)) (-15 -2377 (|#1| |#1|)) (-15 -1670 (|#1| |#1|)) (-15 -2797 ((-758) |#1|)) (-15 -2046 (|#1| |#1|)) (-15 -2350 (|#2| |#1|)) (-15 -2337 (|#2| |#1|)) (-15 -3387 (|#1| |#1|)) (-15 -2597 (|#1| |#1| (-758))) (-15 -2064 (|#2| |#1| "last")) (-15 -2597 (|#2| |#1|)) (-15 -1551 (|#1| |#1| (-758))) (-15 -2064 (|#1| |#1| "rest")) (-15 -1551 (|#1| |#1|)) (-15 -2064 (|#2| |#1| "first")) (-15 -4323 (|#1| |#2| |#1|)) (-15 -4323 (|#1| |#1| |#1|)) (-15 -2690 (|#2| |#1| |#2|)) (-15 -1501 (|#2| |#1| "value" |#2|)) (-15 -2923 (|#1| |#1| (-631 |#1|))) (-15 -1990 ((-112) |#1| |#1|)) (-15 -3008 ((-112) |#1|)) (-15 -2064 (|#2| |#1| "value")) (-15 -2794 (|#2| |#1|)) (-15 -3216 ((-112) |#1|)) (-15 -3677 ((-631 |#1|) |#1|)) (-15 -2461 ((-631 |#1|) |#1|)) (-15 -1658 ((-112) |#1| |#1|)) (-15 -2563 ((-758) |#1|)) (-15 -3019 ((-112) |#1| (-758))) (-15 -2230 ((-112) |#1| (-758))) (-15 -3731 ((-112) |#1| (-758)))) (-1229 |#2|) (-1195)) (T -1228))
-NIL
-(-10 -8 (-15 -2722 (|#1| |#1| (-554))) (-15 -1501 (|#2| |#1| "last" |#2|)) (-15 -1825 (|#2| |#1| |#2|)) (-15 -1501 (|#1| |#1| "rest" |#1|)) (-15 -1501 (|#2| |#1| "first" |#2|)) (-15 -2377 (|#1| |#1|)) (-15 -1670 (|#1| |#1|)) (-15 -2797 ((-758) |#1|)) (-15 -2046 (|#1| |#1|)) (-15 -2350 (|#2| |#1|)) (-15 -2337 (|#2| |#1|)) (-15 -3387 (|#1| |#1|)) (-15 -2597 (|#1| |#1| (-758))) (-15 -2064 (|#2| |#1| "last")) (-15 -2597 (|#2| |#1|)) (-15 -1551 (|#1| |#1| (-758))) (-15 -2064 (|#1| |#1| "rest")) (-15 -1551 (|#1| |#1|)) (-15 -2064 (|#2| |#1| "first")) (-15 -4323 (|#1| |#2| |#1|)) (-15 -4323 (|#1| |#1| |#1|)) (-15 -2690 (|#2| |#1| |#2|)) (-15 -1501 (|#2| |#1| "value" |#2|)) (-15 -2923 (|#1| |#1| (-631 |#1|))) (-15 -1990 ((-112) |#1| |#1|)) (-15 -3008 ((-112) |#1|)) (-15 -2064 (|#2| |#1| "value")) (-15 -2794 (|#2| |#1|)) (-15 -3216 ((-112) |#1|)) (-15 -3677 ((-631 |#1|) |#1|)) (-15 -2461 ((-631 |#1|) |#1|)) (-15 -1658 ((-112) |#1| |#1|)) (-15 -2563 ((-758) |#1|)) (-15 -3019 ((-112) |#1| (-758))) (-15 -2230 ((-112) |#1| (-758))) (-15 -3731 ((-112) |#1| (-758))))
-((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-2794 ((|#1| $) 48)) (-2350 ((|#1| $) 65)) (-3387 (($ $) 67)) (-2722 (($ $ (-554)) 52 (|has| $ (-6 -4374)))) (-3019 (((-112) $ (-758)) 8)) (-2690 ((|#1| $ |#1|) 39 (|has| $ (-6 -4374)))) (-2234 (($ $ $) 56 (|has| $ (-6 -4374)))) (-1825 ((|#1| $ |#1|) 54 (|has| $ (-6 -4374)))) (-3105 ((|#1| $ |#1|) 58 (|has| $ (-6 -4374)))) (-1501 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4374))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4374))) (($ $ "rest" $) 55 (|has| $ (-6 -4374))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4374)))) (-2923 (($ $ (-631 $)) 41 (|has| $ (-6 -4374)))) (-2337 ((|#1| $) 66)) (-4087 (($) 7 T CONST)) (-1551 (($ $) 73) (($ $ (-758)) 71)) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-3677 (((-631 $) $) 50)) (-1990 (((-112) $ $) 42 (|has| |#1| (-1082)))) (-2230 (((-112) $ (-758)) 9)) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35)) (-3731 (((-112) $ (-758)) 10)) (-2306 (((-631 |#1|) $) 45)) (-3216 (((-112) $) 49)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-2597 ((|#1| $) 70) (($ $ (-758)) 68)) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-1539 ((|#1| $) 76) (($ $ (-758)) 74)) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2064 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-3250 (((-554) $ $) 44)) (-3008 (((-112) $) 46)) (-1670 (($ $) 62)) (-2377 (($ $) 59 (|has| $ (-6 -4374)))) (-2797 (((-758) $) 63)) (-2046 (($ $) 64)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-1853 (($ $ $) 61 (|has| $ (-6 -4374))) (($ $ |#1|) 60 (|has| $ (-6 -4374)))) (-4323 (($ $ $) 78) (($ |#1| $) 77)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-2461 (((-631 $) $) 51)) (-1441 (((-112) $ $) 43 (|has| |#1| (-1082)))) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373)))))
-(((-1229 |#1|) (-138) (-1195)) (T -1229))
-((-4323 (*1 *1 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1195)))) (-4323 (*1 *1 *2 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1195)))) (-1539 (*1 *2 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1195)))) (-2064 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1229 *2)) (-4 *2 (-1195)))) (-1539 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *1 (-1229 *3)) (-4 *3 (-1195)))) (-1551 (*1 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1195)))) (-2064 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1229 *3)) (-4 *3 (-1195)))) (-1551 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *1 (-1229 *3)) (-4 *3 (-1195)))) (-2597 (*1 *2 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1195)))) (-2064 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1229 *2)) (-4 *2 (-1195)))) (-2597 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *1 (-1229 *3)) (-4 *3 (-1195)))) (-3387 (*1 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1195)))) (-2337 (*1 *2 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1195)))) (-2350 (*1 *2 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1195)))) (-2046 (*1 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1195)))) (-2797 (*1 *2 *1) (-12 (-4 *1 (-1229 *3)) (-4 *3 (-1195)) (-5 *2 (-758)))) (-1670 (*1 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1195)))) (-1853 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4374)) (-4 *1 (-1229 *2)) (-4 *2 (-1195)))) (-1853 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4374)) (-4 *1 (-1229 *2)) (-4 *2 (-1195)))) (-2377 (*1 *1 *1) (-12 (|has| *1 (-6 -4374)) (-4 *1 (-1229 *2)) (-4 *2 (-1195)))) (-3105 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4374)) (-4 *1 (-1229 *2)) (-4 *2 (-1195)))) (-1501 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4374)) (-4 *1 (-1229 *2)) (-4 *2 (-1195)))) (-2234 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4374)) (-4 *1 (-1229 *2)) (-4 *2 (-1195)))) (-1501 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4374)) (-4 *1 (-1229 *3)) (-4 *3 (-1195)))) (-1825 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4374)) (-4 *1 (-1229 *2)) (-4 *2 (-1195)))) (-1501 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4374)) (-4 *1 (-1229 *2)) (-4 *2 (-1195)))) (-2722 (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (|has| *1 (-6 -4374)) (-4 *1 (-1229 *3)) (-4 *3 (-1195)))))
-(-13 (-995 |t#1|) (-10 -8 (-15 -4323 ($ $ $)) (-15 -4323 ($ |t#1| $)) (-15 -1539 (|t#1| $)) (-15 -2064 (|t#1| $ "first")) (-15 -1539 ($ $ (-758))) (-15 -1551 ($ $)) (-15 -2064 ($ $ "rest")) (-15 -1551 ($ $ (-758))) (-15 -2597 (|t#1| $)) (-15 -2064 (|t#1| $ "last")) (-15 -2597 ($ $ (-758))) (-15 -3387 ($ $)) (-15 -2337 (|t#1| $)) (-15 -2350 (|t#1| $)) (-15 -2046 ($ $)) (-15 -2797 ((-758) $)) (-15 -1670 ($ $)) (IF (|has| $ (-6 -4374)) (PROGN (-15 -1853 ($ $ $)) (-15 -1853 ($ $ |t#1|)) (-15 -2377 ($ $)) (-15 -3105 (|t#1| $ |t#1|)) (-15 -1501 (|t#1| $ "first" |t#1|)) (-15 -2234 ($ $ $)) (-15 -1501 ($ $ "rest" $)) (-15 -1825 (|t#1| $ |t#1|)) (-15 -1501 (|t#1| $ "last" |t#1|)) (-15 -2722 ($ $ (-554)))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1082)) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-601 (-848)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-995 |#1|) . T) ((-1082) |has| |#1| (-1082)) ((-1195) . T))
-((-2879 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
-(((-1230 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2879 (|#4| (-1 |#2| |#1|) |#3|))) (-1034) (-1034) (-1232 |#1|) (-1232 |#2|)) (T -1230))
-((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1034)) (-4 *6 (-1034)) (-4 *2 (-1232 *6)) (-5 *1 (-1230 *5 *6 *4 *2)) (-4 *4 (-1232 *5)))))
-(-10 -7 (-15 -2879 (|#4| (-1 |#2| |#1|) |#3|)))
-((-1695 (((-112) $) 15)) (-3023 (($ $) 92)) (-4200 (($ $) 68)) (-3003 (($ $) 88)) (-4177 (($ $) 64)) (-3046 (($ $) 96)) (-2916 (($ $) 72)) (-2395 (($ $) 62)) (-1333 (($ $) 60)) (-3057 (($ $) 98)) (-2926 (($ $) 74)) (-3034 (($ $) 94)) (-4213 (($ $) 70)) (-3014 (($ $) 90)) (-4188 (($ $) 66)) (-3075 (((-848) $) 48) (($ (-554)) NIL) (($ (-402 (-554))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-3096 (($ $) 104)) (-2959 (($ $) 80)) (-3069 (($ $) 100)) (-2938 (($ $) 76)) (-3120 (($ $) 108)) (-2981 (($ $) 84)) (-2908 (($ $) 110)) (-2991 (($ $) 86)) (-3108 (($ $) 106)) (-2969 (($ $) 82)) (-3083 (($ $) 102)) (-2948 (($ $) 78)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ |#2|) 52) (($ $ $) 55) (($ $ (-402 (-554))) 58)))
-(((-1231 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-402 (-554)))) (-15 -4200 (|#1| |#1|)) (-15 -4177 (|#1| |#1|)) (-15 -2916 (|#1| |#1|)) (-15 -2926 (|#1| |#1|)) (-15 -4213 (|#1| |#1|)) (-15 -4188 (|#1| |#1|)) (-15 -2948 (|#1| |#1|)) (-15 -2969 (|#1| |#1|)) (-15 -2991 (|#1| |#1|)) (-15 -2981 (|#1| |#1|)) (-15 -2938 (|#1| |#1|)) (-15 -2959 (|#1| |#1|)) (-15 -3014 (|#1| |#1|)) (-15 -3034 (|#1| |#1|)) (-15 -3057 (|#1| |#1|)) (-15 -3046 (|#1| |#1|)) (-15 -3003 (|#1| |#1|)) (-15 -3023 (|#1| |#1|)) (-15 -3083 (|#1| |#1|)) (-15 -3108 (|#1| |#1|)) (-15 -2908 (|#1| |#1|)) (-15 -3120 (|#1| |#1|)) (-15 -3069 (|#1| |#1|)) (-15 -3096 (|#1| |#1|)) (-15 -2395 (|#1| |#1|)) (-15 -1333 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3075 (|#1| |#2|)) (-15 -3075 (|#1| |#1|)) (-15 -3075 (|#1| (-402 (-554)))) (-15 -3075 (|#1| (-554))) (-15 ** (|#1| |#1| (-758))) (-15 ** (|#1| |#1| (-906))) (-15 -1695 ((-112) |#1|)) (-15 -3075 ((-848) |#1|))) (-1232 |#2|) (-1034)) (T -1231))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-402 (-554)))) (-15 -4200 (|#1| |#1|)) (-15 -4177 (|#1| |#1|)) (-15 -2916 (|#1| |#1|)) (-15 -2926 (|#1| |#1|)) (-15 -4213 (|#1| |#1|)) (-15 -4188 (|#1| |#1|)) (-15 -2948 (|#1| |#1|)) (-15 -2969 (|#1| |#1|)) (-15 -2991 (|#1| |#1|)) (-15 -2981 (|#1| |#1|)) (-15 -2938 (|#1| |#1|)) (-15 -2959 (|#1| |#1|)) (-15 -3014 (|#1| |#1|)) (-15 -3034 (|#1| |#1|)) (-15 -3057 (|#1| |#1|)) (-15 -3046 (|#1| |#1|)) (-15 -3003 (|#1| |#1|)) (-15 -3023 (|#1| |#1|)) (-15 -3083 (|#1| |#1|)) (-15 -3108 (|#1| |#1|)) (-15 -2908 (|#1| |#1|)) (-15 -3120 (|#1| |#1|)) (-15 -3069 (|#1| |#1|)) (-15 -3096 (|#1| |#1|)) (-15 -2395 (|#1| |#1|)) (-15 -1333 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3075 (|#1| |#2|)) (-15 -3075 (|#1| |#1|)) (-15 -3075 (|#1| (-402 (-554)))) (-15 -3075 (|#1| (-554))) (-15 ** (|#1| |#1| (-758))) (-15 ** (|#1| |#1| (-906))) (-15 -1695 ((-112) |#1|)) (-15 -3075 ((-848) |#1|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2405 (((-631 (-1064)) $) 77)) (-1576 (((-1158) $) 106)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 54 (|has| |#1| (-546)))) (-1976 (($ $) 55 (|has| |#1| (-546)))) (-1363 (((-112) $) 57 (|has| |#1| (-546)))) (-1557 (($ $ (-758)) 101) (($ $ (-758) (-758)) 100)) (-3042 (((-1138 (-2 (|:| |k| (-758)) (|:| |c| |#1|))) $) 108)) (-3023 (($ $) 138 (|has| |#1| (-38 (-402 (-554)))))) (-4200 (($ $) 121 (|has| |#1| (-38 (-402 (-554)))))) (-2934 (((-3 $ "failed") $ $) 19)) (-2282 (($ $) 120 (|has| |#1| (-38 (-402 (-554)))))) (-3003 (($ $) 137 (|has| |#1| (-38 (-402 (-554)))))) (-4177 (($ $) 122 (|has| |#1| (-38 (-402 (-554)))))) (-4175 (($ (-1138 (-2 (|:| |k| (-758)) (|:| |c| |#1|)))) 158) (($ (-1138 |#1|)) 156)) (-3046 (($ $) 136 (|has| |#1| (-38 (-402 (-554)))))) (-2916 (($ $) 123 (|has| |#1| (-38 (-402 (-554)))))) (-4087 (($) 17 T CONST)) (-2550 (($ $) 63)) (-1320 (((-3 $ "failed") $) 33)) (-3356 (($ $) 155)) (-3497 (((-937 |#1|) $ (-758)) 153) (((-937 |#1|) $ (-758) (-758)) 152)) (-2051 (((-112) $) 76)) (-2844 (($) 148 (|has| |#1| (-38 (-402 (-554)))))) (-2342 (((-758) $) 103) (((-758) $ (-758)) 102)) (-3248 (((-112) $) 31)) (-3734 (($ $ (-554)) 119 (|has| |#1| (-38 (-402 (-554)))))) (-3333 (($ $ (-906)) 104)) (-1310 (($ (-1 |#1| (-554)) $) 154)) (-3580 (((-112) $) 65)) (-2383 (($ |#1| (-758)) 64) (($ $ (-1064) (-758)) 79) (($ $ (-631 (-1064)) (-631 (-758))) 78)) (-2879 (($ (-1 |#1| |#1|) $) 66)) (-2395 (($ $) 145 (|has| |#1| (-38 (-402 (-554)))))) (-2518 (($ $) 68)) (-2530 ((|#1| $) 69)) (-1613 (((-1140) $) 9)) (-2279 (($ $) 150 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-1158)) 149 (-3994 (-12 (|has| |#1| (-29 (-554))) (|has| |#1| (-944)) (|has| |#1| (-1180)) (|has| |#1| (-38 (-402 (-554))))) (-12 (|has| |#1| (-15 -2405 ((-631 (-1158)) |#1|))) (|has| |#1| (-15 -2279 (|#1| |#1| (-1158)))) (|has| |#1| (-38 (-402 (-554)))))))) (-2768 (((-1102) $) 10)) (-4282 (($ $ (-758)) 98)) (-3919 (((-3 $ "failed") $ $) 53 (|has| |#1| (-546)))) (-1333 (($ $) 146 (|has| |#1| (-38 (-402 (-554)))))) (-2386 (((-1138 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-758)))))) (-2064 ((|#1| $ (-758)) 107) (($ $ $) 84 (|has| (-758) (-1094)))) (-1553 (($ $ (-631 (-1158)) (-631 (-758))) 92 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-758) |#1|))))) (($ $ (-1158) (-758)) 91 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-758) |#1|))))) (($ $ (-631 (-1158))) 90 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-758) |#1|))))) (($ $ (-1158)) 89 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-758) |#1|))))) (($ $ (-758)) 87 (|has| |#1| (-15 * (|#1| (-758) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-758) |#1|))))) (-3308 (((-758) $) 67)) (-3057 (($ $) 135 (|has| |#1| (-38 (-402 (-554)))))) (-2926 (($ $) 124 (|has| |#1| (-38 (-402 (-554)))))) (-3034 (($ $) 134 (|has| |#1| (-38 (-402 (-554)))))) (-4213 (($ $) 125 (|has| |#1| (-38 (-402 (-554)))))) (-3014 (($ $) 133 (|has| |#1| (-38 (-402 (-554)))))) (-4188 (($ $) 126 (|has| |#1| (-38 (-402 (-554)))))) (-1300 (($ $) 75)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ (-402 (-554))) 60 (|has| |#1| (-38 (-402 (-554))))) (($ $) 52 (|has| |#1| (-546))) (($ |#1|) 50 (|has| |#1| (-170)))) (-1893 (((-1138 |#1|) $) 157)) (-1779 ((|#1| $ (-758)) 62)) (-2084 (((-3 $ "failed") $) 51 (|has| |#1| (-143)))) (-2261 (((-758)) 28)) (-1608 ((|#1| $) 105)) (-3096 (($ $) 144 (|has| |#1| (-38 (-402 (-554)))))) (-2959 (($ $) 132 (|has| |#1| (-38 (-402 (-554)))))) (-1909 (((-112) $ $) 56 (|has| |#1| (-546)))) (-3069 (($ $) 143 (|has| |#1| (-38 (-402 (-554)))))) (-2938 (($ $) 131 (|has| |#1| (-38 (-402 (-554)))))) (-3120 (($ $) 142 (|has| |#1| (-38 (-402 (-554)))))) (-2981 (($ $) 130 (|has| |#1| (-38 (-402 (-554)))))) (-4333 ((|#1| $ (-758)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-758)))) (|has| |#1| (-15 -3075 (|#1| (-1158))))))) (-2908 (($ $) 141 (|has| |#1| (-38 (-402 (-554)))))) (-2991 (($ $) 129 (|has| |#1| (-38 (-402 (-554)))))) (-3108 (($ $) 140 (|has| |#1| (-38 (-402 (-554)))))) (-2969 (($ $) 128 (|has| |#1| (-38 (-402 (-554)))))) (-3083 (($ $) 139 (|has| |#1| (-38 (-402 (-554)))))) (-2948 (($ $) 127 (|has| |#1| (-38 (-402 (-554)))))) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($ $ (-631 (-1158)) (-631 (-758))) 96 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-758) |#1|))))) (($ $ (-1158) (-758)) 95 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-758) |#1|))))) (($ $ (-631 (-1158))) 94 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-758) |#1|))))) (($ $ (-1158)) 93 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-758) |#1|))))) (($ $ (-758)) 88 (|has| |#1| (-15 * (|#1| (-758) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-758) |#1|))))) (-1658 (((-112) $ $) 6)) (-1752 (($ $ |#1|) 61 (|has| |#1| (-358)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ |#1|) 151 (|has| |#1| (-358))) (($ $ $) 147 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) 118 (|has| |#1| (-38 (-402 (-554)))))) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-402 (-554)) $) 59 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) 58 (|has| |#1| (-38 (-402 (-554)))))))
-(((-1232 |#1|) (-138) (-1034)) (T -1232))
-((-4175 (*1 *1 *2) (-12 (-5 *2 (-1138 (-2 (|:| |k| (-758)) (|:| |c| *3)))) (-4 *3 (-1034)) (-4 *1 (-1232 *3)))) (-1893 (*1 *2 *1) (-12 (-4 *1 (-1232 *3)) (-4 *3 (-1034)) (-5 *2 (-1138 *3)))) (-4175 (*1 *1 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-4 *1 (-1232 *3)))) (-3356 (*1 *1 *1) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1034)))) (-1310 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-554))) (-4 *1 (-1232 *3)) (-4 *3 (-1034)))) (-3497 (*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-4 *1 (-1232 *4)) (-4 *4 (-1034)) (-5 *2 (-937 *4)))) (-3497 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-758)) (-4 *1 (-1232 *4)) (-4 *4 (-1034)) (-5 *2 (-937 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1034)) (-4 *2 (-358)))) (-2279 (*1 *1 *1) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1034)) (-4 *2 (-38 (-402 (-554)))))) (-2279 (*1 *1 *1 *2) (-3994 (-12 (-5 *2 (-1158)) (-4 *1 (-1232 *3)) (-4 *3 (-1034)) (-12 (-4 *3 (-29 (-554))) (-4 *3 (-944)) (-4 *3 (-1180)) (-4 *3 (-38 (-402 (-554)))))) (-12 (-5 *2 (-1158)) (-4 *1 (-1232 *3)) (-4 *3 (-1034)) (-12 (|has| *3 (-15 -2405 ((-631 *2) *3))) (|has| *3 (-15 -2279 (*3 *3 *2))) (-4 *3 (-38 (-402 (-554)))))))))
-(-13 (-1219 |t#1| (-758)) (-10 -8 (-15 -4175 ($ (-1138 (-2 (|:| |k| (-758)) (|:| |c| |t#1|))))) (-15 -1893 ((-1138 |t#1|) $)) (-15 -4175 ($ (-1138 |t#1|))) (-15 -3356 ($ $)) (-15 -1310 ($ (-1 |t#1| (-554)) $)) (-15 -3497 ((-937 |t#1|) $ (-758))) (-15 -3497 ((-937 |t#1|) $ (-758) (-758))) (IF (|has| |t#1| (-358)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-402 (-554)))) (PROGN (-15 -2279 ($ $)) (IF (|has| |t#1| (-15 -2279 (|t#1| |t#1| (-1158)))) (IF (|has| |t#1| (-15 -2405 ((-631 (-1158)) |t#1|))) (-15 -2279 ($ $ (-1158))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1180)) (IF (|has| |t#1| (-944)) (IF (|has| |t#1| (-29 (-554))) (-15 -2279 ($ $ (-1158))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-987)) (-6 (-1180))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-758)) . T) ((-25) . T) ((-38 #1=(-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-546)) ((-35) |has| |#1| (-38 (-402 (-554)))) ((-95) |has| |#1| (-38 (-402 (-554)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-402 (-554)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3994 (|has| |#1| (-546)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-604 #1#) |has| |#1| (-38 (-402 (-554)))) ((-604 (-554)) . T) ((-604 |#1|) |has| |#1| (-170)) ((-604 $) |has| |#1| (-546)) ((-601 (-848)) . T) ((-170) -3994 (|has| |#1| (-546)) (|has| |#1| (-170))) ((-229) |has| |#1| (-15 * (|#1| (-758) |#1|))) ((-279) |has| |#1| (-38 (-402 (-554)))) ((-281 $ $) |has| (-758) (-1094)) ((-285) |has| |#1| (-546)) ((-487) |has| |#1| (-38 (-402 (-554)))) ((-546) |has| |#1| (-546)) ((-634 #1#) |has| |#1| (-38 (-402 (-554)))) ((-634 |#1|) . T) ((-634 $) . T) ((-704 #1#) |has| |#1| (-38 (-402 (-554)))) ((-704 |#1|) |has| |#1| (-170)) ((-704 $) |has| |#1| (-546)) ((-713) . T) ((-885 (-1158)) -12 (|has| |#1| (-15 * (|#1| (-758) |#1|))) (|has| |#1| (-885 (-1158)))) ((-958 |#1| #0# (-1064)) . T) ((-987) |has| |#1| (-38 (-402 (-554)))) ((-1040 #1#) |has| |#1| (-38 (-402 (-554)))) ((-1040 |#1|) . T) ((-1040 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-170))) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1180) |has| |#1| (-38 (-402 (-554)))) ((-1183) |has| |#1| (-38 (-402 (-554)))) ((-1219 |#1| #0#) . T))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2405 (((-631 (-1064)) $) NIL)) (-1576 (((-1158) $) 87)) (-1530 (((-1214 |#2| |#1|) $ (-758)) 73)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-546)))) (-1976 (($ $) NIL (|has| |#1| (-546)))) (-1363 (((-112) $) 137 (|has| |#1| (-546)))) (-1557 (($ $ (-758)) 122) (($ $ (-758) (-758)) 124)) (-3042 (((-1138 (-2 (|:| |k| (-758)) (|:| |c| |#1|))) $) 42)) (-3023 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4200 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2934 (((-3 $ "failed") $ $) NIL)) (-2282 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3003 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4177 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4175 (($ (-1138 (-2 (|:| |k| (-758)) (|:| |c| |#1|)))) 53) (($ (-1138 |#1|)) NIL)) (-3046 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2916 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4087 (($) NIL T CONST)) (-3587 (($ $) 128)) (-2550 (($ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3356 (($ $) 135)) (-3497 (((-937 |#1|) $ (-758)) 63) (((-937 |#1|) $ (-758) (-758)) 65)) (-2051 (((-112) $) NIL)) (-2844 (($) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2342 (((-758) $) NIL) (((-758) $ (-758)) NIL)) (-3248 (((-112) $) NIL)) (-3598 (($ $) 112)) (-3734 (($ $ (-554)) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3712 (($ (-554) (-554) $) 130)) (-3333 (($ $ (-906)) 134)) (-1310 (($ (-1 |#1| (-554)) $) 106)) (-3580 (((-112) $) NIL)) (-2383 (($ |#1| (-758)) 15) (($ $ (-1064) (-758)) NIL) (($ $ (-631 (-1064)) (-631 (-758))) NIL)) (-2879 (($ (-1 |#1| |#1|) $) 94)) (-2395 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2518 (($ $) NIL)) (-2530 ((|#1| $) NIL)) (-1613 (((-1140) $) NIL)) (-2618 (($ $) 110)) (-4335 (($ $) 108)) (-2691 (($ (-554) (-554) $) 132)) (-2279 (($ $) 145 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-1158)) 151 (-3994 (-12 (|has| |#1| (-15 -2279 (|#1| |#1| (-1158)))) (|has| |#1| (-15 -2405 ((-631 (-1158)) |#1|))) (|has| |#1| (-38 (-402 (-554))))) (-12 (|has| |#1| (-29 (-554))) (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-944)) (|has| |#1| (-1180))))) (($ $ (-1237 |#2|)) 146 (|has| |#1| (-38 (-402 (-554)))))) (-2768 (((-1102) $) NIL)) (-4043 (($ $ (-554) (-554)) 116)) (-4282 (($ $ (-758)) 118)) (-3919 (((-3 $ "failed") $ $) NIL (|has| |#1| (-546)))) (-1333 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4162 (($ $) 114)) (-2386 (((-1138 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-758)))))) (-2064 ((|#1| $ (-758)) 91) (($ $ $) 126 (|has| (-758) (-1094)))) (-1553 (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#1| (-15 * (|#1| (-758) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#1| (-15 * (|#1| (-758) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#1| (-15 * (|#1| (-758) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158)) 103 (-12 (|has| |#1| (-15 * (|#1| (-758) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-758)) NIL (|has| |#1| (-15 * (|#1| (-758) |#1|)))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-758) |#1|)))) (($ $ (-1237 |#2|)) 99)) (-3308 (((-758) $) NIL)) (-3057 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2926 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3034 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4213 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3014 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4188 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-1300 (($ $) 120)) (-3075 (((-848) $) NIL) (($ (-554)) 24) (($ (-402 (-554))) 143 (|has| |#1| (-38 (-402 (-554))))) (($ $) NIL (|has| |#1| (-546))) (($ |#1|) 23 (|has| |#1| (-170))) (($ (-1214 |#2| |#1|)) 80) (($ (-1237 |#2|)) 20)) (-1893 (((-1138 |#1|) $) NIL)) (-1779 ((|#1| $ (-758)) 90)) (-2084 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2261 (((-758)) NIL)) (-1608 ((|#1| $) 88)) (-3096 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2959 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-1909 (((-112) $ $) NIL (|has| |#1| (-546)))) (-3069 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2938 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3120 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2981 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4333 ((|#1| $ (-758)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-758)))) (|has| |#1| (-15 -3075 (|#1| (-1158))))))) (-2908 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2991 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3108 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2969 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3083 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2948 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2004 (($) 17 T CONST)) (-2014 (($) 13 T CONST)) (-1787 (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#1| (-15 * (|#1| (-758) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#1| (-15 * (|#1| (-758) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#1| (-15 * (|#1| (-758) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158)) NIL (-12 (|has| |#1| (-15 * (|#1| (-758) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-758)) NIL (|has| |#1| (-15 * (|#1| (-758) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-758) |#1|))))) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-1744 (($ $) NIL) (($ $ $) 102)) (-1735 (($ $ $) 18)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ |#1|) 140 (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554)))))) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 101) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554)))))))
-(((-1233 |#1| |#2| |#3|) (-13 (-1232 |#1|) (-10 -8 (-15 -3075 ($ (-1214 |#2| |#1|))) (-15 -1530 ((-1214 |#2| |#1|) $ (-758))) (-15 -3075 ($ (-1237 |#2|))) (-15 -1553 ($ $ (-1237 |#2|))) (-15 -4335 ($ $)) (-15 -2618 ($ $)) (-15 -3598 ($ $)) (-15 -4162 ($ $)) (-15 -4043 ($ $ (-554) (-554))) (-15 -3587 ($ $)) (-15 -3712 ($ (-554) (-554) $)) (-15 -2691 ($ (-554) (-554) $)) (IF (|has| |#1| (-38 (-402 (-554)))) (-15 -2279 ($ $ (-1237 |#2|))) |%noBranch|))) (-1034) (-1158) |#1|) (T -1233))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-1214 *4 *3)) (-4 *3 (-1034)) (-14 *4 (-1158)) (-14 *5 *3) (-5 *1 (-1233 *3 *4 *5)))) (-1530 (*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1214 *5 *4)) (-5 *1 (-1233 *4 *5 *6)) (-4 *4 (-1034)) (-14 *5 (-1158)) (-14 *6 *4))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1233 *3 *4 *5)) (-4 *3 (-1034)) (-14 *5 *3))) (-1553 (*1 *1 *1 *2) (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1233 *3 *4 *5)) (-4 *3 (-1034)) (-14 *5 *3))) (-4335 (*1 *1 *1) (-12 (-5 *1 (-1233 *2 *3 *4)) (-4 *2 (-1034)) (-14 *3 (-1158)) (-14 *4 *2))) (-2618 (*1 *1 *1) (-12 (-5 *1 (-1233 *2 *3 *4)) (-4 *2 (-1034)) (-14 *3 (-1158)) (-14 *4 *2))) (-3598 (*1 *1 *1) (-12 (-5 *1 (-1233 *2 *3 *4)) (-4 *2 (-1034)) (-14 *3 (-1158)) (-14 *4 *2))) (-4162 (*1 *1 *1) (-12 (-5 *1 (-1233 *2 *3 *4)) (-4 *2 (-1034)) (-14 *3 (-1158)) (-14 *4 *2))) (-4043 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-1233 *3 *4 *5)) (-4 *3 (-1034)) (-14 *4 (-1158)) (-14 *5 *3))) (-3587 (*1 *1 *1) (-12 (-5 *1 (-1233 *2 *3 *4)) (-4 *2 (-1034)) (-14 *3 (-1158)) (-14 *4 *2))) (-3712 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-1233 *3 *4 *5)) (-4 *3 (-1034)) (-14 *4 (-1158)) (-14 *5 *3))) (-2691 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-1233 *3 *4 *5)) (-4 *3 (-1034)) (-14 *4 (-1158)) (-14 *5 *3))) (-2279 (*1 *1 *1 *2) (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1233 *3 *4 *5)) (-4 *3 (-38 (-402 (-554)))) (-4 *3 (-1034)) (-14 *5 *3))))
-(-13 (-1232 |#1|) (-10 -8 (-15 -3075 ($ (-1214 |#2| |#1|))) (-15 -1530 ((-1214 |#2| |#1|) $ (-758))) (-15 -3075 ($ (-1237 |#2|))) (-15 -1553 ($ $ (-1237 |#2|))) (-15 -4335 ($ $)) (-15 -2618 ($ $)) (-15 -3598 ($ $)) (-15 -4162 ($ $)) (-15 -4043 ($ $ (-554) (-554))) (-15 -3587 ($ $)) (-15 -3712 ($ (-554) (-554) $)) (-15 -2691 ($ (-554) (-554) $)) (IF (|has| |#1| (-38 (-402 (-554)))) (-15 -2279 ($ $ (-1237 |#2|))) |%noBranch|)))
-((-3747 (((-1 (-1138 |#1|) (-631 (-1138 |#1|))) (-1 |#2| (-631 |#2|))) 24)) (-2422 (((-1 (-1138 |#1|) (-1138 |#1|) (-1138 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-1810 (((-1 (-1138 |#1|) (-1138 |#1|)) (-1 |#2| |#2|)) 13)) (-3490 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-2075 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-4129 ((|#2| (-1 |#2| (-631 |#2|)) (-631 |#1|)) 54)) (-1710 (((-631 |#2|) (-631 |#1|) (-631 (-1 |#2| (-631 |#2|)))) 61)) (-2189 ((|#2| |#2| |#2|) 43)))
-(((-1234 |#1| |#2|) (-10 -7 (-15 -1810 ((-1 (-1138 |#1|) (-1138 |#1|)) (-1 |#2| |#2|))) (-15 -2422 ((-1 (-1138 |#1|) (-1138 |#1|) (-1138 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3747 ((-1 (-1138 |#1|) (-631 (-1138 |#1|))) (-1 |#2| (-631 |#2|)))) (-15 -2189 (|#2| |#2| |#2|)) (-15 -2075 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3490 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4129 (|#2| (-1 |#2| (-631 |#2|)) (-631 |#1|))) (-15 -1710 ((-631 |#2|) (-631 |#1|) (-631 (-1 |#2| (-631 |#2|)))))) (-38 (-402 (-554))) (-1232 |#1|)) (T -1234))
-((-1710 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *5)) (-5 *4 (-631 (-1 *6 (-631 *6)))) (-4 *5 (-38 (-402 (-554)))) (-4 *6 (-1232 *5)) (-5 *2 (-631 *6)) (-5 *1 (-1234 *5 *6)))) (-4129 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-631 *2))) (-5 *4 (-631 *5)) (-4 *5 (-38 (-402 (-554)))) (-4 *2 (-1232 *5)) (-5 *1 (-1234 *5 *2)))) (-3490 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1232 *4)) (-5 *1 (-1234 *4 *2)) (-4 *4 (-38 (-402 (-554)))))) (-2075 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1232 *4)) (-5 *1 (-1234 *4 *2)) (-4 *4 (-38 (-402 (-554)))))) (-2189 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1234 *3 *2)) (-4 *2 (-1232 *3)))) (-3747 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-631 *5))) (-4 *5 (-1232 *4)) (-4 *4 (-38 (-402 (-554)))) (-5 *2 (-1 (-1138 *4) (-631 (-1138 *4)))) (-5 *1 (-1234 *4 *5)))) (-2422 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1232 *4)) (-4 *4 (-38 (-402 (-554)))) (-5 *2 (-1 (-1138 *4) (-1138 *4) (-1138 *4))) (-5 *1 (-1234 *4 *5)))) (-1810 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1232 *4)) (-4 *4 (-38 (-402 (-554)))) (-5 *2 (-1 (-1138 *4) (-1138 *4))) (-5 *1 (-1234 *4 *5)))))
-(-10 -7 (-15 -1810 ((-1 (-1138 |#1|) (-1138 |#1|)) (-1 |#2| |#2|))) (-15 -2422 ((-1 (-1138 |#1|) (-1138 |#1|) (-1138 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3747 ((-1 (-1138 |#1|) (-631 (-1138 |#1|))) (-1 |#2| (-631 |#2|)))) (-15 -2189 (|#2| |#2| |#2|)) (-15 -2075 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3490 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4129 (|#2| (-1 |#2| (-631 |#2|)) (-631 |#1|))) (-15 -1710 ((-631 |#2|) (-631 |#1|) (-631 (-1 |#2| (-631 |#2|))))))
-((-2573 ((|#2| |#4| (-758)) 30)) (-2885 ((|#4| |#2|) 25)) (-3439 ((|#4| (-402 |#2|)) 52 (|has| |#1| (-546)))) (-2698 (((-1 |#4| (-631 |#4|)) |#3|) 46)))
-(((-1235 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2885 (|#4| |#2|)) (-15 -2573 (|#2| |#4| (-758))) (-15 -2698 ((-1 |#4| (-631 |#4|)) |#3|)) (IF (|has| |#1| (-546)) (-15 -3439 (|#4| (-402 |#2|))) |%noBranch|)) (-1034) (-1217 |#1|) (-642 |#2|) (-1232 |#1|)) (T -1235))
-((-3439 (*1 *2 *3) (-12 (-5 *3 (-402 *5)) (-4 *5 (-1217 *4)) (-4 *4 (-546)) (-4 *4 (-1034)) (-4 *2 (-1232 *4)) (-5 *1 (-1235 *4 *5 *6 *2)) (-4 *6 (-642 *5)))) (-2698 (*1 *2 *3) (-12 (-4 *4 (-1034)) (-4 *5 (-1217 *4)) (-5 *2 (-1 *6 (-631 *6))) (-5 *1 (-1235 *4 *5 *3 *6)) (-4 *3 (-642 *5)) (-4 *6 (-1232 *4)))) (-2573 (*1 *2 *3 *4) (-12 (-5 *4 (-758)) (-4 *5 (-1034)) (-4 *2 (-1217 *5)) (-5 *1 (-1235 *5 *2 *6 *3)) (-4 *6 (-642 *2)) (-4 *3 (-1232 *5)))) (-2885 (*1 *2 *3) (-12 (-4 *4 (-1034)) (-4 *3 (-1217 *4)) (-4 *2 (-1232 *4)) (-5 *1 (-1235 *4 *3 *5 *2)) (-4 *5 (-642 *3)))))
-(-10 -7 (-15 -2885 (|#4| |#2|)) (-15 -2573 (|#2| |#4| (-758))) (-15 -2698 ((-1 |#4| (-631 |#4|)) |#3|)) (IF (|has| |#1| (-546)) (-15 -3439 (|#4| (-402 |#2|))) |%noBranch|))
-NIL
-(((-1236) (-138)) (T -1236))
-NIL
-(-13 (-10 -7 (-6 -4301)))
-((-3062 (((-112) $ $) NIL)) (-1576 (((-1158)) 12)) (-1613 (((-1140) $) 17)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 11) (((-1158) $) 8)) (-1658 (((-112) $ $) 14)))
-(((-1237 |#1|) (-13 (-1082) (-601 (-1158)) (-10 -8 (-15 -3075 ((-1158) $)) (-15 -1576 ((-1158))))) (-1158)) (T -1237))
-((-3075 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1237 *3)) (-14 *3 *2))) (-1576 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1237 *3)) (-14 *3 *2))))
-(-13 (-1082) (-601 (-1158)) (-10 -8 (-15 -3075 ((-1158) $)) (-15 -1576 ((-1158)))))
-((-2275 (($ (-758)) 18)) (-2355 (((-675 |#2|) $ $) 40)) (-2579 ((|#2| $) 48)) (-2577 ((|#2| $) 47)) (-3748 ((|#2| $ $) 35)) (-3574 (($ $ $) 44)) (-1744 (($ $) 22) (($ $ $) 28)) (-1735 (($ $ $) 15)) (* (($ (-554) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30)))
-(((-1238 |#1| |#2|) (-10 -8 (-15 -2579 (|#2| |#1|)) (-15 -2577 (|#2| |#1|)) (-15 -3574 (|#1| |#1| |#1|)) (-15 -2355 ((-675 |#2|) |#1| |#1|)) (-15 -3748 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-554) |#1|)) (-15 -1744 (|#1| |#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 -2275 (|#1| (-758))) (-15 -1735 (|#1| |#1| |#1|))) (-1239 |#2|) (-1195)) (T -1238))
-NIL
-(-10 -8 (-15 -2579 (|#2| |#1|)) (-15 -2577 (|#2| |#1|)) (-15 -3574 (|#1| |#1| |#1|)) (-15 -2355 ((-675 |#2|) |#1| |#1|)) (-15 -3748 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-554) |#1|)) (-15 -1744 (|#1| |#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 -2275 (|#1| (-758))) (-15 -1735 (|#1| |#1| |#1|)))
-((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-2275 (($ (-758)) 112 (|has| |#1| (-23)))) (-4233 (((-1246) $ (-554) (-554)) 40 (|has| $ (-6 -4374)))) (-4015 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-836)))) (-2576 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4374))) (($ $) 88 (-12 (|has| |#1| (-836)) (|has| $ (-6 -4374))))) (-3303 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-836)))) (-3019 (((-112) $ (-758)) 8)) (-1501 ((|#1| $ (-554) |#1|) 52 (|has| $ (-6 -4374))) ((|#1| $ (-1208 (-554)) |#1|) 58 (|has| $ (-6 -4374)))) (-1871 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4373)))) (-4087 (($) 7 T CONST)) (-3920 (($ $) 90 (|has| $ (-6 -4374)))) (-3799 (($ $) 100)) (-1571 (($ $) 78 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2574 (($ |#1| $) 77 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4373)))) (-2862 ((|#1| $ (-554) |#1|) 53 (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-554)) 51)) (-1484 (((-554) (-1 (-112) |#1|) $) 97) (((-554) |#1| $) 96 (|has| |#1| (-1082))) (((-554) |#1| $ (-554)) 95 (|has| |#1| (-1082)))) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-2355 (((-675 |#1|) $ $) 105 (|has| |#1| (-1034)))) (-3180 (($ (-758) |#1|) 69)) (-2230 (((-112) $ (-758)) 9)) (-3044 (((-554) $) 43 (|has| (-554) (-836)))) (-4223 (($ $ $) 87 (|has| |#1| (-836)))) (-3717 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-836)))) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2256 (((-554) $) 44 (|has| (-554) (-836)))) (-2706 (($ $ $) 86 (|has| |#1| (-836)))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2579 ((|#1| $) 102 (-12 (|has| |#1| (-1034)) (|has| |#1| (-987))))) (-3731 (((-112) $ (-758)) 10)) (-2577 ((|#1| $) 103 (-12 (|has| |#1| (-1034)) (|has| |#1| (-987))))) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-1782 (($ |#1| $ (-554)) 60) (($ $ $ (-554)) 59)) (-2529 (((-631 (-554)) $) 46)) (-3618 (((-112) (-554) $) 47)) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-1539 ((|#1| $) 42 (|has| (-554) (-836)))) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2441 (($ $ |#1|) 41 (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-1609 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) 48)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2064 ((|#1| $ (-554) |#1|) 50) ((|#1| $ (-554)) 49) (($ $ (-1208 (-554))) 63)) (-3748 ((|#1| $ $) 106 (|has| |#1| (-1034)))) (-2021 (($ $ (-554)) 62) (($ $ (-1208 (-554))) 61)) (-3574 (($ $ $) 104 (|has| |#1| (-1034)))) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-3553 (($ $ $ (-554)) 91 (|has| $ (-6 -4374)))) (-1521 (($ $) 13)) (-2927 (((-530) $) 79 (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) 70)) (-4323 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-631 $)) 65)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1708 (((-112) $ $) 84 (|has| |#1| (-836)))) (-1686 (((-112) $ $) 83 (|has| |#1| (-836)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-1697 (((-112) $ $) 85 (|has| |#1| (-836)))) (-1676 (((-112) $ $) 82 (|has| |#1| (-836)))) (-1744 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1735 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-554) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-713))) (($ $ |#1|) 107 (|has| |#1| (-713)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373)))))
-(((-1239 |#1|) (-138) (-1195)) (T -1239))
-((-1735 (*1 *1 *1 *1) (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1195)) (-4 *2 (-25)))) (-2275 (*1 *1 *2) (-12 (-5 *2 (-758)) (-4 *1 (-1239 *3)) (-4 *3 (-23)) (-4 *3 (-1195)))) (-1744 (*1 *1 *1) (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1195)) (-4 *2 (-21)))) (-1744 (*1 *1 *1 *1) (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1195)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-554)) (-4 *1 (-1239 *3)) (-4 *3 (-1195)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1195)) (-4 *2 (-713)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1195)) (-4 *2 (-713)))) (-3748 (*1 *2 *1 *1) (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1195)) (-4 *2 (-1034)))) (-2355 (*1 *2 *1 *1) (-12 (-4 *1 (-1239 *3)) (-4 *3 (-1195)) (-4 *3 (-1034)) (-5 *2 (-675 *3)))) (-3574 (*1 *1 *1 *1) (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1195)) (-4 *2 (-1034)))) (-2577 (*1 *2 *1) (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1195)) (-4 *2 (-987)) (-4 *2 (-1034)))) (-2579 (*1 *2 *1) (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1195)) (-4 *2 (-987)) (-4 *2 (-1034)))))
-(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -1735 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -2275 ($ (-758))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -1744 ($ $)) (-15 -1744 ($ $ $)) (-15 * ($ (-554) $))) |%noBranch|) (IF (|has| |t#1| (-713)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1034)) (PROGN (-15 -3748 (|t#1| $ $)) (-15 -2355 ((-675 |t#1|) $ $)) (-15 -3574 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-987)) (IF (|has| |t#1| (-1034)) (PROGN (-15 -2577 (|t#1| $)) (-15 -2579 (|t#1| $))) |%noBranch|) |%noBranch|)))
-(((-34) . T) ((-102) -3994 (|has| |#1| (-1082)) (|has| |#1| (-836))) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-836)) (|has| |#1| (-601 (-848)))) ((-149 |#1|) . T) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-281 #0=(-554) |#1|) . T) ((-283 #0# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-368 |#1|) . T) ((-483 |#1|) . T) ((-592 #0# |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-637 |#1|) . T) ((-19 |#1|) . T) ((-836) |has| |#1| (-836)) ((-1082) -3994 (|has| |#1| (-1082)) (|has| |#1| (-836))) ((-1195) . T))
-((-4159 (((-1241 |#2|) (-1 |#2| |#1| |#2|) (-1241 |#1|) |#2|) 13)) (-3676 ((|#2| (-1 |#2| |#1| |#2|) (-1241 |#1|) |#2|) 15)) (-2879 (((-3 (-1241 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1241 |#1|)) 28) (((-1241 |#2|) (-1 |#2| |#1|) (-1241 |#1|)) 18)))
-(((-1240 |#1| |#2|) (-10 -7 (-15 -4159 ((-1241 |#2|) (-1 |#2| |#1| |#2|) (-1241 |#1|) |#2|)) (-15 -3676 (|#2| (-1 |#2| |#1| |#2|) (-1241 |#1|) |#2|)) (-15 -2879 ((-1241 |#2|) (-1 |#2| |#1|) (-1241 |#1|))) (-15 -2879 ((-3 (-1241 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1241 |#1|)))) (-1195) (-1195)) (T -1240))
-((-2879 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1241 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-1241 *6)) (-5 *1 (-1240 *5 *6)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1241 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-1241 *6)) (-5 *1 (-1240 *5 *6)))) (-3676 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1241 *5)) (-4 *5 (-1195)) (-4 *2 (-1195)) (-5 *1 (-1240 *5 *2)))) (-4159 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1241 *6)) (-4 *6 (-1195)) (-4 *5 (-1195)) (-5 *2 (-1241 *5)) (-5 *1 (-1240 *6 *5)))))
-(-10 -7 (-15 -4159 ((-1241 |#2|) (-1 |#2| |#1| |#2|) (-1241 |#1|) |#2|)) (-15 -3676 (|#2| (-1 |#2| |#1| |#2|) (-1241 |#1|) |#2|)) (-15 -2879 ((-1241 |#2|) (-1 |#2| |#1|) (-1241 |#1|))) (-15 -2879 ((-3 (-1241 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1241 |#1|))))
-((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2275 (($ (-758)) NIL (|has| |#1| (-23)))) (-1541 (($ (-631 |#1|)) 9)) (-4233 (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-4015 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-836)))) (-2576 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4374))) (($ $) NIL (-12 (|has| $ (-6 -4374)) (|has| |#1| (-836))))) (-3303 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-836)))) (-3019 (((-112) $ (-758)) NIL)) (-1501 ((|#1| $ (-554) |#1|) NIL (|has| $ (-6 -4374))) ((|#1| $ (-1208 (-554)) |#1|) NIL (|has| $ (-6 -4374)))) (-1871 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-4087 (($) NIL T CONST)) (-3920 (($ $) NIL (|has| $ (-6 -4374)))) (-3799 (($ $) NIL)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2574 (($ |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4373)))) (-2862 ((|#1| $ (-554) |#1|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-554)) NIL)) (-1484 (((-554) (-1 (-112) |#1|) $) NIL) (((-554) |#1| $) NIL (|has| |#1| (-1082))) (((-554) |#1| $ (-554)) NIL (|has| |#1| (-1082)))) (-2466 (((-631 |#1|) $) 15 (|has| $ (-6 -4373)))) (-2355 (((-675 |#1|) $ $) NIL (|has| |#1| (-1034)))) (-3180 (($ (-758) |#1|) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) NIL (|has| (-554) (-836)))) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-3717 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-836)))) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2256 (((-554) $) NIL (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2849 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2579 ((|#1| $) NIL (-12 (|has| |#1| (-987)) (|has| |#1| (-1034))))) (-3731 (((-112) $ (-758)) NIL)) (-2577 ((|#1| $) NIL (-12 (|has| |#1| (-987)) (|has| |#1| (-1034))))) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-1782 (($ |#1| $ (-554)) NIL) (($ $ $ (-554)) NIL)) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) NIL)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-1539 ((|#1| $) NIL (|has| (-554) (-836)))) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2441 (($ $ |#1|) NIL (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#1| $ (-554) |#1|) NIL) ((|#1| $ (-554)) NIL) (($ $ (-1208 (-554))) NIL)) (-3748 ((|#1| $ $) NIL (|has| |#1| (-1034)))) (-2021 (($ $ (-554)) NIL) (($ $ (-1208 (-554))) NIL)) (-3574 (($ $ $) NIL (|has| |#1| (-1034)))) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-3553 (($ $ $ (-554)) NIL (|has| $ (-6 -4374)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) 19 (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) 8)) (-4323 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-631 $)) NIL)) (-3075 (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1744 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1735 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-554) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-713))) (($ $ |#1|) NIL (|has| |#1| (-713)))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-1241 |#1|) (-13 (-1239 |#1|) (-10 -8 (-15 -1541 ($ (-631 |#1|))))) (-1195)) (T -1241))
-((-1541 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1195)) (-5 *1 (-1241 *3)))))
-(-13 (-1239 |#1|) (-10 -8 (-15 -1541 ($ (-631 |#1|)))))
-((-3062 (((-112) $ $) NIL)) (-1711 (((-1140) $ (-1140)) 90) (((-1140) $ (-1140) (-1140)) 88) (((-1140) $ (-1140) (-631 (-1140))) 87)) (-3407 (($) 59)) (-2572 (((-1246) $ (-462) (-906)) 45)) (-2079 (((-1246) $ (-906) (-1140)) 73) (((-1246) $ (-906) (-859)) 74)) (-2183 (((-1246) $ (-906) (-374) (-374)) 48)) (-3982 (((-1246) $ (-1140)) 69)) (-1593 (((-1246) $ (-906) (-1140)) 78)) (-1585 (((-1246) $ (-906) (-374) (-374)) 49)) (-2642 (((-1246) $ (-906) (-906)) 46)) (-1689 (((-1246) $) 70)) (-4030 (((-1246) $ (-906) (-1140)) 77)) (-3398 (((-1246) $ (-462) (-906)) 31)) (-1707 (((-1246) $ (-906) (-1140)) 76)) (-3906 (((-631 (-258)) $) 23) (($ $ (-631 (-258))) 24)) (-2826 (((-1246) $ (-758) (-758)) 43)) (-2644 (($ $) 60) (($ (-462) (-631 (-258))) 61)) (-1613 (((-1140) $) NIL)) (-2564 (((-554) $) 38)) (-2768 (((-1102) $) NIL)) (-1781 (((-1241 (-3 (-462) "undefined")) $) 37)) (-4118 (((-1241 (-2 (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)) (|:| -1707 (-554)) (|:| -4036 (-554)) (|:| |spline| (-554)) (|:| -3133 (-554)) (|:| |axesColor| (-859)) (|:| -2079 (-554)) (|:| |unitsColor| (-859)) (|:| |showing| (-554)))) $) 36)) (-2353 (((-1246) $ (-906) (-221) (-221) (-221) (-221) (-554) (-554) (-554) (-554) (-859) (-554) (-859) (-554)) 68)) (-3681 (((-631 (-928 (-221))) $) NIL)) (-3612 (((-462) $ (-906)) 33)) (-1549 (((-1246) $ (-758) (-758) (-906) (-906)) 40)) (-3395 (((-1246) $ (-1140)) 79)) (-4036 (((-1246) $ (-906) (-1140)) 75)) (-3075 (((-848) $) 85)) (-2498 (((-1246) $) 80)) (-3133 (((-1246) $ (-906) (-1140)) 71) (((-1246) $ (-906) (-859)) 72)) (-1658 (((-112) $ $) NIL)))
-(((-1242) (-13 (-1082) (-10 -8 (-15 -3681 ((-631 (-928 (-221))) $)) (-15 -3407 ($)) (-15 -2644 ($ $)) (-15 -3906 ((-631 (-258)) $)) (-15 -3906 ($ $ (-631 (-258)))) (-15 -2644 ($ (-462) (-631 (-258)))) (-15 -2353 ((-1246) $ (-906) (-221) (-221) (-221) (-221) (-554) (-554) (-554) (-554) (-859) (-554) (-859) (-554))) (-15 -4118 ((-1241 (-2 (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)) (|:| -1707 (-554)) (|:| -4036 (-554)) (|:| |spline| (-554)) (|:| -3133 (-554)) (|:| |axesColor| (-859)) (|:| -2079 (-554)) (|:| |unitsColor| (-859)) (|:| |showing| (-554)))) $)) (-15 -1781 ((-1241 (-3 (-462) "undefined")) $)) (-15 -3982 ((-1246) $ (-1140))) (-15 -3398 ((-1246) $ (-462) (-906))) (-15 -3612 ((-462) $ (-906))) (-15 -3133 ((-1246) $ (-906) (-1140))) (-15 -3133 ((-1246) $ (-906) (-859))) (-15 -2079 ((-1246) $ (-906) (-1140))) (-15 -2079 ((-1246) $ (-906) (-859))) (-15 -1707 ((-1246) $ (-906) (-1140))) (-15 -4030 ((-1246) $ (-906) (-1140))) (-15 -4036 ((-1246) $ (-906) (-1140))) (-15 -3395 ((-1246) $ (-1140))) (-15 -2498 ((-1246) $)) (-15 -1549 ((-1246) $ (-758) (-758) (-906) (-906))) (-15 -1585 ((-1246) $ (-906) (-374) (-374))) (-15 -2183 ((-1246) $ (-906) (-374) (-374))) (-15 -1593 ((-1246) $ (-906) (-1140))) (-15 -2826 ((-1246) $ (-758) (-758))) (-15 -2572 ((-1246) $ (-462) (-906))) (-15 -2642 ((-1246) $ (-906) (-906))) (-15 -1711 ((-1140) $ (-1140))) (-15 -1711 ((-1140) $ (-1140) (-1140))) (-15 -1711 ((-1140) $ (-1140) (-631 (-1140)))) (-15 -1689 ((-1246) $)) (-15 -2564 ((-554) $)) (-15 -3075 ((-848) $))))) (T -1242))
-((-3075 (*1 *2 *1) (-12 (-5 *2 (-848)) (-5 *1 (-1242)))) (-3681 (*1 *2 *1) (-12 (-5 *2 (-631 (-928 (-221)))) (-5 *1 (-1242)))) (-3407 (*1 *1) (-5 *1 (-1242))) (-2644 (*1 *1 *1) (-5 *1 (-1242))) (-3906 (*1 *2 *1) (-12 (-5 *2 (-631 (-258))) (-5 *1 (-1242)))) (-3906 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-258))) (-5 *1 (-1242)))) (-2644 (*1 *1 *2 *3) (-12 (-5 *2 (-462)) (-5 *3 (-631 (-258))) (-5 *1 (-1242)))) (-2353 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-906)) (-5 *4 (-221)) (-5 *5 (-554)) (-5 *6 (-859)) (-5 *2 (-1246)) (-5 *1 (-1242)))) (-4118 (*1 *2 *1) (-12 (-5 *2 (-1241 (-2 (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)) (|:| -1707 (-554)) (|:| -4036 (-554)) (|:| |spline| (-554)) (|:| -3133 (-554)) (|:| |axesColor| (-859)) (|:| -2079 (-554)) (|:| |unitsColor| (-859)) (|:| |showing| (-554))))) (-5 *1 (-1242)))) (-1781 (*1 *2 *1) (-12 (-5 *2 (-1241 (-3 (-462) "undefined"))) (-5 *1 (-1242)))) (-3982 (*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1242)))) (-3398 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-462)) (-5 *4 (-906)) (-5 *2 (-1246)) (-5 *1 (-1242)))) (-3612 (*1 *2 *1 *3) (-12 (-5 *3 (-906)) (-5 *2 (-462)) (-5 *1 (-1242)))) (-3133 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-906)) (-5 *4 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1242)))) (-3133 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-906)) (-5 *4 (-859)) (-5 *2 (-1246)) (-5 *1 (-1242)))) (-2079 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-906)) (-5 *4 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1242)))) (-2079 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-906)) (-5 *4 (-859)) (-5 *2 (-1246)) (-5 *1 (-1242)))) (-1707 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-906)) (-5 *4 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1242)))) (-4030 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-906)) (-5 *4 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1242)))) (-4036 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-906)) (-5 *4 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1242)))) (-3395 (*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1242)))) (-2498 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-1242)))) (-1549 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-758)) (-5 *4 (-906)) (-5 *2 (-1246)) (-5 *1 (-1242)))) (-1585 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-906)) (-5 *4 (-374)) (-5 *2 (-1246)) (-5 *1 (-1242)))) (-2183 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-906)) (-5 *4 (-374)) (-5 *2 (-1246)) (-5 *1 (-1242)))) (-1593 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-906)) (-5 *4 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1242)))) (-2826 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1246)) (-5 *1 (-1242)))) (-2572 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-462)) (-5 *4 (-906)) (-5 *2 (-1246)) (-5 *1 (-1242)))) (-2642 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-906)) (-5 *2 (-1246)) (-5 *1 (-1242)))) (-1711 (*1 *2 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-1242)))) (-1711 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-1242)))) (-1711 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-631 (-1140))) (-5 *2 (-1140)) (-5 *1 (-1242)))) (-1689 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-1242)))) (-2564 (*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-1242)))))
-(-13 (-1082) (-10 -8 (-15 -3681 ((-631 (-928 (-221))) $)) (-15 -3407 ($)) (-15 -2644 ($ $)) (-15 -3906 ((-631 (-258)) $)) (-15 -3906 ($ $ (-631 (-258)))) (-15 -2644 ($ (-462) (-631 (-258)))) (-15 -2353 ((-1246) $ (-906) (-221) (-221) (-221) (-221) (-554) (-554) (-554) (-554) (-859) (-554) (-859) (-554))) (-15 -4118 ((-1241 (-2 (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)) (|:| -1707 (-554)) (|:| -4036 (-554)) (|:| |spline| (-554)) (|:| -3133 (-554)) (|:| |axesColor| (-859)) (|:| -2079 (-554)) (|:| |unitsColor| (-859)) (|:| |showing| (-554)))) $)) (-15 -1781 ((-1241 (-3 (-462) "undefined")) $)) (-15 -3982 ((-1246) $ (-1140))) (-15 -3398 ((-1246) $ (-462) (-906))) (-15 -3612 ((-462) $ (-906))) (-15 -3133 ((-1246) $ (-906) (-1140))) (-15 -3133 ((-1246) $ (-906) (-859))) (-15 -2079 ((-1246) $ (-906) (-1140))) (-15 -2079 ((-1246) $ (-906) (-859))) (-15 -1707 ((-1246) $ (-906) (-1140))) (-15 -4030 ((-1246) $ (-906) (-1140))) (-15 -4036 ((-1246) $ (-906) (-1140))) (-15 -3395 ((-1246) $ (-1140))) (-15 -2498 ((-1246) $)) (-15 -1549 ((-1246) $ (-758) (-758) (-906) (-906))) (-15 -1585 ((-1246) $ (-906) (-374) (-374))) (-15 -2183 ((-1246) $ (-906) (-374) (-374))) (-15 -1593 ((-1246) $ (-906) (-1140))) (-15 -2826 ((-1246) $ (-758) (-758))) (-15 -2572 ((-1246) $ (-462) (-906))) (-15 -2642 ((-1246) $ (-906) (-906))) (-15 -1711 ((-1140) $ (-1140))) (-15 -1711 ((-1140) $ (-1140) (-1140))) (-15 -1711 ((-1140) $ (-1140) (-631 (-1140)))) (-15 -1689 ((-1246) $)) (-15 -2564 ((-554) $)) (-15 -3075 ((-848) $))))
-((-3062 (((-112) $ $) NIL)) (-2208 (((-1246) $ (-374)) 140) (((-1246) $ (-374) (-374) (-374)) 141)) (-1711 (((-1140) $ (-1140)) 148) (((-1140) $ (-1140) (-1140)) 146) (((-1140) $ (-1140) (-631 (-1140))) 145)) (-2820 (($) 50)) (-1691 (((-1246) $ (-374) (-374) (-374) (-374) (-374)) 116) (((-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))) $) 114) (((-1246) $ (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) 115) (((-1246) $ (-554) (-554) (-374) (-374) (-374)) 117) (((-1246) $ (-374) (-374)) 118) (((-1246) $ (-374) (-374) (-374)) 125)) (-2872 (((-374)) 97) (((-374) (-374)) 98)) (-2198 (((-374)) 92) (((-374) (-374)) 94)) (-2160 (((-374)) 95) (((-374) (-374)) 96)) (-2966 (((-374)) 101) (((-374) (-374)) 102)) (-3801 (((-374)) 99) (((-374) (-374)) 100)) (-2183 (((-1246) $ (-374) (-374)) 142)) (-3982 (((-1246) $ (-1140)) 126)) (-3504 (((-1115 (-221)) $) 51) (($ $ (-1115 (-221))) 52)) (-2852 (((-1246) $ (-1140)) 154)) (-2027 (((-1246) $ (-1140)) 155)) (-4064 (((-1246) $ (-374) (-374)) 124) (((-1246) $ (-554) (-554)) 139)) (-2642 (((-1246) $ (-906) (-906)) 132)) (-1689 (((-1246) $) 112)) (-3410 (((-1246) $ (-1140)) 153)) (-3049 (((-1246) $ (-1140)) 109)) (-3906 (((-631 (-258)) $) 53) (($ $ (-631 (-258))) 54)) (-2826 (((-1246) $ (-758) (-758)) 131)) (-2532 (((-1246) $ (-758) (-928 (-221))) 160)) (-3280 (($ $) 56) (($ (-1115 (-221)) (-1140)) 57) (($ (-1115 (-221)) (-631 (-258))) 58)) (-1315 (((-1246) $ (-374) (-374) (-374)) 106)) (-1613 (((-1140) $) NIL)) (-2564 (((-554) $) 103)) (-4119 (((-1246) $ (-374)) 143)) (-2700 (((-1246) $ (-374)) 158)) (-2768 (((-1102) $) NIL)) (-2833 (((-1246) $ (-374)) 157)) (-4307 (((-1246) $ (-1140)) 111)) (-1549 (((-1246) $ (-758) (-758) (-906) (-906)) 130)) (-3742 (((-1246) $ (-1140)) 108)) (-3395 (((-1246) $ (-1140)) 110)) (-3969 (((-1246) $ (-155) (-155)) 129)) (-3075 (((-848) $) 137)) (-2498 (((-1246) $) 113)) (-2052 (((-1246) $ (-1140)) 156)) (-3133 (((-1246) $ (-1140)) 107)) (-1658 (((-112) $ $) NIL)))
-(((-1243) (-13 (-1082) (-10 -8 (-15 -2198 ((-374))) (-15 -2198 ((-374) (-374))) (-15 -2160 ((-374))) (-15 -2160 ((-374) (-374))) (-15 -2872 ((-374))) (-15 -2872 ((-374) (-374))) (-15 -3801 ((-374))) (-15 -3801 ((-374) (-374))) (-15 -2966 ((-374))) (-15 -2966 ((-374) (-374))) (-15 -2820 ($)) (-15 -3280 ($ $)) (-15 -3280 ($ (-1115 (-221)) (-1140))) (-15 -3280 ($ (-1115 (-221)) (-631 (-258)))) (-15 -3504 ((-1115 (-221)) $)) (-15 -3504 ($ $ (-1115 (-221)))) (-15 -2532 ((-1246) $ (-758) (-928 (-221)))) (-15 -3906 ((-631 (-258)) $)) (-15 -3906 ($ $ (-631 (-258)))) (-15 -2826 ((-1246) $ (-758) (-758))) (-15 -2642 ((-1246) $ (-906) (-906))) (-15 -3982 ((-1246) $ (-1140))) (-15 -1549 ((-1246) $ (-758) (-758) (-906) (-906))) (-15 -1691 ((-1246) $ (-374) (-374) (-374) (-374) (-374))) (-15 -1691 ((-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))) $)) (-15 -1691 ((-1246) $ (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))) (-15 -1691 ((-1246) $ (-554) (-554) (-374) (-374) (-374))) (-15 -1691 ((-1246) $ (-374) (-374))) (-15 -1691 ((-1246) $ (-374) (-374) (-374))) (-15 -3395 ((-1246) $ (-1140))) (-15 -3133 ((-1246) $ (-1140))) (-15 -3742 ((-1246) $ (-1140))) (-15 -3049 ((-1246) $ (-1140))) (-15 -4307 ((-1246) $ (-1140))) (-15 -4064 ((-1246) $ (-374) (-374))) (-15 -4064 ((-1246) $ (-554) (-554))) (-15 -2208 ((-1246) $ (-374))) (-15 -2208 ((-1246) $ (-374) (-374) (-374))) (-15 -2183 ((-1246) $ (-374) (-374))) (-15 -3410 ((-1246) $ (-1140))) (-15 -2833 ((-1246) $ (-374))) (-15 -2700 ((-1246) $ (-374))) (-15 -2852 ((-1246) $ (-1140))) (-15 -2027 ((-1246) $ (-1140))) (-15 -2052 ((-1246) $ (-1140))) (-15 -1315 ((-1246) $ (-374) (-374) (-374))) (-15 -4119 ((-1246) $ (-374))) (-15 -1689 ((-1246) $)) (-15 -3969 ((-1246) $ (-155) (-155))) (-15 -1711 ((-1140) $ (-1140))) (-15 -1711 ((-1140) $ (-1140) (-1140))) (-15 -1711 ((-1140) $ (-1140) (-631 (-1140)))) (-15 -2498 ((-1246) $)) (-15 -2564 ((-554) $))))) (T -1243))
-((-2198 (*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1243)))) (-2198 (*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1243)))) (-2160 (*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1243)))) (-2160 (*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1243)))) (-2872 (*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1243)))) (-2872 (*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1243)))) (-3801 (*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1243)))) (-3801 (*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1243)))) (-2966 (*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1243)))) (-2966 (*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1243)))) (-2820 (*1 *1) (-5 *1 (-1243))) (-3280 (*1 *1 *1) (-5 *1 (-1243))) (-3280 (*1 *1 *2 *3) (-12 (-5 *2 (-1115 (-221))) (-5 *3 (-1140)) (-5 *1 (-1243)))) (-3280 (*1 *1 *2 *3) (-12 (-5 *2 (-1115 (-221))) (-5 *3 (-631 (-258))) (-5 *1 (-1243)))) (-3504 (*1 *2 *1) (-12 (-5 *2 (-1115 (-221))) (-5 *1 (-1243)))) (-3504 (*1 *1 *1 *2) (-12 (-5 *2 (-1115 (-221))) (-5 *1 (-1243)))) (-2532 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-758)) (-5 *4 (-928 (-221))) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-3906 (*1 *2 *1) (-12 (-5 *2 (-631 (-258))) (-5 *1 (-1243)))) (-3906 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-258))) (-5 *1 (-1243)))) (-2826 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-2642 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-906)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-3982 (*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-1549 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-758)) (-5 *4 (-906)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-1691 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) (-5 *1 (-1243)))) (-1691 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-1691 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-554)) (-5 *4 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-1691 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-1691 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-3395 (*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-3133 (*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-3742 (*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-3049 (*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-4307 (*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-4064 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-4064 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-554)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-2208 (*1 *2 *1 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-2208 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-2183 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-3410 (*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-2833 (*1 *2 *1 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-2700 (*1 *2 *1 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-2852 (*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-2027 (*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-2052 (*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-1315 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-4119 (*1 *2 *1 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-1689 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-1243)))) (-3969 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-155)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-1711 (*1 *2 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-1243)))) (-1711 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-1243)))) (-1711 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-631 (-1140))) (-5 *2 (-1140)) (-5 *1 (-1243)))) (-2498 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-1243)))) (-2564 (*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-1243)))))
-(-13 (-1082) (-10 -8 (-15 -2198 ((-374))) (-15 -2198 ((-374) (-374))) (-15 -2160 ((-374))) (-15 -2160 ((-374) (-374))) (-15 -2872 ((-374))) (-15 -2872 ((-374) (-374))) (-15 -3801 ((-374))) (-15 -3801 ((-374) (-374))) (-15 -2966 ((-374))) (-15 -2966 ((-374) (-374))) (-15 -2820 ($)) (-15 -3280 ($ $)) (-15 -3280 ($ (-1115 (-221)) (-1140))) (-15 -3280 ($ (-1115 (-221)) (-631 (-258)))) (-15 -3504 ((-1115 (-221)) $)) (-15 -3504 ($ $ (-1115 (-221)))) (-15 -2532 ((-1246) $ (-758) (-928 (-221)))) (-15 -3906 ((-631 (-258)) $)) (-15 -3906 ($ $ (-631 (-258)))) (-15 -2826 ((-1246) $ (-758) (-758))) (-15 -2642 ((-1246) $ (-906) (-906))) (-15 -3982 ((-1246) $ (-1140))) (-15 -1549 ((-1246) $ (-758) (-758) (-906) (-906))) (-15 -1691 ((-1246) $ (-374) (-374) (-374) (-374) (-374))) (-15 -1691 ((-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))) $)) (-15 -1691 ((-1246) $ (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))) (-15 -1691 ((-1246) $ (-554) (-554) (-374) (-374) (-374))) (-15 -1691 ((-1246) $ (-374) (-374))) (-15 -1691 ((-1246) $ (-374) (-374) (-374))) (-15 -3395 ((-1246) $ (-1140))) (-15 -3133 ((-1246) $ (-1140))) (-15 -3742 ((-1246) $ (-1140))) (-15 -3049 ((-1246) $ (-1140))) (-15 -4307 ((-1246) $ (-1140))) (-15 -4064 ((-1246) $ (-374) (-374))) (-15 -4064 ((-1246) $ (-554) (-554))) (-15 -2208 ((-1246) $ (-374))) (-15 -2208 ((-1246) $ (-374) (-374) (-374))) (-15 -2183 ((-1246) $ (-374) (-374))) (-15 -3410 ((-1246) $ (-1140))) (-15 -2833 ((-1246) $ (-374))) (-15 -2700 ((-1246) $ (-374))) (-15 -2852 ((-1246) $ (-1140))) (-15 -2027 ((-1246) $ (-1140))) (-15 -2052 ((-1246) $ (-1140))) (-15 -1315 ((-1246) $ (-374) (-374) (-374))) (-15 -4119 ((-1246) $ (-374))) (-15 -1689 ((-1246) $)) (-15 -3969 ((-1246) $ (-155) (-155))) (-15 -1711 ((-1140) $ (-1140))) (-15 -1711 ((-1140) $ (-1140) (-1140))) (-15 -1711 ((-1140) $ (-1140) (-631 (-1140)))) (-15 -2498 ((-1246) $)) (-15 -2564 ((-554) $))))
-((-3300 (((-631 (-1140)) (-631 (-1140))) 94) (((-631 (-1140))) 90)) (-3315 (((-631 (-1140))) 88)) (-4116 (((-631 (-906)) (-631 (-906))) 63) (((-631 (-906))) 60)) (-2840 (((-631 (-758)) (-631 (-758))) 57) (((-631 (-758))) 53)) (-2975 (((-1246)) 65)) (-1894 (((-906) (-906)) 81) (((-906)) 80)) (-4101 (((-906) (-906)) 79) (((-906)) 78)) (-1753 (((-859) (-859)) 75) (((-859)) 74)) (-3805 (((-221)) 85) (((-221) (-374)) 87)) (-4276 (((-906)) 82) (((-906) (-906)) 83)) (-2546 (((-906) (-906)) 77) (((-906)) 76)) (-1583 (((-859) (-859)) 69) (((-859)) 67)) (-2115 (((-859) (-859)) 71) (((-859)) 70)) (-3459 (((-859) (-859)) 73) (((-859)) 72)))
-(((-1244) (-10 -7 (-15 -1583 ((-859))) (-15 -1583 ((-859) (-859))) (-15 -2115 ((-859))) (-15 -2115 ((-859) (-859))) (-15 -3459 ((-859))) (-15 -3459 ((-859) (-859))) (-15 -1753 ((-859))) (-15 -1753 ((-859) (-859))) (-15 -2546 ((-906))) (-15 -2546 ((-906) (-906))) (-15 -2840 ((-631 (-758)))) (-15 -2840 ((-631 (-758)) (-631 (-758)))) (-15 -4116 ((-631 (-906)))) (-15 -4116 ((-631 (-906)) (-631 (-906)))) (-15 -2975 ((-1246))) (-15 -3300 ((-631 (-1140)))) (-15 -3300 ((-631 (-1140)) (-631 (-1140)))) (-15 -3315 ((-631 (-1140)))) (-15 -4101 ((-906))) (-15 -1894 ((-906))) (-15 -4101 ((-906) (-906))) (-15 -1894 ((-906) (-906))) (-15 -4276 ((-906) (-906))) (-15 -4276 ((-906))) (-15 -3805 ((-221) (-374))) (-15 -3805 ((-221))))) (T -1244))
-((-3805 (*1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-1244)))) (-3805 (*1 *2 *3) (-12 (-5 *3 (-374)) (-5 *2 (-221)) (-5 *1 (-1244)))) (-4276 (*1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-1244)))) (-4276 (*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-1244)))) (-1894 (*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-1244)))) (-4101 (*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-1244)))) (-1894 (*1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-1244)))) (-4101 (*1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-1244)))) (-3315 (*1 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-1244)))) (-3300 (*1 *2 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-1244)))) (-3300 (*1 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-1244)))) (-2975 (*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-1244)))) (-4116 (*1 *2 *2) (-12 (-5 *2 (-631 (-906))) (-5 *1 (-1244)))) (-4116 (*1 *2) (-12 (-5 *2 (-631 (-906))) (-5 *1 (-1244)))) (-2840 (*1 *2 *2) (-12 (-5 *2 (-631 (-758))) (-5 *1 (-1244)))) (-2840 (*1 *2) (-12 (-5 *2 (-631 (-758))) (-5 *1 (-1244)))) (-2546 (*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-1244)))) (-2546 (*1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-1244)))) (-1753 (*1 *2 *2) (-12 (-5 *2 (-859)) (-5 *1 (-1244)))) (-1753 (*1 *2) (-12 (-5 *2 (-859)) (-5 *1 (-1244)))) (-3459 (*1 *2 *2) (-12 (-5 *2 (-859)) (-5 *1 (-1244)))) (-3459 (*1 *2) (-12 (-5 *2 (-859)) (-5 *1 (-1244)))) (-2115 (*1 *2 *2) (-12 (-5 *2 (-859)) (-5 *1 (-1244)))) (-2115 (*1 *2) (-12 (-5 *2 (-859)) (-5 *1 (-1244)))) (-1583 (*1 *2 *2) (-12 (-5 *2 (-859)) (-5 *1 (-1244)))) (-1583 (*1 *2) (-12 (-5 *2 (-859)) (-5 *1 (-1244)))))
-(-10 -7 (-15 -1583 ((-859))) (-15 -1583 ((-859) (-859))) (-15 -2115 ((-859))) (-15 -2115 ((-859) (-859))) (-15 -3459 ((-859))) (-15 -3459 ((-859) (-859))) (-15 -1753 ((-859))) (-15 -1753 ((-859) (-859))) (-15 -2546 ((-906))) (-15 -2546 ((-906) (-906))) (-15 -2840 ((-631 (-758)))) (-15 -2840 ((-631 (-758)) (-631 (-758)))) (-15 -4116 ((-631 (-906)))) (-15 -4116 ((-631 (-906)) (-631 (-906)))) (-15 -2975 ((-1246))) (-15 -3300 ((-631 (-1140)))) (-15 -3300 ((-631 (-1140)) (-631 (-1140)))) (-15 -3315 ((-631 (-1140)))) (-15 -4101 ((-906))) (-15 -1894 ((-906))) (-15 -4101 ((-906) (-906))) (-15 -1894 ((-906) (-906))) (-15 -4276 ((-906) (-906))) (-15 -4276 ((-906))) (-15 -3805 ((-221) (-374))) (-15 -3805 ((-221))))
-((-3990 (((-462) (-631 (-631 (-928 (-221)))) (-631 (-258))) 21) (((-462) (-631 (-631 (-928 (-221))))) 20) (((-462) (-631 (-631 (-928 (-221)))) (-859) (-859) (-906) (-631 (-258))) 19)) (-2485 (((-1242) (-631 (-631 (-928 (-221)))) (-631 (-258))) 27) (((-1242) (-631 (-631 (-928 (-221)))) (-859) (-859) (-906) (-631 (-258))) 26)) (-3075 (((-1242) (-462)) 38)))
-(((-1245) (-10 -7 (-15 -3990 ((-462) (-631 (-631 (-928 (-221)))) (-859) (-859) (-906) (-631 (-258)))) (-15 -3990 ((-462) (-631 (-631 (-928 (-221)))))) (-15 -3990 ((-462) (-631 (-631 (-928 (-221)))) (-631 (-258)))) (-15 -2485 ((-1242) (-631 (-631 (-928 (-221)))) (-859) (-859) (-906) (-631 (-258)))) (-15 -2485 ((-1242) (-631 (-631 (-928 (-221)))) (-631 (-258)))) (-15 -3075 ((-1242) (-462))))) (T -1245))
-((-3075 (*1 *2 *3) (-12 (-5 *3 (-462)) (-5 *2 (-1242)) (-5 *1 (-1245)))) (-2485 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-631 (-928 (-221))))) (-5 *4 (-631 (-258))) (-5 *2 (-1242)) (-5 *1 (-1245)))) (-2485 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-631 (-631 (-928 (-221))))) (-5 *4 (-859)) (-5 *5 (-906)) (-5 *6 (-631 (-258))) (-5 *2 (-1242)) (-5 *1 (-1245)))) (-3990 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-631 (-928 (-221))))) (-5 *4 (-631 (-258))) (-5 *2 (-462)) (-5 *1 (-1245)))) (-3990 (*1 *2 *3) (-12 (-5 *3 (-631 (-631 (-928 (-221))))) (-5 *2 (-462)) (-5 *1 (-1245)))) (-3990 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-631 (-631 (-928 (-221))))) (-5 *4 (-859)) (-5 *5 (-906)) (-5 *6 (-631 (-258))) (-5 *2 (-462)) (-5 *1 (-1245)))))
-(-10 -7 (-15 -3990 ((-462) (-631 (-631 (-928 (-221)))) (-859) (-859) (-906) (-631 (-258)))) (-15 -3990 ((-462) (-631 (-631 (-928 (-221)))))) (-15 -3990 ((-462) (-631 (-631 (-928 (-221)))) (-631 (-258)))) (-15 -2485 ((-1242) (-631 (-631 (-928 (-221)))) (-859) (-859) (-906) (-631 (-258)))) (-15 -2485 ((-1242) (-631 (-631 (-928 (-221)))) (-631 (-258)))) (-15 -3075 ((-1242) (-462))))
-((-2053 (($) 7)) (-3075 (((-848) $) 10)))
-(((-1246) (-13 (-601 (-848)) (-10 -8 (-15 -2053 ($))))) (T -1246))
-((-2053 (*1 *1) (-5 *1 (-1246))))
-(-13 (-601 (-848)) (-10 -8 (-15 -2053 ($))))
-((-1752 (($ $ |#2|) 10)))
-(((-1247 |#1| |#2|) (-10 -8 (-15 -1752 (|#1| |#1| |#2|))) (-1248 |#2|) (-358)) (T -1247))
-NIL
-(-10 -8 (-15 -1752 (|#1| |#1| |#2|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3330 (((-133)) 28)) (-3075 (((-848) $) 11)) (-2004 (($) 18 T CONST)) (-1658 (((-112) $ $) 6)) (-1752 (($ $ |#1|) 29)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
-(((-1248 |#1|) (-138) (-358)) (T -1248))
-((-1752 (*1 *1 *1 *2) (-12 (-4 *1 (-1248 *2)) (-4 *2 (-358)))) (-3330 (*1 *2) (-12 (-4 *1 (-1248 *3)) (-4 *3 (-358)) (-5 *2 (-133)))))
-(-13 (-704 |t#1|) (-10 -8 (-15 -1752 ($ $ |t#1|)) (-15 -3330 ((-133)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-601 (-848)) . T) ((-634 |#1|) . T) ((-704 |#1|) . T) ((-1040 |#1|) . T) ((-1082) . T))
-((-1433 (((-631 (-1189 |#1|)) (-1158) (-1189 |#1|)) 74)) (-3616 (((-1138 (-1138 (-937 |#1|))) (-1158) (-1138 (-937 |#1|))) 53)) (-2970 (((-1 (-1138 (-1189 |#1|)) (-1138 (-1189 |#1|))) (-758) (-1189 |#1|) (-1138 (-1189 |#1|))) 64)) (-3961 (((-1 (-1138 (-937 |#1|)) (-1138 (-937 |#1|))) (-758)) 55)) (-3890 (((-1 (-1154 (-937 |#1|)) (-937 |#1|)) (-1158)) 29)) (-2024 (((-1 (-1138 (-937 |#1|)) (-1138 (-937 |#1|))) (-758)) 54)))
-(((-1249 |#1|) (-10 -7 (-15 -3961 ((-1 (-1138 (-937 |#1|)) (-1138 (-937 |#1|))) (-758))) (-15 -2024 ((-1 (-1138 (-937 |#1|)) (-1138 (-937 |#1|))) (-758))) (-15 -3616 ((-1138 (-1138 (-937 |#1|))) (-1158) (-1138 (-937 |#1|)))) (-15 -3890 ((-1 (-1154 (-937 |#1|)) (-937 |#1|)) (-1158))) (-15 -1433 ((-631 (-1189 |#1|)) (-1158) (-1189 |#1|))) (-15 -2970 ((-1 (-1138 (-1189 |#1|)) (-1138 (-1189 |#1|))) (-758) (-1189 |#1|) (-1138 (-1189 |#1|))))) (-358)) (T -1249))
-((-2970 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-758)) (-4 *6 (-358)) (-5 *4 (-1189 *6)) (-5 *2 (-1 (-1138 *4) (-1138 *4))) (-5 *1 (-1249 *6)) (-5 *5 (-1138 *4)))) (-1433 (*1 *2 *3 *4) (-12 (-5 *3 (-1158)) (-4 *5 (-358)) (-5 *2 (-631 (-1189 *5))) (-5 *1 (-1249 *5)) (-5 *4 (-1189 *5)))) (-3890 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1 (-1154 (-937 *4)) (-937 *4))) (-5 *1 (-1249 *4)) (-4 *4 (-358)))) (-3616 (*1 *2 *3 *4) (-12 (-5 *3 (-1158)) (-4 *5 (-358)) (-5 *2 (-1138 (-1138 (-937 *5)))) (-5 *1 (-1249 *5)) (-5 *4 (-1138 (-937 *5))))) (-2024 (*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1 (-1138 (-937 *4)) (-1138 (-937 *4)))) (-5 *1 (-1249 *4)) (-4 *4 (-358)))) (-3961 (*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1 (-1138 (-937 *4)) (-1138 (-937 *4)))) (-5 *1 (-1249 *4)) (-4 *4 (-358)))))
-(-10 -7 (-15 -3961 ((-1 (-1138 (-937 |#1|)) (-1138 (-937 |#1|))) (-758))) (-15 -2024 ((-1 (-1138 (-937 |#1|)) (-1138 (-937 |#1|))) (-758))) (-15 -3616 ((-1138 (-1138 (-937 |#1|))) (-1158) (-1138 (-937 |#1|)))) (-15 -3890 ((-1 (-1154 (-937 |#1|)) (-937 |#1|)) (-1158))) (-15 -1433 ((-631 (-1189 |#1|)) (-1158) (-1189 |#1|))) (-15 -2970 ((-1 (-1138 (-1189 |#1|)) (-1138 (-1189 |#1|))) (-758) (-1189 |#1|) (-1138 (-1189 |#1|)))))
-((-2062 (((-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|))) |#2|) 75)) (-3358 (((-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|)))) 74)))
-(((-1250 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3358 ((-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|))))) (-15 -2062 ((-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|))) |#2|))) (-344) (-1217 |#1|) (-1217 |#2|) (-404 |#2| |#3|)) (T -1250))
-((-2062 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *3 (-1217 *4)) (-4 *5 (-1217 *3)) (-5 *2 (-2 (|:| -3782 (-675 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-675 *3)))) (-5 *1 (-1250 *4 *3 *5 *6)) (-4 *6 (-404 *3 *5)))) (-3358 (*1 *2) (-12 (-4 *3 (-344)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 *4)) (-5 *2 (-2 (|:| -3782 (-675 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-675 *4)))) (-5 *1 (-1250 *3 *4 *5 *6)) (-4 *6 (-404 *4 *5)))))
-(-10 -7 (-15 -3358 ((-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|))))) (-15 -2062 ((-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|))) |#2|)))
-((-3062 (((-112) $ $) NIL)) (-4302 (((-1117) $) 11)) (-2469 (((-1117) $) 9)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 19) (($ (-1163)) NIL) (((-1163) $) NIL)) (-1658 (((-112) $ $) NIL)))
-(((-1251) (-13 (-1065) (-10 -8 (-15 -2469 ((-1117) $)) (-15 -4302 ((-1117) $))))) (T -1251))
-((-2469 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1251)))) (-4302 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1251)))))
-(-13 (-1065) (-10 -8 (-15 -2469 ((-1117) $)) (-15 -4302 ((-1117) $))))
-((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-4294 (((-1117) $) 9)) (-3075 (((-848) $) 17) (($ (-1163)) NIL) (((-1163) $) NIL)) (-1658 (((-112) $ $) NIL)))
-(((-1252) (-13 (-1065) (-10 -8 (-15 -4294 ((-1117) $))))) (T -1252))
-((-4294 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1252)))))
-(-13 (-1065) (-10 -8 (-15 -4294 ((-1117) $))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 43)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-1320 (((-3 $ "failed") $) NIL)) (-3248 (((-112) $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 64) (($ (-554)) NIL) (($ |#4|) 49) ((|#4| $) 54) (($ |#1|) NIL (|has| |#1| (-170)))) (-2261 (((-758)) NIL)) (-1561 (((-1246) (-758)) 16)) (-2004 (($) 27 T CONST)) (-2014 (($) 67 T CONST)) (-1658 (((-112) $ $) 69)) (-1752 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-1744 (($ $) 71) (($ $ $) NIL)) (-1735 (($ $ $) 47)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 73) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170)))))
-(((-1253 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1034) (-484 |#4|) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-358)) (-15 -1752 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1561 ((-1246) (-758))))) (-1034) (-836) (-780) (-934 |#1| |#3| |#2|) (-631 |#2|) (-631 (-758)) (-758)) (T -1253))
-((-1752 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-358)) (-4 *2 (-1034)) (-4 *3 (-836)) (-4 *4 (-780)) (-14 *6 (-631 *3)) (-5 *1 (-1253 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-934 *2 *4 *3)) (-14 *7 (-631 (-758))) (-14 *8 (-758)))) (-1561 (*1 *2 *3) (-12 (-5 *3 (-758)) (-4 *4 (-1034)) (-4 *5 (-836)) (-4 *6 (-780)) (-14 *8 (-631 *5)) (-5 *2 (-1246)) (-5 *1 (-1253 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-934 *4 *6 *5)) (-14 *9 (-631 *3)) (-14 *10 *3))))
-(-13 (-1034) (-484 |#4|) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-358)) (-15 -1752 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1561 ((-1246) (-758)))))
-((-3062 (((-112) $ $) NIL)) (-3960 (((-631 (-2 (|:| -2498 $) (|:| -1303 (-631 |#4|)))) (-631 |#4|)) NIL)) (-3176 (((-631 $) (-631 |#4|)) 88)) (-2405 (((-631 |#3|) $) NIL)) (-1678 (((-112) $) NIL)) (-3005 (((-112) $) NIL (|has| |#1| (-546)))) (-2630 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4057 ((|#4| |#4| $) NIL)) (-3303 (((-2 (|:| |under| $) (|:| -4339 $) (|:| |upper| $)) $ |#3|) NIL)) (-3019 (((-112) $ (-758)) NIL)) (-1871 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373))) (((-3 |#4| "failed") $ |#3|) NIL)) (-4087 (($) NIL T CONST)) (-1930 (((-112) $) NIL (|has| |#1| (-546)))) (-1404 (((-112) $ $) NIL (|has| |#1| (-546)))) (-3262 (((-112) $ $) NIL (|has| |#1| (-546)))) (-2713 (((-112) $) NIL (|has| |#1| (-546)))) (-2242 (((-631 |#4|) (-631 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 28)) (-1380 (((-631 |#4|) (-631 |#4|) $) 25 (|has| |#1| (-546)))) (-4204 (((-631 |#4|) (-631 |#4|) $) NIL (|has| |#1| (-546)))) (-2784 (((-3 $ "failed") (-631 |#4|)) NIL)) (-1668 (($ (-631 |#4|)) NIL)) (-1551 (((-3 $ "failed") $) 70)) (-2930 ((|#4| |#4| $) 75)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082))))) (-2574 (($ |#4| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-2423 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-546)))) (-2857 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4210 ((|#4| |#4| $) NIL)) (-3676 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4373))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4373))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1971 (((-2 (|:| -2498 (-631 |#4|)) (|:| -1303 (-631 |#4|))) $) NIL)) (-2466 (((-631 |#4|) $) NIL (|has| $ (-6 -4373)))) (-4253 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3954 ((|#3| $) 76)) (-2230 (((-112) $ (-758)) NIL)) (-2379 (((-631 |#4|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082))))) (-3515 (((-3 $ "failed") (-631 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-631 |#4|)) 35)) (-2849 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#4| |#4|) $) NIL)) (-2643 (((-631 |#3|) $) NIL)) (-1400 (((-112) |#3| $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL)) (-2597 (((-3 |#4| "failed") $) NIL)) (-2627 (((-631 |#4|) $) 50)) (-3007 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1536 ((|#4| |#4| $) 74)) (-2178 (((-112) $ $) 85)) (-3548 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-546)))) (-3518 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3492 ((|#4| |#4| $) NIL)) (-2768 (((-1102) $) NIL)) (-1539 (((-3 |#4| "failed") $) 69)) (-1652 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3948 (((-3 $ "failed") $ |#4|) NIL)) (-4282 (($ $ |#4|) NIL)) (-2845 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 |#4|) (-631 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-289 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-631 (-289 |#4|))) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) 67)) (-4240 (($) 42)) (-3308 (((-758) $) NIL)) (-2777 (((-758) |#4| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082)))) (((-758) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| |#4| (-602 (-530))))) (-3089 (($ (-631 |#4|)) NIL)) (-2538 (($ $ |#3|) NIL)) (-2384 (($ $ |#3|) NIL)) (-2258 (($ $) NIL)) (-2128 (($ $ |#3|) NIL)) (-3075 (((-848) $) NIL) (((-631 |#4|) $) 57)) (-2347 (((-758) $) NIL (|has| |#3| (-363)))) (-3217 (((-3 $ "failed") (-631 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-631 |#4|)) 41)) (-3093 (((-631 $) (-631 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-631 $) (-631 |#4|)) 66)) (-2792 (((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 |#4|))) "failed") (-631 |#4|) (-1 (-112) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 |#4|))) "failed") (-631 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3579 (((-112) $ (-1 (-112) |#4| (-631 |#4|))) NIL)) (-2438 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-4267 (((-631 |#3|) $) NIL)) (-3536 (((-112) |#3| $) NIL)) (-1658 (((-112) $ $) NIL)) (-2563 (((-758) $) NIL (|has| $ (-6 -4373)))))
-(((-1254 |#1| |#2| |#3| |#4|) (-13 (-1188 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3515 ((-3 $ "failed") (-631 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3515 ((-3 $ "failed") (-631 |#4|))) (-15 -3217 ((-3 $ "failed") (-631 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3217 ((-3 $ "failed") (-631 |#4|))) (-15 -3093 ((-631 $) (-631 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3093 ((-631 $) (-631 |#4|))))) (-546) (-780) (-836) (-1048 |#1| |#2| |#3|)) (T -1254))
-((-3515 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-631 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1048 *5 *6 *7)) (-4 *5 (-546)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *1 (-1254 *5 *6 *7 *8)))) (-3515 (*1 *1 *2) (|partial| -12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-1254 *3 *4 *5 *6)))) (-3217 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-631 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1048 *5 *6 *7)) (-4 *5 (-546)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *1 (-1254 *5 *6 *7 *8)))) (-3217 (*1 *1 *2) (|partial| -12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-1254 *3 *4 *5 *6)))) (-3093 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1048 *6 *7 *8)) (-4 *6 (-546)) (-4 *7 (-780)) (-4 *8 (-836)) (-5 *2 (-631 (-1254 *6 *7 *8 *9))) (-5 *1 (-1254 *6 *7 *8 *9)))) (-3093 (*1 *2 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-631 (-1254 *4 *5 *6 *7))) (-5 *1 (-1254 *4 *5 *6 *7)))))
-(-13 (-1188 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3515 ((-3 $ "failed") (-631 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3515 ((-3 $ "failed") (-631 |#4|))) (-15 -3217 ((-3 $ "failed") (-631 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3217 ((-3 $ "failed") (-631 |#4|))) (-15 -3093 ((-631 $) (-631 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3093 ((-631 $) (-631 |#4|)))))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1320 (((-3 $ "failed") $) 33)) (-3248 (((-112) $) 31)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ |#1|) 39)) (-2261 (((-758)) 28)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ |#1|) 41) (($ |#1| $) 40)))
-(((-1255 |#1|) (-138) (-1034)) (T -1255))
-NIL
-(-13 (-1034) (-111 |t#1| |t#1|) (-604 |t#1|) (-10 -7 (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-604 (-554)) . T) ((-604 |#1|) . T) ((-601 (-848)) . T) ((-634 |#1|) . T) ((-634 $) . T) ((-704 |#1|) |has| |#1| (-170)) ((-713) . T) ((-1040 |#1|) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T))
-((-3062 (((-112) $ $) 60)) (-1695 (((-112) $) NIL)) (-1654 (((-631 |#1|) $) 45)) (-3151 (($ $ (-758)) 39)) (-2934 (((-3 $ "failed") $ $) NIL)) (-1647 (($ $ (-758)) 18 (|has| |#2| (-170))) (($ $ $) 19 (|has| |#2| (-170)))) (-4087 (($) NIL T CONST)) (-3567 (($ $ $) 63) (($ $ (-806 |#1|)) 49) (($ $ |#1|) 53)) (-2784 (((-3 (-806 |#1|) "failed") $) NIL)) (-1668 (((-806 |#1|) $) NIL)) (-2550 (($ $) 32)) (-1320 (((-3 $ "failed") $) NIL)) (-2334 (((-112) $) NIL)) (-3987 (($ $) NIL)) (-3248 (((-112) $) NIL)) (-2122 (((-758) $) NIL)) (-3910 (((-631 $) $) NIL)) (-3580 (((-112) $) NIL)) (-3738 (($ (-806 |#1|) |#2|) 31)) (-3898 (($ $) 33)) (-2995 (((-2 (|:| |k| (-806 |#1|)) (|:| |c| |#2|)) $) 12)) (-2986 (((-806 |#1|) $) NIL)) (-2817 (((-806 |#1|) $) 34)) (-2879 (($ (-1 |#2| |#2|) $) NIL)) (-3637 (($ $ $) 62) (($ $ (-806 |#1|)) 51) (($ $ |#1|) 55)) (-2428 (((-2 (|:| |k| (-806 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2518 (((-806 |#1|) $) 28)) (-2530 ((|#2| $) 30)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3308 (((-758) $) 36)) (-2798 (((-112) $) 40)) (-2397 ((|#2| $) NIL)) (-3075 (((-848) $) NIL) (($ (-806 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-554)) NIL)) (-1893 (((-631 |#2|) $) NIL)) (-1779 ((|#2| $ (-806 |#1|)) NIL)) (-1490 ((|#2| $ $) 65) ((|#2| $ (-806 |#1|)) NIL)) (-2261 (((-758)) NIL)) (-2004 (($) 13 T CONST)) (-2014 (($) 15 T CONST)) (-2407 (((-631 (-2 (|:| |k| (-806 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1658 (((-112) $ $) 38)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) 22)) (** (($ $ (-758)) NIL) (($ $ (-906)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 61) (($ |#2| (-806 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL)))
-(((-1256 |#1| |#2|) (-13 (-377 |#2| (-806 |#1|)) (-1262 |#1| |#2|)) (-836) (-1034)) (T -1256))
-NIL
-(-13 (-377 |#2| (-806 |#1|)) (-1262 |#1| |#2|))
-((-2395 ((|#3| |#3| (-758)) 23)) (-1333 ((|#3| |#3| (-758)) 27)) (-2888 ((|#3| |#3| |#3| (-758)) 28)))
-(((-1257 |#1| |#2| |#3|) (-10 -7 (-15 -1333 (|#3| |#3| (-758))) (-15 -2395 (|#3| |#3| (-758))) (-15 -2888 (|#3| |#3| |#3| (-758)))) (-13 (-1034) (-704 (-402 (-554)))) (-836) (-1262 |#2| |#1|)) (T -1257))
-((-2888 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-758)) (-4 *4 (-13 (-1034) (-704 (-402 (-554))))) (-4 *5 (-836)) (-5 *1 (-1257 *4 *5 *2)) (-4 *2 (-1262 *5 *4)))) (-2395 (*1 *2 *2 *3) (-12 (-5 *3 (-758)) (-4 *4 (-13 (-1034) (-704 (-402 (-554))))) (-4 *5 (-836)) (-5 *1 (-1257 *4 *5 *2)) (-4 *2 (-1262 *5 *4)))) (-1333 (*1 *2 *2 *3) (-12 (-5 *3 (-758)) (-4 *4 (-13 (-1034) (-704 (-402 (-554))))) (-4 *5 (-836)) (-5 *1 (-1257 *4 *5 *2)) (-4 *2 (-1262 *5 *4)))))
-(-10 -7 (-15 -1333 (|#3| |#3| (-758))) (-15 -2395 (|#3| |#3| (-758))) (-15 -2888 (|#3| |#3| |#3| (-758))))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1654 (((-631 |#1|) $) 41)) (-2934 (((-3 $ "failed") $ $) 19)) (-1647 (($ $ $) 44 (|has| |#2| (-170))) (($ $ (-758)) 43 (|has| |#2| (-170)))) (-4087 (($) 17 T CONST)) (-3567 (($ $ |#1|) 55) (($ $ (-806 |#1|)) 54) (($ $ $) 53)) (-2784 (((-3 (-806 |#1|) "failed") $) 65)) (-1668 (((-806 |#1|) $) 66)) (-1320 (((-3 $ "failed") $) 33)) (-2334 (((-112) $) 46)) (-3987 (($ $) 45)) (-3248 (((-112) $) 31)) (-3580 (((-112) $) 51)) (-3738 (($ (-806 |#1|) |#2|) 52)) (-3898 (($ $) 50)) (-2995 (((-2 (|:| |k| (-806 |#1|)) (|:| |c| |#2|)) $) 61)) (-2986 (((-806 |#1|) $) 62)) (-2879 (($ (-1 |#2| |#2|) $) 42)) (-3637 (($ $ |#1|) 58) (($ $ (-806 |#1|)) 57) (($ $ $) 56)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-2798 (((-112) $) 48)) (-2397 ((|#2| $) 47)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ |#2|) 69) (($ (-806 |#1|)) 64) (($ |#1|) 49)) (-1490 ((|#2| $ (-806 |#1|)) 60) ((|#2| $ $) 59)) (-2261 (((-758)) 28)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ |#2| $) 68) (($ $ |#2|) 67) (($ |#1| $) 63)))
-(((-1258 |#1| |#2|) (-138) (-836) (-1034)) (T -1258))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-1258 *3 *2)) (-4 *3 (-836)) (-4 *2 (-1034)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1258 *2 *3)) (-4 *2 (-836)) (-4 *3 (-1034)))) (-2986 (*1 *2 *1) (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034)) (-5 *2 (-806 *3)))) (-2995 (*1 *2 *1) (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034)) (-5 *2 (-2 (|:| |k| (-806 *3)) (|:| |c| *4))))) (-1490 (*1 *2 *1 *3) (-12 (-5 *3 (-806 *4)) (-4 *1 (-1258 *4 *2)) (-4 *4 (-836)) (-4 *2 (-1034)))) (-1490 (*1 *2 *1 *1) (-12 (-4 *1 (-1258 *3 *2)) (-4 *3 (-836)) (-4 *2 (-1034)))) (-3637 (*1 *1 *1 *2) (-12 (-4 *1 (-1258 *2 *3)) (-4 *2 (-836)) (-4 *3 (-1034)))) (-3637 (*1 *1 *1 *2) (-12 (-5 *2 (-806 *3)) (-4 *1 (-1258 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034)))) (-3637 (*1 *1 *1 *1) (-12 (-4 *1 (-1258 *2 *3)) (-4 *2 (-836)) (-4 *3 (-1034)))) (-3567 (*1 *1 *1 *2) (-12 (-4 *1 (-1258 *2 *3)) (-4 *2 (-836)) (-4 *3 (-1034)))) (-3567 (*1 *1 *1 *2) (-12 (-5 *2 (-806 *3)) (-4 *1 (-1258 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034)))) (-3567 (*1 *1 *1 *1) (-12 (-4 *1 (-1258 *2 *3)) (-4 *2 (-836)) (-4 *3 (-1034)))) (-3738 (*1 *1 *2 *3) (-12 (-5 *2 (-806 *4)) (-4 *4 (-836)) (-4 *1 (-1258 *4 *3)) (-4 *3 (-1034)))) (-3580 (*1 *2 *1) (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034)) (-5 *2 (-112)))) (-3898 (*1 *1 *1) (-12 (-4 *1 (-1258 *2 *3)) (-4 *2 (-836)) (-4 *3 (-1034)))) (-3075 (*1 *1 *2) (-12 (-4 *1 (-1258 *2 *3)) (-4 *2 (-836)) (-4 *3 (-1034)))) (-2798 (*1 *2 *1) (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034)) (-5 *2 (-112)))) (-2397 (*1 *2 *1) (-12 (-4 *1 (-1258 *3 *2)) (-4 *3 (-836)) (-4 *2 (-1034)))) (-2334 (*1 *2 *1) (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034)) (-5 *2 (-112)))) (-3987 (*1 *1 *1) (-12 (-4 *1 (-1258 *2 *3)) (-4 *2 (-836)) (-4 *3 (-1034)))) (-1647 (*1 *1 *1 *1) (-12 (-4 *1 (-1258 *2 *3)) (-4 *2 (-836)) (-4 *3 (-1034)) (-4 *3 (-170)))) (-1647 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *1 (-1258 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034)) (-4 *4 (-170)))) (-2879 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1258 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034)))) (-1654 (*1 *2 *1) (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034)) (-5 *2 (-631 *3)))))
-(-13 (-1034) (-1255 |t#2|) (-1023 (-806 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -2986 ((-806 |t#1|) $)) (-15 -2995 ((-2 (|:| |k| (-806 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1490 (|t#2| $ (-806 |t#1|))) (-15 -1490 (|t#2| $ $)) (-15 -3637 ($ $ |t#1|)) (-15 -3637 ($ $ (-806 |t#1|))) (-15 -3637 ($ $ $)) (-15 -3567 ($ $ |t#1|)) (-15 -3567 ($ $ (-806 |t#1|))) (-15 -3567 ($ $ $)) (-15 -3738 ($ (-806 |t#1|) |t#2|)) (-15 -3580 ((-112) $)) (-15 -3898 ($ $)) (-15 -3075 ($ |t#1|)) (-15 -2798 ((-112) $)) (-15 -2397 (|t#2| $)) (-15 -2334 ((-112) $)) (-15 -3987 ($ $)) (IF (|has| |t#2| (-170)) (PROGN (-15 -1647 ($ $ $)) (-15 -1647 ($ $ (-758)))) |%noBranch|) (-15 -2879 ($ (-1 |t#2| |t#2|) $)) (-15 -1654 ((-631 |t#1|) $)) (IF (|has| |t#2| (-6 -4366)) (-6 -4366) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-170)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-604 (-554)) . T) ((-604 #0=(-806 |#1|)) . T) ((-604 |#2|) . T) ((-601 (-848)) . T) ((-634 |#2|) . T) ((-634 $) . T) ((-704 |#2|) |has| |#2| (-170)) ((-713) . T) ((-1023 #0#) . T) ((-1040 |#2|) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1255 |#2|) . T))
-((-3718 (((-112) $) 15)) (-3536 (((-112) $) 14)) (-1811 (($ $) 19) (($ $ (-758)) 20)))
-(((-1259 |#1| |#2|) (-10 -8 (-15 -1811 (|#1| |#1| (-758))) (-15 -1811 (|#1| |#1|)) (-15 -3718 ((-112) |#1|)) (-15 -3536 ((-112) |#1|))) (-1260 |#2|) (-358)) (T -1259))
-NIL
-(-10 -8 (-15 -1811 (|#1| |#1| (-758))) (-15 -1811 (|#1| |#1|)) (-15 -3718 ((-112) |#1|)) (-15 -3536 ((-112) |#1|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 42)) (-1976 (($ $) 41)) (-1363 (((-112) $) 39)) (-3718 (((-112) $) 95)) (-1924 (((-758)) 91)) (-2934 (((-3 $ "failed") $ $) 19)) (-3278 (($ $) 74)) (-1565 (((-413 $) $) 73)) (-2286 (((-112) $ $) 60)) (-4087 (($) 17 T CONST)) (-2784 (((-3 |#1| "failed") $) 102)) (-1668 ((|#1| $) 103)) (-3964 (($ $ $) 56)) (-1320 (((-3 $ "failed") $) 33)) (-3943 (($ $ $) 57)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 52)) (-4122 (($ $ (-758)) 88 (-3994 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) 87 (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3289 (((-112) $) 72)) (-2342 (((-820 (-906)) $) 85 (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3248 (((-112) $) 31)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 53)) (-2475 (($ $ $) 47) (($ (-631 $)) 46)) (-1613 (((-1140) $) 9)) (-2483 (($ $) 71)) (-2070 (((-112) $) 94)) (-2768 (((-1102) $) 10)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 45)) (-2510 (($ $ $) 49) (($ (-631 $)) 48)) (-2270 (((-413 $) $) 75)) (-2365 (((-820 (-906))) 92)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3919 (((-3 $ "failed") $ $) 43)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 51)) (-2072 (((-758) $) 59)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 58)) (-3316 (((-3 (-758) "failed") $ $) 86 (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3330 (((-133)) 100)) (-3308 (((-820 (-906)) $) 93)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ $) 44) (($ (-402 (-554))) 67) (($ |#1|) 101)) (-2084 (((-3 $ "failed") $) 84 (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2261 (((-758)) 28)) (-1909 (((-112) $ $) 40)) (-3536 (((-112) $) 96)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1811 (($ $) 90 (|has| |#1| (-363))) (($ $ (-758)) 89 (|has| |#1| (-363)))) (-1658 (((-112) $ $) 6)) (-1752 (($ $ $) 66) (($ $ |#1|) 99)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ (-554)) 70)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ (-402 (-554))) 69) (($ (-402 (-554)) $) 68) (($ $ |#1|) 98) (($ |#1| $) 97)))
-(((-1260 |#1|) (-138) (-358)) (T -1260))
-((-3536 (*1 *2 *1) (-12 (-4 *1 (-1260 *3)) (-4 *3 (-358)) (-5 *2 (-112)))) (-3718 (*1 *2 *1) (-12 (-4 *1 (-1260 *3)) (-4 *3 (-358)) (-5 *2 (-112)))) (-2070 (*1 *2 *1) (-12 (-4 *1 (-1260 *3)) (-4 *3 (-358)) (-5 *2 (-112)))) (-3308 (*1 *2 *1) (-12 (-4 *1 (-1260 *3)) (-4 *3 (-358)) (-5 *2 (-820 (-906))))) (-2365 (*1 *2) (-12 (-4 *1 (-1260 *3)) (-4 *3 (-358)) (-5 *2 (-820 (-906))))) (-1924 (*1 *2) (-12 (-4 *1 (-1260 *3)) (-4 *3 (-358)) (-5 *2 (-758)))) (-1811 (*1 *1 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-358)) (-4 *2 (-363)))) (-1811 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *1 (-1260 *3)) (-4 *3 (-358)) (-4 *3 (-363)))))
-(-13 (-358) (-1023 |t#1|) (-1248 |t#1|) (-10 -8 (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-397)) |%noBranch|) (-15 -3536 ((-112) $)) (-15 -3718 ((-112) $)) (-15 -2070 ((-112) $)) (-15 -3308 ((-820 (-906)) $)) (-15 -2365 ((-820 (-906)))) (-15 -1924 ((-758))) (IF (|has| |t#1| (-363)) (PROGN (-6 (-397)) (-15 -1811 ($ $)) (-15 -1811 ($ $ (-758)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-554))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -3994 (|has| |#1| (-363)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-604 #0#) . T) ((-604 (-554)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-601 (-848)) . T) ((-170) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-358) . T) ((-397) -3994 (|has| |#1| (-363)) (|has| |#1| (-143))) ((-446) . T) ((-546) . T) ((-634 #0#) . T) ((-634 |#1|) . T) ((-634 $) . T) ((-704 #0#) . T) ((-704 |#1|) . T) ((-704 $) . T) ((-713) . T) ((-905) . T) ((-1023 |#1|) . T) ((-1040 #0#) . T) ((-1040 |#1|) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1199) . T) ((-1248 |#1|) . T))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1654 (((-631 |#1|) $) 86)) (-3151 (($ $ (-758)) 89)) (-2934 (((-3 $ "failed") $ $) NIL)) (-1647 (($ $ $) NIL (|has| |#2| (-170))) (($ $ (-758)) NIL (|has| |#2| (-170)))) (-4087 (($) NIL T CONST)) (-3567 (($ $ |#1|) NIL) (($ $ (-806 |#1|)) NIL) (($ $ $) NIL)) (-2784 (((-3 (-806 |#1|) "failed") $) NIL) (((-3 (-878 |#1|) "failed") $) NIL)) (-1668 (((-806 |#1|) $) NIL) (((-878 |#1|) $) NIL)) (-2550 (($ $) 88)) (-1320 (((-3 $ "failed") $) NIL)) (-2334 (((-112) $) 77)) (-3987 (($ $) 81)) (-4264 (($ $ $ (-758)) 90)) (-3248 (((-112) $) NIL)) (-2122 (((-758) $) NIL)) (-3910 (((-631 $) $) NIL)) (-3580 (((-112) $) NIL)) (-3738 (($ (-806 |#1|) |#2|) NIL) (($ (-878 |#1|) |#2|) 26)) (-3898 (($ $) 103)) (-2995 (((-2 (|:| |k| (-806 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2986 (((-806 |#1|) $) NIL)) (-2817 (((-806 |#1|) $) NIL)) (-2879 (($ (-1 |#2| |#2|) $) NIL)) (-3637 (($ $ |#1|) NIL) (($ $ (-806 |#1|)) NIL) (($ $ $) NIL)) (-2395 (($ $ (-758)) 97 (|has| |#2| (-704 (-402 (-554)))))) (-2428 (((-2 (|:| |k| (-878 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2518 (((-878 |#1|) $) 70)) (-2530 ((|#2| $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-1333 (($ $ (-758)) 94 (|has| |#2| (-704 (-402 (-554)))))) (-3308 (((-758) $) 87)) (-2798 (((-112) $) 71)) (-2397 ((|#2| $) 75)) (-3075 (((-848) $) 57) (($ (-554)) NIL) (($ |#2|) 51) (($ (-806 |#1|)) NIL) (($ |#1|) 59) (($ (-878 |#1|)) NIL) (($ (-650 |#1| |#2|)) 43) (((-1256 |#1| |#2|) $) 64) (((-1265 |#1| |#2|) $) 69)) (-1893 (((-631 |#2|) $) NIL)) (-1779 ((|#2| $ (-878 |#1|)) NIL)) (-1490 ((|#2| $ (-806 |#1|)) NIL) ((|#2| $ $) NIL)) (-2261 (((-758)) NIL)) (-2004 (($) 21 T CONST)) (-2014 (($) 25 T CONST)) (-2407 (((-631 (-2 (|:| |k| (-878 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1598 (((-3 (-650 |#1| |#2|) "failed") $) 102)) (-1658 (((-112) $ $) 65)) (-1744 (($ $) 96) (($ $ $) 95)) (-1735 (($ $ $) 20)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-878 |#1|)) NIL)))
-(((-1261 |#1| |#2|) (-13 (-1262 |#1| |#2|) (-377 |#2| (-878 |#1|)) (-10 -8 (-15 -3075 ($ (-650 |#1| |#2|))) (-15 -3075 ((-1256 |#1| |#2|) $)) (-15 -3075 ((-1265 |#1| |#2|) $)) (-15 -1598 ((-3 (-650 |#1| |#2|) "failed") $)) (-15 -4264 ($ $ $ (-758))) (IF (|has| |#2| (-704 (-402 (-554)))) (PROGN (-15 -1333 ($ $ (-758))) (-15 -2395 ($ $ (-758)))) |%noBranch|))) (-836) (-170)) (T -1261))
-((-3075 (*1 *1 *2) (-12 (-5 *2 (-650 *3 *4)) (-4 *3 (-836)) (-4 *4 (-170)) (-5 *1 (-1261 *3 *4)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-1256 *3 *4)) (-5 *1 (-1261 *3 *4)) (-4 *3 (-836)) (-4 *4 (-170)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-1265 *3 *4)) (-5 *1 (-1261 *3 *4)) (-4 *3 (-836)) (-4 *4 (-170)))) (-1598 (*1 *2 *1) (|partial| -12 (-5 *2 (-650 *3 *4)) (-5 *1 (-1261 *3 *4)) (-4 *3 (-836)) (-4 *4 (-170)))) (-4264 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-1261 *3 *4)) (-4 *3 (-836)) (-4 *4 (-170)))) (-1333 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-1261 *3 *4)) (-4 *4 (-704 (-402 (-554)))) (-4 *3 (-836)) (-4 *4 (-170)))) (-2395 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-1261 *3 *4)) (-4 *4 (-704 (-402 (-554)))) (-4 *3 (-836)) (-4 *4 (-170)))))
-(-13 (-1262 |#1| |#2|) (-377 |#2| (-878 |#1|)) (-10 -8 (-15 -3075 ($ (-650 |#1| |#2|))) (-15 -3075 ((-1256 |#1| |#2|) $)) (-15 -3075 ((-1265 |#1| |#2|) $)) (-15 -1598 ((-3 (-650 |#1| |#2|) "failed") $)) (-15 -4264 ($ $ $ (-758))) (IF (|has| |#2| (-704 (-402 (-554)))) (PROGN (-15 -1333 ($ $ (-758))) (-15 -2395 ($ $ (-758)))) |%noBranch|)))
-((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1654 (((-631 |#1|) $) 41)) (-3151 (($ $ (-758)) 74)) (-2934 (((-3 $ "failed") $ $) 19)) (-1647 (($ $ $) 44 (|has| |#2| (-170))) (($ $ (-758)) 43 (|has| |#2| (-170)))) (-4087 (($) 17 T CONST)) (-3567 (($ $ |#1|) 55) (($ $ (-806 |#1|)) 54) (($ $ $) 53)) (-2784 (((-3 (-806 |#1|) "failed") $) 65)) (-1668 (((-806 |#1|) $) 66)) (-1320 (((-3 $ "failed") $) 33)) (-2334 (((-112) $) 46)) (-3987 (($ $) 45)) (-3248 (((-112) $) 31)) (-3580 (((-112) $) 51)) (-3738 (($ (-806 |#1|) |#2|) 52)) (-3898 (($ $) 50)) (-2995 (((-2 (|:| |k| (-806 |#1|)) (|:| |c| |#2|)) $) 61)) (-2986 (((-806 |#1|) $) 62)) (-2817 (((-806 |#1|) $) 76)) (-2879 (($ (-1 |#2| |#2|) $) 42)) (-3637 (($ $ |#1|) 58) (($ $ (-806 |#1|)) 57) (($ $ $) 56)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3308 (((-758) $) 75)) (-2798 (((-112) $) 48)) (-2397 ((|#2| $) 47)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ |#2|) 69) (($ (-806 |#1|)) 64) (($ |#1|) 49)) (-1490 ((|#2| $ (-806 |#1|)) 60) ((|#2| $ $) 59)) (-2261 (((-758)) 28)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ |#2| $) 68) (($ $ |#2|) 67) (($ |#1| $) 63)))
-(((-1262 |#1| |#2|) (-138) (-836) (-1034)) (T -1262))
-((-2817 (*1 *2 *1) (-12 (-4 *1 (-1262 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034)) (-5 *2 (-806 *3)))) (-3308 (*1 *2 *1) (-12 (-4 *1 (-1262 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034)) (-5 *2 (-758)))) (-3151 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *1 (-1262 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034)))))
-(-13 (-1258 |t#1| |t#2|) (-10 -8 (-15 -2817 ((-806 |t#1|) $)) (-15 -3308 ((-758) $)) (-15 -3151 ($ $ (-758)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-170)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-604 (-554)) . T) ((-604 #0=(-806 |#1|)) . T) ((-604 |#2|) . T) ((-601 (-848)) . T) ((-634 |#2|) . T) ((-634 $) . T) ((-704 |#2|) |has| |#2| (-170)) ((-713) . T) ((-1023 #0#) . T) ((-1040 |#2|) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1255 |#2|) . T) ((-1258 |#1| |#2|) . T))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1654 (((-631 (-1158)) $) NIL)) (-1486 (($ (-1256 (-1158) |#1|)) NIL)) (-3151 (($ $ (-758)) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-1647 (($ $ $) NIL (|has| |#1| (-170))) (($ $ (-758)) NIL (|has| |#1| (-170)))) (-4087 (($) NIL T CONST)) (-3567 (($ $ (-1158)) NIL) (($ $ (-806 (-1158))) NIL) (($ $ $) NIL)) (-2784 (((-3 (-806 (-1158)) "failed") $) NIL)) (-1668 (((-806 (-1158)) $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2334 (((-112) $) NIL)) (-3987 (($ $) NIL)) (-3248 (((-112) $) NIL)) (-3580 (((-112) $) NIL)) (-3738 (($ (-806 (-1158)) |#1|) NIL)) (-3898 (($ $) NIL)) (-2995 (((-2 (|:| |k| (-806 (-1158))) (|:| |c| |#1|)) $) NIL)) (-2986 (((-806 (-1158)) $) NIL)) (-2817 (((-806 (-1158)) $) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-3637 (($ $ (-1158)) NIL) (($ $ (-806 (-1158))) NIL) (($ $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-1845 (((-1256 (-1158) |#1|) $) NIL)) (-3308 (((-758) $) NIL)) (-2798 (((-112) $) NIL)) (-2397 ((|#1| $) NIL)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#1|) NIL) (($ (-806 (-1158))) NIL) (($ (-1158)) NIL)) (-1490 ((|#1| $ (-806 (-1158))) NIL) ((|#1| $ $) NIL)) (-2261 (((-758)) NIL)) (-2004 (($) NIL T CONST)) (-1907 (((-631 (-2 (|:| |k| (-1158)) (|:| |c| $))) $) NIL)) (-2014 (($) NIL T CONST)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1158) $) NIL)))
-(((-1263 |#1|) (-13 (-1262 (-1158) |#1|) (-10 -8 (-15 -1845 ((-1256 (-1158) |#1|) $)) (-15 -1486 ($ (-1256 (-1158) |#1|))) (-15 -1907 ((-631 (-2 (|:| |k| (-1158)) (|:| |c| $))) $)))) (-1034)) (T -1263))
-((-1845 (*1 *2 *1) (-12 (-5 *2 (-1256 (-1158) *3)) (-5 *1 (-1263 *3)) (-4 *3 (-1034)))) (-1486 (*1 *1 *2) (-12 (-5 *2 (-1256 (-1158) *3)) (-4 *3 (-1034)) (-5 *1 (-1263 *3)))) (-1907 (*1 *2 *1) (-12 (-5 *2 (-631 (-2 (|:| |k| (-1158)) (|:| |c| (-1263 *3))))) (-5 *1 (-1263 *3)) (-4 *3 (-1034)))))
-(-13 (-1262 (-1158) |#1|) (-10 -8 (-15 -1845 ((-1256 (-1158) |#1|) $)) (-15 -1486 ($ (-1256 (-1158) |#1|))) (-15 -1907 ((-631 (-2 (|:| |k| (-1158)) (|:| |c| $))) $))))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#2| "failed") $) NIL)) (-1668 ((|#2| $) NIL)) (-2550 (($ $) NIL)) (-1320 (((-3 $ "failed") $) 36)) (-2334 (((-112) $) 30)) (-3987 (($ $) 32)) (-3248 (((-112) $) NIL)) (-2122 (((-758) $) NIL)) (-3910 (((-631 $) $) NIL)) (-3580 (((-112) $) NIL)) (-3738 (($ |#2| |#1|) NIL)) (-2986 ((|#2| $) 19)) (-2817 ((|#2| $) 16)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-2428 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-2518 ((|#2| $) NIL)) (-2530 ((|#1| $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2798 (((-112) $) 27)) (-2397 ((|#1| $) 28)) (-3075 (((-848) $) 55) (($ (-554)) 40) (($ |#1|) 35) (($ |#2|) NIL)) (-1893 (((-631 |#1|) $) NIL)) (-1779 ((|#1| $ |#2|) NIL)) (-1490 ((|#1| $ |#2|) 24)) (-2261 (((-758)) 14)) (-2004 (($) 25 T CONST)) (-2014 (($) 11 T CONST)) (-2407 (((-631 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-1658 (((-112) $ $) 26)) (-1752 (($ $ |#1|) 57 (|has| |#1| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) 44)) (** (($ $ (-906)) NIL) (($ $ (-758)) 46)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 45) (($ |#1| $) 41) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2563 (((-758) $) 15)))
-(((-1264 |#1| |#2|) (-13 (-1034) (-1255 |#1|) (-377 |#1| |#2|) (-604 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2563 ((-758) $)) (-15 -2817 (|#2| $)) (-15 -2986 (|#2| $)) (-15 -2550 ($ $)) (-15 -1490 (|#1| $ |#2|)) (-15 -2798 ((-112) $)) (-15 -2397 (|#1| $)) (-15 -2334 ((-112) $)) (-15 -3987 ($ $)) (-15 -2879 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-358)) (-15 -1752 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4366)) (-6 -4366) |%noBranch|) (IF (|has| |#1| (-6 -4370)) (-6 -4370) |%noBranch|) (IF (|has| |#1| (-6 -4371)) (-6 -4371) |%noBranch|))) (-1034) (-832)) (T -1264))
-((* (*1 *1 *1 *2) (-12 (-5 *1 (-1264 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-832)))) (-2550 (*1 *1 *1) (-12 (-5 *1 (-1264 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-832)))) (-2879 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1034)) (-5 *1 (-1264 *3 *4)) (-4 *4 (-832)))) (-2563 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-1264 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-832)))) (-2817 (*1 *2 *1) (-12 (-4 *2 (-832)) (-5 *1 (-1264 *3 *2)) (-4 *3 (-1034)))) (-2986 (*1 *2 *1) (-12 (-4 *2 (-832)) (-5 *1 (-1264 *3 *2)) (-4 *3 (-1034)))) (-1490 (*1 *2 *1 *3) (-12 (-4 *2 (-1034)) (-5 *1 (-1264 *2 *3)) (-4 *3 (-832)))) (-2798 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1264 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-832)))) (-2397 (*1 *2 *1) (-12 (-4 *2 (-1034)) (-5 *1 (-1264 *2 *3)) (-4 *3 (-832)))) (-2334 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1264 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-832)))) (-3987 (*1 *1 *1) (-12 (-5 *1 (-1264 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-832)))) (-1752 (*1 *1 *1 *2) (-12 (-5 *1 (-1264 *2 *3)) (-4 *2 (-358)) (-4 *2 (-1034)) (-4 *3 (-832)))))
-(-13 (-1034) (-1255 |#1|) (-377 |#1| |#2|) (-604 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2563 ((-758) $)) (-15 -2817 (|#2| $)) (-15 -2986 (|#2| $)) (-15 -2550 ($ $)) (-15 -1490 (|#1| $ |#2|)) (-15 -2798 ((-112) $)) (-15 -2397 (|#1| $)) (-15 -2334 ((-112) $)) (-15 -3987 ($ $)) (-15 -2879 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-358)) (-15 -1752 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4366)) (-6 -4366) |%noBranch|) (IF (|has| |#1| (-6 -4370)) (-6 -4370) |%noBranch|) (IF (|has| |#1| (-6 -4371)) (-6 -4371) |%noBranch|)))
-((-3062 (((-112) $ $) 26)) (-1695 (((-112) $) NIL)) (-1654 (((-631 |#1|) $) 120)) (-1486 (($ (-1256 |#1| |#2|)) 44)) (-3151 (($ $ (-758)) 32)) (-2934 (((-3 $ "failed") $ $) NIL)) (-1647 (($ $ $) 48 (|has| |#2| (-170))) (($ $ (-758)) 46 (|has| |#2| (-170)))) (-4087 (($) NIL T CONST)) (-3567 (($ $ |#1|) 102) (($ $ (-806 |#1|)) 103) (($ $ $) 25)) (-2784 (((-3 (-806 |#1|) "failed") $) NIL)) (-1668 (((-806 |#1|) $) NIL)) (-1320 (((-3 $ "failed") $) 110)) (-2334 (((-112) $) 105)) (-3987 (($ $) 106)) (-3248 (((-112) $) NIL)) (-3580 (((-112) $) NIL)) (-3738 (($ (-806 |#1|) |#2|) 19)) (-3898 (($ $) NIL)) (-2995 (((-2 (|:| |k| (-806 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2986 (((-806 |#1|) $) 111)) (-2817 (((-806 |#1|) $) 114)) (-2879 (($ (-1 |#2| |#2|) $) 119)) (-3637 (($ $ |#1|) 100) (($ $ (-806 |#1|)) 101) (($ $ $) 56)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-1845 (((-1256 |#1| |#2|) $) 84)) (-3308 (((-758) $) 117)) (-2798 (((-112) $) 70)) (-2397 ((|#2| $) 28)) (-3075 (((-848) $) 63) (($ (-554)) 77) (($ |#2|) 74) (($ (-806 |#1|)) 17) (($ |#1|) 73)) (-1490 ((|#2| $ (-806 |#1|)) 104) ((|#2| $ $) 27)) (-2261 (((-758)) 108)) (-2004 (($) 14 T CONST)) (-1907 (((-631 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-2014 (($) 29 T CONST)) (-1658 (((-112) $ $) 13)) (-1744 (($ $) 88) (($ $ $) 91)) (-1735 (($ $ $) 55)) (** (($ $ (-906)) NIL) (($ $ (-758)) 49)) (* (($ (-906) $) NIL) (($ (-758) $) 47) (($ (-554) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82)))
-(((-1265 |#1| |#2|) (-13 (-1262 |#1| |#2|) (-10 -8 (-15 -1845 ((-1256 |#1| |#2|) $)) (-15 -1486 ($ (-1256 |#1| |#2|))) (-15 -1907 ((-631 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-836) (-1034)) (T -1265))
-((-1845 (*1 *2 *1) (-12 (-5 *2 (-1256 *3 *4)) (-5 *1 (-1265 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034)))) (-1486 (*1 *1 *2) (-12 (-5 *2 (-1256 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034)) (-5 *1 (-1265 *3 *4)))) (-1907 (*1 *2 *1) (-12 (-5 *2 (-631 (-2 (|:| |k| *3) (|:| |c| (-1265 *3 *4))))) (-5 *1 (-1265 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034)))))
-(-13 (-1262 |#1| |#2|) (-10 -8 (-15 -1845 ((-1256 |#1| |#2|) $)) (-15 -1486 ($ (-1256 |#1| |#2|))) (-15 -1907 ((-631 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
-((-1277 (((-631 (-1138 |#1|)) (-1 (-631 (-1138 |#1|)) (-631 (-1138 |#1|))) (-554)) 15) (((-1138 |#1|) (-1 (-1138 |#1|) (-1138 |#1|))) 11)))
-(((-1266 |#1|) (-10 -7 (-15 -1277 ((-1138 |#1|) (-1 (-1138 |#1|) (-1138 |#1|)))) (-15 -1277 ((-631 (-1138 |#1|)) (-1 (-631 (-1138 |#1|)) (-631 (-1138 |#1|))) (-554)))) (-1195)) (T -1266))
-((-1277 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-631 (-1138 *5)) (-631 (-1138 *5)))) (-5 *4 (-554)) (-5 *2 (-631 (-1138 *5))) (-5 *1 (-1266 *5)) (-4 *5 (-1195)))) (-1277 (*1 *2 *3) (-12 (-5 *3 (-1 (-1138 *4) (-1138 *4))) (-5 *2 (-1138 *4)) (-5 *1 (-1266 *4)) (-4 *4 (-1195)))))
-(-10 -7 (-15 -1277 ((-1138 |#1|) (-1 (-1138 |#1|) (-1138 |#1|)))) (-15 -1277 ((-631 (-1138 |#1|)) (-1 (-631 (-1138 |#1|)) (-631 (-1138 |#1|))) (-554))))
-((-4035 (((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-631 (-937 |#1|))) 148) (((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-631 (-937 |#1|)) (-112)) 147) (((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-631 (-937 |#1|)) (-112) (-112)) 146) (((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-631 (-937 |#1|)) (-112) (-112) (-112)) 145) (((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-1031 |#1| |#2|)) 130)) (-3101 (((-631 (-1031 |#1| |#2|)) (-631 (-937 |#1|))) 72) (((-631 (-1031 |#1| |#2|)) (-631 (-937 |#1|)) (-112)) 71) (((-631 (-1031 |#1| |#2|)) (-631 (-937 |#1|)) (-112) (-112)) 70)) (-1565 (((-631 (-1128 |#1| (-525 (-850 |#3|)) (-850 |#3|) (-767 |#1| (-850 |#3|)))) (-1031 |#1| |#2|)) 61)) (-3481 (((-631 (-631 (-1009 (-402 |#1|)))) (-631 (-937 |#1|))) 115) (((-631 (-631 (-1009 (-402 |#1|)))) (-631 (-937 |#1|)) (-112)) 114) (((-631 (-631 (-1009 (-402 |#1|)))) (-631 (-937 |#1|)) (-112) (-112)) 113) (((-631 (-631 (-1009 (-402 |#1|)))) (-631 (-937 |#1|)) (-112) (-112) (-112)) 112) (((-631 (-631 (-1009 (-402 |#1|)))) (-1031 |#1| |#2|)) 107)) (-2778 (((-631 (-631 (-1009 (-402 |#1|)))) (-631 (-937 |#1|))) 120) (((-631 (-631 (-1009 (-402 |#1|)))) (-631 (-937 |#1|)) (-112)) 119) (((-631 (-631 (-1009 (-402 |#1|)))) (-631 (-937 |#1|)) (-112) (-112)) 118) (((-631 (-631 (-1009 (-402 |#1|)))) (-1031 |#1| |#2|)) 117)) (-2927 (((-631 (-767 |#1| (-850 |#3|))) (-1128 |#1| (-525 (-850 |#3|)) (-850 |#3|) (-767 |#1| (-850 |#3|)))) 98) (((-1154 (-1009 (-402 |#1|))) (-1154 |#1|)) 89) (((-937 (-1009 (-402 |#1|))) (-767 |#1| (-850 |#3|))) 96) (((-937 (-1009 (-402 |#1|))) (-937 |#1|)) 94) (((-767 |#1| (-850 |#3|)) (-767 |#1| (-850 |#2|))) 33)))
-(((-1267 |#1| |#2| |#3|) (-10 -7 (-15 -3101 ((-631 (-1031 |#1| |#2|)) (-631 (-937 |#1|)) (-112) (-112))) (-15 -3101 ((-631 (-1031 |#1| |#2|)) (-631 (-937 |#1|)) (-112))) (-15 -3101 ((-631 (-1031 |#1| |#2|)) (-631 (-937 |#1|)))) (-15 -4035 ((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-1031 |#1| |#2|))) (-15 -4035 ((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-631 (-937 |#1|)) (-112) (-112) (-112))) (-15 -4035 ((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-631 (-937 |#1|)) (-112) (-112))) (-15 -4035 ((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-631 (-937 |#1|)) (-112))) (-15 -4035 ((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-631 (-937 |#1|)))) (-15 -3481 ((-631 (-631 (-1009 (-402 |#1|)))) (-1031 |#1| |#2|))) (-15 -3481 ((-631 (-631 (-1009 (-402 |#1|)))) (-631 (-937 |#1|)) (-112) (-112) (-112))) (-15 -3481 ((-631 (-631 (-1009 (-402 |#1|)))) (-631 (-937 |#1|)) (-112) (-112))) (-15 -3481 ((-631 (-631 (-1009 (-402 |#1|)))) (-631 (-937 |#1|)) (-112))) (-15 -3481 ((-631 (-631 (-1009 (-402 |#1|)))) (-631 (-937 |#1|)))) (-15 -2778 ((-631 (-631 (-1009 (-402 |#1|)))) (-1031 |#1| |#2|))) (-15 -2778 ((-631 (-631 (-1009 (-402 |#1|)))) (-631 (-937 |#1|)) (-112) (-112))) (-15 -2778 ((-631 (-631 (-1009 (-402 |#1|)))) (-631 (-937 |#1|)) (-112))) (-15 -2778 ((-631 (-631 (-1009 (-402 |#1|)))) (-631 (-937 |#1|)))) (-15 -1565 ((-631 (-1128 |#1| (-525 (-850 |#3|)) (-850 |#3|) (-767 |#1| (-850 |#3|)))) (-1031 |#1| |#2|))) (-15 -2927 ((-767 |#1| (-850 |#3|)) (-767 |#1| (-850 |#2|)))) (-15 -2927 ((-937 (-1009 (-402 |#1|))) (-937 |#1|))) (-15 -2927 ((-937 (-1009 (-402 |#1|))) (-767 |#1| (-850 |#3|)))) (-15 -2927 ((-1154 (-1009 (-402 |#1|))) (-1154 |#1|))) (-15 -2927 ((-631 (-767 |#1| (-850 |#3|))) (-1128 |#1| (-525 (-850 |#3|)) (-850 |#3|) (-767 |#1| (-850 |#3|)))))) (-13 (-834) (-302) (-145) (-1007)) (-631 (-1158)) (-631 (-1158))) (T -1267))
-((-2927 (*1 *2 *3) (-12 (-5 *3 (-1128 *4 (-525 (-850 *6)) (-850 *6) (-767 *4 (-850 *6)))) (-4 *4 (-13 (-834) (-302) (-145) (-1007))) (-14 *6 (-631 (-1158))) (-5 *2 (-631 (-767 *4 (-850 *6)))) (-5 *1 (-1267 *4 *5 *6)) (-14 *5 (-631 (-1158))))) (-2927 (*1 *2 *3) (-12 (-5 *3 (-1154 *4)) (-4 *4 (-13 (-834) (-302) (-145) (-1007))) (-5 *2 (-1154 (-1009 (-402 *4)))) (-5 *1 (-1267 *4 *5 *6)) (-14 *5 (-631 (-1158))) (-14 *6 (-631 (-1158))))) (-2927 (*1 *2 *3) (-12 (-5 *3 (-767 *4 (-850 *6))) (-4 *4 (-13 (-834) (-302) (-145) (-1007))) (-14 *6 (-631 (-1158))) (-5 *2 (-937 (-1009 (-402 *4)))) (-5 *1 (-1267 *4 *5 *6)) (-14 *5 (-631 (-1158))))) (-2927 (*1 *2 *3) (-12 (-5 *3 (-937 *4)) (-4 *4 (-13 (-834) (-302) (-145) (-1007))) (-5 *2 (-937 (-1009 (-402 *4)))) (-5 *1 (-1267 *4 *5 *6)) (-14 *5 (-631 (-1158))) (-14 *6 (-631 (-1158))))) (-2927 (*1 *2 *3) (-12 (-5 *3 (-767 *4 (-850 *5))) (-4 *4 (-13 (-834) (-302) (-145) (-1007))) (-14 *5 (-631 (-1158))) (-5 *2 (-767 *4 (-850 *6))) (-5 *1 (-1267 *4 *5 *6)) (-14 *6 (-631 (-1158))))) (-1565 (*1 *2 *3) (-12 (-5 *3 (-1031 *4 *5)) (-4 *4 (-13 (-834) (-302) (-145) (-1007))) (-14 *5 (-631 (-1158))) (-5 *2 (-631 (-1128 *4 (-525 (-850 *6)) (-850 *6) (-767 *4 (-850 *6))))) (-5 *1 (-1267 *4 *5 *6)) (-14 *6 (-631 (-1158))))) (-2778 (*1 *2 *3) (-12 (-5 *3 (-631 (-937 *4))) (-4 *4 (-13 (-834) (-302) (-145) (-1007))) (-5 *2 (-631 (-631 (-1009 (-402 *4))))) (-5 *1 (-1267 *4 *5 *6)) (-14 *5 (-631 (-1158))) (-14 *6 (-631 (-1158))))) (-2778 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-937 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-834) (-302) (-145) (-1007))) (-5 *2 (-631 (-631 (-1009 (-402 *5))))) (-5 *1 (-1267 *5 *6 *7)) (-14 *6 (-631 (-1158))) (-14 *7 (-631 (-1158))))) (-2778 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-631 (-937 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-834) (-302) (-145) (-1007))) (-5 *2 (-631 (-631 (-1009 (-402 *5))))) (-5 *1 (-1267 *5 *6 *7)) (-14 *6 (-631 (-1158))) (-14 *7 (-631 (-1158))))) (-2778 (*1 *2 *3) (-12 (-5 *3 (-1031 *4 *5)) (-4 *4 (-13 (-834) (-302) (-145) (-1007))) (-14 *5 (-631 (-1158))) (-5 *2 (-631 (-631 (-1009 (-402 *4))))) (-5 *1 (-1267 *4 *5 *6)) (-14 *6 (-631 (-1158))))) (-3481 (*1 *2 *3) (-12 (-5 *3 (-631 (-937 *4))) (-4 *4 (-13 (-834) (-302) (-145) (-1007))) (-5 *2 (-631 (-631 (-1009 (-402 *4))))) (-5 *1 (-1267 *4 *5 *6)) (-14 *5 (-631 (-1158))) (-14 *6 (-631 (-1158))))) (-3481 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-937 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-834) (-302) (-145) (-1007))) (-5 *2 (-631 (-631 (-1009 (-402 *5))))) (-5 *1 (-1267 *5 *6 *7)) (-14 *6 (-631 (-1158))) (-14 *7 (-631 (-1158))))) (-3481 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-631 (-937 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-834) (-302) (-145) (-1007))) (-5 *2 (-631 (-631 (-1009 (-402 *5))))) (-5 *1 (-1267 *5 *6 *7)) (-14 *6 (-631 (-1158))) (-14 *7 (-631 (-1158))))) (-3481 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-631 (-937 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-834) (-302) (-145) (-1007))) (-5 *2 (-631 (-631 (-1009 (-402 *5))))) (-5 *1 (-1267 *5 *6 *7)) (-14 *6 (-631 (-1158))) (-14 *7 (-631 (-1158))))) (-3481 (*1 *2 *3) (-12 (-5 *3 (-1031 *4 *5)) (-4 *4 (-13 (-834) (-302) (-145) (-1007))) (-14 *5 (-631 (-1158))) (-5 *2 (-631 (-631 (-1009 (-402 *4))))) (-5 *1 (-1267 *4 *5 *6)) (-14 *6 (-631 (-1158))))) (-4035 (*1 *2 *3) (-12 (-4 *4 (-13 (-834) (-302) (-145) (-1007))) (-5 *2 (-631 (-2 (|:| -3900 (-1154 *4)) (|:| -3656 (-631 (-937 *4)))))) (-5 *1 (-1267 *4 *5 *6)) (-5 *3 (-631 (-937 *4))) (-14 *5 (-631 (-1158))) (-14 *6 (-631 (-1158))))) (-4035 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-834) (-302) (-145) (-1007))) (-5 *2 (-631 (-2 (|:| -3900 (-1154 *5)) (|:| -3656 (-631 (-937 *5)))))) (-5 *1 (-1267 *5 *6 *7)) (-5 *3 (-631 (-937 *5))) (-14 *6 (-631 (-1158))) (-14 *7 (-631 (-1158))))) (-4035 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-834) (-302) (-145) (-1007))) (-5 *2 (-631 (-2 (|:| -3900 (-1154 *5)) (|:| -3656 (-631 (-937 *5)))))) (-5 *1 (-1267 *5 *6 *7)) (-5 *3 (-631 (-937 *5))) (-14 *6 (-631 (-1158))) (-14 *7 (-631 (-1158))))) (-4035 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-834) (-302) (-145) (-1007))) (-5 *2 (-631 (-2 (|:| -3900 (-1154 *5)) (|:| -3656 (-631 (-937 *5)))))) (-5 *1 (-1267 *5 *6 *7)) (-5 *3 (-631 (-937 *5))) (-14 *6 (-631 (-1158))) (-14 *7 (-631 (-1158))))) (-4035 (*1 *2 *3) (-12 (-5 *3 (-1031 *4 *5)) (-4 *4 (-13 (-834) (-302) (-145) (-1007))) (-14 *5 (-631 (-1158))) (-5 *2 (-631 (-2 (|:| -3900 (-1154 *4)) (|:| -3656 (-631 (-937 *4)))))) (-5 *1 (-1267 *4 *5 *6)) (-14 *6 (-631 (-1158))))) (-3101 (*1 *2 *3) (-12 (-5 *3 (-631 (-937 *4))) (-4 *4 (-13 (-834) (-302) (-145) (-1007))) (-5 *2 (-631 (-1031 *4 *5))) (-5 *1 (-1267 *4 *5 *6)) (-14 *5 (-631 (-1158))) (-14 *6 (-631 (-1158))))) (-3101 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-937 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-834) (-302) (-145) (-1007))) (-5 *2 (-631 (-1031 *5 *6))) (-5 *1 (-1267 *5 *6 *7)) (-14 *6 (-631 (-1158))) (-14 *7 (-631 (-1158))))) (-3101 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-631 (-937 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-834) (-302) (-145) (-1007))) (-5 *2 (-631 (-1031 *5 *6))) (-5 *1 (-1267 *5 *6 *7)) (-14 *6 (-631 (-1158))) (-14 *7 (-631 (-1158))))))
-(-10 -7 (-15 -3101 ((-631 (-1031 |#1| |#2|)) (-631 (-937 |#1|)) (-112) (-112))) (-15 -3101 ((-631 (-1031 |#1| |#2|)) (-631 (-937 |#1|)) (-112))) (-15 -3101 ((-631 (-1031 |#1| |#2|)) (-631 (-937 |#1|)))) (-15 -4035 ((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-1031 |#1| |#2|))) (-15 -4035 ((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-631 (-937 |#1|)) (-112) (-112) (-112))) (-15 -4035 ((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-631 (-937 |#1|)) (-112) (-112))) (-15 -4035 ((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-631 (-937 |#1|)) (-112))) (-15 -4035 ((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-631 (-937 |#1|)))) (-15 -3481 ((-631 (-631 (-1009 (-402 |#1|)))) (-1031 |#1| |#2|))) (-15 -3481 ((-631 (-631 (-1009 (-402 |#1|)))) (-631 (-937 |#1|)) (-112) (-112) (-112))) (-15 -3481 ((-631 (-631 (-1009 (-402 |#1|)))) (-631 (-937 |#1|)) (-112) (-112))) (-15 -3481 ((-631 (-631 (-1009 (-402 |#1|)))) (-631 (-937 |#1|)) (-112))) (-15 -3481 ((-631 (-631 (-1009 (-402 |#1|)))) (-631 (-937 |#1|)))) (-15 -2778 ((-631 (-631 (-1009 (-402 |#1|)))) (-1031 |#1| |#2|))) (-15 -2778 ((-631 (-631 (-1009 (-402 |#1|)))) (-631 (-937 |#1|)) (-112) (-112))) (-15 -2778 ((-631 (-631 (-1009 (-402 |#1|)))) (-631 (-937 |#1|)) (-112))) (-15 -2778 ((-631 (-631 (-1009 (-402 |#1|)))) (-631 (-937 |#1|)))) (-15 -1565 ((-631 (-1128 |#1| (-525 (-850 |#3|)) (-850 |#3|) (-767 |#1| (-850 |#3|)))) (-1031 |#1| |#2|))) (-15 -2927 ((-767 |#1| (-850 |#3|)) (-767 |#1| (-850 |#2|)))) (-15 -2927 ((-937 (-1009 (-402 |#1|))) (-937 |#1|))) (-15 -2927 ((-937 (-1009 (-402 |#1|))) (-767 |#1| (-850 |#3|)))) (-15 -2927 ((-1154 (-1009 (-402 |#1|))) (-1154 |#1|))) (-15 -2927 ((-631 (-767 |#1| (-850 |#3|))) (-1128 |#1| (-525 (-850 |#3|)) (-850 |#3|) (-767 |#1| (-850 |#3|))))))
-((-2834 (((-3 (-1241 (-402 (-554))) "failed") (-1241 |#1|) |#1|) 21)) (-2933 (((-112) (-1241 |#1|)) 12)) (-1578 (((-3 (-1241 (-554)) "failed") (-1241 |#1|)) 16)))
-(((-1268 |#1|) (-10 -7 (-15 -2933 ((-112) (-1241 |#1|))) (-15 -1578 ((-3 (-1241 (-554)) "failed") (-1241 |#1|))) (-15 -2834 ((-3 (-1241 (-402 (-554))) "failed") (-1241 |#1|) |#1|))) (-627 (-554))) (T -1268))
-((-2834 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1241 *4)) (-4 *4 (-627 (-554))) (-5 *2 (-1241 (-402 (-554)))) (-5 *1 (-1268 *4)))) (-1578 (*1 *2 *3) (|partial| -12 (-5 *3 (-1241 *4)) (-4 *4 (-627 (-554))) (-5 *2 (-1241 (-554))) (-5 *1 (-1268 *4)))) (-2933 (*1 *2 *3) (-12 (-5 *3 (-1241 *4)) (-4 *4 (-627 (-554))) (-5 *2 (-112)) (-5 *1 (-1268 *4)))))
-(-10 -7 (-15 -2933 ((-112) (-1241 |#1|))) (-15 -1578 ((-3 (-1241 (-554)) "failed") (-1241 |#1|))) (-15 -2834 ((-3 (-1241 (-402 (-554))) "failed") (-1241 |#1|) |#1|)))
-((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 11)) (-2934 (((-3 $ "failed") $ $) NIL)) (-1508 (((-758)) 8)) (-4087 (($) NIL T CONST)) (-1320 (((-3 $ "failed") $) 43)) (-3353 (($) 36)) (-3248 (((-112) $) NIL)) (-3339 (((-3 $ "failed") $) 29)) (-3830 (((-906) $) 15)) (-1613 (((-1140) $) NIL)) (-3834 (($) 25 T CONST)) (-2717 (($ (-906)) 37)) (-2768 (((-1102) $) NIL)) (-2927 (((-554) $) 13)) (-3075 (((-848) $) 22) (($ (-554)) 19)) (-2261 (((-758)) 9)) (-2004 (($) 23 T CONST)) (-2014 (($) 24 T CONST)) (-1658 (((-112) $ $) 27)) (-1744 (($ $) 38) (($ $ $) 35)) (-1735 (($ $ $) 26)) (** (($ $ (-906)) NIL) (($ $ (-758)) 40)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 32) (($ $ $) 31)))
-(((-1269 |#1|) (-13 (-170) (-363) (-602 (-554)) (-1133)) (-906)) (T -1269))
-NIL
-(-13 (-170) (-363) (-602 (-554)) (-1133))
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-((-3 3182051 3182056 3182061 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-2 3182036 3182041 3182046 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1 3182021 3182026 3182031 NIL NIL NIL NIL (NIL) -8 NIL NIL) (0 3182006 3182011 3182016 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1269 3181182 3181881 3181958 "ZMOD" 3181963 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1268 3180292 3180456 3180665 "ZLINDEP" 3181014 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1267 3169596 3171360 3173332 "ZDSOLVE" 3178422 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1266 3168842 3168983 3169172 "YSTREAM" 3169442 NIL YSTREAM (NIL T) -7 NIL NIL) (-1265 3166653 3168143 3168347 "XRPOLY" 3168685 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1264 3163241 3164524 3165099 "XPR" 3166125 NIL XPR (NIL T T) -8 NIL NIL) (-1263 3160997 3162572 3162776 "XPOLY" 3163072 NIL XPOLY (NIL T) -8 NIL NIL) (-1262 3158788 3160122 3160177 "XPOLYC" 3160465 NIL XPOLYC (NIL T T) -9 NIL 3160578) (-1261 3155206 3157305 3157693 "XPBWPOLY" 3158446 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1260 3151117 3153369 3153411 "XF" 3154032 NIL XF (NIL T) -9 NIL 3154432) (-1259 3150738 3150826 3150995 "XF-" 3151000 NIL XF- (NIL T T) -8 NIL NIL) (-1258 3146072 3147327 3147382 "XFALG" 3149554 NIL XFALG (NIL T T) -9 NIL 3150343) (-1257 3145205 3145309 3145514 "XEXPPKG" 3145964 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1256 3143349 3145055 3145151 "XDPOLY" 3145156 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1255 3142294 3142860 3142903 "XALG" 3142908 NIL XALG (NIL T) -9 NIL 3143019) (-1254 3135763 3140271 3140765 "WUTSET" 3141886 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1253 3134054 3134815 3135138 "WP" 3135574 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1252 3133683 3133876 3133946 "WHILEAST" 3134006 T WHILEAST (NIL) -8 NIL NIL) (-1251 3133182 3133400 3133494 "WHEREAST" 3133611 T WHEREAST (NIL) -8 NIL NIL) (-1250 3132068 3132266 3132561 "WFFINTBS" 3132979 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1249 3129972 3130399 3130861 "WEIER" 3131640 NIL WEIER (NIL T) -7 NIL NIL) (-1248 3129119 3129543 3129585 "VSPACE" 3129721 NIL VSPACE (NIL T) -9 NIL 3129795) (-1247 3128957 3128984 3129075 "VSPACE-" 3129080 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1246 3128765 3128808 3128876 "VOID" 3128911 T VOID (NIL) -8 NIL NIL) (-1245 3126901 3127260 3127666 "VIEW" 3128381 T VIEW (NIL) -7 NIL NIL) (-1244 3123326 3123964 3124701 "VIEWDEF" 3126186 T VIEWDEF (NIL) -7 NIL NIL) (-1243 3112664 3114874 3117047 "VIEW3D" 3121175 T VIEW3D (NIL) -8 NIL NIL) (-1242 3104946 3106575 3108154 "VIEW2D" 3111107 T VIEW2D (NIL) -8 NIL NIL) (-1241 3100350 3104716 3104808 "VECTOR" 3104889 NIL VECTOR (NIL T) -8 NIL NIL) (-1240 3098927 3099186 3099504 "VECTOR2" 3100080 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1239 3092454 3096711 3096754 "VECTCAT" 3097747 NIL VECTCAT (NIL T) -9 NIL 3098333) (-1238 3091468 3091722 3092112 "VECTCAT-" 3092117 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1237 3090949 3091119 3091239 "VARIABLE" 3091383 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1236 3090882 3090887 3090917 "UTYPE" 3090922 T UTYPE (NIL) -9 NIL NIL) (-1235 3089712 3089866 3090128 "UTSODETL" 3090708 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1234 3087152 3087612 3088136 "UTSODE" 3089253 NIL UTSODE (NIL T T) -7 NIL NIL) (-1233 3079028 3084778 3085267 "UTS" 3086721 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1232 3070271 3075595 3075638 "UTSCAT" 3076750 NIL UTSCAT (NIL T) -9 NIL 3077507) (-1231 3067625 3068341 3069330 "UTSCAT-" 3069335 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1230 3067252 3067295 3067428 "UTS2" 3067576 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1229 3061527 3064092 3064135 "URAGG" 3066205 NIL URAGG (NIL T) -9 NIL 3066927) (-1228 3058466 3059329 3060452 "URAGG-" 3060457 NIL URAGG- (NIL T T) -8 NIL NIL) (-1227 3054190 3057080 3057552 "UPXSSING" 3058130 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1226 3046292 3053437 3053710 "UPXS" 3053975 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1225 3039405 3046196 3046268 "UPXSCONS" 3046273 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1224 3029650 3036400 3036462 "UPXSCCA" 3037036 NIL UPXSCCA (NIL T T) -9 NIL 3037269) (-1223 3029288 3029373 3029547 "UPXSCCA-" 3029552 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1222 3019386 3025909 3025952 "UPXSCAT" 3026600 NIL UPXSCAT (NIL T) -9 NIL 3027208) (-1221 3018816 3018895 3019074 "UPXS2" 3019301 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1220 3017470 3017723 3018074 "UPSQFREE" 3018559 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1219 3011258 3014272 3014327 "UPSCAT" 3015488 NIL UPSCAT (NIL T T) -9 NIL 3016262) (-1218 3010462 3010669 3010996 "UPSCAT-" 3011001 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1217 2996312 3004310 3004353 "UPOLYC" 3006454 NIL UPOLYC (NIL T) -9 NIL 3007675) (-1216 2987641 2990066 2993213 "UPOLYC-" 2993218 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1215 2987268 2987311 2987444 "UPOLYC2" 2987592 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1214 2978842 2986951 2987080 "UP" 2987187 NIL UP (NIL NIL T) -8 NIL NIL) (-1213 2978181 2978288 2978452 "UPMP" 2978731 NIL UPMP (NIL T T) -7 NIL NIL) (-1212 2977734 2977815 2977954 "UPDIVP" 2978094 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1211 2976302 2976551 2976867 "UPDECOMP" 2977483 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1210 2975537 2975649 2975834 "UPCDEN" 2976186 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1209 2975056 2975125 2975274 "UP2" 2975462 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1208 2973573 2974260 2974537 "UNISEG" 2974814 NIL UNISEG (NIL T) -8 NIL NIL) (-1207 2972788 2972915 2973120 "UNISEG2" 2973416 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1206 2971848 2972028 2972254 "UNIFACT" 2972604 NIL UNIFACT (NIL T) -7 NIL NIL) (-1205 2955815 2971025 2971276 "ULS" 2971655 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1204 2943855 2955719 2955791 "ULSCONS" 2955796 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1203 2926471 2938413 2938475 "ULSCCAT" 2939113 NIL ULSCCAT (NIL T T) -9 NIL 2939401) (-1202 2925521 2925766 2926154 "ULSCCAT-" 2926159 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1201 2915396 2921833 2921876 "ULSCAT" 2922739 NIL ULSCAT (NIL T) -9 NIL 2923469) (-1200 2914826 2914905 2915084 "ULS2" 2915311 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1199 2913229 2914152 2914182 "UFD" 2914394 T UFD (NIL) -9 NIL 2914508) (-1198 2913023 2913069 2913164 "UFD-" 2913169 NIL UFD- (NIL T) -8 NIL NIL) (-1197 2912105 2912288 2912504 "UDVO" 2912829 T UDVO (NIL) -7 NIL NIL) (-1196 2909921 2910330 2910801 "UDPO" 2911669 NIL UDPO (NIL T) -7 NIL NIL) (-1195 2909854 2909859 2909889 "TYPE" 2909894 T TYPE (NIL) -9 NIL NIL) (-1194 2909641 2909809 2909840 "TYPEAST" 2909845 T TYPEAST (NIL) -8 NIL NIL) (-1193 2908612 2908814 2909054 "TWOFACT" 2909435 NIL TWOFACT (NIL T) -7 NIL NIL) (-1192 2907684 2908021 2908256 "TUPLE" 2908412 NIL TUPLE (NIL T) -8 NIL NIL) (-1191 2905375 2905894 2906433 "TUBETOOL" 2907167 T TUBETOOL (NIL) -7 NIL NIL) (-1190 2904224 2904429 2904670 "TUBE" 2905168 NIL TUBE (NIL T) -8 NIL NIL) (-1189 2898988 2903196 2903479 "TS" 2903976 NIL TS (NIL T) -8 NIL NIL) (-1188 2887655 2891747 2891844 "TSETCAT" 2897113 NIL TSETCAT (NIL T T T T) -9 NIL 2898644) (-1187 2882389 2883987 2885878 "TSETCAT-" 2885883 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1186 2876652 2877498 2878440 "TRMANIP" 2881525 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1185 2876093 2876156 2876319 "TRIMAT" 2876584 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1184 2873889 2874126 2874490 "TRIGMNIP" 2875842 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1183 2873409 2873522 2873552 "TRIGCAT" 2873765 T TRIGCAT (NIL) -9 NIL NIL) (-1182 2873078 2873157 2873298 "TRIGCAT-" 2873303 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1181 2869977 2871938 2872218 "TREE" 2872833 NIL TREE (NIL T) -8 NIL NIL) (-1180 2869251 2869779 2869809 "TRANFUN" 2869844 T TRANFUN (NIL) -9 NIL 2869910) (-1179 2868530 2868721 2869001 "TRANFUN-" 2869006 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1178 2868334 2868366 2868427 "TOPSP" 2868491 T TOPSP (NIL) -7 NIL NIL) (-1177 2867682 2867797 2867951 "TOOLSIGN" 2868215 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1176 2866343 2866859 2867098 "TEXTFILE" 2867465 T TEXTFILE (NIL) -8 NIL NIL) (-1175 2864282 2864796 2865225 "TEX" 2865936 T TEX (NIL) -8 NIL NIL) (-1174 2864063 2864094 2864166 "TEX1" 2864245 NIL TEX1 (NIL T) -7 NIL NIL) (-1173 2863711 2863774 2863864 "TEMUTL" 2863995 T TEMUTL (NIL) -7 NIL NIL) (-1172 2861865 2862145 2862470 "TBCMPPK" 2863434 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1171 2853753 2860025 2860081 "TBAGG" 2860481 NIL TBAGG (NIL T T) -9 NIL 2860692) (-1170 2848823 2850311 2852065 "TBAGG-" 2852070 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1169 2848207 2848314 2848459 "TANEXP" 2848712 NIL TANEXP (NIL T) -7 NIL NIL) (-1168 2841708 2848064 2848157 "TABLE" 2848162 NIL TABLE (NIL T T) -8 NIL NIL) (-1167 2841120 2841219 2841357 "TABLEAU" 2841605 NIL TABLEAU (NIL T) -8 NIL NIL) (-1166 2835728 2836948 2838196 "TABLBUMP" 2839906 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1165 2835156 2835256 2835384 "SYSTEM" 2835622 T SYSTEM (NIL) -7 NIL NIL) (-1164 2831619 2832314 2833097 "SYSSOLP" 2834407 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1163 2827997 2828908 2829610 "SYNTAX" 2830939 T SYNTAX (NIL) -8 NIL NIL) (-1162 2825155 2825757 2826389 "SYMTAB" 2827387 T SYMTAB (NIL) -8 NIL NIL) (-1161 2820404 2821306 2822289 "SYMS" 2824194 T SYMS (NIL) -8 NIL NIL) (-1160 2817676 2819862 2820092 "SYMPOLY" 2820209 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1159 2817193 2817268 2817391 "SYMFUNC" 2817588 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1158 2813245 2814505 2815318 "SYMBOL" 2816402 T SYMBOL (NIL) -8 NIL NIL) (-1157 2806784 2808473 2810193 "SWITCH" 2811547 T SWITCH (NIL) -8 NIL NIL) (-1156 2800054 2805605 2805908 "SUTS" 2806539 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1155 2792155 2799301 2799574 "SUPXS" 2799839 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1154 2783684 2791773 2791899 "SUP" 2792064 NIL SUP (NIL T) -8 NIL NIL) (-1153 2782843 2782970 2783187 "SUPFRACF" 2783552 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1152 2782464 2782523 2782636 "SUP2" 2782778 NIL SUP2 (NIL T T) -7 NIL NIL) (-1151 2780877 2781151 2781514 "SUMRF" 2782163 NIL SUMRF (NIL T) -7 NIL NIL) (-1150 2780191 2780257 2780456 "SUMFS" 2780798 NIL SUMFS (NIL T T) -7 NIL NIL) (-1149 2764198 2779368 2779619 "SULS" 2779998 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1148 2763827 2764020 2764090 "SUCHTAST" 2764150 T SUCHTAST (NIL) -8 NIL NIL) (-1147 2763149 2763352 2763492 "SUCH" 2763735 NIL SUCH (NIL T T) -8 NIL NIL) (-1146 2757043 2758055 2759014 "SUBSPACE" 2762237 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1145 2756473 2756563 2756727 "SUBRESP" 2756931 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1144 2749842 2751138 2752449 "STTF" 2755209 NIL STTF (NIL T) -7 NIL NIL) (-1143 2744015 2745135 2746282 "STTFNC" 2748742 NIL STTFNC (NIL T) -7 NIL NIL) (-1142 2735330 2737197 2738991 "STTAYLOR" 2742256 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1141 2728574 2735194 2735277 "STRTBL" 2735282 NIL STRTBL (NIL T) -8 NIL NIL) (-1140 2723965 2728529 2728560 "STRING" 2728565 T STRING (NIL) -8 NIL NIL) (-1139 2718853 2723338 2723368 "STRICAT" 2723427 T STRICAT (NIL) -9 NIL 2723489) (-1138 2711662 2716472 2717083 "STREAM" 2718277 NIL STREAM (NIL T) -8 NIL NIL) (-1137 2711172 2711249 2711393 "STREAM3" 2711579 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1136 2710154 2710337 2710572 "STREAM2" 2710985 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1135 2709842 2709894 2709987 "STREAM1" 2710096 NIL STREAM1 (NIL T) -7 NIL NIL) (-1134 2708858 2709039 2709270 "STINPROD" 2709658 NIL STINPROD (NIL T) -7 NIL NIL) (-1133 2708436 2708620 2708650 "STEP" 2708730 T STEP (NIL) -9 NIL 2708808) (-1132 2701979 2708335 2708412 "STBL" 2708417 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1131 2697154 2701201 2701244 "STAGG" 2701397 NIL STAGG (NIL T) -9 NIL 2701486) (-1130 2694856 2695458 2696330 "STAGG-" 2696335 NIL STAGG- (NIL T T) -8 NIL NIL) (-1129 2693051 2694626 2694718 "STACK" 2694799 NIL STACK (NIL T) -8 NIL NIL) (-1128 2685776 2691192 2691648 "SREGSET" 2692681 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1127 2678202 2679570 2681083 "SRDCMPK" 2684382 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1126 2671169 2675642 2675672 "SRAGG" 2676975 T SRAGG (NIL) -9 NIL 2677583) (-1125 2670186 2670441 2670820 "SRAGG-" 2670825 NIL SRAGG- (NIL T) -8 NIL NIL) (-1124 2664681 2669133 2669554 "SQMATRIX" 2669812 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1123 2658433 2661401 2662127 "SPLTREE" 2664027 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1122 2654423 2655089 2655735 "SPLNODE" 2657859 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1121 2653470 2653703 2653733 "SPFCAT" 2654177 T SPFCAT (NIL) -9 NIL NIL) (-1120 2652207 2652417 2652681 "SPECOUT" 2653228 T SPECOUT (NIL) -7 NIL NIL) (-1119 2643859 2645603 2645633 "SPADXPT" 2650025 T SPADXPT (NIL) -9 NIL 2652059) (-1118 2643620 2643660 2643729 "SPADPRSR" 2643812 T SPADPRSR (NIL) -7 NIL NIL) (-1117 2641803 2643575 2643606 "SPADAST" 2643611 T SPADAST (NIL) -8 NIL NIL) (-1116 2633774 2635521 2635564 "SPACEC" 2639937 NIL SPACEC (NIL T) -9 NIL 2641753) (-1115 2631945 2633706 2633755 "SPACE3" 2633760 NIL SPACE3 (NIL T) -8 NIL NIL) (-1114 2630697 2630868 2631159 "SORTPAK" 2631750 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1113 2628747 2629050 2629469 "SOLVETRA" 2630361 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1112 2627758 2627980 2628254 "SOLVESER" 2628520 NIL SOLVESER (NIL T) -7 NIL NIL) (-1111 2622978 2623859 2624861 "SOLVERAD" 2626810 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1110 2618793 2619402 2620131 "SOLVEFOR" 2622345 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1109 2613090 2618142 2618239 "SNTSCAT" 2618244 NIL SNTSCAT (NIL T T T T) -9 NIL 2618314) (-1108 2607233 2611413 2611804 "SMTS" 2612780 NIL SMTS (NIL T T T) -8 NIL NIL) (-1107 2601683 2607121 2607198 "SMP" 2607203 NIL SMP (NIL T T) -8 NIL NIL) (-1106 2599842 2600143 2600541 "SMITH" 2601380 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1105 2592737 2596893 2596996 "SMATCAT" 2598347 NIL SMATCAT (NIL NIL T T T) -9 NIL 2598897) (-1104 2589677 2590500 2591678 "SMATCAT-" 2591683 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1103 2587390 2588913 2588956 "SKAGG" 2589217 NIL SKAGG (NIL T) -9 NIL 2589352) (-1102 2583506 2586494 2586772 "SINT" 2587134 T SINT (NIL) -8 NIL NIL) (-1101 2583278 2583316 2583382 "SIMPAN" 2583462 T SIMPAN (NIL) -7 NIL NIL) (-1100 2582585 2582813 2582953 "SIG" 2583160 T SIG (NIL) -8 NIL NIL) (-1099 2581423 2581644 2581919 "SIGNRF" 2582344 NIL SIGNRF (NIL T) -7 NIL NIL) (-1098 2580228 2580379 2580670 "SIGNEF" 2581252 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1097 2579561 2579811 2579935 "SIGAST" 2580126 T SIGAST (NIL) -8 NIL NIL) (-1096 2577251 2577705 2578211 "SHP" 2579102 NIL SHP (NIL T NIL) -7 NIL NIL) (-1095 2571157 2577152 2577228 "SHDP" 2577233 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1094 2570756 2570922 2570952 "SGROUP" 2571045 T SGROUP (NIL) -9 NIL 2571107) (-1093 2570614 2570640 2570713 "SGROUP-" 2570718 NIL SGROUP- (NIL T) -8 NIL NIL) (-1092 2567450 2568147 2568870 "SGCF" 2569913 T SGCF (NIL) -7 NIL NIL) (-1091 2561845 2566897 2566994 "SFRTCAT" 2566999 NIL SFRTCAT (NIL T T T T) -9 NIL 2567038) (-1090 2555269 2556284 2557420 "SFRGCD" 2560828 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1089 2548397 2549468 2550654 "SFQCMPK" 2554202 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1088 2548019 2548108 2548218 "SFORT" 2548338 NIL SFORT (NIL T T) -8 NIL NIL) (-1087 2547164 2547859 2547980 "SEXOF" 2547985 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1086 2546298 2547045 2547113 "SEX" 2547118 T SEX (NIL) -8 NIL NIL) (-1085 2541837 2542526 2542621 "SEXCAT" 2545558 NIL SEXCAT (NIL T T T T T) -9 NIL 2546136) (-1084 2539017 2541771 2541819 "SET" 2541824 NIL SET (NIL T) -8 NIL NIL) (-1083 2537268 2537730 2538035 "SETMN" 2538758 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1082 2536874 2537000 2537030 "SETCAT" 2537147 T SETCAT (NIL) -9 NIL 2537232) (-1081 2536654 2536706 2536805 "SETCAT-" 2536810 NIL SETCAT- (NIL T) -8 NIL NIL) (-1080 2533041 2535115 2535158 "SETAGG" 2536028 NIL SETAGG (NIL T) -9 NIL 2536368) (-1079 2532499 2532615 2532852 "SETAGG-" 2532857 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1078 2531969 2532195 2532296 "SEQAST" 2532420 T SEQAST (NIL) -8 NIL NIL) (-1077 2531168 2531462 2531523 "SEGXCAT" 2531809 NIL SEGXCAT (NIL T T) -9 NIL 2531929) (-1076 2530224 2530834 2531016 "SEG" 2531021 NIL SEG (NIL T) -8 NIL NIL) (-1075 2529203 2529417 2529460 "SEGCAT" 2529982 NIL SEGCAT (NIL T) -9 NIL 2530203) (-1074 2528252 2528582 2528782 "SEGBIND" 2529038 NIL SEGBIND (NIL T) -8 NIL NIL) (-1073 2527873 2527932 2528045 "SEGBIND2" 2528187 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1072 2527474 2527674 2527751 "SEGAST" 2527818 T SEGAST (NIL) -8 NIL NIL) (-1071 2526693 2526819 2527023 "SEG2" 2527318 NIL SEG2 (NIL T T) -7 NIL NIL) (-1070 2526130 2526628 2526675 "SDVAR" 2526680 NIL SDVAR (NIL T) -8 NIL NIL) (-1069 2518420 2525900 2526030 "SDPOL" 2526035 NIL SDPOL (NIL T) -8 NIL NIL) (-1068 2517013 2517279 2517598 "SCPKG" 2518135 NIL SCPKG (NIL T) -7 NIL NIL) (-1067 2516149 2516329 2516529 "SCOPE" 2516835 T SCOPE (NIL) -8 NIL NIL) (-1066 2515370 2515503 2515682 "SCACHE" 2516004 NIL SCACHE (NIL T) -7 NIL NIL) (-1065 2515042 2515202 2515232 "SASTCAT" 2515237 T SASTCAT (NIL) -9 NIL 2515250) (-1064 2514556 2514877 2514953 "SAOS" 2514988 T SAOS (NIL) -8 NIL NIL) (-1063 2514121 2514156 2514329 "SAERFFC" 2514515 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-1062 2508095 2514018 2514098 "SAE" 2514103 NIL SAE (NIL T T NIL) -8 NIL NIL) (-1061 2507688 2507723 2507882 "SAEFACT" 2508054 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-1060 2506009 2506323 2506724 "RURPK" 2507354 NIL RURPK (NIL T NIL) -7 NIL NIL) (-1059 2504645 2504924 2505236 "RULESET" 2505843 NIL RULESET (NIL T T T) -8 NIL NIL) (-1058 2501832 2502335 2502800 "RULE" 2504326 NIL RULE (NIL T T T) -8 NIL NIL) (-1057 2501471 2501626 2501709 "RULECOLD" 2501784 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-1056 2500969 2501188 2501282 "RSTRCAST" 2501399 T RSTRCAST (NIL) -8 NIL NIL) (-1055 2495818 2496612 2497532 "RSETGCD" 2500168 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-1054 2485075 2490127 2490224 "RSETCAT" 2494343 NIL RSETCAT (NIL T T T T) -9 NIL 2495440) (-1053 2483002 2483541 2484365 "RSETCAT-" 2484370 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-1052 2475389 2476764 2478284 "RSDCMPK" 2481601 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-1051 2473394 2473835 2473909 "RRCC" 2474995 NIL RRCC (NIL T T) -9 NIL 2475339) (-1050 2472745 2472919 2473198 "RRCC-" 2473203 NIL RRCC- (NIL T T T) -8 NIL NIL) (-1049 2472215 2472441 2472542 "RPTAST" 2472666 T RPTAST (NIL) -8 NIL NIL) (-1048 2446221 2455808 2455875 "RPOLCAT" 2466539 NIL RPOLCAT (NIL T T T) -9 NIL 2469698) (-1047 2437721 2440059 2443181 "RPOLCAT-" 2443186 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-1046 2428768 2435932 2436414 "ROUTINE" 2437261 T ROUTINE (NIL) -8 NIL NIL) (-1045 2425601 2428394 2428534 "ROMAN" 2428650 T ROMAN (NIL) -8 NIL NIL) (-1044 2423876 2424461 2424721 "ROIRC" 2425406 NIL ROIRC (NIL T T) -8 NIL NIL) (-1043 2420269 2422512 2422542 "RNS" 2422846 T RNS (NIL) -9 NIL 2423119) (-1042 2418778 2419161 2419695 "RNS-" 2419770 NIL RNS- (NIL T) -8 NIL NIL) (-1041 2418227 2418609 2418639 "RNG" 2418644 T RNG (NIL) -9 NIL 2418665) (-1040 2417619 2417981 2418024 "RMODULE" 2418086 NIL RMODULE (NIL T) -9 NIL 2418128) (-1039 2416455 2416549 2416885 "RMCAT2" 2417520 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-1038 2413332 2415801 2416098 "RMATRIX" 2416217 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-1037 2406274 2408508 2408623 "RMATCAT" 2411982 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2412964) (-1036 2405649 2405796 2406103 "RMATCAT-" 2406108 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-1035 2405216 2405291 2405419 "RINTERP" 2405568 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-1034 2404349 2404869 2404899 "RING" 2404955 T RING (NIL) -9 NIL 2405041) (-1033 2404141 2404185 2404282 "RING-" 2404287 NIL RING- (NIL T) -8 NIL NIL) (-1032 2402982 2403219 2403477 "RIDIST" 2403905 T RIDIST (NIL) -7 NIL NIL) (-1031 2394298 2402450 2402656 "RGCHAIN" 2402830 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-1030 2393674 2394054 2394095 "RGBCSPC" 2394153 NIL RGBCSPC (NIL T) -9 NIL 2394205) (-1029 2392858 2393213 2393254 "RGBCMDL" 2393486 NIL RGBCMDL (NIL T) -9 NIL 2393600) (-1028 2389852 2390466 2391136 "RF" 2392222 NIL RF (NIL T) -7 NIL NIL) (-1027 2389498 2389561 2389664 "RFFACTOR" 2389783 NIL RFFACTOR (NIL T) -7 NIL NIL) (-1026 2389223 2389258 2389355 "RFFACT" 2389457 NIL RFFACT (NIL T) -7 NIL NIL) (-1025 2387340 2387704 2388086 "RFDIST" 2388863 T RFDIST (NIL) -7 NIL NIL) (-1024 2386793 2386885 2387048 "RETSOL" 2387242 NIL RETSOL (NIL T T) -7 NIL NIL) (-1023 2386429 2386509 2386552 "RETRACT" 2386685 NIL RETRACT (NIL T) -9 NIL 2386772) (-1022 2386278 2386303 2386390 "RETRACT-" 2386395 NIL RETRACT- (NIL T T) -8 NIL NIL) (-1021 2385907 2386100 2386170 "RETAST" 2386230 T RETAST (NIL) -8 NIL NIL) (-1020 2378761 2385560 2385687 "RESULT" 2385802 T RESULT (NIL) -8 NIL NIL) (-1019 2377387 2378030 2378229 "RESRING" 2378664 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-1018 2377023 2377072 2377170 "RESLATC" 2377324 NIL RESLATC (NIL T) -7 NIL NIL) (-1017 2376729 2376763 2376870 "REPSQ" 2376982 NIL REPSQ (NIL T) -7 NIL NIL) (-1016 2374151 2374731 2375333 "REP" 2376149 T REP (NIL) -7 NIL NIL) (-1015 2373849 2373883 2373994 "REPDB" 2374110 NIL REPDB (NIL T) -7 NIL NIL) (-1014 2367759 2369138 2370361 "REP2" 2372661 NIL REP2 (NIL T) -7 NIL NIL) (-1013 2364136 2364817 2365625 "REP1" 2366986 NIL REP1 (NIL T) -7 NIL NIL) (-1012 2356862 2362277 2362733 "REGSET" 2363766 NIL REGSET (NIL T T T T) -8 NIL NIL) (-1011 2355675 2356010 2356260 "REF" 2356647 NIL REF (NIL T) -8 NIL NIL) (-1010 2355052 2355155 2355322 "REDORDER" 2355559 NIL REDORDER (NIL T T) -7 NIL NIL) (-1009 2351059 2354267 2354493 "RECLOS" 2354881 NIL RECLOS (NIL T) -8 NIL NIL) (-1008 2350111 2350292 2350507 "REALSOLV" 2350866 T REALSOLV (NIL) -7 NIL NIL) (-1007 2349957 2349998 2350028 "REAL" 2350033 T REAL (NIL) -9 NIL 2350068) (-1006 2346440 2347242 2348126 "REAL0Q" 2349122 NIL REAL0Q (NIL T) -7 NIL NIL) (-1005 2342041 2343029 2344090 "REAL0" 2345421 NIL REAL0 (NIL T) -7 NIL NIL) (-1004 2341539 2341758 2341852 "RDUCEAST" 2341969 T RDUCEAST (NIL) -8 NIL NIL) (-1003 2340944 2341016 2341223 "RDIV" 2341461 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-1002 2340012 2340186 2340399 "RDIST" 2340766 NIL RDIST (NIL T) -7 NIL NIL) (-1001 2338609 2338896 2339268 "RDETRS" 2339720 NIL RDETRS (NIL T T) -7 NIL NIL) (-1000 2336421 2336875 2337413 "RDETR" 2338151 NIL RDETR (NIL T T) -7 NIL NIL) (-999 2335035 2335313 2335715 "RDEEFS" 2336137 NIL RDEEFS (NIL T T) -7 NIL NIL) (-998 2333533 2333839 2334269 "RDEEF" 2334723 NIL RDEEF (NIL T T) -7 NIL NIL) (-997 2327814 2330689 2330717 "RCFIELD" 2331994 T RCFIELD (NIL) -9 NIL 2332724) (-996 2325883 2326387 2327080 "RCFIELD-" 2327153 NIL RCFIELD- (NIL T) -8 NIL NIL) (-995 2322214 2323999 2324040 "RCAGG" 2325111 NIL RCAGG (NIL T) -9 NIL 2325576) (-994 2321845 2321939 2322099 "RCAGG-" 2322104 NIL RCAGG- (NIL T T) -8 NIL NIL) (-993 2321185 2321297 2321460 "RATRET" 2321729 NIL RATRET (NIL T) -7 NIL NIL) (-992 2320742 2320809 2320928 "RATFACT" 2321113 NIL RATFACT (NIL T) -7 NIL NIL) (-991 2320057 2320177 2320327 "RANDSRC" 2320612 T RANDSRC (NIL) -7 NIL NIL) (-990 2319794 2319838 2319909 "RADUTIL" 2320006 T RADUTIL (NIL) -7 NIL NIL) (-989 2312956 2318636 2318944 "RADIX" 2319518 NIL RADIX (NIL NIL) -8 NIL NIL) (-988 2304613 2312800 2312928 "RADFF" 2312933 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-987 2304265 2304340 2304368 "RADCAT" 2304525 T RADCAT (NIL) -9 NIL NIL) (-986 2304050 2304098 2304195 "RADCAT-" 2304200 NIL RADCAT- (NIL T) -8 NIL NIL) (-985 2302201 2303825 2303914 "QUEUE" 2303994 NIL QUEUE (NIL T) -8 NIL NIL) (-984 2298777 2302138 2302183 "QUAT" 2302188 NIL QUAT (NIL T) -8 NIL NIL) (-983 2298415 2298458 2298585 "QUATCT2" 2298728 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-982 2292162 2295464 2295504 "QUATCAT" 2296284 NIL QUATCAT (NIL T) -9 NIL 2297050) (-981 2288306 2289343 2290730 "QUATCAT-" 2290824 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-980 2285826 2287390 2287431 "QUAGG" 2287806 NIL QUAGG (NIL T) -9 NIL 2287981) (-979 2285458 2285651 2285719 "QQUTAST" 2285778 T QQUTAST (NIL) -8 NIL NIL) (-978 2284383 2284856 2285028 "QFORM" 2285330 NIL QFORM (NIL NIL T) -8 NIL NIL) (-977 2275595 2280800 2280840 "QFCAT" 2281498 NIL QFCAT (NIL T) -9 NIL 2282499) (-976 2271167 2272368 2273959 "QFCAT-" 2274053 NIL QFCAT- (NIL T T) -8 NIL NIL) (-975 2270805 2270848 2270975 "QFCAT2" 2271118 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-974 2270265 2270375 2270505 "QEQUAT" 2270695 T QEQUAT (NIL) -8 NIL NIL) (-973 2263413 2264484 2265668 "QCMPACK" 2269198 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-972 2260989 2261410 2261838 "QALGSET" 2263068 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-971 2260234 2260408 2260640 "QALGSET2" 2260809 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-970 2258925 2259148 2259465 "PWFFINTB" 2260007 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-969 2257107 2257275 2257629 "PUSHVAR" 2258739 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-968 2253025 2254079 2254120 "PTRANFN" 2256004 NIL PTRANFN (NIL T) -9 NIL NIL) (-967 2251427 2251718 2252040 "PTPACK" 2252736 NIL PTPACK (NIL T) -7 NIL NIL) (-966 2251059 2251116 2251225 "PTFUNC2" 2251364 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-965 2245586 2249931 2249972 "PTCAT" 2250268 NIL PTCAT (NIL T) -9 NIL 2250421) (-964 2245244 2245279 2245403 "PSQFR" 2245545 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-963 2243839 2244137 2244471 "PSEUDLIN" 2244942 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-962 2230608 2232973 2235297 "PSETPK" 2241599 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-961 2223652 2226366 2226462 "PSETCAT" 2229483 NIL PSETCAT (NIL T T T T) -9 NIL 2230297) (-960 2221488 2222122 2222943 "PSETCAT-" 2222948 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-959 2220837 2221002 2221030 "PSCURVE" 2221298 T PSCURVE (NIL) -9 NIL 2221465) (-958 2217193 2218675 2218740 "PSCAT" 2219584 NIL PSCAT (NIL T T T) -9 NIL 2219824) (-957 2216256 2216472 2216872 "PSCAT-" 2216877 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-956 2214988 2215621 2215826 "PRTITION" 2216071 T PRTITION (NIL) -8 NIL NIL) (-955 2214490 2214709 2214801 "PRTDAST" 2214916 T PRTDAST (NIL) -8 NIL NIL) (-954 2203588 2205794 2207982 "PRS" 2212352 NIL PRS (NIL T T) -7 NIL NIL) (-953 2201446 2202938 2202978 "PRQAGG" 2203161 NIL PRQAGG (NIL T) -9 NIL 2203263) (-952 2200832 2201061 2201089 "PROPLOG" 2201274 T PROPLOG (NIL) -9 NIL 2201396) (-951 2198002 2198646 2199110 "PROPFRML" 2200400 NIL PROPFRML (NIL T) -8 NIL NIL) (-950 2197462 2197572 2197702 "PROPERTY" 2197892 T PROPERTY (NIL) -8 NIL NIL) (-949 2191547 2195628 2196448 "PRODUCT" 2196688 NIL PRODUCT (NIL T T) -8 NIL NIL) (-948 2188860 2191005 2191239 "PR" 2191358 NIL PR (NIL T T) -8 NIL NIL) (-947 2188656 2188688 2188747 "PRINT" 2188821 T PRINT (NIL) -7 NIL NIL) (-946 2187996 2188113 2188265 "PRIMES" 2188536 NIL PRIMES (NIL T) -7 NIL NIL) (-945 2186061 2186462 2186928 "PRIMELT" 2187575 NIL PRIMELT (NIL T) -7 NIL NIL) (-944 2185790 2185839 2185867 "PRIMCAT" 2185991 T PRIMCAT (NIL) -9 NIL NIL) (-943 2181951 2185728 2185773 "PRIMARR" 2185778 NIL PRIMARR (NIL T) -8 NIL NIL) (-942 2180958 2181136 2181364 "PRIMARR2" 2181769 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-941 2180601 2180657 2180768 "PREASSOC" 2180896 NIL PREASSOC (NIL T T) -7 NIL NIL) (-940 2180076 2180209 2180237 "PPCURVE" 2180442 T PPCURVE (NIL) -9 NIL 2180578) (-939 2179698 2179871 2179954 "PORTNUM" 2180013 T PORTNUM (NIL) -8 NIL NIL) (-938 2177057 2177456 2178048 "POLYROOT" 2179279 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-937 2171002 2176661 2176821 "POLY" 2176930 NIL POLY (NIL T) -8 NIL NIL) (-936 2170385 2170443 2170677 "POLYLIFT" 2170938 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-935 2166660 2167109 2167738 "POLYCATQ" 2169930 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-934 2153477 2158835 2158900 "POLYCAT" 2162414 NIL POLYCAT (NIL T T T) -9 NIL 2164342) (-933 2146927 2148788 2151172 "POLYCAT-" 2151177 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-932 2146514 2146582 2146702 "POLY2UP" 2146853 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-931 2146146 2146203 2146312 "POLY2" 2146451 NIL POLY2 (NIL T T) -7 NIL NIL) (-930 2144831 2145070 2145346 "POLUTIL" 2145920 NIL POLUTIL (NIL T T) -7 NIL NIL) (-929 2143186 2143463 2143794 "POLTOPOL" 2144553 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-928 2138704 2143122 2143168 "POINT" 2143173 NIL POINT (NIL T) -8 NIL NIL) (-927 2136891 2137248 2137623 "PNTHEORY" 2138349 T PNTHEORY (NIL) -7 NIL NIL) (-926 2135310 2135607 2136019 "PMTOOLS" 2136589 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-925 2134903 2134981 2135098 "PMSYM" 2135226 NIL PMSYM (NIL T) -7 NIL NIL) (-924 2134413 2134482 2134656 "PMQFCAT" 2134828 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-923 2133768 2133878 2134034 "PMPRED" 2134290 NIL PMPRED (NIL T) -7 NIL NIL) (-922 2133164 2133250 2133411 "PMPREDFS" 2133669 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-921 2131807 2132015 2132400 "PMPLCAT" 2132926 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-920 2131339 2131418 2131570 "PMLSAGG" 2131722 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-919 2130814 2130890 2131071 "PMKERNEL" 2131257 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-918 2130431 2130506 2130619 "PMINS" 2130733 NIL PMINS (NIL T) -7 NIL NIL) (-917 2129859 2129928 2130144 "PMFS" 2130356 NIL PMFS (NIL T T T) -7 NIL NIL) (-916 2129087 2129205 2129410 "PMDOWN" 2129736 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-915 2128250 2128409 2128591 "PMASS" 2128925 T PMASS (NIL) -7 NIL NIL) (-914 2127524 2127635 2127798 "PMASSFS" 2128136 NIL PMASSFS (NIL T T) -7 NIL NIL) (-913 2127179 2127247 2127341 "PLOTTOOL" 2127450 T PLOTTOOL (NIL) -7 NIL NIL) (-912 2121801 2122990 2124138 "PLOT" 2126051 T PLOT (NIL) -8 NIL NIL) (-911 2117615 2118649 2119570 "PLOT3D" 2120900 T PLOT3D (NIL) -8 NIL NIL) (-910 2116527 2116704 2116939 "PLOT1" 2117419 NIL PLOT1 (NIL T) -7 NIL NIL) (-909 2091921 2096593 2101444 "PLEQN" 2111793 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-908 2091239 2091361 2091541 "PINTERP" 2091786 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-907 2090932 2090979 2091082 "PINTERPA" 2091186 NIL PINTERPA (NIL T T) -7 NIL NIL) (-906 2090217 2090738 2090825 "PI" 2090865 T PI (NIL) -8 NIL NIL) (-905 2088614 2089555 2089583 "PID" 2089765 T PID (NIL) -9 NIL 2089899) (-904 2088339 2088376 2088464 "PICOERCE" 2088571 NIL PICOERCE (NIL T) -7 NIL NIL) (-903 2087659 2087798 2087974 "PGROEB" 2088195 NIL PGROEB (NIL T) -7 NIL NIL) (-902 2083246 2084060 2084965 "PGE" 2086774 T PGE (NIL) -7 NIL NIL) (-901 2081370 2081616 2081982 "PGCD" 2082963 NIL PGCD (NIL T T T T) -7 NIL NIL) (-900 2080708 2080811 2080972 "PFRPAC" 2081254 NIL PFRPAC (NIL T) -7 NIL NIL) (-899 2077388 2079256 2079609 "PFR" 2080387 NIL PFR (NIL T) -8 NIL NIL) (-898 2075777 2076021 2076346 "PFOTOOLS" 2077135 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-897 2074310 2074549 2074900 "PFOQ" 2075534 NIL PFOQ (NIL T T T) -7 NIL NIL) (-896 2072783 2072995 2073358 "PFO" 2074094 NIL PFO (NIL T T T T T) -7 NIL NIL) (-895 2069371 2072672 2072741 "PF" 2072746 NIL PF (NIL NIL) -8 NIL NIL) (-894 2066805 2068042 2068070 "PFECAT" 2068655 T PFECAT (NIL) -9 NIL 2069039) (-893 2066250 2066404 2066618 "PFECAT-" 2066623 NIL PFECAT- (NIL T) -8 NIL NIL) (-892 2064854 2065105 2065406 "PFBRU" 2065999 NIL PFBRU (NIL T T) -7 NIL NIL) (-891 2062721 2063072 2063504 "PFBR" 2064505 NIL PFBR (NIL T T T T) -7 NIL NIL) (-890 2058637 2060097 2060773 "PERM" 2062078 NIL PERM (NIL T) -8 NIL NIL) (-889 2053903 2054844 2055714 "PERMGRP" 2057800 NIL PERMGRP (NIL T) -8 NIL NIL) (-888 2052035 2052966 2053007 "PERMCAT" 2053453 NIL PERMCAT (NIL T) -9 NIL 2053758) (-887 2051688 2051729 2051853 "PERMAN" 2051988 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-886 2049224 2051353 2051475 "PENDTREE" 2051599 NIL PENDTREE (NIL T) -8 NIL NIL) (-885 2047317 2048051 2048092 "PDRING" 2048749 NIL PDRING (NIL T) -9 NIL 2049035) (-884 2046420 2046638 2047000 "PDRING-" 2047005 NIL PDRING- (NIL T T) -8 NIL NIL) (-883 2043662 2044413 2045081 "PDEPROB" 2045772 T PDEPROB (NIL) -8 NIL NIL) (-882 2041209 2041711 2042266 "PDEPACK" 2043127 T PDEPACK (NIL) -7 NIL NIL) (-881 2040121 2040311 2040562 "PDECOMP" 2041008 NIL PDECOMP (NIL T T) -7 NIL NIL) (-880 2037726 2038543 2038571 "PDECAT" 2039358 T PDECAT (NIL) -9 NIL 2040071) (-879 2037477 2037510 2037600 "PCOMP" 2037687 NIL PCOMP (NIL T T) -7 NIL NIL) (-878 2035682 2036278 2036575 "PBWLB" 2037206 NIL PBWLB (NIL T) -8 NIL NIL) (-877 2028186 2029755 2031093 "PATTERN" 2034365 NIL PATTERN (NIL T) -8 NIL NIL) (-876 2027818 2027875 2027984 "PATTERN2" 2028123 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-875 2025575 2025963 2026420 "PATTERN1" 2027407 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-874 2022970 2023524 2024005 "PATRES" 2025140 NIL PATRES (NIL T T) -8 NIL NIL) (-873 2022534 2022601 2022733 "PATRES2" 2022897 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-872 2020417 2020822 2021229 "PATMATCH" 2022201 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-871 2019953 2020136 2020177 "PATMAB" 2020284 NIL PATMAB (NIL T) -9 NIL 2020367) (-870 2018498 2018807 2019065 "PATLRES" 2019758 NIL PATLRES (NIL T T T) -8 NIL NIL) (-869 2018044 2018167 2018208 "PATAB" 2018213 NIL PATAB (NIL T) -9 NIL 2018385) (-868 2015525 2016057 2016630 "PARTPERM" 2017491 T PARTPERM (NIL) -7 NIL NIL) (-867 2015146 2015209 2015311 "PARSURF" 2015456 NIL PARSURF (NIL T) -8 NIL NIL) (-866 2014778 2014835 2014944 "PARSU2" 2015083 NIL PARSU2 (NIL T T) -7 NIL NIL) (-865 2014542 2014582 2014649 "PARSER" 2014731 T PARSER (NIL) -7 NIL NIL) (-864 2014163 2014226 2014328 "PARSCURV" 2014473 NIL PARSCURV (NIL T) -8 NIL NIL) (-863 2013795 2013852 2013961 "PARSC2" 2014100 NIL PARSC2 (NIL T T) -7 NIL NIL) (-862 2013434 2013492 2013589 "PARPCURV" 2013731 NIL PARPCURV (NIL T) -8 NIL NIL) (-861 2013066 2013123 2013232 "PARPC2" 2013371 NIL PARPC2 (NIL T T) -7 NIL NIL) (-860 2012586 2012672 2012791 "PAN2EXPR" 2012967 T PAN2EXPR (NIL) -7 NIL NIL) (-859 2011392 2011707 2011935 "PALETTE" 2012378 T PALETTE (NIL) -8 NIL NIL) (-858 2009860 2010397 2010757 "PAIR" 2011078 NIL PAIR (NIL T T) -8 NIL NIL) (-857 2003766 2009119 2009313 "PADICRC" 2009715 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-856 1997030 2003112 2003296 "PADICRAT" 2003614 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-855 1995380 1996967 1997012 "PADIC" 1997017 NIL PADIC (NIL NIL) -8 NIL NIL) (-854 1992590 1994120 1994160 "PADICCT" 1994741 NIL PADICCT (NIL NIL) -9 NIL 1995023) (-853 1991547 1991747 1992015 "PADEPAC" 1992377 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-852 1990759 1990892 1991098 "PADE" 1991409 NIL PADE (NIL T T T) -7 NIL NIL) (-851 1989181 1989967 1990247 "OWP" 1990563 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-850 1988290 1988786 1988958 "OVAR" 1989049 NIL OVAR (NIL NIL) -8 NIL NIL) (-849 1987554 1987675 1987836 "OUT" 1988149 T OUT (NIL) -7 NIL NIL) (-848 1976461 1978663 1980863 "OUTFORM" 1985374 T OUTFORM (NIL) -8 NIL NIL) (-847 1975882 1976058 1976185 "OUTBFILE" 1976354 T OUTBFILE (NIL) -8 NIL NIL) (-846 1975519 1975602 1975630 "OUTBCON" 1975781 T OUTBCON (NIL) -9 NIL 1975866) (-845 1975359 1975394 1975470 "OUTBCON-" 1975475 NIL OUTBCON- (NIL T) -8 NIL NIL) (-844 1974767 1975088 1975177 "OSI" 1975290 T OSI (NIL) -8 NIL NIL) (-843 1974323 1974635 1974663 "OSGROUP" 1974668 T OSGROUP (NIL) -9 NIL 1974690) (-842 1973068 1973295 1973580 "ORTHPOL" 1974070 NIL ORTHPOL (NIL T) -7 NIL NIL) (-841 1970654 1972903 1973024 "OREUP" 1973029 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-840 1968092 1970345 1970472 "ORESUP" 1970596 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-839 1965620 1966120 1966681 "OREPCTO" 1967581 NIL OREPCTO (NIL T T) -7 NIL NIL) (-838 1959444 1961611 1961652 "OREPCAT" 1964000 NIL OREPCAT (NIL T) -9 NIL 1965104) (-837 1956591 1957373 1958431 "OREPCAT-" 1958436 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-836 1955768 1956040 1956068 "ORDSET" 1956377 T ORDSET (NIL) -9 NIL 1956541) (-835 1955287 1955409 1955602 "ORDSET-" 1955607 NIL ORDSET- (NIL T) -8 NIL NIL) (-834 1953921 1954678 1954706 "ORDRING" 1954908 T ORDRING (NIL) -9 NIL 1955033) (-833 1953566 1953660 1953804 "ORDRING-" 1953809 NIL ORDRING- (NIL T) -8 NIL NIL) (-832 1952972 1953409 1953437 "ORDMON" 1953442 T ORDMON (NIL) -9 NIL 1953463) (-831 1952134 1952281 1952476 "ORDFUNS" 1952821 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-830 1951645 1952004 1952032 "ORDFIN" 1952037 T ORDFIN (NIL) -9 NIL 1952058) (-829 1948237 1950231 1950640 "ORDCOMP" 1951269 NIL ORDCOMP (NIL T) -8 NIL NIL) (-828 1947503 1947630 1947816 "ORDCOMP2" 1948097 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-827 1944111 1944994 1945808 "OPTPROB" 1946709 T OPTPROB (NIL) -8 NIL NIL) (-826 1940913 1941552 1942256 "OPTPACK" 1943427 T OPTPACK (NIL) -7 NIL NIL) (-825 1938626 1939366 1939394 "OPTCAT" 1940213 T OPTCAT (NIL) -9 NIL 1940863) (-824 1938394 1938433 1938499 "OPQUERY" 1938580 T OPQUERY (NIL) -7 NIL NIL) (-823 1935560 1936705 1937209 "OP" 1937923 NIL OP (NIL T) -8 NIL NIL) (-822 1934871 1935083 1935124 "OPERCAT" 1935393 NIL OPERCAT (NIL T) -9 NIL 1935510) (-821 1934717 1934744 1934830 "OPERCAT-" 1934835 NIL OPERCAT- (NIL T T) -8 NIL NIL) (-820 1931562 1933514 1933883 "ONECOMP" 1934381 NIL ONECOMP (NIL T) -8 NIL NIL) (-819 1930867 1930982 1931156 "ONECOMP2" 1931434 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-818 1930286 1930392 1930522 "OMSERVER" 1930757 T OMSERVER (NIL) -7 NIL NIL) (-817 1927174 1929726 1929766 "OMSAGG" 1929827 NIL OMSAGG (NIL T) -9 NIL 1929891) (-816 1925797 1926060 1926342 "OMPKG" 1926912 T OMPKG (NIL) -7 NIL NIL) (-815 1925227 1925330 1925358 "OM" 1925657 T OM (NIL) -9 NIL NIL) (-814 1923809 1924776 1924945 "OMLO" 1925108 NIL OMLO (NIL T T) -8 NIL NIL) (-813 1922734 1922881 1923108 "OMEXPR" 1923635 NIL OMEXPR (NIL T) -7 NIL NIL) (-812 1922052 1922280 1922416 "OMERR" 1922618 T OMERR (NIL) -8 NIL NIL) (-811 1921230 1921473 1921633 "OMERRK" 1921912 T OMERRK (NIL) -8 NIL NIL) (-810 1920708 1920907 1921015 "OMENC" 1921142 T OMENC (NIL) -8 NIL NIL) (-809 1914603 1915788 1916959 "OMDEV" 1919557 T OMDEV (NIL) -8 NIL NIL) (-808 1913672 1913843 1914037 "OMCONN" 1914429 T OMCONN (NIL) -8 NIL NIL) (-807 1912293 1913235 1913263 "OINTDOM" 1913268 T OINTDOM (NIL) -9 NIL 1913289) (-806 1908099 1909283 1909999 "OFMONOID" 1911609 NIL OFMONOID (NIL T) -8 NIL NIL) (-805 1907537 1908036 1908081 "ODVAR" 1908086 NIL ODVAR (NIL T) -8 NIL NIL) (-804 1904995 1907282 1907437 "ODR" 1907442 NIL ODR (NIL T T NIL) -8 NIL NIL) (-803 1897339 1904771 1904897 "ODPOL" 1904902 NIL ODPOL (NIL T) -8 NIL NIL) (-802 1891215 1897211 1897316 "ODP" 1897321 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-801 1889981 1890196 1890471 "ODETOOLS" 1890989 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-800 1886950 1887606 1888322 "ODESYS" 1889314 NIL ODESYS (NIL T T) -7 NIL NIL) (-799 1881832 1882740 1883765 "ODERTRIC" 1886025 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-798 1881258 1881340 1881534 "ODERED" 1881744 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-797 1878146 1878694 1879371 "ODERAT" 1880681 NIL ODERAT (NIL T T) -7 NIL NIL) (-796 1875106 1875570 1876167 "ODEPRRIC" 1877675 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-795 1873076 1873645 1874131 "ODEPROB" 1874640 T ODEPROB (NIL) -8 NIL NIL) (-794 1869598 1870081 1870728 "ODEPRIM" 1872555 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-793 1868847 1868949 1869209 "ODEPAL" 1869490 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-792 1865009 1865800 1866664 "ODEPACK" 1868003 T ODEPACK (NIL) -7 NIL NIL) (-791 1864042 1864149 1864378 "ODEINT" 1864898 NIL ODEINT (NIL T T) -7 NIL NIL) (-790 1858143 1859568 1861015 "ODEIFTBL" 1862615 T ODEIFTBL (NIL) -8 NIL NIL) (-789 1853478 1854264 1855223 "ODEEF" 1857302 NIL ODEEF (NIL T T) -7 NIL NIL) (-788 1852813 1852902 1853132 "ODECONST" 1853383 NIL ODECONST (NIL T T T) -7 NIL NIL) (-787 1850964 1851599 1851627 "ODECAT" 1852232 T ODECAT (NIL) -9 NIL 1852763) (-786 1847871 1850676 1850795 "OCT" 1850877 NIL OCT (NIL T) -8 NIL NIL) (-785 1847509 1847552 1847679 "OCTCT2" 1847822 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-784 1842283 1844683 1844723 "OC" 1845820 NIL OC (NIL T) -9 NIL 1846678) (-783 1839510 1840258 1841248 "OC-" 1841342 NIL OC- (NIL T T) -8 NIL NIL) (-782 1838888 1839330 1839358 "OCAMON" 1839363 T OCAMON (NIL) -9 NIL 1839384) (-781 1838445 1838760 1838788 "OASGP" 1838793 T OASGP (NIL) -9 NIL 1838813) (-780 1837732 1838195 1838223 "OAMONS" 1838263 T OAMONS (NIL) -9 NIL 1838306) (-779 1837172 1837579 1837607 "OAMON" 1837612 T OAMON (NIL) -9 NIL 1837632) (-778 1836476 1836968 1836996 "OAGROUP" 1837001 T OAGROUP (NIL) -9 NIL 1837021) (-777 1836166 1836216 1836304 "NUMTUBE" 1836420 NIL NUMTUBE (NIL T) -7 NIL NIL) (-776 1829739 1831257 1832793 "NUMQUAD" 1834650 T NUMQUAD (NIL) -7 NIL NIL) (-775 1825495 1826483 1827508 "NUMODE" 1828734 T NUMODE (NIL) -7 NIL NIL) (-774 1822876 1823730 1823758 "NUMINT" 1824681 T NUMINT (NIL) -9 NIL 1825445) (-773 1821824 1822021 1822239 "NUMFMT" 1822678 T NUMFMT (NIL) -7 NIL NIL) (-772 1808183 1811128 1813660 "NUMERIC" 1819331 NIL NUMERIC (NIL T) -7 NIL NIL) (-771 1802580 1807632 1807727 "NTSCAT" 1807732 NIL NTSCAT (NIL T T T T) -9 NIL 1807771) (-770 1801774 1801939 1802132 "NTPOLFN" 1802419 NIL NTPOLFN (NIL T) -7 NIL NIL) (-769 1789614 1798599 1799411 "NSUP" 1800995 NIL NSUP (NIL T) -8 NIL NIL) (-768 1789246 1789303 1789412 "NSUP2" 1789551 NIL NSUP2 (NIL T T) -7 NIL NIL) (-767 1779243 1789020 1789153 "NSMP" 1789158 NIL NSMP (NIL T T) -8 NIL NIL) (-766 1777675 1777976 1778333 "NREP" 1778931 NIL NREP (NIL T) -7 NIL NIL) (-765 1776266 1776518 1776876 "NPCOEF" 1777418 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-764 1775332 1775447 1775663 "NORMRETR" 1776147 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-763 1773373 1773663 1774072 "NORMPK" 1775040 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-762 1773058 1773086 1773210 "NORMMA" 1773339 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-761 1772885 1773015 1773044 "NONE" 1773049 T NONE (NIL) -8 NIL NIL) (-760 1772674 1772703 1772772 "NONE1" 1772849 NIL NONE1 (NIL T) -7 NIL NIL) (-759 1772157 1772219 1772405 "NODE1" 1772606 NIL NODE1 (NIL T T) -7 NIL NIL) (-758 1770497 1771320 1771575 "NNI" 1771922 T NNI (NIL) -8 NIL NIL) (-757 1768917 1769230 1769594 "NLINSOL" 1770165 NIL NLINSOL (NIL T) -7 NIL NIL) (-756 1765185 1766153 1767052 "NIPROB" 1768038 T NIPROB (NIL) -8 NIL NIL) (-755 1763942 1764176 1764478 "NFINTBAS" 1764947 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-754 1763386 1763593 1763634 "NETCLT" 1763798 NIL NETCLT (NIL T) -9 NIL 1763887) (-753 1762094 1762325 1762606 "NCODIV" 1763154 NIL NCODIV (NIL T T) -7 NIL NIL) (-752 1761856 1761893 1761968 "NCNTFRAC" 1762051 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-751 1760036 1760400 1760820 "NCEP" 1761481 NIL NCEP (NIL T) -7 NIL NIL) (-750 1758947 1759686 1759714 "NASRING" 1759824 T NASRING (NIL) -9 NIL 1759898) (-749 1758742 1758786 1758880 "NASRING-" 1758885 NIL NASRING- (NIL T) -8 NIL NIL) (-748 1757895 1758394 1758422 "NARNG" 1758539 T NARNG (NIL) -9 NIL 1758630) (-747 1757587 1757654 1757788 "NARNG-" 1757793 NIL NARNG- (NIL T) -8 NIL NIL) (-746 1756466 1756673 1756908 "NAGSP" 1757372 T NAGSP (NIL) -7 NIL NIL) (-745 1747738 1749422 1751095 "NAGS" 1754813 T NAGS (NIL) -7 NIL NIL) (-744 1746286 1746594 1746925 "NAGF07" 1747427 T NAGF07 (NIL) -7 NIL NIL) (-743 1740824 1742115 1743422 "NAGF04" 1744999 T NAGF04 (NIL) -7 NIL NIL) (-742 1733792 1735406 1737039 "NAGF02" 1739211 T NAGF02 (NIL) -7 NIL NIL) (-741 1729016 1730116 1731233 "NAGF01" 1732695 T NAGF01 (NIL) -7 NIL NIL) (-740 1722644 1724210 1725795 "NAGE04" 1727451 T NAGE04 (NIL) -7 NIL NIL) (-739 1713813 1715934 1718064 "NAGE02" 1720534 T NAGE02 (NIL) -7 NIL NIL) (-738 1709766 1710713 1711677 "NAGE01" 1712869 T NAGE01 (NIL) -7 NIL NIL) (-737 1707561 1708095 1708653 "NAGD03" 1709228 T NAGD03 (NIL) -7 NIL NIL) (-736 1699311 1701239 1703193 "NAGD02" 1705627 T NAGD02 (NIL) -7 NIL NIL) (-735 1693122 1694547 1695987 "NAGD01" 1697891 T NAGD01 (NIL) -7 NIL NIL) (-734 1689331 1690153 1690990 "NAGC06" 1692305 T NAGC06 (NIL) -7 NIL NIL) (-733 1687796 1688128 1688484 "NAGC05" 1688995 T NAGC05 (NIL) -7 NIL NIL) (-732 1687172 1687291 1687435 "NAGC02" 1687672 T NAGC02 (NIL) -7 NIL NIL) (-731 1686232 1686789 1686829 "NAALG" 1686908 NIL NAALG (NIL T) -9 NIL 1686969) (-730 1686067 1686096 1686186 "NAALG-" 1686191 NIL NAALG- (NIL T T) -8 NIL NIL) (-729 1680017 1681125 1682312 "MULTSQFR" 1684963 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-728 1679336 1679411 1679595 "MULTFACT" 1679929 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-727 1672429 1676299 1676352 "MTSCAT" 1677422 NIL MTSCAT (NIL T T) -9 NIL 1677936) (-726 1672141 1672195 1672287 "MTHING" 1672369 NIL MTHING (NIL T) -7 NIL NIL) (-725 1671933 1671966 1672026 "MSYSCMD" 1672101 T MSYSCMD (NIL) -7 NIL NIL) (-724 1668045 1670688 1671008 "MSET" 1671646 NIL MSET (NIL T) -8 NIL NIL) (-723 1665140 1667606 1667647 "MSETAGG" 1667652 NIL MSETAGG (NIL T) -9 NIL 1667686) (-722 1661023 1662519 1663264 "MRING" 1664440 NIL MRING (NIL T T) -8 NIL NIL) (-721 1660589 1660656 1660787 "MRF2" 1660950 NIL MRF2 (NIL T T T) -7 NIL NIL) (-720 1660207 1660242 1660386 "MRATFAC" 1660548 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-719 1657819 1658114 1658545 "MPRFF" 1659912 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-718 1651879 1657673 1657770 "MPOLY" 1657775 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-717 1651369 1651404 1651612 "MPCPF" 1651838 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-716 1650883 1650926 1651110 "MPC3" 1651320 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-715 1650078 1650159 1650380 "MPC2" 1650798 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-714 1648379 1648716 1649106 "MONOTOOL" 1649738 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-713 1647630 1647921 1647949 "MONOID" 1648168 T MONOID (NIL) -9 NIL 1648315) (-712 1647176 1647295 1647476 "MONOID-" 1647481 NIL MONOID- (NIL T) -8 NIL NIL) (-711 1638035 1643943 1644002 "MONOGEN" 1644676 NIL MONOGEN (NIL T T) -9 NIL 1645132) (-710 1635253 1635988 1636988 "MONOGEN-" 1637107 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-709 1634112 1634532 1634560 "MONADWU" 1634952 T MONADWU (NIL) -9 NIL 1635190) (-708 1633484 1633643 1633891 "MONADWU-" 1633896 NIL MONADWU- (NIL T) -8 NIL NIL) (-707 1632869 1633087 1633115 "MONAD" 1633322 T MONAD (NIL) -9 NIL 1633434) (-706 1632554 1632632 1632764 "MONAD-" 1632769 NIL MONAD- (NIL T) -8 NIL NIL) (-705 1630870 1631467 1631746 "MOEBIUS" 1632307 NIL MOEBIUS (NIL T) -8 NIL NIL) (-704 1630262 1630640 1630680 "MODULE" 1630685 NIL MODULE (NIL T) -9 NIL 1630711) (-703 1629830 1629926 1630116 "MODULE-" 1630121 NIL MODULE- (NIL T T) -8 NIL NIL) (-702 1627545 1628194 1628521 "MODRING" 1629654 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-701 1624531 1625650 1626171 "MODOP" 1627074 NIL MODOP (NIL T T) -8 NIL NIL) (-700 1623146 1623598 1623875 "MODMONOM" 1624394 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-699 1612953 1621437 1621851 "MODMON" 1622783 NIL MODMON (NIL T T) -8 NIL NIL) (-698 1610144 1611797 1612073 "MODFIELD" 1612828 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-697 1609148 1609425 1609615 "MMLFORM" 1609974 T MMLFORM (NIL) -8 NIL NIL) (-696 1608674 1608717 1608896 "MMAP" 1609099 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-695 1606891 1607624 1607665 "MLO" 1608088 NIL MLO (NIL T) -9 NIL 1608330) (-694 1604258 1604773 1605375 "MLIFT" 1606372 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-693 1603649 1603733 1603887 "MKUCFUNC" 1604169 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-692 1603248 1603318 1603441 "MKRECORD" 1603572 NIL MKRECORD (NIL T T) -7 NIL NIL) (-691 1602296 1602457 1602685 "MKFUNC" 1603059 NIL MKFUNC (NIL T) -7 NIL NIL) (-690 1601684 1601788 1601944 "MKFLCFN" 1602179 NIL MKFLCFN (NIL T) -7 NIL NIL) (-689 1601227 1601594 1601653 "MKCHSET" 1601658 NIL MKCHSET (NIL T) -8 NIL NIL) (-688 1600504 1600606 1600791 "MKBCFUNC" 1601120 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-687 1597246 1600058 1600194 "MINT" 1600388 T MINT (NIL) -8 NIL NIL) (-686 1596058 1596301 1596578 "MHROWRED" 1597001 NIL MHROWRED (NIL T) -7 NIL NIL) (-685 1591484 1594593 1594998 "MFLOAT" 1595673 T MFLOAT (NIL) -8 NIL NIL) (-684 1590841 1590917 1591088 "MFINFACT" 1591396 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-683 1587156 1588004 1588888 "MESH" 1589977 T MESH (NIL) -7 NIL NIL) (-682 1585546 1585858 1586211 "MDDFACT" 1586843 NIL MDDFACT (NIL T) -7 NIL NIL) (-681 1582388 1584705 1584746 "MDAGG" 1585001 NIL MDAGG (NIL T) -9 NIL 1585144) (-680 1572166 1581681 1581888 "MCMPLX" 1582201 T MCMPLX (NIL) -8 NIL NIL) (-679 1571307 1571453 1571653 "MCDEN" 1572015 NIL MCDEN (NIL T T) -7 NIL NIL) (-678 1569197 1569467 1569847 "MCALCFN" 1571037 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-677 1568108 1568281 1568522 "MAYBE" 1568995 NIL MAYBE (NIL T) -8 NIL NIL) (-676 1565720 1566243 1566805 "MATSTOR" 1567579 NIL MATSTOR (NIL T) -7 NIL NIL) (-675 1561726 1565092 1565340 "MATRIX" 1565505 NIL MATRIX (NIL T) -8 NIL NIL) (-674 1557495 1558199 1558935 "MATLIN" 1561083 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-673 1547649 1550787 1550864 "MATCAT" 1555744 NIL MATCAT (NIL T T T) -9 NIL 1557161) (-672 1544013 1545026 1546382 "MATCAT-" 1546387 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-671 1542607 1542760 1543093 "MATCAT2" 1543848 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-670 1540719 1541043 1541427 "MAPPKG3" 1542282 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-669 1539700 1539873 1540095 "MAPPKG2" 1540543 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-668 1538199 1538483 1538810 "MAPPKG1" 1539406 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-667 1537305 1537605 1537782 "MAPPAST" 1538042 T MAPPAST (NIL) -8 NIL NIL) (-666 1536916 1536974 1537097 "MAPHACK3" 1537241 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-665 1536508 1536569 1536683 "MAPHACK2" 1536848 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-664 1535946 1536049 1536191 "MAPHACK1" 1536399 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-663 1534052 1534646 1534950 "MAGMA" 1535674 NIL MAGMA (NIL T) -8 NIL NIL) (-662 1533558 1533776 1533867 "MACROAST" 1533981 T MACROAST (NIL) -8 NIL NIL) (-661 1530025 1531797 1532258 "M3D" 1533130 NIL M3D (NIL T) -8 NIL NIL) (-660 1524180 1528395 1528436 "LZSTAGG" 1529218 NIL LZSTAGG (NIL T) -9 NIL 1529513) (-659 1520153 1521311 1522768 "LZSTAGG-" 1522773 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-658 1517267 1518044 1518531 "LWORD" 1519698 NIL LWORD (NIL T) -8 NIL NIL) (-657 1516870 1517071 1517146 "LSTAST" 1517212 T LSTAST (NIL) -8 NIL NIL) (-656 1510071 1516641 1516775 "LSQM" 1516780 NIL LSQM (NIL NIL T) -8 NIL NIL) (-655 1509295 1509434 1509662 "LSPP" 1509926 NIL LSPP (NIL T T T T) -7 NIL NIL) (-654 1507107 1507408 1507864 "LSMP" 1508984 NIL LSMP (NIL T T T T) -7 NIL NIL) (-653 1503886 1504560 1505290 "LSMP1" 1506409 NIL LSMP1 (NIL T) -7 NIL NIL) (-652 1497812 1503054 1503095 "LSAGG" 1503157 NIL LSAGG (NIL T) -9 NIL 1503235) (-651 1494507 1495431 1496644 "LSAGG-" 1496649 NIL LSAGG- (NIL T T) -8 NIL NIL) (-650 1492133 1493651 1493900 "LPOLY" 1494302 NIL LPOLY (NIL T T) -8 NIL NIL) (-649 1491715 1491800 1491923 "LPEFRAC" 1492042 NIL LPEFRAC (NIL T) -7 NIL NIL) (-648 1490062 1490809 1491062 "LO" 1491547 NIL LO (NIL T T T) -8 NIL NIL) (-647 1489714 1489826 1489854 "LOGIC" 1489965 T LOGIC (NIL) -9 NIL 1490046) (-646 1489576 1489599 1489670 "LOGIC-" 1489675 NIL LOGIC- (NIL T) -8 NIL NIL) (-645 1488769 1488909 1489102 "LODOOPS" 1489432 NIL LODOOPS (NIL T T) -7 NIL NIL) (-644 1486227 1488685 1488751 "LODO" 1488756 NIL LODO (NIL T NIL) -8 NIL NIL) (-643 1484765 1485000 1485353 "LODOF" 1485974 NIL LODOF (NIL T T) -7 NIL NIL) (-642 1481121 1483518 1483559 "LODOCAT" 1483997 NIL LODOCAT (NIL T) -9 NIL 1484208) (-641 1480854 1480912 1481039 "LODOCAT-" 1481044 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-640 1478209 1480695 1480813 "LODO2" 1480818 NIL LODO2 (NIL T T) -8 NIL NIL) (-639 1475679 1478146 1478191 "LODO1" 1478196 NIL LODO1 (NIL T) -8 NIL NIL) (-638 1474539 1474704 1475016 "LODEEF" 1475502 NIL LODEEF (NIL T T T) -7 NIL NIL) (-637 1469825 1472669 1472710 "LNAGG" 1473657 NIL LNAGG (NIL T) -9 NIL 1474101) (-636 1468972 1469186 1469528 "LNAGG-" 1469533 NIL LNAGG- (NIL T T) -8 NIL NIL) (-635 1465135 1465897 1466536 "LMOPS" 1468387 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-634 1464530 1464892 1464933 "LMODULE" 1464994 NIL LMODULE (NIL T) -9 NIL 1465036) (-633 1461776 1464175 1464298 "LMDICT" 1464440 NIL LMDICT (NIL T) -8 NIL NIL) (-632 1461502 1461684 1461744 "LITERAL" 1461749 NIL LITERAL (NIL T) -8 NIL NIL) (-631 1454729 1460448 1460746 "LIST" 1461237 NIL LIST (NIL T) -8 NIL NIL) (-630 1454254 1454328 1454467 "LIST3" 1454649 NIL LIST3 (NIL T T T) -7 NIL NIL) (-629 1453261 1453439 1453667 "LIST2" 1454072 NIL LIST2 (NIL T T) -7 NIL NIL) (-628 1451395 1451707 1452106 "LIST2MAP" 1452908 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-627 1450125 1450761 1450802 "LINEXP" 1451057 NIL LINEXP (NIL T) -9 NIL 1451206) (-626 1448772 1449032 1449329 "LINDEP" 1449877 NIL LINDEP (NIL T T) -7 NIL NIL) (-625 1445539 1446258 1447035 "LIMITRF" 1448027 NIL LIMITRF (NIL T) -7 NIL NIL) (-624 1443815 1444110 1444526 "LIMITPS" 1445234 NIL LIMITPS (NIL T T) -7 NIL NIL) (-623 1438270 1443326 1443554 "LIE" 1443636 NIL LIE (NIL T T) -8 NIL NIL) (-622 1437319 1437762 1437802 "LIECAT" 1437942 NIL LIECAT (NIL T) -9 NIL 1438093) (-621 1437160 1437187 1437275 "LIECAT-" 1437280 NIL LIECAT- (NIL T T) -8 NIL NIL) (-620 1429772 1436609 1436774 "LIB" 1437015 T LIB (NIL) -8 NIL NIL) (-619 1425409 1426290 1427225 "LGROBP" 1428889 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-618 1423275 1423549 1423911 "LF" 1425130 NIL LF (NIL T T) -7 NIL NIL) (-617 1422115 1422807 1422835 "LFCAT" 1423042 T LFCAT (NIL) -9 NIL 1423181) (-616 1419019 1419647 1420335 "LEXTRIPK" 1421479 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-615 1415790 1416589 1417092 "LEXP" 1418599 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-614 1415293 1415511 1415603 "LETAST" 1415718 T LETAST (NIL) -8 NIL NIL) (-613 1413691 1414004 1414405 "LEADCDET" 1414975 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-612 1412881 1412955 1413184 "LAZM3PK" 1413612 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-611 1407837 1410958 1411496 "LAUPOL" 1412393 NIL LAUPOL (NIL T T) -8 NIL NIL) (-610 1407402 1407446 1407614 "LAPLACE" 1407787 NIL LAPLACE (NIL T T) -7 NIL NIL) (-609 1405376 1406503 1406754 "LA" 1407235 NIL LA (NIL T T T) -8 NIL NIL) (-608 1404457 1405007 1405048 "LALG" 1405110 NIL LALG (NIL T) -9 NIL 1405169) (-607 1404171 1404230 1404366 "LALG-" 1404371 NIL LALG- (NIL T T) -8 NIL NIL) (-606 1404006 1404030 1404071 "KVTFROM" 1404133 NIL KVTFROM (NIL T) -9 NIL NIL) (-605 1402806 1403223 1403452 "KTVLOGIC" 1403797 T KTVLOGIC (NIL) -8 NIL NIL) (-604 1402641 1402665 1402706 "KRCFROM" 1402768 NIL KRCFROM (NIL T) -9 NIL NIL) (-603 1401545 1401732 1402031 "KOVACIC" 1402441 NIL KOVACIC (NIL T T) -7 NIL NIL) (-602 1401380 1401404 1401445 "KONVERT" 1401507 NIL KONVERT (NIL T) -9 NIL NIL) (-601 1401215 1401239 1401280 "KOERCE" 1401342 NIL KOERCE (NIL T) -9 NIL NIL) (-600 1398949 1399709 1400102 "KERNEL" 1400854 NIL KERNEL (NIL T) -8 NIL NIL) (-599 1398451 1398532 1398662 "KERNEL2" 1398863 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-598 1392302 1396990 1397044 "KDAGG" 1397421 NIL KDAGG (NIL T T) -9 NIL 1397627) (-597 1391831 1391955 1392160 "KDAGG-" 1392165 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-596 1385006 1391492 1391647 "KAFILE" 1391709 NIL KAFILE (NIL T) -8 NIL NIL) (-595 1379461 1384517 1384745 "JORDAN" 1384827 NIL JORDAN (NIL T T) -8 NIL NIL) (-594 1378867 1379110 1379231 "JOINAST" 1379360 T JOINAST (NIL) -8 NIL NIL) (-593 1378713 1378772 1378827 "JAVACODE" 1378832 T JAVACODE (NIL) -8 NIL NIL) (-592 1375012 1376918 1376972 "IXAGG" 1377901 NIL IXAGG (NIL T T) -9 NIL 1378360) (-591 1373931 1374237 1374656 "IXAGG-" 1374661 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-590 1369511 1373853 1373912 "IVECTOR" 1373917 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-589 1368277 1368514 1368780 "ITUPLE" 1369278 NIL ITUPLE (NIL T) -8 NIL NIL) (-588 1366713 1366890 1367196 "ITRIGMNP" 1368099 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-587 1365458 1365662 1365945 "ITFUN3" 1366489 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-586 1365090 1365147 1365256 "ITFUN2" 1365395 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-585 1362927 1363952 1364251 "ITAYLOR" 1364824 NIL ITAYLOR (NIL T) -8 NIL NIL) (-584 1351909 1357064 1358227 "ISUPS" 1361797 NIL ISUPS (NIL T) -8 NIL NIL) (-583 1351013 1351153 1351389 "ISUMP" 1351756 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-582 1346277 1350814 1350893 "ISTRING" 1350966 NIL ISTRING (NIL NIL) -8 NIL NIL) (-581 1345780 1345998 1346090 "ISAST" 1346205 T ISAST (NIL) -8 NIL NIL) (-580 1344990 1345071 1345287 "IRURPK" 1345694 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-579 1343926 1344127 1344367 "IRSN" 1344770 T IRSN (NIL) -7 NIL NIL) (-578 1341955 1342310 1342746 "IRRF2F" 1343564 NIL IRRF2F (NIL T) -7 NIL NIL) (-577 1341702 1341740 1341816 "IRREDFFX" 1341911 NIL IRREDFFX (NIL T) -7 NIL NIL) (-576 1340317 1340576 1340875 "IROOT" 1341435 NIL IROOT (NIL T) -7 NIL NIL) (-575 1336949 1338001 1338693 "IR" 1339657 NIL IR (NIL T) -8 NIL NIL) (-574 1334562 1335057 1335623 "IR2" 1336427 NIL IR2 (NIL T T) -7 NIL NIL) (-573 1333634 1333747 1333968 "IR2F" 1334445 NIL IR2F (NIL T T) -7 NIL NIL) (-572 1333425 1333459 1333519 "IPRNTPK" 1333594 T IPRNTPK (NIL) -7 NIL NIL) (-571 1330044 1333314 1333383 "IPF" 1333388 NIL IPF (NIL NIL) -8 NIL NIL) (-570 1328407 1329969 1330026 "IPADIC" 1330031 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-569 1327738 1327965 1328102 "IP4ADDR" 1328290 T IP4ADDR (NIL) -8 NIL NIL) (-568 1327238 1327442 1327552 "IOMODE" 1327648 T IOMODE (NIL) -8 NIL NIL) (-567 1326596 1326835 1326962 "IOBFILE" 1327131 T IOBFILE (NIL) -8 NIL NIL) (-566 1326360 1326500 1326528 "IOBCON" 1326533 T IOBCON (NIL) -9 NIL 1326554) (-565 1325857 1325915 1326105 "INVLAPLA" 1326296 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-564 1315506 1317859 1320245 "INTTR" 1323521 NIL INTTR (NIL T T) -7 NIL NIL) (-563 1311850 1312592 1313456 "INTTOOLS" 1314691 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-562 1311436 1311527 1311644 "INTSLPE" 1311753 T INTSLPE (NIL) -7 NIL NIL) (-561 1309431 1311359 1311418 "INTRVL" 1311423 NIL INTRVL (NIL T) -8 NIL NIL) (-560 1307033 1307545 1308120 "INTRF" 1308916 NIL INTRF (NIL T) -7 NIL NIL) (-559 1306444 1306541 1306683 "INTRET" 1306931 NIL INTRET (NIL T) -7 NIL NIL) (-558 1304441 1304830 1305300 "INTRAT" 1306052 NIL INTRAT (NIL T T) -7 NIL NIL) (-557 1301669 1302252 1302878 "INTPM" 1303926 NIL INTPM (NIL T T) -7 NIL NIL) (-556 1298372 1298971 1299716 "INTPAF" 1301055 NIL INTPAF (NIL T T T) -7 NIL NIL) (-555 1293551 1294513 1295564 "INTPACK" 1297341 T INTPACK (NIL) -7 NIL NIL) (-554 1290463 1293280 1293407 "INT" 1293444 T INT (NIL) -8 NIL NIL) (-553 1289715 1289867 1290075 "INTHERTR" 1290305 NIL INTHERTR (NIL T T) -7 NIL NIL) (-552 1289154 1289234 1289422 "INTHERAL" 1289629 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-551 1287000 1287443 1287900 "INTHEORY" 1288717 T INTHEORY (NIL) -7 NIL NIL) (-550 1278308 1279929 1281708 "INTG0" 1285352 NIL INTG0 (NIL T T T) -7 NIL NIL) (-549 1258881 1263671 1268481 "INTFTBL" 1273518 T INTFTBL (NIL) -8 NIL NIL) (-548 1258130 1258268 1258441 "INTFACT" 1258740 NIL INTFACT (NIL T) -7 NIL NIL) (-547 1255515 1255961 1256525 "INTEF" 1257684 NIL INTEF (NIL T T) -7 NIL NIL) (-546 1253982 1254687 1254715 "INTDOM" 1255016 T INTDOM (NIL) -9 NIL 1255223) (-545 1253351 1253525 1253767 "INTDOM-" 1253772 NIL INTDOM- (NIL T) -8 NIL NIL) (-544 1249846 1251735 1251789 "INTCAT" 1252588 NIL INTCAT (NIL T) -9 NIL 1252908) (-543 1249319 1249421 1249549 "INTBIT" 1249738 T INTBIT (NIL) -7 NIL NIL) (-542 1247990 1248144 1248458 "INTALG" 1249164 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-541 1247447 1247537 1247707 "INTAF" 1247894 NIL INTAF (NIL T T) -7 NIL NIL) (-540 1240901 1247257 1247397 "INTABL" 1247402 NIL INTABL (NIL T T T) -8 NIL NIL) (-539 1235916 1238590 1238618 "INS" 1239552 T INS (NIL) -9 NIL 1240217) (-538 1233156 1233927 1234901 "INS-" 1234974 NIL INS- (NIL T) -8 NIL NIL) (-537 1231931 1232158 1232456 "INPSIGN" 1232909 NIL INPSIGN (NIL T T) -7 NIL NIL) (-536 1231049 1231166 1231363 "INPRODPF" 1231811 NIL INPRODPF (NIL T T) -7 NIL NIL) (-535 1229943 1230060 1230297 "INPRODFF" 1230929 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-534 1228943 1229095 1229355 "INNMFACT" 1229779 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-533 1228140 1228237 1228425 "INMODGCD" 1228842 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-532 1226649 1226893 1227217 "INFSP" 1227885 NIL INFSP (NIL T T T) -7 NIL NIL) (-531 1225833 1225950 1226133 "INFPROD0" 1226529 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-530 1222715 1223898 1224413 "INFORM" 1225326 T INFORM (NIL) -8 NIL NIL) (-529 1222325 1222385 1222483 "INFORM1" 1222650 NIL INFORM1 (NIL T) -7 NIL NIL) (-528 1221848 1221937 1222051 "INFINITY" 1222231 T INFINITY (NIL) -7 NIL NIL) (-527 1221293 1221566 1221674 "INETCLTS" 1221760 T INETCLTS (NIL) -8 NIL NIL) (-526 1219910 1220159 1220480 "INEP" 1221041 NIL INEP (NIL T T T) -7 NIL NIL) (-525 1219186 1219807 1219872 "INDE" 1219877 NIL INDE (NIL T) -8 NIL NIL) (-524 1218750 1218818 1218935 "INCRMAPS" 1219113 NIL INCRMAPS (NIL T) -7 NIL NIL) (-523 1217768 1218019 1218225 "INBFILE" 1218564 T INBFILE (NIL) -8 NIL NIL) (-522 1213079 1214004 1214948 "INBFF" 1216856 NIL INBFF (NIL T) -7 NIL NIL) (-521 1212748 1212824 1212852 "INBCON" 1212985 T INBCON (NIL) -9 NIL 1213063) (-520 1212588 1212623 1212699 "INBCON-" 1212704 NIL INBCON- (NIL T) -8 NIL NIL) (-519 1212090 1212309 1212401 "INAST" 1212516 T INAST (NIL) -8 NIL NIL) (-518 1211544 1211769 1211875 "IMPTAST" 1212004 T IMPTAST (NIL) -8 NIL NIL) (-517 1208038 1211388 1211492 "IMATRIX" 1211497 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-516 1206750 1206873 1207188 "IMATQF" 1207894 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-515 1204970 1205197 1205534 "IMATLIN" 1206506 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-514 1199596 1204894 1204952 "ILIST" 1204957 NIL ILIST (NIL T NIL) -8 NIL NIL) (-513 1197549 1199456 1199569 "IIARRAY2" 1199574 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-512 1192982 1197460 1197524 "IFF" 1197529 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-511 1192356 1192599 1192715 "IFAST" 1192886 T IFAST (NIL) -8 NIL NIL) (-510 1187399 1191648 1191836 "IFARRAY" 1192213 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-509 1186606 1187303 1187376 "IFAMON" 1187381 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-508 1186190 1186255 1186309 "IEVALAB" 1186516 NIL IEVALAB (NIL T T) -9 NIL NIL) (-507 1185865 1185933 1186093 "IEVALAB-" 1186098 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-506 1185523 1185779 1185842 "IDPO" 1185847 NIL IDPO (NIL T T) -8 NIL NIL) (-505 1184800 1185412 1185487 "IDPOAMS" 1185492 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-504 1184134 1184689 1184764 "IDPOAM" 1184769 NIL IDPOAM (NIL T T) -8 NIL NIL) (-503 1183219 1183469 1183522 "IDPC" 1183935 NIL IDPC (NIL T T) -9 NIL 1184084) (-502 1182715 1183111 1183184 "IDPAM" 1183189 NIL IDPAM (NIL T T) -8 NIL NIL) (-501 1182118 1182607 1182680 "IDPAG" 1182685 NIL IDPAG (NIL T T) -8 NIL NIL) (-500 1181848 1182033 1182083 "IDENT" 1182088 T IDENT (NIL) -8 NIL NIL) (-499 1178103 1178951 1179846 "IDECOMP" 1181005 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-498 1170976 1172026 1173073 "IDEAL" 1177139 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-497 1170140 1170252 1170451 "ICDEN" 1170860 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-496 1169239 1169620 1169767 "ICARD" 1170013 T ICARD (NIL) -8 NIL NIL) (-495 1167299 1167612 1168017 "IBPTOOLS" 1168916 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-494 1162933 1166919 1167032 "IBITS" 1167218 NIL IBITS (NIL NIL) -8 NIL NIL) (-493 1159656 1160232 1160927 "IBATOOL" 1162350 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-492 1157436 1157897 1158430 "IBACHIN" 1159191 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-491 1155313 1157282 1157385 "IARRAY2" 1157390 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-490 1151466 1155239 1155296 "IARRAY1" 1155301 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-489 1145459 1149878 1150359 "IAN" 1151005 T IAN (NIL) -8 NIL NIL) (-488 1144970 1145027 1145200 "IALGFACT" 1145396 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-487 1144498 1144611 1144639 "HYPCAT" 1144846 T HYPCAT (NIL) -9 NIL NIL) (-486 1144036 1144153 1144339 "HYPCAT-" 1144344 NIL HYPCAT- (NIL T) -8 NIL NIL) (-485 1143658 1143831 1143914 "HOSTNAME" 1143973 T HOSTNAME (NIL) -8 NIL NIL) (-484 1143503 1143540 1143581 "HOMOTOP" 1143586 NIL HOMOTOP (NIL T) -9 NIL 1143619) (-483 1140182 1141513 1141554 "HOAGG" 1142535 NIL HOAGG (NIL T) -9 NIL 1143214) (-482 1138776 1139175 1139701 "HOAGG-" 1139706 NIL HOAGG- (NIL T T) -8 NIL NIL) (-481 1132818 1138373 1138521 "HEXADEC" 1138648 T HEXADEC (NIL) -8 NIL NIL) (-480 1131566 1131788 1132051 "HEUGCD" 1132595 NIL HEUGCD (NIL T) -7 NIL NIL) (-479 1130669 1131403 1131533 "HELLFDIV" 1131538 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-478 1128897 1130446 1130534 "HEAP" 1130613 NIL HEAP (NIL T) -8 NIL NIL) (-477 1128188 1128449 1128583 "HEADAST" 1128783 T HEADAST (NIL) -8 NIL NIL) (-476 1122108 1128103 1128165 "HDP" 1128170 NIL HDP (NIL NIL T) -8 NIL NIL) (-475 1115859 1121743 1121895 "HDMP" 1122009 NIL HDMP (NIL NIL T) -8 NIL NIL) (-474 1115184 1115323 1115487 "HB" 1115715 T HB (NIL) -7 NIL NIL) (-473 1108681 1115030 1115134 "HASHTBL" 1115139 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-472 1108184 1108402 1108494 "HASAST" 1108609 T HASAST (NIL) -8 NIL NIL) (-471 1105996 1107806 1107988 "HACKPI" 1108022 T HACKPI (NIL) -8 NIL NIL) (-470 1101691 1105849 1105962 "GTSET" 1105967 NIL GTSET (NIL T T T T) -8 NIL NIL) (-469 1095217 1101569 1101667 "GSTBL" 1101672 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-468 1087530 1094248 1094513 "GSERIES" 1095008 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-467 1086697 1087088 1087116 "GROUP" 1087319 T GROUP (NIL) -9 NIL 1087453) (-466 1086063 1086222 1086473 "GROUP-" 1086478 NIL GROUP- (NIL T) -8 NIL NIL) (-465 1084432 1084751 1085138 "GROEBSOL" 1085740 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-464 1083372 1083634 1083685 "GRMOD" 1084214 NIL GRMOD (NIL T T) -9 NIL 1084382) (-463 1083140 1083176 1083304 "GRMOD-" 1083309 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-462 1078466 1079494 1080494 "GRIMAGE" 1082160 T GRIMAGE (NIL) -8 NIL NIL) (-461 1076933 1077193 1077517 "GRDEF" 1078162 T GRDEF (NIL) -7 NIL NIL) (-460 1076377 1076493 1076634 "GRAY" 1076812 T GRAY (NIL) -7 NIL NIL) (-459 1075590 1075970 1076021 "GRALG" 1076174 NIL GRALG (NIL T T) -9 NIL 1076267) (-458 1075251 1075324 1075487 "GRALG-" 1075492 NIL GRALG- (NIL T T T) -8 NIL NIL) (-457 1072055 1074836 1075014 "GPOLSET" 1075158 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-456 1071409 1071466 1071724 "GOSPER" 1071992 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-455 1067168 1067847 1068373 "GMODPOL" 1071108 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-454 1066173 1066357 1066595 "GHENSEL" 1066980 NIL GHENSEL (NIL T T) -7 NIL NIL) (-453 1060224 1061067 1062094 "GENUPS" 1065257 NIL GENUPS (NIL T T) -7 NIL NIL) (-452 1059921 1059972 1060061 "GENUFACT" 1060167 NIL GENUFACT (NIL T) -7 NIL NIL) (-451 1059333 1059410 1059575 "GENPGCD" 1059839 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-450 1058807 1058842 1059055 "GENMFACT" 1059292 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-449 1057375 1057630 1057937 "GENEEZ" 1058550 NIL GENEEZ (NIL T T) -7 NIL NIL) (-448 1051288 1056986 1057148 "GDMP" 1057298 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-447 1040665 1045059 1046165 "GCNAALG" 1050271 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-446 1039092 1039920 1039948 "GCDDOM" 1040203 T GCDDOM (NIL) -9 NIL 1040360) (-445 1038562 1038689 1038904 "GCDDOM-" 1038909 NIL GCDDOM- (NIL T) -8 NIL NIL) (-444 1037234 1037419 1037723 "GB" 1038341 NIL GB (NIL T T T T) -7 NIL NIL) (-443 1025854 1028180 1030572 "GBINTERN" 1034925 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-442 1023691 1023983 1024404 "GBF" 1025529 NIL GBF (NIL T T T T) -7 NIL NIL) (-441 1022472 1022637 1022904 "GBEUCLID" 1023507 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-440 1021821 1021946 1022095 "GAUSSFAC" 1022343 T GAUSSFAC (NIL) -7 NIL NIL) (-439 1020188 1020490 1020804 "GALUTIL" 1021540 NIL GALUTIL (NIL T) -7 NIL NIL) (-438 1018496 1018770 1019094 "GALPOLYU" 1019915 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-437 1015861 1016151 1016558 "GALFACTU" 1018193 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-436 1007667 1009166 1010774 "GALFACT" 1014293 NIL GALFACT (NIL T) -7 NIL NIL) (-435 1005055 1005713 1005741 "FVFUN" 1006897 T FVFUN (NIL) -9 NIL 1007617) (-434 1004321 1004503 1004531 "FVC" 1004822 T FVC (NIL) -9 NIL 1005005) (-433 1003963 1004118 1004199 "FUNCTION" 1004273 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-432 1001734 1002285 1002751 "FT" 1003517 T FT (NIL) -8 NIL NIL) (-431 1000552 1001035 1001238 "FTEM" 1001551 T FTEM (NIL) -8 NIL NIL) (-430 998808 999097 999501 "FSUPFACT" 1000243 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-429 997205 997494 997826 "FST" 998496 T FST (NIL) -8 NIL NIL) (-428 996376 996482 996677 "FSRED" 997087 NIL FSRED (NIL T T) -7 NIL NIL) (-427 995055 995310 995664 "FSPRMELT" 996091 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-426 992140 992578 993077 "FSPECF" 994618 NIL FSPECF (NIL T T) -7 NIL NIL) (-425 974200 982643 982683 "FS" 986531 NIL FS (NIL T) -9 NIL 988820) (-424 962850 965840 969896 "FS-" 970193 NIL FS- (NIL T T) -8 NIL NIL) (-423 962364 962418 962595 "FSINT" 962791 NIL FSINT (NIL T T) -7 NIL NIL) (-422 960691 961357 961660 "FSERIES" 962143 NIL FSERIES (NIL T T) -8 NIL NIL) (-421 959705 959821 960052 "FSCINT" 960571 NIL FSCINT (NIL T T) -7 NIL NIL) (-420 955939 958649 958690 "FSAGG" 959060 NIL FSAGG (NIL T) -9 NIL 959319) (-419 953701 954302 955098 "FSAGG-" 955193 NIL FSAGG- (NIL T T) -8 NIL NIL) (-418 952743 952886 953113 "FSAGG2" 953554 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-417 950398 950677 951231 "FS2UPS" 952461 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-416 949980 950023 950178 "FS2" 950349 NIL FS2 (NIL T T T T) -7 NIL NIL) (-415 948837 949008 949317 "FS2EXPXP" 949805 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-414 948263 948378 948530 "FRUTIL" 948717 NIL FRUTIL (NIL T) -7 NIL NIL) (-413 939718 943758 945116 "FR" 946937 NIL FR (NIL T) -8 NIL NIL) (-412 934793 937436 937476 "FRNAALG" 938872 NIL FRNAALG (NIL T) -9 NIL 939479) (-411 930471 931542 932817 "FRNAALG-" 933567 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-410 930109 930152 930279 "FRNAAF2" 930422 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-409 928516 928963 929258 "FRMOD" 929921 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-408 926295 926899 927216 "FRIDEAL" 928307 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-407 925490 925577 925866 "FRIDEAL2" 926202 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-406 924623 925037 925078 "FRETRCT" 925083 NIL FRETRCT (NIL T) -9 NIL 925259) (-405 923735 923966 924317 "FRETRCT-" 924322 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-404 920947 922123 922182 "FRAMALG" 923064 NIL FRAMALG (NIL T T) -9 NIL 923356) (-403 919081 919536 920166 "FRAMALG-" 920389 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-402 913039 918556 918832 "FRAC" 918837 NIL FRAC (NIL T) -8 NIL NIL) (-401 912675 912732 912839 "FRAC2" 912976 NIL FRAC2 (NIL T T) -7 NIL NIL) (-400 912311 912368 912475 "FR2" 912612 NIL FR2 (NIL T T) -7 NIL NIL) (-399 906984 909836 909864 "FPS" 910983 T FPS (NIL) -9 NIL 911540) (-398 906433 906542 906706 "FPS-" 906852 NIL FPS- (NIL T) -8 NIL NIL) (-397 903887 905522 905550 "FPC" 905775 T FPC (NIL) -9 NIL 905917) (-396 903680 903720 903817 "FPC-" 903822 NIL FPC- (NIL T) -8 NIL NIL) (-395 902558 903168 903209 "FPATMAB" 903214 NIL FPATMAB (NIL T) -9 NIL 903366) (-394 900258 900734 901160 "FPARFRAC" 902195 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-393 895651 896150 896832 "FORTRAN" 899690 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-392 893367 893867 894406 "FORT" 895132 T FORT (NIL) -7 NIL NIL) (-391 891043 891605 891633 "FORTFN" 892693 T FORTFN (NIL) -9 NIL 893317) (-390 890807 890857 890885 "FORTCAT" 890944 T FORTCAT (NIL) -9 NIL 891006) (-389 888940 889423 889813 "FORMULA" 890437 T FORMULA (NIL) -8 NIL NIL) (-388 888728 888758 888827 "FORMULA1" 888904 NIL FORMULA1 (NIL T) -7 NIL NIL) (-387 888251 888303 888476 "FORDER" 888670 NIL FORDER (NIL T T T T) -7 NIL NIL) (-386 887347 887511 887704 "FOP" 888078 T FOP (NIL) -7 NIL NIL) (-385 885955 886627 886801 "FNLA" 887229 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-384 884710 885099 885127 "FNCAT" 885587 T FNCAT (NIL) -9 NIL 885847) (-383 884276 884669 884697 "FNAME" 884702 T FNAME (NIL) -8 NIL NIL) (-382 882939 883868 883896 "FMTC" 883901 T FMTC (NIL) -9 NIL 883937) (-381 879301 880462 881091 "FMONOID" 882343 NIL FMONOID (NIL T) -8 NIL NIL) (-380 878520 879043 879192 "FM" 879197 NIL FM (NIL T T) -8 NIL NIL) (-379 875944 876590 876618 "FMFUN" 877762 T FMFUN (NIL) -9 NIL 878470) (-378 875213 875394 875422 "FMC" 875712 T FMC (NIL) -9 NIL 875894) (-377 872407 873241 873295 "FMCAT" 874490 NIL FMCAT (NIL T T) -9 NIL 874985) (-376 871300 872173 872273 "FM1" 872352 NIL FM1 (NIL T T) -8 NIL NIL) (-375 869074 869490 869984 "FLOATRP" 870851 NIL FLOATRP (NIL T) -7 NIL NIL) (-374 862698 866803 867424 "FLOAT" 868473 T FLOAT (NIL) -8 NIL NIL) (-373 860136 860636 861214 "FLOATCP" 862165 NIL FLOATCP (NIL T) -7 NIL NIL) (-372 858945 859749 859790 "FLINEXP" 859795 NIL FLINEXP (NIL T) -9 NIL 859888) (-371 858099 858334 858662 "FLINEXP-" 858667 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-370 857175 857319 857543 "FLASORT" 857951 NIL FLASORT (NIL T T) -7 NIL NIL) (-369 854392 855234 855286 "FLALG" 856513 NIL FLALG (NIL T T) -9 NIL 856980) (-368 848176 851878 851919 "FLAGG" 853181 NIL FLAGG (NIL T) -9 NIL 853833) (-367 846902 847241 847731 "FLAGG-" 847736 NIL FLAGG- (NIL T T) -8 NIL NIL) (-366 845944 846087 846314 "FLAGG2" 846755 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-365 842919 843893 843952 "FINRALG" 845080 NIL FINRALG (NIL T T) -9 NIL 845588) (-364 842079 842308 842647 "FINRALG-" 842652 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-363 841485 841698 841726 "FINITE" 841922 T FINITE (NIL) -9 NIL 842029) (-362 833943 836104 836144 "FINAALG" 839811 NIL FINAALG (NIL T) -9 NIL 841264) (-361 829284 830325 831469 "FINAALG-" 832848 NIL FINAALG- (NIL T T) -8 NIL NIL) (-360 828679 829039 829142 "FILE" 829214 NIL FILE (NIL T) -8 NIL NIL) (-359 827363 827675 827729 "FILECAT" 828413 NIL FILECAT (NIL T T) -9 NIL 828629) (-358 825231 826725 826753 "FIELD" 826793 T FIELD (NIL) -9 NIL 826873) (-357 823851 824236 824747 "FIELD-" 824752 NIL FIELD- (NIL T) -8 NIL NIL) (-356 821729 822486 822833 "FGROUP" 823537 NIL FGROUP (NIL T) -8 NIL NIL) (-355 820819 820983 821203 "FGLMICPK" 821561 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-354 816686 820744 820801 "FFX" 820806 NIL FFX (NIL T NIL) -8 NIL NIL) (-353 816287 816348 816483 "FFSLPE" 816619 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-352 812280 813059 813855 "FFPOLY" 815523 NIL FFPOLY (NIL T) -7 NIL NIL) (-351 811784 811820 812029 "FFPOLY2" 812238 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-350 807670 811703 811766 "FFP" 811771 NIL FFP (NIL T NIL) -8 NIL NIL) (-349 803103 807581 807645 "FF" 807650 NIL FF (NIL NIL NIL) -8 NIL NIL) (-348 798264 802446 802636 "FFNBX" 802957 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-347 793238 797399 797657 "FFNBP" 798118 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-346 787906 792522 792733 "FFNB" 793071 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-345 786738 786936 787251 "FFINTBAS" 787703 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-344 782966 785145 785173 "FFIELDC" 785793 T FFIELDC (NIL) -9 NIL 786169) (-343 781629 781999 782496 "FFIELDC-" 782501 NIL FFIELDC- (NIL T) -8 NIL NIL) (-342 781199 781244 781368 "FFHOM" 781571 NIL FFHOM (NIL T T T) -7 NIL NIL) (-341 778897 779381 779898 "FFF" 780714 NIL FFF (NIL T) -7 NIL NIL) (-340 774550 778639 778740 "FFCGX" 778840 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-339 770217 774282 774389 "FFCGP" 774493 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-338 765435 769944 770052 "FFCG" 770153 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-337 747268 756306 756392 "FFCAT" 761557 NIL FFCAT (NIL T T T) -9 NIL 763008) (-336 742466 743513 744827 "FFCAT-" 746057 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-335 741877 741920 742155 "FFCAT2" 742417 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-334 731089 734849 736069 "FEXPR" 740729 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-333 730089 730524 730565 "FEVALAB" 730649 NIL FEVALAB (NIL T) -9 NIL 730910) (-332 729248 729458 729796 "FEVALAB-" 729801 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-331 727841 728631 728834 "FDIV" 729147 NIL FDIV (NIL T T T T) -8 NIL NIL) (-330 724907 725622 725737 "FDIVCAT" 727305 NIL FDIVCAT (NIL T T T T) -9 NIL 727742) (-329 724669 724696 724866 "FDIVCAT-" 724871 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-328 723889 723976 724253 "FDIV2" 724576 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-327 722575 722834 723123 "FCPAK1" 723620 T FCPAK1 (NIL) -7 NIL NIL) (-326 721703 722075 722216 "FCOMP" 722466 NIL FCOMP (NIL T) -8 NIL NIL) (-325 705439 708853 712391 "FC" 718185 T FC (NIL) -8 NIL NIL) (-324 698018 702003 702043 "FAXF" 703845 NIL FAXF (NIL T) -9 NIL 704537) (-323 695297 695952 696777 "FAXF-" 697242 NIL FAXF- (NIL T T) -8 NIL NIL) (-322 690397 694673 694849 "FARRAY" 695154 NIL FARRAY (NIL T) -8 NIL NIL) (-321 685650 687682 687735 "FAMR" 688758 NIL FAMR (NIL T T) -9 NIL 689218) (-320 684540 684842 685277 "FAMR-" 685282 NIL FAMR- (NIL T T T) -8 NIL NIL) (-319 683736 684462 684515 "FAMONOID" 684520 NIL FAMONOID (NIL T) -8 NIL NIL) (-318 681548 682232 682285 "FAMONC" 683226 NIL FAMONC (NIL T T) -9 NIL 683612) (-317 680240 681302 681439 "FAGROUP" 681444 NIL FAGROUP (NIL T) -8 NIL NIL) (-316 678035 678354 678757 "FACUTIL" 679921 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-315 677134 677319 677541 "FACTFUNC" 677845 NIL FACTFUNC (NIL T) -7 NIL NIL) (-314 669539 676385 676597 "EXPUPXS" 676990 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-313 667022 667562 668148 "EXPRTUBE" 668973 T EXPRTUBE (NIL) -7 NIL NIL) (-312 663216 663808 664545 "EXPRODE" 666361 NIL EXPRODE (NIL T T) -7 NIL NIL) (-311 648590 661871 662299 "EXPR" 662820 NIL EXPR (NIL T) -8 NIL NIL) (-310 642997 643584 644397 "EXPR2UPS" 647888 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-309 642633 642690 642797 "EXPR2" 642934 NIL EXPR2 (NIL T T) -7 NIL NIL) (-308 634038 641765 642062 "EXPEXPAN" 642470 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-307 633865 633995 634024 "EXIT" 634029 T EXIT (NIL) -8 NIL NIL) (-306 633372 633589 633680 "EXITAST" 633794 T EXITAST (NIL) -8 NIL NIL) (-305 632999 633061 633174 "EVALCYC" 633304 NIL EVALCYC (NIL T) -7 NIL NIL) (-304 632540 632658 632699 "EVALAB" 632869 NIL EVALAB (NIL T) -9 NIL 632973) (-303 632021 632143 632364 "EVALAB-" 632369 NIL EVALAB- (NIL T T) -8 NIL NIL) (-302 629489 630757 630785 "EUCDOM" 631340 T EUCDOM (NIL) -9 NIL 631690) (-301 627894 628336 628926 "EUCDOM-" 628931 NIL EUCDOM- (NIL T) -8 NIL NIL) (-300 615434 618192 620942 "ESTOOLS" 625164 T ESTOOLS (NIL) -7 NIL NIL) (-299 615066 615123 615232 "ESTOOLS2" 615371 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-298 614817 614859 614939 "ESTOOLS1" 615018 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-297 608722 610450 610478 "ES" 613246 T ES (NIL) -9 NIL 614655) (-296 603669 604956 606773 "ES-" 606937 NIL ES- (NIL T) -8 NIL NIL) (-295 600044 600804 601584 "ESCONT" 602909 T ESCONT (NIL) -7 NIL NIL) (-294 599789 599821 599903 "ESCONT1" 600006 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-293 599464 599514 599614 "ES2" 599733 NIL ES2 (NIL T T) -7 NIL NIL) (-292 599094 599152 599261 "ES1" 599400 NIL ES1 (NIL T T) -7 NIL NIL) (-291 598310 598439 598615 "ERROR" 598938 T ERROR (NIL) -7 NIL NIL) (-290 591813 598169 598260 "EQTBL" 598265 NIL EQTBL (NIL T T) -8 NIL NIL) (-289 584370 587127 588576 "EQ" 590397 NIL -3245 (NIL T) -8 NIL NIL) (-288 584002 584059 584168 "EQ2" 584307 NIL EQ2 (NIL T T) -7 NIL NIL) (-287 579294 580340 581433 "EP" 582941 NIL EP (NIL T) -7 NIL NIL) (-286 577876 578177 578494 "ENV" 578997 T ENV (NIL) -8 NIL NIL) (-285 577055 577575 577603 "ENTIRER" 577608 T ENTIRER (NIL) -9 NIL 577654) (-284 573557 575010 575380 "EMR" 576854 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-283 572701 572886 572940 "ELTAGG" 573320 NIL ELTAGG (NIL T T) -9 NIL 573531) (-282 572420 572482 572623 "ELTAGG-" 572628 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-281 572209 572238 572292 "ELTAB" 572376 NIL ELTAB (NIL T T) -9 NIL NIL) (-280 571335 571481 571680 "ELFUTS" 572060 NIL ELFUTS (NIL T T) -7 NIL NIL) (-279 571077 571133 571161 "ELEMFUN" 571266 T ELEMFUN (NIL) -9 NIL NIL) (-278 570947 570968 571036 "ELEMFUN-" 571041 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-277 565838 569047 569088 "ELAGG" 570028 NIL ELAGG (NIL T) -9 NIL 570491) (-276 564123 564557 565220 "ELAGG-" 565225 NIL ELAGG- (NIL T T) -8 NIL NIL) (-275 562780 563060 563355 "ELABEXPR" 563848 T ELABEXPR (NIL) -8 NIL NIL) (-274 555646 557447 558274 "EFUPXS" 562056 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-273 549096 550897 551707 "EFULS" 554922 NIL EFULS (NIL T T T) -8 NIL NIL) (-272 546518 546876 547355 "EFSTRUC" 548728 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-271 535590 537155 538715 "EF" 545033 NIL EF (NIL T T) -7 NIL NIL) (-270 534691 535075 535224 "EAB" 535461 T EAB (NIL) -8 NIL NIL) (-269 533900 534650 534678 "E04UCFA" 534683 T E04UCFA (NIL) -8 NIL NIL) (-268 533109 533859 533887 "E04NAFA" 533892 T E04NAFA (NIL) -8 NIL NIL) (-267 532318 533068 533096 "E04MBFA" 533101 T E04MBFA (NIL) -8 NIL NIL) (-266 531527 532277 532305 "E04JAFA" 532310 T E04JAFA (NIL) -8 NIL NIL) (-265 530738 531486 531514 "E04GCFA" 531519 T E04GCFA (NIL) -8 NIL NIL) (-264 529949 530697 530725 "E04FDFA" 530730 T E04FDFA (NIL) -8 NIL NIL) (-263 529158 529908 529936 "E04DGFA" 529941 T E04DGFA (NIL) -8 NIL NIL) (-262 523336 524683 526047 "E04AGNT" 527814 T E04AGNT (NIL) -7 NIL NIL) (-261 522042 522522 522562 "DVARCAT" 523037 NIL DVARCAT (NIL T) -9 NIL 523236) (-260 521246 521458 521772 "DVARCAT-" 521777 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-259 514146 521045 521174 "DSMP" 521179 NIL DSMP (NIL T T T) -8 NIL NIL) (-258 508956 510091 511159 "DROPT" 513098 T DROPT (NIL) -8 NIL NIL) (-257 508621 508680 508778 "DROPT1" 508891 NIL DROPT1 (NIL T) -7 NIL NIL) (-256 503736 504862 505999 "DROPT0" 507504 T DROPT0 (NIL) -7 NIL NIL) (-255 502081 502406 502792 "DRAWPT" 503370 T DRAWPT (NIL) -7 NIL NIL) (-254 496668 497591 498670 "DRAW" 501055 NIL DRAW (NIL T) -7 NIL NIL) (-253 496301 496354 496472 "DRAWHACK" 496609 NIL DRAWHACK (NIL T) -7 NIL NIL) (-252 495032 495301 495592 "DRAWCX" 496030 T DRAWCX (NIL) -7 NIL NIL) (-251 494548 494616 494767 "DRAWCURV" 494958 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-250 485019 486978 489093 "DRAWCFUN" 492453 T DRAWCFUN (NIL) -7 NIL NIL) (-249 481832 483714 483755 "DQAGG" 484384 NIL DQAGG (NIL T) -9 NIL 484657) (-248 470111 476810 476893 "DPOLCAT" 478745 NIL DPOLCAT (NIL T T T T) -9 NIL 479290) (-247 464950 466296 468254 "DPOLCAT-" 468259 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-246 458105 464811 464909 "DPMO" 464914 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-245 451163 457885 458052 "DPMM" 458057 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-244 450583 450786 450900 "DOMAIN" 451069 T DOMAIN (NIL) -8 NIL NIL) (-243 444334 450218 450370 "DMP" 450484 NIL DMP (NIL NIL T) -8 NIL NIL) (-242 443934 443990 444134 "DLP" 444272 NIL DLP (NIL T) -7 NIL NIL) (-241 437804 443261 443451 "DLIST" 443776 NIL DLIST (NIL T) -8 NIL NIL) (-240 434650 436659 436700 "DLAGG" 437250 NIL DLAGG (NIL T) -9 NIL 437479) (-239 433463 434093 434121 "DIVRING" 434213 T DIVRING (NIL) -9 NIL 434296) (-238 432700 432890 433190 "DIVRING-" 433195 NIL DIVRING- (NIL T) -8 NIL NIL) (-237 430802 431159 431565 "DISPLAY" 432314 T DISPLAY (NIL) -7 NIL NIL) (-236 424744 430716 430779 "DIRPROD" 430784 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-235 423592 423795 424060 "DIRPROD2" 424537 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-234 412855 418807 418860 "DIRPCAT" 419270 NIL DIRPCAT (NIL NIL T) -9 NIL 420110) (-233 410181 410823 411704 "DIRPCAT-" 412041 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-232 409468 409628 409814 "DIOSP" 410015 T DIOSP (NIL) -7 NIL NIL) (-231 406170 408380 408421 "DIOPS" 408855 NIL DIOPS (NIL T) -9 NIL 409084) (-230 405719 405833 406024 "DIOPS-" 406029 NIL DIOPS- (NIL T T) -8 NIL NIL) (-229 404611 405205 405233 "DIFRING" 405420 T DIFRING (NIL) -9 NIL 405530) (-228 404257 404334 404486 "DIFRING-" 404491 NIL DIFRING- (NIL T) -8 NIL NIL) (-227 402062 403300 403341 "DIFEXT" 403704 NIL DIFEXT (NIL T) -9 NIL 403998) (-226 400347 400775 401441 "DIFEXT-" 401446 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-225 397669 399879 399920 "DIAGG" 399925 NIL DIAGG (NIL T) -9 NIL 399945) (-224 397053 397210 397462 "DIAGG-" 397467 NIL DIAGG- (NIL T T) -8 NIL NIL) (-223 392518 396012 396289 "DHMATRIX" 396822 NIL DHMATRIX (NIL T) -8 NIL NIL) (-222 388130 389039 390049 "DFSFUN" 391528 T DFSFUN (NIL) -7 NIL NIL) (-221 383246 387061 387373 "DFLOAT" 387838 T DFLOAT (NIL) -8 NIL NIL) (-220 381474 381755 382151 "DFINTTLS" 382954 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-219 378539 379495 379895 "DERHAM" 381140 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-218 376388 378314 378403 "DEQUEUE" 378483 NIL DEQUEUE (NIL T) -8 NIL NIL) (-217 375603 375736 375932 "DEGRED" 376250 NIL DEGRED (NIL T T) -7 NIL NIL) (-216 371998 372743 373596 "DEFINTRF" 374831 NIL DEFINTRF (NIL T) -7 NIL NIL) (-215 369525 369994 370593 "DEFINTEF" 371517 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-214 368902 369145 369260 "DEFAST" 369430 T DEFAST (NIL) -8 NIL NIL) (-213 362944 368499 368647 "DECIMAL" 368774 T DECIMAL (NIL) -8 NIL NIL) (-212 360456 360914 361420 "DDFACT" 362488 NIL DDFACT (NIL T T) -7 NIL NIL) (-211 360052 360095 360246 "DBLRESP" 360407 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-210 357951 358285 358645 "DBASE" 359819 NIL DBASE (NIL T) -8 NIL NIL) (-209 357220 357431 357577 "DATAARY" 357850 NIL DATAARY (NIL NIL T) -8 NIL NIL) (-208 356353 357179 357207 "D03FAFA" 357212 T D03FAFA (NIL) -8 NIL NIL) (-207 355487 356312 356340 "D03EEFA" 356345 T D03EEFA (NIL) -8 NIL NIL) (-206 353437 353903 354392 "D03AGNT" 355018 T D03AGNT (NIL) -7 NIL NIL) (-205 352753 353396 353424 "D02EJFA" 353429 T D02EJFA (NIL) -8 NIL NIL) (-204 352069 352712 352740 "D02CJFA" 352745 T D02CJFA (NIL) -8 NIL NIL) (-203 351385 352028 352056 "D02BHFA" 352061 T D02BHFA (NIL) -8 NIL NIL) (-202 350701 351344 351372 "D02BBFA" 351377 T D02BBFA (NIL) -8 NIL NIL) (-201 343899 345487 347093 "D02AGNT" 349115 T D02AGNT (NIL) -7 NIL NIL) (-200 341668 342190 342736 "D01WGTS" 343373 T D01WGTS (NIL) -7 NIL NIL) (-199 340763 341627 341655 "D01TRNS" 341660 T D01TRNS (NIL) -8 NIL NIL) (-198 339858 340722 340750 "D01GBFA" 340755 T D01GBFA (NIL) -8 NIL NIL) (-197 338953 339817 339845 "D01FCFA" 339850 T D01FCFA (NIL) -8 NIL NIL) (-196 338048 338912 338940 "D01ASFA" 338945 T D01ASFA (NIL) -8 NIL NIL) (-195 337143 338007 338035 "D01AQFA" 338040 T D01AQFA (NIL) -8 NIL NIL) (-194 336238 337102 337130 "D01APFA" 337135 T D01APFA (NIL) -8 NIL NIL) (-193 335333 336197 336225 "D01ANFA" 336230 T D01ANFA (NIL) -8 NIL NIL) (-192 334428 335292 335320 "D01AMFA" 335325 T D01AMFA (NIL) -8 NIL NIL) (-191 333523 334387 334415 "D01ALFA" 334420 T D01ALFA (NIL) -8 NIL NIL) (-190 332618 333482 333510 "D01AKFA" 333515 T D01AKFA (NIL) -8 NIL NIL) (-189 331713 332577 332605 "D01AJFA" 332610 T D01AJFA (NIL) -8 NIL NIL) (-188 325010 326561 328122 "D01AGNT" 330172 T D01AGNT (NIL) -7 NIL NIL) (-187 324347 324475 324627 "CYCLOTOM" 324878 T CYCLOTOM (NIL) -7 NIL NIL) (-186 321082 321795 322522 "CYCLES" 323640 T CYCLES (NIL) -7 NIL NIL) (-185 320394 320528 320699 "CVMP" 320943 NIL CVMP (NIL T) -7 NIL NIL) (-184 318165 318423 318799 "CTRIGMNP" 320122 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-183 317582 317788 317902 "CTOR" 318071 T CTOR (NIL) -8 NIL NIL) (-182 317118 317313 317414 "CTORKIND" 317501 T CTORKIND (NIL) -8 NIL NIL) (-181 316629 316818 316917 "CTORCALL" 317039 T CTORCALL (NIL) -8 NIL NIL) (-180 316003 316102 316255 "CSTTOOLS" 316526 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-179 311802 312459 313217 "CRFP" 315315 NIL CRFP (NIL T T) -7 NIL NIL) (-178 311304 311523 311615 "CRCEAST" 311730 T CRCEAST (NIL) -8 NIL NIL) (-177 310351 310536 310764 "CRAPACK" 311108 NIL CRAPACK (NIL T) -7 NIL NIL) (-176 309735 309836 310040 "CPMATCH" 310227 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-175 309460 309488 309594 "CPIMA" 309701 NIL CPIMA (NIL T T T) -7 NIL NIL) (-174 305824 306496 307214 "COORDSYS" 308795 NIL COORDSYS (NIL T) -7 NIL NIL) (-173 305208 305337 305487 "CONTOUR" 305694 T CONTOUR (NIL) -8 NIL NIL) (-172 301134 303211 303703 "CONTFRAC" 304748 NIL CONTFRAC (NIL T) -8 NIL NIL) (-171 301014 301035 301063 "CONDUIT" 301100 T CONDUIT (NIL) -9 NIL NIL) (-170 300187 300707 300735 "COMRING" 300740 T COMRING (NIL) -9 NIL 300792) (-169 299268 299545 299729 "COMPPROP" 300023 T COMPPROP (NIL) -8 NIL NIL) (-168 298929 298964 299092 "COMPLPAT" 299227 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-167 288986 298738 298847 "COMPLEX" 298852 NIL COMPLEX (NIL T) -8 NIL NIL) (-166 288622 288679 288786 "COMPLEX2" 288923 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-165 288340 288375 288473 "COMPFACT" 288581 NIL COMPFACT (NIL T T) -7 NIL NIL) (-164 272513 282733 282773 "COMPCAT" 283777 NIL COMPCAT (NIL T) -9 NIL 285162) (-163 262028 264952 268579 "COMPCAT-" 268935 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-162 261757 261785 261888 "COMMUPC" 261994 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-161 261552 261585 261644 "COMMONOP" 261718 T COMMONOP (NIL) -7 NIL NIL) (-160 261135 261303 261390 "COMM" 261485 T COMM (NIL) -8 NIL NIL) (-159 260739 260939 261014 "COMMAAST" 261080 T COMMAAST (NIL) -8 NIL NIL) (-158 259988 260182 260210 "COMBOPC" 260548 T COMBOPC (NIL) -9 NIL 260723) (-157 258884 259094 259336 "COMBINAT" 259778 NIL COMBINAT (NIL T) -7 NIL NIL) (-156 255082 255655 256295 "COMBF" 258306 NIL COMBF (NIL T T) -7 NIL NIL) (-155 253868 254198 254433 "COLOR" 254867 T COLOR (NIL) -8 NIL NIL) (-154 253371 253589 253681 "COLONAST" 253796 T COLONAST (NIL) -8 NIL NIL) (-153 253011 253058 253183 "CMPLXRT" 253318 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-152 252486 252711 252810 "CLLCTAST" 252932 T CLLCTAST (NIL) -8 NIL NIL) (-151 247988 249016 250096 "CLIP" 251426 T CLIP (NIL) -7 NIL NIL) (-150 246370 247094 247333 "CLIF" 247815 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-149 242592 244516 244557 "CLAGG" 245486 NIL CLAGG (NIL T) -9 NIL 246022) (-148 241014 241471 242054 "CLAGG-" 242059 NIL CLAGG- (NIL T T) -8 NIL NIL) (-147 240558 240643 240783 "CINTSLPE" 240923 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-146 238059 238530 239078 "CHVAR" 240086 NIL CHVAR (NIL T T T) -7 NIL NIL) (-145 237302 237822 237850 "CHARZ" 237855 T CHARZ (NIL) -9 NIL 237870) (-144 237056 237096 237174 "CHARPOL" 237256 NIL CHARPOL (NIL T) -7 NIL NIL) (-143 236183 236736 236764 "CHARNZ" 236811 T CHARNZ (NIL) -9 NIL 236867) (-142 234208 234873 235208 "CHAR" 235868 T CHAR (NIL) -8 NIL NIL) (-141 233934 233995 234023 "CFCAT" 234134 T CFCAT (NIL) -9 NIL NIL) (-140 233179 233290 233472 "CDEN" 233818 NIL CDEN (NIL T T T) -7 NIL NIL) (-139 229171 232332 232612 "CCLASS" 232919 T CCLASS (NIL) -8 NIL NIL) (-138 229090 229116 229151 "CATEGORY" 229156 T -10 (NIL) -8 NIL NIL) (-137 228564 228790 228889 "CATAST" 229011 T CATAST (NIL) -8 NIL NIL) (-136 228067 228285 228377 "CASEAST" 228492 T CASEAST (NIL) -8 NIL NIL) (-135 223119 224096 224849 "CARTEN" 227370 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-134 222227 222375 222596 "CARTEN2" 222966 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-133 220569 221377 221634 "CARD" 221990 T CARD (NIL) -8 NIL NIL) (-132 220172 220373 220448 "CAPSLAST" 220514 T CAPSLAST (NIL) -8 NIL NIL) (-131 219544 219872 219900 "CACHSET" 220032 T CACHSET (NIL) -9 NIL 220109) (-130 219040 219336 219364 "CABMON" 219414 T CABMON (NIL) -9 NIL 219470) (-129 218068 218496 218669 "BYTE" 218887 T BYTE (NIL) -8 NIL NIL) (-128 213477 217536 217699 "BYTEBUF" 217925 T BYTEBUF (NIL) -8 NIL NIL) (-127 211034 213169 213276 "BTREE" 213403 NIL BTREE (NIL T) -8 NIL NIL) (-126 208532 210682 210804 "BTOURN" 210944 NIL BTOURN (NIL T) -8 NIL NIL) (-125 205950 208003 208044 "BTCAT" 208112 NIL BTCAT (NIL T) -9 NIL 208189) (-124 205617 205697 205846 "BTCAT-" 205851 NIL BTCAT- (NIL T T) -8 NIL NIL) (-123 200909 204760 204788 "BTAGG" 205010 T BTAGG (NIL) -9 NIL 205171) (-122 200399 200524 200730 "BTAGG-" 200735 NIL BTAGG- (NIL T) -8 NIL NIL) (-121 197443 199677 199892 "BSTREE" 200216 NIL BSTREE (NIL T) -8 NIL NIL) (-120 196581 196707 196891 "BRILL" 197299 NIL BRILL (NIL T) -7 NIL NIL) (-119 193282 195309 195350 "BRAGG" 195999 NIL BRAGG (NIL T) -9 NIL 196256) (-118 191811 192217 192772 "BRAGG-" 192777 NIL BRAGG- (NIL T T) -8 NIL NIL) (-117 185075 191157 191341 "BPADICRT" 191659 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-116 183425 185012 185057 "BPADIC" 185062 NIL BPADIC (NIL NIL) -8 NIL NIL) (-115 183123 183153 183267 "BOUNDZRO" 183389 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-114 178638 179729 180596 "BOP" 182276 T BOP (NIL) -8 NIL NIL) (-113 176259 176703 177223 "BOP1" 178151 NIL BOP1 (NIL T) -7 NIL NIL) (-112 174997 175683 175876 "BOOLEAN" 176086 T BOOLEAN (NIL) -8 NIL NIL) (-111 174359 174737 174791 "BMODULE" 174796 NIL BMODULE (NIL T T) -9 NIL 174861) (-110 170189 174157 174230 "BITS" 174306 T BITS (NIL) -8 NIL NIL) (-109 169601 169723 169865 "BINDING" 170067 T BINDING (NIL) -8 NIL NIL) (-108 163646 169200 169347 "BINARY" 169474 T BINARY (NIL) -8 NIL NIL) (-107 161473 162901 162942 "BGAGG" 163202 NIL BGAGG (NIL T) -9 NIL 163339) (-106 161304 161336 161427 "BGAGG-" 161432 NIL BGAGG- (NIL T T) -8 NIL NIL) (-105 160402 160688 160893 "BFUNCT" 161119 T BFUNCT (NIL) -8 NIL NIL) (-104 159092 159270 159558 "BEZOUT" 160226 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-103 155609 157944 158274 "BBTREE" 158795 NIL BBTREE (NIL T) -8 NIL NIL) (-102 155343 155396 155424 "BASTYPE" 155543 T BASTYPE (NIL) -9 NIL NIL) (-101 155195 155224 155297 "BASTYPE-" 155302 NIL BASTYPE- (NIL T) -8 NIL NIL) (-100 154629 154705 154857 "BALFACT" 155106 NIL BALFACT (NIL T T) -7 NIL NIL) (-99 153512 154044 154230 "AUTOMOR" 154474 NIL AUTOMOR (NIL T) -8 NIL NIL) (-98 153238 153243 153269 "ATTREG" 153274 T ATTREG (NIL) -9 NIL NIL) (-97 151517 151935 152287 "ATTRBUT" 152904 T ATTRBUT (NIL) -8 NIL NIL) (-96 151152 151345 151411 "ATTRAST" 151469 T ATTRAST (NIL) -8 NIL NIL) (-95 150688 150801 150827 "ATRIG" 151028 T ATRIG (NIL) -9 NIL NIL) (-94 150497 150538 150625 "ATRIG-" 150630 NIL ATRIG- (NIL T) -8 NIL NIL) (-93 150168 150328 150354 "ASTCAT" 150359 T ASTCAT (NIL) -9 NIL 150389) (-92 149895 149954 150073 "ASTCAT-" 150078 NIL ASTCAT- (NIL T) -8 NIL NIL) (-91 148092 149671 149759 "ASTACK" 149838 NIL ASTACK (NIL T) -8 NIL NIL) (-90 146597 146894 147259 "ASSOCEQ" 147774 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-89 145629 146256 146380 "ASP9" 146504 NIL ASP9 (NIL NIL) -8 NIL NIL) (-88 145393 145577 145616 "ASP8" 145621 NIL ASP8 (NIL NIL) -8 NIL NIL) (-87 144262 144998 145140 "ASP80" 145282 NIL ASP80 (NIL NIL) -8 NIL NIL) (-86 143161 143897 144029 "ASP7" 144161 NIL ASP7 (NIL NIL) -8 NIL NIL) (-85 142115 142838 142956 "ASP78" 143074 NIL ASP78 (NIL NIL) -8 NIL NIL) (-84 141084 141795 141912 "ASP77" 142029 NIL ASP77 (NIL NIL) -8 NIL NIL) (-83 139996 140722 140853 "ASP74" 140984 NIL ASP74 (NIL NIL) -8 NIL NIL) (-82 138896 139631 139763 "ASP73" 139895 NIL ASP73 (NIL NIL) -8 NIL NIL) (-81 138000 138722 138822 "ASP6" 138827 NIL ASP6 (NIL NIL) -8 NIL NIL) (-80 136948 137677 137795 "ASP55" 137913 NIL ASP55 (NIL NIL) -8 NIL NIL) (-79 135898 136622 136741 "ASP50" 136860 NIL ASP50 (NIL NIL) -8 NIL NIL) (-78 134986 135599 135709 "ASP4" 135819 NIL ASP4 (NIL NIL) -8 NIL NIL) (-77 134074 134687 134797 "ASP49" 134907 NIL ASP49 (NIL NIL) -8 NIL NIL) (-76 132859 133613 133781 "ASP42" 133963 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-75 131636 132392 132562 "ASP41" 132746 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-74 130586 131313 131431 "ASP35" 131549 NIL ASP35 (NIL NIL) -8 NIL NIL) (-73 130351 130534 130573 "ASP34" 130578 NIL ASP34 (NIL NIL) -8 NIL NIL) (-72 130088 130155 130231 "ASP33" 130306 NIL ASP33 (NIL NIL) -8 NIL NIL) (-71 128983 129723 129855 "ASP31" 129987 NIL ASP31 (NIL NIL) -8 NIL NIL) (-70 128748 128931 128970 "ASP30" 128975 NIL ASP30 (NIL NIL) -8 NIL NIL) (-69 128483 128552 128628 "ASP29" 128703 NIL ASP29 (NIL NIL) -8 NIL NIL) (-68 128248 128431 128470 "ASP28" 128475 NIL ASP28 (NIL NIL) -8 NIL NIL) (-67 128013 128196 128235 "ASP27" 128240 NIL ASP27 (NIL NIL) -8 NIL NIL) (-66 127097 127711 127822 "ASP24" 127933 NIL ASP24 (NIL NIL) -8 NIL NIL) (-65 126174 126899 127011 "ASP20" 127016 NIL ASP20 (NIL NIL) -8 NIL NIL) (-64 125262 125875 125985 "ASP1" 126095 NIL ASP1 (NIL NIL) -8 NIL NIL) (-63 124206 124936 125055 "ASP19" 125174 NIL ASP19 (NIL NIL) -8 NIL NIL) (-62 123943 124010 124086 "ASP12" 124161 NIL ASP12 (NIL NIL) -8 NIL NIL) (-61 122795 123542 123686 "ASP10" 123830 NIL ASP10 (NIL NIL) -8 NIL NIL) (-60 120694 122639 122730 "ARRAY2" 122735 NIL ARRAY2 (NIL T) -8 NIL NIL) (-59 116510 120342 120456 "ARRAY1" 120611 NIL ARRAY1 (NIL T) -8 NIL NIL) (-58 115542 115715 115936 "ARRAY12" 116333 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-57 109901 111772 111847 "ARR2CAT" 114477 NIL ARR2CAT (NIL T T T) -9 NIL 115235) (-56 107335 108079 109033 "ARR2CAT-" 109038 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-55 106929 107162 107241 "ARITY" 107274 T ARITY (NIL) -8 NIL NIL) (-54 105677 105829 106135 "APPRULE" 106765 NIL APPRULE (NIL T T T) -7 NIL NIL) (-53 105328 105376 105495 "APPLYORE" 105623 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-52 104302 104593 104788 "ANY" 105151 T ANY (NIL) -8 NIL NIL) (-51 103580 103703 103860 "ANY1" 104176 NIL ANY1 (NIL T) -7 NIL NIL) (-50 101145 102017 102344 "ANTISYM" 103304 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-49 100660 100849 100946 "ANON" 101066 T ANON (NIL) -8 NIL NIL) (-48 94792 99199 99653 "AN" 100224 T AN (NIL) -8 NIL NIL) (-47 91048 92402 92453 "AMR" 93201 NIL AMR (NIL T T) -9 NIL 93801) (-46 90160 90381 90744 "AMR-" 90749 NIL AMR- (NIL T T T) -8 NIL NIL) (-45 74710 90077 90138 "ALIST" 90143 NIL ALIST (NIL T T) -8 NIL NIL) (-44 71547 74304 74473 "ALGSC" 74628 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-43 68103 68657 69264 "ALGPKG" 70987 NIL ALGPKG (NIL T T) -7 NIL NIL) (-42 67380 67481 67665 "ALGMFACT" 67989 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-41 63119 63804 64459 "ALGMANIP" 66903 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-40 54525 62745 62895 "ALGFF" 63052 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-39 53721 53852 54031 "ALGFACT" 54383 NIL ALGFACT (NIL T) -7 NIL NIL) (-38 52786 53352 53390 "ALGEBRA" 53395 NIL ALGEBRA (NIL T) -9 NIL 53436) (-37 52504 52563 52695 "ALGEBRA-" 52700 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-36 34764 50507 50559 "ALAGG" 50695 NIL ALAGG (NIL T T) -9 NIL 50856) (-35 34300 34413 34439 "AHYP" 34640 T AHYP (NIL) -9 NIL NIL) (-34 33231 33479 33505 "AGG" 34004 T AGG (NIL) -9 NIL 34283) (-33 32665 32827 33041 "AGG-" 33046 NIL AGG- (NIL T) -8 NIL NIL) (-32 30342 30764 31182 "AF" 32307 NIL AF (NIL T T) -7 NIL NIL) (-31 29849 30067 30157 "ADDAST" 30270 T ADDAST (NIL) -8 NIL NIL) (-30 29118 29376 29532 "ACPLOT" 29711 T ACPLOT (NIL) -8 NIL NIL) (-29 18410 26331 26382 "ACFS" 27093 NIL ACFS (NIL T) -9 NIL 27332) (-28 16424 16914 17689 "ACFS-" 17694 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12697 14591 14617 "ACF" 15496 T ACF (NIL) -9 NIL 15908) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL) (-25 10999 11168 11194 "ABELSG" 11286 T ABELSG (NIL) -9 NIL 11351) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10235 10496 10522 "ABELMON" 10692 T ABELMON (NIL) -9 NIL 10804) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9233 9579 9605 "ABELGRP" 9730 T ABELGRP (NIL) -9 NIL 9812) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL)) \ No newline at end of file
+(((-93) . T) ((-102) . T) ((-608 #0=(-1168)) . T) ((-605 (-853)) . T) ((-605 #0#) . T) ((-488 #0#) . T) ((-1087) . T))
+((-4123 ((|#1| |#1| (-1 (-558) |#1| |#1|)) 23) ((|#1| |#1| (-1 (-112) |#1|)) 19)) (-1791 (((-1251)) 15)) (-3666 (((-635 |#1|)) 9)))
+(((-1071 |#1|) (-10 -7 (-15 -1791 ((-1251))) (-15 -3666 ((-635 |#1|))) (-15 -4123 (|#1| |#1| (-1 (-112) |#1|))) (-15 -4123 (|#1| |#1| (-1 (-558) |#1| |#1|)))) (-131)) (T -1071))
+((-4123 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-558) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1071 *2)))) (-4123 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1071 *2)))) (-3666 (*1 *2) (-12 (-5 *2 (-635 *3)) (-5 *1 (-1071 *3)) (-4 *3 (-131)))) (-1791 (*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-1071 *3)) (-4 *3 (-131)))))
+(-10 -7 (-15 -1791 ((-1251))) (-15 -3666 ((-635 |#1|))) (-15 -4123 (|#1| |#1| (-1 (-112) |#1|))) (-15 -4123 (|#1| |#1| (-1 (-558) |#1| |#1|))))
+((-4158 (($ (-109) $) 16)) (-4170 (((-3 (-109) "failed") (-1163) $) 15)) (-2083 (($) 7)) (-4146 (($) 17)) (-4134 (($) 18)) (-4183 (((-635 (-174)) $) 10)) (-3220 (((-853) $) 21)))
+(((-1072) (-13 (-605 (-853)) (-10 -8 (-15 -2083 ($)) (-15 -4183 ((-635 (-174)) $)) (-15 -4170 ((-3 (-109) "failed") (-1163) $)) (-15 -4158 ($ (-109) $)) (-15 -4146 ($)) (-15 -4134 ($))))) (T -1072))
+((-2083 (*1 *1) (-5 *1 (-1072))) (-4183 (*1 *2 *1) (-12 (-5 *2 (-635 (-174))) (-5 *1 (-1072)))) (-4170 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1163)) (-5 *2 (-109)) (-5 *1 (-1072)))) (-4158 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1072)))) (-4146 (*1 *1) (-5 *1 (-1072))) (-4134 (*1 *1) (-5 *1 (-1072))))
+(-13 (-605 (-853)) (-10 -8 (-15 -2083 ($)) (-15 -4183 ((-635 (-174)) $)) (-15 -4170 ((-3 (-109) "failed") (-1163) $)) (-15 -4158 ($ (-109) $)) (-15 -4146 ($)) (-15 -4134 ($))))
+((-4194 (((-1246 (-679 |#1|)) (-635 (-679 |#1|))) 42) (((-1246 (-679 (-942 |#1|))) (-635 (-1163)) (-679 (-942 |#1|))) 62) (((-1246 (-679 (-406 (-942 |#1|)))) (-635 (-1163)) (-679 (-406 (-942 |#1|)))) 78)) (-4205 (((-1246 |#1|) (-679 |#1|) (-635 (-679 |#1|))) 36)))
+(((-1073 |#1|) (-10 -7 (-15 -4194 ((-1246 (-679 (-406 (-942 |#1|)))) (-635 (-1163)) (-679 (-406 (-942 |#1|))))) (-15 -4194 ((-1246 (-679 (-942 |#1|))) (-635 (-1163)) (-679 (-942 |#1|)))) (-15 -4194 ((-1246 (-679 |#1|)) (-635 (-679 |#1|)))) (-15 -4205 ((-1246 |#1|) (-679 |#1|) (-635 (-679 |#1|))))) (-362)) (T -1073))
+((-4205 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-679 *5))) (-5 *3 (-679 *5)) (-4 *5 (-362)) (-5 *2 (-1246 *5)) (-5 *1 (-1073 *5)))) (-4194 (*1 *2 *3) (-12 (-5 *3 (-635 (-679 *4))) (-4 *4 (-362)) (-5 *2 (-1246 (-679 *4))) (-5 *1 (-1073 *4)))) (-4194 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-1163))) (-4 *5 (-362)) (-5 *2 (-1246 (-679 (-942 *5)))) (-5 *1 (-1073 *5)) (-5 *4 (-679 (-942 *5))))) (-4194 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-1163))) (-4 *5 (-362)) (-5 *2 (-1246 (-679 (-406 (-942 *5))))) (-5 *1 (-1073 *5)) (-5 *4 (-679 (-406 (-942 *5)))))))
+(-10 -7 (-15 -4194 ((-1246 (-679 (-406 (-942 |#1|)))) (-635 (-1163)) (-679 (-406 (-942 |#1|))))) (-15 -4194 ((-1246 (-679 (-942 |#1|))) (-635 (-1163)) (-679 (-942 |#1|)))) (-15 -4194 ((-1246 (-679 |#1|)) (-635 (-679 |#1|)))) (-15 -4205 ((-1246 |#1|) (-679 |#1|) (-635 (-679 |#1|)))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2702 (((-635 (-762)) $) NIL) (((-635 (-762)) $ (-1163)) NIL)) (-1800 (((-762) $) NIL) (((-762) $ (-1163)) NIL)) (-2671 (((-635 (-1075 (-1163))) $) NIL)) (-2492 (((-1159 $) $ (-1075 (-1163))) NIL) (((-1159 |#1|) $) NIL)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1881 (($ $) NIL (|has| |#1| (-550)))) (-1857 (((-112) $) NIL (|has| |#1| (-550)))) (-2513 (((-762) $) NIL) (((-762) $ (-635 (-1075 (-1163)))) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-3748 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-3465 (($ $) NIL (|has| |#1| (-450)))) (-1380 (((-417 $) $) NIL (|has| |#1| (-450)))) (-3719 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-2680 (($ $) NIL)) (-1816 (($) NIL T CONST)) (-3069 (((-3 |#1| "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 (-1075 (-1163)) "failed") $) NIL) (((-3 (-1163) "failed") $) NIL) (((-3 (-1112 |#1| (-1163)) "failed") $) NIL)) (-1863 ((|#1| $) NIL) (((-406 (-558)) $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-558) $) NIL (|has| |#1| (-1028 (-558)))) (((-1075 (-1163)) $) NIL) (((-1163) $) NIL) (((-1112 |#1| (-1163)) $) NIL)) (-3320 (($ $ $ (-1075 (-1163))) NIL (|has| |#1| (-171)))) (-2490 (($ $) NIL)) (-3216 (((-679 (-558)) (-679 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3683 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) NIL) (((-679 |#1|) (-679 $)) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-2782 (($ $) NIL (|has| |#1| (-450))) (($ $ (-1075 (-1163))) NIL (|has| |#1| (-450)))) (-2476 (((-635 $) $) NIL)) (-3031 (((-112) $) NIL (|has| |#1| (-899)))) (-3888 (($ $ |#1| (-529 (-1075 (-1163))) $) NIL)) (-2269 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (-12 (|has| (-1075 (-1163)) (-876 (-378))) (|has| |#1| (-876 (-378))))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (-12 (|has| (-1075 (-1163)) (-876 (-558))) (|has| |#1| (-876 (-558)))))) (-3449 (((-762) $ (-1163)) NIL) (((-762) $) NIL)) (-2035 (((-112) $) NIL)) (-2110 (((-762) $) NIL)) (-2659 (($ (-1159 |#1|) (-1075 (-1163))) NIL) (($ (-1159 $) (-1075 (-1163))) NIL)) (-2536 (((-635 $) $) NIL)) (-4238 (((-112) $) NIL)) (-2648 (($ |#1| (-529 (-1075 (-1163)))) NIL) (($ $ (-1075 (-1163)) (-762)) NIL) (($ $ (-635 (-1075 (-1163))) (-635 (-762))) NIL)) (-3381 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $ (-1075 (-1163))) NIL)) (-2524 (((-529 (-1075 (-1163))) $) NIL) (((-762) $ (-1075 (-1163))) NIL) (((-635 (-762)) $ (-635 (-1075 (-1163)))) NIL)) (-3910 (($ $ $) NIL (|has| |#1| (-841)))) (-3542 (($ $ $) NIL (|has| |#1| (-841)))) (-3898 (($ (-1 (-529 (-1075 (-1163))) (-529 (-1075 (-1163)))) $) NIL)) (-3167 (($ (-1 |#1| |#1|) $) NIL)) (-1812 (((-1 $ (-762)) (-1163)) NIL) (((-1 $ (-762)) $) NIL (|has| |#1| (-232)))) (-3399 (((-3 (-1075 (-1163)) "failed") $) NIL)) (-2451 (($ $) NIL)) (-2463 ((|#1| $) NIL)) (-4096 (((-1075 (-1163)) $) NIL)) (-2665 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-4310 (((-1145) $) NIL)) (-2690 (((-112) $) NIL)) (-2560 (((-3 (-635 $) "failed") $) NIL)) (-2548 (((-3 (-635 $) "failed") $) NIL)) (-2575 (((-3 (-2 (|:| |var| (-1075 (-1163))) (|:| -1951 (-762))) "failed") $) NIL)) (-2750 (($ $) NIL)) (-2975 (((-1107) $) NIL)) (-2429 (((-112) $) NIL)) (-2440 ((|#1| $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#1| (-450)))) (-2699 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3728 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-3738 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-2522 (((-417 $) $) NIL (|has| |#1| (-899)))) (-3983 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-2554 (($ $ (-635 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-1075 (-1163)) |#1|) NIL) (($ $ (-635 (-1075 (-1163))) (-635 |#1|)) NIL) (($ $ (-1075 (-1163)) $) NIL) (($ $ (-635 (-1075 (-1163))) (-635 $)) NIL) (($ $ (-1163) $) NIL (|has| |#1| (-232))) (($ $ (-635 (-1163)) (-635 $)) NIL (|has| |#1| (-232))) (($ $ (-1163) |#1|) NIL (|has| |#1| (-232))) (($ $ (-635 (-1163)) (-635 |#1|)) NIL (|has| |#1| (-232)))) (-3331 (($ $ (-1075 (-1163))) NIL (|has| |#1| (-171)))) (-2829 (($ $ (-1075 (-1163))) NIL) (($ $ (-635 (-1075 (-1163)))) NIL) (($ $ (-1075 (-1163)) (-762)) NIL) (($ $ (-635 (-1075 (-1163))) (-635 (-762))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-762)) NIL (|has| |#1| (-232))) (($ $ (-1163)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2713 (((-635 (-1163)) $) NIL)) (-4323 (((-529 (-1075 (-1163))) $) NIL) (((-762) $ (-1075 (-1163))) NIL) (((-635 (-762)) $ (-635 (-1075 (-1163)))) NIL) (((-762) $ (-1163)) NIL)) (-3224 (((-882 (-378)) $) NIL (-12 (|has| (-1075 (-1163)) (-606 (-882 (-378)))) (|has| |#1| (-606 (-882 (-378)))))) (((-882 (-558)) $) NIL (-12 (|has| (-1075 (-1163)) (-606 (-882 (-558)))) (|has| |#1| (-606 (-882 (-558)))))) (((-534) $) NIL (-12 (|has| (-1075 (-1163)) (-606 (-534))) (|has| |#1| (-606 (-534)))))) (-2504 ((|#1| $) NIL (|has| |#1| (-450))) (($ $ (-1075 (-1163))) NIL (|has| |#1| (-450)))) (-3709 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-899))))) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ |#1|) NIL) (($ (-1075 (-1163))) NIL) (($ (-1163)) NIL) (($ (-1112 |#1| (-1163))) NIL) (($ (-406 (-558))) NIL (-3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558)))))) (($ $) NIL (|has| |#1| (-550)))) (-2583 (((-635 |#1|) $) NIL)) (-3736 ((|#1| $ (-529 (-1075 (-1163)))) NIL) (($ $ (-1075 (-1163)) (-762)) NIL) (($ $ (-635 (-1075 (-1163))) (-635 (-762))) NIL)) (-3698 (((-3 $ "failed") $) NIL (-3998 (-12 (|has| $ (-144)) (|has| |#1| (-899))) (|has| |#1| (-144))))) (-2542 (((-762)) NIL)) (-3879 (($ $ $ (-762)) NIL (|has| |#1| (-171)))) (-1870 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2131 (($) NIL T CONST)) (-2142 (($) NIL T CONST)) (-1866 (($ $ (-1075 (-1163))) NIL) (($ $ (-635 (-1075 (-1163)))) NIL) (($ $ (-1075 (-1163)) (-762)) NIL) (($ $ (-635 (-1075 (-1163))) (-635 (-762))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-762)) NIL (|has| |#1| (-232))) (($ $ (-1163)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1747 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1683 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1810 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558))))) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-1074 |#1|) (-13 (-252 |#1| (-1163) (-1075 (-1163)) (-529 (-1075 (-1163)))) (-1028 (-1112 |#1| (-1163)))) (-1039)) (T -1074))
+NIL
+(-13 (-252 |#1| (-1163) (-1075 (-1163)) (-529 (-1075 (-1163)))) (-1028 (-1112 |#1| (-1163))))
+((-3207 (((-112) $ $) NIL)) (-1800 (((-762) $) NIL)) (-1602 ((|#1| $) 10)) (-3069 (((-3 |#1| "failed") $) NIL)) (-1863 ((|#1| $) NIL)) (-3449 (((-762) $) 11)) (-3910 (($ $ $) NIL)) (-3542 (($ $ $) NIL)) (-1812 (($ |#1| (-762)) 9)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-2829 (($ $) NIL) (($ $ (-762)) NIL)) (-3220 (((-853) $) NIL) (($ |#1|) NIL)) (-1747 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1683 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 15)))
+(((-1075 |#1|) (-265 |#1|) (-841)) (T -1075))
+NIL
+(-265 |#1|)
+((-3167 (((-635 |#2|) (-1 |#2| |#1|) (-1081 |#1|)) 23 (|has| |#1| (-839))) (((-1081 |#2|) (-1 |#2| |#1|) (-1081 |#1|)) 14)))
+(((-1076 |#1| |#2|) (-10 -7 (-15 -3167 ((-1081 |#2|) (-1 |#2| |#1|) (-1081 |#1|))) (IF (|has| |#1| (-839)) (-15 -3167 ((-635 |#2|) (-1 |#2| |#1|) (-1081 |#1|))) |%noBranch|)) (-1200) (-1200)) (T -1076))
+((-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1081 *5)) (-4 *5 (-839)) (-4 *5 (-1200)) (-4 *6 (-1200)) (-5 *2 (-635 *6)) (-5 *1 (-1076 *5 *6)))) (-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1081 *5)) (-4 *5 (-1200)) (-4 *6 (-1200)) (-5 *2 (-1081 *6)) (-5 *1 (-1076 *5 *6)))))
+(-10 -7 (-15 -3167 ((-1081 |#2|) (-1 |#2| |#1|) (-1081 |#1|))) (IF (|has| |#1| (-839)) (-15 -3167 ((-635 |#2|) (-1 |#2| |#1|) (-1081 |#1|))) |%noBranch|))
+((-3207 (((-112) $ $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 17) (($ (-1168)) NIL) (((-1168) $) NIL)) (-4216 (((-635 (-1122)) $) 9)) (-1683 (((-112) $ $) NIL)))
+(((-1077) (-13 (-1070) (-10 -8 (-15 -4216 ((-635 (-1122)) $))))) (T -1077))
+((-4216 (*1 *2 *1) (-12 (-5 *2 (-635 (-1122))) (-5 *1 (-1077)))))
+(-13 (-1070) (-10 -8 (-15 -4216 ((-635 (-1122)) $))))
+((-3167 (((-1079 |#2|) (-1 |#2| |#1|) (-1079 |#1|)) 19)))
+(((-1078 |#1| |#2|) (-10 -7 (-15 -3167 ((-1079 |#2|) (-1 |#2| |#1|) (-1079 |#1|)))) (-1200) (-1200)) (T -1078))
+((-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1079 *5)) (-4 *5 (-1200)) (-4 *6 (-1200)) (-5 *2 (-1079 *6)) (-5 *1 (-1078 *5 *6)))))
+(-10 -7 (-15 -3167 ((-1079 |#2|) (-1 |#2| |#1|) (-1079 |#1|))))
+((-3207 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1602 (((-1163) $) 11)) (-2558 (((-1081 |#1|) $) 12)) (-4310 (((-1145) $) NIL (|has| |#1| (-1087)))) (-2975 (((-1107) $) NIL (|has| |#1| (-1087)))) (-2176 (($ (-1163) (-1081 |#1|)) 10)) (-3220 (((-853) $) 20 (|has| |#1| (-1087)))) (-1683 (((-112) $ $) 15 (|has| |#1| (-1087)))))
+(((-1079 |#1|) (-13 (-1200) (-10 -8 (-15 -2176 ($ (-1163) (-1081 |#1|))) (-15 -1602 ((-1163) $)) (-15 -2558 ((-1081 |#1|) $)) (IF (|has| |#1| (-1087)) (-6 (-1087)) |%noBranch|))) (-1200)) (T -1079))
+((-2176 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-1081 *4)) (-4 *4 (-1200)) (-5 *1 (-1079 *4)))) (-1602 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1079 *3)) (-4 *3 (-1200)))) (-2558 (*1 *2 *1) (-12 (-5 *2 (-1081 *3)) (-5 *1 (-1079 *3)) (-4 *3 (-1200)))))
+(-13 (-1200) (-10 -8 (-15 -2176 ($ (-1163) (-1081 |#1|))) (-15 -1602 ((-1163) $)) (-15 -2558 ((-1081 |#1|) $)) (IF (|has| |#1| (-1087)) (-6 (-1087)) |%noBranch|)))
+((-2558 (($ |#1| |#1|) 8)) (-4237 ((|#1| $) 11)) (-3573 ((|#1| $) 13)) (-4293 (((-558) $) 9)) (-4226 ((|#1| $) 10)) (-4317 ((|#1| $) 12)) (-3224 (($ |#1|) 6)) (-4275 (($ |#1| |#1|) 15)) (-1474 (($ $ (-558)) 14)))
+(((-1080 |#1|) (-139) (-1200)) (T -1080))
+((-4275 (*1 *1 *2 *2) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1200)))) (-1474 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-1080 *3)) (-4 *3 (-1200)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1200)))) (-4317 (*1 *2 *1) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1200)))) (-4237 (*1 *2 *1) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1200)))) (-4226 (*1 *2 *1) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1200)))) (-4293 (*1 *2 *1) (-12 (-4 *1 (-1080 *3)) (-4 *3 (-1200)) (-5 *2 (-558)))) (-2558 (*1 *1 *2 *2) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1200)))))
+(-13 (-610 |t#1|) (-10 -8 (-15 -4275 ($ |t#1| |t#1|)) (-15 -1474 ($ $ (-558))) (-15 -3573 (|t#1| $)) (-15 -4317 (|t#1| $)) (-15 -4237 (|t#1| $)) (-15 -4226 (|t#1| $)) (-15 -4293 ((-558) $)) (-15 -2558 ($ |t#1| |t#1|))))
+(((-610 |#1|) . T))
+((-3207 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2558 (($ |#1| |#1|) 15)) (-3167 (((-635 |#1|) (-1 |#1| |#1|) $) 37 (|has| |#1| (-839)))) (-4237 ((|#1| $) 10)) (-3573 ((|#1| $) 9)) (-4310 (((-1145) $) NIL (|has| |#1| (-1087)))) (-4293 (((-558) $) 14)) (-4226 ((|#1| $) 12)) (-4317 ((|#1| $) 11)) (-2975 (((-1107) $) NIL (|has| |#1| (-1087)))) (-4294 (((-635 |#1|) $) 35 (|has| |#1| (-839))) (((-635 |#1|) (-635 $)) 34 (|has| |#1| (-839)))) (-3224 (($ |#1|) 26)) (-3220 (((-853) $) 25 (|has| |#1| (-1087)))) (-4275 (($ |#1| |#1|) 8)) (-1474 (($ $ (-558)) 16)) (-1683 (((-112) $ $) 19 (|has| |#1| (-1087)))))
+(((-1081 |#1|) (-13 (-1080 |#1|) (-10 -7 (IF (|has| |#1| (-1087)) (-6 (-1087)) |%noBranch|) (IF (|has| |#1| (-839)) (-6 (-1082 |#1| (-635 |#1|))) |%noBranch|))) (-1200)) (T -1081))
+NIL
+(-13 (-1080 |#1|) (-10 -7 (IF (|has| |#1| (-1087)) (-6 (-1087)) |%noBranch|) (IF (|has| |#1| (-839)) (-6 (-1082 |#1| (-635 |#1|))) |%noBranch|)))
+((-2558 (($ |#1| |#1|) 8)) (-3167 ((|#2| (-1 |#1| |#1|) $) 16)) (-4237 ((|#1| $) 11)) (-3573 ((|#1| $) 13)) (-4293 (((-558) $) 9)) (-4226 ((|#1| $) 10)) (-4317 ((|#1| $) 12)) (-4294 ((|#2| (-635 $)) 18) ((|#2| $) 17)) (-3224 (($ |#1|) 6)) (-4275 (($ |#1| |#1|) 15)) (-1474 (($ $ (-558)) 14)))
+(((-1082 |#1| |#2|) (-139) (-839) (-1136 |t#1|)) (T -1082))
+((-4294 (*1 *2 *3) (-12 (-5 *3 (-635 *1)) (-4 *1 (-1082 *4 *2)) (-4 *4 (-839)) (-4 *2 (-1136 *4)))) (-4294 (*1 *2 *1) (-12 (-4 *1 (-1082 *3 *2)) (-4 *3 (-839)) (-4 *2 (-1136 *3)))) (-3167 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1082 *4 *2)) (-4 *4 (-839)) (-4 *2 (-1136 *4)))))
+(-13 (-1080 |t#1|) (-10 -8 (-15 -4294 (|t#2| (-635 $))) (-15 -4294 (|t#2| $)) (-15 -3167 (|t#2| (-1 |t#1| |t#1|) $))))
+(((-610 |#1|) . T) ((-1080 |#1|) . T))
+((-3207 (((-112) $ $) NIL)) (-4310 (((-1145) $) NIL)) (-1560 (((-1122) $) 12)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 20) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1337 (((-635 (-1122)) $) 10)) (-1683 (((-112) $ $) NIL)))
+(((-1083) (-13 (-1070) (-10 -8 (-15 -1337 ((-635 (-1122)) $)) (-15 -1560 ((-1122) $))))) (T -1083))
+((-1337 (*1 *2 *1) (-12 (-5 *2 (-635 (-1122))) (-5 *1 (-1083)))) (-1560 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1083)))))
+(-13 (-1070) (-10 -8 (-15 -1337 ((-635 (-1122)) $)) (-15 -1560 ((-1122) $))))
+((-3539 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-4259 (($ $ $) 10)) (-4271 (($ $ $) NIL) (($ $ |#2|) 15)))
+(((-1084 |#1| |#2|) (-10 -8 (-15 -3539 (|#1| |#2| |#1|)) (-15 -3539 (|#1| |#1| |#2|)) (-15 -3539 (|#1| |#1| |#1|)) (-15 -4259 (|#1| |#1| |#1|)) (-15 -4271 (|#1| |#1| |#2|)) (-15 -4271 (|#1| |#1| |#1|))) (-1085 |#2|) (-1087)) (T -1084))
+NIL
+(-10 -8 (-15 -3539 (|#1| |#2| |#1|)) (-15 -3539 (|#1| |#1| |#2|)) (-15 -3539 (|#1| |#1| |#1|)) (-15 -4259 (|#1| |#1| |#1|)) (-15 -4271 (|#1| |#1| |#2|)) (-15 -4271 (|#1| |#1| |#1|)))
+((-3207 (((-112) $ $) 7)) (-3539 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-4259 (($ $ $) 20)) (-4248 (((-112) $ $) 19)) (-3026 (((-112) $ (-762)) 35)) (-1511 (($) 25) (($ (-635 |#1|)) 24)) (-4329 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4382)))) (-1816 (($) 36 T CONST)) (-2338 (($ $) 59 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1539 (($ |#1| $) 58 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4382)))) (-3048 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4382))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4382)))) (-2240 (((-635 |#1|) $) 43 (|has| $ (-6 -4382)))) (-4298 (((-112) $ $) 28)) (-2986 (((-112) $ (-762)) 34)) (-2122 (((-635 |#1|) $) 44 (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) 46 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1807 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) 38)) (-2953 (((-112) $ (-762)) 33)) (-4310 (((-1145) $) 9)) (-4286 (($ $ $) 23)) (-2975 (((-1107) $) 10)) (-4307 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3266 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 |#1|) (-635 |#1|)) 50 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 48 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 (-293 |#1|))) 47 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) 29)) (-3375 (((-112) $) 32)) (-2083 (($) 31)) (-4271 (($ $ $) 22) (($ $ |#1|) 21)) (-2988 (((-762) |#1| $) 45 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382)))) (((-762) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4382)))) (-1553 (($ $) 30)) (-3224 (((-534) $) 60 (|has| |#1| (-606 (-534))))) (-3233 (($ (-635 |#1|)) 51)) (-3220 (((-853) $) 11)) (-2597 (($) 27) (($ (-635 |#1|)) 26)) (-3277 (((-112) (-1 (-112) |#1|) $) 40 (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) 6)) (-2755 (((-762) $) 37 (|has| $ (-6 -4382)))))
+(((-1085 |#1|) (-139) (-1087)) (T -1085))
+((-4298 (*1 *2 *1 *1) (-12 (-4 *1 (-1085 *3)) (-4 *3 (-1087)) (-5 *2 (-112)))) (-2597 (*1 *1) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1087)))) (-2597 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-4 *1 (-1085 *3)))) (-1511 (*1 *1) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1087)))) (-1511 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-4 *1 (-1085 *3)))) (-4286 (*1 *1 *1 *1) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1087)))) (-4271 (*1 *1 *1 *1) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1087)))) (-4271 (*1 *1 *1 *2) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1087)))) (-4259 (*1 *1 *1 *1) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1087)))) (-4248 (*1 *2 *1 *1) (-12 (-4 *1 (-1085 *3)) (-4 *3 (-1087)) (-5 *2 (-112)))) (-3539 (*1 *1 *1 *1) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1087)))) (-3539 (*1 *1 *1 *2) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1087)))) (-3539 (*1 *1 *2 *1) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1087)))))
+(-13 (-1087) (-150 |t#1|) (-10 -8 (-6 -4372) (-15 -4298 ((-112) $ $)) (-15 -2597 ($)) (-15 -2597 ($ (-635 |t#1|))) (-15 -1511 ($)) (-15 -1511 ($ (-635 |t#1|))) (-15 -4286 ($ $ $)) (-15 -4271 ($ $ $)) (-15 -4271 ($ $ |t#1|)) (-15 -4259 ($ $ $)) (-15 -4248 ((-112) $ $)) (-15 -3539 ($ $ $)) (-15 -3539 ($ $ |t#1|)) (-15 -3539 ($ |t#1| $))))
+(((-34) . T) ((-102) . T) ((-605 (-853)) . T) ((-150 |#1|) . T) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-1087) . T) ((-1200) . T))
+((-4310 (((-1145) $) 10)) (-2975 (((-1107) $) 8)))
+(((-1086 |#1|) (-10 -8 (-15 -4310 ((-1145) |#1|)) (-15 -2975 ((-1107) |#1|))) (-1087)) (T -1086))
+NIL
+(-10 -8 (-15 -4310 ((-1145) |#1|)) (-15 -2975 ((-1107) |#1|)))
+((-3207 (((-112) $ $) 7)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11)) (-1683 (((-112) $ $) 6)))
+(((-1087) (-139)) (T -1087))
+((-2975 (*1 *2 *1) (-12 (-4 *1 (-1087)) (-5 *2 (-1107)))) (-4310 (*1 *2 *1) (-12 (-4 *1 (-1087)) (-5 *2 (-1145)))))
+(-13 (-102) (-605 (-853)) (-10 -8 (-15 -2975 ((-1107) $)) (-15 -4310 ((-1145) $))))
+(((-102) . T) ((-605 (-853)) . T))
+((-3207 (((-112) $ $) NIL)) (-2276 (((-762)) 30)) (-4346 (($ (-635 (-911))) 52)) (-1283 (((-3 $ "failed") $ (-911) (-911)) 58)) (-2424 (($) 32)) (-4322 (((-112) (-911) $) 35)) (-2637 (((-911) $) 50)) (-4310 (((-1145) $) NIL)) (-2851 (($ (-911)) 31)) (-1294 (((-3 $ "failed") $ (-911)) 55)) (-2975 (((-1107) $) NIL)) (-4334 (((-1246 $)) 40)) (-4356 (((-635 (-911)) $) 24)) (-2465 (((-762) $ (-911) (-911)) 56)) (-3220 (((-853) $) 29)) (-1683 (((-112) $ $) 21)))
+(((-1088 |#1| |#2|) (-13 (-367) (-10 -8 (-15 -1294 ((-3 $ "failed") $ (-911))) (-15 -1283 ((-3 $ "failed") $ (-911) (-911))) (-15 -4356 ((-635 (-911)) $)) (-15 -4346 ($ (-635 (-911)))) (-15 -4334 ((-1246 $))) (-15 -4322 ((-112) (-911) $)) (-15 -2465 ((-762) $ (-911) (-911))))) (-911) (-911)) (T -1088))
+((-1294 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-911)) (-5 *1 (-1088 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1283 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-911)) (-5 *1 (-1088 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-4356 (*1 *2 *1) (-12 (-5 *2 (-635 (-911))) (-5 *1 (-1088 *3 *4)) (-14 *3 (-911)) (-14 *4 (-911)))) (-4346 (*1 *1 *2) (-12 (-5 *2 (-635 (-911))) (-5 *1 (-1088 *3 *4)) (-14 *3 (-911)) (-14 *4 (-911)))) (-4334 (*1 *2) (-12 (-5 *2 (-1246 (-1088 *3 *4))) (-5 *1 (-1088 *3 *4)) (-14 *3 (-911)) (-14 *4 (-911)))) (-4322 (*1 *2 *3 *1) (-12 (-5 *3 (-911)) (-5 *2 (-112)) (-5 *1 (-1088 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-2465 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-911)) (-5 *2 (-762)) (-5 *1 (-1088 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-13 (-367) (-10 -8 (-15 -1294 ((-3 $ "failed") $ (-911))) (-15 -1283 ((-3 $ "failed") $ (-911) (-911))) (-15 -4356 ((-635 (-911)) $)) (-15 -4346 ($ (-635 (-911)))) (-15 -4334 ((-1246 $))) (-15 -4322 ((-112) (-911) $)) (-15 -2465 ((-762) $ (-911) (-911)))))
+((-3207 (((-112) $ $) NIL)) (-4067 (($) NIL (|has| |#1| (-367)))) (-3539 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 73)) (-4259 (($ $ $) 71)) (-4248 (((-112) $ $) 72)) (-3026 (((-112) $ (-762)) NIL)) (-2276 (((-762)) NIL (|has| |#1| (-367)))) (-1511 (($ (-635 |#1|)) NIL) (($) 13)) (-4207 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-4329 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-1816 (($) NIL T CONST)) (-2338 (($ $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3395 (($ |#1| $) 67 (|has| $ (-6 -4382))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-1539 (($ |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-3048 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4382))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4382)))) (-2424 (($) NIL (|has| |#1| (-367)))) (-2240 (((-635 |#1|) $) 19 (|has| $ (-6 -4382)))) (-4298 (((-112) $ $) NIL)) (-2986 (((-112) $ (-762)) NIL)) (-3910 ((|#1| $) 57 (|has| |#1| (-841)))) (-2122 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) 66 (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3542 ((|#1| $) 55 (|has| |#1| (-841)))) (-1807 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) 34)) (-2637 (((-911) $) NIL (|has| |#1| (-367)))) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL)) (-4286 (($ $ $) 69)) (-1722 ((|#1| $) 25)) (-4328 (($ |#1| $) 65)) (-2851 (($ (-911)) NIL (|has| |#1| (-367)))) (-2975 (((-1107) $) NIL)) (-4307 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-3524 ((|#1| $) 27)) (-3266 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3375 (((-112) $) 21)) (-2083 (($) 11)) (-4271 (($ $ |#1|) NIL) (($ $ $) 70)) (-2571 (($) NIL) (($ (-635 |#1|)) NIL)) (-2988 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1553 (($ $) 16)) (-3224 (((-534) $) 52 (|has| |#1| (-606 (-534))))) (-3233 (($ (-635 |#1|)) 61)) (-4077 (($ $) NIL (|has| |#1| (-367)))) (-3220 (((-853) $) NIL)) (-4085 (((-762) $) NIL)) (-2597 (($ (-635 |#1|)) NIL) (($) 12)) (-3534 (($ (-635 |#1|)) NIL)) (-3277 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) 54)) (-2755 (((-762) $) 10 (|has| $ (-6 -4382)))))
+(((-1089 |#1|) (-424 |#1|) (-1087)) (T -1089))
+NIL
+(-424 |#1|)
+((-3207 (((-112) $ $) 7)) (-1331 (((-112) $) 32)) (-3523 ((|#2| $) 27)) (-1343 (((-112) $) 33)) (-3994 ((|#1| $) 28)) (-1368 (((-112) $) 35)) (-1390 (((-112) $) 37)) (-1355 (((-112) $) 34)) (-4310 (((-1145) $) 9)) (-1318 (((-112) $) 31)) (-3548 ((|#3| $) 26)) (-2975 (((-1107) $) 10)) (-1306 (((-112) $) 30)) (-2244 ((|#4| $) 25)) (-1565 ((|#5| $) 24)) (-2477 (((-112) $ $) 38)) (-2195 (($ $ (-558)) 20) (($ $ (-635 (-558))) 19)) (-2607 (((-635 $) $) 29)) (-3224 (($ |#1|) 44) (($ |#2|) 43) (($ |#3|) 42) (($ |#4|) 41) (($ |#5|) 40) (($ (-635 $)) 39)) (-3220 (((-853) $) 11)) (-2214 (($ $) 22)) (-2203 (($ $) 23)) (-1379 (((-112) $) 36)) (-1683 (((-112) $ $) 6)) (-2755 (((-558) $) 21)))
+(((-1090 |#1| |#2| |#3| |#4| |#5|) (-139) (-1087) (-1087) (-1087) (-1087) (-1087)) (T -1090))
+((-2477 (*1 *2 *1 *1) (-12 (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-112)))) (-1390 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-112)))) (-1379 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-112)))) (-1368 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-112)))) (-1355 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-112)))) (-1343 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-112)))) (-1318 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-112)))) (-1306 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-112)))) (-2607 (*1 *2 *1) (-12 (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-635 *1)) (-4 *1 (-1090 *3 *4 *5 *6 *7)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-1090 *2 *3 *4 *5 *6)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *2 (-1087)))) (-3523 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *2 *4 *5 *6)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *2 (-1087)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *4 *2 *5 *6)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *2 (-1087)))) (-2244 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *4 *5 *2 *6)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *2 (-1087)))) (-1565 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *4 *5 *6 *2)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *2 (-1087)))) (-2203 (*1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4 *5 *6)) (-4 *2 (-1087)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)))) (-2214 (*1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4 *5 *6)) (-4 *2 (-1087)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)))) (-2755 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-558)))) (-2195 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)))) (-2195 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-558))) (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)))))
+(-13 (-1087) (-610 |t#1|) (-610 |t#2|) (-610 |t#3|) (-610 |t#4|) (-610 |t#4|) (-610 |t#5|) (-610 (-635 $)) (-10 -8 (-15 -2477 ((-112) $ $)) (-15 -1390 ((-112) $)) (-15 -1379 ((-112) $)) (-15 -1368 ((-112) $)) (-15 -1355 ((-112) $)) (-15 -1343 ((-112) $)) (-15 -1331 ((-112) $)) (-15 -1318 ((-112) $)) (-15 -1306 ((-112) $)) (-15 -2607 ((-635 $) $)) (-15 -3994 (|t#1| $)) (-15 -3523 (|t#2| $)) (-15 -3548 (|t#3| $)) (-15 -2244 (|t#4| $)) (-15 -1565 (|t#5| $)) (-15 -2203 ($ $)) (-15 -2214 ($ $)) (-15 -2755 ((-558) $)) (-15 -2195 ($ $ (-558))) (-15 -2195 ($ $ (-635 (-558))))))
+(((-102) . T) ((-605 (-853)) . T) ((-610 (-635 $)) . T) ((-610 |#1|) . T) ((-610 |#2|) . T) ((-610 |#3|) . T) ((-610 |#4|) . T) ((-610 |#5|) . T) ((-1087) . T))
+((-3207 (((-112) $ $) NIL)) (-1331 (((-112) $) NIL)) (-3523 (((-1163) $) NIL)) (-1343 (((-112) $) NIL)) (-3994 (((-1145) $) NIL)) (-1368 (((-112) $) NIL)) (-1390 (((-112) $) NIL)) (-1355 (((-112) $) NIL)) (-4310 (((-1145) $) NIL)) (-1318 (((-112) $) NIL)) (-3548 (((-558) $) NIL)) (-2975 (((-1107) $) NIL)) (-1306 (((-112) $) NIL)) (-2244 (((-224) $) NIL)) (-1565 (((-853) $) NIL)) (-2477 (((-112) $ $) NIL)) (-2195 (($ $ (-558)) NIL) (($ $ (-635 (-558))) NIL)) (-2607 (((-635 $) $) NIL)) (-3224 (($ (-1145)) NIL) (($ (-1163)) NIL) (($ (-558)) NIL) (($ (-224)) NIL) (($ (-853)) NIL) (($ (-635 $)) NIL)) (-3220 (((-853) $) NIL)) (-2214 (($ $) NIL)) (-2203 (($ $) NIL)) (-1379 (((-112) $) NIL)) (-1683 (((-112) $ $) NIL)) (-2755 (((-558) $) NIL)))
+(((-1091) (-1090 (-1145) (-1163) (-558) (-224) (-853))) (T -1091))
+NIL
+(-1090 (-1145) (-1163) (-558) (-224) (-853))
+((-3207 (((-112) $ $) NIL)) (-1331 (((-112) $) 39)) (-3523 ((|#2| $) 42)) (-1343 (((-112) $) 18)) (-3994 ((|#1| $) 19)) (-1368 (((-112) $) 37)) (-1390 (((-112) $) 14)) (-1355 (((-112) $) 38)) (-4310 (((-1145) $) NIL)) (-1318 (((-112) $) 40)) (-3548 ((|#3| $) 44)) (-2975 (((-1107) $) NIL)) (-1306 (((-112) $) 41)) (-2244 ((|#4| $) 43)) (-1565 ((|#5| $) 45)) (-2477 (((-112) $ $) 36)) (-2195 (($ $ (-558)) 56) (($ $ (-635 (-558))) 58)) (-2607 (((-635 $) $) 24)) (-3224 (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51) (($ (-635 $)) 46)) (-3220 (((-853) $) 25)) (-2214 (($ $) 23)) (-2203 (($ $) 52)) (-1379 (((-112) $) 21)) (-1683 (((-112) $ $) 35)) (-2755 (((-558) $) 54)))
+(((-1092 |#1| |#2| |#3| |#4| |#5|) (-1090 |#1| |#2| |#3| |#4| |#5|) (-1087) (-1087) (-1087) (-1087) (-1087)) (T -1092))
+NIL
+(-1090 |#1| |#2| |#3| |#4| |#5|)
+((-1325 (((-1251) $) 23)) (-2390 (($ (-1163) (-433) |#2|) 11)) (-3220 (((-853) $) 16)))
+(((-1093 |#1| |#2|) (-13 (-394) (-10 -8 (-15 -2390 ($ (-1163) (-433) |#2|)))) (-841) (-429 |#1|)) (T -1093))
+((-2390 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1163)) (-5 *3 (-433)) (-4 *5 (-841)) (-5 *1 (-1093 *5 *4)) (-4 *4 (-429 *5)))))
+(-13 (-394) (-10 -8 (-15 -2390 ($ (-1163) (-433) |#2|))))
+((-1425 (((-112) |#5| |#5|) 37)) (-1459 (((-112) |#5| |#5|) 51)) (-1510 (((-112) |#5| (-635 |#5|)) 74) (((-112) |#5| |#5|) 60)) (-1471 (((-112) (-635 |#4|) (-635 |#4|)) 57)) (-1531 (((-112) (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|)) (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))) 62)) (-1414 (((-1251)) 33)) (-1402 (((-1251) (-1145) (-1145) (-1145)) 29)) (-1522 (((-635 |#5|) (-635 |#5|)) 81)) (-1542 (((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|)))) 79)) (-1552 (((-635 (-2 (|:| -2477 (-635 |#4|)) (|:| -2396 |#5|) (|:| |ineq| (-635 |#4|)))) (-635 |#4|) (-635 |#5|) (-112) (-112)) 101)) (-1448 (((-112) |#5| |#5|) 46)) (-1500 (((-3 (-112) "failed") |#5| |#5|) 70)) (-1482 (((-112) (-635 |#4|) (-635 |#4|)) 56)) (-1491 (((-112) (-635 |#4|) (-635 |#4|)) 58)) (-3953 (((-112) (-635 |#4|) (-635 |#4|)) 59)) (-1563 (((-3 (-2 (|:| -2477 (-635 |#4|)) (|:| -2396 |#5|) (|:| |ineq| (-635 |#4|))) "failed") (-635 |#4|) |#5| (-635 |#4|) (-112) (-112) (-112) (-112) (-112)) 97)) (-1436 (((-635 |#5|) (-635 |#5|)) 42)))
+(((-1094 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1402 ((-1251) (-1145) (-1145) (-1145))) (-15 -1414 ((-1251))) (-15 -1425 ((-112) |#5| |#5|)) (-15 -1436 ((-635 |#5|) (-635 |#5|))) (-15 -1448 ((-112) |#5| |#5|)) (-15 -1459 ((-112) |#5| |#5|)) (-15 -1471 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -1482 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -1491 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -3953 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -1500 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1510 ((-112) |#5| |#5|)) (-15 -1510 ((-112) |#5| (-635 |#5|))) (-15 -1522 ((-635 |#5|) (-635 |#5|))) (-15 -1531 ((-112) (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|)) (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|)))) (-15 -1542 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) (-15 -1552 ((-635 (-2 (|:| -2477 (-635 |#4|)) (|:| -2396 |#5|) (|:| |ineq| (-635 |#4|)))) (-635 |#4|) (-635 |#5|) (-112) (-112))) (-15 -1563 ((-3 (-2 (|:| -2477 (-635 |#4|)) (|:| -2396 |#5|) (|:| |ineq| (-635 |#4|))) "failed") (-635 |#4|) |#5| (-635 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-450) (-784) (-841) (-1053 |#1| |#2| |#3|) (-1059 |#1| |#2| |#3| |#4|)) (T -1094))
+((-1563 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841)) (-4 *9 (-1053 *6 *7 *8)) (-5 *2 (-2 (|:| -2477 (-635 *9)) (|:| -2396 *4) (|:| |ineq| (-635 *9)))) (-5 *1 (-1094 *6 *7 *8 *9 *4)) (-5 *3 (-635 *9)) (-4 *4 (-1059 *6 *7 *8 *9)))) (-1552 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-635 *10)) (-5 *5 (-112)) (-4 *10 (-1059 *6 *7 *8 *9)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841)) (-4 *9 (-1053 *6 *7 *8)) (-5 *2 (-635 (-2 (|:| -2477 (-635 *9)) (|:| -2396 *10) (|:| |ineq| (-635 *9))))) (-5 *1 (-1094 *6 *7 *8 *9 *10)) (-5 *3 (-635 *9)))) (-1542 (*1 *2 *2) (-12 (-5 *2 (-635 (-2 (|:| |val| (-635 *6)) (|:| -2396 *7)))) (-4 *6 (-1053 *3 *4 *5)) (-4 *7 (-1059 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-1094 *3 *4 *5 *6 *7)))) (-1531 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-635 *7)) (|:| -2396 *8))) (-4 *7 (-1053 *4 *5 *6)) (-4 *8 (-1059 *4 *5 *6 *7)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112)) (-5 *1 (-1094 *4 *5 *6 *7 *8)))) (-1522 (*1 *2 *2) (-12 (-5 *2 (-635 *7)) (-4 *7 (-1059 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *1 (-1094 *3 *4 *5 *6 *7)))) (-1510 (*1 *2 *3 *4) (-12 (-5 *4 (-635 *3)) (-4 *3 (-1059 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *8 (-1053 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1094 *5 *6 *7 *8 *3)))) (-1510 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1094 *4 *5 *6 *7 *3)) (-4 *3 (-1059 *4 *5 *6 *7)))) (-1500 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1094 *4 *5 *6 *7 *3)) (-4 *3 (-1059 *4 *5 *6 *7)))) (-3953 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112)) (-5 *1 (-1094 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7)))) (-1491 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112)) (-5 *1 (-1094 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7)))) (-1482 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112)) (-5 *1 (-1094 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7)))) (-1471 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112)) (-5 *1 (-1094 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7)))) (-1459 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1094 *4 *5 *6 *7 *3)) (-4 *3 (-1059 *4 *5 *6 *7)))) (-1448 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1094 *4 *5 *6 *7 *3)) (-4 *3 (-1059 *4 *5 *6 *7)))) (-1436 (*1 *2 *2) (-12 (-5 *2 (-635 *7)) (-4 *7 (-1059 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *1 (-1094 *3 *4 *5 *6 *7)))) (-1425 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1094 *4 *5 *6 *7 *3)) (-4 *3 (-1059 *4 *5 *6 *7)))) (-1414 (*1 *2) (-12 (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-1251)) (-5 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *7 (-1059 *3 *4 *5 *6)))) (-1402 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1145)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-1251)) (-5 *1 (-1094 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7)))))
+(-10 -7 (-15 -1402 ((-1251) (-1145) (-1145) (-1145))) (-15 -1414 ((-1251))) (-15 -1425 ((-112) |#5| |#5|)) (-15 -1436 ((-635 |#5|) (-635 |#5|))) (-15 -1448 ((-112) |#5| |#5|)) (-15 -1459 ((-112) |#5| |#5|)) (-15 -1471 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -1482 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -1491 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -3953 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -1500 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1510 ((-112) |#5| |#5|)) (-15 -1510 ((-112) |#5| (-635 |#5|))) (-15 -1522 ((-635 |#5|) (-635 |#5|))) (-15 -1531 ((-112) (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|)) (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|)))) (-15 -1542 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) (-15 -1552 ((-635 (-2 (|:| -2477 (-635 |#4|)) (|:| -2396 |#5|) (|:| |ineq| (-635 |#4|)))) (-635 |#4|) (-635 |#5|) (-112) (-112))) (-15 -1563 ((-3 (-2 (|:| -2477 (-635 |#4|)) (|:| -2396 |#5|) (|:| |ineq| (-635 |#4|))) "failed") (-635 |#4|) |#5| (-635 |#4|) (-112) (-112) (-112) (-112) (-112))))
+((-3605 (((-635 (-2 (|:| |val| |#4|) (|:| -2396 |#5|))) |#4| |#5|) 95)) (-3506 (((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))) |#4| |#4| |#5|) 71)) (-3533 (((-635 (-2 (|:| |val| |#4|) (|:| -2396 |#5|))) |#4| |#4| |#5|) 89)) (-3558 (((-635 |#5|) |#4| |#5|) 109)) (-3577 (((-635 |#5|) |#4| |#5|) 116)) (-3595 (((-635 |#5|) |#4| |#5|) 117)) (-3547 (((-635 (-2 (|:| |val| (-112)) (|:| -2396 |#5|))) |#4| |#5|) 96)) (-3567 (((-635 (-2 (|:| |val| (-112)) (|:| -2396 |#5|))) |#4| |#5|) 115)) (-3586 (((-635 (-2 (|:| |val| (-112)) (|:| -2396 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-3515 (((-635 (-2 (|:| |val| |#4|) (|:| -2396 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))) |#3| (-112)) 83) (((-635 (-2 (|:| |val| |#4|) (|:| -2396 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-3522 (((-635 (-2 (|:| |val| |#4|) (|:| -2396 |#5|))) |#4| |#4| |#5|) 78)) (-3497 (((-1251)) 37)) (-1582 (((-1251)) 26)) (-1593 (((-1251) (-1145) (-1145) (-1145)) 33)) (-1572 (((-1251) (-1145) (-1145) (-1145)) 22)))
+(((-1095 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1572 ((-1251) (-1145) (-1145) (-1145))) (-15 -1582 ((-1251))) (-15 -1593 ((-1251) (-1145) (-1145) (-1145))) (-15 -3497 ((-1251))) (-15 -3506 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))) |#4| |#4| |#5|)) (-15 -3515 ((-635 (-2 (|:| |val| |#4|) (|:| -2396 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3515 ((-635 (-2 (|:| |val| |#4|) (|:| -2396 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))) |#3| (-112))) (-15 -3522 ((-635 (-2 (|:| |val| |#4|) (|:| -2396 |#5|))) |#4| |#4| |#5|)) (-15 -3533 ((-635 (-2 (|:| |val| |#4|) (|:| -2396 |#5|))) |#4| |#4| |#5|)) (-15 -3586 ((-112) |#4| |#5|)) (-15 -3547 ((-635 (-2 (|:| |val| (-112)) (|:| -2396 |#5|))) |#4| |#5|)) (-15 -3558 ((-635 |#5|) |#4| |#5|)) (-15 -3567 ((-635 (-2 (|:| |val| (-112)) (|:| -2396 |#5|))) |#4| |#5|)) (-15 -3577 ((-635 |#5|) |#4| |#5|)) (-15 -3586 ((-635 (-2 (|:| |val| (-112)) (|:| -2396 |#5|))) |#4| |#5|)) (-15 -3595 ((-635 |#5|) |#4| |#5|)) (-15 -3605 ((-635 (-2 (|:| |val| |#4|) (|:| -2396 |#5|))) |#4| |#5|))) (-450) (-784) (-841) (-1053 |#1| |#2| |#3|) (-1059 |#1| |#2| |#3| |#4|)) (T -1095))
+((-3605 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -2396 *4)))) (-5 *1 (-1095 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))) (-3595 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-635 *4)) (-5 *1 (-1095 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))) (-3586 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -2396 *4)))) (-5 *1 (-1095 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))) (-3577 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-635 *4)) (-5 *1 (-1095 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))) (-3567 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -2396 *4)))) (-5 *1 (-1095 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))) (-3558 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-635 *4)) (-5 *1 (-1095 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))) (-3547 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -2396 *4)))) (-5 *1 (-1095 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))) (-3586 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1095 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))) (-3533 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -2396 *4)))) (-5 *1 (-1095 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))) (-3522 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -2396 *4)))) (-5 *1 (-1095 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))) (-3515 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 (-2 (|:| |val| (-635 *8)) (|:| -2396 *9)))) (-5 *5 (-112)) (-4 *8 (-1053 *6 *7 *4)) (-4 *9 (-1059 *6 *7 *4 *8)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *4 (-841)) (-5 *2 (-635 (-2 (|:| |val| *8) (|:| -2396 *9)))) (-5 *1 (-1095 *6 *7 *4 *8 *9)))) (-3515 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841)) (-4 *3 (-1053 *6 *7 *8)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -2396 *4)))) (-5 *1 (-1095 *6 *7 *8 *3 *4)) (-4 *4 (-1059 *6 *7 *8 *3)))) (-3506 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| (-635 *3)) (|:| -2396 *4)))) (-5 *1 (-1095 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))) (-3497 (*1 *2) (-12 (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-1251)) (-5 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *7 (-1059 *3 *4 *5 *6)))) (-1593 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1145)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-1251)) (-5 *1 (-1095 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7)))) (-1582 (*1 *2) (-12 (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-1251)) (-5 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *7 (-1059 *3 *4 *5 *6)))) (-1572 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1145)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-1251)) (-5 *1 (-1095 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7)))))
+(-10 -7 (-15 -1572 ((-1251) (-1145) (-1145) (-1145))) (-15 -1582 ((-1251))) (-15 -1593 ((-1251) (-1145) (-1145) (-1145))) (-15 -3497 ((-1251))) (-15 -3506 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))) |#4| |#4| |#5|)) (-15 -3515 ((-635 (-2 (|:| |val| |#4|) (|:| -2396 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3515 ((-635 (-2 (|:| |val| |#4|) (|:| -2396 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))) |#3| (-112))) (-15 -3522 ((-635 (-2 (|:| |val| |#4|) (|:| -2396 |#5|))) |#4| |#4| |#5|)) (-15 -3533 ((-635 (-2 (|:| |val| |#4|) (|:| -2396 |#5|))) |#4| |#4| |#5|)) (-15 -3586 ((-112) |#4| |#5|)) (-15 -3547 ((-635 (-2 (|:| |val| (-112)) (|:| -2396 |#5|))) |#4| |#5|)) (-15 -3558 ((-635 |#5|) |#4| |#5|)) (-15 -3567 ((-635 (-2 (|:| |val| (-112)) (|:| -2396 |#5|))) |#4| |#5|)) (-15 -3577 ((-635 |#5|) |#4| |#5|)) (-15 -3586 ((-635 (-2 (|:| |val| (-112)) (|:| -2396 |#5|))) |#4| |#5|)) (-15 -3595 ((-635 |#5|) |#4| |#5|)) (-15 -3605 ((-635 (-2 (|:| |val| |#4|) (|:| -2396 |#5|))) |#4| |#5|)))
+((-3207 (((-112) $ $) 7)) (-3773 (((-635 (-2 (|:| -2626 $) (|:| -1328 (-635 |#4|)))) (-635 |#4|)) 85)) (-3782 (((-635 $) (-635 |#4|)) 86) (((-635 $) (-635 |#4|) (-112)) 111)) (-2671 (((-635 |#3|) $) 33)) (-2139 (((-112) $) 26)) (-2040 (((-112) $) 17 (|has| |#1| (-550)))) (-3892 (((-112) |#4| $) 101) (((-112) $) 97)) (-3842 ((|#4| |#4| $) 92)) (-3465 (((-635 (-2 (|:| |val| |#4|) (|:| -2396 $))) |#4| $) 126)) (-2376 (((-2 (|:| |under| $) (|:| -2594 $) (|:| |upper| $)) $ |#3|) 27)) (-3026 (((-112) $ (-762)) 44)) (-4329 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4382))) (((-3 |#4| "failed") $ |#3|) 79)) (-1816 (($) 45 T CONST)) (-2092 (((-112) $) 22 (|has| |#1| (-550)))) (-2116 (((-112) $ $) 24 (|has| |#1| (-550)))) (-2104 (((-112) $ $) 23 (|has| |#1| (-550)))) (-2128 (((-112) $) 25 (|has| |#1| (-550)))) (-3853 (((-635 |#4|) (-635 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-2050 (((-635 |#4|) (-635 |#4|) $) 18 (|has| |#1| (-550)))) (-2061 (((-635 |#4|) (-635 |#4|) $) 19 (|has| |#1| (-550)))) (-3069 (((-3 $ "failed") (-635 |#4|)) 36)) (-1863 (($ (-635 |#4|)) 35)) (-2315 (((-3 $ "failed") $) 82)) (-3810 ((|#4| |#4| $) 89)) (-2338 (($ $) 68 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4382))))) (-1539 (($ |#4| $) 67 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4382)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4382)))) (-2071 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-550)))) (-3902 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3792 ((|#4| |#4| $) 87)) (-3048 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4382)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4382))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4382))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3923 (((-2 (|:| -2626 (-635 |#4|)) (|:| -1328 (-635 |#4|))) $) 105)) (-2166 (((-112) |#4| $) 136)) (-2145 (((-112) |#4| $) 133)) (-2177 (((-112) |#4| $) 137) (((-112) $) 134)) (-2240 (((-635 |#4|) $) 52 (|has| $ (-6 -4382)))) (-3912 (((-112) |#4| $) 104) (((-112) $) 103)) (-1997 ((|#3| $) 34)) (-2986 (((-112) $ (-762)) 43)) (-2122 (((-635 |#4|) $) 53 (|has| $ (-6 -4382)))) (-4322 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4382))))) (-1807 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#4| |#4|) $) 47)) (-4024 (((-635 |#3|) $) 32)) (-2183 (((-112) |#3| $) 31)) (-2953 (((-112) $ (-762)) 42)) (-4310 (((-1145) $) 9)) (-2099 (((-3 |#4| (-635 $)) |#4| |#4| $) 128)) (-2087 (((-635 (-2 (|:| |val| |#4|) (|:| -2396 $))) |#4| |#4| $) 127)) (-1560 (((-3 |#4| "failed") $) 83)) (-2111 (((-635 $) |#4| $) 129)) (-2134 (((-3 (-112) (-635 $)) |#4| $) 132)) (-2123 (((-635 (-2 (|:| |val| (-112)) (|:| -2396 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-4286 (((-635 $) |#4| $) 125) (((-635 $) (-635 |#4|) $) 124) (((-635 $) (-635 |#4|) (-635 $)) 123) (((-635 $) |#4| (-635 $)) 122)) (-2423 (($ |#4| $) 117) (($ (-635 |#4|) $) 116)) (-3932 (((-635 |#4|) $) 107)) (-3873 (((-112) |#4| $) 99) (((-112) $) 95)) (-3820 ((|#4| |#4| $) 90)) (-3953 (((-112) $ $) 110)) (-2081 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-550)))) (-3883 (((-112) |#4| $) 100) (((-112) $) 96)) (-3830 ((|#4| |#4| $) 91)) (-2975 (((-1107) $) 10)) (-2305 (((-3 |#4| "failed") $) 84)) (-4307 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3755 (((-3 $ "failed") $ |#4|) 78)) (-3430 (($ $ |#4|) 77) (((-635 $) |#4| $) 115) (((-635 $) |#4| (-635 $)) 114) (((-635 $) (-635 |#4|) $) 113) (((-635 $) (-635 |#4|) (-635 $)) 112)) (-3266 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 |#4|) (-635 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-293 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-635 (-293 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))) (-2381 (((-112) $ $) 38)) (-3375 (((-112) $) 41)) (-2083 (($) 40)) (-4323 (((-762) $) 106)) (-2988 (((-762) |#4| $) 54 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4382)))) (((-762) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4382)))) (-1553 (($ $) 39)) (-3224 (((-534) $) 69 (|has| |#4| (-606 (-534))))) (-3233 (($ (-635 |#4|)) 60)) (-2151 (($ $ |#3|) 28)) (-2171 (($ $ |#3|) 30)) (-3801 (($ $) 88)) (-2160 (($ $ |#3|) 29)) (-3220 (((-853) $) 11) (((-635 |#4|) $) 37)) (-3745 (((-762) $) 76 (|has| |#3| (-367)))) (-3940 (((-3 (-2 (|:| |bas| $) (|:| -3072 (-635 |#4|))) "failed") (-635 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3072 (-635 |#4|))) "failed") (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-3863 (((-112) $ (-1 (-112) |#4| (-635 |#4|))) 98)) (-2076 (((-635 $) |#4| $) 121) (((-635 $) |#4| (-635 $)) 120) (((-635 $) (-635 |#4|) $) 119) (((-635 $) (-635 |#4|) (-635 $)) 118)) (-3277 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4382)))) (-3764 (((-635 |#3|) $) 81)) (-2155 (((-112) |#4| $) 135)) (-4206 (((-112) |#3| $) 80)) (-1683 (((-112) $ $) 6)) (-2755 (((-762) $) 46 (|has| $ (-6 -4382)))))
+(((-1096 |#1| |#2| |#3| |#4|) (-139) (-450) (-784) (-841) (-1053 |t#1| |t#2| |t#3|)) (T -1096))
+NIL
+(-13 (-1059 |t#1| |t#2| |t#3| |t#4|))
+(((-34) . T) ((-102) . T) ((-605 (-635 |#4|)) . T) ((-605 (-853)) . T) ((-150 |#4|) . T) ((-606 (-534)) |has| |#4| (-606 (-534))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))) ((-487 |#4|) . T) ((-512 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))) ((-966 |#1| |#2| |#3| |#4|) . T) ((-1059 |#1| |#2| |#3| |#4|) . T) ((-1087) . T) ((-1193 |#1| |#2| |#3| |#4|) . T) ((-1200) . T))
+((-3711 (((-635 (-558)) (-558) (-558) (-558)) 22)) (-3700 (((-635 (-558)) (-558) (-558) (-558)) 12)) (-3691 (((-635 (-558)) (-558) (-558) (-558)) 18)) (-3682 (((-558) (-558) (-558)) 9)) (-3672 (((-1246 (-558)) (-635 (-558)) (-1246 (-558)) (-558)) 45) (((-1246 (-558)) (-1246 (-558)) (-1246 (-558)) (-558)) 40)) (-3662 (((-635 (-558)) (-635 (-558)) (-635 (-558)) (-112)) 27)) (-3651 (((-679 (-558)) (-635 (-558)) (-635 (-558)) (-679 (-558))) 44)) (-3642 (((-679 (-558)) (-635 (-558)) (-635 (-558))) 32)) (-3633 (((-635 (-679 (-558))) (-635 (-558))) 34)) (-3624 (((-635 (-558)) (-635 (-558)) (-635 (-558)) (-679 (-558))) 48)) (-3615 (((-679 (-558)) (-635 (-558)) (-635 (-558)) (-635 (-558))) 56)))
+(((-1097) (-10 -7 (-15 -3615 ((-679 (-558)) (-635 (-558)) (-635 (-558)) (-635 (-558)))) (-15 -3624 ((-635 (-558)) (-635 (-558)) (-635 (-558)) (-679 (-558)))) (-15 -3633 ((-635 (-679 (-558))) (-635 (-558)))) (-15 -3642 ((-679 (-558)) (-635 (-558)) (-635 (-558)))) (-15 -3651 ((-679 (-558)) (-635 (-558)) (-635 (-558)) (-679 (-558)))) (-15 -3662 ((-635 (-558)) (-635 (-558)) (-635 (-558)) (-112))) (-15 -3672 ((-1246 (-558)) (-1246 (-558)) (-1246 (-558)) (-558))) (-15 -3672 ((-1246 (-558)) (-635 (-558)) (-1246 (-558)) (-558))) (-15 -3682 ((-558) (-558) (-558))) (-15 -3691 ((-635 (-558)) (-558) (-558) (-558))) (-15 -3700 ((-635 (-558)) (-558) (-558) (-558))) (-15 -3711 ((-635 (-558)) (-558) (-558) (-558))))) (T -1097))
+((-3711 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-1097)) (-5 *3 (-558)))) (-3700 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-1097)) (-5 *3 (-558)))) (-3691 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-1097)) (-5 *3 (-558)))) (-3682 (*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1097)))) (-3672 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1246 (-558))) (-5 *3 (-635 (-558))) (-5 *4 (-558)) (-5 *1 (-1097)))) (-3672 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1246 (-558))) (-5 *3 (-558)) (-5 *1 (-1097)))) (-3662 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-635 (-558))) (-5 *3 (-112)) (-5 *1 (-1097)))) (-3651 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-679 (-558))) (-5 *3 (-635 (-558))) (-5 *1 (-1097)))) (-3642 (*1 *2 *3 *3) (-12 (-5 *3 (-635 (-558))) (-5 *2 (-679 (-558))) (-5 *1 (-1097)))) (-3633 (*1 *2 *3) (-12 (-5 *3 (-635 (-558))) (-5 *2 (-635 (-679 (-558)))) (-5 *1 (-1097)))) (-3624 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-635 (-558))) (-5 *3 (-679 (-558))) (-5 *1 (-1097)))) (-3615 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-635 (-558))) (-5 *2 (-679 (-558))) (-5 *1 (-1097)))))
+(-10 -7 (-15 -3615 ((-679 (-558)) (-635 (-558)) (-635 (-558)) (-635 (-558)))) (-15 -3624 ((-635 (-558)) (-635 (-558)) (-635 (-558)) (-679 (-558)))) (-15 -3633 ((-635 (-679 (-558))) (-635 (-558)))) (-15 -3642 ((-679 (-558)) (-635 (-558)) (-635 (-558)))) (-15 -3651 ((-679 (-558)) (-635 (-558)) (-635 (-558)) (-679 (-558)))) (-15 -3662 ((-635 (-558)) (-635 (-558)) (-635 (-558)) (-112))) (-15 -3672 ((-1246 (-558)) (-1246 (-558)) (-1246 (-558)) (-558))) (-15 -3672 ((-1246 (-558)) (-635 (-558)) (-1246 (-558)) (-558))) (-15 -3682 ((-558) (-558) (-558))) (-15 -3691 ((-635 (-558)) (-558) (-558) (-558))) (-15 -3700 ((-635 (-558)) (-558) (-558) (-558))) (-15 -3711 ((-635 (-558)) (-558) (-558) (-558))))
+((** (($ $ (-911)) 10)))
+(((-1098 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-911)))) (-1099)) (T -1098))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-911))))
+((-3207 (((-112) $ $) 7)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11)) (-1683 (((-112) $ $) 6)) (** (($ $ (-911)) 13)) (* (($ $ $) 14)))
+(((-1099) (-139)) (T -1099))
+((* (*1 *1 *1 *1) (-4 *1 (-1099))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1099)) (-5 *2 (-911)))))
+(-13 (-1087) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-911)))))
+(((-102) . T) ((-605 (-853)) . T) ((-1087) . T))
+((-3207 (((-112) $ $) NIL (|has| |#3| (-1087)))) (-2067 (((-112) $) NIL (|has| |#3| (-130)))) (-4027 (($ (-911)) NIL (|has| |#3| (-1039)))) (-3869 (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4383)))) (-2738 (($ $ $) NIL (|has| |#3| (-784)))) (-2089 (((-3 $ "failed") $ $) NIL (|has| |#3| (-130)))) (-3026 (((-112) $ (-762)) NIL)) (-2276 (((-762)) NIL (|has| |#3| (-367)))) (-1397 (((-558) $) NIL (|has| |#3| (-839)))) (-1532 ((|#3| $ (-558) |#3|) NIL (|has| $ (-6 -4383)))) (-1816 (($) NIL T CONST)) (-3069 (((-3 (-558) "failed") $) NIL (-12 (|has| |#3| (-1028 (-558))) (|has| |#3| (-1087)))) (((-3 (-406 (-558)) "failed") $) NIL (-12 (|has| |#3| (-1028 (-406 (-558)))) (|has| |#3| (-1087)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1087)))) (-1863 (((-558) $) NIL (-12 (|has| |#3| (-1028 (-558))) (|has| |#3| (-1087)))) (((-406 (-558)) $) NIL (-12 (|has| |#3| (-1028 (-406 (-558)))) (|has| |#3| (-1087)))) ((|#3| $) NIL (|has| |#3| (-1087)))) (-3216 (((-679 (-558)) (-679 $)) NIL (-12 (|has| |#3| (-631 (-558))) (|has| |#3| (-1039)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (-12 (|has| |#3| (-631 (-558))) (|has| |#3| (-1039)))) (((-2 (|:| -3683 (-679 |#3|)) (|:| |vec| (-1246 |#3|))) (-679 $) (-1246 $)) NIL (|has| |#3| (-1039))) (((-679 |#3|) (-679 $)) NIL (|has| |#3| (-1039)))) (-2588 (((-3 $ "failed") $) NIL (|has| |#3| (-717)))) (-2424 (($) NIL (|has| |#3| (-367)))) (-1817 ((|#3| $ (-558) |#3|) NIL (|has| $ (-6 -4383)))) (-1746 ((|#3| $ (-558)) 12)) (-2045 (((-112) $) NIL (|has| |#3| (-839)))) (-2240 (((-635 |#3|) $) NIL (|has| $ (-6 -4382)))) (-2035 (((-112) $) NIL (|has| |#3| (-717)))) (-2055 (((-112) $) NIL (|has| |#3| (-839)))) (-2986 (((-112) $ (-762)) NIL)) (-3889 (((-558) $) NIL (|has| (-558) (-841)))) (-3910 (($ $ $) NIL (-3998 (|has| |#3| (-784)) (|has| |#3| (-839))))) (-2122 (((-635 |#3|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#3| (-1087))))) (-3899 (((-558) $) NIL (|has| (-558) (-841)))) (-3542 (($ $ $) NIL (-3998 (|has| |#3| (-784)) (|has| |#3| (-839))))) (-1807 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#3| |#3|) $) NIL)) (-2637 (((-911) $) NIL (|has| |#3| (-367)))) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL (|has| |#3| (-1087)))) (-3920 (((-635 (-558)) $) NIL)) (-3929 (((-112) (-558) $) NIL)) (-2851 (($ (-911)) NIL (|has| |#3| (-367)))) (-2975 (((-1107) $) NIL (|has| |#3| (-1087)))) (-2305 ((|#3| $) NIL (|has| (-558) (-841)))) (-3880 (($ $ |#3|) NIL (|has| $ (-6 -4383)))) (-3266 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#3|))) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087)))) (($ $ (-293 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087)))) (($ $ (-635 |#3|) (-635 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3908 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#3| (-1087))))) (-3937 (((-635 |#3|) $) NIL)) (-3375 (((-112) $) NIL)) (-2083 (($) NIL)) (-2195 ((|#3| $ (-558) |#3|) NIL) ((|#3| $ (-558)) NIL)) (-2744 ((|#3| $ $) NIL (|has| |#3| (-1039)))) (-2572 (($ (-1246 |#3|)) NIL)) (-2148 (((-133)) NIL (|has| |#3| (-362)))) (-2829 (($ $) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1039)))) (($ $ (-762)) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1039)))) (($ $ (-1163)) NIL (-12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039)))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039)))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039)))) (($ $ (-1 |#3| |#3|) (-762)) NIL (|has| |#3| (-1039))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1039)))) (-2988 (((-762) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4382))) (((-762) |#3| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#3| (-1087))))) (-1553 (($ $) NIL)) (-3220 (((-1246 |#3|) $) NIL) (($ (-558)) NIL (-3998 (-12 (|has| |#3| (-1028 (-558))) (|has| |#3| (-1087))) (|has| |#3| (-1039)))) (($ (-406 (-558))) NIL (-12 (|has| |#3| (-1028 (-406 (-558)))) (|has| |#3| (-1087)))) (($ |#3|) NIL (|has| |#3| (-1087))) (((-853) $) NIL (|has| |#3| (-605 (-853))))) (-2542 (((-762)) NIL (|has| |#3| (-1039)))) (-3277 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4382)))) (-3190 (($ $) NIL (|has| |#3| (-839)))) (-2131 (($) NIL (|has| |#3| (-130)) CONST)) (-2142 (($) NIL (|has| |#3| (-717)) CONST)) (-1866 (($ $) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1039)))) (($ $ (-762)) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1039)))) (($ $ (-1163)) NIL (-12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039)))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039)))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039)))) (($ $ (-1 |#3| |#3|) (-762)) NIL (|has| |#3| (-1039))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1039)))) (-1747 (((-112) $ $) NIL (-3998 (|has| |#3| (-784)) (|has| |#3| (-839))))) (-1720 (((-112) $ $) NIL (-3998 (|has| |#3| (-784)) (|has| |#3| (-839))))) (-1683 (((-112) $ $) NIL (|has| |#3| (-1087)))) (-1731 (((-112) $ $) NIL (-3998 (|has| |#3| (-784)) (|has| |#3| (-839))))) (-1705 (((-112) $ $) 17 (-3998 (|has| |#3| (-784)) (|has| |#3| (-839))))) (-1810 (($ $ |#3|) NIL (|has| |#3| (-362)))) (-1798 (($ $ $) NIL (|has| |#3| (-1039))) (($ $) NIL (|has| |#3| (-1039)))) (-1784 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-762)) NIL (|has| |#3| (-717))) (($ $ (-911)) NIL (|has| |#3| (-717)))) (* (($ (-558) $) NIL (|has| |#3| (-1039))) (($ $ $) NIL (|has| |#3| (-717))) (($ $ |#3|) NIL (|has| |#3| (-717))) (($ |#3| $) NIL (|has| |#3| (-717))) (($ (-762) $) NIL (|has| |#3| (-130))) (($ (-911) $) NIL (|has| |#3| (-25)))) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-1100 |#1| |#2| |#3|) (-237 |#1| |#3|) (-762) (-762) (-784)) (T -1100))
+NIL
+(-237 |#1| |#3|)
+((-3721 (((-635 (-1219 |#2| |#1|)) (-1219 |#2| |#1|) (-1219 |#2| |#1|)) 36)) (-3777 (((-558) (-1219 |#2| |#1|)) 68 (|has| |#1| (-450)))) (-3759 (((-558) (-1219 |#2| |#1|)) 53)) (-3730 (((-635 (-1219 |#2| |#1|)) (-1219 |#2| |#1|) (-1219 |#2| |#1|)) 44)) (-3768 (((-558) (-1219 |#2| |#1|) (-1219 |#2| |#1|)) 67 (|has| |#1| (-450)))) (-3740 (((-635 |#1|) (-1219 |#2| |#1|) (-1219 |#2| |#1|)) 47)) (-3750 (((-558) (-1219 |#2| |#1|) (-1219 |#2| |#1|)) 52)))
+(((-1101 |#1| |#2|) (-10 -7 (-15 -3721 ((-635 (-1219 |#2| |#1|)) (-1219 |#2| |#1|) (-1219 |#2| |#1|))) (-15 -3730 ((-635 (-1219 |#2| |#1|)) (-1219 |#2| |#1|) (-1219 |#2| |#1|))) (-15 -3740 ((-635 |#1|) (-1219 |#2| |#1|) (-1219 |#2| |#1|))) (-15 -3750 ((-558) (-1219 |#2| |#1|) (-1219 |#2| |#1|))) (-15 -3759 ((-558) (-1219 |#2| |#1|))) (IF (|has| |#1| (-450)) (PROGN (-15 -3768 ((-558) (-1219 |#2| |#1|) (-1219 |#2| |#1|))) (-15 -3777 ((-558) (-1219 |#2| |#1|)))) |%noBranch|)) (-811) (-1163)) (T -1101))
+((-3777 (*1 *2 *3) (-12 (-5 *3 (-1219 *5 *4)) (-4 *4 (-450)) (-4 *4 (-811)) (-14 *5 (-1163)) (-5 *2 (-558)) (-5 *1 (-1101 *4 *5)))) (-3768 (*1 *2 *3 *3) (-12 (-5 *3 (-1219 *5 *4)) (-4 *4 (-450)) (-4 *4 (-811)) (-14 *5 (-1163)) (-5 *2 (-558)) (-5 *1 (-1101 *4 *5)))) (-3759 (*1 *2 *3) (-12 (-5 *3 (-1219 *5 *4)) (-4 *4 (-811)) (-14 *5 (-1163)) (-5 *2 (-558)) (-5 *1 (-1101 *4 *5)))) (-3750 (*1 *2 *3 *3) (-12 (-5 *3 (-1219 *5 *4)) (-4 *4 (-811)) (-14 *5 (-1163)) (-5 *2 (-558)) (-5 *1 (-1101 *4 *5)))) (-3740 (*1 *2 *3 *3) (-12 (-5 *3 (-1219 *5 *4)) (-4 *4 (-811)) (-14 *5 (-1163)) (-5 *2 (-635 *4)) (-5 *1 (-1101 *4 *5)))) (-3730 (*1 *2 *3 *3) (-12 (-4 *4 (-811)) (-14 *5 (-1163)) (-5 *2 (-635 (-1219 *5 *4))) (-5 *1 (-1101 *4 *5)) (-5 *3 (-1219 *5 *4)))) (-3721 (*1 *2 *3 *3) (-12 (-4 *4 (-811)) (-14 *5 (-1163)) (-5 *2 (-635 (-1219 *5 *4))) (-5 *1 (-1101 *4 *5)) (-5 *3 (-1219 *5 *4)))))
+(-10 -7 (-15 -3721 ((-635 (-1219 |#2| |#1|)) (-1219 |#2| |#1|) (-1219 |#2| |#1|))) (-15 -3730 ((-635 (-1219 |#2| |#1|)) (-1219 |#2| |#1|) (-1219 |#2| |#1|))) (-15 -3740 ((-635 |#1|) (-1219 |#2| |#1|) (-1219 |#2| |#1|))) (-15 -3750 ((-558) (-1219 |#2| |#1|) (-1219 |#2| |#1|))) (-15 -3759 ((-558) (-1219 |#2| |#1|))) (IF (|has| |#1| (-450)) (PROGN (-15 -3768 ((-558) (-1219 |#2| |#1|) (-1219 |#2| |#1|))) (-15 -3777 ((-558) (-1219 |#2| |#1|)))) |%noBranch|))
+((-3207 (((-112) $ $) NIL)) (-3787 (($ (-504) (-1105)) 14)) (-3973 (((-1105) $) 20)) (-1323 (((-504) $) 17)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 28) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1683 (((-112) $ $) NIL)))
+(((-1102) (-13 (-1070) (-10 -8 (-15 -3787 ($ (-504) (-1105))) (-15 -1323 ((-504) $)) (-15 -3973 ((-1105) $))))) (T -1102))
+((-3787 (*1 *1 *2 *3) (-12 (-5 *2 (-504)) (-5 *3 (-1105)) (-5 *1 (-1102)))) (-1323 (*1 *2 *1) (-12 (-5 *2 (-504)) (-5 *1 (-1102)))) (-3973 (*1 *2 *1) (-12 (-5 *2 (-1105)) (-5 *1 (-1102)))))
+(-13 (-1070) (-10 -8 (-15 -3787 ($ (-504) (-1105))) (-15 -1323 ((-504) $)) (-15 -3973 ((-1105) $))))
+((-1397 (((-3 (-558) "failed") |#2| (-1163) |#2| (-1145)) 17) (((-3 (-558) "failed") |#2| (-1163) (-834 |#2|)) 15) (((-3 (-558) "failed") |#2|) 54)))
+(((-1103 |#1| |#2|) (-10 -7 (-15 -1397 ((-3 (-558) "failed") |#2|)) (-15 -1397 ((-3 (-558) "failed") |#2| (-1163) (-834 |#2|))) (-15 -1397 ((-3 (-558) "failed") |#2| (-1163) |#2| (-1145)))) (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)) (-450)) (-13 (-27) (-1185) (-429 |#1|))) (T -1103))
+((-1397 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1163)) (-5 *5 (-1145)) (-4 *6 (-13 (-550) (-841) (-1028 *2) (-631 *2) (-450))) (-5 *2 (-558)) (-5 *1 (-1103 *6 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *6))))) (-1397 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1163)) (-5 *5 (-834 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *6))) (-4 *6 (-13 (-550) (-841) (-1028 *2) (-631 *2) (-450))) (-5 *2 (-558)) (-5 *1 (-1103 *6 *3)))) (-1397 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-550) (-841) (-1028 *2) (-631 *2) (-450))) (-5 *2 (-558)) (-5 *1 (-1103 *4 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *4))))))
+(-10 -7 (-15 -1397 ((-3 (-558) "failed") |#2|)) (-15 -1397 ((-3 (-558) "failed") |#2| (-1163) (-834 |#2|))) (-15 -1397 ((-3 (-558) "failed") |#2| (-1163) |#2| (-1145))))
+((-1397 (((-3 (-558) "failed") (-406 (-942 |#1|)) (-1163) (-406 (-942 |#1|)) (-1145)) 35) (((-3 (-558) "failed") (-406 (-942 |#1|)) (-1163) (-834 (-406 (-942 |#1|)))) 30) (((-3 (-558) "failed") (-406 (-942 |#1|))) 13)))
+(((-1104 |#1|) (-10 -7 (-15 -1397 ((-3 (-558) "failed") (-406 (-942 |#1|)))) (-15 -1397 ((-3 (-558) "failed") (-406 (-942 |#1|)) (-1163) (-834 (-406 (-942 |#1|))))) (-15 -1397 ((-3 (-558) "failed") (-406 (-942 |#1|)) (-1163) (-406 (-942 |#1|)) (-1145)))) (-450)) (T -1104))
+((-1397 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-406 (-942 *6))) (-5 *4 (-1163)) (-5 *5 (-1145)) (-4 *6 (-450)) (-5 *2 (-558)) (-5 *1 (-1104 *6)))) (-1397 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1163)) (-5 *5 (-834 (-406 (-942 *6)))) (-5 *3 (-406 (-942 *6))) (-4 *6 (-450)) (-5 *2 (-558)) (-5 *1 (-1104 *6)))) (-1397 (*1 *2 *3) (|partial| -12 (-5 *3 (-406 (-942 *4))) (-4 *4 (-450)) (-5 *2 (-558)) (-5 *1 (-1104 *4)))))
+(-10 -7 (-15 -1397 ((-3 (-558) "failed") (-406 (-942 |#1|)))) (-15 -1397 ((-3 (-558) "failed") (-406 (-942 |#1|)) (-1163) (-834 (-406 (-942 |#1|))))) (-15 -1397 ((-3 (-558) "failed") (-406 (-942 |#1|)) (-1163) (-406 (-942 |#1|)) (-1145))))
+((-3207 (((-112) $ $) NIL)) (-1395 (((-1168) $) 10)) (-2590 (((-635 (-1168)) $) 11)) (-3973 (($ (-635 (-1168)) (-1168)) 9)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 22)) (-1683 (((-112) $ $) 14)))
+(((-1105) (-13 (-1087) (-10 -8 (-15 -3973 ($ (-635 (-1168)) (-1168))) (-15 -1395 ((-1168) $)) (-15 -2590 ((-635 (-1168)) $))))) (T -1105))
+((-3973 (*1 *1 *2 *3) (-12 (-5 *2 (-635 (-1168))) (-5 *3 (-1168)) (-5 *1 (-1105)))) (-1395 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1105)))) (-2590 (*1 *2 *1) (-12 (-5 *2 (-635 (-1168))) (-5 *1 (-1105)))))
+(-13 (-1087) (-10 -8 (-15 -3973 ($ (-635 (-1168)) (-1168))) (-15 -1395 ((-1168) $)) (-15 -2590 ((-635 (-1168)) $))))
+((-1567 (((-315 (-558)) (-48)) 12)))
+(((-1106) (-10 -7 (-15 -1567 ((-315 (-558)) (-48))))) (T -1106))
+((-1567 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-315 (-558))) (-5 *1 (-1106)))))
+(-10 -7 (-15 -1567 ((-315 (-558)) (-48))))
+((-3207 (((-112) $ $) NIL)) (-1304 (($ $) 41)) (-2067 (((-112) $) 65)) (-2108 (($ $ $) 48)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 86)) (-1881 (($ $) NIL)) (-1857 (((-112) $) NIL)) (-1686 (($ $ $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-1663 (($ $ $ $) 75)) (-3465 (($ $) NIL)) (-1380 (((-417 $) $) NIL)) (-3732 (((-112) $ $) NIL)) (-1397 (((-558) $) NIL)) (-1672 (($ $ $) 72)) (-1816 (($) NIL T CONST)) (-3069 (((-3 (-558) "failed") $) NIL)) (-1863 (((-558) $) NIL)) (-4025 (($ $ $) 59)) (-3216 (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) 80) (((-679 (-558)) (-679 $)) 28)) (-2588 (((-3 $ "failed") $) NIL)) (-3962 (((-3 (-406 (-558)) "failed") $) NIL)) (-3951 (((-112) $) NIL)) (-3938 (((-406 (-558)) $) NIL)) (-2424 (($) 83) (($ $) 84)) (-4004 (($ $ $) 58)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL)) (-3031 (((-112) $) NIL)) (-1644 (($ $ $ $) NIL)) (-1697 (($ $ $) 81)) (-2045 (((-112) $) NIL)) (-1387 (($ $ $) NIL)) (-2269 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL)) (-2035 (((-112) $) 66)) (-3451 (((-112) $) 64)) (-3304 (($ $) 42)) (-2457 (((-3 $ "failed") $) NIL)) (-2055 (((-112) $) 76)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1654 (($ $ $ $) 73)) (-3910 (($ $ $) 68) (($) 39)) (-3542 (($ $ $) 67) (($) 38)) (-1842 (($ $) NIL)) (-2880 (($ $) 71)) (-2665 (($ $ $) NIL) (($ (-635 $)) NIL)) (-4310 (((-1145) $) NIL)) (-1637 (($ $ $) NIL)) (-1796 (($) NIL T CONST)) (-3276 (($ $) 50)) (-2975 (((-1107) $) 70)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-2699 (($ $ $) 62) (($ (-635 $)) NIL)) (-1364 (($ $) NIL)) (-2522 (((-417 $) $) NIL)) (-3713 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL)) (-3983 (((-3 $ "failed") $ $) NIL)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3458 (((-112) $) NIL)) (-3722 (((-762) $) NIL)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 61)) (-2829 (($ $ (-762)) NIL) (($ $) NIL)) (-3914 (($ $) 51)) (-1553 (($ $) NIL)) (-3224 (((-558) $) 32) (((-534) $) NIL) (((-882 (-558)) $) NIL) (((-378) $) NIL) (((-224) $) NIL)) (-3220 (((-853) $) 31) (($ (-558)) 82) (($ $) NIL) (($ (-558)) 82)) (-2542 (((-762)) NIL)) (-1712 (((-112) $ $) NIL)) (-2322 (($ $ $) NIL)) (-2579 (($) 37)) (-1870 (((-112) $ $) NIL)) (-1674 (($ $ $ $) 74)) (-3190 (($ $) 63)) (-3127 (($ $ $) 44)) (-2131 (($) 35 T CONST)) (-2406 (($ $ $) 47)) (-2142 (($) 36 T CONST)) (-1338 (((-1145) $) 21) (((-1145) $ (-112)) 23) (((-1251) (-813) $) 24) (((-1251) (-813) $ (-112)) 25)) (-2417 (($ $) 45)) (-1866 (($ $ (-762)) NIL) (($ $) NIL)) (-2393 (($ $ $) 46)) (-1747 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1683 (((-112) $ $) 40)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 49)) (-3115 (($ $ $) 43)) (-1798 (($ $) 52) (($ $ $) 54)) (-1784 (($ $ $) 53)) (** (($ $ (-911)) NIL) (($ $ (-762)) 57)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 34) (($ $ $) 55)))
+(((-1107) (-13 (-543) (-651) (-819) (-10 -8 (-6 -4369) (-6 -4374) (-6 -4370) (-15 -3542 ($)) (-15 -3910 ($)) (-15 -3304 ($ $)) (-15 -1304 ($ $)) (-15 -3115 ($ $ $)) (-15 -3127 ($ $ $)) (-15 -2108 ($ $ $)) (-15 -2417 ($ $)) (-15 -2393 ($ $ $)) (-15 -2406 ($ $ $))))) (T -1107))
+((-3127 (*1 *1 *1 *1) (-5 *1 (-1107))) (-3115 (*1 *1 *1 *1) (-5 *1 (-1107))) (-1304 (*1 *1 *1) (-5 *1 (-1107))) (-3542 (*1 *1) (-5 *1 (-1107))) (-3910 (*1 *1) (-5 *1 (-1107))) (-3304 (*1 *1 *1) (-5 *1 (-1107))) (-2108 (*1 *1 *1 *1) (-5 *1 (-1107))) (-2417 (*1 *1 *1) (-5 *1 (-1107))) (-2393 (*1 *1 *1 *1) (-5 *1 (-1107))) (-2406 (*1 *1 *1 *1) (-5 *1 (-1107))))
+(-13 (-543) (-651) (-819) (-10 -8 (-6 -4369) (-6 -4374) (-6 -4370) (-15 -3542 ($)) (-15 -3910 ($)) (-15 -3304 ($ $)) (-15 -1304 ($ $)) (-15 -3115 ($ $ $)) (-15 -3127 ($ $ $)) (-15 -2108 ($ $ $)) (-15 -2417 ($ $)) (-15 -2393 ($ $ $)) (-15 -2406 ($ $ $))))
+((-3207 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-3072 ((|#1| $) 44)) (-3026 (((-112) $ (-762)) 8)) (-1816 (($) 7 T CONST)) (-3805 ((|#1| |#1| $) 46)) (-3796 ((|#1| $) 45)) (-2240 (((-635 |#1|) $) 30 (|has| $ (-6 -4382)))) (-2986 (((-112) $ (-762)) 9)) (-2122 (((-635 |#1|) $) 29 (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1807 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) 35)) (-2953 (((-112) $ (-762)) 10)) (-4310 (((-1145) $) 22 (|has| |#1| (-1087)))) (-1722 ((|#1| $) 39)) (-4328 (($ |#1| $) 40)) (-2975 (((-1107) $) 21 (|has| |#1| (-1087)))) (-3524 ((|#1| $) 41)) (-3266 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) 14)) (-3375 (((-112) $) 11)) (-2083 (($) 12)) (-2494 (((-762) $) 43)) (-2988 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4382))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1553 (($ $) 13)) (-3220 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-3534 (($ (-635 |#1|)) 42)) (-3277 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-2755 (((-762) $) 6 (|has| $ (-6 -4382)))))
+(((-1108 |#1|) (-139) (-1200)) (T -1108))
+((-3805 (*1 *2 *2 *1) (-12 (-4 *1 (-1108 *2)) (-4 *2 (-1200)))) (-3796 (*1 *2 *1) (-12 (-4 *1 (-1108 *2)) (-4 *2 (-1200)))) (-3072 (*1 *2 *1) (-12 (-4 *1 (-1108 *2)) (-4 *2 (-1200)))) (-2494 (*1 *2 *1) (-12 (-4 *1 (-1108 *3)) (-4 *3 (-1200)) (-5 *2 (-762)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4382) (-15 -3805 (|t#1| |t#1| $)) (-15 -3796 (|t#1| $)) (-15 -3072 (|t#1| $)) (-15 -2494 ((-762) $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1087)) ((-605 (-853)) -3998 (|has| |#1| (-1087)) (|has| |#1| (-605 (-853)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-1087) |has| |#1| (-1087)) ((-1200) . T))
+((-1635 ((|#3| $) 76)) (-3069 (((-3 (-558) "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-1863 (((-558) $) NIL) (((-406 (-558)) $) NIL) ((|#3| $) 37)) (-3216 (((-679 (-558)) (-679 $)) NIL) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL) (((-2 (|:| -3683 (-679 |#3|)) (|:| |vec| (-1246 |#3|))) (-679 $) (-1246 $)) 73) (((-679 |#3|) (-679 $)) 65)) (-2829 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-762)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL) (($ $ (-1163) (-762)) NIL) (($ $ (-635 (-1163))) NIL) (($ $ (-1163)) NIL) (($ $ (-762)) NIL) (($ $) NIL)) (-3835 ((|#3| $) 78)) (-3846 ((|#4| $) 32)) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ (-406 (-558))) NIL) (($ |#3|) 16)) (** (($ $ (-911)) NIL) (($ $ (-762)) 15) (($ $ (-558)) 82)))
+(((-1109 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-558))) (-15 -3835 (|#3| |#1|)) (-15 -1635 (|#3| |#1|)) (-15 -3846 (|#4| |#1|)) (-15 -3216 ((-679 |#3|) (-679 |#1|))) (-15 -3216 ((-2 (|:| -3683 (-679 |#3|)) (|:| |vec| (-1246 |#3|))) (-679 |#1|) (-1246 |#1|))) (-15 -3216 ((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 |#1|) (-1246 |#1|))) (-15 -3216 ((-679 (-558)) (-679 |#1|))) (-15 -3220 (|#1| |#3|)) (-15 -3069 ((-3 |#3| "failed") |#1|)) (-15 -1863 (|#3| |#1|)) (-15 -1863 ((-406 (-558)) |#1|)) (-15 -3069 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -3220 (|#1| (-406 (-558)))) (-15 -1863 ((-558) |#1|)) (-15 -3069 ((-3 (-558) "failed") |#1|)) (-15 -2829 (|#1| |#1|)) (-15 -2829 (|#1| |#1| (-762))) (-15 -2829 (|#1| |#1| (-1163))) (-15 -2829 (|#1| |#1| (-635 (-1163)))) (-15 -2829 (|#1| |#1| (-1163) (-762))) (-15 -2829 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 -2829 (|#1| |#1| (-1 |#3| |#3|) (-762))) (-15 -2829 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3220 (|#1| (-558))) (-15 ** (|#1| |#1| (-762))) (-15 ** (|#1| |#1| (-911))) (-15 -3220 ((-853) |#1|))) (-1110 |#2| |#3| |#4| |#5|) (-762) (-1039) (-237 |#2| |#3|) (-237 |#2| |#3|)) (T -1109))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-558))) (-15 -3835 (|#3| |#1|)) (-15 -1635 (|#3| |#1|)) (-15 -3846 (|#4| |#1|)) (-15 -3216 ((-679 |#3|) (-679 |#1|))) (-15 -3216 ((-2 (|:| -3683 (-679 |#3|)) (|:| |vec| (-1246 |#3|))) (-679 |#1|) (-1246 |#1|))) (-15 -3216 ((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 |#1|) (-1246 |#1|))) (-15 -3216 ((-679 (-558)) (-679 |#1|))) (-15 -3220 (|#1| |#3|)) (-15 -3069 ((-3 |#3| "failed") |#1|)) (-15 -1863 (|#3| |#1|)) (-15 -1863 ((-406 (-558)) |#1|)) (-15 -3069 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -3220 (|#1| (-406 (-558)))) (-15 -1863 ((-558) |#1|)) (-15 -3069 ((-3 (-558) "failed") |#1|)) (-15 -2829 (|#1| |#1|)) (-15 -2829 (|#1| |#1| (-762))) (-15 -2829 (|#1| |#1| (-1163))) (-15 -2829 (|#1| |#1| (-635 (-1163)))) (-15 -2829 (|#1| |#1| (-1163) (-762))) (-15 -2829 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 -2829 (|#1| |#1| (-1 |#3| |#3|) (-762))) (-15 -2829 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3220 (|#1| (-558))) (-15 ** (|#1| |#1| (-762))) (-15 ** (|#1| |#1| (-911))) (-15 -3220 ((-853) |#1|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-1635 ((|#2| $) 71)) (-2500 (((-112) $) 111)) (-2089 (((-3 $ "failed") $ $) 19)) (-2519 (((-112) $) 109)) (-3026 (((-112) $ (-762)) 101)) (-3867 (($ |#2|) 74)) (-1816 (($) 17 T CONST)) (-2404 (($ $) 128 (|has| |#2| (-306)))) (-2427 ((|#3| $ (-558)) 123)) (-3069 (((-3 (-558) "failed") $) 86 (|has| |#2| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) 83 (|has| |#2| (-1028 (-406 (-558))))) (((-3 |#2| "failed") $) 80)) (-1863 (((-558) $) 85 (|has| |#2| (-1028 (-558)))) (((-406 (-558)) $) 82 (|has| |#2| (-1028 (-406 (-558))))) ((|#2| $) 81)) (-3216 (((-679 (-558)) (-679 $)) 78 (|has| |#2| (-631 (-558)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) 77 (|has| |#2| (-631 (-558)))) (((-2 (|:| -3683 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 $) (-1246 $)) 76) (((-679 |#2|) (-679 $)) 75)) (-2588 (((-3 $ "failed") $) 33)) (-3833 (((-762) $) 129 (|has| |#2| (-550)))) (-1746 ((|#2| $ (-558) (-558)) 121)) (-2240 (((-635 |#2|) $) 94 (|has| $ (-6 -4382)))) (-2035 (((-112) $) 31)) (-2391 (((-762) $) 130 (|has| |#2| (-550)))) (-2379 (((-635 |#4|) $) 131 (|has| |#2| (-550)))) (-1967 (((-762) $) 117)) (-1979 (((-762) $) 118)) (-2986 (((-112) $ (-762)) 102)) (-3815 ((|#2| $) 66 (|has| |#2| (-6 (-4384 "*"))))) (-2472 (((-558) $) 113)) (-2448 (((-558) $) 115)) (-2122 (((-635 |#2|) $) 93 (|has| $ (-6 -4382)))) (-4322 (((-112) |#2| $) 91 (-12 (|has| |#2| (-1087)) (|has| $ (-6 -4382))))) (-2460 (((-558) $) 114)) (-2438 (((-558) $) 116)) (-3181 (($ (-635 (-635 |#2|))) 108)) (-1807 (($ (-1 |#2| |#2|) $) 98 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#2| |#2| |#2|) $ $) 125) (($ (-1 |#2| |#2|) $) 99)) (-4178 (((-635 (-635 |#2|)) $) 119)) (-2953 (((-112) $ (-762)) 103)) (-4310 (((-1145) $) 9)) (-4141 (((-3 $ "failed") $) 65 (|has| |#2| (-362)))) (-2975 (((-1107) $) 10)) (-3983 (((-3 $ "failed") $ |#2|) 126 (|has| |#2| (-550)))) (-3266 (((-112) (-1 (-112) |#2|) $) 96 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#2|))) 90 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-293 |#2|)) 89 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ |#2| |#2|) 88 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-635 |#2|) (-635 |#2|)) 87 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))) (-2381 (((-112) $ $) 107)) (-3375 (((-112) $) 104)) (-2083 (($) 105)) (-2195 ((|#2| $ (-558) (-558) |#2|) 122) ((|#2| $ (-558) (-558)) 120)) (-2829 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-762)) 51) (($ $ (-635 (-1163)) (-635 (-762))) 44 (|has| |#2| (-890 (-1163)))) (($ $ (-1163) (-762)) 43 (|has| |#2| (-890 (-1163)))) (($ $ (-635 (-1163))) 42 (|has| |#2| (-890 (-1163)))) (($ $ (-1163)) 41 (|has| |#2| (-890 (-1163)))) (($ $ (-762)) 39 (|has| |#2| (-232))) (($ $) 37 (|has| |#2| (-232)))) (-3835 ((|#2| $) 70)) (-3858 (($ (-635 |#2|)) 73)) (-2509 (((-112) $) 110)) (-3846 ((|#3| $) 72)) (-3824 ((|#2| $) 67 (|has| |#2| (-6 (-4384 "*"))))) (-2988 (((-762) (-1 (-112) |#2|) $) 95 (|has| $ (-6 -4382))) (((-762) |#2| $) 92 (-12 (|has| |#2| (-1087)) (|has| $ (-6 -4382))))) (-1553 (($ $) 106)) (-2415 ((|#4| $ (-558)) 124)) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ (-406 (-558))) 84 (|has| |#2| (-1028 (-406 (-558))))) (($ |#2|) 79)) (-2542 (((-762)) 28)) (-3277 (((-112) (-1 (-112) |#2|) $) 97 (|has| $ (-6 -4382)))) (-2486 (((-112) $) 112)) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1866 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-762)) 49) (($ $ (-635 (-1163)) (-635 (-762))) 48 (|has| |#2| (-890 (-1163)))) (($ $ (-1163) (-762)) 47 (|has| |#2| (-890 (-1163)))) (($ $ (-635 (-1163))) 46 (|has| |#2| (-890 (-1163)))) (($ $ (-1163)) 45 (|has| |#2| (-890 (-1163)))) (($ $ (-762)) 40 (|has| |#2| (-232))) (($ $) 38 (|has| |#2| (-232)))) (-1683 (((-112) $ $) 6)) (-1810 (($ $ |#2|) 127 (|has| |#2| (-362)))) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ (-558)) 64 (|has| |#2| (-362)))) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ |#2|) 133) (($ |#2| $) 132) ((|#4| $ |#4|) 69) ((|#3| |#3| $) 68)) (-2755 (((-762) $) 100 (|has| $ (-6 -4382)))))
+(((-1110 |#1| |#2| |#3| |#4|) (-139) (-762) (-1039) (-237 |t#1| |t#2|) (-237 |t#1| |t#2|)) (T -1110))
+((-3867 (*1 *1 *2) (-12 (-4 *2 (-1039)) (-4 *1 (-1110 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2)))) (-3858 (*1 *1 *2) (-12 (-5 *2 (-635 *4)) (-4 *4 (-1039)) (-4 *1 (-1110 *3 *4 *5 *6)) (-4 *5 (-237 *3 *4)) (-4 *6 (-237 *3 *4)))) (-3846 (*1 *2 *1) (-12 (-4 *1 (-1110 *3 *4 *2 *5)) (-4 *4 (-1039)) (-4 *5 (-237 *3 *4)) (-4 *2 (-237 *3 *4)))) (-1635 (*1 *2 *1) (-12 (-4 *1 (-1110 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2)) (-4 *2 (-1039)))) (-3835 (*1 *2 *1) (-12 (-4 *1 (-1110 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2)) (-4 *2 (-1039)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1110 *3 *4 *5 *2)) (-4 *4 (-1039)) (-4 *5 (-237 *3 *4)) (-4 *2 (-237 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1110 *3 *4 *2 *5)) (-4 *4 (-1039)) (-4 *2 (-237 *3 *4)) (-4 *5 (-237 *3 *4)))) (-3824 (*1 *2 *1) (-12 (-4 *1 (-1110 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2)) (|has| *2 (-6 (-4384 "*"))) (-4 *2 (-1039)))) (-3815 (*1 *2 *1) (-12 (-4 *1 (-1110 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2)) (|has| *2 (-6 (-4384 "*"))) (-4 *2 (-1039)))) (-4141 (*1 *1 *1) (|partial| -12 (-4 *1 (-1110 *2 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-237 *2 *3)) (-4 *5 (-237 *2 *3)) (-4 *3 (-362)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-1110 *3 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-237 *3 *4)) (-4 *6 (-237 *3 *4)) (-4 *4 (-362)))))
+(-13 (-230 |t#2|) (-111 |t#2| |t#2|) (-1042 |t#1| |t#1| |t#2| |t#3| |t#4|) (-410 |t#2|) (-376 |t#2|) (-10 -8 (IF (|has| |t#2| (-171)) (-6 (-708 |t#2|)) |%noBranch|) (-15 -3867 ($ |t#2|)) (-15 -3858 ($ (-635 |t#2|))) (-15 -3846 (|t#3| $)) (-15 -1635 (|t#2| $)) (-15 -3835 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4384 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3824 (|t#2| $)) (-15 -3815 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-362)) (PROGN (-15 -4141 ((-3 $ "failed") $)) (-15 ** ($ $ (-558)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4384 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-608 #0=(-406 (-558))) |has| |#2| (-1028 (-406 (-558)))) ((-608 (-558)) . T) ((-608 |#2|) . T) ((-605 (-853)) . T) ((-230 |#2|) . T) ((-232) |has| |#2| (-232)) ((-308 |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))) ((-376 |#2|) . T) ((-410 |#2|) . T) ((-487 |#2|) . T) ((-512 |#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))) ((-638 |#2|) . T) ((-638 $) . T) ((-631 (-558)) |has| |#2| (-631 (-558))) ((-631 |#2|) . T) ((-708 |#2|) -3998 (|has| |#2| (-171)) (|has| |#2| (-6 (-4384 "*")))) ((-717) . T) ((-890 (-1163)) |has| |#2| (-890 (-1163))) ((-1042 |#1| |#1| |#2| |#3| |#4|) . T) ((-1028 #0#) |has| |#2| (-1028 (-406 (-558)))) ((-1028 (-558)) |has| |#2| (-1028 (-558))) ((-1028 |#2|) . T) ((-1045 |#2|) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1200) . T))
+((-3897 ((|#4| |#4|) 70)) (-3877 ((|#4| |#4|) 65)) (-3917 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2660 (-635 |#3|))) |#4| |#3|) 78)) (-3906 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-3887 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67)))
+(((-1111 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3877 (|#4| |#4|)) (-15 -3887 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3897 (|#4| |#4|)) (-15 -3906 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3917 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2660 (-635 |#3|))) |#4| |#3|))) (-306) (-372 |#1|) (-372 |#1|) (-677 |#1| |#2| |#3|)) (T -1111))
+((-3917 (*1 *2 *3 *4) (-12 (-4 *5 (-306)) (-4 *6 (-372 *5)) (-4 *4 (-372 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2660 (-635 *4)))) (-5 *1 (-1111 *5 *6 *4 *3)) (-4 *3 (-677 *5 *6 *4)))) (-3906 (*1 *2 *3) (-12 (-4 *4 (-306)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1111 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6)))) (-3897 (*1 *2 *2) (-12 (-4 *3 (-306)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-1111 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5)))) (-3887 (*1 *2 *3) (-12 (-4 *4 (-306)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1111 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6)))) (-3877 (*1 *2 *2) (-12 (-4 *3 (-306)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-1111 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5)))))
+(-10 -7 (-15 -3877 (|#4| |#4|)) (-15 -3887 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3897 (|#4| |#4|)) (-15 -3906 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3917 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2660 (-635 |#3|))) |#4| |#3|)))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) 17)) (-2671 (((-635 |#2|) $) 158)) (-2492 (((-1159 $) $ |#2|) 53) (((-1159 |#1|) $) 42)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 107 (|has| |#1| (-550)))) (-1881 (($ $) 109 (|has| |#1| (-550)))) (-1857 (((-112) $) 111 (|has| |#1| (-550)))) (-2513 (((-762) $) NIL) (((-762) $ (-635 |#2|)) 191)) (-2089 (((-3 $ "failed") $ $) NIL)) (-3748 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-3465 (($ $) NIL (|has| |#1| (-450)))) (-1380 (((-417 $) $) NIL (|has| |#1| (-450)))) (-3719 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-1816 (($) NIL T CONST)) (-3069 (((-3 |#1| "failed") $) 155) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 |#2| "failed") $) NIL)) (-1863 ((|#1| $) 153) (((-406 (-558)) $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-558) $) NIL (|has| |#1| (-1028 (-558)))) ((|#2| $) NIL)) (-3320 (($ $ $ |#2|) NIL (|has| |#1| (-171)))) (-2490 (($ $) 195)) (-3216 (((-679 (-558)) (-679 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3683 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) NIL) (((-679 |#1|) (-679 $)) NIL)) (-2588 (((-3 $ "failed") $) 81)) (-2782 (($ $) NIL (|has| |#1| (-450))) (($ $ |#2|) NIL (|has| |#1| (-450)))) (-2476 (((-635 $) $) NIL)) (-3031 (((-112) $) NIL (|has| |#1| (-899)))) (-3888 (($ $ |#1| (-529 |#2|) $) NIL)) (-2269 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (-12 (|has| |#1| (-876 (-378))) (|has| |#2| (-876 (-378))))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (-12 (|has| |#1| (-876 (-558))) (|has| |#2| (-876 (-558)))))) (-2035 (((-112) $) 19)) (-2110 (((-762) $) 26)) (-2659 (($ (-1159 |#1|) |#2|) 47) (($ (-1159 $) |#2|) 63)) (-2536 (((-635 $) $) NIL)) (-4238 (((-112) $) 32)) (-2648 (($ |#1| (-529 |#2|)) 70) (($ $ |#2| (-762)) 51) (($ $ (-635 |#2|) (-635 (-762))) NIL)) (-3381 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $ |#2|) NIL)) (-2524 (((-529 |#2|) $) 185) (((-762) $ |#2|) 186) (((-635 (-762)) $ (-635 |#2|)) 187)) (-3910 (($ $ $) NIL (|has| |#1| (-841)))) (-3542 (($ $ $) NIL (|has| |#1| (-841)))) (-3898 (($ (-1 (-529 |#2|) (-529 |#2|)) $) NIL)) (-3167 (($ (-1 |#1| |#1|) $) 119)) (-3399 (((-3 |#2| "failed") $) 160)) (-2451 (($ $) 194)) (-2463 ((|#1| $) 36)) (-2665 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-4310 (((-1145) $) NIL)) (-2560 (((-3 (-635 $) "failed") $) NIL)) (-2548 (((-3 (-635 $) "failed") $) NIL)) (-2575 (((-3 (-2 (|:| |var| |#2|) (|:| -1951 (-762))) "failed") $) NIL)) (-2975 (((-1107) $) NIL)) (-2429 (((-112) $) 33)) (-2440 ((|#1| $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) 137 (|has| |#1| (-450)))) (-2699 (($ (-635 $)) 142 (|has| |#1| (-450))) (($ $ $) 129 (|has| |#1| (-450)))) (-3728 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-3738 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-2522 (((-417 $) $) NIL (|has| |#1| (-899)))) (-3983 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550))) (((-3 $ "failed") $ $) 117 (|has| |#1| (-550)))) (-2554 (($ $ (-635 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ |#2| |#1|) 163) (($ $ (-635 |#2|) (-635 |#1|)) 176) (($ $ |#2| $) 162) (($ $ (-635 |#2|) (-635 $)) 175)) (-3331 (($ $ |#2|) NIL (|has| |#1| (-171)))) (-2829 (($ $ |#2|) 193) (($ $ (-635 |#2|)) NIL) (($ $ |#2| (-762)) NIL) (($ $ (-635 |#2|) (-635 (-762))) NIL)) (-4323 (((-529 |#2|) $) 181) (((-762) $ |#2|) 177) (((-635 (-762)) $ (-635 |#2|)) 179)) (-3224 (((-882 (-378)) $) NIL (-12 (|has| |#1| (-606 (-882 (-378)))) (|has| |#2| (-606 (-882 (-378)))))) (((-882 (-558)) $) NIL (-12 (|has| |#1| (-606 (-882 (-558)))) (|has| |#2| (-606 (-882 (-558)))))) (((-534) $) NIL (-12 (|has| |#1| (-606 (-534))) (|has| |#2| (-606 (-534)))))) (-2504 ((|#1| $) 125 (|has| |#1| (-450))) (($ $ |#2|) 128 (|has| |#1| (-450)))) (-3709 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-899))))) (-3220 (((-853) $) 148) (($ (-558)) 75) (($ |#1|) 76) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-550))) (($ (-406 (-558))) NIL (-3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558))))))) (-2583 (((-635 |#1|) $) 151)) (-3736 ((|#1| $ (-529 |#2|)) 72) (($ $ |#2| (-762)) NIL) (($ $ (-635 |#2|) (-635 (-762))) NIL)) (-3698 (((-3 $ "failed") $) NIL (-3998 (-12 (|has| $ (-144)) (|has| |#1| (-899))) (|has| |#1| (-144))))) (-2542 (((-762)) 78)) (-3879 (($ $ $ (-762)) NIL (|has| |#1| (-171)))) (-1870 (((-112) $ $) 114 (|has| |#1| (-550)))) (-2131 (($) 12 T CONST)) (-2142 (($) 14 T CONST)) (-1866 (($ $ |#2|) NIL) (($ $ (-635 |#2|)) NIL) (($ $ |#2| (-762)) NIL) (($ $ (-635 |#2|) (-635 (-762))) NIL)) (-1747 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1683 (((-112) $ $) 96)) (-1731 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1810 (($ $ |#1|) 123 (|has| |#1| (-362)))) (-1798 (($ $) 84) (($ $ $) 94)) (-1784 (($ $ $) 48)) (** (($ $ (-911)) 101) (($ $ (-762)) 99)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 87) (($ $ $) 64) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558))))) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ |#1| $) 89) (($ $ |#1|) NIL)))
+(((-1112 |#1| |#2|) (-939 |#1| (-529 |#2|) |#2|) (-1039) (-841)) (T -1112))
+NIL
+(-939 |#1| (-529 |#2|) |#2|)
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2671 (((-635 |#2|) $) NIL)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1881 (($ $) NIL (|has| |#1| (-550)))) (-1857 (((-112) $) NIL (|has| |#1| (-550)))) (-4088 (($ $) 140 (|has| |#1| (-38 (-406 (-558)))))) (-2135 (($ $) 116 (|has| |#1| (-38 (-406 (-558)))))) (-2089 (((-3 $ "failed") $ $) NIL)) (-2534 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4070 (($ $) 136 (|has| |#1| (-38 (-406 (-558)))))) (-2112 (($ $) 112 (|has| |#1| (-38 (-406 (-558)))))) (-4113 (($ $) 144 (|has| |#1| (-38 (-406 (-558)))))) (-2156 (($ $) 120 (|has| |#1| (-38 (-406 (-558)))))) (-1816 (($) NIL T CONST)) (-2490 (($ $) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-4330 (((-942 |#1|) $ (-762)) NIL) (((-942 |#1|) $ (-762) (-762)) NIL)) (-2020 (((-112) $) NIL)) (-1904 (($) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3449 (((-762) $ |#2|) NIL) (((-762) $ |#2| (-762)) NIL)) (-2035 (((-112) $) NIL)) (-3828 (($ $ (-558)) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4238 (((-112) $) NIL)) (-2648 (($ $ (-635 |#2|) (-635 (-529 |#2|))) NIL) (($ $ |#2| (-529 |#2|)) NIL) (($ |#1| (-529 |#2|)) NIL) (($ $ |#2| (-762)) 55) (($ $ (-635 |#2|) (-635 (-762))) NIL)) (-3167 (($ (-1 |#1| |#1|) $) NIL)) (-2592 (($ $) 110 (|has| |#1| (-38 (-406 (-558)))))) (-2451 (($ $) NIL)) (-2463 ((|#1| $) NIL)) (-4310 (((-1145) $) NIL)) (-2543 (($ $ |#2|) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ |#2| |#1|) 163 (|has| |#1| (-38 (-406 (-558)))))) (-2975 (((-1107) $) NIL)) (-3726 (($ (-1 $) |#2| |#1|) 162 (|has| |#1| (-38 (-406 (-558)))))) (-3430 (($ $ (-762)) 13)) (-3983 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-2573 (($ $) 108 (|has| |#1| (-38 (-406 (-558)))))) (-2554 (($ $ |#2| $) 94) (($ $ (-635 |#2|) (-635 $)) 87) (($ $ (-635 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL)) (-2829 (($ $ |#2|) 97) (($ $ (-635 |#2|)) NIL) (($ $ |#2| (-762)) NIL) (($ $ (-635 |#2|) (-635 (-762))) NIL)) (-4323 (((-529 |#2|) $) NIL)) (-3927 (((-1 (-1143 |#3|) |#3|) (-635 |#2|) (-635 (-1143 |#3|))) 76)) (-4124 (($ $) 146 (|has| |#1| (-38 (-406 (-558)))))) (-2167 (($ $) 122 (|has| |#1| (-38 (-406 (-558)))))) (-4102 (($ $) 142 (|has| |#1| (-38 (-406 (-558)))))) (-2146 (($ $) 118 (|has| |#1| (-38 (-406 (-558)))))) (-4080 (($ $) 138 (|has| |#1| (-38 (-406 (-558)))))) (-2124 (($ $) 114 (|has| |#1| (-38 (-406 (-558)))))) (-2011 (($ $) 15)) (-3220 (((-853) $) 179) (($ (-558)) NIL) (($ |#1|) 40 (|has| |#1| (-171))) (($ $) NIL (|has| |#1| (-550))) (($ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558))))) (($ |#2|) 62) (($ |#3|) 60)) (-3736 ((|#1| $ (-529 |#2|)) NIL) (($ $ |#2| (-762)) NIL) (($ $ (-635 |#2|) (-635 (-762))) NIL) ((|#3| $ (-762)) 38)) (-3698 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2542 (((-762)) NIL)) (-4159 (($ $) 152 (|has| |#1| (-38 (-406 (-558)))))) (-2200 (($ $) 128 (|has| |#1| (-38 (-406 (-558)))))) (-1870 (((-112) $ $) NIL (|has| |#1| (-550)))) (-4135 (($ $) 148 (|has| |#1| (-38 (-406 (-558)))))) (-2178 (($ $) 124 (|has| |#1| (-38 (-406 (-558)))))) (-4184 (($ $) 156 (|has| |#1| (-38 (-406 (-558)))))) (-2222 (($ $) 132 (|has| |#1| (-38 (-406 (-558)))))) (-1878 (($ $) 158 (|has| |#1| (-38 (-406 (-558)))))) (-4060 (($ $) 134 (|has| |#1| (-38 (-406 (-558)))))) (-4171 (($ $) 154 (|has| |#1| (-38 (-406 (-558)))))) (-2211 (($ $) 130 (|has| |#1| (-38 (-406 (-558)))))) (-4147 (($ $) 150 (|has| |#1| (-38 (-406 (-558)))))) (-2189 (($ $) 126 (|has| |#1| (-38 (-406 (-558)))))) (-2131 (($) 47 T CONST)) (-2142 (($) 54 T CONST)) (-1866 (($ $ |#2|) NIL) (($ $ (-635 |#2|)) NIL) (($ $ |#2| (-762)) NIL) (($ $ (-635 |#2|) (-635 (-762))) NIL)) (-1683 (((-112) $ $) NIL)) (-1810 (($ $ |#1|) 181 (|has| |#1| (-362)))) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) 58)) (** (($ $ (-911)) NIL) (($ $ (-762)) 67) (($ $ $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) 100 (|has| |#1| (-38 (-406 (-558)))))) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 57) (($ $ (-406 (-558))) 105 (|has| |#1| (-38 (-406 (-558))))) (($ (-406 (-558)) $) 103 (|has| |#1| (-38 (-406 (-558))))) (($ |#1| $) 43) (($ $ |#1|) 44) (($ |#3| $) 42)))
+(((-1113 |#1| |#2| |#3|) (-13 (-731 |#1| |#2|) (-10 -8 (-15 -3736 (|#3| $ (-762))) (-15 -3220 ($ |#2|)) (-15 -3220 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3927 ((-1 (-1143 |#3|) |#3|) (-635 |#2|) (-635 (-1143 |#3|)))) (IF (|has| |#1| (-38 (-406 (-558)))) (PROGN (-15 -2543 ($ $ |#2| |#1|)) (-15 -3726 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1039) (-841) (-939 |#1| (-529 |#2|) |#2|)) (T -1113))
+((-3736 (*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-4 *2 (-939 *4 (-529 *5) *5)) (-5 *1 (-1113 *4 *5 *2)) (-4 *4 (-1039)) (-4 *5 (-841)))) (-3220 (*1 *1 *2) (-12 (-4 *3 (-1039)) (-4 *2 (-841)) (-5 *1 (-1113 *3 *2 *4)) (-4 *4 (-939 *3 (-529 *2) *2)))) (-3220 (*1 *1 *2) (-12 (-4 *3 (-1039)) (-4 *4 (-841)) (-5 *1 (-1113 *3 *4 *2)) (-4 *2 (-939 *3 (-529 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1039)) (-4 *4 (-841)) (-5 *1 (-1113 *3 *4 *2)) (-4 *2 (-939 *3 (-529 *4) *4)))) (-3927 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *6)) (-5 *4 (-635 (-1143 *7))) (-4 *6 (-841)) (-4 *7 (-939 *5 (-529 *6) *6)) (-4 *5 (-1039)) (-5 *2 (-1 (-1143 *7) *7)) (-5 *1 (-1113 *5 *6 *7)))) (-2543 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *3 (-1039)) (-4 *2 (-841)) (-5 *1 (-1113 *3 *2 *4)) (-4 *4 (-939 *3 (-529 *2) *2)))) (-3726 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1113 *4 *3 *5))) (-4 *4 (-38 (-406 (-558)))) (-4 *4 (-1039)) (-4 *3 (-841)) (-5 *1 (-1113 *4 *3 *5)) (-4 *5 (-939 *4 (-529 *3) *3)))))
+(-13 (-731 |#1| |#2|) (-10 -8 (-15 -3736 (|#3| $ (-762))) (-15 -3220 ($ |#2|)) (-15 -3220 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3927 ((-1 (-1143 |#3|) |#3|) (-635 |#2|) (-635 (-1143 |#3|)))) (IF (|has| |#1| (-38 (-406 (-558)))) (PROGN (-15 -2543 ($ $ |#2| |#1|)) (-15 -3726 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
+((-3207 (((-112) $ $) 7)) (-3773 (((-635 (-2 (|:| -2626 $) (|:| -1328 (-635 |#4|)))) (-635 |#4|)) 85)) (-3782 (((-635 $) (-635 |#4|)) 86) (((-635 $) (-635 |#4|) (-112)) 111)) (-2671 (((-635 |#3|) $) 33)) (-2139 (((-112) $) 26)) (-2040 (((-112) $) 17 (|has| |#1| (-550)))) (-3892 (((-112) |#4| $) 101) (((-112) $) 97)) (-3842 ((|#4| |#4| $) 92)) (-3465 (((-635 (-2 (|:| |val| |#4|) (|:| -2396 $))) |#4| $) 126)) (-2376 (((-2 (|:| |under| $) (|:| -2594 $) (|:| |upper| $)) $ |#3|) 27)) (-3026 (((-112) $ (-762)) 44)) (-4329 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4382))) (((-3 |#4| "failed") $ |#3|) 79)) (-1816 (($) 45 T CONST)) (-2092 (((-112) $) 22 (|has| |#1| (-550)))) (-2116 (((-112) $ $) 24 (|has| |#1| (-550)))) (-2104 (((-112) $ $) 23 (|has| |#1| (-550)))) (-2128 (((-112) $) 25 (|has| |#1| (-550)))) (-3853 (((-635 |#4|) (-635 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-2050 (((-635 |#4|) (-635 |#4|) $) 18 (|has| |#1| (-550)))) (-2061 (((-635 |#4|) (-635 |#4|) $) 19 (|has| |#1| (-550)))) (-3069 (((-3 $ "failed") (-635 |#4|)) 36)) (-1863 (($ (-635 |#4|)) 35)) (-2315 (((-3 $ "failed") $) 82)) (-3810 ((|#4| |#4| $) 89)) (-2338 (($ $) 68 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4382))))) (-1539 (($ |#4| $) 67 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4382)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4382)))) (-2071 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-550)))) (-3902 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3792 ((|#4| |#4| $) 87)) (-3048 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4382)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4382))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4382))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3923 (((-2 (|:| -2626 (-635 |#4|)) (|:| -1328 (-635 |#4|))) $) 105)) (-2166 (((-112) |#4| $) 136)) (-2145 (((-112) |#4| $) 133)) (-2177 (((-112) |#4| $) 137) (((-112) $) 134)) (-2240 (((-635 |#4|) $) 52 (|has| $ (-6 -4382)))) (-3912 (((-112) |#4| $) 104) (((-112) $) 103)) (-1997 ((|#3| $) 34)) (-2986 (((-112) $ (-762)) 43)) (-2122 (((-635 |#4|) $) 53 (|has| $ (-6 -4382)))) (-4322 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4382))))) (-1807 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#4| |#4|) $) 47)) (-4024 (((-635 |#3|) $) 32)) (-2183 (((-112) |#3| $) 31)) (-2953 (((-112) $ (-762)) 42)) (-4310 (((-1145) $) 9)) (-2099 (((-3 |#4| (-635 $)) |#4| |#4| $) 128)) (-2087 (((-635 (-2 (|:| |val| |#4|) (|:| -2396 $))) |#4| |#4| $) 127)) (-1560 (((-3 |#4| "failed") $) 83)) (-2111 (((-635 $) |#4| $) 129)) (-2134 (((-3 (-112) (-635 $)) |#4| $) 132)) (-2123 (((-635 (-2 (|:| |val| (-112)) (|:| -2396 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-4286 (((-635 $) |#4| $) 125) (((-635 $) (-635 |#4|) $) 124) (((-635 $) (-635 |#4|) (-635 $)) 123) (((-635 $) |#4| (-635 $)) 122)) (-2423 (($ |#4| $) 117) (($ (-635 |#4|) $) 116)) (-3932 (((-635 |#4|) $) 107)) (-3873 (((-112) |#4| $) 99) (((-112) $) 95)) (-3820 ((|#4| |#4| $) 90)) (-3953 (((-112) $ $) 110)) (-2081 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-550)))) (-3883 (((-112) |#4| $) 100) (((-112) $) 96)) (-3830 ((|#4| |#4| $) 91)) (-2975 (((-1107) $) 10)) (-2305 (((-3 |#4| "failed") $) 84)) (-4307 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3755 (((-3 $ "failed") $ |#4|) 78)) (-3430 (($ $ |#4|) 77) (((-635 $) |#4| $) 115) (((-635 $) |#4| (-635 $)) 114) (((-635 $) (-635 |#4|) $) 113) (((-635 $) (-635 |#4|) (-635 $)) 112)) (-3266 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 |#4|) (-635 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-293 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-635 (-293 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))) (-2381 (((-112) $ $) 38)) (-3375 (((-112) $) 41)) (-2083 (($) 40)) (-4323 (((-762) $) 106)) (-2988 (((-762) |#4| $) 54 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4382)))) (((-762) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4382)))) (-1553 (($ $) 39)) (-3224 (((-534) $) 69 (|has| |#4| (-606 (-534))))) (-3233 (($ (-635 |#4|)) 60)) (-2151 (($ $ |#3|) 28)) (-2171 (($ $ |#3|) 30)) (-3801 (($ $) 88)) (-2160 (($ $ |#3|) 29)) (-3220 (((-853) $) 11) (((-635 |#4|) $) 37)) (-3745 (((-762) $) 76 (|has| |#3| (-367)))) (-3940 (((-3 (-2 (|:| |bas| $) (|:| -3072 (-635 |#4|))) "failed") (-635 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3072 (-635 |#4|))) "failed") (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-3863 (((-112) $ (-1 (-112) |#4| (-635 |#4|))) 98)) (-2076 (((-635 $) |#4| $) 121) (((-635 $) |#4| (-635 $)) 120) (((-635 $) (-635 |#4|) $) 119) (((-635 $) (-635 |#4|) (-635 $)) 118)) (-3277 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4382)))) (-3764 (((-635 |#3|) $) 81)) (-2155 (((-112) |#4| $) 135)) (-4206 (((-112) |#3| $) 80)) (-1683 (((-112) $ $) 6)) (-2755 (((-762) $) 46 (|has| $ (-6 -4382)))))
+(((-1114 |#1| |#2| |#3| |#4|) (-139) (-450) (-784) (-841) (-1053 |t#1| |t#2| |t#3|)) (T -1114))
+NIL
+(-13 (-1096 |t#1| |t#2| |t#3| |t#4|) (-775 |t#1| |t#2| |t#3| |t#4|))
+(((-34) . T) ((-102) . T) ((-605 (-635 |#4|)) . T) ((-605 (-853)) . T) ((-150 |#4|) . T) ((-606 (-534)) |has| |#4| (-606 (-534))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))) ((-487 |#4|) . T) ((-512 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))) ((-775 |#1| |#2| |#3| |#4|) . T) ((-966 |#1| |#2| |#3| |#4|) . T) ((-1059 |#1| |#2| |#3| |#4|) . T) ((-1087) . T) ((-1096 |#1| |#2| |#3| |#4|) . T) ((-1193 |#1| |#2| |#3| |#4|) . T) ((-1200) . T))
+((-2153 (((-635 |#2|) |#1|) 12)) (-3978 (((-635 |#2|) |#2| |#2| |#2| |#2| |#2|) 38) (((-635 |#2|) |#1|) 49)) (-3958 (((-635 |#2|) |#2| |#2| |#2|) 36) (((-635 |#2|) |#1|) 47)) (-3936 ((|#2| |#1|) 43)) (-3945 (((-2 (|:| |solns| (-635 |#2|)) (|:| |maps| (-635 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-4305 (((-635 |#2|) |#2| |#2|) 35) (((-635 |#2|) |#1|) 46)) (-3969 (((-635 |#2|) |#2| |#2| |#2| |#2|) 37) (((-635 |#2|) |#1|) 48)) (-4020 ((|#2| |#2| |#2| |#2| |#2| |#2|) 42)) (-4000 ((|#2| |#2| |#2| |#2|) 40)) (-3989 ((|#2| |#2| |#2|) 39)) (-4012 ((|#2| |#2| |#2| |#2| |#2|) 41)))
+(((-1115 |#1| |#2|) (-10 -7 (-15 -2153 ((-635 |#2|) |#1|)) (-15 -3936 (|#2| |#1|)) (-15 -3945 ((-2 (|:| |solns| (-635 |#2|)) (|:| |maps| (-635 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -4305 ((-635 |#2|) |#1|)) (-15 -3958 ((-635 |#2|) |#1|)) (-15 -3969 ((-635 |#2|) |#1|)) (-15 -3978 ((-635 |#2|) |#1|)) (-15 -4305 ((-635 |#2|) |#2| |#2|)) (-15 -3958 ((-635 |#2|) |#2| |#2| |#2|)) (-15 -3969 ((-635 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3978 ((-635 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3989 (|#2| |#2| |#2|)) (-15 -4000 (|#2| |#2| |#2| |#2|)) (-15 -4012 (|#2| |#2| |#2| |#2| |#2|)) (-15 -4020 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1222 |#2|) (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558))))))) (T -1115))
+((-4020 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558))))))) (-5 *1 (-1115 *3 *2)) (-4 *3 (-1222 *2)))) (-4012 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558))))))) (-5 *1 (-1115 *3 *2)) (-4 *3 (-1222 *2)))) (-4000 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558))))))) (-5 *1 (-1115 *3 *2)) (-4 *3 (-1222 *2)))) (-3989 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558))))))) (-5 *1 (-1115 *3 *2)) (-4 *3 (-1222 *2)))) (-3978 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558))))))) (-5 *2 (-635 *3)) (-5 *1 (-1115 *4 *3)) (-4 *4 (-1222 *3)))) (-3969 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558))))))) (-5 *2 (-635 *3)) (-5 *1 (-1115 *4 *3)) (-4 *4 (-1222 *3)))) (-3958 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558))))))) (-5 *2 (-635 *3)) (-5 *1 (-1115 *4 *3)) (-4 *4 (-1222 *3)))) (-4305 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558))))))) (-5 *2 (-635 *3)) (-5 *1 (-1115 *4 *3)) (-4 *4 (-1222 *3)))) (-3978 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558))))))) (-5 *2 (-635 *4)) (-5 *1 (-1115 *3 *4)) (-4 *3 (-1222 *4)))) (-3969 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558))))))) (-5 *2 (-635 *4)) (-5 *1 (-1115 *3 *4)) (-4 *3 (-1222 *4)))) (-3958 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558))))))) (-5 *2 (-635 *4)) (-5 *1 (-1115 *3 *4)) (-4 *3 (-1222 *4)))) (-4305 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558))))))) (-5 *2 (-635 *4)) (-5 *1 (-1115 *3 *4)) (-4 *3 (-1222 *4)))) (-3945 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558))))))) (-5 *2 (-2 (|:| |solns| (-635 *5)) (|:| |maps| (-635 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1115 *3 *5)) (-4 *3 (-1222 *5)))) (-3936 (*1 *2 *3) (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558))))))) (-5 *1 (-1115 *3 *2)) (-4 *3 (-1222 *2)))) (-2153 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558))))))) (-5 *2 (-635 *4)) (-5 *1 (-1115 *3 *4)) (-4 *3 (-1222 *4)))))
+(-10 -7 (-15 -2153 ((-635 |#2|) |#1|)) (-15 -3936 (|#2| |#1|)) (-15 -3945 ((-2 (|:| |solns| (-635 |#2|)) (|:| |maps| (-635 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -4305 ((-635 |#2|) |#1|)) (-15 -3958 ((-635 |#2|) |#1|)) (-15 -3969 ((-635 |#2|) |#1|)) (-15 -3978 ((-635 |#2|) |#1|)) (-15 -4305 ((-635 |#2|) |#2| |#2|)) (-15 -3958 ((-635 |#2|) |#2| |#2| |#2|)) (-15 -3969 ((-635 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3978 ((-635 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3989 (|#2| |#2| |#2|)) (-15 -4000 (|#2| |#2| |#2| |#2|)) (-15 -4012 (|#2| |#2| |#2| |#2| |#2|)) (-15 -4020 (|#2| |#2| |#2| |#2| |#2| |#2|)))
+((-4031 (((-635 (-635 (-293 (-315 |#1|)))) (-635 (-293 (-406 (-942 |#1|))))) 95) (((-635 (-635 (-293 (-315 |#1|)))) (-635 (-293 (-406 (-942 |#1|)))) (-635 (-1163))) 94) (((-635 (-635 (-293 (-315 |#1|)))) (-635 (-406 (-942 |#1|)))) 92) (((-635 (-635 (-293 (-315 |#1|)))) (-635 (-406 (-942 |#1|))) (-635 (-1163))) 90) (((-635 (-293 (-315 |#1|))) (-293 (-406 (-942 |#1|)))) 75) (((-635 (-293 (-315 |#1|))) (-293 (-406 (-942 |#1|))) (-1163)) 76) (((-635 (-293 (-315 |#1|))) (-406 (-942 |#1|))) 70) (((-635 (-293 (-315 |#1|))) (-406 (-942 |#1|)) (-1163)) 59)) (-4043 (((-635 (-635 (-315 |#1|))) (-635 (-406 (-942 |#1|))) (-635 (-1163))) 88) (((-635 (-315 |#1|)) (-406 (-942 |#1|)) (-1163)) 43)) (-2895 (((-1152 (-635 (-315 |#1|)) (-635 (-293 (-315 |#1|)))) (-406 (-942 |#1|)) (-1163)) 98) (((-1152 (-635 (-315 |#1|)) (-635 (-293 (-315 |#1|)))) (-293 (-406 (-942 |#1|))) (-1163)) 97)))
+(((-1116 |#1|) (-10 -7 (-15 -4031 ((-635 (-293 (-315 |#1|))) (-406 (-942 |#1|)) (-1163))) (-15 -4031 ((-635 (-293 (-315 |#1|))) (-406 (-942 |#1|)))) (-15 -4031 ((-635 (-293 (-315 |#1|))) (-293 (-406 (-942 |#1|))) (-1163))) (-15 -4031 ((-635 (-293 (-315 |#1|))) (-293 (-406 (-942 |#1|))))) (-15 -4031 ((-635 (-635 (-293 (-315 |#1|)))) (-635 (-406 (-942 |#1|))) (-635 (-1163)))) (-15 -4031 ((-635 (-635 (-293 (-315 |#1|)))) (-635 (-406 (-942 |#1|))))) (-15 -4031 ((-635 (-635 (-293 (-315 |#1|)))) (-635 (-293 (-406 (-942 |#1|)))) (-635 (-1163)))) (-15 -4031 ((-635 (-635 (-293 (-315 |#1|)))) (-635 (-293 (-406 (-942 |#1|)))))) (-15 -4043 ((-635 (-315 |#1|)) (-406 (-942 |#1|)) (-1163))) (-15 -4043 ((-635 (-635 (-315 |#1|))) (-635 (-406 (-942 |#1|))) (-635 (-1163)))) (-15 -2895 ((-1152 (-635 (-315 |#1|)) (-635 (-293 (-315 |#1|)))) (-293 (-406 (-942 |#1|))) (-1163))) (-15 -2895 ((-1152 (-635 (-315 |#1|)) (-635 (-293 (-315 |#1|)))) (-406 (-942 |#1|)) (-1163)))) (-13 (-306) (-841) (-146))) (T -1116))
+((-2895 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-942 *5))) (-5 *4 (-1163)) (-4 *5 (-13 (-306) (-841) (-146))) (-5 *2 (-1152 (-635 (-315 *5)) (-635 (-293 (-315 *5))))) (-5 *1 (-1116 *5)))) (-2895 (*1 *2 *3 *4) (-12 (-5 *3 (-293 (-406 (-942 *5)))) (-5 *4 (-1163)) (-4 *5 (-13 (-306) (-841) (-146))) (-5 *2 (-1152 (-635 (-315 *5)) (-635 (-293 (-315 *5))))) (-5 *1 (-1116 *5)))) (-4043 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-406 (-942 *5)))) (-5 *4 (-635 (-1163))) (-4 *5 (-13 (-306) (-841) (-146))) (-5 *2 (-635 (-635 (-315 *5)))) (-5 *1 (-1116 *5)))) (-4043 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-942 *5))) (-5 *4 (-1163)) (-4 *5 (-13 (-306) (-841) (-146))) (-5 *2 (-635 (-315 *5))) (-5 *1 (-1116 *5)))) (-4031 (*1 *2 *3) (-12 (-5 *3 (-635 (-293 (-406 (-942 *4))))) (-4 *4 (-13 (-306) (-841) (-146))) (-5 *2 (-635 (-635 (-293 (-315 *4))))) (-5 *1 (-1116 *4)))) (-4031 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-293 (-406 (-942 *5))))) (-5 *4 (-635 (-1163))) (-4 *5 (-13 (-306) (-841) (-146))) (-5 *2 (-635 (-635 (-293 (-315 *5))))) (-5 *1 (-1116 *5)))) (-4031 (*1 *2 *3) (-12 (-5 *3 (-635 (-406 (-942 *4)))) (-4 *4 (-13 (-306) (-841) (-146))) (-5 *2 (-635 (-635 (-293 (-315 *4))))) (-5 *1 (-1116 *4)))) (-4031 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-406 (-942 *5)))) (-5 *4 (-635 (-1163))) (-4 *5 (-13 (-306) (-841) (-146))) (-5 *2 (-635 (-635 (-293 (-315 *5))))) (-5 *1 (-1116 *5)))) (-4031 (*1 *2 *3) (-12 (-5 *3 (-293 (-406 (-942 *4)))) (-4 *4 (-13 (-306) (-841) (-146))) (-5 *2 (-635 (-293 (-315 *4)))) (-5 *1 (-1116 *4)))) (-4031 (*1 *2 *3 *4) (-12 (-5 *3 (-293 (-406 (-942 *5)))) (-5 *4 (-1163)) (-4 *5 (-13 (-306) (-841) (-146))) (-5 *2 (-635 (-293 (-315 *5)))) (-5 *1 (-1116 *5)))) (-4031 (*1 *2 *3) (-12 (-5 *3 (-406 (-942 *4))) (-4 *4 (-13 (-306) (-841) (-146))) (-5 *2 (-635 (-293 (-315 *4)))) (-5 *1 (-1116 *4)))) (-4031 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-942 *5))) (-5 *4 (-1163)) (-4 *5 (-13 (-306) (-841) (-146))) (-5 *2 (-635 (-293 (-315 *5)))) (-5 *1 (-1116 *5)))))
+(-10 -7 (-15 -4031 ((-635 (-293 (-315 |#1|))) (-406 (-942 |#1|)) (-1163))) (-15 -4031 ((-635 (-293 (-315 |#1|))) (-406 (-942 |#1|)))) (-15 -4031 ((-635 (-293 (-315 |#1|))) (-293 (-406 (-942 |#1|))) (-1163))) (-15 -4031 ((-635 (-293 (-315 |#1|))) (-293 (-406 (-942 |#1|))))) (-15 -4031 ((-635 (-635 (-293 (-315 |#1|)))) (-635 (-406 (-942 |#1|))) (-635 (-1163)))) (-15 -4031 ((-635 (-635 (-293 (-315 |#1|)))) (-635 (-406 (-942 |#1|))))) (-15 -4031 ((-635 (-635 (-293 (-315 |#1|)))) (-635 (-293 (-406 (-942 |#1|)))) (-635 (-1163)))) (-15 -4031 ((-635 (-635 (-293 (-315 |#1|)))) (-635 (-293 (-406 (-942 |#1|)))))) (-15 -4043 ((-635 (-315 |#1|)) (-406 (-942 |#1|)) (-1163))) (-15 -4043 ((-635 (-635 (-315 |#1|))) (-635 (-406 (-942 |#1|))) (-635 (-1163)))) (-15 -2895 ((-1152 (-635 (-315 |#1|)) (-635 (-293 (-315 |#1|)))) (-293 (-406 (-942 |#1|))) (-1163))) (-15 -2895 ((-1152 (-635 (-315 |#1|)) (-635 (-293 (-315 |#1|)))) (-406 (-942 |#1|)) (-1163))))
+((-2916 (((-406 (-1159 (-315 |#1|))) (-1246 (-315 |#1|)) (-406 (-1159 (-315 |#1|))) (-558)) 29)) (-2906 (((-406 (-1159 (-315 |#1|))) (-406 (-1159 (-315 |#1|))) (-406 (-1159 (-315 |#1|))) (-406 (-1159 (-315 |#1|)))) 40)))
+(((-1117 |#1|) (-10 -7 (-15 -2906 ((-406 (-1159 (-315 |#1|))) (-406 (-1159 (-315 |#1|))) (-406 (-1159 (-315 |#1|))) (-406 (-1159 (-315 |#1|))))) (-15 -2916 ((-406 (-1159 (-315 |#1|))) (-1246 (-315 |#1|)) (-406 (-1159 (-315 |#1|))) (-558)))) (-13 (-550) (-841))) (T -1117))
+((-2916 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-406 (-1159 (-315 *5)))) (-5 *3 (-1246 (-315 *5))) (-5 *4 (-558)) (-4 *5 (-13 (-550) (-841))) (-5 *1 (-1117 *5)))) (-2906 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-406 (-1159 (-315 *3)))) (-4 *3 (-13 (-550) (-841))) (-5 *1 (-1117 *3)))))
+(-10 -7 (-15 -2906 ((-406 (-1159 (-315 |#1|))) (-406 (-1159 (-315 |#1|))) (-406 (-1159 (-315 |#1|))) (-406 (-1159 (-315 |#1|))))) (-15 -2916 ((-406 (-1159 (-315 |#1|))) (-1246 (-315 |#1|)) (-406 (-1159 (-315 |#1|))) (-558))))
+((-2153 (((-635 (-635 (-293 (-315 |#1|)))) (-635 (-293 (-315 |#1|))) (-635 (-1163))) 222) (((-635 (-293 (-315 |#1|))) (-315 |#1|) (-1163)) 20) (((-635 (-293 (-315 |#1|))) (-293 (-315 |#1|)) (-1163)) 26) (((-635 (-293 (-315 |#1|))) (-293 (-315 |#1|))) 25) (((-635 (-293 (-315 |#1|))) (-315 |#1|)) 21)))
+(((-1118 |#1|) (-10 -7 (-15 -2153 ((-635 (-293 (-315 |#1|))) (-315 |#1|))) (-15 -2153 ((-635 (-293 (-315 |#1|))) (-293 (-315 |#1|)))) (-15 -2153 ((-635 (-293 (-315 |#1|))) (-293 (-315 |#1|)) (-1163))) (-15 -2153 ((-635 (-293 (-315 |#1|))) (-315 |#1|) (-1163))) (-15 -2153 ((-635 (-635 (-293 (-315 |#1|)))) (-635 (-293 (-315 |#1|))) (-635 (-1163))))) (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146))) (T -1118))
+((-2153 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-1163))) (-4 *5 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146))) (-5 *2 (-635 (-635 (-293 (-315 *5))))) (-5 *1 (-1118 *5)) (-5 *3 (-635 (-293 (-315 *5)))))) (-2153 (*1 *2 *3 *4) (-12 (-5 *4 (-1163)) (-4 *5 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146))) (-5 *2 (-635 (-293 (-315 *5)))) (-5 *1 (-1118 *5)) (-5 *3 (-315 *5)))) (-2153 (*1 *2 *3 *4) (-12 (-5 *4 (-1163)) (-4 *5 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146))) (-5 *2 (-635 (-293 (-315 *5)))) (-5 *1 (-1118 *5)) (-5 *3 (-293 (-315 *5))))) (-2153 (*1 *2 *3) (-12 (-4 *4 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146))) (-5 *2 (-635 (-293 (-315 *4)))) (-5 *1 (-1118 *4)) (-5 *3 (-293 (-315 *4))))) (-2153 (*1 *2 *3) (-12 (-4 *4 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146))) (-5 *2 (-635 (-293 (-315 *4)))) (-5 *1 (-1118 *4)) (-5 *3 (-315 *4)))))
+(-10 -7 (-15 -2153 ((-635 (-293 (-315 |#1|))) (-315 |#1|))) (-15 -2153 ((-635 (-293 (-315 |#1|))) (-293 (-315 |#1|)))) (-15 -2153 ((-635 (-293 (-315 |#1|))) (-293 (-315 |#1|)) (-1163))) (-15 -2153 ((-635 (-293 (-315 |#1|))) (-315 |#1|) (-1163))) (-15 -2153 ((-635 (-635 (-293 (-315 |#1|)))) (-635 (-293 (-315 |#1|))) (-635 (-1163)))))
+((-2936 ((|#2| |#2|) 20 (|has| |#1| (-841))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 17)) (-2924 ((|#2| |#2|) 19 (|has| |#1| (-841))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 16)))
+(((-1119 |#1| |#2|) (-10 -7 (-15 -2924 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2936 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-841)) (PROGN (-15 -2924 (|#2| |#2|)) (-15 -2936 (|#2| |#2|))) |%noBranch|)) (-1200) (-13 (-596 (-558) |#1|) (-10 -7 (-6 -4382) (-6 -4383)))) (T -1119))
+((-2936 (*1 *2 *2) (-12 (-4 *3 (-841)) (-4 *3 (-1200)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-596 (-558) *3) (-10 -7 (-6 -4382) (-6 -4383)))))) (-2924 (*1 *2 *2) (-12 (-4 *3 (-841)) (-4 *3 (-1200)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-596 (-558) *3) (-10 -7 (-6 -4382) (-6 -4383)))))) (-2936 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1200)) (-5 *1 (-1119 *4 *2)) (-4 *2 (-13 (-596 (-558) *4) (-10 -7 (-6 -4382) (-6 -4383)))))) (-2924 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1200)) (-5 *1 (-1119 *4 *2)) (-4 *2 (-13 (-596 (-558) *4) (-10 -7 (-6 -4382) (-6 -4383)))))))
+(-10 -7 (-15 -2924 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2936 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-841)) (PROGN (-15 -2924 (|#2| |#2|)) (-15 -2936 (|#2| |#2|))) |%noBranch|))
+((-3207 (((-112) $ $) NIL)) (-1910 (((-1151 3 |#1|) $) 107)) (-3025 (((-112) $) 72)) (-3036 (($ $ (-635 (-933 |#1|))) 20) (($ $ (-635 (-635 |#1|))) 75) (($ (-635 (-933 |#1|))) 74) (((-635 (-933 |#1|)) $) 73)) (-3094 (((-112) $) 41)) (-3840 (($ $ (-933 |#1|)) 46) (($ $ (-635 |#1|)) 51) (($ $ (-762)) 53) (($ (-933 |#1|)) 47) (((-933 |#1|) $) 45)) (-2564 (((-2 (|:| -2814 (-762)) (|:| |curves| (-762)) (|:| |polygons| (-762)) (|:| |constructs| (-762))) $) 105)) (-3137 (((-762) $) 26)) (-3147 (((-762) $) 25)) (-1898 (($ $ (-762) (-933 |#1|)) 39)) (-3003 (((-112) $) 82)) (-3014 (($ $ (-635 (-635 (-933 |#1|))) (-635 (-170)) (-170)) 89) (($ $ (-635 (-635 (-635 |#1|))) (-635 (-170)) (-170)) 91) (($ $ (-635 (-635 (-933 |#1|))) (-112) (-112)) 85) (($ $ (-635 (-635 (-635 |#1|))) (-112) (-112)) 93) (($ (-635 (-635 (-933 |#1|)))) 86) (($ (-635 (-635 (-933 |#1|))) (-112) (-112)) 87) (((-635 (-635 (-933 |#1|))) $) 84)) (-1677 (($ (-635 $)) 28) (($ $ $) 29)) (-2958 (((-635 (-170)) $) 102)) (-2771 (((-635 (-933 |#1|)) $) 96)) (-2968 (((-635 (-635 (-170))) $) 101)) (-2979 (((-635 (-635 (-635 (-933 |#1|)))) $) NIL)) (-2992 (((-635 (-635 (-635 (-762)))) $) 99)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3104 (((-762) $ (-635 (-933 |#1|))) 37)) (-3071 (((-112) $) 54)) (-3082 (($ $ (-635 (-933 |#1|))) 56) (($ $ (-635 (-635 |#1|))) 62) (($ (-635 (-933 |#1|))) 57) (((-635 (-933 |#1|)) $) 55)) (-3157 (($) 23) (($ (-1151 3 |#1|)) 24)) (-1553 (($ $) 35)) (-3114 (((-635 $) $) 34)) (-3297 (($ (-635 $)) 31)) (-3126 (((-635 $) $) 33)) (-3220 (((-853) $) 111)) (-3046 (((-112) $) 64)) (-3059 (($ $ (-635 (-933 |#1|))) 66) (($ $ (-635 (-635 |#1|))) 69) (($ (-635 (-933 |#1|))) 67) (((-635 (-933 |#1|)) $) 65)) (-2947 (($ $) 106)) (-1683 (((-112) $ $) NIL)))
+(((-1120 |#1|) (-1121 |#1|) (-1039)) (T -1120))
+NIL
+(-1121 |#1|)
+((-3207 (((-112) $ $) 7)) (-1910 (((-1151 3 |#1|) $) 13)) (-3025 (((-112) $) 29)) (-3036 (($ $ (-635 (-933 |#1|))) 33) (($ $ (-635 (-635 |#1|))) 32) (($ (-635 (-933 |#1|))) 31) (((-635 (-933 |#1|)) $) 30)) (-3094 (((-112) $) 44)) (-3840 (($ $ (-933 |#1|)) 49) (($ $ (-635 |#1|)) 48) (($ $ (-762)) 47) (($ (-933 |#1|)) 46) (((-933 |#1|) $) 45)) (-2564 (((-2 (|:| -2814 (-762)) (|:| |curves| (-762)) (|:| |polygons| (-762)) (|:| |constructs| (-762))) $) 15)) (-3137 (((-762) $) 58)) (-3147 (((-762) $) 59)) (-1898 (($ $ (-762) (-933 |#1|)) 50)) (-3003 (((-112) $) 21)) (-3014 (($ $ (-635 (-635 (-933 |#1|))) (-635 (-170)) (-170)) 28) (($ $ (-635 (-635 (-635 |#1|))) (-635 (-170)) (-170)) 27) (($ $ (-635 (-635 (-933 |#1|))) (-112) (-112)) 26) (($ $ (-635 (-635 (-635 |#1|))) (-112) (-112)) 25) (($ (-635 (-635 (-933 |#1|)))) 24) (($ (-635 (-635 (-933 |#1|))) (-112) (-112)) 23) (((-635 (-635 (-933 |#1|))) $) 22)) (-1677 (($ (-635 $)) 57) (($ $ $) 56)) (-2958 (((-635 (-170)) $) 16)) (-2771 (((-635 (-933 |#1|)) $) 20)) (-2968 (((-635 (-635 (-170))) $) 17)) (-2979 (((-635 (-635 (-635 (-933 |#1|)))) $) 18)) (-2992 (((-635 (-635 (-635 (-762)))) $) 19)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3104 (((-762) $ (-635 (-933 |#1|))) 51)) (-3071 (((-112) $) 39)) (-3082 (($ $ (-635 (-933 |#1|))) 43) (($ $ (-635 (-635 |#1|))) 42) (($ (-635 (-933 |#1|))) 41) (((-635 (-933 |#1|)) $) 40)) (-3157 (($) 61) (($ (-1151 3 |#1|)) 60)) (-1553 (($ $) 52)) (-3114 (((-635 $) $) 53)) (-3297 (($ (-635 $)) 55)) (-3126 (((-635 $) $) 54)) (-3220 (((-853) $) 11)) (-3046 (((-112) $) 34)) (-3059 (($ $ (-635 (-933 |#1|))) 38) (($ $ (-635 (-635 |#1|))) 37) (($ (-635 (-933 |#1|))) 36) (((-635 (-933 |#1|)) $) 35)) (-2947 (($ $) 14)) (-1683 (((-112) $ $) 6)))
+(((-1121 |#1|) (-139) (-1039)) (T -1121))
+((-3220 (*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-853)))) (-3157 (*1 *1) (-12 (-4 *1 (-1121 *2)) (-4 *2 (-1039)))) (-3157 (*1 *1 *2) (-12 (-5 *2 (-1151 3 *3)) (-4 *3 (-1039)) (-4 *1 (-1121 *3)))) (-3147 (*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-762)))) (-3137 (*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-762)))) (-1677 (*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-1121 *3)) (-4 *3 (-1039)))) (-1677 (*1 *1 *1 *1) (-12 (-4 *1 (-1121 *2)) (-4 *2 (-1039)))) (-3297 (*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-1121 *3)) (-4 *3 (-1039)))) (-3126 (*1 *2 *1) (-12 (-4 *3 (-1039)) (-5 *2 (-635 *1)) (-4 *1 (-1121 *3)))) (-3114 (*1 *2 *1) (-12 (-4 *3 (-1039)) (-5 *2 (-635 *1)) (-4 *1 (-1121 *3)))) (-1553 (*1 *1 *1) (-12 (-4 *1 (-1121 *2)) (-4 *2 (-1039)))) (-3104 (*1 *2 *1 *3) (-12 (-5 *3 (-635 (-933 *4))) (-4 *1 (-1121 *4)) (-4 *4 (-1039)) (-5 *2 (-762)))) (-1898 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-762)) (-5 *3 (-933 *4)) (-4 *1 (-1121 *4)) (-4 *4 (-1039)))) (-3840 (*1 *1 *1 *2) (-12 (-5 *2 (-933 *3)) (-4 *1 (-1121 *3)) (-4 *3 (-1039)))) (-3840 (*1 *1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *1 (-1121 *3)) (-4 *3 (-1039)))) (-3840 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *1 (-1121 *3)) (-4 *3 (-1039)))) (-3840 (*1 *1 *2) (-12 (-5 *2 (-933 *3)) (-4 *3 (-1039)) (-4 *1 (-1121 *3)))) (-3840 (*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-933 *3)))) (-3094 (*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-112)))) (-3082 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-933 *3))) (-4 *1 (-1121 *3)) (-4 *3 (-1039)))) (-3082 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *1 (-1121 *3)) (-4 *3 (-1039)))) (-3082 (*1 *1 *2) (-12 (-5 *2 (-635 (-933 *3))) (-4 *3 (-1039)) (-4 *1 (-1121 *3)))) (-3082 (*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-635 (-933 *3))))) (-3071 (*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-112)))) (-3059 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-933 *3))) (-4 *1 (-1121 *3)) (-4 *3 (-1039)))) (-3059 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *1 (-1121 *3)) (-4 *3 (-1039)))) (-3059 (*1 *1 *2) (-12 (-5 *2 (-635 (-933 *3))) (-4 *3 (-1039)) (-4 *1 (-1121 *3)))) (-3059 (*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-635 (-933 *3))))) (-3046 (*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-112)))) (-3036 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-933 *3))) (-4 *1 (-1121 *3)) (-4 *3 (-1039)))) (-3036 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *1 (-1121 *3)) (-4 *3 (-1039)))) (-3036 (*1 *1 *2) (-12 (-5 *2 (-635 (-933 *3))) (-4 *3 (-1039)) (-4 *1 (-1121 *3)))) (-3036 (*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-635 (-933 *3))))) (-3025 (*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-112)))) (-3014 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-635 (-635 (-933 *5)))) (-5 *3 (-635 (-170))) (-5 *4 (-170)) (-4 *1 (-1121 *5)) (-4 *5 (-1039)))) (-3014 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-635 (-635 (-635 *5)))) (-5 *3 (-635 (-170))) (-5 *4 (-170)) (-4 *1 (-1121 *5)) (-4 *5 (-1039)))) (-3014 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-635 (-635 (-933 *4)))) (-5 *3 (-112)) (-4 *1 (-1121 *4)) (-4 *4 (-1039)))) (-3014 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-635 (-635 (-635 *4)))) (-5 *3 (-112)) (-4 *1 (-1121 *4)) (-4 *4 (-1039)))) (-3014 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 (-933 *3)))) (-4 *3 (-1039)) (-4 *1 (-1121 *3)))) (-3014 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-635 (-635 (-933 *4)))) (-5 *3 (-112)) (-4 *4 (-1039)) (-4 *1 (-1121 *4)))) (-3014 (*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-635 (-635 (-933 *3)))))) (-3003 (*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-112)))) (-2771 (*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-635 (-933 *3))))) (-2992 (*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-635 (-635 (-635 (-762))))))) (-2979 (*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-635 (-635 (-635 (-933 *3))))))) (-2968 (*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-635 (-635 (-170)))))) (-2958 (*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-635 (-170))))) (-2564 (*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-2 (|:| -2814 (-762)) (|:| |curves| (-762)) (|:| |polygons| (-762)) (|:| |constructs| (-762)))))) (-2947 (*1 *1 *1) (-12 (-4 *1 (-1121 *2)) (-4 *2 (-1039)))) (-1910 (*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-1151 3 *3)))))
+(-13 (-1087) (-10 -8 (-15 -3157 ($)) (-15 -3157 ($ (-1151 3 |t#1|))) (-15 -3147 ((-762) $)) (-15 -3137 ((-762) $)) (-15 -1677 ($ (-635 $))) (-15 -1677 ($ $ $)) (-15 -3297 ($ (-635 $))) (-15 -3126 ((-635 $) $)) (-15 -3114 ((-635 $) $)) (-15 -1553 ($ $)) (-15 -3104 ((-762) $ (-635 (-933 |t#1|)))) (-15 -1898 ($ $ (-762) (-933 |t#1|))) (-15 -3840 ($ $ (-933 |t#1|))) (-15 -3840 ($ $ (-635 |t#1|))) (-15 -3840 ($ $ (-762))) (-15 -3840 ($ (-933 |t#1|))) (-15 -3840 ((-933 |t#1|) $)) (-15 -3094 ((-112) $)) (-15 -3082 ($ $ (-635 (-933 |t#1|)))) (-15 -3082 ($ $ (-635 (-635 |t#1|)))) (-15 -3082 ($ (-635 (-933 |t#1|)))) (-15 -3082 ((-635 (-933 |t#1|)) $)) (-15 -3071 ((-112) $)) (-15 -3059 ($ $ (-635 (-933 |t#1|)))) (-15 -3059 ($ $ (-635 (-635 |t#1|)))) (-15 -3059 ($ (-635 (-933 |t#1|)))) (-15 -3059 ((-635 (-933 |t#1|)) $)) (-15 -3046 ((-112) $)) (-15 -3036 ($ $ (-635 (-933 |t#1|)))) (-15 -3036 ($ $ (-635 (-635 |t#1|)))) (-15 -3036 ($ (-635 (-933 |t#1|)))) (-15 -3036 ((-635 (-933 |t#1|)) $)) (-15 -3025 ((-112) $)) (-15 -3014 ($ $ (-635 (-635 (-933 |t#1|))) (-635 (-170)) (-170))) (-15 -3014 ($ $ (-635 (-635 (-635 |t#1|))) (-635 (-170)) (-170))) (-15 -3014 ($ $ (-635 (-635 (-933 |t#1|))) (-112) (-112))) (-15 -3014 ($ $ (-635 (-635 (-635 |t#1|))) (-112) (-112))) (-15 -3014 ($ (-635 (-635 (-933 |t#1|))))) (-15 -3014 ($ (-635 (-635 (-933 |t#1|))) (-112) (-112))) (-15 -3014 ((-635 (-635 (-933 |t#1|))) $)) (-15 -3003 ((-112) $)) (-15 -2771 ((-635 (-933 |t#1|)) $)) (-15 -2992 ((-635 (-635 (-635 (-762)))) $)) (-15 -2979 ((-635 (-635 (-635 (-933 |t#1|)))) $)) (-15 -2968 ((-635 (-635 (-170))) $)) (-15 -2958 ((-635 (-170)) $)) (-15 -2564 ((-2 (|:| -2814 (-762)) (|:| |curves| (-762)) (|:| |polygons| (-762)) (|:| |constructs| (-762))) $)) (-15 -2947 ($ $)) (-15 -1910 ((-1151 3 |t#1|) $)) (-15 -3220 ((-853) $))))
+(((-102) . T) ((-605 (-853)) . T) ((-1087) . T))
+((-3207 (((-112) $ $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 176) (($ (-1168)) NIL) (((-1168) $) 7)) (-2120 (((-112) $ (|[\|\|]| (-522))) 17) (((-112) $ (|[\|\|]| (-217))) 21) (((-112) $ (|[\|\|]| (-666))) 25) (((-112) $ (|[\|\|]| (-1256))) 29) (((-112) $ (|[\|\|]| (-137))) 33) (((-112) $ (|[\|\|]| (-132))) 37) (((-112) $ (|[\|\|]| (-1102))) 41) (((-112) $ (|[\|\|]| (-96))) 45) (((-112) $ (|[\|\|]| (-671))) 49) (((-112) $ (|[\|\|]| (-515))) 53) (((-112) $ (|[\|\|]| (-1054))) 57) (((-112) $ (|[\|\|]| (-1257))) 61) (((-112) $ (|[\|\|]| (-523))) 65) (((-112) $ (|[\|\|]| (-153))) 69) (((-112) $ (|[\|\|]| (-661))) 73) (((-112) $ (|[\|\|]| (-310))) 77) (((-112) $ (|[\|\|]| (-1026))) 81) (((-112) $ (|[\|\|]| (-179))) 85) (((-112) $ (|[\|\|]| (-960))) 89) (((-112) $ (|[\|\|]| (-1061))) 93) (((-112) $ (|[\|\|]| (-1077))) 97) (((-112) $ (|[\|\|]| (-1083))) 101) (((-112) $ (|[\|\|]| (-618))) 105) (((-112) $ (|[\|\|]| (-1153))) 109) (((-112) $ (|[\|\|]| (-155))) 113) (((-112) $ (|[\|\|]| (-136))) 117) (((-112) $ (|[\|\|]| (-476))) 121) (((-112) $ (|[\|\|]| (-585))) 125) (((-112) $ (|[\|\|]| (-504))) 131) (((-112) $ (|[\|\|]| (-1145))) 135) (((-112) $ (|[\|\|]| (-558))) 139)) (-1583 (((-522) $) 18) (((-217) $) 22) (((-666) $) 26) (((-1256) $) 30) (((-137) $) 34) (((-132) $) 38) (((-1102) $) 42) (((-96) $) 46) (((-671) $) 50) (((-515) $) 54) (((-1054) $) 58) (((-1257) $) 62) (((-523) $) 66) (((-153) $) 70) (((-661) $) 74) (((-310) $) 78) (((-1026) $) 82) (((-179) $) 86) (((-960) $) 90) (((-1061) $) 94) (((-1077) $) 98) (((-1083) $) 102) (((-618) $) 106) (((-1153) $) 110) (((-155) $) 114) (((-136) $) 118) (((-476) $) 122) (((-585) $) 126) (((-504) $) 132) (((-1145) $) 136) (((-558) $) 140)) (-1683 (((-112) $ $) NIL)))
+(((-1122) (-1124)) (T -1122))
+NIL
+(-1124)
+((-2743 (((-635 (-1168)) (-1145)) 9)))
+(((-1123) (-10 -7 (-15 -2743 ((-635 (-1168)) (-1145))))) (T -1123))
+((-2743 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-635 (-1168))) (-5 *1 (-1123)))))
+(-10 -7 (-15 -2743 ((-635 (-1168)) (-1145))))
+((-3207 (((-112) $ $) 7)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11) (($ (-1168)) 16) (((-1168) $) 15)) (-2120 (((-112) $ (|[\|\|]| (-522))) 80) (((-112) $ (|[\|\|]| (-217))) 78) (((-112) $ (|[\|\|]| (-666))) 76) (((-112) $ (|[\|\|]| (-1256))) 74) (((-112) $ (|[\|\|]| (-137))) 72) (((-112) $ (|[\|\|]| (-132))) 70) (((-112) $ (|[\|\|]| (-1102))) 68) (((-112) $ (|[\|\|]| (-96))) 66) (((-112) $ (|[\|\|]| (-671))) 64) (((-112) $ (|[\|\|]| (-515))) 62) (((-112) $ (|[\|\|]| (-1054))) 60) (((-112) $ (|[\|\|]| (-1257))) 58) (((-112) $ (|[\|\|]| (-523))) 56) (((-112) $ (|[\|\|]| (-153))) 54) (((-112) $ (|[\|\|]| (-661))) 52) (((-112) $ (|[\|\|]| (-310))) 50) (((-112) $ (|[\|\|]| (-1026))) 48) (((-112) $ (|[\|\|]| (-179))) 46) (((-112) $ (|[\|\|]| (-960))) 44) (((-112) $ (|[\|\|]| (-1061))) 42) (((-112) $ (|[\|\|]| (-1077))) 40) (((-112) $ (|[\|\|]| (-1083))) 38) (((-112) $ (|[\|\|]| (-618))) 36) (((-112) $ (|[\|\|]| (-1153))) 34) (((-112) $ (|[\|\|]| (-155))) 32) (((-112) $ (|[\|\|]| (-136))) 30) (((-112) $ (|[\|\|]| (-476))) 28) (((-112) $ (|[\|\|]| (-585))) 26) (((-112) $ (|[\|\|]| (-504))) 24) (((-112) $ (|[\|\|]| (-1145))) 22) (((-112) $ (|[\|\|]| (-558))) 20)) (-1583 (((-522) $) 79) (((-217) $) 77) (((-666) $) 75) (((-1256) $) 73) (((-137) $) 71) (((-132) $) 69) (((-1102) $) 67) (((-96) $) 65) (((-671) $) 63) (((-515) $) 61) (((-1054) $) 59) (((-1257) $) 57) (((-523) $) 55) (((-153) $) 53) (((-661) $) 51) (((-310) $) 49) (((-1026) $) 47) (((-179) $) 45) (((-960) $) 43) (((-1061) $) 41) (((-1077) $) 39) (((-1083) $) 37) (((-618) $) 35) (((-1153) $) 33) (((-155) $) 31) (((-136) $) 29) (((-476) $) 27) (((-585) $) 25) (((-504) $) 23) (((-1145) $) 21) (((-558) $) 19)) (-1683 (((-112) $ $) 6)))
+(((-1124) (-139)) (T -1124))
+((-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-522))) (-5 *2 (-112)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-522)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-217))) (-5 *2 (-112)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-217)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-666))) (-5 *2 (-112)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-666)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-1256))) (-5 *2 (-112)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-1256)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-137)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-132))) (-5 *2 (-112)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-132)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-1102))) (-5 *2 (-112)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-1102)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-96)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-671))) (-5 *2 (-112)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-671)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-515))) (-5 *2 (-112)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-515)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-1054))) (-5 *2 (-112)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-1054)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-1257))) (-5 *2 (-112)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-1257)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-523))) (-5 *2 (-112)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-523)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-153))) (-5 *2 (-112)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-153)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-661))) (-5 *2 (-112)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-661)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-310))) (-5 *2 (-112)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-310)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-1026))) (-5 *2 (-112)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-1026)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-112)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-179)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-960))) (-5 *2 (-112)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-960)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-1061))) (-5 *2 (-112)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-1061)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-1077))) (-5 *2 (-112)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-1077)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-1083))) (-5 *2 (-112)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-1083)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-112)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-618)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-1153))) (-5 *2 (-112)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-1153)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-155)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-112)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-136)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-476))) (-5 *2 (-112)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-476)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-585))) (-5 *2 (-112)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-585)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-504))) (-5 *2 (-112)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-504)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-1145))) (-5 *2 (-112)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-1145)))) (-2120 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-558))) (-5 *2 (-112)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-558)))))
+(-13 (-1070) (-1241) (-10 -8 (-15 -2120 ((-112) $ (|[\|\|]| (-522)))) (-15 -1583 ((-522) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-217)))) (-15 -1583 ((-217) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-666)))) (-15 -1583 ((-666) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-1256)))) (-15 -1583 ((-1256) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-137)))) (-15 -1583 ((-137) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-132)))) (-15 -1583 ((-132) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-1102)))) (-15 -1583 ((-1102) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-96)))) (-15 -1583 ((-96) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-671)))) (-15 -1583 ((-671) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-515)))) (-15 -1583 ((-515) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-1054)))) (-15 -1583 ((-1054) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-1257)))) (-15 -1583 ((-1257) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-523)))) (-15 -1583 ((-523) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-153)))) (-15 -1583 ((-153) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-661)))) (-15 -1583 ((-661) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-310)))) (-15 -1583 ((-310) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-1026)))) (-15 -1583 ((-1026) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-179)))) (-15 -1583 ((-179) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-960)))) (-15 -1583 ((-960) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-1061)))) (-15 -1583 ((-1061) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-1077)))) (-15 -1583 ((-1077) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-1083)))) (-15 -1583 ((-1083) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-618)))) (-15 -1583 ((-618) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-1153)))) (-15 -1583 ((-1153) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-155)))) (-15 -1583 ((-155) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-136)))) (-15 -1583 ((-136) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-476)))) (-15 -1583 ((-476) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-585)))) (-15 -1583 ((-585) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-504)))) (-15 -1583 ((-504) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-1145)))) (-15 -1583 ((-1145) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-558)))) (-15 -1583 ((-558) $))))
+(((-93) . T) ((-102) . T) ((-608 #0=(-1168)) . T) ((-605 (-853)) . T) ((-605 #0#) . T) ((-488 #0#) . T) ((-1087) . T) ((-1070) . T) ((-1241) . T))
+((-3179 (((-1251) (-635 (-853))) 23) (((-1251) (-853)) 22)) (-3169 (((-1251) (-635 (-853))) 21) (((-1251) (-853)) 20)) (-1325 (((-1251) (-635 (-853))) 19) (((-1251) (-853)) 11) (((-1251) (-1145) (-853)) 17)))
+(((-1125) (-10 -7 (-15 -1325 ((-1251) (-1145) (-853))) (-15 -1325 ((-1251) (-853))) (-15 -3169 ((-1251) (-853))) (-15 -3179 ((-1251) (-853))) (-15 -1325 ((-1251) (-635 (-853)))) (-15 -3169 ((-1251) (-635 (-853)))) (-15 -3179 ((-1251) (-635 (-853)))))) (T -1125))
+((-3179 (*1 *2 *3) (-12 (-5 *3 (-635 (-853))) (-5 *2 (-1251)) (-5 *1 (-1125)))) (-3169 (*1 *2 *3) (-12 (-5 *3 (-635 (-853))) (-5 *2 (-1251)) (-5 *1 (-1125)))) (-1325 (*1 *2 *3) (-12 (-5 *3 (-635 (-853))) (-5 *2 (-1251)) (-5 *1 (-1125)))) (-3179 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1251)) (-5 *1 (-1125)))) (-3169 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1251)) (-5 *1 (-1125)))) (-1325 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1251)) (-5 *1 (-1125)))) (-1325 (*1 *2 *3 *4) (-12 (-5 *3 (-1145)) (-5 *4 (-853)) (-5 *2 (-1251)) (-5 *1 (-1125)))))
+(-10 -7 (-15 -1325 ((-1251) (-1145) (-853))) (-15 -1325 ((-1251) (-853))) (-15 -3169 ((-1251) (-853))) (-15 -3179 ((-1251) (-853))) (-15 -1325 ((-1251) (-635 (-853)))) (-15 -3169 ((-1251) (-635 (-853)))) (-15 -3179 ((-1251) (-635 (-853)))))
+((-3226 (($ $ $) 10)) (-3212 (($ $) 9)) (-3259 (($ $ $) 13)) (-3280 (($ $ $) 15)) (-3249 (($ $ $) 12)) (-3269 (($ $ $) 14)) (-3302 (($ $) 17)) (-3291 (($ $) 16)) (-3190 (($ $) 6)) (-3239 (($ $ $) 11) (($ $) 7)) (-3200 (($ $ $) 8)))
+(((-1126) (-139)) (T -1126))
+((-3302 (*1 *1 *1) (-4 *1 (-1126))) (-3291 (*1 *1 *1) (-4 *1 (-1126))) (-3280 (*1 *1 *1 *1) (-4 *1 (-1126))) (-3269 (*1 *1 *1 *1) (-4 *1 (-1126))) (-3259 (*1 *1 *1 *1) (-4 *1 (-1126))) (-3249 (*1 *1 *1 *1) (-4 *1 (-1126))) (-3239 (*1 *1 *1 *1) (-4 *1 (-1126))) (-3226 (*1 *1 *1 *1) (-4 *1 (-1126))) (-3212 (*1 *1 *1) (-4 *1 (-1126))) (-3200 (*1 *1 *1 *1) (-4 *1 (-1126))) (-3239 (*1 *1 *1) (-4 *1 (-1126))) (-3190 (*1 *1 *1) (-4 *1 (-1126))))
+(-13 (-10 -8 (-15 -3190 ($ $)) (-15 -3239 ($ $)) (-15 -3200 ($ $ $)) (-15 -3212 ($ $)) (-15 -3226 ($ $ $)) (-15 -3239 ($ $ $)) (-15 -3249 ($ $ $)) (-15 -3259 ($ $ $)) (-15 -3269 ($ $ $)) (-15 -3280 ($ $ $)) (-15 -3291 ($ $)) (-15 -3302 ($ $))))
+((-3207 (((-112) $ $) 42)) (-2925 ((|#1| $) 16)) (-3314 (((-112) $ $ (-1 (-112) |#2| |#2|)) 37)) (-1385 (((-112) $) 18)) (-3366 (($ $ |#1|) 29)) (-3347 (($ $ (-112)) 31)) (-3337 (($ $) 32)) (-3357 (($ $ |#2|) 30)) (-4310 (((-1145) $) NIL)) (-3325 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 36)) (-2975 (((-1107) $) NIL)) (-3375 (((-112) $) 15)) (-2083 (($) 11)) (-1553 (($ $) 28)) (-3233 (($ |#1| |#2| (-112)) 19) (($ |#1| |#2|) 20) (($ (-2 (|:| |val| |#1|) (|:| -2396 |#2|))) 22) (((-635 $) (-635 (-2 (|:| |val| |#1|) (|:| -2396 |#2|)))) 25) (((-635 $) |#1| (-635 |#2|)) 27)) (-2449 ((|#2| $) 17)) (-3220 (((-853) $) 51)) (-1683 (((-112) $ $) 40)))
+(((-1127 |#1| |#2|) (-13 (-1087) (-10 -8 (-15 -2083 ($)) (-15 -3375 ((-112) $)) (-15 -2925 (|#1| $)) (-15 -2449 (|#2| $)) (-15 -1385 ((-112) $)) (-15 -3233 ($ |#1| |#2| (-112))) (-15 -3233 ($ |#1| |#2|)) (-15 -3233 ($ (-2 (|:| |val| |#1|) (|:| -2396 |#2|)))) (-15 -3233 ((-635 $) (-635 (-2 (|:| |val| |#1|) (|:| -2396 |#2|))))) (-15 -3233 ((-635 $) |#1| (-635 |#2|))) (-15 -1553 ($ $)) (-15 -3366 ($ $ |#1|)) (-15 -3357 ($ $ |#2|)) (-15 -3347 ($ $ (-112))) (-15 -3337 ($ $)) (-15 -3325 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3314 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1087) (-34)) (-13 (-1087) (-34))) (T -1127))
+((-2083 (*1 *1) (-12 (-5 *1 (-1127 *2 *3)) (-4 *2 (-13 (-1087) (-34))) (-4 *3 (-13 (-1087) (-34))))) (-3375 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-13 (-1087) (-34))) (-4 *4 (-13 (-1087) (-34))))) (-2925 (*1 *2 *1) (-12 (-4 *2 (-13 (-1087) (-34))) (-5 *1 (-1127 *2 *3)) (-4 *3 (-13 (-1087) (-34))))) (-2449 (*1 *2 *1) (-12 (-4 *2 (-13 (-1087) (-34))) (-5 *1 (-1127 *3 *2)) (-4 *3 (-13 (-1087) (-34))))) (-1385 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-13 (-1087) (-34))) (-4 *4 (-13 (-1087) (-34))))) (-3233 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1127 *2 *3)) (-4 *2 (-13 (-1087) (-34))) (-4 *3 (-13 (-1087) (-34))))) (-3233 (*1 *1 *2 *3) (-12 (-5 *1 (-1127 *2 *3)) (-4 *2 (-13 (-1087) (-34))) (-4 *3 (-13 (-1087) (-34))))) (-3233 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2396 *4))) (-4 *3 (-13 (-1087) (-34))) (-4 *4 (-13 (-1087) (-34))) (-5 *1 (-1127 *3 *4)))) (-3233 (*1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| |val| *4) (|:| -2396 *5)))) (-4 *4 (-13 (-1087) (-34))) (-4 *5 (-13 (-1087) (-34))) (-5 *2 (-635 (-1127 *4 *5))) (-5 *1 (-1127 *4 *5)))) (-3233 (*1 *2 *3 *4) (-12 (-5 *4 (-635 *5)) (-4 *5 (-13 (-1087) (-34))) (-5 *2 (-635 (-1127 *3 *5))) (-5 *1 (-1127 *3 *5)) (-4 *3 (-13 (-1087) (-34))))) (-1553 (*1 *1 *1) (-12 (-5 *1 (-1127 *2 *3)) (-4 *2 (-13 (-1087) (-34))) (-4 *3 (-13 (-1087) (-34))))) (-3366 (*1 *1 *1 *2) (-12 (-5 *1 (-1127 *2 *3)) (-4 *2 (-13 (-1087) (-34))) (-4 *3 (-13 (-1087) (-34))))) (-3357 (*1 *1 *1 *2) (-12 (-5 *1 (-1127 *3 *2)) (-4 *3 (-13 (-1087) (-34))) (-4 *2 (-13 (-1087) (-34))))) (-3347 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-13 (-1087) (-34))) (-4 *4 (-13 (-1087) (-34))))) (-3337 (*1 *1 *1) (-12 (-5 *1 (-1127 *2 *3)) (-4 *2 (-13 (-1087) (-34))) (-4 *3 (-13 (-1087) (-34))))) (-3325 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1087) (-34))) (-4 *6 (-13 (-1087) (-34))) (-5 *2 (-112)) (-5 *1 (-1127 *5 *6)))) (-3314 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1087) (-34))) (-5 *2 (-112)) (-5 *1 (-1127 *4 *5)) (-4 *4 (-13 (-1087) (-34))))))
+(-13 (-1087) (-10 -8 (-15 -2083 ($)) (-15 -3375 ((-112) $)) (-15 -2925 (|#1| $)) (-15 -2449 (|#2| $)) (-15 -1385 ((-112) $)) (-15 -3233 ($ |#1| |#2| (-112))) (-15 -3233 ($ |#1| |#2|)) (-15 -3233 ($ (-2 (|:| |val| |#1|) (|:| -2396 |#2|)))) (-15 -3233 ((-635 $) (-635 (-2 (|:| |val| |#1|) (|:| -2396 |#2|))))) (-15 -3233 ((-635 $) |#1| (-635 |#2|))) (-15 -1553 ($ $)) (-15 -3366 ($ $ |#1|)) (-15 -3357 ($ $ |#2|)) (-15 -3347 ($ $ (-112))) (-15 -3337 ($ $)) (-15 -3325 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3314 ((-112) $ $ (-1 (-112) |#2| |#2|)))))
+((-3207 (((-112) $ $) NIL (|has| (-1127 |#1| |#2|) (-1087)))) (-2925 (((-1127 |#1| |#2|) $) 26)) (-3424 (($ $) 76)) (-3405 (((-112) (-1127 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 85)) (-3386 (($ $ $ (-635 (-1127 |#1| |#2|))) 90) (($ $ $ (-635 (-1127 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 91)) (-3026 (((-112) $ (-762)) NIL)) (-3972 (((-1127 |#1| |#2|) $ (-1127 |#1| |#2|)) 43 (|has| $ (-6 -4383)))) (-1532 (((-1127 |#1| |#2|) $ "value" (-1127 |#1| |#2|)) NIL (|has| $ (-6 -4383)))) (-3982 (($ $ (-635 $)) 41 (|has| $ (-6 -4383)))) (-1816 (($) NIL T CONST)) (-2927 (((-635 (-2 (|:| |val| |#1|) (|:| -2396 |#2|))) $) 80)) (-3395 (($ (-1127 |#1| |#2|) $) 39)) (-1539 (($ (-1127 |#1| |#2|) $) 31)) (-2240 (((-635 (-1127 |#1| |#2|)) $) NIL (|has| $ (-6 -4382)))) (-2870 (((-635 $) $) 51)) (-3416 (((-112) (-1127 |#1| |#2|) $) 82)) (-3993 (((-112) $ $) NIL (|has| (-1127 |#1| |#2|) (-1087)))) (-2986 (((-112) $ (-762)) NIL)) (-2122 (((-635 (-1127 |#1| |#2|)) $) 55 (|has| $ (-6 -4382)))) (-4322 (((-112) (-1127 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-1127 |#1| |#2|) (-1087))))) (-1807 (($ (-1 (-1127 |#1| |#2|) (-1127 |#1| |#2|)) $) 47 (|has| $ (-6 -4383)))) (-3167 (($ (-1 (-1127 |#1| |#2|) (-1127 |#1| |#2|)) $) 46)) (-2953 (((-112) $ (-762)) NIL)) (-1362 (((-635 (-1127 |#1| |#2|)) $) 53)) (-1790 (((-112) $) 42)) (-4310 (((-1145) $) NIL (|has| (-1127 |#1| |#2|) (-1087)))) (-2975 (((-1107) $) NIL (|has| (-1127 |#1| |#2|) (-1087)))) (-3434 (((-3 $ "failed") $) 75)) (-3266 (((-112) (-1 (-112) (-1127 |#1| |#2|)) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 (-1127 |#1| |#2|)))) NIL (-12 (|has| (-1127 |#1| |#2|) (-308 (-1127 |#1| |#2|))) (|has| (-1127 |#1| |#2|) (-1087)))) (($ $ (-293 (-1127 |#1| |#2|))) NIL (-12 (|has| (-1127 |#1| |#2|) (-308 (-1127 |#1| |#2|))) (|has| (-1127 |#1| |#2|) (-1087)))) (($ $ (-1127 |#1| |#2|) (-1127 |#1| |#2|)) NIL (-12 (|has| (-1127 |#1| |#2|) (-308 (-1127 |#1| |#2|))) (|has| (-1127 |#1| |#2|) (-1087)))) (($ $ (-635 (-1127 |#1| |#2|)) (-635 (-1127 |#1| |#2|))) NIL (-12 (|has| (-1127 |#1| |#2|) (-308 (-1127 |#1| |#2|))) (|has| (-1127 |#1| |#2|) (-1087))))) (-2381 (((-112) $ $) 50)) (-3375 (((-112) $) 23)) (-2083 (($) 25)) (-2195 (((-1127 |#1| |#2|) $ "value") NIL)) (-2860 (((-558) $ $) NIL)) (-1487 (((-112) $) 44)) (-2988 (((-762) (-1 (-112) (-1127 |#1| |#2|)) $) NIL (|has| $ (-6 -4382))) (((-762) (-1127 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-1127 |#1| |#2|) (-1087))))) (-1553 (($ $) 49)) (-3233 (($ (-1127 |#1| |#2|)) 10) (($ |#1| |#2| (-635 $)) 13) (($ |#1| |#2| (-635 (-1127 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-635 |#2|)) 18)) (-2826 (((-635 |#2|) $) 81)) (-3220 (((-853) $) 73 (|has| (-1127 |#1| |#2|) (-605 (-853))))) (-1727 (((-635 $) $) 29)) (-4005 (((-112) $ $) NIL (|has| (-1127 |#1| |#2|) (-1087)))) (-3277 (((-112) (-1 (-112) (-1127 |#1| |#2|)) $) NIL (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) 64 (|has| (-1127 |#1| |#2|) (-1087)))) (-2755 (((-762) $) 58 (|has| $ (-6 -4382)))))
+(((-1128 |#1| |#2|) (-13 (-1000 (-1127 |#1| |#2|)) (-10 -8 (-6 -4383) (-6 -4382) (-15 -3434 ((-3 $ "failed") $)) (-15 -3424 ($ $)) (-15 -3233 ($ (-1127 |#1| |#2|))) (-15 -3233 ($ |#1| |#2| (-635 $))) (-15 -3233 ($ |#1| |#2| (-635 (-1127 |#1| |#2|)))) (-15 -3233 ($ |#1| |#2| |#1| (-635 |#2|))) (-15 -2826 ((-635 |#2|) $)) (-15 -2927 ((-635 (-2 (|:| |val| |#1|) (|:| -2396 |#2|))) $)) (-15 -3416 ((-112) (-1127 |#1| |#2|) $)) (-15 -3405 ((-112) (-1127 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -1539 ($ (-1127 |#1| |#2|) $)) (-15 -3395 ($ (-1127 |#1| |#2|) $)) (-15 -3386 ($ $ $ (-635 (-1127 |#1| |#2|)))) (-15 -3386 ($ $ $ (-635 (-1127 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1087) (-34)) (-13 (-1087) (-34))) (T -1128))
+((-3434 (*1 *1 *1) (|partial| -12 (-5 *1 (-1128 *2 *3)) (-4 *2 (-13 (-1087) (-34))) (-4 *3 (-13 (-1087) (-34))))) (-3424 (*1 *1 *1) (-12 (-5 *1 (-1128 *2 *3)) (-4 *2 (-13 (-1087) (-34))) (-4 *3 (-13 (-1087) (-34))))) (-3233 (*1 *1 *2) (-12 (-5 *2 (-1127 *3 *4)) (-4 *3 (-13 (-1087) (-34))) (-4 *4 (-13 (-1087) (-34))) (-5 *1 (-1128 *3 *4)))) (-3233 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-635 (-1128 *2 *3))) (-5 *1 (-1128 *2 *3)) (-4 *2 (-13 (-1087) (-34))) (-4 *3 (-13 (-1087) (-34))))) (-3233 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-635 (-1127 *2 *3))) (-4 *2 (-13 (-1087) (-34))) (-4 *3 (-13 (-1087) (-34))) (-5 *1 (-1128 *2 *3)))) (-3233 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-635 *3)) (-4 *3 (-13 (-1087) (-34))) (-5 *1 (-1128 *2 *3)) (-4 *2 (-13 (-1087) (-34))))) (-2826 (*1 *2 *1) (-12 (-5 *2 (-635 *4)) (-5 *1 (-1128 *3 *4)) (-4 *3 (-13 (-1087) (-34))) (-4 *4 (-13 (-1087) (-34))))) (-2927 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -2396 *4)))) (-5 *1 (-1128 *3 *4)) (-4 *3 (-13 (-1087) (-34))) (-4 *4 (-13 (-1087) (-34))))) (-3416 (*1 *2 *3 *1) (-12 (-5 *3 (-1127 *4 *5)) (-4 *4 (-13 (-1087) (-34))) (-4 *5 (-13 (-1087) (-34))) (-5 *2 (-112)) (-5 *1 (-1128 *4 *5)))) (-3405 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1127 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1087) (-34))) (-4 *6 (-13 (-1087) (-34))) (-5 *2 (-112)) (-5 *1 (-1128 *5 *6)))) (-1539 (*1 *1 *2 *1) (-12 (-5 *2 (-1127 *3 *4)) (-4 *3 (-13 (-1087) (-34))) (-4 *4 (-13 (-1087) (-34))) (-5 *1 (-1128 *3 *4)))) (-3395 (*1 *1 *2 *1) (-12 (-5 *2 (-1127 *3 *4)) (-4 *3 (-13 (-1087) (-34))) (-4 *4 (-13 (-1087) (-34))) (-5 *1 (-1128 *3 *4)))) (-3386 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-635 (-1127 *3 *4))) (-4 *3 (-13 (-1087) (-34))) (-4 *4 (-13 (-1087) (-34))) (-5 *1 (-1128 *3 *4)))) (-3386 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-1127 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1087) (-34))) (-4 *5 (-13 (-1087) (-34))) (-5 *1 (-1128 *4 *5)))))
+(-13 (-1000 (-1127 |#1| |#2|)) (-10 -8 (-6 -4383) (-6 -4382) (-15 -3434 ((-3 $ "failed") $)) (-15 -3424 ($ $)) (-15 -3233 ($ (-1127 |#1| |#2|))) (-15 -3233 ($ |#1| |#2| (-635 $))) (-15 -3233 ($ |#1| |#2| (-635 (-1127 |#1| |#2|)))) (-15 -3233 ($ |#1| |#2| |#1| (-635 |#2|))) (-15 -2826 ((-635 |#2|) $)) (-15 -2927 ((-635 (-2 (|:| |val| |#1|) (|:| -2396 |#2|))) $)) (-15 -3416 ((-112) (-1127 |#1| |#2|) $)) (-15 -3405 ((-112) (-1127 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -1539 ($ (-1127 |#1| |#2|) $)) (-15 -3395 ($ (-1127 |#1| |#2|) $)) (-15 -3386 ($ $ $ (-635 (-1127 |#1| |#2|)))) (-15 -3386 ($ $ $ (-635 (-1127 |#1| |#2|)) (-1 (-112) |#2| |#2|)))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-3453 (($ $) NIL)) (-1635 ((|#2| $) NIL)) (-2500 (((-112) $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-3444 (($ (-679 |#2|)) 50)) (-2519 (((-112) $) NIL)) (-3026 (((-112) $ (-762)) NIL)) (-3867 (($ |#2|) 10)) (-1816 (($) NIL T CONST)) (-2404 (($ $) 63 (|has| |#2| (-306)))) (-2427 (((-239 |#1| |#2|) $ (-558)) 36)) (-3069 (((-3 (-558) "failed") $) NIL (|has| |#2| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#2| (-1028 (-406 (-558))))) (((-3 |#2| "failed") $) NIL)) (-1863 (((-558) $) NIL (|has| |#2| (-1028 (-558)))) (((-406 (-558)) $) NIL (|has| |#2| (-1028 (-406 (-558))))) ((|#2| $) NIL)) (-3216 (((-679 (-558)) (-679 $)) NIL (|has| |#2| (-631 (-558)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| |#2| (-631 (-558)))) (((-2 (|:| -3683 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 $) (-1246 $)) NIL) (((-679 |#2|) (-679 $)) NIL)) (-2588 (((-3 $ "failed") $) 77)) (-3833 (((-762) $) 65 (|has| |#2| (-550)))) (-1746 ((|#2| $ (-558) (-558)) NIL)) (-2240 (((-635 |#2|) $) NIL (|has| $ (-6 -4382)))) (-2035 (((-112) $) NIL)) (-2391 (((-762) $) 67 (|has| |#2| (-550)))) (-2379 (((-635 (-239 |#1| |#2|)) $) 71 (|has| |#2| (-550)))) (-1967 (((-762) $) NIL)) (-3315 (($ |#2|) 20)) (-1979 (((-762) $) NIL)) (-2986 (((-112) $ (-762)) NIL)) (-3815 ((|#2| $) 61 (|has| |#2| (-6 (-4384 "*"))))) (-2472 (((-558) $) NIL)) (-2448 (((-558) $) NIL)) (-2122 (((-635 |#2|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#2| (-1087))))) (-2460 (((-558) $) NIL)) (-2438 (((-558) $) NIL)) (-3181 (($ (-635 (-635 |#2|))) 31)) (-1807 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-4178 (((-635 (-635 |#2|)) $) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL)) (-4141 (((-3 $ "failed") $) 74 (|has| |#2| (-362)))) (-2975 (((-1107) $) NIL)) (-3983 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-550)))) (-3266 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3375 (((-112) $) NIL)) (-2083 (($) NIL)) (-2195 ((|#2| $ (-558) (-558) |#2|) NIL) ((|#2| $ (-558) (-558)) NIL)) (-2829 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-762)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-1163)) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-762)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-3835 ((|#2| $) NIL)) (-3858 (($ (-635 |#2|)) 44)) (-2509 (((-112) $) NIL)) (-3846 (((-239 |#1| |#2|) $) NIL)) (-3824 ((|#2| $) 59 (|has| |#2| (-6 (-4384 "*"))))) (-2988 (((-762) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4382))) (((-762) |#2| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#2| (-1087))))) (-1553 (($ $) NIL)) (-3224 (((-534) $) 86 (|has| |#2| (-606 (-534))))) (-2415 (((-239 |#1| |#2|) $ (-558)) 38)) (-3220 (((-853) $) 41) (($ (-558)) NIL) (($ (-406 (-558))) NIL (|has| |#2| (-1028 (-406 (-558))))) (($ |#2|) NIL) (((-679 |#2|) $) 46)) (-2542 (((-762)) 18)) (-3277 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4382)))) (-2486 (((-112) $) NIL)) (-2131 (($) 12 T CONST)) (-2142 (($) 15 T CONST)) (-1866 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-762)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-1163)) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-762)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-1683 (((-112) $ $) NIL)) (-1810 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) 57) (($ $ (-558)) 76 (|has| |#2| (-362)))) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-239 |#1| |#2|) $ (-239 |#1| |#2|)) 53) (((-239 |#1| |#2|) (-239 |#1| |#2|) $) 55)) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-1129 |#1| |#2|) (-13 (-1110 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-605 (-679 |#2|)) (-10 -8 (-15 -3315 ($ |#2|)) (-15 -3453 ($ $)) (-15 -3444 ($ (-679 |#2|))) (IF (|has| |#2| (-6 (-4384 "*"))) (-6 -4371) |%noBranch|) (IF (|has| |#2| (-6 (-4384 "*"))) (IF (|has| |#2| (-6 -4379)) (-6 -4379) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-606 (-534))) (-6 (-606 (-534))) |%noBranch|))) (-762) (-1039)) (T -1129))
+((-3315 (*1 *1 *2) (-12 (-5 *1 (-1129 *3 *2)) (-14 *3 (-762)) (-4 *2 (-1039)))) (-3453 (*1 *1 *1) (-12 (-5 *1 (-1129 *2 *3)) (-14 *2 (-762)) (-4 *3 (-1039)))) (-3444 (*1 *1 *2) (-12 (-5 *2 (-679 *4)) (-4 *4 (-1039)) (-5 *1 (-1129 *3 *4)) (-14 *3 (-762)))))
+(-13 (-1110 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-605 (-679 |#2|)) (-10 -8 (-15 -3315 ($ |#2|)) (-15 -3453 ($ $)) (-15 -3444 ($ (-679 |#2|))) (IF (|has| |#2| (-6 (-4384 "*"))) (-6 -4371) |%noBranch|) (IF (|has| |#2| (-6 (-4384 "*"))) (IF (|has| |#2| (-6 -4379)) (-6 -4379) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-606 (-534))) (-6 (-606 (-534))) |%noBranch|)))
+((-2289 (($ $) 19)) (-3460 (($ $ (-143)) 10) (($ $ (-140)) 14)) (-1759 (((-112) $ $) 24)) (-2309 (($ $) 17)) (-2195 (((-143) $ (-558) (-143)) NIL) (((-143) $ (-558)) NIL) (($ $ (-1213 (-558))) NIL) (($ $ $) 29)) (-3220 (($ (-143)) 27) (((-853) $) NIL)))
+(((-1130 |#1|) (-10 -8 (-15 -3220 ((-853) |#1|)) (-15 -2195 (|#1| |#1| |#1|)) (-15 -3460 (|#1| |#1| (-140))) (-15 -3460 (|#1| |#1| (-143))) (-15 -3220 (|#1| (-143))) (-15 -1759 ((-112) |#1| |#1|)) (-15 -2289 (|#1| |#1|)) (-15 -2309 (|#1| |#1|)) (-15 -2195 (|#1| |#1| (-1213 (-558)))) (-15 -2195 ((-143) |#1| (-558))) (-15 -2195 ((-143) |#1| (-558) (-143)))) (-1131)) (T -1130))
+NIL
+(-10 -8 (-15 -3220 ((-853) |#1|)) (-15 -2195 (|#1| |#1| |#1|)) (-15 -3460 (|#1| |#1| (-140))) (-15 -3460 (|#1| |#1| (-143))) (-15 -3220 (|#1| (-143))) (-15 -1759 ((-112) |#1| |#1|)) (-15 -2289 (|#1| |#1|)) (-15 -2309 (|#1| |#1|)) (-15 -2195 (|#1| |#1| (-1213 (-558)))) (-15 -2195 ((-143) |#1| (-558))) (-15 -2195 ((-143) |#1| (-558) (-143))))
+((-3207 (((-112) $ $) 19 (|has| (-143) (-1087)))) (-2280 (($ $) 120)) (-2289 (($ $) 121)) (-3460 (($ $ (-143)) 108) (($ $ (-140)) 107)) (-3869 (((-1251) $ (-558) (-558)) 40 (|has| $ (-6 -4383)))) (-1734 (((-112) $ $) 118)) (-1708 (((-112) $ $ (-558)) 117)) (-3469 (((-635 $) $ (-143)) 110) (((-635 $) $ (-140)) 109)) (-1538 (((-112) (-1 (-112) (-143) (-143)) $) 98) (((-112) $) 92 (|has| (-143) (-841)))) (-2763 (($ (-1 (-112) (-143) (-143)) $) 89 (|has| $ (-6 -4383))) (($ $) 88 (-12 (|has| (-143) (-841)) (|has| $ (-6 -4383))))) (-2376 (($ (-1 (-112) (-143) (-143)) $) 99) (($ $) 93 (|has| (-143) (-841)))) (-3026 (((-112) $ (-762)) 8)) (-1532 (((-143) $ (-558) (-143)) 52 (|has| $ (-6 -4383))) (((-143) $ (-1213 (-558)) (-143)) 58 (|has| $ (-6 -4383)))) (-4329 (($ (-1 (-112) (-143)) $) 75 (|has| $ (-6 -4382)))) (-1816 (($) 7 T CONST)) (-2290 (($ $ (-143)) 104) (($ $ (-140)) 103)) (-3306 (($ $) 90 (|has| $ (-6 -4383)))) (-4127 (($ $) 100)) (-3480 (($ $ (-1213 (-558)) $) 114)) (-2338 (($ $) 78 (-12 (|has| (-143) (-1087)) (|has| $ (-6 -4382))))) (-1539 (($ (-143) $) 77 (-12 (|has| (-143) (-1087)) (|has| $ (-6 -4382)))) (($ (-1 (-112) (-143)) $) 74 (|has| $ (-6 -4382)))) (-3048 (((-143) (-1 (-143) (-143) (-143)) $ (-143) (-143)) 76 (-12 (|has| (-143) (-1087)) (|has| $ (-6 -4382)))) (((-143) (-1 (-143) (-143) (-143)) $ (-143)) 73 (|has| $ (-6 -4382))) (((-143) (-1 (-143) (-143) (-143)) $) 72 (|has| $ (-6 -4382)))) (-1817 (((-143) $ (-558) (-143)) 53 (|has| $ (-6 -4383)))) (-1746 (((-143) $ (-558)) 51)) (-1759 (((-112) $ $) 119)) (-1517 (((-558) (-1 (-112) (-143)) $) 97) (((-558) (-143) $) 96 (|has| (-143) (-1087))) (((-558) (-143) $ (-558)) 95 (|has| (-143) (-1087))) (((-558) $ $ (-558)) 113) (((-558) (-140) $ (-558)) 112)) (-2240 (((-635 (-143)) $) 30 (|has| $ (-6 -4382)))) (-3315 (($ (-762) (-143)) 69)) (-2986 (((-112) $ (-762)) 9)) (-3889 (((-558) $) 43 (|has| (-558) (-841)))) (-3910 (($ $ $) 87 (|has| (-143) (-841)))) (-1677 (($ (-1 (-112) (-143) (-143)) $ $) 101) (($ $ $) 94 (|has| (-143) (-841)))) (-2122 (((-635 (-143)) $) 29 (|has| $ (-6 -4382)))) (-4322 (((-112) (-143) $) 27 (-12 (|has| (-143) (-1087)) (|has| $ (-6 -4382))))) (-3899 (((-558) $) 44 (|has| (-558) (-841)))) (-3542 (($ $ $) 86 (|has| (-143) (-841)))) (-1576 (((-112) $ $ (-143)) 115)) (-2837 (((-762) $ $ (-143)) 116)) (-1807 (($ (-1 (-143) (-143)) $) 34 (|has| $ (-6 -4383)))) (-3167 (($ (-1 (-143) (-143)) $) 35) (($ (-1 (-143) (-143) (-143)) $ $) 64)) (-2299 (($ $) 122)) (-2309 (($ $) 123)) (-2953 (((-112) $ (-762)) 10)) (-2300 (($ $ (-143)) 106) (($ $ (-140)) 105)) (-4310 (((-1145) $) 22 (|has| (-143) (-1087)))) (-1861 (($ (-143) $ (-558)) 60) (($ $ $ (-558)) 59)) (-3920 (((-635 (-558)) $) 46)) (-3929 (((-112) (-558) $) 47)) (-2975 (((-1107) $) 21 (|has| (-143) (-1087)))) (-2305 (((-143) $) 42 (|has| (-558) (-841)))) (-4307 (((-3 (-143) "failed") (-1 (-112) (-143)) $) 71)) (-3880 (($ $ (-143)) 41 (|has| $ (-6 -4383)))) (-3266 (((-112) (-1 (-112) (-143)) $) 32 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 (-143)))) 26 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087)))) (($ $ (-293 (-143))) 25 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087)))) (($ $ (-143) (-143)) 24 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087)))) (($ $ (-635 (-143)) (-635 (-143))) 23 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087))))) (-2381 (((-112) $ $) 14)) (-3908 (((-112) (-143) $) 45 (-12 (|has| $ (-6 -4382)) (|has| (-143) (-1087))))) (-3937 (((-635 (-143)) $) 48)) (-3375 (((-112) $) 11)) (-2083 (($) 12)) (-2195 (((-143) $ (-558) (-143)) 50) (((-143) $ (-558)) 49) (($ $ (-1213 (-558))) 63) (($ $ $) 102)) (-4023 (($ $ (-558)) 62) (($ $ (-1213 (-558))) 61)) (-2988 (((-762) (-1 (-112) (-143)) $) 31 (|has| $ (-6 -4382))) (((-762) (-143) $) 28 (-12 (|has| (-143) (-1087)) (|has| $ (-6 -4382))))) (-2773 (($ $ $ (-558)) 91 (|has| $ (-6 -4383)))) (-1553 (($ $) 13)) (-3224 (((-534) $) 79 (|has| (-143) (-606 (-534))))) (-3233 (($ (-635 (-143))) 70)) (-4341 (($ $ (-143)) 68) (($ (-143) $) 67) (($ $ $) 66) (($ (-635 $)) 65)) (-3220 (($ (-143)) 111) (((-853) $) 18 (|has| (-143) (-605 (-853))))) (-3277 (((-112) (-1 (-112) (-143)) $) 33 (|has| $ (-6 -4382)))) (-1747 (((-112) $ $) 84 (|has| (-143) (-841)))) (-1720 (((-112) $ $) 83 (|has| (-143) (-841)))) (-1683 (((-112) $ $) 20 (|has| (-143) (-1087)))) (-1731 (((-112) $ $) 85 (|has| (-143) (-841)))) (-1705 (((-112) $ $) 82 (|has| (-143) (-841)))) (-2755 (((-762) $) 6 (|has| $ (-6 -4382)))))
+(((-1131) (-139)) (T -1131))
+((-2309 (*1 *1 *1) (-4 *1 (-1131))) (-2299 (*1 *1 *1) (-4 *1 (-1131))) (-2289 (*1 *1 *1) (-4 *1 (-1131))) (-2280 (*1 *1 *1) (-4 *1 (-1131))) (-1759 (*1 *2 *1 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-112)))) (-1734 (*1 *2 *1 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-112)))) (-1708 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (-558)) (-5 *2 (-112)))) (-2837 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (-143)) (-5 *2 (-762)))) (-1576 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (-143)) (-5 *2 (-112)))) (-3480 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1213 (-558))))) (-1517 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1131)) (-5 *2 (-558)))) (-1517 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1131)) (-5 *2 (-558)) (-5 *3 (-140)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-143)) (-4 *1 (-1131)))) (-3469 (*1 *2 *1 *3) (-12 (-5 *3 (-143)) (-5 *2 (-635 *1)) (-4 *1 (-1131)))) (-3469 (*1 *2 *1 *3) (-12 (-5 *3 (-140)) (-5 *2 (-635 *1)) (-4 *1 (-1131)))) (-3460 (*1 *1 *1 *2) (-12 (-4 *1 (-1131)) (-5 *2 (-143)))) (-3460 (*1 *1 *1 *2) (-12 (-4 *1 (-1131)) (-5 *2 (-140)))) (-2300 (*1 *1 *1 *2) (-12 (-4 *1 (-1131)) (-5 *2 (-143)))) (-2300 (*1 *1 *1 *2) (-12 (-4 *1 (-1131)) (-5 *2 (-140)))) (-2290 (*1 *1 *1 *2) (-12 (-4 *1 (-1131)) (-5 *2 (-143)))) (-2290 (*1 *1 *1 *2) (-12 (-4 *1 (-1131)) (-5 *2 (-140)))) (-2195 (*1 *1 *1 *1) (-4 *1 (-1131))))
+(-13 (-19 (-143)) (-10 -8 (-15 -2309 ($ $)) (-15 -2299 ($ $)) (-15 -2289 ($ $)) (-15 -2280 ($ $)) (-15 -1759 ((-112) $ $)) (-15 -1734 ((-112) $ $)) (-15 -1708 ((-112) $ $ (-558))) (-15 -2837 ((-762) $ $ (-143))) (-15 -1576 ((-112) $ $ (-143))) (-15 -3480 ($ $ (-1213 (-558)) $)) (-15 -1517 ((-558) $ $ (-558))) (-15 -1517 ((-558) (-140) $ (-558))) (-15 -3220 ($ (-143))) (-15 -3469 ((-635 $) $ (-143))) (-15 -3469 ((-635 $) $ (-140))) (-15 -3460 ($ $ (-143))) (-15 -3460 ($ $ (-140))) (-15 -2300 ($ $ (-143))) (-15 -2300 ($ $ (-140))) (-15 -2290 ($ $ (-143))) (-15 -2290 ($ $ (-140))) (-15 -2195 ($ $ $))))
+(((-34) . T) ((-102) -3998 (|has| (-143) (-1087)) (|has| (-143) (-841))) ((-605 (-853)) -3998 (|has| (-143) (-1087)) (|has| (-143) (-841)) (|has| (-143) (-605 (-853)))) ((-150 #0=(-143)) . T) ((-606 (-534)) |has| (-143) (-606 (-534))) ((-285 #1=(-558) #0#) . T) ((-287 #1# #0#) . T) ((-308 #0#) -12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087))) ((-372 #0#) . T) ((-487 #0#) . T) ((-596 #1# #0#) . T) ((-512 #0# #0#) -12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087))) ((-641 #0#) . T) ((-19 #0#) . T) ((-841) |has| (-143) (-841)) ((-1087) -3998 (|has| (-143) (-1087)) (|has| (-143) (-841))) ((-1200) . T))
+((-2386 (((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))) (-635 |#4|) (-635 |#5|) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))) (-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) (-762)) 93)) (-2353 (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) |#4| |#5| (-762)) 54)) (-3376 (((-1251) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))) (-762)) 85)) (-2331 (((-762) (-635 |#4|) (-635 |#5|)) 27)) (-2364 (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) |#4| |#5| (-762)) 56) (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) |#4| |#5| (-762) (-112)) 58)) (-2375 (((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112) (-112) (-112) (-112)) 76) (((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112)) 77)) (-3224 (((-1145) (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))) 80)) (-2343 (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) |#4| |#5|) 53)) (-2319 (((-762) (-635 |#4|) (-635 |#5|)) 19)))
+(((-1132 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2319 ((-762) (-635 |#4|) (-635 |#5|))) (-15 -2331 ((-762) (-635 |#4|) (-635 |#5|))) (-15 -2343 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) |#4| |#5|)) (-15 -2353 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) |#4| |#5| (-762))) (-15 -2353 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) |#4| |#5|)) (-15 -2364 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) |#4| |#5| (-762) (-112))) (-15 -2364 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) |#4| |#5| (-762))) (-15 -2364 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) |#4| |#5|)) (-15 -2375 ((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112))) (-15 -2375 ((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2386 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))) (-635 |#4|) (-635 |#5|) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))) (-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) (-762))) (-15 -3224 ((-1145) (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|)))) (-15 -3376 ((-1251) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))) (-762)))) (-450) (-784) (-841) (-1053 |#1| |#2| |#3|) (-1096 |#1| |#2| |#3| |#4|)) (T -1132))
+((-3376 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-2 (|:| |val| (-635 *8)) (|:| -2396 *9)))) (-5 *4 (-762)) (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1096 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-1251)) (-5 *1 (-1132 *5 *6 *7 *8 *9)))) (-3224 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-635 *7)) (|:| -2396 *8))) (-4 *7 (-1053 *4 *5 *6)) (-4 *8 (-1096 *4 *5 *6 *7)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-1145)) (-5 *1 (-1132 *4 *5 *6 *7 *8)))) (-2386 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-635 *11)) (|:| |todo| (-635 (-2 (|:| |val| *3) (|:| -2396 *11)))))) (-5 *6 (-762)) (-5 *2 (-635 (-2 (|:| |val| (-635 *10)) (|:| -2396 *11)))) (-5 *3 (-635 *10)) (-5 *4 (-635 *11)) (-4 *10 (-1053 *7 *8 *9)) (-4 *11 (-1096 *7 *8 *9 *10)) (-4 *7 (-450)) (-4 *8 (-784)) (-4 *9 (-841)) (-5 *1 (-1132 *7 *8 *9 *10 *11)))) (-2375 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-635 *9)) (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1096 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *1 (-1132 *5 *6 *7 *8 *9)))) (-2375 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-635 *9)) (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1096 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *1 (-1132 *5 *6 *7 *8 *9)))) (-2364 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -2396 *4)))))) (-5 *1 (-1132 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-2364 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-762)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841)) (-4 *3 (-1053 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -2396 *4)))))) (-5 *1 (-1132 *6 *7 *8 *3 *4)) (-4 *4 (-1096 *6 *7 *8 *3)))) (-2364 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-762)) (-5 *6 (-112)) (-4 *7 (-450)) (-4 *8 (-784)) (-4 *9 (-841)) (-4 *3 (-1053 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -2396 *4)))))) (-5 *1 (-1132 *7 *8 *9 *3 *4)) (-4 *4 (-1096 *7 *8 *9 *3)))) (-2353 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -2396 *4)))))) (-5 *1 (-1132 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-2353 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-762)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841)) (-4 *3 (-1053 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -2396 *4)))))) (-5 *1 (-1132 *6 *7 *8 *3 *4)) (-4 *4 (-1096 *6 *7 *8 *3)))) (-2343 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -2396 *4)))))) (-5 *1 (-1132 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-2331 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 *9)) (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1096 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-762)) (-5 *1 (-1132 *5 *6 *7 *8 *9)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 *9)) (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1096 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-762)) (-5 *1 (-1132 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -2319 ((-762) (-635 |#4|) (-635 |#5|))) (-15 -2331 ((-762) (-635 |#4|) (-635 |#5|))) (-15 -2343 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) |#4| |#5|)) (-15 -2353 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) |#4| |#5| (-762))) (-15 -2353 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) |#4| |#5|)) (-15 -2364 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) |#4| |#5| (-762) (-112))) (-15 -2364 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) |#4| |#5| (-762))) (-15 -2364 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) |#4| |#5|)) (-15 -2375 ((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112))) (-15 -2375 ((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2386 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))) (-635 |#4|) (-635 |#5|) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))) (-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))))) (-762))) (-15 -3224 ((-1145) (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|)))) (-15 -3376 ((-1251) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -2396 |#5|))) (-762))))
+((-3207 (((-112) $ $) NIL)) (-3773 (((-635 (-2 (|:| -2626 $) (|:| -1328 (-635 |#4|)))) (-635 |#4|)) NIL)) (-3782 (((-635 $) (-635 |#4|)) 110) (((-635 $) (-635 |#4|) (-112)) 111) (((-635 $) (-635 |#4|) (-112) (-112)) 109) (((-635 $) (-635 |#4|) (-112) (-112) (-112) (-112)) 112)) (-2671 (((-635 |#3|) $) NIL)) (-2139 (((-112) $) NIL)) (-2040 (((-112) $) NIL (|has| |#1| (-550)))) (-3892 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3842 ((|#4| |#4| $) NIL)) (-3465 (((-635 (-2 (|:| |val| |#4|) (|:| -2396 $))) |#4| $) 84)) (-2376 (((-2 (|:| |under| $) (|:| -2594 $) (|:| |upper| $)) $ |#3|) NIL)) (-3026 (((-112) $ (-762)) NIL)) (-4329 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4382))) (((-3 |#4| "failed") $ |#3|) 62)) (-1816 (($) NIL T CONST)) (-2092 (((-112) $) 27 (|has| |#1| (-550)))) (-2116 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2104 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2128 (((-112) $) NIL (|has| |#1| (-550)))) (-3853 (((-635 |#4|) (-635 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2050 (((-635 |#4|) (-635 |#4|) $) NIL (|has| |#1| (-550)))) (-2061 (((-635 |#4|) (-635 |#4|) $) NIL (|has| |#1| (-550)))) (-3069 (((-3 $ "failed") (-635 |#4|)) NIL)) (-1863 (($ (-635 |#4|)) NIL)) (-2315 (((-3 $ "failed") $) 40)) (-3810 ((|#4| |#4| $) 65)) (-2338 (($ $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#4| (-1087))))) (-1539 (($ |#4| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#4| (-1087)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4382)))) (-2071 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-550)))) (-3902 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3792 ((|#4| |#4| $) NIL)) (-3048 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4382)) (|has| |#4| (-1087)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4382))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4382))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3923 (((-2 (|:| -2626 (-635 |#4|)) (|:| -1328 (-635 |#4|))) $) NIL)) (-2166 (((-112) |#4| $) NIL)) (-2145 (((-112) |#4| $) NIL)) (-2177 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2401 (((-2 (|:| |val| (-635 |#4|)) (|:| |towers| (-635 $))) (-635 |#4|) (-112) (-112)) 124)) (-2240 (((-635 |#4|) $) 17 (|has| $ (-6 -4382)))) (-3912 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1997 ((|#3| $) 34)) (-2986 (((-112) $ (-762)) NIL)) (-2122 (((-635 |#4|) $) 18 (|has| $ (-6 -4382)))) (-4322 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4382)) (|has| |#4| (-1087))))) (-1807 (($ (-1 |#4| |#4|) $) 24 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#4| |#4|) $) 22)) (-4024 (((-635 |#3|) $) NIL)) (-2183 (((-112) |#3| $) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL)) (-2099 (((-3 |#4| (-635 $)) |#4| |#4| $) NIL)) (-2087 (((-635 (-2 (|:| |val| |#4|) (|:| -2396 $))) |#4| |#4| $) 103)) (-1560 (((-3 |#4| "failed") $) 38)) (-2111 (((-635 $) |#4| $) 88)) (-2134 (((-3 (-112) (-635 $)) |#4| $) NIL)) (-2123 (((-635 (-2 (|:| |val| (-112)) (|:| -2396 $))) |#4| $) 98) (((-112) |#4| $) 53)) (-4286 (((-635 $) |#4| $) 107) (((-635 $) (-635 |#4|) $) NIL) (((-635 $) (-635 |#4|) (-635 $)) 108) (((-635 $) |#4| (-635 $)) NIL)) (-2411 (((-635 $) (-635 |#4|) (-112) (-112) (-112)) 119)) (-2423 (($ |#4| $) 75) (($ (-635 |#4|) $) 76) (((-635 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 74)) (-3932 (((-635 |#4|) $) NIL)) (-3873 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3820 ((|#4| |#4| $) NIL)) (-3953 (((-112) $ $) NIL)) (-2081 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-550)))) (-3883 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3830 ((|#4| |#4| $) NIL)) (-2975 (((-1107) $) NIL)) (-2305 (((-3 |#4| "failed") $) 36)) (-4307 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3755 (((-3 $ "failed") $ |#4|) 48)) (-3430 (($ $ |#4|) NIL) (((-635 $) |#4| $) 90) (((-635 $) |#4| (-635 $)) NIL) (((-635 $) (-635 |#4|) $) NIL) (((-635 $) (-635 |#4|) (-635 $)) 86)) (-3266 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 |#4|) (-635 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-293 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-635 (-293 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3375 (((-112) $) 16)) (-2083 (($) 14)) (-4323 (((-762) $) NIL)) (-2988 (((-762) |#4| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#4| (-1087)))) (((-762) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4382)))) (-1553 (($ $) 13)) (-3224 (((-534) $) NIL (|has| |#4| (-606 (-534))))) (-3233 (($ (-635 |#4|)) 21)) (-2151 (($ $ |#3|) 43)) (-2171 (($ $ |#3|) 44)) (-3801 (($ $) NIL)) (-2160 (($ $ |#3|) NIL)) (-3220 (((-853) $) 32) (((-635 |#4|) $) 41)) (-3745 (((-762) $) NIL (|has| |#3| (-367)))) (-3940 (((-3 (-2 (|:| |bas| $) (|:| -3072 (-635 |#4|))) "failed") (-635 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3072 (-635 |#4|))) "failed") (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3863 (((-112) $ (-1 (-112) |#4| (-635 |#4|))) NIL)) (-2076 (((-635 $) |#4| $) 54) (((-635 $) |#4| (-635 $)) NIL) (((-635 $) (-635 |#4|) $) NIL) (((-635 $) (-635 |#4|) (-635 $)) NIL)) (-3277 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4382)))) (-3764 (((-635 |#3|) $) NIL)) (-2155 (((-112) |#4| $) NIL)) (-4206 (((-112) |#3| $) 61)) (-1683 (((-112) $ $) NIL)) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-1133 |#1| |#2| |#3| |#4|) (-13 (-1096 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2423 ((-635 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3782 ((-635 $) (-635 |#4|) (-112) (-112))) (-15 -3782 ((-635 $) (-635 |#4|) (-112) (-112) (-112) (-112))) (-15 -2411 ((-635 $) (-635 |#4|) (-112) (-112) (-112))) (-15 -2401 ((-2 (|:| |val| (-635 |#4|)) (|:| |towers| (-635 $))) (-635 |#4|) (-112) (-112))))) (-450) (-784) (-841) (-1053 |#1| |#2| |#3|)) (T -1133))
+((-2423 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-635 (-1133 *5 *6 *7 *3))) (-5 *1 (-1133 *5 *6 *7 *3)) (-4 *3 (-1053 *5 *6 *7)))) (-3782 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-635 (-1133 *5 *6 *7 *8))) (-5 *1 (-1133 *5 *6 *7 *8)))) (-3782 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-635 (-1133 *5 *6 *7 *8))) (-5 *1 (-1133 *5 *6 *7 *8)))) (-2411 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-635 (-1133 *5 *6 *7 *8))) (-5 *1 (-1133 *5 *6 *7 *8)))) (-2401 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *8 (-1053 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-635 *8)) (|:| |towers| (-635 (-1133 *5 *6 *7 *8))))) (-5 *1 (-1133 *5 *6 *7 *8)) (-5 *3 (-635 *8)))))
+(-13 (-1096 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2423 ((-635 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3782 ((-635 $) (-635 |#4|) (-112) (-112))) (-15 -3782 ((-635 $) (-635 |#4|) (-112) (-112) (-112) (-112))) (-15 -2411 ((-635 $) (-635 |#4|) (-112) (-112) (-112))) (-15 -2401 ((-2 (|:| |val| (-635 |#4|)) (|:| |towers| (-635 $))) (-635 |#4|) (-112) (-112)))))
+((-3207 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-3072 ((|#1| $) 34)) (-3854 (($ (-635 |#1|)) 39)) (-3026 (((-112) $ (-762)) NIL)) (-1816 (($) NIL T CONST)) (-3805 ((|#1| |#1| $) 36)) (-3796 ((|#1| $) 32)) (-2240 (((-635 |#1|) $) 18 (|has| $ (-6 -4382)))) (-2986 (((-112) $ (-762)) NIL)) (-2122 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1807 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) 22)) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL (|has| |#1| (-1087)))) (-1722 ((|#1| $) 35)) (-4328 (($ |#1| $) 37)) (-2975 (((-1107) $) NIL (|has| |#1| (-1087)))) (-3524 ((|#1| $) 33)) (-3266 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3375 (((-112) $) 31)) (-2083 (($) 38)) (-2494 (((-762) $) 29)) (-2988 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1553 (($ $) 27)) (-3220 (((-853) $) 14 (|has| |#1| (-605 (-853))))) (-3534 (($ (-635 |#1|)) NIL)) (-3277 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) 17 (|has| |#1| (-1087)))) (-2755 (((-762) $) 30 (|has| $ (-6 -4382)))))
+(((-1134 |#1|) (-13 (-1108 |#1|) (-10 -8 (-15 -3854 ($ (-635 |#1|))))) (-1200)) (T -1134))
+((-3854 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1200)) (-5 *1 (-1134 *3)))))
+(-13 (-1108 |#1|) (-10 -8 (-15 -3854 ($ (-635 |#1|)))))
+((-1532 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1213 (-558)) |#2|) 43) ((|#2| $ (-558) |#2|) 40)) (-2435 (((-112) $) 11)) (-1807 (($ (-1 |#2| |#2|) $) 38)) (-2305 ((|#2| $) NIL) (($ $ (-762)) 16)) (-3880 (($ $ |#2|) 39)) (-2445 (((-112) $) 10)) (-2195 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1213 (-558))) 30) ((|#2| $ (-558)) 22) ((|#2| $ (-558) |#2|) NIL)) (-2392 (($ $ $) 46) (($ $ |#2|) NIL)) (-4341 (($ $ $) 32) (($ |#2| $) NIL) (($ (-635 $)) 35) (($ $ |#2|) NIL)))
+(((-1135 |#1| |#2|) (-10 -8 (-15 -2435 ((-112) |#1|)) (-15 -2445 ((-112) |#1|)) (-15 -1532 (|#2| |#1| (-558) |#2|)) (-15 -2195 (|#2| |#1| (-558) |#2|)) (-15 -2195 (|#2| |#1| (-558))) (-15 -3880 (|#1| |#1| |#2|)) (-15 -4341 (|#1| |#1| |#2|)) (-15 -4341 (|#1| (-635 |#1|))) (-15 -2195 (|#1| |#1| (-1213 (-558)))) (-15 -1532 (|#2| |#1| (-1213 (-558)) |#2|)) (-15 -1532 (|#2| |#1| "last" |#2|)) (-15 -1532 (|#1| |#1| "rest" |#1|)) (-15 -1532 (|#2| |#1| "first" |#2|)) (-15 -2392 (|#1| |#1| |#2|)) (-15 -2392 (|#1| |#1| |#1|)) (-15 -2195 (|#2| |#1| "last")) (-15 -2195 (|#1| |#1| "rest")) (-15 -2305 (|#1| |#1| (-762))) (-15 -2195 (|#2| |#1| "first")) (-15 -2305 (|#2| |#1|)) (-15 -4341 (|#1| |#2| |#1|)) (-15 -4341 (|#1| |#1| |#1|)) (-15 -1532 (|#2| |#1| "value" |#2|)) (-15 -2195 (|#2| |#1| "value")) (-15 -1807 (|#1| (-1 |#2| |#2|) |#1|))) (-1136 |#2|) (-1200)) (T -1135))
+NIL
+(-10 -8 (-15 -2435 ((-112) |#1|)) (-15 -2445 ((-112) |#1|)) (-15 -1532 (|#2| |#1| (-558) |#2|)) (-15 -2195 (|#2| |#1| (-558) |#2|)) (-15 -2195 (|#2| |#1| (-558))) (-15 -3880 (|#1| |#1| |#2|)) (-15 -4341 (|#1| |#1| |#2|)) (-15 -4341 (|#1| (-635 |#1|))) (-15 -2195 (|#1| |#1| (-1213 (-558)))) (-15 -1532 (|#2| |#1| (-1213 (-558)) |#2|)) (-15 -1532 (|#2| |#1| "last" |#2|)) (-15 -1532 (|#1| |#1| "rest" |#1|)) (-15 -1532 (|#2| |#1| "first" |#2|)) (-15 -2392 (|#1| |#1| |#2|)) (-15 -2392 (|#1| |#1| |#1|)) (-15 -2195 (|#2| |#1| "last")) (-15 -2195 (|#1| |#1| "rest")) (-15 -2305 (|#1| |#1| (-762))) (-15 -2195 (|#2| |#1| "first")) (-15 -2305 (|#2| |#1|)) (-15 -4341 (|#1| |#2| |#1|)) (-15 -4341 (|#1| |#1| |#1|)) (-15 -1532 (|#2| |#1| "value" |#2|)) (-15 -2195 (|#2| |#1| "value")) (-15 -1807 (|#1| (-1 |#2| |#2|) |#1|)))
+((-3207 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-2925 ((|#1| $) 48)) (-3213 ((|#1| $) 65)) (-3436 (($ $) 67)) (-3869 (((-1251) $ (-558) (-558)) 97 (|has| $ (-6 -4383)))) (-2336 (($ $ (-558)) 52 (|has| $ (-6 -4383)))) (-3026 (((-112) $ (-762)) 8)) (-3972 ((|#1| $ |#1|) 39 (|has| $ (-6 -4383)))) (-2359 (($ $ $) 56 (|has| $ (-6 -4383)))) (-2348 ((|#1| $ |#1|) 54 (|has| $ (-6 -4383)))) (-2369 ((|#1| $ |#1|) 58 (|has| $ (-6 -4383)))) (-1532 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4383))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4383))) (($ $ "rest" $) 55 (|has| $ (-6 -4383))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4383))) ((|#1| $ (-1213 (-558)) |#1|) 117 (|has| $ (-6 -4383))) ((|#1| $ (-558) |#1|) 86 (|has| $ (-6 -4383)))) (-3982 (($ $ (-635 $)) 41 (|has| $ (-6 -4383)))) (-4329 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4382)))) (-3201 ((|#1| $) 66)) (-1816 (($) 7 T CONST)) (-2315 (($ $) 73) (($ $ (-762)) 71)) (-2338 (($ $) 99 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1539 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4382))) (($ |#1| $) 100 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-3048 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4382))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4382))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1817 ((|#1| $ (-558) |#1|) 85 (|has| $ (-6 -4383)))) (-1746 ((|#1| $ (-558)) 87)) (-2435 (((-112) $) 83)) (-2240 (((-635 |#1|) $) 30 (|has| $ (-6 -4382)))) (-2870 (((-635 $) $) 50)) (-3993 (((-112) $ $) 42 (|has| |#1| (-1087)))) (-3315 (($ (-762) |#1|) 108)) (-2986 (((-112) $ (-762)) 9)) (-3889 (((-558) $) 95 (|has| (-558) (-841)))) (-2122 (((-635 |#1|) $) 29 (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-3899 (((-558) $) 94 (|has| (-558) (-841)))) (-1807 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2953 (((-112) $ (-762)) 10)) (-1362 (((-635 |#1|) $) 45)) (-1790 (((-112) $) 49)) (-4310 (((-1145) $) 22 (|has| |#1| (-1087)))) (-1560 ((|#1| $) 70) (($ $ (-762)) 68)) (-1861 (($ $ $ (-558)) 116) (($ |#1| $ (-558)) 115)) (-3920 (((-635 (-558)) $) 92)) (-3929 (((-112) (-558) $) 91)) (-2975 (((-1107) $) 21 (|has| |#1| (-1087)))) (-2305 ((|#1| $) 76) (($ $ (-762)) 74)) (-4307 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-3880 (($ $ |#1|) 96 (|has| $ (-6 -4383)))) (-2445 (((-112) $) 84)) (-3266 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) 14)) (-3908 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3937 (((-635 |#1|) $) 90)) (-3375 (((-112) $) 11)) (-2083 (($) 12)) (-2195 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1213 (-558))) 112) ((|#1| $ (-558)) 89) ((|#1| $ (-558) |#1|) 88)) (-2860 (((-558) $ $) 44)) (-4023 (($ $ (-1213 (-558))) 114) (($ $ (-558)) 113)) (-1487 (((-112) $) 46)) (-2405 (($ $) 62)) (-2380 (($ $) 59 (|has| $ (-6 -4383)))) (-2414 (((-762) $) 63)) (-2428 (($ $) 64)) (-2988 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4382))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1553 (($ $) 13)) (-3224 (((-534) $) 98 (|has| |#1| (-606 (-534))))) (-3233 (($ (-635 |#1|)) 107)) (-2392 (($ $ $) 61 (|has| $ (-6 -4383))) (($ $ |#1|) 60 (|has| $ (-6 -4383)))) (-4341 (($ $ $) 78) (($ |#1| $) 77) (($ (-635 $)) 110) (($ $ |#1|) 109)) (-3220 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-1727 (((-635 $) $) 51)) (-4005 (((-112) $ $) 43 (|has| |#1| (-1087)))) (-3277 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-2755 (((-762) $) 6 (|has| $ (-6 -4382)))))
+(((-1136 |#1|) (-139) (-1200)) (T -1136))
+((-2445 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1200)) (-5 *2 (-112)))) (-2435 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1200)) (-5 *2 (-112)))))
+(-13 (-1234 |t#1|) (-641 |t#1|) (-10 -8 (-15 -2445 ((-112) $)) (-15 -2435 ((-112) $))))
+(((-34) . T) ((-102) |has| |#1| (-1087)) ((-605 (-853)) -3998 (|has| |#1| (-1087)) (|has| |#1| (-605 (-853)))) ((-150 |#1|) . T) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-285 #0=(-558) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-596 #0# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-641 |#1|) . T) ((-1000 |#1|) . T) ((-1087) |has| |#1| (-1087)) ((-1200) . T) ((-1234 |#1|) . T))
+((-3207 (((-112) $ $) NIL (-3998 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-3303 (($) NIL) (($ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL)) (-3869 (((-1251) $ |#1| |#1|) NIL (|has| $ (-6 -4383)))) (-3026 (((-112) $ (-762)) NIL)) (-1532 ((|#2| $ |#1| |#2|) NIL)) (-4207 (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382)))) (-4329 (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382)))) (-3083 (((-3 |#2| "failed") |#1| $) NIL)) (-1816 (($) NIL T CONST)) (-2338 (($ $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087))))) (-3395 (($ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL (|has| $ (-6 -4382))) (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (((-3 |#2| "failed") |#1| $) NIL)) (-1539 (($ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382)))) (-3048 (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) NIL (|has| $ (-6 -4382))) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382)))) (-1817 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4383)))) (-1746 ((|#2| $ |#1|) NIL)) (-2240 (((-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (((-635 |#2|) $) NIL (|has| $ (-6 -4382)))) (-2986 (((-112) $ (-762)) NIL)) (-3889 ((|#1| $) NIL (|has| |#1| (-841)))) (-2122 (((-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (((-635 |#2|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#2| (-1087))))) (-3899 ((|#1| $) NIL (|has| |#1| (-841)))) (-1807 (($ (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4383))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL (-3998 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-3848 (((-635 |#1|) $) NIL)) (-3950 (((-112) |#1| $) NIL)) (-1722 (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL)) (-4328 (($ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL)) (-3920 (((-635 |#1|) $) NIL)) (-3929 (((-112) |#1| $) NIL)) (-2975 (((-1107) $) NIL (-3998 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-2305 ((|#2| $) NIL (|has| |#1| (-841)))) (-4307 (((-3 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) "failed") (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL)) (-3880 (($ $ |#2|) NIL (|has| $ (-6 -4383)))) (-3524 (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL)) (-3266 (((-112) (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))))) NIL (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-293 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) NIL (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-635 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3908 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#2| (-1087))))) (-3937 (((-635 |#2|) $) NIL)) (-3375 (((-112) $) NIL)) (-2083 (($) NIL)) (-2195 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2571 (($) NIL) (($ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL)) (-2988 (((-762) (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (((-762) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (((-762) |#2| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#2| (-1087)))) (((-762) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4382)))) (-1553 (($ $) NIL)) (-3224 (((-534) $) NIL (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-606 (-534))))) (-3233 (($ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL)) (-3220 (((-853) $) NIL (-3998 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-605 (-853))) (|has| |#2| (-605 (-853)))))) (-3534 (($ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL)) (-3277 (((-112) (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) NIL (-3998 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-1137 |#1| |#2| |#3|) (-1176 |#1| |#2|) (-1087) (-1087) |#2|) (T -1137))
+NIL
+(-1176 |#1| |#2|)
+((-3207 (((-112) $ $) 7)) (-2457 (((-3 $ "failed") $) 13)) (-4310 (((-1145) $) 9)) (-1796 (($) 14 T CONST)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11)) (-1683 (((-112) $ $) 6)))
+(((-1138) (-139)) (T -1138))
+((-1796 (*1 *1) (-4 *1 (-1138))) (-2457 (*1 *1 *1) (|partial| -4 *1 (-1138))))
+(-13 (-1087) (-10 -8 (-15 -1796 ($) -3707) (-15 -2457 ((-3 $ "failed") $))))
+(((-102) . T) ((-605 (-853)) . T) ((-1087) . T))
+((-2496 (((-1143 |#1|) (-1143 |#1|)) 17)) (-2469 (((-1143 |#1|) (-1143 |#1|)) 13)) (-2506 (((-1143 |#1|) (-1143 |#1|) (-558) (-558)) 20)) (-2482 (((-1143 |#1|) (-1143 |#1|)) 15)))
+(((-1139 |#1|) (-10 -7 (-15 -2469 ((-1143 |#1|) (-1143 |#1|))) (-15 -2482 ((-1143 |#1|) (-1143 |#1|))) (-15 -2496 ((-1143 |#1|) (-1143 |#1|))) (-15 -2506 ((-1143 |#1|) (-1143 |#1|) (-558) (-558)))) (-13 (-550) (-146))) (T -1139))
+((-2506 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1143 *4)) (-5 *3 (-558)) (-4 *4 (-13 (-550) (-146))) (-5 *1 (-1139 *4)))) (-2496 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-13 (-550) (-146))) (-5 *1 (-1139 *3)))) (-2482 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-13 (-550) (-146))) (-5 *1 (-1139 *3)))) (-2469 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-13 (-550) (-146))) (-5 *1 (-1139 *3)))))
+(-10 -7 (-15 -2469 ((-1143 |#1|) (-1143 |#1|))) (-15 -2482 ((-1143 |#1|) (-1143 |#1|))) (-15 -2496 ((-1143 |#1|) (-1143 |#1|))) (-15 -2506 ((-1143 |#1|) (-1143 |#1|) (-558) (-558))))
+((-4341 (((-1143 |#1|) (-1143 (-1143 |#1|))) 15)))
+(((-1140 |#1|) (-10 -7 (-15 -4341 ((-1143 |#1|) (-1143 (-1143 |#1|))))) (-1200)) (T -1140))
+((-4341 (*1 *2 *3) (-12 (-5 *3 (-1143 (-1143 *4))) (-5 *2 (-1143 *4)) (-5 *1 (-1140 *4)) (-4 *4 (-1200)))))
+(-10 -7 (-15 -4341 ((-1143 |#1|) (-1143 (-1143 |#1|)))))
+((-2756 (((-1143 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1143 |#1|)) 25)) (-3048 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1143 |#1|)) 26)) (-3167 (((-1143 |#2|) (-1 |#2| |#1|) (-1143 |#1|)) 16)))
+(((-1141 |#1| |#2|) (-10 -7 (-15 -3167 ((-1143 |#2|) (-1 |#2| |#1|) (-1143 |#1|))) (-15 -2756 ((-1143 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1143 |#1|))) (-15 -3048 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1143 |#1|)))) (-1200) (-1200)) (T -1141))
+((-3048 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1143 *5)) (-4 *5 (-1200)) (-4 *2 (-1200)) (-5 *1 (-1141 *5 *2)))) (-2756 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1143 *6)) (-4 *6 (-1200)) (-4 *3 (-1200)) (-5 *2 (-1143 *3)) (-5 *1 (-1141 *6 *3)))) (-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1143 *5)) (-4 *5 (-1200)) (-4 *6 (-1200)) (-5 *2 (-1143 *6)) (-5 *1 (-1141 *5 *6)))))
+(-10 -7 (-15 -3167 ((-1143 |#2|) (-1 |#2| |#1|) (-1143 |#1|))) (-15 -2756 ((-1143 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1143 |#1|))) (-15 -3048 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1143 |#1|))))
+((-3167 (((-1143 |#3|) (-1 |#3| |#1| |#2|) (-1143 |#1|) (-1143 |#2|)) 21)))
+(((-1142 |#1| |#2| |#3|) (-10 -7 (-15 -3167 ((-1143 |#3|) (-1 |#3| |#1| |#2|) (-1143 |#1|) (-1143 |#2|)))) (-1200) (-1200) (-1200)) (T -1142))
+((-3167 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1143 *6)) (-5 *5 (-1143 *7)) (-4 *6 (-1200)) (-4 *7 (-1200)) (-4 *8 (-1200)) (-5 *2 (-1143 *8)) (-5 *1 (-1142 *6 *7 *8)))))
+(-10 -7 (-15 -3167 ((-1143 |#3|) (-1 |#3| |#1| |#2|) (-1143 |#1|) (-1143 |#2|))))
+((-3207 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2925 ((|#1| $) NIL)) (-3213 ((|#1| $) NIL)) (-3436 (($ $) 51)) (-3869 (((-1251) $ (-558) (-558)) 76 (|has| $ (-6 -4383)))) (-2336 (($ $ (-558)) 110 (|has| $ (-6 -4383)))) (-3026 (((-112) $ (-762)) NIL)) (-2526 (((-853) $) 40 (|has| |#1| (-1087)))) (-2515 (((-112)) 39 (|has| |#1| (-1087)))) (-3972 ((|#1| $ |#1|) NIL (|has| $ (-6 -4383)))) (-2359 (($ $ $) 98 (|has| $ (-6 -4383))) (($ $ (-558) $) 122)) (-2348 ((|#1| $ |#1|) 107 (|has| $ (-6 -4383)))) (-2369 ((|#1| $ |#1|) 102 (|has| $ (-6 -4383)))) (-1532 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4383))) ((|#1| $ "first" |#1|) 104 (|has| $ (-6 -4383))) (($ $ "rest" $) 106 (|has| $ (-6 -4383))) ((|#1| $ "last" |#1|) 109 (|has| $ (-6 -4383))) ((|#1| $ (-1213 (-558)) |#1|) 89 (|has| $ (-6 -4383))) ((|#1| $ (-558) |#1|) 55 (|has| $ (-6 -4383)))) (-3982 (($ $ (-635 $)) NIL (|has| $ (-6 -4383)))) (-4329 (($ (-1 (-112) |#1|) $) 58)) (-3201 ((|#1| $) NIL)) (-1816 (($) NIL T CONST)) (-2271 (($ $) 14)) (-2315 (($ $) 28) (($ $ (-762)) 88)) (-2562 (((-112) (-635 |#1|) $) 116 (|has| |#1| (-1087)))) (-2577 (($ (-635 |#1|)) 112)) (-2338 (($ $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1539 (($ |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087)))) (($ (-1 (-112) |#1|) $) 57)) (-3048 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4382))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4382))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1817 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4383)))) (-1746 ((|#1| $ (-558)) NIL)) (-2435 (((-112) $) NIL)) (-2240 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-3746 (((-1251) (-558) $) 121 (|has| |#1| (-1087)))) (-2264 (((-762) $) 118)) (-2870 (((-635 $) $) NIL)) (-3993 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-3315 (($ (-762) |#1|) NIL)) (-2986 (((-112) $ (-762)) NIL)) (-3889 (((-558) $) NIL (|has| (-558) (-841)))) (-2122 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3899 (((-558) $) NIL (|has| (-558) (-841)))) (-1807 (($ (-1 |#1| |#1|) $) 73 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#1| |#1| |#1|) $ $) 67)) (-2953 (((-112) $ (-762)) NIL)) (-1362 (((-635 |#1|) $) NIL)) (-1790 (((-112) $) NIL)) (-2292 (($ $) 90)) (-2302 (((-112) $) 13)) (-4310 (((-1145) $) NIL (|has| |#1| (-1087)))) (-1560 ((|#1| $) NIL) (($ $ (-762)) NIL)) (-1861 (($ $ $ (-558)) NIL) (($ |#1| $ (-558)) NIL)) (-3920 (((-635 (-558)) $) NIL)) (-3929 (((-112) (-558) $) 74)) (-2975 (((-1107) $) NIL (|has| |#1| (-1087)))) (-4255 (($ (-1 |#1|)) 124) (($ (-1 |#1| |#1|) |#1|) 125)) (-2282 ((|#1| $) 10)) (-2305 ((|#1| $) 27) (($ $ (-762)) 49)) (-2550 (((-2 (|:| |cycle?| (-112)) (|:| -4280 (-762)) (|:| |period| (-762))) (-762) $) 24)) (-4307 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4306 (($ (-1 (-112) |#1|) $) 126)) (-4318 (($ (-1 (-112) |#1|) $) 127)) (-3880 (($ $ |#1|) 68 (|has| $ (-6 -4383)))) (-3430 (($ $ (-558)) 31)) (-2445 (((-112) $) 72)) (-2311 (((-112) $) 12)) (-2321 (((-112) $) 117)) (-3266 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) 20)) (-3908 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3937 (((-635 |#1|) $) NIL)) (-3375 (((-112) $) 15)) (-2083 (($) 44)) (-2195 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1213 (-558))) NIL) ((|#1| $ (-558)) 54) ((|#1| $ (-558) |#1|) NIL)) (-2860 (((-558) $ $) 48)) (-4023 (($ $ (-1213 (-558))) NIL) (($ $ (-558)) NIL)) (-2538 (($ (-1 $)) 47)) (-1487 (((-112) $) 69)) (-2405 (($ $) 70)) (-2380 (($ $) 99 (|has| $ (-6 -4383)))) (-2414 (((-762) $) NIL)) (-2428 (($ $) NIL)) (-2988 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1553 (($ $) 43)) (-3224 (((-534) $) NIL (|has| |#1| (-606 (-534))))) (-3233 (($ (-635 |#1|)) 53)) (-2516 (($ |#1| $) 97)) (-2392 (($ $ $) 100 (|has| $ (-6 -4383))) (($ $ |#1|) 101 (|has| $ (-6 -4383)))) (-4341 (($ $ $) 78) (($ |#1| $) 45) (($ (-635 $)) 83) (($ $ |#1|) 77)) (-2011 (($ $) 50)) (-3220 (($ (-635 |#1|)) 111) (((-853) $) 41 (|has| |#1| (-605 (-853))))) (-1727 (((-635 $) $) NIL)) (-4005 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-3277 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) 114 (|has| |#1| (-1087)))) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-1143 |#1|) (-13 (-664 |#1|) (-608 (-635 |#1|)) (-10 -8 (-6 -4383) (-15 -2577 ($ (-635 |#1|))) (IF (|has| |#1| (-1087)) (-15 -2562 ((-112) (-635 |#1|) $)) |%noBranch|) (-15 -2550 ((-2 (|:| |cycle?| (-112)) (|:| -4280 (-762)) (|:| |period| (-762))) (-762) $)) (-15 -2538 ($ (-1 $))) (-15 -2516 ($ |#1| $)) (IF (|has| |#1| (-1087)) (PROGN (-15 -3746 ((-1251) (-558) $)) (-15 -2526 ((-853) $)) (-15 -2515 ((-112)))) |%noBranch|) (-15 -2359 ($ $ (-558) $)) (-15 -4255 ($ (-1 |#1|))) (-15 -4255 ($ (-1 |#1| |#1|) |#1|)) (-15 -4306 ($ (-1 (-112) |#1|) $)) (-15 -4318 ($ (-1 (-112) |#1|) $)))) (-1200)) (T -1143))
+((-2577 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1200)) (-5 *1 (-1143 *3)))) (-2562 (*1 *2 *3 *1) (-12 (-5 *3 (-635 *4)) (-4 *4 (-1087)) (-4 *4 (-1200)) (-5 *2 (-112)) (-5 *1 (-1143 *4)))) (-2550 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -4280 (-762)) (|:| |period| (-762)))) (-5 *1 (-1143 *4)) (-4 *4 (-1200)) (-5 *3 (-762)))) (-2538 (*1 *1 *2) (-12 (-5 *2 (-1 (-1143 *3))) (-5 *1 (-1143 *3)) (-4 *3 (-1200)))) (-2516 (*1 *1 *2 *1) (-12 (-5 *1 (-1143 *2)) (-4 *2 (-1200)))) (-3746 (*1 *2 *3 *1) (-12 (-5 *3 (-558)) (-5 *2 (-1251)) (-5 *1 (-1143 *4)) (-4 *4 (-1087)) (-4 *4 (-1200)))) (-2526 (*1 *2 *1) (-12 (-5 *2 (-853)) (-5 *1 (-1143 *3)) (-4 *3 (-1087)) (-4 *3 (-1200)))) (-2515 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1143 *3)) (-4 *3 (-1087)) (-4 *3 (-1200)))) (-2359 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1143 *3)) (-4 *3 (-1200)))) (-4255 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1200)) (-5 *1 (-1143 *3)))) (-4255 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1200)) (-5 *1 (-1143 *3)))) (-4306 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1200)) (-5 *1 (-1143 *3)))) (-4318 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1200)) (-5 *1 (-1143 *3)))))
+(-13 (-664 |#1|) (-608 (-635 |#1|)) (-10 -8 (-6 -4383) (-15 -2577 ($ (-635 |#1|))) (IF (|has| |#1| (-1087)) (-15 -2562 ((-112) (-635 |#1|) $)) |%noBranch|) (-15 -2550 ((-2 (|:| |cycle?| (-112)) (|:| -4280 (-762)) (|:| |period| (-762))) (-762) $)) (-15 -2538 ($ (-1 $))) (-15 -2516 ($ |#1| $)) (IF (|has| |#1| (-1087)) (PROGN (-15 -3746 ((-1251) (-558) $)) (-15 -2526 ((-853) $)) (-15 -2515 ((-112)))) |%noBranch|) (-15 -2359 ($ $ (-558) $)) (-15 -4255 ($ (-1 |#1|))) (-15 -4255 ($ (-1 |#1| |#1|) |#1|)) (-15 -4306 ($ (-1 (-112) |#1|) $)) (-15 -4318 ($ (-1 (-112) |#1|) $))))
+((-3207 (((-112) $ $) 19)) (-2280 (($ $) 120)) (-2289 (($ $) 121)) (-3460 (($ $ (-143)) 108) (($ $ (-140)) 107)) (-3869 (((-1251) $ (-558) (-558)) 40 (|has| $ (-6 -4383)))) (-1734 (((-112) $ $) 118)) (-1708 (((-112) $ $ (-558)) 117)) (-3994 (($ (-558)) 127)) (-3469 (((-635 $) $ (-143)) 110) (((-635 $) $ (-140)) 109)) (-1538 (((-112) (-1 (-112) (-143) (-143)) $) 98) (((-112) $) 92 (|has| (-143) (-841)))) (-2763 (($ (-1 (-112) (-143) (-143)) $) 89 (|has| $ (-6 -4383))) (($ $) 88 (-12 (|has| (-143) (-841)) (|has| $ (-6 -4383))))) (-2376 (($ (-1 (-112) (-143) (-143)) $) 99) (($ $) 93 (|has| (-143) (-841)))) (-3026 (((-112) $ (-762)) 8)) (-1532 (((-143) $ (-558) (-143)) 52 (|has| $ (-6 -4383))) (((-143) $ (-1213 (-558)) (-143)) 58 (|has| $ (-6 -4383)))) (-4329 (($ (-1 (-112) (-143)) $) 75 (|has| $ (-6 -4382)))) (-1816 (($) 7 T CONST)) (-2290 (($ $ (-143)) 104) (($ $ (-140)) 103)) (-3306 (($ $) 90 (|has| $ (-6 -4383)))) (-4127 (($ $) 100)) (-3480 (($ $ (-1213 (-558)) $) 114)) (-2338 (($ $) 78 (-12 (|has| (-143) (-1087)) (|has| $ (-6 -4382))))) (-1539 (($ (-143) $) 77 (-12 (|has| (-143) (-1087)) (|has| $ (-6 -4382)))) (($ (-1 (-112) (-143)) $) 74 (|has| $ (-6 -4382)))) (-3048 (((-143) (-1 (-143) (-143) (-143)) $ (-143) (-143)) 76 (-12 (|has| (-143) (-1087)) (|has| $ (-6 -4382)))) (((-143) (-1 (-143) (-143) (-143)) $ (-143)) 73 (|has| $ (-6 -4382))) (((-143) (-1 (-143) (-143) (-143)) $) 72 (|has| $ (-6 -4382)))) (-1817 (((-143) $ (-558) (-143)) 53 (|has| $ (-6 -4383)))) (-1746 (((-143) $ (-558)) 51)) (-1759 (((-112) $ $) 119)) (-1517 (((-558) (-1 (-112) (-143)) $) 97) (((-558) (-143) $) 96 (|has| (-143) (-1087))) (((-558) (-143) $ (-558)) 95 (|has| (-143) (-1087))) (((-558) $ $ (-558)) 113) (((-558) (-140) $ (-558)) 112)) (-2240 (((-635 (-143)) $) 30 (|has| $ (-6 -4382)))) (-3315 (($ (-762) (-143)) 69)) (-2986 (((-112) $ (-762)) 9)) (-3889 (((-558) $) 43 (|has| (-558) (-841)))) (-3910 (($ $ $) 87 (|has| (-143) (-841)))) (-1677 (($ (-1 (-112) (-143) (-143)) $ $) 101) (($ $ $) 94 (|has| (-143) (-841)))) (-2122 (((-635 (-143)) $) 29 (|has| $ (-6 -4382)))) (-4322 (((-112) (-143) $) 27 (-12 (|has| (-143) (-1087)) (|has| $ (-6 -4382))))) (-3899 (((-558) $) 44 (|has| (-558) (-841)))) (-3542 (($ $ $) 86 (|has| (-143) (-841)))) (-1576 (((-112) $ $ (-143)) 115)) (-2837 (((-762) $ $ (-143)) 116)) (-1807 (($ (-1 (-143) (-143)) $) 34 (|has| $ (-6 -4383)))) (-3167 (($ (-1 (-143) (-143)) $) 35) (($ (-1 (-143) (-143) (-143)) $ $) 64)) (-2299 (($ $) 122)) (-2309 (($ $) 123)) (-2953 (((-112) $ (-762)) 10)) (-2300 (($ $ (-143)) 106) (($ $ (-140)) 105)) (-4310 (((-1145) $) 22)) (-1861 (($ (-143) $ (-558)) 60) (($ $ $ (-558)) 59)) (-3920 (((-635 (-558)) $) 46)) (-3929 (((-112) (-558) $) 47)) (-2975 (((-1107) $) 21)) (-2305 (((-143) $) 42 (|has| (-558) (-841)))) (-4307 (((-3 (-143) "failed") (-1 (-112) (-143)) $) 71)) (-3880 (($ $ (-143)) 41 (|has| $ (-6 -4383)))) (-3266 (((-112) (-1 (-112) (-143)) $) 32 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 (-143)))) 26 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087)))) (($ $ (-293 (-143))) 25 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087)))) (($ $ (-143) (-143)) 24 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087)))) (($ $ (-635 (-143)) (-635 (-143))) 23 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087))))) (-2381 (((-112) $ $) 14)) (-3908 (((-112) (-143) $) 45 (-12 (|has| $ (-6 -4382)) (|has| (-143) (-1087))))) (-3937 (((-635 (-143)) $) 48)) (-3375 (((-112) $) 11)) (-2083 (($) 12)) (-2195 (((-143) $ (-558) (-143)) 50) (((-143) $ (-558)) 49) (($ $ (-1213 (-558))) 63) (($ $ $) 102)) (-4023 (($ $ (-558)) 62) (($ $ (-1213 (-558))) 61)) (-2988 (((-762) (-1 (-112) (-143)) $) 31 (|has| $ (-6 -4382))) (((-762) (-143) $) 28 (-12 (|has| (-143) (-1087)) (|has| $ (-6 -4382))))) (-2773 (($ $ $ (-558)) 91 (|has| $ (-6 -4383)))) (-1553 (($ $) 13)) (-3224 (((-534) $) 79 (|has| (-143) (-606 (-534))))) (-3233 (($ (-635 (-143))) 70)) (-4341 (($ $ (-143)) 68) (($ (-143) $) 67) (($ $ $) 66) (($ (-635 $)) 65)) (-3220 (($ (-143)) 111) (((-853) $) 18)) (-3277 (((-112) (-1 (-112) (-143)) $) 33 (|has| $ (-6 -4382)))) (-1338 (((-1145) $) 131) (((-1145) $ (-112)) 130) (((-1251) (-813) $) 129) (((-1251) (-813) $ (-112)) 128)) (-1747 (((-112) $ $) 84 (|has| (-143) (-841)))) (-1720 (((-112) $ $) 83 (|has| (-143) (-841)))) (-1683 (((-112) $ $) 20)) (-1731 (((-112) $ $) 85 (|has| (-143) (-841)))) (-1705 (((-112) $ $) 82 (|has| (-143) (-841)))) (-2755 (((-762) $) 6 (|has| $ (-6 -4382)))))
+(((-1144) (-139)) (T -1144))
+((-3994 (*1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-1144)))))
+(-13 (-1131) (-1087) (-819) (-10 -8 (-15 -3994 ($ (-558)))))
+(((-34) . T) ((-102) . T) ((-605 (-853)) . T) ((-150 #0=(-143)) . T) ((-606 (-534)) |has| (-143) (-606 (-534))) ((-285 #1=(-558) #0#) . T) ((-287 #1# #0#) . T) ((-308 #0#) -12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087))) ((-372 #0#) . T) ((-487 #0#) . T) ((-596 #1# #0#) . T) ((-512 #0# #0#) -12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087))) ((-641 #0#) . T) ((-19 #0#) . T) ((-819) . T) ((-841) |has| (-143) (-841)) ((-1087) . T) ((-1131) . T) ((-1200) . T))
+((-3207 (((-112) $ $) NIL)) (-2280 (($ $) NIL)) (-2289 (($ $) NIL)) (-3460 (($ $ (-143)) NIL) (($ $ (-140)) NIL)) (-3869 (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4383)))) (-1734 (((-112) $ $) NIL)) (-1708 (((-112) $ $ (-558)) NIL)) (-3994 (($ (-558)) 7)) (-3469 (((-635 $) $ (-143)) NIL) (((-635 $) $ (-140)) NIL)) (-1538 (((-112) (-1 (-112) (-143) (-143)) $) NIL) (((-112) $) NIL (|has| (-143) (-841)))) (-2763 (($ (-1 (-112) (-143) (-143)) $) NIL (|has| $ (-6 -4383))) (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-143) (-841))))) (-2376 (($ (-1 (-112) (-143) (-143)) $) NIL) (($ $) NIL (|has| (-143) (-841)))) (-3026 (((-112) $ (-762)) NIL)) (-1532 (((-143) $ (-558) (-143)) NIL (|has| $ (-6 -4383))) (((-143) $ (-1213 (-558)) (-143)) NIL (|has| $ (-6 -4383)))) (-4329 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4382)))) (-1816 (($) NIL T CONST)) (-2290 (($ $ (-143)) NIL) (($ $ (-140)) NIL)) (-3306 (($ $) NIL (|has| $ (-6 -4383)))) (-4127 (($ $) NIL)) (-3480 (($ $ (-1213 (-558)) $) NIL)) (-2338 (($ $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-143) (-1087))))) (-1539 (($ (-143) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-143) (-1087)))) (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4382)))) (-3048 (((-143) (-1 (-143) (-143) (-143)) $ (-143) (-143)) NIL (-12 (|has| $ (-6 -4382)) (|has| (-143) (-1087)))) (((-143) (-1 (-143) (-143) (-143)) $ (-143)) NIL (|has| $ (-6 -4382))) (((-143) (-1 (-143) (-143) (-143)) $) NIL (|has| $ (-6 -4382)))) (-1817 (((-143) $ (-558) (-143)) NIL (|has| $ (-6 -4383)))) (-1746 (((-143) $ (-558)) NIL)) (-1759 (((-112) $ $) NIL)) (-1517 (((-558) (-1 (-112) (-143)) $) NIL) (((-558) (-143) $) NIL (|has| (-143) (-1087))) (((-558) (-143) $ (-558)) NIL (|has| (-143) (-1087))) (((-558) $ $ (-558)) NIL) (((-558) (-140) $ (-558)) NIL)) (-2240 (((-635 (-143)) $) NIL (|has| $ (-6 -4382)))) (-3315 (($ (-762) (-143)) NIL)) (-2986 (((-112) $ (-762)) NIL)) (-3889 (((-558) $) NIL (|has| (-558) (-841)))) (-3910 (($ $ $) NIL (|has| (-143) (-841)))) (-1677 (($ (-1 (-112) (-143) (-143)) $ $) NIL) (($ $ $) NIL (|has| (-143) (-841)))) (-2122 (((-635 (-143)) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) (-143) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-143) (-1087))))) (-3899 (((-558) $) NIL (|has| (-558) (-841)))) (-3542 (($ $ $) NIL (|has| (-143) (-841)))) (-1576 (((-112) $ $ (-143)) NIL)) (-2837 (((-762) $ $ (-143)) NIL)) (-1807 (($ (-1 (-143) (-143)) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 (-143) (-143)) $) NIL) (($ (-1 (-143) (-143) (-143)) $ $) NIL)) (-2299 (($ $) NIL)) (-2309 (($ $) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-2300 (($ $ (-143)) NIL) (($ $ (-140)) NIL)) (-4310 (((-1145) $) NIL)) (-1861 (($ (-143) $ (-558)) NIL) (($ $ $ (-558)) NIL)) (-3920 (((-635 (-558)) $) NIL)) (-3929 (((-112) (-558) $) NIL)) (-2975 (((-1107) $) NIL)) (-2305 (((-143) $) NIL (|has| (-558) (-841)))) (-4307 (((-3 (-143) "failed") (-1 (-112) (-143)) $) NIL)) (-3880 (($ $ (-143)) NIL (|has| $ (-6 -4383)))) (-3266 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 (-143)))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087)))) (($ $ (-293 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087)))) (($ $ (-143) (-143)) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087)))) (($ $ (-635 (-143)) (-635 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087))))) (-2381 (((-112) $ $) NIL)) (-3908 (((-112) (-143) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-143) (-1087))))) (-3937 (((-635 (-143)) $) NIL)) (-3375 (((-112) $) NIL)) (-2083 (($) NIL)) (-2195 (((-143) $ (-558) (-143)) NIL) (((-143) $ (-558)) NIL) (($ $ (-1213 (-558))) NIL) (($ $ $) NIL)) (-4023 (($ $ (-558)) NIL) (($ $ (-1213 (-558))) NIL)) (-2988 (((-762) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4382))) (((-762) (-143) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-143) (-1087))))) (-2773 (($ $ $ (-558)) NIL (|has| $ (-6 -4383)))) (-1553 (($ $) NIL)) (-3224 (((-534) $) NIL (|has| (-143) (-606 (-534))))) (-3233 (($ (-635 (-143))) NIL)) (-4341 (($ $ (-143)) NIL) (($ (-143) $) NIL) (($ $ $) NIL) (($ (-635 $)) NIL)) (-3220 (($ (-143)) NIL) (((-853) $) NIL)) (-3277 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4382)))) (-1338 (((-1145) $) 18) (((-1145) $ (-112)) 20) (((-1251) (-813) $) 21) (((-1251) (-813) $ (-112)) 22)) (-1747 (((-112) $ $) NIL (|has| (-143) (-841)))) (-1720 (((-112) $ $) NIL (|has| (-143) (-841)))) (-1683 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL (|has| (-143) (-841)))) (-1705 (((-112) $ $) NIL (|has| (-143) (-841)))) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-1145) (-1144)) (T -1145))
+NIL
+(-1144)
+((-3207 (((-112) $ $) NIL (-3998 (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-1087)) (|has| |#1| (-1087))))) (-3303 (($) NIL) (($ (-635 (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)))) NIL)) (-3869 (((-1251) $ (-1145) (-1145)) NIL (|has| $ (-6 -4383)))) (-3026 (((-112) $ (-762)) NIL)) (-1532 ((|#1| $ (-1145) |#1|) NIL)) (-4207 (($ (-1 (-112) (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) $) NIL (|has| $ (-6 -4382)))) (-4329 (($ (-1 (-112) (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) $) NIL (|has| $ (-6 -4382)))) (-3083 (((-3 |#1| "failed") (-1145) $) NIL)) (-1816 (($) NIL T CONST)) (-2338 (($ $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-1087))))) (-3395 (($ (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) $) NIL (|has| $ (-6 -4382))) (($ (-1 (-112) (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) $) NIL (|has| $ (-6 -4382))) (((-3 |#1| "failed") (-1145) $) NIL)) (-1539 (($ (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-1087)))) (($ (-1 (-112) (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) $) NIL (|has| $ (-6 -4382)))) (-3048 (((-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-1 (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) $ (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-1087)))) (((-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-1 (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) $ (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) NIL (|has| $ (-6 -4382))) (((-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-1 (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) $) NIL (|has| $ (-6 -4382)))) (-1817 ((|#1| $ (-1145) |#1|) NIL (|has| $ (-6 -4383)))) (-1746 ((|#1| $ (-1145)) NIL)) (-2240 (((-635 (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) $) NIL (|has| $ (-6 -4382))) (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-2986 (((-112) $ (-762)) NIL)) (-3889 (((-1145) $) NIL (|has| (-1145) (-841)))) (-2122 (((-635 (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) $) NIL (|has| $ (-6 -4382))) (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-1087)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3899 (((-1145) $) NIL (|has| (-1145) (-841)))) (-1807 (($ (-1 (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) $) NIL (|has| $ (-6 -4383))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL (-3998 (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-1087)) (|has| |#1| (-1087))))) (-3848 (((-635 (-1145)) $) NIL)) (-3950 (((-112) (-1145) $) NIL)) (-1722 (((-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) $) NIL)) (-4328 (($ (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) $) NIL)) (-3920 (((-635 (-1145)) $) NIL)) (-3929 (((-112) (-1145) $) NIL)) (-2975 (((-1107) $) NIL (-3998 (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-1087)) (|has| |#1| (-1087))))) (-2305 ((|#1| $) NIL (|has| (-1145) (-841)))) (-4307 (((-3 (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) "failed") (-1 (-112) (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) $) NIL)) (-3880 (($ $ |#1|) NIL (|has| $ (-6 -4383)))) (-3524 (((-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) $) NIL)) (-3266 (((-112) (-1 (-112) (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) $) NIL (|has| $ (-6 -4382))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))))) NIL (-12 (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-308 (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)))) (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-1087)))) (($ $ (-293 (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)))) NIL (-12 (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-308 (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)))) (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-1087)))) (($ $ (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) NIL (-12 (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-308 (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)))) (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-1087)))) (($ $ (-635 (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) (-635 (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)))) NIL (-12 (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-308 (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)))) (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3908 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3937 (((-635 |#1|) $) NIL)) (-3375 (((-112) $) NIL)) (-2083 (($) NIL)) (-2195 ((|#1| $ (-1145)) NIL) ((|#1| $ (-1145) |#1|) NIL)) (-2571 (($) NIL) (($ (-635 (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)))) NIL)) (-2988 (((-762) (-1 (-112) (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) $) NIL (|has| $ (-6 -4382))) (((-762) (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-1087)))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087)))) (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-1553 (($ $) NIL)) (-3224 (((-534) $) NIL (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-606 (-534))))) (-3233 (($ (-635 (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)))) NIL)) (-3220 (((-853) $) NIL (-3998 (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-605 (-853))) (|has| |#1| (-605 (-853)))))) (-3534 (($ (-635 (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)))) NIL)) (-3277 (((-112) (-1 (-112) (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|))) $) NIL (|has| $ (-6 -4382))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) NIL (-3998 (|has| (-2 (|:| -2700 (-1145)) (|:| -2981 |#1|)) (-1087)) (|has| |#1| (-1087))))) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-1146 |#1|) (-13 (-1176 (-1145) |#1|) (-10 -7 (-6 -4382))) (-1087)) (T -1146))
+NIL
+(-13 (-1176 (-1145) |#1|) (-10 -7 (-6 -4382)))
+((-2461 (((-1143 |#1|) (-1143 |#1|)) 77)) (-2588 (((-3 (-1143 |#1|) "failed") (-1143 |#1|)) 37)) (-2706 (((-1143 |#1|) (-406 (-558)) (-1143 |#1|)) 121 (|has| |#1| (-38 (-406 (-558)))))) (-2739 (((-1143 |#1|) |#1| (-1143 |#1|)) 127 (|has| |#1| (-362)))) (-2501 (((-1143 |#1|) (-1143 |#1|)) 90)) (-2611 (((-1143 (-558)) (-558)) 57)) (-2694 (((-1143 |#1|) (-1143 (-1143 |#1|))) 109 (|has| |#1| (-38 (-406 (-558)))))) (-2450 (((-1143 |#1|) (-558) (-558) (-1143 |#1|)) 95)) (-3918 (((-1143 |#1|) |#1| (-558)) 45)) (-2631 (((-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) 60)) (-2717 (((-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) 124 (|has| |#1| (-362)))) (-2684 (((-1143 |#1|) |#1| (-1 (-1143 |#1|))) 108 (|has| |#1| (-38 (-406 (-558)))))) (-2728 (((-1143 |#1|) (-1 |#1| (-558)) |#1| (-1 (-1143 |#1|))) 125 (|has| |#1| (-362)))) (-2510 (((-1143 |#1|) (-1143 |#1|)) 89)) (-2520 (((-1143 |#1|) (-1143 |#1|)) 76)) (-2439 (((-1143 |#1|) (-558) (-558) (-1143 |#1|)) 96)) (-2543 (((-1143 |#1|) |#1| (-1143 |#1|)) 105 (|has| |#1| (-38 (-406 (-558)))))) (-2601 (((-1143 (-558)) (-558)) 56)) (-2621 (((-1143 |#1|) |#1|) 59)) (-2474 (((-1143 |#1|) (-1143 |#1|) (-558) (-558)) 92)) (-2652 (((-1143 |#1|) (-1 |#1| (-558)) (-1143 |#1|)) 66)) (-3983 (((-3 (-1143 |#1|) "failed") (-1143 |#1|) (-1143 |#1|)) 35)) (-2488 (((-1143 |#1|) (-1143 |#1|)) 91)) (-2554 (((-1143 |#1|) (-1143 |#1|) |#1|) 71)) (-2640 (((-1143 |#1|) (-1143 |#1|)) 62)) (-2663 (((-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) 72)) (-3220 (((-1143 |#1|) |#1|) 67)) (-2675 (((-1143 |#1|) (-1143 (-1143 |#1|))) 82)) (-1810 (((-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) 36)) (-1798 (((-1143 |#1|) (-1143 |#1|)) 21) (((-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) 23)) (-1784 (((-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) 17)) (* (((-1143 |#1|) (-1143 |#1|) |#1|) 29) (((-1143 |#1|) |#1| (-1143 |#1|)) 26) (((-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) 27)))
+(((-1147 |#1|) (-10 -7 (-15 -1784 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -1798 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -1798 ((-1143 |#1|) (-1143 |#1|))) (-15 * ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 * ((-1143 |#1|) |#1| (-1143 |#1|))) (-15 * ((-1143 |#1|) (-1143 |#1|) |#1|)) (-15 -3983 ((-3 (-1143 |#1|) "failed") (-1143 |#1|) (-1143 |#1|))) (-15 -1810 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -2588 ((-3 (-1143 |#1|) "failed") (-1143 |#1|))) (-15 -3918 ((-1143 |#1|) |#1| (-558))) (-15 -2601 ((-1143 (-558)) (-558))) (-15 -2611 ((-1143 (-558)) (-558))) (-15 -2621 ((-1143 |#1|) |#1|)) (-15 -2631 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -2640 ((-1143 |#1|) (-1143 |#1|))) (-15 -2652 ((-1143 |#1|) (-1 |#1| (-558)) (-1143 |#1|))) (-15 -3220 ((-1143 |#1|) |#1|)) (-15 -2554 ((-1143 |#1|) (-1143 |#1|) |#1|)) (-15 -2663 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -2520 ((-1143 |#1|) (-1143 |#1|))) (-15 -2461 ((-1143 |#1|) (-1143 |#1|))) (-15 -2675 ((-1143 |#1|) (-1143 (-1143 |#1|)))) (-15 -2510 ((-1143 |#1|) (-1143 |#1|))) (-15 -2501 ((-1143 |#1|) (-1143 |#1|))) (-15 -2488 ((-1143 |#1|) (-1143 |#1|))) (-15 -2474 ((-1143 |#1|) (-1143 |#1|) (-558) (-558))) (-15 -2450 ((-1143 |#1|) (-558) (-558) (-1143 |#1|))) (-15 -2439 ((-1143 |#1|) (-558) (-558) (-1143 |#1|))) (IF (|has| |#1| (-38 (-406 (-558)))) (PROGN (-15 -2543 ((-1143 |#1|) |#1| (-1143 |#1|))) (-15 -2684 ((-1143 |#1|) |#1| (-1 (-1143 |#1|)))) (-15 -2694 ((-1143 |#1|) (-1143 (-1143 |#1|)))) (-15 -2706 ((-1143 |#1|) (-406 (-558)) (-1143 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -2717 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -2728 ((-1143 |#1|) (-1 |#1| (-558)) |#1| (-1 (-1143 |#1|)))) (-15 -2739 ((-1143 |#1|) |#1| (-1143 |#1|)))) |%noBranch|)) (-1039)) (T -1147))
+((-2739 (*1 *2 *3 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-362)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))) (-2728 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-558))) (-5 *5 (-1 (-1143 *4))) (-4 *4 (-362)) (-4 *4 (-1039)) (-5 *2 (-1143 *4)) (-5 *1 (-1147 *4)))) (-2717 (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-362)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))) (-2706 (*1 *2 *3 *2) (-12 (-5 *2 (-1143 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1039)) (-5 *3 (-406 (-558))) (-5 *1 (-1147 *4)))) (-2694 (*1 *2 *3) (-12 (-5 *3 (-1143 (-1143 *4))) (-5 *2 (-1143 *4)) (-5 *1 (-1147 *4)) (-4 *4 (-38 (-406 (-558)))) (-4 *4 (-1039)))) (-2684 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1143 *3))) (-5 *2 (-1143 *3)) (-5 *1 (-1147 *3)) (-4 *3 (-38 (-406 (-558)))) (-4 *3 (-1039)))) (-2543 (*1 *2 *3 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))) (-2439 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1143 *4)) (-5 *3 (-558)) (-4 *4 (-1039)) (-5 *1 (-1147 *4)))) (-2450 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1143 *4)) (-5 *3 (-558)) (-4 *4 (-1039)) (-5 *1 (-1147 *4)))) (-2474 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1143 *4)) (-5 *3 (-558)) (-4 *4 (-1039)) (-5 *1 (-1147 *4)))) (-2488 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))) (-2501 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))) (-2510 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))) (-2675 (*1 *2 *3) (-12 (-5 *3 (-1143 (-1143 *4))) (-5 *2 (-1143 *4)) (-5 *1 (-1147 *4)) (-4 *4 (-1039)))) (-2461 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))) (-2520 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))) (-2663 (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))) (-2554 (*1 *2 *2 *3) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))) (-3220 (*1 *2 *3) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-1147 *3)) (-4 *3 (-1039)))) (-2652 (*1 *2 *3 *2) (-12 (-5 *2 (-1143 *4)) (-5 *3 (-1 *4 (-558))) (-4 *4 (-1039)) (-5 *1 (-1147 *4)))) (-2640 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))) (-2631 (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))) (-2621 (*1 *2 *3) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-1147 *3)) (-4 *3 (-1039)))) (-2611 (*1 *2 *3) (-12 (-5 *2 (-1143 (-558))) (-5 *1 (-1147 *4)) (-4 *4 (-1039)) (-5 *3 (-558)))) (-2601 (*1 *2 *3) (-12 (-5 *2 (-1143 (-558))) (-5 *1 (-1147 *4)) (-4 *4 (-1039)) (-5 *3 (-558)))) (-3918 (*1 *2 *3 *4) (-12 (-5 *4 (-558)) (-5 *2 (-1143 *3)) (-5 *1 (-1147 *3)) (-4 *3 (-1039)))) (-2588 (*1 *2 *2) (|partial| -12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))) (-1810 (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))) (-3983 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))) (-1798 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))) (-1798 (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))) (-1784 (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))))
+(-10 -7 (-15 -1784 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -1798 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -1798 ((-1143 |#1|) (-1143 |#1|))) (-15 * ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 * ((-1143 |#1|) |#1| (-1143 |#1|))) (-15 * ((-1143 |#1|) (-1143 |#1|) |#1|)) (-15 -3983 ((-3 (-1143 |#1|) "failed") (-1143 |#1|) (-1143 |#1|))) (-15 -1810 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -2588 ((-3 (-1143 |#1|) "failed") (-1143 |#1|))) (-15 -3918 ((-1143 |#1|) |#1| (-558))) (-15 -2601 ((-1143 (-558)) (-558))) (-15 -2611 ((-1143 (-558)) (-558))) (-15 -2621 ((-1143 |#1|) |#1|)) (-15 -2631 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -2640 ((-1143 |#1|) (-1143 |#1|))) (-15 -2652 ((-1143 |#1|) (-1 |#1| (-558)) (-1143 |#1|))) (-15 -3220 ((-1143 |#1|) |#1|)) (-15 -2554 ((-1143 |#1|) (-1143 |#1|) |#1|)) (-15 -2663 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -2520 ((-1143 |#1|) (-1143 |#1|))) (-15 -2461 ((-1143 |#1|) (-1143 |#1|))) (-15 -2675 ((-1143 |#1|) (-1143 (-1143 |#1|)))) (-15 -2510 ((-1143 |#1|) (-1143 |#1|))) (-15 -2501 ((-1143 |#1|) (-1143 |#1|))) (-15 -2488 ((-1143 |#1|) (-1143 |#1|))) (-15 -2474 ((-1143 |#1|) (-1143 |#1|) (-558) (-558))) (-15 -2450 ((-1143 |#1|) (-558) (-558) (-1143 |#1|))) (-15 -2439 ((-1143 |#1|) (-558) (-558) (-1143 |#1|))) (IF (|has| |#1| (-38 (-406 (-558)))) (PROGN (-15 -2543 ((-1143 |#1|) |#1| (-1143 |#1|))) (-15 -2684 ((-1143 |#1|) |#1| (-1 (-1143 |#1|)))) (-15 -2694 ((-1143 |#1|) (-1143 (-1143 |#1|)))) (-15 -2706 ((-1143 |#1|) (-406 (-558)) (-1143 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -2717 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -2728 ((-1143 |#1|) (-1 |#1| (-558)) |#1| (-1 (-1143 |#1|)))) (-15 -2739 ((-1143 |#1|) |#1| (-1143 |#1|)))) |%noBranch|))
+((-4088 (((-1143 |#1|) (-1143 |#1|)) 57)) (-2135 (((-1143 |#1|) (-1143 |#1|)) 39)) (-4070 (((-1143 |#1|) (-1143 |#1|)) 53)) (-2112 (((-1143 |#1|) (-1143 |#1|)) 35)) (-4113 (((-1143 |#1|) (-1143 |#1|)) 60)) (-2156 (((-1143 |#1|) (-1143 |#1|)) 42)) (-2592 (((-1143 |#1|) (-1143 |#1|)) 31)) (-2573 (((-1143 |#1|) (-1143 |#1|)) 27)) (-4124 (((-1143 |#1|) (-1143 |#1|)) 61)) (-2167 (((-1143 |#1|) (-1143 |#1|)) 43)) (-4102 (((-1143 |#1|) (-1143 |#1|)) 58)) (-2146 (((-1143 |#1|) (-1143 |#1|)) 40)) (-4080 (((-1143 |#1|) (-1143 |#1|)) 55)) (-2124 (((-1143 |#1|) (-1143 |#1|)) 37)) (-4159 (((-1143 |#1|) (-1143 |#1|)) 65)) (-2200 (((-1143 |#1|) (-1143 |#1|)) 47)) (-4135 (((-1143 |#1|) (-1143 |#1|)) 63)) (-2178 (((-1143 |#1|) (-1143 |#1|)) 45)) (-4184 (((-1143 |#1|) (-1143 |#1|)) 68)) (-2222 (((-1143 |#1|) (-1143 |#1|)) 50)) (-1878 (((-1143 |#1|) (-1143 |#1|)) 69)) (-4060 (((-1143 |#1|) (-1143 |#1|)) 51)) (-4171 (((-1143 |#1|) (-1143 |#1|)) 67)) (-2211 (((-1143 |#1|) (-1143 |#1|)) 49)) (-4147 (((-1143 |#1|) (-1143 |#1|)) 66)) (-2189 (((-1143 |#1|) (-1143 |#1|)) 48)) (** (((-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) 33)))
+(((-1148 |#1|) (-10 -7 (-15 -2573 ((-1143 |#1|) (-1143 |#1|))) (-15 -2592 ((-1143 |#1|) (-1143 |#1|))) (-15 ** ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -2112 ((-1143 |#1|) (-1143 |#1|))) (-15 -2124 ((-1143 |#1|) (-1143 |#1|))) (-15 -2135 ((-1143 |#1|) (-1143 |#1|))) (-15 -2146 ((-1143 |#1|) (-1143 |#1|))) (-15 -2156 ((-1143 |#1|) (-1143 |#1|))) (-15 -2167 ((-1143 |#1|) (-1143 |#1|))) (-15 -2178 ((-1143 |#1|) (-1143 |#1|))) (-15 -2189 ((-1143 |#1|) (-1143 |#1|))) (-15 -2200 ((-1143 |#1|) (-1143 |#1|))) (-15 -2211 ((-1143 |#1|) (-1143 |#1|))) (-15 -2222 ((-1143 |#1|) (-1143 |#1|))) (-15 -4060 ((-1143 |#1|) (-1143 |#1|))) (-15 -4070 ((-1143 |#1|) (-1143 |#1|))) (-15 -4080 ((-1143 |#1|) (-1143 |#1|))) (-15 -4088 ((-1143 |#1|) (-1143 |#1|))) (-15 -4102 ((-1143 |#1|) (-1143 |#1|))) (-15 -4113 ((-1143 |#1|) (-1143 |#1|))) (-15 -4124 ((-1143 |#1|) (-1143 |#1|))) (-15 -4135 ((-1143 |#1|) (-1143 |#1|))) (-15 -4147 ((-1143 |#1|) (-1143 |#1|))) (-15 -4159 ((-1143 |#1|) (-1143 |#1|))) (-15 -4171 ((-1143 |#1|) (-1143 |#1|))) (-15 -4184 ((-1143 |#1|) (-1143 |#1|))) (-15 -1878 ((-1143 |#1|) (-1143 |#1|)))) (-38 (-406 (-558)))) (T -1148))
+((-1878 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-4184 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-4171 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-4159 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-4147 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-4135 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-4124 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-4113 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-4102 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-4088 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-4080 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-4070 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-4060 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-2222 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-2211 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-2200 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-2189 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-2178 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-2167 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-2156 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-2146 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-2135 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-2124 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-2112 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-2592 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-2573 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))))
+(-10 -7 (-15 -2573 ((-1143 |#1|) (-1143 |#1|))) (-15 -2592 ((-1143 |#1|) (-1143 |#1|))) (-15 ** ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -2112 ((-1143 |#1|) (-1143 |#1|))) (-15 -2124 ((-1143 |#1|) (-1143 |#1|))) (-15 -2135 ((-1143 |#1|) (-1143 |#1|))) (-15 -2146 ((-1143 |#1|) (-1143 |#1|))) (-15 -2156 ((-1143 |#1|) (-1143 |#1|))) (-15 -2167 ((-1143 |#1|) (-1143 |#1|))) (-15 -2178 ((-1143 |#1|) (-1143 |#1|))) (-15 -2189 ((-1143 |#1|) (-1143 |#1|))) (-15 -2200 ((-1143 |#1|) (-1143 |#1|))) (-15 -2211 ((-1143 |#1|) (-1143 |#1|))) (-15 -2222 ((-1143 |#1|) (-1143 |#1|))) (-15 -4060 ((-1143 |#1|) (-1143 |#1|))) (-15 -4070 ((-1143 |#1|) (-1143 |#1|))) (-15 -4080 ((-1143 |#1|) (-1143 |#1|))) (-15 -4088 ((-1143 |#1|) (-1143 |#1|))) (-15 -4102 ((-1143 |#1|) (-1143 |#1|))) (-15 -4113 ((-1143 |#1|) (-1143 |#1|))) (-15 -4124 ((-1143 |#1|) (-1143 |#1|))) (-15 -4135 ((-1143 |#1|) (-1143 |#1|))) (-15 -4147 ((-1143 |#1|) (-1143 |#1|))) (-15 -4159 ((-1143 |#1|) (-1143 |#1|))) (-15 -4171 ((-1143 |#1|) (-1143 |#1|))) (-15 -4184 ((-1143 |#1|) (-1143 |#1|))) (-15 -1878 ((-1143 |#1|) (-1143 |#1|))))
+((-4088 (((-1143 |#1|) (-1143 |#1|)) 100)) (-2135 (((-1143 |#1|) (-1143 |#1|)) 64)) (-2761 (((-2 (|:| -4070 (-1143 |#1|)) (|:| -4080 (-1143 |#1|))) (-1143 |#1|)) 96)) (-4070 (((-1143 |#1|) (-1143 |#1|)) 97)) (-2748 (((-2 (|:| -2112 (-1143 |#1|)) (|:| -2124 (-1143 |#1|))) (-1143 |#1|)) 53)) (-2112 (((-1143 |#1|) (-1143 |#1|)) 54)) (-4113 (((-1143 |#1|) (-1143 |#1|)) 102)) (-2156 (((-1143 |#1|) (-1143 |#1|)) 71)) (-2592 (((-1143 |#1|) (-1143 |#1|)) 39)) (-2573 (((-1143 |#1|) (-1143 |#1|)) 36)) (-4124 (((-1143 |#1|) (-1143 |#1|)) 103)) (-2167 (((-1143 |#1|) (-1143 |#1|)) 72)) (-4102 (((-1143 |#1|) (-1143 |#1|)) 101)) (-2146 (((-1143 |#1|) (-1143 |#1|)) 67)) (-4080 (((-1143 |#1|) (-1143 |#1|)) 98)) (-2124 (((-1143 |#1|) (-1143 |#1|)) 55)) (-4159 (((-1143 |#1|) (-1143 |#1|)) 111)) (-2200 (((-1143 |#1|) (-1143 |#1|)) 86)) (-4135 (((-1143 |#1|) (-1143 |#1|)) 105)) (-2178 (((-1143 |#1|) (-1143 |#1|)) 82)) (-4184 (((-1143 |#1|) (-1143 |#1|)) 115)) (-2222 (((-1143 |#1|) (-1143 |#1|)) 90)) (-1878 (((-1143 |#1|) (-1143 |#1|)) 117)) (-4060 (((-1143 |#1|) (-1143 |#1|)) 92)) (-4171 (((-1143 |#1|) (-1143 |#1|)) 113)) (-2211 (((-1143 |#1|) (-1143 |#1|)) 88)) (-4147 (((-1143 |#1|) (-1143 |#1|)) 107)) (-2189 (((-1143 |#1|) (-1143 |#1|)) 84)) (** (((-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) 40)))
+(((-1149 |#1|) (-10 -7 (-15 -2573 ((-1143 |#1|) (-1143 |#1|))) (-15 -2592 ((-1143 |#1|) (-1143 |#1|))) (-15 ** ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -2748 ((-2 (|:| -2112 (-1143 |#1|)) (|:| -2124 (-1143 |#1|))) (-1143 |#1|))) (-15 -2112 ((-1143 |#1|) (-1143 |#1|))) (-15 -2124 ((-1143 |#1|) (-1143 |#1|))) (-15 -2135 ((-1143 |#1|) (-1143 |#1|))) (-15 -2146 ((-1143 |#1|) (-1143 |#1|))) (-15 -2156 ((-1143 |#1|) (-1143 |#1|))) (-15 -2167 ((-1143 |#1|) (-1143 |#1|))) (-15 -2178 ((-1143 |#1|) (-1143 |#1|))) (-15 -2189 ((-1143 |#1|) (-1143 |#1|))) (-15 -2200 ((-1143 |#1|) (-1143 |#1|))) (-15 -2211 ((-1143 |#1|) (-1143 |#1|))) (-15 -2222 ((-1143 |#1|) (-1143 |#1|))) (-15 -4060 ((-1143 |#1|) (-1143 |#1|))) (-15 -2761 ((-2 (|:| -4070 (-1143 |#1|)) (|:| -4080 (-1143 |#1|))) (-1143 |#1|))) (-15 -4070 ((-1143 |#1|) (-1143 |#1|))) (-15 -4080 ((-1143 |#1|) (-1143 |#1|))) (-15 -4088 ((-1143 |#1|) (-1143 |#1|))) (-15 -4102 ((-1143 |#1|) (-1143 |#1|))) (-15 -4113 ((-1143 |#1|) (-1143 |#1|))) (-15 -4124 ((-1143 |#1|) (-1143 |#1|))) (-15 -4135 ((-1143 |#1|) (-1143 |#1|))) (-15 -4147 ((-1143 |#1|) (-1143 |#1|))) (-15 -4159 ((-1143 |#1|) (-1143 |#1|))) (-15 -4171 ((-1143 |#1|) (-1143 |#1|))) (-15 -4184 ((-1143 |#1|) (-1143 |#1|))) (-15 -1878 ((-1143 |#1|) (-1143 |#1|)))) (-38 (-406 (-558)))) (T -1149))
+((-1878 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-4184 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-4171 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-4159 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-4147 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-4135 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-4124 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-4113 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-4102 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-4088 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-4080 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-4070 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-2761 (*1 *2 *3) (-12 (-4 *4 (-38 (-406 (-558)))) (-5 *2 (-2 (|:| -4070 (-1143 *4)) (|:| -4080 (-1143 *4)))) (-5 *1 (-1149 *4)) (-5 *3 (-1143 *4)))) (-4060 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-2222 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-2211 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-2200 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-2189 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-2178 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-2167 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-2156 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-2146 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-2135 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-2124 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-2112 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-2748 (*1 *2 *3) (-12 (-4 *4 (-38 (-406 (-558)))) (-5 *2 (-2 (|:| -2112 (-1143 *4)) (|:| -2124 (-1143 *4)))) (-5 *1 (-1149 *4)) (-5 *3 (-1143 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-2592 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-2573 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))))
+(-10 -7 (-15 -2573 ((-1143 |#1|) (-1143 |#1|))) (-15 -2592 ((-1143 |#1|) (-1143 |#1|))) (-15 ** ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -2748 ((-2 (|:| -2112 (-1143 |#1|)) (|:| -2124 (-1143 |#1|))) (-1143 |#1|))) (-15 -2112 ((-1143 |#1|) (-1143 |#1|))) (-15 -2124 ((-1143 |#1|) (-1143 |#1|))) (-15 -2135 ((-1143 |#1|) (-1143 |#1|))) (-15 -2146 ((-1143 |#1|) (-1143 |#1|))) (-15 -2156 ((-1143 |#1|) (-1143 |#1|))) (-15 -2167 ((-1143 |#1|) (-1143 |#1|))) (-15 -2178 ((-1143 |#1|) (-1143 |#1|))) (-15 -2189 ((-1143 |#1|) (-1143 |#1|))) (-15 -2200 ((-1143 |#1|) (-1143 |#1|))) (-15 -2211 ((-1143 |#1|) (-1143 |#1|))) (-15 -2222 ((-1143 |#1|) (-1143 |#1|))) (-15 -4060 ((-1143 |#1|) (-1143 |#1|))) (-15 -2761 ((-2 (|:| -4070 (-1143 |#1|)) (|:| -4080 (-1143 |#1|))) (-1143 |#1|))) (-15 -4070 ((-1143 |#1|) (-1143 |#1|))) (-15 -4080 ((-1143 |#1|) (-1143 |#1|))) (-15 -4088 ((-1143 |#1|) (-1143 |#1|))) (-15 -4102 ((-1143 |#1|) (-1143 |#1|))) (-15 -4113 ((-1143 |#1|) (-1143 |#1|))) (-15 -4124 ((-1143 |#1|) (-1143 |#1|))) (-15 -4135 ((-1143 |#1|) (-1143 |#1|))) (-15 -4147 ((-1143 |#1|) (-1143 |#1|))) (-15 -4159 ((-1143 |#1|) (-1143 |#1|))) (-15 -4171 ((-1143 |#1|) (-1143 |#1|))) (-15 -4184 ((-1143 |#1|) (-1143 |#1|))) (-15 -1878 ((-1143 |#1|) (-1143 |#1|))))
+((-2772 (((-948 |#2|) |#2| |#2|) 35)) (-2782 ((|#2| |#2| |#1|) 19 (|has| |#1| (-306)))))
+(((-1150 |#1| |#2|) (-10 -7 (-15 -2772 ((-948 |#2|) |#2| |#2|)) (IF (|has| |#1| (-306)) (-15 -2782 (|#2| |#2| |#1|)) |%noBranch|)) (-550) (-1222 |#1|)) (T -1150))
+((-2782 (*1 *2 *2 *3) (-12 (-4 *3 (-306)) (-4 *3 (-550)) (-5 *1 (-1150 *3 *2)) (-4 *2 (-1222 *3)))) (-2772 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-948 *3)) (-5 *1 (-1150 *4 *3)) (-4 *3 (-1222 *4)))))
+(-10 -7 (-15 -2772 ((-948 |#2|) |#2| |#2|)) (IF (|has| |#1| (-306)) (-15 -2782 (|#2| |#2| |#1|)) |%noBranch|))
+((-3207 (((-112) $ $) NIL)) (-2848 (($ $ (-635 (-762))) 66)) (-1910 (($) 25)) (-1700 (($ $) 41)) (-3264 (((-635 $) $) 50)) (-1777 (((-112) $) 16)) (-2790 (((-635 (-933 |#2|)) $) 73)) (-2799 (($ $) 67)) (-1715 (((-762) $) 36)) (-3315 (($) 24)) (-2876 (($ $ (-635 (-762)) (-933 |#2|)) 59) (($ $ (-635 (-762)) (-762)) 60) (($ $ (-762) (-933 |#2|)) 62)) (-1677 (($ $ $) 47) (($ (-635 $)) 49)) (-3121 (((-762) $) 74)) (-1790 (((-112) $) 15)) (-4310 (((-1145) $) NIL)) (-1765 (((-112) $) 17)) (-2975 (((-1107) $) NIL)) (-2809 (((-170) $) 72)) (-2839 (((-933 |#2|) $) 68)) (-2828 (((-762) $) 69)) (-2817 (((-112) $) 71)) (-2857 (($ $ (-635 (-762)) (-170)) 65)) (-1689 (($ $) 42)) (-3220 (((-853) $) 85)) (-2867 (($ $ (-635 (-762)) (-112)) 64)) (-1727 (((-635 $) $) 11)) (-1740 (($ $ (-762)) 35)) (-1753 (($ $) 31)) (-1647 (($ $ $ (-933 |#2|) (-762)) 55)) (-1657 (($ $ (-933 |#2|)) 54)) (-1666 (($ $ (-635 (-762)) (-933 |#2|)) 53) (($ $ (-635 (-762)) (-762)) 57) (((-762) $ (-933 |#2|)) 58)) (-1683 (((-112) $ $) 79)))
+(((-1151 |#1| |#2|) (-13 (-1087) (-10 -8 (-15 -1790 ((-112) $)) (-15 -1777 ((-112) $)) (-15 -1765 ((-112) $)) (-15 -3315 ($)) (-15 -1910 ($)) (-15 -1753 ($ $)) (-15 -1740 ($ $ (-762))) (-15 -1727 ((-635 $) $)) (-15 -1715 ((-762) $)) (-15 -1700 ($ $)) (-15 -1689 ($ $)) (-15 -1677 ($ $ $)) (-15 -1677 ($ (-635 $))) (-15 -3264 ((-635 $) $)) (-15 -1666 ($ $ (-635 (-762)) (-933 |#2|))) (-15 -1657 ($ $ (-933 |#2|))) (-15 -1647 ($ $ $ (-933 |#2|) (-762))) (-15 -2876 ($ $ (-635 (-762)) (-933 |#2|))) (-15 -1666 ($ $ (-635 (-762)) (-762))) (-15 -2876 ($ $ (-635 (-762)) (-762))) (-15 -1666 ((-762) $ (-933 |#2|))) (-15 -2876 ($ $ (-762) (-933 |#2|))) (-15 -2867 ($ $ (-635 (-762)) (-112))) (-15 -2857 ($ $ (-635 (-762)) (-170))) (-15 -2848 ($ $ (-635 (-762)))) (-15 -2839 ((-933 |#2|) $)) (-15 -2828 ((-762) $)) (-15 -2817 ((-112) $)) (-15 -2809 ((-170) $)) (-15 -3121 ((-762) $)) (-15 -2799 ($ $)) (-15 -2790 ((-635 (-933 |#2|)) $)))) (-911) (-1039)) (T -1151))
+((-1790 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911)) (-4 *4 (-1039)))) (-1777 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911)) (-4 *4 (-1039)))) (-1765 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911)) (-4 *4 (-1039)))) (-3315 (*1 *1) (-12 (-5 *1 (-1151 *2 *3)) (-14 *2 (-911)) (-4 *3 (-1039)))) (-1910 (*1 *1) (-12 (-5 *1 (-1151 *2 *3)) (-14 *2 (-911)) (-4 *3 (-1039)))) (-1753 (*1 *1 *1) (-12 (-5 *1 (-1151 *2 *3)) (-14 *2 (-911)) (-4 *3 (-1039)))) (-1740 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911)) (-4 *4 (-1039)))) (-1727 (*1 *2 *1) (-12 (-5 *2 (-635 (-1151 *3 *4))) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911)) (-4 *4 (-1039)))) (-1715 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911)) (-4 *4 (-1039)))) (-1700 (*1 *1 *1) (-12 (-5 *1 (-1151 *2 *3)) (-14 *2 (-911)) (-4 *3 (-1039)))) (-1689 (*1 *1 *1) (-12 (-5 *1 (-1151 *2 *3)) (-14 *2 (-911)) (-4 *3 (-1039)))) (-1677 (*1 *1 *1 *1) (-12 (-5 *1 (-1151 *2 *3)) (-14 *2 (-911)) (-4 *3 (-1039)))) (-1677 (*1 *1 *2) (-12 (-5 *2 (-635 (-1151 *3 *4))) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911)) (-4 *4 (-1039)))) (-3264 (*1 *2 *1) (-12 (-5 *2 (-635 (-1151 *3 *4))) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911)) (-4 *4 (-1039)))) (-1666 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-762))) (-5 *3 (-933 *5)) (-4 *5 (-1039)) (-5 *1 (-1151 *4 *5)) (-14 *4 (-911)))) (-1657 (*1 *1 *1 *2) (-12 (-5 *2 (-933 *4)) (-4 *4 (-1039)) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911)))) (-1647 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-933 *5)) (-5 *3 (-762)) (-4 *5 (-1039)) (-5 *1 (-1151 *4 *5)) (-14 *4 (-911)))) (-2876 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-762))) (-5 *3 (-933 *5)) (-4 *5 (-1039)) (-5 *1 (-1151 *4 *5)) (-14 *4 (-911)))) (-1666 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-762))) (-5 *3 (-762)) (-5 *1 (-1151 *4 *5)) (-14 *4 (-911)) (-4 *5 (-1039)))) (-2876 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-762))) (-5 *3 (-762)) (-5 *1 (-1151 *4 *5)) (-14 *4 (-911)) (-4 *5 (-1039)))) (-1666 (*1 *2 *1 *3) (-12 (-5 *3 (-933 *5)) (-4 *5 (-1039)) (-5 *2 (-762)) (-5 *1 (-1151 *4 *5)) (-14 *4 (-911)))) (-2876 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-762)) (-5 *3 (-933 *5)) (-4 *5 (-1039)) (-5 *1 (-1151 *4 *5)) (-14 *4 (-911)))) (-2867 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-762))) (-5 *3 (-112)) (-5 *1 (-1151 *4 *5)) (-14 *4 (-911)) (-4 *5 (-1039)))) (-2857 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-762))) (-5 *3 (-170)) (-5 *1 (-1151 *4 *5)) (-14 *4 (-911)) (-4 *5 (-1039)))) (-2848 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-762))) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911)) (-4 *4 (-1039)))) (-2839 (*1 *2 *1) (-12 (-5 *2 (-933 *4)) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911)) (-4 *4 (-1039)))) (-2828 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911)) (-4 *4 (-1039)))) (-2817 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911)) (-4 *4 (-1039)))) (-2809 (*1 *2 *1) (-12 (-5 *2 (-170)) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911)) (-4 *4 (-1039)))) (-3121 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911)) (-4 *4 (-1039)))) (-2799 (*1 *1 *1) (-12 (-5 *1 (-1151 *2 *3)) (-14 *2 (-911)) (-4 *3 (-1039)))) (-2790 (*1 *2 *1) (-12 (-5 *2 (-635 (-933 *4))) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911)) (-4 *4 (-1039)))))
+(-13 (-1087) (-10 -8 (-15 -1790 ((-112) $)) (-15 -1777 ((-112) $)) (-15 -1765 ((-112) $)) (-15 -3315 ($)) (-15 -1910 ($)) (-15 -1753 ($ $)) (-15 -1740 ($ $ (-762))) (-15 -1727 ((-635 $) $)) (-15 -1715 ((-762) $)) (-15 -1700 ($ $)) (-15 -1689 ($ $)) (-15 -1677 ($ $ $)) (-15 -1677 ($ (-635 $))) (-15 -3264 ((-635 $) $)) (-15 -1666 ($ $ (-635 (-762)) (-933 |#2|))) (-15 -1657 ($ $ (-933 |#2|))) (-15 -1647 ($ $ $ (-933 |#2|) (-762))) (-15 -2876 ($ $ (-635 (-762)) (-933 |#2|))) (-15 -1666 ($ $ (-635 (-762)) (-762))) (-15 -2876 ($ $ (-635 (-762)) (-762))) (-15 -1666 ((-762) $ (-933 |#2|))) (-15 -2876 ($ $ (-762) (-933 |#2|))) (-15 -2867 ($ $ (-635 (-762)) (-112))) (-15 -2857 ($ $ (-635 (-762)) (-170))) (-15 -2848 ($ $ (-635 (-762)))) (-15 -2839 ((-933 |#2|) $)) (-15 -2828 ((-762) $)) (-15 -2817 ((-112) $)) (-15 -2809 ((-170) $)) (-15 -3121 ((-762) $)) (-15 -2799 ($ $)) (-15 -2790 ((-635 (-933 |#2|)) $))))
+((-3207 (((-112) $ $) NIL)) (-3986 ((|#2| $) 11)) (-3976 ((|#1| $) 10)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3233 (($ |#1| |#2|) 9)) (-3220 (((-853) $) 16)) (-1683 (((-112) $ $) NIL)))
+(((-1152 |#1| |#2|) (-13 (-1087) (-10 -8 (-15 -3233 ($ |#1| |#2|)) (-15 -3976 (|#1| $)) (-15 -3986 (|#2| $)))) (-1087) (-1087)) (T -1152))
+((-3233 (*1 *1 *2 *3) (-12 (-5 *1 (-1152 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-1087)))) (-3976 (*1 *2 *1) (-12 (-4 *2 (-1087)) (-5 *1 (-1152 *2 *3)) (-4 *3 (-1087)))) (-3986 (*1 *2 *1) (-12 (-4 *2 (-1087)) (-5 *1 (-1152 *3 *2)) (-4 *3 (-1087)))))
+(-13 (-1087) (-10 -8 (-15 -3233 ($ |#1| |#2|)) (-15 -3976 (|#1| $)) (-15 -3986 (|#2| $))))
+((-3207 (((-112) $ $) NIL)) (-2896 (((-1122) $) 9)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 17) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1683 (((-112) $ $) NIL)))
+(((-1153) (-13 (-1070) (-10 -8 (-15 -2896 ((-1122) $))))) (T -1153))
+((-2896 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1153)))))
+(-13 (-1070) (-10 -8 (-15 -2896 ((-1122) $))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2582 (((-1161 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-306)) (|has| |#1| (-362))))) (-2671 (((-635 (-1069)) $) NIL)) (-1602 (((-1163) $) 11)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL (-3998 (-12 (|has| (-1161 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1161 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))) (|has| |#1| (-550))))) (-1881 (($ $) NIL (-3998 (-12 (|has| (-1161 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1161 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))) (|has| |#1| (-550))))) (-1857 (((-112) $) NIL (-3998 (-12 (|has| (-1161 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1161 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))) (|has| |#1| (-550))))) (-3440 (($ $ (-558)) NIL) (($ $ (-558) (-558)) 66)) (-3456 (((-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) $) NIL)) (-3077 (((-1161 |#1| |#2| |#3|) $) 36)) (-3054 (((-3 (-1161 |#1| |#2| |#3|) "failed") $) 29)) (-2724 (((-1161 |#1| |#2| |#3|) $) 30)) (-4088 (($ $) 107 (|has| |#1| (-38 (-406 (-558)))))) (-2135 (($ $) 83 (|has| |#1| (-38 (-406 (-558)))))) (-2089 (((-3 $ "failed") $ $) NIL)) (-3748 (((-417 (-1159 $)) (-1159 $)) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))))) (-3465 (($ $) NIL (|has| |#1| (-362)))) (-1380 (((-417 $) $) NIL (|has| |#1| (-362)))) (-2534 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3719 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))))) (-3732 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4070 (($ $) 103 (|has| |#1| (-38 (-406 (-558)))))) (-2112 (($ $) 79 (|has| |#1| (-38 (-406 (-558)))))) (-1397 (((-558) $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))))) (-3871 (($ (-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|)))) NIL)) (-4113 (($ $) 111 (|has| |#1| (-38 (-406 (-558)))))) (-2156 (($ $) 87 (|has| |#1| (-38 (-406 (-558)))))) (-1816 (($) NIL T CONST)) (-3069 (((-3 (-1161 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1163) "failed") $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-1028 (-1163))) (|has| |#1| (-362)))) (((-3 (-406 (-558)) "failed") $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-1028 (-558))) (|has| |#1| (-362)))) (((-3 (-558) "failed") $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-1028 (-558))) (|has| |#1| (-362))))) (-1863 (((-1161 |#1| |#2| |#3|) $) 131) (((-1163) $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-1028 (-1163))) (|has| |#1| (-362)))) (((-406 (-558)) $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-1028 (-558))) (|has| |#1| (-362)))) (((-558) $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-1028 (-558))) (|has| |#1| (-362))))) (-3065 (($ $) 34) (($ (-558) $) 35)) (-4025 (($ $ $) NIL (|has| |#1| (-362)))) (-2490 (($ $) NIL)) (-3216 (((-679 (-1161 |#1| |#2| |#3|)) (-679 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -3683 (-679 (-1161 |#1| |#2| |#3|))) (|:| |vec| (-1246 (-1161 |#1| |#2| |#3|)))) (-679 $) (-1246 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-631 (-558))) (|has| |#1| (-362)))) (((-679 (-558)) (-679 $)) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-631 (-558))) (|has| |#1| (-362))))) (-2588 (((-3 $ "failed") $) 48)) (-3041 (((-406 (-942 |#1|)) $ (-558)) 65 (|has| |#1| (-550))) (((-406 (-942 |#1|)) $ (-558) (-558)) 67 (|has| |#1| (-550)))) (-2424 (($) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-543)) (|has| |#1| (-362))))) (-4004 (($ $ $) NIL (|has| |#1| (-362)))) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-3031 (((-112) $) NIL (|has| |#1| (-362)))) (-2045 (((-112) $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))))) (-2020 (((-112) $) 25)) (-1904 (($) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2269 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-876 (-378))) (|has| |#1| (-362)))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-876 (-558))) (|has| |#1| (-362))))) (-3449 (((-558) $) NIL) (((-558) $ (-558)) 24)) (-2035 (((-112) $) NIL)) (-3704 (($ $) NIL (|has| |#1| (-362)))) (-1874 (((-1161 |#1| |#2| |#3|) $) 38 (|has| |#1| (-362)))) (-3828 (($ $ (-558)) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2457 (((-3 $ "failed") $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-1138)) (|has| |#1| (-362))))) (-2055 (((-112) $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))))) (-3486 (($ $ (-911)) NIL)) (-2555 (($ (-1 |#1| (-558)) $) NIL)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4238 (((-112) $) NIL)) (-2648 (($ |#1| (-558)) 18) (($ $ (-1069) (-558)) NIL) (($ $ (-635 (-1069)) (-635 (-558))) NIL)) (-3910 (($ $ $) NIL (-3998 (-12 (|has| (-1161 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1161 |#1| |#2| |#3|) (-841)) (|has| |#1| (-362)))))) (-3542 (($ $ $) NIL (-3998 (-12 (|has| (-1161 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1161 |#1| |#2| |#3|) (-841)) (|has| |#1| (-362)))))) (-3167 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1161 |#1| |#2| |#3|) (-1161 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-362)))) (-2592 (($ $) 72 (|has| |#1| (-38 (-406 (-558)))))) (-2451 (($ $) NIL)) (-2463 ((|#1| $) NIL)) (-2665 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-2735 (($ (-558) (-1161 |#1| |#2| |#3|)) 33)) (-4310 (((-1145) $) NIL)) (-2418 (($ $) NIL (|has| |#1| (-362)))) (-2543 (($ $) 70 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-1163)) NIL (-3998 (-12 (|has| |#1| (-15 -2543 (|#1| |#1| (-1163)))) (|has| |#1| (-15 -2671 ((-635 (-1163)) |#1|))) (|has| |#1| (-38 (-406 (-558))))) (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-949)) (|has| |#1| (-1185))))) (($ $ (-1242 |#2|)) 71 (|has| |#1| (-38 (-406 (-558)))))) (-1796 (($) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-1138)) (|has| |#1| (-362))) CONST)) (-2975 (((-1107) $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#1| (-362)))) (-2699 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-2568 (($ $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-306)) (|has| |#1| (-362))))) (-2594 (((-1161 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-543)) (|has| |#1| (-362))))) (-3728 (((-417 (-1159 $)) (-1159 $)) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))))) (-3738 (((-417 (-1159 $)) (-1159 $)) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))))) (-2522 (((-417 $) $) NIL (|has| |#1| (-362)))) (-3713 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL (|has| |#1| (-362)))) (-3430 (($ $ (-558)) 145)) (-3983 (((-3 $ "failed") $ $) 49 (-3998 (-12 (|has| (-1161 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1161 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))) (|has| |#1| (-550))))) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-2573 (($ $) 73 (|has| |#1| (-38 (-406 (-558)))))) (-2554 (((-1143 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-558))))) (($ $ (-1163) (-1161 |#1| |#2| |#3|)) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-512 (-1163) (-1161 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-635 (-1163)) (-635 (-1161 |#1| |#2| |#3|))) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-512 (-1163) (-1161 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-635 (-293 (-1161 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-308 (-1161 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-293 (-1161 |#1| |#2| |#3|))) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-308 (-1161 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-1161 |#1| |#2| |#3|) (-1161 |#1| |#2| |#3|)) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-308 (-1161 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-635 (-1161 |#1| |#2| |#3|)) (-635 (-1161 |#1| |#2| |#3|))) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-308 (-1161 |#1| |#2| |#3|))) (|has| |#1| (-362))))) (-3722 (((-762) $) NIL (|has| |#1| (-362)))) (-2195 ((|#1| $ (-558)) NIL) (($ $ $) 54 (|has| (-558) (-1099))) (($ $ (-1161 |#1| |#2| |#3|)) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-285 (-1161 |#1| |#2| |#3|) (-1161 |#1| |#2| |#3|))) (|has| |#1| (-362))))) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL (|has| |#1| (-362)))) (-2829 (($ $ (-1 (-1161 |#1| |#2| |#3|) (-1161 |#1| |#2| |#3|))) NIL (|has| |#1| (-362))) (($ $ (-1 (-1161 |#1| |#2| |#3|) (-1161 |#1| |#2| |#3|)) (-762)) NIL (|has| |#1| (-362))) (($ $ (-1242 |#2|)) 51) (($ $ (-762)) NIL (-3998 (-12 (|has| (-1161 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $) 50 (-3998 (-12 (|has| (-1161 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-3998 (-12 (|has| (-1161 |#1| |#2| |#3|) (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163)))))) (($ $ (-1163) (-762)) NIL (-3998 (-12 (|has| (-1161 |#1| |#2| |#3|) (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163)))))) (($ $ (-635 (-1163))) NIL (-3998 (-12 (|has| (-1161 |#1| |#2| |#3|) (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163)))))) (($ $ (-1163)) NIL (-3998 (-12 (|has| (-1161 |#1| |#2| |#3|) (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163))))))) (-3694 (($ $) NIL (|has| |#1| (-362)))) (-1885 (((-1161 |#1| |#2| |#3|) $) 41 (|has| |#1| (-362)))) (-4323 (((-558) $) 37)) (-4124 (($ $) 113 (|has| |#1| (-38 (-406 (-558)))))) (-2167 (($ $) 89 (|has| |#1| (-38 (-406 (-558)))))) (-4102 (($ $) 109 (|has| |#1| (-38 (-406 (-558)))))) (-2146 (($ $) 85 (|has| |#1| (-38 (-406 (-558)))))) (-4080 (($ $) 105 (|has| |#1| (-38 (-406 (-558)))))) (-2124 (($ $) 81 (|has| |#1| (-38 (-406 (-558)))))) (-3224 (((-534) $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-606 (-534))) (|has| |#1| (-362)))) (((-378) $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-1012)) (|has| |#1| (-362)))) (((-224) $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-1012)) (|has| |#1| (-362)))) (((-882 (-378)) $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-606 (-882 (-378)))) (|has| |#1| (-362)))) (((-882 (-558)) $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-606 (-882 (-558)))) (|has| |#1| (-362))))) (-3709 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| (-1161 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))))) (-2011 (($ $) NIL)) (-3220 (((-853) $) 149) (($ (-558)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-1161 |#1| |#2| |#3|)) 27) (($ (-1242 |#2|)) 23) (($ (-1163)) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-1028 (-1163))) (|has| |#1| (-362)))) (($ $) NIL (-3998 (-12 (|has| (-1161 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1161 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))) (|has| |#1| (-550)))) (($ (-406 (-558))) NIL (-3998 (-12 (|has| (-1161 |#1| |#2| |#3|) (-1028 (-558))) (|has| |#1| (-362))) (|has| |#1| (-38 (-406 (-558))))))) (-3736 ((|#1| $ (-558)) 68)) (-3698 (((-3 $ "failed") $) NIL (-3998 (-12 (|has| $ (-144)) (|has| (-1161 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))) (-12 (|has| (-1161 |#1| |#2| |#3|) (-144)) (|has| |#1| (-362))) (|has| |#1| (-144))))) (-2542 (((-762)) NIL)) (-2673 ((|#1| $) 12)) (-2604 (((-1161 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-543)) (|has| |#1| (-362))))) (-4159 (($ $) 119 (|has| |#1| (-38 (-406 (-558)))))) (-2200 (($ $) 95 (|has| |#1| (-38 (-406 (-558)))))) (-1870 (((-112) $ $) NIL (-3998 (-12 (|has| (-1161 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1161 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))) (|has| |#1| (-550))))) (-4135 (($ $) 115 (|has| |#1| (-38 (-406 (-558)))))) (-2178 (($ $) 91 (|has| |#1| (-38 (-406 (-558)))))) (-4184 (($ $) 123 (|has| |#1| (-38 (-406 (-558)))))) (-2222 (($ $) 99 (|has| |#1| (-38 (-406 (-558)))))) (-1352 ((|#1| $ (-558)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-558)))) (|has| |#1| (-15 -3220 (|#1| (-1163))))))) (-1878 (($ $) 125 (|has| |#1| (-38 (-406 (-558)))))) (-4060 (($ $) 101 (|has| |#1| (-38 (-406 (-558)))))) (-4171 (($ $) 121 (|has| |#1| (-38 (-406 (-558)))))) (-2211 (($ $) 97 (|has| |#1| (-38 (-406 (-558)))))) (-4147 (($ $) 117 (|has| |#1| (-38 (-406 (-558)))))) (-2189 (($ $) 93 (|has| |#1| (-38 (-406 (-558)))))) (-3190 (($ $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))))) (-2131 (($) 20 T CONST)) (-2142 (($) 16 T CONST)) (-1866 (($ $ (-1 (-1161 |#1| |#2| |#3|) (-1161 |#1| |#2| |#3|))) NIL (|has| |#1| (-362))) (($ $ (-1 (-1161 |#1| |#2| |#3|) (-1161 |#1| |#2| |#3|)) (-762)) NIL (|has| |#1| (-362))) (($ $ (-762)) NIL (-3998 (-12 (|has| (-1161 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $) NIL (-3998 (-12 (|has| (-1161 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-3998 (-12 (|has| (-1161 |#1| |#2| |#3|) (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163)))))) (($ $ (-1163) (-762)) NIL (-3998 (-12 (|has| (-1161 |#1| |#2| |#3|) (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163)))))) (($ $ (-635 (-1163))) NIL (-3998 (-12 (|has| (-1161 |#1| |#2| |#3|) (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163)))))) (($ $ (-1163)) NIL (-3998 (-12 (|has| (-1161 |#1| |#2| |#3|) (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163))))))) (-1747 (((-112) $ $) NIL (-3998 (-12 (|has| (-1161 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1161 |#1| |#2| |#3|) (-841)) (|has| |#1| (-362)))))) (-1720 (((-112) $ $) NIL (-3998 (-12 (|has| (-1161 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1161 |#1| |#2| |#3|) (-841)) (|has| |#1| (-362)))))) (-1683 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL (-3998 (-12 (|has| (-1161 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1161 |#1| |#2| |#3|) (-841)) (|has| |#1| (-362)))))) (-1705 (((-112) $ $) NIL (-3998 (-12 (|has| (-1161 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1161 |#1| |#2| |#3|) (-841)) (|has| |#1| (-362)))))) (-1810 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) 44 (|has| |#1| (-362))) (($ (-1161 |#1| |#2| |#3|) (-1161 |#1| |#2| |#3|)) 45 (|has| |#1| (-362)))) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) 21)) (** (($ $ (-911)) NIL) (($ $ (-762)) 53) (($ $ (-558)) NIL (|has| |#1| (-362))) (($ $ $) 74 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) 128 (|has| |#1| (-38 (-406 (-558)))))) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1161 |#1| |#2| |#3|)) 43 (|has| |#1| (-362))) (($ (-1161 |#1| |#2| |#3|) $) 42 (|has| |#1| (-362))) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558)))))))
+(((-1154 |#1| |#2| |#3|) (-13 (-1208 |#1| (-1161 |#1| |#2| |#3|)) (-10 -8 (-15 -3220 ($ (-1242 |#2|))) (-15 -2829 ($ $ (-1242 |#2|))) (IF (|has| |#1| (-38 (-406 (-558)))) (-15 -2543 ($ $ (-1242 |#2|))) |%noBranch|))) (-1039) (-1163) |#1|) (T -1154))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1154 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) (-2829 (*1 *1 *1 *2) (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1154 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) (-2543 (*1 *1 *1 *2) (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1154 *3 *4 *5)) (-4 *3 (-38 (-406 (-558)))) (-4 *3 (-1039)) (-14 *5 *3))))
+(-13 (-1208 |#1| (-1161 |#1| |#2| |#3|)) (-10 -8 (-15 -3220 ($ (-1242 |#2|))) (-15 -2829 ($ $ (-1242 |#2|))) (IF (|has| |#1| (-38 (-406 (-558)))) (-15 -2543 ($ $ (-1242 |#2|))) |%noBranch|)))
+((-2754 ((|#2| |#2| (-1079 |#2|)) 26) ((|#2| |#2| (-1163)) 28)))
+(((-1155 |#1| |#2|) (-10 -7 (-15 -2754 (|#2| |#2| (-1163))) (-15 -2754 (|#2| |#2| (-1079 |#2|)))) (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))) (-13 (-429 |#1|) (-159) (-27) (-1185))) (T -1155))
+((-2754 (*1 *2 *2 *3) (-12 (-5 *3 (-1079 *2)) (-4 *2 (-13 (-429 *4) (-159) (-27) (-1185))) (-4 *4 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-1155 *4 *2)))) (-2754 (*1 *2 *2 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-1155 *4 *2)) (-4 *2 (-13 (-429 *4) (-159) (-27) (-1185))))))
+(-10 -7 (-15 -2754 (|#2| |#2| (-1163))) (-15 -2754 (|#2| |#2| (-1079 |#2|))))
+((-2754 (((-3 (-406 (-942 |#1|)) (-315 |#1|)) (-406 (-942 |#1|)) (-1079 (-406 (-942 |#1|)))) 31) (((-406 (-942 |#1|)) (-942 |#1|) (-1079 (-942 |#1|))) 44) (((-3 (-406 (-942 |#1|)) (-315 |#1|)) (-406 (-942 |#1|)) (-1163)) 33) (((-406 (-942 |#1|)) (-942 |#1|) (-1163)) 36)))
+(((-1156 |#1|) (-10 -7 (-15 -2754 ((-406 (-942 |#1|)) (-942 |#1|) (-1163))) (-15 -2754 ((-3 (-406 (-942 |#1|)) (-315 |#1|)) (-406 (-942 |#1|)) (-1163))) (-15 -2754 ((-406 (-942 |#1|)) (-942 |#1|) (-1079 (-942 |#1|)))) (-15 -2754 ((-3 (-406 (-942 |#1|)) (-315 |#1|)) (-406 (-942 |#1|)) (-1079 (-406 (-942 |#1|)))))) (-13 (-550) (-841) (-1028 (-558)))) (T -1156))
+((-2754 (*1 *2 *3 *4) (-12 (-5 *4 (-1079 (-406 (-942 *5)))) (-5 *3 (-406 (-942 *5))) (-4 *5 (-13 (-550) (-841) (-1028 (-558)))) (-5 *2 (-3 *3 (-315 *5))) (-5 *1 (-1156 *5)))) (-2754 (*1 *2 *3 *4) (-12 (-5 *4 (-1079 (-942 *5))) (-5 *3 (-942 *5)) (-4 *5 (-13 (-550) (-841) (-1028 (-558)))) (-5 *2 (-406 *3)) (-5 *1 (-1156 *5)))) (-2754 (*1 *2 *3 *4) (-12 (-5 *4 (-1163)) (-4 *5 (-13 (-550) (-841) (-1028 (-558)))) (-5 *2 (-3 (-406 (-942 *5)) (-315 *5))) (-5 *1 (-1156 *5)) (-5 *3 (-406 (-942 *5))))) (-2754 (*1 *2 *3 *4) (-12 (-5 *4 (-1163)) (-4 *5 (-13 (-550) (-841) (-1028 (-558)))) (-5 *2 (-406 (-942 *5))) (-5 *1 (-1156 *5)) (-5 *3 (-942 *5)))))
+(-10 -7 (-15 -2754 ((-406 (-942 |#1|)) (-942 |#1|) (-1163))) (-15 -2754 ((-3 (-406 (-942 |#1|)) (-315 |#1|)) (-406 (-942 |#1|)) (-1163))) (-15 -2754 ((-406 (-942 |#1|)) (-942 |#1|) (-1079 (-942 |#1|)))) (-15 -2754 ((-3 (-406 (-942 |#1|)) (-315 |#1|)) (-406 (-942 |#1|)) (-1079 (-406 (-942 |#1|))))))
+((-3167 (((-1159 |#2|) (-1 |#2| |#1|) (-1159 |#1|)) 13)))
+(((-1157 |#1| |#2|) (-10 -7 (-15 -3167 ((-1159 |#2|) (-1 |#2| |#1|) (-1159 |#1|)))) (-1039) (-1039)) (T -1157))
+((-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1159 *5)) (-4 *5 (-1039)) (-4 *6 (-1039)) (-5 *2 (-1159 *6)) (-5 *1 (-1157 *5 *6)))))
+(-10 -7 (-15 -3167 ((-1159 |#2|) (-1 |#2| |#1|) (-1159 |#1|))))
+((-1380 (((-417 (-1159 (-406 |#4|))) (-1159 (-406 |#4|))) 51)) (-2522 (((-417 (-1159 (-406 |#4|))) (-1159 (-406 |#4|))) 52)))
+(((-1158 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2522 ((-417 (-1159 (-406 |#4|))) (-1159 (-406 |#4|)))) (-15 -1380 ((-417 (-1159 (-406 |#4|))) (-1159 (-406 |#4|))))) (-784) (-841) (-450) (-939 |#3| |#1| |#2|)) (T -1158))
+((-1380 (*1 *2 *3) (-12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-450)) (-4 *7 (-939 *6 *4 *5)) (-5 *2 (-417 (-1159 (-406 *7)))) (-5 *1 (-1158 *4 *5 *6 *7)) (-5 *3 (-1159 (-406 *7))))) (-2522 (*1 *2 *3) (-12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-450)) (-4 *7 (-939 *6 *4 *5)) (-5 *2 (-417 (-1159 (-406 *7)))) (-5 *1 (-1158 *4 *5 *6 *7)) (-5 *3 (-1159 (-406 *7))))))
+(-10 -7 (-15 -2522 ((-417 (-1159 (-406 |#4|))) (-1159 (-406 |#4|)))) (-15 -1380 ((-417 (-1159 (-406 |#4|))) (-1159 (-406 |#4|)))))
+((-3207 (((-112) $ $) 136)) (-2067 (((-112) $) 27)) (-3422 (((-1246 |#1|) $ (-762)) NIL)) (-2671 (((-635 (-1069)) $) NIL)) (-3401 (($ (-1159 |#1|)) NIL)) (-2492 (((-1159 $) $ (-1069)) 58) (((-1159 |#1|) $) 47)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1881 (($ $) 131 (|has| |#1| (-550)))) (-1857 (((-112) $) NIL (|has| |#1| (-550)))) (-2513 (((-762) $) NIL) (((-762) $ (-635 (-1069))) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-3309 (($ $ $) 125 (|has| |#1| (-550)))) (-3748 (((-417 (-1159 $)) (-1159 $)) 71 (|has| |#1| (-899)))) (-3465 (($ $) NIL (|has| |#1| (-450)))) (-1380 (((-417 $) $) NIL (|has| |#1| (-450)))) (-3719 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) 91 (|has| |#1| (-899)))) (-3732 (((-112) $ $) NIL (|has| |#1| (-362)))) (-3362 (($ $ (-762)) 39)) (-3352 (($ $ (-762)) 40)) (-3264 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-450)))) (-1816 (($) NIL T CONST)) (-3069 (((-3 |#1| "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 (-1069) "failed") $) NIL)) (-1863 ((|#1| $) NIL) (((-406 (-558)) $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-558) $) NIL (|has| |#1| (-1028 (-558)))) (((-1069) $) NIL)) (-3320 (($ $ $ (-1069)) NIL (|has| |#1| (-171))) ((|#1| $ $) 127 (|has| |#1| (-171)))) (-4025 (($ $ $) NIL (|has| |#1| (-362)))) (-2490 (($ $) 56)) (-3216 (((-679 (-558)) (-679 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3683 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) NIL) (((-679 |#1|) (-679 $)) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-4004 (($ $ $) NIL (|has| |#1| (-362)))) (-3342 (($ $ $) 103)) (-3286 (($ $ $) NIL (|has| |#1| (-550)))) (-3274 (((-2 (|:| -2023 |#1|) (|:| -2306 $) (|:| -2071 $)) $ $) NIL (|has| |#1| (-550)))) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-2782 (($ $) 132 (|has| |#1| (-450))) (($ $ (-1069)) NIL (|has| |#1| (-450)))) (-2476 (((-635 $) $) NIL)) (-3031 (((-112) $) NIL (|has| |#1| (-899)))) (-3888 (($ $ |#1| (-762) $) 45)) (-2269 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (-12 (|has| (-1069) (-876 (-378))) (|has| |#1| (-876 (-378))))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (-12 (|has| (-1069) (-876 (-558))) (|has| |#1| (-876 (-558)))))) (-1804 (((-853) $ (-853)) 116)) (-3449 (((-762) $ $) NIL (|has| |#1| (-550)))) (-2035 (((-112) $) 30)) (-2110 (((-762) $) NIL)) (-2457 (((-3 $ "failed") $) NIL (|has| |#1| (-1138)))) (-2659 (($ (-1159 |#1|) (-1069)) 49) (($ (-1159 $) (-1069)) 65)) (-3486 (($ $ (-762)) 32)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-2536 (((-635 $) $) NIL)) (-4238 (((-112) $) NIL)) (-2648 (($ |#1| (-762)) 63) (($ $ (-1069) (-762)) NIL) (($ $ (-635 (-1069)) (-635 (-762))) NIL)) (-3381 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $ (-1069)) NIL) (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 120)) (-2524 (((-762) $) NIL) (((-762) $ (-1069)) NIL) (((-635 (-762)) $ (-635 (-1069))) NIL)) (-3910 (($ $ $) NIL (|has| |#1| (-841)))) (-3542 (($ $ $) NIL (|has| |#1| (-841)))) (-3898 (($ (-1 (-762) (-762)) $) NIL)) (-3167 (($ (-1 |#1| |#1|) $) NIL)) (-3412 (((-1159 |#1|) $) NIL)) (-3399 (((-3 (-1069) "failed") $) NIL)) (-2451 (($ $) NIL)) (-2463 ((|#1| $) 52)) (-2665 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-4310 (((-1145) $) NIL)) (-3371 (((-2 (|:| -2306 $) (|:| -2071 $)) $ (-762)) 38)) (-2560 (((-3 (-635 $) "failed") $) NIL)) (-2548 (((-3 (-635 $) "failed") $) NIL)) (-2575 (((-3 (-2 (|:| |var| (-1069)) (|:| -1951 (-762))) "failed") $) NIL)) (-2543 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1796 (($) NIL (|has| |#1| (-1138)) CONST)) (-2975 (((-1107) $) NIL)) (-2429 (((-112) $) 31)) (-2440 ((|#1| $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) 79 (|has| |#1| (-450)))) (-2699 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) 134 (|has| |#1| (-450)))) (-3120 (($ $ (-762) |#1| $) 98)) (-3728 (((-417 (-1159 $)) (-1159 $)) 77 (|has| |#1| (-899)))) (-3738 (((-417 (-1159 $)) (-1159 $)) 76 (|has| |#1| (-899)))) (-2522 (((-417 $) $) 84 (|has| |#1| (-899)))) (-3713 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL (|has| |#1| (-362)))) (-3983 (((-3 $ "failed") $ |#1|) 130 (|has| |#1| (-550))) (((-3 $ "failed") $ $) 99 (|has| |#1| (-550)))) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-2554 (($ $ (-635 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-1069) |#1|) NIL) (($ $ (-635 (-1069)) (-635 |#1|)) NIL) (($ $ (-1069) $) NIL) (($ $ (-635 (-1069)) (-635 $)) NIL)) (-3722 (((-762) $) NIL (|has| |#1| (-362)))) (-2195 ((|#1| $ |#1|) 118) (($ $ $) 119) (((-406 $) (-406 $) (-406 $)) NIL (|has| |#1| (-550))) ((|#1| (-406 $) |#1|) NIL (|has| |#1| (-362))) (((-406 $) $ (-406 $)) NIL (|has| |#1| (-550)))) (-3391 (((-3 $ "failed") $ (-762)) 35)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 137 (|has| |#1| (-362)))) (-3331 (($ $ (-1069)) NIL (|has| |#1| (-171))) ((|#1| $) 123 (|has| |#1| (-171)))) (-2829 (($ $ (-1069)) NIL) (($ $ (-635 (-1069))) NIL) (($ $ (-1069) (-762)) NIL) (($ $ (-635 (-1069)) (-635 (-762))) NIL) (($ $ (-762)) NIL) (($ $) NIL) (($ $ (-1163)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4323 (((-762) $) 54) (((-762) $ (-1069)) NIL) (((-635 (-762)) $ (-635 (-1069))) NIL)) (-3224 (((-882 (-378)) $) NIL (-12 (|has| (-1069) (-606 (-882 (-378)))) (|has| |#1| (-606 (-882 (-378)))))) (((-882 (-558)) $) NIL (-12 (|has| (-1069) (-606 (-882 (-558)))) (|has| |#1| (-606 (-882 (-558)))))) (((-534) $) NIL (-12 (|has| (-1069) (-606 (-534))) (|has| |#1| (-606 (-534)))))) (-2504 ((|#1| $) 129 (|has| |#1| (-450))) (($ $ (-1069)) NIL (|has| |#1| (-450)))) (-3709 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-899))))) (-3297 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550))) (((-3 (-406 $) "failed") (-406 $) $) NIL (|has| |#1| (-550)))) (-3220 (((-853) $) 117) (($ (-558)) NIL) (($ |#1|) 53) (($ (-1069)) NIL) (($ (-406 (-558))) NIL (-3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558)))))) (($ $) NIL (|has| |#1| (-550)))) (-2583 (((-635 |#1|) $) NIL)) (-3736 ((|#1| $ (-762)) NIL) (($ $ (-1069) (-762)) NIL) (($ $ (-635 (-1069)) (-635 (-762))) NIL)) (-3698 (((-3 $ "failed") $) NIL (-3998 (-12 (|has| $ (-144)) (|has| |#1| (-899))) (|has| |#1| (-144))))) (-2542 (((-762)) NIL)) (-3879 (($ $ $ (-762)) 25 (|has| |#1| (-171)))) (-1870 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2131 (($) 15 T CONST)) (-2142 (($) 16 T CONST)) (-1866 (($ $ (-1069)) NIL) (($ $ (-635 (-1069))) NIL) (($ $ (-1069) (-762)) NIL) (($ $ (-635 (-1069)) (-635 (-762))) NIL) (($ $ (-762)) NIL) (($ $) NIL) (($ $ (-1163)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1747 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1683 (((-112) $ $) 96)) (-1731 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1810 (($ $ |#1|) 138 (|has| |#1| (-362)))) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) 66)) (** (($ $ (-911)) 14) (($ $ (-762)) 12)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 24) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558))))) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ |#1| $) 101) (($ $ |#1|) NIL)))
+(((-1159 |#1|) (-13 (-1222 |#1|) (-10 -8 (-15 -1804 ((-853) $ (-853))) (-15 -3120 ($ $ (-762) |#1| $)))) (-1039)) (T -1159))
+((-1804 (*1 *2 *1 *2) (-12 (-5 *2 (-853)) (-5 *1 (-1159 *3)) (-4 *3 (-1039)))) (-3120 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-762)) (-5 *1 (-1159 *3)) (-4 *3 (-1039)))))
+(-13 (-1222 |#1|) (-10 -8 (-15 -1804 ((-853) $ (-853))) (-15 -3120 ($ $ (-762) |#1| $))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2671 (((-635 (-1069)) $) NIL)) (-1602 (((-1163) $) 11)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1881 (($ $) NIL (|has| |#1| (-550)))) (-1857 (((-112) $) NIL (|has| |#1| (-550)))) (-3440 (($ $ (-406 (-558))) NIL) (($ $ (-406 (-558)) (-406 (-558))) NIL)) (-3456 (((-1143 (-2 (|:| |k| (-406 (-558))) (|:| |c| |#1|))) $) NIL)) (-4088 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2135 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2089 (((-3 $ "failed") $ $) NIL)) (-3465 (($ $) NIL (|has| |#1| (-362)))) (-1380 (((-417 $) $) NIL (|has| |#1| (-362)))) (-2534 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3732 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4070 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2112 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3871 (($ (-762) (-1143 (-2 (|:| |k| (-406 (-558))) (|:| |c| |#1|)))) NIL)) (-4113 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2156 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1816 (($) NIL T CONST)) (-3069 (((-3 (-1154 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1161 |#1| |#2| |#3|) "failed") $) 36)) (-1863 (((-1154 |#1| |#2| |#3|) $) NIL) (((-1161 |#1| |#2| |#3|) $) NIL)) (-4025 (($ $ $) NIL (|has| |#1| (-362)))) (-2490 (($ $) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-3511 (((-406 (-558)) $) 55)) (-4004 (($ $ $) NIL (|has| |#1| (-362)))) (-2395 (($ (-406 (-558)) (-1154 |#1| |#2| |#3|)) NIL)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-3031 (((-112) $) NIL (|has| |#1| (-362)))) (-2020 (((-112) $) NIL)) (-1904 (($) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3449 (((-406 (-558)) $) NIL) (((-406 (-558)) $ (-406 (-558))) NIL)) (-2035 (((-112) $) NIL)) (-3828 (($ $ (-558)) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3486 (($ $ (-911)) NIL) (($ $ (-406 (-558))) NIL)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4238 (((-112) $) NIL)) (-2648 (($ |#1| (-406 (-558))) 20) (($ $ (-1069) (-406 (-558))) NIL) (($ $ (-635 (-1069)) (-635 (-406 (-558)))) NIL)) (-3167 (($ (-1 |#1| |#1|) $) NIL)) (-2592 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2451 (($ $) NIL)) (-2463 ((|#1| $) NIL)) (-2665 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-3502 (((-1154 |#1| |#2| |#3|) $) 41)) (-3493 (((-3 (-1154 |#1| |#2| |#3|) "failed") $) NIL)) (-2735 (((-1154 |#1| |#2| |#3|) $) NIL)) (-4310 (((-1145) $) NIL)) (-2418 (($ $) NIL (|has| |#1| (-362)))) (-2543 (($ $) 39 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-1163)) NIL (-3998 (-12 (|has| |#1| (-15 -2543 (|#1| |#1| (-1163)))) (|has| |#1| (-15 -2671 ((-635 (-1163)) |#1|))) (|has| |#1| (-38 (-406 (-558))))) (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-949)) (|has| |#1| (-1185))))) (($ $ (-1242 |#2|)) 40 (|has| |#1| (-38 (-406 (-558)))))) (-2975 (((-1107) $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#1| (-362)))) (-2699 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-2522 (((-417 $) $) NIL (|has| |#1| (-362)))) (-3713 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL (|has| |#1| (-362)))) (-3430 (($ $ (-406 (-558))) NIL)) (-3983 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-2573 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2554 (((-1143 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-406 (-558))))))) (-3722 (((-762) $) NIL (|has| |#1| (-362)))) (-2195 ((|#1| $ (-406 (-558))) NIL) (($ $ $) NIL (|has| (-406 (-558)) (-1099)))) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL (|has| |#1| (-362)))) (-2829 (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-762)) NIL (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|)))) (($ $ (-1242 |#2|)) 38)) (-4323 (((-406 (-558)) $) NIL)) (-4124 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2167 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4102 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2146 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4080 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2124 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2011 (($ $) NIL)) (-3220 (((-853) $) 58) (($ (-558)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-1154 |#1| |#2| |#3|)) 30) (($ (-1161 |#1| |#2| |#3|)) 31) (($ (-1242 |#2|)) 26) (($ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $) NIL (|has| |#1| (-550)))) (-3736 ((|#1| $ (-406 (-558))) NIL)) (-3698 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2542 (((-762)) NIL)) (-2673 ((|#1| $) 12)) (-4159 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2200 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1870 (((-112) $ $) NIL (|has| |#1| (-550)))) (-4135 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2178 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4184 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2222 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1352 ((|#1| $ (-406 (-558))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-558))))) (|has| |#1| (-15 -3220 (|#1| (-1163))))))) (-1878 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4060 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4171 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2211 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4147 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2189 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2131 (($) 22 T CONST)) (-2142 (($) 16 T CONST)) (-1866 (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-762)) NIL (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (-1683 (((-112) $ $) NIL)) (-1810 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) 24)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558)))))) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558)))))))
+(((-1160 |#1| |#2| |#3|) (-13 (-1229 |#1| (-1154 |#1| |#2| |#3|)) (-1028 (-1161 |#1| |#2| |#3|)) (-608 (-1242 |#2|)) (-10 -8 (-15 -2829 ($ $ (-1242 |#2|))) (IF (|has| |#1| (-38 (-406 (-558)))) (-15 -2543 ($ $ (-1242 |#2|))) |%noBranch|))) (-1039) (-1163) |#1|) (T -1160))
+((-2829 (*1 *1 *1 *2) (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) (-2543 (*1 *1 *1 *2) (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-38 (-406 (-558)))) (-4 *3 (-1039)) (-14 *5 *3))))
+(-13 (-1229 |#1| (-1154 |#1| |#2| |#3|)) (-1028 (-1161 |#1| |#2| |#3|)) (-608 (-1242 |#2|)) (-10 -8 (-15 -2829 ($ $ (-1242 |#2|))) (IF (|has| |#1| (-38 (-406 (-558)))) (-15 -2543 ($ $ (-1242 |#2|))) |%noBranch|)))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) 124)) (-2671 (((-635 (-1069)) $) NIL)) (-1602 (((-1163) $) 115)) (-2532 (((-1219 |#2| |#1|) $ (-762)) 62)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1881 (($ $) NIL (|has| |#1| (-550)))) (-1857 (((-112) $) NIL (|has| |#1| (-550)))) (-3440 (($ $ (-762)) 78) (($ $ (-762) (-762)) 75)) (-3456 (((-1143 (-2 (|:| |k| (-762)) (|:| |c| |#1|))) $) 101)) (-4088 (($ $) 168 (|has| |#1| (-38 (-406 (-558)))))) (-2135 (($ $) 144 (|has| |#1| (-38 (-406 (-558)))))) (-2089 (((-3 $ "failed") $ $) NIL)) (-2534 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4070 (($ $) 164 (|has| |#1| (-38 (-406 (-558)))))) (-2112 (($ $) 140 (|has| |#1| (-38 (-406 (-558)))))) (-3871 (($ (-1143 (-2 (|:| |k| (-762)) (|:| |c| |#1|)))) 114) (($ (-1143 |#1|)) 109)) (-4113 (($ $) 172 (|has| |#1| (-38 (-406 (-558)))))) (-2156 (($ $) 148 (|has| |#1| (-38 (-406 (-558)))))) (-1816 (($) NIL T CONST)) (-2490 (($ $) NIL)) (-2588 (((-3 $ "failed") $) 23)) (-2570 (($ $) 26)) (-4330 (((-942 |#1|) $ (-762)) 74) (((-942 |#1|) $ (-762) (-762)) 76)) (-2020 (((-112) $) 119)) (-1904 (($) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3449 (((-762) $) 121) (((-762) $ (-762)) 123)) (-2035 (((-112) $) NIL)) (-3828 (($ $ (-558)) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3486 (($ $ (-911)) NIL)) (-2555 (($ (-1 |#1| (-558)) $) NIL)) (-4238 (((-112) $) NIL)) (-2648 (($ |#1| (-762)) 13) (($ $ (-1069) (-762)) NIL) (($ $ (-635 (-1069)) (-635 (-762))) NIL)) (-3167 (($ (-1 |#1| |#1|) $) NIL)) (-2592 (($ $) 130 (|has| |#1| (-38 (-406 (-558)))))) (-2451 (($ $) NIL)) (-2463 ((|#1| $) NIL)) (-4310 (((-1145) $) NIL)) (-2543 (($ $) 128 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-1163)) NIL (-3998 (-12 (|has| |#1| (-15 -2543 (|#1| |#1| (-1163)))) (|has| |#1| (-15 -2671 ((-635 (-1163)) |#1|))) (|has| |#1| (-38 (-406 (-558))))) (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-949)) (|has| |#1| (-1185))))) (($ $ (-1242 |#2|)) 129 (|has| |#1| (-38 (-406 (-558)))))) (-2975 (((-1107) $) NIL)) (-3430 (($ $ (-762)) 15)) (-3983 (((-3 $ "failed") $ $) 24 (|has| |#1| (-550)))) (-2573 (($ $) 132 (|has| |#1| (-38 (-406 (-558)))))) (-2554 (((-1143 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-762)))))) (-2195 ((|#1| $ (-762)) 118) (($ $ $) 127 (|has| (-762) (-1099)))) (-2829 (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#1| (-15 * (|#1| (-762) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#1| (-15 * (|#1| (-762) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#1| (-15 * (|#1| (-762) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163)) NIL (-12 (|has| |#1| (-15 * (|#1| (-762) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-762)) NIL (|has| |#1| (-15 * (|#1| (-762) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-762) |#1|)))) (($ $ (-1242 |#2|)) 29)) (-4323 (((-762) $) NIL)) (-4124 (($ $) 174 (|has| |#1| (-38 (-406 (-558)))))) (-2167 (($ $) 150 (|has| |#1| (-38 (-406 (-558)))))) (-4102 (($ $) 170 (|has| |#1| (-38 (-406 (-558)))))) (-2146 (($ $) 146 (|has| |#1| (-38 (-406 (-558)))))) (-4080 (($ $) 166 (|has| |#1| (-38 (-406 (-558)))))) (-2124 (($ $) 142 (|has| |#1| (-38 (-406 (-558)))))) (-2011 (($ $) NIL)) (-3220 (((-853) $) 200) (($ (-558)) NIL) (($ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $) NIL (|has| |#1| (-550))) (($ |#1|) 125 (|has| |#1| (-171))) (($ (-1219 |#2| |#1|)) 50) (($ (-1242 |#2|)) 32)) (-2583 (((-1143 |#1|) $) 97)) (-3736 ((|#1| $ (-762)) 117)) (-3698 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2542 (((-762)) NIL)) (-2673 ((|#1| $) 53)) (-4159 (($ $) 180 (|has| |#1| (-38 (-406 (-558)))))) (-2200 (($ $) 156 (|has| |#1| (-38 (-406 (-558)))))) (-1870 (((-112) $ $) NIL (|has| |#1| (-550)))) (-4135 (($ $) 176 (|has| |#1| (-38 (-406 (-558)))))) (-2178 (($ $) 152 (|has| |#1| (-38 (-406 (-558)))))) (-4184 (($ $) 184 (|has| |#1| (-38 (-406 (-558)))))) (-2222 (($ $) 160 (|has| |#1| (-38 (-406 (-558)))))) (-1352 ((|#1| $ (-762)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-762)))) (|has| |#1| (-15 -3220 (|#1| (-1163))))))) (-1878 (($ $) 186 (|has| |#1| (-38 (-406 (-558)))))) (-4060 (($ $) 162 (|has| |#1| (-38 (-406 (-558)))))) (-4171 (($ $) 182 (|has| |#1| (-38 (-406 (-558)))))) (-2211 (($ $) 158 (|has| |#1| (-38 (-406 (-558)))))) (-4147 (($ $) 178 (|has| |#1| (-38 (-406 (-558)))))) (-2189 (($ $) 154 (|has| |#1| (-38 (-406 (-558)))))) (-2131 (($) 17 T CONST)) (-2142 (($) 19 T CONST)) (-1866 (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#1| (-15 * (|#1| (-762) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#1| (-15 * (|#1| (-762) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#1| (-15 * (|#1| (-762) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163)) NIL (-12 (|has| |#1| (-15 * (|#1| (-762) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-762)) NIL (|has| |#1| (-15 * (|#1| (-762) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-762) |#1|))))) (-1683 (((-112) $ $) NIL)) (-1810 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1798 (($ $) NIL) (($ $ $) 193)) (-1784 (($ $ $) 31)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ |#1|) 197 (|has| |#1| (-362))) (($ $ $) 133 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) 136 (|has| |#1| (-38 (-406 (-558)))))) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 131) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558)))))))
+(((-1161 |#1| |#2| |#3|) (-13 (-1237 |#1|) (-10 -8 (-15 -3220 ($ (-1219 |#2| |#1|))) (-15 -2532 ((-1219 |#2| |#1|) $ (-762))) (-15 -3220 ($ (-1242 |#2|))) (-15 -2829 ($ $ (-1242 |#2|))) (IF (|has| |#1| (-38 (-406 (-558)))) (-15 -2543 ($ $ (-1242 |#2|))) |%noBranch|))) (-1039) (-1163) |#1|) (T -1161))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-1219 *4 *3)) (-4 *3 (-1039)) (-14 *4 (-1163)) (-14 *5 *3) (-5 *1 (-1161 *3 *4 *5)))) (-2532 (*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1219 *5 *4)) (-5 *1 (-1161 *4 *5 *6)) (-4 *4 (-1039)) (-14 *5 (-1163)) (-14 *6 *4))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1161 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) (-2829 (*1 *1 *1 *2) (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1161 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) (-2543 (*1 *1 *1 *2) (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1161 *3 *4 *5)) (-4 *3 (-38 (-406 (-558)))) (-4 *3 (-1039)) (-14 *5 *3))))
+(-13 (-1237 |#1|) (-10 -8 (-15 -3220 ($ (-1219 |#2| |#1|))) (-15 -2532 ((-1219 |#2| |#1|) $ (-762))) (-15 -3220 ($ (-1242 |#2|))) (-15 -2829 ($ $ (-1242 |#2|))) (IF (|has| |#1| (-38 (-406 (-558)))) (-15 -2543 ($ $ (-1242 |#2|))) |%noBranch|)))
+((-3220 (((-853) $) 27) (($ (-1163)) 29)) (-3998 (($ (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 40)) (-3987 (($ (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 33) (($ $) 34)) (-2358 (($ (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 35)) (-2347 (($ (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 37)) (-2335 (($ (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 36)) (-2323 (($ (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 38)) (-3354 (($ (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 39)))
+(((-1162) (-13 (-605 (-853)) (-10 -8 (-15 -3220 ($ (-1163))) (-15 -2358 ($ (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -2335 ($ (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -2347 ($ (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -2323 ($ (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -3998 ($ (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -3354 ($ (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -3987 ($ (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -3987 ($ $))))) (T -1162))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1162)))) (-2358 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1162)))) (-5 *1 (-1162)))) (-2335 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1162)))) (-5 *1 (-1162)))) (-2347 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1162)))) (-5 *1 (-1162)))) (-2323 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1162)))) (-5 *1 (-1162)))) (-3998 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1162)))) (-5 *1 (-1162)))) (-3354 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1162)))) (-5 *1 (-1162)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1162)))) (-5 *1 (-1162)))) (-3987 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1162)))) (-5 *1 (-1162)))) (-3987 (*1 *1 *1) (-5 *1 (-1162))))
+(-13 (-605 (-853)) (-10 -8 (-15 -3220 ($ (-1163))) (-15 -2358 ($ (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -2335 ($ (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -2347 ($ (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -2323 ($ (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -3998 ($ (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -3354 ($ (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -3987 ($ (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -3987 ($ $))))
+((-3207 (((-112) $ $) NIL)) (-1838 (($ $ (-635 (-853))) 59)) (-1850 (($ $ (-635 (-853))) 57)) (-3994 (((-1145) $) 84)) (-2889 (((-2 (|:| -3911 (-635 (-853))) (|:| -2738 (-635 (-853))) (|:| |presup| (-635 (-853))) (|:| -3891 (-635 (-853))) (|:| |args| (-635 (-853)))) $) 87)) (-1860 (((-112) $) 22)) (-2531 (($ $ (-635 (-635 (-853)))) 56) (($ $ (-2 (|:| -3911 (-635 (-853))) (|:| -2738 (-635 (-853))) (|:| |presup| (-635 (-853))) (|:| -3891 (-635 (-853))) (|:| |args| (-635 (-853))))) 82)) (-1816 (($) 123 T CONST)) (-1873 (((-1251)) 105)) (-2269 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) 66) (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) 73)) (-3315 (($) 94) (($ $) 100)) (-1323 (($ $) 83)) (-3910 (($ $ $) NIL)) (-3542 (($ $ $) NIL)) (-2192 (((-635 $) $) 106)) (-4310 (((-1145) $) 89)) (-2975 (((-1107) $) NIL)) (-2195 (($ $ (-635 (-853))) 58)) (-3224 (((-534) $) 46) (((-1163) $) 47) (((-882 (-558)) $) 77) (((-882 (-378)) $) 75)) (-3220 (((-853) $) 53) (($ (-1145)) 48)) (-1827 (($ $ (-635 (-853))) 60)) (-1338 (((-1145) $) 33) (((-1145) $ (-112)) 34) (((-1251) (-813) $) 35) (((-1251) (-813) $ (-112)) 36)) (-1747 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1683 (((-112) $ $) 49)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 50)))
+(((-1163) (-13 (-841) (-606 (-534)) (-819) (-606 (-1163)) (-608 (-1145)) (-606 (-882 (-558))) (-606 (-882 (-378))) (-876 (-558)) (-876 (-378)) (-10 -8 (-15 -3315 ($)) (-15 -3315 ($ $)) (-15 -1873 ((-1251))) (-15 -1323 ($ $)) (-15 -1860 ((-112) $)) (-15 -2889 ((-2 (|:| -3911 (-635 (-853))) (|:| -2738 (-635 (-853))) (|:| |presup| (-635 (-853))) (|:| -3891 (-635 (-853))) (|:| |args| (-635 (-853)))) $)) (-15 -2531 ($ $ (-635 (-635 (-853))))) (-15 -2531 ($ $ (-2 (|:| -3911 (-635 (-853))) (|:| -2738 (-635 (-853))) (|:| |presup| (-635 (-853))) (|:| -3891 (-635 (-853))) (|:| |args| (-635 (-853)))))) (-15 -1850 ($ $ (-635 (-853)))) (-15 -1838 ($ $ (-635 (-853)))) (-15 -1827 ($ $ (-635 (-853)))) (-15 -2195 ($ $ (-635 (-853)))) (-15 -3994 ((-1145) $)) (-15 -2192 ((-635 $) $)) (-15 -1816 ($) -3707)))) (T -1163))
+((-3315 (*1 *1) (-5 *1 (-1163))) (-3315 (*1 *1 *1) (-5 *1 (-1163))) (-1873 (*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-1163)))) (-1323 (*1 *1 *1) (-5 *1 (-1163))) (-1860 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1163)))) (-2889 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3911 (-635 (-853))) (|:| -2738 (-635 (-853))) (|:| |presup| (-635 (-853))) (|:| -3891 (-635 (-853))) (|:| |args| (-635 (-853))))) (-5 *1 (-1163)))) (-2531 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-635 (-853)))) (-5 *1 (-1163)))) (-2531 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3911 (-635 (-853))) (|:| -2738 (-635 (-853))) (|:| |presup| (-635 (-853))) (|:| -3891 (-635 (-853))) (|:| |args| (-635 (-853))))) (-5 *1 (-1163)))) (-1850 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-1163)))) (-1838 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-1163)))) (-1827 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-1163)))) (-2195 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-1163)))) (-3994 (*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-1163)))) (-2192 (*1 *2 *1) (-12 (-5 *2 (-635 (-1163))) (-5 *1 (-1163)))) (-1816 (*1 *1) (-5 *1 (-1163))))
+(-13 (-841) (-606 (-534)) (-819) (-606 (-1163)) (-608 (-1145)) (-606 (-882 (-558))) (-606 (-882 (-378))) (-876 (-558)) (-876 (-378)) (-10 -8 (-15 -3315 ($)) (-15 -3315 ($ $)) (-15 -1873 ((-1251))) (-15 -1323 ($ $)) (-15 -1860 ((-112) $)) (-15 -2889 ((-2 (|:| -3911 (-635 (-853))) (|:| -2738 (-635 (-853))) (|:| |presup| (-635 (-853))) (|:| -3891 (-635 (-853))) (|:| |args| (-635 (-853)))) $)) (-15 -2531 ($ $ (-635 (-635 (-853))))) (-15 -2531 ($ $ (-2 (|:| -3911 (-635 (-853))) (|:| -2738 (-635 (-853))) (|:| |presup| (-635 (-853))) (|:| -3891 (-635 (-853))) (|:| |args| (-635 (-853)))))) (-15 -1850 ($ $ (-635 (-853)))) (-15 -1838 ($ $ (-635 (-853)))) (-15 -1827 ($ $ (-635 (-853)))) (-15 -2195 ($ $ (-635 (-853)))) (-15 -3994 ((-1145) $)) (-15 -2192 ((-635 $) $)) (-15 -1816 ($) -3707)))
+((-1884 (((-1246 |#1|) |#1| (-911)) 16) (((-1246 |#1|) (-635 |#1|)) 20)))
+(((-1164 |#1|) (-10 -7 (-15 -1884 ((-1246 |#1|) (-635 |#1|))) (-15 -1884 ((-1246 |#1|) |#1| (-911)))) (-1039)) (T -1164))
+((-1884 (*1 *2 *3 *4) (-12 (-5 *4 (-911)) (-5 *2 (-1246 *3)) (-5 *1 (-1164 *3)) (-4 *3 (-1039)))) (-1884 (*1 *2 *3) (-12 (-5 *3 (-635 *4)) (-4 *4 (-1039)) (-5 *2 (-1246 *4)) (-5 *1 (-1164 *4)))))
+(-10 -7 (-15 -1884 ((-1246 |#1|) (-635 |#1|))) (-15 -1884 ((-1246 |#1|) |#1| (-911))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1881 (($ $) NIL (|has| |#1| (-550)))) (-1857 (((-112) $) NIL (|has| |#1| (-550)))) (-2089 (((-3 $ "failed") $ $) NIL)) (-1816 (($) NIL T CONST)) (-3069 (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-3 |#1| "failed") $) NIL)) (-1863 (((-558) $) NIL (|has| |#1| (-1028 (-558)))) (((-406 (-558)) $) NIL (|has| |#1| (-1028 (-406 (-558))))) ((|#1| $) NIL)) (-2490 (($ $) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-2782 (($ $) NIL (|has| |#1| (-450)))) (-3888 (($ $ |#1| (-961) $) NIL)) (-2035 (((-112) $) NIL)) (-2110 (((-762) $) NIL)) (-4238 (((-112) $) NIL)) (-2648 (($ |#1| (-961)) NIL)) (-2524 (((-961) $) NIL)) (-3898 (($ (-1 (-961) (-961)) $) NIL)) (-3167 (($ (-1 |#1| |#1|) $) NIL)) (-2451 (($ $) NIL)) (-2463 ((|#1| $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-2429 (((-112) $) NIL)) (-2440 ((|#1| $) NIL)) (-3120 (($ $ (-961) |#1| $) NIL (-12 (|has| (-961) (-130)) (|has| |#1| (-550))))) (-3983 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550)))) (-4323 (((-961) $) NIL)) (-2504 ((|#1| $) NIL (|has| |#1| (-450)))) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL (|has| |#1| (-550))) (($ |#1|) NIL) (($ (-406 (-558))) NIL (-3998 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558))))))) (-2583 (((-635 |#1|) $) NIL)) (-3736 ((|#1| $ (-961)) NIL)) (-3698 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2542 (((-762)) NIL)) (-3879 (($ $ $ (-762)) NIL (|has| |#1| (-171)))) (-1870 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2131 (($) 9 T CONST)) (-2142 (($) 14 T CONST)) (-1683 (((-112) $ $) 16)) (-1810 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) 19)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558)))))))
+(((-1165 |#1|) (-13 (-325 |#1| (-961)) (-10 -8 (IF (|has| |#1| (-550)) (IF (|has| (-961) (-130)) (-15 -3120 ($ $ (-961) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4380)) (-6 -4380) |%noBranch|))) (-1039)) (T -1165))
+((-3120 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-961)) (-4 *2 (-130)) (-5 *1 (-1165 *3)) (-4 *3 (-550)) (-4 *3 (-1039)))))
+(-13 (-325 |#1| (-961)) (-10 -8 (IF (|has| |#1| (-550)) (IF (|has| (-961) (-130)) (-15 -3120 ($ $ (-961) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4380)) (-6 -4380) |%noBranch|)))
+((-1894 (((-1167) (-1163) $) 25)) (-2003 (($) 29)) (-1916 (((-3 (|:| |fst| (-433)) (|:| -2912 "void")) (-1163) $) 22)) (-1937 (((-1251) (-1163) (-3 (|:| |fst| (-433)) (|:| -2912 "void")) $) 41) (((-1251) (-1163) (-3 (|:| |fst| (-433)) (|:| -2912 "void"))) 42) (((-1251) (-3 (|:| |fst| (-433)) (|:| -2912 "void"))) 43)) (-2013 (((-1251) (-1163)) 58)) (-1928 (((-1251) (-1163) $) 55) (((-1251) (-1163)) 56) (((-1251)) 57)) (-1983 (((-1251) (-1163)) 37)) (-1958 (((-1163)) 36)) (-2083 (($) 34)) (-2478 (((-436) (-1163) (-436) (-1163) $) 45) (((-436) (-635 (-1163)) (-436) (-1163) $) 49) (((-436) (-1163) (-436)) 46) (((-436) (-1163) (-436) (-1163)) 50)) (-1971 (((-1163)) 35)) (-3220 (((-853) $) 28)) (-1993 (((-1251)) 30) (((-1251) (-1163)) 33)) (-1903 (((-635 (-1163)) (-1163) $) 24)) (-1947 (((-1251) (-1163) (-635 (-1163)) $) 38) (((-1251) (-1163) (-635 (-1163))) 39) (((-1251) (-635 (-1163))) 40)))
+(((-1166) (-13 (-605 (-853)) (-10 -8 (-15 -2003 ($)) (-15 -1993 ((-1251))) (-15 -1993 ((-1251) (-1163))) (-15 -2478 ((-436) (-1163) (-436) (-1163) $)) (-15 -2478 ((-436) (-635 (-1163)) (-436) (-1163) $)) (-15 -2478 ((-436) (-1163) (-436))) (-15 -2478 ((-436) (-1163) (-436) (-1163))) (-15 -1983 ((-1251) (-1163))) (-15 -1971 ((-1163))) (-15 -1958 ((-1163))) (-15 -1947 ((-1251) (-1163) (-635 (-1163)) $)) (-15 -1947 ((-1251) (-1163) (-635 (-1163)))) (-15 -1947 ((-1251) (-635 (-1163)))) (-15 -1937 ((-1251) (-1163) (-3 (|:| |fst| (-433)) (|:| -2912 "void")) $)) (-15 -1937 ((-1251) (-1163) (-3 (|:| |fst| (-433)) (|:| -2912 "void")))) (-15 -1937 ((-1251) (-3 (|:| |fst| (-433)) (|:| -2912 "void")))) (-15 -1928 ((-1251) (-1163) $)) (-15 -1928 ((-1251) (-1163))) (-15 -1928 ((-1251))) (-15 -2013 ((-1251) (-1163))) (-15 -2083 ($)) (-15 -1916 ((-3 (|:| |fst| (-433)) (|:| -2912 "void")) (-1163) $)) (-15 -1903 ((-635 (-1163)) (-1163) $)) (-15 -1894 ((-1167) (-1163) $))))) (T -1166))
+((-2003 (*1 *1) (-5 *1 (-1166))) (-1993 (*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-1166)))) (-1993 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1251)) (-5 *1 (-1166)))) (-2478 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-436)) (-5 *3 (-1163)) (-5 *1 (-1166)))) (-2478 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-436)) (-5 *3 (-635 (-1163))) (-5 *4 (-1163)) (-5 *1 (-1166)))) (-2478 (*1 *2 *3 *2) (-12 (-5 *2 (-436)) (-5 *3 (-1163)) (-5 *1 (-1166)))) (-2478 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-436)) (-5 *3 (-1163)) (-5 *1 (-1166)))) (-1983 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1251)) (-5 *1 (-1166)))) (-1971 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1166)))) (-1958 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1166)))) (-1947 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-635 (-1163))) (-5 *3 (-1163)) (-5 *2 (-1251)) (-5 *1 (-1166)))) (-1947 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-1163))) (-5 *3 (-1163)) (-5 *2 (-1251)) (-5 *1 (-1166)))) (-1947 (*1 *2 *3) (-12 (-5 *3 (-635 (-1163))) (-5 *2 (-1251)) (-5 *1 (-1166)))) (-1937 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1163)) (-5 *4 (-3 (|:| |fst| (-433)) (|:| -2912 "void"))) (-5 *2 (-1251)) (-5 *1 (-1166)))) (-1937 (*1 *2 *3 *4) (-12 (-5 *3 (-1163)) (-5 *4 (-3 (|:| |fst| (-433)) (|:| -2912 "void"))) (-5 *2 (-1251)) (-5 *1 (-1166)))) (-1937 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-433)) (|:| -2912 "void"))) (-5 *2 (-1251)) (-5 *1 (-1166)))) (-1928 (*1 *2 *3 *1) (-12 (-5 *3 (-1163)) (-5 *2 (-1251)) (-5 *1 (-1166)))) (-1928 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1251)) (-5 *1 (-1166)))) (-1928 (*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-1166)))) (-2013 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1251)) (-5 *1 (-1166)))) (-2083 (*1 *1) (-5 *1 (-1166))) (-1916 (*1 *2 *3 *1) (-12 (-5 *3 (-1163)) (-5 *2 (-3 (|:| |fst| (-433)) (|:| -2912 "void"))) (-5 *1 (-1166)))) (-1903 (*1 *2 *3 *1) (-12 (-5 *2 (-635 (-1163))) (-5 *1 (-1166)) (-5 *3 (-1163)))) (-1894 (*1 *2 *3 *1) (-12 (-5 *3 (-1163)) (-5 *2 (-1167)) (-5 *1 (-1166)))))
+(-13 (-605 (-853)) (-10 -8 (-15 -2003 ($)) (-15 -1993 ((-1251))) (-15 -1993 ((-1251) (-1163))) (-15 -2478 ((-436) (-1163) (-436) (-1163) $)) (-15 -2478 ((-436) (-635 (-1163)) (-436) (-1163) $)) (-15 -2478 ((-436) (-1163) (-436))) (-15 -2478 ((-436) (-1163) (-436) (-1163))) (-15 -1983 ((-1251) (-1163))) (-15 -1971 ((-1163))) (-15 -1958 ((-1163))) (-15 -1947 ((-1251) (-1163) (-635 (-1163)) $)) (-15 -1947 ((-1251) (-1163) (-635 (-1163)))) (-15 -1947 ((-1251) (-635 (-1163)))) (-15 -1937 ((-1251) (-1163) (-3 (|:| |fst| (-433)) (|:| -2912 "void")) $)) (-15 -1937 ((-1251) (-1163) (-3 (|:| |fst| (-433)) (|:| -2912 "void")))) (-15 -1937 ((-1251) (-3 (|:| |fst| (-433)) (|:| -2912 "void")))) (-15 -1928 ((-1251) (-1163) $)) (-15 -1928 ((-1251) (-1163))) (-15 -1928 ((-1251))) (-15 -2013 ((-1251) (-1163))) (-15 -2083 ($)) (-15 -1916 ((-3 (|:| |fst| (-433)) (|:| -2912 "void")) (-1163) $)) (-15 -1903 ((-635 (-1163)) (-1163) $)) (-15 -1894 ((-1167) (-1163) $))))
+((-2033 (((-635 (-635 (-3 (|:| -1323 (-1163)) (|:| -4216 (-635 (-3 (|:| S (-1163)) (|:| P (-942 (-558))))))))) $) 59)) (-2052 (((-635 (-3 (|:| -1323 (-1163)) (|:| -4216 (-635 (-3 (|:| S (-1163)) (|:| P (-942 (-558)))))))) (-433) $) 43)) (-4266 (($ (-635 (-2 (|:| -2700 (-1163)) (|:| -2981 (-436))))) 17)) (-2013 (((-1251) $) 67)) (-2063 (((-635 (-1163)) $) 22)) (-2022 (((-1091) $) 55)) (-2073 (((-436) (-1163) $) 27)) (-2042 (((-635 (-1163)) $) 30)) (-2083 (($) 19)) (-2478 (((-436) (-635 (-1163)) (-436) $) 25) (((-436) (-1163) (-436) $) 24)) (-3220 (((-853) $) 9) (((-1173 (-1163) (-436)) $) 13)))
+(((-1167) (-13 (-605 (-853)) (-10 -8 (-15 -3220 ((-1173 (-1163) (-436)) $)) (-15 -2083 ($)) (-15 -2478 ((-436) (-635 (-1163)) (-436) $)) (-15 -2478 ((-436) (-1163) (-436) $)) (-15 -2073 ((-436) (-1163) $)) (-15 -2063 ((-635 (-1163)) $)) (-15 -2052 ((-635 (-3 (|:| -1323 (-1163)) (|:| -4216 (-635 (-3 (|:| S (-1163)) (|:| P (-942 (-558)))))))) (-433) $)) (-15 -2042 ((-635 (-1163)) $)) (-15 -2033 ((-635 (-635 (-3 (|:| -1323 (-1163)) (|:| -4216 (-635 (-3 (|:| S (-1163)) (|:| P (-942 (-558))))))))) $)) (-15 -2022 ((-1091) $)) (-15 -2013 ((-1251) $)) (-15 -4266 ($ (-635 (-2 (|:| -2700 (-1163)) (|:| -2981 (-436))))))))) (T -1167))
+((-3220 (*1 *2 *1) (-12 (-5 *2 (-1173 (-1163) (-436))) (-5 *1 (-1167)))) (-2083 (*1 *1) (-5 *1 (-1167))) (-2478 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-436)) (-5 *3 (-635 (-1163))) (-5 *1 (-1167)))) (-2478 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-436)) (-5 *3 (-1163)) (-5 *1 (-1167)))) (-2073 (*1 *2 *3 *1) (-12 (-5 *3 (-1163)) (-5 *2 (-436)) (-5 *1 (-1167)))) (-2063 (*1 *2 *1) (-12 (-5 *2 (-635 (-1163))) (-5 *1 (-1167)))) (-2052 (*1 *2 *3 *1) (-12 (-5 *3 (-433)) (-5 *2 (-635 (-3 (|:| -1323 (-1163)) (|:| -4216 (-635 (-3 (|:| S (-1163)) (|:| P (-942 (-558))))))))) (-5 *1 (-1167)))) (-2042 (*1 *2 *1) (-12 (-5 *2 (-635 (-1163))) (-5 *1 (-1167)))) (-2033 (*1 *2 *1) (-12 (-5 *2 (-635 (-635 (-3 (|:| -1323 (-1163)) (|:| -4216 (-635 (-3 (|:| S (-1163)) (|:| P (-942 (-558)))))))))) (-5 *1 (-1167)))) (-2022 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-1167)))) (-2013 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-1167)))) (-4266 (*1 *1 *2) (-12 (-5 *2 (-635 (-2 (|:| -2700 (-1163)) (|:| -2981 (-436))))) (-5 *1 (-1167)))))
+(-13 (-605 (-853)) (-10 -8 (-15 -3220 ((-1173 (-1163) (-436)) $)) (-15 -2083 ($)) (-15 -2478 ((-436) (-635 (-1163)) (-436) $)) (-15 -2478 ((-436) (-1163) (-436) $)) (-15 -2073 ((-436) (-1163) $)) (-15 -2063 ((-635 (-1163)) $)) (-15 -2052 ((-635 (-3 (|:| -1323 (-1163)) (|:| -4216 (-635 (-3 (|:| S (-1163)) (|:| P (-942 (-558)))))))) (-433) $)) (-15 -2042 ((-635 (-1163)) $)) (-15 -2033 ((-635 (-635 (-3 (|:| -1323 (-1163)) (|:| -4216 (-635 (-3 (|:| S (-1163)) (|:| P (-942 (-558))))))))) $)) (-15 -2022 ((-1091) $)) (-15 -2013 ((-1251) $)) (-15 -4266 ($ (-635 (-2 (|:| -2700 (-1163)) (|:| -2981 (-436))))))))
+((-3207 (((-112) $ $) NIL)) (-3069 (((-3 (-558) "failed") $) 29) (((-3 (-224) "failed") $) 35) (((-3 (-1163) "failed") $) 41) (((-3 (-1145) "failed") $) 47)) (-1863 (((-558) $) 30) (((-224) $) 36) (((-1163) $) 42) (((-1145) $) 48)) (-2130 (((-112) $) 53)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-2118 (((-3 (-558) (-224) (-1163) (-1145) $) $) 55)) (-2106 (((-635 $) $) 57)) (-3224 (((-1091) $) 24) (($ (-1091)) 25)) (-2094 (((-112) $) 56)) (-3220 (((-853) $) 23) (($ (-558)) 26) (($ (-224)) 32) (($ (-1163)) 38) (($ (-1145)) 44) (((-534) $) 59) (((-558) $) 31) (((-224) $) 37) (((-1163) $) 43) (((-1145) $) 49)) (-2120 (((-112) $ (|[\|\|]| (-558))) 10) (((-112) $ (|[\|\|]| (-224))) 13) (((-112) $ (|[\|\|]| (-1163))) 19) (((-112) $ (|[\|\|]| (-1145))) 16)) (-2141 (($ (-1163) (-635 $)) 51) (($ $ (-635 $)) 52)) (-1583 (((-558) $) 27) (((-224) $) 33) (((-1163) $) 39) (((-1145) $) 45)) (-1683 (((-112) $ $) 7)))
+(((-1168) (-13 (-1241) (-1087) (-1028 (-558)) (-1028 (-224)) (-1028 (-1163)) (-1028 (-1145)) (-605 (-534)) (-10 -8 (-15 -3224 ((-1091) $)) (-15 -3224 ($ (-1091))) (-15 -3220 ((-558) $)) (-15 -1583 ((-558) $)) (-15 -3220 ((-224) $)) (-15 -1583 ((-224) $)) (-15 -3220 ((-1163) $)) (-15 -1583 ((-1163) $)) (-15 -3220 ((-1145) $)) (-15 -1583 ((-1145) $)) (-15 -2141 ($ (-1163) (-635 $))) (-15 -2141 ($ $ (-635 $))) (-15 -2130 ((-112) $)) (-15 -2118 ((-3 (-558) (-224) (-1163) (-1145) $) $)) (-15 -2106 ((-635 $) $)) (-15 -2094 ((-112) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-558)))) (-15 -2120 ((-112) $ (|[\|\|]| (-224)))) (-15 -2120 ((-112) $ (|[\|\|]| (-1163)))) (-15 -2120 ((-112) $ (|[\|\|]| (-1145))))))) (T -1168))
+((-3224 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-1168)))) (-3224 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1168)))) (-3220 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1168)))) (-1583 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1168)))) (-3220 (*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-1168)))) (-1583 (*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-1168)))) (-3220 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1168)))) (-1583 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1168)))) (-3220 (*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-1168)))) (-1583 (*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-1168)))) (-2141 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-635 (-1168))) (-5 *1 (-1168)))) (-2141 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-1168))) (-5 *1 (-1168)))) (-2130 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1168)))) (-2118 (*1 *2 *1) (-12 (-5 *2 (-3 (-558) (-224) (-1163) (-1145) (-1168))) (-5 *1 (-1168)))) (-2106 (*1 *2 *1) (-12 (-5 *2 (-635 (-1168))) (-5 *1 (-1168)))) (-2094 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1168)))) (-2120 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-558))) (-5 *2 (-112)) (-5 *1 (-1168)))) (-2120 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-224))) (-5 *2 (-112)) (-5 *1 (-1168)))) (-2120 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1163))) (-5 *2 (-112)) (-5 *1 (-1168)))) (-2120 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1145))) (-5 *2 (-112)) (-5 *1 (-1168)))))
+(-13 (-1241) (-1087) (-1028 (-558)) (-1028 (-224)) (-1028 (-1163)) (-1028 (-1145)) (-605 (-534)) (-10 -8 (-15 -3224 ((-1091) $)) (-15 -3224 ($ (-1091))) (-15 -3220 ((-558) $)) (-15 -1583 ((-558) $)) (-15 -3220 ((-224) $)) (-15 -1583 ((-224) $)) (-15 -3220 ((-1163) $)) (-15 -1583 ((-1163) $)) (-15 -3220 ((-1145) $)) (-15 -1583 ((-1145) $)) (-15 -2141 ($ (-1163) (-635 $))) (-15 -2141 ($ $ (-635 $))) (-15 -2130 ((-112) $)) (-15 -2118 ((-3 (-558) (-224) (-1163) (-1145) $) $)) (-15 -2106 ((-635 $) $)) (-15 -2094 ((-112) $)) (-15 -2120 ((-112) $ (|[\|\|]| (-558)))) (-15 -2120 ((-112) $ (|[\|\|]| (-224)))) (-15 -2120 ((-112) $ (|[\|\|]| (-1163)))) (-15 -2120 ((-112) $ (|[\|\|]| (-1145))))))
+((-2162 (((-635 (-635 (-942 |#1|))) (-635 (-406 (-942 |#1|))) (-635 (-1163))) 57)) (-2153 (((-635 (-293 (-406 (-942 |#1|)))) (-293 (-406 (-942 |#1|)))) 69) (((-635 (-293 (-406 (-942 |#1|)))) (-406 (-942 |#1|))) 65) (((-635 (-293 (-406 (-942 |#1|)))) (-293 (-406 (-942 |#1|))) (-1163)) 70) (((-635 (-293 (-406 (-942 |#1|)))) (-406 (-942 |#1|)) (-1163)) 64) (((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-293 (-406 (-942 |#1|))))) 93) (((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-406 (-942 |#1|)))) 92) (((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-293 (-406 (-942 |#1|)))) (-635 (-1163))) 94) (((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-406 (-942 |#1|))) (-635 (-1163))) 91)))
+(((-1169 |#1|) (-10 -7 (-15 -2153 ((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-406 (-942 |#1|))) (-635 (-1163)))) (-15 -2153 ((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-293 (-406 (-942 |#1|)))) (-635 (-1163)))) (-15 -2153 ((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-406 (-942 |#1|))))) (-15 -2153 ((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-293 (-406 (-942 |#1|)))))) (-15 -2153 ((-635 (-293 (-406 (-942 |#1|)))) (-406 (-942 |#1|)) (-1163))) (-15 -2153 ((-635 (-293 (-406 (-942 |#1|)))) (-293 (-406 (-942 |#1|))) (-1163))) (-15 -2153 ((-635 (-293 (-406 (-942 |#1|)))) (-406 (-942 |#1|)))) (-15 -2153 ((-635 (-293 (-406 (-942 |#1|)))) (-293 (-406 (-942 |#1|))))) (-15 -2162 ((-635 (-635 (-942 |#1|))) (-635 (-406 (-942 |#1|))) (-635 (-1163))))) (-550)) (T -1169))
+((-2162 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-406 (-942 *5)))) (-5 *4 (-635 (-1163))) (-4 *5 (-550)) (-5 *2 (-635 (-635 (-942 *5)))) (-5 *1 (-1169 *5)))) (-2153 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-635 (-293 (-406 (-942 *4))))) (-5 *1 (-1169 *4)) (-5 *3 (-293 (-406 (-942 *4)))))) (-2153 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-635 (-293 (-406 (-942 *4))))) (-5 *1 (-1169 *4)) (-5 *3 (-406 (-942 *4))))) (-2153 (*1 *2 *3 *4) (-12 (-5 *4 (-1163)) (-4 *5 (-550)) (-5 *2 (-635 (-293 (-406 (-942 *5))))) (-5 *1 (-1169 *5)) (-5 *3 (-293 (-406 (-942 *5)))))) (-2153 (*1 *2 *3 *4) (-12 (-5 *4 (-1163)) (-4 *5 (-550)) (-5 *2 (-635 (-293 (-406 (-942 *5))))) (-5 *1 (-1169 *5)) (-5 *3 (-406 (-942 *5))))) (-2153 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-635 (-635 (-293 (-406 (-942 *4)))))) (-5 *1 (-1169 *4)) (-5 *3 (-635 (-293 (-406 (-942 *4))))))) (-2153 (*1 *2 *3) (-12 (-5 *3 (-635 (-406 (-942 *4)))) (-4 *4 (-550)) (-5 *2 (-635 (-635 (-293 (-406 (-942 *4)))))) (-5 *1 (-1169 *4)))) (-2153 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-1163))) (-4 *5 (-550)) (-5 *2 (-635 (-635 (-293 (-406 (-942 *5)))))) (-5 *1 (-1169 *5)) (-5 *3 (-635 (-293 (-406 (-942 *5))))))) (-2153 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-406 (-942 *5)))) (-5 *4 (-635 (-1163))) (-4 *5 (-550)) (-5 *2 (-635 (-635 (-293 (-406 (-942 *5)))))) (-5 *1 (-1169 *5)))))
+(-10 -7 (-15 -2153 ((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-406 (-942 |#1|))) (-635 (-1163)))) (-15 -2153 ((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-293 (-406 (-942 |#1|)))) (-635 (-1163)))) (-15 -2153 ((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-406 (-942 |#1|))))) (-15 -2153 ((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-293 (-406 (-942 |#1|)))))) (-15 -2153 ((-635 (-293 (-406 (-942 |#1|)))) (-406 (-942 |#1|)) (-1163))) (-15 -2153 ((-635 (-293 (-406 (-942 |#1|)))) (-293 (-406 (-942 |#1|))) (-1163))) (-15 -2153 ((-635 (-293 (-406 (-942 |#1|)))) (-406 (-942 |#1|)))) (-15 -2153 ((-635 (-293 (-406 (-942 |#1|)))) (-293 (-406 (-942 |#1|))))) (-15 -2162 ((-635 (-635 (-942 |#1|))) (-635 (-406 (-942 |#1|))) (-635 (-1163)))))
+((-2173 (((-1145)) 7)) (-2194 (((-1145)) 9)) (-2433 (((-1251) (-1145)) 11)) (-2185 (((-1145)) 8)))
+(((-1170) (-10 -7 (-15 -2173 ((-1145))) (-15 -2185 ((-1145))) (-15 -2194 ((-1145))) (-15 -2433 ((-1251) (-1145))))) (T -1170))
+((-2433 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1170)))) (-2194 (*1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1170)))) (-2185 (*1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1170)))) (-2173 (*1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1170)))))
+(-10 -7 (-15 -2173 ((-1145))) (-15 -2185 ((-1145))) (-15 -2194 ((-1145))) (-15 -2433 ((-1251) (-1145))))
+((-2239 (((-635 (-635 |#1|)) (-635 (-635 |#1|)) (-635 (-635 (-635 |#1|)))) 38)) (-4094 (((-635 (-635 (-635 |#1|))) (-635 (-635 |#1|))) 24)) (-4107 (((-1172 (-635 |#1|)) (-635 |#1|)) 34)) (-4130 (((-635 (-635 |#1|)) (-635 |#1|)) 30)) (-1906 (((-2 (|:| |f1| (-635 |#1|)) (|:| |f2| (-635 (-635 (-635 |#1|)))) (|:| |f3| (-635 (-635 |#1|))) (|:| |f4| (-635 (-635 (-635 |#1|))))) (-635 (-635 (-635 |#1|)))) 37)) (-4154 (((-2 (|:| |f1| (-635 |#1|)) (|:| |f2| (-635 (-635 (-635 |#1|)))) (|:| |f3| (-635 (-635 |#1|))) (|:| |f4| (-635 (-635 (-635 |#1|))))) (-635 |#1|) (-635 (-635 (-635 |#1|))) (-635 (-635 |#1|)) (-635 (-635 (-635 |#1|))) (-635 (-635 (-635 |#1|))) (-635 (-635 (-635 |#1|)))) 36)) (-4119 (((-635 (-635 |#1|)) (-635 (-635 |#1|))) 28)) (-4141 (((-635 |#1|) (-635 |#1|)) 31)) (-2230 (((-635 (-635 (-635 |#1|))) (-635 |#1|) (-635 (-635 (-635 |#1|)))) 18)) (-2218 (((-635 (-635 (-635 |#1|))) (-1 (-112) |#1| |#1|) (-635 |#1|) (-635 (-635 (-635 |#1|)))) 16)) (-2207 (((-2 (|:| |fs| (-112)) (|:| |sd| (-635 |#1|)) (|:| |td| (-635 (-635 |#1|)))) (-1 (-112) |#1| |#1|) (-635 |#1|) (-635 (-635 |#1|))) 14)) (-2252 (((-635 (-635 |#1|)) (-635 (-635 (-635 |#1|)))) 39)) (-2262 (((-635 (-635 |#1|)) (-1172 (-635 |#1|))) 41)))
+(((-1171 |#1|) (-10 -7 (-15 -2207 ((-2 (|:| |fs| (-112)) (|:| |sd| (-635 |#1|)) (|:| |td| (-635 (-635 |#1|)))) (-1 (-112) |#1| |#1|) (-635 |#1|) (-635 (-635 |#1|)))) (-15 -2218 ((-635 (-635 (-635 |#1|))) (-1 (-112) |#1| |#1|) (-635 |#1|) (-635 (-635 (-635 |#1|))))) (-15 -2230 ((-635 (-635 (-635 |#1|))) (-635 |#1|) (-635 (-635 (-635 |#1|))))) (-15 -2239 ((-635 (-635 |#1|)) (-635 (-635 |#1|)) (-635 (-635 (-635 |#1|))))) (-15 -2252 ((-635 (-635 |#1|)) (-635 (-635 (-635 |#1|))))) (-15 -2262 ((-635 (-635 |#1|)) (-1172 (-635 |#1|)))) (-15 -4094 ((-635 (-635 (-635 |#1|))) (-635 (-635 |#1|)))) (-15 -4107 ((-1172 (-635 |#1|)) (-635 |#1|))) (-15 -4119 ((-635 (-635 |#1|)) (-635 (-635 |#1|)))) (-15 -4130 ((-635 (-635 |#1|)) (-635 |#1|))) (-15 -4141 ((-635 |#1|) (-635 |#1|))) (-15 -4154 ((-2 (|:| |f1| (-635 |#1|)) (|:| |f2| (-635 (-635 (-635 |#1|)))) (|:| |f3| (-635 (-635 |#1|))) (|:| |f4| (-635 (-635 (-635 |#1|))))) (-635 |#1|) (-635 (-635 (-635 |#1|))) (-635 (-635 |#1|)) (-635 (-635 (-635 |#1|))) (-635 (-635 (-635 |#1|))) (-635 (-635 (-635 |#1|))))) (-15 -1906 ((-2 (|:| |f1| (-635 |#1|)) (|:| |f2| (-635 (-635 (-635 |#1|)))) (|:| |f3| (-635 (-635 |#1|))) (|:| |f4| (-635 (-635 (-635 |#1|))))) (-635 (-635 (-635 |#1|)))))) (-841)) (T -1171))
+((-1906 (*1 *2 *3) (-12 (-4 *4 (-841)) (-5 *2 (-2 (|:| |f1| (-635 *4)) (|:| |f2| (-635 (-635 (-635 *4)))) (|:| |f3| (-635 (-635 *4))) (|:| |f4| (-635 (-635 (-635 *4)))))) (-5 *1 (-1171 *4)) (-5 *3 (-635 (-635 (-635 *4)))))) (-4154 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-841)) (-5 *3 (-635 *6)) (-5 *5 (-635 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-635 *5)) (|:| |f3| *5) (|:| |f4| (-635 *5)))) (-5 *1 (-1171 *6)) (-5 *4 (-635 *5)))) (-4141 (*1 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-841)) (-5 *1 (-1171 *3)))) (-4130 (*1 *2 *3) (-12 (-4 *4 (-841)) (-5 *2 (-635 (-635 *4))) (-5 *1 (-1171 *4)) (-5 *3 (-635 *4)))) (-4119 (*1 *2 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-841)) (-5 *1 (-1171 *3)))) (-4107 (*1 *2 *3) (-12 (-4 *4 (-841)) (-5 *2 (-1172 (-635 *4))) (-5 *1 (-1171 *4)) (-5 *3 (-635 *4)))) (-4094 (*1 *2 *3) (-12 (-4 *4 (-841)) (-5 *2 (-635 (-635 (-635 *4)))) (-5 *1 (-1171 *4)) (-5 *3 (-635 (-635 *4))))) (-2262 (*1 *2 *3) (-12 (-5 *3 (-1172 (-635 *4))) (-4 *4 (-841)) (-5 *2 (-635 (-635 *4))) (-5 *1 (-1171 *4)))) (-2252 (*1 *2 *3) (-12 (-5 *3 (-635 (-635 (-635 *4)))) (-5 *2 (-635 (-635 *4))) (-5 *1 (-1171 *4)) (-4 *4 (-841)))) (-2239 (*1 *2 *2 *3) (-12 (-5 *3 (-635 (-635 (-635 *4)))) (-5 *2 (-635 (-635 *4))) (-4 *4 (-841)) (-5 *1 (-1171 *4)))) (-2230 (*1 *2 *3 *2) (-12 (-5 *2 (-635 (-635 (-635 *4)))) (-5 *3 (-635 *4)) (-4 *4 (-841)) (-5 *1 (-1171 *4)))) (-2218 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-635 (-635 (-635 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-635 *5)) (-4 *5 (-841)) (-5 *1 (-1171 *5)))) (-2207 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-841)) (-5 *4 (-635 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-635 *4)))) (-5 *1 (-1171 *6)) (-5 *5 (-635 *4)))))
+(-10 -7 (-15 -2207 ((-2 (|:| |fs| (-112)) (|:| |sd| (-635 |#1|)) (|:| |td| (-635 (-635 |#1|)))) (-1 (-112) |#1| |#1|) (-635 |#1|) (-635 (-635 |#1|)))) (-15 -2218 ((-635 (-635 (-635 |#1|))) (-1 (-112) |#1| |#1|) (-635 |#1|) (-635 (-635 (-635 |#1|))))) (-15 -2230 ((-635 (-635 (-635 |#1|))) (-635 |#1|) (-635 (-635 (-635 |#1|))))) (-15 -2239 ((-635 (-635 |#1|)) (-635 (-635 |#1|)) (-635 (-635 (-635 |#1|))))) (-15 -2252 ((-635 (-635 |#1|)) (-635 (-635 (-635 |#1|))))) (-15 -2262 ((-635 (-635 |#1|)) (-1172 (-635 |#1|)))) (-15 -4094 ((-635 (-635 (-635 |#1|))) (-635 (-635 |#1|)))) (-15 -4107 ((-1172 (-635 |#1|)) (-635 |#1|))) (-15 -4119 ((-635 (-635 |#1|)) (-635 (-635 |#1|)))) (-15 -4130 ((-635 (-635 |#1|)) (-635 |#1|))) (-15 -4141 ((-635 |#1|) (-635 |#1|))) (-15 -4154 ((-2 (|:| |f1| (-635 |#1|)) (|:| |f2| (-635 (-635 (-635 |#1|)))) (|:| |f3| (-635 (-635 |#1|))) (|:| |f4| (-635 (-635 (-635 |#1|))))) (-635 |#1|) (-635 (-635 (-635 |#1|))) (-635 (-635 |#1|)) (-635 (-635 (-635 |#1|))) (-635 (-635 (-635 |#1|))) (-635 (-635 (-635 |#1|))))) (-15 -1906 ((-2 (|:| |f1| (-635 |#1|)) (|:| |f2| (-635 (-635 (-635 |#1|)))) (|:| |f3| (-635 (-635 |#1|))) (|:| |f4| (-635 (-635 (-635 |#1|))))) (-635 (-635 (-635 |#1|))))))
+((-4166 (($ (-635 (-635 |#1|))) 10)) (-4178 (((-635 (-635 |#1|)) $) 11)) (-3220 (((-853) $) 26)))
+(((-1172 |#1|) (-10 -8 (-15 -4166 ($ (-635 (-635 |#1|)))) (-15 -4178 ((-635 (-635 |#1|)) $)) (-15 -3220 ((-853) $))) (-1087)) (T -1172))
+((-3220 (*1 *2 *1) (-12 (-5 *2 (-853)) (-5 *1 (-1172 *3)) (-4 *3 (-1087)))) (-4178 (*1 *2 *1) (-12 (-5 *2 (-635 (-635 *3))) (-5 *1 (-1172 *3)) (-4 *3 (-1087)))) (-4166 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1087)) (-5 *1 (-1172 *3)))))
+(-10 -8 (-15 -4166 ($ (-635 (-635 |#1|)))) (-15 -4178 ((-635 (-635 |#1|)) $)) (-15 -3220 ((-853) $)))
+((-3207 (((-112) $ $) NIL (-3998 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-3303 (($) NIL) (($ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL)) (-3869 (((-1251) $ |#1| |#1|) NIL (|has| $ (-6 -4383)))) (-3026 (((-112) $ (-762)) NIL)) (-1532 ((|#2| $ |#1| |#2|) NIL)) (-4207 (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382)))) (-4329 (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382)))) (-3083 (((-3 |#2| "failed") |#1| $) NIL)) (-1816 (($) NIL T CONST)) (-2338 (($ $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087))))) (-3395 (($ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL (|has| $ (-6 -4382))) (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (((-3 |#2| "failed") |#1| $) NIL)) (-1539 (($ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382)))) (-3048 (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) NIL (|has| $ (-6 -4382))) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382)))) (-1817 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4383)))) (-1746 ((|#2| $ |#1|) NIL)) (-2240 (((-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (((-635 |#2|) $) NIL (|has| $ (-6 -4382)))) (-2986 (((-112) $ (-762)) NIL)) (-3889 ((|#1| $) NIL (|has| |#1| (-841)))) (-2122 (((-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (((-635 |#2|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#2| (-1087))))) (-3899 ((|#1| $) NIL (|has| |#1| (-841)))) (-1807 (($ (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4383))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL (-3998 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-3848 (((-635 |#1|) $) NIL)) (-3950 (((-112) |#1| $) NIL)) (-1722 (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL)) (-4328 (($ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL)) (-3920 (((-635 |#1|) $) NIL)) (-3929 (((-112) |#1| $) NIL)) (-2975 (((-1107) $) NIL (-3998 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-2305 ((|#2| $) NIL (|has| |#1| (-841)))) (-4307 (((-3 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) "failed") (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL)) (-3880 (($ $ |#2|) NIL (|has| $ (-6 -4383)))) (-3524 (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL)) (-3266 (((-112) (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))))) NIL (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-293 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) NIL (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-635 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3908 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#2| (-1087))))) (-3937 (((-635 |#2|) $) NIL)) (-3375 (((-112) $) NIL)) (-2083 (($) NIL)) (-2195 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2571 (($) NIL) (($ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL)) (-2988 (((-762) (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (((-762) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) NIL (-12 (|has| $ (-6 -4382)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (((-762) |#2| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#2| (-1087)))) (((-762) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4382)))) (-1553 (($ $) NIL)) (-3224 (((-534) $) NIL (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-606 (-534))))) (-3233 (($ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL)) (-3220 (((-853) $) NIL (-3998 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-605 (-853))) (|has| |#2| (-605 (-853)))))) (-3534 (($ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) NIL)) (-3277 (((-112) (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) NIL (|has| $ (-6 -4382))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) NIL (-3998 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-1173 |#1| |#2|) (-13 (-1176 |#1| |#2|) (-10 -7 (-6 -4382))) (-1087) (-1087)) (T -1173))
+NIL
+(-13 (-1176 |#1| |#2|) (-10 -7 (-6 -4382)))
+((-4190 ((|#1| (-635 |#1|)) 32)) (-4211 ((|#1| |#1| (-558)) 18)) (-4200 (((-1159 |#1|) |#1| (-911)) 15)))
+(((-1174 |#1|) (-10 -7 (-15 -4190 (|#1| (-635 |#1|))) (-15 -4200 ((-1159 |#1|) |#1| (-911))) (-15 -4211 (|#1| |#1| (-558)))) (-362)) (T -1174))
+((-4211 (*1 *2 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-1174 *2)) (-4 *2 (-362)))) (-4200 (*1 *2 *3 *4) (-12 (-5 *4 (-911)) (-5 *2 (-1159 *3)) (-5 *1 (-1174 *3)) (-4 *3 (-362)))) (-4190 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-5 *1 (-1174 *2)) (-4 *2 (-362)))))
+(-10 -7 (-15 -4190 (|#1| (-635 |#1|))) (-15 -4200 ((-1159 |#1|) |#1| (-911))) (-15 -4211 (|#1| |#1| (-558))))
+((-3303 (($) 10) (($ (-635 (-2 (|:| -2700 |#2|) (|:| -2981 |#3|)))) 14)) (-3395 (($ (-2 (|:| -2700 |#2|) (|:| -2981 |#3|)) $) 61) (($ (-1 (-112) (-2 (|:| -2700 |#2|) (|:| -2981 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2240 (((-635 (-2 (|:| -2700 |#2|) (|:| -2981 |#3|))) $) 39) (((-635 |#3|) $) 41)) (-1807 (($ (-1 (-2 (|:| -2700 |#2|) (|:| -2981 |#3|)) (-2 (|:| -2700 |#2|) (|:| -2981 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-3167 (($ (-1 (-2 (|:| -2700 |#2|) (|:| -2981 |#3|)) (-2 (|:| -2700 |#2|) (|:| -2981 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1722 (((-2 (|:| -2700 |#2|) (|:| -2981 |#3|)) $) 54)) (-4328 (($ (-2 (|:| -2700 |#2|) (|:| -2981 |#3|)) $) 16)) (-3920 (((-635 |#2|) $) 19)) (-3929 (((-112) |#2| $) 59)) (-4307 (((-3 (-2 (|:| -2700 |#2|) (|:| -2981 |#3|)) "failed") (-1 (-112) (-2 (|:| -2700 |#2|) (|:| -2981 |#3|))) $) 58)) (-3524 (((-2 (|:| -2700 |#2|) (|:| -2981 |#3|)) $) 63)) (-3266 (((-112) (-1 (-112) (-2 (|:| -2700 |#2|) (|:| -2981 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 66)) (-3937 (((-635 |#3|) $) 43)) (-2195 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-2988 (((-762) (-1 (-112) (-2 (|:| -2700 |#2|) (|:| -2981 |#3|))) $) NIL) (((-762) (-2 (|:| -2700 |#2|) (|:| -2981 |#3|)) $) NIL) (((-762) |#3| $) NIL) (((-762) (-1 (-112) |#3|) $) 67)) (-3220 (((-853) $) 27)) (-3277 (((-112) (-1 (-112) (-2 (|:| -2700 |#2|) (|:| -2981 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 65)) (-1683 (((-112) $ $) 49)))
+(((-1175 |#1| |#2| |#3|) (-10 -8 (-15 -1683 ((-112) |#1| |#1|)) (-15 -3220 ((-853) |#1|)) (-15 -3167 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3303 (|#1| (-635 (-2 (|:| -2700 |#2|) (|:| -2981 |#3|))))) (-15 -3303 (|#1|)) (-15 -3167 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1807 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3277 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3266 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2988 ((-762) (-1 (-112) |#3|) |#1|)) (-15 -2240 ((-635 |#3|) |#1|)) (-15 -2988 ((-762) |#3| |#1|)) (-15 -2195 (|#3| |#1| |#2| |#3|)) (-15 -2195 (|#3| |#1| |#2|)) (-15 -3937 ((-635 |#3|) |#1|)) (-15 -3929 ((-112) |#2| |#1|)) (-15 -3920 ((-635 |#2|) |#1|)) (-15 -3395 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3395 (|#1| (-1 (-112) (-2 (|:| -2700 |#2|) (|:| -2981 |#3|))) |#1|)) (-15 -3395 (|#1| (-2 (|:| -2700 |#2|) (|:| -2981 |#3|)) |#1|)) (-15 -4307 ((-3 (-2 (|:| -2700 |#2|) (|:| -2981 |#3|)) "failed") (-1 (-112) (-2 (|:| -2700 |#2|) (|:| -2981 |#3|))) |#1|)) (-15 -1722 ((-2 (|:| -2700 |#2|) (|:| -2981 |#3|)) |#1|)) (-15 -4328 (|#1| (-2 (|:| -2700 |#2|) (|:| -2981 |#3|)) |#1|)) (-15 -3524 ((-2 (|:| -2700 |#2|) (|:| -2981 |#3|)) |#1|)) (-15 -2988 ((-762) (-2 (|:| -2700 |#2|) (|:| -2981 |#3|)) |#1|)) (-15 -2240 ((-635 (-2 (|:| -2700 |#2|) (|:| -2981 |#3|))) |#1|)) (-15 -2988 ((-762) (-1 (-112) (-2 (|:| -2700 |#2|) (|:| -2981 |#3|))) |#1|)) (-15 -3266 ((-112) (-1 (-112) (-2 (|:| -2700 |#2|) (|:| -2981 |#3|))) |#1|)) (-15 -3277 ((-112) (-1 (-112) (-2 (|:| -2700 |#2|) (|:| -2981 |#3|))) |#1|)) (-15 -1807 (|#1| (-1 (-2 (|:| -2700 |#2|) (|:| -2981 |#3|)) (-2 (|:| -2700 |#2|) (|:| -2981 |#3|))) |#1|)) (-15 -3167 (|#1| (-1 (-2 (|:| -2700 |#2|) (|:| -2981 |#3|)) (-2 (|:| -2700 |#2|) (|:| -2981 |#3|))) |#1|))) (-1176 |#2| |#3|) (-1087) (-1087)) (T -1175))
+NIL
+(-10 -8 (-15 -1683 ((-112) |#1| |#1|)) (-15 -3220 ((-853) |#1|)) (-15 -3167 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3303 (|#1| (-635 (-2 (|:| -2700 |#2|) (|:| -2981 |#3|))))) (-15 -3303 (|#1|)) (-15 -3167 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1807 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3277 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3266 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2988 ((-762) (-1 (-112) |#3|) |#1|)) (-15 -2240 ((-635 |#3|) |#1|)) (-15 -2988 ((-762) |#3| |#1|)) (-15 -2195 (|#3| |#1| |#2| |#3|)) (-15 -2195 (|#3| |#1| |#2|)) (-15 -3937 ((-635 |#3|) |#1|)) (-15 -3929 ((-112) |#2| |#1|)) (-15 -3920 ((-635 |#2|) |#1|)) (-15 -3395 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3395 (|#1| (-1 (-112) (-2 (|:| -2700 |#2|) (|:| -2981 |#3|))) |#1|)) (-15 -3395 (|#1| (-2 (|:| -2700 |#2|) (|:| -2981 |#3|)) |#1|)) (-15 -4307 ((-3 (-2 (|:| -2700 |#2|) (|:| -2981 |#3|)) "failed") (-1 (-112) (-2 (|:| -2700 |#2|) (|:| -2981 |#3|))) |#1|)) (-15 -1722 ((-2 (|:| -2700 |#2|) (|:| -2981 |#3|)) |#1|)) (-15 -4328 (|#1| (-2 (|:| -2700 |#2|) (|:| -2981 |#3|)) |#1|)) (-15 -3524 ((-2 (|:| -2700 |#2|) (|:| -2981 |#3|)) |#1|)) (-15 -2988 ((-762) (-2 (|:| -2700 |#2|) (|:| -2981 |#3|)) |#1|)) (-15 -2240 ((-635 (-2 (|:| -2700 |#2|) (|:| -2981 |#3|))) |#1|)) (-15 -2988 ((-762) (-1 (-112) (-2 (|:| -2700 |#2|) (|:| -2981 |#3|))) |#1|)) (-15 -3266 ((-112) (-1 (-112) (-2 (|:| -2700 |#2|) (|:| -2981 |#3|))) |#1|)) (-15 -3277 ((-112) (-1 (-112) (-2 (|:| -2700 |#2|) (|:| -2981 |#3|))) |#1|)) (-15 -1807 (|#1| (-1 (-2 (|:| -2700 |#2|) (|:| -2981 |#3|)) (-2 (|:| -2700 |#2|) (|:| -2981 |#3|))) |#1|)) (-15 -3167 (|#1| (-1 (-2 (|:| -2700 |#2|) (|:| -2981 |#3|)) (-2 (|:| -2700 |#2|) (|:| -2981 |#3|))) |#1|)))
+((-3207 (((-112) $ $) 19 (-3998 (|has| |#2| (-1087)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087))))) (-3303 (($) 72) (($ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) 71)) (-3869 (((-1251) $ |#1| |#1|) 99 (|has| $ (-6 -4383)))) (-3026 (((-112) $ (-762)) 8)) (-1532 ((|#2| $ |#1| |#2|) 73)) (-4207 (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 45 (|has| $ (-6 -4382)))) (-4329 (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 55 (|has| $ (-6 -4382)))) (-3083 (((-3 |#2| "failed") |#1| $) 61)) (-1816 (($) 7 T CONST)) (-2338 (($ $) 58 (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| $ (-6 -4382))))) (-3395 (($ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) 47 (|has| $ (-6 -4382))) (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 46 (|has| $ (-6 -4382))) (((-3 |#2| "failed") |#1| $) 62)) (-1539 (($ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| $ (-6 -4382)))) (($ (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 54 (|has| $ (-6 -4382)))) (-3048 (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) 56 (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| $ (-6 -4382)))) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) 53 (|has| $ (-6 -4382))) (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 52 (|has| $ (-6 -4382)))) (-1817 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4383)))) (-1746 ((|#2| $ |#1|) 88)) (-2240 (((-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 30 (|has| $ (-6 -4382))) (((-635 |#2|) $) 79 (|has| $ (-6 -4382)))) (-2986 (((-112) $ (-762)) 9)) (-3889 ((|#1| $) 96 (|has| |#1| (-841)))) (-2122 (((-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 29 (|has| $ (-6 -4382))) (((-635 |#2|) $) 80 (|has| $ (-6 -4382)))) (-4322 (((-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| $ (-6 -4382)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1087)) (|has| $ (-6 -4382))))) (-3899 ((|#1| $) 95 (|has| |#1| (-841)))) (-1807 (($ (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 34 (|has| $ (-6 -4383))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4383)))) (-3167 (($ (-1 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-2953 (((-112) $ (-762)) 10)) (-4310 (((-1145) $) 22 (-3998 (|has| |#2| (-1087)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087))))) (-3848 (((-635 |#1|) $) 63)) (-3950 (((-112) |#1| $) 64)) (-1722 (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) 39)) (-4328 (($ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) 40)) (-3920 (((-635 |#1|) $) 93)) (-3929 (((-112) |#1| $) 92)) (-2975 (((-1107) $) 21 (-3998 (|has| |#2| (-1087)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087))))) (-2305 ((|#2| $) 97 (|has| |#1| (-841)))) (-4307 (((-3 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) "failed") (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 51)) (-3880 (($ $ |#2|) 98 (|has| $ (-6 -4383)))) (-3524 (((-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) 41)) (-3266 (((-112) (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 32 (|has| $ (-6 -4382))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))))) 26 (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-293 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) 25 (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) 24 (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) 23 (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)))) (($ $ (-635 |#2|) (-635 |#2|)) 86 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-293 |#2|)) 84 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-635 (-293 |#2|))) 83 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))) (-2381 (((-112) $ $) 14)) (-3908 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4382)) (|has| |#2| (-1087))))) (-3937 (((-635 |#2|) $) 91)) (-3375 (((-112) $) 11)) (-2083 (($) 12)) (-2195 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-2571 (($) 49) (($ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) 48)) (-2988 (((-762) (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 31 (|has| $ (-6 -4382))) (((-762) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| $ (-6 -4382)))) (((-762) |#2| $) 81 (-12 (|has| |#2| (-1087)) (|has| $ (-6 -4382)))) (((-762) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4382)))) (-1553 (($ $) 13)) (-3224 (((-534) $) 59 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-606 (-534))))) (-3233 (($ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) 50)) (-3220 (((-853) $) 18 (-3998 (|has| |#2| (-605 (-853))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-605 (-853)))))) (-3534 (($ (-635 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) 42)) (-3277 (((-112) (-1 (-112) (-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) $) 33 (|has| $ (-6 -4382))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) 20 (-3998 (|has| |#2| (-1087)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087))))) (-2755 (((-762) $) 6 (|has| $ (-6 -4382)))))
+(((-1176 |#1| |#2|) (-139) (-1087) (-1087)) (T -1176))
+((-1532 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1176 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-1087)))) (-3303 (*1 *1) (-12 (-4 *1 (-1176 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-1087)))) (-3303 (*1 *1 *2) (-12 (-5 *2 (-635 (-2 (|:| -2700 *3) (|:| -2981 *4)))) (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *1 (-1176 *3 *4)))) (-3167 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1176 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1087)))))
+(-13 (-602 |t#1| |t#2|) (-596 |t#1| |t#2|) (-10 -8 (-15 -1532 (|t#2| $ |t#1| |t#2|)) (-15 -3303 ($)) (-15 -3303 ($ (-635 (-2 (|:| -2700 |t#1|) (|:| -2981 |t#2|))))) (-15 -3167 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
+(((-34) . T) ((-107 #0=(-2 (|:| -2700 |#1|) (|:| -2981 |#2|))) . T) ((-102) -3998 (|has| |#2| (-1087)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087))) ((-605 (-853)) -3998 (|has| |#2| (-1087)) (|has| |#2| (-605 (-853))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-605 (-853)))) ((-150 #0#) . T) ((-606 (-534)) |has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-606 (-534))) ((-228 #0#) . T) ((-234 #0#) . T) ((-285 |#1| |#2|) . T) ((-287 |#1| |#2|) . T) ((-308 #0#) -12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087))) ((-308 |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))) ((-487 #0#) . T) ((-487 |#2|) . T) ((-596 |#1| |#2|) . T) ((-512 #0# #0#) -12 (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-308 (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)))) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087))) ((-512 |#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))) ((-602 |#1| |#2|) . T) ((-1087) -3998 (|has| |#2| (-1087)) (|has| (-2 (|:| -2700 |#1|) (|:| -2981 |#2|)) (-1087))) ((-1200) . T))
+((-4281 (((-112)) 24)) (-4243 (((-1251) (-1145)) 26)) (-4292 (((-112)) 36)) (-4254 (((-1251)) 34)) (-4232 (((-1251) (-1145) (-1145)) 25)) (-4304 (((-112)) 37)) (-4328 (((-1251) |#1| |#2|) 44)) (-4222 (((-1251)) 20)) (-4316 (((-3 |#2| "failed") |#1|) 42)) (-4267 (((-1251)) 35)))
+(((-1177 |#1| |#2|) (-10 -7 (-15 -4222 ((-1251))) (-15 -4232 ((-1251) (-1145) (-1145))) (-15 -4243 ((-1251) (-1145))) (-15 -4254 ((-1251))) (-15 -4267 ((-1251))) (-15 -4281 ((-112))) (-15 -4292 ((-112))) (-15 -4304 ((-112))) (-15 -4316 ((-3 |#2| "failed") |#1|)) (-15 -4328 ((-1251) |#1| |#2|))) (-1087) (-1087)) (T -1177))
+((-4328 (*1 *2 *3 *4) (-12 (-5 *2 (-1251)) (-5 *1 (-1177 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1087)))) (-4316 (*1 *2 *3) (|partial| -12 (-4 *2 (-1087)) (-5 *1 (-1177 *3 *2)) (-4 *3 (-1087)))) (-4304 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1177 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1087)))) (-4292 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1177 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1087)))) (-4281 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1177 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1087)))) (-4267 (*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-1177 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1087)))) (-4254 (*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-1177 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1087)))) (-4243 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1177 *4 *5)) (-4 *4 (-1087)) (-4 *5 (-1087)))) (-4232 (*1 *2 *3 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1177 *4 *5)) (-4 *4 (-1087)) (-4 *5 (-1087)))) (-4222 (*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-1177 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1087)))))
+(-10 -7 (-15 -4222 ((-1251))) (-15 -4232 ((-1251) (-1145) (-1145))) (-15 -4243 ((-1251) (-1145))) (-15 -4254 ((-1251))) (-15 -4267 ((-1251))) (-15 -4281 ((-112))) (-15 -4292 ((-112))) (-15 -4304 ((-112))) (-15 -4316 ((-3 |#2| "failed") |#1|)) (-15 -4328 ((-1251) |#1| |#2|)))
+((-4352 (((-1145) (-1145)) 18)) (-4340 (((-52) (-1145)) 21)))
+(((-1178) (-10 -7 (-15 -4340 ((-52) (-1145))) (-15 -4352 ((-1145) (-1145))))) (T -1178))
+((-4352 (*1 *2 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1178)))) (-4340 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-52)) (-5 *1 (-1178)))))
+(-10 -7 (-15 -4340 ((-52) (-1145))) (-15 -4352 ((-1145) (-1145))))
+((-3220 (((-1180) |#1|) 11)))
+(((-1179 |#1|) (-10 -7 (-15 -3220 ((-1180) |#1|))) (-1087)) (T -1179))
+((-3220 (*1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *1 (-1179 *3)) (-4 *3 (-1087)))))
+(-10 -7 (-15 -3220 ((-1180) |#1|)))
+((-3207 (((-112) $ $) NIL)) (-2569 (((-635 (-1145)) $) 34)) (-1289 (((-635 (-1145)) $ (-635 (-1145))) 37)) (-4362 (((-635 (-1145)) $ (-635 (-1145))) 36)) (-1301 (((-635 (-1145)) $ (-635 (-1145))) 38)) (-1313 (((-635 (-1145)) $) 33)) (-3315 (($) 22)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-1326 (((-635 (-1145)) $) 35)) (-2646 (((-1251) $ (-558)) 29) (((-1251) $) 30)) (-3224 (($ (-853) (-558)) 26) (($ (-853) (-558) (-853)) NIL)) (-3220 (((-853) $) 40) (($ (-853)) 24)) (-1683 (((-112) $ $) NIL)))
+(((-1180) (-13 (-1087) (-608 (-853)) (-10 -8 (-15 -3224 ($ (-853) (-558))) (-15 -3224 ($ (-853) (-558) (-853))) (-15 -2646 ((-1251) $ (-558))) (-15 -2646 ((-1251) $)) (-15 -1326 ((-635 (-1145)) $)) (-15 -2569 ((-635 (-1145)) $)) (-15 -3315 ($)) (-15 -1313 ((-635 (-1145)) $)) (-15 -1301 ((-635 (-1145)) $ (-635 (-1145)))) (-15 -1289 ((-635 (-1145)) $ (-635 (-1145)))) (-15 -4362 ((-635 (-1145)) $ (-635 (-1145))))))) (T -1180))
+((-3224 (*1 *1 *2 *3) (-12 (-5 *2 (-853)) (-5 *3 (-558)) (-5 *1 (-1180)))) (-3224 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-853)) (-5 *3 (-558)) (-5 *1 (-1180)))) (-2646 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *2 (-1251)) (-5 *1 (-1180)))) (-2646 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-1180)))) (-1326 (*1 *2 *1) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-1180)))) (-2569 (*1 *2 *1) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-1180)))) (-3315 (*1 *1) (-5 *1 (-1180))) (-1313 (*1 *2 *1) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-1180)))) (-1301 (*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-1180)))) (-1289 (*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-1180)))) (-4362 (*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-1180)))))
+(-13 (-1087) (-608 (-853)) (-10 -8 (-15 -3224 ($ (-853) (-558))) (-15 -3224 ($ (-853) (-558) (-853))) (-15 -2646 ((-1251) $ (-558))) (-15 -2646 ((-1251) $)) (-15 -1326 ((-635 (-1145)) $)) (-15 -2569 ((-635 (-1145)) $)) (-15 -3315 ($)) (-15 -1313 ((-635 (-1145)) $)) (-15 -1301 ((-635 (-1145)) $ (-635 (-1145)))) (-15 -1289 ((-635 (-1145)) $ (-635 (-1145)))) (-15 -4362 ((-635 (-1145)) $ (-635 (-1145))))))
+((-3207 (((-112) $ $) NIL)) (-1386 (((-1145) $ (-1145)) 17) (((-1145) $) 16)) (-2402 (((-1145) $ (-1145)) 15)) (-2446 (($ $ (-1145)) NIL)) (-1363 (((-3 (-1145) "failed") $) 11)) (-1374 (((-1145) $) 8)) (-1350 (((-3 (-1145) "failed") $) 12)) (-2412 (((-1145) $) 9)) (-1328 (($ (-387)) NIL) (($ (-387) (-1145)) NIL)) (-1323 (((-387) $) NIL)) (-4310 (((-1145) $) NIL)) (-2425 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-1339 (((-112) $) 18)) (-3220 (((-853) $) NIL)) (-2436 (($ $) NIL)) (-1683 (((-112) $ $) NIL)))
+(((-1181) (-13 (-363 (-387) (-1145)) (-10 -8 (-15 -1386 ((-1145) $ (-1145))) (-15 -1386 ((-1145) $)) (-15 -1374 ((-1145) $)) (-15 -1363 ((-3 (-1145) "failed") $)) (-15 -1350 ((-3 (-1145) "failed") $)) (-15 -1339 ((-112) $))))) (T -1181))
+((-1386 (*1 *2 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1181)))) (-1386 (*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-1181)))) (-1374 (*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-1181)))) (-1363 (*1 *2 *1) (|partial| -12 (-5 *2 (-1145)) (-5 *1 (-1181)))) (-1350 (*1 *2 *1) (|partial| -12 (-5 *2 (-1145)) (-5 *1 (-1181)))) (-1339 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1181)))))
+(-13 (-363 (-387) (-1145)) (-10 -8 (-15 -1386 ((-1145) $ (-1145))) (-15 -1386 ((-1145) $)) (-15 -1374 ((-1145) $)) (-15 -1363 ((-3 (-1145) "failed") $)) (-15 -1350 ((-3 (-1145) "failed") $)) (-15 -1339 ((-112) $))))
+((-1397 (((-3 (-558) "failed") |#1|) 19)) (-1409 (((-3 (-558) "failed") |#1|) 14)) (-1420 (((-558) (-1145)) 28)))
+(((-1182 |#1|) (-10 -7 (-15 -1397 ((-3 (-558) "failed") |#1|)) (-15 -1409 ((-3 (-558) "failed") |#1|)) (-15 -1420 ((-558) (-1145)))) (-1039)) (T -1182))
+((-1420 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-558)) (-5 *1 (-1182 *4)) (-4 *4 (-1039)))) (-1409 (*1 *2 *3) (|partial| -12 (-5 *2 (-558)) (-5 *1 (-1182 *3)) (-4 *3 (-1039)))) (-1397 (*1 *2 *3) (|partial| -12 (-5 *2 (-558)) (-5 *1 (-1182 *3)) (-4 *3 (-1039)))))
+(-10 -7 (-15 -1397 ((-3 (-558) "failed") |#1|)) (-15 -1409 ((-3 (-558) "failed") |#1|)) (-15 -1420 ((-558) (-1145))))
+((-1430 (((-1120 (-224))) 9)))
+(((-1183) (-10 -7 (-15 -1430 ((-1120 (-224)))))) (T -1183))
+((-1430 (*1 *2) (-12 (-5 *2 (-1120 (-224))) (-5 *1 (-1183)))))
+(-10 -7 (-15 -1430 ((-1120 (-224)))))
+((-1904 (($) 11)) (-4159 (($ $) 35)) (-4135 (($ $) 33)) (-2178 (($ $) 25)) (-4184 (($ $) 17)) (-1878 (($ $) 15)) (-4171 (($ $) 19)) (-2211 (($ $) 30)) (-4147 (($ $) 34)) (-2189 (($ $) 29)))
+(((-1184 |#1|) (-10 -8 (-15 -1904 (|#1|)) (-15 -4159 (|#1| |#1|)) (-15 -4135 (|#1| |#1|)) (-15 -4184 (|#1| |#1|)) (-15 -1878 (|#1| |#1|)) (-15 -4171 (|#1| |#1|)) (-15 -4147 (|#1| |#1|)) (-15 -2178 (|#1| |#1|)) (-15 -2211 (|#1| |#1|)) (-15 -2189 (|#1| |#1|))) (-1185)) (T -1184))
+NIL
+(-10 -8 (-15 -1904 (|#1|)) (-15 -4159 (|#1| |#1|)) (-15 -4135 (|#1| |#1|)) (-15 -4184 (|#1| |#1|)) (-15 -1878 (|#1| |#1|)) (-15 -4171 (|#1| |#1|)) (-15 -4147 (|#1| |#1|)) (-15 -2178 (|#1| |#1|)) (-15 -2211 (|#1| |#1|)) (-15 -2189 (|#1| |#1|)))
+((-4088 (($ $) 26)) (-2135 (($ $) 11)) (-4070 (($ $) 27)) (-2112 (($ $) 10)) (-4113 (($ $) 28)) (-2156 (($ $) 9)) (-1904 (($) 16)) (-2592 (($ $) 19)) (-2573 (($ $) 18)) (-4124 (($ $) 29)) (-2167 (($ $) 8)) (-4102 (($ $) 30)) (-2146 (($ $) 7)) (-4080 (($ $) 31)) (-2124 (($ $) 6)) (-4159 (($ $) 20)) (-2200 (($ $) 32)) (-4135 (($ $) 21)) (-2178 (($ $) 33)) (-4184 (($ $) 22)) (-2222 (($ $) 34)) (-1878 (($ $) 23)) (-4060 (($ $) 35)) (-4171 (($ $) 24)) (-2211 (($ $) 36)) (-4147 (($ $) 25)) (-2189 (($ $) 37)) (** (($ $ $) 17)))
+(((-1185) (-139)) (T -1185))
+((-1904 (*1 *1) (-4 *1 (-1185))))
+(-13 (-1188) (-95) (-491) (-35) (-283) (-10 -8 (-15 -1904 ($))))
+(((-35) . T) ((-95) . T) ((-283) . T) ((-491) . T) ((-1188) . T))
+((-3207 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2925 ((|#1| $) 17)) (-4041 (($ |#1| (-635 $)) 23) (($ (-635 |#1|)) 27) (($ |#1|) 25)) (-3026 (((-112) $ (-762)) 47)) (-3972 ((|#1| $ |#1|) 14 (|has| $ (-6 -4383)))) (-1532 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4383)))) (-3982 (($ $ (-635 $)) 13 (|has| $ (-6 -4383)))) (-1816 (($) NIL T CONST)) (-2240 (((-635 |#1|) $) 51 (|has| $ (-6 -4382)))) (-2870 (((-635 $) $) 42)) (-3993 (((-112) $ $) 32 (|has| |#1| (-1087)))) (-2986 (((-112) $ (-762)) 40)) (-2122 (((-635 |#1|) $) 52 (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) 50 (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1807 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) 22)) (-2953 (((-112) $ (-762)) 39)) (-1362 (((-635 |#1|) $) 36)) (-1790 (((-112) $) 35)) (-4310 (((-1145) $) NIL (|has| |#1| (-1087)))) (-2975 (((-1107) $) NIL (|has| |#1| (-1087)))) (-3266 (((-112) (-1 (-112) |#1|) $) 49 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) 73)) (-3375 (((-112) $) 9)) (-2083 (($) 10)) (-2195 ((|#1| $ "value") NIL)) (-2860 (((-558) $ $) 31)) (-1443 (((-635 $) $) 58)) (-1455 (((-112) $ $) 76)) (-1465 (((-635 $) $) 71)) (-1478 (($ $) 72)) (-1487 (((-112) $) 55)) (-2988 (((-762) (-1 (-112) |#1|) $) 20 (|has| $ (-6 -4382))) (((-762) |#1| $) 16 (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1553 (($ $) 57)) (-3220 (((-853) $) 60 (|has| |#1| (-605 (-853))))) (-1727 (((-635 $) $) 12)) (-4005 (((-112) $ $) 29 (|has| |#1| (-1087)))) (-3277 (((-112) (-1 (-112) |#1|) $) 48 (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) 28 (|has| |#1| (-1087)))) (-2755 (((-762) $) 38 (|has| $ (-6 -4382)))))
+(((-1186 |#1|) (-13 (-1000 |#1|) (-10 -8 (-6 -4382) (-6 -4383) (-15 -4041 ($ |#1| (-635 $))) (-15 -4041 ($ (-635 |#1|))) (-15 -4041 ($ |#1|)) (-15 -1487 ((-112) $)) (-15 -1478 ($ $)) (-15 -1465 ((-635 $) $)) (-15 -1455 ((-112) $ $)) (-15 -1443 ((-635 $) $)))) (-1087)) (T -1186))
+((-1487 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3)) (-4 *3 (-1087)))) (-4041 (*1 *1 *2 *3) (-12 (-5 *3 (-635 (-1186 *2))) (-5 *1 (-1186 *2)) (-4 *2 (-1087)))) (-4041 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-5 *1 (-1186 *3)))) (-4041 (*1 *1 *2) (-12 (-5 *1 (-1186 *2)) (-4 *2 (-1087)))) (-1478 (*1 *1 *1) (-12 (-5 *1 (-1186 *2)) (-4 *2 (-1087)))) (-1465 (*1 *2 *1) (-12 (-5 *2 (-635 (-1186 *3))) (-5 *1 (-1186 *3)) (-4 *3 (-1087)))) (-1455 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3)) (-4 *3 (-1087)))) (-1443 (*1 *2 *1) (-12 (-5 *2 (-635 (-1186 *3))) (-5 *1 (-1186 *3)) (-4 *3 (-1087)))))
+(-13 (-1000 |#1|) (-10 -8 (-6 -4382) (-6 -4383) (-15 -4041 ($ |#1| (-635 $))) (-15 -4041 ($ (-635 |#1|))) (-15 -4041 ($ |#1|)) (-15 -1487 ((-112) $)) (-15 -1478 ($ $)) (-15 -1465 ((-635 $) $)) (-15 -1455 ((-112) $ $)) (-15 -1443 ((-635 $) $))))
+((-2135 (($ $) 15)) (-2156 (($ $) 12)) (-2167 (($ $) 10)) (-2146 (($ $) 17)))
+(((-1187 |#1|) (-10 -8 (-15 -2146 (|#1| |#1|)) (-15 -2167 (|#1| |#1|)) (-15 -2156 (|#1| |#1|)) (-15 -2135 (|#1| |#1|))) (-1188)) (T -1187))
+NIL
+(-10 -8 (-15 -2146 (|#1| |#1|)) (-15 -2167 (|#1| |#1|)) (-15 -2156 (|#1| |#1|)) (-15 -2135 (|#1| |#1|)))
+((-2135 (($ $) 11)) (-2112 (($ $) 10)) (-2156 (($ $) 9)) (-2167 (($ $) 8)) (-2146 (($ $) 7)) (-2124 (($ $) 6)))
+(((-1188) (-139)) (T -1188))
+((-2135 (*1 *1 *1) (-4 *1 (-1188))) (-2112 (*1 *1 *1) (-4 *1 (-1188))) (-2156 (*1 *1 *1) (-4 *1 (-1188))) (-2167 (*1 *1 *1) (-4 *1 (-1188))) (-2146 (*1 *1 *1) (-4 *1 (-1188))) (-2124 (*1 *1 *1) (-4 *1 (-1188))))
+(-13 (-10 -8 (-15 -2124 ($ $)) (-15 -2146 ($ $)) (-15 -2167 ($ $)) (-15 -2156 ($ $)) (-15 -2112 ($ $)) (-15 -2135 ($ $))))
+((-1516 ((|#2| |#2|) 88)) (-1528 (((-112) |#2|) 26)) (-2546 ((|#2| |#2|) 30)) (-2557 ((|#2| |#2|) 32)) (-1495 ((|#2| |#2| (-1163)) 83) ((|#2| |#2|) 84)) (-1537 (((-168 |#2|) |#2|) 28)) (-1505 ((|#2| |#2| (-1163)) 85) ((|#2| |#2|) 86)))
+(((-1189 |#1| |#2|) (-10 -7 (-15 -1495 (|#2| |#2|)) (-15 -1495 (|#2| |#2| (-1163))) (-15 -1505 (|#2| |#2|)) (-15 -1505 (|#2| |#2| (-1163))) (-15 -1516 (|#2| |#2|)) (-15 -2546 (|#2| |#2|)) (-15 -2557 (|#2| |#2|)) (-15 -1528 ((-112) |#2|)) (-15 -1537 ((-168 |#2|) |#2|))) (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))) (-13 (-27) (-1185) (-429 |#1|))) (T -1189))
+((-1537 (*1 *2 *3) (-12 (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-168 *3)) (-5 *1 (-1189 *4 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *4))))) (-1528 (*1 *2 *3) (-12 (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-112)) (-5 *1 (-1189 *4 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *4))))) (-2557 (*1 *2 *2) (-12 (-4 *3 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-1189 *3 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *3))))) (-2546 (*1 *2 *2) (-12 (-4 *3 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-1189 *3 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *3))))) (-1516 (*1 *2 *2) (-12 (-4 *3 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-1189 *3 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *3))))) (-1505 (*1 *2 *2 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-1189 *4 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *4))))) (-1505 (*1 *2 *2) (-12 (-4 *3 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-1189 *3 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *3))))) (-1495 (*1 *2 *2 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-1189 *4 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *4))))) (-1495 (*1 *2 *2) (-12 (-4 *3 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-1189 *3 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *3))))))
+(-10 -7 (-15 -1495 (|#2| |#2|)) (-15 -1495 (|#2| |#2| (-1163))) (-15 -1505 (|#2| |#2|)) (-15 -1505 (|#2| |#2| (-1163))) (-15 -1516 (|#2| |#2|)) (-15 -2546 (|#2| |#2|)) (-15 -2557 (|#2| |#2|)) (-15 -1528 ((-112) |#2|)) (-15 -1537 ((-168 |#2|) |#2|)))
+((-1547 ((|#4| |#4| |#1|) 27)) (-1558 ((|#4| |#4| |#1|) 28)))
+(((-1190 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1547 (|#4| |#4| |#1|)) (-15 -1558 (|#4| |#4| |#1|))) (-550) (-372 |#1|) (-372 |#1|) (-677 |#1| |#2| |#3|)) (T -1190))
+((-1558 (*1 *2 *2 *3) (-12 (-4 *3 (-550)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-1190 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5)))) (-1547 (*1 *2 *2 *3) (-12 (-4 *3 (-550)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-1190 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5)))))
+(-10 -7 (-15 -1547 (|#4| |#4| |#1|)) (-15 -1558 (|#4| |#4| |#1|)))
+((-3629 ((|#2| |#2|) 133)) (-3647 ((|#2| |#2|) 130)) (-3620 ((|#2| |#2|) 121)) (-3638 ((|#2| |#2|) 118)) (-3610 ((|#2| |#2|) 126)) (-3600 ((|#2| |#2|) 114)) (-1598 ((|#2| |#2|) 43)) (-1588 ((|#2| |#2|) 94)) (-1567 ((|#2| |#2|) 74)) (-3591 ((|#2| |#2|) 128)) (-3582 ((|#2| |#2|) 116)) (-3706 ((|#2| |#2|) 138)) (-3687 ((|#2| |#2|) 136)) (-3696 ((|#2| |#2|) 137)) (-3678 ((|#2| |#2|) 135)) (-1578 ((|#2| |#2|) 148)) (-3717 ((|#2| |#2|) 30 (-12 (|has| |#2| (-606 (-882 |#1|))) (|has| |#2| (-876 |#1|)) (|has| |#1| (-606 (-882 |#1|))) (|has| |#1| (-876 |#1|))))) (-1607 ((|#2| |#2|) 75)) (-1620 ((|#2| |#2|) 139)) (-4294 ((|#2| |#2|) 140)) (-3572 ((|#2| |#2|) 127)) (-3563 ((|#2| |#2|) 115)) (-3553 ((|#2| |#2|) 134)) (-3668 ((|#2| |#2|) 132)) (-3541 ((|#2| |#2|) 122)) (-3658 ((|#2| |#2|) 120)) (-3529 ((|#2| |#2|) 124)) (-1630 ((|#2| |#2|) 112)))
+(((-1191 |#1| |#2|) (-10 -7 (-15 -4294 (|#2| |#2|)) (-15 -1567 (|#2| |#2|)) (-15 -1578 (|#2| |#2|)) (-15 -1588 (|#2| |#2|)) (-15 -1598 (|#2| |#2|)) (-15 -1607 (|#2| |#2|)) (-15 -1620 (|#2| |#2|)) (-15 -1630 (|#2| |#2|)) (-15 -3529 (|#2| |#2|)) (-15 -3541 (|#2| |#2|)) (-15 -3553 (|#2| |#2|)) (-15 -3563 (|#2| |#2|)) (-15 -3572 (|#2| |#2|)) (-15 -3582 (|#2| |#2|)) (-15 -3591 (|#2| |#2|)) (-15 -3600 (|#2| |#2|)) (-15 -3610 (|#2| |#2|)) (-15 -3620 (|#2| |#2|)) (-15 -3629 (|#2| |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -3647 (|#2| |#2|)) (-15 -3658 (|#2| |#2|)) (-15 -3668 (|#2| |#2|)) (-15 -3678 (|#2| |#2|)) (-15 -3687 (|#2| |#2|)) (-15 -3696 (|#2| |#2|)) (-15 -3706 (|#2| |#2|)) (IF (|has| |#1| (-876 |#1|)) (IF (|has| |#1| (-606 (-882 |#1|))) (IF (|has| |#2| (-606 (-882 |#1|))) (IF (|has| |#2| (-876 |#1|)) (-15 -3717 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-841) (-450)) (-13 (-429 |#1|) (-1185))) (T -1191))
+((-3717 (*1 *2 *2) (-12 (-4 *3 (-606 (-882 *3))) (-4 *3 (-876 *3)) (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-606 (-882 *3))) (-4 *2 (-876 *3)) (-4 *2 (-13 (-429 *3) (-1185))))) (-3706 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-3696 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-3687 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-3678 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-3668 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-3658 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-3647 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-3629 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-3620 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-3610 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-3600 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-3591 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-3582 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-3572 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-3563 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-3553 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-3541 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-3529 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-1630 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-1620 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-1607 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-1598 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-1588 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-1578 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-1567 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-4294 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))))
+(-10 -7 (-15 -4294 (|#2| |#2|)) (-15 -1567 (|#2| |#2|)) (-15 -1578 (|#2| |#2|)) (-15 -1588 (|#2| |#2|)) (-15 -1598 (|#2| |#2|)) (-15 -1607 (|#2| |#2|)) (-15 -1620 (|#2| |#2|)) (-15 -1630 (|#2| |#2|)) (-15 -3529 (|#2| |#2|)) (-15 -3541 (|#2| |#2|)) (-15 -3553 (|#2| |#2|)) (-15 -3563 (|#2| |#2|)) (-15 -3572 (|#2| |#2|)) (-15 -3582 (|#2| |#2|)) (-15 -3591 (|#2| |#2|)) (-15 -3600 (|#2| |#2|)) (-15 -3610 (|#2| |#2|)) (-15 -3620 (|#2| |#2|)) (-15 -3629 (|#2| |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -3647 (|#2| |#2|)) (-15 -3658 (|#2| |#2|)) (-15 -3668 (|#2| |#2|)) (-15 -3678 (|#2| |#2|)) (-15 -3687 (|#2| |#2|)) (-15 -3696 (|#2| |#2|)) (-15 -3706 (|#2| |#2|)) (IF (|has| |#1| (-876 |#1|)) (IF (|has| |#1| (-606 (-882 |#1|))) (IF (|has| |#2| (-606 (-882 |#1|))) (IF (|has| |#2| (-876 |#1|)) (-15 -3717 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
+((-3892 (((-112) |#5| $) 59) (((-112) $) 101)) (-3842 ((|#5| |#5| $) 74)) (-4329 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 118)) (-3853 (((-635 |#5|) (-635 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 72)) (-3069 (((-3 $ "failed") (-635 |#5|)) 125)) (-2315 (((-3 $ "failed") $) 111)) (-3810 ((|#5| |#5| $) 93)) (-3902 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 30)) (-3792 ((|#5| |#5| $) 97)) (-3048 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 68)) (-3923 (((-2 (|:| -2626 (-635 |#5|)) (|:| -1328 (-635 |#5|))) $) 54)) (-3912 (((-112) |#5| $) 57) (((-112) $) 102)) (-1997 ((|#4| $) 107)) (-1560 (((-3 |#5| "failed") $) 109)) (-3932 (((-635 |#5|) $) 48)) (-3873 (((-112) |#5| $) 66) (((-112) $) 106)) (-3820 ((|#5| |#5| $) 80)) (-3953 (((-112) $ $) 26)) (-3883 (((-112) |#5| $) 62) (((-112) $) 104)) (-3830 ((|#5| |#5| $) 77)) (-2305 (((-3 |#5| "failed") $) 108)) (-3430 (($ $ |#5|) 126)) (-4323 (((-762) $) 51)) (-3233 (($ (-635 |#5|)) 123)) (-2151 (($ $ |#4|) 121)) (-2171 (($ $ |#4|) 120)) (-3801 (($ $) 119)) (-3220 (((-853) $) NIL) (((-635 |#5|) $) 112)) (-3745 (((-762) $) 129)) (-3940 (((-3 (-2 (|:| |bas| $) (|:| -3072 (-635 |#5|))) "failed") (-635 |#5|) (-1 (-112) |#5| |#5|)) 42) (((-3 (-2 (|:| |bas| $) (|:| -3072 (-635 |#5|))) "failed") (-635 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 44)) (-3863 (((-112) $ (-1 (-112) |#5| (-635 |#5|))) 99)) (-3764 (((-635 |#4|) $) 114)) (-4206 (((-112) |#4| $) 117)) (-1683 (((-112) $ $) 19)))
+(((-1192 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3745 ((-762) |#1|)) (-15 -3430 (|#1| |#1| |#5|)) (-15 -4329 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4206 ((-112) |#4| |#1|)) (-15 -3764 ((-635 |#4|) |#1|)) (-15 -2315 ((-3 |#1| "failed") |#1|)) (-15 -1560 ((-3 |#5| "failed") |#1|)) (-15 -2305 ((-3 |#5| "failed") |#1|)) (-15 -3792 (|#5| |#5| |#1|)) (-15 -3801 (|#1| |#1|)) (-15 -3810 (|#5| |#5| |#1|)) (-15 -3820 (|#5| |#5| |#1|)) (-15 -3830 (|#5| |#5| |#1|)) (-15 -3842 (|#5| |#5| |#1|)) (-15 -3853 ((-635 |#5|) (-635 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3048 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3873 ((-112) |#1|)) (-15 -3883 ((-112) |#1|)) (-15 -3892 ((-112) |#1|)) (-15 -3863 ((-112) |#1| (-1 (-112) |#5| (-635 |#5|)))) (-15 -3873 ((-112) |#5| |#1|)) (-15 -3883 ((-112) |#5| |#1|)) (-15 -3892 ((-112) |#5| |#1|)) (-15 -3902 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -3912 ((-112) |#1|)) (-15 -3912 ((-112) |#5| |#1|)) (-15 -3923 ((-2 (|:| -2626 (-635 |#5|)) (|:| -1328 (-635 |#5|))) |#1|)) (-15 -4323 ((-762) |#1|)) (-15 -3932 ((-635 |#5|) |#1|)) (-15 -3940 ((-3 (-2 (|:| |bas| |#1|) (|:| -3072 (-635 |#5|))) "failed") (-635 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3940 ((-3 (-2 (|:| |bas| |#1|) (|:| -3072 (-635 |#5|))) "failed") (-635 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3953 ((-112) |#1| |#1|)) (-15 -2151 (|#1| |#1| |#4|)) (-15 -2171 (|#1| |#1| |#4|)) (-15 -1997 (|#4| |#1|)) (-15 -3069 ((-3 |#1| "failed") (-635 |#5|))) (-15 -3220 ((-635 |#5|) |#1|)) (-15 -3233 (|#1| (-635 |#5|))) (-15 -3048 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3048 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4329 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -3048 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3220 ((-853) |#1|)) (-15 -1683 ((-112) |#1| |#1|))) (-1193 |#2| |#3| |#4| |#5|) (-550) (-784) (-841) (-1053 |#2| |#3| |#4|)) (T -1192))
+NIL
+(-10 -8 (-15 -3745 ((-762) |#1|)) (-15 -3430 (|#1| |#1| |#5|)) (-15 -4329 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4206 ((-112) |#4| |#1|)) (-15 -3764 ((-635 |#4|) |#1|)) (-15 -2315 ((-3 |#1| "failed") |#1|)) (-15 -1560 ((-3 |#5| "failed") |#1|)) (-15 -2305 ((-3 |#5| "failed") |#1|)) (-15 -3792 (|#5| |#5| |#1|)) (-15 -3801 (|#1| |#1|)) (-15 -3810 (|#5| |#5| |#1|)) (-15 -3820 (|#5| |#5| |#1|)) (-15 -3830 (|#5| |#5| |#1|)) (-15 -3842 (|#5| |#5| |#1|)) (-15 -3853 ((-635 |#5|) (-635 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3048 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3873 ((-112) |#1|)) (-15 -3883 ((-112) |#1|)) (-15 -3892 ((-112) |#1|)) (-15 -3863 ((-112) |#1| (-1 (-112) |#5| (-635 |#5|)))) (-15 -3873 ((-112) |#5| |#1|)) (-15 -3883 ((-112) |#5| |#1|)) (-15 -3892 ((-112) |#5| |#1|)) (-15 -3902 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -3912 ((-112) |#1|)) (-15 -3912 ((-112) |#5| |#1|)) (-15 -3923 ((-2 (|:| -2626 (-635 |#5|)) (|:| -1328 (-635 |#5|))) |#1|)) (-15 -4323 ((-762) |#1|)) (-15 -3932 ((-635 |#5|) |#1|)) (-15 -3940 ((-3 (-2 (|:| |bas| |#1|) (|:| -3072 (-635 |#5|))) "failed") (-635 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3940 ((-3 (-2 (|:| |bas| |#1|) (|:| -3072 (-635 |#5|))) "failed") (-635 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3953 ((-112) |#1| |#1|)) (-15 -2151 (|#1| |#1| |#4|)) (-15 -2171 (|#1| |#1| |#4|)) (-15 -1997 (|#4| |#1|)) (-15 -3069 ((-3 |#1| "failed") (-635 |#5|))) (-15 -3220 ((-635 |#5|) |#1|)) (-15 -3233 (|#1| (-635 |#5|))) (-15 -3048 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3048 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4329 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -3048 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3220 ((-853) |#1|)) (-15 -1683 ((-112) |#1| |#1|)))
+((-3207 (((-112) $ $) 7)) (-3773 (((-635 (-2 (|:| -2626 $) (|:| -1328 (-635 |#4|)))) (-635 |#4|)) 85)) (-3782 (((-635 $) (-635 |#4|)) 86)) (-2671 (((-635 |#3|) $) 33)) (-2139 (((-112) $) 26)) (-2040 (((-112) $) 17 (|has| |#1| (-550)))) (-3892 (((-112) |#4| $) 101) (((-112) $) 97)) (-3842 ((|#4| |#4| $) 92)) (-2376 (((-2 (|:| |under| $) (|:| -2594 $) (|:| |upper| $)) $ |#3|) 27)) (-3026 (((-112) $ (-762)) 44)) (-4329 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4382))) (((-3 |#4| "failed") $ |#3|) 79)) (-1816 (($) 45 T CONST)) (-2092 (((-112) $) 22 (|has| |#1| (-550)))) (-2116 (((-112) $ $) 24 (|has| |#1| (-550)))) (-2104 (((-112) $ $) 23 (|has| |#1| (-550)))) (-2128 (((-112) $) 25 (|has| |#1| (-550)))) (-3853 (((-635 |#4|) (-635 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-2050 (((-635 |#4|) (-635 |#4|) $) 18 (|has| |#1| (-550)))) (-2061 (((-635 |#4|) (-635 |#4|) $) 19 (|has| |#1| (-550)))) (-3069 (((-3 $ "failed") (-635 |#4|)) 36)) (-1863 (($ (-635 |#4|)) 35)) (-2315 (((-3 $ "failed") $) 82)) (-3810 ((|#4| |#4| $) 89)) (-2338 (($ $) 68 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4382))))) (-1539 (($ |#4| $) 67 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4382)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4382)))) (-2071 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-550)))) (-3902 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3792 ((|#4| |#4| $) 87)) (-3048 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4382)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4382))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4382))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3923 (((-2 (|:| -2626 (-635 |#4|)) (|:| -1328 (-635 |#4|))) $) 105)) (-2240 (((-635 |#4|) $) 52 (|has| $ (-6 -4382)))) (-3912 (((-112) |#4| $) 104) (((-112) $) 103)) (-1997 ((|#3| $) 34)) (-2986 (((-112) $ (-762)) 43)) (-2122 (((-635 |#4|) $) 53 (|has| $ (-6 -4382)))) (-4322 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4382))))) (-1807 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#4| |#4|) $) 47)) (-4024 (((-635 |#3|) $) 32)) (-2183 (((-112) |#3| $) 31)) (-2953 (((-112) $ (-762)) 42)) (-4310 (((-1145) $) 9)) (-1560 (((-3 |#4| "failed") $) 83)) (-3932 (((-635 |#4|) $) 107)) (-3873 (((-112) |#4| $) 99) (((-112) $) 95)) (-3820 ((|#4| |#4| $) 90)) (-3953 (((-112) $ $) 110)) (-2081 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-550)))) (-3883 (((-112) |#4| $) 100) (((-112) $) 96)) (-3830 ((|#4| |#4| $) 91)) (-2975 (((-1107) $) 10)) (-2305 (((-3 |#4| "failed") $) 84)) (-4307 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3755 (((-3 $ "failed") $ |#4|) 78)) (-3430 (($ $ |#4|) 77)) (-3266 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 |#4|) (-635 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-293 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-635 (-293 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))) (-2381 (((-112) $ $) 38)) (-3375 (((-112) $) 41)) (-2083 (($) 40)) (-4323 (((-762) $) 106)) (-2988 (((-762) |#4| $) 54 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4382)))) (((-762) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4382)))) (-1553 (($ $) 39)) (-3224 (((-534) $) 69 (|has| |#4| (-606 (-534))))) (-3233 (($ (-635 |#4|)) 60)) (-2151 (($ $ |#3|) 28)) (-2171 (($ $ |#3|) 30)) (-3801 (($ $) 88)) (-2160 (($ $ |#3|) 29)) (-3220 (((-853) $) 11) (((-635 |#4|) $) 37)) (-3745 (((-762) $) 76 (|has| |#3| (-367)))) (-3940 (((-3 (-2 (|:| |bas| $) (|:| -3072 (-635 |#4|))) "failed") (-635 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3072 (-635 |#4|))) "failed") (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-3863 (((-112) $ (-1 (-112) |#4| (-635 |#4|))) 98)) (-3277 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4382)))) (-3764 (((-635 |#3|) $) 81)) (-4206 (((-112) |#3| $) 80)) (-1683 (((-112) $ $) 6)) (-2755 (((-762) $) 46 (|has| $ (-6 -4382)))))
+(((-1193 |#1| |#2| |#3| |#4|) (-139) (-550) (-784) (-841) (-1053 |t#1| |t#2| |t#3|)) (T -1193))
+((-3953 (*1 *2 *1 *1) (-12 (-4 *1 (-1193 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-112)))) (-3940 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-550)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3072 (-635 *8)))) (-5 *3 (-635 *8)) (-4 *1 (-1193 *5 *6 *7 *8)))) (-3940 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1053 *6 *7 *8)) (-4 *6 (-550)) (-4 *7 (-784)) (-4 *8 (-841)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3072 (-635 *9)))) (-5 *3 (-635 *9)) (-4 *1 (-1193 *6 *7 *8 *9)))) (-3932 (*1 *2 *1) (-12 (-4 *1 (-1193 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-635 *6)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-1193 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-762)))) (-3923 (*1 *2 *1) (-12 (-4 *1 (-1193 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-2 (|:| -2626 (-635 *6)) (|:| -1328 (-635 *6)))))) (-3912 (*1 *2 *3 *1) (-12 (-4 *1 (-1193 *4 *5 *6 *3)) (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-112)))) (-3912 (*1 *2 *1) (-12 (-4 *1 (-1193 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-112)))) (-3902 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1193 *5 *6 *7 *3)) (-4 *5 (-550)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-112)))) (-3892 (*1 *2 *3 *1) (-12 (-4 *1 (-1193 *4 *5 *6 *3)) (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-112)))) (-3883 (*1 *2 *3 *1) (-12 (-4 *1 (-1193 *4 *5 *6 *3)) (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-112)))) (-3873 (*1 *2 *3 *1) (-12 (-4 *1 (-1193 *4 *5 *6 *3)) (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-112)))) (-3863 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-635 *7))) (-4 *1 (-1193 *4 *5 *6 *7)) (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-112)))) (-3892 (*1 *2 *1) (-12 (-4 *1 (-1193 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-112)))) (-3883 (*1 *2 *1) (-12 (-4 *1 (-1193 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-112)))) (-3873 (*1 *2 *1) (-12 (-4 *1 (-1193 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-112)))) (-3048 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1193 *5 *6 *7 *2)) (-4 *5 (-550)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *2 (-1053 *5 *6 *7)))) (-3853 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-635 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1193 *5 *6 *7 *8)) (-4 *5 (-550)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *8 (-1053 *5 *6 *7)))) (-3842 (*1 *2 *2 *1) (-12 (-4 *1 (-1193 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *2 (-1053 *3 *4 *5)))) (-3830 (*1 *2 *2 *1) (-12 (-4 *1 (-1193 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *2 (-1053 *3 *4 *5)))) (-3820 (*1 *2 *2 *1) (-12 (-4 *1 (-1193 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *2 (-1053 *3 *4 *5)))) (-3810 (*1 *2 *2 *1) (-12 (-4 *1 (-1193 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *2 (-1053 *3 *4 *5)))) (-3801 (*1 *1 *1) (-12 (-4 *1 (-1193 *2 *3 *4 *5)) (-4 *2 (-550)) (-4 *3 (-784)) (-4 *4 (-841)) (-4 *5 (-1053 *2 *3 *4)))) (-3792 (*1 *2 *2 *1) (-12 (-4 *1 (-1193 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *2 (-1053 *3 *4 *5)))) (-3782 (*1 *2 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-635 *1)) (-4 *1 (-1193 *4 *5 *6 *7)))) (-3773 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-635 (-2 (|:| -2626 *1) (|:| -1328 (-635 *7))))) (-5 *3 (-635 *7)) (-4 *1 (-1193 *4 *5 *6 *7)))) (-2305 (*1 *2 *1) (|partial| -12 (-4 *1 (-1193 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *2 (-1053 *3 *4 *5)))) (-1560 (*1 *2 *1) (|partial| -12 (-4 *1 (-1193 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *2 (-1053 *3 *4 *5)))) (-2315 (*1 *1 *1) (|partial| -12 (-4 *1 (-1193 *2 *3 *4 *5)) (-4 *2 (-550)) (-4 *3 (-784)) (-4 *4 (-841)) (-4 *5 (-1053 *2 *3 *4)))) (-3764 (*1 *2 *1) (-12 (-4 *1 (-1193 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-635 *5)))) (-4206 (*1 *2 *3 *1) (-12 (-4 *1 (-1193 *4 *5 *3 *6)) (-4 *4 (-550)) (-4 *5 (-784)) (-4 *3 (-841)) (-4 *6 (-1053 *4 *5 *3)) (-5 *2 (-112)))) (-4329 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1193 *4 *5 *3 *2)) (-4 *4 (-550)) (-4 *5 (-784)) (-4 *3 (-841)) (-4 *2 (-1053 *4 *5 *3)))) (-3755 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1193 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *2 (-1053 *3 *4 *5)))) (-3430 (*1 *1 *1 *2) (-12 (-4 *1 (-1193 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *2 (-1053 *3 *4 *5)))) (-3745 (*1 *2 *1) (-12 (-4 *1 (-1193 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-4 *5 (-367)) (-5 *2 (-762)))))
+(-13 (-966 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4382) (-6 -4383) (-15 -3953 ((-112) $ $)) (-15 -3940 ((-3 (-2 (|:| |bas| $) (|:| -3072 (-635 |t#4|))) "failed") (-635 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3940 ((-3 (-2 (|:| |bas| $) (|:| -3072 (-635 |t#4|))) "failed") (-635 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3932 ((-635 |t#4|) $)) (-15 -4323 ((-762) $)) (-15 -3923 ((-2 (|:| -2626 (-635 |t#4|)) (|:| -1328 (-635 |t#4|))) $)) (-15 -3912 ((-112) |t#4| $)) (-15 -3912 ((-112) $)) (-15 -3902 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -3892 ((-112) |t#4| $)) (-15 -3883 ((-112) |t#4| $)) (-15 -3873 ((-112) |t#4| $)) (-15 -3863 ((-112) $ (-1 (-112) |t#4| (-635 |t#4|)))) (-15 -3892 ((-112) $)) (-15 -3883 ((-112) $)) (-15 -3873 ((-112) $)) (-15 -3048 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3853 ((-635 |t#4|) (-635 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3842 (|t#4| |t#4| $)) (-15 -3830 (|t#4| |t#4| $)) (-15 -3820 (|t#4| |t#4| $)) (-15 -3810 (|t#4| |t#4| $)) (-15 -3801 ($ $)) (-15 -3792 (|t#4| |t#4| $)) (-15 -3782 ((-635 $) (-635 |t#4|))) (-15 -3773 ((-635 (-2 (|:| -2626 $) (|:| -1328 (-635 |t#4|)))) (-635 |t#4|))) (-15 -2305 ((-3 |t#4| "failed") $)) (-15 -1560 ((-3 |t#4| "failed") $)) (-15 -2315 ((-3 $ "failed") $)) (-15 -3764 ((-635 |t#3|) $)) (-15 -4206 ((-112) |t#3| $)) (-15 -4329 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3755 ((-3 $ "failed") $ |t#4|)) (-15 -3430 ($ $ |t#4|)) (IF (|has| |t#3| (-367)) (-15 -3745 ((-762) $)) |%noBranch|)))
+(((-34) . T) ((-102) . T) ((-605 (-635 |#4|)) . T) ((-605 (-853)) . T) ((-150 |#4|) . T) ((-606 (-534)) |has| |#4| (-606 (-534))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))) ((-487 |#4|) . T) ((-512 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))) ((-966 |#1| |#2| |#3| |#4|) . T) ((-1087) . T) ((-1200) . T))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2671 (((-635 (-1163)) $) NIL)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1881 (($ $) NIL (|has| |#1| (-550)))) (-1857 (((-112) $) NIL (|has| |#1| (-550)))) (-4088 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2135 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2089 (((-3 $ "failed") $ $) NIL)) (-2534 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4070 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2112 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4113 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2156 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1816 (($) NIL T CONST)) (-2490 (($ $) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-4330 (((-942 |#1|) $ (-762)) 16) (((-942 |#1|) $ (-762) (-762)) NIL)) (-2020 (((-112) $) NIL)) (-1904 (($) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3449 (((-762) $ (-1163)) NIL) (((-762) $ (-1163) (-762)) NIL)) (-2035 (((-112) $) NIL)) (-3828 (($ $ (-558)) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4238 (((-112) $) NIL)) (-2648 (($ $ (-635 (-1163)) (-635 (-529 (-1163)))) NIL) (($ $ (-1163) (-529 (-1163))) NIL) (($ |#1| (-529 (-1163))) NIL) (($ $ (-1163) (-762)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL)) (-3167 (($ (-1 |#1| |#1|) $) NIL)) (-2592 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2451 (($ $) NIL)) (-2463 ((|#1| $) NIL)) (-4310 (((-1145) $) NIL)) (-2543 (($ $ (-1163)) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-1163) |#1|) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2975 (((-1107) $) NIL)) (-3726 (($ (-1 $) (-1163) |#1|) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3430 (($ $ (-762)) NIL)) (-3983 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-2573 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2554 (($ $ (-1163) $) NIL) (($ $ (-635 (-1163)) (-635 $)) NIL) (($ $ (-635 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL)) (-2829 (($ $ (-1163)) NIL) (($ $ (-635 (-1163))) NIL) (($ $ (-1163) (-762)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL)) (-4323 (((-529 (-1163)) $) NIL)) (-4124 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2167 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4102 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2146 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4080 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2124 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2011 (($ $) NIL)) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ $) NIL (|has| |#1| (-550))) (($ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558))))) (($ (-1163)) NIL) (($ (-942 |#1|)) NIL)) (-3736 ((|#1| $ (-529 (-1163))) NIL) (($ $ (-1163) (-762)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL) (((-942 |#1|) $ (-762)) NIL)) (-3698 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2542 (((-762)) NIL)) (-4159 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2200 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1870 (((-112) $ $) NIL (|has| |#1| (-550)))) (-4135 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2178 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4184 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2222 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1878 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4060 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4171 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2211 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4147 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2189 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2131 (($) NIL T CONST)) (-2142 (($) NIL T CONST)) (-1866 (($ $ (-1163)) NIL) (($ $ (-635 (-1163))) NIL) (($ $ (-1163) (-762)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL)) (-1683 (((-112) $ $) NIL)) (-1810 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558)))))) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558))))) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-1194 |#1|) (-13 (-731 |#1| (-1163)) (-10 -8 (-15 -3736 ((-942 |#1|) $ (-762))) (-15 -3220 ($ (-1163))) (-15 -3220 ($ (-942 |#1|))) (IF (|has| |#1| (-38 (-406 (-558)))) (PROGN (-15 -2543 ($ $ (-1163) |#1|)) (-15 -3726 ($ (-1 $) (-1163) |#1|))) |%noBranch|))) (-1039)) (T -1194))
+((-3736 (*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-5 *2 (-942 *4)) (-5 *1 (-1194 *4)) (-4 *4 (-1039)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1194 *3)) (-4 *3 (-1039)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-942 *3)) (-4 *3 (-1039)) (-5 *1 (-1194 *3)))) (-2543 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *1 (-1194 *3)) (-4 *3 (-38 (-406 (-558)))) (-4 *3 (-1039)))) (-3726 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1194 *4))) (-5 *3 (-1163)) (-5 *1 (-1194 *4)) (-4 *4 (-38 (-406 (-558)))) (-4 *4 (-1039)))))
+(-13 (-731 |#1| (-1163)) (-10 -8 (-15 -3736 ((-942 |#1|) $ (-762))) (-15 -3220 ($ (-1163))) (-15 -3220 ($ (-942 |#1|))) (IF (|has| |#1| (-38 (-406 (-558)))) (PROGN (-15 -2543 ($ $ (-1163) |#1|)) (-15 -3726 ($ (-1 $) (-1163) |#1|))) |%noBranch|)))
+((-4015 (($ |#1| (-635 (-635 (-933 (-224)))) (-112)) 18)) (-4007 (((-112) $ (-112)) 17)) (-3996 (((-112) $) 16)) (-3975 (((-635 (-635 (-933 (-224)))) $) 13)) (-3965 ((|#1| $) 8)) (-3984 (((-112) $) 15)))
+(((-1195 |#1|) (-10 -8 (-15 -3965 (|#1| $)) (-15 -3975 ((-635 (-635 (-933 (-224)))) $)) (-15 -3984 ((-112) $)) (-15 -3996 ((-112) $)) (-15 -4007 ((-112) $ (-112))) (-15 -4015 ($ |#1| (-635 (-635 (-933 (-224)))) (-112)))) (-964)) (T -1195))
+((-4015 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-635 (-635 (-933 (-224))))) (-5 *4 (-112)) (-5 *1 (-1195 *2)) (-4 *2 (-964)))) (-4007 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3)) (-4 *3 (-964)))) (-3996 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3)) (-4 *3 (-964)))) (-3984 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3)) (-4 *3 (-964)))) (-3975 (*1 *2 *1) (-12 (-5 *2 (-635 (-635 (-933 (-224))))) (-5 *1 (-1195 *3)) (-4 *3 (-964)))) (-3965 (*1 *2 *1) (-12 (-5 *1 (-1195 *2)) (-4 *2 (-964)))))
+(-10 -8 (-15 -3965 (|#1| $)) (-15 -3975 ((-635 (-635 (-933 (-224)))) $)) (-15 -3984 ((-112) $)) (-15 -3996 ((-112) $)) (-15 -4007 ((-112) $ (-112))) (-15 -4015 ($ |#1| (-635 (-635 (-933 (-224)))) (-112))))
+((-4027 (((-933 (-224)) (-933 (-224))) 25)) (-3840 (((-933 (-224)) (-224) (-224) (-224) (-224)) 10)) (-4048 (((-635 (-933 (-224))) (-933 (-224)) (-933 (-224)) (-933 (-224)) (-224) (-635 (-635 (-224)))) 35)) (-2744 (((-224) (-933 (-224)) (-933 (-224))) 21)) (-2733 (((-933 (-224)) (-933 (-224)) (-933 (-224))) 22)) (-4037 (((-635 (-635 (-224))) (-558)) 31)) (-1798 (((-933 (-224)) (-933 (-224)) (-933 (-224))) 20)) (-1784 (((-933 (-224)) (-933 (-224)) (-933 (-224))) 19)) (* (((-933 (-224)) (-224) (-933 (-224))) 18)))
+(((-1196) (-10 -7 (-15 -3840 ((-933 (-224)) (-224) (-224) (-224) (-224))) (-15 * ((-933 (-224)) (-224) (-933 (-224)))) (-15 -1784 ((-933 (-224)) (-933 (-224)) (-933 (-224)))) (-15 -1798 ((-933 (-224)) (-933 (-224)) (-933 (-224)))) (-15 -2744 ((-224) (-933 (-224)) (-933 (-224)))) (-15 -2733 ((-933 (-224)) (-933 (-224)) (-933 (-224)))) (-15 -4027 ((-933 (-224)) (-933 (-224)))) (-15 -4037 ((-635 (-635 (-224))) (-558))) (-15 -4048 ((-635 (-933 (-224))) (-933 (-224)) (-933 (-224)) (-933 (-224)) (-224) (-635 (-635 (-224))))))) (T -1196))
+((-4048 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-635 (-635 (-224)))) (-5 *4 (-224)) (-5 *2 (-635 (-933 *4))) (-5 *1 (-1196)) (-5 *3 (-933 *4)))) (-4037 (*1 *2 *3) (-12 (-5 *3 (-558)) (-5 *2 (-635 (-635 (-224)))) (-5 *1 (-1196)))) (-4027 (*1 *2 *2) (-12 (-5 *2 (-933 (-224))) (-5 *1 (-1196)))) (-2733 (*1 *2 *2 *2) (-12 (-5 *2 (-933 (-224))) (-5 *1 (-1196)))) (-2744 (*1 *2 *3 *3) (-12 (-5 *3 (-933 (-224))) (-5 *2 (-224)) (-5 *1 (-1196)))) (-1798 (*1 *2 *2 *2) (-12 (-5 *2 (-933 (-224))) (-5 *1 (-1196)))) (-1784 (*1 *2 *2 *2) (-12 (-5 *2 (-933 (-224))) (-5 *1 (-1196)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-933 (-224))) (-5 *3 (-224)) (-5 *1 (-1196)))) (-3840 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-933 (-224))) (-5 *1 (-1196)) (-5 *3 (-224)))))
+(-10 -7 (-15 -3840 ((-933 (-224)) (-224) (-224) (-224) (-224))) (-15 * ((-933 (-224)) (-224) (-933 (-224)))) (-15 -1784 ((-933 (-224)) (-933 (-224)) (-933 (-224)))) (-15 -1798 ((-933 (-224)) (-933 (-224)) (-933 (-224)))) (-15 -2744 ((-224) (-933 (-224)) (-933 (-224)))) (-15 -2733 ((-933 (-224)) (-933 (-224)) (-933 (-224)))) (-15 -4027 ((-933 (-224)) (-933 (-224)))) (-15 -4037 ((-635 (-635 (-224))) (-558))) (-15 -4048 ((-635 (-933 (-224))) (-933 (-224)) (-933 (-224)) (-933 (-224)) (-224) (-635 (-635 (-224))))))
+((-3207 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-4329 ((|#1| $ (-762)) 13)) (-2880 (((-762) $) 12)) (-4310 (((-1145) $) NIL (|has| |#1| (-1087)))) (-2975 (((-1107) $) NIL (|has| |#1| (-1087)))) (-3220 (((-948 |#1|) $) 10) (($ (-948 |#1|)) 9) (((-853) $) 23 (|has| |#1| (-605 (-853))))) (-1683 (((-112) $ $) 16 (|has| |#1| (-1087)))))
+(((-1197 |#1|) (-13 (-488 (-948 |#1|)) (-10 -8 (-15 -4329 (|#1| $ (-762))) (-15 -2880 ((-762) $)) (IF (|has| |#1| (-605 (-853))) (-6 (-605 (-853))) |%noBranch|) (IF (|has| |#1| (-1087)) (-6 (-1087)) |%noBranch|))) (-1200)) (T -1197))
+((-4329 (*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-5 *1 (-1197 *2)) (-4 *2 (-1200)))) (-2880 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-1197 *3)) (-4 *3 (-1200)))))
+(-13 (-488 (-948 |#1|)) (-10 -8 (-15 -4329 (|#1| $ (-762))) (-15 -2880 ((-762) $)) (IF (|has| |#1| (-605 (-853))) (-6 (-605 (-853))) |%noBranch|) (IF (|has| |#1| (-1087)) (-6 (-1087)) |%noBranch|)))
+((-4075 (((-417 (-1159 (-1159 |#1|))) (-1159 (-1159 |#1|)) (-558)) 80)) (-4055 (((-417 (-1159 (-1159 |#1|))) (-1159 (-1159 |#1|))) 74)) (-4065 (((-417 (-1159 (-1159 |#1|))) (-1159 (-1159 |#1|))) 59)))
+(((-1198 |#1|) (-10 -7 (-15 -4055 ((-417 (-1159 (-1159 |#1|))) (-1159 (-1159 |#1|)))) (-15 -4065 ((-417 (-1159 (-1159 |#1|))) (-1159 (-1159 |#1|)))) (-15 -4075 ((-417 (-1159 (-1159 |#1|))) (-1159 (-1159 |#1|)) (-558)))) (-348)) (T -1198))
+((-4075 (*1 *2 *3 *4) (-12 (-5 *4 (-558)) (-4 *5 (-348)) (-5 *2 (-417 (-1159 (-1159 *5)))) (-5 *1 (-1198 *5)) (-5 *3 (-1159 (-1159 *5))))) (-4065 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-417 (-1159 (-1159 *4)))) (-5 *1 (-1198 *4)) (-5 *3 (-1159 (-1159 *4))))) (-4055 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-417 (-1159 (-1159 *4)))) (-5 *1 (-1198 *4)) (-5 *3 (-1159 (-1159 *4))))))
+(-10 -7 (-15 -4055 ((-417 (-1159 (-1159 |#1|))) (-1159 (-1159 |#1|)))) (-15 -4065 ((-417 (-1159 (-1159 |#1|))) (-1159 (-1159 |#1|)))) (-15 -4075 ((-417 (-1159 (-1159 |#1|))) (-1159 (-1159 |#1|)) (-558))))
+((-3207 (((-112) $ $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 9) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1683 (((-112) $ $) NIL)))
+(((-1199) (-1070)) (T -1199))
+NIL
+(-1070)
+NIL
+(((-1200) (-139)) (T -1200))
+NIL
+(-13 (-10 -7 (-6 -1315)))
+((-2963 (((-112)) 14)) (-2931 (((-1251) (-635 |#1|) (-635 |#1|)) 18) (((-1251) (-635 |#1|)) 19)) (-2986 (((-112) |#1| |#1|) 31 (|has| |#1| (-841)))) (-2953 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 26) (((-3 (-112) "failed") |#1| |#1|) 24)) (-2973 ((|#1| (-635 |#1|)) 32 (|has| |#1| (-841))) ((|#1| (-635 |#1|) (-1 (-112) |#1| |#1|)) 27)) (-2942 (((-2 (|:| -4237 (-635 |#1|)) (|:| -4226 (-635 |#1|)))) 16)))
+(((-1201 |#1|) (-10 -7 (-15 -2931 ((-1251) (-635 |#1|))) (-15 -2931 ((-1251) (-635 |#1|) (-635 |#1|))) (-15 -2942 ((-2 (|:| -4237 (-635 |#1|)) (|:| -4226 (-635 |#1|))))) (-15 -2953 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2953 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -2973 (|#1| (-635 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2963 ((-112))) (IF (|has| |#1| (-841)) (PROGN (-15 -2973 (|#1| (-635 |#1|))) (-15 -2986 ((-112) |#1| |#1|))) |%noBranch|)) (-1087)) (T -1201))
+((-2986 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1201 *3)) (-4 *3 (-841)) (-4 *3 (-1087)))) (-2973 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-1087)) (-4 *2 (-841)) (-5 *1 (-1201 *2)))) (-2963 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1201 *3)) (-4 *3 (-1087)))) (-2973 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1201 *2)) (-4 *2 (-1087)))) (-2953 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1087)) (-5 *2 (-112)) (-5 *1 (-1201 *3)))) (-2953 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1201 *3)) (-4 *3 (-1087)))) (-2942 (*1 *2) (-12 (-5 *2 (-2 (|:| -4237 (-635 *3)) (|:| -4226 (-635 *3)))) (-5 *1 (-1201 *3)) (-4 *3 (-1087)))) (-2931 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *4)) (-4 *4 (-1087)) (-5 *2 (-1251)) (-5 *1 (-1201 *4)))) (-2931 (*1 *2 *3) (-12 (-5 *3 (-635 *4)) (-4 *4 (-1087)) (-5 *2 (-1251)) (-5 *1 (-1201 *4)))))
+(-10 -7 (-15 -2931 ((-1251) (-635 |#1|))) (-15 -2931 ((-1251) (-635 |#1|) (-635 |#1|))) (-15 -2942 ((-2 (|:| -4237 (-635 |#1|)) (|:| -4226 (-635 |#1|))))) (-15 -2953 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2953 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -2973 (|#1| (-635 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2963 ((-112))) (IF (|has| |#1| (-841)) (PROGN (-15 -2973 (|#1| (-635 |#1|))) (-15 -2986 ((-112) |#1| |#1|))) |%noBranch|))
+((-2998 (((-1251) (-635 (-1163)) (-635 (-1163))) 13) (((-1251) (-635 (-1163))) 11)) (-3020 (((-1251)) 14)) (-3009 (((-2 (|:| -4226 (-635 (-1163))) (|:| -4237 (-635 (-1163))))) 18)))
+(((-1202) (-10 -7 (-15 -2998 ((-1251) (-635 (-1163)))) (-15 -2998 ((-1251) (-635 (-1163)) (-635 (-1163)))) (-15 -3009 ((-2 (|:| -4226 (-635 (-1163))) (|:| -4237 (-635 (-1163)))))) (-15 -3020 ((-1251))))) (T -1202))
+((-3020 (*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-1202)))) (-3009 (*1 *2) (-12 (-5 *2 (-2 (|:| -4226 (-635 (-1163))) (|:| -4237 (-635 (-1163))))) (-5 *1 (-1202)))) (-2998 (*1 *2 *3 *3) (-12 (-5 *3 (-635 (-1163))) (-5 *2 (-1251)) (-5 *1 (-1202)))) (-2998 (*1 *2 *3) (-12 (-5 *3 (-635 (-1163))) (-5 *2 (-1251)) (-5 *1 (-1202)))))
+(-10 -7 (-15 -2998 ((-1251) (-635 (-1163)))) (-15 -2998 ((-1251) (-635 (-1163)) (-635 (-1163)))) (-15 -3009 ((-2 (|:| -4226 (-635 (-1163))) (|:| -4237 (-635 (-1163)))))) (-15 -3020 ((-1251))))
+((-3465 (($ $) 17)) (-3031 (((-112) $) 24)))
+(((-1203 |#1|) (-10 -8 (-15 -3465 (|#1| |#1|)) (-15 -3031 ((-112) |#1|))) (-1204)) (T -1203))
+NIL
+(-10 -8 (-15 -3465 (|#1| |#1|)) (-15 -3031 ((-112) |#1|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 42)) (-1881 (($ $) 41)) (-1857 (((-112) $) 39)) (-2089 (((-3 $ "failed") $ $) 19)) (-3465 (($ $) 52)) (-1380 (((-417 $) $) 53)) (-1816 (($) 17 T CONST)) (-2588 (((-3 $ "failed") $) 33)) (-3031 (((-112) $) 54)) (-2035 (((-112) $) 31)) (-2665 (($ $ $) 47) (($ (-635 $)) 46)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) 45)) (-2699 (($ $ $) 49) (($ (-635 $)) 48)) (-2522 (((-417 $) $) 51)) (-3983 (((-3 $ "failed") $ $) 43)) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ $) 44)) (-2542 (((-762)) 28)) (-1870 (((-112) $ $) 40)) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1683 (((-112) $ $) 6)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24)))
+(((-1204) (-139)) (T -1204))
+((-3031 (*1 *2 *1) (-12 (-4 *1 (-1204)) (-5 *2 (-112)))) (-1380 (*1 *2 *1) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1204)))) (-3465 (*1 *1 *1) (-4 *1 (-1204))) (-2522 (*1 *2 *1) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1204)))))
+(-13 (-450) (-10 -8 (-15 -3031 ((-112) $)) (-15 -1380 ((-417 $) $)) (-15 -3465 ($ $)) (-15 -2522 ((-417 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-608 (-558)) . T) ((-608 $) . T) ((-605 (-853)) . T) ((-171) . T) ((-289) . T) ((-450) . T) ((-550) . T) ((-638 $) . T) ((-708 $) . T) ((-717) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
+((-3167 (((-1210 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1210 |#1| |#3| |#5|)) 23)))
+(((-1205 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3167 ((-1210 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1210 |#1| |#3| |#5|)))) (-1039) (-1039) (-1163) (-1163) |#1| |#2|) (T -1205))
+((-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1210 *5 *7 *9)) (-4 *5 (-1039)) (-4 *6 (-1039)) (-14 *7 (-1163)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1210 *6 *8 *10)) (-5 *1 (-1205 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1163)))))
+(-10 -7 (-15 -3167 ((-1210 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1210 |#1| |#3| |#5|))))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2671 (((-635 (-1069)) $) 77)) (-1602 (((-1163) $) 106)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 54 (|has| |#1| (-550)))) (-1881 (($ $) 55 (|has| |#1| (-550)))) (-1857 (((-112) $) 57 (|has| |#1| (-550)))) (-3440 (($ $ (-558)) 101) (($ $ (-558) (-558)) 100)) (-3456 (((-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) $) 108)) (-4088 (($ $) 138 (|has| |#1| (-38 (-406 (-558)))))) (-2135 (($ $) 121 (|has| |#1| (-38 (-406 (-558)))))) (-2089 (((-3 $ "failed") $ $) 19)) (-3465 (($ $) 165 (|has| |#1| (-362)))) (-1380 (((-417 $) $) 166 (|has| |#1| (-362)))) (-2534 (($ $) 120 (|has| |#1| (-38 (-406 (-558)))))) (-3732 (((-112) $ $) 156 (|has| |#1| (-362)))) (-4070 (($ $) 137 (|has| |#1| (-38 (-406 (-558)))))) (-2112 (($ $) 122 (|has| |#1| (-38 (-406 (-558)))))) (-3871 (($ (-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|)))) 176)) (-4113 (($ $) 136 (|has| |#1| (-38 (-406 (-558)))))) (-2156 (($ $) 123 (|has| |#1| (-38 (-406 (-558)))))) (-1816 (($) 17 T CONST)) (-4025 (($ $ $) 160 (|has| |#1| (-362)))) (-2490 (($ $) 63)) (-2588 (((-3 $ "failed") $) 33)) (-3041 (((-406 (-942 |#1|)) $ (-558)) 174 (|has| |#1| (-550))) (((-406 (-942 |#1|)) $ (-558) (-558)) 173 (|has| |#1| (-550)))) (-4004 (($ $ $) 159 (|has| |#1| (-362)))) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) 154 (|has| |#1| (-362)))) (-3031 (((-112) $) 167 (|has| |#1| (-362)))) (-2020 (((-112) $) 76)) (-1904 (($) 148 (|has| |#1| (-38 (-406 (-558)))))) (-3449 (((-558) $) 103) (((-558) $ (-558)) 102)) (-2035 (((-112) $) 31)) (-3828 (($ $ (-558)) 119 (|has| |#1| (-38 (-406 (-558)))))) (-3486 (($ $ (-911)) 104)) (-2555 (($ (-1 |#1| (-558)) $) 175)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) 163 (|has| |#1| (-362)))) (-4238 (((-112) $) 65)) (-2648 (($ |#1| (-558)) 64) (($ $ (-1069) (-558)) 79) (($ $ (-635 (-1069)) (-635 (-558))) 78)) (-3167 (($ (-1 |#1| |#1|) $) 66)) (-2592 (($ $) 145 (|has| |#1| (-38 (-406 (-558)))))) (-2451 (($ $) 68)) (-2463 ((|#1| $) 69)) (-2665 (($ (-635 $)) 152 (|has| |#1| (-362))) (($ $ $) 151 (|has| |#1| (-362)))) (-4310 (((-1145) $) 9)) (-2418 (($ $) 168 (|has| |#1| (-362)))) (-2543 (($ $) 172 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-1163)) 171 (-3998 (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-949)) (|has| |#1| (-1185)) (|has| |#1| (-38 (-406 (-558))))) (-12 (|has| |#1| (-15 -2671 ((-635 (-1163)) |#1|))) (|has| |#1| (-15 -2543 (|#1| |#1| (-1163)))) (|has| |#1| (-38 (-406 (-558)))))))) (-2975 (((-1107) $) 10)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) 153 (|has| |#1| (-362)))) (-2699 (($ (-635 $)) 150 (|has| |#1| (-362))) (($ $ $) 149 (|has| |#1| (-362)))) (-2522 (((-417 $) $) 164 (|has| |#1| (-362)))) (-3713 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) 161 (|has| |#1| (-362)))) (-3430 (($ $ (-558)) 98)) (-3983 (((-3 $ "failed") $ $) 53 (|has| |#1| (-550)))) (-2922 (((-3 (-635 $) "failed") (-635 $) $) 155 (|has| |#1| (-362)))) (-2573 (($ $) 146 (|has| |#1| (-38 (-406 (-558)))))) (-2554 (((-1143 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-558)))))) (-3722 (((-762) $) 157 (|has| |#1| (-362)))) (-2195 ((|#1| $ (-558)) 107) (($ $ $) 84 (|has| (-558) (-1099)))) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 158 (|has| |#1| (-362)))) (-2829 (($ $ (-635 (-1163)) (-635 (-762))) 92 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $ (-1163) (-762)) 91 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $ (-635 (-1163))) 90 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $ (-1163)) 89 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $ (-762)) 87 (|has| |#1| (-15 * (|#1| (-558) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (-4323 (((-558) $) 67)) (-4124 (($ $) 135 (|has| |#1| (-38 (-406 (-558)))))) (-2167 (($ $) 124 (|has| |#1| (-38 (-406 (-558)))))) (-4102 (($ $) 134 (|has| |#1| (-38 (-406 (-558)))))) (-2146 (($ $) 125 (|has| |#1| (-38 (-406 (-558)))))) (-4080 (($ $) 133 (|has| |#1| (-38 (-406 (-558)))))) (-2124 (($ $) 126 (|has| |#1| (-38 (-406 (-558)))))) (-2011 (($ $) 75)) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ |#1|) 50 (|has| |#1| (-171))) (($ (-406 (-558))) 60 (|has| |#1| (-38 (-406 (-558))))) (($ $) 52 (|has| |#1| (-550)))) (-3736 ((|#1| $ (-558)) 62)) (-3698 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-2542 (((-762)) 28)) (-2673 ((|#1| $) 105)) (-4159 (($ $) 144 (|has| |#1| (-38 (-406 (-558)))))) (-2200 (($ $) 132 (|has| |#1| (-38 (-406 (-558)))))) (-1870 (((-112) $ $) 56 (|has| |#1| (-550)))) (-4135 (($ $) 143 (|has| |#1| (-38 (-406 (-558)))))) (-2178 (($ $) 131 (|has| |#1| (-38 (-406 (-558)))))) (-4184 (($ $) 142 (|has| |#1| (-38 (-406 (-558)))))) (-2222 (($ $) 130 (|has| |#1| (-38 (-406 (-558)))))) (-1352 ((|#1| $ (-558)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-558)))) (|has| |#1| (-15 -3220 (|#1| (-1163))))))) (-1878 (($ $) 141 (|has| |#1| (-38 (-406 (-558)))))) (-4060 (($ $) 129 (|has| |#1| (-38 (-406 (-558)))))) (-4171 (($ $) 140 (|has| |#1| (-38 (-406 (-558)))))) (-2211 (($ $) 128 (|has| |#1| (-38 (-406 (-558)))))) (-4147 (($ $) 139 (|has| |#1| (-38 (-406 (-558)))))) (-2189 (($ $) 127 (|has| |#1| (-38 (-406 (-558)))))) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1866 (($ $ (-635 (-1163)) (-635 (-762))) 96 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $ (-1163) (-762)) 95 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $ (-635 (-1163))) 94 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $ (-1163)) 93 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $ (-762)) 88 (|has| |#1| (-15 * (|#1| (-558) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (-1683 (((-112) $ $) 6)) (-1810 (($ $ |#1|) 61 (|has| |#1| (-362))) (($ $ $) 170 (|has| |#1| (-362)))) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ (-558)) 169 (|has| |#1| (-362))) (($ $ $) 147 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) 118 (|has| |#1| (-38 (-406 (-558)))))) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-558)) $) 59 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) 58 (|has| |#1| (-38 (-406 (-558)))))))
+(((-1206 |#1|) (-139) (-1039)) (T -1206))
+((-3871 (*1 *1 *2) (-12 (-5 *2 (-1143 (-2 (|:| |k| (-558)) (|:| |c| *3)))) (-4 *3 (-1039)) (-4 *1 (-1206 *3)))) (-2555 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-558))) (-4 *1 (-1206 *3)) (-4 *3 (-1039)))) (-3041 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-1206 *4)) (-4 *4 (-1039)) (-4 *4 (-550)) (-5 *2 (-406 (-942 *4))))) (-3041 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-4 *1 (-1206 *4)) (-4 *4 (-1039)) (-4 *4 (-550)) (-5 *2 (-406 (-942 *4))))) (-2543 (*1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1039)) (-4 *2 (-38 (-406 (-558)))))) (-2543 (*1 *1 *1 *2) (-3998 (-12 (-5 *2 (-1163)) (-4 *1 (-1206 *3)) (-4 *3 (-1039)) (-12 (-4 *3 (-29 (-558))) (-4 *3 (-949)) (-4 *3 (-1185)) (-4 *3 (-38 (-406 (-558)))))) (-12 (-5 *2 (-1163)) (-4 *1 (-1206 *3)) (-4 *3 (-1039)) (-12 (|has| *3 (-15 -2671 ((-635 *2) *3))) (|has| *3 (-15 -2543 (*3 *3 *2))) (-4 *3 (-38 (-406 (-558)))))))))
+(-13 (-1224 |t#1| (-558)) (-10 -8 (-15 -3871 ($ (-1143 (-2 (|:| |k| (-558)) (|:| |c| |t#1|))))) (-15 -2555 ($ (-1 |t#1| (-558)) $)) (IF (|has| |t#1| (-550)) (PROGN (-15 -3041 ((-406 (-942 |t#1|)) $ (-558))) (-15 -3041 ((-406 (-942 |t#1|)) $ (-558) (-558)))) |%noBranch|) (IF (|has| |t#1| (-38 (-406 (-558)))) (PROGN (-15 -2543 ($ $)) (IF (|has| |t#1| (-15 -2543 (|t#1| |t#1| (-1163)))) (IF (|has| |t#1| (-15 -2671 ((-635 (-1163)) |t#1|))) (-15 -2543 ($ $ (-1163))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1185)) (IF (|has| |t#1| (-949)) (IF (|has| |t#1| (-29 (-558))) (-15 -2543 ($ $ (-1163))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-992)) (-6 (-1185))) |%noBranch|) (IF (|has| |t#1| (-362)) (-6 (-362)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-558)) . T) ((-25) . T) ((-38 #1=(-406 (-558))) -3998 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -3998 (|has| |#1| (-550)) (|has| |#1| (-362))) ((-35) |has| |#1| (-38 (-406 (-558)))) ((-95) |has| |#1| (-38 (-406 (-558)))) ((-102) . T) ((-111 #1# #1#) -3998 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3998 (|has| |#1| (-550)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-608 #1#) -3998 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-608 (-558)) . T) ((-608 |#1|) |has| |#1| (-171)) ((-608 $) -3998 (|has| |#1| (-550)) (|has| |#1| (-362))) ((-605 (-853)) . T) ((-171) -3998 (|has| |#1| (-550)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-232) |has| |#1| (-15 * (|#1| (-558) |#1|))) ((-242) |has| |#1| (-362)) ((-283) |has| |#1| (-38 (-406 (-558)))) ((-285 $ $) |has| (-558) (-1099)) ((-289) -3998 (|has| |#1| (-550)) (|has| |#1| (-362))) ((-306) |has| |#1| (-362)) ((-362) |has| |#1| (-362)) ((-450) |has| |#1| (-362)) ((-491) |has| |#1| (-38 (-406 (-558)))) ((-550) -3998 (|has| |#1| (-550)) (|has| |#1| (-362))) ((-638 #1#) -3998 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-638 |#1|) . T) ((-638 $) . T) ((-708 #1#) -3998 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-708 |#1|) |has| |#1| (-171)) ((-708 $) -3998 (|has| |#1| (-550)) (|has| |#1| (-362))) ((-717) . T) ((-890 (-1163)) -12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163)))) ((-963 |#1| #0# (-1069)) . T) ((-910) |has| |#1| (-362)) ((-992) |has| |#1| (-38 (-406 (-558)))) ((-1045 #1#) -3998 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-1045 |#1|) . T) ((-1045 $) -3998 (|has| |#1| (-550)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1185) |has| |#1| (-38 (-406 (-558)))) ((-1188) |has| |#1| (-38 (-406 (-558)))) ((-1204) |has| |#1| (-362)) ((-1224 |#1| #0#) . T))
+((-2067 (((-112) $) 12)) (-3069 (((-3 |#3| "failed") $) 17) (((-3 (-1163) "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL) (((-3 (-558) "failed") $) NIL)) (-1863 ((|#3| $) 14) (((-1163) $) NIL) (((-406 (-558)) $) NIL) (((-558) $) NIL)))
+(((-1207 |#1| |#2| |#3|) (-10 -8 (-15 -3069 ((-3 (-558) "failed") |#1|)) (-15 -1863 ((-558) |#1|)) (-15 -3069 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -1863 ((-406 (-558)) |#1|)) (-15 -3069 ((-3 (-1163) "failed") |#1|)) (-15 -1863 ((-1163) |#1|)) (-15 -3069 ((-3 |#3| "failed") |#1|)) (-15 -1863 (|#3| |#1|)) (-15 -2067 ((-112) |#1|))) (-1208 |#2| |#3|) (-1039) (-1237 |#2|)) (T -1207))
+NIL
+(-10 -8 (-15 -3069 ((-3 (-558) "failed") |#1|)) (-15 -1863 ((-558) |#1|)) (-15 -3069 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -1863 ((-406 (-558)) |#1|)) (-15 -3069 ((-3 (-1163) "failed") |#1|)) (-15 -1863 ((-1163) |#1|)) (-15 -3069 ((-3 |#3| "failed") |#1|)) (-15 -1863 (|#3| |#1|)) (-15 -2067 ((-112) |#1|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2582 ((|#2| $) 231 (-2084 (|has| |#2| (-306)) (|has| |#1| (-362))))) (-2671 (((-635 (-1069)) $) 77)) (-1602 (((-1163) $) 106)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 54 (|has| |#1| (-550)))) (-1881 (($ $) 55 (|has| |#1| (-550)))) (-1857 (((-112) $) 57 (|has| |#1| (-550)))) (-3440 (($ $ (-558)) 101) (($ $ (-558) (-558)) 100)) (-3456 (((-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) $) 108)) (-3077 ((|#2| $) 267)) (-3054 (((-3 |#2| "failed") $) 263)) (-2724 ((|#2| $) 264)) (-4088 (($ $) 138 (|has| |#1| (-38 (-406 (-558)))))) (-2135 (($ $) 121 (|has| |#1| (-38 (-406 (-558)))))) (-2089 (((-3 $ "failed") $ $) 19)) (-3748 (((-417 (-1159 $)) (-1159 $)) 240 (-2084 (|has| |#2| (-899)) (|has| |#1| (-362))))) (-3465 (($ $) 165 (|has| |#1| (-362)))) (-1380 (((-417 $) $) 166 (|has| |#1| (-362)))) (-2534 (($ $) 120 (|has| |#1| (-38 (-406 (-558)))))) (-3719 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) 237 (-2084 (|has| |#2| (-899)) (|has| |#1| (-362))))) (-3732 (((-112) $ $) 156 (|has| |#1| (-362)))) (-4070 (($ $) 137 (|has| |#1| (-38 (-406 (-558)))))) (-2112 (($ $) 122 (|has| |#1| (-38 (-406 (-558)))))) (-1397 (((-558) $) 249 (-2084 (|has| |#2| (-811)) (|has| |#1| (-362))))) (-3871 (($ (-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|)))) 176)) (-4113 (($ $) 136 (|has| |#1| (-38 (-406 (-558)))))) (-2156 (($ $) 123 (|has| |#1| (-38 (-406 (-558)))))) (-1816 (($) 17 T CONST)) (-3069 (((-3 |#2| "failed") $) 270) (((-3 (-558) "failed") $) 260 (-2084 (|has| |#2| (-1028 (-558))) (|has| |#1| (-362)))) (((-3 (-406 (-558)) "failed") $) 258 (-2084 (|has| |#2| (-1028 (-558))) (|has| |#1| (-362)))) (((-3 (-1163) "failed") $) 242 (-2084 (|has| |#2| (-1028 (-1163))) (|has| |#1| (-362))))) (-1863 ((|#2| $) 271) (((-558) $) 259 (-2084 (|has| |#2| (-1028 (-558))) (|has| |#1| (-362)))) (((-406 (-558)) $) 257 (-2084 (|has| |#2| (-1028 (-558))) (|has| |#1| (-362)))) (((-1163) $) 241 (-2084 (|has| |#2| (-1028 (-1163))) (|has| |#1| (-362))))) (-3065 (($ $) 266) (($ (-558) $) 265)) (-4025 (($ $ $) 160 (|has| |#1| (-362)))) (-2490 (($ $) 63)) (-3216 (((-679 |#2|) (-679 $)) 221 (|has| |#1| (-362))) (((-2 (|:| -3683 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 $) (-1246 $)) 220 (|has| |#1| (-362))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) 219 (-2084 (|has| |#2| (-631 (-558))) (|has| |#1| (-362)))) (((-679 (-558)) (-679 $)) 218 (-2084 (|has| |#2| (-631 (-558))) (|has| |#1| (-362))))) (-2588 (((-3 $ "failed") $) 33)) (-3041 (((-406 (-942 |#1|)) $ (-558)) 174 (|has| |#1| (-550))) (((-406 (-942 |#1|)) $ (-558) (-558)) 173 (|has| |#1| (-550)))) (-2424 (($) 233 (-2084 (|has| |#2| (-543)) (|has| |#1| (-362))))) (-4004 (($ $ $) 159 (|has| |#1| (-362)))) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) 154 (|has| |#1| (-362)))) (-3031 (((-112) $) 167 (|has| |#1| (-362)))) (-2045 (((-112) $) 247 (-2084 (|has| |#2| (-811)) (|has| |#1| (-362))))) (-2020 (((-112) $) 76)) (-1904 (($) 148 (|has| |#1| (-38 (-406 (-558)))))) (-2269 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) 225 (-2084 (|has| |#2| (-876 (-378))) (|has| |#1| (-362)))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) 224 (-2084 (|has| |#2| (-876 (-558))) (|has| |#1| (-362))))) (-3449 (((-558) $) 103) (((-558) $ (-558)) 102)) (-2035 (((-112) $) 31)) (-3704 (($ $) 229 (|has| |#1| (-362)))) (-1874 ((|#2| $) 227 (|has| |#1| (-362)))) (-3828 (($ $ (-558)) 119 (|has| |#1| (-38 (-406 (-558)))))) (-2457 (((-3 $ "failed") $) 261 (-2084 (|has| |#2| (-1138)) (|has| |#1| (-362))))) (-2055 (((-112) $) 248 (-2084 (|has| |#2| (-811)) (|has| |#1| (-362))))) (-3486 (($ $ (-911)) 104)) (-2555 (($ (-1 |#1| (-558)) $) 175)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) 163 (|has| |#1| (-362)))) (-4238 (((-112) $) 65)) (-2648 (($ |#1| (-558)) 64) (($ $ (-1069) (-558)) 79) (($ $ (-635 (-1069)) (-635 (-558))) 78)) (-3910 (($ $ $) 251 (-2084 (|has| |#2| (-841)) (|has| |#1| (-362))))) (-3542 (($ $ $) 252 (-2084 (|has| |#2| (-841)) (|has| |#1| (-362))))) (-3167 (($ (-1 |#1| |#1|) $) 66) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-362)))) (-2592 (($ $) 145 (|has| |#1| (-38 (-406 (-558)))))) (-2451 (($ $) 68)) (-2463 ((|#1| $) 69)) (-2665 (($ (-635 $)) 152 (|has| |#1| (-362))) (($ $ $) 151 (|has| |#1| (-362)))) (-2735 (($ (-558) |#2|) 268)) (-4310 (((-1145) $) 9)) (-2418 (($ $) 168 (|has| |#1| (-362)))) (-2543 (($ $) 172 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-1163)) 171 (-3998 (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-949)) (|has| |#1| (-1185)) (|has| |#1| (-38 (-406 (-558))))) (-12 (|has| |#1| (-15 -2671 ((-635 (-1163)) |#1|))) (|has| |#1| (-15 -2543 (|#1| |#1| (-1163)))) (|has| |#1| (-38 (-406 (-558)))))))) (-1796 (($) 262 (-2084 (|has| |#2| (-1138)) (|has| |#1| (-362))) CONST)) (-2975 (((-1107) $) 10)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) 153 (|has| |#1| (-362)))) (-2699 (($ (-635 $)) 150 (|has| |#1| (-362))) (($ $ $) 149 (|has| |#1| (-362)))) (-2568 (($ $) 232 (-2084 (|has| |#2| (-306)) (|has| |#1| (-362))))) (-2594 ((|#2| $) 235 (-2084 (|has| |#2| (-543)) (|has| |#1| (-362))))) (-3728 (((-417 (-1159 $)) (-1159 $)) 238 (-2084 (|has| |#2| (-899)) (|has| |#1| (-362))))) (-3738 (((-417 (-1159 $)) (-1159 $)) 239 (-2084 (|has| |#2| (-899)) (|has| |#1| (-362))))) (-2522 (((-417 $) $) 164 (|has| |#1| (-362)))) (-3713 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) 161 (|has| |#1| (-362)))) (-3430 (($ $ (-558)) 98)) (-3983 (((-3 $ "failed") $ $) 53 (|has| |#1| (-550)))) (-2922 (((-3 (-635 $) "failed") (-635 $) $) 155 (|has| |#1| (-362)))) (-2573 (($ $) 146 (|has| |#1| (-38 (-406 (-558)))))) (-2554 (((-1143 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-558))))) (($ $ (-1163) |#2|) 212 (-2084 (|has| |#2| (-512 (-1163) |#2|)) (|has| |#1| (-362)))) (($ $ (-635 (-1163)) (-635 |#2|)) 211 (-2084 (|has| |#2| (-512 (-1163) |#2|)) (|has| |#1| (-362)))) (($ $ (-635 (-293 |#2|))) 210 (-2084 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362)))) (($ $ (-293 |#2|)) 209 (-2084 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362)))) (($ $ |#2| |#2|) 208 (-2084 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362)))) (($ $ (-635 |#2|) (-635 |#2|)) 207 (-2084 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362))))) (-3722 (((-762) $) 157 (|has| |#1| (-362)))) (-2195 ((|#1| $ (-558)) 107) (($ $ $) 84 (|has| (-558) (-1099))) (($ $ |#2|) 206 (-2084 (|has| |#2| (-285 |#2| |#2|)) (|has| |#1| (-362))))) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 158 (|has| |#1| (-362)))) (-2829 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-362))) (($ $ (-1 |#2| |#2|) (-762)) 216 (|has| |#1| (-362))) (($ $ (-762)) 87 (-3998 (-2084 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $) 85 (-3998 (-2084 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $ (-635 (-1163)) (-635 (-762))) 92 (-3998 (-2084 (|has| |#2| (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))))) (($ $ (-1163) (-762)) 91 (-3998 (-2084 (|has| |#2| (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))))) (($ $ (-635 (-1163))) 90 (-3998 (-2084 (|has| |#2| (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))))) (($ $ (-1163)) 89 (-3998 (-2084 (|has| |#2| (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))))) (-3694 (($ $) 230 (|has| |#1| (-362)))) (-1885 ((|#2| $) 228 (|has| |#1| (-362)))) (-4323 (((-558) $) 67)) (-4124 (($ $) 135 (|has| |#1| (-38 (-406 (-558)))))) (-2167 (($ $) 124 (|has| |#1| (-38 (-406 (-558)))))) (-4102 (($ $) 134 (|has| |#1| (-38 (-406 (-558)))))) (-2146 (($ $) 125 (|has| |#1| (-38 (-406 (-558)))))) (-4080 (($ $) 133 (|has| |#1| (-38 (-406 (-558)))))) (-2124 (($ $) 126 (|has| |#1| (-38 (-406 (-558)))))) (-3224 (((-224) $) 246 (-2084 (|has| |#2| (-1012)) (|has| |#1| (-362)))) (((-378) $) 245 (-2084 (|has| |#2| (-1012)) (|has| |#1| (-362)))) (((-534) $) 244 (-2084 (|has| |#2| (-606 (-534))) (|has| |#1| (-362)))) (((-882 (-378)) $) 223 (-2084 (|has| |#2| (-606 (-882 (-378)))) (|has| |#1| (-362)))) (((-882 (-558)) $) 222 (-2084 (|has| |#2| (-606 (-882 (-558)))) (|has| |#1| (-362))))) (-3709 (((-3 (-1246 $) "failed") (-679 $)) 236 (-2084 (-2084 (|has| $ (-144)) (|has| |#2| (-899))) (|has| |#1| (-362))))) (-2011 (($ $) 75)) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ |#1|) 50 (|has| |#1| (-171))) (($ |#2|) 269) (($ (-1163)) 243 (-2084 (|has| |#2| (-1028 (-1163))) (|has| |#1| (-362)))) (($ (-406 (-558))) 60 (|has| |#1| (-38 (-406 (-558))))) (($ $) 52 (|has| |#1| (-550)))) (-3736 ((|#1| $ (-558)) 62)) (-3698 (((-3 $ "failed") $) 51 (-3998 (-2084 (-3998 (|has| |#2| (-144)) (-2084 (|has| $ (-144)) (|has| |#2| (-899)))) (|has| |#1| (-362))) (|has| |#1| (-144))))) (-2542 (((-762)) 28)) (-2673 ((|#1| $) 105)) (-2604 ((|#2| $) 234 (-2084 (|has| |#2| (-543)) (|has| |#1| (-362))))) (-4159 (($ $) 144 (|has| |#1| (-38 (-406 (-558)))))) (-2200 (($ $) 132 (|has| |#1| (-38 (-406 (-558)))))) (-1870 (((-112) $ $) 56 (|has| |#1| (-550)))) (-4135 (($ $) 143 (|has| |#1| (-38 (-406 (-558)))))) (-2178 (($ $) 131 (|has| |#1| (-38 (-406 (-558)))))) (-4184 (($ $) 142 (|has| |#1| (-38 (-406 (-558)))))) (-2222 (($ $) 130 (|has| |#1| (-38 (-406 (-558)))))) (-1352 ((|#1| $ (-558)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-558)))) (|has| |#1| (-15 -3220 (|#1| (-1163))))))) (-1878 (($ $) 141 (|has| |#1| (-38 (-406 (-558)))))) (-4060 (($ $) 129 (|has| |#1| (-38 (-406 (-558)))))) (-4171 (($ $) 140 (|has| |#1| (-38 (-406 (-558)))))) (-2211 (($ $) 128 (|has| |#1| (-38 (-406 (-558)))))) (-4147 (($ $) 139 (|has| |#1| (-38 (-406 (-558)))))) (-2189 (($ $) 127 (|has| |#1| (-38 (-406 (-558)))))) (-3190 (($ $) 250 (-2084 (|has| |#2| (-811)) (|has| |#1| (-362))))) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1866 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-362))) (($ $ (-1 |#2| |#2|) (-762)) 214 (|has| |#1| (-362))) (($ $ (-762)) 88 (-3998 (-2084 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $) 86 (-3998 (-2084 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $ (-635 (-1163)) (-635 (-762))) 96 (-3998 (-2084 (|has| |#2| (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))))) (($ $ (-1163) (-762)) 95 (-3998 (-2084 (|has| |#2| (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))))) (($ $ (-635 (-1163))) 94 (-3998 (-2084 (|has| |#2| (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))))) (($ $ (-1163)) 93 (-3998 (-2084 (|has| |#2| (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))))) (-1747 (((-112) $ $) 254 (-2084 (|has| |#2| (-841)) (|has| |#1| (-362))))) (-1720 (((-112) $ $) 255 (-2084 (|has| |#2| (-841)) (|has| |#1| (-362))))) (-1683 (((-112) $ $) 6)) (-1731 (((-112) $ $) 253 (-2084 (|has| |#2| (-841)) (|has| |#1| (-362))))) (-1705 (((-112) $ $) 256 (-2084 (|has| |#2| (-841)) (|has| |#1| (-362))))) (-1810 (($ $ |#1|) 61 (|has| |#1| (-362))) (($ $ $) 170 (|has| |#1| (-362))) (($ |#2| |#2|) 226 (|has| |#1| (-362)))) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ (-558)) 169 (|has| |#1| (-362))) (($ $ $) 147 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) 118 (|has| |#1| (-38 (-406 (-558)))))) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ $ |#2|) 205 (|has| |#1| (-362))) (($ |#2| $) 204 (|has| |#1| (-362))) (($ (-406 (-558)) $) 59 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) 58 (|has| |#1| (-38 (-406 (-558)))))))
+(((-1208 |#1| |#2|) (-139) (-1039) (-1237 |t#1|)) (T -1208))
+((-4323 (*1 *2 *1) (-12 (-4 *1 (-1208 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1237 *3)) (-5 *2 (-558)))) (-2735 (*1 *1 *2 *3) (-12 (-5 *2 (-558)) (-4 *4 (-1039)) (-4 *1 (-1208 *4 *3)) (-4 *3 (-1237 *4)))) (-3077 (*1 *2 *1) (-12 (-4 *1 (-1208 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-1237 *3)))) (-3065 (*1 *1 *1) (-12 (-4 *1 (-1208 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-1237 *2)))) (-3065 (*1 *1 *2 *1) (-12 (-5 *2 (-558)) (-4 *1 (-1208 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1237 *3)))) (-2724 (*1 *2 *1) (-12 (-4 *1 (-1208 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-1237 *3)))) (-3054 (*1 *2 *1) (|partial| -12 (-4 *1 (-1208 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-1237 *3)))))
+(-13 (-1206 |t#1|) (-1028 |t#2|) (-608 |t#2|) (-10 -8 (-15 -2735 ($ (-558) |t#2|)) (-15 -4323 ((-558) $)) (-15 -3077 (|t#2| $)) (-15 -3065 ($ $)) (-15 -3065 ($ (-558) $)) (-15 -2724 (|t#2| $)) (-15 -3054 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-362)) (-6 (-982 |t#2|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-558)) . T) ((-25) . T) ((-38 #1=(-406 (-558))) -3998 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-38 |#1|) |has| |#1| (-171)) ((-38 |#2|) |has| |#1| (-362)) ((-38 $) -3998 (|has| |#1| (-550)) (|has| |#1| (-362))) ((-35) |has| |#1| (-38 (-406 (-558)))) ((-95) |has| |#1| (-38 (-406 (-558)))) ((-102) . T) ((-111 #1# #1#) -3998 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-362)) ((-111 $ $) -3998 (|has| |#1| (-550)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-130) . T) ((-144) -3998 (-12 (|has| |#1| (-362)) (|has| |#2| (-144))) (|has| |#1| (-144))) ((-146) -3998 (-12 (|has| |#1| (-362)) (|has| |#2| (-146))) (|has| |#1| (-146))) ((-608 #1#) -3998 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-608 (-558)) . T) ((-608 #2=(-1163)) -12 (|has| |#1| (-362)) (|has| |#2| (-1028 (-1163)))) ((-608 |#1|) |has| |#1| (-171)) ((-608 |#2|) . T) ((-608 $) -3998 (|has| |#1| (-550)) (|has| |#1| (-362))) ((-605 (-853)) . T) ((-171) -3998 (|has| |#1| (-550)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-606 (-224)) -12 (|has| |#1| (-362)) (|has| |#2| (-1012))) ((-606 (-378)) -12 (|has| |#1| (-362)) (|has| |#2| (-1012))) ((-606 (-534)) -12 (|has| |#1| (-362)) (|has| |#2| (-606 (-534)))) ((-606 (-882 (-378))) -12 (|has| |#1| (-362)) (|has| |#2| (-606 (-882 (-378))))) ((-606 (-882 (-558))) -12 (|has| |#1| (-362)) (|has| |#2| (-606 (-882 (-558))))) ((-230 |#2|) |has| |#1| (-362)) ((-232) -3998 (-12 (|has| |#1| (-362)) (|has| |#2| (-232))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ((-242) |has| |#1| (-362)) ((-283) |has| |#1| (-38 (-406 (-558)))) ((-285 |#2| $) -12 (|has| |#1| (-362)) (|has| |#2| (-285 |#2| |#2|))) ((-285 $ $) |has| (-558) (-1099)) ((-289) -3998 (|has| |#1| (-550)) (|has| |#1| (-362))) ((-306) |has| |#1| (-362)) ((-308 |#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-308 |#2|))) ((-362) |has| |#1| (-362)) ((-337 |#2|) |has| |#1| (-362)) ((-376 |#2|) |has| |#1| (-362)) ((-399 |#2|) |has| |#1| (-362)) ((-450) |has| |#1| (-362)) ((-491) |has| |#1| (-38 (-406 (-558)))) ((-512 (-1163) |#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-512 (-1163) |#2|))) ((-512 |#2| |#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-308 |#2|))) ((-550) -3998 (|has| |#1| (-550)) (|has| |#1| (-362))) ((-638 #1#) -3998 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-638 |#1|) . T) ((-638 |#2|) |has| |#1| (-362)) ((-638 $) . T) ((-631 (-558)) -12 (|has| |#1| (-362)) (|has| |#2| (-631 (-558)))) ((-631 |#2|) |has| |#1| (-362)) ((-708 #1#) -3998 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-708 |#1|) |has| |#1| (-171)) ((-708 |#2|) |has| |#1| (-362)) ((-708 $) -3998 (|has| |#1| (-550)) (|has| |#1| (-362))) ((-717) . T) ((-782) -12 (|has| |#1| (-362)) (|has| |#2| (-811))) ((-783) -12 (|has| |#1| (-362)) (|has| |#2| (-811))) ((-785) -12 (|has| |#1| (-362)) (|has| |#2| (-811))) ((-786) -12 (|has| |#1| (-362)) (|has| |#2| (-811))) ((-811) -12 (|has| |#1| (-362)) (|has| |#2| (-811))) ((-839) -12 (|has| |#1| (-362)) (|has| |#2| (-811))) ((-841) -3998 (-12 (|has| |#1| (-362)) (|has| |#2| (-841))) (-12 (|has| |#1| (-362)) (|has| |#2| (-811)))) ((-890 (-1163)) -3998 (-12 (|has| |#1| (-362)) (|has| |#2| (-890 (-1163)))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163))))) ((-876 (-378)) -12 (|has| |#1| (-362)) (|has| |#2| (-876 (-378)))) ((-876 (-558)) -12 (|has| |#1| (-362)) (|has| |#2| (-876 (-558)))) ((-874 |#2|) |has| |#1| (-362)) ((-899) -12 (|has| |#1| (-362)) (|has| |#2| (-899))) ((-963 |#1| #0# (-1069)) . T) ((-910) |has| |#1| (-362)) ((-982 |#2|) |has| |#1| (-362)) ((-992) |has| |#1| (-38 (-406 (-558)))) ((-1012) -12 (|has| |#1| (-362)) (|has| |#2| (-1012))) ((-1028 (-406 (-558))) -12 (|has| |#1| (-362)) (|has| |#2| (-1028 (-558)))) ((-1028 (-558)) -12 (|has| |#1| (-362)) (|has| |#2| (-1028 (-558)))) ((-1028 #2#) -12 (|has| |#1| (-362)) (|has| |#2| (-1028 (-1163)))) ((-1028 |#2|) . T) ((-1045 #1#) -3998 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-1045 |#1|) . T) ((-1045 |#2|) |has| |#1| (-362)) ((-1045 $) -3998 (|has| |#1| (-550)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1138) -12 (|has| |#1| (-362)) (|has| |#2| (-1138))) ((-1185) |has| |#1| (-38 (-406 (-558)))) ((-1188) |has| |#1| (-38 (-406 (-558)))) ((-1200) |has| |#1| (-362)) ((-1204) |has| |#1| (-362)) ((-1206 |#1|) . T) ((-1224 |#1| #0#) . T))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) 70)) (-2582 ((|#2| $) NIL (-12 (|has| |#2| (-306)) (|has| |#1| (-362))))) (-2671 (((-635 (-1069)) $) NIL)) (-1602 (((-1163) $) 88)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1881 (($ $) NIL (|has| |#1| (-550)))) (-1857 (((-112) $) NIL (|has| |#1| (-550)))) (-3440 (($ $ (-558)) 97) (($ $ (-558) (-558)) 99)) (-3456 (((-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) $) 47)) (-3077 ((|#2| $) 11)) (-3054 (((-3 |#2| "failed") $) 30)) (-2724 ((|#2| $) 31)) (-4088 (($ $) 192 (|has| |#1| (-38 (-406 (-558)))))) (-2135 (($ $) 168 (|has| |#1| (-38 (-406 (-558)))))) (-2089 (((-3 $ "failed") $ $) NIL)) (-3748 (((-417 (-1159 $)) (-1159 $)) NIL (-12 (|has| |#2| (-899)) (|has| |#1| (-362))))) (-3465 (($ $) NIL (|has| |#1| (-362)))) (-1380 (((-417 $) $) NIL (|has| |#1| (-362)))) (-2534 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3719 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (-12 (|has| |#2| (-899)) (|has| |#1| (-362))))) (-3732 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4070 (($ $) 188 (|has| |#1| (-38 (-406 (-558)))))) (-2112 (($ $) 164 (|has| |#1| (-38 (-406 (-558)))))) (-1397 (((-558) $) NIL (-12 (|has| |#2| (-811)) (|has| |#1| (-362))))) (-3871 (($ (-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|)))) 57)) (-4113 (($ $) 196 (|has| |#1| (-38 (-406 (-558)))))) (-2156 (($ $) 172 (|has| |#1| (-38 (-406 (-558)))))) (-1816 (($) NIL T CONST)) (-3069 (((-3 |#2| "failed") $) 144) (((-3 (-558) "failed") $) NIL (-12 (|has| |#2| (-1028 (-558))) (|has| |#1| (-362)))) (((-3 (-406 (-558)) "failed") $) NIL (-12 (|has| |#2| (-1028 (-558))) (|has| |#1| (-362)))) (((-3 (-1163) "failed") $) NIL (-12 (|has| |#2| (-1028 (-1163))) (|has| |#1| (-362))))) (-1863 ((|#2| $) 143) (((-558) $) NIL (-12 (|has| |#2| (-1028 (-558))) (|has| |#1| (-362)))) (((-406 (-558)) $) NIL (-12 (|has| |#2| (-1028 (-558))) (|has| |#1| (-362)))) (((-1163) $) NIL (-12 (|has| |#2| (-1028 (-1163))) (|has| |#1| (-362))))) (-3065 (($ $) 61) (($ (-558) $) 24)) (-4025 (($ $ $) NIL (|has| |#1| (-362)))) (-2490 (($ $) NIL)) (-3216 (((-679 |#2|) (-679 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -3683 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 $) (-1246 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (-12 (|has| |#2| (-631 (-558))) (|has| |#1| (-362)))) (((-679 (-558)) (-679 $)) NIL (-12 (|has| |#2| (-631 (-558))) (|has| |#1| (-362))))) (-2588 (((-3 $ "failed") $) 77)) (-3041 (((-406 (-942 |#1|)) $ (-558)) 112 (|has| |#1| (-550))) (((-406 (-942 |#1|)) $ (-558) (-558)) 114 (|has| |#1| (-550)))) (-2424 (($) NIL (-12 (|has| |#2| (-543)) (|has| |#1| (-362))))) (-4004 (($ $ $) NIL (|has| |#1| (-362)))) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-3031 (((-112) $) NIL (|has| |#1| (-362)))) (-2045 (((-112) $) NIL (-12 (|has| |#2| (-811)) (|has| |#1| (-362))))) (-2020 (((-112) $) 64)) (-1904 (($) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2269 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (-12 (|has| |#2| (-876 (-378))) (|has| |#1| (-362)))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (-12 (|has| |#2| (-876 (-558))) (|has| |#1| (-362))))) (-3449 (((-558) $) 93) (((-558) $ (-558)) 95)) (-2035 (((-112) $) NIL)) (-3704 (($ $) NIL (|has| |#1| (-362)))) (-1874 ((|#2| $) 151 (|has| |#1| (-362)))) (-3828 (($ $ (-558)) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2457 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1138)) (|has| |#1| (-362))))) (-2055 (((-112) $) NIL (-12 (|has| |#2| (-811)) (|has| |#1| (-362))))) (-3486 (($ $ (-911)) 136)) (-2555 (($ (-1 |#1| (-558)) $) 132)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4238 (((-112) $) NIL)) (-2648 (($ |#1| (-558)) 19) (($ $ (-1069) (-558)) NIL) (($ $ (-635 (-1069)) (-635 (-558))) NIL)) (-3910 (($ $ $) NIL (-12 (|has| |#2| (-841)) (|has| |#1| (-362))))) (-3542 (($ $ $) NIL (-12 (|has| |#2| (-841)) (|has| |#1| (-362))))) (-3167 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-362)))) (-2592 (($ $) 162 (|has| |#1| (-38 (-406 (-558)))))) (-2451 (($ $) NIL)) (-2463 ((|#1| $) NIL)) (-2665 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-2735 (($ (-558) |#2|) 10)) (-4310 (((-1145) $) NIL)) (-2418 (($ $) 145 (|has| |#1| (-362)))) (-2543 (($ $) 214 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-1163)) 219 (-3998 (-12 (|has| |#1| (-15 -2543 (|#1| |#1| (-1163)))) (|has| |#1| (-15 -2671 ((-635 (-1163)) |#1|))) (|has| |#1| (-38 (-406 (-558))))) (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-949)) (|has| |#1| (-1185)))))) (-1796 (($) NIL (-12 (|has| |#2| (-1138)) (|has| |#1| (-362))) CONST)) (-2975 (((-1107) $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#1| (-362)))) (-2699 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-2568 (($ $) NIL (-12 (|has| |#2| (-306)) (|has| |#1| (-362))))) (-2594 ((|#2| $) NIL (-12 (|has| |#2| (-543)) (|has| |#1| (-362))))) (-3728 (((-417 (-1159 $)) (-1159 $)) NIL (-12 (|has| |#2| (-899)) (|has| |#1| (-362))))) (-3738 (((-417 (-1159 $)) (-1159 $)) NIL (-12 (|has| |#2| (-899)) (|has| |#1| (-362))))) (-2522 (((-417 $) $) NIL (|has| |#1| (-362)))) (-3713 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL (|has| |#1| (-362)))) (-3430 (($ $ (-558)) 126)) (-3983 (((-3 $ "failed") $ $) 116 (|has| |#1| (-550)))) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-2573 (($ $) 160 (|has| |#1| (-38 (-406 (-558)))))) (-2554 (((-1143 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-558))))) (($ $ (-1163) |#2|) NIL (-12 (|has| |#2| (-512 (-1163) |#2|)) (|has| |#1| (-362)))) (($ $ (-635 (-1163)) (-635 |#2|)) NIL (-12 (|has| |#2| (-512 (-1163) |#2|)) (|has| |#1| (-362)))) (($ $ (-635 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362))))) (-3722 (((-762) $) NIL (|has| |#1| (-362)))) (-2195 ((|#1| $ (-558)) 91) (($ $ $) 79 (|has| (-558) (-1099))) (($ $ |#2|) NIL (-12 (|has| |#2| (-285 |#2| |#2|)) (|has| |#1| (-362))))) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL (|has| |#1| (-362)))) (-2829 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-362))) (($ $ (-1 |#2| |#2|) (-762)) NIL (|has| |#1| (-362))) (($ $ (-762)) NIL (-3998 (-12 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $) 137 (-3998 (-12 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-3998 (-12 (|has| |#2| (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163)))))) (($ $ (-1163) (-762)) NIL (-3998 (-12 (|has| |#2| (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163)))))) (($ $ (-635 (-1163))) NIL (-3998 (-12 (|has| |#2| (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163)))))) (($ $ (-1163)) 140 (-3998 (-12 (|has| |#2| (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163))))))) (-3694 (($ $) NIL (|has| |#1| (-362)))) (-1885 ((|#2| $) 152 (|has| |#1| (-362)))) (-4323 (((-558) $) 12)) (-4124 (($ $) 198 (|has| |#1| (-38 (-406 (-558)))))) (-2167 (($ $) 174 (|has| |#1| (-38 (-406 (-558)))))) (-4102 (($ $) 194 (|has| |#1| (-38 (-406 (-558)))))) (-2146 (($ $) 170 (|has| |#1| (-38 (-406 (-558)))))) (-4080 (($ $) 190 (|has| |#1| (-38 (-406 (-558)))))) (-2124 (($ $) 166 (|has| |#1| (-38 (-406 (-558)))))) (-3224 (((-224) $) NIL (-12 (|has| |#2| (-1012)) (|has| |#1| (-362)))) (((-378) $) NIL (-12 (|has| |#2| (-1012)) (|has| |#1| (-362)))) (((-534) $) NIL (-12 (|has| |#2| (-606 (-534))) (|has| |#1| (-362)))) (((-882 (-378)) $) NIL (-12 (|has| |#2| (-606 (-882 (-378)))) (|has| |#1| (-362)))) (((-882 (-558)) $) NIL (-12 (|has| |#2| (-606 (-882 (-558)))) (|has| |#1| (-362))))) (-3709 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-899)) (|has| |#1| (-362))))) (-2011 (($ $) 124)) (-3220 (((-853) $) 244) (($ (-558)) 23) (($ |#1|) 21 (|has| |#1| (-171))) (($ |#2|) 20) (($ (-1163)) NIL (-12 (|has| |#2| (-1028 (-1163))) (|has| |#1| (-362)))) (($ (-406 (-558))) 155 (|has| |#1| (-38 (-406 (-558))))) (($ $) NIL (|has| |#1| (-550)))) (-3736 ((|#1| $ (-558)) 74)) (-3698 (((-3 $ "failed") $) NIL (-3998 (-12 (|has| $ (-144)) (|has| |#2| (-899)) (|has| |#1| (-362))) (-12 (|has| |#2| (-144)) (|has| |#1| (-362))) (|has| |#1| (-144))))) (-2542 (((-762)) 142)) (-2673 ((|#1| $) 90)) (-2604 ((|#2| $) NIL (-12 (|has| |#2| (-543)) (|has| |#1| (-362))))) (-4159 (($ $) 204 (|has| |#1| (-38 (-406 (-558)))))) (-2200 (($ $) 180 (|has| |#1| (-38 (-406 (-558)))))) (-1870 (((-112) $ $) NIL (|has| |#1| (-550)))) (-4135 (($ $) 200 (|has| |#1| (-38 (-406 (-558)))))) (-2178 (($ $) 176 (|has| |#1| (-38 (-406 (-558)))))) (-4184 (($ $) 208 (|has| |#1| (-38 (-406 (-558)))))) (-2222 (($ $) 184 (|has| |#1| (-38 (-406 (-558)))))) (-1352 ((|#1| $ (-558)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-558)))) (|has| |#1| (-15 -3220 (|#1| (-1163))))))) (-1878 (($ $) 210 (|has| |#1| (-38 (-406 (-558)))))) (-4060 (($ $) 186 (|has| |#1| (-38 (-406 (-558)))))) (-4171 (($ $) 206 (|has| |#1| (-38 (-406 (-558)))))) (-2211 (($ $) 182 (|has| |#1| (-38 (-406 (-558)))))) (-4147 (($ $) 202 (|has| |#1| (-38 (-406 (-558)))))) (-2189 (($ $) 178 (|has| |#1| (-38 (-406 (-558)))))) (-3190 (($ $) NIL (-12 (|has| |#2| (-811)) (|has| |#1| (-362))))) (-2131 (($) 13 T CONST)) (-2142 (($) 17 T CONST)) (-1866 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-362))) (($ $ (-1 |#2| |#2|) (-762)) NIL (|has| |#1| (-362))) (($ $ (-762)) NIL (-3998 (-12 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $) NIL (-3998 (-12 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-3998 (-12 (|has| |#2| (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163)))))) (($ $ (-1163) (-762)) NIL (-3998 (-12 (|has| |#2| (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163)))))) (($ $ (-635 (-1163))) NIL (-3998 (-12 (|has| |#2| (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163)))))) (($ $ (-1163)) NIL (-3998 (-12 (|has| |#2| (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163))))))) (-1747 (((-112) $ $) NIL (-12 (|has| |#2| (-841)) (|has| |#1| (-362))))) (-1720 (((-112) $ $) NIL (-12 (|has| |#2| (-841)) (|has| |#1| (-362))))) (-1683 (((-112) $ $) 63)) (-1731 (((-112) $ $) NIL (-12 (|has| |#2| (-841)) (|has| |#1| (-362))))) (-1705 (((-112) $ $) NIL (-12 (|has| |#2| (-841)) (|has| |#1| (-362))))) (-1810 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) 149 (|has| |#1| (-362))) (($ |#2| |#2|) 150 (|has| |#1| (-362)))) (-1798 (($ $) 213) (($ $ $) 68)) (-1784 (($ $ $) 66)) (** (($ $ (-911)) NIL) (($ $ (-762)) 73) (($ $ (-558)) 146 (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) 158 (|has| |#1| (-38 (-406 (-558)))))) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-362))) (($ |#2| $) 147 (|has| |#1| (-362))) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558)))))))
+(((-1209 |#1| |#2|) (-1208 |#1| |#2|) (-1039) (-1237 |#1|)) (T -1209))
+NIL
+(-1208 |#1| |#2|)
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2582 (((-1238 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-306)) (|has| |#1| (-362))))) (-2671 (((-635 (-1069)) $) NIL)) (-1602 (((-1163) $) 10)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL (-3998 (-12 (|has| (-1238 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1238 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))) (|has| |#1| (-550))))) (-1881 (($ $) NIL (-3998 (-12 (|has| (-1238 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1238 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))) (|has| |#1| (-550))))) (-1857 (((-112) $) NIL (-3998 (-12 (|has| (-1238 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1238 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))) (|has| |#1| (-550))))) (-3440 (($ $ (-558)) NIL) (($ $ (-558) (-558)) NIL)) (-3456 (((-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) $) NIL)) (-3077 (((-1238 |#1| |#2| |#3|) $) NIL)) (-3054 (((-3 (-1238 |#1| |#2| |#3|) "failed") $) NIL)) (-2724 (((-1238 |#1| |#2| |#3|) $) NIL)) (-4088 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2135 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2089 (((-3 $ "failed") $ $) NIL)) (-3748 (((-417 (-1159 $)) (-1159 $)) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))))) (-3465 (($ $) NIL (|has| |#1| (-362)))) (-1380 (((-417 $) $) NIL (|has| |#1| (-362)))) (-2534 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3719 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))))) (-3732 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4070 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2112 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1397 (((-558) $) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))))) (-3871 (($ (-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|)))) NIL)) (-4113 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2156 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1816 (($) NIL T CONST)) (-3069 (((-3 (-1238 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1163) "failed") $) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-1028 (-1163))) (|has| |#1| (-362)))) (((-3 (-406 (-558)) "failed") $) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-1028 (-558))) (|has| |#1| (-362)))) (((-3 (-558) "failed") $) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-1028 (-558))) (|has| |#1| (-362))))) (-1863 (((-1238 |#1| |#2| |#3|) $) NIL) (((-1163) $) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-1028 (-1163))) (|has| |#1| (-362)))) (((-406 (-558)) $) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-1028 (-558))) (|has| |#1| (-362)))) (((-558) $) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-1028 (-558))) (|has| |#1| (-362))))) (-3065 (($ $) NIL) (($ (-558) $) NIL)) (-4025 (($ $ $) NIL (|has| |#1| (-362)))) (-2490 (($ $) NIL)) (-3216 (((-679 (-1238 |#1| |#2| |#3|)) (-679 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -3683 (-679 (-1238 |#1| |#2| |#3|))) (|:| |vec| (-1246 (-1238 |#1| |#2| |#3|)))) (-679 $) (-1246 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-631 (-558))) (|has| |#1| (-362)))) (((-679 (-558)) (-679 $)) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-631 (-558))) (|has| |#1| (-362))))) (-2588 (((-3 $ "failed") $) NIL)) (-3041 (((-406 (-942 |#1|)) $ (-558)) NIL (|has| |#1| (-550))) (((-406 (-942 |#1|)) $ (-558) (-558)) NIL (|has| |#1| (-550)))) (-2424 (($) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-543)) (|has| |#1| (-362))))) (-4004 (($ $ $) NIL (|has| |#1| (-362)))) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-3031 (((-112) $) NIL (|has| |#1| (-362)))) (-2045 (((-112) $) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))))) (-2020 (((-112) $) NIL)) (-1904 (($) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2269 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-876 (-378))) (|has| |#1| (-362)))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-876 (-558))) (|has| |#1| (-362))))) (-3449 (((-558) $) NIL) (((-558) $ (-558)) NIL)) (-2035 (((-112) $) NIL)) (-3704 (($ $) NIL (|has| |#1| (-362)))) (-1874 (((-1238 |#1| |#2| |#3|) $) NIL (|has| |#1| (-362)))) (-3828 (($ $ (-558)) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2457 (((-3 $ "failed") $) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-1138)) (|has| |#1| (-362))))) (-2055 (((-112) $) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))))) (-3486 (($ $ (-911)) NIL)) (-2555 (($ (-1 |#1| (-558)) $) NIL)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4238 (((-112) $) NIL)) (-2648 (($ |#1| (-558)) 17) (($ $ (-1069) (-558)) NIL) (($ $ (-635 (-1069)) (-635 (-558))) NIL)) (-3910 (($ $ $) NIL (-3998 (-12 (|has| (-1238 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1238 |#1| |#2| |#3|) (-841)) (|has| |#1| (-362)))))) (-3542 (($ $ $) NIL (-3998 (-12 (|has| (-1238 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1238 |#1| |#2| |#3|) (-841)) (|has| |#1| (-362)))))) (-3167 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1238 |#1| |#2| |#3|) (-1238 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-362)))) (-2592 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2451 (($ $) NIL)) (-2463 ((|#1| $) NIL)) (-2665 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-2735 (($ (-558) (-1238 |#1| |#2| |#3|)) NIL)) (-4310 (((-1145) $) NIL)) (-2418 (($ $) NIL (|has| |#1| (-362)))) (-2543 (($ $) 25 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-1163)) NIL (-3998 (-12 (|has| |#1| (-15 -2543 (|#1| |#1| (-1163)))) (|has| |#1| (-15 -2671 ((-635 (-1163)) |#1|))) (|has| |#1| (-38 (-406 (-558))))) (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-949)) (|has| |#1| (-1185))))) (($ $ (-1242 |#2|)) 26 (|has| |#1| (-38 (-406 (-558)))))) (-1796 (($) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-1138)) (|has| |#1| (-362))) CONST)) (-2975 (((-1107) $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#1| (-362)))) (-2699 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-2568 (($ $) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-306)) (|has| |#1| (-362))))) (-2594 (((-1238 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-543)) (|has| |#1| (-362))))) (-3728 (((-417 (-1159 $)) (-1159 $)) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))))) (-3738 (((-417 (-1159 $)) (-1159 $)) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))))) (-2522 (((-417 $) $) NIL (|has| |#1| (-362)))) (-3713 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL (|has| |#1| (-362)))) (-3430 (($ $ (-558)) NIL)) (-3983 (((-3 $ "failed") $ $) NIL (-3998 (-12 (|has| (-1238 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1238 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))) (|has| |#1| (-550))))) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-2573 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2554 (((-1143 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-558))))) (($ $ (-1163) (-1238 |#1| |#2| |#3|)) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-512 (-1163) (-1238 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-635 (-1163)) (-635 (-1238 |#1| |#2| |#3|))) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-512 (-1163) (-1238 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-635 (-293 (-1238 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-308 (-1238 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-293 (-1238 |#1| |#2| |#3|))) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-308 (-1238 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-1238 |#1| |#2| |#3|) (-1238 |#1| |#2| |#3|)) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-308 (-1238 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-635 (-1238 |#1| |#2| |#3|)) (-635 (-1238 |#1| |#2| |#3|))) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-308 (-1238 |#1| |#2| |#3|))) (|has| |#1| (-362))))) (-3722 (((-762) $) NIL (|has| |#1| (-362)))) (-2195 ((|#1| $ (-558)) NIL) (($ $ $) NIL (|has| (-558) (-1099))) (($ $ (-1238 |#1| |#2| |#3|)) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-285 (-1238 |#1| |#2| |#3|) (-1238 |#1| |#2| |#3|))) (|has| |#1| (-362))))) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL (|has| |#1| (-362)))) (-2829 (($ $ (-1 (-1238 |#1| |#2| |#3|) (-1238 |#1| |#2| |#3|))) NIL (|has| |#1| (-362))) (($ $ (-1 (-1238 |#1| |#2| |#3|) (-1238 |#1| |#2| |#3|)) (-762)) NIL (|has| |#1| (-362))) (($ $ (-1242 |#2|)) 24) (($ $ (-762)) NIL (-3998 (-12 (|has| (-1238 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $) 23 (-3998 (-12 (|has| (-1238 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-3998 (-12 (|has| (-1238 |#1| |#2| |#3|) (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163)))))) (($ $ (-1163) (-762)) NIL (-3998 (-12 (|has| (-1238 |#1| |#2| |#3|) (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163)))))) (($ $ (-635 (-1163))) NIL (-3998 (-12 (|has| (-1238 |#1| |#2| |#3|) (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163)))))) (($ $ (-1163)) NIL (-3998 (-12 (|has| (-1238 |#1| |#2| |#3|) (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163))))))) (-3694 (($ $) NIL (|has| |#1| (-362)))) (-1885 (((-1238 |#1| |#2| |#3|) $) NIL (|has| |#1| (-362)))) (-4323 (((-558) $) NIL)) (-4124 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2167 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4102 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2146 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4080 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2124 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3224 (((-534) $) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-606 (-534))) (|has| |#1| (-362)))) (((-378) $) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-1012)) (|has| |#1| (-362)))) (((-224) $) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-1012)) (|has| |#1| (-362)))) (((-882 (-378)) $) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-606 (-882 (-378)))) (|has| |#1| (-362)))) (((-882 (-558)) $) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-606 (-882 (-558)))) (|has| |#1| (-362))))) (-3709 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| (-1238 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))))) (-2011 (($ $) NIL)) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-1238 |#1| |#2| |#3|)) NIL) (($ (-1242 |#2|)) 22) (($ (-1163)) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-1028 (-1163))) (|has| |#1| (-362)))) (($ $) NIL (-3998 (-12 (|has| (-1238 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1238 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))) (|has| |#1| (-550)))) (($ (-406 (-558))) NIL (-3998 (-12 (|has| (-1238 |#1| |#2| |#3|) (-1028 (-558))) (|has| |#1| (-362))) (|has| |#1| (-38 (-406 (-558))))))) (-3736 ((|#1| $ (-558)) NIL)) (-3698 (((-3 $ "failed") $) NIL (-3998 (-12 (|has| $ (-144)) (|has| (-1238 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))) (-12 (|has| (-1238 |#1| |#2| |#3|) (-144)) (|has| |#1| (-362))) (|has| |#1| (-144))))) (-2542 (((-762)) NIL)) (-2673 ((|#1| $) 11)) (-2604 (((-1238 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-543)) (|has| |#1| (-362))))) (-4159 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2200 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1870 (((-112) $ $) NIL (-3998 (-12 (|has| (-1238 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1238 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))) (|has| |#1| (-550))))) (-4135 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2178 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4184 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2222 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1352 ((|#1| $ (-558)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-558)))) (|has| |#1| (-15 -3220 (|#1| (-1163))))))) (-1878 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4060 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4171 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2211 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4147 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2189 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3190 (($ $) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))))) (-2131 (($) 19 T CONST)) (-2142 (($) 15 T CONST)) (-1866 (($ $ (-1 (-1238 |#1| |#2| |#3|) (-1238 |#1| |#2| |#3|))) NIL (|has| |#1| (-362))) (($ $ (-1 (-1238 |#1| |#2| |#3|) (-1238 |#1| |#2| |#3|)) (-762)) NIL (|has| |#1| (-362))) (($ $ (-762)) NIL (-3998 (-12 (|has| (-1238 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $) NIL (-3998 (-12 (|has| (-1238 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-3998 (-12 (|has| (-1238 |#1| |#2| |#3|) (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163)))))) (($ $ (-1163) (-762)) NIL (-3998 (-12 (|has| (-1238 |#1| |#2| |#3|) (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163)))))) (($ $ (-635 (-1163))) NIL (-3998 (-12 (|has| (-1238 |#1| |#2| |#3|) (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163)))))) (($ $ (-1163)) NIL (-3998 (-12 (|has| (-1238 |#1| |#2| |#3|) (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163))))))) (-1747 (((-112) $ $) NIL (-3998 (-12 (|has| (-1238 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1238 |#1| |#2| |#3|) (-841)) (|has| |#1| (-362)))))) (-1720 (((-112) $ $) NIL (-3998 (-12 (|has| (-1238 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1238 |#1| |#2| |#3|) (-841)) (|has| |#1| (-362)))))) (-1683 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL (-3998 (-12 (|has| (-1238 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1238 |#1| |#2| |#3|) (-841)) (|has| |#1| (-362)))))) (-1705 (((-112) $ $) NIL (-3998 (-12 (|has| (-1238 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1238 |#1| |#2| |#3|) (-841)) (|has| |#1| (-362)))))) (-1810 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362))) (($ (-1238 |#1| |#2| |#3|) (-1238 |#1| |#2| |#3|)) NIL (|has| |#1| (-362)))) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) 20)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558)))))) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1238 |#1| |#2| |#3|)) NIL (|has| |#1| (-362))) (($ (-1238 |#1| |#2| |#3|) $) NIL (|has| |#1| (-362))) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558)))))))
+(((-1210 |#1| |#2| |#3|) (-13 (-1208 |#1| (-1238 |#1| |#2| |#3|)) (-10 -8 (-15 -3220 ($ (-1242 |#2|))) (-15 -2829 ($ $ (-1242 |#2|))) (IF (|has| |#1| (-38 (-406 (-558)))) (-15 -2543 ($ $ (-1242 |#2|))) |%noBranch|))) (-1039) (-1163) |#1|) (T -1210))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1210 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) (-2829 (*1 *1 *1 *2) (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1210 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) (-2543 (*1 *1 *1 *2) (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1210 *3 *4 *5)) (-4 *3 (-38 (-406 (-558)))) (-4 *3 (-1039)) (-14 *5 *3))))
+(-13 (-1208 |#1| (-1238 |#1| |#2| |#3|)) (-10 -8 (-15 -3220 ($ (-1242 |#2|))) (-15 -2829 ($ $ (-1242 |#2|))) (IF (|has| |#1| (-38 (-406 (-558)))) (-15 -2543 ($ $ (-1242 |#2|))) |%noBranch|)))
+((-3099 (((-2 (|:| |contp| (-558)) (|:| -1849 (-635 (-2 (|:| |irr| |#1|) (|:| -1896 (-558)))))) |#1| (-112)) 12)) (-3089 (((-417 |#1|) |#1|) 22)) (-2522 (((-417 |#1|) |#1|) 21)))
+(((-1211 |#1|) (-10 -7 (-15 -2522 ((-417 |#1|) |#1|)) (-15 -3089 ((-417 |#1|) |#1|)) (-15 -3099 ((-2 (|:| |contp| (-558)) (|:| -1849 (-635 (-2 (|:| |irr| |#1|) (|:| -1896 (-558)))))) |#1| (-112)))) (-1222 (-558))) (T -1211))
+((-3099 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-558)) (|:| -1849 (-635 (-2 (|:| |irr| *3) (|:| -1896 (-558))))))) (-5 *1 (-1211 *3)) (-4 *3 (-1222 (-558))))) (-3089 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1211 *3)) (-4 *3 (-1222 (-558))))) (-2522 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1211 *3)) (-4 *3 (-1222 (-558))))))
+(-10 -7 (-15 -2522 ((-417 |#1|) |#1|)) (-15 -3089 ((-417 |#1|) |#1|)) (-15 -3099 ((-2 (|:| |contp| (-558)) (|:| -1849 (-635 (-2 (|:| |irr| |#1|) (|:| -1896 (-558)))))) |#1| (-112))))
+((-3167 (((-1143 |#2|) (-1 |#2| |#1|) (-1213 |#1|)) 23 (|has| |#1| (-839))) (((-1213 |#2|) (-1 |#2| |#1|) (-1213 |#1|)) 17)))
+(((-1212 |#1| |#2|) (-10 -7 (-15 -3167 ((-1213 |#2|) (-1 |#2| |#1|) (-1213 |#1|))) (IF (|has| |#1| (-839)) (-15 -3167 ((-1143 |#2|) (-1 |#2| |#1|) (-1213 |#1|))) |%noBranch|)) (-1200) (-1200)) (T -1212))
+((-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1213 *5)) (-4 *5 (-839)) (-4 *5 (-1200)) (-4 *6 (-1200)) (-5 *2 (-1143 *6)) (-5 *1 (-1212 *5 *6)))) (-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1213 *5)) (-4 *5 (-1200)) (-4 *6 (-1200)) (-5 *2 (-1213 *6)) (-5 *1 (-1212 *5 *6)))))
+(-10 -7 (-15 -3167 ((-1213 |#2|) (-1 |#2| |#1|) (-1213 |#1|))) (IF (|has| |#1| (-839)) (-15 -3167 ((-1143 |#2|) (-1 |#2| |#1|) (-1213 |#1|))) |%noBranch|))
+((-3207 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2558 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-3167 (((-1143 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-839)))) (-4237 ((|#1| $) 14)) (-3573 ((|#1| $) 10)) (-4310 (((-1145) $) NIL (|has| |#1| (-1087)))) (-4293 (((-558) $) 18)) (-4226 ((|#1| $) 17)) (-4317 ((|#1| $) 11)) (-2975 (((-1107) $) NIL (|has| |#1| (-1087)))) (-3109 (((-112) $) 16)) (-4294 (((-1143 |#1|) $) 38 (|has| |#1| (-839))) (((-1143 |#1|) (-635 $)) 37 (|has| |#1| (-839)))) (-3224 (($ |#1|) 25)) (-3220 (($ (-1081 |#1|)) 24) (((-853) $) 34 (|has| |#1| (-1087)))) (-4275 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-1474 (($ $ (-558)) 13)) (-1683 (((-112) $ $) 27 (|has| |#1| (-1087)))))
+(((-1213 |#1|) (-13 (-1080 |#1|) (-10 -8 (-15 -4275 ($ |#1|)) (-15 -2558 ($ |#1|)) (-15 -3220 ($ (-1081 |#1|))) (-15 -3109 ((-112) $)) (IF (|has| |#1| (-1087)) (-6 (-1087)) |%noBranch|) (IF (|has| |#1| (-839)) (-6 (-1082 |#1| (-1143 |#1|))) |%noBranch|))) (-1200)) (T -1213))
+((-4275 (*1 *1 *2) (-12 (-5 *1 (-1213 *2)) (-4 *2 (-1200)))) (-2558 (*1 *1 *2) (-12 (-5 *1 (-1213 *2)) (-4 *2 (-1200)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-1081 *3)) (-4 *3 (-1200)) (-5 *1 (-1213 *3)))) (-3109 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3)) (-4 *3 (-1200)))))
+(-13 (-1080 |#1|) (-10 -8 (-15 -4275 ($ |#1|)) (-15 -2558 ($ |#1|)) (-15 -3220 ($ (-1081 |#1|))) (-15 -3109 ((-112) $)) (IF (|has| |#1| (-1087)) (-6 (-1087)) |%noBranch|) (IF (|has| |#1| (-839)) (-6 (-1082 |#1| (-1143 |#1|))) |%noBranch|)))
+((-3167 (((-1219 |#3| |#4|) (-1 |#4| |#2|) (-1219 |#1| |#2|)) 15)))
+(((-1214 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3167 ((-1219 |#3| |#4|) (-1 |#4| |#2|) (-1219 |#1| |#2|)))) (-1163) (-1039) (-1163) (-1039)) (T -1214))
+((-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1219 *5 *6)) (-14 *5 (-1163)) (-4 *6 (-1039)) (-4 *8 (-1039)) (-5 *2 (-1219 *7 *8)) (-5 *1 (-1214 *5 *6 *7 *8)) (-14 *7 (-1163)))))
+(-10 -7 (-15 -3167 ((-1219 |#3| |#4|) (-1 |#4| |#2|) (-1219 |#1| |#2|))))
+((-3152 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-3132 ((|#1| |#3|) 13)) (-3142 ((|#3| |#3|) 19)))
+(((-1215 |#1| |#2| |#3|) (-10 -7 (-15 -3132 (|#1| |#3|)) (-15 -3142 (|#3| |#3|)) (-15 -3152 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-550) (-982 |#1|) (-1222 |#2|)) (T -1215))
+((-3152 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-982 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1215 *4 *5 *3)) (-4 *3 (-1222 *5)))) (-3142 (*1 *2 *2) (-12 (-4 *3 (-550)) (-4 *4 (-982 *3)) (-5 *1 (-1215 *3 *4 *2)) (-4 *2 (-1222 *4)))) (-3132 (*1 *2 *3) (-12 (-4 *4 (-982 *2)) (-4 *2 (-550)) (-5 *1 (-1215 *2 *4 *3)) (-4 *3 (-1222 *4)))))
+(-10 -7 (-15 -3132 (|#1| |#3|)) (-15 -3142 (|#3| |#3|)) (-15 -3152 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-3174 (((-3 |#2| "failed") |#2| (-762) |#1|) 29)) (-3163 (((-3 |#2| "failed") |#2| (-762)) 30)) (-3195 (((-3 (-2 (|:| -3417 |#2|) (|:| -3425 |#2|)) "failed") |#2|) 42)) (-3206 (((-635 |#2|) |#2|) 44)) (-3185 (((-3 |#2| "failed") |#2| |#2|) 39)))
+(((-1216 |#1| |#2|) (-10 -7 (-15 -3163 ((-3 |#2| "failed") |#2| (-762))) (-15 -3174 ((-3 |#2| "failed") |#2| (-762) |#1|)) (-15 -3185 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3195 ((-3 (-2 (|:| -3417 |#2|) (|:| -3425 |#2|)) "failed") |#2|)) (-15 -3206 ((-635 |#2|) |#2|))) (-13 (-550) (-146)) (-1222 |#1|)) (T -1216))
+((-3206 (*1 *2 *3) (-12 (-4 *4 (-13 (-550) (-146))) (-5 *2 (-635 *3)) (-5 *1 (-1216 *4 *3)) (-4 *3 (-1222 *4)))) (-3195 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-550) (-146))) (-5 *2 (-2 (|:| -3417 *3) (|:| -3425 *3))) (-5 *1 (-1216 *4 *3)) (-4 *3 (-1222 *4)))) (-3185 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-550) (-146))) (-5 *1 (-1216 *3 *2)) (-4 *2 (-1222 *3)))) (-3174 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-762)) (-4 *4 (-13 (-550) (-146))) (-5 *1 (-1216 *4 *2)) (-4 *2 (-1222 *4)))) (-3163 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-762)) (-4 *4 (-13 (-550) (-146))) (-5 *1 (-1216 *4 *2)) (-4 *2 (-1222 *4)))))
+(-10 -7 (-15 -3163 ((-3 |#2| "failed") |#2| (-762))) (-15 -3174 ((-3 |#2| "failed") |#2| (-762) |#1|)) (-15 -3185 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3195 ((-3 (-2 (|:| -3417 |#2|) (|:| -3425 |#2|)) "failed") |#2|)) (-15 -3206 ((-635 |#2|) |#2|)))
+((-3219 (((-3 (-2 (|:| -2306 |#2|) (|:| -2071 |#2|)) "failed") |#2| |#2|) 31)))
+(((-1217 |#1| |#2|) (-10 -7 (-15 -3219 ((-3 (-2 (|:| -2306 |#2|) (|:| -2071 |#2|)) "failed") |#2| |#2|))) (-550) (-1222 |#1|)) (T -1217))
+((-3219 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-550)) (-5 *2 (-2 (|:| -2306 *3) (|:| -2071 *3))) (-5 *1 (-1217 *4 *3)) (-4 *3 (-1222 *4)))))
+(-10 -7 (-15 -3219 ((-3 (-2 (|:| -2306 |#2|) (|:| -2071 |#2|)) "failed") |#2| |#2|)))
+((-3232 ((|#2| |#2| |#2|) 19)) (-3244 ((|#2| |#2| |#2|) 30)) (-3254 ((|#2| |#2| |#2| (-762) (-762)) 36)))
+(((-1218 |#1| |#2|) (-10 -7 (-15 -3232 (|#2| |#2| |#2|)) (-15 -3244 (|#2| |#2| |#2|)) (-15 -3254 (|#2| |#2| |#2| (-762) (-762)))) (-1039) (-1222 |#1|)) (T -1218))
+((-3254 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-762)) (-4 *4 (-1039)) (-5 *1 (-1218 *4 *2)) (-4 *2 (-1222 *4)))) (-3244 (*1 *2 *2 *2) (-12 (-4 *3 (-1039)) (-5 *1 (-1218 *3 *2)) (-4 *2 (-1222 *3)))) (-3232 (*1 *2 *2 *2) (-12 (-4 *3 (-1039)) (-5 *1 (-1218 *3 *2)) (-4 *2 (-1222 *3)))))
+(-10 -7 (-15 -3232 (|#2| |#2| |#2|)) (-15 -3244 (|#2| |#2| |#2|)) (-15 -3254 (|#2| |#2| |#2| (-762) (-762))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-3422 (((-1246 |#2|) $ (-762)) NIL)) (-2671 (((-635 (-1069)) $) NIL)) (-3401 (($ (-1159 |#2|)) NIL)) (-2492 (((-1159 $) $ (-1069)) NIL) (((-1159 |#2|) $) NIL)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL (|has| |#2| (-550)))) (-1881 (($ $) NIL (|has| |#2| (-550)))) (-1857 (((-112) $) NIL (|has| |#2| (-550)))) (-2513 (((-762) $) NIL) (((-762) $ (-635 (-1069))) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-3309 (($ $ $) NIL (|has| |#2| (-550)))) (-3748 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-3465 (($ $) NIL (|has| |#2| (-450)))) (-1380 (((-417 $) $) NIL (|has| |#2| (-450)))) (-3719 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-3732 (((-112) $ $) NIL (|has| |#2| (-362)))) (-3362 (($ $ (-762)) NIL)) (-3352 (($ $ (-762)) NIL)) (-3264 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-450)))) (-1816 (($) NIL T CONST)) (-3069 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#2| (-1028 (-406 (-558))))) (((-3 (-558) "failed") $) NIL (|has| |#2| (-1028 (-558)))) (((-3 (-1069) "failed") $) NIL)) (-1863 ((|#2| $) NIL) (((-406 (-558)) $) NIL (|has| |#2| (-1028 (-406 (-558))))) (((-558) $) NIL (|has| |#2| (-1028 (-558)))) (((-1069) $) NIL)) (-3320 (($ $ $ (-1069)) NIL (|has| |#2| (-171))) ((|#2| $ $) NIL (|has| |#2| (-171)))) (-4025 (($ $ $) NIL (|has| |#2| (-362)))) (-2490 (($ $) NIL)) (-3216 (((-679 (-558)) (-679 $)) NIL (|has| |#2| (-631 (-558)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| |#2| (-631 (-558)))) (((-2 (|:| -3683 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 $) (-1246 $)) NIL) (((-679 |#2|) (-679 $)) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-4004 (($ $ $) NIL (|has| |#2| (-362)))) (-3342 (($ $ $) NIL)) (-3286 (($ $ $) NIL (|has| |#2| (-550)))) (-3274 (((-2 (|:| -2023 |#2|) (|:| -2306 $) (|:| -2071 $)) $ $) NIL (|has| |#2| (-550)))) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL (|has| |#2| (-362)))) (-2782 (($ $) NIL (|has| |#2| (-450))) (($ $ (-1069)) NIL (|has| |#2| (-450)))) (-2476 (((-635 $) $) NIL)) (-3031 (((-112) $) NIL (|has| |#2| (-899)))) (-3888 (($ $ |#2| (-762) $) NIL)) (-2269 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (-12 (|has| (-1069) (-876 (-378))) (|has| |#2| (-876 (-378))))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (-12 (|has| (-1069) (-876 (-558))) (|has| |#2| (-876 (-558)))))) (-3449 (((-762) $ $) NIL (|has| |#2| (-550)))) (-2035 (((-112) $) NIL)) (-2110 (((-762) $) NIL)) (-2457 (((-3 $ "failed") $) NIL (|has| |#2| (-1138)))) (-2659 (($ (-1159 |#2|) (-1069)) NIL) (($ (-1159 $) (-1069)) NIL)) (-3486 (($ $ (-762)) NIL)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#2| (-362)))) (-2536 (((-635 $) $) NIL)) (-4238 (((-112) $) NIL)) (-2648 (($ |#2| (-762)) 17) (($ $ (-1069) (-762)) NIL) (($ $ (-635 (-1069)) (-635 (-762))) NIL)) (-3381 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $ (-1069)) NIL) (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL)) (-2524 (((-762) $) NIL) (((-762) $ (-1069)) NIL) (((-635 (-762)) $ (-635 (-1069))) NIL)) (-3910 (($ $ $) NIL (|has| |#2| (-841)))) (-3542 (($ $ $) NIL (|has| |#2| (-841)))) (-3898 (($ (-1 (-762) (-762)) $) NIL)) (-3167 (($ (-1 |#2| |#2|) $) NIL)) (-3412 (((-1159 |#2|) $) NIL)) (-3399 (((-3 (-1069) "failed") $) NIL)) (-2451 (($ $) NIL)) (-2463 ((|#2| $) NIL)) (-2665 (($ (-635 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-4310 (((-1145) $) NIL)) (-3371 (((-2 (|:| -2306 $) (|:| -2071 $)) $ (-762)) NIL)) (-2560 (((-3 (-635 $) "failed") $) NIL)) (-2548 (((-3 (-635 $) "failed") $) NIL)) (-2575 (((-3 (-2 (|:| |var| (-1069)) (|:| -1951 (-762))) "failed") $) NIL)) (-2543 (($ $) NIL (|has| |#2| (-38 (-406 (-558)))))) (-1796 (($) NIL (|has| |#2| (-1138)) CONST)) (-2975 (((-1107) $) NIL)) (-2429 (((-112) $) NIL)) (-2440 ((|#2| $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#2| (-450)))) (-2699 (($ (-635 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-3120 (($ $ (-762) |#2| $) NIL)) (-3728 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-3738 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-2522 (((-417 $) $) NIL (|has| |#2| (-899)))) (-3713 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL (|has| |#2| (-362)))) (-3983 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-550))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-550)))) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#2| (-362)))) (-2554 (($ $ (-635 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-1069) |#2|) NIL) (($ $ (-635 (-1069)) (-635 |#2|)) NIL) (($ $ (-1069) $) NIL) (($ $ (-635 (-1069)) (-635 $)) NIL)) (-3722 (((-762) $) NIL (|has| |#2| (-362)))) (-2195 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-406 $) (-406 $) (-406 $)) NIL (|has| |#2| (-550))) ((|#2| (-406 $) |#2|) NIL (|has| |#2| (-362))) (((-406 $) $ (-406 $)) NIL (|has| |#2| (-550)))) (-3391 (((-3 $ "failed") $ (-762)) NIL)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL (|has| |#2| (-362)))) (-3331 (($ $ (-1069)) NIL (|has| |#2| (-171))) ((|#2| $) NIL (|has| |#2| (-171)))) (-2829 (($ $ (-1069)) NIL) (($ $ (-635 (-1069))) NIL) (($ $ (-1069) (-762)) NIL) (($ $ (-635 (-1069)) (-635 (-762))) NIL) (($ $ (-762)) NIL) (($ $) NIL) (($ $ (-1163)) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-1 |#2| |#2|) (-762)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-4323 (((-762) $) NIL) (((-762) $ (-1069)) NIL) (((-635 (-762)) $ (-635 (-1069))) NIL)) (-3224 (((-882 (-378)) $) NIL (-12 (|has| (-1069) (-606 (-882 (-378)))) (|has| |#2| (-606 (-882 (-378)))))) (((-882 (-558)) $) NIL (-12 (|has| (-1069) (-606 (-882 (-558)))) (|has| |#2| (-606 (-882 (-558)))))) (((-534) $) NIL (-12 (|has| (-1069) (-606 (-534))) (|has| |#2| (-606 (-534)))))) (-2504 ((|#2| $) NIL (|has| |#2| (-450))) (($ $ (-1069)) NIL (|has| |#2| (-450)))) (-3709 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-899))))) (-3297 (((-3 $ "failed") $ $) NIL (|has| |#2| (-550))) (((-3 (-406 $) "failed") (-406 $) $) NIL (|has| |#2| (-550)))) (-3220 (((-853) $) 13) (($ (-558)) NIL) (($ |#2|) NIL) (($ (-1069)) NIL) (($ (-1242 |#1|)) 19) (($ (-406 (-558))) NIL (-3998 (|has| |#2| (-38 (-406 (-558)))) (|has| |#2| (-1028 (-406 (-558)))))) (($ $) NIL (|has| |#2| (-550)))) (-2583 (((-635 |#2|) $) NIL)) (-3736 ((|#2| $ (-762)) NIL) (($ $ (-1069) (-762)) NIL) (($ $ (-635 (-1069)) (-635 (-762))) NIL)) (-3698 (((-3 $ "failed") $) NIL (-3998 (-12 (|has| $ (-144)) (|has| |#2| (-899))) (|has| |#2| (-144))))) (-2542 (((-762)) NIL)) (-3879 (($ $ $ (-762)) NIL (|has| |#2| (-171)))) (-1870 (((-112) $ $) NIL (|has| |#2| (-550)))) (-2131 (($) NIL T CONST)) (-2142 (($) 14 T CONST)) (-1866 (($ $ (-1069)) NIL) (($ $ (-635 (-1069))) NIL) (($ $ (-1069) (-762)) NIL) (($ $ (-635 (-1069)) (-635 (-762))) NIL) (($ $ (-762)) NIL) (($ $) NIL) (($ $ (-1163)) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-1 |#2| |#2|) (-762)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1747 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1720 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1683 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1705 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1810 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL (|has| |#2| (-38 (-406 (-558))))) (($ (-406 (-558)) $) NIL (|has| |#2| (-38 (-406 (-558))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-1219 |#1| |#2|) (-13 (-1222 |#2|) (-608 (-1242 |#1|)) (-10 -8 (-15 -3120 ($ $ (-762) |#2| $)))) (-1163) (-1039)) (T -1219))
+((-3120 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-762)) (-5 *1 (-1219 *4 *3)) (-14 *4 (-1163)) (-4 *3 (-1039)))))
+(-13 (-1222 |#2|) (-608 (-1242 |#1|)) (-10 -8 (-15 -3120 ($ $ (-762) |#2| $))))
+((-3167 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
+(((-1220 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3167 (|#4| (-1 |#3| |#1|) |#2|))) (-1039) (-1222 |#1|) (-1039) (-1222 |#3|)) (T -1220))
+((-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1039)) (-4 *6 (-1039)) (-4 *2 (-1222 *6)) (-5 *1 (-1220 *5 *4 *6 *2)) (-4 *4 (-1222 *5)))))
+(-10 -7 (-15 -3167 (|#4| (-1 |#3| |#1|) |#2|)))
+((-3422 (((-1246 |#2|) $ (-762)) 114)) (-2671 (((-635 (-1069)) $) 15)) (-3401 (($ (-1159 |#2|)) 67)) (-2513 (((-762) $) NIL) (((-762) $ (-635 (-1069))) 18)) (-3748 (((-417 (-1159 $)) (-1159 $)) 184)) (-3465 (($ $) 174)) (-1380 (((-417 $) $) 172)) (-3719 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) 82)) (-3362 (($ $ (-762)) 71)) (-3352 (($ $ (-762)) 73)) (-3264 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-3069 (((-3 |#2| "failed") $) 117) (((-3 (-406 (-558)) "failed") $) NIL) (((-3 (-558) "failed") $) NIL) (((-3 (-1069) "failed") $) NIL)) (-1863 ((|#2| $) 115) (((-406 (-558)) $) NIL) (((-558) $) NIL) (((-1069) $) NIL)) (-3286 (($ $ $) 151)) (-3274 (((-2 (|:| -2023 |#2|) (|:| -2306 $) (|:| -2071 $)) $ $) 153)) (-3449 (((-762) $ $) 169)) (-2457 (((-3 $ "failed") $) 123)) (-2648 (($ |#2| (-762)) NIL) (($ $ (-1069) (-762)) 47) (($ $ (-635 (-1069)) (-635 (-762))) NIL)) (-2524 (((-762) $) NIL) (((-762) $ (-1069)) 42) (((-635 (-762)) $ (-635 (-1069))) 43)) (-3412 (((-1159 |#2|) $) 59)) (-3399 (((-3 (-1069) "failed") $) 40)) (-3371 (((-2 (|:| -2306 $) (|:| -2071 $)) $ (-762)) 70)) (-2543 (($ $) 196)) (-1796 (($) 119)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) 181)) (-3728 (((-417 (-1159 $)) (-1159 $)) 88)) (-3738 (((-417 (-1159 $)) (-1159 $)) 86)) (-2522 (((-417 $) $) 107)) (-2554 (($ $ (-635 (-293 $))) 39) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-1069) |#2|) 31) (($ $ (-635 (-1069)) (-635 |#2|)) 28) (($ $ (-1069) $) 25) (($ $ (-635 (-1069)) (-635 $)) 23)) (-3722 (((-762) $) 187)) (-2195 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-406 $) (-406 $) (-406 $)) 147) ((|#2| (-406 $) |#2|) 186) (((-406 $) $ (-406 $)) 168)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 190)) (-2829 (($ $ (-1069)) 140) (($ $ (-635 (-1069))) NIL) (($ $ (-1069) (-762)) NIL) (($ $ (-635 (-1069)) (-635 (-762))) NIL) (($ $ (-762)) NIL) (($ $) 138) (($ $ (-1163)) NIL) (($ $ (-635 (-1163))) NIL) (($ $ (-1163) (-762)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL) (($ $ (-1 |#2| |#2|) (-762)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-4323 (((-762) $) NIL) (((-762) $ (-1069)) 16) (((-635 (-762)) $ (-635 (-1069))) 20)) (-2504 ((|#2| $) NIL) (($ $ (-1069)) 125)) (-3297 (((-3 $ "failed") $ $) 161) (((-3 (-406 $) "failed") (-406 $) $) 157)) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ |#2|) NIL) (($ (-1069)) 51) (($ (-406 (-558))) NIL) (($ $) NIL)))
+(((-1221 |#1| |#2|) (-10 -8 (-15 -3220 (|#1| |#1|)) (-15 -3757 ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 -1380 ((-417 |#1|) |#1|)) (-15 -3465 (|#1| |#1|)) (-15 -3220 (|#1| (-406 (-558)))) (-15 -1796 (|#1|)) (-15 -2457 ((-3 |#1| "failed") |#1|)) (-15 -2195 ((-406 |#1|) |#1| (-406 |#1|))) (-15 -3722 ((-762) |#1|)) (-15 -1901 ((-2 (|:| -2306 |#1|) (|:| -2071 |#1|)) |#1| |#1|)) (-15 -2543 (|#1| |#1|)) (-15 -2195 (|#2| (-406 |#1|) |#2|)) (-15 -3264 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3274 ((-2 (|:| -2023 |#2|) (|:| -2306 |#1|) (|:| -2071 |#1|)) |#1| |#1|)) (-15 -3286 (|#1| |#1| |#1|)) (-15 -3297 ((-3 (-406 |#1|) "failed") (-406 |#1|) |#1|)) (-15 -3297 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3449 ((-762) |#1| |#1|)) (-15 -2195 ((-406 |#1|) (-406 |#1|) (-406 |#1|))) (-15 -2829 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3352 (|#1| |#1| (-762))) (-15 -3362 (|#1| |#1| (-762))) (-15 -3371 ((-2 (|:| -2306 |#1|) (|:| -2071 |#1|)) |#1| (-762))) (-15 -3401 (|#1| (-1159 |#2|))) (-15 -3412 ((-1159 |#2|) |#1|)) (-15 -3422 ((-1246 |#2|) |#1| (-762))) (-15 -2829 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2829 (|#1| |#1| (-1 |#2| |#2|) (-762))) (-15 -2829 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 -2829 (|#1| |#1| (-1163) (-762))) (-15 -2829 (|#1| |#1| (-635 (-1163)))) (-15 -2829 (|#1| |#1| (-1163))) (-15 -2829 (|#1| |#1|)) (-15 -2829 (|#1| |#1| (-762))) (-15 -2195 (|#1| |#1| |#1|)) (-15 -2195 (|#2| |#1| |#2|)) (-15 -2522 ((-417 |#1|) |#1|)) (-15 -3748 ((-417 (-1159 |#1|)) (-1159 |#1|))) (-15 -3738 ((-417 (-1159 |#1|)) (-1159 |#1|))) (-15 -3728 ((-417 (-1159 |#1|)) (-1159 |#1|))) (-15 -3719 ((-3 (-635 (-1159 |#1|)) "failed") (-635 (-1159 |#1|)) (-1159 |#1|))) (-15 -2504 (|#1| |#1| (-1069))) (-15 -2671 ((-635 (-1069)) |#1|)) (-15 -2513 ((-762) |#1| (-635 (-1069)))) (-15 -2513 ((-762) |#1|)) (-15 -2648 (|#1| |#1| (-635 (-1069)) (-635 (-762)))) (-15 -2648 (|#1| |#1| (-1069) (-762))) (-15 -2524 ((-635 (-762)) |#1| (-635 (-1069)))) (-15 -2524 ((-762) |#1| (-1069))) (-15 -3399 ((-3 (-1069) "failed") |#1|)) (-15 -4323 ((-635 (-762)) |#1| (-635 (-1069)))) (-15 -4323 ((-762) |#1| (-1069))) (-15 -3220 (|#1| (-1069))) (-15 -3069 ((-3 (-1069) "failed") |#1|)) (-15 -1863 ((-1069) |#1|)) (-15 -2554 (|#1| |#1| (-635 (-1069)) (-635 |#1|))) (-15 -2554 (|#1| |#1| (-1069) |#1|)) (-15 -2554 (|#1| |#1| (-635 (-1069)) (-635 |#2|))) (-15 -2554 (|#1| |#1| (-1069) |#2|)) (-15 -2554 (|#1| |#1| (-635 |#1|) (-635 |#1|))) (-15 -2554 (|#1| |#1| |#1| |#1|)) (-15 -2554 (|#1| |#1| (-293 |#1|))) (-15 -2554 (|#1| |#1| (-635 (-293 |#1|)))) (-15 -4323 ((-762) |#1|)) (-15 -2648 (|#1| |#2| (-762))) (-15 -3069 ((-3 (-558) "failed") |#1|)) (-15 -1863 ((-558) |#1|)) (-15 -3069 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -1863 ((-406 (-558)) |#1|)) (-15 -1863 (|#2| |#1|)) (-15 -3069 ((-3 |#2| "failed") |#1|)) (-15 -3220 (|#1| |#2|)) (-15 -2524 ((-762) |#1|)) (-15 -2504 (|#2| |#1|)) (-15 -2829 (|#1| |#1| (-635 (-1069)) (-635 (-762)))) (-15 -2829 (|#1| |#1| (-1069) (-762))) (-15 -2829 (|#1| |#1| (-635 (-1069)))) (-15 -2829 (|#1| |#1| (-1069))) (-15 -3220 (|#1| (-558))) (-15 -3220 ((-853) |#1|))) (-1222 |#2|) (-1039)) (T -1221))
+NIL
+(-10 -8 (-15 -3220 (|#1| |#1|)) (-15 -3757 ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 -1380 ((-417 |#1|) |#1|)) (-15 -3465 (|#1| |#1|)) (-15 -3220 (|#1| (-406 (-558)))) (-15 -1796 (|#1|)) (-15 -2457 ((-3 |#1| "failed") |#1|)) (-15 -2195 ((-406 |#1|) |#1| (-406 |#1|))) (-15 -3722 ((-762) |#1|)) (-15 -1901 ((-2 (|:| -2306 |#1|) (|:| -2071 |#1|)) |#1| |#1|)) (-15 -2543 (|#1| |#1|)) (-15 -2195 (|#2| (-406 |#1|) |#2|)) (-15 -3264 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3274 ((-2 (|:| -2023 |#2|) (|:| -2306 |#1|) (|:| -2071 |#1|)) |#1| |#1|)) (-15 -3286 (|#1| |#1| |#1|)) (-15 -3297 ((-3 (-406 |#1|) "failed") (-406 |#1|) |#1|)) (-15 -3297 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3449 ((-762) |#1| |#1|)) (-15 -2195 ((-406 |#1|) (-406 |#1|) (-406 |#1|))) (-15 -2829 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3352 (|#1| |#1| (-762))) (-15 -3362 (|#1| |#1| (-762))) (-15 -3371 ((-2 (|:| -2306 |#1|) (|:| -2071 |#1|)) |#1| (-762))) (-15 -3401 (|#1| (-1159 |#2|))) (-15 -3412 ((-1159 |#2|) |#1|)) (-15 -3422 ((-1246 |#2|) |#1| (-762))) (-15 -2829 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2829 (|#1| |#1| (-1 |#2| |#2|) (-762))) (-15 -2829 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 -2829 (|#1| |#1| (-1163) (-762))) (-15 -2829 (|#1| |#1| (-635 (-1163)))) (-15 -2829 (|#1| |#1| (-1163))) (-15 -2829 (|#1| |#1|)) (-15 -2829 (|#1| |#1| (-762))) (-15 -2195 (|#1| |#1| |#1|)) (-15 -2195 (|#2| |#1| |#2|)) (-15 -2522 ((-417 |#1|) |#1|)) (-15 -3748 ((-417 (-1159 |#1|)) (-1159 |#1|))) (-15 -3738 ((-417 (-1159 |#1|)) (-1159 |#1|))) (-15 -3728 ((-417 (-1159 |#1|)) (-1159 |#1|))) (-15 -3719 ((-3 (-635 (-1159 |#1|)) "failed") (-635 (-1159 |#1|)) (-1159 |#1|))) (-15 -2504 (|#1| |#1| (-1069))) (-15 -2671 ((-635 (-1069)) |#1|)) (-15 -2513 ((-762) |#1| (-635 (-1069)))) (-15 -2513 ((-762) |#1|)) (-15 -2648 (|#1| |#1| (-635 (-1069)) (-635 (-762)))) (-15 -2648 (|#1| |#1| (-1069) (-762))) (-15 -2524 ((-635 (-762)) |#1| (-635 (-1069)))) (-15 -2524 ((-762) |#1| (-1069))) (-15 -3399 ((-3 (-1069) "failed") |#1|)) (-15 -4323 ((-635 (-762)) |#1| (-635 (-1069)))) (-15 -4323 ((-762) |#1| (-1069))) (-15 -3220 (|#1| (-1069))) (-15 -3069 ((-3 (-1069) "failed") |#1|)) (-15 -1863 ((-1069) |#1|)) (-15 -2554 (|#1| |#1| (-635 (-1069)) (-635 |#1|))) (-15 -2554 (|#1| |#1| (-1069) |#1|)) (-15 -2554 (|#1| |#1| (-635 (-1069)) (-635 |#2|))) (-15 -2554 (|#1| |#1| (-1069) |#2|)) (-15 -2554 (|#1| |#1| (-635 |#1|) (-635 |#1|))) (-15 -2554 (|#1| |#1| |#1| |#1|)) (-15 -2554 (|#1| |#1| (-293 |#1|))) (-15 -2554 (|#1| |#1| (-635 (-293 |#1|)))) (-15 -4323 ((-762) |#1|)) (-15 -2648 (|#1| |#2| (-762))) (-15 -3069 ((-3 (-558) "failed") |#1|)) (-15 -1863 ((-558) |#1|)) (-15 -3069 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -1863 ((-406 (-558)) |#1|)) (-15 -1863 (|#2| |#1|)) (-15 -3069 ((-3 |#2| "failed") |#1|)) (-15 -3220 (|#1| |#2|)) (-15 -2524 ((-762) |#1|)) (-15 -2504 (|#2| |#1|)) (-15 -2829 (|#1| |#1| (-635 (-1069)) (-635 (-762)))) (-15 -2829 (|#1| |#1| (-1069) (-762))) (-15 -2829 (|#1| |#1| (-635 (-1069)))) (-15 -2829 (|#1| |#1| (-1069))) (-15 -3220 (|#1| (-558))) (-15 -3220 ((-853) |#1|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-3422 (((-1246 |#1|) $ (-762)) 238)) (-2671 (((-635 (-1069)) $) 110)) (-3401 (($ (-1159 |#1|)) 236)) (-2492 (((-1159 $) $ (-1069)) 125) (((-1159 |#1|) $) 124)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 87 (|has| |#1| (-550)))) (-1881 (($ $) 88 (|has| |#1| (-550)))) (-1857 (((-112) $) 90 (|has| |#1| (-550)))) (-2513 (((-762) $) 112) (((-762) $ (-635 (-1069))) 111)) (-2089 (((-3 $ "failed") $ $) 19)) (-3309 (($ $ $) 223 (|has| |#1| (-550)))) (-3748 (((-417 (-1159 $)) (-1159 $)) 100 (|has| |#1| (-899)))) (-3465 (($ $) 98 (|has| |#1| (-450)))) (-1380 (((-417 $) $) 97 (|has| |#1| (-450)))) (-3719 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) 103 (|has| |#1| (-899)))) (-3732 (((-112) $ $) 208 (|has| |#1| (-362)))) (-3362 (($ $ (-762)) 231)) (-3352 (($ $ (-762)) 230)) (-3264 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-450)))) (-1816 (($) 17 T CONST)) (-3069 (((-3 |#1| "failed") $) 164) (((-3 (-406 (-558)) "failed") $) 161 (|has| |#1| (-1028 (-406 (-558))))) (((-3 (-558) "failed") $) 159 (|has| |#1| (-1028 (-558)))) (((-3 (-1069) "failed") $) 136)) (-1863 ((|#1| $) 163) (((-406 (-558)) $) 162 (|has| |#1| (-1028 (-406 (-558))))) (((-558) $) 160 (|has| |#1| (-1028 (-558)))) (((-1069) $) 137)) (-3320 (($ $ $ (-1069)) 108 (|has| |#1| (-171))) ((|#1| $ $) 226 (|has| |#1| (-171)))) (-4025 (($ $ $) 212 (|has| |#1| (-362)))) (-2490 (($ $) 154)) (-3216 (((-679 (-558)) (-679 $)) 134 (|has| |#1| (-631 (-558)))) (((-2 (|:| -3683 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) 133 (|has| |#1| (-631 (-558)))) (((-2 (|:| -3683 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) 132) (((-679 |#1|) (-679 $)) 131)) (-2588 (((-3 $ "failed") $) 33)) (-4004 (($ $ $) 211 (|has| |#1| (-362)))) (-3342 (($ $ $) 229)) (-3286 (($ $ $) 220 (|has| |#1| (-550)))) (-3274 (((-2 (|:| -2023 |#1|) (|:| -2306 $) (|:| -2071 $)) $ $) 219 (|has| |#1| (-550)))) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) 206 (|has| |#1| (-362)))) (-2782 (($ $) 176 (|has| |#1| (-450))) (($ $ (-1069)) 105 (|has| |#1| (-450)))) (-2476 (((-635 $) $) 109)) (-3031 (((-112) $) 96 (|has| |#1| (-899)))) (-3888 (($ $ |#1| (-762) $) 172)) (-2269 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) 84 (-12 (|has| (-1069) (-876 (-378))) (|has| |#1| (-876 (-378))))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) 83 (-12 (|has| (-1069) (-876 (-558))) (|has| |#1| (-876 (-558)))))) (-3449 (((-762) $ $) 224 (|has| |#1| (-550)))) (-2035 (((-112) $) 31)) (-2110 (((-762) $) 169)) (-2457 (((-3 $ "failed") $) 204 (|has| |#1| (-1138)))) (-2659 (($ (-1159 |#1|) (-1069)) 117) (($ (-1159 $) (-1069)) 116)) (-3486 (($ $ (-762)) 235)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) 215 (|has| |#1| (-362)))) (-2536 (((-635 $) $) 126)) (-4238 (((-112) $) 152)) (-2648 (($ |#1| (-762)) 153) (($ $ (-1069) (-762)) 119) (($ $ (-635 (-1069)) (-635 (-762))) 118)) (-3381 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $ (-1069)) 120) (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 233)) (-2524 (((-762) $) 170) (((-762) $ (-1069)) 122) (((-635 (-762)) $ (-635 (-1069))) 121)) (-3910 (($ $ $) 79 (|has| |#1| (-841)))) (-3542 (($ $ $) 78 (|has| |#1| (-841)))) (-3898 (($ (-1 (-762) (-762)) $) 171)) (-3167 (($ (-1 |#1| |#1|) $) 151)) (-3412 (((-1159 |#1|) $) 237)) (-3399 (((-3 (-1069) "failed") $) 123)) (-2451 (($ $) 149)) (-2463 ((|#1| $) 148)) (-2665 (($ (-635 $)) 94 (|has| |#1| (-450))) (($ $ $) 93 (|has| |#1| (-450)))) (-4310 (((-1145) $) 9)) (-3371 (((-2 (|:| -2306 $) (|:| -2071 $)) $ (-762)) 232)) (-2560 (((-3 (-635 $) "failed") $) 114)) (-2548 (((-3 (-635 $) "failed") $) 115)) (-2575 (((-3 (-2 (|:| |var| (-1069)) (|:| -1951 (-762))) "failed") $) 113)) (-2543 (($ $) 216 (|has| |#1| (-38 (-406 (-558)))))) (-1796 (($) 203 (|has| |#1| (-1138)) CONST)) (-2975 (((-1107) $) 10)) (-2429 (((-112) $) 166)) (-2440 ((|#1| $) 167)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) 95 (|has| |#1| (-450)))) (-2699 (($ (-635 $)) 92 (|has| |#1| (-450))) (($ $ $) 91 (|has| |#1| (-450)))) (-3728 (((-417 (-1159 $)) (-1159 $)) 102 (|has| |#1| (-899)))) (-3738 (((-417 (-1159 $)) (-1159 $)) 101 (|has| |#1| (-899)))) (-2522 (((-417 $) $) 99 (|has| |#1| (-899)))) (-3713 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) 213 (|has| |#1| (-362)))) (-3983 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-550))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-550)))) (-2922 (((-3 (-635 $) "failed") (-635 $) $) 207 (|has| |#1| (-362)))) (-2554 (($ $ (-635 (-293 $))) 145) (($ $ (-293 $)) 144) (($ $ $ $) 143) (($ $ (-635 $) (-635 $)) 142) (($ $ (-1069) |#1|) 141) (($ $ (-635 (-1069)) (-635 |#1|)) 140) (($ $ (-1069) $) 139) (($ $ (-635 (-1069)) (-635 $)) 138)) (-3722 (((-762) $) 209 (|has| |#1| (-362)))) (-2195 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-406 $) (-406 $) (-406 $)) 225 (|has| |#1| (-550))) ((|#1| (-406 $) |#1|) 217 (|has| |#1| (-362))) (((-406 $) $ (-406 $)) 205 (|has| |#1| (-550)))) (-3391 (((-3 $ "failed") $ (-762)) 234)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 210 (|has| |#1| (-362)))) (-3331 (($ $ (-1069)) 107 (|has| |#1| (-171))) ((|#1| $) 227 (|has| |#1| (-171)))) (-2829 (($ $ (-1069)) 42) (($ $ (-635 (-1069))) 41) (($ $ (-1069) (-762)) 40) (($ $ (-635 (-1069)) (-635 (-762))) 39) (($ $ (-762)) 253) (($ $) 251) (($ $ (-1163)) 250 (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) 249 (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) 248 (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) 247 (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-4323 (((-762) $) 150) (((-762) $ (-1069)) 130) (((-635 (-762)) $ (-635 (-1069))) 129)) (-3224 (((-882 (-378)) $) 82 (-12 (|has| (-1069) (-606 (-882 (-378)))) (|has| |#1| (-606 (-882 (-378)))))) (((-882 (-558)) $) 81 (-12 (|has| (-1069) (-606 (-882 (-558)))) (|has| |#1| (-606 (-882 (-558)))))) (((-534) $) 80 (-12 (|has| (-1069) (-606 (-534))) (|has| |#1| (-606 (-534)))))) (-2504 ((|#1| $) 175 (|has| |#1| (-450))) (($ $ (-1069)) 106 (|has| |#1| (-450)))) (-3709 (((-3 (-1246 $) "failed") (-679 $)) 104 (-2084 (|has| $ (-144)) (|has| |#1| (-899))))) (-3297 (((-3 $ "failed") $ $) 222 (|has| |#1| (-550))) (((-3 (-406 $) "failed") (-406 $) $) 221 (|has| |#1| (-550)))) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ |#1|) 165) (($ (-1069)) 135) (($ (-406 (-558))) 72 (-3998 (|has| |#1| (-1028 (-406 (-558)))) (|has| |#1| (-38 (-406 (-558)))))) (($ $) 85 (|has| |#1| (-550)))) (-2583 (((-635 |#1|) $) 168)) (-3736 ((|#1| $ (-762)) 155) (($ $ (-1069) (-762)) 128) (($ $ (-635 (-1069)) (-635 (-762))) 127)) (-3698 (((-3 $ "failed") $) 73 (-3998 (-2084 (|has| $ (-144)) (|has| |#1| (-899))) (|has| |#1| (-144))))) (-2542 (((-762)) 28)) (-3879 (($ $ $ (-762)) 173 (|has| |#1| (-171)))) (-1870 (((-112) $ $) 89 (|has| |#1| (-550)))) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1866 (($ $ (-1069)) 38) (($ $ (-635 (-1069))) 37) (($ $ (-1069) (-762)) 36) (($ $ (-635 (-1069)) (-635 (-762))) 35) (($ $ (-762)) 254) (($ $) 252) (($ $ (-1163)) 246 (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) 245 (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) 244 (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) 243 (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-1747 (((-112) $ $) 76 (|has| |#1| (-841)))) (-1720 (((-112) $ $) 75 (|has| |#1| (-841)))) (-1683 (((-112) $ $) 6)) (-1731 (((-112) $ $) 77 (|has| |#1| (-841)))) (-1705 (((-112) $ $) 74 (|has| |#1| (-841)))) (-1810 (($ $ |#1|) 156 (|has| |#1| (-362)))) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ (-406 (-558))) 158 (|has| |#1| (-38 (-406 (-558))))) (($ (-406 (-558)) $) 157 (|has| |#1| (-38 (-406 (-558))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(((-1222 |#1|) (-139) (-1039)) (T -1222))
+((-3422 (*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-4 *1 (-1222 *4)) (-4 *4 (-1039)) (-5 *2 (-1246 *4)))) (-3412 (*1 *2 *1) (-12 (-4 *1 (-1222 *3)) (-4 *3 (-1039)) (-5 *2 (-1159 *3)))) (-3401 (*1 *1 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1039)) (-4 *1 (-1222 *3)))) (-3486 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *1 (-1222 *3)) (-4 *3 (-1039)))) (-3391 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-762)) (-4 *1 (-1222 *3)) (-4 *3 (-1039)))) (-3381 (*1 *2 *1 *1) (-12 (-4 *3 (-1039)) (-5 *2 (-2 (|:| -2306 *1) (|:| -2071 *1))) (-4 *1 (-1222 *3)))) (-3371 (*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-4 *4 (-1039)) (-5 *2 (-2 (|:| -2306 *1) (|:| -2071 *1))) (-4 *1 (-1222 *4)))) (-3362 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *1 (-1222 *3)) (-4 *3 (-1039)))) (-3352 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *1 (-1222 *3)) (-4 *3 (-1039)))) (-3342 (*1 *1 *1 *1) (-12 (-4 *1 (-1222 *2)) (-4 *2 (-1039)))) (-2829 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1222 *3)) (-4 *3 (-1039)))) (-3331 (*1 *2 *1) (-12 (-4 *1 (-1222 *2)) (-4 *2 (-1039)) (-4 *2 (-171)))) (-3320 (*1 *2 *1 *1) (-12 (-4 *1 (-1222 *2)) (-4 *2 (-1039)) (-4 *2 (-171)))) (-2195 (*1 *2 *2 *2) (-12 (-5 *2 (-406 *1)) (-4 *1 (-1222 *3)) (-4 *3 (-1039)) (-4 *3 (-550)))) (-3449 (*1 *2 *1 *1) (-12 (-4 *1 (-1222 *3)) (-4 *3 (-1039)) (-4 *3 (-550)) (-5 *2 (-762)))) (-3309 (*1 *1 *1 *1) (-12 (-4 *1 (-1222 *2)) (-4 *2 (-1039)) (-4 *2 (-550)))) (-3297 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1222 *2)) (-4 *2 (-1039)) (-4 *2 (-550)))) (-3297 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-406 *1)) (-4 *1 (-1222 *3)) (-4 *3 (-1039)) (-4 *3 (-550)))) (-3286 (*1 *1 *1 *1) (-12 (-4 *1 (-1222 *2)) (-4 *2 (-1039)) (-4 *2 (-550)))) (-3274 (*1 *2 *1 *1) (-12 (-4 *3 (-550)) (-4 *3 (-1039)) (-5 *2 (-2 (|:| -2023 *3) (|:| -2306 *1) (|:| -2071 *1))) (-4 *1 (-1222 *3)))) (-3264 (*1 *2 *1 *1) (-12 (-4 *3 (-450)) (-4 *3 (-1039)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1222 *3)))) (-2195 (*1 *2 *3 *2) (-12 (-5 *3 (-406 *1)) (-4 *1 (-1222 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))) (-2543 (*1 *1 *1) (-12 (-4 *1 (-1222 *2)) (-4 *2 (-1039)) (-4 *2 (-38 (-406 (-558)))))))
+(-13 (-939 |t#1| (-762) (-1069)) (-285 |t#1| |t#1|) (-285 $ $) (-232) (-230 |t#1|) (-10 -8 (-15 -3422 ((-1246 |t#1|) $ (-762))) (-15 -3412 ((-1159 |t#1|) $)) (-15 -3401 ($ (-1159 |t#1|))) (-15 -3486 ($ $ (-762))) (-15 -3391 ((-3 $ "failed") $ (-762))) (-15 -3381 ((-2 (|:| -2306 $) (|:| -2071 $)) $ $)) (-15 -3371 ((-2 (|:| -2306 $) (|:| -2071 $)) $ (-762))) (-15 -3362 ($ $ (-762))) (-15 -3352 ($ $ (-762))) (-15 -3342 ($ $ $)) (-15 -2829 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1138)) (-6 (-1138)) |%noBranch|) (IF (|has| |t#1| (-171)) (PROGN (-15 -3331 (|t#1| $)) (-15 -3320 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-550)) (PROGN (-6 (-285 (-406 $) (-406 $))) (-15 -2195 ((-406 $) (-406 $) (-406 $))) (-15 -3449 ((-762) $ $)) (-15 -3309 ($ $ $)) (-15 -3297 ((-3 $ "failed") $ $)) (-15 -3297 ((-3 (-406 $) "failed") (-406 $) $)) (-15 -3286 ($ $ $)) (-15 -3274 ((-2 (|:| -2023 |t#1|) (|:| -2306 $) (|:| -2071 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-450)) (-15 -3264 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-362)) (PROGN (-6 (-306)) (-6 -4378) (-15 -2195 (|t#1| (-406 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-406 (-558)))) (-15 -2543 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-762)) . T) ((-25) . T) ((-38 #1=(-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -3998 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450)) (|has| |#1| (-362))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-406 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3998 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-608 #1#) -3998 (|has| |#1| (-1028 (-406 (-558)))) (|has| |#1| (-38 (-406 (-558))))) ((-608 (-558)) . T) ((-608 #2=(-1069)) . T) ((-608 |#1|) . T) ((-608 $) -3998 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450)) (|has| |#1| (-362))) ((-605 (-853)) . T) ((-171) -3998 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-606 (-534)) -12 (|has| (-1069) (-606 (-534))) (|has| |#1| (-606 (-534)))) ((-606 (-882 (-378))) -12 (|has| (-1069) (-606 (-882 (-378)))) (|has| |#1| (-606 (-882 (-378))))) ((-606 (-882 (-558))) -12 (|has| (-1069) (-606 (-882 (-558)))) (|has| |#1| (-606 (-882 (-558))))) ((-230 |#1|) . T) ((-232) . T) ((-285 (-406 $) (-406 $)) |has| |#1| (-550)) ((-285 |#1| |#1|) . T) ((-285 $ $) . T) ((-289) -3998 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450)) (|has| |#1| (-362))) ((-306) |has| |#1| (-362)) ((-308 $) . T) ((-325 |#1| #0#) . T) ((-376 |#1|) . T) ((-410 |#1|) . T) ((-450) -3998 (|has| |#1| (-899)) (|has| |#1| (-450)) (|has| |#1| (-362))) ((-512 #2# |#1|) . T) ((-512 #2# $) . T) ((-512 $ $) . T) ((-550) -3998 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450)) (|has| |#1| (-362))) ((-638 #1#) |has| |#1| (-38 (-406 (-558)))) ((-638 |#1|) . T) ((-638 $) . T) ((-631 (-558)) |has| |#1| (-631 (-558))) ((-631 |#1|) . T) ((-708 #1#) |has| |#1| (-38 (-406 (-558)))) ((-708 |#1|) |has| |#1| (-171)) ((-708 $) -3998 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450)) (|has| |#1| (-362))) ((-717) . T) ((-841) |has| |#1| (-841)) ((-890 #2#) . T) ((-890 (-1163)) |has| |#1| (-890 (-1163))) ((-876 (-378)) -12 (|has| (-1069) (-876 (-378))) (|has| |#1| (-876 (-378)))) ((-876 (-558)) -12 (|has| (-1069) (-876 (-558))) (|has| |#1| (-876 (-558)))) ((-939 |#1| #0# #2#) . T) ((-899) |has| |#1| (-899)) ((-910) |has| |#1| (-362)) ((-1028 (-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) ((-1028 (-558)) |has| |#1| (-1028 (-558))) ((-1028 #2#) . T) ((-1028 |#1|) . T) ((-1045 #1#) |has| |#1| (-38 (-406 (-558)))) ((-1045 |#1|) . T) ((-1045 $) -3998 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1138) |has| |#1| (-1138)) ((-1204) |has| |#1| (-899)))
+((-2671 (((-635 (-1069)) $) 28)) (-2490 (($ $) 25)) (-2648 (($ |#2| |#3|) NIL) (($ $ (-1069) |#3|) 22) (($ $ (-635 (-1069)) (-635 |#3|)) 21)) (-2451 (($ $) 14)) (-2463 ((|#2| $) 12)) (-4323 ((|#3| $) 10)))
+(((-1223 |#1| |#2| |#3|) (-10 -8 (-15 -2671 ((-635 (-1069)) |#1|)) (-15 -2648 (|#1| |#1| (-635 (-1069)) (-635 |#3|))) (-15 -2648 (|#1| |#1| (-1069) |#3|)) (-15 -2490 (|#1| |#1|)) (-15 -2648 (|#1| |#2| |#3|)) (-15 -4323 (|#3| |#1|)) (-15 -2451 (|#1| |#1|)) (-15 -2463 (|#2| |#1|))) (-1224 |#2| |#3|) (-1039) (-783)) (T -1223))
+NIL
+(-10 -8 (-15 -2671 ((-635 (-1069)) |#1|)) (-15 -2648 (|#1| |#1| (-635 (-1069)) (-635 |#3|))) (-15 -2648 (|#1| |#1| (-1069) |#3|)) (-15 -2490 (|#1| |#1|)) (-15 -2648 (|#1| |#2| |#3|)) (-15 -4323 (|#3| |#1|)) (-15 -2451 (|#1| |#1|)) (-15 -2463 (|#2| |#1|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2671 (((-635 (-1069)) $) 77)) (-1602 (((-1163) $) 106)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 54 (|has| |#1| (-550)))) (-1881 (($ $) 55 (|has| |#1| (-550)))) (-1857 (((-112) $) 57 (|has| |#1| (-550)))) (-3440 (($ $ |#2|) 101) (($ $ |#2| |#2|) 100)) (-3456 (((-1143 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 108)) (-2089 (((-3 $ "failed") $ $) 19)) (-1816 (($) 17 T CONST)) (-2490 (($ $) 63)) (-2588 (((-3 $ "failed") $) 33)) (-2020 (((-112) $) 76)) (-3449 ((|#2| $) 103) ((|#2| $ |#2|) 102)) (-2035 (((-112) $) 31)) (-3486 (($ $ (-911)) 104)) (-4238 (((-112) $) 65)) (-2648 (($ |#1| |#2|) 64) (($ $ (-1069) |#2|) 79) (($ $ (-635 (-1069)) (-635 |#2|)) 78)) (-3167 (($ (-1 |#1| |#1|) $) 66)) (-2451 (($ $) 68)) (-2463 ((|#1| $) 69)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3430 (($ $ |#2|) 98)) (-3983 (((-3 $ "failed") $ $) 53 (|has| |#1| (-550)))) (-2554 (((-1143 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2195 ((|#1| $ |#2|) 107) (($ $ $) 84 (|has| |#2| (-1099)))) (-2829 (($ $ (-635 (-1163)) (-635 (-762))) 92 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1163) (-762)) 91 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-635 (-1163))) 90 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1163)) 89 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-762)) 87 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-4323 ((|#2| $) 67)) (-2011 (($ $) 75)) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ (-406 (-558))) 60 (|has| |#1| (-38 (-406 (-558))))) (($ $) 52 (|has| |#1| (-550))) (($ |#1|) 50 (|has| |#1| (-171)))) (-3736 ((|#1| $ |#2|) 62)) (-3698 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-2542 (((-762)) 28)) (-2673 ((|#1| $) 105)) (-1870 (((-112) $ $) 56 (|has| |#1| (-550)))) (-1352 ((|#1| $ |#2|) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3220 (|#1| (-1163))))))) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1866 (($ $ (-635 (-1163)) (-635 (-762))) 96 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1163) (-762)) 95 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-635 (-1163))) 94 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1163)) 93 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-762)) 88 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1683 (((-112) $ $) 6)) (-1810 (($ $ |#1|) 61 (|has| |#1| (-362)))) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-558)) $) 59 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) 58 (|has| |#1| (-38 (-406 (-558)))))))
+(((-1224 |#1| |#2|) (-139) (-1039) (-783)) (T -1224))
+((-3456 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-783)) (-5 *2 (-1143 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2195 (*1 *2 *1 *3) (-12 (-4 *1 (-1224 *2 *3)) (-4 *3 (-783)) (-4 *2 (-1039)))) (-1602 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-783)) (-5 *2 (-1163)))) (-2673 (*1 *2 *1) (-12 (-4 *1 (-1224 *2 *3)) (-4 *3 (-783)) (-4 *2 (-1039)))) (-3486 (*1 *1 *1 *2) (-12 (-5 *2 (-911)) (-4 *1 (-1224 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-783)))) (-3449 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-783)))) (-3449 (*1 *2 *1 *2) (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-783)))) (-3440 (*1 *1 *1 *2) (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-783)))) (-3440 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-783)))) (-1352 (*1 *2 *1 *3) (-12 (-4 *1 (-1224 *2 *3)) (-4 *3 (-783)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3220 (*2 (-1163)))) (-4 *2 (-1039)))) (-3430 (*1 *1 *1 *2) (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-783)))) (-2554 (*1 *2 *1 *3) (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-783)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1143 *3)))))
+(-13 (-963 |t#1| |t#2| (-1069)) (-10 -8 (-15 -3456 ((-1143 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2195 (|t#1| $ |t#2|)) (-15 -1602 ((-1163) $)) (-15 -2673 (|t#1| $)) (-15 -3486 ($ $ (-911))) (-15 -3449 (|t#2| $)) (-15 -3449 (|t#2| $ |t#2|)) (-15 -3440 ($ $ |t#2|)) (-15 -3440 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3220 (|t#1| (-1163)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -1352 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3430 ($ $ |t#2|)) (IF (|has| |t#2| (-1099)) (-6 (-285 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-232)) (IF (|has| |t#1| (-890 (-1163))) (-6 (-890 (-1163))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2554 ((-1143 |t#1|) $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-550)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-406 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3998 (|has| |#1| (-550)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-608 #0#) |has| |#1| (-38 (-406 (-558)))) ((-608 (-558)) . T) ((-608 |#1|) |has| |#1| (-171)) ((-608 $) |has| |#1| (-550)) ((-605 (-853)) . T) ((-171) -3998 (|has| |#1| (-550)) (|has| |#1| (-171))) ((-232) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-285 $ $) |has| |#2| (-1099)) ((-289) |has| |#1| (-550)) ((-550) |has| |#1| (-550)) ((-638 #0#) |has| |#1| (-38 (-406 (-558)))) ((-638 |#1|) . T) ((-638 $) . T) ((-708 #0#) |has| |#1| (-38 (-406 (-558)))) ((-708 |#1|) |has| |#1| (-171)) ((-708 $) |has| |#1| (-550)) ((-717) . T) ((-890 (-1163)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-890 (-1163)))) ((-963 |#1| |#2| (-1069)) . T) ((-1045 #0#) |has| |#1| (-38 (-406 (-558)))) ((-1045 |#1|) . T) ((-1045 $) -3998 (|has| |#1| (-550)) (|has| |#1| (-171))) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
+((-3465 ((|#2| |#2|) 12)) (-1380 (((-417 |#2|) |#2|) 14)) (-3476 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-558))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-558)))) 30)))
+(((-1225 |#1| |#2|) (-10 -7 (-15 -1380 ((-417 |#2|) |#2|)) (-15 -3465 (|#2| |#2|)) (-15 -3476 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-558))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-558)))))) (-550) (-13 (-1222 |#1|) (-550) (-10 -8 (-15 -2699 ($ $ $))))) (T -1225))
+((-3476 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-558)))) (-4 *4 (-13 (-1222 *3) (-550) (-10 -8 (-15 -2699 ($ $ $))))) (-4 *3 (-550)) (-5 *1 (-1225 *3 *4)))) (-3465 (*1 *2 *2) (-12 (-4 *3 (-550)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-1222 *3) (-550) (-10 -8 (-15 -2699 ($ $ $))))))) (-1380 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-417 *3)) (-5 *1 (-1225 *4 *3)) (-4 *3 (-13 (-1222 *4) (-550) (-10 -8 (-15 -2699 ($ $ $))))))))
+(-10 -7 (-15 -1380 ((-417 |#2|) |#2|)) (-15 -3465 (|#2| |#2|)) (-15 -3476 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-558))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-558))))))
+((-3167 (((-1231 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1231 |#1| |#3| |#5|)) 24)))
+(((-1226 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3167 ((-1231 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1231 |#1| |#3| |#5|)))) (-1039) (-1039) (-1163) (-1163) |#1| |#2|) (T -1226))
+((-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1231 *5 *7 *9)) (-4 *5 (-1039)) (-4 *6 (-1039)) (-14 *7 (-1163)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1231 *6 *8 *10)) (-5 *1 (-1226 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1163)))))
+(-10 -7 (-15 -3167 ((-1231 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1231 |#1| |#3| |#5|))))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2671 (((-635 (-1069)) $) 77)) (-1602 (((-1163) $) 106)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 54 (|has| |#1| (-550)))) (-1881 (($ $) 55 (|has| |#1| (-550)))) (-1857 (((-112) $) 57 (|has| |#1| (-550)))) (-3440 (($ $ (-406 (-558))) 101) (($ $ (-406 (-558)) (-406 (-558))) 100)) (-3456 (((-1143 (-2 (|:| |k| (-406 (-558))) (|:| |c| |#1|))) $) 108)) (-4088 (($ $) 138 (|has| |#1| (-38 (-406 (-558)))))) (-2135 (($ $) 121 (|has| |#1| (-38 (-406 (-558)))))) (-2089 (((-3 $ "failed") $ $) 19)) (-3465 (($ $) 165 (|has| |#1| (-362)))) (-1380 (((-417 $) $) 166 (|has| |#1| (-362)))) (-2534 (($ $) 120 (|has| |#1| (-38 (-406 (-558)))))) (-3732 (((-112) $ $) 156 (|has| |#1| (-362)))) (-4070 (($ $) 137 (|has| |#1| (-38 (-406 (-558)))))) (-2112 (($ $) 122 (|has| |#1| (-38 (-406 (-558)))))) (-3871 (($ (-762) (-1143 (-2 (|:| |k| (-406 (-558))) (|:| |c| |#1|)))) 174)) (-4113 (($ $) 136 (|has| |#1| (-38 (-406 (-558)))))) (-2156 (($ $) 123 (|has| |#1| (-38 (-406 (-558)))))) (-1816 (($) 17 T CONST)) (-4025 (($ $ $) 160 (|has| |#1| (-362)))) (-2490 (($ $) 63)) (-2588 (((-3 $ "failed") $) 33)) (-4004 (($ $ $) 159 (|has| |#1| (-362)))) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) 154 (|has| |#1| (-362)))) (-3031 (((-112) $) 167 (|has| |#1| (-362)))) (-2020 (((-112) $) 76)) (-1904 (($) 148 (|has| |#1| (-38 (-406 (-558)))))) (-3449 (((-406 (-558)) $) 103) (((-406 (-558)) $ (-406 (-558))) 102)) (-2035 (((-112) $) 31)) (-3828 (($ $ (-558)) 119 (|has| |#1| (-38 (-406 (-558)))))) (-3486 (($ $ (-911)) 104) (($ $ (-406 (-558))) 173)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) 163 (|has| |#1| (-362)))) (-4238 (((-112) $) 65)) (-2648 (($ |#1| (-406 (-558))) 64) (($ $ (-1069) (-406 (-558))) 79) (($ $ (-635 (-1069)) (-635 (-406 (-558)))) 78)) (-3167 (($ (-1 |#1| |#1|) $) 66)) (-2592 (($ $) 145 (|has| |#1| (-38 (-406 (-558)))))) (-2451 (($ $) 68)) (-2463 ((|#1| $) 69)) (-2665 (($ (-635 $)) 152 (|has| |#1| (-362))) (($ $ $) 151 (|has| |#1| (-362)))) (-4310 (((-1145) $) 9)) (-2418 (($ $) 168 (|has| |#1| (-362)))) (-2543 (($ $) 172 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-1163)) 171 (-3998 (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-949)) (|has| |#1| (-1185)) (|has| |#1| (-38 (-406 (-558))))) (-12 (|has| |#1| (-15 -2671 ((-635 (-1163)) |#1|))) (|has| |#1| (-15 -2543 (|#1| |#1| (-1163)))) (|has| |#1| (-38 (-406 (-558)))))))) (-2975 (((-1107) $) 10)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) 153 (|has| |#1| (-362)))) (-2699 (($ (-635 $)) 150 (|has| |#1| (-362))) (($ $ $) 149 (|has| |#1| (-362)))) (-2522 (((-417 $) $) 164 (|has| |#1| (-362)))) (-3713 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) 161 (|has| |#1| (-362)))) (-3430 (($ $ (-406 (-558))) 98)) (-3983 (((-3 $ "failed") $ $) 53 (|has| |#1| (-550)))) (-2922 (((-3 (-635 $) "failed") (-635 $) $) 155 (|has| |#1| (-362)))) (-2573 (($ $) 146 (|has| |#1| (-38 (-406 (-558)))))) (-2554 (((-1143 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-558))))))) (-3722 (((-762) $) 157 (|has| |#1| (-362)))) (-2195 ((|#1| $ (-406 (-558))) 107) (($ $ $) 84 (|has| (-406 (-558)) (-1099)))) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 158 (|has| |#1| (-362)))) (-2829 (($ $ (-635 (-1163)) (-635 (-762))) 92 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (($ $ (-1163) (-762)) 91 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (($ $ (-635 (-1163))) 90 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (($ $ (-1163)) 89 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (($ $ (-762)) 87 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (-4323 (((-406 (-558)) $) 67)) (-4124 (($ $) 135 (|has| |#1| (-38 (-406 (-558)))))) (-2167 (($ $) 124 (|has| |#1| (-38 (-406 (-558)))))) (-4102 (($ $) 134 (|has| |#1| (-38 (-406 (-558)))))) (-2146 (($ $) 125 (|has| |#1| (-38 (-406 (-558)))))) (-4080 (($ $) 133 (|has| |#1| (-38 (-406 (-558)))))) (-2124 (($ $) 126 (|has| |#1| (-38 (-406 (-558)))))) (-2011 (($ $) 75)) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ |#1|) 50 (|has| |#1| (-171))) (($ (-406 (-558))) 60 (|has| |#1| (-38 (-406 (-558))))) (($ $) 52 (|has| |#1| (-550)))) (-3736 ((|#1| $ (-406 (-558))) 62)) (-3698 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-2542 (((-762)) 28)) (-2673 ((|#1| $) 105)) (-4159 (($ $) 144 (|has| |#1| (-38 (-406 (-558)))))) (-2200 (($ $) 132 (|has| |#1| (-38 (-406 (-558)))))) (-1870 (((-112) $ $) 56 (|has| |#1| (-550)))) (-4135 (($ $) 143 (|has| |#1| (-38 (-406 (-558)))))) (-2178 (($ $) 131 (|has| |#1| (-38 (-406 (-558)))))) (-4184 (($ $) 142 (|has| |#1| (-38 (-406 (-558)))))) (-2222 (($ $) 130 (|has| |#1| (-38 (-406 (-558)))))) (-1352 ((|#1| $ (-406 (-558))) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-558))))) (|has| |#1| (-15 -3220 (|#1| (-1163))))))) (-1878 (($ $) 141 (|has| |#1| (-38 (-406 (-558)))))) (-4060 (($ $) 129 (|has| |#1| (-38 (-406 (-558)))))) (-4171 (($ $) 140 (|has| |#1| (-38 (-406 (-558)))))) (-2211 (($ $) 128 (|has| |#1| (-38 (-406 (-558)))))) (-4147 (($ $) 139 (|has| |#1| (-38 (-406 (-558)))))) (-2189 (($ $) 127 (|has| |#1| (-38 (-406 (-558)))))) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1866 (($ $ (-635 (-1163)) (-635 (-762))) 96 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (($ $ (-1163) (-762)) 95 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (($ $ (-635 (-1163))) 94 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (($ $ (-1163)) 93 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (($ $ (-762)) 88 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (-1683 (((-112) $ $) 6)) (-1810 (($ $ |#1|) 61 (|has| |#1| (-362))) (($ $ $) 170 (|has| |#1| (-362)))) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ (-558)) 169 (|has| |#1| (-362))) (($ $ $) 147 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) 118 (|has| |#1| (-38 (-406 (-558)))))) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-558)) $) 59 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) 58 (|has| |#1| (-38 (-406 (-558)))))))
+(((-1227 |#1|) (-139) (-1039)) (T -1227))
+((-3871 (*1 *1 *2 *3) (-12 (-5 *2 (-762)) (-5 *3 (-1143 (-2 (|:| |k| (-406 (-558))) (|:| |c| *4)))) (-4 *4 (-1039)) (-4 *1 (-1227 *4)))) (-3486 (*1 *1 *1 *2) (-12 (-5 *2 (-406 (-558))) (-4 *1 (-1227 *3)) (-4 *3 (-1039)))) (-2543 (*1 *1 *1) (-12 (-4 *1 (-1227 *2)) (-4 *2 (-1039)) (-4 *2 (-38 (-406 (-558)))))) (-2543 (*1 *1 *1 *2) (-3998 (-12 (-5 *2 (-1163)) (-4 *1 (-1227 *3)) (-4 *3 (-1039)) (-12 (-4 *3 (-29 (-558))) (-4 *3 (-949)) (-4 *3 (-1185)) (-4 *3 (-38 (-406 (-558)))))) (-12 (-5 *2 (-1163)) (-4 *1 (-1227 *3)) (-4 *3 (-1039)) (-12 (|has| *3 (-15 -2671 ((-635 *2) *3))) (|has| *3 (-15 -2543 (*3 *3 *2))) (-4 *3 (-38 (-406 (-558)))))))))
+(-13 (-1224 |t#1| (-406 (-558))) (-10 -8 (-15 -3871 ($ (-762) (-1143 (-2 (|:| |k| (-406 (-558))) (|:| |c| |t#1|))))) (-15 -3486 ($ $ (-406 (-558)))) (IF (|has| |t#1| (-38 (-406 (-558)))) (PROGN (-15 -2543 ($ $)) (IF (|has| |t#1| (-15 -2543 (|t#1| |t#1| (-1163)))) (IF (|has| |t#1| (-15 -2671 ((-635 (-1163)) |t#1|))) (-15 -2543 ($ $ (-1163))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1185)) (IF (|has| |t#1| (-949)) (IF (|has| |t#1| (-29 (-558))) (-15 -2543 ($ $ (-1163))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-992)) (-6 (-1185))) |%noBranch|) (IF (|has| |t#1| (-362)) (-6 (-362)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-406 (-558))) . T) ((-25) . T) ((-38 #1=(-406 (-558))) -3998 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -3998 (|has| |#1| (-550)) (|has| |#1| (-362))) ((-35) |has| |#1| (-38 (-406 (-558)))) ((-95) |has| |#1| (-38 (-406 (-558)))) ((-102) . T) ((-111 #1# #1#) -3998 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3998 (|has| |#1| (-550)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-608 #1#) -3998 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-608 (-558)) . T) ((-608 |#1|) |has| |#1| (-171)) ((-608 $) -3998 (|has| |#1| (-550)) (|has| |#1| (-362))) ((-605 (-853)) . T) ((-171) -3998 (|has| |#1| (-550)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-232) |has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) ((-242) |has| |#1| (-362)) ((-283) |has| |#1| (-38 (-406 (-558)))) ((-285 $ $) |has| (-406 (-558)) (-1099)) ((-289) -3998 (|has| |#1| (-550)) (|has| |#1| (-362))) ((-306) |has| |#1| (-362)) ((-362) |has| |#1| (-362)) ((-450) |has| |#1| (-362)) ((-491) |has| |#1| (-38 (-406 (-558)))) ((-550) -3998 (|has| |#1| (-550)) (|has| |#1| (-362))) ((-638 #1#) -3998 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-638 |#1|) . T) ((-638 $) . T) ((-708 #1#) -3998 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-708 |#1|) |has| |#1| (-171)) ((-708 $) -3998 (|has| |#1| (-550)) (|has| |#1| (-362))) ((-717) . T) ((-890 (-1163)) -12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163)))) ((-963 |#1| #0# (-1069)) . T) ((-910) |has| |#1| (-362)) ((-992) |has| |#1| (-38 (-406 (-558)))) ((-1045 #1#) -3998 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-1045 |#1|) . T) ((-1045 $) -3998 (|has| |#1| (-550)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1185) |has| |#1| (-38 (-406 (-558)))) ((-1188) |has| |#1| (-38 (-406 (-558)))) ((-1204) |has| |#1| (-362)) ((-1224 |#1| #0#) . T))
+((-2067 (((-112) $) 12)) (-3069 (((-3 |#3| "failed") $) 17)) (-1863 ((|#3| $) 14)))
+(((-1228 |#1| |#2| |#3|) (-10 -8 (-15 -3069 ((-3 |#3| "failed") |#1|)) (-15 -1863 (|#3| |#1|)) (-15 -2067 ((-112) |#1|))) (-1229 |#2| |#3|) (-1039) (-1206 |#2|)) (T -1228))
+NIL
+(-10 -8 (-15 -3069 ((-3 |#3| "failed") |#1|)) (-15 -1863 (|#3| |#1|)) (-15 -2067 ((-112) |#1|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2671 (((-635 (-1069)) $) 77)) (-1602 (((-1163) $) 106)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 54 (|has| |#1| (-550)))) (-1881 (($ $) 55 (|has| |#1| (-550)))) (-1857 (((-112) $) 57 (|has| |#1| (-550)))) (-3440 (($ $ (-406 (-558))) 101) (($ $ (-406 (-558)) (-406 (-558))) 100)) (-3456 (((-1143 (-2 (|:| |k| (-406 (-558))) (|:| |c| |#1|))) $) 108)) (-4088 (($ $) 138 (|has| |#1| (-38 (-406 (-558)))))) (-2135 (($ $) 121 (|has| |#1| (-38 (-406 (-558)))))) (-2089 (((-3 $ "failed") $ $) 19)) (-3465 (($ $) 165 (|has| |#1| (-362)))) (-1380 (((-417 $) $) 166 (|has| |#1| (-362)))) (-2534 (($ $) 120 (|has| |#1| (-38 (-406 (-558)))))) (-3732 (((-112) $ $) 156 (|has| |#1| (-362)))) (-4070 (($ $) 137 (|has| |#1| (-38 (-406 (-558)))))) (-2112 (($ $) 122 (|has| |#1| (-38 (-406 (-558)))))) (-3871 (($ (-762) (-1143 (-2 (|:| |k| (-406 (-558))) (|:| |c| |#1|)))) 174)) (-4113 (($ $) 136 (|has| |#1| (-38 (-406 (-558)))))) (-2156 (($ $) 123 (|has| |#1| (-38 (-406 (-558)))))) (-1816 (($) 17 T CONST)) (-3069 (((-3 |#2| "failed") $) 185)) (-1863 ((|#2| $) 186)) (-4025 (($ $ $) 160 (|has| |#1| (-362)))) (-2490 (($ $) 63)) (-2588 (((-3 $ "failed") $) 33)) (-3511 (((-406 (-558)) $) 182)) (-4004 (($ $ $) 159 (|has| |#1| (-362)))) (-2395 (($ (-406 (-558)) |#2|) 183)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) 154 (|has| |#1| (-362)))) (-3031 (((-112) $) 167 (|has| |#1| (-362)))) (-2020 (((-112) $) 76)) (-1904 (($) 148 (|has| |#1| (-38 (-406 (-558)))))) (-3449 (((-406 (-558)) $) 103) (((-406 (-558)) $ (-406 (-558))) 102)) (-2035 (((-112) $) 31)) (-3828 (($ $ (-558)) 119 (|has| |#1| (-38 (-406 (-558)))))) (-3486 (($ $ (-911)) 104) (($ $ (-406 (-558))) 173)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) 163 (|has| |#1| (-362)))) (-4238 (((-112) $) 65)) (-2648 (($ |#1| (-406 (-558))) 64) (($ $ (-1069) (-406 (-558))) 79) (($ $ (-635 (-1069)) (-635 (-406 (-558)))) 78)) (-3167 (($ (-1 |#1| |#1|) $) 66)) (-2592 (($ $) 145 (|has| |#1| (-38 (-406 (-558)))))) (-2451 (($ $) 68)) (-2463 ((|#1| $) 69)) (-2665 (($ (-635 $)) 152 (|has| |#1| (-362))) (($ $ $) 151 (|has| |#1| (-362)))) (-3502 ((|#2| $) 181)) (-3493 (((-3 |#2| "failed") $) 179)) (-2735 ((|#2| $) 180)) (-4310 (((-1145) $) 9)) (-2418 (($ $) 168 (|has| |#1| (-362)))) (-2543 (($ $) 172 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-1163)) 171 (-3998 (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-949)) (|has| |#1| (-1185)) (|has| |#1| (-38 (-406 (-558))))) (-12 (|has| |#1| (-15 -2671 ((-635 (-1163)) |#1|))) (|has| |#1| (-15 -2543 (|#1| |#1| (-1163)))) (|has| |#1| (-38 (-406 (-558)))))))) (-2975 (((-1107) $) 10)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) 153 (|has| |#1| (-362)))) (-2699 (($ (-635 $)) 150 (|has| |#1| (-362))) (($ $ $) 149 (|has| |#1| (-362)))) (-2522 (((-417 $) $) 164 (|has| |#1| (-362)))) (-3713 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) 161 (|has| |#1| (-362)))) (-3430 (($ $ (-406 (-558))) 98)) (-3983 (((-3 $ "failed") $ $) 53 (|has| |#1| (-550)))) (-2922 (((-3 (-635 $) "failed") (-635 $) $) 155 (|has| |#1| (-362)))) (-2573 (($ $) 146 (|has| |#1| (-38 (-406 (-558)))))) (-2554 (((-1143 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-558))))))) (-3722 (((-762) $) 157 (|has| |#1| (-362)))) (-2195 ((|#1| $ (-406 (-558))) 107) (($ $ $) 84 (|has| (-406 (-558)) (-1099)))) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 158 (|has| |#1| (-362)))) (-2829 (($ $ (-635 (-1163)) (-635 (-762))) 92 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (($ $ (-1163) (-762)) 91 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (($ $ (-635 (-1163))) 90 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (($ $ (-1163)) 89 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (($ $ (-762)) 87 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (-4323 (((-406 (-558)) $) 67)) (-4124 (($ $) 135 (|has| |#1| (-38 (-406 (-558)))))) (-2167 (($ $) 124 (|has| |#1| (-38 (-406 (-558)))))) (-4102 (($ $) 134 (|has| |#1| (-38 (-406 (-558)))))) (-2146 (($ $) 125 (|has| |#1| (-38 (-406 (-558)))))) (-4080 (($ $) 133 (|has| |#1| (-38 (-406 (-558)))))) (-2124 (($ $) 126 (|has| |#1| (-38 (-406 (-558)))))) (-2011 (($ $) 75)) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ |#1|) 50 (|has| |#1| (-171))) (($ |#2|) 184) (($ (-406 (-558))) 60 (|has| |#1| (-38 (-406 (-558))))) (($ $) 52 (|has| |#1| (-550)))) (-3736 ((|#1| $ (-406 (-558))) 62)) (-3698 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-2542 (((-762)) 28)) (-2673 ((|#1| $) 105)) (-4159 (($ $) 144 (|has| |#1| (-38 (-406 (-558)))))) (-2200 (($ $) 132 (|has| |#1| (-38 (-406 (-558)))))) (-1870 (((-112) $ $) 56 (|has| |#1| (-550)))) (-4135 (($ $) 143 (|has| |#1| (-38 (-406 (-558)))))) (-2178 (($ $) 131 (|has| |#1| (-38 (-406 (-558)))))) (-4184 (($ $) 142 (|has| |#1| (-38 (-406 (-558)))))) (-2222 (($ $) 130 (|has| |#1| (-38 (-406 (-558)))))) (-1352 ((|#1| $ (-406 (-558))) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-558))))) (|has| |#1| (-15 -3220 (|#1| (-1163))))))) (-1878 (($ $) 141 (|has| |#1| (-38 (-406 (-558)))))) (-4060 (($ $) 129 (|has| |#1| (-38 (-406 (-558)))))) (-4171 (($ $) 140 (|has| |#1| (-38 (-406 (-558)))))) (-2211 (($ $) 128 (|has| |#1| (-38 (-406 (-558)))))) (-4147 (($ $) 139 (|has| |#1| (-38 (-406 (-558)))))) (-2189 (($ $) 127 (|has| |#1| (-38 (-406 (-558)))))) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1866 (($ $ (-635 (-1163)) (-635 (-762))) 96 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (($ $ (-1163) (-762)) 95 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (($ $ (-635 (-1163))) 94 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (($ $ (-1163)) 93 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (($ $ (-762)) 88 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (-1683 (((-112) $ $) 6)) (-1810 (($ $ |#1|) 61 (|has| |#1| (-362))) (($ $ $) 170 (|has| |#1| (-362)))) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ (-558)) 169 (|has| |#1| (-362))) (($ $ $) 147 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) 118 (|has| |#1| (-38 (-406 (-558)))))) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-558)) $) 59 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) 58 (|has| |#1| (-38 (-406 (-558)))))))
+(((-1229 |#1| |#2|) (-139) (-1039) (-1206 |t#1|)) (T -1229))
+((-4323 (*1 *2 *1) (-12 (-4 *1 (-1229 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1206 *3)) (-5 *2 (-406 (-558))))) (-2395 (*1 *1 *2 *3) (-12 (-5 *2 (-406 (-558))) (-4 *4 (-1039)) (-4 *1 (-1229 *4 *3)) (-4 *3 (-1206 *4)))) (-3511 (*1 *2 *1) (-12 (-4 *1 (-1229 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1206 *3)) (-5 *2 (-406 (-558))))) (-3502 (*1 *2 *1) (-12 (-4 *1 (-1229 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-1206 *3)))) (-2735 (*1 *2 *1) (-12 (-4 *1 (-1229 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-1206 *3)))) (-3493 (*1 *2 *1) (|partial| -12 (-4 *1 (-1229 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-1206 *3)))))
+(-13 (-1227 |t#1|) (-1028 |t#2|) (-608 |t#2|) (-10 -8 (-15 -2395 ($ (-406 (-558)) |t#2|)) (-15 -3511 ((-406 (-558)) $)) (-15 -3502 (|t#2| $)) (-15 -4323 ((-406 (-558)) $)) (-15 -2735 (|t#2| $)) (-15 -3493 ((-3 |t#2| "failed") $))))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-406 (-558))) . T) ((-25) . T) ((-38 #1=(-406 (-558))) -3998 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -3998 (|has| |#1| (-550)) (|has| |#1| (-362))) ((-35) |has| |#1| (-38 (-406 (-558)))) ((-95) |has| |#1| (-38 (-406 (-558)))) ((-102) . T) ((-111 #1# #1#) -3998 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3998 (|has| |#1| (-550)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-608 #1#) -3998 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-608 (-558)) . T) ((-608 |#1|) |has| |#1| (-171)) ((-608 |#2|) . T) ((-608 $) -3998 (|has| |#1| (-550)) (|has| |#1| (-362))) ((-605 (-853)) . T) ((-171) -3998 (|has| |#1| (-550)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-232) |has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) ((-242) |has| |#1| (-362)) ((-283) |has| |#1| (-38 (-406 (-558)))) ((-285 $ $) |has| (-406 (-558)) (-1099)) ((-289) -3998 (|has| |#1| (-550)) (|has| |#1| (-362))) ((-306) |has| |#1| (-362)) ((-362) |has| |#1| (-362)) ((-450) |has| |#1| (-362)) ((-491) |has| |#1| (-38 (-406 (-558)))) ((-550) -3998 (|has| |#1| (-550)) (|has| |#1| (-362))) ((-638 #1#) -3998 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-638 |#1|) . T) ((-638 $) . T) ((-708 #1#) -3998 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-708 |#1|) |has| |#1| (-171)) ((-708 $) -3998 (|has| |#1| (-550)) (|has| |#1| (-362))) ((-717) . T) ((-890 (-1163)) -12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163)))) ((-963 |#1| #0# (-1069)) . T) ((-910) |has| |#1| (-362)) ((-992) |has| |#1| (-38 (-406 (-558)))) ((-1028 |#2|) . T) ((-1045 #1#) -3998 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-1045 |#1|) . T) ((-1045 $) -3998 (|has| |#1| (-550)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1185) |has| |#1| (-38 (-406 (-558)))) ((-1188) |has| |#1| (-38 (-406 (-558)))) ((-1204) |has| |#1| (-362)) ((-1224 |#1| #0#) . T) ((-1227 |#1|) . T))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2671 (((-635 (-1069)) $) NIL)) (-1602 (((-1163) $) 96)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1881 (($ $) NIL (|has| |#1| (-550)))) (-1857 (((-112) $) NIL (|has| |#1| (-550)))) (-3440 (($ $ (-406 (-558))) 106) (($ $ (-406 (-558)) (-406 (-558))) 108)) (-3456 (((-1143 (-2 (|:| |k| (-406 (-558))) (|:| |c| |#1|))) $) 51)) (-4088 (($ $) 180 (|has| |#1| (-38 (-406 (-558)))))) (-2135 (($ $) 156 (|has| |#1| (-38 (-406 (-558)))))) (-2089 (((-3 $ "failed") $ $) NIL)) (-3465 (($ $) NIL (|has| |#1| (-362)))) (-1380 (((-417 $) $) NIL (|has| |#1| (-362)))) (-2534 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3732 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4070 (($ $) 176 (|has| |#1| (-38 (-406 (-558)))))) (-2112 (($ $) 152 (|has| |#1| (-38 (-406 (-558)))))) (-3871 (($ (-762) (-1143 (-2 (|:| |k| (-406 (-558))) (|:| |c| |#1|)))) 61)) (-4113 (($ $) 184 (|has| |#1| (-38 (-406 (-558)))))) (-2156 (($ $) 160 (|has| |#1| (-38 (-406 (-558)))))) (-1816 (($) NIL T CONST)) (-3069 (((-3 |#2| "failed") $) NIL)) (-1863 ((|#2| $) NIL)) (-4025 (($ $ $) NIL (|has| |#1| (-362)))) (-2490 (($ $) NIL)) (-2588 (((-3 $ "failed") $) 79)) (-3511 (((-406 (-558)) $) 13)) (-4004 (($ $ $) NIL (|has| |#1| (-362)))) (-2395 (($ (-406 (-558)) |#2|) 11)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-3031 (((-112) $) NIL (|has| |#1| (-362)))) (-2020 (((-112) $) 68)) (-1904 (($) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3449 (((-406 (-558)) $) 103) (((-406 (-558)) $ (-406 (-558))) 104)) (-2035 (((-112) $) NIL)) (-3828 (($ $ (-558)) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3486 (($ $ (-911)) 120) (($ $ (-406 (-558))) 118)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4238 (((-112) $) NIL)) (-2648 (($ |#1| (-406 (-558))) 31) (($ $ (-1069) (-406 (-558))) NIL) (($ $ (-635 (-1069)) (-635 (-406 (-558)))) NIL)) (-3167 (($ (-1 |#1| |#1|) $) 115)) (-2592 (($ $) 150 (|has| |#1| (-38 (-406 (-558)))))) (-2451 (($ $) NIL)) (-2463 ((|#1| $) NIL)) (-2665 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-3502 ((|#2| $) 12)) (-3493 (((-3 |#2| "failed") $) 41)) (-2735 ((|#2| $) 42)) (-4310 (((-1145) $) NIL)) (-2418 (($ $) 93 (|has| |#1| (-362)))) (-2543 (($ $) 135 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-1163)) 140 (-3998 (-12 (|has| |#1| (-15 -2543 (|#1| |#1| (-1163)))) (|has| |#1| (-15 -2671 ((-635 (-1163)) |#1|))) (|has| |#1| (-38 (-406 (-558))))) (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-949)) (|has| |#1| (-1185)))))) (-2975 (((-1107) $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#1| (-362)))) (-2699 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-2522 (((-417 $) $) NIL (|has| |#1| (-362)))) (-3713 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL (|has| |#1| (-362)))) (-3430 (($ $ (-406 (-558))) 112)) (-3983 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-2573 (($ $) 148 (|has| |#1| (-38 (-406 (-558)))))) (-2554 (((-1143 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-558))))))) (-3722 (((-762) $) NIL (|has| |#1| (-362)))) (-2195 ((|#1| $ (-406 (-558))) 100) (($ $ $) 86 (|has| (-406 (-558)) (-1099)))) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL (|has| |#1| (-362)))) (-2829 (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163)) 127 (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-762)) NIL (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (-4323 (((-406 (-558)) $) 16)) (-4124 (($ $) 186 (|has| |#1| (-38 (-406 (-558)))))) (-2167 (($ $) 162 (|has| |#1| (-38 (-406 (-558)))))) (-4102 (($ $) 182 (|has| |#1| (-38 (-406 (-558)))))) (-2146 (($ $) 158 (|has| |#1| (-38 (-406 (-558)))))) (-4080 (($ $) 178 (|has| |#1| (-38 (-406 (-558)))))) (-2124 (($ $) 154 (|has| |#1| (-38 (-406 (-558)))))) (-2011 (($ $) 110)) (-3220 (((-853) $) NIL) (($ (-558)) 35) (($ |#1|) 27 (|has| |#1| (-171))) (($ |#2|) 32) (($ (-406 (-558))) 128 (|has| |#1| (-38 (-406 (-558))))) (($ $) NIL (|has| |#1| (-550)))) (-3736 ((|#1| $ (-406 (-558))) 99)) (-3698 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2542 (((-762)) 117)) (-2673 ((|#1| $) 98)) (-4159 (($ $) 192 (|has| |#1| (-38 (-406 (-558)))))) (-2200 (($ $) 168 (|has| |#1| (-38 (-406 (-558)))))) (-1870 (((-112) $ $) NIL (|has| |#1| (-550)))) (-4135 (($ $) 188 (|has| |#1| (-38 (-406 (-558)))))) (-2178 (($ $) 164 (|has| |#1| (-38 (-406 (-558)))))) (-4184 (($ $) 196 (|has| |#1| (-38 (-406 (-558)))))) (-2222 (($ $) 172 (|has| |#1| (-38 (-406 (-558)))))) (-1352 ((|#1| $ (-406 (-558))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-558))))) (|has| |#1| (-15 -3220 (|#1| (-1163))))))) (-1878 (($ $) 198 (|has| |#1| (-38 (-406 (-558)))))) (-4060 (($ $) 174 (|has| |#1| (-38 (-406 (-558)))))) (-4171 (($ $) 194 (|has| |#1| (-38 (-406 (-558)))))) (-2211 (($ $) 170 (|has| |#1| (-38 (-406 (-558)))))) (-4147 (($ $) 190 (|has| |#1| (-38 (-406 (-558)))))) (-2189 (($ $) 166 (|has| |#1| (-38 (-406 (-558)))))) (-2131 (($) 21 T CONST)) (-2142 (($) 17 T CONST)) (-1866 (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-762)) NIL (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (-1683 (((-112) $ $) 66)) (-1810 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) 92 (|has| |#1| (-362)))) (-1798 (($ $) 131) (($ $ $) 72)) (-1784 (($ $ $) 70)) (** (($ $ (-911)) NIL) (($ $ (-762)) 76) (($ $ (-558)) 145 (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) 146 (|has| |#1| (-38 (-406 (-558)))))) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558)))))))
+(((-1230 |#1| |#2|) (-1229 |#1| |#2|) (-1039) (-1206 |#1|)) (T -1230))
+NIL
+(-1229 |#1| |#2|)
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2671 (((-635 (-1069)) $) NIL)) (-1602 (((-1163) $) 11)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1881 (($ $) NIL (|has| |#1| (-550)))) (-1857 (((-112) $) NIL (|has| |#1| (-550)))) (-3440 (($ $ (-406 (-558))) NIL) (($ $ (-406 (-558)) (-406 (-558))) NIL)) (-3456 (((-1143 (-2 (|:| |k| (-406 (-558))) (|:| |c| |#1|))) $) NIL)) (-4088 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2135 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2089 (((-3 $ "failed") $ $) NIL)) (-3465 (($ $) NIL (|has| |#1| (-362)))) (-1380 (((-417 $) $) NIL (|has| |#1| (-362)))) (-2534 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3732 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4070 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2112 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3871 (($ (-762) (-1143 (-2 (|:| |k| (-406 (-558))) (|:| |c| |#1|)))) NIL)) (-4113 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2156 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1816 (($) NIL T CONST)) (-3069 (((-3 (-1210 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1238 |#1| |#2| |#3|) "failed") $) 22)) (-1863 (((-1210 |#1| |#2| |#3|) $) NIL) (((-1238 |#1| |#2| |#3|) $) NIL)) (-4025 (($ $ $) NIL (|has| |#1| (-362)))) (-2490 (($ $) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-3511 (((-406 (-558)) $) 57)) (-4004 (($ $ $) NIL (|has| |#1| (-362)))) (-2395 (($ (-406 (-558)) (-1210 |#1| |#2| |#3|)) NIL)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-3031 (((-112) $) NIL (|has| |#1| (-362)))) (-2020 (((-112) $) NIL)) (-1904 (($) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3449 (((-406 (-558)) $) NIL) (((-406 (-558)) $ (-406 (-558))) NIL)) (-2035 (((-112) $) NIL)) (-3828 (($ $ (-558)) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3486 (($ $ (-911)) NIL) (($ $ (-406 (-558))) NIL)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4238 (((-112) $) NIL)) (-2648 (($ |#1| (-406 (-558))) 30) (($ $ (-1069) (-406 (-558))) NIL) (($ $ (-635 (-1069)) (-635 (-406 (-558)))) NIL)) (-3167 (($ (-1 |#1| |#1|) $) NIL)) (-2592 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2451 (($ $) NIL)) (-2463 ((|#1| $) NIL)) (-2665 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-3502 (((-1210 |#1| |#2| |#3|) $) 60)) (-3493 (((-3 (-1210 |#1| |#2| |#3|) "failed") $) NIL)) (-2735 (((-1210 |#1| |#2| |#3|) $) NIL)) (-4310 (((-1145) $) NIL)) (-2418 (($ $) NIL (|has| |#1| (-362)))) (-2543 (($ $) 39 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-1163)) NIL (-3998 (-12 (|has| |#1| (-15 -2543 (|#1| |#1| (-1163)))) (|has| |#1| (-15 -2671 ((-635 (-1163)) |#1|))) (|has| |#1| (-38 (-406 (-558))))) (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-949)) (|has| |#1| (-1185))))) (($ $ (-1242 |#2|)) 40 (|has| |#1| (-38 (-406 (-558)))))) (-2975 (((-1107) $) NIL)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#1| (-362)))) (-2699 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-2522 (((-417 $) $) NIL (|has| |#1| (-362)))) (-3713 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) NIL (|has| |#1| (-362)))) (-3430 (($ $ (-406 (-558))) NIL)) (-3983 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-2922 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-2573 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2554 (((-1143 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-406 (-558))))))) (-3722 (((-762) $) NIL (|has| |#1| (-362)))) (-2195 ((|#1| $ (-406 (-558))) NIL) (($ $ $) NIL (|has| (-406 (-558)) (-1099)))) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) NIL (|has| |#1| (-362)))) (-2829 (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-762)) NIL (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|)))) (($ $ (-1242 |#2|)) 38)) (-4323 (((-406 (-558)) $) NIL)) (-4124 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2167 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4102 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2146 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4080 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2124 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2011 (($ $) NIL)) (-3220 (((-853) $) 88) (($ (-558)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-1210 |#1| |#2| |#3|)) 16) (($ (-1238 |#1| |#2| |#3|)) 17) (($ (-1242 |#2|)) 36) (($ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $) NIL (|has| |#1| (-550)))) (-3736 ((|#1| $ (-406 (-558))) NIL)) (-3698 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2542 (((-762)) NIL)) (-2673 ((|#1| $) 12)) (-4159 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2200 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1870 (((-112) $ $) NIL (|has| |#1| (-550)))) (-4135 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2178 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4184 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2222 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1352 ((|#1| $ (-406 (-558))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-558))))) (|has| |#1| (-15 -3220 (|#1| (-1163))))))) (-1878 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4060 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4171 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2211 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4147 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2189 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2131 (($) 32 T CONST)) (-2142 (($) 26 T CONST)) (-1866 (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-762)) NIL (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (-1683 (((-112) $ $) NIL)) (-1810 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) 34)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558)))))) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558)))))))
+(((-1231 |#1| |#2| |#3|) (-13 (-1229 |#1| (-1210 |#1| |#2| |#3|)) (-1028 (-1238 |#1| |#2| |#3|)) (-608 (-1242 |#2|)) (-10 -8 (-15 -2829 ($ $ (-1242 |#2|))) (IF (|has| |#1| (-38 (-406 (-558)))) (-15 -2543 ($ $ (-1242 |#2|))) |%noBranch|))) (-1039) (-1163) |#1|) (T -1231))
+((-2829 (*1 *1 *1 *2) (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1231 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) (-2543 (*1 *1 *1 *2) (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1231 *3 *4 *5)) (-4 *3 (-38 (-406 (-558)))) (-4 *3 (-1039)) (-14 *5 *3))))
+(-13 (-1229 |#1| (-1210 |#1| |#2| |#3|)) (-1028 (-1238 |#1| |#2| |#3|)) (-608 (-1242 |#2|)) (-10 -8 (-15 -2829 ($ $ (-1242 |#2|))) (IF (|has| |#1| (-38 (-406 (-558)))) (-15 -2543 ($ $ (-1242 |#2|))) |%noBranch|)))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) 34)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL)) (-1881 (($ $) NIL)) (-1857 (((-112) $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-1816 (($) NIL T CONST)) (-3069 (((-3 (-558) "failed") $) NIL (|has| (-1231 |#2| |#3| |#4|) (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| (-1231 |#2| |#3| |#4|) (-1028 (-406 (-558))))) (((-3 (-1231 |#2| |#3| |#4|) "failed") $) 20)) (-1863 (((-558) $) NIL (|has| (-1231 |#2| |#3| |#4|) (-1028 (-558)))) (((-406 (-558)) $) NIL (|has| (-1231 |#2| |#3| |#4|) (-1028 (-406 (-558))))) (((-1231 |#2| |#3| |#4|) $) NIL)) (-2490 (($ $) 35)) (-2588 (((-3 $ "failed") $) 25)) (-2782 (($ $) NIL (|has| (-1231 |#2| |#3| |#4|) (-450)))) (-3888 (($ $ (-1231 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|) $) NIL)) (-2035 (((-112) $) NIL)) (-2110 (((-762) $) 11)) (-4238 (((-112) $) NIL)) (-2648 (($ (-1231 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) 23)) (-2524 (((-318 |#2| |#3| |#4|) $) NIL)) (-3898 (($ (-1 (-318 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) $) NIL)) (-3167 (($ (-1 (-1231 |#2| |#3| |#4|) (-1231 |#2| |#3| |#4|)) $) NIL)) (-2324 (((-3 (-834 |#2|) "failed") $) 74)) (-2451 (($ $) NIL)) (-2463 (((-1231 |#2| |#3| |#4|) $) 18)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-2429 (((-112) $) NIL)) (-2440 (((-1231 |#2| |#3| |#4|) $) NIL)) (-3983 (((-3 $ "failed") $ (-1231 |#2| |#3| |#4|)) NIL (|has| (-1231 |#2| |#3| |#4|) (-550))) (((-3 $ "failed") $ $) NIL)) (-2313 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1231 |#2| |#3| |#4|)) (|:| |%expon| (-318 |#2| |#3| |#4|)) (|:| |%expTerms| (-635 (-2 (|:| |k| (-406 (-558))) (|:| |c| |#2|)))))) (|:| |%type| (-1145))) "failed") $) 57)) (-4323 (((-318 |#2| |#3| |#4|) $) 14)) (-2504 (((-1231 |#2| |#3| |#4|) $) NIL (|has| (-1231 |#2| |#3| |#4|) (-450)))) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ (-1231 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-406 (-558))) NIL (-3998 (|has| (-1231 |#2| |#3| |#4|) (-38 (-406 (-558)))) (|has| (-1231 |#2| |#3| |#4|) (-1028 (-406 (-558))))))) (-2583 (((-635 (-1231 |#2| |#3| |#4|)) $) NIL)) (-3736 (((-1231 |#2| |#3| |#4|) $ (-318 |#2| |#3| |#4|)) NIL)) (-3698 (((-3 $ "failed") $) NIL (|has| (-1231 |#2| |#3| |#4|) (-144)))) (-2542 (((-762)) NIL)) (-3879 (($ $ $ (-762)) NIL (|has| (-1231 |#2| |#3| |#4|) (-171)))) (-1870 (((-112) $ $) NIL)) (-2131 (($) 62 T CONST)) (-2142 (($) NIL T CONST)) (-1683 (((-112) $ $) NIL)) (-1810 (($ $ (-1231 |#2| |#3| |#4|)) NIL (|has| (-1231 |#2| |#3| |#4|) (-362)))) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-1231 |#2| |#3| |#4|)) NIL) (($ (-1231 |#2| |#3| |#4|) $) NIL) (($ (-406 (-558)) $) NIL (|has| (-1231 |#2| |#3| |#4|) (-38 (-406 (-558))))) (($ $ (-406 (-558))) NIL (|has| (-1231 |#2| |#3| |#4|) (-38 (-406 (-558)))))))
+(((-1232 |#1| |#2| |#3| |#4|) (-13 (-325 (-1231 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) (-550) (-10 -8 (-15 -2324 ((-3 (-834 |#2|) "failed") $)) (-15 -2313 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1231 |#2| |#3| |#4|)) (|:| |%expon| (-318 |#2| |#3| |#4|)) (|:| |%expTerms| (-635 (-2 (|:| |k| (-406 (-558))) (|:| |c| |#2|)))))) (|:| |%type| (-1145))) "failed") $)))) (-13 (-841) (-1028 (-558)) (-631 (-558)) (-450)) (-13 (-27) (-1185) (-429 |#1|)) (-1163) |#2|) (T -1232))
+((-2324 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-841) (-1028 (-558)) (-631 (-558)) (-450))) (-5 *2 (-834 *4)) (-5 *1 (-1232 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1185) (-429 *3))) (-14 *5 (-1163)) (-14 *6 *4))) (-2313 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-841) (-1028 (-558)) (-631 (-558)) (-450))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1231 *4 *5 *6)) (|:| |%expon| (-318 *4 *5 *6)) (|:| |%expTerms| (-635 (-2 (|:| |k| (-406 (-558))) (|:| |c| *4)))))) (|:| |%type| (-1145)))) (-5 *1 (-1232 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1185) (-429 *3))) (-14 *5 (-1163)) (-14 *6 *4))))
+(-13 (-325 (-1231 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) (-550) (-10 -8 (-15 -2324 ((-3 (-834 |#2|) "failed") $)) (-15 -2313 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1231 |#2| |#3| |#4|)) (|:| |%expon| (-318 |#2| |#3| |#4|)) (|:| |%expTerms| (-635 (-2 (|:| |k| (-406 (-558))) (|:| |c| |#2|)))))) (|:| |%type| (-1145))) "failed") $))))
+((-2925 ((|#2| $) 28)) (-3213 ((|#2| $) 18)) (-3436 (($ $) 35)) (-2336 (($ $ (-558)) 63)) (-3026 (((-112) $ (-762)) 32)) (-3972 ((|#2| $ |#2|) 60)) (-2348 ((|#2| $ |#2|) 58)) (-1532 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 51) (($ $ "rest" $) 55) ((|#2| $ "last" |#2|) 53)) (-3982 (($ $ (-635 $)) 59)) (-3201 ((|#2| $) 17)) (-2315 (($ $) NIL) (($ $ (-762)) 41)) (-2870 (((-635 $) $) 25)) (-3993 (((-112) $ $) 49)) (-2986 (((-112) $ (-762)) 31)) (-2953 (((-112) $ (-762)) 30)) (-1790 (((-112) $) 27)) (-1560 ((|#2| $) 23) (($ $ (-762)) 45)) (-2195 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-1487 (((-112) $) 21)) (-2405 (($ $) 38)) (-2380 (($ $) 64)) (-2414 (((-762) $) 40)) (-2428 (($ $) 39)) (-4341 (($ $ $) 57) (($ |#2| $) NIL)) (-1727 (((-635 $) $) 26)) (-1683 (((-112) $ $) 47)) (-2755 (((-762) $) 34)))
+(((-1233 |#1| |#2|) (-10 -8 (-15 -2336 (|#1| |#1| (-558))) (-15 -1532 (|#2| |#1| "last" |#2|)) (-15 -2348 (|#2| |#1| |#2|)) (-15 -1532 (|#1| |#1| "rest" |#1|)) (-15 -1532 (|#2| |#1| "first" |#2|)) (-15 -2380 (|#1| |#1|)) (-15 -2405 (|#1| |#1|)) (-15 -2414 ((-762) |#1|)) (-15 -2428 (|#1| |#1|)) (-15 -3213 (|#2| |#1|)) (-15 -3201 (|#2| |#1|)) (-15 -3436 (|#1| |#1|)) (-15 -1560 (|#1| |#1| (-762))) (-15 -2195 (|#2| |#1| "last")) (-15 -1560 (|#2| |#1|)) (-15 -2315 (|#1| |#1| (-762))) (-15 -2195 (|#1| |#1| "rest")) (-15 -2315 (|#1| |#1|)) (-15 -2195 (|#2| |#1| "first")) (-15 -4341 (|#1| |#2| |#1|)) (-15 -4341 (|#1| |#1| |#1|)) (-15 -3972 (|#2| |#1| |#2|)) (-15 -1532 (|#2| |#1| "value" |#2|)) (-15 -3982 (|#1| |#1| (-635 |#1|))) (-15 -3993 ((-112) |#1| |#1|)) (-15 -1487 ((-112) |#1|)) (-15 -2195 (|#2| |#1| "value")) (-15 -2925 (|#2| |#1|)) (-15 -1790 ((-112) |#1|)) (-15 -2870 ((-635 |#1|) |#1|)) (-15 -1727 ((-635 |#1|) |#1|)) (-15 -1683 ((-112) |#1| |#1|)) (-15 -2755 ((-762) |#1|)) (-15 -3026 ((-112) |#1| (-762))) (-15 -2986 ((-112) |#1| (-762))) (-15 -2953 ((-112) |#1| (-762)))) (-1234 |#2|) (-1200)) (T -1233))
+NIL
+(-10 -8 (-15 -2336 (|#1| |#1| (-558))) (-15 -1532 (|#2| |#1| "last" |#2|)) (-15 -2348 (|#2| |#1| |#2|)) (-15 -1532 (|#1| |#1| "rest" |#1|)) (-15 -1532 (|#2| |#1| "first" |#2|)) (-15 -2380 (|#1| |#1|)) (-15 -2405 (|#1| |#1|)) (-15 -2414 ((-762) |#1|)) (-15 -2428 (|#1| |#1|)) (-15 -3213 (|#2| |#1|)) (-15 -3201 (|#2| |#1|)) (-15 -3436 (|#1| |#1|)) (-15 -1560 (|#1| |#1| (-762))) (-15 -2195 (|#2| |#1| "last")) (-15 -1560 (|#2| |#1|)) (-15 -2315 (|#1| |#1| (-762))) (-15 -2195 (|#1| |#1| "rest")) (-15 -2315 (|#1| |#1|)) (-15 -2195 (|#2| |#1| "first")) (-15 -4341 (|#1| |#2| |#1|)) (-15 -4341 (|#1| |#1| |#1|)) (-15 -3972 (|#2| |#1| |#2|)) (-15 -1532 (|#2| |#1| "value" |#2|)) (-15 -3982 (|#1| |#1| (-635 |#1|))) (-15 -3993 ((-112) |#1| |#1|)) (-15 -1487 ((-112) |#1|)) (-15 -2195 (|#2| |#1| "value")) (-15 -2925 (|#2| |#1|)) (-15 -1790 ((-112) |#1|)) (-15 -2870 ((-635 |#1|) |#1|)) (-15 -1727 ((-635 |#1|) |#1|)) (-15 -1683 ((-112) |#1| |#1|)) (-15 -2755 ((-762) |#1|)) (-15 -3026 ((-112) |#1| (-762))) (-15 -2986 ((-112) |#1| (-762))) (-15 -2953 ((-112) |#1| (-762))))
+((-3207 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-2925 ((|#1| $) 48)) (-3213 ((|#1| $) 65)) (-3436 (($ $) 67)) (-2336 (($ $ (-558)) 52 (|has| $ (-6 -4383)))) (-3026 (((-112) $ (-762)) 8)) (-3972 ((|#1| $ |#1|) 39 (|has| $ (-6 -4383)))) (-2359 (($ $ $) 56 (|has| $ (-6 -4383)))) (-2348 ((|#1| $ |#1|) 54 (|has| $ (-6 -4383)))) (-2369 ((|#1| $ |#1|) 58 (|has| $ (-6 -4383)))) (-1532 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4383))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4383))) (($ $ "rest" $) 55 (|has| $ (-6 -4383))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4383)))) (-3982 (($ $ (-635 $)) 41 (|has| $ (-6 -4383)))) (-3201 ((|#1| $) 66)) (-1816 (($) 7 T CONST)) (-2315 (($ $) 73) (($ $ (-762)) 71)) (-2240 (((-635 |#1|) $) 30 (|has| $ (-6 -4382)))) (-2870 (((-635 $) $) 50)) (-3993 (((-112) $ $) 42 (|has| |#1| (-1087)))) (-2986 (((-112) $ (-762)) 9)) (-2122 (((-635 |#1|) $) 29 (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1807 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) 35)) (-2953 (((-112) $ (-762)) 10)) (-1362 (((-635 |#1|) $) 45)) (-1790 (((-112) $) 49)) (-4310 (((-1145) $) 22 (|has| |#1| (-1087)))) (-1560 ((|#1| $) 70) (($ $ (-762)) 68)) (-2975 (((-1107) $) 21 (|has| |#1| (-1087)))) (-2305 ((|#1| $) 76) (($ $ (-762)) 74)) (-3266 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) 14)) (-3375 (((-112) $) 11)) (-2083 (($) 12)) (-2195 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-2860 (((-558) $ $) 44)) (-1487 (((-112) $) 46)) (-2405 (($ $) 62)) (-2380 (($ $) 59 (|has| $ (-6 -4383)))) (-2414 (((-762) $) 63)) (-2428 (($ $) 64)) (-2988 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4382))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1553 (($ $) 13)) (-2392 (($ $ $) 61 (|has| $ (-6 -4383))) (($ $ |#1|) 60 (|has| $ (-6 -4383)))) (-4341 (($ $ $) 78) (($ |#1| $) 77)) (-3220 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-1727 (((-635 $) $) 51)) (-4005 (((-112) $ $) 43 (|has| |#1| (-1087)))) (-3277 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4382)))) (-1683 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-2755 (((-762) $) 6 (|has| $ (-6 -4382)))))
+(((-1234 |#1|) (-139) (-1200)) (T -1234))
+((-4341 (*1 *1 *1 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1200)))) (-4341 (*1 *1 *2 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1200)))) (-2305 (*1 *2 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1200)))) (-2195 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1234 *2)) (-4 *2 (-1200)))) (-2305 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *1 (-1234 *3)) (-4 *3 (-1200)))) (-2315 (*1 *1 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1200)))) (-2195 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1234 *3)) (-4 *3 (-1200)))) (-2315 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *1 (-1234 *3)) (-4 *3 (-1200)))) (-1560 (*1 *2 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1200)))) (-2195 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1234 *2)) (-4 *2 (-1200)))) (-1560 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *1 (-1234 *3)) (-4 *3 (-1200)))) (-3436 (*1 *1 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1200)))) (-3201 (*1 *2 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1200)))) (-3213 (*1 *2 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1200)))) (-2428 (*1 *1 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1200)))) (-2414 (*1 *2 *1) (-12 (-4 *1 (-1234 *3)) (-4 *3 (-1200)) (-5 *2 (-762)))) (-2405 (*1 *1 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1200)))) (-2392 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4383)) (-4 *1 (-1234 *2)) (-4 *2 (-1200)))) (-2392 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4383)) (-4 *1 (-1234 *2)) (-4 *2 (-1200)))) (-2380 (*1 *1 *1) (-12 (|has| *1 (-6 -4383)) (-4 *1 (-1234 *2)) (-4 *2 (-1200)))) (-2369 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4383)) (-4 *1 (-1234 *2)) (-4 *2 (-1200)))) (-1532 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4383)) (-4 *1 (-1234 *2)) (-4 *2 (-1200)))) (-2359 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4383)) (-4 *1 (-1234 *2)) (-4 *2 (-1200)))) (-1532 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4383)) (-4 *1 (-1234 *3)) (-4 *3 (-1200)))) (-2348 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4383)) (-4 *1 (-1234 *2)) (-4 *2 (-1200)))) (-1532 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4383)) (-4 *1 (-1234 *2)) (-4 *2 (-1200)))) (-2336 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (|has| *1 (-6 -4383)) (-4 *1 (-1234 *3)) (-4 *3 (-1200)))))
+(-13 (-1000 |t#1|) (-10 -8 (-15 -4341 ($ $ $)) (-15 -4341 ($ |t#1| $)) (-15 -2305 (|t#1| $)) (-15 -2195 (|t#1| $ "first")) (-15 -2305 ($ $ (-762))) (-15 -2315 ($ $)) (-15 -2195 ($ $ "rest")) (-15 -2315 ($ $ (-762))) (-15 -1560 (|t#1| $)) (-15 -2195 (|t#1| $ "last")) (-15 -1560 ($ $ (-762))) (-15 -3436 ($ $)) (-15 -3201 (|t#1| $)) (-15 -3213 (|t#1| $)) (-15 -2428 ($ $)) (-15 -2414 ((-762) $)) (-15 -2405 ($ $)) (IF (|has| $ (-6 -4383)) (PROGN (-15 -2392 ($ $ $)) (-15 -2392 ($ $ |t#1|)) (-15 -2380 ($ $)) (-15 -2369 (|t#1| $ |t#1|)) (-15 -1532 (|t#1| $ "first" |t#1|)) (-15 -2359 ($ $ $)) (-15 -1532 ($ $ "rest" $)) (-15 -2348 (|t#1| $ |t#1|)) (-15 -1532 (|t#1| $ "last" |t#1|)) (-15 -2336 ($ $ (-558)))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1087)) ((-605 (-853)) -3998 (|has| |#1| (-1087)) (|has| |#1| (-605 (-853)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-1000 |#1|) . T) ((-1087) |has| |#1| (-1087)) ((-1200) . T))
+((-3167 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
+(((-1235 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3167 (|#4| (-1 |#2| |#1|) |#3|))) (-1039) (-1039) (-1237 |#1|) (-1237 |#2|)) (T -1235))
+((-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1039)) (-4 *6 (-1039)) (-4 *2 (-1237 *6)) (-5 *1 (-1235 *5 *6 *4 *2)) (-4 *4 (-1237 *5)))))
+(-10 -7 (-15 -3167 (|#4| (-1 |#2| |#1|) |#3|)))
+((-2067 (((-112) $) 15)) (-4088 (($ $) 91)) (-2135 (($ $) 67)) (-4070 (($ $) 87)) (-2112 (($ $) 63)) (-4113 (($ $) 95)) (-2156 (($ $) 71)) (-2592 (($ $) 61)) (-2573 (($ $) 59)) (-4124 (($ $) 97)) (-2167 (($ $) 73)) (-4102 (($ $) 93)) (-2146 (($ $) 69)) (-4080 (($ $) 89)) (-2124 (($ $) 65)) (-3220 (((-853) $) 47) (($ (-558)) NIL) (($ (-406 (-558))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-4159 (($ $) 103)) (-2200 (($ $) 79)) (-4135 (($ $) 99)) (-2178 (($ $) 75)) (-4184 (($ $) 107)) (-2222 (($ $) 83)) (-1878 (($ $) 109)) (-4060 (($ $) 85)) (-4171 (($ $) 105)) (-2211 (($ $) 81)) (-4147 (($ $) 101)) (-2189 (($ $) 77)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ |#2|) 51) (($ $ $) 54) (($ $ (-406 (-558))) 57)))
+(((-1236 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-406 (-558)))) (-15 -2135 (|#1| |#1|)) (-15 -2112 (|#1| |#1|)) (-15 -2156 (|#1| |#1|)) (-15 -2167 (|#1| |#1|)) (-15 -2146 (|#1| |#1|)) (-15 -2124 (|#1| |#1|)) (-15 -2189 (|#1| |#1|)) (-15 -2211 (|#1| |#1|)) (-15 -4060 (|#1| |#1|)) (-15 -2222 (|#1| |#1|)) (-15 -2178 (|#1| |#1|)) (-15 -2200 (|#1| |#1|)) (-15 -4080 (|#1| |#1|)) (-15 -4102 (|#1| |#1|)) (-15 -4124 (|#1| |#1|)) (-15 -4113 (|#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 -4088 (|#1| |#1|)) (-15 -4147 (|#1| |#1|)) (-15 -4171 (|#1| |#1|)) (-15 -1878 (|#1| |#1|)) (-15 -4184 (|#1| |#1|)) (-15 -4135 (|#1| |#1|)) (-15 -4159 (|#1| |#1|)) (-15 -2592 (|#1| |#1|)) (-15 -2573 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3220 (|#1| |#2|)) (-15 -3220 (|#1| |#1|)) (-15 -3220 (|#1| (-406 (-558)))) (-15 -3220 (|#1| (-558))) (-15 ** (|#1| |#1| (-762))) (-15 ** (|#1| |#1| (-911))) (-15 -2067 ((-112) |#1|)) (-15 -3220 ((-853) |#1|))) (-1237 |#2|) (-1039)) (T -1236))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-406 (-558)))) (-15 -2135 (|#1| |#1|)) (-15 -2112 (|#1| |#1|)) (-15 -2156 (|#1| |#1|)) (-15 -2167 (|#1| |#1|)) (-15 -2146 (|#1| |#1|)) (-15 -2124 (|#1| |#1|)) (-15 -2189 (|#1| |#1|)) (-15 -2211 (|#1| |#1|)) (-15 -4060 (|#1| |#1|)) (-15 -2222 (|#1| |#1|)) (-15 -2178 (|#1| |#1|)) (-15 -2200 (|#1| |#1|)) (-15 -4080 (|#1| |#1|)) (-15 -4102 (|#1| |#1|)) (-15 -4124 (|#1| |#1|)) (-15 -4113 (|#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 -4088 (|#1| |#1|)) (-15 -4147 (|#1| |#1|)) (-15 -4171 (|#1| |#1|)) (-15 -1878 (|#1| |#1|)) (-15 -4184 (|#1| |#1|)) (-15 -4135 (|#1| |#1|)) (-15 -4159 (|#1| |#1|)) (-15 -2592 (|#1| |#1|)) (-15 -2573 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3220 (|#1| |#2|)) (-15 -3220 (|#1| |#1|)) (-15 -3220 (|#1| (-406 (-558)))) (-15 -3220 (|#1| (-558))) (-15 ** (|#1| |#1| (-762))) (-15 ** (|#1| |#1| (-911))) (-15 -2067 ((-112) |#1|)) (-15 -3220 ((-853) |#1|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2671 (((-635 (-1069)) $) 77)) (-1602 (((-1163) $) 106)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 54 (|has| |#1| (-550)))) (-1881 (($ $) 55 (|has| |#1| (-550)))) (-1857 (((-112) $) 57 (|has| |#1| (-550)))) (-3440 (($ $ (-762)) 101) (($ $ (-762) (-762)) 100)) (-3456 (((-1143 (-2 (|:| |k| (-762)) (|:| |c| |#1|))) $) 108)) (-4088 (($ $) 138 (|has| |#1| (-38 (-406 (-558)))))) (-2135 (($ $) 121 (|has| |#1| (-38 (-406 (-558)))))) (-2089 (((-3 $ "failed") $ $) 19)) (-2534 (($ $) 120 (|has| |#1| (-38 (-406 (-558)))))) (-4070 (($ $) 137 (|has| |#1| (-38 (-406 (-558)))))) (-2112 (($ $) 122 (|has| |#1| (-38 (-406 (-558)))))) (-3871 (($ (-1143 (-2 (|:| |k| (-762)) (|:| |c| |#1|)))) 158) (($ (-1143 |#1|)) 156)) (-4113 (($ $) 136 (|has| |#1| (-38 (-406 (-558)))))) (-2156 (($ $) 123 (|has| |#1| (-38 (-406 (-558)))))) (-1816 (($) 17 T CONST)) (-2490 (($ $) 63)) (-2588 (((-3 $ "failed") $) 33)) (-2570 (($ $) 155)) (-4330 (((-942 |#1|) $ (-762)) 153) (((-942 |#1|) $ (-762) (-762)) 152)) (-2020 (((-112) $) 76)) (-1904 (($) 148 (|has| |#1| (-38 (-406 (-558)))))) (-3449 (((-762) $) 103) (((-762) $ (-762)) 102)) (-2035 (((-112) $) 31)) (-3828 (($ $ (-558)) 119 (|has| |#1| (-38 (-406 (-558)))))) (-3486 (($ $ (-911)) 104)) (-2555 (($ (-1 |#1| (-558)) $) 154)) (-4238 (((-112) $) 65)) (-2648 (($ |#1| (-762)) 64) (($ $ (-1069) (-762)) 79) (($ $ (-635 (-1069)) (-635 (-762))) 78)) (-3167 (($ (-1 |#1| |#1|) $) 66)) (-2592 (($ $) 145 (|has| |#1| (-38 (-406 (-558)))))) (-2451 (($ $) 68)) (-2463 ((|#1| $) 69)) (-4310 (((-1145) $) 9)) (-2543 (($ $) 150 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-1163)) 149 (-3998 (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-949)) (|has| |#1| (-1185)) (|has| |#1| (-38 (-406 (-558))))) (-12 (|has| |#1| (-15 -2671 ((-635 (-1163)) |#1|))) (|has| |#1| (-15 -2543 (|#1| |#1| (-1163)))) (|has| |#1| (-38 (-406 (-558)))))))) (-2975 (((-1107) $) 10)) (-3430 (($ $ (-762)) 98)) (-3983 (((-3 $ "failed") $ $) 53 (|has| |#1| (-550)))) (-2573 (($ $) 146 (|has| |#1| (-38 (-406 (-558)))))) (-2554 (((-1143 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-762)))))) (-2195 ((|#1| $ (-762)) 107) (($ $ $) 84 (|has| (-762) (-1099)))) (-2829 (($ $ (-635 (-1163)) (-635 (-762))) 92 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-762) |#1|))))) (($ $ (-1163) (-762)) 91 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-762) |#1|))))) (($ $ (-635 (-1163))) 90 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-762) |#1|))))) (($ $ (-1163)) 89 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-762) |#1|))))) (($ $ (-762)) 87 (|has| |#1| (-15 * (|#1| (-762) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-762) |#1|))))) (-4323 (((-762) $) 67)) (-4124 (($ $) 135 (|has| |#1| (-38 (-406 (-558)))))) (-2167 (($ $) 124 (|has| |#1| (-38 (-406 (-558)))))) (-4102 (($ $) 134 (|has| |#1| (-38 (-406 (-558)))))) (-2146 (($ $) 125 (|has| |#1| (-38 (-406 (-558)))))) (-4080 (($ $) 133 (|has| |#1| (-38 (-406 (-558)))))) (-2124 (($ $) 126 (|has| |#1| (-38 (-406 (-558)))))) (-2011 (($ $) 75)) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ (-406 (-558))) 60 (|has| |#1| (-38 (-406 (-558))))) (($ $) 52 (|has| |#1| (-550))) (($ |#1|) 50 (|has| |#1| (-171)))) (-2583 (((-1143 |#1|) $) 157)) (-3736 ((|#1| $ (-762)) 62)) (-3698 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-2542 (((-762)) 28)) (-2673 ((|#1| $) 105)) (-4159 (($ $) 144 (|has| |#1| (-38 (-406 (-558)))))) (-2200 (($ $) 132 (|has| |#1| (-38 (-406 (-558)))))) (-1870 (((-112) $ $) 56 (|has| |#1| (-550)))) (-4135 (($ $) 143 (|has| |#1| (-38 (-406 (-558)))))) (-2178 (($ $) 131 (|has| |#1| (-38 (-406 (-558)))))) (-4184 (($ $) 142 (|has| |#1| (-38 (-406 (-558)))))) (-2222 (($ $) 130 (|has| |#1| (-38 (-406 (-558)))))) (-1352 ((|#1| $ (-762)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-762)))) (|has| |#1| (-15 -3220 (|#1| (-1163))))))) (-1878 (($ $) 141 (|has| |#1| (-38 (-406 (-558)))))) (-4060 (($ $) 129 (|has| |#1| (-38 (-406 (-558)))))) (-4171 (($ $) 140 (|has| |#1| (-38 (-406 (-558)))))) (-2211 (($ $) 128 (|has| |#1| (-38 (-406 (-558)))))) (-4147 (($ $) 139 (|has| |#1| (-38 (-406 (-558)))))) (-2189 (($ $) 127 (|has| |#1| (-38 (-406 (-558)))))) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1866 (($ $ (-635 (-1163)) (-635 (-762))) 96 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-762) |#1|))))) (($ $ (-1163) (-762)) 95 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-762) |#1|))))) (($ $ (-635 (-1163))) 94 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-762) |#1|))))) (($ $ (-1163)) 93 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-762) |#1|))))) (($ $ (-762)) 88 (|has| |#1| (-15 * (|#1| (-762) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-762) |#1|))))) (-1683 (((-112) $ $) 6)) (-1810 (($ $ |#1|) 61 (|has| |#1| (-362)))) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ |#1|) 151 (|has| |#1| (-362))) (($ $ $) 147 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) 118 (|has| |#1| (-38 (-406 (-558)))))) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-558)) $) 59 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) 58 (|has| |#1| (-38 (-406 (-558)))))))
+(((-1237 |#1|) (-139) (-1039)) (T -1237))
+((-3871 (*1 *1 *2) (-12 (-5 *2 (-1143 (-2 (|:| |k| (-762)) (|:| |c| *3)))) (-4 *3 (-1039)) (-4 *1 (-1237 *3)))) (-2583 (*1 *2 *1) (-12 (-4 *1 (-1237 *3)) (-4 *3 (-1039)) (-5 *2 (-1143 *3)))) (-3871 (*1 *1 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-4 *1 (-1237 *3)))) (-2570 (*1 *1 *1) (-12 (-4 *1 (-1237 *2)) (-4 *2 (-1039)))) (-2555 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-558))) (-4 *1 (-1237 *3)) (-4 *3 (-1039)))) (-4330 (*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-4 *1 (-1237 *4)) (-4 *4 (-1039)) (-5 *2 (-942 *4)))) (-4330 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-762)) (-4 *1 (-1237 *4)) (-4 *4 (-1039)) (-5 *2 (-942 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1237 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))) (-2543 (*1 *1 *1) (-12 (-4 *1 (-1237 *2)) (-4 *2 (-1039)) (-4 *2 (-38 (-406 (-558)))))) (-2543 (*1 *1 *1 *2) (-3998 (-12 (-5 *2 (-1163)) (-4 *1 (-1237 *3)) (-4 *3 (-1039)) (-12 (-4 *3 (-29 (-558))) (-4 *3 (-949)) (-4 *3 (-1185)) (-4 *3 (-38 (-406 (-558)))))) (-12 (-5 *2 (-1163)) (-4 *1 (-1237 *3)) (-4 *3 (-1039)) (-12 (|has| *3 (-15 -2671 ((-635 *2) *3))) (|has| *3 (-15 -2543 (*3 *3 *2))) (-4 *3 (-38 (-406 (-558)))))))))
+(-13 (-1224 |t#1| (-762)) (-10 -8 (-15 -3871 ($ (-1143 (-2 (|:| |k| (-762)) (|:| |c| |t#1|))))) (-15 -2583 ((-1143 |t#1|) $)) (-15 -3871 ($ (-1143 |t#1|))) (-15 -2570 ($ $)) (-15 -2555 ($ (-1 |t#1| (-558)) $)) (-15 -4330 ((-942 |t#1|) $ (-762))) (-15 -4330 ((-942 |t#1|) $ (-762) (-762))) (IF (|has| |t#1| (-362)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-406 (-558)))) (PROGN (-15 -2543 ($ $)) (IF (|has| |t#1| (-15 -2543 (|t#1| |t#1| (-1163)))) (IF (|has| |t#1| (-15 -2671 ((-635 (-1163)) |t#1|))) (-15 -2543 ($ $ (-1163))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1185)) (IF (|has| |t#1| (-949)) (IF (|has| |t#1| (-29 (-558))) (-15 -2543 ($ $ (-1163))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-992)) (-6 (-1185))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-762)) . T) ((-25) . T) ((-38 #1=(-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-550)) ((-35) |has| |#1| (-38 (-406 (-558)))) ((-95) |has| |#1| (-38 (-406 (-558)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-406 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3998 (|has| |#1| (-550)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-608 #1#) |has| |#1| (-38 (-406 (-558)))) ((-608 (-558)) . T) ((-608 |#1|) |has| |#1| (-171)) ((-608 $) |has| |#1| (-550)) ((-605 (-853)) . T) ((-171) -3998 (|has| |#1| (-550)) (|has| |#1| (-171))) ((-232) |has| |#1| (-15 * (|#1| (-762) |#1|))) ((-283) |has| |#1| (-38 (-406 (-558)))) ((-285 $ $) |has| (-762) (-1099)) ((-289) |has| |#1| (-550)) ((-491) |has| |#1| (-38 (-406 (-558)))) ((-550) |has| |#1| (-550)) ((-638 #1#) |has| |#1| (-38 (-406 (-558)))) ((-638 |#1|) . T) ((-638 $) . T) ((-708 #1#) |has| |#1| (-38 (-406 (-558)))) ((-708 |#1|) |has| |#1| (-171)) ((-708 $) |has| |#1| (-550)) ((-717) . T) ((-890 (-1163)) -12 (|has| |#1| (-15 * (|#1| (-762) |#1|))) (|has| |#1| (-890 (-1163)))) ((-963 |#1| #0# (-1069)) . T) ((-992) |has| |#1| (-38 (-406 (-558)))) ((-1045 #1#) |has| |#1| (-38 (-406 (-558)))) ((-1045 |#1|) . T) ((-1045 $) -3998 (|has| |#1| (-550)) (|has| |#1| (-171))) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1185) |has| |#1| (-38 (-406 (-558)))) ((-1188) |has| |#1| (-38 (-406 (-558)))) ((-1224 |#1| #0#) . T))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2671 (((-635 (-1069)) $) NIL)) (-1602 (((-1163) $) 86)) (-2532 (((-1219 |#2| |#1|) $ (-762)) 73)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1881 (($ $) NIL (|has| |#1| (-550)))) (-1857 (((-112) $) 136 (|has| |#1| (-550)))) (-3440 (($ $ (-762)) 121) (($ $ (-762) (-762)) 123)) (-3456 (((-1143 (-2 (|:| |k| (-762)) (|:| |c| |#1|))) $) 42)) (-4088 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2135 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2089 (((-3 $ "failed") $ $) NIL)) (-2534 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4070 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2112 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3871 (($ (-1143 (-2 (|:| |k| (-762)) (|:| |c| |#1|)))) 53) (($ (-1143 |#1|)) NIL)) (-4113 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2156 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1816 (($) NIL T CONST)) (-2461 (($ $) 127)) (-2490 (($ $) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-2570 (($ $) 134)) (-4330 (((-942 |#1|) $ (-762)) 63) (((-942 |#1|) $ (-762) (-762)) 65)) (-2020 (((-112) $) NIL)) (-1904 (($) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3449 (((-762) $) NIL) (((-762) $ (-762)) NIL)) (-2035 (((-112) $) NIL)) (-2501 (($ $) 111)) (-3828 (($ $ (-558)) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2450 (($ (-558) (-558) $) 129)) (-3486 (($ $ (-911)) 133)) (-2555 (($ (-1 |#1| (-558)) $) 105)) (-4238 (((-112) $) NIL)) (-2648 (($ |#1| (-762)) 15) (($ $ (-1069) (-762)) NIL) (($ $ (-635 (-1069)) (-635 (-762))) NIL)) (-3167 (($ (-1 |#1| |#1|) $) 93)) (-2592 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2451 (($ $) NIL)) (-2463 ((|#1| $) NIL)) (-4310 (((-1145) $) NIL)) (-2510 (($ $) 109)) (-2520 (($ $) 107)) (-2439 (($ (-558) (-558) $) 131)) (-2543 (($ $) 144 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-1163)) 150 (-3998 (-12 (|has| |#1| (-15 -2543 (|#1| |#1| (-1163)))) (|has| |#1| (-15 -2671 ((-635 (-1163)) |#1|))) (|has| |#1| (-38 (-406 (-558))))) (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-949)) (|has| |#1| (-1185))))) (($ $ (-1242 |#2|)) 145 (|has| |#1| (-38 (-406 (-558)))))) (-2975 (((-1107) $) NIL)) (-2474 (($ $ (-558) (-558)) 115)) (-3430 (($ $ (-762)) 117)) (-3983 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-2573 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2488 (($ $) 113)) (-2554 (((-1143 |#1|) $ |#1|) 95 (|has| |#1| (-15 ** (|#1| |#1| (-762)))))) (-2195 ((|#1| $ (-762)) 90) (($ $ $) 125 (|has| (-762) (-1099)))) (-2829 (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#1| (-15 * (|#1| (-762) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#1| (-15 * (|#1| (-762) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#1| (-15 * (|#1| (-762) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163)) 102 (-12 (|has| |#1| (-15 * (|#1| (-762) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-762)) NIL (|has| |#1| (-15 * (|#1| (-762) |#1|)))) (($ $) 97 (|has| |#1| (-15 * (|#1| (-762) |#1|)))) (($ $ (-1242 |#2|)) 98)) (-4323 (((-762) $) NIL)) (-4124 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2167 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4102 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2146 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4080 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2124 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2011 (($ $) 119)) (-3220 (((-853) $) NIL) (($ (-558)) 24) (($ (-406 (-558))) 142 (|has| |#1| (-38 (-406 (-558))))) (($ $) NIL (|has| |#1| (-550))) (($ |#1|) 23 (|has| |#1| (-171))) (($ (-1219 |#2| |#1|)) 79) (($ (-1242 |#2|)) 20)) (-2583 (((-1143 |#1|) $) NIL)) (-3736 ((|#1| $ (-762)) 89)) (-3698 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2542 (((-762)) NIL)) (-2673 ((|#1| $) 87)) (-4159 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2200 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1870 (((-112) $ $) NIL (|has| |#1| (-550)))) (-4135 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2178 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4184 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2222 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1352 ((|#1| $ (-762)) 85 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-762)))) (|has| |#1| (-15 -3220 (|#1| (-1163))))))) (-1878 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4060 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4171 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2211 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4147 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2189 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2131 (($) 17 T CONST)) (-2142 (($) 13 T CONST)) (-1866 (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#1| (-15 * (|#1| (-762) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#1| (-15 * (|#1| (-762) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#1| (-15 * (|#1| (-762) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163)) NIL (-12 (|has| |#1| (-15 * (|#1| (-762) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-762)) NIL (|has| |#1| (-15 * (|#1| (-762) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-762) |#1|))))) (-1683 (((-112) $ $) NIL)) (-1810 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1798 (($ $) NIL) (($ $ $) 101)) (-1784 (($ $ $) 18)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ |#1|) 139 (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558)))))) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 100) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558)))))))
+(((-1238 |#1| |#2| |#3|) (-13 (-1237 |#1|) (-10 -8 (-15 -3220 ($ (-1219 |#2| |#1|))) (-15 -2532 ((-1219 |#2| |#1|) $ (-762))) (-15 -3220 ($ (-1242 |#2|))) (-15 -2829 ($ $ (-1242 |#2|))) (-15 -2520 ($ $)) (-15 -2510 ($ $)) (-15 -2501 ($ $)) (-15 -2488 ($ $)) (-15 -2474 ($ $ (-558) (-558))) (-15 -2461 ($ $)) (-15 -2450 ($ (-558) (-558) $)) (-15 -2439 ($ (-558) (-558) $)) (IF (|has| |#1| (-38 (-406 (-558)))) (-15 -2543 ($ $ (-1242 |#2|))) |%noBranch|))) (-1039) (-1163) |#1|) (T -1238))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-1219 *4 *3)) (-4 *3 (-1039)) (-14 *4 (-1163)) (-14 *5 *3) (-5 *1 (-1238 *3 *4 *5)))) (-2532 (*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1219 *5 *4)) (-5 *1 (-1238 *4 *5 *6)) (-4 *4 (-1039)) (-14 *5 (-1163)) (-14 *6 *4))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1238 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) (-2829 (*1 *1 *1 *2) (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1238 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) (-2520 (*1 *1 *1) (-12 (-5 *1 (-1238 *2 *3 *4)) (-4 *2 (-1039)) (-14 *3 (-1163)) (-14 *4 *2))) (-2510 (*1 *1 *1) (-12 (-5 *1 (-1238 *2 *3 *4)) (-4 *2 (-1039)) (-14 *3 (-1163)) (-14 *4 *2))) (-2501 (*1 *1 *1) (-12 (-5 *1 (-1238 *2 *3 *4)) (-4 *2 (-1039)) (-14 *3 (-1163)) (-14 *4 *2))) (-2488 (*1 *1 *1) (-12 (-5 *1 (-1238 *2 *3 *4)) (-4 *2 (-1039)) (-14 *3 (-1163)) (-14 *4 *2))) (-2474 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1238 *3 *4 *5)) (-4 *3 (-1039)) (-14 *4 (-1163)) (-14 *5 *3))) (-2461 (*1 *1 *1) (-12 (-5 *1 (-1238 *2 *3 *4)) (-4 *2 (-1039)) (-14 *3 (-1163)) (-14 *4 *2))) (-2450 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1238 *3 *4 *5)) (-4 *3 (-1039)) (-14 *4 (-1163)) (-14 *5 *3))) (-2439 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1238 *3 *4 *5)) (-4 *3 (-1039)) (-14 *4 (-1163)) (-14 *5 *3))) (-2543 (*1 *1 *1 *2) (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1238 *3 *4 *5)) (-4 *3 (-38 (-406 (-558)))) (-4 *3 (-1039)) (-14 *5 *3))))
+(-13 (-1237 |#1|) (-10 -8 (-15 -3220 ($ (-1219 |#2| |#1|))) (-15 -2532 ((-1219 |#2| |#1|) $ (-762))) (-15 -3220 ($ (-1242 |#2|))) (-15 -2829 ($ $ (-1242 |#2|))) (-15 -2520 ($ $)) (-15 -2510 ($ $)) (-15 -2501 ($ $)) (-15 -2488 ($ $)) (-15 -2474 ($ $ (-558) (-558))) (-15 -2461 ($ $)) (-15 -2450 ($ (-558) (-558) $)) (-15 -2439 ($ (-558) (-558) $)) (IF (|has| |#1| (-38 (-406 (-558)))) (-15 -2543 ($ $ (-1242 |#2|))) |%noBranch|)))
+((-2616 (((-1 (-1143 |#1|) (-635 (-1143 |#1|))) (-1 |#2| (-635 |#2|))) 24)) (-2605 (((-1 (-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-2595 (((-1 (-1143 |#1|) (-1143 |#1|)) (-1 |#2| |#2|)) 13)) (-2645 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-2635 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-2657 ((|#2| (-1 |#2| (-635 |#2|)) (-635 |#1|)) 54)) (-2668 (((-635 |#2|) (-635 |#1|) (-635 (-1 |#2| (-635 |#2|)))) 61)) (-2625 ((|#2| |#2| |#2|) 43)))
+(((-1239 |#1| |#2|) (-10 -7 (-15 -2595 ((-1 (-1143 |#1|) (-1143 |#1|)) (-1 |#2| |#2|))) (-15 -2605 ((-1 (-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2616 ((-1 (-1143 |#1|) (-635 (-1143 |#1|))) (-1 |#2| (-635 |#2|)))) (-15 -2625 (|#2| |#2| |#2|)) (-15 -2635 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2645 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2657 (|#2| (-1 |#2| (-635 |#2|)) (-635 |#1|))) (-15 -2668 ((-635 |#2|) (-635 |#1|) (-635 (-1 |#2| (-635 |#2|)))))) (-38 (-406 (-558))) (-1237 |#1|)) (T -1239))
+((-2668 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *5)) (-5 *4 (-635 (-1 *6 (-635 *6)))) (-4 *5 (-38 (-406 (-558)))) (-4 *6 (-1237 *5)) (-5 *2 (-635 *6)) (-5 *1 (-1239 *5 *6)))) (-2657 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-635 *2))) (-5 *4 (-635 *5)) (-4 *5 (-38 (-406 (-558)))) (-4 *2 (-1237 *5)) (-5 *1 (-1239 *5 *2)))) (-2645 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1237 *4)) (-5 *1 (-1239 *4 *2)) (-4 *4 (-38 (-406 (-558)))))) (-2635 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1237 *4)) (-5 *1 (-1239 *4 *2)) (-4 *4 (-38 (-406 (-558)))))) (-2625 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1239 *3 *2)) (-4 *2 (-1237 *3)))) (-2616 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-635 *5))) (-4 *5 (-1237 *4)) (-4 *4 (-38 (-406 (-558)))) (-5 *2 (-1 (-1143 *4) (-635 (-1143 *4)))) (-5 *1 (-1239 *4 *5)))) (-2605 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1237 *4)) (-4 *4 (-38 (-406 (-558)))) (-5 *2 (-1 (-1143 *4) (-1143 *4) (-1143 *4))) (-5 *1 (-1239 *4 *5)))) (-2595 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1237 *4)) (-4 *4 (-38 (-406 (-558)))) (-5 *2 (-1 (-1143 *4) (-1143 *4))) (-5 *1 (-1239 *4 *5)))))
+(-10 -7 (-15 -2595 ((-1 (-1143 |#1|) (-1143 |#1|)) (-1 |#2| |#2|))) (-15 -2605 ((-1 (-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2616 ((-1 (-1143 |#1|) (-635 (-1143 |#1|))) (-1 |#2| (-635 |#2|)))) (-15 -2625 (|#2| |#2| |#2|)) (-15 -2635 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2645 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2657 (|#2| (-1 |#2| (-635 |#2|)) (-635 |#1|))) (-15 -2668 ((-635 |#2|) (-635 |#1|) (-635 (-1 |#2| (-635 |#2|))))))
+((-2689 ((|#2| |#4| (-762)) 30)) (-2679 ((|#4| |#2|) 25)) (-2712 ((|#4| (-406 |#2|)) 52 (|has| |#1| (-550)))) (-2701 (((-1 |#4| (-635 |#4|)) |#3|) 46)))
+(((-1240 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2679 (|#4| |#2|)) (-15 -2689 (|#2| |#4| (-762))) (-15 -2701 ((-1 |#4| (-635 |#4|)) |#3|)) (IF (|has| |#1| (-550)) (-15 -2712 (|#4| (-406 |#2|))) |%noBranch|)) (-1039) (-1222 |#1|) (-646 |#2|) (-1237 |#1|)) (T -1240))
+((-2712 (*1 *2 *3) (-12 (-5 *3 (-406 *5)) (-4 *5 (-1222 *4)) (-4 *4 (-550)) (-4 *4 (-1039)) (-4 *2 (-1237 *4)) (-5 *1 (-1240 *4 *5 *6 *2)) (-4 *6 (-646 *5)))) (-2701 (*1 *2 *3) (-12 (-4 *4 (-1039)) (-4 *5 (-1222 *4)) (-5 *2 (-1 *6 (-635 *6))) (-5 *1 (-1240 *4 *5 *3 *6)) (-4 *3 (-646 *5)) (-4 *6 (-1237 *4)))) (-2689 (*1 *2 *3 *4) (-12 (-5 *4 (-762)) (-4 *5 (-1039)) (-4 *2 (-1222 *5)) (-5 *1 (-1240 *5 *2 *6 *3)) (-4 *6 (-646 *2)) (-4 *3 (-1237 *5)))) (-2679 (*1 *2 *3) (-12 (-4 *4 (-1039)) (-4 *3 (-1222 *4)) (-4 *2 (-1237 *4)) (-5 *1 (-1240 *4 *3 *5 *2)) (-4 *5 (-646 *3)))))
+(-10 -7 (-15 -2679 (|#4| |#2|)) (-15 -2689 (|#2| |#4| (-762))) (-15 -2701 ((-1 |#4| (-635 |#4|)) |#3|)) (IF (|has| |#1| (-550)) (-15 -2712 (|#4| (-406 |#2|))) |%noBranch|))
+NIL
+(((-1241) (-139)) (T -1241))
+NIL
+(-13 (-10 -7 (-6 -1315)))
+((-3207 (((-112) $ $) NIL)) (-1602 (((-1163)) 12)) (-4310 (((-1145) $) 17)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 11) (((-1163) $) 8)) (-1683 (((-112) $ $) 14)))
+(((-1242 |#1|) (-13 (-1087) (-605 (-1163)) (-10 -8 (-15 -3220 ((-1163) $)) (-15 -1602 ((-1163))))) (-1163)) (T -1242))
+((-3220 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1242 *3)) (-14 *3 *2))) (-1602 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1242 *3)) (-14 *3 *2))))
+(-13 (-1087) (-605 (-1163)) (-10 -8 (-15 -3220 ((-1163) $)) (-15 -1602 ((-1163)))))
+((-2370 (($ (-762)) 18)) (-1965 (((-679 |#2|) $ $) 40)) (-2722 ((|#2| $) 48)) (-2880 ((|#2| $) 47)) (-2744 ((|#2| $ $) 35)) (-2733 (($ $ $) 44)) (-1798 (($ $) 22) (($ $ $) 28)) (-1784 (($ $ $) 15)) (* (($ (-558) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30)))
+(((-1243 |#1| |#2|) (-10 -8 (-15 -2722 (|#2| |#1|)) (-15 -2880 (|#2| |#1|)) (-15 -2733 (|#1| |#1| |#1|)) (-15 -1965 ((-679 |#2|) |#1| |#1|)) (-15 -2744 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 -1798 (|#1| |#1| |#1|)) (-15 -1798 (|#1| |#1|)) (-15 -2370 (|#1| (-762))) (-15 -1784 (|#1| |#1| |#1|))) (-1244 |#2|) (-1200)) (T -1243))
+NIL
+(-10 -8 (-15 -2722 (|#2| |#1|)) (-15 -2880 (|#2| |#1|)) (-15 -2733 (|#1| |#1| |#1|)) (-15 -1965 ((-679 |#2|) |#1| |#1|)) (-15 -2744 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 -1798 (|#1| |#1| |#1|)) (-15 -1798 (|#1| |#1|)) (-15 -2370 (|#1| (-762))) (-15 -1784 (|#1| |#1| |#1|)))
+((-3207 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-2370 (($ (-762)) 112 (|has| |#1| (-23)))) (-3869 (((-1251) $ (-558) (-558)) 40 (|has| $ (-6 -4383)))) (-1538 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-841)))) (-2763 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4383))) (($ $) 88 (-12 (|has| |#1| (-841)) (|has| $ (-6 -4383))))) (-2376 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-841)))) (-3026 (((-112) $ (-762)) 8)) (-1532 ((|#1| $ (-558) |#1|) 52 (|has| $ (-6 -4383))) ((|#1| $ (-1213 (-558)) |#1|) 58 (|has| $ (-6 -4383)))) (-4329 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4382)))) (-1816 (($) 7 T CONST)) (-3306 (($ $) 90 (|has| $ (-6 -4383)))) (-4127 (($ $) 100)) (-2338 (($ $) 78 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-1539 (($ |#1| $) 77 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4382)))) (-3048 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4382))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4382)))) (-1817 ((|#1| $ (-558) |#1|) 53 (|has| $ (-6 -4383)))) (-1746 ((|#1| $ (-558)) 51)) (-1517 (((-558) (-1 (-112) |#1|) $) 97) (((-558) |#1| $) 96 (|has| |#1| (-1087))) (((-558) |#1| $ (-558)) 95 (|has| |#1| (-1087)))) (-2240 (((-635 |#1|) $) 30 (|has| $ (-6 -4382)))) (-1965 (((-679 |#1|) $ $) 105 (|has| |#1| (-1039)))) (-3315 (($ (-762) |#1|) 69)) (-2986 (((-112) $ (-762)) 9)) (-3889 (((-558) $) 43 (|has| (-558) (-841)))) (-3910 (($ $ $) 87 (|has| |#1| (-841)))) (-1677 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-841)))) (-2122 (((-635 |#1|) $) 29 (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-3899 (((-558) $) 44 (|has| (-558) (-841)))) (-3542 (($ $ $) 86 (|has| |#1| (-841)))) (-1807 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2722 ((|#1| $) 102 (-12 (|has| |#1| (-1039)) (|has| |#1| (-992))))) (-2953 (((-112) $ (-762)) 10)) (-2880 ((|#1| $) 103 (-12 (|has| |#1| (-1039)) (|has| |#1| (-992))))) (-4310 (((-1145) $) 22 (|has| |#1| (-1087)))) (-1861 (($ |#1| $ (-558)) 60) (($ $ $ (-558)) 59)) (-3920 (((-635 (-558)) $) 46)) (-3929 (((-112) (-558) $) 47)) (-2975 (((-1107) $) 21 (|has| |#1| (-1087)))) (-2305 ((|#1| $) 42 (|has| (-558) (-841)))) (-4307 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3880 (($ $ |#1|) 41 (|has| $ (-6 -4383)))) (-3266 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) 14)) (-3908 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3937 (((-635 |#1|) $) 48)) (-3375 (((-112) $) 11)) (-2083 (($) 12)) (-2195 ((|#1| $ (-558) |#1|) 50) ((|#1| $ (-558)) 49) (($ $ (-1213 (-558))) 63)) (-2744 ((|#1| $ $) 106 (|has| |#1| (-1039)))) (-4023 (($ $ (-558)) 62) (($ $ (-1213 (-558))) 61)) (-2733 (($ $ $) 104 (|has| |#1| (-1039)))) (-2988 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4382))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4382))))) (-2773 (($ $ $ (-558)) 91 (|has| $ (-6 -4383)))) (-1553 (($ $) 13)) (-3224 (((-534) $) 79 (|has| |#1| (-606 (-534))))) (-3233 (($ (-635 |#1|)) 70)) (-4341 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-635 $)) 65)) (-3220 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-3277 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4382)))) (-1747 (((-112) $ $) 84 (|has| |#1| (-841)))) (-1720 (((-112) $ $) 83 (|has| |#1| (-841)))) (-1683 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-1731 (((-112) $ $) 85 (|has| |#1| (-841)))) (-1705 (((-112) $ $) 82 (|has| |#1| (-841)))) (-1798 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1784 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-558) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-717))) (($ $ |#1|) 107 (|has| |#1| (-717)))) (-2755 (((-762) $) 6 (|has| $ (-6 -4382)))))
+(((-1244 |#1|) (-139) (-1200)) (T -1244))
+((-1784 (*1 *1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1200)) (-4 *2 (-25)))) (-2370 (*1 *1 *2) (-12 (-5 *2 (-762)) (-4 *1 (-1244 *3)) (-4 *3 (-23)) (-4 *3 (-1200)))) (-1798 (*1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1200)) (-4 *2 (-21)))) (-1798 (*1 *1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1200)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-558)) (-4 *1 (-1244 *3)) (-4 *3 (-1200)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1200)) (-4 *2 (-717)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1200)) (-4 *2 (-717)))) (-2744 (*1 *2 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1200)) (-4 *2 (-1039)))) (-1965 (*1 *2 *1 *1) (-12 (-4 *1 (-1244 *3)) (-4 *3 (-1200)) (-4 *3 (-1039)) (-5 *2 (-679 *3)))) (-2733 (*1 *1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1200)) (-4 *2 (-1039)))) (-2880 (*1 *2 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1200)) (-4 *2 (-992)) (-4 *2 (-1039)))) (-2722 (*1 *2 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1200)) (-4 *2 (-992)) (-4 *2 (-1039)))))
+(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -1784 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -2370 ($ (-762))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -1798 ($ $)) (-15 -1798 ($ $ $)) (-15 * ($ (-558) $))) |%noBranch|) (IF (|has| |t#1| (-717)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1039)) (PROGN (-15 -2744 (|t#1| $ $)) (-15 -1965 ((-679 |t#1|) $ $)) (-15 -2733 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-992)) (IF (|has| |t#1| (-1039)) (PROGN (-15 -2880 (|t#1| $)) (-15 -2722 (|t#1| $))) |%noBranch|) |%noBranch|)))
+(((-34) . T) ((-102) -3998 (|has| |#1| (-1087)) (|has| |#1| (-841))) ((-605 (-853)) -3998 (|has| |#1| (-1087)) (|has| |#1| (-841)) (|has| |#1| (-605 (-853)))) ((-150 |#1|) . T) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-285 #0=(-558) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-372 |#1|) . T) ((-487 |#1|) . T) ((-596 #0# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-641 |#1|) . T) ((-19 |#1|) . T) ((-841) |has| |#1| (-841)) ((-1087) -3998 (|has| |#1| (-1087)) (|has| |#1| (-841))) ((-1200) . T))
+((-2756 (((-1246 |#2|) (-1 |#2| |#1| |#2|) (-1246 |#1|) |#2|) 13)) (-3048 ((|#2| (-1 |#2| |#1| |#2|) (-1246 |#1|) |#2|) 15)) (-3167 (((-3 (-1246 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1246 |#1|)) 28) (((-1246 |#2|) (-1 |#2| |#1|) (-1246 |#1|)) 18)))
+(((-1245 |#1| |#2|) (-10 -7 (-15 -2756 ((-1246 |#2|) (-1 |#2| |#1| |#2|) (-1246 |#1|) |#2|)) (-15 -3048 (|#2| (-1 |#2| |#1| |#2|) (-1246 |#1|) |#2|)) (-15 -3167 ((-1246 |#2|) (-1 |#2| |#1|) (-1246 |#1|))) (-15 -3167 ((-3 (-1246 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1246 |#1|)))) (-1200) (-1200)) (T -1245))
+((-3167 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1246 *5)) (-4 *5 (-1200)) (-4 *6 (-1200)) (-5 *2 (-1246 *6)) (-5 *1 (-1245 *5 *6)))) (-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1246 *5)) (-4 *5 (-1200)) (-4 *6 (-1200)) (-5 *2 (-1246 *6)) (-5 *1 (-1245 *5 *6)))) (-3048 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1246 *5)) (-4 *5 (-1200)) (-4 *2 (-1200)) (-5 *1 (-1245 *5 *2)))) (-2756 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1246 *6)) (-4 *6 (-1200)) (-4 *5 (-1200)) (-5 *2 (-1246 *5)) (-5 *1 (-1245 *6 *5)))))
+(-10 -7 (-15 -2756 ((-1246 |#2|) (-1 |#2| |#1| |#2|) (-1246 |#1|) |#2|)) (-15 -3048 (|#2| (-1 |#2| |#1| |#2|) (-1246 |#1|) |#2|)) (-15 -3167 ((-1246 |#2|) (-1 |#2| |#1|) (-1246 |#1|))) (-15 -3167 ((-3 (-1246 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1246 |#1|))))
+((-3207 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2370 (($ (-762)) NIL (|has| |#1| (-23)))) (-2818 (($ (-635 |#1|)) 9)) (-3869 (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4383)))) (-1538 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-841)))) (-2763 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4383))) (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-841))))) (-2376 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-841)))) (-3026 (((-112) $ (-762)) NIL)) (-1532 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4383))) ((|#1| $ (-1213 (-558)) |#1|) NIL (|has| $ (-6 -4383)))) (-4329 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-1816 (($) NIL T CONST)) (-3306 (($ $) NIL (|has| $ (-6 -4383)))) (-4127 (($ $) NIL)) (-2338 (($ $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-1539 (($ |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-3048 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4382))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4382)))) (-1817 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4383)))) (-1746 ((|#1| $ (-558)) NIL)) (-1517 (((-558) (-1 (-112) |#1|) $) NIL) (((-558) |#1| $) NIL (|has| |#1| (-1087))) (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1087)))) (-2240 (((-635 |#1|) $) 15 (|has| $ (-6 -4382)))) (-1965 (((-679 |#1|) $ $) NIL (|has| |#1| (-1039)))) (-3315 (($ (-762) |#1|) NIL)) (-2986 (((-112) $ (-762)) NIL)) (-3889 (((-558) $) NIL (|has| (-558) (-841)))) (-3910 (($ $ $) NIL (|has| |#1| (-841)))) (-1677 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-841)))) (-2122 (((-635 |#1|) $) NIL (|has| $ (-6 -4382)))) (-4322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3899 (((-558) $) NIL (|has| (-558) (-841)))) (-3542 (($ $ $) NIL (|has| |#1| (-841)))) (-1807 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2722 ((|#1| $) NIL (-12 (|has| |#1| (-992)) (|has| |#1| (-1039))))) (-2953 (((-112) $ (-762)) NIL)) (-2880 ((|#1| $) NIL (-12 (|has| |#1| (-992)) (|has| |#1| (-1039))))) (-4310 (((-1145) $) NIL (|has| |#1| (-1087)))) (-1861 (($ |#1| $ (-558)) NIL) (($ $ $ (-558)) NIL)) (-3920 (((-635 (-558)) $) NIL)) (-3929 (((-112) (-558) $) NIL)) (-2975 (((-1107) $) NIL (|has| |#1| (-1087)))) (-2305 ((|#1| $) NIL (|has| (-558) (-841)))) (-4307 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3880 (($ $ |#1|) NIL (|has| $ (-6 -4383)))) (-3266 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3908 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-3937 (((-635 |#1|) $) NIL)) (-3375 (((-112) $) NIL)) (-2083 (($) NIL)) (-2195 ((|#1| $ (-558) |#1|) NIL) ((|#1| $ (-558)) NIL) (($ $ (-1213 (-558))) NIL)) (-2744 ((|#1| $ $) NIL (|has| |#1| (-1039)))) (-4023 (($ $ (-558)) NIL) (($ $ (-1213 (-558))) NIL)) (-2733 (($ $ $) NIL (|has| |#1| (-1039)))) (-2988 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#1| (-1087))))) (-2773 (($ $ $ (-558)) NIL (|has| $ (-6 -4383)))) (-1553 (($ $) NIL)) (-3224 (((-534) $) 19 (|has| |#1| (-606 (-534))))) (-3233 (($ (-635 |#1|)) 8)) (-4341 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-635 $)) NIL)) (-3220 (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-3277 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4382)))) (-1747 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1683 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1798 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1784 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-558) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-717))) (($ $ |#1|) NIL (|has| |#1| (-717)))) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-1246 |#1|) (-13 (-1244 |#1|) (-10 -8 (-15 -2818 ($ (-635 |#1|))))) (-1200)) (T -1246))
+((-2818 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1200)) (-5 *1 (-1246 *3)))))
+(-13 (-1244 |#1|) (-10 -8 (-15 -2818 ($ (-635 |#1|)))))
+((-3207 (((-112) $ $) NIL)) (-1733 (((-1145) $ (-1145)) 90) (((-1145) $ (-1145) (-1145)) 88) (((-1145) $ (-1145) (-635 (-1145))) 87)) (-2882 (($) 59)) (-1466 (((-1251) $ (-466) (-911)) 45)) (-2179 (((-1251) $ (-911) (-1145)) 73) (((-1251) $ (-911) (-864)) 74)) (-2951 (((-1251) $ (-911) (-378) (-378)) 48)) (-4001 (((-1251) $ (-1145)) 69)) (-1613 (((-1251) $ (-911) (-1145)) 78)) (-2785 (((-1251) $ (-911) (-378) (-378)) 49)) (-1879 (((-1251) $ (-911) (-911)) 46)) (-1707 (((-1251) $) 70)) (-2804 (((-1251) $ (-911) (-1145)) 77)) (-2833 (((-1251) $ (-466) (-911)) 31)) (-2814 (((-1251) $ (-911) (-1145)) 76)) (-3963 (((-635 (-262)) $) 23) (($ $ (-635 (-262))) 24)) (-1889 (((-1251) $ (-762) (-762)) 43)) (-2871 (($ $) 60) (($ (-466) (-635 (-262))) 61)) (-4310 (((-1145) $) NIL)) (-2700 (((-558) $) 38)) (-2975 (((-1107) $) NIL)) (-2843 (((-1246 (-3 (-466) "undefined")) $) 37)) (-2852 (((-1246 (-2 (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)) (|:| -2814 (-558)) (|:| -2794 (-558)) (|:| |spline| (-558)) (|:| -1832 (-558)) (|:| |axesColor| (-864)) (|:| -2179 (-558)) (|:| |unitsColor| (-864)) (|:| |showing| (-558)))) $) 36)) (-2862 (((-1251) $ (-911) (-224) (-224) (-224) (-224) (-558) (-558) (-558) (-558) (-864) (-558) (-864) (-558)) 68)) (-2890 (((-635 (-933 (-224))) $) NIL)) (-2822 (((-466) $ (-911)) 33)) (-1867 (((-1251) $ (-762) (-762) (-911) (-911)) 40)) (-1843 (((-1251) $ (-1145)) 79)) (-2794 (((-1251) $ (-911) (-1145)) 75)) (-3220 (((-853) $) 85)) (-2626 (((-1251) $) 80)) (-1832 (((-1251) $ (-911) (-1145)) 71) (((-1251) $ (-911) (-864)) 72)) (-1683 (((-112) $ $) NIL)))
+(((-1247) (-13 (-1087) (-10 -8 (-15 -2890 ((-635 (-933 (-224))) $)) (-15 -2882 ($)) (-15 -2871 ($ $)) (-15 -3963 ((-635 (-262)) $)) (-15 -3963 ($ $ (-635 (-262)))) (-15 -2871 ($ (-466) (-635 (-262)))) (-15 -2862 ((-1251) $ (-911) (-224) (-224) (-224) (-224) (-558) (-558) (-558) (-558) (-864) (-558) (-864) (-558))) (-15 -2852 ((-1246 (-2 (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)) (|:| -2814 (-558)) (|:| -2794 (-558)) (|:| |spline| (-558)) (|:| -1832 (-558)) (|:| |axesColor| (-864)) (|:| -2179 (-558)) (|:| |unitsColor| (-864)) (|:| |showing| (-558)))) $)) (-15 -2843 ((-1246 (-3 (-466) "undefined")) $)) (-15 -4001 ((-1251) $ (-1145))) (-15 -2833 ((-1251) $ (-466) (-911))) (-15 -2822 ((-466) $ (-911))) (-15 -1832 ((-1251) $ (-911) (-1145))) (-15 -1832 ((-1251) $ (-911) (-864))) (-15 -2179 ((-1251) $ (-911) (-1145))) (-15 -2179 ((-1251) $ (-911) (-864))) (-15 -2814 ((-1251) $ (-911) (-1145))) (-15 -2804 ((-1251) $ (-911) (-1145))) (-15 -2794 ((-1251) $ (-911) (-1145))) (-15 -1843 ((-1251) $ (-1145))) (-15 -2626 ((-1251) $)) (-15 -1867 ((-1251) $ (-762) (-762) (-911) (-911))) (-15 -2785 ((-1251) $ (-911) (-378) (-378))) (-15 -2951 ((-1251) $ (-911) (-378) (-378))) (-15 -1613 ((-1251) $ (-911) (-1145))) (-15 -1889 ((-1251) $ (-762) (-762))) (-15 -1466 ((-1251) $ (-466) (-911))) (-15 -1879 ((-1251) $ (-911) (-911))) (-15 -1733 ((-1145) $ (-1145))) (-15 -1733 ((-1145) $ (-1145) (-1145))) (-15 -1733 ((-1145) $ (-1145) (-635 (-1145)))) (-15 -1707 ((-1251) $)) (-15 -2700 ((-558) $)) (-15 -3220 ((-853) $))))) (T -1247))
+((-3220 (*1 *2 *1) (-12 (-5 *2 (-853)) (-5 *1 (-1247)))) (-2890 (*1 *2 *1) (-12 (-5 *2 (-635 (-933 (-224)))) (-5 *1 (-1247)))) (-2882 (*1 *1) (-5 *1 (-1247))) (-2871 (*1 *1 *1) (-5 *1 (-1247))) (-3963 (*1 *2 *1) (-12 (-5 *2 (-635 (-262))) (-5 *1 (-1247)))) (-3963 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-262))) (-5 *1 (-1247)))) (-2871 (*1 *1 *2 *3) (-12 (-5 *2 (-466)) (-5 *3 (-635 (-262))) (-5 *1 (-1247)))) (-2862 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-911)) (-5 *4 (-224)) (-5 *5 (-558)) (-5 *6 (-864)) (-5 *2 (-1251)) (-5 *1 (-1247)))) (-2852 (*1 *2 *1) (-12 (-5 *2 (-1246 (-2 (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)) (|:| -2814 (-558)) (|:| -2794 (-558)) (|:| |spline| (-558)) (|:| -1832 (-558)) (|:| |axesColor| (-864)) (|:| -2179 (-558)) (|:| |unitsColor| (-864)) (|:| |showing| (-558))))) (-5 *1 (-1247)))) (-2843 (*1 *2 *1) (-12 (-5 *2 (-1246 (-3 (-466) "undefined"))) (-5 *1 (-1247)))) (-4001 (*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1247)))) (-2833 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-466)) (-5 *4 (-911)) (-5 *2 (-1251)) (-5 *1 (-1247)))) (-2822 (*1 *2 *1 *3) (-12 (-5 *3 (-911)) (-5 *2 (-466)) (-5 *1 (-1247)))) (-1832 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-911)) (-5 *4 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1247)))) (-1832 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-911)) (-5 *4 (-864)) (-5 *2 (-1251)) (-5 *1 (-1247)))) (-2179 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-911)) (-5 *4 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1247)))) (-2179 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-911)) (-5 *4 (-864)) (-5 *2 (-1251)) (-5 *1 (-1247)))) (-2814 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-911)) (-5 *4 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1247)))) (-2804 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-911)) (-5 *4 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1247)))) (-2794 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-911)) (-5 *4 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1247)))) (-1843 (*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1247)))) (-2626 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-1247)))) (-1867 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-762)) (-5 *4 (-911)) (-5 *2 (-1251)) (-5 *1 (-1247)))) (-2785 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-911)) (-5 *4 (-378)) (-5 *2 (-1251)) (-5 *1 (-1247)))) (-2951 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-911)) (-5 *4 (-378)) (-5 *2 (-1251)) (-5 *1 (-1247)))) (-1613 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-911)) (-5 *4 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1247)))) (-1889 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1251)) (-5 *1 (-1247)))) (-1466 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-466)) (-5 *4 (-911)) (-5 *2 (-1251)) (-5 *1 (-1247)))) (-1879 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1251)) (-5 *1 (-1247)))) (-1733 (*1 *2 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1247)))) (-1733 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1247)))) (-1733 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-635 (-1145))) (-5 *2 (-1145)) (-5 *1 (-1247)))) (-1707 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-1247)))) (-2700 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1247)))))
+(-13 (-1087) (-10 -8 (-15 -2890 ((-635 (-933 (-224))) $)) (-15 -2882 ($)) (-15 -2871 ($ $)) (-15 -3963 ((-635 (-262)) $)) (-15 -3963 ($ $ (-635 (-262)))) (-15 -2871 ($ (-466) (-635 (-262)))) (-15 -2862 ((-1251) $ (-911) (-224) (-224) (-224) (-224) (-558) (-558) (-558) (-558) (-864) (-558) (-864) (-558))) (-15 -2852 ((-1246 (-2 (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)) (|:| -2814 (-558)) (|:| -2794 (-558)) (|:| |spline| (-558)) (|:| -1832 (-558)) (|:| |axesColor| (-864)) (|:| -2179 (-558)) (|:| |unitsColor| (-864)) (|:| |showing| (-558)))) $)) (-15 -2843 ((-1246 (-3 (-466) "undefined")) $)) (-15 -4001 ((-1251) $ (-1145))) (-15 -2833 ((-1251) $ (-466) (-911))) (-15 -2822 ((-466) $ (-911))) (-15 -1832 ((-1251) $ (-911) (-1145))) (-15 -1832 ((-1251) $ (-911) (-864))) (-15 -2179 ((-1251) $ (-911) (-1145))) (-15 -2179 ((-1251) $ (-911) (-864))) (-15 -2814 ((-1251) $ (-911) (-1145))) (-15 -2804 ((-1251) $ (-911) (-1145))) (-15 -2794 ((-1251) $ (-911) (-1145))) (-15 -1843 ((-1251) $ (-1145))) (-15 -2626 ((-1251) $)) (-15 -1867 ((-1251) $ (-762) (-762) (-911) (-911))) (-15 -2785 ((-1251) $ (-911) (-378) (-378))) (-15 -2951 ((-1251) $ (-911) (-378) (-378))) (-15 -1613 ((-1251) $ (-911) (-1145))) (-15 -1889 ((-1251) $ (-762) (-762))) (-15 -1466 ((-1251) $ (-466) (-911))) (-15 -1879 ((-1251) $ (-911) (-911))) (-15 -1733 ((-1145) $ (-1145))) (-15 -1733 ((-1145) $ (-1145) (-1145))) (-15 -1733 ((-1145) $ (-1145) (-635 (-1145)))) (-15 -1707 ((-1251) $)) (-15 -2700 ((-558) $)) (-15 -3220 ((-853) $))))
+((-3207 (((-112) $ $) NIL)) (-1772 (((-1251) $ (-378)) 140) (((-1251) $ (-378) (-378) (-378)) 141)) (-1733 (((-1145) $ (-1145)) 148) (((-1145) $ (-1145) (-1145)) 146) (((-1145) $ (-1145) (-635 (-1145))) 145)) (-1932 (($) 50)) (-1855 (((-1251) $ (-378) (-378) (-378) (-378) (-378)) 116) (((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2785 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) $) 114) (((-1251) $ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2785 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) 115) (((-1251) $ (-558) (-558) (-378) (-378) (-378)) 117) (((-1251) $ (-378) (-378)) 118) (((-1251) $ (-378) (-378) (-378)) 125)) (-1964 (((-378)) 97) (((-378) (-378)) 98)) (-1988 (((-378)) 92) (((-378) (-378)) 94)) (-1977 (((-378)) 95) (((-378) (-378)) 96)) (-1942 (((-378)) 101) (((-378) (-378)) 102)) (-1953 (((-378)) 99) (((-378) (-378)) 100)) (-2951 (((-1251) $ (-378) (-378)) 142)) (-4001 (((-1251) $ (-1145)) 126)) (-1910 (((-1120 (-224)) $) 51) (($ $ (-1120 (-224))) 52)) (-1721 (((-1251) $ (-1145)) 154)) (-1709 (((-1251) $ (-1145)) 155)) (-1785 (((-1251) $ (-378) (-378)) 124) (((-1251) $ (-558) (-558)) 139)) (-1879 (((-1251) $ (-911) (-911)) 132)) (-1707 (((-1251) $) 112)) (-1760 (((-1251) $ (-1145)) 153)) (-1811 (((-1251) $ (-1145)) 109)) (-3963 (((-635 (-262)) $) 53) (($ $ (-635 (-262))) 54)) (-1889 (((-1251) $ (-762) (-762)) 131)) (-1898 (((-1251) $ (-762) (-933 (-224))) 160)) (-1922 (($ $) 56) (($ (-1120 (-224)) (-1145)) 57) (($ (-1120 (-224)) (-635 (-262))) 58)) (-1684 (((-1251) $ (-378) (-378) (-378)) 106)) (-4310 (((-1145) $) NIL)) (-2700 (((-558) $) 103)) (-2910 (((-1251) $ (-378)) 143)) (-1735 (((-1251) $ (-378)) 158)) (-2975 (((-1107) $) NIL)) (-1748 (((-1251) $ (-378)) 157)) (-1799 (((-1251) $ (-1145)) 111)) (-1867 (((-1251) $ (-762) (-762) (-911) (-911)) 130)) (-1822 (((-1251) $ (-1145)) 108)) (-1843 (((-1251) $ (-1145)) 110)) (-2901 (((-1251) $ (-156) (-156)) 129)) (-3220 (((-853) $) 137)) (-2626 (((-1251) $) 113)) (-1695 (((-1251) $ (-1145)) 156)) (-1832 (((-1251) $ (-1145)) 107)) (-1683 (((-112) $ $) NIL)))
+(((-1248) (-13 (-1087) (-10 -8 (-15 -1988 ((-378))) (-15 -1988 ((-378) (-378))) (-15 -1977 ((-378))) (-15 -1977 ((-378) (-378))) (-15 -1964 ((-378))) (-15 -1964 ((-378) (-378))) (-15 -1953 ((-378))) (-15 -1953 ((-378) (-378))) (-15 -1942 ((-378))) (-15 -1942 ((-378) (-378))) (-15 -1932 ($)) (-15 -1922 ($ $)) (-15 -1922 ($ (-1120 (-224)) (-1145))) (-15 -1922 ($ (-1120 (-224)) (-635 (-262)))) (-15 -1910 ((-1120 (-224)) $)) (-15 -1910 ($ $ (-1120 (-224)))) (-15 -1898 ((-1251) $ (-762) (-933 (-224)))) (-15 -3963 ((-635 (-262)) $)) (-15 -3963 ($ $ (-635 (-262)))) (-15 -1889 ((-1251) $ (-762) (-762))) (-15 -1879 ((-1251) $ (-911) (-911))) (-15 -4001 ((-1251) $ (-1145))) (-15 -1867 ((-1251) $ (-762) (-762) (-911) (-911))) (-15 -1855 ((-1251) $ (-378) (-378) (-378) (-378) (-378))) (-15 -1855 ((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2785 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) $)) (-15 -1855 ((-1251) $ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2785 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -1855 ((-1251) $ (-558) (-558) (-378) (-378) (-378))) (-15 -1855 ((-1251) $ (-378) (-378))) (-15 -1855 ((-1251) $ (-378) (-378) (-378))) (-15 -1843 ((-1251) $ (-1145))) (-15 -1832 ((-1251) $ (-1145))) (-15 -1822 ((-1251) $ (-1145))) (-15 -1811 ((-1251) $ (-1145))) (-15 -1799 ((-1251) $ (-1145))) (-15 -1785 ((-1251) $ (-378) (-378))) (-15 -1785 ((-1251) $ (-558) (-558))) (-15 -1772 ((-1251) $ (-378))) (-15 -1772 ((-1251) $ (-378) (-378) (-378))) (-15 -2951 ((-1251) $ (-378) (-378))) (-15 -1760 ((-1251) $ (-1145))) (-15 -1748 ((-1251) $ (-378))) (-15 -1735 ((-1251) $ (-378))) (-15 -1721 ((-1251) $ (-1145))) (-15 -1709 ((-1251) $ (-1145))) (-15 -1695 ((-1251) $ (-1145))) (-15 -1684 ((-1251) $ (-378) (-378) (-378))) (-15 -2910 ((-1251) $ (-378))) (-15 -1707 ((-1251) $)) (-15 -2901 ((-1251) $ (-156) (-156))) (-15 -1733 ((-1145) $ (-1145))) (-15 -1733 ((-1145) $ (-1145) (-1145))) (-15 -1733 ((-1145) $ (-1145) (-635 (-1145)))) (-15 -2626 ((-1251) $)) (-15 -2700 ((-558) $))))) (T -1248))
+((-1988 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1248)))) (-1988 (*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1248)))) (-1977 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1248)))) (-1977 (*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1248)))) (-1964 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1248)))) (-1964 (*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1248)))) (-1953 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1248)))) (-1953 (*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1248)))) (-1942 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1248)))) (-1942 (*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1248)))) (-1932 (*1 *1) (-5 *1 (-1248))) (-1922 (*1 *1 *1) (-5 *1 (-1248))) (-1922 (*1 *1 *2 *3) (-12 (-5 *2 (-1120 (-224))) (-5 *3 (-1145)) (-5 *1 (-1248)))) (-1922 (*1 *1 *2 *3) (-12 (-5 *2 (-1120 (-224))) (-5 *3 (-635 (-262))) (-5 *1 (-1248)))) (-1910 (*1 *2 *1) (-12 (-5 *2 (-1120 (-224))) (-5 *1 (-1248)))) (-1910 (*1 *1 *1 *2) (-12 (-5 *2 (-1120 (-224))) (-5 *1 (-1248)))) (-1898 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-762)) (-5 *4 (-933 (-224))) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-3963 (*1 *2 *1) (-12 (-5 *2 (-635 (-262))) (-5 *1 (-1248)))) (-3963 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-262))) (-5 *1 (-1248)))) (-1889 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-1879 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-4001 (*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-1867 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-762)) (-5 *4 (-911)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-1855 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-1855 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2785 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) (-5 *1 (-1248)))) (-1855 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2785 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-1855 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-558)) (-5 *4 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-1855 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-1855 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-1843 (*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-1832 (*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-1822 (*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-1811 (*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-1799 (*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-1785 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-1785 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-1772 (*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-1772 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-2951 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-1760 (*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-1748 (*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-1735 (*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-1721 (*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-1709 (*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-1695 (*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-1684 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-2910 (*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-1707 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-1248)))) (-2901 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-156)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-1733 (*1 *2 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1248)))) (-1733 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1248)))) (-1733 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-635 (-1145))) (-5 *2 (-1145)) (-5 *1 (-1248)))) (-2626 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-1248)))) (-2700 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1248)))))
+(-13 (-1087) (-10 -8 (-15 -1988 ((-378))) (-15 -1988 ((-378) (-378))) (-15 -1977 ((-378))) (-15 -1977 ((-378) (-378))) (-15 -1964 ((-378))) (-15 -1964 ((-378) (-378))) (-15 -1953 ((-378))) (-15 -1953 ((-378) (-378))) (-15 -1942 ((-378))) (-15 -1942 ((-378) (-378))) (-15 -1932 ($)) (-15 -1922 ($ $)) (-15 -1922 ($ (-1120 (-224)) (-1145))) (-15 -1922 ($ (-1120 (-224)) (-635 (-262)))) (-15 -1910 ((-1120 (-224)) $)) (-15 -1910 ($ $ (-1120 (-224)))) (-15 -1898 ((-1251) $ (-762) (-933 (-224)))) (-15 -3963 ((-635 (-262)) $)) (-15 -3963 ($ $ (-635 (-262)))) (-15 -1889 ((-1251) $ (-762) (-762))) (-15 -1879 ((-1251) $ (-911) (-911))) (-15 -4001 ((-1251) $ (-1145))) (-15 -1867 ((-1251) $ (-762) (-762) (-911) (-911))) (-15 -1855 ((-1251) $ (-378) (-378) (-378) (-378) (-378))) (-15 -1855 ((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2785 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) $)) (-15 -1855 ((-1251) $ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2785 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -1855 ((-1251) $ (-558) (-558) (-378) (-378) (-378))) (-15 -1855 ((-1251) $ (-378) (-378))) (-15 -1855 ((-1251) $ (-378) (-378) (-378))) (-15 -1843 ((-1251) $ (-1145))) (-15 -1832 ((-1251) $ (-1145))) (-15 -1822 ((-1251) $ (-1145))) (-15 -1811 ((-1251) $ (-1145))) (-15 -1799 ((-1251) $ (-1145))) (-15 -1785 ((-1251) $ (-378) (-378))) (-15 -1785 ((-1251) $ (-558) (-558))) (-15 -1772 ((-1251) $ (-378))) (-15 -1772 ((-1251) $ (-378) (-378) (-378))) (-15 -2951 ((-1251) $ (-378) (-378))) (-15 -1760 ((-1251) $ (-1145))) (-15 -1748 ((-1251) $ (-378))) (-15 -1735 ((-1251) $ (-378))) (-15 -1721 ((-1251) $ (-1145))) (-15 -1709 ((-1251) $ (-1145))) (-15 -1695 ((-1251) $ (-1145))) (-15 -1684 ((-1251) $ (-378) (-378) (-378))) (-15 -2910 ((-1251) $ (-378))) (-15 -1707 ((-1251) $)) (-15 -2901 ((-1251) $ (-156) (-156))) (-15 -1733 ((-1145) $ (-1145))) (-15 -1733 ((-1145) $ (-1145) (-1145))) (-15 -1733 ((-1145) $ (-1145) (-635 (-1145)))) (-15 -2626 ((-1251) $)) (-15 -2700 ((-558) $))))
+((-2077 (((-635 (-1145)) (-635 (-1145))) 94) (((-635 (-1145))) 90)) (-2088 (((-635 (-1145))) 88)) (-2056 (((-635 (-911)) (-635 (-911))) 63) (((-635 (-911))) 60)) (-2046 (((-635 (-762)) (-635 (-762))) 57) (((-635 (-762))) 53)) (-2068 (((-1251)) 65)) (-2113 (((-911) (-911)) 81) (((-911)) 80)) (-2100 (((-911) (-911)) 79) (((-911)) 78)) (-2028 (((-864) (-864)) 75) (((-864)) 74)) (-2136 (((-224)) 85) (((-224) (-378)) 87)) (-2125 (((-911)) 82) (((-911) (-911)) 83)) (-2037 (((-911) (-911)) 77) (((-911)) 76)) (-1998 (((-864) (-864)) 69) (((-864)) 67)) (-2008 (((-864) (-864)) 71) (((-864)) 70)) (-2017 (((-864) (-864)) 73) (((-864)) 72)))
+(((-1249) (-10 -7 (-15 -1998 ((-864))) (-15 -1998 ((-864) (-864))) (-15 -2008 ((-864))) (-15 -2008 ((-864) (-864))) (-15 -2017 ((-864))) (-15 -2017 ((-864) (-864))) (-15 -2028 ((-864))) (-15 -2028 ((-864) (-864))) (-15 -2037 ((-911))) (-15 -2037 ((-911) (-911))) (-15 -2046 ((-635 (-762)))) (-15 -2046 ((-635 (-762)) (-635 (-762)))) (-15 -2056 ((-635 (-911)))) (-15 -2056 ((-635 (-911)) (-635 (-911)))) (-15 -2068 ((-1251))) (-15 -2077 ((-635 (-1145)))) (-15 -2077 ((-635 (-1145)) (-635 (-1145)))) (-15 -2088 ((-635 (-1145)))) (-15 -2100 ((-911))) (-15 -2113 ((-911))) (-15 -2100 ((-911) (-911))) (-15 -2113 ((-911) (-911))) (-15 -2125 ((-911) (-911))) (-15 -2125 ((-911))) (-15 -2136 ((-224) (-378))) (-15 -2136 ((-224))))) (T -1249))
+((-2136 (*1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-1249)))) (-2136 (*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-224)) (-5 *1 (-1249)))) (-2125 (*1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-1249)))) (-2125 (*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-1249)))) (-2113 (*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-1249)))) (-2100 (*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-1249)))) (-2113 (*1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-1249)))) (-2100 (*1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-1249)))) (-2088 (*1 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-1249)))) (-2077 (*1 *2 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-1249)))) (-2077 (*1 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-1249)))) (-2068 (*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-1249)))) (-2056 (*1 *2 *2) (-12 (-5 *2 (-635 (-911))) (-5 *1 (-1249)))) (-2056 (*1 *2) (-12 (-5 *2 (-635 (-911))) (-5 *1 (-1249)))) (-2046 (*1 *2 *2) (-12 (-5 *2 (-635 (-762))) (-5 *1 (-1249)))) (-2046 (*1 *2) (-12 (-5 *2 (-635 (-762))) (-5 *1 (-1249)))) (-2037 (*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-1249)))) (-2037 (*1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-1249)))) (-2028 (*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1249)))) (-2028 (*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1249)))) (-2017 (*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1249)))) (-2017 (*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1249)))) (-2008 (*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1249)))) (-2008 (*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1249)))) (-1998 (*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1249)))) (-1998 (*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1249)))))
+(-10 -7 (-15 -1998 ((-864))) (-15 -1998 ((-864) (-864))) (-15 -2008 ((-864))) (-15 -2008 ((-864) (-864))) (-15 -2017 ((-864))) (-15 -2017 ((-864) (-864))) (-15 -2028 ((-864))) (-15 -2028 ((-864) (-864))) (-15 -2037 ((-911))) (-15 -2037 ((-911) (-911))) (-15 -2046 ((-635 (-762)))) (-15 -2046 ((-635 (-762)) (-635 (-762)))) (-15 -2056 ((-635 (-911)))) (-15 -2056 ((-635 (-911)) (-635 (-911)))) (-15 -2068 ((-1251))) (-15 -2077 ((-635 (-1145)))) (-15 -2077 ((-635 (-1145)) (-635 (-1145)))) (-15 -2088 ((-635 (-1145)))) (-15 -2100 ((-911))) (-15 -2113 ((-911))) (-15 -2100 ((-911) (-911))) (-15 -2113 ((-911) (-911))) (-15 -2125 ((-911) (-911))) (-15 -2125 ((-911))) (-15 -2136 ((-224) (-378))) (-15 -2136 ((-224))))
+((-2766 (((-466) (-635 (-635 (-933 (-224)))) (-635 (-262))) 21) (((-466) (-635 (-635 (-933 (-224))))) 20) (((-466) (-635 (-635 (-933 (-224)))) (-864) (-864) (-911) (-635 (-262))) 19)) (-2776 (((-1247) (-635 (-635 (-933 (-224)))) (-635 (-262))) 27) (((-1247) (-635 (-635 (-933 (-224)))) (-864) (-864) (-911) (-635 (-262))) 26)) (-3220 (((-1247) (-466)) 38)))
+(((-1250) (-10 -7 (-15 -2766 ((-466) (-635 (-635 (-933 (-224)))) (-864) (-864) (-911) (-635 (-262)))) (-15 -2766 ((-466) (-635 (-635 (-933 (-224)))))) (-15 -2766 ((-466) (-635 (-635 (-933 (-224)))) (-635 (-262)))) (-15 -2776 ((-1247) (-635 (-635 (-933 (-224)))) (-864) (-864) (-911) (-635 (-262)))) (-15 -2776 ((-1247) (-635 (-635 (-933 (-224)))) (-635 (-262)))) (-15 -3220 ((-1247) (-466))))) (T -1250))
+((-3220 (*1 *2 *3) (-12 (-5 *3 (-466)) (-5 *2 (-1247)) (-5 *1 (-1250)))) (-2776 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-635 (-933 (-224))))) (-5 *4 (-635 (-262))) (-5 *2 (-1247)) (-5 *1 (-1250)))) (-2776 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-635 (-635 (-933 (-224))))) (-5 *4 (-864)) (-5 *5 (-911)) (-5 *6 (-635 (-262))) (-5 *2 (-1247)) (-5 *1 (-1250)))) (-2766 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-635 (-933 (-224))))) (-5 *4 (-635 (-262))) (-5 *2 (-466)) (-5 *1 (-1250)))) (-2766 (*1 *2 *3) (-12 (-5 *3 (-635 (-635 (-933 (-224))))) (-5 *2 (-466)) (-5 *1 (-1250)))) (-2766 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-635 (-635 (-933 (-224))))) (-5 *4 (-864)) (-5 *5 (-911)) (-5 *6 (-635 (-262))) (-5 *2 (-466)) (-5 *1 (-1250)))))
+(-10 -7 (-15 -2766 ((-466) (-635 (-635 (-933 (-224)))) (-864) (-864) (-911) (-635 (-262)))) (-15 -2766 ((-466) (-635 (-635 (-933 (-224)))))) (-15 -2766 ((-466) (-635 (-635 (-933 (-224)))) (-635 (-262)))) (-15 -2776 ((-1247) (-635 (-635 (-933 (-224)))) (-864) (-864) (-911) (-635 (-262)))) (-15 -2776 ((-1247) (-635 (-635 (-933 (-224)))) (-635 (-262)))) (-15 -3220 ((-1247) (-466))))
+((-2912 (($) 7)) (-3220 (((-853) $) 10)))
+(((-1251) (-13 (-605 (-853)) (-10 -8 (-15 -2912 ($))))) (T -1251))
+((-2912 (*1 *1) (-5 *1 (-1251))))
+(-13 (-605 (-853)) (-10 -8 (-15 -2912 ($))))
+((-1810 (($ $ |#2|) 10)))
+(((-1252 |#1| |#2|) (-10 -8 (-15 -1810 (|#1| |#1| |#2|))) (-1253 |#2|) (-362)) (T -1252))
+NIL
+(-10 -8 (-15 -1810 (|#1| |#1| |#2|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2089 (((-3 $ "failed") $ $) 19)) (-1816 (($) 17 T CONST)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-2148 (((-133)) 28)) (-3220 (((-853) $) 11)) (-2131 (($) 18 T CONST)) (-1683 (((-112) $ $) 6)) (-1810 (($ $ |#1|) 29)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+(((-1253 |#1|) (-139) (-362)) (T -1253))
+((-1810 (*1 *1 *1 *2) (-12 (-4 *1 (-1253 *2)) (-4 *2 (-362)))) (-2148 (*1 *2) (-12 (-4 *1 (-1253 *3)) (-4 *3 (-362)) (-5 *2 (-133)))))
+(-13 (-708 |t#1|) (-10 -8 (-15 -1810 ($ $ |t#1|)) (-15 -2148 ((-133)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-605 (-853)) . T) ((-638 |#1|) . T) ((-708 |#1|) . T) ((-1045 |#1|) . T) ((-1087) . T))
+((-2201 (((-635 (-1194 |#1|)) (-1163) (-1194 |#1|)) 74)) (-2180 (((-1143 (-1143 (-942 |#1|))) (-1163) (-1143 (-942 |#1|))) 53)) (-2212 (((-1 (-1143 (-1194 |#1|)) (-1143 (-1194 |#1|))) (-762) (-1194 |#1|) (-1143 (-1194 |#1|))) 64)) (-2157 (((-1 (-1143 (-942 |#1|)) (-1143 (-942 |#1|))) (-762)) 55)) (-2190 (((-1 (-1159 (-942 |#1|)) (-942 |#1|)) (-1163)) 29)) (-2168 (((-1 (-1143 (-942 |#1|)) (-1143 (-942 |#1|))) (-762)) 54)))
+(((-1254 |#1|) (-10 -7 (-15 -2157 ((-1 (-1143 (-942 |#1|)) (-1143 (-942 |#1|))) (-762))) (-15 -2168 ((-1 (-1143 (-942 |#1|)) (-1143 (-942 |#1|))) (-762))) (-15 -2180 ((-1143 (-1143 (-942 |#1|))) (-1163) (-1143 (-942 |#1|)))) (-15 -2190 ((-1 (-1159 (-942 |#1|)) (-942 |#1|)) (-1163))) (-15 -2201 ((-635 (-1194 |#1|)) (-1163) (-1194 |#1|))) (-15 -2212 ((-1 (-1143 (-1194 |#1|)) (-1143 (-1194 |#1|))) (-762) (-1194 |#1|) (-1143 (-1194 |#1|))))) (-362)) (T -1254))
+((-2212 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-762)) (-4 *6 (-362)) (-5 *4 (-1194 *6)) (-5 *2 (-1 (-1143 *4) (-1143 *4))) (-5 *1 (-1254 *6)) (-5 *5 (-1143 *4)))) (-2201 (*1 *2 *3 *4) (-12 (-5 *3 (-1163)) (-4 *5 (-362)) (-5 *2 (-635 (-1194 *5))) (-5 *1 (-1254 *5)) (-5 *4 (-1194 *5)))) (-2190 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1 (-1159 (-942 *4)) (-942 *4))) (-5 *1 (-1254 *4)) (-4 *4 (-362)))) (-2180 (*1 *2 *3 *4) (-12 (-5 *3 (-1163)) (-4 *5 (-362)) (-5 *2 (-1143 (-1143 (-942 *5)))) (-5 *1 (-1254 *5)) (-5 *4 (-1143 (-942 *5))))) (-2168 (*1 *2 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1 (-1143 (-942 *4)) (-1143 (-942 *4)))) (-5 *1 (-1254 *4)) (-4 *4 (-362)))) (-2157 (*1 *2 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1 (-1143 (-942 *4)) (-1143 (-942 *4)))) (-5 *1 (-1254 *4)) (-4 *4 (-362)))))
+(-10 -7 (-15 -2157 ((-1 (-1143 (-942 |#1|)) (-1143 (-942 |#1|))) (-762))) (-15 -2168 ((-1 (-1143 (-942 |#1|)) (-1143 (-942 |#1|))) (-762))) (-15 -2180 ((-1143 (-1143 (-942 |#1|))) (-1163) (-1143 (-942 |#1|)))) (-15 -2190 ((-1 (-1159 (-942 |#1|)) (-942 |#1|)) (-1163))) (-15 -2201 ((-635 (-1194 |#1|)) (-1163) (-1194 |#1|))) (-15 -2212 ((-1 (-1143 (-1194 |#1|)) (-1143 (-1194 |#1|))) (-762) (-1194 |#1|) (-1143 (-1194 |#1|)))))
+((-2233 (((-2 (|:| -2660 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))) |#2|) 75)) (-2224 (((-2 (|:| -2660 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|)))) 74)))
+(((-1255 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2224 ((-2 (|:| -2660 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))))) (-15 -2233 ((-2 (|:| -2660 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))) |#2|))) (-348) (-1222 |#1|) (-1222 |#2|) (-408 |#2| |#3|)) (T -1255))
+((-2233 (*1 *2 *3) (-12 (-4 *4 (-348)) (-4 *3 (-1222 *4)) (-4 *5 (-1222 *3)) (-5 *2 (-2 (|:| -2660 (-679 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-679 *3)))) (-5 *1 (-1255 *4 *3 *5 *6)) (-4 *6 (-408 *3 *5)))) (-2224 (*1 *2) (-12 (-4 *3 (-348)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 *4)) (-5 *2 (-2 (|:| -2660 (-679 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-679 *4)))) (-5 *1 (-1255 *3 *4 *5 *6)) (-4 *6 (-408 *4 *5)))))
+(-10 -7 (-15 -2224 ((-2 (|:| -2660 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))))) (-15 -2233 ((-2 (|:| -2660 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))) |#2|)))
+((-3207 (((-112) $ $) NIL)) (-2245 (((-1122) $) 11)) (-2256 (((-1122) $) 9)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 19) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1683 (((-112) $ $) NIL)))
+(((-1256) (-13 (-1070) (-10 -8 (-15 -2256 ((-1122) $)) (-15 -2245 ((-1122) $))))) (T -1256))
+((-2256 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1256)))) (-2245 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1256)))))
+(-13 (-1070) (-10 -8 (-15 -2256 ((-1122) $)) (-15 -2245 ((-1122) $))))
+((-3207 (((-112) $ $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-2449 (((-1122) $) 9)) (-3220 (((-853) $) 17) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1683 (((-112) $ $) NIL)))
+(((-1257) (-13 (-1070) (-10 -8 (-15 -2449 ((-1122) $))))) (T -1257))
+((-2449 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1257)))))
+(-13 (-1070) (-10 -8 (-15 -2449 ((-1122) $))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) 42)) (-2089 (((-3 $ "failed") $ $) NIL)) (-1816 (($) NIL T CONST)) (-2588 (((-3 $ "failed") $) NIL)) (-2035 (((-112) $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-3220 (((-853) $) 63) (($ (-558)) NIL) (($ |#4|) 48) ((|#4| $) 53) (($ |#1|) NIL (|has| |#1| (-171)))) (-2542 (((-762)) NIL)) (-2266 (((-1251) (-762)) 16)) (-2131 (($) 27 T CONST)) (-2142 (($) 66 T CONST)) (-1683 (((-112) $ $) 68)) (-1810 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-1798 (($ $) 70) (($ $ $) NIL)) (-1784 (($ $ $) 46)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 72) (($ |#1| $) NIL (|has| |#1| (-171))) (($ $ |#1|) NIL (|has| |#1| (-171)))))
+(((-1258 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1039) (-488 |#4|) (-10 -8 (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -1810 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2266 ((-1251) (-762))))) (-1039) (-841) (-784) (-939 |#1| |#3| |#2|) (-635 |#2|) (-635 (-762)) (-762)) (T -1258))
+((-1810 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-362)) (-4 *2 (-1039)) (-4 *3 (-841)) (-4 *4 (-784)) (-14 *6 (-635 *3)) (-5 *1 (-1258 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-939 *2 *4 *3)) (-14 *7 (-635 (-762))) (-14 *8 (-762)))) (-2266 (*1 *2 *3) (-12 (-5 *3 (-762)) (-4 *4 (-1039)) (-4 *5 (-841)) (-4 *6 (-784)) (-14 *8 (-635 *5)) (-5 *2 (-1251)) (-5 *1 (-1258 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-939 *4 *6 *5)) (-14 *9 (-635 *3)) (-14 *10 *3))))
+(-13 (-1039) (-488 |#4|) (-10 -8 (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -1810 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2266 ((-1251) (-762)))))
+((-3207 (((-112) $ $) NIL)) (-3773 (((-635 (-2 (|:| -2626 $) (|:| -1328 (-635 |#4|)))) (-635 |#4|)) NIL)) (-3782 (((-635 $) (-635 |#4|)) 89)) (-2671 (((-635 |#3|) $) NIL)) (-2139 (((-112) $) NIL)) (-2040 (((-112) $) NIL (|has| |#1| (-550)))) (-3892 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3842 ((|#4| |#4| $) NIL)) (-2376 (((-2 (|:| |under| $) (|:| -2594 $) (|:| |upper| $)) $ |#3|) NIL)) (-3026 (((-112) $ (-762)) NIL)) (-4329 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4382))) (((-3 |#4| "failed") $ |#3|) NIL)) (-1816 (($) NIL T CONST)) (-2092 (((-112) $) NIL (|has| |#1| (-550)))) (-2116 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2104 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2128 (((-112) $) NIL (|has| |#1| (-550)))) (-3853 (((-635 |#4|) (-635 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 28)) (-2050 (((-635 |#4|) (-635 |#4|) $) 25 (|has| |#1| (-550)))) (-2061 (((-635 |#4|) (-635 |#4|) $) NIL (|has| |#1| (-550)))) (-3069 (((-3 $ "failed") (-635 |#4|)) NIL)) (-1863 (($ (-635 |#4|)) NIL)) (-2315 (((-3 $ "failed") $) 71)) (-3810 ((|#4| |#4| $) 76)) (-2338 (($ $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#4| (-1087))))) (-1539 (($ |#4| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#4| (-1087)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4382)))) (-2071 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-550)))) (-3902 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3792 ((|#4| |#4| $) NIL)) (-3048 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4382)) (|has| |#4| (-1087)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4382))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4382))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3923 (((-2 (|:| -2626 (-635 |#4|)) (|:| -1328 (-635 |#4|))) $) NIL)) (-2240 (((-635 |#4|) $) NIL (|has| $ (-6 -4382)))) (-3912 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1997 ((|#3| $) 77)) (-2986 (((-112) $ (-762)) NIL)) (-2122 (((-635 |#4|) $) 29 (|has| $ (-6 -4382)))) (-4322 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#4| (-1087))))) (-2294 (((-3 $ "failed") (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-635 |#4|)) 35)) (-1807 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4383)))) (-3167 (($ (-1 |#4| |#4|) $) NIL)) (-4024 (((-635 |#3|) $) NIL)) (-2183 (((-112) |#3| $) NIL)) (-2953 (((-112) $ (-762)) NIL)) (-4310 (((-1145) $) NIL)) (-1560 (((-3 |#4| "failed") $) NIL)) (-3932 (((-635 |#4|) $) 51)) (-3873 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3820 ((|#4| |#4| $) 75)) (-3953 (((-112) $ $) 86)) (-2081 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-550)))) (-3883 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3830 ((|#4| |#4| $) NIL)) (-2975 (((-1107) $) NIL)) (-2305 (((-3 |#4| "failed") $) 70)) (-4307 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3755 (((-3 $ "failed") $ |#4|) NIL)) (-3430 (($ $ |#4|) NIL)) (-3266 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4382)))) (-2554 (($ $ (-635 |#4|) (-635 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-293 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-635 (-293 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))) (-2381 (((-112) $ $) NIL)) (-3375 (((-112) $) 68)) (-2083 (($) 43)) (-4323 (((-762) $) NIL)) (-2988 (((-762) |#4| $) NIL (-12 (|has| $ (-6 -4382)) (|has| |#4| (-1087)))) (((-762) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4382)))) (-1553 (($ $) NIL)) (-3224 (((-534) $) NIL (|has| |#4| (-606 (-534))))) (-3233 (($ (-635 |#4|)) NIL)) (-2151 (($ $ |#3|) NIL)) (-2171 (($ $ |#3|) NIL)) (-3801 (($ $) NIL)) (-2160 (($ $ |#3|) NIL)) (-3220 (((-853) $) NIL) (((-635 |#4|) $) 58)) (-3745 (((-762) $) NIL (|has| |#3| (-367)))) (-2284 (((-3 $ "failed") (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 41) (((-3 $ "failed") (-635 |#4|)) 42)) (-2274 (((-635 $) (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 66) (((-635 $) (-635 |#4|)) 67)) (-3940 (((-3 (-2 (|:| |bas| $) (|:| -3072 (-635 |#4|))) "failed") (-635 |#4|) (-1 (-112) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -3072 (-635 |#4|))) "failed") (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3863 (((-112) $ (-1 (-112) |#4| (-635 |#4|))) NIL)) (-3277 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4382)))) (-3764 (((-635 |#3|) $) NIL)) (-4206 (((-112) |#3| $) NIL)) (-1683 (((-112) $ $) NIL)) (-2755 (((-762) $) NIL (|has| $ (-6 -4382)))))
+(((-1259 |#1| |#2| |#3| |#4|) (-13 (-1193 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2294 ((-3 $ "failed") (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2294 ((-3 $ "failed") (-635 |#4|))) (-15 -2284 ((-3 $ "failed") (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2284 ((-3 $ "failed") (-635 |#4|))) (-15 -2274 ((-635 $) (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2274 ((-635 $) (-635 |#4|))))) (-550) (-784) (-841) (-1053 |#1| |#2| |#3|)) (T -1259))
+((-2294 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-635 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-550)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *1 (-1259 *5 *6 *7 *8)))) (-2294 (*1 *1 *2) (|partial| -12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-1259 *3 *4 *5 *6)))) (-2284 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-635 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-550)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *1 (-1259 *5 *6 *7 *8)))) (-2284 (*1 *1 *2) (|partial| -12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-1259 *3 *4 *5 *6)))) (-2274 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1053 *6 *7 *8)) (-4 *6 (-550)) (-4 *7 (-784)) (-4 *8 (-841)) (-5 *2 (-635 (-1259 *6 *7 *8 *9))) (-5 *1 (-1259 *6 *7 *8 *9)))) (-2274 (*1 *2 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-635 (-1259 *4 *5 *6 *7))) (-5 *1 (-1259 *4 *5 *6 *7)))))
+(-13 (-1193 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2294 ((-3 $ "failed") (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2294 ((-3 $ "failed") (-635 |#4|))) (-15 -2284 ((-3 $ "failed") (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2284 ((-3 $ "failed") (-635 |#4|))) (-15 -2274 ((-635 $) (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2274 ((-635 $) (-635 |#4|)))))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-2089 (((-3 $ "failed") $ $) 19)) (-1816 (($) 17 T CONST)) (-2588 (((-3 $ "failed") $) 33)) (-2035 (((-112) $) 31)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ |#1|) 39)) (-2542 (((-762)) 28)) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1683 (((-112) $ $) 6)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ |#1|) 41) (($ |#1| $) 40)))
+(((-1260 |#1|) (-139) (-1039)) (T -1260))
+NIL
+(-13 (-1039) (-111 |t#1| |t#1|) (-608 |t#1|) (-10 -7 (IF (|has| |t#1| (-171)) (-6 (-38 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-171)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-608 (-558)) . T) ((-608 |#1|) . T) ((-605 (-853)) . T) ((-638 |#1|) . T) ((-638 $) . T) ((-708 |#1|) |has| |#1| (-171)) ((-717) . T) ((-1045 |#1|) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
+((-3207 (((-112) $ $) 59)) (-2067 (((-112) $) NIL)) (-3712 (((-635 |#1|) $) 45)) (-4311 (($ $ (-762)) 39)) (-2089 (((-3 $ "failed") $ $) NIL)) (-4217 (($ $ (-762)) 18 (|has| |#2| (-171))) (($ $ $) 19 (|has| |#2| (-171)))) (-1816 (($) NIL T CONST)) (-4249 (($ $ $) 62) (($ $ (-810 |#1|)) 48) (($ $ |#1|) 52)) (-3069 (((-3 (-810 |#1|) "failed") $) NIL)) (-1863 (((-810 |#1|) $) NIL)) (-2490 (($ $) 32)) (-2588 (((-3 $ "failed") $) NIL)) (-4347 (((-112) $) NIL)) (-4335 (($ $) NIL)) (-2035 (((-112) $) NIL)) (-2110 (((-762) $) NIL)) (-2536 (((-635 $) $) NIL)) (-4238 (((-112) $) NIL)) (-3918 (($ (-810 |#1|) |#2|) 31)) (-4227 (($ $) 33)) (-4273 (((-2 (|:| |k| (-810 |#1|)) (|:| |c| |#2|)) $) 12)) (-1284 (((-810 |#1|) $) NIL)) (-1295 (((-810 |#1|) $) 34)) (-3167 (($ (-1 |#2| |#2|) $) NIL)) (-4260 (($ $ $) 61) (($ $ (-810 |#1|)) 50) (($ $ |#1|) 54)) (-1703 (((-2 (|:| |k| (-810 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2451 (((-810 |#1|) $) 28)) (-2463 ((|#2| $) 30)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-4323 (((-762) $) 36)) (-4357 (((-112) $) 40)) (-3707 ((|#2| $) NIL)) (-3220 (((-853) $) NIL) (($ (-810 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-558)) NIL)) (-2583 (((-635 |#2|) $) NIL)) (-3736 ((|#2| $ (-810 |#1|)) NIL)) (-2023 ((|#2| $ $) 64) ((|#2| $ (-810 |#1|)) NIL)) (-2542 (((-762)) NIL)) (-2131 (($) 13 T CONST)) (-2142 (($) 15 T CONST)) (-3475 (((-635 (-2 (|:| |k| (-810 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1683 (((-112) $ $) 38)) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) 22)) (** (($ $ (-762)) NIL) (($ $ (-911)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 60) (($ |#2| (-810 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL)))
+(((-1261 |#1| |#2|) (-13 (-381 |#2| (-810 |#1|)) (-1267 |#1| |#2|)) (-841) (-1039)) (T -1261))
+NIL
+(-13 (-381 |#2| (-810 |#1|)) (-1267 |#1| |#2|))
+((-2592 ((|#3| |#3| (-762)) 23)) (-2573 ((|#3| |#3| (-762)) 27)) (-4136 ((|#3| |#3| |#3| (-762)) 28)))
+(((-1262 |#1| |#2| |#3|) (-10 -7 (-15 -2573 (|#3| |#3| (-762))) (-15 -2592 (|#3| |#3| (-762))) (-15 -4136 (|#3| |#3| |#3| (-762)))) (-13 (-1039) (-708 (-406 (-558)))) (-841) (-1267 |#2| |#1|)) (T -1262))
+((-4136 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-762)) (-4 *4 (-13 (-1039) (-708 (-406 (-558))))) (-4 *5 (-841)) (-5 *1 (-1262 *4 *5 *2)) (-4 *2 (-1267 *5 *4)))) (-2592 (*1 *2 *2 *3) (-12 (-5 *3 (-762)) (-4 *4 (-13 (-1039) (-708 (-406 (-558))))) (-4 *5 (-841)) (-5 *1 (-1262 *4 *5 *2)) (-4 *2 (-1267 *5 *4)))) (-2573 (*1 *2 *2 *3) (-12 (-5 *3 (-762)) (-4 *4 (-13 (-1039) (-708 (-406 (-558))))) (-4 *5 (-841)) (-5 *1 (-1262 *4 *5 *2)) (-4 *2 (-1267 *5 *4)))))
+(-10 -7 (-15 -2573 (|#3| |#3| (-762))) (-15 -2592 (|#3| |#3| (-762))) (-15 -4136 (|#3| |#3| |#3| (-762))))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-3712 (((-635 |#1|) $) 41)) (-2089 (((-3 $ "failed") $ $) 19)) (-4217 (($ $ $) 44 (|has| |#2| (-171))) (($ $ (-762)) 43 (|has| |#2| (-171)))) (-1816 (($) 17 T CONST)) (-4249 (($ $ |#1|) 55) (($ $ (-810 |#1|)) 54) (($ $ $) 53)) (-3069 (((-3 (-810 |#1|) "failed") $) 65)) (-1863 (((-810 |#1|) $) 66)) (-2588 (((-3 $ "failed") $) 33)) (-4347 (((-112) $) 46)) (-4335 (($ $) 45)) (-2035 (((-112) $) 31)) (-4238 (((-112) $) 51)) (-3918 (($ (-810 |#1|) |#2|) 52)) (-4227 (($ $) 50)) (-4273 (((-2 (|:| |k| (-810 |#1|)) (|:| |c| |#2|)) $) 61)) (-1284 (((-810 |#1|) $) 62)) (-3167 (($ (-1 |#2| |#2|) $) 42)) (-4260 (($ $ |#1|) 58) (($ $ (-810 |#1|)) 57) (($ $ $) 56)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-4357 (((-112) $) 48)) (-3707 ((|#2| $) 47)) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ |#2|) 69) (($ (-810 |#1|)) 64) (($ |#1|) 49)) (-2023 ((|#2| $ (-810 |#1|)) 60) ((|#2| $ $) 59)) (-2542 (((-762)) 28)) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1683 (((-112) $ $) 6)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ |#2| $) 68) (($ $ |#2|) 67) (($ |#1| $) 63)))
+(((-1263 |#1| |#2|) (-139) (-841) (-1039)) (T -1263))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-841)) (-4 *2 (-1039)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1263 *2 *3)) (-4 *2 (-841)) (-4 *3 (-1039)))) (-1284 (*1 *2 *1) (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039)) (-5 *2 (-810 *3)))) (-4273 (*1 *2 *1) (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039)) (-5 *2 (-2 (|:| |k| (-810 *3)) (|:| |c| *4))))) (-2023 (*1 *2 *1 *3) (-12 (-5 *3 (-810 *4)) (-4 *1 (-1263 *4 *2)) (-4 *4 (-841)) (-4 *2 (-1039)))) (-2023 (*1 *2 *1 *1) (-12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-841)) (-4 *2 (-1039)))) (-4260 (*1 *1 *1 *2) (-12 (-4 *1 (-1263 *2 *3)) (-4 *2 (-841)) (-4 *3 (-1039)))) (-4260 (*1 *1 *1 *2) (-12 (-5 *2 (-810 *3)) (-4 *1 (-1263 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039)))) (-4260 (*1 *1 *1 *1) (-12 (-4 *1 (-1263 *2 *3)) (-4 *2 (-841)) (-4 *3 (-1039)))) (-4249 (*1 *1 *1 *2) (-12 (-4 *1 (-1263 *2 *3)) (-4 *2 (-841)) (-4 *3 (-1039)))) (-4249 (*1 *1 *1 *2) (-12 (-5 *2 (-810 *3)) (-4 *1 (-1263 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039)))) (-4249 (*1 *1 *1 *1) (-12 (-4 *1 (-1263 *2 *3)) (-4 *2 (-841)) (-4 *3 (-1039)))) (-3918 (*1 *1 *2 *3) (-12 (-5 *2 (-810 *4)) (-4 *4 (-841)) (-4 *1 (-1263 *4 *3)) (-4 *3 (-1039)))) (-4238 (*1 *2 *1) (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039)) (-5 *2 (-112)))) (-4227 (*1 *1 *1) (-12 (-4 *1 (-1263 *2 *3)) (-4 *2 (-841)) (-4 *3 (-1039)))) (-3220 (*1 *1 *2) (-12 (-4 *1 (-1263 *2 *3)) (-4 *2 (-841)) (-4 *3 (-1039)))) (-4357 (*1 *2 *1) (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039)) (-5 *2 (-112)))) (-3707 (*1 *2 *1) (-12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-841)) (-4 *2 (-1039)))) (-4347 (*1 *2 *1) (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039)) (-5 *2 (-112)))) (-4335 (*1 *1 *1) (-12 (-4 *1 (-1263 *2 *3)) (-4 *2 (-841)) (-4 *3 (-1039)))) (-4217 (*1 *1 *1 *1) (-12 (-4 *1 (-1263 *2 *3)) (-4 *2 (-841)) (-4 *3 (-1039)) (-4 *3 (-171)))) (-4217 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *1 (-1263 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039)) (-4 *4 (-171)))) (-3167 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1263 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039)))) (-3712 (*1 *2 *1) (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039)) (-5 *2 (-635 *3)))))
+(-13 (-1039) (-1260 |t#2|) (-1028 (-810 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -1284 ((-810 |t#1|) $)) (-15 -4273 ((-2 (|:| |k| (-810 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -2023 (|t#2| $ (-810 |t#1|))) (-15 -2023 (|t#2| $ $)) (-15 -4260 ($ $ |t#1|)) (-15 -4260 ($ $ (-810 |t#1|))) (-15 -4260 ($ $ $)) (-15 -4249 ($ $ |t#1|)) (-15 -4249 ($ $ (-810 |t#1|))) (-15 -4249 ($ $ $)) (-15 -3918 ($ (-810 |t#1|) |t#2|)) (-15 -4238 ((-112) $)) (-15 -4227 ($ $)) (-15 -3220 ($ |t#1|)) (-15 -4357 ((-112) $)) (-15 -3707 (|t#2| $)) (-15 -4347 ((-112) $)) (-15 -4335 ($ $)) (IF (|has| |t#2| (-171)) (PROGN (-15 -4217 ($ $ $)) (-15 -4217 ($ $ (-762)))) |%noBranch|) (-15 -3167 ($ (-1 |t#2| |t#2|) $)) (-15 -3712 ((-635 |t#1|) $)) (IF (|has| |t#2| (-6 -4375)) (-6 -4375) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-171)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-608 (-558)) . T) ((-608 #0=(-810 |#1|)) . T) ((-608 |#2|) . T) ((-605 (-853)) . T) ((-638 |#2|) . T) ((-638 $) . T) ((-708 |#2|) |has| |#2| (-171)) ((-717) . T) ((-1028 #0#) . T) ((-1045 |#2|) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1260 |#2|) . T))
+((-4195 (((-112) $) 14)) (-4206 (((-112) $) 13)) (-4148 (($ $) 18) (($ $ (-762)) 19)))
+(((-1264 |#1| |#2|) (-10 -8 (-15 -4148 (|#1| |#1| (-762))) (-15 -4148 (|#1| |#1|)) (-15 -4195 ((-112) |#1|)) (-15 -4206 ((-112) |#1|))) (-1265 |#2|) (-362)) (T -1264))
+NIL
+(-10 -8 (-15 -4148 (|#1| |#1| (-762))) (-15 -4148 (|#1| |#1|)) (-15 -4195 ((-112) |#1|)) (-15 -4206 ((-112) |#1|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-1891 (((-2 (|:| -1960 $) (|:| -4369 $) (|:| |associate| $)) $) 42)) (-1881 (($ $) 41)) (-1857 (((-112) $) 39)) (-4195 (((-112) $) 95)) (-4160 (((-762)) 91)) (-2089 (((-3 $ "failed") $ $) 19)) (-3465 (($ $) 74)) (-1380 (((-417 $) $) 73)) (-3732 (((-112) $ $) 60)) (-1816 (($) 17 T CONST)) (-3069 (((-3 |#1| "failed") $) 102)) (-1863 ((|#1| $) 103)) (-4025 (($ $ $) 56)) (-2588 (((-3 $ "failed") $) 33)) (-4004 (($ $ $) 57)) (-2934 (((-2 (|:| -2023 (-635 $)) (|:| -4098 $)) (-635 $)) 52)) (-1895 (($ $ (-762)) 88 (-3998 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) 87 (-3998 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3031 (((-112) $) 72)) (-3449 (((-824 (-911)) $) 85 (-3998 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2035 (((-112) $) 31)) (-3701 (((-3 (-635 $) "failed") (-635 $) $) 53)) (-2665 (($ $ $) 47) (($ (-635 $)) 46)) (-4310 (((-1145) $) 9)) (-2418 (($ $) 71)) (-4185 (((-112) $) 94)) (-2975 (((-1107) $) 10)) (-3757 (((-1159 $) (-1159 $) (-1159 $)) 45)) (-2699 (($ $ $) 49) (($ (-635 $)) 48)) (-2522 (((-417 $) $) 75)) (-4172 (((-824 (-911))) 92)) (-3713 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4098 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3983 (((-3 $ "failed") $ $) 43)) (-2922 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-3722 (((-762) $) 59)) (-1901 (((-2 (|:| -2306 $) (|:| -2071 $)) $ $) 58)) (-1905 (((-3 (-762) "failed") $ $) 86 (-3998 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2148 (((-133)) 100)) (-4323 (((-824 (-911)) $) 93)) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ $) 44) (($ (-406 (-558))) 67) (($ |#1|) 101)) (-3698 (((-3 $ "failed") $) 84 (-3998 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2542 (((-762)) 28)) (-1870 (((-112) $ $) 40)) (-4206 (((-112) $) 96)) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-4148 (($ $) 90 (|has| |#1| (-367))) (($ $ (-762)) 89 (|has| |#1| (-367)))) (-1683 (((-112) $ $) 6)) (-1810 (($ $ $) 66) (($ $ |#1|) 99)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ (-558)) 70)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ (-406 (-558))) 69) (($ (-406 (-558)) $) 68) (($ $ |#1|) 98) (($ |#1| $) 97)))
+(((-1265 |#1|) (-139) (-362)) (T -1265))
+((-4206 (*1 *2 *1) (-12 (-4 *1 (-1265 *3)) (-4 *3 (-362)) (-5 *2 (-112)))) (-4195 (*1 *2 *1) (-12 (-4 *1 (-1265 *3)) (-4 *3 (-362)) (-5 *2 (-112)))) (-4185 (*1 *2 *1) (-12 (-4 *1 (-1265 *3)) (-4 *3 (-362)) (-5 *2 (-112)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-1265 *3)) (-4 *3 (-362)) (-5 *2 (-824 (-911))))) (-4172 (*1 *2) (-12 (-4 *1 (-1265 *3)) (-4 *3 (-362)) (-5 *2 (-824 (-911))))) (-4160 (*1 *2) (-12 (-4 *1 (-1265 *3)) (-4 *3 (-362)) (-5 *2 (-762)))) (-4148 (*1 *1 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-362)) (-4 *2 (-367)))) (-4148 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *1 (-1265 *3)) (-4 *3 (-362)) (-4 *3 (-367)))))
+(-13 (-362) (-1028 |t#1|) (-1253 |t#1|) (-10 -8 (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-401)) |%noBranch|) (-15 -4206 ((-112) $)) (-15 -4195 ((-112) $)) (-15 -4185 ((-112) $)) (-15 -4323 ((-824 (-911)) $)) (-15 -4172 ((-824 (-911)))) (-15 -4160 ((-762))) (IF (|has| |t#1| (-367)) (PROGN (-6 (-401)) (-15 -4148 ($ $)) (-15 -4148 ($ $ (-762)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-558))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-144) -3998 (|has| |#1| (-367)) (|has| |#1| (-144))) ((-146) |has| |#1| (-146)) ((-608 #0#) . T) ((-608 (-558)) . T) ((-608 |#1|) . T) ((-608 $) . T) ((-605 (-853)) . T) ((-171) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-401) -3998 (|has| |#1| (-367)) (|has| |#1| (-144))) ((-450) . T) ((-550) . T) ((-638 #0#) . T) ((-638 |#1|) . T) ((-638 $) . T) ((-708 #0#) . T) ((-708 |#1|) . T) ((-708 $) . T) ((-717) . T) ((-910) . T) ((-1028 |#1|) . T) ((-1045 #0#) . T) ((-1045 |#1|) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1204) . T) ((-1253 |#1|) . T))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-3712 (((-635 |#1|) $) 85)) (-4311 (($ $ (-762)) 88)) (-2089 (((-3 $ "failed") $ $) NIL)) (-4217 (($ $ $) NIL (|has| |#2| (-171))) (($ $ (-762)) NIL (|has| |#2| (-171)))) (-1816 (($) NIL T CONST)) (-4249 (($ $ |#1|) NIL) (($ $ (-810 |#1|)) NIL) (($ $ $) NIL)) (-3069 (((-3 (-810 |#1|) "failed") $) NIL) (((-3 (-883 |#1|) "failed") $) NIL)) (-1863 (((-810 |#1|) $) NIL) (((-883 |#1|) $) NIL)) (-2490 (($ $) 87)) (-2588 (((-3 $ "failed") $) NIL)) (-4347 (((-112) $) 76)) (-4335 (($ $) 80)) (-4287 (($ $ $ (-762)) 89)) (-2035 (((-112) $) NIL)) (-2110 (((-762) $) NIL)) (-2536 (((-635 $) $) NIL)) (-4238 (((-112) $) NIL)) (-3918 (($ (-810 |#1|) |#2|) NIL) (($ (-883 |#1|) |#2|) 25)) (-4227 (($ $) 102)) (-4273 (((-2 (|:| |k| (-810 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1284 (((-810 |#1|) $) NIL)) (-1295 (((-810 |#1|) $) NIL)) (-3167 (($ (-1 |#2| |#2|) $) NIL)) (-4260 (($ $ |#1|) NIL) (($ $ (-810 |#1|)) NIL) (($ $ $) NIL)) (-2592 (($ $ (-762)) 96 (|has| |#2| (-708 (-406 (-558)))))) (-1703 (((-2 (|:| |k| (-883 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2451 (((-883 |#1|) $) 69)) (-2463 ((|#2| $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-2573 (($ $ (-762)) 93 (|has| |#2| (-708 (-406 (-558)))))) (-4323 (((-762) $) 86)) (-4357 (((-112) $) 70)) (-3707 ((|#2| $) 74)) (-3220 (((-853) $) 56) (($ (-558)) NIL) (($ |#2|) 50) (($ (-810 |#1|)) NIL) (($ |#1|) 58) (($ (-883 |#1|)) NIL) (($ (-654 |#1| |#2|)) 42) (((-1261 |#1| |#2|) $) 63) (((-1270 |#1| |#2|) $) 68)) (-2583 (((-635 |#2|) $) NIL)) (-3736 ((|#2| $ (-883 |#1|)) NIL)) (-2023 ((|#2| $ (-810 |#1|)) NIL) ((|#2| $ $) NIL)) (-2542 (((-762)) NIL)) (-2131 (($) 21 T CONST)) (-2142 (($) 24 T CONST)) (-3475 (((-635 (-2 (|:| |k| (-883 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4299 (((-3 (-654 |#1| |#2|) "failed") $) 101)) (-1683 (((-112) $ $) 64)) (-1798 (($ $) 95) (($ $ $) 94)) (-1784 (($ $ $) 20)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 43) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-883 |#1|)) NIL)))
+(((-1266 |#1| |#2|) (-13 (-1267 |#1| |#2|) (-381 |#2| (-883 |#1|)) (-10 -8 (-15 -3220 ($ (-654 |#1| |#2|))) (-15 -3220 ((-1261 |#1| |#2|) $)) (-15 -3220 ((-1270 |#1| |#2|) $)) (-15 -4299 ((-3 (-654 |#1| |#2|) "failed") $)) (-15 -4287 ($ $ $ (-762))) (IF (|has| |#2| (-708 (-406 (-558)))) (PROGN (-15 -2573 ($ $ (-762))) (-15 -2592 ($ $ (-762)))) |%noBranch|))) (-841) (-171)) (T -1266))
+((-3220 (*1 *1 *2) (-12 (-5 *2 (-654 *3 *4)) (-4 *3 (-841)) (-4 *4 (-171)) (-5 *1 (-1266 *3 *4)))) (-3220 (*1 *2 *1) (-12 (-5 *2 (-1261 *3 *4)) (-5 *1 (-1266 *3 *4)) (-4 *3 (-841)) (-4 *4 (-171)))) (-3220 (*1 *2 *1) (-12 (-5 *2 (-1270 *3 *4)) (-5 *1 (-1266 *3 *4)) (-4 *3 (-841)) (-4 *4 (-171)))) (-4299 (*1 *2 *1) (|partial| -12 (-5 *2 (-654 *3 *4)) (-5 *1 (-1266 *3 *4)) (-4 *3 (-841)) (-4 *4 (-171)))) (-4287 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-1266 *3 *4)) (-4 *3 (-841)) (-4 *4 (-171)))) (-2573 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-1266 *3 *4)) (-4 *4 (-708 (-406 (-558)))) (-4 *3 (-841)) (-4 *4 (-171)))) (-2592 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-1266 *3 *4)) (-4 *4 (-708 (-406 (-558)))) (-4 *3 (-841)) (-4 *4 (-171)))))
+(-13 (-1267 |#1| |#2|) (-381 |#2| (-883 |#1|)) (-10 -8 (-15 -3220 ($ (-654 |#1| |#2|))) (-15 -3220 ((-1261 |#1| |#2|) $)) (-15 -3220 ((-1270 |#1| |#2|) $)) (-15 -4299 ((-3 (-654 |#1| |#2|) "failed") $)) (-15 -4287 ($ $ $ (-762))) (IF (|has| |#2| (-708 (-406 (-558)))) (PROGN (-15 -2573 ($ $ (-762))) (-15 -2592 ($ $ (-762)))) |%noBranch|)))
+((-3207 (((-112) $ $) 7)) (-2067 (((-112) $) 16)) (-3712 (((-635 |#1|) $) 41)) (-4311 (($ $ (-762)) 74)) (-2089 (((-3 $ "failed") $ $) 19)) (-4217 (($ $ $) 44 (|has| |#2| (-171))) (($ $ (-762)) 43 (|has| |#2| (-171)))) (-1816 (($) 17 T CONST)) (-4249 (($ $ |#1|) 55) (($ $ (-810 |#1|)) 54) (($ $ $) 53)) (-3069 (((-3 (-810 |#1|) "failed") $) 65)) (-1863 (((-810 |#1|) $) 66)) (-2588 (((-3 $ "failed") $) 33)) (-4347 (((-112) $) 46)) (-4335 (($ $) 45)) (-2035 (((-112) $) 31)) (-4238 (((-112) $) 51)) (-3918 (($ (-810 |#1|) |#2|) 52)) (-4227 (($ $) 50)) (-4273 (((-2 (|:| |k| (-810 |#1|)) (|:| |c| |#2|)) $) 61)) (-1284 (((-810 |#1|) $) 62)) (-1295 (((-810 |#1|) $) 76)) (-3167 (($ (-1 |#2| |#2|) $) 42)) (-4260 (($ $ |#1|) 58) (($ $ (-810 |#1|)) 57) (($ $ $) 56)) (-4310 (((-1145) $) 9)) (-2975 (((-1107) $) 10)) (-4323 (((-762) $) 75)) (-4357 (((-112) $) 48)) (-3707 ((|#2| $) 47)) (-3220 (((-853) $) 11) (($ (-558)) 29) (($ |#2|) 69) (($ (-810 |#1|)) 64) (($ |#1|) 49)) (-2023 ((|#2| $ (-810 |#1|)) 60) ((|#2| $ $) 59)) (-2542 (((-762)) 28)) (-2131 (($) 18 T CONST)) (-2142 (($) 30 T CONST)) (-1683 (((-112) $ $) 6)) (-1798 (($ $) 22) (($ $ $) 21)) (-1784 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ |#2| $) 68) (($ $ |#2|) 67) (($ |#1| $) 63)))
+(((-1267 |#1| |#2|) (-139) (-841) (-1039)) (T -1267))
+((-1295 (*1 *2 *1) (-12 (-4 *1 (-1267 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039)) (-5 *2 (-810 *3)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-1267 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039)) (-5 *2 (-762)))) (-4311 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *1 (-1267 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039)))))
+(-13 (-1263 |t#1| |t#2|) (-10 -8 (-15 -1295 ((-810 |t#1|) $)) (-15 -4323 ((-762) $)) (-15 -4311 ($ $ (-762)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-171)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-608 (-558)) . T) ((-608 #0=(-810 |#1|)) . T) ((-608 |#2|) . T) ((-605 (-853)) . T) ((-638 |#2|) . T) ((-638 $) . T) ((-708 |#2|) |has| |#2| (-171)) ((-717) . T) ((-1028 #0#) . T) ((-1045 |#2|) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1260 |#2|) . T) ((-1263 |#1| |#2|) . T))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-3712 (((-635 (-1163)) $) NIL)) (-1319 (($ (-1261 (-1163) |#1|)) NIL)) (-4311 (($ $ (-762)) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-4217 (($ $ $) NIL (|has| |#1| (-171))) (($ $ (-762)) NIL (|has| |#1| (-171)))) (-1816 (($) NIL T CONST)) (-4249 (($ $ (-1163)) NIL) (($ $ (-810 (-1163))) NIL) (($ $ $) NIL)) (-3069 (((-3 (-810 (-1163)) "failed") $) NIL)) (-1863 (((-810 (-1163)) $) NIL)) (-2588 (((-3 $ "failed") $) NIL)) (-4347 (((-112) $) NIL)) (-4335 (($ $) NIL)) (-2035 (((-112) $) NIL)) (-4238 (((-112) $) NIL)) (-3918 (($ (-810 (-1163)) |#1|) NIL)) (-4227 (($ $) NIL)) (-4273 (((-2 (|:| |k| (-810 (-1163))) (|:| |c| |#1|)) $) NIL)) (-1284 (((-810 (-1163)) $) NIL)) (-1295 (((-810 (-1163)) $) NIL)) (-3167 (($ (-1 |#1| |#1|) $) NIL)) (-4260 (($ $ (-1163)) NIL) (($ $ (-810 (-1163))) NIL) (($ $ $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-4294 (((-1261 (-1163) |#1|) $) NIL)) (-4323 (((-762) $) NIL)) (-4357 (((-112) $) NIL)) (-3707 ((|#1| $) NIL)) (-3220 (((-853) $) NIL) (($ (-558)) NIL) (($ |#1|) NIL) (($ (-810 (-1163))) NIL) (($ (-1163)) NIL)) (-2023 ((|#1| $ (-810 (-1163))) NIL) ((|#1| $ $) NIL)) (-2542 (((-762)) NIL)) (-2131 (($) NIL T CONST)) (-1307 (((-635 (-2 (|:| |k| (-1163)) (|:| |c| $))) $) NIL)) (-2142 (($) NIL T CONST)) (-1683 (((-112) $ $) NIL)) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1163) $) NIL)))
+(((-1268 |#1|) (-13 (-1267 (-1163) |#1|) (-10 -8 (-15 -4294 ((-1261 (-1163) |#1|) $)) (-15 -1319 ($ (-1261 (-1163) |#1|))) (-15 -1307 ((-635 (-2 (|:| |k| (-1163)) (|:| |c| $))) $)))) (-1039)) (T -1268))
+((-4294 (*1 *2 *1) (-12 (-5 *2 (-1261 (-1163) *3)) (-5 *1 (-1268 *3)) (-4 *3 (-1039)))) (-1319 (*1 *1 *2) (-12 (-5 *2 (-1261 (-1163) *3)) (-4 *3 (-1039)) (-5 *1 (-1268 *3)))) (-1307 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |k| (-1163)) (|:| |c| (-1268 *3))))) (-5 *1 (-1268 *3)) (-4 *3 (-1039)))))
+(-13 (-1267 (-1163) |#1|) (-10 -8 (-15 -4294 ((-1261 (-1163) |#1|) $)) (-15 -1319 ($ (-1261 (-1163) |#1|))) (-15 -1307 ((-635 (-2 (|:| |k| (-1163)) (|:| |c| $))) $))))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) NIL)) (-2089 (((-3 $ "failed") $ $) NIL)) (-1816 (($) NIL T CONST)) (-3069 (((-3 |#2| "failed") $) NIL)) (-1863 ((|#2| $) NIL)) (-2490 (($ $) NIL)) (-2588 (((-3 $ "failed") $) 35)) (-4347 (((-112) $) 30)) (-4335 (($ $) 31)) (-2035 (((-112) $) NIL)) (-2110 (((-762) $) NIL)) (-2536 (((-635 $) $) NIL)) (-4238 (((-112) $) NIL)) (-3918 (($ |#2| |#1|) NIL)) (-1284 ((|#2| $) 19)) (-1295 ((|#2| $) 16)) (-3167 (($ (-1 |#1| |#1|) $) NIL)) (-1703 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-2451 ((|#2| $) NIL)) (-2463 ((|#1| $) NIL)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-4357 (((-112) $) 27)) (-3707 ((|#1| $) 28)) (-3220 (((-853) $) 54) (($ (-558)) 39) (($ |#1|) 34) (($ |#2|) NIL)) (-2583 (((-635 |#1|) $) NIL)) (-3736 ((|#1| $ |#2|) NIL)) (-2023 ((|#1| $ |#2|) 24)) (-2542 (((-762)) 14)) (-2131 (($) 25 T CONST)) (-2142 (($) 11 T CONST)) (-3475 (((-635 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-1683 (((-112) $ $) 26)) (-1810 (($ $ |#1|) 56 (|has| |#1| (-362)))) (-1798 (($ $) NIL) (($ $ $) NIL)) (-1784 (($ $ $) 43)) (** (($ $ (-911)) NIL) (($ $ (-762)) 45)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 44) (($ |#1| $) 40) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2755 (((-762) $) 15)))
+(((-1269 |#1| |#2|) (-13 (-1039) (-1260 |#1|) (-381 |#1| |#2|) (-608 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2755 ((-762) $)) (-15 -1295 (|#2| $)) (-15 -1284 (|#2| $)) (-15 -2490 ($ $)) (-15 -2023 (|#1| $ |#2|)) (-15 -4357 ((-112) $)) (-15 -3707 (|#1| $)) (-15 -4347 ((-112) $)) (-15 -4335 ($ $)) (-15 -3167 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-362)) (-15 -1810 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4375)) (-6 -4375) |%noBranch|) (IF (|has| |#1| (-6 -4379)) (-6 -4379) |%noBranch|) (IF (|has| |#1| (-6 -4380)) (-6 -4380) |%noBranch|))) (-1039) (-837)) (T -1269))
+((* (*1 *1 *1 *2) (-12 (-5 *1 (-1269 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-837)))) (-2490 (*1 *1 *1) (-12 (-5 *1 (-1269 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-837)))) (-3167 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1039)) (-5 *1 (-1269 *3 *4)) (-4 *4 (-837)))) (-2755 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-1269 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-837)))) (-1295 (*1 *2 *1) (-12 (-4 *2 (-837)) (-5 *1 (-1269 *3 *2)) (-4 *3 (-1039)))) (-1284 (*1 *2 *1) (-12 (-4 *2 (-837)) (-5 *1 (-1269 *3 *2)) (-4 *3 (-1039)))) (-2023 (*1 *2 *1 *3) (-12 (-4 *2 (-1039)) (-5 *1 (-1269 *2 *3)) (-4 *3 (-837)))) (-4357 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1269 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-837)))) (-3707 (*1 *2 *1) (-12 (-4 *2 (-1039)) (-5 *1 (-1269 *2 *3)) (-4 *3 (-837)))) (-4347 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1269 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-837)))) (-4335 (*1 *1 *1) (-12 (-5 *1 (-1269 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-837)))) (-1810 (*1 *1 *1 *2) (-12 (-5 *1 (-1269 *2 *3)) (-4 *2 (-362)) (-4 *2 (-1039)) (-4 *3 (-837)))))
+(-13 (-1039) (-1260 |#1|) (-381 |#1| |#2|) (-608 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2755 ((-762) $)) (-15 -1295 (|#2| $)) (-15 -1284 (|#2| $)) (-15 -2490 ($ $)) (-15 -2023 (|#1| $ |#2|)) (-15 -4357 ((-112) $)) (-15 -3707 (|#1| $)) (-15 -4347 ((-112) $)) (-15 -4335 ($ $)) (-15 -3167 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-362)) (-15 -1810 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4375)) (-6 -4375) |%noBranch|) (IF (|has| |#1| (-6 -4379)) (-6 -4379) |%noBranch|) (IF (|has| |#1| (-6 -4380)) (-6 -4380) |%noBranch|)))
+((-3207 (((-112) $ $) 26)) (-2067 (((-112) $) NIL)) (-3712 (((-635 |#1|) $) 120)) (-1319 (($ (-1261 |#1| |#2|)) 44)) (-4311 (($ $ (-762)) 32)) (-2089 (((-3 $ "failed") $ $) NIL)) (-4217 (($ $ $) 48 (|has| |#2| (-171))) (($ $ (-762)) 46 (|has| |#2| (-171)))) (-1816 (($) NIL T CONST)) (-4249 (($ $ |#1|) 102) (($ $ (-810 |#1|)) 103) (($ $ $) 25)) (-3069 (((-3 (-810 |#1|) "failed") $) NIL)) (-1863 (((-810 |#1|) $) NIL)) (-2588 (((-3 $ "failed") $) 110)) (-4347 (((-112) $) 105)) (-4335 (($ $) 106)) (-2035 (((-112) $) NIL)) (-4238 (((-112) $) NIL)) (-3918 (($ (-810 |#1|) |#2|) 19)) (-4227 (($ $) NIL)) (-4273 (((-2 (|:| |k| (-810 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1284 (((-810 |#1|) $) 111)) (-1295 (((-810 |#1|) $) 114)) (-3167 (($ (-1 |#2| |#2|) $) 119)) (-4260 (($ $ |#1|) 100) (($ $ (-810 |#1|)) 101) (($ $ $) 56)) (-4310 (((-1145) $) NIL)) (-2975 (((-1107) $) NIL)) (-4294 (((-1261 |#1| |#2|) $) 84)) (-4323 (((-762) $) 117)) (-4357 (((-112) $) 70)) (-3707 ((|#2| $) 28)) (-3220 (((-853) $) 63) (($ (-558)) 77) (($ |#2|) 74) (($ (-810 |#1|)) 17) (($ |#1|) 73)) (-2023 ((|#2| $ (-810 |#1|)) 104) ((|#2| $ $) 27)) (-2542 (((-762)) 108)) (-2131 (($) 14 T CONST)) (-1307 (((-635 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-2142 (($) 29 T CONST)) (-1683 (((-112) $ $) 13)) (-1798 (($ $) 88) (($ $ $) 91)) (-1784 (($ $ $) 55)) (** (($ $ (-911)) NIL) (($ $ (-762)) 49)) (* (($ (-911) $) NIL) (($ (-762) $) 47) (($ (-558) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82)))
+(((-1270 |#1| |#2|) (-13 (-1267 |#1| |#2|) (-10 -8 (-15 -4294 ((-1261 |#1| |#2|) $)) (-15 -1319 ($ (-1261 |#1| |#2|))) (-15 -1307 ((-635 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-841) (-1039)) (T -1270))
+((-4294 (*1 *2 *1) (-12 (-5 *2 (-1261 *3 *4)) (-5 *1 (-1270 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039)))) (-1319 (*1 *1 *2) (-12 (-5 *2 (-1261 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039)) (-5 *1 (-1270 *3 *4)))) (-1307 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |k| *3) (|:| |c| (-1270 *3 *4))))) (-5 *1 (-1270 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039)))))
+(-13 (-1267 |#1| |#2|) (-10 -8 (-15 -4294 ((-1261 |#1| |#2|) $)) (-15 -1319 ($ (-1261 |#1| |#2|))) (-15 -1307 ((-635 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
+((-1377 (((-635 (-1143 |#1|)) (-1 (-635 (-1143 |#1|)) (-635 (-1143 |#1|))) (-558)) 15) (((-1143 |#1|) (-1 (-1143 |#1|) (-1143 |#1|))) 11)))
+(((-1271 |#1|) (-10 -7 (-15 -1377 ((-1143 |#1|) (-1 (-1143 |#1|) (-1143 |#1|)))) (-15 -1377 ((-635 (-1143 |#1|)) (-1 (-635 (-1143 |#1|)) (-635 (-1143 |#1|))) (-558)))) (-1200)) (T -1271))
+((-1377 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-635 (-1143 *5)) (-635 (-1143 *5)))) (-5 *4 (-558)) (-5 *2 (-635 (-1143 *5))) (-5 *1 (-1271 *5)) (-4 *5 (-1200)))) (-1377 (*1 *2 *3) (-12 (-5 *3 (-1 (-1143 *4) (-1143 *4))) (-5 *2 (-1143 *4)) (-5 *1 (-1271 *4)) (-4 *4 (-1200)))))
+(-10 -7 (-15 -1377 ((-1143 |#1|) (-1 (-1143 |#1|) (-1143 |#1|)))) (-15 -1377 ((-635 (-1143 |#1|)) (-1 (-635 (-1143 |#1|)) (-635 (-1143 |#1|))) (-558))))
+((-1344 (((-635 (-2 (|:| -1680 (-1159 |#1|)) (|:| -4205 (-635 (-942 |#1|))))) (-635 (-942 |#1|))) 147) (((-635 (-2 (|:| -1680 (-1159 |#1|)) (|:| -4205 (-635 (-942 |#1|))))) (-635 (-942 |#1|)) (-112)) 146) (((-635 (-2 (|:| -1680 (-1159 |#1|)) (|:| -4205 (-635 (-942 |#1|))))) (-635 (-942 |#1|)) (-112) (-112)) 145) (((-635 (-2 (|:| -1680 (-1159 |#1|)) (|:| -4205 (-635 (-942 |#1|))))) (-635 (-942 |#1|)) (-112) (-112) (-112)) 144) (((-635 (-2 (|:| -1680 (-1159 |#1|)) (|:| -4205 (-635 (-942 |#1|))))) (-1036 |#1| |#2|)) 129)) (-1332 (((-635 (-1036 |#1| |#2|)) (-635 (-942 |#1|))) 71) (((-635 (-1036 |#1| |#2|)) (-635 (-942 |#1|)) (-112)) 70) (((-635 (-1036 |#1| |#2|)) (-635 (-942 |#1|)) (-112) (-112)) 69)) (-1380 (((-635 (-1133 |#1| (-529 (-855 |#3|)) (-855 |#3|) (-771 |#1| (-855 |#3|)))) (-1036 |#1| |#2|)) 60)) (-1356 (((-635 (-635 (-1014 (-406 |#1|)))) (-635 (-942 |#1|))) 114) (((-635 (-635 (-1014 (-406 |#1|)))) (-635 (-942 |#1|)) (-112)) 113) (((-635 (-635 (-1014 (-406 |#1|)))) (-635 (-942 |#1|)) (-112) (-112)) 112) (((-635 (-635 (-1014 (-406 |#1|)))) (-635 (-942 |#1|)) (-112) (-112) (-112)) 111) (((-635 (-635 (-1014 (-406 |#1|)))) (-1036 |#1| |#2|)) 106)) (-1369 (((-635 (-635 (-1014 (-406 |#1|)))) (-635 (-942 |#1|))) 119) (((-635 (-635 (-1014 (-406 |#1|)))) (-635 (-942 |#1|)) (-112)) 118) (((-635 (-635 (-1014 (-406 |#1|)))) (-635 (-942 |#1|)) (-112) (-112)) 117) (((-635 (-635 (-1014 (-406 |#1|)))) (-1036 |#1| |#2|)) 116)) (-3224 (((-635 (-771 |#1| (-855 |#3|))) (-1133 |#1| (-529 (-855 |#3|)) (-855 |#3|) (-771 |#1| (-855 |#3|)))) 97) (((-1159 (-1014 (-406 |#1|))) (-1159 |#1|)) 88) (((-942 (-1014 (-406 |#1|))) (-771 |#1| (-855 |#3|))) 95) (((-942 (-1014 (-406 |#1|))) (-942 |#1|)) 93) (((-771 |#1| (-855 |#3|)) (-771 |#1| (-855 |#2|))) 32)))
+(((-1272 |#1| |#2| |#3|) (-10 -7 (-15 -1332 ((-635 (-1036 |#1| |#2|)) (-635 (-942 |#1|)) (-112) (-112))) (-15 -1332 ((-635 (-1036 |#1| |#2|)) (-635 (-942 |#1|)) (-112))) (-15 -1332 ((-635 (-1036 |#1| |#2|)) (-635 (-942 |#1|)))) (-15 -1344 ((-635 (-2 (|:| -1680 (-1159 |#1|)) (|:| -4205 (-635 (-942 |#1|))))) (-1036 |#1| |#2|))) (-15 -1344 ((-635 (-2 (|:| -1680 (-1159 |#1|)) (|:| -4205 (-635 (-942 |#1|))))) (-635 (-942 |#1|)) (-112) (-112) (-112))) (-15 -1344 ((-635 (-2 (|:| -1680 (-1159 |#1|)) (|:| -4205 (-635 (-942 |#1|))))) (-635 (-942 |#1|)) (-112) (-112))) (-15 -1344 ((-635 (-2 (|:| -1680 (-1159 |#1|)) (|:| -4205 (-635 (-942 |#1|))))) (-635 (-942 |#1|)) (-112))) (-15 -1344 ((-635 (-2 (|:| -1680 (-1159 |#1|)) (|:| -4205 (-635 (-942 |#1|))))) (-635 (-942 |#1|)))) (-15 -1356 ((-635 (-635 (-1014 (-406 |#1|)))) (-1036 |#1| |#2|))) (-15 -1356 ((-635 (-635 (-1014 (-406 |#1|)))) (-635 (-942 |#1|)) (-112) (-112) (-112))) (-15 -1356 ((-635 (-635 (-1014 (-406 |#1|)))) (-635 (-942 |#1|)) (-112) (-112))) (-15 -1356 ((-635 (-635 (-1014 (-406 |#1|)))) (-635 (-942 |#1|)) (-112))) (-15 -1356 ((-635 (-635 (-1014 (-406 |#1|)))) (-635 (-942 |#1|)))) (-15 -1369 ((-635 (-635 (-1014 (-406 |#1|)))) (-1036 |#1| |#2|))) (-15 -1369 ((-635 (-635 (-1014 (-406 |#1|)))) (-635 (-942 |#1|)) (-112) (-112))) (-15 -1369 ((-635 (-635 (-1014 (-406 |#1|)))) (-635 (-942 |#1|)) (-112))) (-15 -1369 ((-635 (-635 (-1014 (-406 |#1|)))) (-635 (-942 |#1|)))) (-15 -1380 ((-635 (-1133 |#1| (-529 (-855 |#3|)) (-855 |#3|) (-771 |#1| (-855 |#3|)))) (-1036 |#1| |#2|))) (-15 -3224 ((-771 |#1| (-855 |#3|)) (-771 |#1| (-855 |#2|)))) (-15 -3224 ((-942 (-1014 (-406 |#1|))) (-942 |#1|))) (-15 -3224 ((-942 (-1014 (-406 |#1|))) (-771 |#1| (-855 |#3|)))) (-15 -3224 ((-1159 (-1014 (-406 |#1|))) (-1159 |#1|))) (-15 -3224 ((-635 (-771 |#1| (-855 |#3|))) (-1133 |#1| (-529 (-855 |#3|)) (-855 |#3|) (-771 |#1| (-855 |#3|)))))) (-13 (-839) (-306) (-146) (-1012)) (-635 (-1163)) (-635 (-1163))) (T -1272))
+((-3224 (*1 *2 *3) (-12 (-5 *3 (-1133 *4 (-529 (-855 *6)) (-855 *6) (-771 *4 (-855 *6)))) (-4 *4 (-13 (-839) (-306) (-146) (-1012))) (-14 *6 (-635 (-1163))) (-5 *2 (-635 (-771 *4 (-855 *6)))) (-5 *1 (-1272 *4 *5 *6)) (-14 *5 (-635 (-1163))))) (-3224 (*1 *2 *3) (-12 (-5 *3 (-1159 *4)) (-4 *4 (-13 (-839) (-306) (-146) (-1012))) (-5 *2 (-1159 (-1014 (-406 *4)))) (-5 *1 (-1272 *4 *5 *6)) (-14 *5 (-635 (-1163))) (-14 *6 (-635 (-1163))))) (-3224 (*1 *2 *3) (-12 (-5 *3 (-771 *4 (-855 *6))) (-4 *4 (-13 (-839) (-306) (-146) (-1012))) (-14 *6 (-635 (-1163))) (-5 *2 (-942 (-1014 (-406 *4)))) (-5 *1 (-1272 *4 *5 *6)) (-14 *5 (-635 (-1163))))) (-3224 (*1 *2 *3) (-12 (-5 *3 (-942 *4)) (-4 *4 (-13 (-839) (-306) (-146) (-1012))) (-5 *2 (-942 (-1014 (-406 *4)))) (-5 *1 (-1272 *4 *5 *6)) (-14 *5 (-635 (-1163))) (-14 *6 (-635 (-1163))))) (-3224 (*1 *2 *3) (-12 (-5 *3 (-771 *4 (-855 *5))) (-4 *4 (-13 (-839) (-306) (-146) (-1012))) (-14 *5 (-635 (-1163))) (-5 *2 (-771 *4 (-855 *6))) (-5 *1 (-1272 *4 *5 *6)) (-14 *6 (-635 (-1163))))) (-1380 (*1 *2 *3) (-12 (-5 *3 (-1036 *4 *5)) (-4 *4 (-13 (-839) (-306) (-146) (-1012))) (-14 *5 (-635 (-1163))) (-5 *2 (-635 (-1133 *4 (-529 (-855 *6)) (-855 *6) (-771 *4 (-855 *6))))) (-5 *1 (-1272 *4 *5 *6)) (-14 *6 (-635 (-1163))))) (-1369 (*1 *2 *3) (-12 (-5 *3 (-635 (-942 *4))) (-4 *4 (-13 (-839) (-306) (-146) (-1012))) (-5 *2 (-635 (-635 (-1014 (-406 *4))))) (-5 *1 (-1272 *4 *5 *6)) (-14 *5 (-635 (-1163))) (-14 *6 (-635 (-1163))))) (-1369 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-942 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-839) (-306) (-146) (-1012))) (-5 *2 (-635 (-635 (-1014 (-406 *5))))) (-5 *1 (-1272 *5 *6 *7)) (-14 *6 (-635 (-1163))) (-14 *7 (-635 (-1163))))) (-1369 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-635 (-942 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-839) (-306) (-146) (-1012))) (-5 *2 (-635 (-635 (-1014 (-406 *5))))) (-5 *1 (-1272 *5 *6 *7)) (-14 *6 (-635 (-1163))) (-14 *7 (-635 (-1163))))) (-1369 (*1 *2 *3) (-12 (-5 *3 (-1036 *4 *5)) (-4 *4 (-13 (-839) (-306) (-146) (-1012))) (-14 *5 (-635 (-1163))) (-5 *2 (-635 (-635 (-1014 (-406 *4))))) (-5 *1 (-1272 *4 *5 *6)) (-14 *6 (-635 (-1163))))) (-1356 (*1 *2 *3) (-12 (-5 *3 (-635 (-942 *4))) (-4 *4 (-13 (-839) (-306) (-146) (-1012))) (-5 *2 (-635 (-635 (-1014 (-406 *4))))) (-5 *1 (-1272 *4 *5 *6)) (-14 *5 (-635 (-1163))) (-14 *6 (-635 (-1163))))) (-1356 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-942 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-839) (-306) (-146) (-1012))) (-5 *2 (-635 (-635 (-1014 (-406 *5))))) (-5 *1 (-1272 *5 *6 *7)) (-14 *6 (-635 (-1163))) (-14 *7 (-635 (-1163))))) (-1356 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-635 (-942 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-839) (-306) (-146) (-1012))) (-5 *2 (-635 (-635 (-1014 (-406 *5))))) (-5 *1 (-1272 *5 *6 *7)) (-14 *6 (-635 (-1163))) (-14 *7 (-635 (-1163))))) (-1356 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-635 (-942 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-839) (-306) (-146) (-1012))) (-5 *2 (-635 (-635 (-1014 (-406 *5))))) (-5 *1 (-1272 *5 *6 *7)) (-14 *6 (-635 (-1163))) (-14 *7 (-635 (-1163))))) (-1356 (*1 *2 *3) (-12 (-5 *3 (-1036 *4 *5)) (-4 *4 (-13 (-839) (-306) (-146) (-1012))) (-14 *5 (-635 (-1163))) (-5 *2 (-635 (-635 (-1014 (-406 *4))))) (-5 *1 (-1272 *4 *5 *6)) (-14 *6 (-635 (-1163))))) (-1344 (*1 *2 *3) (-12 (-4 *4 (-13 (-839) (-306) (-146) (-1012))) (-5 *2 (-635 (-2 (|:| -1680 (-1159 *4)) (|:| -4205 (-635 (-942 *4)))))) (-5 *1 (-1272 *4 *5 *6)) (-5 *3 (-635 (-942 *4))) (-14 *5 (-635 (-1163))) (-14 *6 (-635 (-1163))))) (-1344 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-839) (-306) (-146) (-1012))) (-5 *2 (-635 (-2 (|:| -1680 (-1159 *5)) (|:| -4205 (-635 (-942 *5)))))) (-5 *1 (-1272 *5 *6 *7)) (-5 *3 (-635 (-942 *5))) (-14 *6 (-635 (-1163))) (-14 *7 (-635 (-1163))))) (-1344 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-839) (-306) (-146) (-1012))) (-5 *2 (-635 (-2 (|:| -1680 (-1159 *5)) (|:| -4205 (-635 (-942 *5)))))) (-5 *1 (-1272 *5 *6 *7)) (-5 *3 (-635 (-942 *5))) (-14 *6 (-635 (-1163))) (-14 *7 (-635 (-1163))))) (-1344 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-839) (-306) (-146) (-1012))) (-5 *2 (-635 (-2 (|:| -1680 (-1159 *5)) (|:| -4205 (-635 (-942 *5)))))) (-5 *1 (-1272 *5 *6 *7)) (-5 *3 (-635 (-942 *5))) (-14 *6 (-635 (-1163))) (-14 *7 (-635 (-1163))))) (-1344 (*1 *2 *3) (-12 (-5 *3 (-1036 *4 *5)) (-4 *4 (-13 (-839) (-306) (-146) (-1012))) (-14 *5 (-635 (-1163))) (-5 *2 (-635 (-2 (|:| -1680 (-1159 *4)) (|:| -4205 (-635 (-942 *4)))))) (-5 *1 (-1272 *4 *5 *6)) (-14 *6 (-635 (-1163))))) (-1332 (*1 *2 *3) (-12 (-5 *3 (-635 (-942 *4))) (-4 *4 (-13 (-839) (-306) (-146) (-1012))) (-5 *2 (-635 (-1036 *4 *5))) (-5 *1 (-1272 *4 *5 *6)) (-14 *5 (-635 (-1163))) (-14 *6 (-635 (-1163))))) (-1332 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-942 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-839) (-306) (-146) (-1012))) (-5 *2 (-635 (-1036 *5 *6))) (-5 *1 (-1272 *5 *6 *7)) (-14 *6 (-635 (-1163))) (-14 *7 (-635 (-1163))))) (-1332 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-635 (-942 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-839) (-306) (-146) (-1012))) (-5 *2 (-635 (-1036 *5 *6))) (-5 *1 (-1272 *5 *6 *7)) (-14 *6 (-635 (-1163))) (-14 *7 (-635 (-1163))))))
+(-10 -7 (-15 -1332 ((-635 (-1036 |#1| |#2|)) (-635 (-942 |#1|)) (-112) (-112))) (-15 -1332 ((-635 (-1036 |#1| |#2|)) (-635 (-942 |#1|)) (-112))) (-15 -1332 ((-635 (-1036 |#1| |#2|)) (-635 (-942 |#1|)))) (-15 -1344 ((-635 (-2 (|:| -1680 (-1159 |#1|)) (|:| -4205 (-635 (-942 |#1|))))) (-1036 |#1| |#2|))) (-15 -1344 ((-635 (-2 (|:| -1680 (-1159 |#1|)) (|:| -4205 (-635 (-942 |#1|))))) (-635 (-942 |#1|)) (-112) (-112) (-112))) (-15 -1344 ((-635 (-2 (|:| -1680 (-1159 |#1|)) (|:| -4205 (-635 (-942 |#1|))))) (-635 (-942 |#1|)) (-112) (-112))) (-15 -1344 ((-635 (-2 (|:| -1680 (-1159 |#1|)) (|:| -4205 (-635 (-942 |#1|))))) (-635 (-942 |#1|)) (-112))) (-15 -1344 ((-635 (-2 (|:| -1680 (-1159 |#1|)) (|:| -4205 (-635 (-942 |#1|))))) (-635 (-942 |#1|)))) (-15 -1356 ((-635 (-635 (-1014 (-406 |#1|)))) (-1036 |#1| |#2|))) (-15 -1356 ((-635 (-635 (-1014 (-406 |#1|)))) (-635 (-942 |#1|)) (-112) (-112) (-112))) (-15 -1356 ((-635 (-635 (-1014 (-406 |#1|)))) (-635 (-942 |#1|)) (-112) (-112))) (-15 -1356 ((-635 (-635 (-1014 (-406 |#1|)))) (-635 (-942 |#1|)) (-112))) (-15 -1356 ((-635 (-635 (-1014 (-406 |#1|)))) (-635 (-942 |#1|)))) (-15 -1369 ((-635 (-635 (-1014 (-406 |#1|)))) (-1036 |#1| |#2|))) (-15 -1369 ((-635 (-635 (-1014 (-406 |#1|)))) (-635 (-942 |#1|)) (-112) (-112))) (-15 -1369 ((-635 (-635 (-1014 (-406 |#1|)))) (-635 (-942 |#1|)) (-112))) (-15 -1369 ((-635 (-635 (-1014 (-406 |#1|)))) (-635 (-942 |#1|)))) (-15 -1380 ((-635 (-1133 |#1| (-529 (-855 |#3|)) (-855 |#3|) (-771 |#1| (-855 |#3|)))) (-1036 |#1| |#2|))) (-15 -3224 ((-771 |#1| (-855 |#3|)) (-771 |#1| (-855 |#2|)))) (-15 -3224 ((-942 (-1014 (-406 |#1|))) (-942 |#1|))) (-15 -3224 ((-942 (-1014 (-406 |#1|))) (-771 |#1| (-855 |#3|)))) (-15 -3224 ((-1159 (-1014 (-406 |#1|))) (-1159 |#1|))) (-15 -3224 ((-635 (-771 |#1| (-855 |#3|))) (-1133 |#1| (-529 (-855 |#3|)) (-855 |#3|) (-771 |#1| (-855 |#3|))))))
+((-1415 (((-3 (-1246 (-406 (-558))) "failed") (-1246 |#1|) |#1|) 21)) (-1391 (((-112) (-1246 |#1|)) 12)) (-1403 (((-3 (-1246 (-558)) "failed") (-1246 |#1|)) 16)))
+(((-1273 |#1|) (-10 -7 (-15 -1391 ((-112) (-1246 |#1|))) (-15 -1403 ((-3 (-1246 (-558)) "failed") (-1246 |#1|))) (-15 -1415 ((-3 (-1246 (-406 (-558))) "failed") (-1246 |#1|) |#1|))) (-631 (-558))) (T -1273))
+((-1415 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1246 *4)) (-4 *4 (-631 (-558))) (-5 *2 (-1246 (-406 (-558)))) (-5 *1 (-1273 *4)))) (-1403 (*1 *2 *3) (|partial| -12 (-5 *3 (-1246 *4)) (-4 *4 (-631 (-558))) (-5 *2 (-1246 (-558))) (-5 *1 (-1273 *4)))) (-1391 (*1 *2 *3) (-12 (-5 *3 (-1246 *4)) (-4 *4 (-631 (-558))) (-5 *2 (-112)) (-5 *1 (-1273 *4)))))
+(-10 -7 (-15 -1391 ((-112) (-1246 |#1|))) (-15 -1403 ((-3 (-1246 (-558)) "failed") (-1246 |#1|))) (-15 -1415 ((-3 (-1246 (-406 (-558))) "failed") (-1246 |#1|) |#1|)))
+((-3207 (((-112) $ $) NIL)) (-2067 (((-112) $) 11)) (-2089 (((-3 $ "failed") $ $) NIL)) (-2276 (((-762)) 8)) (-1816 (($) NIL T CONST)) (-2588 (((-3 $ "failed") $) 43)) (-2424 (($) 36)) (-2035 (((-112) $) NIL)) (-2457 (((-3 $ "failed") $) 29)) (-2637 (((-911) $) 15)) (-4310 (((-1145) $) NIL)) (-1796 (($) 25 T CONST)) (-2851 (($ (-911)) 37)) (-2975 (((-1107) $) NIL)) (-3224 (((-558) $) 13)) (-3220 (((-853) $) 22) (($ (-558)) 19)) (-2542 (((-762)) 9)) (-2131 (($) 23 T CONST)) (-2142 (($) 24 T CONST)) (-1683 (((-112) $ $) 27)) (-1798 (($ $) 38) (($ $ $) 35)) (-1784 (($ $ $) 26)) (** (($ $ (-911)) NIL) (($ $ (-762)) 40)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 32) (($ $ $) 31)))
+(((-1274 |#1|) (-13 (-171) (-367) (-606 (-558)) (-1138)) (-911)) (T -1274))
+NIL
+(-13 (-171) (-367) (-606 (-558)) (-1138))
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+((-3 3184372 3184377 3184382 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-2 3184357 3184362 3184367 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1 3184342 3184347 3184352 NIL NIL NIL NIL (NIL) -8 NIL NIL) (0 3184327 3184332 3184337 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1274 3183503 3184202 3184279 "ZMOD" 3184284 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1273 3182613 3182777 3182986 "ZLINDEP" 3183335 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1272 3171917 3173681 3175653 "ZDSOLVE" 3180743 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1271 3171163 3171304 3171493 "YSTREAM" 3171763 NIL YSTREAM (NIL T) -7 NIL NIL) (-1270 3168974 3170464 3170668 "XRPOLY" 3171006 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1269 3165562 3166845 3167420 "XPR" 3168446 NIL XPR (NIL T T) -8 NIL NIL) (-1268 3163318 3164893 3165097 "XPOLY" 3165393 NIL XPOLY (NIL T) -8 NIL NIL) (-1267 3161109 3162443 3162498 "XPOLYC" 3162786 NIL XPOLYC (NIL T T) -9 NIL 3162899) (-1266 3157527 3159626 3160014 "XPBWPOLY" 3160767 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1265 3153438 3155690 3155732 "XF" 3156353 NIL XF (NIL T) -9 NIL 3156753) (-1264 3153059 3153147 3153316 "XF-" 3153321 NIL XF- (NIL T T) -8 NIL NIL) (-1263 3148393 3149648 3149703 "XFALG" 3151875 NIL XFALG (NIL T T) -9 NIL 3152664) (-1262 3147526 3147630 3147835 "XEXPPKG" 3148285 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1261 3145670 3147376 3147472 "XDPOLY" 3147477 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1260 3144615 3145181 3145224 "XALG" 3145229 NIL XALG (NIL T) -9 NIL 3145340) (-1259 3138084 3142592 3143086 "WUTSET" 3144207 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1258 3136375 3137136 3137459 "WP" 3137895 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1257 3136004 3136197 3136267 "WHILEAST" 3136327 T WHILEAST (NIL) -8 NIL NIL) (-1256 3135503 3135721 3135815 "WHEREAST" 3135932 T WHEREAST (NIL) -8 NIL NIL) (-1255 3134389 3134587 3134882 "WFFINTBS" 3135300 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1254 3132293 3132720 3133182 "WEIER" 3133961 NIL WEIER (NIL T) -7 NIL NIL) (-1253 3131440 3131864 3131906 "VSPACE" 3132042 NIL VSPACE (NIL T) -9 NIL 3132116) (-1252 3131278 3131305 3131396 "VSPACE-" 3131401 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1251 3131086 3131129 3131197 "VOID" 3131232 T VOID (NIL) -8 NIL NIL) (-1250 3129222 3129581 3129987 "VIEW" 3130702 T VIEW (NIL) -7 NIL NIL) (-1249 3125647 3126285 3127022 "VIEWDEF" 3128507 T VIEWDEF (NIL) -7 NIL NIL) (-1248 3114985 3117195 3119368 "VIEW3D" 3123496 T VIEW3D (NIL) -8 NIL NIL) (-1247 3107267 3108896 3110475 "VIEW2D" 3113428 T VIEW2D (NIL) -8 NIL NIL) (-1246 3102671 3107037 3107129 "VECTOR" 3107210 NIL VECTOR (NIL T) -8 NIL NIL) (-1245 3101248 3101507 3101825 "VECTOR2" 3102401 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1244 3094775 3099032 3099075 "VECTCAT" 3100068 NIL VECTCAT (NIL T) -9 NIL 3100654) (-1243 3093789 3094043 3094433 "VECTCAT-" 3094438 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1242 3093270 3093440 3093560 "VARIABLE" 3093704 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1241 3093203 3093208 3093238 "UTYPE" 3093243 T UTYPE (NIL) -9 NIL NIL) (-1240 3092033 3092187 3092449 "UTSODETL" 3093029 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1239 3089473 3089933 3090457 "UTSODE" 3091574 NIL UTSODE (NIL T T) -7 NIL NIL) (-1238 3081349 3087099 3087588 "UTS" 3089042 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1237 3072592 3077916 3077959 "UTSCAT" 3079071 NIL UTSCAT (NIL T) -9 NIL 3079828) (-1236 3069947 3070662 3071651 "UTSCAT-" 3071656 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1235 3069574 3069617 3069750 "UTS2" 3069898 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1234 3063847 3066412 3066455 "URAGG" 3068525 NIL URAGG (NIL T) -9 NIL 3069248) (-1233 3060786 3061649 3062772 "URAGG-" 3062777 NIL URAGG- (NIL T T) -8 NIL NIL) (-1232 3056510 3059400 3059872 "UPXSSING" 3060450 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1231 3048612 3055757 3056030 "UPXS" 3056295 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1230 3041725 3048516 3048588 "UPXSCONS" 3048593 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1229 3031970 3038720 3038782 "UPXSCCA" 3039356 NIL UPXSCCA (NIL T T) -9 NIL 3039589) (-1228 3031608 3031693 3031867 "UPXSCCA-" 3031872 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1227 3021706 3028229 3028272 "UPXSCAT" 3028920 NIL UPXSCAT (NIL T) -9 NIL 3029528) (-1226 3021136 3021215 3021394 "UPXS2" 3021621 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1225 3019790 3020043 3020394 "UPSQFREE" 3020879 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1224 3013578 3016592 3016647 "UPSCAT" 3017808 NIL UPSCAT (NIL T T) -9 NIL 3018582) (-1223 3012782 3012989 3013316 "UPSCAT-" 3013321 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1222 2998632 3006630 3006673 "UPOLYC" 3008774 NIL UPOLYC (NIL T) -9 NIL 3009995) (-1221 2989961 2992386 2995533 "UPOLYC-" 2995538 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1220 2989588 2989631 2989764 "UPOLYC2" 2989912 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1219 2981162 2989271 2989400 "UP" 2989507 NIL UP (NIL NIL T) -8 NIL NIL) (-1218 2980501 2980608 2980772 "UPMP" 2981051 NIL UPMP (NIL T T) -7 NIL NIL) (-1217 2980054 2980135 2980274 "UPDIVP" 2980414 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1216 2978622 2978871 2979187 "UPDECOMP" 2979803 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1215 2977857 2977969 2978154 "UPCDEN" 2978506 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1214 2977376 2977445 2977594 "UP2" 2977782 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1213 2975893 2976580 2976857 "UNISEG" 2977134 NIL UNISEG (NIL T) -8 NIL NIL) (-1212 2975108 2975235 2975440 "UNISEG2" 2975736 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1211 2974168 2974348 2974574 "UNIFACT" 2974924 NIL UNIFACT (NIL T) -7 NIL NIL) (-1210 2958135 2973345 2973596 "ULS" 2973975 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1209 2946175 2958039 2958111 "ULSCONS" 2958116 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1208 2928791 2940733 2940795 "ULSCCAT" 2941433 NIL ULSCCAT (NIL T T) -9 NIL 2941721) (-1207 2927841 2928086 2928474 "ULSCCAT-" 2928479 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1206 2917716 2924153 2924196 "ULSCAT" 2925059 NIL ULSCAT (NIL T) -9 NIL 2925789) (-1205 2917146 2917225 2917404 "ULS2" 2917631 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1204 2915549 2916472 2916502 "UFD" 2916714 T UFD (NIL) -9 NIL 2916828) (-1203 2915343 2915389 2915484 "UFD-" 2915489 NIL UFD- (NIL T) -8 NIL NIL) (-1202 2914425 2914608 2914824 "UDVO" 2915149 T UDVO (NIL) -7 NIL NIL) (-1201 2912241 2912650 2913121 "UDPO" 2913989 NIL UDPO (NIL T) -7 NIL NIL) (-1200 2912174 2912179 2912209 "TYPE" 2912214 T TYPE (NIL) -9 NIL NIL) (-1199 2911961 2912129 2912160 "TYPEAST" 2912165 T TYPEAST (NIL) -8 NIL NIL) (-1198 2910932 2911134 2911374 "TWOFACT" 2911755 NIL TWOFACT (NIL T) -7 NIL NIL) (-1197 2910004 2910341 2910576 "TUPLE" 2910732 NIL TUPLE (NIL T) -8 NIL NIL) (-1196 2907695 2908214 2908753 "TUBETOOL" 2909487 T TUBETOOL (NIL) -7 NIL NIL) (-1195 2906544 2906749 2906990 "TUBE" 2907488 NIL TUBE (NIL T) -8 NIL NIL) (-1194 2901308 2905516 2905799 "TS" 2906296 NIL TS (NIL T) -8 NIL NIL) (-1193 2889975 2894067 2894164 "TSETCAT" 2899433 NIL TSETCAT (NIL T T T T) -9 NIL 2900964) (-1192 2884710 2886307 2888198 "TSETCAT-" 2888203 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1191 2878973 2879819 2880761 "TRMANIP" 2883846 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1190 2878414 2878477 2878640 "TRIMAT" 2878905 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1189 2876210 2876447 2876811 "TRIGMNIP" 2878163 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1188 2875730 2875843 2875873 "TRIGCAT" 2876086 T TRIGCAT (NIL) -9 NIL NIL) (-1187 2875399 2875478 2875619 "TRIGCAT-" 2875624 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1186 2872296 2874257 2874538 "TREE" 2875153 NIL TREE (NIL T) -8 NIL NIL) (-1185 2871570 2872098 2872128 "TRANFUN" 2872163 T TRANFUN (NIL) -9 NIL 2872229) (-1184 2870849 2871040 2871320 "TRANFUN-" 2871325 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1183 2870653 2870685 2870746 "TOPSP" 2870810 T TOPSP (NIL) -7 NIL NIL) (-1182 2870001 2870116 2870270 "TOOLSIGN" 2870534 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1181 2868662 2869178 2869417 "TEXTFILE" 2869784 T TEXTFILE (NIL) -8 NIL NIL) (-1180 2866601 2867115 2867544 "TEX" 2868255 T TEX (NIL) -8 NIL NIL) (-1179 2866382 2866413 2866485 "TEX1" 2866564 NIL TEX1 (NIL T) -7 NIL NIL) (-1178 2866030 2866093 2866183 "TEMUTL" 2866314 T TEMUTL (NIL) -7 NIL NIL) (-1177 2864184 2864464 2864789 "TBCMPPK" 2865753 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1176 2856072 2862344 2862400 "TBAGG" 2862800 NIL TBAGG (NIL T T) -9 NIL 2863011) (-1175 2851142 2852630 2854384 "TBAGG-" 2854389 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1174 2850526 2850633 2850778 "TANEXP" 2851031 NIL TANEXP (NIL T) -7 NIL NIL) (-1173 2844027 2850383 2850476 "TABLE" 2850481 NIL TABLE (NIL T T) -8 NIL NIL) (-1172 2843439 2843538 2843676 "TABLEAU" 2843924 NIL TABLEAU (NIL T) -8 NIL NIL) (-1171 2838047 2839267 2840515 "TABLBUMP" 2842225 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1170 2837475 2837575 2837703 "SYSTEM" 2837941 T SYSTEM (NIL) -7 NIL NIL) (-1169 2833938 2834633 2835416 "SYSSOLP" 2836726 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1168 2830272 2831199 2831915 "SYNTAX" 2833244 T SYNTAX (NIL) -8 NIL NIL) (-1167 2827430 2828032 2828664 "SYMTAB" 2829662 T SYMTAB (NIL) -8 NIL NIL) (-1166 2822679 2823581 2824564 "SYMS" 2826469 T SYMS (NIL) -8 NIL NIL) (-1165 2819951 2822137 2822367 "SYMPOLY" 2822484 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1164 2819468 2819543 2819666 "SYMFUNC" 2819863 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1163 2815520 2816780 2817593 "SYMBOL" 2818677 T SYMBOL (NIL) -8 NIL NIL) (-1162 2809059 2810748 2812468 "SWITCH" 2813822 T SWITCH (NIL) -8 NIL NIL) (-1161 2802329 2807880 2808183 "SUTS" 2808814 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1160 2794430 2801576 2801849 "SUPXS" 2802114 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1159 2785960 2794048 2794174 "SUP" 2794339 NIL SUP (NIL T) -8 NIL NIL) (-1158 2785119 2785246 2785463 "SUPFRACF" 2785828 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1157 2784740 2784799 2784912 "SUP2" 2785054 NIL SUP2 (NIL T T) -7 NIL NIL) (-1156 2783153 2783427 2783790 "SUMRF" 2784439 NIL SUMRF (NIL T) -7 NIL NIL) (-1155 2782467 2782533 2782732 "SUMFS" 2783074 NIL SUMFS (NIL T T) -7 NIL NIL) (-1154 2766474 2781644 2781895 "SULS" 2782274 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1153 2766103 2766296 2766366 "SUCHTAST" 2766426 T SUCHTAST (NIL) -8 NIL NIL) (-1152 2765425 2765628 2765768 "SUCH" 2766011 NIL SUCH (NIL T T) -8 NIL NIL) (-1151 2759319 2760331 2761290 "SUBSPACE" 2764513 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1150 2758749 2758839 2759003 "SUBRESP" 2759207 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1149 2752118 2753414 2754725 "STTF" 2757485 NIL STTF (NIL T) -7 NIL NIL) (-1148 2746291 2747411 2748558 "STTFNC" 2751018 NIL STTFNC (NIL T) -7 NIL NIL) (-1147 2737606 2739473 2741267 "STTAYLOR" 2744532 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1146 2730850 2737470 2737553 "STRTBL" 2737558 NIL STRTBL (NIL T) -8 NIL NIL) (-1145 2726241 2730805 2730836 "STRING" 2730841 T STRING (NIL) -8 NIL NIL) (-1144 2721129 2725614 2725644 "STRICAT" 2725703 T STRICAT (NIL) -9 NIL 2725765) (-1143 2713939 2718748 2719359 "STREAM" 2720553 NIL STREAM (NIL T) -8 NIL NIL) (-1142 2713449 2713526 2713670 "STREAM3" 2713856 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1141 2712431 2712614 2712849 "STREAM2" 2713262 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1140 2712119 2712171 2712264 "STREAM1" 2712373 NIL STREAM1 (NIL T) -7 NIL NIL) (-1139 2711135 2711316 2711547 "STINPROD" 2711935 NIL STINPROD (NIL T) -7 NIL NIL) (-1138 2710713 2710897 2710927 "STEP" 2711007 T STEP (NIL) -9 NIL 2711085) (-1137 2704256 2710612 2710689 "STBL" 2710694 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1136 2699430 2703477 2703520 "STAGG" 2703673 NIL STAGG (NIL T) -9 NIL 2703762) (-1135 2697132 2697734 2698606 "STAGG-" 2698611 NIL STAGG- (NIL T T) -8 NIL NIL) (-1134 2695327 2696902 2696994 "STACK" 2697075 NIL STACK (NIL T) -8 NIL NIL) (-1133 2688052 2693468 2693924 "SREGSET" 2694957 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1132 2680478 2681846 2683359 "SRDCMPK" 2686658 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1131 2673445 2677918 2677948 "SRAGG" 2679251 T SRAGG (NIL) -9 NIL 2679859) (-1130 2672462 2672717 2673096 "SRAGG-" 2673101 NIL SRAGG- (NIL T) -8 NIL NIL) (-1129 2666957 2671409 2671830 "SQMATRIX" 2672088 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1128 2660706 2663675 2664402 "SPLTREE" 2666302 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1127 2656696 2657362 2658008 "SPLNODE" 2660132 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1126 2655743 2655976 2656006 "SPFCAT" 2656450 T SPFCAT (NIL) -9 NIL NIL) (-1125 2654480 2654690 2654954 "SPECOUT" 2655501 T SPECOUT (NIL) -7 NIL NIL) (-1124 2646132 2647876 2647906 "SPADXPT" 2652298 T SPADXPT (NIL) -9 NIL 2654332) (-1123 2645893 2645933 2646002 "SPADPRSR" 2646085 T SPADPRSR (NIL) -7 NIL NIL) (-1122 2644076 2645848 2645879 "SPADAST" 2645884 T SPADAST (NIL) -8 NIL NIL) (-1121 2636047 2637794 2637837 "SPACEC" 2642210 NIL SPACEC (NIL T) -9 NIL 2644026) (-1120 2634218 2635979 2636028 "SPACE3" 2636033 NIL SPACE3 (NIL T) -8 NIL NIL) (-1119 2632970 2633141 2633432 "SORTPAK" 2634023 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1118 2631020 2631323 2631742 "SOLVETRA" 2632634 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1117 2630031 2630253 2630527 "SOLVESER" 2630793 NIL SOLVESER (NIL T) -7 NIL NIL) (-1116 2625251 2626132 2627134 "SOLVERAD" 2629083 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1115 2621066 2621675 2622404 "SOLVEFOR" 2624618 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1114 2615363 2620415 2620512 "SNTSCAT" 2620517 NIL SNTSCAT (NIL T T T T) -9 NIL 2620587) (-1113 2609506 2613686 2614077 "SMTS" 2615053 NIL SMTS (NIL T T T) -8 NIL NIL) (-1112 2603957 2609394 2609471 "SMP" 2609476 NIL SMP (NIL T T) -8 NIL NIL) (-1111 2602116 2602417 2602815 "SMITH" 2603654 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1110 2595011 2599167 2599270 "SMATCAT" 2600621 NIL SMATCAT (NIL NIL T T T) -9 NIL 2601171) (-1109 2591951 2592774 2593952 "SMATCAT-" 2593957 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1108 2589664 2591187 2591230 "SKAGG" 2591491 NIL SKAGG (NIL T) -9 NIL 2591626) (-1107 2585780 2588768 2589046 "SINT" 2589408 T SINT (NIL) -8 NIL NIL) (-1106 2585552 2585590 2585656 "SIMPAN" 2585736 T SIMPAN (NIL) -7 NIL NIL) (-1105 2584859 2585087 2585227 "SIG" 2585434 T SIG (NIL) -8 NIL NIL) (-1104 2583697 2583918 2584193 "SIGNRF" 2584618 NIL SIGNRF (NIL T) -7 NIL NIL) (-1103 2582502 2582653 2582944 "SIGNEF" 2583526 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1102 2581835 2582085 2582209 "SIGAST" 2582400 T SIGAST (NIL) -8 NIL NIL) (-1101 2579525 2579979 2580485 "SHP" 2581376 NIL SHP (NIL T NIL) -7 NIL NIL) (-1100 2573431 2579426 2579502 "SHDP" 2579507 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1099 2573030 2573196 2573226 "SGROUP" 2573319 T SGROUP (NIL) -9 NIL 2573381) (-1098 2572888 2572914 2572987 "SGROUP-" 2572992 NIL SGROUP- (NIL T) -8 NIL NIL) (-1097 2569724 2570421 2571144 "SGCF" 2572187 T SGCF (NIL) -7 NIL NIL) (-1096 2564119 2569171 2569268 "SFRTCAT" 2569273 NIL SFRTCAT (NIL T T T T) -9 NIL 2569312) (-1095 2557543 2558558 2559694 "SFRGCD" 2563102 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1094 2550671 2551742 2552928 "SFQCMPK" 2556476 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1093 2550293 2550382 2550492 "SFORT" 2550612 NIL SFORT (NIL T T) -8 NIL NIL) (-1092 2549438 2550133 2550254 "SEXOF" 2550259 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1091 2548572 2549319 2549387 "SEX" 2549392 T SEX (NIL) -8 NIL NIL) (-1090 2544111 2544800 2544895 "SEXCAT" 2547832 NIL SEXCAT (NIL T T T T T) -9 NIL 2548410) (-1089 2541291 2544045 2544093 "SET" 2544098 NIL SET (NIL T) -8 NIL NIL) (-1088 2539542 2540004 2540309 "SETMN" 2541032 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1087 2539148 2539274 2539304 "SETCAT" 2539421 T SETCAT (NIL) -9 NIL 2539506) (-1086 2538928 2538980 2539079 "SETCAT-" 2539084 NIL SETCAT- (NIL T) -8 NIL NIL) (-1085 2535315 2537389 2537432 "SETAGG" 2538302 NIL SETAGG (NIL T) -9 NIL 2538642) (-1084 2534773 2534889 2535126 "SETAGG-" 2535131 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1083 2534243 2534469 2534570 "SEQAST" 2534694 T SEQAST (NIL) -8 NIL NIL) (-1082 2533442 2533736 2533797 "SEGXCAT" 2534083 NIL SEGXCAT (NIL T T) -9 NIL 2534203) (-1081 2532498 2533108 2533290 "SEG" 2533295 NIL SEG (NIL T) -8 NIL NIL) (-1080 2531477 2531691 2531734 "SEGCAT" 2532256 NIL SEGCAT (NIL T) -9 NIL 2532477) (-1079 2530526 2530856 2531056 "SEGBIND" 2531312 NIL SEGBIND (NIL T) -8 NIL NIL) (-1078 2530147 2530206 2530319 "SEGBIND2" 2530461 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1077 2529748 2529948 2530025 "SEGAST" 2530092 T SEGAST (NIL) -8 NIL NIL) (-1076 2528967 2529093 2529297 "SEG2" 2529592 NIL SEG2 (NIL T T) -7 NIL NIL) (-1075 2528404 2528902 2528949 "SDVAR" 2528954 NIL SDVAR (NIL T) -8 NIL NIL) (-1074 2520694 2528174 2528304 "SDPOL" 2528309 NIL SDPOL (NIL T) -8 NIL NIL) (-1073 2519287 2519553 2519872 "SCPKG" 2520409 NIL SCPKG (NIL T) -7 NIL NIL) (-1072 2518423 2518603 2518803 "SCOPE" 2519109 T SCOPE (NIL) -8 NIL NIL) (-1071 2517644 2517777 2517956 "SCACHE" 2518278 NIL SCACHE (NIL T) -7 NIL NIL) (-1070 2517316 2517476 2517506 "SASTCAT" 2517511 T SASTCAT (NIL) -9 NIL 2517524) (-1069 2516830 2517151 2517227 "SAOS" 2517262 T SAOS (NIL) -8 NIL NIL) (-1068 2516395 2516430 2516603 "SAERFFC" 2516789 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-1067 2510369 2516292 2516372 "SAE" 2516377 NIL SAE (NIL T T NIL) -8 NIL NIL) (-1066 2509962 2509997 2510156 "SAEFACT" 2510328 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-1065 2508283 2508597 2508998 "RURPK" 2509628 NIL RURPK (NIL T NIL) -7 NIL NIL) (-1064 2506919 2507198 2507510 "RULESET" 2508117 NIL RULESET (NIL T T T) -8 NIL NIL) (-1063 2504106 2504609 2505074 "RULE" 2506600 NIL RULE (NIL T T T) -8 NIL NIL) (-1062 2503745 2503900 2503983 "RULECOLD" 2504058 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-1061 2503243 2503462 2503556 "RSTRCAST" 2503673 T RSTRCAST (NIL) -8 NIL NIL) (-1060 2498092 2498886 2499806 "RSETGCD" 2502442 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-1059 2487349 2492401 2492498 "RSETCAT" 2496617 NIL RSETCAT (NIL T T T T) -9 NIL 2497714) (-1058 2485276 2485815 2486639 "RSETCAT-" 2486644 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-1057 2477663 2479038 2480558 "RSDCMPK" 2483875 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-1056 2475668 2476109 2476183 "RRCC" 2477269 NIL RRCC (NIL T T) -9 NIL 2477613) (-1055 2475019 2475193 2475472 "RRCC-" 2475477 NIL RRCC- (NIL T T T) -8 NIL NIL) (-1054 2474489 2474715 2474816 "RPTAST" 2474940 T RPTAST (NIL) -8 NIL NIL) (-1053 2448495 2458082 2458149 "RPOLCAT" 2468813 NIL RPOLCAT (NIL T T T) -9 NIL 2471972) (-1052 2439995 2442333 2445455 "RPOLCAT-" 2445460 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-1051 2431042 2438206 2438688 "ROUTINE" 2439535 T ROUTINE (NIL) -8 NIL NIL) (-1050 2427875 2430668 2430808 "ROMAN" 2430924 T ROMAN (NIL) -8 NIL NIL) (-1049 2426150 2426735 2426995 "ROIRC" 2427680 NIL ROIRC (NIL T T) -8 NIL NIL) (-1048 2422543 2424786 2424816 "RNS" 2425120 T RNS (NIL) -9 NIL 2425393) (-1047 2421052 2421435 2421969 "RNS-" 2422044 NIL RNS- (NIL T) -8 NIL NIL) (-1046 2420501 2420883 2420913 "RNG" 2420918 T RNG (NIL) -9 NIL 2420939) (-1045 2419893 2420255 2420298 "RMODULE" 2420360 NIL RMODULE (NIL T) -9 NIL 2420402) (-1044 2418729 2418823 2419159 "RMCAT2" 2419794 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-1043 2415606 2418075 2418372 "RMATRIX" 2418491 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-1042 2408548 2410782 2410897 "RMATCAT" 2414256 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2415238) (-1041 2407923 2408070 2408377 "RMATCAT-" 2408382 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-1040 2407490 2407565 2407693 "RINTERP" 2407842 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-1039 2406623 2407143 2407173 "RING" 2407229 T RING (NIL) -9 NIL 2407315) (-1038 2406415 2406459 2406556 "RING-" 2406561 NIL RING- (NIL T) -8 NIL NIL) (-1037 2405256 2405493 2405751 "RIDIST" 2406179 T RIDIST (NIL) -7 NIL NIL) (-1036 2396572 2404724 2404930 "RGCHAIN" 2405104 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-1035 2395948 2396328 2396369 "RGBCSPC" 2396427 NIL RGBCSPC (NIL T) -9 NIL 2396479) (-1034 2395132 2395487 2395528 "RGBCMDL" 2395760 NIL RGBCMDL (NIL T) -9 NIL 2395874) (-1033 2392126 2392740 2393410 "RF" 2394496 NIL RF (NIL T) -7 NIL NIL) (-1032 2391772 2391835 2391938 "RFFACTOR" 2392057 NIL RFFACTOR (NIL T) -7 NIL NIL) (-1031 2391497 2391532 2391629 "RFFACT" 2391731 NIL RFFACT (NIL T) -7 NIL NIL) (-1030 2389614 2389978 2390360 "RFDIST" 2391137 T RFDIST (NIL) -7 NIL NIL) (-1029 2389067 2389159 2389322 "RETSOL" 2389516 NIL RETSOL (NIL T T) -7 NIL NIL) (-1028 2388703 2388783 2388826 "RETRACT" 2388959 NIL RETRACT (NIL T) -9 NIL 2389046) (-1027 2388552 2388577 2388664 "RETRACT-" 2388669 NIL RETRACT- (NIL T T) -8 NIL NIL) (-1026 2388181 2388374 2388444 "RETAST" 2388504 T RETAST (NIL) -8 NIL NIL) (-1025 2381035 2387834 2387961 "RESULT" 2388076 T RESULT (NIL) -8 NIL NIL) (-1024 2379661 2380304 2380503 "RESRING" 2380938 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-1023 2379297 2379346 2379444 "RESLATC" 2379598 NIL RESLATC (NIL T) -7 NIL NIL) (-1022 2379003 2379037 2379144 "REPSQ" 2379256 NIL REPSQ (NIL T) -7 NIL NIL) (-1021 2376425 2377005 2377607 "REP" 2378423 T REP (NIL) -7 NIL NIL) (-1020 2376123 2376157 2376268 "REPDB" 2376384 NIL REPDB (NIL T) -7 NIL NIL) (-1019 2370033 2371412 2372635 "REP2" 2374935 NIL REP2 (NIL T) -7 NIL NIL) (-1018 2366410 2367091 2367899 "REP1" 2369260 NIL REP1 (NIL T) -7 NIL NIL) (-1017 2359136 2364551 2365007 "REGSET" 2366040 NIL REGSET (NIL T T T T) -8 NIL NIL) (-1016 2357949 2358284 2358534 "REF" 2358921 NIL REF (NIL T) -8 NIL NIL) (-1015 2357326 2357429 2357596 "REDORDER" 2357833 NIL REDORDER (NIL T T) -7 NIL NIL) (-1014 2353331 2356539 2356766 "RECLOS" 2357154 NIL RECLOS (NIL T) -8 NIL NIL) (-1013 2352383 2352564 2352779 "REALSOLV" 2353138 T REALSOLV (NIL) -7 NIL NIL) (-1012 2352229 2352270 2352300 "REAL" 2352305 T REAL (NIL) -9 NIL 2352340) (-1011 2348712 2349514 2350398 "REAL0Q" 2351394 NIL REAL0Q (NIL T) -7 NIL NIL) (-1010 2344313 2345301 2346362 "REAL0" 2347693 NIL REAL0 (NIL T) -7 NIL NIL) (-1009 2343811 2344030 2344124 "RDUCEAST" 2344241 T RDUCEAST (NIL) -8 NIL NIL) (-1008 2343216 2343288 2343495 "RDIV" 2343733 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-1007 2342284 2342458 2342671 "RDIST" 2343038 NIL RDIST (NIL T) -7 NIL NIL) (-1006 2340881 2341168 2341540 "RDETRS" 2341992 NIL RDETRS (NIL T T) -7 NIL NIL) (-1005 2338693 2339147 2339685 "RDETR" 2340423 NIL RDETR (NIL T T) -7 NIL NIL) (-1004 2337304 2337582 2337986 "RDEEFS" 2338409 NIL RDEEFS (NIL T T) -7 NIL NIL) (-1003 2335799 2336105 2336537 "RDEEF" 2336992 NIL RDEEF (NIL T T) -7 NIL NIL) (-1002 2330060 2332935 2332965 "RCFIELD" 2334260 T RCFIELD (NIL) -9 NIL 2334990) (-1001 2328124 2328628 2329324 "RCFIELD-" 2329399 NIL RCFIELD- (NIL T) -8 NIL NIL) (-1000 2324440 2326225 2326268 "RCAGG" 2327352 NIL RCAGG (NIL T) -9 NIL 2327817) (-999 2324070 2324164 2324325 "RCAGG-" 2324330 NIL RCAGG- (NIL T T) -8 NIL NIL) (-998 2323410 2323522 2323685 "RATRET" 2323954 NIL RATRET (NIL T) -7 NIL NIL) (-997 2322967 2323034 2323153 "RATFACT" 2323338 NIL RATFACT (NIL T) -7 NIL NIL) (-996 2322282 2322402 2322552 "RANDSRC" 2322837 T RANDSRC (NIL) -7 NIL NIL) (-995 2322019 2322063 2322134 "RADUTIL" 2322231 T RADUTIL (NIL) -7 NIL NIL) (-994 2315181 2320861 2321169 "RADIX" 2321743 NIL RADIX (NIL NIL) -8 NIL NIL) (-993 2306838 2315025 2315153 "RADFF" 2315158 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-992 2306490 2306565 2306593 "RADCAT" 2306750 T RADCAT (NIL) -9 NIL NIL) (-991 2306275 2306323 2306420 "RADCAT-" 2306425 NIL RADCAT- (NIL T) -8 NIL NIL) (-990 2304426 2306050 2306139 "QUEUE" 2306219 NIL QUEUE (NIL T) -8 NIL NIL) (-989 2301002 2304363 2304408 "QUAT" 2304413 NIL QUAT (NIL T) -8 NIL NIL) (-988 2300640 2300683 2300810 "QUATCT2" 2300953 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-987 2294387 2297689 2297729 "QUATCAT" 2298509 NIL QUATCAT (NIL T) -9 NIL 2299275) (-986 2290531 2291568 2292955 "QUATCAT-" 2293049 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-985 2288051 2289615 2289656 "QUAGG" 2290031 NIL QUAGG (NIL T) -9 NIL 2290206) (-984 2287683 2287876 2287944 "QQUTAST" 2288003 T QQUTAST (NIL) -8 NIL NIL) (-983 2286608 2287081 2287253 "QFORM" 2287555 NIL QFORM (NIL NIL T) -8 NIL NIL) (-982 2277820 2283025 2283065 "QFCAT" 2283723 NIL QFCAT (NIL T) -9 NIL 2284724) (-981 2273392 2274593 2276184 "QFCAT-" 2276278 NIL QFCAT- (NIL T T) -8 NIL NIL) (-980 2273030 2273073 2273200 "QFCAT2" 2273343 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-979 2272490 2272600 2272730 "QEQUAT" 2272920 T QEQUAT (NIL) -8 NIL NIL) (-978 2265638 2266709 2267893 "QCMPACK" 2271423 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-977 2263214 2263635 2264063 "QALGSET" 2265293 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-976 2262459 2262633 2262865 "QALGSET2" 2263034 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-975 2261150 2261373 2261690 "PWFFINTB" 2262232 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-974 2259332 2259500 2259854 "PUSHVAR" 2260964 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-973 2255250 2256304 2256345 "PTRANFN" 2258229 NIL PTRANFN (NIL T) -9 NIL NIL) (-972 2253652 2253943 2254265 "PTPACK" 2254961 NIL PTPACK (NIL T) -7 NIL NIL) (-971 2253284 2253341 2253450 "PTFUNC2" 2253589 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-970 2247811 2252156 2252197 "PTCAT" 2252493 NIL PTCAT (NIL T) -9 NIL 2252646) (-969 2247469 2247504 2247628 "PSQFR" 2247770 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-968 2246064 2246362 2246696 "PSEUDLIN" 2247167 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-967 2232834 2235198 2237522 "PSETPK" 2243824 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-966 2225878 2228592 2228688 "PSETCAT" 2231709 NIL PSETCAT (NIL T T T T) -9 NIL 2232523) (-965 2223714 2224348 2225169 "PSETCAT-" 2225174 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-964 2223063 2223228 2223256 "PSCURVE" 2223524 T PSCURVE (NIL) -9 NIL 2223691) (-963 2219419 2220901 2220966 "PSCAT" 2221810 NIL PSCAT (NIL T T T) -9 NIL 2222050) (-962 2218482 2218698 2219098 "PSCAT-" 2219103 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-961 2217214 2217847 2218052 "PRTITION" 2218297 T PRTITION (NIL) -8 NIL NIL) (-960 2216716 2216935 2217027 "PRTDAST" 2217142 T PRTDAST (NIL) -8 NIL NIL) (-959 2205814 2208020 2210208 "PRS" 2214578 NIL PRS (NIL T T) -7 NIL NIL) (-958 2203672 2205164 2205204 "PRQAGG" 2205387 NIL PRQAGG (NIL T) -9 NIL 2205489) (-957 2203058 2203287 2203315 "PROPLOG" 2203500 T PROPLOG (NIL) -9 NIL 2203622) (-956 2200228 2200872 2201336 "PROPFRML" 2202626 NIL PROPFRML (NIL T) -8 NIL NIL) (-955 2199688 2199798 2199928 "PROPERTY" 2200118 T PROPERTY (NIL) -8 NIL NIL) (-954 2193773 2197854 2198674 "PRODUCT" 2198914 NIL PRODUCT (NIL T T) -8 NIL NIL) (-953 2191086 2193231 2193465 "PR" 2193584 NIL PR (NIL T T) -8 NIL NIL) (-952 2190882 2190914 2190973 "PRINT" 2191047 T PRINT (NIL) -7 NIL NIL) (-951 2190222 2190339 2190491 "PRIMES" 2190762 NIL PRIMES (NIL T) -7 NIL NIL) (-950 2188287 2188688 2189154 "PRIMELT" 2189801 NIL PRIMELT (NIL T) -7 NIL NIL) (-949 2188016 2188065 2188093 "PRIMCAT" 2188217 T PRIMCAT (NIL) -9 NIL NIL) (-948 2184177 2187954 2187999 "PRIMARR" 2188004 NIL PRIMARR (NIL T) -8 NIL NIL) (-947 2183184 2183362 2183590 "PRIMARR2" 2183995 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-946 2182827 2182883 2182994 "PREASSOC" 2183122 NIL PREASSOC (NIL T T) -7 NIL NIL) (-945 2182302 2182435 2182463 "PPCURVE" 2182668 T PPCURVE (NIL) -9 NIL 2182804) (-944 2181924 2182097 2182180 "PORTNUM" 2182239 T PORTNUM (NIL) -8 NIL NIL) (-943 2179283 2179682 2180274 "POLYROOT" 2181505 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-942 2173228 2178887 2179047 "POLY" 2179156 NIL POLY (NIL T) -8 NIL NIL) (-941 2172611 2172669 2172903 "POLYLIFT" 2173164 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-940 2168886 2169335 2169964 "POLYCATQ" 2172156 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-939 2155703 2161061 2161126 "POLYCAT" 2164640 NIL POLYCAT (NIL T T T) -9 NIL 2166568) (-938 2149153 2151014 2153398 "POLYCAT-" 2153403 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-937 2148740 2148808 2148928 "POLY2UP" 2149079 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-936 2148372 2148429 2148538 "POLY2" 2148677 NIL POLY2 (NIL T T) -7 NIL NIL) (-935 2147057 2147296 2147572 "POLUTIL" 2148146 NIL POLUTIL (NIL T T) -7 NIL NIL) (-934 2145412 2145689 2146020 "POLTOPOL" 2146779 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-933 2140930 2145348 2145394 "POINT" 2145399 NIL POINT (NIL T) -8 NIL NIL) (-932 2139117 2139474 2139849 "PNTHEORY" 2140575 T PNTHEORY (NIL) -7 NIL NIL) (-931 2137536 2137833 2138245 "PMTOOLS" 2138815 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-930 2137129 2137207 2137324 "PMSYM" 2137452 NIL PMSYM (NIL T) -7 NIL NIL) (-929 2136639 2136708 2136882 "PMQFCAT" 2137054 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-928 2135994 2136104 2136260 "PMPRED" 2136516 NIL PMPRED (NIL T) -7 NIL NIL) (-927 2135390 2135476 2135637 "PMPREDFS" 2135895 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-926 2134033 2134241 2134626 "PMPLCAT" 2135152 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-925 2133565 2133644 2133796 "PMLSAGG" 2133948 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-924 2133040 2133116 2133297 "PMKERNEL" 2133483 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-923 2132657 2132732 2132845 "PMINS" 2132959 NIL PMINS (NIL T) -7 NIL NIL) (-922 2132085 2132154 2132370 "PMFS" 2132582 NIL PMFS (NIL T T T) -7 NIL NIL) (-921 2131313 2131431 2131636 "PMDOWN" 2131962 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-920 2130476 2130635 2130817 "PMASS" 2131151 T PMASS (NIL) -7 NIL NIL) (-919 2129750 2129861 2130024 "PMASSFS" 2130362 NIL PMASSFS (NIL T T) -7 NIL NIL) (-918 2129405 2129473 2129567 "PLOTTOOL" 2129676 T PLOTTOOL (NIL) -7 NIL NIL) (-917 2124027 2125216 2126364 "PLOT" 2128277 T PLOT (NIL) -8 NIL NIL) (-916 2119841 2120875 2121796 "PLOT3D" 2123126 T PLOT3D (NIL) -8 NIL NIL) (-915 2118753 2118930 2119165 "PLOT1" 2119645 NIL PLOT1 (NIL T) -7 NIL NIL) (-914 2094147 2098819 2103670 "PLEQN" 2114019 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-913 2093465 2093587 2093767 "PINTERP" 2094012 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-912 2093158 2093205 2093308 "PINTERPA" 2093412 NIL PINTERPA (NIL T T) -7 NIL NIL) (-911 2092443 2092964 2093051 "PI" 2093091 T PI (NIL) -8 NIL NIL) (-910 2090840 2091781 2091809 "PID" 2091991 T PID (NIL) -9 NIL 2092125) (-909 2090565 2090602 2090690 "PICOERCE" 2090797 NIL PICOERCE (NIL T) -7 NIL NIL) (-908 2089885 2090024 2090200 "PGROEB" 2090421 NIL PGROEB (NIL T) -7 NIL NIL) (-907 2085472 2086286 2087191 "PGE" 2089000 T PGE (NIL) -7 NIL NIL) (-906 2083596 2083842 2084208 "PGCD" 2085189 NIL PGCD (NIL T T T T) -7 NIL NIL) (-905 2082934 2083037 2083198 "PFRPAC" 2083480 NIL PFRPAC (NIL T) -7 NIL NIL) (-904 2079614 2081482 2081835 "PFR" 2082613 NIL PFR (NIL T) -8 NIL NIL) (-903 2078003 2078247 2078572 "PFOTOOLS" 2079361 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-902 2076536 2076775 2077126 "PFOQ" 2077760 NIL PFOQ (NIL T T T) -7 NIL NIL) (-901 2075009 2075221 2075584 "PFO" 2076320 NIL PFO (NIL T T T T T) -7 NIL NIL) (-900 2071597 2074898 2074967 "PF" 2074972 NIL PF (NIL NIL) -8 NIL NIL) (-899 2069031 2070268 2070296 "PFECAT" 2070881 T PFECAT (NIL) -9 NIL 2071265) (-898 2068476 2068630 2068844 "PFECAT-" 2068849 NIL PFECAT- (NIL T) -8 NIL NIL) (-897 2067080 2067331 2067632 "PFBRU" 2068225 NIL PFBRU (NIL T T) -7 NIL NIL) (-896 2064947 2065298 2065730 "PFBR" 2066731 NIL PFBR (NIL T T T T) -7 NIL NIL) (-895 2060864 2062323 2062999 "PERM" 2064304 NIL PERM (NIL T) -8 NIL NIL) (-894 2056130 2057071 2057941 "PERMGRP" 2060027 NIL PERMGRP (NIL T) -8 NIL NIL) (-893 2054262 2055193 2055234 "PERMCAT" 2055680 NIL PERMCAT (NIL T) -9 NIL 2055985) (-892 2053915 2053956 2054080 "PERMAN" 2054215 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-891 2051451 2053580 2053702 "PENDTREE" 2053826 NIL PENDTREE (NIL T) -8 NIL NIL) (-890 2049544 2050278 2050319 "PDRING" 2050976 NIL PDRING (NIL T) -9 NIL 2051262) (-889 2048647 2048865 2049227 "PDRING-" 2049232 NIL PDRING- (NIL T T) -8 NIL NIL) (-888 2045889 2046640 2047308 "PDEPROB" 2047999 T PDEPROB (NIL) -8 NIL NIL) (-887 2043436 2043938 2044493 "PDEPACK" 2045354 T PDEPACK (NIL) -7 NIL NIL) (-886 2042348 2042538 2042789 "PDECOMP" 2043235 NIL PDECOMP (NIL T T) -7 NIL NIL) (-885 2039953 2040770 2040798 "PDECAT" 2041585 T PDECAT (NIL) -9 NIL 2042298) (-884 2039704 2039737 2039827 "PCOMP" 2039914 NIL PCOMP (NIL T T) -7 NIL NIL) (-883 2037909 2038505 2038802 "PBWLB" 2039433 NIL PBWLB (NIL T) -8 NIL NIL) (-882 2030414 2031982 2033320 "PATTERN" 2036592 NIL PATTERN (NIL T) -8 NIL NIL) (-881 2030046 2030103 2030212 "PATTERN2" 2030351 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-880 2027803 2028191 2028648 "PATTERN1" 2029635 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-879 2025198 2025752 2026233 "PATRES" 2027368 NIL PATRES (NIL T T) -8 NIL NIL) (-878 2024762 2024829 2024961 "PATRES2" 2025125 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-877 2022645 2023050 2023457 "PATMATCH" 2024429 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-876 2022181 2022364 2022405 "PATMAB" 2022512 NIL PATMAB (NIL T) -9 NIL 2022595) (-875 2020726 2021035 2021293 "PATLRES" 2021986 NIL PATLRES (NIL T T T) -8 NIL NIL) (-874 2020272 2020395 2020436 "PATAB" 2020441 NIL PATAB (NIL T) -9 NIL 2020613) (-873 2017753 2018285 2018858 "PARTPERM" 2019719 T PARTPERM (NIL) -7 NIL NIL) (-872 2017374 2017437 2017539 "PARSURF" 2017684 NIL PARSURF (NIL T) -8 NIL NIL) (-871 2017006 2017063 2017172 "PARSU2" 2017311 NIL PARSU2 (NIL T T) -7 NIL NIL) (-870 2016770 2016810 2016877 "PARSER" 2016959 T PARSER (NIL) -7 NIL NIL) (-869 2016391 2016454 2016556 "PARSCURV" 2016701 NIL PARSCURV (NIL T) -8 NIL NIL) (-868 2016023 2016080 2016189 "PARSC2" 2016328 NIL PARSC2 (NIL T T) -7 NIL NIL) (-867 2015662 2015720 2015817 "PARPCURV" 2015959 NIL PARPCURV (NIL T) -8 NIL NIL) (-866 2015294 2015351 2015460 "PARPC2" 2015599 NIL PARPC2 (NIL T T) -7 NIL NIL) (-865 2014814 2014900 2015019 "PAN2EXPR" 2015195 T PAN2EXPR (NIL) -7 NIL NIL) (-864 2013620 2013935 2014163 "PALETTE" 2014606 T PALETTE (NIL) -8 NIL NIL) (-863 2012088 2012625 2012985 "PAIR" 2013306 NIL PAIR (NIL T T) -8 NIL NIL) (-862 2005994 2011347 2011541 "PADICRC" 2011943 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-861 1999258 2005340 2005524 "PADICRAT" 2005842 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-860 1997608 1999195 1999240 "PADIC" 1999245 NIL PADIC (NIL NIL) -8 NIL NIL) (-859 1994818 1996348 1996388 "PADICCT" 1996969 NIL PADICCT (NIL NIL) -9 NIL 1997251) (-858 1993775 1993975 1994243 "PADEPAC" 1994605 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-857 1992987 1993120 1993326 "PADE" 1993637 NIL PADE (NIL T T T) -7 NIL NIL) (-856 1991409 1992195 1992475 "OWP" 1992791 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-855 1990518 1991014 1991186 "OVAR" 1991277 NIL OVAR (NIL NIL) -8 NIL NIL) (-854 1989782 1989903 1990064 "OUT" 1990377 T OUT (NIL) -7 NIL NIL) (-853 1978689 1980891 1983091 "OUTFORM" 1987602 T OUTFORM (NIL) -8 NIL NIL) (-852 1978110 1978286 1978413 "OUTBFILE" 1978582 T OUTBFILE (NIL) -8 NIL NIL) (-851 1977747 1977830 1977858 "OUTBCON" 1978009 T OUTBCON (NIL) -9 NIL 1978094) (-850 1977587 1977622 1977698 "OUTBCON-" 1977703 NIL OUTBCON- (NIL T) -8 NIL NIL) (-849 1976995 1977316 1977405 "OSI" 1977518 T OSI (NIL) -8 NIL NIL) (-848 1976551 1976863 1976891 "OSGROUP" 1976896 T OSGROUP (NIL) -9 NIL 1976918) (-847 1975296 1975523 1975808 "ORTHPOL" 1976298 NIL ORTHPOL (NIL T) -7 NIL NIL) (-846 1972882 1975131 1975252 "OREUP" 1975257 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-845 1970320 1972573 1972700 "ORESUP" 1972824 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-844 1967848 1968348 1968909 "OREPCTO" 1969809 NIL OREPCTO (NIL T T) -7 NIL NIL) (-843 1961672 1963839 1963880 "OREPCAT" 1966228 NIL OREPCAT (NIL T) -9 NIL 1967332) (-842 1958819 1959601 1960659 "OREPCAT-" 1960664 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-841 1957996 1958268 1958296 "ORDSET" 1958605 T ORDSET (NIL) -9 NIL 1958769) (-840 1957515 1957637 1957830 "ORDSET-" 1957835 NIL ORDSET- (NIL T) -8 NIL NIL) (-839 1956149 1956906 1956934 "ORDRING" 1957136 T ORDRING (NIL) -9 NIL 1957261) (-838 1955794 1955888 1956032 "ORDRING-" 1956037 NIL ORDRING- (NIL T) -8 NIL NIL) (-837 1955200 1955637 1955665 "ORDMON" 1955670 T ORDMON (NIL) -9 NIL 1955691) (-836 1954362 1954509 1954704 "ORDFUNS" 1955049 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-835 1953873 1954232 1954260 "ORDFIN" 1954265 T ORDFIN (NIL) -9 NIL 1954286) (-834 1950465 1952459 1952868 "ORDCOMP" 1953497 NIL ORDCOMP (NIL T) -8 NIL NIL) (-833 1949731 1949858 1950044 "ORDCOMP2" 1950325 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-832 1946339 1947222 1948036 "OPTPROB" 1948937 T OPTPROB (NIL) -8 NIL NIL) (-831 1943141 1943780 1944484 "OPTPACK" 1945655 T OPTPACK (NIL) -7 NIL NIL) (-830 1940854 1941594 1941622 "OPTCAT" 1942441 T OPTCAT (NIL) -9 NIL 1943091) (-829 1940297 1940531 1940636 "OPSIG" 1940769 T OPSIG (NIL) -8 NIL NIL) (-828 1940065 1940104 1940170 "OPQUERY" 1940251 T OPQUERY (NIL) -7 NIL NIL) (-827 1937231 1938376 1938880 "OP" 1939594 NIL OP (NIL T) -8 NIL NIL) (-826 1936766 1936937 1936978 "OPERCAT" 1937113 NIL OPERCAT (NIL T) -9 NIL 1937181) (-825 1936612 1936639 1936725 "OPERCAT-" 1936730 NIL OPERCAT- (NIL T T) -8 NIL NIL) (-824 1933457 1935409 1935778 "ONECOMP" 1936276 NIL ONECOMP (NIL T) -8 NIL NIL) (-823 1932762 1932877 1933051 "ONECOMP2" 1933329 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-822 1932181 1932287 1932417 "OMSERVER" 1932652 T OMSERVER (NIL) -7 NIL NIL) (-821 1929069 1931621 1931661 "OMSAGG" 1931722 NIL OMSAGG (NIL T) -9 NIL 1931786) (-820 1927692 1927955 1928237 "OMPKG" 1928807 T OMPKG (NIL) -7 NIL NIL) (-819 1927122 1927225 1927253 "OM" 1927552 T OM (NIL) -9 NIL NIL) (-818 1925704 1926671 1926840 "OMLO" 1927003 NIL OMLO (NIL T T) -8 NIL NIL) (-817 1924629 1924776 1925003 "OMEXPR" 1925530 NIL OMEXPR (NIL T) -7 NIL NIL) (-816 1923947 1924175 1924311 "OMERR" 1924513 T OMERR (NIL) -8 NIL NIL) (-815 1923125 1923368 1923528 "OMERRK" 1923807 T OMERRK (NIL) -8 NIL NIL) (-814 1922603 1922802 1922910 "OMENC" 1923037 T OMENC (NIL) -8 NIL NIL) (-813 1916498 1917683 1918854 "OMDEV" 1921452 T OMDEV (NIL) -8 NIL NIL) (-812 1915567 1915738 1915932 "OMCONN" 1916324 T OMCONN (NIL) -8 NIL NIL) (-811 1914188 1915130 1915158 "OINTDOM" 1915163 T OINTDOM (NIL) -9 NIL 1915184) (-810 1909994 1911178 1911894 "OFMONOID" 1913504 NIL OFMONOID (NIL T) -8 NIL NIL) (-809 1909432 1909931 1909976 "ODVAR" 1909981 NIL ODVAR (NIL T) -8 NIL NIL) (-808 1906890 1909177 1909332 "ODR" 1909337 NIL ODR (NIL T T NIL) -8 NIL NIL) (-807 1899234 1906666 1906792 "ODPOL" 1906797 NIL ODPOL (NIL T) -8 NIL NIL) (-806 1893110 1899106 1899211 "ODP" 1899216 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-805 1891876 1892091 1892366 "ODETOOLS" 1892884 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-804 1888845 1889501 1890217 "ODESYS" 1891209 NIL ODESYS (NIL T T) -7 NIL NIL) (-803 1883727 1884635 1885660 "ODERTRIC" 1887920 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-802 1883153 1883235 1883429 "ODERED" 1883639 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-801 1880041 1880589 1881266 "ODERAT" 1882576 NIL ODERAT (NIL T T) -7 NIL NIL) (-800 1877001 1877465 1878062 "ODEPRRIC" 1879570 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-799 1874971 1875540 1876026 "ODEPROB" 1876535 T ODEPROB (NIL) -8 NIL NIL) (-798 1871493 1871976 1872623 "ODEPRIM" 1874450 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-797 1870742 1870844 1871104 "ODEPAL" 1871385 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-796 1866904 1867695 1868559 "ODEPACK" 1869898 T ODEPACK (NIL) -7 NIL NIL) (-795 1865937 1866044 1866273 "ODEINT" 1866793 NIL ODEINT (NIL T T) -7 NIL NIL) (-794 1860038 1861463 1862910 "ODEIFTBL" 1864510 T ODEIFTBL (NIL) -8 NIL NIL) (-793 1855373 1856159 1857118 "ODEEF" 1859197 NIL ODEEF (NIL T T) -7 NIL NIL) (-792 1854708 1854797 1855027 "ODECONST" 1855278 NIL ODECONST (NIL T T T) -7 NIL NIL) (-791 1852859 1853494 1853522 "ODECAT" 1854127 T ODECAT (NIL) -9 NIL 1854658) (-790 1849766 1852571 1852690 "OCT" 1852772 NIL OCT (NIL T) -8 NIL NIL) (-789 1849404 1849447 1849574 "OCTCT2" 1849717 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-788 1844178 1846578 1846618 "OC" 1847715 NIL OC (NIL T) -9 NIL 1848573) (-787 1841405 1842153 1843143 "OC-" 1843237 NIL OC- (NIL T T) -8 NIL NIL) (-786 1840783 1841225 1841253 "OCAMON" 1841258 T OCAMON (NIL) -9 NIL 1841279) (-785 1840340 1840655 1840683 "OASGP" 1840688 T OASGP (NIL) -9 NIL 1840708) (-784 1839627 1840090 1840118 "OAMONS" 1840158 T OAMONS (NIL) -9 NIL 1840201) (-783 1839067 1839474 1839502 "OAMON" 1839507 T OAMON (NIL) -9 NIL 1839527) (-782 1838371 1838863 1838891 "OAGROUP" 1838896 T OAGROUP (NIL) -9 NIL 1838916) (-781 1838061 1838111 1838199 "NUMTUBE" 1838315 NIL NUMTUBE (NIL T) -7 NIL NIL) (-780 1831634 1833152 1834688 "NUMQUAD" 1836545 T NUMQUAD (NIL) -7 NIL NIL) (-779 1827390 1828378 1829403 "NUMODE" 1830629 T NUMODE (NIL) -7 NIL NIL) (-778 1824771 1825625 1825653 "NUMINT" 1826576 T NUMINT (NIL) -9 NIL 1827340) (-777 1823719 1823916 1824134 "NUMFMT" 1824573 T NUMFMT (NIL) -7 NIL NIL) (-776 1810078 1813023 1815555 "NUMERIC" 1821226 NIL NUMERIC (NIL T) -7 NIL NIL) (-775 1804475 1809527 1809622 "NTSCAT" 1809627 NIL NTSCAT (NIL T T T T) -9 NIL 1809666) (-774 1803669 1803834 1804027 "NTPOLFN" 1804314 NIL NTPOLFN (NIL T) -7 NIL NIL) (-773 1791509 1800494 1801306 "NSUP" 1802890 NIL NSUP (NIL T) -8 NIL NIL) (-772 1791141 1791198 1791307 "NSUP2" 1791446 NIL NSUP2 (NIL T T) -7 NIL NIL) (-771 1781138 1790915 1791048 "NSMP" 1791053 NIL NSMP (NIL T T) -8 NIL NIL) (-770 1779570 1779871 1780228 "NREP" 1780826 NIL NREP (NIL T) -7 NIL NIL) (-769 1778161 1778413 1778771 "NPCOEF" 1779313 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-768 1777227 1777342 1777558 "NORMRETR" 1778042 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-767 1775268 1775558 1775967 "NORMPK" 1776935 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-766 1774953 1774981 1775105 "NORMMA" 1775234 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-765 1774780 1774910 1774939 "NONE" 1774944 T NONE (NIL) -8 NIL NIL) (-764 1774569 1774598 1774667 "NONE1" 1774744 NIL NONE1 (NIL T) -7 NIL NIL) (-763 1774052 1774114 1774300 "NODE1" 1774501 NIL NODE1 (NIL T T) -7 NIL NIL) (-762 1772392 1773215 1773470 "NNI" 1773817 T NNI (NIL) -8 NIL NIL) (-761 1770812 1771125 1771489 "NLINSOL" 1772060 NIL NLINSOL (NIL T) -7 NIL NIL) (-760 1767080 1768048 1768947 "NIPROB" 1769933 T NIPROB (NIL) -8 NIL NIL) (-759 1765837 1766071 1766373 "NFINTBAS" 1766842 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-758 1765281 1765488 1765529 "NETCLT" 1765693 NIL NETCLT (NIL T) -9 NIL 1765782) (-757 1763989 1764220 1764501 "NCODIV" 1765049 NIL NCODIV (NIL T T) -7 NIL NIL) (-756 1763751 1763788 1763863 "NCNTFRAC" 1763946 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-755 1761931 1762295 1762715 "NCEP" 1763376 NIL NCEP (NIL T) -7 NIL NIL) (-754 1760842 1761581 1761609 "NASRING" 1761719 T NASRING (NIL) -9 NIL 1761793) (-753 1760637 1760681 1760775 "NASRING-" 1760780 NIL NASRING- (NIL T) -8 NIL NIL) (-752 1759790 1760289 1760317 "NARNG" 1760434 T NARNG (NIL) -9 NIL 1760525) (-751 1759482 1759549 1759683 "NARNG-" 1759688 NIL NARNG- (NIL T) -8 NIL NIL) (-750 1758361 1758568 1758803 "NAGSP" 1759267 T NAGSP (NIL) -7 NIL NIL) (-749 1749633 1751317 1752990 "NAGS" 1756708 T NAGS (NIL) -7 NIL NIL) (-748 1748181 1748489 1748820 "NAGF07" 1749322 T NAGF07 (NIL) -7 NIL NIL) (-747 1742719 1744010 1745317 "NAGF04" 1746894 T NAGF04 (NIL) -7 NIL NIL) (-746 1735687 1737301 1738934 "NAGF02" 1741106 T NAGF02 (NIL) -7 NIL NIL) (-745 1730911 1732011 1733128 "NAGF01" 1734590 T NAGF01 (NIL) -7 NIL NIL) (-744 1724539 1726105 1727690 "NAGE04" 1729346 T NAGE04 (NIL) -7 NIL NIL) (-743 1715708 1717829 1719959 "NAGE02" 1722429 T NAGE02 (NIL) -7 NIL NIL) (-742 1711661 1712608 1713572 "NAGE01" 1714764 T NAGE01 (NIL) -7 NIL NIL) (-741 1709456 1709990 1710548 "NAGD03" 1711123 T NAGD03 (NIL) -7 NIL NIL) (-740 1701206 1703134 1705088 "NAGD02" 1707522 T NAGD02 (NIL) -7 NIL NIL) (-739 1695017 1696442 1697882 "NAGD01" 1699786 T NAGD01 (NIL) -7 NIL NIL) (-738 1691226 1692048 1692885 "NAGC06" 1694200 T NAGC06 (NIL) -7 NIL NIL) (-737 1689691 1690023 1690379 "NAGC05" 1690890 T NAGC05 (NIL) -7 NIL NIL) (-736 1689067 1689186 1689330 "NAGC02" 1689567 T NAGC02 (NIL) -7 NIL NIL) (-735 1688127 1688684 1688724 "NAALG" 1688803 NIL NAALG (NIL T) -9 NIL 1688864) (-734 1687962 1687991 1688081 "NAALG-" 1688086 NIL NAALG- (NIL T T) -8 NIL NIL) (-733 1681912 1683020 1684207 "MULTSQFR" 1686858 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-732 1681231 1681306 1681490 "MULTFACT" 1681824 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-731 1674324 1678194 1678247 "MTSCAT" 1679317 NIL MTSCAT (NIL T T) -9 NIL 1679831) (-730 1674036 1674090 1674182 "MTHING" 1674264 NIL MTHING (NIL T) -7 NIL NIL) (-729 1673828 1673861 1673921 "MSYSCMD" 1673996 T MSYSCMD (NIL) -7 NIL NIL) (-728 1669940 1672583 1672903 "MSET" 1673541 NIL MSET (NIL T) -8 NIL NIL) (-727 1667035 1669501 1669542 "MSETAGG" 1669547 NIL MSETAGG (NIL T) -9 NIL 1669581) (-726 1662918 1664414 1665159 "MRING" 1666335 NIL MRING (NIL T T) -8 NIL NIL) (-725 1662484 1662551 1662682 "MRF2" 1662845 NIL MRF2 (NIL T T T) -7 NIL NIL) (-724 1662102 1662137 1662281 "MRATFAC" 1662443 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-723 1659714 1660009 1660440 "MPRFF" 1661807 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-722 1653774 1659568 1659665 "MPOLY" 1659670 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-721 1653264 1653299 1653507 "MPCPF" 1653733 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-720 1652778 1652821 1653005 "MPC3" 1653215 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-719 1651973 1652054 1652275 "MPC2" 1652693 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-718 1650274 1650611 1651001 "MONOTOOL" 1651633 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-717 1649525 1649816 1649844 "MONOID" 1650063 T MONOID (NIL) -9 NIL 1650210) (-716 1649071 1649190 1649371 "MONOID-" 1649376 NIL MONOID- (NIL T) -8 NIL NIL) (-715 1639930 1645838 1645897 "MONOGEN" 1646571 NIL MONOGEN (NIL T T) -9 NIL 1647027) (-714 1637148 1637883 1638883 "MONOGEN-" 1639002 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-713 1636007 1636427 1636455 "MONADWU" 1636847 T MONADWU (NIL) -9 NIL 1637085) (-712 1635379 1635538 1635786 "MONADWU-" 1635791 NIL MONADWU- (NIL T) -8 NIL NIL) (-711 1634764 1634982 1635010 "MONAD" 1635217 T MONAD (NIL) -9 NIL 1635329) (-710 1634449 1634527 1634659 "MONAD-" 1634664 NIL MONAD- (NIL T) -8 NIL NIL) (-709 1632765 1633362 1633641 "MOEBIUS" 1634202 NIL MOEBIUS (NIL T) -8 NIL NIL) (-708 1632157 1632535 1632575 "MODULE" 1632580 NIL MODULE (NIL T) -9 NIL 1632606) (-707 1631725 1631821 1632011 "MODULE-" 1632016 NIL MODULE- (NIL T T) -8 NIL NIL) (-706 1629440 1630089 1630416 "MODRING" 1631549 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-705 1626426 1627545 1628066 "MODOP" 1628969 NIL MODOP (NIL T T) -8 NIL NIL) (-704 1625041 1625493 1625770 "MODMONOM" 1626289 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-703 1614848 1623332 1623746 "MODMON" 1624678 NIL MODMON (NIL T T) -8 NIL NIL) (-702 1612039 1613692 1613968 "MODFIELD" 1614723 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-701 1611043 1611320 1611510 "MMLFORM" 1611869 T MMLFORM (NIL) -8 NIL NIL) (-700 1610569 1610612 1610791 "MMAP" 1610994 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-699 1608786 1609519 1609560 "MLO" 1609983 NIL MLO (NIL T) -9 NIL 1610225) (-698 1606153 1606668 1607270 "MLIFT" 1608267 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-697 1605544 1605628 1605782 "MKUCFUNC" 1606064 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-696 1605143 1605213 1605336 "MKRECORD" 1605467 NIL MKRECORD (NIL T T) -7 NIL NIL) (-695 1604191 1604352 1604580 "MKFUNC" 1604954 NIL MKFUNC (NIL T) -7 NIL NIL) (-694 1603579 1603683 1603839 "MKFLCFN" 1604074 NIL MKFLCFN (NIL T) -7 NIL NIL) (-693 1603122 1603489 1603548 "MKCHSET" 1603553 NIL MKCHSET (NIL T) -8 NIL NIL) (-692 1602399 1602501 1602686 "MKBCFUNC" 1603015 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-691 1599141 1601953 1602089 "MINT" 1602283 T MINT (NIL) -8 NIL NIL) (-690 1597953 1598196 1598473 "MHROWRED" 1598896 NIL MHROWRED (NIL T) -7 NIL NIL) (-689 1593379 1596488 1596893 "MFLOAT" 1597568 T MFLOAT (NIL) -8 NIL NIL) (-688 1592736 1592812 1592983 "MFINFACT" 1593291 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-687 1589051 1589899 1590783 "MESH" 1591872 T MESH (NIL) -7 NIL NIL) (-686 1587441 1587753 1588106 "MDDFACT" 1588738 NIL MDDFACT (NIL T) -7 NIL NIL) (-685 1584283 1586600 1586641 "MDAGG" 1586896 NIL MDAGG (NIL T) -9 NIL 1587039) (-684 1574061 1583576 1583783 "MCMPLX" 1584096 T MCMPLX (NIL) -8 NIL NIL) (-683 1573202 1573348 1573548 "MCDEN" 1573910 NIL MCDEN (NIL T T) -7 NIL NIL) (-682 1571092 1571362 1571742 "MCALCFN" 1572932 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-681 1570003 1570176 1570417 "MAYBE" 1570890 NIL MAYBE (NIL T) -8 NIL NIL) (-680 1567615 1568138 1568700 "MATSTOR" 1569474 NIL MATSTOR (NIL T) -7 NIL NIL) (-679 1563621 1566987 1567235 "MATRIX" 1567400 NIL MATRIX (NIL T) -8 NIL NIL) (-678 1559390 1560094 1560830 "MATLIN" 1562978 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-677 1549544 1552682 1552759 "MATCAT" 1557639 NIL MATCAT (NIL T T T) -9 NIL 1559056) (-676 1545908 1546921 1548277 "MATCAT-" 1548282 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-675 1544502 1544655 1544988 "MATCAT2" 1545743 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-674 1542614 1542938 1543322 "MAPPKG3" 1544177 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-673 1541595 1541768 1541990 "MAPPKG2" 1542438 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-672 1540094 1540378 1540705 "MAPPKG1" 1541301 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-671 1539200 1539500 1539677 "MAPPAST" 1539937 T MAPPAST (NIL) -8 NIL NIL) (-670 1538811 1538869 1538992 "MAPHACK3" 1539136 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-669 1538403 1538464 1538578 "MAPHACK2" 1538743 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-668 1537841 1537944 1538086 "MAPHACK1" 1538294 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-667 1535947 1536541 1536845 "MAGMA" 1537569 NIL MAGMA (NIL T) -8 NIL NIL) (-666 1535453 1535671 1535762 "MACROAST" 1535876 T MACROAST (NIL) -8 NIL NIL) (-665 1531920 1533692 1534153 "M3D" 1535025 NIL M3D (NIL T) -8 NIL NIL) (-664 1526074 1530289 1530330 "LZSTAGG" 1531112 NIL LZSTAGG (NIL T) -9 NIL 1531407) (-663 1522048 1523205 1524662 "LZSTAGG-" 1524667 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-662 1519162 1519939 1520426 "LWORD" 1521593 NIL LWORD (NIL T) -8 NIL NIL) (-661 1518765 1518966 1519041 "LSTAST" 1519107 T LSTAST (NIL) -8 NIL NIL) (-660 1511966 1518536 1518670 "LSQM" 1518675 NIL LSQM (NIL NIL T) -8 NIL NIL) (-659 1511190 1511329 1511557 "LSPP" 1511821 NIL LSPP (NIL T T T T) -7 NIL NIL) (-658 1509002 1509303 1509759 "LSMP" 1510879 NIL LSMP (NIL T T T T) -7 NIL NIL) (-657 1505781 1506455 1507185 "LSMP1" 1508304 NIL LSMP1 (NIL T) -7 NIL NIL) (-656 1499706 1504948 1504989 "LSAGG" 1505051 NIL LSAGG (NIL T) -9 NIL 1505129) (-655 1496401 1497325 1498538 "LSAGG-" 1498543 NIL LSAGG- (NIL T T) -8 NIL NIL) (-654 1494027 1495545 1495794 "LPOLY" 1496196 NIL LPOLY (NIL T T) -8 NIL NIL) (-653 1493609 1493694 1493817 "LPEFRAC" 1493936 NIL LPEFRAC (NIL T) -7 NIL NIL) (-652 1491956 1492703 1492956 "LO" 1493441 NIL LO (NIL T T T) -8 NIL NIL) (-651 1491608 1491720 1491748 "LOGIC" 1491859 T LOGIC (NIL) -9 NIL 1491940) (-650 1491470 1491493 1491564 "LOGIC-" 1491569 NIL LOGIC- (NIL T) -8 NIL NIL) (-649 1490663 1490803 1490996 "LODOOPS" 1491326 NIL LODOOPS (NIL T T) -7 NIL NIL) (-648 1488121 1490579 1490645 "LODO" 1490650 NIL LODO (NIL T NIL) -8 NIL NIL) (-647 1486659 1486894 1487247 "LODOF" 1487868 NIL LODOF (NIL T T) -7 NIL NIL) (-646 1483015 1485412 1485453 "LODOCAT" 1485891 NIL LODOCAT (NIL T) -9 NIL 1486102) (-645 1482748 1482806 1482933 "LODOCAT-" 1482938 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-644 1480103 1482589 1482707 "LODO2" 1482712 NIL LODO2 (NIL T T) -8 NIL NIL) (-643 1477573 1480040 1480085 "LODO1" 1480090 NIL LODO1 (NIL T) -8 NIL NIL) (-642 1476433 1476598 1476910 "LODEEF" 1477396 NIL LODEEF (NIL T T T) -7 NIL NIL) (-641 1471719 1474563 1474604 "LNAGG" 1475551 NIL LNAGG (NIL T) -9 NIL 1475995) (-640 1470866 1471080 1471422 "LNAGG-" 1471427 NIL LNAGG- (NIL T T) -8 NIL NIL) (-639 1467029 1467791 1468430 "LMOPS" 1470281 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-638 1466424 1466786 1466827 "LMODULE" 1466888 NIL LMODULE (NIL T) -9 NIL 1466930) (-637 1463670 1466069 1466192 "LMDICT" 1466334 NIL LMDICT (NIL T) -8 NIL NIL) (-636 1463396 1463578 1463638 "LITERAL" 1463643 NIL LITERAL (NIL T) -8 NIL NIL) (-635 1456623 1462342 1462640 "LIST" 1463131 NIL LIST (NIL T) -8 NIL NIL) (-634 1456148 1456222 1456361 "LIST3" 1456543 NIL LIST3 (NIL T T T) -7 NIL NIL) (-633 1455155 1455333 1455561 "LIST2" 1455966 NIL LIST2 (NIL T T) -7 NIL NIL) (-632 1453289 1453601 1454000 "LIST2MAP" 1454802 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-631 1452019 1452655 1452696 "LINEXP" 1452951 NIL LINEXP (NIL T) -9 NIL 1453100) (-630 1450666 1450926 1451223 "LINDEP" 1451771 NIL LINDEP (NIL T T) -7 NIL NIL) (-629 1447433 1448152 1448929 "LIMITRF" 1449921 NIL LIMITRF (NIL T) -7 NIL NIL) (-628 1445709 1446004 1446420 "LIMITPS" 1447128 NIL LIMITPS (NIL T T) -7 NIL NIL) (-627 1440164 1445220 1445448 "LIE" 1445530 NIL LIE (NIL T T) -8 NIL NIL) (-626 1439213 1439656 1439696 "LIECAT" 1439836 NIL LIECAT (NIL T) -9 NIL 1439987) (-625 1439054 1439081 1439169 "LIECAT-" 1439174 NIL LIECAT- (NIL T T) -8 NIL NIL) (-624 1431666 1438503 1438668 "LIB" 1438909 T LIB (NIL) -8 NIL NIL) (-623 1427303 1428184 1429119 "LGROBP" 1430783 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-622 1425169 1425443 1425805 "LF" 1427024 NIL LF (NIL T T) -7 NIL NIL) (-621 1424009 1424701 1424729 "LFCAT" 1424936 T LFCAT (NIL) -9 NIL 1425075) (-620 1420913 1421541 1422229 "LEXTRIPK" 1423373 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-619 1417684 1418483 1418986 "LEXP" 1420493 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-618 1417187 1417405 1417497 "LETAST" 1417612 T LETAST (NIL) -8 NIL NIL) (-617 1415585 1415898 1416299 "LEADCDET" 1416869 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-616 1414775 1414849 1415078 "LAZM3PK" 1415506 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-615 1409731 1412852 1413390 "LAUPOL" 1414287 NIL LAUPOL (NIL T T) -8 NIL NIL) (-614 1409296 1409340 1409508 "LAPLACE" 1409681 NIL LAPLACE (NIL T T) -7 NIL NIL) (-613 1407270 1408397 1408648 "LA" 1409129 NIL LA (NIL T T T) -8 NIL NIL) (-612 1406351 1406901 1406942 "LALG" 1407004 NIL LALG (NIL T) -9 NIL 1407063) (-611 1406065 1406124 1406260 "LALG-" 1406265 NIL LALG- (NIL T T) -8 NIL NIL) (-610 1405900 1405924 1405965 "KVTFROM" 1406027 NIL KVTFROM (NIL T) -9 NIL NIL) (-609 1404700 1405117 1405346 "KTVLOGIC" 1405691 T KTVLOGIC (NIL) -8 NIL NIL) (-608 1404535 1404559 1404600 "KRCFROM" 1404662 NIL KRCFROM (NIL T) -9 NIL NIL) (-607 1403439 1403626 1403925 "KOVACIC" 1404335 NIL KOVACIC (NIL T T) -7 NIL NIL) (-606 1403274 1403298 1403339 "KONVERT" 1403401 NIL KONVERT (NIL T) -9 NIL NIL) (-605 1403109 1403133 1403174 "KOERCE" 1403236 NIL KOERCE (NIL T) -9 NIL NIL) (-604 1400843 1401603 1401996 "KERNEL" 1402748 NIL KERNEL (NIL T) -8 NIL NIL) (-603 1400345 1400426 1400556 "KERNEL2" 1400757 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-602 1394196 1398884 1398938 "KDAGG" 1399315 NIL KDAGG (NIL T T) -9 NIL 1399521) (-601 1393725 1393849 1394054 "KDAGG-" 1394059 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-600 1386900 1393386 1393541 "KAFILE" 1393603 NIL KAFILE (NIL T) -8 NIL NIL) (-599 1381355 1386411 1386639 "JORDAN" 1386721 NIL JORDAN (NIL T T) -8 NIL NIL) (-598 1380761 1381004 1381125 "JOINAST" 1381254 T JOINAST (NIL) -8 NIL NIL) (-597 1380607 1380666 1380721 "JAVACODE" 1380726 T JAVACODE (NIL) -8 NIL NIL) (-596 1376906 1378812 1378866 "IXAGG" 1379795 NIL IXAGG (NIL T T) -9 NIL 1380254) (-595 1375825 1376131 1376550 "IXAGG-" 1376555 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-594 1371405 1375747 1375806 "IVECTOR" 1375811 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-593 1370171 1370408 1370674 "ITUPLE" 1371172 NIL ITUPLE (NIL T) -8 NIL NIL) (-592 1368607 1368784 1369090 "ITRIGMNP" 1369993 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-591 1367352 1367556 1367839 "ITFUN3" 1368383 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-590 1366984 1367041 1367150 "ITFUN2" 1367289 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-589 1364821 1365846 1366145 "ITAYLOR" 1366718 NIL ITAYLOR (NIL T) -8 NIL NIL) (-588 1353804 1358958 1360121 "ISUPS" 1363691 NIL ISUPS (NIL T) -8 NIL NIL) (-587 1352908 1353048 1353284 "ISUMP" 1353651 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-586 1348172 1352709 1352788 "ISTRING" 1352861 NIL ISTRING (NIL NIL) -8 NIL NIL) (-585 1347675 1347893 1347985 "ISAST" 1348100 T ISAST (NIL) -8 NIL NIL) (-584 1346885 1346966 1347182 "IRURPK" 1347589 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-583 1345821 1346022 1346262 "IRSN" 1346665 T IRSN (NIL) -7 NIL NIL) (-582 1343850 1344205 1344641 "IRRF2F" 1345459 NIL IRRF2F (NIL T) -7 NIL NIL) (-581 1343597 1343635 1343711 "IRREDFFX" 1343806 NIL IRREDFFX (NIL T) -7 NIL NIL) (-580 1342212 1342471 1342770 "IROOT" 1343330 NIL IROOT (NIL T) -7 NIL NIL) (-579 1338844 1339896 1340588 "IR" 1341552 NIL IR (NIL T) -8 NIL NIL) (-578 1336457 1336952 1337518 "IR2" 1338322 NIL IR2 (NIL T T) -7 NIL NIL) (-577 1335529 1335642 1335863 "IR2F" 1336340 NIL IR2F (NIL T T) -7 NIL NIL) (-576 1335320 1335354 1335414 "IPRNTPK" 1335489 T IPRNTPK (NIL) -7 NIL NIL) (-575 1331939 1335209 1335278 "IPF" 1335283 NIL IPF (NIL NIL) -8 NIL NIL) (-574 1330302 1331864 1331921 "IPADIC" 1331926 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-573 1329633 1329860 1329997 "IP4ADDR" 1330185 T IP4ADDR (NIL) -8 NIL NIL) (-572 1329133 1329337 1329447 "IOMODE" 1329543 T IOMODE (NIL) -8 NIL NIL) (-571 1328491 1328730 1328857 "IOBFILE" 1329026 T IOBFILE (NIL) -8 NIL NIL) (-570 1328255 1328395 1328423 "IOBCON" 1328428 T IOBCON (NIL) -9 NIL 1328449) (-569 1327752 1327810 1328000 "INVLAPLA" 1328191 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-568 1317401 1319754 1322140 "INTTR" 1325416 NIL INTTR (NIL T T) -7 NIL NIL) (-567 1313745 1314487 1315351 "INTTOOLS" 1316586 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-566 1313331 1313422 1313539 "INTSLPE" 1313648 T INTSLPE (NIL) -7 NIL NIL) (-565 1311326 1313254 1313313 "INTRVL" 1313318 NIL INTRVL (NIL T) -8 NIL NIL) (-564 1308928 1309440 1310015 "INTRF" 1310811 NIL INTRF (NIL T) -7 NIL NIL) (-563 1308339 1308436 1308578 "INTRET" 1308826 NIL INTRET (NIL T) -7 NIL NIL) (-562 1306336 1306725 1307195 "INTRAT" 1307947 NIL INTRAT (NIL T T) -7 NIL NIL) (-561 1303564 1304147 1304773 "INTPM" 1305821 NIL INTPM (NIL T T) -7 NIL NIL) (-560 1300267 1300866 1301611 "INTPAF" 1302950 NIL INTPAF (NIL T T T) -7 NIL NIL) (-559 1295446 1296408 1297459 "INTPACK" 1299236 T INTPACK (NIL) -7 NIL NIL) (-558 1292358 1295175 1295302 "INT" 1295339 T INT (NIL) -8 NIL NIL) (-557 1291610 1291762 1291970 "INTHERTR" 1292200 NIL INTHERTR (NIL T T) -7 NIL NIL) (-556 1291049 1291129 1291317 "INTHERAL" 1291524 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-555 1288895 1289338 1289795 "INTHEORY" 1290612 T INTHEORY (NIL) -7 NIL NIL) (-554 1280203 1281824 1283603 "INTG0" 1287247 NIL INTG0 (NIL T T T) -7 NIL NIL) (-553 1260776 1265566 1270376 "INTFTBL" 1275413 T INTFTBL (NIL) -8 NIL NIL) (-552 1260025 1260163 1260336 "INTFACT" 1260635 NIL INTFACT (NIL T) -7 NIL NIL) (-551 1257410 1257856 1258420 "INTEF" 1259579 NIL INTEF (NIL T T) -7 NIL NIL) (-550 1255877 1256582 1256610 "INTDOM" 1256911 T INTDOM (NIL) -9 NIL 1257118) (-549 1255246 1255420 1255662 "INTDOM-" 1255667 NIL INTDOM- (NIL T) -8 NIL NIL) (-548 1251741 1253630 1253684 "INTCAT" 1254483 NIL INTCAT (NIL T) -9 NIL 1254803) (-547 1251214 1251316 1251444 "INTBIT" 1251633 T INTBIT (NIL) -7 NIL NIL) (-546 1249885 1250039 1250353 "INTALG" 1251059 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-545 1249342 1249432 1249602 "INTAF" 1249789 NIL INTAF (NIL T T) -7 NIL NIL) (-544 1242796 1249152 1249292 "INTABL" 1249297 NIL INTABL (NIL T T T) -8 NIL NIL) (-543 1237811 1240485 1240513 "INS" 1241447 T INS (NIL) -9 NIL 1242112) (-542 1235051 1235822 1236796 "INS-" 1236869 NIL INS- (NIL T) -8 NIL NIL) (-541 1233826 1234053 1234351 "INPSIGN" 1234804 NIL INPSIGN (NIL T T) -7 NIL NIL) (-540 1232944 1233061 1233258 "INPRODPF" 1233706 NIL INPRODPF (NIL T T) -7 NIL NIL) (-539 1231838 1231955 1232192 "INPRODFF" 1232824 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-538 1230838 1230990 1231250 "INNMFACT" 1231674 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-537 1230035 1230132 1230320 "INMODGCD" 1230737 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-536 1228544 1228788 1229112 "INFSP" 1229780 NIL INFSP (NIL T T T) -7 NIL NIL) (-535 1227728 1227845 1228028 "INFPROD0" 1228424 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-534 1224610 1225793 1226308 "INFORM" 1227221 T INFORM (NIL) -8 NIL NIL) (-533 1224220 1224280 1224378 "INFORM1" 1224545 NIL INFORM1 (NIL T) -7 NIL NIL) (-532 1223743 1223832 1223946 "INFINITY" 1224126 T INFINITY (NIL) -7 NIL NIL) (-531 1223188 1223461 1223569 "INETCLTS" 1223655 T INETCLTS (NIL) -8 NIL NIL) (-530 1221805 1222054 1222375 "INEP" 1222936 NIL INEP (NIL T T T) -7 NIL NIL) (-529 1221081 1221702 1221767 "INDE" 1221772 NIL INDE (NIL T) -8 NIL NIL) (-528 1220645 1220713 1220830 "INCRMAPS" 1221008 NIL INCRMAPS (NIL T) -7 NIL NIL) (-527 1219663 1219914 1220120 "INBFILE" 1220459 T INBFILE (NIL) -8 NIL NIL) (-526 1214974 1215899 1216843 "INBFF" 1218751 NIL INBFF (NIL T) -7 NIL NIL) (-525 1214643 1214719 1214747 "INBCON" 1214880 T INBCON (NIL) -9 NIL 1214958) (-524 1214483 1214518 1214594 "INBCON-" 1214599 NIL INBCON- (NIL T) -8 NIL NIL) (-523 1213985 1214204 1214296 "INAST" 1214411 T INAST (NIL) -8 NIL NIL) (-522 1213439 1213664 1213770 "IMPTAST" 1213899 T IMPTAST (NIL) -8 NIL NIL) (-521 1209933 1213283 1213387 "IMATRIX" 1213392 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-520 1208645 1208768 1209083 "IMATQF" 1209789 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-519 1206865 1207092 1207429 "IMATLIN" 1208401 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-518 1201491 1206789 1206847 "ILIST" 1206852 NIL ILIST (NIL T NIL) -8 NIL NIL) (-517 1199444 1201351 1201464 "IIARRAY2" 1201469 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-516 1194877 1199355 1199419 "IFF" 1199424 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-515 1194251 1194494 1194610 "IFAST" 1194781 T IFAST (NIL) -8 NIL NIL) (-514 1189294 1193543 1193731 "IFARRAY" 1194108 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-513 1188501 1189198 1189271 "IFAMON" 1189276 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-512 1188085 1188150 1188204 "IEVALAB" 1188411 NIL IEVALAB (NIL T T) -9 NIL NIL) (-511 1187760 1187828 1187988 "IEVALAB-" 1187993 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-510 1187418 1187674 1187737 "IDPO" 1187742 NIL IDPO (NIL T T) -8 NIL NIL) (-509 1186695 1187307 1187382 "IDPOAMS" 1187387 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-508 1186029 1186584 1186659 "IDPOAM" 1186664 NIL IDPOAM (NIL T T) -8 NIL NIL) (-507 1185114 1185364 1185417 "IDPC" 1185830 NIL IDPC (NIL T T) -9 NIL 1185979) (-506 1184610 1185006 1185079 "IDPAM" 1185084 NIL IDPAM (NIL T T) -8 NIL NIL) (-505 1184013 1184502 1184575 "IDPAG" 1184580 NIL IDPAG (NIL T T) -8 NIL NIL) (-504 1183781 1183928 1183978 "IDENT" 1183983 T IDENT (NIL) -8 NIL NIL) (-503 1180036 1180884 1181779 "IDECOMP" 1182938 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-502 1172910 1173959 1175006 "IDEAL" 1179072 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-501 1172074 1172186 1172385 "ICDEN" 1172794 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-500 1171173 1171554 1171701 "ICARD" 1171947 T ICARD (NIL) -8 NIL NIL) (-499 1169233 1169546 1169951 "IBPTOOLS" 1170850 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-498 1164867 1168853 1168966 "IBITS" 1169152 NIL IBITS (NIL NIL) -8 NIL NIL) (-497 1161590 1162166 1162861 "IBATOOL" 1164284 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-496 1159370 1159831 1160364 "IBACHIN" 1161125 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-495 1157247 1159216 1159319 "IARRAY2" 1159324 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-494 1153400 1157173 1157230 "IARRAY1" 1157235 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-493 1147394 1151812 1152293 "IAN" 1152939 T IAN (NIL) -8 NIL NIL) (-492 1146905 1146962 1147135 "IALGFACT" 1147331 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-491 1146433 1146546 1146574 "HYPCAT" 1146781 T HYPCAT (NIL) -9 NIL NIL) (-490 1145971 1146088 1146274 "HYPCAT-" 1146279 NIL HYPCAT- (NIL T) -8 NIL NIL) (-489 1145593 1145766 1145849 "HOSTNAME" 1145908 T HOSTNAME (NIL) -8 NIL NIL) (-488 1145438 1145475 1145516 "HOMOTOP" 1145521 NIL HOMOTOP (NIL T) -9 NIL 1145554) (-487 1142117 1143448 1143489 "HOAGG" 1144470 NIL HOAGG (NIL T) -9 NIL 1145149) (-486 1140711 1141110 1141636 "HOAGG-" 1141641 NIL HOAGG- (NIL T T) -8 NIL NIL) (-485 1134753 1140308 1140456 "HEXADEC" 1140583 T HEXADEC (NIL) -8 NIL NIL) (-484 1133501 1133723 1133986 "HEUGCD" 1134530 NIL HEUGCD (NIL T) -7 NIL NIL) (-483 1132604 1133338 1133468 "HELLFDIV" 1133473 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-482 1130832 1132381 1132469 "HEAP" 1132548 NIL HEAP (NIL T) -8 NIL NIL) (-481 1130123 1130384 1130518 "HEADAST" 1130718 T HEADAST (NIL) -8 NIL NIL) (-480 1124043 1130038 1130100 "HDP" 1130105 NIL HDP (NIL NIL T) -8 NIL NIL) (-479 1117794 1123678 1123830 "HDMP" 1123944 NIL HDMP (NIL NIL T) -8 NIL NIL) (-478 1117119 1117258 1117422 "HB" 1117650 T HB (NIL) -7 NIL NIL) (-477 1110616 1116965 1117069 "HASHTBL" 1117074 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-476 1110119 1110337 1110429 "HASAST" 1110544 T HASAST (NIL) -8 NIL NIL) (-475 1107931 1109741 1109923 "HACKPI" 1109957 T HACKPI (NIL) -8 NIL NIL) (-474 1103626 1107784 1107897 "GTSET" 1107902 NIL GTSET (NIL T T T T) -8 NIL NIL) (-473 1097152 1103504 1103602 "GSTBL" 1103607 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-472 1089465 1096183 1096448 "GSERIES" 1096943 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-471 1088632 1089023 1089051 "GROUP" 1089254 T GROUP (NIL) -9 NIL 1089388) (-470 1087998 1088157 1088408 "GROUP-" 1088413 NIL GROUP- (NIL T) -8 NIL NIL) (-469 1086367 1086686 1087073 "GROEBSOL" 1087675 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-468 1085307 1085569 1085620 "GRMOD" 1086149 NIL GRMOD (NIL T T) -9 NIL 1086317) (-467 1085075 1085111 1085239 "GRMOD-" 1085244 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-466 1080401 1081429 1082429 "GRIMAGE" 1084095 T GRIMAGE (NIL) -8 NIL NIL) (-465 1078868 1079128 1079452 "GRDEF" 1080097 T GRDEF (NIL) -7 NIL NIL) (-464 1078312 1078428 1078569 "GRAY" 1078747 T GRAY (NIL) -7 NIL NIL) (-463 1077525 1077905 1077956 "GRALG" 1078109 NIL GRALG (NIL T T) -9 NIL 1078202) (-462 1077186 1077259 1077422 "GRALG-" 1077427 NIL GRALG- (NIL T T T) -8 NIL NIL) (-461 1073990 1076771 1076949 "GPOLSET" 1077093 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-460 1073344 1073401 1073659 "GOSPER" 1073927 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-459 1069103 1069782 1070308 "GMODPOL" 1073043 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-458 1068108 1068292 1068530 "GHENSEL" 1068915 NIL GHENSEL (NIL T T) -7 NIL NIL) (-457 1062159 1063002 1064029 "GENUPS" 1067192 NIL GENUPS (NIL T T) -7 NIL NIL) (-456 1061856 1061907 1061996 "GENUFACT" 1062102 NIL GENUFACT (NIL T) -7 NIL NIL) (-455 1061268 1061345 1061510 "GENPGCD" 1061774 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-454 1060742 1060777 1060990 "GENMFACT" 1061227 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-453 1059310 1059565 1059872 "GENEEZ" 1060485 NIL GENEEZ (NIL T T) -7 NIL NIL) (-452 1053223 1058921 1059083 "GDMP" 1059233 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-451 1042600 1046994 1048100 "GCNAALG" 1052206 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-450 1041027 1041855 1041883 "GCDDOM" 1042138 T GCDDOM (NIL) -9 NIL 1042295) (-449 1040497 1040624 1040839 "GCDDOM-" 1040844 NIL GCDDOM- (NIL T) -8 NIL NIL) (-448 1039169 1039354 1039658 "GB" 1040276 NIL GB (NIL T T T T) -7 NIL NIL) (-447 1027789 1030115 1032507 "GBINTERN" 1036860 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-446 1025626 1025918 1026339 "GBF" 1027464 NIL GBF (NIL T T T T) -7 NIL NIL) (-445 1024407 1024572 1024839 "GBEUCLID" 1025442 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-444 1023756 1023881 1024030 "GAUSSFAC" 1024278 T GAUSSFAC (NIL) -7 NIL NIL) (-443 1022123 1022425 1022739 "GALUTIL" 1023475 NIL GALUTIL (NIL T) -7 NIL NIL) (-442 1020431 1020705 1021029 "GALPOLYU" 1021850 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-441 1017796 1018086 1018493 "GALFACTU" 1020128 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-440 1009602 1011101 1012709 "GALFACT" 1016228 NIL GALFACT (NIL T) -7 NIL NIL) (-439 1006990 1007648 1007676 "FVFUN" 1008832 T FVFUN (NIL) -9 NIL 1009552) (-438 1006256 1006438 1006466 "FVC" 1006757 T FVC (NIL) -9 NIL 1006940) (-437 1005898 1006053 1006134 "FUNCTION" 1006208 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-436 1003669 1004220 1004686 "FT" 1005452 T FT (NIL) -8 NIL NIL) (-435 1002487 1002970 1003173 "FTEM" 1003486 T FTEM (NIL) -8 NIL NIL) (-434 1000743 1001032 1001436 "FSUPFACT" 1002178 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-433 999140 999429 999761 "FST" 1000431 T FST (NIL) -8 NIL NIL) (-432 998311 998417 998612 "FSRED" 999022 NIL FSRED (NIL T T) -7 NIL NIL) (-431 996990 997245 997599 "FSPRMELT" 998026 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-430 994075 994513 995012 "FSPECF" 996553 NIL FSPECF (NIL T T) -7 NIL NIL) (-429 976135 984578 984618 "FS" 988466 NIL FS (NIL T) -9 NIL 990755) (-428 964785 967775 971831 "FS-" 972128 NIL FS- (NIL T T) -8 NIL NIL) (-427 964299 964353 964530 "FSINT" 964726 NIL FSINT (NIL T T) -7 NIL NIL) (-426 962626 963292 963595 "FSERIES" 964078 NIL FSERIES (NIL T T) -8 NIL NIL) (-425 961640 961756 961987 "FSCINT" 962506 NIL FSCINT (NIL T T) -7 NIL NIL) (-424 957874 960584 960625 "FSAGG" 960995 NIL FSAGG (NIL T) -9 NIL 961254) (-423 955636 956237 957033 "FSAGG-" 957128 NIL FSAGG- (NIL T T) -8 NIL NIL) (-422 954678 954821 955048 "FSAGG2" 955489 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-421 952333 952612 953166 "FS2UPS" 954396 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-420 951915 951958 952113 "FS2" 952284 NIL FS2 (NIL T T T T) -7 NIL NIL) (-419 950772 950943 951252 "FS2EXPXP" 951740 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-418 950198 950313 950465 "FRUTIL" 950652 NIL FRUTIL (NIL T) -7 NIL NIL) (-417 941653 945693 947051 "FR" 948872 NIL FR (NIL T) -8 NIL NIL) (-416 936728 939371 939411 "FRNAALG" 940807 NIL FRNAALG (NIL T) -9 NIL 941414) (-415 932406 933477 934752 "FRNAALG-" 935502 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-414 932044 932087 932214 "FRNAAF2" 932357 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-413 930451 930898 931193 "FRMOD" 931856 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-412 928230 928834 929151 "FRIDEAL" 930242 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-411 927425 927512 927801 "FRIDEAL2" 928137 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-410 926558 926972 927013 "FRETRCT" 927018 NIL FRETRCT (NIL T) -9 NIL 927194) (-409 925670 925901 926252 "FRETRCT-" 926257 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-408 922882 924058 924117 "FRAMALG" 924999 NIL FRAMALG (NIL T T) -9 NIL 925291) (-407 921016 921471 922101 "FRAMALG-" 922324 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-406 914974 920491 920767 "FRAC" 920772 NIL FRAC (NIL T) -8 NIL NIL) (-405 914610 914667 914774 "FRAC2" 914911 NIL FRAC2 (NIL T T) -7 NIL NIL) (-404 914246 914303 914410 "FR2" 914547 NIL FR2 (NIL T T) -7 NIL NIL) (-403 908919 911771 911799 "FPS" 912918 T FPS (NIL) -9 NIL 913475) (-402 908368 908477 908641 "FPS-" 908787 NIL FPS- (NIL T) -8 NIL NIL) (-401 905822 907457 907485 "FPC" 907710 T FPC (NIL) -9 NIL 907852) (-400 905615 905655 905752 "FPC-" 905757 NIL FPC- (NIL T) -8 NIL NIL) (-399 904493 905103 905144 "FPATMAB" 905149 NIL FPATMAB (NIL T) -9 NIL 905301) (-398 902193 902669 903095 "FPARFRAC" 904130 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-397 897586 898085 898767 "FORTRAN" 901625 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-396 895302 895802 896341 "FORT" 897067 T FORT (NIL) -7 NIL NIL) (-395 892978 893540 893568 "FORTFN" 894628 T FORTFN (NIL) -9 NIL 895252) (-394 892742 892792 892820 "FORTCAT" 892879 T FORTCAT (NIL) -9 NIL 892941) (-393 890875 891358 891748 "FORMULA" 892372 T FORMULA (NIL) -8 NIL NIL) (-392 890663 890693 890762 "FORMULA1" 890839 NIL FORMULA1 (NIL T) -7 NIL NIL) (-391 890186 890238 890411 "FORDER" 890605 NIL FORDER (NIL T T T T) -7 NIL NIL) (-390 889282 889446 889639 "FOP" 890013 T FOP (NIL) -7 NIL NIL) (-389 887890 888562 888736 "FNLA" 889164 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-388 886645 887034 887062 "FNCAT" 887522 T FNCAT (NIL) -9 NIL 887782) (-387 886211 886604 886632 "FNAME" 886637 T FNAME (NIL) -8 NIL NIL) (-386 884874 885803 885831 "FMTC" 885836 T FMTC (NIL) -9 NIL 885872) (-385 881236 882397 883026 "FMONOID" 884278 NIL FMONOID (NIL T) -8 NIL NIL) (-384 880455 880978 881127 "FM" 881132 NIL FM (NIL T T) -8 NIL NIL) (-383 877879 878525 878553 "FMFUN" 879697 T FMFUN (NIL) -9 NIL 880405) (-382 877148 877329 877357 "FMC" 877647 T FMC (NIL) -9 NIL 877829) (-381 874342 875176 875230 "FMCAT" 876425 NIL FMCAT (NIL T T) -9 NIL 876920) (-380 873235 874108 874208 "FM1" 874287 NIL FM1 (NIL T T) -8 NIL NIL) (-379 871009 871425 871919 "FLOATRP" 872786 NIL FLOATRP (NIL T) -7 NIL NIL) (-378 864633 868738 869359 "FLOAT" 870408 T FLOAT (NIL) -8 NIL NIL) (-377 862071 862571 863149 "FLOATCP" 864100 NIL FLOATCP (NIL T) -7 NIL NIL) (-376 860880 861684 861725 "FLINEXP" 861730 NIL FLINEXP (NIL T) -9 NIL 861823) (-375 860034 860269 860597 "FLINEXP-" 860602 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-374 859110 859254 859478 "FLASORT" 859886 NIL FLASORT (NIL T T) -7 NIL NIL) (-373 856327 857169 857221 "FLALG" 858448 NIL FLALG (NIL T T) -9 NIL 858915) (-372 850111 853813 853854 "FLAGG" 855116 NIL FLAGG (NIL T) -9 NIL 855768) (-371 848837 849176 849666 "FLAGG-" 849671 NIL FLAGG- (NIL T T) -8 NIL NIL) (-370 847879 848022 848249 "FLAGG2" 848690 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-369 844854 845828 845887 "FINRALG" 847015 NIL FINRALG (NIL T T) -9 NIL 847523) (-368 844014 844243 844582 "FINRALG-" 844587 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-367 843420 843633 843661 "FINITE" 843857 T FINITE (NIL) -9 NIL 843964) (-366 835878 838039 838079 "FINAALG" 841746 NIL FINAALG (NIL T) -9 NIL 843199) (-365 831219 832260 833404 "FINAALG-" 834783 NIL FINAALG- (NIL T T) -8 NIL NIL) (-364 830614 830974 831077 "FILE" 831149 NIL FILE (NIL T) -8 NIL NIL) (-363 829298 829610 829664 "FILECAT" 830348 NIL FILECAT (NIL T T) -9 NIL 830564) (-362 827166 828660 828688 "FIELD" 828728 T FIELD (NIL) -9 NIL 828808) (-361 825786 826171 826682 "FIELD-" 826687 NIL FIELD- (NIL T) -8 NIL NIL) (-360 823664 824421 824768 "FGROUP" 825472 NIL FGROUP (NIL T) -8 NIL NIL) (-359 822754 822918 823138 "FGLMICPK" 823496 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-358 818621 822679 822736 "FFX" 822741 NIL FFX (NIL T NIL) -8 NIL NIL) (-357 818222 818283 818418 "FFSLPE" 818554 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-356 814215 814994 815790 "FFPOLY" 817458 NIL FFPOLY (NIL T) -7 NIL NIL) (-355 813719 813755 813964 "FFPOLY2" 814173 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-354 809605 813638 813701 "FFP" 813706 NIL FFP (NIL T NIL) -8 NIL NIL) (-353 805038 809516 809580 "FF" 809585 NIL FF (NIL NIL NIL) -8 NIL NIL) (-352 800199 804381 804571 "FFNBX" 804892 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-351 795173 799334 799592 "FFNBP" 800053 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-350 789841 794457 794668 "FFNB" 795006 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-349 788673 788871 789186 "FFINTBAS" 789638 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-348 784901 787080 787108 "FFIELDC" 787728 T FFIELDC (NIL) -9 NIL 788104) (-347 783564 783934 784431 "FFIELDC-" 784436 NIL FFIELDC- (NIL T) -8 NIL NIL) (-346 783134 783179 783303 "FFHOM" 783506 NIL FFHOM (NIL T T T) -7 NIL NIL) (-345 780832 781316 781833 "FFF" 782649 NIL FFF (NIL T) -7 NIL NIL) (-344 776485 780574 780675 "FFCGX" 780775 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-343 772152 776217 776324 "FFCGP" 776428 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-342 767370 771879 771987 "FFCG" 772088 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-341 749203 758241 758327 "FFCAT" 763492 NIL FFCAT (NIL T T T) -9 NIL 764943) (-340 744401 745448 746762 "FFCAT-" 747992 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-339 743812 743855 744090 "FFCAT2" 744352 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-338 733024 736784 738004 "FEXPR" 742664 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-337 732024 732459 732500 "FEVALAB" 732584 NIL FEVALAB (NIL T) -9 NIL 732845) (-336 731183 731393 731731 "FEVALAB-" 731736 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-335 729776 730566 730769 "FDIV" 731082 NIL FDIV (NIL T T T T) -8 NIL NIL) (-334 726842 727557 727672 "FDIVCAT" 729240 NIL FDIVCAT (NIL T T T T) -9 NIL 729677) (-333 726604 726631 726801 "FDIVCAT-" 726806 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-332 725824 725911 726188 "FDIV2" 726511 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-331 724510 724769 725058 "FCPAK1" 725555 T FCPAK1 (NIL) -7 NIL NIL) (-330 723638 724010 724151 "FCOMP" 724401 NIL FCOMP (NIL T) -8 NIL NIL) (-329 707374 710788 714326 "FC" 720120 T FC (NIL) -8 NIL NIL) (-328 699953 703938 703978 "FAXF" 705780 NIL FAXF (NIL T) -9 NIL 706472) (-327 697232 697887 698712 "FAXF-" 699177 NIL FAXF- (NIL T T) -8 NIL NIL) (-326 692332 696608 696784 "FARRAY" 697089 NIL FARRAY (NIL T) -8 NIL NIL) (-325 687585 689617 689670 "FAMR" 690693 NIL FAMR (NIL T T) -9 NIL 691153) (-324 686475 686777 687212 "FAMR-" 687217 NIL FAMR- (NIL T T T) -8 NIL NIL) (-323 685671 686397 686450 "FAMONOID" 686455 NIL FAMONOID (NIL T) -8 NIL NIL) (-322 683483 684167 684220 "FAMONC" 685161 NIL FAMONC (NIL T T) -9 NIL 685547) (-321 682175 683237 683374 "FAGROUP" 683379 NIL FAGROUP (NIL T) -8 NIL NIL) (-320 679970 680289 680692 "FACUTIL" 681856 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-319 679069 679254 679476 "FACTFUNC" 679780 NIL FACTFUNC (NIL T) -7 NIL NIL) (-318 671474 678320 678532 "EXPUPXS" 678925 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-317 668957 669497 670083 "EXPRTUBE" 670908 T EXPRTUBE (NIL) -7 NIL NIL) (-316 665151 665743 666480 "EXPRODE" 668296 NIL EXPRODE (NIL T T) -7 NIL NIL) (-315 650525 663806 664234 "EXPR" 664755 NIL EXPR (NIL T) -8 NIL NIL) (-314 644932 645519 646332 "EXPR2UPS" 649823 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-313 644568 644625 644732 "EXPR2" 644869 NIL EXPR2 (NIL T T) -7 NIL NIL) (-312 635973 643700 643997 "EXPEXPAN" 644405 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-311 635800 635930 635959 "EXIT" 635964 T EXIT (NIL) -8 NIL NIL) (-310 635307 635524 635615 "EXITAST" 635729 T EXITAST (NIL) -8 NIL NIL) (-309 634934 634996 635109 "EVALCYC" 635239 NIL EVALCYC (NIL T) -7 NIL NIL) (-308 634475 634593 634634 "EVALAB" 634804 NIL EVALAB (NIL T) -9 NIL 634908) (-307 633956 634078 634299 "EVALAB-" 634304 NIL EVALAB- (NIL T T) -8 NIL NIL) (-306 631424 632692 632720 "EUCDOM" 633275 T EUCDOM (NIL) -9 NIL 633625) (-305 629829 630271 630861 "EUCDOM-" 630866 NIL EUCDOM- (NIL T) -8 NIL NIL) (-304 617369 620127 622877 "ESTOOLS" 627099 T ESTOOLS (NIL) -7 NIL NIL) (-303 617001 617058 617167 "ESTOOLS2" 617306 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-302 616752 616794 616874 "ESTOOLS1" 616953 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-301 610657 612385 612413 "ES" 615181 T ES (NIL) -9 NIL 616590) (-300 605605 606891 608708 "ES-" 608872 NIL ES- (NIL T) -8 NIL NIL) (-299 601980 602740 603520 "ESCONT" 604845 T ESCONT (NIL) -7 NIL NIL) (-298 601725 601757 601839 "ESCONT1" 601942 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-297 601400 601450 601550 "ES2" 601669 NIL ES2 (NIL T T) -7 NIL NIL) (-296 601030 601088 601197 "ES1" 601336 NIL ES1 (NIL T T) -7 NIL NIL) (-295 600246 600375 600551 "ERROR" 600874 T ERROR (NIL) -7 NIL NIL) (-294 593749 600105 600196 "EQTBL" 600201 NIL EQTBL (NIL T T) -8 NIL NIL) (-293 586306 589063 590512 "EQ" 592333 NIL -3354 (NIL T) -8 NIL NIL) (-292 585938 585995 586104 "EQ2" 586243 NIL EQ2 (NIL T T) -7 NIL NIL) (-291 581230 582276 583369 "EP" 584877 NIL EP (NIL T) -7 NIL NIL) (-290 579812 580113 580430 "ENV" 580933 T ENV (NIL) -8 NIL NIL) (-289 578991 579511 579539 "ENTIRER" 579544 T ENTIRER (NIL) -9 NIL 579590) (-288 575493 576946 577316 "EMR" 578790 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-287 574637 574822 574876 "ELTAGG" 575256 NIL ELTAGG (NIL T T) -9 NIL 575467) (-286 574356 574418 574559 "ELTAGG-" 574564 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-285 574145 574174 574228 "ELTAB" 574312 NIL ELTAB (NIL T T) -9 NIL NIL) (-284 573271 573417 573616 "ELFUTS" 573996 NIL ELFUTS (NIL T T) -7 NIL NIL) (-283 573013 573069 573097 "ELEMFUN" 573202 T ELEMFUN (NIL) -9 NIL NIL) (-282 572883 572904 572972 "ELEMFUN-" 572977 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-281 567774 570983 571024 "ELAGG" 571964 NIL ELAGG (NIL T) -9 NIL 572427) (-280 566059 566493 567156 "ELAGG-" 567161 NIL ELAGG- (NIL T T) -8 NIL NIL) (-279 564716 564996 565291 "ELABEXPR" 565784 T ELABEXPR (NIL) -8 NIL NIL) (-278 557582 559383 560210 "EFUPXS" 563992 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-277 551032 552833 553643 "EFULS" 556858 NIL EFULS (NIL T T T) -8 NIL NIL) (-276 548454 548812 549291 "EFSTRUC" 550664 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-275 537526 539091 540651 "EF" 546969 NIL EF (NIL T T) -7 NIL NIL) (-274 536627 537011 537160 "EAB" 537397 T EAB (NIL) -8 NIL NIL) (-273 535836 536586 536614 "E04UCFA" 536619 T E04UCFA (NIL) -8 NIL NIL) (-272 535045 535795 535823 "E04NAFA" 535828 T E04NAFA (NIL) -8 NIL NIL) (-271 534254 535004 535032 "E04MBFA" 535037 T E04MBFA (NIL) -8 NIL NIL) (-270 533463 534213 534241 "E04JAFA" 534246 T E04JAFA (NIL) -8 NIL NIL) (-269 532674 533422 533450 "E04GCFA" 533455 T E04GCFA (NIL) -8 NIL NIL) (-268 531885 532633 532661 "E04FDFA" 532666 T E04FDFA (NIL) -8 NIL NIL) (-267 531094 531844 531872 "E04DGFA" 531877 T E04DGFA (NIL) -8 NIL NIL) (-266 525272 526619 527983 "E04AGNT" 529750 T E04AGNT (NIL) -7 NIL NIL) (-265 523978 524458 524498 "DVARCAT" 524973 NIL DVARCAT (NIL T) -9 NIL 525172) (-264 523182 523394 523708 "DVARCAT-" 523713 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-263 516082 522981 523110 "DSMP" 523115 NIL DSMP (NIL T T T) -8 NIL NIL) (-262 510892 512027 513095 "DROPT" 515034 T DROPT (NIL) -8 NIL NIL) (-261 510557 510616 510714 "DROPT1" 510827 NIL DROPT1 (NIL T) -7 NIL NIL) (-260 505672 506798 507935 "DROPT0" 509440 T DROPT0 (NIL) -7 NIL NIL) (-259 504017 504342 504728 "DRAWPT" 505306 T DRAWPT (NIL) -7 NIL NIL) (-258 498604 499527 500606 "DRAW" 502991 NIL DRAW (NIL T) -7 NIL NIL) (-257 498237 498290 498408 "DRAWHACK" 498545 NIL DRAWHACK (NIL T) -7 NIL NIL) (-256 496968 497237 497528 "DRAWCX" 497966 T DRAWCX (NIL) -7 NIL NIL) (-255 496484 496552 496703 "DRAWCURV" 496894 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-254 486955 488914 491029 "DRAWCFUN" 494389 T DRAWCFUN (NIL) -7 NIL NIL) (-253 483768 485650 485691 "DQAGG" 486320 NIL DQAGG (NIL T) -9 NIL 486593) (-252 472047 478746 478829 "DPOLCAT" 480681 NIL DPOLCAT (NIL T T T T) -9 NIL 481226) (-251 466886 468232 470190 "DPOLCAT-" 470195 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-250 460041 466747 466845 "DPMO" 466850 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-249 453099 459821 459988 "DPMM" 459993 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-248 452763 453018 453066 "DOMCTOR" 453071 T DOMCTOR (NIL) -8 NIL NIL) (-247 452058 452285 452422 "DOMAIN" 452646 T DOMAIN (NIL) -8 NIL NIL) (-246 445809 451693 451845 "DMP" 451959 NIL DMP (NIL NIL T) -8 NIL NIL) (-245 445409 445465 445609 "DLP" 445747 NIL DLP (NIL T) -7 NIL NIL) (-244 439279 444736 444926 "DLIST" 445251 NIL DLIST (NIL T) -8 NIL NIL) (-243 436123 438132 438173 "DLAGG" 438723 NIL DLAGG (NIL T) -9 NIL 438953) (-242 434936 435566 435594 "DIVRING" 435686 T DIVRING (NIL) -9 NIL 435769) (-241 434173 434363 434663 "DIVRING-" 434668 NIL DIVRING- (NIL T) -8 NIL NIL) (-240 432275 432632 433038 "DISPLAY" 433787 T DISPLAY (NIL) -7 NIL NIL) (-239 426217 432189 432252 "DIRPROD" 432257 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-238 425065 425268 425533 "DIRPROD2" 426010 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-237 414328 420280 420333 "DIRPCAT" 420743 NIL DIRPCAT (NIL NIL T) -9 NIL 421583) (-236 411654 412296 413177 "DIRPCAT-" 413514 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-235 410941 411101 411287 "DIOSP" 411488 T DIOSP (NIL) -7 NIL NIL) (-234 407643 409853 409894 "DIOPS" 410328 NIL DIOPS (NIL T) -9 NIL 410557) (-233 407192 407306 407497 "DIOPS-" 407502 NIL DIOPS- (NIL T T) -8 NIL NIL) (-232 406084 406678 406706 "DIFRING" 406893 T DIFRING (NIL) -9 NIL 407003) (-231 405730 405807 405959 "DIFRING-" 405964 NIL DIFRING- (NIL T) -8 NIL NIL) (-230 403535 404773 404814 "DIFEXT" 405177 NIL DIFEXT (NIL T) -9 NIL 405471) (-229 401820 402248 402914 "DIFEXT-" 402919 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-228 399142 401352 401393 "DIAGG" 401398 NIL DIAGG (NIL T) -9 NIL 401418) (-227 398526 398683 398935 "DIAGG-" 398940 NIL DIAGG- (NIL T T) -8 NIL NIL) (-226 393991 397485 397762 "DHMATRIX" 398295 NIL DHMATRIX (NIL T) -8 NIL NIL) (-225 389603 390512 391522 "DFSFUN" 393001 T DFSFUN (NIL) -7 NIL NIL) (-224 384719 388534 388846 "DFLOAT" 389311 T DFLOAT (NIL) -8 NIL NIL) (-223 382947 383228 383624 "DFINTTLS" 384427 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-222 380012 380968 381368 "DERHAM" 382613 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-221 377861 379787 379876 "DEQUEUE" 379956 NIL DEQUEUE (NIL T) -8 NIL NIL) (-220 377076 377209 377405 "DEGRED" 377723 NIL DEGRED (NIL T T) -7 NIL NIL) (-219 373471 374216 375069 "DEFINTRF" 376304 NIL DEFINTRF (NIL T) -7 NIL NIL) (-218 370998 371467 372066 "DEFINTEF" 372990 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-217 370375 370618 370733 "DEFAST" 370903 T DEFAST (NIL) -8 NIL NIL) (-216 364417 369972 370120 "DECIMAL" 370247 T DECIMAL (NIL) -8 NIL NIL) (-215 361929 362387 362893 "DDFACT" 363961 NIL DDFACT (NIL T T) -7 NIL NIL) (-214 361525 361568 361719 "DBLRESP" 361880 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-213 359424 359758 360118 "DBASE" 361292 NIL DBASE (NIL T) -8 NIL NIL) (-212 358693 358904 359050 "DATAARY" 359323 NIL DATAARY (NIL NIL T) -8 NIL NIL) (-211 357826 358652 358680 "D03FAFA" 358685 T D03FAFA (NIL) -8 NIL NIL) (-210 356960 357785 357813 "D03EEFA" 357818 T D03EEFA (NIL) -8 NIL NIL) (-209 354910 355376 355865 "D03AGNT" 356491 T D03AGNT (NIL) -7 NIL NIL) (-208 354226 354869 354897 "D02EJFA" 354902 T D02EJFA (NIL) -8 NIL NIL) (-207 353542 354185 354213 "D02CJFA" 354218 T D02CJFA (NIL) -8 NIL NIL) (-206 352858 353501 353529 "D02BHFA" 353534 T D02BHFA (NIL) -8 NIL NIL) (-205 352174 352817 352845 "D02BBFA" 352850 T D02BBFA (NIL) -8 NIL NIL) (-204 345372 346960 348566 "D02AGNT" 350588 T D02AGNT (NIL) -7 NIL NIL) (-203 343141 343663 344209 "D01WGTS" 344846 T D01WGTS (NIL) -7 NIL NIL) (-202 342236 343100 343128 "D01TRNS" 343133 T D01TRNS (NIL) -8 NIL NIL) (-201 341331 342195 342223 "D01GBFA" 342228 T D01GBFA (NIL) -8 NIL NIL) (-200 340426 341290 341318 "D01FCFA" 341323 T D01FCFA (NIL) -8 NIL NIL) (-199 339521 340385 340413 "D01ASFA" 340418 T D01ASFA (NIL) -8 NIL NIL) (-198 338616 339480 339508 "D01AQFA" 339513 T D01AQFA (NIL) -8 NIL NIL) (-197 337711 338575 338603 "D01APFA" 338608 T D01APFA (NIL) -8 NIL NIL) (-196 336806 337670 337698 "D01ANFA" 337703 T D01ANFA (NIL) -8 NIL NIL) (-195 335901 336765 336793 "D01AMFA" 336798 T D01AMFA (NIL) -8 NIL NIL) (-194 334996 335860 335888 "D01ALFA" 335893 T D01ALFA (NIL) -8 NIL NIL) (-193 334091 334955 334983 "D01AKFA" 334988 T D01AKFA (NIL) -8 NIL NIL) (-192 333186 334050 334078 "D01AJFA" 334083 T D01AJFA (NIL) -8 NIL NIL) (-191 326483 328034 329595 "D01AGNT" 331645 T D01AGNT (NIL) -7 NIL NIL) (-190 325820 325948 326100 "CYCLOTOM" 326351 T CYCLOTOM (NIL) -7 NIL NIL) (-189 322555 323268 323995 "CYCLES" 325113 T CYCLES (NIL) -7 NIL NIL) (-188 321867 322001 322172 "CVMP" 322416 NIL CVMP (NIL T) -7 NIL NIL) (-187 319638 319896 320272 "CTRIGMNP" 321595 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-186 319361 319597 319625 "CTOR" 319630 T CTOR (NIL) -8 NIL NIL) (-185 318897 319092 319193 "CTORKIND" 319280 T CTORKIND (NIL) -8 NIL NIL) (-184 318368 318596 318624 "CTORCAT" 318744 T CTORCAT (NIL) -9 NIL 318827) (-183 318063 318143 318269 "CTORCAT-" 318274 NIL CTORCAT- (NIL T) -8 NIL NIL) (-182 317579 317766 317864 "CTORCALL" 317985 T CTORCALL (NIL) -8 NIL NIL) (-181 316953 317052 317205 "CSTTOOLS" 317476 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-180 312752 313409 314167 "CRFP" 316265 NIL CRFP (NIL T T) -7 NIL NIL) (-179 312254 312473 312565 "CRCEAST" 312680 T CRCEAST (NIL) -8 NIL NIL) (-178 311301 311486 311714 "CRAPACK" 312058 NIL CRAPACK (NIL T) -7 NIL NIL) (-177 310685 310786 310990 "CPMATCH" 311177 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-176 310410 310438 310544 "CPIMA" 310651 NIL CPIMA (NIL T T T) -7 NIL NIL) (-175 306774 307446 308164 "COORDSYS" 309745 NIL COORDSYS (NIL T) -7 NIL NIL) (-174 306158 306287 306437 "CONTOUR" 306644 T CONTOUR (NIL) -8 NIL NIL) (-173 302084 304161 304653 "CONTFRAC" 305698 NIL CONTFRAC (NIL T) -8 NIL NIL) (-172 301964 301985 302013 "CONDUIT" 302050 T CONDUIT (NIL) -9 NIL NIL) (-171 301137 301657 301685 "COMRING" 301690 T COMRING (NIL) -9 NIL 301742) (-170 300218 300495 300679 "COMPPROP" 300973 T COMPPROP (NIL) -8 NIL NIL) (-169 299879 299914 300042 "COMPLPAT" 300177 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-168 289936 299688 299797 "COMPLEX" 299802 NIL COMPLEX (NIL T) -8 NIL NIL) (-167 289572 289629 289736 "COMPLEX2" 289873 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-166 289290 289325 289423 "COMPFACT" 289531 NIL COMPFACT (NIL T T) -7 NIL NIL) (-165 273463 283683 283723 "COMPCAT" 284727 NIL COMPCAT (NIL T) -9 NIL 286112) (-164 262979 265902 269529 "COMPCAT-" 269885 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-163 262708 262736 262839 "COMMUPC" 262945 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-162 262503 262536 262595 "COMMONOP" 262669 T COMMONOP (NIL) -7 NIL NIL) (-161 262086 262254 262341 "COMM" 262436 T COMM (NIL) -8 NIL NIL) (-160 261690 261890 261965 "COMMAAST" 262031 T COMMAAST (NIL) -8 NIL NIL) (-159 260939 261133 261161 "COMBOPC" 261499 T COMBOPC (NIL) -9 NIL 261674) (-158 259835 260045 260287 "COMBINAT" 260729 NIL COMBINAT (NIL T) -7 NIL NIL) (-157 256033 256606 257246 "COMBF" 259257 NIL COMBF (NIL T T) -7 NIL NIL) (-156 254819 255149 255384 "COLOR" 255818 T COLOR (NIL) -8 NIL NIL) (-155 254322 254540 254632 "COLONAST" 254747 T COLONAST (NIL) -8 NIL NIL) (-154 253962 254009 254134 "CMPLXRT" 254269 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-153 253437 253662 253761 "CLLCTAST" 253883 T CLLCTAST (NIL) -8 NIL NIL) (-152 248939 249967 251047 "CLIP" 252377 T CLIP (NIL) -7 NIL NIL) (-151 247321 248045 248284 "CLIF" 248766 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-150 243543 245467 245508 "CLAGG" 246437 NIL CLAGG (NIL T) -9 NIL 246973) (-149 241965 242422 243005 "CLAGG-" 243010 NIL CLAGG- (NIL T T) -8 NIL NIL) (-148 241509 241594 241734 "CINTSLPE" 241874 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-147 239010 239481 240029 "CHVAR" 241037 NIL CHVAR (NIL T T T) -7 NIL NIL) (-146 238253 238773 238801 "CHARZ" 238806 T CHARZ (NIL) -9 NIL 238821) (-145 238007 238047 238125 "CHARPOL" 238207 NIL CHARPOL (NIL T) -7 NIL NIL) (-144 237134 237687 237715 "CHARNZ" 237762 T CHARNZ (NIL) -9 NIL 237818) (-143 235159 235824 236159 "CHAR" 236819 T CHAR (NIL) -8 NIL NIL) (-142 234885 234946 234974 "CFCAT" 235085 T CFCAT (NIL) -9 NIL NIL) (-141 234130 234241 234423 "CDEN" 234769 NIL CDEN (NIL T T T) -7 NIL NIL) (-140 230122 233283 233563 "CCLASS" 233870 T CCLASS (NIL) -8 NIL NIL) (-139 229429 229572 229735 "CATEGORY" 229979 T -10 (NIL) -8 NIL NIL) (-138 229093 229348 229396 "CATCTOR" 229401 T CATCTOR (NIL) -8 NIL NIL) (-137 228567 228793 228892 "CATAST" 229014 T CATAST (NIL) -8 NIL NIL) (-136 228070 228288 228380 "CASEAST" 228495 T CASEAST (NIL) -8 NIL NIL) (-135 223122 224099 224852 "CARTEN" 227373 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-134 222230 222378 222599 "CARTEN2" 222969 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-133 220572 221380 221637 "CARD" 221993 T CARD (NIL) -8 NIL NIL) (-132 220175 220376 220451 "CAPSLAST" 220517 T CAPSLAST (NIL) -8 NIL NIL) (-131 219547 219875 219903 "CACHSET" 220035 T CACHSET (NIL) -9 NIL 220112) (-130 219043 219339 219367 "CABMON" 219417 T CABMON (NIL) -9 NIL 219473) (-129 218071 218499 218672 "BYTE" 218890 T BYTE (NIL) -8 NIL NIL) (-128 213480 217539 217702 "BYTEBUF" 217928 T BYTEBUF (NIL) -8 NIL NIL) (-127 211037 213172 213279 "BTREE" 213406 NIL BTREE (NIL T) -8 NIL NIL) (-126 208535 210685 210807 "BTOURN" 210947 NIL BTOURN (NIL T) -8 NIL NIL) (-125 205952 208005 208046 "BTCAT" 208114 NIL BTCAT (NIL T) -9 NIL 208191) (-124 205619 205699 205848 "BTCAT-" 205853 NIL BTCAT- (NIL T T) -8 NIL NIL) (-123 200911 204762 204790 "BTAGG" 205012 T BTAGG (NIL) -9 NIL 205173) (-122 200401 200526 200732 "BTAGG-" 200737 NIL BTAGG- (NIL T) -8 NIL NIL) (-121 197445 199679 199894 "BSTREE" 200218 NIL BSTREE (NIL T) -8 NIL NIL) (-120 196583 196709 196893 "BRILL" 197301 NIL BRILL (NIL T) -7 NIL NIL) (-119 193282 195309 195350 "BRAGG" 195999 NIL BRAGG (NIL T) -9 NIL 196257) (-118 191811 192217 192772 "BRAGG-" 192777 NIL BRAGG- (NIL T T) -8 NIL NIL) (-117 185075 191157 191341 "BPADICRT" 191659 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-116 183425 185012 185057 "BPADIC" 185062 NIL BPADIC (NIL NIL) -8 NIL NIL) (-115 183123 183153 183267 "BOUNDZRO" 183389 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-114 178638 179729 180596 "BOP" 182276 T BOP (NIL) -8 NIL NIL) (-113 176259 176703 177223 "BOP1" 178151 NIL BOP1 (NIL T) -7 NIL NIL) (-112 174997 175683 175876 "BOOLEAN" 176086 T BOOLEAN (NIL) -8 NIL NIL) (-111 174359 174737 174791 "BMODULE" 174796 NIL BMODULE (NIL T T) -9 NIL 174861) (-110 170189 174157 174230 "BITS" 174306 T BITS (NIL) -8 NIL NIL) (-109 169601 169723 169865 "BINDING" 170067 T BINDING (NIL) -8 NIL NIL) (-108 163646 169200 169347 "BINARY" 169474 T BINARY (NIL) -8 NIL NIL) (-107 161473 162901 162942 "BGAGG" 163202 NIL BGAGG (NIL T) -9 NIL 163339) (-106 161304 161336 161427 "BGAGG-" 161432 NIL BGAGG- (NIL T T) -8 NIL NIL) (-105 160402 160688 160893 "BFUNCT" 161119 T BFUNCT (NIL) -8 NIL NIL) (-104 159092 159270 159558 "BEZOUT" 160226 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-103 155609 157944 158274 "BBTREE" 158795 NIL BBTREE (NIL T) -8 NIL NIL) (-102 155343 155396 155424 "BASTYPE" 155543 T BASTYPE (NIL) -9 NIL NIL) (-101 155196 155224 155297 "BASTYPE-" 155302 NIL BASTYPE- (NIL T) -8 NIL NIL) (-100 154630 154706 154858 "BALFACT" 155107 NIL BALFACT (NIL T T) -7 NIL NIL) (-99 153513 154045 154231 "AUTOMOR" 154475 NIL AUTOMOR (NIL T) -8 NIL NIL) (-98 153239 153244 153270 "ATTREG" 153275 T ATTREG (NIL) -9 NIL NIL) (-97 151518 151936 152288 "ATTRBUT" 152905 T ATTRBUT (NIL) -8 NIL NIL) (-96 151153 151346 151412 "ATTRAST" 151470 T ATTRAST (NIL) -8 NIL NIL) (-95 150689 150802 150828 "ATRIG" 151029 T ATRIG (NIL) -9 NIL NIL) (-94 150498 150539 150626 "ATRIG-" 150631 NIL ATRIG- (NIL T) -8 NIL NIL) (-93 150169 150329 150355 "ASTCAT" 150360 T ASTCAT (NIL) -9 NIL 150390) (-92 149896 149955 150074 "ASTCAT-" 150079 NIL ASTCAT- (NIL T) -8 NIL NIL) (-91 148093 149672 149760 "ASTACK" 149839 NIL ASTACK (NIL T) -8 NIL NIL) (-90 146598 146895 147260 "ASSOCEQ" 147775 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-89 145630 146257 146381 "ASP9" 146505 NIL ASP9 (NIL NIL) -8 NIL NIL) (-88 145394 145578 145617 "ASP8" 145622 NIL ASP8 (NIL NIL) -8 NIL NIL) (-87 144263 144999 145141 "ASP80" 145283 NIL ASP80 (NIL NIL) -8 NIL NIL) (-86 143162 143898 144030 "ASP7" 144162 NIL ASP7 (NIL NIL) -8 NIL NIL) (-85 142116 142839 142957 "ASP78" 143075 NIL ASP78 (NIL NIL) -8 NIL NIL) (-84 141085 141796 141913 "ASP77" 142030 NIL ASP77 (NIL NIL) -8 NIL NIL) (-83 139997 140723 140854 "ASP74" 140985 NIL ASP74 (NIL NIL) -8 NIL NIL) (-82 138897 139632 139764 "ASP73" 139896 NIL ASP73 (NIL NIL) -8 NIL NIL) (-81 138001 138723 138823 "ASP6" 138828 NIL ASP6 (NIL NIL) -8 NIL NIL) (-80 136949 137678 137796 "ASP55" 137914 NIL ASP55 (NIL NIL) -8 NIL NIL) (-79 135899 136623 136742 "ASP50" 136861 NIL ASP50 (NIL NIL) -8 NIL NIL) (-78 134987 135600 135710 "ASP4" 135820 NIL ASP4 (NIL NIL) -8 NIL NIL) (-77 134075 134688 134798 "ASP49" 134908 NIL ASP49 (NIL NIL) -8 NIL NIL) (-76 132860 133614 133782 "ASP42" 133964 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-75 131637 132393 132563 "ASP41" 132747 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-74 130587 131314 131432 "ASP35" 131550 NIL ASP35 (NIL NIL) -8 NIL NIL) (-73 130352 130535 130574 "ASP34" 130579 NIL ASP34 (NIL NIL) -8 NIL NIL) (-72 130089 130156 130232 "ASP33" 130307 NIL ASP33 (NIL NIL) -8 NIL NIL) (-71 128984 129724 129856 "ASP31" 129988 NIL ASP31 (NIL NIL) -8 NIL NIL) (-70 128749 128932 128971 "ASP30" 128976 NIL ASP30 (NIL NIL) -8 NIL NIL) (-69 128484 128553 128629 "ASP29" 128704 NIL ASP29 (NIL NIL) -8 NIL NIL) (-68 128249 128432 128471 "ASP28" 128476 NIL ASP28 (NIL NIL) -8 NIL NIL) (-67 128014 128197 128236 "ASP27" 128241 NIL ASP27 (NIL NIL) -8 NIL NIL) (-66 127098 127712 127823 "ASP24" 127934 NIL ASP24 (NIL NIL) -8 NIL NIL) (-65 126175 126900 127012 "ASP20" 127017 NIL ASP20 (NIL NIL) -8 NIL NIL) (-64 125263 125876 125986 "ASP1" 126096 NIL ASP1 (NIL NIL) -8 NIL NIL) (-63 124207 124937 125056 "ASP19" 125175 NIL ASP19 (NIL NIL) -8 NIL NIL) (-62 123944 124011 124087 "ASP12" 124162 NIL ASP12 (NIL NIL) -8 NIL NIL) (-61 122796 123543 123687 "ASP10" 123831 NIL ASP10 (NIL NIL) -8 NIL NIL) (-60 120695 122640 122731 "ARRAY2" 122736 NIL ARRAY2 (NIL T) -8 NIL NIL) (-59 116511 120343 120457 "ARRAY1" 120612 NIL ARRAY1 (NIL T) -8 NIL NIL) (-58 115543 115716 115937 "ARRAY12" 116334 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-57 109902 111773 111848 "ARR2CAT" 114478 NIL ARR2CAT (NIL T T T) -9 NIL 115236) (-56 107336 108080 109034 "ARR2CAT-" 109039 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-55 106930 107163 107242 "ARITY" 107275 T ARITY (NIL) -8 NIL NIL) (-54 105678 105830 106136 "APPRULE" 106766 NIL APPRULE (NIL T T T) -7 NIL NIL) (-53 105329 105377 105496 "APPLYORE" 105624 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-52 104303 104594 104789 "ANY" 105152 T ANY (NIL) -8 NIL NIL) (-51 103581 103704 103861 "ANY1" 104177 NIL ANY1 (NIL T) -7 NIL NIL) (-50 101146 102018 102345 "ANTISYM" 103305 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-49 100661 100850 100947 "ANON" 101067 T ANON (NIL) -8 NIL NIL) (-48 94793 99200 99654 "AN" 100225 T AN (NIL) -8 NIL NIL) (-47 91049 92403 92454 "AMR" 93202 NIL AMR (NIL T T) -9 NIL 93802) (-46 90161 90382 90745 "AMR-" 90750 NIL AMR- (NIL T T T) -8 NIL NIL) (-45 74711 90078 90139 "ALIST" 90144 NIL ALIST (NIL T T) -8 NIL NIL) (-44 71548 74305 74474 "ALGSC" 74629 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-43 68104 68658 69265 "ALGPKG" 70988 NIL ALGPKG (NIL T T) -7 NIL NIL) (-42 67381 67482 67666 "ALGMFACT" 67990 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-41 63120 63805 64460 "ALGMANIP" 66904 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-40 54526 62746 62896 "ALGFF" 63053 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-39 53722 53853 54032 "ALGFACT" 54384 NIL ALGFACT (NIL T) -7 NIL NIL) (-38 52787 53353 53391 "ALGEBRA" 53396 NIL ALGEBRA (NIL T) -9 NIL 53437) (-37 52505 52564 52696 "ALGEBRA-" 52701 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-36 34764 50507 50559 "ALAGG" 50695 NIL ALAGG (NIL T T) -9 NIL 50856) (-35 34300 34413 34439 "AHYP" 34640 T AHYP (NIL) -9 NIL NIL) (-34 33231 33479 33505 "AGG" 34004 T AGG (NIL) -9 NIL 34283) (-33 32665 32827 33041 "AGG-" 33046 NIL AGG- (NIL T) -8 NIL NIL) (-32 30342 30764 31182 "AF" 32307 NIL AF (NIL T T) -7 NIL NIL) (-31 29849 30067 30157 "ADDAST" 30270 T ADDAST (NIL) -8 NIL NIL) (-30 29118 29376 29532 "ACPLOT" 29711 T ACPLOT (NIL) -8 NIL NIL) (-29 18410 26331 26382 "ACFS" 27093 NIL ACFS (NIL T) -9 NIL 27332) (-28 16424 16914 17689 "ACFS-" 17694 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12697 14591 14617 "ACF" 15496 T ACF (NIL) -9 NIL 15908) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL) (-25 10999 11168 11194 "ABELSG" 11286 T ABELSG (NIL) -9 NIL 11351) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10235 10496 10522 "ABELMON" 10692 T ABELMON (NIL) -9 NIL 10804) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9233 9579 9605 "ABELGRP" 9730 T ABELGRP (NIL) -9 NIL 9812) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL)) \ No newline at end of file
diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase
index c007c6cd..d755a2be 100644
--- a/src/share/algebra/operation.daase
+++ b/src/share/algebra/operation.daase
@@ -1,3116 +1,2217 @@
-(734242 . 3437790956)
-(((*1 *2 *3)
- (-12 (-5 *3 (-554)) (|has| *1 (-6 -4364)) (-4 *1 (-399))
- (-5 *2 (-906)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-311 (-221))) (-5 *2 (-311 (-402 (-554))))
- (-5 *1 (-300)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1054 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-780))
- (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-631 (-554))) (-5 *1 (-989 *3)) (-14 *3 (-554)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-675 *3)) (-4 *3 (-1034)) (-5 *1 (-676 *3)))))
+(734517 . 3439227044)
+(((*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-393))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-1180)))))
+(((*1 *2 *1) (-12 (-5 *2 (-815)) (-5 *1 (-816)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2))
- (-4 *2 (-13 (-425 *3) (-1180))))))
+ (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-146))
+ (-4 *3 (-306)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841))
+ (-5 *1 (-967 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-635 (-406 *7)))
+ (-4 *7 (-1222 *6)) (-5 *3 (-406 *7)) (-4 *6 (-362))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-568 *6 *7)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-3 (-406 (-942 *6)) (-1152 (-1163) (-942 *6))))
+ (-5 *5 (-762)) (-4 *6 (-450)) (-5 *2 (-635 (-679 (-406 (-942 *6)))))
+ (-5 *1 (-291 *6)) (-5 *4 (-679 (-406 (-942 *6))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-2 (|:| |eigval| (-3 (-406 (-942 *5)) (-1152 (-1163) (-942 *5))))
+ (|:| |eigmult| (-762)) (|:| |eigvec| (-635 *4))))
+ (-4 *5 (-450)) (-5 *2 (-635 (-679 (-406 (-942 *5)))))
+ (-5 *1 (-291 *5)) (-5 *4 (-679 (-406 (-942 *5)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-882 *3)) (-4 *3 (-1087))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039))
+ (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1269 *3 *4)) (-4 *3 (-1039))
+ (-4 *4 (-837)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-1122))) (-5 *1 (-661))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-635 (-911))) (-5 *1 (-1088 *3 *4)) (-14 *3 (-911))
+ (-14 *4 (-911)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-224)) (-5 *4 (-558))
+ (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1025))
+ (-5 *1 (-739)))))
+(((*1 *1) (-5 *1 (-436))))
+(((*1 *1) (-5 *1 (-156))))
+(((*1 *2 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1178)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-1163))) (-5 *1 (-816)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-146))
+ (-4 *3 (-306)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841))
+ (-5 *1 (-967 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1222 *5)) (-4 *5 (-362))
+ (-5 *2 (-2 (|:| -1440 (-406 *6)) (|:| |coeff| (-406 *6))))
+ (-5 *1 (-568 *5 *6)) (-5 *3 (-406 *6)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1158)) (-4 *5 (-602 (-877 (-554))))
- (-4 *5 (-871 (-554)))
- (-4 *5 (-13 (-836) (-1023 (-554)) (-446) (-627 (-554))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-557 *5 *3)) (-4 *3 (-617))
- (-4 *3 (-13 (-27) (-1180) (-425 *5)))))
- ((*1 *2 *2 *3 *4 *4)
- (|partial| -12 (-5 *3 (-1158)) (-5 *4 (-829 *2)) (-4 *2 (-1121))
- (-4 *2 (-13 (-27) (-1180) (-425 *5)))
- (-4 *5 (-602 (-877 (-554)))) (-4 *5 (-871 (-554)))
- (-4 *5 (-13 (-836) (-1023 (-554)) (-446) (-627 (-554))))
- (-5 *1 (-557 *5 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1158)) (-5 *2 (-530)) (-5 *1 (-529 *4))
- (-4 *4 (-1195)))))
-(((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-554)) (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034))
- (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780))
- (-4 *4 (-836)) (-4 *2 (-546))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780))
- (-4 *4 (-836)) (-4 *2 (-546)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-546)) (-5 *2 (-631 *3)) (-5 *1 (-954 *4 *3))
- (-4 *3 (-1217 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1 (-374))) (-5 *1 (-1025)))))
+ (-12 (-5 *3 (-3 (-406 (-942 *5)) (-1152 (-1163) (-942 *5))))
+ (-4 *5 (-450)) (-5 *2 (-635 (-679 (-406 (-942 *5)))))
+ (-5 *1 (-291 *5)) (-5 *4 (-679 (-406 (-942 *5)))))))
(((*1 *2 *1)
- (-12 (-4 *2 (-1082)) (-5 *1 (-949 *2 *3)) (-4 *3 (-1082)))))
-(((*1 *2 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-546)) (-4 *2 (-539))))
- ((*1 *1 *1) (-4 *1 (-1043))))
-(((*1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-746)))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-675 *11)) (-5 *4 (-631 (-402 (-937 *8))))
- (-5 *5 (-758)) (-5 *6 (-1140)) (-4 *8 (-13 (-302) (-145)))
- (-4 *11 (-934 *8 *10 *9)) (-4 *9 (-13 (-836) (-602 (-1158))))
- (-4 *10 (-780))
+ (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039))
+ (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1269 *3 *4)) (-4 *3 (-1039))
+ (-4 *4 (-837)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-635 (-911))) (-5 *1 (-1088 *3 *4)) (-14 *3 (-911))
+ (-14 *4 (-911)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-224)) (-5 *4 (-558))
+ (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1025))
+ (-5 *1 (-739)))))
+(((*1 *1) (-5 *1 (-436))))
+(((*1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-156)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-841)) (-5 *1 (-121 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1025)) (-5 *1 (-304))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-1025))) (-5 *2 (-1025)) (-5 *1 (-304))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-641 *3)) (-4 *3 (-1200))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-641 *2)) (-4 *2 (-1200))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-641 *2)) (-4 *2 (-1200))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-641 *2)) (-4 *2 (-1200))))
+ ((*1 *1 *1 *1) (-5 *1 (-1051)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1143 (-1143 *4))) (-5 *2 (-1143 *4)) (-5 *1 (-1140 *4))
+ (-4 *4 (-1200))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1200))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1200)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-52)) (-5 *1 (-1178)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-815)) (-5 *3 (-635 (-1163))) (-5 *1 (-816)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-450))
+ (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841))
+ (-5 *1 (-967 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *7) (|:| -3425 *7) (|:| |sol?| (-112)))
+ (-558) *7))
+ (-5 *6 (-635 (-406 *8))) (-4 *7 (-362)) (-4 *8 (-1222 *7))
+ (-5 *3 (-406 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-568 *7 *8)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-679 (-406 (-942 *4)))) (-4 *4 (-450))
+ (-5 *2 (-635 (-3 (-406 (-942 *4)) (-1152 (-1163) (-942 *4)))))
+ (-5 *1 (-291 *4)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1263 *2 *3)) (-4 *2 (-841)) (-4 *3 (-1039))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1269 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-837)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1246 (-1088 *3 *4))) (-5 *1 (-1088 *3 *4))
+ (-14 *3 (-911)) (-14 *4 (-911)))))
+(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-224)) (-5 *4 (-558))
+ (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1025))
+ (-5 *1 (-739)))))
+(((*1 *1) (-5 *1 (-436))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *4 (-224))
+ (-5 *2
+ (-2 (|:| |brans| (-635 (-635 (-933 *4))))
+ (|:| |xValues| (-1081 *4)) (|:| |yValues| (-1081 *4))))
+ (-5 *1 (-152)) (-5 *3 (-635 (-635 (-933 *4)))))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-762)) (-4 *1 (-731 *4 *5)) (-4 *4 (-1039))
+ (-4 *5 (-841)) (-5 *2 (-942 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-762)) (-4 *1 (-731 *4 *5)) (-4 *4 (-1039))
+ (-4 *5 (-841)) (-5 *2 (-942 *4))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-762)) (-4 *1 (-1237 *4)) (-4 *4 (-1039))
+ (-5 *2 (-942 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-762)) (-4 *1 (-1237 *4)) (-4 *4 (-1039))
+ (-5 *2 (-942 *4)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4382)) (-4 *1 (-150 *3))
+ (-4 *3 (-1200))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1200)) (-5 *1 (-593 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-664 *3)) (-4 *3 (-1200))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-4 *1 (-1193 *4 *5 *3 *2)) (-4 *4 (-550))
+ (-4 *5 (-784)) (-4 *3 (-841)) (-4 *2 (-1053 *4 *5 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-762)) (-5 *1 (-1197 *2)) (-4 *2 (-1200)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1200))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-841))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-841))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-558)) (-4 *1 (-281 *3)) (-4 *3 (-1200))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-558)) (-4 *1 (-281 *2)) (-4 *2 (-1200))))
+ ((*1 *1 *2)
+ (-12
(-5 *2
(-2
- (|:| |rgl|
- (-631
- (-2 (|:| |eqzro| (-631 *11)) (|:| |neqzro| (-631 *11))
- (|:| |wcond| (-631 (-937 *8)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1241 (-402 (-937 *8))))
- (|:| -3782 (-631 (-1241 (-402 (-937 *8))))))))))
- (|:| |rgsz| (-554))))
- (-5 *1 (-909 *8 *9 *10 *11)) (-5 *7 (-554)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-758)) (-4 *2 (-1082))
- (-5 *1 (-664 *2)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1233 *2 *3 *4)) (-4 *2 (-1034)) (-14 *3 (-1158))
- (-14 *4 *2))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-112)) (-5 *5 (-554)) (-4 *6 (-358)) (-4 *6 (-363))
- (-4 *6 (-1034)) (-5 *2 (-631 (-631 (-675 *6)))) (-5 *1 (-1014 *6))
- (-5 *3 (-631 (-675 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-358)) (-4 *4 (-363)) (-4 *4 (-1034))
- (-5 *2 (-631 (-631 (-675 *4)))) (-5 *1 (-1014 *4))
- (-5 *3 (-631 (-675 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-358)) (-4 *5 (-363)) (-4 *5 (-1034))
- (-5 *2 (-631 (-631 (-675 *5)))) (-5 *1 (-1014 *5))
- (-5 *3 (-631 (-675 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-906)) (-4 *5 (-358)) (-4 *5 (-363)) (-4 *5 (-1034))
- (-5 *2 (-631 (-631 (-675 *5)))) (-5 *1 (-1014 *5))
- (-5 *3 (-631 (-675 *5))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *2 (-402 (-554))) (-5 *1 (-117 *4)) (-14 *4 *3)
- (-5 *3 (-554))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-854 *3)) (-5 *2 (-554))))
+ (|:| -2700
+ (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224)))
+ (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
+ (|:| -2981
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1143 (-224)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -1626
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))))
+ (-5 *1 (-553))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-762)) (-4 *1 (-685 *2)) (-4 *2 (-1087))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2
+ (|:| -2700
+ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
+ (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224)))
+ (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224)))
+ (|:| |abserr| (-224)) (|:| |relerr| (-224))))
+ (|:| -2981
+ (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378))
+ (|:| |expense| (-378)) (|:| |accuracy| (-378))
+ (|:| |intermediateResults| (-378))))))
+ (-5 *1 (-794))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *2 (-1251)) (-5 *1 (-1177 *3 *4)) (-4 *3 (-1087))
+ (-4 *4 (-1087)))))
+(((*1 *1) (-5 *1 (-814))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-450))
+ (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841))
+ (-5 *1 (-967 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-3 (-2 (|:| -1440 *7) (|:| |coeff| *7)) "failed") *7))
+ (-5 *6 (-635 (-406 *8))) (-4 *7 (-362)) (-4 *8 (-1222 *7))
+ (-5 *3 (-406 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-568 *7 *8)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-1072))) (-5 *1 (-290)))))
+(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-783))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-762)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1039))
+ (-14 *4 (-635 (-1163)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-558)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1039) (-841)))
+ (-14 *4 (-635 (-1163)))))
((*1 *2 *1 *3)
- (-12 (-5 *2 (-402 (-554))) (-5 *1 (-856 *4)) (-14 *4 *3)
- (-5 *3 (-554))))
+ (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1039)) (-4 *3 (-841))
+ (-4 *5 (-265 *3)) (-4 *6 (-784)) (-5 *2 (-762))))
+ ((*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-274))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1159 *8)) (-5 *4 (-635 *6)) (-4 *6 (-841))
+ (-4 *8 (-939 *7 *5 *6)) (-4 *5 (-784)) (-4 *7 (-1039))
+ (-5 *2 (-635 (-762))) (-5 *1 (-320 *5 *6 *7 *8))))
+ ((*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-911))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-841)) (-4 *4 (-171))
+ (-5 *2 (-762))))
+ ((*1 *2 *1) (-12 (-4 *1 (-468 *3 *2)) (-4 *3 (-171)) (-4 *2 (-23))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-550)) (-5 *2 (-558)) (-5 *1 (-615 *3 *4))
+ (-4 *4 (-1222 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-699 *3)) (-4 *3 (-1039)) (-5 *2 (-762))))
+ ((*1 *2 *1) (-12 (-4 *1 (-843 *3)) (-4 *3 (-1039)) (-5 *2 (-762))))
+ ((*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-894 *3)) (-4 *3 (-1087))))
+ ((*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-895 *3)) (-4 *3 (-1087))))
((*1 *2 *1 *3)
- (-12 (-14 *4 *3) (-5 *2 (-402 (-554))) (-5 *1 (-857 *4 *5))
- (-5 *3 (-554)) (-4 *5 (-854 *4))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-997)) (-5 *2 (-402 (-554)))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-1051 *2 *3)) (-4 *2 (-13 (-834) (-358)))
- (-4 *3 (-1217 *2))))
+ (-12 (-5 *3 (-635 *6)) (-4 *1 (-939 *4 *5 *6)) (-4 *4 (-1039))
+ (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-635 (-762)))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1219 *2 *3)) (-4 *3 (-779))
- (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3075 (*2 (-1158))))
- (-4 *2 (-1034)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-358)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4))
- (-5 *2 (-758)) (-5 *1 (-515 *4 *5 *6 *3)) (-4 *3 (-673 *4 *5 *6))))
+ (-12 (-4 *1 (-939 *4 *5 *3)) (-4 *4 (-1039)) (-4 *5 (-784))
+ (-4 *3 (-841)) (-5 *2 (-762))))
((*1 *2 *1)
- (-12 (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3))
- (-4 *5 (-368 *3)) (-4 *3 (-546)) (-5 *2 (-758))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-546)) (-4 *4 (-170)) (-4 *5 (-368 *4))
- (-4 *6 (-368 *4)) (-5 *2 (-758)) (-5 *1 (-674 *4 *5 *6 *3))
- (-4 *3 (-673 *4 *5 *6))))
+ (-12 (-4 *1 (-963 *3 *2 *4)) (-4 *3 (-1039)) (-4 *4 (-841))
+ (-4 *2 (-783))))
((*1 *2 *1)
- (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034))
- (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-4 *5 (-546))
- (-5 *2 (-758)))))
-(((*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-912)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-758)) (-5 *1 (-842 *2)) (-4 *2 (-38 (-402 (-554))))
- (-4 *2 (-170)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082))
- (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-112)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1158)) (-5 *3 (-631 (-950))) (-5 *1 (-109)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-1 (-112) *8))) (-4 *8 (-1048 *5 *6 *7))
- (-4 *5 (-546)) (-4 *6 (-780)) (-4 *7 (-836))
- (-5 *2 (-2 (|:| |goodPols| (-631 *8)) (|:| |badPols| (-631 *8))))
- (-5 *1 (-962 *5 *6 *7 *8)) (-5 *4 (-631 *8)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-906)) (-4 *1 (-731 *3)) (-4 *3 (-170)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))))
-(((*1 *2)
- (-12 (-4 *4 (-1199)) (-4 *5 (-1217 *4)) (-4 *6 (-1217 (-402 *5)))
- (-5 *2 (-758)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-337 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3))
- (-4 *5 (-1217 (-402 *4))) (-5 *2 (-758))))
- ((*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-758)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1020)) (-5 *1 (-300))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-631 (-1020))) (-5 *2 (-1020)) (-5 *1 (-300))))
- ((*1 *1 *2) (-12 (-5 *2 (-631 *1)) (-4 *1 (-637 *3)) (-4 *3 (-1195))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-637 *2)) (-4 *2 (-1195))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-637 *2)) (-4 *2 (-1195))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-637 *2)) (-4 *2 (-1195))))
- ((*1 *1 *1 *1) (-5 *1 (-1046)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1138 (-1138 *4))) (-5 *2 (-1138 *4)) (-5 *1 (-1135 *4))
- (-4 *4 (-1195))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1195))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1195)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-877 *4)) (-4 *4 (-1082)) (-5 *2 (-1 (-112) *5))
- (-5 *1 (-875 *4 *5)) (-4 *5 (-1195))))
- ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1148)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-289 (-829 *3))) (-4 *3 (-13 (-27) (-1180) (-425 *5)))
- (-4 *5 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))))
+ (-12 (-4 *1 (-1193 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-784))
+ (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-762))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1208 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1237 *3))
+ (-5 *2 (-558))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1229 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1206 *3))
+ (-5 *2 (-406 (-558)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1265 *3)) (-4 *3 (-362)) (-5 *2 (-824 (-911)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1267 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039))
+ (-5 *2 (-762)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4382)) (-4 *1 (-487 *3)) (-4 *3 (-1200))
+ (-4 *3 (-1087)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-895 *4)) (-4 *4 (-1087)) (-5 *2 (-112))
+ (-5 *1 (-894 *4))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-911)) (-5 *2 (-112)) (-5 *1 (-1088 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3))))
+(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-224)) (-5 *4 (-558))
+ (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3215))))
+ (-5 *2 (-1025)) (-5 *1 (-739)))))
+(((*1 *1) (-5 *1 (-436))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-917))
(-5 *2
- (-3 (-829 *3)
- (-2 (|:| |leftHandLimit| (-3 (-829 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-829 *3) "failed")))
- "failed"))
- (-5 *1 (-624 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-289 *3)) (-5 *5 (-1140))
- (-4 *3 (-13 (-27) (-1180) (-425 *6)))
- (-4 *6 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *2 (-829 *3)) (-5 *1 (-624 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-289 (-829 (-937 *5)))) (-4 *5 (-446))
+ (-2 (|:| |brans| (-635 (-635 (-933 (-224)))))
+ (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))))
+ (-5 *1 (-152))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-917)) (-5 *4 (-406 (-558)))
(-5 *2
- (-3 (-829 (-402 (-937 *5)))
- (-2 (|:| |leftHandLimit| (-3 (-829 (-402 (-937 *5))) "failed"))
- (|:| |rightHandLimit| (-3 (-829 (-402 (-937 *5))) "failed")))
- "failed"))
- (-5 *1 (-625 *5)) (-5 *3 (-402 (-937 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-289 (-402 (-937 *5)))) (-5 *3 (-402 (-937 *5)))
- (-4 *5 (-446))
+ (-2 (|:| |brans| (-635 (-635 (-933 (-224)))))
+ (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))))
+ (-5 *1 (-152)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1200)) (-5 *1 (-593 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1200)) (-5 *1 (-1143 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1200)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *2 (-1087)) (-5 *1 (-1177 *3 *2)) (-4 *3 (-1087)))))
+(((*1 *1) (-5 *1 (-814))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-450))
+ (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841))
+ (-5 *1 (-967 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -3425 *6) (|:| |sol?| (-112))) (-558)
+ *6))
+ (-4 *6 (-362)) (-4 *7 (-1222 *6))
(-5 *2
- (-3 (-829 *3)
- (-2 (|:| |leftHandLimit| (-3 (-829 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-829 *3) "failed")))
- "failed"))
- (-5 *1 (-625 *5))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-289 (-402 (-937 *6)))) (-5 *5 (-1140))
- (-5 *3 (-402 (-937 *6))) (-4 *6 (-446)) (-5 *2 (-829 *3))
- (-5 *1 (-625 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-519)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-31))))
- ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-49))))
- ((*1 *2 *1) (-12 (-5 *2 (-631 (-1117))) (-5 *1 (-132))))
- ((*1 *2 *1) (-12 (-5 *2 (-631 (-1117))) (-5 *1 (-137))))
- ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-152))))
- ((*1 *2 *1) (-12 (-5 *2 (-631 (-1117))) (-5 *1 (-159))))
- ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-214))))
- ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-662))))
- ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1004))))
- ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1049))))
- ((*1 *2 *1) (-12 (-5 *2 (-631 (-1117))) (-5 *1 (-1078)))))
+ (-3 (-2 (|:| |answer| (-406 *7)) (|:| |a0| *6))
+ (-2 (|:| -1440 (-406 *7)) (|:| |coeff| (-406 *7))) "failed"))
+ (-5 *1 (-568 *6 *7)) (-5 *3 (-406 *7)))))
+(((*1 *2 *3 *3 *1)
+ (|partial| -12 (-5 *3 (-1163)) (-5 *2 (-1091)) (-5 *1 (-290)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-762)) (-4 *1 (-373 *3 *4)) (-4 *3 (-841))
+ (-4 *4 (-171))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-762)) (-4 *1 (-1267 *3 *4)) (-4 *3 (-841))
+ (-4 *4 (-1039)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1087)) (-5 *2 (-1145)))))
+(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
+ (-12 (-5 *4 (-558)) (-5 *5 (-679 (-224)))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3215)))) (-5 *3 (-224))
+ (-5 *2 (-1025)) (-5 *1 (-739)))))
+(((*1 *1) (-5 *1 (-436))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-150 *2))
+ (-4 *2 (-1200)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1200)) (-5 *1 (-593 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1200)) (-5 *1 (-1143 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558)))))))
+ (-5 *2 (-635 *4)) (-5 *1 (-1115 *3 *4)) (-4 *3 (-1222 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558)))))))
+ (-5 *2 (-635 *3)) (-5 *1 (-1115 *4 *3)) (-4 *4 (-1222 *3)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1177 *3 *4)) (-4 *3 (-1087))
+ (-4 *4 (-1087)))))
+(((*1 *1) (-5 *1 (-814))))
(((*1 *2 *2)
- (-12 (-4 *3 (-1023 (-554))) (-4 *3 (-13 (-836) (-546)))
- (-5 *1 (-32 *3 *2)) (-4 *2 (-425 *3))))
- ((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-1154 *4)) (-5 *1 (-163 *3 *4))
- (-4 *3 (-164 *4))))
- ((*1 *1 *1) (-12 (-4 *1 (-1034)) (-4 *1 (-297))))
- ((*1 *2) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-1154 *3))))
- ((*1 *2) (-12 (-4 *1 (-711 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1217 *3))))
+ (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-450))
+ (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841))
+ (-5 *1 (-967 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-635 *7)) (-5 *3 (-112)) (-4 *7 (-1053 *4 *5 *6))
+ (-4 *4 (-450)) (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-5 *1 (-967 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -1440 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-362)) (-4 *7 (-1222 *6))
+ (-5 *2
+ (-3 (-2 (|:| |answer| (-406 *7)) (|:| |a0| *6))
+ (-2 (|:| -1440 (-406 *7)) (|:| |coeff| (-406 *7))) "failed"))
+ (-5 *1 (-568 *6 *7)) (-5 *3 (-406 *7)))))
+(((*1 *1 *2 *2 *3 *1)
+ (-12 (-5 *2 (-1163)) (-5 *3 (-1091)) (-5 *1 (-290)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1261 *3 *4)) (-4 *3 (-841)) (-4 *4 (-171))
+ (-5 *1 (-654 *3 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1051 *3 *2)) (-4 *3 (-13 (-834) (-358)))
- (-4 *2 (-1217 *3)))))
-(((*1 *2 *2 *3 *3)
- (|partial| -12 (-5 *3 (-1158))
- (-4 *4 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554))))
- (-5 *1 (-565 *4 *2))
- (-4 *2 (-13 (-1180) (-944) (-1121) (-29 *4))))))
+ (|partial| -12 (-5 *2 (-654 *3 *4)) (-5 *1 (-1266 *3 *4))
+ (-4 *3 (-841)) (-4 *4 (-171)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1085 *3)) (-4 *3 (-1087)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-224)) (-5 *4 (-558))
+ (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3215))))
+ (-5 *2 (-1025)) (-5 *1 (-739)))))
+(((*1 *1) (-5 *1 (-436))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1204)) (-4 *5 (-1222 *4))
+ (-5 *2
+ (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-406 *5))
+ (|:| |c2| (-406 *5)) (|:| |deg| (-762))))
+ (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1222 (-406 *5))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-911)) (-4 *6 (-13 (-550) (-841)))
+ (-5 *2 (-635 (-315 *6))) (-5 *1 (-220 *5 *6)) (-5 *3 (-315 *6))
+ (-4 *5 (-1039))))
+ ((*1 *2 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-550))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-579 *5)) (-4 *5 (-13 (-29 *4) (-1185)))
+ (-4 *4 (-13 (-450) (-1028 (-558)) (-841) (-631 (-558))))
+ (-5 *2 (-635 *5)) (-5 *1 (-577 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-579 (-406 (-942 *4))))
+ (-4 *4 (-13 (-450) (-1028 (-558)) (-841) (-631 (-558))))
+ (-5 *2 (-635 (-315 *4))) (-5 *1 (-582 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1082 *3 *2)) (-4 *3 (-839)) (-4 *2 (-1136 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 *1)) (-4 *1 (-1082 *4 *2)) (-4 *4 (-839))
+ (-4 *2 (-1136 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1185)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1261 (-1163) *3)) (-5 *1 (-1268 *3)) (-4 *3 (-1039))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1261 *3 *4)) (-5 *1 (-1270 *3 *4)) (-4 *3 (-841))
+ (-4 *4 (-1039)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1080 *3)) (-4 *3 (-1200)) (-5 *2 (-558)))))
(((*1 *2)
- (-12 (-4 *3 (-13 (-836) (-546) (-1023 (-554)))) (-5 *2 (-1246))
- (-5 *1 (-428 *3 *4)) (-4 *4 (-425 *3)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1177 *3 *4)) (-4 *3 (-1087))
+ (-4 *4 (-1087)))))
+(((*1 *1) (-5 *1 (-814))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221)))
- (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221))
- (|:| |relerr| (-221))))
- (-5 *2 (-112)) (-5 *1 (-295)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-877 *3)) (-4 *3 (-1082)))))
-(((*1 *2 *2) (-12 (-5 *2 (-311 (-221))) (-5 *1 (-206)))))
-(((*1 *1) (-5 *1 (-155)))
- ((*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-23)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-344)) (-5 *2 (-943 (-1154 *4))) (-5 *1 (-352 *4))
- (-5 *3 (-1154 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-4 *1 (-231 *3))))
- ((*1 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1082)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-96))))
- ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-109))))
- ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-114))))
- ((*1 *2 *1) (-12 (-5 *2 (-500)) (-5 *1 (-183))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-359 *2 *3)) (-4 *3 (-1082)) (-4 *2 (-1082))))
- ((*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-1140))))
- ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-433 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-500)) (-5 *1 (-477))))
- ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-600 *3)) (-4 *3 (-836))))
- ((*1 *2 *1) (-12 (-4 *1 (-822 *2)) (-4 *2 (-1082))))
- ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-950))))
- ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1057 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-500)) (-5 *1 (-1097))))
- ((*1 *1 *1) (-5 *1 (-1158))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-413 (-1154 *1))) (-5 *1 (-311 *4)) (-5 *3 (-1154 *1))
- (-4 *4 (-446)) (-4 *4 (-546)) (-4 *4 (-836))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-894)) (-5 *2 (-413 (-1154 *1))) (-5 *3 (-1154 *1)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1243)))))
+ (-12 (-4 *4 (-450)) (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-5 *2 (-635 *3)) (-5 *1 (-967 *4 *5 *6 *3))
+ (-4 *3 (-1053 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-635 *6) "failed") (-558) *6 *6)) (-4 *6 (-362))
+ (-4 *7 (-1222 *6))
+ (-5 *2 (-2 (|:| |answer| (-579 (-406 *7))) (|:| |a0| *6)))
+ (-5 *1 (-568 *6 *7)) (-5 *3 (-406 *7)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1163)) (-5 *2 (-635 (-955))) (-5 *1 (-290)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-762))
+ (-4 *4 (-171))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-841) (-550))) (-5 *1 (-157 *4 *2))
+ (-4 *2 (-429 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1079 *2)) (-4 *2 (-429 *4)) (-4 *4 (-13 (-841) (-550)))
+ (-5 *1 (-157 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1079 *1)) (-4 *1 (-159))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1163))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-762)) (-5 *1 (-1266 *3 *4)) (-4 *3 (-841))
+ (-4 *4 (-171)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-631 (-890 *3))) (-4 *3 (-1082)) (-5 *1 (-889 *3)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221))) (-5 *4 (-221))
- (-5 *2 (-1020)) (-5 *1 (-739)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-544 *3)) (-4 *3 (-13 (-399) (-1180))) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-834)) (-5 *2 (-112))))
+ (-12 (-5 *2 (-635 (-502 *3 *4 *5 *6))) (-4 *3 (-362)) (-4 *4 (-784))
+ (-4 *5 (-841)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-939 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-362)) (-4 *3 (-784)) (-4 *4 (-841))
+ (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-939 *2 *3 *4))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-635 *1)) (-4 *1 (-1059 *4 *5 *6 *3)) (-4 *4 (-450))
+ (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-635 *1)) (-5 *3 (-635 *7)) (-4 *1 (-1059 *4 *5 *6 *7))
+ (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-4 *7 (-1053 *4 *5 *6))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-1051 *4 *3)) (-4 *4 (-13 (-834) (-358)))
- (-4 *3 (-1217 *4)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1251)))))
-(((*1 *1) (-12 (-5 *1 (-631 *2)) (-4 *2 (-1195)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
+ (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450))
+ (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-635 *1))
+ (-4 *1 (-1059 *4 *5 *6 *7))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-635 *1))
+ (-4 *1 (-1059 *4 *5 *6 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1087)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-882 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1087))
+ (-4 *5 (-1200)) (-5 *1 (-880 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-882 *4)) (-5 *3 (-635 (-1 (-112) *5))) (-4 *4 (-1087))
+ (-4 *5 (-1200)) (-5 *1 (-880 *4 *5))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-882 *5)) (-5 *3 (-635 (-1163)))
+ (-5 *4 (-1 (-112) (-635 *6))) (-4 *5 (-1087)) (-4 *6 (-1200))
+ (-5 *1 (-880 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1200)) (-4 *4 (-841))
+ (-5 *1 (-927 *4 *2 *5)) (-4 *2 (-429 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-635 (-1 (-112) *5))) (-4 *5 (-1200)) (-4 *4 (-841))
+ (-5 *1 (-927 *4 *2 *5)) (-4 *2 (-429 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1163)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1200))
+ (-5 *2 (-315 (-558))) (-5 *1 (-928 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1163)) (-5 *4 (-635 (-1 (-112) *5))) (-4 *5 (-1200))
+ (-5 *2 (-315 (-558))) (-5 *1 (-928 *5))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-635 (-1163))) (-5 *3 (-1 (-112) (-635 *6)))
+ (-4 *6 (-13 (-429 *5) (-876 *4) (-606 (-882 *4)))) (-4 *4 (-1087))
+ (-4 *5 (-13 (-1039) (-876 *4) (-841) (-606 (-882 *4))))
+ (-5 *1 (-1063 *4 *5 *6)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-224)) (-5 *4 (-558))
+ (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3215))))
+ (-5 *2 (-1025)) (-5 *1 (-739)))))
+(((*1 *1) (-5 *1 (-436))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1222 *2)) (-4 *2 (-1204)) (-5 *1 (-147 *2 *4 *3))
+ (-4 *3 (-1222 (-406 *4))))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1177 *3 *4)) (-4 *3 (-1087))
+ (-4 *4 (-1087)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-813)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-635 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-550))
+ (-4 *6 (-784)) (-4 *7 (-841)) (-5 *1 (-967 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -3425 *6) (|:| |sol?| (-112))) (-558)
+ *6))
+ (-4 *6 (-362)) (-4 *7 (-1222 *6))
+ (-5 *2 (-2 (|:| |answer| (-579 (-406 *7))) (|:| |a0| *6)))
+ (-5 *1 (-568 *6 *7)) (-5 *3 (-406 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-528 *3)) (-4 *3 (-13 (-717) (-25))))))
+(((*1 *1 *1) (-5 *1 (-853))) ((*1 *1 *1 *1) (-5 *1 (-853)))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1200))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1213 *2)) (-4 *2 (-1200)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-1163)) (-5 *3 (-635 (-955))) (-5 *1 (-290)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3))
- (-4 *5 (-368 *3)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034))
- (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1020)) (-5 *3 (-1158)) (-5 *1 (-188)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))))
+ (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039))
+ (-5 *2 (-2 (|:| |k| (-810 *3)) (|:| |c| *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1087))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1087)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
+ (-5 *1 (-738)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *5 (-1028 (-48)))
+ (-4 *4 (-13 (-550) (-841) (-1028 (-558)))) (-4 *5 (-429 *4))
+ (-5 *2 (-417 (-1159 (-48)))) (-5 *1 (-434 *4 *5 *3))
+ (-4 *3 (-1222 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-406 *6)) (-4 *5 (-1204)) (-4 *6 (-1222 *5))
+ (-5 *2 (-2 (|:| -1951 (-762)) (|:| -2023 *3) (|:| |radicand| *6)))
+ (-5 *1 (-147 *5 *6 *7)) (-5 *4 (-762)) (-4 *7 (-1222 *3)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1251)) (-5 *1 (-1177 *3 *4)) (-4 *3 (-1087))
+ (-4 *4 (-1087)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-635 (-2 (|:| -2700 (-1163)) (|:| -2981 (-436)))))
+ (-5 *1 (-1167)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-631 (-928 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-631 (-928 *3))) (-4 *3 (-1034)) (-4 *1 (-1116 *3))))
+ (-12 (-5 *2 (-2 (|:| |cd| (-1145)) (|:| -1323 (-1145))))
+ (-5 *1 (-813)))))
+(((*1 *2 *2 *3 *4 *5)
+ (-12 (-5 *2 (-635 *9)) (-5 *3 (-1 (-112) *9))
+ (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9))
+ (-4 *9 (-1053 *6 *7 *8)) (-4 *6 (-550)) (-4 *7 (-784))
+ (-4 *8 (-841)) (-5 *1 (-967 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -1440 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-362)) (-4 *7 (-1222 *6))
+ (-5 *2 (-2 (|:| |answer| (-579 (-406 *7))) (|:| |a0| *6)))
+ (-5 *1 (-568 *6 *7)) (-5 *3 (-406 *7)))))
+(((*1 *1) (-5 *1 (-290))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1270 *3 *4)) (-4 *1 (-373 *3 *4)) (-4 *3 (-841))
+ (-4 *4 (-171))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-385 *2)) (-4 *2 (-1087))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-810 *2)) (-4 *2 (-841))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-810 *2)) (-4 *2 (-841))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1263 *2 *3)) (-4 *2 (-841)) (-4 *3 (-1039))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-631 (-631 *3))) (-4 *1 (-1116 *3)) (-4 *3 (-1034))))
+ (-12 (-5 *2 (-810 *3)) (-4 *1 (-1263 *3 *4)) (-4 *3 (-841))
+ (-4 *4 (-1039))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-631 (-928 *3))) (-4 *1 (-1116 *3)) (-4 *3 (-1034)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-554)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-758)) (-4 *5 (-170))))
- ((*1 *1 *1 *2 *1 *2)
- (-12 (-5 *2 (-554)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-758)) (-4 *5 (-170))))
- ((*1 *2 *2 *3)
- (-12
+ (-12 (-4 *1 (-1263 *2 *3)) (-4 *2 (-841)) (-4 *3 (-1039)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1087)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
+ (-5 *1 (-738)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-550) (-841) (-1028 (-558)))) (-4 *5 (-429 *4))
(-5 *2
- (-498 (-402 (-554)) (-236 *5 (-758)) (-850 *4)
- (-243 *4 (-402 (-554)))))
- (-5 *3 (-631 (-850 *4))) (-14 *4 (-631 (-1158))) (-14 *5 (-758))
- (-5 *1 (-499 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-511))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1082) (-34))) (-5 *1 (-1122 *3 *2))
- (-4 *3 (-13 (-1082) (-34)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1252)))))
+ (-3 (|:| |overq| (-1159 (-406 (-558))))
+ (|:| |overan| (-1159 (-48))) (|:| -4142 (-112))))
+ (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1222 *5)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-1204)) (-4 *5 (-1222 *4))
+ (-5 *2 (-2 (|:| |radicand| (-406 *5)) (|:| |deg| (-762))))
+ (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1222 (-406 *5))))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-631 (-554))) (-5 *2 (-1160 (-402 (-554))))
- (-5 *1 (-186)))))
-(((*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-543)))))
+ (-12 (-5 *3 (-762)) (-5 *2 (-1246 (-635 (-558)))) (-5 *1 (-478))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1200)) (-5 *1 (-593 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1200)) (-5 *1 (-1143 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1200)) (-5 *1 (-1143 *3)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1251)) (-5 *1 (-1177 *3 *4)) (-4 *3 (-1087))
+ (-4 *4 (-1087)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-813)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550))
+ (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-967 *3 *4 *5 *6)))))
(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *6 (-906)) (-4 *5 (-302)) (-4 *3 (-1217 *5))
- (-5 *2 (-2 (|:| |plist| (-631 *3)) (|:| |modulo| *5)))
- (-5 *1 (-454 *5 *3)) (-5 *4 (-631 *3)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-1158)) (-5 *3 (-631 (-950))) (-5 *1 (-286)))))
-(((*1 *1 *1) (-12 (-4 *1 (-980 *2)) (-4 *2 (-1195)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))))
-(((*1 *1) (-5 *1 (-142)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-631 (-258))) (-5 *2 (-1115 (-221))) (-5 *1 (-256))))
- ((*1 *1 *2) (-12 (-5 *2 (-1115 (-221))) (-5 *1 (-258)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-546)) (-5 *1 (-954 *3 *2)) (-4 *2 (-1217 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780))
- (-4 *4 (-836)) (-4 *2 (-546))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1034)) (-4 *2 (-546)))))
-(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
- (-12 (-5 *4 (-554))
+ (-12 (-5 *5 (-1 (-579 *3) *3 (-1163)))
(-5 *6
- (-2 (|:| |try| (-374)) (|:| |did| (-374)) (|:| -1634 (-374))))
- (-5 *7 (-1 (-1246) (-1241 *5) (-1241 *5) (-374)))
- (-5 *3 (-1241 (-374))) (-5 *5 (-374)) (-5 *2 (-1246))
- (-5 *1 (-775))))
- ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
- (-12 (-5 *4 (-554))
- (-5 *6
- (-2 (|:| |try| (-374)) (|:| |did| (-374)) (|:| -1634 (-374))))
- (-5 *7 (-1 (-1246) (-1241 *5) (-1241 *5) (-374)))
- (-5 *3 (-1241 (-374))) (-5 *5 (-374)) (-5 *2 (-1246))
- (-5 *1 (-775)))))
-(((*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-352 *3)) (-4 *3 (-344)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-172 *3)) (-4 *3 (-302))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-4 *1 (-660 *3)) (-4 *3 (-1195))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-758)) (-4 *1 (-727 *3 *4)) (-4 *3 (-1034))
- (-4 *4 (-836))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-854 *3)) (-5 *2 (-554))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-631 *3)) (-4 *1 (-965 *3)) (-4 *3 (-1034))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-631 *1)) (-5 *3 (-631 *7)) (-4 *1 (-1054 *4 *5 *6 *7))
- (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836))
- (-4 *7 (-1048 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446))
- (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-631 *1))
- (-4 *1 (-1054 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-631 *1)) (-4 *1 (-1054 *4 *5 *6 *3)) (-4 *4 (-446))
- (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836))
- (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-631 *1))
- (-4 *1 (-1054 *4 *5 *6 *3))))
+ (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
+ (-1163)))
+ (-4 *3 (-283)) (-4 *3 (-621)) (-4 *3 (-1028 *4)) (-4 *3 (-429 *7))
+ (-5 *4 (-1163)) (-4 *7 (-606 (-882 (-558)))) (-4 *7 (-450))
+ (-4 *7 (-876 (-558))) (-4 *7 (-841)) (-5 *2 (-579 *3))
+ (-5 *1 (-567 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *4 (-362)) (-5 *2 (-635 (-1143 *4))) (-5 *1 (-284 *4 *5))
+ (-5 *3 (-1143 *4)) (-4 *5 (-1237 *4)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1270 *3 *4)) (-4 *1 (-373 *3 *4)) (-4 *3 (-841))
+ (-4 *4 (-171))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-385 *2)) (-4 *2 (-1087))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-810 *2)) (-4 *2 (-841))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-810 *2)) (-4 *2 (-841))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1263 *2 *3)) (-4 *2 (-841)) (-4 *3 (-1039))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1188 *3 *4 *5 *2)) (-4 *3 (-546)) (-4 *4 (-780))
- (-4 *5 (-836)) (-4 *2 (-1048 *3 *4 *5))))
+ (-12 (-5 *2 (-810 *3)) (-4 *1 (-1263 *3 *4)) (-4 *3 (-841))
+ (-4 *4 (-1039))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1219 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-779)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-631 (-877 *3))) (-5 *1 (-877 *3))
- (-4 *3 (-1082)))))
-(((*1 *1 *1 *1) (-5 *1 (-221)))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2))
- (-4 *2 (-425 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-758)) (-5 *2 (-1 (-374))) (-5 *1 (-1025))))
- ((*1 *1 *1 *1) (-4 *1 (-1121))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-758)) (-5 *5 (-631 *3)) (-4 *3 (-302)) (-4 *6 (-836))
- (-4 *7 (-780)) (-5 *2 (-112)) (-5 *1 (-613 *6 *7 *3 *8))
- (-4 *8 (-934 *3 *7 *6)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-539))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-145))
- (-4 *3 (-302)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836))
- (-5 *1 (-962 *3 *4 *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-1244))))
- ((*1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-1244)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1126)) (-5 *2 (-139))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1126)) (-5 *2 (-142)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-1162)))))
+ (-12 (-4 *1 (-1263 *2 *3)) (-4 *2 (-841)) (-4 *3 (-1039)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-546)) (-4 *3 (-1034))
- (-5 *2 (-2 (|:| -2325 *1) (|:| -2423 *1))) (-4 *1 (-838 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-546)) (-4 *5 (-1034))
- (-5 *2 (-2 (|:| -2325 *3) (|:| -2423 *3))) (-5 *1 (-839 *5 *3))
- (-4 *3 (-838 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-631 (-554))) (-5 *1 (-989 *3)) (-14 *3 (-554)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
- (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221))) (-5 *4 (-221))
- (-5 *2 (-1020)) (-5 *1 (-737)))))
-(((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *3 (-631 *8)) (-5 *4 (-631 (-877 *6)))
- (-5 *5 (-1 (-874 *6 *8) *8 (-877 *6) (-874 *6 *8))) (-4 *6 (-1082))
- (-4 *8 (-13 (-1034) (-602 (-877 *6)) (-1023 *7)))
- (-5 *2 (-874 *6 *8)) (-4 *7 (-13 (-1034) (-836)))
- (-5 *1 (-926 *6 *7 *8)))))
-(((*1 *1 *1) (-5 *1 (-848))) ((*1 *1 *1 *1) (-5 *1 (-848)))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-1195))))
- ((*1 *1 *2) (-12 (-5 *1 (-1208 *2)) (-4 *2 (-1195)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1188 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *4 (-780))
- (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-631 *5)))))
-(((*1 *2 *1) (|partial| -12 (-5 *1 (-360 *2)) (-4 *2 (-1082))))
- ((*1 *2 *1) (|partial| -12 (-5 *2 (-1140)) (-5 *1 (-1176)))))
+ (-12 (-4 *1 (-1085 *3)) (-4 *3 (-1087)) (-5 *2 (-112)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-631 (-631 *3))) (-4 *3 (-1082)) (-5 *1 (-890 *3)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-554)) (-14 *3 (-758))
- (-4 *4 (-170))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-836) (-546))) (-5 *1 (-156 *4 *2))
- (-4 *2 (-425 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1074 *2)) (-4 *2 (-425 *4)) (-4 *4 (-13 (-836) (-546)))
- (-5 *1 (-156 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1074 *1)) (-4 *1 (-158))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1158))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-459 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-758)) (-5 *1 (-1261 *3 *4)) (-4 *3 (-836))
- (-4 *4 (-170)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-554)) (-4 *4 (-13 (-546) (-145))) (-5 *1 (-531 *4 *2))
- (-4 *2 (-1232 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-554)) (-4 *4 (-13 (-358) (-363) (-602 *3)))
- (-4 *5 (-1217 *4)) (-4 *6 (-711 *4 *5)) (-5 *1 (-535 *4 *5 *6 *2))
- (-4 *2 (-1232 *6))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-554)) (-4 *4 (-13 (-358) (-363) (-602 *3)))
- (-5 *1 (-536 *4 *2)) (-4 *2 (-1232 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1138 *4)) (-5 *3 (-554)) (-4 *4 (-13 (-546) (-145)))
- (-5 *1 (-1134 *4)))))
+ (-12 (-5 *2 (-635 (-1063 *3 *4 *5))) (-4 *3 (-1087))
+ (-4 *4 (-13 (-1039) (-876 *3) (-841) (-606 (-882 *3))))
+ (-4 *5 (-13 (-429 *4) (-876 *3) (-606 (-882 *3))))
+ (-5 *1 (-1064 *3 *4 *5)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
+ (-5 *1 (-738)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-631 (-1140))) (-5 *2 (-1140)) (-5 *1 (-188))))
- ((*1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848)))))
-(((*1 *2)
- (|partial| -12 (-4 *4 (-1199)) (-4 *5 (-1217 (-402 *2)))
- (-4 *2 (-1217 *4)) (-5 *1 (-336 *3 *4 *2 *5))
- (-4 *3 (-337 *4 *2 *5))))
- ((*1 *2)
- (|partial| -12 (-4 *1 (-337 *3 *2 *4)) (-4 *3 (-1199))
- (-4 *4 (-1217 (-402 *2))) (-4 *2 (-1217 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-546) (-145))) (-5 *1 (-531 *3 *2))
- (-4 *2 (-1232 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-358) (-363) (-602 (-554)))) (-4 *4 (-1217 *3))
- (-4 *5 (-711 *3 *4)) (-5 *1 (-535 *3 *4 *5 *2)) (-4 *2 (-1232 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-358) (-363) (-602 (-554)))) (-5 *1 (-536 *3 *2))
- (-4 *2 (-1232 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-13 (-546) (-145)))
- (-5 *1 (-1134 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2))
- (-4 *2 (-13 (-425 *3) (-1180))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-758)) (-5 *1 (-770 *2)) (-4 *2 (-38 (-402 (-554))))
- (-4 *2 (-170)))))
-(((*1 *2 *3 *3 *3 *4 *5 *6)
- (-12 (-5 *3 (-311 (-554))) (-5 *4 (-1 (-221) (-221)))
- (-5 *5 (-1076 (-221))) (-5 *6 (-631 (-258))) (-5 *2 (-1115 (-221)))
- (-5 *1 (-683)))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-554)) (-4 *3 (-170)) (-4 *5 (-368 *3))
- (-4 *6 (-368 *3)) (-5 *1 (-674 *3 *5 *6 *2))
- (-4 *2 (-673 *3 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1154 (-402 (-937 *3)))) (-5 *1 (-447 *3 *4 *5 *6))
- (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906))
- (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))))
+ (|partial| -12 (-4 *4 (-13 (-550) (-841) (-1028 (-558))))
+ (-4 *5 (-429 *4)) (-5 *2 (-417 (-1159 (-406 (-558)))))
+ (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1222 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1195)) (-5 *2 (-758)) (-5 *1 (-180 *4 *3))
- (-4 *3 (-660 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-631 *1)) (-4 *1 (-1048 *4 *5 *6)) (-4 *4 (-1034))
- (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780))
- (-4 *5 (-836)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1188 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *4 (-780))
- (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1188 *4 *5 *6 *3)) (-4 *4 (-546)) (-4 *5 (-780))
- (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1082)) (-5 *2 (-874 *3 *5)) (-5 *1 (-870 *3 *4 *5))
- (-4 *3 (-1082)) (-4 *5 (-652 *4)))))
+ (-12 (-4 *4 (-1204)) (-4 *5 (-1222 *4))
+ (-5 *2 (-2 (|:| -2023 (-406 *5)) (|:| |poly| *3)))
+ (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1222 (-406 *5))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1241 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170))
- (-5 *2 (-1241 (-675 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-1241 (-675 *4))) (-5 *1 (-411 *3 *4))
- (-4 *3 (-412 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-1241 (-675 *3)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-1158))) (-4 *5 (-358))
- (-5 *2 (-1241 (-675 (-402 (-937 *5))))) (-5 *1 (-1068 *5))
- (-5 *4 (-675 (-402 (-937 *5))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-1158))) (-4 *5 (-358))
- (-5 *2 (-1241 (-675 (-937 *5)))) (-5 *1 (-1068 *5))
- (-5 *4 (-675 (-937 *5)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-631 (-675 *4))) (-4 *4 (-358))
- (-5 *2 (-1241 (-675 *4))) (-5 *1 (-1068 *4)))))
-(((*1 *2)
- (-12 (-5 *2 (-402 (-937 *3))) (-5 *1 (-447 *3 *4 *5 *6))
- (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906))
- (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))))
+ (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1177 *4 *5))
+ (-4 *4 (-1087)) (-4 *5 (-1087)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-813)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-4 *7 (-1053 *4 *5 *6))
+ (-5 *2 (-2 (|:| |bas| (-474 *4 *5 *6 *7)) (|:| -3072 (-635 *7))))
+ (-5 *1 (-967 *4 *5 *6 *7)) (-5 *3 (-635 *7)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1163)) (-4 *4 (-450)) (-4 *4 (-841))
+ (-5 *1 (-567 *4 *2)) (-4 *2 (-283)) (-4 *2 (-429 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1237 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-368 *3))
- (-4 *5 (-368 *3)) (-5 *2 (-554))))
+ (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-783))
+ (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1087))
+ (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-588 *3)) (-4 *3 (-1039))))
((*1 *2 *1)
- (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034))
- (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-554)))))
+ (-12 (-4 *3 (-550)) (-5 *2 (-112)) (-5 *1 (-615 *3 *4))
+ (-4 *4 (-1222 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-726 *3 *4)) (-4 *3 (-1039))
+ (-4 *4 (-717))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039))
+ (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1200)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
+ (-5 *1 (-738)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-546) (-836)))
- (-4 *2 (-13 (-425 (-167 *4)) (-987) (-1180)))
- (-5 *1 (-588 *4 *3 *2)) (-4 *3 (-13 (-425 *4) (-987) (-1180))))))
+ (-12 (-4 *4 (-13 (-550) (-841) (-1028 (-558)))) (-4 *5 (-429 *4))
+ (-5 *2 (-417 *3)) (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1222 *5)))))
+(((*1 *1 *1) (-5 *1 (-112))))
+(((*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-143)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1241 *5)) (-4 *5 (-779)) (-5 *2 (-112))
- (-5 *1 (-831 *4 *5)) (-14 *4 (-758)))))
-(((*1 *1 *2 *3 *4)
- (-12
- (-5 *3
- (-631
- (-2 (|:| |scalar| (-402 (-554))) (|:| |coeff| (-1154 *2))
- (|:| |logand| (-1154 *2)))))
- (-5 *4 (-631 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
- (-4 *2 (-358)) (-5 *1 (-575 *2)))))
-(((*1 *2 *1)
- (-12 (-14 *3 (-631 (-1158))) (-4 *4 (-170))
- (-4 *5 (-234 (-2563 *3) (-758)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2717 *2) (|:| -1407 *5))
- (-2 (|:| -2717 *2) (|:| -1407 *5))))
- (-4 *2 (-836)) (-5 *1 (-455 *3 *4 *2 *5 *6 *7))
- (-4 *7 (-934 *4 *5 (-850 *3))))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-318 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-130))
- (-4 *3 (-779)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1076 (-829 (-221)))) (-5 *2 (-221)) (-5 *1 (-188))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1076 (-829 (-221)))) (-5 *2 (-221)) (-5 *1 (-295))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1076 (-829 (-221)))) (-5 *2 (-221)) (-5 *1 (-300)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-631 (-52))) (-5 *1 (-877 *3)) (-4 *3 (-1082)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1082)) (-4 *3 (-885 *5)) (-5 *2 (-675 *3))
- (-5 *1 (-678 *5 *3 *6 *4)) (-4 *6 (-368 *3))
- (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4373)))))))
-(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-286)))
- ((*1 *1) (-5 *1 (-848)))
- ((*1 *1)
- (-12 (-4 *2 (-446)) (-4 *3 (-836)) (-4 *4 (-780))
- (-5 *1 (-972 *2 *3 *4 *5)) (-4 *5 (-934 *2 *4 *3))))
- ((*1 *1) (-5 *1 (-1067)))
- ((*1 *1)
- (-12 (-5 *1 (-1122 *2 *3)) (-4 *2 (-13 (-1082) (-34)))
- (-4 *3 (-13 (-1082) (-34)))))
- ((*1 *1) (-5 *1 (-1161))) ((*1 *1) (-5 *1 (-1162))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1140)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836))
- (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-1246))
- (-5 *1 (-1055 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1140)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836))
- (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-1246))
- (-5 *1 (-1090 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-546)) (-5 *2 (-1241 (-675 *4))) (-5 *1 (-90 *4 *5))
- (-5 *3 (-675 *4)) (-4 *5 (-642 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-1045))))
- ((*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1045)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-631 *7)) (-5 *5 (-631 (-631 *8))) (-4 *7 (-836))
- (-4 *8 (-302)) (-4 *6 (-780)) (-4 *9 (-934 *8 *6 *7))
- (-5 *2
- (-2 (|:| |unitPart| *9)
- (|:| |suPart|
- (-631 (-2 (|:| -2270 (-1154 *9)) (|:| -1407 (-554)))))))
- (-5 *1 (-729 *6 *7 *8 *9)) (-5 *3 (-1154 *9)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-937 *4)) (-4 *4 (-13 (-302) (-145)))
- (-4 *2 (-934 *4 *6 *5)) (-5 *1 (-909 *4 *5 *6 *2))
- (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-167 (-221)) (-167 (-221)))) (-5 *4 (-1076 (-221)))
- (-5 *5 (-112)) (-5 *2 (-1243)) (-5 *1 (-252)))))
-(((*1 *2 *1 *3 *3)
- (-12 (|has| *1 (-6 -4374)) (-4 *1 (-592 *3 *4)) (-4 *3 (-1082))
- (-4 *4 (-1195)) (-5 *2 (-1246)))))
+ (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1177 *4 *5))
+ (-4 *4 (-1087)) (-4 *5 (-1087)))))
+(((*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-813)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2))
- (-4 *2 (-13 (-425 *3) (-1180))))))
-(((*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-1154 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1161)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-631 *6)) (-4 *6 (-836)) (-4 *4 (-358)) (-4 *5 (-780))
- (-5 *1 (-498 *4 *5 *6 *2)) (-4 *2 (-934 *4 *5 *6))))
- ((*1 *1 *1 *2)
- (-12 (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836))
- (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-934 *3 *4 *5)))))
+ (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550))
+ (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-967 *3 *4 *5 *6)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-877 *4)) (-4 *4 (-1082)) (-5 *1 (-875 *4 *3))
- (-4 *3 (-1195))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-877 *3)) (-4 *3 (-1082)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-446)) (-4 *3 (-836)) (-4 *4 (-780))
- (-5 *1 (-972 *2 *3 *4 *5)) (-4 *5 (-934 *2 *4 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-572)))))
-(((*1 *2 *1 *2) (-12 (-5 *1 (-1011 *2)) (-4 *2 (-1195)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-112))
- (-4 *6 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))))
- (-4 *3 (-13 (-27) (-1180) (-425 *6) (-10 -8 (-15 -3075 ($ *7)))))
- (-4 *7 (-834))
- (-4 *8
- (-13 (-1219 *3 *7) (-358) (-1180)
- (-10 -8 (-15 -1553 ($ $)) (-15 -2279 ($ $)))))
- (-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1140)) (|:| |prob| (-1140))))))
- (-5 *1 (-417 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1140)) (-4 *9 (-968 *8))
- (-14 *10 (-1158)))))
-(((*1 *1)
- (-12 (-4 *1 (-399)) (-4081 (|has| *1 (-6 -4364)))
- (-4081 (|has| *1 (-6 -4356)))))
- ((*1 *2 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-1082)) (-4 *2 (-836))))
- ((*1 *2 *1) (-12 (-4 *1 (-817 *2)) (-4 *2 (-836))))
- ((*1 *1 *1 *1) (-4 *1 (-836))) ((*1 *1) (-5 *1 (-1102))))
-(((*1 *2 *3) (-12 (-5 *3 (-311 (-221))) (-5 *2 (-221)) (-5 *1 (-300)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-928 *5)) (-4 *5 (-1034)) (-5 *2 (-758))
- (-5 *1 (-1146 *4 *5)) (-14 *4 (-906))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-631 (-758))) (-5 *3 (-758)) (-5 *1 (-1146 *4 *5))
- (-14 *4 (-906)) (-4 *5 (-1034))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-631 (-758))) (-5 *3 (-928 *5)) (-4 *5 (-1034))
- (-5 *1 (-1146 *4 *5)) (-14 *4 (-906)))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *4 (-446)) (-4 *3 (-780)) (-4 *5 (-836)) (-5 *2 (-112))
- (-5 *1 (-443 *4 *3 *5 *6)) (-4 *6 (-934 *4 *3 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-834)) (-5 *2 (-554))))
- ((*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-890 *3)) (-4 *3 (-1082))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1051 *4 *3)) (-4 *4 (-13 (-834) (-358)))
- (-4 *3 (-1217 *4)) (-5 *2 (-554))))
+ (-12 (-5 *3 (-1163)) (-4 *4 (-550)) (-4 *4 (-841))
+ (-5 *1 (-567 *4 *2)) (-4 *2 (-429 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1237 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-841)) (-4 *3 (-171))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-619 *2 *3 *4)) (-4 *2 (-841))
+ (-4 *3 (-13 (-171) (-708 (-406 (-558))))) (-14 *4 (-911))))
+ ((*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-841))))
+ ((*1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-841))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1263 *2 *3)) (-4 *2 (-841)) (-4 *3 (-1039)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1200)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-1145)) (-5 *5 (-679 (-224)))
+ (-5 *2 (-1025)) (-5 *1 (-738)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))))
+(((*1 *1) (-5 *1 (-143))))
+(((*1 *2)
+ (-12 (-5 *2 (-1251)) (-5 *1 (-1177 *3 *4)) (-4 *3 (-1087))
+ (-4 *4 (-1087)))))
+(((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-813)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-635 *2)) (-4 *2 (-1053 *4 *5 *6)) (-4 *4 (-550))
+ (-4 *5 (-784)) (-4 *6 (-841)) (-5 *1 (-967 *4 *5 *6 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 *6)) (-5 *4 (-1163)) (-4 *6 (-429 *5))
+ (-4 *5 (-841)) (-5 *2 (-635 (-604 *6))) (-5 *1 (-567 *5 *6)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1213 (-558))) (-4 *1 (-281 *3)) (-4 *3 (-1200))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-281 *3)) (-4 *3 (-1200)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-762)) (-4 *1 (-1263 *3 *4)) (-4 *3 (-841))
+ (-4 *4 (-1039)) (-4 *4 (-171))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1263 *2 *3)) (-4 *2 (-841)) (-4 *3 (-1039))
+ (-4 *3 (-171)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-1122))) (-5 *1 (-1077)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-1145)) (-5 *5 (-679 (-224)))
+ (-5 *2 (-1025)) (-5 *1 (-738)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1163)) (-5 *3 (-635 *1)) (-4 *1 (-429 *4))
+ (-4 *4 (-841))))
+ ((*1 *1 *2 *1 *1 *1 *1)
+ (-12 (-5 *2 (-1163)) (-4 *1 (-429 *3)) (-4 *3 (-841))))
+ ((*1 *1 *2 *1 *1 *1)
+ (-12 (-5 *2 (-1163)) (-4 *1 (-429 *3)) (-4 *3 (-841))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1163)) (-4 *1 (-429 *3)) (-4 *3 (-841))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1163)) (-4 *1 (-429 *3)) (-4 *3 (-841)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-1174 *2)) (-4 *2 (-362)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550))
+ (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-967 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-635 *7)) (-5 *3 (-112)) (-4 *7 (-1053 *4 *5 *6))
+ (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-5 *1 (-967 *4 *5 *6 *7)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-604 *6))) (-5 *4 (-1163)) (-5 *2 (-604 *6))
+ (-4 *6 (-429 *5)) (-4 *5 (-841)) (-5 *1 (-567 *5 *6)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4382)) (-4 *1 (-234 *3))
+ (-4 *3 (-1087))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-281 *3)) (-4 *3 (-1200)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1193 *4 *5 *3 *6)) (-4 *4 (-550)) (-4 *5 (-784))
+ (-4 *3 (-841)) (-4 *6 (-1053 *4 *5 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1265 *3)) (-4 *3 (-362)) (-5 *2 (-112)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-933 (-224)) (-933 (-224)))) (-5 *1 (-262))))
((*1 *2 *3)
- (|partial| -12
- (-4 *4 (-13 (-546) (-836) (-1023 *2) (-627 *2) (-446)))
- (-5 *2 (-554)) (-5 *1 (-1098 *4 *3))
- (-4 *3 (-13 (-27) (-1180) (-425 *4)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1158)) (-5 *5 (-829 *3))
- (-4 *3 (-13 (-27) (-1180) (-425 *6)))
- (-4 *6 (-13 (-546) (-836) (-1023 *2) (-627 *2) (-446)))
- (-5 *2 (-554)) (-5 *1 (-1098 *6 *3))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-1158)) (-5 *5 (-1140))
- (-4 *6 (-13 (-546) (-836) (-1023 *2) (-627 *2) (-446)))
- (-5 *2 (-554)) (-5 *1 (-1098 *6 *3))
- (-4 *3 (-13 (-27) (-1180) (-425 *6)))))
+ (-12 (-5 *3 (-1246 *1)) (-4 *1 (-328 *4)) (-4 *4 (-362))
+ (-5 *2 (-679 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1246 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1246 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171))
+ (-5 *2 (-679 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1246 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171))
+ (-5 *2 (-1246 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1246 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171))
+ (-4 *5 (-1222 *4)) (-5 *2 (-679 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1246 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171))
+ (-4 *5 (-1222 *4)) (-5 *2 (-1246 *4))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-402 (-937 *4))) (-4 *4 (-446)) (-5 *2 (-554))
- (-5 *1 (-1099 *4))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1158)) (-5 *5 (-829 (-402 (-937 *6))))
- (-5 *3 (-402 (-937 *6))) (-4 *6 (-446)) (-5 *2 (-554))
- (-5 *1 (-1099 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-402 (-937 *6))) (-5 *4 (-1158))
- (-5 *5 (-1140)) (-4 *6 (-446)) (-5 *2 (-554)) (-5 *1 (-1099 *6))))
+ (-12 (-5 *3 (-1246 *1)) (-4 *1 (-408 *4 *5)) (-4 *4 (-171))
+ (-4 *5 (-1222 *4)) (-5 *2 (-679 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1222 *3))
+ (-5 *2 (-1246 *3))))
((*1 *2 *3)
- (|partial| -12 (-5 *2 (-554)) (-5 *1 (-1177 *3)) (-4 *3 (-1034)))))
-(((*1 *2)
- (-12 (-4 *3 (-1034)) (-5 *2 (-943 (-699 *3 *4))) (-5 *1 (-699 *3 *4))
- (-4 *4 (-1217 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1122 *4 *5)) (-4 *4 (-13 (-1082) (-34)))
- (-4 *5 (-13 (-1082) (-34))) (-5 *2 (-112)) (-5 *1 (-1123 *4 *5)))))
-(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
- *4 *6 *4)
- (-12 (-5 *4 (-554)) (-5 *5 (-675 (-221))) (-5 *6 (-661 (-221)))
- (-5 *3 (-221)) (-5 *2 (-1020)) (-5 *1 (-737)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-302))
- (-5 *2 (-631 (-758))) (-5 *1 (-765 *3 *4 *5 *6 *7))
- (-4 *3 (-1217 *6)) (-4 *7 (-934 *6 *4 *5)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-631 (-311 (-221)))) (-5 *3 (-221)) (-5 *2 (-112))
- (-5 *1 (-206)))))
+ (-12 (-5 *3 (-1246 *1)) (-4 *1 (-416 *4)) (-4 *4 (-171))
+ (-5 *2 (-679 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-1246 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-635 (-679 *5))) (-5 *3 (-679 *5)) (-4 *5 (-362))
+ (-5 *2 (-1246 *5)) (-5 *1 (-1073 *5)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987)))))
+ (-12 (-4 *3 (-841)) (-5 *1 (-919 *3 *2)) (-4 *2 (-429 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1163)) (-5 *2 (-315 (-558))) (-5 *1 (-920)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-1145)) (-5 *5 (-679 (-224)))
+ (-5 *2 (-1025)) (-5 *1 (-738)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-911)) (-5 *2 (-1159 *3)) (-5 *1 (-1174 *3))
+ (-4 *3 (-362)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-4 *7 (-1053 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-635 *7)) (|:| |badPols| (-635 *7))))
+ (-5 *1 (-967 *4 *5 *6 *7)) (-5 *3 (-635 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-604 *5))) (-4 *4 (-841)) (-5 *2 (-604 *5))
+ (-5 *1 (-567 *4 *5)) (-4 *5 (-429 *4)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1091)) (-5 *1 (-279)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1265 *3)) (-4 *3 (-362)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1246 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171))
+ (-5 *2 (-1246 (-679 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-1246 (-679 *4))) (-5 *1 (-415 *3 *4))
+ (-4 *3 (-416 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-1246 (-679 *3)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-1163))) (-4 *5 (-362))
+ (-5 *2 (-1246 (-679 (-406 (-942 *5))))) (-5 *1 (-1073 *5))
+ (-5 *4 (-679 (-406 (-942 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-1163))) (-4 *5 (-362))
+ (-5 *2 (-1246 (-679 (-942 *5)))) (-5 *1 (-1073 *5))
+ (-5 *4 (-679 (-942 *5)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-679 *4))) (-4 *4 (-362))
+ (-5 *2 (-1246 (-679 *4))) (-5 *1 (-1073 *4)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-1145)) (-5 *5 (-679 (-224)))
+ (-5 *2 (-1025)) (-5 *1 (-738)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))))
+(((*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-5 *1 (-1174 *2)) (-4 *2 (-362)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112))
+ (-5 *1 (-967 *4 *5 *6 *3)) (-4 *3 (-1053 *4 *5 *6)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-635 (-604 *5))) (-5 *3 (-1163)) (-4 *5 (-429 *4))
+ (-4 *4 (-841)) (-5 *1 (-567 *4 *5)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1163)) (-5 *1 (-279)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1265 *3)) (-4 *3 (-362)) (-5 *2 (-112)))))
+(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3))
- (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4))))
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4))))
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1143 *3))))
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1144 *3))))
- ((*1 *1 *1) (-4 *1 (-1183))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-631 *2)) (-4 *2 (-1217 *4)) (-5 *1 (-533 *4 *2 *5 *6))
- (-4 *4 (-302)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-758))))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221)))
- (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221))))
- (|:| |ub| (-631 (-829 (-221))))))
- (-5 *1 (-262)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1188 *3 *4 *5 *2)) (-4 *3 (-546)) (-4 *4 (-780))
- (-4 *5 (-836)) (-4 *2 (-1048 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-1195)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-939)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-631 (-554))) (-5 *2 (-889 (-554))) (-5 *1 (-902))))
- ((*1 *2) (-12 (-5 *2 (-889 (-554))) (-5 *1 (-902)))))
-(((*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170)))))
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1148 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1149 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-174))) (-5 *1 (-1072)))))
+(((*1 *2 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
+ (-5 *1 (-738)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-329)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *2 (-635 (-635 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039))
+ (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-635 (-635 *5)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-635 (-635 *3))) (-5 *1 (-1172 *3)) (-4 *3 (-1087)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1241 (-631 (-2 (|:| -2794 *4) (|:| -2717 (-1102))))))
- (-4 *4 (-344)) (-5 *2 (-675 *4)) (-5 *1 (-341 *4)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-631 *6)) (-4 *1 (-961 *3 *4 *5 *6)) (-4 *3 (-1034))
- (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5))
- (-4 *3 (-546)))))
-(((*1 *2 *1) (-12 (-4 *1 (-754 *3)) (-4 *3 (-1082)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1048 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780))
- (-4 *2 (-836))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780))
- (-4 *4 (-836)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-446))
- (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836))
- (-5 *1 (-962 *3 *4 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987)))))
+ (-12 (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-4 *7 (-1053 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-635 *7)) (|:| |badPols| (-635 *7))))
+ (-5 *1 (-967 *4 *5 *6 *7)) (-5 *3 (-635 *7)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1163))
+ (-4 *5 (-13 (-550) (-1028 (-558)) (-146)))
+ (-5 *2
+ (-2 (|:| -1440 (-406 (-942 *5))) (|:| |coeff| (-406 (-942 *5)))))
+ (-5 *1 (-564 *5)) (-5 *3 (-406 (-942 *5))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279)))))
+(((*1 *1 *1 *1) (-5 *1 (-129))))
+(((*1 *2)
+ (-12 (-4 *4 (-362)) (-5 *2 (-911)) (-5 *1 (-327 *3 *4))
+ (-4 *3 (-328 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-362)) (-5 *2 (-824 (-911))) (-5 *1 (-327 *3 *4))
+ (-4 *3 (-328 *4))))
+ ((*1 *2) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-911))))
+ ((*1 *2)
+ (-12 (-4 *1 (-1265 *3)) (-4 *3 (-362)) (-5 *2 (-824 (-911))))))
+(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3))
- (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4))))
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158)))
- (-14 *3 (-631 (-1158))) (-4 *4 (-382))))
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1143 *3))))
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1144 *3))))
- ((*1 *1 *1) (-4 *1 (-1183))))
-(((*1 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554)))))))
- (-5 *1 (-1110 *3 *2)) (-4 *3 (-1217 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 *8)) (-5 *4 (-631 *9)) (-4 *8 (-1048 *5 *6 *7))
- (-4 *9 (-1054 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-780))
- (-4 *7 (-836)) (-5 *2 (-758)) (-5 *1 (-1052 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 *8)) (-5 *4 (-631 *9)) (-4 *8 (-1048 *5 *6 *7))
- (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-780))
- (-4 *7 (-836)) (-5 *2 (-758)) (-5 *1 (-1127 *5 *6 *7 *8 *9)))))
-(((*1 *2 *1 *1 *3 *4)
- (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6))
- (-4 *5 (-13 (-1082) (-34))) (-4 *6 (-13 (-1082) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1122 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1075 *3)) (-4 *3 (-1195)) (-5 *2 (-554)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-13 (-1082) (-34)))
- (-4 *4 (-13 (-1082) (-34))))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-302)) (-4 *3 (-977 *2)) (-4 *4 (-1217 *3))
- (-5 *1 (-408 *2 *3 *4 *5)) (-4 *5 (-13 (-404 *3 *4) (-1023 *3))))))
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1148 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1149 *3)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1163)) (-5 *2 (-109)) (-5 *1 (-174))))
+ ((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1163)) (-5 *2 (-109)) (-5 *1 (-1072)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
+ (-5 *1 (-738)))))
(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4))
- (-4 *3 (-362 *4))))
- ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+ (-12 (-4 *3 (-13 (-841) (-550) (-1028 (-558)))) (-5 *2 (-1251))
+ (-5 *1 (-432 *3 *4)) (-4 *4 (-429 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1087)) (-5 *1 (-1172 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-836)) (-5 *2 (-1167 (-631 *4))) (-5 *1 (-1166 *4))
- (-5 *3 (-631 *4)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-631 (-631 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-631 (-3 (|:| |array| (-631 *3)) (|:| |scalar| (-1158)))))
- (-5 *6 (-631 (-1158))) (-5 *3 (-1158)) (-5 *2 (-1086))
- (-5 *1 (-392))))
- ((*1 *2 *3 *4 *5 *6 *3)
- (-12 (-5 *5 (-631 (-631 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-631 (-3 (|:| |array| (-631 *3)) (|:| |scalar| (-1158)))))
- (-5 *6 (-631 (-1158))) (-5 *3 (-1158)) (-5 *2 (-1086))
- (-5 *1 (-392))))
- ((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *4 (-631 (-1158))) (-5 *5 (-1161)) (-5 *3 (-1158))
- (-5 *2 (-1086)) (-5 *1 (-392)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-829 *3)) (-4 *3 (-1082)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
- (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221))) (-5 *4 (-221))
- (-5 *2 (-1020)) (-5 *1 (-740)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987)))))
+ (-12 (-5 *3 (-635 (-315 (-224)))) (-5 *2 (-112)) (-5 *1 (-266))))
+ ((*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-112)) (-5 *1 (-266))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112))
+ (-5 *1 (-967 *4 *5 *6 *3)) (-4 *3 (-1053 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1163)) (-5 *5 (-635 (-406 (-942 *6))))
+ (-5 *3 (-406 (-942 *6)))
+ (-4 *6 (-13 (-550) (-1028 (-558)) (-146)))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-564 *6)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-406 (-558)))
+ (-4 *4 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *4))))))
+(((*1 *1 *1 *1) (-5 *1 (-129))))
+(((*1 *2)
+ (-12 (-4 *4 (-362)) (-5 *2 (-762)) (-5 *1 (-327 *3 *4))
+ (-4 *3 (-328 *4))))
+ ((*1 *2) (-12 (-4 *1 (-1265 *3)) (-4 *3 (-362)) (-5 *2 (-762)))))
+(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3))
- (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4))))
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-326 *2)) (-4 *2 (-836))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158)))
- (-14 *3 (-631 (-1158))) (-4 *4 (-382))))
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1143 *3))))
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1144 *3))))
- ((*1 *1 *1) (-4 *1 (-1183))))
-(((*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-848)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-758)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-554))
- (-14 *4 *2) (-4 *5 (-170))))
- ((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-906)) (-5 *1 (-163 *3 *4))
- (-4 *3 (-164 *4))))
- ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-906))))
- ((*1 *2)
- (-12 (-4 *1 (-365 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1217 *3))
- (-5 *2 (-906))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-358)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4))
- (-5 *2 (-758)) (-5 *1 (-515 *4 *5 *6 *3)) (-4 *3 (-673 *4 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-675 *5)) (-5 *4 (-1241 *5)) (-4 *5 (-358))
- (-5 *2 (-758)) (-5 *1 (-653 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-358)) (-4 *6 (-13 (-368 *5) (-10 -7 (-6 -4374))))
- (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4374)))) (-5 *2 (-758))
- (-5 *1 (-654 *5 *6 *4 *3)) (-4 *3 (-673 *5 *6 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3))
- (-4 *5 (-368 *3)) (-4 *3 (-546)) (-5 *2 (-758))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-546)) (-4 *4 (-170)) (-4 *5 (-368 *4))
- (-4 *6 (-368 *4)) (-5 *2 (-758)) (-5 *1 (-674 *4 *5 *6 *3))
- (-4 *3 (-673 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034))
- (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-4 *5 (-546))
- (-5 *2 (-758)))))
-(((*1 *2 *3 *2 *4 *5)
- (-12 (-5 *2 (-631 *3)) (-5 *5 (-906)) (-4 *3 (-1217 *4))
- (-4 *4 (-302)) (-5 *1 (-454 *4 *3)))))
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1148 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1149 *3)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1072)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
+ (-5 *1 (-738)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-912))
- (-5 *2
- (-2 (|:| |brans| (-631 (-631 (-928 (-221)))))
- (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))))
- (-5 *1 (-151))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-912)) (-5 *4 (-402 (-554)))
- (-5 *2
- (-2 (|:| |brans| (-631 (-631 (-928 (-221)))))
- (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))))
- (-5 *1 (-151))))
- ((*1 *2 *3)
- (-12
- (-5 *2
- (-2 (|:| |brans| (-631 (-631 (-928 (-221)))))
- (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))))
- (-5 *1 (-151)) (-5 *3 (-631 (-928 (-221))))))
- ((*1 *2 *3)
- (-12
+ (-12 (-4 *4 (-13 (-841) (-550) (-1028 (-558)))) (-5 *2 (-406 (-558)))
+ (-5 *1 (-432 *4 *3)) (-4 *3 (-429 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-604 *3)) (-4 *3 (-429 *5))
+ (-4 *5 (-13 (-841) (-550) (-1028 (-558))))
+ (-5 *2 (-1159 (-406 (-558)))) (-5 *1 (-432 *5 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 (-143))) (-5 *1 (-140))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-140)))))
+(((*1 *2 *3 *4 *5 *4 *4 *4)
+ (-12 (-4 *6 (-841)) (-5 *3 (-635 *6)) (-5 *5 (-635 *3))
(-5 *2
- (-2 (|:| |brans| (-631 (-631 (-928 (-221)))))
- (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))))
- (-5 *1 (-151)) (-5 *3 (-631 (-631 (-928 (-221)))))))
- ((*1 *1 *2) (-12 (-5 *2 (-631 (-1076 (-374)))) (-5 *1 (-258))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-258)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1054 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-780))
- (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-243 *4 *5)) (-14 *4 (-631 (-1158))) (-4 *5 (-1034))
- (-5 *2 (-475 *4 *5)) (-5 *1 (-929 *4 *5)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-675 (-167 (-402 (-554))))) (-5 *2 (-631 (-167 *4)))
- (-5 *1 (-751 *4)) (-4 *4 (-13 (-358) (-834))))))
-(((*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-461))))
- ((*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-461))))
- ((*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-912)))))
+ (-2 (|:| |f1| *3) (|:| |f2| (-635 *5)) (|:| |f3| *5)
+ (|:| |f4| (-635 *5))))
+ (-5 *1 (-1171 *6)) (-5 *4 (-635 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-4 *7 (-1053 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-635 *7)) (|:| |badPols| (-635 *7))))
+ (-5 *1 (-967 *4 *5 *6 *7)) (-5 *3 (-635 *7)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-406 (-942 *4))) (-5 *3 (-1163))
+ (-4 *4 (-13 (-550) (-1028 (-558)) (-146))) (-5 *1 (-564 *4)))))
+(((*1 *1 *1) (-5 *1 (-224)))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163)))
+ (-14 *3 (-635 (-1163))) (-4 *4 (-386))))
+ ((*1 *1 *1) (-5 *1 (-378))) ((*1 *1) (-5 *1 (-378))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1217 *5))
- (-4 *5 (-13 (-27) (-425 *4)))
- (-4 *4 (-13 (-836) (-546) (-1023 (-554))))
- (-4 *7 (-1217 (-402 *6))) (-5 *1 (-542 *4 *5 *6 *7 *2))
- (-4 *2 (-337 *5 *6 *7)))))
+ (-12 (-5 *3 (-604 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *4)))
+ (-4 *4 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *1 (-276 *4 *2)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987)))))
+ (-12 (-4 *3 (-348)) (-4 *4 (-328 *3)) (-4 *5 (-1222 *4))
+ (-5 *1 (-768 *3 *4 *5 *2 *6)) (-4 *2 (-1222 *5)) (-14 *6 (-911))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-762)) (-4 *1 (-1265 *3)) (-4 *3 (-362)) (-4 *3 (-367))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-362)) (-4 *2 (-367)))))
+(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3))
- (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4))))
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-326 *2)) (-4 *2 (-836))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158)))
- (-14 *3 (-631 (-1158))) (-4 *4 (-382))))
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1143 *3))))
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1144 *3))))
- ((*1 *1 *1) (-4 *1 (-1183))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-877 *4)) (-4 *4 (-1082)) (-4 *2 (-1082))
- (-5 *1 (-874 *4 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1158))
- (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *2 (-52)) (-5 *1 (-310 *4 *5))
- (-4 *5 (-13 (-27) (-1180) (-425 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *2 (-52)) (-5 *1 (-310 *4 *3))
- (-4 *3 (-13 (-27) (-1180) (-425 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-402 (-554)))
- (-4 *5 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *2 (-52)) (-5 *1 (-310 *5 *3))
- (-4 *3 (-13 (-27) (-1180) (-425 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-289 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *5)))
- (-4 *5 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *2 (-52)) (-5 *1 (-310 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-289 *3)) (-5 *5 (-402 (-554)))
- (-4 *3 (-13 (-27) (-1180) (-425 *6)))
- (-4 *6 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *2 (-52)) (-5 *1 (-310 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-554))) (-5 *4 (-289 *6))
- (-4 *6 (-13 (-27) (-1180) (-425 *5)))
- (-4 *5 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *2 (-52)) (-5 *1 (-453 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1158)) (-5 *5 (-289 *3))
- (-4 *3 (-13 (-27) (-1180) (-425 *6)))
- (-4 *6 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *2 (-52)) (-5 *1 (-453 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-554))) (-5 *4 (-289 *7)) (-5 *5 (-1208 (-554)))
- (-4 *7 (-13 (-27) (-1180) (-425 *6)))
- (-4 *6 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *2 (-52)) (-5 *1 (-453 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1158)) (-5 *5 (-289 *3)) (-5 *6 (-1208 (-554)))
- (-4 *3 (-13 (-27) (-1180) (-425 *7)))
- (-4 *7 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *2 (-52)) (-5 *1 (-453 *7 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-402 (-554)))) (-5 *4 (-289 *8))
- (-5 *5 (-1208 (-402 (-554)))) (-5 *6 (-402 (-554)))
- (-4 *8 (-13 (-27) (-1180) (-425 *7)))
- (-4 *7 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *2 (-52)) (-5 *1 (-453 *7 *8))))
- ((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1158)) (-5 *5 (-289 *3)) (-5 *6 (-1208 (-402 (-554))))
- (-5 *7 (-402 (-554))) (-4 *3 (-13 (-27) (-1180) (-425 *8)))
- (-4 *8 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *2 (-52)) (-5 *1 (-453 *8 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1138 (-2 (|:| |k| (-554)) (|:| |c| *3))))
- (-4 *3 (-1034)) (-5 *1 (-584 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-585 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1138 (-2 (|:| |k| (-554)) (|:| |c| *3))))
- (-4 *3 (-1034)) (-4 *1 (-1201 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-758))
- (-5 *3 (-1138 (-2 (|:| |k| (-402 (-554))) (|:| |c| *4))))
- (-4 *4 (-1034)) (-4 *1 (-1222 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-4 *1 (-1232 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1138 (-2 (|:| |k| (-758)) (|:| |c| *3))))
- (-4 *3 (-1034)) (-4 *1 (-1232 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-631 *2)) (-5 *1 (-1169 *2)) (-4 *2 (-358)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-1195)))))
-(((*1 *1 *1) (-5 *1 (-848))))
-(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-402 (-554))) (-5 *4 (-554)) (-5 *2 (-52))
- (-5 *1 (-990)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))))
-(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-554))) (-5 *1 (-1032)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-836)))))
-(((*1 *2 *3) (-12 (-5 *3 (-928 *2)) (-5 *1 (-967 *2)) (-4 *2 (-1034)))))
-(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
- (|partial| -12 (-5 *2 (-631 (-1154 *11))) (-5 *3 (-1154 *11))
- (-5 *4 (-631 *10)) (-5 *5 (-631 *8)) (-5 *6 (-631 (-758)))
- (-5 *7 (-1241 (-631 (-1154 *8)))) (-4 *10 (-836))
- (-4 *8 (-302)) (-4 *11 (-934 *8 *9 *10)) (-4 *9 (-780))
- (-5 *1 (-694 *9 *10 *8 *11)))))
-(((*1 *1 *1) (-4 *1 (-617)))
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1148 *3))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-618 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987) (-1180))))))
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1149 *3)))))
+(((*1 *1) (-5 *1 (-1072))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
+ (-5 *1 (-738)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-928 *3)) (-4 *3 (-13 (-358) (-1180) (-987)))
- (-5 *1 (-174 *3)))))
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2))
+ (-4 *2 (-429 *3)))))
+(((*1 *1) (-5 *1 (-140))))
+(((*1 *1)
+ (-12 (-4 *3 (-1087)) (-5 *1 (-875 *2 *3 *4)) (-4 *2 (-1087))
+ (-4 *4 (-656 *3))))
+ ((*1 *1) (-12 (-5 *1 (-879 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-1087)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3))))
+ (|partial| -12 (-4 *3 (-362)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3))
+ (-5 *1 (-519 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-550)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4))
+ (-4 *7 (-982 *4)) (-4 *2 (-677 *7 *8 *9))
+ (-5 *1 (-520 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-677 *4 *5 *6))
+ (-4 *8 (-372 *7)) (-4 *9 (-372 *7))))
((*1 *1 *1)
- (-12 (-5 *1 (-1233 *2 *3 *4)) (-4 *2 (-1034)) (-14 *3 (-1158))
- (-14 *4 *2))))
-(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
- *7 *3 *8)
- (-12 (-5 *5 (-675 (-221))) (-5 *6 (-112)) (-5 *7 (-675 (-554)))
- (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-65 QPHESS))))
- (-5 *3 (-554)) (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-740)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1195))
- (-4 *5 (-1195)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-236 *6 *7)) (-14 *6 (-758))
- (-4 *7 (-1195)) (-4 *5 (-1195)) (-5 *2 (-236 *6 *5))
- (-5 *1 (-235 *6 *7 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1195)) (-4 *5 (-1195))
- (-4 *2 (-368 *5)) (-5 *1 (-366 *6 *4 *5 *2)) (-4 *4 (-368 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1082)) (-4 *5 (-1082))
- (-4 *2 (-420 *5)) (-5 *1 (-418 *6 *4 *5 *2)) (-4 *4 (-420 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-631 *6)) (-4 *6 (-1195))
- (-4 *5 (-1195)) (-5 *2 (-631 *5)) (-5 *1 (-629 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-943 *6)) (-4 *6 (-1195))
- (-4 *5 (-1195)) (-5 *2 (-943 *5)) (-5 *1 (-942 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1138 *6)) (-4 *6 (-1195))
- (-4 *3 (-1195)) (-5 *2 (-1138 *3)) (-5 *1 (-1136 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1241 *6)) (-4 *6 (-1195))
- (-4 *5 (-1195)) (-5 *2 (-1241 *5)) (-5 *1 (-1240 *6 *5)))))
+ (|partial| -12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039))
+ (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (-4 *2 (-362))))
+ ((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-362)) (-4 *3 (-171)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *1 (-678 *3 *4 *5 *2))
+ (-4 *2 (-677 *3 *4 *5))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-679 *2)) (-4 *2 (-362)) (-4 *2 (-1039))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-1110 *2 *3 *4 *5)) (-4 *3 (-1039))
+ (-4 *4 (-237 *2 *3)) (-4 *5 (-237 *2 *3)) (-4 *3 (-362))))
+ ((*1 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-841)) (-5 *1 (-1171 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-675 *1)) (-4 *1 (-344)) (-5 *2 (-1241 *1))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-675 *1)) (-4 *1 (-143)) (-4 *1 (-894))
- (-5 *2 (-1241 *1)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020))
- (-5 *1 (-738)))))
-(((*1 *1)
- (-12 (-4 *3 (-1082)) (-5 *1 (-870 *2 *3 *4)) (-4 *2 (-1082))
- (-4 *4 (-652 *3))))
- ((*1 *1) (-12 (-5 *1 (-874 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1054 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-780))
- (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *1 *2 *2)
- (-12 (-5 *2 (-631 (-554))) (-5 *1 (-989 *3)) (-14 *3 (-554)))))
+ (-12 (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112))
+ (-5 *1 (-967 *4 *5 *6 *3)) (-4 *3 (-1053 *4 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-631 *3)) (-4 *3 (-1091 *5 *6 *7 *8))
- (-4 *5 (-13 (-302) (-145))) (-4 *6 (-780)) (-4 *7 (-836))
- (-4 *8 (-1048 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-580 *5 *6 *7 *8 *3)))))
+ (-12 (-5 *4 (-1163))
+ (-4 *5 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558))))
+ (-5 *2 (-579 *3)) (-5 *1 (-425 *5 *3))
+ (-4 *3 (-13 (-1185) (-29 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1163)) (-4 *5 (-13 (-550) (-1028 (-558)) (-146)))
+ (-5 *2 (-579 (-406 (-942 *5)))) (-5 *1 (-564 *5))
+ (-5 *3 (-406 (-942 *5))))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-635 (-604 *2))) (-5 *4 (-1163))
+ (-4 *2 (-13 (-27) (-1185) (-429 *5)))
+ (-4 *5 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *1 (-276 *5 *2)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-762)) (-4 *4 (-13 (-1039) (-708 (-406 (-558)))))
+ (-4 *5 (-841)) (-5 *1 (-1262 *4 *5 *2)) (-4 *2 (-1267 *5 *4)))))
+(((*1 *1 *1) (-4 *1 (-35)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1148 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1149 *3)))))
+(((*1 *1) (-5 *1 (-1072))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-224))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1025))
+ (-5 *1 (-737)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987))))))
-(((*1 *2 *1) (-12 (-5 *2 (-809)) (-5 *1 (-808)))))
-(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1195)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836))
- (-4 *2 (-1048 *4 *5 *6)) (-5 *1 (-763 *4 *5 *6 *2 *3))
- (-4 *3 (-1054 *4 *5 *6 *2)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-631 *6)) (-4 *6 (-934 *3 *4 *5)) (-4 *3 (-358))
- (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-498 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| |lm| (-381 *3)) (|:| |mm| (-381 *3)) (|:| |rm| (-381 *3))))
- (-5 *1 (-381 *3)) (-4 *3 (-1082))))
- ((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| |lm| (-806 *3)) (|:| |mm| (-806 *3)) (|:| |rm| (-806 *3))))
- (-5 *1 (-806 *3)) (-4 *3 (-836)))))
-(((*1 *1 *1) (-4 *1 (-617)))
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2))
+ (-4 *2 (-429 *3)))))
+(((*1 *1) (-5 *1 (-140))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-841)) (-5 *2 (-635 (-635 *4))) (-5 *1 (-1171 *4))
+ (-5 *3 (-635 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-4 *7 (-1053 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-635 *7)) (|:| |badPols| (-635 *7))))
+ (-5 *1 (-967 *4 *5 *6 *7)) (-5 *3 (-635 *7)))))
+(((*1 *1 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-1200))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-618 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987) (-1180))))))
+ (-12 (-4 *3 (-1039)) (-5 *1 (-442 *3 *2)) (-4 *2 (-1222 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-1087)) (-4 *3 (-23))
+ (-14 *4 *3))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-498 (-402 (-554)) (-236 *5 (-758)) (-850 *4)
- (-243 *4 (-402 (-554)))))
- (-14 *4 (-631 (-1158))) (-14 *5 (-758)) (-5 *2 (-112))
- (-5 *1 (-499 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-368 *3))
- (-4 *5 (-368 *3)) (-5 *2 (-758))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034))
- (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-758)))))
+ (|partial| -12 (-5 *2 (-558)) (-5 *1 (-563 *3)) (-4 *3 (-1028 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1163))
+ (-4 *4 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *4))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
+ ((*1 *1 *1) (-4 *1 (-491)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1148 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1149 *3)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-631 (-1154 *7))) (-5 *3 (-1154 *7))
- (-4 *7 (-934 *4 *5 *6)) (-4 *4 (-894)) (-4 *5 (-780))
- (-4 *6 (-836)) (-5 *1 (-891 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1071 *2))))
((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-631 (-1154 *5))) (-5 *3 (-1154 *5))
- (-4 *5 (-1217 *4)) (-4 *4 (-894)) (-5 *1 (-892 *4 *5)))))
+ (-12 (-5 *3 (-1 (-558) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1071 *2)))))
+(((*1 *2 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-224))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1025))
+ (-5 *1 (-737)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-426 *3 *2)) (-4 *3 (-13 (-171) (-38 (-406 (-558)))))
+ (-4 *2 (-13 (-841) (-21))))))
+(((*1 *1) (-5 *1 (-140))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-841)) (-5 *1 (-1171 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1158))
- (-4 *5 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *2
- (-2 (|:| |func| *3) (|:| |kers| (-631 (-600 *3)))
- (|:| |vals| (-631 *3))))
- (-5 *1 (-272 *5 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *5))))))
-(((*1 *2 *3 *3 *3 *3 *4 *5)
- (-12 (-5 *3 (-221)) (-5 *4 (-554))
- (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085))))
- (-5 *2 (-1020)) (-5 *1 (-733)))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *4 (-1 (-3 (-554) "failed") *5)) (-4 *5 (-1034))
- (-5 *2 (-554)) (-5 *1 (-537 *5 *3)) (-4 *3 (-1217 *5))))
- ((*1 *2 *3 *4 *2 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-554) "failed") *4)) (-4 *4 (-1034))
- (-5 *2 (-554)) (-5 *1 (-537 *4 *3)) (-4 *3 (-1217 *4))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-554) "failed") *4)) (-4 *4 (-1034))
- (-5 *2 (-554)) (-5 *1 (-537 *4 *3)) (-4 *3 (-1217 *4)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-675 (-554))) (-5 *3 (-631 (-554))) (-5 *1 (-1092)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-758)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1034))
- (-14 *4 (-631 (-1158)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-758)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1034) (-836)))
- (-14 *4 (-631 (-1158)))))
- ((*1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-363)) (-4 *2 (-358))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-330 *3 *4 *5 *2)) (-4 *3 (-358))
- (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4)))
- (-4 *2 (-337 *3 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-758)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
- (-4 *5 (-170))))
- ((*1 *1) (-12 (-4 *2 (-170)) (-4 *1 (-711 *2 *3)) (-4 *3 (-1217 *2)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-928 (-221))) (-5 *4 (-859)) (-5 *2 (-1246))
- (-5 *1 (-462))))
- ((*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1034)) (-4 *1 (-965 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-928 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-928 *3)) (-4 *3 (-1034)) (-4 *1 (-1116 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-758)) (-4 *1 (-1116 *3)) (-4 *3 (-1034))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-631 *3)) (-4 *1 (-1116 *3)) (-4 *3 (-1034))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-928 *3)) (-4 *1 (-1116 *3)) (-4 *3 (-1034))))
- ((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-928 (-221))) (-5 *1 (-1191)) (-5 *3 (-221)))))
+ (-12 (-5 *3 (-635 (-1 (-112) *8))) (-4 *8 (-1053 *5 *6 *7))
+ (-4 *5 (-550)) (-4 *6 (-784)) (-4 *7 (-841))
+ (-5 *2 (-2 (|:| |goodPols| (-635 *8)) (|:| |badPols| (-635 *8))))
+ (-5 *1 (-967 *5 *6 *7 *8)) (-5 *4 (-635 *8)))))
+(((*1 *1 *1) (-4 *1 (-621)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-622 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992) (-1185))))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-635 (-406 *6))) (-5 *3 (-406 *6))
+ (-4 *6 (-1222 *5)) (-4 *5 (-13 (-362) (-146) (-1028 (-558))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-562 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-302)) (-4 *6 (-368 *5)) (-4 *4 (-368 *5))
+ (-12 (-5 *4 (-1163))
+ (-4 *5 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3782 (-631 *4))))
- (-5 *1 (-1106 *5 *6 *4 *3)) (-4 *3 (-673 *5 *6 *4)))))
-(((*1 *2 *3 *4 *3 *3)
- (-12 (-5 *3 (-289 *6)) (-5 *4 (-114)) (-4 *6 (-425 *5))
- (-4 *5 (-13 (-836) (-546) (-602 (-530)))) (-5 *2 (-52))
- (-5 *1 (-312 *5 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-289 *7)) (-5 *4 (-114)) (-5 *5 (-631 *7))
- (-4 *7 (-425 *6)) (-4 *6 (-13 (-836) (-546) (-602 (-530))))
- (-5 *2 (-52)) (-5 *1 (-312 *6 *7))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-631 (-289 *7))) (-5 *4 (-631 (-114))) (-5 *5 (-289 *7))
- (-4 *7 (-425 *6)) (-4 *6 (-13 (-836) (-546) (-602 (-530))))
- (-5 *2 (-52)) (-5 *1 (-312 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-631 (-289 *8))) (-5 *4 (-631 (-114))) (-5 *5 (-289 *8))
- (-5 *6 (-631 *8)) (-4 *8 (-425 *7))
- (-4 *7 (-13 (-836) (-546) (-602 (-530)))) (-5 *2 (-52))
- (-5 *1 (-312 *7 *8))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-631 *7)) (-5 *4 (-631 (-114))) (-5 *5 (-289 *7))
- (-4 *7 (-425 *6)) (-4 *6 (-13 (-836) (-546) (-602 (-530))))
- (-5 *2 (-52)) (-5 *1 (-312 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-631 *8)) (-5 *4 (-631 (-114))) (-5 *6 (-631 (-289 *8)))
- (-4 *8 (-425 *7)) (-5 *5 (-289 *8))
- (-4 *7 (-13 (-836) (-546) (-602 (-530)))) (-5 *2 (-52))
- (-5 *1 (-312 *7 *8))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-289 *5)) (-5 *4 (-114)) (-4 *5 (-425 *6))
- (-4 *6 (-13 (-836) (-546) (-602 (-530)))) (-5 *2 (-52))
- (-5 *1 (-312 *6 *5))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-114)) (-5 *5 (-289 *3)) (-4 *3 (-425 *6))
- (-4 *6 (-13 (-836) (-546) (-602 (-530)))) (-5 *2 (-52))
- (-5 *1 (-312 *6 *3))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-114)) (-5 *5 (-289 *3)) (-4 *3 (-425 *6))
- (-4 *6 (-13 (-836) (-546) (-602 (-530)))) (-5 *2 (-52))
- (-5 *1 (-312 *6 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-114)) (-5 *5 (-289 *3)) (-5 *6 (-631 *3))
- (-4 *3 (-425 *7)) (-4 *7 (-13 (-836) (-546) (-602 (-530))))
- (-5 *2 (-52)) (-5 *1 (-312 *7 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-477)) (-5 *1 (-214))))
- ((*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1195))))
- ((*1 *2 *1) (-12 (-5 *2 (-477)) (-5 *1 (-662))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780))
- (-4 *4 (-836)))))
-(((*1 *2)
- (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3))
- (-4 *5 (-1217 (-402 *4))) (-5 *2 (-675 (-402 *4))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1154 (-554))) (-5 *1 (-927)) (-5 *3 (-554))))
+ (-2 (|:| |func| *3) (|:| |kers| (-635 (-604 *3)))
+ (|:| |vals| (-635 *3))))
+ (-5 *1 (-276 *5 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *5))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992)))))
((*1 *2 *2)
- (-12 (-4 *3 (-302)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3))
- (-5 *1 (-1106 *3 *4 *5 *2)) (-4 *2 (-673 *3 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-368 *3))
- (-4 *5 (-368 *3)) (-5 *2 (-758))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034))
- (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-758)))))
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
+ ((*1 *1 *1) (-4 *1 (-491)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1148 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1149 *3)))))
+(((*1 *1) (-5 *1 (-1069))))
+(((*1 *2 *3 *3 *3 *3 *4 *5)
+ (-12 (-5 *3 (-224)) (-5 *4 (-558))
+ (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3215))))
+ (-5 *2 (-1025)) (-5 *1 (-737)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-426 *3 *2)) (-4 *3 (-13 (-171) (-38 (-406 (-558)))))
+ (-4 *2 (-13 (-841) (-21))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-841)) (-5 *1 (-919 *3 *2)) (-4 *2 (-429 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1163)) (-5 *2 (-315 (-558))) (-5 *1 (-920)))))
+(((*1 *1) (-5 *1 (-140))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-841)) (-5 *2 (-1172 (-635 *4))) (-5 *1 (-1171 *4))
+ (-5 *3 (-635 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-631 *2))) (-5 *4 (-631 *5))
- (-4 *5 (-38 (-402 (-554)))) (-4 *2 (-1232 *5))
- (-5 *1 (-1234 *5 *2)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1158)) (-4 *4 (-446)) (-4 *4 (-836))
- (-5 *1 (-563 *4 *2)) (-4 *2 (-279)) (-4 *2 (-425 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-392)))))
+ (-12 (-5 *3 (-635 (-1 (-112) *8))) (-4 *8 (-1053 *5 *6 *7))
+ (-4 *5 (-550)) (-4 *6 (-784)) (-4 *7 (-841))
+ (-5 *2 (-2 (|:| |goodPols| (-635 *8)) (|:| |badPols| (-635 *8))))
+ (-5 *1 (-967 *5 *6 *7 *8)) (-5 *4 (-635 *8)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-362) (-146) (-1028 (-558))))
+ (-4 *5 (-1222 *4))
+ (-5 *2 (-2 (|:| -1440 (-406 *5)) (|:| |coeff| (-406 *5))))
+ (-5 *1 (-562 *4 *5)) (-5 *3 (-406 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-841) (-550))) (-5 *2 (-112)) (-5 *1 (-275 *4 *3))
+ (-4 *3 (-13 (-429 *4) (-992))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-446)) (-4 *3 (-836)) (-4 *3 (-1023 (-554)))
- (-4 *3 (-546)) (-5 *1 (-41 *3 *2)) (-4 *2 (-425 *3))
- (-4 *2
- (-13 (-358) (-297)
- (-10 -8 (-15 -2810 ((-1107 *3 (-600 $)) $))
- (-15 -2822 ((-1107 *3 (-600 $)) $))
- (-15 -3075 ($ (-1107 *3 (-600 $))))))))))
-(((*1 *1 *2) (-12 (-5 *2 (-631 *1)) (-4 *1 (-297))))
- ((*1 *1 *1) (-4 *1 (-297))) ((*1 *1 *1) (-5 *1 (-848))))
-(((*1 *1 *1) (-4 *1 (-617)))
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992)))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-618 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987) (-1180))))))
-(((*1 *2 *1) (-12 (-5 *2 (-413 *3)) (-5 *1 (-899 *3)) (-4 *3 (-302)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-758))))
- ((*1 *1 *1) (-4 *1 (-397))))
-(((*1 *1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *1 (-584 *3)) (-4 *3 (-1034)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-521)) (-5 *3 (-128)) (-5 *2 (-1102)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-1241
- (-2 (|:| |scaleX| (-221)) (|:| |scaleY| (-221))
- (|:| |deltaX| (-221)) (|:| |deltaY| (-221)) (|:| -1707 (-554))
- (|:| -4036 (-554)) (|:| |spline| (-554)) (|:| -3133 (-554))
- (|:| |axesColor| (-859)) (|:| -2079 (-554))
- (|:| |unitsColor| (-859)) (|:| |showing| (-554)))))
- (-5 *1 (-1242)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
- (-12 (-5 *4 (-675 (-554))) (-5 *5 (-112)) (-5 *7 (-675 (-221)))
- (-5 *3 (-554)) (-5 *6 (-221)) (-5 *2 (-1020)) (-5 *1 (-741)))))
-(((*1 *2) (-12 (-5 *2 (-631 (-906))) (-5 *1 (-1244))))
- ((*1 *2 *2) (-12 (-5 *2 (-631 (-906))) (-5 *1 (-1244)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-374)) (-5 *1 (-773)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-758)) (-5 *1 (-770 *2)) (-4 *2 (-38 (-402 (-554))))
- (-4 *2 (-170)))))
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
+ ((*1 *1 *1) (-4 *1 (-491)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1148 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1149 *3)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-289 (-820 *3)))
- (-4 *5 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *2 (-820 *3)) (-5 *1 (-624 *5 *3))
- (-4 *3 (-13 (-27) (-1180) (-425 *5)))))
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-784))
+ (-4 *7 (-841)) (-4 *8 (-1053 *5 *6 *7)) (-5 *2 (-635 *3))
+ (-5 *1 (-584 *5 *6 *7 *8 *3)) (-4 *3 (-1096 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-289 (-820 (-937 *5)))) (-4 *5 (-446))
- (-5 *2 (-820 (-402 (-937 *5)))) (-5 *1 (-625 *5))
- (-5 *3 (-402 (-937 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-289 (-402 (-937 *5)))) (-5 *3 (-402 (-937 *5)))
- (-4 *5 (-446)) (-5 *2 (-820 *3)) (-5 *1 (-625 *5)))))
-(((*1 *2 *3 *2)
- (-12
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146)))
(-5 *2
- (-631
- (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-758)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *3 (-780)) (-4 *6 (-934 *4 *3 *5)) (-4 *4 (-446)) (-4 *5 (-836))
- (-5 *1 (-443 *4 *3 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-836)) (-5 *1 (-241 *3)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-554))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-758))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-906))))
+ (-635 (-2 (|:| -1680 (-1159 *5)) (|:| -4205 (-635 (-942 *5))))))
+ (-5 *1 (-1065 *5 *6)) (-5 *3 (-635 (-942 *5)))
+ (-14 *6 (-635 (-1163)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-306) (-146)))
+ (-5 *2
+ (-635 (-2 (|:| -1680 (-1159 *4)) (|:| -4205 (-635 (-942 *4))))))
+ (-5 *1 (-1065 *4 *5)) (-5 *3 (-635 (-942 *4)))
+ (-14 *5 (-635 (-1163)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146)))
+ (-5 *2
+ (-635 (-2 (|:| -1680 (-1159 *5)) (|:| -4205 (-635 (-942 *5))))))
+ (-5 *1 (-1065 *5 *6)) (-5 *3 (-635 (-942 *5)))
+ (-14 *6 (-635 (-1163))))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-558))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-762))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-911))))
((*1 *1 *1 *1)
- (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-554)) (-14 *3 (-758))
- (-4 *4 (-170))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-155))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-906)) (-5 *1 (-155))))
+ (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-762))
+ (-4 *4 (-171))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-156))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-911)) (-5 *1 (-156))))
((*1 *2 *1 *2)
- (-12 (-5 *2 (-928 *3)) (-4 *3 (-13 (-358) (-1180)))
- (-5 *1 (-223 *3))))
+ (-12 (-5 *2 (-933 *3)) (-4 *3 (-13 (-362) (-1185)))
+ (-5 *1 (-226 *3))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-234 *3 *2)) (-4 *2 (-1195)) (-4 *2 (-713))))
+ (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1200)) (-4 *2 (-717))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-234 *3 *2)) (-4 *2 (-1195)) (-4 *2 (-713))))
+ (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1200)) (-4 *2 (-717))))
((*1 *1 *2 *1)
- (-12 (-5 *1 (-289 *2)) (-4 *2 (-1094)) (-4 *2 (-1195))))
+ (-12 (-5 *1 (-293 *2)) (-4 *2 (-1099)) (-4 *2 (-1200))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-289 *2)) (-4 *2 (-1094)) (-4 *2 (-1195))))
+ (-12 (-5 *1 (-293 *2)) (-4 *2 (-1099)) (-4 *2 (-1200))))
((*1 *1 *2 *3)
- (-12 (-4 *1 (-318 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-130))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1082))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1082))))
+ (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-130))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1087))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1087))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-376 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-836))))
+ (-12 (-5 *1 (-380 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-841))))
((*1 *1 *2 *3)
- (-12 (-4 *1 (-377 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-1082))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1082))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1082))))
+ (-12 (-4 *1 (-381 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-1087))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1087))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1087))))
((*1 *1 *2 *1)
- (-12 (-14 *3 (-631 (-1158))) (-4 *4 (-170))
- (-4 *6 (-234 (-2563 *3) (-758)))
+ (-12 (-14 *3 (-635 (-1163))) (-4 *4 (-171))
+ (-4 *6 (-237 (-2755 *3) (-762)))
(-14 *7
- (-1 (-112) (-2 (|:| -2717 *5) (|:| -1407 *6))
- (-2 (|:| -2717 *5) (|:| -1407 *6))))
- (-5 *1 (-455 *3 *4 *5 *6 *7 *2)) (-4 *5 (-836))
- (-4 *2 (-934 *4 *6 (-850 *3)))))
+ (-1 (-112) (-2 (|:| -2851 *5) (|:| -1951 *6))
+ (-2 (|:| -2851 *5) (|:| -1951 *6))))
+ (-5 *1 (-459 *3 *4 *5 *6 *7 *2)) (-4 *5 (-841))
+ (-4 *2 (-939 *4 *6 (-855 *3)))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
+ (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
+ (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-358)) (-4 *3 (-780)) (-4 *4 (-836))
- (-5 *1 (-498 *2 *3 *4 *5)) (-4 *5 (-934 *2 *3 *4))))
+ (-12 (-4 *2 (-362)) (-4 *3 (-784)) (-4 *4 (-841))
+ (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-939 *2 *3 *4))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1241 *3)) (-4 *3 (-344)) (-5 *1 (-522 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-530)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-585 *3)) (-4 *3 (-1034))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1034))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1034))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1041))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-836))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1082))
- (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-1 *7 *5))
- (-5 *1 (-670 *5 *6 *7))))
+ (-12 (-5 *2 (-1246 *3)) (-4 *3 (-348)) (-5 *1 (-526 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-534)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-589 *3)) (-4 *3 (-1039))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1039))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1039))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1046))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-841))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1087))
+ (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-1 *7 *5))
+ (-5 *1 (-674 *5 *6 *7))))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-673 *3 *2 *4)) (-4 *3 (-1034)) (-4 *2 (-368 *3))
- (-4 *4 (-368 *3))))
+ (-12 (-4 *1 (-677 *3 *2 *4)) (-4 *3 (-1039)) (-4 *2 (-372 *3))
+ (-4 *4 (-372 *3))))
((*1 *2 *1 *2)
- (-12 (-4 *1 (-673 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-368 *3))
- (-4 *2 (-368 *3))))
+ (-12 (-4 *1 (-677 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-372 *3))
+ (-4 *2 (-372 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-554)) (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034))
- (-4 *4 (-368 *3)) (-4 *5 (-368 *3))))
+ (-12 (-5 *2 (-558)) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039))
+ (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2))
- (-4 *4 (-368 *2))))
+ (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2))
+ (-4 *4 (-372 *2))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2))
- (-4 *4 (-368 *2))))
+ (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2))
+ (-4 *4 (-372 *2))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2))
- (-4 *4 (-368 *2))))
- ((*1 *1 *1 *1) (-4 *1 (-707)))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-806 *2)) (-4 *2 (-836))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-806 *2)) (-4 *2 (-836))))
- ((*1 *1 *1 *1) (-5 *1 (-848)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1082))))
+ (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2))
+ (-4 *4 (-372 *2))))
+ ((*1 *1 *1 *1) (-4 *1 (-711)))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-810 *2)) (-4 *2 (-841))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-841))))
+ ((*1 *1 *1 *1) (-5 *1 (-853)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1087))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1241 *4)) (-4 *4 (-1217 *3)) (-4 *3 (-546))
- (-5 *1 (-954 *3 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-1041))))
- ((*1 *1 *1 *1) (-4 *1 (-1094)))
+ (-12 (-5 *2 (-1246 *4)) (-4 *4 (-1222 *3)) (-4 *3 (-550))
+ (-5 *1 (-959 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-1046))))
+ ((*1 *1 *1 *1) (-4 *1 (-1099)))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-1105 *3 *4 *2 *5)) (-4 *4 (-1034)) (-4 *2 (-234 *3 *4))
- (-4 *5 (-234 *3 *4))))
+ (-12 (-4 *1 (-1110 *3 *4 *2 *5)) (-4 *4 (-1039)) (-4 *2 (-237 *3 *4))
+ (-4 *5 (-237 *3 *4))))
((*1 *2 *1 *2)
- (-12 (-4 *1 (-1105 *3 *4 *5 *2)) (-4 *4 (-1034)) (-4 *5 (-234 *3 *4))
- (-4 *2 (-234 *3 *4))))
+ (-12 (-4 *1 (-1110 *3 *4 *5 *2)) (-4 *4 (-1039)) (-4 *5 (-237 *3 *4))
+ (-4 *2 (-237 *3 *4))))
((*1 *1 *2 *1)
- (-12 (-4 *3 (-1034)) (-4 *4 (-836)) (-5 *1 (-1108 *3 *4 *2))
- (-4 *2 (-934 *3 (-525 *4) *4))))
+ (-12 (-4 *3 (-1039)) (-4 *4 (-841)) (-5 *1 (-1113 *3 *4 *2))
+ (-4 *2 (-939 *3 (-529 *4) *4))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3))))
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3))))
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3))))
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-928 (-221))) (-5 *3 (-221)) (-5 *1 (-1191))))
+ (-12 (-5 *2 (-933 (-224))) (-5 *3 (-224)) (-5 *1 (-1196))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1195)) (-4 *2 (-713))))
+ (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1200)) (-4 *2 (-717))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1195)) (-4 *2 (-713))))
+ (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1200)) (-4 *2 (-717))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-554)) (-4 *1 (-1239 *3)) (-4 *3 (-1195)) (-4 *3 (-21))))
+ (-12 (-5 *2 (-558)) (-4 *1 (-1244 *3)) (-4 *3 (-1200)) (-4 *3 (-21))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-1258 *2 *3)) (-4 *2 (-836)) (-4 *3 (-1034))))
+ (-12 (-4 *1 (-1263 *2 *3)) (-4 *2 (-841)) (-4 *3 (-1039))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1258 *3 *2)) (-4 *3 (-836)) (-4 *2 (-1034))))
+ (-12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-841)) (-4 *2 (-1039))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-1264 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-832)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1084 *3)) (-5 *1 (-890 *3)) (-4 *3 (-363))
- (-4 *3 (-1082)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-358)) (-4 *3 (-1034))
- (-5 *1 (-1142 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 (-631 *7) *7 (-1154 *7))) (-5 *5 (-1 (-413 *7) *7))
- (-4 *7 (-1217 *6)) (-4 *6 (-13 (-358) (-145) (-1023 (-402 (-554)))))
- (-5 *2 (-631 (-2 (|:| |frac| (-402 *7)) (|:| -4329 *3))))
- (-5 *1 (-796 *6 *7 *3 *8)) (-4 *3 (-642 *7))
- (-4 *8 (-642 (-402 *7)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-413 *6) *6)) (-4 *6 (-1217 *5))
- (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554)))))
- (-5 *2
- (-631 (-2 (|:| |frac| (-402 *6)) (|:| -4329 (-640 *6 (-402 *6))))))
- (-5 *1 (-799 *5 *6)) (-5 *3 (-640 *6 (-402 *6))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-836)) (-5 *1 (-914 *3 *2)) (-4 *2 (-425 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1158)) (-5 *2 (-311 (-554))) (-5 *1 (-915)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1217 *5)) (-4 *5 (-358))
- (-5 *2 (-2 (|:| -3312 (-413 *3)) (|:| |special| (-413 *3))))
- (-5 *1 (-714 *5 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1195)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-631 (-2 (|:| |gen| *3) (|:| -1333 *4))))
- (-4 *3 (-1082)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-635 *3 *4 *5)))))
+ (-12 (-5 *1 (-1269 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-837)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-679 (-224))) (-5 *4 (-558)) (-5 *5 (-112))
+ (-5 *2 (-1025)) (-5 *1 (-736)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-311 *3)) (-4 *3 (-13 (-1034) (-836)))
- (-5 *1 (-219 *3 *4)) (-14 *4 (-631 (-1158))))))
-(((*1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-1244))))
- ((*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-1244)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-600 *4)) (-5 *1 (-599 *3 *4)) (-4 *3 (-836))
- (-4 *4 (-836)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1199)) (-4 *3 (-1217 *4))
- (-4 *5 (-1217 (-402 *3))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3))
- (-4 *5 (-1217 (-402 *4))) (-5 *2 (-112))))
+ (-12 (-5 *2 (-762)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1039))
+ (-14 *4 (-635 (-1163)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-762)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1039) (-841)))
+ (-14 *4 (-635 (-1163)))))
+ ((*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362))))
((*1 *2 *1)
- (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3))
- (-4 *5 (-1217 (-402 *4))) (-5 *2 (-112)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-554) (-554))) (-5 *1 (-356 *3)) (-4 *3 (-1082))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-758) (-758))) (-5 *1 (-381 *3)) (-4 *3 (-1082))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
- (-5 *1 (-635 *3 *4 *5)) (-4 *3 (-1082)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-554)) (-4 *1 (-318 *4 *2)) (-4 *4 (-1082))
- (-4 *2 (-130)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158))))
- (-4 *6 (-780)) (-5 *2 (-631 (-631 (-554))))
- (-5 *1 (-909 *4 *5 *6 *7)) (-5 *3 (-554)) (-4 *7 (-934 *4 *6 *5)))))
+ (|partial| -12 (-4 *1 (-334 *3 *4 *5 *2)) (-4 *3 (-362))
+ (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4)))
+ (-4 *2 (-341 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-762)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-171))))
+ ((*1 *1) (-12 (-4 *2 (-171)) (-4 *1 (-715 *2 *3)) (-4 *3 (-1222 *2)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-402 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1217 *5))
- (-5 *1 (-714 *5 *2)) (-4 *5 (-358)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-358)) (-4 *3 (-780)) (-4 *4 (-836))
- (-5 *1 (-498 *2 *3 *4 *5)) (-4 *5 (-934 *2 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1176)))))
-(((*1 *2)
- (-12 (-4 *4 (-1199)) (-4 *5 (-1217 *4)) (-4 *6 (-1217 (-402 *5)))
- (-5 *2 (-631 (-631 *4))) (-5 *1 (-336 *3 *4 *5 *6))
- (-4 *3 (-337 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3))
- (-4 *5 (-1217 (-402 *4))) (-4 *3 (-363)) (-5 *2 (-631 (-631 *3))))))
+ (-12 (-5 *4 (-1163))
+ (-4 *5 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558))))
+ (-5 *2 (-579 *3)) (-5 *1 (-425 *5 *3))
+ (-4 *3 (-13 (-1185) (-29 *5))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-252 *3 *4 *2 *5)) (-4 *3 (-1039)) (-4 *4 (-841))
+ (-4 *5 (-784)) (-4 *2 (-265 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-829))) (-5 *1 (-139)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-344)) (-5 *2 (-413 *3)) (-5 *1 (-212 *4 *3))
- (-4 *3 (-1217 *4))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-758)) (-5 *2 (-413 *3)) (-5 *1 (-436 *3))
- (-4 *3 (-1217 (-554)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-631 (-758))) (-5 *2 (-413 *3)) (-5 *1 (-436 *3))
- (-4 *3 (-1217 (-554)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-631 (-758))) (-5 *5 (-758)) (-5 *2 (-413 *3))
- (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-758)) (-5 *2 (-413 *3)) (-5 *1 (-436 *3))
- (-4 *3 (-1217 (-554)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-413 *3)) (-5 *1 (-992 *3))
- (-4 *3 (-1217 (-402 (-554))))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-413 *3)) (-5 *1 (-1206 *3)) (-4 *3 (-1217 (-554))))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-758)) (-4 *5 (-546))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-954 *5 *3)) (-4 *3 (-1217 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848))))
- ((*1 *1 *1 *1) (-5 *1 (-848))))
-(((*1 *1 *1 *1) (-5 *1 (-129))))
-(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34)))
- ((*1 *1) (-5 *1 (-129)))
- ((*1 *1)
- (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-554)) (-14 *3 (-758))
- (-4 *4 (-170))))
- ((*1 *1) (-4 *1 (-713))) ((*1 *1) (-5 *1 (-1158))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374))
- (-5 *2
- (-2 (|:| -2794 *4) (|:| -1841 *4) (|:| |totalpts| (-554))
- (|:| |success| (-112))))
- (-5 *1 (-776)) (-5 *5 (-554)))))
+ (-12 (-4 *4 (-841)) (-5 *2 (-635 (-635 (-635 *4))))
+ (-5 *1 (-1171 *4)) (-5 *3 (-635 (-635 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-550))
+ (-4 *6 (-784)) (-4 *7 (-841))
+ (-5 *2 (-2 (|:| |goodPols| (-635 *8)) (|:| |badPols| (-635 *8))))
+ (-5 *1 (-967 *5 *6 *7 *8)) (-5 *4 (-635 *8)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1158))
- (-4 *4 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *1 (-272 *4 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *4)))))
- ((*1 *1 *1) (-5 *1 (-374)))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836))
- (-4 *3 (-1048 *5 *6 *7))
- (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *4))))
- (-5 *1 (-763 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-3
- (|:| |noa|
- (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221)))
- (|:| |lb| (-631 (-829 (-221))))
- (|:| |cf| (-631 (-311 (-221))))
- (|:| |ub| (-631 (-829 (-221))))))
- (|:| |lsa|
- (-2 (|:| |lfn| (-631 (-311 (-221))))
- (|:| -3834 (-631 (-221)))))))
- (-5 *2 (-631 (-1140))) (-5 *1 (-262)))))
-(((*1 *1 *1) (-5 *1 (-1046))))
-(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-859)))))
-(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-848)))
- ((*1 *1 *1) (-4 *1 (-952))) ((*1 *1 *1) (-5 *1 (-1102))))
-(((*1 *2 *1) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-389)))))
+ (|partial| -12 (-5 *2 (-406 *4)) (-4 *4 (-1222 *3))
+ (-4 *3 (-13 (-362) (-146) (-1028 (-558)))) (-5 *1 (-562 *3 *4)))))
+(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-329))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-329)))))
(((*1 *2 *2 *3)
(|partial| -12
- (-5 *3 (-631 (-2 (|:| |func| *2) (|:| |pole| (-112)))))
- (-4 *2 (-13 (-425 *4) (-987))) (-4 *4 (-13 (-836) (-546)))
- (-5 *1 (-271 *4 *2)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-5 *1 (-103 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1195)) (-5 *1 (-370 *4 *2))
- (-4 *2 (-13 (-368 *4) (-10 -7 (-6 -4374)))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-631 (-311 (-221)))) (-5 *2 (-112)) (-5 *1 (-262)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1082)) (-4 *2 (-885 *5)) (-5 *1 (-678 *5 *2 *3 *4))
- (-4 *3 (-368 *2)) (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4373)))))))
-(((*1 *1 *1 *1) (-5 *1 (-129))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-934 *3 *5 *4)) (-5 *1 (-972 *3 *4 *5 *2))
- (-4 *3 (-446)) (-4 *4 (-836)) (-4 *5 (-780)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1217 (-554))))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221)))
- (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221))
- (|:| |relerr| (-221))))
- (-5 *2
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite| "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))
- (-5 *1 (-188)))))
-(((*1 *1 *2) (-12 (-5 *2 (-631 (-142))) (-5 *1 (-139))))
- ((*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-139)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-631 (-2 (|:| |totdeg| (-758)) (|:| -2598 *3))))
- (-5 *4 (-758)) (-4 *3 (-934 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-780))
- (-4 *7 (-836)) (-5 *1 (-443 *5 *6 *7 *3)))))
+ (-5 *3 (-635 (-2 (|:| |func| *2) (|:| |pole| (-112)))))
+ (-4 *2 (-13 (-429 *4) (-992))) (-4 *4 (-13 (-841) (-550)))
+ (-5 *1 (-275 *4 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163)))
+ (-14 *3 (-635 (-1163))) (-4 *4 (-386))))
+ ((*1 *1 *1) (-4 *1 (-491)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1148 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1149 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906))
- (-4 *4 (-1034)))))
+ (-12 (-4 *3 (-1087))
+ (-4 *4 (-13 (-1039) (-876 *3) (-841) (-606 (-882 *3))))
+ (-5 *2 (-635 (-1163))) (-5 *1 (-1063 *3 *4 *5))
+ (-4 *5 (-13 (-429 *4) (-876 *3) (-606 (-882 *3)))))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-679 (-224))) (-5 *4 (-558)) (-5 *5 (-112))
+ (-5 *2 (-1025)) (-5 *1 (-736)))))
+(((*1 *2 *1) (-12 (-4 *1 (-424 *3)) (-4 *3 (-1087)) (-5 *2 (-762)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-182))) (-5 *1 (-139)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-550))
+ (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112))
+ (-5 *1 (-967 *4 *5 *6 *7)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-3 (-402 (-937 *5)) (-1147 (-1158) (-937 *5))))
- (-4 *5 (-446)) (-5 *2 (-631 (-675 (-402 (-937 *5)))))
- (-5 *1 (-287 *5)) (-5 *4 (-675 (-402 (-937 *5)))))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))
- ((*1 *1 *1 *1) (-5 *1 (-1102))))
-(((*1 *2 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-221))
- (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1020))
- (-5 *1 (-733)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-554)) (-5 *2 (-1246)) (-5 *1 (-1243))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-631 *6)) (-4 *6 (-836)) (-4 *4 (-358)) (-4 *5 (-780))
- (-5 *2
- (-2 (|:| |mval| (-675 *4)) (|:| |invmval| (-675 *4))
- (|:| |genIdeal| (-498 *4 *5 *6 *7))))
- (-5 *1 (-498 *4 *5 *6 *7)) (-4 *7 (-934 *4 *5 *6)))))
-(((*1 *1 *1) (-5 *1 (-221)))
- ((*1 *1 *1)
- (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158)))
- (-14 *3 (-631 (-1158))) (-4 *4 (-382))))
- ((*1 *1 *1) (-5 *1 (-374))) ((*1 *1) (-5 *1 (-374))))
+ (|partial| -12 (-5 *4 (-1163)) (-4 *5 (-606 (-882 (-558))))
+ (-4 *5 (-876 (-558)))
+ (-4 *5 (-13 (-841) (-1028 (-558)) (-450) (-631 (-558))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-561 *5 *3)) (-4 *3 (-621))
+ (-4 *3 (-13 (-27) (-1185) (-429 *5)))))
+ ((*1 *2 *2 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-1163)) (-5 *4 (-834 *2)) (-4 *2 (-1126))
+ (-4 *2 (-13 (-27) (-1185) (-429 *5)))
+ (-4 *5 (-606 (-882 (-558)))) (-4 *5 (-876 (-558)))
+ (-4 *5 (-13 (-841) (-1028 (-558)) (-450) (-631 (-558))))
+ (-5 *1 (-561 *5 *2)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2))
- (-4 *2 (-13 (-425 *3) (-1180))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))))
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163)))
+ (-14 *3 (-635 (-1163))) (-4 *4 (-386))))
+ ((*1 *1 *1) (-4 *1 (-491)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1148 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1149 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
+ (-4 *3 (-1053 *5 *6 *7))
+ (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -2396 *4))))
+ (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-911)) (-4 *1 (-735 *3)) (-4 *3 (-171)))))
+(((*1 *1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1087)) (-4 *2 (-367)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-758)) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906))
- (-4 *4 (-1034)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-675 *3)) (-4 *3 (-1034)) (-5 *1 (-676 *3)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1188 *3 *4 *5 *2)) (-4 *3 (-546)) (-4 *4 (-780))
- (-4 *5 (-836)) (-4 *2 (-1048 *3 *4 *5)))))
+ (-12 (-5 *2 (-635 (-558))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-558))
+ (-14 *4 (-762)) (-4 *5 (-171)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-668 *2)) (-4 *2 (-1082))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-631 *5) (-631 *5))) (-5 *4 (-554))
- (-5 *2 (-631 *5)) (-5 *1 (-668 *5)) (-4 *5 (-1082)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374))
- (-5 *2
- (-2 (|:| -2794 *4) (|:| -1841 *4) (|:| |totalpts| (-554))
- (|:| |success| (-112))))
- (-5 *1 (-776)) (-5 *5 (-554)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-758))
- (-4 *3 (-13 (-302) (-10 -8 (-15 -1565 ((-413 $) $)))))
- (-4 *4 (-1217 *3)) (-5 *1 (-493 *3 *4 *5)) (-4 *5 (-404 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-1217 *2)) (-4 *2 (-1217 *4)) (-5 *1 (-970 *4 *2 *3 *5))
- (-4 *4 (-344)) (-4 *5 (-711 *2 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-325)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-500)) (-5 *3 (-1100)) (-5 *1 (-1097)))))
+ (-12 (-5 *4 (-558)) (-4 *5 (-348)) (-5 *2 (-417 (-1159 (-1159 *5))))
+ (-5 *1 (-1198 *5)) (-5 *3 (-1159 (-1159 *5))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-853)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836))
- (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836))
- (-4 *3 (-1048 *5 *6 *7))
- (-5 *2 (-631 (-2 (|:| |val| (-112)) (|:| -2143 *4))))
- (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-311 *4)) (-4 *4 (-13 (-815) (-836) (-1034)))
- (-5 *2 (-1140)) (-5 *1 (-813 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-311 *5)) (-5 *4 (-112))
- (-4 *5 (-13 (-815) (-836) (-1034))) (-5 *2 (-1140))
- (-5 *1 (-813 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-809)) (-5 *4 (-311 *5))
- (-4 *5 (-13 (-815) (-836) (-1034))) (-5 *2 (-1246))
- (-5 *1 (-813 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-809)) (-5 *4 (-311 *6)) (-5 *5 (-112))
- (-4 *6 (-13 (-815) (-836) (-1034))) (-5 *2 (-1246))
- (-5 *1 (-813 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-815)) (-5 *2 (-1140))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-815)) (-5 *3 (-112)) (-5 *2 (-1140))))
- ((*1 *2 *3 *1) (-12 (-4 *1 (-815)) (-5 *3 (-809)) (-5 *2 (-1246))))
- ((*1 *2 *3 *1 *4)
- (-12 (-4 *1 (-815)) (-5 *3 (-809)) (-5 *4 (-112)) (-5 *2 (-1246)))))
-(((*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1241 *1)) (-4 *1 (-362 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-530)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1158)) (-5 *5 (-631 (-402 (-937 *6))))
- (-5 *3 (-402 (-937 *6)))
- (-4 *6 (-13 (-546) (-1023 (-554)) (-145)))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-631 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-560 *6)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1138 *4)) (-5 *3 (-554)) (-4 *4 (-1034))
- (-5 *1 (-1142 *4))))
- ((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-554)) (-5 *1 (-1233 *3 *4 *5)) (-4 *3 (-1034))
- (-14 *4 (-1158)) (-14 *5 *3))))
-(((*1 *2 *1 *1 *3)
- (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1082) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1122 *4 *5)) (-4 *4 (-13 (-1082) (-34))))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2))
- (-4 *4 (-368 *2)))))
+ (-12 (-5 *4 (-635 (-635 *8))) (-5 *3 (-635 *8))
+ (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-550)) (-4 *6 (-784))
+ (-4 *7 (-841)) (-5 *2 (-112)) (-5 *1 (-967 *5 *6 *7 *8)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221)))
- (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-66 FUNCT1))))
- (-5 *2 (-1020)) (-5 *1 (-740)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-808)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-221))
- (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1020))
- (-5 *1 (-733)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-906)) (-5 *4 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1242)))))
+ (|partial| -12 (-5 *4 (-1163)) (-4 *5 (-606 (-882 (-558))))
+ (-4 *5 (-876 (-558)))
+ (-4 *5 (-13 (-841) (-1028 (-558)) (-450) (-631 (-558))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-561 *5 *3)) (-4 *3 (-621))
+ (-4 *3 (-13 (-27) (-1185) (-429 *5))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163)))
+ (-14 *3 (-635 (-1163))) (-4 *4 (-386))))
+ ((*1 *1 *1) (-4 *1 (-491)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1148 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1149 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
+ (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-635 *4))
+ (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1159 *6)) (-5 *3 (-558)) (-4 *6 (-306)) (-4 *4 (-784))
+ (-4 *5 (-841)) (-5 *1 (-733 *4 *5 *6 *7)) (-4 *7 (-939 *6 *4 *5)))))
+(((*1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-367)) (-4 *2 (-1087)))))
+(((*1 *1)
+ (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-762))
+ (-4 *4 (-171)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1031 *4 *5)) (-4 *4 (-13 (-834) (-302) (-145) (-1007)))
- (-14 *5 (-631 (-1158)))
- (-5 *2
- (-631 (-2 (|:| -3900 (-1154 *4)) (|:| -3656 (-631 (-937 *4))))))
- (-5 *1 (-1267 *4 *5 *6)) (-14 *6 (-631 (-1158)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-834) (-302) (-145) (-1007)))
- (-5 *2
- (-631 (-2 (|:| -3900 (-1154 *5)) (|:| -3656 (-631 (-937 *5))))))
- (-5 *1 (-1267 *5 *6 *7)) (-5 *3 (-631 (-937 *5)))
- (-14 *6 (-631 (-1158))) (-14 *7 (-631 (-1158)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-834) (-302) (-145) (-1007)))
- (-5 *2
- (-631 (-2 (|:| -3900 (-1154 *5)) (|:| -3656 (-631 (-937 *5))))))
- (-5 *1 (-1267 *5 *6 *7)) (-5 *3 (-631 (-937 *5)))
- (-14 *6 (-631 (-1158))) (-14 *7 (-631 (-1158)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-834) (-302) (-145) (-1007)))
- (-5 *2
- (-631 (-2 (|:| -3900 (-1154 *5)) (|:| -3656 (-631 (-937 *5))))))
- (-5 *1 (-1267 *5 *6 *7)) (-5 *3 (-631 (-937 *5)))
- (-14 *6 (-631 (-1158))) (-14 *7 (-631 (-1158)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-834) (-302) (-145) (-1007)))
- (-5 *2
- (-631 (-2 (|:| -3900 (-1154 *4)) (|:| -3656 (-631 (-937 *4))))))
- (-5 *1 (-1267 *4 *5 *6)) (-5 *3 (-631 (-937 *4)))
- (-14 *5 (-631 (-1158))) (-14 *6 (-631 (-1158))))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-675 (-221))) (-5 *4 (-554)) (-5 *5 (-112))
- (-5 *2 (-1020)) (-5 *1 (-732)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-758)) (-4 *4 (-546)) (-5 *1 (-954 *4 *2))
- (-4 *2 (-1217 *4)))))
+ (-12 (-4 *4 (-348)) (-5 *2 (-417 (-1159 (-1159 *4))))
+ (-5 *1 (-1198 *4)) (-5 *3 (-1159 (-1159 *4))))))
+(((*1 *2 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-853)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-358)) (-5 *2 (-2 (|:| -2325 *3) (|:| -2423 *3)))
- (-5 *1 (-753 *3 *4)) (-4 *3 (-695 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-358)) (-4 *3 (-1034))
- (-5 *2 (-2 (|:| -2325 *1) (|:| -2423 *1))) (-4 *1 (-838 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-358)) (-4 *5 (-1034))
- (-5 *2 (-2 (|:| -2325 *3) (|:| -2423 *3))) (-5 *1 (-839 *5 *3))
- (-4 *3 (-838 *5)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-906)) (-5 *4 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1242)))))
+ (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-550))
+ (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112))
+ (-5 *1 (-967 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1163))
+ (-4 *5 (-13 (-841) (-1028 (-558)) (-450) (-631 (-558))))
+ (-5 *2 (-2 (|:| -2437 *3) (|:| |nconst| *3))) (-5 *1 (-561 *5 *3))
+ (-4 *3 (-13 (-27) (-1185) (-429 *5))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546))
- (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-962 *3 *4 *5 *6)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-758)) (-4 *4 (-344)) (-5 *1 (-212 *4 *2))
- (-4 *2 (-1217 *4))))
- ((*1 *2 *2 *3 *2 *3)
- (-12 (-5 *3 (-554)) (-5 *1 (-682 *2)) (-4 *2 (-1217 *3)))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-1154 (-937 *4))) (-5 *1 (-411 *3 *4))
- (-4 *3 (-412 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-4 *3 (-358))
- (-5 *2 (-1154 (-937 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1154 (-402 (-937 *3)))) (-5 *1 (-447 *3 *4 *5 *6))
- (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906))
- (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))))
-(((*1 *2 *1) (-12 (-4 *1 (-544 *2)) (-4 *2 (-13 (-399) (-1180)))))
- ((*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-848))))
- ((*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-848)))))
-(((*1 *1 *1 *1) (-5 *1 (-848))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-358)) (-5 *1 (-753 *2 *3)) (-4 *2 (-695 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-358)))))
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992))))))
+(((*1 *1 *1) (-4 *1 (-95)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1148 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1149 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 *6)) (-5 *4 (-1158)) (-4 *6 (-425 *5))
- (-4 *5 (-836)) (-5 *2 (-631 (-600 *6))) (-5 *1 (-563 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-358)) (-4 *4 (-546)) (-4 *5 (-1217 *4))
- (-5 *2 (-2 (|:| -2988 (-611 *4 *5)) (|:| -1836 (-402 *5))))
- (-5 *1 (-611 *4 *5)) (-5 *3 (-402 *5))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-631 (-1146 *3 *4))) (-5 *1 (-1146 *3 *4))
- (-14 *3 (-906)) (-4 *4 (-1034))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-446)) (-4 *3 (-1034))
- (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
- (-4 *1 (-1217 *3)))))
+ (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
+ (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
+ (-4 *3 (-1053 *5 *6 *7))
+ (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -2396 *4))))
+ (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-675 *6)) (-5 *5 (-1 (-413 (-1154 *6)) (-1154 *6)))
- (-4 *6 (-358))
- (-5 *2
- (-631
- (-2 (|:| |outval| *7) (|:| |outmult| (-554))
- (|:| |outvect| (-631 (-675 *7))))))
- (-5 *1 (-526 *6 *7 *4)) (-4 *7 (-358)) (-4 *4 (-13 (-358) (-834))))))
-(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-325))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-325)))))
-(((*1 *2)
- (-12 (-4 *3 (-546)) (-5 *2 (-631 (-675 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-412 *3)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1067)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-906)) (-5 *1 (-150 *3 *4 *5)) (-14 *3 *2)
- (-4 *4 (-358)) (-14 *5 (-978 *3 *4)))))
-(((*1 *2 *3 *3 *2 *4)
- (-12 (-5 *3 (-675 *2)) (-5 *4 (-554))
- (-4 *2 (-13 (-302) (-10 -8 (-15 -1565 ((-413 $) $)))))
- (-4 *5 (-1217 *2)) (-5 *1 (-493 *2 *5 *6)) (-4 *6 (-404 *2 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-368 *3)) (-4 *3 (-1195)) (-4 *3 (-836)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-368 *4)) (-4 *4 (-1195))
- (-5 *2 (-112)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *3 (-836))
- (-5 *2 (-2 (|:| -2325 *1) (|:| -2423 *1))) (-4 *1 (-934 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1034)) (-5 *2 (-2 (|:| -2325 *1) (|:| -2423 *1)))
- (-4 *1 (-1217 *3)))))
+ (-12 (-5 *3 (-1159 *9)) (-5 *4 (-635 *7)) (-4 *7 (-841))
+ (-4 *9 (-939 *8 *6 *7)) (-4 *6 (-784)) (-4 *8 (-306))
+ (-5 *2 (-635 (-762))) (-5 *1 (-733 *6 *7 *8 *9)) (-5 *5 (-762)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-758)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1034))))
- ((*1 *2)
- (-12 (-5 *2 (-758)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1034)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))))
-(((*1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-422 *3 *2)) (-4 *3 (-13 (-170) (-38 (-402 (-554)))))
- (-4 *2 (-13 (-836) (-21))))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1140)) (-5 *4 (-167 (-221))) (-5 *5 (-554))
- (-5 *2 (-1020)) (-5 *1 (-745)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-1140)) (-5 *5 (-675 (-221)))
- (-5 *2 (-1020)) (-5 *1 (-734)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-631 *4)) (-4 *4 (-1034)) (-5 *2 (-1241 *4))
- (-5 *1 (-1159 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-906)) (-5 *2 (-1241 *3)) (-5 *1 (-1159 *3))
- (-4 *3 (-1034)))))
-(((*1 *1) (-5 *1 (-155)))
- ((*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-23)))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374)))
- (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1157))))
- (-5 *1 (-1157)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780))
- (-4 *4 (-836)) (-4 *2 (-446)))))
-(((*1 *2 *2) (-12 (-5 *1 (-946 *2)) (-4 *2 (-539)))))
-(((*1 *1 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-21)) (-4 *2 (-1195)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-358)) (-4 *5 (-546))
- (-5 *2
- (-2 (|:| |minor| (-631 (-906))) (|:| -4329 *3)
- (|:| |minors| (-631 (-631 (-906)))) (|:| |ops| (-631 *3))))
- (-5 *1 (-90 *5 *3)) (-5 *4 (-906)) (-4 *3 (-642 *5)))))
-(((*1 *1 *1 *1) (-5 *1 (-848))))
+ (-12 (-4 *3 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *1 (-419 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1185) (-429 *3)))
+ (-14 *4 (-1163)) (-14 *5 *2)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
+ (-4 *2 (-13 (-27) (-1185) (-429 *3) (-10 -8 (-15 -3220 ($ *4)))))
+ (-4 *4 (-839))
+ (-4 *5
+ (-13 (-1224 *2 *4) (-362) (-1185)
+ (-10 -8 (-15 -2829 ($ $)) (-15 -2543 ($ $)))))
+ (-5 *1 (-421 *3 *2 *4 *5 *6 *7)) (-4 *6 (-973 *5)) (-14 *7 (-1163)))))
+(((*1 *1)
+ (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-762))
+ (-4 *4 (-171)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1158))
+ (-12 (-4 *4 (-348)) (-5 *2 (-417 (-1159 (-1159 *4))))
+ (-5 *1 (-1198 *4)) (-5 *3 (-1159 (-1159 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-853)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550))
+ (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-967 *3 *4 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-635 *3))
+ (-5 *1 (-967 *4 *5 *6 *3)) (-4 *3 (-1053 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-635 *3)) (-4 *3 (-1053 *4 *5 *6)) (-4 *4 (-550))
+ (-4 *5 (-784)) (-4 *6 (-841)) (-5 *1 (-967 *4 *5 *6 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550))
+ (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-967 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-635 *7) (-635 *7))) (-5 *2 (-635 *7))
+ (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-550)) (-4 *5 (-784))
+ (-4 *6 (-841)) (-5 *1 (-967 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *5 (-604 *4)) (-5 *6 (-1163))
+ (-4 *4 (-13 (-429 *7) (-27) (-1185)))
+ (-4 *7 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558))))
(-5 *2
- (-2 (|:| |zeros| (-1138 (-221))) (|:| |ones| (-1138 (-221)))
- (|:| |singularities| (-1138 (-221)))))
- (-5 *1 (-105)))))
-(((*1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-848)))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2660 (-635 *4))))
+ (-5 *1 (-560 *7 *4 *3)) (-4 *3 (-646 *4)) (-4 *3 (-1087)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-446)) (-4 *3 (-836)) (-4 *3 (-1023 (-554)))
- (-4 *3 (-546)) (-5 *1 (-41 *3 *2)) (-4 *2 (-425 *3))
- (-4 *2
- (-13 (-358) (-297)
- (-10 -8 (-15 -2810 ((-1107 *3 (-600 $)) $))
- (-15 -2822 ((-1107 *3 (-600 $)) $))
- (-15 -3075 ($ (-1107 *3 (-600 $))))))))))
-(((*1 *2) (-12 (-5 *2 (-1129 (-1140))) (-5 *1 (-386)))))
-(((*1 *1 *2 *2)
- (-12
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-112))
+ (-4 *6 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
+ (-4 *3 (-13 (-27) (-1185) (-429 *6) (-10 -8 (-15 -3220 ($ *7)))))
+ (-4 *7 (-839))
+ (-4 *8
+ (-13 (-1224 *3 *7) (-362) (-1185)
+ (-10 -8 (-15 -2829 ($ $)) (-15 -2543 ($ $)))))
(-5 *2
- (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374)))
- (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1157))))
- (-5 *1 (-1157)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020))
- (-5 *1 (-743)))))
-(((*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170))))
- ((*1 *1 *1 *1) (-4 *1 (-467)))
- ((*1 *1 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170))))
- ((*1 *2 *2) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-868))))
- ((*1 *1 *1) (-5 *1 (-956)))
- ((*1 *1 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-170)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-836)) (-4 *5 (-780))
- (-4 *6 (-546)) (-4 *7 (-934 *6 *5 *3))
- (-5 *1 (-456 *5 *3 *6 *7 *2))
- (-4 *2
- (-13 (-1023 (-402 (-554))) (-358)
- (-10 -8 (-15 -3075 ($ *7)) (-15 -2810 (*7 $))
- (-15 -2822 (*7 $))))))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-631 (-631 (-928 (-221))))) (-5 *4 (-859))
- (-5 *5 (-906)) (-5 *6 (-631 (-258))) (-5 *2 (-462)) (-5 *1 (-1245))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-631 (-631 (-928 (-221))))) (-5 *2 (-462))
- (-5 *1 (-1245))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-631 (-928 (-221))))) (-5 *4 (-631 (-258)))
- (-5 *2 (-462)) (-5 *1 (-1245)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-432)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-311 (-221))) (-5 *2 (-311 (-374))) (-5 *1 (-300)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1258 *2 *3)) (-4 *2 (-836)) (-4 *3 (-1034))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1264 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-832)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1146 *2 *3)) (-14 *2 (-906)) (-4 *3 (-1034)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-368 *3))
- (-4 *5 (-368 *3)) (-5 *2 (-554))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034))
- (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-554)))))
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1145)) (|:| |prob| (-1145))))))
+ (-5 *1 (-421 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1145)) (-4 *9 (-973 *8))
+ (-14 *10 (-1163)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-635 *5)) (-4 *5 (-171)) (-5 *1 (-135 *3 *4 *5))
+ (-14 *3 (-558)) (-14 *4 (-762)))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-635 (-635 (-224)))) (-5 *4 (-224))
+ (-5 *2 (-635 (-933 *4))) (-5 *1 (-1196)) (-5 *3 (-933 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-853)))))
(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-928 *3) (-928 *3))) (-5 *1 (-174 *3))
- (-4 *3 (-13 (-358) (-1180) (-987))))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-358)) (-5 *1 (-280 *3 *2)) (-4 *2 (-1232 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1140)) (-5 *3 (-631 (-258))) (-5 *1 (-256))))
- ((*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-258))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1242))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1243)))))
-(((*1 *1 *1) (-5 *1 (-1157)))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374)))
- (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1157))))
- (-5 *1 (-1157)))))
+ (-12 (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-635 *3))
+ (-5 *1 (-967 *4 *5 *6 *3)) (-4 *3 (-1053 *4 *5 *6)))))
+(((*1 *2 *2 *2 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-604 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1163)))
+ (-4 *2 (-13 (-429 *5) (-27) (-1185)))
+ (-4 *5 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558))))
+ (-5 *1 (-560 *5 *2 *6)) (-4 *6 (-1087)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992))))))
(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-406 (-942 *5))) (-5 *4 (-1163))
+ (-4 *5 (-13 (-306) (-841) (-146))) (-5 *2 (-635 (-315 *5)))
+ (-5 *1 (-1116 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-406 (-942 *5)))) (-5 *4 (-635 (-1163)))
+ (-4 *5 (-13 (-306) (-841) (-146))) (-5 *2 (-635 (-635 (-315 *5))))
+ (-5 *1 (-1116 *5)))))
+(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
+ (-12 (-5 *4 (-679 (-224))) (-5 *5 (-679 (-558))) (-5 *3 (-558))
+ (-5 *2 (-1025)) (-5 *1 (-747)))))
+(((*1 *1 *2) (-12 (-5 *1 (-1186 *2)) (-4 *2 (-1087))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-5 *1 (-1186 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-635 (-1186 *2))) (-5 *1 (-1186 *2)) (-4 *2 (-1087)))))
+(((*1 *2 *3 *4 *5)
(-12 (-5 *4 (-112))
- (-4 *5 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))))
+ (-4 *6 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
+ (-4 *3 (-13 (-27) (-1185) (-429 *6) (-10 -8 (-15 -3220 ($ *7)))))
+ (-4 *7 (-839))
+ (-4 *8
+ (-13 (-1224 *3 *7) (-362) (-1185)
+ (-10 -8 (-15 -2829 ($ $)) (-15 -2543 ($ $)))))
(-5 *2
- (-3 (|:| |%expansion| (-308 *5 *3 *6 *7))
- (|:| |%problem| (-2 (|:| |func| (-1140)) (|:| |prob| (-1140))))))
- (-5 *1 (-415 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1180) (-425 *5)))
- (-14 *6 (-1158)) (-14 *7 *3))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1196 *2))
- (-4 *2 (-1082))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-631 *2)) (-4 *2 (-1082)) (-4 *2 (-836))
- (-5 *1 (-1196 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1034)) (-4 *7 (-1034))
- (-4 *6 (-1217 *5)) (-5 *2 (-1154 (-1154 *7)))
- (-5 *1 (-495 *5 *6 *4 *7)) (-4 *4 (-1217 *6)))))
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1145)) (|:| |prob| (-1145))))))
+ (-5 *1 (-421 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1145)) (-4 *9 (-973 *8))
+ (-14 *10 (-1163)))))
+(((*1 *2 *1) (-12 (-4 *1 (-548 *2)) (-4 *2 (-13 (-403) (-1185)))))
+ ((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-853))))
+ ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-853)))))
+(((*1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-133)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-558)) (-5 *2 (-635 (-635 (-224)))) (-5 *1 (-1196)))))
+(((*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-853)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550))
+ (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-967 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *4 *5)
+ (|partial| -12 (-5 *4 (-604 *3)) (-5 *5 (-635 *3))
+ (-4 *3 (-13 (-429 *6) (-27) (-1185)))
+ (-4 *6 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1087)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992))))))
(((*1 *1 *2)
- (-12 (-5 *2 (-631 (-498 *3 *4 *5 *6))) (-4 *3 (-358)) (-4 *4 (-780))
- (-4 *5 (-836)) (-5 *1 (-498 *3 *4 *5 *6)) (-4 *6 (-934 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-358)) (-4 *3 (-780)) (-4 *4 (-836))
- (-5 *1 (-498 *2 *3 *4 *5)) (-4 *5 (-934 *2 *3 *4))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-631 *1)) (-4 *1 (-1054 *4 *5 *6 *3)) (-4 *4 (-446))
- (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-631 *1)) (-5 *3 (-631 *7)) (-4 *1 (-1054 *4 *5 *6 *7))
- (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836))
- (-4 *7 (-1048 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446))
- (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-631 *1))
- (-4 *1 (-1054 *4 *5 *6 *7))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836))
- (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-631 *1))
- (-4 *1 (-1054 *4 *5 *6 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1082)))))
-(((*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836))
- (-4 *8 (-1048 *5 *6 *7))
- (-5 *2
- (-2 (|:| |val| (-631 *8))
- (|:| |towers| (-631 (-1012 *5 *6 *7 *8)))))
- (-5 *1 (-1012 *5 *6 *7 *8)) (-5 *3 (-631 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836))
- (-4 *8 (-1048 *5 *6 *7))
- (-5 *2
- (-2 (|:| |val| (-631 *8))
- (|:| |towers| (-631 (-1128 *5 *6 *7 *8)))))
- (-5 *1 (-1128 *5 *6 *7 *8)) (-5 *3 (-631 *8)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))))
- (-5 *2 (-631 (-402 (-554)))) (-5 *1 (-1005 *4))
- (-4 *4 (-1217 (-554))))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-888 *3)) (-4 *3 (-1082)) (-5 *2 (-1084 *3))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1082)) (-5 *2 (-1084 (-631 *4))) (-5 *1 (-889 *4))
- (-5 *3 (-631 *4))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1082)) (-5 *2 (-1084 (-1084 *4))) (-5 *1 (-889 *4))
- (-5 *3 (-1084 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *2 (-1084 *3)) (-5 *1 (-889 *3)) (-4 *3 (-1082)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *2 (-1082)) (-5 *1 (-1172 *3 *2)) (-4 *3 (-1082)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -3037 (-374)) (|:| -4309 (-1140))
- (|:| |explanations| (-631 (-1140)))))
- (-5 *2 (-1020)) (-5 *1 (-300))))
- ((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -3037 (-374)) (|:| -4309 (-1140))
- (|:| |explanations| (-631 (-1140))) (|:| |extra| (-1020))))
- (-5 *2 (-1020)) (-5 *1 (-300)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1241 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170))
- (-5 *2 (-675 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-675 *3)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-155)) (-5 *2 (-1246)) (-5 *1 (-1243)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-928 *4)) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906))
- (-4 *4 (-1034)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082))
- (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-911)) (-5 *1 (-151 *3 *4 *5)) (-14 *3 *2)
+ (-4 *4 (-362)) (-14 *5 (-983 *3 *4)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1082)) (-4 *6 (-871 *5)) (-5 *2 (-870 *5 *6 (-631 *6)))
- (-5 *1 (-872 *5 *6 *4)) (-5 *3 (-631 *6)) (-4 *4 (-602 (-877 *5)))))
+ (-12 (-5 *3 (-406 (-942 *5))) (-5 *4 (-1163))
+ (-4 *5 (-13 (-306) (-841) (-146))) (-5 *2 (-635 (-293 (-315 *5))))
+ (-5 *1 (-1116 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-406 (-942 *4))) (-4 *4 (-13 (-306) (-841) (-146)))
+ (-5 *2 (-635 (-293 (-315 *4)))) (-5 *1 (-1116 *4))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1082)) (-5 *2 (-631 (-289 *3))) (-5 *1 (-872 *5 *3 *4))
- (-4 *3 (-1023 (-1158))) (-4 *3 (-871 *5)) (-4 *4 (-602 (-877 *5)))))
+ (-12 (-5 *3 (-293 (-406 (-942 *5)))) (-5 *4 (-1163))
+ (-4 *5 (-13 (-306) (-841) (-146))) (-5 *2 (-635 (-293 (-315 *5))))
+ (-5 *1 (-1116 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-293 (-406 (-942 *4))))
+ (-4 *4 (-13 (-306) (-841) (-146))) (-5 *2 (-635 (-293 (-315 *4))))
+ (-5 *1 (-1116 *4))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1082)) (-5 *2 (-631 (-289 (-937 *3))))
- (-5 *1 (-872 *5 *3 *4)) (-4 *3 (-1034))
- (-4081 (-4 *3 (-1023 (-1158)))) (-4 *3 (-871 *5))
- (-4 *4 (-602 (-877 *5)))))
+ (-12 (-5 *3 (-635 (-406 (-942 *5)))) (-5 *4 (-635 (-1163)))
+ (-4 *5 (-13 (-306) (-841) (-146)))
+ (-5 *2 (-635 (-635 (-293 (-315 *5))))) (-5 *1 (-1116 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-406 (-942 *4))))
+ (-4 *4 (-13 (-306) (-841) (-146)))
+ (-5 *2 (-635 (-635 (-293 (-315 *4))))) (-5 *1 (-1116 *4))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1082)) (-5 *2 (-874 *5 *3)) (-5 *1 (-872 *5 *3 *4))
- (-4081 (-4 *3 (-1023 (-1158)))) (-4081 (-4 *3 (-1034)))
- (-4 *3 (-871 *5)) (-4 *4 (-602 (-877 *5))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1082)) (-4 *6 (-1082))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-670 *4 *5 *6)) (-4 *4 (-1082)))))
-(((*1 *1 *1 *1) (-4 *1 (-302))) ((*1 *1 *1 *1) (-5 *1 (-758)))
- ((*1 *1 *1 *1) (-5 *1 (-848))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-894)) (-4 *5 (-780)) (-4 *6 (-836))
- (-4 *7 (-934 *4 *5 *6)) (-5 *2 (-413 (-1154 *7)))
- (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-1154 *7))))
+ (-12 (-5 *3 (-635 (-293 (-406 (-942 *5))))) (-5 *4 (-635 (-1163)))
+ (-4 *5 (-13 (-306) (-841) (-146)))
+ (-5 *2 (-635 (-635 (-293 (-315 *5))))) (-5 *1 (-1116 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-894)) (-4 *5 (-1217 *4)) (-5 *2 (-413 (-1154 *5)))
- (-5 *1 (-892 *4 *5)) (-5 *3 (-1154 *5)))))
-(((*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-302)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-758)) (-5 *2 (-1 (-1138 (-937 *4)) (-1138 (-937 *4))))
- (-5 *1 (-1249 *4)) (-4 *4 (-358)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836))
- (-4 *7 (-1048 *4 *5 *6))
- (-5 *2 (-631 (-2 (|:| -2498 *1) (|:| -1303 (-631 *7)))))
- (-5 *3 (-631 *7)) (-4 *1 (-1188 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1140)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836))
- (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-1246))
- (-5 *1 (-1055 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1140)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836))
- (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-1246))
- (-5 *1 (-1090 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
- (|partial| -12 (-5 *5 (-1158))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-631 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-631 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -1709 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1180) (-27) (-425 *8)))
- (-4 *8 (-13 (-446) (-836) (-145) (-1023 *3) (-627 *3)))
- (-5 *3 (-554)) (-5 *2 (-631 *4)) (-5 *1 (-999 *8 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1082)) (-4 *5 (-1082))
- (-5 *2 (-1 *5 *4)) (-5 *1 (-669 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1103 *2)) (-4 *2 (-1195)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-675 (-402 (-937 *4)))) (-4 *4 (-446))
- (-5 *2 (-631 (-3 (-402 (-937 *4)) (-1147 (-1158) (-937 *4)))))
- (-5 *1 (-287 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-961 *3 *4 *2 *5)) (-4 *3 (-1034)) (-4 *4 (-780))
- (-4 *5 (-1048 *3 *4 *2)) (-4 *2 (-836))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1048 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780))
- (-4 *2 (-836)))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4))
- (-4 *3 (-362 *4))))
- ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-631 (-109))) (-5 *1 (-173)))))
+ (-12 (-5 *3 (-635 (-293 (-406 (-942 *4)))))
+ (-4 *4 (-13 (-306) (-841) (-146)))
+ (-5 *2 (-635 (-635 (-293 (-315 *4))))) (-5 *1 (-1116 *4)))))
+(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224))) (-5 *4 (-224))
+ (-5 *2 (-1025)) (-5 *1 (-747)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-546))
- (-4 *7 (-934 *3 *5 *6))
- (-5 *2 (-2 (|:| -1407 (-758)) (|:| -1490 *8) (|:| |radicand| *8)))
- (-5 *1 (-938 *5 *6 *3 *7 *8)) (-5 *4 (-758))
- (-4 *8
- (-13 (-358)
- (-10 -8 (-15 -3075 ($ *7)) (-15 -2810 (*7 $)) (-15 -2822 (*7 $))))))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-758)) (-4 *5 (-344)) (-4 *6 (-1217 *5))
+ (-12 (-5 *4 (-112))
+ (-4 *5 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
(-5 *2
- (-631
- (-2 (|:| -3782 (-675 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-675 *6)))))
- (-5 *1 (-492 *5 *6 *7))
- (-5 *3
- (-2 (|:| -3782 (-675 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-675 *6))))
- (-4 *7 (-1217 *6)))))
+ (-3 (|:| |%expansion| (-312 *5 *3 *6 *7))
+ (|:| |%problem| (-2 (|:| |func| (-1145)) (|:| |prob| (-1145))))))
+ (-5 *1 (-419 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1185) (-429 *5)))
+ (-14 *6 (-1163)) (-14 *7 *3))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 (-554))) (-4 *3 (-1034)) (-5 *1 (-99 *3))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1034)) (-5 *1 (-99 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1034)) (-5 *1 (-99 *3)))))
+ (-12 (-5 *2 (-911)) (-4 *1 (-237 *3 *4)) (-4 *4 (-1039))
+ (-4 *4 (-1200))))
+ ((*1 *1 *2)
+ (-12 (-14 *3 (-635 (-1163))) (-4 *4 (-171))
+ (-4 *5 (-237 (-2755 *3) (-762)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2851 *2) (|:| -1951 *5))
+ (-2 (|:| -2851 *2) (|:| -1951 *5))))
+ (-5 *1 (-459 *3 *4 *2 *5 *6 *7)) (-4 *2 (-841))
+ (-4 *7 (-939 *4 *5 (-855 *3)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-933 (-224))) (-5 *1 (-1196)))))
+(((*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-853)))))
+(((*1 *1 *1 *1) (-4 *1 (-306))) ((*1 *1 *1 *1) (-5 *1 (-762)))
+ ((*1 *1 *1 *1) (-5 *1 (-853))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-966 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-784))
+ (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-635 *5)))))
(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1188 *3 *4 *5 *2)) (-4 *3 (-546))
- (-4 *4 (-780)) (-4 *5 (-836)) (-4 *2 (-1048 *3 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))))
+ (-12 (-5 *2 (-1213 (-558))) (-4 *1 (-641 *3)) (-4 *3 (-1200))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-641 *3)) (-4 *3 (-1200)))))
+(((*1 *2 *3 *4 *4 *3)
+ (|partial| -12 (-5 *4 (-604 *3))
+ (-4 *3 (-13 (-429 *5) (-27) (-1185)))
+ (-4 *5 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558))))
+ (-5 *2 (-2 (|:| -1440 *3) (|:| |coeff| *3)))
+ (-5 *1 (-560 *5 *3 *6)) (-4 *6 (-1087)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992))))))
+(((*1 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558)))))))
+ (-5 *1 (-1115 *3 *2)) (-4 *3 (-1222 *2)))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
+ (-5 *1 (-747)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1084 (-1084 *3))) (-5 *1 (-889 *3)) (-4 *3 (-1082)))))
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-841))
+ (-5 *2 (-2 (|:| -2023 (-558)) (|:| |var| (-604 *1))))
+ (-4 *1 (-429 *3)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-224)) (-5 *5 (-558)) (-5 *2 (-1195 *3))
+ (-5 *1 (-781 *3)) (-4 *3 (-964))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-635 (-933 (-224))))) (-5 *4 (-112))
+ (-5 *1 (-1195 *2)) (-4 *2 (-964)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-853)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))))
-(((*1 *1) (-4 *1 (-344))))
-(((*1 *1 *1 *1) (-4 *1 (-302))) ((*1 *1 *1 *1) (-5 *1 (-758)))
- ((*1 *1 *1 *1) (-5 *1 (-848))))
-(((*1 *1 *1) (-5 *1 (-848)))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1085 *2 *3 *4 *5 *6)) (-4 *3 (-1082)) (-4 *4 (-1082))
- (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *2 (-1082))))
- ((*1 *1 *2) (-12 (-5 *2 (-554)) (-4 *1 (-1139))))
- ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1158)))))
-(((*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-539))))
- ((*1 *1 *2) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-956)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-546))
- (-4 *3 (-934 *7 *5 *6))
- (-5 *2
- (-2 (|:| -1407 (-758)) (|:| -1490 *3) (|:| |radicand| (-631 *3))))
- (-5 *1 (-938 *5 *6 *7 *3 *8)) (-5 *4 (-758))
- (-4 *8
- (-13 (-358)
- (-10 -8 (-15 -3075 ($ *3)) (-15 -2810 (*3 $)) (-15 -2822 (*3 $))))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1123 *2 *3)) (-4 *2 (-13 (-1082) (-34)))
- (-4 *3 (-13 (-1082) (-34))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112))
- (-5 *2
- (-2 (|:| |contp| (-554))
- (|:| -2316 (-631 (-2 (|:| |irr| *3) (|:| -4218 (-554)))))))
- (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112))
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992))))))
+(((*1 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558)))))))
+ (-5 *1 (-1115 *3 *2)) (-4 *3 (-1222 *2)))))
+(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
+ (-12 (-5 *4 (-679 (-224))) (-5 *5 (-679 (-558))) (-5 *3 (-558))
+ (-5 *2 (-1025)) (-5 *1 (-747)))))
+(((*1 *1 *2 *2)
+ (-12
(-5 *2
- (-2 (|:| |contp| (-554))
- (|:| -2316 (-631 (-2 (|:| |irr| *3) (|:| -4218 (-554)))))))
- (-5 *1 (-1206 *3)) (-4 *3 (-1217 (-554))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-639 (-402 *2))) (-4 *2 (-1217 *4)) (-5 *1 (-797 *4 *2))
- (-4 *4 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-640 *2 (-402 *2))) (-4 *2 (-1217 *4))
- (-5 *1 (-797 *4 *2))
- (-4 *4 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1154 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1138 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363))
- (-5 *2 (-1154 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1082))
- (-4 *4 (-13 (-1034) (-871 *3) (-836) (-602 (-877 *3))))
- (-5 *2 (-631 (-1158))) (-5 *1 (-1058 *3 *4 *5))
- (-4 *5 (-13 (-425 *4) (-871 *3) (-602 (-877 *3)))))))
+ (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378)))
+ (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1162))))
+ (-5 *1 (-1162)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-417 *3)) (-4 *3 (-550)) (-5 *1 (-418 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3)) (-4 *3 (-964)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853))))
+ ((*1 *1 *1 *1) (-5 *1 (-853))))
(((*1 *2 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |lm| (-806 *3)) (|:| |rm| (-806 *3))))
- (-5 *1 (-806 *3)) (-4 *3 (-836))))
- ((*1 *1 *1 *1) (-5 *1 (-848))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-877 *3)) (-4 *3 (-1082)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-1034)) (-4 *2 (-358))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-358)) (-5 *1 (-645 *4 *2))
- (-4 *2 (-642 *4)))))
+ (-12 (-4 *1 (-1000 *3)) (-4 *3 (-1200)) (-4 *3 (-1087))
+ (-5 *2 (-112)))))
+(((*1 *1 *1 *1) (-4 *1 (-306))) ((*1 *1 *1 *1) (-5 *1 (-762)))
+ ((*1 *1 *1 *1) (-5 *1 (-853))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12
+ (-4 *4 (-13 (-146) (-27) (-1028 (-558)) (-1028 (-406 (-558)))))
+ (-4 *5 (-1222 *4)) (-5 *2 (-1159 (-406 *5))) (-5 *1 (-607 *4 *5))
+ (-5 *3 (-406 *5))))
+ ((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1222 *5))
+ (-4 *5 (-13 (-146) (-27) (-1028 (-558)) (-1028 (-406 (-558)))))
+ (-5 *2 (-1159 (-406 *6))) (-5 *1 (-607 *5 *6)) (-5 *3 (-406 *6)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546))
- (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-962 *3 *4 *5 *6)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-356 (-114))) (-4 *2 (-1034)) (-5 *1 (-701 *2 *4))
- (-4 *4 (-634 *2))))
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1145)) (-5 *3 (-635 (-262))) (-5 *1 (-260))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-262))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1247))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1248)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558)))))))
+ (-5 *1 (-1115 *3 *2)) (-4 *3 (-1222 *2)))))
+(((*1 *2 *3 *4 *3 *4 *4 *4)
+ (-12 (-5 *3 (-679 (-224))) (-5 *4 (-558)) (-5 *2 (-1025))
+ (-5 *1 (-747)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378)))
+ (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1162))))
+ (-5 *1 (-1162)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1246 *3)) (-4 *3 (-362)) (-4 *1 (-328 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-356 (-114))) (-5 *1 (-823 *2)) (-4 *2 (-1034)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-631 (-2 (|:| -2270 (-1154 *6)) (|:| -1407 (-554)))))
- (-4 *6 (-302)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-554))
- (-5 *1 (-729 *4 *5 *6 *7)) (-4 *7 (-934 *6 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-52)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *2 (-631 (-1158))) (-5 *1 (-1161)) (-5 *3 (-1158)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1154 (-554))) (-5 *1 (-927)) (-5 *3 (-554)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-836))
- (-4 *5 (-261 *4)) (-4 *6 (-780)) (-5 *2 (-631 *4)))))
+ (-12 (-5 *2 (-1246 *3)) (-4 *3 (-1222 *4)) (-4 *4 (-1204))
+ (-4 *1 (-341 *4 *3 *5)) (-4 *5 (-1222 (-406 *3)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1246 *4)) (-5 *3 (-1246 *1)) (-4 *4 (-171))
+ (-4 *1 (-366 *4))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1246 *4)) (-5 *3 (-1246 *1)) (-4 *4 (-171))
+ (-4 *1 (-369 *4 *5)) (-4 *5 (-1222 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1246 *3)) (-4 *3 (-171)) (-4 *1 (-408 *3 *4))
+ (-4 *4 (-1222 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1246 *3)) (-4 *3 (-171)) (-4 *1 (-416 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3)) (-4 *3 (-964)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853))))
+ ((*1 *1 *1 *1) (-5 *1 (-853))))
+(((*1 *1 *1) (-5 *1 (-853)))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1090 *2 *3 *4 *5 *6)) (-4 *3 (-1087)) (-4 *4 (-1087))
+ (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *2 (-1087))))
+ ((*1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-1144))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-1163)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1000 *3)) (-4 *3 (-1200)) (-4 *3 (-1087))
+ (-5 *2 (-112)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-810 *3)) (|:| |rm| (-810 *3))))
+ (-5 *1 (-810 *3)) (-4 *3 (-841))))
+ ((*1 *1 *1 *1) (-5 *1 (-853))))
(((*1 *2 *3)
- (-12 (-5 *3 (-912))
- (-5 *2
- (-2 (|:| |brans| (-631 (-631 (-928 (-221)))))
- (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))))
- (-5 *1 (-151))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-912)) (-5 *4 (-402 (-554)))
+ (|partial| -12 (-5 *3 (-604 *4)) (-4 *4 (-841)) (-4 *2 (-841))
+ (-5 *1 (-603 *2 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992))))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558)))))))
+ (-5 *1 (-1115 *3 *2)) (-4 *3 (-1222 *2)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
+ (-5 *1 (-747)))))
+(((*1 *1 *1) (-5 *1 (-1162)))
+ ((*1 *1 *2)
+ (-12
(-5 *2
- (-2 (|:| |brans| (-631 (-631 (-928 (-221)))))
- (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))))
- (-5 *1 (-151)))))
-(((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1195))))
- ((*1 *1 *1)
- (-12 (|has| *1 (-6 -4374)) (-4 *1 (-368 *2)) (-4 *2 (-1195))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-635 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23))
- (-14 *4 *3))))
+ (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378)))
+ (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1162))))
+ (-5 *1 (-1162)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-136))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1199)) (-5 *1 (-155))))
+ ((*1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1200))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-476))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-585))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-618))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1087))
+ (-4 *2 (-13 (-429 *4) (-876 *3) (-606 (-882 *3))))
+ (-5 *1 (-1063 *3 *4 *2))
+ (-4 *4 (-13 (-1039) (-876 *3) (-841) (-606 (-882 *3))))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1087)) (-5 *1 (-1152 *3 *2)) (-4 *3 (-1087)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1246 *1)) (-4 *1 (-366 *2)) (-4 *2 (-171))))
+ ((*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-415 *3 *2)) (-4 *3 (-416 *2))))
+ ((*1 *2) (-12 (-4 *1 (-416 *2)) (-4 *2 (-171)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-170))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3)) (-4 *3 (-964)))))
(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-546))))
+ (|partial| -12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-550))))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-321 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-779))
- (-4 *2 (-546))))
- ((*1 *1 *1 *1) (|partial| -4 *1 (-546)))
+ (|partial| -12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-783))
+ (-4 *2 (-550))))
+ ((*1 *1 *1 *1) (|partial| -4 *1 (-550)))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034))
- (-4 *3 (-368 *2)) (-4 *4 (-368 *2)) (-4 *2 (-546))))
- ((*1 *1 *1 *1) (|partial| -5 *1 (-758)))
+ (|partial| -12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039))
+ (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (-4 *2 (-550))))
+ ((*1 *1 *1 *1) (|partial| -5 *1 (-762)))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-546))))
- ((*1 *1 *1 *1) (-5 *1 (-848)))
+ (|partial| -12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-550))))
+ ((*1 *1 *1 *1) (-5 *1 (-853)))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1241 *4)) (-4 *4 (-1217 *3)) (-4 *3 (-546))
- (-5 *1 (-954 *3 *4))))
+ (-12 (-5 *2 (-1246 *4)) (-4 *4 (-1222 *3)) (-4 *3 (-550))
+ (-5 *1 (-959 *3 *4))))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1037 *3 *4 *2 *5 *6)) (-4 *2 (-1034))
- (-4 *5 (-234 *4 *2)) (-4 *6 (-234 *3 *2)) (-4 *2 (-546))))
+ (|partial| -12 (-4 *1 (-1042 *3 *4 *2 *5 *6)) (-4 *2 (-1039))
+ (-4 *5 (-237 *4 *2)) (-4 *6 (-237 *3 *2)) (-4 *2 (-550))))
((*1 *2 *2 *2)
- (|partial| -12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1158)) (-5 *4 (-937 (-554))) (-5 *2 (-325))
- (-5 *1 (-327))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1158)) (-5 *4 (-1074 (-937 (-554)))) (-5 *2 (-325))
- (-5 *1 (-327))))
- ((*1 *1 *2 *2 *2)
- (-12 (-5 *2 (-758)) (-5 *1 (-661 *3)) (-4 *3 (-1034))
- (-4 *3 (-1082)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-389))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-1175)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1217 *6))
- (-4 *6 (-13 (-358) (-145) (-1023 *4))) (-5 *4 (-554))
- (-5 *2
- (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112))))
- (|:| -4329
- (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
- (|:| |beta| *3)))))
- (-5 *1 (-1000 *6 *3)))))
+ (|partial| -12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-446)) (-4 *4 (-836))
- (-4 *5 (-780)) (-5 *1 (-972 *3 *4 *5 *6)) (-4 *6 (-934 *3 *5 *4)))))
-(((*1 *2)
- (-12 (-5 *2 (-758)) (-5 *1 (-120 *3)) (-4 *3 (-1217 (-554)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-758)) (-5 *1 (-120 *3)) (-4 *3 (-1217 (-554))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-808)))))
-(((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1034)) (-4 *4 (-1082)) (-5 *2 (-631 *1))
- (-4 *1 (-377 *3 *4))))
+ (-12 (-5 *2 (-635 *1)) (|has| *1 (-6 -4383)) (-4 *1 (-1000 *3))
+ (-4 *3 (-1200)))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-853)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-604 *4)) (-5 *1 (-603 *3 *4)) (-4 *3 (-841))
+ (-4 *4 (-841)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558)))))))
+ (-5 *2 (-635 *4)) (-5 *1 (-1115 *3 *4)) (-4 *3 (-1222 *4))))
+ ((*1 *2 *3 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558)))))))
+ (-5 *2 (-635 *3)) (-5 *1 (-1115 *4 *3)) (-4 *4 (-1222 *3)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
+ (-5 *1 (-747)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-136))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-155))))
+ ((*1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1200))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-476))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-585))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-618))))
((*1 *2 *1)
- (-12 (-5 *2 (-631 (-722 *3 *4))) (-5 *1 (-722 *3 *4)) (-4 *3 (-1034))
- (-4 *4 (-713))))
+ (-12 (-4 *3 (-1087))
+ (-4 *2 (-13 (-429 *4) (-876 *3) (-606 (-882 *3))))
+ (-5 *1 (-1063 *3 *4 *2))
+ (-4 *4 (-13 (-1039) (-876 *3) (-841) (-606 (-882 *3))))))
((*1 *2 *1)
- (-12 (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-631 *1))
- (-4 *1 (-934 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-937 (-221))) (-5 *2 (-311 (-374))) (-5 *1 (-300)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836))
- (-4 *3 (-1048 *5 *6 *7))
- (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *4))))
- (-5 *1 (-1055 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-631 (-475 *4 *5))) (-14 *4 (-631 (-1158)))
- (-4 *5 (-446)) (-5 *2 (-631 (-243 *4 *5))) (-5 *1 (-619 *4 *5)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-631 (-258))) (-5 *1 (-1242))))
- ((*1 *2 *1) (-12 (-5 *2 (-631 (-258))) (-5 *1 (-1242))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-631 (-258))) (-5 *1 (-1243))))
- ((*1 *2 *1) (-12 (-5 *2 (-631 (-258))) (-5 *1 (-1243)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-5 *1 (-862 *2)) (-4 *2 (-1195))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-5 *1 (-864 *2)) (-4 *2 (-1195))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-5 *1 (-867 *2)) (-4 *2 (-1195)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1246)) (-5 *1 (-1161))))
- ((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-1162)))))
-(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-859)))))
-(((*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-461))))
- ((*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-461))))
- ((*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-912)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-631 (-850 *5))) (-14 *5 (-631 (-1158))) (-4 *6 (-446))
- (-5 *2 (-631 (-631 (-243 *5 *6)))) (-5 *1 (-465 *5 *6 *7))
- (-5 *3 (-631 (-243 *5 *6))) (-4 *7 (-446)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-402 (-937 (-167 (-554))))) (-5 *2 (-631 (-167 *4)))
- (-5 *1 (-373 *4)) (-4 *4 (-13 (-358) (-834)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-631 (-402 (-937 (-167 (-554))))))
- (-5 *4 (-631 (-1158))) (-5 *2 (-631 (-631 (-167 *5))))
- (-5 *1 (-373 *5)) (-4 *5 (-13 (-358) (-834))))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-546)) (-4 *2 (-170)))))
-(((*1 *1 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-836)) (-4 *3 (-170))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-615 *2 *3 *4)) (-4 *2 (-836))
- (-4 *3 (-13 (-170) (-704 (-402 (-554))))) (-14 *4 (-906))))
- ((*1 *1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-836))))
- ((*1 *1 *1) (-12 (-5 *1 (-806 *2)) (-4 *2 (-836))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1258 *2 *3)) (-4 *2 (-836)) (-4 *3 (-1034)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-221)) (-5 *4 (-554))
- (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085))))
- (-5 *2 (-1020)) (-5 *1 (-735)))))
+ (-12 (-4 *2 (-1087)) (-5 *1 (-1152 *2 *3)) (-4 *3 (-1087)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034))
- (-5 *2 (-631 (-631 (-928 *3))))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-631 (-631 (-928 *4)))) (-5 *3 (-112)) (-4 *4 (-1034))
- (-4 *1 (-1116 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-631 (-631 (-928 *3)))) (-4 *3 (-1034))
- (-4 *1 (-1116 *3))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-631 (-631 (-631 *4)))) (-5 *3 (-112))
- (-4 *1 (-1116 *4)) (-4 *4 (-1034))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-631 (-631 (-928 *4)))) (-5 *3 (-112))
- (-4 *1 (-1116 *4)) (-4 *4 (-1034))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-631 (-631 (-631 *5)))) (-5 *3 (-631 (-169)))
- (-5 *4 (-169)) (-4 *1 (-1116 *5)) (-4 *5 (-1034))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-631 (-631 (-928 *5)))) (-5 *3 (-631 (-169)))
- (-5 *4 (-169)) (-4 *1 (-1116 *5)) (-4 *5 (-1034)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1176)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-631 (-275))) (-5 *1 (-275))))
- ((*1 *2 *1) (-12 (-5 *2 (-631 (-1163))) (-5 *1 (-1163)))))
-(((*1 *2 *1) (-12 (-4 *1 (-321 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-779))))
- ((*1 *2 *1) (-12 (-4 *1 (-695 *3)) (-4 *3 (-1034)) (-5 *2 (-758))))
- ((*1 *2 *1) (-12 (-4 *1 (-838 *3)) (-4 *3 (-1034)) (-5 *2 (-758))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-631 *6)) (-4 *1 (-934 *4 *5 *6)) (-4 *4 (-1034))
- (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-631 (-758)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-934 *4 *5 *3)) (-4 *4 (-1034)) (-4 *5 (-780))
- (-4 *3 (-836)) (-5 *2 (-758)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))))
-(((*1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-302)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1158)) (-5 *2 (-1 (-1154 (-937 *4)) (-937 *4)))
- (-5 *1 (-1249 *4)) (-4 *4 (-358)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1217 *4)) (-4 *4 (-1199))
- (-4 *6 (-1217 (-402 *5)))
- (-5 *2
- (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
- (|:| |gd| *5)))
- (-4 *1 (-337 *4 *5 *6)))))
-(((*1 *2)
- (-12 (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836))
- (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-1246))
- (-5 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *7 (-1054 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836))
- (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-1246))
- (-5 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *7 (-1054 *3 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836))
- (-4 *7 (-1048 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-631 *7)) (|:| |badPols| (-631 *7))))
- (-5 *1 (-962 *4 *5 *6 *7)) (-5 *3 (-631 *7)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-546))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2999 *4)))
- (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-214))))
- ((*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-1097))))
+ (-12 (-5 *2 (-635 (-635 (-933 (-224))))) (-5 *1 (-1195 *3))
+ (-4 *3 (-964)))))
+(((*1 *1 *1 *1) (-5 *1 (-853))))
+(((*1 *2 *1) (-12 (-5 *2 (-1105)) (-5 *1 (-217))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1105)) (-5 *1 (-829))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1105)) (-5 *1 (-1102))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-631 (-1163))) (-5 *3 (-1163)) (-5 *1 (-1100)))))
+ (-12 (-5 *2 (-635 (-1168))) (-5 *3 (-1168)) (-5 *1 (-1105)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4383)) (-4 *1 (-1000 *2)) (-4 *2 (-1200)))))
+(((*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-1185))))
+ ((*1 *2 *1) (-12 (-5 *1 (-330 *2)) (-4 *2 (-841))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-604 *3)) (-4 *3 (-841)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-475 *4 *5)) (-14 *4 (-631 (-1158))) (-4 *5 (-1034))
- (-5 *2 (-243 *4 *5)) (-5 *1 (-929 *4 *5)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-554)) (-5 *2 (-1246)) (-5 *1 (-889 *4))
- (-4 *4 (-1082))))
- ((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-889 *3)) (-4 *3 (-1082)))))
-(((*1 *1 *1) (-4 *1 (-539))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-221))
- (-5 *2 (-1020)) (-5 *1 (-739)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-631 (-2 (|:| -2270 *4) (|:| -3308 (-554)))))
- (-4 *4 (-1217 (-554))) (-5 *2 (-724 (-758))) (-5 *1 (-436 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-413 *5)) (-4 *5 (-1217 *4)) (-4 *4 (-1034))
- (-5 *2 (-724 (-758))) (-5 *1 (-438 *4 *5)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-906))
- (-5 *2 (-1241 (-631 (-2 (|:| -2794 *4) (|:| -2717 (-1102))))))
- (-5 *1 (-341 *4)) (-4 *4 (-344)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158))))
- (-4 *6 (-780)) (-5 *2 (-402 (-937 *4))) (-5 *1 (-909 *4 *5 *6 *3))
- (-4 *3 (-934 *4 *6 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-675 *7)) (-4 *7 (-934 *4 *6 *5))
- (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158))))
- (-4 *6 (-780)) (-5 *2 (-675 (-402 (-937 *4))))
- (-5 *1 (-909 *4 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-631 *7)) (-4 *7 (-934 *4 *6 *5))
- (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158))))
- (-4 *6 (-780)) (-5 *2 (-631 (-402 (-937 *4))))
- (-5 *1 (-909 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-331 *5 *6 *7 *8)) (-4 *5 (-425 *4)) (-4 *6 (-1217 *5))
- (-4 *7 (-1217 (-402 *6))) (-4 *8 (-337 *5 *6 *7))
- (-4 *4 (-13 (-836) (-546) (-1023 (-554)))) (-5 *2 (-112))
- (-5 *1 (-896 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-331 (-402 (-554)) *4 *5 *6))
- (-4 *4 (-1217 (-402 (-554)))) (-4 *5 (-1217 (-402 *4)))
- (-4 *6 (-337 (-402 (-554)) *4 *5)) (-5 *2 (-112))
- (-5 *1 (-897 *4 *5 *6)))))
-(((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1217 *5))
- (-4 *5 (-13 (-358) (-145) (-1023 (-554))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-402 *6)) (|:| |c| (-402 *6))
- (|:| -4341 *6)))
- (-5 *1 (-1000 *5 *6)) (-5 *3 (-402 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1054 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-780))
- (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836))
- (-4 *3 (-1048 *4 *5 *6))
- (-5 *2 (-631 (-2 (|:| |val| (-112)) (|:| -2143 *1))))
- (-4 *1 (-1054 *4 *5 *6 *3)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
- *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
- *9)
- (-12 (-5 *4 (-675 (-221))) (-5 *5 (-112)) (-5 *6 (-221))
- (-5 *7 (-675 (-554)))
- (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-80 CONFUN))))
- (-5 *9 (-3 (|:| |fn| (-383)) (|:| |fp| (-77 OBJFUN))))
- (-5 *3 (-554)) (-5 *2 (-1020)) (-5 *1 (-740)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1 (-928 (-221)) (-928 (-221)))) (-5 *3 (-631 (-258)))
- (-5 *1 (-256))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1 (-928 (-221)) (-928 (-221)))) (-5 *1 (-258))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-631 (-475 *5 *6))) (-5 *3 (-475 *5 *6))
- (-14 *5 (-631 (-1158))) (-4 *6 (-446)) (-5 *2 (-1241 *6))
- (-5 *1 (-619 *5 *6)))))
+ (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558)))))))
+ (-5 *2 (-635 *4)) (-5 *1 (-1115 *3 *4)) (-4 *3 (-1222 *4))))
+ ((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558)))))))
+ (-5 *2 (-635 *3)) (-5 *1 (-1115 *4 *3)) (-4 *4 (-1222 *3)))))
+(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-168 (-224)))) (-5 *2 (-1025))
+ (-5 *1 (-747)))))
+(((*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-894 (-558))) (-5 *1 (-907))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-558))) (-5 *2 (-894 (-558))) (-5 *1 (-907)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1105 *3 *4 *2 *5)) (-4 *4 (-1034)) (-4 *5 (-234 *3 *4))
- (-4 *2 (-234 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-848)))))
-(((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-675 (-221))) (-5 *4 (-554)) (-5 *2 (-1020))
- (-5 *1 (-735)))))
+ (-12 (-5 *2 (-1159 (-406 (-942 *3)))) (-5 *1 (-451 *3 *4 *5 *6))
+ (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911))
+ (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))))
+(((*1 *2 *1) (-12 (-5 *1 (-1195 *2)) (-4 *2 (-964)))))
+(((*1 *1 *1 *1) (-5 *1 (-853))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-262))) (-5 *1 (-1247))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 (-262))) (-5 *1 (-1247))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-262))) (-5 *1 (-1248))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 (-262))) (-5 *1 (-1248)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-330 *3 *4 *5 *6)) (-4 *3 (-358)) (-4 *4 (-1217 *3))
- (-4 *5 (-1217 (-402 *4))) (-4 *6 (-337 *3 *4 *5)) (-5 *2 (-112)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-758)) (-4 *1 (-1217 *3)) (-4 *3 (-1034)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1122 *2 *3)) (-4 *2 (-13 (-1082) (-34)))
- (-4 *3 (-13 (-1082) (-34))))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
- (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221))) (-5 *4 (-221))
- (-5 *2 (-1020)) (-5 *1 (-739)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-1034)) (-5 *1 (-438 *3 *2)) (-4 *2 (-1217 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-554)) (-5 *1 (-413 *2)) (-4 *2 (-546)))))
-(((*1 *1 *1 *1) (-4 *1 (-297))) ((*1 *1 *1) (-4 *1 (-297))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1158)) (-5 *3 (-374)) (-5 *1 (-1046)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1034)) (-5 *1 (-699 *3 *2)) (-4 *2 (-1217 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-854 *3)) (-5 *2 (-554)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-1034)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-13 (-834) (-358))) (-5 *2 (-112)) (-5 *1 (-1044 *4 *3))
- (-4 *3 (-1217 *4)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1154 *1)) (-5 *3 (-1158)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1154 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-937 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1158)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-836) (-546)))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-836) (-546))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020))
- (-5 *1 (-734)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1138 (-631 (-554)))) (-5 *1 (-868))
- (-5 *3 (-631 (-554)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1138 (-631 (-554)))) (-5 *1 (-868))
- (-5 *3 (-631 (-554))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1140)) (-5 *4 (-554)) (-5 *5 (-675 (-221)))
- (-5 *2 (-1020)) (-5 *1 (-744)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-631 *1)) (-5 *3 (-631 *7)) (-4 *1 (-1054 *4 *5 *6 *7))
- (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836))
- (-4 *7 (-1048 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446))
- (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-631 *1))
- (-4 *1 (-1054 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-631 *1)) (-4 *1 (-1054 *4 *5 *6 *3)) (-4 *4 (-446))
- (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836))
- (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-631 *1))
- (-4 *1 (-1054 *4 *5 *6 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-928 *2)) (-5 *1 (-967 *2)) (-4 *2 (-1034)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-136))))
- ((*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-154))))
- ((*1 *2 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1195))))
- ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-472))))
- ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-581))))
- ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-614))))
+ (|partial| -12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-543))
+ (-5 *2 (-406 (-558)))))
((*1 *2 *1)
- (-12 (-4 *3 (-1082))
- (-4 *2 (-13 (-425 *4) (-871 *3) (-602 (-877 *3))))
- (-5 *1 (-1058 *3 *4 *2))
- (-4 *4 (-13 (-1034) (-871 *3) (-836) (-602 (-877 *3))))))
+ (|partial| -12 (-5 *2 (-406 (-558))) (-5 *1 (-417 *3)) (-4 *3 (-543))
+ (-4 *3 (-550))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-543)) (-5 *2 (-406 (-558)))))
((*1 *2 *1)
- (-12 (-4 *2 (-1082)) (-5 *1 (-1147 *3 *2)) (-4 *3 (-1082)))))
-(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-112))
- (-5 *6 (-221)) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-68 APROD))))
- (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-73 MSOLVE))))
- (-5 *2 (-1020)) (-5 *1 (-743)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1034)) (-5 *2 (-554)) (-5 *1 (-437 *4 *3 *5))
- (-4 *3 (-1217 *4))
- (-4 *5 (-13 (-399) (-1023 *4) (-358) (-1180) (-279))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-554)) (|has| *1 (-6 -4364)) (-4 *1 (-399))
- (-5 *2 (-906)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1082))
- (-4 *6 (-1082)) (-4 *2 (-1082)) (-5 *1 (-666 *5 *6 *2)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-780)) (-4 *4 (-836)) (-4 *5 (-302))
- (-5 *1 (-901 *3 *4 *5 *2)) (-4 *2 (-934 *5 *3 *4))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1154 *6)) (-4 *6 (-934 *5 *3 *4)) (-4 *3 (-780))
- (-4 *4 (-836)) (-4 *5 (-302)) (-5 *1 (-901 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-631 *2)) (-4 *2 (-934 *6 *4 *5))
- (-5 *1 (-901 *4 *5 *6 *2)) (-4 *4 (-780)) (-4 *5 (-836))
- (-4 *6 (-302)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-1034)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836))
- (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-3 (-112) (-631 *1)))
- (-4 *1 (-1054 *4 *5 *6 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-431)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1140)) (-5 *2 (-210 (-496))) (-5 *1 (-824)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1140)) (-5 *2 (-631 (-1163))) (-5 *1 (-865)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-631 (-289 *3))) (-5 *1 (-289 *3)) (-4 *3 (-546))
- (-4 *3 (-1195)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-136))))
- ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-154))))
- ((*1 *2 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1195))))
- ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-472))))
- ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-581))))
- ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-614))))
+ (|partial| -12 (-4 *1 (-788 *3)) (-4 *3 (-171)) (-4 *3 (-543))
+ (-5 *2 (-406 (-558)))))
((*1 *2 *1)
- (-12 (-4 *3 (-1082))
- (-4 *2 (-13 (-425 *4) (-871 *3) (-602 (-877 *3))))
- (-5 *1 (-1058 *3 *4 *2))
- (-4 *4 (-13 (-1034) (-871 *3) (-836) (-602 (-877 *3))))))
+ (|partial| -12 (-5 *2 (-406 (-558))) (-5 *1 (-824 *3)) (-4 *3 (-543))
+ (-4 *3 (-1087))))
((*1 *2 *1)
- (-12 (-4 *2 (-1082)) (-5 *1 (-1147 *2 *3)) (-4 *3 (-1082)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546))
- (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-962 *3 *4 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-631 *3))
- (-5 *1 (-962 *4 *5 *6 *3)) (-4 *3 (-1048 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-631 *3)) (-4 *3 (-1048 *4 *5 *6)) (-4 *4 (-546))
- (-4 *5 (-780)) (-4 *6 (-836)) (-5 *1 (-962 *4 *5 *6 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546))
- (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-962 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 (-631 *7) (-631 *7))) (-5 *2 (-631 *7))
- (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-546)) (-4 *5 (-780))
- (-4 *6 (-836)) (-5 *1 (-962 *4 *5 *6 *7)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780))
- (-4 *4 (-836))))
- ((*1 *1) (-4 *1 (-1133))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020))
- (-5 *1 (-734)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))))
-(((*1 *2 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-302))))
- ((*1 *2 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-302))))
- ((*1 *2 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-546)) (-4 *2 (-302))))
- ((*1 *2 *1) (-12 (-4 *1 (-1043)) (-5 *2 (-554)))))
-(((*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-906))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1241 *4)) (-4 *4 (-344)) (-5 *2 (-906))
- (-5 *1 (-522 *4)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-358)) (-5 *1 (-881 *2 *3))
- (-4 *2 (-1217 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-758)) (-5 *4 (-554)) (-5 *1 (-439 *2)) (-4 *2 (-1034)))))
-(((*1 *1 *2) (-12 (-5 *2 (-631 (-1076 (-402 (-554))))) (-5 *1 (-258))))
- ((*1 *1 *2) (-12 (-5 *2 (-631 (-1076 (-374)))) (-5 *1 (-258)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1241 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170))
- (-5 *2 (-675 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-675 *3)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-325)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-668 *3)) (-4 *3 (-1082)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))))
+ (|partial| -12 (-5 *2 (-406 (-558))) (-5 *1 (-834 *3)) (-4 *3 (-543))
+ (-4 *3 (-1087))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-987 *3)) (-4 *3 (-171)) (-4 *3 (-543))
+ (-5 *2 (-406 (-558)))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-406 (-558))) (-5 *1 (-998 *3))
+ (-4 *3 (-1028 *2)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-330 *3 *4 *5 *6)) (-4 *3 (-358)) (-4 *4 (-1217 *3))
- (-4 *5 (-1217 (-402 *4))) (-4 *6 (-337 *3 *4 *5))
- (-5 *2 (-408 *4 (-402 *4) *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1241 *6)) (-4 *6 (-13 (-404 *4 *5) (-1023 *4)))
- (-4 *4 (-977 *3)) (-4 *5 (-1217 *4)) (-4 *3 (-302))
- (-5 *1 (-408 *3 *4 *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-631 *6)) (-4 *6 (-934 *3 *4 *5)) (-4 *3 (-358))
- (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-498 *3 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-906)) (-5 *2 (-1154 *4)) (-5 *1 (-352 *4))
- (-4 *4 (-344)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-836) (-546))) (-5 *1 (-156 *4 *2))
- (-4 *2 (-425 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1074 *2)) (-4 *2 (-425 *4)) (-4 *4 (-13 (-836) (-546)))
- (-5 *1 (-156 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1074 *1)) (-4 *1 (-158))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1158)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *4 (-554))) (-5 *5 (-1 (-1138 *4))) (-4 *4 (-358))
- (-4 *4 (-1034)) (-5 *2 (-1138 *4)) (-5 *1 (-1142 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-631 *3)) (-4 *3 (-302)) (-5 *1 (-177 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-980 *2)) (-4 *2 (-1195)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-631 *1)) (-4 *1 (-302)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-631 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2))
- (-4 *4 (-13 (-836) (-546))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 *5)) (-5 *4 (-631 *6)) (-4 *5 (-1082))
- (-4 *6 (-1195)) (-5 *2 (-1 *6 *5)) (-5 *1 (-628 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-631 *5)) (-5 *4 (-631 *2)) (-4 *5 (-1082))
- (-4 *2 (-1195)) (-5 *1 (-628 *5 *2))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-631 *6)) (-5 *4 (-631 *5)) (-4 *6 (-1082))
- (-4 *5 (-1195)) (-5 *2 (-1 *5 *6)) (-5 *1 (-628 *6 *5))))
- ((*1 *2 *3 *4 *5 *2)
- (-12 (-5 *3 (-631 *5)) (-5 *4 (-631 *2)) (-4 *5 (-1082))
- (-4 *2 (-1195)) (-5 *1 (-628 *5 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-631 *5)) (-5 *4 (-631 *6))
- (-4 *5 (-1082)) (-4 *6 (-1195)) (-5 *1 (-628 *5 *6))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-631 *5)) (-5 *4 (-631 *2)) (-5 *6 (-1 *2 *5))
- (-4 *5 (-1082)) (-4 *2 (-1195)) (-5 *1 (-628 *5 *2))))
- ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1126)) (-5 *3 (-142)) (-5 *2 (-758)))))
-(((*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-1082)) (-5 *2 (-758)))))
-(((*1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-237)))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
- (-12 (-5 *4 (-631 (-112))) (-5 *5 (-675 (-221)))
- (-5 *6 (-675 (-554))) (-5 *7 (-221)) (-5 *3 (-554)) (-5 *2 (-1020))
- (-5 *1 (-741)))))
-(((*1 *2)
- (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3))
- (-4 *5 (-1217 (-402 *4))) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-112)))))
+ (|partial| -12 (-5 *2 (-1163)) (-5 *1 (-604 *3)) (-4 *3 (-841)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992))))))
+(((*1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-128)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1241 (-311 (-221)))) (-5 *2 (-1241 (-311 (-374))))
- (-5 *1 (-300)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-546)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3))
- (-5 *1 (-1185 *3 *4 *5 *2)) (-4 *2 (-673 *3 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-374)) (-5 *2 (-221)) (-5 *1 (-1244))))
- ((*1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-1244)))))
-(((*1 *2)
- (-12 (-4 *3 (-1034)) (-5 *2 (-943 (-699 *3 *4))) (-5 *1 (-699 *3 *4))
- (-4 *4 (-1217 *3)))))
+ (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558)))))))
+ (-5 *2 (-635 *4)) (-5 *1 (-1115 *3 *4)) (-4 *3 (-1222 *4))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558)))))))
+ (-5 *2 (-635 *3)) (-5 *1 (-1115 *4 *3)) (-4 *4 (-1222 *3)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-112)) (-5 *5 (-679 (-168 (-224))))
+ (-5 *2 (-1025)) (-5 *1 (-746)))))
+(((*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-894 (-558))) (-5 *1 (-907))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-558))) (-5 *2 (-894 (-558))) (-5 *1 (-907)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *1 (-669 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-1087)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-631 *4)) (-5 *1 (-1123 *3 *4))
- (-4 *3 (-13 (-1082) (-34))) (-4 *4 (-13 (-1082) (-34))))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1126)) (-5 *2 (-112)))))
-(((*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1243))))
- ((*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1243)))))
+ (-12 (-5 *2 (-406 (-942 *3))) (-5 *1 (-451 *3 *4 *5 *6))
+ (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911))
+ (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1241 *5)) (-4 *5 (-779)) (-5 *2 (-112))
- (-5 *1 (-831 *4 *5)) (-14 *4 (-758)))))
-(((*1 *1 *1) (-12 (-4 *1 (-368 *2)) (-4 *2 (-1195))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-1034)) (-5 *1 (-438 *3 *2)) (-4 *2 (-1217 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-635 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1241 (-631 *3))) (-4 *4 (-302))
- (-5 *2 (-631 *3)) (-5 *1 (-449 *4 *3)) (-4 *3 (-1217 *4)))))
-(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
- (-12 (-5 *3 (-1140)) (-5 *5 (-675 (-221))) (-5 *6 (-221))
- (-5 *7 (-675 (-554))) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-739)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987))))))
+ (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450))
+ (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112))
+ (-5 *1 (-978 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784))
+ (-4 *5 (-841)) (-5 *2 (-112))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450))
+ (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112))
+ (-5 *1 (-1094 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1193 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-784))
+ (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-112)))))
+(((*1 *1 *1 *1) (-5 *1 (-853))))
(((*1 *2 *1)
- (-12 (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3))
- (-4 *5 (-368 *3)) (-5 *2 (-112))))
+ (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034))
- (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1160 (-402 (-554)))) (-5 *1 (-186)) (-5 *3 (-554)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-30))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-413 *4) *4)) (-4 *4 (-546)) (-5 *2 (-413 *4))
- (-5 *1 (-414 *4))))
- ((*1 *1 *1) (-5 *1 (-911)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1076 (-221))) (-5 *1 (-911))))
- ((*1 *1 *1) (-5 *1 (-912)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1076 (-221))) (-5 *1 (-912))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))
- (-5 *4 (-402 (-554))) (-5 *1 (-1005 *3)) (-4 *3 (-1217 (-554)))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))
- (-5 *1 (-1005 *3)) (-4 *3 (-1217 (-554)))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))
- (-5 *4 (-402 (-554))) (-5 *1 (-1006 *3)) (-4 *3 (-1217 *4))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))
- (-5 *1 (-1006 *3)) (-4 *3 (-1217 (-402 (-554))))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-13 (-834) (-358))) (-5 *1 (-1044 *2 *3))
- (-4 *3 (-1217 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-675 *8)) (-4 *8 (-934 *5 *7 *6))
- (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-836) (-602 (-1158))))
- (-4 *7 (-780))
- (-5 *2
- (-631
- (-2 (|:| |eqzro| (-631 *8)) (|:| |neqzro| (-631 *8))
- (|:| |wcond| (-631 (-937 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1241 (-402 (-937 *5))))
- (|:| -3782 (-631 (-1241 (-402 (-937 *5))))))))))
- (-5 *1 (-909 *5 *6 *7 *8)) (-5 *4 (-631 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-675 *8)) (-5 *4 (-631 (-1158))) (-4 *8 (-934 *5 *7 *6))
- (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-836) (-602 (-1158))))
- (-4 *7 (-780))
- (-5 *2
- (-631
- (-2 (|:| |eqzro| (-631 *8)) (|:| |neqzro| (-631 *8))
- (|:| |wcond| (-631 (-937 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1241 (-402 (-937 *5))))
- (|:| -3782 (-631 (-1241 (-402 (-937 *5))))))))))
- (-5 *1 (-909 *5 *6 *7 *8))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-417 *3)) (-4 *3 (-543)) (-4 *3 (-550))))
+ ((*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-788 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-824 *3)) (-4 *3 (-543)) (-4 *3 (-1087))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-543)) (-4 *3 (-1087))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-987 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-112))))
((*1 *2 *3)
- (-12 (-5 *3 (-675 *7)) (-4 *7 (-934 *4 *6 *5))
- (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158))))
- (-4 *6 (-780))
- (-5 *2
- (-631
- (-2 (|:| |eqzro| (-631 *7)) (|:| |neqzro| (-631 *7))
- (|:| |wcond| (-631 (-937 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1241 (-402 (-937 *4))))
- (|:| -3782 (-631 (-1241 (-402 (-937 *4))))))))))
- (-5 *1 (-909 *4 *5 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-675 *9)) (-5 *5 (-906)) (-4 *9 (-934 *6 *8 *7))
- (-4 *6 (-13 (-302) (-145))) (-4 *7 (-13 (-836) (-602 (-1158))))
- (-4 *8 (-780))
- (-5 *2
- (-631
- (-2 (|:| |eqzro| (-631 *9)) (|:| |neqzro| (-631 *9))
- (|:| |wcond| (-631 (-937 *6)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1241 (-402 (-937 *6))))
- (|:| -3782 (-631 (-1241 (-402 (-937 *6))))))))))
- (-5 *1 (-909 *6 *7 *8 *9)) (-5 *4 (-631 *9))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-675 *9)) (-5 *4 (-631 (-1158))) (-5 *5 (-906))
- (-4 *9 (-934 *6 *8 *7)) (-4 *6 (-13 (-302) (-145)))
- (-4 *7 (-13 (-836) (-602 (-1158)))) (-4 *8 (-780))
- (-5 *2
- (-631
- (-2 (|:| |eqzro| (-631 *9)) (|:| |neqzro| (-631 *9))
- (|:| |wcond| (-631 (-937 *6)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1241 (-402 (-937 *6))))
- (|:| -3782 (-631 (-1241 (-402 (-937 *6))))))))))
- (-5 *1 (-909 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-675 *8)) (-5 *4 (-906)) (-4 *8 (-934 *5 *7 *6))
- (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-836) (-602 (-1158))))
- (-4 *7 (-780))
- (-5 *2
- (-631
- (-2 (|:| |eqzro| (-631 *8)) (|:| |neqzro| (-631 *8))
- (|:| |wcond| (-631 (-937 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1241 (-402 (-937 *5))))
- (|:| -3782 (-631 (-1241 (-402 (-937 *5))))))))))
- (-5 *1 (-909 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-675 *9)) (-5 *4 (-631 *9)) (-5 *5 (-1140))
- (-4 *9 (-934 *6 *8 *7)) (-4 *6 (-13 (-302) (-145)))
- (-4 *7 (-13 (-836) (-602 (-1158)))) (-4 *8 (-780)) (-5 *2 (-554))
- (-5 *1 (-909 *6 *7 *8 *9))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-675 *9)) (-5 *4 (-631 (-1158))) (-5 *5 (-1140))
- (-4 *9 (-934 *6 *8 *7)) (-4 *6 (-13 (-302) (-145)))
- (-4 *7 (-13 (-836) (-602 (-1158)))) (-4 *8 (-780)) (-5 *2 (-554))
- (-5 *1 (-909 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-675 *8)) (-5 *4 (-1140)) (-4 *8 (-934 *5 *7 *6))
- (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-836) (-602 (-1158))))
- (-4 *7 (-780)) (-5 *2 (-554)) (-5 *1 (-909 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-675 *10)) (-5 *4 (-631 *10)) (-5 *5 (-906))
- (-5 *6 (-1140)) (-4 *10 (-934 *7 *9 *8)) (-4 *7 (-13 (-302) (-145)))
- (-4 *8 (-13 (-836) (-602 (-1158)))) (-4 *9 (-780)) (-5 *2 (-554))
- (-5 *1 (-909 *7 *8 *9 *10))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-675 *10)) (-5 *4 (-631 (-1158))) (-5 *5 (-906))
- (-5 *6 (-1140)) (-4 *10 (-934 *7 *9 *8)) (-4 *7 (-13 (-302) (-145)))
- (-4 *8 (-13 (-836) (-602 (-1158)))) (-4 *9 (-780)) (-5 *2 (-554))
- (-5 *1 (-909 *7 *8 *9 *10))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-675 *9)) (-5 *4 (-906)) (-5 *5 (-1140))
- (-4 *9 (-934 *6 *8 *7)) (-4 *6 (-13 (-302) (-145)))
- (-4 *7 (-13 (-836) (-602 (-1158)))) (-4 *8 (-780)) (-5 *2 (-554))
- (-5 *1 (-909 *6 *7 *8 *9)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-998 *3)) (-4 *3 (-1028 (-406 (-558)))))))
(((*1 *2 *3 *1)
- (-12
+ (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1087))
+ (-5 *2 (-112)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-635 (-1163))) (-5 *2 (-1163)) (-5 *1 (-329)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992))))))
+(((*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-128)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-52)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *5 *5))
+ (-4 *5 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558)))))))
(-5 *2
- (-2 (|:| |cycle?| (-112)) (|:| -2997 (-758)) (|:| |period| (-758))))
- (-5 *1 (-1138 *4)) (-4 *4 (-1195)) (-5 *3 (-758)))))
+ (-2 (|:| |solns| (-635 *5))
+ (|:| |maps| (-635 (-2 (|:| |arg| *5) (|:| |res| *5))))))
+ (-5 *1 (-1115 *3 *5)) (-4 *3 (-1222 *5)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-112)) (-5 *5 (-679 (-224)))
+ (-5 *2 (-1025)) (-5 *1 (-746)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-780)) (-4 *6 (-836))
- (-4 *7 (-934 *4 *5 *6)) (-5 *2 (-631 (-631 *7)))
- (-5 *1 (-442 *4 *5 *6 *7)) (-5 *3 (-631 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-780))
- (-4 *7 (-836)) (-4 *8 (-934 *5 *6 *7)) (-5 *2 (-631 (-631 *8)))
- (-5 *1 (-442 *5 *6 *7 *8)) (-5 *3 (-631 *8)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020))
- (-5 *1 (-734)))))
-(((*1 *2 *1) (-12 (-4 *1 (-940)) (-5 *2 (-631 (-631 (-928 (-221)))))))
- ((*1 *2 *1) (-12 (-4 *1 (-959)) (-5 *2 (-631 (-631 (-928 (-221))))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-631 *6)) (-4 *1 (-934 *4 *5 *6)) (-4 *4 (-1034))
- (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-758))))
+ (-12 (-5 *3 (-635 (-911))) (-5 *2 (-894 (-558))) (-5 *1 (-907)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *1 (-669 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-1087)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-406 (-942 *3))) (-5 *1 (-451 *3 *4 *5 *6))
+ (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911))
+ (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9))
+ (-4 *9 (-1053 *6 *7 *8)) (-4 *6 (-550)) (-4 *7 (-784))
+ (-4 *8 (-841)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3072 (-635 *9))))
+ (-5 *3 (-635 *9)) (-4 *1 (-1193 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1053 *5 *6 *7))
+ (-4 *5 (-550)) (-4 *6 (-784)) (-4 *7 (-841))
+ (-5 *2 (-2 (|:| |bas| *1) (|:| -3072 (-635 *8))))
+ (-5 *3 (-635 *8)) (-4 *1 (-1193 *5 *6 *7 *8)))))
+(((*1 *1 *1 *1) (-5 *1 (-853))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-543))
+ (-5 *2 (-406 (-558)))))
((*1 *2 *1)
- (-12 (-4 *1 (-934 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780))
- (-4 *5 (-836)) (-5 *2 (-758)))))
-(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-221)) (-5 *4 (-554))
- (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-64 G)))) (-5 *2 (-1020))
- (-5 *1 (-735)))))
-(((*1 *2 *3 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-758)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-780)) (-4 *7 (-934 *4 *5 *6)) (-4 *4 (-446)) (-4 *6 (-836))
- (-5 *2 (-112)) (-5 *1 (-443 *4 *5 *6 *7)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1241 *4)) (-4 *4 (-412 *3)) (-4 *3 (-302))
- (-4 *3 (-546)) (-5 *1 (-43 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-906)) (-4 *4 (-358)) (-5 *2 (-1241 *1))
- (-4 *1 (-324 *4))))
- ((*1 *2) (-12 (-4 *3 (-358)) (-5 *2 (-1241 *1)) (-4 *1 (-324 *3))))
- ((*1 *2)
- (-12 (-4 *3 (-170)) (-4 *4 (-1217 *3)) (-5 *2 (-1241 *1))
- (-4 *1 (-404 *3 *4))))
+ (-12 (-5 *2 (-406 (-558))) (-5 *1 (-417 *3)) (-4 *3 (-543))
+ (-4 *3 (-550))))
+ ((*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-406 (-558)))))
((*1 *2 *1)
- (-12 (-4 *3 (-302)) (-4 *4 (-977 *3)) (-4 *5 (-1217 *4))
- (-5 *2 (-1241 *6)) (-5 *1 (-408 *3 *4 *5 *6))
- (-4 *6 (-13 (-404 *4 *5) (-1023 *4)))))
+ (-12 (-4 *1 (-788 *3)) (-4 *3 (-171)) (-4 *3 (-543))
+ (-5 *2 (-406 (-558)))))
((*1 *2 *1)
- (-12 (-4 *3 (-302)) (-4 *4 (-977 *3)) (-4 *5 (-1217 *4))
- (-5 *2 (-1241 *6)) (-5 *1 (-409 *3 *4 *5 *6 *7))
- (-4 *6 (-404 *4 *5)) (-14 *7 *2)))
- ((*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1241 *1)) (-4 *1 (-412 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-906)) (-5 *2 (-1241 (-1241 *4))) (-5 *1 (-522 *4))
- (-4 *4 (-344)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1154 *9)) (-5 *4 (-631 *7)) (-5 *5 (-631 *8))
- (-4 *7 (-836)) (-4 *8 (-1034)) (-4 *9 (-934 *8 *6 *7))
- (-4 *6 (-780)) (-5 *2 (-1154 *8)) (-5 *1 (-316 *6 *7 *8 *9)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1208 *3)) (-4 *3 (-1195)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1126)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1094)) (-4 *3 (-836)) (-5 *2 (-631 *1))
- (-4 *1 (-425 *3))))
+ (-12 (-5 *2 (-406 (-558))) (-5 *1 (-824 *3)) (-4 *3 (-543))
+ (-4 *3 (-1087))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-631 (-877 *3))) (-5 *1 (-877 *3))
- (-4 *3 (-1082))))
+ (-12 (-5 *2 (-406 (-558))) (-5 *1 (-834 *3)) (-4 *3 (-543))
+ (-4 *3 (-1087))))
((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836))
- (-5 *2 (-631 *1)) (-4 *1 (-934 *3 *4 *5))))
+ (-12 (-4 *1 (-987 *3)) (-4 *3 (-171)) (-4 *3 (-543))
+ (-5 *2 (-406 (-558)))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1034))
- (-4 *7 (-934 *6 *4 *5)) (-5 *2 (-631 *3))
- (-5 *1 (-935 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-358)
- (-10 -8 (-15 -3075 ($ *7)) (-15 -2810 (*7 $))
- (-15 -2822 (*7 $))))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *1 (-665 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1082)))))
-(((*1 *1 *2)
+ (-12 (-5 *2 (-406 (-558))) (-5 *1 (-998 *3)) (-4 *3 (-1028 *2)))))
+(((*1 *2 *1)
(-12
(-5 *2
- (-631
+ (-635
(-2
- (|:| -2564
- (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221)))
- (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221))
- (|:| |relerr| (-221))))
- (|:| -2701
+ (|:| -2700
+ (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224)))
+ (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
+ (|:| -2981
(-2
(|:| |endPointContinuity|
(-3 (|:| |continuous| "Continuous at the end points")
@@ -3123,10 +2224,10 @@
(|:| |notEvaluated|
"End point continuity not yet evaluated")))
(|:| |singularitiesStream|
- (-3 (|:| |str| (-1138 (-221)))
+ (-3 (|:| |str| (-1143 (-224)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -3827
+ (|:| -1626
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite|
"The bottom of range is infinite")
@@ -3134,6530 +2235,5620 @@
(|:| |bothInfinite|
"Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-549)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1082)))))
-(((*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-912)))))
-(((*1 *1 *1 *1) (-4 *1 (-539))))
+ (-5 *1 (-553))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-596 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1200))
+ (-5 *2 (-635 *4)))))
+(((*1 *2 *3 *2)
+ (|partial| -12 (-5 *2 (-1246 *4)) (-5 *3 (-679 *4)) (-4 *4 (-362))
+ (-5 *1 (-657 *4))))
+ ((*1 *2 *3 *2)
+ (|partial| -12 (-4 *4 (-362))
+ (-4 *5 (-13 (-372 *4) (-10 -7 (-6 -4383))))
+ (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4383))))
+ (-5 *1 (-658 *4 *5 *2 *3)) (-4 *3 (-677 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *4 (-635 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-362))
+ (-5 *1 (-805 *2 *3)) (-4 *3 (-646 *2))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558)))))))
+ (-5 *1 (-1115 *3 *2)) (-4 *3 (-1222 *2)))))
+(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
+ (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224)))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-224))
+ (-5 *2 (-1025)) (-5 *1 (-746))))
+ ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
+ (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224)))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-387))
+ (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-746)))))
+(((*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-894 (-558))) (-5 *1 (-907))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-558))) (-5 *2 (-894 (-558))) (-5 *1 (-907)))))
(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))))
-(((*1 *1 *1 *1) (-4 *1 (-952))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-631 (-1158))) (-5 *2 (-1158)) (-5 *1 (-325)))))
-(((*1 *1 *2 *3)
- (|partial| -12 (-5 *2 (-485)) (-5 *3 (-939)) (-5 *1 (-527))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *3 (-939)) (-4 *1 (-754 *2)) (-4 *2 (-1082)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-1140)) (-5 *5 (-675 (-221)))
- (-5 *2 (-1020)) (-5 *1 (-734)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780))
- (-4 *4 (-836)) (-4 *2 (-546))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780))
- (-4 *4 (-836)) (-4 *2 (-546)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *1 (-665 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-758)) (-5 *1 (-576 *2)) (-4 *2 (-539)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-906)) (-5 *2 (-1154 *4)) (-5 *1 (-352 *4))
- (-4 *4 (-344)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-631 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2))
- (-4 *4 (-13 (-836) (-546))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-546)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2510 *3)))
- (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))))
+ (-12 (-4 *4 (-171)) (-5 *2 (-1159 (-942 *4))) (-5 *1 (-415 *3 *4))
+ (-4 *3 (-416 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-4 *3 (-362))
+ (-5 *2 (-1159 (-942 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1159 (-406 (-942 *3)))) (-5 *1 (-451 *3 *4 *5 *6))
+ (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911))
+ (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-4 *3 (-546))
- (-5 *2 (-1154 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-631 *2)) (-4 *2 (-934 *4 *5 *6)) (-4 *4 (-302))
- (-4 *5 (-780)) (-4 *6 (-836)) (-5 *1 (-441 *4 *5 *6 *2)))))
-(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-221))
- (-5 *2 (-1020)) (-5 *1 (-738)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1034)) (-5 *2 (-554)) (-5 *1 (-437 *4 *3 *5))
- (-4 *3 (-1217 *4))
- (-4 *5 (-13 (-399) (-1023 *4) (-358) (-1180) (-279))))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1126)) (-5 *3 (-554)) (-5 *2 (-112)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-402 *4)) (-4 *4 (-1217 *3)) (-4 *3 (-13 (-358) (-145)))
- (-5 *1 (-394 *3 *4)))))
-(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-170)) (-4 *2 (-546))))
- ((*1 *1 *1) (|partial| -4 *1 (-709))))
-(((*1 *2 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1140)) (-5 *1 (-300)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1048 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780))
- (-4 *2 (-836))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780))
- (-4 *4 (-836)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))))
-(((*1 *2 *3)
- (-12 (-4 *2 (-1217 *4)) (-5 *1 (-796 *4 *2 *3 *5))
- (-4 *4 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-4 *3 (-642 *2))
- (-4 *5 (-642 (-402 *2))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *2 (-1217 *4)) (-5 *1 (-794 *4 *2 *3 *5))
- (-4 *4 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-4 *3 (-642 *2))
- (-4 *5 (-642 (-402 *2)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *2 (-1217 *4)) (-5 *1 (-794 *4 *2 *5 *3))
- (-4 *4 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-4 *5 (-642 *2))
- (-4 *3 (-642 (-402 *2))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-234 *3 *2)) (-4 *2 (-1195)) (-4 *2 (-1034))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-848))))
- ((*1 *1 *1) (-5 *1 (-848)))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-928 (-221))) (-5 *2 (-221)) (-5 *1 (-1191))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1195)) (-4 *2 (-1034)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 (-631 *5))) (-4 *5 (-1232 *4))
- (-4 *4 (-38 (-402 (-554))))
- (-5 *2 (-1 (-1138 *4) (-631 (-1138 *4)))) (-5 *1 (-1234 *4 *5)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2))
- (-4 *2 (-425 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1121))))
-(((*1 *1 *1) (-4 *1 (-171)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-359 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1160 (-402 (-554)))) (-5 *2 (-402 (-554)))
- (-5 *1 (-186)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-221) (-221) (-221)))
- (-5 *4 (-3 (-1 (-221) (-221) (-221) (-221)) "undefined"))
- (-5 *5 (-1076 (-221))) (-5 *6 (-631 (-258))) (-5 *2 (-1115 (-221)))
- (-5 *1 (-683))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-928 (-221)) (-221) (-221))) (-5 *4 (-1076 (-221)))
- (-5 *5 (-631 (-258))) (-5 *2 (-1115 (-221))) (-5 *1 (-683))))
- ((*1 *2 *2 *3 *4 *4 *5)
- (-12 (-5 *2 (-1115 (-221))) (-5 *3 (-1 (-928 (-221)) (-221) (-221)))
- (-5 *4 (-1076 (-221))) (-5 *5 (-631 (-258))) (-5 *1 (-683)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1243)))))
+ (-12 (-4 *1 (-1193 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-784))
+ (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-635 *6)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1163)) (-5 *3 (-635 (-942 (-558))))
+ (-5 *4 (-315 (-168 (-378)))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1163)) (-5 *3 (-635 (-942 (-558))))
+ (-5 *4 (-315 (-378))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1163)) (-5 *3 (-635 (-942 (-558))))
+ (-5 *4 (-315 (-558))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1163)) (-5 *3 (-1246 (-315 (-168 (-378)))))
+ (-5 *1 (-329))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1163)) (-5 *3 (-1246 (-315 (-378)))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1163)) (-5 *3 (-1246 (-315 (-558)))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1163)) (-5 *3 (-679 (-315 (-168 (-378)))))
+ (-5 *1 (-329))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1163)) (-5 *3 (-679 (-315 (-378)))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1163)) (-5 *3 (-679 (-315 (-558)))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1163)) (-5 *3 (-315 (-168 (-378)))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1163)) (-5 *3 (-315 (-378))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1163)) (-5 *3 (-315 (-558))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1163)) (-5 *3 (-635 (-942 (-558))))
+ (-5 *4 (-315 (-684))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1163)) (-5 *3 (-635 (-942 (-558))))
+ (-5 *4 (-315 (-689))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1163)) (-5 *3 (-635 (-942 (-558))))
+ (-5 *4 (-315 (-691))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1163)) (-5 *3 (-1246 (-315 (-684)))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1163)) (-5 *3 (-1246 (-315 (-689)))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1163)) (-5 *3 (-1246 (-315 (-691)))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1163)) (-5 *3 (-679 (-315 (-684)))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1163)) (-5 *3 (-679 (-315 (-689)))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1163)) (-5 *3 (-679 (-315 (-691)))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1163)) (-5 *3 (-1246 (-684))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1163)) (-5 *3 (-1246 (-689))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1163)) (-5 *3 (-1246 (-691))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1163)) (-5 *3 (-679 (-684))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1163)) (-5 *3 (-679 (-689))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1163)) (-5 *3 (-679 (-691))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1163)) (-5 *3 (-315 (-684))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1163)) (-5 *3 (-315 (-689))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1163)) (-5 *3 (-315 (-691))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-1145)) (-5 *1 (-329))))
+ ((*1 *1 *1 *1) (-5 *1 (-853))))
+(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-996)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-596 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1200))
+ (-5 *2 (-112)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-554)) (-5 *1 (-311 *3)) (-4 *3 (-546)) (-4 *3 (-836)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))))
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-367)) (-4 *1 (-328 *3))
+ (-4 *3 (-362)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))))
+ (-12 (-5 *3 (-635 *6)) (-5 *4 (-635 (-1143 *7))) (-4 *6 (-841))
+ (-4 *7 (-939 *5 (-529 *6) *6)) (-4 *5 (-1039))
+ (-5 *2 (-1 (-1143 *7) *7)) (-5 *1 (-1113 *5 *6 *7)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
+ (-12 (-5 *3 (-558)) (-5 *5 (-112)) (-5 *6 (-679 (-224)))
+ (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-746)))))
+(((*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-894 (-558))) (-5 *1 (-907))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-558))) (-5 *2 (-894 (-558))) (-5 *1 (-907)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1159 (-406 (-942 *3)))) (-5 *1 (-451 *3 *4 *5 *6))
+ (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911))
+ (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1193 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-784))
+ (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5))
+ (-5 *2 (-2 (|:| -2626 (-635 *6)) (|:| -1328 (-635 *6)))))))
+(((*1 *1 *1 *1) (-5 *1 (-853))))
+(((*1 *2 *3) (-12 (-5 *3 (-558)) (-5 *2 (-1251)) (-5 *1 (-996)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-596 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1200))
+ (-5 *2 (-635 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367))
+ (-5 *2 (-1159 *3)))))
(((*1 *1 *2 *3)
- (-12 (-4 *1 (-377 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-1082))))
+ (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-1087))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-554)) (-5 *2 (-1138 *3)) (-5 *1 (-1142 *3))
- (-4 *3 (-1034))))
+ (-12 (-5 *4 (-558)) (-5 *2 (-1143 *3)) (-5 *1 (-1147 *3))
+ (-4 *3 (-1039))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-806 *4)) (-4 *4 (-836)) (-4 *1 (-1258 *4 *3))
- (-4 *3 (-1034)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780))
- (-4 *4 (-836)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *7 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-546))
- (-4 *8 (-934 *7 *5 *6))
- (-5 *2 (-2 (|:| -1407 (-758)) (|:| -1490 *3) (|:| |radicand| *3)))
- (-5 *1 (-938 *5 *6 *7 *8 *3)) (-5 *4 (-758))
- (-4 *3
- (-13 (-358)
- (-10 -8 (-15 -3075 ($ *8)) (-15 -2810 (*8 $)) (-15 -2822 (*8 $))))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1158))
- (-4 *5 (-13 (-836) (-1023 (-554)) (-446) (-627 (-554))))
- (-5 *2 (-2 (|:| -3341 *3) (|:| |nconst| *3))) (-5 *1 (-557 *5 *3))
- (-4 *3 (-13 (-27) (-1180) (-425 *5))))))
+ (-12 (-5 *2 (-810 *4)) (-4 *4 (-841)) (-4 *1 (-1263 *4 *3))
+ (-4 *3 (-1039)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-413 *5)) (-4 *5 (-546))
+ (-12 (-4 *5 (-306)) (-4 *6 (-372 *5)) (-4 *4 (-372 *5))
(-5 *2
- (-2 (|:| -1407 (-758)) (|:| -1490 *5) (|:| |radicand| (-631 *5))))
- (-5 *1 (-315 *5)) (-5 *4 (-758))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-987)) (-5 *2 (-554)))))
-(((*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-1082))))
- ((*1 *1 *1) (-5 *1 (-620))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-758)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1196 *3)) (-4 *3 (-1082))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1082)) (-5 *2 (-112))
- (-5 *1 (-1196 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-631 *4)) (-4 *4 (-1082)) (-5 *2 (-1246))
- (-5 *1 (-1196 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-631 *4)) (-4 *4 (-1082)) (-5 *2 (-1246))
- (-5 *1 (-1196 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020))
- (-5 *1 (-739)))))
-(((*1 *2 *3 *4 *5 *5 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *3 (-937 *6)) (-5 *4 (-1158))
- (-5 *5 (-829 *7))
- (-4 *6 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))))
- (-4 *7 (-13 (-1180) (-29 *6))) (-5 *1 (-220 *6 *7))))
- ((*1 *2 *3 *4 *4 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1154 *6)) (-5 *4 (-829 *6))
- (-4 *6 (-13 (-1180) (-29 *5)))
- (-4 *5 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *1 (-220 *5 *6)))))
-(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-848)))
- ((*1 *1 *1 *1) (-4 *1 (-952))))
-(((*1 *2)
- (-12 (-4 *1 (-344))
- (-5 *2 (-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-546)) (-5 *2 (-758)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-412 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836))
- (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-973 *4 *5 *6 *7 *3)) (-4 *3 (-1054 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836))
- (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1089 *4 *5 *6 *7 *3)) (-4 *3 (-1054 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-108))))
- ((*1 *2 *1) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-213))))
- ((*1 *2 *1) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-481))))
- ((*1 *1 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-546)) (-4 *2 (-302))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-402 (-554))) (-5 *1 (-989 *3)) (-14 *3 (-554))))
- ((*1 *1 *1) (-4 *1 (-1043))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-446) (-145))) (-5 *2 (-413 *3))
- (-5 *1 (-100 *4 *3)) (-4 *3 (-1217 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-631 *3)) (-4 *3 (-1217 *5)) (-4 *5 (-13 (-446) (-145)))
- (-5 *2 (-413 *3)) (-5 *1 (-100 *5 *3)))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2660 (-635 *4))))
+ (-5 *1 (-1111 *5 *6 *4 *3)) (-4 *3 (-677 *5 *6 *4)))))
+(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
+ (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224))) (-5 *4 (-224))
+ (-5 *2 (-1025)) (-5 *1 (-746)))))
(((*1 *2 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| -3782 (-675 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-675 *3))))
- (-4 *3 (-13 (-302) (-10 -8 (-15 -1565 ((-413 $) $)))))
- (-4 *4 (-1217 *3)) (-5 *1 (-493 *3 *4 *5)) (-4 *5 (-404 *3 *4)))))
-(((*1 *2 *1 *2)
- (-12 (-4 *1 (-359 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1082)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1260 *3)) (-4 *3 (-358)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-368 *2)) (-4 *2 (-1195)) (-4 *2 (-836))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-368 *3)) (-4 *3 (-1195))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-953 *2)) (-4 *2 (-836))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1034))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-631 *1)) (-4 *1 (-1116 *3)) (-4 *3 (-1034))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-631 (-1146 *3 *4))) (-5 *1 (-1146 *3 *4))
- (-14 *3 (-906)) (-4 *4 (-1034))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-1146 *2 *3)) (-14 *2 (-906)) (-4 *3 (-1034)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-631
- (-2 (|:| -4186 (-758))
- (|:| |eqns|
- (-631
- (-2 (|:| |det| *7) (|:| |rows| (-631 (-554)))
- (|:| |cols| (-631 (-554))))))
- (|:| |fgb| (-631 *7)))))
- (-4 *7 (-934 *4 *6 *5)) (-4 *4 (-13 (-302) (-145)))
- (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780)) (-5 *2 (-758))
- (-5 *1 (-909 *4 *5 *6 *7)))))
-(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-605))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1158)) (-5 *3 (-374)) (-5 *1 (-1046)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1138 *4)) (-5 *3 (-554)) (-4 *4 (-1034))
- (-5 *1 (-1142 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-554)) (-5 *1 (-1233 *3 *4 *5)) (-4 *3 (-1034))
- (-14 *4 (-1158)) (-14 *5 *3))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-951 *3)) (-4 *3 (-952)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-631 *7)) (-4 *7 (-934 *4 *5 *6)) (-4 *6 (-602 (-1158)))
- (-4 *4 (-358)) (-4 *5 (-780)) (-4 *6 (-836))
- (-5 *2 (-1147 (-631 (-937 *4)) (-631 (-289 (-937 *4)))))
- (-5 *1 (-498 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836))
- (-4 *7 (-1048 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-631 *7)) (|:| |badPols| (-631 *7))))
- (-5 *1 (-962 *4 *5 *6 *7)) (-5 *3 (-631 *7)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-859)) (-5 *3 (-631 (-258))) (-5 *1 (-256)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374))
- (-5 *2
- (-2 (|:| -2794 *4) (|:| -1841 *4) (|:| |totalpts| (-554))
- (|:| |success| (-112))))
- (-5 *1 (-776)) (-5 *5 (-554)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-554)) (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034))
- (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))))
-(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-554)) (-5 *5 (-675 (-221)))
- (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN))))
- (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-88 OUTPUT))))
- (-5 *3 (-221)) (-5 *2 (-1020)) (-5 *1 (-736)))))
-(((*1 *2 *1) (-12 (-4 *1 (-544 *2)) (-4 *2 (-13 (-399) (-1180))))))
-(((*1 *2)
- (-12 (-5 *2 (-1246)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-1082))
- (-4 *4 (-1082)))))
-(((*1 *2 *1 *3 *3 *4)
- (-12 (-5 *3 (-1 (-848) (-848) (-848))) (-5 *4 (-554)) (-5 *2 (-848))
- (-5 *1 (-635 *5 *6 *7)) (-4 *5 (-1082)) (-4 *6 (-23)) (-14 *7 *6)))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-848)) (-5 *1 (-840 *3 *4 *5)) (-4 *3 (-1034))
- (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-848))))
- ((*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-848))))
- ((*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-848))))
- ((*1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-848))))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-848)) (-5 *1 (-1154 *3)) (-4 *3 (-1034)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-546))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1495 *4)))
- (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-675 *1)) (-5 *4 (-1241 *1)) (-4 *1 (-627 *5))
- (-4 *5 (-1034))
- (-5 *2 (-2 (|:| -2866 (-675 *5)) (|:| |vec| (-1241 *5))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-675 *1)) (-4 *1 (-627 *4)) (-4 *4 (-1034))
- (-5 *2 (-675 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-402 *6)) (-4 *5 (-1199)) (-4 *6 (-1217 *5))
- (-5 *2 (-2 (|:| -1407 (-758)) (|:| -1490 *3) (|:| |radicand| *6)))
- (-5 *1 (-146 *5 *6 *7)) (-5 *4 (-758)) (-4 *7 (-1217 *3)))))
-(((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1034))
- (-5 *1 (-839 *5 *2)) (-4 *2 (-838 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-631 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2))
- (-4 *4 (-13 (-836) (-546))))))
-(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-859)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2999 *3) (|:| |coef1| (-769 *3))))
- (-5 *1 (-769 *3)) (-4 *3 (-546)) (-4 *3 (-1034)))))
-(((*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-889 (-554))) (-5 *1 (-902))))
+ (-12 (-4 *3 (-784)) (-4 *4 (-841)) (-4 *5 (-306))
+ (-5 *1 (-906 *3 *4 *5 *2)) (-4 *2 (-939 *5 *3 *4))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1159 *6)) (-4 *6 (-939 *5 *3 *4)) (-4 *3 (-784))
+ (-4 *4 (-841)) (-4 *5 (-306)) (-5 *1 (-906 *3 *4 *5 *6))))
((*1 *2 *3)
- (-12 (-5 *3 (-631 (-554))) (-5 *2 (-889 (-554))) (-5 *1 (-902)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))))
+ (-12 (-5 *3 (-635 *2)) (-4 *2 (-939 *6 *4 *5))
+ (-5 *1 (-906 *4 *5 *6 *2)) (-4 *4 (-784)) (-4 *5 (-841))
+ (-4 *6 (-306)))))
+(((*1 *1 *1) (-4 *1 (-543))))
(((*1 *2 *1)
- (-12 (-5 *2 (-172 (-402 (-554)))) (-5 *1 (-117 *3)) (-14 *3 (-554))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *3 (-1138 *2)) (-4 *2 (-302)) (-5 *1 (-172 *2))))
- ((*1 *1 *2) (-12 (-5 *2 (-402 *3)) (-4 *3 (-302)) (-5 *1 (-172 *3))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-172 (-554))) (-5 *1 (-752 *3)) (-4 *3 (-399))))
+ (-12 (-5 *2 (-406 (-942 *3))) (-5 *1 (-451 *3 *4 *5 *6))
+ (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911))
+ (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-635 *1)) (-4 *1 (-1053 *4 *5 *6)) (-4 *4 (-1039))
+ (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784))
+ (-4 *5 (-841)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-5 *2 (-172 (-402 (-554)))) (-5 *1 (-856 *3)) (-14 *3 (-554))))
+ (-12 (-4 *1 (-1193 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-784))
+ (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1193 *4 *5 *6 *3)) (-4 *4 (-550)) (-4 *5 (-784))
+ (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *1 *1 *1) (-5 *1 (-853))))
+(((*1 *1)
+ (-12 (-4 *1 (-403)) (-3304 (|has| *1 (-6 -4373)))
+ (-3304 (|has| *1 (-6 -4365)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1087)) (-4 *2 (-841))))
+ ((*1 *2 *1) (-12 (-4 *1 (-821 *2)) (-4 *2 (-841))))
+ ((*1 *1 *1 *1) (-4 *1 (-841))) ((*1 *1) (-5 *1 (-1107))))
+(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-996))))
+ ((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-996)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4382)) (-4 *1 (-596 *4 *3)) (-4 *4 (-1087))
+ (-4 *3 (-1200)) (-4 *3 (-1087)) (-5 *2 (-112)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367))
+ (-5 *2 (-1159 *3))))
((*1 *2 *1)
- (-12 (-14 *3 (-554)) (-5 *2 (-172 (-402 (-554))))
- (-5 *1 (-857 *3 *4)) (-4 *4 (-854 *3)))))
-(((*1 *1 *1) (-4 *1 (-539))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1217 *5)) (-4 *5 (-358))
- (-5 *2
- (-2 (|:| |ir| (-575 (-402 *6))) (|:| |specpart| (-402 *6))
- (|:| |polypart| *6)))
- (-5 *1 (-564 *5 *6)) (-5 *3 (-402 *6)))))
+ (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367))
+ (-5 *2 (-1159 *3)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1160 (-402 (-554)))) (-5 *1 (-186)) (-5 *3 (-554)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1146 *2 *3)) (-14 *2 (-906)) (-4 *3 (-1034)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-997)) (-5 *2 (-848)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))))
-(((*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-155))))
- ((*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-859))))
- ((*1 *2 *3) (-12 (-5 *3 (-928 *2)) (-5 *1 (-967 *2)) (-4 *2 (-1034)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 (-631 *2) *2 *2 *2)) (-4 *2 (-1082))
- (-5 *1 (-103 *2))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1082)) (-5 *1 (-103 *2)))))
-(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-221))
- (-5 *2 (-1020)) (-5 *1 (-738)))))
-(((*1 *2 *1) (-12 (-5 *2 (-631 (-928 (-221)))) (-5 *1 (-1242)))))
+ (-12 (-4 *4 (-306)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4))
+ (-5 *2
+ (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
+ (-5 *1 (-1111 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6)))))
+(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
+ (-12 (-5 *3 (-679 (-224))) (-5 *4 (-558)) (-5 *2 (-1025))
+ (-5 *1 (-746)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-417 *2)) (-4 *2 (-306)) (-5 *1 (-904 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-406 (-942 *5))) (-5 *4 (-1163))
+ (-4 *5 (-13 (-306) (-146))) (-5 *2 (-52)) (-5 *1 (-905 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-417 (-942 *6))) (-5 *5 (-1163)) (-5 *3 (-942 *6))
+ (-4 *6 (-13 (-306) (-146))) (-5 *2 (-52)) (-5 *1 (-905 *6)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-406 (-942 *3))) (-5 *1 (-451 *3 *4 *5 *6))
+ (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911))
+ (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-635 *1)) (-4 *1 (-1053 *4 *5 *6)) (-4 *4 (-1039))
+ (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784))
+ (-4 *5 (-841)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1193 *5 *6 *7 *3))
+ (-4 *5 (-550)) (-4 *6 (-784)) (-4 *7 (-841))
+ (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-112)))))
+(((*1 *1 *1 *1) (-5 *1 (-853))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))))
+ (-12 (-5 *3 (-406 (-558))) (-5 *4 (-558)) (-5 *2 (-52))
+ (-5 *1 (-995)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-596 *2 *3)) (-4 *3 (-1200)) (-4 *2 (-1087))
+ (-4 *2 (-841)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-325 *3 *4)) (-4 *3 (-1039))
+ (-4 *4 (-783)))))
(((*1 *2 *2)
- (-12
- (-5 *2
- (-498 (-402 (-554)) (-236 *4 (-758)) (-850 *3)
- (-243 *3 (-402 (-554)))))
- (-14 *3 (-631 (-1158))) (-14 *4 (-758)) (-5 *1 (-499 *3 *4)))))
+ (-12 (-4 *3 (-306)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3))
+ (-5 *1 (-1111 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
+ (-5 *1 (-746)))))
+(((*1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-306)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-330 *3 *4 *5 *6)) (-4 *3 (-358)) (-4 *4 (-1217 *3))
- (-4 *5 (-1217 (-402 *4))) (-4 *6 (-337 *3 *4 *5))
- (-5 *2
- (-2 (|:| -3142 (-408 *4 (-402 *4) *5 *6)) (|:| |principalPart| *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1217 *5)) (-4 *5 (-358))
- (-5 *2
- (-2 (|:| |poly| *6) (|:| -3312 (-402 *6))
- (|:| |special| (-402 *6))))
- (-5 *1 (-714 *5 *6)) (-5 *3 (-402 *6))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-358)) (-5 *2 (-631 *3)) (-5 *1 (-881 *3 *4))
- (-4 *3 (-1217 *4))))
- ((*1 *2 *3 *4 *4)
- (|partial| -12 (-5 *4 (-758)) (-4 *5 (-358))
- (-5 *2 (-2 (|:| -3311 *3) (|:| -3324 *3))) (-5 *1 (-881 *3 *5))
- (-4 *3 (-1217 *5))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-631 *9)) (-5 *3 (-631 *8)) (-5 *4 (-112))
- (-4 *8 (-1048 *5 *6 *7)) (-4 *9 (-1054 *5 *6 *7 *8)) (-4 *5 (-446))
- (-4 *6 (-780)) (-4 *7 (-836)) (-5 *1 (-1052 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-631 *9)) (-5 *3 (-631 *8)) (-5 *4 (-112))
- (-4 *8 (-1048 *5 *6 *7)) (-4 *9 (-1054 *5 *6 *7 *8)) (-4 *5 (-446))
- (-4 *6 (-780)) (-4 *7 (-836)) (-5 *1 (-1052 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-631 *9)) (-5 *3 (-631 *8)) (-5 *4 (-112))
- (-4 *8 (-1048 *5 *6 *7)) (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-446))
- (-4 *6 (-780)) (-4 *7 (-836)) (-5 *1 (-1127 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-631 *9)) (-5 *3 (-631 *8)) (-5 *4 (-112))
- (-4 *8 (-1048 *5 *6 *7)) (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-446))
- (-4 *6 (-780)) (-4 *7 (-836)) (-5 *1 (-1127 *5 *6 *7 *8 *9)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1195)) (-5 *2 (-631 *1)) (-4 *1 (-995 *3)))))
-(((*1 *1 *1) (-5 *1 (-48)))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1195))
- (-4 *2 (-1195)) (-5 *1 (-58 *5 *2))))
- ((*1 *2 *3 *1 *2 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1082)) (|has| *1 (-6 -4373))
- (-4 *1 (-149 *2)) (-4 *2 (-1195))))
- ((*1 *2 *3 *1 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4373)) (-4 *1 (-149 *2))
- (-4 *2 (-1195))))
+ (-12 (-4 *4 (-1087)) (-5 *2 (-879 *3 *5)) (-5 *1 (-875 *3 *4 *5))
+ (-4 *3 (-1087)) (-4 *5 (-656 *4)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-406 (-942 *3))) (-5 *1 (-451 *3 *4 *5 *6))
+ (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911))
+ (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1193 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-784))
+ (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-112))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4373)) (-4 *1 (-149 *2))
- (-4 *2 (-1195))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1034))
- (-5 *2 (-2 (|:| -2598 (-1154 *4)) (|:| |deg| (-906))))
- (-5 *1 (-217 *4 *5)) (-5 *3 (-1154 *4)) (-4 *5 (-13 (-546) (-836)))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-236 *5 *6)) (-14 *5 (-758))
- (-4 *6 (-1195)) (-4 *2 (-1195)) (-5 *1 (-235 *5 *6 *2))))
- ((*1 *1 *2 *3)
- (-12 (-4 *4 (-170)) (-5 *1 (-284 *4 *2 *3 *5 *6 *7))
- (-4 *2 (-1217 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3))
- (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-311 *2)) (-4 *2 (-546)) (-4 *2 (-836))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-330 *2 *3 *4 *5)) (-4 *2 (-358)) (-4 *3 (-1217 *2))
- (-4 *4 (-1217 (-402 *3))) (-4 *5 (-337 *2 *3 *4))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1195)) (-4 *2 (-1195))
- (-5 *1 (-366 *5 *4 *2 *6)) (-4 *4 (-368 *5)) (-4 *6 (-368 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1082)) (-4 *2 (-1082))
- (-5 *1 (-418 *5 *4 *2 *6)) (-4 *4 (-420 *5)) (-4 *6 (-420 *2))))
- ((*1 *1 *1) (-5 *1 (-489)))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-631 *5)) (-4 *5 (-1195))
- (-4 *2 (-1195)) (-5 *1 (-629 *5 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1034)) (-4 *2 (-1034))
- (-4 *6 (-368 *5)) (-4 *7 (-368 *5)) (-4 *8 (-368 *2))
- (-4 *9 (-368 *2)) (-5 *1 (-671 *5 *6 *7 *4 *2 *8 *9 *10))
- (-4 *4 (-673 *5 *6 *7)) (-4 *10 (-673 *2 *8 *9))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-698 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ (-12 (-4 *1 (-1193 *4 *5 *6 *3)) (-4 *4 (-550)) (-4 *5 (-784))
+ (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *1 *1 *1) (-5 *1 (-853))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-635 (-558))) (-5 *1 (-994 *3)) (-14 *3 (-558)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-596 *2 *3)) (-4 *3 (-1200)) (-4 *2 (-1087))
+ (-4 *2 (-841)))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-783)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-306)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4))
+ (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
+ (-5 *1 (-1111 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
+ (-5 *1 (-746)))))
+(((*1 *2 *1) (-12 (-5 *2 (-417 *3)) (-5 *1 (-904 *3)) (-4 *3 (-306)))))
+(((*1 *2)
+ (-12 (-5 *2 (-406 (-942 *3))) (-5 *1 (-451 *3 *4 *5 *6))
+ (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911))
+ (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-635 *1)) (-4 *1 (-1053 *4 *5 *6)) (-4 *4 (-1039))
+ (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784))
+ (-4 *5 (-841)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1193 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-784))
+ (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1193 *4 *5 *6 *3)) (-4 *4 (-550)) (-4 *5 (-784))
+ (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *1 *1 *1) (-5 *1 (-853))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1143 (-558))) (-5 *1 (-994 *3)) (-14 *3 (-558)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1200)) (-4 *3 (-372 *2))
+ (-4 *4 (-372 *2))))
+ ((*1 *1 *1 *2)
+ (-12 (|has| *1 (-6 -4383)) (-4 *1 (-596 *3 *2)) (-4 *3 (-1087))
+ (-4 *2 (-1200)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-762)) (-4 *1 (-325 *3 *4)) (-4 *3 (-1039))
+ (-4 *4 (-783)) (-4 *3 (-171)))))
+(((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1039))
+ (-5 *1 (-844 *5 *2)) (-4 *2 (-843 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1159 (-558))) (-5 *1 (-932)) (-5 *3 (-558))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-306)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3))
+ (-5 *1 (-1111 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
+ (-5 *1 (-746)))))
+(((*1 *2 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-306)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-406 (-942 *3))) (-5 *1 (-451 *3 *4 *5 *6))
+ (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911))
+ (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-635 *1)) (-4 *1 (-1053 *4 *5 *6)) (-4 *4 (-1039))
+ (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784))
+ (-4 *5 (-841)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1193 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-784))
+ (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1193 *4 *5 *6 *3)) (-4 *4 (-550)) (-4 *5 (-784))
+ (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1163))
+ (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *2 (-52)) (-5 *1 (-314 *4 *5))
+ (-4 *5 (-13 (-27) (-1185) (-429 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *2 (-52)) (-5 *1 (-314 *4 *3))
+ (-4 *3 (-13 (-27) (-1185) (-429 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-406 (-558)))
+ (-4 *5 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *2 (-52)) (-5 *1 (-314 *5 *3))
+ (-4 *3 (-13 (-27) (-1185) (-429 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *5)))
+ (-4 *5 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *2 (-52)) (-5 *1 (-314 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-293 *3)) (-5 *5 (-406 (-558)))
+ (-4 *3 (-13 (-27) (-1185) (-429 *6)))
+ (-4 *6 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *2 (-52)) (-5 *1 (-314 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 (-558))) (-5 *4 (-293 *6))
+ (-4 *6 (-13 (-27) (-1185) (-429 *5)))
+ (-4 *5 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *2 (-52)) (-5 *1 (-457 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1163)) (-5 *5 (-293 *3))
+ (-4 *3 (-13 (-27) (-1185) (-429 *6)))
+ (-4 *6 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *2 (-52)) (-5 *1 (-457 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *7 (-558))) (-5 *4 (-293 *7)) (-5 *5 (-1213 (-558)))
+ (-4 *7 (-13 (-27) (-1185) (-429 *6)))
+ (-4 *6 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *2 (-52)) (-5 *1 (-457 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-1163)) (-5 *5 (-293 *3)) (-5 *6 (-1213 (-558)))
+ (-4 *3 (-13 (-27) (-1185) (-429 *7)))
+ (-4 *7 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *2 (-52)) (-5 *1 (-457 *7 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-1 *8 (-406 (-558)))) (-5 *4 (-293 *8))
+ (-5 *5 (-1213 (-406 (-558)))) (-5 *6 (-406 (-558)))
+ (-4 *8 (-13 (-27) (-1185) (-429 *7)))
+ (-4 *7 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *2 (-52)) (-5 *1 (-457 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *4 (-1163)) (-5 *5 (-293 *3)) (-5 *6 (-1213 (-406 (-558))))
+ (-5 *7 (-406 (-558))) (-4 *3 (-13 (-27) (-1185) (-429 *8)))
+ (-4 *8 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *2 (-52)) (-5 *1 (-457 *8 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1143 (-2 (|:| |k| (-558)) (|:| |c| *3))))
+ (-4 *3 (-1039)) (-5 *1 (-588 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-589 *3))))
((*1 *1 *2)
- (-12 (-4 *3 (-1034)) (-5 *1 (-699 *3 *2)) (-4 *2 (-1217 *3))))
+ (-12 (-5 *2 (-1143 (-2 (|:| |k| (-558)) (|:| |c| *3))))
+ (-4 *3 (-1039)) (-4 *1 (-1206 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-702 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ (-12 (-5 *2 (-762))
+ (-5 *3 (-1143 (-2 (|:| |k| (-406 (-558))) (|:| |c| *4))))
+ (-4 *4 (-1039)) (-4 *1 (-1227 *4))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-402 *4)) (-4 *4 (-1217 *3)) (-4 *3 (-358))
- (-4 *3 (-170)) (-4 *1 (-711 *3 *4))))
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-4 *1 (-1237 *3))))
((*1 *1 *2)
- (-12 (-4 *3 (-170)) (-4 *1 (-711 *3 *2)) (-4 *2 (-1217 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-943 *5)) (-4 *5 (-1195))
- (-4 *2 (-1195)) (-5 *1 (-942 *5 *2))))
+ (-12 (-5 *2 (-1143 (-2 (|:| |k| (-762)) (|:| |c| *3))))
+ (-4 *3 (-1039)) (-4 *1 (-1237 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-635 (-558))) (-5 *1 (-994 *3)) (-14 *3 (-558)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (|has| *1 (-6 -4383)) (-4 *1 (-596 *3 *4)) (-4 *3 (-1087))
+ (-4 *4 (-1200)) (-5 *2 (-1251)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-558)) (-4 *1 (-322 *4 *2)) (-4 *4 (-1087))
+ (-4 *2 (-130)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-762)) (-4 *3 (-1039)) (-4 *1 (-677 *3 *4 *5))
+ (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
((*1 *1 *2)
- (-12 (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836))
- (-5 *1 (-1019 *3 *4 *5 *2 *6)) (-4 *2 (-934 *3 *4 *5))
- (-14 *6 (-631 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1034)) (-4 *2 (-1034))
- (-14 *5 (-758)) (-14 *6 (-758)) (-4 *8 (-234 *6 *7))
- (-4 *9 (-234 *5 *7)) (-4 *10 (-234 *6 *2)) (-4 *11 (-234 *5 *2))
- (-5 *1 (-1039 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
- (-4 *4 (-1037 *5 *6 *7 *8 *9)) (-4 *12 (-1037 *5 *6 *2 *10 *11))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1138 *5)) (-4 *5 (-1195))
- (-4 *2 (-1195)) (-5 *1 (-1136 *5 *2))))
- ((*1 *2 *2 *1 *3 *4)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2))
- (-4 *1 (-1188 *5 *6 *7 *2)) (-4 *5 (-546)) (-4 *6 (-780))
- (-4 *7 (-836)) (-4 *2 (-1048 *5 *6 *7))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1241 *5)) (-4 *5 (-1195))
- (-4 *2 (-1195)) (-5 *1 (-1240 *5 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-631 (-221))) (-5 *2 (-1241 (-685))) (-5 *1 (-300)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
- (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221)))
- (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-75 FCN JACOBF JACEPS))))
- (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-76 G JACOBG JACGEP))))
- (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-736)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-780)) (-4 *4 (-836)) (-4 *6 (-302)) (-5 *2 (-413 *3))
- (-5 *1 (-729 *5 *4 *6 *3)) (-4 *3 (-934 *6 *5 *4)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836))
- (-4 *7 (-1048 *4 *5 *6))
- (-5 *2 (-2 (|:| |bas| (-470 *4 *5 *6 *7)) (|:| -2292 (-631 *7))))
- (-5 *1 (-962 *4 *5 *6 *7)) (-5 *3 (-631 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))))
+ (-12 (-4 *2 (-1039)) (-4 *1 (-1110 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2))
+ (-4 *5 (-237 *3 *2)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
+ (-5 *1 (-746)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-904 *3)) (-4 *3 (-306)))))
+(((*1 *2)
+ (-12 (-5 *2 (-406 (-942 *3))) (-5 *1 (-451 *3 *4 *5 *6))
+ (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911))
+ (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 (-112) *7 (-635 *7))) (-4 *1 (-1193 *4 *5 *6 *7))
+ (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *1) (-5 *1 (-143))) ((*1 *1 *1) (-5 *1 (-853))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-635 (-558))) (-5 *1 (-994 *3)) (-14 *3 (-558)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-604 *2))) (-5 *4 (-635 (-1163)))
+ (-4 *2 (-13 (-429 (-168 *5)) (-992) (-1185)))
+ (-4 *5 (-13 (-550) (-841))) (-5 *1 (-592 *5 *6 *2))
+ (-4 *6 (-13 (-429 *5) (-992) (-1185))))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-322 *3 *4)) (-4 *3 (-1087))
+ (-4 *4 (-130)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-631 *3)) (-4 *3 (-1195)) (-5 *1 (-1129 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-631 (-311 (-221)))) (-5 *1 (-262)))))
+ (-12 (-5 *2 (-635 *1)) (-4 *3 (-1039)) (-4 *1 (-677 *3 *4 *5))
+ (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-635 *3)) (-4 *3 (-1039)) (-4 *1 (-677 *3 *4 *5))
+ (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1246 *3)) (-4 *3 (-1039)) (-5 *1 (-679 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-635 *4)) (-4 *4 (-1039)) (-4 *1 (-1110 *3 *4 *5 *6))
+ (-4 *5 (-237 *3 *4)) (-4 *6 (-237 *3 *4)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
+ (-5 *1 (-746)))))
+(((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-904 *3)) (-4 *3 (-306)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1214 *5 *4)) (-4 *4 (-807)) (-14 *5 (-1158))
- (-5 *2 (-554)) (-5 *1 (-1096 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-834)) (-5 *1 (-298 *3)))))
-(((*1 *2 *3) (-12 (-5 *2 (-374)) (-5 *1 (-772 *3)) (-4 *3 (-602 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-906)) (-5 *2 (-374)) (-5 *1 (-772 *3))
- (-4 *3 (-602 *2))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-937 *4)) (-4 *4 (-1034)) (-4 *4 (-602 *2))
- (-5 *2 (-374)) (-5 *1 (-772 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-937 *5)) (-5 *4 (-906)) (-4 *5 (-1034))
- (-4 *5 (-602 *2)) (-5 *2 (-374)) (-5 *1 (-772 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-402 (-937 *4))) (-4 *4 (-546)) (-4 *4 (-602 *2))
- (-5 *2 (-374)) (-5 *1 (-772 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-402 (-937 *5))) (-5 *4 (-906)) (-4 *5 (-546))
- (-4 *5 (-602 *2)) (-5 *2 (-374)) (-5 *1 (-772 *5))))
+ (-12 (-5 *3 (-1246 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171))
+ (-5 *2 (-635 (-942 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-635 (-942 *4))) (-5 *1 (-415 *3 *4))
+ (-4 *3 (-416 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-635 (-942 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-635 (-942 *3))) (-5 *1 (-451 *3 *4 *5 *6))
+ (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911))
+ (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3)))))
((*1 *2 *3)
- (-12 (-5 *3 (-311 *4)) (-4 *4 (-546)) (-4 *4 (-836))
- (-4 *4 (-602 *2)) (-5 *2 (-374)) (-5 *1 (-772 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-311 *5)) (-5 *4 (-906)) (-4 *5 (-546)) (-4 *5 (-836))
- (-4 *5 (-602 *2)) (-5 *2 (-374)) (-5 *1 (-772 *5)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-446))
- (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836))
- (-5 *1 (-962 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *6 (-546)) (-4 *2 (-934 *3 *5 *4))
- (-5 *1 (-719 *5 *4 *6 *2)) (-5 *3 (-402 (-937 *6))) (-4 *5 (-780))
- (-4 *4 (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $))))))))
+ (-12 (-5 *3 (-1246 (-451 *4 *5 *6 *7))) (-5 *2 (-635 (-942 *4)))
+ (-5 *1 (-451 *4 *5 *6 *7)) (-4 *4 (-550)) (-4 *4 (-171))
+ (-14 *5 (-911)) (-14 *6 (-635 (-1163))) (-14 *7 (-1246 (-679 *4))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-635 *3)) (-4 *3 (-1200)) (-5 *1 (-1134 *3)))))
+(((*1 *2 *2 *1 *3 *4)
+ (-12 (-5 *2 (-635 *8)) (-5 *3 (-1 *8 *8 *8))
+ (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1193 *5 *6 *7 *8)) (-4 *5 (-550))
+ (-4 *6 (-784)) (-4 *7 (-841)) (-4 *8 (-1053 *5 *6 *7)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-853))))
+ ((*1 *1 *1) (-5 *1 (-853))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-635 (-558))) (-5 *1 (-994 *3)) (-14 *3 (-558)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-550) (-841))) (-5 *2 (-168 *5))
+ (-5 *1 (-592 *4 *5 *3)) (-4 *5 (-13 (-429 *4) (-992) (-1185)))
+ (-4 *3 (-13 (-429 (-168 *4)) (-992) (-1185))))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-322 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-130))
+ (-4 *3 (-783)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906))
- (-4 *4 (-1034)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-600 *6)) (-4 *6 (-13 (-425 *5) (-27) (-1180)))
- (-4 *5 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554))))
- (-5 *2 (-1154 (-402 (-1154 *6)))) (-5 *1 (-550 *5 *6 *7))
- (-5 *3 (-1154 *6)) (-4 *7 (-1082))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1217 *3)) (-5 *1 (-699 *3 *2)) (-4 *3 (-1034))))
+ (-12
+ (-5 *2
+ (-635
+ (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224)))
+ (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224)))))
+ (-5 *1 (-553))))
((*1 *2 *1)
- (-12 (-4 *1 (-711 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1217 *3))))
- ((*1 *2 *3 *4 *4 *5 *6 *7 *8)
- (|partial| -12 (-5 *4 (-1154 *11)) (-5 *6 (-631 *10))
- (-5 *7 (-631 (-758))) (-5 *8 (-631 *11)) (-4 *10 (-836))
- (-4 *11 (-302)) (-4 *9 (-780)) (-4 *5 (-934 *11 *9 *10))
- (-5 *2 (-631 (-1154 *5))) (-5 *1 (-729 *9 *10 *11 *5))
- (-5 *3 (-1154 *5))))
+ (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1087))
+ (-5 *2 (-635 *3))))
((*1 *2 *1)
- (-12 (-4 *2 (-934 *3 *4 *5)) (-5 *1 (-1019 *3 *4 *5 *2 *6))
- (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-14 *6 (-631 *2)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-631 (-758))) (-5 *3 (-112)) (-5 *1 (-1146 *4 *5))
- (-14 *4 (-906)) (-4 *5 (-1034)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836))
- (-4 *3 (-1048 *6 *7 *8))
- (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *4))))
- (-5 *1 (-1090 *6 *7 *8 *3 *4)) (-4 *4 (-1054 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-631 (-2 (|:| |val| (-631 *8)) (|:| -2143 *9))))
- (-5 *5 (-112)) (-4 *8 (-1048 *6 *7 *4)) (-4 *9 (-1054 *6 *7 *4 *8))
- (-4 *6 (-446)) (-4 *7 (-780)) (-4 *4 (-836))
- (-5 *2 (-631 (-2 (|:| |val| *8) (|:| -2143 *9))))
- (-5 *1 (-1090 *6 *7 *4 *8 *9)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2))
- (-4 *4 (-368 *2)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-928 (-221)) (-928 (-221)))) (-5 *1 (-258))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1241 *1)) (-4 *1 (-324 *4)) (-4 *4 (-358))
- (-5 *2 (-675 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-1241 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1241 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170))
- (-5 *2 (-675 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1241 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170))
- (-5 *2 (-1241 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1241 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170))
- (-4 *5 (-1217 *4)) (-5 *2 (-675 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1241 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170))
- (-4 *5 (-1217 *4)) (-5 *2 (-1241 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1241 *1)) (-4 *1 (-404 *4 *5)) (-4 *4 (-170))
- (-4 *5 (-1217 *4)) (-5 *2 (-675 *4))))
+ (-12
+ (-5 *2
+ (-635
+ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
+ (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224)))
+ (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224)))
+ (|:| |abserr| (-224)) (|:| |relerr| (-224)))))
+ (-5 *1 (-794)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-891 *2)) (-4 *2 (-1087))))
+ ((*1 *1 *2) (-12 (-5 *1 (-891 *2)) (-4 *2 (-1087)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1110 *3 *4 *2 *5)) (-4 *4 (-1039)) (-4 *5 (-237 *3 *4))
+ (-4 *2 (-237 *3 *4)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
+ (-5 *1 (-746)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1159 *3)) (-5 *1 (-904 *3)) (-4 *3 (-306)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-762))
+ (-5 *1 (-447 *4 *5 *6 *3)) (-4 *3 (-939 *4 *5 *6)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1193 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-784))
+ (-4 *5 (-841)) (-4 *2 (-1053 *3 *4 *5)))))
+(((*1 *1 *1) (-5 *1 (-853))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-933 (-224))) (-5 *4 (-864)) (-5 *2 (-1251))
+ (-5 *1 (-466))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1039)) (-4 *1 (-970 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-404 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1217 *3))
- (-5 *2 (-1241 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1241 *1)) (-4 *1 (-412 *4)) (-4 *4 (-170))
- (-5 *2 (-675 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-1241 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-631 (-675 *5))) (-5 *3 (-675 *5)) (-4 *5 (-358))
- (-5 *2 (-1241 *5)) (-5 *1 (-1068 *5)))))
-(((*1 *1) (-5 *1 (-1064))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-848))))
- ((*1 *1 *1) (-5 *1 (-848))))
+ (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-933 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-933 *3)) (-4 *3 (-1039)) (-4 *1 (-1121 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-762)) (-4 *1 (-1121 *3)) (-4 *3 (-1039))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-635 *3)) (-4 *1 (-1121 *3)) (-4 *3 (-1039))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-933 *3)) (-4 *1 (-1121 *3)) (-4 *3 (-1039))))
+ ((*1 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-933 (-224))) (-5 *1 (-1196)) (-5 *3 (-224)))))
+(((*1 *1 *2 *2)
+ (-12 (-5 *2 (-635 (-558))) (-5 *1 (-994 *3)) (-14 *3 (-558)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1076 (-829 (-221)))) (-5 *2 (-221)) (-5 *1 (-188))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1076 (-829 (-221)))) (-5 *2 (-221)) (-5 *1 (-295))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1076 (-829 (-221)))) (-5 *2 (-221)) (-5 *1 (-300)))))
+ (-12 (-4 *4 (-13 (-550) (-841)))
+ (-4 *2 (-13 (-429 (-168 *4)) (-992) (-1185)))
+ (-5 *1 (-592 *4 *3 *2)) (-4 *3 (-13 (-429 *4) (-992) (-1185))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-558)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *2 (-1039))
+ (-5 *1 (-320 *4 *5 *2 *6)) (-4 *6 (-939 *2 *4 *5)))))
(((*1 *1 *1 *1)
- (-12 (-5 *1 (-635 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23))
+ (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-1087)) (-4 *3 (-23))
(-14 *4 *3)))
((*1 *1 *2 *3 *1)
- (-12 (-5 *1 (-635 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23))
+ (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-1087)) (-4 *3 (-23))
(-14 *4 *3)))
((*1 *1 *1 *1)
- (-12 (-5 *1 (-661 *2)) (-4 *2 (-1034)) (-4 *2 (-1082)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1241 *4)) (-5 *3 (-554)) (-4 *4 (-344))
- (-5 *1 (-522 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1158)) (-5 *5 (-1076 (-221))) (-5 *2 (-912))
- (-5 *1 (-910 *3)) (-4 *3 (-602 (-530)))))
- ((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *4 (-1158)) (-5 *5 (-1076 (-221))) (-5 *2 (-912))
- (-5 *1 (-910 *3)) (-4 *3 (-602 (-530)))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1076 (-221))) (-5 *1 (-911))))
- ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1076 (-221)))
- (-5 *1 (-911))))
- ((*1 *1 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1076 (-221)))
- (-5 *1 (-911))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1076 (-221))) (-5 *1 (-912))))
- ((*1 *1 *2 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1076 (-221)))
- (-5 *1 (-912))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1076 (-221)))
- (-5 *1 (-912))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-631 (-1 (-221) (-221)))) (-5 *3 (-1076 (-221)))
- (-5 *1 (-912))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-631 (-1 (-221) (-221)))) (-5 *3 (-1076 (-221)))
- (-5 *1 (-912))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1076 (-221)))
- (-5 *1 (-912))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1076 (-221)))
- (-5 *1 (-912)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1241 *5)) (-4 *5 (-779)) (-5 *2 (-112))
- (-5 *1 (-831 *4 *5)) (-14 *4 (-758)))))
-(((*1 *1 *2) (-12 (-5 *2 (-631 (-325))) (-5 *1 (-325)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-221) (-221))) (-5 *1 (-313)) (-5 *3 (-221)))))
-(((*1 *1 *2) (-12 (-5 *2 (-631 (-374))) (-5 *1 (-258))))
- ((*1 *1)
- (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-546)) (-4 *2 (-170))))
- ((*1 *2 *1) (-12 (-5 *1 (-413 *2)) (-4 *2 (-546)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-374)) (-5 *1 (-1046)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-631 *2)) (-4 *2 (-1217 *4)) (-5 *1 (-533 *4 *2 *5 *6))
- (-4 *4 (-302)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-758))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-928 (-221))) (-5 *2 (-1246)) (-5 *1 (-462)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-1158))
- (-4 *4 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554))))
- (-5 *1 (-610 *4 *2)) (-4 *2 (-13 (-1180) (-944) (-29 *4))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1241 *1)) (-4 *1 (-362 *2)) (-4 *2 (-170))))
- ((*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-411 *3 *2)) (-4 *3 (-412 *2))))
- ((*1 *2) (-12 (-4 *1 (-412 *2)) (-4 *2 (-170)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1034)))))
-(((*1 *2 *3 *4 *5 *4 *4 *4)
- (-12 (-4 *6 (-836)) (-5 *3 (-631 *6)) (-5 *5 (-631 *3))
- (-5 *2
- (-2 (|:| |f1| *3) (|:| |f2| (-631 *5)) (|:| |f3| *5)
- (|:| |f4| (-631 *5))))
- (-5 *1 (-1166 *6)) (-5 *4 (-631 *5)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1265 *3 *4)) (-4 *1 (-369 *3 *4)) (-4 *3 (-836))
- (-4 *4 (-170))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-381 *2)) (-4 *2 (-1082))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-806 *2)) (-4 *2 (-836))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-806 *2)) (-4 *2 (-836))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1258 *2 *3)) (-4 *2 (-836)) (-4 *3 (-1034))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-806 *3)) (-4 *1 (-1258 *3 *4)) (-4 *3 (-836))
- (-4 *4 (-1034))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1258 *2 *3)) (-4 *2 (-836)) (-4 *3 (-1034)))))
-(((*1 *1 *2) (-12 (-5 *1 (-1011 *2)) (-4 *2 (-1195)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-1173)))))
+ (-12 (-5 *1 (-665 *2)) (-4 *2 (-1039)) (-4 *2 (-1087)))))
(((*1 *2 *3)
- (-12 (-4 *3 (-1217 (-402 (-554))))
- (-5 *2 (-2 (|:| |den| (-554)) (|:| |gcdnum| (-554))))
- (-5 *1 (-898 *3 *4)) (-4 *4 (-1217 (-402 *3)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1217 (-402 *2))) (-5 *2 (-554)) (-5 *1 (-898 *4 *3))
- (-4 *3 (-1217 (-402 *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-1195)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1011 (-829 (-554)))) (-5 *1 (-584 *3)) (-4 *3 (-1034)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2))
- (-4 *2 (-13 (-425 *3) (-1180))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1241 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170))
- (-4 *5 (-1217 *4)) (-5 *2 (-675 *4))))
+ (-12 (-5 *3 (-679 *2)) (-4 *4 (-1222 *2))
+ (-4 *2 (-13 (-306) (-10 -8 (-15 -1380 ((-417 $) $)))))
+ (-5 *1 (-497 *2 *4 *5)) (-4 *5 (-408 *2 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-404 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1217 *3))
- (-5 *2 (-675 *3)))))
-(((*1 *1 *1) (-5 *1 (-221)))
- ((*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222))))
- ((*1 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2))
- (-4 *2 (-425 *3))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2))
- (-4 *2 (-425 *3))))
- ((*1 *1 *1) (-4 *1 (-1121))) ((*1 *1 *1 *1) (-4 *1 (-1121))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-758)) (-5 *1 (-103 *3)) (-4 *3 (-1082)))))
-(((*1 *2)
- (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3))
- (-4 *5 (-1217 (-402 *4))) (-5 *2 (-112)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1154 *1)) (-5 *3 (-1158)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1154 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-937 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1158)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-836) (-546)))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-836) (-546)))))
+ (-12 (-4 *1 (-1110 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2))
+ (-4 *5 (-237 *3 *2)) (-4 *2 (-1039)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
+ (-5 *1 (-746)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-762)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-558))
+ (-14 *4 *2) (-4 *5 (-171))))
+ ((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-911)) (-5 *1 (-164 *3 *4))
+ (-4 *3 (-165 *4))))
+ ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-911))))
+ ((*1 *2)
+ (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1222 *3))
+ (-5 *2 (-911))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-362)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4))
+ (-5 *2 (-762)) (-5 *1 (-519 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1154 *2)) (-5 *4 (-1158)) (-4 *2 (-425 *5))
- (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-836) (-546)))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1154 *1)) (-5 *3 (-906)) (-4 *1 (-997))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-1154 *1)) (-5 *3 (-906)) (-5 *4 (-848))
- (-4 *1 (-997))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *3 (-906)) (-4 *4 (-13 (-834) (-358)))
- (-4 *1 (-1051 *4 *2)) (-4 *2 (-1217 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))))
-(((*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-836)) (-4 *2 (-546))))
- ((*1 *1 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-546)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
- (-5 *4 (-675 (-1154 *8))) (-4 *5 (-1034)) (-4 *8 (-1034))
- (-4 *6 (-1217 *5)) (-5 *2 (-675 *6)) (-5 *1 (-495 *5 *6 *7 *8))
- (-4 *7 (-1217 *6)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836))
- (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-973 *4 *5 *6 *7 *3)) (-4 *3 (-1054 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836))
- (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1089 *4 *5 *6 *7 *3)) (-4 *3 (-1054 *4 *5 *6 *7)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-554)) (-5 *1 (-682 *2)) (-4 *2 (-1217 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-631 (-402 (-937 (-554))))) (-5 *4 (-631 (-1158)))
- (-5 *2 (-631 (-631 *5))) (-5 *1 (-375 *5))
- (-4 *5 (-13 (-834) (-358)))))
+ (-12 (-5 *3 (-679 *5)) (-5 *4 (-1246 *5)) (-4 *5 (-362))
+ (-5 *2 (-762)) (-5 *1 (-657 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-402 (-937 (-554)))) (-5 *2 (-631 *4)) (-5 *1 (-375 *4))
- (-4 *4 (-13 (-834) (-358))))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-592 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1195))
- (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-551)) (-5 *3 (-554)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1158)) (-4 *5 (-358)) (-5 *2 (-1138 (-1138 (-937 *5))))
- (-5 *1 (-1249 *5)) (-5 *4 (-1138 (-937 *5))))))
-(((*1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-601 (-848))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-546)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-358) (-297)
- (-10 -8 (-15 -2810 ((-1107 *3 (-600 $)) $))
- (-15 -2822 ((-1107 *3 (-600 $)) $))
- (-15 -3075 ($ (-1107 *3 (-600 $))))))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1154 *1)) (-5 *4 (-1158)) (-4 *1 (-27))
- (-5 *2 (-631 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-27)) (-5 *2 (-631 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-937 *1)) (-4 *1 (-27)) (-5 *2 (-631 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-836) (-546))) (-5 *2 (-631 *1))
- (-4 *1 (-29 *4))))
+ (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4383))))
+ (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4383)))) (-5 *2 (-762))
+ (-5 *1 (-658 *5 *6 *4 *3)) (-4 *3 (-677 *5 *6 *4))))
((*1 *2 *1)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *2 (-631 *1)) (-4 *1 (-29 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-906)) (-5 *2 (-462)) (-5 *1 (-1242)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-631 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1048 *5 *6 *7)) (-4 *5 (-546))
- (-4 *6 (-780)) (-4 *7 (-836)) (-5 *1 (-962 *5 *6 *7 *8)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-14 *5 (-631 (-1158))) (-4 *2 (-170))
- (-4 *4 (-234 (-2563 *5) (-758)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2717 *3) (|:| -1407 *4))
- (-2 (|:| -2717 *3) (|:| -1407 *4))))
- (-5 *1 (-455 *5 *2 *3 *4 *6 *7)) (-4 *3 (-836))
- (-4 *7 (-934 *2 *4 (-850 *5))))))
-(((*1 *2) (-12 (-5 *2 (-631 *3)) (-5 *1 (-1066 *3)) (-4 *3 (-131)))))
+ (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-4 *3 (-550)) (-5 *2 (-762))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-550)) (-4 *4 (-171)) (-4 *5 (-372 *4))
+ (-4 *6 (-372 *4)) (-5 *2 (-762)) (-5 *1 (-678 *4 *5 *6 *3))
+ (-4 *3 (-677 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039))
+ (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-4 *5 (-550))
+ (-5 *2 (-762)))))
+(((*1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-306)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-2 (|:| |totdeg| (-762)) (|:| -2574 *4))) (-5 *5 (-762))
+ (-4 *4 (-939 *6 *7 *8)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841))
+ (-5 *2
+ (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-5 *1 (-447 *6 *7 *8 *4)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
+ (-4 *4 (-841))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1193 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-784))
+ (-4 *5 (-841)) (-4 *2 (-1053 *3 *4 *5)))))
+(((*1 *1 *1 *1) (-5 *1 (-853))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1217 *6))
- (-4 *6 (-13 (-27) (-425 *5)))
- (-4 *5 (-13 (-836) (-546) (-1023 (-554)))) (-4 *8 (-1217 (-402 *7)))
- (-5 *2 (-575 *3)) (-5 *1 (-542 *5 *6 *7 *8 *3))
- (-4 *3 (-337 *6 *7 *8)))))
+ (-12 (-5 *3 (-417 *5)) (-4 *5 (-550))
+ (-5 *2
+ (-2 (|:| -1951 (-762)) (|:| -2023 *5) (|:| |radicand| (-635 *5))))
+ (-5 *1 (-319 *5)) (-5 *4 (-762))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-992)) (-5 *2 (-558)))))
+(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-609))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-550) (-841)))
+ (-4 *2 (-13 (-429 *4) (-992) (-1185))) (-5 *1 (-592 *4 *2 *3))
+ (-4 *3 (-13 (-429 (-168 *4)) (-992) (-1185))))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-631 *2)) (-4 *2 (-539)) (-5 *1 (-157 *2)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1195)) (-4 *2 (-836))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-277 *3)) (-4 *3 (-1195))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-953 *2)) (-4 *2 (-836)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780))
- (-4 *4 (-836)) (-4 *2 (-546)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-912)))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-544 *2)) (-4 *2 (-13 (-399) (-1180))))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-358)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112))
- (-5 *1 (-498 *4 *5 *6 *3)) (-4 *3 (-934 *4 *5 *6)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-705 *2)) (-4 *2 (-358)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1241 *1)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199))
- (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1233 *2 *3 *4)) (-4 *2 (-1034)) (-14 *3 (-1158))
- (-14 *4 *2))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
-(((*1 *2 *1) (-12 (-5 *2 (-761)) (-5 *1 (-52)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-167 (-221))) (-5 *5 (-554)) (-5 *6 (-1140))
- (-5 *3 (-221)) (-5 *2 (-1020)) (-5 *1 (-745)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *4 (-554)) (-5 *6 (-1 (-1246) (-1241 *5) (-1241 *5) (-374)))
- (-5 *3 (-1241 (-374))) (-5 *5 (-374)) (-5 *2 (-1246))
- (-5 *1 (-775)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1034)) (-5 *1 (-1213 *3 *2)) (-4 *2 (-1217 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-402 (-937 *3))) (-5 *1 (-447 *3 *4 *5 *6))
- (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906))
- (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))))
+ (-12 (-5 *2 (-1159 *7)) (-5 *3 (-558)) (-4 *7 (-939 *6 *4 *5))
+ (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1039))
+ (-5 *1 (-320 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-362))
+ (-5 *1 (-519 *2 *4 *5 *3)) (-4 *3 (-677 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2))
+ (|has| *2 (-6 (-4384 "*"))) (-4 *2 (-1039))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-171))
+ (-5 *1 (-678 *2 *4 *5 *3)) (-4 *3 (-677 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1110 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2))
+ (-4 *5 (-237 *3 *2)) (|has| *2 (-6 (-4384 "*"))) (-4 *2 (-1039)))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-679 (-224))) (-5 *4 (-558)) (-5 *2 (-1025))
+ (-5 *1 (-746)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987))))))
+ (-12 (-4 *3 (-1222 (-406 (-558)))) (-5 *1 (-903 *3 *2))
+ (-4 *2 (-1222 (-406 *3))))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-631 *2)) (-5 *1 (-177 *2)) (-4 *2 (-302))))
- ((*1 *2 *3 *2)
- (-12 (-5 *3 (-631 (-631 *4))) (-5 *2 (-631 *4)) (-4 *4 (-302))
- (-5 *1 (-177 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-631 *8))
- (-5 *4
- (-631
- (-2 (|:| -3782 (-675 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-675 *7)))))
- (-5 *5 (-758)) (-4 *8 (-1217 *7)) (-4 *7 (-1217 *6)) (-4 *6 (-344))
- (-5 *2
- (-2 (|:| -3782 (-675 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-675 *7))))
- (-5 *1 (-492 *6 *7 *8))))
- ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-551)))))
-(((*1 *1) (-5 *1 (-432))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1233 *2 *3 *4)) (-4 *2 (-1034)) (-14 *3 (-1158))
- (-14 *4 *2))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2))
- (-4 *2 (-425 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1121))))
-(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-221)) (-5 *4 (-554))
- (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085))))
- (-5 *2 (-1020)) (-5 *1 (-735)))))
-(((*1 *1) (-5 *1 (-325))))
-(((*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1195)))))
-(((*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-1197)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1226 *3 *4 *5)) (-4 *3 (-13 (-358) (-836)))
- (-14 *4 (-1158)) (-14 *5 *3) (-5 *1 (-314 *3 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 (-374))) (-5 *1 (-1025)) (-5 *3 (-374)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-762)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-784)) (-4 *7 (-939 *4 *5 *6)) (-4 *4 (-450)) (-4 *6 (-841))
+ (-5 *2 (-112)) (-5 *1 (-447 *4 *5 *6 *7)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
+ (-4 *4 (-841))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1193 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-784))
+ (-4 *5 (-841)) (-4 *2 (-1053 *3 *4 *5)))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-853))) ((*1 *1 *1 *1) (-5 *1 (-853)))
+ ((*1 *1 *1) (-5 *1 (-853))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-5 *1 (-990 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-168 *5)) (-4 *5 (-13 (-429 *4) (-992) (-1185)))
+ (-4 *4 (-13 (-550) (-841)))
+ (-4 *2 (-13 (-429 (-168 *4)) (-992) (-1185)))
+ (-5 *1 (-592 *4 *5 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1159 *6)) (-4 *6 (-1039)) (-4 *4 (-784)) (-4 *5 (-841))
+ (-5 *2 (-1159 *7)) (-5 *1 (-320 *4 *5 *6 *7))
+ (-4 *7 (-939 *6 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-779))
- (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-1082))
- (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-584 *3)) (-4 *3 (-1034))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-546)) (-5 *2 (-112)) (-5 *1 (-611 *3 *4))
- (-4 *4 (-1217 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-722 *3 *4)) (-4 *3 (-1034))
- (-4 *4 (-713))))
+ (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2))
+ (|has| *2 (-6 (-4384 "*"))) (-4 *2 (-1039))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-171))
+ (-5 *1 (-678 *2 *4 *5 *3)) (-4 *3 (-677 *2 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034))
- (-5 *2 (-112)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 (-112) *7 (-631 *7))) (-4 *1 (-1188 *4 *5 *6 *7))
- (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836))
- (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-746)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))))
-(((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1158)) (-5 *3 (-112)) (-5 *1 (-877 *4))
- (-4 *4 (-1082)))))
-(((*1 *1 *1 *1) (-4 *1 (-539))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-1034))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-928 (-221))) (-5 *1 (-1191))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1195)) (-4 *2 (-1034)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1190 *3)) (-4 *3 (-959)))))
+ (-12 (-4 *1 (-1110 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2))
+ (-4 *5 (-237 *3 *2)) (|has| *2 (-6 (-4384 "*"))) (-4 *2 (-1039)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
+ (-5 *1 (-746)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1222 (-406 *2))) (-5 *2 (-558)) (-5 *1 (-903 *4 *3))
+ (-4 *3 (-1222 (-406 *4))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-558)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-5 *2 (-1251)) (-5 *1 (-447 *4 *5 *6 *7)) (-4 *7 (-939 *4 *5 *6)))))
+(((*1 *1) (-5 *1 (-329))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1193 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-784))
+ (-4 *5 (-841)) (-4 *2 (-1053 *3 *4 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853))))
+ ((*1 *1 *1) (-5 *1 (-853))))
+(((*1 *1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171))))
+ ((*1 *1 *1 *1) (-4 *1 (-471)))
+ ((*1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171))))
+ ((*1 *2 *2) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-873))))
+ ((*1 *1 *1) (-5 *1 (-961)))
+ ((*1 *1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-171)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1016 (-834 (-558))))
+ (-5 *3 (-1143 (-2 (|:| |k| (-558)) (|:| |c| *4)))) (-4 *4 (-1039))
+ (-5 *1 (-588 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1159 *7)) (-4 *7 (-939 *6 *4 *5)) (-4 *4 (-784))
+ (-4 *5 (-841)) (-4 *6 (-1039)) (-5 *2 (-1159 *6))
+ (-5 *1 (-320 *4 *5 *6 *7)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1108 *2)) (-4 *2 (-1200)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1145)) (-5 *4 (-558)) (-5 *5 (-679 (-168 (-224))))
+ (-5 *2 (-1025)) (-5 *1 (-745)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-2 (|:| |den| (-558)) (|:| |gcdnum| (-558)))))
+ (-4 *4 (-1222 (-406 *2))) (-5 *2 (-558)) (-5 *1 (-903 *4 *5))
+ (-4 *5 (-1222 (-406 *4))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 *7)) (-4 *7 (-939 *4 *5 *6)) (-4 *4 (-450))
+ (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-1251))
+ (-5 *1 (-447 *4 *5 *6 *7)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1193 *2 *3 *4 *5)) (-4 *2 (-550)) (-4 *3 (-784))
+ (-4 *4 (-841)) (-4 *5 (-1053 *2 *3 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-301))))
+ ((*1 *1 *1) (-4 *1 (-301)))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853))))
+ ((*1 *1 *1) (-5 *1 (-853))))
+(((*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171))))
+ ((*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-171)))))
(((*1 *2 *1)
- (-12 (-4 *4 (-1082)) (-5 *2 (-874 *3 *4)) (-5 *1 (-870 *3 *4 *5))
- (-4 *3 (-1082)) (-4 *5 (-652 *4)))))
-(((*1 *1 *1 *1) (-5 *1 (-848))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-389))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-1175)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-302)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3))
- (-5 *1 (-1106 *3 *4 *5 *2)) (-4 *2 (-673 *3 *4 *5)))))
+ (-12 (-5 *2 (-1016 (-834 (-558)))) (-5 *1 (-588 *3)) (-4 *3 (-1039)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1159 *9)) (-5 *4 (-635 *7)) (-5 *5 (-635 *8))
+ (-4 *7 (-841)) (-4 *8 (-1039)) (-4 *9 (-939 *8 *6 *7))
+ (-4 *6 (-784)) (-5 *2 (-1159 *8)) (-5 *1 (-320 *6 *7 *8 *9)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1108 *2)) (-4 *2 (-1200)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1145)) (-5 *4 (-558)) (-5 *5 (-679 (-168 (-224))))
+ (-5 *2 (-1025)) (-5 *1 (-745)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-167 *4)) (-5 *1 (-179 *4 *3))
- (-4 *4 (-13 (-358) (-834))) (-4 *3 (-1217 *2)))))
+ (-12 (-4 *3 (-1222 (-406 (-558))))
+ (-5 *2 (-2 (|:| |den| (-558)) (|:| |gcdnum| (-558))))
+ (-5 *1 (-903 *3 *4)) (-4 *4 (-1222 (-406 *3)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1222 (-406 *2))) (-5 *2 (-558)) (-5 *1 (-903 *4 *3))
+ (-4 *3 (-1222 (-406 *4))))))
+(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
+ (-12 (-5 *2 (-558))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-762)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-784)) (-4 *4 (-939 *5 *6 *7)) (-4 *5 (-450)) (-4 *7 (-841))
+ (-5 *1 (-447 *5 *6 *7 *4)))))
(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1265 *3 *4)) (-4 *1 (-369 *3 *4)) (-4 *3 (-836))
- (-4 *4 (-170))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-381 *2)) (-4 *2 (-1082))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-806 *2)) (-4 *2 (-836))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-806 *2)) (-4 *2 (-836))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1258 *2 *3)) (-4 *2 (-836)) (-4 *3 (-1034))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-806 *3)) (-4 *1 (-1258 *3 *4)) (-4 *3 (-836))
- (-4 *4 (-1034))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1258 *2 *3)) (-4 *2 (-836)) (-4 *3 (-1034)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-13 (-358) (-145) (-1023 (-402 (-554)))))
- (-4 *3 (-1217 *4)) (-5 *1 (-796 *4 *3 *2 *5)) (-4 *2 (-642 *3))
- (-4 *5 (-642 (-402 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-402 *5))
- (-4 *4 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-4 *5 (-1217 *4))
- (-5 *1 (-796 *4 *5 *2 *6)) (-4 *2 (-642 *5)) (-4 *6 (-642 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-631 (-1158))) (-4 *4 (-1082))
- (-4 *5 (-13 (-1034) (-871 *4) (-836) (-602 (-877 *4))))
- (-5 *1 (-54 *4 *5 *2))
- (-4 *2 (-13 (-425 *5) (-871 *4) (-602 (-877 *4)))))))
-(((*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-685))))
- ((*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-685)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-318 *3 *4)) (-4 *3 (-1082))
- (-4 *4 (-130))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1082)) (-5 *1 (-356 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1082)) (-5 *1 (-381 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1082)) (-5 *1 (-635 *3 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-554)) (-5 *6 (-1 (-1246) (-1241 *5) (-1241 *5) (-374)))
- (-5 *3 (-1241 (-374))) (-5 *5 (-374)) (-5 *2 (-1246))
- (-5 *1 (-775))))
- ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
- (-12 (-5 *4 (-554)) (-5 *6 (-1 (-1246) (-1241 *5) (-1241 *5) (-374)))
- (-5 *3 (-1241 (-374))) (-5 *5 (-374)) (-5 *2 (-1246))
- (-5 *1 (-775)))))
+ (-12 (-4 *1 (-1193 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-784))
+ (-4 *5 (-841)) (-4 *2 (-1053 *3 *4 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853)))))
+(((*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171))))
+ ((*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-171)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-631 (-928 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-631 (-928 *3))) (-4 *3 (-1034)) (-4 *1 (-1116 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-631 (-631 *3))) (-4 *1 (-1116 *3)) (-4 *3 (-1034))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-631 (-928 *3))) (-4 *1 (-1116 *3)) (-4 *3 (-1034)))))
-(((*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-5 *1 (-724 *3))))
- ((*1 *1 *2) (-12 (-5 *1 (-724 *2)) (-4 *2 (-1082))))
- ((*1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-1082)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1246)) (-5 *1 (-809)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1160 (-402 (-554)))) (-5 *1 (-186)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554)))))))
- (-5 *1 (-1110 *3 *2)) (-4 *3 (-1217 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1195)) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-1143 (-2 (|:| |k| (-558)) (|:| |c| *3))))
+ (-5 *1 (-588 *3)) (-4 *3 (-1039)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-406 (-558))) (-5 *1 (-318 *3 *4 *5))
+ (-4 *3 (-13 (-362) (-841))) (-14 *4 (-1163)) (-14 *5 *3))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-504)) (-5 *3 (-1105)) (-5 *1 (-1102)))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-168 (-224)))) (-5 *2 (-1025))
+ (-5 *1 (-745)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-631 (-554))) (-5 *2 (-1160 (-402 (-554))))
- (-5 *1 (-186)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-554)) (-5 *3 (-758)) (-5 *1 (-551)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-554)) (|has| *1 (-6 -4374)) (-4 *1 (-368 *3))
- (-4 *3 (-1195)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-675 *3)) (-4 *3 (-1034)) (-5 *1 (-1013 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-631 (-675 *3))) (-4 *3 (-1034)) (-5 *1 (-1013 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-675 *3)) (-4 *3 (-1034)) (-5 *1 (-1013 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-631 (-675 *3))) (-4 *3 (-1034)) (-5 *1 (-1013 *3)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-758)) (-4 *2 (-546)) (-5 *1 (-954 *2 *4))
- (-4 *4 (-1217 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-631 *7)) (-4 *7 (-1054 *3 *4 *5 *6)) (-4 *3 (-446))
- (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5))
- (-5 *1 (-973 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-631 *7)) (-4 *7 (-1054 *3 *4 *5 *6)) (-4 *3 (-446))
- (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5))
- (-5 *1 (-1089 *3 *4 *5 *6 *7)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-961 *4 *5 *6 *3)) (-4 *4 (-1034)) (-4 *5 (-780))
- (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-4 *4 (-546))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
-(((*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-912)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1158)) (-5 *1 (-575 *2)) (-4 *2 (-1023 *3))
- (-4 *2 (-358))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-575 *2)) (-4 *2 (-358))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-836) (-546))) (-5 *1 (-618 *4 *2))
- (-4 *2 (-13 (-425 *4) (-987) (-1180)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1074 *2)) (-4 *2 (-13 (-425 *4) (-987) (-1180)))
- (-4 *4 (-13 (-836) (-546))) (-5 *1 (-618 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-944)) (-5 *2 (-1158))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1074 *1)) (-4 *1 (-944)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-546)) (-5 *2 (-943 *3)) (-5 *1 (-1145 *4 *3))
- (-4 *3 (-1217 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-446)) (-4 *4 (-836)) (-4 *5 (-780)) (-5 *2 (-112))
- (-5 *1 (-972 *3 *4 *5 *6)) (-4 *6 (-934 *3 *5 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-13 (-1082) (-34)))
- (-4 *4 (-13 (-1082) (-34))))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-758)) (-5 *1 (-842 *2)) (-4 *2 (-170))))
- ((*1 *2 *3 *3 *2)
- (-12 (-5 *3 (-758)) (-5 *1 (-842 *2)) (-4 *2 (-170)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-631 (-402 *7)))
- (-4 *7 (-1217 *6)) (-5 *3 (-402 *7)) (-4 *6 (-358))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-631 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-564 *6 *7)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *2 (-631 (-1154 *7))) (-5 *3 (-1154 *7))
- (-4 *7 (-934 *5 *6 *4)) (-4 *5 (-894)) (-4 *6 (-780))
- (-4 *4 (-836)) (-5 *1 (-891 *5 *6 *4 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-631 (-2 (|:| |deg| (-758)) (|:| -2436 *5))))
- (-4 *5 (-1217 *4)) (-4 *4 (-344)) (-5 *2 (-631 *5))
- (-5 *1 (-212 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-2 (|:| -2270 *5) (|:| -3308 (-554)))))
- (-5 *4 (-554)) (-4 *5 (-1217 *4)) (-5 *2 (-631 *5))
- (-5 *1 (-682 *5)))))
-(((*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-1158)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-575 *2)) (-4 *2 (-13 (-29 *4) (-1180)))
- (-5 *1 (-573 *4 *2))
- (-4 *4 (-13 (-446) (-1023 (-554)) (-836) (-627 (-554))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-575 (-402 (-937 *4))))
- (-4 *4 (-13 (-446) (-1023 (-554)) (-836) (-627 (-554))))
- (-5 *2 (-311 *4)) (-5 *1 (-578 *4)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1188 *4 *5 *3 *6)) (-4 *4 (-546)) (-4 *5 (-780))
- (-4 *3 (-836)) (-4 *6 (-1048 *4 *5 *3)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-1260 *3)) (-4 *3 (-358)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-358)) (-5 *2 (-631 *3)) (-5 *1 (-930 *4 *3))
- (-4 *3 (-1217 *4)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1011 *2)) (-4 *2 (-1195)))))
-(((*1 *1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-928 (-221)) (-221))) (-5 *3 (-1076 (-221)))
- (-5 *1 (-911))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-928 (-221)) (-221))) (-5 *3 (-1076 (-221)))
- (-5 *1 (-911))))
- ((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-928 (-221)) (-221))) (-5 *3 (-1076 (-221)))
- (-5 *1 (-912))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-928 (-221)) (-221))) (-5 *3 (-1076 (-221)))
- (-5 *1 (-912)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020))
- (-5 *1 (-742)))))
-(((*1 *2 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020))
- (-5 *1 (-738)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-2 (|:| |ans| *7) (|:| -3324 *7) (|:| |sol?| (-112)))
- (-554) *7))
- (-5 *6 (-631 (-402 *8))) (-4 *7 (-358)) (-4 *8 (-1217 *7))
- (-5 *3 (-402 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-631 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-564 *7 *8)))))
-(((*1 *2)
- (-12 (-4 *3 (-546)) (-5 *2 (-631 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-412 *3)))))
+ (-12 (-5 *3 (-558)) (-4 *4 (-1222 (-406 *3))) (-5 *2 (-911))
+ (-5 *1 (-903 *4 *5)) (-4 *5 (-1222 (-406 *4))))))
+(((*1 *2 *3 *4 *4 *2 *2 *2)
+ (-12 (-5 *2 (-558))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-762)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-784)) (-4 *4 (-939 *5 *6 *7)) (-4 *5 (-450)) (-4 *7 (-841))
+ (-5 *1 (-447 *5 *6 *7 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-329))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-329)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-358))
- (-5 *2 (-631 (-2 (|:| C (-675 *5)) (|:| |g| (-1241 *5)))))
- (-5 *1 (-963 *5)) (-5 *3 (-675 *5)) (-5 *4 (-1241 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2))
- (-4 *2 (-425 *3)))))
-(((*1 *1 *1 *1) (-5 *1 (-848))))
-(((*1 *2 *1) (-12 (-5 *2 (-631 (-937 (-554)))) (-5 *1 (-432))))
+ (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1053 *5 *6 *7))
+ (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-635 *10))
+ (-5 *1 (-616 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1059 *5 *6 *7 *8))
+ (-4 *10 (-1096 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1158)) (-5 *4 (-675 (-221))) (-5 *2 (-1086))
- (-5 *1 (-746))))
+ (-12 (-5 *3 (-635 (-771 *5 (-855 *6)))) (-5 *4 (-112)) (-4 *5 (-450))
+ (-14 *6 (-635 (-1163))) (-5 *2 (-635 (-1036 *5 *6)))
+ (-5 *1 (-620 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1158)) (-5 *4 (-675 (-554))) (-5 *2 (-1086))
- (-5 *1 (-746)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-631 (-1058 *4 *5 *2))) (-4 *4 (-1082))
- (-4 *5 (-13 (-1034) (-871 *4) (-836) (-602 (-877 *4))))
- (-4 *2 (-13 (-425 *5) (-871 *4) (-602 (-877 *4))))
- (-5 *1 (-54 *4 *5 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-631 (-1058 *5 *6 *2))) (-5 *4 (-906)) (-4 *5 (-1082))
- (-4 *6 (-13 (-1034) (-871 *5) (-836) (-602 (-877 *5))))
- (-4 *2 (-13 (-425 *6) (-871 *5) (-602 (-877 *5))))
- (-5 *1 (-54 *5 *6 *2)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1214 *4 *5)) (-5 *3 (-631 *5)) (-14 *4 (-1158))
- (-4 *5 (-358)) (-5 *1 (-908 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-631 *5)) (-4 *5 (-358)) (-5 *2 (-1154 *5))
- (-5 *1 (-908 *4 *5)) (-14 *4 (-1158))))
- ((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-631 *6)) (-5 *4 (-758)) (-4 *6 (-358))
- (-5 *2 (-402 (-937 *6))) (-5 *1 (-1035 *5 *6)) (-14 *5 (-1158)))))
+ (-12 (-5 *3 (-635 (-771 *5 (-855 *6)))) (-5 *4 (-112)) (-4 *5 (-450))
+ (-14 *6 (-635 (-1163)))
+ (-5 *2
+ (-635 (-1133 *5 (-529 (-855 *6)) (-855 *6) (-771 *5 (-855 *6)))))
+ (-5 *1 (-620 *5 *6))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1053 *5 *6 *7))
+ (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
+ (-5 *2 (-635 (-1017 *5 *6 *7 *8))) (-5 *1 (-1017 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1053 *5 *6 *7))
+ (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
+ (-5 *2 (-635 (-1017 *5 *6 *7 *8))) (-5 *1 (-1017 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-635 (-771 *5 (-855 *6)))) (-5 *4 (-112)) (-4 *5 (-450))
+ (-14 *6 (-635 (-1163))) (-5 *2 (-635 (-1036 *5 *6)))
+ (-5 *1 (-1036 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1053 *5 *6 *7))
+ (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-635 *1))
+ (-4 *1 (-1059 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1053 *5 *6 *7))
+ (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
+ (-5 *2 (-635 (-1133 *5 *6 *7 *8))) (-5 *1 (-1133 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1053 *5 *6 *7))
+ (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
+ (-5 *2 (-635 (-1133 *5 *6 *7 *8))) (-5 *1 (-1133 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-550))
+ (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-635 *1))
+ (-4 *1 (-1193 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-1145))) (-5 *2 (-1145)) (-5 *1 (-191))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853)))))
+(((*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171))))
+ ((*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-171)))))
+(((*1 *1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *1 (-588 *3)) (-4 *3 (-1039)))))
+(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
+ (-12 (-5 *3 (-315 (-558))) (-5 *4 (-1 (-224) (-224)))
+ (-5 *5 (-1081 (-224))) (-5 *6 (-558)) (-5 *2 (-1195 (-916)))
+ (-5 *1 (-317))))
+ ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-315 (-558))) (-5 *4 (-1 (-224) (-224)))
+ (-5 *5 (-1081 (-224))) (-5 *6 (-558)) (-5 *7 (-1145))
+ (-5 *2 (-1195 (-916))) (-5 *1 (-317))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-315 (-558))) (-5 *4 (-1 (-224) (-224)))
+ (-5 *5 (-1081 (-224))) (-5 *6 (-224)) (-5 *7 (-558))
+ (-5 *2 (-1195 (-916))) (-5 *1 (-317))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
+ (-12 (-5 *3 (-315 (-558))) (-5 *4 (-1 (-224) (-224)))
+ (-5 *5 (-1081 (-224))) (-5 *6 (-224)) (-5 *7 (-558)) (-5 *8 (-1145))
+ (-5 *2 (-1195 (-916))) (-5 *1 (-317)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-631 (-554))) (-5 *2 (-889 (-554))) (-5 *1 (-902))))
- ((*1 *2) (-12 (-5 *2 (-889 (-554))) (-5 *1 (-902)))))
+ (-12 (-5 *3 (-1219 *5 *4)) (-4 *4 (-450)) (-4 *4 (-811))
+ (-14 *5 (-1163)) (-5 *2 (-558)) (-5 *1 (-1101 *4 *5)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1145)) (-5 *4 (-558)) (-5 *5 (-679 (-224)))
+ (-5 *2 (-1025)) (-5 *1 (-745)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-429 *4))
+ (-4 *6 (-1222 *5)) (-4 *7 (-1222 (-406 *6)))
+ (-4 *8 (-341 *5 *6 *7))
+ (-4 *4 (-13 (-841) (-550) (-1028 (-558))))
+ (-5 *2 (-2 (|:| -3449 (-762)) (|:| -2529 *8)))
+ (-5 *1 (-901 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-335 (-406 (-558)) *4 *5 *6))
+ (-4 *4 (-1222 (-406 (-558)))) (-4 *5 (-1222 (-406 *4)))
+ (-4 *6 (-341 (-406 (-558)) *4 *5))
+ (-5 *2 (-2 (|:| -3449 (-762)) (|:| -2529 *6)))
+ (-5 *1 (-902 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-1251))
+ (-5 *1 (-447 *4 *5 *6 *3)) (-4 *3 (-939 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-4 *7 (-1053 *4 *5 *6))
+ (-5 *2 (-635 (-2 (|:| -2626 *1) (|:| -1328 (-635 *7)))))
+ (-5 *3 (-635 *7)) (-4 *1 (-1193 *4 *5 *6 *7)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-987 *2)) (-4 *2 (-171)))))
+(((*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-1039)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-317)) (-5 *3 (-224)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1219 *5 *4)) (-4 *4 (-450)) (-4 *4 (-811))
+ (-14 *5 (-1163)) (-5 *2 (-558)) (-5 *1 (-1101 *4 *5)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1145)) (-5 *4 (-558)) (-5 *5 (-679 (-224)))
+ (-5 *2 (-1025)) (-5 *1 (-745)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-429 *4)) (-4 *6 (-1222 *5))
+ (-4 *7 (-1222 (-406 *6))) (-4 *8 (-341 *5 *6 *7))
+ (-4 *4 (-13 (-841) (-550) (-1028 (-558)))) (-5 *2 (-112))
+ (-5 *1 (-901 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-335 (-406 (-558)) *4 *5 *6))
+ (-4 *4 (-1222 (-406 (-558)))) (-4 *5 (-1222 (-406 *4)))
+ (-4 *6 (-341 (-406 (-558)) *4 *5)) (-5 *2 (-112))
+ (-5 *1 (-902 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-558))
+ (-5 *1 (-447 *4 *5 *6 *3)) (-4 *3 (-939 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1193 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-784))
+ (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-635 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-1200)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-1039)))))
+(((*1 *2 *3 *4 *3 *3)
+ (-12 (-5 *3 (-293 *6)) (-5 *4 (-114)) (-4 *6 (-429 *5))
+ (-4 *5 (-13 (-841) (-550) (-606 (-534)))) (-5 *2 (-52))
+ (-5 *1 (-316 *5 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-293 *7)) (-5 *4 (-114)) (-5 *5 (-635 *7))
+ (-4 *7 (-429 *6)) (-4 *6 (-13 (-841) (-550) (-606 (-534))))
+ (-5 *2 (-52)) (-5 *1 (-316 *6 *7))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-635 (-293 *7))) (-5 *4 (-635 (-114))) (-5 *5 (-293 *7))
+ (-4 *7 (-429 *6)) (-4 *6 (-13 (-841) (-550) (-606 (-534))))
+ (-5 *2 (-52)) (-5 *1 (-316 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-635 (-293 *8))) (-5 *4 (-635 (-114))) (-5 *5 (-293 *8))
+ (-5 *6 (-635 *8)) (-4 *8 (-429 *7))
+ (-4 *7 (-13 (-841) (-550) (-606 (-534)))) (-5 *2 (-52))
+ (-5 *1 (-316 *7 *8))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-635 *7)) (-5 *4 (-635 (-114))) (-5 *5 (-293 *7))
+ (-4 *7 (-429 *6)) (-4 *6 (-13 (-841) (-550) (-606 (-534))))
+ (-5 *2 (-52)) (-5 *1 (-316 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 (-114))) (-5 *6 (-635 (-293 *8)))
+ (-4 *8 (-429 *7)) (-5 *5 (-293 *8))
+ (-4 *7 (-13 (-841) (-550) (-606 (-534)))) (-5 *2 (-52))
+ (-5 *1 (-316 *7 *8))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-293 *5)) (-5 *4 (-114)) (-4 *5 (-429 *6))
+ (-4 *6 (-13 (-841) (-550) (-606 (-534)))) (-5 *2 (-52))
+ (-5 *1 (-316 *6 *5))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-114)) (-5 *5 (-293 *3)) (-4 *3 (-429 *6))
+ (-4 *6 (-13 (-841) (-550) (-606 (-534)))) (-5 *2 (-52))
+ (-5 *1 (-316 *6 *3))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-114)) (-5 *5 (-293 *3)) (-4 *3 (-429 *6))
+ (-4 *6 (-13 (-841) (-550) (-606 (-534)))) (-5 *2 (-52))
+ (-5 *1 (-316 *6 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-114)) (-5 *5 (-293 *3)) (-5 *6 (-635 *3))
+ (-4 *3 (-429 *7)) (-4 *7 (-13 (-841) (-550) (-606 (-534))))
+ (-5 *2 (-52)) (-5 *1 (-316 *7 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1219 *5 *4)) (-4 *4 (-811)) (-14 *5 (-1163))
+ (-5 *2 (-558)) (-5 *1 (-1101 *4 *5)))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
+ (-5 *1 (-745)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1159 *1)) (-4 *1 (-450))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1159 *6)) (-4 *6 (-939 *5 *3 *4)) (-4 *3 (-784))
+ (-4 *4 (-841)) (-4 *5 (-899)) (-5 *1 (-455 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1159 *1)) (-4 *1 (-899)))))
(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-546)) (-4 *3 (-170)) (-4 *4 (-368 *3))
- (-4 *5 (-368 *3)) (-5 *1 (-674 *3 *4 *5 *2))
- (-4 *2 (-673 *3 *4 *5)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836))
- (-4 *3 (-1048 *5 *6 *7))
- (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *4))))
- (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-554)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1195))
- (-4 *5 (-368 *4)) (-4 *2 (-368 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-554)) (-4 *1 (-1037 *4 *5 *6 *2 *7)) (-4 *6 (-1034))
- (-4 *7 (-234 *4 *6)) (-4 *2 (-234 *5 *6)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-631 *1)) (-4 *1 (-1048 *4 *5 *6)) (-4 *4 (-1034))
- (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780))
- (-4 *5 (-836)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1188 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *4 (-780))
- (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1188 *4 *5 *6 *3)) (-4 *4 (-546)) (-4 *5 (-780))
- (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1138 *3)) (-4 *3 (-1082))
- (-4 *3 (-1195)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1154 (-937 *6))) (-4 *6 (-546))
- (-4 *2 (-934 (-402 (-937 *6)) *5 *4)) (-5 *1 (-719 *5 *4 *6 *2))
- (-4 *5 (-780))
- (-4 *4 (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $))))))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5))
- (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836))
- (-5 *1 (-1254 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-631 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1048 *5 *6 *7)) (-4 *5 (-546))
- (-4 *6 (-780)) (-4 *7 (-836)) (-5 *1 (-1254 *5 *6 *7 *8)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-325)))))
-(((*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-1140)) (-5 *1 (-773)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-167 (-221))) (-5 *5 (-554)) (-5 *6 (-1140))
- (-5 *3 (-221)) (-5 *2 (-1020)) (-5 *1 (-745)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836))
- (-4 *3 (-1048 *6 *7 *8))
+ (-12 (-5 *2 (-635 *6)) (-4 *6 (-939 *3 *4 *5)) (-4 *3 (-450))
+ (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-447 *3 *4 *5 *6)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-1193 *3 *4 *5 *2)) (-4 *3 (-550))
+ (-4 *4 (-784)) (-4 *5 (-841)) (-4 *2 (-1053 *3 *4 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-852))))
+ ((*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-852)))))
+(((*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-1200)))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-1143 (-2 (|:| |k| (-558)) (|:| |c| *6))))
+ (-5 *4 (-1016 (-834 (-558)))) (-5 *5 (-1163)) (-5 *7 (-406 (-558)))
+ (-4 *6 (-1039)) (-5 *2 (-853)) (-5 *1 (-588 *6)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-315 *3)) (-4 *3 (-550)) (-4 *3 (-841)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1219 *5 *4)) (-4 *4 (-811)) (-14 *5 (-1163))
+ (-5 *2 (-558)) (-5 *1 (-1101 *4 *5)))))
+(((*1 *2 *3 *4 *3 *5 *3)
+ (-12 (-5 *4 (-679 (-224))) (-5 *5 (-679 (-558))) (-5 *3 (-558))
+ (-5 *2 (-1025)) (-5 *1 (-745)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-417 (-1159 *1))) (-5 *1 (-315 *4)) (-5 *3 (-1159 *1))
+ (-4 *4 (-450)) (-4 *4 (-550)) (-4 *4 (-841))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-899)) (-5 *2 (-417 (-1159 *1))) (-5 *3 (-1159 *1)))))
+(((*1 *2 *2 *2)
+ (-12
(-5 *2
- (-2 (|:| |done| (-631 *4))
- (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4))))))
- (-5 *1 (-1052 *6 *7 *8 *3 *4)) (-4 *4 (-1054 *6 *7 *8 *3))))
+ (-635
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-762)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-784)) (-4 *6 (-939 *3 *4 *5)) (-4 *3 (-450)) (-4 *5 (-841))
+ (-5 *1 (-447 *3 *4 *5 *6)))))
+(((*1 *1) (-5 *1 (-572)))
+ ((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-854))))
+ ((*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1251)) (-5 *1 (-854))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836))
- (-4 *3 (-1048 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-631 *4))
- (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4))))))
- (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))))
+ (-12 (-5 *3 (-1145)) (-5 *4 (-853)) (-5 *2 (-1251)) (-5 *1 (-854))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-558)) (-5 *2 (-1251)) (-5 *1 (-1143 *4))
+ (-4 *4 (-1087)) (-4 *4 (-1200)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |preimage| (-631 *3)) (|:| |image| (-631 *3))))
- (-5 *1 (-890 *3)) (-4 *3 (-1082)))))
-(((*1 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-363)) (-4 *2 (-1082)))))
+ (-12 (-4 *1 (-1193 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-784))
+ (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-4 *5 (-367))
+ (-5 *2 (-762)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-527))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-571))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-852)))))
+(((*1 *1 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-1200)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-758)) (-4 *1 (-642 *3)) (-4 *3 (-1034)) (-4 *3 (-358))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-758)) (-5 *4 (-1 *5 *5)) (-4 *5 (-358))
- (-5 *1 (-645 *5 *2)) (-4 *2 (-642 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-546))
- (-5 *2 (-2 (|:| -2866 (-675 *5)) (|:| |vec| (-1241 (-631 (-906))))))
- (-5 *1 (-90 *5 *3)) (-5 *4 (-906)) (-4 *3 (-642 *5)))))
+ (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-558)) (-5 *1 (-315 *3)) (-4 *3 (-550)) (-4 *3 (-841)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1219 *5 *4)) (-4 *4 (-811)) (-14 *5 (-1163))
+ (-5 *2 (-635 *4)) (-5 *1 (-1101 *4 *5)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
+ (-12 (-5 *4 (-635 (-112))) (-5 *5 (-679 (-224)))
+ (-5 *6 (-679 (-558))) (-5 *7 (-224)) (-5 *3 (-558)) (-5 *2 (-1025))
+ (-5 *1 (-745)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1154 (-554))) (-5 *1 (-187)) (-5 *3 (-554))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-758)) (-5 *1 (-770 *2)) (-4 *2 (-170))))
+ (-12 (-5 *2 (-417 (-1159 *1))) (-5 *1 (-315 *4)) (-5 *3 (-1159 *1))
+ (-4 *4 (-450)) (-4 *4 (-550)) (-4 *4 (-841))))
((*1 *2 *3)
- (-12 (-5 *2 (-1154 (-554))) (-5 *1 (-927)) (-5 *3 (-554)))))
-(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
- (|partial| -12 (-5 *2 (-631 (-1154 *13))) (-5 *3 (-1154 *13))
- (-5 *4 (-631 *12)) (-5 *5 (-631 *10)) (-5 *6 (-631 *13))
- (-5 *7 (-631 (-631 (-2 (|:| -2672 (-758)) (|:| |pcoef| *13)))))
- (-5 *8 (-631 (-758))) (-5 *9 (-1241 (-631 (-1154 *10))))
- (-4 *12 (-836)) (-4 *10 (-302)) (-4 *13 (-934 *10 *11 *12))
- (-4 *11 (-780)) (-5 *1 (-694 *11 *12 *10 *13)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-1146 3 *3))))
- ((*1 *1) (-12 (-5 *1 (-1146 *2 *3)) (-14 *2 (-906)) (-4 *3 (-1034))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1115 (-221))) (-5 *1 (-1243))))
- ((*1 *2 *1) (-12 (-5 *2 (-1115 (-221))) (-5 *1 (-1243)))))
-(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1082))))
- ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1082)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1241 *3)) (-4 *3 (-1034)) (-5 *1 (-699 *3 *4))
- (-4 *4 (-1217 *3)))))
+ (-12 (-4 *1 (-899)) (-5 *2 (-417 (-1159 *1))) (-5 *3 (-1159 *1)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-758)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-780)) (-4 *7 (-934 *4 *5 *6)) (-4 *4 (-446)) (-4 *6 (-836))
- (-5 *2 (-112)) (-5 *1 (-443 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
- (-12 (-5 *4 (-675 (-221))) (-5 *5 (-675 (-554))) (-5 *3 (-554))
- (-5 *2 (-1020)) (-5 *1 (-743)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-748))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-675 *3))
- (-4 *3 (-13 (-302) (-10 -8 (-15 -1565 ((-413 $) $)))))
- (-4 *4 (-1217 *3)) (-5 *1 (-493 *3 *4 *5)) (-4 *5 (-404 *3 *4))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-675 *3))
- (-4 *3 (-13 (-302) (-10 -8 (-15 -1565 ((-413 $) $)))))
- (-4 *4 (-1217 *3)) (-5 *1 (-493 *3 *4 *5)) (-4 *5 (-404 *3 *4)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-758)) (-4 *1 (-727 *4 *5)) (-4 *4 (-1034))
- (-4 *5 (-836)) (-5 *2 (-937 *4))))
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-762)) (|:| |poli| *2)
+ (|:| |polj| *2)))
+ (-4 *5 (-784)) (-4 *2 (-939 *4 *5 *6)) (-5 *1 (-447 *4 *5 *6 *2))
+ (-4 *4 (-450)) (-4 *6 (-841)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-783)) (-4 *2 (-1039))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *2 (-1039)) (-5 *1 (-50 *2 *3)) (-14 *3 (-635 (-1163)))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-758)) (-4 *1 (-727 *4 *5)) (-4 *4 (-1034))
- (-4 *5 (-836)) (-5 *2 (-937 *4))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-758)) (-4 *1 (-1232 *4)) (-4 *4 (-1034))
- (-5 *2 (-937 *4))))
+ (-12 (-5 *3 (-635 (-911))) (-4 *2 (-362)) (-5 *1 (-151 *4 *2 *5))
+ (-14 *4 (-911)) (-14 *5 (-983 *4 *2))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-315 *3)) (-5 *1 (-222 *3 *4))
+ (-4 *3 (-13 (-1039) (-841))) (-14 *4 (-635 (-1163)))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-130))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-758)) (-4 *1 (-1232 *4)) (-4 *4 (-1034))
- (-5 *2 (-937 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1154 *2)) (-4 *2 (-934 (-402 (-937 *6)) *5 *4))
- (-5 *1 (-719 *5 *4 *6 *2)) (-4 *5 (-780))
- (-4 *4 (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $)))))
- (-4 *6 (-546)))))
+ (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1087)) (-4 *2 (-1039))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-558)) (-4 *2 (-550)) (-5 *1 (-615 *2 *4))
+ (-4 *4 (-1222 *2))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-4 *1 (-699 *2)) (-4 *2 (-1039))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *2 (-1039)) (-5 *1 (-726 *2 *3)) (-4 *3 (-717))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-635 *5)) (-5 *3 (-635 (-762))) (-4 *1 (-731 *4 *5))
+ (-4 *4 (-1039)) (-4 *5 (-841))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-762)) (-4 *1 (-731 *4 *2)) (-4 *4 (-1039))
+ (-4 *2 (-841))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-4 *1 (-843 *2)) (-4 *2 (-1039))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-635 *6)) (-5 *3 (-635 (-762))) (-4 *1 (-939 *4 *5 *6))
+ (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *6 (-841))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-762)) (-4 *1 (-939 *4 *5 *2)) (-4 *4 (-1039))
+ (-4 *5 (-784)) (-4 *2 (-841))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-762)) (-4 *2 (-939 *4 (-529 *5) *5))
+ (-5 *1 (-1113 *4 *5 *2)) (-4 *4 (-1039)) (-4 *5 (-841))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-762)) (-5 *2 (-942 *4)) (-5 *1 (-1194 *4))
+ (-4 *4 (-1039)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-851)) (-5 *3 (-129)) (-5 *2 (-1107)))))
+(((*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-1200)))))
(((*1 *1 *1 *2)
- (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-631 (-600 *5))) (-5 *3 (-1158)) (-4 *5 (-425 *4))
- (-4 *4 (-836)) (-5 *1 (-563 *4 *5)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1158))
- (-5 *2 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-5 *1 (-1161)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780))
- (-4 *4 (-836))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1188 *3 *4 *5 *2)) (-4 *3 (-546)) (-4 *4 (-780))
- (-4 *5 (-836)) (-4 *2 (-1048 *3 *4 *5)))))
+ (-12 (-5 *2 (-406 (-558))) (-5 *1 (-588 *3)) (-4 *3 (-38 *2))
+ (-4 *3 (-1039)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-306)) (-5 *2 (-112)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-128)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-811)) (-14 *5 (-1163)) (-5 *2 (-635 (-1219 *5 *4)))
+ (-5 *1 (-1101 *4 *5)) (-5 *3 (-1219 *5 *4)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
+ (-12 (-5 *4 (-679 (-558))) (-5 *5 (-112)) (-5 *7 (-679 (-224)))
+ (-5 *3 (-558)) (-5 *6 (-224)) (-5 *2 (-1025)) (-5 *1 (-745)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-906)) (-5 *2 (-1154 *4)) (-5 *1 (-352 *4))
- (-4 *4 (-344)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1232 *4)) (-5 *1 (-1234 *4 *2))
- (-4 *4 (-38 (-402 (-554)))))))
-(((*1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-631 (-114))))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020))
- (-5 *1 (-741)))))
-(((*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-991)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-631 (-937 *3))) (-4 *3 (-446)) (-5 *1 (-355 *3 *4))
- (-14 *4 (-631 (-1158)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-631 *6)) (-4 *6 (-934 *3 *4 *5)) (-4 *3 (-446))
- (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-444 *3 *4 *5 *6))))
+ (-12 (-4 *1 (-899)) (-5 *2 (-417 (-1159 *1))) (-5 *3 (-1159 *1)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-635 (-2 (|:| |totdeg| (-762)) (|:| -2574 *3))))
+ (-5 *4 (-762)) (-4 *3 (-939 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-784))
+ (-4 *7 (-841)) (-5 *1 (-447 *5 *6 *7 *3)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1113 *4 *3 *5))) (-4 *4 (-38 (-406 (-558))))
+ (-4 *4 (-1039)) (-4 *3 (-841)) (-5 *1 (-1113 *4 *3 *5))
+ (-4 *5 (-939 *4 (-529 *3) *3))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1194 *4))) (-5 *3 (-1163)) (-5 *1 (-1194 *4))
+ (-4 *4 (-38 (-406 (-558)))) (-4 *4 (-1039)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-851)) (-5 *3 (-128)) (-5 *2 (-1107)))))
+(((*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-1200)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
+(((*1 *2 *1) (-12 (-4 *1 (-306)) (-5 *2 (-762)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-811)) (-14 *5 (-1163)) (-5 *2 (-635 (-1219 *5 *4)))
+ (-5 *1 (-1101 *4 *5)) (-5 *3 (-1219 *5 *4)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
+ (-12 (-5 *6 (-635 (-112))) (-5 *7 (-679 (-224)))
+ (-5 *8 (-679 (-558))) (-5 *3 (-558)) (-5 *4 (-224)) (-5 *5 (-112))
+ (-5 *2 (-1025)) (-5 *1 (-745)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-635 (-1159 *5))) (-5 *3 (-1159 *5))
+ (-4 *5 (-165 *4)) (-4 *4 (-543)) (-5 *1 (-148 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-631 *7)) (-5 *3 (-1140)) (-4 *7 (-934 *4 *5 *6))
- (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836))
- (-5 *1 (-444 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-631 *7)) (-5 *3 (-1140)) (-4 *7 (-934 *4 *5 *6))
- (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836))
- (-5 *1 (-444 *4 *5 *6 *7))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-358)) (-4 *3 (-780)) (-4 *4 (-836))
- (-5 *1 (-498 *2 *3 *4 *5)) (-4 *5 (-934 *2 *3 *4))))
+ (|partial| -12 (-5 *2 (-635 *3)) (-4 *3 (-1222 *5))
+ (-4 *5 (-1222 *4)) (-4 *4 (-348)) (-5 *1 (-357 *4 *5 *3))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-635 (-1159 (-558)))) (-5 *3 (-1159 (-558)))
+ (-5 *1 (-566))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-635 (-1159 *1))) (-5 *3 (-1159 *1))
+ (-4 *1 (-899)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841))
+ (-5 *1 (-447 *3 *4 *5 *2)) (-4 *2 (-939 *3 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-606 (-882 *3))) (-4 *3 (-876 *3))
+ (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
+ (-4 *2 (-606 (-882 *3))) (-4 *2 (-876 *3))
+ (-4 *2 (-13 (-429 *3) (-1185))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-762)) (-5 *1 (-847 *2)) (-4 *2 (-38 (-406 (-558))))
+ (-4 *2 (-171)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1129 *3 *4)) (-14 *3 (-911)) (-4 *4 (-362))
+ (-5 *1 (-983 *3 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
+(((*1 *2 *1 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-306))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4098 *1)))
+ (-4 *1 (-306)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-762)) (-5 *2 (-635 (-1163))) (-5 *1 (-209))
+ (-5 *3 (-1163))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-315 (-224))) (-5 *4 (-762)) (-5 *2 (-635 (-1163)))
+ (-5 *1 (-266))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-841)) (-4 *4 (-171))
+ (-5 *2 (-635 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-635 *3)) (-5 *1 (-619 *3 *4 *5)) (-4 *3 (-841))
+ (-4 *4 (-13 (-171) (-708 (-406 (-558))))) (-14 *5 (-911))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-662 *3)) (-4 *3 (-841))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-667 *3)) (-4 *3 (-841))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-810 *3)) (-4 *3 (-841))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-883 *3)) (-4 *3 (-841))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039))
+ (-5 *2 (-635 *3)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-635 (-558))) (-5 *1 (-1097)) (-5 *3 (-558)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
+ (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224))) (-5 *4 (-224))
+ (-5 *2 (-1025)) (-5 *1 (-744)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-679 *1)) (-4 *1 (-348)) (-5 *2 (-1246 *1))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-679 *1)) (-4 *1 (-144)) (-4 *1 (-899))
+ (-5 *2 (-1246 *1)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-635 *3)) (-4 *3 (-939 *5 *6 *7)) (-4 *5 (-450))
+ (-4 *6 (-784)) (-4 *7 (-841))
+ (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
+ (-5 *1 (-447 *5 *6 *7 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5)) (-4 *5 (-1087)) (-5 *2 (-1 *5 *4))
+ (-5 *1 (-673 *4 *5)) (-4 *4 (-1087))))
((*1 *2 *2)
- (-12 (-5 *2 (-631 (-767 *3 (-850 *4)))) (-4 *3 (-446))
- (-14 *4 (-631 (-1158))) (-5 *1 (-616 *3 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1246)) (-5 *1 (-374))))
- ((*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-374)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-358)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4)))
- (-5 *2 (-1241 *6)) (-5 *1 (-331 *3 *4 *5 *6))
- (-4 *6 (-337 *3 *4 *5)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-358) (-834)))
- (-5 *2 (-631 (-2 (|:| -2316 (-631 *3)) (|:| -1841 *5))))
- (-5 *1 (-179 *5 *3)) (-4 *3 (-1217 (-167 *5)))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-358) (-834)))
- (-5 *2 (-631 (-2 (|:| -2316 (-631 *3)) (|:| -1841 *4))))
- (-5 *1 (-179 *4 *3)) (-4 *3 (-1217 (-167 *4))))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-631 (-937 (-554)))) (-5 *4 (-631 (-1158)))
- (-5 *2 (-631 (-631 (-374)))) (-5 *1 (-1008)) (-5 *5 (-374))))
+ (-12 (-4 *3 (-841)) (-5 *1 (-919 *3 *2)) (-4 *2 (-429 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1031 *4 *5)) (-4 *4 (-13 (-834) (-302) (-145) (-1007)))
- (-14 *5 (-631 (-1158))) (-5 *2 (-631 (-631 (-1009 (-402 *4)))))
- (-5 *1 (-1267 *4 *5 *6)) (-14 *6 (-631 (-1158)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-631 (-937 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-834) (-302) (-145) (-1007)))
- (-5 *2 (-631 (-631 (-1009 (-402 *5))))) (-5 *1 (-1267 *5 *6 *7))
- (-14 *6 (-631 (-1158))) (-14 *7 (-631 (-1158)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-631 (-937 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-834) (-302) (-145) (-1007)))
- (-5 *2 (-631 (-631 (-1009 (-402 *5))))) (-5 *1 (-1267 *5 *6 *7))
- (-14 *6 (-631 (-1158))) (-14 *7 (-631 (-1158)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-937 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-834) (-302) (-145) (-1007)))
- (-5 *2 (-631 (-631 (-1009 (-402 *5))))) (-5 *1 (-1267 *5 *6 *7))
- (-14 *6 (-631 (-1158))) (-14 *7 (-631 (-1158)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-631 (-937 *4)))
- (-4 *4 (-13 (-834) (-302) (-145) (-1007)))
- (-5 *2 (-631 (-631 (-1009 (-402 *4))))) (-5 *1 (-1267 *4 *5 *6))
- (-14 *5 (-631 (-1158))) (-14 *6 (-631 (-1158))))))
+ (-12 (-5 *3 (-1163)) (-5 *2 (-315 (-558))) (-5 *1 (-920))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-841)) (-4 *2 (-1039))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1039)) (-5 *1 (-1269 *2 *3)) (-4 *3 (-837)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1185))))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-762)) (-5 *1 (-847 *2)) (-4 *2 (-171))))
+ ((*1 *2 *3 *3 *2)
+ (-12 (-5 *3 (-762)) (-5 *1 (-847 *2)) (-4 *2 (-171)))))
+(((*1 *1 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-841)) (-4 *2 (-1039))))
+ ((*1 *1 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-550)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))))
-(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836))
- (-5 *2 (-631 (-1012 *5 *6 *7 *3))) (-5 *1 (-1012 *5 *6 *7 *3))
- (-4 *3 (-1048 *5 *6 *7))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-631 *6)) (-4 *1 (-1054 *3 *4 *5 *6)) (-4 *3 (-446))
- (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-1054 *3 *4 *5 *2)) (-4 *3 (-446)) (-4 *4 (-780))
- (-4 *5 (-836)) (-4 *2 (-1048 *3 *4 *5))))
- ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836))
- (-5 *2 (-631 (-1128 *5 *6 *7 *3))) (-5 *1 (-1128 *5 *6 *7 *3))
- (-4 *3 (-1048 *5 *6 *7)))))
+ (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
+(((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1145)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-635 *1)) (-4 *1 (-306)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-635 (-558))) (-5 *1 (-1097)) (-5 *3 (-558)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
+ *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
+ *9)
+ (-12 (-5 *4 (-679 (-224))) (-5 *5 (-112)) (-5 *6 (-224))
+ (-5 *7 (-679 (-558)))
+ (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-80 CONFUN))))
+ (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN))))
+ (-5 *3 (-558)) (-5 *2 (-1025)) (-5 *1 (-744)))))
+(((*1 *1 *1) (|partial| -4 *1 (-144))) ((*1 *1 *1) (-4 *1 (-348)))
+ ((*1 *1 *1) (|partial| -12 (-4 *1 (-144)) (-4 *1 (-899)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-374)) (-5 *3 (-631 (-258))) (-5 *1 (-256))))
- ((*1 *1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-258)))))
+ (-12
+ (-5 *2
+ (-635
+ (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-762)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *3 (-784)) (-4 *6 (-939 *4 *3 *5)) (-4 *4 (-450)) (-4 *5 (-841))
+ (-5 *1 (-447 *4 *3 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1185))))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-762)) (-5 *1 (-847 *2)) (-4 *2 (-171)))))
+(((*1 *1 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-841)) (-4 *2 (-550))))
+ ((*1 *1 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-550)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
+(((*1 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-839)) (-5 *1 (-302 *3)))))
(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-631 (-554))) (-5 *2 (-675 (-554))) (-5 *1 (-1092)))))
-(((*1 *2 *3) (-12 (-5 *2 (-554)) (-5 *1 (-559 *3)) (-4 *3 (-1023 *2))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1085 *3 *4 *2 *5 *6)) (-4 *3 (-1082)) (-4 *4 (-1082))
- (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *2 (-1082)))))
+ (-12 (-5 *2 (-635 (-558))) (-5 *1 (-1097)) (-5 *3 (-558)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
+ *7 *3 *8)
+ (-12 (-5 *5 (-679 (-224))) (-5 *6 (-112)) (-5 *7 (-679 (-558)))
+ (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-65 QPHESS))))
+ (-5 *3 (-558)) (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-744)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-937 *6))) (-5 *4 (-631 (-1158)))
- (-4 *6 (-13 (-546) (-1023 *5))) (-4 *5 (-546))
- (-5 *2 (-631 (-631 (-289 (-402 (-937 *6)))))) (-5 *1 (-1024 *5 *6)))))
+ (-12 (-5 *3 (-635 *7)) (-4 *7 (-841)) (-4 *5 (-899)) (-4 *6 (-784))
+ (-4 *8 (-939 *5 *6 *7)) (-5 *2 (-417 (-1159 *8)))
+ (-5 *1 (-896 *5 *6 *7 *8)) (-5 *4 (-1159 *8))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-899)) (-4 *5 (-1222 *4)) (-5 *2 (-417 (-1159 *5)))
+ (-5 *1 (-897 *4 *5)) (-5 *3 (-1159 *5)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-635
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-762)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-784)) (-4 *6 (-939 *3 *4 *5)) (-4 *3 (-450)) (-4 *5 (-841))
+ (-5 *1 (-447 *3 *4 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1185))))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-362)) (-4 *3 (-1039))
+ (-5 *2 (-2 (|:| -2306 *1) (|:| -2071 *1))) (-4 *1 (-843 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-362)) (-4 *5 (-1039))
+ (-5 *2 (-2 (|:| -2306 *3) (|:| -2071 *3))) (-5 *1 (-844 *5 *3))
+ (-4 *3 (-843 *5)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-977 (-406 (-558)) (-855 *3) (-239 *4 (-762))
+ (-246 *3 (-406 (-558)))))
+ (-14 *3 (-635 (-1163))) (-14 *4 (-762)) (-5 *1 (-976 *3 *4)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554)))))))
- (-5 *2 (-631 *4)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1217 *4))))
- ((*1 *2 *3 *3)
- (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554)))))))
- (-5 *2 (-631 *3)) (-5 *1 (-1110 *4 *3)) (-4 *4 (-1217 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-836)) (-4 *2 (-1034))))
- ((*1 *1 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-546)))))
-(((*1 *2 *1) (-12 (-5 *2 (-631 (-631 (-928 (-221))))) (-5 *1 (-462)))))
+ (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-224))) (-5 *4 (-762)) (-5 *2 (-679 (-224)))
+ (-5 *1 (-304)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1097)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-112))
+ (-5 *2 (-1025)) (-5 *1 (-744)))))
(((*1 *2)
- (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3))
- (-4 *5 (-1217 (-402 *4))) (-5 *2 (-675 (-402 *4))))))
+ (-12 (-4 *3 (-784)) (-4 *4 (-841)) (-4 *2 (-899))
+ (-5 *1 (-455 *3 *4 *2 *5)) (-4 *5 (-939 *2 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-784)) (-4 *4 (-841)) (-4 *2 (-899))
+ (-5 *1 (-896 *2 *3 *4 *5)) (-4 *5 (-939 *2 *3 *4))))
+ ((*1 *2) (-12 (-4 *2 (-899)) (-5 *1 (-897 *2 *3)) (-4 *3 (-1222 *2)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-906)) (-5 *3 (-631 (-258))) (-5 *1 (-256))))
- ((*1 *1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-258)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-1046)) (-5 *3 (-1140)))))
-(((*1 *2 *1) (|partial| -12 (-4 *1 (-997)) (-5 *2 (-848)))))
-(((*1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-848)))))
-(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-167 (-221)))) (-5 *2 (-1020))
- (-5 *1 (-743)))))
+ (-12
+ (-5 *2
+ (-635
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-762)) (|:| |poli| *3)
+ (|:| |polj| *3))))
+ (-4 *5 (-784)) (-4 *3 (-939 *4 *5 *6)) (-4 *4 (-450)) (-4 *6 (-841))
+ (-5 *1 (-447 *4 *5 *6 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1185))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-362)) (-5 *2 (-2 (|:| -2306 *3) (|:| -2071 *3)))
+ (-5 *1 (-757 *3 *4)) (-4 *3 (-699 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-362)) (-4 *3 (-1039))
+ (-5 *2 (-2 (|:| -2306 *1) (|:| -2071 *1))) (-4 *1 (-843 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-362)) (-4 *5 (-1039))
+ (-5 *2 (-2 (|:| -2306 *3) (|:| -2071 *3))) (-5 *1 (-844 *5 *3))
+ (-4 *3 (-843 *5)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-635 *3)) (-4 *3 (-939 *4 *6 *5)) (-4 *4 (-450))
+ (-4 *5 (-841)) (-4 *6 (-784)) (-5 *1 (-977 *4 *5 *6 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
+(((*1 *2 *3) (-12 (-5 *3 (-406 (-558))) (-5 *2 (-224)) (-5 *1 (-304)))))
+(((*1 *1) (-12 (-5 *1 (-681 *2)) (-4 *2 (-605 (-853))))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1246 (-558))) (-5 *3 (-558)) (-5 *1 (-1097))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-1246 (-558))) (-5 *3 (-635 (-558))) (-5 *4 (-558))
+ (-5 *1 (-1097)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224)))
+ (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-66 FUNCT1))))
+ (-5 *2 (-1025)) (-5 *1 (-744)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-816)) (-5 *3 (-1140)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-178))))
- ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-306))))
- ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-955))))
- ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-979))))
- ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1021))))
- ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1056)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-31))))
- ((*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-906)))) ((*1 *1) (-4 *1 (-539)))
- ((*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-685))))
- ((*1 *2 *1) (-12 (-5 *2 (-631 *3)) (-5 *1 (-889 *3)) (-4 *3 (-1082)))))
-(((*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-4 *1 (-888 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1034)) (-5 *2 (-1241 *3)) (-5 *1 (-699 *3 *4))
- (-4 *4 (-1217 *3)))))
-(((*1 *2) (-12 (-5 *2 (-859)) (-5 *1 (-1244))))
- ((*1 *2 *2) (-12 (-5 *2 (-859)) (-5 *1 (-1244)))))
-(((*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-1140)))))
-(((*1 *1 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1180))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1138 (-402 *3))) (-5 *1 (-172 *3)) (-4 *3 (-302)))))
-(((*1 *1) (-5 *1 (-810))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4))
- (-4 *3 (-362 *4))))
- ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))))
-(((*1 *2 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020))
- (-5 *1 (-734)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-846)) (-5 *3 (-129)) (-5 *2 (-1102)))))
+ (-12 (-4 *4 (-899)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-4 *7 (-939 *4 *5 *6)) (-5 *2 (-417 (-1159 *7)))
+ (-5 *1 (-896 *4 *5 *6 *7)) (-5 *3 (-1159 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-899)) (-4 *5 (-1222 *4)) (-5 *2 (-417 (-1159 *5)))
+ (-5 *1 (-897 *4 *5)) (-5 *3 (-1159 *5)))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *4 (-450)) (-4 *3 (-784)) (-4 *5 (-841)) (-5 *2 (-112))
+ (-5 *1 (-447 *4 *3 *5 *6)) (-4 *6 (-939 *4 *3 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1185))))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-550)) (-4 *3 (-1039))
+ (-5 *2 (-2 (|:| -2306 *1) (|:| -2071 *1))) (-4 *1 (-843 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-550)) (-4 *5 (-1039))
+ (-5 *2 (-2 (|:| -2306 *3) (|:| -2071 *3))) (-5 *1 (-844 *5 *3))
+ (-4 *3 (-843 *5)))))
+(((*1 *2) (-12 (-5 *2 (-635 *3)) (-5 *1 (-1071 *3)) (-4 *3 (-131)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-450)) (-4 *4 (-841))
+ (-4 *5 (-784)) (-5 *1 (-977 *3 *4 *5 *6)) (-4 *6 (-939 *3 *5 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
+(((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-315 (-378))) (-5 *1 (-304)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-635 (-558))) (-5 *3 (-112)) (-5 *1 (-1097)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224)))
+ (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-63 LSFUN2))))
+ (-5 *2 (-1025)) (-5 *1 (-744)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-899)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-4 *7 (-939 *4 *5 *6)) (-5 *2 (-417 (-1159 *7)))
+ (-5 *1 (-896 *4 *5 *6 *7)) (-5 *3 (-1159 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-899)) (-4 *5 (-1222 *4)) (-5 *2 (-417 (-1159 *5)))
+ (-5 *1 (-897 *4 *5)) (-5 *3 (-1159 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-450)) (-4 *3 (-784)) (-4 *5 (-841)) (-5 *2 (-112))
+ (-5 *1 (-447 *4 *3 *5 *6)) (-4 *6 (-939 *4 *3 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1185))))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-550)) (-4 *3 (-1039))
+ (-5 *2 (-2 (|:| -2306 *1) (|:| -2071 *1))) (-4 *1 (-843 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-550)) (-4 *5 (-1039))
+ (-5 *2 (-2 (|:| -2306 *3) (|:| -2071 *3))) (-5 *1 (-844 *5 *3))
+ (-4 *3 (-843 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1085 *3 *2 *4 *5 *6)) (-4 *3 (-1082)) (-4 *4 (-1082))
- (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *2 (-1082)))))
+ (-12 (-4 *3 (-450)) (-4 *4 (-841)) (-4 *5 (-784)) (-5 *2 (-635 *6))
+ (-5 *1 (-977 *3 *4 *5 *6)) (-4 *6 (-939 *3 *5 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034))
+ (-12
(-5 *2
- (-2 (|:| -1707 (-758)) (|:| |curves| (-758))
- (|:| |polygons| (-758)) (|:| |constructs| (-758)))))))
+ (-3 (|:| |Null| "null") (|:| |Assignment| "assignment")
+ (|:| |Conditional| "conditional") (|:| |Return| "return")
+ (|:| |Block| "block") (|:| |Comment| "comment")
+ (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while")
+ (|:| |Repeat| "repeat") (|:| |Goto| "goto")
+ (|:| |Continue| "continue")
+ (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save")
+ (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")))
+ (-5 *1 (-329)))))
+(((*1 *2 *3) (-12 (-5 *3 (-942 (-224))) (-5 *2 (-224)) (-5 *1 (-304)))))
+(((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-52)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-679 (-558))) (-5 *3 (-635 (-558))) (-5 *1 (-1097)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224)))
+ (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-79 LSFUN1))))
+ (-5 *2 (-1025)) (-5 *1 (-744)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-635 (-1159 *7))) (-5 *3 (-1159 *7))
+ (-4 *7 (-939 *4 *5 *6)) (-4 *4 (-899)) (-4 *5 (-784))
+ (-4 *6 (-841)) (-5 *1 (-896 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-635 (-1159 *5))) (-5 *3 (-1159 *5))
+ (-4 *5 (-1222 *4)) (-4 *4 (-899)) (-5 *1 (-897 *4 *5)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-762)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-784)) (-4 *7 (-939 *4 *5 *6)) (-4 *4 (-450)) (-4 *6 (-841))
+ (-5 *2 (-112)) (-5 *1 (-447 *4 *5 *6 *7)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2))
- (-4 *2 (-13 (-425 *3) (-1180))))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-546)) (-4 *2 (-170)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2510 (-769 *3)) (|:| |coef1| (-769 *3))))
- (-5 *1 (-769 *3)) (-4 *3 (-546)) (-4 *3 (-1034))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-546)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836))
- (-5 *2 (-2 (|:| -2510 *1) (|:| |coef1| *1)))
- (-4 *1 (-1048 *3 *4 *5)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2999 *3) (|:| |coef2| (-769 *3))))
- (-5 *1 (-769 *3)) (-4 *3 (-546)) (-4 *3 (-1034)))))
+ (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1185))))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-362)) (-5 *1 (-757 *2 *3)) (-4 *2 (-699 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-939 *3 *5 *4)) (-5 *1 (-977 *3 *4 *5 *2))
+ (-4 *3 (-450)) (-4 *4 (-841)) (-4 *5 (-784)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-446)) (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836))
- (-5 *2 (-631 *3)) (-5 *1 (-962 *4 *5 *6 *3))
- (-4 *3 (-1048 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-311 (-374))) (-5 *1 (-300)))))
-(((*1 *2 *3 *4 *2 *2 *5)
- (|partial| -12 (-5 *2 (-829 *4)) (-5 *3 (-600 *4)) (-5 *5 (-112))
- (-4 *4 (-13 (-1180) (-29 *6)))
- (-4 *6 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *1 (-220 *6 *4)))))
+ (-12 (-5 *3 (-942 (-224))) (-5 *2 (-315 (-378))) (-5 *1 (-304)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1214 *5 *4)) (-4 *4 (-807)) (-14 *5 (-1158))
- (-5 *2 (-554)) (-5 *1 (-1096 *4 *5)))))
+ (-12 (-5 *3 (-635 (-558))) (-5 *2 (-679 (-558))) (-5 *1 (-1097)))))
+(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
+ (-12 (-5 *3 (-558)) (-5 *5 (-112)) (-5 *6 (-679 (-224)))
+ (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN))))
+ (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-744)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-635 (-1159 *7))) (-5 *3 (-1159 *7))
+ (-4 *7 (-939 *5 *6 *4)) (-4 *5 (-899)) (-4 *6 (-784))
+ (-4 *4 (-841)) (-5 *1 (-896 *5 *6 *4 *7)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-635 *7)) (-5 *3 (-558)) (-4 *7 (-939 *4 *5 *6))
+ (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-5 *1 (-447 *4 *5 *6 *7)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1185))))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-362)) (-5 *1 (-757 *2 *3)) (-4 *2 (-699 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-450)) (-4 *3 (-841)) (-4 *4 (-784))
+ (-5 *1 (-977 *2 *3 *4 *5)) (-4 *5 (-939 *2 *4 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
(((*1 *2 *3)
- (-12 (-14 *4 (-631 (-1158))) (-14 *5 (-758))
- (-5 *2
- (-631
- (-498 (-402 (-554)) (-236 *5 (-758)) (-850 *4)
- (-243 *4 (-402 (-554))))))
- (-5 *1 (-499 *4 *5))
+ (-12
(-5 *3
- (-498 (-402 (-554)) (-236 *5 (-758)) (-850 *4)
- (-243 *4 (-402 (-554))))))))
+ (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378))
+ (|:| |expense| (-378)) (|:| |accuracy| (-378))
+ (|:| |intermediateResults| (-378))))
+ (-5 *2 (-1025)) (-5 *1 (-304)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-402 *5)) (-4 *5 (-1217 *4)) (-4 *4 (-546))
- (-4 *4 (-1034)) (-4 *2 (-1232 *4)) (-5 *1 (-1235 *4 *5 *6 *2))
- (-4 *6 (-642 *5)))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-758)) (-4 *5 (-358)) (-5 *2 (-402 *6))
- (-5 *1 (-852 *5 *4 *6)) (-4 *4 (-1232 *5)) (-4 *6 (-1217 *5))))
- ((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-758)) (-5 *4 (-1233 *5 *6 *7)) (-4 *5 (-358))
- (-14 *6 (-1158)) (-14 *7 *5) (-5 *2 (-402 (-1214 *6 *5)))
- (-5 *1 (-853 *5 *6 *7))))
- ((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-758)) (-5 *4 (-1233 *5 *6 *7)) (-4 *5 (-358))
- (-14 *6 (-1158)) (-14 *7 *5) (-5 *2 (-402 (-1214 *6 *5)))
- (-5 *1 (-853 *5 *6 *7)))))
+ (-12 (-5 *3 (-635 (-558))) (-5 *2 (-635 (-679 (-558))))
+ (-5 *1 (-1097)))))
+(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
+ (-5 *1 (-743)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-635 *6))
+ (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-939 *3 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-635 (-895 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1087)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-635 *2)) (-4 *2 (-939 *4 *5 *6)) (-4 *4 (-450))
+ (-4 *5 (-784)) (-4 *6 (-841)) (-5 *1 (-447 *4 *5 *6 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1185))))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-362)) (-5 *1 (-757 *2 *3)) (-4 *2 (-699 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-928 *3) (-928 *3))) (-5 *1 (-174 *3))
- (-4 *3 (-13 (-358) (-1180) (-987))))))
+ (-12 (-4 *3 (-1222 *2)) (-4 *2 (-1222 *4)) (-5 *1 (-975 *4 *2 *3 *5))
+ (-4 *4 (-348)) (-4 *5 (-715 *2 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-546) (-145))) (-5 *2 (-631 *3))
- (-5 *1 (-1211 *4 *3)) (-4 *3 (-1217 *4)))))
+ (-12
+ (-5 *3
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1143 (-224)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -1626
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
+ (-5 *2 (-1025)) (-5 *1 (-304)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-635 (-558))) (-5 *3 (-679 (-558))) (-5 *1 (-1097)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224))) (-5 *4 (-224))
+ (-5 *2 (-1025)) (-5 *1 (-743)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-635 (-895 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1087)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-635 *2)) (-4 *2 (-939 *4 *5 *6)) (-4 *4 (-450))
+ (-4 *5 (-784)) (-4 *6 (-841)) (-5 *1 (-447 *4 *5 *6 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1185))))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-362)) (-5 *1 (-757 *2 *3)) (-4 *2 (-699 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-784))
+ (-4 *3 (-13 (-841) (-10 -8 (-15 -3224 ((-1163) $))))) (-4 *5 (-550))
+ (-5 *1 (-723 *4 *3 *5 *2)) (-4 *2 (-939 (-406 (-942 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1039)) (-4 *5 (-784))
+ (-4 *3
+ (-13 (-841)
+ (-10 -8 (-15 -3224 ((-1163) $))
+ (-15 -1602 ((-3 $ "failed") (-1163))))))
+ (-5 *1 (-974 *4 *5 *3 *2)) (-4 *2 (-939 (-942 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-635 *6))
+ (-4 *6
+ (-13 (-841)
+ (-10 -8 (-15 -3224 ((-1163) $))
+ (-15 -1602 ((-3 $ "failed") (-1163))))))
+ (-4 *4 (-1039)) (-4 *5 (-784)) (-5 *1 (-974 *4 *5 *6 *2))
+ (-4 *2 (-939 (-942 *4) *5 *6)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-38 (-402 (-554))))
- (-5 *2 (-2 (|:| -3003 (-1138 *4)) (|:| -3014 (-1138 *4))))
- (-5 *1 (-1144 *4)) (-5 *3 (-1138 *4)))))
-(((*1 *1) (-12 (-4 *1 (-1030 *2)) (-4 *2 (-23)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-951 *3)) (-4 *3 (-952)))))
+ (-12
+ (-5 *3
+ (-2 (|:| -3510 (-378)) (|:| -1323 (-1145))
+ (|:| |explanations| (-635 (-1145)))))
+ (-5 *2 (-1025)) (-5 *1 (-304))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -3510 (-378)) (|:| -1323 (-1145))
+ (|:| |explanations| (-635 (-1145))) (|:| |extra| (-1025))))
+ (-5 *2 (-1025)) (-5 *1 (-304)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-635 (-558))) (-5 *2 (-679 (-558))) (-5 *1 (-1097)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
+ (-5 *1 (-743)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-635 (-635 (-762)))) (-5 *1 (-894 *3)) (-4 *3 (-1087)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-784)) (-4 *6 (-841))
+ (-4 *7 (-939 *4 *5 *6)) (-5 *2 (-635 (-635 *7)))
+ (-5 *1 (-446 *4 *5 *6 *7)) (-5 *3 (-635 *7))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-784))
+ (-4 *7 (-841)) (-4 *8 (-939 *5 *6 *7)) (-5 *2 (-635 (-635 *8)))
+ (-5 *1 (-446 *5 *6 *7 *8)) (-5 *3 (-635 *8))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-784)) (-4 *6 (-841))
+ (-4 *7 (-939 *4 *5 *6)) (-5 *2 (-635 (-635 *7)))
+ (-5 *1 (-446 *4 *5 *6 *7)) (-5 *3 (-635 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-784))
+ (-4 *7 (-841)) (-4 *8 (-939 *5 *6 *7)) (-5 *2 (-635 (-635 *8)))
+ (-5 *1 (-446 *5 *6 *7 *8)) (-5 *3 (-635 *8)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1145) (-765))) (-5 *1 (-114)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1185))))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-362)) (-4 *3 (-1039))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4098 *1)))
+ (-4 *1 (-843 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-784))
+ (-4 *3 (-13 (-841) (-10 -8 (-15 -3224 ((-1163) $))))) (-4 *5 (-550))
+ (-5 *1 (-723 *4 *3 *5 *2)) (-4 *2 (-939 (-406 (-942 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1039)) (-4 *5 (-784))
+ (-4 *3
+ (-13 (-841)
+ (-10 -8 (-15 -3224 ((-1163) $))
+ (-15 -1602 ((-3 $ "failed") (-1163))))))
+ (-5 *1 (-974 *4 *5 *3 *2)) (-4 *2 (-939 (-942 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-635 *6))
+ (-4 *6
+ (-13 (-841)
+ (-10 -8 (-15 -3224 ((-1163) $))
+ (-15 -1602 ((-3 $ "failed") (-1163))))))
+ (-4 *4 (-1039)) (-4 *5 (-784)) (-5 *1 (-974 *4 *5 *6 *2))
+ (-4 *2 (-939 (-942 *4) *5 *6)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
+(((*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1145)) (-5 *1 (-304)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
+ (-4 *3 (-1053 *5 *6 *7))
+ (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -2396 *4))))
+ (-5 *1 (-1095 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
+ (-5 *1 (-743)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-635 (-895 *3))) (-4 *3 (-1087)) (-5 *1 (-894 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-3 (|:| |fst| (-429)) (|:| -2053 "void")))
- (-5 *2 (-1246)) (-5 *1 (-1161))))
+ (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-784)) (-4 *6 (-841))
+ (-4 *7 (-939 *4 *5 *6)) (-5 *2 (-635 (-635 *7)))
+ (-5 *1 (-446 *4 *5 *6 *7)) (-5 *3 (-635 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1158))
- (-5 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-5 *2 (-1246))
- (-5 *1 (-1161))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *3 (-1158))
- (-5 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-5 *2 (-1246))
- (-5 *1 (-1161)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-631 *3)) (-5 *1 (-946 *3)) (-4 *3 (-539)))))
-(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
- (-12 (-5 *4 (-554)) (-5 *5 (-675 (-221)))
- (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085)))) (-5 *3 (-221))
- (-5 *2 (-1020)) (-5 *1 (-735)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-631 *4)) (-4 *4 (-358)) (-5 *2 (-1241 *4))
- (-5 *1 (-801 *4 *3)) (-4 *3 (-642 *4)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-675 *2)) (-5 *4 (-758))
- (-4 *2 (-13 (-302) (-10 -8 (-15 -1565 ((-413 $) $)))))
- (-4 *5 (-1217 *2)) (-5 *1 (-493 *2 *5 *6)) (-4 *6 (-404 *2 *5)))))
-(((*1 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-816)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-809)))))
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-784))
+ (-4 *7 (-841)) (-4 *8 (-939 *5 *6 *7)) (-5 *2 (-635 (-635 *8)))
+ (-5 *1 (-446 *5 *6 *7 *8)) (-5 *3 (-635 *8)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1163)) (-5 *3 (-635 (-955))) (-5 *1 (-109)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-631 *6)) (-4 *6 (-934 *3 *4 *5)) (-4 *3 (-302))
- (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-441 *3 *4 *5 *6))))
+ (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1185))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1081 (-834 (-224)))) (-5 *2 (-224)) (-5 *1 (-191))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1081 (-834 (-224)))) (-5 *2 (-224)) (-5 *1 (-299))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1081 (-834 (-224)))) (-5 *2 (-224)) (-5 *1 (-304)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
+ (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-635 *4))
+ (-5 *1 (-1095 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1145)) (-5 *4 (-558)) (-5 *5 (-679 (-224)))
+ (-5 *6 (-224)) (-5 *2 (-1025)) (-5 *1 (-743)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-893 *3)) (-4 *3 (-1087)) (-5 *2 (-1089 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1087)) (-5 *2 (-1089 (-635 *4))) (-5 *1 (-894 *4))
+ (-5 *3 (-635 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1087)) (-5 *2 (-1089 (-1089 *4))) (-5 *1 (-894 *4))
+ (-5 *3 (-1089 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *2 (-1089 *3)) (-5 *1 (-894 *3)) (-4 *3 (-1087)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-635 *6)) (-4 *6 (-939 *3 *4 *5)) (-4 *3 (-306))
+ (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-445 *3 *4 *5 *6))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-631 *7)) (-5 *3 (-1140)) (-4 *7 (-934 *4 *5 *6))
- (-4 *4 (-302)) (-4 *5 (-780)) (-4 *6 (-836))
- (-5 *1 (-441 *4 *5 *6 *7))))
+ (-12 (-5 *2 (-635 *7)) (-5 *3 (-1145)) (-4 *7 (-939 *4 *5 *6))
+ (-4 *4 (-306)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-5 *1 (-445 *4 *5 *6 *7))))
((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-631 *7)) (-5 *3 (-1140)) (-4 *7 (-934 *4 *5 *6))
- (-4 *4 (-302)) (-4 *5 (-780)) (-4 *6 (-836))
- (-5 *1 (-441 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-635 *7)) (-5 *3 (-1145)) (-4 *7 (-939 *4 *5 *6))
+ (-4 *4 (-306)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-5 *1 (-445 *4 *5 *6 *7)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1185))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1081 (-834 (-224)))) (-5 *2 (-224)) (-5 *1 (-191))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1081 (-834 (-224)))) (-5 *2 (-224)) (-5 *1 (-299))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1081 (-834 (-224)))) (-5 *2 (-224)) (-5 *1 (-304)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-554)) (-4 *5 (-344)) (-5 *2 (-413 (-1154 (-1154 *5))))
- (-5 *1 (-1193 *5)) (-5 *3 (-1154 (-1154 *5))))))
+ (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
+ (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-1095 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
+ (-4 *3 (-1053 *5 *6 *7))
+ (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -2396 *4))))
+ (-5 *1 (-1095 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
+ (-12 (-5 *3 (-1145)) (-5 *5 (-679 (-224))) (-5 *6 (-224))
+ (-5 *7 (-679 (-558))) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-743)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1089 (-1089 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1087)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-635 *2)) (-4 *2 (-939 *4 *5 *6)) (-4 *4 (-306))
+ (-4 *5 (-784)) (-4 *6 (-841)) (-5 *1 (-445 *4 *5 *6 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1185))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1143 (-224))) (-5 *2 (-635 (-1145))) (-5 *1 (-191))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1143 (-224))) (-5 *2 (-635 (-1145))) (-5 *1 (-299))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1143 (-224))) (-5 *2 (-635 (-1145))) (-5 *1 (-304)))))
(((*1 *2 *3 *4)
- (-12
- (-5 *3
- (-631
- (-2 (|:| |eqzro| (-631 *8)) (|:| |neqzro| (-631 *8))
- (|:| |wcond| (-631 (-937 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1241 (-402 (-937 *5))))
- (|:| -3782 (-631 (-1241 (-402 (-937 *5))))))))))
- (-5 *4 (-1140)) (-4 *5 (-13 (-302) (-145))) (-4 *8 (-934 *5 *7 *6))
- (-4 *6 (-13 (-836) (-602 (-1158)))) (-4 *7 (-780)) (-5 *2 (-554))
- (-5 *1 (-909 *5 *6 *7 *8)))))
+ (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
+ (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-635 *4))
+ (-5 *1 (-1095 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
+ (-12 (-5 *4 (-679 (-224))) (-5 *5 (-679 (-558))) (-5 *6 (-224))
+ (-5 *3 (-558)) (-5 *2 (-1025)) (-5 *1 (-743)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-895 *4)) (-4 *4 (-1087)) (-5 *2 (-635 (-762)))
+ (-5 *1 (-894 *4)))))
+(((*1 *2 *3) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-444)) (-5 *3 (-558)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1200)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1185))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-224))) (-5 *2 (-635 (-1145))) (-5 *1 (-191))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-224))) (-5 *2 (-635 (-1145))) (-5 *1 (-299))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-224))) (-5 *2 (-635 (-1145))) (-5 *1 (-304)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
+ (-4 *3 (-1053 *5 *6 *7))
+ (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -2396 *4))))
+ (-5 *1 (-1095 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
+ (-12 (-5 *3 (-1145)) (-5 *5 (-679 (-224))) (-5 *6 (-224))
+ (-5 *7 (-679 (-558))) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-743)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-895 *4)) (-4 *4 (-1087)) (-5 *2 (-635 (-762)))
+ (-5 *1 (-894 *4)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-762)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1039))))
+ ((*1 *2)
+ (-12 (-5 *2 (-762)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1039)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1185))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
+(((*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1145)) (-5 *1 (-304)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
+ (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-635 *4))
+ (-5 *1 (-1095 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
+ (-5 *1 (-743)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-446)) (-4 *4 (-836)) (-4 *5 (-780))
- (-5 *2 (-112)) (-5 *1 (-972 *3 *4 *5 *6))
- (-4 *6 (-934 *3 *5 *4))))
+ (-12 (-5 *2 (-1089 *3)) (-5 *1 (-894 *3)) (-4 *3 (-1087))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-13 (-1082) (-34)))
- (-4 *4 (-13 (-1082) (-34))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-858 (-951 *3) (-951 *3))) (-5 *1 (-951 *3))
- (-4 *3 (-952)))))
-(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *1 (-784 *2)) (-4 *2 (-170))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-984 *3)) (-4 *3 (-170)) (-5 *1 (-786 *3)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-554)) (-5 *1 (-374)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-758)) (-5 *1 (-59 *3)) (-4 *3 (-1195))))
- ((*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1195)) (-5 *1 (-59 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3)) (-4 *3 (-1082)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-359 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1082)))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-1154 (-937 *4))) (-5 *1 (-411 *3 *4))
- (-4 *3 (-412 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-4 *3 (-358))
- (-5 *2 (-1154 (-937 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1154 (-402 (-937 *3)))) (-5 *1 (-447 *3 *4 *5 *6))
- (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906))
- (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-554)) (-5 *1 (-413 *2)) (-4 *2 (-546)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-675 (-402 (-937 (-554))))) (-5 *2 (-631 (-311 (-554))))
- (-5 *1 (-1016)))))
-(((*1 *1) (-5 *1 (-810))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1243)))))
+ (-12 (-5 *2 (-1089 *3)) (-5 *1 (-895 *3)) (-4 *3 (-1087)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-558)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1039)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-550)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-362) (-301)
+ (-10 -8 (-15 -1874 ((-1112 *3 (-604 $)) $))
+ (-15 -1885 ((-1112 *3 (-604 $)) $))
+ (-15 -3220 ($ (-1112 *3 (-604 $))))))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1185))))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-546)) (-4 *3 (-1034))
- (-5 *2 (-2 (|:| -2325 *1) (|:| -2423 *1))) (-4 *1 (-838 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-546)) (-4 *5 (-1034))
- (-5 *2 (-2 (|:| -2325 *3) (|:| -2423 *3))) (-5 *1 (-839 *5 *3))
- (-4 *3 (-838 *5)))))
-(((*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-991))))
- ((*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-991)))))
-(((*1 *1) (-5 *1 (-1242))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-631 *7)) (|:| -2143 *8)))
- (-4 *7 (-1048 *4 *5 *6)) (-4 *8 (-1054 *4 *5 *6 *7)) (-4 *4 (-446))
- (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112))
- (-5 *1 (-973 *4 *5 *6 *7 *8))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-631 *7)) (|:| -2143 *8)))
- (-4 *7 (-1048 *4 *5 *6)) (-4 *8 (-1054 *4 *5 *6 *7)) (-4 *4 (-446))
- (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112))
- (-5 *1 (-1089 *4 *5 *6 *7 *8)))))
+ (-12 (-4 *3 (-362)) (-4 *3 (-1039))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4098 *1)))
+ (-4 *1 (-843 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
+(((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1145)) (-5 *1 (-191))))
+ ((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1145)) (-5 *1 (-299))))
+ ((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1145)) (-5 *1 (-304)))))
+(((*1 *2 *3) (-12 (-5 *2 (-558)) (-5 *1 (-563 *3)) (-4 *3 (-1028 *2))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1090 *3 *4 *2 *5 *6)) (-4 *3 (-1087)) (-4 *4 (-1087))
+ (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *2 (-1087)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-639 (-402 *6))) (-5 *4 (-1 (-631 *5) *6))
- (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554)))))
- (-4 *6 (-1217 *5)) (-5 *2 (-631 (-402 *6))) (-5 *1 (-799 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-639 (-402 *7))) (-5 *4 (-1 (-631 *6) *7))
- (-5 *5 (-1 (-413 *7) *7))
- (-4 *6 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554)))))
- (-4 *7 (-1217 *6)) (-5 *2 (-631 (-402 *7))) (-5 *1 (-799 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 *6 (-402 *6))) (-5 *4 (-1 (-631 *5) *6))
- (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554)))))
- (-4 *6 (-1217 *5)) (-5 *2 (-631 (-402 *6))) (-5 *1 (-799 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-640 *7 (-402 *7))) (-5 *4 (-1 (-631 *6) *7))
- (-5 *5 (-1 (-413 *7) *7))
- (-4 *6 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554)))))
- (-4 *7 (-1217 *6)) (-5 *2 (-631 (-402 *7))) (-5 *1 (-799 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-639 (-402 *5))) (-4 *5 (-1217 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554)))))
- (-5 *2 (-631 (-402 *5))) (-5 *1 (-799 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-639 (-402 *6))) (-5 *4 (-1 (-413 *6) *6))
- (-4 *6 (-1217 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554)))))
- (-5 *2 (-631 (-402 *6))) (-5 *1 (-799 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-640 *5 (-402 *5))) (-4 *5 (-1217 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554)))))
- (-5 *2 (-631 (-402 *5))) (-5 *1 (-799 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 *6 (-402 *6))) (-5 *4 (-1 (-413 *6) *6))
- (-4 *6 (-1217 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554)))))
- (-5 *2 (-631 (-402 *6))) (-5 *1 (-799 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1160 (-402 (-554)))) (-5 *1 (-186)) (-5 *3 (-554)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-631 (-52))) (-5 *1 (-877 *3)) (-4 *3 (-1082)))))
-(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-848))))
+ (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
+ (-4 *3 (-1053 *5 *6 *7))
+ (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -2396 *4))))
+ (-5 *1 (-1095 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-224))
+ (-5 *2 (-1025)) (-5 *1 (-743)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-558)) (-5 *2 (-1251)) (-5 *1 (-894 *4))
+ (-4 *4 (-1087))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-894 *3)) (-4 *3 (-1087)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-558)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1039)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-762)) (-4 *4 (-362)) (-4 *5 (-1222 *4)) (-5 *2 (-1251))
+ (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1222 (-406 *5))) (-14 *7 *6))))
+(((*1 *1)
+ (-12 (-4 *1 (-403)) (-3304 (|has| *1 (-6 -4373)))
+ (-3304 (|has| *1 (-6 -4365)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1087)) (-4 *2 (-841))))
+ ((*1 *1 *1 *1) (-4 *1 (-841)))
+ ((*1 *2 *1) (-12 (-4 *1 (-958 *2)) (-4 *2 (-841))))
+ ((*1 *1) (-5 *1 (-1107))))
(((*1 *2 *2)
- (-12 (-5 *2 (-631 *6)) (-4 *6 (-934 *3 *4 *5)) (-4 *3 (-446))
- (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-443 *3 *4 *5 *6)))))
+ (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1185))))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-362)) (-5 *1 (-757 *2 *3)) (-4 *2 (-699 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-635 (-604 *4))) (-4 *4 (-429 *3)) (-4 *3 (-841))
+ (-5 *1 (-567 *3 *4))))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-879 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-1087))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1087))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1087))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1087)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1246 (-315 (-224)))) (-5 *2 (-1246 (-315 (-378))))
+ (-5 *1 (-304)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-179))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-310))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-960))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-984))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1026))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1061)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1200)) (-4 *1 (-107 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
+ (-4 *3 (-1053 *5 *6 *7))
+ (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -2396 *4))))
+ (-5 *1 (-1095 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *4 *5 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-224))
+ (-5 *2 (-1025)) (-5 *1 (-743)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-4 *1 (-893 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-443 *3)) (-4 *3 (-1039)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-546) (-836) (-1023 (-554)))) (-5 *1 (-184 *3 *2))
- (-4 *2 (-13 (-27) (-1180) (-425 (-167 *3))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *1 (-1184 *3 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *3))))))
+ (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1185))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1246 *5)) (-4 *5 (-783)) (-5 *2 (-112))
+ (-5 *1 (-836 *4 *5)) (-14 *4 (-762)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-675 (-311 (-221)))) (-5 *2 (-374)) (-5 *1 (-201)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-462)) (-5 *4 (-906)) (-5 *2 (-1246)) (-5 *1 (-1242)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-631 (-554))) (-5 *1 (-1092)) (-5 *3 (-554)))))
-(((*1 *2)
- (-12 (-4 *3 (-546)) (-5 *2 (-631 (-675 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-412 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1242))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1243)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -3324 *6) (|:| |sol?| (-112))) (-554)
- *6))
- (-4 *6 (-358)) (-4 *7 (-1217 *6))
- (-5 *2 (-2 (|:| |answer| (-575 (-402 *7))) (|:| |a0| *6)))
- (-5 *1 (-564 *6 *7)) (-5 *3 (-402 *7)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
- (-12 (-5 *4 (-675 (-221))) (-5 *5 (-675 (-554))) (-5 *6 (-221))
- (-5 *3 (-554)) (-5 *2 (-1020)) (-5 *1 (-738)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-602 (-877 *3))) (-4 *3 (-871 *3))
- (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2))
- (-4 *2 (-602 (-877 *3))) (-4 *2 (-871 *3))
- (-4 *2 (-13 (-425 *3) (-1180))))))
-(((*1 *2 *2) (-12 (-5 *2 (-631 (-311 (-221)))) (-5 *1 (-262)))))
-(((*1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-1165)))))
+ (-12 (-5 *3 (-315 (-224))) (-5 *2 (-315 (-378))) (-5 *1 (-304)))))
+(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1200)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1090 *3 *2 *4 *5 *6)) (-4 *3 (-1087)) (-4 *4 (-1087))
+ (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *2 (-1087)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
+ (-4 *3 (-1053 *5 *6 *7))
+ (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -2396 *4))))
+ (-5 *1 (-1095 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
+ (-5 *1 (-743)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1087)) (-4 *1 (-893 *3)))))
+(((*1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-443 *3)) (-4 *3 (-1039)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))))
+ (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
(((*1 *2 *3)
- (-12
+ (-12 (-5 *3 (-635 (-224))) (-5 *2 (-1246 (-689))) (-5 *1 (-304)))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841))
+ (-4 *3 (-1053 *6 *7 *8))
+ (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -2396 *4))))
+ (-5 *1 (-1095 *6 *7 *8 *3 *4)) (-4 *4 (-1059 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-635 (-2 (|:| |val| (-635 *8)) (|:| -2396 *9))))
+ (-5 *5 (-112)) (-4 *8 (-1053 *6 *7 *4)) (-4 *9 (-1059 *6 *7 *4 *8))
+ (-4 *6 (-450)) (-4 *7 (-784)) (-4 *4 (-841))
+ (-5 *2 (-635 (-2 (|:| |val| *8) (|:| -2396 *9))))
+ (-5 *1 (-1095 *6 *7 *4 *8 *9)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224))) (-5 *4 (-224))
+ (-5 *2 (-1025)) (-5 *1 (-743)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1129 *4 *2)) (-14 *4 (-911))
+ (-4 *2 (-13 (-1039) (-10 -7 (-6 (-4384 "*")))))
+ (-5 *1 (-892 *4 *2)))))
+(((*1 *2 *2) (-12 (-5 *2 (-762)) (-5 *1 (-443 *3)) (-4 *3 (-1039))))
+ ((*1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-443 *3)) (-4 *3 (-1039)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1229 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1206 *3))
+ (-5 *2 (-406 (-558))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-760))
(-5 *2
- (-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))))
- (-5 *1 (-1005 *3)) (-4 *3 (-1217 (-554)))))
+ (-2 (|:| -3510 (-378)) (|:| -1323 (-1145))
+ (|:| |explanations| (-635 (-1145))) (|:| |extra| (-1025))))
+ (-5 *1 (-559))))
((*1 *2 *3 *4)
- (-12
+ (-12 (-5 *3 (-760)) (-5 *4 (-1051))
(-5 *2
- (-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))))
- (-5 *1 (-1005 *3)) (-4 *3 (-1217 (-554)))
- (-5 *4 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))))
+ (-2 (|:| -3510 (-378)) (|:| -1323 (-1145))
+ (|:| |explanations| (-635 (-1145))) (|:| |extra| (-1025))))
+ (-5 *1 (-559))))
((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))))
- (-5 *1 (-1005 *3)) (-4 *3 (-1217 (-554))) (-5 *4 (-402 (-554)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-402 (-554)))
- (-5 *2 (-631 (-2 (|:| -3311 *5) (|:| -3324 *5)))) (-5 *1 (-1005 *3))
- (-4 *3 (-1217 (-554))) (-5 *4 (-2 (|:| -3311 *5) (|:| -3324 *5)))))
- ((*1 *2 *3)
- (-12
+ (-12 (-4 *1 (-778)) (-5 *3 (-1051))
+ (-5 *4
+ (-2 (|:| |fn| (-315 (-224)))
+ (|:| -1626 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
(-5 *2
- (-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))))
- (-5 *1 (-1006 *3)) (-4 *3 (-1217 (-402 (-554))))))
+ (-2 (|:| -3510 (-378)) (|:| |explanations| (-1145))
+ (|:| |extra| (-1025))))))
((*1 *2 *3 *4)
- (-12
+ (-12 (-4 *1 (-778)) (-5 *3 (-1051))
+ (-5 *4
+ (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224)))
+ (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
(-5 *2
- (-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))))
- (-5 *1 (-1006 *3)) (-4 *3 (-1217 (-402 (-554))))
- (-5 *4 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))))
+ (-2 (|:| -3510 (-378)) (|:| |explanations| (-1145))
+ (|:| |extra| (-1025))))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-402 (-554)))
- (-5 *2 (-631 (-2 (|:| -3311 *4) (|:| -3324 *4)))) (-5 *1 (-1006 *3))
- (-4 *3 (-1217 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-402 (-554)))
- (-5 *2 (-631 (-2 (|:| -3311 *5) (|:| -3324 *5)))) (-5 *1 (-1006 *3))
- (-4 *3 (-1217 *5)) (-5 *4 (-2 (|:| -3311 *5) (|:| -3324 *5))))))
-(((*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1195))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780))
- (-4 *4 (-836))))
- ((*1 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1195)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *3 (-836))
- (-5 *2 (-2 (|:| -1490 *1) (|:| |gap| (-758)) (|:| -2423 *1)))
- (-4 *1 (-1048 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836))
- (-5 *2 (-2 (|:| -1490 *1) (|:| |gap| (-758)) (|:| -2423 *1)))
- (-4 *1 (-1048 *3 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-352 *3)) (-4 *3 (-344)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1214 *5 *4)) (-4 *4 (-807)) (-14 *5 (-1158))
- (-5 *2 (-631 *4)) (-5 *1 (-1096 *4 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-546))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2999 *4)))
- (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-631 (-600 *4))) (-4 *4 (-425 *3)) (-4 *3 (-836))
- (-5 *1 (-563 *3 *4))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-874 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1082))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1082))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1082)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))
- (-5 *2 (-402 (-554))) (-5 *1 (-1005 *4)) (-4 *4 (-1217 (-554))))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-297)) (-4 *2 (-1195))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-631 (-600 *1))) (-5 *3 (-631 *1)) (-4 *1 (-297))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-631 (-289 *1))) (-4 *1 (-297))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-289 *1)) (-4 *1 (-297)))))
-(((*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-912)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
- (-12 (-5 *4 (-675 (-221))) (-5 *5 (-675 (-554))) (-5 *6 (-221))
- (-5 *3 (-554)) (-5 *2 (-1020)) (-5 *1 (-739)))))
-(((*1 *2 *3 *1 *4)
- (-12 (-5 *3 (-1122 *5 *6)) (-5 *4 (-1 (-112) *6 *6))
- (-4 *5 (-13 (-1082) (-34))) (-4 *6 (-13 (-1082) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1123 *5 *6)))))
-(((*1 *1 *1 *1 *1 *1)
- (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780))
- (-4 *4 (-836)) (-4 *2 (-546)))))
-(((*1 *2 *2)
- (-12
+ (-12 (-4 *1 (-791)) (-5 *3 (-1051))
+ (-5 *4
+ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
+ (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224)))
+ (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224)))
+ (|:| |abserr| (-224)) (|:| |relerr| (-224))))
+ (-5 *2 (-2 (|:| -3510 (-378)) (|:| |explanations| (-1145))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-799))
(-5 *2
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
- (|:| |xpnt| (-554))))
- (-4 *4 (-13 (-1217 *3) (-546) (-10 -8 (-15 -2510 ($ $ $)))))
- (-4 *3 (-546)) (-5 *1 (-1220 *3 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-631 (-631 *3))) (-4 *3 (-1082)) (-4 *1 (-888 *3)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-675 *3)) (-4 *3 (-302)) (-5 *1 (-686 *3)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1082))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1082)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1140)) (-5 *3 (-810)) (-5 *1 (-809)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-1140)) (-5 *5 (-675 (-221)))
- (-5 *2 (-1020)) (-5 *1 (-734)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-337 *4 *5 *6)) (-4 *4 (-1199))
- (-4 *5 (-1217 *4)) (-4 *6 (-1217 (-402 *5)))
- (-5 *2 (-2 (|:| |num| (-675 *5)) (|:| |den| *5))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-631 (-554))) (-5 *2 (-889 (-554))) (-5 *1 (-902))))
- ((*1 *2) (-12 (-5 *2 (-889 (-554))) (-5 *1 (-902)))))
-(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
- (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221))) (-5 *4 (-221))
- (-5 *2 (-1020)) (-5 *1 (-742)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-862 *2)) (-4 *2 (-1195))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1195))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-631 (-928 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-631 (-928 *3))) (-4 *3 (-1034)) (-4 *1 (-1116 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-631 (-631 *3))) (-4 *1 (-1116 *3)) (-4 *3 (-1034))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-631 (-928 *3))) (-4 *1 (-1116 *3)) (-4 *3 (-1034)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1241 *4)) (-4 *4 (-1034)) (-4 *2 (-1217 *4))
- (-5 *1 (-438 *4 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-402 (-1154 (-311 *5)))) (-5 *3 (-1241 (-311 *5)))
- (-5 *4 (-554)) (-4 *5 (-13 (-546) (-836))) (-5 *1 (-1112 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1158))
- (-4 *5 (-13 (-446) (-836) (-145) (-1023 (-554)) (-627 (-554))))
- (-5 *2 (-575 *3)) (-5 *1 (-547 *5 *3))
- (-4 *3 (-13 (-27) (-1180) (-425 *5))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-546))
+ (-2 (|:| -3510 (-378)) (|:| -1323 (-1145))
+ (|:| |explanations| (-635 (-1145)))))
+ (-5 *1 (-796))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-799)) (-5 *4 (-1051))
(-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-906)) (-4 *4 (-363)) (-4 *4 (-358)) (-5 *2 (-1154 *1))
- (-4 *1 (-324 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-1154 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-365 *3 *2)) (-4 *3 (-170)) (-4 *3 (-358))
- (-4 *2 (-1217 *3))))
+ (-2 (|:| -3510 (-378)) (|:| -1323 (-1145))
+ (|:| |explanations| (-635 (-1145)))))
+ (-5 *1 (-796))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-830)) (-5 *3 (-1051))
+ (-5 *4
+ (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224)))))
+ (-5 *2 (-2 (|:| -3510 (-378)) (|:| |explanations| (-1145))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-830)) (-5 *3 (-1051))
+ (-5 *4
+ (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224)))
+ (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224))))
+ (|:| |ub| (-635 (-834 (-224))))))
+ (-5 *2 (-2 (|:| -3510 (-378)) (|:| |explanations| (-1145))))))
((*1 *2 *3)
- (-12 (-5 *3 (-1241 *4)) (-4 *4 (-344)) (-5 *2 (-1154 *4))
- (-5 *1 (-522 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1076 (-829 (-374)))) (-5 *2 (-1076 (-829 (-221))))
- (-5 *1 (-300)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-928 (-221)) (-221) (-221)))
- (-5 *3 (-1 (-221) (-221) (-221) (-221))) (-5 *1 (-250)))))
-(((*1 *2)
- (-12 (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4)))
- (-5 *2 (-1241 *1)) (-4 *1 (-337 *3 *4 *5))))
- ((*1 *2)
- (-12 (-4 *3 (-13 (-302) (-10 -8 (-15 -1565 ((-413 $) $)))))
- (-4 *4 (-1217 *3))
+ (-12 (-5 *3 (-832))
(-5 *2
- (-2 (|:| -3782 (-675 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-675 *3))))
- (-5 *1 (-345 *3 *4 *5)) (-4 *5 (-404 *3 *4))))
- ((*1 *2)
- (-12 (-4 *3 (-1217 (-554)))
- (-5 *2
- (-2 (|:| -3782 (-675 (-554))) (|:| |basisDen| (-554))
- (|:| |basisInv| (-675 (-554)))))
- (-5 *1 (-755 *3 *4)) (-4 *4 (-404 (-554) *3))))
- ((*1 *2)
- (-12 (-4 *3 (-344)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 *4))
+ (-2 (|:| -3510 (-378)) (|:| -1323 (-1145))
+ (|:| |explanations| (-635 (-1145)))))
+ (-5 *1 (-831))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-832)) (-5 *4 (-1051))
(-5 *2
- (-2 (|:| -3782 (-675 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-675 *4))))
- (-5 *1 (-970 *3 *4 *5 *6)) (-4 *6 (-711 *4 *5))))
- ((*1 *2)
- (-12 (-4 *3 (-344)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 *4))
+ (-2 (|:| -3510 (-378)) (|:| -1323 (-1145))
+ (|:| |explanations| (-635 (-1145)))))
+ (-5 *1 (-831))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-885)) (-5 *3 (-1051))
+ (-5 *4
+ (-2 (|:| |pde| (-635 (-315 (-224))))
+ (|:| |constraints|
+ (-635
+ (-2 (|:| |start| (-224)) (|:| |finish| (-224))
+ (|:| |grid| (-762)) (|:| |boundaryType| (-558))
+ (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224))))))
+ (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145))
+ (|:| |tol| (-224))))
+ (-5 *2 (-2 (|:| -3510 (-378)) (|:| |explanations| (-1145))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-888))
(-5 *2
- (-2 (|:| -3782 (-675 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-675 *4))))
- (-5 *1 (-1250 *3 *4 *5 *6)) (-4 *6 (-404 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2))
- (-4 *2 (-13 (-425 *3) (-1180))))))
-(((*1 *1 *1) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1034)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1158))
- (-4 *4 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554))))
- (-5 *1 (-421 *4 *2)) (-4 *2 (-13 (-1180) (-29 *4)))))
+ (-2 (|:| -3510 (-378)) (|:| -1323 (-1145))
+ (|:| |explanations| (-635 (-1145)))))
+ (-5 *1 (-887))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-402 (-937 *5))) (-5 *4 (-1158)) (-4 *5 (-145))
- (-4 *5 (-13 (-446) (-1023 (-554)) (-836) (-627 (-554))))
- (-5 *2 (-311 *5)) (-5 *1 (-578 *5)))))
+ (-12 (-5 *3 (-888)) (-5 *4 (-1051))
+ (-5 *2
+ (-2 (|:| -3510 (-378)) (|:| -1323 (-1145))
+ (|:| |explanations| (-635 (-1145)))))
+ (-5 *1 (-887)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
+(((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-689)) (-5 *1 (-304)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
+ (-4 *3 (-1053 *5 *6 *7))
+ (-5 *2 (-635 (-2 (|:| |val| (-635 *3)) (|:| -2396 *4))))
+ (-5 *1 (-1095 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
+ (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224))) (-5 *4 (-224))
+ (-5 *2 (-1025)) (-5 *1 (-743)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |preimage| (-635 *3)) (|:| |image| (-635 *3))))
+ (-5 *1 (-895 *3)) (-4 *3 (-1087)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-762)) (-5 *4 (-558)) (-5 *1 (-443 *2)) (-4 *2 (-1039)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1229 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-1206 *3)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-675 *4)) (-5 *3 (-906)) (-4 *4 (-1034))
- (-5 *1 (-1013 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-631 (-675 *4))) (-5 *3 (-906)) (-4 *4 (-1034))
- (-5 *1 (-1013 *4)))))
+ (-12 (-5 *3 (-762)) (-4 *4 (-362)) (-5 *1 (-886 *2 *4))
+ (-4 *2 (-1222 *4)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-906)) (-5 *2 (-1154 *4)) (-5 *1 (-352 *4))
- (-4 *4 (-344))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-906)) (-5 *2 (-1154 *4)) (-5 *1 (-352 *4))
- (-4 *4 (-344))))
- ((*1 *1) (-4 *1 (-363)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-906)) (-5 *2 (-1241 *4)) (-5 *1 (-522 *4))
- (-4 *4 (-344))))
- ((*1 *1 *1) (-4 *1 (-539))) ((*1 *1) (-4 *1 (-539)))
- ((*1 *1 *1) (-5 *1 (-554))) ((*1 *1 *1) (-5 *1 (-758)))
- ((*1 *2 *1) (-12 (-5 *2 (-890 *3)) (-5 *1 (-889 *3)) (-4 *3 (-1082))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-554)) (-5 *2 (-890 *4)) (-5 *1 (-889 *4))
- (-4 *4 (-1082))))
- ((*1 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-539)) (-4 *2 (-546)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-631 (-1194))) (-5 *1 (-518)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-631 (-2 (|:| |val| (-631 *6)) (|:| -2143 *7))))
- (-4 *6 (-1048 *3 *4 *5)) (-4 *7 (-1054 *3 *4 *5 *6)) (-4 *3 (-446))
- (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-973 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-631 (-2 (|:| |val| (-631 *6)) (|:| -2143 *7))))
- (-4 *6 (-1048 *3 *4 *5)) (-4 *7 (-1054 *3 *4 *5 *6)) (-4 *3 (-446))
- (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-1089 *3 *4 *5 *6 *7)))))
+ (-12
+ (-5 *3
+ (-635 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))))
+ (-5 *2 (-635 (-224))) (-5 *1 (-304)))))
(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4))
- (-4 *3 (-362 *4))))
- ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-631 *4)) (-4 *4 (-1082)) (-4 *4 (-1195)) (-5 *2 (-112))
- (-5 *1 (-1138 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-546)) (-5 *2 (-758)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-412 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-928 *3) (-928 *3))) (-5 *1 (-174 *3))
- (-4 *3 (-13 (-358) (-1180) (-987))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-631 *4)) (-4 *4 (-834)) (-4 *4 (-358)) (-5 *2 (-758))
- (-5 *1 (-930 *4 *5)) (-4 *5 (-1217 *4)))))
+ (-12 (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841))
+ (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-1251))
+ (-5 *1 (-1060 *3 *4 *5 *6 *7)) (-4 *7 (-1059 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841))
+ (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-1251))
+ (-5 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *7 (-1059 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224))) (-5 *4 (-224))
+ (-5 *2 (-1025)) (-5 *1 (-743)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1087)) (-5 *1 (-895 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-911)) (-5 *4 (-417 *6)) (-4 *6 (-1222 *5))
+ (-4 *5 (-1039)) (-5 *2 (-635 *6)) (-5 *1 (-442 *5 *6)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-4 *3 (-546))
- (-5 *2 (-1154 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-344)) (-4 *5 (-324 *4)) (-4 *6 (-1217 *5))
- (-5 *2 (-631 *3)) (-5 *1 (-764 *4 *5 *6 *3 *7)) (-4 *3 (-1217 *6))
- (-14 *7 (-906)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-669 *4 *3)) (-4 *4 (-1082))
- (-4 *3 (-1082)))))
+ (|partial| -12 (-4 *1 (-1229 *3 *2)) (-4 *3 (-1039))
+ (-4 *2 (-1206 *3)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-362)) (-5 *1 (-886 *2 *3))
+ (-4 *2 (-1222 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1081 (-834 (-224)))) (-5 *1 (-304)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1087)) (-5 *1 (-895 *3)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-631 (-258))) (-5 *1 (-256))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-258)))))
-(((*1 *1 *1) (|partial| -4 *1 (-1133))))
-(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))))
-(((*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-374)) (-5 *1 (-1025)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-631 *5)) (-4 *5 (-425 *4)) (-4 *4 (-13 (-836) (-546)))
- (-5 *2 (-848)) (-5 *1 (-32 *4 *5)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-358)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
+ (|partial| -12 (-5 *3 (-911)) (-5 *1 (-440 *2))
+ (-4 *2 (-1222 (-558)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-911)) (-5 *4 (-762)) (-5 *1 (-440 *2))
+ (-4 *2 (-1222 (-558)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-911)) (-5 *4 (-635 (-762))) (-5 *1 (-440 *2))
+ (-4 *2 (-1222 (-558)))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *3 (-911)) (-5 *4 (-635 (-762))) (-5 *5 (-762))
+ (-5 *1 (-440 *2)) (-4 *2 (-1222 (-558)))))
+ ((*1 *2 *3 *2 *4 *5 *6)
+ (|partial| -12 (-5 *3 (-911)) (-5 *4 (-635 (-762))) (-5 *5 (-762))
+ (-5 *6 (-112)) (-5 *1 (-440 *2)) (-4 *2 (-1222 (-558)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-911)) (-5 *4 (-417 *2)) (-4 *2 (-1222 *5))
+ (-5 *1 (-442 *5 *2)) (-4 *5 (-1039)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-758)) (-4 *1 (-1217 *3)) (-4 *3 (-1034))))
+ (-12 (-5 *2 (-762)) (-4 *1 (-1222 *3)) (-4 *3 (-1039))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-906)) (-4 *1 (-1219 *3 *4)) (-4 *3 (-1034))
- (-4 *4 (-779))))
+ (-12 (-5 *2 (-911)) (-4 *1 (-1224 *3 *4)) (-4 *3 (-1039))
+ (-4 *4 (-783))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-402 (-554))) (-4 *1 (-1222 *3)) (-4 *3 (-1034)))))
+ (-12 (-5 *2 (-406 (-558))) (-4 *1 (-1227 *3)) (-4 *3 (-1039)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-885))
+ (-5 *3
+ (-2 (|:| |pde| (-635 (-315 (-224))))
+ (|:| |constraints|
+ (-635
+ (-2 (|:| |start| (-224)) (|:| |finish| (-224))
+ (|:| |grid| (-762)) (|:| |boundaryType| (-558))
+ (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224))))))
+ (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145))
+ (|:| |tol| (-224))))
+ (-5 *2 (-1025)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
+(((*1 *1 *2)
+ (-12 (-4 *3 (-1039)) (-5 *1 (-818 *2 *3)) (-4 *2 (-699 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-315 (-224))) (-5 *2 (-315 (-406 (-558))))
+ (-5 *1 (-304)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1213 (-558))))))
+(((*1 *2 *1) (-12 (-4 *1 (-758 *3)) (-4 *3 (-1087)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-961)) (-5 *1 (-895 *3)) (-4 *3 (-1087)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-2 (|:| -2522 *4) (|:| -4323 (-558)))))
+ (-4 *4 (-1222 (-558))) (-5 *2 (-728 (-762))) (-5 *1 (-440 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-417 *5)) (-4 *5 (-1222 *4)) (-4 *4 (-1039))
+ (-5 *2 (-728 (-762))) (-5 *1 (-442 *4 *5)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987))))))
+ (-12
+ (-5 *2
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
+ (|:| |xpnt| (-558))))
+ (-4 *4 (-13 (-1222 *3) (-550) (-10 -8 (-15 -2699 ($ $ $)))))
+ (-4 *3 (-550)) (-5 *1 (-1225 *3 *4)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-112))
- (-5 *1 (-498 *3 *4 *5 *6)) (-4 *6 (-934 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-631 *6)) (-4 *6 (-836)) (-4 *4 (-358)) (-4 *5 (-780))
- (-5 *2 (-112)) (-5 *1 (-498 *4 *5 *6 *7)) (-4 *7 (-934 *4 *5 *6)))))
-(((*1 *2)
- (-12 (-14 *4 (-758)) (-4 *5 (-1195)) (-5 *2 (-133))
- (-5 *1 (-233 *3 *4 *5)) (-4 *3 (-234 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-358)) (-5 *2 (-133)) (-5 *1 (-323 *3 *4))
- (-4 *3 (-324 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-758)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
- (-4 *5 (-170))))
+ (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1087))
+ (-5 *2 (-635 (-2 (|:| |k| *4) (|:| |c| *3))))))
((*1 *2 *1)
- (-12 (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-554))
- (-5 *1 (-498 *3 *4 *5 *6)) (-4 *6 (-934 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-631 *6)) (-4 *6 (-836)) (-4 *4 (-358)) (-4 *5 (-780))
- (-5 *2 (-554)) (-5 *1 (-498 *4 *5 *6 *7)) (-4 *7 (-934 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-965 *3)) (-4 *3 (-1034)) (-5 *2 (-906))))
- ((*1 *2) (-12 (-4 *1 (-1248 *3)) (-4 *3 (-358)) (-5 *2 (-133)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-631 (-554))) (-5 *2 (-675 (-554))) (-5 *1 (-1092)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1241 *6)) (-5 *4 (-1241 (-554))) (-5 *5 (-554))
- (-4 *6 (-1082)) (-5 *2 (-1 *6)) (-5 *1 (-1002 *6)))))
+ (-12 (-5 *2 (-635 (-2 (|:| |k| (-883 *3)) (|:| |c| *4))))
+ (-5 *1 (-619 *3 *4 *5)) (-4 *3 (-841))
+ (-4 *4 (-13 (-171) (-708 (-406 (-558))))) (-14 *5 (-911))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-635 (-662 *3))) (-5 *1 (-883 *3)) (-4 *3 (-841)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-767 *5 (-850 *6)))) (-5 *4 (-112)) (-4 *5 (-446))
- (-14 *6 (-631 (-1158)))
+ (-12 (-5 *4 (-635 *3)) (-4 *3 (-1096 *5 *6 *7 *8))
+ (-4 *5 (-13 (-306) (-146))) (-4 *6 (-784)) (-4 *7 (-841))
+ (-4 *8 (-1053 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-584 *5 *6 *7 *8 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1246 (-315 (-224))))
(-5 *2
- (-631 (-1128 *5 (-525 (-850 *6)) (-850 *6) (-767 *5 (-850 *6)))))
- (-5 *1 (-616 *5 *6)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))))
-(((*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-352 *3)) (-4 *3 (-344)))))
-(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1195))))
- ((*1 *1 *1) (-12 (-5 *1 (-658 *2)) (-4 *2 (-836))))
- ((*1 *1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-836))))
- ((*1 *1 *1) (-5 *1 (-848)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-848))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-834) (-358))) (-5 *1 (-1044 *2 *3))
- (-4 *3 (-1217 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-249 *3)) (-4 *3 (-1195)) (-5 *2 (-758))))
- ((*1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-758))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1034))
- (-4 *2 (-13 (-399) (-1023 *4) (-358) (-1180) (-279)))
- (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1217 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-600 *3)) (-4 *3 (-836))))
- ((*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-848))))
- ((*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-848)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554)))))))
- (-5 *1 (-1110 *3 *2)) (-4 *3 (-1217 *2)))))
+ (-2 (|:| |additions| (-558)) (|:| |multiplications| (-558))
+ (|:| |exponentiations| (-558)) (|:| |functionCalls| (-558))))
+ (-5 *1 (-304)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1237 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-137))))
+ ((*1 *2 *1) (-12 (-4 *1 (-184)) (-5 *2 (-185)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1241 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170))
- (-5 *2 (-675 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-675 *4)) (-5 *1 (-411 *3 *4))
- (-4 *3 (-412 *4))))
- ((*1 *2) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-675 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-877 *3)) (-4 *3 (-1082)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1140)) (-5 *4 (-554)) (-5 *5 (-675 (-221)))
- (-5 *2 (-1020)) (-5 *1 (-741)))))
-(((*1 *1) (-5 *1 (-432))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-221))
- (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-78 FUNCTN))))
- (-5 *2 (-1020)) (-5 *1 (-735)))))
-(((*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-758))))
- ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-397)) (-5 *2 (-758)))))
-(((*1 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-1244)))))
-(((*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-551)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1163)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-374))) (-5 *1 (-1025)) (-5 *3 (-374)))))
-(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1195))))
- ((*1 *1 *1) (-12 (-5 *1 (-658 *2)) (-4 *2 (-836))))
- ((*1 *1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-836))))
- ((*1 *1 *1) (-5 *1 (-848)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-848))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-834) (-358))) (-5 *1 (-1044 *2 *3))
- (-4 *3 (-1217 *2)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-600 *1)) (-4 *1 (-297)))))
-(((*1 *1) (-5 *1 (-182))))
-(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-779))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-758)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1034))
- (-14 *4 (-631 (-1158)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-554)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1034) (-836)))
- (-14 *4 (-631 (-1158)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1034)) (-4 *3 (-836))
- (-4 *5 (-261 *3)) (-4 *6 (-780)) (-5 *2 (-758))))
- ((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-270))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1154 *8)) (-5 *4 (-631 *6)) (-4 *6 (-836))
- (-4 *8 (-934 *7 *5 *6)) (-4 *5 (-780)) (-4 *7 (-1034))
- (-5 *2 (-631 (-758))) (-5 *1 (-316 *5 *6 *7 *8))))
- ((*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-906))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-836)) (-4 *4 (-170))
- (-5 *2 (-758))))
- ((*1 *2 *1) (-12 (-4 *1 (-464 *3 *2)) (-4 *3 (-170)) (-4 *2 (-23))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-546)) (-5 *2 (-554)) (-5 *1 (-611 *3 *4))
- (-4 *4 (-1217 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-695 *3)) (-4 *3 (-1034)) (-5 *2 (-758))))
- ((*1 *2 *1) (-12 (-4 *1 (-838 *3)) (-4 *3 (-1034)) (-5 *2 (-758))))
- ((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-889 *3)) (-4 *3 (-1082))))
- ((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-890 *3)) (-4 *3 (-1082))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-631 *6)) (-4 *1 (-934 *4 *5 *6)) (-4 *4 (-1034))
- (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-631 (-758)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-934 *4 *5 *3)) (-4 *4 (-1034)) (-4 *5 (-780))
- (-4 *3 (-836)) (-5 *2 (-758))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-958 *3 *2 *4)) (-4 *3 (-1034)) (-4 *4 (-836))
- (-4 *2 (-779))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1188 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *4 (-780))
- (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-758))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-1232 *3))
- (-5 *2 (-554))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-1201 *3))
- (-5 *2 (-402 (-554)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1260 *3)) (-4 *3 (-358)) (-5 *2 (-820 (-906)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1262 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034))
- (-5 *2 (-758)))))
-(((*1 *1 *1) (-5 *1 (-1046))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-631 *3)) (-4 *3 (-1195)) (-5 *1 (-1138 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1140)) (-5 *1 (-52)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2))
- (-4 *2 (-13 (-425 *3) (-1180))))))
-(((*1 *1 *1) (-12 (-4 *1 (-368 *2)) (-4 *2 (-1195)) (-4 *2 (-836))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-368 *3)) (-4 *3 (-1195))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-631 (-890 *3))) (-5 *1 (-890 *3)) (-4 *3 (-1082))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *3 (-836))
- (-4 *6 (-1048 *4 *5 *3))
- (-5 *2 (-2 (|:| |under| *1) (|:| -4339 *1) (|:| |upper| *1)))
- (-4 *1 (-961 *4 *5 *3 *6)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-554)) (-5 *3 (-906)) (-4 *1 (-399))))
- ((*1 *1 *2 *2) (-12 (-5 *2 (-554)) (-4 *1 (-399))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1085 *3 *4 *5 *2 *6)) (-4 *3 (-1082)) (-4 *4 (-1082))
- (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *2 (-1082)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-899 *3)) (-4 *3 (-302)))))
-(((*1 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-1244))))
- ((*1 *2 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-1244)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-631 (-1158))) (-4 *4 (-13 (-302) (-145)))
- (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780))
- (-5 *2 (-631 (-402 (-937 *4)))) (-5 *1 (-909 *4 *5 *6 *7))
- (-4 *7 (-934 *4 *6 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-389))))
- ((*1 *2 *1) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-1175)))))
-(((*1 *1 *1 *1) (-4 *1 (-539))))
-(((*1 *1) (-5 *1 (-182))))
-(((*1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-128)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-906)) (-5 *4 (-413 *6)) (-4 *6 (-1217 *5))
- (-4 *5 (-1034)) (-5 *2 (-631 *6)) (-5 *1 (-438 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3))
- (-4 *5 (-1217 (-402 *4)))
- (-5 *2 (-2 (|:| |num| (-1241 *4)) (|:| |den| *4))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-546) (-145))) (-5 *1 (-531 *3 *2))
- (-4 *2 (-1232 *3))))
+ (-12 (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1222 (-48)))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3))))
+ (-5 *1 (-121 *3)) (-4 *3 (-841))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-358) (-363) (-602 (-554)))) (-4 *4 (-1217 *3))
- (-4 *5 (-711 *3 *4)) (-5 *1 (-535 *3 *4 *5 *2)) (-4 *2 (-1232 *5))))
+ (-12 (-5 *2 (-579 *4)) (-4 *4 (-13 (-29 *3) (-1185)))
+ (-4 *3 (-13 (-450) (-1028 (-558)) (-841) (-631 (-558))))
+ (-5 *1 (-577 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-358) (-363) (-602 (-554)))) (-5 *1 (-536 *3 *2))
- (-4 *2 (-1232 *3))))
+ (-12 (-5 *2 (-579 (-406 (-942 *3))))
+ (-4 *3 (-13 (-450) (-1028 (-558)) (-841) (-631 (-558))))
+ (-5 *1 (-582 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1222 *5)) (-4 *5 (-362))
+ (-5 *2 (-2 (|:| -1499 *3) (|:| |special| *3))) (-5 *1 (-718 *5 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1246 *5)) (-4 *5 (-362)) (-4 *5 (-1039))
+ (-5 *2 (-635 (-635 (-679 *5)))) (-5 *1 (-1019 *5))
+ (-5 *3 (-635 (-679 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1246 (-1246 *5))) (-4 *5 (-362)) (-4 *5 (-1039))
+ (-5 *2 (-635 (-635 (-679 *5)))) (-5 *1 (-1019 *5))
+ (-5 *3 (-635 (-679 *5)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-140)) (-5 *2 (-635 *1)) (-4 *1 (-1131))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-143)) (-5 *2 (-635 *1)) (-4 *1 (-1131)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-679 (-168 (-406 (-558)))))
+ (-5 *2
+ (-635
+ (-2 (|:| |outval| (-168 *4)) (|:| |outmult| (-558))
+ (|:| |outvect| (-635 (-679 (-168 *4)))))))
+ (-5 *1 (-755 *4)) (-4 *4 (-13 (-362) (-839))))))
+(((*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-895 *3)) (-4 *3 (-1087)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-1039)) (-5 *1 (-442 *3 *2)) (-4 *2 (-1222 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-939 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
+ (-4 *4 (-841)) (-4 *2 (-450))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-4 *3 (-1053 *4 *5 *6))
+ (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -2396 *1))))
+ (-4 *1 (-1059 *4 *5 *6 *3))))
+ ((*1 *1 *1) (-4 *1 (-1204)))
((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-13 (-546) (-145)))
- (-5 *1 (-1134 *3)))))
+ (-12 (-4 *3 (-550)) (-5 *1 (-1225 *3 *2))
+ (-4 *2 (-13 (-1222 *3) (-550) (-10 -8 (-15 -2699 ($ $ $))))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1039))
+ (-14 *4 (-635 (-1163)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1200))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1039) (-841)))
+ (-14 *4 (-635 (-1163)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-662 *3)) (-4 *3 (-841))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-667 *3)) (-4 *3 (-841))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-883 *3)) (-4 *3 (-841)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1048 *5 *6 *7)) (-4 *5 (-546))
- (-4 *6 (-780)) (-4 *7 (-836))
- (-5 *2 (-2 (|:| |goodPols| (-631 *8)) (|:| |badPols| (-631 *8))))
- (-5 *1 (-962 *5 *6 *7 *8)) (-5 *4 (-631 *8)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-758))
- (-5 *1 (-443 *4 *5 *6 *3)) (-4 *3 (-934 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-167 (-554))) (-5 *2 (-112)) (-5 *1 (-440))))
+ (-12 (-5 *3 (-635 (-558))) (-5 *4 (-895 (-558)))
+ (-5 *2 (-679 (-558))) (-5 *1 (-583))))
((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-558))) (-5 *2 (-635 (-679 (-558))))
+ (-5 *1 (-583))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-558))) (-5 *4 (-635 (-895 (-558))))
+ (-5 *2 (-635 (-679 (-558)))) (-5 *1 (-583)))))
+(((*1 *2 *3)
(-12
(-5 *3
- (-498 (-402 (-554)) (-236 *5 (-758)) (-850 *4)
- (-243 *4 (-402 (-554)))))
- (-14 *4 (-631 (-1158))) (-14 *5 (-758)) (-5 *2 (-112))
- (-5 *1 (-499 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-946 *3)) (-4 *3 (-539))))
- ((*1 *2 *1) (-12 (-4 *1 (-1199)) (-5 *2 (-112)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-635 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-949 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-631 (-937 *4))) (-4 *4 (-446)) (-5 *2 (-112))
- (-5 *1 (-355 *4 *5)) (-14 *5 (-631 (-1158)))))
+ (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224)))))
+ (-5 *2 (-378)) (-5 *1 (-266))))
((*1 *2 *3)
- (-12 (-5 *3 (-631 (-767 *4 (-850 *5)))) (-4 *4 (-446))
- (-14 *5 (-631 (-1158))) (-5 *2 (-112)) (-5 *1 (-616 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1195)))))
-(((*1 *1) (-5 *1 (-182))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-928 *3) (-928 *3))) (-5 *1 (-174 *3))
- (-4 *3 (-13 (-358) (-1180) (-987))))))
+ (-12 (-5 *3 (-1246 (-315 (-224)))) (-5 *2 (-378)) (-5 *1 (-304)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1131)) (-5 *2 (-140))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1131)) (-5 *2 (-143)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-114)) (-5 *4 (-631 *2)) (-5 *1 (-113 *2))
- (-4 *2 (-1082))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-631 *4))) (-4 *4 (-1082))
- (-5 *1 (-113 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1082))
- (-5 *1 (-113 *4))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-631 *4)))
- (-5 *1 (-113 *4)) (-4 *4 (-1082))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-634 *3)) (-4 *3 (-1034))
- (-5 *1 (-701 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1034)) (-5 *1 (-823 *3)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020))
- (-5 *1 (-734)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1115 (-221))) (-5 *3 (-631 (-258))) (-5 *1 (-1243))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1115 (-221))) (-5 *3 (-1140)) (-5 *1 (-1243))))
- ((*1 *1 *1) (-5 *1 (-1243))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987))))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-934 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780))
- (-4 *4 (-836)) (-4 *2 (-446))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836))
- (-4 *3 (-1048 *4 *5 *6))
- (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *1))))
- (-4 *1 (-1054 *4 *5 *6 *3))))
- ((*1 *1 *1) (-4 *1 (-1199)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-546)) (-5 *1 (-1220 *3 *2))
- (-4 *2 (-13 (-1217 *3) (-546) (-10 -8 (-15 -2510 ($ $ $))))))))
+ (-12 (-5 *3 (-679 (-168 (-406 (-558))))) (-5 *2 (-635 (-168 *4)))
+ (-5 *1 (-755 *4)) (-4 *4 (-13 (-362) (-839))))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-934 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780))
- (-4 *2 (-836))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-780)) (-4 *5 (-1034)) (-4 *6 (-934 *5 *4 *2))
- (-4 *2 (-836)) (-5 *1 (-935 *4 *2 *5 *6 *3))
- (-4 *3
- (-13 (-358)
- (-10 -8 (-15 -3075 ($ *6)) (-15 -2810 (*6 $))
- (-15 -2822 (*6 $)))))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-402 (-937 *4))) (-4 *4 (-546))
- (-5 *2 (-1158)) (-5 *1 (-1028 *4)))))
+ (-12 (-4 *1 (-1028 (-558))) (-4 *1 (-301)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-895 *3)) (-4 *3 (-1087)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-1039)) (-5 *1 (-442 *3 *2)) (-4 *2 (-1222 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-321 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1034))
- (-4 *2 (-446))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-631 *4)) (-4 *4 (-1217 (-554))) (-5 *2 (-631 (-554)))
- (-5 *1 (-480 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-446))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-934 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780))
- (-4 *2 (-836)) (-4 *3 (-446)))))
-(((*1 *1) (-5 *1 (-1046))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-631 (-600 (-48)))) (-5 *1 (-48))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-600 (-48))) (-5 *1 (-48))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1154 (-48))) (-5 *3 (-631 (-600 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1154 (-48))) (-5 *3 (-600 (-48))) (-5 *1 (-48))))
- ((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-358) (-834))) (-5 *1 (-179 *2 *3))
- (-4 *3 (-1217 (-167 *2)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-906)) (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363))))
- ((*1 *2 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-358))))
+ (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-130))
+ (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -2573 *4))))))
((*1 *2 *1)
- (-12 (-4 *1 (-365 *2 *3)) (-4 *3 (-1217 *2)) (-4 *2 (-170))))
+ (-12 (-5 *2 (-635 (-2 (|:| -2023 *3) (|:| -3918 *4))))
+ (-5 *1 (-726 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-717))))
((*1 *2 *1)
- (-12 (-4 *4 (-1217 *2)) (-4 *2 (-977 *3)) (-5 *1 (-408 *3 *2 *4 *5))
- (-4 *3 (-302)) (-4 *5 (-13 (-404 *2 *4) (-1023 *2)))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-1217 *2)) (-4 *2 (-977 *3))
- (-5 *1 (-409 *3 *2 *4 *5 *6)) (-4 *3 (-302)) (-4 *5 (-404 *2 *4))
- (-14 *6 (-1241 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-906)) (-4 *5 (-1034))
- (-4 *2 (-13 (-399) (-1023 *5) (-358) (-1180) (-279)))
- (-5 *1 (-437 *5 *3 *2)) (-4 *3 (-1217 *5))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-631 (-600 (-489)))) (-5 *1 (-489))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-600 (-489))) (-5 *1 (-489))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1154 (-489))) (-5 *3 (-631 (-600 (-489))))
- (-5 *1 (-489))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1154 (-489))) (-5 *3 (-600 (-489))) (-5 *1 (-489))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1241 *4)) (-5 *3 (-906)) (-4 *4 (-344))
- (-5 *1 (-522 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-446)) (-4 *5 (-711 *4 *2)) (-4 *2 (-1217 *4))
- (-5 *1 (-762 *4 *2 *5 *3)) (-4 *3 (-1217 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170))))
- ((*1 *2 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-170))))
- ((*1 *1 *1) (-4 *1 (-1043))))
+ (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-783))
+ (-5 *2 (-1143 (-2 (|:| |k| *4) (|:| |c| *3)))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-882 *4)) (-4 *4 (-1087)) (-5 *2 (-635 *5))
+ (-5 *1 (-880 *4 *5)) (-4 *5 (-1200)))))
+(((*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-224)) (-5 *1 (-304)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-558)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-762)) (-4 *5 (-171))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-762))
+ (-4 *4 (-171))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2))
+ (-4 *4 (-372 *2))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1039)) (-4 *1 (-677 *3 *2 *4)) (-4 *2 (-372 *3))
+ (-4 *4 (-372 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1129 *2 *3)) (-14 *2 (-762)) (-4 *3 (-1039)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-752))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1023 (-554))) (-4 *1 (-297)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-1082)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-725)))))
-(((*1 *2)
- (-12 (-4 *4 (-1199)) (-4 *5 (-1217 *4)) (-4 *6 (-1217 (-402 *5)))
- (-5 *2 (-758)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-337 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3))
- (-4 *5 (-1217 (-402 *4))) (-5 *2 (-758)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-112)) (-5 *5 (-675 (-221)))
- (-5 *2 (-1020)) (-5 *1 (-742)))))
+ (-12 (-4 *1 (-1028 (-558))) (-4 *1 (-301)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-895 *3)) (-4 *3 (-1087)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-311 (-374))) (-5 *2 (-311 (-221))) (-5 *1 (-300)))))
+ (-12 (-4 *4 (-1039))
+ (-4 *2 (-13 (-403) (-1028 *4) (-362) (-1185) (-283)))
+ (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1222 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-858 (-951 *3) (-951 *3))) (-5 *1 (-951 *3))
- (-4 *3 (-952)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-539)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1034)) (-5 *1 (-1213 *3 *2)) (-4 *2 (-1217 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-675 *5)) (-4 *5 (-1034)) (-5 *1 (-1038 *3 *4 *5))
- (-14 *3 (-758)) (-14 *4 (-758)))))
-(((*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-548 *3)) (-4 *3 (-539)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-402 (-937 *5)))) (-5 *4 (-631 (-1158)))
- (-4 *5 (-546)) (-5 *2 (-631 (-631 (-937 *5)))) (-5 *1 (-1164 *5)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-961 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-780))
- (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546))
- (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-302)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-422 *3 *2)) (-4 *3 (-13 (-170) (-38 (-402 (-554)))))
- (-4 *2 (-13 (-836) (-21))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-554)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1195))
- (-4 *5 (-368 *4)) (-4 *2 (-368 *4))))
+ (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-841))
+ (-4 *5 (-265 *4)) (-4 *6 (-784)) (-5 *2 (-762))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1039)) (-4 *3 (-841))
+ (-4 *5 (-265 *3)) (-4 *6 (-784)) (-5 *2 (-762))))
+ ((*1 *2 *1) (-12 (-4 *1 (-265 *3)) (-4 *3 (-841)) (-5 *2 (-762))))
+ ((*1 *2 *1) (-12 (-4 *1 (-348)) (-5 *2 (-911))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-335 *4 *5 *6 *7)) (-4 *4 (-13 (-367) (-362)))
+ (-4 *5 (-1222 *4)) (-4 *6 (-1222 (-406 *5))) (-4 *7 (-341 *4 *5 *6))
+ (-5 *2 (-762)) (-5 *1 (-391 *4 *5 *6 *7))))
+ ((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-824 (-911)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-558))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-589 *3)) (-4 *3 (-1039))))
+ ((*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-589 *3)) (-4 *3 (-1039))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-550)) (-5 *2 (-558)) (-5 *1 (-615 *3 *4))
+ (-4 *4 (-1222 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-762)) (-4 *1 (-731 *4 *3)) (-4 *4 (-1039))
+ (-4 *3 (-841))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-554)) (-4 *1 (-1037 *4 *5 *6 *7 *2)) (-4 *6 (-1034))
- (-4 *7 (-234 *5 *6)) (-4 *2 (-234 *4 *6)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-311 (-221))) (-5 *1 (-300))))
+ (-12 (-4 *1 (-731 *4 *3)) (-4 *4 (-1039)) (-4 *3 (-841))
+ (-5 *2 (-762))))
+ ((*1 *2 *1) (-12 (-4 *1 (-859 *3)) (-5 *2 (-762))))
+ ((*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-894 *3)) (-4 *3 (-1087))))
+ ((*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-895 *3)) (-4 *3 (-1087))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-429 *4))
+ (-4 *6 (-1222 *5)) (-4 *7 (-1222 (-406 *6)))
+ (-4 *8 (-341 *5 *6 *7))
+ (-4 *4 (-13 (-841) (-550) (-1028 (-558)))) (-5 *2 (-762))
+ (-5 *1 (-901 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-335 (-406 (-558)) *4 *5 *6))
+ (-4 *4 (-1222 (-406 (-558)))) (-4 *5 (-1222 (-406 *4)))
+ (-4 *6 (-341 (-406 (-558)) *4 *5)) (-5 *2 (-762))
+ (-5 *1 (-902 *4 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-335 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-362))
+ (-4 *7 (-1222 *6)) (-4 *4 (-1222 (-406 *7))) (-4 *8 (-341 *6 *7 *4))
+ (-4 *9 (-13 (-367) (-362))) (-5 *2 (-762))
+ (-5 *1 (-1008 *6 *7 *4 *8 *9))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1222 *3)) (-4 *3 (-1039)) (-4 *3 (-550))
+ (-5 *2 (-762))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-783))))
((*1 *2 *1)
+ (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-783)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-882 *4)) (-4 *4 (-1087)) (-5 *1 (-880 *4 *3))
+ (-4 *3 (-1200))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-882 *3)) (-4 *3 (-1087)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1231 *3 *4 *5)) (-4 *3 (-13 (-362) (-841)))
+ (-14 *4 (-1163)) (-14 *5 *3) (-5 *1 (-318 *3 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 (-378))) (-5 *1 (-1030)) (-5 *3 (-378)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-810 *3)) (-4 *3 (-841)) (-5 *1 (-662 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-315 (-224))) (-5 *2 (-406 (-558))) (-5 *1 (-304)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-679 *4)) (-4 *4 (-1039)) (-5 *1 (-1129 *3 *4))
+ (-14 *3 (-762)))))
+(((*1 *1 *1 *1) (-4 *1 (-471))) ((*1 *1 *1 *1) (-4 *1 (-752))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1089 *3)) (-5 *1 (-895 *3)) (-4 *3 (-367))
+ (-4 *3 (-1087)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1039))
+ (-4 *2 (-13 (-403) (-1028 *4) (-362) (-1185) (-283)))
+ (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1222 *4)))))
+(((*1 *1 *1) (-4 *1 (-1048)))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-783))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-783)))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-882 *4)) (-4 *4 (-1087)) (-5 *2 (-112))
+ (-5 *1 (-879 *4 *5)) (-4 *5 (-1087))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-882 *5)) (-4 *5 (-1087)) (-5 *2 (-112))
+ (-5 *1 (-880 *5 *3)) (-4 *3 (-1200))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 *6)) (-5 *4 (-882 *5)) (-4 *5 (-1087))
+ (-4 *6 (-1200)) (-5 *2 (-112)) (-5 *1 (-880 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-762)) (-5 *2 (-378)) (-5 *1 (-1030)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 *5)) (-5 *4 (-911)) (-4 *5 (-841))
+ (-5 *2 (-59 (-635 (-662 *5)))) (-5 *1 (-662 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1200))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
+ (-4 *4 (-841))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1200)))))
+(((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-406 (-558))) (-5 *1 (-304)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-1128 *2 *3)) (-4 *2 (-13 (-1087) (-34)))
+ (-4 *3 (-13 (-1087) (-34))))))
+(((*1 *1 *1 *1) (-4 *1 (-752))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-5 *1 (-895 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-762)) (-4 *5 (-1039)) (-5 *2 (-558))
+ (-5 *1 (-441 *5 *3 *6)) (-4 *3 (-1222 *5))
+ (-4 *6 (-13 (-403) (-1028 *5) (-362) (-1185) (-283)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1039)) (-5 *2 (-558)) (-5 *1 (-441 *4 *3 *5))
+ (-4 *3 (-1222 *4))
+ (-4 *5 (-13 (-403) (-1028 *4) (-362) (-1185) (-283))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-173 *3)) (-4 *3 (-306))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-664 *3)) (-4 *3 (-1200))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-762)) (-4 *1 (-731 *3 *4)) (-4 *3 (-1039))
+ (-4 *4 (-841))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-859 *3)) (-5 *2 (-558))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-635 *3)) (-4 *1 (-970 *3)) (-4 *3 (-1039))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-635 *1)) (-5 *3 (-635 *7)) (-4 *1 (-1059 *4 *5 *6 *7))
+ (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-4 *7 (-1053 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450))
+ (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-635 *1))
+ (-4 *1 (-1059 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-635 *1)) (-4 *1 (-1059 *4 *5 *6 *3)) (-4 *4 (-450))
+ (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-635 *1))
+ (-4 *1 (-1059 *4 *5 *6 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1193 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-784))
+ (-4 *5 (-841)) (-4 *2 (-1053 *3 *4 *5))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-783)))))
+(((*1 *2 *1)
(|partial| -12
- (-5 *2 (-2 (|:| |num| (-877 *3)) (|:| |den| (-877 *3))))
- (-5 *1 (-877 *3)) (-4 *3 (-1082)))))
-(((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-928 (-221))) (-5 *4 (-859)) (-5 *5 (-906))
- (-5 *2 (-1246)) (-5 *1 (-462))))
+ (-5 *2 (-2 (|:| -3483 (-114)) (|:| |arg| (-635 (-882 *3)))))
+ (-5 *1 (-882 *3)) (-4 *3 (-1087))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-928 (-221))) (-5 *2 (-1246)) (-5 *1 (-462))))
- ((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-631 (-928 (-221)))) (-5 *4 (-859)) (-5 *5 (-906))
- (-5 *2 (-1246)) (-5 *1 (-462)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-1140)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836))
- (-4 *4 (-1048 *6 *7 *8)) (-5 *2 (-1246))
- (-5 *1 (-763 *6 *7 *8 *4 *5)) (-4 *5 (-1054 *6 *7 *8 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-877 *3)) (-4 *3 (-1082)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1154 *9)) (-5 *4 (-631 *7)) (-5 *5 (-631 (-631 *8)))
- (-4 *7 (-836)) (-4 *8 (-302)) (-4 *9 (-934 *8 *6 *7)) (-4 *6 (-780))
+ (|partial| -12 (-5 *3 (-114)) (-5 *2 (-635 (-882 *4)))
+ (-5 *1 (-882 *4)) (-4 *4 (-1087)))))
+(((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1030)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 *5)) (-5 *4 (-911)) (-4 *5 (-841))
+ (-5 *2 (-635 (-662 *5))) (-5 *1 (-662 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1081 (-834 (-378)))) (-5 *2 (-1081 (-834 (-224))))
+ (-5 *1 (-304)))))
+(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1200))))
+ ((*1 *1 *1) (-12 (-5 *1 (-662 *2)) (-4 *2 (-841))))
+ ((*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-841))))
+ ((*1 *1 *1) (-5 *1 (-853)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-853))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-839) (-362))) (-5 *1 (-1049 *2 *3))
+ (-4 *3 (-1222 *2)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1128 *2 *3)) (-4 *2 (-13 (-1087) (-34)))
+ (-4 *3 (-13 (-1087) (-34))))))
+(((*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-750)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-762)) (-4 *1 (-1222 *4)) (-4 *4 (-1039))
+ (-5 *2 (-1246 *4)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-635 (-882 *3))) (-5 *1 (-882 *3))
+ (-4 *3 (-1087)))))
+(((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1030)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 *7)) (-4 *7 (-841))
+ (-4 *8 (-939 *5 *6 *7)) (-4 *5 (-550)) (-4 *6 (-784))
(-5 *2
- (-2 (|:| |upol| (-1154 *8)) (|:| |Lval| (-631 *8))
- (|:| |Lfact|
- (-631 (-2 (|:| -2270 (-1154 *8)) (|:| -1407 (-554)))))
- (|:| |ctpol| *8)))
- (-5 *1 (-729 *6 *7 *8 *9)))))
+ (-2 (|:| |particular| (-3 (-1246 (-406 *8)) "failed"))
+ (|:| -2660 (-635 (-1246 (-406 *8))))))
+ (-5 *1 (-659 *5 *6 *7 *8)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-834 (-378))) (-5 *2 (-834 (-224))) (-5 *1 (-304)))))
+(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1200))))
+ ((*1 *1 *1) (-12 (-5 *1 (-662 *2)) (-4 *2 (-841))))
+ ((*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-841))))
+ ((*1 *1 *1) (-5 *1 (-853)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-853))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-839) (-362))) (-5 *1 (-1049 *2 *3))
+ (-4 *3 (-1222 *2)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1127 *4 *5)) (-4 *4 (-13 (-1087) (-34)))
+ (-4 *5 (-13 (-1087) (-34))) (-5 *2 (-112)) (-5 *1 (-1128 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-942 (-558)))) (-5 *1 (-436))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1163)) (-5 *4 (-679 (-224))) (-5 *2 (-1091))
+ (-5 *1 (-750))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1163)) (-5 *4 (-679 (-558))) (-5 *2 (-1091))
+ (-5 *1 (-750)))))
+(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-916)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-631 *5)) (-4 *5 (-1217 *3)) (-4 *3 (-302))
- (-5 *2 (-112)) (-5 *1 (-449 *3 *5)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-995 *3)) (-4 *3 (-1195)) (-5 *2 (-554)))))
-(((*1 *1)
- (-12 (-5 *1 (-635 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23))
- (-14 *4 *3))))
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
+ (-5 *4 (-679 (-1159 *8))) (-4 *5 (-1039)) (-4 *8 (-1039))
+ (-4 *6 (-1222 *5)) (-5 *2 (-679 *6)) (-5 *1 (-499 *5 *6 *7 *8))
+ (-4 *7 (-1222 *6)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-112))
- (-5 *1 (-498 *3 *4 *5 *6)) (-4 *6 (-934 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-709)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-713)) (-5 *2 (-112)))))
+ (-12 (-4 *1 (-1222 *3)) (-4 *3 (-1039)) (-5 *2 (-1159 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-882 *3)) (-4 *3 (-1087)))))
+(((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1030)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1158))
- (-4 *5 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554))))
- (-5 *2 (-575 *3)) (-5 *1 (-421 *5 *3))
- (-4 *3 (-13 (-1180) (-29 *5))))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1158))
- (-4 *5 (-13 (-446) (-836) (-145) (-1023 (-554)) (-627 (-554))))
- (-5 *2 (-2 (|:| -1709 *3) (|:| |coeff| *3))) (-5 *1 (-547 *5 *3))
- (-4 *3 (-13 (-27) (-1180) (-425 *5))))))
-(((*1 *1 *2 *2)
+ (-12 (-5 *3 (-679 *5)) (-5 *4 (-1246 *5)) (-4 *5 (-362))
+ (-5 *2 (-112)) (-5 *1 (-657 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4383))))
+ (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4383)))) (-5 *2 (-112))
+ (-5 *1 (-658 *5 *6 *4 *3)) (-4 *3 (-677 *5 *6 *4)))))
+(((*1 *1) (-5 *1 (-185))))
+(((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-143))))
+ ((*1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-143)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-315 (-378))) (-5 *2 (-315 (-224))) (-5 *1 (-304)))))
+(((*1 *2 *3 *1 *4)
+ (-12 (-5 *3 (-1127 *5 *6)) (-5 *4 (-1 (-112) *6 *6))
+ (-4 *5 (-13 (-1087) (-34))) (-4 *6 (-13 (-1087) (-34)))
+ (-5 *2 (-112)) (-5 *1 (-1128 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-750)))))
+(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-916)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1159 *7))
+ (-4 *5 (-1039)) (-4 *7 (-1039)) (-4 *2 (-1222 *5))
+ (-5 *1 (-499 *5 *2 *6 *7)) (-4 *6 (-1222 *2)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1039)) (-4 *1 (-1222 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-882 *3)) (-4 *3 (-1087)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-939 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784))
+ (-4 *2 (-841))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-784)) (-4 *5 (-1039)) (-4 *6 (-939 *5 *4 *2))
+ (-4 *2 (-841)) (-5 *1 (-940 *4 *2 *5 *6 *3))
+ (-4 *3
+ (-13 (-362)
+ (-10 -8 (-15 -3220 ($ *6)) (-15 -1874 (*6 $))
+ (-15 -1885 (*6 $)))))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-406 (-942 *4))) (-4 *4 (-550))
+ (-5 *2 (-1163)) (-5 *1 (-1033 *4)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-635 (-1159 *4))) (-5 *3 (-1159 *4))
+ (-4 *4 (-899)) (-5 *1 (-653 *4)))))
+(((*1 *1) (-5 *1 (-185))))
+(((*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-224)) (-5 *1 (-304)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4382)) (-4 *1 (-234 *3))
+ (-4 *3 (-1087))))
+ ((*1 *1 *2 *1)
+ (-12 (|has| *1 (-6 -4382)) (-4 *1 (-234 *2)) (-4 *2 (-1087))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-281 *2)) (-4 *2 (-1200)) (-4 *2 (-1087))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-281 *3)) (-4 *3 (-1200))))
+ ((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-602 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-1087))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-558)) (-4 *4 (-1087))
+ (-5 *1 (-728 *4))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-558)) (-5 *1 (-728 *2)) (-4 *2 (-1087))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1127 *3 *4)) (-4 *3 (-13 (-1087) (-34)))
+ (-4 *4 (-13 (-1087) (-34))) (-5 *1 (-1128 *3 *4)))))
+(((*1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-750)))))
+(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-916)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1159 *7)) (-4 *5 (-1039))
+ (-4 *7 (-1039)) (-4 *2 (-1222 *5)) (-5 *1 (-499 *5 *2 *6 *7))
+ (-4 *6 (-1222 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1039)) (-4 *7 (-1039))
+ (-4 *4 (-1222 *5)) (-5 *2 (-1159 *7)) (-5 *1 (-499 *5 *4 *6 *7))
+ (-4 *6 (-1222 *4)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-762)) (-4 *1 (-1222 *3)) (-4 *3 (-1039)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-882 *3)) (-4 *3 (-1087)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-942 *6))) (-5 *4 (-635 (-1163)))
+ (-4 *6 (-13 (-550) (-1028 *5))) (-4 *5 (-550))
+ (-5 *2 (-635 (-635 (-293 (-406 (-942 *6)))))) (-5 *1 (-1029 *5 *6)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1039)) (-4 *2 (-362))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-362)) (-5 *1 (-649 *4 *2))
+ (-4 *2 (-646 *4)))))
+(((*1 *1) (-5 *1 (-185))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-635 (-1127 *4 *5))) (-5 *3 (-1 (-112) *5 *5))
+ (-4 *4 (-13 (-1087) (-34))) (-4 *5 (-13 (-1087) (-34)))
+ (-5 *1 (-1128 *4 *5))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-635 (-1127 *3 *4))) (-4 *3 (-13 (-1087) (-34)))
+ (-4 *4 (-13 (-1087) (-34))) (-5 *1 (-1128 *3 *4)))))
+(((*1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-750)))))
+(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-916)))))
+(((*1 *2 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374)))
- (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1157))))
- (-5 *1 (-1157)))))
+ (-2 (|:| -2660 (-679 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-679 *3))))
+ (-4 *3 (-13 (-306) (-10 -8 (-15 -1380 ((-417 $) $)))))
+ (-4 *4 (-1222 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-408 *3 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-253 *3)) (-4 *3 (-1200)) (-5 *2 (-762))))
+ ((*1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-762))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1039))
+ (-4 *2 (-13 (-403) (-1028 *4) (-362) (-1185) (-283)))
+ (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1222 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-604 *3)) (-4 *3 (-841))))
+ ((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-853))))
+ ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-853)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *3 (-841))
+ (-5 *2 (-2 (|:| -2306 *1) (|:| -2071 *1))) (-4 *1 (-939 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1039)) (-5 *2 (-2 (|:| -2306 *1) (|:| -2071 *1)))
+ (-4 *1 (-1222 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-882 *3)) (-4 *3 (-1087)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1025)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-762)) (-4 *1 (-646 *3)) (-4 *3 (-1039)) (-4 *3 (-362))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-762)) (-5 *4 (-1 *5 *5)) (-4 *5 (-362))
+ (-5 *1 (-649 *5 *2)) (-4 *2 (-646 *5)))))
+(((*1 *1) (-4 *1 (-348))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-2 (|:| |val| (-635 *8)) (|:| -2396 *9))))
+ (-5 *4 (-762)) (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1059 *5 *6 *7 *8))
+ (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-1251))
+ (-5 *1 (-1057 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-2 (|:| |val| (-635 *8)) (|:| -2396 *9))))
+ (-5 *4 (-762)) (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1096 *5 *6 *7 *8))
+ (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-1251))
+ (-5 *1 (-1132 *5 *6 *7 *8 *9)))))
+(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-450)) (-4 *4 (-841)) (-4 *5 (-784)) (-5 *2 (-112))
+ (-5 *1 (-977 *3 *4 *5 *6)) (-4 *6 (-939 *3 *5 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-13 (-1087) (-34)))
+ (-4 *4 (-13 (-1087) (-34))))))
+(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-916)))))
+(((*1 *2 *3 *3 *3 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-679 *3))
+ (-4 *3 (-13 (-306) (-10 -8 (-15 -1380 ((-417 $) $)))))
+ (-4 *4 (-1222 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-408 *3 *4)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-554)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-413 *4)) (-4 *4 (-546)))))
+ (-12 (-5 *3 (-762)) (-4 *4 (-1039))
+ (-5 *2 (-2 (|:| -2306 *1) (|:| -2071 *1))) (-4 *1 (-1222 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-882 *3)) (-4 *3 (-1087)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1025)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1039)) (-4 *2 (-362))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-362)) (-5 *1 (-649 *4 *2))
+ (-4 *2 (-646 *4)))))
+(((*1 *2)
+ (-12 (-4 *1 (-348))
+ (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1127 *2 *3)) (-4 *2 (-13 (-1087) (-34)))
+ (-4 *3 (-13 (-1087) (-34))))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
+(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-916)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-679 *3))
+ (-4 *3 (-13 (-306) (-10 -8 (-15 -1380 ((-417 $) $)))))
+ (-4 *4 (-1222 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-408 *3 *4))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-679 *3))
+ (-4 *3 (-13 (-306) (-10 -8 (-15 -1380 ((-417 $) $)))))
+ (-4 *4 (-1222 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-408 *3 *4)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-762)) (-4 *1 (-1222 *3)) (-4 *3 (-1039)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-882 *3)) (-4 *3 (-1087)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-911)) (-5 *1 (-1022 *2))
+ (-4 *2 (-13 (-1087) (-10 -8 (-15 * ($ $ $))))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-806 *4)) (-4 *4 (-836)) (-5 *2 (-112))
- (-5 *1 (-658 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987))))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1160 (-402 (-554)))) (-5 *1 (-186)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2))
- (-4 *2 (-13 (-425 *3) (-1180))))))
+ (-12 (-4 *4 (-27))
+ (-4 *4 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))))
+ (-4 *5 (-1222 *4)) (-5 *2 (-635 (-643 (-406 *5))))
+ (-5 *1 (-647 *4 *5)) (-5 *3 (-643 (-406 *5))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-675 *2)) (-4 *4 (-1217 *2))
- (-4 *2 (-13 (-302) (-10 -8 (-15 -1565 ((-413 $) $)))))
- (-5 *1 (-493 *2 *4 *5)) (-4 *5 (-404 *2 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1105 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2))
- (-4 *5 (-234 *3 *2)) (-4 *2 (-1034)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-877 *3)) (-4 *3 (-1082))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082))
- (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-911))
+ (-5 *2
+ (-3 (-1159 *4)
+ (-1246 (-635 (-2 (|:| -2925 *4) (|:| -2851 (-1107)))))))
+ (-5 *1 (-345 *4)) (-4 *4 (-348)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1127 *3 *2)) (-4 *3 (-13 (-1087) (-34)))
+ (-4 *2 (-13 (-1087) (-34))))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-916)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378)))
+ (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1162))))
+ (-5 *1 (-1162)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-762))
+ (-4 *3 (-13 (-306) (-10 -8 (-15 -1380 ((-417 $) $)))))
+ (-4 *4 (-1222 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-408 *3 *4)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-762)) (-4 *1 (-1222 *3)) (-4 *3 (-1039)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-635 (-52))) (-5 *1 (-882 *3)) (-4 *3 (-1087)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))))
-(((*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1246)) (-5 *1 (-1120))))
+ (-12 (-5 *3 (-635 (-1246 *5))) (-5 *4 (-558)) (-5 *2 (-1246 *5))
+ (-5 *1 (-1019 *5)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1039)))))
+(((*1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-911))
+ (-5 *2 (-1246 (-635 (-2 (|:| -2925 *4) (|:| -2851 (-1107))))))
+ (-5 *1 (-345 *4)) (-4 *4 (-348)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-13 (-1087) (-34)))
+ (-4 *4 (-13 (-1087) (-34))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-916)))))
+(((*1 *2 *3 *3 *2 *4)
+ (-12 (-5 *3 (-679 *2)) (-5 *4 (-558))
+ (-4 *2 (-13 (-306) (-10 -8 (-15 -1380 ((-417 $) $)))))
+ (-4 *5 (-1222 *2)) (-5 *1 (-497 *2 *5 *6)) (-4 *6 (-408 *2 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-635 (-1159 (-558)))) (-5 *1 (-190)) (-5 *3 (-558)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1222 *2)) (-4 *2 (-1039)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-635 (-52))) (-5 *1 (-882 *3)) (-4 *3 (-1087)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-112)) (-5 *5 (-558)) (-4 *6 (-362)) (-4 *6 (-367))
+ (-4 *6 (-1039)) (-5 *2 (-635 (-635 (-679 *6)))) (-5 *1 (-1019 *6))
+ (-5 *3 (-635 (-679 *6)))))
((*1 *2 *3)
- (-12 (-5 *3 (-631 (-848))) (-5 *2 (-1246)) (-5 *1 (-1120)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-877 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1082))
- (-4 *5 (-1195)) (-5 *1 (-875 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-877 *4)) (-5 *3 (-631 (-1 (-112) *5))) (-4 *4 (-1082))
- (-4 *5 (-1195)) (-5 *1 (-875 *4 *5))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-877 *5)) (-5 *3 (-631 (-1158)))
- (-5 *4 (-1 (-112) (-631 *6))) (-4 *5 (-1082)) (-4 *6 (-1195))
- (-5 *1 (-875 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1195)) (-4 *4 (-836))
- (-5 *1 (-922 *4 *2 *5)) (-4 *2 (-425 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-631 (-1 (-112) *5))) (-4 *5 (-1195)) (-4 *4 (-836))
- (-5 *1 (-922 *4 *2 *5)) (-4 *2 (-425 *4))))
+ (-12 (-4 *4 (-362)) (-4 *4 (-367)) (-4 *4 (-1039))
+ (-5 *2 (-635 (-635 (-679 *4)))) (-5 *1 (-1019 *4))
+ (-5 *3 (-635 (-679 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1158)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1195))
- (-5 *2 (-311 (-554))) (-5 *1 (-923 *5))))
+ (-12 (-5 *4 (-112)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1039))
+ (-5 *2 (-635 (-635 (-679 *5)))) (-5 *1 (-1019 *5))
+ (-5 *3 (-635 (-679 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1158)) (-5 *4 (-631 (-1 (-112) *5))) (-4 *5 (-1195))
- (-5 *2 (-311 (-554))) (-5 *1 (-923 *5))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-631 (-1158))) (-5 *3 (-1 (-112) (-631 *6)))
- (-4 *6 (-13 (-425 *5) (-871 *4) (-602 (-877 *4)))) (-4 *4 (-1082))
- (-4 *5 (-13 (-1034) (-871 *4) (-836) (-602 (-877 *4))))
- (-5 *1 (-1058 *4 *5 *6)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020))
- (-5 *1 (-742)))))
-(((*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1195)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-142))))
- ((*1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-142)))))
-(((*1 *1) (-5 *1 (-1067))))
-(((*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-889 (-554))) (-5 *1 (-902))))
+ (-12 (-5 *4 (-911)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1039))
+ (-5 *2 (-635 (-635 (-679 *5)))) (-5 *1 (-1019 *5))
+ (-5 *3 (-635 (-679 *5))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -2573 *4))))
+ (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-1087)) (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1246 (-635 (-2 (|:| -2925 *4) (|:| -2851 (-1107))))))
+ (-4 *4 (-348)) (-5 *2 (-679 *4)) (-5 *1 (-345 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1127 *2 *3)) (-4 *2 (-13 (-1087) (-34)))
+ (-4 *3 (-13 (-1087) (-34))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
+(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-916)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-679 *2)) (-5 *4 (-762))
+ (-4 *2 (-13 (-306) (-10 -8 (-15 -1380 ((-417 $) $)))))
+ (-4 *5 (-1222 *2)) (-5 *1 (-497 *2 *5 *6)) (-4 *6 (-408 *2 *5)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-315 (-224))) (-5 *1 (-304))))
+ ((*1 *2 *1)
+ (|partial| -12
+ (-5 *2 (-2 (|:| |num| (-882 *3)) (|:| |den| (-882 *3))))
+ (-5 *1 (-882 *3)) (-4 *3 (-1087)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-635 (-558))) (-5 *2 (-1165 (-406 (-558))))
+ (-5 *1 (-189)))))
+(((*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-164 *3 *2)) (-4 *3 (-165 *2))))
((*1 *2 *3)
- (-12 (-5 *3 (-631 (-554))) (-5 *2 (-889 (-554))) (-5 *1 (-902)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-758)) (-4 *5 (-546))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-954 *5 *3)) (-4 *3 (-1217 *5)))))
-(((*1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-363)) (-4 *2 (-358))))
+ (-12 (-5 *3 (-1246 *1)) (-4 *1 (-369 *2 *4)) (-4 *4 (-1222 *2))
+ (-4 *2 (-171))))
+ ((*1 *2)
+ (-12 (-4 *4 (-1222 *2)) (-4 *2 (-171)) (-5 *1 (-407 *3 *2 *4))
+ (-4 *3 (-408 *2 *4))))
+ ((*1 *2) (-12 (-4 *1 (-408 *2 *3)) (-4 *3 (-1222 *2)) (-4 *2 (-171))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1222 *2)) (-5 *2 (-558)) (-5 *1 (-759 *3 *4))
+ (-4 *4 (-408 *2 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-939 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784))
+ (-4 *2 (-841)) (-4 *3 (-171))))
((*1 *2 *3)
- (-12 (-5 *3 (-906)) (-5 *2 (-1241 *4)) (-5 *1 (-522 *4))
- (-4 *4 (-344)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-546)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-358) (-297)
- (-10 -8 (-15 -2810 ((-1107 *3 (-600 $)) $))
- (-15 -2822 ((-1107 *3 (-600 $)) $))
- (-15 -3075 ($ (-1107 *3 (-600 $)))))))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-546)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-358) (-297)
- (-10 -8 (-15 -2810 ((-1107 *3 (-600 $)) $))
- (-15 -2822 ((-1107 *3 (-600 $)) $))
- (-15 -3075 ($ (-1107 *3 (-600 $)))))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-631 *2))
- (-4 *2
- (-13 (-358) (-297)
- (-10 -8 (-15 -2810 ((-1107 *4 (-600 $)) $))
- (-15 -2822 ((-1107 *4 (-600 $)) $))
- (-15 -3075 ($ (-1107 *4 (-600 $)))))))
- (-4 *4 (-546)) (-5 *1 (-41 *4 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-631 (-600 *2)))
- (-4 *2
- (-13 (-358) (-297)
- (-10 -8 (-15 -2810 ((-1107 *4 (-600 $)) $))
- (-15 -2822 ((-1107 *4 (-600 $)) $))
- (-15 -3075 ($ (-1107 *4 (-600 $)))))))
- (-4 *4 (-546)) (-5 *1 (-41 *4 *2)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-675 (-402 (-937 (-554)))))
- (-5 *2 (-675 (-311 (-554)))) (-5 *1 (-1016)))))
-(((*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-956)))))
-(((*1 *2 *2 *3 *4 *5)
- (-12 (-5 *2 (-631 *9)) (-5 *3 (-1 (-112) *9))
- (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9))
- (-4 *9 (-1048 *6 *7 *8)) (-4 *6 (-546)) (-4 *7 (-780))
- (-4 *8 (-836)) (-5 *1 (-962 *6 *7 *8 *9)))))
-(((*1 *2 *3 *4 *4 *5 *3 *6)
- (|partial| -12 (-5 *4 (-600 *3)) (-5 *5 (-631 *3)) (-5 *6 (-1154 *3))
- (-4 *3 (-13 (-425 *7) (-27) (-1180)))
- (-4 *7 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-631 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-550 *7 *3 *8)) (-4 *8 (-1082))))
- ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
- (|partial| -12 (-5 *4 (-600 *3)) (-5 *5 (-631 *3))
- (-5 *6 (-402 (-1154 *3))) (-4 *3 (-13 (-425 *7) (-27) (-1180)))
- (-4 *7 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-631 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-550 *7 *3 *8)) (-4 *8 (-1082)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
- (-12 (-5 *2 (-554))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-758)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-780)) (-4 *4 (-934 *5 *6 *7)) (-4 *5 (-446)) (-4 *7 (-836))
- (-5 *1 (-443 *5 *6 *7 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-112))
- (-4 *6 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))))
- (-4 *3 (-13 (-27) (-1180) (-425 *6) (-10 -8 (-15 -3075 ($ *7)))))
- (-4 *7 (-834))
- (-4 *8
- (-13 (-1219 *3 *7) (-358) (-1180)
- (-10 -8 (-15 -1553 ($ $)) (-15 -2279 ($ $)))))
- (-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1140)) (|:| |prob| (-1140))))))
- (-5 *1 (-417 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1140)) (-4 *9 (-968 *8))
- (-14 *10 (-1158)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-758)) (-5 *3 (-112)) (-5 *1 (-110))))
- ((*1 *2 *2) (-12 (-5 *2 (-906)) (|has| *1 (-6 -4364)) (-4 *1 (-399))))
- ((*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-906)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-325)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5))
- (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836))
- (-5 *1 (-1254 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-631 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1048 *5 *6 *7)) (-4 *5 (-546))
- (-4 *6 (-780)) (-4 *7 (-836)) (-5 *1 (-1254 *5 *6 *7 *8)))))
-(((*1 *2 *1) (-12 (-4 *1 (-995 *3)) (-4 *3 (-1195)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906))
- (-4 *4 (-1034)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-358)) (-4 *3 (-1034))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4137 *1)))
- (-4 *1 (-838 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-1140)) (-5 *1 (-773)))))
+ (-12 (-4 *2 (-550)) (-5 *1 (-959 *2 *3)) (-4 *3 (-1222 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1222 *2)) (-4 *2 (-1039)) (-4 *2 (-171)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-635 (-52))) (-5 *1 (-882 *3)) (-4 *3 (-1087)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-344))
- (-5 *2
- (-2 (|:| |cont| *5)
- (|:| -2316 (-631 (-2 (|:| |irr| *3) (|:| -4218 (-554)))))))
- (-5 *1 (-212 *5 *3)) (-4 *3 (-1217 *5)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-631 (-877 *3))) (-5 *1 (-877 *3))
- (-4 *3 (-1082)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-631 (-631 *3))) (-4 *3 (-836)) (-5 *1 (-1166 *3)))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836))
- (-4 *3 (-1048 *6 *7 *8))
- (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *4))))
- (-5 *1 (-1055 *6 *7 *8 *3 *4)) (-4 *4 (-1054 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-631 (-2 (|:| |val| (-631 *8)) (|:| -2143 *9))))
- (-5 *5 (-112)) (-4 *8 (-1048 *6 *7 *4)) (-4 *9 (-1054 *6 *7 *4 *8))
- (-4 *6 (-446)) (-4 *7 (-780)) (-4 *4 (-836))
- (-5 *2 (-631 (-2 (|:| |val| *8) (|:| -2143 *9))))
- (-5 *1 (-1055 *6 *7 *4 *8 *9)))))
+ (-12 (-5 *3 (-635 (-679 *5))) (-5 *4 (-558)) (-4 *5 (-362))
+ (-4 *5 (-1039)) (-5 *2 (-112)) (-5 *1 (-1019 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-679 *4))) (-4 *4 (-362)) (-4 *4 (-1039))
+ (-5 *2 (-112)) (-5 *1 (-1019 *4)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-1087)) (-4 *3 (-23))
+ (-14 *4 *3))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-402 (-554))) (-4 *4 (-1023 (-554)))
- (-4 *4 (-13 (-836) (-546))) (-5 *1 (-32 *4 *2)) (-4 *2 (-425 *4))))
+ (-12 (-5 *3 (-406 (-558))) (-4 *4 (-1028 (-558)))
+ (-4 *4 (-13 (-841) (-550))) (-5 *1 (-32 *4 *2)) (-4 *2 (-429 *4))))
((*1 *1 *1 *1) (-5 *1 (-133)))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-156 *3 *2))
- (-4 *2 (-425 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-221)))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-554))))
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-157 *3 *2))
+ (-4 *2 (-429 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-224)))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-242)) (-5 *2 (-558))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-402 (-554))) (-4 *4 (-358)) (-4 *4 (-38 *3))
- (-4 *5 (-1232 *4)) (-5 *1 (-273 *4 *5 *2)) (-4 *2 (-1203 *4 *5))))
+ (-12 (-5 *3 (-406 (-558))) (-4 *4 (-362)) (-4 *4 (-38 *3))
+ (-4 *5 (-1237 *4)) (-5 *1 (-277 *4 *5 *2)) (-4 *2 (-1208 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-402 (-554))) (-4 *4 (-358)) (-4 *4 (-38 *3))
- (-4 *5 (-1201 *4)) (-5 *1 (-274 *4 *5 *2 *6)) (-4 *2 (-1224 *4 *5))
- (-4 *6 (-968 *5))))
- ((*1 *1 *1 *1) (-4 *1 (-279)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-554)) (-5 *1 (-356 *2)) (-4 *2 (-1082))))
- ((*1 *1 *1 *1) (-5 *1 (-374)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-758)) (-5 *1 (-381 *2)) (-4 *2 (-1082))))
+ (-12 (-5 *3 (-406 (-558))) (-4 *4 (-362)) (-4 *4 (-38 *3))
+ (-4 *5 (-1206 *4)) (-5 *1 (-278 *4 *5 *2 *6)) (-4 *2 (-1229 *4 *5))
+ (-4 *6 (-973 *5))))
+ ((*1 *1 *1 *1) (-4 *1 (-283)))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-360 *2)) (-4 *2 (-1087))))
+ ((*1 *1 *1 *1) (-5 *1 (-378)))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-762)) (-5 *1 (-385 *2)) (-4 *2 (-1087))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-758)) (-4 *1 (-425 *3)) (-4 *3 (-836)) (-4 *3 (-1094))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-467)) (-5 *2 (-554))))
+ (-12 (-5 *2 (-762)) (-4 *1 (-429 *3)) (-4 *3 (-841)) (-4 *3 (-1099))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-471)) (-5 *2 (-558))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-758)) (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836))
- (-5 *1 (-498 *3 *4 *5 *6)) (-4 *6 (-934 *3 *4 *5))))
+ (-12 (-5 *2 (-762)) (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841))
+ (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-939 *3 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1241 *4)) (-5 *3 (-554)) (-4 *4 (-344))
- (-5 *1 (-522 *4))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-530))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-530))))
+ (-12 (-5 *2 (-1246 *4)) (-5 *3 (-558)) (-4 *4 (-348))
+ (-5 *1 (-526 *4))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-534))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-534))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-758)) (-4 *4 (-1082))
- (-5 *1 (-668 *4))))
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-762)) (-4 *4 (-1087))
+ (-5 *1 (-672 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-554)) (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034))
- (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-4 *3 (-358))))
+ (-12 (-5 *2 (-558)) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039))
+ (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-4 *3 (-362))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-758)) (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034))
- (-4 *4 (-368 *3)) (-4 *5 (-368 *3))))
+ (-12 (-5 *2 (-762)) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039))
+ (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-675 *4)) (-5 *3 (-758)) (-4 *4 (-1034))
- (-5 *1 (-676 *4))))
+ (-12 (-5 *2 (-679 *4)) (-5 *3 (-762)) (-4 *4 (-1039))
+ (-5 *1 (-680 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-554)) (-4 *3 (-1034)) (-5 *1 (-701 *3 *4))
- (-4 *4 (-634 *3))))
+ (-12 (-5 *2 (-558)) (-4 *3 (-1039)) (-5 *1 (-705 *3 *4))
+ (-4 *4 (-638 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-554)) (-4 *4 (-1034))
- (-5 *1 (-701 *4 *5)) (-4 *5 (-634 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-707)) (-5 *2 (-906))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-709)) (-5 *2 (-758))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-713)) (-5 *2 (-758))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-758)) (-5 *1 (-806 *2)) (-4 *2 (-836))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-823 *3)) (-4 *3 (-1034))))
+ (-12 (-5 *2 (-114)) (-5 *3 (-558)) (-4 *4 (-1039))
+ (-5 *1 (-705 *4 *5)) (-4 *5 (-638 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-711)) (-5 *2 (-911))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-713)) (-5 *2 (-762))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-717)) (-5 *2 (-762))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-762)) (-5 *1 (-810 *2)) (-4 *2 (-841))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-827 *3)) (-4 *3 (-1039))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-554)) (-5 *1 (-823 *4)) (-4 *4 (-1034))))
- ((*1 *1 *1 *1) (-5 *1 (-848)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1082))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-877 *3)) (-4 *3 (-1082))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-987)) (-5 *2 (-402 (-554)))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1094)) (-5 *2 (-906))))
+ (-12 (-5 *2 (-114)) (-5 *3 (-558)) (-5 *1 (-827 *4)) (-4 *4 (-1039))))
+ ((*1 *1 *1 *1) (-5 *1 (-853)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1087))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-882 *3)) (-4 *3 (-1087))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-992)) (-5 *2 (-406 (-558)))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1099)) (-5 *2 (-911))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-554)) (-4 *1 (-1105 *3 *4 *5 *6)) (-4 *4 (-1034))
- (-4 *5 (-234 *3 *4)) (-4 *6 (-234 *3 *4)) (-4 *4 (-358))))
+ (-12 (-5 *2 (-558)) (-4 *1 (-1110 *3 *4 *5 *6)) (-4 *4 (-1039))
+ (-4 *5 (-237 *3 *4)) (-4 *6 (-237 *3 *4)) (-4 *4 (-362))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1143 *3))))
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1148 *3))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1144 *3))))
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1149 *3))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1034)) (-4 *2 (-358)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-890 *4)) (-4 *4 (-1082)) (-5 *2 (-631 (-758)))
- (-5 *1 (-889 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082))
- (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4))
- (-4 *3 (-362 *4))))
- ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-344)) (-5 *3 (-554)) (-5 *2 (-1168 (-906) (-758))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-631 (-631 (-928 (-221)))))
- (-5 *2 (-631 (-1076 (-221)))) (-5 *1 (-913)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1082)) (-4 *5 (-1082))
- (-4 *6 (-1082)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-670 *4 *5 *6)))))
-(((*1 *2 *3 *4 *2 *5 *6)
- (-12
- (-5 *5
- (-2 (|:| |done| (-631 *11))
- (|:| |todo| (-631 (-2 (|:| |val| *3) (|:| -2143 *11))))))
- (-5 *6 (-758))
- (-5 *2 (-631 (-2 (|:| |val| (-631 *10)) (|:| -2143 *11))))
- (-5 *3 (-631 *10)) (-5 *4 (-631 *11)) (-4 *10 (-1048 *7 *8 *9))
- (-4 *11 (-1054 *7 *8 *9 *10)) (-4 *7 (-446)) (-4 *8 (-780))
- (-4 *9 (-836)) (-5 *1 (-1052 *7 *8 *9 *10 *11))))
- ((*1 *2 *3 *4 *2 *5 *6)
- (-12
- (-5 *5
- (-2 (|:| |done| (-631 *11))
- (|:| |todo| (-631 (-2 (|:| |val| *3) (|:| -2143 *11))))))
- (-5 *6 (-758))
- (-5 *2 (-631 (-2 (|:| |val| (-631 *10)) (|:| -2143 *11))))
- (-5 *3 (-631 *10)) (-5 *4 (-631 *11)) (-4 *10 (-1048 *7 *8 *9))
- (-4 *11 (-1091 *7 *8 *9 *10)) (-4 *7 (-446)) (-4 *8 (-780))
- (-4 *9 (-836)) (-5 *1 (-1127 *7 *8 *9 *10 *11)))))
-(((*1 *2 *3 *4 *3 *4 *4 *4)
- (-12 (-5 *3 (-675 (-221))) (-5 *4 (-554)) (-5 *2 (-1020))
- (-5 *1 (-743)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1082)) (-5 *1 (-949 *3 *2)) (-4 *3 (-1082)))))
+ (-12 (-4 *1 (-1237 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-631 (-2 (|:| |den| (-554)) (|:| |gcdnum| (-554)))))
- (-4 *4 (-1217 (-402 *2))) (-5 *2 (-554)) (-5 *1 (-898 *4 *5))
- (-4 *5 (-1217 (-402 *4))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-631 *1)) (-4 *3 (-1034)) (-4 *1 (-673 *3 *4 *5))
- (-4 *4 (-368 *3)) (-4 *5 (-368 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-631 *3)) (-4 *3 (-1034)) (-4 *1 (-673 *3 *4 *5))
- (-4 *4 (-368 *3)) (-4 *5 (-368 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1241 *3)) (-4 *3 (-1034)) (-5 *1 (-675 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-631 *4)) (-4 *4 (-1034)) (-4 *1 (-1105 *3 *4 *5 *6))
- (-4 *5 (-234 *3 *4)) (-4 *6 (-234 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-894)) (-4 *5 (-780)) (-4 *6 (-836))
- (-4 *7 (-934 *4 *5 *6)) (-5 *2 (-413 (-1154 *7)))
- (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-1154 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-894)) (-4 *5 (-1217 *4)) (-5 *2 (-413 (-1154 *5)))
- (-5 *1 (-892 *4 *5)) (-5 *3 (-1154 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-631 (-928 *4))) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906))
- (-4 *4 (-1034)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-554)) (-4 *1 (-318 *2 *4)) (-4 *4 (-130))
- (-4 *2 (-1082))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-5 *1 (-356 *2)) (-4 *2 (-1082))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-5 *1 (-381 *2)) (-4 *2 (-1082))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-5 *1 (-413 *2)) (-4 *2 (-546))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-554)) (-4 *2 (-1082)) (-5 *1 (-635 *2 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4)))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-5 *1 (-806 *2)) (-4 *2 (-836)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-631 (-1058 *3 *4 *5))) (-4 *3 (-1082))
- (-4 *4 (-13 (-1034) (-871 *3) (-836) (-602 (-877 *3))))
- (-4 *5 (-13 (-425 *4) (-871 *3) (-602 (-877 *3))))
- (-5 *1 (-1059 *3 *4 *5)))))
+ (-12 (-5 *3 (-1159 *4)) (-4 *4 (-348))
+ (-5 *2 (-1246 (-635 (-2 (|:| -2925 *4) (|:| -2851 (-1107))))))
+ (-5 *1 (-345 *4)))))
+(((*1 *2 *1 *1 *3 *4)
+ (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6))
+ (-4 *5 (-13 (-1087) (-34))) (-4 *6 (-13 (-1087) (-34)))
+ (-5 *2 (-112)) (-5 *1 (-1127 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1217 *5)) (-4 *5 (-358))
- (-4 *7 (-1217 (-402 *6)))
- (-5 *2 (-2 (|:| |answer| *3) (|:| -2533 *3)))
- (-5 *1 (-552 *5 *6 *7 *3)) (-4 *3 (-337 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1217 *5)) (-4 *5 (-358))
- (-5 *2
- (-2 (|:| |answer| (-402 *6)) (|:| -2533 (-402 *6))
- (|:| |specpart| (-402 *6)) (|:| |polypart| *6)))
- (-5 *1 (-553 *5 *6)) (-5 *3 (-402 *6)))))
-(((*1 *2 *3) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-551)) (-5 *3 (-554)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374))
+ (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-916)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-762)) (-4 *5 (-348)) (-4 *6 (-1222 *5))
(-5 *2
- (-2 (|:| -2794 *4) (|:| -1841 *4) (|:| |totalpts| (-554))
- (|:| |success| (-112))))
- (-5 *1 (-776)) (-5 *5 (-554)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-219 *2 *3)) (-4 *2 (-13 (-1034) (-836)))
- (-14 *3 (-631 (-1158))))))
+ (-635
+ (-2 (|:| -2660 (-679 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-679 *6)))))
+ (-5 *1 (-496 *5 *6 *7))
+ (-5 *3
+ (-2 (|:| -2660 (-679 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-679 *6))))
+ (-4 *7 (-1222 *6)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-546) (-836))) (-5 *2 (-167 *5))
- (-5 *1 (-588 *4 *5 *3)) (-4 *5 (-13 (-425 *4) (-987) (-1180)))
- (-4 *3 (-13 (-425 (-167 *4)) (-987) (-1180))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1154 (-402 (-937 *3)))) (-5 *1 (-447 *3 *4 *5 *6))
- (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906))
- (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))))
-(((*1 *1 *1) (-5 *1 (-221))) ((*1 *1 *1) (-5 *1 (-374)))
- ((*1 *1) (-5 *1 (-374))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-675 *4)) (-5 *3 (-906)) (|has| *4 (-6 (-4375 "*")))
- (-4 *4 (-1034)) (-5 *1 (-1013 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-631 (-675 *4))) (-5 *3 (-906))
- (|has| *4 (-6 (-4375 "*"))) (-4 *4 (-1034)) (-5 *1 (-1013 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-1138 *3))) (-5 *2 (-1138 *3)) (-5 *1 (-1142 *3))
- (-4 *3 (-38 (-402 (-554)))) (-4 *3 (-1034)))))
-(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
- (-12 (-5 *3 (-675 (-221))) (-5 *4 (-554)) (-5 *2 (-1020))
- (-5 *1 (-742)))))
-(((*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-551)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -3715)) (-5 *2 (-112)) (-5 *1 (-605))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -1638)) (-5 *2 (-112)) (-5 *1 (-605))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -2521)) (-5 *2 (-112)) (-5 *1 (-605))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -3615)) (-5 *2 (-112)) (-5 *1 (-677 *4))
- (-4 *4 (-601 (-848)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-601 (-848))) (-5 *2 (-112))
- (-5 *1 (-677 *4))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-554))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-1140))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-500))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-581))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-472))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-1148))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-614))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-1078))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-1056))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-955))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-178))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-1021))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-306))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-657))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-152))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-519))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-1252))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-1049))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-511))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-667))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-1097))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-132))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-1251))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-662))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-214))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1140))) (-5 *2 (-112)) (-5 *1 (-1163))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1158))) (-5 *2 (-112)) (-5 *1 (-1163))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-221))) (-5 *2 (-112)) (-5 *1 (-1163))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-554))) (-5 *2 (-112)) (-5 *1 (-1163)))))
-(((*1 *2) (-12 (-5 *2 (-1115 (-221))) (-5 *1 (-1178)))))
+ (-12 (-5 *3 (-635 (-558))) (-5 *2 (-1165 (-406 (-558))))
+ (-5 *1 (-189)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-939 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784))
+ (-4 *2 (-841)) (-4 *3 (-171))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *2 (-550)) (-5 *1 (-959 *2 *3)) (-4 *3 (-1222 *2))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
+ (-4 *4 (-841)) (-4 *2 (-550))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1222 *2)) (-4 *2 (-1039)) (-4 *2 (-171)))))
+(((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1163)) (-5 *3 (-112)) (-5 *1 (-882 *4))
+ (-4 *4 (-1087)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-635 (-679 *6))) (-5 *4 (-112)) (-5 *5 (-558))
+ (-5 *2 (-679 *6)) (-5 *1 (-1019 *6)) (-4 *6 (-362)) (-4 *6 (-1039))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-635 (-679 *4))) (-5 *2 (-679 *4)) (-5 *1 (-1019 *4))
+ (-4 *4 (-362)) (-4 *4 (-1039))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-635 (-679 *5))) (-5 *4 (-558)) (-5 *2 (-679 *5))
+ (-5 *1 (-1019 *5)) (-4 *5 (-362)) (-4 *5 (-1039)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -2573 *4))))
+ (-4 *3 (-1087)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-639 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1159 *4)) (-4 *4 (-348)) (-5 *2 (-948 (-1107)))
+ (-5 *1 (-345 *4)))))
(((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-758)) (-4 *3 (-1195)) (-4 *1 (-57 *3 *4 *5))
- (-4 *4 (-368 *3)) (-4 *5 (-368 *3))))
- ((*1 *1) (-5 *1 (-169)))
- ((*1 *1) (-12 (-5 *1 (-209 *2 *3)) (-14 *2 (-906)) (-4 *3 (-1082))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1140)) (-4 *1 (-384))))
- ((*1 *1) (-5 *1 (-389)))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-758)) (-4 *1 (-637 *3)) (-4 *3 (-1195))))
+ (-12 (-5 *2 (-762)) (-4 *3 (-1200)) (-4 *1 (-57 *3 *4 *5))
+ (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
+ ((*1 *1) (-5 *1 (-170)))
+ ((*1 *1) (-12 (-5 *1 (-212 *2 *3)) (-14 *2 (-911)) (-4 *3 (-1087))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1145)) (-4 *1 (-388))))
+ ((*1 *1) (-5 *1 (-393)))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-762)) (-4 *1 (-641 *3)) (-4 *3 (-1200))))
((*1 *1)
- (-12 (-4 *3 (-1082)) (-5 *1 (-870 *2 *3 *4)) (-4 *2 (-1082))
- (-4 *4 (-652 *3))))
- ((*1 *1) (-12 (-5 *1 (-874 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082))))
+ (-12 (-4 *3 (-1087)) (-5 *1 (-875 *2 *3 *4)) (-4 *2 (-1087))
+ (-4 *4 (-656 *3))))
+ ((*1 *1) (-12 (-5 *1 (-879 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-1087))))
((*1 *1 *2)
- (-12 (-5 *1 (-1124 *3 *2)) (-14 *3 (-758)) (-4 *2 (-1034))))
- ((*1 *1) (-12 (-5 *1 (-1146 *2 *3)) (-14 *2 (-906)) (-4 *3 (-1034))))
- ((*1 *1 *1) (-5 *1 (-1158))) ((*1 *1) (-5 *1 (-1158)))
- ((*1 *1) (-5 *1 (-1175))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-229)) (-4 *3 (-1034)) (-4 *4 (-836)) (-4 *5 (-261 *4))
- (-4 *6 (-780)) (-5 *2 (-1 *1 (-758))) (-4 *1 (-248 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1034)) (-4 *3 (-836)) (-4 *5 (-261 *3)) (-4 *6 (-780))
- (-5 *2 (-1 *1 (-758))) (-4 *1 (-248 *4 *3 *5 *6))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-758)) (-4 *1 (-261 *2)) (-4 *2 (-836)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-1082))
- (-4 *4 (-1082)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020))
- (-5 *1 (-738)))))
+ (-12 (-5 *1 (-1129 *3 *2)) (-14 *3 (-762)) (-4 *2 (-1039))))
+ ((*1 *1) (-12 (-5 *1 (-1151 *2 *3)) (-14 *2 (-911)) (-4 *3 (-1039))))
+ ((*1 *1 *1) (-5 *1 (-1163))) ((*1 *1) (-5 *1 (-1163)))
+ ((*1 *1) (-5 *1 (-1180))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1087) (-34)))
+ (-5 *2 (-112)) (-5 *1 (-1127 *4 *5)) (-4 *4 (-13 (-1087) (-34))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 *8)) (-5 *4 (-112)) (-4 *8 (-1048 *5 *6 *7))
- (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-631 *10))
- (-5 *1 (-612 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1054 *5 *6 *7 *8))
- (-4 *10 (-1091 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-767 *5 (-850 *6)))) (-5 *4 (-112)) (-4 *5 (-446))
- (-14 *6 (-631 (-1158))) (-5 *2 (-631 (-1031 *5 *6)))
- (-5 *1 (-616 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-767 *5 (-850 *6)))) (-5 *4 (-112)) (-4 *5 (-446))
- (-14 *6 (-631 (-1158)))
- (-5 *2
- (-631 (-1128 *5 (-525 (-850 *6)) (-850 *6) (-767 *5 (-850 *6)))))
- (-5 *1 (-616 *5 *6))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-631 *8)) (-5 *4 (-112)) (-4 *8 (-1048 *5 *6 *7))
- (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836))
- (-5 *2 (-631 (-1012 *5 *6 *7 *8))) (-5 *1 (-1012 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-631 *8)) (-5 *4 (-112)) (-4 *8 (-1048 *5 *6 *7))
- (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836))
- (-5 *2 (-631 (-1012 *5 *6 *7 *8))) (-5 *1 (-1012 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-631 (-767 *5 (-850 *6)))) (-5 *4 (-112)) (-4 *5 (-446))
- (-14 *6 (-631 (-1158))) (-5 *2 (-631 (-1031 *5 *6)))
- (-5 *1 (-1031 *5 *6))))
+ (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1163)) (-5 *5 (-1081 (-224))) (-5 *2 (-917))
+ (-5 *1 (-915 *3)) (-4 *3 (-606 (-534)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 *8)) (-5 *4 (-112)) (-4 *8 (-1048 *5 *6 *7))
- (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-631 *1))
- (-4 *1 (-1054 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-631 *8)) (-5 *4 (-112)) (-4 *8 (-1048 *5 *6 *7))
- (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836))
- (-5 *2 (-631 (-1128 *5 *6 *7 *8))) (-5 *1 (-1128 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-631 *8)) (-5 *4 (-112)) (-4 *8 (-1048 *5 *6 *7))
- (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836))
- (-5 *2 (-631 (-1128 *5 *6 *7 *8))) (-5 *1 (-1128 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-546))
- (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-631 *1))
- (-4 *1 (-1188 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-1140)) (-5 *5 (-675 (-221)))
- (-5 *2 (-1020)) (-5 *1 (-734)))))
-(((*1 *2 *3 *4 *5 *6 *7 *6)
- (|partial| -12
- (-5 *5
- (-2 (|:| |contp| *3)
- (|:| -2316 (-631 (-2 (|:| |irr| *10) (|:| -4218 (-554)))))))
- (-5 *6 (-631 *3)) (-5 *7 (-631 *8)) (-4 *8 (-836)) (-4 *3 (-302))
- (-4 *10 (-934 *3 *9 *8)) (-4 *9 (-780))
- (-5 *2
- (-2 (|:| |polfac| (-631 *10)) (|:| |correct| *3)
- (|:| |corrfact| (-631 (-1154 *3)))))
- (-5 *1 (-613 *8 *9 *3 *10)) (-5 *4 (-631 (-1154 *3))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2))
- (-4 *2 (-13 (-425 *3) (-1180))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-402 (-937 *3))) (-5 *1 (-447 *3 *4 *5 *6))
- (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906))
- (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))))
+ (-12 (-5 *4 (-1163)) (-5 *2 (-917)) (-5 *1 (-915 *3))
+ (-4 *3 (-606 (-534)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-917))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1081 (-224)))
+ (-5 *1 (-917)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1034)) (-5 *2 (-631 *1)) (-4 *1 (-1116 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446))
- (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112))
- (-5 *1 (-973 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446))
- (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112))
- (-5 *1 (-1089 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1158)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-688 *4 *5 *6 *7))
- (-4 *4 (-602 (-530))) (-4 *5 (-1195)) (-4 *6 (-1195))
- (-4 *7 (-1195)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-631 *3)) (-4 *3 (-1195)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-631 (-2 (|:| -2564 *3) (|:| -2701 *4))))
- (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *1 (-1171 *3 *4))))
- ((*1 *1) (-12 (-4 *1 (-1171 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1138 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))))
-(((*1 *2)
(-12
- (-5 *2 (-2 (|:| -2786 (-631 (-1158))) (|:| -3633 (-631 (-1158)))))
- (-5 *1 (-1197)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-543)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-997)) (-5 *2 (-848)))))
-(((*1 *1) (-5 *1 (-432))))
-(((*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1195)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1158)) (-4 *4 (-1034)) (-4 *4 (-836))
- (-5 *2 (-2 (|:| |var| (-600 *1)) (|:| -1407 (-554))))
- (-4 *1 (-425 *4))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1034)) (-4 *4 (-836))
- (-5 *2 (-2 (|:| |var| (-600 *1)) (|:| -1407 (-554))))
- (-4 *1 (-425 *4))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1094)) (-4 *3 (-836))
- (-5 *2 (-2 (|:| |var| (-600 *1)) (|:| -1407 (-554))))
- (-4 *1 (-425 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |val| (-877 *3)) (|:| -1407 (-758))))
- (-5 *1 (-877 *3)) (-4 *3 (-1082))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-934 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780))
- (-4 *5 (-836)) (-5 *2 (-2 (|:| |var| *5) (|:| -1407 (-758))))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1034))
- (-4 *7 (-934 *6 *4 *5))
- (-5 *2 (-2 (|:| |var| *5) (|:| -1407 (-554))))
- (-5 *1 (-935 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-358)
- (-10 -8 (-15 -3075 ($ *7)) (-15 -2810 (*7 $))
- (-15 -2822 (*7 $))))))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1158)) (-5 *1 (-600 *3)) (-4 *3 (-836)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))))
-(((*1 *1) (-4 *1 (-344)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-631 *5)) (-4 *5 (-425 *4))
- (-4 *4 (-13 (-546) (-836) (-145)))
- (-5 *2
- (-2 (|:| |primelt| *5) (|:| |poly| (-631 (-1154 *5)))
- (|:| |prim| (-1154 *5))))
- (-5 *1 (-427 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-546) (-836) (-145)))
(-5 *2
- (-2 (|:| |primelt| *3) (|:| |pol1| (-1154 *3))
- (|:| |pol2| (-1154 *3)) (|:| |prim| (-1154 *3))))
- (-5 *1 (-427 *4 *3)) (-4 *3 (-27)) (-4 *3 (-425 *4))))
- ((*1 *2 *3 *4 *3 *4)
- (-12 (-5 *3 (-937 *5)) (-5 *4 (-1158)) (-4 *5 (-13 (-358) (-145)))
- (-5 *2
- (-2 (|:| |coef1| (-554)) (|:| |coef2| (-554))
- (|:| |prim| (-1154 *5))))
- (-5 *1 (-945 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-937 *5))) (-5 *4 (-631 (-1158)))
- (-4 *5 (-13 (-358) (-145)))
- (-5 *2
- (-2 (|:| -1490 (-631 (-554))) (|:| |poly| (-631 (-1154 *5)))
- (|:| |prim| (-1154 *5))))
- (-5 *1 (-945 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-631 (-937 *6))) (-5 *4 (-631 (-1158))) (-5 *5 (-1158))
- (-4 *6 (-13 (-358) (-145)))
- (-5 *2
- (-2 (|:| -1490 (-631 (-554))) (|:| |poly| (-631 (-1154 *6)))
- (|:| |prim| (-1154 *6))))
- (-5 *1 (-945 *6)))))
+ (-635
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
+ (|:| |xpnt| (-558)))))
+ (-5 *1 (-417 *3)) (-4 *3 (-550))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-762)) (-4 *3 (-348)) (-4 *5 (-1222 *3))
+ (-5 *2 (-635 (-1159 *3))) (-5 *1 (-496 *3 *5 *6))
+ (-4 *6 (-1222 *5)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1165 (-406 (-558)))) (-5 *1 (-189)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-550)) (-5 *1 (-959 *3 *2)) (-4 *2 (-1222 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
+ (-4 *4 (-841)) (-4 *2 (-550))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1222 *2)) (-4 *2 (-1039)) (-4 *2 (-550)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-635 (-1163))) (-5 *3 (-52)) (-5 *1 (-882 *4))
+ (-4 *4 (-1087)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-554)) (-5 *2 (-631 (-2 (|:| -2270 *3) (|:| -3308 *4))))
- (-5 *1 (-682 *3)) (-4 *3 (-1217 *4)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1158)) (-5 *3 (-631 *1)) (-4 *1 (-425 *4))
- (-4 *4 (-836))))
- ((*1 *1 *2 *1 *1 *1 *1)
- (-12 (-5 *2 (-1158)) (-4 *1 (-425 *3)) (-4 *3 (-836))))
- ((*1 *1 *2 *1 *1 *1)
- (-12 (-5 *2 (-1158)) (-4 *1 (-425 *3)) (-4 *3 (-836))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1158)) (-4 *1 (-425 *3)) (-4 *3 (-836))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1158)) (-4 *1 (-425 *3)) (-4 *3 (-836)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-358) (-834))) (-5 *1 (-179 *3 *2))
- (-4 *2 (-1217 (-167 *3))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1241 (-311 (-221))))
- (-5 *2
- (-2 (|:| |additions| (-554)) (|:| |multiplications| (-554))
- (|:| |exponentiations| (-554)) (|:| |functionCalls| (-554))))
- (-5 *1 (-300)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-758)) (-4 *1 (-369 *3 *4)) (-4 *3 (-836))
- (-4 *4 (-170))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-758)) (-4 *1 (-1262 *3 *4)) (-4 *3 (-836))
- (-4 *4 (-1034)))))
-(((*1 *2 *1) (-12 (-4 *1 (-660 *3)) (-4 *3 (-1195)) (-5 *2 (-112)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-675 *3)) (-4 *3 (-1034)) (-5 *1 (-676 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-905)) (-5 *2 (-2 (|:| -1490 (-631 *1)) (|:| -4137 *1)))
- (-5 *3 (-631 *1)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1140)) (-5 *3 (-631 (-258))) (-5 *1 (-256))))
- ((*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-258)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1046)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-631 (-631 (-631 *4)))) (-5 *2 (-631 (-631 *4)))
- (-4 *4 (-836)) (-5 *1 (-1166 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-836)) (-5 *1 (-914 *3 *2)) (-4 *2 (-425 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1158)) (-5 *2 (-311 (-554))) (-5 *1 (-915)))))
-(((*1 *2 *2) (-12 (-5 *1 (-668 *2)) (-4 *2 (-1082)))))
-(((*1 *1)
- (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-554)) (-14 *3 (-758))
- (-4 *4 (-170)))))
-(((*1 *1) (-5 *1 (-1067))))
-(((*1 *2 *3 *4 *4 *5 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-221))
- (-5 *2 (-1020)) (-5 *1 (-739)))))
-(((*1 *2 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020))
- (-5 *1 (-738)))))
+ (-12 (-5 *3 (-635 (-679 *5))) (-5 *4 (-1246 *5)) (-4 *5 (-306))
+ (-4 *5 (-1039)) (-5 *2 (-679 *5)) (-5 *1 (-1019 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1200))))
+ ((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4383)) (-4 *1 (-372 *2)) (-4 *2 (-1200))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-1087)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2)
+ (-12 (-5 *2 (-948 (-1107))) (-5 *1 (-342 *3 *4)) (-14 *3 (-911))
+ (-14 *4 (-911))))
+ ((*1 *2)
+ (-12 (-5 *2 (-948 (-1107))) (-5 *1 (-343 *3 *4)) (-4 *3 (-348))
+ (-14 *4 (-1159 *3))))
+ ((*1 *2)
+ (-12 (-5 *2 (-948 (-1107))) (-5 *1 (-344 *3 *4)) (-4 *3 (-348))
+ (-14 *4 (-911)))))
+(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-853)))
+ ((*1 *1 *1) (-4 *1 (-957))) ((*1 *1 *1) (-5 *1 (-1107))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-221) (-221) (-221) (-221))) (-5 *1 (-258))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-221) (-221) (-221))) (-5 *1 (-258))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *1 (-258)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-631 (-1194))) (-5 *3 (-1194)) (-5 *1 (-667)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -1709 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-358)) (-4 *7 (-1217 *6))
- (-5 *2
- (-3 (-2 (|:| |answer| (-402 *7)) (|:| |a0| *6))
- (-2 (|:| -1709 (-402 *7)) (|:| |coeff| (-402 *7))) "failed"))
- (-5 *1 (-564 *6 *7)) (-5 *3 (-402 *7)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-906)) (-5 *4 (-859)) (-5 *2 (-1246)) (-5 *1 (-1242))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-906)) (-5 *4 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1242))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1243)))))
+ (-12 (-5 *2 (-635 (-2 (|:| -2700 *3) (|:| -2981 *4))))
+ (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *1 (-1176 *3 *4))))
+ ((*1 *1) (-12 (-4 *1 (-1176 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-1087)))))
+(((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
+ ((*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2))
+ (-4 *2 (-429 *3))))
+ ((*1 *1 *1) (-4 *1 (-1126))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 *6)) (-5 *4 (-631 (-1158))) (-4 *6 (-358))
- (-5 *2 (-631 (-289 (-937 *6)))) (-5 *1 (-532 *5 *6 *7))
- (-4 *5 (-446)) (-4 *7 (-13 (-358) (-834))))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-112)) (-5 *1 (-816)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1076 (-829 (-221)))) (-5 *1 (-300)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-1140)) (-5 *4 (-1102)) (-5 *2 (-112)) (-5 *1 (-808)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987))))))
-(((*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))))
-(((*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-252)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-156 *3 *2))
- (-4 *2 (-425 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1138 (-554))) (-5 *1 (-1142 *4)) (-4 *4 (-1034))
- (-5 *3 (-554)))))
+ (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-917)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-493)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1165 (-406 (-558)))) (-5 *1 (-189)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-635 *1)) (-4 *1 (-1121 *3)) (-4 *3 (-1039))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-5 *2 (-406 *1)) (-4 *1 (-1222 *3)) (-4 *3 (-1039))
+ (-4 *3 (-550))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-1222 *2)) (-4 *2 (-1039)) (-4 *2 (-550)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034))
- (-5 *2 (-631 (-631 (-631 (-758))))))))
+ (-12 (-5 *2 (-2 (|:| |var| (-635 (-1163))) (|:| |pred| (-52))))
+ (-5 *1 (-882 *3)) (-4 *3 (-1087)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-1241 *5))) (-5 *4 (-554)) (-5 *2 (-1241 *5))
- (-5 *1 (-1014 *5)) (-4 *5 (-358)) (-4 *5 (-363)) (-4 *5 (-1034)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1140)) (-5 *4 (-554)) (-5 *5 (-675 (-167 (-221))))
- (-5 *2 (-1020)) (-5 *1 (-741)))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3))
- (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1143 *3))))
+ (-12 (-5 *3 (-635 (-679 *5))) (-4 *5 (-306)) (-4 *5 (-1039))
+ (-5 *2 (-1246 (-1246 *5))) (-5 *1 (-1019 *5)) (-5 *4 (-1246 *5)))))
+(((*1 *1)
+ (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-1087)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2)
+ (-12 (-4 *4 (-1204)) (-4 *5 (-1222 *4)) (-4 *6 (-1222 (-406 *5)))
+ (-5 *2 (-762)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3))
+ (-4 *5 (-1222 (-406 *4))) (-5 *2 (-762)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-635 *3)) (-4 *3 (-1200)))))
+(((*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225))))
+ ((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1144 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-243 *4 *5)) (-14 *4 (-631 (-1158))) (-4 *5 (-446))
- (-5 *2 (-475 *4 *5)) (-5 *1 (-619 *4 *5)))))
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2))
+ (-4 *2 (-429 *3))))
+ ((*1 *1 *1) (-4 *1 (-1126))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1154 *7)) (-4 *5 (-1034))
- (-4 *7 (-1034)) (-4 *2 (-1217 *5)) (-5 *1 (-495 *5 *2 *6 *7))
- (-4 *6 (-1217 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1034)) (-4 *7 (-1034))
- (-4 *4 (-1217 *5)) (-5 *2 (-1154 *7)) (-5 *1 (-495 *5 *4 *6 *7))
- (-4 *6 (-1217 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082))
- (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
+(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-465))))
+ ((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-465))))
+ ((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-917)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-489)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1165 (-406 (-558)))) (-5 *2 (-406 (-558)))
+ (-5 *1 (-189)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1222 *2)) (-4 *2 (-1039)) (-4 *2 (-550)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-882 *3)) (-4 *3 (-1087)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-635 (-679 *4))) (-5 *2 (-679 *4)) (-4 *4 (-1039))
+ (-5 *1 (-1019 *4)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-1087)) (-4 *3 (-23))
+ (-14 *4 *3))))
(((*1 *2)
- (-12 (-4 *3 (-546)) (-5 *2 (-631 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-412 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170)))))
-(((*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-252)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-358) (-145) (-1023 (-402 (-554)))))
- (-4 *5 (-1217 *4)) (-5 *2 (-631 (-2 (|:| -1608 *5) (|:| -1401 *5))))
- (-5 *1 (-794 *4 *5 *3 *6)) (-4 *3 (-642 *5))
- (-4 *6 (-642 (-402 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-358) (-145) (-1023 (-402 (-554)))))
- (-4 *4 (-1217 *5)) (-5 *2 (-631 (-2 (|:| -1608 *4) (|:| -1401 *4))))
- (-5 *1 (-794 *5 *4 *3 *6)) (-4 *3 (-642 *4))
- (-4 *6 (-642 (-402 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-358) (-145) (-1023 (-402 (-554)))))
- (-4 *5 (-1217 *4)) (-5 *2 (-631 (-2 (|:| -1608 *5) (|:| -1401 *5))))
- (-5 *1 (-794 *4 *5 *6 *3)) (-4 *6 (-642 *5))
- (-4 *3 (-642 (-402 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-358) (-145) (-1023 (-402 (-554)))))
- (-4 *4 (-1217 *5)) (-5 *2 (-631 (-2 (|:| -1608 *4) (|:| -1401 *4))))
- (-5 *1 (-794 *5 *4 *6 *3)) (-4 *6 (-642 *4))
- (-4 *3 (-642 (-402 *4))))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1154 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3)))))
+ (-12 (-4 *4 (-1204)) (-4 *5 (-1222 *4)) (-4 *6 (-1222 (-406 *5)))
+ (-5 *2 (-112)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3))
+ (-4 *5 (-1222 (-406 *4))) (-5 *2 (-112)))))
+(((*1 *2 *2) (-12 (-5 *1 (-672 *2)) (-4 *2 (-1087)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2))
+ (-4 *2 (-429 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1126))))
(((*1 *2 *3 *4)
- (-12 (-4 *4 (-358)) (-5 *2 (-631 (-1138 *4))) (-5 *1 (-280 *4 *5))
- (-5 *3 (-1138 *4)) (-4 *5 (-1232 *4)))))
-(((*1 *1 *1) (-4 *1 (-1126))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-675 *2)) (-4 *2 (-170)) (-5 *1 (-144 *2))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-170)) (-4 *2 (-1217 *4)) (-5 *1 (-175 *4 *2 *3))
- (-4 *3 (-711 *4 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-675 (-402 (-937 *5)))) (-5 *4 (-1158))
- (-5 *2 (-937 *5)) (-5 *1 (-287 *5)) (-4 *5 (-446))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-675 (-402 (-937 *4)))) (-5 *2 (-937 *4))
- (-5 *1 (-287 *4)) (-4 *4 (-446))))
+ (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
+(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-917)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4382)) (-4 *1 (-487 *4))
+ (-4 *4 (-1200)) (-5 *2 (-112)))))
+(((*1 *1 *1) (-4 *1 (-543))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1165 (-406 (-558)))) (-5 *1 (-189)) (-5 *3 (-558)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-550))
+ (-5 *2 (-2 (|:| -2023 *4) (|:| -2306 *3) (|:| -2071 *3)))
+ (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841))
+ (-5 *2 (-2 (|:| -2306 *1) (|:| -2071 *1))) (-4 *1 (-1053 *3 *4 *5))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-550)) (-4 *3 (-1039))
+ (-5 *2 (-2 (|:| -2023 *3) (|:| -2306 *1) (|:| -2071 *1)))
+ (-4 *1 (-1222 *3)))))
+(((*1 *1 *1) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1087)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1246 (-1246 *4))) (-4 *4 (-1039)) (-5 *2 (-679 *4))
+ (-5 *1 (-1019 *4)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-1087)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-1204)) (-4 *5 (-1222 *3)) (-4 *6 (-1222 (-406 *5)))
+ (-5 *2 (-112)) (-5 *1 (-340 *4 *3 *5 *6)) (-4 *4 (-341 *3 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3))
+ (-4 *5 (-1222 (-406 *4))) (-5 *2 (-112)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2))
+ (-4 *2 (-429 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1126))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-168 (-224))) (-5 *5 (-558)) (-5 *6 (-1145))
+ (-5 *3 (-224)) (-5 *2 (-1025)) (-5 *1 (-749)))))
+(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-465))))
+ ((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-465))))
+ ((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-917)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4382)) (-4 *1 (-487 *4))
+ (-4 *4 (-1200)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1165 (-406 (-558)))) (-5 *1 (-189)) (-5 *3 (-558)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-362)) (-4 *4 (-550)) (-4 *5 (-1222 *4))
+ (-5 *2 (-2 (|:| -1875 (-615 *4 *5)) (|:| -1862 (-406 *5))))
+ (-5 *1 (-615 *4 *5)) (-5 *3 (-406 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-365 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1217 *3))))
+ (-12 (-5 *2 (-635 (-1151 *3 *4))) (-5 *1 (-1151 *3 *4))
+ (-14 *3 (-911)) (-4 *4 (-1039))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-450)) (-4 *3 (-1039))
+ (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
+ (-4 *1 (-1222 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-635 (-52))) (-5 *1 (-882 *3)) (-4 *3 (-1087)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-895 (-558))) (-5 *4 (-558)) (-5 *2 (-679 *4))
+ (-5 *1 (-1018 *5)) (-4 *5 (-1039))))
((*1 *2 *3)
- (-12 (-5 *3 (-675 (-167 (-402 (-554)))))
- (-5 *2 (-937 (-167 (-402 (-554))))) (-5 *1 (-751 *4))
- (-4 *4 (-13 (-358) (-834)))))
+ (-12 (-5 *3 (-635 (-558))) (-5 *2 (-679 (-558))) (-5 *1 (-1018 *4))
+ (-4 *4 (-1039))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-675 (-167 (-402 (-554))))) (-5 *4 (-1158))
- (-5 *2 (-937 (-167 (-402 (-554))))) (-5 *1 (-751 *5))
- (-4 *5 (-13 (-358) (-834)))))
+ (-12 (-5 *3 (-635 (-895 (-558)))) (-5 *4 (-558))
+ (-5 *2 (-635 (-679 *4))) (-5 *1 (-1018 *5)) (-4 *5 (-1039))))
((*1 *2 *3)
- (-12 (-5 *3 (-675 (-402 (-554)))) (-5 *2 (-937 (-402 (-554))))
- (-5 *1 (-766 *4)) (-4 *4 (-13 (-358) (-834)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-675 (-402 (-554)))) (-5 *4 (-1158))
- (-5 *2 (-937 (-402 (-554)))) (-5 *1 (-766 *5))
- (-4 *5 (-13 (-358) (-834))))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3))
- (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4))))
+ (-12 (-5 *3 (-635 (-635 (-558)))) (-5 *2 (-635 (-679 (-558))))
+ (-5 *1 (-1018 *4)) (-4 *4 (-1039)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-1087))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3))
+ (-4 *5 (-1222 (-406 *4))) (-5 *2 (-112)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2))
+ (-4 *2 (-429 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1126))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-168 (-224))) (-5 *5 (-558)) (-5 *6 (-1145))
+ (-5 *3 (-224)) (-5 *2 (-1025)) (-5 *1 (-749)))))
+(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-917)))))
+(((*1 *1 *2) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-485)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1165 (-406 (-558)))) (-5 *1 (-189)) (-5 *3 (-558)))))
+(((*1 *2 *2 *2 *3 *3)
+ (-12 (-5 *3 (-762)) (-4 *4 (-1039)) (-5 *1 (-1218 *4 *2))
+ (-4 *2 (-1222 *4)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-635 (-882 *3))) (-5 *1 (-882 *3))
+ (-4 *3 (-1087)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-679 *3)) (-4 *3 (-1039)) (-5 *1 (-1018 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-635 (-679 *3))) (-4 *3 (-1039)) (-5 *1 (-1018 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1143 *3))))
+ (-12 (-5 *2 (-679 *3)) (-4 *3 (-1039)) (-5 *1 (-1018 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1144 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1241 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170))
- (-5 *2 (-631 (-937 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-631 (-937 *4))) (-5 *1 (-411 *3 *4))
- (-4 *3 (-412 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-631 (-937 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-631 (-937 *3))) (-5 *1 (-447 *3 *4 *5 *6))
- (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906))
- (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1241 (-447 *4 *5 *6 *7))) (-5 *2 (-631 (-937 *4)))
- (-5 *1 (-447 *4 *5 *6 *7)) (-4 *4 (-546)) (-4 *4 (-170))
- (-14 *5 (-906)) (-14 *6 (-631 (-1158))) (-14 *7 (-1241 (-675 *4))))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1086)) (-5 *1 (-275)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4374)) (-4 *1 (-1229 *2)) (-4 *2 (-1195)))))
+ (-12 (-5 *2 (-635 (-679 *3))) (-4 *3 (-1039)) (-5 *1 (-1018 *3)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-558) (-558))) (-5 *1 (-360 *3)) (-4 *3 (-1087))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-762) (-762))) (-5 *1 (-385 *3)) (-4 *3 (-1087))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
+ (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-1087)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-836)) (-4 *3 (-1082)))))
+ (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1204)) (-4 *3 (-1222 *4))
+ (-4 *5 (-1222 (-406 *3))) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3))
+ (-4 *5 (-1222 (-406 *4))) (-5 *2 (-112)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2))
+ (-4 *2 (-429 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1126))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-5 *3 (-906)) (-5 *1 (-436 *2))
- (-4 *2 (-1217 (-554)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-906)) (-5 *4 (-758)) (-5 *1 (-436 *2))
- (-4 *2 (-1217 (-554)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-906)) (-5 *4 (-631 (-758))) (-5 *1 (-436 *2))
- (-4 *2 (-1217 (-554)))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *3 (-906)) (-5 *4 (-631 (-758))) (-5 *5 (-758))
- (-5 *1 (-436 *2)) (-4 *2 (-1217 (-554)))))
- ((*1 *2 *3 *2 *4 *5 *6)
- (|partial| -12 (-5 *3 (-906)) (-5 *4 (-631 (-758))) (-5 *5 (-758))
- (-5 *6 (-112)) (-5 *1 (-436 *2)) (-4 *2 (-1217 (-554)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-906)) (-5 *4 (-413 *2)) (-4 *2 (-1217 *5))
- (-5 *1 (-438 *5 *2)) (-4 *5 (-1034)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-631 (-937 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-834) (-302) (-145) (-1007)))
- (-5 *2 (-631 (-1031 *5 *6))) (-5 *1 (-1267 *5 *6 *7))
- (-14 *6 (-631 (-1158))) (-14 *7 (-631 (-1158)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-937 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-834) (-302) (-145) (-1007)))
- (-5 *2 (-631 (-1031 *5 *6))) (-5 *1 (-1267 *5 *6 *7))
- (-14 *6 (-631 (-1158))) (-14 *7 (-631 (-1158)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-631 (-937 *4)))
- (-4 *4 (-13 (-834) (-302) (-145) (-1007)))
- (-5 *2 (-631 (-1031 *4 *5))) (-5 *1 (-1267 *4 *5 *6))
- (-14 *5 (-631 (-1158))) (-14 *6 (-631 (-1158))))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-758)) (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034))
- (-4 *4 (-780)) (-4 *5 (-836)) (-4 *3 (-546)))))
-(((*1 *2 *1) (-12 (-5 *2 (-809)) (-5 *1 (-808)))))
+ (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
+(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-465))))
+ ((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-465))))
+ ((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-917)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-558))) (-5 *2 (-558)) (-5 *1 (-484 *4))
+ (-4 *4 (-1222 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1165 (-406 (-558)))) (-5 *1 (-189)) (-5 *3 (-558)))))
(((*1 *2 *2 *2)
- (-12
- (-5 *2
- (-631
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-758)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-780)) (-4 *6 (-934 *3 *4 *5)) (-4 *3 (-446)) (-4 *5 (-836))
- (-5 *1 (-443 *3 *4 *5 *6)))))
+ (-12 (-4 *3 (-1039)) (-5 *1 (-1218 *3 *2)) (-4 *2 (-1222 *3)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-358)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4)))
- (-5 *2 (-1241 *6)) (-5 *1 (-331 *3 *4 *5 *6))
- (-4 *6 (-337 *3 *4 *5)))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3))
- (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1143 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1144 *3)))))
-(((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1217 *5))
- (-4 *5 (-13 (-358) (-145) (-1023 (-554))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-402 *6)) (|:| |h| *6)
- (|:| |c1| (-402 *6)) (|:| |c2| (-402 *6)) (|:| -4341 *6)))
- (-5 *1 (-1001 *5 *6)) (-5 *3 (-402 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-311 (-221))) (-5 *1 (-262)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-546))
- (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-631 (-1254 *4 *5 *6 *7)))
- (-5 *1 (-1254 *4 *5 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-631 *9)) (-5 *4 (-1 (-112) *9 *9))
- (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1048 *6 *7 *8)) (-4 *6 (-546))
- (-4 *7 (-780)) (-4 *8 (-836)) (-5 *2 (-631 (-1254 *6 *7 *8 *9)))
- (-5 *1 (-1254 *6 *7 *8 *9)))))
+ (-12 (-4 *4 (-1087)) (-5 *2 (-112)) (-5 *1 (-875 *3 *4 *5))
+ (-4 *3 (-1087)) (-4 *5 (-656 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-879 *3 *4)) (-4 *3 (-1087))
+ (-4 *4 (-1087)))))
(((*1 *2 *2 *3)
- (-12 (-4 *4 (-1082)) (-4 *2 (-885 *4)) (-5 *1 (-678 *4 *2 *5 *3))
- (-4 *5 (-368 *2)) (-4 *3 (-13 (-368 *4) (-10 -7 (-6 -4373)))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-631 (-675 *4))) (-5 *2 (-675 *4)) (-4 *4 (-1034))
- (-5 *1 (-1014 *4)))))
-(((*1 *2 *1) (-12 (-5 *1 (-951 *2)) (-4 *2 (-952)))))
-(((*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1195)) (-4 *1 (-149 *3))))
+ (-12 (-5 *2 (-679 *4)) (-5 *3 (-911)) (-4 *4 (-1039))
+ (-5 *1 (-1018 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-635 (-679 *4))) (-5 *3 (-911)) (-4 *4 (-1039))
+ (-5 *1 (-1018 *4)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-322 *3 *4)) (-4 *3 (-1087))
+ (-4 *4 (-130))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1087)) (-5 *1 (-360 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1087)) (-5 *1 (-385 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1087)) (-5 *1 (-639 *3 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3))
+ (-4 *5 (-1222 (-406 *4))) (-5 *2 (-112)))))
+(((*1 *1 *1) (-5 *1 (-224)))
+ ((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
+ ((*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2))
+ (-4 *2 (-429 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2))
+ (-4 *2 (-429 *3))))
+ ((*1 *1 *1) (-4 *1 (-1126))) ((*1 *1 *1 *1) (-4 *1 (-1126))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
+(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-917)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-635 *3)) (-4 *3 (-1222 (-558))) (-5 *1 (-484 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-534)) (-5 *1 (-533 *2)) (-4 *2 (-1200))))
+ ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-534)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1165 (-406 (-558)))) (-5 *1 (-189)) (-5 *3 (-558)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1200)) (-4 *1 (-150 *3))))
((*1 *1 *2)
(-12
- (-5 *2 (-631 (-2 (|:| -1407 (-758)) (|:| -1608 *4) (|:| |num| *4))))
- (-4 *4 (-1217 *3)) (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *4))))
+ (-5 *2 (-635 (-2 (|:| -1951 (-762)) (|:| -2673 *4) (|:| |num| *4))))
+ (-4 *4 (-1222 *3)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-429)) (|:| -2053 "void")))
- (-5 *3 (-631 (-937 (-554)))) (-5 *4 (-112)) (-5 *1 (-432))))
+ (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -2912 "void")))
+ (-5 *3 (-635 (-942 (-558)))) (-5 *4 (-112)) (-5 *1 (-436))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-429)) (|:| -2053 "void")))
- (-5 *3 (-631 (-1158))) (-5 *4 (-112)) (-5 *1 (-432))))
+ (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -2912 "void")))
+ (-5 *3 (-635 (-1163))) (-5 *4 (-112)) (-5 *1 (-436))))
((*1 *2 *1)
- (-12 (-5 *2 (-1138 *3)) (-5 *1 (-589 *3)) (-4 *3 (-1195))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-622 *2)) (-4 *2 (-170))))
+ (-12 (-5 *2 (-1143 *3)) (-5 *1 (-593 *3)) (-4 *3 (-1200))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-171))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-658 *3)) (-4 *3 (-836)) (-5 *1 (-650 *3 *4))
- (-4 *4 (-170))))
+ (-12 (-5 *2 (-662 *3)) (-4 *3 (-841)) (-5 *1 (-654 *3 *4))
+ (-4 *4 (-171))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-658 *3)) (-4 *3 (-836)) (-5 *1 (-650 *3 *4))
- (-4 *4 (-170))))
+ (-12 (-5 *2 (-662 *3)) (-4 *3 (-841)) (-5 *1 (-654 *3 *4))
+ (-4 *4 (-171))))
((*1 *1 *2 *2)
- (-12 (-5 *2 (-658 *3)) (-4 *3 (-836)) (-5 *1 (-650 *3 *4))
- (-4 *4 (-170))))
+ (-12 (-5 *2 (-662 *3)) (-4 *3 (-841)) (-5 *1 (-654 *3 *4))
+ (-4 *4 (-171))))
((*1 *1 *2)
- (-12 (-5 *2 (-631 (-631 (-631 *3)))) (-4 *3 (-1082))
- (-5 *1 (-661 *3))))
+ (-12 (-5 *2 (-635 (-635 (-635 *3)))) (-4 *3 (-1087))
+ (-5 *1 (-665 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-700 *2 *3 *4)) (-4 *2 (-836)) (-4 *3 (-1082))
+ (-12 (-5 *1 (-704 *2 *3 *4)) (-4 *2 (-841)) (-4 *3 (-1087))
(-14 *4
- (-1 (-112) (-2 (|:| -2717 *2) (|:| -1407 *3))
- (-2 (|:| -2717 *2) (|:| -1407 *3))))))
+ (-1 (-112) (-2 (|:| -2851 *2) (|:| -1951 *3))
+ (-2 (|:| -2851 *2) (|:| -1951 *3))))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-504)) (-5 *3 (-1105)) (-5 *1 (-829))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-858 *2 *3)) (-4 *2 (-1195)) (-4 *3 (-1195))))
+ (-12 (-5 *1 (-863 *2 *3)) (-4 *2 (-1200)) (-4 *3 (-1200))))
((*1 *1 *2)
- (-12 (-5 *2 (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 *4))))
- (-4 *4 (-1082)) (-5 *1 (-874 *3 *4)) (-4 *3 (-1082))))
+ (-12 (-5 *2 (-635 (-2 (|:| -2700 (-1163)) (|:| -2981 *4))))
+ (-4 *4 (-1087)) (-5 *1 (-879 *3 *4)) (-4 *3 (-1087))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-631 *5)) (-4 *5 (-13 (-1082) (-34)))
- (-5 *2 (-631 (-1122 *3 *5))) (-5 *1 (-1122 *3 *5))
- (-4 *3 (-13 (-1082) (-34)))))
+ (-12 (-5 *4 (-635 *5)) (-4 *5 (-13 (-1087) (-34)))
+ (-5 *2 (-635 (-1127 *3 *5))) (-5 *1 (-1127 *3 *5))
+ (-4 *3 (-13 (-1087) (-34)))))
((*1 *2 *3)
- (-12 (-5 *3 (-631 (-2 (|:| |val| *4) (|:| -2143 *5))))
- (-4 *4 (-13 (-1082) (-34))) (-4 *5 (-13 (-1082) (-34)))
- (-5 *2 (-631 (-1122 *4 *5))) (-5 *1 (-1122 *4 *5))))
+ (-12 (-5 *3 (-635 (-2 (|:| |val| *4) (|:| -2396 *5))))
+ (-4 *4 (-13 (-1087) (-34))) (-4 *5 (-13 (-1087) (-34)))
+ (-5 *2 (-635 (-1127 *4 *5))) (-5 *1 (-1127 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2143 *4)))
- (-4 *3 (-13 (-1082) (-34))) (-4 *4 (-13 (-1082) (-34)))
- (-5 *1 (-1122 *3 *4))))
+ (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2396 *4)))
+ (-4 *3 (-13 (-1087) (-34))) (-4 *4 (-13 (-1087) (-34)))
+ (-5 *1 (-1127 *3 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-1122 *2 *3)) (-4 *2 (-13 (-1082) (-34)))
- (-4 *3 (-13 (-1082) (-34)))))
+ (-12 (-5 *1 (-1127 *2 *3)) (-4 *2 (-13 (-1087) (-34)))
+ (-4 *3 (-13 (-1087) (-34)))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-5 *1 (-1122 *2 *3)) (-4 *2 (-13 (-1082) (-34)))
- (-4 *3 (-13 (-1082) (-34)))))
+ (-12 (-5 *4 (-112)) (-5 *1 (-1127 *2 *3)) (-4 *2 (-13 (-1087) (-34)))
+ (-4 *3 (-13 (-1087) (-34)))))
((*1 *1 *2 *3 *2 *4)
- (-12 (-5 *4 (-631 *3)) (-4 *3 (-13 (-1082) (-34)))
- (-5 *1 (-1123 *2 *3)) (-4 *2 (-13 (-1082) (-34)))))
+ (-12 (-5 *4 (-635 *3)) (-4 *3 (-13 (-1087) (-34)))
+ (-5 *1 (-1128 *2 *3)) (-4 *2 (-13 (-1087) (-34)))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-631 (-1122 *2 *3))) (-4 *2 (-13 (-1082) (-34)))
- (-4 *3 (-13 (-1082) (-34))) (-5 *1 (-1123 *2 *3))))
+ (-12 (-5 *4 (-635 (-1127 *2 *3))) (-4 *2 (-13 (-1087) (-34)))
+ (-4 *3 (-13 (-1087) (-34))) (-5 *1 (-1128 *2 *3))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-631 (-1123 *2 *3))) (-5 *1 (-1123 *2 *3))
- (-4 *2 (-13 (-1082) (-34))) (-4 *3 (-13 (-1082) (-34)))))
+ (-12 (-5 *4 (-635 (-1128 *2 *3))) (-5 *1 (-1128 *2 *3))
+ (-4 *2 (-13 (-1087) (-34))) (-4 *3 (-13 (-1087) (-34)))))
((*1 *1 *2)
- (-12 (-5 *2 (-1122 *3 *4)) (-4 *3 (-13 (-1082) (-34)))
- (-4 *4 (-13 (-1082) (-34))) (-5 *1 (-1123 *3 *4))))
+ (-12 (-5 *2 (-1127 *3 *4)) (-4 *3 (-13 (-1087) (-34)))
+ (-4 *4 (-13 (-1087) (-34))) (-5 *1 (-1128 *3 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-1147 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1190 *3)) (-4 *3 (-959)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-808)) (-5 *4 (-52)) (-5 *2 (-1246)) (-5 *1 (-818)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-13 (-836) (-546))) (-5 *1 (-32 *3 *4))
- (-4 *4 (-425 *3))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-758)) (-5 *1 (-114))))
- ((*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-114))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-13 (-836) (-546))) (-5 *1 (-156 *3 *4))
- (-4 *4 (-425 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-114)) (-5 *1 (-161))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *4))
- (-4 *4 (-13 (-425 *3) (-987)))))
- ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-296 *3)) (-4 *3 (-297))))
- ((*1 *2 *2) (-12 (-4 *1 (-297)) (-5 *2 (-114))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *4 (-836)) (-5 *1 (-424 *3 *4))
- (-4 *3 (-425 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *4))
- (-4 *4 (-425 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-600 *3)) (-4 *3 (-836))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-13 (-836) (-546))) (-5 *1 (-618 *3 *4))
- (-4 *4 (-13 (-425 *3) (-987) (-1180)))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-758)) (-4 *1 (-822 *2)) (-4 *2 (-1082))))
- ((*1 *1 *2) (-12 (-4 *1 (-822 *2)) (-4 *2 (-1082))))
- ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1004)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-758)) (-5 *2 (-1 (-374))) (-5 *1 (-1025)))))
-(((*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1195)))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3))
- (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1143 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1144 *3)))))
+ (-12 (-5 *1 (-1152 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-1087)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1039)) (-5 *1 (-1218 *3 *2)) (-4 *2 (-1222 *3)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-882 *4)) (-4 *4 (-1087)) (-4 *2 (-1087))
+ (-5 *1 (-879 *4 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-762)) (-5 *2 (-679 (-942 *4))) (-5 *1 (-1018 *4))
+ (-4 *4 (-1039)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-637 *3)) (-4 *3 (-1087)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-413 (-1154 *1))) (-5 *1 (-311 *4)) (-5 *3 (-1154 *1))
- (-4 *4 (-446)) (-4 *4 (-546)) (-4 *4 (-836))))
+ (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1204)) (-4 *3 (-1222 *4))
+ (-4 *5 (-1222 (-406 *3))) (-5 *2 (-112))))
((*1 *2 *3)
- (-12 (-4 *1 (-894)) (-5 *2 (-413 (-1154 *1))) (-5 *3 (-1154 *1)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-173)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1199)) (-4 *5 (-1217 *4))
- (-5 *2
- (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-402 *5))
- (|:| |c2| (-402 *5)) (|:| |deg| (-758))))
- (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1217 (-402 *5))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780))
- (-4 *5 (-836)) (-5 *2 (-112)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-311 (-221))) (-5 *1 (-262)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1154 *1)) (-4 *1 (-446))))
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3))
+ (-4 *5 (-1222 (-406 *4))) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-604 *6)) (-4 *6 (-13 (-429 *5) (-27) (-1185)))
+ (-4 *5 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558))))
+ (-5 *2 (-1159 (-406 (-1159 *6)))) (-5 *1 (-554 *5 *6 *7))
+ (-5 *3 (-1159 *6)) (-4 *7 (-1087))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1222 *3)) (-5 *1 (-703 *3 *2)) (-4 *3 (-1039))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-715 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1222 *3))))
+ ((*1 *2 *3 *4 *4 *5 *6 *7 *8)
+ (|partial| -12 (-5 *4 (-1159 *11)) (-5 *6 (-635 *10))
+ (-5 *7 (-635 (-762))) (-5 *8 (-635 *11)) (-4 *10 (-841))
+ (-4 *11 (-306)) (-4 *9 (-784)) (-4 *5 (-939 *11 *9 *10))
+ (-5 *2 (-635 (-1159 *5))) (-5 *1 (-733 *9 *10 *11 *5))
+ (-5 *3 (-1159 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-939 *3 *4 *5)) (-5 *1 (-1024 *3 *4 *5 *2 *6))
+ (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-14 *6 (-635 *2)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-224)) (-5 *3 (-762)) (-5 *1 (-225))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-168 (-224))) (-5 *3 (-762)) (-5 *1 (-225))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1154 *6)) (-4 *6 (-934 *5 *3 *4)) (-4 *3 (-780))
- (-4 *4 (-836)) (-4 *5 (-894)) (-5 *1 (-451 *3 *4 *5 *6))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1154 *1)) (-4 *1 (-894)))))
-(((*1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-687))))
- ((*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-687)))))
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2))
+ (-4 *2 (-429 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1126))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
+(((*1 *2 *3)
+ (-12 (-4 *5 (-13 (-606 *2) (-171))) (-5 *2 (-882 *4))
+ (-5 *1 (-169 *4 *5 *3)) (-4 *4 (-1087)) (-4 *3 (-165 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-1081 (-834 (-378)))))
+ (-5 *2 (-635 (-1081 (-834 (-224))))) (-5 *1 (-304))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-853)) (-5 *3 (-558)) (-5 *1 (-393))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1246 *3)) (-4 *3 (-171)) (-4 *1 (-408 *3 *4))
+ (-4 *4 (-1222 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1222 *3))
+ (-5 *2 (-1246 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1246 *3)) (-4 *3 (-171)) (-4 *1 (-416 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-1246 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-417 *1)) (-4 *1 (-429 *3)) (-4 *3 (-550))
+ (-4 *3 (-841))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-1039))
+ (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-461 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-534))))
+ ((*1 *2 *1) (-12 (-4 *1 (-606 *2)) (-4 *2 (-1200))))
+ ((*1 *1 *2) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1200))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-171)) (-4 *1 (-715 *3 *2)) (-4 *2 (-1222 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-635 (-882 *3))) (-5 *1 (-882 *3)) (-4 *3 (-1087))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-942 *3)) (-4 *3 (-1039)) (-4 *1 (-1053 *3 *4 *5))
+ (-4 *5 (-606 (-1163))) (-4 *4 (-784)) (-4 *5 (-841))))
+ ((*1 *1 *2)
+ (-3998
+ (-12 (-5 *2 (-942 (-558))) (-4 *1 (-1053 *3 *4 *5))
+ (-12 (-3304 (-4 *3 (-38 (-406 (-558))))) (-4 *3 (-38 (-558)))
+ (-4 *5 (-606 (-1163))))
+ (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)))
+ (-12 (-5 *2 (-942 (-558))) (-4 *1 (-1053 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *5 (-606 (-1163))))
+ (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-942 (-406 (-558)))) (-4 *1 (-1053 *3 *4 *5))
+ (-4 *3 (-38 (-406 (-558)))) (-4 *5 (-606 (-1163))) (-4 *3 (-1039))
+ (-4 *4 (-784)) (-4 *5 (-841))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-635 *7)) (|:| -2396 *8)))
+ (-4 *7 (-1053 *4 *5 *6)) (-4 *8 (-1059 *4 *5 *6 *7)) (-4 *4 (-450))
+ (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-1145))
+ (-5 *1 (-1057 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-635 *7)) (|:| -2396 *8)))
+ (-4 *7 (-1053 *4 *5 *6)) (-4 *8 (-1096 *4 *5 *6 *7)) (-4 *4 (-450))
+ (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-1145))
+ (-5 *1 (-1132 *4 *5 *6 *7 *8))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1168))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-1168))))
+ ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-853)) (-5 *3 (-558)) (-5 *1 (-1180))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-853)) (-5 *3 (-558)) (-5 *1 (-1180))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-771 *4 (-855 *5)))
+ (-4 *4 (-13 (-839) (-306) (-146) (-1012))) (-14 *5 (-635 (-1163)))
+ (-5 *2 (-771 *4 (-855 *6))) (-5 *1 (-1272 *4 *5 *6))
+ (-14 *6 (-635 (-1163)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-942 *4)) (-4 *4 (-13 (-839) (-306) (-146) (-1012)))
+ (-5 *2 (-942 (-1014 (-406 *4)))) (-5 *1 (-1272 *4 *5 *6))
+ (-14 *5 (-635 (-1163))) (-14 *6 (-635 (-1163)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-771 *4 (-855 *6)))
+ (-4 *4 (-13 (-839) (-306) (-146) (-1012))) (-14 *6 (-635 (-1163)))
+ (-5 *2 (-942 (-1014 (-406 *4)))) (-5 *1 (-1272 *4 *5 *6))
+ (-14 *5 (-635 (-1163)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1159 *4)) (-4 *4 (-13 (-839) (-306) (-146) (-1012)))
+ (-5 *2 (-1159 (-1014 (-406 *4)))) (-5 *1 (-1272 *4 *5 *6))
+ (-14 *5 (-635 (-1163))) (-14 *6 (-635 (-1163)))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3 (-1133 *4 (-529 (-855 *6)) (-855 *6) (-771 *4 (-855 *6))))
+ (-4 *4 (-13 (-839) (-306) (-146) (-1012))) (-14 *6 (-635 (-1163)))
+ (-5 *2 (-635 (-771 *4 (-855 *6)))) (-5 *1 (-1272 *4 *5 *6))
+ (-14 *5 (-635 (-1163))))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-917)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-635 *3)) (-4 *3 (-1222 (-558))) (-5 *1 (-484 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1246 (-679 *4))) (-4 *4 (-171))
+ (-5 *2 (-1246 (-679 (-942 *4)))) (-5 *1 (-188 *4)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1241 *3)) (-4 *3 (-358)) (-14 *6 (-1241 (-675 *3)))
- (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-906)) (-14 *5 (-631 (-1158)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1107 (-554) (-600 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1195))))
+ (-12 (-5 *2 (-1246 *3)) (-4 *3 (-362)) (-14 *6 (-1246 (-679 *3)))
+ (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-911)) (-14 *5 (-635 (-1163)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1112 (-558) (-604 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1200))))
((*1 *1 *2)
- (-12 (-5 *2 (-1241 (-334 (-3089 'JINT 'X 'ELAM) (-3089) (-685))))
- (-5 *1 (-61 *3)) (-14 *3 (-1158))))
+ (-12 (-5 *2 (-1246 (-338 (-3233 'JINT 'X 'ELAM) (-3233) (-689))))
+ (-5 *1 (-61 *3)) (-14 *3 (-1163))))
((*1 *1 *2)
- (-12 (-5 *2 (-1241 (-334 (-3089) (-3089 'XC) (-685))))
- (-5 *1 (-63 *3)) (-14 *3 (-1158))))
+ (-12 (-5 *2 (-1246 (-338 (-3233) (-3233 'XC) (-689))))
+ (-5 *1 (-63 *3)) (-14 *3 (-1163))))
((*1 *1 *2)
- (-12 (-5 *2 (-334 (-3089 'X) (-3089) (-685))) (-5 *1 (-64 *3))
- (-14 *3 (-1158))))
+ (-12 (-5 *2 (-338 (-3233 'X) (-3233) (-689))) (-5 *1 (-64 *3))
+ (-14 *3 (-1163))))
((*1 *1 *2)
- (-12 (-5 *2 (-334 (-3089) (-3089 'XC) (-685))) (-5 *1 (-66 *3))
- (-14 *3 (-1158))))
+ (-12 (-5 *2 (-338 (-3233) (-3233 'XC) (-689))) (-5 *1 (-66 *3))
+ (-14 *3 (-1163))))
((*1 *1 *2)
- (-12 (-5 *2 (-1241 (-334 (-3089 'X) (-3089 '-1277) (-685))))
- (-5 *1 (-71 *3)) (-14 *3 (-1158))))
+ (-12 (-5 *2 (-1246 (-338 (-3233 'X) (-3233 '-1377) (-689))))
+ (-5 *1 (-71 *3)) (-14 *3 (-1163))))
((*1 *1 *2)
- (-12 (-5 *2 (-1241 (-334 (-3089) (-3089 'X) (-685))))
- (-5 *1 (-74 *3)) (-14 *3 (-1158))))
+ (-12 (-5 *2 (-1246 (-338 (-3233) (-3233 'X) (-689))))
+ (-5 *1 (-74 *3)) (-14 *3 (-1163))))
((*1 *1 *2)
- (-12 (-5 *2 (-1241 (-334 (-3089 'X 'EPS) (-3089 '-1277) (-685))))
- (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1158)) (-14 *4 (-1158))
- (-14 *5 (-1158))))
+ (-12 (-5 *2 (-1246 (-338 (-3233 'X 'EPS) (-3233 '-1377) (-689))))
+ (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1163)) (-14 *4 (-1163))
+ (-14 *5 (-1163))))
((*1 *1 *2)
- (-12 (-5 *2 (-1241 (-334 (-3089 'EPS) (-3089 'YA 'YB) (-685))))
- (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1158)) (-14 *4 (-1158))
- (-14 *5 (-1158))))
+ (-12 (-5 *2 (-1246 (-338 (-3233 'EPS) (-3233 'YA 'YB) (-689))))
+ (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1163)) (-14 *4 (-1163))
+ (-14 *5 (-1163))))
((*1 *1 *2)
- (-12 (-5 *2 (-334 (-3089) (-3089 'X) (-685))) (-5 *1 (-77 *3))
- (-14 *3 (-1158))))
+ (-12 (-5 *2 (-338 (-3233) (-3233 'X) (-689))) (-5 *1 (-77 *3))
+ (-14 *3 (-1163))))
((*1 *1 *2)
- (-12 (-5 *2 (-334 (-3089) (-3089 'X) (-685))) (-5 *1 (-78 *3))
- (-14 *3 (-1158))))
+ (-12 (-5 *2 (-338 (-3233) (-3233 'X) (-689))) (-5 *1 (-78 *3))
+ (-14 *3 (-1163))))
((*1 *1 *2)
- (-12 (-5 *2 (-1241 (-334 (-3089) (-3089 'XC) (-685))))
- (-5 *1 (-79 *3)) (-14 *3 (-1158))))
+ (-12 (-5 *2 (-1246 (-338 (-3233) (-3233 'XC) (-689))))
+ (-5 *1 (-79 *3)) (-14 *3 (-1163))))
((*1 *1 *2)
- (-12 (-5 *2 (-1241 (-334 (-3089) (-3089 'X) (-685))))
- (-5 *1 (-80 *3)) (-14 *3 (-1158))))
+ (-12 (-5 *2 (-1246 (-338 (-3233) (-3233 'X) (-689))))
+ (-5 *1 (-80 *3)) (-14 *3 (-1163))))
((*1 *1 *2)
- (-12 (-5 *2 (-1241 (-334 (-3089 'X '-1277) (-3089) (-685))))
- (-5 *1 (-82 *3)) (-14 *3 (-1158))))
+ (-12 (-5 *2 (-1246 (-338 (-3233 'X '-1377) (-3233) (-689))))
+ (-5 *1 (-82 *3)) (-14 *3 (-1163))))
((*1 *1 *2)
- (-12 (-5 *2 (-675 (-334 (-3089 'X '-1277) (-3089) (-685))))
- (-5 *1 (-83 *3)) (-14 *3 (-1158))))
+ (-12 (-5 *2 (-679 (-338 (-3233 'X '-1377) (-3233) (-689))))
+ (-5 *1 (-83 *3)) (-14 *3 (-1163))))
((*1 *1 *2)
- (-12 (-5 *2 (-675 (-334 (-3089 'X) (-3089) (-685)))) (-5 *1 (-84 *3))
- (-14 *3 (-1158))))
+ (-12 (-5 *2 (-679 (-338 (-3233 'X) (-3233) (-689)))) (-5 *1 (-84 *3))
+ (-14 *3 (-1163))))
((*1 *1 *2)
- (-12 (-5 *2 (-1241 (-334 (-3089 'X) (-3089) (-685))))
- (-5 *1 (-85 *3)) (-14 *3 (-1158))))
+ (-12 (-5 *2 (-1246 (-338 (-3233 'X) (-3233) (-689))))
+ (-5 *1 (-85 *3)) (-14 *3 (-1163))))
((*1 *1 *2)
- (-12 (-5 *2 (-1241 (-334 (-3089 'X) (-3089 '-1277) (-685))))
- (-5 *1 (-86 *3)) (-14 *3 (-1158))))
+ (-12 (-5 *2 (-1246 (-338 (-3233 'X) (-3233 '-1377) (-689))))
+ (-5 *1 (-86 *3)) (-14 *3 (-1163))))
((*1 *1 *2)
- (-12 (-5 *2 (-675 (-334 (-3089 'XL 'XR 'ELAM) (-3089) (-685))))
- (-5 *1 (-87 *3)) (-14 *3 (-1158))))
+ (-12 (-5 *2 (-679 (-338 (-3233 'XL 'XR 'ELAM) (-3233) (-689))))
+ (-5 *1 (-87 *3)) (-14 *3 (-1163))))
((*1 *1 *2)
- (-12 (-5 *2 (-334 (-3089 'X) (-3089 '-1277) (-685))) (-5 *1 (-89 *3))
- (-14 *3 (-1158))))
- ((*1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-129))))
+ (-12 (-5 *2 (-338 (-3233 'X) (-3233 '-1377) (-689))) (-5 *1 (-89 *3))
+ (-14 *3 (-1163))))
+ ((*1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-129))))
((*1 *1 *2)
- (-12 (-5 *2 (-631 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5))
- (-14 *3 (-554)) (-14 *4 (-758)) (-4 *5 (-170))))
+ (-12 (-5 *2 (-635 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5))
+ (-14 *3 (-558)) (-14 *4 (-762)) (-4 *5 (-171))))
((*1 *1 *2)
- (-12 (-5 *2 (-631 *5)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5))
- (-14 *3 (-554)) (-14 *4 (-758))))
+ (-12 (-5 *2 (-635 *5)) (-4 *5 (-171)) (-5 *1 (-135 *3 *4 *5))
+ (-14 *3 (-558)) (-14 *4 (-762))))
((*1 *1 *2)
- (-12 (-5 *2 (-1124 *4 *5)) (-14 *4 (-758)) (-4 *5 (-170))
- (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-554))))
+ (-12 (-5 *2 (-1129 *4 *5)) (-14 *4 (-762)) (-4 *5 (-171))
+ (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-558))))
((*1 *1 *2)
- (-12 (-5 *2 (-236 *4 *5)) (-14 *4 (-758)) (-4 *5 (-170))
- (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-554))))
+ (-12 (-5 *2 (-239 *4 *5)) (-14 *4 (-762)) (-4 *5 (-171))
+ (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-558))))
((*1 *2 *3)
- (-12 (-5 *3 (-1241 (-675 *4))) (-4 *4 (-170))
- (-5 *2 (-1241 (-675 (-402 (-937 *4))))) (-5 *1 (-185 *4))))
+ (-12 (-5 *3 (-1246 (-679 *4))) (-4 *4 (-171))
+ (-5 *2 (-1246 (-679 (-406 (-942 *4))))) (-5 *1 (-188 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-1074 (-311 *4)))
- (-4 *4 (-13 (-836) (-546) (-602 (-374)))) (-5 *2 (-1074 (-374)))
- (-5 *1 (-253 *4))))
- ((*1 *1 *2) (-12 (-4 *1 (-261 *2)) (-4 *2 (-836))))
- ((*1 *1 *2) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-270))))
+ (-12 (-5 *3 (-1079 (-315 *4)))
+ (-4 *4 (-13 (-841) (-550) (-606 (-378)))) (-5 *2 (-1079 (-378)))
+ (-5 *1 (-257 *4))))
+ ((*1 *1 *2) (-12 (-4 *1 (-265 *2)) (-4 *2 (-841))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-274))))
((*1 *2 *1)
- (-12 (-4 *2 (-1217 *3)) (-5 *1 (-284 *3 *2 *4 *5 *6 *7))
- (-4 *3 (-170)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
+ (-12 (-4 *2 (-1222 *3)) (-5 *1 (-288 *3 *2 *4 *5 *6 *7))
+ (-4 *3 (-171)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-1226 *4 *5 *6)) (-4 *4 (-13 (-27) (-1180) (-425 *3)))
- (-14 *5 (-1158)) (-14 *6 *4)
- (-4 *3 (-13 (-836) (-1023 (-554)) (-627 (-554)) (-446)))
- (-5 *1 (-308 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-1231 *4 *5 *6)) (-4 *4 (-13 (-27) (-1185) (-429 *3)))
+ (-14 *5 (-1163)) (-14 *6 *4)
+ (-4 *3 (-13 (-841) (-1028 (-558)) (-631 (-558)) (-450)))
+ (-5 *1 (-312 *3 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-5 *2 (-311 *5)) (-5 *1 (-334 *3 *4 *5))
- (-14 *3 (-631 (-1158))) (-14 *4 (-631 (-1158))) (-4 *5 (-382))))
+ (-12 (-5 *2 (-315 *5)) (-5 *1 (-338 *3 *4 *5))
+ (-14 *3 (-635 (-1163))) (-14 *4 (-635 (-1163))) (-4 *5 (-386))))
((*1 *2 *3)
- (-12 (-4 *4 (-344)) (-4 *2 (-324 *4)) (-5 *1 (-342 *3 *4 *2))
- (-4 *3 (-324 *4))))
+ (-12 (-4 *4 (-348)) (-4 *2 (-328 *4)) (-5 *1 (-346 *3 *4 *2))
+ (-4 *3 (-328 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-344)) (-4 *2 (-324 *4)) (-5 *1 (-342 *2 *4 *3))
- (-4 *3 (-324 *4))))
+ (-12 (-4 *4 (-348)) (-4 *2 (-328 *4)) (-5 *1 (-346 *2 *4 *3))
+ (-4 *3 (-328 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-836)) (-4 *4 (-170))
- (-5 *2 (-1265 *3 *4))))
+ (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-841)) (-4 *4 (-171))
+ (-5 *2 (-1270 *3 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-836)) (-4 *4 (-170))
- (-5 *2 (-1256 *3 *4))))
- ((*1 *1 *2) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-836)) (-4 *3 (-170))))
+ (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-841)) (-4 *4 (-171))
+ (-5 *2 (-1261 *3 *4))))
+ ((*1 *1 *2) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-841)) (-4 *3 (-171))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325)))))
- (-4 *1 (-378))))
- ((*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-378))))
- ((*1 *1 *2) (-12 (-5 *2 (-631 (-325))) (-4 *1 (-378))))
- ((*1 *1 *2) (-12 (-5 *2 (-675 (-685))) (-4 *1 (-378))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329)))))
+ (-4 *1 (-382))))
+ ((*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-382))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-4 *1 (-382))))
+ ((*1 *1 *2) (-12 (-5 *2 (-679 (-689))) (-4 *1 (-382))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325)))))
- (-4 *1 (-379))))
- ((*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-379))))
- ((*1 *1 *2) (-12 (-5 *2 (-631 (-325))) (-4 *1 (-379))))
- ((*1 *2 *3) (-12 (-5 *2 (-389)) (-5 *1 (-388 *3)) (-4 *3 (-1082))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329)))))
+ (-4 *1 (-383))))
+ ((*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-383))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-4 *1 (-383))))
+ ((*1 *2 *3) (-12 (-5 *2 (-393)) (-5 *1 (-392 *3)) (-4 *3 (-1087))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325)))))
- (-4 *1 (-391))))
- ((*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-391))))
- ((*1 *1 *2) (-12 (-5 *2 (-631 (-325))) (-4 *1 (-391))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329)))))
+ (-4 *1 (-395))))
+ ((*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-395))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-4 *1 (-395))))
((*1 *1 *2)
- (-12 (-5 *2 (-289 (-311 (-167 (-374))))) (-5 *1 (-393 *3 *4 *5 *6))
- (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void")))
- (-14 *5 (-631 (-1158))) (-14 *6 (-1162))))
+ (-12 (-5 *2 (-293 (-315 (-168 (-378))))) (-5 *1 (-397 *3 *4 *5 *6))
+ (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2912 "void")))
+ (-14 *5 (-635 (-1163))) (-14 *6 (-1167))))
((*1 *1 *2)
- (-12 (-5 *2 (-289 (-311 (-374)))) (-5 *1 (-393 *3 *4 *5 *6))
- (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void")))
- (-14 *5 (-631 (-1158))) (-14 *6 (-1162))))
+ (-12 (-5 *2 (-293 (-315 (-378)))) (-5 *1 (-397 *3 *4 *5 *6))
+ (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2912 "void")))
+ (-14 *5 (-635 (-1163))) (-14 *6 (-1167))))
((*1 *1 *2)
- (-12 (-5 *2 (-289 (-311 (-554)))) (-5 *1 (-393 *3 *4 *5 *6))
- (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void")))
- (-14 *5 (-631 (-1158))) (-14 *6 (-1162))))
+ (-12 (-5 *2 (-293 (-315 (-558)))) (-5 *1 (-397 *3 *4 *5 *6))
+ (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2912 "void")))
+ (-14 *5 (-635 (-1163))) (-14 *6 (-1167))))
((*1 *1 *2)
- (-12 (-5 *2 (-311 (-167 (-374)))) (-5 *1 (-393 *3 *4 *5 *6))
- (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void")))
- (-14 *5 (-631 (-1158))) (-14 *6 (-1162))))
+ (-12 (-5 *2 (-315 (-168 (-378)))) (-5 *1 (-397 *3 *4 *5 *6))
+ (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2912 "void")))
+ (-14 *5 (-635 (-1163))) (-14 *6 (-1167))))
((*1 *1 *2)
- (-12 (-5 *2 (-311 (-374))) (-5 *1 (-393 *3 *4 *5 *6))
- (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void")))
- (-14 *5 (-631 (-1158))) (-14 *6 (-1162))))
+ (-12 (-5 *2 (-315 (-378))) (-5 *1 (-397 *3 *4 *5 *6))
+ (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2912 "void")))
+ (-14 *5 (-635 (-1163))) (-14 *6 (-1167))))
((*1 *1 *2)
- (-12 (-5 *2 (-311 (-554))) (-5 *1 (-393 *3 *4 *5 *6))
- (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void")))
- (-14 *5 (-631 (-1158))) (-14 *6 (-1162))))
+ (-12 (-5 *2 (-315 (-558))) (-5 *1 (-397 *3 *4 *5 *6))
+ (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2912 "void")))
+ (-14 *5 (-635 (-1163))) (-14 *6 (-1167))))
((*1 *1 *2)
- (-12 (-5 *2 (-289 (-311 (-680)))) (-5 *1 (-393 *3 *4 *5 *6))
- (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void")))
- (-14 *5 (-631 (-1158))) (-14 *6 (-1162))))
+ (-12 (-5 *2 (-293 (-315 (-684)))) (-5 *1 (-397 *3 *4 *5 *6))
+ (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2912 "void")))
+ (-14 *5 (-635 (-1163))) (-14 *6 (-1167))))
((*1 *1 *2)
- (-12 (-5 *2 (-289 (-311 (-685)))) (-5 *1 (-393 *3 *4 *5 *6))
- (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void")))
- (-14 *5 (-631 (-1158))) (-14 *6 (-1162))))
+ (-12 (-5 *2 (-293 (-315 (-689)))) (-5 *1 (-397 *3 *4 *5 *6))
+ (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2912 "void")))
+ (-14 *5 (-635 (-1163))) (-14 *6 (-1167))))
((*1 *1 *2)
- (-12 (-5 *2 (-289 (-311 (-687)))) (-5 *1 (-393 *3 *4 *5 *6))
- (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void")))
- (-14 *5 (-631 (-1158))) (-14 *6 (-1162))))
+ (-12 (-5 *2 (-293 (-315 (-691)))) (-5 *1 (-397 *3 *4 *5 *6))
+ (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2912 "void")))
+ (-14 *5 (-635 (-1163))) (-14 *6 (-1167))))
((*1 *1 *2)
- (-12 (-5 *2 (-311 (-680))) (-5 *1 (-393 *3 *4 *5 *6))
- (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void")))
- (-14 *5 (-631 (-1158))) (-14 *6 (-1162))))
+ (-12 (-5 *2 (-315 (-684))) (-5 *1 (-397 *3 *4 *5 *6))
+ (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2912 "void")))
+ (-14 *5 (-635 (-1163))) (-14 *6 (-1167))))
((*1 *1 *2)
- (-12 (-5 *2 (-311 (-685))) (-5 *1 (-393 *3 *4 *5 *6))
- (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void")))
- (-14 *5 (-631 (-1158))) (-14 *6 (-1162))))
+ (-12 (-5 *2 (-315 (-689))) (-5 *1 (-397 *3 *4 *5 *6))
+ (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2912 "void")))
+ (-14 *5 (-635 (-1163))) (-14 *6 (-1167))))
((*1 *1 *2)
- (-12 (-5 *2 (-311 (-687))) (-5 *1 (-393 *3 *4 *5 *6))
- (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void")))
- (-14 *5 (-631 (-1158))) (-14 *6 (-1162))))
+ (-12 (-5 *2 (-315 (-691))) (-5 *1 (-397 *3 *4 *5 *6))
+ (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2912 "void")))
+ (-14 *5 (-635 (-1163))) (-14 *6 (-1167))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325)))))
- (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1158))
- (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void")))
- (-14 *5 (-631 (-1158))) (-14 *6 (-1162))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329)))))
+ (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1163))
+ (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2912 "void")))
+ (-14 *5 (-635 (-1163))) (-14 *6 (-1167))))
((*1 *1 *2)
- (-12 (-5 *2 (-631 (-325))) (-5 *1 (-393 *3 *4 *5 *6))
- (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void")))
- (-14 *5 (-631 (-1158))) (-14 *6 (-1162))))
+ (-12 (-5 *2 (-635 (-329))) (-5 *1 (-397 *3 *4 *5 *6))
+ (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2912 "void")))
+ (-14 *5 (-635 (-1163))) (-14 *6 (-1167))))
((*1 *1 *2)
- (-12 (-5 *2 (-325)) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1158))
- (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void")))
- (-14 *5 (-631 (-1158))) (-14 *6 (-1162))))
+ (-12 (-5 *2 (-329)) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1163))
+ (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2912 "void")))
+ (-14 *5 (-635 (-1163))) (-14 *6 (-1167))))
((*1 *1 *2)
- (-12 (-5 *2 (-326 *4)) (-4 *4 (-13 (-836) (-21)))
- (-5 *1 (-422 *3 *4)) (-4 *3 (-13 (-170) (-38 (-402 (-554)))))))
+ (-12 (-5 *2 (-330 *4)) (-4 *4 (-13 (-841) (-21)))
+ (-5 *1 (-426 *3 *4)) (-4 *3 (-13 (-171) (-38 (-406 (-558)))))))
((*1 *1 *2)
- (-12 (-5 *1 (-422 *2 *3)) (-4 *2 (-13 (-170) (-38 (-402 (-554)))))
- (-4 *3 (-13 (-836) (-21)))))
+ (-12 (-5 *1 (-426 *2 *3)) (-4 *2 (-13 (-171) (-38 (-406 (-558)))))
+ (-4 *3 (-13 (-841) (-21)))))
((*1 *1 *2)
- (-12 (-5 *2 (-402 (-937 (-402 *3)))) (-4 *3 (-546)) (-4 *3 (-836))
- (-4 *1 (-425 *3))))
+ (-12 (-5 *2 (-406 (-942 (-406 *3)))) (-4 *3 (-550)) (-4 *3 (-841))
+ (-4 *1 (-429 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-937 (-402 *3))) (-4 *3 (-546)) (-4 *3 (-836))
- (-4 *1 (-425 *3))))
+ (-12 (-5 *2 (-942 (-406 *3))) (-4 *3 (-550)) (-4 *3 (-841))
+ (-4 *1 (-429 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-402 *3)) (-4 *3 (-546)) (-4 *3 (-836))
- (-4 *1 (-425 *3))))
+ (-12 (-5 *2 (-406 *3)) (-4 *3 (-550)) (-4 *3 (-841))
+ (-4 *1 (-429 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1107 *3 (-600 *1))) (-4 *3 (-1034)) (-4 *3 (-836))
- (-4 *1 (-425 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-429))))
- ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-429))))
- ((*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-429))))
- ((*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-429))))
- ((*1 *1 *2) (-12 (-5 *2 (-429)) (-5 *1 (-432))))
+ (-12 (-5 *2 (-1112 *3 (-604 *1))) (-4 *3 (-1039)) (-4 *3 (-841))
+ (-4 *1 (-429 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-433))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-433))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-433))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-433))))
+ ((*1 *1 *2) (-12 (-5 *2 (-433)) (-5 *1 (-436))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325)))))
- (-4 *1 (-434))))
- ((*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-434))))
- ((*1 *1 *2) (-12 (-5 *2 (-631 (-325))) (-4 *1 (-434))))
- ((*1 *1 *2) (-12 (-5 *2 (-1241 (-685))) (-4 *1 (-434))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329)))))
+ (-4 *1 (-438))))
+ ((*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-438))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-4 *1 (-438))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1246 (-689))) (-4 *1 (-438))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325)))))
- (-4 *1 (-435))))
- ((*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-435))))
- ((*1 *1 *2) (-12 (-5 *2 (-631 (-325))) (-4 *1 (-435))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1167)) (|:| -2232 (-635 (-329)))))
+ (-4 *1 (-439))))
+ ((*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-439))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-4 *1 (-439))))
((*1 *1 *2)
- (-12 (-5 *2 (-1241 (-402 (-937 *3)))) (-4 *3 (-170))
- (-14 *6 (-1241 (-675 *3))) (-5 *1 (-447 *3 *4 *5 *6))
- (-14 *4 (-906)) (-14 *5 (-631 (-1158)))))
- ((*1 *1 *2) (-12 (-5 *2 (-631 (-631 (-928 (-221))))) (-5 *1 (-462))))
- ((*1 *2 *1) (-12 (-5 *2 (-848)) (-5 *1 (-462))))
+ (-12 (-5 *2 (-1246 (-406 (-942 *3)))) (-4 *3 (-171))
+ (-14 *6 (-1246 (-679 *3))) (-5 *1 (-451 *3 *4 *5 *6))
+ (-14 *4 (-911)) (-14 *5 (-635 (-1163)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 (-635 (-933 (-224))))) (-5 *1 (-466))))
+ ((*1 *2 *1) (-12 (-5 *2 (-853)) (-5 *1 (-466))))
((*1 *1 *2)
- (-12 (-5 *2 (-1226 *3 *4 *5)) (-4 *3 (-1034)) (-14 *4 (-1158))
- (-14 *5 *3) (-5 *1 (-468 *3 *4 *5))))
+ (-12 (-5 *2 (-1231 *3 *4 *5)) (-4 *3 (-1039)) (-14 *4 (-1163))
+ (-14 *5 *3) (-5 *1 (-472 *3 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-468 *3 *4 *5))
- (-4 *3 (-1034)) (-14 *5 *3)))
- ((*1 *1 *2) (-12 (-5 *2 (-1107 (-554) (-600 (-489)))) (-5 *1 (-489))))
- ((*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-496))))
+ (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-472 *3 *4 *5))
+ (-4 *3 (-1039)) (-14 *5 *3)))
+ ((*1 *1 *2) (-12 (-5 *2 (-1112 (-558) (-604 (-493)))) (-5 *1 (-493))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-500))))
((*1 *1 *2)
- (-12 (-5 *2 (-631 *6)) (-4 *6 (-934 *3 *4 *5)) (-4 *3 (-358))
- (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-498 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-631 (-1194))) (-5 *1 (-518))))
- ((*1 *1 *2) (-12 (-5 *2 (-631 (-1194))) (-5 *1 (-594))))
+ (-12 (-5 *2 (-635 *6)) (-4 *6 (-939 *3 *4 *5)) (-4 *3 (-362))
+ (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-502 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 (-1199))) (-5 *1 (-522))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 (-1199))) (-5 *1 (-598))))
((*1 *1 *2)
- (-12 (-4 *3 (-170)) (-5 *1 (-595 *3 *2)) (-4 *2 (-731 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-1195))))
- ((*1 *1 *2) (-12 (-4 *1 (-604 *2)) (-4 *2 (-1195))))
- ((*1 *1 *2) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1034))))
+ (-12 (-4 *3 (-171)) (-5 *1 (-599 *3 *2)) (-4 *2 (-735 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-605 *2)) (-4 *2 (-1200))))
+ ((*1 *1 *2) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1200))))
+ ((*1 *1 *2) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1039))))
((*1 *2 *1)
- (-12 (-5 *2 (-1261 *3 *4)) (-5 *1 (-615 *3 *4 *5)) (-4 *3 (-836))
- (-4 *4 (-13 (-170) (-704 (-402 (-554))))) (-14 *5 (-906))))
+ (-12 (-5 *2 (-1266 *3 *4)) (-5 *1 (-619 *3 *4 *5)) (-4 *3 (-841))
+ (-4 *4 (-13 (-171) (-708 (-406 (-558))))) (-14 *5 (-911))))
((*1 *2 *1)
- (-12 (-5 *2 (-1256 *3 *4)) (-5 *1 (-615 *3 *4 *5)) (-4 *3 (-836))
- (-4 *4 (-13 (-170) (-704 (-402 (-554))))) (-14 *5 (-906))))
+ (-12 (-5 *2 (-1261 *3 *4)) (-5 *1 (-619 *3 *4 *5)) (-4 *3 (-841))
+ (-4 *4 (-13 (-171) (-708 (-406 (-558))))) (-14 *5 (-911))))
((*1 *1 *2)
- (-12 (-4 *3 (-170)) (-5 *1 (-623 *3 *2)) (-4 *2 (-731 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-658 *3)) (-4 *3 (-836))))
- ((*1 *2 *1) (-12 (-5 *2 (-806 *3)) (-5 *1 (-658 *3)) (-4 *3 (-836))))
+ (-12 (-4 *3 (-171)) (-5 *1 (-627 *3 *2)) (-4 *2 (-735 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-667 *3)) (-5 *1 (-662 *3)) (-4 *3 (-841))))
+ ((*1 *2 *1) (-12 (-5 *2 (-810 *3)) (-5 *1 (-662 *3)) (-4 *3 (-841))))
((*1 *2 *1)
- (-12 (-5 *2 (-943 (-943 (-943 *3)))) (-5 *1 (-661 *3))
- (-4 *3 (-1082))))
+ (-12 (-5 *2 (-948 (-948 (-948 *3)))) (-5 *1 (-665 *3))
+ (-4 *3 (-1087))))
((*1 *1 *2)
- (-12 (-5 *2 (-943 (-943 (-943 *3)))) (-4 *3 (-1082))
- (-5 *1 (-661 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-806 *3)) (-5 *1 (-663 *3)) (-4 *3 (-836))))
- ((*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-667))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-668 *3)) (-4 *3 (-1082))))
+ (-12 (-5 *2 (-948 (-948 (-948 *3)))) (-4 *3 (-1087))
+ (-5 *1 (-665 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-810 *3)) (-5 *1 (-667 *3)) (-4 *3 (-841))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1105)) (-5 *1 (-671))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-672 *3)) (-4 *3 (-1087))))
((*1 *1 *2)
- (-12 (-4 *3 (-1034)) (-4 *1 (-673 *3 *4 *2)) (-4 *4 (-368 *3))
- (-4 *2 (-368 *3))))
- ((*1 *2 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-601 (-848)))))
- ((*1 *1 *2) (-12 (-5 *1 (-677 *2)) (-4 *2 (-601 (-848)))))
- ((*1 *2 *1) (-12 (-5 *2 (-167 (-374))) (-5 *1 (-680))))
- ((*1 *1 *2) (-12 (-5 *2 (-167 (-687))) (-5 *1 (-680))))
- ((*1 *1 *2) (-12 (-5 *2 (-167 (-685))) (-5 *1 (-680))))
- ((*1 *1 *2) (-12 (-5 *2 (-167 (-554))) (-5 *1 (-680))))
- ((*1 *1 *2) (-12 (-5 *2 (-167 (-374))) (-5 *1 (-680))))
- ((*1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-685))))
- ((*1 *2 *1) (-12 (-5 *2 (-374)) (-5 *1 (-685))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-311 (-554))) (-5 *2 (-311 (-687))) (-5 *1 (-687))))
- ((*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1140)) (-5 *1 (-697))))
+ (-12 (-4 *3 (-1039)) (-4 *1 (-677 *3 *4 *2)) (-4 *4 (-372 *3))
+ (-4 *2 (-372 *3))))
+ ((*1 *2 *1) (-12 (-5 *1 (-681 *2)) (-4 *2 (-605 (-853)))))
+ ((*1 *1 *2) (-12 (-5 *1 (-681 *2)) (-4 *2 (-605 (-853)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-168 (-378))) (-5 *1 (-684))))
+ ((*1 *1 *2) (-12 (-5 *2 (-168 (-691))) (-5 *1 (-684))))
+ ((*1 *1 *2) (-12 (-5 *2 (-168 (-689))) (-5 *1 (-684))))
+ ((*1 *1 *2) (-12 (-5 *2 (-168 (-558))) (-5 *1 (-684))))
+ ((*1 *1 *2) (-12 (-5 *2 (-168 (-378))) (-5 *1 (-684))))
+ ((*1 *1 *2) (-12 (-5 *2 (-691)) (-5 *1 (-689))))
+ ((*1 *2 *1) (-12 (-5 *2 (-378)) (-5 *1 (-689))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-315 (-558))) (-5 *2 (-315 (-691))) (-5 *1 (-691))))
+ ((*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1145)) (-5 *1 (-701))))
((*1 *2 *1)
- (-12 (-4 *2 (-170)) (-5 *1 (-698 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-12 (-4 *2 (-171)) (-5 *1 (-702 *2 *3 *4 *5 *6)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *2 *1)
- (-12 (-4 *2 (-170)) (-5 *1 (-702 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-12 (-4 *2 (-171)) (-5 *1 (-706 *2 *3 *4 *5 *6)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-631 (-2 (|:| -1490 *3) (|:| -3738 *4))))
- (-4 *3 (-1034)) (-4 *4 (-713)) (-5 *1 (-722 *3 *4))))
- ((*1 *1 *2) (-12 (-5 *2 (-554)) (-4 *1 (-750))))
+ (-12 (-5 *2 (-635 (-2 (|:| -2023 *3) (|:| -3918 *4))))
+ (-4 *3 (-1039)) (-4 *4 (-717)) (-5 *1 (-726 *3 *4))))
+ ((*1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-754))))
((*1 *1 *2)
(-12
(-5 *2
(-3
(|:| |nia|
- (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221)))
- (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221))
- (|:| |relerr| (-221))))
+ (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224)))
+ (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
(|:| |mdnia|
- (-2 (|:| |fn| (-311 (-221)))
- (|:| -3827 (-631 (-1076 (-829 (-221)))))
- (|:| |abserr| (-221)) (|:| |relerr| (-221))))))
- (-5 *1 (-756))))
+ (-2 (|:| |fn| (-315 (-224)))
+ (|:| -1626 (-635 (-1081 (-834 (-224)))))
+ (|:| |abserr| (-224)) (|:| |relerr| (-224))))))
+ (-5 *1 (-760))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |fn| (-311 (-221)))
- (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221))
- (|:| |relerr| (-221))))
- (-5 *1 (-756))))
+ (-2 (|:| |fn| (-315 (-224)))
+ (|:| -1626 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
+ (-5 *1 (-760))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221)))
- (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221))
- (|:| |relerr| (-221))))
- (-5 *1 (-756))))
- ((*1 *2 *3) (-12 (-5 *2 (-761)) (-5 *1 (-760 *3)) (-4 *3 (-1195))))
+ (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224)))
+ (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
+ (-5 *1 (-760))))
+ ((*1 *2 *3) (-12 (-5 *2 (-765)) (-5 *1 (-764 *3)) (-4 *3 (-1200))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |xinit| (-221)) (|:| |xend| (-221))
- (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221)))
- (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221)))
- (|:| |abserr| (-221)) (|:| |relerr| (-221))))
- (-5 *1 (-795))))
- ((*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-811))))
+ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
+ (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224)))
+ (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224)))
+ (|:| |abserr| (-224)) (|:| |relerr| (-224))))
+ (-5 *1 (-799))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-815))))
((*1 *1 *2)
(-12
(-5 *2
(-3
(|:| |noa|
- (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221)))
- (|:| |lb| (-631 (-829 (-221))))
- (|:| |cf| (-631 (-311 (-221))))
- (|:| |ub| (-631 (-829 (-221))))))
+ (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224)))
+ (|:| |lb| (-635 (-834 (-224))))
+ (|:| |cf| (-635 (-315 (-224))))
+ (|:| |ub| (-635 (-834 (-224))))))
(|:| |lsa|
- (-2 (|:| |lfn| (-631 (-311 (-221))))
- (|:| -3834 (-631 (-221)))))))
- (-5 *1 (-827))))
+ (-2 (|:| |lfn| (-635 (-315 (-224))))
+ (|:| -1796 (-635 (-224)))))))
+ (-5 *1 (-832))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221)))))
- (-5 *1 (-827))))
+ (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224)))))
+ (-5 *1 (-832))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221)))
- (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221))))
- (|:| |ub| (-631 (-829 (-221))))))
- (-5 *1 (-827))))
- ((*1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-844))))
- ((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-859))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-937 (-48))) (-5 *2 (-311 (-554))) (-5 *1 (-860))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-402 (-937 (-48)))) (-5 *2 (-311 (-554)))
- (-5 *1 (-860))))
- ((*1 *1 *2) (-12 (-5 *1 (-878 *2)) (-4 *2 (-836))))
- ((*1 *2 *1) (-12 (-5 *2 (-806 *3)) (-5 *1 (-878 *3)) (-4 *3 (-836))))
+ (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224)))
+ (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224))))
+ (|:| |ub| (-635 (-834 (-224))))))
+ (-5 *1 (-832))))
+ ((*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-849))))
+ ((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-864))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-942 (-48))) (-5 *2 (-315 (-558))) (-5 *1 (-865))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-406 (-942 (-48)))) (-5 *2 (-315 (-558)))
+ (-5 *1 (-865))))
+ ((*1 *1 *2) (-12 (-5 *1 (-883 *2)) (-4 *2 (-841))))
+ ((*1 *2 *1) (-12 (-5 *2 (-810 *3)) (-5 *1 (-883 *3)) (-4 *3 (-841))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |pde| (-631 (-311 (-221))))
+ (-2 (|:| |pde| (-635 (-315 (-224))))
(|:| |constraints|
- (-631
- (-2 (|:| |start| (-221)) (|:| |finish| (-221))
- (|:| |grid| (-758)) (|:| |boundaryType| (-554))
- (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221))))))
- (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140))
- (|:| |tol| (-221))))
- (-5 *1 (-883))))
+ (-635
+ (-2 (|:| |start| (-224)) (|:| |finish| (-224))
+ (|:| |grid| (-762)) (|:| |boundaryType| (-558))
+ (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224))))))
+ (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145))
+ (|:| |tol| (-224))))
+ (-5 *1 (-888))))
((*1 *1 *2)
- (-12 (-5 *2 (-631 (-890 *3))) (-4 *3 (-1082)) (-5 *1 (-889 *3))))
+ (-12 (-5 *2 (-635 (-895 *3))) (-4 *3 (-1087)) (-5 *1 (-894 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-631 (-890 *3))) (-5 *1 (-889 *3)) (-4 *3 (-1082))))
- ((*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-5 *1 (-890 *3))))
+ (-12 (-5 *2 (-635 (-895 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1087))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-5 *1 (-895 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-631 (-631 *3))) (-4 *3 (-1082)) (-5 *1 (-890 *3))))
+ (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1087)) (-5 *1 (-895 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-402 (-413 *3))) (-4 *3 (-302)) (-5 *1 (-899 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-402 *3)) (-5 *1 (-899 *3)) (-4 *3 (-302))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-471)) (-5 *2 (-311 *4)) (-5 *1 (-904 *4))
- (-4 *4 (-13 (-836) (-546)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-951 *3)) (-4 *3 (-952))))
- ((*1 *1 *2) (-12 (-5 *1 (-951 *2)) (-4 *2 (-952))))
- ((*1 *2 *3) (-12 (-5 *2 (-1246)) (-5 *1 (-1018 *3)) (-4 *3 (-1195))))
- ((*1 *2 *3) (-12 (-5 *3 (-307)) (-5 *1 (-1018 *2)) (-4 *2 (-1195))))
+ (-12 (-5 *2 (-406 (-417 *3))) (-4 *3 (-306)) (-5 *1 (-904 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-406 *3)) (-5 *1 (-904 *3)) (-4 *3 (-306))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-475)) (-5 *2 (-315 *4)) (-5 *1 (-909 *4))
+ (-4 *4 (-13 (-841) (-550)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-956 *3)) (-4 *3 (-957))))
+ ((*1 *1 *2) (-12 (-5 *1 (-956 *2)) (-4 *2 (-957))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1251)) (-5 *1 (-1023 *3)) (-4 *3 (-1200))))
+ ((*1 *2 *3) (-12 (-5 *3 (-311)) (-5 *1 (-1023 *2)) (-4 *2 (-1200))))
((*1 *1 *2)
- (-12 (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836))
- (-5 *1 (-1019 *3 *4 *5 *2 *6)) (-4 *2 (-934 *3 *4 *5))
- (-14 *6 (-631 *2))))
+ (-12 (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841))
+ (-5 *1 (-1024 *3 *4 *5 *2 *6)) (-4 *2 (-939 *3 *4 *5))
+ (-14 *6 (-635 *2))))
((*1 *2 *3)
- (-12 (-5 *2 (-402 (-937 *3))) (-5 *1 (-1028 *3)) (-4 *3 (-546))))
+ (-12 (-5 *2 (-406 (-942 *3))) (-5 *1 (-1033 *3)) (-4 *3 (-550))))
((*1 *1 *2)
- (-12 (-4 *3 (-1034)) (-4 *4 (-836)) (-5 *1 (-1108 *3 *4 *2))
- (-4 *2 (-934 *3 (-525 *4) *4))))
+ (-12 (-4 *3 (-1039)) (-4 *4 (-841)) (-5 *1 (-1113 *3 *4 *2))
+ (-4 *2 (-939 *3 (-529 *4) *4))))
((*1 *1 *2)
- (-12 (-4 *3 (-1034)) (-4 *2 (-836)) (-5 *1 (-1108 *3 *2 *4))
- (-4 *4 (-934 *3 (-525 *2) *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-848))))
- ((*1 *1 *2) (-12 (-5 *2 (-142)) (-4 *1 (-1126))))
+ (-12 (-4 *3 (-1039)) (-4 *2 (-841)) (-5 *1 (-1113 *3 *2 *4))
+ (-4 *4 (-939 *3 (-529 *2) *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-853))))
+ ((*1 *1 *2) (-12 (-5 *2 (-143)) (-4 *1 (-1131))))
((*1 *2 *3)
- (-12 (-5 *2 (-1138 *3)) (-5 *1 (-1142 *3)) (-4 *3 (-1034))))
+ (-12 (-5 *2 (-1143 *3)) (-5 *1 (-1147 *3)) (-4 *3 (-1039))))
((*1 *1 *2)
- (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1149 *3 *4 *5))
- (-4 *3 (-1034)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1154 *3 *4 *5))
+ (-4 *3 (-1039)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1156 *3 *4 *5))
- (-4 *3 (-1034)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1161 *3 *4 *5))
+ (-4 *3 (-1039)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1214 *4 *3)) (-4 *3 (-1034)) (-14 *4 (-1158))
- (-14 *5 *3) (-5 *1 (-1156 *3 *4 *5))))
- ((*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1157))))
- ((*1 *2 *1) (-12 (-5 *2 (-1168 (-1158) (-432))) (-5 *1 (-1162))))
- ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1163))))
- ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1163))))
- ((*1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-1163))))
- ((*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-1163))))
- ((*1 *2 *1) (-12 (-5 *2 (-848)) (-5 *1 (-1167 *3)) (-4 *3 (-1082))))
- ((*1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *1 (-1174 *3)) (-4 *3 (-1082))))
+ (-12 (-5 *2 (-1219 *4 *3)) (-4 *3 (-1039)) (-14 *4 (-1163))
+ (-14 *5 *3) (-5 *1 (-1161 *3 *4 *5))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1162))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1173 (-1163) (-436))) (-5 *1 (-1167))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-1168))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1168))))
+ ((*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-1168))))
+ ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1168))))
+ ((*1 *2 *1) (-12 (-5 *2 (-853)) (-5 *1 (-1172 *3)) (-4 *3 (-1087))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *1 (-1179 *3)) (-4 *3 (-1087))))
((*1 *1 *2)
- (-12 (-5 *2 (-937 *3)) (-4 *3 (-1034)) (-5 *1 (-1189 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1189 *3)) (-4 *3 (-1034))))
+ (-12 (-5 *2 (-942 *3)) (-4 *3 (-1039)) (-5 *1 (-1194 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1194 *3)) (-4 *3 (-1039))))
((*1 *1 *2)
- (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1205 *3 *4 *5))
- (-4 *3 (-1034)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1210 *3 *4 *5))
+ (-4 *3 (-1039)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-1195)) (-5 *1 (-1208 *3))))
+ (-12 (-5 *2 (-1081 *3)) (-4 *3 (-1200)) (-5 *1 (-1213 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1233 *3 *4 *5))
- (-4 *3 (-1034)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1238 *3 *4 *5))
+ (-4 *3 (-1039)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1214 *4 *3)) (-4 *3 (-1034)) (-14 *4 (-1158))
- (-14 *5 *3) (-5 *1 (-1233 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1237 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-848)) (-5 *1 (-1242))))
- ((*1 *2 *3) (-12 (-5 *3 (-462)) (-5 *2 (-1242)) (-5 *1 (-1245))))
+ (-12 (-5 *2 (-1219 *4 *3)) (-4 *3 (-1039)) (-14 *4 (-1163))
+ (-14 *5 *3) (-5 *1 (-1238 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1242 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-853)) (-5 *1 (-1247))))
+ ((*1 *2 *3) (-12 (-5 *3 (-466)) (-5 *2 (-1247)) (-5 *1 (-1250))))
((*1 *1 *2)
- (-12 (-4 *1 (-1258 *2 *3)) (-4 *2 (-836)) (-4 *3 (-1034))))
+ (-12 (-4 *1 (-1263 *2 *3)) (-4 *2 (-841)) (-4 *3 (-1039))))
((*1 *2 *1)
- (-12 (-5 *2 (-1265 *3 *4)) (-5 *1 (-1261 *3 *4)) (-4 *3 (-836))
- (-4 *4 (-170))))
+ (-12 (-5 *2 (-1270 *3 *4)) (-5 *1 (-1266 *3 *4)) (-4 *3 (-841))
+ (-4 *4 (-171))))
((*1 *2 *1)
- (-12 (-5 *2 (-1256 *3 *4)) (-5 *1 (-1261 *3 *4)) (-4 *3 (-836))
- (-4 *4 (-170))))
+ (-12 (-5 *2 (-1261 *3 *4)) (-5 *1 (-1266 *3 *4)) (-4 *3 (-841))
+ (-4 *4 (-171))))
((*1 *1 *2)
- (-12 (-5 *2 (-650 *3 *4)) (-4 *3 (-836)) (-4 *4 (-170))
- (-5 *1 (-1261 *3 *4)))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4))
- (-4 *3 (-362 *4))))
- ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
-(((*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-911)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082))
- (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020))
- (-5 *1 (-739)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3))
- (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1143 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1144 *3)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4373)) (-4 *1 (-483 *3)) (-4 *3 (-1195))
- (-4 *3 (-1082)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-890 *4)) (-4 *4 (-1082)) (-5 *2 (-112))
- (-5 *1 (-889 *4))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-906)) (-5 *2 (-112)) (-5 *1 (-1083 *4 *5)) (-14 *4 *3)
- (-14 *5 *3))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-758)) (-4 *4 (-358)) (-4 *5 (-1217 *4)) (-5 *2 (-1246))
- (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1217 (-402 *5))) (-14 *7 *6))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-302) (-145))) (-4 *4 (-13 (-836) (-602 (-1158))))
- (-4 *5 (-780)) (-5 *1 (-909 *3 *4 *5 *2)) (-4 *2 (-934 *3 *5 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-809)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1241 *1)) (-4 *1 (-362 *2)) (-4 *2 (-170))))
- ((*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-411 *3 *2)) (-4 *3 (-412 *2))))
- ((*1 *2) (-12 (-4 *1 (-412 *2)) (-4 *2 (-170)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-848))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-631 *3)) (-4 *3 (-934 *4 *6 *5)) (-4 *4 (-446))
- (-4 *5 (-836)) (-4 *6 (-780)) (-5 *1 (-972 *4 *5 *6 *3)))))
-(((*1 *2 *2) (-12 (-5 *1 (-576 *2)) (-4 *2 (-539)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1140)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836))
- (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-1246))
- (-5 *1 (-973 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1140)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836))
- (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-1246))
- (-5 *1 (-1089 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-358) (-145) (-1023 (-554))))
- (-4 *5 (-1217 *4)) (-5 *2 (-631 (-402 *5))) (-5 *1 (-1001 *4 *5))
- (-5 *3 (-402 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3))
- (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4))))
- ((*1 *1 *1) (-4 *1 (-487)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1143 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1144 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-546)) (-5 *2 (-631 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-412 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-631 *5) *6))
- (-4 *5 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-4 *6 (-1217 *5))
- (-5 *2 (-631 (-2 (|:| |poly| *6) (|:| -4329 *3))))
- (-5 *1 (-796 *5 *6 *3 *7)) (-4 *3 (-642 *6))
- (-4 *7 (-642 (-402 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-631 *5) *6))
- (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554)))))
- (-4 *6 (-1217 *5))
- (-5 *2 (-631 (-2 (|:| |poly| *6) (|:| -4329 (-640 *6 (-402 *6))))))
- (-5 *1 (-799 *5 *6)) (-5 *3 (-640 *6 (-402 *6))))))
-(((*1 *2 *3 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-735)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-807)) (-14 *5 (-1158)) (-5 *2 (-631 (-1214 *5 *4)))
- (-5 *1 (-1096 *4 *5)) (-5 *3 (-1214 *5 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-906))
- (-5 *2
- (-3 (-1154 *4)
- (-1241 (-631 (-2 (|:| -2794 *4) (|:| -2717 (-1102)))))))
- (-5 *1 (-341 *4)) (-4 *4 (-344)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1034))
- (-14 *4 (-631 (-1158)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1195))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1034) (-836)))
- (-14 *4 (-631 (-1158)))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-658 *3)) (-4 *3 (-836))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-663 *3)) (-4 *3 (-836))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-878 *3)) (-4 *3 (-836)))))
+ (-12 (-5 *2 (-654 *3 *4)) (-4 *3 (-841)) (-4 *4 (-171))
+ (-5 *1 (-1266 *3 *4)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446))
- (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112))
- (-5 *1 (-973 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446))
- (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112))
- (-5 *1 (-1089 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1243)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-302)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4))
- (-5 *2
- (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
- (-5 *1 (-1106 *4 *5 *6 *3)) (-4 *3 (-673 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1246)) (-5 *1 (-374))))
- ((*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-374)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3))
- (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4))))
- ((*1 *1 *1) (-4 *1 (-487)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1143 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1144 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-5 *1 (-890 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-592 *2 *3)) (-4 *3 (-1195)) (-4 *2 (-1082))
- (-4 *2 (-836)))))
-(((*1 *1 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-1082)) (-4 *2 (-363)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-318 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-130))
- (-5 *2 (-631 (-2 (|:| |gen| *3) (|:| -1333 *4))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-631 (-2 (|:| -1490 *3) (|:| -3738 *4))))
- (-5 *1 (-722 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-713))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1219 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-779))
- (-5 *2 (-1138 (-2 (|:| |k| *4) (|:| |c| *3)))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))))
-(((*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1246)) (-5 *1 (-1120))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-631 (-848))) (-5 *2 (-1246)) (-5 *1 (-1120)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1048 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780))
- (-4 *2 (-836))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780))
- (-4 *4 (-836)))))
-(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-848)))
- ((*1 *1 *1 *1) (-4 *1 (-952))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-756))
- (-5 *2
- (-2 (|:| -3037 (-374)) (|:| -4309 (-1140))
- (|:| |explanations| (-631 (-1140))) (|:| |extra| (-1020))))
- (-5 *1 (-555))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-756)) (-5 *4 (-1046))
- (-5 *2
- (-2 (|:| -3037 (-374)) (|:| -4309 (-1140))
- (|:| |explanations| (-631 (-1140))) (|:| |extra| (-1020))))
- (-5 *1 (-555))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-774)) (-5 *3 (-1046))
- (-5 *4
- (-2 (|:| |fn| (-311 (-221)))
- (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221))
- (|:| |relerr| (-221))))
- (-5 *2
- (-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))
- (|:| |extra| (-1020))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-774)) (-5 *3 (-1046))
- (-5 *4
- (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221)))
- (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221))
- (|:| |relerr| (-221))))
- (-5 *2
- (-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))
- (|:| |extra| (-1020))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-787)) (-5 *3 (-1046))
- (-5 *4
- (-2 (|:| |xinit| (-221)) (|:| |xend| (-221))
- (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221)))
- (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221)))
- (|:| |abserr| (-221)) (|:| |relerr| (-221))))
- (-5 *2 (-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-795))
- (-5 *2
- (-2 (|:| -3037 (-374)) (|:| -4309 (-1140))
- (|:| |explanations| (-631 (-1140)))))
- (-5 *1 (-792))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-795)) (-5 *4 (-1046))
- (-5 *2
- (-2 (|:| -3037 (-374)) (|:| -4309 (-1140))
- (|:| |explanations| (-631 (-1140)))))
- (-5 *1 (-792))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-825)) (-5 *3 (-1046))
- (-5 *4
- (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221)))))
- (-5 *2 (-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-825)) (-5 *3 (-1046))
- (-5 *4
- (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221)))
- (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221))))
- (|:| |ub| (-631 (-829 (-221))))))
- (-5 *2 (-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-827))
- (-5 *2
- (-2 (|:| -3037 (-374)) (|:| -4309 (-1140))
- (|:| |explanations| (-631 (-1140)))))
- (-5 *1 (-826))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-827)) (-5 *4 (-1046))
- (-5 *2
- (-2 (|:| -3037 (-374)) (|:| -4309 (-1140))
- (|:| |explanations| (-631 (-1140)))))
- (-5 *1 (-826))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-880)) (-5 *3 (-1046))
- (-5 *4
- (-2 (|:| |pde| (-631 (-311 (-221))))
- (|:| |constraints|
- (-631
- (-2 (|:| |start| (-221)) (|:| |finish| (-221))
- (|:| |grid| (-758)) (|:| |boundaryType| (-554))
- (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221))))))
- (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140))
- (|:| |tol| (-221))))
- (-5 *2 (-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-883))
- (-5 *2
- (-2 (|:| -3037 (-374)) (|:| -4309 (-1140))
- (|:| |explanations| (-631 (-1140)))))
- (-5 *1 (-882))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-883)) (-5 *4 (-1046))
- (-5 *2
- (-2 (|:| -3037 (-374)) (|:| -4309 (-1140))
- (|:| |explanations| (-631 (-1140)))))
- (-5 *1 (-882)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-912)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020))
- (-5 *1 (-743)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3))
- (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4))))
- ((*1 *1 *1) (-4 *1 (-487)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1143 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1144 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-780))
- (-4 *7 (-836)) (-4 *8 (-1048 *5 *6 *7)) (-5 *2 (-631 *3))
- (-5 *1 (-580 *5 *6 *7 *8 *3)) (-4 *3 (-1091 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145)))
- (-5 *2
- (-631 (-2 (|:| -3900 (-1154 *5)) (|:| -3656 (-631 (-937 *5))))))
- (-5 *1 (-1060 *5 *6)) (-5 *3 (-631 (-937 *5)))
- (-14 *6 (-631 (-1158)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-302) (-145)))
- (-5 *2
- (-631 (-2 (|:| -3900 (-1154 *4)) (|:| -3656 (-631 (-937 *4))))))
- (-5 *1 (-1060 *4 *5)) (-5 *3 (-631 (-937 *4)))
- (-14 *5 (-631 (-1158)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145)))
- (-5 *2
- (-631 (-2 (|:| -3900 (-1154 *5)) (|:| -3656 (-631 (-937 *5))))))
- (-5 *1 (-1060 *5 *6)) (-5 *3 (-631 (-937 *5)))
- (-14 *6 (-631 (-1158))))))
-(((*1 *1 *1 *1) (-5 *1 (-848))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836))
- (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-1055 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836))
- (-4 *3 (-1048 *5 *6 *7))
- (-5 *2 (-631 (-2 (|:| |val| (-112)) (|:| -2143 *4))))
- (-5 *1 (-1055 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1208 (-554))) (-4 *1 (-277 *3)) (-4 *3 (-1195))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-4 *1 (-277 *3)) (-4 *3 (-1195)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |var| (-631 (-1158))) (|:| |pred| (-52))))
- (-5 *1 (-877 *3)) (-4 *3 (-1082)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-546)) (-5 *2 (-758)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-412 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-928 *2)) (-5 *1 (-967 *2)) (-4 *2 (-1034)))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363))
- (-5 *2 (-1154 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363))
- (-5 *2 (-1154 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222))))
- ((*1 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3))
- (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158)))
- (-14 *3 (-631 (-1158))) (-4 *4 (-382))))
- ((*1 *1 *1) (-4 *1 (-487)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1143 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1144 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-631 (-554))) (-5 *2 (-758)) (-5 *1 (-579)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-402 (-1154 (-311 *3)))) (-4 *3 (-13 (-546) (-836)))
- (-5 *1 (-1112 *3)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-1241 *5)) (-5 *3 (-758)) (-5 *4 (-1102)) (-4 *5 (-344))
- (-5 *1 (-522 *5)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-758)) (-5 *2 (-112)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1154 *2)) (-4 *2 (-425 *4)) (-4 *4 (-13 (-836) (-546)))
- (-5 *1 (-32 *4 *2)))))
-(((*1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-325)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-554)) (-4 *1 (-1201 *4)) (-4 *4 (-1034)) (-4 *4 (-546))
- (-5 *2 (-402 (-937 *4)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-554)) (-4 *1 (-1201 *4)) (-4 *4 (-1034)) (-4 *4 (-546))
- (-5 *2 (-402 (-937 *4))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3))
- (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158)))
- (-14 *3 (-631 (-1158))) (-4 *4 (-382))))
- ((*1 *1 *1) (-4 *1 (-487)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1143 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1144 *3)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-1 (-575 *3) *3 (-1158)))
- (-5 *6
- (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
- (-1158)))
- (-4 *3 (-279)) (-4 *3 (-617)) (-4 *3 (-1023 *4)) (-4 *3 (-425 *7))
- (-5 *4 (-1158)) (-4 *7 (-602 (-877 (-554)))) (-4 *7 (-446))
- (-4 *7 (-871 (-554))) (-4 *7 (-836)) (-5 *2 (-575 *3))
- (-5 *1 (-563 *7 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1138 *4)) (-5 *3 (-1 *4 (-554))) (-4 *4 (-1034))
- (-5 *1 (-1142 *4)))))
-(((*1 *1) (-5 *1 (-432))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-546) (-836)))
- (-4 *2 (-13 (-425 *4) (-987) (-1180))) (-5 *1 (-588 *4 *2 *3))
- (-4 *3 (-13 (-425 (-167 *4)) (-987) (-1180))))))
+ (|partial| -12 (-4 *4 (-550))
+ (-5 *2 (-2 (|:| -2306 *3) (|:| -2071 *3))) (-5 *1 (-1217 *4 *3))
+ (-4 *3 (-1222 *4)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-882 *4)) (-4 *4 (-1087)) (-5 *1 (-879 *4 *3))
+ (-4 *3 (-1087)))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-1034)) (-5 *1 (-438 *3 *2)) (-4 *2 (-1217 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-995 *3)) (-4 *3 (-1195)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3)) (-4 *3 (-1082)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-631 *1)) (-4 *1 (-1048 *4 *5 *6)) (-4 *4 (-1034))
- (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780))
- (-4 *5 (-836)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1188 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *4 (-780))
- (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1188 *4 *5 *6 *3)) (-4 *4 (-546)) (-4 *5 (-780))
- (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-758)) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906))
- (-4 *4 (-1034)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-961 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-780))
- (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546))
- (-5 *2 (-112)))))
+ (-12 (-5 *2 (-679 *4)) (-5 *3 (-911)) (|has| *4 (-6 (-4384 "*")))
+ (-4 *4 (-1039)) (-5 *1 (-1018 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-635 (-679 *4))) (-5 *3 (-911))
+ (|has| *4 (-6 (-4384 "*"))) (-4 *4 (-1039)) (-5 *1 (-1018 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-358)) (-4 *6 (-1217 (-402 *2)))
- (-4 *2 (-1217 *5)) (-5 *1 (-211 *5 *2 *6 *3))
- (-4 *3 (-337 *5 *2 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3))
- (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158)))
- (-14 *3 (-631 (-1158))) (-4 *4 (-382))))
- ((*1 *1 *1) (-4 *1 (-487)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1143 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1144 *3)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-289 *2)) (-4 *2 (-713)) (-4 *2 (-1195)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1158)))))
+ (-12 (-5 *3 (-679 *1)) (-5 *4 (-1246 *1)) (-4 *1 (-631 *5))
+ (-4 *5 (-1039))
+ (-5 *2 (-2 (|:| -3683 (-679 *5)) (|:| |vec| (-1246 *5))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-679 *1)) (-4 *1 (-631 *4)) (-4 *4 (-1039))
+ (-5 *2 (-679 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836))
- (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-973 *4 *5 *6 *7 *3)) (-4 *3 (-1054 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836))
- (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1089 *4 *5 *6 *7 *3)) (-4 *3 (-1054 *4 *5 *6 *7)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-934 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780))
- (-4 *2 (-836)) (-4 *3 (-170))))
- ((*1 *2 *3 *3)
- (-12 (-4 *2 (-546)) (-5 *1 (-954 *2 *3)) (-4 *3 (-1217 *2))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780))
- (-4 *4 (-836)) (-4 *2 (-546))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1034)) (-4 *2 (-170)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-631 (-758))) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906))
- (-4 *4 (-1034)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-554)) (-4 *4 (-1217 (-402 *3))) (-5 *2 (-906))
- (-5 *1 (-898 *4 *5)) (-4 *5 (-1217 (-402 *4))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034))
- (-5 *2 (-2 (|:| |k| (-806 *3)) (|:| |c| *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-523))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-567))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-847)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))))
-(((*1 *1 *1) (-4 *1 (-95)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3))
- (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1143 *3))))
+ (-12 (-5 *3 (-762)) (-5 *2 (-1 (-378))) (-5 *1 (-1030)))))
+(((*1 *2)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3))
+ (-4 *5 (-1222 (-406 *4))) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1200)))))
+(((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
+ ((*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225))))
((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1144 *3)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-1246)) (-5 *1 (-818)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-631 (-2 (|:| -2270 (-1154 *6)) (|:| -1407 (-554)))))
- (-4 *6 (-302)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-112))
- (-5 *1 (-729 *4 *5 *6 *7)) (-4 *7 (-934 *6 *4 *5))))
- ((*1 *1 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1034)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1217 *3)) (-5 *1 (-394 *3 *2))
- (-4 *3 (-13 (-358) (-145))))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1082)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034))
- (-5 *2 (-806 *3))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-832)) (-5 *1 (-1264 *3 *2)) (-4 *3 (-1034)))))
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2))
+ (-4 *2 (-429 *3))))
+ ((*1 *1 *1) (-4 *1 (-1126))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))))
+ (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-917)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-289 (-937 (-554))))
- (-5 *2
- (-2 (|:| |varOrder| (-631 (-1158)))
- (|:| |inhom| (-3 (-631 (-1241 (-758))) "failed"))
- (|:| |hom| (-631 (-1241 (-758))))))
- (-5 *1 (-232)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-811)))))
-(((*1 *1 *1 *1 *1 *2)
- (-12 (-5 *2 (-758)) (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034))
- (-4 *4 (-780)) (-4 *5 (-836)) (-4 *3 (-546)))))
-(((*1 *1 *1) (-4 *1 (-95)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3))
- (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1143 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1144 *3)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221)))
- (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221))
- (|:| |relerr| (-221))))
- (-5 *2 (-1138 (-221))) (-5 *1 (-188))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-311 (-221))) (-5 *4 (-631 (-1158)))
- (-5 *5 (-1076 (-829 (-221)))) (-5 *2 (-1138 (-221))) (-5 *1 (-295))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1241 (-311 (-221)))) (-5 *4 (-631 (-1158)))
- (-5 *5 (-1076 (-829 (-221)))) (-5 *2 (-1138 (-221))) (-5 *1 (-295)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-928 *3) (-928 *3))) (-5 *1 (-174 *3))
- (-4 *3 (-13 (-358) (-1180) (-987))))))
+ (-12 (-5 *3 (-635 *2)) (-5 *1 (-484 *2)) (-4 *2 (-1222 (-558))))))
+(((*1 *2 *1) (-12 (-4 *1 (-184)) (-5 *2 (-635 (-112))))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-853))))
(((*1 *2 *3)
- (-12 (-5 *3 (-631 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2))
- (-4 *4 (-13 (-836) (-546))))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-631 *6)) (-5 *4 (-631 (-243 *5 *6))) (-4 *6 (-446))
- (-5 *2 (-243 *5 *6)) (-14 *5 (-631 (-1158))) (-5 *1 (-619 *5 *6)))))
+ (-12 (-4 *4 (-13 (-550) (-146))) (-5 *2 (-635 *3))
+ (-5 *1 (-1216 *4 *3)) (-4 *3 (-1222 *4)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-882 *4)) (-4 *4 (-1087)) (-5 *1 (-879 *4 *3))
+ (-4 *3 (-1087)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1138 (-221))) (-5 *2 (-631 (-1140))) (-5 *1 (-188))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1138 (-221))) (-5 *2 (-631 (-1140))) (-5 *1 (-295))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1138 (-221))) (-5 *2 (-631 (-1140))) (-5 *1 (-300)))))
-(((*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-1244)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))))
-(((*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222))))
- ((*1 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2))
- (-4 *2 (-425 *3))))
- ((*1 *1 *1) (-4 *1 (-1121))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1158)) (-5 *3 (-631 (-937 (-554))))
- (-5 *4 (-311 (-167 (-374)))) (-5 *1 (-325))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1158)) (-5 *3 (-631 (-937 (-554))))
- (-5 *4 (-311 (-374))) (-5 *1 (-325))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1158)) (-5 *3 (-631 (-937 (-554))))
- (-5 *4 (-311 (-554))) (-5 *1 (-325))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1158)) (-5 *3 (-1241 (-311 (-167 (-374)))))
- (-5 *1 (-325))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1158)) (-5 *3 (-1241 (-311 (-374)))) (-5 *1 (-325))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1158)) (-5 *3 (-1241 (-311 (-554)))) (-5 *1 (-325))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1158)) (-5 *3 (-675 (-311 (-167 (-374)))))
- (-5 *1 (-325))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1158)) (-5 *3 (-675 (-311 (-374)))) (-5 *1 (-325))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1158)) (-5 *3 (-675 (-311 (-554)))) (-5 *1 (-325))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1158)) (-5 *3 (-311 (-167 (-374)))) (-5 *1 (-325))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1158)) (-5 *3 (-311 (-374))) (-5 *1 (-325))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1158)) (-5 *3 (-311 (-554))) (-5 *1 (-325))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1158)) (-5 *3 (-631 (-937 (-554))))
- (-5 *4 (-311 (-680))) (-5 *1 (-325))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1158)) (-5 *3 (-631 (-937 (-554))))
- (-5 *4 (-311 (-685))) (-5 *1 (-325))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1158)) (-5 *3 (-631 (-937 (-554))))
- (-5 *4 (-311 (-687))) (-5 *1 (-325))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1158)) (-5 *3 (-1241 (-311 (-680)))) (-5 *1 (-325))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1158)) (-5 *3 (-1241 (-311 (-685)))) (-5 *1 (-325))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1158)) (-5 *3 (-1241 (-311 (-687)))) (-5 *1 (-325))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1158)) (-5 *3 (-675 (-311 (-680)))) (-5 *1 (-325))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1158)) (-5 *3 (-675 (-311 (-685)))) (-5 *1 (-325))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1158)) (-5 *3 (-675 (-311 (-687)))) (-5 *1 (-325))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1158)) (-5 *3 (-1241 (-680))) (-5 *1 (-325))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1158)) (-5 *3 (-1241 (-685))) (-5 *1 (-325))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1158)) (-5 *3 (-1241 (-687))) (-5 *1 (-325))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1158)) (-5 *3 (-675 (-680))) (-5 *1 (-325))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1158)) (-5 *3 (-675 (-685))) (-5 *1 (-325))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1158)) (-5 *3 (-675 (-687))) (-5 *1 (-325))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1158)) (-5 *3 (-311 (-680))) (-5 *1 (-325))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1158)) (-5 *3 (-311 (-685))) (-5 *1 (-325))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1158)) (-5 *3 (-311 (-687))) (-5 *1 (-325))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-1140)) (-5 *1 (-325))))
- ((*1 *1 *1 *1) (-5 *1 (-848))))
+ (-12 (-5 *3 (-679 (-406 (-942 (-558)))))
+ (-5 *2 (-635 (-679 (-315 (-558))))) (-5 *1 (-1021)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1246 *4)) (-4 *4 (-631 *5)) (-4 *5 (-362))
+ (-4 *5 (-550)) (-5 *2 (-1246 *5)) (-5 *1 (-630 *5 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1246 *4)) (-4 *4 (-631 *5))
+ (-3304 (-4 *5 (-362))) (-4 *5 (-550)) (-5 *2 (-1246 (-406 *5)))
+ (-5 *1 (-630 *5 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112))
- (-5 *1 (-962 *4 *5 *6 *3)) (-4 *3 (-1048 *4 *5 *6)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-758)) (-4 *6 (-358)) (-5 *4 (-1189 *6))
- (-5 *2 (-1 (-1138 *4) (-1138 *4))) (-5 *1 (-1249 *6))
- (-5 *5 (-1138 *4)))))
-(((*1 *1 *1) (-4 *1 (-95)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3))
- (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1143 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1144 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-1034))))
+ (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1204)) (-4 *3 (-1222 *4))
+ (-4 *5 (-1222 (-406 *3))) (-5 *2 (-112))))
((*1 *2 *3)
- (-12 (-4 *4 (-546)) (-4 *4 (-170)) (-4 *5 (-368 *4))
- (-4 *6 (-368 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
- (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-673 *4 *5 *6))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-170)) (-4 *2 (-1034)) (-5 *1 (-701 *2 *3))
- (-4 *3 (-634 *2))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-170)) (-4 *2 (-1034)) (-5 *1 (-701 *2 *3))
- (-4 *3 (-634 *2))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-170)) (-4 *2 (-1034))))
- ((*1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-170)) (-4 *2 (-1034)))))
-(((*1 *1) (-5 *1 (-139))))
-(((*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1243))))
- ((*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1243)))))
-(((*1 *2 *2 *2 *3 *3)
- (-12 (-5 *3 (-758)) (-4 *4 (-1034)) (-5 *1 (-1213 *4 *2))
- (-4 *2 (-1217 *4)))))
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3))
+ (-4 *5 (-1222 (-406 *4))) (-5 *2 (-112)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1217 *3)) (-4 *3 (-1034)) (-5 *2 (-1154 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-358)) (-5 *1 (-280 *3 *2)) (-4 *2 (-1232 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1082) (-1023 *5)))
- (-4 *5 (-871 *4)) (-4 *4 (-1082)) (-5 *2 (-1 (-112) *5))
- (-5 *1 (-916 *4 *5 *6)))))
-(((*1 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554)))))))
- (-5 *1 (-1110 *3 *2)) (-4 *3 (-1217 *2)))))
-(((*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-551)))))
-(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-221)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3))
- (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158)))
- (-14 *3 (-631 (-1158))) (-4 *4 (-382))))
- ((*1 *1 *1 *1) (-5 *1 (-374)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1143 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1144 *3)))))
-(((*1 *2) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-23)))))
-(((*1 *1 *1) (-5 *1 (-112))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-221)) (-5 *5 (-554)) (-5 *2 (-1190 *3))
- (-5 *1 (-777 *3)) (-4 *3 (-959))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-631 (-928 (-221))))) (-5 *4 (-112))
- (-5 *1 (-1190 *2)) (-4 *2 (-959)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-807)) (-14 *5 (-1158)) (-5 *2 (-631 (-1214 *5 *4)))
- (-5 *1 (-1096 *4 *5)) (-5 *3 (-1214 *5 *4)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836))
- (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-631 *1))
- (-4 *1 (-1054 *4 *5 *6 *3)))))
+ (-12 (-4 *2 (-1200)) (-5 *1 (-863 *3 *2)) (-4 *3 (-1200))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1200)))))
+(((*1 *1 *1 *1) (-5 *1 (-224)))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2))
+ (-4 *2 (-429 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-762)) (-5 *2 (-1 (-378))) (-5 *1 (-1030))))
+ ((*1 *1 *1 *1) (-4 *1 (-1126))))
+(((*1 *2 *3 *4 *5 *3 *6 *3)
+ (-12 (-5 *3 (-558)) (-5 *5 (-168 (-224))) (-5 *6 (-1145))
+ (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-749)))))
+(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-917)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-841)) (-5 *1 (-482 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1200)) (-5 *1 (-181 *3 *2)) (-4 *2 (-664 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-631 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2))
- (-4 *4 (-13 (-836) (-546))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-546))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1214 *5 *4)) (-4 *4 (-446)) (-4 *4 (-807))
- (-14 *5 (-1158)) (-5 *2 (-554)) (-5 *1 (-1096 *4 *5)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5)
- (|partial| -12 (-5 *4 (-600 *3)) (-5 *5 (-1154 *3))
- (-4 *3 (-13 (-425 *6) (-27) (-1180)))
- (-4 *6 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554))))
- (-5 *2 (-2 (|:| -1709 *3) (|:| |coeff| *3)))
- (-5 *1 (-550 *6 *3 *7)) (-4 *7 (-1082))))
- ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-600 *3)) (-5 *5 (-402 (-1154 *3)))
- (-4 *3 (-13 (-425 *6) (-27) (-1180)))
- (-4 *6 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554))))
- (-5 *2 (-2 (|:| -1709 *3) (|:| |coeff| *3)))
- (-5 *1 (-550 *6 *3 *7)) (-4 *7 (-1082)))))
-(((*1 *1 *1) (-4 *1 (-95)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3))
- (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158)))
- (-14 *3 (-631 (-1158))) (-4 *4 (-382))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1143 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1144 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082))
- (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-112)))))
+ (|partial| -12 (-4 *4 (-13 (-550) (-146)))
+ (-5 *2 (-2 (|:| -3417 *3) (|:| -3425 *3))) (-5 *1 (-1216 *4 *3))
+ (-4 *3 (-1222 *4)))))
+(((*1 *1 *2 *3 *1 *3)
+ (-12 (-5 *2 (-882 *4)) (-4 *4 (-1087)) (-5 *1 (-879 *4 *3))
+ (-4 *3 (-1087)))))
+(((*1 *2 *2) (-12 (-5 *2 (-635 (-679 (-315 (-558))))) (-5 *1 (-1021)))))
(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |xinit| (-221)) (|:| |xend| (-221))
- (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221)))
- (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221)))
- (|:| |abserr| (-221)) (|:| |relerr| (-221))))
- (-5 *2
- (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374))
- (|:| |expense| (-374)) (|:| |accuracy| (-374))
- (|:| |intermediateResults| (-374))))
- (-5 *1 (-790)))))
+ (|partial| -12 (-5 *3 (-1246 *5)) (-4 *5 (-631 *4)) (-4 *4 (-550))
+ (-5 *2 (-1246 *4)) (-5 *1 (-630 *4 *5)))))
(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4))
- (-4 *3 (-362 *4))))
- ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-631
- (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221)))
- (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221))
- (|:| |relerr| (-221)))))
- (-5 *1 (-549))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-598 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082))
- (-5 *2 (-631 *3))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-631
- (-2 (|:| |xinit| (-221)) (|:| |xend| (-221))
- (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221)))
- (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221)))
- (|:| |abserr| (-221)) (|:| |relerr| (-221)))))
- (-5 *1 (-790)))))
-(((*1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-758)) (-4 *5 (-546))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-954 *5 *3)) (-4 *3 (-1217 *5)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-906)) (-5 *2 (-1246)) (-5 *1 (-210 *4))
- (-4 *4
- (-13 (-836)
- (-10 -8 (-15 -2064 ((-1140) $ (-1158))) (-15 -2524 (*2 $))
- (-15 -2941 (*2 $)))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1246)) (-5 *1 (-210 *3))
- (-4 *3
- (-13 (-836)
- (-10 -8 (-15 -2064 ((-1140) $ (-1158))) (-15 -2524 (*2 $))
- (-15 -2941 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-496)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-489)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-631 (-631 (-631 *4)))) (-5 *2 (-631 (-631 *4)))
- (-5 *1 (-1166 *4)) (-4 *4 (-836)))))
-(((*1 *1 *1) (-4 *1 (-95)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3))
- (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4))))
+ (-12 (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4)))
+ (-5 *2 (-1246 *1)) (-4 *1 (-341 *3 *4 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-1048))))
((*1 *1 *1)
- (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158)))
- (-14 *3 (-631 (-1158))) (-4 *4 (-382))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1143 *3))))
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163)))
+ (-14 *3 (-635 (-1163))) (-4 *4 (-386))))
((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1144 *3)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-598 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1082)))))
-(((*1 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-529 *2)) (-4 *2 (-1195))))
- ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-530)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-631 (-402 *6))) (-5 *3 (-402 *6))
- (-4 *6 (-1217 *5)) (-4 *5 (-13 (-358) (-145) (-1023 (-554))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-631 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-558 *5 *6)))))
-(((*1 *1 *1 *1) (|partial| -4 *1 (-130))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1241 *4)) (-4 *4 (-627 (-554))) (-5 *2 (-112))
- (-5 *1 (-1268 *4)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1011 (-829 (-554))))
- (-5 *3 (-1138 (-2 (|:| |k| (-554)) (|:| |c| *4)))) (-4 *4 (-1034))
- (-5 *1 (-584 *4)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1154 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1188 *3 *4 *5 *2)) (-4 *3 (-546)) (-4 *4 (-780))
- (-4 *5 (-836)) (-4 *2 (-1048 *3 *4 *5)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836))
- (-4 *3 (-1048 *5 *6 *7))
- (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *4))))
- (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))))
-(((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-631 (-475 *4 *5))) (-5 *3 (-850 *4))
- (-14 *4 (-631 (-1158))) (-4 *5 (-446)) (-5 *1 (-619 *4 *5)))))
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2))
+ (-4 *2 (-429 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171)) (-4 *2 (-1048))))
+ ((*1 *1 *1) (-4 *1 (-839)))
+ ((*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-171)) (-4 *2 (-1048))))
+ ((*1 *1 *1) (-4 *1 (-1048))) ((*1 *1 *1) (-4 *1 (-1126))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1145)) (-5 *4 (-168 (-224))) (-5 *5 (-558))
+ (-5 *2 (-1025)) (-5 *1 (-749)))))
(((*1 *2 *3)
- (-12 (-4 *5 (-13 (-602 *2) (-170))) (-5 *2 (-877 *4))
- (-5 *1 (-168 *4 *5 *3)) (-4 *4 (-1082)) (-4 *3 (-164 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-631 (-1076 (-829 (-374)))))
- (-5 *2 (-631 (-1076 (-829 (-221))))) (-5 *1 (-300))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-848)) (-5 *3 (-554)) (-5 *1 (-389))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1241 *3)) (-4 *3 (-170)) (-4 *1 (-404 *3 *4))
- (-4 *4 (-1217 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-404 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1217 *3))
- (-5 *2 (-1241 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1241 *3)) (-4 *3 (-170)) (-4 *1 (-412 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-1241 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-413 *1)) (-4 *1 (-425 *3)) (-4 *3 (-546))
- (-4 *3 (-836))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-1034))
- (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-457 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-530))))
- ((*1 *2 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-1195))))
- ((*1 *1 *2) (-12 (-4 *1 (-606 *2)) (-4 *2 (-1195))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-170)) (-4 *1 (-711 *3 *2)) (-4 *2 (-1217 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-631 (-877 *3))) (-5 *1 (-877 *3)) (-4 *3 (-1082))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-937 *3)) (-4 *3 (-1034)) (-4 *1 (-1048 *3 *4 *5))
- (-4 *5 (-602 (-1158))) (-4 *4 (-780)) (-4 *5 (-836))))
- ((*1 *1 *2)
- (-3994
- (-12 (-5 *2 (-937 (-554))) (-4 *1 (-1048 *3 *4 *5))
- (-12 (-4081 (-4 *3 (-38 (-402 (-554))))) (-4 *3 (-38 (-554)))
- (-4 *5 (-602 (-1158))))
- (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)))
- (-12 (-5 *2 (-937 (-554))) (-4 *1 (-1048 *3 *4 *5))
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *5 (-602 (-1158))))
- (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-937 (-402 (-554)))) (-4 *1 (-1048 *3 *4 *5))
- (-4 *3 (-38 (-402 (-554)))) (-4 *5 (-602 (-1158))) (-4 *3 (-1034))
- (-4 *4 (-780)) (-4 *5 (-836))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-631 *7)) (|:| -2143 *8)))
- (-4 *7 (-1048 *4 *5 *6)) (-4 *8 (-1054 *4 *5 *6 *7)) (-4 *4 (-446))
- (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-1140))
- (-5 *1 (-1052 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-631 *7)) (|:| -2143 *8)))
- (-4 *7 (-1048 *4 *5 *6)) (-4 *8 (-1091 *4 *5 *6 *7)) (-4 *4 (-446))
- (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-1140))
- (-5 *1 (-1127 *4 *5 *6 *7 *8))))
- ((*1 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-1163))))
- ((*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-1163))))
- ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-848)) (-5 *3 (-554)) (-5 *1 (-1175))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-848)) (-5 *3 (-554)) (-5 *1 (-1175))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-767 *4 (-850 *5)))
- (-4 *4 (-13 (-834) (-302) (-145) (-1007))) (-14 *5 (-631 (-1158)))
- (-5 *2 (-767 *4 (-850 *6))) (-5 *1 (-1267 *4 *5 *6))
- (-14 *6 (-631 (-1158)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-937 *4)) (-4 *4 (-13 (-834) (-302) (-145) (-1007)))
- (-5 *2 (-937 (-1009 (-402 *4)))) (-5 *1 (-1267 *4 *5 *6))
- (-14 *5 (-631 (-1158))) (-14 *6 (-631 (-1158)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-767 *4 (-850 *6)))
- (-4 *4 (-13 (-834) (-302) (-145) (-1007))) (-14 *6 (-631 (-1158)))
- (-5 *2 (-937 (-1009 (-402 *4)))) (-5 *1 (-1267 *4 *5 *6))
- (-14 *5 (-631 (-1158)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1154 *4)) (-4 *4 (-13 (-834) (-302) (-145) (-1007)))
- (-5 *2 (-1154 (-1009 (-402 *4)))) (-5 *1 (-1267 *4 *5 *6))
- (-14 *5 (-631 (-1158))) (-14 *6 (-631 (-1158)))))
+ (-12 (-5 *3 (-635 *7)) (-4 *7 (-939 *4 *6 *5))
+ (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163))))
+ (-4 *6 (-784)) (-5 *2 (-112)) (-5 *1 (-914 *4 *5 *6 *7))))
((*1 *2 *3)
- (-12
- (-5 *3 (-1128 *4 (-525 (-850 *6)) (-850 *6) (-767 *4 (-850 *6))))
- (-4 *4 (-13 (-834) (-302) (-145) (-1007))) (-14 *6 (-631 (-1158)))
- (-5 *2 (-631 (-767 *4 (-850 *6)))) (-5 *1 (-1267 *4 *5 *6))
- (-14 *5 (-631 (-1158))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3))
- (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1143 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1144 *3))))
- ((*1 *1 *1) (-4 *1 (-1183))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-877 *4)) (-4 *4 (-1082)) (-5 *1 (-874 *4 *3))
- (-4 *3 (-1082)))))
-(((*1 *2)
- (-12 (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836))
- (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-1246))
- (-5 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *7 (-1054 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836))
- (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-1246))
- (-5 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *7 (-1054 *3 *4 *5 *6)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-631 *1)) (|has| *1 (-6 -4374)) (-4 *1 (-995 *3))
- (-4 *3 (-1195)))))
+ (-12 (-5 *3 (-635 (-942 *4))) (-4 *4 (-13 (-306) (-146)))
+ (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784)) (-5 *2 (-112))
+ (-5 *1 (-914 *4 *5 *6 *7)) (-4 *7 (-939 *4 *6 *5)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-635 (-504))) (-5 *2 (-504)) (-5 *1 (-481)))))
(((*1 *2 *3)
- (-12 (-14 *4 (-631 (-1158))) (-4 *5 (-446))
- (-5 *2
- (-2 (|:| |glbase| (-631 (-243 *4 *5))) (|:| |glval| (-631 (-554)))))
- (-5 *1 (-619 *4 *5)) (-5 *3 (-631 (-243 *4 *5))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-325)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1034)) (-4 *3 (-836))
- (-5 *2 (-2 (|:| |val| *1) (|:| -1407 (-554)))) (-4 *1 (-425 *3))))
- ((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| |val| (-877 *3)) (|:| -1407 (-877 *3))))
- (-5 *1 (-877 *3)) (-4 *3 (-1082))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1034))
- (-4 *7 (-934 *6 *4 *5))
- (-5 *2 (-2 (|:| |val| *3) (|:| -1407 (-554))))
- (-5 *1 (-935 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-358)
- (-10 -8 (-15 -3075 ($ *7)) (-15 -2810 (*7 $))
- (-15 -2822 (*7 $))))))))
+ (-12 (-4 *4 (-1200)) (-5 *2 (-762)) (-5 *1 (-181 *4 *3))
+ (-4 *3 (-664 *4)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-13 (-550) (-146))) (-5 *1 (-1216 *3 *2))
+ (-4 *2 (-1222 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-631 (-554))) (-5 *2 (-889 (-554))) (-5 *1 (-902))))
- ((*1 *2 *3) (-12 (-5 *3 (-956)) (-5 *2 (-889 (-554))) (-5 *1 (-902)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1158))
- (-4 *5 (-13 (-546) (-1023 (-554)) (-145)))
- (-5 *2
- (-2 (|:| -1709 (-402 (-937 *5))) (|:| |coeff| (-402 (-937 *5)))))
- (-5 *1 (-560 *5)) (-5 *3 (-402 (-937 *5))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3))
- (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1143 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1144 *3))))
- ((*1 *1 *1) (-4 *1 (-1183))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-358)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1158))
- (-4 *6 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145)))
- (-4 *4 (-13 (-29 *6) (-1180) (-944)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -3782 (-631 *4))))
- (-5 *1 (-788 *6 *4 *3)) (-4 *3 (-642 *4)))))
-(((*1 *1 *2 *3 *3 *4 *4)
- (-12 (-5 *2 (-937 (-554))) (-5 *3 (-1158))
- (-5 *4 (-1076 (-402 (-554)))) (-5 *1 (-30)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-937 *5)) (-4 *5 (-1034)) (-5 *2 (-475 *4 *5))
- (-5 *1 (-929 *4 *5)) (-14 *4 (-631 (-1158))))))
-(((*1 *2 *1) (-12 (-4 *1 (-660 *3)) (-4 *3 (-1195)) (-5 *2 (-758)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-825))
- (-5 *3
- (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221)))
- (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221))))
- (|:| |ub| (-631 (-829 (-221))))))
- (-5 *2 (-1020))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-825))
- (-5 *3
- (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221)))))
- (-5 *2 (-1020)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1140)) (-5 *3 (-761)) (-5 *1 (-114)))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3))
- (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1143 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1144 *3)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-758)) (-4 *1 (-321 *3 *4)) (-4 *3 (-1034))
- (-4 *4 (-779)) (-4 *3 (-170)))))
+ (-12 (-4 *5 (-1087)) (-4 *6 (-876 *5)) (-5 *2 (-875 *5 *6 (-635 *6)))
+ (-5 *1 (-877 *5 *6 *4)) (-5 *3 (-635 *6)) (-4 *4 (-606 (-882 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1087)) (-5 *2 (-635 (-293 *3))) (-5 *1 (-877 *5 *3 *4))
+ (-4 *3 (-1028 (-1163))) (-4 *3 (-876 *5)) (-4 *4 (-606 (-882 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1087)) (-5 *2 (-635 (-293 (-942 *3))))
+ (-5 *1 (-877 *5 *3 *4)) (-4 *3 (-1039))
+ (-3304 (-4 *3 (-1028 (-1163)))) (-4 *3 (-876 *5))
+ (-4 *4 (-606 (-882 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1087)) (-5 *2 (-879 *5 *3)) (-5 *1 (-877 *5 *3 *4))
+ (-3304 (-4 *3 (-1028 (-1163)))) (-3304 (-4 *3 (-1039)))
+ (-4 *3 (-876 *5)) (-4 *4 (-606 (-882 *5))))))
+(((*1 *2 *2) (-12 (-5 *2 (-679 (-315 (-558)))) (-5 *1 (-1021)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1217 (-48))))))
-(((*1 *1 *1) (-4 *1 (-1126))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1138 (-631 (-554)))) (-5 *1 (-868)) (-5 *3 (-554))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1138 (-631 (-554)))) (-5 *1 (-868)) (-5 *3 (-554))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-1138 (-631 (-554)))) (-5 *1 (-868)) (-5 *3 (-554)))))
+ (-12 (-5 *3 (-1246 *5)) (-4 *5 (-631 *4)) (-4 *4 (-550))
+ (-5 *2 (-112)) (-5 *1 (-630 *4 *5)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-631 *1)) (-4 *1 (-1116 *3)) (-4 *3 (-1034))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-5 *2 (-402 *1)) (-4 *1 (-1217 *3)) (-4 *3 (-1034))
- (-4 *3 (-546))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-1217 *2)) (-4 *2 (-1034)) (-4 *2 (-546)))))
-(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
- (-12 (-5 *3 (-1140)) (-5 *5 (-675 (-221))) (-5 *6 (-221))
- (-5 *7 (-675 (-554))) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-739)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-402 *4)) (-4 *4 (-1217 *3))
- (-4 *3 (-13 (-358) (-145) (-1023 (-554)))) (-5 *1 (-558 *3 *4)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-221) (-221) (-221)))
- (-5 *4 (-3 (-1 (-221) (-221) (-221) (-221)) "undefined"))
- (-5 *5 (-1076 (-221))) (-5 *6 (-631 (-258))) (-5 *2 (-1115 (-221)))
- (-5 *1 (-683)))))
+ (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1039)) (-4 *1 (-677 *3 *4 *5))
+ (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 (-635 (-853)))) (-5 *1 (-853))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1129 *3 *4)) (-5 *1 (-983 *3 *4)) (-14 *3 (-911))
+ (-4 *4 (-362))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-635 (-635 *5))) (-4 *5 (-1039))
+ (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *6 (-237 *4 *5))
+ (-4 *7 (-237 *3 *5)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-695 *3)) (-5 *1 (-814 *2 *3)) (-4 *3 (-1034)))))
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3))
+ (-4 *5 (-1222 (-406 *4))) (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1251)) (-5 *1 (-1125))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-853))) (-5 *2 (-1251)) (-5 *1 (-1125)))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1145)) (-5 *4 (-168 (-224))) (-5 *5 (-558))
+ (-5 *2 (-1025)) (-5 *1 (-749)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-631 (-554))) (-5 *2 (-631 (-675 (-554))))
- (-5 *1 (-1092)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112))
- (-5 *1 (-962 *4 *5 *6 *3)) (-4 *3 (-1048 *4 *5 *6)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *3 (-1199)) (-4 *5 (-1217 *3)) (-4 *6 (-1217 (-402 *5)))
- (-5 *2 (-112)) (-5 *1 (-336 *4 *3 *5 *6)) (-4 *4 (-337 *3 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3))
- (-4 *5 (-1217 (-402 *4))) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-758)) (-4 *6 (-1082)) (-4 *3 (-885 *6))
- (-5 *2 (-675 *3)) (-5 *1 (-678 *6 *3 *7 *4)) (-4 *7 (-368 *3))
- (-4 *4 (-13 (-368 *6) (-10 -7 (-6 -4373)))))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-554)) (-4 *4 (-170)) (-4 *5 (-368 *4))
- (-4 *6 (-368 *4)) (-5 *1 (-674 *4 *5 *6 *2))
- (-4 *2 (-673 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1054 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-780))
- (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1054 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-780))
- (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-112)))))
+ (-12 (-4 *3 (-13 (-306) (-146))) (-4 *4 (-13 (-841) (-606 (-1163))))
+ (-4 *5 (-784)) (-5 *1 (-914 *3 *4 *5 *2)) (-4 *2 (-939 *3 *5 *4)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-635 (-558))) (-5 *1 (-246 *3 *4))
+ (-14 *3 (-635 (-1163))) (-4 *4 (-1039))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-635 (-558))) (-14 *3 (-635 (-1163)))
+ (-5 *1 (-452 *3 *4 *5)) (-4 *4 (-1039))
+ (-4 *5 (-237 (-2755 *3) (-762)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-635 (-558))) (-5 *1 (-479 *3 *4))
+ (-14 *3 (-635 (-1163))) (-4 *4 (-1039)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-546)) (-4 *3 (-170)) (-4 *4 (-368 *3))
- (-4 *5 (-368 *3)) (-5 *1 (-674 *3 *4 *5 *2))
- (-4 *2 (-673 *3 *4 *5)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-523)))))
-(((*1 *1) (-5 *1 (-139))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-758)) (-4 *4 (-13 (-1034) (-704 (-402 (-554)))))
- (-4 *5 (-836)) (-5 *1 (-1257 *4 *5 *2)) (-4 *2 (-1262 *5 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820 *3)) (-4 *3 (-1082))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-1082)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-758)) (-5 *2 (-1246)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1034)) (-4 *3 (-1217 *4)) (-4 *2 (-1232 *4))
- (-5 *1 (-1235 *4 *3 *5 *2)) (-4 *5 (-642 *3)))))
+ (|partial| -12 (-4 *3 (-1200)) (-5 *1 (-181 *3 *2))
+ (-4 *2 (-664 *3)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-762)) (-4 *4 (-13 (-550) (-146)))
+ (-5 *1 (-1216 *4 *2)) (-4 *2 (-1222 *4)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-112)) (-5 *1 (-114))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-301)) (-5 *3 (-1163)) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-301)) (-5 *3 (-114)) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1163)) (-5 *2 (-112)) (-5 *1 (-604 *4)) (-4 *4 (-841))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-604 *4)) (-4 *4 (-841))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1087)) (-5 *2 (-112)) (-5 *1 (-877 *5 *3 *4))
+ (-4 *3 (-876 *5)) (-4 *4 (-606 (-882 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 *6)) (-4 *6 (-876 *5)) (-4 *5 (-1087))
+ (-5 *2 (-112)) (-5 *1 (-877 *5 *6 *4)) (-4 *4 (-606 (-882 *5))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -3654 (-554)) (|:| -2316 (-631 *3))))
- (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))))
+ (|partial| -12 (-5 *3 (-679 (-406 (-942 (-558)))))
+ (-5 *2 (-679 (-315 (-558)))) (-5 *1 (-1021)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-675 (-167 (-402 (-554)))))
+ (-12 (-5 *4 (-293 (-834 *3))) (-4 *3 (-13 (-27) (-1185) (-429 *5)))
+ (-4 *5 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
(-5 *2
- (-631
- (-2 (|:| |outval| (-167 *4)) (|:| |outmult| (-554))
- (|:| |outvect| (-631 (-675 (-167 *4)))))))
- (-5 *1 (-751 *4)) (-4 *4 (-13 (-358) (-834))))))
-(((*1 *2 *3 *4 *4 *2 *2 *2)
- (-12 (-5 *2 (-554))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-758)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-780)) (-4 *4 (-934 *5 *6 *7)) (-4 *5 (-446)) (-4 *7 (-836))
- (-5 *1 (-443 *5 *6 *7 *4)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *5 (-758)) (-4 *6 (-1082)) (-4 *7 (-885 *6))
- (-5 *2 (-675 *7)) (-5 *1 (-678 *6 *7 *3 *4)) (-4 *3 (-368 *7))
- (-4 *4 (-13 (-368 *6) (-10 -7 (-6 -4373)))))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-758)) (-5 *1 (-576 *2)) (-4 *2 (-539))))
+ (-3 (-834 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-834 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-834 *3) "failed")))
+ "failed"))
+ (-5 *1 (-628 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-293 *3)) (-5 *5 (-1145))
+ (-4 *3 (-13 (-27) (-1185) (-429 *6)))
+ (-4 *6 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *2 (-834 *3)) (-5 *1 (-628 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-293 (-834 (-942 *5)))) (-4 *5 (-450))
+ (-5 *2
+ (-3 (-834 (-406 (-942 *5)))
+ (-2 (|:| |leftHandLimit| (-3 (-834 (-406 (-942 *5))) "failed"))
+ (|:| |rightHandLimit| (-3 (-834 (-406 (-942 *5))) "failed")))
+ "failed"))
+ (-5 *1 (-629 *5)) (-5 *3 (-406 (-942 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-293 (-406 (-942 *5)))) (-5 *3 (-406 (-942 *5)))
+ (-4 *5 (-450))
+ (-5 *2
+ (-3 (-834 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-834 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-834 *3) "failed")))
+ "failed"))
+ (-5 *1 (-629 *5))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-293 (-406 (-942 *6)))) (-5 *5 (-1145))
+ (-5 *3 (-406 (-942 *6))) (-4 *6 (-450)) (-5 *2 (-834 *3))
+ (-5 *1 (-629 *6)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1204)) (-4 *3 (-1222 *4))
+ (-4 *5 (-1222 (-406 *3))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3))
+ (-4 *5 (-1222 (-406 *4))) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3))
+ (-4 *5 (-1222 (-406 *4))) (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1251)) (-5 *1 (-1125))))
((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -3462 *3) (|:| -1407 (-758)))) (-5 *1 (-576 *3))
- (-4 *3 (-539)))))
+ (-12 (-5 *3 (-635 (-853))) (-5 *2 (-1251)) (-5 *1 (-1125)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-168 (-224))) (-5 *5 (-558)) (-5 *6 (-1145))
+ (-5 *3 (-224)) (-5 *2 (-1025)) (-5 *1 (-749)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1034))
- (-4 *4 (-779))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1039))
+ (-4 *4 (-783))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1034)) (-5 *1 (-50 *3 *4))
- (-14 *4 (-631 (-1158)))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1039)) (-5 *1 (-50 *3 *4))
+ (-14 *4 (-635 (-1163)))))
((*1 *1 *2 *1 *1 *3)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1195))
- (-4 *4 (-368 *3)) (-4 *5 (-368 *3))))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1200))
+ (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1195))
- (-4 *4 (-368 *3)) (-4 *5 (-368 *3))))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1200))
+ (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1195))
- (-4 *4 (-368 *3)) (-4 *5 (-368 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1200))
+ (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1195))
- (-4 *6 (-1195)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1200))
+ (-4 *6 (-1200)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-554))
- (-14 *6 (-758)) (-4 *7 (-170)) (-4 *8 (-170))
+ (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-558))
+ (-14 *6 (-762)) (-4 *7 (-171)) (-4 *8 (-171))
(-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-167 *5)) (-4 *5 (-170))
- (-4 *6 (-170)) (-5 *2 (-167 *6)) (-5 *1 (-166 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-168 *5)) (-4 *5 (-171))
+ (-4 *6 (-171)) (-5 *2 (-168 *6)) (-5 *1 (-167 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-311 *3) (-311 *3))) (-4 *3 (-13 (-1034) (-836)))
- (-5 *1 (-219 *3 *4)) (-14 *4 (-631 (-1158)))))
+ (-12 (-5 *2 (-1 (-315 *3) (-315 *3))) (-4 *3 (-13 (-1039) (-841)))
+ (-5 *1 (-222 *3 *4)) (-14 *4 (-635 (-1163)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-236 *5 *6)) (-14 *5 (-758))
- (-4 *6 (-1195)) (-4 *7 (-1195)) (-5 *2 (-236 *5 *7))
- (-5 *1 (-235 *5 *6 *7))))
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-239 *5 *6)) (-14 *5 (-762))
+ (-4 *6 (-1200)) (-4 *7 (-1200)) (-5 *2 (-239 *5 *7))
+ (-5 *1 (-238 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-289 *5)) (-4 *5 (-1195))
- (-4 *6 (-1195)) (-5 *2 (-289 *6)) (-5 *1 (-288 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-293 *5)) (-4 *5 (-1200))
+ (-4 *6 (-1200)) (-5 *2 (-293 *6)) (-5 *1 (-292 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1195)) (-5 *1 (-289 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1200)) (-5 *1 (-293 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1140)) (-5 *5 (-600 *6))
- (-4 *6 (-297)) (-4 *2 (-1195)) (-5 *1 (-292 *6 *2))))
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1145)) (-5 *5 (-604 *6))
+ (-4 *6 (-301)) (-4 *2 (-1200)) (-5 *1 (-296 *6 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-600 *5)) (-4 *5 (-297))
- (-4 *2 (-297)) (-5 *1 (-293 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-604 *5)) (-4 *5 (-301))
+ (-4 *2 (-301)) (-5 *1 (-297 *5 *2))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-600 *1)) (-4 *1 (-297))))
+ (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-604 *1)) (-4 *1 (-301))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-675 *5)) (-4 *5 (-1034))
- (-4 *6 (-1034)) (-5 *2 (-675 *6)) (-5 *1 (-299 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-679 *5)) (-4 *5 (-1039))
+ (-4 *6 (-1039)) (-5 *2 (-679 *6)) (-5 *1 (-303 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-311 *5)) (-4 *5 (-836))
- (-4 *6 (-836)) (-5 *2 (-311 *6)) (-5 *1 (-309 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-315 *5)) (-4 *5 (-841))
+ (-4 *6 (-841)) (-5 *2 (-315 *6)) (-5 *1 (-313 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-331 *5 *6 *7 *8)) (-4 *5 (-358))
- (-4 *6 (-1217 *5)) (-4 *7 (-1217 (-402 *6))) (-4 *8 (-337 *5 *6 *7))
- (-4 *9 (-358)) (-4 *10 (-1217 *9)) (-4 *11 (-1217 (-402 *10)))
- (-5 *2 (-331 *9 *10 *11 *12))
- (-5 *1 (-328 *5 *6 *7 *8 *9 *10 *11 *12))
- (-4 *12 (-337 *9 *10 *11))))
+ (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-335 *5 *6 *7 *8)) (-4 *5 (-362))
+ (-4 *6 (-1222 *5)) (-4 *7 (-1222 (-406 *6))) (-4 *8 (-341 *5 *6 *7))
+ (-4 *9 (-362)) (-4 *10 (-1222 *9)) (-4 *11 (-1222 (-406 *10)))
+ (-5 *2 (-335 *9 *10 *11 *12))
+ (-5 *1 (-332 *5 *6 *7 *8 *9 *10 *11 *12))
+ (-4 *12 (-341 *9 *10 *11))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3)) (-4 *3 (-1082))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-337 *3)) (-4 *3 (-1087))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1199)) (-4 *8 (-1199))
- (-4 *6 (-1217 *5)) (-4 *7 (-1217 (-402 *6))) (-4 *9 (-1217 *8))
- (-4 *2 (-337 *8 *9 *10)) (-5 *1 (-335 *5 *6 *7 *4 *8 *9 *10 *2))
- (-4 *4 (-337 *5 *6 *7)) (-4 *10 (-1217 (-402 *9)))))
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1204)) (-4 *8 (-1204))
+ (-4 *6 (-1222 *5)) (-4 *7 (-1222 (-406 *6))) (-4 *9 (-1222 *8))
+ (-4 *2 (-341 *8 *9 *10)) (-5 *1 (-339 *5 *6 *7 *4 *8 *9 *10 *2))
+ (-4 *4 (-341 *5 *6 *7)) (-4 *10 (-1222 (-406 *9)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1195)) (-4 *6 (-1195))
- (-4 *2 (-368 *6)) (-5 *1 (-366 *5 *4 *6 *2)) (-4 *4 (-368 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1200)) (-4 *6 (-1200))
+ (-4 *2 (-372 *6)) (-5 *1 (-370 *5 *4 *6 *2)) (-4 *4 (-372 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-377 *3 *4)) (-4 *3 (-1034))
- (-4 *4 (-1082))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-381 *3 *4)) (-4 *3 (-1039))
+ (-4 *4 (-1087))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-413 *5)) (-4 *5 (-546))
- (-4 *6 (-546)) (-5 *2 (-413 *6)) (-5 *1 (-400 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-417 *5)) (-4 *5 (-550))
+ (-4 *6 (-550)) (-5 *2 (-417 *6)) (-5 *1 (-404 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-402 *5)) (-4 *5 (-546))
- (-4 *6 (-546)) (-5 *2 (-402 *6)) (-5 *1 (-401 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-406 *5)) (-4 *5 (-550))
+ (-4 *6 (-550)) (-5 *2 (-406 *6)) (-5 *1 (-405 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-408 *5 *6 *7 *8)) (-4 *5 (-302))
- (-4 *6 (-977 *5)) (-4 *7 (-1217 *6))
- (-4 *8 (-13 (-404 *6 *7) (-1023 *6))) (-4 *9 (-302))
- (-4 *10 (-977 *9)) (-4 *11 (-1217 *10))
- (-5 *2 (-408 *9 *10 *11 *12))
- (-5 *1 (-407 *5 *6 *7 *8 *9 *10 *11 *12))
- (-4 *12 (-13 (-404 *10 *11) (-1023 *10)))))
+ (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-412 *5 *6 *7 *8)) (-4 *5 (-306))
+ (-4 *6 (-982 *5)) (-4 *7 (-1222 *6))
+ (-4 *8 (-13 (-408 *6 *7) (-1028 *6))) (-4 *9 (-306))
+ (-4 *10 (-982 *9)) (-4 *11 (-1222 *10))
+ (-5 *2 (-412 *9 *10 *11 *12))
+ (-5 *1 (-411 *5 *6 *7 *8 *9 *10 *11 *12))
+ (-4 *12 (-13 (-408 *10 *11) (-1028 *10)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170))
- (-4 *2 (-412 *6)) (-5 *1 (-410 *4 *5 *2 *6)) (-4 *4 (-412 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171))
+ (-4 *2 (-416 *6)) (-5 *1 (-414 *4 *5 *2 *6)) (-4 *4 (-416 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-546)) (-5 *1 (-413 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-550)) (-5 *1 (-417 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1034) (-836)))
- (-4 *6 (-13 (-1034) (-836))) (-4 *2 (-425 *6))
- (-5 *1 (-416 *5 *4 *6 *2)) (-4 *4 (-425 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1039) (-841)))
+ (-4 *6 (-13 (-1039) (-841))) (-4 *2 (-429 *6))
+ (-5 *1 (-420 *5 *4 *6 *2)) (-4 *4 (-429 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1082)) (-4 *6 (-1082))
- (-4 *2 (-420 *6)) (-5 *1 (-418 *5 *4 *6 *2)) (-4 *4 (-420 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1087)) (-4 *6 (-1087))
+ (-4 *2 (-424 *6)) (-5 *1 (-422 *5 *4 *6 *2)) (-4 *4 (-424 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-483 *3)) (-4 *3 (-1195))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-487 *3)) (-4 *3 (-1200))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-503 *3 *4)) (-4 *3 (-1082))
- (-4 *4 (-836))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-507 *3 *4)) (-4 *3 (-1087))
+ (-4 *4 (-841))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-575 *5)) (-4 *5 (-358))
- (-4 *6 (-358)) (-5 *2 (-575 *6)) (-5 *1 (-574 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-579 *5)) (-4 *5 (-362))
+ (-4 *6 (-362)) (-5 *2 (-579 *6)) (-5 *1 (-578 *5 *6))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *6 *5))
- (-5 *4 (-3 (-2 (|:| -1709 *5) (|:| |coeff| *5)) "failed"))
- (-4 *5 (-358)) (-4 *6 (-358))
- (-5 *2 (-2 (|:| -1709 *6) (|:| |coeff| *6)))
- (-5 *1 (-574 *5 *6))))
+ (-5 *4 (-3 (-2 (|:| -1440 *5) (|:| |coeff| *5)) "failed"))
+ (-4 *5 (-362)) (-4 *6 (-362))
+ (-5 *2 (-2 (|:| -1440 *6) (|:| |coeff| *6)))
+ (-5 *1 (-578 *5 *6))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed"))
- (-4 *5 (-358)) (-4 *2 (-358)) (-5 *1 (-574 *5 *2))))
+ (-4 *5 (-362)) (-4 *2 (-362)) (-5 *1 (-578 *5 *2))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *6 *5))
(-5 *4
(-3
(-2 (|:| |mainpart| *5)
(|:| |limitedlogs|
- (-631 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
+ (-635 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
"failed"))
- (-4 *5 (-358)) (-4 *6 (-358))
+ (-4 *5 (-362)) (-4 *6 (-362))
(-5 *2
(-2 (|:| |mainpart| *6)
(|:| |limitedlogs|
- (-631 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
- (-5 *1 (-574 *5 *6))))
+ (-635 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
+ (-5 *1 (-578 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-589 *5)) (-4 *5 (-1195))
- (-4 *6 (-1195)) (-5 *2 (-589 *6)) (-5 *1 (-586 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-593 *5)) (-4 *5 (-1200))
+ (-4 *6 (-1200)) (-5 *2 (-593 *6)) (-5 *1 (-590 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-589 *6)) (-5 *5 (-589 *7))
- (-4 *6 (-1195)) (-4 *7 (-1195)) (-4 *8 (-1195)) (-5 *2 (-589 *8))
- (-5 *1 (-587 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-593 *6)) (-5 *5 (-593 *7))
+ (-4 *6 (-1200)) (-4 *7 (-1200)) (-4 *8 (-1200)) (-5 *2 (-593 *8))
+ (-5 *1 (-591 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1138 *6)) (-5 *5 (-589 *7))
- (-4 *6 (-1195)) (-4 *7 (-1195)) (-4 *8 (-1195)) (-5 *2 (-1138 *8))
- (-5 *1 (-587 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1143 *6)) (-5 *5 (-593 *7))
+ (-4 *6 (-1200)) (-4 *7 (-1200)) (-4 *8 (-1200)) (-5 *2 (-1143 *8))
+ (-5 *1 (-591 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-589 *6)) (-5 *5 (-1138 *7))
- (-4 *6 (-1195)) (-4 *7 (-1195)) (-4 *8 (-1195)) (-5 *2 (-1138 *8))
- (-5 *1 (-587 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-593 *6)) (-5 *5 (-1143 *7))
+ (-4 *6 (-1200)) (-4 *7 (-1200)) (-4 *8 (-1200)) (-5 *2 (-1143 *8))
+ (-5 *1 (-591 *6 *7 *8))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1195)) (-5 *1 (-589 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1200)) (-5 *1 (-593 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-631 *5)) (-4 *5 (-1195))
- (-4 *6 (-1195)) (-5 *2 (-631 *6)) (-5 *1 (-629 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-635 *5)) (-4 *5 (-1200))
+ (-4 *6 (-1200)) (-5 *2 (-635 *6)) (-5 *1 (-633 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-631 *6)) (-5 *5 (-631 *7))
- (-4 *6 (-1195)) (-4 *7 (-1195)) (-4 *8 (-1195)) (-5 *2 (-631 *8))
- (-5 *1 (-630 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-635 *6)) (-5 *5 (-635 *7))
+ (-4 *6 (-1200)) (-4 *7 (-1200)) (-4 *8 (-1200)) (-5 *2 (-635 *8))
+ (-5 *1 (-634 *6 *7 *8))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-637 *3)) (-4 *3 (-1195))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1034)) (-4 *8 (-1034))
- (-4 *6 (-368 *5)) (-4 *7 (-368 *5)) (-4 *2 (-673 *8 *9 *10))
- (-5 *1 (-671 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-673 *5 *6 *7))
- (-4 *9 (-368 *8)) (-4 *10 (-368 *8))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1034))
- (-4 *8 (-1034)) (-4 *6 (-368 *5)) (-4 *7 (-368 *5))
- (-4 *2 (-673 *8 *9 *10)) (-5 *1 (-671 *5 *6 *7 *4 *8 *9 *10 *2))
- (-4 *4 (-673 *5 *6 *7)) (-4 *9 (-368 *8)) (-4 *10 (-368 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-546)) (-4 *7 (-546))
- (-4 *6 (-1217 *5)) (-4 *2 (-1217 (-402 *8)))
- (-5 *1 (-696 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1217 (-402 *6)))
- (-4 *8 (-1217 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1034)) (-4 *9 (-1034))
- (-4 *5 (-836)) (-4 *6 (-780)) (-4 *2 (-934 *9 *7 *5))
- (-5 *1 (-715 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-780))
- (-4 *4 (-934 *8 *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-836)) (-4 *6 (-836)) (-4 *7 (-780))
- (-4 *9 (-1034)) (-4 *2 (-934 *9 *8 *6))
- (-5 *1 (-716 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-780))
- (-4 *4 (-934 *9 *7 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-722 *5 *7)) (-4 *5 (-1034))
- (-4 *6 (-1034)) (-4 *7 (-713)) (-5 *2 (-722 *6 *7))
- (-5 *1 (-721 *5 *6 *7))))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-641 *3)) (-4 *3 (-1200))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1039)) (-4 *8 (-1039))
+ (-4 *6 (-372 *5)) (-4 *7 (-372 *5)) (-4 *2 (-677 *8 *9 *10))
+ (-5 *1 (-675 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-677 *5 *6 *7))
+ (-4 *9 (-372 *8)) (-4 *10 (-372 *8))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1039))
+ (-4 *8 (-1039)) (-4 *6 (-372 *5)) (-4 *7 (-372 *5))
+ (-4 *2 (-677 *8 *9 *10)) (-5 *1 (-675 *5 *6 *7 *4 *8 *9 *10 *2))
+ (-4 *4 (-677 *5 *6 *7)) (-4 *9 (-372 *8)) (-4 *10 (-372 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-550)) (-4 *7 (-550))
+ (-4 *6 (-1222 *5)) (-4 *2 (-1222 (-406 *8)))
+ (-5 *1 (-700 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1222 (-406 *6)))
+ (-4 *8 (-1222 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1039)) (-4 *9 (-1039))
+ (-4 *5 (-841)) (-4 *6 (-784)) (-4 *2 (-939 *9 *7 *5))
+ (-5 *1 (-719 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-784))
+ (-4 *4 (-939 *8 *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-841)) (-4 *6 (-841)) (-4 *7 (-784))
+ (-4 *9 (-1039)) (-4 *2 (-939 *9 *8 *6))
+ (-5 *1 (-720 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-784))
+ (-4 *4 (-939 *9 *7 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-726 *5 *7)) (-4 *5 (-1039))
+ (-4 *6 (-1039)) (-4 *7 (-717)) (-5 *2 (-726 *6 *7))
+ (-5 *1 (-725 *5 *6 *7))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1034)) (-5 *1 (-722 *3 *4))
- (-4 *4 (-713))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1039)) (-5 *1 (-726 *3 *4))
+ (-4 *4 (-717))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-769 *5)) (-4 *5 (-1034))
- (-4 *6 (-1034)) (-5 *2 (-769 *6)) (-5 *1 (-768 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-773 *5)) (-4 *5 (-1039))
+ (-4 *6 (-1039)) (-5 *2 (-773 *6)) (-5 *1 (-772 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170))
- (-4 *2 (-784 *6)) (-5 *1 (-785 *4 *5 *2 *6)) (-4 *4 (-784 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171))
+ (-4 *2 (-788 *6)) (-5 *1 (-789 *4 *5 *2 *6)) (-4 *4 (-788 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-820 *5)) (-4 *5 (-1082))
- (-4 *6 (-1082)) (-5 *2 (-820 *6)) (-5 *1 (-819 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-824 *5)) (-4 *5 (-1087))
+ (-4 *6 (-1087)) (-5 *2 (-824 *6)) (-5 *1 (-823 *5 *6))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-820 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-820 *5))
- (-4 *5 (-1082)) (-4 *6 (-1082)) (-5 *1 (-819 *5 *6))))
+ (-12 (-5 *2 (-824 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-824 *5))
+ (-4 *5 (-1087)) (-4 *6 (-1087)) (-5 *1 (-823 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-829 *5)) (-4 *5 (-1082))
- (-4 *6 (-1082)) (-5 *2 (-829 *6)) (-5 *1 (-828 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-834 *5)) (-4 *5 (-1087))
+ (-4 *6 (-1087)) (-5 *2 (-834 *6)) (-5 *1 (-833 *5 *6))))
((*1 *2 *3 *4 *2 *2)
- (-12 (-5 *2 (-829 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-829 *5))
- (-4 *5 (-1082)) (-4 *6 (-1082)) (-5 *1 (-828 *5 *6))))
+ (-12 (-5 *2 (-834 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-834 *5))
+ (-4 *5 (-1087)) (-4 *6 (-1087)) (-5 *1 (-833 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-862 *5)) (-4 *5 (-1195))
- (-4 *6 (-1195)) (-5 *2 (-862 *6)) (-5 *1 (-861 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-867 *5)) (-4 *5 (-1200))
+ (-4 *6 (-1200)) (-5 *2 (-867 *6)) (-5 *1 (-866 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-864 *5)) (-4 *5 (-1195))
- (-4 *6 (-1195)) (-5 *2 (-864 *6)) (-5 *1 (-863 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-869 *5)) (-4 *5 (-1200))
+ (-4 *6 (-1200)) (-5 *2 (-869 *6)) (-5 *1 (-868 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-867 *5)) (-4 *5 (-1195))
- (-4 *6 (-1195)) (-5 *2 (-867 *6)) (-5 *1 (-866 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-872 *5)) (-4 *5 (-1200))
+ (-4 *6 (-1200)) (-5 *2 (-872 *6)) (-5 *1 (-871 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-874 *5 *6)) (-4 *5 (-1082))
- (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-874 *5 *7))
- (-5 *1 (-873 *5 *6 *7))))
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-879 *5 *6)) (-4 *5 (-1087))
+ (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-879 *5 *7))
+ (-5 *1 (-878 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-877 *5)) (-4 *5 (-1082))
- (-4 *6 (-1082)) (-5 *2 (-877 *6)) (-5 *1 (-876 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-882 *5)) (-4 *5 (-1087))
+ (-4 *6 (-1087)) (-5 *2 (-882 *6)) (-5 *1 (-881 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-937 *5)) (-4 *5 (-1034))
- (-4 *6 (-1034)) (-5 *2 (-937 *6)) (-5 *1 (-931 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-942 *5)) (-4 *5 (-1039))
+ (-4 *6 (-1039)) (-5 *2 (-942 *6)) (-5 *1 (-936 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-836))
- (-4 *8 (-1034)) (-4 *6 (-780))
+ (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-841))
+ (-4 *8 (-1039)) (-4 *6 (-784))
(-4 *2
- (-13 (-1082)
- (-10 -8 (-15 -1735 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-758))))))
- (-5 *1 (-936 *6 *7 *8 *5 *2)) (-4 *5 (-934 *8 *6 *7))))
+ (-13 (-1087)
+ (-10 -8 (-15 -1784 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-762))))))
+ (-5 *1 (-941 *6 *7 *8 *5 *2)) (-4 *5 (-939 *8 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-943 *5)) (-4 *5 (-1195))
- (-4 *6 (-1195)) (-5 *2 (-943 *6)) (-5 *1 (-942 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-948 *5)) (-4 *5 (-1200))
+ (-4 *6 (-1200)) (-5 *2 (-948 *6)) (-5 *1 (-947 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-928 *5)) (-4 *5 (-1034))
- (-4 *6 (-1034)) (-5 *2 (-928 *6)) (-5 *1 (-966 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-933 *5)) (-4 *5 (-1039))
+ (-4 *6 (-1039)) (-5 *2 (-933 *6)) (-5 *1 (-971 *5 *6))))
((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 *2 (-937 *4))) (-4 *4 (-1034))
- (-4 *2 (-934 (-937 *4) *5 *6)) (-4 *5 (-780))
+ (-12 (-5 *3 (-1 *2 (-942 *4))) (-4 *4 (-1039))
+ (-4 *2 (-939 (-942 *4) *5 *6)) (-4 *5 (-784))
(-4 *6
- (-13 (-836)
- (-10 -8 (-15 -2927 ((-1158) $))
- (-15 -1576 ((-3 $ "failed") (-1158))))))
- (-5 *1 (-969 *4 *5 *6 *2))))
+ (-13 (-841)
+ (-10 -8 (-15 -3224 ((-1163) $))
+ (-15 -1602 ((-3 $ "failed") (-1163))))))
+ (-5 *1 (-974 *4 *5 *6 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-546)) (-4 *6 (-546))
- (-4 *2 (-977 *6)) (-5 *1 (-975 *5 *6 *4 *2)) (-4 *4 (-977 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-550)) (-4 *6 (-550))
+ (-4 *2 (-982 *6)) (-5 *1 (-980 *5 *6 *4 *2)) (-4 *4 (-982 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170))
- (-4 *2 (-982 *6)) (-5 *1 (-983 *4 *5 *2 *6)) (-4 *4 (-982 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171))
+ (-4 *2 (-987 *6)) (-5 *1 (-988 *4 *5 *2 *6)) (-4 *4 (-987 *5))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1037 *3 *4 *5 *6 *7))
- (-4 *5 (-1034)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5))))
+ (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1042 *3 *4 *5 *6 *7))
+ (-4 *5 (-1039)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1037 *3 *4 *5 *6 *7))
- (-4 *5 (-1034)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5))))
+ (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1042 *3 *4 *5 *6 *7))
+ (-4 *5 (-1039)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1034)) (-4 *10 (-1034))
- (-14 *5 (-758)) (-14 *6 (-758)) (-4 *8 (-234 *6 *7))
- (-4 *9 (-234 *5 *7)) (-4 *2 (-1037 *5 *6 *10 *11 *12))
- (-5 *1 (-1039 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
- (-4 *4 (-1037 *5 *6 *7 *8 *9)) (-4 *11 (-234 *6 *10))
- (-4 *12 (-234 *5 *10))))
+ (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1039)) (-4 *10 (-1039))
+ (-14 *5 (-762)) (-14 *6 (-762)) (-4 *8 (-237 *6 *7))
+ (-4 *9 (-237 *5 *7)) (-4 *2 (-1042 *5 *6 *10 *11 *12))
+ (-5 *1 (-1044 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
+ (-4 *4 (-1042 *5 *6 *7 *8 *9)) (-4 *11 (-237 *6 *10))
+ (-4 *12 (-237 *5 *10))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1076 *5)) (-4 *5 (-1195))
- (-4 *6 (-1195)) (-5 *2 (-1076 *6)) (-5 *1 (-1071 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1081 *5)) (-4 *5 (-1200))
+ (-4 *6 (-1200)) (-5 *2 (-1081 *6)) (-5 *1 (-1076 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1076 *5)) (-4 *5 (-834))
- (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-631 *6))
- (-5 *1 (-1071 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1081 *5)) (-4 *5 (-839))
+ (-4 *5 (-1200)) (-4 *6 (-1200)) (-5 *2 (-635 *6))
+ (-5 *1 (-1076 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1074 *5)) (-4 *5 (-1195))
- (-4 *6 (-1195)) (-5 *2 (-1074 *6)) (-5 *1 (-1073 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1079 *5)) (-4 *5 (-1200))
+ (-4 *6 (-1200)) (-5 *2 (-1079 *6)) (-5 *1 (-1078 *5 *6))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1077 *4 *2)) (-4 *4 (-834))
- (-4 *2 (-1131 *4))))
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1082 *4 *2)) (-4 *4 (-839))
+ (-4 *2 (-1136 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1138 *5)) (-4 *5 (-1195))
- (-4 *6 (-1195)) (-5 *2 (-1138 *6)) (-5 *1 (-1136 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1143 *5)) (-4 *5 (-1200))
+ (-4 *6 (-1200)) (-5 *2 (-1143 *6)) (-5 *1 (-1141 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1138 *6)) (-5 *5 (-1138 *7))
- (-4 *6 (-1195)) (-4 *7 (-1195)) (-4 *8 (-1195)) (-5 *2 (-1138 *8))
- (-5 *1 (-1137 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1143 *6)) (-5 *5 (-1143 *7))
+ (-4 *6 (-1200)) (-4 *7 (-1200)) (-4 *8 (-1200)) (-5 *2 (-1143 *8))
+ (-5 *1 (-1142 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1154 *5)) (-4 *5 (-1034))
- (-4 *6 (-1034)) (-5 *2 (-1154 *6)) (-5 *1 (-1152 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1159 *5)) (-4 *5 (-1039))
+ (-4 *6 (-1039)) (-5 *2 (-1159 *6)) (-5 *1 (-1157 *5 *6))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1171 *3 *4)) (-4 *3 (-1082))
- (-4 *4 (-1082))))
+ (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1176 *3 *4)) (-4 *3 (-1087))
+ (-4 *4 (-1087))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1205 *5 *7 *9)) (-4 *5 (-1034))
- (-4 *6 (-1034)) (-14 *7 (-1158)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1205 *6 *8 *10)) (-5 *1 (-1200 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1158))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1210 *5 *7 *9)) (-4 *5 (-1039))
+ (-4 *6 (-1039)) (-14 *7 (-1163)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1210 *6 *8 *10)) (-5 *1 (-1205 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1163))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1208 *5)) (-4 *5 (-1195))
- (-4 *6 (-1195)) (-5 *2 (-1208 *6)) (-5 *1 (-1207 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1213 *5)) (-4 *5 (-1200))
+ (-4 *6 (-1200)) (-5 *2 (-1213 *6)) (-5 *1 (-1212 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1208 *5)) (-4 *5 (-834))
- (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-1138 *6))
- (-5 *1 (-1207 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1213 *5)) (-4 *5 (-839))
+ (-4 *5 (-1200)) (-4 *6 (-1200)) (-5 *2 (-1143 *6))
+ (-5 *1 (-1212 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1214 *5 *6)) (-14 *5 (-1158))
- (-4 *6 (-1034)) (-4 *8 (-1034)) (-5 *2 (-1214 *7 *8))
- (-5 *1 (-1209 *5 *6 *7 *8)) (-14 *7 (-1158))))
+ (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1219 *5 *6)) (-14 *5 (-1163))
+ (-4 *6 (-1039)) (-4 *8 (-1039)) (-5 *2 (-1219 *7 *8))
+ (-5 *1 (-1214 *5 *6 *7 *8)) (-14 *7 (-1163))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1034)) (-4 *6 (-1034))
- (-4 *2 (-1217 *6)) (-5 *1 (-1215 *5 *4 *6 *2)) (-4 *4 (-1217 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1039)) (-4 *6 (-1039))
+ (-4 *2 (-1222 *6)) (-5 *1 (-1220 *5 *4 *6 *2)) (-4 *4 (-1222 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1226 *5 *7 *9)) (-4 *5 (-1034))
- (-4 *6 (-1034)) (-14 *7 (-1158)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1226 *6 *8 *10)) (-5 *1 (-1221 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1158))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1231 *5 *7 *9)) (-4 *5 (-1039))
+ (-4 *6 (-1039)) (-14 *7 (-1163)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1231 *6 *8 *10)) (-5 *1 (-1226 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1163))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1034)) (-4 *6 (-1034))
- (-4 *2 (-1232 *6)) (-5 *1 (-1230 *5 *6 *4 *2)) (-4 *4 (-1232 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1039)) (-4 *6 (-1039))
+ (-4 *2 (-1237 *6)) (-5 *1 (-1235 *5 *6 *4 *2)) (-4 *4 (-1237 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1241 *5)) (-4 *5 (-1195))
- (-4 *6 (-1195)) (-5 *2 (-1241 *6)) (-5 *1 (-1240 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1246 *5)) (-4 *5 (-1200))
+ (-4 *6 (-1200)) (-5 *2 (-1246 *6)) (-5 *1 (-1245 *5 *6))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1241 *5))
- (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-1241 *6))
- (-5 *1 (-1240 *5 *6))))
+ (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1246 *5))
+ (-4 *5 (-1200)) (-4 *6 (-1200)) (-5 *2 (-1246 *6))
+ (-5 *1 (-1245 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1258 *3 *4)) (-4 *3 (-836))
- (-4 *4 (-1034))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1263 *3 *4)) (-4 *3 (-841))
+ (-4 *4 (-1039))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1034)) (-5 *1 (-1264 *3 *4))
- (-4 *4 (-832)))))
-(((*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-848)))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1039)) (-5 *1 (-1269 *3 *4))
+ (-4 *4 (-837)))))
+(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
+ (-12
+ (-5 *3
+ (-2 (|:| |det| *12) (|:| |rows| (-635 (-558)))
+ (|:| |cols| (-635 (-558)))))
+ (-5 *4 (-679 *12)) (-5 *5 (-635 (-406 (-942 *9))))
+ (-5 *6 (-635 (-635 *12))) (-5 *7 (-762)) (-5 *8 (-558))
+ (-4 *9 (-13 (-306) (-146))) (-4 *12 (-939 *9 *11 *10))
+ (-4 *10 (-13 (-841) (-606 (-1163)))) (-4 *11 (-784))
+ (-5 *2
+ (-2 (|:| |eqzro| (-635 *12)) (|:| |neqzro| (-635 *12))
+ (|:| |wcond| (-635 (-942 *9)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1246 (-406 (-942 *9))))
+ (|:| -2660 (-635 (-1246 (-406 (-942 *9)))))))))
+ (-5 *1 (-914 *9 *10 *11 *12)))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-5 *3 (-558)) (-5 *2 (-112)) (-5 *1 (-478)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-362) (-839)))
+ (-5 *2 (-2 (|:| |start| *3) (|:| -1849 (-417 *3))))
+ (-5 *1 (-180 *4 *3)) (-4 *3 (-1222 (-168 *4))))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-762)) (-4 *4 (-13 (-550) (-146)))
+ (-5 *1 (-1216 *4 *2)) (-4 *2 (-1222 *4)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-879 *4 *5)) (-5 *3 (-879 *4 *6)) (-4 *4 (-1087))
+ (-4 *5 (-1087)) (-4 *6 (-656 *5)) (-5 *1 (-875 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-679 (-406 (-942 (-558))))) (-5 *2 (-635 (-315 (-558))))
+ (-5 *1 (-1021)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 *8)) (-5 *4 (-631 *9)) (-4 *8 (-1048 *5 *6 *7))
- (-4 *9 (-1054 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-780))
- (-4 *7 (-836)) (-5 *2 (-758)) (-5 *1 (-1052 *5 *6 *7 *8 *9))))
+ (|partial| -12 (-5 *4 (-293 (-824 *3)))
+ (-4 *5 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *2 (-824 *3)) (-5 *1 (-628 *5 *3))
+ (-4 *3 (-13 (-27) (-1185) (-429 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-293 (-824 (-942 *5)))) (-4 *5 (-450))
+ (-5 *2 (-824 (-406 (-942 *5)))) (-5 *1 (-629 *5))
+ (-5 *3 (-406 (-942 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-293 (-406 (-942 *5)))) (-5 *3 (-406 (-942 *5)))
+ (-4 *5 (-450)) (-5 *2 (-824 *3)) (-5 *1 (-629 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-1199))) (-5 *1 (-598)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1246 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204))
+ (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1151 3 *3)) (-4 *3 (-1039)) (-4 *1 (-1121 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1121 *2)) (-4 *2 (-1039)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-168 (-224))) (-5 *5 (-558)) (-5 *6 (-1145))
+ (-5 *3 (-224)) (-5 *2 (-1025)) (-5 *1 (-749)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-679 *7)) (-5 *3 (-635 *7)) (-4 *7 (-939 *4 *6 *5))
+ (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163))))
+ (-4 *6 (-784)) (-5 *1 (-914 *4 *5 *6 *7)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-478)))))
+(((*1 *2 *2)
+ (-12 (-4 *2 (-13 (-362) (-839))) (-5 *1 (-180 *2 *3))
+ (-4 *3 (-1222 (-168 *2))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-550)) (-4 *5 (-982 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-141 *4 *5 *3))
+ (-4 *3 (-372 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-550)) (-4 *5 (-982 *4))
+ (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
+ (-5 *1 (-501 *4 *5 *6 *3)) (-4 *6 (-372 *4)) (-4 *3 (-372 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-679 *5)) (-4 *5 (-982 *4)) (-4 *4 (-550))
+ (-5 *2 (-2 (|:| |num| (-679 *4)) (|:| |den| *4)))
+ (-5 *1 (-683 *4 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 *8)) (-5 *4 (-631 *9)) (-4 *8 (-1048 *5 *6 *7))
- (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-780))
- (-4 *7 (-836)) (-5 *2 (-758)) (-5 *1 (-1127 *5 *6 *7 *8 *9)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-446)) (-4 *4 (-546))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1942 *4)))
- (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))))
+ (-12 (-4 *5 (-13 (-362) (-146) (-1028 (-406 (-558)))))
+ (-4 *6 (-1222 *5))
+ (-5 *2 (-2 (|:| -2477 *7) (|:| |rh| (-635 (-406 *6)))))
+ (-5 *1 (-798 *5 *6 *7 *3)) (-5 *4 (-635 (-406 *6)))
+ (-4 *7 (-646 *6)) (-4 *3 (-646 (-406 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-550)) (-4 *5 (-982 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1215 *4 *5 *3))
+ (-4 *3 (-1222 *5)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-631 (-52))) (-5 *1 (-877 *3)) (-4 *3 (-1082)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820 *3)) (-4 *3 (-1082))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-1082)))))
+ (-12 (-4 *4 (-1087)) (-5 *2 (-879 *3 *4)) (-5 *1 (-875 *3 *4 *5))
+ (-4 *3 (-1087)) (-4 *5 (-656 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-679 (-406 (-942 (-558)))))
+ (-5 *2 (-635 (-679 (-315 (-558))))) (-5 *1 (-1021))
+ (-5 *3 (-315 (-558))))))
+(((*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-1087))))
+ ((*1 *1 *1) (-5 *1 (-624))))
(((*1 *2 *2)
- (-12 (-5 *2 (-928 *3)) (-4 *3 (-13 (-358) (-1180) (-987)))
- (-5 *1 (-174 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1243))))
- ((*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1243)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1241 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170))
- (-5 *2 (-675 *4))))
+ (-12 (-5 *2 (-1246 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204))
+ (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))))))
+(((*1 *2)
+ (-12 (-4 *4 (-1204)) (-4 *5 (-1222 *4)) (-4 *6 (-1222 (-406 *5)))
+ (-5 *2 (-762)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6))))
((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-675 *4)) (-5 *1 (-411 *3 *4))
- (-4 *3 (-412 *4))))
- ((*1 *2) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-675 *3)))))
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3))
+ (-4 *5 (-1222 (-406 *4))) (-5 *2 (-762))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-762)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-679 *8)) (-5 *4 (-762)) (-4 *8 (-939 *5 *7 *6))
+ (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-841) (-606 (-1163))))
+ (-4 *7 (-784))
+ (-5 *2
+ (-635
+ (-2 (|:| |det| *8) (|:| |rows| (-635 (-558)))
+ (|:| |cols| (-635 (-558))))))
+ (-5 *1 (-914 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-635 (-855 *5))) (-14 *5 (-635 (-1163))) (-4 *6 (-450))
+ (-5 *2
+ (-2 (|:| |dpolys| (-635 (-246 *5 *6)))
+ (|:| |coords| (-635 (-558)))))
+ (-5 *1 (-469 *5 *6 *7)) (-5 *3 (-635 (-246 *5 *6))) (-4 *7 (-450)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-368 *2)) (-4 *5 (-368 *2)) (-4 *2 (-358))
- (-5 *1 (-515 *2 *4 *5 *3)) (-4 *3 (-673 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2))
- (|has| *2 (-6 (-4375 "*"))) (-4 *2 (-1034))))
+ (-12 (-5 *2 (-168 *4)) (-5 *1 (-180 *4 *3))
+ (-4 *4 (-13 (-362) (-839))) (-4 *3 (-1222 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-550)) (-4 *4 (-982 *3)) (-5 *1 (-141 *3 *4 *2))
+ (-4 *2 (-372 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-368 *2)) (-4 *5 (-368 *2)) (-4 *2 (-170))
- (-5 *1 (-674 *2 *4 *5 *3)) (-4 *3 (-673 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1105 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2))
- (-4 *5 (-234 *3 *2)) (|has| *2 (-6 (-4375 "*"))) (-4 *2 (-1034)))))
-(((*1 *1 *1) (-5 *1 (-1046))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-631 (-2 (|:| |k| (-658 *3)) (|:| |c| *4))))
- (-5 *1 (-615 *3 *4 *5)) (-4 *3 (-836))
- (-4 *4 (-13 (-170) (-704 (-402 (-554))))) (-14 *5 (-906)))))
+ (-12 (-4 *4 (-550)) (-4 *5 (-982 *4)) (-4 *2 (-372 *4))
+ (-5 *1 (-501 *4 *5 *2 *3)) (-4 *3 (-372 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-679 *5)) (-4 *5 (-982 *4)) (-4 *4 (-550))
+ (-5 *2 (-679 *4)) (-5 *1 (-683 *4 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-550)) (-4 *4 (-982 *3)) (-5 *1 (-1215 *3 *4 *2))
+ (-4 *2 (-1222 *4)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-937 (-167 *4))) (-4 *4 (-170))
- (-4 *4 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-937 (-167 *5))) (-5 *4 (-906)) (-4 *5 (-170))
- (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *5))))
+ (-12 (-5 *2 (-1143 (-635 (-558)))) (-5 *1 (-873)) (-5 *3 (-558)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-679 (-406 (-942 (-558)))))
+ (-5 *2
+ (-635
+ (-2 (|:| |radval| (-315 (-558))) (|:| |radmult| (-558))
+ (|:| |radvect| (-635 (-679 (-315 (-558))))))))
+ (-5 *1 (-1021)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-635 (-1163))) (-4 *5 (-450))
+ (-5 *2 (-479 *4 *5)) (-5 *1 (-623 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1246 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204))
+ (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-762)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-635 (-635 *8))) (-5 *3 (-635 *8))
+ (-4 *8 (-939 *5 *7 *6)) (-4 *5 (-13 (-306) (-146)))
+ (-4 *6 (-13 (-841) (-606 (-1163)))) (-4 *7 (-784)) (-5 *2 (-112))
+ (-5 *1 (-914 *5 *6 *7 *8)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-635 (-479 *4 *5))) (-5 *3 (-635 (-855 *4)))
+ (-14 *4 (-635 (-1163))) (-4 *5 (-450)) (-5 *1 (-469 *4 *5 *6))
+ (-4 *6 (-450)))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *2 (-13 (-362) (-839))) (-5 *1 (-180 *2 *3))
+ (-4 *3 (-1222 (-168 *2)))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-937 *4)) (-4 *4 (-1034))
- (-4 *4 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-937 *5)) (-5 *4 (-906)) (-4 *5 (-1034))
- (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *5))))
+ (-12 (-4 *2 (-13 (-362) (-839))) (-5 *1 (-180 *2 *3))
+ (-4 *3 (-1222 (-168 *2))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-982 *2)) (-4 *2 (-550)) (-5 *1 (-141 *2 *4 *3))
+ (-4 *3 (-372 *4))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-402 (-937 *4))) (-4 *4 (-546))
- (-4 *4 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-402 (-937 *5))) (-5 *4 (-906)) (-4 *5 (-546))
- (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *5))))
+ (-12 (-4 *4 (-982 *2)) (-4 *2 (-550)) (-5 *1 (-501 *2 *4 *5 *3))
+ (-4 *5 (-372 *2)) (-4 *3 (-372 *4))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-402 (-937 (-167 *4)))) (-4 *4 (-546))
- (-4 *4 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-402 (-937 (-167 *5)))) (-5 *4 (-906))
- (-4 *5 (-546)) (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374)))
- (-5 *1 (-772 *5))))
+ (-12 (-5 *3 (-679 *4)) (-4 *4 (-982 *2)) (-4 *2 (-550))
+ (-5 *1 (-683 *2 *4))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-311 *4)) (-4 *4 (-546)) (-4 *4 (-836))
- (-4 *4 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-311 *5)) (-5 *4 (-906)) (-4 *5 (-546))
- (-4 *5 (-836)) (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374)))
- (-5 *1 (-772 *5))))
+ (-12 (-4 *4 (-982 *2)) (-4 *2 (-550)) (-5 *1 (-1215 *2 *4 *3))
+ (-4 *3 (-1222 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1143 (-635 (-558)))) (-5 *1 (-873))
+ (-5 *3 (-635 (-558)))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-311 (-167 *4))) (-4 *4 (-546)) (-4 *4 (-836))
- (-4 *4 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-311 (-167 *5))) (-5 *4 (-906)) (-4 *5 (-546))
- (-4 *5 (-836)) (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374)))
- (-5 *1 (-772 *5)))))
+ (-12 (-5 *2 (-1143 (-635 (-558)))) (-5 *1 (-873))
+ (-5 *3 (-635 (-558))))))
+(((*1 *1 *2) (-12 (-5 *1 (-1016 *2)) (-4 *2 (-1200)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-635 (-246 *4 *5))) (-5 *2 (-246 *4 *5))
+ (-14 *4 (-635 (-1163))) (-4 *5 (-450)) (-5 *1 (-623 *4 *5)))))
+(((*1 *2)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3))
+ (-4 *5 (-1222 (-406 *4))) (-5 *2 (-679 (-406 *4))))))
+(((*1 *1 *1 *1) (-4 *1 (-651))) ((*1 *1 *1 *1) (-5 *1 (-1107))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1039)) (-5 *2 (-635 *1)) (-4 *1 (-1121 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163))))
+ (-4 *6 (-784)) (-5 *2 (-635 (-635 (-558))))
+ (-5 *1 (-914 *4 *5 *6 *7)) (-5 *3 (-558)) (-4 *7 (-939 *4 *6 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-221))) (-5 *4 (-758)) (-5 *2 (-675 (-221)))
- (-5 *1 (-300)))))
+ (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-635 (-855 *5))) (-14 *5 (-635 (-1163))) (-4 *6 (-450))
+ (-5 *2 (-635 (-635 (-246 *5 *6)))) (-5 *1 (-469 *5 *6 *7))
+ (-5 *3 (-635 (-246 *5 *6))) (-4 *7 (-450)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-358) (-834))) (-5 *1 (-179 *3 *2))
- (-4 *2 (-1217 (-167 *3))))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020))
- (-5 *1 (-742)))))
+ (-12 (-4 *3 (-13 (-362) (-839))) (-5 *1 (-180 *3 *2))
+ (-4 *2 (-1222 (-168 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-310))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-762)) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911))
+ (-4 *4 (-1039)))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-762)) (-5 *1 (-773 *3)) (-4 *3 (-1039))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *1 (-953 *3 *2)) (-4 *2 (-130)) (-4 *3 (-550))
+ (-4 *3 (-1039)) (-4 *2 (-783))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-762)) (-5 *1 (-1159 *3)) (-4 *3 (-1039))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-961)) (-4 *2 (-130)) (-5 *1 (-1165 *3)) (-4 *3 (-550))
+ (-4 *3 (-1039))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-762)) (-5 *1 (-1219 *4 *3)) (-14 *4 (-1163))
+ (-4 *3 (-1039)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1143 (-635 (-558)))) (-5 *3 (-635 (-558)))
+ (-5 *1 (-873)))))
+(((*1 *2 *1) (-12 (-5 *1 (-1016 *2)) (-4 *2 (-1200)))))
+(((*1 *2 *3 *2 *2)
+ (-12 (-5 *2 (-635 (-479 *4 *5))) (-5 *3 (-855 *4))
+ (-14 *4 (-635 (-1163))) (-4 *5 (-450)) (-5 *1 (-623 *4 *5)))))
+(((*1 *2)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3))
+ (-4 *5 (-1222 (-406 *4))) (-5 *2 (-679 (-406 *4))))))
+(((*1 *1 *1 *1) (-4 *1 (-651))) ((*1 *1 *1 *1) (-5 *1 (-1107))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-836))
- (-5 *2 (-2 (|:| -1490 (-554)) (|:| |var| (-600 *1))))
- (-4 *1 (-425 *3)))))
-(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-554)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1195))
- (-4 *4 (-368 *2)) (-4 *5 (-368 *2))))
- ((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4374)) (-4 *1 (-283 *3 *2)) (-4 *3 (-1082))
- (-4 *2 (-1195)))))
-(((*1 *1 *1) (-12 (-5 *1 (-951 *2)) (-4 *2 (-952)))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-631 (-631 (-554)))) (-5 *1 (-956))
- (-5 *3 (-631 (-554))))))
+ (-12 (-4 *3 (-1039)) (-5 *2 (-635 *1)) (-4 *1 (-1121 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-635 (-635 *6))) (-4 *6 (-939 *3 *5 *4))
+ (-4 *3 (-13 (-306) (-146))) (-4 *4 (-13 (-841) (-606 (-1163))))
+ (-4 *5 (-784)) (-5 *1 (-914 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
+(((*1 *1) (-5 *1 (-466))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-112)) (-4 *4 (-13 (-362) (-839))) (-5 *2 (-417 *3))
+ (-5 *1 (-180 *4 *3)) (-4 *3 (-1222 (-168 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-362) (-839))) (-5 *2 (-417 *3))
+ (-5 *1 (-180 *4 *3)) (-4 *3 (-1222 (-168 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3)) (-4 *3 (-1200)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1143 (-635 (-558)))) (-5 *1 (-873))
+ (-5 *3 (-635 (-558))))))
+(((*1 *2 *1 *2) (-12 (-5 *1 (-1016 *2)) (-4 *2 (-1200)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-635 *6)) (-5 *4 (-635 (-246 *5 *6))) (-4 *6 (-450))
+ (-5 *2 (-246 *5 *6)) (-14 *5 (-635 (-1163))) (-5 *1 (-623 *5 *6)))))
+(((*1 *2)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3))
+ (-4 *5 (-1222 (-406 *4))) (-5 *2 (-679 (-406 *4))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-635 (-933 *4))) (-4 *1 (-1121 *4)) (-4 *4 (-1039))
+ (-5 *2 (-762)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-937 *4)) (-4 *4 (-1034)) (-4 *4 (-602 *2))
- (-5 *2 (-374)) (-5 *1 (-772 *4))))
+ (-12
+ (-5 *3
+ (-635
+ (-2 (|:| -3833 (-762))
+ (|:| |eqns|
+ (-635
+ (-2 (|:| |det| *7) (|:| |rows| (-635 (-558)))
+ (|:| |cols| (-635 (-558))))))
+ (|:| |fgb| (-635 *7)))))
+ (-4 *7 (-939 *4 *6 *5)) (-4 *4 (-13 (-306) (-146)))
+ (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784)) (-5 *2 (-762))
+ (-5 *1 (-914 *4 *5 *6 *7)))))
+(((*1 *1 *2 *3 *3 *4 *5)
+ (-12 (-5 *2 (-635 (-635 (-933 (-224))))) (-5 *3 (-635 (-864)))
+ (-5 *4 (-635 (-911))) (-5 *5 (-635 (-262))) (-5 *1 (-466))))
+ ((*1 *1 *2 *3 *3 *4)
+ (-12 (-5 *2 (-635 (-635 (-933 (-224))))) (-5 *3 (-635 (-864)))
+ (-5 *4 (-635 (-911))) (-5 *1 (-466))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 (-635 (-933 (-224))))) (-5 *1 (-466))))
+ ((*1 *1 *1) (-5 *1 (-466))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-362) (-839))) (-5 *1 (-180 *3 *2))
+ (-4 *2 (-1222 (-168 *3))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112))
+ (-5 *2
+ (-2 (|:| |contp| (-558))
+ (|:| -1849 (-635 (-2 (|:| |irr| *3) (|:| -1896 (-558)))))))
+ (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558)))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-937 *5)) (-5 *4 (-906)) (-4 *5 (-1034))
- (-4 *5 (-602 *2)) (-5 *2 (-374)) (-5 *1 (-772 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-402 (-937 *4))) (-4 *4 (-546))
- (-4 *4 (-602 *2)) (-5 *2 (-374)) (-5 *1 (-772 *4))))
+ (-12 (-5 *4 (-112))
+ (-5 *2
+ (-2 (|:| |contp| (-558))
+ (|:| -1849 (-635 (-2 (|:| |irr| *3) (|:| -1896 (-558)))))))
+ (-5 *1 (-1211 *3)) (-4 *3 (-1222 (-558))))))
+(((*1 *2 *2) (-12 (-5 *2 (-1143 (-635 (-558)))) (-5 *1 (-873)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-362)) (-5 *1 (-1015 *3 *2)) (-4 *2 (-646 *3))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-402 (-937 *5))) (-5 *4 (-906)) (-4 *5 (-546))
- (-4 *5 (-602 *2)) (-5 *2 (-374)) (-5 *1 (-772 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-311 *4)) (-4 *4 (-546)) (-4 *4 (-836))
- (-4 *4 (-602 *2)) (-5 *2 (-374)) (-5 *1 (-772 *4))))
+ (-12 (-4 *5 (-362)) (-5 *2 (-2 (|:| -2477 *3) (|:| -3483 (-635 *5))))
+ (-5 *1 (-1015 *5 *3)) (-5 *4 (-635 *5)) (-4 *3 (-646 *5)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1 (-933 (-224)) (-933 (-224)))) (-5 *3 (-635 (-262)))
+ (-5 *1 (-260))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-933 (-224)) (-933 (-224)))) (-5 *1 (-262))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-311 *5)) (-5 *4 (-906)) (-4 *5 (-546))
- (-4 *5 (-836)) (-4 *5 (-602 *2)) (-5 *2 (-374))
- (-5 *1 (-772 *5)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-631 *1)) (-4 *1 (-1048 *4 *5 *6)) (-4 *4 (-1034))
- (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780))
- (-4 *5 (-836)) (-5 *2 (-112))))
- ((*1 *2 *3 *1 *4)
- (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1188 *5 *6 *7 *3))
- (-4 *5 (-546)) (-4 *6 (-780)) (-4 *7 (-836))
- (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-142)))))
-(((*1 *2) (-12 (-5 *2 (-820 (-554))) (-5 *1 (-528))))
- ((*1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1082)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1140) (-761))) (-5 *1 (-114)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-1158)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1243)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-631 (-554))) (-5 *1 (-1092)) (-5 *3 (-554)))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-358)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1195))
- (-4 *4 (-368 *3)) (-4 *5 (-368 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4374)) (-4 *1 (-483 *3))
- (-4 *3 (-1195)))))
-(((*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-306))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-758)) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906))
- (-4 *4 (-1034)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-631 (-554))) (-5 *1 (-989 *3)) (-14 *3 (-554)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1158))
- (-4 *4 (-13 (-446) (-836) (-145) (-1023 (-554)) (-627 (-554))))
- (-5 *1 (-547 *4 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *4))))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4373)) (-4 *1 (-483 *4))
- (-4 *4 (-1195)) (-5 *2 (-112)))))
+ (-12 (-5 *4 (-635 (-479 *5 *6))) (-5 *3 (-479 *5 *6))
+ (-14 *5 (-635 (-1163))) (-4 *6 (-450)) (-5 *2 (-1246 *6))
+ (-5 *1 (-623 *5 *6)))))
(((*1 *2)
- (-12 (-4 *2 (-13 (-425 *3) (-987))) (-5 *1 (-271 *3 *2))
- (-4 *3 (-13 (-836) (-546)))))
- ((*1 *1)
- (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158)))
- (-14 *3 (-631 (-1158))) (-4 *4 (-382))))
- ((*1 *1) (-5 *1 (-471))) ((*1 *1) (-4 *1 (-1180))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-358)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3))
- (-5 *1 (-515 *3 *4 *5 *2)) (-4 *2 (-673 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-546)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4))
- (-4 *7 (-977 *4)) (-4 *2 (-673 *7 *8 *9))
- (-5 *1 (-516 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-673 *4 *5 *6))
- (-4 *8 (-368 *7)) (-4 *9 (-368 *7))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034))
- (-4 *3 (-368 *2)) (-4 *4 (-368 *2)) (-4 *2 (-358))))
- ((*1 *2 *2)
- (|partial| -12 (-4 *3 (-358)) (-4 *3 (-170)) (-4 *4 (-368 *3))
- (-4 *5 (-368 *3)) (-5 *1 (-674 *3 *4 *5 *2))
- (-4 *2 (-673 *3 *4 *5))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-675 *2)) (-4 *2 (-358)) (-4 *2 (-1034))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1105 *2 *3 *4 *5)) (-4 *3 (-1034))
- (-4 *4 (-234 *2 *3)) (-4 *5 (-234 *2 *3)) (-4 *3 (-358))))
- ((*1 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-836)) (-5 *1 (-1166 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-848)) (-5 *1 (-52)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1138 (-2 (|:| |k| (-554)) (|:| |c| *3))))
- (-5 *1 (-584 *3)) (-4 *3 (-1034)))))
-(((*1 *2) (-12 (-5 *2 (-631 (-758))) (-5 *1 (-1244))))
- ((*1 *2 *2) (-12 (-5 *2 (-631 (-758))) (-5 *1 (-1244)))))
-(((*1 *2 *1) (-12 (-4 *1 (-959)) (-5 *2 (-1076 (-221))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-554)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1034)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1158)) (-5 *2 (-631 (-950))) (-5 *1 (-286)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-5 *2 (-1246)) (-5 *1 (-809)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020))
- (-5 *1 (-744)))))
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3))
+ (-4 *5 (-1222 (-406 *4))) (-5 *2 (-679 (-406 *4))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-112)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1241 *4)) (-4 *4 (-627 (-554)))
- (-5 *2 (-1241 (-402 (-554)))) (-5 *1 (-1268 *4)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-413 *2)) (-4 *2 (-302)) (-5 *1 (-899 *2))))
+ (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-635
+ (-2 (|:| -3833 (-762))
+ (|:| |eqns|
+ (-635
+ (-2 (|:| |det| *7) (|:| |rows| (-635 (-558)))
+ (|:| |cols| (-635 (-558))))))
+ (|:| |fgb| (-635 *7)))))
+ (-4 *7 (-939 *4 *6 *5)) (-4 *4 (-13 (-306) (-146)))
+ (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784)) (-5 *2 (-762))
+ (-5 *1 (-914 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-635 (-933 (-224))))) (-5 *1 (-466)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-362) (-839)))
+ (-5 *2 (-635 (-2 (|:| -1849 (-635 *3)) (|:| -1984 *5))))
+ (-5 *1 (-180 *5 *3)) (-4 *3 (-1222 (-168 *5)))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-362) (-839)))
+ (-5 *2 (-635 (-2 (|:| -1849 (-635 *3)) (|:| -1984 *4))))
+ (-5 *1 (-180 *4 *3)) (-4 *3 (-1222 (-168 *4))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-348)) (-5 *2 (-417 *3)) (-5 *1 (-215 *4 *3))
+ (-4 *3 (-1222 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-762)) (-5 *2 (-417 *3)) (-5 *1 (-440 *3))
+ (-4 *3 (-1222 (-558)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-402 (-937 *5))) (-5 *4 (-1158))
- (-4 *5 (-13 (-302) (-145))) (-5 *2 (-52)) (-5 *1 (-900 *5))))
+ (-12 (-5 *4 (-635 (-762))) (-5 *2 (-417 *3)) (-5 *1 (-440 *3))
+ (-4 *3 (-1222 (-558)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-413 (-937 *6))) (-5 *5 (-1158)) (-5 *3 (-937 *6))
- (-4 *6 (-13 (-302) (-145))) (-5 *2 (-52)) (-5 *1 (-900 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-956)) (-5 *1 (-890 *3)) (-4 *3 (-1082)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-631 (-631 (-169)))))))
-(((*1 *2 *1) (-12 (-4 *1 (-940)) (-5 *2 (-1076 (-221)))))
- ((*1 *2 *1) (-12 (-4 *1 (-959)) (-5 *2 (-1076 (-221))))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-3 (-2 (|:| -1709 *7) (|:| |coeff| *7)) "failed") *7))
- (-5 *6 (-631 (-402 *8))) (-4 *7 (-358)) (-4 *8 (-1217 *7))
- (-5 *3 (-402 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-631 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-564 *7 *8)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-631 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2))
- (-4 *4 (-13 (-836) (-546))))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-758)) (-5 *2 (-1246)) (-5 *1 (-1242))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-758)) (-5 *2 (-1246)) (-5 *1 (-1243)))))
+ (-12 (-5 *4 (-635 (-762))) (-5 *5 (-762)) (-5 *2 (-417 *3))
+ (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-762)) (-5 *2 (-417 *3)) (-5 *1 (-440 *3))
+ (-4 *3 (-1222 (-558)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-417 *3)) (-5 *1 (-997 *3))
+ (-4 *3 (-1222 (-406 (-558))))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-417 *3)) (-5 *1 (-1211 *3)) (-4 *3 (-1222 (-558))))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1143 (-635 (-558)))) (-5 *1 (-873)) (-5 *3 (-558))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1143 (-635 (-558)))) (-5 *1 (-873)) (-5 *3 (-558))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1143 (-635 (-558)))) (-5 *1 (-873)) (-5 *3 (-558)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1049 (-1014 *4) (-1159 (-1014 *4)))) (-5 *3 (-853))
+ (-5 *1 (-1014 *4)) (-4 *4 (-13 (-839) (-362) (-1012))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-635 (-479 *3 *4))) (-14 *3 (-635 (-1163)))
+ (-4 *4 (-450)) (-5 *1 (-623 *3 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-848)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 (-758))
- (-14 *4 (-758)) (-4 *5 (-170)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-631 (-937 *4))) (-5 *3 (-631 (-1158))) (-4 *4 (-446))
- (-5 *1 (-903 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-809)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1107 (-554) (-600 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-977 *2)) (-4 *4 (-1217 *3)) (-4 *2 (-302))
- (-5 *1 (-408 *2 *3 *4 *5)) (-4 *5 (-13 (-404 *3 *4) (-1023 *3)))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-546)) (-4 *3 (-836)) (-5 *2 (-1107 *3 (-600 *1)))
- (-4 *1 (-425 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1107 (-554) (-600 (-489)))) (-5 *1 (-489))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-713) *4))
- (-5 *1 (-609 *3 *4 *2)) (-4 *3 (-38 *4))))
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3))
+ (-4 *5 (-1222 (-406 *4)))
+ (-5 *2 (-2 (|:| |num| (-1246 *4)) (|:| |den| *4))))))
+(((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-864)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-602 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-1087)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-867 *2)) (-4 *2 (-1200))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-869 *2)) (-4 *2 (-1200))))
((*1 *2 *1)
- (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-713) *4))
- (-5 *1 (-648 *3 *4 *2)) (-4 *3 (-704 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-546)))))
+ (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-635 (-933 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-635 (-933 *3))) (-4 *3 (-1039)) (-4 *1 (-1121 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-635 (-635 *3))) (-4 *1 (-1121 *3)) (-4 *3 (-1039))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-635 (-933 *3))) (-4 *1 (-1121 *3)) (-4 *3 (-1039)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-787))
- (-5 *3
- (-2 (|:| |xinit| (-221)) (|:| |xend| (-221))
- (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221)))
- (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221)))
- (|:| |abserr| (-221)) (|:| |relerr| (-221))))
- (-5 *2 (-1020)))))
-(((*1 *1) (-5 *1 (-1243))))
+ (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163))))
+ (-4 *6 (-784)) (-5 *2 (-635 *3)) (-5 *1 (-914 *4 *5 *6 *3))
+ (-4 *3 (-939 *4 *6 *5)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-635 (-1081 (-378)))) (-5 *3 (-635 (-262)))
+ (-5 *1 (-260))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 (-1081 (-378)))) (-5 *1 (-262))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1081 (-378)))) (-5 *1 (-466))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 (-1081 (-378)))) (-5 *1 (-466)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-675 *5))) (-5 *4 (-1241 *5)) (-4 *5 (-302))
- (-4 *5 (-1034)) (-5 *2 (-675 *5)) (-5 *1 (-1014 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-940)) (-5 *2 (-1076 (-221)))))
- ((*1 *2 *1) (-12 (-4 *1 (-959)) (-5 *2 (-1076 (-221))))))
+ (-12 (-5 *2 (-635 (-168 *4))) (-5 *1 (-154 *3 *4))
+ (-4 *3 (-1222 (-168 (-558)))) (-4 *4 (-13 (-362) (-839)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-362) (-839))) (-5 *2 (-635 (-168 *4)))
+ (-5 *1 (-180 *4 *3)) (-4 *3 (-1222 (-168 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-362) (-839))) (-5 *2 (-635 (-168 *4)))
+ (-5 *1 (-180 *4 *3)) (-4 *3 (-1222 (-168 *4))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1262 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034))
- (-5 *2 (-806 *3))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-832)) (-5 *1 (-1264 *3 *2)) (-4 *3 (-1034)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020))
- (-5 *1 (-734)))))
-(((*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-911)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-523)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 *6)) (-5 *4 (-631 (-1138 *7))) (-4 *6 (-836))
- (-4 *7 (-934 *5 (-525 *6) *6)) (-4 *5 (-1034))
- (-5 *2 (-1 (-1138 *7) *7)) (-5 *1 (-1108 *5 *6 *7)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *5 (-600 *4)) (-5 *6 (-1154 *4))
- (-4 *4 (-13 (-425 *7) (-27) (-1180)))
- (-4 *7 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3782 (-631 *4))))
- (-5 *1 (-550 *7 *4 *3)) (-4 *3 (-642 *4)) (-4 *3 (-1082))))
- ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
- (-12 (-5 *5 (-600 *4)) (-5 *6 (-402 (-1154 *4)))
- (-4 *4 (-13 (-425 *7) (-27) (-1180)))
- (-4 *7 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3782 (-631 *4))))
- (-5 *1 (-550 *7 *4 *3)) (-4 *3 (-642 *4)) (-4 *3 (-1082)))))
+ (-12 (-4 *1 (-1208 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-1237 *3)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-5 *1 (-867 *2)) (-4 *2 (-1200))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-5 *1 (-869 *2)) (-4 *2 (-1200))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-5 *1 (-872 *2)) (-4 *2 (-1200)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-1201 *3))
- (-5 *2 (-402 (-554))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1107 (-554) (-600 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-302)) (-4 *4 (-977 *3)) (-4 *5 (-1217 *4))
- (-5 *2 (-1241 *6)) (-5 *1 (-408 *3 *4 *5 *6))
- (-4 *6 (-13 (-404 *4 *5) (-1023 *4)))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1034)) (-4 *3 (-836)) (-5 *2 (-1107 *3 (-600 *1)))
- (-4 *1 (-425 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1107 (-554) (-600 (-489)))) (-5 *1 (-489))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-170)) (-4 *2 (-38 *3)) (-5 *1 (-609 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-713) *3))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-170)) (-4 *2 (-704 *3)) (-5 *1 (-648 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-713) *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-546)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-600 *3)) (-5 *5 (-1 (-1154 *3) (-1154 *3)))
- (-4 *3 (-13 (-27) (-425 *6))) (-4 *6 (-13 (-836) (-546)))
- (-5 *2 (-575 *3)) (-5 *1 (-541 *6 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-481)))))
-(((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-758)) (-5 *1 (-209 *4 *2)) (-14 *4 (-906))
- (-4 *2 (-1082)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-809)))))
-(((*1 *2 *1) (-12 (-5 *2 (-848)) (-5 *1 (-52)))))
-(((*1 *2 *3) (-12 (-5 *3 (-928 *2)) (-5 *1 (-967 *2)) (-4 *2 (-1034)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-780))
- (-4 *5 (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $))))) (-4 *6 (-546))
- (-5 *2 (-2 (|:| -1349 (-937 *6)) (|:| -3703 (-937 *6))))
- (-5 *1 (-719 *4 *5 *6 *3)) (-4 *3 (-934 (-402 (-937 *6)) *4 *5)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-631 (-1122 *4 *5))) (-5 *3 (-1 (-112) *5 *5))
- (-4 *4 (-13 (-1082) (-34))) (-4 *5 (-13 (-1082) (-34)))
- (-5 *1 (-1123 *4 *5))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-631 (-1122 *3 *4))) (-4 *3 (-13 (-1082) (-34)))
- (-4 *4 (-13 (-1082) (-34))) (-5 *1 (-1123 *3 *4)))))
-(((*1 *2 *2) (-12 (-5 *1 (-946 *2)) (-4 *2 (-539)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-631 (-758))) (-5 *3 (-169)) (-5 *1 (-1146 *4 *5))
- (-14 *4 (-906)) (-4 *5 (-1034)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2))
- (-4 *2 (-13 (-425 *3) (-1180))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-275))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-877 *3)) (-4 *3 (-1082))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034))
- (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1264 *3 *4)) (-4 *3 (-1034))
- (-4 *4 (-832)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1229 *3)) (-4 *3 (-1195)) (-5 *2 (-758)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-554)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-368 *2))
- (-4 *5 (-368 *2)) (-4 *2 (-1195))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-758)) (-4 *2 (-1082)) (-5 *1 (-209 *4 *2))
- (-14 *4 (-906))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-283 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1195))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-554)) (-4 *1 (-1037 *4 *5 *2 *6 *7))
- (-4 *6 (-234 *5 *2)) (-4 *7 (-234 *4 *2)) (-4 *2 (-1034)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-758)) (-5 *4 (-1241 *2)) (-4 *5 (-302))
- (-4 *6 (-977 *5)) (-4 *2 (-13 (-404 *6 *7) (-1023 *6)))
- (-5 *1 (-408 *5 *6 *7 *2)) (-4 *7 (-1217 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-844))))
- ((*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-950))))
- ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-974))))
- ((*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1195))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1082) (-34))) (-5 *1 (-1122 *2 *3))
- (-4 *3 (-13 (-1082) (-34))))))
-(((*1 *2 *1) (-12 (-5 *2 (-631 (-1163))) (-5 *1 (-181)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9))
- (-4 *9 (-1048 *6 *7 *8)) (-4 *6 (-546)) (-4 *7 (-780))
- (-4 *8 (-836)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2292 (-631 *9))))
- (-5 *3 (-631 *9)) (-4 *1 (-1188 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1048 *5 *6 *7))
- (-4 *5 (-546)) (-4 *6 (-780)) (-4 *7 (-836))
- (-5 *2 (-2 (|:| |bas| *1) (|:| -2292 (-631 *8))))
- (-5 *3 (-631 *8)) (-4 *1 (-1188 *5 *6 *7 *8)))))
-(((*1 *2 *3) (-12 (-5 *3 (-827)) (-5 *2 (-1020)) (-5 *1 (-826))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-311 (-374)))) (-5 *4 (-631 (-374)))
- (-5 *2 (-1020)) (-5 *1 (-826)))))
-(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
- (-12 (-5 *5 (-675 (-221))) (-5 *6 (-675 (-554))) (-5 *3 (-554))
- (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-739)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-321 *3 *4)) (-4 *3 (-1034))
- (-4 *4 (-779)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1034))
- (-4 *2 (-13 (-399) (-1023 *4) (-358) (-1180) (-279)))
- (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1217 *4))))
+ (|partial| -12 (-5 *2 (-1049 (-1014 *3) (-1159 (-1014 *3))))
+ (-5 *1 (-1014 *3)) (-4 *3 (-13 (-839) (-362) (-1012))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-635 (-479 *5 *6))) (-5 *4 (-855 *5))
+ (-14 *5 (-635 (-1163))) (-5 *2 (-479 *5 *6)) (-5 *1 (-623 *5 *6))
+ (-4 *6 (-450))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-906)) (-4 *5 (-1034))
- (-4 *2 (-13 (-399) (-1023 *5) (-358) (-1180) (-279)))
- (-5 *1 (-437 *5 *3 *2)) (-4 *3 (-1217 *5)))))
+ (-12 (-5 *3 (-635 (-479 *5 *6))) (-5 *4 (-855 *5))
+ (-14 *5 (-635 (-1163))) (-5 *2 (-479 *5 *6)) (-5 *1 (-623 *5 *6))
+ (-4 *6 (-450)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-368 *3))
- (-4 *5 (-368 *3)) (-5 *2 (-554))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034))
- (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-554)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-1195)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))))
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3))
+ (-4 *5 (-1222 (-406 *4)))
+ (-5 *2 (-2 (|:| |num| (-1246 *4)) (|:| |den| *4))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1108 *2)) (-4 *2 (-1200)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1195))))
+ (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1200))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-937 (-374))) (-5 *1 (-334 *3 *4 *5))
- (-4 *5 (-1023 (-374))) (-14 *3 (-631 (-1158)))
- (-14 *4 (-631 (-1158))) (-4 *5 (-382))))
+ (|partial| -12 (-5 *2 (-942 (-378))) (-5 *1 (-338 *3 *4 *5))
+ (-4 *5 (-1028 (-378))) (-14 *3 (-635 (-1163)))
+ (-14 *4 (-635 (-1163))) (-4 *5 (-386))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-402 (-937 (-374)))) (-5 *1 (-334 *3 *4 *5))
- (-4 *5 (-1023 (-374))) (-14 *3 (-631 (-1158)))
- (-14 *4 (-631 (-1158))) (-4 *5 (-382))))
+ (|partial| -12 (-5 *2 (-406 (-942 (-378)))) (-5 *1 (-338 *3 *4 *5))
+ (-4 *5 (-1028 (-378))) (-14 *3 (-635 (-1163)))
+ (-14 *4 (-635 (-1163))) (-4 *5 (-386))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-311 (-374))) (-5 *1 (-334 *3 *4 *5))
- (-4 *5 (-1023 (-374))) (-14 *3 (-631 (-1158)))
- (-14 *4 (-631 (-1158))) (-4 *5 (-382))))
+ (|partial| -12 (-5 *2 (-315 (-378))) (-5 *1 (-338 *3 *4 *5))
+ (-4 *5 (-1028 (-378))) (-14 *3 (-635 (-1163)))
+ (-14 *4 (-635 (-1163))) (-4 *5 (-386))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-937 (-554))) (-5 *1 (-334 *3 *4 *5))
- (-4 *5 (-1023 (-554))) (-14 *3 (-631 (-1158)))
- (-14 *4 (-631 (-1158))) (-4 *5 (-382))))
+ (|partial| -12 (-5 *2 (-942 (-558))) (-5 *1 (-338 *3 *4 *5))
+ (-4 *5 (-1028 (-558))) (-14 *3 (-635 (-1163)))
+ (-14 *4 (-635 (-1163))) (-4 *5 (-386))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-402 (-937 (-554)))) (-5 *1 (-334 *3 *4 *5))
- (-4 *5 (-1023 (-554))) (-14 *3 (-631 (-1158)))
- (-14 *4 (-631 (-1158))) (-4 *5 (-382))))
+ (|partial| -12 (-5 *2 (-406 (-942 (-558)))) (-5 *1 (-338 *3 *4 *5))
+ (-4 *5 (-1028 (-558))) (-14 *3 (-635 (-1163)))
+ (-14 *4 (-635 (-1163))) (-4 *5 (-386))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-311 (-554))) (-5 *1 (-334 *3 *4 *5))
- (-4 *5 (-1023 (-554))) (-14 *3 (-631 (-1158)))
- (-14 *4 (-631 (-1158))) (-4 *5 (-382))))
+ (|partial| -12 (-5 *2 (-315 (-558))) (-5 *1 (-338 *3 *4 *5))
+ (-4 *5 (-1028 (-558))) (-14 *3 (-635 (-1163)))
+ (-14 *4 (-635 (-1163))) (-4 *5 (-386))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1158)) (-5 *1 (-334 *3 *4 *5))
- (-14 *3 (-631 *2)) (-14 *4 (-631 *2)) (-4 *5 (-382))))
+ (|partial| -12 (-5 *2 (-1163)) (-5 *1 (-338 *3 *4 *5))
+ (-14 *3 (-635 *2)) (-14 *4 (-635 *2)) (-4 *5 (-386))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-311 *5)) (-4 *5 (-382))
- (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-631 (-1158)))
- (-14 *4 (-631 (-1158)))))
+ (|partial| -12 (-5 *2 (-315 *5)) (-4 *5 (-386))
+ (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 (-1163)))
+ (-14 *4 (-635 (-1163)))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-675 (-402 (-937 (-554))))) (-4 *1 (-379))))
+ (|partial| -12 (-5 *2 (-679 (-406 (-942 (-558))))) (-4 *1 (-383))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-675 (-402 (-937 (-374))))) (-4 *1 (-379))))
+ (|partial| -12 (-5 *2 (-679 (-406 (-942 (-378))))) (-4 *1 (-383))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-675 (-937 (-554)))) (-4 *1 (-379))))
+ (|partial| -12 (-5 *2 (-679 (-942 (-558)))) (-4 *1 (-383))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-675 (-937 (-374)))) (-4 *1 (-379))))
+ (|partial| -12 (-5 *2 (-679 (-942 (-378)))) (-4 *1 (-383))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-675 (-311 (-554)))) (-4 *1 (-379))))
+ (|partial| -12 (-5 *2 (-679 (-315 (-558)))) (-4 *1 (-383))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-675 (-311 (-374)))) (-4 *1 (-379))))
+ (|partial| -12 (-5 *2 (-679 (-315 (-378)))) (-4 *1 (-383))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-402 (-937 (-554)))) (-4 *1 (-391))))
+ (|partial| -12 (-5 *2 (-406 (-942 (-558)))) (-4 *1 (-395))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-402 (-937 (-374)))) (-4 *1 (-391))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-937 (-554))) (-4 *1 (-391))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-937 (-374))) (-4 *1 (-391))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-311 (-554))) (-4 *1 (-391))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-311 (-374))) (-4 *1 (-391))))
+ (|partial| -12 (-5 *2 (-406 (-942 (-378)))) (-4 *1 (-395))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-942 (-558))) (-4 *1 (-395))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-942 (-378))) (-4 *1 (-395))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-558))) (-4 *1 (-395))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-378))) (-4 *1 (-395))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1241 (-402 (-937 (-554))))) (-4 *1 (-435))))
+ (|partial| -12 (-5 *2 (-1246 (-406 (-942 (-558))))) (-4 *1 (-439))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1241 (-402 (-937 (-374))))) (-4 *1 (-435))))
+ (|partial| -12 (-5 *2 (-1246 (-406 (-942 (-378))))) (-4 *1 (-439))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1241 (-937 (-554)))) (-4 *1 (-435))))
+ (|partial| -12 (-5 *2 (-1246 (-942 (-558)))) (-4 *1 (-439))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1241 (-937 (-374)))) (-4 *1 (-435))))
+ (|partial| -12 (-5 *2 (-1246 (-942 (-378)))) (-4 *1 (-439))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1241 (-311 (-554)))) (-4 *1 (-435))))
+ (|partial| -12 (-5 *2 (-1246 (-315 (-558)))) (-4 *1 (-439))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1241 (-311 (-374)))) (-4 *1 (-435))))
+ (|partial| -12 (-5 *2 (-1246 (-315 (-378)))) (-4 *1 (-439))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-344)) (-4 *5 (-324 *4)) (-4 *6 (-1217 *5))
- (-5 *2 (-1154 (-1154 *4))) (-5 *1 (-764 *4 *5 *6 *3 *7))
- (-4 *3 (-1217 *6)) (-14 *7 (-906))))
+ (|partial| -12 (-4 *4 (-348)) (-4 *5 (-328 *4)) (-4 *6 (-1222 *5))
+ (-5 *2 (-1159 (-1159 *4))) (-5 *1 (-768 *4 *5 *6 *3 *7))
+ (-4 *3 (-1222 *6)) (-14 *7 (-911))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5))
- (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836))
- (-4 *1 (-961 *3 *4 *5 *6))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-1023 *2)) (-4 *2 (-1195))))
+ (|partial| -12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5))
+ (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841))
+ (-4 *1 (-966 *3 *4 *5 *6))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-1028 *2)) (-4 *2 (-1200))))
((*1 *1 *2)
- (|partial| -3994
- (-12 (-5 *2 (-937 *3))
- (-12 (-4081 (-4 *3 (-38 (-402 (-554)))))
- (-4081 (-4 *3 (-38 (-554)))) (-4 *5 (-602 (-1158))))
- (-4 *3 (-1034)) (-4 *1 (-1048 *3 *4 *5)) (-4 *4 (-780))
- (-4 *5 (-836)))
- (-12 (-5 *2 (-937 *3))
- (-12 (-4081 (-4 *3 (-539))) (-4081 (-4 *3 (-38 (-402 (-554)))))
- (-4 *3 (-38 (-554))) (-4 *5 (-602 (-1158))))
- (-4 *3 (-1034)) (-4 *1 (-1048 *3 *4 *5)) (-4 *4 (-780))
- (-4 *5 (-836)))
- (-12 (-5 *2 (-937 *3))
- (-12 (-4081 (-4 *3 (-977 (-554)))) (-4 *3 (-38 (-402 (-554))))
- (-4 *5 (-602 (-1158))))
- (-4 *3 (-1034)) (-4 *1 (-1048 *3 *4 *5)) (-4 *4 (-780))
- (-4 *5 (-836)))))
+ (|partial| -3998
+ (-12 (-5 *2 (-942 *3))
+ (-12 (-3304 (-4 *3 (-38 (-406 (-558)))))
+ (-3304 (-4 *3 (-38 (-558)))) (-4 *5 (-606 (-1163))))
+ (-4 *3 (-1039)) (-4 *1 (-1053 *3 *4 *5)) (-4 *4 (-784))
+ (-4 *5 (-841)))
+ (-12 (-5 *2 (-942 *3))
+ (-12 (-3304 (-4 *3 (-543))) (-3304 (-4 *3 (-38 (-406 (-558)))))
+ (-4 *3 (-38 (-558))) (-4 *5 (-606 (-1163))))
+ (-4 *3 (-1039)) (-4 *1 (-1053 *3 *4 *5)) (-4 *4 (-784))
+ (-4 *5 (-841)))
+ (-12 (-5 *2 (-942 *3))
+ (-12 (-3304 (-4 *3 (-982 (-558)))) (-4 *3 (-38 (-406 (-558))))
+ (-4 *5 (-606 (-1163))))
+ (-4 *3 (-1039)) (-4 *1 (-1053 *3 *4 *5)) (-4 *4 (-784))
+ (-4 *5 (-841)))))
((*1 *1 *2)
- (|partial| -3994
- (-12 (-5 *2 (-937 (-554))) (-4 *1 (-1048 *3 *4 *5))
- (-12 (-4081 (-4 *3 (-38 (-402 (-554))))) (-4 *3 (-38 (-554)))
- (-4 *5 (-602 (-1158))))
- (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)))
- (-12 (-5 *2 (-937 (-554))) (-4 *1 (-1048 *3 *4 *5))
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *5 (-602 (-1158))))
- (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)))))
+ (|partial| -3998
+ (-12 (-5 *2 (-942 (-558))) (-4 *1 (-1053 *3 *4 *5))
+ (-12 (-3304 (-4 *3 (-38 (-406 (-558))))) (-4 *3 (-38 (-558)))
+ (-4 *5 (-606 (-1163))))
+ (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)))
+ (-12 (-5 *2 (-942 (-558))) (-4 *1 (-1053 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *5 (-606 (-1163))))
+ (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-937 (-402 (-554)))) (-4 *1 (-1048 *3 *4 *5))
- (-4 *3 (-38 (-402 (-554)))) (-4 *5 (-602 (-1158)))
- (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)))))
-(((*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-809)))))
+ (|partial| -12 (-5 *2 (-942 (-406 (-558)))) (-4 *1 (-1053 *3 *4 *5))
+ (-4 *3 (-38 (-406 (-558)))) (-4 *5 (-606 (-1163)))
+ (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-631 *4)) (-4 *4 (-358)) (-5 *2 (-675 *4))
- (-5 *1 (-801 *4 *5)) (-4 *5 (-642 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 *5)) (-5 *4 (-758)) (-4 *5 (-358))
- (-5 *2 (-675 *5)) (-5 *1 (-801 *5 *6)) (-4 *6 (-642 *5)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-318 *3 *4)) (-4 *3 (-1082))
- (-4 *4 (-130)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-358)) (-5 *1 (-753 *2 *3)) (-4 *2 (-695 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-358)))))
+ (-12
+ (-5 *3
+ (-2 (|:| -3683 (-679 (-406 (-942 *4))))
+ (|:| |vec| (-635 (-406 (-942 *4)))) (|:| -3833 (-762))
+ (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558)))))
+ (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163))))
+ (-4 *6 (-784))
+ (-5 *2
+ (-2 (|:| |partsol| (-1246 (-406 (-942 *4))))
+ (|:| -2660 (-635 (-1246 (-406 (-942 *4)))))))
+ (-5 *1 (-914 *4 *5 *6 *7)) (-4 *7 (-939 *4 *6 *5)))))
+(((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-933 (-224))) (-5 *4 (-864)) (-5 *5 (-911))
+ (-5 *2 (-1251)) (-5 *1 (-466))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-933 (-224))) (-5 *2 (-1251)) (-5 *1 (-466))))
+ ((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-635 (-933 (-224)))) (-5 *4 (-864)) (-5 *5 (-911))
+ (-5 *2 (-1251)) (-5 *1 (-466)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-631 (-243 *4 *5))) (-5 *2 (-243 *4 *5))
- (-14 *4 (-631 (-1158))) (-4 *5 (-446)) (-5 *1 (-619 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1031 *4 *5)) (-4 *4 (-13 (-834) (-302) (-145) (-1007)))
- (-14 *5 (-631 (-1158))) (-5 *2 (-631 (-631 (-1009 (-402 *4)))))
- (-5 *1 (-1267 *4 *5 *6)) (-14 *6 (-631 (-1158)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-631 (-937 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-834) (-302) (-145) (-1007)))
- (-5 *2 (-631 (-631 (-1009 (-402 *5))))) (-5 *1 (-1267 *5 *6 *7))
- (-14 *6 (-631 (-1158))) (-14 *7 (-631 (-1158)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-937 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-834) (-302) (-145) (-1007)))
- (-5 *2 (-631 (-631 (-1009 (-402 *5))))) (-5 *1 (-1267 *5 *6 *7))
- (-14 *6 (-631 (-1158))) (-14 *7 (-631 (-1158)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-631 (-937 *4)))
- (-4 *4 (-13 (-834) (-302) (-145) (-1007)))
- (-5 *2 (-631 (-631 (-1009 (-402 *4))))) (-5 *1 (-1267 *4 *5 *6))
- (-14 *5 (-631 (-1158))) (-14 *6 (-631 (-1158))))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4373)) (-4 *1 (-483 *3)) (-4 *3 (-1195))
- (-4 *3 (-1082)) (-5 *2 (-758))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4373)) (-4 *1 (-483 *4))
- (-4 *4 (-1195)) (-5 *2 (-758)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-358)) (-4 *3 (-1034))
- (-5 *1 (-1142 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-358)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3))
- (-5 *1 (-515 *3 *4 *5 *2)) (-4 *2 (-673 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-546)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4))
- (-4 *7 (-977 *4)) (-4 *2 (-673 *7 *8 *9))
- (-5 *1 (-516 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-673 *4 *5 *6))
- (-4 *8 (-368 *7)) (-4 *9 (-368 *7))))
+ (-12 (-5 *2 (-635 *3)) (-4 *3 (-306)) (-5 *1 (-178 *3)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-117 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-558))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-861 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-861 *2)) (-14 *2 (-558))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-558)) (-14 *3 *2) (-5 *1 (-862 *3 *4))
+ (-4 *4 (-859 *3))))
((*1 *1 *1)
- (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2))
- (-4 *4 (-368 *2)) (-4 *2 (-302))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-302)) (-4 *3 (-170)) (-4 *4 (-368 *3))
- (-4 *5 (-368 *3)) (-5 *1 (-674 *3 *4 *5 *2))
- (-4 *2 (-673 *3 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-675 *3)) (-4 *3 (-302)) (-5 *1 (-686 *3))))
+ (-12 (-14 *2 (-558)) (-5 *1 (-862 *2 *3)) (-4 *3 (-859 *2))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-558)) (-4 *1 (-1208 *3 *4)) (-4 *3 (-1039))
+ (-4 *4 (-1237 *3))))
((*1 *1 *1)
- (-12 (-4 *1 (-1037 *2 *3 *4 *5 *6)) (-4 *4 (-1034))
- (-4 *5 (-234 *3 *4)) (-4 *6 (-234 *2 *4)) (-4 *4 (-302)))))
-(((*1 *2)
- (-12 (-4 *3 (-780)) (-4 *4 (-836)) (-4 *2 (-894))
- (-5 *1 (-451 *3 *4 *2 *5)) (-4 *5 (-934 *2 *3 *4))))
- ((*1 *2)
- (-12 (-4 *3 (-780)) (-4 *4 (-836)) (-4 *2 (-894))
- (-5 *1 (-891 *2 *3 *4 *5)) (-4 *5 (-934 *2 *3 *4))))
- ((*1 *2) (-12 (-4 *2 (-894)) (-5 *1 (-892 *2 *3)) (-4 *3 (-1217 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-906)) (-5 *2 (-1154 *3)) (-5 *1 (-1169 *3))
- (-4 *3 (-358)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))))
+ (-12 (-4 *1 (-1208 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-1237 *2)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-872 *2)) (-4 *2 (-1200)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-906)) (-5 *2 (-1154 *4)) (-5 *1 (-352 *4))
- (-4 *4 (-344)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-928 *3)) (-4 *3 (-13 (-358) (-1180) (-987)))
- (-5 *1 (-174 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-582 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-4 *1 (-1082)) (-5 *2 (-1102)))))
-(((*1 *2 *3) (-12 (-5 *3 (-928 *2)) (-5 *1 (-967 *2)) (-4 *2 (-1034)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1082)) (-4 *5 (-1082))
- (-4 *6 (-1082)) (-5 *2 (-1 *6 *5)) (-5 *1 (-670 *4 *5 *6)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-358)) (-4 *3 (-1034))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4137 *1)))
- (-4 *1 (-838 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-877 *3)) (-4 *3 (-1082))))
- ((*1 *2 *1) (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1195)) (-5 *2 (-758)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-1092)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1241 (-758))) (-5 *1 (-661 *3)) (-4 *3 (-1082)))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4))
- (-4 *3 (-362 *4))))
- ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
-(((*1 *1) (-5 *1 (-1161))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-951 *3)) (-4 *3 (-952)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-554)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-758)) (-4 *5 (-170))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-554)) (-14 *3 (-758))
- (-4 *4 (-170))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2))
- (-4 *4 (-368 *2))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-1034)) (-4 *1 (-673 *3 *2 *4)) (-4 *2 (-368 *3))
- (-4 *4 (-368 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-758)) (-4 *3 (-1034)))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-758)) (-4 *5 (-358)) (-5 *2 (-172 *6))
- (-5 *1 (-852 *5 *4 *6)) (-4 *4 (-1232 *5)) (-4 *6 (-1217 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-546)) (-4 *2 (-539))))
- ((*1 *1 *1) (-4 *1 (-1043))))
-(((*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1154 *4)) (-4 *4 (-344)) (-5 *2 (-112))
- (-5 *1 (-352 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1154 *9)) (-5 *4 (-631 *7)) (-4 *7 (-836))
- (-4 *9 (-934 *8 *6 *7)) (-4 *6 (-780)) (-4 *8 (-302))
- (-5 *2 (-631 (-758))) (-5 *1 (-729 *6 *7 *8 *9)) (-5 *5 (-758)))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-425 *3) (-987))) (-5 *1 (-271 *3 *2))
- (-4 *3 (-13 (-836) (-546))))))
+ (-12
+ (-5 *2
+ (-635 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))))
+ (-5 *1 (-1010 *3)) (-4 *3 (-1222 (-558)))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-635 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))))
+ (-5 *1 (-1010 *3)) (-4 *3 (-1222 (-558)))
+ (-5 *4 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-635 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))))
+ (-5 *1 (-1010 *3)) (-4 *3 (-1222 (-558))) (-5 *4 (-406 (-558)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-406 (-558)))
+ (-5 *2 (-635 (-2 (|:| -3417 *5) (|:| -3425 *5)))) (-5 *1 (-1010 *3))
+ (-4 *3 (-1222 (-558))) (-5 *4 (-2 (|:| -3417 *5) (|:| -3425 *5)))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *2
+ (-635 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))))
+ (-5 *1 (-1011 *3)) (-4 *3 (-1222 (-406 (-558))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-635 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))))
+ (-5 *1 (-1011 *3)) (-4 *3 (-1222 (-406 (-558))))
+ (-5 *4 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-406 (-558)))
+ (-5 *2 (-635 (-2 (|:| -3417 *4) (|:| -3425 *4)))) (-5 *1 (-1011 *3))
+ (-4 *3 (-1222 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-406 (-558)))
+ (-5 *2 (-635 (-2 (|:| -3417 *5) (|:| -3425 *5)))) (-5 *1 (-1011 *3))
+ (-4 *3 (-1222 *5)) (-5 *4 (-2 (|:| -3417 *5) (|:| -3425 *5))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1217 (-554)))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1217 (-554))))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780))
- (-4 *4 (-836)) (-4 *2 (-446)))))
-(((*1 *2 *1) (-12 (-5 *2 (-209 4 (-129))) (-5 *1 (-569)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1034)) (-5 *1 (-879 *2 *3)) (-4 *2 (-1217 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))))
-(((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-631 (-1158))) (-4 *4 (-1082))
- (-4 *5 (-13 (-1034) (-871 *4) (-836) (-602 (-877 *4))))
- (-5 *1 (-1058 *4 *5 *2))
- (-4 *2 (-13 (-425 *5) (-871 *4) (-602 (-877 *4))))))
- ((*1 *1 *2 *2)
- (-12 (-4 *3 (-1082))
- (-4 *4 (-13 (-1034) (-871 *3) (-836) (-602 (-877 *3))))
- (-5 *1 (-1058 *3 *4 *2))
- (-4 *2 (-13 (-425 *4) (-871 *3) (-602 (-877 *3)))))))
+ (-12 (-5 *3 (-635 (-479 *4 *5))) (-14 *4 (-635 (-1163)))
+ (-4 *5 (-450)) (-5 *2 (-635 (-246 *4 *5))) (-5 *1 (-623 *4 *5)))))
(((*1 *1 *2 *3)
- (-12 (-5 *1 (-858 *2 *3)) (-4 *2 (-1195)) (-4 *3 (-1195)))))
+ (-12 (-5 *2 (-1246 *3)) (-4 *3 (-1222 *4)) (-4 *4 (-1204))
+ (-4 *1 (-341 *4 *3 *5)) (-4 *5 (-1222 (-406 *3))))))
+(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1087))))
+ ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1087)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-544 *3)) (-4 *3 (-13 (-399) (-1180))) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-834)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1051 *4 *3)) (-4 *4 (-13 (-834) (-358)))
- (-4 *3 (-1217 *4)) (-5 *2 (-112)))))
-(((*1 *2 *2) (-12 (-5 *2 (-631 (-675 (-311 (-554))))) (-5 *1 (-1016)))))
+ (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-635 (-933 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-635 (-933 *3))) (-4 *3 (-1039)) (-4 *1 (-1121 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-635 (-635 *3))) (-4 *1 (-1121 *3)) (-4 *3 (-1039))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-635 (-933 *3))) (-4 *1 (-1121 *3)) (-4 *3 (-1039)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
+(((*1 *2 *2 *3)
+ (-12
+ (-5 *2
+ (-2 (|:| |partsol| (-1246 (-406 (-942 *4))))
+ (|:| -2660 (-635 (-1246 (-406 (-942 *4)))))))
+ (-5 *3 (-635 *7)) (-4 *4 (-13 (-306) (-146)))
+ (-4 *7 (-939 *4 *6 *5)) (-4 *5 (-13 (-841) (-606 (-1163))))
+ (-4 *6 (-784)) (-5 *1 (-914 *4 *5 *6 *7)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-933 (-224))) (-5 *2 (-1251)) (-5 *1 (-466)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-635 *3)) (-4 *3 (-306)) (-5 *1 (-178 *3)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1208 *3 *2)) (-4 *3 (-1039))
+ (-4 *2 (-1237 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-475 *4 *5)) (-14 *4 (-631 (-1158))) (-4 *5 (-1034))
- (-5 *2 (-937 *5)) (-5 *1 (-929 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1190 *2)) (-4 *2 (-959)))))
-(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
- (-12 (-5 *3 (-554)) (-5 *5 (-112)) (-5 *6 (-675 (-221)))
- (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-77 OBJFUN))))
- (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-740)))))
+ (-12 (-5 *3 (-1145)) (-5 *2 (-635 (-1168))) (-5 *1 (-870)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221)))
- (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221))
- (|:| |relerr| (-221))))
+ (-635 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558))))))
+ (-5 *2 (-635 (-406 (-558)))) (-5 *1 (-1010 *4))
+ (-4 *4 (-1222 (-558))))))
+(((*1 *2 *3)
+ (-12 (-14 *4 (-635 (-1163))) (-4 *5 (-450))
(-5 *2
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular| "There are singularities at both end points")
- (|:| |notEvaluated| "End point continuity not yet evaluated")))
- (-5 *1 (-188)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1246)) (-5 *1 (-809)))))
+ (-2 (|:| |glbase| (-635 (-246 *4 *5))) (|:| |glval| (-635 (-558)))))
+ (-5 *1 (-623 *4 *5)) (-5 *3 (-635 (-246 *4 *5))))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-750)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-341 *4 *5 *6)) (-4 *4 (-1204))
+ (-4 *5 (-1222 *4)) (-4 *6 (-1222 (-406 *5)))
+ (-5 *2 (-2 (|:| |num| (-679 *5)) (|:| |den| *5))))))
+(((*1 *1 *1) (-5 *1 (-48)))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1200))
+ (-4 *2 (-1200)) (-5 *1 (-58 *5 *2))))
+ ((*1 *2 *3 *1 *2 *2)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1087)) (|has| *1 (-6 -4382))
+ (-4 *1 (-150 *2)) (-4 *2 (-1200))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4382)) (-4 *1 (-150 *2))
+ (-4 *2 (-1200))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4382)) (-4 *1 (-150 *2))
+ (-4 *2 (-1200))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1039))
+ (-5 *2 (-2 (|:| -2574 (-1159 *4)) (|:| |deg| (-911))))
+ (-5 *1 (-220 *4 *5)) (-5 *3 (-1159 *4)) (-4 *5 (-13 (-550) (-841)))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-239 *5 *6)) (-14 *5 (-762))
+ (-4 *6 (-1200)) (-4 *2 (-1200)) (-5 *1 (-238 *5 *6 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *4 (-171)) (-5 *1 (-288 *4 *2 *3 *5 *6 *7))
+ (-4 *2 (-1222 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-315 *2)) (-4 *2 (-550)) (-4 *2 (-841))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-334 *2 *3 *4 *5)) (-4 *2 (-362)) (-4 *3 (-1222 *2))
+ (-4 *4 (-1222 (-406 *3))) (-4 *5 (-341 *2 *3 *4))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1200)) (-4 *2 (-1200))
+ (-5 *1 (-370 *5 *4 *2 *6)) (-4 *4 (-372 *5)) (-4 *6 (-372 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1087)) (-4 *2 (-1087))
+ (-5 *1 (-422 *5 *4 *2 *6)) (-4 *4 (-424 *5)) (-4 *6 (-424 *2))))
+ ((*1 *1 *1) (-5 *1 (-493)))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-635 *5)) (-4 *5 (-1200))
+ (-4 *2 (-1200)) (-5 *1 (-633 *5 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1039)) (-4 *2 (-1039))
+ (-4 *6 (-372 *5)) (-4 *7 (-372 *5)) (-4 *8 (-372 *2))
+ (-4 *9 (-372 *2)) (-5 *1 (-675 *5 *6 *7 *4 *2 *8 *9 *10))
+ (-4 *4 (-677 *5 *6 *7)) (-4 *10 (-677 *2 *8 *9))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-702 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1039)) (-5 *1 (-703 *3 *2)) (-4 *2 (-1222 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-706 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-406 *4)) (-4 *4 (-1222 *3)) (-4 *3 (-362))
+ (-4 *3 (-171)) (-4 *1 (-715 *3 *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-171)) (-4 *1 (-715 *3 *2)) (-4 *2 (-1222 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-948 *5)) (-4 *5 (-1200))
+ (-4 *2 (-1200)) (-5 *1 (-947 *5 *2))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841))
+ (-5 *1 (-1024 *3 *4 *5 *2 *6)) (-4 *2 (-939 *3 *4 *5))
+ (-14 *6 (-635 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1039)) (-4 *2 (-1039))
+ (-14 *5 (-762)) (-14 *6 (-762)) (-4 *8 (-237 *6 *7))
+ (-4 *9 (-237 *5 *7)) (-4 *10 (-237 *6 *2)) (-4 *11 (-237 *5 *2))
+ (-5 *1 (-1044 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
+ (-4 *4 (-1042 *5 *6 *7 *8 *9)) (-4 *12 (-1042 *5 *6 *2 *10 *11))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1143 *5)) (-4 *5 (-1200))
+ (-4 *2 (-1200)) (-5 *1 (-1141 *5 *2))))
+ ((*1 *2 *2 *1 *3 *4)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2))
+ (-4 *1 (-1193 *5 *6 *7 *2)) (-4 *5 (-550)) (-4 *6 (-784))
+ (-4 *7 (-841)) (-4 *2 (-1053 *5 *6 *7))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1246 *5)) (-4 *5 (-1200))
+ (-4 *2 (-1200)) (-5 *1 (-1245 *5 *2)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-841)) (-5 *1 (-126 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-112)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-767 *5 (-850 *6)))) (-5 *4 (-112)) (-4 *5 (-446))
- (-14 *6 (-631 (-1158))) (-5 *2 (-631 (-1031 *5 *6)))
- (-5 *1 (-616 *5 *6)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-874 *4 *5)) (-5 *3 (-874 *4 *6)) (-4 *4 (-1082))
- (-4 *5 (-1082)) (-4 *6 (-652 *5)) (-5 *1 (-870 *4 *5 *6)))))
+ (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-827)) (-5 *4 (-1046)) (-5 *2 (-1020)) (-5 *1 (-826))))
- ((*1 *2 *3) (-12 (-5 *3 (-827)) (-5 *2 (-1020)) (-5 *1 (-826))))
- ((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-631 (-374))) (-5 *5 (-631 (-829 (-374))))
- (-5 *6 (-631 (-311 (-374)))) (-5 *3 (-311 (-374))) (-5 *2 (-1020))
- (-5 *1 (-826))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-311 (-374))) (-5 *4 (-631 (-374)))
- (-5 *5 (-631 (-829 (-374)))) (-5 *2 (-1020)) (-5 *1 (-826))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-311 (-374))) (-5 *4 (-631 (-374))) (-5 *2 (-1020))
- (-5 *1 (-826))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-311 (-374)))) (-5 *4 (-631 (-374)))
- (-5 *2 (-1020)) (-5 *1 (-826)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-911)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-758)) (-4 *1 (-1217 *3)) (-4 *3 (-1034)))))
-(((*1 *2 *3) (-12 (-5 *3 (-402 (-554))) (-5 *2 (-221)) (-5 *1 (-300)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-554)) (-5 *2 (-112)) (-5 *1 (-543)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1034)) (-5 *2 (-1241 *3)) (-5 *1 (-699 *3 *4))
- (-4 *4 (-1217 *3)))))
+ (-12 (-5 *3 (-679 *8)) (-4 *8 (-939 *5 *7 *6))
+ (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-841) (-606 (-1163))))
+ (-4 *7 (-784))
+ (-5 *2
+ (-635
+ (-2 (|:| -3833 (-762))
+ (|:| |eqns|
+ (-635
+ (-2 (|:| |det| *8) (|:| |rows| (-635 (-558)))
+ (|:| |cols| (-635 (-558))))))
+ (|:| |fgb| (-635 *8)))))
+ (-5 *1 (-914 *5 *6 *7 *8)) (-5 *4 (-762)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-635 (-635 (-933 (-224))))) (-5 *3 (-635 (-864)))
+ (-5 *1 (-466)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-933 *3) (-933 *3))) (-5 *1 (-175 *3))
+ (-4 *3 (-13 (-362) (-1185) (-992))))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-558)) (-4 *1 (-1206 *4)) (-4 *4 (-1039)) (-4 *4 (-550))
+ (-5 *2 (-406 (-942 *4)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-558)) (-4 *1 (-1206 *4)) (-4 *4 (-1039)) (-4 *4 (-550))
+ (-5 *2 (-406 (-942 *4))))))
+(((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-864)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-546)) (-5 *2 (-758)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-412 *4)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-1123 *2 *3)) (-4 *2 (-13 (-1082) (-34)))
- (-4 *3 (-13 (-1082) (-34))))))
+ (-12 (-5 *3 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))))
+ (-5 *2 (-406 (-558))) (-5 *1 (-1010 *4)) (-4 *4 (-1222 (-558))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1140))
- (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *2 (-112)) (-5 *1 (-220 *4 *5)) (-4 *5 (-13 (-1180) (-29 *4))))))
+ (-12 (-5 *3 (-635 (-479 *4 *5))) (-14 *4 (-635 (-1163)))
+ (-4 *5 (-450))
+ (-5 *2
+ (-2 (|:| |gblist| (-635 (-246 *4 *5)))
+ (|:| |gvlist| (-635 (-558)))))
+ (-5 *1 (-623 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-631 (-1158))) (-5 *2 (-1246)) (-5 *1 (-1161))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-631 (-1158))) (-5 *3 (-1158)) (-5 *2 (-1246))
- (-5 *1 (-1161))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *4 (-631 (-1158))) (-5 *3 (-1158)) (-5 *2 (-1246))
- (-5 *1 (-1161)))))
-(((*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-685))))
- ((*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-685)))))
+ (-12 (-5 *2 (-1 (-933 *3) (-933 *3))) (-5 *1 (-175 *3))
+ (-4 *3 (-13 (-362) (-1185) (-992)))))
+ ((*1 *2)
+ (|partial| -12 (-4 *4 (-1204)) (-4 *5 (-1222 (-406 *2)))
+ (-4 *2 (-1222 *4)) (-5 *1 (-340 *3 *4 *2 *5))
+ (-4 *3 (-341 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-341 *3 *2 *4)) (-4 *3 (-1204))
+ (-4 *4 (-1222 (-406 *2))) (-4 *2 (-1222 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-635 (-933 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-635 (-933 *3))) (-4 *3 (-1039)) (-4 *1 (-1121 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-635 (-635 *3))) (-4 *1 (-1121 *3)) (-4 *3 (-1039))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-635 (-933 *3))) (-4 *1 (-1121 *3)) (-4 *3 (-1039)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163))))
+ (-4 *6 (-784)) (-4 *7 (-939 *4 *6 *5))
+ (-5 *2
+ (-2 (|:| |sysok| (-112)) (|:| |z0| (-635 *7)) (|:| |n0| (-635 *7))))
+ (-5 *1 (-914 *4 *5 *6 *7)) (-5 *3 (-635 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-635 (-933 (-224))))) (-5 *2 (-635 (-224)))
+ (-5 *1 (-466)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-933 *3) (-933 *3))) (-5 *1 (-175 *3))
+ (-4 *3 (-13 (-362) (-1185) (-992))))))
+(((*1 *2 *3) (-12 (-5 *3 (-168 (-558))) (-5 *2 (-112)) (-5 *1 (-444))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-502 (-406 (-558)) (-239 *5 (-762)) (-855 *4)
+ (-246 *4 (-406 (-558)))))
+ (-14 *4 (-635 (-1163))) (-14 *5 (-762)) (-5 *2 (-112))
+ (-5 *1 (-503 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-951 *3)) (-4 *3 (-543))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1204)) (-5 *2 (-112)))))
+(((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-864)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2))
- (-4 *2 (-13 (-425 *3) (-1180))))))
+ (-12 (-5 *2 (-114)) (-4 *3 (-13 (-841) (-550))) (-5 *1 (-32 *3 *4))
+ (-4 *4 (-429 *3))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-762)) (-5 *1 (-114))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-114))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-114)) (-4 *3 (-13 (-841) (-550))) (-5 *1 (-157 *3 *4))
+ (-4 *4 (-429 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-114)) (-5 *1 (-162))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-114)) (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *4))
+ (-4 *4 (-13 (-429 *3) (-992)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-300 *3)) (-4 *3 (-301))))
+ ((*1 *2 *2) (-12 (-4 *1 (-301)) (-5 *2 (-114))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-114)) (-4 *4 (-841)) (-5 *1 (-428 *3 *4))
+ (-4 *3 (-429 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-114)) (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *4))
+ (-4 *4 (-429 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-604 *3)) (-4 *3 (-841))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-114)) (-4 *3 (-13 (-841) (-550))) (-5 *1 (-622 *3 *4))
+ (-4 *4 (-13 (-429 *3) (-992) (-1185)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1009)))))
+(((*1 *1 *1) (-4 *1 (-621)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-622 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992) (-1185))))))
+(((*1 *2)
+ (|partial| -12 (-4 *4 (-1204)) (-4 *5 (-1222 (-406 *2)))
+ (-4 *2 (-1222 *4)) (-5 *1 (-340 *3 *4 *2 *5))
+ (-4 *3 (-341 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-341 *3 *2 *4)) (-4 *3 (-1204))
+ (-4 *4 (-1222 (-406 *2))) (-4 *2 (-1222 *3)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-762)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1140)) (-4 *4 (-13 (-302) (-145)))
- (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780))
+ (-12 (-5 *3 (-942 *4)) (-4 *4 (-13 (-306) (-146)))
+ (-4 *2 (-939 *4 *6 *5)) (-5 *1 (-914 *4 *5 *6 *2))
+ (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *3 (-635 (-262))) (-5 *1 (-260))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262))))
+ ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-933 *3) (-933 *3))) (-5 *1 (-175 *3))
+ (-4 *3 (-13 (-362) (-1185) (-992))))))
+(((*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-1202)))))
+(((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-864)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1246 *6)) (-5 *4 (-1246 (-558))) (-5 *5 (-558))
+ (-4 *6 (-1087)) (-5 *2 (-1 *6)) (-5 *1 (-1007 *6)))))
+(((*1 *1 *1) (-4 *1 (-621)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-622 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992) (-1185))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1222 *4)) (-4 *4 (-1204))
+ (-4 *6 (-1222 (-406 *5)))
(-5 *2
- (-631
- (-2 (|:| |eqzro| (-631 *7)) (|:| |neqzro| (-631 *7))
- (|:| |wcond| (-631 (-937 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1241 (-402 (-937 *4))))
- (|:| -3782 (-631 (-1241 (-402 (-937 *4))))))))))
- (-5 *1 (-909 *4 *5 *6 *7)) (-4 *7 (-934 *4 *6 *5)))))
+ (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
+ (|:| |gd| *5)))
+ (-4 *1 (-341 *4 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-558)) (-4 *2 (-429 *3)) (-5 *1 (-32 *3 *2))
+ (-4 *3 (-1028 *4)) (-4 *3 (-13 (-841) (-550))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039))
+ (-5 *2 (-635 (-635 (-933 *3))))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-635 (-635 (-933 *4)))) (-5 *3 (-112)) (-4 *4 (-1039))
+ (-4 *1 (-1121 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-635 (-635 (-933 *3)))) (-4 *3 (-1039))
+ (-4 *1 (-1121 *3))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-635 (-635 (-635 *4)))) (-5 *3 (-112))
+ (-4 *1 (-1121 *4)) (-4 *4 (-1039))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-635 (-635 (-933 *4)))) (-5 *3 (-112))
+ (-4 *1 (-1121 *4)) (-4 *4 (-1039))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-635 (-635 (-635 *5)))) (-5 *3 (-635 (-170)))
+ (-5 *4 (-170)) (-4 *1 (-1121 *5)) (-4 *5 (-1039))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-635 (-635 (-933 *5)))) (-5 *3 (-635 (-170)))
+ (-5 *4 (-170)) (-4 *1 (-1121 *5)) (-4 *5 (-1039)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-1163))) (-4 *4 (-13 (-306) (-146)))
+ (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784))
+ (-5 *2 (-635 (-406 (-942 *4)))) (-5 *1 (-914 *4 *5 *6 *7))
+ (-4 *7 (-939 *4 *6 *5)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-933 *3) (-933 *3))) (-5 *1 (-175 *3))
+ (-4 *3 (-13 (-362) (-1185) (-992))))))
(((*1 *2)
- (-12 (-4 *1 (-344))
- (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-554)) (|has| *1 (-6 -4374)) (-4 *1 (-1229 *3))
- (-4 *3 (-1195)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-1241 (-554))) (-5 *3 (-554)) (-5 *1 (-1092))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-1241 (-554))) (-5 *3 (-631 (-554))) (-5 *4 (-554))
- (-5 *1 (-1092)))))
+ (-12
+ (-5 *2 (-2 (|:| -4226 (-635 (-1163))) (|:| -4237 (-635 (-1163)))))
+ (-5 *1 (-1202)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-173 (-406 (-558)))) (-5 *1 (-117 *3)) (-14 *3 (-558))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *3 (-1143 *2)) (-4 *2 (-306)) (-5 *1 (-173 *2))))
+ ((*1 *1 *2) (-12 (-5 *2 (-406 *3)) (-4 *3 (-306)) (-5 *1 (-173 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-173 (-558))) (-5 *1 (-756 *3)) (-4 *3 (-403))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-173 (-406 (-558)))) (-5 *1 (-861 *3)) (-14 *3 (-558))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-558)) (-5 *2 (-173 (-406 (-558))))
+ (-5 *1 (-862 *3 *4)) (-4 *4 (-859 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-2 (|:| -2925 *4) (|:| -1800 (-558)))))
+ (-4 *4 (-1087)) (-5 *2 (-1 *4)) (-5 *1 (-1007 *4)))))
+(((*1 *1 *1) (-4 *1 (-621)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-622 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992) (-1185))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1163)) (-4 *5 (-1204)) (-4 *6 (-1222 *5))
+ (-4 *7 (-1222 (-406 *6))) (-5 *2 (-635 (-942 *5)))
+ (-5 *1 (-340 *4 *5 *6 *7)) (-4 *4 (-341 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1163)) (-4 *1 (-341 *4 *5 *6)) (-4 *4 (-1204))
+ (-4 *5 (-1222 *4)) (-4 *6 (-1222 (-406 *5))) (-4 *4 (-362))
+ (-5 *2 (-635 (-942 *4))))))
(((*1 *2 *3)
- (|partial| -12 (-4 *5 (-1023 (-48)))
- (-4 *4 (-13 (-546) (-836) (-1023 (-554)))) (-4 *5 (-425 *4))
- (-5 *2 (-413 (-1154 (-48)))) (-5 *1 (-430 *4 *5 *3))
- (-4 *3 (-1217 *5)))))
+ (-12 (-5 *3 (-635 *5)) (-4 *5 (-429 *4)) (-4 *4 (-13 (-841) (-550)))
+ (-5 *2 (-853)) (-5 *1 (-32 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-112)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1154 *1)) (-5 *4 (-1158)) (-4 *1 (-27))
- (-5 *2 (-631 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-27)) (-5 *2 (-631 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-937 *1)) (-4 *1 (-27)) (-5 *2 (-631 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-836) (-546))) (-5 *2 (-631 *1))
- (-4 *1 (-29 *4))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *2 (-631 *1)) (-4 *1 (-29 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-311 (-221))) (-5 *4 (-631 (-1158)))
- (-5 *5 (-1076 (-829 (-221)))) (-5 *2 (-1138 (-221))) (-5 *1 (-295)))))
+ (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-631 (-475 *4 *5))) (-14 *4 (-631 (-1158)))
- (-4 *5 (-446))
- (-5 *2
- (-2 (|:| |gblist| (-631 (-243 *4 *5)))
- (|:| |gvlist| (-631 (-554)))))
- (-5 *1 (-619 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-906)) (-4 *1 (-363))))
+ (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163))))
+ (-4 *6 (-784)) (-5 *2 (-406 (-942 *4))) (-5 *1 (-914 *4 *5 *6 *3))
+ (-4 *3 (-939 *4 *6 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-679 *7)) (-4 *7 (-939 *4 *6 *5))
+ (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163))))
+ (-4 *6 (-784)) (-5 *2 (-679 (-406 (-942 *4))))
+ (-5 *1 (-914 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 *7)) (-4 *7 (-939 *4 *6 *5))
+ (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163))))
+ (-4 *6 (-784)) (-5 *2 (-635 (-406 (-942 *4))))
+ (-5 *1 (-914 *4 *5 *6 *7)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-933 *3) (-933 *3))) (-5 *1 (-175 *3))
+ (-4 *3 (-13 (-362) (-1185) (-992))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-1163))) (-5 *2 (-1251)) (-5 *1 (-1202))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-906)) (-5 *2 (-1241 *4)) (-5 *1 (-522 *4))
- (-4 *4 (-344))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-836)) (-5 *1 (-700 *2 *3 *4)) (-4 *3 (-1082))
- (-14 *4
- (-1 (-112) (-2 (|:| -2717 *2) (|:| -1407 *3))
- (-2 (|:| -2717 *2) (|:| -1407 *3)))))))
-(((*1 *1 *1) (-5 *1 (-1046))))
+ (-12 (-5 *3 (-635 (-1163))) (-5 *2 (-1251)) (-5 *1 (-1202)))))
+(((*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-402 *3)) (-4 *3 (-403))))
+ ((*1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-402 *3)) (-4 *3 (-403))))
+ ((*1 *2 *2) (-12 (-5 *2 (-911)) (|has| *1 (-6 -4373)) (-4 *1 (-403))))
+ ((*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-911))))
+ ((*1 *2 *1) (-12 (-4 *1 (-859 *3)) (-5 *2 (-1143 (-558))))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-362) (-146) (-1028 (-558))))
+ (-4 *5 (-1222 *4)) (-5 *2 (-635 (-406 *5))) (-5 *1 (-1006 *4 *5))
+ (-5 *3 (-406 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-977 *2)) (-4 *2 (-546)) (-5 *1 (-140 *2 *4 *3))
- (-4 *3 (-368 *4))))
+ (-12 (-5 *3 (-114)) (-4 *4 (-13 (-841) (-550))) (-5 *2 (-112))
+ (-5 *1 (-32 *4 *5)) (-4 *5 (-429 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-977 *2)) (-4 *2 (-546)) (-5 *1 (-497 *2 *4 *5 *3))
- (-4 *5 (-368 *2)) (-4 *3 (-368 *4))))
+ (-12 (-5 *3 (-114)) (-4 *4 (-13 (-841) (-550))) (-5 *2 (-112))
+ (-5 *1 (-157 *4 *5)) (-4 *5 (-429 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-675 *4)) (-4 *4 (-977 *2)) (-4 *2 (-546))
- (-5 *1 (-679 *2 *4))))
+ (-12 (-5 *3 (-114)) (-4 *4 (-13 (-841) (-550))) (-5 *2 (-112))
+ (-5 *1 (-275 *4 *5)) (-4 *5 (-13 (-429 *4) (-992)))))
((*1 *2 *3)
- (-12 (-4 *4 (-977 *2)) (-4 *2 (-546)) (-5 *1 (-1210 *2 *4 *3))
- (-4 *3 (-1217 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-631 *5)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5))
- (-14 *3 (-554)) (-14 *4 (-758)))))
+ (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-300 *4)) (-4 *4 (-301))))
+ ((*1 *2 *3) (-12 (-4 *1 (-301)) (-5 *3 (-114)) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-4 *5 (-841)) (-5 *2 (-112))
+ (-5 *1 (-428 *4 *5)) (-4 *4 (-429 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-4 *4 (-13 (-841) (-550))) (-5 *2 (-112))
+ (-5 *1 (-430 *4 *5)) (-4 *5 (-429 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-4 *4 (-13 (-841) (-550))) (-5 *2 (-112))
+ (-5 *1 (-622 *4 *5)) (-4 *5 (-13 (-429 *4) (-992) (-1185))))))
+(((*1 *2)
+ (-12 (-4 *4 (-1204)) (-4 *5 (-1222 *4)) (-4 *6 (-1222 (-406 *5)))
+ (-5 *2 (-635 (-635 *4))) (-5 *1 (-340 *3 *4 *5 *6))
+ (-4 *3 (-341 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3))
+ (-4 *5 (-1222 (-406 *4))) (-4 *3 (-367)) (-5 *2 (-635 (-635 *3))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1159 *2)) (-4 *2 (-429 *4)) (-4 *4 (-13 (-841) (-550)))
+ (-5 *1 (-32 *4 *2)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-961 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-780))
- (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546))
- (-5 *2 (-112)))))
-(((*1 *1 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-325))))
- ((*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-325)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1048 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780))
- (-4 *2 (-836))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780))
- (-4 *4 (-836)))))
-(((*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1140)) (-5 *1 (-697)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1158)) (-5 *1 (-275)))))
-(((*1 *2 *1) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-270)))))
-(((*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1034)))))
-(((*1 *1)
- (-12 (-4 *1 (-399)) (-4081 (|has| *1 (-6 -4364)))
- (-4081 (|has| *1 (-6 -4356)))))
- ((*1 *2 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-1082)) (-4 *2 (-836))))
- ((*1 *1 *1 *1) (-4 *1 (-836)))
- ((*1 *2 *1) (-12 (-4 *1 (-953 *2)) (-4 *2 (-836))))
- ((*1 *1) (-5 *1 (-1102))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1154 *7)) (-5 *3 (-554)) (-4 *7 (-934 *6 *4 *5))
- (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1034))
- (-5 *1 (-316 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-631 *10)) (-5 *5 (-112)) (-4 *10 (-1054 *6 *7 *8 *9))
- (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836))
- (-4 *9 (-1048 *6 *7 *8))
- (-5 *2
- (-631
- (-2 (|:| -4329 (-631 *9)) (|:| -2143 *10) (|:| |ineq| (-631 *9)))))
- (-5 *1 (-973 *6 *7 *8 *9 *10)) (-5 *3 (-631 *9))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-631 *10)) (-5 *5 (-112)) (-4 *10 (-1054 *6 *7 *8 *9))
- (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836))
- (-4 *9 (-1048 *6 *7 *8))
+ (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039))
+ (-5 *2 (-635 (-635 (-635 (-762))))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-679 *11)) (-5 *4 (-635 (-406 (-942 *8))))
+ (-5 *5 (-762)) (-5 *6 (-1145)) (-4 *8 (-13 (-306) (-146)))
+ (-4 *11 (-939 *8 *10 *9)) (-4 *9 (-13 (-841) (-606 (-1163))))
+ (-4 *10 (-784))
(-5 *2
- (-631
- (-2 (|:| -4329 (-631 *9)) (|:| -2143 *10) (|:| |ineq| (-631 *9)))))
- (-5 *1 (-1089 *6 *7 *8 *9 *10)) (-5 *3 (-631 *9)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-322 *3)) (-4 *3 (-1195))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-510 *3 *4)) (-4 *3 (-1195))
- (-14 *4 (-554)))))
+ (-2
+ (|:| |rgl|
+ (-635
+ (-2 (|:| |eqzro| (-635 *11)) (|:| |neqzro| (-635 *11))
+ (|:| |wcond| (-635 (-942 *8)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1246 (-406 (-942 *8))))
+ (|:| -2660 (-635 (-1246 (-406 (-942 *8))))))))))
+ (|:| |rgsz| (-558))))
+ (-5 *1 (-914 *8 *9 *10 *11)) (-5 *7 (-558)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-911)) (-5 *2 (-1246 (-1246 (-558)))) (-5 *1 (-464)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4382)) (-4 *1 (-487 *3)) (-4 *3 (-1200))
+ (-4 *3 (-1087)) (-5 *2 (-762))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4382)) (-4 *1 (-487 *4))
+ (-4 *4 (-1200)) (-5 *2 (-762)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-933 *3) (-933 *3))) (-5 *1 (-175 *3))
+ (-4 *3 (-13 (-362) (-1185) (-992))))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-762)) (-5 *2 (-112))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1201 *3)) (-4 *3 (-841))
+ (-4 *3 (-1087)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-171)) (-4 *2 (-23)) (-5 *1 (-288 *3 *4 *2 *5 *6 *7))
+ (-4 *4 (-1222 *3)) (-14 *5 (-1 *4 *4 *2))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-23)) (-5 *1 (-702 *3 *2 *4 *5 *6)) (-4 *3 (-171))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2)
+ (-12 (-4 *2 (-1222 *3)) (-5 *1 (-703 *3 *2)) (-4 *3 (-1039))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-23)) (-5 *1 (-706 *3 *2 *4 *5 *6)) (-4 *3 (-171))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2) (-12 (-4 *1 (-859 *3)) (-5 *2 (-558)))))
+(((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1222 *5))
+ (-4 *5 (-13 (-362) (-146) (-1028 (-558))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-406 *6)) (|:| |h| *6)
+ (|:| |c1| (-406 *6)) (|:| |c2| (-406 *6)) (|:| -1360 *6)))
+ (-5 *1 (-1006 *5 *6)) (-5 *3 (-406 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))))
+ (-12 (-5 *3 (-635 (-771 *5 (-855 *6)))) (-5 *4 (-112)) (-4 *5 (-450))
+ (-14 *6 (-635 (-1163)))
+ (-5 *2
+ (-635 (-1133 *5 (-529 (-855 *6)) (-855 *6) (-771 *5 (-855 *6)))))
+ (-5 *1 (-620 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 (-1163)))
+ (-14 *4 (-635 (-1163))) (-4 *5 (-386))))
+ ((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 (-1163)))
+ (-14 *4 (-635 (-1163))) (-4 *5 (-386)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221)))
- (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221))
- (|:| |relerr| (-221))))
+ (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224)))
+ (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
(-5 *2
(-2
(|:| |endPointContinuity|
@@ -9671,8657 +7862,10476 @@
(|:| |notEvaluated|
"End point continuity not yet evaluated")))
(|:| |singularitiesStream|
- (-3 (|:| |str| (-1138 (-221)))
+ (-3 (|:| |str| (-1143 (-224)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -3827
+ (|:| -1626
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite| "The bottom of range is infinite")
(|:| |upperInfinite| "The top of range is infinite")
(|:| |bothInfinite|
"Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *1 (-549)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243)))))
+ (-5 *1 (-553)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-1163))) (-5 *1 (-49))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 (-504))) (-5 *1 (-481)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039))
+ (-5 *2 (-635 (-635 (-635 (-933 *3))))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-554)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *2 (-1034))
- (-5 *1 (-316 *4 *5 *2 *6)) (-4 *6 (-934 *2 *4 *5)))))
+ (-12 (-5 *3 (-1145)) (-4 *4 (-13 (-306) (-146)))
+ (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784))
+ (-5 *2
+ (-635
+ (-2 (|:| |eqzro| (-635 *7)) (|:| |neqzro| (-635 *7))
+ (|:| |wcond| (-635 (-942 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1246 (-406 (-942 *4))))
+ (|:| -2660 (-635 (-1246 (-406 (-942 *4))))))))))
+ (-5 *1 (-914 *4 *5 *6 *7)) (-4 *7 (-939 *4 *6 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1246 (-1246 (-558)))) (-5 *3 (-911)) (-5 *1 (-464)))))
+(((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-586 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1087)) (-5 *2 (-1107)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1034)) (-4 *5 (-1217 *4)) (-5 *2 (-1 *6 (-631 *6)))
- (-5 *1 (-1235 *4 *5 *3 *6)) (-4 *3 (-642 *5)) (-4 *6 (-1232 *4)))))
-(((*1 *1 *1) (-4 *1 (-617)))
+ (-12 (-5 *2 (-1 (-933 *3) (-933 *3))) (-5 *1 (-175 *3))
+ (-4 *3 (-13 (-362) (-1185) (-992))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1201 *2))
+ (-4 *2 (-1087))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 *2)) (-4 *2 (-1087)) (-4 *2 (-841))
+ (-5 *1 (-1201 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-859 *3)) (-5 *2 (-558)))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1222 *6))
+ (-4 *6 (-13 (-362) (-146) (-1028 *4))) (-5 *4 (-558))
+ (-5 *2
+ (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112))))
+ (|:| -2477
+ (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
+ (|:| |beta| *3)))))
+ (-5 *1 (-1005 *6 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-771 *5 (-855 *6)))) (-5 *4 (-112)) (-4 *5 (-450))
+ (-14 *6 (-635 (-1163))) (-5 *2 (-635 (-1036 *5 *6)))
+ (-5 *1 (-620 *5 *6)))))
+(((*1 *1 *2 *3 *3 *3 *4)
+ (-12 (-4 *4 (-362)) (-4 *3 (-1222 *4)) (-4 *5 (-1222 (-406 *3)))
+ (-4 *1 (-334 *4 *3 *5 *2)) (-4 *2 (-341 *4 *3 *5))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-558)) (-4 *2 (-362)) (-4 *4 (-1222 *2))
+ (-4 *5 (-1222 (-406 *4))) (-4 *1 (-334 *2 *4 *5 *6))
+ (-4 *6 (-341 *2 *4 *5))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *2 (-362)) (-4 *3 (-1222 *2)) (-4 *4 (-1222 (-406 *3)))
+ (-4 *1 (-334 *2 *3 *4 *5)) (-4 *5 (-341 *2 *3 *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-362)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4)))
+ (-4 *1 (-334 *3 *4 *5 *2)) (-4 *2 (-341 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-412 *4 (-406 *4) *5 *6)) (-4 *4 (-1222 *3))
+ (-4 *5 (-1222 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-4 *3 (-362))
+ (-4 *1 (-334 *3 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-635 (-635 (-170)))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-168 (-224))) (-5 *4 (-558)) (-5 *2 (-1025))
+ (-5 *1 (-749)))))
+(((*1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-635
+ (-2 (|:| |eqzro| (-635 *8)) (|:| |neqzro| (-635 *8))
+ (|:| |wcond| (-635 (-942 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1246 (-406 (-942 *5))))
+ (|:| -2660 (-635 (-1246 (-406 (-942 *5))))))))))
+ (-5 *4 (-1145)) (-4 *5 (-13 (-306) (-146))) (-4 *8 (-939 *5 *7 *6))
+ (-4 *6 (-13 (-841) (-606 (-1163)))) (-4 *7 (-784)) (-5 *2 (-558))
+ (-5 *1 (-914 *5 *6 *7 *8)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-841)) (-4 *5 (-784))
+ (-4 *6 (-550)) (-4 *7 (-939 *6 *5 *3))
+ (-5 *1 (-460 *5 *3 *6 *7 *2))
+ (-4 *2
+ (-13 (-1028 (-406 (-558))) (-362)
+ (-10 -8 (-15 -3220 ($ *7)) (-15 -1874 (*7 $))
+ (-15 -1885 (*7 $))))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-933 *3)) (-4 *3 (-13 (-362) (-1185) (-992)))
+ (-5 *1 (-175 *3)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1201 *3)) (-4 *3 (-1087)))))
+(((*1 *1 *1) (-4 *1 (-859 *2))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-362) (-146) (-1028 (-558)))) (-4 *5 (-1222 *4))
+ (-5 *2 (-2 (|:| |ans| (-406 *5)) (|:| |nosol| (-112))))
+ (-5 *1 (-1005 *4 *5)) (-5 *3 (-406 *5)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-635 (-942 *3))) (-4 *3 (-450)) (-5 *1 (-359 *3 *4))
+ (-14 *4 (-635 (-1163)))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-618 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987) (-1180))))))
-(((*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222))))
- ((*1 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222))))
+ (-12 (-5 *2 (-635 *6)) (-4 *6 (-939 *3 *4 *5)) (-4 *3 (-450))
+ (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-448 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-635 *7)) (-5 *3 (-1145)) (-4 *7 (-939 *4 *5 *6))
+ (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-5 *1 (-448 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-635 *7)) (-5 *3 (-1145)) (-4 *7 (-939 *4 *5 *6))
+ (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-5 *1 (-448 *4 *5 *6 *7))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-362)) (-4 *3 (-784)) (-4 *4 (-841))
+ (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-939 *2 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2))
- (-4 *2 (-425 *3))))
- ((*1 *1 *1) (-4 *1 (-1121))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2510 (-769 *3)) (|:| |coef2| (-769 *3))))
- (-5 *1 (-769 *3)) (-4 *3 (-546)) (-4 *3 (-1034))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-546)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836))
- (-5 *2 (-2 (|:| -2510 *1) (|:| |coef2| *1)))
- (-4 *1 (-1048 *3 *4 *5)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -1490 *3) (|:| |gap| (-758)) (|:| -2325 (-769 *3))
- (|:| -2423 (-769 *3))))
- (-5 *1 (-769 *3)) (-4 *3 (-1034))))
- ((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *3 (-836))
+ (-12 (-5 *2 (-635 (-771 *3 (-855 *4)))) (-4 *3 (-450))
+ (-14 *4 (-635 (-1163))) (-5 *1 (-620 *3 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1222 *3))
+ (-4 *5 (-1222 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-635 (-170))))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
+ (-12 (-5 *3 (-1145)) (-5 *4 (-558)) (-5 *5 (-679 (-224)))
+ (-5 *2 (-1025)) (-5 *1 (-748)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-679 *8)) (-4 *8 (-939 *5 *7 *6))
+ (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-841) (-606 (-1163))))
+ (-4 *7 (-784))
(-5 *2
- (-2 (|:| -1490 *1) (|:| |gap| (-758)) (|:| -2325 *1)
- (|:| -2423 *1)))
- (-4 *1 (-1048 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836))
+ (-635
+ (-2 (|:| |eqzro| (-635 *8)) (|:| |neqzro| (-635 *8))
+ (|:| |wcond| (-635 (-942 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1246 (-406 (-942 *5))))
+ (|:| -2660 (-635 (-1246 (-406 (-942 *5))))))))))
+ (-5 *1 (-914 *5 *6 *7 *8)) (-5 *4 (-635 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-679 *8)) (-5 *4 (-635 (-1163))) (-4 *8 (-939 *5 *7 *6))
+ (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-841) (-606 (-1163))))
+ (-4 *7 (-784))
(-5 *2
- (-2 (|:| -1490 *1) (|:| |gap| (-758)) (|:| -2325 *1)
- (|:| -2423 *1)))
- (-4 *1 (-1048 *3 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1154 *4)) (-4 *4 (-344)) (-5 *2 (-112))
- (-5 *1 (-352 *4))))
+ (-635
+ (-2 (|:| |eqzro| (-635 *8)) (|:| |neqzro| (-635 *8))
+ (|:| |wcond| (-635 (-942 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1246 (-406 (-942 *5))))
+ (|:| -2660 (-635 (-1246 (-406 (-942 *5))))))))))
+ (-5 *1 (-914 *5 *6 *7 *8))))
((*1 *2 *3)
- (-12 (-5 *3 (-1241 *4)) (-4 *4 (-344)) (-5 *2 (-112))
- (-5 *1 (-522 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836))
- (-4 *3 (-1048 *5 *6 *7))
- (-5 *2 (-631 (-2 (|:| |val| (-112)) (|:| -2143 *4))))
- (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1138 *4)) (-5 *3 (-554)) (-4 *4 (-1034))
- (-5 *1 (-1142 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-554)) (-5 *1 (-1233 *3 *4 *5)) (-4 *3 (-1034))
- (-14 *4 (-1158)) (-14 *5 *3))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4374)) (-4 *1 (-995 *2)) (-4 *2 (-1195)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-631 (-850 *5))) (-14 *5 (-631 (-1158))) (-4 *6 (-446))
+ (-12 (-5 *3 (-679 *7)) (-4 *7 (-939 *4 *6 *5))
+ (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163))))
+ (-4 *6 (-784))
(-5 *2
- (-2 (|:| |dpolys| (-631 (-243 *5 *6)))
- (|:| |coords| (-631 (-554)))))
- (-5 *1 (-465 *5 *6 *7)) (-5 *3 (-631 (-243 *5 *6))) (-4 *7 (-446)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-546) (-836) (-1023 (-554))))
- (-4 *5 (-425 *4)) (-5 *2 (-413 (-1154 (-402 (-554)))))
- (-5 *1 (-430 *4 *5 *3)) (-4 *3 (-1217 *5)))))
+ (-635
+ (-2 (|:| |eqzro| (-635 *7)) (|:| |neqzro| (-635 *7))
+ (|:| |wcond| (-635 (-942 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1246 (-406 (-942 *4))))
+ (|:| -2660 (-635 (-1246 (-406 (-942 *4))))))))))
+ (-5 *1 (-914 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-679 *9)) (-5 *5 (-911)) (-4 *9 (-939 *6 *8 *7))
+ (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-841) (-606 (-1163))))
+ (-4 *8 (-784))
+ (-5 *2
+ (-635
+ (-2 (|:| |eqzro| (-635 *9)) (|:| |neqzro| (-635 *9))
+ (|:| |wcond| (-635 (-942 *6)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1246 (-406 (-942 *6))))
+ (|:| -2660 (-635 (-1246 (-406 (-942 *6))))))))))
+ (-5 *1 (-914 *6 *7 *8 *9)) (-5 *4 (-635 *9))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-679 *9)) (-5 *4 (-635 (-1163))) (-5 *5 (-911))
+ (-4 *9 (-939 *6 *8 *7)) (-4 *6 (-13 (-306) (-146)))
+ (-4 *7 (-13 (-841) (-606 (-1163)))) (-4 *8 (-784))
+ (-5 *2
+ (-635
+ (-2 (|:| |eqzro| (-635 *9)) (|:| |neqzro| (-635 *9))
+ (|:| |wcond| (-635 (-942 *6)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1246 (-406 (-942 *6))))
+ (|:| -2660 (-635 (-1246 (-406 (-942 *6))))))))))
+ (-5 *1 (-914 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-679 *8)) (-5 *4 (-911)) (-4 *8 (-939 *5 *7 *6))
+ (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-841) (-606 (-1163))))
+ (-4 *7 (-784))
+ (-5 *2
+ (-635
+ (-2 (|:| |eqzro| (-635 *8)) (|:| |neqzro| (-635 *8))
+ (|:| |wcond| (-635 (-942 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1246 (-406 (-942 *5))))
+ (|:| -2660 (-635 (-1246 (-406 (-942 *5))))))))))
+ (-5 *1 (-914 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-679 *9)) (-5 *4 (-635 *9)) (-5 *5 (-1145))
+ (-4 *9 (-939 *6 *8 *7)) (-4 *6 (-13 (-306) (-146)))
+ (-4 *7 (-13 (-841) (-606 (-1163)))) (-4 *8 (-784)) (-5 *2 (-558))
+ (-5 *1 (-914 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-679 *9)) (-5 *4 (-635 (-1163))) (-5 *5 (-1145))
+ (-4 *9 (-939 *6 *8 *7)) (-4 *6 (-13 (-306) (-146)))
+ (-4 *7 (-13 (-841) (-606 (-1163)))) (-4 *8 (-784)) (-5 *2 (-558))
+ (-5 *1 (-914 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-679 *8)) (-5 *4 (-1145)) (-4 *8 (-939 *5 *7 *6))
+ (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-841) (-606 (-1163))))
+ (-4 *7 (-784)) (-5 *2 (-558)) (-5 *1 (-914 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-679 *10)) (-5 *4 (-635 *10)) (-5 *5 (-911))
+ (-5 *6 (-1145)) (-4 *10 (-939 *7 *9 *8)) (-4 *7 (-13 (-306) (-146)))
+ (-4 *8 (-13 (-841) (-606 (-1163)))) (-4 *9 (-784)) (-5 *2 (-558))
+ (-5 *1 (-914 *7 *8 *9 *10))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-679 *10)) (-5 *4 (-635 (-1163))) (-5 *5 (-911))
+ (-5 *6 (-1145)) (-4 *10 (-939 *7 *9 *8)) (-4 *7 (-13 (-306) (-146)))
+ (-4 *8 (-13 (-841) (-606 (-1163)))) (-4 *9 (-784)) (-5 *2 (-558))
+ (-5 *1 (-914 *7 *8 *9 *10))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-679 *9)) (-5 *4 (-911)) (-5 *5 (-1145))
+ (-4 *9 (-939 *6 *8 *7)) (-4 *6 (-13 (-306) (-146)))
+ (-4 *7 (-13 (-841) (-606 (-1163)))) (-4 *8 (-784)) (-5 *2 (-558))
+ (-5 *1 (-914 *6 *7 *8 *9)))))
+(((*1 *2 *1)
+ (-12 (-14 *3 (-635 (-1163))) (-4 *4 (-171))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2851 *5) (|:| -1951 *2))
+ (-2 (|:| -2851 *5) (|:| -1951 *2))))
+ (-4 *2 (-237 (-2755 *3) (-762))) (-5 *1 (-459 *3 *4 *5 *2 *6 *7))
+ (-4 *5 (-841)) (-4 *7 (-939 *4 *2 (-855 *3))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-933 *3)) (-4 *3 (-13 (-362) (-1185) (-992)))
+ (-5 *1 (-175 *3)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-762)) (-5 *2 (-112))))
+ ((*1 *2 *3 *3)
+ (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1201 *3)) (-4 *3 (-1087))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1087)) (-5 *2 (-112))
+ (-5 *1 (-1201 *3)))))
+(((*1 *1 *1 *1) (-5 *1 (-853))) ((*1 *1 *1) (-5 *1 (-853)))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1159 (-558))) (-5 *3 (-558)) (-4 *1 (-859 *4)))))
+(((*1 *1 *2 *2 *2)
+ (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1185)))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-911)) (-5 *4 (-378)) (-5 *2 (-1251)) (-5 *1 (-1247))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248)))))
+(((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1222 *5))
+ (-4 *5 (-13 (-362) (-146) (-1028 (-558))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-406 *6)) (|:| |c| (-406 *6))
+ (|:| -1360 *6)))
+ (-5 *1 (-1005 *5 *6)) (-5 *3 (-406 *6)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-635 (-942 *3))) (-4 *3 (-450))
+ (-5 *1 (-359 *3 *4)) (-14 *4 (-635 (-1163)))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-635 (-771 *3 (-855 *4)))) (-4 *3 (-450))
+ (-14 *4 (-635 (-1163))) (-5 *1 (-620 *3 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-362)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4)))
+ (-5 *2 (-1246 *6)) (-5 *1 (-335 *3 *4 *5 *6))
+ (-4 *6 (-341 *3 *4 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-635 (-2 (|:| -2522 (-1159 *6)) (|:| -1951 (-558)))))
+ (-4 *6 (-306)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-112))
+ (-5 *1 (-733 *4 *5 *6 *7)) (-4 *7 (-939 *6 *4 *5))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1121 *2)) (-4 *2 (-1039)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1145)) (-5 *4 (-558)) (-5 *5 (-679 (-224)))
+ (-5 *2 (-1025)) (-5 *1 (-748)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-635 *4)) (-4 *4 (-362)) (-4 *2 (-1222 *4))
+ (-5 *1 (-912 *4 *2)))))
+(((*1 *2 *1)
+ (-12 (-14 *3 (-635 (-1163))) (-4 *4 (-171))
+ (-4 *5 (-237 (-2755 *3) (-762)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2851 *2) (|:| -1951 *5))
+ (-2 (|:| -2851 *2) (|:| -1951 *5))))
+ (-4 *2 (-841)) (-5 *1 (-459 *3 *4 *2 *5 *6 *7))
+ (-4 *7 (-939 *4 *5 (-855 *3))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-933 *3)) (-4 *3 (-13 (-362) (-1185) (-992)))
+ (-5 *1 (-175 *3)))))
+(((*1 *2)
+ (-12 (-5 *2 (-2 (|:| -4237 (-635 *3)) (|:| -4226 (-635 *3))))
+ (-5 *1 (-1201 *3)) (-4 *3 (-1087)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-762)) (-4 *5 (-362)) (-5 *2 (-406 *6))
+ (-5 *1 (-857 *5 *4 *6)) (-4 *4 (-1237 *5)) (-4 *6 (-1222 *5))))
+ ((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-762)) (-5 *4 (-1238 *5 *6 *7)) (-4 *5 (-362))
+ (-14 *6 (-1163)) (-14 *7 *5) (-5 *2 (-406 (-1219 *6 *5)))
+ (-5 *1 (-858 *5 *6 *7))))
+ ((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-762)) (-5 *4 (-1238 *5 *6 *7)) (-4 *5 (-362))
+ (-14 *6 (-1163)) (-14 *7 *5) (-5 *2 (-406 (-1219 *6 *5)))
+ (-5 *1 (-858 *5 *6 *7)))))
+(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
+ (|partial| -12 (-5 *5 (-1163))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-635 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-635 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -1440 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1185) (-27) (-429 *8)))
+ (-4 *8 (-13 (-450) (-841) (-146) (-1028 *3) (-631 *3)))
+ (-5 *3 (-558)) (-5 *2 (-635 *4)) (-5 *1 (-1004 *8 *4)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1160 (-402 (-554)))) (-5 *1 (-186)) (-5 *3 (-554)))))
+ (-12 (-5 *3 (-635 (-942 *4))) (-4 *4 (-450)) (-5 *2 (-112))
+ (-5 *1 (-359 *4 *5)) (-14 *5 (-635 (-1163)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-771 *4 (-855 *5)))) (-4 *4 (-450))
+ (-14 *5 (-635 (-1163))) (-5 *2 (-112)) (-5 *1 (-620 *4 *5)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-631 (-554))) (-5 *1 (-989 *3)) (-14 *3 (-554)))))
+ (-12 (-4 *3 (-362)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4)))
+ (-5 *2 (-1246 *6)) (-5 *1 (-335 *3 *4 *5 *6))
+ (-4 *6 (-341 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-955))) (-5 *1 (-109))))
+ ((*1 *2 *1) (-12 (-5 *2 (-45 (-1145) (-765))) (-5 *1 (-114)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-758)) (-4 *1 (-968 *2)) (-4 *2 (-1180)))))
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1200)) (-5 *1 (-1119 *4 *2))
+ (-4 *2 (-13 (-596 (-558) *4) (-10 -7 (-6 -4382) (-6 -4383))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-841)) (-4 *3 (-1200)) (-5 *1 (-1119 *3 *2))
+ (-4 *2 (-13 (-596 (-558) *3) (-10 -7 (-6 -4382) (-6 -4383)))))))
+(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
+ (-12 (-5 *3 (-1145)) (-5 *5 (-679 (-224))) (-5 *6 (-679 (-558)))
+ (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-748)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-554))
- (-5 *1 (-443 *4 *5 *6 *3)) (-4 *3 (-934 *4 *5 *6)))))
+ (-12 (-4 *1 (-910)) (-5 *2 (-2 (|:| -2023 (-635 *1)) (|:| -4098 *1)))
+ (-5 *3 (-635 *1)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-14 *5 (-635 (-1163))) (-4 *2 (-171))
+ (-4 *4 (-237 (-2755 *5) (-762)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2851 *3) (|:| -1951 *4))
+ (-2 (|:| -2851 *3) (|:| -1951 *4))))
+ (-5 *1 (-459 *5 *2 *3 *4 *6 *7)) (-4 *3 (-841))
+ (-4 *7 (-939 *2 *4 (-855 *5))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2))
- (-4 *2 (-13 (-425 *3) (-1180))))))
+ (-12 (-5 *2 (-933 *3)) (-4 *3 (-13 (-362) (-1185) (-992)))
+ (-5 *1 (-175 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1034)) (-5 *2 (-112)) (-5 *1 (-438 *4 *3))
- (-4 *3 (-1217 *4))))
+ (-12 (-5 *3 (-635 *4)) (-4 *4 (-1087)) (-5 *2 (-1251))
+ (-5 *1 (-1201 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-635 *4)) (-4 *4 (-1087)) (-5 *2 (-1251))
+ (-5 *1 (-1201 *4)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-762)) (-4 *5 (-362)) (-5 *2 (-173 *6))
+ (-5 *1 (-857 *5 *4 *6)) (-4 *4 (-1237 *5)) (-4 *6 (-1222 *5)))))
+(((*1 *2 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *5 (-1163))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-635 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-635 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -1440 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1185) (-27) (-429 *8)))
+ (-4 *8 (-13 (-450) (-841) (-146) (-1028 *3) (-631 *3)))
+ (-5 *3 (-558))
+ (-5 *2 (-2 (|:| |ans| *4) (|:| -3425 *4) (|:| |sol?| (-112))))
+ (-5 *1 (-1003 *8 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 *4)) (-4 *4 (-841)) (-5 *2 (-635 (-654 *4 *5)))
+ (-5 *1 (-619 *4 *5 *6)) (-4 *5 (-13 (-171) (-708 (-406 (-558)))))
+ (-14 *6 (-911)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -2396 *4))))
+ (-5 *1 (-1128 *3 *4)) (-4 *3 (-13 (-1087) (-34)))
+ (-4 *4 (-13 (-1087) (-34))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1163)) (-5 *4 (-942 (-558))) (-5 *2 (-329))
+ (-5 *1 (-331)))))
+(((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-849))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-955))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-979))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1200))))
((*1 *2 *1)
- (-12 (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780))
- (-4 *5 (-836)) (-5 *2 (-112)))))
+ (-12 (-4 *2 (-13 (-1087) (-34))) (-5 *1 (-1127 *2 *3))
+ (-4 *3 (-13 (-1087) (-34))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1200)) (-5 *1 (-1119 *4 *2))
+ (-4 *2 (-13 (-596 (-558) *4) (-10 -7 (-6 -4382) (-6 -4383))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-841)) (-4 *3 (-1200)) (-5 *1 (-1119 *3 *2))
+ (-4 *2 (-13 (-596 (-558) *3) (-10 -7 (-6 -4382) (-6 -4383)))))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
+ (-5 *1 (-748)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-635 *1)) (-4 *1 (-910)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-14 *4 (-635 (-1163))) (-4 *2 (-171))
+ (-4 *3 (-237 (-2755 *4) (-762)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2851 *5) (|:| -1951 *3))
+ (-2 (|:| -2851 *5) (|:| -1951 *3))))
+ (-5 *1 (-459 *4 *2 *5 *3 *6 *7)) (-4 *5 (-841))
+ (-4 *7 (-939 *2 *3 (-855 *4))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-631 *3)) (-4 *3 (-1217 (-554))) (-5 *1 (-480 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-112)))))
-(((*1 *1) (-5 *1 (-325))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-758)) (-4 *4 (-546)) (-5 *1 (-954 *4 *2))
- (-4 *2 (-1217 *4)))))
+ (-12 (-5 *2 (-933 *3)) (-4 *3 (-13 (-362) (-1185) (-992)))
+ (-5 *1 (-175 *3)))))
+(((*1 *2 *1) (|partial| -12 (-4 *1 (-1002)) (-5 *2 (-853)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-635 (-2 (|:| |k| (-662 *3)) (|:| |c| *4))))
+ (-5 *1 (-619 *3 *4 *5)) (-4 *3 (-841))
+ (-4 *4 (-13 (-171) (-708 (-406 (-558))))) (-14 *5 (-911)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1163)) (-5 *4 (-942 (-558))) (-5 *2 (-329))
+ (-5 *1 (-331)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-311 (-221))) (-5 *2 (-402 (-554))) (-5 *1 (-300)))))
-(((*1 *2 *2 *2 *2 *3)
- (-12 (-4 *3 (-546)) (-5 *1 (-954 *3 *2)) (-4 *2 (-1217 *3)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
-(((*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-1161))))
- ((*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1246)) (-5 *1 (-1161))))
- ((*1 *2 *3 *1) (-12 (-5 *3 (-1158)) (-5 *2 (-1246)) (-5 *1 (-1161)))))
+ (-12 (-5 *3 (-1246 *4)) (-4 *4 (-1039)) (-4 *2 (-1222 *4))
+ (-5 *1 (-442 *4 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-406 (-1159 (-315 *5)))) (-5 *3 (-1246 (-315 *5)))
+ (-5 *4 (-558)) (-4 *5 (-13 (-550) (-841))) (-5 *1 (-1117 *5)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
+ (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224)))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-70 APROD)))) (-5 *4 (-224))
+ (-5 *2 (-1025)) (-5 *1 (-747)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-906)) (-5 *1 (-1017 *2))
- (-4 *2 (-13 (-1082) (-10 -8 (-15 * ($ $ $))))))))
+ (-12 (-5 *2 (-635 (-942 *4))) (-5 *3 (-635 (-1163))) (-4 *4 (-450))
+ (-5 *1 (-908 *4)))))
+(((*1 *2 *3 *2 *4 *5)
+ (-12 (-5 *2 (-635 *3)) (-5 *5 (-911)) (-4 *3 (-1222 *4))
+ (-4 *4 (-306)) (-5 *1 (-458 *4 *3)))))
+(((*1 *1) (-5 *1 (-1251))))
(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-631 (-1158)))
- (-14 *4 (-631 (-1158))) (-4 *5 (-382))))
- ((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-631 (-1158)))
- (-14 *4 (-631 (-1158))) (-4 *5 (-382)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1020)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))))
-(((*1 *1 *1) (-12 (-5 *1 (-413 *2)) (-4 *2 (-546)))))
+ (-12 (-5 *2 (-933 *3)) (-4 *3 (-13 (-362) (-1185) (-992)))
+ (-5 *1 (-175 *3)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1159 *1)) (-4 *1 (-1002)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-635 (-293 *4))) (-5 *1 (-619 *3 *4 *5)) (-4 *3 (-841))
+ (-4 *4 (-13 (-171) (-708 (-406 (-558))))) (-14 *5 (-911)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1163)) (-5 *4 (-942 (-558))) (-5 *2 (-329))
+ (-5 *1 (-331)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-406 (-1159 (-315 *3)))) (-4 *3 (-13 (-550) (-841)))
+ (-5 *1 (-1117 *3)))))
+(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
+ (-12 (-5 *4 (-679 (-224))) (-5 *5 (-679 (-558))) (-5 *3 (-558))
+ (-5 *2 (-1025)) (-5 *1 (-747)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-635 (-942 *4))) (-5 *3 (-635 (-1163))) (-4 *4 (-450))
+ (-5 *1 (-908 *4)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *6 (-911)) (-4 *5 (-306)) (-4 *3 (-1222 *5))
+ (-5 *2 (-2 (|:| |plist| (-635 *3)) (|:| |modulo| *5)))
+ (-5 *1 (-458 *5 *3)) (-5 *4 (-635 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-933 *3)) (-4 *3 (-13 (-362) (-1185) (-992)))
+ (-5 *1 (-175 *3)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-156)) (-5 *2 (-1251)) (-5 *1 (-1248)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1159 *1)) (-4 *1 (-1002)))))
+(((*1 *2 *3 *4 *5 *6 *7 *6)
+ (|partial| -12
+ (-5 *5
+ (-2 (|:| |contp| *3)
+ (|:| -1849 (-635 (-2 (|:| |irr| *10) (|:| -1896 (-558)))))))
+ (-5 *6 (-635 *3)) (-5 *7 (-635 *8)) (-4 *8 (-841)) (-4 *3 (-306))
+ (-4 *10 (-939 *3 *9 *8)) (-4 *9 (-784))
+ (-5 *2
+ (-2 (|:| |polfac| (-635 *10)) (|:| |correct| *3)
+ (|:| |corrfact| (-635 (-1159 *3)))))
+ (-5 *1 (-617 *8 *9 *3 *10)) (-5 *4 (-635 (-1159 *3))))))
+(((*1 *2 *3) (-12 (-5 *3 (-635 (-52))) (-5 *2 (-1251)) (-5 *1 (-854)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-330 *3)) (-4 *3 (-841)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-882 *4)) (-4 *4 (-1087)) (-5 *2 (-1 (-112) *5))
+ (-5 *1 (-880 *4 *5)) (-4 *5 (-1200))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1153)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-293 (-406 (-942 *5)))) (-5 *4 (-1163))
+ (-4 *5 (-13 (-306) (-841) (-146)))
+ (-5 *2 (-1152 (-635 (-315 *5)) (-635 (-293 (-315 *5)))))
+ (-5 *1 (-1116 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-406 (-942 *5))) (-5 *4 (-1163))
+ (-4 *5 (-13 (-306) (-841) (-146)))
+ (-5 *2 (-1152 (-635 (-315 *5)) (-635 (-293 (-315 *5)))))
+ (-5 *1 (-1116 *5)))))
+(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-112))
+ (-5 *6 (-224)) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 APROD))))
+ (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-73 MSOLVE))))
+ (-5 *2 (-1025)) (-5 *1 (-747)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-498 (-402 (-554)) (-236 *5 (-758)) (-850 *4)
- (-243 *4 (-402 (-554)))))
- (-14 *4 (-631 (-1158))) (-14 *5 (-758)) (-5 *2 (-112))
- (-5 *1 (-499 *4 *5)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-867 *2)) (-4 *2 (-1195)))))
-(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221))) (-5 *4 (-221))
- (-5 *2 (-1020)) (-5 *1 (-743)))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1082)) (-5 *2 (-112)) (-5 *1 (-870 *3 *4 *5))
- (-4 *3 (-1082)) (-4 *5 (-652 *4))))
+ (-12 (-5 *3 (-635 (-558))) (-5 *2 (-894 (-558))) (-5 *1 (-907))))
+ ((*1 *2 *3) (-12 (-5 *3 (-961)) (-5 *2 (-894 (-558))) (-5 *1 (-907)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-635 *5)) (-4 *5 (-1222 *3)) (-4 *3 (-306))
+ (-5 *2 (-112)) (-5 *1 (-453 *3 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-109))) (-5 *1 (-174)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-933 (-224)))) (-5 *1 (-1247)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-874 *3 *4)) (-4 *3 (-1082))
- (-4 *4 (-1082)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1034))
- (-4 *2 (-13 (-399) (-1023 *4) (-358) (-1180) (-279)))
- (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1217 *4)))))
-(((*1 *2)
- (-12 (-4 *3 (-546)) (-5 *2 (-631 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-412 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780))
- (-4 *5 (-836)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-358)))))
-(((*1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-4 *6 (-1217 *9)) (-4 *7 (-780)) (-4 *8 (-836)) (-4 *9 (-302))
- (-4 *10 (-934 *9 *7 *8))
+ (-12
(-5 *2
- (-2 (|:| |deter| (-631 (-1154 *10)))
- (|:| |dterm|
- (-631 (-631 (-2 (|:| -2672 (-758)) (|:| |pcoef| *10)))))
- (|:| |nfacts| (-631 *6)) (|:| |nlead| (-631 *10))))
- (-5 *1 (-765 *6 *7 *8 *9 *10)) (-5 *3 (-1154 *10)) (-5 *4 (-631 *6))
- (-5 *5 (-631 *10)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1217 *5)) (-4 *5 (-358))
- (-5 *2 (-2 (|:| -1709 (-402 *6)) (|:| |coeff| (-402 *6))))
- (-5 *1 (-564 *5 *6)) (-5 *3 (-402 *6)))))
-(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
- (-12 (-5 *3 (-311 (-554))) (-5 *4 (-1 (-221) (-221)))
- (-5 *5 (-1076 (-221))) (-5 *6 (-554)) (-5 *2 (-1190 (-911)))
- (-5 *1 (-313))))
- ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-311 (-554))) (-5 *4 (-1 (-221) (-221)))
- (-5 *5 (-1076 (-221))) (-5 *6 (-554)) (-5 *7 (-1140))
- (-5 *2 (-1190 (-911))) (-5 *1 (-313))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-311 (-554))) (-5 *4 (-1 (-221) (-221)))
- (-5 *5 (-1076 (-221))) (-5 *6 (-221)) (-5 *7 (-554))
- (-5 *2 (-1190 (-911))) (-5 *1 (-313))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
- (-12 (-5 *3 (-311 (-554))) (-5 *4 (-1 (-221) (-221)))
- (-5 *5 (-1076 (-221))) (-5 *6 (-221)) (-5 *7 (-554)) (-5 *8 (-1140))
- (-5 *2 (-1190 (-911))) (-5 *1 (-313)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-634 *3)) (-4 *3 (-1034))
- (-5 *1 (-701 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1034)) (-5 *1 (-823 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-1138 *3))) (-5 *1 (-1138 *3)) (-4 *3 (-1195)))))
-(((*1 *2 *3) (-12 (-5 *3 (-809)) (-5 *2 (-52)) (-5 *1 (-816)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-546) (-145)))
- (-5 *2 (-2 (|:| -3311 *3) (|:| -3324 *3))) (-5 *1 (-1211 *4 *3))
- (-4 *3 (-1217 *4)))))
+ (-2 (|:| -3911 (-635 (-853))) (|:| -2738 (-635 (-853)))
+ (|:| |presup| (-635 (-853))) (|:| -3891 (-635 (-853)))
+ (|:| |args| (-635 (-853)))))
+ (-5 *1 (-1163)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1002)) (-5 *2 (-853)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-762)) (-5 *5 (-635 *3)) (-4 *3 (-306)) (-4 *6 (-841))
+ (-4 *7 (-784)) (-5 *2 (-112)) (-5 *1 (-617 *6 *7 *3 *8))
+ (-4 *8 (-939 *3 *7 *6)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-1079 (-942 (-558)))) (-5 *3 (-942 (-558)))
+ (-5 *1 (-329))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1079 (-942 (-558)))) (-5 *1 (-329)))))
+(((*1 *2) (-12 (-5 *2 (-894 (-558))) (-5 *1 (-907)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1246 (-635 *3))) (-4 *4 (-306))
+ (-5 *2 (-635 *3)) (-5 *1 (-453 *4 *3)) (-4 *3 (-1222 *4)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-174)))))
+(((*1 *1) (-5 *1 (-1247))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-863 *2 *3)) (-4 *2 (-1200)) (-4 *3 (-1200)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1039))
+ (-4 *2 (-13 (-403) (-1028 *4) (-362) (-1185) (-283)))
+ (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1222 *4))))
+ ((*1 *1 *1) (-4 *1 (-543)))
+ ((*1 *2 *1) (-12 (-5 *2 (-911)) (-5 *1 (-662 *3)) (-4 *3 (-841))))
+ ((*1 *2 *1) (-12 (-5 *2 (-911)) (-5 *1 (-667 *3)) (-4 *3 (-841))))
+ ((*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-810 *3)) (-4 *3 (-841))))
+ ((*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-883 *3)) (-4 *3 (-841))))
+ ((*1 *2 *1) (-12 (-4 *1 (-985 *3)) (-4 *3 (-1200)) (-5 *2 (-762))))
+ ((*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-1197 *3)) (-4 *3 (-1200))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1200)) (-4 *2 (-992))
+ (-4 *2 (-1039)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1002)) (-5 *2 (-853)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-631 (-554))) (-5 *2 (-889 (-554))) (-5 *1 (-902))))
- ((*1 *2) (-12 (-5 *2 (-889 (-554))) (-5 *1 (-902)))))
-(((*1 *1 *2 *3 *1 *3)
- (-12 (-5 *2 (-877 *4)) (-4 *4 (-1082)) (-5 *1 (-874 *4 *3))
- (-4 *3 (-1082)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-13 (-834) (-358))) (-5 *1 (-1044 *2 *3))
- (-4 *3 (-1217 *2)))))
+ (-12 (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841))
+ (-4 *6 (-1053 *3 *4 *5)) (-5 *1 (-616 *3 *4 *5 *6 *7 *2))
+ (-4 *7 (-1059 *3 *4 *5 *6)) (-4 *2 (-1096 *3 *4 *5 *6)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-329)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-762)) (-5 *3 (-933 *5)) (-4 *5 (-1039))
+ (-5 *1 (-1151 *4 *5)) (-14 *4 (-911))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-635 (-762))) (-5 *3 (-762)) (-5 *1 (-1151 *4 *5))
+ (-14 *4 (-911)) (-4 *5 (-1039))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-635 (-762))) (-5 *3 (-933 *5)) (-4 *5 (-1039))
+ (-5 *1 (-1151 *4 *5)) (-14 *4 (-911)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-402 *2)) (-4 *2 (-1217 *5))
- (-5 *1 (-794 *5 *2 *3 *6))
- (-4 *5 (-13 (-358) (-145) (-1023 (-402 (-554)))))
- (-4 *3 (-642 *2)) (-4 *6 (-642 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-631 (-402 *2))) (-4 *2 (-1217 *5))
- (-5 *1 (-794 *5 *2 *3 *6))
- (-4 *5 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-4 *3 (-642 *2))
- (-4 *6 (-642 (-402 *2))))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-1082))
- (-4 *4 (-1082)))))
+ (-12 (-5 *3 (-643 *4)) (-4 *4 (-341 *5 *6 *7))
+ (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))))
+ (-4 *6 (-1222 *5)) (-4 *7 (-1222 (-406 *6)))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2660 (-635 *4))))
+ (-5 *1 (-797 *5 *6 *7 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-558))) (-5 *2 (-894 (-558))) (-5 *1 (-907))))
+ ((*1 *2) (-12 (-5 *2 (-894 (-558))) (-5 *1 (-907)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-762)) (-4 *4 (-306)) (-4 *6 (-1222 *4))
+ (-5 *2 (-1246 (-635 *6))) (-5 *1 (-453 *4 *6)) (-5 *5 (-635 *6)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1143 *2)) (-4 *2 (-306)) (-5 *1 (-173 *2)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-462)) (-5 *3 (-631 (-258))) (-5 *1 (-1242))))
- ((*1 *1 *1) (-5 *1 (-1242))))
+ (-12 (-5 *2 (-466)) (-5 *3 (-635 (-262))) (-5 *1 (-1247))))
+ ((*1 *1 *1) (-5 *1 (-1247))))
(((*1 *2 *1)
- (-12 (-4 *1 (-961 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-780))
- (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-631 *5)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-906)) (-5 *2 (-1246)) (-5 *1 (-1242))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-906)) (-5 *2 (-1246)) (-5 *1 (-1243)))))
+ (-12 (-4 *3 (-1200)) (-5 *2 (-635 *1)) (-4 *1 (-1000 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-550)) (-5 *1 (-615 *2 *3)) (-4 *3 (-1222 *2)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-329)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-635 (-762))) (-5 *3 (-112)) (-5 *1 (-1151 *4 *5))
+ (-14 *4 (-911)) (-4 *5 (-1039)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-402 (-937 *4))) (-4 *4 (-302))
- (-5 *2 (-402 (-413 (-937 *4)))) (-5 *1 (-1027 *4)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-112)) (-5 *1 (-114))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-297)) (-5 *3 (-1158)) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-297)) (-5 *3 (-114)) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1158)) (-5 *2 (-112)) (-5 *1 (-600 *4)) (-4 *4 (-836))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-600 *4)) (-4 *4 (-836))))
+ (-12 (-5 *3 (-1163))
+ (-4 *4 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)))
+ (-5 *2 (-1 *5 *5)) (-5 *1 (-795 *4 *5))
+ (-4 *5 (-13 (-29 *4) (-1185) (-949))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-558))) (-5 *2 (-894 (-558))) (-5 *1 (-907))))
+ ((*1 *2) (-12 (-5 *2 (-894 (-558))) (-5 *1 (-907)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-635 *3)) (-4 *3 (-1222 *5)) (-4 *5 (-306))
+ (-5 *2 (-762)) (-5 *1 (-453 *5 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))))
+(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
+ (-12 (-5 *3 (-911)) (-5 *4 (-224)) (-5 *5 (-558)) (-5 *6 (-864))
+ (-5 *2 (-1251)) (-5 *1 (-1247)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-832)) (-5 *4 (-1051)) (-5 *2 (-1025)) (-5 *1 (-831))))
+ ((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1025)) (-5 *1 (-831))))
+ ((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-635 (-378))) (-5 *5 (-635 (-834 (-378))))
+ (-5 *6 (-635 (-315 (-378)))) (-5 *3 (-315 (-378))) (-5 *2 (-1025))
+ (-5 *1 (-831))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-315 (-378))) (-5 *4 (-635 (-378)))
+ (-5 *5 (-635 (-834 (-378)))) (-5 *2 (-1025)) (-5 *1 (-831))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1082)) (-5 *2 (-112)) (-5 *1 (-872 *5 *3 *4))
- (-4 *3 (-871 *5)) (-4 *4 (-602 (-877 *5)))))
+ (-12 (-5 *3 (-315 (-378))) (-5 *4 (-635 (-378))) (-5 *2 (-1025))
+ (-5 *1 (-831))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 *6)) (-4 *6 (-871 *5)) (-4 *5 (-1082))
- (-5 *2 (-112)) (-5 *1 (-872 *5 *6 *4)) (-4 *4 (-602 (-877 *5))))))
-(((*1 *2)
- (-12 (-5 *2 (-906)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-906)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))))
-(((*1 *1 *1 *1) (-5 *1 (-848))) ((*1 *1 *1) (-5 *1 (-848)))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1154 (-554))) (-5 *3 (-554)) (-4 *1 (-854 *4)))))
-(((*1 *1 *2 *3 *3 *4 *5)
- (-12 (-5 *2 (-631 (-631 (-928 (-221))))) (-5 *3 (-631 (-859)))
- (-5 *4 (-631 (-906))) (-5 *5 (-631 (-258))) (-5 *1 (-462))))
- ((*1 *1 *2 *3 *3 *4)
- (-12 (-5 *2 (-631 (-631 (-928 (-221))))) (-5 *3 (-631 (-859)))
- (-5 *4 (-631 (-906))) (-5 *1 (-462))))
- ((*1 *1 *2) (-12 (-5 *2 (-631 (-631 (-928 (-221))))) (-5 *1 (-462))))
- ((*1 *1 *1) (-5 *1 (-462))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-631 *7)) (-4 *7 (-934 *4 *5 *6)) (-4 *4 (-446))
- (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-1246))
- (-5 *1 (-443 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1158)) (-5 *4 (-937 (-554))) (-5 *2 (-325))
- (-5 *1 (-327)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-758)) (-4 *4 (-13 (-546) (-145)))
- (-5 *1 (-1211 *4 *2)) (-4 *2 (-1217 *4)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-358) (-145) (-1023 (-554))))
- (-4 *5 (-1217 *4))
- (-5 *2 (-2 (|:| -1709 (-402 *5)) (|:| |coeff| (-402 *5))))
- (-5 *1 (-558 *4 *5)) (-5 *3 (-402 *5)))))
+ (-12 (-5 *3 (-635 (-315 (-378)))) (-5 *4 (-635 (-378)))
+ (-5 *2 (-1025)) (-5 *1 (-831)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1000 *3)) (-4 *3 (-1200)) (-5 *2 (-558)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-1163))
+ (-4 *4 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558))))
+ (-5 *1 (-614 *4 *2)) (-4 *2 (-13 (-1185) (-949) (-29 *4))))))
+(((*1 *1 *2) (-12 (-5 *2 (-1107)) (-5 *1 (-329)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-635 (-762))) (-5 *3 (-170)) (-5 *1 (-1151 *4 *5))
+ (-14 *4 (-911)) (-4 *5 (-1039)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1163))
+ (-4 *4 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)))
+ (-5 *1 (-795 *4 *2)) (-4 *2 (-13 (-29 *4) (-1185) (-949))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-675 (-402 (-937 (-554)))))
- (-5 *2
- (-631
- (-2 (|:| |radval| (-311 (-554))) (|:| |radmult| (-554))
- (|:| |radvect| (-631 (-675 (-311 (-554))))))))
- (-5 *1 (-1016)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-1 (-221) (-221) (-221)))
- (-5 *4 (-1 (-221) (-221) (-221) (-221)))
- (-5 *2 (-1 (-928 (-221)) (-221) (-221))) (-5 *1 (-683)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1188 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *4 (-780))
- (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1188 *4 *5 *6 *3)) (-4 *4 (-546)) (-4 *5 (-780))
- (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-631 (-1067))) (-5 *1 (-286)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1188 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *4 (-780))
- (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-631 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-859)) (-5 *1 (-258))))
- ((*1 *1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-258)))))
+ (-12 (-5 *3 (-635 (-558))) (-5 *2 (-894 (-558))) (-5 *1 (-907))))
+ ((*1 *2) (-12 (-5 *2 (-894 (-558))) (-5 *1 (-907)))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-550)) (-4 *3 (-171))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -2660 (-635 *1))))
+ (-4 *1 (-366 *3))))
+ ((*1 *2)
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-451 *3 *4 *5 *6))
+ (|:| -2660 (-635 (-451 *3 *4 *5 *6)))))
+ (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-911))
+ (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))))
(((*1 *2 *1)
(-12
(-5 *2
- (-631
- (-2
- (|:| -2564
- (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221)))
- (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221))
- (|:| |relerr| (-221))))
- (|:| -2701
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1138 (-221)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -3827
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-549))))
+ (-1246
+ (-2 (|:| |scaleX| (-224)) (|:| |scaleY| (-224))
+ (|:| |deltaX| (-224)) (|:| |deltaY| (-224)) (|:| -2814 (-558))
+ (|:| -2794 (-558)) (|:| |spline| (-558)) (|:| -1832 (-558))
+ (|:| |axesColor| (-864)) (|:| -2179 (-558))
+ (|:| |unitsColor| (-864)) (|:| |showing| (-558)))))
+ (-5 *1 (-1247)))))
+(((*1 *1 *2) (-12 (-5 *2 (-911)) (-4 *1 (-367))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-911)) (-5 *2 (-1246 *4)) (-5 *1 (-526 *4))
+ (-4 *4 (-348))))
((*1 *2 *1)
- (-12 (-4 *1 (-592 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1195))
- (-5 *2 (-631 *4)))))
-(((*1 *2 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1140)) (-5 *3 (-554)) (-5 *1 (-1046)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221)))
- (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-79 LSFUN1))))
- (-5 *2 (-1020)) (-5 *1 (-740)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-485)))))
-(((*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836))
- (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-631 *4))
- (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1233 *2 *3 *4)) (-4 *2 (-1034)) (-14 *3 (-1158))
- (-14 *4 *2))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-546)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1495 *4)))
- (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-402 (-554)))
- (-4 *4 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *1 (-272 *4 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *4))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-112)) (-5 *1 (-816)))))
-(((*1 *2 *1) (-12 (-4 *1 (-521)) (-5 *2 (-1102)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-631 (-631 (-758)))) (-5 *1 (-889 *3)) (-4 *3 (-1082)))))
-(((*1 *1 *1) (-4 *1 (-854 *2))))
-(((*1 *2)
- (-12 (-5 *2 (-675 (-895 *3))) (-5 *1 (-346 *3 *4)) (-14 *3 (-906))
- (-14 *4 (-906))))
- ((*1 *2)
- (-12 (-5 *2 (-675 *3)) (-5 *1 (-347 *3 *4)) (-4 *3 (-344))
+ (-12 (-4 *2 (-841)) (-5 *1 (-704 *2 *3 *4)) (-4 *3 (-1087))
(-14 *4
- (-3 (-1154 *3)
- (-1241 (-631 (-2 (|:| -2794 *3) (|:| -2717 (-1102)))))))))
- ((*1 *2)
- (-12 (-5 *2 (-675 *3)) (-5 *1 (-348 *3 *4)) (-4 *3 (-344))
- (-14 *4 (-906)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1140)) (-5 *2 (-631 (-1163))) (-5 *1 (-1118)))))
+ (-1 (-112) (-2 (|:| -2851 *2) (|:| -1951 *3))
+ (-2 (|:| -2851 *2) (|:| -1951 *3)))))))
+(((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-635 (-1163))) (-4 *4 (-1087))
+ (-4 *5 (-13 (-1039) (-876 *4) (-841) (-606 (-882 *4))))
+ (-5 *1 (-1063 *4 *5 *2))
+ (-4 *2 (-13 (-429 *5) (-876 *4) (-606 (-882 *4))))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *3 (-1087))
+ (-4 *4 (-13 (-1039) (-876 *3) (-841) (-606 (-882 *3))))
+ (-5 *1 (-1063 *3 *4 *2))
+ (-4 *2 (-13 (-429 *4) (-876 *3) (-606 (-882 *3)))))))
+(((*1 *1 *2) (-12 (-5 *2 (-315 (-168 (-378)))) (-5 *1 (-329))))
+ ((*1 *1 *2) (-12 (-5 *2 (-315 (-558))) (-5 *1 (-329))))
+ ((*1 *1 *2) (-12 (-5 *2 (-315 (-378))) (-5 *1 (-329))))
+ ((*1 *1 *2) (-12 (-5 *2 (-315 (-684))) (-5 *1 (-329))))
+ ((*1 *1 *2) (-12 (-5 *2 (-315 (-691))) (-5 *1 (-329))))
+ ((*1 *1 *2) (-12 (-5 *2 (-315 (-689))) (-5 *1 (-329))))
+ ((*1 *1) (-5 *1 (-329))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-635 (-762))) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911))
+ (-4 *4 (-1039)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-631 (-1154 (-554)))) (-5 *1 (-187)) (-5 *3 (-554)))))
-(((*1 *2 *1)
(|partial| -12
- (-4 *3 (-13 (-836) (-1023 (-554)) (-627 (-554)) (-446)))
- (-5 *2 (-829 *4)) (-5 *1 (-308 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1180) (-425 *3))) (-14 *5 (-1158))
- (-14 *6 *4)))
- ((*1 *2 *1)
+ (-5 *3
+ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
+ (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224)))
+ (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224)))
+ (|:| |abserr| (-224)) (|:| |relerr| (-224))))
+ (-5 *2
+ (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378))
+ (|:| |expense| (-378)) (|:| |accuracy| (-378))
+ (|:| |intermediateResults| (-378))))
+ (-5 *1 (-794)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-558))) (-5 *2 (-894 (-558))) (-5 *1 (-907))))
+ ((*1 *2) (-12 (-5 *2 (-894 (-558))) (-5 *1 (-907)))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-550)) (-4 *3 (-171))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -2660 (-635 *1))))
+ (-4 *1 (-366 *3))))
+ ((*1 *2)
(|partial| -12
- (-4 *3 (-13 (-836) (-1023 (-554)) (-627 (-554)) (-446)))
- (-5 *2 (-829 *4)) (-5 *1 (-1227 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1180) (-425 *3))) (-14 *5 (-1158))
- (-14 *6 *4))))
-(((*1 *2 *3 *3)
- (-12 (-4 *2 (-546)) (-5 *1 (-954 *2 *3)) (-4 *3 (-1217 *2)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *5 (-600 *4)) (-5 *6 (-1158))
- (-4 *4 (-13 (-425 *7) (-27) (-1180)))
- (-4 *7 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3782 (-631 *4))))
- (-5 *1 (-556 *7 *4 *3)) (-4 *3 (-642 *4)) (-4 *3 (-1082)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082))
- (-5 *2 (-2 (|:| -2564 *3) (|:| -2701 *4))))))
-(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-859)))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-170)) (-5 *1 (-284 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1217 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-698 *2 *3 *4 *5 *6)) (-4 *2 (-170))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-702 *2 *3 *4 *5 *6)) (-4 *2 (-170))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-546)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2999 *4)))
- (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020))
- (-5 *1 (-739)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-631 (-675 *6))) (-5 *4 (-112)) (-5 *5 (-554))
- (-5 *2 (-675 *6)) (-5 *1 (-1014 *6)) (-4 *6 (-358)) (-4 *6 (-1034))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-631 (-675 *4))) (-5 *2 (-675 *4)) (-5 *1 (-1014 *4))
- (-4 *4 (-358)) (-4 *4 (-1034))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-631 (-675 *5))) (-5 *4 (-554)) (-5 *2 (-675 *5))
- (-5 *1 (-1014 *5)) (-4 *5 (-358)) (-4 *5 (-1034)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-951 *3)) (-4 *3 (-952)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1241 *4)) (-4 *4 (-344)) (-5 *2 (-1154 *4))
- (-5 *1 (-522 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1195))))
- ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1078))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1188 *3 *4 *5 *2)) (-4 *3 (-546))
- (-4 *4 (-780)) (-4 *5 (-836)) (-4 *2 (-1048 *3 *4 *5))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-758)) (-4 *1 (-1229 *3)) (-4 *3 (-1195))))
- ((*1 *2 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1195)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1172 *4 *5))
- (-4 *4 (-1082)) (-4 *5 (-1082)))))
-(((*1 *2 *2 *3)
- (-12
- (-5 *2
- (-2 (|:| |partsol| (-1241 (-402 (-937 *4))))
- (|:| -3782 (-631 (-1241 (-402 (-937 *4)))))))
- (-5 *3 (-631 *7)) (-4 *4 (-13 (-302) (-145)))
- (-4 *7 (-934 *4 *6 *5)) (-4 *5 (-13 (-836) (-602 (-1158))))
- (-4 *6 (-780)) (-5 *1 (-909 *4 *5 *6 *7)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-358)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112))
- (-5 *1 (-498 *4 *5 *6 *3)) (-4 *3 (-934 *4 *5 *6)))))
-(((*1 *1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1195)) (-4 *2 (-1082))))
- ((*1 *1 *1) (-12 (-4 *1 (-681 *2)) (-4 *2 (-1082)))))
-(((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1180))))
- ((*1 *2 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-836))))
- ((*1 *2 *1) (-12 (-5 *2 (-631 *3)) (-5 *1 (-600 *3)) (-4 *3 (-836)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848))))
+ (-5 *2
+ (-2 (|:| |particular| (-451 *3 *4 *5 *6))
+ (|:| -2660 (-635 (-451 *3 *4 *5 *6)))))
+ (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-911))
+ (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1165 (-406 (-558)))) (-5 *1 (-189)) (-5 *3 (-558))))
((*1 *2 *1)
- (-12
- (-5 *2
- (-2 (|:| -3999 (-631 (-848))) (|:| -1349 (-631 (-848)))
- (|:| |presup| (-631 (-848))) (|:| -1426 (-631 (-848)))
- (|:| |args| (-631 (-848)))))
- (-5 *1 (-1158)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-631 (-600 *2))) (-5 *4 (-631 (-1158)))
- (-4 *2 (-13 (-425 (-167 *5)) (-987) (-1180)))
- (-4 *5 (-13 (-546) (-836))) (-5 *1 (-588 *5 *6 *2))
- (-4 *6 (-13 (-425 *5) (-987) (-1180))))))
+ (-12 (-5 *2 (-1246 (-3 (-466) "undefined"))) (-5 *1 (-1247)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))))
-(((*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1140)) (-5 *1 (-188))))
- ((*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1140)) (-5 *1 (-295))))
- ((*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1140)) (-5 *1 (-300)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1140)) (-4 *1 (-384)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-1195)) (-5 *1 (-180 *3 *2))
- (-4 *2 (-660 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-546)) (-5 *2 (-631 (-758))) (-5 *1 (-954 *4 *3))
- (-4 *3 (-1217 *4)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-886 *2)) (-4 *2 (-1082))))
- ((*1 *1 *2) (-12 (-5 *1 (-886 *2)) (-4 *2 (-1082)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-635 *3 *4 *5)) (-4 *3 (-1082))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-358)) (-5 *1 (-1010 *3 *2)) (-4 *2 (-642 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-358)) (-5 *2 (-2 (|:| -4329 *3) (|:| -1482 (-631 *5))))
- (-5 *1 (-1010 *5 *3)) (-5 *4 (-631 *5)) (-4 *3 (-642 *5)))))
-(((*1 *1 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-21)) (-4 *2 (-1195)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1195)) (-4 *2 (-987))
- (-4 *2 (-1034)))))
+ (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
+ (-4 *4 (-841)) (-4 *2 (-450)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836))
- (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-631 *4))
- (-5 *1 (-1055 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1034))
- (-4 *2 (-13 (-399) (-1023 *4) (-358) (-1180) (-279)))
- (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1217 *4))))
- ((*1 *1 *1) (-4 *1 (-539)))
- ((*1 *2 *1) (-12 (-5 *2 (-906)) (-5 *1 (-658 *3)) (-4 *3 (-836))))
- ((*1 *2 *1) (-12 (-5 *2 (-906)) (-5 *1 (-663 *3)) (-4 *3 (-836))))
- ((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-806 *3)) (-4 *3 (-836))))
- ((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-878 *3)) (-4 *3 (-836))))
- ((*1 *2 *1) (-12 (-4 *1 (-980 *3)) (-4 *3 (-1195)) (-5 *2 (-758))))
- ((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-1192 *3)) (-4 *3 (-1195))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1195)) (-4 *2 (-987))
- (-4 *2 (-1034)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4374)) (-4 *1 (-368 *2)) (-4 *2 (-1195))
- (-4 *2 (-836))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4374))
- (-4 *1 (-368 *3)) (-4 *3 (-1195)))))
+ (-12 (-5 *4 (-558)) (-5 *2 (-635 (-2 (|:| -2522 *3) (|:| -4323 *4))))
+ (-5 *1 (-686 *3)) (-4 *3 (-1222 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-5 *1 (-329)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |cd| (-1140)) (|:| -4309 (-1140))))
- (-5 *1 (-809)))))
-(((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4373)) (-4 *1 (-149 *2)) (-4 *2 (-1195))
- (-4 *2 (-1082))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4373)) (-4 *1 (-149 *3))
- (-4 *3 (-1195))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-660 *3)) (-4 *3 (-1195))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-554)) (-4 *4 (-1082))
- (-5 *1 (-724 *4))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-554)) (-5 *1 (-724 *2)) (-4 *2 (-1082))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1122 *3 *4)) (-4 *3 (-13 (-1082) (-34)))
- (-4 *4 (-13 (-1082) (-34))) (-5 *1 (-1123 *3 *4)))))
+ (-12 (-5 *2 (-933 *4)) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911))
+ (-4 *4 (-1039)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-635
+ (-2
+ (|:| -2700
+ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
+ (|:| |fn| (-1246 (-315 (-224))))
+ (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224)))
+ (|:| |g| (-315 (-224))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
+ (|:| -2981
+ (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378))
+ (|:| |expense| (-378)) (|:| |accuracy| (-378))
+ (|:| |intermediateResults| (-378)))))))
+ (-5 *1 (-794)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-758)) (-4 *5 (-1034)) (-4 *2 (-1217 *5))
- (-5 *1 (-1235 *5 *2 *6 *3)) (-4 *6 (-642 *2)) (-4 *3 (-1232 *5)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-462)) (-5 *4 (-906)) (-5 *2 (-1246)) (-5 *1 (-1242)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1138 (-554))) (-5 *1 (-1142 *4)) (-4 *4 (-1034))
- (-5 *3 (-554)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836))
- (-4 *6 (-1048 *3 *4 *5)) (-5 *1 (-612 *3 *4 *5 *6 *7 *2))
- (-4 *7 (-1054 *3 *4 *5 *6)) (-4 *2 (-1091 *3 *4 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-523))))
- ((*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-523)))))
-(((*1 *2)
- (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3))
- (-4 *5 (-1217 (-402 *4))) (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-906)) (-5 *1 (-773)))))
-(((*1 *2 *3)
- (-12 (|has| *2 (-6 (-4375 "*"))) (-4 *5 (-368 *2)) (-4 *6 (-368 *2))
- (-4 *2 (-1034)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1217 *2))
- (-4 *4 (-673 *2 *5 *6)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1020)) (-5 *3 (-1158)) (-5 *1 (-262)))))
-(((*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-462))))
- ((*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-1242))))
- ((*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-1243)))))
-(((*1 *2 *1) (-12 (|has| *1 (-6 -4373)) (-4 *1 (-34)) (-5 *2 (-758))))
- ((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-128))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082))
- (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-554))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-758)) (-5 *1 (-1264 *3 *4)) (-4 *3 (-1034))
- (-4 *4 (-832)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-27))
- (-4 *4 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554)))))
- (-4 *5 (-1217 *4)) (-5 *2 (-631 (-639 (-402 *5))))
- (-5 *1 (-643 *4 *5)) (-5 *3 (-639 (-402 *5))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-413 (-1154 (-554)))) (-5 *1 (-187)) (-5 *3 (-554)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1158)) (-5 *2 (-109)) (-5 *1 (-173))))
- ((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1158)) (-5 *2 (-109)) (-5 *1 (-1067)))))
+ (-12 (-5 *3 (-635 *5)) (-5 *4 (-635 *6)) (-4 *5 (-1087))
+ (-4 *6 (-1200)) (-5 *2 (-1 *6 *5)) (-5 *1 (-632 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-635 *5)) (-5 *4 (-635 *2)) (-4 *5 (-1087))
+ (-4 *2 (-1200)) (-5 *1 (-632 *5 *2))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-635 *6)) (-5 *4 (-635 *5)) (-4 *6 (-1087))
+ (-4 *5 (-1200)) (-5 *2 (-1 *5 *6)) (-5 *1 (-632 *6 *5))))
+ ((*1 *2 *3 *4 *5 *2)
+ (-12 (-5 *3 (-635 *5)) (-5 *4 (-635 *2)) (-4 *5 (-1087))
+ (-4 *2 (-1200)) (-5 *1 (-632 *5 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-635 *5)) (-5 *4 (-635 *6))
+ (-4 *5 (-1087)) (-4 *6 (-1200)) (-5 *1 (-632 *5 *6))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-635 *5)) (-5 *4 (-635 *2)) (-5 *6 (-1 *2 *5))
+ (-4 *5 (-1087)) (-4 *2 (-1200)) (-5 *1 (-632 *5 *2))))
+ ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (-143)) (-5 *2 (-762)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-758)) (|:| |poli| *2)
- (|:| |polj| *2)))
- (-4 *5 (-780)) (-4 *2 (-934 *4 *5 *6)) (-5 *1 (-443 *4 *5 *6 *2))
- (-4 *4 (-446)) (-4 *6 (-836)))))
+ (-12 (-5 *3 (-635 (-558))) (-5 *2 (-894 (-558))) (-5 *1 (-907))))
+ ((*1 *2) (-12 (-5 *2 (-894 (-558))) (-5 *1 (-907)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1246 (-1163))) (-5 *3 (-1246 (-451 *4 *5 *6 *7)))
+ (-5 *1 (-451 *4 *5 *6 *7)) (-4 *4 (-171)) (-14 *5 (-911))
+ (-14 *6 (-635 (-1163))) (-14 *7 (-1246 (-679 *4)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1163)) (-5 *3 (-1246 (-451 *4 *5 *6 *7)))
+ (-5 *1 (-451 *4 *5 *6 *7)) (-4 *4 (-171)) (-14 *5 (-911))
+ (-14 *6 (-635 *2)) (-14 *7 (-1246 (-679 *4)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1246 (-451 *3 *4 *5 *6))) (-5 *1 (-451 *3 *4 *5 *6))
+ (-4 *3 (-171)) (-14 *4 (-911)) (-14 *5 (-635 (-1163)))
+ (-14 *6 (-1246 (-679 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1246 (-1163))) (-5 *1 (-451 *3 *4 *5 *6))
+ (-4 *3 (-171)) (-14 *4 (-911)) (-14 *5 (-635 (-1163)))
+ (-14 *6 (-1246 (-679 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1163)) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171))
+ (-14 *4 (-911)) (-14 *5 (-635 *2)) (-14 *6 (-1246 (-679 *3)))))
+ ((*1 *1)
+ (-12 (-5 *1 (-451 *2 *3 *4 *5)) (-4 *2 (-171)) (-14 *3 (-911))
+ (-14 *4 (-635 (-1163))) (-14 *5 (-1246 (-679 *2))))))
+(((*1 *1 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-466)) (-5 *4 (-911)) (-5 *2 (-1251)) (-5 *1 (-1247)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
+ (-4 *4 (-841)) (-4 *2 (-450)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-558)) (-5 *1 (-686 *2)) (-4 *2 (-1222 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-329)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-554)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1195))
- (-4 *3 (-368 *4)) (-4 *5 (-368 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-631 (-631 (-928 (-221))))) (-5 *1 (-1190 *3))
- (-4 *3 (-959)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-758)) (-4 *4 (-302)) (-4 *6 (-1217 *4))
- (-5 *2 (-1241 (-631 *6))) (-5 *1 (-449 *4 *6)) (-5 *5 (-631 *6)))))
-(((*1 *1) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1180))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-374)) (-5 *1 (-97))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-374)) (-5 *1 (-97)))))
-(((*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1025)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
- (-12 (-5 *4 (-554)) (-5 *5 (-1140)) (-5 *6 (-675 (-221)))
- (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-89 G))))
- (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN))))
- (-5 *9 (-3 (|:| |fn| (-383)) (|:| |fp| (-88 OUTPUT))))
- (-5 *3 (-221)) (-5 *2 (-1020)) (-5 *1 (-736)))))
-(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-779))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1034)) (-14 *3 (-631 (-1158)))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-219 *2 *3)) (-4 *2 (-13 (-1034) (-836)))
- (-14 *3 (-631 (-1158)))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-377 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-1082))))
- ((*1 *1 *1)
- (-12 (-14 *2 (-631 (-1158))) (-4 *3 (-170))
- (-4 *5 (-234 (-2563 *2) (-758)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2717 *4) (|:| -1407 *5))
- (-2 (|:| -2717 *4) (|:| -1407 *5))))
- (-5 *1 (-455 *2 *3 *4 *5 *6 *7)) (-4 *4 (-836))
- (-4 *7 (-934 *3 *5 (-850 *2)))))
- ((*1 *1 *1) (-12 (-4 *1 (-503 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-836))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-546)) (-5 *1 (-611 *2 *3)) (-4 *3 (-1217 *2))))
- ((*1 *1 *1) (-12 (-4 *1 (-695 *2)) (-4 *2 (-1034))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-722 *2 *3)) (-4 *3 (-836)) (-4 *2 (-1034))
- (-4 *3 (-713))))
- ((*1 *1 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034))))
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-762)) (-4 *1 (-230 *4))
+ (-4 *4 (-1039))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-230 *3)) (-4 *3 (-1039))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-232)) (-5 *2 (-762))))
+ ((*1 *1 *1) (-4 *1 (-232)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *1 (-265 *3)) (-4 *3 (-841))))
+ ((*1 *1 *1) (-12 (-4 *1 (-265 *2)) (-4 *2 (-841))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1048 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780))
- (-4 *2 (-836))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204))
+ (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-762)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4))
+ (-4 *4 (-1222 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-1264 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-832)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-635 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1176))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-1176)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-402 (-554))) (-5 *1 (-584 *3)) (-4 *3 (-38 *2))
- (-4 *3 (-1034)))))
-(((*1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-1244))))
- ((*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-1244)))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4))
- (-4 *3 (-362 *4))))
- ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
-(((*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-551)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-546)) (-4 *2 (-1034))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-546)) (-5 *1 (-954 *3 *2)) (-4 *2 (-1217 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780))
- (-4 *4 (-836)) (-4 *2 (-546))))
- ((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836))
- (-4 *3 (-1048 *4 *5 *6))
- (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *1))))
- (-4 *1 (-1054 *4 *5 *6 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-631 *2)) (-4 *2 (-934 *4 *5 *6)) (-4 *4 (-446))
- (-4 *5 (-780)) (-4 *6 (-836)) (-5 *1 (-443 *4 *5 *6 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-1154 *3)))))
+ (-12 (-4 *2 (-13 (-362) (-146))) (-5 *1 (-398 *2 *3))
+ (-4 *3 (-1222 *2))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-472 *3 *4 *5))
+ (-4 *3 (-1039)) (-14 *5 *3)))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *2 (-362)) (-4 *2 (-890 *3)) (-5 *1 (-579 *2))
+ (-5 *3 (-1163))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-579 *2)) (-4 *2 (-362))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-853))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-635 *4)) (-5 *3 (-635 (-762))) (-4 *1 (-890 *4))
+ (-4 *4 (-1087))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-762)) (-4 *1 (-890 *2)) (-4 *2 (-1087))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-635 *3)) (-4 *1 (-890 *3)) (-4 *3 (-1087))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-890 *2)) (-4 *2 (-1087))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1154 *3 *4 *5))
+ (-4 *3 (-1039)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1160 *3 *4 *5))
+ (-4 *3 (-1039)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1161 *3 *4 *5))
+ (-4 *3 (-1039)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1210 *3 *4 *5))
+ (-4 *3 (-1039)) (-14 *5 *3)))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1222 *3)) (-4 *3 (-1039))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1231 *3 *4 *5))
+ (-4 *3 (-1039)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1238 *3 *4 *5))
+ (-4 *3 (-1039)) (-14 *5 *3))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-631 *1))
- (-4 *1 (-934 *3 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-546) (-145))) (-5 *1 (-531 *3 *2))
- (-4 *2 (-1232 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-358) (-363) (-602 (-554)))) (-4 *4 (-1217 *3))
- (-4 *5 (-711 *3 *4)) (-5 *1 (-535 *3 *4 *5 *2)) (-4 *2 (-1232 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-358) (-363) (-602 (-554)))) (-5 *1 (-536 *3 *2))
- (-4 *2 (-1232 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-13 (-546) (-145)))
- (-5 *1 (-1134 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-961 *3 *4 *2 *5)) (-4 *3 (-1034)) (-4 *4 (-780))
- (-4 *2 (-836)) (-4 *5 (-1048 *3 *4 *2)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1082)) (-4 *2 (-836))
- (-5 *1 (-113 *2)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
- (-12 (-5 *6 (-631 (-112))) (-5 *7 (-675 (-221)))
- (-5 *8 (-675 (-554))) (-5 *3 (-554)) (-5 *4 (-221)) (-5 *5 (-112))
- (-5 *2 (-1020)) (-5 *1 (-741)))))
+ (-12 (-5 *2 (-762)) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911))
+ (-4 *4 (-1039)))))
+(((*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-794)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-635 *4)) (-5 *1 (-1128 *3 *4))
+ (-4 *3 (-13 (-1087) (-34))) (-4 *4 (-13 (-1087) (-34))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-928 *3) (-928 *3))) (-5 *1 (-174 *3))
- (-4 *3 (-13 (-358) (-1180) (-987)))))
+ (-12 (-5 *3 (-635 (-558))) (-5 *2 (-894 (-558))) (-5 *1 (-907))))
+ ((*1 *2) (-12 (-5 *2 (-894 (-558))) (-5 *1 (-907)))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-1159 (-942 *4))) (-5 *1 (-415 *3 *4))
+ (-4 *3 (-416 *4))))
((*1 *2)
- (|partial| -12 (-4 *4 (-1199)) (-4 *5 (-1217 (-402 *2)))
- (-4 *2 (-1217 *4)) (-5 *1 (-336 *3 *4 *2 *5))
- (-4 *3 (-337 *4 *2 *5))))
+ (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-4 *3 (-362))
+ (-5 *2 (-1159 (-942 *3)))))
((*1 *2)
- (|partial| -12 (-4 *1 (-337 *3 *2 *4)) (-4 *3 (-1199))
- (-4 *4 (-1217 (-402 *2))) (-4 *2 (-1217 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1154 *4)) (-4 *4 (-344)) (-5 *2 (-943 (-1102)))
- (-5 *1 (-341 *4)))))
+ (-12 (-5 *2 (-1159 (-406 (-942 *3)))) (-5 *1 (-451 *3 *4 *5 *6))
+ (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911))
+ (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))))
(((*1 *2 *1)
- (-12
- (-5 *2
- (-631
- (-2 (|:| |scalar| (-402 (-554))) (|:| |coeff| (-1154 *3))
- (|:| |logand| (-1154 *3)))))
- (-5 *1 (-575 *3)) (-4 *3 (-358)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-758)) (-5 *3 (-928 *4)) (-4 *1 (-1116 *4))
- (-4 *4 (-1034))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-758)) (-5 *4 (-928 (-221))) (-5 *2 (-1246))
- (-5 *1 (-1243)))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *4 (-221))
- (-5 *2
- (-2 (|:| |brans| (-631 (-631 (-928 *4))))
- (|:| |xValues| (-1076 *4)) (|:| |yValues| (-1076 *4))))
- (-5 *1 (-151)) (-5 *3 (-631 (-631 (-928 *4)))))))
-(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1034))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1034)) (-5 *1 (-50 *2 *3)) (-14 *3 (-631 (-1158)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-311 *3)) (-5 *1 (-219 *3 *4))
- (-4 *3 (-13 (-1034) (-836))) (-14 *4 (-631 (-1158)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-377 *2 *3)) (-4 *3 (-1082)) (-4 *2 (-1034))))
- ((*1 *2 *1)
- (-12 (-14 *3 (-631 (-1158))) (-4 *5 (-234 (-2563 *3) (-758)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2717 *4) (|:| -1407 *5))
- (-2 (|:| -2717 *4) (|:| -1407 *5))))
- (-4 *2 (-170)) (-5 *1 (-455 *3 *2 *4 *5 *6 *7)) (-4 *4 (-836))
- (-4 *7 (-934 *2 *5 (-850 *3)))))
- ((*1 *2 *1) (-12 (-4 *1 (-503 *2 *3)) (-4 *3 (-836)) (-4 *2 (-1082))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-546)) (-5 *1 (-611 *2 *3)) (-4 *3 (-1217 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-695 *2)) (-4 *2 (-1034))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1034)) (-5 *1 (-722 *2 *3)) (-4 *3 (-836))
- (-4 *3 (-713))))
- ((*1 *2 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-958 *2 *3 *4)) (-4 *3 (-779)) (-4 *4 (-836))
- (-4 *2 (-1034))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1048 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780))
- (-4 *2 (-836)))))
+ (-12 (-5 *2 (-1143 (-406 *3))) (-5 *1 (-173 *3)) (-4 *3 (-306)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-911)) (-5 *2 (-466)) (-5 *1 (-1247)))))
+(((*1 *1) (-5 *1 (-1051))))
+(((*1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1200)) (-4 *2 (-1087))))
+ ((*1 *1 *1) (-12 (-4 *1 (-685 *2)) (-4 *2 (-1087)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-329)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-635 *3)) (-4 *3 (-1200)) (-5 *1 (-1246 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-592 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1195))
- (-5 *2 (-631 *3)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-167 (-221))) (-5 *5 (-554)) (-5 *6 (-1140))
- (-5 *3 (-221)) (-5 *2 (-1020)) (-5 *1 (-745)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-631 *3)) (-4 *3 (-1217 *5)) (-4 *5 (-302))
- (-5 *2 (-758)) (-5 *1 (-449 *5 *3)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-631 (-937 *3))) (-4 *3 (-446))
- (-5 *1 (-355 *3 *4)) (-14 *4 (-631 (-1158)))))
- ((*1 *2 *2)
- (|partial| -12 (-5 *2 (-631 (-767 *3 (-850 *4)))) (-4 *3 (-446))
- (-14 *4 (-631 (-1158))) (-5 *1 (-616 *3 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-631 (-1 *4 (-631 *4)))) (-4 *4 (-1082))
- (-5 *1 (-113 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1082))
- (-5 *1 (-113 *4))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-114)) (-5 *2 (-631 (-1 *4 (-631 *4))))
- (-5 *1 (-113 *4)) (-4 *4 (-1082)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-848) (-848))) (-5 *1 (-114))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-848) (-631 (-848)))) (-5 *1 (-114))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1 (-848) (-631 (-848)))) (-5 *1 (-114))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1246)) (-5 *1 (-210 *3))
- (-4 *3
- (-13 (-836)
- (-10 -8 (-15 -2064 ((-1140) $ (-1158))) (-15 -2524 (*2 $))
- (-15 -2941 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-389))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-5 *2 (-1246)) (-5 *1 (-389))))
- ((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-496))))
- ((*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-697))))
- ((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-1175))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-5 *2 (-1246)) (-5 *1 (-1175)))))
-(((*1 *2)
- (-12 (-4 *3 (-546)) (-5 *2 (-631 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-412 *3)))))
-(((*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1025)))))
-(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-605))))
-(((*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))))
-(((*1 *2)
- (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3))
- (-4 *5 (-1217 (-402 *4))) (-5 *2 (-675 (-402 *4))))))
-(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-779))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-377 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-1082))))
- ((*1 *2 *1)
- (-12 (-14 *3 (-631 (-1158))) (-4 *4 (-170))
- (-4 *6 (-234 (-2563 *3) (-758)))
- (-14 *7
- (-1 (-112) (-2 (|:| -2717 *5) (|:| -1407 *6))
- (-2 (|:| -2717 *5) (|:| -1407 *6))))
- (-5 *2 (-700 *5 *6 *7)) (-5 *1 (-455 *3 *4 *5 *6 *7 *8))
- (-4 *5 (-836)) (-4 *8 (-934 *4 *6 (-850 *3)))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-713)) (-4 *2 (-836)) (-5 *1 (-722 *3 *2))
- (-4 *3 (-1034))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-958 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-779))
- (-4 *4 (-836)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911))
+ (-4 *4 (-1039)))))
+(((*1 *1) (-5 *1 (-794))))
(((*1 *2 *1)
+ (-12 (-5 *2 (-1143 (-406 *3))) (-5 *1 (-173 *3)) (-4 *3 (-306)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-911)) (-5 *4 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1247)))))
+(((*1 *2 *2)
(-12
(-5 *2
- (-631
- (-631
- (-3 (|:| -4309 (-1158))
- (|:| -2453 (-631 (-3 (|:| S (-1158)) (|:| P (-937 (-554))))))))))
- (-5 *1 (-1162)))))
+ (-502 (-406 (-558)) (-239 *4 (-762)) (-855 *3)
+ (-246 *3 (-406 (-558)))))
+ (-14 *3 (-635 (-1163))) (-14 *4 (-762)) (-5 *1 (-503 *3 *4)))))
+(((*1 *1 *1) (-5 *1 (-1051))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-685 *3)) (-4 *3 (-1087))
+ (-5 *2 (-635 (-2 (|:| -2981 *3) (|:| -2988 (-762))))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-329)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-170)) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911))
+ (-4 *4 (-1039)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-1163))
+ (-4 *6 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)))
+ (-4 *4 (-13 (-29 *6) (-1185) (-949)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -2660 (-635 *4))))
+ (-5 *1 (-792 *6 *4 *3)) (-4 *3 (-646 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-863 (-956 *3) (-956 *3))) (-5 *1 (-956 *3))
+ (-4 *3 (-957)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-554))
- (-14 *6 (-758)) (-4 *7 (-170)) (-4 *8 (-170))
- (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-1159 *5)) (-4 *5 (-450)) (-5 *2 (-635 *6))
+ (-5 *1 (-536 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-839)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 *9)) (-4 *9 (-1034)) (-4 *5 (-836)) (-4 *6 (-780))
- (-4 *8 (-1034)) (-4 *2 (-934 *9 *7 *5))
- (-5 *1 (-715 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-780))
- (-4 *4 (-934 *8 *6 *5)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-980 *2)) (-4 *2 (-1195)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-402 (-554))) (-5 *1 (-1009 *3))
- (-4 *3 (-13 (-834) (-358) (-1007)))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *2 (-13 (-834) (-358))) (-5 *1 (-1044 *2 *3))
- (-4 *3 (-1217 *2))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-1051 *2 *3)) (-4 *2 (-13 (-834) (-358)))
- (-4 *3 (-1217 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987))))))
-(((*1 *1 *2) (-12 (-5 *2 (-631 *1)) (-4 *1 (-446))))
- ((*1 *1 *1 *1) (-4 *1 (-446)))
+ (-12 (-5 *3 (-942 *5)) (-4 *5 (-450)) (-5 *2 (-635 *6))
+ (-5 *1 (-536 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-839))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-911)) (-5 *4 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1247)))))
+(((*1 *2 *3) (-12 (-5 *2 (-378)) (-5 *1 (-776 *3)) (-4 *3 (-606 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-911)) (-5 *2 (-378)) (-5 *1 (-776 *3))
+ (-4 *3 (-606 *2))))
((*1 *2 *3)
- (-12 (-5 *3 (-631 *2)) (-5 *1 (-480 *2)) (-4 *2 (-1217 (-554)))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-554)) (-5 *1 (-682 *2)) (-4 *2 (-1217 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-758)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-780)) (-4 *4 (-836)) (-4 *5 (-302))
- (-5 *1 (-901 *3 *4 *5 *2)) (-4 *2 (-934 *5 *3 *4))))
+ (-12 (-5 *3 (-942 *4)) (-4 *4 (-1039)) (-4 *4 (-606 *2))
+ (-5 *2 (-378)) (-5 *1 (-776 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-942 *5)) (-5 *4 (-911)) (-4 *5 (-1039))
+ (-4 *5 (-606 *2)) (-5 *2 (-378)) (-5 *1 (-776 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-631 *2)) (-4 *2 (-934 *6 *4 *5))
- (-5 *1 (-901 *4 *5 *6 *2)) (-4 *4 (-780)) (-4 *5 (-836))
- (-4 *6 (-302))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1154 *6)) (-4 *6 (-934 *5 *3 *4)) (-4 *3 (-780))
- (-4 *4 (-836)) (-4 *5 (-302)) (-5 *1 (-901 *3 *4 *5 *6))))
+ (-12 (-5 *3 (-406 (-942 *4))) (-4 *4 (-550)) (-4 *4 (-606 *2))
+ (-5 *2 (-378)) (-5 *1 (-776 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-406 (-942 *5))) (-5 *4 (-911)) (-4 *5 (-550))
+ (-4 *5 (-606 *2)) (-5 *2 (-378)) (-5 *1 (-776 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-631 (-1154 *7))) (-4 *4 (-780)) (-4 *5 (-836))
- (-4 *6 (-302)) (-5 *2 (-1154 *7)) (-5 *1 (-901 *4 *5 *6 *7))
- (-4 *7 (-934 *6 *4 *5))))
- ((*1 *1 *1 *1) (-5 *1 (-906)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-446)) (-4 *3 (-546)) (-5 *1 (-954 *3 *2))
- (-4 *2 (-1217 *3))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780))
- (-4 *4 (-836)) (-4 *2 (-446)))))
-(((*1 *1 *1) (-5 *1 (-1046))))
+ (-12 (-5 *3 (-315 *4)) (-4 *4 (-550)) (-4 *4 (-841))
+ (-4 *4 (-606 *2)) (-5 *2 (-378)) (-5 *1 (-776 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-315 *5)) (-5 *4 (-911)) (-4 *5 (-550)) (-4 *5 (-841))
+ (-4 *5 (-606 *2)) (-5 *2 (-378)) (-5 *1 (-776 *5)))))
+(((*1 *1 *1) (-5 *1 (-1051))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *5 (-762)) (-4 *6 (-1087)) (-4 *7 (-890 *6))
+ (-5 *2 (-679 *7)) (-5 *1 (-682 *6 *7 *3 *4)) (-4 *3 (-372 *7))
+ (-4 *4 (-13 (-372 *6) (-10 -7 (-6 -4382)))))))
+(((*1 *2 *2) (-12 (-5 *2 (-1107)) (-5 *1 (-329)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1151 *2 *3)) (-14 *2 (-911)) (-4 *3 (-1039)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-243 *4 *5)) (-14 *4 (-631 (-1158))) (-4 *5 (-1034))
- (-5 *2 (-937 *5)) (-5 *1 (-929 *4 *5)))))
+ (-12 (-4 *1 (-791))
+ (-5 *3
+ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
+ (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224)))
+ (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224)))
+ (|:| |abserr| (-224)) (|:| |relerr| (-224))))
+ (-5 *2 (-1025)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-956 *3)) (-4 *3 (-957)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1163)) (-5 *2 (-534)) (-5 *1 (-533 *4))
+ (-4 *4 (-1200)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-911)) (-5 *4 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1247)))))
+(((*1 *1 *1) (-5 *1 (-1051))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-675 *8)) (-4 *8 (-934 *5 *7 *6))
- (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-836) (-602 (-1158))))
- (-4 *7 (-780))
- (-5 *2
- (-631
- (-2 (|:| -4186 (-758))
- (|:| |eqns|
- (-631
- (-2 (|:| |det| *8) (|:| |rows| (-631 (-554)))
- (|:| |cols| (-631 (-554))))))
- (|:| |fgb| (-631 *8)))))
- (-5 *1 (-909 *5 *6 *7 *8)) (-5 *4 (-758)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-631 (-554))) (-5 *3 (-675 (-554))) (-5 *1 (-1092)))))
-(((*1 *2 *1) (-12 (-4 *1 (-321 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1034))))
- ((*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-836)))))
+ (-12 (-5 *3 (-1246 (-315 (-224)))) (-5 *4 (-635 (-1163)))
+ (-5 *2 (-679 (-315 (-224)))) (-5 *1 (-204))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1087)) (-4 *6 (-890 *5)) (-5 *2 (-679 *6))
+ (-5 *1 (-682 *5 *6 *3 *4)) (-4 *3 (-372 *6))
+ (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4382)))))))
+(((*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-631 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-554))
- (-14 *4 (-758)) (-4 *5 (-170)))))
-(((*1 *2 *2 *3 *3 *4)
- (-12 (-5 *4 (-758)) (-4 *3 (-546)) (-5 *1 (-954 *3 *2))
- (-4 *2 (-1217 *3)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1241 *1)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199))
- (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-221)) (|:| |xend| (-221))
- (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221)))
- (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221)))
- (|:| |abserr| (-221)) (|:| |relerr| (-221))))
- (-5 *2 (-374)) (-5 *1 (-201)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169))))
- ((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-1242))))
- ((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-1243)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-631 *2)) (-4 *2 (-1195)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-829 (-374))) (-5 *2 (-829 (-221))) (-5 *1 (-300)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-431)))))
+ (-12 (-5 *2 (-635 (-933 *4))) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911))
+ (-4 *4 (-1039)))))
+(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *1 (-788 *2)) (-4 *2 (-171))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-989 *3)) (-4 *3 (-171)) (-5 *1 (-790 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-779))
- (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-836)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-546))
- (-5 *2 (-2 (|:| -2325 *3) (|:| -2423 *3))) (-5 *1 (-1212 *4 *3))
- (-4 *3 (-1217 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-811)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1034)) (-4 *2 (-546)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1241 *3)) (-4 *3 (-1217 *4)) (-4 *4 (-1199))
- (-4 *1 (-337 *4 *3 *5)) (-4 *5 (-1217 (-402 *3))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1154 *7)) (-4 *7 (-934 *6 *4 *5)) (-4 *4 (-780))
- (-4 *5 (-836)) (-4 *6 (-1034)) (-5 *2 (-1154 *6))
- (-5 *1 (-316 *4 *5 *6 *7)))))
-(((*1 *1 *1) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1195)))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-631 (-631 (-928 (-221))))) (-5 *4 (-859))
- (-5 *5 (-906)) (-5 *6 (-631 (-258))) (-5 *2 (-1242))
- (-5 *1 (-1245))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-631 (-928 (-221))))) (-5 *4 (-631 (-258)))
- (-5 *2 (-1242)) (-5 *1 (-1245)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-221))
- (-5 *2 (-1020)) (-5 *1 (-738)))))
-(((*1 *1 *1) (-4 *1 (-239)))
- ((*1 *1 *1)
- (-12 (-4 *2 (-170)) (-5 *1 (-284 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1217 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ (-12 (-5 *2 (-863 (-956 *3) (-956 *3))) (-5 *1 (-956 *3))
+ (-4 *3 (-957)))))
+(((*1 *1 *2) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-108))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-534))) (-5 *1 (-534)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-170)))))
+(((*1 *1 *2 *2 *2)
+ (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1185)))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-709 *2)) (-4 *2 (-362))))
+ ((*1 *1 *2) (-12 (-5 *1 (-709 *2)) (-4 *2 (-362))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-911)) (-5 *4 (-378)) (-5 *2 (-1251)) (-5 *1 (-1247)))))
+(((*1 *1 *1) (-5 *1 (-1051))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-762)) (-4 *6 (-1087)) (-4 *3 (-890 *6))
+ (-5 *2 (-679 *3)) (-5 *1 (-682 *6 *3 *7 *4)) (-4 *7 (-372 *3))
+ (-4 *4 (-13 (-372 *6) (-10 -7 (-6 -4382)))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-783))
+ (-4 *2 (-450))))
((*1 *1 *1)
- (-3994 (-12 (-5 *1 (-289 *2)) (-4 *2 (-358)) (-4 *2 (-1195)))
- (-12 (-5 *1 (-289 *2)) (-4 *2 (-467)) (-4 *2 (-1195)))))
- ((*1 *1 *1) (-4 *1 (-467)))
- ((*1 *2 *2) (-12 (-5 *2 (-1241 *3)) (-4 *3 (-344)) (-5 *1 (-522 *3))))
+ (-12 (-4 *1 (-341 *2 *3 *4)) (-4 *2 (-1204)) (-4 *3 (-1222 *2))
+ (-4 *4 (-1222 (-406 *3)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-450))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-939 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784))
+ (-4 *2 (-841)) (-4 *3 (-450))))
((*1 *1 *1)
- (-12 (-5 *1 (-702 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)) (-4 *2 (-358)))))
-(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-1032)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-758)) (-4 *1 (-1217 *4)) (-4 *4 (-1034))
- (-5 *2 (-1241 *4)))))
+ (-12 (-4 *1 (-939 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
+ (-4 *4 (-841)) (-4 *2 (-450))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-306)) (-4 *3 (-550)) (-5 *1 (-1150 *3 *2))
+ (-4 *2 (-1222 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-956 *3)) (-4 *3 (-957)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-534)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836))
- (-4 *3 (-1048 *5 *6 *7))
- (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *4))))
- (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-899 *3)) (-4 *3 (-302)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-928 *3) (-928 *3))) (-5 *1 (-174 *3))
- (-4 *3 (-13 (-358) (-1180) (-987))))))
-(((*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-461))))
- ((*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-461))))
- ((*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-912)))))
-(((*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-551)))))
-(((*1 *1 *2) (-12 (-5 *2 (-631 *1)) (-4 *1 (-446))))
- ((*1 *1 *1 *1) (-4 *1 (-446))))
-(((*1 *2 *1) (-12 (-5 *2 (-631 (-1158))) (-5 *1 (-812)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
- (-12 (-5 *3 (-1140)) (-5 *4 (-554)) (-5 *5 (-675 (-221)))
- (-5 *6 (-221)) (-5 *2 (-1020)) (-5 *1 (-739)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-546))
- (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112))
- (-5 *1 (-962 *4 *5 *6 *7)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-1082))
- (-4 *4 (-1082)))))
-(((*1 *2) (-12 (-5 *2 (-631 (-1158))) (-5 *1 (-105)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1251)))))
+ (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4)))
+ (-5 *1 (-696 *3 *4)) (-4 *3 (-1200)) (-4 *4 (-1200)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-170)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-635 (-635 (-933 (-224))))) (-5 *4 (-864))
+ (-5 *5 (-911)) (-5 *6 (-635 (-262))) (-5 *2 (-1247))
+ (-5 *1 (-1250))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-635 (-933 (-224))))) (-5 *4 (-635 (-262)))
+ (-5 *2 (-1247)) (-5 *1 (-1250)))))
+(((*1 *1 *1) (-5 *1 (-1051))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1087)) (-4 *3 (-890 *5)) (-5 *2 (-679 *3))
+ (-5 *1 (-682 *5 *3 *6 *4)) (-4 *6 (-372 *3))
+ (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4382)))))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-558)) (|has| *1 (-6 -4383)) (-4 *1 (-372 *3))
+ (-4 *3 (-1200)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-358) (-145) (-1023 (-554)))) (-4 *5 (-1217 *4))
- (-5 *2 (-2 (|:| |ans| (-402 *5)) (|:| |nosol| (-112))))
- (-5 *1 (-1000 *4 *5)) (-5 *3 (-402 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-809)))))
+ (-12 (-4 *4 (-550)) (-5 *2 (-948 *3)) (-5 *1 (-1150 *4 *3))
+ (-4 *3 (-1222 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-368 *3))
- (-4 *5 (-368 *3)) (-5 *2 (-631 *3))))
- ((*1 *2 *1)
- (-12 (|has| *1 (-6 -4373)) (-4 *1 (-483 *3)) (-4 *3 (-1195))
- (-5 *2 (-631 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-906)) (-5 *2 (-1241 (-1241 (-554)))) (-5 *1 (-460)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1158))
- (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *2 (-52)) (-5 *1 (-310 *4 *5))
- (-4 *5 (-13 (-27) (-1180) (-425 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *2 (-52)) (-5 *1 (-310 *4 *3))
- (-4 *3 (-13 (-27) (-1180) (-425 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-402 (-554)))
- (-4 *5 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *2 (-52)) (-5 *1 (-310 *5 *3))
- (-4 *3 (-13 (-27) (-1180) (-425 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-289 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *5)))
- (-4 *5 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *2 (-52)) (-5 *1 (-310 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-289 *3)) (-5 *5 (-402 (-554)))
- (-4 *3 (-13 (-27) (-1180) (-425 *6)))
- (-4 *6 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *2 (-52)) (-5 *1 (-310 *6 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-402 (-554)))) (-5 *4 (-289 *8))
- (-5 *5 (-1208 (-402 (-554)))) (-5 *6 (-402 (-554)))
- (-4 *8 (-13 (-27) (-1180) (-425 *7)))
- (-4 *7 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *2 (-52)) (-5 *1 (-453 *7 *8))))
- ((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1158)) (-5 *5 (-289 *3)) (-5 *6 (-1208 (-402 (-554))))
- (-5 *7 (-402 (-554))) (-4 *3 (-13 (-27) (-1180) (-425 *8)))
- (-4 *8 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *2 (-52)) (-5 *1 (-453 *8 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-402 (-554))) (-4 *4 (-1034)) (-4 *1 (-1224 *4 *3))
- (-4 *3 (-1201 *4)))))
+ (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-635 (-933 *3))))))
+(((*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-863 (-956 *3) (-956 *3))) (-5 *1 (-956 *3))
+ (-4 *3 (-957)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-534)))))
+(((*1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-635 (-635 (-933 (-224))))) (-5 *4 (-864))
+ (-5 *5 (-911)) (-5 *6 (-635 (-262))) (-5 *2 (-466)) (-5 *1 (-1250))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-635 (-933 (-224))))) (-5 *2 (-466))
+ (-5 *1 (-1250))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-635 (-933 (-224))))) (-5 *4 (-635 (-262)))
+ (-5 *2 (-466)) (-5 *1 (-1250)))))
+(((*1 *1 *1) (-5 *1 (-1051))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1087)) (-4 *2 (-890 *4)) (-5 *1 (-682 *4 *2 *5 *3))
+ (-4 *5 (-372 *2)) (-4 *3 (-13 (-372 *4) (-10 -7 (-6 -4382)))))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4383)) (-4 *1 (-372 *2)) (-4 *2 (-1200))
+ (-4 *2 (-841))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4383))
+ (-4 *1 (-372 *3)) (-4 *3 (-1200)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4383)) (-4 *1 (-119 *2)) (-4 *2 (-1200)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-221)) (|:| |xend| (-221))
- (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221)))
- (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221)))
- (|:| |abserr| (-221)) (|:| |relerr| (-221))))
- (-5 *2 (-374)) (-5 *1 (-201)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1195)) (-5 *2 (-631 *1)) (-4 *1 (-995 *3))))
+ (-12 (-4 *4 (-38 (-406 (-558))))
+ (-5 *2 (-2 (|:| -4070 (-1143 *4)) (|:| -4080 (-1143 *4))))
+ (-5 *1 (-1149 *4)) (-5 *3 (-1143 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-956 *3)) (-4 *3 (-957)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-679 *6)) (-5 *5 (-1 (-417 (-1159 *6)) (-1159 *6)))
+ (-4 *6 (-362))
+ (-5 *2
+ (-635
+ (-2 (|:| |outval| *7) (|:| |outmult| (-558))
+ (|:| |outvect| (-635 (-679 *7))))))
+ (-5 *1 (-530 *6 *7 *4)) (-4 *7 (-362)) (-4 *4 (-13 (-362) (-839))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-1048)) (-4 *3 (-1185))
+ (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1200))
+ (-4 *5 (-1200)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-239 *6 *7)) (-14 *6 (-762))
+ (-4 *7 (-1200)) (-4 *5 (-1200)) (-5 *2 (-239 *6 *5))
+ (-5 *1 (-238 *6 *7 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1200)) (-4 *5 (-1200))
+ (-4 *2 (-372 *5)) (-5 *1 (-370 *6 *4 *5 *2)) (-4 *4 (-372 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1087)) (-4 *5 (-1087))
+ (-4 *2 (-424 *5)) (-5 *1 (-422 *6 *4 *5 *2)) (-4 *4 (-424 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-635 *6)) (-4 *6 (-1200))
+ (-4 *5 (-1200)) (-5 *2 (-635 *5)) (-5 *1 (-633 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-948 *6)) (-4 *6 (-1200))
+ (-4 *5 (-1200)) (-5 *2 (-948 *5)) (-5 *1 (-947 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1143 *6)) (-4 *6 (-1200))
+ (-4 *3 (-1200)) (-5 *2 (-1143 *3)) (-5 *1 (-1141 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1246 *6)) (-4 *6 (-1200))
+ (-4 *5 (-1200)) (-5 *2 (-1246 *5)) (-5 *1 (-1245 *6 *5)))))
+(((*1 *2 *1) (-12 (|has| *1 (-6 -4382)) (-4 *1 (-34)) (-5 *2 (-762))))
+ ((*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-128))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087)) (-4 *4 (-1087))
+ (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-558))))
((*1 *2 *1)
- (-12 (-5 *2 (-631 (-1146 *3 *4))) (-5 *1 (-1146 *3 *4))
- (-14 *3 (-906)) (-4 *4 (-1034)))))
+ (-12 (-5 *2 (-762)) (-5 *1 (-1269 *3 *4)) (-4 *3 (-1039))
+ (-4 *4 (-837)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-1081 *3)) (-4 *3 (-939 *7 *6 *4)) (-4 *6 (-784))
+ (-4 *4 (-841)) (-4 *7 (-550))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-558))))
+ (-5 *1 (-587 *6 *4 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-784)) (-4 *4 (-841)) (-4 *6 (-550))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-558))))
+ (-5 *1 (-587 *5 *4 *6 *3)) (-4 *3 (-939 *6 *5 *4))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-853))) ((*1 *1 *1 *1) (-5 *1 (-853)))
+ ((*1 *1 *1) (-5 *1 (-853)))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1163))
+ (-4 *4 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *1 (-1155 *4 *2)) (-4 *2 (-13 (-429 *4) (-159) (-27) (-1185)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1079 *2)) (-4 *2 (-13 (-429 *4) (-159) (-27) (-1185)))
+ (-4 *4 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *1 (-1155 *4 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1163)) (-4 *5 (-13 (-550) (-841) (-1028 (-558))))
+ (-5 *2 (-406 (-942 *5))) (-5 *1 (-1156 *5)) (-5 *3 (-942 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1163)) (-4 *5 (-13 (-550) (-841) (-1028 (-558))))
+ (-5 *2 (-3 (-406 (-942 *5)) (-315 *5))) (-5 *1 (-1156 *5))
+ (-5 *3 (-406 (-942 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1079 (-942 *5))) (-5 *3 (-942 *5))
+ (-4 *5 (-13 (-550) (-841) (-1028 (-558)))) (-5 *2 (-406 *3))
+ (-5 *1 (-1156 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1079 (-406 (-942 *5)))) (-5 *3 (-406 (-942 *5)))
+ (-4 *5 (-13 (-550) (-841) (-1028 (-558)))) (-5 *2 (-3 *3 (-315 *5)))
+ (-5 *1 (-1156 *5)))))
+(((*1 *1 *1) (-5 *1 (-1051))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))))
+ (-12 (-4 *5 (-1087)) (-4 *2 (-890 *5)) (-5 *1 (-682 *5 *2 *3 *4))
+ (-4 *3 (-372 *2)) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4382)))))))
+(((*1 *2) (-12 (-4 *3 (-171)) (-5 *2 (-1246 *1)) (-4 *1 (-366 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-252 *2 *3 *4 *5)) (-4 *2 (-1039)) (-4 *3 (-841))
+ (-4 *4 (-265 *3)) (-4 *5 (-784)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4383)) (-4 *1 (-119 *2)) (-4 *2 (-1200)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-631 (-1158))) (-5 *2 (-1246)) (-5 *1 (-1197))))
+ (-12 (-4 *4 (-38 (-406 (-558))))
+ (-5 *2 (-2 (|:| -2112 (-1143 *4)) (|:| -2124 (-1143 *4))))
+ (-5 *1 (-1149 *4)) (-5 *3 (-1143 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-863 (-956 *3) (-956 *3))) (-5 *1 (-956 *3))
+ (-4 *3 (-957)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1159 *5)) (-4 *5 (-362)) (-5 *2 (-635 *6))
+ (-5 *1 (-530 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-839))))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1200)) (-4 *2 (-1039))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-853))))
+ ((*1 *1 *1) (-5 *1 (-853)))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-631 (-1158))) (-5 *2 (-1246)) (-5 *1 (-1197)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
- (-12 (-5 *3 (-1140)) (-5 *4 (-554)) (-5 *5 (-675 (-221)))
- (-5 *2 (-1020)) (-5 *1 (-744)))))
-(((*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1195)) (-5 *1 (-322 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-631 *3)) (-4 *3 (-1195)) (-5 *1 (-510 *3 *4))
- (-14 *4 (-554)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-631 (-928 *4))) (-4 *1 (-1116 *4)) (-4 *4 (-1034))
- (-5 *2 (-758)))))
-(((*1 *1 *1 *1) (-4 *1 (-952))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1158))
- (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *2 (-52)) (-5 *1 (-310 *4 *5))
- (-4 *5 (-13 (-27) (-1180) (-425 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *2 (-52)) (-5 *1 (-310 *4 *3))
- (-4 *3 (-13 (-27) (-1180) (-425 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-554)) (-4 *5 (-13 (-446) (-836) (-1023 *4) (-627 *4)))
- (-5 *2 (-52)) (-5 *1 (-310 *5 *3))
- (-4 *3 (-13 (-27) (-1180) (-425 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-289 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *5)))
- (-4 *5 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *2 (-52)) (-5 *1 (-310 *5 *3))))
+ (-12 (-5 *3 (-933 (-224))) (-5 *2 (-224)) (-5 *1 (-1196))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1200)) (-4 *2 (-1039)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1145)) (-5 *2 (-635 (-1168))) (-5 *1 (-1123)))))
+(((*1 *1 *1) (-5 *1 (-1051))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1087)) (-4 *3 (-890 *5)) (-5 *2 (-1246 *3))
+ (-5 *1 (-682 *5 *3 *6 *4)) (-4 *6 (-372 *3))
+ (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4382)))))))
+(((*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-362)) (-4 *3 (-1039))
+ (-5 *1 (-1147 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-548 *2)) (-4 *2 (-13 (-403) (-1185)))))
+ ((*1 *1 *1 *1) (-4 *1 (-784))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-954 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-1087)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-679 *4)) (-4 *4 (-362)) (-5 *2 (-1159 *4))
+ (-5 *1 (-530 *4 *5 *6)) (-4 *5 (-362)) (-4 *6 (-13 (-362) (-839))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1163))
+ (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *2 (-52)) (-5 *1 (-314 *4 *5))
+ (-4 *5 (-13 (-27) (-1185) (-429 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *2 (-52)) (-5 *1 (-314 *4 *3))
+ (-4 *3 (-13 (-27) (-1185) (-429 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-558)) (-4 *5 (-13 (-450) (-841) (-1028 *4) (-631 *4)))
+ (-5 *2 (-52)) (-5 *1 (-314 *5 *3))
+ (-4 *3 (-13 (-27) (-1185) (-429 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *5)))
+ (-4 *5 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *2 (-52)) (-5 *1 (-314 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-289 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *6)))
- (-4 *6 (-13 (-446) (-836) (-1023 *5) (-627 *5))) (-5 *5 (-554))
- (-5 *2 (-52)) (-5 *1 (-310 *6 *3))))
+ (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *6)))
+ (-4 *6 (-13 (-450) (-841) (-1028 *5) (-631 *5))) (-5 *5 (-558))
+ (-5 *2 (-52)) (-5 *1 (-314 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-554))) (-5 *4 (-289 *7)) (-5 *5 (-1208 (-554)))
- (-4 *7 (-13 (-27) (-1180) (-425 *6)))
- (-4 *6 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *2 (-52)) (-5 *1 (-453 *6 *7))))
+ (-12 (-5 *3 (-1 *7 (-558))) (-5 *4 (-293 *7)) (-5 *5 (-1213 (-558)))
+ (-4 *7 (-13 (-27) (-1185) (-429 *6)))
+ (-4 *6 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *2 (-52)) (-5 *1 (-457 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1158)) (-5 *5 (-289 *3)) (-5 *6 (-1208 (-554)))
- (-4 *3 (-13 (-27) (-1180) (-425 *7)))
- (-4 *7 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *2 (-52)) (-5 *1 (-453 *7 *3))))
+ (-12 (-5 *4 (-1163)) (-5 *5 (-293 *3)) (-5 *6 (-1213 (-558)))
+ (-4 *3 (-13 (-27) (-1185) (-429 *7)))
+ (-4 *7 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *2 (-52)) (-5 *1 (-457 *7 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-554)) (-4 *4 (-1034)) (-4 *1 (-1203 *4 *3))
- (-4 *3 (-1232 *4))))
+ (-12 (-5 *2 (-558)) (-4 *4 (-1039)) (-4 *1 (-1208 *4 *3))
+ (-4 *3 (-1237 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-1201 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-631 (-1117))) (-5 *1 (-1072)))))
-(((*1 *2 *1) (-12 (-5 *2 (-631 (-1194))) (-5 *1 (-667))))
- ((*1 *2 *1) (-12 (-5 *2 (-631 (-1163))) (-5 *1 (-1100)))))
-(((*1 *1) (-5 *1 (-139))) ((*1 *1 *1) (-5 *1 (-142)))
- ((*1 *1 *1) (-4 *1 (-1126))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1241 (-311 (-221)))) (-5 *4 (-631 (-1158)))
- (-5 *2 (-675 (-311 (-221)))) (-5 *1 (-201))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1082)) (-4 *6 (-885 *5)) (-5 *2 (-675 *6))
- (-5 *1 (-678 *5 *6 *3 *4)) (-4 *3 (-368 *6))
- (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4373)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1138 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-675 (-402 (-554))))
+ (-12 (-4 *1 (-1229 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-1206 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1200)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-970 *2)) (-4 *2 (-1039))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-933 (-224))) (-5 *1 (-1196))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1200)) (-4 *2 (-1039)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-956 *3)) (-4 *3 (-957)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1163)) (-5 *3 (-378)) (-5 *1 (-1051)))))
+(((*1 *2 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-679 *4)) (-5 *3 (-762)) (-4 *4 (-1039))
+ (-5 *1 (-680 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *4 (-558))) (-5 *5 (-1 (-1143 *4))) (-4 *4 (-362))
+ (-4 *4 (-1039)) (-5 *2 (-1143 *4)) (-5 *1 (-1147 *4)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378))
(-5 *2
- (-631
- (-2 (|:| |outval| *4) (|:| |outmult| (-554))
- (|:| |outvect| (-631 (-675 *4))))))
- (-5 *1 (-766 *4)) (-4 *4 (-13 (-358) (-834))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-2 (|:| |val| (-631 *8)) (|:| -2143 *9))))
- (-5 *4 (-758)) (-4 *8 (-1048 *5 *6 *7)) (-4 *9 (-1054 *5 *6 *7 *8))
- (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-1246))
- (-5 *1 (-1052 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-2 (|:| |val| (-631 *8)) (|:| -2143 *9))))
- (-5 *4 (-758)) (-4 *8 (-1048 *5 *6 *7)) (-4 *9 (-1091 *5 *6 *7 *8))
- (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-1246))
- (-5 *1 (-1127 *5 *6 *7 *8 *9)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-631 (-289 *4))) (-5 *1 (-615 *3 *4 *5)) (-4 *3 (-836))
- (-4 *4 (-13 (-170) (-704 (-402 (-554))))) (-14 *5 (-906)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1158))
- (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *2 (-52)) (-5 *1 (-310 *4 *5))
- (-4 *5 (-13 (-27) (-1180) (-425 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *2 (-52)) (-5 *1 (-310 *4 *3))
- (-4 *3 (-13 (-27) (-1180) (-425 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-758))
- (-4 *5 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *2 (-52)) (-5 *1 (-310 *5 *3))
- (-4 *3 (-13 (-27) (-1180) (-425 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-289 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *5)))
- (-4 *5 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *2 (-52)) (-5 *1 (-310 *5 *3))))
+ (-2 (|:| -2925 *4) (|:| -1984 *4) (|:| |totalpts| (-558))
+ (|:| |success| (-112))))
+ (-5 *1 (-780)) (-5 *5 (-558)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1087)) (-5 *1 (-954 *2 *3)) (-4 *3 (-1087)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-528 *3)) (-4 *3 (-13 (-717) (-25))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1163))
+ (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *2 (-52)) (-5 *1 (-314 *4 *5))
+ (-4 *5 (-13 (-27) (-1185) (-429 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *2 (-52)) (-5 *1 (-314 *4 *3))
+ (-4 *3 (-13 (-27) (-1185) (-429 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-762))
+ (-4 *5 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *2 (-52)) (-5 *1 (-314 *5 *3))
+ (-4 *3 (-13 (-27) (-1185) (-429 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *5)))
+ (-4 *5 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *2 (-52)) (-5 *1 (-314 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-289 *3)) (-5 *5 (-758))
- (-4 *3 (-13 (-27) (-1180) (-425 *6)))
- (-4 *6 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *2 (-52)) (-5 *1 (-310 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-554))) (-5 *4 (-289 *6))
- (-4 *6 (-13 (-27) (-1180) (-425 *5)))
- (-4 *5 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *2 (-52)) (-5 *1 (-453 *5 *6))))
+ (-12 (-5 *4 (-293 *3)) (-5 *5 (-762))
+ (-4 *3 (-13 (-27) (-1185) (-429 *6)))
+ (-4 *6 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *2 (-52)) (-5 *1 (-314 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 (-558))) (-5 *4 (-293 *6))
+ (-4 *6 (-13 (-27) (-1185) (-429 *5)))
+ (-4 *5 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *2 (-52)) (-5 *1 (-457 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1158)) (-5 *5 (-289 *3))
- (-4 *3 (-13 (-27) (-1180) (-425 *6)))
- (-4 *6 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *2 (-52)) (-5 *1 (-453 *6 *3))))
+ (-12 (-5 *4 (-1163)) (-5 *5 (-293 *3))
+ (-4 *3 (-13 (-27) (-1185) (-429 *6)))
+ (-4 *6 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *2 (-52)) (-5 *1 (-457 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-554))) (-5 *4 (-289 *7)) (-5 *5 (-1208 (-758)))
- (-4 *7 (-13 (-27) (-1180) (-425 *6)))
- (-4 *6 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *2 (-52)) (-5 *1 (-453 *6 *7))))
+ (-12 (-5 *3 (-1 *7 (-558))) (-5 *4 (-293 *7)) (-5 *5 (-1213 (-762)))
+ (-4 *7 (-13 (-27) (-1185) (-429 *6)))
+ (-4 *6 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *2 (-52)) (-5 *1 (-457 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1158)) (-5 *5 (-289 *3)) (-5 *6 (-1208 (-758)))
- (-4 *3 (-13 (-27) (-1180) (-425 *7)))
- (-4 *7 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *2 (-52)) (-5 *1 (-453 *7 *3))))
+ (-12 (-5 *4 (-1163)) (-5 *5 (-293 *3)) (-5 *6 (-1213 (-762)))
+ (-4 *3 (-13 (-27) (-1185) (-429 *7)))
+ (-4 *7 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *2 (-52)) (-5 *1 (-457 *7 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-1232 *3)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-554)) (-5 *1 (-559 *3)) (-4 *3 (-1023 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-374)) (-5 *1 (-97))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-374)) (-5 *1 (-97)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1195)) (-4 *3 (-368 *2))
- (-4 *4 (-368 *2))))
- ((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4374)) (-4 *1 (-592 *3 *2)) (-4 *3 (-1082))
- (-4 *2 (-1195)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |pde| (-631 (-311 (-221))))
- (|:| |constraints|
- (-631
- (-2 (|:| |start| (-221)) (|:| |finish| (-221))
- (|:| |grid| (-758)) (|:| |boundaryType| (-554))
- (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221))))))
- (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140))
- (|:| |tol| (-221))))
- (-5 *2 (-112)) (-5 *1 (-206)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-307)) (-5 *1 (-816)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4373)) (-4 *1 (-483 *4))
- (-4 *4 (-1195)) (-5 *2 (-112)))))
+ (-12 (-4 *1 (-1208 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-1237 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1200)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1200)) (-4 *2 (-992))
+ (-4 *2 (-1039)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1145)) (-4 *1 (-388)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1163)) (-5 *3 (-378)) (-5 *1 (-1051)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-679 *3)) (-4 *3 (-1039)) (-5 *1 (-680 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-362)) (-4 *3 (-1039))
+ (-5 *1 (-1147 *3)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378))
+ (-5 *2
+ (-2 (|:| -2925 *4) (|:| -1984 *4) (|:| |totalpts| (-558))
+ (|:| |success| (-112))))
+ (-5 *1 (-780)) (-5 *5 (-558)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1087)) (-5 *1 (-954 *3 *2)) (-4 *3 (-1087)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-527))))
+ ((*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-527)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-841))
+ (-4 *5 (-265 *4)) (-4 *6 (-784)) (-5 *2 (-635 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1241 (-631 (-2 (|:| -2794 *4) (|:| -2717 (-1102))))))
- (-4 *4 (-344)) (-5 *2 (-758)) (-5 *1 (-341 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-758)) (-5 *1 (-346 *3 *4)) (-14 *3 (-906))
- (-14 *4 (-906))))
- ((*1 *2)
- (-12 (-5 *2 (-758)) (-5 *1 (-347 *3 *4)) (-4 *3 (-344))
- (-14 *4
- (-3 (-1154 *3)
- (-1241 (-631 (-2 (|:| -2794 *3) (|:| -2717 (-1102)))))))))
- ((*1 *2)
- (-12 (-5 *2 (-758)) (-5 *1 (-348 *3 *4)) (-4 *3 (-344))
- (-14 *4 (-906)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-848))) ((*1 *1 *1 *1) (-5 *1 (-848)))
- ((*1 *1 *1) (-5 *1 (-848))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))))
+ (-12 (-5 *3 (-406 *5)) (-4 *5 (-1222 *4)) (-4 *4 (-550))
+ (-4 *4 (-1039)) (-4 *2 (-1237 *4)) (-5 *1 (-1240 *4 *5 *6 *2))
+ (-4 *6 (-646 *5)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-378)) (-5 *1 (-1051)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-679 *3)) (-4 *3 (-1039)) (-5 *1 (-680 *3)))))
+(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-609))))
+(((*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-765)) (-5 *1 (-52)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1143 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1039))
+ (-5 *3 (-406 (-558))) (-5 *1 (-1147 *4)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378))
+ (-5 *2
+ (-2 (|:| -2925 *4) (|:| -1984 *4) (|:| |totalpts| (-558))
+ (|:| |success| (-112))))
+ (-5 *1 (-780)) (-5 *5 (-558)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-546)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2999 *4)))
- (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-836)) (-5 *2 (-631 *1))
- (-4 *1 (-425 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-631 (-877 *3))) (-5 *1 (-877 *3))
- (-4 *3 (-1082))))
+ (-12 (-5 *2 (-635 *3)) (-5 *1 (-951 *3)) (-4 *3 (-543)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-527)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1039)) (-4 *3 (-841))
+ (-4 *5 (-265 *3)) (-4 *6 (-784)) (-5 *2 (-635 (-762)))))
((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836))
- (-5 *2 (-631 *1)) (-4 *1 (-934 *3 *4 *5))))
+ (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-841))
+ (-4 *5 (-265 *4)) (-4 *6 (-784)) (-5 *2 (-635 (-762))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1039)) (-4 *5 (-1222 *4)) (-5 *2 (-1 *6 (-635 *6)))
+ (-5 *1 (-1240 *4 *5 *3 *6)) (-4 *3 (-646 *5)) (-4 *6 (-1237 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-466))))
+ ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1247))))
+ ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1248)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-450))))
+ ((*1 *1 *1 *1) (-4 *1 (-450)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 *2)) (-5 *1 (-484 *2)) (-4 *2 (-1222 (-558)))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-558)) (-5 *1 (-686 *2)) (-4 *2 (-1222 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-762)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-784)) (-4 *4 (-841)) (-4 *5 (-306))
+ (-5 *1 (-906 *3 *4 *5 *2)) (-4 *2 (-939 *5 *3 *4))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1034))
- (-4 *7 (-934 *6 *4 *5)) (-5 *2 (-631 *3))
- (-5 *1 (-935 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-358)
- (-10 -8 (-15 -3075 ($ *7)) (-15 -2810 (*7 $))
- (-15 -2822 (*7 $))))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-631 *3)) (-4 *3 (-302)) (-5 *1 (-177 *3)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-631 *1)) (-4 *1 (-905)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836))
- (-4 *7 (-1048 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-631 *7)) (|:| |badPols| (-631 *7))))
- (-5 *1 (-962 *4 *5 *6 *7)) (-5 *3 (-631 *7)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1034)))))
+ (-12 (-5 *3 (-635 *2)) (-4 *2 (-939 *6 *4 *5))
+ (-5 *1 (-906 *4 *5 *6 *2)) (-4 *4 (-784)) (-4 *5 (-841))
+ (-4 *6 (-306))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1159 *6)) (-4 *6 (-939 *5 *3 *4)) (-4 *3 (-784))
+ (-4 *4 (-841)) (-4 *5 (-306)) (-5 *1 (-906 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-1159 *7))) (-4 *4 (-784)) (-4 *5 (-841))
+ (-4 *6 (-306)) (-5 *2 (-1159 *7)) (-5 *1 (-906 *4 *5 *6 *7))
+ (-4 *7 (-939 *6 *4 *5))))
+ ((*1 *1 *1 *1) (-5 *1 (-911)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-450)) (-4 *3 (-550)) (-5 *1 (-959 *3 *2))
+ (-4 *2 (-1222 *3))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
+ (-4 *4 (-841)) (-4 *2 (-450)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-1051)) (-5 *3 (-1145)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *2 (-679 *3)) (-4 *3 (-1039)) (-5 *1 (-680 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-1159 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1200)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1143 (-1143 *4))) (-5 *2 (-1143 *4)) (-5 *1 (-1147 *4))
+ (-4 *4 (-38 (-406 (-558)))) (-4 *4 (-1039)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378))
+ (-5 *2
+ (-2 (|:| -2925 *4) (|:| -1984 *4) (|:| |totalpts| (-558))
+ (|:| |success| (-112))))
+ (-5 *1 (-780)) (-5 *5 (-558)))))
+(((*1 *2 *2) (-12 (-5 *1 (-951 *2)) (-4 *2 (-543)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-1107)) (-5 *1 (-527)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-1082))
- (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-546))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2510 *3)))
- (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))))
+ (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-841))
+ (-4 *5 (-265 *4)) (-4 *6 (-784)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-762)) (-4 *5 (-1039)) (-4 *2 (-1222 *5))
+ (-5 *1 (-1240 *5 *2 *6 *3)) (-4 *6 (-646 *2)) (-4 *3 (-1237 *5)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1051)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-675 *3)) (-4 *3 (-1034)) (-5 *1 (-676 *3))))
+ (-12 (-5 *2 (-679 *3)) (-4 *3 (-1039)) (-5 *1 (-680 *3))))
((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-675 *3)) (-4 *3 (-1034)) (-5 *1 (-676 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-631 (-169))))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-167 (-221)))) (-5 *2 (-1020))
- (-5 *1 (-741)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-961 *4 *5 *6 *3)) (-4 *4 (-1034)) (-4 *5 (-780))
- (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-4 *4 (-546))
- (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1232 *4))
- (-4 *4 (-38 (-402 (-554))))
- (-5 *2 (-1 (-1138 *4) (-1138 *4) (-1138 *4))) (-5 *1 (-1234 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836))
- (-5 *1 (-443 *3 *4 *5 *2)) (-4 *2 (-934 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-128)))))
-(((*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-114)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-675 (-402 (-937 (-554)))))
- (-5 *2 (-631 (-675 (-311 (-554))))) (-5 *1 (-1016)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-554)) (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034))
- (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-598 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082))
- (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-5 *2 (-1246)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-1082))
- (-4 *4 (-1082)))))
+ (-12 (-5 *2 (-679 *3)) (-4 *3 (-1039)) (-5 *1 (-680 *3)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-1200)))))
+(((*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-1159 *3)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1158)) (-4 *5 (-602 (-877 (-554))))
- (-4 *5 (-871 (-554)))
- (-4 *5 (-13 (-836) (-1023 (-554)) (-446) (-627 (-554))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-557 *5 *3)) (-4 *3 (-617))
- (-4 *3 (-13 (-27) (-1180) (-425 *5))))))
-(((*1 *2 *3)
- (-12 (|has| *6 (-6 -4374)) (-4 *4 (-358)) (-4 *5 (-368 *4))
- (-4 *6 (-368 *4)) (-5 *2 (-631 *6)) (-5 *1 (-515 *4 *5 *6 *3))
- (-4 *3 (-673 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (|has| *9 (-6 -4374)) (-4 *4 (-546)) (-4 *5 (-368 *4))
- (-4 *6 (-368 *4)) (-4 *7 (-977 *4)) (-4 *8 (-368 *7))
- (-4 *9 (-368 *7)) (-5 *2 (-631 *6))
- (-5 *1 (-516 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-673 *4 *5 *6))
- (-4 *10 (-673 *7 *8 *9))))
+ (-12 (-5 *4 (-1 (-1143 *3))) (-5 *2 (-1143 *3)) (-5 *1 (-1147 *3))
+ (-4 *3 (-38 (-406 (-558)))) (-4 *3 (-1039)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378))
+ (-5 *2
+ (-2 (|:| -2925 *4) (|:| -1984 *4) (|:| |totalpts| (-558))
+ (|:| |success| (-112))))
+ (-5 *1 (-780)) (-5 *5 (-558)))))
+(((*1 *2 *2) (-12 (-5 *1 (-951 *2)) (-4 *2 (-543)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-911)) (-4 *4 (-367)) (-4 *4 (-362)) (-5 *2 (-1159 *1))
+ (-4 *1 (-328 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1159 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3))
- (-4 *5 (-368 *3)) (-4 *3 (-546)) (-5 *2 (-631 *5))))
+ (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-171)) (-4 *3 (-362))
+ (-4 *2 (-1222 *3))))
((*1 *2 *3)
- (-12 (-4 *4 (-546)) (-4 *4 (-170)) (-4 *5 (-368 *4))
- (-4 *6 (-368 *4)) (-5 *2 (-631 *6)) (-5 *1 (-674 *4 *5 *6 *3))
- (-4 *3 (-673 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034))
- (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-4 *5 (-546))
- (-5 *2 (-631 *7)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1080 *3)) (-4 *3 (-1082)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *5 (-1158))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-631 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-631 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -1709 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1180) (-27) (-425 *8)))
- (-4 *8 (-13 (-446) (-836) (-145) (-1023 *3) (-627 *3)))
- (-5 *3 (-554))
- (-5 *2 (-2 (|:| |ans| *4) (|:| -3324 *4) (|:| |sol?| (-112))))
- (-5 *1 (-998 *8 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-631 (-631 *6))) (-4 *6 (-934 *3 *5 *4))
- (-4 *3 (-13 (-302) (-145))) (-4 *4 (-13 (-836) (-602 (-1158))))
- (-4 *5 (-780)) (-5 *1 (-909 *3 *4 *5 *6)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
- (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221)))
- (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-70 APROD)))) (-5 *4 (-221))
- (-5 *2 (-1020)) (-5 *1 (-743)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-1082))
- (-5 *2 (-631 (-2 (|:| |k| *4) (|:| |c| *3))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-631 (-2 (|:| |k| (-878 *3)) (|:| |c| *4))))
- (-5 *1 (-615 *3 *4 *5)) (-4 *3 (-836))
- (-4 *4 (-13 (-170) (-704 (-402 (-554))))) (-14 *5 (-906))))
+ (-12 (-5 *3 (-1246 *4)) (-4 *4 (-348)) (-5 *2 (-1159 *4))
+ (-5 *1 (-526 *4)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-252 *2 *3 *4 *5)) (-4 *2 (-1039)) (-4 *3 (-841))
+ (-4 *4 (-265 *3)) (-4 *5 (-784)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1039)) (-4 *3 (-1222 *4)) (-4 *2 (-1237 *4))
+ (-5 *1 (-1240 *4 *3 *5 *2)) (-4 *5 (-646 *3)))))
+(((*1 *1) (-5 *1 (-1051))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-679 *3)) (-4 *3 (-1039)) (-5 *1 (-680 *3)))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
+ (-4 *3 (-366 *4))))
+ ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1143 (-1143 *4))) (-5 *2 (-1143 *4)) (-5 *1 (-1147 *4))
+ (-4 *4 (-1039)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378))
+ (-5 *2
+ (-2 (|:| -2925 *4) (|:| -1984 *4) (|:| |totalpts| (-558))
+ (|:| |success| (-112))))
+ (-5 *1 (-780)) (-5 *5 (-558)))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1145)) (-5 *3 (-558)) (-5 *1 (-240))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-635 (-1145))) (-5 *3 (-558)) (-5 *4 (-1145))
+ (-5 *1 (-240))))
+ ((*1 *1 *1) (-5 *1 (-853)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-853))))
((*1 *2 *1)
- (-12 (-5 *2 (-631 (-658 *3))) (-5 *1 (-878 *3)) (-4 *3 (-836)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1086)) (-5 *3 (-761)) (-5 *1 (-52)))))
+ (-12 (-4 *1 (-1224 *2 *3)) (-4 *3 (-783)) (-4 *2 (-1039)))))
+(((*1 *1) (-4 *1 (-348)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 *5)) (-4 *5 (-429 *4))
+ (-4 *4 (-13 (-550) (-841) (-146)))
+ (-5 *2
+ (-2 (|:| |primelt| *5) (|:| |poly| (-635 (-1159 *5)))
+ (|:| |prim| (-1159 *5))))
+ (-5 *1 (-431 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-550) (-841) (-146)))
+ (-5 *2
+ (-2 (|:| |primelt| *3) (|:| |pol1| (-1159 *3))
+ (|:| |pol2| (-1159 *3)) (|:| |prim| (-1159 *3))))
+ (-5 *1 (-431 *4 *3)) (-4 *3 (-27)) (-4 *3 (-429 *4))))
+ ((*1 *2 *3 *4 *3 *4)
+ (-12 (-5 *3 (-942 *5)) (-5 *4 (-1163)) (-4 *5 (-13 (-362) (-146)))
+ (-5 *2
+ (-2 (|:| |coef1| (-558)) (|:| |coef2| (-558))
+ (|:| |prim| (-1159 *5))))
+ (-5 *1 (-950 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-942 *5))) (-5 *4 (-635 (-1163)))
+ (-4 *5 (-13 (-362) (-146)))
+ (-5 *2
+ (-2 (|:| -2023 (-635 (-558))) (|:| |poly| (-635 (-1159 *5)))
+ (|:| |prim| (-1159 *5))))
+ (-5 *1 (-950 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-635 (-942 *6))) (-5 *4 (-635 (-1163))) (-5 *5 (-1163))
+ (-4 *6 (-13 (-362) (-146)))
+ (-5 *2
+ (-2 (|:| -2023 (-635 (-558))) (|:| |poly| (-635 (-1159 *6)))
+ (|:| |prim| (-1159 *6))))
+ (-5 *1 (-950 *6)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221)))))
- (-5 *2 (-631 (-1158))) (-5 *1 (-262))))
+ (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224)))))
+ (-5 *2 (-635 (-1163))) (-5 *1 (-266))))
((*1 *2 *3)
- (-12 (-5 *3 (-1154 *7)) (-4 *7 (-934 *6 *4 *5)) (-4 *4 (-780))
- (-4 *5 (-836)) (-4 *6 (-1034)) (-5 *2 (-631 *5))
- (-5 *1 (-316 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-1159 *7)) (-4 *7 (-939 *6 *4 *5)) (-4 *4 (-784))
+ (-4 *5 (-841)) (-4 *6 (-1039)) (-5 *2 (-635 *5))
+ (-5 *1 (-320 *4 *5 *6 *7))))
((*1 *2 *1)
- (-12 (-5 *2 (-631 (-1158))) (-5 *1 (-334 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 *2) (-4 *5 (-382))))
+ (-12 (-5 *2 (-635 (-1163))) (-5 *1 (-338 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 *2) (-4 *5 (-386))))
((*1 *2 *1)
- (-12 (-4 *1 (-425 *3)) (-4 *3 (-836)) (-5 *2 (-631 (-1158)))))
+ (-12 (-4 *1 (-429 *3)) (-4 *3 (-841)) (-5 *2 (-635 (-1163)))))
((*1 *2 *1)
- (-12 (-5 *2 (-631 (-877 *3))) (-5 *1 (-877 *3)) (-4 *3 (-1082))))
+ (-12 (-5 *2 (-635 (-882 *3))) (-5 *1 (-882 *3)) (-4 *3 (-1087))))
((*1 *2 *1)
- (-12 (-4 *1 (-934 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780))
- (-4 *5 (-836)) (-5 *2 (-631 *5))))
+ (-12 (-4 *1 (-939 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784))
+ (-4 *5 (-841)) (-5 *2 (-635 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1034))
- (-4 *7 (-934 *6 *4 *5)) (-5 *2 (-631 *5))
- (-5 *1 (-935 *4 *5 *6 *7 *3))
+ (-12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1039))
+ (-4 *7 (-939 *6 *4 *5)) (-5 *2 (-635 *5))
+ (-5 *1 (-940 *4 *5 *6 *7 *3))
(-4 *3
- (-13 (-358)
- (-10 -8 (-15 -3075 ($ *7)) (-15 -2810 (*7 $)) (-15 -2822 (*7 $)))))))
+ (-13 (-362)
+ (-10 -8 (-15 -3220 ($ *7)) (-15 -1874 (*7 $)) (-15 -1885 (*7 $)))))))
((*1 *2 *1)
- (-12 (-5 *2 (-1084 (-1158))) (-5 *1 (-951 *3)) (-4 *3 (-952))))
+ (-12 (-5 *2 (-1089 (-1163))) (-5 *1 (-956 *3)) (-4 *3 (-957))))
((*1 *2 *1)
- (-12 (-4 *1 (-958 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-779))
- (-4 *5 (-836)) (-5 *2 (-631 *5))))
+ (-12 (-4 *1 (-963 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-783))
+ (-4 *5 (-841)) (-5 *2 (-635 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-961 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-780))
- (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-631 *5))))
+ (-12 (-4 *1 (-966 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-784))
+ (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-635 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-402 (-937 *4))) (-4 *4 (-546)) (-5 *2 (-631 (-1158)))
- (-5 *1 (-1028 *4)))))
+ (-12 (-5 *3 (-406 (-942 *4))) (-4 *4 (-550)) (-5 *2 (-635 (-1163)))
+ (-5 *1 (-1033 *4)))))
+(((*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-911)) (-5 *2 (-1246 *4)) (-5 *1 (-526 *4))
+ (-4 *4 (-348)))))
+(((*1 *2 *1) (-12 (-5 *2 (-182)) (-5 *1 (-247)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 *5)) (-5 *4 (-635 (-1 *6 (-635 *6))))
+ (-4 *5 (-38 (-406 (-558)))) (-4 *6 (-1237 *5)) (-5 *2 (-635 *6))
+ (-5 *1 (-1239 *5 *6)))))
+(((*1 *2 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1145)) (-5 *3 (-558)) (-5 *1 (-1051)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-679 *3)) (-4 *3 (-1039)) (-5 *1 (-680 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-450))))
+ ((*1 *1 *1 *1) (-4 *1 (-450))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
+ (-4 *3 (-366 *4))))
+ ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1039)) (-5 *1 (-884 *2 *3)) (-4 *2 (-1222 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378))
+ (-5 *2
+ (-2 (|:| -2925 *4) (|:| -1984 *4) (|:| |totalpts| (-558))
+ (|:| |success| (-112))))
+ (-5 *1 (-780)) (-5 *5 (-558)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1163)) (-5 *1 (-579 *2)) (-4 *2 (-1028 *3))
+ (-4 *2 (-362))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-579 *2)) (-4 *2 (-362))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-841) (-550))) (-5 *1 (-622 *4 *2))
+ (-4 *2 (-13 (-429 *4) (-992) (-1185)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1079 *2)) (-4 *2 (-13 (-429 *4) (-992) (-1185)))
+ (-4 *4 (-13 (-841) (-550))) (-5 *1 (-622 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-949)) (-5 *2 (-1163))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1079 *1)) (-4 *1 (-949)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987))))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-631 *2)) (-4 *2 (-1195))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-1138 *2)) (-4 *2 (-1195)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *3 (-554)) (-5 *2 (-112)) (-5 *1 (-474)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1172 *4 *5))
- (-4 *4 (-1082)) (-4 *5 (-1082)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1158)) (-5 *5 (-631 *3))
- (-4 *3 (-13 (-27) (-1180) (-425 *6)))
- (-4 *6 (-13 (-446) (-836) (-145) (-1023 (-554)) (-627 (-554))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-631 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-547 *6 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1138 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5)) (-4 *5 (-1082)) (-5 *2 (-1 *5 *4))
- (-5 *1 (-669 *4 *5)) (-4 *4 (-1082))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-836)) (-5 *1 (-914 *3 *2)) (-4 *2 (-425 *3))))
+ (-12 (-5 *2 (-1246 *4)) (-4 *4 (-416 *3)) (-4 *3 (-306))
+ (-4 *3 (-550)) (-5 *1 (-43 *3 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-1158)) (-5 *2 (-311 (-554))) (-5 *1 (-915))))
+ (-12 (-5 *3 (-911)) (-4 *4 (-362)) (-5 *2 (-1246 *1))
+ (-4 *1 (-328 *4))))
+ ((*1 *2) (-12 (-4 *3 (-362)) (-5 *2 (-1246 *1)) (-4 *1 (-328 *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-171)) (-4 *4 (-1222 *3)) (-5 *2 (-1246 *1))
+ (-4 *1 (-408 *3 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1258 *3 *2)) (-4 *3 (-836)) (-4 *2 (-1034))))
+ (-12 (-4 *3 (-306)) (-4 *4 (-982 *3)) (-4 *5 (-1222 *4))
+ (-5 *2 (-1246 *6)) (-5 *1 (-412 *3 *4 *5 *6))
+ (-4 *6 (-13 (-408 *4 *5) (-1028 *4)))))
((*1 *2 *1)
- (-12 (-4 *2 (-1034)) (-5 *1 (-1264 *2 *3)) (-4 *3 (-832)))))
-(((*1 *2 *1 *1)
- (-12
+ (-12 (-4 *3 (-306)) (-4 *4 (-982 *3)) (-4 *5 (-1222 *4))
+ (-5 *2 (-1246 *6)) (-5 *1 (-413 *3 *4 *5 *6 *7))
+ (-4 *6 (-408 *4 *5)) (-14 *7 *2)))
+ ((*1 *2) (-12 (-4 *3 (-171)) (-5 *2 (-1246 *1)) (-4 *1 (-416 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-911)) (-5 *2 (-1246 (-1246 *4))) (-5 *1 (-526 *4))
+ (-4 *4 (-348)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1159 (-406 (-1159 *2)))) (-5 *4 (-604 *2))
+ (-4 *2 (-13 (-429 *5) (-27) (-1185)))
+ (-4 *5 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558))))
+ (-5 *1 (-554 *5 *2 *6)) (-4 *6 (-1087))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1159 *1)) (-4 *1 (-939 *4 *5 *3)) (-4 *4 (-1039))
+ (-4 *5 (-784)) (-4 *3 (-841))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1159 *4)) (-4 *4 (-1039)) (-4 *1 (-939 *4 *5 *3))
+ (-4 *5 (-784)) (-4 *3 (-841))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-406 (-1159 *2))) (-4 *5 (-784)) (-4 *4 (-841))
+ (-4 *6 (-1039))
+ (-4 *2
+ (-13 (-362)
+ (-10 -8 (-15 -3220 ($ *7)) (-15 -1874 (*7 $)) (-15 -1885 (*7 $)))))
+ (-5 *1 (-940 *5 *4 *6 *7 *2)) (-4 *7 (-939 *6 *5 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-406 (-1159 (-406 (-942 *5))))) (-5 *4 (-1163))
+ (-5 *2 (-406 (-942 *5))) (-5 *1 (-1033 *5)) (-4 *5 (-550)))))
+(((*1 *1 *2) (-12 (-5 *2 (-182)) (-5 *1 (-247)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 (-635 *2))) (-5 *4 (-635 *5))
+ (-4 *5 (-38 (-406 (-558)))) (-4 *2 (-1237 *5))
+ (-5 *1 (-1239 *5 *2)))))
+(((*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1050))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1050)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-550)) (-4 *3 (-171)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *1 (-678 *3 *4 *5 *2))
+ (-4 *2 (-677 *3 *4 *5)))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
+ (-4 *3 (-366 *4))))
+ ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-558))
+ (-14 *6 (-762)) (-4 *7 (-171)) (-4 *8 (-171))
+ (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 *9)) (-4 *9 (-1039)) (-4 *5 (-841)) (-4 *6 (-784))
+ (-4 *8 (-1039)) (-4 *2 (-939 *9 *7 *5))
+ (-5 *1 (-719 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-784))
+ (-4 *4 (-939 *8 *6 *5)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1143 *4)) (-5 *3 (-1 *4 (-558))) (-4 *4 (-1039))
+ (-5 *1 (-1147 *4)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378))
(-5 *2
- (-2 (|:| -2510 (-769 *3)) (|:| |coef1| (-769 *3))
- (|:| |coef2| (-769 *3))))
- (-5 *1 (-769 *3)) (-4 *3 (-546)) (-4 *3 (-1034))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-546)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836))
- (-5 *2 (-2 (|:| -2510 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-1048 *3 *4 *5)))))
+ (-2 (|:| -2925 *4) (|:| -1984 *4) (|:| |totalpts| (-558))
+ (|:| |success| (-112))))
+ (-5 *1 (-780)) (-5 *5 (-558)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-911)) (-4 *5 (-550)) (-5 *2 (-679 *5))
+ (-5 *1 (-946 *5 *3)) (-4 *3 (-646 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1159 *4)) (-4 *4 (-348)) (-5 *2 (-112))
+ (-5 *1 (-356 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1246 *4)) (-4 *4 (-348)) (-5 *2 (-112))
+ (-5 *1 (-526 *4)))))
+(((*1 *1 *2 *3)
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-783))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-635 (-911))) (-5 *1 (-151 *4 *2 *5)) (-14 *4 (-911))
+ (-4 *2 (-362)) (-14 *5 (-983 *4 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-704 *5 *6 *7)) (-4 *5 (-841))
+ (-4 *6 (-237 (-2755 *4) (-762)))
+ (-14 *7
+ (-1 (-112) (-2 (|:| -2851 *5) (|:| -1951 *6))
+ (-2 (|:| -2851 *5) (|:| -1951 *6))))
+ (-14 *4 (-635 (-1163))) (-4 *2 (-171))
+ (-5 *1 (-459 *4 *2 *5 *6 *7 *8)) (-4 *8 (-939 *2 *6 (-855 *4)))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *1 (-507 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-841))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-558)) (-4 *2 (-550)) (-5 *1 (-615 *2 *4))
+ (-4 *4 (-1222 *2))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-762)) (-4 *1 (-699 *2)) (-4 *2 (-1039))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-726 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-717))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-635 *5)) (-5 *3 (-635 (-762))) (-4 *1 (-731 *4 *5))
+ (-4 *4 (-1039)) (-4 *5 (-841))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-762)) (-4 *1 (-731 *4 *2)) (-4 *4 (-1039))
+ (-4 *2 (-841))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-762)) (-4 *1 (-843 *2)) (-4 *2 (-1039))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-635 *6)) (-5 *3 (-635 (-762))) (-4 *1 (-939 *4 *5 *6))
+ (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *6 (-841))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-762)) (-4 *1 (-939 *4 *5 *2)) (-4 *4 (-1039))
+ (-4 *5 (-784)) (-4 *2 (-841))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-635 *6)) (-5 *3 (-635 *5)) (-4 *1 (-963 *4 *5 *6))
+ (-4 *4 (-1039)) (-4 *5 (-783)) (-4 *6 (-841))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-4 *1 (-963 *4 *3 *2)) (-4 *4 (-1039)) (-4 *3 (-783))
+ (-4 *2 (-841)))))
+(((*1 *2 *3 *3 *2)
+ (|partial| -12 (-5 *2 (-762))
+ (-4 *3 (-13 (-717) (-367) (-10 -7 (-15 ** (*3 *3 (-558))))))
+ (-5 *1 (-245 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-853) (-853))) (-5 *1 (-114))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-853) (-635 (-853)))) (-5 *1 (-114))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-1 (-853) (-635 (-853)))) (-5 *1 (-114))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1251)) (-5 *1 (-213 *3))
+ (-4 *3
+ (-13 (-841)
+ (-10 -8 (-15 -2195 ((-1145) $ (-1163))) (-15 -2646 (*2 $))
+ (-15 -2215 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-393))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *2 (-1251)) (-5 *1 (-393))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-500))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-701))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-1180))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *2 (-1251)) (-5 *1 (-1180)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1237 *4)) (-5 *1 (-1239 *4 *2))
+ (-4 *4 (-38 (-406 (-558)))))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-839) (-362))) (-5 *1 (-1049 *2 *3))
+ (-4 *3 (-1222 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-550)) (-4 *3 (-171)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *1 (-678 *3 *4 *5 *2))
+ (-4 *2 (-677 *3 *4 *5)))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
+ (-4 *3 (-366 *4))))
+ ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-635 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-558))
+ (-14 *4 (-762)) (-4 *5 (-171)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378))
+ (-5 *2
+ (-2 (|:| -2925 *4) (|:| -1984 *4) (|:| |totalpts| (-558))
+ (|:| |success| (-112))))
+ (-5 *1 (-780)) (-5 *5 (-558)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1107)) (-5 *1 (-944)))))
+(((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-911))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1246 *4)) (-4 *4 (-348)) (-5 *2 (-911))
+ (-5 *1 (-526 *4)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4383)) (-4 *1 (-243 *2)) (-4 *2 (-1200)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1237 *4)) (-5 *1 (-1239 *4 *2))
+ (-4 *4 (-38 (-406 (-558)))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-30))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-417 *4) *4)) (-4 *4 (-550)) (-5 *2 (-417 *4))
+ (-5 *1 (-418 *4))))
+ ((*1 *1 *1) (-5 *1 (-916)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1081 (-224))) (-5 *1 (-916))))
+ ((*1 *1 *1) (-5 *1 (-917)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1081 (-224))) (-5 *1 (-917))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))))
+ (-5 *4 (-406 (-558))) (-5 *1 (-1010 *3)) (-4 *3 (-1222 (-558)))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))))
+ (-5 *1 (-1010 *3)) (-4 *3 (-1222 (-558)))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))))
+ (-5 *4 (-406 (-558))) (-5 *1 (-1011 *3)) (-4 *3 (-1222 *4))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -3417 (-406 (-558))) (|:| -3425 (-406 (-558)))))
+ (-5 *1 (-1011 *3)) (-4 *3 (-1222 (-406 (-558))))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-13 (-839) (-362))) (-5 *1 (-1049 *2 *3))
+ (-4 *3 (-1222 *2)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-558)) (-4 *3 (-171)) (-4 *5 (-372 *3))
+ (-4 *6 (-372 *3)) (-5 *1 (-678 *3 *5 *6 *2))
+ (-4 *2 (-677 *3 *5 *6)))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
+ (-4 *3 (-366 *4))))
+ ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *4 (-558)) (-5 *6 (-1 (-1251) (-1246 *5) (-1246 *5) (-378)))
+ (-5 *3 (-1246 (-378))) (-5 *5 (-378)) (-5 *2 (-1251))
+ (-5 *1 (-779)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-550))
+ (-4 *3 (-939 *7 *5 *6))
+ (-5 *2
+ (-2 (|:| -1951 (-762)) (|:| -2023 *3) (|:| |radicand| (-635 *3))))
+ (-5 *1 (-943 *5 *6 *7 *3 *8)) (-5 *4 (-762))
+ (-4 *8
+ (-13 (-362)
+ (-10 -8 (-15 -3220 ($ *3)) (-15 -1874 (*3 $)) (-15 -1885 (*3 $))))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1246 *4)) (-5 *3 (-558)) (-4 *4 (-348))
+ (-5 *1 (-526 *4)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4383)) (-4 *1 (-243 *2)) (-4 *2 (-1200)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-170))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-1247))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-1248)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1239 *3 *2))
+ (-4 *2 (-1237 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-13 (-839) (-362))) (-5 *2 (-112)) (-5 *1 (-1049 *4 *3))
+ (-4 *3 (-1222 *4)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-558)) (-4 *3 (-171)) (-4 *5 (-372 *3))
+ (-4 *6 (-372 *3)) (-5 *1 (-678 *3 *5 *6 *2))
+ (-4 *2 (-677 *3 *5 *6)))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
+ (-4 *3 (-366 *4))))
+ ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1163))
+ (-4 *4 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)))
+ (-5 *1 (-795 *4 *2)) (-4 *2 (-13 (-29 *4) (-1185) (-949)))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-853))) ((*1 *1 *1 *1) (-5 *1 (-853)))
+ ((*1 *1 *1) (-5 *1 (-853)))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1143 *3)) (-5 *1 (-1147 *3)) (-4 *3 (-1039)))))
+(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
+ (-12 (-5 *4 (-558))
+ (-5 *6
+ (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -1667 (-378))))
+ (-5 *7 (-1 (-1251) (-1246 *5) (-1246 *5) (-378)))
+ (-5 *3 (-1246 (-378))) (-5 *5 (-378)) (-5 *2 (-1251))
+ (-5 *1 (-779))))
+ ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
+ (-12 (-5 *4 (-558))
+ (-5 *6
+ (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -1667 (-378))))
+ (-5 *7 (-1 (-1251) (-1246 *5) (-1246 *5) (-378)))
+ (-5 *3 (-1246 (-378))) (-5 *5 (-378)) (-5 *2 (-1251))
+ (-5 *1 (-779)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *7 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-550))
+ (-4 *8 (-939 *7 *5 *6))
+ (-5 *2 (-2 (|:| -1951 (-762)) (|:| -2023 *3) (|:| |radicand| *3)))
+ (-5 *1 (-943 *5 *6 *7 *8 *3)) (-5 *4 (-762))
+ (-4 *3
+ (-13 (-362)
+ (-10 -8 (-15 -3220 ($ *8)) (-15 -1874 (*8 $)) (-15 -1885 (*8 $))))))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1246 *4)) (-5 *3 (-1107)) (-4 *4 (-348))
+ (-5 *1 (-526 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-558)) (-5 *1 (-240))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-1145))) (-5 *2 (-558)) (-5 *1 (-240)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 (-635 *5))) (-4 *5 (-1237 *4))
+ (-4 *4 (-38 (-406 (-558))))
+ (-5 *2 (-1 (-1143 *4) (-635 (-1143 *4)))) (-5 *1 (-1239 *4 *5)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-604 (-48)))) (-5 *1 (-48))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-604 (-48))) (-5 *1 (-48))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1159 (-48))) (-5 *3 (-635 (-604 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1159 (-48))) (-5 *3 (-604 (-48))) (-5 *1 (-48))))
+ ((*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-362) (-839))) (-5 *1 (-180 *2 *3))
+ (-4 *3 (-1222 (-168 *2)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-911)) (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367))))
+ ((*1 *2 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-362))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1222 *2)) (-4 *2 (-171))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1222 *2)) (-4 *2 (-982 *3)) (-5 *1 (-412 *3 *2 *4 *5))
+ (-4 *3 (-306)) (-4 *5 (-13 (-408 *2 *4) (-1028 *2)))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1222 *2)) (-4 *2 (-982 *3))
+ (-5 *1 (-413 *3 *2 *4 *5 *6)) (-4 *3 (-306)) (-4 *5 (-408 *2 *4))
+ (-14 *6 (-1246 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-911)) (-4 *5 (-1039))
+ (-4 *2 (-13 (-403) (-1028 *5) (-362) (-1185) (-283)))
+ (-5 *1 (-441 *5 *3 *2)) (-4 *3 (-1222 *5))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-604 (-493)))) (-5 *1 (-493))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-604 (-493))) (-5 *1 (-493))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1159 (-493))) (-5 *3 (-635 (-604 (-493))))
+ (-5 *1 (-493))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1159 (-493))) (-5 *3 (-604 (-493))) (-5 *1 (-493))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1246 *4)) (-5 *3 (-911)) (-4 *4 (-348))
+ (-5 *1 (-526 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-450)) (-4 *5 (-715 *4 *2)) (-4 *2 (-1222 *4))
+ (-5 *1 (-766 *4 *2 *5 *3)) (-4 *3 (-1222 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171))))
+ ((*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-171))))
+ ((*1 *1 *1) (-4 *1 (-1048))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-558)) (-4 *4 (-171)) (-4 *5 (-372 *4))
+ (-4 *6 (-372 *4)) (-5 *1 (-678 *4 *5 *6 *2))
+ (-4 *2 (-677 *4 *5 *6)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1163)) (-5 *3 (-635 (-534))) (-5 *1 (-534)))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
+ (-4 *3 (-366 *4))))
+ ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1143 (-558))) (-5 *1 (-1147 *4)) (-4 *4 (-1039))
+ (-5 *3 (-558)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
+ (-12 (-5 *4 (-558)) (-5 *6 (-1 (-1251) (-1246 *5) (-1246 *5) (-378)))
+ (-5 *3 (-1246 (-378))) (-5 *5 (-378)) (-5 *2 (-1251))
+ (-5 *1 (-779)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-406 (-558))) (-4 *5 (-784)) (-4 *6 (-841))
+ (-4 *7 (-550)) (-4 *8 (-939 *7 *5 *6))
+ (-5 *2 (-2 (|:| -1951 (-762)) (|:| -2023 *9) (|:| |radicand| *9)))
+ (-5 *1 (-943 *5 *6 *7 *8 *9)) (-5 *4 (-762))
+ (-4 *9
+ (-13 (-362)
+ (-10 -8 (-15 -3220 ($ *8)) (-15 -1874 (*8 $)) (-15 -1885 (*8 $))))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1246 *4)) (-5 *3 (-762)) (-4 *4 (-348))
+ (-5 *1 (-526 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-635 (-2 (|:| -2700 (-1163)) (|:| -2981 *4))))
+ (-5 *1 (-879 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1087))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087))
+ (-4 *7 (-1087)) (-5 *2 (-635 *1)) (-4 *1 (-1090 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1145)) (-5 *3 (-558)) (-5 *1 (-240)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1237 *4))
+ (-4 *4 (-38 (-406 (-558))))
+ (-5 *2 (-1 (-1143 *4) (-1143 *4) (-1143 *4))) (-5 *1 (-1239 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-550)) (-4 *2 (-543))))
+ ((*1 *1 *1) (-4 *1 (-1048))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2))
+ (-4 *4 (-372 *2)))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
+ (-4 *3 (-366 *4))))
+ ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1143 (-558))) (-5 *1 (-1147 *4)) (-4 *4 (-1039))
+ (-5 *3 (-558)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-558)) (-5 *6 (-1 (-1251) (-1246 *5) (-1246 *5) (-378)))
+ (-5 *3 (-1246 (-378))) (-5 *5 (-378)) (-5 *2 (-1251))
+ (-5 *1 (-779))))
+ ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
+ (-12 (-5 *4 (-558)) (-5 *6 (-1 (-1251) (-1246 *5) (-1246 *5) (-378)))
+ (-5 *3 (-1246 (-378))) (-5 *5 (-378)) (-5 *2 (-1251))
+ (-5 *1 (-779)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-550))
+ (-4 *7 (-939 *3 *5 *6))
+ (-5 *2 (-2 (|:| -1951 (-762)) (|:| -2023 *8) (|:| |radicand| *8)))
+ (-5 *1 (-943 *5 *6 *3 *7 *8)) (-5 *4 (-762))
+ (-4 *8
+ (-13 (-362)
+ (-10 -8 (-15 -3220 ($ *7)) (-15 -1874 (*7 $)) (-15 -1885 (*7 $))))))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-1246 *5)) (-5 *3 (-762)) (-5 *4 (-1107)) (-4 *5 (-348))
+ (-5 *1 (-526 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853))))
+ ((*1 *1 *1) (-5 *1 (-853)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-4 *1 (-1085 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1087)))))
+(((*1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-240)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1237 *4))
+ (-4 *4 (-38 (-406 (-558)))) (-5 *2 (-1 (-1143 *4) (-1143 *4)))
+ (-5 *1 (-1239 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-550)) (-4 *2 (-543))))
+ ((*1 *1 *1) (-4 *1 (-1048))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2))
+ (-4 *4 (-372 *2)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987)))))
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3))
- (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4))))
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4))))
- ((*1 *1 *1) (-4 *1 (-279)))
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
+ ((*1 *1 *1) (-4 *1 (-283)))
((*1 *2 *3)
- (-12 (-5 *3 (-413 *4)) (-4 *4 (-546))
- (-5 *2 (-631 (-2 (|:| -1490 (-758)) (|:| |logand| *4))))
- (-5 *1 (-315 *4))))
+ (-12 (-5 *3 (-417 *4)) (-4 *4 (-550))
+ (-5 *2 (-635 (-2 (|:| -2023 (-762)) (|:| |logand| *4))))
+ (-5 *1 (-319 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158)))
- (-14 *3 (-631 (-1158))) (-4 *4 (-382))))
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163)))
+ (-14 *3 (-635 (-1163))) (-4 *4 (-386))))
((*1 *2 *1)
- (-12 (-5 *2 (-650 *3 *4)) (-5 *1 (-615 *3 *4 *5)) (-4 *3 (-836))
- (-4 *4 (-13 (-170) (-704 (-402 (-554))))) (-14 *5 (-906))))
+ (-12 (-5 *2 (-654 *3 *4)) (-5 *1 (-619 *3 *4 *5)) (-4 *3 (-841))
+ (-4 *4 (-13 (-171) (-708 (-406 (-558))))) (-14 *5 (-911))))
((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1143 *3))))
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1148 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1144 *3))))
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1149 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-758)) (-4 *4 (-13 (-1034) (-704 (-402 (-554)))))
- (-4 *5 (-836)) (-5 *1 (-1257 *4 *5 *2)) (-4 *2 (-1262 *5 *4))))
+ (-12 (-5 *3 (-762)) (-4 *4 (-13 (-1039) (-708 (-406 (-558)))))
+ (-4 *5 (-841)) (-5 *1 (-1262 *4 *5 *2)) (-4 *2 (-1267 *5 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-758)) (-5 *1 (-1261 *3 *4))
- (-4 *4 (-704 (-402 (-554)))) (-4 *3 (-836)) (-4 *4 (-170)))))
+ (-12 (-5 *2 (-762)) (-5 *1 (-1266 *3 *4))
+ (-4 *4 (-708 (-406 (-558)))) (-4 *3 (-841)) (-4 *4 (-171)))))
+(((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-1199))) (-5 *1 (-671))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 (-1168))) (-5 *1 (-1105)))))
+(((*1 *2 *3 *3)
+ (-12 (|has| *2 (-6 (-4384 "*"))) (-4 *5 (-372 *2)) (-4 *6 (-372 *2))
+ (-4 *2 (-1039)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1222 *2))
+ (-4 *4 (-677 *2 *5 *6)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-151 *2 *3 *4)) (-14 *2 (-911)) (-4 *3 (-362))
+ (-14 *4 (-983 *2 *3))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1222 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-550))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-706 *2 *3 *4 *5 *6)) (-4 *2 (-171))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-709 *2)) (-4 *2 (-362))))
+ ((*1 *1) (-12 (-5 *1 (-709 *2)) (-4 *2 (-362))))
+ ((*1 *1 *1) (|partial| -4 *1 (-713)))
+ ((*1 *1 *1) (|partial| -4 *1 (-717)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
+ (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
+ (-5 *1 (-767 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-4 *1 (-1056 *3 *2)) (-4 *3 (-13 (-839) (-362)))
+ (-4 *2 (-1222 *3))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *1 (-778)) (-5 *2 (-1025))
+ (-5 *3
+ (-2 (|:| |fn| (-315 (-224)))
+ (|:| -1626 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))))
+ ((*1 *2 *3 *2)
+ (-12 (-4 *1 (-778)) (-5 *2 (-1025))
+ (-5 *3
+ (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224)))
+ (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224)))))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1039)) (-4 *3 (-841))
+ (-5 *2 (-2 (|:| |val| *1) (|:| -1951 (-558)))) (-4 *1 (-429 *3))))
+ ((*1 *2 *1)
+ (|partial| -12
+ (-5 *2 (-2 (|:| |val| (-882 *3)) (|:| -1951 (-882 *3))))
+ (-5 *1 (-882 *3)) (-4 *3 (-1087))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1039))
+ (-4 *7 (-939 *6 *4 *5))
+ (-5 *2 (-2 (|:| |val| *3) (|:| -1951 (-558))))
+ (-5 *1 (-940 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-362)
+ (-10 -8 (-15 -3220 ($ *7)) (-15 -1874 (*7 $))
+ (-15 -1885 (*7 $))))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-762)) (-5 *2 (-1159 *4)) (-5 *1 (-526 *4))
+ (-4 *4 (-348)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1199)) (-4 *3 (-1217 *4))
- (-4 *5 (-1217 (-402 *3))) (-5 *2 (-112))))
+ (-12 (-5 *3 (-293 (-942 (-558))))
+ (-5 *2
+ (-2 (|:| |varOrder| (-635 (-1163)))
+ (|:| |inhom| (-3 (-635 (-1246 (-762))) "failed"))
+ (|:| |hom| (-635 (-1246 (-762))))))
+ (-5 *1 (-235)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-783))
+ (-5 *2 (-635 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1087))
+ (-5 *2 (-635 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1143 *3)) (-5 *1 (-589 *3)) (-4 *3 (-1039))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-635 *3)) (-5 *1 (-726 *3 *4)) (-4 *3 (-1039))
+ (-4 *4 (-717))))
+ ((*1 *2 *1) (-12 (-4 *1 (-843 *3)) (-4 *3 (-1039)) (-5 *2 (-635 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1237 *3)) (-4 *3 (-1039)) (-5 *2 (-1143 *3)))))
+(((*1 *2 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306))))
+ ((*1 *2 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-306))))
+ ((*1 *2 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-550)) (-4 *2 (-306))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1048)) (-5 *2 (-558)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2))
+ (-4 *4 (-372 *2)))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
+ (-4 *3 (-366 *4))))
+ ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-31))))
+ ((*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-911)))) ((*1 *1) (-4 *1 (-543)))
+ ((*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-689))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-894 *3)) (-4 *3 (-1087)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1039)) (-4 *2 (-677 *4 *5 *6))
+ (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1222 *4)) (-4 *5 (-372 *4))
+ (-4 *6 (-372 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-635 *3)) (-4 *3 (-1200)) (-5 *1 (-1143 *3)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1145)) (-5 *2 (-378)) (-5 *1 (-777)))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-1163)) (-4 *4 (-1039)) (-4 *4 (-841))
+ (-5 *2 (-2 (|:| |var| (-604 *1)) (|:| -1951 (-558))))
+ (-4 *1 (-429 *4))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1039)) (-4 *4 (-841))
+ (-5 *2 (-2 (|:| |var| (-604 *1)) (|:| -1951 (-558))))
+ (-4 *1 (-429 *4))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1099)) (-4 *3 (-841))
+ (-5 *2 (-2 (|:| |var| (-604 *1)) (|:| -1951 (-558))))
+ (-4 *1 (-429 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |val| (-882 *3)) (|:| -1951 (-762))))
+ (-5 *1 (-882 *3)) (-4 *3 (-1087))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-939 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784))
+ (-4 *5 (-841)) (-5 *2 (-2 (|:| |var| *5) (|:| -1951 (-762))))))
((*1 *2 *3)
- (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3))
- (-4 *5 (-1217 (-402 *4))) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1154 (-402 (-1154 *2)))) (-5 *4 (-600 *2))
- (-4 *2 (-13 (-425 *5) (-27) (-1180)))
- (-4 *5 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554))))
- (-5 *1 (-550 *5 *2 *6)) (-4 *6 (-1082))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1154 *1)) (-4 *1 (-934 *4 *5 *3)) (-4 *4 (-1034))
- (-4 *5 (-780)) (-4 *3 (-836))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1154 *4)) (-4 *4 (-1034)) (-4 *1 (-934 *4 *5 *3))
- (-4 *5 (-780)) (-4 *3 (-836))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-402 (-1154 *2))) (-4 *5 (-780)) (-4 *4 (-836))
- (-4 *6 (-1034))
- (-4 *2
- (-13 (-358)
- (-10 -8 (-15 -3075 ($ *7)) (-15 -2810 (*7 $)) (-15 -2822 (*7 $)))))
- (-5 *1 (-935 *5 *4 *6 *7 *2)) (-4 *7 (-934 *6 *5 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-402 (-1154 (-402 (-937 *5))))) (-5 *4 (-1158))
- (-5 *2 (-402 (-937 *5))) (-5 *1 (-1028 *5)) (-4 *5 (-546)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-877 *3)) (-4 *3 (-1082)))))
+ (|partial| -12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1039))
+ (-4 *7 (-939 *6 *4 *5))
+ (-5 *2 (-2 (|:| |var| *5) (|:| -1951 (-558))))
+ (-5 *1 (-940 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-362)
+ (-10 -8 (-15 -3220 ($ *7)) (-15 -1874 (*7 $))
+ (-15 -1885 (*7 $))))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1246 *4)) (-4 *4 (-348)) (-5 *2 (-1159 *4))
+ (-5 *1 (-526 *4)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-631 (-631 *3))) (-4 *3 (-1082)) (-5 *1 (-890 *3)))))
+ (-12 (-5 *2 (-635 (-558))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1039))
+ (-14 *4 (-635 (-1163)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
+ ((*1 *1 *1) (-4 *1 (-283)))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163)))
+ (-14 *3 (-635 (-1163))) (-4 *4 (-386))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-654 *3 *4)) (-4 *3 (-841))
+ (-4 *4 (-13 (-171) (-708 (-406 (-558))))) (-5 *1 (-619 *3 *4 *5))
+ (-14 *5 (-911))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1148 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1149 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-762)) (-4 *4 (-13 (-1039) (-708 (-406 (-558)))))
+ (-4 *5 (-841)) (-5 *1 (-1262 *4 *5 *2)) (-4 *2 (-1267 *5 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-762)) (-5 *1 (-1266 *3 *4))
+ (-4 *4 (-708 (-406 (-558)))) (-4 *3 (-841)) (-4 *4 (-171)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1246 *4)) (-4 *4 (-1200)) (-4 *1 (-237 *3 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-4 *1 (-234 *3))))
+ ((*1 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1087)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1237 *2)) (-4 *2 (-1039)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-1180)))))
+(((*1 *2 *1) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-108))))
+ ((*1 *2 *1) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-216))))
+ ((*1 *2 *1) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-485))))
+ ((*1 *1 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-550)) (-4 *2 (-306))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-406 (-558))) (-5 *1 (-994 *3)) (-14 *3 (-558))))
+ ((*1 *1 *1) (-4 *1 (-1048))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-558)) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039))
+ (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-911)) (|has| *1 (-6 -4373)) (-4 *1 (-403))))
+ ((*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-911))))
+ ((*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-689))))
+ ((*1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-689)))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
+ (-4 *3 (-366 *4))))
+ ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039))
+ (-5 *2
+ (-2 (|:| -2814 (-762)) (|:| |curves| (-762))
+ (|:| |polygons| (-762)) (|:| |constructs| (-762)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-182))) (-5 *1 (-139)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-635 *4)) (-4 *4 (-1087)) (-4 *4 (-1200)) (-5 *2 (-112))
+ (-5 *1 (-1143 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-378)) (-5 *1 (-777)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1099)) (-4 *3 (-841)) (-5 *2 (-635 *1))
+ (-4 *1 (-429 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-635 (-882 *3))) (-5 *1 (-882 *3))
+ (-4 *3 (-1087))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841))
+ (-5 *2 (-635 *1)) (-4 *1 (-939 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1039))
+ (-4 *7 (-939 *6 *4 *5)) (-5 *2 (-635 *3))
+ (-5 *1 (-940 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-362)
+ (-10 -8 (-15 -3220 ($ *7)) (-15 -1874 (*7 $))
+ (-15 -1885 (*7 $))))))))
(((*1 *2 *3 *4)
- (-12 (-5 *2 (-631 (-167 *4))) (-5 *1 (-153 *3 *4))
- (-4 *3 (-1217 (-167 (-554)))) (-4 *4 (-13 (-358) (-834)))))
+ (-12 (-5 *3 (-1246 (-635 (-2 (|:| -2925 *4) (|:| -2851 (-1107))))))
+ (-4 *4 (-348)) (-5 *2 (-1251)) (-5 *1 (-526 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1081 *3)) (-5 *1 (-1079 *3)) (-4 *3 (-1200))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1200))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1213 *2)) (-4 *2 (-1200)))))
+(((*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-358) (-834))) (-5 *2 (-631 (-167 *4)))
- (-5 *1 (-179 *4 *3)) (-4 *3 (-1217 (-167 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-358) (-834))) (-5 *2 (-631 (-167 *4)))
- (-5 *1 (-179 *4 *3)) (-4 *3 (-1217 (-167 *4))))))
-(((*1 *1 *2) (-12 (-5 *2 (-859)) (-5 *1 (-258))))
- ((*1 *1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-258)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-928 *3)) (-4 *3 (-13 (-358) (-1180) (-987)))
- (-5 *1 (-174 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-912)))))
+ (-12 (-4 *4 (-13 (-550) (-841) (-1028 (-558)))) (-5 *2 (-315 *4))
+ (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1185) (-429 (-168 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *1 (-1189 *3 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *3))))))
+(((*1 *1) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1185))))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-558))) (-4 *3 (-1039)) (-5 *1 (-588 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-558))) (-4 *1 (-1206 *3)) (-4 *3 (-1039))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-558))) (-4 *1 (-1237 *3)) (-4 *3 (-1039)))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-402 *5)) (-4 *4 (-1199)) (-4 *5 (-1217 *4))
- (-5 *1 (-146 *4 *5 *2)) (-4 *2 (-1217 *3))))
+ (-12 (-5 *3 (-406 *5)) (-4 *4 (-1204)) (-4 *5 (-1222 *4))
+ (-5 *1 (-147 *4 *5 *2)) (-4 *2 (-1222 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1160 (-402 (-554)))) (-5 *2 (-402 (-554)))
- (-5 *1 (-186))))
+ (-12 (-5 *3 (-1165 (-406 (-558)))) (-5 *2 (-406 (-558)))
+ (-5 *1 (-189))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-675 (-311 (-221)))) (-5 *3 (-631 (-1158)))
- (-5 *4 (-1241 (-311 (-221)))) (-5 *1 (-201))))
+ (-12 (-5 *2 (-679 (-315 (-224)))) (-5 *3 (-635 (-1163)))
+ (-5 *4 (-1246 (-315 (-224)))) (-5 *1 (-204))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-631 (-289 *3))) (-4 *3 (-304 *3)) (-4 *3 (-1082))
- (-4 *3 (-1195)) (-5 *1 (-289 *3))))
+ (-12 (-5 *2 (-635 (-293 *3))) (-4 *3 (-308 *3)) (-4 *3 (-1087))
+ (-4 *3 (-1200)) (-5 *1 (-293 *3))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-304 *2)) (-4 *2 (-1082)) (-4 *2 (-1195))
- (-5 *1 (-289 *2))))
+ (-12 (-4 *2 (-308 *2)) (-4 *2 (-1087)) (-4 *2 (-1200))
+ (-5 *1 (-293 *2))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-297))))
+ (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-301))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-631 *1))) (-4 *1 (-297))))
+ (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-635 *1))) (-4 *1 (-301))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-631 (-114))) (-5 *3 (-631 (-1 *1 (-631 *1))))
- (-4 *1 (-297))))
+ (-12 (-5 *2 (-635 (-114))) (-5 *3 (-635 (-1 *1 (-635 *1))))
+ (-4 *1 (-301))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-631 (-114))) (-5 *3 (-631 (-1 *1 *1))) (-4 *1 (-297))))
+ (-12 (-5 *2 (-635 (-114))) (-5 *3 (-635 (-1 *1 *1))) (-4 *1 (-301))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1158)) (-5 *3 (-1 *1 *1)) (-4 *1 (-297))))
+ (-12 (-5 *2 (-1163)) (-5 *3 (-1 *1 *1)) (-4 *1 (-301))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1158)) (-5 *3 (-1 *1 (-631 *1))) (-4 *1 (-297))))
+ (-12 (-5 *2 (-1163)) (-5 *3 (-1 *1 (-635 *1))) (-4 *1 (-301))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-631 (-1158))) (-5 *3 (-631 (-1 *1 (-631 *1))))
- (-4 *1 (-297))))
+ (-12 (-5 *2 (-635 (-1163))) (-5 *3 (-635 (-1 *1 (-635 *1))))
+ (-4 *1 (-301))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-631 (-1158))) (-5 *3 (-631 (-1 *1 *1))) (-4 *1 (-297))))
+ (-12 (-5 *2 (-635 (-1163))) (-5 *3 (-635 (-1 *1 *1))) (-4 *1 (-301))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-631 (-289 *3))) (-4 *1 (-304 *3)) (-4 *3 (-1082))))
+ (-12 (-5 *2 (-635 (-293 *3))) (-4 *1 (-308 *3)) (-4 *3 (-1087))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-289 *3)) (-4 *1 (-304 *3)) (-4 *3 (-1082))))
+ (-12 (-5 *2 (-293 *3)) (-4 *1 (-308 *3)) (-4 *3 (-1087))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-554))) (-5 *4 (-1160 (-402 (-554))))
- (-5 *1 (-305 *2)) (-4 *2 (-38 (-402 (-554))))))
+ (-12 (-5 *3 (-1 *2 (-558))) (-5 *4 (-1165 (-406 (-558))))
+ (-5 *1 (-309 *2)) (-4 *2 (-38 (-406 (-558))))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-631 *4)) (-5 *3 (-631 *1)) (-4 *1 (-369 *4 *5))
- (-4 *4 (-836)) (-4 *5 (-170))))
+ (-12 (-5 *2 (-635 *4)) (-5 *3 (-635 *1)) (-4 *1 (-373 *4 *5))
+ (-4 *4 (-841)) (-4 *5 (-171))))
((*1 *1 *1 *2 *1)
- (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-836)) (-4 *3 (-170))))
+ (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-841)) (-4 *3 (-171))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1158)) (-5 *3 (-758)) (-5 *4 (-1 *1 *1))
- (-4 *1 (-425 *5)) (-4 *5 (-836)) (-4 *5 (-1034))))
+ (-12 (-5 *2 (-1163)) (-5 *3 (-762)) (-5 *4 (-1 *1 *1))
+ (-4 *1 (-429 *5)) (-4 *5 (-841)) (-4 *5 (-1039))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1158)) (-5 *3 (-758)) (-5 *4 (-1 *1 (-631 *1)))
- (-4 *1 (-425 *5)) (-4 *5 (-836)) (-4 *5 (-1034))))
+ (-12 (-5 *2 (-1163)) (-5 *3 (-762)) (-5 *4 (-1 *1 (-635 *1)))
+ (-4 *1 (-429 *5)) (-4 *5 (-841)) (-4 *5 (-1039))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-631 (-1158))) (-5 *3 (-631 (-758)))
- (-5 *4 (-631 (-1 *1 (-631 *1)))) (-4 *1 (-425 *5)) (-4 *5 (-836))
- (-4 *5 (-1034))))
+ (-12 (-5 *2 (-635 (-1163))) (-5 *3 (-635 (-762)))
+ (-5 *4 (-635 (-1 *1 (-635 *1)))) (-4 *1 (-429 *5)) (-4 *5 (-841))
+ (-4 *5 (-1039))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-631 (-1158))) (-5 *3 (-631 (-758)))
- (-5 *4 (-631 (-1 *1 *1))) (-4 *1 (-425 *5)) (-4 *5 (-836))
- (-4 *5 (-1034))))
+ (-12 (-5 *2 (-635 (-1163))) (-5 *3 (-635 (-762)))
+ (-5 *4 (-635 (-1 *1 *1))) (-4 *1 (-429 *5)) (-4 *5 (-841))
+ (-4 *5 (-1039))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-631 (-114))) (-5 *3 (-631 *1)) (-5 *4 (-1158))
- (-4 *1 (-425 *5)) (-4 *5 (-836)) (-4 *5 (-602 (-530)))))
+ (-12 (-5 *2 (-635 (-114))) (-5 *3 (-635 *1)) (-5 *4 (-1163))
+ (-4 *1 (-429 *5)) (-4 *5 (-841)) (-4 *5 (-606 (-534)))))
((*1 *1 *1 *2 *1 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1158)) (-4 *1 (-425 *4)) (-4 *4 (-836))
- (-4 *4 (-602 (-530)))))
+ (-12 (-5 *2 (-114)) (-5 *3 (-1163)) (-4 *1 (-429 *4)) (-4 *4 (-841))
+ (-4 *4 (-606 (-534)))))
((*1 *1 *1)
- (-12 (-4 *1 (-425 *2)) (-4 *2 (-836)) (-4 *2 (-602 (-530)))))
+ (-12 (-4 *1 (-429 *2)) (-4 *2 (-841)) (-4 *2 (-606 (-534)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-631 (-1158))) (-4 *1 (-425 *3)) (-4 *3 (-836))
- (-4 *3 (-602 (-530)))))
+ (-12 (-5 *2 (-635 (-1163))) (-4 *1 (-429 *3)) (-4 *3 (-841))
+ (-4 *3 (-606 (-534)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1158)) (-4 *1 (-425 *3)) (-4 *3 (-836))
- (-4 *3 (-602 (-530)))))
+ (-12 (-5 *2 (-1163)) (-4 *1 (-429 *3)) (-4 *3 (-841))
+ (-4 *3 (-606 (-534)))))
((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-508 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1195))))
+ (-12 (-4 *1 (-512 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-1200))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-631 *4)) (-5 *3 (-631 *5)) (-4 *1 (-508 *4 *5))
- (-4 *4 (-1082)) (-4 *5 (-1195))))
+ (-12 (-5 *2 (-635 *4)) (-5 *3 (-635 *5)) (-4 *1 (-512 *4 *5))
+ (-4 *4 (-1087)) (-4 *5 (-1200))))
((*1 *2 *1 *2)
- (-12 (-5 *2 (-820 *3)) (-4 *3 (-358)) (-5 *1 (-705 *3))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-705 *2)) (-4 *2 (-358))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-888 *2)) (-4 *2 (-1082))))
+ (-12 (-5 *2 (-824 *3)) (-4 *3 (-362)) (-5 *1 (-709 *3))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-709 *2)) (-4 *2 (-362))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-893 *2)) (-4 *2 (-1087))))
((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-402 (-937 *4))) (-5 *3 (-1158)) (-4 *4 (-546))
- (-5 *1 (-1028 *4))))
+ (-12 (-5 *2 (-406 (-942 *4))) (-5 *3 (-1163)) (-4 *4 (-550))
+ (-5 *1 (-1033 *4))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-631 (-1158))) (-5 *4 (-631 (-402 (-937 *5))))
- (-5 *2 (-402 (-937 *5))) (-4 *5 (-546)) (-5 *1 (-1028 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-289 (-402 (-937 *4)))) (-5 *2 (-402 (-937 *4)))
- (-4 *4 (-546)) (-5 *1 (-1028 *4))))
+ (-12 (-5 *3 (-635 (-1163))) (-5 *4 (-635 (-406 (-942 *5))))
+ (-5 *2 (-406 (-942 *5))) (-4 *5 (-550)) (-5 *1 (-1033 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-631 (-289 (-402 (-937 *4))))) (-5 *2 (-402 (-937 *4)))
- (-4 *4 (-546)) (-5 *1 (-1028 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1219 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-779))
- (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1138 *3)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780))
- (-4 *4 (-836)) (-4 *2 (-446)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-961 *3 *4 *2 *5)) (-4 *3 (-1034)) (-4 *4 (-780))
- (-4 *2 (-836)) (-4 *5 (-1048 *3 *4 *2)))))
-(((*1 *1 *2 *3)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-779))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-631 (-906))) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-906))
- (-4 *2 (-358)) (-14 *5 (-978 *4 *2))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-700 *5 *6 *7)) (-4 *5 (-836))
- (-4 *6 (-234 (-2563 *4) (-758)))
- (-14 *7
- (-1 (-112) (-2 (|:| -2717 *5) (|:| -1407 *6))
- (-2 (|:| -2717 *5) (|:| -1407 *6))))
- (-14 *4 (-631 (-1158))) (-4 *2 (-170))
- (-5 *1 (-455 *4 *2 *5 *6 *7 *8)) (-4 *8 (-934 *2 *6 (-850 *4)))))
- ((*1 *1 *2 *3)
- (-12 (-4 *1 (-503 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-836))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-554)) (-4 *2 (-546)) (-5 *1 (-611 *2 *4))
- (-4 *4 (-1217 *2))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-758)) (-4 *1 (-695 *2)) (-4 *2 (-1034))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-722 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-713))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-631 *5)) (-5 *3 (-631 (-758))) (-4 *1 (-727 *4 *5))
- (-4 *4 (-1034)) (-4 *5 (-836))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-758)) (-4 *1 (-727 *4 *2)) (-4 *4 (-1034))
- (-4 *2 (-836))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-758)) (-4 *1 (-838 *2)) (-4 *2 (-1034))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-631 *6)) (-5 *3 (-631 (-758))) (-4 *1 (-934 *4 *5 *6))
- (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *6 (-836))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-758)) (-4 *1 (-934 *4 *5 *2)) (-4 *4 (-1034))
- (-4 *5 (-780)) (-4 *2 (-836))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-631 *6)) (-5 *3 (-631 *5)) (-4 *1 (-958 *4 *5 *6))
- (-4 *4 (-1034)) (-4 *5 (-779)) (-4 *6 (-836))))
- ((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-958 *4 *3 *2)) (-4 *4 (-1034)) (-4 *3 (-779))
- (-4 *2 (-836)))))
-(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
- (-12 (-5 *4 (-675 (-221))) (-5 *5 (-675 (-554))) (-5 *3 (-554))
- (-5 *2 (-1020)) (-5 *1 (-743)))))
-(((*1 *2 *1) (-12 (-5 *2 (-631 (-1158))) (-5 *1 (-1162)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-780))
- (-4 *3 (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $))))) (-4 *5 (-546))
- (-5 *1 (-719 *4 *3 *5 *2)) (-4 *2 (-934 (-402 (-937 *5)) *4 *3))))
+ (-12 (-5 *3 (-293 (-406 (-942 *4)))) (-5 *2 (-406 (-942 *4)))
+ (-4 *4 (-550)) (-5 *1 (-1033 *4))))
((*1 *2 *2 *3)
- (-12 (-4 *4 (-1034)) (-4 *5 (-780))
- (-4 *3
- (-13 (-836)
- (-10 -8 (-15 -2927 ((-1158) $))
- (-15 -1576 ((-3 $ "failed") (-1158))))))
- (-5 *1 (-969 *4 *5 *3 *2)) (-4 *2 (-934 (-937 *4) *5 *3))))
+ (-12 (-5 *3 (-635 (-293 (-406 (-942 *4))))) (-5 *2 (-406 (-942 *4)))
+ (-4 *4 (-550)) (-5 *1 (-1033 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-631 *6))
- (-4 *6
- (-13 (-836)
- (-10 -8 (-15 -2927 ((-1158) $))
- (-15 -1576 ((-3 $ "failed") (-1158))))))
- (-4 *4 (-1034)) (-4 *5 (-780)) (-5 *1 (-969 *4 *5 *6 *2))
- (-4 *2 (-934 (-937 *4) *5 *6)))))
-(((*1 *2 *1)
- (-12 (|has| *1 (-6 -4373)) (-4 *1 (-483 *3)) (-4 *3 (-1195))
- (-5 *2 (-631 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-631 *3)) (-5 *1 (-724 *3)) (-4 *3 (-1082)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-631 (-554))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-554))
- (-14 *4 (-758)) (-4 *5 (-170)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4374)) (-4 *1 (-1229 *2)) (-4 *2 (-1195)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-167 *5)) (-4 *5 (-13 (-425 *4) (-987) (-1180)))
- (-4 *4 (-13 (-546) (-836)))
- (-4 *2 (-13 (-425 (-167 *4)) (-987) (-1180)))
- (-5 *1 (-588 *4 *5 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-322 *3)) (-4 *3 (-1195))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-758)) (-5 *1 (-510 *3 *4)) (-4 *3 (-1195))
- (-14 *4 (-554)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1076 (-221))) (-5 *1 (-911))))
- ((*1 *2 *1) (-12 (-5 *2 (-1076 (-221))) (-5 *1 (-912)))))
-(((*1 *2 *2 *2 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-600 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1158)))
- (-4 *2 (-13 (-425 *5) (-27) (-1180)))
- (-4 *5 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554))))
- (-5 *1 (-556 *5 *2 *6)) (-4 *6 (-1082)))))
-(((*1 *1) (-5 *1 (-142))))
-(((*1 *1) (-5 *1 (-432))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-356 *3)) (-4 *3 (-1082))))
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-554)) (-5 *2 (-758)) (-5 *1 (-381 *4)) (-4 *4 (-1082))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-554)) (-4 *2 (-23)) (-5 *1 (-635 *4 *2 *5))
- (-4 *4 (-1082)) (-14 *5 *2)))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-554)) (-5 *2 (-758)) (-5 *1 (-806 *4)) (-4 *4 (-836)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-631 *5)) (-5 *4 (-554)) (-4 *5 (-834)) (-4 *5 (-358))
- (-5 *2 (-758)) (-5 *1 (-930 *5 *6)) (-4 *6 (-1217 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-631 (-1158))) (-5 *3 (-1158)) (-5 *1 (-530))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1158)) (-5 *1 (-691 *3)) (-4 *3 (-602 (-530)))))
- ((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-1158)) (-5 *1 (-691 *3)) (-4 *3 (-602 (-530)))))
- ((*1 *2 *3 *2 *2 *2)
- (-12 (-5 *2 (-1158)) (-5 *1 (-691 *3)) (-4 *3 (-602 (-530)))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *4 (-631 (-1158))) (-5 *2 (-1158)) (-5 *1 (-691 *3))
- (-4 *3 (-602 (-530))))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4))
- (-4 *3 (-362 *4))))
- ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+ (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-783))
+ (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1143 *3)))))
+(((*1 *1 *1) (-4 *1 (-1048))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-558)) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039))
+ (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))))
(((*1 *2)
- (-12 (-4 *4 (-358)) (-5 *2 (-906)) (-5 *1 (-323 *3 *4))
- (-4 *3 (-324 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-358)) (-5 *2 (-820 (-906))) (-5 *1 (-323 *3 *4))
- (-4 *3 (-324 *4))))
- ((*1 *2) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-906))))
- ((*1 *2)
- (-12 (-4 *1 (-1260 *3)) (-4 *3 (-358)) (-5 *2 (-820 (-906))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-511)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-631 *3)) (-4 *3 (-836)) (-5 *1 (-726 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3))
- (-4 *5 (-368 *3)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034))
- (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-112)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-848)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-446)) (-4 *4 (-546))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| -1942 *4))) (-5 *1 (-954 *4 *3))
- (-4 *3 (-1217 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-145))
- (-4 *3 (-302)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836))
- (-5 *1 (-962 *3 *4 *5 *6)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-811)) (-5 *3 (-631 (-1158))) (-5 *1 (-812)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1239 *3)) (-4 *3 (-1195)) (-4 *3 (-1034))
- (-5 *2 (-675 *3)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1140)) (-5 *1 (-1176)))))
-(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
- (-12 (-5 *3 (-906)) (-5 *4 (-221)) (-5 *5 (-554)) (-5 *6 (-859))
- (-5 *2 (-1246)) (-5 *1 (-1242)))))
-(((*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1 (-374))) (-5 *1 (-1025)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-539)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1195)))))
-(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-576 *3)) (-4 *3 (-539)))))
-(((*1 *1) (-5 *1 (-139))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1188 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *4 (-780))
- (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-4 *5 (-363))
- (-5 *2 (-758)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-344))
- (-5 *2 (-631 (-2 (|:| |deg| (-758)) (|:| -2436 *3))))
- (-5 *1 (-212 *4 *3)) (-4 *3 (-1217 *4)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-1199)) (-4 *5 (-1217 *4))
- (-5 *2 (-2 (|:| |radicand| (-402 *5)) (|:| |deg| (-758))))
- (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1217 (-402 *5))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 *4))))
- (-5 *1 (-874 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082))
- (-4 *7 (-1082)) (-5 *2 (-631 *1)) (-4 *1 (-1085 *3 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-289 (-402 (-937 *5)))) (-5 *4 (-1158))
- (-4 *5 (-13 (-302) (-836) (-145)))
- (-5 *2 (-1147 (-631 (-311 *5)) (-631 (-289 (-311 *5)))))
- (-5 *1 (-1111 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-402 (-937 *5))) (-5 *4 (-1158))
- (-4 *5 (-13 (-302) (-836) (-145)))
- (-5 *2 (-1147 (-631 (-311 *5)) (-631 (-289 (-311 *5)))))
- (-5 *1 (-1111 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-836))
- (-4 *5 (-261 *4)) (-4 *6 (-780)) (-5 *2 (-758))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1034)) (-4 *3 (-836))
- (-4 *5 (-261 *3)) (-4 *6 (-780)) (-5 *2 (-758))))
- ((*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-836)) (-5 *2 (-758))))
- ((*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-906))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-331 *4 *5 *6 *7)) (-4 *4 (-13 (-363) (-358)))
- (-4 *5 (-1217 *4)) (-4 *6 (-1217 (-402 *5))) (-4 *7 (-337 *4 *5 *6))
- (-5 *2 (-758)) (-5 *1 (-387 *4 *5 *6 *7))))
- ((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-820 (-906)))))
- ((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-554))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-585 *3)) (-4 *3 (-1034))))
- ((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-585 *3)) (-4 *3 (-1034))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-546)) (-5 *2 (-554)) (-5 *1 (-611 *3 *4))
- (-4 *4 (-1217 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-758)) (-4 *1 (-727 *4 *3)) (-4 *4 (-1034))
- (-4 *3 (-836))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-727 *4 *3)) (-4 *4 (-1034)) (-4 *3 (-836))
- (-5 *2 (-758))))
- ((*1 *2 *1) (-12 (-4 *1 (-854 *3)) (-5 *2 (-758))))
- ((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-889 *3)) (-4 *3 (-1082))))
- ((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-890 *3)) (-4 *3 (-1082))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-331 *5 *6 *7 *8)) (-4 *5 (-425 *4))
- (-4 *6 (-1217 *5)) (-4 *7 (-1217 (-402 *6)))
- (-4 *8 (-337 *5 *6 *7))
- (-4 *4 (-13 (-836) (-546) (-1023 (-554)))) (-5 *2 (-758))
- (-5 *1 (-896 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-331 (-402 (-554)) *4 *5 *6))
- (-4 *4 (-1217 (-402 (-554)))) (-4 *5 (-1217 (-402 *4)))
- (-4 *6 (-337 (-402 (-554)) *4 *5)) (-5 *2 (-758))
- (-5 *1 (-897 *4 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-331 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-358))
- (-4 *7 (-1217 *6)) (-4 *4 (-1217 (-402 *7))) (-4 *8 (-337 *6 *7 *4))
- (-4 *9 (-13 (-363) (-358))) (-5 *2 (-758))
- (-5 *1 (-1003 *6 *7 *4 *8 *9))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1217 *3)) (-4 *3 (-1034)) (-4 *3 (-546))
- (-5 *2 (-758))))
- ((*1 *2 *1 *2)
- (-12 (-4 *1 (-1219 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-779))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1219 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-779)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-658 *3)) (-4 *3 (-836)) (-4 *1 (-369 *3 *4))
- (-4 *4 (-170)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-170)) (-4 *2 (-23)) (-5 *1 (-284 *3 *4 *2 *5 *6 *7))
- (-4 *4 (-1217 *3)) (-14 *5 (-1 *4 *4 *2))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2))
- (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-698 *3 *2 *4 *5 *6)) (-4 *3 (-170))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2)
- (-12 (-4 *2 (-1217 *3)) (-5 *1 (-699 *3 *2)) (-4 *3 (-1034))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-702 *3 *2 *4 *5 *6)) (-4 *3 (-170))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2) (-12 (-4 *1 (-854 *3)) (-5 *2 (-554)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1165)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1160 (-402 (-554)))) (-5 *1 (-186)) (-5 *3 (-554)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1195)) (-5 *1 (-858 *3 *2)) (-4 *3 (-1195))))
- ((*1 *2 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1195)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4374)) (-4 *1 (-119 *2)) (-4 *2 (-1195)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034))
- (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1264 *3 *4)) (-4 *3 (-1034))
- (-4 *4 (-832)))))
-(((*1 *2 *1)
+ (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
+ (-4 *3 (-366 *4))))
+ ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+(((*1 *2 *3 *1)
(-12
(-5 *2
- (-631
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
- (|:| |xpnt| (-554)))))
- (-5 *1 (-413 *3)) (-4 *3 (-546))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-758)) (-4 *3 (-344)) (-4 *5 (-1217 *3))
- (-5 *2 (-631 (-1154 *3))) (-5 *1 (-492 *3 *5 *6))
- (-4 *6 (-1217 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848))))
- ((*1 *1 *1) (-5 *1 (-848)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-4 *1 (-1080 *3))))
- ((*1 *1) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1082)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1195)) (-5 *1 (-370 *4 *2))
- (-4 *2 (-13 (-368 *4) (-10 -7 (-6 -4374)))))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4374)) (-4 *1 (-240 *2)) (-4 *2 (-1195)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221)))
- (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221))
- (|:| |relerr| (-221))))
- (-5 *2 (-374)) (-5 *1 (-188)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-906)) (-4 *1 (-234 *3 *4)) (-4 *4 (-1034))
- (-4 *4 (-1195))))
- ((*1 *1 *2)
- (-12 (-14 *3 (-631 (-1158))) (-4 *4 (-170))
- (-4 *5 (-234 (-2563 *3) (-758)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2717 *2) (|:| -1407 *5))
- (-2 (|:| -2717 *2) (|:| -1407 *5))))
- (-5 *1 (-455 *3 *4 *2 *5 *6 *7)) (-4 *2 (-836))
- (-4 *7 (-934 *4 *5 (-850 *3)))))
- ((*1 *2 *2) (-12 (-5 *2 (-928 (-221))) (-5 *1 (-1191)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2))
- (|has| *2 (-6 (-4375 "*"))) (-4 *2 (-1034))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-368 *2)) (-4 *5 (-368 *2)) (-4 *2 (-170))
- (-5 *1 (-674 *2 *4 *5 *3)) (-4 *3 (-673 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1105 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2))
- (-4 *5 (-234 *3 *2)) (|has| *2 (-6 (-4375 "*"))) (-4 *2 (-1034)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836))
- (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-934 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-358)) (-4 *3 (-780)) (-4 *4 (-836))
- (-5 *1 (-498 *2 *3 *4 *5)) (-4 *5 (-934 *2 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-811)))))
-(((*1 *1) (-5 *1 (-155)))
- ((*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-23)))))
-(((*1 *2 *1) (-12 (-4 *1 (-660 *3)) (-4 *3 (-1195)) (-5 *2 (-112)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-675 *4)) (-4 *4 (-1034)) (-5 *1 (-1124 *3 *4))
- (-14 *3 (-758)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-554))) (-5 *4 (-890 (-554)))
- (-5 *2 (-675 (-554))) (-5 *1 (-579))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-631 (-554))) (-5 *2 (-631 (-675 (-554))))
- (-5 *1 (-579))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-554))) (-5 *4 (-631 (-890 (-554))))
- (-5 *2 (-631 (-675 (-554)))) (-5 *1 (-579)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-402 (-937 *3))) (-5 *1 (-447 *3 *4 *5 *6))
- (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906))
- (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))))
-(((*1 *1 *1) (-12 (-5 *1 (-494 *2)) (-14 *2 (-554))))
- ((*1 *1 *1) (-5 *1 (-1102))))
+ (-2 (|:| |cycle?| (-112)) (|:| -4280 (-762)) (|:| |period| (-762))))
+ (-5 *1 (-1143 *4)) (-4 *4 (-1200)) (-5 *3 (-762)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-911)) (-5 *1 (-777)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1082)) (-4 *4 (-13 (-1034) (-871 *3) (-836) (-602 *2)))
- (-5 *2 (-877 *3)) (-5 *1 (-1058 *3 *4 *5))
- (-4 *5 (-13 (-425 *4) (-871 *3) (-602 *2))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-631 (-2 (|:| |gen| *3) (|:| -1333 (-554)))))
- (-5 *1 (-356 *3)) (-4 *3 (-1082))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-631 (-2 (|:| |gen| *3) (|:| -1333 (-758)))))
- (-5 *1 (-381 *3)) (-4 *3 (-1082))))
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-841)) (-5 *2 (-635 *1))
+ (-4 *1 (-429 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-631 (-2 (|:| -2270 *3) (|:| -1407 (-554)))))
- (-5 *1 (-413 *3)) (-4 *3 (-546))))
+ (|partial| -12 (-5 *2 (-635 (-882 *3))) (-5 *1 (-882 *3))
+ (-4 *3 (-1087))))
((*1 *2 *1)
- (-12 (-5 *2 (-631 (-2 (|:| |gen| *3) (|:| -1333 (-758)))))
- (-5 *1 (-806 *3)) (-4 *3 (-836)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1082)) (-5 *1 (-103 *3))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1082)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-325)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1241 *4)) (-4 *4 (-1195)) (-4 *1 (-234 *3 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-980 *2)) (-4 *2 (-1195)))))
-(((*1 *1) (-5 *1 (-221))) ((*1 *1) (-5 *1 (-374))))
-(((*1 *2 *3)
- (-12 (-4 *2 (-358)) (-4 *2 (-834)) (-5 *1 (-930 *2 *3))
- (-4 *3 (-1217 *2)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *4 (-13 (-358) (-834))) (-5 *2 (-413 *3))
- (-5 *1 (-179 *4 *3)) (-4 *3 (-1217 (-167 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-358) (-834))) (-5 *2 (-413 *3))
- (-5 *1 (-179 *4 *3)) (-4 *3 (-1217 (-167 *4))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1034)) (-5 *2 (-631 *1)) (-4 *1 (-1116 *3)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-494 *2)) (-14 *2 (-554))))
- ((*1 *1 *1 *1) (-5 *1 (-1102))))
-(((*1 *2 *1) (-12 (-4 *1 (-995 *3)) (-4 *3 (-1195)) (-5 *2 (-631 *3)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-758)) (-4 *5 (-546))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-954 *5 *3)) (-4 *3 (-1217 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1084 *3)) (-5 *1 (-889 *3)) (-4 *3 (-1082))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1084 *3)) (-5 *1 (-890 *3)) (-4 *3 (-1082)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1154 *6)) (-4 *6 (-1034)) (-4 *4 (-780)) (-4 *5 (-836))
- (-5 *2 (-1154 *7)) (-5 *1 (-316 *4 *5 *6 *7))
- (-4 *7 (-934 *6 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170))))
+ (|partial| -12 (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841))
+ (-5 *2 (-635 *1)) (-4 *1 (-939 *3 *4 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-546) (-836) (-1023 (-554)))) (-5 *2 (-311 *4))
- (-5 *1 (-184 *4 *3)) (-4 *3 (-13 (-27) (-1180) (-425 (-167 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *1 (-1184 *3 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *3))))))
-(((*1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-155))))
- ((*1 *2 *3) (-12 (-5 *3 (-928 *2)) (-5 *1 (-967 *2)) (-4 *2 (-1034)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1154 *3)) (-4 *3 (-363)) (-4 *1 (-324 *3))
- (-4 *3 (-358)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-937 (-554))) (-5 *2 (-631 *1)) (-4 *1 (-997))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-937 (-402 (-554)))) (-5 *2 (-631 *1)) (-4 *1 (-997))))
- ((*1 *2 *3) (-12 (-5 *3 (-937 *1)) (-4 *1 (-997)) (-5 *2 (-631 *1))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1154 (-554))) (-5 *2 (-631 *1)) (-4 *1 (-997))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1154 (-402 (-554)))) (-5 *2 (-631 *1)) (-4 *1 (-997))))
- ((*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-997)) (-5 *2 (-631 *1))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-834) (-358))) (-4 *3 (-1217 *4)) (-5 *2 (-631 *1))
- (-4 *1 (-1051 *4 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-546)) (-5 *2 (-1154 *3)) (-5 *1 (-41 *4 *3))
- (-4 *3
- (-13 (-358) (-297)
- (-10 -8 (-15 -2810 ((-1107 *4 (-600 $)) $))
- (-15 -2822 ((-1107 *4 (-600 $)) $))
- (-15 -3075 ($ (-1107 *4 (-600 $))))))))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-494 *2)) (-14 *2 (-554))))
- ((*1 *1 *1 *1) (-5 *1 (-1102))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-128)))))
-(((*1 *2)
- (-12 (-4 *3 (-546)) (-5 *2 (-631 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-412 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-546) (-836) (-1023 (-554)))) (-5 *2 (-311 *4))
- (-5 *1 (-184 *4 *3)) (-4 *3 (-13 (-27) (-1180) (-425 (-167 *4))))))
- ((*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170))))
- ((*1 *2 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-170))))
+ (|partial| -12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1039))
+ (-4 *7 (-939 *6 *4 *5)) (-5 *2 (-635 *3))
+ (-5 *1 (-940 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-362)
+ (-10 -8 (-15 -3220 ($ *7)) (-15 -1874 (*7 $))
+ (-15 -1885 (*7 $))))))))
+(((*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-1107)))))
+(((*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-550) (-841) (-1028 (-558)))) (-5 *2 (-315 *4))
+ (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1185) (-429 (-168 *4))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171))))
+ ((*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-171))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *1 (-1184 *3 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *3))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1103 *2)) (-4 *2 (-1195)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-446))
- (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836))
- (-5 *1 (-962 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-631 *7)) (-5 *3 (-112)) (-4 *7 (-1048 *4 *5 *6))
- (-4 *4 (-446)) (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836))
- (-5 *1 (-962 *4 *5 *6 *7)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-810)) (-5 *2 (-1246)) (-5 *1 (-809)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-631 (-1076 (-374)))) (-5 *3 (-631 (-258)))
- (-5 *1 (-256))))
- ((*1 *1 *2) (-12 (-5 *2 (-631 (-1076 (-374)))) (-5 *1 (-258))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-631 (-1076 (-374)))) (-5 *1 (-462))))
- ((*1 *2 *1) (-12 (-5 *2 (-631 (-1076 (-374)))) (-5 *1 (-462)))))
-(((*1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-363)) (-4 *2 (-358)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987))))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-112)))))
-(((*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-551))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1154 (-402 (-554)))) (-5 *1 (-927)) (-5 *3 (-554)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-600 *3)) (-4 *3 (-13 (-425 *5) (-27) (-1180)))
- (-4 *5 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554))))
- (-5 *2 (-575 *3)) (-5 *1 (-556 *5 *3 *6)) (-4 *6 (-1082)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-631 (-1181 *3))) (-5 *1 (-1181 *3)) (-4 *3 (-1082)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158)))
- (-14 *3 (-631 (-1158))) (-4 *4 (-382))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-854 *3)) (-5 *2 (-554))))
- ((*1 *1 *1) (-4 *1 (-987)))
- ((*1 *1 *2) (-12 (-5 *2 (-554)) (-4 *1 (-997))))
- ((*1 *1 *2) (-12 (-5 *2 (-402 (-554))) (-4 *1 (-997))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-997)) (-5 *2 (-906))))
- ((*1 *1 *1) (-4 *1 (-997))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-600 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *4)))
- (-4 *4 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *1 (-272 *4 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-311 (-221)))) (-5 *4 (-758))
- (-5 *2 (-675 (-221))) (-5 *1 (-262)))))
+ (-12 (-4 *3 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *1 (-1189 *3 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *3))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-1163))) (-5 *1 (-534)))))
+(((*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1185))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1074 (-829 *3))) (-4 *3 (-13 (-1180) (-944) (-29 *5)))
- (-4 *5 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554))))
+ (-12 (-5 *4 (-1079 (-834 *3))) (-4 *3 (-13 (-1185) (-949) (-29 *5)))
+ (-4 *5 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558))))
(-5 *2
- (-3 (|:| |f1| (-829 *3)) (|:| |f2| (-631 (-829 *3)))
+ (-3 (|:| |f1| (-834 *3)) (|:| |f2| (-635 (-834 *3)))
(|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-215 *5 *3))))
+ (-5 *1 (-218 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1074 (-829 *3))) (-5 *5 (-1140))
- (-4 *3 (-13 (-1180) (-944) (-29 *6)))
- (-4 *6 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554))))
+ (-12 (-5 *4 (-1079 (-834 *3))) (-5 *5 (-1145))
+ (-4 *3 (-13 (-1185) (-949) (-29 *6)))
+ (-4 *6 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558))))
(-5 *2
- (-3 (|:| |f1| (-829 *3)) (|:| |f2| (-631 (-829 *3)))
+ (-3 (|:| |f1| (-834 *3)) (|:| |f2| (-635 (-834 *3)))
(|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-215 *6 *3))))
+ (-5 *1 (-218 *6 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-402 (-937 *5))) (-5 *4 (-1074 (-829 (-311 *5))))
- (-4 *5 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554))))
+ (-12 (-5 *3 (-406 (-942 *5))) (-5 *4 (-1079 (-834 (-315 *5))))
+ (-4 *5 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558))))
(-5 *2
- (-3 (|:| |f1| (-829 (-311 *5))) (|:| |f2| (-631 (-829 (-311 *5))))
+ (-3 (|:| |f1| (-834 (-315 *5))) (|:| |f2| (-635 (-834 (-315 *5))))
(|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-216 *5))))
+ (-5 *1 (-219 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-402 (-937 *6))) (-5 *4 (-1074 (-829 (-311 *6))))
- (-5 *5 (-1140))
- (-4 *6 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554))))
+ (-12 (-5 *3 (-406 (-942 *6))) (-5 *4 (-1079 (-834 (-315 *6))))
+ (-5 *5 (-1145))
+ (-4 *6 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558))))
(-5 *2
- (-3 (|:| |f1| (-829 (-311 *6))) (|:| |f2| (-631 (-829 (-311 *6))))
+ (-3 (|:| |f1| (-834 (-315 *6))) (|:| |f2| (-635 (-834 (-315 *6))))
(|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-216 *6))))
+ (-5 *1 (-219 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1074 (-829 (-402 (-937 *5))))) (-5 *3 (-402 (-937 *5)))
- (-4 *5 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554))))
+ (-12 (-5 *4 (-1079 (-834 (-406 (-942 *5))))) (-5 *3 (-406 (-942 *5)))
+ (-4 *5 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558))))
(-5 *2
- (-3 (|:| |f1| (-829 (-311 *5))) (|:| |f2| (-631 (-829 (-311 *5))))
+ (-3 (|:| |f1| (-834 (-315 *5))) (|:| |f2| (-635 (-834 (-315 *5))))
(|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-216 *5))))
+ (-5 *1 (-219 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1074 (-829 (-402 (-937 *6))))) (-5 *5 (-1140))
- (-5 *3 (-402 (-937 *6)))
- (-4 *6 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554))))
+ (-12 (-5 *4 (-1079 (-834 (-406 (-942 *6))))) (-5 *5 (-1145))
+ (-5 *3 (-406 (-942 *6)))
+ (-4 *6 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558))))
(-5 *2
- (-3 (|:| |f1| (-829 (-311 *6))) (|:| |f2| (-631 (-829 (-311 *6))))
+ (-3 (|:| |f1| (-834 (-315 *6))) (|:| |f2| (-635 (-834 (-315 *6))))
(|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-216 *6))))
+ (-5 *1 (-219 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1158))
- (-4 *5 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554))))
- (-5 *2 (-3 *3 (-631 *3))) (-5 *1 (-423 *5 *3))
- (-4 *3 (-13 (-1180) (-944) (-29 *5)))))
+ (-12 (-5 *4 (-1163))
+ (-4 *5 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558))))
+ (-5 *2 (-3 *3 (-635 *3))) (-5 *1 (-427 *5 *3))
+ (-4 *3 (-13 (-1185) (-949) (-29 *5)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-468 *3 *4 *5))
- (-4 *3 (-38 (-402 (-554)))) (-4 *3 (-1034)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-472 *3 *4 *5))
+ (-4 *3 (-38 (-406 (-558)))) (-4 *3 (-1039)) (-14 *5 *3)))
((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-311 (-374))) (-5 *4 (-1076 (-829 (-374))))
- (-5 *5 (-374)) (-5 *6 (-1046)) (-5 *2 (-1020)) (-5 *1 (-555))))
- ((*1 *2 *3) (-12 (-5 *3 (-756)) (-5 *2 (-1020)) (-5 *1 (-555))))
+ (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1081 (-834 (-378))))
+ (-5 *5 (-378)) (-5 *6 (-1051)) (-5 *2 (-1025)) (-5 *1 (-559))))
+ ((*1 *2 *3) (-12 (-5 *3 (-760)) (-5 *2 (-1025)) (-5 *1 (-559))))
((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-311 (-374))) (-5 *4 (-1076 (-829 (-374))))
- (-5 *5 (-374)) (-5 *2 (-1020)) (-5 *1 (-555))))
+ (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1081 (-834 (-378))))
+ (-5 *5 (-378)) (-5 *2 (-1025)) (-5 *1 (-559))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-311 (-374))) (-5 *4 (-1076 (-829 (-374))))
- (-5 *5 (-374)) (-5 *2 (-1020)) (-5 *1 (-555))))
+ (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1081 (-834 (-378))))
+ (-5 *5 (-378)) (-5 *2 (-1025)) (-5 *1 (-559))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-311 (-374))) (-5 *4 (-1076 (-829 (-374))))
- (-5 *2 (-1020)) (-5 *1 (-555))))
+ (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1081 (-834 (-378))))
+ (-5 *2 (-1025)) (-5 *1 (-559))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-311 (-374))) (-5 *4 (-631 (-1076 (-829 (-374)))))
- (-5 *2 (-1020)) (-5 *1 (-555))))
+ (-12 (-5 *3 (-315 (-378))) (-5 *4 (-635 (-1081 (-834 (-378)))))
+ (-5 *2 (-1025)) (-5 *1 (-559))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-311 (-374))) (-5 *4 (-631 (-1076 (-829 (-374)))))
- (-5 *5 (-374)) (-5 *2 (-1020)) (-5 *1 (-555))))
+ (-12 (-5 *3 (-315 (-378))) (-5 *4 (-635 (-1081 (-834 (-378)))))
+ (-5 *5 (-378)) (-5 *2 (-1025)) (-5 *1 (-559))))
((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-311 (-374))) (-5 *4 (-631 (-1076 (-829 (-374)))))
- (-5 *5 (-374)) (-5 *2 (-1020)) (-5 *1 (-555))))
+ (-12 (-5 *3 (-315 (-378))) (-5 *4 (-635 (-1081 (-834 (-378)))))
+ (-5 *5 (-378)) (-5 *2 (-1025)) (-5 *1 (-559))))
((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-311 (-374))) (-5 *4 (-631 (-1076 (-829 (-374)))))
- (-5 *5 (-374)) (-5 *6 (-1046)) (-5 *2 (-1020)) (-5 *1 (-555))))
+ (-12 (-5 *3 (-315 (-378))) (-5 *4 (-635 (-1081 (-834 (-378)))))
+ (-5 *5 (-378)) (-5 *6 (-1051)) (-5 *2 (-1025)) (-5 *1 (-559))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-311 (-374))) (-5 *4 (-1074 (-829 (-374))))
- (-5 *5 (-1140)) (-5 *2 (-1020)) (-5 *1 (-555))))
+ (|partial| -12 (-5 *3 (-315 (-378))) (-5 *4 (-1079 (-834 (-378))))
+ (-5 *5 (-1145)) (-5 *2 (-1025)) (-5 *1 (-559))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-311 (-374))) (-5 *4 (-1074 (-829 (-374))))
- (-5 *5 (-1158)) (-5 *2 (-1020)) (-5 *1 (-555))))
+ (|partial| -12 (-5 *3 (-315 (-378))) (-5 *4 (-1079 (-834 (-378))))
+ (-5 *5 (-1163)) (-5 *2 (-1025)) (-5 *1 (-559))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-358) (-145) (-1023 (-554)))) (-4 *5 (-1217 *4))
- (-5 *2 (-575 (-402 *5))) (-5 *1 (-558 *4 *5)) (-5 *3 (-402 *5))))
+ (-12 (-4 *4 (-13 (-362) (-146) (-1028 (-558)))) (-4 *5 (-1222 *4))
+ (-5 *2 (-579 (-406 *5))) (-5 *1 (-562 *4 *5)) (-5 *3 (-406 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-402 (-937 *5))) (-5 *4 (-1158)) (-4 *5 (-145))
- (-4 *5 (-13 (-446) (-1023 (-554)) (-836) (-627 (-554))))
- (-5 *2 (-3 (-311 *5) (-631 (-311 *5)))) (-5 *1 (-578 *5))))
+ (-12 (-5 *3 (-406 (-942 *5))) (-5 *4 (-1163)) (-4 *5 (-146))
+ (-4 *5 (-13 (-450) (-1028 (-558)) (-841) (-631 (-558))))
+ (-5 *2 (-3 (-315 *5) (-635 (-315 *5)))) (-5 *1 (-582 *5))))
((*1 *1 *1)
- (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034))))
+ (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-727 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-836))
- (-4 *3 (-38 (-402 (-554))))))
+ (-12 (-4 *1 (-731 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-841))
+ (-4 *3 (-38 (-406 (-558))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1158)) (-5 *1 (-937 *3)) (-4 *3 (-38 (-402 (-554))))
- (-4 *3 (-1034))))
+ (-12 (-5 *2 (-1163)) (-5 *1 (-942 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-4 *3 (-1039))))
((*1 *1 *1 *2 *3)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *3 (-1034)) (-4 *2 (-836))
- (-5 *1 (-1108 *3 *2 *4)) (-4 *4 (-934 *3 (-525 *2) *2))))
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *3 (-1039)) (-4 *2 (-841))
+ (-5 *1 (-1113 *3 *2 *4)) (-4 *4 (-939 *3 (-529 *2) *2))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-4 *3 (-1034))
- (-5 *1 (-1142 *3))))
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-4 *3 (-1039))
+ (-5 *1 (-1147 *3))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1149 *3 *4 *5))
- (-4 *3 (-38 (-402 (-554)))) (-4 *3 (-1034)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1154 *3 *4 *5))
+ (-4 *3 (-38 (-406 (-558)))) (-4 *3 (-1039)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1155 *3 *4 *5))
- (-4 *3 (-38 (-402 (-554)))) (-4 *3 (-1034)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1160 *3 *4 *5))
+ (-4 *3 (-38 (-406 (-558)))) (-4 *3 (-1039)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1156 *3 *4 *5))
- (-4 *3 (-38 (-402 (-554)))) (-4 *3 (-1034)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1161 *3 *4 *5))
+ (-4 *3 (-38 (-406 (-558)))) (-4 *3 (-1039)) (-14 *5 *3)))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1158)) (-5 *1 (-1189 *3)) (-4 *3 (-38 (-402 (-554))))
- (-4 *3 (-1034))))
+ (-12 (-5 *2 (-1163)) (-5 *1 (-1194 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-4 *3 (-1039))))
((*1 *1 *1 *2)
- (-3994
- (-12 (-5 *2 (-1158)) (-4 *1 (-1201 *3)) (-4 *3 (-1034))
- (-12 (-4 *3 (-29 (-554))) (-4 *3 (-944)) (-4 *3 (-1180))
- (-4 *3 (-38 (-402 (-554))))))
- (-12 (-5 *2 (-1158)) (-4 *1 (-1201 *3)) (-4 *3 (-1034))
- (-12 (|has| *3 (-15 -2405 ((-631 *2) *3)))
- (|has| *3 (-15 -2279 (*3 *3 *2))) (-4 *3 (-38 (-402 (-554))))))))
+ (-3998
+ (-12 (-5 *2 (-1163)) (-4 *1 (-1206 *3)) (-4 *3 (-1039))
+ (-12 (-4 *3 (-29 (-558))) (-4 *3 (-949)) (-4 *3 (-1185))
+ (-4 *3 (-38 (-406 (-558))))))
+ (-12 (-5 *2 (-1163)) (-4 *1 (-1206 *3)) (-4 *3 (-1039))
+ (-12 (|has| *3 (-15 -2671 ((-635 *2) *3)))
+ (|has| *3 (-15 -2543 (*3 *3 *2))) (-4 *3 (-38 (-406 (-558))))))))
((*1 *1 *1)
- (-12 (-4 *1 (-1201 *2)) (-4 *2 (-1034)) (-4 *2 (-38 (-402 (-554))))))
+ (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1039)) (-4 *2 (-38 (-406 (-558))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1205 *3 *4 *5))
- (-4 *3 (-38 (-402 (-554)))) (-4 *3 (-1034)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1210 *3 *4 *5))
+ (-4 *3 (-38 (-406 (-558)))) (-4 *3 (-1039)) (-14 *5 *3)))
((*1 *1 *1)
- (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1034)) (-4 *2 (-38 (-402 (-554))))))
+ (-12 (-4 *1 (-1222 *2)) (-4 *2 (-1039)) (-4 *2 (-38 (-406 (-558))))))
((*1 *1 *1 *2)
- (-3994
- (-12 (-5 *2 (-1158)) (-4 *1 (-1222 *3)) (-4 *3 (-1034))
- (-12 (-4 *3 (-29 (-554))) (-4 *3 (-944)) (-4 *3 (-1180))
- (-4 *3 (-38 (-402 (-554))))))
- (-12 (-5 *2 (-1158)) (-4 *1 (-1222 *3)) (-4 *3 (-1034))
- (-12 (|has| *3 (-15 -2405 ((-631 *2) *3)))
- (|has| *3 (-15 -2279 (*3 *3 *2))) (-4 *3 (-38 (-402 (-554))))))))
+ (-3998
+ (-12 (-5 *2 (-1163)) (-4 *1 (-1227 *3)) (-4 *3 (-1039))
+ (-12 (-4 *3 (-29 (-558))) (-4 *3 (-949)) (-4 *3 (-1185))
+ (-4 *3 (-38 (-406 (-558))))))
+ (-12 (-5 *2 (-1163)) (-4 *1 (-1227 *3)) (-4 *3 (-1039))
+ (-12 (|has| *3 (-15 -2671 ((-635 *2) *3)))
+ (|has| *3 (-15 -2543 (*3 *3 *2))) (-4 *3 (-38 (-406 (-558))))))))
((*1 *1 *1)
- (-12 (-4 *1 (-1222 *2)) (-4 *2 (-1034)) (-4 *2 (-38 (-402 (-554))))))
+ (-12 (-4 *1 (-1227 *2)) (-4 *2 (-1039)) (-4 *2 (-38 (-406 (-558))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1226 *3 *4 *5))
- (-4 *3 (-38 (-402 (-554)))) (-4 *3 (-1034)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1231 *3 *4 *5))
+ (-4 *3 (-38 (-406 (-558)))) (-4 *3 (-1039)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-3994
- (-12 (-5 *2 (-1158)) (-4 *1 (-1232 *3)) (-4 *3 (-1034))
- (-12 (-4 *3 (-29 (-554))) (-4 *3 (-944)) (-4 *3 (-1180))
- (-4 *3 (-38 (-402 (-554))))))
- (-12 (-5 *2 (-1158)) (-4 *1 (-1232 *3)) (-4 *3 (-1034))
- (-12 (|has| *3 (-15 -2405 ((-631 *2) *3)))
- (|has| *3 (-15 -2279 (*3 *3 *2))) (-4 *3 (-38 (-402 (-554))))))))
+ (-3998
+ (-12 (-5 *2 (-1163)) (-4 *1 (-1237 *3)) (-4 *3 (-1039))
+ (-12 (-4 *3 (-29 (-558))) (-4 *3 (-949)) (-4 *3 (-1185))
+ (-4 *3 (-38 (-406 (-558))))))
+ (-12 (-5 *2 (-1163)) (-4 *1 (-1237 *3)) (-4 *3 (-1039))
+ (-12 (|has| *3 (-15 -2671 ((-635 *2) *3)))
+ (|has| *3 (-15 -2543 (*3 *3 *2))) (-4 *3 (-38 (-406 (-558))))))))
((*1 *1 *1)
- (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1034)) (-4 *2 (-38 (-402 (-554))))))
+ (-12 (-4 *1 (-1237 *2)) (-4 *2 (-1039)) (-4 *2 (-38 (-406 (-558))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1233 *3 *4 *5))
- (-4 *3 (-38 (-402 (-554)))) (-4 *3 (-1034)) (-14 *5 *3))))
+ (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1238 *3 *4 *5))
+ (-4 *3 (-38 (-406 (-558)))) (-4 *3 (-1039)) (-14 *5 *3))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-762)) (-5 *1 (-164 *3 *4))
+ (-4 *3 (-165 *4))))
+ ((*1 *2)
+ (-12 (-14 *4 *2) (-4 *5 (-1200)) (-5 *2 (-762))
+ (-5 *1 (-236 *3 *4 *5)) (-4 *3 (-237 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *4 (-841)) (-5 *2 (-762)) (-5 *1 (-428 *3 *4))
+ (-4 *3 (-429 *4))))
+ ((*1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-542 *3)) (-4 *3 (-543))))
+ ((*1 *2) (-12 (-4 *1 (-754)) (-5 *2 (-762))))
+ ((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-762)) (-5 *1 (-787 *3 *4))
+ (-4 *3 (-788 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-550)) (-5 *2 (-762)) (-5 *1 (-981 *3 *4))
+ (-4 *3 (-982 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-762)) (-5 *1 (-986 *3 *4))
+ (-4 *3 (-987 *4))))
+ ((*1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-1001 *3)) (-4 *3 (-1002))))
+ ((*1 *2) (-12 (-4 *1 (-1039)) (-5 *2 (-762))))
+ ((*1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-1047 *3)) (-4 *3 (-1048)))))
+(((*1 *1 *1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-558)) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039))
+ (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-301))))
+ ((*1 *1 *1) (-4 *1 (-301))) ((*1 *1 *1) (-5 *1 (-853))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
+ (-4 *3 (-366 *4))))
+ ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-1143 *3))) (-5 *1 (-1143 *3)) (-4 *3 (-1200)))))
+(((*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1145)) (-5 *1 (-777)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1039)) (-4 *4 (-1087)) (-5 *2 (-635 *1))
+ (-4 *1 (-381 *3 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-635 (-726 *3 *4))) (-5 *1 (-726 *3 *4)) (-4 *3 (-1039))
+ (-4 *4 (-717))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-635 *1))
+ (-4 *1 (-939 *3 *4 *5)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-525)) (-5 *3 (-128)) (-5 *2 (-1107)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780))
- (-4 *4 (-836)) (-4 *2 (-446)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-446))
- (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836))
- (-5 *1 (-962 *3 *4 *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-906)) (|has| *1 (-6 -4364)) (-4 *1 (-399))))
- ((*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-906))))
- ((*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-685))))
- ((*1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-685)))))
-(((*1 *1 *2 *2)
- (-12 (-5 *2 (-758)) (-4 *3 (-1034)) (-4 *1 (-673 *3 *4 *5))
- (-4 *4 (-368 *3)) (-4 *5 (-368 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-758)) (-4 *1 (-1239 *3)) (-4 *3 (-23)) (-4 *3 (-1195)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1195)) (-5 *1 (-180 *3 *2)) (-4 *2 (-660 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-675 *5)) (-5 *4 (-1241 *5)) (-4 *5 (-358))
- (-5 *2 (-112)) (-5 *1 (-653 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-358)) (-4 *6 (-13 (-368 *5) (-10 -7 (-6 -4374))))
- (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4374)))) (-5 *2 (-112))
- (-5 *1 (-654 *5 *6 *4 *3)) (-4 *3 (-673 *5 *6 *4)))))
-(((*1 *2 *3)
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163)))
+ (-14 *3 (-635 (-1163))) (-4 *4 (-386))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-859 *3)) (-5 *2 (-558))))
+ ((*1 *1 *1) (-4 *1 (-992)))
+ ((*1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-1002))))
+ ((*1 *1 *2) (-12 (-5 *2 (-406 (-558))) (-4 *1 (-1002))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1002)) (-5 *2 (-911))))
+ ((*1 *1 *1) (-4 *1 (-1002))))
+(((*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1185))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-762)) (-5 *2 (-1219 *5 *4)) (-5 *1 (-1161 *4 *5 *6))
+ (-4 *4 (-1039)) (-14 *5 (-1163)) (-14 *6 *4)))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-762)) (-5 *2 (-1219 *5 *4)) (-5 *1 (-1238 *4 *5 *6))
+ (-4 *4 (-1039)) (-14 *5 (-1163)) (-14 *6 *4))))
+(((*1 *1 *1 *2)
(-12
- (-5 *3
- (-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))))
- (-5 *2 (-631 (-221))) (-5 *1 (-300)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-112)))))
+ (-5 *2
+ (-2 (|:| -3911 (-635 (-853))) (|:| -2738 (-635 (-853)))
+ (|:| |presup| (-635 (-853))) (|:| -3891 (-635 (-853)))
+ (|:| |args| (-635 (-853)))))
+ (-5 *1 (-1163))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-635 (-853)))) (-5 *1 (-1163)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-679 *5)) (-4 *5 (-1039)) (-5 *1 (-1043 *3 *4 *5))
+ (-14 *3 (-762)) (-14 *4 (-762)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-635 (-1163))) (-5 *3 (-1163)) (-5 *1 (-534))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1163)) (-5 *1 (-695 *3)) (-4 *3 (-606 (-534)))))
+ ((*1 *2 *3 *2 *2)
+ (-12 (-5 *2 (-1163)) (-5 *1 (-695 *3)) (-4 *3 (-606 (-534)))))
+ ((*1 *2 *3 *2 *2 *2)
+ (-12 (-5 *2 (-1163)) (-5 *1 (-695 *3)) (-4 *3 (-606 (-534)))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *4 (-635 (-1163))) (-5 *2 (-1163)) (-5 *1 (-695 *3))
+ (-4 *3 (-606 (-534))))))
+(((*1 *1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-558)) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039))
+ (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
+ (-4 *3 (-366 *4))))
+ ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-853)) (-5 *1 (-1143 *3)) (-4 *3 (-1087))
+ (-4 *3 (-1200)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-911)) (-5 *1 (-777)))))
+(((*1 *2 *1) (-12 (-4 *1 (-325 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-783))))
+ ((*1 *2 *1) (-12 (-4 *1 (-699 *3)) (-4 *3 (-1039)) (-5 *2 (-762))))
+ ((*1 *2 *1) (-12 (-4 *1 (-843 *3)) (-4 *3 (-1039)) (-5 *2 (-762))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-635 *6)) (-4 *1 (-939 *4 *5 *6)) (-4 *4 (-1039))
+ (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-635 (-762)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-939 *4 *5 *3)) (-4 *4 (-1039)) (-4 *5 (-784))
+ (-4 *3 (-841)) (-5 *2 (-762)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-523)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-631 (-48))) (-5 *2 (-413 *3)) (-5 *1 (-39 *3))
- (-4 *3 (-1217 (-48)))))
+ (-12 (-5 *4 (-635 (-48))) (-5 *2 (-417 *3)) (-5 *1 (-39 *3))
+ (-4 *3 (-1222 (-48)))))
((*1 *2 *3)
- (-12 (-5 *2 (-413 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1217 (-48)))))
+ (-12 (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1222 (-48)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-631 (-48))) (-4 *5 (-836)) (-4 *6 (-780))
- (-5 *2 (-413 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-934 (-48) *6 *5))))
+ (-12 (-5 *4 (-635 (-48))) (-4 *5 (-841)) (-4 *6 (-784))
+ (-5 *2 (-417 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-939 (-48) *6 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-631 (-48))) (-4 *5 (-836)) (-4 *6 (-780))
- (-4 *7 (-934 (-48) *6 *5)) (-5 *2 (-413 (-1154 *7)))
- (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1154 *7))))
+ (-12 (-5 *4 (-635 (-48))) (-4 *5 (-841)) (-4 *6 (-784))
+ (-4 *7 (-939 (-48) *6 *5)) (-5 *2 (-417 (-1159 *7)))
+ (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1159 *7))))
((*1 *2 *3)
- (-12 (-4 *4 (-302)) (-5 *2 (-413 *3)) (-5 *1 (-165 *4 *3))
- (-4 *3 (-1217 (-167 *4)))))
+ (-12 (-4 *4 (-306)) (-5 *2 (-417 *3)) (-5 *1 (-166 *4 *3))
+ (-4 *3 (-1222 (-168 *4)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *4 (-13 (-358) (-834))) (-5 *2 (-413 *3))
- (-5 *1 (-179 *4 *3)) (-4 *3 (-1217 (-167 *4)))))
+ (-12 (-5 *5 (-112)) (-4 *4 (-13 (-362) (-839))) (-5 *2 (-417 *3))
+ (-5 *1 (-180 *4 *3)) (-4 *3 (-1222 (-168 *4)))))
((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-358) (-834))) (-5 *2 (-413 *3))
- (-5 *1 (-179 *4 *3)) (-4 *3 (-1217 (-167 *4)))))
+ (-12 (-4 *4 (-13 (-362) (-839))) (-5 *2 (-417 *3))
+ (-5 *1 (-180 *4 *3)) (-4 *3 (-1222 (-168 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-358) (-834))) (-5 *2 (-413 *3))
- (-5 *1 (-179 *4 *3)) (-4 *3 (-1217 (-167 *4)))))
+ (-12 (-4 *4 (-13 (-362) (-839))) (-5 *2 (-417 *3))
+ (-5 *1 (-180 *4 *3)) (-4 *3 (-1222 (-168 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-344)) (-5 *2 (-413 *3)) (-5 *1 (-212 *4 *3))
- (-4 *3 (-1217 *4))))
+ (-12 (-4 *4 (-348)) (-5 *2 (-417 *3)) (-5 *1 (-215 *4 *3))
+ (-4 *3 (-1222 *4))))
((*1 *2 *3)
- (-12 (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554)))))
+ (-12 (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-758)) (-5 *2 (-413 *3)) (-5 *1 (-436 *3))
- (-4 *3 (-1217 (-554)))))
+ (-12 (-5 *4 (-762)) (-5 *2 (-417 *3)) (-5 *1 (-440 *3))
+ (-4 *3 (-1222 (-558)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-631 (-758))) (-5 *2 (-413 *3)) (-5 *1 (-436 *3))
- (-4 *3 (-1217 (-554)))))
+ (-12 (-5 *4 (-635 (-762))) (-5 *2 (-417 *3)) (-5 *1 (-440 *3))
+ (-4 *3 (-1222 (-558)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-631 (-758))) (-5 *5 (-758)) (-5 *2 (-413 *3))
- (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554)))))
+ (-12 (-5 *4 (-635 (-762))) (-5 *5 (-762)) (-5 *2 (-417 *3))
+ (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-758)) (-5 *2 (-413 *3)) (-5 *1 (-436 *3))
- (-4 *3 (-1217 (-554)))))
+ (-12 (-5 *4 (-762)) (-5 *2 (-417 *3)) (-5 *1 (-440 *3))
+ (-4 *3 (-1222 (-558)))))
((*1 *2 *3)
- (-12 (-5 *2 (-413 (-167 (-554)))) (-5 *1 (-440))
- (-5 *3 (-167 (-554)))))
+ (-12 (-5 *2 (-417 (-168 (-558)))) (-5 *1 (-444))
+ (-5 *3 (-168 (-558)))))
((*1 *2 *3)
(-12
(-4 *4
- (-13 (-836)
- (-10 -8 (-15 -2927 ((-1158) $))
- (-15 -1576 ((-3 $ "failed") (-1158))))))
- (-4 *5 (-780)) (-4 *7 (-546)) (-5 *2 (-413 *3))
- (-5 *1 (-450 *4 *5 *6 *7 *3)) (-4 *6 (-546))
- (-4 *3 (-934 *7 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-302)) (-5 *2 (-413 (-1154 *4))) (-5 *1 (-452 *4))
- (-5 *3 (-1154 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-413 *6) *6)) (-4 *6 (-1217 *5)) (-4 *5 (-358))
- (-4 *7 (-13 (-358) (-145) (-711 *5 *6))) (-5 *2 (-413 *3))
- (-5 *1 (-488 *5 *6 *7 *3)) (-4 *3 (-1217 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-413 (-1154 *7)) (-1154 *7)))
- (-4 *7 (-13 (-302) (-145))) (-4 *5 (-836)) (-4 *6 (-780))
- (-5 *2 (-413 *3)) (-5 *1 (-534 *5 *6 *7 *3))
- (-4 *3 (-934 *7 *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-413 (-1154 *7)) (-1154 *7)))
- (-4 *7 (-13 (-302) (-145))) (-4 *5 (-836)) (-4 *6 (-780))
- (-4 *8 (-934 *7 *6 *5)) (-5 *2 (-413 (-1154 *8)))
- (-5 *1 (-534 *5 *6 *7 *8)) (-5 *3 (-1154 *8))))
- ((*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-548 *3)) (-4 *3 (-539))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-631 *5) *6))
- (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554)))))
- (-4 *6 (-1217 *5)) (-5 *2 (-631 (-639 (-402 *6))))
- (-5 *1 (-643 *5 *6)) (-5 *3 (-639 (-402 *6)))))
+ (-13 (-841)
+ (-10 -8 (-15 -3224 ((-1163) $))
+ (-15 -1602 ((-3 $ "failed") (-1163))))))
+ (-4 *5 (-784)) (-4 *7 (-550)) (-5 *2 (-417 *3))
+ (-5 *1 (-454 *4 *5 *6 *7 *3)) (-4 *6 (-550))
+ (-4 *3 (-939 *7 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-306)) (-5 *2 (-417 (-1159 *4))) (-5 *1 (-456 *4))
+ (-5 *3 (-1159 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1222 *5)) (-4 *5 (-362))
+ (-4 *7 (-13 (-362) (-146) (-715 *5 *6))) (-5 *2 (-417 *3))
+ (-5 *1 (-492 *5 *6 *7 *3)) (-4 *3 (-1222 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-417 (-1159 *7)) (-1159 *7)))
+ (-4 *7 (-13 (-306) (-146))) (-4 *5 (-841)) (-4 *6 (-784))
+ (-5 *2 (-417 *3)) (-5 *1 (-538 *5 *6 *7 *3))
+ (-4 *3 (-939 *7 *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-417 (-1159 *7)) (-1159 *7)))
+ (-4 *7 (-13 (-306) (-146))) (-4 *5 (-841)) (-4 *6 (-784))
+ (-4 *8 (-939 *7 *6 *5)) (-5 *2 (-417 (-1159 *8)))
+ (-5 *1 (-538 *5 *6 *7 *8)) (-5 *3 (-1159 *8))))
+ ((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-552 *3)) (-4 *3 (-543))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-635 *5) *6))
+ (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))))
+ (-4 *6 (-1222 *5)) (-5 *2 (-635 (-643 (-406 *6))))
+ (-5 *1 (-647 *5 *6)) (-5 *3 (-643 (-406 *6)))))
((*1 *2 *3)
(-12 (-4 *4 (-27))
- (-4 *4 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554)))))
- (-4 *5 (-1217 *4)) (-5 *2 (-631 (-639 (-402 *5))))
- (-5 *1 (-643 *4 *5)) (-5 *3 (-639 (-402 *5)))))
+ (-4 *4 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))))
+ (-4 *5 (-1222 *4)) (-5 *2 (-635 (-643 (-406 *5))))
+ (-5 *1 (-647 *4 *5)) (-5 *3 (-643 (-406 *5)))))
((*1 *2 *3)
- (-12 (-5 *3 (-806 *4)) (-4 *4 (-836)) (-5 *2 (-631 (-658 *4)))
- (-5 *1 (-658 *4))))
+ (-12 (-5 *3 (-810 *4)) (-4 *4 (-841)) (-5 *2 (-635 (-662 *4)))
+ (-5 *1 (-662 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-554)) (-5 *2 (-631 *3)) (-5 *1 (-682 *3))
- (-4 *3 (-1217 *4))))
+ (-12 (-5 *4 (-558)) (-5 *2 (-635 *3)) (-5 *1 (-686 *3))
+ (-4 *3 (-1222 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-836)) (-4 *5 (-780)) (-4 *6 (-344)) (-5 *2 (-413 *3))
- (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-934 *6 *5 *4))))
+ (-12 (-4 *4 (-841)) (-4 *5 (-784)) (-4 *6 (-348)) (-5 *2 (-417 *3))
+ (-5 *1 (-688 *4 *5 *6 *3)) (-4 *3 (-939 *6 *5 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-836)) (-4 *5 (-780)) (-4 *6 (-344))
- (-4 *7 (-934 *6 *5 *4)) (-5 *2 (-413 (-1154 *7)))
- (-5 *1 (-684 *4 *5 *6 *7)) (-5 *3 (-1154 *7))))
+ (-12 (-4 *4 (-841)) (-4 *5 (-784)) (-4 *6 (-348))
+ (-4 *7 (-939 *6 *5 *4)) (-5 *2 (-417 (-1159 *7)))
+ (-5 *1 (-688 *4 *5 *6 *7)) (-5 *3 (-1159 *7))))
((*1 *2 *3)
- (-12 (-4 *4 (-780))
+ (-12 (-4 *4 (-784))
(-4 *5
- (-13 (-836)
- (-10 -8 (-15 -2927 ((-1158) $))
- (-15 -1576 ((-3 $ "failed") (-1158))))))
- (-4 *6 (-302)) (-5 *2 (-413 *3)) (-5 *1 (-717 *4 *5 *6 *3))
- (-4 *3 (-934 (-937 *6) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-780))
- (-4 *5 (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $))))) (-4 *6 (-546))
- (-5 *2 (-413 *3)) (-5 *1 (-719 *4 *5 *6 *3))
- (-4 *3 (-934 (-402 (-937 *6)) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-13 (-302) (-145)))
- (-5 *2 (-413 *3)) (-5 *1 (-720 *4 *5 *6 *3))
- (-4 *3 (-934 (-402 *6) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-836)) (-4 *5 (-780)) (-4 *6 (-13 (-302) (-145)))
- (-5 *2 (-413 *3)) (-5 *1 (-728 *4 *5 *6 *3))
- (-4 *3 (-934 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-836)) (-4 *5 (-780)) (-4 *6 (-13 (-302) (-145)))
- (-4 *7 (-934 *6 *5 *4)) (-5 *2 (-413 (-1154 *7)))
- (-5 *1 (-728 *4 *5 *6 *7)) (-5 *3 (-1154 *7))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-413 *3)) (-5 *1 (-992 *3))
- (-4 *3 (-1217 (-402 (-554))))))
+ (-13 (-841)
+ (-10 -8 (-15 -3224 ((-1163) $))
+ (-15 -1602 ((-3 $ "failed") (-1163))))))
+ (-4 *6 (-306)) (-5 *2 (-417 *3)) (-5 *1 (-721 *4 *5 *6 *3))
+ (-4 *3 (-939 (-942 *6) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-784))
+ (-4 *5 (-13 (-841) (-10 -8 (-15 -3224 ((-1163) $))))) (-4 *6 (-550))
+ (-5 *2 (-417 *3)) (-5 *1 (-723 *4 *5 *6 *3))
+ (-4 *3 (-939 (-406 (-942 *6)) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-13 (-306) (-146)))
+ (-5 *2 (-417 *3)) (-5 *1 (-724 *4 *5 *6 *3))
+ (-4 *3 (-939 (-406 *6) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-841)) (-4 *5 (-784)) (-4 *6 (-13 (-306) (-146)))
+ (-5 *2 (-417 *3)) (-5 *1 (-732 *4 *5 *6 *3))
+ (-4 *3 (-939 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-841)) (-4 *5 (-784)) (-4 *6 (-13 (-306) (-146)))
+ (-4 *7 (-939 *6 *5 *4)) (-5 *2 (-417 (-1159 *7)))
+ (-5 *1 (-732 *4 *5 *6 *7)) (-5 *3 (-1159 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-417 *3)) (-5 *1 (-997 *3))
+ (-4 *3 (-1222 (-406 (-558))))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-417 *3)) (-5 *1 (-1031 *3))
+ (-4 *3 (-1222 (-406 (-942 (-558)))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1222 (-406 (-558))))
+ (-4 *5 (-13 (-362) (-146) (-715 (-406 (-558)) *4)))
+ (-5 *2 (-417 *3)) (-5 *1 (-1066 *4 *5 *3)) (-4 *3 (-1222 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1222 (-406 (-942 (-558)))))
+ (-4 *5 (-13 (-362) (-146) (-715 (-406 (-942 (-558))) *4)))
+ (-5 *2 (-417 *3)) (-5 *1 (-1068 *4 *5 *3)) (-4 *3 (-1222 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-450))
+ (-4 *7 (-939 *6 *4 *5)) (-5 *2 (-417 (-1159 (-406 *7))))
+ (-5 *1 (-1158 *4 *5 *6 *7)) (-5 *3 (-1159 (-406 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1204))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-417 *3)) (-5 *1 (-1211 *3)) (-4 *3 (-1222 (-558))))))
+(((*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1185))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1238 *2 *3 *4)) (-4 *2 (-1039)) (-14 *3 (-1163))
+ (-14 *4 *2))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039))
+ (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1087)) (-4 *5 (-1087))
+ (-4 *6 (-1087)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-674 *4 *5 *6)))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
+ (-4 *3 (-366 *4))))
+ ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-1200))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-1143 *2)) (-4 *2 (-1200)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1143 *3)) (-4 *3 (-1087))
+ (-4 *3 (-1200)))))
+(((*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1145)) (-5 *1 (-777)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-635 *6)) (-4 *1 (-939 *4 *5 *6)) (-4 *4 (-1039))
+ (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-762))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-939 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784))
+ (-4 *5 (-841)) (-5 *2 (-762)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-523)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1238 *2 *3 *4)) (-4 *2 (-1039)) (-14 *3 (-1163))
+ (-14 *4 *2))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039))
+ (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1087)) (-4 *6 (-1087))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-674 *4 *5 *6)) (-4 *4 (-1087)))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-635 (-1246 *4))) (-5 *1 (-365 *3 *4))
+ (-4 *3 (-366 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-550))
+ (-5 *2 (-635 (-1246 *3))))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-558)) (-4 *4 (-13 (-550) (-146))) (-5 *1 (-535 *4 *2))
+ (-4 *2 (-1237 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-558)) (-4 *4 (-13 (-362) (-367) (-606 *3)))
+ (-4 *5 (-1222 *4)) (-4 *6 (-715 *4 *5)) (-5 *1 (-539 *4 *5 *6 *2))
+ (-4 *2 (-1237 *6))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-558)) (-4 *4 (-13 (-362) (-367) (-606 *3)))
+ (-5 *1 (-540 *4 *2)) (-4 *2 (-1237 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1143 *4)) (-5 *3 (-558)) (-4 *4 (-13 (-550) (-146)))
+ (-5 *1 (-1139 *4)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-942 (-168 *4))) (-4 *4 (-171))
+ (-4 *4 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-942 (-168 *5))) (-5 *4 (-911)) (-4 *5 (-171))
+ (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *5))))
((*1 *2 *3)
- (-12 (-5 *2 (-413 *3)) (-5 *1 (-1026 *3))
- (-4 *3 (-1217 (-402 (-937 (-554)))))))
+ (|partial| -12 (-5 *3 (-942 *4)) (-4 *4 (-1039))
+ (-4 *4 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-942 *5)) (-5 *4 (-911)) (-4 *5 (-1039))
+ (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-1217 (-402 (-554))))
- (-4 *5 (-13 (-358) (-145) (-711 (-402 (-554)) *4)))
- (-5 *2 (-413 *3)) (-5 *1 (-1061 *4 *5 *3)) (-4 *3 (-1217 *5))))
+ (|partial| -12 (-5 *3 (-406 (-942 *4))) (-4 *4 (-550))
+ (-4 *4 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-406 (-942 *5))) (-5 *4 (-911)) (-4 *5 (-550))
+ (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-1217 (-402 (-937 (-554)))))
- (-4 *5 (-13 (-358) (-145) (-711 (-402 (-937 (-554))) *4)))
- (-5 *2 (-413 *3)) (-5 *1 (-1063 *4 *5 *3)) (-4 *3 (-1217 *5))))
+ (|partial| -12 (-5 *3 (-406 (-942 (-168 *4)))) (-4 *4 (-550))
+ (-4 *4 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-406 (-942 (-168 *5)))) (-5 *4 (-911))
+ (-4 *5 (-550)) (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378)))
+ (-5 *1 (-776 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-446))
- (-4 *7 (-934 *6 *4 *5)) (-5 *2 (-413 (-1154 (-402 *7))))
- (-5 *1 (-1153 *4 *5 *6 *7)) (-5 *3 (-1154 (-402 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-413 *1)) (-4 *1 (-1199))))
+ (|partial| -12 (-5 *3 (-315 *4)) (-4 *4 (-550)) (-4 *4 (-841))
+ (-4 *4 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-315 *5)) (-5 *4 (-911)) (-4 *5 (-550))
+ (-4 *5 (-841)) (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378)))
+ (-5 *1 (-776 *5))))
((*1 *2 *3)
- (-12 (-5 *2 (-413 *3)) (-5 *1 (-1206 *3)) (-4 *3 (-1217 (-554))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1154 *4)) (-4 *4 (-344))
- (-5 *2 (-1241 (-631 (-2 (|:| -2794 *4) (|:| -2717 (-1102))))))
- (-5 *1 (-341 *4)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-221)) (|:| |xend| (-221))
- (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221)))
- (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221)))
- (|:| |abserr| (-221)) (|:| |relerr| (-221))))
- (-5 *2 (-374)) (-5 *1 (-201)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-539))))
-(((*1 *2 *3 *3 *1)
- (|partial| -12 (-5 *3 (-1158)) (-5 *2 (-1086)) (-5 *1 (-286)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-877 *4)) (-4 *4 (-1082)) (-5 *2 (-631 *5))
- (-5 *1 (-875 *4 *5)) (-4 *5 (-1195)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1138 (-631 (-554)))) (-5 *3 (-631 (-554)))
- (-5 *1 (-868)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-836)) (-5 *2 (-631 (-631 (-631 *4))))
- (-5 *1 (-1166 *4)) (-5 *3 (-631 (-631 *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-758)) (-5 *1 (-163 *3 *4))
- (-4 *3 (-164 *4))))
- ((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1195)) (-5 *2 (-758))
- (-5 *1 (-233 *3 *4 *5)) (-4 *3 (-234 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-836)) (-5 *2 (-758)) (-5 *1 (-424 *3 *4))
- (-4 *3 (-425 *4))))
- ((*1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-538 *3)) (-4 *3 (-539))))
- ((*1 *2) (-12 (-4 *1 (-750)) (-5 *2 (-758))))
- ((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-758)) (-5 *1 (-783 *3 *4))
- (-4 *3 (-784 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-546)) (-5 *2 (-758)) (-5 *1 (-976 *3 *4))
- (-4 *3 (-977 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-758)) (-5 *1 (-981 *3 *4))
- (-4 *3 (-982 *4))))
- ((*1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-996 *3)) (-4 *3 (-997))))
- ((*1 *2) (-12 (-4 *1 (-1034)) (-5 *2 (-758))))
- ((*1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-1042 *3)) (-4 *3 (-1043)))))
-(((*1 *2 *1) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-1175)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2325 *1) (|:| -2423 *1))) (-4 *1 (-302))))
- ((*1 *2 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |lm| (-381 *3)) (|:| |rm| (-381 *3))))
- (-5 *1 (-381 *3)) (-4 *3 (-1082))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2325 (-758)) (|:| -2423 (-758))))
- (-5 *1 (-758))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-546)) (-5 *2 (-2 (|:| -2325 *3) (|:| -2423 *3)))
- (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1188 *2 *3 *4 *5)) (-4 *2 (-546)) (-4 *3 (-780))
- (-4 *4 (-836)) (-4 *5 (-1048 *2 *3 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-675 *5))) (-5 *4 (-554)) (-4 *5 (-358))
- (-4 *5 (-1034)) (-5 *2 (-112)) (-5 *1 (-1014 *5))))
+ (|partial| -12 (-5 *3 (-315 (-168 *4))) (-4 *4 (-550)) (-4 *4 (-841))
+ (-4 *4 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-315 (-168 *5))) (-5 *4 (-911)) (-4 *5 (-550))
+ (-4 *5 (-841)) (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378)))
+ (-5 *1 (-776 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-325 *2 *3)) (-4 *3 (-783)) (-4 *2 (-1039))
+ (-4 *2 (-450))))
((*1 *2 *3)
- (-12 (-5 *3 (-631 (-675 *4))) (-4 *4 (-358)) (-4 *4 (-1034))
- (-5 *2 (-112)) (-5 *1 (-1014 *4)))))
+ (-12 (-5 *3 (-635 *4)) (-4 *4 (-1222 (-558))) (-5 *2 (-635 (-558)))
+ (-5 *1 (-484 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-450))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-939 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784))
+ (-4 *2 (-841)) (-4 *3 (-450)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-1199))) (-5 *1 (-522)))))
+(((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
+ ((*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1238 *2 *3 *4)) (-4 *2 (-1039)) (-14 *3 (-1163))
+ (-14 *4 *2))))
(((*1 *2 *1)
- (-12 (-4 *1 (-592 *2 *3)) (-4 *3 (-1195)) (-4 *2 (-1082))
- (-4 *2 (-836)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-52)) (-5 *1 (-816)))))
+ (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039))
+ (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-546) (-836) (-1023 (-554)))) (-4 *5 (-425 *4))
- (-5 *2
- (-3 (|:| |overq| (-1154 (-402 (-554))))
- (|:| |overan| (-1154 (-48))) (|:| -4156 (-112))))
- (-5 *1 (-430 *4 *5 *3)) (-4 *3 (-1217 *5)))))
+ (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1087)) (-4 *6 (-1087))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-674 *4 *5 *6)) (-4 *5 (-1087)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034))
- (-5 *2 (-631 (-631 (-631 (-928 *3))))))))
-(((*1 *1 *2) (-12 (-5 *2 (-311 (-167 (-374)))) (-5 *1 (-325))))
- ((*1 *1 *2) (-12 (-5 *2 (-311 (-554))) (-5 *1 (-325))))
- ((*1 *1 *2) (-12 (-5 *2 (-311 (-374))) (-5 *1 (-325))))
- ((*1 *1 *2) (-12 (-5 *2 (-311 (-680))) (-5 *1 (-325))))
- ((*1 *1 *2) (-12 (-5 *2 (-311 (-687))) (-5 *1 (-325))))
- ((*1 *1 *2) (-12 (-5 *2 (-311 (-685))) (-5 *1 (-325))))
- ((*1 *1) (-5 *1 (-325))))
+ (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-550))
+ (-5 *2 (-1159 *3)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-301)) (-4 *2 (-1200))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-635 (-604 *1))) (-5 *3 (-635 *1)) (-4 *1 (-301))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-293 *1))) (-4 *1 (-301))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-293 *1)) (-4 *1 (-301)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546))
- (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-962 *3 *4 *5 *6)))))
-(((*1 *1 *1) (-5 *1 (-530))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-631 (-631 (-928 (-221))))) (-5 *3 (-631 (-859)))
- (-5 *1 (-462)))))
+ (-12 (-4 *3 (-13 (-550) (-146))) (-5 *1 (-535 *3 *2))
+ (-4 *2 (-1237 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-362) (-367) (-606 (-558)))) (-4 *4 (-1222 *3))
+ (-4 *5 (-715 *3 *4)) (-5 *1 (-539 *3 *4 *5 *2)) (-4 *2 (-1237 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-362) (-367) (-606 (-558)))) (-5 *1 (-540 *3 *2))
+ (-4 *2 (-1237 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-13 (-550) (-146)))
+ (-5 *1 (-1139 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1167 (-631 *4))) (-4 *4 (-836))
- (-5 *2 (-631 (-631 *4))) (-5 *1 (-1166 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-631 *2)) (-4 *2 (-934 *4 *5 *6)) (-4 *4 (-358))
- (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836))
- (-5 *1 (-444 *4 *5 *6 *2))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-358))
- (-5 *2
- (-2 (|:| R (-675 *6)) (|:| A (-675 *6)) (|:| |Ainv| (-675 *6))))
- (-5 *1 (-963 *6)) (-5 *3 (-675 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-237))))
+ (|partial| -12 (-5 *3 (-942 *4)) (-4 *4 (-1039)) (-4 *4 (-606 *2))
+ (-5 *2 (-378)) (-5 *1 (-776 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-942 *5)) (-5 *4 (-911)) (-4 *5 (-1039))
+ (-4 *5 (-606 *2)) (-5 *2 (-378)) (-5 *1 (-776 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-631 (-1140))) (-5 *2 (-1246)) (-5 *1 (-237)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-1043)) (-4 *3 (-1180))
- (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
-(((*1 *2)
- (-12 (-4 *3 (-546)) (-5 *2 (-631 (-675 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-412 *3)))))
-(((*1 *2 *2 *1 *3 *4)
- (-12 (-5 *2 (-631 *8)) (-5 *3 (-1 *8 *8 *8))
- (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1188 *5 *6 *7 *8)) (-4 *5 (-546))
- (-4 *6 (-780)) (-4 *7 (-836)) (-4 *8 (-1048 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221)))
- (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221))
- (|:| |relerr| (-221))))
- (-5 *2 (-554)) (-5 *1 (-200)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1158)) (-5 *2 (-432)) (-5 *1 (-1162)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1241 *1)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199))
- (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-631 *7)) (-4 *7 (-934 *4 *6 *5))
- (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158))))
- (-4 *6 (-780)) (-5 *2 (-112)) (-5 *1 (-909 *4 *5 *6 *7))))
+ (|partial| -12 (-5 *3 (-406 (-942 *4))) (-4 *4 (-550))
+ (-4 *4 (-606 *2)) (-5 *2 (-378)) (-5 *1 (-776 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-406 (-942 *5))) (-5 *4 (-911)) (-4 *5 (-550))
+ (-4 *5 (-606 *2)) (-5 *2 (-378)) (-5 *1 (-776 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-631 (-937 *4))) (-4 *4 (-13 (-302) (-145)))
- (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780)) (-5 *2 (-112))
- (-5 *1 (-909 *4 *5 *6 *7)) (-4 *7 (-934 *4 *6 *5)))))
+ (|partial| -12 (-5 *3 (-315 *4)) (-4 *4 (-550)) (-4 *4 (-841))
+ (-4 *4 (-606 *2)) (-5 *2 (-378)) (-5 *1 (-776 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-315 *5)) (-5 *4 (-911)) (-4 *5 (-550))
+ (-4 *5 (-841)) (-4 *5 (-606 *2)) (-5 *2 (-378))
+ (-5 *1 (-776 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-882 *3)) (-4 *3 (-1087))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1108 *3)) (-4 *3 (-1200)) (-5 *2 (-762)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-635 *5)) (-5 *4 (-558)) (-4 *5 (-839)) (-4 *5 (-362))
+ (-5 *2 (-762)) (-5 *1 (-935 *5 *6)) (-4 *6 (-1222 *5)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-600 *1)) (-4 *1 (-425 *4)) (-4 *4 (-836))
- (-4 *4 (-546)) (-5 *2 (-402 (-1154 *1)))))
+ (-12 (-5 *3 (-604 *1)) (-4 *1 (-429 *4)) (-4 *4 (-841))
+ (-4 *4 (-550)) (-5 *2 (-406 (-1159 *1)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-600 *3)) (-4 *3 (-13 (-425 *6) (-27) (-1180)))
- (-4 *6 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554))))
- (-5 *2 (-1154 (-402 (-1154 *3)))) (-5 *1 (-550 *6 *3 *7))
- (-5 *5 (-1154 *3)) (-4 *7 (-1082))))
+ (-12 (-5 *4 (-604 *3)) (-4 *3 (-13 (-429 *6) (-27) (-1185)))
+ (-4 *6 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558))))
+ (-5 *2 (-1159 (-406 (-1159 *3)))) (-5 *1 (-554 *6 *3 *7))
+ (-5 *5 (-1159 *3)) (-4 *7 (-1087))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1237 *5)) (-14 *5 (-1158)) (-4 *6 (-1034))
- (-5 *2 (-1214 *5 (-937 *6))) (-5 *1 (-932 *5 *6)) (-5 *3 (-937 *6))))
+ (-12 (-5 *4 (-1242 *5)) (-14 *5 (-1163)) (-4 *6 (-1039))
+ (-5 *2 (-1219 *5 (-942 *6))) (-5 *1 (-937 *5 *6)) (-5 *3 (-942 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-934 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780))
- (-4 *5 (-836)) (-5 *2 (-1154 *3))))
+ (-12 (-4 *1 (-939 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784))
+ (-4 *5 (-841)) (-5 *2 (-1159 *3))))
((*1 *2 *1 *3)
- (-12 (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *3 (-836)) (-5 *2 (-1154 *1))
- (-4 *1 (-934 *4 *5 *3))))
+ (-12 (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *3 (-841)) (-5 *2 (-1159 *1))
+ (-4 *1 (-939 *4 *5 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-780)) (-4 *4 (-836)) (-4 *6 (-1034))
- (-4 *7 (-934 *6 *5 *4)) (-5 *2 (-402 (-1154 *3)))
- (-5 *1 (-935 *5 *4 *6 *7 *3))
+ (-12 (-4 *5 (-784)) (-4 *4 (-841)) (-4 *6 (-1039))
+ (-4 *7 (-939 *6 *5 *4)) (-5 *2 (-406 (-1159 *3)))
+ (-5 *1 (-940 *5 *4 *6 *7 *3))
(-4 *3
- (-13 (-358)
- (-10 -8 (-15 -3075 ($ *7)) (-15 -2810 (*7 $)) (-15 -2822 (*7 $)))))))
+ (-13 (-362)
+ (-10 -8 (-15 -3220 ($ *7)) (-15 -1874 (*7 $)) (-15 -1885 (*7 $)))))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1154 *3))
+ (-12 (-5 *2 (-1159 *3))
(-4 *3
- (-13 (-358)
- (-10 -8 (-15 -3075 ($ *7)) (-15 -2810 (*7 $)) (-15 -2822 (*7 $)))))
- (-4 *7 (-934 *6 *5 *4)) (-4 *5 (-780)) (-4 *4 (-836))
- (-4 *6 (-1034)) (-5 *1 (-935 *5 *4 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1158)) (-4 *5 (-546))
- (-5 *2 (-402 (-1154 (-402 (-937 *5))))) (-5 *1 (-1028 *5))
- (-5 *3 (-402 (-937 *5))))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-631 (-475 *4 *5))) (-5 *3 (-631 (-850 *4)))
- (-14 *4 (-631 (-1158))) (-4 *5 (-446)) (-5 *1 (-465 *4 *5 *6))
- (-4 *6 (-446)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-836) (-546) (-1023 (-554)))) (-5 *2 (-402 (-554)))
- (-5 *1 (-428 *4 *3)) (-4 *3 (-425 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-600 *3)) (-4 *3 (-425 *5))
- (-4 *5 (-13 (-836) (-546) (-1023 (-554))))
- (-5 *2 (-1154 (-402 (-554)))) (-5 *1 (-428 *5 *3)))))
-(((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-554)) (-5 *1 (-1138 *3)) (-4 *3 (-1195))))
- ((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4374)) (-4 *1 (-1229 *2)) (-4 *2 (-1195)))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12
- (-4 *4 (-13 (-145) (-27) (-1023 (-554)) (-1023 (-402 (-554)))))
- (-4 *5 (-1217 *4)) (-5 *2 (-1154 (-402 *5))) (-5 *1 (-603 *4 *5))
- (-5 *3 (-402 *5))))
- ((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-413 *6) *6)) (-4 *6 (-1217 *5))
- (-4 *5 (-13 (-145) (-27) (-1023 (-554)) (-1023 (-402 (-554)))))
- (-5 *2 (-1154 (-402 *6))) (-5 *1 (-603 *5 *6)) (-5 *3 (-402 *6)))))
+ (-13 (-362)
+ (-10 -8 (-15 -3220 ($ *7)) (-15 -1874 (*7 $)) (-15 -1885 (*7 $)))))
+ (-4 *7 (-939 *6 *5 *4)) (-4 *5 (-784)) (-4 *4 (-841))
+ (-4 *6 (-1039)) (-5 *1 (-940 *5 *4 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1163)) (-4 *5 (-550))
+ (-5 *2 (-406 (-1159 (-406 (-942 *5))))) (-5 *1 (-1033 *5))
+ (-5 *3 (-406 (-942 *5))))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-762)) (-4 *2 (-1087))
+ (-5 *1 (-668 *2)))))
+(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-783))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1039)) (-14 *3 (-635 (-1163)))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1039) (-841)))
+ (-14 *3 (-635 (-1163)))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-381 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-1087))))
+ ((*1 *1 *1)
+ (-12 (-14 *2 (-635 (-1163))) (-4 *3 (-171))
+ (-4 *5 (-237 (-2755 *2) (-762)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2851 *4) (|:| -1951 *5))
+ (-2 (|:| -2851 *4) (|:| -1951 *5))))
+ (-5 *1 (-459 *2 *3 *4 *5 *6 *7)) (-4 *4 (-841))
+ (-4 *7 (-939 *3 *5 (-855 *2)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-507 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-841))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-550)) (-5 *1 (-615 *2 *3)) (-4 *3 (-1222 *2))))
+ ((*1 *1 *1) (-12 (-4 *1 (-699 *2)) (-4 *2 (-1039))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-726 *2 *3)) (-4 *3 (-841)) (-4 *2 (-1039))
+ (-4 *3 (-717))))
+ ((*1 *1 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1053 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784))
+ (-4 *2 (-841))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1269 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-837)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-546) (-836) (-1023 (-554)))) (-5 *1 (-184 *3 *2))
- (-4 *2 (-13 (-27) (-1180) (-425 (-167 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-546) (-836) (-1023 (-554))))
- (-5 *1 (-184 *4 *2)) (-4 *2 (-13 (-27) (-1180) (-425 (-167 *4))))))
+ (-12 (-4 *3 (-362)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3))
+ (-5 *1 (-519 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1238 *2 *3 *4)) (-4 *2 (-1039)) (-14 *3 (-1163))
+ (-14 *4 *2))))
+(((*1 *2 *3 *4 *5 *5 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *3 (-942 *6)) (-5 *4 (-1163))
+ (-5 *5 (-834 *7))
+ (-4 *6 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
+ (-4 *7 (-13 (-1185) (-29 *6))) (-5 *1 (-223 *6 *7))))
+ ((*1 *2 *3 *4 *4 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1159 *6)) (-5 *4 (-834 *6))
+ (-4 *6 (-13 (-1185) (-29 *5)))
+ (-4 *5 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *1 (-223 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039))
+ (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1087)) (-4 *5 (-1087))
+ (-4 *6 (-1087)) (-5 *2 (-1 *6 *5)) (-5 *1 (-674 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-550))
+ (-5 *2 (-1159 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-841)) (-5 *1 (-244 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-550) (-146))) (-5 *1 (-535 *3 *2))
+ (-4 *2 (-1237 *3))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *1 (-1184 *3 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1158))
- (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *1 (-1184 *4 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-758)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-1196 *3)) (-4 *3 (-836))
- (-4 *3 (-1082)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1138 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020))
- (-5 *1 (-739)))))
-(((*1 *2 *1) (-12 (-5 *2 (-631 (-600 *1))) (-4 *1 (-297)))))
-(((*1 *1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| -3999 (-631 (-848))) (|:| -1349 (-631 (-848)))
- (|:| |presup| (-631 (-848))) (|:| -1426 (-631 (-848)))
- (|:| |args| (-631 (-848)))))
- (-5 *1 (-1158))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-631 (-631 (-848)))) (-5 *1 (-1158)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-539))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-1158)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-358)) (-4 *3 (-1034))
- (-5 *2 (-2 (|:| -2325 *1) (|:| -2423 *1))) (-4 *1 (-838 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-358)) (-4 *5 (-1034))
- (-5 *2 (-2 (|:| -2325 *3) (|:| -2423 *3))) (-5 *1 (-839 *5 *3))
- (-4 *3 (-838 *5)))))
+ (-12 (-4 *3 (-13 (-362) (-367) (-606 (-558)))) (-4 *4 (-1222 *3))
+ (-4 *5 (-715 *3 *4)) (-5 *1 (-539 *3 *4 *5 *2)) (-4 *2 (-1237 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-362) (-367) (-606 (-558)))) (-5 *1 (-540 *3 *2))
+ (-4 *2 (-1237 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-13 (-550) (-146)))
+ (-5 *1 (-1139 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-762)) (-5 *1 (-774 *2)) (-4 *2 (-38 (-406 (-558))))
+ (-4 *2 (-171)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 *4)) (-4 *4 (-839)) (-4 *4 (-362)) (-5 *2 (-762))
+ (-5 *1 (-935 *4 *5)) (-4 *5 (-1222 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-515)))))
+(((*1 *2 *3 *2 *3)
+ (-12 (-5 *2 (-436)) (-5 *3 (-1163)) (-5 *1 (-1166))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-436)) (-5 *3 (-1163)) (-5 *1 (-1166))))
+ ((*1 *2 *3 *2 *4 *1)
+ (-12 (-5 *2 (-436)) (-5 *3 (-635 (-1163))) (-5 *4 (-1163))
+ (-5 *1 (-1166))))
+ ((*1 *2 *3 *2 *3 *1)
+ (-12 (-5 *2 (-436)) (-5 *3 (-1163)) (-5 *1 (-1166))))
+ ((*1 *2 *3 *2 *1)
+ (-12 (-5 *2 (-436)) (-5 *3 (-1163)) (-5 *1 (-1167))))
+ ((*1 *2 *3 *2 *1)
+ (-12 (-5 *2 (-436)) (-5 *3 (-635 (-1163))) (-5 *1 (-1167)))))
(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034))
- (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-633 *3)) (-4 *3 (-1082)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4373)) (-4 *1 (-231 *3))
- (-4 *3 (-1082))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-277 *3)) (-4 *3 (-1195)))))
-(((*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1025)))))
-(((*1 *2 *3 *3 *3 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 (-758) *2)) (-5 *4 (-758)) (-4 *2 (-1082))
- (-5 *1 (-664 *2))))
+ (-12 (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087)) (-4 *4 (-1087))
+ (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-635 *1))
+ (-4 *1 (-939 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-604 *1))) (-4 *1 (-301)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1143 *4)) (-5 *3 (-558)) (-4 *4 (-1039))
+ (-5 *1 (-1147 *4))))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-558)) (-5 *1 (-1238 *3 *4 *5)) (-4 *3 (-1039))
+ (-14 *4 (-1163)) (-14 *5 *3))))
+(((*1 *2 *3 *4 *2 *2 *5)
+ (|partial| -12 (-5 *2 (-834 *4)) (-5 *3 (-604 *4)) (-5 *5 (-112))
+ (-4 *4 (-13 (-1185) (-29 *6)))
+ (-4 *6 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *1 (-223 *6 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1200)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *2 (-558))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039))
+ (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-558)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1087)) (-4 *4 (-1087))
+ (-4 *6 (-1087)) (-5 *2 (-1 *6 *5)) (-5 *1 (-674 *5 *4 *6)))))
+(((*1 *1)
+ (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-550)) (-4 *2 (-171)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-550) (-146))) (-5 *1 (-535 *3 *2))
+ (-4 *2 (-1237 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1 *3 (-758) *3)) (-4 *3 (-1082)) (-5 *1 (-668 *3)))))
+ (-12 (-4 *3 (-13 (-362) (-367) (-606 (-558)))) (-4 *4 (-1222 *3))
+ (-4 *5 (-715 *3 *4)) (-5 *1 (-539 *3 *4 *5 *2)) (-4 *2 (-1237 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-362) (-367) (-606 (-558)))) (-5 *1 (-540 *3 *2))
+ (-4 *2 (-1237 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-13 (-550) (-146)))
+ (-5 *1 (-1139 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-762)) (-5 *1 (-774 *2)) (-4 *2 (-38 (-406 (-558))))
+ (-4 *2 (-171)))))
+(((*1 *2 *3)
+ (-12 (-4 *2 (-362)) (-4 *2 (-839)) (-5 *1 (-935 *2 *3))
+ (-4 *3 (-1222 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-515)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-911)) (-5 *2 (-762)) (-5 *1 (-1088 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1145))
+ (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *2 (-112)) (-5 *1 (-223 *4 *5)) (-4 *5 (-13 (-1185) (-29 *4))))))
+(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-783)) (-4 *2 (-1039))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1039)) (-5 *1 (-50 *2 *3)) (-14 *3 (-635 (-1163)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-315 *3)) (-5 *1 (-222 *3 *4))
+ (-4 *3 (-13 (-1039) (-841))) (-14 *4 (-635 (-1163)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1087)) (-4 *2 (-1039))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-635 (-1163))) (-4 *5 (-237 (-2755 *3) (-762)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2851 *4) (|:| -1951 *5))
+ (-2 (|:| -2851 *4) (|:| -1951 *5))))
+ (-4 *2 (-171)) (-5 *1 (-459 *3 *2 *4 *5 *6 *7)) (-4 *4 (-841))
+ (-4 *7 (-939 *2 *5 (-855 *3)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-507 *2 *3)) (-4 *3 (-841)) (-4 *2 (-1087))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-550)) (-5 *1 (-615 *2 *3)) (-4 *3 (-1222 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-699 *2)) (-4 *2 (-1039))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1039)) (-5 *1 (-726 *2 *3)) (-4 *3 (-841))
+ (-4 *3 (-717))))
+ ((*1 *2 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-963 *2 *3 *4)) (-4 *3 (-783)) (-4 *4 (-841))
+ (-4 *2 (-1039))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1053 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784))
+ (-4 *2 (-841)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-853)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1238 *2 *3 *4)) (-4 *2 (-1039)) (-14 *3 (-1163))
+ (-14 *4 *2))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-1232 *3)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020))
- (-5 *1 (-742)))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1200)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *2 (-558))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039))
+ (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-558)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1158)) (-4 *5 (-1199)) (-4 *6 (-1217 *5))
- (-4 *7 (-1217 (-402 *6))) (-5 *2 (-631 (-937 *5)))
- (-5 *1 (-336 *4 *5 *6 *7)) (-4 *4 (-337 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1158)) (-4 *1 (-337 *4 *5 *6)) (-4 *4 (-1199))
- (-4 *5 (-1217 *4)) (-4 *6 (-1217 (-402 *5))) (-4 *4 (-358))
- (-5 *2 (-631 (-937 *4))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-1158)))))
-(((*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-859))))
- ((*1 *2 *3) (-12 (-5 *3 (-928 *2)) (-5 *1 (-967 *2)) (-4 *2 (-1034)))))
-(((*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-5 *1 (-985 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1217 *6))
- (-4 *6 (-13 (-27) (-425 *5)))
- (-4 *5 (-13 (-836) (-546) (-1023 (-554)))) (-4 *8 (-1217 (-402 *7)))
- (-5 *2 (-575 *3)) (-5 *1 (-542 *5 *6 *7 *8 *3))
- (-4 *3 (-337 *6 *7 *8)))))
-(((*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-1140)))))
-(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1076 (-221))) (-5 *1 (-911))))
- ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1076 (-221))) (-5 *1 (-912))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1076 (-221))) (-5 *1 (-912))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243)))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374)))
- (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1157))))
- (-5 *1 (-1157)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-631 (-769 *3))) (-5 *1 (-769 *3)) (-4 *3 (-546))
- (-4 *3 (-1034)))))
-(((*1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848))))
- ((*1 *1 *1) (-5 *1 (-848))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221))) (-5 *4 (-221))
- (-5 *2 (-1020)) (-5 *1 (-739)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1126)) (-5 *2 (-139))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1126)) (-5 *2 (-142)))))
+ (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1087)) (-4 *5 (-1087))
+ (-5 *2 (-1 *5 *4)) (-5 *1 (-673 *4 *5)))))
+(((*1 *1)
+ (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-550)) (-4 *2 (-171)))))
+(((*1 *1 *1) (|partial| -4 *1 (-1138))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-773 *2)) (-4 *2 (-1039)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-362)) (-5 *2 (-635 *3)) (-5 *1 (-935 *4 *3))
+ (-4 *3 (-1222 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1200)) (-5 *1 (-326 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-635 *3)) (-4 *3 (-1200)) (-5 *1 (-514 *3 *4))
+ (-14 *4 (-558)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-167 (-374))) (-5 *1 (-772 *3)) (-4 *3 (-602 (-374)))))
+ (-12 (-5 *2 (-168 (-378))) (-5 *1 (-776 *3)) (-4 *3 (-606 (-378)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-906)) (-5 *2 (-167 (-374))) (-5 *1 (-772 *3))
- (-4 *3 (-602 (-374)))))
+ (-12 (-5 *4 (-911)) (-5 *2 (-168 (-378))) (-5 *1 (-776 *3))
+ (-4 *3 (-606 (-378)))))
((*1 *2 *3)
- (-12 (-5 *3 (-167 *4)) (-4 *4 (-170)) (-4 *4 (-602 (-374)))
- (-5 *2 (-167 (-374))) (-5 *1 (-772 *4))))
+ (-12 (-5 *3 (-168 *4)) (-4 *4 (-171)) (-4 *4 (-606 (-378)))
+ (-5 *2 (-168 (-378))) (-5 *1 (-776 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-167 *5)) (-5 *4 (-906)) (-4 *5 (-170))
- (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *5))))
+ (-12 (-5 *3 (-168 *5)) (-5 *4 (-911)) (-4 *5 (-171))
+ (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-937 (-167 *4))) (-4 *4 (-170)) (-4 *4 (-602 (-374)))
- (-5 *2 (-167 (-374))) (-5 *1 (-772 *4))))
+ (-12 (-5 *3 (-942 (-168 *4))) (-4 *4 (-171)) (-4 *4 (-606 (-378)))
+ (-5 *2 (-168 (-378))) (-5 *1 (-776 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-937 (-167 *5))) (-5 *4 (-906)) (-4 *5 (-170))
- (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *5))))
+ (-12 (-5 *3 (-942 (-168 *5))) (-5 *4 (-911)) (-4 *5 (-171))
+ (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-937 *4)) (-4 *4 (-1034)) (-4 *4 (-602 (-374)))
- (-5 *2 (-167 (-374))) (-5 *1 (-772 *4))))
+ (-12 (-5 *3 (-942 *4)) (-4 *4 (-1039)) (-4 *4 (-606 (-378)))
+ (-5 *2 (-168 (-378))) (-5 *1 (-776 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-937 *5)) (-5 *4 (-906)) (-4 *5 (-1034))
- (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *5))))
+ (-12 (-5 *3 (-942 *5)) (-5 *4 (-911)) (-4 *5 (-1039))
+ (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-402 (-937 *4))) (-4 *4 (-546)) (-4 *4 (-602 (-374)))
- (-5 *2 (-167 (-374))) (-5 *1 (-772 *4))))
+ (-12 (-5 *3 (-406 (-942 *4))) (-4 *4 (-550)) (-4 *4 (-606 (-378)))
+ (-5 *2 (-168 (-378))) (-5 *1 (-776 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-402 (-937 *5))) (-5 *4 (-906)) (-4 *5 (-546))
- (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *5))))
+ (-12 (-5 *3 (-406 (-942 *5))) (-5 *4 (-911)) (-4 *5 (-550))
+ (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-402 (-937 (-167 *4)))) (-4 *4 (-546))
- (-4 *4 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *4))))
+ (-12 (-5 *3 (-406 (-942 (-168 *4)))) (-4 *4 (-550))
+ (-4 *4 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-402 (-937 (-167 *5)))) (-5 *4 (-906)) (-4 *5 (-546))
- (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *5))))
+ (-12 (-5 *3 (-406 (-942 (-168 *5)))) (-5 *4 (-911)) (-4 *5 (-550))
+ (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-311 *4)) (-4 *4 (-546)) (-4 *4 (-836))
- (-4 *4 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *4))))
+ (-12 (-5 *3 (-315 *4)) (-4 *4 (-550)) (-4 *4 (-841))
+ (-4 *4 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-311 *5)) (-5 *4 (-906)) (-4 *5 (-546)) (-4 *5 (-836))
- (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *5))))
+ (-12 (-5 *3 (-315 *5)) (-5 *4 (-911)) (-4 *5 (-550)) (-4 *5 (-841))
+ (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-311 (-167 *4))) (-4 *4 (-546)) (-4 *4 (-836))
- (-4 *4 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *4))))
+ (-12 (-5 *3 (-315 (-168 *4))) (-4 *4 (-550)) (-4 *4 (-841))
+ (-4 *4 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-311 (-167 *5))) (-5 *4 (-906)) (-4 *5 (-546))
- (-4 *5 (-836)) (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374)))
- (-5 *1 (-772 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-631 *6))
- (-5 *1 (-498 *3 *4 *5 *6)) (-4 *6 (-934 *3 *4 *5))))
+ (-12 (-5 *3 (-315 (-168 *5))) (-5 *4 (-911)) (-4 *5 (-550))
+ (-4 *5 (-841)) (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378)))
+ (-5 *1 (-776 *5)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1039)) (-14 *3 (-635 (-1163)))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1039) (-841)))
+ (-14 *3 (-635 (-1163))))))
+(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-783))))
((*1 *2 *1)
- (-12 (-5 *2 (-631 (-890 *3))) (-5 *1 (-889 *3)) (-4 *3 (-1082)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-112)) (-5 *1 (-114)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1108 *4 *3 *5))) (-4 *4 (-38 (-402 (-554))))
- (-4 *4 (-1034)) (-4 *3 (-836)) (-5 *1 (-1108 *4 *3 *5))
- (-4 *5 (-934 *4 (-525 *3) *3))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1189 *4))) (-5 *3 (-1158)) (-5 *1 (-1189 *4))
- (-4 *4 (-38 (-402 (-554)))) (-4 *4 (-1034)))))
-(((*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1243))))
- ((*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1243)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-539))
- (-5 *2 (-402 (-554)))))
+ (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-1087))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-635 (-1163))) (-4 *4 (-171))
+ (-4 *6 (-237 (-2755 *3) (-762)))
+ (-14 *7
+ (-1 (-112) (-2 (|:| -2851 *5) (|:| -1951 *6))
+ (-2 (|:| -2851 *5) (|:| -1951 *6))))
+ (-5 *2 (-704 *5 *6 *7)) (-5 *1 (-459 *3 *4 *5 *6 *7 *8))
+ (-4 *5 (-841)) (-4 *8 (-939 *4 *6 (-855 *3)))))
((*1 *2 *1)
- (-12 (-5 *2 (-402 (-554))) (-5 *1 (-413 *3)) (-4 *3 (-539))
- (-4 *3 (-546))))
- ((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-402 (-554)))))
+ (-12 (-4 *2 (-717)) (-4 *2 (-841)) (-5 *1 (-726 *3 *2))
+ (-4 *3 (-1039))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-963 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-783))
+ (-4 *4 (-841)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1143 *4)) (-5 *3 (-558)) (-4 *4 (-1039))
+ (-5 *1 (-1147 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-558)) (-5 *1 (-1238 *3 *4 *5)) (-4 *3 (-1039))
+ (-14 *4 (-1163)) (-14 *5 *3))))
+(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-515))))
((*1 *2 *1)
- (-12 (-4 *1 (-784 *3)) (-4 *3 (-170)) (-4 *3 (-539))
- (-5 *2 (-402 (-554)))))
+ (-12 (-4 *2 (-13 (-1087) (-34))) (-5 *1 (-1127 *3 *2))
+ (-4 *3 (-13 (-1087) (-34)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1257)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1200)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *2 (-558))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039))
+ (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-558)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1087)) (-4 *5 (-1087))
+ (-5 *2 (-1 *5)) (-5 *1 (-673 *4 *5)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1145)) (-4 *1 (-363 *3 *4)) (-4 *3 (-1087))
+ (-4 *4 (-1087)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1200)) (-5 *2 (-112)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-773 *2)) (-4 *2 (-1039)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-362)) (-5 *2 (-635 *3)) (-5 *1 (-935 *4 *3))
+ (-4 *3 (-1222 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-326 *3)) (-4 *3 (-1200))))
((*1 *2 *1)
- (-12 (-5 *2 (-402 (-554))) (-5 *1 (-820 *3)) (-4 *3 (-539))
- (-4 *3 (-1082))))
+ (-12 (-5 *2 (-762)) (-5 *1 (-514 *3 *4)) (-4 *3 (-1200))
+ (-14 *4 (-558)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1039))
+ (-14 *4 (-635 (-1163)))))
((*1 *2 *1)
- (-12 (-5 *2 (-402 (-554))) (-5 *1 (-829 *3)) (-4 *3 (-539))
- (-4 *3 (-1082))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1039) (-841)))
+ (-14 *4 (-635 (-1163))))))
+(((*1 *2 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *3 (-783)) (-4 *2 (-1039))))
+ ((*1 *2 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-841)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1143 *4)) (-5 *3 (-558)) (-4 *4 (-1039))
+ (-5 *1 (-1147 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-558)) (-5 *1 (-1238 *3 *4 *5)) (-4 *3 (-1039))
+ (-14 *4 (-1163)) (-14 *5 *3))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1200)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *2 (-558))))
((*1 *2 *1)
- (-12 (-4 *1 (-982 *3)) (-4 *3 (-170)) (-4 *3 (-539))
- (-5 *2 (-402 (-554)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-402 (-554))) (-5 *1 (-993 *3)) (-4 *3 (-1023 *2)))))
+ (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039))
+ (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-558)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-673 *4 *3)) (-4 *4 (-1087))
+ (-4 *3 (-1087)))))
+(((*1 *1 *1) (-4 *1 (-172)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-363 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-1087)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1200)) (-5 *2 (-112)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-635 (-773 *3))) (-5 *1 (-773 *3)) (-4 *3 (-550))
+ (-4 *3 (-1039)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1170)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-942 *5)) (-4 *5 (-1039)) (-5 *2 (-246 *4 *5))
+ (-5 *1 (-934 *4 *5)) (-14 *4 (-635 (-1163))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-326 *3)) (-4 *3 (-1200))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-558)) (-5 *1 (-514 *3 *4)) (-4 *3 (-1200)) (-14 *4 *2))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-315 *3)) (-4 *3 (-13 (-1039) (-841)))
+ (-5 *1 (-222 *3 *4)) (-14 *4 (-635 (-1163))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-848)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 (-758))
- (-14 *4 (-758)) (-4 *5 (-170)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-474)))))
+ (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-783))
+ (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-841)) (-5 *2 (-112)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1200)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-558)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1200))
+ (-4 *5 (-372 *4)) (-4 *2 (-372 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-558)) (-4 *1 (-1042 *4 *5 *6 *2 *7)) (-4 *6 (-1039))
+ (-4 *7 (-237 *4 *6)) (-4 *2 (-237 *5 *6)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 (-762) *2)) (-5 *4 (-762)) (-4 *2 (-1087))
+ (-5 *1 (-668 *2))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1 *3 (-762) *3)) (-4 *3 (-1087)) (-5 *1 (-672 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906))
- (-4 *4 (-1034)))))
-(((*1 *1 *2 *2)
+ (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1087))
+ (-5 *2 (-1145)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-911)) (-5 *2 (-1159 *4)) (-5 *1 (-356 *4))
+ (-4 *4 (-348))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-911)) (-5 *2 (-1159 *4)) (-5 *1 (-356 *4))
+ (-4 *4 (-348))))
+ ((*1 *1) (-4 *1 (-367)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-911)) (-5 *2 (-1246 *4)) (-5 *1 (-526 *4))
+ (-4 *4 (-348))))
+ ((*1 *1 *1) (-4 *1 (-543))) ((*1 *1) (-4 *1 (-543)))
+ ((*1 *1 *1) (-5 *1 (-558))) ((*1 *1 *1) (-5 *1 (-762)))
+ ((*1 *2 *1) (-12 (-5 *2 (-895 *3)) (-5 *1 (-894 *3)) (-4 *3 (-1087))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-558)) (-5 *2 (-895 *4)) (-5 *1 (-894 *4))
+ (-4 *4 (-1087))))
+ ((*1 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-543)) (-4 *2 (-550)))))
+(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
+ (-5 *2 (-635 (-1017 *5 *6 *7 *3))) (-5 *1 (-1017 *5 *6 *7 *3))
+ (-4 *3 (-1053 *5 *6 *7))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-635 *6)) (-4 *1 (-1059 *3 *4 *5 *6)) (-4 *3 (-450))
+ (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-1059 *3 *4 *5 *2)) (-4 *3 (-450)) (-4 *4 (-784))
+ (-4 *5 (-841)) (-4 *2 (-1053 *3 *4 *5))))
+ ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
+ (-5 *2 (-635 (-1133 *5 *6 *7 *3))) (-5 *1 (-1133 *5 *6 *7 *3))
+ (-4 *3 (-1053 *5 *6 *7)))))
+(((*1 *2 *1 *1)
(-12
(-5 *2
- (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374)))
- (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1157))))
- (-5 *1 (-1157)))))
-(((*1 *1) (-5 *1 (-432))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1217 *2)) (-4 *2 (-1199)) (-5 *1 (-146 *2 *4 *3))
- (-4 *3 (-1217 (-402 *4))))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1126)) (-5 *2 (-139))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1126)) (-5 *2 (-142)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1234 *3 *2))
- (-4 *2 (-1232 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-928 *4)) (-4 *4 (-1034)) (-5 *1 (-1146 *3 *4))
- (-14 *3 (-906)))))
+ (-2 (|:| -3320 *3) (|:| |coef1| (-773 *3)) (|:| |coef2| (-773 *3))))
+ (-5 *1 (-773 *3)) (-4 *3 (-550)) (-4 *3 (-1039)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-635 (-1163))) (-4 *5 (-1039))
+ (-5 *2 (-942 *5)) (-5 *1 (-934 *4 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-1200))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-514 *3 *4)) (-4 *3 (-1200))
+ (-14 *4 (-558)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1039) (-841)))
+ (-14 *3 (-635 (-1163))))))
+(((*1 *1 *1) (-4 *1 (-242)))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1222 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1)
+ (-3998 (-12 (-5 *1 (-293 *2)) (-4 *2 (-362)) (-4 *2 (-1200)))
+ (-12 (-5 *1 (-293 *2)) (-4 *2 (-471)) (-4 *2 (-1200)))))
+ ((*1 *1 *1) (-4 *1 (-471)))
+ ((*1 *2 *2) (-12 (-5 *2 (-1246 *3)) (-4 *3 (-348)) (-5 *1 (-526 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-706 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171)) (-4 *2 (-362)))))
+(((*1 *1 *1) (-12 (-5 *1 (-498 *2)) (-14 *2 (-558))))
+ ((*1 *1 *1) (-5 *1 (-1107))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1087)) (-4 *4 (-13 (-1039) (-876 *3) (-841) (-606 *2)))
+ (-5 *2 (-882 *3)) (-5 *1 (-1063 *3 *4 *5))
+ (-4 *5 (-13 (-429 *4) (-876 *3) (-606 *2))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-558)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1200))
+ (-4 *5 (-372 *4)) (-4 *2 (-372 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-558)) (-4 *1 (-1042 *4 *5 *6 *7 *2)) (-4 *6 (-1039))
+ (-4 *7 (-237 *5 *6)) (-4 *2 (-237 *4 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1234 *3)) (-4 *3 (-1200)) (-5 *2 (-762)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-672 *2)) (-4 *2 (-1087))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-635 *5) (-635 *5))) (-5 *4 (-558))
+ (-5 *2 (-635 *5)) (-5 *1 (-672 *5)) (-4 *5 (-1087)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-1087)))))
+(((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1053 *5 *6 *7))
+ (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
+ (-5 *2 (-635 (-1017 *5 *6 *7 *8))) (-5 *1 (-1017 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1053 *5 *6 *7))
+ (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
+ (-5 *2 (-635 (-1133 *5 *6 *7 *8))) (-5 *1 (-1133 *5 *6 *7 *8)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -3320 *3) (|:| |coef1| (-773 *3))))
+ (-5 *1 (-773 *3)) (-4 *3 (-550)) (-4 *3 (-1039)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-479 *4 *5)) (-14 *4 (-635 (-1163))) (-4 *5 (-1039))
+ (-5 *2 (-942 *5)) (-5 *1 (-934 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-507 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-841)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-1163)) (-5 *6 (-112))
+ (-4 *7 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558))))
+ (-4 *3 (-13 (-1185) (-949) (-29 *7)))
+ (-5 *2
+ (-3 (|:| |f1| (-834 *3)) (|:| |f2| (-635 (-834 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-218 *7 *3)) (-5 *5 (-834 *3)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-498 *2)) (-14 *2 (-558))))
+ ((*1 *1 *1 *1) (-5 *1 (-1107))))
+(((*1 *1 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1200)))))
(((*1 *2 *2)
- (-12 (-4 *2 (-170)) (-4 *2 (-1034)) (-5 *1 (-701 *2 *3))
- (-4 *3 (-634 *2))))
- ((*1 *2 *2) (-12 (-5 *1 (-823 *2)) (-4 *2 (-170)) (-4 *2 (-1034)))))
-(((*1 *1) (-5 *1 (-810))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-937 *5))) (-5 *4 (-631 (-1158))) (-4 *5 (-546))
- (-5 *2 (-631 (-631 (-289 (-402 (-937 *5)))))) (-5 *1 (-757 *5))))
+ (-12 (-4 *3 (-362)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3))
+ (-5 *1 (-519 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-631 (-937 *4))) (-4 *4 (-546))
- (-5 *2 (-631 (-631 (-289 (-402 (-937 *4)))))) (-5 *1 (-757 *4))))
+ (-12 (-4 *4 (-550)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4))
+ (-4 *7 (-982 *4)) (-4 *2 (-677 *7 *8 *9))
+ (-5 *1 (-520 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-677 *4 *5 *6))
+ (-4 *8 (-372 *7)) (-4 *9 (-372 *7))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2))
+ (-4 *4 (-372 *2)) (-4 *2 (-306))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-306)) (-4 *3 (-171)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *1 (-678 *3 *4 *5 *2))
+ (-4 *2 (-677 *3 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-679 *3)) (-4 *3 (-306)) (-5 *1 (-690 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1042 *2 *3 *4 *5 *6)) (-4 *4 (-1039))
+ (-4 *5 (-237 *3 *4)) (-4 *6 (-237 *2 *4)) (-4 *4 (-306)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-672 *3)) (-4 *3 (-1087)))))
+(((*1 *2 *1 *2)
+ (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-1087)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
+ (-4 *8 (-1053 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |val| (-635 *8))
+ (|:| |towers| (-635 (-1017 *5 *6 *7 *8)))))
+ (-5 *1 (-1017 *5 *6 *7 *8)) (-5 *3 (-635 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
+ (-4 *8 (-1053 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |val| (-635 *8))
+ (|:| |towers| (-635 (-1133 *5 *6 *7 *8)))))
+ (-5 *1 (-1133 *5 *6 *7 *8)) (-5 *3 (-635 *8)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -3320 *3) (|:| |coef2| (-773 *3))))
+ (-5 *1 (-773 *3)) (-4 *3 (-550)) (-4 *3 (-1039)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-942 *5)) (-4 *5 (-1039)) (-5 *2 (-479 *4 *5))
+ (-5 *1 (-934 *4 *5)) (-14 *4 (-635 (-1163))))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-558)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-762)) (-4 *5 (-171))))
+ ((*1 *1 *1 *2 *1 *2)
+ (-12 (-5 *2 (-558)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-762)) (-4 *5 (-171))))
+ ((*1 *2 *2 *3)
+ (-12
+ (-5 *2
+ (-502 (-406 (-558)) (-239 *5 (-762)) (-855 *4)
+ (-246 *4 (-406 (-558)))))
+ (-5 *3 (-635 (-855 *4))) (-14 *4 (-635 (-1163))) (-14 *5 (-762))
+ (-5 *1 (-503 *4 *5)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-911)) (-5 *1 (-1020 *2))
+ (-4 *2 (-13 (-1087) (-10 -8 (-15 -1784 ($ $ $))))))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-604 *1))) (-4 *1 (-301)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1163))
+ (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *2 (-52)) (-5 *1 (-314 *4 *5))
+ (-4 *5 (-13 (-27) (-1185) (-429 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *2 (-52)) (-5 *1 (-314 *4 *3))
+ (-4 *3 (-13 (-27) (-1185) (-429 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-406 (-558)))
+ (-4 *5 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *2 (-52)) (-5 *1 (-314 *5 *3))
+ (-4 *3 (-13 (-27) (-1185) (-429 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *5)))
+ (-4 *5 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *2 (-52)) (-5 *1 (-314 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-675 *7))
+ (-12 (-5 *4 (-293 *3)) (-5 *5 (-406 (-558)))
+ (-4 *3 (-13 (-27) (-1185) (-429 *6)))
+ (-4 *6 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *2 (-52)) (-5 *1 (-314 *6 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-1 *8 (-406 (-558)))) (-5 *4 (-293 *8))
+ (-5 *5 (-1213 (-406 (-558)))) (-5 *6 (-406 (-558)))
+ (-4 *8 (-13 (-27) (-1185) (-429 *7)))
+ (-4 *7 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *2 (-52)) (-5 *1 (-457 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *4 (-1163)) (-5 *5 (-293 *3)) (-5 *6 (-1213 (-406 (-558))))
+ (-5 *7 (-406 (-558))) (-4 *3 (-13 (-27) (-1185) (-429 *8)))
+ (-4 *8 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *2 (-52)) (-5 *1 (-457 *8 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-406 (-558))) (-4 *4 (-1039)) (-4 *1 (-1229 *4 *3))
+ (-4 *3 (-1206 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-216)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-498 *2)) (-14 *2 (-558))))
+ ((*1 *1 *1 *1) (-5 *1 (-1107))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4383)) (-4 *1 (-243 *2)) (-4 *2 (-1200))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1200))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1200))))
+ ((*1 *1 *1 *2)
+ (-12 (|has| *1 (-6 -4383)) (-4 *1 (-1234 *2)) (-4 *2 (-1200))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4383)) (-4 *1 (-1234 *2)) (-4 *2 (-1200)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-362)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4))
+ (-5 *2 (-762)) (-5 *1 (-519 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-4 *3 (-550)) (-5 *2 (-762))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-550)) (-4 *4 (-171)) (-4 *5 (-372 *4))
+ (-4 *6 (-372 *4)) (-5 *2 (-762)) (-5 *1 (-678 *4 *5 *6 *3))
+ (-4 *3 (-677 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039))
+ (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-4 *5 (-550))
+ (-5 *2 (-762)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1163)) (-5 *3 (-433)) (-4 *5 (-841))
+ (-5 *1 (-1093 *5 *4)) (-4 *4 (-429 *5)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-635 (-1199))) (-5 *3 (-1199)) (-5 *1 (-671)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1159 *4)) (-4 *4 (-348))
+ (-4 *2
+ (-13 (-401)
+ (-10 -7 (-15 -3220 (*2 *4)) (-15 -2637 ((-911) *2))
+ (-15 -2660 ((-1246 *2) (-911))) (-15 -4148 (*2 *2)))))
+ (-5 *1 (-355 *2 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1222 (-48))))))
+(((*1 *2 *3 *4 *2 *5 *6)
+ (-12
(-5 *5
- (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3782 (-631 *6)))
- *7 *6))
- (-4 *6 (-358)) (-4 *7 (-642 *6))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1241 *6) "failed"))
- (|:| -3782 (-631 (-1241 *6)))))
- (-5 *1 (-800 *6 *7)) (-5 *4 (-1241 *6)))))
-(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1180)))))
- ((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-906)) (-5 *4 (-374)) (-5 *2 (-1246)) (-5 *1 (-1242))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243)))))
-(((*1 *1) (-5 *1 (-568)))
- ((*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-849))))
- ((*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1246)) (-5 *1 (-849))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1140)) (-5 *4 (-848)) (-5 *2 (-1246)) (-5 *1 (-849))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-554)) (-5 *2 (-1246)) (-5 *1 (-1138 *4))
- (-4 *4 (-1082)) (-4 *4 (-1195)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-631 *7)) (-5 *3 (-554)) (-4 *7 (-934 *4 *5 *6))
- (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836))
- (-5 *1 (-443 *4 *5 *6 *7)))))
-(((*1 *1 *2 *2)
+ (-2 (|:| |done| (-635 *11))
+ (|:| |todo| (-635 (-2 (|:| |val| *3) (|:| -2396 *11))))))
+ (-5 *6 (-762))
+ (-5 *2 (-635 (-2 (|:| |val| (-635 *10)) (|:| -2396 *11))))
+ (-5 *3 (-635 *10)) (-5 *4 (-635 *11)) (-4 *10 (-1053 *7 *8 *9))
+ (-4 *11 (-1059 *7 *8 *9 *10)) (-4 *7 (-450)) (-4 *8 (-784))
+ (-4 *9 (-841)) (-5 *1 (-1057 *7 *8 *9 *10 *11))))
+ ((*1 *2 *3 *4 *2 *5 *6)
(-12
+ (-5 *5
+ (-2 (|:| |done| (-635 *11))
+ (|:| |todo| (-635 (-2 (|:| |val| *3) (|:| -2396 *11))))))
+ (-5 *6 (-762))
+ (-5 *2 (-635 (-2 (|:| |val| (-635 *10)) (|:| -2396 *11))))
+ (-5 *3 (-635 *10)) (-5 *4 (-635 *11)) (-4 *10 (-1053 *7 *8 *9))
+ (-4 *11 (-1096 *7 *8 *9 *10)) (-4 *7 (-450)) (-4 *8 (-784))
+ (-4 *9 (-841)) (-5 *1 (-1132 *7 *8 *9 *10 *11)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-679 (-406 (-558))))
(-5 *2
- (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374)))
- (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1157))))
- (-5 *1 (-1157)))))
+ (-635
+ (-2 (|:| |outval| *4) (|:| |outmult| (-558))
+ (|:| |outvect| (-635 (-679 *4))))))
+ (-5 *1 (-770 *4)) (-4 *4 (-13 (-362) (-839))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-479 *4 *5)) (-14 *4 (-635 (-1163))) (-4 *5 (-1039))
+ (-5 *2 (-246 *4 *5)) (-5 *1 (-934 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-14 *4 (-635 (-1163))) (-14 *5 (-762))
+ (-5 *2
+ (-635
+ (-502 (-406 (-558)) (-239 *5 (-762)) (-855 *4)
+ (-246 *4 (-406 (-558))))))
+ (-5 *1 (-503 *4 *5))
+ (-5 *3
+ (-502 (-406 (-558)) (-239 *5 (-762)) (-855 *4)
+ (-246 *4 (-406 (-558))))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-348)) (-5 *2 (-112)) (-5 *1 (-215 *4 *3))
+ (-4 *3 (-1222 *4)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446))
- (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112))
- (-5 *1 (-973 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780))
- (-4 *5 (-836)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446))
- (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112))
- (-5 *1 (-1089 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1188 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *4 (-780))
- (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1034))
- (-14 *4 (-631 (-1158)))))
+ (-12 (|has| *1 (-6 -4383)) (-4 *1 (-1234 *2)) (-4 *2 (-1200)))))
+(((*1 *2 *3)
+ (-12 (|has| *6 (-6 -4383)) (-4 *4 (-362)) (-4 *5 (-372 *4))
+ (-4 *6 (-372 *4)) (-5 *2 (-635 *6)) (-5 *1 (-519 *4 *5 *6 *3))
+ (-4 *3 (-677 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (|has| *9 (-6 -4383)) (-4 *4 (-550)) (-4 *5 (-372 *4))
+ (-4 *6 (-372 *4)) (-4 *7 (-982 *4)) (-4 *8 (-372 *7))
+ (-4 *9 (-372 *7)) (-5 *2 (-635 *6))
+ (-5 *1 (-520 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-677 *4 *5 *6))
+ (-4 *10 (-677 *7 *8 *9))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1034) (-836)))
- (-14 *4 (-631 (-1158))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-554)) (-5 *4 (-413 *2)) (-4 *2 (-934 *7 *5 *6))
- (-5 *1 (-729 *5 *6 *7 *2)) (-4 *5 (-780)) (-4 *6 (-836))
- (-4 *7 (-302)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 *7)) (-4 *7 (-836)) (-4 *5 (-894)) (-4 *6 (-780))
- (-4 *8 (-934 *5 *6 *7)) (-5 *2 (-413 (-1154 *8)))
- (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-1154 *8))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-894)) (-4 *5 (-1217 *4)) (-5 *2 (-413 (-1154 *5)))
- (-5 *1 (-892 *4 *5)) (-5 *3 (-1154 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1140)) (-5 *1 (-697)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1138 (-631 (-554)))) (-5 *1 (-868)) (-5 *3 (-554)))))
-(((*1 *2 *1) (-12 (-5 *2 (-631 (-950))) (-5 *1 (-109))))
- ((*1 *2 *1) (-12 (-5 *2 (-45 (-1140) (-761))) (-5 *1 (-114)))))
-(((*1 *2 *3) (-12 (-5 *3 (-808)) (-5 *2 (-52)) (-5 *1 (-818)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-631 (-258))) (-5 *4 (-1158))
- (-5 *1 (-257 *2)) (-4 *2 (-1195))))
+ (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-4 *3 (-550)) (-5 *2 (-635 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-550)) (-4 *4 (-171)) (-4 *5 (-372 *4))
+ (-4 *6 (-372 *4)) (-5 *2 (-635 *6)) (-5 *1 (-678 *4 *5 *6 *3))
+ (-4 *3 (-677 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039))
+ (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-4 *5 (-550))
+ (-5 *2 (-635 *7)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1163)) (-5 *4 (-942 (-558))) (-5 *2 (-329))
+ (-5 *1 (-331))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1163)) (-5 *4 (-1079 (-942 (-558)))) (-5 *2 (-329))
+ (-5 *1 (-331))))
+ ((*1 *1 *2 *2 *2)
+ (-12 (-5 *2 (-762)) (-5 *1 (-665 *3)) (-4 *3 (-1039))
+ (-4 *3 (-1087)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-348)) (-5 *2 (-948 (-1159 *4))) (-5 *1 (-356 *4))
+ (-5 *3 (-1159 *4)))))
+(((*1 *1 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-1200)) (-4 *2 (-841))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-372 *3)) (-4 *3 (-1200))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-635 (-895 *3))) (-5 *1 (-895 *3)) (-4 *3 (-1087))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *3 (-841))
+ (-4 *6 (-1053 *4 *5 *3))
+ (-5 *2 (-2 (|:| |under| *1) (|:| -2594 *1) (|:| |upper| *1)))
+ (-4 *1 (-966 *4 *5 *3 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1222 *3))
+ (-4 *5 (-1222 (-406 *4))) (-4 *6 (-341 *3 *4 *5))
+ (-5 *2
+ (-2 (|:| -3281 (-412 *4 (-406 *4) *5 *6)) (|:| |principalPart| *6)))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-631 (-258))) (-5 *4 (-1158)) (-5 *2 (-52))
- (-5 *1 (-258)))))
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1222 *5)) (-4 *5 (-362))
+ (-5 *2
+ (-2 (|:| |poly| *6) (|:| -1499 (-406 *6))
+ (|:| |special| (-406 *6))))
+ (-5 *1 (-718 *5 *6)) (-5 *3 (-406 *6))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-362)) (-5 *2 (-635 *3)) (-5 *1 (-886 *3 *4))
+ (-4 *3 (-1222 *4))))
+ ((*1 *2 *3 *4 *4)
+ (|partial| -12 (-5 *4 (-762)) (-4 *5 (-362))
+ (-5 *2 (-2 (|:| -3417 *3) (|:| -3425 *3))) (-5 *1 (-886 *3 *5))
+ (-4 *3 (-1222 *5))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-635 *9)) (-5 *3 (-635 *8)) (-5 *4 (-112))
+ (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1059 *5 *6 *7 *8)) (-4 *5 (-450))
+ (-4 *6 (-784)) (-4 *7 (-841)) (-5 *1 (-1057 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-635 *9)) (-5 *3 (-635 *8)) (-5 *4 (-112))
+ (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1059 *5 *6 *7 *8)) (-4 *5 (-450))
+ (-4 *6 (-784)) (-4 *7 (-841)) (-5 *1 (-1057 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-635 *9)) (-5 *3 (-635 *8)) (-5 *4 (-112))
+ (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1096 *5 *6 *7 *8)) (-4 *5 (-450))
+ (-4 *6 (-784)) (-4 *7 (-841)) (-5 *1 (-1132 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-635 *9)) (-5 *3 (-635 *8)) (-5 *4 (-112))
+ (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1096 *5 *6 *7 *8)) (-4 *5 (-450))
+ (-4 *6 (-784)) (-4 *7 (-841)) (-5 *1 (-1132 *5 *6 *7 *8 *9)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *5 *5))
- (-4 *5 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554)))))))
+ (-12 (-5 *3 (-679 (-406 (-558)))) (-5 *2 (-635 *4)) (-5 *1 (-770 *4))
+ (-4 *4 (-13 (-362) (-839))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-635 (-1163))) (-4 *5 (-1039))
+ (-5 *2 (-479 *4 *5)) (-5 *1 (-934 *4 *5)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-502 (-406 (-558)) (-239 *5 (-762)) (-855 *4)
+ (-246 *4 (-406 (-558)))))
+ (-14 *4 (-635 (-1163))) (-14 *5 (-762)) (-5 *2 (-112))
+ (-5 *1 (-503 *4 *5)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-762)) (-4 *4 (-348)) (-5 *1 (-215 *4 *2))
+ (-4 *2 (-1222 *4)))))
+(((*1 *1 *2 *2)
+ (-12 (-5 *2 (-762)) (-4 *3 (-1039)) (-4 *1 (-677 *3 *4 *5))
+ (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-762)) (-4 *1 (-1244 *3)) (-4 *3 (-23)) (-4 *3 (-1200)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4383)) (-4 *1 (-1234 *2)) (-4 *2 (-1200)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1219 *4 *5)) (-5 *3 (-635 *5)) (-14 *4 (-1163))
+ (-4 *5 (-362)) (-5 *1 (-913 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-635 *5)) (-4 *5 (-362)) (-5 *2 (-1159 *5))
+ (-5 *1 (-913 *4 *5)) (-14 *4 (-1163))))
+ ((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-635 *6)) (-5 *4 (-762)) (-4 *6 (-362))
+ (-5 *2 (-406 (-942 *6))) (-5 *1 (-1040 *5 *6)) (-14 *5 (-1163)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-762)) (-5 *1 (-665 *3)) (-4 *3 (-1039))
+ (-4 *3 (-1087)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-550)) (-5 *2 (-1159 *3)) (-5 *1 (-41 *4 *3))
+ (-4 *3
+ (-13 (-362) (-301)
+ (-10 -8 (-15 -1874 ((-1112 *4 (-604 $)) $))
+ (-15 -1885 ((-1112 *4 (-604 $)) $))
+ (-15 -3220 ($ (-1112 *4 (-604 $))))))))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-762)) (-5 *6 (-112)) (-4 *7 (-450)) (-4 *8 (-784))
+ (-4 *9 (-841)) (-4 *3 (-1053 *7 *8 *9))
+ (-5 *2
+ (-2 (|:| |done| (-635 *4))
+ (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -2396 *4))))))
+ (-5 *1 (-1057 *7 *8 *9 *3 *4)) (-4 *4 (-1059 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-762)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841))
+ (-4 *3 (-1053 *6 *7 *8))
(-5 *2
- (-2 (|:| |solns| (-631 *5))
- (|:| |maps| (-631 (-2 (|:| |arg| *5) (|:| |res| *5))))))
- (-5 *1 (-1110 *3 *5)) (-4 *3 (-1217 *5)))))
+ (-2 (|:| |done| (-635 *4))
+ (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -2396 *4))))))
+ (-5 *1 (-1057 *6 *7 *8 *3 *4)) (-4 *4 (-1059 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
+ (-4 *3 (-1053 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-635 *4))
+ (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -2396 *4))))))
+ (-5 *1 (-1057 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-762)) (-5 *6 (-112)) (-4 *7 (-450)) (-4 *8 (-784))
+ (-4 *9 (-841)) (-4 *3 (-1053 *7 *8 *9))
+ (-5 *2
+ (-2 (|:| |done| (-635 *4))
+ (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -2396 *4))))))
+ (-5 *1 (-1132 *7 *8 *9 *3 *4)) (-4 *4 (-1096 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-762)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841))
+ (-4 *3 (-1053 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-635 *4))
+ (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -2396 *4))))))
+ (-5 *1 (-1132 *6 *7 *8 *3 *4)) (-4 *4 (-1096 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
+ (-4 *3 (-1053 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-635 *4))
+ (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -2396 *4))))))
+ (-5 *1 (-1132 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-679 *2)) (-4 *2 (-171)) (-5 *1 (-145 *2))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-171)) (-4 *2 (-1222 *4)) (-5 *1 (-176 *4 *2 *3))
+ (-4 *3 (-715 *4 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-679 (-406 (-942 *5)))) (-5 *4 (-1163))
+ (-5 *2 (-942 *5)) (-5 *1 (-291 *5)) (-4 *5 (-450))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-679 (-406 (-942 *4)))) (-5 *2 (-942 *4))
+ (-5 *1 (-291 *4)) (-4 *4 (-450))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1222 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-679 (-168 (-406 (-558)))))
+ (-5 *2 (-942 (-168 (-406 (-558))))) (-5 *1 (-755 *4))
+ (-4 *4 (-13 (-362) (-839)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-679 (-168 (-406 (-558))))) (-5 *4 (-1163))
+ (-5 *2 (-942 (-168 (-406 (-558))))) (-5 *1 (-755 *5))
+ (-4 *5 (-13 (-362) (-839)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-679 (-406 (-558)))) (-5 *2 (-942 (-406 (-558))))
+ (-5 *1 (-770 *4)) (-4 *4 (-13 (-362) (-839)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-679 (-406 (-558)))) (-5 *4 (-1163))
+ (-5 *2 (-942 (-406 (-558)))) (-5 *1 (-770 *5))
+ (-4 *5 (-13 (-362) (-839))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-555))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1159 (-406 (-558)))) (-5 *1 (-932)) (-5 *3 (-558)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-502 (-406 (-558)) (-239 *5 (-762)) (-855 *4)
+ (-246 *4 (-406 (-558)))))
+ (-14 *4 (-635 (-1163))) (-14 *5 (-762)) (-5 *2 (-112))
+ (-5 *1 (-503 *4 *5)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-762)) (-4 *4 (-348)) (-5 *1 (-215 *4 *2))
+ (-4 *2 (-1222 *4)))))
+(((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 (-558)) (-5 *1 (-1143 *3)) (-4 *3 (-1200))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4383)) (-4 *1 (-1234 *2)) (-4 *2 (-1200)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374)))
- (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1157))))
- (-5 *1 (-1157)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-631 (-554))) (-5 *3 (-112)) (-5 *1 (-1092)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-167 (-221)) (-167 (-221)))) (-5 *4 (-1076 (-221)))
- (-5 *2 (-1243)) (-5 *1 (-252)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-374)) (-5 *1 (-97)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-758)) (-4 *4 (-1034))
- (-5 *2 (-2 (|:| -2325 *1) (|:| -2423 *1))) (-4 *1 (-1217 *4)))))
+ (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378)))
+ (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1162))))
+ (-5 *1 (-1162)))))
+(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1037)))))
+(((*1 *2 *1 *3 *3 *3 *2)
+ (-12 (-5 *3 (-762)) (-5 *1 (-665 *2)) (-4 *2 (-1087)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2))
- (-4 *2 (-13 (-425 *3) (-1180))))))
-(((*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1243))))
- ((*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1243)))))
-(((*1 *1 *2 *2 *3 *1)
- (-12 (-5 *2 (-1158)) (-5 *3 (-1086)) (-5 *1 (-286)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-575 *3)) (-4 *3 (-358)))))
+ (|partial| -12 (-5 *2 (-1159 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))))
(((*1 *2 *2)
+ (-12 (-4 *3 (-550)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-362) (-301)
+ (-10 -8 (-15 -1874 ((-1112 *3 (-604 $)) $))
+ (-15 -1885 ((-1112 *3 (-604 $)) $))
+ (-15 -3220 ($ (-1112 *3 (-604 $)))))))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-550)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-362) (-301)
+ (-10 -8 (-15 -1874 ((-1112 *3 (-604 $)) $))
+ (-15 -1885 ((-1112 *3 (-604 $)) $))
+ (-15 -3220 ($ (-1112 *3 (-604 $)))))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-635 *2))
+ (-4 *2
+ (-13 (-362) (-301)
+ (-10 -8 (-15 -1874 ((-1112 *4 (-604 $)) $))
+ (-15 -1885 ((-1112 *4 (-604 $)) $))
+ (-15 -3220 ($ (-1112 *4 (-604 $)))))))
+ (-4 *4 (-550)) (-5 *1 (-41 *4 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-635 (-604 *2)))
+ (-4 *2
+ (-13 (-362) (-301)
+ (-10 -8 (-15 -1874 ((-1112 *4 (-604 $)) $))
+ (-15 -1885 ((-1112 *4 (-604 $)) $))
+ (-15 -3220 ($ (-1112 *4 (-604 $)))))))
+ (-4 *4 (-550)) (-5 *1 (-41 *4 *2)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-762)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841))
+ (-4 *3 (-1053 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-635 *4))
+ (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -2396 *4))))))
+ (-5 *1 (-1057 *6 *7 *8 *3 *4)) (-4 *4 (-1059 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
+ (-4 *3 (-1053 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-635 *4))
+ (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -2396 *4))))))
+ (-5 *1 (-1057 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-762)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841))
+ (-4 *3 (-1053 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-635 *4))
+ (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -2396 *4))))))
+ (-5 *1 (-1132 *6 *7 *8 *3 *4)) (-4 *4 (-1096 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
+ (-4 *3 (-1053 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-635 *4))
+ (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -2396 *4))))))
+ (-5 *1 (-1132 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-306))
+ (-5 *2 (-635 (-762))) (-5 *1 (-769 *3 *4 *5 *6 *7))
+ (-4 *3 (-1222 *6)) (-4 *7 (-939 *6 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1159 (-558))) (-5 *1 (-932)) (-5 *3 (-558)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-362)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112))
+ (-5 *1 (-502 *4 *5 *6 *3)) (-4 *3 (-939 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-348))
+ (-5 *2 (-635 (-2 (|:| |deg| (-762)) (|:| -3819 *3))))
+ (-5 *1 (-215 *4 *3)) (-4 *3 (-1222 *4)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4383)) (-4 *1 (-1234 *2)) (-4 *2 (-1200)))))
+(((*1 *1 *2 *2)
(-12
(-5 *2
- (-631
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-758)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-780)) (-4 *6 (-934 *3 *4 *5)) (-4 *3 (-446)) (-4 *5 (-836))
- (-5 *1 (-443 *3 *4 *5 *6)))))
+ (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378)))
+ (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1162))))
+ (-5 *1 (-1162)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-558))) (-5 *1 (-1037)))))
+(((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1163)) (-5 *1 (-665 *3)) (-4 *3 (-1087)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1158)) (-4 *4 (-546)) (-4 *4 (-836))
- (-5 *1 (-563 *4 *2)) (-4 *2 (-425 *4)))))
+ (|partial| -12 (-5 *2 (-1159 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841))
+ (-4 *3 (-1053 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-635 *4))
+ (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -2396 *4))))))
+ (-5 *1 (-1057 *6 *7 *8 *3 *4)) (-4 *4 (-1059 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
+ (-4 *3 (-1053 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-635 *4))
+ (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -2396 *4))))))
+ (-5 *1 (-1132 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-4 *6 (-1222 *9)) (-4 *7 (-784)) (-4 *8 (-841)) (-4 *9 (-306))
+ (-4 *10 (-939 *9 *7 *8))
+ (-5 *2
+ (-2 (|:| |deter| (-635 (-1159 *10)))
+ (|:| |dterm|
+ (-635 (-635 (-2 (|:| -3360 (-762)) (|:| |pcoef| *10)))))
+ (|:| |nfacts| (-635 *6)) (|:| |nlead| (-635 *10))))
+ (-5 *1 (-769 *6 *7 *8 *9 *10)) (-5 *3 (-1159 *10)) (-5 *4 (-635 *6))
+ (-5 *5 (-635 *10)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-631 (-530))) (-5 *2 (-1158)) (-5 *1 (-530)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1163)))))
-(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1195)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1066 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-554) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1066 *2)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158))))
- (-4 *6 (-780)) (-4 *7 (-934 *4 *6 *5))
+ (-12 (-5 *3 (-1159 (-558))) (-5 *2 (-558)) (-5 *1 (-932)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-224)) (-5 *2 (-112)) (-5 *1 (-298 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3)))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1081 (-834 (-224)))) (-5 *3 (-224)) (-5 *2 (-112))
+ (-5 *1 (-304))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-112))
+ (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-939 *3 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-348))
+ (-5 *2
+ (-2 (|:| |cont| *5)
+ (|:| -1849 (-635 (-2 (|:| |irr| *3) (|:| -1896 (-558)))))))
+ (-5 *1 (-215 *5 *3)) (-4 *3 (-1222 *5)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4382)) (-4 *1 (-150 *2)) (-4 *2 (-1200))
+ (-4 *2 (-1087)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-114)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-558)) (|has| *1 (-6 -4383)) (-4 *1 (-1234 *3))
+ (-4 *3 (-1200)))))
+(((*1 *1 *2 *2)
+ (-12
(-5 *2
- (-2 (|:| |sysok| (-112)) (|:| |z0| (-631 *7)) (|:| |n0| (-631 *7))))
- (-5 *1 (-909 *4 *5 *6 *7)) (-5 *3 (-631 *7)))))
+ (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378)))
+ (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1162))))
+ (-5 *1 (-1162)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-558))) (-5 *1 (-1037)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1246 (-762))) (-5 *1 (-665 *3)) (-4 *3 (-1087)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1159 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 *9)) (-4 *8 (-1053 *5 *6 *7))
+ (-4 *9 (-1059 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-784))
+ (-4 *7 (-841)) (-5 *2 (-762)) (-5 *1 (-1057 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 *9)) (-4 *8 (-1053 *5 *6 *7))
+ (-4 *9 (-1096 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-784))
+ (-4 *7 (-841)) (-5 *2 (-762)) (-5 *1 (-1132 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-348)) (-4 *5 (-328 *4)) (-4 *6 (-1222 *5))
+ (-5 *2 (-635 *3)) (-5 *1 (-768 *4 *5 *6 *3 *7)) (-4 *3 (-1222 *6))
+ (-14 *7 (-911)))))
+(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-555))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1159 (-406 (-558)))) (-5 *1 (-932)) (-5 *3 (-558)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-362)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112))
+ (-5 *1 (-502 *4 *5 *6 *3)) (-4 *3 (-939 *4 *5 *6)))))
+(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-1087)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-362)) (-4 *6 (-1222 (-406 *2)))
+ (-4 *2 (-1222 *5)) (-5 *1 (-214 *5 *2 *6 *3))
+ (-4 *3 (-341 *5 *2 *6)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-765)) (-5 *1 (-114)))))
+(((*1 *2 *1)
+ (|partial| -12
+ (-4 *3 (-13 (-841) (-1028 (-558)) (-631 (-558)) (-450)))
+ (-5 *2 (-834 *4)) (-5 *1 (-312 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1185) (-429 *3))) (-14 *5 (-1163))
+ (-14 *6 *4)))
+ ((*1 *2 *1)
+ (|partial| -12
+ (-4 *3 (-13 (-841) (-1028 (-558)) (-631 (-558)) (-450)))
+ (-5 *2 (-834 *4)) (-5 *1 (-1232 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1185) (-429 *3))) (-14 *5 (-1163))
+ (-14 *6 *4))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-315 (-558))) (|:| -3215 (-315 (-378)))
+ (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1162))))
+ (-5 *1 (-1162)))))
+(((*1 *1 *1 *1) (-4 *1 (-142)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-157 *3 *2))
+ (-4 *2 (-429 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543))))
+ ((*1 *1 *1 *1) (-5 *1 (-853)))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-558))) (-5 *1 (-1037))
+ (-5 *3 (-558)))))
+(((*1 *2 *1) (-12 (-4 *1 (-664 *3)) (-4 *3 (-1200)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1159 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 *9)) (-4 *8 (-1053 *5 *6 *7))
+ (-4 *9 (-1059 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-784))
+ (-4 *7 (-841)) (-5 *2 (-762)) (-5 *1 (-1057 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 *9)) (-4 *8 (-1053 *5 *6 *7))
+ (-4 *9 (-1096 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-784))
+ (-4 *7 (-841)) (-5 *2 (-762)) (-5 *1 (-1132 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
+ (-4 *3 (-1053 *5 *6 *7))
+ (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -2396 *4))))
+ (-5 *1 (-767 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1159 (-558))) (-5 *1 (-190)) (-5 *3 (-558))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-762)) (-5 *1 (-774 *2)) (-4 *2 (-171))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1159 (-558))) (-5 *1 (-932)) (-5 *3 (-558)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-112))
+ (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-939 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-635 *6)) (-4 *6 (-841)) (-4 *4 (-362)) (-4 *5 (-784))
+ (-5 *2 (-112)) (-5 *1 (-502 *4 *5 *6 *7)) (-4 *7 (-939 *4 *5 *6)))))
+(((*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-841))))
+ ((*1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-841))))
+ ((*1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-841))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-1193 *2 *3 *4 *5)) (-4 *2 (-550))
+ (-4 *3 (-784)) (-4 *4 (-841)) (-4 *5 (-1053 *2 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-762)) (-4 *1 (-1234 *3)) (-4 *3 (-1200))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1200)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |pde| (-635 (-315 (-224))))
+ (|:| |constraints|
+ (-635
+ (-2 (|:| |start| (-224)) (|:| |finish| (-224))
+ (|:| |grid| (-762)) (|:| |boundaryType| (-558))
+ (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224))))))
+ (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145))
+ (|:| |tol| (-224))))
+ (-5 *2 (-112)) (-5 *1 (-209)))))
(((*1 *2 *1)
(|partial| -12
- (-4 *3 (-13 (-836) (-1023 (-554)) (-627 (-554)) (-446)))
+ (-4 *3 (-13 (-841) (-1028 (-558)) (-631 (-558)) (-450)))
(-5 *2
(-2
(|:| |%term|
- (-2 (|:| |%coef| (-1226 *4 *5 *6))
- (|:| |%expon| (-314 *4 *5 *6))
+ (-2 (|:| |%coef| (-1231 *4 *5 *6))
+ (|:| |%expon| (-318 *4 *5 *6))
(|:| |%expTerms|
- (-631 (-2 (|:| |k| (-402 (-554))) (|:| |c| *4))))))
- (|:| |%type| (-1140))))
- (-5 *1 (-1227 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1180) (-425 *3)))
- (-14 *5 (-1158)) (-14 *6 *4))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-413 *3)) (-4 *3 (-546)) (-5 *1 (-414 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-631 (-173))) (-5 *1 (-1067)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-836)) (-5 *4 (-631 *6))
- (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-631 *4))))
- (-5 *1 (-1166 *6)) (-5 *5 (-631 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-847))))
- ((*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-847)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-631 (-631 (-928 (-221))))) (-5 *2 (-631 (-221)))
- (-5 *1 (-462)))))
-(((*1 *2 *1) (-12 (-5 *2 (-631 (-600 *1))) (-4 *1 (-297)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1154 *1)) (-4 *1 (-997)))))
+ (-635 (-2 (|:| |k| (-406 (-558))) (|:| |c| *4))))))
+ (|:| |%type| (-1145))))
+ (-5 *1 (-1232 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1185) (-429 *3)))
+ (-14 *5 (-1163)) (-14 *6 *4))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1089 *4)) (-4 *4 (-1087)) (-5 *2 (-1 *4))
+ (-5 *1 (-1007 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-378))) (-5 *1 (-1030)) (-5 *3 (-378))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1081 (-558))) (-5 *2 (-1 (-558))) (-5 *1 (-1037)))))
+(((*1 *2 *1) (-12 (-4 *1 (-664 *3)) (-4 *3 (-1200)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1159 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))))
+(((*1 *1) (-5 *1 (-140))) ((*1 *1 *1) (-5 *1 (-143)))
+ ((*1 *1 *1) (-4 *1 (-1131))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-1145)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841))
+ (-4 *4 (-1053 *6 *7 *8)) (-5 *2 (-1251))
+ (-5 *1 (-767 *6 *7 *8 *4 *5)) (-4 *5 (-1059 *6 *7 *8 *4)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-762)) (-5 *1 (-847 *2)) (-4 *2 (-171))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1159 (-558))) (-5 *1 (-932)) (-5 *3 (-558)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841))
+ (-5 *1 (-502 *3 *4 *5 *2)) (-4 *2 (-939 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-362)) (-4 *3 (-784)) (-4 *4 (-841))
+ (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-939 *2 *3 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3))
- (-4 *5 (-1217 (-402 *4))) (-5 *2 (-112)))))
-(((*1 *1 *1 *1) (-4 *1 (-647))) ((*1 *1 *1 *1) (-5 *1 (-1102))))
-(((*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-911)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-221)) (-5 *4 (-554))
- (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-64 G)))) (-5 *2 (-1020))
- (-5 *1 (-735)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-675 *3)) (-4 *3 (-1034)) (-5 *1 (-676 *3)))))
+ (-12 (-4 *1 (-596 *3 *2)) (-4 *3 (-1087)) (-4 *3 (-841))
+ (-4 *2 (-1200))))
+ ((*1 *2 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-841))))
+ ((*1 *2 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-841))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1200)) (-5 *1 (-863 *2 *3)) (-4 *3 (-1200))))
+ ((*1 *2 *1) (-12 (-5 *2 (-662 *3)) (-5 *1 (-883 *3)) (-4 *3 (-841))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1193 *3 *4 *5 *2)) (-4 *3 (-550))
+ (-4 *4 (-784)) (-4 *5 (-841)) (-4 *2 (-1053 *3 *4 *5))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-762)) (-4 *1 (-1234 *3)) (-4 *3 (-1200))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1200)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-635 (-315 (-224)))) (-5 *3 (-224)) (-5 *2 (-112))
+ (-5 *1 (-209)))))
+(((*1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-23)))))
+(((*1 *2 *1) (-12 (-4 *1 (-664 *3)) (-4 *3 (-1200)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-911)) (-5 *2 (-1159 *4)) (-5 *1 (-356 *4))
+ (-4 *4 (-348)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1131)) (-5 *2 (-140))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1131)) (-5 *2 (-143)))))
+(((*1 *1 *1) (-4 *1 (-1131))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1163))
+ (-4 *4 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *4)))))
+ ((*1 *1 *1) (-5 *1 (-378)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
+ (-4 *3 (-1053 *5 *6 *7))
+ (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -2396 *4))))
+ (-5 *1 (-767 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-762)) (-5 *1 (-847 *2)) (-4 *2 (-171))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1159 (-558))) (-5 *1 (-932)) (-5 *3 (-558)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-635 *6)) (-4 *6 (-841)) (-4 *4 (-362)) (-4 *5 (-784))
+ (-5 *2
+ (-2 (|:| |mval| (-679 *4)) (|:| |invmval| (-679 *4))
+ (|:| |genIdeal| (-502 *4 *5 *6 *7))))
+ (-5 *1 (-502 *4 *5 *6 *7)) (-4 *7 (-939 *4 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-315 (-224))) (-5 *1 (-209)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5))
+ (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841))
+ (-5 *1 (-1259 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-635 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-550))
+ (-4 *6 (-784)) (-4 *7 (-841)) (-5 *1 (-1259 *5 *6 *7 *8)))))
+(((*1 *1) (-5 *1 (-156)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-23)))))
+(((*1 *1 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1200)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-911)) (-5 *2 (-1159 *4)) (-5 *1 (-356 *4))
+ (-4 *4 (-348)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1131)) (-5 *2 (-140))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1131)) (-5 *2 (-143)))))
+(((*1 *1) (-5 *1 (-140))) ((*1 *1 *1) (-5 *1 (-143)))
+ ((*1 *1 *1) (-4 *1 (-1131))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-4 *2 (-1053 *4 *5 *6)) (-5 *1 (-767 *4 *5 *6 *2 *3))
+ (-4 *3 (-1059 *4 *5 *6 *2)))))
+(((*1 *2 *3) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-555)) (-5 *3 (-558))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1159 (-406 (-558)))) (-5 *1 (-932)) (-5 *3 (-558)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |mval| (-679 *3)) (|:| |invmval| (-679 *3))
+ (|:| |genIdeal| (-502 *3 *4 *5 *6))))
+ (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841))
+ (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-939 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
+ (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224)))
+ (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224)))
+ (|:| |abserr| (-224)) (|:| |relerr| (-224))))
+ (-5 *2 (-378)) (-5 *1 (-204)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5))
+ (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841))
+ (-5 *1 (-1259 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-635 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-550))
+ (-4 *6 (-784)) (-4 *7 (-841)) (-5 *1 (-1259 *5 *6 *7 *8)))))
+(((*1 *1) (-5 *1 (-156)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-23)))))
+(((*1 *2 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1200)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-911)) (-5 *2 (-1159 *4)) (-5 *1 (-356 *4))
+ (-4 *4 (-348)))))
+(((*1 *1 *1) (-4 *1 (-1131))))
+(((*1 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-489)) (-5 *3 (-944)) (-5 *1 (-531))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *3 (-944)) (-4 *1 (-758 *2)) (-4 *2 (-1087)))))
+(((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 (-882 *6)))
+ (-5 *5 (-1 (-879 *6 *8) *8 (-882 *6) (-879 *6 *8))) (-4 *6 (-1087))
+ (-4 *8 (-13 (-1039) (-606 (-882 *6)) (-1028 *7)))
+ (-5 *2 (-879 *6 *8)) (-4 *7 (-13 (-1039) (-841)))
+ (-5 *1 (-931 *6 *7 *8)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-362)) (-4 *3 (-784)) (-4 *4 (-841))
+ (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-939 *2 *3 *4)))))
+(((*1 *2)
+ (-12 (-14 *4 *2) (-4 *5 (-1200)) (-5 *2 (-762))
+ (-5 *1 (-236 *3 *4 *5)) (-4 *3 (-237 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-130))
+ (-5 *2 (-762))))
+ ((*1 *2)
+ (-12 (-4 *4 (-362)) (-5 *2 (-762)) (-5 *1 (-327 *3 *4))
+ (-4 *3 (-328 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-360 *3)) (-4 *3 (-1087))))
+ ((*1 *2) (-12 (-4 *1 (-367)) (-5 *2 (-762))))
+ ((*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-385 *3)) (-4 *3 (-1087))))
+ ((*1 *2)
+ (-12 (-4 *4 (-1087)) (-5 *2 (-762)) (-5 *1 (-423 *3 *4))
+ (-4 *3 (-424 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-762)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-1087))
+ (-4 *4 (-23)) (-14 *5 *4)))
+ ((*1 *2)
+ (-12 (-4 *4 (-171)) (-4 *5 (-1222 *4)) (-5 *2 (-762))
+ (-5 *1 (-714 *3 *4 *5)) (-4 *3 (-715 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-810 *3)) (-4 *3 (-841))))
+ ((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-996))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-839) (-362))) (-5 *1 (-1049 *2 *3))
+ (-4 *3 (-1222 *2)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
+ (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224)))
+ (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224)))
+ (|:| |abserr| (-224)) (|:| |relerr| (-224))))
+ (-5 *2 (-378)) (-5 *1 (-204)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-550))
+ (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-635 (-1259 *4 *5 *6 *7)))
+ (-5 *1 (-1259 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-635 *9)) (-5 *4 (-1 (-112) *9 *9))
+ (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1053 *6 *7 *8)) (-4 *6 (-550))
+ (-4 *7 (-784)) (-4 *8 (-841)) (-5 *2 (-635 (-1259 *6 *7 *8 *9)))
+ (-5 *1 (-1259 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-635 (-262))) (-5 *4 (-1163))
+ (-5 *1 (-261 *2)) (-4 *2 (-1200))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-635 (-262))) (-5 *4 (-1163)) (-5 *2 (-52))
+ (-5 *1 (-262)))))
+(((*1 *1) (-5 *1 (-156)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-23)))))
+(((*1 *1 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1200)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-911)) (-5 *2 (-1159 *4)) (-5 *1 (-356 *4))
+ (-4 *4 (-348)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-879 *5 *3)) (-5 *4 (-882 *5)) (-4 *5 (-1087))
+ (-4 *3 (-165 *6)) (-4 (-942 *6) (-876 *5))
+ (-4 *6 (-13 (-876 *5) (-171))) (-5 *1 (-177 *5 *6 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-879 *4 *1)) (-5 *3 (-882 *4)) (-4 *1 (-876 *4))
+ (-4 *4 (-1087))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-879 *5 *6)) (-5 *4 (-882 *5)) (-4 *5 (-1087))
+ (-4 *6 (-13 (-1087) (-1028 *3))) (-4 *3 (-876 *5))
+ (-5 *1 (-921 *5 *3 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-879 *5 *3)) (-4 *5 (-1087))
+ (-4 *3 (-13 (-429 *6) (-606 *4) (-876 *5) (-1028 (-604 $))))
+ (-5 *4 (-882 *5)) (-4 *6 (-13 (-550) (-841) (-876 *5)))
+ (-5 *1 (-922 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-879 (-558) *3)) (-5 *4 (-882 (-558))) (-4 *3 (-543))
+ (-5 *1 (-923 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-879 *5 *6)) (-5 *3 (-604 *6)) (-4 *5 (-1087))
+ (-4 *6 (-13 (-841) (-1028 (-604 $)) (-606 *4) (-876 *5)))
+ (-5 *4 (-882 *5)) (-5 *1 (-924 *5 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-875 *5 *6 *3)) (-5 *4 (-882 *5)) (-4 *5 (-1087))
+ (-4 *6 (-876 *5)) (-4 *3 (-656 *6)) (-5 *1 (-925 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *5 (-1 (-879 *6 *3) *8 (-882 *6) (-879 *6 *3)))
+ (-4 *8 (-841)) (-5 *2 (-879 *6 *3)) (-5 *4 (-882 *6))
+ (-4 *6 (-1087)) (-4 *3 (-13 (-939 *9 *7 *8) (-606 *4)))
+ (-4 *7 (-784)) (-4 *9 (-13 (-1039) (-841) (-876 *6)))
+ (-5 *1 (-926 *6 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-879 *5 *3)) (-4 *5 (-1087))
+ (-4 *3 (-13 (-939 *8 *6 *7) (-606 *4))) (-5 *4 (-882 *5))
+ (-4 *7 (-876 *5)) (-4 *6 (-784)) (-4 *7 (-841))
+ (-4 *8 (-13 (-1039) (-841) (-876 *5)))
+ (-5 *1 (-926 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-879 *5 *3)) (-4 *5 (-1087)) (-4 *3 (-982 *6))
+ (-4 *6 (-13 (-550) (-876 *5) (-606 *4))) (-5 *4 (-882 *5))
+ (-5 *1 (-929 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-879 *5 (-1163))) (-5 *3 (-1163)) (-5 *4 (-882 *5))
+ (-4 *5 (-1087)) (-5 *1 (-930 *5))))
+ ((*1 *2 *3 *4 *5 *2 *6)
+ (-12 (-5 *4 (-635 (-882 *7))) (-5 *5 (-1 *9 (-635 *9)))
+ (-5 *6 (-1 (-879 *7 *9) *9 (-882 *7) (-879 *7 *9))) (-4 *7 (-1087))
+ (-4 *9 (-13 (-1039) (-606 (-882 *7)) (-1028 *8)))
+ (-5 *2 (-879 *7 *9)) (-5 *3 (-635 *9)) (-4 *8 (-13 (-1039) (-841)))
+ (-5 *1 (-931 *7 *8 *9)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1222 *3))
+ (-4 *5 (-1222 (-406 *4))) (-4 *6 (-341 *3 *4 *5))
+ (-5 *2 (-412 *4 (-406 *4) *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1246 *6)) (-4 *6 (-13 (-408 *4 *5) (-1028 *4)))
+ (-4 *4 (-982 *3)) (-4 *5 (-1222 *4)) (-4 *3 (-306))
+ (-5 *1 (-412 *3 *4 *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-635 *6)) (-4 *6 (-939 *3 *4 *5)) (-4 *3 (-362))
+ (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-502 *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
+ (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224)))
+ (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224)))
+ (|:| |abserr| (-224)) (|:| |relerr| (-224))))
+ (-5 *2 (-378)) (-5 *1 (-204)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-762)) (-5 *2 (-1251)) (-5 *1 (-856 *4 *5 *6 *7))
+ (-4 *4 (-1039)) (-14 *5 (-635 (-1163))) (-14 *6 (-635 *3))
+ (-14 *7 *3)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-762)) (-4 *4 (-1039)) (-4 *5 (-841)) (-4 *6 (-784))
+ (-14 *8 (-635 *5)) (-5 *2 (-1251))
+ (-5 *1 (-1258 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-939 *4 *6 *5))
+ (-14 *9 (-635 *3)) (-14 *10 *3))))
+(((*1 *2) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-23)))))
+(((*1 *2 *1) (-12 (-4 *1 (-664 *3)) (-4 *3 (-1200)) (-5 *2 (-762)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-911)) (-5 *2 (-1159 *4)) (-5 *1 (-356 *4))
+ (-4 *4 (-348)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1172 (-635 *4))) (-4 *4 (-841))
+ (-5 *2 (-635 (-635 *4))) (-5 *1 (-1171 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1087) (-1028 *5)))
+ (-4 *5 (-876 *4)) (-4 *4 (-1087)) (-5 *2 (-1 (-112) *5))
+ (-5 *1 (-921 *4 *5 *6)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-635 *6)) (-4 *6 (-939 *3 *4 *5)) (-4 *3 (-362))
+ (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-502 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-638 *5)) (-4 *5 (-1039))
+ (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-843 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-679 *3)) (-4 *1 (-416 *3)) (-4 *3 (-171))))
+ ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039))))
+ ((*1 *2 *3 *2 *2 *4 *5)
+ (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1039))
+ (-5 *1 (-844 *2 *3)) (-4 *3 (-843 *2)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
+ (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224)))
+ (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224)))
+ (|:| |abserr| (-224)) (|:| |relerr| (-224))))
+ (-5 *2 (-378)) (-5 *1 (-204)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1256)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-406 (-942 *4))) (-4 *4 (-306))
+ (-5 *2 (-406 (-417 (-942 *4)))) (-5 *1 (-1032 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-810 *4)) (-4 *4 (-841)) (-5 *2 (-112))
+ (-5 *1 (-662 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-356 *3)) (-4 *3 (-348)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-635 (-635 *4)))) (-5 *2 (-635 (-635 *4)))
+ (-5 *1 (-1171 *4)) (-4 *4 (-841)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
+(((*1 *2 *1) (-12 (-5 *2 (-138)) (-5 *1 (-139))))
+ ((*1 *2 *1) (-12 (-5 *2 (-186)) (-5 *1 (-182))))
+ ((*1 *2 *1) (-12 (-5 *2 (-248)) (-5 *1 (-247)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-635 (-933 (-224)))))
+ (-5 *2 (-635 (-1081 (-224)))) (-5 *1 (-918)))))
(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1044 (-1009 *3) (-1154 (-1009 *3))))
- (-5 *1 (-1009 *3)) (-4 *3 (-13 (-834) (-358) (-1007))))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-848)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-539)) (-5 *2 (-112)))))
+ (-12 (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-112))
+ (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-939 *3 *4 *5)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-635 *2)) (-4 *2 (-1087)) (-4 *2 (-1200)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-446))
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
+ (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224)))
+ (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224)))
+ (|:| |abserr| (-224)) (|:| |relerr| (-224))))
(-5 *2
- (-631
- (-2 (|:| |eigval| (-3 (-402 (-937 *4)) (-1147 (-1158) (-937 *4))))
- (|:| |geneigvec| (-631 (-675 (-402 (-937 *4))))))))
- (-5 *1 (-287 *4)) (-5 *3 (-675 (-402 (-937 *4)))))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-600 *4)) (-4 *4 (-836)) (-4 *2 (-836))
- (-5 *1 (-599 *2 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-133)))))
-(((*1 *1 *1 *1) (-4 *1 (-647))) ((*1 *1 *1 *1) (-5 *1 (-1102))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1082))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-806 *2)) (-4 *2 (-836)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-961 *3 *4 *2 *5)) (-4 *3 (-1034)) (-4 *4 (-780))
- (-4 *2 (-836)) (-4 *5 (-1048 *3 *4 *2)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-322 *3)) (-4 *3 (-1195))))
+ (-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))))
+ (-5 *1 (-204)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1256)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-558)) (-5 *3 (-911)) (-4 *1 (-403))))
+ ((*1 *1 *2 *2) (-12 (-5 *2 (-558)) (-4 *1 (-403))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1090 *3 *4 *5 *2 *6)) (-4 *3 (-1087)) (-4 *4 (-1087))
+ (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *2 (-1087)))))
+(((*1 *2 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1 (-378))) (-5 *1 (-1030)))))
+(((*1 *1 *2) (-12 (-5 *2 (-810 *3)) (-4 *3 (-841)) (-5 *1 (-662 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-356 *3)) (-4 *3 (-348)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1200)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *2 (-635 *3))))
+ ((*1 *2 *1)
+ (-12 (|has| *1 (-6 -4382)) (-4 *1 (-487 *3)) (-4 *3 (-1200))
+ (-5 *2 (-635 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-635 (-635 (-635 *4)))) (-5 *2 (-635 (-635 *4)))
+ (-4 *4 (-841)) (-5 *1 (-1171 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
+(((*1 *1 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-933 (-224)) (-224))) (-5 *3 (-1081 (-224)))
+ (-5 *1 (-916))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-933 (-224)) (-224))) (-5 *3 (-1081 (-224)))
+ (-5 *1 (-916))))
+ ((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-933 (-224)) (-224))) (-5 *3 (-1081 (-224)))
+ (-5 *1 (-917))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-933 (-224)) (-224))) (-5 *3 (-1081 (-224)))
+ (-5 *1 (-917)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-635 *6)) (-4 *6 (-841)) (-4 *4 (-362)) (-4 *5 (-784))
+ (-5 *1 (-502 *4 *5 *6 *2)) (-4 *2 (-939 *4 *5 *6))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-554)) (-5 *1 (-510 *3 *4)) (-4 *3 (-1195)) (-14 *4 *2))))
+ (-12 (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841))
+ (-5 *1 (-502 *3 *4 *5 *2)) (-4 *2 (-939 *3 *4 *5)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-635 *2)) (-4 *2 (-1087)) (-4 *2 (-1200)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-679 (-315 (-224))))
+ (-5 *2
+ (-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))))
+ (-5 *1 (-204)))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-13 (-306) (-10 -8 (-15 -1380 ((-417 $) $)))))
+ (-4 *4 (-1222 *3))
+ (-5 *2
+ (-2 (|:| -2660 (-679 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-679 *3))))
+ (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-408 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-558)) (-4 *4 (-1222 *3))
+ (-5 *2
+ (-2 (|:| -2660 (-679 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-679 *3))))
+ (-5 *1 (-759 *4 *5)) (-4 *5 (-408 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-348)) (-4 *3 (-1222 *4)) (-4 *5 (-1222 *3))
+ (-5 *2
+ (-2 (|:| -2660 (-679 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-679 *3))))
+ (-5 *1 (-975 *4 *3 *5 *6)) (-4 *6 (-715 *3 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-348)) (-4 *3 (-1222 *4)) (-4 *5 (-1222 *3))
+ (-5 *2
+ (-2 (|:| -2660 (-679 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-679 *3))))
+ (-5 *1 (-1255 *4 *3 *5 *6)) (-4 *6 (-408 *3 *5)))))
(((*1 *2 *1)
(-12
(-5 *2
(-3 (|:| |nullBranch| "null")
(|:| |assignmentBranch|
- (-2 (|:| |var| (-1158))
- (|:| |arrayIndex| (-631 (-937 (-554))))
+ (-2 (|:| |var| (-1163))
+ (|:| |arrayIndex| (-635 (-942 (-558))))
(|:| |rand|
- (-2 (|:| |ints2Floats?| (-112)) (|:| -1533 (-848))))))
+ (-2 (|:| |ints2Floats?| (-112)) (|:| -1565 (-853))))))
(|:| |arrayAssignmentBranch|
- (-2 (|:| |var| (-1158)) (|:| |rand| (-848))
+ (-2 (|:| |var| (-1163)) (|:| |rand| (-853))
(|:| |ints2Floats?| (-112))))
(|:| |conditionalBranch|
- (-2 (|:| |switch| (-1157)) (|:| |thenClause| (-325))
- (|:| |elseClause| (-325))))
+ (-2 (|:| |switch| (-1162)) (|:| |thenClause| (-329))
+ (|:| |elseClause| (-329))))
(|:| |returnBranch|
- (-2 (|:| -3543 (-112))
- (|:| -2794
- (-2 (|:| |ints2Floats?| (-112)) (|:| -1533 (-848))))))
- (|:| |blockBranch| (-631 (-325)))
- (|:| |commentBranch| (-631 (-1140))) (|:| |callBranch| (-1140))
+ (-2 (|:| -3375 (-112))
+ (|:| -2925
+ (-2 (|:| |ints2Floats?| (-112)) (|:| -1565 (-853))))))
+ (|:| |blockBranch| (-635 (-329)))
+ (|:| |commentBranch| (-635 (-1145))) (|:| |callBranch| (-1145))
(|:| |forBranch|
- (-2 (|:| -3827 (-1074 (-937 (-554))))
- (|:| |span| (-937 (-554))) (|:| -4319 (-325))))
- (|:| |labelBranch| (-1102))
- (|:| |loopBranch| (-2 (|:| |switch| (-1157)) (|:| -4319 (-325))))
+ (-2 (|:| -1626 (-1079 (-942 (-558))))
+ (|:| |span| (-942 (-558))) (|:| -1337 (-329))))
+ (|:| |labelBranch| (-1107))
+ (|:| |loopBranch| (-2 (|:| |switch| (-1162)) (|:| -1337 (-329))))
(|:| |commonBranch|
- (-2 (|:| -4309 (-1158)) (|:| |contents| (-631 (-1158)))))
- (|:| |printBranch| (-631 (-848)))))
- (-5 *1 (-325)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-344)) (-4 *2 (-1034)) (-5 *1 (-699 *2 *3))
- (-4 *3 (-1217 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2))
- (-4 *2 (-13 (-425 *3) (-1180))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-1 (-112) *8))) (-4 *8 (-1048 *5 *6 *7))
- (-4 *5 (-546)) (-4 *6 (-780)) (-4 *7 (-836))
- (-5 *2 (-2 (|:| |goodPols| (-631 *8)) (|:| |badPols| (-631 *8))))
- (-5 *1 (-962 *5 *6 *7 *8)) (-5 *4 (-631 *8)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-779))
- (-5 *2 (-758))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-1082))
- (-5 *2 (-758))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-758)) (-5 *1 (-722 *3 *4)) (-4 *3 (-1034))
- (-4 *4 (-713)))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1140)) (-5 *4 (-167 (-221))) (-5 *5 (-554))
- (-5 *2 (-1020)) (-5 *1 (-745)))))
+ (-2 (|:| -1323 (-1163)) (|:| |contents| (-635 (-1163)))))
+ (|:| |printBranch| (-635 (-853)))))
+ (-5 *1 (-329)))))
+(((*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-356 *3)) (-4 *3 (-348)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-635 (-635 (-635 *4)))) (-5 *3 (-635 *4)) (-4 *4 (-841))
+ (-5 *1 (-1171 *4)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-813)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1163)) (-5 *5 (-1081 (-224))) (-5 *2 (-917))
+ (-5 *1 (-915 *3)) (-4 *3 (-606 (-534)))))
+ ((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *4 (-1163)) (-5 *5 (-1081 (-224))) (-5 *2 (-917))
+ (-5 *1 (-915 *3)) (-4 *3 (-606 (-534)))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1081 (-224))) (-5 *1 (-916))))
+ ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1081 (-224)))
+ (-5 *1 (-916))))
+ ((*1 *1 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1081 (-224)))
+ (-5 *1 (-916))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1081 (-224))) (-5 *1 (-917))))
+ ((*1 *1 *2 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1081 (-224)))
+ (-5 *1 (-917))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1081 (-224)))
+ (-5 *1 (-917))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-635 (-1 (-224) (-224)))) (-5 *3 (-1081 (-224)))
+ (-5 *1 (-917))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-635 (-1 (-224) (-224)))) (-5 *3 (-1081 (-224)))
+ (-5 *1 (-917))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1081 (-224)))
+ (-5 *1 (-917))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1081 (-224)))
+ (-5 *1 (-917)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1199)) (-4 *3 (-1217 *4))
- (-4 *5 (-1217 (-402 *3))) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3))
- (-4 *5 (-1217 (-402 *4))) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-681 *3)) (-4 *3 (-1082))
- (-5 *2 (-631 (-2 (|:| -2701 *3) (|:| -2777 (-758))))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-112))
- (-5 *1 (-498 *3 *4 *5 *6)) (-4 *6 (-934 *3 *4 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-631 *2)) (-4 *2 (-1048 *4 *5 *6)) (-4 *4 (-546))
- (-4 *5 (-780)) (-4 *6 (-836)) (-5 *1 (-962 *4 *5 *6 *2)))))
-(((*1 *1 *1 *1) (-5 *1 (-848))))
-(((*1 *2) (-12 (-5 *2 (-859)) (-5 *1 (-1244))))
- ((*1 *2 *2) (-12 (-5 *2 (-859)) (-5 *1 (-1244)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-1074 (-937 (-554)))) (-5 *3 (-937 (-554)))
- (-5 *1 (-325))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1074 (-937 (-554)))) (-5 *1 (-325)))))
+ (-12 (-5 *3 (-635 *7)) (-4 *7 (-939 *4 *5 *6)) (-4 *6 (-606 (-1163)))
+ (-4 *4 (-362)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-5 *2 (-1152 (-635 (-942 *4)) (-635 (-293 (-942 *4)))))
+ (-5 *1 (-502 *4 *5 *6 *7)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-635 *2)) (-4 *2 (-1087)) (-4 *2 (-1200)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-221)) (|:| |xend| (-221))
- (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221)))
- (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221)))
- (|:| |abserr| (-221)) (|:| |relerr| (-221))))
+ (-12 (-5 *3 (-635 (-534))) (-5 *2 (-1163)) (-5 *1 (-534)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4)))
+ (-5 *2 (-1246 *1)) (-4 *1 (-341 *3 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-13 (-306) (-10 -8 (-15 -1380 ((-417 $) $)))))
+ (-4 *4 (-1222 *3))
(-5 *2
- (-2 (|:| |stiffnessFactor| (-374)) (|:| |stabilityFactor| (-374))))
- (-5 *1 (-201)))))
-(((*1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848))))
- ((*1 *1 *1 *1) (-5 *1 (-848))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-3 (-402 (-937 *6)) (-1147 (-1158) (-937 *6))))
- (-5 *5 (-758)) (-4 *6 (-446)) (-5 *2 (-631 (-675 (-402 (-937 *6)))))
- (-5 *1 (-287 *6)) (-5 *4 (-675 (-402 (-937 *6))))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *3
- (-2 (|:| |eigval| (-3 (-402 (-937 *5)) (-1147 (-1158) (-937 *5))))
- (|:| |eigmult| (-758)) (|:| |eigvec| (-631 *4))))
- (-4 *5 (-446)) (-5 *2 (-631 (-675 (-402 (-937 *5)))))
- (-5 *1 (-287 *5)) (-5 *4 (-675 (-402 (-937 *5)))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-546) (-836) (-1023 (-554)))) (-5 *1 (-184 *3 *2))
- (-4 *2 (-13 (-27) (-1180) (-425 (-167 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-546) (-836) (-1023 (-554))))
- (-5 *1 (-184 *4 *2)) (-4 *2 (-13 (-27) (-1180) (-425 (-167 *4))))))
+ (-2 (|:| -2660 (-679 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-679 *3))))
+ (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-408 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1222 (-558)))
+ (-5 *2
+ (-2 (|:| -2660 (-679 (-558))) (|:| |basisDen| (-558))
+ (|:| |basisInv| (-679 (-558)))))
+ (-5 *1 (-759 *3 *4)) (-4 *4 (-408 (-558) *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-348)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 *4))
+ (-5 *2
+ (-2 (|:| -2660 (-679 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-679 *4))))
+ (-5 *1 (-975 *3 *4 *5 *6)) (-4 *6 (-715 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-348)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 *4))
+ (-5 *2
+ (-2 (|:| -2660 (-679 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-679 *4))))
+ (-5 *1 (-1255 *3 *4 *5 *6)) (-4 *6 (-408 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-679 (-315 (-224)))) (-5 *2 (-378)) (-5 *1 (-204)))))
+(((*1 *1 *1) (-4 *1 (-95)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *1 (-1184 *3 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1158))
- (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *1 (-1184 *4 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *4))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-758)) (-4 *4 (-358)) (-5 *1 (-881 *2 *4))
- (-4 *2 (-1217 *4)))))
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1148 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1149 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
+ (-4 *3 (-1053 *5 *6 *7))
+ (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -2396 *4))))
+ (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836))
- (-4 *3 (-1048 *5 *6 *7))
- (-5 *2 (-631 (-2 (|:| |val| (-112)) (|:| -2143 *4))))
- (-5 *1 (-763 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1158)) (-5 *2 (-1 *6 *5)) (-5 *1 (-693 *4 *5 *6))
- (-4 *4 (-602 (-530))) (-4 *5 (-1195)) (-4 *6 (-1195)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1154 *1)) (-4 *1 (-997)))))
-(((*1 *1) (-5 *1 (-432))))
-(((*1 *2 *3) (-12 (-5 *3 (-928 *2)) (-5 *1 (-967 *2)) (-4 *2 (-1034)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-413 *3)) (-4 *3 (-546)))))
+ (-12 (-5 *3 (-558)) (-5 *4 (-417 *2)) (-4 *2 (-939 *7 *5 *6))
+ (-5 *1 (-733 *5 *6 *7 *2)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-4 *7 (-306)))))
+(((*1 *2 *1) (-12 (-4 *1 (-348)) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1159 *4)) (-4 *4 (-348)) (-5 *2 (-112))
+ (-5 *1 (-356 *4)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-635 (-635 (-635 *5)))) (-5 *3 (-1 (-112) *5 *5))
+ (-5 *4 (-635 *5)) (-4 *5 (-841)) (-5 *1 (-1171 *5)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-813)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1081 (-224))) (-5 *1 (-916))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1081 (-224))) (-5 *1 (-917)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-911)) (-5 *2 (-1251)) (-5 *1 (-213 *4))
+ (-4 *4
+ (-13 (-841)
+ (-10 -8 (-15 -2195 ((-1145) $ (-1163))) (-15 -2646 (*2 $))
+ (-15 -2215 (*2 $)))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1251)) (-5 *1 (-213 *3))
+ (-4 *3
+ (-13 (-841)
+ (-10 -8 (-15 -2195 ((-1145) $ (-1163))) (-15 -2646 (*2 $))
+ (-15 -2215 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-500)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1090 *2 *3 *4 *5 *6)) (-4 *2 (-1087)) (-4 *3 (-1087))
+ (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-204))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-635 (-378))) (-5 *2 (-378)) (-5 *1 (-204)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-762)) (-4 *6 (-362)) (-5 *4 (-1194 *6))
+ (-5 *2 (-1 (-1143 *4) (-1143 *4))) (-5 *1 (-1254 *6))
+ (-5 *5 (-1143 *4)))))
+(((*1 *1 *1) (-4 *1 (-95)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1148 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1149 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
+ (-4 *3 (-1053 *5 *6 *7))
+ (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -2396 *4))))
+ (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1159 *9)) (-5 *4 (-635 *7)) (-5 *5 (-635 (-635 *8)))
+ (-4 *7 (-841)) (-4 *8 (-306)) (-4 *9 (-939 *8 *6 *7)) (-4 *6 (-784))
+ (-5 *2
+ (-2 (|:| |upol| (-1159 *8)) (|:| |Lval| (-635 *8))
+ (|:| |Lfact|
+ (-635 (-2 (|:| -2522 (-1159 *8)) (|:| -1951 (-558)))))
+ (|:| |ctpol| *8)))
+ (-5 *1 (-733 *6 *7 *8 *9)))))
(((*1 *2)
- (-12 (-4 *4 (-1199)) (-4 *5 (-1217 *4)) (-4 *6 (-1217 (-402 *5)))
- (-5 *2 (-112)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-337 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3))
- (-4 *5 (-1217 (-402 *4))) (-5 *2 (-112)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-145))
- (-4 *3 (-302)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836))
- (-5 *1 (-962 *3 *4 *5 *6)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-631 (-258))) (-5 *1 (-256)))))
-(((*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170))))
- ((*1 *2 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-170)))))
-(((*1 *1) (-5 *1 (-790))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-675 (-311 (-221))))
+ (-12
(-5 *2
- (-2 (|:| |stiffnessFactor| (-374)) (|:| |stabilityFactor| (-374))))
- (-5 *1 (-201)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1217 (-402 *2))) (-5 *2 (-554)) (-5 *1 (-898 *4 *3))
- (-4 *3 (-1217 (-402 *4))))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1158)) (-5 *3 (-429)) (-4 *5 (-836))
- (-5 *1 (-1088 *5 *4)) (-4 *4 (-425 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-758)) (-5 *2 (-675 (-937 *4))) (-5 *1 (-1013 *4))
- (-4 *4 (-1034)))))
+ (-1246 (-635 (-2 (|:| -2925 (-900 *3)) (|:| -2851 (-1107))))))
+ (-5 *1 (-350 *3 *4)) (-14 *3 (-911)) (-14 *4 (-911))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1246 (-635 (-2 (|:| -2925 *3) (|:| -2851 (-1107))))))
+ (-5 *1 (-351 *3 *4)) (-4 *3 (-348)) (-14 *4 (-3 (-1159 *3) *2))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1246 (-635 (-2 (|:| -2925 *3) (|:| -2851 (-1107))))))
+ (-5 *1 (-352 *3 *4)) (-4 *3 (-348)) (-14 *4 (-911)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-841)) (-5 *4 (-635 *6))
+ (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-635 *4))))
+ (-5 *1 (-1171 *6)) (-5 *5 (-635 *4)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1251)) (-5 *1 (-813)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-635 (-224)))) (-5 *1 (-916)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1241 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-358))
- (-4 *1 (-711 *5 *6)) (-4 *5 (-170)) (-4 *6 (-1217 *5))
- (-5 *2 (-675 *5)))))
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1039)) (-4 *7 (-1039))
+ (-4 *6 (-1222 *5)) (-5 *2 (-1159 (-1159 *7)))
+ (-5 *1 (-499 *5 *6 *4 *7)) (-4 *4 (-1222 *6)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1090 *2 *3 *4 *5 *6)) (-4 *2 (-1087)) (-4 *3 (-1087))
+ (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-631 (-600 *5))) (-4 *4 (-836)) (-5 *2 (-600 *5))
- (-5 *1 (-563 *4 *5)) (-4 *5 (-425 *4)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-389)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-311 (-221))) (-5 *4 (-1158))
- (-5 *5 (-1076 (-829 (-221)))) (-5 *2 (-631 (-221))) (-5 *1 (-188))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-311 (-221))) (-5 *4 (-1158))
- (-5 *5 (-1076 (-829 (-221)))) (-5 *2 (-631 (-221))) (-5 *1 (-295)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987))))))
-(((*1 *1 *1) (-4 *1 (-1043))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020))
- (-5 *1 (-739)))))
-(((*1 *1 *1 *1) (-5 *1 (-848))))
-(((*1 *1 *1) (|partial| -4 *1 (-143))) ((*1 *1 *1) (-4 *1 (-344)))
- ((*1 *1 *1) (|partial| -12 (-4 *1 (-143)) (-4 *1 (-894)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-546)) (-5 *2 (-758)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-412 *4)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-658 *3)) (-4 *3 (-836))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-663 *3)) (-4 *3 (-836))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-806 *3)) (-4 *3 (-836)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-836))
- (-4 *5 (-261 *4)) (-4 *6 (-780)) (-5 *2 (-112)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-707)) (-5 *2 (-906))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-709)) (-5 *2 (-758)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-631 (-374))) (-5 *3 (-631 (-258))) (-5 *1 (-256))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-631 (-374))) (-5 *1 (-462))))
- ((*1 *2 *1) (-12 (-5 *2 (-631 (-374))) (-5 *1 (-462))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-906)) (-5 *4 (-859)) (-5 *2 (-1246)) (-5 *1 (-1242))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-906)) (-5 *4 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1242)))))
-(((*1 *1 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1180))))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-846)) (-5 *3 (-128)) (-5 *2 (-1102)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020))
- (-5 *1 (-743)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224)))
+ (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
+ (-5 *2 (-558)) (-5 *1 (-203)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1232 *4)) (-5 *1 (-1234 *4 *2))
- (-4 *4 (-38 (-402 (-554)))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1154 (-554))) (-5 *2 (-554)) (-5 *1 (-927)))))
-(((*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1246)) (-5 *1 (-374))))
- ((*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-374)))))
-(((*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-758)))))
-(((*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-836)) (-5 *1 (-121 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1260 *3)) (-4 *3 (-358)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-539)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-413 *3)) (-4 *3 (-539)) (-4 *3 (-546))))
- ((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-784 *3)) (-4 *3 (-170)) (-4 *3 (-539)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-820 *3)) (-4 *3 (-539)) (-4 *3 (-1082))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-539)) (-4 *3 (-1082))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-982 *3)) (-4 *3 (-170)) (-4 *3 (-539)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-993 *3)) (-4 *3 (-1023 (-402 (-554)))))))
-(((*1 *1 *1 *1) (-5 *1 (-848))))
-(((*1 *1 *1) (-5 *1 (-1046))))
-(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
- (|partial| -12 (-5 *3 (-600 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1158))) (-5 *5 (-1154 *2))
- (-4 *2 (-13 (-425 *6) (-27) (-1180)))
- (-4 *6 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554))))
- (-5 *1 (-550 *6 *2 *7)) (-4 *7 (-1082))))
- ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
- (|partial| -12 (-5 *3 (-600 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1158)))
- (-5 *5 (-402 (-1154 *2))) (-4 *2 (-13 (-425 *6) (-27) (-1180)))
- (-4 *6 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554))))
- (-5 *1 (-550 *6 *2 *7)) (-4 *7 (-1082)))))
-(((*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-911)))))
+ (-12 (-5 *3 (-1163)) (-4 *5 (-362)) (-5 *2 (-635 (-1194 *5)))
+ (-5 *1 (-1254 *5)) (-5 *4 (-1194 *5)))))
+(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-224)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163)))
+ (-14 *3 (-635 (-1163))) (-4 *4 (-386))))
+ ((*1 *1 *1 *1) (-5 *1 (-378)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1148 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1149 *3)))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841))
+ (-4 *3 (-1053 *6 *7 *8))
+ (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -2396 *4))))
+ (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1059 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-635 (-2 (|:| |val| (-635 *8)) (|:| -2396 *9))))
+ (-5 *5 (-112)) (-4 *8 (-1053 *6 *7 *4)) (-4 *9 (-1059 *6 *7 *4 *8))
+ (-4 *6 (-450)) (-4 *7 (-784)) (-4 *4 (-841))
+ (-5 *2 (-635 (-2 (|:| |val| *8) (|:| -2396 *9))))
+ (-5 *1 (-1060 *6 *7 *4 *8 *9)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-635 *7)) (-5 *5 (-635 (-635 *8))) (-4 *7 (-841))
+ (-4 *8 (-306)) (-4 *6 (-784)) (-4 *9 (-939 *8 *6 *7))
+ (-5 *2
+ (-2 (|:| |unitPart| *9)
+ (|:| |suPart|
+ (-635 (-2 (|:| -2522 (-1159 *9)) (|:| -1951 (-558)))))))
+ (-5 *1 (-733 *6 *7 *8 *9)) (-5 *3 (-1159 *9)))))
+(((*1 *1) (-5 *1 (-609))))
+(((*1 *2)
+ (-12 (-5 *2 (-679 (-900 *3))) (-5 *1 (-350 *3 *4)) (-14 *3 (-911))
+ (-14 *4 (-911))))
+ ((*1 *2)
+ (-12 (-5 *2 (-679 *3)) (-5 *1 (-351 *3 *4)) (-4 *3 (-348))
+ (-14 *4
+ (-3 (-1159 *3)
+ (-1246 (-635 (-2 (|:| -2925 *3) (|:| -2851 (-1107)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-679 *3)) (-5 *1 (-352 *3 *4)) (-4 *3 (-348))
+ (-14 *4 (-911)))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-554)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1195))
- (-4 *4 (-368 *2)) (-4 *5 (-368 *2))))
+ (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1200))
+ (-4 *4 (-372 *2)) (-4 *5 (-372 *2))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-554)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-368 *2))
- (-4 *5 (-368 *2)) (-4 *2 (-1195))))
+ (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-372 *2))
+ (-4 *5 (-372 *2)) (-4 *2 (-1200))))
((*1 *1 *1 *2)
- (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1195))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1195))))
+ (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1200))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1200))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-631 (-554))) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2))
- (-14 *4 (-554)) (-14 *5 (-758))))
+ (-12 (-5 *3 (-635 (-558))) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2))
+ (-14 *4 (-558)) (-14 *5 (-762))))
((*1 *2 *1 *3 *3 *3 *3)
- (-12 (-5 *3 (-554)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-758))))
+ (-12 (-5 *3 (-558)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-762))))
((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-554)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-758))))
+ (-12 (-5 *3 (-558)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-762))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-554)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-758))))
+ (-12 (-5 *3 (-558)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-762))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-554)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-758))))
+ (-12 (-5 *3 (-558)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-762))))
((*1 *2 *1)
- (-12 (-4 *2 (-170)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-554))
- (-14 *4 (-758))))
+ (-12 (-4 *2 (-171)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-558))
+ (-14 *4 (-762))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1158)) (-5 *2 (-241 (-1140))) (-5 *1 (-210 *4))
+ (-12 (-5 *3 (-1163)) (-5 *2 (-244 (-1145))) (-5 *1 (-213 *4))
(-4 *4
- (-13 (-836)
- (-10 -8 (-15 -2064 ((-1140) $ *3)) (-15 -2524 ((-1246) $))
- (-15 -2941 ((-1246) $)))))))
+ (-13 (-841)
+ (-10 -8 (-15 -2195 ((-1145) $ *3)) (-15 -2646 ((-1251) $))
+ (-15 -2215 ((-1251) $)))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-974)) (-5 *1 (-210 *3))
+ (-12 (-5 *2 (-979)) (-5 *1 (-213 *3))
(-4 *3
- (-13 (-836)
- (-10 -8 (-15 -2064 ((-1140) $ (-1158))) (-15 -2524 ((-1246) $))
- (-15 -2941 ((-1246) $)))))))
+ (-13 (-841)
+ (-10 -8 (-15 -2195 ((-1145) $ (-1163))) (-15 -2646 ((-1251) $))
+ (-15 -2215 ((-1251) $)))))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "count") (-5 *2 (-758)) (-5 *1 (-241 *4)) (-4 *4 (-836))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-241 *3)) (-4 *3 (-836))))
+ (-12 (-5 *3 "count") (-5 *2 (-762)) (-5 *1 (-244 *4)) (-4 *4 (-841))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-244 *3)) (-4 *3 (-841))))
((*1 *1 *1 *2)
- (-12 (-5 *2 "unique") (-5 *1 (-241 *3)) (-4 *3 (-836))))
+ (-12 (-5 *2 "unique") (-5 *1 (-244 *3)) (-4 *3 (-841))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1195))))
+ (-12 (-4 *1 (-285 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-1200))))
((*1 *2 *1 *3 *2)
- (-12 (-4 *1 (-283 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1195))))
+ (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-1200))))
((*1 *2 *1 *2)
- (-12 (-4 *3 (-170)) (-5 *1 (-284 *3 *2 *4 *5 *6 *7))
- (-4 *2 (-1217 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
+ (-12 (-4 *3 (-171)) (-5 *1 (-288 *3 *2 *4 *5 *6 *7))
+ (-4 *2 (-1222 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-631 *1)) (-4 *1 (-297))))
- ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-114))))
- ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-114))))
- ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-114))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-114))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-635 *1)) (-4 *1 (-301))))
+ ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114))))
+ ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114))))
+ ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114))))
((*1 *2 *1 *2 *2)
- (-12 (-4 *1 (-337 *2 *3 *4)) (-4 *2 (-1199)) (-4 *3 (-1217 *2))
- (-4 *4 (-1217 (-402 *3)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-4 *1 (-412 *2)) (-4 *2 (-170))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1140)) (-5 *1 (-496))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-52)) (-5 *1 (-620))))
+ (-12 (-4 *1 (-341 *2 *3 *4)) (-4 *2 (-1204)) (-4 *3 (-1222 *2))
+ (-4 *4 (-1222 (-406 *3)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-416 *2)) (-4 *2 (-171))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1145)) (-5 *1 (-500))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-52)) (-5 *1 (-624))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1208 (-554))) (-4 *1 (-637 *3)) (-4 *3 (-1195))))
+ (-12 (-5 *2 (-1213 (-558))) (-4 *1 (-641 *3)) (-4 *3 (-1200))))
((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-758)) (-5 *1 (-661 *2)) (-4 *2 (-1082))))
+ (-12 (-5 *3 (-762)) (-5 *1 (-665 *2)) (-4 *2 (-1087))))
((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-631 (-554))) (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034))
- (-4 *4 (-368 *3)) (-4 *5 (-368 *3))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848))))
+ (-12 (-5 *2 (-635 (-558))) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039))
+ (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-631 (-877 *4))) (-5 *1 (-877 *4))
- (-4 *4 (-1082))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-888 *2)) (-4 *2 (-1082))))
+ (-12 (-5 *2 (-114)) (-5 *3 (-635 (-882 *4))) (-5 *1 (-882 *4))
+ (-4 *4 (-1087))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-893 *2)) (-4 *2 (-1087))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-758)) (-5 *2 (-890 *4)) (-5 *1 (-889 *4))
- (-4 *4 (-1082))))
+ (-12 (-5 *3 (-762)) (-5 *2 (-895 *4)) (-5 *1 (-894 *4))
+ (-4 *4 (-1087))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-236 *4 *2)) (-14 *4 (-906)) (-4 *2 (-358))
- (-5 *1 (-978 *4 *2))))
+ (-12 (-5 *3 (-239 *4 *2)) (-14 *4 (-911)) (-4 *2 (-362))
+ (-5 *1 (-983 *4 *2))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "value") (-4 *1 (-995 *2)) (-4 *2 (-1195))))
- ((*1 *2 *1) (-12 (-5 *1 (-1011 *2)) (-4 *2 (-1195))))
+ (-12 (-5 *3 "value") (-4 *1 (-1000 *2)) (-4 *2 (-1200))))
+ ((*1 *2 *1) (-12 (-5 *1 (-1016 *2)) (-4 *2 (-1200))))
((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-554)) (-4 *1 (-1037 *4 *5 *2 *6 *7)) (-4 *2 (-1034))
- (-4 *6 (-234 *5 *2)) (-4 *7 (-234 *4 *2))))
+ (-12 (-5 *3 (-558)) (-4 *1 (-1042 *4 *5 *2 *6 *7)) (-4 *2 (-1039))
+ (-4 *6 (-237 *5 *2)) (-4 *7 (-237 *4 *2))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-554)) (-4 *1 (-1037 *4 *5 *2 *6 *7))
- (-4 *6 (-234 *5 *2)) (-4 *7 (-234 *4 *2)) (-4 *2 (-1034))))
+ (-12 (-5 *3 (-558)) (-4 *1 (-1042 *4 *5 *2 *6 *7))
+ (-4 *6 (-237 *5 *2)) (-4 *7 (-237 *4 *2)) (-4 *2 (-1039))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-906)) (-4 *4 (-1082))
- (-4 *5 (-13 (-1034) (-871 *4) (-836) (-602 (-877 *4))))
- (-5 *1 (-1058 *4 *5 *2))
- (-4 *2 (-13 (-425 *5) (-871 *4) (-602 (-877 *4))))))
+ (-12 (-5 *3 (-911)) (-4 *4 (-1087))
+ (-4 *5 (-13 (-1039) (-876 *4) (-841) (-606 (-882 *4))))
+ (-5 *1 (-1063 *4 *5 *2))
+ (-4 *2 (-13 (-429 *5) (-876 *4) (-606 (-882 *4))))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-906)) (-4 *4 (-1082))
- (-4 *5 (-13 (-1034) (-871 *4) (-836) (-602 (-877 *4))))
- (-5 *1 (-1059 *4 *5 *2))
- (-4 *2 (-13 (-425 *5) (-871 *4) (-602 (-877 *4))))))
+ (-12 (-5 *3 (-911)) (-4 *4 (-1087))
+ (-4 *5 (-13 (-1039) (-876 *4) (-841) (-606 (-882 *4))))
+ (-5 *1 (-1064 *4 *5 *2))
+ (-4 *2 (-13 (-429 *5) (-876 *4) (-606 (-882 *4))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-631 (-554))) (-4 *1 (-1085 *3 *4 *5 *6 *7))
- (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082))
- (-4 *7 (-1082))))
+ (-12 (-5 *2 (-635 (-558))) (-4 *1 (-1090 *3 *4 *5 *6 *7))
+ (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087))
+ (-4 *7 (-1087))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-554)) (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082))
- (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082))))
- ((*1 *1 *1 *1) (-4 *1 (-1126)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-1158))))
+ (-12 (-5 *2 (-558)) (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087))
+ (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087))))
+ ((*1 *1 *1 *1) (-4 *1 (-1131)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-1163))))
((*1 *2 *3 *2)
- (-12 (-5 *3 (-402 *1)) (-4 *1 (-1217 *2)) (-4 *2 (-1034))
- (-4 *2 (-358))))
+ (-12 (-5 *3 (-406 *1)) (-4 *1 (-1222 *2)) (-4 *2 (-1039))
+ (-4 *2 (-362))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-402 *1)) (-4 *1 (-1217 *3)) (-4 *3 (-1034))
- (-4 *3 (-546))))
+ (-12 (-5 *2 (-406 *1)) (-4 *1 (-1222 *3)) (-4 *3 (-1039))
+ (-4 *3 (-550))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1219 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1034))))
+ (-12 (-4 *1 (-1224 *2 *3)) (-4 *3 (-783)) (-4 *2 (-1039))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "last") (-4 *1 (-1229 *2)) (-4 *2 (-1195))))
+ (-12 (-5 *3 "last") (-4 *1 (-1234 *2)) (-4 *2 (-1200))))
((*1 *1 *1 *2)
- (-12 (-5 *2 "rest") (-4 *1 (-1229 *3)) (-4 *3 (-1195))))
+ (-12 (-5 *2 "rest") (-4 *1 (-1234 *3)) (-4 *3 (-1200))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "first") (-4 *1 (-1229 *2)) (-4 *2 (-1195)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1076 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-1195))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-1195))))
- ((*1 *1 *2) (-12 (-5 *1 (-1208 *2)) (-4 *2 (-1195)))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-13 (-302) (-10 -8 (-15 -1565 ((-413 $) $)))))
- (-4 *4 (-1217 *3))
- (-5 *2
- (-2 (|:| -3782 (-675 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-675 *3))))
- (-5 *1 (-345 *3 *4 *5)) (-4 *5 (-404 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-554)) (-4 *4 (-1217 *3))
- (-5 *2
- (-2 (|:| -3782 (-675 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-675 *3))))
- (-5 *1 (-755 *4 *5)) (-4 *5 (-404 *3 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-344)) (-4 *3 (-1217 *4)) (-4 *5 (-1217 *3))
- (-5 *2
- (-2 (|:| -3782 (-675 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-675 *3))))
- (-5 *1 (-970 *4 *3 *5 *6)) (-4 *6 (-711 *3 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-344)) (-4 *3 (-1217 *4)) (-4 *5 (-1217 *3))
- (-5 *2
- (-2 (|:| -3782 (-675 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-675 *3))))
- (-5 *1 (-1250 *4 *3 *5 *6)) (-4 *6 (-404 *3 *5)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-112)) (-5 *1 (-808)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2))
- (-4 *2 (-13 (-425 *3) (-1180))))))
-(((*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-569)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-1201 *3)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-539))))
-(((*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1140)) (-5 *1 (-697)))))
-(((*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-402 (-554))) (-5 *1 (-300)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-631 (-631 (-631 *5)))) (-5 *3 (-1 (-112) *5 *5))
- (-5 *4 (-631 *5)) (-4 *5 (-836)) (-5 *1 (-1166 *5)))))
-(((*1 *1) (-5 *1 (-1246))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1243)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-585 *3)) (-4 *3 (-1034))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-958 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-779))
- (-4 *5 (-836)) (-5 *2 (-112)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1122 *2 *3)) (-4 *2 (-13 (-1082) (-34)))
- (-4 *3 (-13 (-1082) (-34))))))
+ (-12 (-5 *3 "first") (-4 *1 (-1234 *2)) (-4 *2 (-1200)))))
+(((*1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1170)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1251)) (-5 *1 (-813)))))
+(((*1 *1 *2) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1200))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 (-1163))) (-5 *1 (-1163)))))
(((*1 *2 *3)
(|partial| -12
(-5 *3
- (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221)))
- (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221))
- (|:| |relerr| (-221))))
- (-5 *2 (-2 (|:| -1482 (-114)) (|:| |w| (-221)))) (-5 *1 (-200)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-321 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-779))
- (-4 *2 (-446))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-337 *2 *3 *4)) (-4 *2 (-1199)) (-4 *3 (-1217 *2))
- (-4 *4 (-1217 (-402 *3)))))
- ((*1 *1 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-446))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-934 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780))
- (-4 *2 (-836)) (-4 *3 (-446))))
+ (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224)))
+ (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
+ (-5 *2 (-635 (-224))) (-5 *1 (-203)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1163)) (-5 *2 (-1 (-1159 (-942 *4)) (-942 *4)))
+ (-5 *1 (-1254 *4)) (-4 *4 (-362)))))
+(((*1 *1 *1) (-4 *1 (-95)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
((*1 *1 *1)
- (-12 (-4 *1 (-934 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780))
- (-4 *4 (-836)) (-4 *2 (-446))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-302)) (-4 *3 (-546)) (-5 *1 (-1145 *3 *2))
- (-4 *2 (-1217 *3)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1140)) (-5 *2 (-761)) (-5 *1 (-114))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-1086)) (-5 *1 (-950)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1195)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1195))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-836))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-836))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-554)) (-4 *1 (-277 *3)) (-4 *3 (-1195))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-554)) (-4 *1 (-277 *2)) (-4 *2 (-1195))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2
- (|:| -2564
- (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221)))
- (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221))
- (|:| |relerr| (-221))))
- (|:| -2701
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1138 (-221)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -3827
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))))
- (-5 *1 (-549))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-758)) (-4 *1 (-681 *2)) (-4 *2 (-1082))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2
- (|:| -2564
- (-2 (|:| |xinit| (-221)) (|:| |xend| (-221))
- (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221)))
- (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221)))
- (|:| |abserr| (-221)) (|:| |relerr| (-221))))
- (|:| -2701
- (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374))
- (|:| |expense| (-374)) (|:| |accuracy| (-374))
- (|:| |intermediateResults| (-374))))))
- (-5 *1 (-790))))
- ((*1 *2 *3 *4)
- (-12 (-5 *2 (-1246)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-1082))
- (-4 *4 (-1082)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1138 (-1138 *4))) (-5 *2 (-1138 *4)) (-5 *1 (-1142 *4))
- (-4 *4 (-38 (-402 (-554)))) (-4 *4 (-1034)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1246)) (-5 *1 (-1161))))
- ((*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-1161)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-297)) (-5 *3 (-1158)) (-5 *2 (-112))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-112)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-758)) (-5 *3 (-928 *5)) (-4 *5 (-1034))
- (-5 *1 (-1146 *4 *5)) (-14 *4 (-906))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-631 (-758))) (-5 *3 (-758)) (-5 *1 (-1146 *4 *5))
- (-14 *4 (-906)) (-4 *5 (-1034))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-631 (-758))) (-5 *3 (-928 *5)) (-4 *5 (-1034))
- (-5 *1 (-1146 *4 *5)) (-14 *4 (-906)))))
-(((*1 *2) (-12 (-5 *2 (-1129 (-1140))) (-5 *1 (-386)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 *8)) (-5 *4 (-631 *7)) (-4 *7 (-836))
- (-4 *8 (-934 *5 *6 *7)) (-4 *5 (-546)) (-4 *6 (-780))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1241 (-402 *8)) "failed"))
- (|:| -3782 (-631 (-1241 (-402 *8))))))
- (-5 *1 (-655 *5 *6 *7 *8)))))
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163)))
+ (-14 *3 (-635 (-1163))) (-4 *4 (-386))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1148 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1149 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
+ (-4 *3 (-1053 *5 *6 *7))
+ (-5 *2 (-635 (-2 (|:| |val| (-635 *3)) (|:| -2396 *4))))
+ (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-558)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *8 (-306))
+ (-4 *9 (-939 *8 *6 *7))
+ (-5 *2 (-2 (|:| -2574 (-1159 *9)) (|:| |polval| (-1159 *8))))
+ (-5 *1 (-733 *6 *7 *8 *9)) (-5 *3 (-1159 *9)) (-5 *4 (-1159 *8)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-546)) (-4 *5 (-977 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-140 *4 *5 *3))
- (-4 *3 (-368 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-546)) (-4 *5 (-977 *4))
- (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
- (-5 *1 (-497 *4 *5 *6 *3)) (-4 *6 (-368 *4)) (-4 *3 (-368 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-675 *5)) (-4 *5 (-977 *4)) (-4 *4 (-546))
- (-5 *2 (-2 (|:| |num| (-675 *4)) (|:| |den| *4)))
- (-5 *1 (-679 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-358) (-145) (-1023 (-402 (-554)))))
- (-4 *6 (-1217 *5))
- (-5 *2 (-2 (|:| -4329 *7) (|:| |rh| (-631 (-402 *6)))))
- (-5 *1 (-794 *5 *6 *7 *3)) (-5 *4 (-631 (-402 *6)))
- (-4 *7 (-642 *6)) (-4 *3 (-642 (-402 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-546)) (-4 *5 (-977 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1210 *4 *5 *3))
- (-4 *3 (-1217 *5)))))
-(((*1 *2 *3 *4 *4 *3 *5)
- (-12 (-5 *4 (-600 *3)) (-5 *5 (-1154 *3))
- (-4 *3 (-13 (-425 *6) (-27) (-1180)))
- (-4 *6 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554))))
- (-5 *2 (-575 *3)) (-5 *1 (-550 *6 *3 *7)) (-4 *7 (-1082))))
- ((*1 *2 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *4 (-600 *3)) (-5 *5 (-402 (-1154 *3)))
- (-4 *3 (-13 (-425 *6) (-27) (-1180)))
- (-4 *6 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554))))
- (-5 *2 (-575 *3)) (-5 *1 (-550 *6 *3 *7)) (-4 *7 (-1082)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4374)) (-4 *1 (-119 *2)) (-4 *2 (-1195)))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-758)) (-5 *1 (-769 *3)) (-4 *3 (-1034))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *1 (-948 *3 *2)) (-4 *2 (-130)) (-4 *3 (-546))
- (-4 *3 (-1034)) (-4 *2 (-779))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-758)) (-5 *1 (-1154 *3)) (-4 *3 (-1034))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-956)) (-4 *2 (-130)) (-5 *1 (-1160 *3)) (-4 *3 (-546))
- (-4 *3 (-1034))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-758)) (-5 *1 (-1214 *4 *3)) (-14 *4 (-1158))
- (-4 *3 (-1034)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1044 (-1009 *4) (-1154 (-1009 *4)))) (-5 *3 (-848))
- (-5 *1 (-1009 *4)) (-4 *4 (-13 (-834) (-358) (-1007))))))
-(((*1 *2 *1 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-302))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4137 *1)))
- (-4 *1 (-302)))))
-(((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-631 *8)) (-5 *4 (-112)) (-4 *8 (-1048 *5 *6 *7))
- (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836))
- (-5 *2 (-631 (-1012 *5 *6 *7 *8))) (-5 *1 (-1012 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-631 *8)) (-5 *4 (-112)) (-4 *8 (-1048 *5 *6 *7))
- (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836))
- (-5 *2 (-631 (-1128 *5 *6 *7 *8))) (-5 *1 (-1128 *5 *6 *7 *8)))))
-(((*1 *2)
- (-12
- (-5 *2
- (-1241 (-631 (-2 (|:| -2794 (-895 *3)) (|:| -2717 (-1102))))))
- (-5 *1 (-346 *3 *4)) (-14 *3 (-906)) (-14 *4 (-906))))
+ (-12 (-5 *3 (-1246 (-635 (-2 (|:| -2925 *4) (|:| -2851 (-1107))))))
+ (-4 *4 (-348)) (-5 *2 (-762)) (-5 *1 (-345 *4))))
((*1 *2)
- (-12 (-5 *2 (-1241 (-631 (-2 (|:| -2794 *3) (|:| -2717 (-1102))))))
- (-5 *1 (-347 *3 *4)) (-4 *3 (-344)) (-14 *4 (-3 (-1154 *3) *2))))
+ (-12 (-5 *2 (-762)) (-5 *1 (-350 *3 *4)) (-14 *3 (-911))
+ (-14 *4 (-911))))
((*1 *2)
- (-12 (-5 *2 (-1241 (-631 (-2 (|:| -2794 *3) (|:| -2717 (-1102))))))
- (-5 *1 (-348 *3 *4)) (-4 *3 (-344)) (-14 *4 (-906)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221)))
- (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-63 LSFUN2))))
- (-5 *2 (-1020)) (-5 *1 (-740)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-221)) (-5 *2 (-112)) (-5 *1 (-294 *4 *5)) (-14 *4 *3)
- (-14 *5 *3)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1076 (-829 (-221)))) (-5 *3 (-221)) (-5 *2 (-112))
- (-5 *1 (-300))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-112))
- (-5 *1 (-498 *3 *4 *5 *6)) (-4 *6 (-934 *3 *4 *5)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1243)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-631 (-554))) (-5 *1 (-243 *3 *4))
- (-14 *3 (-631 (-1158))) (-4 *4 (-1034))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-631 (-554))) (-14 *3 (-631 (-1158)))
- (-5 *1 (-448 *3 *4 *5)) (-4 *4 (-1034))
- (-4 *5 (-234 (-2563 *3) (-758)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-631 (-554))) (-5 *1 (-475 *3 *4))
- (-14 *3 (-631 (-1158))) (-4 *4 (-1034)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-530)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-758)) (-5 *2 (-1 (-1138 (-937 *4)) (-1138 (-937 *4))))
- (-5 *1 (-1249 *4)) (-4 *4 (-358)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-631 *1))
- (-4 *1 (-1048 *3 *4 *5)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020))
- (-5 *1 (-734)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1208 (-554))) (-4 *1 (-637 *3)) (-4 *3 (-1195))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-4 *1 (-637 *3)) (-4 *3 (-1195)))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-1138 (-2 (|:| |k| (-554)) (|:| |c| *6))))
- (-5 *4 (-1011 (-829 (-554)))) (-5 *5 (-1158)) (-5 *7 (-402 (-554)))
- (-4 *6 (-1034)) (-5 *2 (-848)) (-5 *1 (-584 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987))))))
-(((*1 *1) (-5 *1 (-462))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-631 (-906))) (-5 *1 (-1083 *3 *4)) (-14 *3 (-906))
- (-14 *4 (-906)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780))
- (-4 *4 (-836)) (-4 *2 (-546)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-758)) (-5 *1 (-661 *3)) (-4 *3 (-1034))
- (-4 *3 (-1082)))))
-(((*1 *1) (-12 (-4 *1 (-459 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-530))) ((*1 *1) (-4 *1 (-709)))
- ((*1 *1) (-4 *1 (-713)))
- ((*1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1082))))
- ((*1 *1) (-12 (-5 *1 (-878 *2)) (-4 *2 (-836)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780))
- (-4 *4 (-836)))))
+ (-12 (-5 *2 (-762)) (-5 *1 (-351 *3 *4)) (-4 *3 (-348))
+ (-14 *4
+ (-3 (-1159 *3)
+ (-1246 (-635 (-2 (|:| -2925 *3) (|:| -2851 (-1107)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-762)) (-5 *1 (-352 *3 *4)) (-4 *3 (-348))
+ (-14 *4 (-911)))))
+(((*1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1170)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *2 (-1251)) (-5 *1 (-813)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-966 *4 *5 *3 *6)) (-4 *4 (-1039)) (-4 *5 (-784))
+ (-4 *3 (-841)) (-4 *6 (-1053 *4 *5 *3)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-604 *3)) (-4 *3 (-13 (-429 *5) (-27) (-1185)))
+ (-4 *5 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558))))
+ (-5 *2 (-579 *3)) (-5 *1 (-560 *5 *3 *6)) (-4 *6 (-1087)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-928 *3) (-928 *3))) (-5 *1 (-174 *3))
- (-4 *3 (-13 (-358) (-1180) (-987))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-951 *3)) (-4 *3 (-952)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-906)) (-5 *3 (-631 (-258))) (-5 *1 (-256))))
- ((*1 *1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-258)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-631 (-554))) (-5 *1 (-1092)) (-5 *3 (-554)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-848)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-402 (-937 (-167 (-554))))))
- (-5 *2 (-631 (-631 (-289 (-937 (-167 *4)))))) (-5 *1 (-373 *4))
- (-4 *4 (-13 (-358) (-834)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-289 (-402 (-937 (-167 (-554)))))))
- (-5 *2 (-631 (-631 (-289 (-937 (-167 *4)))))) (-5 *1 (-373 *4))
- (-4 *4 (-13 (-358) (-834)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-402 (-937 (-167 (-554)))))
- (-5 *2 (-631 (-289 (-937 (-167 *4))))) (-5 *1 (-373 *4))
- (-4 *4 (-13 (-358) (-834)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-289 (-402 (-937 (-167 (-554))))))
- (-5 *2 (-631 (-289 (-937 (-167 *4))))) (-5 *1 (-373 *4))
- (-4 *4 (-13 (-358) (-834))))))
-(((*1 *1)
- (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-554)) (-14 *3 (-758))
- (-4 *4 (-170)))))
-(((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |mval| (-675 *3)) (|:| |invmval| (-675 *3))
- (|:| |genIdeal| (-498 *3 *4 *5 *6))))
- (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836))
- (-5 *1 (-498 *3 *4 *5 *6)) (-4 *6 (-934 *3 *4 *5)))))
-(((*1 *1) (-4 *1 (-23)))
- ((*1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-530)))
- ((*1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1082)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020))
- (-5 *1 (-742)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987))))))
-(((*1 *2 *1)
(|partial| -12
- (-5 *2 (-2 (|:| -1482 (-114)) (|:| |arg| (-631 (-877 *3)))))
- (-5 *1 (-877 *3)) (-4 *3 (-1082))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-114)) (-5 *2 (-631 (-877 *4)))
- (-5 *1 (-877 *4)) (-4 *4 (-1082)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-836) (-546))) (-5 *2 (-112)) (-5 *1 (-271 *4 *3))
- (-4 *3 (-13 (-425 *4) (-987))))))
-(((*1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-439 *3)) (-4 *3 (-1034)))))
-(((*1 *2)
- (-12 (-5 *2 (-402 (-937 *3))) (-5 *1 (-447 *3 *4 *5 *6))
- (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906))
- (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-631 (-1158))) (-5 *1 (-1162)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221))) (-5 *4 (-221))
- (-5 *2 (-1020)) (-5 *1 (-739)))))
-(((*1 *2 *3 *2 *3)
- (-12 (-5 *2 (-432)) (-5 *3 (-1158)) (-5 *1 (-1161))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-432)) (-5 *3 (-1158)) (-5 *1 (-1161))))
- ((*1 *2 *3 *2 *4 *1)
- (-12 (-5 *2 (-432)) (-5 *3 (-631 (-1158))) (-5 *4 (-1158))
- (-5 *1 (-1161))))
- ((*1 *2 *3 *2 *3 *1)
- (-12 (-5 *2 (-432)) (-5 *3 (-1158)) (-5 *1 (-1161))))
- ((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-432)) (-5 *3 (-1158)) (-5 *1 (-1162))))
- ((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-432)) (-5 *3 (-631 (-1158))) (-5 *1 (-1162)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1199)) (-4 *3 (-1217 *4))
- (-4 *5 (-1217 (-402 *3))) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3))
- (-4 *5 (-1217 (-402 *4))) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-829 (-221)))) (-5 *4 (-221)) (-5 *2 (-631 *4))
- (-5 *1 (-262)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1154 *3)) (-4 *3 (-1034)) (-4 *1 (-1217 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-995 *3)) (-4 *3 (-1195)) (-4 *3 (-1082))
- (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *2)
- (|partial| -12 (-5 *2 (-758))
- (-4 *3 (-13 (-713) (-363) (-10 -7 (-15 ** (*3 *3 (-554))))))
- (-5 *1 (-242 *3)))))
-(((*1 *1) (-5 *1 (-549))))
-(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-554)) (-5 *5 (-675 (-221)))
- (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-89 G))))
- (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN)))) (-5 *3 (-221))
- (-5 *2 (-1020)) (-5 *1 (-736)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-554)) (-4 *2 (-425 *3)) (-5 *1 (-32 *3 *2))
- (-4 *3 (-1023 *4)) (-4 *3 (-13 (-836) (-546))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2))
- (-4 *2 (-13 (-425 *3) (-1180))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-631 (-221))) (-5 *2 (-631 (-1140))) (-5 *1 (-188))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-631 (-221))) (-5 *2 (-631 (-1140))) (-5 *1 (-295))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-631 (-221))) (-5 *2 (-631 (-1140))) (-5 *1 (-300)))))
+ (-5 *3
+ (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224)))
+ (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
+ (-5 *2 (-2 (|:| -3483 (-114)) (|:| |w| (-224)))) (-5 *1 (-203)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-258))) (-5 *4 (-1158)) (-5 *2 (-112))
- (-5 *1 (-258)))))
-(((*1 *2)
- (-12 (-5 *2 (-2 (|:| -3633 (-631 *3)) (|:| -2786 (-631 *3))))
- (-5 *1 (-1196 *3)) (-4 *3 (-1082)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1140)) (-5 *4 (-554)) (-5 *5 (-675 (-167 (-221))))
- (-5 *2 (-1020)) (-5 *1 (-741)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))))
+ (-12 (-5 *3 (-1163)) (-4 *5 (-362)) (-5 *2 (-1143 (-1143 (-942 *5))))
+ (-5 *1 (-1254 *5)) (-5 *4 (-1143 (-942 *5))))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-631 (-258))) (-5 *1 (-256))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-258))))
- ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-548 *2)) (-4 *2 (-539)))))
-(((*1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-270)))))
-(((*1 *1 *1) (-4 *1 (-546))))
-(((*1 *2 *1) (-12 (-4 *1 (-503 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-836)))))
+ (-12 (-5 *2 (-635 (-378))) (-5 *3 (-635 (-262))) (-5 *1 (-260))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-635 (-378))) (-5 *1 (-466))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 (-378))) (-5 *1 (-466))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-911)) (-5 *4 (-864)) (-5 *2 (-1251)) (-5 *1 (-1247))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-911)) (-5 *4 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1247)))))
+(((*1 *1 *1) (-4 *1 (-95)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163)))
+ (-14 *3 (-635 (-1163))) (-4 *4 (-386))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1148 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1149 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-631 (-890 *3))) (-5 *1 (-889 *3)) (-4 *3 (-1082)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-431)))))
-(((*1 *1 *2) (-12 (-5 *1 (-1181 *2)) (-4 *2 (-1082))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-5 *1 (-1181 *3))))
+ (-12 (-4 *1 (-1059 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-784))
+ (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1059 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-784))
+ (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1200))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-1145)) (-5 *1 (-979))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-631 (-1181 *2))) (-5 *1 (-1181 *2)) (-4 *2 (-1082)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1188 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *4 (-780))
- (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5))
- (-5 *2 (-2 (|:| -2498 (-631 *6)) (|:| -1303 (-631 *6)))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836))
- (-4 *7 (-1048 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-631 *7)) (|:| |badPols| (-631 *7))))
- (-5 *1 (-962 *4 *5 *6 *7)) (-5 *3 (-631 *7)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-780)) (-4 *6 (-836))
- (-4 *7 (-934 *4 *5 *6)) (-5 *2 (-631 (-631 *7)))
- (-5 *1 (-442 *4 *5 *6 *7)) (-5 *3 (-631 *7))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-780))
- (-4 *7 (-836)) (-4 *8 (-934 *5 *6 *7)) (-5 *2 (-631 (-631 *8)))
- (-5 *1 (-442 *5 *6 *7 *8)) (-5 *3 (-631 *8))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-780)) (-4 *6 (-836))
- (-4 *7 (-934 *4 *5 *6)) (-5 *2 (-631 (-631 *7)))
- (-5 *1 (-442 *4 *5 *6 *7)) (-5 *3 (-631 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-780))
- (-4 *7 (-836)) (-4 *8 (-934 *5 *6 *7)) (-5 *2 (-631 (-631 *8)))
- (-5 *1 (-442 *5 *6 *7 *8)) (-5 *3 (-631 *8)))))
-(((*1 *1 *1 *1) (-5 *1 (-848))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-167 (-221))) (-5 *5 (-554)) (-5 *6 (-1140))
- (-5 *3 (-221)) (-5 *2 (-1020)) (-5 *1 (-745)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-859)) (-5 *3 (-631 (-258))) (-5 *1 (-256)))))
-(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1161)))))
+ (-12 (-5 *2 (-1163)) (-5 *3 (-1081 *4)) (-4 *4 (-1200))
+ (-5 *1 (-1079 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 *5)) (-5 *4 (-906)) (-4 *5 (-836))
- (-5 *2 (-59 (-631 (-658 *5)))) (-5 *1 (-658 *5)))))
-(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221)))
- (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221))
- (|:| |relerr| (-221))))
- (-5 *2
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1138 (-221)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -3827
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *1 (-549)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-2 (|:| |totdeg| (-758)) (|:| -2598 *4))) (-5 *5 (-758))
- (-4 *4 (-934 *6 *7 *8)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836))
- (-5 *2
- (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-5 *1 (-443 *6 *7 *8 *4)))))
+ (-12 (-4 *5 (-784)) (-4 *4 (-841)) (-4 *6 (-306)) (-5 *2 (-417 *3))
+ (-5 *1 (-733 *5 *4 *6 *3)) (-4 *3 (-939 *6 *5 *4)))))
(((*1 *2)
- (-12 (-5 *2 (-1246)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-1082))
- (-4 *4 (-1082)))))
+ (-12 (-4 *1 (-348))
+ (-5 *2 (-635 (-2 (|:| -2522 (-558)) (|:| -1951 (-558))))))))
+(((*1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1170)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-966 *3 *4 *2 *5)) (-4 *3 (-1039)) (-4 *4 (-784))
+ (-4 *2 (-841)) (-4 *5 (-1053 *3 *4 *2)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-631 *3)) (-4 *3 (-934 *5 *6 *7)) (-4 *5 (-446))
- (-4 *6 (-780)) (-4 *7 (-836))
- (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
- (-5 *1 (-443 *5 *6 *7 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222))))
- ((*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2))
- (-4 *2 (-425 *3))))
- ((*1 *1 *1) (-4 *1 (-1121))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1154 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-746)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-344)) (-5 *2 (-112)) (-5 *1 (-212 *4 *3))
- (-4 *3 (-1217 *4)))))
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1222 *5)) (-4 *5 (-362))
+ (-4 *7 (-1222 (-406 *6)))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| -1427 *3)))
+ (-5 *1 (-556 *5 *6 *7 *3)) (-4 *3 (-341 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1222 *5)) (-4 *5 (-362))
+ (-5 *2
+ (-2 (|:| |answer| (-406 *6)) (|:| -1427 (-406 *6))
+ (|:| |specpart| (-406 *6)) (|:| |polypart| *6)))
+ (-5 *1 (-557 *5 *6)) (-5 *3 (-406 *6)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1025)) (-5 *3 (-1163)) (-5 *1 (-191)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-758)) (-5 *2 (-1154 *4)) (-5 *1 (-522 *4))
- (-4 *4 (-344)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1082)) (-4 *4 (-1082))
- (-4 *6 (-1082)) (-5 *2 (-1 *6 *5)) (-5 *1 (-670 *5 *4 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-213)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2))
- (-4 *2 (-425 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1121))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-237)) (-5 *3 (-1140))))
- ((*1 *2 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-237))))
- ((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-859)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-1034))
- (-4 *2 (-1232 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-675 *7)) (-5 *3 (-631 *7)) (-4 *7 (-934 *4 *6 *5))
- (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158))))
- (-4 *6 (-780)) (-5 *1 (-909 *4 *5 *6 *7)))))
-(((*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-911)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1124 *4 *2)) (-14 *4 (-906))
- (-4 *2 (-13 (-1034) (-10 -7 (-6 (-4375 "*")))))
- (-5 *1 (-887 *4 *2)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-325)))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4))
- (-4 *3 (-362 *4))))
- ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2))
- (-4 *2 (-425 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1121))))
-(((*1 *2 *3 *3)
- (-12 (-4 *2 (-546)) (-4 *2 (-446)) (-5 *1 (-954 *2 *3))
- (-4 *3 (-1217 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836))
- (-4 *3 (-1048 *5 *6 *7))
- (-5 *2 (-631 (-2 (|:| |val| (-112)) (|:| -2143 *4))))
- (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1241 (-631 (-2 (|:| -2794 *4) (|:| -2717 (-1102))))))
- (-4 *4 (-344)) (-5 *2 (-1246)) (-5 *1 (-522 *4)))))
+ (-12 (-5 *3 (-762)) (-5 *2 (-1 (-1143 (-942 *4)) (-1143 (-942 *4))))
+ (-5 *1 (-1254 *4)) (-4 *4 (-362)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2))
- (-4 *2 (-13 (-425 *3) (-1180))))))
-(((*1 *2 *3 *4 *4 *5)
- (|partial| -12 (-5 *4 (-600 *3)) (-5 *5 (-631 *3))
- (-4 *3 (-13 (-425 *6) (-27) (-1180)))
- (-4 *6 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-631 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-556 *6 *3 *7)) (-4 *7 (-1082)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-758)) (-5 *1 (-114))))
- ((*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-183))))
- ((*1 *2 *1) (-12 (-4 *1 (-822 *3)) (-4 *3 (-1082)) (-5 *2 -55))))
-(((*1 *2 *3 *4)
- (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4)))
- (-5 *1 (-692 *3 *4)) (-4 *3 (-1195)) (-4 *4 (-1195)))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-554)) (-4 *3 (-170)) (-4 *5 (-368 *3))
- (-4 *6 (-368 *3)) (-5 *1 (-674 *3 *5 *6 *2))
- (-4 *2 (-673 *3 *5 *6)))))
-(((*1 *1) (-5 *1 (-568))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1158)) (-5 *4 (-937 (-554))) (-5 *2 (-325))
- (-5 *1 (-327)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-244)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 *5)) (-5 *4 (-906)) (-4 *5 (-836))
- (-5 *2 (-631 (-658 *5))) (-5 *1 (-658 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-961 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-780))
- (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546))
- (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1154 *7))
- (-4 *5 (-1034)) (-4 *7 (-1034)) (-4 *2 (-1217 *5))
- (-5 *1 (-495 *5 *2 *6 *7)) (-4 *6 (-1217 *2)))))
-(((*1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-524 *3)) (-4 *3 (-13 (-713) (-25))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-1246))
- (-5 *1 (-443 *4 *5 *6 *3)) (-4 *3 (-934 *4 *5 *6)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-551))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1154 (-402 (-554)))) (-5 *1 (-927)) (-5 *3 (-554)))))
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1148 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1149 *3))))
+ ((*1 *1 *1) (-4 *1 (-1188))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1059 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-784))
+ (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *1 *1 *1) (-5 *1 (-853))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1082)) (-4 *6 (-1082))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-670 *4 *5 *6)) (-4 *5 (-1082)))))
-(((*1 *2)
- (-12 (-4 *4 (-358)) (-5 *2 (-758)) (-5 *1 (-323 *3 *4))
- (-4 *3 (-324 *4))))
- ((*1 *2) (-12 (-4 *1 (-1260 *3)) (-4 *3 (-358)) (-5 *2 (-758)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1146 3 *3)) (-4 *3 (-1034)) (-4 *1 (-1116 *3))))
- ((*1 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1034)))))
+ (-12 (-5 *3 (-635 (-2 (|:| -2522 (-1159 *6)) (|:| -1951 (-558)))))
+ (-4 *6 (-306)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-558))
+ (-5 *1 (-733 *4 *5 *6 *7)) (-4 *7 (-939 *6 *4 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-344)) (-5 *2 (-413 (-1154 (-1154 *4))))
- (-5 *1 (-1193 *4)) (-5 *3 (-1154 (-1154 *4))))))
-(((*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-439 *3)) (-4 *3 (-1034)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-3 (|:| |Null| "null") (|:| |Assignment| "assignment")
- (|:| |Conditional| "conditional") (|:| |Return| "return")
- (|:| |Block| "block") (|:| |Comment| "comment")
- (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while")
- (|:| |Repeat| "repeat") (|:| |Goto| "goto")
- (|:| |Continue| "continue")
- (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save")
- (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")))
- (-5 *1 (-325)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1082))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-806 *2)) (-4 *2 (-836)))))
+ (-12 (-4 *1 (-348)) (-5 *3 (-558)) (-5 *2 (-1173 (-911) (-762))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1158))
- (-4 *5 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554))))
- (-5 *2 (-575 *3)) (-5 *1 (-421 *5 *3))
- (-4 *3 (-13 (-1180) (-29 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1158)) (-4 *5 (-13 (-546) (-1023 (-554)) (-145)))
- (-5 *2 (-575 (-402 (-937 *5)))) (-5 *1 (-560 *5))
- (-5 *3 (-402 (-937 *5))))))
-(((*1 *2 *3 *3)
- (-12 (|has| *2 (-6 (-4375 "*"))) (-4 *5 (-368 *2)) (-4 *6 (-368 *2))
- (-4 *2 (-1034)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1217 *2))
- (-4 *4 (-673 *2 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-890 (-554))) (-5 *4 (-554)) (-5 *2 (-675 *4))
- (-5 *1 (-1013 *5)) (-4 *5 (-1034))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-631 (-554))) (-5 *2 (-675 (-554))) (-5 *1 (-1013 *4))
- (-4 *4 (-1034))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-890 (-554)))) (-5 *4 (-554))
- (-5 *2 (-631 (-675 *4))) (-5 *1 (-1013 *5)) (-4 *5 (-1034))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-631 (-631 (-554)))) (-5 *2 (-631 (-675 (-554))))
- (-5 *1 (-1013 *4)) (-4 *4 (-1034)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1190 *3)) (-4 *3 (-959)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-906)) (-5 *1 (-1015 *2))
- (-4 *2 (-13 (-1082) (-10 -8 (-15 -1735 ($ $ $))))))))
-(((*1 *1) (-5 *1 (-139))) ((*1 *1 *1) (-5 *1 (-142)))
- ((*1 *1 *1) (-4 *1 (-1126))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-554)) (-5 *1 (-413 *2)) (-4 *2 (-546)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836))
- (-4 *3 (-1048 *5 *6 *7))
- (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *4))))
- (-5 *1 (-1055 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
- (-12 (-5 *4 (-554)) (-5 *5 (-1140)) (-5 *6 (-675 (-221)))
- (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-89 G))))
- (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN))))
- (-5 *9 (-3 (|:| |fn| (-383)) (|:| |fp| (-71 PEDERV))))
- (-5 *10 (-3 (|:| |fn| (-383)) (|:| |fp| (-88 OUTPUT))))
- (-5 *3 (-221)) (-5 *2 (-1020)) (-5 *1 (-736)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-546)) (-5 *2 (-112)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-402 (-937 *4))) (-5 *3 (-1158))
- (-4 *4 (-13 (-546) (-1023 (-554)) (-145))) (-5 *1 (-560 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-631 (-2 (|:| |k| (-1158)) (|:| |c| (-1263 *3)))))
- (-5 *1 (-1263 *3)) (-4 *3 (-1034))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-631 (-2 (|:| |k| *3) (|:| |c| (-1265 *3 *4)))))
- (-5 *1 (-1265 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-951 *3)) (-4 *3 (-952)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-631 *3))
- (-5 *1 (-962 *4 *5 *6 *3)) (-4 *3 (-1048 *4 *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-675 (-311 (-554)))) (-5 *1 (-1016)))))
+ (-12 (-5 *3 (-635 (-406 (-942 *5)))) (-5 *4 (-635 (-1163)))
+ (-4 *5 (-550)) (-5 *2 (-635 (-635 (-942 *5)))) (-5 *1 (-1169 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-966 *3 *4 *2 *5)) (-4 *3 (-1039)) (-4 *4 (-784))
+ (-4 *2 (-841)) (-4 *5 (-1053 *3 *4 *2)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-558)) (-5 *3 (-762)) (-5 *1 (-555)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1241 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170))
- (-4 *5 (-1217 *4)) (-5 *2 (-675 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-170)) (-4 *5 (-1217 *4)) (-5 *2 (-675 *4))
- (-5 *1 (-403 *3 *4 *5)) (-4 *3 (-404 *4 *5))))
- ((*1 *2)
- (-12 (-4 *1 (-404 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1217 *3))
- (-5 *2 (-675 *3)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224)))
+ (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
+ (-5 *2 (-378)) (-5 *1 (-191)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-13 (-836) (-546))) (-5 *2 (-112))
- (-5 *1 (-32 *4 *5)) (-4 *5 (-425 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-13 (-836) (-546))) (-5 *2 (-112))
- (-5 *1 (-156 *4 *5)) (-4 *5 (-425 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-13 (-836) (-546))) (-5 *2 (-112))
- (-5 *1 (-271 *4 *5)) (-4 *5 (-13 (-425 *4) (-987)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-296 *4)) (-4 *4 (-297))))
- ((*1 *2 *3) (-12 (-4 *1 (-297)) (-5 *3 (-114)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *5 (-836)) (-5 *2 (-112))
- (-5 *1 (-424 *4 *5)) (-4 *4 (-425 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-13 (-836) (-546))) (-5 *2 (-112))
- (-5 *1 (-426 *4 *5)) (-4 *5 (-425 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-13 (-836) (-546))) (-5 *2 (-112))
- (-5 *1 (-618 *4 *5)) (-4 *5 (-13 (-425 *4) (-987) (-1180))))))
+ (-12 (-5 *3 (-762)) (-5 *2 (-1 (-1143 (-942 *4)) (-1143 (-942 *4))))
+ (-5 *1 (-1254 *4)) (-4 *4 (-362)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1148 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1149 *3))))
+ ((*1 *1 *1) (-4 *1 (-1188))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1059 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-784))
+ (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-554)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1034)))))
+ (-12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-306)) (-5 *2 (-417 *3))
+ (-5 *1 (-733 *4 *5 *6 *3)) (-4 *3 (-939 *6 *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-402 (-937 (-554)))))
- (-5 *2 (-631 (-631 (-289 (-937 *4))))) (-5 *1 (-375 *4))
- (-4 *4 (-13 (-834) (-358)))))
+ (-12 (-5 *3 (-635 (-406 (-942 (-558)))))
+ (-5 *2 (-635 (-635 (-293 (-942 *4))))) (-5 *1 (-379 *4))
+ (-4 *4 (-13 (-839) (-362)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-289 (-402 (-937 (-554))))))
- (-5 *2 (-631 (-631 (-289 (-937 *4))))) (-5 *1 (-375 *4))
- (-4 *4 (-13 (-834) (-358)))))
+ (-12 (-5 *3 (-635 (-293 (-406 (-942 (-558))))))
+ (-5 *2 (-635 (-635 (-293 (-942 *4))))) (-5 *1 (-379 *4))
+ (-4 *4 (-13 (-839) (-362)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-402 (-937 (-554)))) (-5 *2 (-631 (-289 (-937 *4))))
- (-5 *1 (-375 *4)) (-4 *4 (-13 (-834) (-358)))))
+ (-12 (-5 *3 (-406 (-942 (-558)))) (-5 *2 (-635 (-293 (-942 *4))))
+ (-5 *1 (-379 *4)) (-4 *4 (-13 (-839) (-362)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-289 (-402 (-937 (-554)))))
- (-5 *2 (-631 (-289 (-937 *4)))) (-5 *1 (-375 *4))
- (-4 *4 (-13 (-834) (-358)))))
+ (-12 (-5 *3 (-293 (-406 (-942 (-558)))))
+ (-5 *2 (-635 (-293 (-942 *4)))) (-5 *1 (-379 *4))
+ (-4 *4 (-13 (-839) (-362)))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1158))
- (-4 *6 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145)))
- (-4 *4 (-13 (-29 *6) (-1180) (-944)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -3782 (-631 *4))))
- (-5 *1 (-638 *6 *4 *3)) (-4 *3 (-642 *4))))
+ (|partial| -12 (-5 *5 (-1163))
+ (-4 *6 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)))
+ (-4 *4 (-13 (-29 *6) (-1185) (-949)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -2660 (-635 *4))))
+ (-5 *1 (-642 *6 *4 *3)) (-4 *3 (-646 *4))))
((*1 *2 *3 *2 *4 *2 *5)
- (|partial| -12 (-5 *4 (-1158)) (-5 *5 (-631 *2))
- (-4 *2 (-13 (-29 *6) (-1180) (-944)))
- (-4 *6 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145)))
- (-5 *1 (-638 *6 *2 *3)) (-4 *3 (-642 *2))))
+ (|partial| -12 (-5 *4 (-1163)) (-5 *5 (-635 *2))
+ (-4 *2 (-13 (-29 *6) (-1185) (-949)))
+ (-4 *6 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)))
+ (-5 *1 (-642 *6 *2 *3)) (-4 *3 (-646 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-675 *5)) (-4 *5 (-358))
+ (-12 (-5 *3 (-679 *5)) (-4 *5 (-362))
(-5 *2
- (-2 (|:| |particular| (-3 (-1241 *5) "failed"))
- (|:| -3782 (-631 (-1241 *5)))))
- (-5 *1 (-653 *5)) (-5 *4 (-1241 *5))))
+ (-2 (|:| |particular| (-3 (-1246 *5) "failed"))
+ (|:| -2660 (-635 (-1246 *5)))))
+ (-5 *1 (-657 *5)) (-5 *4 (-1246 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-631 *5))) (-4 *5 (-358))
+ (-12 (-5 *3 (-635 (-635 *5))) (-4 *5 (-362))
(-5 *2
- (-2 (|:| |particular| (-3 (-1241 *5) "failed"))
- (|:| -3782 (-631 (-1241 *5)))))
- (-5 *1 (-653 *5)) (-5 *4 (-1241 *5))))
+ (-2 (|:| |particular| (-3 (-1246 *5) "failed"))
+ (|:| -2660 (-635 (-1246 *5)))))
+ (-5 *1 (-657 *5)) (-5 *4 (-1246 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-675 *5)) (-4 *5 (-358))
+ (-12 (-5 *3 (-679 *5)) (-4 *5 (-362))
(-5 *2
- (-631
- (-2 (|:| |particular| (-3 (-1241 *5) "failed"))
- (|:| -3782 (-631 (-1241 *5))))))
- (-5 *1 (-653 *5)) (-5 *4 (-631 (-1241 *5)))))
+ (-635
+ (-2 (|:| |particular| (-3 (-1246 *5) "failed"))
+ (|:| -2660 (-635 (-1246 *5))))))
+ (-5 *1 (-657 *5)) (-5 *4 (-635 (-1246 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-631 *5))) (-4 *5 (-358))
+ (-12 (-5 *3 (-635 (-635 *5))) (-4 *5 (-362))
(-5 *2
- (-631
- (-2 (|:| |particular| (-3 (-1241 *5) "failed"))
- (|:| -3782 (-631 (-1241 *5))))))
- (-5 *1 (-653 *5)) (-5 *4 (-631 (-1241 *5)))))
+ (-635
+ (-2 (|:| |particular| (-3 (-1246 *5) "failed"))
+ (|:| -2660 (-635 (-1246 *5))))))
+ (-5 *1 (-657 *5)) (-5 *4 (-635 (-1246 *5)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-358)) (-4 *6 (-13 (-368 *5) (-10 -7 (-6 -4374))))
- (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4374))))
+ (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4383))))
+ (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4383))))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3782 (-631 *4))))
- (-5 *1 (-654 *5 *6 *4 *3)) (-4 *3 (-673 *5 *6 *4))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2660 (-635 *4))))
+ (-5 *1 (-658 *5 *6 *4 *3)) (-4 *3 (-677 *5 *6 *4))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-358)) (-4 *6 (-13 (-368 *5) (-10 -7 (-6 -4374))))
- (-4 *7 (-13 (-368 *5) (-10 -7 (-6 -4374))))
+ (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4383))))
+ (-4 *7 (-13 (-372 *5) (-10 -7 (-6 -4383))))
(-5 *2
- (-631
- (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3782 (-631 *7)))))
- (-5 *1 (-654 *5 *6 *7 *3)) (-5 *4 (-631 *7))
- (-4 *3 (-673 *5 *6 *7))))
+ (-635
+ (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2660 (-635 *7)))))
+ (-5 *1 (-658 *5 *6 *7 *3)) (-5 *4 (-635 *7))
+ (-4 *3 (-677 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-937 *5))) (-5 *4 (-631 (-1158))) (-4 *5 (-546))
- (-5 *2 (-631 (-631 (-289 (-402 (-937 *5)))))) (-5 *1 (-757 *5))))
+ (-12 (-5 *3 (-635 (-942 *5))) (-5 *4 (-635 (-1163))) (-4 *5 (-550))
+ (-5 *2 (-635 (-635 (-293 (-406 (-942 *5)))))) (-5 *1 (-761 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-631 (-937 *4))) (-4 *4 (-546))
- (-5 *2 (-631 (-631 (-289 (-402 (-937 *4)))))) (-5 *1 (-757 *4))))
+ (-12 (-5 *3 (-635 (-942 *4))) (-4 *4 (-550))
+ (-5 *2 (-635 (-635 (-293 (-406 (-942 *4)))))) (-5 *1 (-761 *4))))
((*1 *2 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1158))
- (-4 *5 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145)))
- (-5 *1 (-759 *5 *2)) (-4 *2 (-13 (-29 *5) (-1180) (-944)))))
+ (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1163))
+ (-4 *5 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)))
+ (-5 *1 (-763 *5 *2)) (-4 *2 (-13 (-29 *5) (-1185) (-949)))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-675 *7)) (-5 *5 (-1158))
- (-4 *7 (-13 (-29 *6) (-1180) (-944)))
- (-4 *6 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145)))
+ (|partial| -12 (-5 *3 (-679 *7)) (-5 *5 (-1163))
+ (-4 *7 (-13 (-29 *6) (-1185) (-949)))
+ (-4 *6 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)))
(-5 *2
- (-2 (|:| |particular| (-1241 *7)) (|:| -3782 (-631 (-1241 *7)))))
- (-5 *1 (-789 *6 *7)) (-5 *4 (-1241 *7))))
+ (-2 (|:| |particular| (-1246 *7)) (|:| -2660 (-635 (-1246 *7)))))
+ (-5 *1 (-793 *6 *7)) (-5 *4 (-1246 *7))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-675 *6)) (-5 *4 (-1158))
- (-4 *6 (-13 (-29 *5) (-1180) (-944)))
- (-4 *5 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145)))
- (-5 *2 (-631 (-1241 *6))) (-5 *1 (-789 *5 *6))))
+ (|partial| -12 (-5 *3 (-679 *6)) (-5 *4 (-1163))
+ (-4 *6 (-13 (-29 *5) (-1185) (-949)))
+ (-4 *5 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)))
+ (-5 *2 (-635 (-1246 *6))) (-5 *1 (-793 *5 *6))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-631 (-289 *7))) (-5 *4 (-631 (-114)))
- (-5 *5 (-1158)) (-4 *7 (-13 (-29 *6) (-1180) (-944)))
- (-4 *6 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145)))
+ (|partial| -12 (-5 *3 (-635 (-293 *7))) (-5 *4 (-635 (-114)))
+ (-5 *5 (-1163)) (-4 *7 (-13 (-29 *6) (-1185) (-949)))
+ (-4 *6 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)))
(-5 *2
- (-2 (|:| |particular| (-1241 *7)) (|:| -3782 (-631 (-1241 *7)))))
- (-5 *1 (-789 *6 *7))))
+ (-2 (|:| |particular| (-1246 *7)) (|:| -2660 (-635 (-1246 *7)))))
+ (-5 *1 (-793 *6 *7))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-631 *7)) (-5 *4 (-631 (-114)))
- (-5 *5 (-1158)) (-4 *7 (-13 (-29 *6) (-1180) (-944)))
- (-4 *6 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145)))
+ (|partial| -12 (-5 *3 (-635 *7)) (-5 *4 (-635 (-114)))
+ (-5 *5 (-1163)) (-4 *7 (-13 (-29 *6) (-1185) (-949)))
+ (-4 *6 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)))
(-5 *2
- (-2 (|:| |particular| (-1241 *7)) (|:| -3782 (-631 (-1241 *7)))))
- (-5 *1 (-789 *6 *7))))
+ (-2 (|:| |particular| (-1246 *7)) (|:| -2660 (-635 (-1246 *7)))))
+ (-5 *1 (-793 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-289 *7)) (-5 *4 (-114)) (-5 *5 (-1158))
- (-4 *7 (-13 (-29 *6) (-1180) (-944)))
- (-4 *6 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145)))
+ (-12 (-5 *3 (-293 *7)) (-5 *4 (-114)) (-5 *5 (-1163))
+ (-4 *7 (-13 (-29 *6) (-1185) (-949)))
+ (-4 *6 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)))
(-5 *2
- (-3 (-2 (|:| |particular| *7) (|:| -3782 (-631 *7))) *7 "failed"))
- (-5 *1 (-789 *6 *7))))
+ (-3 (-2 (|:| |particular| *7) (|:| -2660 (-635 *7))) *7 "failed"))
+ (-5 *1 (-793 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-114)) (-5 *5 (-1158))
- (-4 *6 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145)))
+ (-12 (-5 *4 (-114)) (-5 *5 (-1163))
+ (-4 *6 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)))
(-5 *2
- (-3 (-2 (|:| |particular| *3) (|:| -3782 (-631 *3))) *3 "failed"))
- (-5 *1 (-789 *6 *3)) (-4 *3 (-13 (-29 *6) (-1180) (-944)))))
+ (-3 (-2 (|:| |particular| *3) (|:| -2660 (-635 *3))) *3 "failed"))
+ (-5 *1 (-793 *6 *3)) (-4 *3 (-13 (-29 *6) (-1185) (-949)))))
((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-289 *2)) (-5 *4 (-114)) (-5 *5 (-631 *2))
- (-4 *2 (-13 (-29 *6) (-1180) (-944))) (-5 *1 (-789 *6 *2))
- (-4 *6 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145)))))
+ (|partial| -12 (-5 *3 (-293 *2)) (-5 *4 (-114)) (-5 *5 (-635 *2))
+ (-4 *2 (-13 (-29 *6) (-1185) (-949))) (-5 *1 (-793 *6 *2))
+ (-4 *6 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)))))
((*1 *2 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-114)) (-5 *4 (-289 *2)) (-5 *5 (-631 *2))
- (-4 *2 (-13 (-29 *6) (-1180) (-944)))
- (-4 *6 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145)))
- (-5 *1 (-789 *6 *2))))
- ((*1 *2 *3) (-12 (-5 *3 (-795)) (-5 *2 (-1020)) (-5 *1 (-792))))
+ (|partial| -12 (-5 *3 (-114)) (-5 *4 (-293 *2)) (-5 *5 (-635 *2))
+ (-4 *2 (-13 (-29 *6) (-1185) (-949)))
+ (-4 *6 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)))
+ (-5 *1 (-793 *6 *2))))
+ ((*1 *2 *3) (-12 (-5 *3 (-799)) (-5 *2 (-1025)) (-5 *1 (-796))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-795)) (-5 *4 (-1046)) (-5 *2 (-1020)) (-5 *1 (-792))))
+ (-12 (-5 *3 (-799)) (-5 *4 (-1051)) (-5 *2 (-1025)) (-5 *1 (-796))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1241 (-311 (-374)))) (-5 *4 (-374)) (-5 *5 (-631 *4))
- (-5 *2 (-1020)) (-5 *1 (-792))))
+ (-12 (-5 *3 (-1246 (-315 (-378)))) (-5 *4 (-378)) (-5 *5 (-635 *4))
+ (-5 *2 (-1025)) (-5 *1 (-796))))
((*1 *2 *3 *4 *4 *5 *4)
- (-12 (-5 *3 (-1241 (-311 (-374)))) (-5 *4 (-374)) (-5 *5 (-631 *4))
- (-5 *2 (-1020)) (-5 *1 (-792))))
+ (-12 (-5 *3 (-1246 (-315 (-378)))) (-5 *4 (-378)) (-5 *5 (-635 *4))
+ (-5 *2 (-1025)) (-5 *1 (-796))))
((*1 *2 *3 *4 *4 *5 *6 *4)
- (-12 (-5 *3 (-1241 (-311 *4))) (-5 *5 (-631 (-374)))
- (-5 *6 (-311 (-374))) (-5 *4 (-374)) (-5 *2 (-1020)) (-5 *1 (-792))))
+ (-12 (-5 *3 (-1246 (-315 *4))) (-5 *5 (-635 (-378)))
+ (-5 *6 (-315 (-378))) (-5 *4 (-378)) (-5 *2 (-1025)) (-5 *1 (-796))))
((*1 *2 *3 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1241 (-311 (-374)))) (-5 *4 (-374)) (-5 *5 (-631 *4))
- (-5 *2 (-1020)) (-5 *1 (-792))))
+ (-12 (-5 *3 (-1246 (-315 (-378)))) (-5 *4 (-378)) (-5 *5 (-635 *4))
+ (-5 *2 (-1025)) (-5 *1 (-796))))
((*1 *2 *3 *4 *4 *5 *6 *5 *4)
- (-12 (-5 *3 (-1241 (-311 *4))) (-5 *5 (-631 (-374)))
- (-5 *6 (-311 (-374))) (-5 *4 (-374)) (-5 *2 (-1020)) (-5 *1 (-792))))
+ (-12 (-5 *3 (-1246 (-315 *4))) (-5 *5 (-635 (-378)))
+ (-5 *6 (-315 (-378))) (-5 *4 (-378)) (-5 *2 (-1025)) (-5 *1 (-796))))
((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4)
- (-12 (-5 *3 (-1241 (-311 *4))) (-5 *5 (-631 (-374)))
- (-5 *6 (-311 (-374))) (-5 *4 (-374)) (-5 *2 (-1020)) (-5 *1 (-792))))
+ (-12 (-5 *3 (-1246 (-315 *4))) (-5 *5 (-635 (-378)))
+ (-5 *6 (-315 (-378))) (-5 *4 (-378)) (-5 *2 (-1025)) (-5 *1 (-796))))
((*1 *2 *3 *4 *5)
(|partial| -12
(-5 *5
(-1
- (-3 (-2 (|:| |particular| *6) (|:| -3782 (-631 *6))) "failed")
+ (-3 (-2 (|:| |particular| *6) (|:| -2660 (-635 *6))) "failed")
*7 *6))
- (-4 *6 (-358)) (-4 *7 (-642 *6))
- (-5 *2 (-2 (|:| |particular| (-1241 *6)) (|:| -3782 (-675 *6))))
- (-5 *1 (-800 *6 *7)) (-5 *3 (-675 *6)) (-5 *4 (-1241 *6))))
- ((*1 *2 *3) (-12 (-5 *3 (-883)) (-5 *2 (-1020)) (-5 *1 (-882))))
+ (-4 *6 (-362)) (-4 *7 (-646 *6))
+ (-5 *2 (-2 (|:| |particular| (-1246 *6)) (|:| -2660 (-679 *6))))
+ (-5 *1 (-804 *6 *7)) (-5 *3 (-679 *6)) (-5 *4 (-1246 *6))))
+ ((*1 *2 *3) (-12 (-5 *3 (-888)) (-5 *2 (-1025)) (-5 *1 (-887))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-883)) (-5 *4 (-1046)) (-5 *2 (-1020)) (-5 *1 (-882))))
+ (-12 (-5 *3 (-888)) (-5 *4 (-1051)) (-5 *2 (-1025)) (-5 *1 (-887))))
((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8)
- (-12 (-5 *4 (-758)) (-5 *6 (-631 (-631 (-311 *3)))) (-5 *7 (-1140))
- (-5 *8 (-221)) (-5 *5 (-631 (-311 (-374)))) (-5 *3 (-374))
- (-5 *2 (-1020)) (-5 *1 (-882))))
+ (-12 (-5 *4 (-762)) (-5 *6 (-635 (-635 (-315 *3)))) (-5 *7 (-1145))
+ (-5 *8 (-224)) (-5 *5 (-635 (-315 (-378)))) (-5 *3 (-378))
+ (-5 *2 (-1025)) (-5 *1 (-887))))
((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *4 (-758)) (-5 *6 (-631 (-631 (-311 *3)))) (-5 *7 (-1140))
- (-5 *5 (-631 (-311 (-374)))) (-5 *3 (-374)) (-5 *2 (-1020))
- (-5 *1 (-882))))
+ (-12 (-5 *4 (-762)) (-5 *6 (-635 (-635 (-315 *3)))) (-5 *7 (-1145))
+ (-5 *5 (-635 (-315 (-378)))) (-5 *3 (-378)) (-5 *2 (-1025))
+ (-5 *1 (-887))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-937 (-402 (-554)))) (-5 *2 (-631 (-374)))
- (-5 *1 (-1008)) (-5 *4 (-374))))
+ (-12 (-5 *3 (-942 (-406 (-558)))) (-5 *2 (-635 (-378)))
+ (-5 *1 (-1013)) (-5 *4 (-378))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-937 (-554))) (-5 *2 (-631 (-374))) (-5 *1 (-1008))
- (-5 *4 (-374))))
+ (-12 (-5 *3 (-942 (-558))) (-5 *2 (-635 (-378))) (-5 *1 (-1013))
+ (-5 *4 (-378))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554)))))))
- (-5 *2 (-631 *4)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1217 *4))))
+ (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558)))))))
+ (-5 *2 (-635 *4)) (-5 *1 (-1115 *3 *4)) (-4 *3 (-1222 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145)))
- (-5 *2 (-631 (-289 (-311 *4)))) (-5 *1 (-1113 *4))
- (-5 *3 (-311 *4))))
+ (-12 (-4 *4 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)))
+ (-5 *2 (-635 (-293 (-315 *4)))) (-5 *1 (-1118 *4))
+ (-5 *3 (-315 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145)))
- (-5 *2 (-631 (-289 (-311 *4)))) (-5 *1 (-1113 *4))
- (-5 *3 (-289 (-311 *4)))))
+ (-12 (-4 *4 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)))
+ (-5 *2 (-635 (-293 (-315 *4)))) (-5 *1 (-1118 *4))
+ (-5 *3 (-293 (-315 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1158))
- (-4 *5 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145)))
- (-5 *2 (-631 (-289 (-311 *5)))) (-5 *1 (-1113 *5))
- (-5 *3 (-289 (-311 *5)))))
+ (-12 (-5 *4 (-1163))
+ (-4 *5 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)))
+ (-5 *2 (-635 (-293 (-315 *5)))) (-5 *1 (-1118 *5))
+ (-5 *3 (-293 (-315 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1158))
- (-4 *5 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145)))
- (-5 *2 (-631 (-289 (-311 *5)))) (-5 *1 (-1113 *5))
- (-5 *3 (-311 *5))))
+ (-12 (-5 *4 (-1163))
+ (-4 *5 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)))
+ (-5 *2 (-635 (-293 (-315 *5)))) (-5 *1 (-1118 *5))
+ (-5 *3 (-315 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-631 (-1158)))
- (-4 *5 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145)))
- (-5 *2 (-631 (-631 (-289 (-311 *5))))) (-5 *1 (-1113 *5))
- (-5 *3 (-631 (-289 (-311 *5))))))
+ (-12 (-5 *4 (-635 (-1163)))
+ (-4 *5 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)))
+ (-5 *2 (-635 (-635 (-293 (-315 *5))))) (-5 *1 (-1118 *5))
+ (-5 *3 (-635 (-293 (-315 *5))))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-402 (-937 *5)))) (-5 *4 (-631 (-1158)))
- (-4 *5 (-546)) (-5 *2 (-631 (-631 (-289 (-402 (-937 *5))))))
- (-5 *1 (-1164 *5))))
+ (-12 (-5 *3 (-635 (-406 (-942 *5)))) (-5 *4 (-635 (-1163)))
+ (-4 *5 (-550)) (-5 *2 (-635 (-635 (-293 (-406 (-942 *5))))))
+ (-5 *1 (-1169 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-631 (-1158))) (-4 *5 (-546))
- (-5 *2 (-631 (-631 (-289 (-402 (-937 *5)))))) (-5 *1 (-1164 *5))
- (-5 *3 (-631 (-289 (-402 (-937 *5)))))))
+ (-12 (-5 *4 (-635 (-1163))) (-4 *5 (-550))
+ (-5 *2 (-635 (-635 (-293 (-406 (-942 *5)))))) (-5 *1 (-1169 *5))
+ (-5 *3 (-635 (-293 (-406 (-942 *5)))))))
((*1 *2 *3)
- (-12 (-5 *3 (-631 (-402 (-937 *4)))) (-4 *4 (-546))
- (-5 *2 (-631 (-631 (-289 (-402 (-937 *4)))))) (-5 *1 (-1164 *4))))
+ (-12 (-5 *3 (-635 (-406 (-942 *4)))) (-4 *4 (-550))
+ (-5 *2 (-635 (-635 (-293 (-406 (-942 *4)))))) (-5 *1 (-1169 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-546)) (-5 *2 (-631 (-631 (-289 (-402 (-937 *4))))))
- (-5 *1 (-1164 *4)) (-5 *3 (-631 (-289 (-402 (-937 *4)))))))
+ (-12 (-4 *4 (-550)) (-5 *2 (-635 (-635 (-293 (-406 (-942 *4))))))
+ (-5 *1 (-1169 *4)) (-5 *3 (-635 (-293 (-406 (-942 *4)))))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1158)) (-4 *5 (-546))
- (-5 *2 (-631 (-289 (-402 (-937 *5))))) (-5 *1 (-1164 *5))
- (-5 *3 (-402 (-937 *5)))))
+ (-12 (-5 *4 (-1163)) (-4 *5 (-550))
+ (-5 *2 (-635 (-293 (-406 (-942 *5))))) (-5 *1 (-1169 *5))
+ (-5 *3 (-406 (-942 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1158)) (-4 *5 (-546))
- (-5 *2 (-631 (-289 (-402 (-937 *5))))) (-5 *1 (-1164 *5))
- (-5 *3 (-289 (-402 (-937 *5))))))
+ (-12 (-5 *4 (-1163)) (-4 *5 (-550))
+ (-5 *2 (-635 (-293 (-406 (-942 *5))))) (-5 *1 (-1169 *5))
+ (-5 *3 (-293 (-406 (-942 *5))))))
((*1 *2 *3)
- (-12 (-4 *4 (-546)) (-5 *2 (-631 (-289 (-402 (-937 *4)))))
- (-5 *1 (-1164 *4)) (-5 *3 (-402 (-937 *4)))))
+ (-12 (-4 *4 (-550)) (-5 *2 (-635 (-293 (-406 (-942 *4)))))
+ (-5 *1 (-1169 *4)) (-5 *3 (-406 (-942 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-546)) (-5 *2 (-631 (-289 (-402 (-937 *4)))))
- (-5 *1 (-1164 *4)) (-5 *3 (-289 (-402 (-937 *4)))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-631 (-631 *3))) (-4 *3 (-1034)) (-4 *1 (-673 *3 *4 *5))
- (-4 *4 (-368 *3)) (-4 *5 (-368 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-631 (-631 (-848)))) (-5 *1 (-848))))
+ (-12 (-4 *4 (-550)) (-5 *2 (-635 (-293 (-406 (-942 *4)))))
+ (-5 *1 (-1169 *4)) (-5 *3 (-293 (-406 (-942 *4)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-966 *3 *4 *2 *5)) (-4 *3 (-1039)) (-4 *4 (-784))
+ (-4 *2 (-841)) (-4 *5 (-1053 *3 *4 *2)))))
+(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-555)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224)))
+ (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
+ (-5 *2
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular| "There are singularities at both end points")
+ (|:| |notEvaluated| "End point continuity not yet evaluated")))
+ (-5 *1 (-191)))))
+(((*1 *2)
+ (-12 (-14 *4 (-762)) (-4 *5 (-1200)) (-5 *2 (-133))
+ (-5 *1 (-236 *3 *4 *5)) (-4 *3 (-237 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *4 (-362)) (-5 *2 (-133)) (-5 *1 (-327 *3 *4))
+ (-4 *3 (-328 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-762)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-171))))
((*1 *2 *1)
- (-12 (-5 *2 (-1124 *3 *4)) (-5 *1 (-978 *3 *4)) (-14 *3 (-906))
- (-4 *4 (-358))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-631 (-631 *5))) (-4 *5 (-1034))
- (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *6 (-234 *4 *5))
- (-4 *7 (-234 *3 *5)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-14 *4 (-631 (-1158))) (-4 *2 (-170))
- (-4 *3 (-234 (-2563 *4) (-758)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2717 *5) (|:| -1407 *3))
- (-2 (|:| -2717 *5) (|:| -1407 *3))))
- (-5 *1 (-455 *4 *2 *5 *3 *6 *7)) (-4 *5 (-836))
- (-4 *7 (-934 *2 *3 (-850 *4))))))
+ (-12 (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-558))
+ (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-939 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-635 *6)) (-4 *6 (-841)) (-4 *4 (-362)) (-4 *5 (-784))
+ (-5 *2 (-558)) (-5 *1 (-502 *4 *5 *6 *7)) (-4 *7 (-939 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-970 *3)) (-4 *3 (-1039)) (-5 *2 (-911))))
+ ((*1 *2) (-12 (-4 *1 (-1253 *3)) (-4 *3 (-362)) (-5 *2 (-133)))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-1145)) (-5 *2 (-765)) (-5 *1 (-114))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-1091)) (-5 *1 (-955)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1148 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1149 *3))))
+ ((*1 *1 *1) (-4 *1 (-1188))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1059 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-784))
+ (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-635 *3)) (-4 *3 (-841)) (-5 *1 (-730 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1246 *1)) (-4 *1 (-366 *2)) (-4 *2 (-171))))
+ ((*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-415 *3 *2)) (-4 *3 (-416 *2))))
+ ((*1 *2) (-12 (-4 *1 (-416 *2)) (-4 *2 (-171)))))
+(((*1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23))))
+ ((*1 *1) (-5 *1 (-534))) ((*1 *1) (-4 *1 (-713)))
+ ((*1 *1) (-4 *1 (-717)))
+ ((*1 *1) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1087))))
+ ((*1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-841)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-1168))) (-5 *1 (-1168))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1163)) (-5 *3 (-635 (-1168))) (-5 *1 (-1168)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-248 *3 *4 *2 *5)) (-4 *3 (-1034)) (-4 *4 (-836))
- (-4 *5 (-780)) (-4 *2 (-261 *4)))))
+ (-12 (-4 *1 (-966 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-784))
+ (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-112)))))
+(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-555)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-344)) (-5 *2 (-413 (-1154 (-1154 *4))))
- (-5 *1 (-1193 *4)) (-5 *3 (-1154 (-1154 *4))))))
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224)))
+ (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
+ (-5 *2
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite| "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))
+ (-5 *1 (-191)))))
+(((*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-224)) (-5 *1 (-1249))))
+ ((*1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-1249)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163)))
+ (-14 *3 (-635 (-1163))) (-4 *4 (-386))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1148 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1149 *3))))
+ ((*1 *1 *1) (-4 *1 (-1188))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-3 (-112) (-635 *1)))
+ (-4 *1 (-1059 *4 *5 *6 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-5 *1 (-728 *3))))
+ ((*1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-1087))))
+ ((*1 *1) (-12 (-5 *1 (-728 *2)) (-4 *2 (-1087)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1246 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171))
+ (-5 *2 (-679 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-679 *4)) (-5 *1 (-415 *3 *4))
+ (-4 *3 (-416 *4))))
+ ((*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-679 *3)))))
+(((*1 *1) (-4 *1 (-23)))
+ ((*1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23))))
+ ((*1 *1) (-5 *1 (-534)))
+ ((*1 *1) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1087)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1168)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-966 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-784))
+ (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550))
+ (-5 *2 (-112)))))
+(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-555)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-554)) (-5 *2 (-631 (-631 (-221)))) (-5 *1 (-1191)))))
-(((*1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-1244))))
- ((*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-1244)))))
+ (-12 (-5 *2 (-417 (-1159 (-558)))) (-5 *1 (-190)) (-5 *3 (-558)))))
+(((*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-1249))))
+ ((*1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-1249)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-330 *2)) (-4 *2 (-841))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163)))
+ (-14 *3 (-635 (-1163))) (-4 *4 (-386))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1148 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1149 *3))))
+ ((*1 *1 *1) (-4 *1 (-1188))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1059 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-784))
+ (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-4 *3 (-1053 *4 *5 *6))
+ (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -2396 *1))))
+ (-4 *1 (-1059 *4 *5 *6 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-779))
- (-5 *2 (-631 *3))))
+ (-12 (|has| *1 (-6 -4382)) (-4 *1 (-487 *3)) (-4 *3 (-1200))
+ (-5 *2 (-635 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-728 *3)) (-4 *3 (-1087)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1246 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171))
+ (-5 *2 (-679 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-679 *4)) (-5 *1 (-415 *3 *4))
+ (-4 *3 (-416 *4))))
+ ((*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-679 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| -3827)) (-5 *2 (-112)) (-5 *1 (-609))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| -2197)) (-5 *2 (-112)) (-5 *1 (-609))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| -2709)) (-5 *2 (-112)) (-5 *1 (-609))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| -3673)) (-5 *2 (-112)) (-5 *1 (-681 *4))
+ (-4 *4 (-605 (-853)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-605 (-853))) (-5 *2 (-112))
+ (-5 *1 (-681 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-558))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-1145))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-504))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-585))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-476))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-1153))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-1083))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-1077))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-1061))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-960))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-1026))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-310))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-661))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-153))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-523))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-1257))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-1054))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-515))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-671))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-1102))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-132))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-1256))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-666))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-217))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-522))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| (-1145))) (-5 *2 (-112)) (-5 *1 (-1168))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| (-1163))) (-5 *2 (-112)) (-5 *1 (-1168))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| (-224))) (-5 *2 (-112)) (-5 *1 (-1168))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| (-558))) (-5 *2 (-112)) (-5 *1 (-1168)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1163)) (-5 *1 (-279))))
((*1 *2 *1)
- (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-1082))
- (-5 *2 (-631 *3))))
+ (-12 (-5 *2 (-3 (-558) (-224) (-1163) (-1145) (-1168)))
+ (-5 *1 (-1168)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-966 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-784))
+ (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550))
+ (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-240)) (-5 *3 (-1145))))
+ ((*1 *2 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-240))))
+ ((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-864)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-555)))))
+(((*1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-1249))))
+ ((*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-1249)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-330 *2)) (-4 *2 (-841))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163)))
+ (-14 *3 (-635 (-1163))) (-4 *4 (-386))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1148 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1149 *3))))
+ ((*1 *1 *1) (-4 *1 (-1188))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-635 *1))
+ (-4 *1 (-1059 *4 *5 *6 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-783))
+ (-5 *2 (-762))))
((*1 *2 *1)
- (-12 (-5 *2 (-1138 *3)) (-5 *1 (-585 *3)) (-4 *3 (-1034))))
+ (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1087))
+ (-5 *2 (-762))))
((*1 *2 *1)
- (-12 (-5 *2 (-631 *3)) (-5 *1 (-722 *3 *4)) (-4 *3 (-1034))
- (-4 *4 (-713))))
- ((*1 *2 *1) (-12 (-4 *1 (-838 *3)) (-4 *3 (-1034)) (-5 *2 (-631 *3))))
+ (-12 (-5 *2 (-762)) (-5 *1 (-726 *3 *4)) (-4 *3 (-1039))
+ (-4 *4 (-717)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1246 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171))
+ (-5 *2 (-679 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-679 *3)))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))
+ ((*1 *1 *1 *1) (-5 *1 (-1107))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-112)) (-5 *1 (-114)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-635 (-279))) (-5 *1 (-279))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 (-1168))) (-5 *1 (-1168)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-966 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-784))
+ (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550))
+ (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-555)) (-5 *3 (-558)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992))))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-762)) (-5 *2 (-1251)))))
+(((*1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-1249))))
+ ((*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-1249)))))
+(((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-3 *3 (-635 *1)))
+ (-4 *1 (-1059 *4 *5 *6 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *6 (-550)) (-4 *2 (-939 *3 *5 *4))
+ (-5 *1 (-723 *5 *4 *6 *2)) (-5 *3 (-406 (-942 *6))) (-4 *5 (-784))
+ (-4 *4 (-13 (-841) (-10 -8 (-15 -3224 ((-1163) $))))))))
+(((*1 *1 *1) (-4 *1 (-621)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-622 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992) (-1185))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1246 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171))
+ (-5 *2 (-679 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-679 *3)))))
+(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-853)))
+ ((*1 *1 *1 *1) (-4 *1 (-957))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1168)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-966 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-784))
+ (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550))
+ (-5 *2 (-112)))))
+(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-555)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992))))))
+(((*1 *1 *1 *1) (|partial| -4 *1 (-130))))
+(((*1 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-1249)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-773 *2)) (-4 *2 (-550)) (-4 *2 (-1039))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-550)) (-5 *1 (-959 *3 *2)) (-4 *2 (-1222 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
+ (-4 *4 (-841)) (-4 *2 (-550))))
+ ((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-4 *3 (-1053 *4 *5 *6))
+ (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -2396 *1))))
+ (-4 *1 (-1059 *4 *5 *6 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1159 (-942 *6))) (-4 *6 (-550))
+ (-4 *2 (-939 (-406 (-942 *6)) *5 *4)) (-5 *1 (-723 *5 *4 *6 *2))
+ (-4 *5 (-784))
+ (-4 *4 (-13 (-841) (-10 -8 (-15 -3224 ((-1163) $))))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-412 *3 *4 *5 *6)) (-4 *6 (-1028 *4)) (-4 *3 (-306))
+ (-4 *4 (-982 *3)) (-4 *5 (-1222 *4)) (-4 *6 (-408 *4 *5))
+ (-14 *7 (-1246 *6)) (-5 *1 (-413 *3 *4 *5 *6 *7))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1246 *6)) (-4 *6 (-408 *4 *5)) (-4 *4 (-982 *3))
+ (-4 *5 (-1222 *4)) (-4 *3 (-306)) (-5 *1 (-413 *3 *4 *5 *6 *7))
+ (-14 *7 *2))))
+(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-853)))
+ ((*1 *1 *1 *1) (-4 *1 (-957))))
+(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-290)))
+ ((*1 *1) (-5 *1 (-853)))
+ ((*1 *1)
+ (-12 (-4 *2 (-450)) (-4 *3 (-841)) (-4 *4 (-784))
+ (-5 *1 (-977 *2 *3 *4 *5)) (-4 *5 (-939 *2 *4 *3))))
+ ((*1 *1) (-5 *1 (-1072)))
+ ((*1 *1)
+ (-12 (-5 *1 (-1127 *2 *3)) (-4 *2 (-13 (-1087) (-34)))
+ (-4 *3 (-13 (-1087) (-34)))))
+ ((*1 *1) (-5 *1 (-1166))) ((*1 *1) (-5 *1 (-1167))))
+(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-966 *4 *5 *6 *3)) (-4 *4 (-1039)) (-4 *5 (-784))
+ (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-4 *4 (-550))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
+(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-555)))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224)))
+ (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
+ (-5 *2
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1143 (-224)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -1626
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
+ (-5 *1 (-553)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992))))))
+(((*1 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-1249))))
+ ((*1 *2 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-1249)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-635 *1)) (-5 *3 (-635 *7)) (-4 *1 (-1059 *4 *5 *6 *7))
+ (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-4 *7 (-1053 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450))
+ (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-635 *1))
+ (-4 *1 (-1059 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-635 *1)) (-4 *1 (-1059 *4 *5 *6 *3)) (-4 *4 (-450))
+ (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-635 *1))
+ (-4 *1 (-1059 *4 *5 *6 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1159 *2)) (-4 *2 (-939 (-406 (-942 *6)) *5 *4))
+ (-5 *1 (-723 *5 *4 *6 *2)) (-4 *5 (-784))
+ (-4 *4 (-13 (-841) (-10 -8 (-15 -3224 ((-1163) $)))))
+ (-4 *6 (-550)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-306)) (-4 *3 (-982 *2)) (-4 *4 (-1222 *3))
+ (-5 *1 (-412 *2 *3 *4 *5)) (-4 *5 (-13 (-408 *3 *4) (-1028 *3))))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1163)) (-5 *2 (-436)) (-5 *1 (-1167)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-966 *4 *5 *6 *3)) (-4 *4 (-1039)) (-4 *5 (-784))
+ (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-4 *4 (-550))
+ (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
+(((*1 *2 *3) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-555)) (-5 *3 (-558)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992))))))
+(((*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-1249)))))
+(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-4 *1 (-1232 *3)) (-4 *3 (-1034)) (-5 *2 (-1138 *3)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-114)) (-5 *4 (-758)) (-4 *5 (-446)) (-4 *5 (-836))
- (-4 *5 (-1023 (-554))) (-4 *5 (-546)) (-5 *1 (-41 *5 *2))
- (-4 *2 (-425 *5))
- (-4 *2
- (-13 (-358) (-297)
- (-10 -8 (-15 -2810 ((-1107 *5 (-600 $)) $))
- (-15 -2822 ((-1107 *5 (-600 $)) $))
- (-15 -3075 ($ (-1107 *5 (-600 $))))))))))
-(((*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-790)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020))
- (-5 *1 (-738)))))
+ (-12 (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-112))
+ (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-939 *3 *4 *5))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1056 *4 *3)) (-4 *4 (-13 (-839) (-362)))
+ (-4 *3 (-1222 *4)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-784))
+ (-4 *5 (-13 (-841) (-10 -8 (-15 -3224 ((-1163) $))))) (-4 *6 (-550))
+ (-5 *2 (-2 (|:| -2738 (-942 *6)) (|:| -1824 (-942 *6))))
+ (-5 *1 (-723 *4 *5 *6 *3)) (-4 *3 (-939 (-406 (-942 *6)) *4 *5)))))
+(((*1 *1 *1) (-4 *1 (-621)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-622 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992) (-1185))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-631 (-631 *8))) (-5 *3 (-631 *8))
- (-4 *8 (-1048 *5 *6 *7)) (-4 *5 (-546)) (-4 *6 (-780))
- (-4 *7 (-836)) (-5 *2 (-112)) (-5 *1 (-962 *5 *6 *7 *8)))))
+ (-12 (-5 *3 (-762)) (-5 *4 (-1246 *2)) (-4 *5 (-306))
+ (-4 *6 (-982 *5)) (-4 *2 (-13 (-408 *6 *7) (-1028 *6)))
+ (-5 *1 (-412 *5 *6 *7 *2)) (-4 *7 (-1222 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-1163))) (-5 *1 (-1167)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-635 *6)) (-4 *1 (-966 *3 *4 *5 *6)) (-4 *3 (-1039))
+ (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5))
+ (-4 *3 (-550)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1034)) (-4 *2 (-673 *4 *5 *6))
- (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1217 *4)) (-4 *5 (-368 *4))
- (-4 *6 (-368 *4)))))
-(((*1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1082)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-52)) (-5 *1 (-816)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-358)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4373)) (-4 *1 (-231 *3))
- (-4 *3 (-1082))))
- ((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4373)) (-4 *1 (-231 *2)) (-4 *2 (-1082))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-277 *2)) (-4 *2 (-1195)) (-4 *2 (-1082))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-277 *3)) (-4 *3 (-1195))))
+ (-12 (-5 *3 (-635 *2)) (-5 *1 (-178 *2)) (-4 *2 (-306))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *3 (-635 (-635 *4))) (-5 *2 (-635 *4)) (-4 *4 (-306))
+ (-5 *1 (-178 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-635 *8))
+ (-5 *4
+ (-635
+ (-2 (|:| -2660 (-679 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-679 *7)))))
+ (-5 *5 (-762)) (-4 *8 (-1222 *7)) (-4 *7 (-1222 *6)) (-4 *6 (-348))
+ (-5 *2
+ (-2 (|:| -2660 (-679 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-679 *7))))
+ (-5 *1 (-496 *6 *7 *8))))
+ ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-555)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-247)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
+(((*1 *2) (-12 (-5 *2 (-635 (-911))) (-5 *1 (-1249))))
+ ((*1 *2 *2) (-12 (-5 *2 (-635 (-911))) (-5 *1 (-1249)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-548 *3)) (-4 *3 (-13 (-403) (-1185))) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-839)) (-5 *2 (-112))))
((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-598 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1082))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-554)) (-4 *4 (-1082))
- (-5 *1 (-724 *4))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-554)) (-5 *1 (-724 *2)) (-4 *2 (-1082))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1122 *3 *4)) (-4 *3 (-13 (-1082) (-34)))
- (-4 *4 (-13 (-1082) (-34))) (-5 *1 (-1123 *3 *4)))))
-(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
- (|partial| -12 (-5 *4 (-631 *11)) (-5 *5 (-631 (-1154 *9)))
- (-5 *6 (-631 *9)) (-5 *7 (-631 *12)) (-5 *8 (-631 (-758)))
- (-4 *11 (-836)) (-4 *9 (-302)) (-4 *12 (-934 *9 *10 *11))
- (-4 *10 (-780)) (-5 *2 (-631 (-1154 *12)))
- (-5 *1 (-694 *10 *11 *9 *12)) (-5 *3 (-1154 *12)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-1158)) (-5 *6 (-112))
- (-4 *7 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554))))
- (-4 *3 (-13 (-1180) (-944) (-29 *7)))
+ (-12 (-4 *1 (-1056 *4 *3)) (-4 *4 (-13 (-839) (-362)))
+ (-4 *3 (-1222 *4)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-406 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1222 *5))
+ (-5 *1 (-718 *5 *2)) (-4 *5 (-362)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1246 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171))
+ (-4 *5 (-1222 *4)) (-5 *2 (-679 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-171)) (-4 *5 (-1222 *4)) (-5 *2 (-679 *4))
+ (-5 *1 (-407 *3 *4 *5)) (-4 *3 (-408 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1222 *3))
+ (-5 *2 (-679 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-433))
(-5 *2
- (-3 (|:| |f1| (-829 *3)) (|:| |f2| (-631 (-829 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-215 *7 *3)) (-5 *5 (-829 *3)))))
+ (-635
+ (-3 (|:| -1323 (-1163))
+ (|:| -4216 (-635 (-3 (|:| S (-1163)) (|:| P (-942 (-558)))))))))
+ (-5 *1 (-1167)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-635 *6)) (-4 *1 (-966 *3 *4 *5 *6)) (-4 *3 (-1039))
+ (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5))
+ (-4 *3 (-550)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *5 (-604 *4)) (-5 *6 (-1159 *4))
+ (-4 *4 (-13 (-429 *7) (-27) (-1185)))
+ (-4 *7 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2660 (-635 *4))))
+ (-5 *1 (-554 *7 *4 *3)) (-4 *3 (-646 *4)) (-4 *3 (-1087))))
+ ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
+ (-12 (-5 *5 (-604 *4)) (-5 *6 (-406 (-1159 *4)))
+ (-4 *4 (-13 (-429 *7) (-27) (-1185)))
+ (-4 *7 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2660 (-635 *4))))
+ (-5 *1 (-554 *7 *4 *3)) (-4 *3 (-646 *4)) (-4 *3 (-1087)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
+(((*1 *2) (-12 (-5 *2 (-635 (-762))) (-5 *1 (-1249))))
+ ((*1 *2 *2) (-12 (-5 *2 (-635 (-762))) (-5 *1 (-1249)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-548 *3)) (-4 *3 (-13 (-403) (-1185))) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-839)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1056 *4 *3)) (-4 *4 (-13 (-839) (-362)))
+ (-4 *3 (-1222 *4)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1222 *5)) (-4 *5 (-362))
+ (-5 *2 (-2 (|:| -1499 (-417 *3)) (|:| |special| (-417 *3))))
+ (-5 *1 (-718 *5 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1246 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171))
+ (-4 *5 (-1222 *4)) (-5 *2 (-679 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1222 *3))
+ (-5 *2 (-679 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-1163))) (-5 *1 (-1167)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-966 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-784))
+ (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550))
+ (-5 *2 (-112)))))
+(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
+ (|partial| -12 (-5 *3 (-604 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1163))) (-5 *5 (-1159 *2))
+ (-4 *2 (-13 (-429 *6) (-27) (-1185)))
+ (-4 *6 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558))))
+ (-5 *1 (-554 *6 *2 *7)) (-4 *7 (-1087))))
+ ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
+ (|partial| -12 (-5 *3 (-604 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1163)))
+ (-5 *5 (-406 (-1159 *2))) (-4 *2 (-13 (-429 *6) (-27) (-1185)))
+ (-4 *6 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558))))
+ (-5 *1 (-554 *6 *2 *7)) (-4 *7 (-1087)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992))))))
+(((*1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-1249))))
+ ((*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-1249)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1028 (-558))) (-4 *3 (-13 (-841) (-550)))
+ (-5 *1 (-32 *3 *2)) (-4 *2 (-429 *3))))
+ ((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-1159 *4)) (-5 *1 (-164 *3 *4))
+ (-4 *3 (-165 *4))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1039)) (-4 *1 (-301))))
+ ((*1 *2) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1159 *3))))
+ ((*1 *2) (-12 (-4 *1 (-715 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1222 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1056 *3 *2)) (-4 *3 (-13 (-839) (-362)))
+ (-4 *2 (-1222 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-112))
+ (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-939 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-713)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-717)) (-5 *2 (-112)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-417 *2)) (-4 *2 (-550)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1138 (-402 *3))) (-5 *1 (-172 *3)) (-4 *3 (-302)))))
-(((*1 *2 *3) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-551)) (-5 *3 (-554))))
+ (-12
+ (-5 *2
+ (-635
+ (-635
+ (-3 (|:| -1323 (-1163))
+ (|:| -4216 (-635 (-3 (|:| S (-1163)) (|:| P (-942 (-558))))))))))
+ (-5 *1 (-1167)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
+(((*1 *2 *1) (-12 (-4 *1 (-945)) (-5 *2 (-635 (-635 (-933 (-224)))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-964)) (-5 *2 (-635 (-635 (-933 (-224))))))))
+(((*1 *2 *3 *4 *4 *5 *3 *6)
+ (|partial| -12 (-5 *4 (-604 *3)) (-5 *5 (-635 *3)) (-5 *6 (-1159 *3))
+ (-4 *3 (-13 (-429 *7) (-27) (-1185)))
+ (-4 *7 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-554 *7 *3 *8)) (-4 *8 (-1087))))
+ ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
+ (|partial| -12 (-5 *4 (-604 *3)) (-5 *5 (-635 *3))
+ (-5 *6 (-406 (-1159 *3))) (-4 *3 (-13 (-429 *7) (-27) (-1185)))
+ (-4 *7 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-554 *7 *3 *8)) (-4 *8 (-1087)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992))))))
+(((*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1249))))
+ ((*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1249)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-942 (-558))) (-5 *2 (-635 *1)) (-4 *1 (-1002))))
((*1 *2 *3)
- (-12 (-5 *2 (-1154 (-402 (-554)))) (-5 *1 (-927)) (-5 *3 (-554)))))
-(((*1 *1 *2) (|partial| -12 (-5 *2 (-485)) (-5 *1 (-569)))))
-(((*1 *2 *3 *4 *3 *5 *3)
- (-12 (-5 *4 (-675 (-221))) (-5 *5 (-675 (-554))) (-5 *3 (-554))
- (-5 *2 (-1020)) (-5 *1 (-741)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-302)) (-5 *1 (-449 *3 *2)) (-4 *2 (-1217 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-302)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1217 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-302)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-758)))
- (-5 *1 (-533 *3 *2 *4 *5)) (-4 *2 (-1217 *3)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-631 (-600 *6))) (-5 *4 (-1158)) (-5 *2 (-600 *6))
- (-4 *6 (-425 *5)) (-4 *5 (-836)) (-5 *1 (-563 *5 *6)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1140)) (-4 *1 (-359 *3 *4)) (-4 *3 (-1082))
- (-4 *4 (-1082)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-758)) (-4 *4 (-344)) (-5 *1 (-212 *4 *2))
- (-4 *2 (-1217 *4)))))
-(((*1 *1) (-5 *1 (-1046))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-546)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2999 *4)))
- (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4373)) (-4 *1 (-149 *3))
- (-4 *3 (-1195))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1195)) (-5 *1 (-589 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-660 *3)) (-4 *3 (-1195))))
+ (-12 (-5 *3 (-942 (-406 (-558)))) (-5 *2 (-635 *1)) (-4 *1 (-1002))))
+ ((*1 *2 *3) (-12 (-5 *3 (-942 *1)) (-4 *1 (-1002)) (-5 *2 (-635 *1))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1159 (-558))) (-5 *2 (-635 *1)) (-4 *1 (-1002))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1159 (-406 (-558)))) (-5 *2 (-635 *1)) (-4 *1 (-1002))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1159 *1)) (-4 *1 (-1002)) (-5 *2 (-635 *1))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-839) (-362))) (-4 *3 (-1222 *4)) (-5 *2 (-635 *1))
+ (-4 *1 (-1056 *4 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1246 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-362))
+ (-4 *1 (-715 *5 *6)) (-4 *5 (-171)) (-4 *6 (-1222 *5))
+ (-5 *2 (-679 *5)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-417 *2)) (-4 *2 (-550)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1087)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1270 *4 *2)) (-4 *1 (-373 *4 *2)) (-4 *4 (-841))
+ (-4 *2 (-171))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-841)) (-4 *2 (-1039))))
((*1 *2 *1 *3)
- (|partial| -12 (-4 *1 (-1188 *4 *5 *3 *2)) (-4 *4 (-546))
- (-4 *5 (-780)) (-4 *3 (-836)) (-4 *2 (-1048 *4 *5 *3))))
+ (-12 (-5 *3 (-810 *4)) (-4 *1 (-1263 *4 *2)) (-4 *4 (-841))
+ (-4 *2 (-1039))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-758)) (-5 *1 (-1192 *2)) (-4 *2 (-1195)))))
-(((*1 *1 *1 *1) (-4 *1 (-748))))
-(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-848))))
- ((*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1246)) (-5 *1 (-947)))))
-(((*1 *2 *1) (-12 (-5 *2 (-631 (-1194))) (-5 *1 (-594)))))
-(((*1 *2) (-12 (-5 *2 (-889 (-554))) (-5 *1 (-902)))))
-(((*1 *2 *3)
+ (-12 (-4 *2 (-1039)) (-5 *1 (-1269 *2 *3)) (-4 *3 (-837)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-1167)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-814)) (-5 *2 (-1251)) (-5 *1 (-813)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-589 *3)) (-4 *3 (-1039))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-963 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-783))
+ (-4 *5 (-841)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5)
+ (|partial| -12 (-5 *4 (-604 *3)) (-5 *5 (-1159 *3))
+ (-4 *3 (-13 (-429 *6) (-27) (-1185)))
+ (-4 *6 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558))))
+ (-5 *2 (-2 (|:| -1440 *3) (|:| |coeff| *3)))
+ (-5 *1 (-554 *6 *3 *7)) (-4 *7 (-1087))))
+ ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-604 *3)) (-5 *5 (-406 (-1159 *3)))
+ (-4 *3 (-13 (-429 *6) (-27) (-1185)))
+ (-4 *6 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558))))
+ (-5 *2 (-2 (|:| -1440 *3) (|:| |coeff| *3)))
+ (-5 *1 (-554 *6 *3 *7)) (-4 *7 (-1087)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992))))))
+(((*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1249))))
+ ((*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1249)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1159 *1)) (-5 *3 (-1163)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1159 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-942 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1163)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-841) (-550)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-841) (-550)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1159 *2)) (-5 *4 (-1163)) (-4 *2 (-429 *5))
+ (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-841) (-550)))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1159 *1)) (-5 *3 (-911)) (-4 *1 (-1002))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-1159 *1)) (-5 *3 (-911)) (-5 *4 (-853))
+ (-4 *1 (-1002))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *3 (-911)) (-4 *4 (-13 (-839) (-362)))
+ (-4 *1 (-1056 *4 *2)) (-4 *2 (-1222 *4)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-711)) (-5 *2 (-911))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-713)) (-5 *2 (-762)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-417 *3)) (-4 *3 (-550)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1251)) (-5 *1 (-1166))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-1167)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
+(((*1 *1 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1165 (-406 (-558)))) (-5 *1 (-189)) (-5 *3 (-558))))
+ ((*1 *1 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1200))))
+ ((*1 *1 *1) (-4 *1 (-859 *2)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-963 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-783))
+ (-4 *4 (-841)))))
+(((*1 *2 *3 *4 *4 *3 *5)
+ (-12 (-5 *4 (-604 *3)) (-5 *5 (-1159 *3))
+ (-4 *3 (-13 (-429 *6) (-27) (-1185)))
+ (-4 *6 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558))))
+ (-5 *2 (-579 *3)) (-5 *1 (-554 *6 *3 *7)) (-4 *7 (-1087))))
+ ((*1 *2 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *4 (-604 *3)) (-5 *5 (-406 (-1159 *3)))
+ (-4 *3 (-13 (-429 *6) (-27) (-1185)))
+ (-4 *6 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558))))
+ (-5 *2 (-579 *3)) (-5 *1 (-554 *6 *3 *7)) (-4 *7 (-1087)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992))))))
+(((*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1249))))
+ ((*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1249)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-406 (-558))) (-5 *1 (-1014 *3))
+ (-4 *3 (-13 (-839) (-362) (-1012)))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *2 (-13 (-839) (-362))) (-5 *1 (-1049 *2 *3))
+ (-4 *3 (-1222 *2))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *1 (-1056 *2 *3)) (-4 *2 (-13 (-839) (-362)))
+ (-4 *3 (-1222 *2)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-711)) (-5 *2 (-911))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-713)) (-5 *2 (-762)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-558)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-417 *4)) (-4 *4 (-550)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-869 (-1 (-224) (-224)))) (-5 *4 (-1081 (-378)))
+ (-5 *5 (-635 (-262))) (-5 *2 (-1120 (-224))) (-5 *1 (-254))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-869 (-1 (-224) (-224)))) (-5 *4 (-1081 (-378)))
+ (-5 *2 (-1120 (-224))) (-5 *1 (-254))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-933 (-224)) (-224))) (-5 *4 (-1081 (-378)))
+ (-5 *5 (-635 (-262))) (-5 *2 (-1120 (-224))) (-5 *1 (-254))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-933 (-224)) (-224))) (-5 *4 (-1081 (-378)))
+ (-5 *2 (-1120 (-224))) (-5 *1 (-254))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1081 (-378)))
+ (-5 *5 (-635 (-262))) (-5 *2 (-1120 (-224))) (-5 *1 (-254))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1081 (-378)))
+ (-5 *2 (-1120 (-224))) (-5 *1 (-254))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-933 (-224)) (-224) (-224))) (-5 *4 (-1081 (-378)))
+ (-5 *5 (-635 (-262))) (-5 *2 (-1120 (-224))) (-5 *1 (-254))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-933 (-224)) (-224) (-224))) (-5 *4 (-1081 (-378)))
+ (-5 *2 (-1120 (-224))) (-5 *1 (-254))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-872 (-1 (-224) (-224) (-224)))) (-5 *4 (-1081 (-378)))
+ (-5 *5 (-635 (-262))) (-5 *2 (-1120 (-224))) (-5 *1 (-254))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-872 (-1 (-224) (-224) (-224)))) (-5 *4 (-1081 (-378)))
+ (-5 *2 (-1120 (-224))) (-5 *1 (-254))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-869 *6)) (-5 *4 (-1079 (-378))) (-5 *5 (-635 (-262)))
+ (-4 *6 (-13 (-606 (-534)) (-1087))) (-5 *2 (-1120 (-224)))
+ (-5 *1 (-258 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-869 *5)) (-5 *4 (-1079 (-378)))
+ (-4 *5 (-13 (-606 (-534)) (-1087))) (-5 *2 (-1120 (-224)))
+ (-5 *1 (-258 *5))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-1079 (-378))) (-5 *5 (-635 (-262)))
+ (-5 *2 (-1120 (-224))) (-5 *1 (-258 *3))
+ (-4 *3 (-13 (-606 (-534)) (-1087)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1079 (-378))) (-5 *2 (-1120 (-224))) (-5 *1 (-258 *3))
+ (-4 *3 (-13 (-606 (-534)) (-1087)))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-872 *6)) (-5 *4 (-1079 (-378))) (-5 *5 (-635 (-262)))
+ (-4 *6 (-13 (-606 (-534)) (-1087))) (-5 *2 (-1120 (-224)))
+ (-5 *1 (-258 *6))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-872 *5)) (-5 *4 (-1079 (-378)))
+ (-4 *5 (-13 (-606 (-534)) (-1087))) (-5 *2 (-1120 (-224)))
+ (-5 *1 (-258 *5)))))
+(((*1 *1) (-5 *1 (-1166))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-814)) (-5 *1 (-813)))))
+(((*1 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-961)))))
+(((*1 *1 *2)
(-12
- (-5 *3
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1138 (-221)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -3827
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *2 (-1020)) (-5 *1 (-300)))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-5 *2 (-1241 *4)) (-5 *3 (-675 *4)) (-4 *4 (-358))
- (-5 *1 (-653 *4))))
- ((*1 *2 *3 *2)
- (|partial| -12 (-4 *4 (-358))
- (-4 *5 (-13 (-368 *4) (-10 -7 (-6 -4374))))
- (-4 *2 (-13 (-368 *4) (-10 -7 (-6 -4374))))
- (-5 *1 (-654 *4 *5 *2 *3)) (-4 *3 (-673 *4 *5 *2))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *4 (-631 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-358))
- (-5 *1 (-801 *2 *3)) (-4 *3 (-642 *2))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554)))))))
- (-5 *1 (-1110 *3 *2)) (-4 *3 (-1217 *2)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-631 (-1181 *3))) (-5 *1 (-1181 *3)) (-4 *3 (-1082)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1140)) (-5 *3 (-810)) (-5 *1 (-809)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1195)) (-5 *1 (-589 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1195)) (-5 *1 (-1138 *3)))))
-(((*1 *1 *2 *3 *3 *3 *4)
- (-12 (-4 *4 (-358)) (-4 *3 (-1217 *4)) (-4 *5 (-1217 (-402 *3)))
- (-4 *1 (-330 *4 *3 *5 *2)) (-4 *2 (-337 *4 *3 *5))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-554)) (-4 *2 (-358)) (-4 *4 (-1217 *2))
- (-4 *5 (-1217 (-402 *4))) (-4 *1 (-330 *2 *4 *5 *6))
- (-4 *6 (-337 *2 *4 *5))))
- ((*1 *1 *2 *2)
- (-12 (-4 *2 (-358)) (-4 *3 (-1217 *2)) (-4 *4 (-1217 (-402 *3)))
- (-4 *1 (-330 *2 *3 *4 *5)) (-4 *5 (-337 *2 *3 *4))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-358)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4)))
- (-4 *1 (-330 *3 *4 *5 *2)) (-4 *2 (-337 *3 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-408 *4 (-402 *4) *5 *6)) (-4 *4 (-1217 *3))
- (-4 *5 (-1217 (-402 *4))) (-4 *6 (-337 *3 *4 *5)) (-4 *3 (-358))
- (-4 *1 (-330 *3 *4 *5 *6)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-631 (-475 *5 *6))) (-5 *4 (-850 *5))
- (-14 *5 (-631 (-1158))) (-5 *2 (-475 *5 *6)) (-5 *1 (-619 *5 *6))
- (-4 *6 (-446))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-475 *5 *6))) (-5 *4 (-850 *5))
- (-14 *5 (-631 (-1158))) (-5 *2 (-475 *5 *6)) (-5 *1 (-619 *5 *6))
- (-4 *6 (-446)))))
-(((*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-252)))))
-(((*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-889 (-554))) (-5 *1 (-902))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-631 (-554))) (-5 *2 (-889 (-554))) (-5 *1 (-902)))))
-(((*1 *1 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-1034)) (-4 *2 (-358)))))
-(((*1 *1 *1 *1) (-4 *1 (-467))) ((*1 *1 *1 *1) (-4 *1 (-748))))
-(((*1 *1 *2) (-12 (-5 *2 (-806 *3)) (-4 *3 (-836)) (-5 *1 (-658 *3)))))
+ (-5 *2
+ (-635
+ (-2
+ (|:| -2700
+ (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224)))
+ (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
+ (|:| -2981
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1143 (-224)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -1626
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-553)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992))))))
+(((*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1249))))
+ ((*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1249)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-3 (|:| |fst| (-429)) (|:| -2053 "void")))
- (-5 *1 (-432)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4374)) (-4 *1 (-240 *2)) (-4 *2 (-1195))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1195))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1195))))
- ((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4374)) (-4 *1 (-1229 *2)) (-4 *2 (-1195))))
- ((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4374)) (-4 *1 (-1229 *2)) (-4 *2 (-1195)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1195)) (-5 *1 (-589 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1195)) (-5 *1 (-1138 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-877 *3)) (-4 *3 (-1082)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1140)) (-5 *4 (-554)) (-5 *5 (-675 (-221)))
- (-5 *2 (-1020)) (-5 *1 (-741)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-114))))
+ (-12 (-4 *1 (-966 *3 *4 *2 *5)) (-4 *3 (-1039)) (-4 *4 (-784))
+ (-4 *5 (-1053 *3 *4 *2)) (-4 *2 (-841))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1053 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784))
+ (-4 *2 (-841)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-114))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1140)) (-4 *4 (-836)) (-5 *1 (-914 *4 *2))
- (-4 *2 (-425 *4))))
+ (-12 (-5 *3 (-1145)) (-4 *4 (-841)) (-5 *1 (-919 *4 *2))
+ (-4 *2 (-429 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1158)) (-5 *4 (-1140)) (-5 *2 (-311 (-554)))
- (-5 *1 (-915)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))))
+ (-12 (-5 *3 (-1163)) (-5 *4 (-1145)) (-5 *2 (-315 (-558)))
+ (-5 *1 (-920)))))
+(((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-550))))
+ ((*1 *1 *1) (|partial| -4 *1 (-713))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-417 *2)) (-4 *2 (-550)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1251)) (-5 *1 (-1166))))
+ ((*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-1166)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-814)) (-5 *1 (-813)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-635 (-635 (-558)))) (-5 *1 (-961))
+ (-5 *3 (-635 (-558))))))
+(((*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-553)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987))))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2))
- (-4 *4 (-368 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-906)) (-4 *6 (-13 (-546) (-836)))
- (-5 *2 (-631 (-311 *6))) (-5 *1 (-217 *5 *6)) (-5 *3 (-311 *6))
- (-4 *5 (-1034))))
- ((*1 *2 *1) (-12 (-5 *1 (-413 *2)) (-4 *2 (-546))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-575 *5)) (-4 *5 (-13 (-29 *4) (-1180)))
- (-4 *4 (-13 (-446) (-1023 (-554)) (-836) (-627 (-554))))
- (-5 *2 (-631 *5)) (-5 *1 (-573 *4 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-575 (-402 (-937 *4))))
- (-4 *4 (-13 (-446) (-1023 (-554)) (-836) (-627 (-554))))
- (-5 *2 (-631 (-311 *4))) (-5 *1 (-578 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1077 *3 *2)) (-4 *3 (-834)) (-4 *2 (-1131 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-631 *1)) (-4 *1 (-1077 *4 *2)) (-4 *4 (-834))
- (-4 *2 (-1131 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2))
- (-4 *2 (-13 (-425 *3) (-1180)))))
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992))))))
+(((*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1248))))
+ ((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1248)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784))
+ (-4 *5 (-841)) (-5 *2 (-762)))))
+(((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-550))))
+ ((*1 *1 *1) (|partial| -4 *1 (-713))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-417 *2)) (-4 *2 (-550)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-311)) (-5 *1 (-295))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-1145))) (-5 *2 (-311)) (-5 *1 (-295))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-311)) (-5 *1 (-295))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-635 (-1145))) (-5 *3 (-1145)) (-5 *2 (-311))
+ (-5 *1 (-295)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1251)) (-5 *1 (-1166)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1107)) (-5 *2 (-112)) (-5 *1 (-812)))))
+(((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-961)))))
+(((*1 *1) (-5 *1 (-553))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1200)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *2 (-762))))
((*1 *2 *1)
- (-12 (-5 *2 (-1256 (-1158) *3)) (-5 *1 (-1263 *3)) (-4 *3 (-1034))))
+ (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039))
+ (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-762)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-429 *3) (-992))) (-5 *1 (-275 *3 *2))
+ (-4 *3 (-13 (-841) (-550))))))
+(((*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1248))))
+ ((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1248)))))
+(((*1 *1 *2) (|partial| -12 (-5 *2 (-489)) (-5 *1 (-573)))))
+(((*1 *2 *1) (-12 (-5 *2 (-481)) (-5 *1 (-217))))
+ ((*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1200))))
+ ((*1 *2 *1) (-12 (-5 *2 (-481)) (-5 *1 (-666))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
+ (-4 *4 (-841)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-709 *2)) (-4 *2 (-362)))))
+(((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-558))))
+ ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-689)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-558)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-417 *2)) (-4 *2 (-550)))))
+(((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1166)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-1145)) (-5 *4 (-1107)) (-5 *2 (-112)) (-5 *1 (-812)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3320 *4)))
+ (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-552 *2)) (-4 *2 (-543)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1200)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *2 (-762))))
((*1 *2 *1)
- (-12 (-5 *2 (-1256 *3 *4)) (-5 *1 (-1265 *3 *4)) (-4 *3 (-836))
- (-4 *4 (-1034)))))
-(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
- (-12 (-5 *4 (-675 (-221))) (-5 *5 (-675 (-554))) (-5 *3 (-554))
- (-5 *2 (-1020)) (-5 *1 (-743)))))
+ (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039))
+ (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-762)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-429 *3) (-992))) (-5 *1 (-275 *3 *2))
+ (-4 *3 (-13 (-841) (-550))))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-402 (-937 *3))) (-5 *1 (-447 *3 *4 *5 *6))
- (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906))
- (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-546)) (-5 *2 (-631 *3)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-412 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-307)) (-5 *1 (-291))))
+ (-12 (-4 *1 (-1244 *3)) (-4 *3 (-1200)) (-4 *3 (-1039))
+ (-5 *2 (-679 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1248))))
+ ((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1248)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-853))))
+ ((*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1251)) (-5 *1 (-952)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
+ (-4 *4 (-841)))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1222 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-702 *2 *3 *4 *5 *6)) (-4 *2 (-171))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-706 *2 *3 *4 *5 *6)) (-4 *2 (-171))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 (-378))) (-5 *1 (-262))))
+ ((*1 *1)
+ (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-550)) (-4 *2 (-171))))
+ ((*1 *2 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-550)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-224) (-224))) (-5 *4 (-1081 (-378)))
+ (-5 *5 (-635 (-262))) (-5 *2 (-1247)) (-5 *1 (-254))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-224) (-224))) (-5 *4 (-1081 (-378)))
+ (-5 *2 (-1247)) (-5 *1 (-254))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-867 (-1 (-224) (-224)))) (-5 *4 (-1081 (-378)))
+ (-5 *5 (-635 (-262))) (-5 *2 (-1247)) (-5 *1 (-254))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-867 (-1 (-224) (-224)))) (-5 *4 (-1081 (-378)))
+ (-5 *2 (-1247)) (-5 *1 (-254))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-869 (-1 (-224) (-224)))) (-5 *4 (-1081 (-378)))
+ (-5 *5 (-635 (-262))) (-5 *2 (-1248)) (-5 *1 (-254))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-869 (-1 (-224) (-224)))) (-5 *4 (-1081 (-378)))
+ (-5 *2 (-1248)) (-5 *1 (-254))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-933 (-224)) (-224))) (-5 *4 (-1081 (-378)))
+ (-5 *5 (-635 (-262))) (-5 *2 (-1248)) (-5 *1 (-254))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-933 (-224)) (-224))) (-5 *4 (-1081 (-378)))
+ (-5 *2 (-1248)) (-5 *1 (-254))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1081 (-378)))
+ (-5 *5 (-635 (-262))) (-5 *2 (-1248)) (-5 *1 (-254))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1081 (-378)))
+ (-5 *2 (-1248)) (-5 *1 (-254))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-933 (-224)) (-224) (-224))) (-5 *4 (-1081 (-378)))
+ (-5 *5 (-635 (-262))) (-5 *2 (-1248)) (-5 *1 (-254))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-933 (-224)) (-224) (-224))) (-5 *4 (-1081 (-378)))
+ (-5 *2 (-1248)) (-5 *1 (-254))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-872 (-1 (-224) (-224) (-224)))) (-5 *4 (-1081 (-378)))
+ (-5 *5 (-635 (-262))) (-5 *2 (-1248)) (-5 *1 (-254))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-872 (-1 (-224) (-224) (-224)))) (-5 *4 (-1081 (-378)))
+ (-5 *2 (-1248)) (-5 *1 (-254))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-293 *7)) (-5 *4 (-1163)) (-5 *5 (-635 (-262)))
+ (-4 *7 (-429 *6)) (-4 *6 (-13 (-550) (-841) (-1028 (-558))))
+ (-5 *2 (-1247)) (-5 *1 (-255 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1079 (-378))) (-5 *5 (-635 (-262))) (-5 *2 (-1247))
+ (-5 *1 (-258 *3)) (-4 *3 (-13 (-606 (-534)) (-1087)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1079 (-378))) (-5 *2 (-1247)) (-5 *1 (-258 *3))
+ (-4 *3 (-13 (-606 (-534)) (-1087)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-867 *6)) (-5 *4 (-1079 (-378))) (-5 *5 (-635 (-262)))
+ (-4 *6 (-13 (-606 (-534)) (-1087))) (-5 *2 (-1247))
+ (-5 *1 (-258 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-867 *5)) (-5 *4 (-1079 (-378)))
+ (-4 *5 (-13 (-606 (-534)) (-1087))) (-5 *2 (-1247))
+ (-5 *1 (-258 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-869 *6)) (-5 *4 (-1079 (-378))) (-5 *5 (-635 (-262)))
+ (-4 *6 (-13 (-606 (-534)) (-1087))) (-5 *2 (-1248))
+ (-5 *1 (-258 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-869 *5)) (-5 *4 (-1079 (-378)))
+ (-4 *5 (-13 (-606 (-534)) (-1087))) (-5 *2 (-1248))
+ (-5 *1 (-258 *5))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-1079 (-378))) (-5 *5 (-635 (-262))) (-5 *2 (-1248))
+ (-5 *1 (-258 *3)) (-4 *3 (-13 (-606 (-534)) (-1087)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1079 (-378))) (-5 *2 (-1248)) (-5 *1 (-258 *3))
+ (-4 *3 (-13 (-606 (-534)) (-1087)))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-872 *6)) (-5 *4 (-1079 (-378))) (-5 *5 (-635 (-262)))
+ (-4 *6 (-13 (-606 (-534)) (-1087))) (-5 *2 (-1248))
+ (-5 *1 (-258 *6))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-872 *5)) (-5 *4 (-1079 (-378)))
+ (-4 *5 (-13 (-606 (-534)) (-1087))) (-5 *2 (-1248))
+ (-5 *1 (-258 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-635 (-224))) (-5 *2 (-1247)) (-5 *1 (-259))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-635 (-224))) (-5 *4 (-635 (-262))) (-5 *2 (-1247))
+ (-5 *1 (-259))))
((*1 *2 *3)
- (-12 (-5 *3 (-631 (-1140))) (-5 *2 (-307)) (-5 *1 (-291))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-307)) (-5 *1 (-291))))
+ (-12 (-5 *3 (-635 (-933 (-224)))) (-5 *2 (-1247)) (-5 *1 (-259))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-631 (-1140))) (-5 *3 (-1140)) (-5 *2 (-307))
- (-5 *1 (-291)))))
+ (-12 (-5 *3 (-635 (-933 (-224)))) (-5 *4 (-635 (-262)))
+ (-5 *2 (-1247)) (-5 *1 (-259))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-635 (-224))) (-5 *2 (-1248)) (-5 *1 (-259))))
+ ((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-635 (-224))) (-5 *4 (-635 (-262))) (-5 *2 (-1248))
+ (-5 *1 (-259)))))
+(((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1166)))))
+(((*1 *2 *1) (-12 (-5 *2 (-813)) (-5 *1 (-812)))))
(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836))
- (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-973 *4 *5 *6 *7 *3)) (-4 *3 (-1054 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836))
- (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1089 *4 *5 *6 *7 *3)) (-4 *3 (-1054 *4 *5 *6 *7)))))
+ (-12 (-4 *4 (-550))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3320 *4)))
+ (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))))
+(((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-552 *3)) (-4 *3 (-543)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-274)))))
+(((*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1248))))
+ ((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1248)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-631 *1))
- (-4 *1 (-1048 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-836)) (-5 *2 (-631 (-631 *4))) (-5 *1 (-1166 *4))
- (-5 *3 (-631 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-554))))
- ((*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-685)))))
+ (-12 (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-635 *1))
+ (-4 *1 (-1053 *3 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-13 (-358) (-145)))
- (-5 *2 (-631 (-2 (|:| -1407 (-758)) (|:| -1608 *4) (|:| |num| *4))))
- (-5 *1 (-394 *3 *4)) (-4 *4 (-1217 *3)))))
-(((*1 *2)
- (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3))
- (-4 *5 (-1217 (-402 *4))) (-5 *2 (-675 (-402 *4))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-631 (-937 *4))) (-5 *3 (-631 (-1158))) (-4 *4 (-446))
- (-5 *1 (-903 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-811)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-551)))))
+ (-12 (-5 *2 (-1231 *3 *4 *5)) (-5 *1 (-318 *3 *4 *5))
+ (-4 *3 (-13 (-362) (-841))) (-14 *4 (-1163)) (-14 *5 *3)))
+ ((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-558))))
+ ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-417 *3)) (-4 *3 (-550))))
+ ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-689))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1087)) (-5 *1 (-704 *3 *2 *4)) (-4 *3 (-841))
+ (-14 *4
+ (-1 (-112) (-2 (|:| -2851 *3) (|:| -1951 *2))
+ (-2 (|:| -2851 *3) (|:| -1951 *2)))))))
+(((*1 *1 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-550)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-635 *1)) (-4 *1 (-301))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-604 *3)) (-4 *3 (-841))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-114)) (-5 *3 (-635 *5)) (-5 *4 (-762)) (-4 *5 (-841))
+ (-5 *1 (-604 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1039)) (-4 *2 (-677 *4 *5 *6))
+ (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1222 *4)) (-4 *5 (-372 *4))
+ (-4 *6 (-372 *4)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-524 *3)) (-4 *3 (-13 (-713) (-25))))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374))
- (-5 *2
- (-2 (|:| -2794 *4) (|:| -1841 *4) (|:| |totalpts| (-554))
- (|:| |success| (-112))))
- (-5 *1 (-776)) (-5 *5 (-554)))))
-(((*1 *2 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-675 *4)) (-5 *3 (-758)) (-4 *4 (-1034))
- (-5 *1 (-676 *4)))))
+ (-12 (-5 *3 (-635 (-1163))) (-5 *2 (-1251)) (-5 *1 (-1166))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-635 (-1163))) (-5 *3 (-1163)) (-5 *2 (-1251))
+ (-5 *1 (-1166))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *4 (-635 (-1163))) (-5 *3 (-1163)) (-5 *2 (-1251))
+ (-5 *1 (-1166)))))
+(((*1 *2 *1) (-12 (-5 *2 (-813)) (-5 *1 (-812)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *2 (-550)) (-5 *1 (-959 *2 *3)) (-4 *3 (-1222 *2)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1163)) (-5 *6 (-635 (-604 *3)))
+ (-5 *5 (-604 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *7)))
+ (-4 *7 (-13 (-450) (-841) (-146) (-1028 (-558)) (-631 (-558))))
+ (-5 *2 (-2 (|:| -1440 *3) (|:| |coeff| *3)))
+ (-5 *1 (-551 *7 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-274)))))
+(((*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1248))))
+ ((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1248)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
+ (-4 *4 (-841)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1039)) (-5 *1 (-703 *3 *2)) (-4 *2 (-1222 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-762)) (-5 *3 (-112)) (-5 *1 (-110))))
+ ((*1 *2 *2) (-12 (-5 *2 (-911)) (|has| *1 (-6 -4373)) (-4 *1 (-403))))
+ ((*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-911)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-762)) (-5 *1 (-103 *3)) (-4 *3 (-1087)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-3 (|:| |fst| (-433)) (|:| -2912 "void")))
+ (-5 *2 (-1251)) (-5 *1 (-1166))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1163))
+ (-5 *4 (-3 (|:| |fst| (-433)) (|:| -2912 "void"))) (-5 *2 (-1251))
+ (-5 *1 (-1166))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *3 (-1163))
+ (-5 *4 (-3 (|:| |fst| (-433)) (|:| -2912 "void"))) (-5 *2 (-1251))
+ (-5 *1 (-1166)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-812)))))
+(((*1 *2 *2 *2 *2 *3)
+ (-12 (-4 *3 (-550)) (-5 *1 (-959 *3 *2)) (-4 *2 (-1222 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1163))
+ (-4 *5 (-13 (-450) (-841) (-146) (-1028 (-558)) (-631 (-558))))
+ (-5 *2 (-579 *3)) (-5 *1 (-551 *5 *3))
+ (-4 *3 (-13 (-27) (-1185) (-429 *5))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-546) (-836) (-1023 (-554)))) (-4 *5 (-425 *4))
- (-5 *2 (-413 *3)) (-5 *1 (-430 *4 *5 *3)) (-4 *3 (-1217 *5)))))
+ (-12
+ (-5 *3
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224)))
+ (|:| |lb| (-635 (-834 (-224))))
+ (|:| |cf| (-635 (-315 (-224))))
+ (|:| |ub| (-635 (-834 (-224))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-635 (-315 (-224))))
+ (|:| -1796 (-635 (-224)))))))
+ (-5 *2 (-635 (-1145))) (-5 *1 (-266)))))
+(((*1 *1) (-5 *1 (-1248))))
(((*1 *2 *3)
- (-12 (-4 *4 (-302)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4))
- (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
- (-5 *1 (-1106 *4 *5 *6 *3)) (-4 *3 (-673 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-660 *3)) (-4 *3 (-1195)) (-5 *2 (-112)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4374)) (-4 *1 (-1229 *2)) (-4 *2 (-1195)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-758)) (-5 *2 (-402 (-554))) (-5 *1 (-221))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-758)) (-5 *2 (-402 (-554))) (-5 *1 (-221))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-758)) (-5 *2 (-402 (-554))) (-5 *1 (-374))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-758)) (-5 *2 (-402 (-554))) (-5 *1 (-374)))))
+ (-12 (-4 *4 (-1039)) (-5 *2 (-112)) (-5 *1 (-442 *4 *3))
+ (-4 *3 (-1222 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784))
+ (-4 *5 (-841)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1039)) (-5 *2 (-1246 *3)) (-5 *1 (-703 *3 *4))
+ (-4 *4 (-1222 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-558)) (|has| *1 (-6 -4373)) (-4 *1 (-403))
+ (-5 *2 (-911)))))
+(((*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-1166))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1251)) (-5 *1 (-1166))))
+ ((*1 *2 *3 *1) (-12 (-5 *3 (-1163)) (-5 *2 (-1251)) (-5 *1 (-1166)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1107)) (-5 *1 (-812)))))
+(((*1 *2 *2 *3 *3 *4)
+ (-12 (-5 *4 (-762)) (-4 *3 (-550)) (-5 *1 (-959 *3 *2))
+ (-4 *2 (-1222 *3)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1163))
+ (-4 *4 (-13 (-450) (-841) (-146) (-1028 (-558)) (-631 (-558))))
+ (-5 *1 (-551 *4 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-393)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1025)) (-5 *3 (-1163)) (-5 *1 (-266)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1120 (-224))) (-5 *3 (-635 (-262))) (-5 *1 (-1248))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1120 (-224))) (-5 *3 (-1145)) (-5 *1 (-1248))))
+ ((*1 *1 *1) (-5 *1 (-1248))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 (-635 *2) *2 *2 *2)) (-4 *2 (-1087))
+ (-5 *1 (-103 *2))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1087)) (-5 *1 (-103 *2)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784))
+ (-4 *5 (-841)) (-5 *2 (-112)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1246 *3)) (-4 *3 (-1039)) (-5 *1 (-703 *3 *4))
+ (-4 *4 (-1222 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-600 *5)) (-4 *5 (-425 *4)) (-4 *4 (-1023 (-554)))
- (-4 *4 (-13 (-836) (-546))) (-5 *2 (-1154 *5)) (-5 *1 (-32 *4 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-600 *1)) (-4 *1 (-1034)) (-4 *1 (-297))
- (-5 *2 (-1154 *1)))))
-(((*1 *2 *3) (-12 (-5 *3 (-631 (-52))) (-5 *2 (-1246)) (-5 *1 (-849)))))
+ (-12 (-5 *3 (-558)) (|has| *1 (-6 -4373)) (-4 *1 (-403))
+ (-5 *2 (-911)))))
+(((*1 *2) (-12 (-5 *2 (-824 (-558))) (-5 *1 (-532))))
+ ((*1 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-1087)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1163))
+ (-5 *2 (-3 (|:| |fst| (-433)) (|:| -2912 "void"))) (-5 *1 (-1166)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-662 *3)) (-4 *3 (-841))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-667 *3)) (-4 *3 (-841))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-810 *3)) (-4 *3 (-841)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-762)) (-4 *2 (-550)) (-5 *1 (-959 *2 *4))
+ (-4 *4 (-1222 *2)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1163)) (-5 *5 (-635 *3))
+ (-4 *3 (-13 (-27) (-1185) (-429 *6)))
+ (-4 *6 (-13 (-450) (-841) (-146) (-1028 (-558)) (-631 (-558))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-551 *6 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-182)) (-5 *1 (-279)))))
+(((*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-112)) (-5 *1 (-266)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-1151 3 *3))))
+ ((*1 *1) (-12 (-5 *1 (-1151 *2 *3)) (-14 *2 (-911)) (-4 *3 (-1039))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1120 (-224))) (-5 *1 (-1248))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1120 (-224))) (-5 *1 (-1248)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-450) (-146))) (-5 *2 (-417 *3))
+ (-5 *1 (-100 *4 *3)) (-4 *3 (-1222 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-635 *3)) (-4 *3 (-1222 *5)) (-4 *5 (-13 (-450) (-146)))
+ (-5 *2 (-417 *3)) (-5 *1 (-100 *5 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
+ (-4 *4 (-841)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1039)) (-5 *2 (-1246 *3)) (-5 *1 (-703 *3 *4))
+ (-4 *4 (-1222 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-836))
+ (-12 (-4 *4 (-841))
(-5 *2
- (-2 (|:| |f1| (-631 *4)) (|:| |f2| (-631 (-631 (-631 *4))))
- (|:| |f3| (-631 (-631 *4))) (|:| |f4| (-631 (-631 (-631 *4))))))
- (-5 *1 (-1166 *4)) (-5 *3 (-631 (-631 (-631 *4)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-631 (-1117))) (-5 *1 (-657))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-631 (-906))) (-5 *1 (-1083 *3 *4)) (-14 *3 (-906))
- (-14 *4 (-906)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-877 *4)) (-4 *4 (-1082)) (-5 *2 (-112))
- (-5 *1 (-874 *4 *5)) (-4 *5 (-1082))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-877 *5)) (-4 *5 (-1082)) (-5 *2 (-112))
- (-5 *1 (-875 *5 *3)) (-4 *3 (-1195))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 *6)) (-5 *4 (-877 *5)) (-4 *5 (-1082))
- (-4 *6 (-1195)) (-5 *2 (-112)) (-5 *1 (-875 *5 *6)))))
+ (-2 (|:| |f1| (-635 *4)) (|:| |f2| (-635 (-635 (-635 *4))))
+ (|:| |f3| (-635 (-635 *4))) (|:| |f4| (-635 (-635 (-635 *4))))))
+ (-5 *1 (-1171 *4)) (-5 *3 (-635 (-635 (-635 *4)))))))
+(((*1 *2 *1) (-12 (-4 *1 (-348)) (-5 *2 (-762))))
+ ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-401)) (-5 *2 (-762)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-429 *3) (-992))) (-5 *1 (-275 *3 *2))
+ (-4 *3 (-13 (-841) (-550)))))
+ ((*1 *1)
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163)))
+ (-14 *3 (-635 (-1163))) (-4 *4 (-386))))
+ ((*1 *1) (-5 *1 (-475))) ((*1 *1) (-4 *1 (-1185))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-890 *4)) (-4 *4 (-1082)) (-5 *2 (-631 (-758)))
- (-5 *1 (-889 *4)))))
+ (-12 (-5 *2 (-635 (-1163))) (-5 *1 (-1166)) (-5 *3 (-1163)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1087))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-841)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2306 *1) (|:| -2071 *1))) (-4 *1 (-306))))
+ ((*1 *2 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-385 *3)) (|:| |rm| (-385 *3))))
+ (-5 *1 (-385 *3)) (-4 *3 (-1087))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2306 (-762)) (|:| -2071 (-762))))
+ (-5 *1 (-762))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| -2306 *3) (|:| -2071 *3)))
+ (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1163))
+ (-4 *5 (-13 (-450) (-841) (-146) (-1028 (-558)) (-631 (-558))))
+ (-5 *2 (-2 (|:| -1440 *3) (|:| |coeff| *3))) (-5 *1 (-551 *5 *3))
+ (-4 *3 (-13 (-27) (-1185) (-429 *5))))))
+(((*1 *2 *2) (-12 (-5 *2 (-635 (-315 (-224)))) (-5 *1 (-266)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-762)) (-5 *3 (-933 *4)) (-4 *1 (-1121 *4))
+ (-4 *4 (-1039))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-762)) (-5 *4 (-933 (-224))) (-5 *2 (-1251))
+ (-5 *1 (-1248)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
+ (-4 *4 (-841)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1039)) (-5 *2 (-948 (-703 *3 *4))) (-5 *1 (-703 *3 *4))
+ (-4 *4 (-1222 *3)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-401)) (-5 *2 (-762))))
+ ((*1 *1 *1) (-4 *1 (-401))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1163)) (-5 *2 (-1167)) (-5 *1 (-1166)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1087))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-841)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-450)) (-4 *4 (-550))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| -1871 *4))) (-5 *1 (-959 *4 *3))
+ (-4 *3 (-1222 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| -1960 *1) (|:| -4369 *1) (|:| |associate| *1)))
+ (-4 *1 (-550)))))
+(((*1 *2 *2) (-12 (-5 *2 (-635 (-315 (-224)))) (-5 *1 (-266)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-762)) (-5 *2 (-1251)) (-5 *1 (-1247))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-762)) (-5 *2 (-1251)) (-5 *1 (-1248)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-368 *3))
- (-4 *5 (-368 *3)) (-5 *2 (-554))))
+ (-12 (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-635 *1))
+ (-4 *1 (-1053 *3 *4 *5)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1039)) (-5 *2 (-948 (-703 *3 *4))) (-5 *1 (-703 *3 *4))
+ (-4 *4 (-1222 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-406 *4)) (-4 *4 (-1222 *3)) (-4 *3 (-13 (-362) (-146)))
+ (-5 *1 (-398 *3 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1112 (-558) (-604 (-48)))) (-5 *1 (-48))))
((*1 *2 *1)
- (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034))
- (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-554)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-758)) (-5 *2 (-112)) (-5 *1 (-576 *3)) (-4 *3 (-539)))))
-(((*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-889 (-554))) (-5 *1 (-902))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-631 (-554))) (-5 *2 (-889 (-554))) (-5 *1 (-902)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-758)) (-5 *2 (-1241 (-631 (-554)))) (-5 *1 (-474))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1195)) (-5 *1 (-589 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1195)) (-5 *1 (-1138 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1195)) (-5 *1 (-1138 *3)))))
-(((*1 *1 *1 *1) (-5 *1 (-848))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-344)) (-4 *4 (-324 *3)) (-4 *5 (-1217 *4))
- (-5 *1 (-764 *3 *4 *5 *2 *6)) (-4 *2 (-1217 *5)) (-14 *6 (-906))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-758)) (-4 *1 (-1260 *3)) (-4 *3 (-358)) (-4 *3 (-363))))
- ((*1 *1 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-358)) (-4 *2 (-363)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1232 *4))
- (-4 *4 (-38 (-402 (-554)))) (-5 *2 (-1 (-1138 *4) (-1138 *4)))
- (-5 *1 (-1234 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-546) (-836) (-1023 (-554)))) (-5 *2 (-112))
- (-5 *1 (-184 *4 *3)) (-4 *3 (-13 (-27) (-1180) (-425 (-167 *4))))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *2 (-112)) (-5 *1 (-1184 *4 *3))
- (-4 *3 (-13 (-27) (-1180) (-425 *4))))))
+ (-12 (-4 *3 (-982 *2)) (-4 *4 (-1222 *3)) (-4 *2 (-306))
+ (-5 *1 (-412 *2 *3 *4 *5)) (-4 *5 (-13 (-408 *3 *4) (-1028 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-550)) (-4 *3 (-841)) (-5 *2 (-1112 *3 (-604 *1)))
+ (-4 *1 (-429 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1112 (-558) (-604 (-493)))) (-5 *1 (-493))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-171)) (-4 *2 (|SubsetCategory| (-717) *4))
+ (-5 *1 (-613 *3 *4 *2)) (-4 *3 (-38 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-171)) (-4 *2 (|SubsetCategory| (-717) *4))
+ (-5 *1 (-652 *3 *4 *2)) (-4 *3 (-708 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-550)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1214 *5 *4)) (-4 *4 (-446)) (-4 *4 (-807))
- (-14 *5 (-1158)) (-5 *2 (-554)) (-5 *1 (-1096 *4 *5)))))
-(((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1158)) (-5 *1 (-661 *3)) (-4 *3 (-1082)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1217 *5)) (-4 *5 (-358))
- (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
- (-5 *1 (-564 *5 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-639 (-402 *6))) (-5 *4 (-402 *6)) (-4 *6 (-1217 *5))
- (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554)))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3782 (-631 *4))))
- (-5 *1 (-797 *5 *6))))
+ (-12 (-5 *3 (-635 *4)) (-4 *4 (-1039)) (-5 *2 (-1246 *4))
+ (-5 *1 (-1164 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-639 (-402 *6))) (-4 *6 (-1217 *5))
- (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554)))))
- (-5 *2 (-2 (|:| -3782 (-631 (-402 *6))) (|:| -2866 (-675 *5))))
- (-5 *1 (-797 *5 *6)) (-5 *4 (-631 (-402 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 *6 (-402 *6))) (-5 *4 (-402 *6)) (-4 *6 (-1217 *5))
- (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554)))))
+ (-12 (-5 *4 (-911)) (-5 *2 (-1246 *3)) (-5 *1 (-1164 *3))
+ (-4 *3 (-1039)))))
+(((*1 *2 *1 *1)
+ (-12
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3782 (-631 *4))))
- (-5 *1 (-797 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-640 *6 (-402 *6))) (-4 *6 (-1217 *5))
- (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554)))))
- (-5 *2 (-2 (|:| -3782 (-631 (-402 *6))) (|:| -2866 (-675 *5))))
- (-5 *1 (-797 *5 *6)) (-5 *4 (-631 (-402 *6))))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-631 (-600 *2))) (-5 *4 (-1158))
- (-4 *2 (-13 (-27) (-1180) (-425 *5)))
- (-4 *5 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *1 (-272 *5 *2)))))
-(((*1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-302)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))))
-(((*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-5 *1 (-91 *3)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-982 *2)) (-4 *2 (-170)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374))
+ (-2 (|:| |lm| (-385 *3)) (|:| |mm| (-385 *3)) (|:| |rm| (-385 *3))))
+ (-5 *1 (-385 *3)) (-4 *3 (-1087))))
+ ((*1 *2 *1 *1)
+ (-12
(-5 *2
- (-2 (|:| -2794 *4) (|:| -1841 *4) (|:| |totalpts| (-554))
- (|:| |success| (-112))))
- (-5 *1 (-776)) (-5 *5 (-554)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-631 *2)) (-4 *2 (-934 *4 *5 *6)) (-4 *4 (-446))
- (-4 *5 (-780)) (-4 *6 (-836)) (-5 *1 (-443 *4 *5 *6 *2)))))
-(((*1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-155)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1023 (-554))) (-4 *1 (-297)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-1082)))))
-(((*1 *2 *3) (-12 (-5 *3 (-374)) (-5 *2 (-221)) (-5 *1 (-300)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2))
- (-4 *2 (-13 (-425 *3) (-1180))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-554)) (-5 *1 (-413 *2)) (-4 *2 (-546)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1103 *2)) (-4 *2 (-1195)))))
+ (-2 (|:| |lm| (-810 *3)) (|:| |mm| (-810 *3)) (|:| |rm| (-810 *3))))
+ (-5 *1 (-810 *3)) (-4 *3 (-841)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-450)) (-4 *4 (-550))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1871 *4)))
+ (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))))
+(((*1 *1 *1) (-4 *1 (-550))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-631 *5) *6))
- (-4 *5 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-4 *6 (-1217 *5))
- (-5 *2 (-631 (-2 (|:| -2397 *5) (|:| -4329 *3))))
- (-5 *1 (-796 *5 *6 *3 *7)) (-4 *3 (-642 *6))
- (-4 *7 (-642 (-402 *6))))))
+ (-12 (-5 *3 (-635 (-315 (-224)))) (-5 *4 (-762))
+ (-5 *2 (-679 (-224))) (-5 *1 (-266)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-911)) (-5 *2 (-1251)) (-5 *1 (-1247))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-911)) (-5 *2 (-1251)) (-5 *1 (-1248)))))
+(((*1 *1 *1) (-4 *1 (-35)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-992)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1148 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
+ (-5 *1 (-1149 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-635 *1))
+ (-4 *1 (-1053 *3 *4 *5)))))
(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-289 *2)) (-4 *2 (-713)) (-4 *2 (-1195)))))
+ (-12 (-4 *2 (-348)) (-4 *2 (-1039)) (-5 *1 (-703 *2 *3))
+ (-4 *3 (-1222 *2)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1222 *3)) (-5 *1 (-398 *3 *2))
+ (-4 *3 (-13 (-362) (-146))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1112 (-558) (-604 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-306)) (-4 *4 (-982 *3)) (-4 *5 (-1222 *4))
+ (-5 *2 (-1246 *6)) (-5 *1 (-412 *3 *4 *5 *6))
+ (-4 *6 (-13 (-408 *4 *5) (-1028 *4)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1039)) (-4 *3 (-841)) (-5 *2 (-1112 *3 (-604 *1)))
+ (-4 *1 (-429 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1112 (-558) (-604 (-493)))) (-5 *1 (-493))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-171)) (-4 *2 (-38 *3)) (-5 *1 (-613 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-717) *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-171)) (-4 *2 (-708 *3)) (-5 *1 (-652 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-717) *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-550)))))
+(((*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-1163)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-360 *3)) (-4 *3 (-1087))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-558)) (-5 *2 (-762)) (-5 *1 (-385 *4)) (-4 *4 (-1087))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-558)) (-4 *2 (-23)) (-5 *1 (-639 *4 *2 *5))
+ (-4 *4 (-1087)) (-14 *5 *2)))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-558)) (-5 *2 (-762)) (-5 *1 (-810 *4)) (-4 *4 (-841)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *2 (-550)) (-4 *2 (-450)) (-5 *1 (-959 *2 *3))
+ (-4 *3 (-1222 *2)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-315 (-224)))) (-5 *2 (-112)) (-5 *1 (-266)))))
+(((*1 *1 *1) (-5 *1 (-534))))
+(((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-762)) (-5 *4 (-911)) (-5 *2 (-1251)) (-5 *1 (-1247))))
+ ((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-762)) (-5 *4 (-911)) (-5 *2 (-1251)) (-5 *1 (-1248)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-758)) (-4 *1 (-227 *4))
- (-4 *4 (-1034))))
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-762)) (-4 *1 (-230 *4))
+ (-4 *4 (-1039))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-227 *3)) (-4 *3 (-1034))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-229)) (-5 *2 (-758))))
- ((*1 *1 *1) (-4 *1 (-229)))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-230 *3)) (-4 *3 (-1039))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-232)) (-5 *2 (-762))))
+ ((*1 *1 *1) (-4 *1 (-232)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-758)) (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *4))
- (-4 *4 (-1217 *3))))
+ (-12 (-5 *2 (-762)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4))
+ (-4 *4 (-1222 *3))))
((*1 *1 *1)
- (-12 (-4 *2 (-13 (-358) (-145))) (-5 *1 (-394 *2 *3))
- (-4 *3 (-1217 *2))))
- ((*1 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-1034))))
+ (-12 (-4 *2 (-13 (-362) (-146))) (-5 *1 (-398 *2 *3))
+ (-4 *3 (-1222 *2))))
+ ((*1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1039))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-631 *4)) (-5 *3 (-631 (-758))) (-4 *1 (-885 *4))
- (-4 *4 (-1082))))
+ (-12 (-5 *2 (-635 *4)) (-5 *3 (-635 (-762))) (-4 *1 (-890 *4))
+ (-4 *4 (-1087))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-758)) (-4 *1 (-885 *2)) (-4 *2 (-1082))))
+ (-12 (-5 *3 (-762)) (-4 *1 (-890 *2)) (-4 *2 (-1087))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-631 *3)) (-4 *1 (-885 *3)) (-4 *3 (-1082))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-885 *2)) (-4 *2 (-1082)))))
-(((*1 *1 *1) (-4 *1 (-539))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780))
- (-4 *4 (-836)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987))))))
+ (-12 (-5 *2 (-635 *3)) (-4 *1 (-890 *3)) (-4 *3 (-1087))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-890 *2)) (-4 *2 (-1087)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039))
+ (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1145)) (-5 *1 (-701)))))
+(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1200))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-942 (-378))) (-5 *1 (-338 *3 *4 *5))
+ (-4 *5 (-1028 (-378))) (-14 *3 (-635 (-1163)))
+ (-14 *4 (-635 (-1163))) (-4 *5 (-386))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-406 (-942 (-378)))) (-5 *1 (-338 *3 *4 *5))
+ (-4 *5 (-1028 (-378))) (-14 *3 (-635 (-1163)))
+ (-14 *4 (-635 (-1163))) (-4 *5 (-386))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-315 (-378))) (-5 *1 (-338 *3 *4 *5))
+ (-4 *5 (-1028 (-378))) (-14 *3 (-635 (-1163)))
+ (-14 *4 (-635 (-1163))) (-4 *5 (-386))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-942 (-558))) (-5 *1 (-338 *3 *4 *5))
+ (-4 *5 (-1028 (-558))) (-14 *3 (-635 (-1163)))
+ (-14 *4 (-635 (-1163))) (-4 *5 (-386))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-406 (-942 (-558)))) (-5 *1 (-338 *3 *4 *5))
+ (-4 *5 (-1028 (-558))) (-14 *3 (-635 (-1163)))
+ (-14 *4 (-635 (-1163))) (-4 *5 (-386))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-315 (-558))) (-5 *1 (-338 *3 *4 *5))
+ (-4 *5 (-1028 (-558))) (-14 *3 (-635 (-1163)))
+ (-14 *4 (-635 (-1163))) (-4 *5 (-386))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1163)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 *2))
+ (-14 *4 (-635 *2)) (-4 *5 (-386))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-315 *5)) (-4 *5 (-386)) (-5 *1 (-338 *3 *4 *5))
+ (-14 *3 (-635 (-1163))) (-14 *4 (-635 (-1163)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-679 (-406 (-942 (-558))))) (-4 *1 (-383))))
+ ((*1 *1 *2) (-12 (-5 *2 (-679 (-406 (-942 (-378))))) (-4 *1 (-383))))
+ ((*1 *1 *2) (-12 (-5 *2 (-679 (-942 (-558)))) (-4 *1 (-383))))
+ ((*1 *1 *2) (-12 (-5 *2 (-679 (-942 (-378)))) (-4 *1 (-383))))
+ ((*1 *1 *2) (-12 (-5 *2 (-679 (-315 (-558)))) (-4 *1 (-383))))
+ ((*1 *1 *2) (-12 (-5 *2 (-679 (-315 (-378)))) (-4 *1 (-383))))
+ ((*1 *1 *2) (-12 (-5 *2 (-406 (-942 (-558)))) (-4 *1 (-395))))
+ ((*1 *1 *2) (-12 (-5 *2 (-406 (-942 (-378)))) (-4 *1 (-395))))
+ ((*1 *1 *2) (-12 (-5 *2 (-942 (-558))) (-4 *1 (-395))))
+ ((*1 *1 *2) (-12 (-5 *2 (-942 (-378))) (-4 *1 (-395))))
+ ((*1 *1 *2) (-12 (-5 *2 (-315 (-558))) (-4 *1 (-395))))
+ ((*1 *1 *2) (-12 (-5 *2 (-315 (-378))) (-4 *1 (-395))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1246 (-406 (-942 (-558))))) (-4 *1 (-439))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1246 (-406 (-942 (-378))))) (-4 *1 (-439))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1246 (-942 (-558)))) (-4 *1 (-439))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1246 (-942 (-378)))) (-4 *1 (-439))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1246 (-315 (-558)))) (-4 *1 (-439))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1246 (-315 (-378)))) (-4 *1 (-439))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-3
+ (|:| |nia|
+ (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224)))
+ (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
+ (|:| |mdnia|
+ (-2 (|:| |fn| (-315 (-224)))
+ (|:| -1626 (-635 (-1081 (-834 (-224)))))
+ (|:| |abserr| (-224)) (|:| |relerr| (-224))))))
+ (-5 *1 (-760))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
+ (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224)))
+ (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224)))
+ (|:| |abserr| (-224)) (|:| |relerr| (-224))))
+ (-5 *1 (-799))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224)))
+ (|:| |lb| (-635 (-834 (-224))))
+ (|:| |cf| (-635 (-315 (-224))))
+ (|:| |ub| (-635 (-834 (-224))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-635 (-315 (-224))))
+ (|:| -1796 (-635 (-224)))))))
+ (-5 *1 (-832))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |pde| (-635 (-315 (-224))))
+ (|:| |constraints|
+ (-635
+ (-2 (|:| |start| (-224)) (|:| |finish| (-224))
+ (|:| |grid| (-762)) (|:| |boundaryType| (-558))
+ (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224))))))
+ (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145))
+ (|:| |tol| (-224))))
+ (-5 *1 (-888))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-1039))
+ (-4 *4 (-784)) (-4 *5 (-841)) (-4 *1 (-966 *3 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-1200))))
+ ((*1 *1 *2)
+ (-3998
+ (-12 (-5 *2 (-942 *3))
+ (-12 (-3304 (-4 *3 (-38 (-406 (-558)))))
+ (-3304 (-4 *3 (-38 (-558)))) (-4 *5 (-606 (-1163))))
+ (-4 *3 (-1039)) (-4 *1 (-1053 *3 *4 *5)) (-4 *4 (-784))
+ (-4 *5 (-841)))
+ (-12 (-5 *2 (-942 *3))
+ (-12 (-3304 (-4 *3 (-543))) (-3304 (-4 *3 (-38 (-406 (-558)))))
+ (-4 *3 (-38 (-558))) (-4 *5 (-606 (-1163))))
+ (-4 *3 (-1039)) (-4 *1 (-1053 *3 *4 *5)) (-4 *4 (-784))
+ (-4 *5 (-841)))
+ (-12 (-5 *2 (-942 *3))
+ (-12 (-3304 (-4 *3 (-982 (-558)))) (-4 *3 (-38 (-406 (-558))))
+ (-4 *5 (-606 (-1163))))
+ (-4 *3 (-1039)) (-4 *1 (-1053 *3 *4 *5)) (-4 *4 (-784))
+ (-4 *5 (-841)))))
+ ((*1 *1 *2)
+ (-3998
+ (-12 (-5 *2 (-942 (-558))) (-4 *1 (-1053 *3 *4 *5))
+ (-12 (-3304 (-4 *3 (-38 (-406 (-558))))) (-4 *3 (-38 (-558)))
+ (-4 *5 (-606 (-1163))))
+ (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)))
+ (-12 (-5 *2 (-942 (-558))) (-4 *1 (-1053 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *5 (-606 (-1163))))
+ (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-942 (-406 (-558)))) (-4 *1 (-1053 *3 *4 *5))
+ (-4 *3 (-38 (-406 (-558)))) (-4 *5 (-606 (-1163))) (-4 *3 (-1039))
+ (-4 *4 (-784)) (-4 *5 (-841)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-446)) (-4 *4 (-836)) (-4 *5 (-780)) (-5 *2 (-631 *6))
- (-5 *1 (-972 *3 *4 *5 *6)) (-4 *6 (-934 *3 *5 *4)))))
+ (-12 (-4 *3 (-13 (-362) (-146)))
+ (-5 *2 (-635 (-2 (|:| -1951 (-762)) (|:| -2673 *4) (|:| |num| *4))))
+ (-5 *1 (-398 *3 *4)) (-4 *4 (-1222 *3)))))
(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-554)) (-4 *1 (-637 *3)) (-4 *3 (-1195))))
+ (-12 (-5 *2 (-558)) (-4 *1 (-641 *3)) (-4 *3 (-1200))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-554)) (-4 *1 (-637 *2)) (-4 *2 (-1195)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1160 (-402 (-554)))) (-5 *1 (-186)) (-5 *3 (-554))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1241 (-3 (-462) "undefined"))) (-5 *1 (-1242)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1195)) (-5 *1 (-1114 *4 *2))
- (-4 *2 (-13 (-592 (-554) *4) (-10 -7 (-6 -4373) (-6 -4374))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-836)) (-4 *3 (-1195)) (-5 *1 (-1114 *3 *2))
- (-4 *2 (-13 (-592 (-554) *3) (-10 -7 (-6 -4373) (-6 -4374)))))))
+ (-12 (-5 *3 (-558)) (-4 *1 (-641 *2)) (-4 *2 (-1200)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1163)))))
(((*1 *2 *1 *3)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1034))))
- ((*1 *2 *1 *1)
- (-12 (-4 *2 (-1034)) (-5 *1 (-50 *2 *3)) (-14 *3 (-631 (-1158)))))
+ (-12 (-5 *3 (-558)) (-4 *1 (-322 *2 *4)) (-4 *4 (-130))
+ (-4 *2 (-1087))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *1 (-360 *2)) (-4 *2 (-1087))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *1 (-385 *2)) (-4 *2 (-1087))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *1 (-417 *2)) (-4 *2 (-550))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-631 (-906))) (-4 *2 (-358)) (-5 *1 (-150 *4 *2 *5))
- (-14 *4 (-906)) (-14 *5 (-978 *4 *2))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-311 *3)) (-5 *1 (-219 *3 *4))
- (-4 *3 (-13 (-1034) (-836))) (-14 *4 (-631 (-1158)))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-318 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-130))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-377 *2 *3)) (-4 *3 (-1082)) (-4 *2 (-1034))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-554)) (-4 *2 (-546)) (-5 *1 (-611 *2 *4))
- (-4 *4 (-1217 *2))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-4 *1 (-695 *2)) (-4 *2 (-1034))))
- ((*1 *2 *1 *3)
- (-12 (-4 *2 (-1034)) (-5 *1 (-722 *2 *3)) (-4 *3 (-713))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-631 *5)) (-5 *3 (-631 (-758))) (-4 *1 (-727 *4 *5))
- (-4 *4 (-1034)) (-4 *5 (-836))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-758)) (-4 *1 (-727 *4 *2)) (-4 *4 (-1034))
- (-4 *2 (-836))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-4 *1 (-838 *2)) (-4 *2 (-1034))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-631 *6)) (-5 *3 (-631 (-758))) (-4 *1 (-934 *4 *5 *6))
- (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *6 (-836))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-758)) (-4 *1 (-934 *4 *5 *2)) (-4 *4 (-1034))
- (-4 *5 (-780)) (-4 *2 (-836))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-758)) (-4 *2 (-934 *4 (-525 *5) *5))
- (-5 *1 (-1108 *4 *5 *2)) (-4 *4 (-1034)) (-4 *5 (-836))))
+ (-12 (-5 *3 (-558)) (-4 *2 (-1087)) (-5 *1 (-639 *2 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4)))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *1 (-810 *2)) (-4 *2 (-841)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-550)) (-5 *2 (-635 (-762))) (-5 *1 (-959 *4 *3))
+ (-4 *3 (-1222 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112)))))
+(((*1 *2 *2) (-12 (-5 *2 (-315 (-224))) (-5 *1 (-266)))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2785 (-224))
+ (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224))
+ (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))
+ (-5 *3 (-635 (-262))) (-5 *1 (-260))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2785 (-224))
+ (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224))
+ (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))
+ (-5 *1 (-262))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248))))
+ ((*1 *2 *1 *3 *3 *4 *4 *4)
+ (-12 (-5 *3 (-558)) (-5 *4 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-758)) (-5 *2 (-937 *4)) (-5 *1 (-1189 *4))
- (-4 *4 (-1034)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-912)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1158))
- (-4 *4 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145)))
- (-5 *1 (-791 *4 *2)) (-4 *2 (-13 (-29 *4) (-1180) (-944))))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020))
- (-5 *1 (-738)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-358)) (-5 *1 (-753 *2 *3)) (-4 *2 (-695 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-358)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2785 (-224))
+ (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224))
+ (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))
+ (-5 *2 (-1251)) (-5 *1 (-1248))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2785 (-224))
+ (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224))
+ (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))
+ (-5 *1 (-1248))))
+ ((*1 *2 *1 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-917)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784))
+ (-4 *5 (-841)) (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1145)) (-5 *1 (-701)))))
+(((*1 *2 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-396)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-1163)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -2573 (-558)))))
+ (-5 *1 (-360 *3)) (-4 *3 (-1087))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -2573 (-762)))))
+ (-5 *1 (-385 *3)) (-4 *3 (-1087))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-635 (-2 (|:| -2522 *3) (|:| -1951 (-558)))))
+ (-5 *1 (-417 *3)) (-4 *3 (-550))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -2573 (-762)))))
+ (-5 *1 (-810 *3)) (-4 *3 (-841)))))
(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1138 (-631 (-554)))) (-5 *1 (-868))
- (-5 *3 (-631 (-554))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-631 (-937 *6))) (-5 *4 (-631 (-1158))) (-4 *6 (-446))
- (-5 *2 (-631 (-631 *7))) (-5 *1 (-532 *6 *7 *5)) (-4 *7 (-358))
- (-4 *5 (-13 (-358) (-834))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1241 *4)) (-5 *3 (-758)) (-4 *4 (-344))
- (-5 *1 (-522 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-546)) (-4 *4 (-977 *3)) (-5 *1 (-140 *3 *4 *2))
- (-4 *2 (-368 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-546)) (-4 *5 (-977 *4)) (-4 *2 (-368 *4))
- (-5 *1 (-497 *4 *5 *2 *3)) (-4 *3 (-368 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-675 *5)) (-4 *5 (-977 *4)) (-4 *4 (-546))
- (-5 *2 (-675 *4)) (-5 *1 (-679 *4 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-546)) (-4 *4 (-977 *3)) (-5 *1 (-1210 *3 *4 *2))
- (-4 *2 (-1217 *4)))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-675 (-221))) (-5 *4 (-554)) (-5 *2 (-1020))
- (-5 *1 (-742)))))
-(((*1 *1) (-5 *1 (-286))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1241 (-1241 *4))) (-4 *4 (-1034)) (-5 *2 (-675 *4))
- (-5 *1 (-1014 *4)))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4))
- (-4 *3 (-362 *4))))
- ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-631 (-631 (-221)))) (-5 *4 (-221))
- (-5 *2 (-631 (-928 *4))) (-5 *1 (-1191)) (-5 *3 (-928 *4)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-358)) (-5 *1 (-753 *2 *3)) (-4 *2 (-695 *3))))
+ (-12 (-4 *4 (-550)) (-5 *2 (-635 *3)) (-5 *1 (-959 *4 *3))
+ (-4 *3 (-1222 *4)))))
+(((*1 *2) (-12 (-5 *2 (-834 (-558))) (-5 *1 (-532))))
+ ((*1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-1087)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1087))
+ (-4 *4 (-13 (-1039) (-876 *3) (-841) (-606 (-882 *3))))
+ (-5 *2 (-635 (-1063 *3 *4 *5))) (-5 *1 (-1064 *3 *4 *5))
+ (-4 *5 (-13 (-429 *4) (-876 *3) (-606 (-882 *3)))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-406 (-558))) (-4 *1 (-548 *3))
+ (-4 *3 (-13 (-403) (-1185)))))
+ ((*1 *1 *2) (-12 (-4 *1 (-548 *2)) (-4 *2 (-13 (-403) (-1185)))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-548 *2)) (-4 *2 (-13 (-403) (-1185))))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-315 (-224))) (-5 *1 (-266)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1247))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1248)))))
+(((*1 *1 *1) (-4 *1 (-543))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1053 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784))
+ (-4 *2 (-841))))
((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-358)))))
-(((*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-275)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-1034))))
+ (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
+ (-4 *4 (-841)))))
+(((*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1145)) (-5 *1 (-701)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-635 (-635 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-635 (-3 (|:| |array| (-635 *3)) (|:| |scalar| (-1163)))))
+ (-5 *6 (-635 (-1163))) (-5 *3 (-1163)) (-5 *2 (-1091))
+ (-5 *1 (-396))))
+ ((*1 *2 *3 *4 *5 *6 *3)
+ (-12 (-5 *5 (-635 (-635 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-635 (-3 (|:| |array| (-635 *3)) (|:| |scalar| (-1163)))))
+ (-5 *6 (-635 (-1163))) (-5 *3 (-1163)) (-5 *2 (-1091))
+ (-5 *1 (-396))))
+ ((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *4 (-635 (-1163))) (-5 *5 (-1166)) (-5 *3 (-1163))
+ (-5 *2 (-1091)) (-5 *1 (-396)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-1163)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-635 *4)) (-4 *4 (-362)) (-5 *2 (-1246 *4))
+ (-5 *1 (-805 *4 *3)) (-4 *3 (-646 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3331 *4)))
+ (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))))
+(((*1 *2) (-12 (-5 *2 (-834 (-558))) (-5 *1 (-532))))
+ ((*1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-1087)))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-548 *2)) (-4 *2 (-13 (-403) (-1185))))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224)))
+ (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224))))
+ (|:| |ub| (-635 (-834 (-224))))))
+ (-5 *1 (-266)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-911)) (-5 *4 (-864)) (-5 *2 (-1251)) (-5 *1 (-1247))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-911)) (-5 *4 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1247))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1248)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-853)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1053 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784))
+ (-4 *2 (-841))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780))
- (-4 *4 (-836)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-112))
- (-5 *2 (-1020)) (-5 *1 (-740)))))
+ (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
+ (-4 *4 (-841)))))
+(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
+ (|partial| -12 (-5 *2 (-635 (-1159 *13))) (-5 *3 (-1159 *13))
+ (-5 *4 (-635 *12)) (-5 *5 (-635 *10)) (-5 *6 (-635 *13))
+ (-5 *7 (-635 (-635 (-2 (|:| -3360 (-762)) (|:| |pcoef| *13)))))
+ (-5 *8 (-635 (-762))) (-5 *9 (-1246 (-635 (-1159 *10))))
+ (-4 *12 (-841)) (-4 *10 (-306)) (-4 *13 (-939 *10 *11 *12))
+ (-4 *11 (-784)) (-5 *1 (-698 *11 *12 *10 *13)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-393)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-1163)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 *4)) (-4 *4 (-362)) (-5 *2 (-679 *4))
+ (-5 *1 (-805 *4 *5)) (-4 *5 (-646 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 *5)) (-5 *4 (-762)) (-4 *5 (-362))
+ (-5 *2 (-679 *5)) (-5 *1 (-805 *5 *6)) (-4 *6 (-646 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-550))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3331 *4)))
+ (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-548 *2)) (-4 *2 (-13 (-403) (-1185))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1158)) (-5 *2 (-1 (-221) (-221))) (-5 *1 (-690 *3))
- (-4 *3 (-602 (-530)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1158)) (-5 *2 (-1 (-221) (-221) (-221)))
- (-5 *1 (-690 *3)) (-4 *3 (-602 (-530))))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
- (-12 (-5 *3 (-675 (-221))) (-5 *4 (-554)) (-5 *5 (-221))
- (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-61 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-87 BDYVAL))))
- (-5 *2 (-1020)) (-5 *1 (-736))))
- ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
- (-12 (-5 *3 (-675 (-221))) (-5 *4 (-554)) (-5 *5 (-221))
- (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-61 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-87 BDYVAL))))
- (-5 *8 (-383)) (-5 *2 (-1020)) (-5 *1 (-736)))))
+ (-12 (-5 *3 (-635 (-834 (-224)))) (-5 *4 (-224)) (-5 *2 (-635 *4))
+ (-5 *1 (-266)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1248)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 (-558))) (-4 *3 (-1039)) (-5 *1 (-99 *3))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1039)) (-5 *1 (-99 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1039)) (-5 *1 (-99 *3)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1053 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784))
+ (-4 *2 (-841))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
+ (-4 *4 (-841)))))
+(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
+ (|partial| -12 (-5 *4 (-635 *11)) (-5 *5 (-635 (-1159 *9)))
+ (-5 *6 (-635 *9)) (-5 *7 (-635 *12)) (-5 *8 (-635 (-762)))
+ (-4 *11 (-841)) (-4 *9 (-306)) (-4 *12 (-939 *9 *10 *11))
+ (-4 *10 (-784)) (-5 *2 (-635 (-1159 *12)))
+ (-5 *1 (-698 *10 *11 *9 *12)) (-5 *3 (-1159 *12)))))
+(((*1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-390)))))
+(((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1200))
+ (-4 *4 (-372 *2)) (-4 *5 (-372 *2))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (|has| *1 (-6 -4383)) (-4 *1 (-287 *3 *2)) (-4 *3 (-1087))
+ (-4 *2 (-1200)))))
+(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34)))
+ ((*1 *1) (-5 *1 (-129)))
+ ((*1 *1)
+ (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-762))
+ (-4 *4 (-171))))
+ ((*1 *1) (-4 *1 (-717))) ((*1 *1) (-5 *1 (-1163))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-906)) (-4 *5 (-546)) (-5 *2 (-675 *5))
- (-5 *1 (-941 *5 *3)) (-4 *3 (-642 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-906)) (-5 *2 (-1154 *4)) (-5 *1 (-577 *4))
- (-4 *4 (-344)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-201))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-631 (-374))) (-5 *2 (-374)) (-5 *1 (-201)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169)))))
-(((*1 *2) (-12 (-5 *2 (-859)) (-5 *1 (-1244))))
- ((*1 *2 *2) (-12 (-5 *2 (-859)) (-5 *1 (-1244)))))
+ (-12 (-5 *3 (-635 (-942 *5))) (-5 *4 (-635 (-1163))) (-4 *5 (-550))
+ (-5 *2 (-635 (-635 (-293 (-406 (-942 *5)))))) (-5 *1 (-761 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-942 *4))) (-4 *4 (-550))
+ (-5 *2 (-635 (-635 (-293 (-406 (-942 *4)))))) (-5 *1 (-761 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-679 *7))
+ (-5 *5
+ (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2660 (-635 *6)))
+ *7 *6))
+ (-4 *6 (-362)) (-4 *7 (-646 *6))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1246 *6) "failed"))
+ (|:| -2660 (-635 (-1246 *6)))))
+ (-5 *1 (-804 *6 *7)) (-5 *4 (-1246 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2699 *3)))
+ (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-548 *3)) (-4 *3 (-13 (-403) (-1185))) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-232)) (-4 *3 (-1039)) (-4 *4 (-841)) (-4 *5 (-265 *4))
+ (-4 *6 (-784)) (-5 *2 (-1 *1 (-762))) (-4 *1 (-252 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1039)) (-4 *3 (-841)) (-4 *5 (-265 *3)) (-4 *6 (-784))
+ (-5 *2 (-1 *1 (-762))) (-4 *1 (-252 *4 *3 *5 *6))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-762)) (-4 *1 (-265 *2)) (-4 *2 (-841)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1248)))))
(((*1 *1 *1 *2)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-779))
- (-4 *2 (-358))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-221))))
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-783))
+ (-4 *2 (-362))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-224))))
((*1 *1 *1 *1)
- (-3994 (-12 (-5 *1 (-289 *2)) (-4 *2 (-358)) (-4 *2 (-1195)))
- (-12 (-5 *1 (-289 *2)) (-4 *2 (-467)) (-4 *2 (-1195)))))
- ((*1 *1 *1 *1) (-4 *1 (-358)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-374))))
+ (-3998 (-12 (-5 *1 (-293 *2)) (-4 *2 (-362)) (-4 *2 (-1200)))
+ (-12 (-5 *1 (-293 *2)) (-4 *2 (-471)) (-4 *2 (-1200)))))
+ ((*1 *1 *1 *1) (-4 *1 (-362)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-378))))
((*1 *1 *2 *2)
- (-12 (-5 *2 (-1107 *3 (-600 *1))) (-4 *3 (-546)) (-4 *3 (-836))
- (-4 *1 (-425 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-467)))
+ (-12 (-5 *2 (-1112 *3 (-604 *1))) (-4 *3 (-550)) (-4 *3 (-841))
+ (-4 *1 (-429 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-471)))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1241 *3)) (-4 *3 (-344)) (-5 *1 (-522 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-530)))
+ (-12 (-5 *2 (-1246 *3)) (-4 *3 (-348)) (-5 *1 (-526 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-534)))
((*1 *1 *2 *3)
- (-12 (-4 *4 (-170)) (-5 *1 (-609 *2 *4 *3)) (-4 *2 (-38 *4))
- (-4 *3 (|SubsetCategory| (-713) *4))))
+ (-12 (-4 *4 (-171)) (-5 *1 (-613 *2 *4 *3)) (-4 *2 (-38 *4))
+ (-4 *3 (|SubsetCategory| (-717) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *4 (-170)) (-5 *1 (-609 *3 *4 *2)) (-4 *3 (-38 *4))
- (-4 *2 (|SubsetCategory| (-713) *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-622 *2)) (-4 *2 (-170)) (-4 *2 (-358))))
+ (-12 (-4 *4 (-171)) (-5 *1 (-613 *3 *4 *2)) (-4 *3 (-38 *4))
+ (-4 *2 (|SubsetCategory| (-717) *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-626 *2)) (-4 *2 (-171)) (-4 *2 (-362))))
((*1 *1 *2 *3)
- (-12 (-4 *4 (-170)) (-5 *1 (-648 *2 *4 *3)) (-4 *2 (-704 *4))
- (-4 *3 (|SubsetCategory| (-713) *4))))
+ (-12 (-4 *4 (-171)) (-5 *1 (-652 *2 *4 *3)) (-4 *2 (-708 *4))
+ (-4 *3 (|SubsetCategory| (-717) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *4 (-170)) (-5 *1 (-648 *3 *4 *2)) (-4 *3 (-704 *4))
- (-4 *2 (|SubsetCategory| (-713) *4))))
+ (-12 (-4 *4 (-171)) (-5 *1 (-652 *3 *4 *2)) (-4 *3 (-708 *4))
+ (-4 *2 (|SubsetCategory| (-717) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2))
- (-4 *4 (-368 *2)) (-4 *2 (-358))))
- ((*1 *1 *1 *1) (-5 *1 (-848)))
+ (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2))
+ (-4 *4 (-372 *2)) (-4 *2 (-362))))
+ ((*1 *1 *1 *1) (-5 *1 (-853)))
((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-851 *2 *3 *4 *5)) (-4 *2 (-358))
- (-4 *2 (-1034)) (-14 *3 (-631 (-1158))) (-14 *4 (-631 (-758)))
- (-14 *5 (-758))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1082))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-977 *2)) (-4 *2 (-546))))
+ (|partial| -12 (-5 *1 (-856 *2 *3 *4 *5)) (-4 *2 (-362))
+ (-4 *2 (-1039)) (-14 *3 (-635 (-1163))) (-14 *4 (-635 (-762)))
+ (-14 *5 (-762))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1087))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-982 *2)) (-4 *2 (-550))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1037 *3 *4 *2 *5 *6)) (-4 *2 (-1034))
- (-4 *5 (-234 *4 *2)) (-4 *6 (-234 *3 *2)) (-4 *2 (-358))))
+ (-12 (-4 *1 (-1042 *3 *4 *2 *5 *6)) (-4 *2 (-1039))
+ (-4 *5 (-237 *4 *2)) (-4 *6 (-237 *3 *2)) (-4 *2 (-362))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1248 *2)) (-4 *2 (-358))))
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1253 *2)) (-4 *2 (-362))))
((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-358)) (-4 *2 (-1034)) (-4 *3 (-836))
- (-4 *4 (-780)) (-14 *6 (-631 *3))
- (-5 *1 (-1253 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-934 *2 *4 *3))
- (-14 *7 (-631 (-758))) (-14 *8 (-758))))
+ (|partial| -12 (-4 *2 (-362)) (-4 *2 (-1039)) (-4 *3 (-841))
+ (-4 *4 (-784)) (-14 *6 (-635 *3))
+ (-5 *1 (-1258 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-939 *2 *4 *3))
+ (-14 *7 (-635 (-762))) (-14 *8 (-762))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-1264 *2 *3)) (-4 *2 (-358)) (-4 *2 (-1034))
- (-4 *3 (-832)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-631 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
- (-5 *1 (-575 *3)) (-4 *3 (-358)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1138 *2)) (-4 *2 (-302)) (-5 *1 (-172 *2)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-117 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-554))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-856 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-856 *2)) (-14 *2 (-554))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-554)) (-14 *3 *2) (-5 *1 (-857 *3 *4))
- (-4 *4 (-854 *3))))
- ((*1 *1 *1)
- (-12 (-14 *2 (-554)) (-5 *1 (-857 *2 *3)) (-4 *3 (-854 *2))))
+ (-12 (-5 *1 (-1269 *2 *3)) (-4 *2 (-362)) (-4 *2 (-1039))
+ (-4 *3 (-837)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1053 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784))
+ (-4 *2 (-841))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
+ (-4 *4 (-841)))))
+(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
+ (|partial| -12 (-5 *2 (-635 (-1159 *11))) (-5 *3 (-1159 *11))
+ (-5 *4 (-635 *10)) (-5 *5 (-635 *8)) (-5 *6 (-635 (-762)))
+ (-5 *7 (-1246 (-635 (-1159 *8)))) (-4 *10 (-841))
+ (-4 *8 (-306)) (-4 *11 (-939 *8 *9 *10)) (-4 *9 (-784))
+ (-5 *1 (-698 *9 *10 *8 *11)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1200))
+ (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-554)) (-4 *1 (-1203 *3 *4)) (-4 *3 (-1034))
- (-4 *4 (-1232 *3))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1203 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-1232 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-631 (-1158))) (-5 *3 (-52)) (-5 *1 (-877 *4))
- (-4 *4 (-1082)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-546)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3))
- (-5 *1 (-1185 *3 *4 *5 *2)) (-4 *2 (-673 *3 *4 *5)))))
+ (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4383)) (-4 *1 (-487 *3))
+ (-4 *3 (-1200)))))
+(((*1 *2) (-12 (-5 *2 (-1134 (-1145))) (-5 *1 (-390)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-378)) (-5 *1 (-97))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-378)) (-5 *1 (-97)))))
+(((*1 *2 *1 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-853) (-853) (-853))) (-5 *4 (-558)) (-5 *2 (-853))
+ (-5 *1 (-639 *5 *6 *7)) (-4 *5 (-1087)) (-4 *6 (-23)) (-14 *7 *6)))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-853)) (-5 *1 (-845 *3 *4 *5)) (-4 *3 (-1039))
+ (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-853))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-853))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-853))))
+ ((*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-853))))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-853)) (-5 *1 (-1159 *3)) (-4 *3 (-1039)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-362))
+ (-5 *2
+ (-2 (|:| A (-679 *5))
+ (|:| |eqs|
+ (-635
+ (-2 (|:| C (-679 *5)) (|:| |g| (-1246 *5)) (|:| -2477 *6)
+ (|:| |rh| *5))))))
+ (-5 *1 (-804 *5 *6)) (-5 *3 (-679 *5)) (-5 *4 (-1246 *5))
+ (-4 *6 (-646 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-362)) (-4 *6 (-646 *5))
+ (-5 *2 (-2 (|:| -3683 (-679 *6)) (|:| |vec| (-1246 *5))))
+ (-5 *1 (-804 *5 *6)) (-5 *3 (-679 *6)) (-5 *4 (-1246 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2699 *3)))
+ (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-558)) (-5 *2 (-112)) (-5 *1 (-547)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-114))))
+ ((*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1039)) (-4 *3 (-841))
+ (-4 *5 (-265 *3)) (-4 *6 (-784)) (-5 *2 (-762))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-841))
+ (-4 *5 (-265 *4)) (-4 *6 (-784)) (-5 *2 (-762))))
+ ((*1 *2 *1) (-12 (-4 *1 (-265 *3)) (-4 *3 (-841)) (-5 *2 (-762)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1248)))))
(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21)))
((*1 *1 *1 *1) (|partial| -5 *1 (-133)))
((*1 *1 *1 *1)
- (-12 (-5 *1 (-210 *2))
+ (-12 (-5 *1 (-213 *2))
(-4 *2
- (-13 (-836)
- (-10 -8 (-15 -2064 ((-1140) $ (-1158))) (-15 -2524 ((-1246) $))
- (-15 -2941 ((-1246) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-289 *2)) (-4 *2 (-21)) (-4 *2 (-1195))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-21)) (-4 *2 (-1195))))
+ (-13 (-841)
+ (-10 -8 (-15 -2195 ((-1145) $ (-1163))) (-15 -2646 ((-1251) $))
+ (-15 -2215 ((-1251) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1200))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1200))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
- ((*1 *1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
+ (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23))))
+ ((*1 *1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23))))
((*1 *1 *1)
- (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2))
- (-4 *4 (-368 *2))))
+ (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2))
+ (-4 *4 (-372 *2))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2))
- (-4 *4 (-368 *2))))
- ((*1 *1 *1) (-5 *1 (-848))) ((*1 *1 *1 *1) (-5 *1 (-848)))
+ (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2))
+ (-4 *4 (-372 *2))))
+ ((*1 *1 *1) (-5 *1 (-853))) ((*1 *1 *1 *1) (-5 *1 (-853)))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3))))
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-928 (-221))) (-5 *1 (-1191))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1195)) (-4 *2 (-21))))
- ((*1 *1 *1) (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1195)) (-4 *2 (-21)))))
-(((*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170))))
- ((*1 *2 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-170)))))
-(((*1 *2 *3) (-12 (-5 *3 (-937 (-221))) (-5 *2 (-221)) (-5 *1 (-300)))))
-(((*1 *2 *1) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-389))))
- ((*1 *2 *1) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-1175)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1181 *2)) (-4 *2 (-1082)))))
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-933 (-224))) (-5 *1 (-1196))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1200)) (-4 *2 (-21))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1200)) (-4 *2 (-21)))))
+(((*1 *2 *1) (-12 (-4 *1 (-964)) (-5 *2 (-1081 (-224))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
+ (-4 *4 (-841))))
+ ((*1 *1) (-4 *1 (-1138))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *3 (-841))
+ (-5 *2 (-2 (|:| -2023 *1) (|:| |gap| (-762)) (|:| -2071 *1)))
+ (-4 *1 (-1053 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841))
+ (-5 *2 (-2 (|:| -2023 *1) (|:| |gap| (-762)) (|:| -2071 *1)))
+ (-4 *1 (-1053 *3 *4 *5)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1163)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-692 *3 *5 *6 *7))
+ (-4 *3 (-606 (-534))) (-4 *5 (-1200)) (-4 *6 (-1200))
+ (-4 *7 (-1200))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1163)) (-5 *2 (-1 *6 *5)) (-5 *1 (-697 *3 *5 *6))
+ (-4 *3 (-606 (-534))) (-4 *5 (-1200)) (-4 *6 (-1200)))))
+(((*1 *2) (-12 (-5 *2 (-1134 (-1145))) (-5 *1 (-390)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-378)) (-5 *1 (-97))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-378)) (-5 *1 (-97)))))
+(((*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-1071 *3)) (-4 *3 (-131)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1000 *3)) (-4 *3 (-1200)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911))
+ (-4 *4 (-1039)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-550))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2699 *3)))
+ (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-639 *4)) (-4 *4 (-337 *5 *6 *7))
- (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554)))))
- (-4 *6 (-1217 *5)) (-4 *7 (-1217 (-402 *6)))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3782 (-631 *4))))
- (-5 *1 (-793 *5 *6 *7 *4)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-221)) (-5 *3 (-758)) (-5 *1 (-222))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-167 (-221))) (-5 *3 (-758)) (-5 *1 (-222))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2))
- (-4 *2 (-425 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1121))))
-(((*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-431))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-431)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-402 (-937 *3))) (-5 *1 (-447 *3 *4 *5 *6))
- (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906))
- (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))))
-(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-155)))
+ (-12 (-5 *3 (-643 (-406 *6))) (-5 *4 (-1 (-635 *5) *6))
+ (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))))
+ (-4 *6 (-1222 *5)) (-5 *2 (-635 (-406 *6))) (-5 *1 (-803 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-643 (-406 *7))) (-5 *4 (-1 (-635 *6) *7))
+ (-5 *5 (-1 (-417 *7) *7))
+ (-4 *6 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))))
+ (-4 *7 (-1222 *6)) (-5 *2 (-635 (-406 *7))) (-5 *1 (-803 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-644 *6 (-406 *6))) (-5 *4 (-1 (-635 *5) *6))
+ (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))))
+ (-4 *6 (-1222 *5)) (-5 *2 (-635 (-406 *6))) (-5 *1 (-803 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-644 *7 (-406 *7))) (-5 *4 (-1 (-635 *6) *7))
+ (-5 *5 (-1 (-417 *7) *7))
+ (-4 *6 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))))
+ (-4 *7 (-1222 *6)) (-5 *2 (-635 (-406 *7))) (-5 *1 (-803 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-643 (-406 *5))) (-4 *5 (-1222 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))))
+ (-5 *2 (-635 (-406 *5))) (-5 *1 (-803 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-643 (-406 *6))) (-5 *4 (-1 (-417 *6) *6))
+ (-4 *6 (-1222 *5)) (-4 *5 (-27))
+ (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))))
+ (-5 *2 (-635 (-406 *6))) (-5 *1 (-803 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-644 *5 (-406 *5))) (-4 *5 (-1222 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))))
+ (-5 *2 (-635 (-406 *5))) (-5 *1 (-803 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-644 *6 (-406 *6))) (-5 *4 (-1 (-417 *6) *6))
+ (-4 *6 (-1222 *5)) (-4 *5 (-27))
+ (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))))
+ (-5 *2 (-635 (-406 *6))) (-5 *1 (-803 *5 *6)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-547)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-378)) (-5 *3 (-635 (-262))) (-5 *1 (-260))))
+ ((*1 *1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-262)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-558)) (-5 *2 (-1251)) (-5 *1 (-1248))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248)))))
+(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-156)))
((*1 *1 *1 *1)
- (-12 (-5 *1 (-210 *2))
+ (-12 (-5 *1 (-213 *2))
(-4 *2
- (-13 (-836)
- (-10 -8 (-15 -2064 ((-1140) $ (-1158))) (-15 -2524 ((-1246) $))
- (-15 -2941 ((-1246) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-289 *2)) (-4 *2 (-25)) (-4 *2 (-1195))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-25)) (-4 *2 (-1195))))
+ (-13 (-841)
+ (-10 -8 (-15 -2195 ((-1145) $ (-1163))) (-15 -2646 ((-1251) $))
+ (-15 -2215 ((-1251) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-25)) (-4 *2 (-1200))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-25)) (-4 *2 (-1200))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-318 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-130))))
+ (-12 (-4 *1 (-322 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-130))))
((*1 *1 *2 *1)
- (-12 (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *2))
- (-4 *2 (-1217 *3))))
+ (-12 (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *2))
+ (-4 *2 (-1222 *3))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
+ (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-358)) (-4 *3 (-780)) (-4 *4 (-836))
- (-5 *1 (-498 *2 *3 *4 *5)) (-4 *5 (-934 *2 *3 *4))))
- ((*1 *1 *1 *1) (-5 *1 (-530)))
+ (-12 (-4 *2 (-362)) (-4 *3 (-784)) (-4 *4 (-841))
+ (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-939 *2 *3 *4))))
+ ((*1 *1 *1 *1) (-5 *1 (-534)))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2))
- (-4 *4 (-368 *2))))
- ((*1 *1 *1 *1) (-5 *1 (-848)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1082))))
+ (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2))
+ (-4 *4 (-372 *2))))
+ ((*1 *1 *1 *1) (-5 *1 (-853)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1087))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-928 (-221))) (-5 *1 (-1191))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1195)) (-4 *2 (-25)))))
-(((*1 *2 *3 *2)
- (-12 (-4 *1 (-774)) (-5 *2 (-1020))
- (-5 *3
- (-2 (|:| |fn| (-311 (-221)))
- (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221))
- (|:| |relerr| (-221))))))
- ((*1 *2 *3 *2)
- (-12 (-4 *1 (-774)) (-5 *2 (-1020))
- (-5 *3
- (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221)))
- (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221))
- (|:| |relerr| (-221)))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *1 (-415 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1180) (-425 *3)))
- (-14 *4 (-1158)) (-14 *5 *2)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))))
- (-4 *2 (-13 (-27) (-1180) (-425 *3) (-10 -8 (-15 -3075 ($ *4)))))
- (-4 *4 (-834))
- (-4 *5
- (-13 (-1219 *2 *4) (-358) (-1180)
- (-10 -8 (-15 -1553 ($ $)) (-15 -2279 ($ $)))))
- (-5 *1 (-417 *3 *2 *4 *5 *6 *7)) (-4 *6 (-968 *5)) (-14 *7 (-1158)))))
+ (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-933 (-224))) (-5 *1 (-1196))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1200)) (-4 *2 (-25)))))
+(((*1 *2 *1) (-12 (-4 *1 (-945)) (-5 *2 (-1081 (-224)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-964)) (-5 *2 (-1081 (-224))))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -2023 *3) (|:| |gap| (-762)) (|:| -2306 (-773 *3))
+ (|:| -2071 (-773 *3))))
+ (-5 *1 (-773 *3)) (-4 *3 (-1039))))
+ ((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *3 (-841))
+ (-5 *2
+ (-2 (|:| -2023 *1) (|:| |gap| (-762)) (|:| -2306 *1)
+ (|:| -2071 *1)))
+ (-4 *1 (-1053 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841))
+ (-5 *2
+ (-2 (|:| -2023 *1) (|:| |gap| (-762)) (|:| -2306 *1)
+ (|:| -2071 *1)))
+ (-4 *1 (-1053 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554)))))))
- (-5 *2 (-631 *4)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1217 *4))))
- ((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554)))))))
- (-5 *2 (-631 *3)) (-5 *1 (-1110 *4 *3)) (-4 *4 (-1217 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-1066 *3)) (-4 *3 (-131)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-631 (-554))) (-5 *2 (-889 (-554))) (-5 *1 (-902))))
- ((*1 *2) (-12 (-5 *2 (-889 (-554))) (-5 *1 (-902)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-911)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-275)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1140)) (-5 *3 (-554)) (-5 *1 (-237)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-631 (-2 (|:| -2794 *4) (|:| -1316 (-554)))))
- (-4 *4 (-1082)) (-5 *2 (-1 *4)) (-5 *1 (-1002 *4)))))
-(((*1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-746)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987))))))
-(((*1 *2 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1140)) (-5 *1 (-300)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-112)) (-5 *5 (-675 (-167 (-221))))
- (-5 *2 (-1020)) (-5 *1 (-742)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-358)) (-4 *7 (-1217 *5)) (-4 *4 (-711 *5 *7))
- (-5 *2 (-2 (|:| -2866 (-675 *6)) (|:| |vec| (-1241 *5))))
- (-5 *1 (-798 *5 *6 *7 *4 *3)) (-4 *6 (-642 *5)) (-4 *3 (-642 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-928 *3)) (-4 *3 (-13 (-358) (-1180) (-987)))
- (-5 *1 (-174 *3)))))
+ (-12 (-5 *3 (-1163)) (-5 *2 (-1 *6 *5)) (-5 *1 (-697 *4 *5 *6))
+ (-4 *4 (-606 (-534))) (-4 *5 (-1200)) (-4 *6 (-1200)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-853)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 (-762))
+ (-14 *4 (-762)) (-4 *5 (-171)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-362) (-1028 (-406 *2)))) (-5 *2 (-558))
+ (-5 *1 (-115 *4 *3)) (-4 *3 (-1222 *4)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-378)) (-5 *1 (-97)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-848)) (-5 *1 (-1138 *3)) (-4 *3 (-1082))
- (-4 *3 (-1195)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911))
+ (-4 *4 (-1039)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-635 *5) *6))
+ (-4 *5 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-4 *6 (-1222 *5))
+ (-5 *2 (-635 (-2 (|:| |poly| *6) (|:| -2477 *3))))
+ (-5 *1 (-800 *5 *6 *3 *7)) (-4 *3 (-646 *6))
+ (-4 *7 (-646 (-406 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-635 *5) *6))
+ (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))))
+ (-4 *6 (-1222 *5))
+ (-5 *2 (-635 (-2 (|:| |poly| *6) (|:| -2477 (-644 *6 (-406 *6))))))
+ (-5 *1 (-803 *5 *6)) (-5 *3 (-644 *6 (-406 *6))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-550))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-547)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-911)) (-5 *3 (-635 (-262))) (-5 *1 (-260))))
+ ((*1 *1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-262)))))
+(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1081 (-224))) (-5 *1 (-916))))
+ ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1081 (-224))) (-5 *1 (-917))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1081 (-224))) (-5 *1 (-917))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248)))))
+(((*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-97)))))
+(((*1 *2 *1) (-12 (-4 *1 (-945)) (-5 *2 (-1081 (-224)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-964)) (-5 *2 (-1081 (-224))))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-773 *2)) (-4 *2 (-1039))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
+ (-4 *4 (-841)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-675 (-402 (-554)))) (-5 *2 (-631 *4)) (-5 *1 (-766 *4))
- (-4 *4 (-13 (-358) (-834))))))
+ (-12 (-5 *4 (-1163)) (-5 *2 (-1 (-224) (-224))) (-5 *1 (-694 *3))
+ (-4 *3 (-606 (-534)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1163)) (-5 *2 (-1 (-224) (-224) (-224)))
+ (-5 *1 (-694 *3)) (-4 *3 (-606 (-534))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-853)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 (-762))
+ (-14 *4 (-762)) (-4 *5 (-171)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-446))
+ (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1087)) (-4 *2 (-841))
+ (-5 *1 (-113 *2)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911))
+ (-4 *4 (-1039)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 (-635 *7) *7 (-1159 *7))) (-5 *5 (-1 (-417 *7) *7))
+ (-4 *7 (-1222 *6)) (-4 *6 (-13 (-362) (-146) (-1028 (-406 (-558)))))
+ (-5 *2 (-635 (-2 (|:| |frac| (-406 *7)) (|:| -2477 *3))))
+ (-5 *1 (-800 *6 *7 *3 *8)) (-4 *3 (-646 *7))
+ (-4 *8 (-646 (-406 *7)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1222 *5))
+ (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))))
(-5 *2
- (-631
- (-2 (|:| |eigval| (-3 (-402 (-937 *4)) (-1147 (-1158) (-937 *4))))
- (|:| |eigmult| (-758))
- (|:| |eigvec| (-631 (-675 (-402 (-937 *4))))))))
- (-5 *1 (-287 *4)) (-5 *3 (-675 (-402 (-937 *4)))))))
+ (-635 (-2 (|:| |frac| (-406 *6)) (|:| -2477 (-644 *6 (-406 *6))))))
+ (-5 *1 (-803 *5 *6)) (-5 *3 (-644 *6 (-406 *6))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-550))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1222 *5))
+ (-4 *5 (-13 (-27) (-429 *4)))
+ (-4 *4 (-13 (-841) (-550) (-1028 (-558))))
+ (-4 *7 (-1222 (-406 *6))) (-5 *1 (-546 *4 *5 *6 *7 *2))
+ (-4 *2 (-341 *5 *6 *7)))))
+(((*1 *1) (-5 *1 (-143)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-262))) (-5 *2 (-1120 (-224))) (-5 *1 (-260))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1120 (-224))) (-5 *1 (-262)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1248)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-112)))))
(((*1 *2 *1 *1)
(-12
(-5 *2
- (-2 (|:| |polnum| (-769 *3)) (|:| |polden| *3) (|:| -2776 (-758))))
- (-5 *1 (-769 *3)) (-4 *3 (-1034))))
+ (-2 (|:| |polnum| (-773 *3)) (|:| |polden| *3) (|:| -2739 (-762))))
+ (-5 *1 (-773 *3)) (-4 *3 (-1039))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836))
- (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2776 (-758))))
- (-4 *1 (-1048 *3 *4 *5)))))
-(((*1 *2)
- (-12 (-5 *2 (-943 (-1102))) (-5 *1 (-338 *3 *4)) (-14 *3 (-906))
- (-14 *4 (-906))))
- ((*1 *2)
- (-12 (-5 *2 (-943 (-1102))) (-5 *1 (-339 *3 *4)) (-4 *3 (-344))
- (-14 *4 (-1154 *3))))
- ((*1 *2)
- (-12 (-5 *2 (-943 (-1102))) (-5 *1 (-340 *3 *4)) (-4 *3 (-344))
- (-14 *4 (-906)))))
-(((*1 *2) (-12 (-5 *2 (-829 (-554))) (-5 *1 (-528))))
- ((*1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-1082)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-221)) (-5 *4 (-554))
- (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-64 G)))) (-5 *2 (-1020))
- (-5 *1 (-735)))))
-(((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-631 (-1140))) (-5 *2 (-1140)) (-5 *1 (-1242))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-1242))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-1242))))
- ((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-631 (-1140))) (-5 *2 (-1140)) (-5 *1 (-1243))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-1243))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-1243)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 *5)) (-5 *4 (-631 (-1 *6 (-631 *6))))
- (-4 *5 (-38 (-402 (-554)))) (-4 *6 (-1232 *5)) (-5 *2 (-631 *6))
- (-5 *1 (-1234 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-358)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-836)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-848))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-906)) (-5 *4 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1242)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
- (-12 (-5 *3 (-675 (-221))) (-5 *4 (-554)) (-5 *5 (-221))
- (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1020))
- (-5 *1 (-736)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-631 (-928 *3))))))
-(((*1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082))
- (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-112)))))
-(((*1 *1 *1) (-5 *1 (-1046))))
-(((*1 *2) (-12 (-5 *2 (-829 (-554))) (-5 *1 (-528))))
- ((*1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-1082)))))
-(((*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1043))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158)))
- (-14 *3 (-631 (-1158))) (-4 *4 (-382))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2))
- (-4 *2 (-425 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)) (-4 *2 (-1043))))
- ((*1 *1 *1) (-4 *1 (-834)))
- ((*1 *2 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-170)) (-4 *2 (-1043))))
- ((*1 *1 *1) (-4 *1 (-1043))) ((*1 *1 *1) (-4 *1 (-1121))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -1709 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-358)) (-4 *7 (-1217 *6))
- (-5 *2 (-2 (|:| |answer| (-575 (-402 *7))) (|:| |a0| *6)))
- (-5 *1 (-564 *6 *7)) (-5 *3 (-402 *7)))))
+ (-12 (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841))
+ (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2739 (-762))))
+ (-4 *1 (-1053 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1163)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-692 *4 *5 *6 *7))
+ (-4 *4 (-606 (-534))) (-4 *5 (-1200)) (-4 *6 (-1200))
+ (-4 *7 (-1200)))))
+(((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1145)))))
+(((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 (-762)) (-5 *1 (-212 *4 *2)) (-14 *4 (-911))
+ (-4 *2 (-1087)))))
+(((*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-97)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-248 *2 *3 *4 *5)) (-4 *2 (-1034)) (-4 *3 (-836))
- (-4 *4 (-261 *3)) (-4 *5 (-780)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-836)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-848)))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1082)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-38 (-402 (-554))))
- (-5 *2 (-2 (|:| -4177 (-1138 *4)) (|:| -4188 (-1138 *4))))
- (-5 *1 (-1144 *4)) (-5 *3 (-1138 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-112))
- (-5 *1 (-498 *3 *4 *5 *6)) (-4 *6 (-934 *3 *4 *5))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1051 *4 *3)) (-4 *4 (-13 (-834) (-358)))
- (-4 *3 (-1217 *4)) (-5 *2 (-112)))))
+ (-12 (-5 *1 (-1151 *2 *3)) (-14 *2 (-911)) (-4 *3 (-1039)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836))
- (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-631 *4))
- (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-631 (-631 *3))) (-4 *3 (-1082)) (-5 *1 (-1167 *3)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1195)))))
+ (-12 (-4 *5 (-362)) (-4 *7 (-1222 *5)) (-4 *4 (-715 *5 *7))
+ (-5 *2 (-2 (|:| -3683 (-679 *6)) (|:| |vec| (-1246 *5))))
+ (-5 *1 (-802 *5 *6 *7 *4 *3)) (-4 *6 (-646 *5)) (-4 *3 (-646 *4)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-762)) (-4 *5 (-550))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-959 *5 *3)) (-4 *3 (-1222 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1222 *6))
+ (-4 *6 (-13 (-27) (-429 *5)))
+ (-4 *5 (-13 (-841) (-550) (-1028 (-558)))) (-4 *8 (-1222 (-406 *7)))
+ (-5 *2 (-579 *3)) (-5 *1 (-546 *5 *6 *7 *8 *3))
+ (-4 *3 (-341 *6 *7 *8)))))
(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221))
- (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221))
- (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))
- (-5 *3 (-631 (-258))) (-5 *1 (-256))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221))
- (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221))
- (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))
- (-5 *1 (-258))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243))))
- ((*1 *2 *1 *3 *3 *4 *4 *4)
- (-12 (-5 *3 (-554)) (-5 *4 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243))))
+ (-12 (-5 *2 (-911)) (-5 *3 (-635 (-262))) (-5 *1 (-260))))
+ ((*1 *1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-262)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-841)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-853))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-372 *2))
+ (-4 *5 (-372 *2)) (-4 *2 (-1200))))
((*1 *2 *1 *3)
- (-12
- (-5 *3
- (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221))
- (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221))
- (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))
- (-5 *2 (-1246)) (-5 *1 (-1243))))
- ((*1 *2 *1)
- (-12
+ (-12 (-5 *3 (-762)) (-4 *2 (-1087)) (-5 *1 (-212 *4 *2))
+ (-14 *4 (-911))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-1200))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-558)) (-4 *1 (-1042 *4 *5 *2 *6 *7))
+ (-4 *6 (-237 *5 *2)) (-4 *7 (-237 *4 *2)) (-4 *2 (-1039)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
+ (-4 *4 (-841)) (-4 *2 (-550)))))
+(((*1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-691))))
+ ((*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-691)))))
+(((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112)))))
+(((*1 *1) (-5 *1 (-329))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-378)) (-5 *3 (-1145)) (-5 *1 (-97))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-378)) (-5 *3 (-1145)) (-5 *1 (-97)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-762)) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911))
+ (-4 *4 (-1039)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-643 (-406 *2))) (-4 *2 (-1222 *4)) (-5 *1 (-801 *4 *2))
+ (-4 *4 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-644 *2 (-406 *2))) (-4 *2 (-1222 *4))
+ (-5 *1 (-801 *4 *2))
+ (-4 *4 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-762)) (-4 *5 (-550))
(-5 *2
- (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221))
- (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221))
- (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))
- (-5 *1 (-1243))))
- ((*1 *2 *1 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243)))))
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-959 *5 *3)) (-4 *3 (-1222 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-675 (-402 (-937 (-554)))))
- (-5 *2 (-631 (-675 (-311 (-554))))) (-5 *1 (-1016))
- (-5 *3 (-311 (-554))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-1242))))
- ((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-1243)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1076 *3)) (-4 *3 (-934 *7 *6 *4)) (-4 *6 (-780))
- (-4 *4 (-836)) (-4 *7 (-546))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-554))))
- (-5 *1 (-583 *6 *4 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-780)) (-4 *4 (-836)) (-4 *6 (-546))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-554))))
- (-5 *1 (-583 *5 *4 *6 *3)) (-4 *3 (-934 *6 *5 *4))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-848))) ((*1 *1 *1 *1) (-5 *1 (-848)))
- ((*1 *1 *1) (-5 *1 (-848)))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1158))
- (-4 *4 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *1 (-1150 *4 *2)) (-4 *2 (-13 (-425 *4) (-158) (-27) (-1180)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1074 *2)) (-4 *2 (-13 (-425 *4) (-158) (-27) (-1180)))
- (-4 *4 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *1 (-1150 *4 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1158)) (-4 *5 (-13 (-546) (-836) (-1023 (-554))))
- (-5 *2 (-402 (-937 *5))) (-5 *1 (-1151 *5)) (-5 *3 (-937 *5))))
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1222 *6))
+ (-4 *6 (-13 (-27) (-429 *5)))
+ (-4 *5 (-13 (-841) (-550) (-1028 (-558)))) (-4 *8 (-1222 (-406 *7)))
+ (-5 *2 (-579 *3)) (-5 *1 (-546 *5 *6 *7 *8 *3))
+ (-4 *3 (-341 *6 *7 *8)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-911)) (-5 *3 (-635 (-262))) (-5 *1 (-260))))
+ ((*1 *1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-262)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-112)))))
+(((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-635 (-1145))) (-5 *2 (-1145)) (-5 *1 (-1247))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1247))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1247))))
+ ((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-635 (-1145))) (-5 *2 (-1145)) (-5 *1 (-1248))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1248))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1248)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
+ (-4 *4 (-841)) (-4 *2 (-550)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-841)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-853)))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1087)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-306)) (-4 *3 (-171)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *2 (-2 (|:| -2306 *3) (|:| -2071 *3)))
+ (-5 *1 (-678 *3 *4 *5 *6)) (-4 *6 (-677 *3 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-2 (|:| -2306 *3) (|:| -2071 *3))) (-5 *1 (-690 *3))
+ (-4 *3 (-306)))))
+(((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-5 *1 (-91 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1200)) (-5 *2 (-635 *1)) (-4 *1 (-1000 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-635 (-1151 *3 *4))) (-5 *1 (-1151 *3 *4))
+ (-14 *3 (-911)) (-4 *4 (-1039)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-643 (-406 *6))) (-5 *4 (-406 *6)) (-4 *6 (-1222 *5))
+ (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2660 (-635 *4))))
+ (-5 *1 (-801 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1158)) (-4 *5 (-13 (-546) (-836) (-1023 (-554))))
- (-5 *2 (-3 (-402 (-937 *5)) (-311 *5))) (-5 *1 (-1151 *5))
- (-5 *3 (-402 (-937 *5)))))
+ (-12 (-5 *3 (-643 (-406 *6))) (-4 *6 (-1222 *5))
+ (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))))
+ (-5 *2 (-2 (|:| -2660 (-635 (-406 *6))) (|:| -3683 (-679 *5))))
+ (-5 *1 (-801 *5 *6)) (-5 *4 (-635 (-406 *6)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1074 (-937 *5))) (-5 *3 (-937 *5))
- (-4 *5 (-13 (-546) (-836) (-1023 (-554)))) (-5 *2 (-402 *3))
- (-5 *1 (-1151 *5))))
+ (-12 (-5 *3 (-644 *6 (-406 *6))) (-5 *4 (-406 *6)) (-4 *6 (-1222 *5))
+ (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2660 (-635 *4))))
+ (-5 *1 (-801 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1074 (-402 (-937 *5)))) (-5 *3 (-402 (-937 *5)))
- (-4 *5 (-13 (-546) (-836) (-1023 (-554)))) (-5 *2 (-3 *3 (-311 *5)))
- (-5 *1 (-1151 *5)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374))
+ (-12 (-5 *3 (-644 *6 (-406 *6))) (-4 *6 (-1222 *5))
+ (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))))
+ (-5 *2 (-2 (|:| -2660 (-635 (-406 *6))) (|:| -3683 (-679 *5))))
+ (-5 *1 (-801 *5 *6)) (-5 *4 (-635 (-406 *6))))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-762)) (-4 *4 (-550)) (-5 *1 (-959 *4 *2))
+ (-4 *2 (-1222 *4)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-604 *3)) (-5 *5 (-1 (-1159 *3) (-1159 *3)))
+ (-4 *3 (-13 (-27) (-429 *6))) (-4 *6 (-13 (-841) (-550)))
+ (-5 *2 (-579 *3)) (-5 *1 (-545 *6 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-864)) (-5 *3 (-635 (-262))) (-5 *1 (-260)))))
+(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1200)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1248)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-841)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-853))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
+ (-4 *4 (-841)) (-4 *2 (-550))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
+ (-4 *4 (-841)) (-4 *2 (-550)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-679 *3)) (-4 *3 (-306)) (-5 *1 (-690 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-362)) (-4 *5 (-550))
(-5 *2
- (-2 (|:| -2794 *4) (|:| -1841 *4) (|:| |totalpts| (-554))
- (|:| |success| (-112))))
- (-5 *1 (-776)) (-5 *5 (-554)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-836)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-848))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1154 *6)) (-5 *3 (-554)) (-4 *6 (-302)) (-4 *4 (-780))
- (-4 *5 (-836)) (-5 *1 (-729 *4 *5 *6 *7)) (-4 *7 (-934 *6 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-5 *1 (-218 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1195)) (-4 *1 (-249 *3))))
- ((*1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1195)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-554)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-413 *2)) (-4 *2 (-546)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-1175)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-631 (-500))) (-5 *2 (-500)) (-5 *1 (-477)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-546))
- (-5 *2 (-2 (|:| -1490 *4) (|:| -2325 *3) (|:| -2423 *3)))
- (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836))
- (-5 *2 (-2 (|:| -2325 *1) (|:| -2423 *1))) (-4 *1 (-1048 *3 *4 *5))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-546)) (-4 *3 (-1034))
- (-5 *2 (-2 (|:| -1490 *3) (|:| -2325 *1) (|:| -2423 *1)))
- (-4 *1 (-1217 *3)))))
+ (-2 (|:| |minor| (-635 (-911))) (|:| -2477 *3)
+ (|:| |minors| (-635 (-635 (-911)))) (|:| |ops| (-635 *3))))
+ (-5 *1 (-90 *5 *3)) (-5 *4 (-911)) (-4 *3 (-646 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3))
- (-4 *5 (-368 *3)) (-5 *2 (-631 (-631 *3)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034))
- (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-631 (-631 *5)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-631 (-631 *3))) (-5 *1 (-1167 *3)) (-4 *3 (-1082)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-961 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-780))
- (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-762)) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911))
+ (-4 *4 (-1039)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-13 (-362) (-146) (-1028 (-406 (-558)))))
+ (-4 *3 (-1222 *4)) (-5 *1 (-800 *4 *3 *2 *5)) (-4 *2 (-646 *3))
+ (-4 *5 (-646 (-406 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-406 *5))
+ (-4 *4 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-4 *5 (-1222 *4))
+ (-5 *1 (-800 *4 *5 *2 *6)) (-4 *2 (-646 *5)) (-4 *6 (-646 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-762)) (-4 *5 (-550))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-959 *5 *3)) (-4 *3 (-1222 *5)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-864)) (-5 *3 (-635 (-262))) (-5 *1 (-260)))))
+(((*1 *2) (-12 (-5 *2 (-635 (-1163))) (-5 *1 (-105)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1248)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (-558)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-1247))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-1248)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
+ (-4 *4 (-841)) (-4 *2 (-550))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
+ (-4 *4 (-841)) (-4 *2 (-550)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-841)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-853)))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-893 *3)) (-4 *3 (-1087)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1087)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-679 *3)) (-4 *3 (-306)) (-5 *1 (-690 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *4))))
- (-5 *1 (-1123 *3 *4)) (-4 *3 (-13 (-1082) (-34)))
- (-4 *4 (-13 (-1082) (-34))))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-836)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-848)))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-888 *3)) (-4 *3 (-1082)) (-5 *2 (-112))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1082)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))))
+ (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1087))
+ (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1241 *5)) (-4 *5 (-627 *4)) (-4 *4 (-546))
- (-5 *2 (-1241 *4)) (-5 *1 (-626 *4 *5)))))
-(((*1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-386)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-169)) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906))
- (-4 *4 (-1034)))))
+ (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-841)) (-4 *3 (-1087)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1084 *4)) (-4 *4 (-1082)) (-5 *2 (-1 *4))
- (-5 *1 (-1002 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-374))) (-5 *1 (-1025)) (-5 *3 (-374))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1076 (-554))) (-5 *2 (-1 (-554))) (-5 *1 (-1032)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1195)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2))
- (-4 *2 (-13 (-425 *3) (-1180))))))
-(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1195))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-937 (-374))) (-5 *1 (-334 *3 *4 *5))
- (-4 *5 (-1023 (-374))) (-14 *3 (-631 (-1158)))
- (-14 *4 (-631 (-1158))) (-4 *5 (-382))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-402 (-937 (-374)))) (-5 *1 (-334 *3 *4 *5))
- (-4 *5 (-1023 (-374))) (-14 *3 (-631 (-1158)))
- (-14 *4 (-631 (-1158))) (-4 *5 (-382))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-311 (-374))) (-5 *1 (-334 *3 *4 *5))
- (-4 *5 (-1023 (-374))) (-14 *3 (-631 (-1158)))
- (-14 *4 (-631 (-1158))) (-4 *5 (-382))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-937 (-554))) (-5 *1 (-334 *3 *4 *5))
- (-4 *5 (-1023 (-554))) (-14 *3 (-631 (-1158)))
- (-14 *4 (-631 (-1158))) (-4 *5 (-382))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-402 (-937 (-554)))) (-5 *1 (-334 *3 *4 *5))
- (-4 *5 (-1023 (-554))) (-14 *3 (-631 (-1158)))
- (-14 *4 (-631 (-1158))) (-4 *5 (-382))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-311 (-554))) (-5 *1 (-334 *3 *4 *5))
- (-4 *5 (-1023 (-554))) (-14 *3 (-631 (-1158)))
- (-14 *4 (-631 (-1158))) (-4 *5 (-382))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1158)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-631 *2))
- (-14 *4 (-631 *2)) (-4 *5 (-382))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-311 *5)) (-4 *5 (-382)) (-5 *1 (-334 *3 *4 *5))
- (-14 *3 (-631 (-1158))) (-14 *4 (-631 (-1158)))))
- ((*1 *1 *2) (-12 (-5 *2 (-675 (-402 (-937 (-554))))) (-4 *1 (-379))))
- ((*1 *1 *2) (-12 (-5 *2 (-675 (-402 (-937 (-374))))) (-4 *1 (-379))))
- ((*1 *1 *2) (-12 (-5 *2 (-675 (-937 (-554)))) (-4 *1 (-379))))
- ((*1 *1 *2) (-12 (-5 *2 (-675 (-937 (-374)))) (-4 *1 (-379))))
- ((*1 *1 *2) (-12 (-5 *2 (-675 (-311 (-554)))) (-4 *1 (-379))))
- ((*1 *1 *2) (-12 (-5 *2 (-675 (-311 (-374)))) (-4 *1 (-379))))
- ((*1 *1 *2) (-12 (-5 *2 (-402 (-937 (-554)))) (-4 *1 (-391))))
- ((*1 *1 *2) (-12 (-5 *2 (-402 (-937 (-374)))) (-4 *1 (-391))))
- ((*1 *1 *2) (-12 (-5 *2 (-937 (-554))) (-4 *1 (-391))))
- ((*1 *1 *2) (-12 (-5 *2 (-937 (-374))) (-4 *1 (-391))))
- ((*1 *1 *2) (-12 (-5 *2 (-311 (-554))) (-4 *1 (-391))))
- ((*1 *1 *2) (-12 (-5 *2 (-311 (-374))) (-4 *1 (-391))))
- ((*1 *1 *2) (-12 (-5 *2 (-1241 (-402 (-937 (-554))))) (-4 *1 (-435))))
- ((*1 *1 *2) (-12 (-5 *2 (-1241 (-402 (-937 (-374))))) (-4 *1 (-435))))
- ((*1 *1 *2) (-12 (-5 *2 (-1241 (-937 (-554)))) (-4 *1 (-435))))
- ((*1 *1 *2) (-12 (-5 *2 (-1241 (-937 (-374)))) (-4 *1 (-435))))
- ((*1 *1 *2) (-12 (-5 *2 (-1241 (-311 (-554)))) (-4 *1 (-435))))
- ((*1 *1 *2) (-12 (-5 *2 (-1241 (-311 (-374)))) (-4 *1 (-435))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-3
- (|:| |nia|
- (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221)))
- (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221))
- (|:| |relerr| (-221))))
- (|:| |mdnia|
- (-2 (|:| |fn| (-311 (-221)))
- (|:| -3827 (-631 (-1076 (-829 (-221)))))
- (|:| |abserr| (-221)) (|:| |relerr| (-221))))))
- (-5 *1 (-756))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-2 (|:| |xinit| (-221)) (|:| |xend| (-221))
- (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221)))
- (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221)))
- (|:| |abserr| (-221)) (|:| |relerr| (-221))))
- (-5 *1 (-795))))
- ((*1 *2 *1)
- (-12
+ (-12 (-4 *4 (-550)) (-5 *2 (-1246 (-679 *4))) (-5 *1 (-90 *4 *5))
+ (-5 *3 (-679 *4)) (-4 *5 (-646 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1151 *2 *3)) (-14 *2 (-911)) (-4 *3 (-1039)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-635 *5) *6))
+ (-4 *5 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-4 *6 (-1222 *5))
+ (-5 *2 (-635 (-2 (|:| -3707 *5) (|:| -2477 *3))))
+ (-5 *1 (-800 *5 *6 *3 *7)) (-4 *3 (-646 *6))
+ (-4 *7 (-646 (-406 *6))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-762)) (-4 *5 (-550))
(-5 *2
- (-3
- (|:| |noa|
- (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221)))
- (|:| |lb| (-631 (-829 (-221))))
- (|:| |cf| (-631 (-311 (-221))))
- (|:| |ub| (-631 (-829 (-221))))))
- (|:| |lsa|
- (-2 (|:| |lfn| (-631 (-311 (-221))))
- (|:| -3834 (-631 (-221)))))))
- (-5 *1 (-827))))
- ((*1 *2 *1)
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-959 *5 *3)) (-4 *3 (-1222 *5)))))
+(((*1 *1 *1 *1) (-4 *1 (-543))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *3 (-635 (-262))) (-5 *1 (-260))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1248)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-550))
+ (-5 *2 (-2 (|:| -3683 (-679 *5)) (|:| |vec| (-1246 (-635 (-911))))))
+ (-5 *1 (-90 *5 *3)) (-5 *4 (-911)) (-4 *3 (-646 *5)))))
+(((*1 *2 *1 *1)
(-12
(-5 *2
- (-2 (|:| |pde| (-631 (-311 (-221))))
- (|:| |constraints|
- (-631
- (-2 (|:| |start| (-221)) (|:| |finish| (-221))
- (|:| |grid| (-758)) (|:| |boundaryType| (-554))
- (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221))))))
- (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140))
- (|:| |tol| (-221))))
- (-5 *1 (-883))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-1034))
- (-4 *4 (-780)) (-4 *5 (-836)) (-4 *1 (-961 *3 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-1195))))
- ((*1 *1 *2)
- (-3994
- (-12 (-5 *2 (-937 *3))
- (-12 (-4081 (-4 *3 (-38 (-402 (-554)))))
- (-4081 (-4 *3 (-38 (-554)))) (-4 *5 (-602 (-1158))))
- (-4 *3 (-1034)) (-4 *1 (-1048 *3 *4 *5)) (-4 *4 (-780))
- (-4 *5 (-836)))
- (-12 (-5 *2 (-937 *3))
- (-12 (-4081 (-4 *3 (-539))) (-4081 (-4 *3 (-38 (-402 (-554)))))
- (-4 *3 (-38 (-554))) (-4 *5 (-602 (-1158))))
- (-4 *3 (-1034)) (-4 *1 (-1048 *3 *4 *5)) (-4 *4 (-780))
- (-4 *5 (-836)))
- (-12 (-5 *2 (-937 *3))
- (-12 (-4081 (-4 *3 (-977 (-554)))) (-4 *3 (-38 (-402 (-554))))
- (-4 *5 (-602 (-1158))))
- (-4 *3 (-1034)) (-4 *1 (-1048 *3 *4 *5)) (-4 *4 (-780))
- (-4 *5 (-836)))))
- ((*1 *1 *2)
- (-3994
- (-12 (-5 *2 (-937 (-554))) (-4 *1 (-1048 *3 *4 *5))
- (-12 (-4081 (-4 *3 (-38 (-402 (-554))))) (-4 *3 (-38 (-554)))
- (-4 *5 (-602 (-1158))))
- (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)))
- (-12 (-5 *2 (-937 (-554))) (-4 *1 (-1048 *3 *4 *5))
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *5 (-602 (-1158))))
- (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-937 (-402 (-554)))) (-4 *1 (-1048 *3 *4 *5))
- (-4 *3 (-38 (-402 (-554)))) (-4 *5 (-602 (-1158))) (-4 *3 (-1034))
- (-4 *4 (-780)) (-4 *5 (-836)))))
-(((*1 *1 *1) (-4 *1 (-617)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-618 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987) (-1180))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-631 (-1163))) (-5 *1 (-1163))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1158)) (-5 *3 (-631 (-1163))) (-5 *1 (-1163)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-408 *3 *4 *5 *6)) (-4 *6 (-1023 *4)) (-4 *3 (-302))
- (-4 *4 (-977 *3)) (-4 *5 (-1217 *4)) (-4 *6 (-404 *4 *5))
- (-14 *7 (-1241 *6)) (-5 *1 (-409 *3 *4 *5 *6 *7))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1241 *6)) (-4 *6 (-404 *4 *5)) (-4 *4 (-977 *3))
- (-4 *5 (-1217 *4)) (-4 *3 (-302)) (-5 *1 (-409 *3 *4 *5 *6 *7))
- (-14 *7 *2))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1158))
- (-4 *4 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145)))
- (-5 *1 (-791 *4 *2)) (-4 *2 (-13 (-29 *4) (-1180) (-944)))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-848))) ((*1 *1 *1 *1) (-5 *1 (-848)))
- ((*1 *1 *1) (-5 *1 (-848)))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1138 *3)) (-5 *1 (-1142 *3)) (-4 *3 (-1034)))))
+ (-2 (|:| -2699 (-773 *3)) (|:| |coef1| (-773 *3))
+ (|:| |coef2| (-773 *3))))
+ (-5 *1 (-773 *3)) (-4 *3 (-550)) (-4 *3 (-1039))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-550)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841))
+ (-5 *2 (-2 (|:| -2699 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-1053 *3 *4 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-306)) (-5 *1 (-690 *3)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1158)) (-5 *5 (-1076 (-221))) (-5 *2 (-912))
- (-5 *1 (-910 *3)) (-4 *3 (-602 (-530)))))
+ (-12 (-5 *3 (-635 (-406 (-942 (-558))))) (-5 *4 (-635 (-1163)))
+ (-5 *2 (-635 (-635 *5))) (-5 *1 (-379 *5))
+ (-4 *5 (-13 (-839) (-362)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1158)) (-5 *2 (-912)) (-5 *1 (-910 *3))
- (-4 *3 (-602 (-530)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *1 (-912))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1076 (-221)))
- (-5 *1 (-912)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-156 *3 *2))
- (-4 *2 (-425 *3))))
+ (-12 (-5 *3 (-406 (-942 (-558)))) (-5 *2 (-635 *4)) (-5 *1 (-379 *4))
+ (-4 *4 (-13 (-839) (-362))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-635 (-1 *4 (-635 *4)))) (-4 *4 (-1087))
+ (-5 *1 (-113 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-836) (-546))) (-5 *1 (-156 *4 *2))
- (-4 *2 (-425 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1158))))
- ((*1 *1 *1) (-4 *1 (-158))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848)))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-546)) (-4 *3 (-170))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -3782 (-631 *1))))
- (-4 *1 (-362 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-447 *3 *4 *5 *6))
- (|:| -3782 (-631 (-447 *3 *4 *5 *6)))))
- (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-906))
- (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))))
+ (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1087))
+ (-5 *1 (-113 *4))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-114)) (-5 *2 (-635 (-1 *4 (-635 *4))))
+ (-5 *1 (-113 *4)) (-4 *4 (-1087)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1151 *2 *3)) (-14 *2 (-911)) (-4 *3 (-1039)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1241 *5)) (-4 *5 (-627 *4)) (-4 *4 (-546))
- (-5 *2 (-112)) (-5 *1 (-626 *4 *5)))))
+ (-12 (-4 *4 (-13 (-362) (-146) (-1028 (-406 (-558)))))
+ (-4 *5 (-1222 *4))
+ (-5 *2 (-635 (-2 (|:| |deg| (-762)) (|:| -2477 *5))))
+ (-5 *1 (-800 *4 *5 *3 *6)) (-4 *3 (-646 *5))
+ (-4 *6 (-646 (-406 *5))))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-762)) (-4 *4 (-550)) (-5 *1 (-959 *4 *2))
+ (-4 *2 (-1222 *4)))))
+(((*1 *1 *1 *1) (-4 *1 (-543))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1145)) (-5 *3 (-635 (-262))) (-5 *1 (-260))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-262)))))
+(((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1195))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429))))
- ((*1 *1 *1 *1) (-5 *1 (-848)))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1200))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433))))
+ ((*1 *1 *1 *1) (-5 *1 (-853)))
((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1011 *3)) (-4 *3 (-1195)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1158)) (-5 *6 (-631 (-600 *3)))
- (-5 *5 (-600 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *7)))
- (-4 *7 (-13 (-446) (-836) (-145) (-1023 (-554)) (-627 (-554))))
- (-5 *2 (-2 (|:| -1709 *3) (|:| |coeff| *3)))
- (-5 *1 (-547 *7 *3)))))
-(((*1 *1 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1180))))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-874 *5 *3)) (-5 *4 (-877 *5)) (-4 *5 (-1082))
- (-4 *3 (-164 *6)) (-4 (-937 *6) (-871 *5))
- (-4 *6 (-13 (-871 *5) (-170))) (-5 *1 (-176 *5 *6 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-874 *4 *1)) (-5 *3 (-877 *4)) (-4 *1 (-871 *4))
- (-4 *4 (-1082))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-874 *5 *6)) (-5 *4 (-877 *5)) (-4 *5 (-1082))
- (-4 *6 (-13 (-1082) (-1023 *3))) (-4 *3 (-871 *5))
- (-5 *1 (-916 *5 *3 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-874 *5 *3)) (-4 *5 (-1082))
- (-4 *3 (-13 (-425 *6) (-602 *4) (-871 *5) (-1023 (-600 $))))
- (-5 *4 (-877 *5)) (-4 *6 (-13 (-546) (-836) (-871 *5)))
- (-5 *1 (-917 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-874 (-554) *3)) (-5 *4 (-877 (-554))) (-4 *3 (-539))
- (-5 *1 (-918 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-874 *5 *6)) (-5 *3 (-600 *6)) (-4 *5 (-1082))
- (-4 *6 (-13 (-836) (-1023 (-600 $)) (-602 *4) (-871 *5)))
- (-5 *4 (-877 *5)) (-5 *1 (-919 *5 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-870 *5 *6 *3)) (-5 *4 (-877 *5)) (-4 *5 (-1082))
- (-4 *6 (-871 *5)) (-4 *3 (-652 *6)) (-5 *1 (-920 *5 *6 *3))))
- ((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *5 (-1 (-874 *6 *3) *8 (-877 *6) (-874 *6 *3)))
- (-4 *8 (-836)) (-5 *2 (-874 *6 *3)) (-5 *4 (-877 *6))
- (-4 *6 (-1082)) (-4 *3 (-13 (-934 *9 *7 *8) (-602 *4)))
- (-4 *7 (-780)) (-4 *9 (-13 (-1034) (-836) (-871 *6)))
- (-5 *1 (-921 *6 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-874 *5 *3)) (-4 *5 (-1082))
- (-4 *3 (-13 (-934 *8 *6 *7) (-602 *4))) (-5 *4 (-877 *5))
- (-4 *7 (-871 *5)) (-4 *6 (-780)) (-4 *7 (-836))
- (-4 *8 (-13 (-1034) (-836) (-871 *5)))
- (-5 *1 (-921 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-874 *5 *3)) (-4 *5 (-1082)) (-4 *3 (-977 *6))
- (-4 *6 (-13 (-546) (-871 *5) (-602 *4))) (-5 *4 (-877 *5))
- (-5 *1 (-924 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-874 *5 (-1158))) (-5 *3 (-1158)) (-5 *4 (-877 *5))
- (-4 *5 (-1082)) (-5 *1 (-925 *5))))
- ((*1 *2 *3 *4 *5 *2 *6)
- (-12 (-5 *4 (-631 (-877 *7))) (-5 *5 (-1 *9 (-631 *9)))
- (-5 *6 (-1 (-874 *7 *9) *9 (-877 *7) (-874 *7 *9))) (-4 *7 (-1082))
- (-4 *9 (-13 (-1034) (-602 (-877 *7)) (-1023 *8)))
- (-5 *2 (-874 *7 *9)) (-5 *3 (-631 *9)) (-4 *8 (-13 (-1034) (-836)))
- (-5 *1 (-926 *7 *8 *9)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1016 *3)) (-4 *3 (-1200)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2699 (-773 *3)) (|:| |coef1| (-773 *3))))
+ (-5 *1 (-773 *3)) (-4 *3 (-550)) (-4 *3 (-1039))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-550)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841))
+ (-5 *2 (-2 (|:| -2699 *1) (|:| |coef1| *1)))
+ (-4 *1 (-1053 *3 *4 *5)))))
+(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-689))))
+ ((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-689)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-758)) (-5 *2 (-631 (-1158))) (-5 *1 (-206))
- (-5 *3 (-1158))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-311 (-221))) (-5 *4 (-758)) (-5 *2 (-631 (-1158)))
- (-5 *1 (-262))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-836)) (-4 *4 (-170))
- (-5 *2 (-631 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-631 *3)) (-5 *1 (-615 *3 *4 *5)) (-4 *3 (-836))
- (-4 *4 (-13 (-170) (-704 (-402 (-554))))) (-14 *5 (-906))))
- ((*1 *2 *1) (-12 (-5 *2 (-631 *3)) (-5 *1 (-658 *3)) (-4 *3 (-836))))
- ((*1 *2 *1) (-12 (-5 *2 (-631 *3)) (-5 *1 (-663 *3)) (-4 *3 (-836))))
- ((*1 *2 *1) (-12 (-5 *2 (-631 *3)) (-5 *1 (-806 *3)) (-4 *3 (-836))))
- ((*1 *2 *1) (-12 (-5 *2 (-631 *3)) (-5 *1 (-878 *3)) (-4 *3 (-836))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034))
- (-5 *2 (-631 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-554))) (-5 *1 (-1032)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-149 *2))
- (-4 *2 (-1195)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1241 *3)) (-4 *3 (-358)) (-4 *1 (-324 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1241 *3)) (-4 *3 (-1217 *4)) (-4 *4 (-1199))
- (-4 *1 (-337 *4 *3 *5)) (-4 *5 (-1217 (-402 *3)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1241 *4)) (-5 *3 (-1241 *1)) (-4 *4 (-170))
- (-4 *1 (-362 *4))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1241 *4)) (-5 *3 (-1241 *1)) (-4 *4 (-170))
- (-4 *1 (-365 *4 *5)) (-4 *5 (-1217 *4))))
+ (-12 (-5 *3 (-406 (-942 (-168 (-558))))) (-5 *2 (-635 (-168 *4)))
+ (-5 *1 (-377 *4)) (-4 *4 (-13 (-362) (-839)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-635 (-406 (-942 (-168 (-558))))))
+ (-5 *4 (-635 (-1163))) (-5 *2 (-635 (-635 (-168 *5))))
+ (-5 *1 (-377 *5)) (-4 *5 (-13 (-362) (-839))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-240))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-1145))) (-5 *2 (-1251)) (-5 *1 (-240)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-762)) (-5 *1 (-59 *3)) (-4 *3 (-1200))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1200)) (-5 *1 (-59 *3)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-1200)) (-4 *2 (-841))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-372 *3)) (-4 *3 (-1200))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-958 *2)) (-4 *2 (-841))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1121 *2)) (-4 *2 (-1039))))
((*1 *1 *2)
- (-12 (-5 *2 (-1241 *3)) (-4 *3 (-170)) (-4 *1 (-404 *3 *4))
- (-4 *4 (-1217 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1241 *3)) (-4 *3 (-170)) (-4 *1 (-412 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-358)) (-5 *1 (-280 *3 *2)) (-4 *2 (-1232 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1122 *3 *2)) (-4 *3 (-13 (-1082) (-34)))
- (-4 *2 (-13 (-1082) (-34))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-374))))
- ((*1 *1 *1 *1) (-4 *1 (-539)))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-705 *2)) (-4 *2 (-358))))
- ((*1 *1 *2) (-12 (-5 *1 (-705 *2)) (-4 *2 (-358))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-758)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-758)) (-4 *1 (-1258 *3 *4)) (-4 *3 (-836))
- (-4 *4 (-1034)) (-4 *4 (-170))))
+ (-12 (-5 *2 (-635 *1)) (-4 *1 (-1121 *3)) (-4 *3 (-1039))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-635 (-1151 *3 *4))) (-5 *1 (-1151 *3 *4))
+ (-14 *3 (-911)) (-4 *4 (-1039))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-1258 *2 *3)) (-4 *2 (-836)) (-4 *3 (-1034))
- (-4 *3 (-170)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-631 (-1154 *4))) (-5 *3 (-1154 *4))
- (-4 *4 (-894)) (-5 *1 (-649 *4)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-758)) (-5 *6 (-112)) (-4 *7 (-446)) (-4 *8 (-780))
- (-4 *9 (-836)) (-4 *3 (-1048 *7 *8 *9))
- (-5 *2
- (-2 (|:| |done| (-631 *4))
- (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4))))))
- (-5 *1 (-1052 *7 *8 *9 *3 *4)) (-4 *4 (-1054 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-758)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836))
- (-4 *3 (-1048 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-631 *4))
- (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4))))))
- (-5 *1 (-1052 *6 *7 *8 *3 *4)) (-4 *4 (-1054 *6 *7 *8 *3))))
+ (-12 (-5 *1 (-1151 *2 *3)) (-14 *2 (-911)) (-4 *3 (-1039)))))
+(((*1 *2 *3)
+ (-12 (-4 *2 (-1222 *4)) (-5 *1 (-800 *4 *2 *3 *5))
+ (-4 *4 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-4 *3 (-646 *2))
+ (-4 *5 (-646 (-406 *2))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3320 *4)))
+ (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-543))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *3 (-635 (-262))) (-5 *1 (-260)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-378))))
+ ((*1 *1 *1 *1) (-4 *1 (-543)))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-709 *2)) (-4 *2 (-362))))
+ ((*1 *1 *2) (-12 (-5 *1 (-709 *2)) (-4 *2 (-362))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-762)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-558)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1200))
+ (-4 *3 (-372 *4)) (-4 *5 (-372 *4)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2699 (-773 *3)) (|:| |coef2| (-773 *3))))
+ (-5 *1 (-773 *3)) (-4 *3 (-550)) (-4 *3 (-1039))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-550)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841))
+ (-5 *2 (-2 (|:| -2699 *1) (|:| |coef2| *1)))
+ (-4 *1 (-1053 *3 *4 *5)))))
+(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-689))))
+ ((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-689)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-406 (-942 (-168 (-558))))))
+ (-5 *2 (-635 (-635 (-293 (-942 (-168 *4)))))) (-5 *1 (-377 *4))
+ (-4 *4 (-13 (-362) (-839)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-293 (-406 (-942 (-168 (-558)))))))
+ (-5 *2 (-635 (-635 (-293 (-942 (-168 *4)))))) (-5 *1 (-377 *4))
+ (-4 *4 (-13 (-362) (-839)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-406 (-942 (-168 (-558)))))
+ (-5 *2 (-635 (-293 (-942 (-168 *4))))) (-5 *1 (-377 *4))
+ (-4 *4 (-13 (-362) (-839)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-293 (-406 (-942 (-168 (-558))))))
+ (-5 *2 (-635 (-293 (-942 (-168 *4))))) (-5 *1 (-377 *4))
+ (-4 *4 (-13 (-362) (-839))))))
+(((*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1200)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-933 *5)) (-4 *5 (-1039)) (-5 *2 (-762))
+ (-5 *1 (-1151 *4 *5)) (-14 *4 (-911))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-635 (-762))) (-5 *3 (-762)) (-5 *1 (-1151 *4 *5))
+ (-14 *4 (-911)) (-4 *5 (-1039))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-635 (-762))) (-5 *3 (-933 *5)) (-4 *5 (-1039))
+ (-5 *1 (-1151 *4 *5)) (-14 *4 (-911)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1222 *4)) (-5 *1 (-798 *4 *2 *3 *5))
+ (-4 *4 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-4 *3 (-646 *2))
+ (-4 *5 (-646 (-406 *2)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836))
- (-4 *3 (-1048 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-631 *4))
- (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4))))))
- (-5 *1 (-1052 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-758)) (-5 *6 (-112)) (-4 *7 (-446)) (-4 *8 (-780))
- (-4 *9 (-836)) (-4 *3 (-1048 *7 *8 *9))
- (-5 *2
- (-2 (|:| |done| (-631 *4))
- (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4))))))
- (-5 *1 (-1127 *7 *8 *9 *3 *4)) (-4 *4 (-1091 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-758)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836))
- (-4 *3 (-1048 *6 *7 *8))
+ (-12 (-4 *2 (-1222 *4)) (-5 *1 (-798 *4 *2 *5 *3))
+ (-4 *4 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-4 *5 (-646 *2))
+ (-4 *3 (-646 (-406 *2))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3320 *4)))
+ (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-543))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-917))
(-5 *2
- (-2 (|:| |done| (-631 *4))
- (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4))))))
- (-5 *1 (-1127 *6 *7 *8 *3 *4)) (-4 *4 (-1091 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836))
- (-4 *3 (-1048 *5 *6 *7))
+ (-2 (|:| |brans| (-635 (-635 (-933 (-224)))))
+ (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))))
+ (-5 *1 (-152))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-917)) (-5 *4 (-406 (-558)))
(-5 *2
- (-2 (|:| |done| (-631 *4))
- (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4))))))
- (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1082))
- (-4 *4 (-13 (-1034) (-871 *3) (-836) (-602 (-877 *3))))
- (-5 *2 (-631 (-1058 *3 *4 *5))) (-5 *1 (-1059 *3 *4 *5))
- (-4 *5 (-13 (-425 *4) (-871 *3) (-602 (-877 *3)))))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1020)))))
-(((*1 *1 *2 *3)
+ (-2 (|:| |brans| (-635 (-635 (-933 (-224)))))
+ (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))))
+ (-5 *1 (-152))))
+ ((*1 *2 *3)
(-12
- (-5 *3
- (-631
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
- (|:| |xpnt| (-554)))))
- (-4 *2 (-546)) (-5 *1 (-413 *2))))
+ (-5 *2
+ (-2 (|:| |brans| (-635 (-635 (-933 (-224)))))
+ (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))))
+ (-5 *1 (-152)) (-5 *3 (-635 (-933 (-224))))))
((*1 *2 *3)
(-12
- (-5 *3
- (-2 (|:| |contp| (-554))
- (|:| -2316 (-631 (-2 (|:| |irr| *4) (|:| -4218 (-554)))))))
- (-4 *4 (-1217 (-554))) (-5 *2 (-413 *4)) (-5 *1 (-436 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-809)))))
-(((*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-97)))))
-(((*1 *2 *2) (-12 (-5 *2 (-758)) (-5 *1 (-439 *3)) (-4 *3 (-1034))))
- ((*1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-439 *3)) (-4 *3 (-1034)))))
-(((*1 *1) (-5 *1 (-605))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-631 *3)) (-4 *3 (-1217 (-554))) (-5 *1 (-480 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1158)) (-5 *4 (-937 (-554))) (-5 *2 (-325))
- (-5 *1 (-327)))))
-(((*1 *2 *3) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-440)) (-5 *3 (-554)))))
-(((*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1195)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
- (-12 (-5 *3 (-554)) (-5 *5 (-112)) (-5 *6 (-675 (-221)))
- (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-742)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-848)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-576 *2)) (-4 *2 (-539)))))
-(((*1 *1 *1 *1) (-4 *1 (-141)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-156 *3 *2))
- (-4 *2 (-425 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-539))))
- ((*1 *1 *1 *1) (-5 *1 (-848)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-554))) (-5 *1 (-1032))
- (-5 *3 (-554)))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-675 (-221))) (-5 *4 (-554)) (-5 *5 (-112))
- (-5 *2 (-1020)) (-5 *1 (-732)))))
+ (-5 *2
+ (-2 (|:| |brans| (-635 (-635 (-933 (-224)))))
+ (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))))
+ (-5 *1 (-152)) (-5 *3 (-635 (-635 (-933 (-224)))))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 (-1081 (-378)))) (-5 *1 (-262))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-558)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1200))
+ (-4 *5 (-372 *4)) (-4 *3 (-372 *4)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-550)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841))
+ (-5 *2 (-635 *1)) (-4 *1 (-1053 *3 *4 *5)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-224) (-224) (-224)))
+ (-5 *4 (-1 (-224) (-224) (-224) (-224)))
+ (-5 *2 (-1 (-933 (-224)) (-224) (-224))) (-5 *1 (-687)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-558)) (-5 *1 (-378)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-933 *4)) (-4 *4 (-1039)) (-5 *1 (-1151 *3 *4))
+ (-14 *3 (-911)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-362) (-146) (-1028 (-406 (-558)))))
+ (-4 *5 (-1222 *4)) (-5 *2 (-635 (-2 (|:| -2673 *5) (|:| -2176 *5))))
+ (-5 *1 (-798 *4 *5 *3 *6)) (-4 *3 (-646 *5))
+ (-4 *6 (-646 (-406 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-362) (-146) (-1028 (-406 (-558)))))
+ (-4 *4 (-1222 *5)) (-5 *2 (-635 (-2 (|:| -2673 *4) (|:| -2176 *4))))
+ (-5 *1 (-798 *5 *4 *3 *6)) (-4 *3 (-646 *4))
+ (-4 *6 (-646 (-406 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-362) (-146) (-1028 (-406 (-558)))))
+ (-4 *5 (-1222 *4)) (-5 *2 (-635 (-2 (|:| -2673 *5) (|:| -2176 *5))))
+ (-5 *1 (-798 *4 *5 *6 *3)) (-4 *6 (-646 *5))
+ (-4 *3 (-646 (-406 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-362) (-146) (-1028 (-406 (-558)))))
+ (-4 *4 (-1222 *5)) (-5 *2 (-635 (-2 (|:| -2673 *4) (|:| -2176 *4))))
+ (-5 *1 (-798 *5 *4 *6 *3)) (-4 *6 (-646 *4))
+ (-4 *3 (-646 (-406 *4))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-550))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3320 *4)))
+ (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-543))))
+(((*1 *1) (-5 *1 (-290))))
+(((*1 *1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-262))))
+ ((*1 *1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-262)))))
+(((*1 *1) (-5 *1 (-55))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-762)) (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039))
+ (-4 *4 (-784)) (-4 *5 (-841)) (-4 *3 (-550)))))
+(((*1 *2 *3 *3 *3 *4 *5 *6)
+ (-12 (-5 *3 (-315 (-558))) (-5 *4 (-1 (-224) (-224)))
+ (-5 *5 (-1081 (-224))) (-5 *6 (-635 (-262))) (-5 *2 (-1120 (-224)))
+ (-5 *1 (-687)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-762)) (-5 *2 (-406 (-558))) (-5 *1 (-224))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-762)) (-5 *2 (-406 (-558))) (-5 *1 (-224))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-762)) (-5 *2 (-406 (-558))) (-5 *1 (-378))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-762)) (-5 *2 (-406 (-558))) (-5 *1 (-378)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-933 *5)) (-5 *3 (-762)) (-4 *5 (-1039))
+ (-5 *1 (-1151 *4 *5)) (-14 *4 (-911)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1241 *4)) (-4 *4 (-627 *5)) (-4 *5 (-358))
- (-4 *5 (-546)) (-5 *2 (-1241 *5)) (-5 *1 (-626 *5 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1241 *4)) (-4 *4 (-627 *5))
- (-4081 (-4 *5 (-358))) (-4 *5 (-546)) (-5 *2 (-1241 (-402 *5)))
- (-5 *1 (-626 *5 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-758)) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906))
- (-4 *4 (-1034)))))
+ (|partial| -12 (-5 *4 (-406 *2)) (-4 *2 (-1222 *5))
+ (-5 *1 (-798 *5 *2 *3 *6))
+ (-4 *5 (-13 (-362) (-146) (-1028 (-406 (-558)))))
+ (-4 *3 (-646 *2)) (-4 *6 (-646 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-635 (-406 *2))) (-4 *2 (-1222 *5))
+ (-5 *1 (-798 *5 *2 *3 *6))
+ (-4 *5 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-4 *3 (-646 *2))
+ (-4 *6 (-646 (-406 *2))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1200)) (-4 *2 (-841))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-281 *3)) (-4 *3 (-1200))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-958 *2)) (-4 *2 (-841)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-543))))
+(((*1 *1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-262))))
+ ((*1 *1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-262)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-631 (-1154 *5))) (-5 *3 (-1154 *5))
- (-4 *5 (-164 *4)) (-4 *4 (-539)) (-5 *1 (-147 *4 *5))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-631 *3)) (-4 *3 (-1217 *5))
- (-4 *5 (-1217 *4)) (-4 *4 (-344)) (-5 *1 (-353 *4 *5 *3))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-631 (-1154 (-554)))) (-5 *3 (-1154 (-554)))
- (-5 *1 (-562))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-631 (-1154 *1))) (-5 *3 (-1154 *1))
- (-4 *1 (-894)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-631 (-554))) (-5 *2 (-554)) (-5 *1 (-480 *4))
- (-4 *4 (-1217 *2)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-539))
- (-5 *2 (-402 (-554)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-402 (-554))) (-5 *1 (-413 *3)) (-4 *3 (-539))
- (-4 *3 (-546))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-539)) (-5 *2 (-402 (-554)))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-784 *3)) (-4 *3 (-170)) (-4 *3 (-539))
- (-5 *2 (-402 (-554)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-402 (-554))) (-5 *1 (-820 *3)) (-4 *3 (-539))
- (-4 *3 (-1082))))
+ (-12 (-5 *3 (-635 (-1163))) (-4 *4 (-1087))
+ (-4 *5 (-13 (-1039) (-876 *4) (-841) (-606 (-882 *4))))
+ (-5 *1 (-54 *4 *5 *2))
+ (-4 *2 (-13 (-429 *5) (-876 *4) (-606 (-882 *4)))))))
+(((*1 *1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-762)) (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039))
+ (-4 *4 (-784)) (-4 *5 (-841)) (-4 *3 (-550)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-224) (-224) (-224)))
+ (-5 *4 (-3 (-1 (-224) (-224) (-224) (-224)) "undefined"))
+ (-5 *5 (-1081 (-224))) (-5 *6 (-635 (-262))) (-5 *2 (-1120 (-224)))
+ (-5 *1 (-687)))))
+(((*1 *1 *1) (-5 *1 (-224))) ((*1 *1 *1) (-5 *1 (-378)))
+ ((*1 *1) (-5 *1 (-378))))
+(((*1 *1 *1 *1) (-4 *1 (-957))))
+(((*1 *1 *1 *1) (-4 *1 (-543))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-224) (-224) (-224) (-224))) (-5 *1 (-262))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224) (-224))) (-5 *1 (-262))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-262)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-911)) (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367))))
+ ((*1 *2 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-362))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-402 (-554))) (-5 *1 (-829 *3)) (-4 *3 (-539))
- (-4 *3 (-1082))))
+ (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1222 *2)) (-4 *2 (-171))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1246 *4)) (-5 *3 (-911)) (-4 *4 (-348))
+ (-5 *1 (-526 *4))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-982 *3)) (-4 *3 (-170)) (-4 *3 (-539))
- (-5 *2 (-402 (-554)))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *2 (-402 (-554))) (-5 *1 (-993 *3))
- (-4 *3 (-1023 *2)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))))
-(((*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-685)) (-5 *1 (-300)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1082)) (-4 *5 (-1082))
- (-5 *2 (-1 *5)) (-5 *1 (-669 *4 *5)))))
+ (-12 (-4 *1 (-1110 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2))
+ (-4 *5 (-237 *3 *2)) (-4 *2 (-1039)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1195)) (-5 *1 (-370 *4 *2))
- (-4 *2 (-13 (-368 *4) (-10 -7 (-6 -4374)))))))
+ (-12 (-5 *3 (-635 (-1063 *4 *5 *2))) (-4 *4 (-1087))
+ (-4 *5 (-13 (-1039) (-876 *4) (-841) (-606 (-882 *4))))
+ (-4 *2 (-13 (-429 *5) (-876 *4) (-606 (-882 *4))))
+ (-5 *1 (-54 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-635 (-1063 *5 *6 *2))) (-5 *4 (-911)) (-4 *5 (-1087))
+ (-4 *6 (-13 (-1039) (-876 *5) (-841) (-606 (-882 *5))))
+ (-4 *2 (-13 (-429 *6) (-876 *5) (-606 (-882 *5))))
+ (-5 *1 (-54 *5 *6 *2)))))
+(((*1 *1 *1 *1 *1 *1)
+ (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
+ (-4 *4 (-841)) (-4 *2 (-550)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-224) (-224) (-224)))
+ (-5 *4 (-3 (-1 (-224) (-224) (-224) (-224)) "undefined"))
+ (-5 *5 (-1081 (-224))) (-5 *6 (-635 (-262))) (-5 *2 (-1120 (-224)))
+ (-5 *1 (-687))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-933 (-224)) (-224) (-224))) (-5 *4 (-1081 (-224)))
+ (-5 *5 (-635 (-262))) (-5 *2 (-1120 (-224))) (-5 *1 (-687))))
+ ((*1 *2 *2 *3 *4 *4 *5)
+ (-12 (-5 *2 (-1120 (-224))) (-5 *3 (-1 (-933 (-224)) (-224) (-224)))
+ (-5 *4 (-1081 (-224))) (-5 *5 (-635 (-262))) (-5 *1 (-687)))))
+(((*1 *1) (-5 *1 (-224))) ((*1 *1) (-5 *1 (-378))))
(((*1 *2 *2)
- (-12 (-5 *2 (-631 (-475 *3 *4))) (-14 *3 (-631 (-1158)))
- (-4 *4 (-446)) (-5 *1 (-619 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-890 *3)) (-4 *3 (-1082)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546))
- (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-962 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-631 *7)) (-5 *3 (-112)) (-4 *7 (-1048 *4 *5 *6))
- (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836))
- (-5 *1 (-962 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1154 *5)) (-4 *5 (-446)) (-5 *2 (-631 *6))
- (-5 *1 (-532 *5 *6 *4)) (-4 *6 (-358)) (-4 *4 (-13 (-358) (-834)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-937 *5)) (-4 *5 (-446)) (-5 *2 (-631 *6))
- (-5 *1 (-532 *5 *6 *4)) (-4 *6 (-358)) (-4 *4 (-13 (-358) (-834))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1082)) (-5 *2 (-1140)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-906)) (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363))))
- ((*1 *2 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-358))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-365 *2 *3)) (-4 *3 (-1217 *2)) (-4 *2 (-170))))
+ (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1185))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1246 *5)) (-4 *5 (-783)) (-5 *2 (-112))
+ (-5 *1 (-836 *4 *5)) (-14 *4 (-762)))))
+(((*1 *1 *1 *1) (-4 *1 (-957))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *4 (-1 (-3 (-558) "failed") *5)) (-4 *5 (-1039))
+ (-5 *2 (-558)) (-5 *1 (-541 *5 *3)) (-4 *3 (-1222 *5))))
+ ((*1 *2 *3 *4 *2 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-558) "failed") *4)) (-4 *4 (-1039))
+ (-5 *2 (-558)) (-5 *1 (-541 *4 *3)) (-4 *3 (-1222 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-558) "failed") *4)) (-4 *4 (-1039))
+ (-5 *2 (-558)) (-5 *1 (-541 *4 *3)) (-4 *3 (-1222 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 (-1081 (-406 (-558))))) (-5 *1 (-262))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 (-1081 (-378)))) (-5 *1 (-262)))))
+(((*1 *2 *1) (-12 (-5 *2 (-853)) (-5 *1 (-52)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
+ (-4 *4 (-841)) (-4 *2 (-450)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-762)) (-4 *4 (-348)) (-5 *1 (-215 *4 *2))
+ (-4 *2 (-1222 *4))))
+ ((*1 *2 *2 *3 *2 *3)
+ (-12 (-5 *3 (-558)) (-5 *1 (-686 *2)) (-4 *2 (-1222 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1251)) (-5 *1 (-378))))
+ ((*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-378)))))
+(((*1 *1 *2 *3 *3 *4 *4)
+ (-12 (-5 *2 (-942 (-558))) (-5 *3 (-1163))
+ (-5 *4 (-1081 (-406 (-558)))) (-5 *1 (-30)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1185))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1246 *5)) (-4 *5 (-783)) (-5 *2 (-112))
+ (-5 *1 (-836 *4 *5)) (-14 *4 (-762)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-450)) (-4 *3 (-841)) (-4 *3 (-1028 (-558)))
+ (-4 *3 (-550)) (-5 *1 (-41 *3 *2)) (-4 *2 (-429 *3))
+ (-4 *2
+ (-13 (-362) (-301)
+ (-10 -8 (-15 -1874 ((-1112 *3 (-604 $)) $))
+ (-15 -1885 ((-1112 *3 (-604 $)) $))
+ (-15 -3220 ($ (-1112 *3 (-604 $))))))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-956 *3)) (-4 *3 (-957)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-306)) (-5 *1 (-453 *3 *2)) (-4 *2 (-1222 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1241 *4)) (-5 *3 (-906)) (-4 *4 (-344))
- (-5 *1 (-522 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1105 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2))
- (-4 *5 (-234 *3 *2)) (-4 *2 (-1034)))))
-(((*1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-1165)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-325)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4373)) (-4 *1 (-592 *4 *3)) (-4 *4 (-1082))
- (-4 *3 (-1195)) (-4 *3 (-1082)) (-5 *2 (-112)))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1140)) (-5 *3 (-554)) (-5 *1 (-237))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-631 (-1140))) (-5 *3 (-554)) (-5 *4 (-1140))
- (-5 *1 (-237))))
- ((*1 *1 *1) (-5 *1 (-848)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-848))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1219 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1034)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-631 (-1158))) (-5 *1 (-530)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-877 *3)) (-4 *3 (-1082)))))
+ (-12 (-4 *3 (-306)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1222 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-306)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-762)))
+ (-5 *1 (-537 *3 *2 *4 *5)) (-4 *2 (-1222 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-1122))) (-5 *1 (-153))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 (-1122))) (-5 *1 (-1054)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-262))) (-5 *4 (-1163)) (-5 *2 (-112))
+ (-5 *1 (-262)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-911)) (-5 *4 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1247)))))
+(((*1 *2 *1) (-12 (-5 *2 (-853)) (-5 *1 (-52)))))
(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-170)) (-4 *2 (-546))))
- ((*1 *1 *1) (|partial| -4 *1 (-709))))
-(((*1 *2)
- (-12 (-5 *2 (-1241 (-1083 *3 *4))) (-5 *1 (-1083 *3 *4))
- (-14 *3 (-906)) (-14 *4 (-906)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1034))
- (-4 *2 (-1201 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554)))))))
- (-5 *2 (-631 *4)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1217 *4))))
- ((*1 *2 *3 *3 *3)
- (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554)))))))
- (-5 *2 (-631 *3)) (-5 *1 (-1110 *4 *3)) (-4 *4 (-1217 *3)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374))
- (|:| |expense| (-374)) (|:| |accuracy| (-374))
- (|:| |intermediateResults| (-374))))
- (-5 *2 (-1020)) (-5 *1 (-300)))))
-(((*1 *2 *3) (-12 (-5 *3 (-311 (-221))) (-5 *2 (-112)) (-5 *1 (-262)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1256 *3 *4)) (-4 *3 (-836)) (-4 *4 (-170))
- (-5 *1 (-650 *3 *4))))
+ (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
+ (-4 *4 (-841)) (-4 *2 (-450)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-2 (|:| |deg| (-762)) (|:| -3819 *5))))
+ (-4 *5 (-1222 *4)) (-4 *4 (-348)) (-5 *2 (-635 *5))
+ (-5 *1 (-215 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-2 (|:| -2522 *5) (|:| -4323 (-558)))))
+ (-5 *4 (-558)) (-4 *5 (-1222 *4)) (-5 *2 (-635 *5))
+ (-5 *1 (-686 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1251)) (-5 *1 (-378))))
+ ((*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-378)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1159 *1)) (-5 *4 (-1163)) (-4 *1 (-27))
+ (-5 *2 (-635 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1159 *1)) (-4 *1 (-27)) (-5 *2 (-635 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-942 *1)) (-4 *1 (-27)) (-5 *2 (-635 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-841) (-550))) (-5 *2 (-635 *1))
+ (-4 *1 (-29 *4))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-650 *3 *4)) (-5 *1 (-1261 *3 *4))
- (-4 *3 (-836)) (-4 *4 (-170)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-359 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082))
- (-5 *2 (-1140)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-631 *1))
- (-4 *1 (-1048 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-631 (-906))) (-5 *2 (-889 (-554))) (-5 *1 (-902)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-631 (-2 (|:| |gen| *3) (|:| -1333 *4))))
- (-5 *1 (-635 *3 *4 *5)) (-4 *3 (-1082)) (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-906)) (-5 *4 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1242)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-302)) (-5 *2 (-413 *3))
- (-5 *1 (-729 *4 *5 *6 *3)) (-4 *3 (-934 *6 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1195)) (-4 *1 (-107 *3)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1158)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-688 *3 *5 *6 *7))
- (-4 *3 (-602 (-530))) (-4 *5 (-1195)) (-4 *6 (-1195))
- (-4 *7 (-1195))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1158)) (-5 *2 (-1 *6 *5)) (-5 *1 (-693 *3 *5 *6))
- (-4 *3 (-602 (-530))) (-4 *5 (-1195)) (-4 *6 (-1195)))))
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *2 (-635 *1)) (-4 *1 (-29 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2))
- (-4 *2 (-13 (-425 *3) (-1180))))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-611 *4 *5))
- (-5 *3
- (-1 (-2 (|:| |ans| *4) (|:| -3324 *4) (|:| |sol?| (-112)))
- (-554) *4))
- (-4 *4 (-358)) (-4 *5 (-1217 *4)) (-5 *1 (-564 *4 *5)))))
-(((*1 *2 *3 *4 *4 *3)
- (|partial| -12 (-5 *4 (-600 *3))
- (-4 *3 (-13 (-425 *5) (-27) (-1180)))
- (-4 *5 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554))))
- (-5 *2 (-2 (|:| -1709 *3) (|:| |coeff| *3)))
- (-5 *1 (-556 *5 *3 *6)) (-4 *6 (-1082)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1154 *4)) (-4 *4 (-344))
+ (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1185))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824 *3)) (-4 *3 (-1087))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-1087)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-450)) (-4 *3 (-841)) (-4 *3 (-1028 (-558)))
+ (-4 *3 (-550)) (-5 *1 (-41 *3 *2)) (-4 *2 (-429 *3))
(-4 *2
- (-13 (-397)
- (-10 -7 (-15 -3075 (*2 *4)) (-15 -3830 ((-906) *2))
- (-15 -3782 ((-1241 *2) (-906))) (-15 -1811 (*2 *2)))))
- (-5 *1 (-351 *2 *4)))))
-(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1180)))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-705 *2)) (-4 *2 (-358))))
- ((*1 *1 *2) (-12 (-5 *1 (-705 *2)) (-4 *2 (-358))))
- ((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-906)) (-5 *4 (-374)) (-5 *2 (-1246)) (-5 *1 (-1242)))))
-(((*1 *2 *1) (-12 (-5 *2 (-631 (-1117))) (-5 *1 (-152))))
- ((*1 *2 *1) (-12 (-5 *2 (-631 (-1117))) (-5 *1 (-1049)))))
-(((*1 *2) (-12 (-5 *2 (-859)) (-5 *1 (-1244))))
- ((*1 *2 *2) (-12 (-5 *2 (-859)) (-5 *1 (-1244)))))
-(((*1 *1 *1) (-4 *1 (-141)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-156 *3 *2))
- (-4 *2 (-425 *3))))
- ((*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-539)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-402 (-937 *3))) (-5 *1 (-447 *3 *4 *5 *6))
- (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906))
- (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-546)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836))
- (-5 *2 (-631 *1)) (-4 *1 (-1048 *3 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3))
- (-4 *5 (-1217 (-402 *4)))
- (-5 *2 (-2 (|:| |num| (-1241 *4)) (|:| |den| *4))))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1241 *4)) (-4 *4 (-627 (-554)))
- (-5 *2 (-1241 (-554))) (-5 *1 (-1268 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-402 (-937 *5))) (-5 *4 (-1158))
- (-4 *5 (-13 (-302) (-836) (-145))) (-5 *2 (-631 (-311 *5)))
- (-5 *1 (-1111 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-402 (-937 *5)))) (-5 *4 (-631 (-1158)))
- (-4 *5 (-13 (-302) (-836) (-145))) (-5 *2 (-631 (-631 (-311 *5))))
- (-5 *1 (-1111 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-836))))
+ (-13 (-362) (-301)
+ (-10 -8 (-15 -1874 ((-1112 *3 (-604 $)) $))
+ (-15 -1885 ((-1112 *3 (-604 $)) $))
+ (-15 -3220 ($ (-1112 *3 (-604 $))))))))))
+(((*1 *2 *1) (-12 (-5 *1 (-956 *2)) (-4 *2 (-957)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 *2)) (-4 *2 (-1222 *4)) (-5 *1 (-537 *4 *2 *5 *6))
+ (-4 *4 (-306)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-762))))))
+(((*1 *2 *1) (-12 (-4 *1 (-265 *2)) (-4 *2 (-841))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1158)) (-5 *1 (-850 *3)) (-14 *3 (-631 *2))))
- ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-951 *3)) (-4 *3 (-952))))
- ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-974))))
- ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1074 *3)) (-4 *3 (-1195))))
+ (|partial| -12 (-5 *2 (-1163)) (-5 *1 (-855 *3)) (-14 *3 (-635 *2))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-956 *3)) (-4 *3 (-957))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-979))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1079 *3)) (-4 *3 (-1200))))
((*1 *2 *1)
- (-12 (-4 *1 (-1219 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-779))
- (-5 *2 (-1158))))
- ((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1237 *3)) (-14 *3 *2))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-758)) (-4 *5 (-1034)) (-5 *2 (-554))
- (-5 *1 (-437 *5 *3 *6)) (-4 *3 (-1217 *5))
- (-4 *6 (-13 (-399) (-1023 *5) (-358) (-1180) (-279)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1034)) (-5 *2 (-554)) (-5 *1 (-437 *4 *3 *5))
- (-4 *3 (-1217 *4))
- (-4 *5 (-13 (-399) (-1023 *4) (-358) (-1180) (-279))))))
-(((*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1246)) (-5 *1 (-374)))))
+ (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-783))
+ (-5 *2 (-1163))))
+ ((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1242 *3)) (-14 *3 *2))))
+(((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-256)))))
+(((*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1145)) (-5 *1 (-52)))))
+(((*1 *2 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1251)) (-5 *1 (-378))))
+ ((*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-378)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1185))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824 *3)) (-4 *3 (-1087))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-1087)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-956 *3)) (-4 *3 (-957)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 *2)) (-4 *2 (-1222 *4)) (-5 *1 (-537 *4 *2 *5 *6))
+ (-4 *4 (-306)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-762))))))
+(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-256)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1145)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-1251))
+ (-5 *1 (-1060 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1145)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-1251))
+ (-5 *1 (-1095 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
+ (-12 (-5 *5 (-679 (-224))) (-5 *6 (-679 (-558))) (-5 *3 (-558))
+ (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-743)))))
(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4))
- (-4 *3 (-362 *4))))
- ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-906)) (-5 *1 (-1083 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4373)) (-4 *1 (-149 *2)) (-4 *2 (-1195))
- (-4 *2 (-1082)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *5 (-1140))
- (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-82 PDEF))))
- (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1020))
- (-5 *1 (-737)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-221))
- (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-78 FUNCTN))))
- (-5 *2 (-1020)) (-5 *1 (-735)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))))
+ (-12 (-4 *3 (-550)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-416 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1251)) (-5 *1 (-378)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1159 *1)) (-5 *3 (-1163)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1159 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-942 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1163)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-841) (-550)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-841) (-550))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1185))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1107)) (-5 *1 (-834 *3)) (-4 *3 (-1087)))))
+(((*1 *1 *1) (-12 (-5 *1 (-956 *2)) (-4 *2 (-957)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-631 (-631 *8))) (-5 *3 (-631 *8))
- (-4 *8 (-934 *5 *7 *6)) (-4 *5 (-13 (-302) (-145)))
- (-4 *6 (-13 (-836) (-602 (-1158)))) (-4 *7 (-780)) (-5 *2 (-112))
- (-5 *1 (-909 *5 *6 *7 *8)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221)))))
- (-5 *2 (-374)) (-5 *1 (-262))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1241 (-311 (-221)))) (-5 *2 (-374)) (-5 *1 (-300)))))
-(((*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-548 *3)) (-4 *3 (-539))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-302)) (-5 *2 (-413 *3))
- (-5 *1 (-729 *4 *5 *6 *3)) (-4 *3 (-934 *6 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-302))
- (-4 *7 (-934 *6 *4 *5)) (-5 *2 (-413 (-1154 *7)))
- (-5 *1 (-729 *4 *5 *6 *7)) (-5 *3 (-1154 *7))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-446)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836))
- (-5 *2 (-413 *1)) (-4 *1 (-934 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-836)) (-4 *5 (-780)) (-4 *6 (-446)) (-5 *2 (-413 *3))
- (-5 *1 (-964 *4 *5 *6 *3)) (-4 *3 (-934 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-446))
- (-4 *7 (-934 *6 *4 *5)) (-5 *2 (-413 (-1154 (-402 *7))))
- (-5 *1 (-1153 *4 *5 *6 *7)) (-5 *3 (-1154 (-402 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-413 *1)) (-4 *1 (-1199))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-546)) (-5 *2 (-413 *3)) (-5 *1 (-1220 *4 *3))
- (-4 *3 (-13 (-1217 *4) (-546) (-10 -8 (-15 -2510 ($ $ $)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1031 *4 *5)) (-4 *4 (-13 (-834) (-302) (-145) (-1007)))
- (-14 *5 (-631 (-1158)))
- (-5 *2
- (-631 (-1128 *4 (-525 (-850 *6)) (-850 *6) (-767 *4 (-850 *6)))))
- (-5 *1 (-1267 *4 *5 *6)) (-14 *6 (-631 (-1158))))))
+ (-12 (-5 *3 (-635 *6)) (-5 *4 (-635 (-1163))) (-4 *6 (-362))
+ (-5 *2 (-635 (-293 (-942 *6)))) (-5 *1 (-536 *5 *6 *7))
+ (-4 *5 (-450)) (-4 *7 (-13 (-362) (-839))))))
+(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-256)))))
+(((*1 *2 *1) (-12 (-5 *1 (-681 *2)) (-4 *2 (-605 (-853)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-558))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-1145))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-504))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-585))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-476))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-136))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-155))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-1153))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-618))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-1083))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-1077))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-1061))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-960))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-179))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-1026))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-310))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-661))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-153))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-523))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-1257))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-1054))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-515))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-671))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-96))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-1102))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-132))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-137))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-1256))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-666))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-217))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-522))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-1168))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1168))))
+ ((*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-1168))))
+ ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1168)))))
(((*1 *2)
- (-12 (-4 *2 (-13 (-425 *3) (-987))) (-5 *1 (-271 *3 *2))
- (-4 *3 (-13 (-836) (-546))))))
+ (-12 (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841))
+ (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-1251))
+ (-5 *1 (-1060 *3 *4 *5 *6 *7)) (-4 *7 (-1059 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841))
+ (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-1251))
+ (-5 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *7 (-1059 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-224))
+ (-5 *2 (-1025)) (-5 *1 (-743)))))
(((*1 *2)
- (-12 (-4 *3 (-546)) (-5 *2 (-631 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-412 *3)))))
-(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-633 *2)) (-4 *2 (-1082)))))
+ (-12 (-4 *3 (-550)) (-5 *2 (-635 (-679 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-416 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1200)) (-5 *1 (-374 *4 *2))
+ (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4383)))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1185))))))
+(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1025)) (-5 *1 (-831))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-315 (-378)))) (-5 *4 (-635 (-378)))
+ (-5 *2 (-1025)) (-5 *1 (-831)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (-143)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-956 *3)) (-4 *3 (-957)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-635 (-942 *6))) (-5 *4 (-635 (-1163))) (-4 *6 (-450))
+ (-5 *2 (-635 (-635 *7))) (-5 *1 (-536 *6 *7 *5)) (-4 *7 (-362))
+ (-4 *5 (-13 (-362) (-839))))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-168 (-224)) (-168 (-224)))) (-5 *4 (-1081 (-224)))
+ (-5 *2 (-1248)) (-5 *1 (-256)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1145)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-1251))
+ (-5 *1 (-1060 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1145)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-1251))
+ (-5 *1 (-1095 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
+ (-5 *1 (-743)))))
+(((*1 *2)
+ (-12 (-4 *3 (-550)) (-5 *2 (-635 (-679 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-416 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1200)) (-5 *1 (-374 *4 *2))
+ (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4383)))))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1087))
+ (-5 *2 (-2 (|:| -2700 *3) (|:| -2981 *4))))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-146)) (-4 *2 (-306)) (-4 *2 (-450)) (-4 *3 (-841))
+ (-4 *4 (-784)) (-5 *1 (-977 *2 *3 *4 *5)) (-4 *5 (-939 *2 *4 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-315 (-558))) (-5 *1 (-1106))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1185))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-758)) (-5 *2 (-1246)) (-5 *1 (-851 *4 *5 *6 *7))
- (-4 *4 (-1034)) (-14 *5 (-631 (-1158))) (-14 *6 (-631 *3))
- (-14 *7 *3)))
+ (-12 (-4 *1 (-830))
+ (-5 *3
+ (-2 (|:| |fn| (-315 (-224))) (|:| -1796 (-635 (-224)))
+ (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224))))
+ (|:| |ub| (-635 (-834 (-224))))))
+ (-5 *2 (-1025))))
((*1 *2 *3)
- (-12 (-5 *3 (-758)) (-4 *4 (-1034)) (-4 *5 (-836)) (-4 *6 (-780))
- (-14 *8 (-631 *5)) (-5 *2 (-1246))
- (-5 *1 (-1253 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-934 *4 *6 *5))
- (-14 *9 (-631 *3)) (-14 *10 *3))))
+ (-12 (-4 *1 (-830))
+ (-5 *3
+ (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1796 (-635 (-224)))))
+ (-5 *2 (-1025)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-858 (-951 *3) (-951 *3))) (-5 *1 (-951 *3))
- (-4 *3 (-952)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780))
- (-4 *4 (-836)))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-546)) (-4 *3 (-170))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -3782 (-631 *1))))
- (-4 *1 (-362 *3))))
- ((*1 *2)
- (|partial| -12
+ (-12 (-4 *1 (-1090 *3 *4 *5 *6 *2)) (-4 *3 (-1087)) (-4 *4 (-1087))
+ (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *2 (-1087)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-168 (-224)) (-168 (-224)))) (-5 *4 (-1081 (-224)))
+ (-5 *5 (-112)) (-5 *2 (-1248)) (-5 *1 (-256)))))
+(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-784))
+ (-4 *8 (-841)) (-4 *9 (-1053 *6 *7 *8))
(-5 *2
- (-2 (|:| |particular| (-447 *3 *4 *5 *6))
- (|:| -3782 (-631 (-447 *3 *4 *5 *6)))))
- (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-906))
- (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))))
-(((*1 *1 *1) (-4 *1 (-1043)))
- ((*1 *1 *1 *2 *2)
- (-12 (-4 *1 (-1219 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-779))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1219 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-779)))))
-(((*1 *2 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-601 (-848)))))
- ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-554))))
- ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1140))))
- ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-500))))
- ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-581))))
- ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-472))))
- ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-136))))
- ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-154))))
- ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1148))))
- ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-614))))
- ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1078))))
- ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1072))))
- ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1056))))
- ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-955))))
- ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-178))))
- ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1021))))
- ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-306))))
- ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-657))))
- ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-152))))
- ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-519))))
- ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1252))))
- ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1049))))
- ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-511))))
- ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-667))))
- ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-96))))
- ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1097))))
- ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-132))))
- ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-137))))
- ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1251))))
- ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-662))))
- ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-214))))
- ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-518))))
- ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1163))))
- ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1163))))
- ((*1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-1163))))
- ((*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-1163)))))
-(((*1 *2 *3) (-12 (-5 *3 (-554)) (-5 *2 (-1246)) (-5 *1 (-991)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-937 *5)) (-4 *5 (-1034)) (-5 *2 (-243 *4 *5))
- (-5 *1 (-929 *4 *5)) (-14 *4 (-631 (-1158))))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-758)) (-4 *1 (-227 *4))
- (-4 *4 (-1034))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-227 *3)) (-4 *3 (-1034))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-229)) (-5 *2 (-758))))
- ((*1 *1 *1) (-4 *1 (-229)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *1 (-261 *3)) (-4 *3 (-836))))
- ((*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-836))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199))
- (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-758)) (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *4))
- (-4 *4 (-1217 *3))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-13 (-358) (-145))) (-5 *1 (-394 *2 *3))
- (-4 *3 (-1217 *2))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-468 *3 *4 *5))
- (-4 *3 (-1034)) (-14 *5 *3)))
- ((*1 *2 *1 *3)
- (-12 (-4 *2 (-358)) (-4 *2 (-885 *3)) (-5 *1 (-575 *2))
- (-5 *3 (-1158))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-575 *2)) (-4 *2 (-358))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-848))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-631 *4)) (-5 *3 (-631 (-758))) (-4 *1 (-885 *4))
- (-4 *4 (-1082))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-758)) (-4 *1 (-885 *2)) (-4 *2 (-1082))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-631 *3)) (-4 *1 (-885 *3)) (-4 *3 (-1082))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-885 *2)) (-4 *2 (-1082))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1149 *3 *4 *5))
- (-4 *3 (-1034)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1155 *3 *4 *5))
- (-4 *3 (-1034)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1156 *3 *4 *5))
- (-4 *3 (-1034)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1205 *3 *4 *5))
- (-4 *3 (-1034)) (-14 *5 *3)))
- ((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1217 *3)) (-4 *3 (-1034))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1226 *3 *4 *5))
- (-4 *3 (-1034)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1233 *3 *4 *5))
- (-4 *3 (-1034)) (-14 *5 *3))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))))
-(((*1 *1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-836))))
- ((*1 *1 *1) (-12 (-5 *1 (-806 *2)) (-4 *2 (-836))))
- ((*1 *1 *1) (-12 (-5 *1 (-878 *2)) (-4 *2 (-836))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1188 *2 *3 *4 *5)) (-4 *2 (-546))
- (-4 *3 (-780)) (-4 *4 (-836)) (-4 *5 (-1048 *2 *3 *4))))
+ (-2 (|:| -2477 (-635 *9)) (|:| -2396 *4) (|:| |ineq| (-635 *9))))
+ (-5 *1 (-978 *6 *7 *8 *9 *4)) (-5 *3 (-635 *9))
+ (-4 *4 (-1059 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-784))
+ (-4 *8 (-841)) (-4 *9 (-1053 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -2477 (-635 *9)) (|:| -2396 *4) (|:| |ineq| (-635 *9))))
+ (-5 *1 (-1094 *6 *7 *8 *9 *4)) (-5 *3 (-635 *9))
+ (-4 *4 (-1059 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-224))
+ (-5 *2 (-1025)) (-5 *1 (-742)))))
+(((*1 *2)
+ (-12 (-4 *3 (-550)) (-5 *2 (-635 (-679 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-416 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1200))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1083))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1193 *3 *4 *5 *2)) (-4 *3 (-550))
+ (-4 *4 (-784)) (-4 *5 (-841)) (-4 *2 (-1053 *3 *4 *5))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-758)) (-4 *1 (-1229 *3)) (-4 *3 (-1195))))
- ((*1 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1195)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1126)) (-5 *3 (-142)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-758)) (-5 *4 (-906)) (-5 *2 (-1246)) (-5 *1 (-1242))))
- ((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-758)) (-5 *4 (-906)) (-5 *2 (-1246)) (-5 *1 (-1243)))))
-(((*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170))))
- ((*1 *2 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-170)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))))
+ (-12 (-5 *2 (-762)) (-4 *1 (-1234 *3)) (-4 *3 (-1200))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1200)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1200)) (-5 *1 (-374 *4 *2))
+ (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4383)))))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-550)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3))
+ (-5 *1 (-1190 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1199)) (-4 *5 (-1217 *4))
- (-5 *2 (-2 (|:| -1490 (-402 *5)) (|:| |poly| *3)))
- (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1217 (-402 *5))))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-554)) (-5 *3 (-906)) (-5 *1 (-685))))
- ((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *2 (-675 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5))
- (-4 *5 (-358)) (-5 *1 (-963 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-181)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-544 *3)) (-4 *3 (-13 (-399) (-1180))) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1158))
- (-4 *4 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *1 (-272 *4 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *4))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-631 *3)) (-4 *3 (-1195)) (-5 *1 (-1241 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-758)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836))
- (-4 *3 (-1048 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-631 *4))
- (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4))))))
- (-5 *1 (-1052 *6 *7 *8 *3 *4)) (-4 *4 (-1054 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836))
- (-4 *3 (-1048 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-631 *4))
- (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4))))))
- (-5 *1 (-1052 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-758)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836))
- (-4 *3 (-1048 *6 *7 *8))
+ (-12 (-5 *3 (-1145)) (-5 *2 (-213 (-500))) (-5 *1 (-828)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
+(((*1 *2 *3) (-12 (-5 *3 (-635 (-558))) (-5 *2 (-762)) (-5 *1 (-583)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-933 (-224)) (-224) (-224)))
+ (-5 *3 (-1 (-224) (-224) (-224) (-224))) (-5 *1 (-254)))))
+(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-114)))
+ ((*1 *1 *1) (-5 *1 (-170))) ((*1 *1 *1) (-4 *1 (-543)))
+ ((*1 *1 *1) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1087))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1121 *2)) (-4 *2 (-1039))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1127 *2 *3)) (-4 *2 (-13 (-1087) (-34)))
+ (-4 *3 (-13 (-1087) (-34))))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-635 *10)) (-5 *5 (-112)) (-4 *10 (-1059 *6 *7 *8 *9))
+ (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841))
+ (-4 *9 (-1053 *6 *7 *8))
(-5 *2
- (-2 (|:| |done| (-631 *4))
- (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4))))))
- (-5 *1 (-1127 *6 *7 *8 *3 *4)) (-4 *4 (-1091 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836))
- (-4 *3 (-1048 *5 *6 *7))
+ (-635
+ (-2 (|:| -2477 (-635 *9)) (|:| -2396 *10) (|:| |ineq| (-635 *9)))))
+ (-5 *1 (-978 *6 *7 *8 *9 *10)) (-5 *3 (-635 *9))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-635 *10)) (-5 *5 (-112)) (-4 *10 (-1059 *6 *7 *8 *9))
+ (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841))
+ (-4 *9 (-1053 *6 *7 *8))
(-5 *2
- (-2 (|:| |done| (-631 *4))
- (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4))))))
- (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))))
+ (-635
+ (-2 (|:| -2477 (-635 *9)) (|:| -2396 *10) (|:| |ineq| (-635 *9)))))
+ (-5 *1 (-1094 *6 *7 *8 *9 *10)) (-5 *3 (-635 *9)))))
+(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-224))
+ (-5 *2 (-1025)) (-5 *1 (-742)))))
+(((*1 *2)
+ (-12 (-4 *3 (-550)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-416 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-662 *3)) (-4 *3 (-841)) (-4 *1 (-373 *3 *4))
+ (-4 *4 (-171)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1107)) (-5 *1 (-329)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-550)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3))
+ (-5 *1 (-1190 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-762)) (-5 *1 (-114))))
+ ((*1 *2 *1) (-12 (-4 *1 (-826 *3)) (-4 *3 (-1087)) (-5 *2 (-55)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1163))
+ (-4 *4 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558))))
+ (-5 *1 (-425 *4 *2)) (-4 *2 (-13 (-1185) (-29 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-406 (-942 *5))) (-5 *4 (-1163)) (-4 *5 (-146))
+ (-4 *5 (-13 (-450) (-1028 (-558)) (-841) (-631 (-558))))
+ (-5 *2 (-315 *5)) (-5 *1 (-582 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-5 *1 (-221 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1200)) (-4 *1 (-253 *3))))
+ ((*1 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1200)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-635 (-2 (|:| |val| (-635 *6)) (|:| -2396 *7))))
+ (-4 *6 (-1053 *3 *4 *5)) (-4 *7 (-1059 *3 *4 *5 *6)) (-4 *3 (-450))
+ (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-978 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-635 (-2 (|:| |val| (-635 *6)) (|:| -2396 *7))))
+ (-4 *6 (-1053 *3 *4 *5)) (-4 *7 (-1059 *3 *4 *5 *6)) (-4 *3 (-450))
+ (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-1094 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
+ (-12 (-5 *4 (-679 (-224))) (-5 *5 (-679 (-558))) (-5 *6 (-224))
+ (-5 *3 (-558)) (-5 *2 (-1025)) (-5 *1 (-742)))))
+(((*1 *2)
+ (-12 (-4 *3 (-550)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-416 *3)))))
+(((*1 *1 *2 *1)
+ (-12 (|has| *1 (-6 -4382)) (-4 *1 (-150 *2)) (-4 *2 (-1200))
+ (-4 *2 (-1087))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4382)) (-4 *1 (-150 *3))
+ (-4 *3 (-1200))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-664 *3)) (-4 *3 (-1200))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-558)) (-4 *4 (-1087))
+ (-5 *1 (-728 *4))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-558)) (-5 *1 (-728 *2)) (-4 *2 (-1087))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1127 *3 *4)) (-4 *3 (-13 (-1087) (-34)))
+ (-4 *4 (-13 (-1087) (-34))) (-5 *1 (-1128 *3 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-592 *3 *2)) (-4 *3 (-1082)) (-4 *3 (-836))
- (-4 *2 (-1195))))
- ((*1 *2 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-836))))
- ((*1 *2 *1) (-12 (-5 *1 (-806 *2)) (-4 *2 (-836))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1195)) (-5 *1 (-858 *2 *3)) (-4 *3 (-1195))))
- ((*1 *2 *1) (-12 (-5 *2 (-658 *3)) (-5 *1 (-878 *3)) (-4 *3 (-836))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1188 *3 *4 *5 *2)) (-4 *3 (-546))
- (-4 *4 (-780)) (-4 *5 (-836)) (-4 *2 (-1048 *3 *4 *5))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-758)) (-4 *1 (-1229 *3)) (-4 *3 (-1195))))
- ((*1 *2 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1195)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-906)) (-5 *2 (-758)) (-5 *1 (-1083 *4 *5)) (-14 *4 *3)
- (-14 *5 *3))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374))
- (-5 *2
- (-2 (|:| -2794 *4) (|:| -1841 *4) (|:| |totalpts| (-554))
- (|:| |success| (-112))))
- (-5 *1 (-776)) (-5 *5 (-554)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780))
- (-4 *4 (-836))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1188 *3 *4 *5 *2)) (-4 *3 (-546)) (-4 *4 (-780))
- (-4 *5 (-836)) (-4 *2 (-1048 *3 *4 *5)))))
+ (-12 (-4 *1 (-372 *3)) (-4 *3 (-1200)) (-4 *3 (-841)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-372 *4)) (-4 *4 (-1200))
+ (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1138 (-1138 *4))) (-5 *2 (-1138 *4)) (-5 *1 (-1142 *4))
- (-4 *4 (-1034)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-402 (-937 *5))) (-5 *4 (-1158))
- (-4 *5 (-13 (-302) (-836) (-145))) (-5 *2 (-631 (-289 (-311 *5))))
- (-5 *1 (-1111 *5))))
+ (-12 (-4 *4 (-13 (-550) (-841) (-1028 (-558))))
+ (-5 *2 (-168 (-315 *4))) (-5 *1 (-187 *4 *3))
+ (-4 *3 (-13 (-27) (-1185) (-429 (-168 *4))))))
((*1 *2 *3)
- (-12 (-5 *3 (-402 (-937 *4))) (-4 *4 (-13 (-302) (-836) (-145)))
- (-5 *2 (-631 (-289 (-311 *4)))) (-5 *1 (-1111 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-289 (-402 (-937 *5)))) (-5 *4 (-1158))
- (-4 *5 (-13 (-302) (-836) (-145))) (-5 *2 (-631 (-289 (-311 *5))))
- (-5 *1 (-1111 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-289 (-402 (-937 *4))))
- (-4 *4 (-13 (-302) (-836) (-145))) (-5 *2 (-631 (-289 (-311 *4))))
- (-5 *1 (-1111 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-402 (-937 *5)))) (-5 *4 (-631 (-1158)))
- (-4 *5 (-13 (-302) (-836) (-145)))
- (-5 *2 (-631 (-631 (-289 (-311 *5))))) (-5 *1 (-1111 *5))))
+ (-12 (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *2 (-168 *3)) (-5 *1 (-1189 *4 *3))
+ (-4 *3 (-13 (-27) (-1185) (-429 *4))))))
+(((*1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1039))))
((*1 *2 *3)
- (-12 (-5 *3 (-631 (-402 (-937 *4))))
- (-4 *4 (-13 (-302) (-836) (-145)))
- (-5 *2 (-631 (-631 (-289 (-311 *4))))) (-5 *1 (-1111 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-289 (-402 (-937 *5))))) (-5 *4 (-631 (-1158)))
- (-4 *5 (-13 (-302) (-836) (-145)))
- (-5 *2 (-631 (-631 (-289 (-311 *5))))) (-5 *1 (-1111 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-631 (-289 (-402 (-937 *4)))))
- (-4 *4 (-13 (-302) (-836) (-145)))
- (-5 *2 (-631 (-631 (-289 (-311 *4))))) (-5 *1 (-1111 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1085 *3 *4 *5 *6 *2)) (-4 *3 (-1082)) (-4 *4 (-1082))
- (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *2 (-1082)))))
-(((*1 *1) (-5 *1 (-810))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-758)) (-5 *2 (-1214 *5 *4)) (-5 *1 (-1156 *4 *5 *6))
- (-4 *4 (-1034)) (-14 *5 (-1158)) (-14 *6 *4)))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-758)) (-5 *2 (-1214 *5 *4)) (-5 *1 (-1233 *4 *5 *6))
- (-4 *4 (-1034)) (-14 *5 (-1158)) (-14 *6 *4))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-675 *5))) (-4 *5 (-302)) (-4 *5 (-1034))
- (-5 *2 (-1241 (-1241 *5))) (-5 *1 (-1014 *5)) (-5 *4 (-1241 *5)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1146 *2 *3)) (-14 *2 (-906)) (-4 *3 (-1034)))))
-(((*1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-1165)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1082)) (-4 *3 (-885 *5)) (-5 *2 (-1241 *3))
- (-5 *1 (-678 *5 *3 *6 *4)) (-4 *6 (-368 *3))
- (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4373)))))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-972 (-402 (-554)) (-850 *3) (-236 *4 (-758))
- (-243 *3 (-402 (-554)))))
- (-14 *3 (-631 (-1158))) (-14 *4 (-758)) (-5 *1 (-971 *3 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *3 (-302)) (-4 *3 (-170)) (-4 *4 (-368 *3))
- (-4 *5 (-368 *3)) (-5 *2 (-2 (|:| -2325 *3) (|:| -2423 *3)))
- (-5 *1 (-674 *3 *4 *5 *6)) (-4 *6 (-673 *3 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-2 (|:| -2325 *3) (|:| -2423 *3))) (-5 *1 (-686 *3))
- (-4 *3 (-302)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1158))
- (-4 *4 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145)))
- (-5 *2 (-1 *5 *5)) (-5 *1 (-791 *4 *5))
- (-4 *5 (-13 (-29 *4) (-1180) (-944))))))
-(((*1 *1 *2) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-108))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-631 (-530))) (-5 *1 (-530)))))
-(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-114)))
- ((*1 *1 *1) (-5 *1 (-169))) ((*1 *1 *1) (-4 *1 (-539)))
- ((*1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1082))))
- ((*1 *1 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1034))))
+ (-12 (-4 *4 (-550)) (-4 *4 (-171)) (-4 *5 (-372 *4))
+ (-4 *6 (-372 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
+ (-5 *1 (-678 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-171)) (-4 *2 (-1039)) (-5 *1 (-705 *2 *3))
+ (-4 *3 (-638 *2))))
((*1 *1 *1)
- (-12 (-5 *1 (-1122 *2 *3)) (-4 *2 (-13 (-1082) (-34)))
- (-4 *3 (-13 (-1082) (-34))))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1140)) (-5 *2 (-374)) (-5 *1 (-773)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2))
- (-4 *2 (-425 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-858 (-951 *3) (-951 *3))) (-5 *1 (-951 *3))
- (-4 *3 (-952)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-13 (-546) (-145))) (-5 *1 (-1211 *3 *2))
- (-4 *2 (-1217 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-780))
- (-4 *3 (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $))))) (-4 *5 (-546))
- (-5 *1 (-719 *4 *3 *5 *2)) (-4 *2 (-934 (-402 (-937 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-1034)) (-4 *5 (-780))
- (-4 *3
- (-13 (-836)
- (-10 -8 (-15 -2927 ((-1158) $))
- (-15 -1576 ((-3 $ "failed") (-1158))))))
- (-5 *1 (-969 *4 *5 *3 *2)) (-4 *2 (-934 (-937 *4) *5 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-631 *6))
- (-4 *6
- (-13 (-836)
- (-10 -8 (-15 -2927 ((-1158) $))
- (-15 -1576 ((-3 $ "failed") (-1158))))))
- (-4 *4 (-1034)) (-4 *5 (-780)) (-5 *1 (-969 *4 *5 *6 *2))
- (-4 *2 (-934 (-937 *4) *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-413 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1217 (-48)))))
- ((*1 *2 *3 *1)
- (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3))))
- (-5 *1 (-121 *3)) (-4 *3 (-836))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-575 *4)) (-4 *4 (-13 (-29 *3) (-1180)))
- (-4 *3 (-13 (-446) (-1023 (-554)) (-836) (-627 (-554))))
- (-5 *1 (-573 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-575 (-402 (-937 *3))))
- (-4 *3 (-13 (-446) (-1023 (-554)) (-836) (-627 (-554))))
- (-5 *1 (-578 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1217 *5)) (-4 *5 (-358))
- (-5 *2 (-2 (|:| -3312 *3) (|:| |special| *3))) (-5 *1 (-714 *5 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1241 *5)) (-4 *5 (-358)) (-4 *5 (-1034))
- (-5 *2 (-631 (-631 (-675 *5)))) (-5 *1 (-1014 *5))
- (-5 *3 (-631 (-675 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1241 (-1241 *5))) (-4 *5 (-358)) (-4 *5 (-1034))
- (-5 *2 (-631 (-631 (-675 *5)))) (-5 *1 (-1014 *5))
- (-5 *3 (-631 (-675 *5)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-139)) (-5 *2 (-631 *1)) (-4 *1 (-1126))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-631 *1)) (-4 *1 (-1126)))))
-(((*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-244)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158))))
- (-4 *6 (-780)) (-5 *2 (-631 *3)) (-5 *1 (-909 *4 *5 *6 *3))
- (-4 *3 (-934 *4 *6 *5)))))
-(((*1 *1) (-5 *1 (-155))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-358)) (-5 *2 (-631 *3)) (-5 *1 (-930 *4 *3))
- (-4 *3 (-1217 *4)))))
-(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
- (-12 (-5 *3 (-1140)) (-5 *5 (-675 (-221))) (-5 *6 (-675 (-554)))
- (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-744)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-167 (-221))) (-5 *4 (-554)) (-5 *2 (-1020))
- (-5 *1 (-745)))))
-(((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1195)) (-5 *2 (-758))
- (-5 *1 (-233 *3 *4 *5)) (-4 *3 (-234 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-318 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-130))
- (-5 *2 (-758))))
- ((*1 *2)
- (-12 (-4 *4 (-358)) (-5 *2 (-758)) (-5 *1 (-323 *3 *4))
- (-4 *3 (-324 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-356 *3)) (-4 *3 (-1082))))
- ((*1 *2) (-12 (-4 *1 (-363)) (-5 *2 (-758))))
- ((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-381 *3)) (-4 *3 (-1082))))
- ((*1 *2)
- (-12 (-4 *4 (-1082)) (-5 *2 (-758)) (-5 *1 (-419 *3 *4))
- (-4 *3 (-420 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-758)) (-5 *1 (-635 *3 *4 *5)) (-4 *3 (-1082))
- (-4 *4 (-23)) (-14 *5 *4)))
- ((*1 *2)
- (-12 (-4 *4 (-170)) (-4 *5 (-1217 *4)) (-5 *2 (-758))
- (-5 *1 (-710 *3 *4 *5)) (-4 *3 (-711 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-806 *3)) (-4 *3 (-836))))
- ((*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-991))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-834) (-358))) (-5 *1 (-1044 *2 *3))
- (-4 *3 (-1217 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2))
- (-4 *2 (-13 (-425 *3) (-1180))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-52)) (-5 *1 (-1173)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-928 *5)) (-5 *3 (-758)) (-4 *5 (-1034))
- (-5 *1 (-1146 *4 *5)) (-14 *4 (-906)))))
-(((*1 *2 *3 *4 *5 *3 *6 *3)
- (-12 (-5 *3 (-554)) (-5 *5 (-167 (-221))) (-5 *6 (-1140))
- (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-745)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-511)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-248 *2 *3 *4 *5)) (-4 *2 (-1034)) (-4 *3 (-836))
- (-4 *4 (-261 *3)) (-4 *5 (-780)))))
+ (-12 (-4 *2 (-171)) (-4 *2 (-1039)) (-5 *1 (-705 *2 *3))
+ (-4 *3 (-638 *2))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-171)) (-4 *2 (-1039))))
+ ((*1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-171)) (-4 *2 (-1039)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-579 *2)) (-4 *2 (-13 (-29 *4) (-1185)))
+ (-5 *1 (-577 *4 *2))
+ (-4 *4 (-13 (-450) (-1028 (-558)) (-841) (-631 (-558))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-579 (-406 (-942 *4))))
+ (-4 *4 (-13 (-450) (-1028 (-558)) (-841) (-631 (-558))))
+ (-5 *2 (-315 *4)) (-5 *1 (-582 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1200)))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-554)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1195))
- (-4 *4 (-368 *2)) (-4 *5 (-368 *2))))
+ (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1200))
+ (-4 *4 (-372 *2)) (-4 *5 (-372 *2))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "right") (|has| *1 (-6 -4374)) (-4 *1 (-119 *3))
- (-4 *3 (-1195))))
+ (-12 (-5 *2 "right") (|has| *1 (-6 -4383)) (-4 *1 (-119 *3))
+ (-4 *3 (-1200))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "left") (|has| *1 (-6 -4374)) (-4 *1 (-119 *3))
- (-4 *3 (-1195))))
+ (-12 (-5 *2 "left") (|has| *1 (-6 -4383)) (-4 *1 (-119 *3))
+ (-4 *3 (-1200))))
((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4374)) (-4 *1 (-283 *3 *2)) (-4 *3 (-1082))
- (-4 *2 (-1195))))
- ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1158)) (-5 *1 (-620))))
+ (-12 (|has| *1 (-6 -4383)) (-4 *1 (-287 *3 *2)) (-4 *3 (-1087))
+ (-4 *2 (-1200))))
+ ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1163)) (-5 *1 (-624))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-1208 (-554))) (|has| *1 (-6 -4374)) (-4 *1 (-637 *2))
- (-4 *2 (-1195))))
+ (-12 (-5 *3 (-1213 (-558))) (|has| *1 (-6 -4383)) (-4 *1 (-641 *2))
+ (-4 *2 (-1200))))
((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-631 (-554))) (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034))
- (-4 *4 (-368 *3)) (-4 *5 (-368 *3))))
+ (-12 (-5 *2 (-635 (-558))) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039))
+ (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "value") (|has| *1 (-6 -4374)) (-4 *1 (-995 *2))
- (-4 *2 (-1195))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-1011 *2)) (-4 *2 (-1195))))
+ (-12 (-5 *3 "value") (|has| *1 (-6 -4383)) (-4 *1 (-1000 *2))
+ (-4 *2 (-1200))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-1016 *2)) (-4 *2 (-1200))))
((*1 *2 *1 *3 *2)
- (-12 (-4 *1 (-1171 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1082))))
+ (-12 (-4 *1 (-1176 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-1087))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "last") (|has| *1 (-6 -4374)) (-4 *1 (-1229 *2))
- (-4 *2 (-1195))))
+ (-12 (-5 *3 "last") (|has| *1 (-6 -4383)) (-4 *1 (-1234 *2))
+ (-4 *2 (-1200))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "rest") (|has| *1 (-6 -4374)) (-4 *1 (-1229 *3))
- (-4 *3 (-1195))))
+ (-12 (-5 *2 "rest") (|has| *1 (-6 -4383)) (-4 *1 (-1234 *3))
+ (-4 *3 (-1200))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "first") (|has| *1 (-6 -4374)) (-4 *1 (-1229 *2))
- (-4 *2 (-1195)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1034)) (-14 *3 (-631 (-1158)))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-219 *2 *3)) (-4 *2 (-13 (-1034) (-836)))
- (-14 *3 (-631 (-1158))))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1158)) (-5 *1 (-275))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-3 (-554) (-221) (-1158) (-1140) (-1163)))
- (-5 *1 (-1163)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-358))
- (-5 *2
- (-2 (|:| A (-675 *5))
- (|:| |eqs|
- (-631
- (-2 (|:| C (-675 *5)) (|:| |g| (-1241 *5)) (|:| -4329 *6)
- (|:| |rh| *5))))))
- (-5 *1 (-800 *5 *6)) (-5 *3 (-675 *5)) (-5 *4 (-1241 *5))
- (-4 *6 (-642 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-358)) (-4 *6 (-642 *5))
- (-5 *2 (-2 (|:| -2866 (-675 *6)) (|:| |vec| (-1241 *5))))
- (-5 *1 (-800 *5 *6)) (-5 *3 (-675 *6)) (-5 *4 (-1241 *5)))))
+ (-12 (-5 *3 "first") (|has| *1 (-6 -4383)) (-4 *1 (-1234 *2))
+ (-4 *2 (-1200)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-446)) (-4 *3 (-780)) (-4 *5 (-836)) (-5 *2 (-112))
- (-5 *1 (-443 *4 *3 *5 *6)) (-4 *6 (-934 *4 *3 *5)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-331 *5 *6 *7 *8)) (-4 *5 (-425 *4))
- (-4 *6 (-1217 *5)) (-4 *7 (-1217 (-402 *6)))
- (-4 *8 (-337 *5 *6 *7))
- (-4 *4 (-13 (-836) (-546) (-1023 (-554))))
- (-5 *2 (-2 (|:| -2342 (-758)) (|:| -2367 *8)))
- (-5 *1 (-896 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-331 (-402 (-554)) *4 *5 *6))
- (-4 *4 (-1217 (-402 (-554)))) (-4 *5 (-1217 (-402 *4)))
- (-4 *6 (-337 (-402 (-554)) *4 *5))
- (-5 *2 (-2 (|:| -2342 (-758)) (|:| -2367 *6)))
- (-5 *1 (-897 *4 *5 *6)))))
-(((*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-163 *3 *2)) (-4 *3 (-164 *2))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1241 *1)) (-4 *1 (-365 *2 *4)) (-4 *4 (-1217 *2))
- (-4 *2 (-170))))
- ((*1 *2)
- (-12 (-4 *4 (-1217 *2)) (-4 *2 (-170)) (-5 *1 (-403 *3 *2 *4))
- (-4 *3 (-404 *2 *4))))
- ((*1 *2) (-12 (-4 *1 (-404 *2 *3)) (-4 *3 (-1217 *2)) (-4 *2 (-170))))
- ((*1 *2)
- (-12 (-4 *3 (-1217 *2)) (-5 *2 (-554)) (-5 *1 (-755 *3 *4))
- (-4 *4 (-404 *2 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-934 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780))
- (-4 *2 (-836)) (-4 *3 (-170))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-546)) (-5 *1 (-954 *2 *3)) (-4 *3 (-1217 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1034)) (-4 *2 (-170)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-546))
- (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112))
- (-5 *1 (-962 *4 *5 *6 *7)))))
-(((*1 *2 *1 *3 *3 *3 *2)
- (-12 (-5 *3 (-758)) (-5 *1 (-661 *2)) (-4 *2 (-1082)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-758)) (-5 *1 (-842 *2)) (-4 *2 (-170))))
+ (-12 (-5 *3 (-2 (|:| |val| (-635 *7)) (|:| -2396 *8)))
+ (-4 *7 (-1053 *4 *5 *6)) (-4 *8 (-1059 *4 *5 *6 *7)) (-4 *4 (-450))
+ (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112))
+ (-5 *1 (-978 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-635 *7)) (|:| -2396 *8)))
+ (-4 *7 (-1053 *4 *5 *6)) (-4 *8 (-1059 *4 *5 *6 *7)) (-4 *4 (-450))
+ (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112))
+ (-5 *1 (-1094 *4 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
+ (-5 *1 (-742)))))
+(((*1 *2)
+ (-12 (-4 *3 (-550)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-416 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-550) (-841) (-1028 (-558)))) (-5 *2 (-112))
+ (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1185) (-429 (-168 *4))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433))))
((*1 *2 *3)
- (-12 (-5 *2 (-1154 (-554))) (-5 *1 (-927)) (-5 *3 (-554)))))
-(((*1 *2 *1) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1195)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1265 *4 *2)) (-4 *1 (-369 *4 *2)) (-4 *4 (-836))
- (-4 *2 (-170))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1258 *3 *2)) (-4 *3 (-836)) (-4 *2 (-1034))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-806 *4)) (-4 *1 (-1258 *4 *2)) (-4 *4 (-836))
- (-4 *2 (-1034))))
- ((*1 *2 *1 *3)
- (-12 (-4 *2 (-1034)) (-5 *1 (-1264 *2 *3)) (-4 *3 (-832)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-4 *1 (-1080 *3))))
- ((*1 *1) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1082)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1138 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1034))
- (-5 *3 (-402 (-554))) (-5 *1 (-1142 *4)))))
+ (-12 (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *2 (-112)) (-5 *1 (-1189 *4 *3))
+ (-4 *3 (-13 (-27) (-1185) (-429 *4))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-1034)) (-4 *4 (-1217 *3)) (-5 *1 (-162 *3 *4 *2))
- (-4 *2 (-1217 *4))))
- ((*1 *1 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1195)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1256 (-1158) *3)) (-4 *3 (-1034)) (-5 *1 (-1263 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1256 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034))
- (-5 *1 (-1265 *3 *4)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-634 *5)) (-4 *5 (-1034))
- (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-838 *5))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-675 *3)) (-4 *1 (-412 *3)) (-4 *3 (-170))))
- ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034))))
- ((*1 *2 *3 *2 *2 *4 *5)
- (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1034))
- (-5 *1 (-839 *2 *3)) (-4 *3 (-838 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-758))))
- ((*1 *2 *3 *1 *2)
- (-12 (-5 *2 (-554)) (-4 *1 (-368 *3)) (-4 *3 (-1195))
- (-4 *3 (-1082))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-368 *3)) (-4 *3 (-1195)) (-4 *3 (-1082))
- (-5 *2 (-554))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-368 *4)) (-4 *4 (-1195))
- (-5 *2 (-554))))
- ((*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-523))))
- ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1126)) (-5 *2 (-554)) (-5 *3 (-139))))
- ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1126)) (-5 *2 (-554)))))
-(((*1 *1) (-5 *1 (-286))))
-(((*1 *1 *2)
- (-12 (-4 *3 (-1034)) (-5 *1 (-814 *2 *3)) (-4 *2 (-695 *3)))))
+ (-12 (-4 *2 (-171)) (-4 *2 (-1039)) (-5 *1 (-705 *2 *3))
+ (-4 *3 (-638 *2))))
+ ((*1 *2 *2) (-12 (-5 *1 (-827 *2)) (-4 *2 (-171)) (-4 *2 (-1039)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1087))
+ (-4 *6 (-1087)) (-4 *2 (-1087)) (-5 *1 (-670 *5 *6 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-911)) (-5 *2 (-1159 *4)) (-5 *1 (-581 *4))
+ (-4 *4 (-348)))))
+(((*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1200)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-631 *7)) (-4 *7 (-1054 *3 *4 *5 *6)) (-4 *3 (-446))
- (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5))
- (-5 *1 (-973 *3 *4 *5 *6 *7))))
+ (-12 (-5 *2 (-635 *7)) (-4 *7 (-1059 *3 *4 *5 *6)) (-4 *3 (-450))
+ (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5))
+ (-5 *1 (-978 *3 *4 *5 *6 *7))))
((*1 *2 *2)
- (-12 (-5 *2 (-631 *7)) (-4 *7 (-1054 *3 *4 *5 *6)) (-4 *3 (-446))
- (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5))
- (-5 *1 (-1089 *3 *4 *5 *6 *7)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-554)) (-5 *1 (-1169 *2)) (-4 *2 (-358)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-631 (-311 (-221)))) (-5 *2 (-112)) (-5 *1 (-262))))
- ((*1 *2 *3) (-12 (-5 *3 (-311 (-221))) (-5 *2 (-112)) (-5 *1 (-262))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112))
- (-5 *1 (-962 *4 *5 *6 *3)) (-4 *3 (-1048 *4 *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-911)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *1 (-635 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-758)) (-4 *3 (-1034)) (-4 *1 (-673 *3 *4 *5))
- (-4 *4 (-368 *3)) (-4 *5 (-368 *3))))
- ((*1 *1 *2)
- (-12 (-4 *2 (-1034)) (-4 *1 (-1105 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2))
- (-4 *5 (-234 *3 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836))
- (-4 *3 (-1048 *5 *6 *7))
- (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *4))))
- (-5 *1 (-1055 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))))
+ (-12 (-5 *2 (-635 *7)) (-4 *7 (-1059 *3 *4 *5 *6)) (-4 *3 (-450))
+ (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5))
+ (-5 *1 (-1094 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
+ (-5 *1 (-742)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1140)) (-5 *2 (-554)) (-5 *1 (-1177 *4))
- (-4 *4 (-1034)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-631 *2)) (-4 *2 (-1082)) (-4 *2 (-1195)))))
-(((*1 *2 *1) (-12 (-5 *2 (-811)) (-5 *1 (-812)))))
+ (-12 (-4 *4 (-1039)) (-5 *2 (-558)) (-5 *1 (-441 *4 *3 *5))
+ (-4 *3 (-1222 *4))
+ (-4 *5 (-13 (-403) (-1028 *4) (-362) (-1185) (-283))))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-758)) (-4 *1 (-1217 *3)) (-4 *3 (-1034)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-221))
- (-5 *2 (-1020)) (-5 *1 (-739)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
- (-12 (-5 *3 (-221)) (-5 *4 (-554))
- (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-64 G)))) (-5 *2 (-1020))
- (-5 *1 (-735)))))
+ (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-5 *1 (-103 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-550)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-416 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-762))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-5 *2 (-558)) (-4 *1 (-372 *3)) (-4 *3 (-1200))
+ (-4 *3 (-1087))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-372 *3)) (-4 *3 (-1200)) (-4 *3 (-1087))
+ (-5 *2 (-558))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-372 *4)) (-4 *4 (-1200))
+ (-5 *2 (-558))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1107)) (-5 *1 (-527))))
+ ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1131)) (-5 *2 (-558)) (-5 *3 (-140))))
+ ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1131)) (-5 *2 (-558)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-137))))
- ((*1 *2 *1) (-12 (-5 *2 (-182)) (-5 *1 (-183)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-864 (-1 (-221) (-221)))) (-5 *4 (-1076 (-374)))
- (-5 *5 (-631 (-258))) (-5 *2 (-1115 (-221))) (-5 *1 (-250))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-864 (-1 (-221) (-221)))) (-5 *4 (-1076 (-374)))
- (-5 *2 (-1115 (-221))) (-5 *1 (-250))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-928 (-221)) (-221))) (-5 *4 (-1076 (-374)))
- (-5 *5 (-631 (-258))) (-5 *2 (-1115 (-221))) (-5 *1 (-250))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-928 (-221)) (-221))) (-5 *4 (-1076 (-374)))
- (-5 *2 (-1115 (-221))) (-5 *1 (-250))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1076 (-374)))
- (-5 *5 (-631 (-258))) (-5 *2 (-1115 (-221))) (-5 *1 (-250))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1076 (-374)))
- (-5 *2 (-1115 (-221))) (-5 *1 (-250))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-928 (-221)) (-221) (-221))) (-5 *4 (-1076 (-374)))
- (-5 *5 (-631 (-258))) (-5 *2 (-1115 (-221))) (-5 *1 (-250))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-928 (-221)) (-221) (-221))) (-5 *4 (-1076 (-374)))
- (-5 *2 (-1115 (-221))) (-5 *1 (-250))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-867 (-1 (-221) (-221) (-221)))) (-5 *4 (-1076 (-374)))
- (-5 *5 (-631 (-258))) (-5 *2 (-1115 (-221))) (-5 *1 (-250))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-867 (-1 (-221) (-221) (-221)))) (-5 *4 (-1076 (-374)))
- (-5 *2 (-1115 (-221))) (-5 *1 (-250))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-864 *6)) (-5 *4 (-1074 (-374))) (-5 *5 (-631 (-258)))
- (-4 *6 (-13 (-602 (-530)) (-1082))) (-5 *2 (-1115 (-221)))
- (-5 *1 (-254 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-864 *5)) (-5 *4 (-1074 (-374)))
- (-4 *5 (-13 (-602 (-530)) (-1082))) (-5 *2 (-1115 (-221)))
- (-5 *1 (-254 *5))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1074 (-374))) (-5 *5 (-631 (-258)))
- (-5 *2 (-1115 (-221))) (-5 *1 (-254 *3))
- (-4 *3 (-13 (-602 (-530)) (-1082)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1074 (-374))) (-5 *2 (-1115 (-221))) (-5 *1 (-254 *3))
- (-4 *3 (-13 (-602 (-530)) (-1082)))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-867 *6)) (-5 *4 (-1074 (-374))) (-5 *5 (-631 (-258)))
- (-4 *6 (-13 (-602 (-530)) (-1082))) (-5 *2 (-1115 (-221)))
- (-5 *1 (-254 *6))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-867 *5)) (-5 *4 (-1074 (-374)))
- (-4 *5 (-13 (-602 (-530)) (-1082))) (-5 *2 (-1115 (-221)))
- (-5 *1 (-254 *5)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-554)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1195))
- (-4 *5 (-368 *4)) (-4 *3 (-368 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1241 (-1241 (-554)))) (-5 *3 (-906)) (-5 *1 (-460)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1034))
- (-4 *2 (-13 (-399) (-1023 *4) (-358) (-1180) (-279)))
- (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1217 *4)))))
+ (-12 (-4 *3 (-13 (-550) (-841) (-1028 (-558)))) (-5 *1 (-187 *3 *2))
+ (-4 *2 (-13 (-27) (-1185) (-429 (-168 *3))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *1 (-1189 *3 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *3))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-631 *2)) (-4 *2 (-1082)) (-4 *2 (-1195)))))
+ (|partial| -12 (-5 *3 (-114)) (-5 *4 (-635 *2)) (-5 *1 (-113 *2))
+ (-4 *2 (-1087))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-635 *4))) (-4 *4 (-1087))
+ (-5 *1 (-113 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1087))
+ (-5 *1 (-113 *4))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-635 *4)))
+ (-5 *1 (-113 *4)) (-4 *4 (-1087))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-638 *3)) (-4 *3 (-1039))
+ (-5 *1 (-705 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1039)) (-5 *1 (-827 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
+(((*1 *2 *2) (-12 (-5 *1 (-580 *2)) (-4 *2 (-543)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1200)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-4 *1 (-1085 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1087)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836))
- (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-973 *4 *5 *6 *7 *3)) (-4 *3 (-1054 *4 *5 *6 *7))))
+ (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-978 *4 *5 *6 *7 *3)) (-4 *3 (-1059 *4 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-631 *3)) (-4 *3 (-1054 *5 *6 *7 *8)) (-4 *5 (-446))
- (-4 *6 (-780)) (-4 *7 (-836)) (-4 *8 (-1048 *5 *6 *7))
- (-5 *2 (-112)) (-5 *1 (-973 *5 *6 *7 *8 *3))))
+ (-12 (-5 *4 (-635 *3)) (-4 *3 (-1059 *5 *6 *7 *8)) (-4 *5 (-450))
+ (-4 *6 (-784)) (-4 *7 (-841)) (-4 *8 (-1053 *5 *6 *7))
+ (-5 *2 (-112)) (-5 *1 (-978 *5 *6 *7 *8 *3))))
((*1 *2 *3 *3)
- (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836))
- (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1089 *4 *5 *6 *7 *3)) (-4 *3 (-1054 *4 *5 *6 *7))))
+ (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1094 *4 *5 *6 *7 *3)) (-4 *3 (-1059 *4 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-631 *3)) (-4 *3 (-1054 *5 *6 *7 *8)) (-4 *5 (-446))
- (-4 *6 (-780)) (-4 *7 (-836)) (-4 *8 (-1048 *5 *6 *7))
- (-5 *2 (-112)) (-5 *1 (-1089 *5 *6 *7 *8 *3)))))
-(((*1 *1 *1 *2 *2 *2 *2)
- (-12 (-5 *2 (-554)) (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034))
- (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))))
-(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
- (-12
- (-5 *3
- (-2 (|:| |det| *12) (|:| |rows| (-631 (-554)))
- (|:| |cols| (-631 (-554)))))
- (-5 *4 (-675 *12)) (-5 *5 (-631 (-402 (-937 *9))))
- (-5 *6 (-631 (-631 *12))) (-5 *7 (-758)) (-5 *8 (-554))
- (-4 *9 (-13 (-302) (-145))) (-4 *12 (-934 *9 *11 *10))
- (-4 *10 (-13 (-836) (-602 (-1158)))) (-4 *11 (-780))
- (-5 *2
- (-2 (|:| |eqzro| (-631 *12)) (|:| |neqzro| (-631 *12))
- (|:| |wcond| (-631 (-937 *9)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1241 (-402 (-937 *9))))
- (|:| -3782 (-631 (-1241 (-402 (-937 *9)))))))))
- (-5 *1 (-909 *9 *10 *11 *12)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-554)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *8 (-302))
- (-4 *9 (-934 *8 *6 *7))
- (-5 *2 (-2 (|:| -2598 (-1154 *9)) (|:| |polval| (-1154 *8))))
- (-5 *1 (-729 *6 *7 *8 *9)) (-5 *3 (-1154 *9)) (-5 *4 (-1154 *8)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-358)) (-5 *1 (-753 *2 *3)) (-4 *2 (-695 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-358)))))
+ (-12 (-5 *4 (-635 *3)) (-4 *3 (-1059 *5 *6 *7 *8)) (-4 *5 (-450))
+ (-4 *6 (-784)) (-4 *7 (-841)) (-4 *8 (-1053 *5 *6 *7))
+ (-5 *2 (-112)) (-5 *1 (-1094 *5 *6 *7 *8 *3)))))
+(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-224))
+ (-5 *2 (-1025)) (-5 *1 (-742)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-221)) (|:| |xend| (-221))
- (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221)))
- (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221)))
- (|:| |abserr| (-221)) (|:| |relerr| (-221))))
- (-5 *2 (-374)) (-5 *1 (-201)))))
+ (-12 (-4 *4 (-1039))
+ (-4 *2 (-13 (-403) (-1028 *4) (-362) (-1185) (-283)))
+ (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1222 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-911)) (-4 *5 (-1039))
+ (-4 *2 (-13 (-403) (-1028 *5) (-362) (-1185) (-283)))
+ (-5 *1 (-441 *5 *3 *2)) (-4 *3 (-1222 *5)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1087)) (-5 *1 (-103 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1087)))))
+(((*1 *2)
+ (-12 (-4 *3 (-550)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-416 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-550) (-841) (-1028 (-558)))) (-5 *1 (-187 *3 *2))
+ (-4 *2 (-13 (-27) (-1185) (-429 (-168 *3))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-550) (-841) (-1028 (-558))))
+ (-5 *1 (-187 *4 *2)) (-4 *2 (-13 (-27) (-1185) (-429 (-168 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *1 (-1189 *3 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1163))
+ (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *1 (-1189 *4 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *4))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-638 *3)) (-4 *3 (-1039))
+ (-5 *1 (-705 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1039)) (-5 *1 (-827 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-580 *2)) (-4 *2 (-543)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1200)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446))
- (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112))
- (-5 *1 (-973 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7))))
+ (|partial| -12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-978 *4 *5 *6 *7 *3)) (-4 *3 (-1059 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446))
- (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112))
- (-5 *1 (-1089 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7)))))
+ (|partial| -12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1094 *4 *5 *6 *7 *3)) (-4 *3 (-1059 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-378))) (-5 *1 (-1030)) (-5 *3 (-378)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
+ (-5 *1 (-742)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1039)) (-5 *2 (-558)) (-5 *1 (-441 *4 *3 *5))
+ (-4 *3 (-1222 *4))
+ (-4 *5 (-13 (-403) (-1028 *4) (-362) (-1185) (-283))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-550)) (-5 *2 (-635 *3)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-416 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-550) (-841) (-1028 (-558)))) (-5 *1 (-187 *3 *2))
+ (-4 *2 (-13 (-27) (-1185) (-429 (-168 *3))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-550) (-841) (-1028 (-558))))
+ (-5 *1 (-187 *4 *2)) (-4 *2 (-13 (-27) (-1185) (-429 (-168 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *1 (-1189 *3 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1163))
+ (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
+ (-5 *1 (-1189 *4 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *4))))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-906)) (-5 *3 (-631 (-258))) (-5 *1 (-256))))
- ((*1 *1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-258)))))
+ (-12 (-5 *3 (-114)) (-4 *4 (-1039)) (-5 *1 (-705 *4 *2))
+ (-4 *2 (-638 *4))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-827 *2)) (-4 *2 (-1039)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
+(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-580 *3)) (-4 *3 (-543)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450))
+ (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112))
+ (-5 *1 (-978 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450))
+ (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112))
+ (-5 *1 (-1094 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
+ (-5 *1 (-742)))))
(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-112)) (-5 *5 (-1084 (-758))) (-5 *6 (-758))
+ (-12 (-5 *4 (-112)) (-5 *5 (-1089 (-762))) (-5 *6 (-762))
(-5 *2
- (-2 (|:| |contp| (-554))
- (|:| -2316 (-631 (-2 (|:| |irr| *3) (|:| -4218 (-554)))))))
- (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-631 *2)) (-4 *2 (-1082)) (-4 *2 (-1195)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-402 (-554))) (-4 *1 (-544 *3))
- (-4 *3 (-13 (-399) (-1180)))))
- ((*1 *1 *2) (-12 (-4 *1 (-544 *2)) (-4 *2 (-13 (-399) (-1180)))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-544 *2)) (-4 *2 (-13 (-399) (-1180))))))
-(((*1 *2 *1)
- (-12 (-14 *3 (-631 (-1158))) (-4 *4 (-170))
- (-14 *6
- (-1 (-112) (-2 (|:| -2717 *5) (|:| -1407 *2))
- (-2 (|:| -2717 *5) (|:| -1407 *2))))
- (-4 *2 (-234 (-2563 *3) (-758))) (-5 *1 (-455 *3 *4 *5 *2 *6 *7))
- (-4 *5 (-836)) (-4 *7 (-934 *4 *2 (-850 *3))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-554)) (-4 *1 (-1075 *3)) (-4 *3 (-1195)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-546)) (-5 *1 (-611 *2 *3)) (-4 *3 (-1217 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-554)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836))
- (-5 *2 (-1246)) (-5 *1 (-443 *4 *5 *6 *7)) (-4 *7 (-934 *4 *5 *6)))))
+ (-2 (|:| |contp| (-558))
+ (|:| -1849 (-635 (-2 (|:| |irr| *3) (|:| -1896 (-558)))))))
+ (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-550)) (-5 *2 (-635 *3)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-416 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1000 *3)) (-4 *3 (-1200)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3)) (-4 *3 (-1087)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-360 (-114))) (-4 *2 (-1039)) (-5 *1 (-705 *2 *4))
+ (-4 *4 (-638 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-360 (-114))) (-5 *1 (-827 *2)) (-4 *2 (-1039)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-762)) (-5 *1 (-580 *2)) (-4 *2 (-543)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-942 (-406 (-558)))) (-5 *4 (-1163))
+ (-5 *5 (-1081 (-834 (-224)))) (-5 *2 (-635 (-224))) (-5 *1 (-299)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450))
+ (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112))
+ (-5 *1 (-978 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450))
+ (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112))
+ (-5 *1 (-1094 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
+ (-5 *1 (-742)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))))
(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-631 (-1241 *4))) (-5 *1 (-361 *3 *4))
- (-4 *3 (-362 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-4 *3 (-546))
- (-5 *2 (-631 (-1241 *3))))))
-(((*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-620)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-402 (-554))) (-5 *1 (-314 *3 *4 *5))
- (-4 *3 (-13 (-358) (-836))) (-14 *4 (-1158)) (-14 *5 *3))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-995 *3)) (-4 *3 (-1195)) (-4 *3 (-1082))
- (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-275))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-951 *3)) (-4 *3 (-952)))))
+ (-12 (-4 *3 (-550)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-416 *3)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1186 *2)) (-4 *2 (-1087)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1107)) (-5 *2 (-1251)) (-5 *1 (-822)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1195)) (-5 *1 (-1114 *4 *2))
- (-4 *2 (-13 (-592 (-554) *4) (-10 -7 (-6 -4373) (-6 -4374))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-836)) (-4 *3 (-1195)) (-5 *1 (-1114 *3 *2))
- (-4 *2 (-13 (-592 (-554) *3) (-10 -7 (-6 -4373) (-6 -4374)))))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1085 *2 *3 *4 *5 *6)) (-4 *2 (-1082)) (-4 *3 (-1082))
- (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)))))
-(((*1 *1 *2)
- (-12
- (-5 *2
- (-631
- (-2
- (|:| -2564
- (-2 (|:| |xinit| (-221)) (|:| |xend| (-221))
- (|:| |fn| (-1241 (-311 (-221))))
- (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221)))
- (|:| |g| (-311 (-221))) (|:| |abserr| (-221))
- (|:| |relerr| (-221))))
- (|:| -2701
- (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374))
- (|:| |expense| (-374)) (|:| |accuracy| (-374))
- (|:| |intermediateResults| (-374)))))))
- (-5 *1 (-790)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-546) (-836) (-1023 (-554))))
- (-5 *2 (-167 (-311 *4))) (-5 *1 (-184 *4 *3))
- (-4 *3 (-13 (-27) (-1180) (-425 (-167 *4))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))))
- (-5 *2 (-167 *3)) (-5 *1 (-1184 *4 *3))
- (-4 *3 (-13 (-27) (-1180) (-425 *4))))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836))
- (-4 *3 (-1048 *5 *6 *7))
- (-5 *2 (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4))))
- (-5 *1 (-1055 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1158)) (-5 *2 (-1162)) (-5 *1 (-1161)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1158)) (-4 *5 (-358)) (-5 *2 (-631 (-1189 *5)))
- (-5 *1 (-1249 *5)) (-5 *4 (-1189 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-906)) (-5 *1 (-773)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1 (-530) (-631 (-530)))) (-5 *1 (-114))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-530) (-631 (-530)))) (-5 *1 (-114))))
- ((*1 *1) (-5 *1 (-568))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-675 *8)) (-5 *4 (-758)) (-4 *8 (-934 *5 *7 *6))
- (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-836) (-602 (-1158))))
- (-4 *7 (-780))
- (-5 *2
- (-631
- (-2 (|:| |det| *8) (|:| |rows| (-631 (-554)))
- (|:| |cols| (-631 (-554))))))
- (-5 *1 (-909 *5 *6 *7 *8)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020))
- (-5 *1 (-742)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-631 *6) "failed") (-554) *6 *6)) (-4 *6 (-358))
- (-4 *7 (-1217 *6))
- (-5 *2 (-2 (|:| |answer| (-575 (-402 *7))) (|:| |a0| *6)))
- (-5 *1 (-564 *6 *7)) (-5 *3 (-402 *7)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1085 *2 *3 *4 *5 *6)) (-4 *2 (-1082)) (-4 *3 (-1082))
- (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)))))
-(((*1 *1 *1 *1) (-5 *1 (-848))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -2999 *3) (|:| |coef1| (-769 *3)) (|:| |coef2| (-769 *3))))
- (-5 *1 (-769 *3)) (-4 *3 (-546)) (-4 *3 (-1034)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-631 *2)) (-5 *1 (-480 *2)) (-4 *2 (-1217 (-554))))))
-(((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-413 *3)) (-4 *3 (-546))))
+ (|partial| -12 (-5 *3 (-762)) (-5 *1 (-580 *2)) (-4 *2 (-543))))
((*1 *2 *3)
- (-12 (-5 *3 (-631 (-2 (|:| -2270 *4) (|:| -3308 (-554)))))
- (-4 *4 (-1217 (-554))) (-5 *2 (-758)) (-5 *1 (-436 *4)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836))
- (-4 *3 (-1048 *5 *6 *7))
- (-5 *2 (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4))))
- (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))))
+ (-12 (-5 *2 (-2 (|:| -2579 *3) (|:| -1951 (-762)))) (-5 *1 (-580 *3))
+ (-4 *3 (-543)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-558)) (-4 *1 (-1080 *3)) (-4 *3 (-1200)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-358) (-1023 (-402 *2)))) (-5 *2 (-554))
- (-5 *1 (-115 *4 *3)) (-4 *3 (-1217 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-221) (-221))) (-5 *4 (-1076 (-374)))
- (-5 *5 (-631 (-258))) (-5 *2 (-1242)) (-5 *1 (-250))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-221) (-221))) (-5 *4 (-1076 (-374)))
- (-5 *2 (-1242)) (-5 *1 (-250))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-862 (-1 (-221) (-221)))) (-5 *4 (-1076 (-374)))
- (-5 *5 (-631 (-258))) (-5 *2 (-1242)) (-5 *1 (-250))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-862 (-1 (-221) (-221)))) (-5 *4 (-1076 (-374)))
- (-5 *2 (-1242)) (-5 *1 (-250))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-864 (-1 (-221) (-221)))) (-5 *4 (-1076 (-374)))
- (-5 *5 (-631 (-258))) (-5 *2 (-1243)) (-5 *1 (-250))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-864 (-1 (-221) (-221)))) (-5 *4 (-1076 (-374)))
- (-5 *2 (-1243)) (-5 *1 (-250))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-928 (-221)) (-221))) (-5 *4 (-1076 (-374)))
- (-5 *5 (-631 (-258))) (-5 *2 (-1243)) (-5 *1 (-250))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-928 (-221)) (-221))) (-5 *4 (-1076 (-374)))
- (-5 *2 (-1243)) (-5 *1 (-250))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1076 (-374)))
- (-5 *5 (-631 (-258))) (-5 *2 (-1243)) (-5 *1 (-250))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1076 (-374)))
- (-5 *2 (-1243)) (-5 *1 (-250))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-928 (-221)) (-221) (-221))) (-5 *4 (-1076 (-374)))
- (-5 *5 (-631 (-258))) (-5 *2 (-1243)) (-5 *1 (-250))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-928 (-221)) (-221) (-221))) (-5 *4 (-1076 (-374)))
- (-5 *2 (-1243)) (-5 *1 (-250))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-867 (-1 (-221) (-221) (-221)))) (-5 *4 (-1076 (-374)))
- (-5 *5 (-631 (-258))) (-5 *2 (-1243)) (-5 *1 (-250))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-867 (-1 (-221) (-221) (-221)))) (-5 *4 (-1076 (-374)))
- (-5 *2 (-1243)) (-5 *1 (-250))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-289 *7)) (-5 *4 (-1158)) (-5 *5 (-631 (-258)))
- (-4 *7 (-425 *6)) (-4 *6 (-13 (-546) (-836) (-1023 (-554))))
- (-5 *2 (-1242)) (-5 *1 (-251 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1074 (-374))) (-5 *5 (-631 (-258))) (-5 *2 (-1242))
- (-5 *1 (-254 *3)) (-4 *3 (-13 (-602 (-530)) (-1082)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1074 (-374))) (-5 *2 (-1242)) (-5 *1 (-254 *3))
- (-4 *3 (-13 (-602 (-530)) (-1082)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224)))
+ (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
+ (-5 *2 (-1143 (-224))) (-5 *1 (-191))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-862 *6)) (-5 *4 (-1074 (-374))) (-5 *5 (-631 (-258)))
- (-4 *6 (-13 (-602 (-530)) (-1082))) (-5 *2 (-1242))
- (-5 *1 (-254 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-862 *5)) (-5 *4 (-1074 (-374)))
- (-4 *5 (-13 (-602 (-530)) (-1082))) (-5 *2 (-1242))
- (-5 *1 (-254 *5))))
+ (-12 (-5 *3 (-315 (-224))) (-5 *4 (-635 (-1163)))
+ (-5 *5 (-1081 (-834 (-224)))) (-5 *2 (-1143 (-224))) (-5 *1 (-299))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-864 *6)) (-5 *4 (-1074 (-374))) (-5 *5 (-631 (-258)))
- (-4 *6 (-13 (-602 (-530)) (-1082))) (-5 *2 (-1243))
- (-5 *1 (-254 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-864 *5)) (-5 *4 (-1074 (-374)))
- (-4 *5 (-13 (-602 (-530)) (-1082))) (-5 *2 (-1243))
- (-5 *1 (-254 *5))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1074 (-374))) (-5 *5 (-631 (-258))) (-5 *2 (-1243))
- (-5 *1 (-254 *3)) (-4 *3 (-13 (-602 (-530)) (-1082)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1074 (-374))) (-5 *2 (-1243)) (-5 *1 (-254 *3))
- (-4 *3 (-13 (-602 (-530)) (-1082)))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-867 *6)) (-5 *4 (-1074 (-374))) (-5 *5 (-631 (-258)))
- (-4 *6 (-13 (-602 (-530)) (-1082))) (-5 *2 (-1243))
- (-5 *1 (-254 *6))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-867 *5)) (-5 *4 (-1074 (-374)))
- (-4 *5 (-13 (-602 (-530)) (-1082))) (-5 *2 (-1243))
- (-5 *1 (-254 *5))))
+ (-12 (-5 *3 (-1246 (-315 (-224)))) (-5 *4 (-635 (-1163)))
+ (-5 *5 (-1081 (-834 (-224)))) (-5 *2 (-1143 (-224))) (-5 *1 (-299)))))
+(((*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-624)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450))
+ (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112))
+ (-5 *1 (-978 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-631 (-221))) (-5 *2 (-1242)) (-5 *1 (-255))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-631 (-221))) (-5 *4 (-631 (-258))) (-5 *2 (-1242))
- (-5 *1 (-255))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-631 (-928 (-221)))) (-5 *2 (-1242)) (-5 *1 (-255))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-928 (-221)))) (-5 *4 (-631 (-258)))
- (-5 *2 (-1242)) (-5 *1 (-255))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-631 (-221))) (-5 *2 (-1243)) (-5 *1 (-255))))
- ((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-631 (-221))) (-5 *4 (-631 (-258))) (-5 *2 (-1243))
- (-5 *1 (-255)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020))
- (-5 *1 (-739)))))
-(((*1 *1) (-5 *1 (-139))))
-(((*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-836)) (-5 *1 (-126 *3)))))
-(((*1 *1 *2) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1195))))
- ((*1 *2 *1) (-12 (-5 *2 (-631 (-1158))) (-5 *1 (-1158)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-848)))))
-(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
- (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221)))
- (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-67 DOT))))
- (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-221))
- (-5 *2 (-1020)) (-5 *1 (-742))))
- ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
- (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221)))
- (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-67 DOT))))
- (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-383))
- (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-742)))))
-(((*1 *2)
- (-12 (-5 *2 (-906)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-906)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-429))
- (-5 *2
- (-631
- (-3 (|:| -4309 (-1158))
- (|:| -2453 (-631 (-3 (|:| S (-1158)) (|:| P (-937 (-554)))))))))
- (-5 *1 (-1162)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020))
+ (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450))
+ (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112))
+ (-5 *1 (-1094 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
(-5 *1 (-742)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-729)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))))
(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-554)) (-5 *1 (-1177 *3)) (-4 *3 (-1034)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-554)) (-5 *1 (-237))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-631 (-1140))) (-5 *2 (-554)) (-5 *1 (-237)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-631 *1)) (-4 *1 (-297))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-114))))
- ((*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-600 *3)) (-4 *3 (-836))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-114)) (-5 *3 (-631 *5)) (-5 *4 (-758)) (-4 *5 (-836))
- (-5 *1 (-600 *5)))))
+ (-12 (-4 *4 (-550)) (-5 *2 (-762)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-416 *4)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-466)) (-5 *4 (-911)) (-5 *2 (-1251)) (-5 *1 (-1247)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1226 *3 *4 *5)) (-5 *1 (-314 *3 *4 *5))
- (-4 *3 (-13 (-358) (-836))) (-14 *4 (-1158)) (-14 *5 *3)))
- ((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-554))))
- ((*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-413 *3)) (-4 *3 (-546))))
- ((*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-685))))
+ (-12 (-5 *2 (-635 (-1186 *3))) (-5 *1 (-1186 *3)) (-4 *3 (-1087)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-812)) (-5 *4 (-52)) (-5 *2 (-1251)) (-5 *1 (-822)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-762)) (-5 *2 (-112)) (-5 *1 (-580 *3)) (-4 *3 (-543)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1159 *1)) (-5 *4 (-1163)) (-4 *1 (-27))
+ (-5 *2 (-635 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1159 *1)) (-4 *1 (-27)) (-5 *2 (-635 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-942 *1)) (-4 *1 (-27)) (-5 *2 (-635 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-841) (-550))) (-5 *2 (-635 *1))
+ (-4 *1 (-29 *4))))
((*1 *2 *1)
- (-12 (-4 *2 (-1082)) (-5 *1 (-700 *3 *2 *4)) (-4 *3 (-836))
- (-14 *4
- (-1 (-112) (-2 (|:| -2717 *3) (|:| -1407 *2))
- (-2 (|:| -2717 *3) (|:| -1407 *2)))))))
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *2 (-635 *1)) (-4 *1 (-29 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-315 (-224))) (-5 *4 (-635 (-1163)))
+ (-5 *5 (-1081 (-834 (-224)))) (-5 *2 (-1143 (-224))) (-5 *1 (-299)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-311 *3)) (-4 *3 (-546)) (-4 *3 (-836)))))
-(((*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-62 *3)) (-14 *3 (-1158))))
- ((*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-69 *3)) (-14 *3 (-1158))))
- ((*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-72 *3)) (-14 *3 (-1158))))
- ((*1 *2 *1) (-12 (-4 *1 (-390)) (-5 *2 (-1246))))
- ((*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1246)) (-5 *1 (-392))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1140)) (-5 *4 (-848)) (-5 *2 (-1246)) (-5 *1 (-1120))))
- ((*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1246)) (-5 *1 (-1120))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-631 (-848))) (-5 *2 (-1246)) (-5 *1 (-1120)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-961 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-780))
- (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546))
- (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374))
- (-5 *2
- (-2 (|:| -2794 *4) (|:| -1841 *4) (|:| |totalpts| (-554))
- (|:| |success| (-112))))
- (-5 *1 (-776)) (-5 *5 (-554)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1196 *3)) (-4 *3 (-1082)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1195))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-1140)) (-5 *1 (-974))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1158)) (-5 *3 (-1076 *4)) (-4 *4 (-1195))
- (-5 *1 (-1074 *4)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-961 *4 *5 *3 *6)) (-4 *4 (-1034)) (-4 *5 (-780))
- (-4 *3 (-836)) (-4 *6 (-1048 *4 *5 *3)) (-5 *2 (-112)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-758)) (-5 *1 (-842 *2)) (-4 *2 (-170))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1154 (-554))) (-5 *1 (-927)) (-5 *3 (-554)))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4))
- (-4 *3 (-362 *4))))
- ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
-(((*1 *1 *2) (-12 (-5 *2 (-181)) (-5 *1 (-244)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1126)) (-5 *2 (-1208 (-554))))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1241 *4)) (-5 *3 (-1102)) (-4 *4 (-344))
- (-5 *1 (-522 *4)))))
-(((*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-386)))))
+ (|partial| -12 (-5 *2 (-1 (-534) (-635 (-534)))) (-5 *1 (-114))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-534) (-635 (-534)))) (-5 *1 (-114))))
+ ((*1 *1) (-5 *1 (-572))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-978 *4 *5 *6 *7 *3)) (-4 *3 (-1059 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1094 *4 *5 *6 *7 *3)) (-4 *3 (-1059 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
+ *4 *6 *4)
+ (-12 (-5 *4 (-558)) (-5 *5 (-679 (-224))) (-5 *6 (-665 (-224)))
+ (-5 *3 (-224)) (-5 *2 (-1025)) (-5 *1 (-741)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-358) (-834)))
- (-5 *2 (-2 (|:| |start| *3) (|:| -2316 (-413 *3))))
- (-5 *1 (-179 *4 *3)) (-4 *3 (-1217 (-167 *4))))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))))
(((*1 *2 *3)
+ (-12 (-4 *4 (-550)) (-5 *2 (-762)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-416 *4)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3)) (-4 *3 (-1087)))))
+(((*1 *2 *3) (-12 (-5 *3 (-812)) (-5 *2 (-52)) (-5 *1 (-822)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
+(((*1 *1 *2 *3 *4)
(-12
(-5 *3
- (-2 (|:| -2866 (-675 (-402 (-937 *4))))
- (|:| |vec| (-631 (-402 (-937 *4)))) (|:| -4186 (-758))
- (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554)))))
- (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158))))
- (-4 *6 (-780))
+ (-635
+ (-2 (|:| |scalar| (-406 (-558))) (|:| |coeff| (-1159 *2))
+ (|:| |logand| (-1159 *2)))))
+ (-5 *4 (-635 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
+ (-4 *2 (-362)) (-5 *1 (-579 *2)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-315 (-224))) (-5 *4 (-1163))
+ (-5 *5 (-1081 (-834 (-224)))) (-5 *2 (-635 (-224))) (-5 *1 (-191))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-315 (-224))) (-5 *4 (-1163))
+ (-5 *5 (-1081 (-834 (-224)))) (-5 *2 (-635 (-224))) (-5 *1 (-299)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-841)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1163))
(-5 *2
- (-2 (|:| |partsol| (-1241 (-402 (-937 *4))))
- (|:| -3782 (-631 (-1241 (-402 (-937 *4)))))))
- (-5 *1 (-909 *4 *5 *6 *7)) (-4 *7 (-934 *4 *6 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1154 *5)) (-4 *5 (-358)) (-5 *2 (-631 *6))
- (-5 *1 (-526 *5 *6 *4)) (-4 *6 (-358)) (-4 *4 (-13 (-358) (-834))))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
- (-12 (-5 *4 (-554)) (-5 *6 (-1 (-1246) (-1241 *5) (-1241 *5) (-374)))
- (-5 *3 (-1241 (-374))) (-5 *5 (-374)) (-5 *2 (-1246))
- (-5 *1 (-775)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
- (-12 (-5 *4 (-554)) (-5 *5 (-675 (-221)))
- (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-84 FCNF))))
- (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-221))
- (-5 *2 (-1020)) (-5 *1 (-736)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-877 *4)) (-4 *4 (-1082)) (-5 *1 (-874 *4 *3))
- (-4 *3 (-1082)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1034)) (-4 *3 (-836))
- (-4 *5 (-261 *3)) (-4 *6 (-780)) (-5 *2 (-631 (-758)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-836))
- (-4 *5 (-261 *4)) (-4 *6 (-780)) (-5 *2 (-631 (-758))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2))
- (-4 *2 (-13 (-425 *3) (-1180))))))
+ (-2 (|:| |zeros| (-1143 (-224))) (|:| |ones| (-1143 (-224)))
+ (|:| |singularities| (-1143 (-224)))))
+ (-5 *1 (-105)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-978 *4 *5 *6 *7 *3)) (-4 *3 (-1059 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1094 *4 *5 *6 *7 *3)) (-4 *3 (-1059 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *5 (-1145))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-82 PDEF))))
+ (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1025))
+ (-5 *1 (-741)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-928 *3)) (-4 *3 (-13 (-358) (-1180) (-987)))
- (-5 *1 (-174 *3)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-1034)) (-4 *2 (-358))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-358)) (-5 *1 (-645 *4 *2))
- (-4 *2 (-642 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1246)) (-5 *1 (-386))))
- ((*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-386)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1195)) (-5 *2 (-112)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-631 *6)) (-4 *1 (-961 *3 *4 *5 *6)) (-4 *3 (-1034))
- (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5))
- (-4 *3 (-546)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-550)) (-5 *2 (-762)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-416 *4)))))
+(((*1 *1 *1 *1) (-5 *1 (-161)))
+ ((*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-161)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-635 (-1186 *3))) (-5 *1 (-1186 *3)) (-4 *3 (-1087)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-311)) (-5 *1 (-820)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-758)) (-4 *4 (-13 (-546) (-145)))
- (-5 *1 (-1211 *4 *2)) (-4 *2 (-1217 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-398 *3)) (-4 *3 (-399))))
- ((*1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-398 *3)) (-4 *3 (-399))))
- ((*1 *2 *2) (-12 (-5 *2 (-906)) (|has| *1 (-6 -4364)) (-4 *1 (-399))))
- ((*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-906))))
- ((*1 *2 *1) (-12 (-4 *1 (-854 *3)) (-5 *2 (-1138 (-554))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-631 *4)) (-4 *4 (-836)) (-5 *2 (-631 (-650 *4 *5)))
- (-5 *1 (-615 *4 *5 *6)) (-4 *5 (-13 (-170) (-704 (-402 (-554)))))
- (-14 *6 (-906)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-358)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3))
- (-5 *1 (-515 *3 *4 *5 *2)) (-4 *2 (-673 *3 *4 *5)))))
-(((*1 *2 *3 *2)
+ (|partial| -12 (-5 *3 (-762)) (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
+(((*1 *2 *1) (-12 (-5 *1 (-579 *2)) (-4 *2 (-362)))))
+(((*1 *2 *3)
(-12
- (-5 *2
- (-631
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-758)) (|:| |poli| *3)
- (|:| |polj| *3))))
- (-4 *5 (-780)) (-4 *3 (-934 *4 *5 *6)) (-4 *4 (-446)) (-4 *6 (-836))
- (-5 *1 (-443 *4 *5 *6 *3)))))
-(((*1 *1 *1) (-4 *1 (-617)))
+ (-5 *3
+ (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224)))
+ (|:| -1626 (-1081 (-834 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
+ (-5 *2 (-112)) (-5 *1 (-299)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1222 (-558))))))
+(((*1 *2 *3)
+ (-12 (|has| *2 (-6 (-4384 "*"))) (-4 *5 (-372 *2)) (-4 *6 (-372 *2))
+ (-4 *2 (-1039)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1222 *2))
+ (-4 *4 (-677 *2 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-635 *7)) (-4 *7 (-1059 *3 *4 *5 *6)) (-4 *3 (-450))
+ (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5))
+ (-5 *1 (-978 *3 *4 *5 *6 *7))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-618 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987) (-1180))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-631 (-52))) (-5 *1 (-877 *3)) (-4 *3 (-1082)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020))
- (-5 *1 (-734)))))
-(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-780))
- (-4 *8 (-836)) (-4 *9 (-1048 *6 *7 *8))
- (-5 *2
- (-2 (|:| -4329 (-631 *9)) (|:| -2143 *4) (|:| |ineq| (-631 *9))))
- (-5 *1 (-973 *6 *7 *8 *9 *4)) (-5 *3 (-631 *9))
- (-4 *4 (-1054 *6 *7 *8 *9))))
- ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-780))
- (-4 *8 (-836)) (-4 *9 (-1048 *6 *7 *8))
- (-5 *2
- (-2 (|:| -4329 (-631 *9)) (|:| -2143 *4) (|:| |ineq| (-631 *9))))
- (-5 *1 (-1089 *6 *7 *8 *9 *4)) (-5 *3 (-631 *9))
- (-4 *4 (-1054 *6 *7 *8 *9)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1138 (-554))) (-5 *1 (-989 *3)) (-14 *3 (-554)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-806 *3)) (-4 *3 (-836)) (-5 *1 (-658 *3)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-675 *3))
- (-4 *3 (-13 (-302) (-10 -8 (-15 -1565 ((-413 $) $)))))
- (-4 *4 (-1217 *3)) (-5 *1 (-493 *3 *4 *5)) (-4 *5 (-404 *3 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1138 (-631 (-554)))) (-5 *1 (-868)))))
+ (-12 (-5 *2 (-635 *7)) (-4 *7 (-1059 *3 *4 *5 *6)) (-4 *3 (-450))
+ (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5))
+ (-5 *1 (-1094 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
+ (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224))) (-5 *4 (-224))
+ (-5 *2 (-1025)) (-5 *1 (-741)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-1168))) (-5 *1 (-182)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 (-432)))))
- (-5 *1 (-1162)))))
-(((*1 *2 *1) (-12 (-4 *1 (-546)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-178))))
- ((*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-667))))
- ((*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-955))))
- ((*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-1056))))
- ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1100)))))
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-157 *3 *2))
+ (-4 *2 (-429 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-841) (-550))) (-5 *1 (-157 *4 *2))
+ (-4 *2 (-429 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1163))))
+ ((*1 *1 *1) (-4 *1 (-159))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-550)) (-5 *2 (-762)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-416 *4)))))
+(((*1 *2) (-12 (-5 *2 (-1120 (-224))) (-5 *1 (-1183)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-112)) (-5 *1 (-820)))))
+(((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-864))))
+ ((*1 *2 *3) (-12 (-5 *3 (-933 *2)) (-5 *1 (-972 *2)) (-4 *2 (-1039)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-635
+ (-2 (|:| |scalar| (-406 (-558))) (|:| |coeff| (-1159 *3))
+ (|:| |logand| (-1159 *3)))))
+ (-5 *1 (-579 *3)) (-4 *3 (-362)))))
+(((*1 *1 *1 *1) (-4 *1 (-301))) ((*1 *1 *1) (-4 *1 (-301))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-978 *4 *5 *6 *7 *3)) (-4 *3 (-1059 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1094 *4 *5 *6 *7 *3)) (-4 *3 (-1059 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
+ (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224)))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FCN JACOBF JACEPS))))
+ (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-76 G JACOBG JACGEP))))
+ (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-740)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2))
- (-4 *2 (-13 (-425 *3) (-1180))))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-758)) (-4 *4 (-344)) (-5 *1 (-212 *4 *2))
- (-4 *2 (-1217 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-675 *3)) (-4 *3 (-302)) (-5 *1 (-686 *3)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1241 (-675 *4))) (-4 *4 (-170))
- (-5 *2 (-1241 (-675 (-937 *4)))) (-5 *1 (-185 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))))
+ (-12 (-4 *4 (-550)) (-5 *2 (-762)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-416 *4)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1158)) (-5 *3 (-631 (-530))) (-5 *1 (-530)))))
-(((*1 *2 *3 *2)
- (-12 (-4 *2 (-13 (-358) (-834))) (-5 *1 (-179 *2 *3))
- (-4 *3 (-1217 (-167 *2)))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-358) (-834))) (-5 *1 (-179 *2 *3))
- (-4 *3 (-1217 (-167 *2))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-114)) (-4 *4 (-1034)) (-5 *1 (-701 *4 *2))
- (-4 *2 (-634 *4))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-823 *2)) (-4 *2 (-1034)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-358) (-145) (-1023 (-402 (-554)))))
- (-4 *5 (-1217 *4))
- (-5 *2 (-631 (-2 (|:| |deg| (-758)) (|:| -4329 *5))))
- (-5 *1 (-796 *4 *5 *3 *6)) (-4 *3 (-642 *5))
- (-4 *6 (-642 (-402 *5))))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020))
- (-5 *1 (-742)))))
+ (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-841) (-550))) (-5 *1 (-157 *4 *2))
+ (-4 *2 (-429 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1079 *2)) (-4 *2 (-429 *4)) (-4 *4 (-13 (-841) (-550)))
+ (-5 *1 (-157 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1079 *1)) (-4 *1 (-159))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1163)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1145)) (-5 *2 (-558)) (-5 *1 (-1182 *4))
+ (-4 *4 (-1039)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-112)) (-5 *1 (-820)))))
+(((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-156))))
+ ((*1 *2 *1) (-12 (-5 *2 (-156)) (-5 *1 (-864))))
+ ((*1 *2 *3) (-12 (-5 *3 (-933 *2)) (-5 *1 (-972 *2)) (-4 *2 (-1039)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-635 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
+ (-5 *1 (-579 *3)) (-4 *3 (-362)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-604 *1)) (-4 *1 (-301)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1246 *4)) (-4 *4 (-631 (-558)))
+ (-5 *2 (-1246 (-406 (-558)))) (-5 *1 (-1273 *4)))))
(((*1 *2)
- (-12 (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836))
- (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-1246))
- (-5 *1 (-973 *3 *4 *5 *6 *7)) (-4 *7 (-1054 *3 *4 *5 *6))))
+ (-12 (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841))
+ (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-1251))
+ (-5 *1 (-978 *3 *4 *5 *6 *7)) (-4 *7 (-1059 *3 *4 *5 *6))))
((*1 *2)
- (-12 (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836))
- (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-1246))
- (-5 *1 (-1089 *3 *4 *5 *6 *7)) (-4 *7 (-1054 *3 *4 *5 *6)))))
+ (-12 (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841))
+ (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-1251))
+ (-5 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *7 (-1059 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
+ (-12 (-5 *3 (-679 (-224))) (-5 *4 (-558)) (-5 *5 (-224))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL))))
+ (-5 *2 (-1025)) (-5 *1 (-740))))
+ ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
+ (-12 (-5 *3 (-679 (-224))) (-5 *4 (-558)) (-5 *5 (-224))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL))))
+ (-5 *8 (-387)) (-5 *2 (-1025)) (-5 *1 (-740)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-114)) (-5 *4 (-762)) (-4 *5 (-450)) (-4 *5 (-841))
+ (-4 *5 (-1028 (-558))) (-4 *5 (-550)) (-5 *1 (-41 *5 *2))
+ (-4 *2 (-429 *5))
+ (-4 *2
+ (-13 (-362) (-301)
+ (-10 -8 (-15 -1874 ((-1112 *5 (-604 $)) $))
+ (-15 -1885 ((-1112 *5 (-604 $)) $))
+ (-15 -3220 ($ (-1112 *5 (-604 $))))))))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-558)) (-5 *1 (-1182 *3)) (-4 *3 (-1039)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-820)) (-5 *3 (-1145)))))
+(((*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-156))))
+ ((*1 *2 *3) (-12 (-5 *3 (-933 *2)) (-5 *1 (-972 *2)) (-4 *2 (-1039)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-579 *3)) (-4 *3 (-362)))))
+(((*1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-635 (-114))))))
+(((*1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-129)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1246 *4)) (-4 *4 (-631 (-558)))
+ (-5 *2 (-1246 (-558))) (-5 *1 (-1273 *4)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1145)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-1251))
+ (-5 *1 (-978 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1145)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-1251))
+ (-5 *1 (-1094 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
+ (-12 (-5 *4 (-558)) (-5 *5 (-679 (-224)))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-84 FCNF))))
+ (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-224))
+ (-5 *2 (-1025)) (-5 *1 (-740)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-2 (|:| -3852 (-558)) (|:| -1849 (-635 *3))))
+ (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-450)) (-4 *3 (-841)) (-4 *3 (-1028 (-558)))
+ (-4 *3 (-550)) (-5 *1 (-41 *3 *2)) (-4 *2 (-429 *3))
+ (-4 *2
+ (-13 (-362) (-301)
+ (-10 -8 (-15 -1874 ((-1112 *3 (-604 $)) $))
+ (-15 -1885 ((-1112 *3 (-604 $)) $))
+ (-15 -3220 ($ (-1112 *3 (-604 $))))))))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))))
+(((*1 *2 *1) (-12 (-4 *1 (-839)) (-5 *2 (-558))))
+ ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-895 *3)) (-4 *3 (-1087))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1056 *4 *3)) (-4 *4 (-13 (-839) (-362)))
+ (-4 *3 (-1222 *4)) (-5 *2 (-558))))
+ ((*1 *2 *3)
+ (|partial| -12
+ (-4 *4 (-13 (-550) (-841) (-1028 *2) (-631 *2) (-450)))
+ (-5 *2 (-558)) (-5 *1 (-1103 *4 *3))
+ (-4 *3 (-13 (-27) (-1185) (-429 *4)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1163)) (-5 *5 (-834 *3))
+ (-4 *3 (-13 (-27) (-1185) (-429 *6)))
+ (-4 *6 (-13 (-550) (-841) (-1028 *2) (-631 *2) (-450)))
+ (-5 *2 (-558)) (-5 *1 (-1103 *6 *3))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-1163)) (-5 *5 (-1145))
+ (-4 *6 (-13 (-550) (-841) (-1028 *2) (-631 *2) (-450)))
+ (-5 *2 (-558)) (-5 *1 (-1103 *6 *3))
+ (-4 *3 (-13 (-27) (-1185) (-429 *6)))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-406 (-942 *4))) (-4 *4 (-450)) (-5 *2 (-558))
+ (-5 *1 (-1104 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1163)) (-5 *5 (-834 (-406 (-942 *6))))
+ (-5 *3 (-406 (-942 *6))) (-4 *6 (-450)) (-5 *2 (-558))
+ (-5 *1 (-1104 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-406 (-942 *6))) (-5 *4 (-1163))
+ (-5 *5 (-1145)) (-4 *6 (-450)) (-5 *2 (-558)) (-5 *1 (-1104 *6))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-558)) (-5 *1 (-1182 *3)) (-4 *3 (-1039)))))
+(((*1 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-820)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1199)) (-5 *1 (-179))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1199)) (-5 *1 (-671))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1199)) (-5 *1 (-960))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1199)) (-5 *1 (-1061))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1105)))))
+(((*1 *2 *3) (-12 (-5 *3 (-933 *2)) (-5 *1 (-972 *2)) (-4 *2 (-1039)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-576)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-301)) (-5 *3 (-1163)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1246 *4)) (-4 *4 (-631 (-558))) (-5 *2 (-112))
+ (-5 *1 (-1273 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087)) (-4 *4 (-1087))
+ (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
+ (-12 (-5 *3 (-679 (-224))) (-5 *4 (-558)) (-5 *5 (-224))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1025))
+ (-5 *1 (-740)))))
+(((*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-417 *3)) (-4 *3 (-550))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-2 (|:| -2522 *4) (|:| -4323 (-558)))))
+ (-4 *4 (-1222 (-558))) (-5 *2 (-762)) (-5 *1 (-440 *4)))))
+(((*1 *1 *1 *1) (-4 *1 (-142)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-157 *3 *2))
+ (-4 *2 (-429 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-1181))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1181)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3))
- (-4 *5 (-368 *3)) (-5 *2 (-112))))
+ (|partial| -12 (-4 *3 (-450)) (-4 *4 (-841)) (-4 *5 (-784))
+ (-5 *2 (-112)) (-5 *1 (-977 *3 *4 *5 *6))
+ (-4 *6 (-939 *3 *5 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034))
- (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-544 *2)) (-4 *2 (-13 (-399) (-1180)))))
- ((*1 *1 *1 *1) (-4 *1 (-780))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-221)) (-5 *4 (-554))
- (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085))))
- (-5 *2 (-1020)) (-5 *1 (-735)))))
-(((*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-836)) (-5 *1 (-478 *3)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-13 (-1087) (-34)))
+ (-4 *4 (-13 (-1087) (-34))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-52)) (-5 *1 (-820)))))
+(((*1 *2 *3) (-12 (-5 *3 (-933 *2)) (-5 *1 (-972 *2)) (-4 *2 (-1039)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-573)))))
(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221)))
- (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221))
- (|:| |relerr| (-221))))
- (-5 *2 (-631 (-221))) (-5 *1 (-200)))))
-(((*1 *1 *1 *2 *2)
- (|partial| -12 (-5 *2 (-906)) (-5 *1 (-1083 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-4 *1 (-321 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-779)))))
-(((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836))
- (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-3 *3 (-631 *1)))
- (-4 *1 (-1054 *4 *5 *6 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-631 *1)) (-4 *1 (-297))))
- ((*1 *1 *1) (-4 *1 (-297)))
- ((*1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848))))
- ((*1 *1 *1) (-5 *1 (-848))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12
- (-5 *3
- (-1 (-3 (-2 (|:| -1709 *4) (|:| |coeff| *4)) "failed") *4))
- (-4 *4 (-358)) (-5 *1 (-564 *4 *2)) (-4 *2 (-1217 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-631 (-631 (-631 *4)))) (-5 *3 (-631 *4)) (-4 *4 (-836))
- (-5 *1 (-1166 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-675 *3)) (-4 *3 (-302)) (-5 *1 (-686 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-567))))
- ((*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-567)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4374)) (-4 *1 (-240 *2)) (-4 *2 (-1195)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-145)) (-4 *2 (-302)) (-4 *2 (-446)) (-4 *3 (-836))
- (-4 *4 (-780)) (-5 *1 (-972 *2 *3 *4 *5)) (-4 *5 (-934 *2 *4 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-311 (-554))) (-5 *1 (-1101))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2))
- (-4 *2 (-13 (-425 *3) (-1180))))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1195)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1080 *3)) (-4 *3 (-1082)) (-5 *2 (-112)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-631 (-554))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1034))
- (-14 *4 (-631 (-1158)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2))
- (-4 *2 (-13 (-425 *3) (-987)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3))
- (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3))
- (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4))))
- ((*1 *1 *1) (-4 *1 (-279)))
- ((*1 *1 *1)
- (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158)))
- (-14 *3 (-631 (-1158))) (-4 *4 (-382))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-650 *3 *4)) (-4 *3 (-836))
- (-4 *4 (-13 (-170) (-704 (-402 (-554))))) (-5 *1 (-615 *3 *4 *5))
- (-14 *5 (-906))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1143 *3))))
+ (-12 (-5 *3 (-604 *5)) (-4 *5 (-429 *4)) (-4 *4 (-1028 (-558)))
+ (-4 *4 (-13 (-841) (-550))) (-5 *2 (-1159 *5)) (-5 *1 (-32 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-604 *1)) (-4 *1 (-1039)) (-4 *1 (-301))
+ (-5 *2 (-1159 *1)))))
+(((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-552 *3)) (-4 *3 (-543))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-306)) (-5 *2 (-417 *3))
+ (-5 *1 (-733 *4 *5 *6 *3)) (-4 *3 (-939 *6 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-306))
+ (-4 *7 (-939 *6 *4 *5)) (-5 *2 (-417 (-1159 *7)))
+ (-5 *1 (-733 *4 *5 *6 *7)) (-5 *3 (-1159 *7))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-450)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841))
+ (-5 *2 (-417 *1)) (-4 *1 (-939 *3 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-841)) (-4 *5 (-784)) (-4 *6 (-450)) (-5 *2 (-417 *3))
+ (-5 *1 (-969 *4 *5 *6 *3)) (-4 *3 (-939 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-450))
+ (-4 *7 (-939 *6 *4 *5)) (-5 *2 (-417 (-1159 (-406 *7))))
+ (-5 *1 (-1158 *4 *5 *6 *7)) (-5 *3 (-1159 (-406 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1204))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-550)) (-5 *2 (-417 *3)) (-5 *1 (-1225 *4 *3))
+ (-4 *3 (-13 (-1222 *4) (-550) (-10 -8 (-15 -2699 ($ $ $)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1036 *4 *5)) (-4 *4 (-13 (-839) (-306) (-146) (-1012)))
+ (-14 *5 (-635 (-1163)))
+ (-5 *2
+ (-635 (-1133 *4 (-529 (-855 *6)) (-855 *6) (-771 *4 (-855 *6)))))
+ (-5 *1 (-1272 *4 *5 *6)) (-14 *6 (-635 (-1163))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087)) (-4 *4 (-1087))
+ (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
+ (-12 (-5 *4 (-558)) (-5 *5 (-1145)) (-5 *6 (-679 (-224)))
+ (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))))
+ (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-71 PEDERV))))
+ (-5 *10 (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))
+ (-5 *3 (-224)) (-5 *2 (-1025)) (-5 *1 (-740)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 (-1143 *4) (-1143 *4))) (-5 *2 (-1143 *4))
+ (-5 *1 (-1271 *4)) (-4 *4 (-1200))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-635 (-1143 *5)) (-635 (-1143 *5)))) (-5 *4 (-558))
+ (-5 *2 (-635 (-1143 *5))) (-5 *1 (-1271 *5)) (-4 *5 (-1200)))))
+(((*1 *2)
+ (-12 (-5 *2 (-911)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558)))))
((*1 *2 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554))))
- (-5 *1 (-1144 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-758)) (-4 *4 (-13 (-1034) (-704 (-402 (-554)))))
- (-4 *5 (-836)) (-5 *1 (-1257 *4 *5 *2)) (-4 *2 (-1262 *5 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-758)) (-5 *1 (-1261 *3 *4))
- (-4 *4 (-704 (-402 (-554)))) (-4 *3 (-836)) (-4 *4 (-170)))))
-(((*1 *2 *1) (-12 (-5 *2 (-631 (-631 (-221)))) (-5 *1 (-911)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1146 *2 *3)) (-14 *2 (-906)) (-4 *3 (-1034)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554)))))))
- (-5 *2 (-631 *4)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1217 *4))))
- ((*1 *2 *3 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554)))))))
- (-5 *2 (-631 *3)) (-5 *1 (-1110 *4 *3)) (-4 *4 (-1217 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-906)) (-5 *2 (-1154 *4)) (-5 *1 (-352 *4))
- (-4 *4 (-344)))))
+ (-12 (-5 *2 (-911)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-635 *2)) (-4 *2 (-543)) (-5 *1 (-158 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-1181)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-52)) (-5 *1 (-820)))))
+(((*1 *2 *3) (-12 (-5 *3 (-933 *2)) (-5 *1 (-972 *2)) (-4 *2 (-1039)))))
+(((*1 *2 *1) (-12 (-5 *2 (-212 4 (-129))) (-5 *1 (-573)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1154 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3)))))
-(((*1 *1) (-5 *1 (-55))))
+ (-12 (-4 *3 (-1039)) (-4 *4 (-1222 *3)) (-5 *1 (-163 *3 *4 *2))
+ (-4 *2 (-1222 *4))))
+ ((*1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1200)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-546)) (-5 *2 (-631 *3)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-412 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-980 *2)) (-4 *2 (-1195)))))
-(((*1 *2 *2)
- (-12 (-4 *2 (-13 (-358) (-834))) (-5 *1 (-179 *2 *3))
- (-4 *3 (-1217 (-167 *2))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-631 (-554))) (-5 *2 (-889 (-554))) (-5 *1 (-902))))
- ((*1 *2) (-12 (-5 *2 (-889 (-554))) (-5 *1 (-902)))))
-(((*1 *2 *1) (-12 (-5 *2 (-631 (-1158))) (-5 *1 (-49))))
- ((*1 *2 *1) (-12 (-5 *2 (-631 (-500))) (-5 *1 (-477)))))
-(((*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-911)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-150 *2 *3 *4)) (-14 *2 (-906)) (-4 *3 (-358))
- (-14 *4 (-978 *2 *3))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *2 (-170)) (-5 *1 (-284 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1217 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-170)) (-4 *2 (-546))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-702 *2 *3 *4 *5 *6)) (-4 *2 (-170))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-358))))
- ((*1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-358))))
- ((*1 *1 *1) (|partial| -4 *1 (-709)))
- ((*1 *1 *1) (|partial| -4 *1 (-713)))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836))
- (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
- (-5 *1 (-763 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-4 *1 (-1051 *3 *2)) (-4 *3 (-13 (-834) (-358)))
- (-4 *2 (-1217 *3))))
+ (-12 (-5 *3 (-1036 *4 *5)) (-4 *4 (-13 (-839) (-306) (-146) (-1012)))
+ (-14 *5 (-635 (-1163))) (-5 *2 (-635 (-635 (-1014 (-406 *4)))))
+ (-5 *1 (-1272 *4 *5 *6)) (-14 *6 (-635 (-1163)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-635 (-942 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-839) (-306) (-146) (-1012)))
+ (-5 *2 (-635 (-635 (-1014 (-406 *5))))) (-5 *1 (-1272 *5 *6 *7))
+ (-14 *6 (-635 (-1163))) (-14 *7 (-635 (-1163)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-942 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-839) (-306) (-146) (-1012)))
+ (-5 *2 (-635 (-635 (-1014 (-406 *5))))) (-5 *1 (-1272 *5 *6 *7))
+ (-14 *6 (-635 (-1163))) (-14 *7 (-635 (-1163)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-942 *4)))
+ (-4 *4 (-13 (-839) (-306) (-146) (-1012)))
+ (-5 *2 (-635 (-635 (-1014 (-406 *4))))) (-5 *1 (-1272 *4 *5 *6))
+ (-14 *5 (-635 (-1163))) (-14 *6 (-635 (-1163))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087)) (-4 *4 (-1087))
+ (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
+ (-12 (-5 *4 (-558)) (-5 *5 (-1145)) (-5 *6 (-679 (-224)))
+ (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))))
+ (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))
+ (-5 *3 (-224)) (-5 *2 (-1025)) (-5 *1 (-740)))))
+(((*1 *2)
+ (-12 (-5 *2 (-911)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558)))))
((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-549)))))
+ (-12 (-5 *2 (-911)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))))
+(((*1 *1 *1) (-4 *1 (-142)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-157 *3 *2))
+ (-4 *2 (-429 *3))))
+ ((*1 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1145)) (-5 *1 (-1181)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1000 *3)) (-4 *3 (-1200)) (-5 *2 (-635 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-813)) (-5 *2 (-52)) (-5 *1 (-820)))))
+(((*1 *2 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1 (-378))) (-5 *1 (-1030)))))
+(((*1 *2 *3) (-12 (-5 *3 (-933 *2)) (-5 *1 (-972 *2)) (-4 *2 (-1039)))))
+(((*1 *1) (-5 *1 (-572))))
+(((*1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1200)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-937 (-402 (-554)))) (-5 *4 (-1158))
- (-5 *5 (-1076 (-829 (-221)))) (-5 *2 (-631 (-221))) (-5 *1 (-295)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-758)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-114))))
- ((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-114))))
+ (-12 (-5 *3 (-635 (-942 (-558)))) (-5 *4 (-635 (-1163)))
+ (-5 *2 (-635 (-635 (-378)))) (-5 *1 (-1013)) (-5 *5 (-378))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1036 *4 *5)) (-4 *4 (-13 (-839) (-306) (-146) (-1012)))
+ (-14 *5 (-635 (-1163))) (-5 *2 (-635 (-635 (-1014 (-406 *4)))))
+ (-5 *1 (-1272 *4 *5 *6)) (-14 *6 (-635 (-1163)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-635 (-942 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-839) (-306) (-146) (-1012)))
+ (-5 *2 (-635 (-635 (-1014 (-406 *5))))) (-5 *1 (-1272 *5 *6 *7))
+ (-14 *6 (-635 (-1163))) (-14 *7 (-635 (-1163)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-635 (-942 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-839) (-306) (-146) (-1012)))
+ (-5 *2 (-635 (-635 (-1014 (-406 *5))))) (-5 *1 (-1272 *5 *6 *7))
+ (-14 *6 (-635 (-1163))) (-14 *7 (-635 (-1163)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-942 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-839) (-306) (-146) (-1012)))
+ (-5 *2 (-635 (-635 (-1014 (-406 *5))))) (-5 *1 (-1272 *5 *6 *7))
+ (-14 *6 (-635 (-1163))) (-14 *7 (-635 (-1163)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-942 *4)))
+ (-4 *4 (-13 (-839) (-306) (-146) (-1012)))
+ (-5 *2 (-635 (-635 (-1014 (-406 *4))))) (-5 *1 (-1272 *4 *5 *6))
+ (-14 *5 (-635 (-1163))) (-14 *6 (-635 (-1163))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087)) (-4 *4 (-1087))
+ (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-558)) (-5 *5 (-679 (-224)))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))))
+ (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) (-5 *3 (-224))
+ (-5 *2 (-1025)) (-5 *1 (-740)))))
+(((*1 *1 *2 *3)
+ (-12
+ (-5 *3
+ (-635
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
+ (|:| |xpnt| (-558)))))
+ (-4 *2 (-550)) (-5 *1 (-417 *2))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |contp| (-558))
+ (|:| -1849 (-635 (-2 (|:| |irr| *4) (|:| -1896 (-558)))))))
+ (-4 *4 (-1222 (-558))) (-5 *2 (-417 *4)) (-5 *1 (-440 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *2 (-406 (-558))) (-5 *1 (-117 *4)) (-14 *4 *3)
+ (-5 *3 (-558))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-859 *3)) (-5 *2 (-558))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1034)) (-4 *3 (-836))
- (-4 *5 (-261 *3)) (-4 *6 (-780)) (-5 *2 (-758))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-836))
- (-4 *5 (-261 *4)) (-4 *6 (-780)) (-5 *2 (-758))))
- ((*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-836)) (-5 *2 (-758)))))
-(((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-446)) (-4 *3 (-836)) (-4 *3 (-1023 (-554)))
- (-4 *3 (-546)) (-5 *1 (-41 *3 *2)) (-4 *2 (-425 *3))
- (-4 *2
- (-13 (-358) (-297)
- (-10 -8 (-15 -2810 ((-1107 *3 (-600 $)) $))
- (-15 -2822 ((-1107 *3 (-600 $)) $))
- (-15 -3075 ($ (-1107 *3 (-600 $))))))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2))
- (-4 *2 (-13 (-425 *3) (-1180))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1217 (-402 (-554)))) (-5 *1 (-898 *3 *2))
- (-4 *2 (-1217 (-402 *3))))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -3324 *6) (|:| |sol?| (-112))) (-554)
- *6))
- (-4 *6 (-358)) (-4 *7 (-1217 *6))
+ (-12 (-5 *2 (-406 (-558))) (-5 *1 (-861 *4)) (-14 *4 *3)
+ (-5 *3 (-558))))
+ ((*1 *2 *1 *3)
+ (-12 (-14 *4 *3) (-5 *2 (-406 (-558))) (-5 *1 (-862 *4 *5))
+ (-5 *3 (-558)) (-4 *5 (-859 *4))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-1002)) (-5 *2 (-406 (-558)))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *1 (-1056 *2 *3)) (-4 *2 (-13 (-839) (-362)))
+ (-4 *3 (-1222 *2))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1224 *2 *3)) (-4 *3 (-783))
+ (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3220 (*2 (-1163))))
+ (-4 *2 (-1039)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2))
+ (-4 *4 (-13 (-841) (-550))))))
+(((*1 *2 *1) (|partial| -12 (-5 *1 (-364 *2)) (-4 *2 (-1087))))
+ ((*1 *2 *1) (|partial| -12 (-5 *2 (-1145)) (-5 *1 (-1181)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-699 *3)) (-5 *1 (-818 *2 *3)) (-4 *3 (-1039)))))
+(((*1 *2 *3) (-12 (-5 *3 (-933 *2)) (-5 *1 (-972 *2)) (-4 *2 (-1039)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-571))))
+ ((*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-571)))))
+(((*1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1200)))))
+(((*1 *2)
+ (-12 (-5 *2 (-762)) (-5 *1 (-120 *3)) (-4 *3 (-1222 (-558)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-762)) (-5 *1 (-120 *3)) (-4 *3 (-1222 (-558))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1036 *4 *5)) (-4 *4 (-13 (-839) (-306) (-146) (-1012)))
+ (-14 *5 (-635 (-1163)))
(-5 *2
- (-3 (-2 (|:| |answer| (-402 *7)) (|:| |a0| *6))
- (-2 (|:| -1709 (-402 *7)) (|:| |coeff| (-402 *7))) "failed"))
- (-5 *1 (-564 *6 *7)) (-5 *3 (-402 *7)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-554))) (-4 *3 (-1034)) (-5 *1 (-584 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-554))) (-4 *1 (-1201 *3)) (-4 *3 (-1034))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-554))) (-4 *1 (-1232 *3)) (-4 *3 (-1034)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-519)))))
-(((*1 *1 *1) (-5 *1 (-1046))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-928 *3)) (-4 *3 (-13 (-358) (-1180) (-987)))
- (-5 *1 (-174 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1034)) (-4 *2 (-673 *4 *5 *6))
- (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1217 *4)) (-4 *5 (-368 *4))
- (-4 *6 (-368 *4)))))
+ (-635 (-2 (|:| -1680 (-1159 *4)) (|:| -4205 (-635 (-942 *4))))))
+ (-5 *1 (-1272 *4 *5 *6)) (-14 *6 (-635 (-1163)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-839) (-306) (-146) (-1012)))
+ (-5 *2
+ (-635 (-2 (|:| -1680 (-1159 *5)) (|:| -4205 (-635 (-942 *5))))))
+ (-5 *1 (-1272 *5 *6 *7)) (-5 *3 (-635 (-942 *5)))
+ (-14 *6 (-635 (-1163))) (-14 *7 (-635 (-1163)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-839) (-306) (-146) (-1012)))
+ (-5 *2
+ (-635 (-2 (|:| -1680 (-1159 *5)) (|:| -4205 (-635 (-942 *5))))))
+ (-5 *1 (-1272 *5 *6 *7)) (-5 *3 (-635 (-942 *5)))
+ (-14 *6 (-635 (-1163))) (-14 *7 (-635 (-1163)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-839) (-306) (-146) (-1012)))
+ (-5 *2
+ (-635 (-2 (|:| -1680 (-1159 *5)) (|:| -4205 (-635 (-942 *5))))))
+ (-5 *1 (-1272 *5 *6 *7)) (-5 *3 (-635 (-942 *5)))
+ (-14 *6 (-635 (-1163))) (-14 *7 (-635 (-1163)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-839) (-306) (-146) (-1012)))
+ (-5 *2
+ (-635 (-2 (|:| -1680 (-1159 *4)) (|:| -4205 (-635 (-942 *4))))))
+ (-5 *1 (-1272 *4 *5 *6)) (-5 *3 (-635 (-942 *4)))
+ (-14 *5 (-635 (-1163))) (-14 *6 (-635 (-1163))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087)) (-4 *4 (-1087))
+ (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-558)) (-5 *5 (-679 (-224)))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))))
+ (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))
+ (-5 *3 (-224)) (-5 *2 (-1025)) (-5 *1 (-740)))))
+(((*1 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-435))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-435)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2))
+ (-4 *4 (-13 (-841) (-550))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1181)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-315 *4)) (-4 *4 (-13 (-819) (-841) (-1039)))
+ (-5 *2 (-1145)) (-5 *1 (-817 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-315 *5)) (-5 *4 (-112))
+ (-4 *5 (-13 (-819) (-841) (-1039))) (-5 *2 (-1145))
+ (-5 *1 (-817 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-813)) (-5 *4 (-315 *5))
+ (-4 *5 (-13 (-819) (-841) (-1039))) (-5 *2 (-1251))
+ (-5 *1 (-817 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-813)) (-5 *4 (-315 *6)) (-5 *5 (-112))
+ (-4 *6 (-13 (-819) (-841) (-1039))) (-5 *2 (-1251))
+ (-5 *1 (-817 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-819)) (-5 *2 (-1145))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-819)) (-5 *3 (-112)) (-5 *2 (-1145))))
+ ((*1 *2 *3 *1) (-12 (-4 *1 (-819)) (-5 *3 (-813)) (-5 *2 (-1251))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-4 *1 (-819)) (-5 *3 (-813)) (-5 *4 (-112)) (-5 *2 (-1251)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-31))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-49))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 (-1122))) (-5 *1 (-132))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 (-1122))) (-5 *1 (-137))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-153))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 (-1122))) (-5 *1 (-160))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-217))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-666))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1009))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1054))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 (-1122))) (-5 *1 (-1083)))))
+(((*1 *2 *3) (-12 (-5 *3 (-933 *2)) (-5 *1 (-972 *2)) (-4 *2 (-1039)))))
+(((*1 *2 *2 *3 *3)
+ (|partial| -12 (-5 *3 (-1163))
+ (-4 *4 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558))))
+ (-5 *1 (-569 *4 *2))
+ (-4 *2 (-13 (-1185) (-949) (-1126) (-29 *4))))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-293 *2)) (-4 *2 (-717)) (-4 *2 (-1200)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-631
- (-2 (|:| -4186 (-758))
- (|:| |eqns|
- (-631
- (-2 (|:| |det| *7) (|:| |rows| (-631 (-554)))
- (|:| |cols| (-631 (-554))))))
- (|:| |fgb| (-631 *7)))))
- (-4 *7 (-934 *4 *6 *5)) (-4 *4 (-13 (-302) (-145)))
- (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780)) (-5 *2 (-758))
- (-5 *1 (-909 *4 *5 *6 *7)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1241 (-1158))) (-5 *3 (-1241 (-447 *4 *5 *6 *7)))
- (-5 *1 (-447 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-906))
- (-14 *6 (-631 (-1158))) (-14 *7 (-1241 (-675 *4)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1158)) (-5 *3 (-1241 (-447 *4 *5 *6 *7)))
- (-5 *1 (-447 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-906))
- (-14 *6 (-631 *2)) (-14 *7 (-1241 (-675 *4)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1241 (-447 *3 *4 *5 *6))) (-5 *1 (-447 *3 *4 *5 *6))
- (-4 *3 (-170)) (-14 *4 (-906)) (-14 *5 (-631 (-1158)))
- (-14 *6 (-1241 (-675 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1241 (-1158))) (-5 *1 (-447 *3 *4 *5 *6))
- (-4 *3 (-170)) (-14 *4 (-906)) (-14 *5 (-631 (-1158)))
- (-14 *6 (-1241 (-675 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1158)) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170))
- (-14 *4 (-906)) (-14 *5 (-631 *2)) (-14 *6 (-1241 (-675 *3)))))
- ((*1 *1)
- (-12 (-5 *1 (-447 *2 *3 *4 *5)) (-4 *2 (-170)) (-14 *3 (-906))
- (-14 *4 (-631 (-1158))) (-14 *5 (-1241 (-675 *2))))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1222 (-558)))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1222 (-558))))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-635 (-942 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-839) (-306) (-146) (-1012)))
+ (-5 *2 (-635 (-1036 *5 *6))) (-5 *1 (-1272 *5 *6 *7))
+ (-14 *6 (-635 (-1163))) (-14 *7 (-635 (-1163)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-635 (-942 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-839) (-306) (-146) (-1012)))
+ (-5 *2 (-635 (-1036 *5 *6))) (-5 *1 (-1272 *5 *6 *7))
+ (-14 *6 (-635 (-1163))) (-14 *7 (-635 (-1163)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-942 *4)))
+ (-4 *4 (-13 (-839) (-306) (-146) (-1012)))
+ (-5 *2 (-635 (-1036 *4 *5))) (-5 *1 (-1272 *4 *5 *6))
+ (-14 *5 (-635 (-1163))) (-14 *6 (-635 (-1163))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-882 *3)) (-4 *3 (-1087))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087)) (-4 *4 (-1087))
+ (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-224))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN))))
+ (-5 *2 (-1025)) (-5 *1 (-739)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-435)))))
(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1140)) (-4 *1 (-359 *2 *4)) (-4 *2 (-1082))
- (-4 *4 (-1082))))
+ (-12 (-5 *3 (-1145)) (-4 *1 (-363 *2 *4)) (-4 *2 (-1087))
+ (-4 *4 (-1087))))
((*1 *1 *2)
- (-12 (-4 *1 (-359 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-836)))))
+ (-12 (-4 *1 (-363 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-1087)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2))
+ (-4 *4 (-13 (-841) (-550))))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-393))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-1180)))))
+(((*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-62 *3)) (-14 *3 (-1163))))
+ ((*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-69 *3)) (-14 *3 (-1163))))
+ ((*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-72 *3)) (-14 *3 (-1163))))
+ ((*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-1251))))
+ ((*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1251)) (-5 *1 (-396))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1145)) (-5 *4 (-853)) (-5 *2 (-1251)) (-5 *1 (-1125))))
+ ((*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1251)) (-5 *1 (-1125))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-635 (-853))) (-5 *2 (-1251)) (-5 *1 (-1125)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-815)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-96))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-109))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-114))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1087)) (-4 *2 (-1087))))
+ ((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1145))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-437 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-504)) (-5 *1 (-481))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-604 *3)) (-4 *3 (-841))))
+ ((*1 *2 *1) (-12 (-4 *1 (-826 *2)) (-4 *2 (-1087))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-955))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1062 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-504)) (-5 *1 (-1102))))
+ ((*1 *1 *1) (-5 *1 (-1163))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-362))
+ (-5 *2 (-635 (-2 (|:| C (-679 *5)) (|:| |g| (-1246 *5)))))
+ (-5 *1 (-968 *5)) (-5 *3 (-679 *5)) (-5 *4 (-1246 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1222 *5)) (-4 *5 (-362))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
+ (-5 *1 (-568 *5 *3)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-293 *2)) (-4 *2 (-717)) (-4 *2 (-1200)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1124 *3 *4)) (-14 *3 (-906)) (-4 *4 (-358))
- (-5 *1 (-978 *3 *4)))))
-(((*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-302))))
+ (-12 (-5 *2 (-1261 (-1163) *3)) (-4 *3 (-1039)) (-5 *1 (-1268 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1261 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039))
+ (-5 *1 (-1270 *3 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433))))
((*1 *2 *3)
- (-12 (-5 *2 (-1160 (-402 (-554)))) (-5 *1 (-186)) (-5 *3 (-554))))
- ((*1 *1 *1) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1195))))
- ((*1 *1 *1) (-4 *1 (-854 *2)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-958 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-779))
- (-4 *4 (-836)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780))
- (-4 *5 (-836)) (-5 *2 (-758)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1154 *3)) (-5 *1 (-899 *3)) (-4 *3 (-302)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-707)) (-5 *2 (-906))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-709)) (-5 *2 (-758)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-675 *4)) (-4 *4 (-358)) (-5 *2 (-1154 *4))
- (-5 *1 (-526 *4 *5 *6)) (-4 *5 (-358)) (-4 *6 (-13 (-358) (-834))))))
-(((*1 *1 *1 *1) (-4 *1 (-141)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-156 *3 *2))
- (-4 *2 (-425 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-539)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-563 *3)) (-4 *3 (-1028 (-558)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087)) (-4 *4 (-1087))
+ (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-679 (-224))) (-5 *4 (-558)) (-5 *2 (-1025))
+ (-5 *1 (-739)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-435)))))
+(((*1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-1200)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2))
+ (-4 *4 (-13 (-841) (-550))))))
+(((*1 *2 *1) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-393))))
+ ((*1 *2 *1) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-1180)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-815)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-558)) (-5 *3 (-911)) (-5 *1 (-689))))
+ ((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *2 (-679 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5))
+ (-4 *5 (-362)) (-5 *1 (-968 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-402 (-554))) (-4 *5 (-780)) (-4 *6 (-836))
- (-4 *7 (-546)) (-4 *8 (-934 *7 *5 *6))
- (-5 *2 (-2 (|:| -1407 (-758)) (|:| -1490 *9) (|:| |radicand| *9)))
- (-5 *1 (-938 *5 *6 *7 *8 *9)) (-5 *4 (-758))
- (-4 *9
- (-13 (-358)
- (-10 -8 (-15 -3075 ($ *8)) (-15 -2810 (*8 $)) (-15 -2822 (*8 $))))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))))
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1222 *5)) (-4 *5 (-362))
+ (-5 *2
+ (-2 (|:| |ir| (-579 (-406 *6))) (|:| |specpart| (-406 *6))
+ (|:| |polypart| *6)))
+ (-5 *1 (-568 *5 *6)) (-5 *3 (-406 *6)))))
+(((*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-390)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-635 (-293 *3))) (-5 *1 (-293 *3)) (-4 *3 (-550))
+ (-4 *3 (-1200)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-635 (-2 (|:| |k| (-1163)) (|:| |c| (-1268 *3)))))
+ (-5 *1 (-1268 *3)) (-4 *3 (-1039))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-635 (-2 (|:| |k| *3) (|:| |c| (-1270 *3 *4)))))
+ (-5 *1 (-1270 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| -3646 *1) (|:| -4360 *1) (|:| |associate| *1)))
- (-4 *1 (-546)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-911)))))
+ (-12 (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087)) (-4 *4 (-1087))
+ (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
+ (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-224))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN))))
+ (-5 *2 (-1025)) (-5 *1 (-739)))))
+(((*1 *1 *1) (-4 *1 (-651))) ((*1 *1 *1) (-5 *1 (-1107))))
+(((*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-435)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-635 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2))
+ (-4 *4 (-13 (-841) (-550))))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-393))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-1180)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-815)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-635 *2)) (-4 *2 (-939 *4 *5 *6)) (-4 *4 (-362))
+ (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
+ (-5 *1 (-448 *4 *5 *6 *2))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-362))
+ (-5 *2
+ (-2 (|:| R (-679 *6)) (|:| A (-679 *6)) (|:| |Ainv| (-679 *6))))
+ (-5 *1 (-968 *6)) (-5 *3 (-679 *6)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-615 *4 *5))
+ (-5 *3
+ (-1 (-2 (|:| |ans| *4) (|:| -3425 *4) (|:| |sol?| (-112)))
+ (-558) *4))
+ (-4 *4 (-362)) (-4 *5 (-1222 *4)) (-5 *1 (-568 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1251)) (-5 *1 (-390))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-390)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-894)) (-5 *2 (-413 (-1154 *1))) (-5 *3 (-1154 *1)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-559 *3)) (-4 *3 (-1023 (-554)))))
+ (-12 (-4 *4 (-450))
+ (-5 *2
+ (-635
+ (-2 (|:| |eigval| (-3 (-406 (-942 *4)) (-1152 (-1163) (-942 *4))))
+ (|:| |eigmult| (-762))
+ (|:| |eigvec| (-635 (-679 (-406 (-942 *4))))))))
+ (-5 *1 (-291 *4)) (-5 *3 (-679 (-406 (-942 *4)))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1267 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039))
+ (-5 *2 (-810 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082))
- (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-112)))))
-(((*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-746)))))
-(((*1 *1 *1 *1) (-5 *1 (-160)))
- ((*1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-160)))))
-(((*1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-129)))))
-(((*1 *1 *1) (-4 *1 (-647))) ((*1 *1 *1) (-5 *1 (-1102))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836))
- (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-631 *4))
- (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1246)) (-5 *1 (-1161)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-374)) (-5 *3 (-1140)) (-5 *1 (-97))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-374)) (-5 *3 (-1140)) (-5 *1 (-97)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-546)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2510 *3)))
- (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-675 *3)) (-4 *3 (-1034)) (-5 *1 (-676 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4)))
- (-5 *2 (-1241 *1)) (-4 *1 (-337 *3 *4 *5)))))
-(((*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-97)))))
+ (-12 (-4 *2 (-837)) (-5 *1 (-1269 *3 *2)) (-4 *3 (-1039)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-911)) (-5 *1 (-1088 *3 *4)) (-14 *3 *2)
+ (-14 *4 *2))))
+(((*1 *2 *3 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-739)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -2912 "void")))
+ (-5 *1 (-436)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-1138 *4) (-1138 *4))) (-5 *2 (-1138 *4))
- (-5 *1 (-1266 *4)) (-4 *4 (-1195))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-631 (-1138 *5)) (-631 (-1138 *5)))) (-5 *4 (-554))
- (-5 *2 (-631 (-1138 *5))) (-5 *1 (-1266 *5)) (-4 *5 (-1195)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-631 *4)) (-4 *4 (-358)) (-4 *2 (-1217 *4))
- (-5 *1 (-907 *4 *2)))))
+ (-12 (-5 *3 (-635 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2))
+ (-4 *4 (-13 (-841) (-550))))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-1180)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-815)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-146))
+ (-4 *3 (-306)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841))
+ (-5 *1 (-967 *3 *4 *5 *6)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12
+ (-5 *3
+ (-1 (-3 (-2 (|:| -1440 *4) (|:| |coeff| *4)) "failed") *4))
+ (-4 *4 (-362)) (-5 *1 (-568 *4 *2)) (-4 *2 (-1222 *4)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-880))
- (-5 *3
- (-2 (|:| |pde| (-631 (-311 (-221))))
- (|:| |constraints|
- (-631
- (-2 (|:| |start| (-221)) (|:| |finish| (-221))
- (|:| |grid| (-758)) (|:| |boundaryType| (-554))
- (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221))))))
- (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140))
- (|:| |tol| (-221))))
- (-5 *2 (-1020)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-758)) (-5 *1 (-842 *2)) (-4 *2 (-170)))))
-((-1274 . 734169) (-1275 . 733740) (-1276 . 733637) (-1277 . 733368)
- (-1278 . 733319) (-1279 . 733191) (-1280 . 733109) (-1281 . 732979)
- (-1282 . 732838) (-1283 . 732768) (-1284 . 732588) (-1285 . 732528)
- (-1286 . 732476) (-1287 . 732392) (-1288 . 732342) (-1289 . 732061)
- (-1290 . 731977) (-1291 . 731928) (-1292 . 731822) (-1293 . 731769)
- (-1294 . 731431) (-1295 . 731246) (-1296 . 731100) (-1297 . 730992)
- (-1298 . 730913) (-1299 . 730800) (-1300 . 730482) (-1301 . 730381)
- (-1302 . 730311) (-1303 . 730137) (-1304 . 729141) (-1305 . 728748)
- (-1306 . 728590) (-1307 . 728491) (-1308 . 728459) (-1309 . 728406)
- (-1310 . 728156) (-1311 . 727806) (-1312 . 727702) (-1313 . 727593)
- (-1314 . 727291) (-1315 . 727211) (-1316 . 726773) (-1317 . 726701)
- (-1318 . 726556) (-1319 . 726506) (-1320 . 725290) (-1321 . 725241)
- (-1322 . 725125) (-1323 . 724988) (-1324 . 724886) (-1325 . 724830)
- (-1326 . 724732) (-1327 . 724705) (-1328 . 724619) (-1329 . 724525)
- (-1330 . 724225) (-1331 . 724147) (-1332 . 724081) (-1333 . 722869)
- (-1334 . 722792) (-1335 . 722733) (-1336 . 722401) (-1337 . 722318)
- (-1338 . 722215) (-1339 . 722137) (-1340 . 722023) (-1341 . 721842)
- (-1342 . 721672) (-1343 . 721512) (-1344 . 721427) (-1345 . 721320)
- (-1346 . 721078) (-1347 . 721005) (-1348 . 720839) (-1349 . 720738)
- (-1350 . 720491) (-1351 . 720150) (-1352 . 720034) (-1353 . 719805)
- (-1354 . 719633) (-1355 . 719428) (-1356 . 719348) (-1357 . 719282)
- (-1358 . 719163) (-1359 . 719090) (-1360 . 718987) (-1361 . 718878)
- (-1362 . 718619) (-1363 . 718567) (-1364 . 718465) (-1365 . 718358)
- (-1366 . 718291) (-1367 . 718121) (-1368 . 718036) (-1369 . 717955)
- (-1370 . 717316) (-1371 . 717212) (-1372 . 717130) (-1373 . 716986)
- (-1374 . 716747) (-1375 . 716618) (-1376 . 716532) (-1377 . 716359)
- (-1378 . 716044) (-1379 . 715917) (-1380 . 715753) (-1381 . 715681)
- (-1382 . 715546) (-1383 . 715368) (-1384 . 715269) (-1385 . 715160)
- (-1386 . 714879) (-1387 . 714775) (-1388 . 714511) (-1389 . 714326)
- (-1390 . 714177) (-1391 . 713729) (-1392 . 713572) (-1393 . 713522)
- (-1394 . 713421) (-1395 . 713354) (-1396 . 713302) (-1397 . 713144)
- (-1398 . 712996) (-1399 . 712910) (-1400 . 712767) (-1401 . 712540)
- (-1402 . 712471) (-1403 . 712252) (-1404 . 712091) (-1405 . 711540)
- (-1406 . 711453) (-1407 . 710972) (-1408 . 710665) (-1409 . 710522)
- (-1410 . 710438) (-1411 . 710328) (-1412 . 710147) (-1413 . 709992)
- (-1414 . 709454) (-1415 . 709385) (-1416 . 709270) (-1417 . 709197)
- (-1418 . 709169) (-1419 . 709056) (-1420 . 704993) (-1421 . 704872)
- (-1422 . 704647) (-1423 . 704442) (-1424 . 704359) (-1425 . 704197)
- (-1426 . 704163) (-1427 . 704025) (-1428 . 703782) (-1429 . 703672)
- (-1430 . 703366) (-1431 . 703185) (-1432 . 703117) (-1433 . 702992)
- (-1434 . 702919) (-1435 . 702694) (-1436 . 702367) (-1437 . 701821)
- (-1438 . 701683) (-1439 . 701387) (-1440 . 701267) (-1441 . 701172)
- (-1442 . 701042) (-1443 . 700990) (-1444 . 700790) (-1445 . 700636)
- (-1446 . 700557) (-1447 . 700480) (-1448 . 700196) (-1449 . 699963)
- (-1450 . 699886) (-1451 . 699652) (-1452 . 699523) (-1453 . 699136)
- (-1454 . 698844) (-1455 . 698691) (-1456 . 698441) (-1457 . 697807)
- (-1458 . 697677) (-1459 . 696941) (-1460 . 696864) (-1461 . 696776)
- (-1462 . 696633) (-1463 . 696545) (-1464 . 696422) (-1465 . 694077)
- (-1466 . 693974) (-1467 . 693867) (-1468 . 693702) (-1469 . 693577)
- (-1470 . 693500) (-1471 . 693448) (-1472 . 693371) (-1473 . 693278)
- (-1474 . 693063) (-1475 . 692831) (-1476 . 692735) (-1477 . 692683)
- (-1478 . 692391) (-1479 . 692338) (-1480 . 692264) (-1481 . 691913)
- (-1482 . 691834) (-1483 . 691806) (-1484 . 691285) (-1485 . 690894)
- (-1486 . 690708) (-1487 . 690549) (-1488 . 690426) (-1489 . 690297)
- (-1490 . 689939) (-1491 . 689883) (-1492 . 689735) (-1493 . 689650)
- (-1494 . 689487) (-1495 . 688784) (-1496 . 688230) (-1497 . 688089)
- (-1498 . 687617) (-1499 . 687462) (-1500 . 687279) (-1501 . 685976)
- (-1502 . 685858) (-1503 . 685805) (-1504 . 685664) (-1505 . 685541)
- (-1506 . 685473) (-1507 . 685364) (-1508 . 684361) (-1509 . 684263)
- (-1510 . 684109) (-1511 . 684009) (-1512 . 683981) (-1513 . 683803)
- (-1514 . 683751) (-1515 . 682642) (-1516 . 681985) (-1517 . 681873)
- (-1518 . 681778) (-1519 . 681684) (-1520 . 681604) (-1521 . 681277)
- (-1522 . 681158) (-1523 . 680967) (-1524 . 680670) (-1525 . 680490)
- (-1526 . 680315) (-1527 . 680264) (-1528 . 680186) (-1529 . 680035)
- (-1530 . 679763) (-1531 . 679656) (-1532 . 679628) (-1533 . 679490)
- (-1534 . 678205) (-1535 . 678097) (-1536 . 677870) (-1537 . 677651)
- (-1538 . 677542) (-1539 . 676929) (-1540 . 675811) (-1541 . 675734)
- (-1542 . 675428) (-1543 . 675339) (-1544 . 675286) (-1545 . 675092)
- (-1546 . 674926) (-1547 . 674840) (-1548 . 674732) (-1549 . 674538)
- (-1550 . 674464) (-1551 . 674037) (-1552 . 673951) (-1553 . 671789)
- (-1554 . 671662) (-1555 . 671594) (-1556 . 669736) (-1557 . 669545)
- (-1558 . 669137) (-1559 . 669039) (-1560 . 668944) (-1561 . 668564)
- (-1562 . 668502) (-1563 . 668407) (-1564 . 668303) (-1565 . 667030)
- (-1566 . 666812) (-1567 . 666588) (-1568 . 666522) (-1569 . 666330)
- (-1570 . 666084) (-1571 . 665985) (-1572 . 665881) (-1573 . 665723)
- (-1574 . 665655) (-1575 . 665323) (-1576 . 664834) (-1577 . 664509)
- (-1578 . 664386) (-1579 . 664220) (-1580 . 664086) (-1581 . 663907)
- (-1582 . 663731) (-1583 . 663630) (-1584 . 663511) (-1585 . 663232)
- (-1586 . 663006) (-1587 . 662734) (-1588 . 662516) (-1589 . 662407)
- (-1590 . 662095) (-1591 . 662021) (-1592 . 661880) (-1593 . 661787)
- (-1594 . 661644) (-1595 . 661561) (-1596 . 661445) (-1597 . 661349)
- (-1598 . 661125) (-1599 . 661051) (-1600 . 660831) (-1601 . 660537)
- (-1602 . 660440) (-1603 . 660387) (-1604 . 660279) (-1605 . 660158)
- (-1606 . 660087) (-1607 . 660024) (-1608 . 659693) (-1609 . 659557)
- (-1610 . 659504) (-1611 . 659453) (-1612 . 659027) (-1613 . 658973)
- (-1614 . 658678) (-1615 . 658369) (-1616 . 658317) (-1617 . 658246)
- (-1618 . 658131) (-1619 . 657994) (-1620 . 657876) (-1621 . 657809)
- (-1622 . 657723) (-1623 . 656907) (-1624 . 656806) (-1625 . 656318)
- (-1626 . 656222) (-1627 . 655903) (-1628 . 655784) (-1629 . 655463)
- (-1630 . 655398) (-1631 . 655301) (-1632 . 655152) (-1633 . 655064)
- (-1634 . 655008) (-1635 . 654934) (-1636 . 654836) (-1637 . 654753)
- (-1638 . 654725) (-1639 . 654588) (-1640 . 654537) (-1641 . 654484)
- (-1642 . 654113) (-1643 . 654060) (-1644 . 653847) (-1645 . 652117)
- (-1646 . 651996) (-1647 . 651787) (-1648 . 651538) (-1649 . 651430)
- (-1650 . 651348) (-1651 . 650751) (-1652 . 650651) (-1653 . 650566)
- (-1654 . 649750) (-1655 . 647487) (-1656 . 647418) (-1657 . 647124)
- (-1658 . 646852) (-1659 . 646737) (-1660 . 646329) (-1661 . 646267)
- (-1662 . 645979) (-1663 . 645598) (-1664 . 645255) (-1665 . 644894)
- (-1666 . 644750) (-1667 . 644606) (-1668 . 639268) (-1669 . 639159)
- (-1670 . 639102) (-1671 . 638848) (-1672 . 638752) (-1673 . 638702)
- (-1674 . 638570) (-1675 . 638482) (-1676 . 638251) (-1677 . 638093)
- (-1678 . 637953) (-1679 . 637604) (-1680 . 637177) (-1681 . 637098)
- (-1682 . 637034) (-1683 . 636911) (-1684 . 636714) (-1685 . 636554)
- (-1686 . 636467) (-1687 . 636245) (-1688 . 634775) (-1689 . 634669)
- (-1690 . 634526) (-1691 . 633186) (-1692 . 633127) (-1693 . 633043)
- (-1694 . 632863) (-1695 . 632564) (-1696 . 632409) (-1697 . 632250)
- (-1698 . 632132) (-1699 . 631872) (-1700 . 631371) (-1701 . 631264)
- (-1702 . 631232) (-1703 . 631079) (-1704 . 631020) (-1705 . 630936)
- (-1706 . 630735) (-1707 . 630642) (-1708 . 630555) (-1709 . 630500)
- (-1710 . 630329) (-1711 . 629935) (-1712 . 629764) (-1713 . 629657)
- (-1714 . 629359) (-1715 . 629043) (-1716 . 628775) (-1717 . 628652)
- (-1718 . 628559) (-1719 . 628460) (-1720 . 628248) (-1721 . 628162)
- (-1722 . 628012) (-1723 . 627944) (-1724 . 627837) (-1725 . 627787)
- (-1726 . 627655) (-1727 . 627584) (-1728 . 627532) (-1729 . 627480)
- (-1730 . 627343) (-1731 . 627274) (-1732 . 626977) (-1733 . 626459)
- (-1734 . 626052) (-1735 . 624866) (-1736 . 624684) (-1737 . 624579)
- (-1738 . 624304) (-1739 . 624011) (-1740 . 623954) (-1741 . 623835)
- (-1742 . 623761) (-1743 . 623653) (-1744 . 622471) (-1745 . 622338)
- (-1746 . 622285) (-1747 . 622181) (-1748 . 622128) (-1749 . 621532)
- (-1750 . 621453) (-1751 . 621334) (-1752 . 619128) (-1753 . 619027)
- (-1754 . 618975) (-1755 . 618843) (-1756 . 618749) (-1757 . 618619)
- (-1758 . 618076) (-1759 . 617842) (-1760 . 617690) (-1761 . 617532)
- (-1762 . 617480) (-1763 . 617305) (-1764 . 617163) (-1765 . 617005)
- (-1766 . 616898) (-1767 . 616832) (-1768 . 616804) (-1769 . 616697)
- (-1770 . 616257) (-1771 . 616160) (-1772 . 615966) (-1773 . 615886)
- (-1774 . 615789) (-1775 . 615636) (-1776 . 615523) (-1777 . 615351)
- (-1778 . 615299) (-1779 . 613711) (-1780 . 613415) (-1781 . 613253)
- (-1782 . 613097) (-1783 . 612956) (-1784 . 612849) (-1785 . 612751)
- (-1786 . 612720) (-1787 . 611888) (-1788 . 611805) (-1789 . 611551)
- (-1790 . 611491) (-1791 . 611418) (-1792 . 611330) (-1793 . 611221)
- (-1794 . 611154) (-1795 . 610958) (-1796 . 610909) (-1797 . 610765)
- (-1798 . 610543) (-1799 . 610479) (-1800 . 610406) (-1801 . 610353)
- (-1802 . 610298) (-1803 . 610083) (-1804 . 609055) (-1805 . 608897)
- (-1806 . 608811) (-1807 . 608731) (-1808 . 608598) (-1809 . 608237)
- (-1810 . 608084) (-1811 . 607782) (-1812 . 607688) (-1813 . 607654)
- (-1814 . 607339) (-1815 . 607184) (-1816 . 607094) (-1817 . 606848)
- (-1818 . 606744) (-1819 . 606369) (-1820 . 606208) (-1821 . 605971)
- (-1822 . 605897) (-1823 . 605651) (-1824 . 605335) (-1825 . 605251)
- (-1826 . 605180) (-1827 . 604998) (-1828 . 604849) (-1829 . 604743)
- (-1830 . 604524) (-1831 . 604436) (-1832 . 604381) (-1833 . 604329)
- (-1834 . 604218) (-1835 . 604084) (-1836 . 603917) (-1837 . 603815)
- (-1838 . 603711) (-1839 . 603595) (-1840 . 603212) (-1841 . 602903)
- (-1842 . 602805) (-1843 . 602623) (-1844 . 602476) (-1845 . 601466)
- (-1846 . 601360) (-1847 . 601253) (-1848 . 601165) (-1849 . 600914)
- (-1850 . 600782) (-1851 . 600711) (-1852 . 600544) (-1853 . 600183)
- (-1854 . 600090) (-1855 . 600017) (-1856 . 599952) (-1857 . 599881)
- (-1858 . 599726) (-1859 . 599674) (-1860 . 599353) (-1861 . 598595)
- (-1862 . 598428) (-1863 . 598357) (-1864 . 598272) (-1865 . 597689)
- (-1866 . 596624) (-1867 . 596568) (-1868 . 596508) (-1869 . 596389)
- (-1870 . 596355) (-1871 . 595868) (-1872 . 595738) (-1873 . 595709)
- (-1874 . 595606) (-1875 . 595507) (-1876 . 595361) (-1877 . 595071)
- (-1878 . 594942) (-1879 . 594880) (-1880 . 594724) (-1881 . 594641)
- (-1882 . 594299) (-1883 . 593968) (-1884 . 593225) (-1885 . 593151)
- (-1886 . 593084) (-1887 . 593028) (-1888 . 592870) (-1889 . 592682)
- (-1890 . 592578) (-1891 . 592528) (-1892 . 592187) (-1893 . 591676)
- (-1894 . 591575) (-1895 . 591491) (-1896 . 591369) (-1897 . 591251)
- (-1898 . 590958) (-1899 . 590525) (-1900 . 580963) (-1901 . 580875)
- (-1902 . 579971) (-1903 . 579638) (-1904 . 579571) (-1905 . 579426)
- (-1906 . 579356) (-1907 . 579100) (-1908 . 578955) (-1909 . 578900)
- (-1910 . 578512) (-1911 . 578294) (-1912 . 578221) (-1913 . 578135)
- (-1914 . 578020) (-1915 . 577949) (-1916 . 577475) (-1917 . 577289)
- (-1918 . 576938) (-1919 . 576823) (-1920 . 576308) (-1921 . 576239)
- (-1922 . 576117) (-1923 . 575985) (-1924 . 575826) (-1925 . 575686)
- (-1926 . 575549) (-1927 . 575410) (-1928 . 575325) (-1929 . 575127)
- (-1930 . 574969) (-1931 . 574848) (-1932 . 574795) (-1933 . 574697)
- (-1934 . 574669) (-1935 . 574513) (-1936 . 574383) (-1937 . 574204)
- (-1938 . 573831) (-1939 . 573722) (-1940 . 573580) (-1941 . 573361)
- (-1942 . 573261) (-1943 . 573018) (-1944 . 572860) (-1945 . 572807)
- (-1946 . 572670) (-1947 . 572621) (-1948 . 572422) (-1949 . 572325)
- (-1950 . 572259) (-1951 . 572073) (-1952 . 571830) (-1953 . 571771)
- (-1954 . 571628) (-1955 . 571534) (-1956 . 571437) (-1957 . 571388)
- (-1958 . 571302) (-1959 . 571071) (-1960 . 570876) (-1961 . 570782)
- (-1962 . 570492) (-1963 . 569196) (-1964 . 569069) (-1965 . 569018)
- (-1966 . 568939) (-1967 . 568801) (-1968 . 568767) (-1969 . 568003)
- (-1970 . 567789) (-1971 . 567604) (-1972 . 567386) (-1973 . 567317)
- (-1974 . 567234) (-1975 . 567160) (-1976 . 567129) (-1977 . 567077)
- (-1978 . 567012) (-1979 . 566786) (-1980 . 566720) (-1981 . 566581)
- (-1982 . 566465) (-1983 . 566367) (-1984 . 566119) (-1985 . 566010)
- (-1986 . 565880) (-1987 . 565635) (-1988 . 565607) (-1989 . 565461)
- (-1990 . 565366) (-1991 . 565288) (-1992 . 565181) (-1993 . 564929)
- (-1994 . 564443) (-1995 . 564315) (-1996 . 564249) (-1997 . 564188)
- (-1998 . 564012) (-1999 . 563944) (-2000 . 563822) (-2001 . 563566)
- (-2002 . 563459) (-2003 . 563349) (-2004 . 563178) (-2005 . 562942)
- (-2006 . 562847) (-2007 . 562195) (-2008 . 562142) (-2009 . 562059)
- (-2010 . 561930) (-2011 . 561860) (-2012 . 561746) (-2013 . 561648)
- (-2014 . 561401) (-2015 . 561309) (-2016 . 561196) (-2017 . 561093)
- (-2018 . 561065) (-2019 . 560958) (-2020 . 560748) (-2021 . 560592)
- (-2022 . 560488) (-2023 . 560372) (-2024 . 560247) (-2025 . 560194)
- (-2026 . 559820) (-2027 . 559747) (-2028 . 559403) (-2029 . 559232)
- (-2030 . 558792) (-2031 . 558384) (-2032 . 558171) (-2033 . 558025)
- (-2034 . 557528) (-2035 . 557445) (-2036 . 556953) (-2037 . 556083)
- (-2038 . 555805) (-2039 . 555747) (-2040 . 555380) (-2041 . 555256)
- (-2042 . 555137) (-2043 . 555001) (-2044 . 554948) (-2045 . 552533)
- (-2046 . 552476) (-2047 . 552323) (-2048 . 551728) (-2049 . 551459)
- (-2050 . 551351) (-2051 . 551170) (-2052 . 551097) (-2053 . 551068)
- (-2054 . 550925) (-2055 . 550851) (-2056 . 550783) (-2057 . 550746)
- (-2058 . 550665) (-2059 . 550612) (-2060 . 550503) (-2061 . 550432)
- (-2062 . 549553) (-2063 . 549362) (-2064 . 544250) (-2065 . 544201)
- (-2066 . 543595) (-2067 . 543563) (-2068 . 543529) (-2069 . 542880)
- (-2070 . 542809) (-2071 . 542736) (-2072 . 542684) (-2073 . 542568)
- (-2074 . 542491) (-2075 . 542373) (-2076 . 542263) (-2077 . 542192)
- (-2078 . 542123) (-2079 . 541739) (-2080 . 541631) (-2081 . 541498)
- (-2082 . 541283) (-2083 . 541188) (-2084 . 541059) (-2085 . 541025)
- (-2086 . 540897) (-2087 . 540865) (-2088 . 540758) (-2089 . 540484)
- (-2090 . 540421) (-2091 . 540297) (-2092 . 540138) (-2093 . 540036)
- (-2094 . 539917) (-2095 . 539802) (-2096 . 539649) (-2097 . 539583)
- (-2098 . 539555) (-2099 . 539447) (-2100 . 539368) (-2101 . 539190)
- (-2102 . 538917) (-2103 . 538844) (-2104 . 538770) (-2105 . 538742)
- (-2106 . 538676) (-2107 . 538536) (-2108 . 538318) (-2109 . 538218)
- (-2110 . 537623) (-2111 . 537138) (-2112 . 537047) (-2113 . 536688)
- (-2114 . 536520) (-2115 . 536419) (-2116 . 536385) (-2117 . 536240)
- (-2118 . 536102) (-2119 . 535987) (-2120 . 535735) (-2121 . 535615)
- (-2122 . 535336) (-2123 . 535089) (-2124 . 534980) (-2125 . 534882)
- (-2126 . 533701) (-2127 . 533538) (-2128 . 533410) (-2129 . 533295)
- (-2130 . 533229) (-2131 . 533177) (-2132 . 533068) (-2133 . 532826)
- (-2134 . 532771) (-2135 . 532716) (-2136 . 532575) (-2137 . 532496)
- (-2138 . 532331) (-2139 . 532279) (-2140 . 532213) (-2141 . 532086)
- (-2142 . 532020) (-2143 . 531958) (-2144 . 531858) (-2145 . 531755)
- (-2146 . 531557) (-2147 . 531497) (-2148 . 531419) (-2149 . 530943)
- (-2150 . 530679) (-2151 . 530510) (-2152 . 530454) (-2153 . 530401)
- (-2154 . 530324) (-2155 . 530209) (-2156 . 530102) (-2157 . 529866)
- (-2158 . 529796) (-2159 . 529716) (-2160 . 529615) (-2161 . 529506)
- (-2162 . 529383) (-2163 . 529313) (-2164 . 529227) (-2165 . 529099)
- (-2166 . 529016) (-2167 . 528844) (-2168 . 528588) (-2169 . 528365)
- (-2170 . 528299) (-2171 . 528176) (-2172 . 528092) (-2173 . 528024)
- (-2174 . 527707) (-2175 . 527545) (-2176 . 527457) (-2177 . 527241)
- (-2178 . 526599) (-2179 . 526513) (-2180 . 526341) (-2181 . 526176)
- (-2182 . 525818) (-2183 . 525573) (-2184 . 524969) (-2185 . 524941)
- (-2186 . 524775) (-2187 . 524673) (-2188 . 524620) (-2189 . 524521)
- (-2190 . 524411) (-2191 . 524296) (-2192 . 524268) (-2193 . 524096)
- (-2194 . 524000) (-2195 . 523945) (-2196 . 523832) (-2197 . 523120)
- (-2198 . 523019) (-2199 . 522704) (-2200 . 522633) (-2201 . 522411)
- (-2202 . 520279) (-2203 . 520169) (-2204 . 520038) (-2205 . 519950)
- (-2206 . 519846) (-2207 . 519674) (-2208 . 519332) (-2209 . 519279)
- (-2210 . 519031) (-2211 . 518957) (-2212 . 518833) (-2213 . 518770)
- (-2214 . 518418) (-2215 . 518314) (-2216 . 518233) (-2217 . 518043)
- (-2218 . 517946) (-2219 . 517896) (-2220 . 517705) (-2221 . 517634)
- (-2222 . 517505) (-2223 . 517219) (-2224 . 517156) (-2225 . 517119)
- (-2226 . 516841) (-2227 . 516779) (-2228 . 516675) (-2229 . 516601)
- (-2230 . 516439) (-2231 . 516386) (-2232 . 515791) (-2233 . 515358)
- (-2234 . 515196) (-2235 . 514904) (-2236 . 514724) (-2237 . 513316)
- (-2238 . 512925) (-2239 . 512794) (-2240 . 512722) (-2241 . 512512)
- (-2242 . 512309) (-2243 . 512207) (-2244 . 512074) (-2245 . 511929)
- (-2246 . 511570) (-2247 . 511458) (-2248 . 511355) (-2249 . 511324)
- (-2250 . 511182) (-2251 . 510805) (-2252 . 510704) (-2253 . 510464)
- (-2254 . 510397) (-2255 . 510320) (-2256 . 510225) (-2257 . 509975)
- (-2258 . 509850) (-2259 . 509415) (-2260 . 509354) (-2261 . 508495)
- (-2262 . 508443) (-2263 . 508325) (-2264 . 508228) (-2265 . 508112)
- (-2266 . 508025) (-2267 . 507988) (-2268 . 507696) (-2269 . 507551)
- (-2270 . 502038) (-2271 . 501966) (-2272 . 501823) (-2273 . 501508)
- (-2274 . 501426) (-2275 . 501219) (-2276 . 501001) (-2277 . 500838)
- (-2278 . 500725) (-2279 . 493726) (-2280 . 493615) (-2281 . 493448)
- (-2282 . 493060) (-2283 . 492975) (-2284 . 492761) (-2285 . 492627)
- (-2286 . 492572) (-2287 . 492465) (-2288 . 492398) (-2289 . 492103)
- (-2290 . 492032) (-2291 . 491696) (-2292 . 491639) (-2293 . 491184)
- (-2294 . 491089) (-2295 . 491034) (-2296 . 490968) (-2297 . 490876)
- (-2298 . 490629) (-2299 . 490048) (-2300 . 489951) (-2301 . 489827)
- (-2302 . 489478) (-2303 . 489313) (-2304 . 489161) (-2305 . 489001)
- (-2306 . 488927) (-2307 . 488835) (-2308 . 488758) (-2309 . 488496)
- (-2310 . 488399) (-2311 . 488346) (-2312 . 488290) (-2313 . 488210)
- (-2314 . 488154) (-2315 . 487981) (-2316 . 487529) (-2317 . 487347)
- (-2318 . 487261) (-2319 . 487082) (-2320 . 486757) (-2321 . 486658)
- (-2322 . 486587) (-2323 . 486506) (-2324 . 486454) (-2325 . 486204)
- (-2326 . 485807) (-2327 . 485369) (-2328 . 485159) (-2329 . 485081)
- (-2330 . 484998) (-2331 . 484861) (-2332 . 484646) (-2333 . 484311)
- (-2334 . 484123) (-2335 . 484037) (-2336 . 483954) (-2337 . 483822)
- (-2338 . 483738) (-2339 . 483668) (-2340 . 482955) (-2341 . 482859)
- (-2342 . 480590) (-2343 . 480209) (-2344 . 479920) (-2345 . 479730)
- (-2346 . 479591) (-2347 . 479433) (-2348 . 479405) (-2349 . 479335)
- (-2350 . 479278) (-2351 . 479220) (-2352 . 479147) (-2353 . 478989)
- (-2354 . 478925) (-2355 . 478826) (-2356 . 478746) (-2357 . 478660)
- (-2358 . 478485) (-2359 . 478337) (-2360 . 478284) (-2361 . 478037)
- (-2362 . 477930) (-2363 . 477852) (-2364 . 477799) (-2365 . 477468)
- (-2366 . 477310) (-2367 . 476864) (-2368 . 476811) (-2369 . 476660)
- (-2370 . 476300) (-2371 . 476272) (-2372 . 476244) (-2373 . 475967)
- (-2374 . 475849) (-2375 . 475685) (-2376 . 475497) (-2377 . 475416)
- (-2378 . 475293) (-2379 . 475120) (-2380 . 474463) (-2381 . 474402)
- (-2382 . 474264) (-2383 . 472635) (-2384 . 472507) (-2385 . 472394)
- (-2386 . 468396) (-2387 . 468344) (-2388 . 468245) (-2389 . 468143)
- (-2390 . 467756) (-2391 . 467673) (-2392 . 467602) (-2393 . 466736)
- (-2394 . 466484) (-2395 . 465246) (-2396 . 464893) (-2397 . 464477)
- (-2398 . 464403) (-2399 . 464054) (-2400 . 463941) (-2401 . 463863)
- (-2402 . 463797) (-2403 . 463680) (-2404 . 463573) (-2405 . 462199)
- (-2406 . 462129) (-2407 . 461745) (-2408 . 461542) (-2409 . 461357)
- (-2410 . 460837) (-2411 . 460760) (-2412 . 459873) (-2413 . 459555)
- (-2414 . 459461) (-2415 . 459363) (-2416 . 459239) (-2417 . 459124)
- (-2418 . 459068) (-2419 . 459013) (-2420 . 458961) (-2421 . 458838)
- (-2422 . 458671) (-2423 . 458463) (-2424 . 458349) (-2425 . 458268)
- (-2426 . 458109) (-2427 . 457959) (-2428 . 457840) (-2429 . 457781)
- (-2430 . 457567) (-2431 . 457499) (-2432 . 457421) (-2433 . 456814)
- (-2434 . 456684) (-2435 . 456596) (-2436 . 456499) (-2437 . 456020)
- (-2438 . 455896) (-2439 . 455825) (-2440 . 455397) (-2441 . 455189)
- (-2442 . 455054) (-2443 . 454968) (-2444 . 453130) (-2445 . 452978)
- (-2446 . 452474) (-2447 . 452257) (-2448 . 452183) (-2449 . 451884)
- (-2450 . 451832) (-2451 . 451746) (-2452 . 451627) (-2453 . 451566)
- (-2454 . 450056) (-2455 . 450022) (-2456 . 449917) (-2457 . 449747)
- (-2458 . 449618) (-2459 . 449459) (-2460 . 449371) (-2461 . 449189)
- (-2462 . 448897) (-2463 . 447349) (-2464 . 447234) (-2465 . 447149)
- (-2466 . 446930) (-2467 . 446878) (-2468 . 446687) (-2469 . 446633)
- (-2470 . 446576) (-2471 . 446483) (-2472 . 446323) (-2473 . 446149)
- (-2474 . 446089) (-2475 . 446002) (-2476 . 445950) (-2477 . 445804)
- (-2478 . 445690) (-2479 . 445620) (-2480 . 445405) (-2481 . 445306)
- (-2482 . 445244) (-2483 . 444508) (-2484 . 444374) (-2485 . 444094)
- (-2486 . 444038) (-2487 . 443873) (-2488 . 443739) (-2489 . 443662)
- (-2490 . 443610) (-2491 . 443462) (-2492 . 443300) (-2493 . 443231)
- (-2494 . 443177) (-2495 . 443091) (-2496 . 443008) (-2497 . 442949)
- (-2498 . 442790) (-2499 . 442737) (-2500 . 442445) (-2501 . 442314)
- (-2502 . 442237) (-2503 . 442131) (-2504 . 442015) (-2505 . 441888)
- (-2506 . 441798) (-2507 . 441384) (-2508 . 441257) (-2509 . 441225)
- (-2510 . 440123) (-2511 . 440016) (-2512 . 439964) (-2513 . 439657)
- (-2514 . 439605) (-2515 . 439546) (-2516 . 439145) (-2517 . 438968)
- (-2518 . 438324) (-2519 . 438190) (-2520 . 438135) (-2521 . 438082)
- (-2522 . 438032) (-2523 . 437937) (-2524 . 437183) (-2525 . 436855)
- (-2526 . 436597) (-2527 . 436479) (-2528 . 436341) (-2529 . 436243)
- (-2530 . 435071) (-2531 . 434853) (-2532 . 434652) (-2533 . 434474)
- (-2534 . 434372) (-2535 . 433985) (-2536 . 433780) (-2537 . 433676)
- (-2538 . 433548) (-2539 . 433102) (-2540 . 432987) (-2541 . 432913)
- (-2542 . 432769) (-2543 . 432316) (-2544 . 432264) (-2545 . 432106)
- (-2546 . 432005) (-2547 . 431902) (-2548 . 431793) (-2549 . 431697)
- (-2550 . 430560) (-2551 . 430238) (-2552 . 430188) (-2553 . 430053)
- (-2554 . 429987) (-2555 . 429827) (-2556 . 429730) (-2557 . 429607)
- (-2558 . 429384) (-2559 . 429219) (-2560 . 429135) (-2561 . 428926)
- (-2562 . 428871) (-2563 . 428504) (-2564 . 428350) (-2565 . 428278)
- (-2566 . 428095) (-2567 . 428027) (-2568 . 427903) (-2569 . 427800)
- (-2570 . 427611) (-2571 . 427511) (-2572 . 427419) (-2573 . 427274)
- (-2574 . 426675) (-2575 . 426581) (-2576 . 426373) (-2577 . 425699)
- (-2578 . 425519) (-2579 . 425426) (-2580 . 425356) (-2581 . 425123)
- (-2582 . 425071) (-2583 . 424960) (-2584 . 424847) (-2585 . 424740)
- (-2586 . 424645) (-2587 . 424586) (-2588 . 424386) (-2589 . 424300)
- (-2590 . 424076) (-2591 . 423809) (-2592 . 423614) (-2593 . 423488)
- (-2594 . 423347) (-2595 . 423053) (-2596 . 422937) (-2597 . 422563)
- (-2598 . 422465) (-2599 . 422395) (-2600 . 421976) (-2601 . 421857)
- (-2602 . 421727) (-2603 . 421067) (-2604 . 421015) (-2605 . 420877)
- (-2606 . 420560) (-2607 . 420478) (-2608 . 420025) (-2609 . 419941)
- (-2610 . 419862) (-2611 . 419503) (-2612 . 419469) (-2613 . 419382)
- (-2614 . 419329) (-2615 . 419261) (-2616 . 419090) (-2617 . 418963)
- (-2618 . 418790) (-2619 . 418610) (-2620 . 418555) (-2621 . 418502)
- (-2622 . 418436) (-2623 . 418265) (-2624 . 418178) (-2625 . 416636)
- (-2626 . 416534) (-2627 . 416391) (-2628 . 416331) (-2629 . 416279)
- (-2630 . 415998) (-2631 . 415828) (-2632 . 415615) (-2633 . 415400)
- (-2634 . 415270) (-2635 . 415172) (-2636 . 415012) (-2637 . 414627)
- (-2638 . 414484) (-2639 . 414329) (-2640 . 413674) (-2641 . 413556)
- (-2642 . 413404) (-2643 . 413261) (-2644 . 413151) (-2645 . 413058)
- (-2646 . 412655) (-2647 . 412559) (-2648 . 412452) (-2649 . 412315)
- (-2650 . 412208) (-2651 . 412050) (-2652 . 411984) (-2653 . 411901)
- (-2654 . 411719) (-2655 . 410965) (-2656 . 410762) (-2657 . 410353)
- (-2658 . 410301) (-2659 . 410249) (-2660 . 410175) (-2661 . 410062)
- (-2662 . 409967) (-2663 . 409824) (-2664 . 409615) (-2665 . 409484)
- (-2666 . 409422) (-2667 . 409224) (-2668 . 409169) (-2669 . 409117)
- (-2670 . 409064) (-2671 . 408811) (-2672 . 408700) (-2673 . 408510)
- (-2674 . 408458) (-2675 . 408372) (-2676 . 408284) (-2677 . 408201)
- (-2678 . 408098) (-2679 . 408070) (-2680 . 407998) (-2681 . 407915)
- (-2682 . 407706) (-2683 . 407597) (-2684 . 407459) (-2685 . 407373)
- (-2686 . 407293) (-2687 . 407209) (-2688 . 407022) (-2689 . 406772)
- (-2690 . 406689) (-2691 . 406471) (-2692 . 406252) (-2693 . 405981)
- (-2694 . 405435) (-2695 . 405135) (-2696 . 404904) (-2697 . 404760)
- (-2698 . 404607) (-2699 . 404468) (-2700 . 404396) (-2701 . 403194)
- (-2702 . 403106) (-2703 . 402942) (-2704 . 402309) (-2705 . 402145)
- (-2706 . 401865) (-2707 . 401809) (-2708 . 401750) (-2709 . 401687)
- (-2710 . 401619) (-2711 . 401416) (-2712 . 401305) (-2713 . 401147)
- (-2714 . 401031) (-2715 . 400609) (-2716 . 400577) (-2717 . 400250)
- (-2718 . 400043) (-2719 . 399469) (-2720 . 399262) (-2721 . 399071)
- (-2722 . 398969) (-2723 . 398878) (-2724 . 398451) (-2725 . 398342)
- (-2726 . 398243) (-2727 . 397963) (-2728 . 397793) (-2729 . 397675)
- (-2730 . 397580) (-2731 . 397478) (-2732 . 397408) (-2733 . 397334)
- (-2734 . 397247) (-2735 . 397195) (-2736 . 396516) (-2737 . 396370)
- (-2738 . 396198) (-2739 . 396127) (-2740 . 395554) (-2741 . 395329)
- (-2742 . 395273) (-2743 . 395146) (-2744 . 395072) (-2745 . 394824)
- (-2746 . 394744) (-2747 . 394352) (-2748 . 394190) (-2749 . 394129)
- (-2750 . 394016) (-2751 . 393855) (-2752 . 393751) (-2753 . 393545)
- (-2754 . 393401) (-2755 . 393301) (-2756 . 393142) (-2757 . 392653)
- (-2758 . 392583) (-2759 . 392554) (-2760 . 392396) (-2761 . 392315)
- (-2762 . 392259) (-2763 . 392118) (-2764 . 392044) (-2765 . 391900)
- (-2766 . 391757) (-2767 . 391683) (-2768 . 391564) (-2769 . 391465)
- (-2770 . 391371) (-2771 . 391277) (-2772 . 391224) (-2773 . 391126)
- (-2774 . 390816) (-2775 . 389998) (-2776 . 389899) (-2777 . 389660)
- (-2778 . 388777) (-2779 . 388638) (-2780 . 388485) (-2781 . 388384)
- (-2782 . 388134) (-2783 . 388082) (-2784 . 383540) (-2785 . 383474)
- (-2786 . 383417) (-2787 . 383171) (-2788 . 382869) (-2789 . 382768)
- (-2790 . 382591) (-2791 . 382413) (-2792 . 381895) (-2793 . 381835)
- (-2794 . 381524) (-2795 . 381340) (-2796 . 380908) (-2797 . 380836)
- (-2798 . 380529) (-2799 . 380420) (-2800 . 380296) (-2801 . 380241)
- (-2802 . 379931) (-2803 . 379692) (-2804 . 379618) (-2805 . 379567)
- (-2806 . 379490) (-2807 . 379389) (-2808 . 379330) (-2809 . 379141)
- (-2810 . 378440) (-2811 . 378334) (-2812 . 377680) (-2813 . 377489)
- (-2814 . 377437) (-2815 . 377385) (-2816 . 377284) (-2817 . 377111)
- (-2818 . 376993) (-2819 . 376851) (-2820 . 376822) (-2821 . 376529)
- (-2822 . 375851) (-2823 . 375798) (-2824 . 375687) (-2825 . 375574)
- (-2826 . 375422) (-2827 . 375310) (-2828 . 374843) (-2829 . 374725)
- (-2830 . 374637) (-2831 . 374566) (-2832 . 374209) (-2833 . 374137)
- (-2834 . 374004) (-2835 . 373900) (-2836 . 373829) (-2837 . 373739)
- (-2838 . 373651) (-2839 . 373591) (-2840 . 373476) (-2841 . 373364)
- (-2842 . 373313) (-2843 . 372347) (-2844 . 372082) (-2845 . 371958)
- (-2846 . 371770) (-2847 . 371690) (-2848 . 371544) (-2849 . 371317)
- (-2850 . 371231) (-2851 . 371148) (-2852 . 371075) (-2853 . 371012)
- (-2854 . 370943) (-2855 . 370836) (-2856 . 370784) (-2857 . 370363)
- (-2858 . 369523) (-2859 . 369430) (-2860 . 369365) (-2861 . 369310)
- (-2862 . 369078) (-2863 . 368931) (-2864 . 368818) (-2865 . 368716)
- (-2866 . 368612) (-2867 . 366756) (-2868 . 366576) (-2869 . 366544)
- (-2870 . 366020) (-2871 . 365761) (-2872 . 365660) (-2873 . 365561)
- (-2874 . 365371) (-2875 . 365292) (-2876 . 365127) (-2877 . 364703)
- (-2878 . 364651) (-2879 . 350537) (-2880 . 350347) (-2881 . 350152)
- (-2882 . 349899) (-2883 . 349661) (-2884 . 349539) (-2885 . 349412)
- (-2886 . 349341) (-2887 . 349201) (-2888 . 349048) (-2889 . 349020)
- (-2890 . 348964) (-2891 . 348817) (-2892 . 348536) (-2893 . 348383)
- (-2894 . 348191) (-2895 . 347906) (-2896 . 347767) (-2897 . 347673)
- (-2898 . 347566) (-2899 . 347487) (-2900 . 347267) (-2901 . 347126)
- (-2902 . 346942) (-2903 . 346671) (-2904 . 346414) (-2905 . 346382)
- (-2906 . 346304) (-2907 . 346189) (-2908 . 345615) (-2909 . 345541)
- (-2910 . 345171) (-2911 . 345100) (-2912 . 344973) (-2913 . 344852)
- (-2914 . 344593) (-2915 . 344519) (-2916 . 343943) (-2917 . 343703)
- (-2918 . 343548) (-2919 . 343460) (-2920 . 342875) (-2921 . 342822)
- (-2922 . 342624) (-2923 . 342520) (-2924 . 342178) (-2925 . 342074)
- (-2926 . 341498) (-2927 . 337832) (-2928 . 337693) (-2929 . 337475)
- (-2930 . 337347) (-2931 . 337261) (-2932 . 337113) (-2933 . 337011)
- (-2934 . 336967) (-2935 . 336658) (-2936 . 336538) (-2937 . 336448)
- (-2938 . 335762) (-2939 . 335644) (-2940 . 335589) (-2941 . 335167)
- (-2942 . 334986) (-2943 . 334927) (-2944 . 334332) (-2945 . 334174)
- (-2946 . 333695) (-2947 . 333542) (-2948 . 332856) (-2949 . 332254)
- (-2950 . 332118) (-2951 . 331976) (-2952 . 331864) (-2953 . 331715)
- (-2954 . 331580) (-2955 . 331492) (-2956 . 331261) (-2957 . 331230)
- (-2958 . 331178) (-2959 . 330429) (-2960 . 330377) (-2961 . 330241)
- (-2962 . 330074) (-2963 . 329992) (-2964 . 329914) (-2965 . 329806)
- (-2966 . 329705) (-2967 . 329677) (-2968 . 329093) (-2969 . 328519)
- (-2970 . 328361) (-2971 . 328222) (-2972 . 325441) (-2973 . 325210)
- (-2974 . 325157) (-2975 . 325106) (-2976 . 324855) (-2977 . 324695)
- (-2978 . 324583) (-2979 . 324469) (-2980 . 323955) (-2981 . 323381)
- (-2982 . 323244) (-2983 . 323192) (-2984 . 322975) (-2985 . 322887)
- (-2986 . 322714) (-2987 . 322652) (-2988 . 322557) (-2989 . 322296)
- (-2990 . 322224) (-2991 . 321650) (-2992 . 321597) (-2993 . 321445)
- (-2994 . 321393) (-2995 . 321267) (-2996 . 321137) (-2997 . 321075)
- (-2998 . 320969) (-2999 . 320582) (-3000 . 320231) (-3001 . 320178)
- (-3002 . 320095) (-3003 . 319408) (-3004 . 319245) (-3005 . 319087)
- (-3006 . 318991) (-3007 . 318464) (-3008 . 318323) (-3009 . 318240)
- (-3010 . 318073) (-3011 . 318045) (-3012 . 317938) (-3013 . 317561)
- (-3014 . 316874) (-3015 . 316767) (-3016 . 316526) (-3017 . 316467)
- (-3018 . 316352) (-3019 . 316283) (-3020 . 316167) (-3021 . 316054)
- (-3022 . 315980) (-3023 . 315293) (-3024 . 315184) (-3025 . 314982)
- (-3026 . 314908) (-3027 . 314813) (-3028 . 314693) (-3029 . 314537)
- (-3030 . 314143) (-3031 . 314109) (-3032 . 313245) (-3033 . 313192)
- (-3034 . 312617) (-3035 . 312510) (-3036 . 312461) (-3037 . 309162)
- (-3038 . 309065) (-3039 . 308862) (-3040 . 308717) (-3041 . 308651)
- (-3042 . 308270) (-3043 . 308199) (-3044 . 308104) (-3045 . 308030)
- (-3046 . 307455) (-3047 . 307339) (-3048 . 307129) (-3049 . 307056)
- (-3050 . 306669) (-3051 . 306165) (-3052 . 305999) (-3053 . 305864)
- (-3054 . 305764) (-3055 . 305245) (-3056 . 305150) (-3057 . 304575)
- (-3058 . 304396) (-3059 . 304005) (-3060 . 303950) (-3061 . 303806)
- (-3062 . 303719) (-3063 . 303524) (-3064 . 303471) (-3065 . 303418)
- (-3066 . 303261) (-3067 . 303105) (-3068 . 302789) (-3069 . 302215)
- (-3070 . 302141) (-3071 . 302019) (-3072 . 301866) (-3073 . 301817)
- (-3074 . 301659) (-3075 . 282775) (-3076 . 282676) (-3077 . 282417)
- (-3078 . 282348) (-3079 . 282232) (-3080 . 281999) (-3081 . 281944)
- (-3082 . 281727) (-3083 . 281153) (-3084 . 281097) (-3085 . 281019)
- (-3086 . 279805) (-3087 . 279718) (-3088 . 279597) (-3089 . 276845)
- (-3090 . 276790) (-3091 . 276682) (-3092 . 276529) (-3093 . 276112)
- (-3094 . 276053) (-3095 . 275740) (-3096 . 275166) (-3097 . 275006)
- (-3098 . 274767) (-3099 . 274715) (-3100 . 274581) (-3101 . 273937)
- (-3102 . 273186) (-3103 . 273098) (-3104 . 273010) (-3105 . 272926)
- (-3106 . 272863) (-3107 . 272195) (-3108 . 271621) (-3109 . 270536)
- (-3110 . 270504) (-3111 . 270374) (-3112 . 270288) (-3113 . 269400)
- (-3114 . 269348) (-3115 . 269293) (-3116 . 269198) (-3117 . 269045)
- (-3118 . 268711) (-3119 . 268582) (-3120 . 268008) (-3121 . 267860)
- (-3122 . 267705) (-3123 . 267607) (-3124 . 267507) (-3125 . 267413)
- (-3126 . 267361) (-3127 . 267306) (-3128 . 267199) (-3129 . 267107)
- (-3130 . 267040) (-3131 . 266969) (-3132 . 266781) (-3133 . 266527)
- (-3134 . 266197) (-3135 . 266116) (-3136 . 266050) (-3137 . 265839)
- (-3138 . 265732) (-3139 . 265610) (-3140 . 265581) (-3141 . 265486)
- (-3142 . 265430) (-3143 . 265277) (-3144 . 265156) (-3145 . 265104)
- (-3146 . 265047) (-3147 . 264916) (-3148 . 264806) (-3149 . 264724)
- (-3150 . 264653) (-3151 . 264461) (-3152 . 264248) (-3153 . 264182)
- (-3154 . 264080) (-3155 . 263671) (-3156 . 263539) (-3157 . 262374)
- (-3158 . 262308) (-3159 . 262225) (-3160 . 261150) (-3161 . 261094)
- (-3162 . 261066) (-3163 . 261011) (-3164 . 260956) (-3165 . 260846)
- (-3166 . 260772) (-3167 . 260570) (-3168 . 260499) (-3169 . 260334)
- (-3170 . 259947) (-3171 . 259870) (-3172 . 259691) (-3173 . 259582)
- (-3174 . 259131) (-3175 . 259005) (-3176 . 257037) (-3177 . 256924)
- (-3178 . 256831) (-3179 . 256465) (-3180 . 255695) (-3181 . 255637)
- (-3182 . 252301) (-3183 . 252249) (-3184 . 252133) (-3185 . 251997)
- (-3186 . 251740) (-3187 . 251655) (-3188 . 251468) (-3189 . 251283)
- (-3190 . 251182) (-3191 . 250963) (-3192 . 250889) (-3193 . 250438)
- (-3194 . 250225) (-3195 . 249733) (-3196 . 249627) (-3197 . 249331)
- (-3198 . 248887) (-3199 . 248708) (-3200 . 248631) (-3201 . 248521)
- (-3202 . 247719) (-3203 . 247576) (-3204 . 247468) (-3205 . 247384)
- (-3206 . 247226) (-3207 . 247073) (-3208 . 246969) (** . 243880)
- (-3210 . 243350) (-3211 . 243267) (-3212 . 243168) (-3213 . 242969)
- (-3214 . 242901) (-3215 . 242757) (-3216 . 242592) (-3217 . 242216)
- (-3218 . 242163) (-3219 . 241974) (-3220 . 241482) (-3221 . 241226)
- (-3222 . 240422) (-3223 . 240194) (-3224 . 240142) (-3225 . 240021)
- (-3226 . 239057) (-3227 . 238898) (-3228 . 238717) (-3229 . 238562)
- (-3230 . 238533) (-3231 . 238430) (-3232 . 238374) (-3233 . 238270)
- (-3234 . 237113) (-3235 . 236968) (-3236 . 236880) (-3237 . 236658)
- (-3238 . 236380) (-3239 . 236271) (-3240 . 236201) (-3241 . 236094)
- (-3242 . 236008) (-3243 . 235915) (-3244 . 235795) (-3245 . 235623)
- (-3246 . 235381) (-3247 . 235195) (-3248 . 234957) (-3249 . 234867)
- (-3250 . 234793) (-3251 . 234675) (-3252 . 234309) (-3253 . 234238)
- (-3254 . 234039) (-3255 . 233986) (-3256 . 233879) (-3257 . 233552)
- (-3258 . 233348) (-3259 . 233096) (-3260 . 232977) (-3261 . 232922)
- (-3262 . 232761) (-3263 . 232610) (-3264 . 232537) (-3265 . 232419)
- (-3266 . 232335) (-3267 . 232277) (-3268 . 232182) (-3269 . 232099)
- (-3270 . 231956) (-3271 . 231683) (-3272 . 231614) (-3273 . 231418)
- (-3274 . 229635) (-3275 . 229606) (-3276 . 229224) (-3277 . 228746)
- (-3278 . 228299) (-3279 . 228192) (-3280 . 227994) (-3281 . 227893)
- (-3282 . 227291) (-3283 . 227177) (-9 . 227149) (-3285 . 227093)
- (-3286 . 226831) (-3287 . 226751) (-3288 . 226655) (-3289 . 226266)
- (-3290 . 226128) (-3291 . 225888) (-3292 . 225442) (-3293 . 225276)
- (-3294 . 225139) (-3295 . 225087) (-8 . 225059) (-3297 . 225025)
- (-3298 . 224906) (-3299 . 224688) (-3300 . 224571) (-3301 . 224498)
- (-3302 . 224236) (-3303 . 223805) (-3304 . 223696) (-3305 . 223629)
- (-3306 . 223552) (-3307 . 223520) (-3308 . 221406) (-7 . 221378)
- (-3310 . 221313) (-3311 . 220975) (-3312 . 220897) (-3313 . 220844)
- (-3314 . 220792) (-3315 . 220734) (-3316 . 220619) (-3317 . 220424)
- (-3318 . 220396) (-3319 . 220255) (-3320 . 220184) (-3321 . 219925)
- (-3322 . 219795) (-3323 . 219368) (-3324 . 219030) (-3325 . 218960)
- (-3326 . 218861) (-3327 . 218638) (-3328 . 218497) (-3329 . 218410)
- (-3330 . 217675) (-3331 . 217380) (-3332 . 217273) (-3333 . 217018)
- (-3334 . 216966) (-3335 . 216892) (-3336 . 216766) (-3337 . 216698)
- (-3338 . 216645) (-3339 . 216603) (-3340 . 216474) (-3341 . 216375)
- (-3342 . 216210) (-3343 . 216116) (-3344 . 215986) (-3345 . 215872)
- (-3346 . 215806) (-3347 . 215711) (-3348 . 215597) (-3349 . 215439)
- (-3350 . 215010) (-3351 . 214950) (-3352 . 214878) (-3353 . 214228)
- (-3354 . 214027) (-3355 . 213682) (-3356 . 213625) (-3357 . 213516)
- (-3358 . 212518) (-3359 . 212391) (-3360 . 212289) (-3361 . 211914)
- (-3362 . 211751) (-3363 . 211558) (-3364 . 211304) (-3365 . 210851)
- (-3366 . 210720) (-3367 . 210583) (-3368 . 210399) (-3369 . 210270)
- (-3370 . 210196) (-3371 . 210108) (-3372 . 209990) (-3373 . 209909)
- (-3374 . 209826) (-3375 . 209591) (-3376 . 209469) (-3377 . 209292)
- (-3378 . 209118) (-3379 . 209066) (-3380 . 208787) (-3381 . 208631)
- (-3382 . 208270) (-3383 . 208120) (-3384 . 207996) (-3385 . 207926)
- (-3386 . 207593) (-3387 . 207386) (-3388 . 205954) (-3389 . 205868)
- (-3390 . 205817) (-3391 . 205751) (-3392 . 205550) (-3393 . 205394)
- (-3394 . 205114) (-3395 . 204970) (-3396 . 204868) (-3397 . 204785)
- (-3398 . 204693) (-3399 . 204610) (-3400 . 204332) (-3401 . 204191)
- (-3402 . 204135) (-3403 . 204053) (-3404 . 203969) (-3405 . 202191)
- (-3406 . 201734) (-3407 . 201705) (-3408 . 201606) (-3409 . 201320)
- (-3410 . 201247) (-3411 . 201219) (-3412 . 201111) (-3413 . 201058)
- (-3414 . 200985) (-3415 . 200603) (-3416 . 200526) (-3417 . 200449)
- (-3418 . 200305) (-3419 . 200250) (-3420 . 200096) (-3421 . 200001)
- (-3422 . 199726) (-3423 . 199278) (-3424 . 199138) (-3425 . 198672)
- (-3426 . 198600) (-3427 . 198543) (-3428 . 198355) (-3429 . 198218)
- (-3430 . 198024) (-3431 . 197946) (-3432 . 197573) (-3433 . 197503)
- (-3434 . 197451) (-3435 . 197296) (-3436 . 197182) (-3437 . 197068)
- (-3438 . 196532) (-3439 . 196369) (-3440 . 196084) (-3441 . 195963)
- (-3442 . 195739) (-3443 . 195665) (-3444 . 195505) (-3445 . 195374)
- (-3446 . 195074) (-3447 . 194995) (-3448 . 194886) (-3449 . 194711)
- (-3450 . 194573) (-3451 . 194502) (-3452 . 194395) (-3453 . 194342)
- (-3454 . 194184) (-3455 . 194156) (-3456 . 194073) (-3457 . 194004)
- (-3458 . 193951) (-3459 . 193850) (-3460 . 193748) (-3461 . 193674)
- (-3462 . 193428) (-3463 . 193118) (-3464 . 193040) (-3465 . 192917)
- (-3466 . 192865) (-3467 . 192803) (-3468 . 192721) (-3469 . 192592)
- (-3470 . 192458) (-3471 . 192385) (-3472 . 192261) (-3473 . 191970)
- (-3474 . 191884) (-3475 . 191688) (-3476 . 191478) (-3477 . 191388)
- (-3478 . 191259) (-3479 . 190599) (-3480 . 190513) (-3481 . 189251)
- (-3482 . 189202) (-3483 . 188856) (-3484 . 188696) (-3485 . 188580)
- (-3486 . 187763) (-3487 . 187714) (-3488 . 187607) (-3489 . 187548)
- (-3490 . 187424) (-3491 . 187330) (-3492 . 187103) (-3493 . 186990)
- (-3494 . 186865) (-3495 . 186776) (-3496 . 186572) (-3497 . 186146)
- (-3498 . 185805) (-3499 . 185768) (-3500 . 185612) (-3501 . 185374)
- (-3502 . 185272) (-3503 . 185156) (-3504 . 184884) (-3505 . 184463)
- (-3506 . 184240) (-3507 . 184070) (-3508 . 183860) (-3509 . 183792)
- (-3510 . 183667) (-3511 . 183107) (-3512 . 182969) (-3513 . 182901)
- (-3514 . 182848) (-3515 . 182472) (-3516 . 182261) (-3517 . 182171)
- (-3518 . 181644) (-3519 . 181392) (-3520 . 181174) (-3521 . 181011)
- (-3522 . 180874) (-3523 . 180484) (-3524 . 180040) (-3525 . 179780)
- (-3526 . 179746) (-3527 . 179652) (-3528 . 179490) (-3529 . 179395)
- (-3530 . 178909) (-3531 . 178799) (-3532 . 178689) (-3533 . 178272)
- (-3534 . 178215) (-3535 . 178112) (-3536 . 177900) (-3537 . 177590)
- (-3538 . 177539) (-3539 . 177227) (-3540 . 177034) (-3541 . 176731)
- (-3542 . 176582) (-3543 . 176277) (-3544 . 176173) (-3545 . 176082)
- (-3546 . 175550) (-3547 . 175498) (-3548 . 175309) (-3549 . 174958)
- (-3550 . 174905) (-3551 . 174802) (-3552 . 174480) (-3553 . 174376)
- (-3554 . 174306) (-3555 . 174212) (-3556 . 174140) (-3557 . 174007)
- (-3558 . 173937) (-3559 . 173865) (-3560 . 173686) (-3561 . 173350)
- (-3562 . 172988) (-3563 . 172618) (-3564 . 172519) (-3565 . 172314)
- (-3566 . 171961) (-3567 . 171404) (-3568 . 171291) (-3569 . 171161)
- (-3570 . 171036) (-3571 . 171002) (-3572 . 170880) (-3573 . 170806)
- (-3574 . 170610) (-3575 . 170576) (-3576 . 170475) (-3577 . 170422)
- (-3578 . 170369) (-3579 . 170190) (-3580 . 169655) (-3581 . 169451)
- (-3582 . 169400) (-3583 . 169344) (-3584 . 169316) (-3585 . 169150)
- (-3586 . 168907) (-3587 . 168734) (-3588 . 168706) (-3589 . 168120)
- (-3590 . 168013) (-3591 . 167834) (-3592 . 167750) (-3593 . 167664)
- (-3594 . 167485) (-3595 . 167347) (-3596 . 167296) (-3597 . 167244)
- (-3598 . 167071) (-3599 . 166964) (-3600 . 166833) (-3601 . 166769)
- (-3602 . 166628) (-3603 . 166556) (-3604 . 166504) (-3605 . 166391)
- (-3606 . 166173) (-3607 . 166095) (-3608 . 165847) (-3609 . 165776)
- (-3610 . 165483) (-3611 . 165284) (-3612 . 165213) (-3613 . 164783)
- (-3614 . 164555) (-3615 . 164496) (-3616 . 164356) (-3617 . 164282)
- (-3618 . 164184) (-3619 . 163897) (-3620 . 163818) (-3621 . 163467)
- (-3622 . 163238) (-3623 . 163115) (-3624 . 163027) (-3625 . 162251)
- (-3626 . 162127) (-3627 . 162053) (-3628 . 161666) (-3629 . 161446)
- (-3630 . 161337) (-3631 . 161256) (-3632 . 161168) (-3633 . 161111)
- (-3634 . 160837) (-3635 . 160783) (-3636 . 160726) (-3637 . 160169)
- (-3638 . 159944) (-3639 . 159884) (-3640 . 159689) (-3641 . 159514)
- (-3642 . 159434) (-3643 . 159289) (-3644 . 159217) (-3645 . 159165)
- (-3646 . 158976) (-3647 . 158895) (-3648 . 158836) (-3649 . 158720)
- (-3650 . 157540) (-3651 . 157443) (-3652 . 157175) (-3653 . 156927)
- (-3654 . 156843) (-3655 . 156814) (-3656 . 155622) (-3657 . 155519)
- (-3658 . 154989) (-3659 . 154917) (-3660 . 154851) (-3661 . 154727)
- (-3662 . 153878) (-3663 . 153782) (-3664 . 153589) (-3665 . 153426)
- (-3666 . 152505) (-3667 . 152432) (-3668 . 152314) (-3669 . 152248)
- (-3670 . 152171) (-3671 . 152119) (-3672 . 151886) (-3673 . 151742)
- (-3674 . 151448) (-3675 . 151364) (-3676 . 147743) (-3677 . 147669)
- (-3678 . 146092) (-3679 . 145912) (-3680 . 145824) (-3681 . 145757)
- (-3682 . 145623) (-3683 . 145440) (-3684 . 145266) (-3685 . 145200)
- (-3686 . 145145) (-3687 . 145067) (-3688 . 144983) (-3689 . 144761)
- (-3690 . 144730) (-3691 . 144221) (-3692 . 144127) (-3693 . 143972)
- (-3694 . 143841) (-3695 . 143789) (-3696 . 143677) (-3697 . 143550)
- (-3698 . 143339) (-3699 . 143082) (-3700 . 142935) (-3701 . 142371)
- (-3702 . 142277) (-3703 . 142208) (-3704 . 141958) (-3705 . 141834)
- (-3706 . 141612) (-3707 . 141526) (-3708 . 141447) (-3709 . 141233)
- (-3710 . 141006) (-3711 . 140936) (-3712 . 140718) (-3713 . 140666)
- (-3714 . 140589) (-3715 . 140536) (-3716 . 140143) (-3717 . 139605)
- (-3718 . 139534) (-3719 . 139454) (-3720 . 139208) (-3721 . 138960)
- (-3722 . 138611) (-3723 . 138260) (-3724 . 138165) (-3725 . 138068)
- (-3726 . 137971) (-3727 . 137511) (-3728 . 137398) (-3729 . 137332)
- (-3730 . 137139) (-3731 . 136878) (-3732 . 136792) (-3733 . 136707)
- (-3734 . 136477) (-3735 . 136263) (-3736 . 135932) (-3737 . 135834)
- (-3738 . 135558) (-3739 . 135470) (-3740 . 135417) (-3741 . 135327)
- (-3742 . 135254) (-3743 . 134709) (-3744 . 134612) (-3745 . 134506)
- (-3746 . 134263) (-3747 . 134096) (-3748 . 133780) (-3749 . 133438)
- (-3750 . 133269) (-3751 . 133216) (-3752 . 133013) (-3753 . 132945)
- (-3754 . 132824) (-3755 . 132711) (-3756 . 132637) (-3757 . 132479)
- (-3758 . 132351) (-3759 . 132207) (-3760 . 132113) (-3761 . 131983)
- (-3762 . 131871) (-3763 . 131777) (-3764 . 131704) (-3765 . 131638)
- (-3766 . 131558) (-3767 . 131328) (-3768 . 131202) (-3769 . 131036)
- (-3770 . 130955) (-3771 . 130921) (-3772 . 130844) (-3773 . 130810)
- (-3774 . 130758) (-3775 . 130698) (-3776 . 129252) (-3777 . 129172)
- (-3778 . 128563) (-3779 . 128507) (-3780 . 128435) (-3781 . 128228)
- (-3782 . 127362) (-3783 . 127121) (-3784 . 126953) (-3785 . 126710)
- (-3786 . 126636) (-3787 . 126492) (-3788 . 126391) (-3789 . 126011)
- (-3790 . 125848) (-3791 . 121688) (-3792 . 120618) (-3793 . 120538)
- (-3794 . 120454) (-3795 . 120207) (-3796 . 120100) (-3797 . 119901)
- (-3798 . 119756) (-3799 . 119531) (-3800 . 119415) (-3801 . 119314)
- (-3802 . 119258) (-3803 . 119135) (-3804 . 119027) (-3805 . 118911)
- (-3806 . 118778) (-3807 . 118676) (-3808 . 118604) (-3809 . 118480)
- (-3810 . 118293) (-3811 . 118228) (-3812 . 118178) (-3813 . 118107)
- (-3814 . 117234) (-3815 . 117122) (-3816 . 117054) (-3817 . 116998)
- (-3818 . 116920) (-3819 . 116771) (-3820 . 116433) (-3821 . 116339)
- (-3822 . 115861) (-3823 . 115775) (-3824 . 115703) (-3825 . 115647)
- (-3826 . 115476) (-3827 . 115337) (-3828 . 115246) (-3829 . 115148)
- (-3830 . 115004) (-3831 . 114777) (-3832 . 114691) (-3833 . 114590)
- (-3834 . 114465) (-3835 . 113712) (-3836 . 113146) (-3837 . 113045)
- (-3838 . 112967) (-3839 . 112890) (-3840 . 112840) (-3841 . 112679)
- (-3842 . 112620) (-3843 . 112209) (-3844 . 112066) (-3845 . 111972)
- (-3846 . 111814) (-3847 . 111541) (-3848 . 110975) (-3849 . 110901)
- (-3850 . 110278) (-3851 . 110158) (-3852 . 110072) (-3853 . 109883)
- (-3854 . 109779) (-3855 . 109713) (-3856 . 109383) (-3857 . 109269)
- (-3858 . 109210) (-3859 . 109155) (-3860 . 109075) (-3861 . 108998)
- (-3862 . 108936) (-3863 . 108863) (-3864 . 108780) (-3865 . 108643)
- (-3866 . 108538) (-3867 . 108461) (-3868 . 108308) (-3869 . 108204)
- (-3870 . 108152) (-3871 . 108039) (-3872 . 107694) (-3873 . 107290)
- (-3874 . 106961) (-3875 . 106873) (-3876 . 106598) (-3877 . 106164)
- (-3878 . 105557) (-3879 . 105400) (-3880 . 105135) (-3881 . 105016)
- (-3882 . 104985) (-3883 . 104817) (-3884 . 104687) (-3885 . 104502)
- (-3886 . 104352) (-3887 . 104138) (-3888 . 103796) (-3889 . 103570)
- (-3890 . 103452) (-3891 . 103397) (-3892 . 103309) (-3893 . 102846)
- (-3894 . 102718) (-3895 . 102664) (-3896 . 101857) (-3897 . 101691)
- (-3898 . 101315) (-3899 . 101236) (-3900 . 100921) (-3901 . 100722)
- (-3902 . 100576) (-3903 . 100524) (-3904 . 100402) (-3905 . 100184)
- (-3906 . 99944) (-3907 . 99801) (-3908 . 99583) (-3909 . 99500)
- (-3910 . 99184) (-3911 . 99117) (-3912 . 99064) (-3913 . 98909)
- (-3914 . 98754) (-3915 . 98410) (-3916 . 98324) (-3917 . 98199)
- (-3918 . 97895) (-3919 . 97034) (-3920 . 96809) (-3921 . 96411)
- (-3922 . 96275) (-3923 . 96198) (-3924 . 96116) (-3925 . 96064)
- (-3926 . 95861) (-3927 . 95673) (-3928 . 95531) (-3929 . 95353)
- (-3930 . 95282) (-3931 . 95119) (-3932 . 94915) (-3933 . 94821)
- (-3934 . 94741) (-3935 . 94667) (-3936 . 94581) (-3937 . 94263)
- (-3938 . 93884) (-3939 . 93779) (-3940 . 93452) (-3941 . 93340)
- (-3942 . 93070) (-3943 . 92973) (-3944 . 92945) (-3945 . 92865)
- (-3946 . 92780) (-3947 . 92692) (-3948 . 92551) (-3949 . 92319)
- (-3950 . 91990) (-3951 . 91674) (-3952 . 91615) (-3953 . 91457)
- (-3954 . 91236) (-3955 . 91078) (-3956 . 91021) (-3957 . 90900)
- (-3958 . 90379) (-3959 . 89987) (-3960 . 89781) (-3961 . 89656)
- (-3962 . 89601) (-3963 . 89305) (-3964 . 89208) (-3965 . 89068)
- (-3966 . 88358) (-3967 . 88205) (-3968 . 88106) (-3969 . 88029)
- (-3970 . 87858) (-3971 . 87522) (-3972 . 87434) (-3973 . 87062)
- (-3974 . 86882) (-3975 . 86372) (-3976 . 86317) (-3977 . 85357)
- (-3978 . 85181) (-3979 . 84979) (-3980 . 84650) (-3981 . 84451)
- (-3982 . 84178) (-3983 . 84096) (-3984 . 83979) (-3985 . 83733)
- (-3986 . 83655) (-3987 . 83503) (-3988 . 83420) (-3989 . 83368)
- (-3990 . 83001) (-3991 . 82695) (-3992 . 82416) (-3993 . 82309)
- (-3994 . 82137) (-3995 . 82079) (-3996 . 81777) (-3997 . 81725)
- (-3998 . 81548) (-3999 . 81514) (-4000 . 81275) (-4001 . 81205)
- (-4002 . 81150) (-4003 . 81037) (-4004 . 80938) (-12 . 80766)
- (-4006 . 80685) (-4007 . 80489) (-4008 . 80357) (-4009 . 80237)
- (-4010 . 80118) (-4011 . 80059) (-4012 . 79973) (-4013 . 79802)
- (-4014 . 79550) (-4015 . 79359) (-4016 . 79168) (-4017 . 79053)
- (-4018 . 78997) (-4019 . 78895) (-4020 . 78782) (-4021 . 78492)
- (-4022 . 78069) (-4023 . 77926) (-4024 . 77773) (-4025 . 77739)
- (-4026 . 77573) (-4027 . 77191) (-4028 . 77005) (-4029 . 76863)
- (-4030 . 76770) (-4031 . 76704) (-4032 . 76293) (-4033 . 76190)
- (-4034 . 76071) (-4035 . 74769) (-4036 . 74676) (-4037 . 74493)
- (-4038 . 74440) (-4039 . 74263) (-4040 . 74175) (-4041 . 74069)
- (-4042 . 73917) (-4043 . 73699) (-4044 . 73373) (-4045 . 73320)
- (-4046 . 73267) (-4047 . 73196) (-4048 . 72383) (-4049 . 71989)
- (-4050 . 71917) (-4051 . 71864) (-4052 . 71736) (-4053 . 71569)
- (-4054 . 71350) (-4055 . 71145) (-4056 . 71057) (-4057 . 70929)
- (-4058 . 70847) (-4059 . 70748) (-4060 . 70682) (-4061 . 70573)
- (-4062 . 70376) (-4063 . 70122) (-4064 . 69970) (-4065 . 69790)
- (-4066 . 69692) (-4067 . 69499) (-4068 . 69403) (-4069 . 69199)
- (-4070 . 69089) (-4071 . 68598) (-4072 . 68518) (-4073 . 68395)
- (-4074 . 68361) (-4075 . 68208) (-4076 . 68125) (-4077 . 67988)
- (-4078 . 67909) (-4079 . 67718) (-4080 . 67658) (-4081 . 67541)
- (-4082 . 67489) (-4083 . 67457) (-4084 . 67058) (-4085 . 66511)
- (-4086 . 66292) (-4087 . 66070) (-4088 . 66036) (-4089 . 65945)
- (-4090 . 65785) (-4091 . 64988) (-4092 . 64677) (-4093 . 64624)
- (-4094 . 64501) (-4095 . 64379) (-4096 . 64172) (-4097 . 64075)
- (-4098 . 63788) (-4099 . 63405) (-4100 . 63309) (-4101 . 63208)
- (-4102 . 63089) (-4103 . 62946) (-4104 . 62890) (-4105 . 62722)
- (-4106 . 62569) (-4107 . 61995) (-4108 . 61896) (-4109 . 61801)
- (* . 57255) (-4111 . 57182) (-4112 . 56943) (-4113 . 56440)
- (-4114 . 56334) (-4115 . 56266) (-4116 . 56151) (-4117 . 55968)
- (-4118 . 55608) (-4119 . 55536) (-4120 . 55465) (-4121 . 55376)
- (-4122 . 55292) (-4123 . 55219) (-4124 . 55075) (-4125 . 54963)
- (-4126 . 54661) (-4127 . 54601) (-4128 . 54471) (-4129 . 54325)
- (-4130 . 54079) (-4131 . 53874) (-4132 . 53740) (-4133 . 53488)
- (-4134 . 51637) (-4135 . 51426) (-4136 . 50788) (-4137 . 50177)
- (-4138 . 50087) (-4139 . 49626) (-4140 . 49466) (-4141 . 49207)
- (-4142 . 48876) (-4143 . 48630) (-4144 . 48432) (-4145 . 48288)
- (-4146 . 47997) (-4147 . 47944) (-4148 . 47803) (-4149 . 47642)
- (-4150 . 47586) (-4151 . 47534) (-4152 . 47427) (-4153 . 47217)
- (-4154 . 47134) (-4155 . 46991) (-4156 . 46823) (-4157 . 46713)
- (-4158 . 46522) (-4159 . 45341) (-4160 . 45061) (-4161 . 45008)
- (-4162 . 44835) (-4163 . 44736) (-4164 . 44592) (-4165 . 44247)
- (-4166 . 44173) (-4167 . 44115) (-4168 . 44030) (-4169 . 43942)
- (-4170 . 43846) (-4171 . 43793) (-4172 . 43762) (-4173 . 43705)
- (-4174 . 43631) (-4175 . 40704) (-4176 . 40590) (-4177 . 39849)
- (-4178 . 39597) (-4179 . 39451) (-4180 . 39314) (-4181 . 39248)
- (-4182 . 39118) (-4183 . 38975) (-4184 . 38059) (-4185 . 37935)
- (-4186 . 36685) (-4187 . 36633) (-4188 . 35892) (-4189 . 35761)
- (-4190 . 35689) (-4191 . 35086) (-4192 . 34981) (-4193 . 34823)
- (-4194 . 34679) (-4195 . 34556) (-4196 . 34484) (-4197 . 34300)
- (-4198 . 33876) (-4199 . 33737) (-4200 . 33049) (-4201 . 32886)
- (-4202 . 32683) (-4203 . 32612) (-4204 . 32448) (-4205 . 32307)
- (-4206 . 32252) (-4207 . 32115) (-4208 . 32062) (-4209 . 32005)
- (-4210 . 31877) (-4211 . 31658) (-4212 . 31513) (-4213 . 30937)
- (-4214 . 30830) (-4215 . 30660) (-4216 . 30453) (-4217 . 30308)
- (-4218 . 30200) (-4219 . 28824) (-4220 . 28677) (-4221 . 28313)
- (-4222 . 28239) (-4223 . 27960) (-4224 . 27468) (-4225 . 27408)
- (-4226 . 27339) (-4227 . 27216) (-4228 . 27044) (-4229 . 26773)
- (-4230 . 26722) (-4231 . 26648) (-4232 . 26539) (-4233 . 26415)
- (-4234 . 26269) (-4235 . 26091) (-4236 . 25773) (-4237 . 25668)
- (-4238 . 25544) (-4239 . 25152) (-4240 . 24776) (-4241 . 24602)
- (-4242 . 24523) (-4243 . 24275) (-4244 . 24178) (-4245 . 23891)
- (-4246 . 23645) (-4247 . 23529) (-4248 . 23362) (-4249 . 23116)
- (-4250 . 22940) (-4251 . 22239) (-4252 . 22117) (-4253 . 21590)
- (-4254 . 21493) (-4255 . 21306) (-4256 . 21150) (-4257 . 20973)
- (-4258 . 20867) (-4259 . 20758) (-4260 . 20312) (-4261 . 20037)
- (-4262 . 19902) (-4263 . 19377) (-4264 . 18767) (-4265 . 18684)
- (-4266 . 18556) (-4267 . 18413) (-4268 . 18238) (-4269 . 17958)
- (-4270 . 17821) (-4271 . 17741) (-4272 . 17455) (-4273 . 17401)
- (-4274 . 17291) (-4275 . 17203) (-4276 . 17102) (-4277 . 16927)
- (-4278 . 16890) (-4279 . 16710) (-4280 . 16359) (-4281 . 16260)
- (-4282 . 15062) (-4283 . 15010) (-4284 . 14940) (-4285 . 14397)
- (-4286 . 14126) (-4287 . 13958) (-4288 . 13892) (-4289 . 13836)
- (-4290 . 13753) (-4291 . 13571) (-4292 . 13519) (-4293 . 13422)
- (-4294 . 13214) (-4295 . 12774) (-4296 . 12438) (-4297 . 12372)
- (-4298 . 12295) (-4299 . 12048) (-4300 . 11996) (-4301 . 11943)
- (-4302 . 11889) (-4303 . 11834) (-4304 . 11586) (-4305 . 11452)
- (-4306 . 11369) (-4307 . 11296) (-4308 . 11079) (-4309 . 10311)
- (-4310 . 10186) (-4311 . 10081) (-4312 . 10000) (-4313 . 9941)
- (-4314 . 9870) (-4315 . 9660) (-4316 . 9538) (-4317 . 9333)
- (-4318 . 8836) (-4319 . 8244) (-4320 . 8191) (-4321 . 6879)
- (-4322 . 6706) (-4323 . 6076) (-4324 . 5733) (-4325 . 5680)
- (-4326 . 5607) (-4327 . 5360) (-4328 . 5280) (-4329 . 5124)
- (-4330 . 5018) (-4331 . 4969) (-4332 . 4387) (-4333 . 3712)
- (-4334 . 3035) (-4335 . 2862) (-4336 . 2761) (-4337 . 2141)
- (-4338 . 2091) (-4339 . 1991) (-4340 . 1914) (-4341 . 1841)
- (-4342 . 1738) (-4343 . 1508) (-4344 . 1450) (-4345 . 1323)
- (-4346 . 1231) (-4347 . 631) (-4348 . 522) (-4349 . 440) (-4350 . 360)
- (-4351 . 217) (-4352 . 124) (-4353 . 30)) \ No newline at end of file
+ (-12 (-4 *4 (-450))
+ (-5 *2
+ (-635
+ (-2 (|:| |eigval| (-3 (-406 (-942 *4)) (-1152 (-1163) (-942 *4))))
+ (|:| |geneigvec| (-635 (-679 (-406 (-942 *4))))))))
+ (-5 *1 (-291 *4)) (-5 *3 (-679 (-406 (-942 *4)))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039))
+ (-5 *2 (-810 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-837)) (-5 *1 (-1269 *3 *2)) (-4 *3 (-1039)))))
+(((*1 *1 *1 *2 *2)
+ (|partial| -12 (-5 *2 (-911)) (-5 *1 (-1088 *3 *4)) (-14 *3 *2)
+ (-14 *4 *2))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
+ (-12 (-5 *3 (-224)) (-5 *4 (-558))
+ (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1025))
+ (-5 *1 (-739)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-157 *3 *2))
+ (-4 *2 (-429 *3)))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
+((-1279 . 734452) (-1280 . 734358) (-1281 . 734306) (-1282 . 734141)
+ (-1283 . 734034) (-1284 . 733861) (-1285 . 733619) (-1286 . 733438)
+ (-1287 . 733260) (-1288 . 733208) (-1289 . 733144) (-1290 . 733079)
+ (-1291 . 732967) (-1292 . 732874) (-1293 . 732774) (-1294 . 732670)
+ (-1295 . 732497) (-1296 . 732229) (-1297 . 732094) (-1298 . 731876)
+ (-1299 . 731517) (-1300 . 731465) (-1301 . 731340) (-1302 . 731228)
+ (-1303 . 731178) (-1304 . 731118) (-1305 . 730926) (-1306 . 730773)
+ (-1307 . 730517) (-1308 . 730416) (-1309 . 730366) (-1310 . 730144)
+ (-1311 . 729950) (-1312 . 729898) (-1313 . 729779) (-1314 . 729667)
+ (-1315 . 729614) (-1316 . 729545) (-1317 . 729441) (-1318 . 729160)
+ (-1319 . 728974) (-1320 . 728891) (-1321 . 728733) (-1322 . 728571)
+ (-1323 . 727853) (-1324 . 727801) (-1325 . 727250) (-1326 . 727131)
+ (-1327 . 727019) (-1328 . 726845) (-1329 . 726776) (-1330 . 726581)
+ (-1331 . 726359) (-1332 . 725715) (-1333 . 725554) (-1334 . 725471)
+ (-1335 . 725266) (-1336 . 725192) (-1337 . 724600) (-1338 . 723787)
+ (-1339 . 723734) (-1340 . 723622) (-1341 . 723517) (-1342 . 723267)
+ (-1343 . 723114) (-1344 . 721812) (-1345 . 721657) (-1346 . 721587)
+ (-1347 . 721484) (-1348 . 721410) (-1349 . 721331) (-1350 . 721203)
+ (-1351 . 721091) (-1352 . 720415) (-1353 . 720044) (-1354 . 719799)
+ (-1355 . 719646) (-1356 . 718384) (-1357 . 718314) (-1358 . 718286)
+ (-1359 . 718212) (-1360 . 718139) (-1361 . 718073) (-1362 . 717996)
+ (-1363 . 717932) (-1364 . 717756) (-1365 . 717698) (-1366 . 717543)
+ (-1367 . 717221) (-1368 . 717068) (-1369 . 716185) (-1370 . 716026)
+ (-1371 . 715965) (-1372 . 715891) (-1373 . 715824) (-1374 . 715770)
+ (-1375 . 715692) (-1376 . 715537) (-1377 . 715268) (-1378 . 714880)
+ (-1379 . 714727) (-1380 . 713454) (-1381 . 713208) (-1382 . 713155)
+ (-1383 . 713081) (-1384 . 713014) (-1385 . 712739) (-1386 . 712630)
+ (-1387 . 712445) (-1388 . 712240) (-1389 . 712039) (-1390 . 711886)
+ (-1391 . 711784) (-1392 . 711660) (-1393 . 711591) (-1394 . 711517)
+ (-1395 . 711258) (-1396 . 711201) (-1397 . 709825) (-1398 . 709767)
+ (-1399 . 709465) (-1400 . 709343) (-1401 . 709079) (-1402 . 708688)
+ (-1403 . 708565) (-1404 . 708513) (-1405 . 708454) (-1406 . 708384)
+ (-1407 . 708260) (-1408 . 708182) (-1409 . 708098) (-1410 . 708040)
+ (-1411 . 707699) (-1412 . 707622) (-1413 . 707079) (-1414 . 706738)
+ (-1415 . 706605) (-1416 . 706540) (-1417 . 706421) (-1418 . 706247)
+ (-1419 . 706179) (-1420 . 706086) (-1421 . 705748) (-1422 . 705653)
+ (-1423 . 705573) (-1424 . 705279) (-1425 . 704928) (-1426 . 704866)
+ (-1427 . 704688) (-1428 . 704564) (-1429 . 704493) (-1430 . 704435)
+ (-1431 . 704340) (-1432 . 704052) (-1433 . 703992) (-1434 . 703915)
+ (-1435 . 703778) (-1436 . 703427) (-1437 . 703244) (-1438 . 703164)
+ (-1439 . 702954) (-1440 . 702899) (-1441 . 702813) (-1442 . 702742)
+ (-1443 . 702657) (-1444 . 702573) (-1445 . 702478) (-1446 . 702398)
+ (-1447 . 702152) (-1448 . 701801) (-1449 . 701624) (-1450 . 701566)
+ (-1451 . 701292) (-1452 . 701046) (-1453 . 700980) (-1454 . 700914)
+ (-1455 . 700837) (-1456 . 700742) (-1457 . 700662) (-1458 . 700455)
+ (-1459 . 700104) (-1460 . 699923) (-1461 . 699349) (-1462 . 699259)
+ (-1463 . 699193) (-1464 . 699106) (-1465 . 699021) (-1466 . 698929)
+ (-1467 . 698834) (-1468 . 698757) (-1469 . 698688) (-1470 . 698578)
+ (-1471 . 698191) (-1472 . 698139) (-1473 . 697625) (-1474 . 697548)
+ (-1475 . 697358) (-1476 . 697292) (-1477 . 697220) (-1478 . 697163)
+ (-1479 . 697068) (-1480 . 696988) (-1481 . 696884) (-1482 . 696497)
+ (-1483 . 696352) (-1484 . 696279) (-1485 . 696213) (-1486 . 696025)
+ (-1487 . 695883) (-1488 . 695785) (-1489 . 695551) (-1490 . 695438)
+ (-1491 . 695051) (-1492 . 694981) (-1493 . 694915) (-1494 . 694743)
+ (-1495 . 694148) (-1496 . 694050) (-1497 . 693892) (-1498 . 693779)
+ (-1499 . 693701) (-1500 . 693318) (-1501 . 693259) (-1502 . 693194)
+ (-1503 . 693128) (-1504 . 692946) (-1505 . 692351) (-1506 . 692256)
+ (-1507 . 692083) (-1508 . 691781) (-1509 . 691653) (-1510 . 690917)
+ (-1511 . 690788) (-1512 . 690729) (-1513 . 690674) (-1514 . 690608)
+ (-1515 . 690006) (-1516 . 689728) (-1517 . 689207) (-1518 . 689112)
+ (-1519 . 689033) (-1520 . 688875) (-1521 . 688765) (-1522 . 688414)
+ (-1523 . 688358) (-1524 . 688264) (-1525 . 688121) (-1526 . 688055)
+ (-1527 . 687889) (-1528 . 687528) (-1529 . 687433) (-1530 . 687326)
+ (-1531 . 686869) (-1532 . 685565) (-1533 . 685509) (-1534 . 685199)
+ (-1535 . 685133) (-1536 . 684549) (-1537 . 684222) (-1538 . 684031)
+ (-1539 . 683432) (-1540 . 683337) (-1541 . 683181) (-1542 . 682752)
+ (-1543 . 682555) (-1544 . 682210) (-1545 . 682144) (-1546 . 682014)
+ (-1547 . 681881) (-1548 . 681828) (-1549 . 681732) (-1550 . 681637)
+ (-1551 . 681503) (-1552 . 680870) (-1553 . 680543) (-1554 . 680416)
+ (-1555 . 680342) (-1556 . 680276) (-1557 . 680199) (-1558 . 680066)
+ (-1559 . 679929) (-1560 . 679555) (-1561 . 679453) (-1562 . 679319)
+ (-1563 . 678680) (-1564 . 678534) (-1565 . 678396) (-1566 . 678026)
+ (-1567 . 677694) (-1568 . 677556) (-1569 . 677419) (-1570 . 677317)
+ (-1571 . 677204) (-1572 . 676812) (-1573 . 676684) (-1574 . 676490)
+ (-1575 . 676420) (-1576 . 676346) (-1577 . 676168) (-1578 . 676059)
+ (-1579 . 675922) (-1580 . 675820) (-1581 . 675701) (-1582 . 675359)
+ (-1583 . 673501) (-1584 . 673449) (-1585 . 673261) (-1586 . 673206)
+ (-1587 . 673134) (-1588 . 673025) (-1589 . 672695) (-1590 . 672627)
+ (-1591 . 672532) (-1592 . 672355) (-1593 . 671963) (-1594 . 671911)
+ (-1595 . 671766) (-1596 . 671646) (-1597 . 671506) (-1598 . 671397)
+ (-1599 . 671281) (-1600 . 671214) (-1601 . 671162) (-1602 . 670673)
+ (-1603 . 670528) (-1604 . 670473) (-1605 . 670171) (-1606 . 669981)
+ (-1607 . 669872) (-1608 . 669442) (-1609 . 669326) (-1610 . 669014)
+ (-1611 . 668901) (-1612 . 668850) (-1613 . 668757) (-1614 . 668659)
+ (-1615 . 668540) (-1616 . 668250) (-1617 . 668180) (-1618 . 667878)
+ (-1619 . 667762) (-1620 . 667653) (-1621 . 667532) (-1622 . 667416)
+ (-1623 . 667230) (-1624 . 667117) (-1625 . 667066) (-1626 . 666927)
+ (-1627 . 666466) (-1628 . 666432) (-1629 . 666316) (-1630 . 666207)
+ (-1631 . 666154) (-1632 . 665609) (-1633 . 665487) (-1634 . 665043)
+ (-1635 . 664617) (-1636 . 664406) (-1637 . 664372) (-1638 . 664338)
+ (-1639 . 664253) (-1640 . 664033) (-1641 . 663896) (-1642 . 663691)
+ (-1643 . 663589) (-1644 . 663552) (-1645 . 663334) (-1646 . 662931)
+ (-1647 . 662808) (-1648 . 662492) (-1649 . 662315) (-1650 . 662181)
+ (-1651 . 662154) (-1652 . 662052) (-1653 . 662024) (-1654 . 661987)
+ (-1655 . 661837) (-1656 . 660949) (-1657 . 660847) (-1658 . 660792)
+ (-1659 . 660622) (-1660 . 660488) (-1661 . 660365) (-1662 . 659449)
+ (-1663 . 659412) (-1664 . 659282) (-1665 . 658940) (-1666 . 658576)
+ (-1667 . 658520) (-1668 . 657868) (-1669 . 657769) (-1670 . 657469)
+ (-1671 . 657346) (-1672 . 657097) (-1673 . 657018) (-1674 . 656981)
+ (-1675 . 656851) (-1676 . 656682) (-1677 . 656144) (-1678 . 656000)
+ (-1679 . 655855) (-1680 . 655540) (-1681 . 655441) (-1682 . 655141)
+ (-1683 . 654869) (-1684 . 654789) (-1685 . 654658) (-1686 . 654624)
+ (-1687 . 654521) (-1688 . 654292) (-1689 . 654214) (-1690 . 653886)
+ (-1691 . 653599) (-1692 . 653526) (-1693 . 653173) (-1694 . 653003)
+ (-1695 . 652930) (-1696 . 652801) (-1697 . 652767) (-1698 . 652586)
+ (-1699 . 652332) (-1700 . 652254) (-1701 . 652130) (-1702 . 652042)
+ (-1703 . 651923) (-1704 . 651845) (-1705 . 651614) (-1706 . 651384)
+ (-1707 . 651278) (-1708 . 651204) (-1709 . 651131) (-1710 . 651074)
+ (-1711 . 650995) (-1712 . 650940) (-1713 . 650780) (-1714 . 650427)
+ (-1715 . 650331) (-1716 . 650092) (-1717 . 650040) (-1718 . 649959)
+ (-1719 . 649729) (-1720 . 649642) (-1721 . 649569) (-1722 . 649513)
+ (-1723 . 649434) (-1724 . 649245) (-1725 . 649142) (-1726 . 648114)
+ (-1727 . 647929) (-1728 . 647856) (-1729 . 647804) (-1730 . 647507)
+ (-1731 . 647348) (-1732 . 647235) (-1733 . 646841) (-1734 . 646785)
+ (-1735 . 646713) (-1736 . 646584) (-1737 . 646336) (-1738 . 646155)
+ (-1739 . 645837) (-1740 . 645738) (-1741 . 645597) (-1742 . 645569)
+ (-1743 . 645517) (-1744 . 645418) (-1745 . 645305) (-1746 . 644873)
+ (-1747 . 644786) (-1748 . 644714) (-1749 . 644585) (-1750 . 644337)
+ (-1751 . 644177) (-1752 . 643965) (-1753 . 643887) (-1754 . 643836)
+ (-1755 . 643735) (-1756 . 643682) (-1757 . 643517) (-1758 . 643201)
+ (-1759 . 643145) (-1760 . 643072) (-1761 . 642904) (-1762 . 642652)
+ (-1763 . 642489) (-1764 . 641915) (-1765 . 641819) (-1766 . 641715)
+ (-1767 . 641602) (-1768 . 641368) (-1769 . 641210) (-1770 . 641092)
+ (-1771 . 641043) (-1772 . 640701) (-1773 . 640572) (-1774 . 640520)
+ (-1775 . 640378) (-1776 . 639859) (-1777 . 639763) (-1778 . 639693)
+ (-1779 . 639572) (-1780 . 639459) (-1781 . 639319) (-1782 . 638773)
+ (-1783 . 638655) (-1784 . 637469) (-1785 . 637317) (-1786 . 637188)
+ (-1787 . 637133) (-1788 . 635355) (-1789 . 635205) (-1790 . 635039)
+ (-1791 . 634970) (-1792 . 634835) (-1793 . 634777) (-1794 . 634465)
+ (-1795 . 634132) (-1796 . 634007) (-1797 . 633947) (-1798 . 632765)
+ (-1799 . 632692) (-1800 . 632254) (-1801 . 632184) (-1802 . 632054)
+ (-1803 . 631582) (-1804 . 631018) (-1805 . 630883) (-1806 . 630825)
+ (-1807 . 630598) (-1808 . 630253) (-1809 . 630050) (-1810 . 627844)
+ (-1811 . 627771) (-1812 . 627405) (-1813 . 627316) (-1814 . 627186)
+ (-1815 . 626582) (-1816 . 626360) (-1817 . 626128) (-1818 . 626078)
+ (-1819 . 625747) (-1820 . 625544) (-1821 . 625312) (-1822 . 625239)
+ (-1823 . 625132) (-1824 . 625063) (-1825 . 624916) (-1826 . 624666)
+ (-1827 . 624603) (-1828 . 624540) (-1829 . 624119) (-1830 . 623916)
+ (-1831 . 623864) (-1832 . 623610) (-1833 . 623391) (-1834 . 623319)
+ (-1835 . 623212) (-1836 . 623085) (-1837 . 622948) (-1838 . 622885)
+ (-1839 . 622282) (-1840 . 622214) (-1841 . 622011) (-1842 . 621980)
+ (-1843 . 621836) (-1844 . 621767) (-1845 . 621534) (-1846 . 621321)
+ (-1847 . 621214) (-1848 . 621111) (-1849 . 620659) (-1850 . 620596)
+ (-1851 . 620536) (-1852 . 620468) (-1853 . 620352) (-1854 . 620300)
+ (-1855 . 618960) (-1856 . 618901) (-1857 . 618849) (-1858 . 618742)
+ (-1859 . 618250) (-1860 . 618197) (-1861 . 618041) (-1862 . 617874)
+ (-1863 . 612536) (-1864 . 612468) (-1865 . 612339) (-1866 . 611507)
+ (-1867 . 611313) (-1868 . 611282) (-1869 . 611199) (-1870 . 611144)
+ (-1871 . 611044) (-1872 . 610684) (-1873 . 610633) (-1874 . 609932)
+ (-1875 . 609837) (-1876 . 609739) (-1877 . 609623) (-1878 . 609049)
+ (-1879 . 608897) (-1880 . 608786) (-1881 . 608755) (-1882 . 608590)
+ (-1883 . 608299) (-1884 . 608103) (-1885 . 607425) (-1886 . 607312)
+ (-1887 . 607204) (-1888 . 607088) (-1889 . 606936) (-1890 . 606870)
+ (-1891 . 606764) (-1892 . 606616) (-1893 . 606501) (-1894 . 606428)
+ (-1895 . 606344) (-1896 . 606236) (-1897 . 606138) (-1898 . 605937)
+ (-1899 . 605871) (-1900 . 605629) (-1901 . 605194) (-1902 . 605079)
+ (-1903 . 604997) (-1904 . 604732) (-1905 . 604617) (-1906 . 604380)
+ (-1907 . 604278) (-1908 . 604180) (-1909 . 603932) (-1910 . 603660)
+ (-1911 . 603586) (-1912 . 603534) (-1913 . 603185) (-1914 . 603082)
+ (-1915 . 602867) (-1916 . 602754) (-1917 . 602647) (-1918 . 602553)
+ (-1919 . 602451) (-1920 . 602338) (-1921 . 602155) (-1922 . 601957)
+ (-1923 . 601885) (-1924 . 601825) (-1925 . 601637) (-1926 . 601531)
+ (-1927 . 601478) (-1928 . 601288) (-1929 . 601194) (-1930 . 601092)
+ (-1931 . 600883) (-1932 . 600854) (-1933 . 600455) (-1934 . 600262)
+ (-1935 . 600174) (-1936 . 600121) (-1937 . 599748) (-1938 . 599674)
+ (-1939 . 599485) (-1940 . 599405) (-1941 . 599307) (-1942 . 599206)
+ (-1943 . 599154) (-1944 . 598860) (-1945 . 598778) (-1946 . 598726)
+ (-1947 . 598446) (-1948 . 598288) (-1949 . 597981) (-1950 . 597926)
+ (-1951 . 597445) (-1952 . 597329) (-1953 . 597228) (-1954 . 597169)
+ (-1955 . 597096) (-1956 . 596946) (-1957 . 596894) (-1958 . 596843)
+ (-1959 . 592780) (-1960 . 592591) (-1961 . 591931) (-1962 . 591833)
+ (-1963 . 591714) (-1964 . 591613) (-1965 . 591514) (-1966 . 591410)
+ (-1967 . 591164) (-1968 . 591099) (-1969 . 590969) (-1970 . 590877)
+ (-1971 . 590826) (-1972 . 590703) (-1973 . 590601) (-1974 . 590537)
+ (-1975 . 590285) (-1976 . 590223) (-1977 . 590122) (-1978 . 590018)
+ (-1979 . 589772) (-1980 . 589744) (-1981 . 589692) (-1982 . 589621)
+ (-1983 . 589551) (-1984 . 589242) (-1985 . 589169) (-1986 . 589048)
+ (-1987 . 588935) (-1988 . 588834) (-1989 . 588727) (-1990 . 588677)
+ (-1991 . 588584) (-1992 . 588510) (-1993 . 588391) (-1994 . 588318)
+ (-1995 . 588197) (-1996 . 587946) (-1997 . 587725) (-1998 . 587624)
+ (-1999 . 587517) (-2000 . 586071) (-2001 . 585959) (-2002 . 585888)
+ (-2003 . 585859) (-2004 . 583514) (-2005 . 583394) (-2006 . 583286)
+ (-2007 . 582979) (-2008 . 582878) (-2009 . 582771) (-2010 . 582279)
+ (-2011 . 581961) (-2012 . 581908) (-2013 . 581786) (-2014 . 581713)
+ (-2015 . 581605) (-2016 . 580827) (-2017 . 580726) (-2018 . 580619)
+ (-2019 . 580017) (-2020 . 579836) (-2021 . 579765) (-2022 . 579711)
+ (-2023 . 579353) (-2024 . 579291) (-2025 . 579218) (-2026 . 579059)
+ (-2027 . 578470) (-2028 . 578369) (-2029 . 578262) (-2030 . 577458)
+ (-2031 . 577314) (-2032 . 577261) (-2033 . 577084) (-2034 . 577011)
+ (-2035 . 576773) (-2036 . 576276) (-2037 . 576175) (-2038 . 576068)
+ (-2039 . 575462) (-2040 . 575304) (-2041 . 575251) (-2042 . 575190)
+ (-2043 . 574970) (-2044 . 574802) (-2045 . 574554) (-2046 . 574439)
+ (-2047 . 574387) (-2048 . 574280) (-2049 . 573626) (-2050 . 573462)
+ (-2051 . 573409) (-2052 . 573228) (-2053 . 572895) (-2054 . 572773)
+ (-2055 . 572525) (-2056 . 572410) (-2057 . 572358) (-2058 . 572305)
+ (-2059 . 572198) (-2060 . 571612) (-2061 . 571448) (-2062 . 571395)
+ (-2063 . 571334) (-2064 . 571150) (-2065 . 571006) (-2066 . 570767)
+ (-2067 . 570468) (-2068 . 570417) (-2069 . 570310) (-2070 . 570236)
+ (-2071 . 570028) (-2072 . 569975) (-2073 . 569903) (-2074 . 569759)
+ (-2075 . 569555) (-2076 . 568932) (-2077 . 568815) (-2078 . 568708)
+ (-2079 . 567412) (-2080 . 567360) (-2081 . 567171) (-2082 . 567118)
+ (-2083 . 566742) (-2084 . 566645) (-2085 . 566284) (-2086 . 566073)
+ (-2087 . 565620) (-2088 . 565562) (-2089 . 565518) (-2090 . 565411)
+ (-2091 . 565359) (-2092 . 565201) (-2093 . 565148) (-2094 . 565095)
+ (-2095 . 564998) (-2096 . 564827) (-2097 . 564683) (-2098 . 564490)
+ (-2099 . 564330) (-2100 . 564229) (-2101 . 564158) (-2102 . 564051)
+ (-2103 . 563977) (-2104 . 563816) (-2105 . 563763) (-2106 . 563635)
+ (-2107 . 563564) (-2108 . 563466) (-2109 . 563295) (-2110 . 563016)
+ (-2111 . 562867) (-2112 . 562126) (-2113 . 562025) (-2114 . 561970)
+ (-2115 . 561784) (-2116 . 561623) (-2117 . 561570) (-2118 . 561415)
+ (-2119 . 561341) (-2120 . 558005) (-2121 . 557746) (-2122 . 557573)
+ (-2123 . 557244) (-2124 . 556503) (-2125 . 556402) (-2126 . 556318)
+ (-2127 . 556266) (-2128 . 556108) (-2129 . 556055) (-2130 . 556002)
+ (-2131 . 555831) (-2132 . 555572) (-2133 . 555393) (-2134 . 555232)
+ (-2135 . 554544) (-2136 . 554428) (-2137 . 553937) (-2138 . 553885)
+ (-2139 . 553745) (-2140 . 553692) (-2141 . 553548) (-2142 . 553301)
+ (-2143 . 553106) (-2144 . 553028) (-2145 . 552885) (-2146 . 552309)
+ (-2147 . 552156) (-2148 . 551421) (-2149 . 550848) (-2150 . 550796)
+ (-2151 . 550668) (-2152 . 550615) (-2153 . 541053) (-2154 . 540912)
+ (-2155 . 540769) (-2156 . 540193) (-2157 . 540068) (-2158 . 539858)
+ (-2159 . 539788) (-2160 . 539660) (-2161 . 539607) (-2162 . 539456)
+ (-2163 . 539372) (-2164 . 539169) (-2165 . 539135) (-2166 . 538992)
+ (-2167 . 538416) (-2168 . 538291) (-2169 . 538214) (-2170 . 537763)
+ (-2171 . 537635) (-2172 . 537582) (-2173 . 537531) (-2174 . 537434)
+ (-2175 . 537290) (-2176 . 537063) (-2177 . 536782) (-2178 . 536096)
+ (-2179 . 535712) (-2180 . 535572) (-2181 . 535303) (-2182 . 535089)
+ (-2183 . 534946) (-2184 . 534875) (-2185 . 534824) (-2186 . 534345)
+ (-2187 . 534095) (-2188 . 533870) (-2189 . 533184) (-2190 . 533066)
+ (-2191 . 532824) (-2192 . 532709) (-2193 . 532638) (-2194 . 532587)
+ (-2195 . 527474) (-2196 . 527115) (-2197 . 527087) (-2198 . 526769)
+ (-2199 . 526239) (-2200 . 525490) (-2201 . 525365) (-2202 . 525155)
+ (-2203 . 525017) (-2204 . 524841) (-2205 . 524775) (-2206 . 524703)
+ (-2207 . 524505) (-2208 . 524065) (-2209 . 523699) (-2210 . 523481)
+ (-2211 . 522907) (-2212 . 522749) (-2213 . 522617) (-2214 . 522479)
+ (-2215 . 522057) (-2216 . 521939) (-2217 . 521867) (-2218 . 521724)
+ (-2219 . 521580) (-2220 . 521418) (-2221 . 521200) (-2222 . 520626)
+ (-2223 . 520543) (-2224 . 519545) (-2225 . 519468) (-2226 . 519391)
+ (-2227 . 519164) (-2228 . 517984) (-2229 . 517907) (-2230 . 517793)
+ (-2231 . 517723) (-2232 . 516542) (-2233 . 515663) (-2234 . 515510)
+ (-2235 . 515433) (-2236 . 515162) (-2237 . 514745) (-2238 . 514692)
+ (-2239 . 514571) (-2240 . 514352) (-2241 . 514282) (-2242 . 514209)
+ (-2243 . 514136) (-2244 . 513874) (-2245 . 513820) (-2246 . 513461)
+ (-2247 . 513384) (-2248 . 513246) (-2249 . 513138) (-2250 . 512986)
+ (-2251 . 512933) (-2252 . 512815) (-2253 . 512745) (-2254 . 512652)
+ (-2255 . 512534) (-2256 . 512480) (-2257 . 512188) (-2258 . 511797)
+ (-2259 . 511656) (-2260 . 511489) (-2261 . 511436) (-2262 . 511324)
+ (-2263 . 511230) (-2264 . 511159) (-2265 . 511107) (-2266 . 510727)
+ (-2267 . 510435) (-2268 . 509957) (-2269 . 507694) (-2270 . 507600)
+ (-2271 . 507544) (-2272 . 507463) (-2273 . 507240) (-2274 . 506823)
+ (-2275 . 506531) (-2276 . 505528) (-2277 . 505405) (-2278 . 505125)
+ (-2279 . 504959) (-2280 . 504927) (-2281 . 504833) (-2282 . 504777)
+ (-2283 . 504696) (-2284 . 504320) (-2285 . 504028) (-2286 . 503792)
+ (-2287 . 503636) (-2288 . 503475) (-2289 . 503389) (-2290 . 503279)
+ (-2291 . 503185) (-2292 . 503129) (-2293 . 503048) (-2294 . 502672)
+ (-2295 . 502613) (-2296 . 502359) (-2297 . 502211) (-2298 . 501664)
+ (-2299 . 501632) (-2300 . 501522) (-2301 . 501428) (-2302 . 501357)
+ (-2303 . 501305) (-2304 . 501198) (-2305 . 500585) (-2306 . 500335)
+ (-2307 . 500187) (-2308 . 499988) (-2309 . 499902) (-2310 . 499816)
+ (-2311 . 499745) (-2312 . 499491) (-2313 . 499015) (-2314 . 498587)
+ (-2315 . 498160) (-2316 . 497865) (-2317 . 497642) (-2318 . 497424)
+ (-2319 . 497000) (-2320 . 496914) (-2321 . 496843) (-2322 . 496522)
+ (-2323 . 496350) (-2324 . 495897) (-2325 . 495823) (-2326 . 495660)
+ (-2327 . 495598) (-2328 . 495457) (-2329 . 495323) (-2330 . 495158)
+ (-2331 . 494734) (-2332 . 494648) (-2333 . 494567) (-2334 . 494482)
+ (-2335 . 494310) (-2336 . 494208) (-2337 . 494152) (-2338 . 494053)
+ (-2339 . 493854) (-2340 . 493510) (-2341 . 493433) (-2342 . 493024)
+ (-2343 . 492464) (-2344 . 492378) (-2345 . 492298) (-2346 . 492213)
+ (-2347 . 492041) (-2348 . 491957) (-2349 . 491818) (-2350 . 491677)
+ (-2351 . 491600) (-2352 . 491430) (-2353 . 490312) (-2354 . 489348)
+ (-2355 . 489262) (-2356 . 489177) (-2357 . 489115) (-2358 . 488943)
+ (-2359 . 488781) (-2360 . 488678) (-2361 . 488480) (-2362 . 488343)
+ (-2363 . 487258) (-2364 . 485528) (-2365 . 485281) (-2366 . 485207)
+ (-2367 . 485115) (-2368 . 484725) (-2369 . 484641) (-2370 . 484434)
+ (-2371 . 484331) (-2372 . 484133) (-2373 . 484003) (-2374 . 483880)
+ (-2375 . 482303) (-2376 . 481872) (-2377 . 481767) (-2378 . 481463)
+ (-2379 . 480576) (-2380 . 480495) (-2381 . 480441) (-2382 . 480344)
+ (-2383 . 480059) (-2384 . 479929) (-2385 . 479712) (-2386 . 478910)
+ (-2387 . 478832) (-2388 . 478606) (-2389 . 478525) (-2390 . 478406)
+ (-2391 . 477824) (-2392 . 477463) (-2393 . 477371) (-2394 . 477312)
+ (-2395 . 475764) (-2396 . 475702) (-2397 . 475587) (-2398 . 475147)
+ (-2399 . 475020) (-2400 . 474889) (-2401 . 474379) (-2402 . 474299)
+ (-2403 . 474227) (-2404 . 473409) (-2405 . 473352) (-2406 . 473260)
+ (-2407 . 472918) (-2408 . 472844) (-2409 . 472717) (-2410 . 472586)
+ (-2411 . 472178) (-2412 . 472101) (-2413 . 471896) (-2414 . 471824)
+ (-2415 . 471572) (-2416 . 471390) (-2417 . 471304) (-2418 . 470568)
+ (-2419 . 470467) (-2420 . 470303) (-2421 . 470176) (-2422 . 470014)
+ (-2423 . 469354) (-2424 . 468704) (-2425 . 468608) (-2426 . 468418)
+ (-2427 . 468166) (-2428 . 468109) (-2429 . 467947) (-2430 . 467828)
+ (-2431 . 467665) (-2432 . 467538) (-2433 . 467468) (-2434 . 467364)
+ (-2435 . 467292) (-2436 . 467186) (-2437 . 467087) (-2438 . 466841)
+ (-2439 . 466623) (-2440 . 466496) (-2441 . 466280) (-2442 . 466116)
+ (-2443 . 466013) (-2444 . 465954) (-2445 . 465882) (-2446 . 465783)
+ (-2447 . 465665) (-2448 . 465419) (-2449 . 465211) (-2450 . 464993)
+ (-2451 . 464349) (-2452 . 464166) (-2453 . 462034) (-2454 . 461864)
+ (-2455 . 461764) (-2456 . 461705) (-2457 . 461663) (-2458 . 461584)
+ (-2459 . 461463) (-2460 . 461217) (-2461 . 461044) (-2462 . 460991)
+ (-2463 . 459819) (-2464 . 459649) (-2465 . 459540) (-2466 . 459487)
+ (-2467 . 459390) (-2468 . 459284) (-2469 . 458838) (-2470 . 458759)
+ (-2471 . 458616) (-2472 . 458370) (-2473 . 458146) (-2474 . 457928)
+ (-2475 . 457866) (-2476 . 457751) (-2477 . 457595) (-2478 . 457109)
+ (-2479 . 457056) (-2480 . 456926) (-2481 . 456820) (-2482 . 456374)
+ (-2483 . 456301) (-2484 . 456207) (-2485 . 456064) (-2486 . 455817)
+ (-2487 . 455357) (-2488 . 455184) (-2489 . 455055) (-2490 . 453918)
+ (-2491 . 453817) (-2492 . 452409) (-2493 . 452258) (-2494 . 452117)
+ (-2495 . 451277) (-2496 . 450831) (-2497 . 450552) (-2498 . 450458)
+ (-2499 . 450318) (-2500 . 450071) (-2501 . 449898) (-2502 . 449789)
+ (-2503 . 449729) (-2504 . 449347) (-2505 . 447491) (-2506 . 446966)
+ (-2507 . 446766) (-2508 . 446626) (-2509 . 446379) (-2510 . 446206)
+ (-2511 . 446091) (-2512 . 446038) (-2513 . 445795) (-2514 . 445727)
+ (-2515 . 445637) (-2516 . 445520) (-2517 . 445362) (-2518 . 445219)
+ (-2519 . 444972) (-2520 . 444799) (-2521 . 444730) (-2522 . 439217)
+ (-2523 . 439164) (-2524 . 438701) (-2525 . 438633) (-2526 . 438540)
+ (-2527 . 438382) (-2528 . 438255) (-2529 . 437809) (-2530 . 437691)
+ (-2531 . 437413) (-2532 . 437141) (-2533 . 437072) (-2534 . 436680)
+ (-2535 . 436609) (-2536 . 436293) (-2537 . 436225) (-2538 . 436142)
+ (-2539 . 435984) (-2540 . 435872) (-2541 . 435742) (-2542 . 434881)
+ (-2543 . 427882) (-2544 . 427813) (-2545 . 427750) (-2546 . 427295)
+ (-2547 . 427242) (-2548 . 426635) (-2549 . 426567) (-2550 . 426404)
+ (-2551 . 426246) (-2552 . 426122) (-2553 . 426090) (-2554 . 422092)
+ (-2555 . 421842) (-2556 . 421776) (-2557 . 421427) (-2558 . 421236)
+ (-2559 . 421094) (-2560 . 420485) (-2561 . 420417) (-2562 . 420303)
+ (-2563 . 420244) (-2564 . 420069) (-2565 . 419911) (-2566 . 419693)
+ (-2567 . 419569) (-2568 . 419220) (-2569 . 419159) (-2570 . 419102)
+ (-2571 . 418977) (-2572 . 418897) (-2573 . 417685) (-2574 . 417587)
+ (-2575 . 416512) (-2576 . 416432) (-2577 . 416355) (-2578 . 416197)
+ (-2579 . 415951) (-2580 . 415793) (-2581 . 415687) (-2582 . 415460)
+ (-2583 . 414949) (-2584 . 414732) (-2585 . 414638) (-2586 . 414053)
+ (-2587 . 413646) (-2588 . 412430) (-2589 . 412244) (-2590 . 412125)
+ (-2591 . 412058) (-2592 . 410820) (-2593 . 410714) (-2594 . 410614)
+ (-2595 . 410461) (-2596 . 410411) (-2597 . 410196) (-2598 . 410080)
+ (-2599 . 409764) (-2600 . 409402) (-2601 . 409302) (-2602 . 409144)
+ (-2603 . 409041) (-2604 . 408941) (-2605 . 408774) (-2606 . 408703)
+ (-2607 . 408414) (-2608 . 408317) (-2609 . 407979) (-2610 . 407794)
+ (-2611 . 407694) (-2612 . 407536) (-2613 . 407456) (-2614 . 407303)
+ (-2615 . 405520) (-2616 . 405353) (-2617 . 405210) (-2618 . 405109)
+ (-2619 . 404778) (-2620 . 404235) (-2621 . 403892) (-2622 . 403734)
+ (-2623 . 403578) (-2624 . 403464) (-2625 . 403365) (-2626 . 403206)
+ (-2627 . 403123) (-2628 . 403026) (-2629 . 402699) (-2630 . 402520)
+ (-2631 . 402439) (-2632 . 402281) (-2633 . 402125) (-2634 . 401055)
+ (-2635 . 400937) (-2636 . 400854) (-2637 . 400710) (-2638 . 400657)
+ (-2639 . 400435) (-2640 . 400357) (-2641 . 400241) (-2642 . 400083)
+ (-2643 . 399936) (-2644 . 399840) (-2645 . 399716) (-2646 . 398962)
+ (-2647 . 398816) (-2648 . 397187) (-2649 . 396916) (-2650 . 396786)
+ (-2651 . 396564) (-2652 . 396457) (-2653 . 396056) (-2654 . 395898)
+ (-2655 . 395735) (-2656 . 395630) (-2657 . 395484) (-2658 . 395432)
+ (-2659 . 394566) (-2660 . 393700) (-2661 . 393168) (-2662 . 392946)
+ (-2663 . 392784) (-2664 . 392626) (-2665 . 392539) (-2666 . 392460)
+ (-2667 . 392373) (-2668 . 392202) (-2669 . 392150) (-2670 . 391991)
+ (-2671 . 390617) (-2672 . 389452) (-2673 . 389121) (-2674 . 388902)
+ (-2675 . 388794) (-2676 . 388636) (-2677 . 388554) (-2678 . 388525)
+ (-2679 . 388398) (-2680 . 388280) (-2681 . 387905) (-2682 . 387850)
+ (-2683 . 387631) (-2684 . 387495) (-2685 . 387421) (-2686 . 387362)
+ (-2687 . 387203) (-2688 . 387146) (-2689 . 387001) (-2690 . 386868)
+ (-2691 . 386812) (-2692 . 386757) (-2693 . 386538) (-2694 . 386402)
+ (-2695 . 386346) (-2696 . 386272) (-2697 . 386190) (-2698 . 386108)
+ (-2699 . 385006) (-2700 . 384852) (-2701 . 384699) (-2702 . 384418)
+ (-2703 . 384366) (-2704 . 384288) (-2705 . 384069) (-2706 . 383946)
+ (-2707 . 383876) (-2708 . 383821) (-2709 . 383768) (-2710 . 383686)
+ (-2711 . 383614) (-2712 . 383451) (-2713 . 383315) (-2714 . 383212)
+ (-2715 . 383135) (-2716 . 382916) (-2717 . 382817) (-2718 . 382762)
+ (-2719 . 382680) (-2720 . 382603) (-2721 . 382544) (-2722 . 382451)
+ (-2723 . 382395) (-2724 . 380557) (-2725 . 380472) (-2726 . 380395)
+ (-2727 . 380176) (-2728 . 380027) (-2729 . 379972) (-2730 . 379866)
+ (-2731 . 379789) (-2732 . 379719) (-2733 . 379523) (-2734 . 379467)
+ (-2735 . 377957) (-2736 . 377811) (-2737 . 377731) (-2738 . 377630)
+ (-2739 . 377531) (-2740 . 377476) (-2741 . 377301) (-2742 . 377269)
+ (-2743 . 377190) (-2744 . 376874) (-2745 . 376725) (-2746 . 376630)
+ (-2747 . 376575) (-2748 . 376420) (-2749 . 376337) (-2750 . 376219)
+ (-2751 . 376148) (-2752 . 375995) (-2753 . 375963) (-2754 . 374493)
+ (-2755 . 374126) (-2756 . 372945) (-2757 . 372812) (-2758 . 372522)
+ (-2759 . 372452) (-2760 . 372397) (-2761 . 372242) (-2762 . 372159)
+ (-2763 . 371951) (-2764 . 371798) (-2765 . 371766) (-2766 . 371399)
+ (-2767 . 371347) (-2768 . 371294) (-2769 . 371199) (-2770 . 371144)
+ (-2771 . 371060) (-2772 . 370956) (-2773 . 370852) (-2774 . 370678)
+ (-2775 . 370646) (-2776 . 370366) (-2777 . 370311) (-2778 . 370181)
+ (-2779 . 370128) (-2780 . 370058) (-2781 . 370003) (-2782 . 369408)
+ (-2783 . 369216) (-2784 . 369184) (-2785 . 368905) (-2786 . 368853)
+ (-2787 . 368734) (-2788 . 368639) (-2789 . 368485) (-2790 . 368379)
+ (-2791 . 368312) (-2792 . 368013) (-2793 . 367981) (-2794 . 367888)
+ (-2795 . 367814) (-2796 . 367722) (-2797 . 367652) (-2798 . 367359)
+ (-2799 . 367281) (-2800 . 367228) (-2801 . 367033) (-2802 . 367001)
+ (-2803 . 366080) (-2804 . 365987) (-2805 . 365913) (-2806 . 365618)
+ (-2807 . 365523) (-2808 . 365264) (-2809 . 365168) (-2810 . 365115)
+ (-2811 . 365000) (-2812 . 364968) (-2813 . 364788) (-2814 . 364695)
+ (-2815 . 364612) (-2816 . 364584) (-2817 . 364488) (-2818 . 364411)
+ (-2819 . 364358) (-2820 . 364232) (-2821 . 364203) (-2822 . 364132)
+ (-2823 . 364049) (-2824 . 363667) (-2825 . 363530) (-2826 . 363407)
+ (-2827 . 363357) (-2828 . 363261) (-2829 . 361099) (-2830 . 361040)
+ (-2831 . 360961) (-2832 . 360848) (-2833 . 360756) (-2834 . 360701)
+ (-2835 . 359705) (-2836 . 359568) (-2837 . 358695) (-2838 . 358149)
+ (-2839 . 358050) (-2840 . 357991) (-2841 . 357859) (-2842 . 357746)
+ (-2843 . 357584) (-2844 . 357510) (-2845 . 357102) (-2846 . 356965)
+ (-2847 . 356486) (-2848 . 356380) (-2849 . 356003) (-2850 . 355611)
+ (-2851 . 355284) (-2852 . 354924) (-2853 . 354850) (-2854 . 354442)
+ (-2855 . 354305) (-2856 . 354133) (-2857 . 354009) (-2858 . 353956)
+ (-2859 . 353781) (-2860 . 353704) (-2861 . 353025) (-2862 . 352867)
+ (-2863 . 352793) (-2864 . 352675) (-2865 . 352538) (-2866 . 352347)
+ (-2867 . 352223) (-2868 . 352167) (-2869 . 352088) (-2870 . 352011)
+ (-2871 . 351901) (-2872 . 351822) (-2873 . 351662) (-2874 . 351525)
+ (-2875 . 351232) (-2876 . 350865) (-2877 . 350809) (-2878 . 350620)
+ (-2879 . 350564) (-2880 . 349890) (-2881 . 349810) (-2882 . 349781)
+ (-2883 . 349726) (-2884 . 349581) (-2885 . 349525) (-2886 . 349357)
+ (-2887 . 349177) (-2888 . 349121) (-2889 . 348854) (-2890 . 348787)
+ (-2891 . 348728) (-2892 . 348610) (-2893 . 348455) (-2894 . 348182)
+ (-2895 . 347801) (-2896 . 347628) (-2897 . 347558) (-2898 . 347484)
+ (-2899 . 347033) (-2900 . 346966) (-2901 . 346889) (-2902 . 346790)
+ (-2903 . 346608) (-2904 . 346497) (-2905 . 346350) (-2906 . 346237)
+ (-2907 . 346139) (-2908 . 345987) (-2909 . 345920) (-2910 . 345848)
+ (-2911 . 345749) (-2912 . 345720) (-2913 . 345596) (-2914 . 345485)
+ (-2915 . 345282) (-2916 . 345028) (-2917 . 344930) (-2918 . 344750)
+ (-2919 . 344687) (-2920 . 344588) (-2921 . 344295) (-2922 . 344227)
+ (-2923 . 344123) (-2924 . 343827) (-2925 . 343515) (-2926 . 343417)
+ (-2927 . 343259) (-2928 . 343086) (-2929 . 342565) (-2930 . 342406)
+ (-2931 . 342213) (-2932 . 342114) (-2933 . 341821) (-2934 . 341711)
+ (-2935 . 341557) (-2936 . 341261) (-2937 . 341138) (-2938 . 340978)
+ (-2939 . 340716) (-2940 . 340194) (-2941 . 339658) (-2942 . 339542)
+ (-2943 . 339443) (-2944 . 339156) (-2945 . 339053) (-2946 . 338933)
+ (-2947 . 338672) (-2948 . 338512) (-2949 . 338254) (-2950 . 337979)
+ (-2951 . 337734) (-2952 . 337591) (-2953 . 337330) (-2954 . 337231)
+ (-2955 . 336947) (-2956 . 332787) (-2957 . 332658) (-2958 . 332577)
+ (-2959 . 332424) (-2960 . 331607) (-2961 . 331416) (-2962 . 331382)
+ (-2963 . 331313) (-2964 . 331214) (-2965 . 330908) (-2966 . 330460)
+ (-2967 . 330362) (-2968 . 330274) (-2969 . 329516) (-2970 . 329344)
+ (-2971 . 329000) (-2972 . 328945) (-2973 . 328743) (-2974 . 328629)
+ (-2975 . 328510) (-2976 . 328422) (-2977 . 327995) (-2978 . 327907)
+ (-2979 . 327806) (-2980 . 327690) (-2981 . 326488) (-2982 . 326235)
+ (-2983 . 326012) (-2984 . 325699) (-2985 . 324986) (-2986 . 324824)
+ (-2987 . 324710) (-2988 . 324471) (-2989 . 324386) (-2990 . 323766)
+ (-2991 . 323678) (-2992 . 323580) (-2993 . 323465) (-2994 . 323154)
+ (-2995 . 322250) (-2996 . 322071) (-2997 . 321756) (-2998 . 321597)
+ (-2999 . 321483) (-3000 . 321384) (-3001 . 320777) (-3002 . 320689)
+ (-3003 . 320617) (-3004 . 320491) (-3005 . 320139) (-3006 . 319995)
+ (-3007 . 319863) (-3008 . 319354) (-3009 . 319244) (-3010 . 319130)
+ (-3011 . 319031) (-3012 . 318813) (-3013 . 318725) (-3014 . 317918)
+ (-3015 . 317788) (-3016 . 317562) (-3017 . 317418) (-3018 . 317277)
+ (-3019 . 317225) (-3020 . 317174) (-3021 . 317060) (-3022 . 316834)
+ (-3023 . 316656) (-3024 . 316568) (-3025 . 316496) (-3026 . 316427)
+ (-3027 . 316152) (-3028 . 316008) (-3029 . 314920) (-3030 . 314868)
+ (-3031 . 314479) (-3032 . 314365) (-3033 . 314265) (-3034 . 314001)
+ (-3035 . 313907) (-3036 . 313571) (-3037 . 313184) (-3038 . 312977)
+ (-3039 . 312821) (-3040 . 312769) (-3041 . 312528) (-3042 . 312411)
+ (-3043 . 312308) (-3044 . 311894) (-3045 . 311806) (-3046 . 311734)
+ (-3047 . 311661) (-3048 . 308040) (-3049 . 307856) (-3050 . 307807)
+ (-3051 . 307609) (-3052 . 307429) (-3053 . 307351) (-3054 . 307254)
+ (-3055 . 307176) (-3056 . 307096) (-3057 . 306802) (-3058 . 306714)
+ (-3059 . 306378) (-3060 . 306262) (-3061 . 306128) (-3062 . 305985)
+ (-3063 . 304553) (-3064 . 304491) (-3065 . 303895) (-3066 . 303817)
+ (-3067 . 303490) (-3068 . 303042) (-3069 . 298500) (-3070 . 298412)
+ (-3071 . 298340) (-3072 . 298283) (-3073 . 298117) (-3074 . 297796)
+ (-3075 . 297655) (-3076 . 297437) (-3077 . 297356) (-3078 . 296969)
+ (-3079 . 296674) (-3080 . 296496) (-3081 . 296408) (-3082 . 295955)
+ (-3083 . 295865) (-3084 . 295813) (-3085 . 295647) (-3086 . 295532)
+ (-3087 . 295386) (-3088 . 295129) (-3089 . 294332) (-3090 . 293986)
+ (-3091 . 293913) (-3092 . 293520) (-3093 . 293432) (-3094 . 293360)
+ (-3095 . 293226) (-3096 . 292881) (-3097 . 292648) (-3098 . 292581)
+ (-3099 . 292202) (-3100 . 292100) (-3101 . 291715) (-3102 . 291322)
+ (-3103 . 291234) (-3104 . 291129) (-3105 . 290995) (-3106 . 290835)
+ (-3107 . 290775) (-3108 . 290678) (-3109 . 290606) (-3110 . 290344)
+ (-3111 . 290316) (-3112 . 290228) (-3113 . 290043) (-3114 . 289966)
+ (-3115 . 289900) (-3116 . 289766) (-3117 . 289627) (-3118 . 289570)
+ (-3119 . 289473) (-3120 . 288976) (-3121 . 288830) (-3122 . 288728)
+ (-3123 . 288529) (-3124 . 288441) (-3125 . 288234) (-3126 . 288157)
+ (-3127 . 288091) (-3128 . 287957) (-3129 . 287818) (-3130 . 287761)
+ (-3131 . 287572) (-3132 . 287150) (-3133 . 286945) (-3134 . 286765)
+ (-3135 . 286541) (-3136 . 286453) (-3137 . 286381) (-3138 . 286250)
+ (-3139 . 286121) (-3140 . 285908) (-3141 . 285824) (-3142 . 285384)
+ (-3143 . 285271) (-3144 . 285021) (-3145 . 284715) (-3146 . 284627)
+ (-3147 . 284284) (-3148 . 284153) (-3149 . 284068) (-3150 . 283925)
+ (-3151 . 283803) (-3152 . 282933) (-3153 . 282831) (-3154 . 282776)
+ (-3155 . 282577) (-3156 . 282439) (-3157 . 282307) (-3158 . 282176)
+ (-3159 . 282116) (-3160 . 281613) (-3161 . 281505) (-3162 . 281359)
+ (-3163 . 281232) (-3164 . 281075) (-3165 . 280997) (-3166 . 280363)
+ (-3167 . 266249) (-3168 . 266111) (-3169 . 265966) (-3170 . 265583)
+ (-3171 . 264271) (-3172 . 264150) (-3173 . 263495) (-3174 . 263365)
+ (-3175 . 263270) (-3176 . 262896) (-3177 . 262739) (-3178 . 262619)
+ (-3179 . 262474) (-3180 . 262347) (-3181 . 261914) (-3182 . 261799)
+ (-3183 . 261732) (-3184 . 261022) (-3185 . 260910) (-3186 . 260813)
+ (-3187 . 260734) (-3188 . 260343) (-3189 . 260223) (-3190 . 259722)
+ (-3191 . 259594) (-3192 . 259462) (-3193 . 259388) (-3194 . 259281)
+ (-3195 . 259123) (-3196 . 259041) (-3197 . 258968) (-3198 . 258919)
+ (-3199 . 258778) (-3200 . 258427) (-3201 . 258295) (-3202 . 258043)
+ (-3203 . 257724) (-3204 . 257609) (-3205 . 257505) (-3206 . 257391)
+ (-3207 . 257304) (-3208 . 257245) (-3209 . 257162) (-3210 . 257110)
+ (-3211 . 257022) (-3212 . 256791) (-3213 . 256734) (-3214 . 256610)
+ (-3215 . 256532) (-3216 . 256275) (-3217 . 256018) (-3218 . 255914)
+ (-3219 . 255766) (-3220 . 236882) (-3221 . 236763) (-3222 . 236680)
+ (-3223 . 236631) (-3224 . 232965) (-3225 . 232877) (-3226 . 232602)
+ (-3227 . 231753) (-3228 . 231501) (-3229 . 231430) (-3230 . 231328)
+ (-3231 . 231214) (-3232 . 231130) (-3233 . 228309) (-3234 . 228225)
+ (-3235 . 228105) (-3236 . 228022) (-3237 . 227970) (-3238 . 227882)
+ (-3239 . 227495) (-3240 . 227371) (-3241 . 227001) (-3242 . 226800)
+ (-3243 . 226591) (-3244 . 226507) (-3245 . 226423) (-3246 . 226322)
+ (-3247 . 226176) (-3248 . 226088) (-3249 . 225845) (-3250 . 225593)
+ (-3251 . 225306) (-3252 . 224984) (-3253 . 224885) (-3254 . 224777)
+ (-3255 . 224693) (-3256 . 224634) (-3257 . 224582) (-3258 . 224444)
+ (-3259 . 224201) (-3260 . 224077) (-3261 . 223966) (-3262 . 223492)
+ (-3263 . 223413) (-3264 . 222990) (-3265 . 222906) (-3266 . 222782)
+ (-3267 . 222636) (-3268 . 222498) (-3269 . 222255) (-3270 . 221970)
+ (-3271 . 221874) (-3272 . 221767) (-3273 . 221711) (-3274 . 221284)
+ (-3275 . 221200) (-3276 . 221169) (-3277 . 221045) (-3278 . 220993)
+ (-3279 . 220905) (-3280 . 220662) (-3281 . 220606) (-3282 . 220333)
+ (-3283 . 220237) (-3284 . 220129) (-3285 . 220058) (-3286 . 219981)
+ (-3287 . 219884) (-3288 . 219831) (-3289 . 219685) (-3290 . 219597)
+ (-3291 . 219366) (-3292 . 219295) (-3293 . 219022) (-3294 . 218932)
+ (-3295 . 218781) (-3296 . 218661) (-3297 . 218390) (-3298 . 218320)
+ (-3299 . 218265) (-3300 . 218213) (-3301 . 218125) (-3302 . 217894)
+ (-3303 . 217692) (-3304 . 217575) (-3305 . 217277) (-3306 . 217052)
+ (-3307 . 216910) (-3308 . 216806) (-3309 . 216535) (-3310 . 216465)
+ (-3311 . 216130) (-3312 . 215749) (-3313 . 215661) (-3314 . 215509)
+ (-3315 . 214739) (-3316 . 214637) (-3317 . 214494) (-3318 . 214075)
+ (-3319 . 213974) (-3320 . 213587) (-3321 . 213493) (-3322 . 213164)
+ (-3323 . 213112) (-3324 . 213024) (-3325 . 212840) (-3326 . 212695)
+ (** . 209606) (-3328 . 209510) (-3329 . 209260) (-3330 . 209178)
+ (-3331 . 208475) (-3332 . 208378) (-3333 . 208174) (-3334 . 207986)
+ (-3335 . 207937) (-3336 . 207849) (-3337 . 207744) (-3338 . 207603)
+ (-3339 . 207460) (-3340 . 206783) (-3341 . 206701) (-3342 . 206641)
+ (-3343 . 206557) (-3344 . 206366) (-3345 . 206314) (-3346 . 206223)
+ (-3347 . 206100) (-3348 . 205943) (-3349 . 205872) (-3350 . 205717)
+ (-3351 . 205638) (-3352 . 205561) (-3353 . 205394) (-3354 . 205222)
+ (-3355 . 205173) (-3356 . 205079) (-3357 . 204971) (-3358 . 204805)
+ (-3359 . 204596) (-3360 . 204485) (-3361 . 204414) (-3362 . 204337)
+ (-3363 . 203996) (-3364 . 203944) (-3365 . 203850) (-3366 . 203742)
+ (-3367 . 203651) (-3368 . 203473) (-3369 . 203420) (-3370 . 203349)
+ (-3371 . 203226) (-3372 . 203056) (-3373 . 202959) (-3374 . 202910)
+ (-3375 . 202605) (-3376 . 202101) (-3377 . 202073) (-3378 . 201863)
+ (-3379 . 201810) (-3380 . 201739) (-3381 . 201487) (-3382 . 201060)
+ (-3383 . 200814) (-3384 . 200762) (-3385 . 200712) (-3386 . 200402)
+ (-9 . 200374) (-3388 . 200196) (-3389 . 200000) (-3390 . 199929)
+ (-3391 . 199842) (-3392 . 199508) (-3393 . 199459) (-3394 . 199409)
+ (-3395 . 198666) (-3396 . 198599) (-8 . 198571) (-3398 . 198450)
+ (-3399 . 197972) (-3400 . 197901) (-3401 . 197823) (-3402 . 197625)
+ (-3403 . 197573) (-3404 . 197520) (-3405 . 197343) (-3406 . 197260)
+ (-3407 . 197157) (-7 . 197129) (-3409 . 196814) (-3410 . 196764)
+ (-3411 . 196693) (-3412 . 196615) (-3413 . 196386) (-3414 . 196337)
+ (-3415 . 196077) (-3416 . 195932) (-3417 . 195594) (-3418 . 195511)
+ (-3419 . 195233) (-3420 . 195183) (-3421 . 195084) (-3422 . 194985)
+ (-3423 . 194935) (-3424 . 194830) (-3425 . 194492) (-3426 . 194390)
+ (-3427 . 194269) (-3428 . 194219) (-3429 . 193963) (-3430 . 192765)
+ (-3431 . 192433) (-3432 . 192359) (-3433 . 192325) (-3434 . 192207)
+ (-3435 . 192133) (-3436 . 191926) (-3437 . 191799) (-3438 . 191731)
+ (-3439 . 191356) (-3440 . 191165) (-3441 . 191022) (-3442 . 190927)
+ (-3443 . 190862) (-3444 . 190763) (-3445 . 190680) (-3446 . 190595)
+ (-3447 . 190391) (-3448 . 190219) (-3449 . 187950) (-3450 . 187807)
+ (-3451 . 187611) (-3452 . 187574) (-3453 . 187085) (-3454 . 187011)
+ (-3455 . 186895) (-3456 . 186514) (-3457 . 186431) (-3458 . 186235)
+ (-3459 . 186098) (-3460 . 185988) (-3461 . 185770) (-3462 . 185445)
+ (-3463 . 185379) (-3464 . 184875) (-3465 . 184428) (-3466 . 184345)
+ (-3467 . 184274) (-3468 . 184036) (-3469 . 182927) (-3470 . 182824)
+ (-3471 . 182742) (-3472 . 182529) (-3473 . 182319) (-3474 . 182253)
+ (-3475 . 181869) (-3476 . 181634) (-3477 . 181369) (-3478 . 181298)
+ (-3479 . 181227) (-3480 . 181160) (-3481 . 181067) (-3482 . 180981)
+ (-3483 . 180902) (-3484 . 180836) (-3485 . 180407) (-3486 . 180152)
+ (-3487 . 179401) (-3488 . 179318) (-3489 . 179251) (-3490 . 179165)
+ (-3491 . 179099) (-3492 . 179001) (-3493 . 178904) (-3494 . 178767)
+ (-3495 . 178684) (-3496 . 178550) (-3497 . 178208) (-3498 . 178065)
+ (-3499 . 177979) (-3500 . 177913) (-3501 . 177813) (-3502 . 177732)
+ (-3503 . 177641) (-3504 . 177516) (-3505 . 177379) (-3506 . 177154)
+ (-3507 . 177087) (-3508 . 177001) (-3509 . 176935) (-3510 . 173636)
+ (-3511 . 173530) (-3512 . 173393) (-3513 . 173256) (-3514 . 173125)
+ (-3515 . 172595) (-3516 . 172511) (-3517 . 172425) (-3518 . 172359)
+ (-3519 . 172291) (-3520 . 172208) (-3521 . 172095) (-3522 . 171877)
+ (-3523 . 171739) (-3524 . 171683) (-3525 . 171600) (-3526 . 171514)
+ (-3527 . 171448) (-3528 . 171332) (-3529 . 171223) (-3530 . 171154)
+ (-3531 . 171080) (-3532 . 170958) (-3533 . 170740) (-3534 . 170666)
+ (-3535 . 170356) (-3536 . 170254) (-3537 . 170168) (-3538 . 170102)
+ (-3539 . 169741) (-3540 . 169588) (-3541 . 169479) (-3542 . 169199)
+ (-3543 . 169043) (-3544 . 168955) (-3545 . 168787) (-3546 . 168662)
+ (-3547 . 168443) (-3548 . 168233) (-3549 . 168033) (-3550 . 167947)
+ (-3551 . 167881) (-3552 . 167737) (-3553 . 167628) (-3554 . 167400)
+ (-3555 . 167312) (-3556 . 167160) (-3557 . 167056) (-3558 . 166876)
+ (-3559 . 166808) (-3560 . 166722) (-3561 . 166656) (-3562 . 166582)
+ (-3563 . 166473) (-3564 . 166302) (-3565 . 166198) (-3566 . 166014)
+ (-3567 . 165795) (-3568 . 165547) (-3569 . 165461) (-3570 . 165375)
+ (-3571 . 165309) (-3572 . 165200) (-3573 . 165143) (-3574 . 165069)
+ (-3575 . 164965) (-3576 . 164791) (-3577 . 164611) (-3578 . 164360)
+ (-3579 . 164274) (-3580 . 164208) (-3581 . 164134) (-3582 . 164025)
+ (-3583 . 163881) (-3584 . 163796) (-3585 . 163597) (-3586 . 163203)
+ (-3587 . 162955) (-3588 . 162869) (-3589 . 162803) (-3590 . 162729)
+ (-3591 . 162620) (-3592 . 162154) (-3593 . 161782) (-3594 . 161608)
+ (-3595 . 161428) (-3596 . 161180) (-3597 . 161094) (-3598 . 161028)
+ (-3599 . 160954) (-3600 . 160845) (-3601 . 160765) (-3602 . 160385)
+ (-3603 . 160302) (-3604 . 160183) (-3605 . 159968) (-3606 . 159900)
+ (-3607 . 159814) (-3608 . 159157) (-3609 . 159013) (-3610 . 158904)
+ (-3611 . 158835) (-3612 . 158071) (-3613 . 157984) (-3614 . 157856)
+ (-3615 . 157766) (-3616 . 157430) (-3617 . 157344) (-3618 . 156687)
+ (-3619 . 156534) (-3620 . 156425) (-3621 . 156281) (-3622 . 156198)
+ (-3623 . 156070) (-3624 . 155980) (-3625 . 154915) (-3626 . 154829)
+ (-3627 . 154701) (-3628 . 154526) (-3629 . 154417) (-3630 . 154273)
+ (-3631 . 154051) (-3632 . 153929) (-3633 . 153835) (-3634 . 153615)
+ (-3635 . 153529) (-3636 . 153406) (-3637 . 153253) (-3638 . 153144)
+ (-3639 . 152979) (-3640 . 152786) (-3641 . 152561) (-3642 . 152474)
+ (-3643 . 152391) (-3644 . 152305) (-3645 . 152182) (-3646 . 152029)
+ (-3647 . 151920) (-3648 . 151682) (-3649 . 151351) (-3650 . 151180)
+ (-3651 . 151090) (-3652 . 151039) (-3653 . 150965) (-3654 . 150450)
+ (-3655 . 150364) (-3656 . 150223) (-3657 . 149937) (-3658 . 149828)
+ (-3659 . 149687) (-3660 . 149391) (-3661 . 149220) (-3662 . 149137)
+ (-3663 . 149063) (-3664 . 148977) (-3665 . 148822) (-3666 . 148751)
+ (-3667 . 148465) (-3668 . 148356) (-3669 . 148209) (-3670 . 147913)
+ (-3671 . 147736) (-3672 . 147545) (-3673 . 147486) (-3674 . 147412)
+ (-3675 . 147326) (-3676 . 147182) (-3677 . 146771) (-3678 . 146662)
+ (-3679 . 146423) (-3680 . 146113) (-3681 . 145961) (-3682 . 145905)
+ (-3683 . 145801) (-3684 . 145715) (-3685 . 145535) (-3686 . 145249)
+ (-3687 . 145140) (-3688 . 144904) (-3689 . 144587) (-3690 . 144307)
+ (-3691 . 144224) (-3692 . 144151) (-3693 . 144065) (-3694 . 143942)
+ (-3695 . 143869) (-3696 . 143760) (-3697 . 143521) (-3698 . 143392)
+ (-3699 . 142988) (-3700 . 142905) (-3701 . 142837) (-3702 . 142784)
+ (-3703 . 142698) (-3704 . 142574) (-3705 . 142425) (-3706 . 142316)
+ (-3707 . 141900) (-3708 . 141705) (-3709 . 141514) (-3710 . 141383)
+ (-3711 . 141300) (-3712 . 140484) (-3713 . 140271) (-3714 . 140185)
+ (-3715 . 140084) (-3716 . 139978) (-3717 . 139777) (-3718 . 139654)
+ (-3719 . 139166) (-3720 . 138961) (-3721 . 138826) (-3722 . 138774)
+ (-3723 . 138688) (-3724 . 138632) (-3725 . 138561) (-3726 . 138246)
+ (-3727 . 138042) (-3728 . 137958) (-3729 . 137775) (-3730 . 137640)
+ (-3731 . 137585) (-3732 . 137530) (-3733 . 137427) (-3734 . 137371)
+ (-3735 . 137300) (-3736 . 135712) (-3737 . 135489) (-3738 . 135272)
+ (-3739 . 135085) (-3740 . 134961) (-3741 . 134871) (-3742 . 134782)
+ (-3743 . 134726) (-3744 . 134574) (-3745 . 134416) (-3746 . 134058)
+ (-3747 . 133819) (-3748 . 133602) (-3749 . 133473) (-3750 . 133352)
+ (-3751 . 133265) (-3752 . 133055) (-3753 . 132999) (-3754 . 132896)
+ (-3755 . 132755) (-3756 . 132614) (-3757 . 132355) (-3758 . 132248)
+ (-3759 . 132130) (-3760 . 130279) (-3761 . 130220) (-3762 . 130161)
+ (-3763 . 130102) (-3764 . 129959) (-3765 . 129821) (-3766 . 129387)
+ (-3767 . 129246) (-3768 . 129110) (-3769 . 129029) (-3770 . 128973)
+ (-3771 . 128909) (-3772 . 128850) (-3773 . 128644) (-3774 . 128505)
+ (-3775 . 127951) (-3776 . 127819) (-3777 . 127686) (-3778 . 126932)
+ (-3779 . 126843) (-3780 . 126735) (-3781 . 126600) (-3782 . 124632)
+ (-3783 . 124521) (-3784 . 124268) (-3785 . 124138) (-3786 . 124024)
+ (-3787 . 123952) (-3788 . 123822) (-3789 . 123710) (-3790 . 123602)
+ (-3791 . 123543) (-3792 . 123415) (-3793 . 123159) (-3794 . 122885)
+ (-3795 . 122737) (-3796 . 122680) (-3797 . 122473) (-3798 . 122385)
+ (-3799 . 122277) (-3800 . 122107) (-3801 . 121982) (-3802 . 121822)
+ (-3803 . 121643) (-3804 . 121504) (-3805 . 121444) (-3806 . 121279)
+ (-3807 . 121131) (-3808 . 120852) (-3809 . 120764) (-3810 . 120636)
+ (-3811 . 120608) (-3812 . 120454) (-3813 . 120339) (-3814 . 120235)
+ (-3815 . 119838) (-3816 . 119673) (-3817 . 119485) (-3818 . 119411)
+ (-3819 . 119314) (-3820 . 119087) (-3821 . 118846) (-3822 . 118742)
+ (-3823 . 118635) (-3824 . 118111) (-3825 . 117947) (-3826 . 117780)
+ (-3827 . 117727) (-3828 . 117497) (-3829 . 117463) (-3830 . 117236)
+ (-3831 . 116946) (-3832 . 116891) (-3833 . 115641) (-3834 . 115531)
+ (-3835 . 115253) (-3836 . 114985) (-3837 . 114846) (-3838 . 114679)
+ (-3839 . 114596) (-3840 . 113958) (-3841 . 113927) (-3842 . 113799)
+ (-3843 . 113661) (-3844 . 113582) (-3845 . 113469) (-3846 . 113356)
+ (-3847 . 113243) (-3848 . 112648) (-3849 . 112551) (-3850 . 112366)
+ (-3851 . 112286) (-3852 . 112202) (-3853 . 111999) (-3854 . 111922)
+ (-3855 . 111254) (-3856 . 111184) (-3857 . 111080) (-3858 . 110636)
+ (-3859 . 110535) (-3860 . 110311) (-3861 . 110231) (-3862 . 110175)
+ (-3863 . 109996) (-3864 . 109820) (-3865 . 109747) (-3866 . 109637)
+ (-3867 . 109405) (-3868 . 109308) (-3869 . 109184) (-3870 . 109104)
+ (-3871 . 106177) (-3872 . 106115) (-3873 . 105588) (-3874 . 105406)
+ (-3875 . 105351) (-3876 . 105241) (-3877 . 105036) (-3878 . 104909)
+ (-3879 . 104794) (-3880 . 104586) (-3881 . 104505) (-3882 . 104471)
+ (-3883 . 103944) (-3884 . 103768) (-3885 . 103695) (-3886 . 103579)
+ (-3887 . 103397) (-3888 . 103312) (-3889 . 103217) (-3890 . 103137)
+ (-3891 . 103103) (-3892 . 102822) (-3893 . 102640) (-3894 . 102518)
+ (-3895 . 102463) (-3896 . 102353) (-3897 . 102223) (-3898 . 102122)
+ (-3899 . 102027) (-3900 . 101931) (-3901 . 101897) (-3902 . 101476)
+ (-3903 . 101297) (-3904 . 100940) (-3905 . 100824) (-3906 . 100614)
+ (-3907 . 100412) (-3908 . 100276) (-3909 . 100177) (-3910 . 99898)
+ (-3911 . 99864) (-3912 . 99337) (-3913 . 99158) (-3914 . 99127)
+ (-3915 . 98716) (-3916 . 98585) (-3917 . 98374) (-3918 . 98098)
+ (-3919 . 98004) (-3920 . 97906) (-3921 . 97838) (-3922 . 97804)
+ (-3923 . 97619) (-3924 . 97432) (-3925 . 97277) (-3926 . 97128)
+ (-3927 . 96937) (-3928 . 96840) (-3929 . 96742) (-3930 . 96693)
+ (-3931 . 93912) (-3932 . 93769) (-3933 . 93387) (-3934 . 93232)
+ (-3935 . 92694) (-3936 . 92111) (-3937 . 90569) (-3938 . 89857)
+ (-3939 . 89823) (-3940 . 89305) (-3941 . 89126) (-3942 . 89046)
+ (-3943 . 88963) (-3944 . 88820) (-3945 . 88564) (-3946 . 88512)
+ (-3947 . 88460) (-3948 . 88353) (-3949 . 88272) (-3950 . 88174)
+ (-3951 . 87525) (-3952 . 87491) (-3953 . 86849) (-3954 . 86670)
+ (-3955 . 86590) (-3956 . 86435) (-3957 . 86285) (-3958 . 85991)
+ (-3959 . 85939) (-3960 . 85832) (-3961 . 85749) (-3962 . 84933)
+ (-3963 . 84693) (-3964 . 84659) (-3965 . 84603) (-3966 . 84416)
+ (-3967 . 84261) (-3968 . 84138) (-3969 . 83841) (-3970 . 83734)
+ (-3971 . 83539) (-3972 . 83455) (-3973 . 83219) (-3974 . 83185)
+ (-3975 . 83088) (-3976 . 82522) (-3977 . 82415) (-3978 . 82115)
+ (-3979 . 82008) (-3980 . 81912) (-3981 . 81815) (-3982 . 81710)
+ (-3983 . 80849) (-3984 . 80728) (-3985 . 80533) (-3986 . 79967)
+ (-3987 . 79768) (-3988 . 79661) (-3989 . 79531) (-3990 . 79424)
+ (-3991 . 79315) (-3992 . 79152) (-3993 . 79056) (-3994 . 78786)
+ (-3995 . 78695) (-3996 . 78624) (-3997 . 78027) (-3998 . 77855)
+ (-3999 . 77745) (-4000 . 77612) (-4001 . 77339) (-4002 . 77232)
+ (-4003 . 76799) (-4004 . 76702) (-4005 . 76606) (-4006 . 76515)
+ (-4007 . 76441) (-4008 . 76389) (-4009 . 76311) (-12 . 76139)
+ (-4011 . 76001) (-4012 . 75865) (-4013 . 75758) (-4014 . 75703)
+ (-4015 . 75472) (-4016 . 75423) (-4017 . 75276) (-4018 . 75224)
+ (-4019 . 75114) (-4020 . 74975) (-4021 . 74868) (-4022 . 74596)
+ (-4023 . 74440) (-4024 . 74297) (-4025 . 74200) (-4026 . 74148)
+ (-4027 . 73710) (-4028 . 73658) (-4029 . 73329) (-4030 . 73198)
+ (-4031 . 71913) (-4032 . 71798) (-4033 . 71691) (-4034 . 71318)
+ (-4035 . 71176) (-4036 . 71124) (-4037 . 71040) (-4038 . 70988)
+ (-4039 . 70822) (-4040 . 70330) (-4041 . 70112) (-4042 . 69956)
+ (-4043 . 69631) (-4044 . 69524) (-4045 . 69247) (-4046 . 69102)
+ (-4047 . 69050) (-4048 . 68908) (-4049 . 68792) (-4050 . 68300)
+ (-4051 . 68193) (-4052 . 67876) (-4053 . 67123) (-4054 . 67071)
+ (-4055 . 66949) (-4056 . 66854) (-4057 . 66336) (-4058 . 66130)
+ (-4059 . 65736) (-4060 . 65162) (-4061 . 65055) (-4062 . 64841)
+ (-4063 . 64678) (-4064 . 64625) (-4065 . 64503) (-4066 . 64408)
+ (-4067 . 64340) (-4068 . 64180) (-4069 . 64000) (-4070 . 63313)
+ (-4071 . 63206) (-4072 . 62888) (-4073 . 62700) (-4074 . 62631)
+ (-4075 . 62491) (-4076 . 62368) (-4077 . 62297) (-4078 . 62224)
+ (-4079 . 62009) (-4080 . 61322) (-4081 . 61215) (-4082 . 60615)
+ (-4083 . 60455) (-4084 . 60396) (-4085 . 60325) (-4086 . 60206)
+ (-4087 . 60002) (-4088 . 59315) (-4089 . 59124) (-4090 . 59011)
+ (-4091 . 58870) (-4092 . 58630) (-4093 . 58577) (-4094 . 58459)
+ (-4095 . 58400) (-4096 . 58282) (-4097 . 58096) (-4098 . 57485)
+ (-4099 . 57366) (* . 52820) (-4101 . 51956) (-4102 . 51381)
+ (-4103 . 51259) (-4104 . 51044) (-4105 . 50797) (-4106 . 50744)
+ (-4107 . 50639) (-4108 . 50611) (-4109 . 50458) (-4110 . 50339)
+ (-4111 . 50179) (-4112 . 50150) (-4113 . 49575) (-4114 . 49316)
+ (-4115 . 49007) (-4116 . 48863) (-4117 . 48616) (-4118 . 48563)
+ (-4119 . 48480) (-4120 . 48452) (-4121 . 48333) (-4122 . 48153)
+ (-4123 . 47984) (-4124 . 47409) (-4125 . 47103) (-4126 . 47017)
+ (-4127 . 46792) (-4128 . 46578) (-4129 . 46525) (-4130 . 46421)
+ (-4131 . 46393) (-4132 . 46299) (-4133 . 46116) (-4134 . 46087)
+ (-4135 . 45513) (-4136 . 45360) (-4137 . 45145) (-4138 . 44794)
+ (-4139 . 44655) (-4140 . 44602) (-4141 . 43636) (-4142 . 43468)
+ (-4143 . 43440) (-4144 . 43346) (-4145 . 43245) (-4146 . 43216)
+ (-4147 . 42642) (-4148 . 42340) (-4149 . 42173) (-4150 . 41976)
+ (-4151 . 41831) (-4152 . 41617) (-4153 . 41564) (-4154 . 41339)
+ (-4155 . 41229) (-4156 . 40937) (-4157 . 40836) (-4158 . 40780)
+ (-4159 . 40206) (-4160 . 40047) (-4161 . 40013) (-4162 . 39842)
+ (-4163 . 39516) (-4164 . 39224) (-4165 . 39171) (-4166 . 39087)
+ (-4167 . 39035) (-4168 . 38913) (-4169 . 38809) (-4170 . 38644)
+ (-4171 . 38070) (-4172 . 37739) (-4173 . 37705) (-4174 . 37653)
+ (-4175 . 37413) (-4176 . 37199) (-4177 . 37146) (-4178 . 36797)
+ (-4179 . 36745) (-4180 . 36692) (-4181 . 36640) (-4182 . 36533)
+ (-4183 . 36473) (-4184 . 35899) (-4185 . 35828) (-4186 . 35765)
+ (-4187 . 35640) (-4188 . 35501) (-4189 . 35448) (-4190 . 35374)
+ (-4191 . 35322) (-4192 . 35270) (-4193 . 35144) (-4194 . 34443)
+ (-4195 . 34372) (-4196 . 34309) (-4197 . 34185) (-4198 . 33971)
+ (-4199 . 33918) (-4200 . 33820) (-4201 . 33768) (-4202 . 33716)
+ (-4203 . 33590) (-4204 . 33437) (-4205 . 32245) (-4206 . 32033)
+ (-4207 . 31842) (-4208 . 31696) (-4209 . 31387) (-4210 . 31334)
+ (-4211 . 31260) (-4212 . 31208) (-4213 . 30799) (-4214 . 30747)
+ (-4215 . 30618) (-4216 . 30557) (-4217 . 30348) (-4218 . 30192)
+ (-4219 . 30049) (-4220 . 29904) (-4221 . 29852) (-4222 . 29758)
+ (-4223 . 29730) (-4224 . 29678) (-4225 . 29546) (-4226 . 29489)
+ (-4227 . 29113) (-4228 . 29031) (-4229 . 28916) (-4230 . 28774)
+ (-4231 . 28722) (-4232 . 28606) (-4233 . 28554) (-4234 . 28523)
+ (-4235 . 28374) (-4236 . 28273) (-4237 . 28216) (-4238 . 27681)
+ (-4239 . 27599) (-4240 . 27469) (-4241 . 27236) (-4242 . 27183)
+ (-4243 . 27070) (-4244 . 26904) (-4245 . 26717) (-4246 . 26616)
+ (-4247 . 26403) (-4248 . 26326) (-4249 . 25769) (-4250 . 25639)
+ (-4251 . 25262) (-4252 . 25120) (-4253 . 25067) (-4254 . 24973)
+ (-4255 . 24658) (-4256 . 24468) (-4257 . 24228) (-4258 . 24124)
+ (-4259 . 24064) (-4260 . 23507) (-4261 . 23433) (-4262 . 23405)
+ (-4263 . 23145) (-4264 . 22917) (-4265 . 22823) (-4266 . 22721)
+ (-4267 . 22627) (-4268 . 22416) (-4269 . 22209) (-4270 . 22105)
+ (-4271 . 21987) (-4272 . 21935) (-4273 . 21809) (-4274 . 21726)
+ (-4275 . 21551) (-4276 . 21463) (-4277 . 21183) (-4278 . 20984)
+ (-4279 . 20931) (-4280 . 20869) (-4281 . 20776) (-4282 . 20661)
+ (-4283 . 20633) (-4284 . 20467) (-4285 . 19310) (-4286 . 18350)
+ (-4287 . 17740) (-4288 . 17650) (-4289 . 17407) (-4290 . 17247)
+ (-4291 . 17219) (-4292 . 17126) (-4293 . 17054) (-4294 . 16044)
+ (-4295 . 15811) (-4296 . 15783) (-4297 . 15617) (-4298 . 15540)
+ (-4299 . 15316) (-4300 . 15236) (-4301 . 14906) (-4302 . 14570)
+ (-4303 . 14542) (-4304 . 14449) (-4305 . 14158) (-4306 . 13991)
+ (-4307 . 13891) (-4308 . 13863) (-4309 . 13669) (-4310 . 13615)
+ (-4311 . 13423) (-4312 . 13336) (-4313 . 12986) (-4314 . 12823)
+ (-4315 . 12795) (-4316 . 12707) (-4317 . 12650) (-4318 . 12483)
+ (-4319 . 12085) (-4320 . 12057) (-4321 . 11891) (-4322 . 11575)
+ (-4323 . 9461) (-4324 . 9401) (-4325 . 8934) (-4326 . 8771)
+ (-4327 . 8743) (-4328 . 6328) (-4329 . 5841) (-4330 . 5415)
+ (-4331 . 5197) (-4332 . 5169) (-4333 . 5001) (-4334 . 4893)
+ (-4335 . 4741) (-4336 . 4583) (-4337 . 4097) (-4338 . 3934)
+ (-4339 . 3854) (-4340 . 3786) (-4341 . 3156) (-4342 . 3083)
+ (-4343 . 3034) (-4344 . 3006) (-4345 . 2835) (-4346 . 2732)
+ (-4347 . 2544) (-4348 . 2351) (-4349 . 2148) (-4350 . 1973)
+ (-4351 . 1913) (-4352 . 1859) (-4353 . 1831) (-4354 . 1803)
+ (-4355 . 1638) (-4356 . 1477) (-4357 . 1170) (-4358 . 685)
+ (-4359 . 382) (-4360 . 207) (-4361 . 155) (-4362 . 30)) \ No newline at end of file